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ABSTRACT

My dissertation focuses on information economics in games. In Chapter II, “Optimal

Disclosure of Private Information to Competitors”, I consider a duopoly model with

differentiated substitutes, price competition, and uncertain demand, in which one

firm has an information advantage over a competitor. I study the incentives of the

informed firm to share its private information with its competitor and the incentives

of a regulator to control disclosure in order to benefit consumers. I show that full

disclosure of information is optimal for the informed firm, because it increases price

correlation and surplus extraction from consumers. I also show that the regulator

can increase expected consumer surplus and welfare by restricting disclosure, but

that, surprisingly, consumers can benefit from the regulator privately disclosing some

information to the competitor. My findings highlight the consequences of an unequal

distribution of consumer data between firms on welfare allocation. They also inform

an ongoing policy debate about regulating what data online platforms release to

other firms who offer goods on its platform.

In Chapter III, “Strategic Incentives and the Optimal Sale of Information”, I study

the optimal sale of information by a monopolist data-seller to multiple privately in-

formed data-buyers who play a two-stage game of incomplete information. In the

information stage, data-buyers can simultaneously acquire supplemental information

to reduce their uncertainty about the state. In the action stage, data-buyers simul-

taneously select an action to maximize their expected payoffs. The data-seller offers

a menu of Blackwell experiments and prices to screen between two types of data-

buyers. I show that the nature of data-buyer’s preferences for information allows

viii



the data-seller to extract all surplus from data-buyers, distorting the information

provided to the low type such that the high type is indifferent between both exper-

iments. I also show that the features of the optimal menu are determined by the

interaction between data-buyers’ strategic incentives in the action stage and the cor-

relation of their private information. This interaction can expand the data-seller’s

ability to serve all segments of the market, increasing expected profits.

In Chapter IV, “Product reviews - Information Source or Persuasion Device?”, which

is joint work with Anne-Katrin Roesler, we study the optimal design of review sys-

tems by a platform that has the best interest of consumers in mind. We consider

a setting in which a seller offers a good of ex-ante unknown quality through a plat-

form with a review system to sequentially arriving short-lived heterogeneous buyers.

Reviews from previous buyers provide consumers with information about the good’s

quality. Based on the review system, the seller chooses an optimal pricing scheme.

Buyers make their purchasing decision based on the information available through

reviews, their type, and the price. In a two period setting, we approximate the opti-

mal review system by characterizing the optimal K-piecewise linear distribution over

posterior quality estimates.
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CHAPTER I

Introduction

My dissertation focuses on information economics in games, specifically how infor-

mation affects the decisions of agents facing uncertainty. Information design studies

how an “information designer” can influence agents’ individually optimal behavior,

by providing information about a payoff-relevant state. In games of incomplete infor-

mation, the information designer commits to an information structure to affect the

behavior of strategically interacting agents. By revealing information, the designer

affects the players’ beliefs about the payoff-relevant state and their beliefs about the

information observed by others, which determine players’ optimal choices.

This dissertation studies how an information designer should provide information

to multiple privately informed agents who play three different games of incomplete

information. I characterize the optimal disclosure of private information between

firms to protect consumers, the optimal sale of information by a data-seller to in-

teracting data-buyers, and the design of a review system that allows consumers to

share information through product reviews. In each chapter, before observing the

payoff-relevant state, a designer commits to an information structure which maps

from the state to a joint distribution over signals. Given this information structure,

each player observes a signal realization and updates her belief about the state and

the information observed by others. Each player then chooses an action to maximize

her expected payoff. In this context, the designer chooses the information structure

such that players play the Bayes Nash equilibrium that maximizes her own expected

payoff.

In Chapter II, “Optimal Disclosure of Private Information to Competitors”, I con-
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sider a duopoly model with differentiated substitutes, price competition, and uncer-

tain demand, in which one firm has an information advantage over a competitor. I

study the incentives of the informed firm to share its private information with its

competitor and the incentives of a regulator to control disclosure in order to benefit

consumers.

I show that full disclosure of information is optimal for the informed firm, because

it increases price correlation and surplus extraction from consumers. I also show

that the regulator can increase expected consumer surplus and welfare by restricting

disclosure, but that, surprisingly, consumers can benefit from the regulator privately

disclosing some information to the competitor. Disclosure increases the ability of

firms to extract surplus from consumers by pricing to better match the level of

demand. But, private disclosure can create a pricing coordination failure between

firms by introducing uncertainty in their choices, which increases price volatility and

opportunities for consumers to arbitrage prices. The benefit from private disclo-

sure depends on the differentiation between goods, because it determines consumers’

willingness to substitute between goods and therefore the extent to which disclosure

affects relative demand across firms. Thus, I show that private partial disclosure is

optimal for consumers when firms offer sufficiently close substitutes and, otherwise,

no disclosure is optimal. When partial disclosure is optimal, I also fully characterize

the consumer optimal disclosure policy.

My findings highlight the consequences of an unequal distribution of consumer data

between firms on welfare allocation. They also inform an ongoing policy debate

about regulating what data online platforms release to other firms who offer goods

on its platform.

In Chapter III, “Strategic Incentives and the Optimal Sale of Information”, I study

the optimal sale of information by a monopolist data-seller to multiple privately in-

formed data-buyers who play a two-stage game of incomplete information. In the

information stage, data-buyers can simultaneously acquire supplemental information

to reduce their uncertainty about the state. In the action stage, data-buyers simul-

taneously select an action to maximize their expected payoffs. The data-seller offers

a menu of experiments and prices to screen between two types of data-buyers. In

contrast to standard screening problems, buyer’s preferences for information cannot

2



generally be ordered across types since they value information if and only if it affects

their choices.

I show that the nature of data-buyer’s preferences for information allows the data-

seller to extract all surplus from data-buyers, distorting the information provided to

the low type such that the high type is indifferent between both experiments offered

in the menu. I also show that the features of the optimal menu are determined by

the interaction between data-buyers’ strategic incentives in the action stage and the

correlation of their private information. This interaction can expand the data-seller’s

ability to serve all segments of the market, increasing expected profits. In particular,

the seller’s optimal menu offers perfect information to the buyer with highest will-

ingness to pay (the high type) and partial or no information to the other type (the

low type). Partial information is offered to the low type whenever the mentioned

interaction increases demand for information. That is, i) if they play a coordina-

tion game and their private information is negatively correlated; or ii) if they play

anti-coordination game and their private information is positively correlated.

In Chapter IV, “Product reviews - Information Source or Persuasion Device?”, which

is joint work with Anne-Katrin Roesler, we study the optimal design of review sys-

tems by a platform that has the best interest of consumers in mind. We consider

a setting in which a seller offers a good of ex-ante unknown quality through a plat-

form with a review system to sequentially arriving short-lived heterogeneous buyers.

Reviews from previous buyers provide consumers with information about the good’s

quality. Based on the review system, the seller chooses an optimal pricing scheme.

Buyers make their purchasing decision based on the information available through

reviews, their type, and the price. When buyers have homogeneous preferences, we

fully characterize the buyer-optimal review system. We also show that the presence of

heterogeneous buyers meaningfully affects the characterization of the buyer-optimal

distribution over posterior quality estimates. In a two period model, we characterize

the buyer-optimal distribution over posterior quality estimates within the class of

K-piecewise linear distributions with K ≤ 2.
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CHAPTER II

Optimal Disclosure of Private Information to

Competitors

2.1 Introduction

Some firms can gather more information than their competitors about market fea-

tures like demand, given their size or incumbency status. For instance, online plat-

forms like Amazon engage in massive data collection and analysis by gathering and

processing information generated through trade and consumer searches that other

sellers on the platform can’t replicate. As a seller themselves, they can use this in-

formation to guide their own pricing and control the information observed by other

sellers. In settings of information asymmetry, information disclosure between firms

affects firm behavior and therefore also impacts consumers and welfare. The use of

private information as a competitive advantage by online platforms has attracted the

attention of regulatory entities in the US and Europe.1 When there is an uneven

distribution of consumer data between firms, regulatory interventions to control infor-

mation disclosure can potentially redistribute surplus between firms and consumers

or increase welfare.

In this paper, I study the role of information disclosure as a pricing persuasion de-

vice, through which a firm with an information advantage or a regulator can influence

the pricing of a competing firm. I examine the informed firm’s incentives to com-

mit to share its private information with its competitor and the role of a regulator

who commits to control information disclosure between firms to benefit consumers.

1See for example media coverage in Fung (2020), Green (2018), Lardieri (2019).
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Specifically, I analyze a stylized duopoly model with information asymmetry about

demand and a binary state. I consider an informed firm which privately learns the

level of the demand and an uninformed firm that has no private information. De-

mand is linear and firms face uncertainty about its level, which can be either low or

high. Firms offer differentiated goods, such that consumer willingness to pay for a

good depends on its substitutability with the competitor’s. Firms compete by simul-

taneously and non-cooperatively setting prices to maximize their expected profits. In

this context, I address the following questions: What is the informed firm’s optimal

disclosure policy as a competitor in the market? How can a regulator constrain or

enforce information disclosure to benefit consumers?

I characterize the optimal disclosure for firms and consumers. I show that the wel-

fare implications of disclosure are determined by the degree of differentiation between

goods, because it determines the extent to which disclosure affects firm pricing and

relative demand across markets. Regarding optimal disclosure for firms, with sub-

stitutes, firm choices are strategic complements and the informed firm thus benefits

from sharing its private information with the uninformed firm, because it increases

price correlation. As a result, full disclosure is optimal for the informed firm. Full dis-

closure also maximizes producer surplus, because the uninformed firm also benefits

from price correlation as well as from learning about the state. This result highlights

that an informed firm may have incentives to share information even when it has no

information to gain in return, because it can influence the pricing of its competitor.

Furthermore, I generalize this result by showing that the informed firm’s optimal dis-

closure doesn’t rely on the linearity of demand: when the informed firm’s expected

equilibrium profit is supermodular in the state and the choice of the uninformed

firm, firms’ choices are strategic complements and, accordingly, full disclosure is op-

timal. I also show that no disclosure is optimal when the informed firm’s expected

equilibrium profit is submodular.2

Regarding optimal disclosure for consumers, I find that a regulator should restrict

information disclosure, at least partially.3 However, some information disclosure is

2When the informed firm’s profits are supermodular in the state and the choice of the uninformed
firm, an increase in the uninformed firm’s price has a increasing effect on the informed firm’s profits
as the state increases. Focusing instead on decision problems, Kolotilin and Wolitzky (2020) shows
that supermodularity of a sender’s objective function with respect to the state and the receiver’s
action is a sufficient condition for the optimality of full disclosure.

3Luco (2019) presents empirical evidence that full disclosure can be detrimental for consumers
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not necessarily detrimental to consumers. First, I show that the optimal disclosure

is private, such that the informed firm doesn’t observe the signal realization of the

uninformed firm. Second, I show that optimal disclosure is determined by the degree

of differentiation between goods. In particular, partial disclosure is optimal if firms

offer sufficiently close substitutes and no disclosure is optimal otherwise. Information

disclosure creates a trade-off for consumers. On the one hand, disclosure reduces the

uninformed firm’s uncertainty about the state, improving the ability of firms to

extract surplus from consumers by increasing price correlation. On the other hand,

private partial disclosure introduces uncertainty about the information observed by

a firm’s competitor. This expands the range of prices in each state, since firms

price according to the expected price of its competitor and its expected level of

demand. Namely, the uninformed firm may observe a signal which conflicts with

the realized state, but the informed firm doesn’t observe the signal and therefore

cannot adjust, creating a coordination failure. Consumers can benefit from this price

heterogeneity by choosing from which firm to buy after observing prices. Overall, the

regulator trades-off the opportunity to create this coordination failure in prices with

allowing firms to better extract surplus from consumers. The net effect depends on

the differentiation between goods, because it determines consumers’ willingness to

substitute between goods and therefore the extent to which disclosure affects relative

demand across firms.

Combining results for firms and consumers, to maximize expected welfare, the reg-

ulator trades off the effect of disclosure on consumers and firms. When firms offer

sufficiently differentiated goods, no disclosure maximizes expected welfare, since the

expected loss of some disclosure for consumers exceeds the expected gain for firms.

Conversely, when firms offer sufficiently close substitutes, full disclosure maximizes

welfare. For intermediate levels of differentiation, partial disclosure maximizes wel-

fare.

When partial disclosure is optimal, I also fully characterize the consumer and welfare

optimal disclosure policies, which share the same qualitative properties. Signals act

as equilibrium price recommendations, recommending a price to each firm condi-

tional on the state subject to obedience constraints. First, I show that the regulator

recommends at most two prices. Second, I show that one of the prices is only rec-

in the gasoline market in Chile.
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ommended when the state is low, revealing the state to the uninformed firm. The

other price is recommended in both states, obfuscating the level of demand. The

optimality of partial disclosure contrasts with work in the literature focusing on firm

incentives, highlighting that optimal disclosure can be more nuanced when consider-

ing implications for consumers and welfare.

My analysis emphasizes the wide scope for intervention by a regulator, based on

product differentiation and their objective function. My results are of particular

interest given current policy debates on the use of private information by firms who

act as both a trading platform and a competitor in the market. As I show, it can be

optimal for a regulator to intervene by completely preventing or forcing information

disclosure, or by designing disclosure policies to partially inform the uninformed

firm. Therefore, it is crucial to consider the strategic environment to understand the

consequences of information sharing between firms, and whether it is beneficial for

both firms and consumers.

Related literature. This paper contributes to the literature on strategic informa-

tion sharing in oligopolies with commitment and the literature on information design

in games.4 Incentives for information sharing about demand among competing firms

with symmetric private information and normally distributed linear demand were

first studied in Novshek and Sonnenschein (1982), Clarke (1983) as well as Vives

(1984), and later generalized in Raith (1996).5 In these papers, firms commit to

share their private information with an intermediary, which then discloses a com-

mon signal to all firms to maximize industry-wide profits. These papers focus on

the producer surplus optimal public disclosure and on the regulation of industry-

wide information sharing by trading organizations. They show the optimality of full

disclosure for firms when they compete by choosing prices and offer imperfect sub-

stitutes. Instead, I study the incentives of an individual firm to share information to

influence its competitor’s behavior in a setting of informational advantage, in which

signals are privately observed and the distribution of the uninformed firm’s signal

4Papers like Benoit and Dubra (2006) show that agents’ ex-ante and ex-post incentives for
information sharing can be disaligned, such that commitment is key.

5Other papers in this literature include Gal-Or (1985), Li (1985), Kirby (1988) and Vives (1990).
Information sharing about costs are studied in papers like Fried (1984), Gal-Or (1986), Sakai (1986)
and Shapiro (1986), in which incentives to share information are reversed.
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is unrestricted.6 My results show that it can be optimal for a firm to unilaterally

disclose information about demand to a competitor even without receiving any in-

formation in return, because disclosure can influence the behavior of competitors

and act as a pricing persuasion device.7 Further, full disclosure is not only optimal

for the informed firm, but also for producer surplus. The intuition for this result

relates to Angeletos and Pavan (2007), who study the social value of information

with normally distributed signals and find that producer surplus increases with the

precision of both public and private signals.

In contrast with this literature, I also analyze the effects of information disclosure

on consumers. Vives (1984) and Calzolari and Pavan (2006) show that information

disclosure is not necessarily harmful to consumers. Vives (1984) illustrates this by

comparing the utility of a representative consumer across full and no disclosure when

firms share symmetric normally distributed private information. Calzolari and Pavan

(2006) study a sequential setting in which the Stackelberg leader must provide incen-

tives to consumers to reveal their private information to be able to share it with its

follower. They focus on the leader’s optimal disclosure policy, whereas I focus on the

optimal disclosure for consumers. Regarding welfare, Vives (1984) also shows that

full disclosure dominates no disclosure if and only if firms offer sufficiently close sub-

stitutes, yet I show that restricting to full and no disclosure is with loss of generality

since partial disclosure can be consumer and welfare optimal. My results regarding

welfare relate to Ui and Yoshizawa (2015), who study the social value of information

restricted to symmetric normally distributed signals and symmetric equilibria. They

show that welfare decreases in the precision of private information and increases in

the precision of public information if goods are close substitutes, intuitively related

to the optimality of either full or private partial disclosure as I fully characterize in

this paper.

More broadly, the paper contributes to the literature on information design in games

6Bergemann and Morris (2013), Bergemann, Heumann, and Morris (2015) and Eliaz and Forges
(2015) analyze producer optimal disclosure in Cournot settings with perfect substitutes and infor-
mation symmetry. They show that it is with loss of generality to restrict attention to a common
and, hence, perfectly correlated disclosure.

7In sequential settings, the role of current choices as a costly persuasion device to influence
the precision of future information has been studied in Mailath (1989), Mirman, Samuelson, and
Urbano (1993), Mirman, Samuelson, and Schlee (1994), Harrington (1995), Keller and Rady (2003),
Taylor (2004), Bernhardt and Taub (2015), Bonatti, Cisternas, and Toikka (2017).
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as studied in papers like Taneva (2019) and Mathevet, Perego, and Taneva (2020).

I characterize the optimal recommendation mechanism in a Bertrand setting with

product differentiation and information asymmetry. It is most closely related to

the literature on consumer optimal information design, which analyzes the effect of

information about buyers’ valuation on pricing and welfare allocation. This litera-

ture has focused on buyer optimal learning, consumer optimal market segmentation

and on the incentives of consumers to disclose their preferences directly to firms.

Within the buyer optimal learning literature, Roesler and Szentes (2017) analyzes

the effect of a buyer’s information on monopoly pricing and characterizes optimal

buyer learning. In a duopoly setting, Armstrong and Zhou (2019) studies competi-

tion between firms when consumers observe a private signal about their valuation and

characterizes consumer optimal learning. Within the consumer optimal segmentation

literature, Bergemann, Brooks, and Morris (2015) analyzes the welfare consequences

of a monopolist having access to additional information about consumer preferences

and characterize the feasible welfare outcomes achieved by segmentation. Li (2020)

extends the insights from Bergemann, Brooks, and Morris (2015) to an oligopoly

setting and characterizes the consumer-optimal market segmentation in competitive

markets. Elliott, Galeotti, and Koh (2020) studies how information about consumer

preferences should be distributed across firms which compete by offering personalized

discounts to consumers and provides necessary and sufficient conditions under which

perfect segmentation can be achieved. Lastly, Ichihashi (2020) studies the welfare

effects of consumers disclosing information about their valuation with a monopolist,

whereas Ali, Lewis, and Vasserman (2020) analyzes the consumer optimal disclosure

of information about their preferences in monopolistic and competitive markets. In

contrast, I focus on the welfare consequences of an unequal distribution of consumer

data across firms and the effect of information disclosure between firms. In particu-

lar, I characterize the optimal disclosure policy between firms for consumers, which

affects consumers indirectly by affecting prices.

The remainder of the paper is organized as follows: Section 1 presents an example,

Section 2 outlines the model and preliminary results, Section 3 derives the informed

firm optimal disclosure, Section 4 derives the consumer optimal disclosure, Section 5

derives the producer and welfare optimal disclosures, Section 6 discusses extensions,

and Section 7 concludes.
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2.2 Motivating example

Two firms compete by simultaneously setting prices and offer differentiated sub-

stitutes. Firm profits depend on the realization of a binary state, θ ∈ Θ, which

represents the level of demand. For this example, assume that Θ = {1, 2.8}, where

the low state occurs with probability µL = 3
4

and the high state with probability

µH = 1
4
. Firm i’s demand is given by

qi((pi, p−i); θ) = max{0, θ − 2.1pi + 2p−i}.

The effect of i’s pricing decision on its quantity demanded exceeds the effect of j’s

pricing decision, representing the differentiation between goods. Firms’ costs are

zero.

Firm 1 (the informed firm) observes the state, whereas firm 2 (the uninformed firm)

initially has no information beyond the prior. Before the realization of the state, the

informed firm commits to an information structure which discloses none, some, or all

of its private information to the uninformed firm. For simplicity, in this example, I

restrict attention to information structures with binary support: conditional on the

state, the uninformed firm privately observes either a low signal sL or a high signal

sH . In the low state θL = 1, the low signal is observed with probability xL ∈ [0, 1],

whereas the high signal is observed with the complementary probability 1 − xL. In

the high state θH = 2.8, the high signal is observed with probability xH ∈ [0, 1]

and the low signal with probability 1 − xH . Signal sL is more likely to occur than

sH when the state is low than when state is high, implying that xL + xH ≥ 1.

Denote the information structure by (xL, xH), where full (no) disclosure is captured

by xL = xH = 1 (xL = xH = 1
2
).

Given the information structure, firms choose a pricing strategy, which consists of a

price conditional on their private information to maximize expected profits. Denote

by p∗1(θ; (xL, xH)) the informed firm’s equilibrium price when the state is θ and by

p∗2(s; (xL, xH)) the uninformed firm’s equilibrium price after observing signal s.

The informed firm’s expected equilibrium profits are strictly increasing in the pre-

cision of the information structure.8 Hence, it is optimal for it to commit to share

8The informed firm’s expected equilibrium profits, E[Π∗1(xL, xH)] = 2.1E
[
p∗1(θ; (xL, xH))2

]
, are
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(b) Market of firm 1: θ = 2.8

Figure 2.1: Informed firm’s expected demand and profits in each state with full
disclosure (blue line and blue shaded region) vs no disclosure (red line and red shaded
region).

all of its private information with the uninformed firm. In Figure 2.1, I illustrate

the optimality of full disclosure, showing its effect on prices, demand and profits in

the informed firm’s market. Changes in the information observed by the uninformed

firm impact equilibrium pricing and, as a result, the expected demand faced by the

informed firm. From the informed firm’s perspective, a more precise signal increases

the uninformed firm’s expected equilibrium price in the high state and lowers it in

the low state.9 As a result, with substitutes, a more precise information disclosure

increases (decreases) the informed firm’s expected demand in the high (low) state,

shifting the demand outward (inward) in Figure 2.1. In the high state, the informed

firm increases its profits by raising the price on inframarginal consumers who were

already buying its product and gaining marginal consumers from the uninformed

firm’s market. In the low state, the informed firm’s profits are lower since it charges

a lower price and faces a lower level of demand. Nevertheless, the bigger size of the

strictly increasing in both xL and xH , because

∂E[Π∗1(xL, xH)]

∂xk
= 2.1

∑
θ∈Θ

µθp
∗
1(θ; (xL, xH))

∂p∗1(θ; (xL, xH))

∂xk
, µH

∂p∗1(θ; (xL, xH))

∂xk
= −µL

∂p∗1(θ; (xL, xH))

∂xk
> 0

and the informed firm sets a higher price in the high state.
9The uninformed firm’s optimal price is linear in its expectation of the state. Then, changes in

its pricing across states due to disclosure depends on its prior. After observing the low signal sL, it
lowers its price by a relatively small amount if it already believed that the low state was more likely.
In contrast, after observing the high signal sH , its price increase is bigger, reflecting its change in
beliefs about the state.
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market implies that the stakes are higher in the high state, such that the gains from

a price bonus there outweigh the losses from a price penalty in the low state. As a

result, it is optimal for the informed firm to disclose its private information.

However, full disclosure is detrimental for consumers. Consumers are better off

with no disclosure between firms, as illustrated in Table 2.1. Still, while completely

restricting disclosure may seem optimal, private partial disclosure can benefit con-

sumers. For instance, private partial disclosure characterized by (xL, xH) =
(

1
2
, 1
)

yields a higher expected consumer surplus than no disclosure, as also illustrated in

Table 2.1.10

No: (xL, xH) =
(

1
2 ,

1
2

)
Partial: (xL, xH) =

(
1
2 , 1
)

Full: (xL, xH) = (1, 1)
(p∗1(θL), p∗1(θH)) (0.55, 0.98) (0.54, 1) (0.45, 1.27)
(p∗2(sL), p∗2(sH) (0.66, 0.66) (0.49, 0.76) (0.4, 1.27)
CS 1.26 1.27 1.18

Table 2.1: Prices and Consumer surplus comparison with no, partial and full disclo-
sure.

Intuitively, private partial disclosure impacts consumer surplus in two ways. First, it

gives the uninformed firm information about the state, improving the ability of firms

to extract surplus from consumers. Second, it introduces uncertainty in the pricing of

firms, because each firm is uncertain about the information observed by its competi-

tor. This increases the range of prices in each state, such that consumers can benefit

from price arbitrage by choosing from which firm to buy after observing prices. In

fact, it creates a pricing coordination failure between firms with positive probability,

given that they choose prices without observing its competitor’s information.

Figure 2.2 illustrates ex-post consumer surplus with no disclosure and partial disclo-

sure (xL, xH) =
(

1
2
, 1
)

in each market. Each panel illustrates consumer surplus when

the realized state is θ and the uninformed firm observes signal s2. With this partial

disclosure, the uninformed firm observes signal sH with probability 1 when the state

is high, so only three panels per market are displayed.

In the uninformed firm’s market, expected consumer surplus decreases with partial

disclosure due to changes in its pricing. There is little change in its demand, since

10Consumers benefit from partial disclosure when it is private, in which case the informed firm
doesn’t observe the signal realization of the uninformed firm. If disclosure is public, no disclosure
is optimal.
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(c) Market of firm 1: (θH , sH)
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(d) Market of firm 2: (θL, sL)
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(f) Market of firm 2: (θH , sH)

Figure 2.2: Ex-post consumer surplus with no disclosure (shaded red area) vs partial
disclosure (xL, xH) =

(
1
2
, 1
)

(shaded green area).

the informed firm knows the state and therefore does not substantially change its

pricing based on the disclosure policy. As shown in panel (d) (panels (e) and (f)),

when the uninformed firm observes the low (high) signal, it decreases (increases) its

price, increasing (decreasing) quantity sold and consumer surplus. The net effect on

expected consumer surplus is negative due to the larger size of the market in the

high state, as illustrated in panel (b) of Figure 2.3.

In the informed firm’s market, expected consumer surplus increases with partial dis-

closure. In contrast to market 2, the pricing of the informed firm changes little across

disclosure policies, such that changes in consumer surplus are driven by changes in

the level of demand from the uninformed firm’s pricing. In particular, the informed

firm’s demand shifts inward when the uninformed firm observes the low signal (panel

(a)) and outward when it observes the high signal (panels (b) and (c)). Accordingly,

most of the gain in consumer surplus occurs when the uninformed firm observes the

high signal, especially when the state is low. In that case, there is a mismatch be-

tween the signal realization and the state, implying that the uninformed firm charges

a high price. However, since the informed firm doesn’t observe the uninformed firm’s

signal, it can’t take advantage of the uninformed firm’s high price. Through price

arbitrage, consumers avoid the high price in the uninformed firm’s market by buying

13
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Figure 2.3: Weighted change in consumer surplus from partial disclosure vs. no
disclosure

from the informed firm at the lower price. Overall, as shown in panel (a) of Fig-

ure 2.3, the expected change in consumer surplus for market 1 is positive and exceeds

the loss in market 2, showing that partial disclosure is optimal for consumers.

2.3 The model

Two symmetric firms offer horizontally differentiated substitutes and compete by

simultaneously setting prices. Firm profits depend on the realization of a binary

payoff-relevant state, θ ∈ Θ = {θL, θH} with θH > θL > 0. Firms share a common

prior about the state where the probability of θ ∈ Θ is denoted by µθ ∈ (0, 1). Firm

i’s demand, qi((pi, p−i); θ), is given by

qi((pi, p−i); θ) = max{0, θ − api + bp−i} (2.1)

where a and b are known parameters with a > b > 0.11 As can be seen from (2.1),

the state represents the level of demand and, since firms offer substitutes, both the

state and the price of the competitor are positive demand shifters which increase

quantity demanded at every price. Define δ as the ratio of b and a, which measures

the degree of differentiation. As δ converges to 0, goods are more differentiated and

11The relationship between a and b implies that demand is more sensitive to a firm’s own price
than the price of its competitor, ensuring that equilibrium prices are finite.

14



as δ converges to 1, goods are closer substitutes. Also, assume that

θH <
4a2 − b2

2a2 − b2
θL,

ensuring that equilibrium prices and quantities are non-negative. Firms’ costs are

zero.12 Hence, firm i’s ex-post profits, Πi : R2
+ ×Θ→ R, correspond to

Πi((pi, p−i); θ) = pi · qi((pi, p−i); θ).

Given the state and prices (pi, p−i), ex-post consumer surplus in the market of firm

i is the difference between consumers’ ex-post willingness to pay for the good and

the equilibrium price. The ex-post willingness to pay of consumers in the market of

firm i is characterized by the ex-post inverse demand, pi(qi; p−i, θ), given by

pi(qi; p−i, θ) = max

{
0,
θ + bp−i − qi

a

}
where demand is generated by a continuum of heterogeneous consumers making

discrete choices (Armstrong and Vickers, 2015).13 Then, ex-post consumer surplus

12Including linear or quadratic costs has no impact on the results.
13Assume a continuum of consumers with heterogeneous preferences. Consumer ` has valuation

v`,i for one unit of the good offered by firm i, where v = (v`,1, v`,2) is drawn from a joint cumulative
distribution G(v). Consumer ` attaches no value to more than one unit of either good and wishes
to buy either a single unit of one good or to not buy any of them. Then, consumer ` buys from firm
i if v`,i − pi ≥ maxj 6=i{0, v`,j − pj}, where the outside option is normalized to zero. The demand
for product i, qi(p), is then the measure of consumers ` who satisfy v`,i− pi ≥ maxj 6=i{0, v`,j − pj}.
Armstrong and Vickers (2015) shows that the linear demand model defined by (2.1) can be micro-
founded by this discrete choice model, since

∂qi((pi, p−i); θ)

∂p−i
=
∂q−i((pi, p−i); θ)

∂pi
for all i and

∂2
∑
i∈{1,2} qi((pi, p−i); θ)

∂pi∂p−i
≤ 0.

In this context, consumer ` who buys from firm i receives surplus v`,i−pi and the consumer surplus
in market i is simple the sum of the surpluses of consumers ` who purchase good i. Given that
there is a continuum of consumers, this coincides with (2.2). Furthermore, since consumers buy at
most one product, total ex-post consumer surplus is simply the sum across markets. See Choné
and Linnemer (2020) for a survey of micro-foundations of a linear demand system.
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in market of firm i, CSi : R2
+ ×Θ→ R, corresponds to

CSi((pi, p−i); θ) =
1

2

[
θ + bp−i

a
− θ + bp−i − qi((pi, p−i); θ)

a

]
qi((pi, p−i); θ)

=
1

2a
qi((pi, p−i); θ)

2, (2.2)

where the term in square brackets corresponds to the difference between the demand

intercept and the equilibrium price.

Information environment. Firm 1 (the informed firm) knows the state, whereas

firm 2 (the uninformed firm) initially has no information beyond the common prior.

Assume that a designer can restrict (or require) information sharing between firms by

choosing the information observed by the uninformed firm. The designer selects and

commits to an information structure before the realization of the state, which dis-

closes none, some, or all of the informed firm’s private information to the uninformed

firm. Let S2 be the set of signal realizations observed by firm 2. Signal realizations

are private.14 An information structure consists of a set of signal realizations S2 and

a family of conditional distributions ψ2 : Θ→ ∆(S2).

Pricing game. Given the information structure (S2, ψ2), firms play a pricing game

in which they condition their pricing choices on their information by selecting map-

pings

β̂1 : Θ→ ∆(R+) and β̂2 : S2 → ∆(R+)

to maximize their expected profits. Specifically, the timing is as follows: (i) the

designer selects and commits to an information structure (S2, ψ2); (ii) the state θ is

realized; (iii) the signal is realized and privately observed by the uninformed firm

according to (S2, ψ2); (iv) firms update their beliefs according to Bayes’ rule and

simultaneously choose prices; (v) payoffs are realized.

The solution concept is Bayes Nash equilibrium (BNE). A strategy profile (β̂1, β̂2) is

14Allowing for public signals has no effect on the optimal disclosure for firms. However, consumers
are better off when signals are private for any disclosure policy. Then, a designer concerned about
consumers would optimally commit to private disclosure. See Lemma II.8.
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a BNE if, for all pi ∈ R+ selected with positive probability,∫
S2

∫
R+

Π1((p1, p2); θ)dβ̂2(p2|s2)dψ2(s2|θ) ≥
∫
S2

∫
R+

Π1((p′1, p2); θ)dβ̂2(p2|s2)dψ2(s2|θ)

(2.3)

for all p′1 ∈ R+ and θ ∈ Θ and

∑
θ∈Θ

µθ

∫
R+

Π2((p2, p1); θ)dβ̂1(p1|θ) ≥
∑
θ∈Θ

µθ

∫
R+

Π2((p′2, p1); θ)dβ̂1(p1|θ) (2.4)

for all p′2 ∈ R+ and s2 ∈ S2. Denote by Ê(S2, ψ2) the set of BNE in the pricing

game.

For any information structure (S2, ψ2), the existence and uniqueness of the BNE is

guaranteed by Ui (2016), which provides sufficient conditions for the existence and

uniqueness of the BNE in Bayesian games with concave and continuously differen-

tiable payoff functions. This result is formalized in Lemma II.1. The proofs of this

result and all subsequent others are in Appendix A.2.

Lemma II.1 For all information structures (S2, ψ2), the set of BNE in the pricing

game Ê(S2, ψ2) is a singleton.

Information disclosure. The choice of information structure (S2, ψ2) determines

the equilibrium in the pricing game. The designer chooses an information structure

to maximize its ex-ante expected payoff such that (β̂∗1(p1|θ), β̂∗2(p2|s2)) is the BNE of

the pricing game. I consider four objective functions for the designer:

1. Informed firm expected profits:

E [Π1((p1, p2); θ)] =
∑
θ∈Θ

µθ

∫
S2

∫
R+

∫
R+

Π1((p1, p2); θ)dβ̂∗2(p2|s2)dβ̂∗1(p1|θ)dψ2(s2|θ)

2. Expected Consumer surplus:

E [CS((p1, p2); θ)] =
1

2a

∑
i∈{1,2},θ∈Θ

µθ

∫
S2

∫
R+

∫
R+

qi((pi, p−i); θ)
2dβ̂∗1(p1|θ)dβ̂∗2(p2|s2)dψ2(s2|θ)
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3. Expected Producer surplus:

∑
i=1,2

E [Πi((p1, p2); θ)] =
∑

i=1,2,θ∈Θ

µθ

∫
S2

∫
R+

∫
R+

Πi((pi, p−i); θ)dβ̂
∗
1(p1|θ)dβ̂∗2(p2|s2)dψ2(s2|θ)

4. Expected Welfare:

E [W ((p1, p2); θ)] := E [CS((p1, p2); θ)] +
∑
i=1,2

E [Πi((p1, p2); θ)] .

The interpretation of the role of the designer varies depending on their objective

function. If the designer’s objective is to maximize the informed firm’s expected

profits, then it is as if the informed firm is choosing how much information to dis-

close to its competitor. If the designer’s objective is to maximize expected producer

surplus, it is as if there is a collusive agreement between firms to determine optimal

disclosure of information among them. Lastly, if the designer’s objective is to max-

imize expected consumer surplus or welfare, the interpretation of the designer is as

a regulator.

The main effects of information disclosure on welfare are captured by the trade offs

arising from the informed firm and the consumer optimal disclosures. The insights

obtained by analyzing them extend to the producer surplus and welfare optimal

disclosures.

2.3.1 Preliminary results

2.3.1.1 Equivalence to recommendation mechanisms

This section simplifies the information design problem by constraining the set of

information structures. Taneva (2019) shows that it is without loss of generality

to restrict attention to information structures where signals are equilibrium rec-

ommendations conditional on the state. I present an extension to compact action

spaces and bounded, continuous real-valued payoff functions, restricting attention to

pi ∈
[
0, θH

a−b

]
for all i ∈ {1, 2}.15 In a recommendation mechanism, the pricing rule

σ : Θ → ∆
([

0, θH
a−b

]2)
recommends a price for each firm such that the obedience

15This restriction is without loss of generality, since any price above θH
a−b induces no trade and

profits of zero for firm i.
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constraints are satisfied, ensuring that firms are willing to follow the price recom-

mendation. Any pricing rule which satisfies the obedience constraints is a Bayes

Correlated Equilibrium (BCE), as introduced by Bergemann and Morris (2013). A

pricing rule σ : Θ→ ∆
([

0, θH
a−b

]2)
is a BCE if

∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i), θ)dσ((pi, p−i)|θ)

≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ) (2.5)

for all pi ∈ supp σ, p′i ∈
[
0, θH

a−b

]
, and i ∈ {1, 2}.

Consider an analogous information environment in which both firms observe a private

signal about the state such that the informed firm’s signal is perfectly informative.

In what follows, I show that it is without loss of generality to interpret signals (s1, s2)

as equilibrium recommendations in which each signal recommends a price to each

firm. Define the information structure as the joint distribution of signals. Let Si be

the set of private signal realizations for firm i. An information structure consists of

a set of signal realizations and a family of conditional distributions ψ : Θ → ∆(S),

where S = S1×S2 = {sL, sH}×S2. Let ψi : Θ→ ∆(Si) be the marginal distribution

of signal si ∈ Si given the information structure (S, π). The marginal distribution ψ1

is fully informative about the state, which implies that the probability of observing

signal sk conditional on state θk is 1.

Given the information structure (S, ψ), firms play a pricing game in which they

condition their pricing choices on their signal realization by selecting a mapping

βi : Si → ∆(
[
0, θH

a−b

]
) to maximize their expected profits. A strategy profile (β1, β2)

is a BNE if, for all pi ∈
[
0, θH

a−b

]
with βi(pi|si) > 0 for all i, we have

∑
θ∈Θ

µθ

∫
S−i

∫ θH
a−b

0
Πi((pi, p−i); θ)dβ−i(p−i|s−i)dψ((si, s−i)|θ)

≥
∑
θ∈Θ

µθ

∫
S−i

∫ θH
a−b

0
Πi((p

′
i, p−i); θ)dβ−i(p−i|s−i)dψ((si, s−i)|θ) (2.6)

for all p′i ∈
[
0, θH

a−b

]
, s ∈ S and i ∈ {1, 2}. Denote by E(S, ψ) the set of BNE in the

pricing game.
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First, Lemma II.2 is an equivalence result stating that every possible BCE distribu-

tion can be replicated as a BNE by appropriately choosing the information structure.

Intuitively, any correlation between obedient pricing choices can be generated as a

BCE. In a BNE, all the correlation between pricing choices is generated through the

information structure (S, ψ).

Lemma II.2 The set of BCE coincides with ∪(S,ψ)E(S, ψ).

Second, Lemma II.3 implies that it is without loss of generality to restrict attention

to recommendation mechanisms. Formally, an information structure (S, ψ) is a rec-

ommendation mechanism if S =
[
0, θH

a−b

]2
. In a recommendation mechanism, signals

act as pricing recommendations which firms are willing to follow as long as their

competitor does as well.

Lemma II.3 For every σ ∈ ∪(S,ψ)E(S, ψ), there exists a recommendation mecha-

nism
([

0, θH
a−b

]2
, σ
)

such that σ ∈ E
([

0, θH
a−b

]2
, σ
)

.

2.3.1.2 Existence of optimal recommendation mechanism

The existence of the optimal recommendation mechanism stated in Lemma II.4 is

guaranteed by the Weierstrass extreme value theorem. First, the existence of corre-

lated equilibria for games in which players receive private signals and simultaneously

choose actions from compact sets is established in Stinchcombe (2011). Second, the

set of BCE is compact in the weak* topology, since it is the set of all probability mea-

sures on a compact set.16 Then, the designer’s problem is to maximize a continuous

function of σ over a non-empty compact set.

Lemma II.4 The optimal recommendation mechanism exists.

16With full disclosure, equilibrium prices are

pF (θ) =
θ

2a− b
.

It follows that firms have no incentives to set prices above pF (θH) or below pF (θL), because such
prices would never be part of a BNE of the pricing game. Hence, the support of any obedient
recommendation mechanism must be a subset of [pF (θL), pF (θH)]2. See Appendix A.2 for a formal
argument.
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2.4 Informed firm optimal disclosure

In this section, I consider the case in which the informed firm directly determines its

optimal information disclosure. That is, assume that the designer’s objective is to

maximize the informed firm’s expected profits,

E(µ,σ)[Π1((p1, p2); θ)] =
∑
θ∈Θ

µθ

∫
Π1((p1, p2); θ)dσ((p1, p2)|θ).

The informed firm chooses a feasible obedient recommendation mechanism σ to max-

imize its expected equilibrium profits in the pricing game. Proposition II.1 states

that it is optimal for the informed firm to share its information.

Proposition II.1 (Informed firm optimal disclosure) It is optimal for the in-

formed firm to fully reveal its private information to the uninformed firm.

The optimal disclosure policy is determined by the fact that pricing choices are

strategic complements, which determines the effect of changes in the precision of the

uninformed firm’s signal on the informed firm’s expected profits. In particular, the

informed firm’s expected equilibrium profits, E(µ,σ)[Π
∗
1((p1, p2); θ)], can be expressed

as

E(µ,σ)[Π
∗
1((p1, p2); θ)] = aEµ

[(
θ + bEσ[p2|θ]

2a

)2
]
.

Then, maximizing the informed firm’s expected equilibrium profits is equivalent to

maximizing the distance between the expected equilibrium prices set by the unin-

formed firm across states, Eσ[p2|θL] and Eσ[p2|θH ], because of the convexity of the

informed firm’s expected equilibrium profits with respect to the conditional expec-

tation of the uninformed firm’s price. With no disclosure, the uninformed firm sets

one price in both states. Increasing the precision of the signal observed by the unin-

formed firm increases the correlation between its expected price and the state and,

therefore, variation in its expected price. As a result, full disclosure maximizes the

informed firm’s expected profits.

Intuitively, increasing the precision of the signal observed by the uninformed firm

increases its certainty about the state, increasing (decreasing) expected demand when
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its posterior beliefs suggest that the high (low) state is more likely. Accordingly,

the uninformed firm increases its expected equilibrium price in the high state and

decreases it in the low state. The higher competitor price translates to a higher

demand for the informed firm, allowing it to increase its own price in the high state,

since firms offer substitutes. The informed firm then sells a higher quantity at a

higher price, increasing profits. The opposite is true in the low state since it charges

a lower price and faces lower demand, but the expected profit gain in the high state

exceeds the expected loss in the low state given the larger size of the market in the

high state. Hence, the informed firm benefits from price correlation and its expected

equilibrium profits increase in the precision of the uninformed firm’s signal. Since

this precision is maximized by full disclosure, it is optimal for the informed firm to

fully disclose its private information.

The optimality of full disclosure doesn’t rely on the linearity of demand. As formal-

ized in Proposition A.1 in Appendix A.4, full disclosure is optimal if the informed

firm’s expected equilibrium profits are supermodular in the state and the uninformed

firm’s price. I also show that no disclosure is optimal if the informed firm’s expected

equilibrium profits are submodular in the state and the uninformed firm’s price.

This implies that it is optimal for the informed firm to reveal no information to its

competitor when they compete by setting prices and offer differentiated complement

goods. Kolotilin and Wolitzky (2020) obtain a related result in a setting in which

the sender and the receiver do no interact. They show that supermodularity of the

sender’s objective function with respect to the state and the receiver’s action is a

sufficient condition for the optimality of full disclosure in decision problems. My re-

sults strengthen findings from previous work (Vives (1984), Vives (1990) and Raith

(1996)), showing the optimality of either full or no information disclosure in a setting

of information asymmetry where the distribution of the uninformed firm’s signal and

the correlation with the informed firm’s signal are unrestricted.17 One takeaway from

my results is that it can be optimal for a firm to disclose information to a competitor

even when it has no information to gain in return, because the firm can use disclosure

to influence competitor prices.

17They also strengthen results from Novshek and Sonnenschein (1982), Clarke (1983) and Gal-Or
(1985), given that Cournot with substitutes (complements) is equivalent to Bertrand with comple-
ments (substitutes) from the point of view of firms, as discussed in Raith (1996).
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2.5 Consumer optimal disclosure

In this section, I interpret the designer as a regulator whose objective is to determine

the consumer optimal disclosure. In particular, assume that the designer’s objective

is to choose an obedient price recommendation mechanism σ that maximizes expected

consumer surplus, given by

E(µ,σ)[CS((p1, p2); θ)] =
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
qi((pi, p−i); θ)

2dσ((pi, p−i)|θ).

The optimal disclosure is formalized in Proposition II.2. Partial disclosure is optimal

for consumers when firms offer sufficiently close substitutes. Otherwise, no disclosure

is optimal. Disclosure allows the uninformed firm to better tailor its price to the

state, which in turns increases the ability of firms to extract surplus from consumers.

But, private disclosure allows consumers to arbitrage prices by creating a potential

coordination failure in firm pricing.

Proposition II.2 (Consumer optimal disclosure) If the designer’s objective is

to maximize expected consumer surplus, there exists an α̂ ∈ (0, ĉ] such that partial

disclosure is optimal if δ ∈ (α̂, 1) and no disclosure is optimal otherwise, where ĉ is

the cutoff for binary information structures.

Intuitively, the impact of disclosure on consumer surplus is determined through two

channels. On the one hand, disclosure provides the uninformed firm with information

about the state, which increases the correlation between its pricing and the state.

Indirectly, this also increases pricing correlation across firms, since the informed firm

knows the state. Accordingly, in expectation, firms more accurately tailor their prices

to the demand they face, allowing firms to better extract surplus from consumers. On

the other hand, it creates uncertainty in firms’ pricing decisions, because both firms

now have private information. Even if disclosure increases expected price correlation

between firms, uncertainty about the signal realization observed by their competitor

generates a pricing coordination failure with positive probability. That is, the unin-

formed firm may observe a signal realization that mismatches with the state, setting

a price tailored to the incorrect state. In contrast, the informed firm sets a price tai-

lored to the realized state. When the mismatch occurs and firms set different prices,
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consumers benefit from arbitraging prices by selecting from which firm to purchase

after observing prices. Private disclosure can thus benefit consumers.

The relative impact of these effects on consumer surplus is determined by the degree

of differentiation between goods. When goods are close substitutes, a price differ-

ential between firms caused by partial private disclosure induces a large segment of

the market to buy from the firm with a comparatively low price, creating large gains

in consumer surplus with positive probability. In contrast, when goods are not close

substitutes, the pricing coordination failure has little impact on the demand that

firms face, yielding negligible benefits from price arbitrage. Accordingly, when goods

are sufficiently close substitutes, private partial disclosure creates a large enough ex-

pected benefit from a potential price coordination failure to provide incentives for

the regulator to impose partial disclosure. Otherwise, no disclosure is optimal.

The sketch of the proof is as follows. First, I verify that no disclosure yields a

higher expected consumer surplus than full disclosure for all demand parameters

and prior distributions of the state. Second, I show that the difference between the

expected consumer surplus with partial disclosure σ and no disclosure σN , denoted

by ∆E[CS](σ), is a continuous and strictly increasing function of δ for all σ. Third,

I show that the optimal disclosure is determined by the degree of substitution δ.

As a first step, I restrict attention to binary information structures and show that

there exists a cutoff ĉ in the degree of differentiation above which partial disclosure

is optimal.18 As a second step, I show that no disclosure σN yields a higher expected

consumer surplus than any recommendation mechanism σ when δ → 0. Hence,

the intermediate value theorem implies that there exists a cutoff in the degree of

differentiation, α̂ ∈ (0, ĉ], above which partial disclosure is optimal and in particular

better than no disclosure.

More specifically, in the unique BNE of the pricing game, the informed firm’s optimal

pricing strategy is determined by the price recommendation made to the uninformed

firm. Define σ(p2|θ) as the price recommendation to the uninformed firm given the

equilibrium price recommendations σ((p1, p2); θ). The informed firm’s recommended

18Proposition II.3 shows that the consumer optimal disclosure in fact has binary support.
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prices satisfy

pσ1 (θ) =
θ + b

∫
p2dσ(p2|θ)
2a

.

This implies that, for any obedient recommendation mechanism σ((p1, p2); θ), it is

sufficient to pin down σ(p2|θ) since it determines both firms’ equilibrium pricing

decisions. Then, relying on properties of expectations and variances, the difference

between expected consumer surplus with partial disclosure E(µ,σ)[CS((p1, p2); θ)] and

no disclosure E(µ,σN )[CS((p1, p2); θ)] is a linear combination of three moments of

σ(p2|θ) that can be expressed as

∆E[CS](σ) = C1(δ, a)V(µ,σ)[p2]− C2(δ)Cov(µ,σ)(θ, p2)− C3(δ, b)Vµ[Eσ[p2|θ]],

where Ck(·) is strictly positive for all k ∈ {1, 2, 3}, V(µ,σ)[p2] represents the variance

of the uninformed firm’s price, Cov(µ,σ)(θ, p2) represents the covariance between the

uninformed firm’s price and the state and Vµ[Eσ[p2|θ]] denotes the variance of the

conditional expectation of the uninformed firm’s price conditional on the state.

These three moments determine the impact of information disclosure on consumer

surplus through relative changes in the level of demand and pricing in each mar-

ket.

1. The expected gain in consumer surplus increases in the variance of the un-

informed firm’s price, V(µ,σ)[p2], because it increases the opportunity for con-

sumers to arbitrage price differences between firms and substitute between

them.

2. The expected gain decreases in the covariance between the uninformed firm’s

price and the state, Cov(µ,σ)[p2, θ], since it captures surplus extraction from

consumers through the uninformed firm’s better pricing decision.

3. The expected gain decreases in the variance of the expectation of p2 conditional

on the state, Vµ[Eσ[p2|θ]], because it captures the effect of disclosure on the

informed firm’s pricing. In particular, an increase of Vµ[Eσ[p2|θ]], reduces the

informed firm’s uncertainty about the uninformed firm’s pricing and increases

price correlation between firms.
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Therefore, Cov(µ,σ)[p2, θ] and Vµ[Eσ[p2|θ]] measure the loss in expected consumer

surplus from disclosure due to the increased ability of firms to extract surplus from

consumers. Increasing information disclosure increases all three moments, but their

relative magnitude is determined by the degree of differentiation which pins down

firms’ optimal pricing and how willing consumers are to substitute between goods.

In particular, the benefit for consumers increases as firms offer closer substitutes,

whereas the ability of firms to extract surplus from consumers decreases since this

decreases their market power. As a result, partial disclosure is optimal for consumers

when firms offer sufficiently close substitutes.

Next, when partial disclosure is optimal, I characterize the optimal partially informa-

tive recommendation mechanism in Proposition II.3. The optimal price recommen-

dation mechanism recommends at most two prices: a low price only recommended

in the low state and a high price recommended in both states. The recommended

prices maximize the uninformed firm’s expected profits given its beliefs about the

state. Then, the optimal price recommendation mechanism is characterized by the

probability of recommending the low price in the low state, denoted by λ∗, where λ∗

determines the recommended prices p̂L and p̂H and is chosen to maximize expected

consumer surplus subject to firm optimal pricing.19

Proposition II.3 (Consumer optimal recommendation mechanism) Any con-

sumer optimal recommendation mechanism recommends at most two prices. If an

optimal mechanism discloses information, then there exists an optimal mechanisms

that recommends one price p̂L only when the state is low and another price p̂H in

both states where

p̂L =
4a2[1− µLλ∗]θL + b2µH [(1− λ∗)θH − θL]

(2a− b) [4a2(1− µLλ∗)− b2µHλ∗]
,

p̂H =
4a2 [µHθH + µL(1− λ∗)θL]− b2µHλ∗θH

(2a− b) [4a2(1− µLλ∗)− b2µHλ∗]
,

and λ∗ := σ(p̂L|θL) ∈ (0, 1) is

λ∗ =
4
[
δ(1− 3δ2) + 6(1− δ2)

]
µHδ5 + 2µHδ4 − (12− µH)δ3 − 6(4− µH)δ2 + 4(1− µH)δ + 24(1− µH)

.

19In this context, the price coordination failure occurs when the low state is realized and the
uninformed firm is recommended to price high.
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Intuitively, consumers gain from disclosure when there are differences in firms’ pric-

ing. In particular, when the state is high and the informed firm sets a corresponding

high price, it would be good for consumers for the uninformed firm to observe a

low price recommendation, because this allows a segment of consumers to substitute

goods and purchase from the uninformed firm at a low price. Similarly, it would be

best for consumers for the uninformed firm to observe a high price recommendation

in the low state, since the informed firm is already setting a low price.

Moreover, in the high state, recommending an intermediate price to the uninformed

firm rather than a low price would provide less benefit to consumers, implying that

it is optimal for consumers to recommend at most two prices in the that state. Given

that no intermediate price would be recommended in the high state, an intermediate

price recommendation would reveal to the uninformed firm that the state is low, but

the uninformed firm would only be willing to set the low price in that case. Hence,

an optimal price recommendation mechanism recommends at most two prices.

Lastly, with linear demand, recommending a unique price in the low state or the high

state is equivalent, since both options yield the same expected consumer surplus given

that consumers benefit from price differentials induced by uncertainty among firms.

This implies that there exists an optimal price recommendation mechanism, charac-

terized in Proposition II.3, which recommends at most two prices with a unique price

recommended in the high state. This price recommendation mechanism minimizes

the level of prices set by firms.

The sketch of the proof of Proposition II.3 is as follows. First, fixing an arbitraty

θ, I show that, for any partially informative obedient recommendation mechanism

σ, at most two prices are recommended in state θ if only one price is recommended

when the state is θ′ 6= θ. If a unique price p̂ is recommended when the state is θ′,

observing any other recommendation p2 6= p̂ reveals to the uninformed firm that the

state is θ 6= θ′. When the uninformed firm knows that the level of demand is θ, the

obedience constraint implies that there is a unique price that it is willing to set. As

a result, it is not possible to recommend more than two obedient prices across states.

Second, I show that it is optimal for the regulator to recommend a unique price when

the state is θ′. These results imply that the optimal information structure sends at
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most two price recommendations. Further, it is fully characterized by the probability

of recommending one of the optimal prices when the state is θ. Since the benefit

from partial disclosure is a consequence of the induced uncertainty between firms,

the choice of the state θ in which two prices are recommended is inconsequential for

consumers because of the linearity of demand. Without loss of generality, I focus on

the case in which two prices are recommended in the low state.20

Proposition II.3 also implies that the cutoff for the optimality of partial disclosure co-

incides with the cutoff for binary structures (α̂ = ĉ). Then, Figure 2.4 illustrates the

optimal disclosure policy. Partial disclosure maximizes expected consumer surplus if

the degree of differentiation δ belongs to the blue shaded region, while no disclosure

is optimal for consumers if δ belongs to the red shaded region. Depending on the

demand parameters and distribution of the state, the optimal partial disclosure can

increase expected consumer surplus by up to 2% with respect to no disclosure and

10% with respect to full disclosure.21

20With linear demand and binary price recommendations, characterized by x` = P(p2 = p`|θ =
θ`) with ` ∈ {L,H}, the first order conditions of the regulator’s maximization problem are collinear.
As a result, it is possible to set either xL or xH to 1 since the optimality conditions define a
relationship between them. In contrast, preliminary results suggest that with a quadratic demand
given by qi(pi, p−i; θ) = max{0, θ+ bp−i − api − cp2

i } where c is positive and sufficiently small, it is
optimal to recommend two prices in the low state and one price in the high state. Similarly, when
c is negative and sufficiently small, it is optimal to recommend two prices in the high state and one
price in the low state.

21Given demand parameters, a and b and the distribution of the state, determined by θL, θH and
µH , define η(a, b, θL, θH , µH) as the maximum expected consumer surplus given by

η(a, b, θL, θH , µH) := max
λ∈[0,1]

E[CS((p1, p2); θ)].

Then, the maximum increases in consumer surplus compared to no and full disclosure are obtained
by maximizing the following functions

max
(a,b,θL,θH ,µH)

η(a, b, θL, θH , µH)− E(µ,σN )[CS((p1, p2); θ)]

E(µ,σN )[CS((p1, p2); θ)]
or

max
(a,b,θL,θH ,µH)

η(a, b, θL, θH , µH)− E(µ,σF )[CS((p1, p2); θ)]

E(µ,σF )[CS((p1, p2); θ)]
,

with respect to feasible demand parameters and parameters governing the distribution of the state.
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Figure 2.4: Consumer optimal disclosure

2.6 Producer surplus and Welfare optimal disclo-

sure

Information disclosure impacts surplus allocation between firms and between firms

and consumers, with potential implications for total welfare. In this section, I first

characterize the disclosure policy that maximizes expected producer surplus and,

combining this result with the consumer optimal disclosure, I derive the expected

welfare maximizing disclosure policy.

2.6.1 Producer Surplus optimal disclosure

In this section, I interpret the designer as a collusive agreement between firms whose

objective is to choose a disclosure policy to maximize expected producer surplus

given by

∑
i=1,2

E(µ,σ)[Πi((pi, p−i); θ)] =
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
Πi((pi, p−i); θ)dσ((pi, p−i)|θ).

First, it is optimal for the uninformed firm to learn the state, as stated in Lemma II.5,

because it increases the correlation between its pricing decisions and the state.

Lemma II.5 The expected profits of the uninformed firm are maximized by full dis-

closure.

Proposition II.1 and Lemma II.5 indicate that full disclosure is optimal for both firms,

because it maximizes both the informed and uninformed firm’s expected profits.

Thus, full disclosure maximizes expected producer surplus.
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2.6.2 Welfare optimal disclosure

Assume that the designer, interpreted as a regulator, wants to maximize expected

welfare, defined as the sum of expected consumer and producer surplus. To maximize

expected welfare, the regulator trades off the effect of information disclosure on

firms and consumers, given their conflicting preferences over disclosure policies. In

particular, firms’ expected profits are maximized by full disclosure, whereas expected

consumer surplus is maximized by no or partial disclosure. However, the benefits

from disclosure for both firms and consumers increase as firms offer closer substitutes.

As a result, the optimal disclosure is again determined by the degree of differentiation,

as stated in Proposition II.4.

Proposition II.4 (Welfare optimal disclosure) If the designer’s objective is to

maximize expected welfare, there exists α̃1 ∈ (0, 1) and α̃2 ∈ (0, 1) such that α̃1 ≤ α̃2

and

1. no disclosure is optimal when δ ∈ (0, α̃1].

2. partial disclosure is optimal when δ ∈ (α̃1, α̃2).

3. full disclosure is optimal when δ ∈ [α̃2, 1).

When firms offer sufficiently close substitutes, full disclosure is optimal since it is op-

timal for firms and their expected gains exceed expected losses for consumers. When

firms offer sufficiently differentiated substitutes, no disclosure maximizes expected

welfare since it is optimal for consumers and the expected profit gains for firms from

disclosure are small. For intermediate levels of differentiation, partial disclosure is

optimal.22

Ui and Yoshizawa (2015) reach a similar conclusion, restricting attention to sym-

metric normally distributed private and public signals. When firms offer substitutes,

they show that welfare decreases in the precision of private information and increases

in the precision of public information, related to the optimality of either partial or

full disclosure.

22Suppose instead that the regulator maximizes the weighted sum of producer and consumer
surplus, where ω ∈ [0, 1] represents the weight assigned to consumers. The cutoffs α̃1 and α̃2

increase with ω: for sufficiently high ω, only no or partial disclosure can be optimal; for sufficiently
low values of ω, full disclosure is always optimal.
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Proposition II.5 characterizes the welfare optimal partially informative disclosure

policy. Incentives for partial disclosure are driven by the effect of disclosure on

consumer surplus. Hence, the qualitative features of the disclosure policy are shared

with the consumer optimal one stated in Proposition II.3. That is, any optimal

partially informative recommendation mechanism has binary support, recommends

one price only when the state is low, and another price in both states.

Proposition II.5 (Welfare optimal recommendation mechanism) Any welfare

optimal recommendation mechanism recommends at most two prices. If the optimal

mechanism discloses information, then it recommends one price p̂L only when the

state is low and another price p̂H in both states where

p̂L =
4a2[1− µLλ]θL + b2µH [(1− λ)θH − θL]

(2a− b) [4a2(1− µLλ)− b2µHλ]
,

p̂H =
4a2 [µHθH + µL(1− λ)θL]− b2µHλθH

(2a− b) [4a2(1− µLλ)− b2µHλ]
,

and λ∗ := σ(p̂L|θL) ∈ (0, 1) maximizes expected welfare.

The welfare optimal disclosure is illustrated in Figure 2.4. Full disclosure is optimal

if δ is in the yellow shaded region, partial disclosure in the blue shaded region, while

no disclosure is optimal in the red shaded region. The optimal partial disclosure can

increase welfare by up to 1% with respect no and full disclosure. These results suggest

that a regulator whose objective is to maximize welfare faces a trade off between

consumer and producer surplus, and must take into account the relationship between

markets. It highlights that the task of a regulator can be more nuanced than simply

banning or releasing information: the exact design of information matters.

δ
0 1

No disclosure Full disclosure

Partial disclosure

Figure 2.5: Welfare optimal disclosure

2.7 Extensions

Firm optimal disclosure with complements. Assume b ∈ (−a, 0) and define

the degree of complementary between goods as δ = | b
a
|. When goods are comple-
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ments, disclosure increases the uninformed firm’s profits, as stated in Lemma II.5,

but reduces the informed firm’s profits, as formalized in Proposition A.1 in Appendix

A.4. The optimal disclosure policy is determined by comparing the gains of the un-

informed firm to the losses of the informed firm, which are determined by the degree

of complementarity between goods. In particular, if goods are sufficiently comple-

mentary (δ ≥ γ̂), competitor prices have a significant impact on demand. Then, the

negative effect of increased pricing correlation on the informed firm’s profits exceeds

the positive effect of learning about the state on the uninformed firm’s profits. As

a result, no disclosure is optimal. Otherwise, the informed firm’s expected loss from

information disclosure is smaller than the uninformed firm’s expected gain, implying

that full disclosure is optimal. These results are stated in Lemma II.6.

Lemma II.6 (Producer surplus optimal disclosure) If the designer’s objective

is to maximize expected producer surplus, full disclosure is optimal if δ ∈ (0, γ̂).

Otherwise, no disclosure is optimal.

Eliaz and Forges (2015) study the producer surplus optimal disclosure policy in a

Cournot duopoly with no private information and unknown demand. They show

that it is optimal to fully inform one of the duopolists and disclose no information to

the other when firms offer perfect substitutes. They also show that the producer sur-

plus optimal disclosure consists of fully informing both firms when they offer perfect

complements. Given the correspondence between Cournot and Bertrand discussed

in Raith (1996), my results for complements and substitutes nest theirs, while allow-

ing for more general patterns of complementarity and substitution between goods.

Relatedly, Angeletos and Pavan (2007) show that producer surplus increases with

the precision of public and private normally distributed signals when firms offer sub-

stitutes, related to the optimality of full disclosure. When firms offer complements,

they show that producer surplus increases in the precision of private information,

but can decrease in the precision of public information. In my context, this is ex-

emplified by the designer who may have incentives to force information disclosure

between firms when they offer complementary goods, decreasing the informational

advantage of the informed firm at the benefit of its competitor.

Public signals. Assume that the designer commits to an information structure

(S2, π2) with public signal realizations. Given the information structure, firms play a
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pricing game in which they condition their choices on their information by selecting

a mapping

p1 : Θ× S2 → ∆(R+) and p2 : S2 → ∆(R+)

to maximize their expected profits.

Lemma II.7 For any disclosure policy σ, the informed firm’s profits are higher with

public disclosure than private disclosure.

Public signals reinforce the informed firm’s incentives to disclose information when

firms offer substitutes, implying that full disclosure is optimal for the informed firm.

When firms offer complements, it is optimal for the informed firm to disclose no in-

formation, by the same reasoning as with private signals. In contrast, consumers are

better off with private disclosure, since they can benefit from information asymmetry

as stated in Lemma II.8.

Lemma II.8 For any disclosure policy σ, expected consumer surplus is higher with

private disclosure than public disclosure.

When signals are public, the gain from partial disclosure disappears and, as a result,

no disclosure is optimal for consumers as stated in Lemma II.9.

Lemma II.9 With public disclosure, no disclosure is optimal for consumers.

Informed firm as the owner of an online platform. Consider the case in

which trade occurs on an online platform run by the informed firm. The informed

firm charges the uninformed firm a percentage of its sales for the use of the platform.

Given the disclosure policy σ, the informed firm’s expected equilibrium payoff is

E(µ,σ)[Π
∗
1((p1, p2); θ)] = aEµ

[(
θ + bEσ[p2|θ]

2a

)2
]

+ αΠ∗2(σ),

where α ∈ [0, 1] is the percentage of sales charged to the uninformed firm.

The informed firm’s incentives for information sharing are minimized by setting α =

0, since the uninformed firm always benefits from observing information. When firms

offer substitutes, the informed firm optimal disclosure doesn’t change with α > 0. In

this case, the informed firm discloses all of its private information for any α ∈ [0, 1].
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When firms offer complements, the informed firm optimal disclosure shares the same

qualitative properties as the producer surplus maximizing disclosure with α = 0.

Full disclosure is optimal if the degree of complementarity is below a certain cutoff,

no disclosure is optimal above the cutoff, and the cutoff is an increasing function of

α. Furthermore, the producer surplus optimal disclosure remains unchanged, since

α represents a transfer between firms. Lastly, the consumer and welfare optimal

disclosure also remain unchanged, since they are not affected by transfers between

firms.

N symmetric firms with constrained disclosure policies. Consider a setting

with N ≥ 3 firms who compete by choosing prices. The level of demand depends on

the state θ ∈ {θL, θH} with θH > θL > 0 such that firms are active in the market in

both states. Firms share a common prior about the state, where the probability of

θ is denoted by µθ ∈ (0, 1). Firm i’s demand is given by

qi(p) = θ − api +
b

N − 1

∑
j 6=i

pj

where a and b are known parameters with a > b > 0. Firms’ costs are zero.

The designer commits to an information structure with private signals, denoted by

ψ̂k, to share all of the informed firm’s private information with k firms and no

information with N − 1− k firms, where k ∈ {0, 1, 2, ..., N − 1}. Firms who observe

a perfectly informative signal condition their pricing choices on the state and select

a mapping pF : Θ → R+ to maximize their expected profits, whereas firms who

observe no information select a price pN ∈ R+ to maximize their expected profits.

The optimal information disclosure is stated in Lemma II.10

Lemma II.10 If the designer’s objective is to maximize the informed firm’s expected

equilibrium profits or to maximize expected producer surplus, it is optimal to share

the informed firm’s private information with all other firms. In contrast, if the

designer’s objective is to maximize expected consumer surplus, it is optimal to share

the informed firm’s private information with k∗(N, δ) firms where k∗(N,δ)
N
≤ 2

3
.

First, the informed firm’s expected equilibrium profits are maximized by sharing its

private information with all other firms because it benefits from price correlation.
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Similarly, when the designer’s objective is to maximize expected producer surplus,

it is optimal to share information with all firms, eliminating information asymmetry

between firms, allowing them to better extract surplus from consumers.

Second, if the designer’s objective is to maximize expected consumer surplus, infor-

mation disclosure between firms is at least partially restricted. The optimal informa-

tion structure, characterized by k∗(N, δ), is determined by the degree of substitution

and the number of firms in the market. In particular, it is optimal to not disclose

information to any other firm when δ ≤ 3
4
. When δ > 3

4
, optimal disclosure is de-

termined by the number of firms in the market and δ, as illustrated in Figure 2.6.

In particular, the optimal k∗(N, δ) increases in both δ and N , and k∗(N,δ)
N
≤ 2

3
. This

means that it is optimal to share information with more firms as the number of firms

increase in the market and as firms offer closer substitutes, but that it is optimal to

leave at least a third of firms uninformed.
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δ

1

2

3

4

5

6

k
*

N=4 N=6 N=8 N=10

Figure 2.6: Consumer-optimal k as a function of δ for different market sizes.

2.8 Conclusion

This paper studies information disclosure in a setting where two competing firms face

ex-ante information asymmetry about the level of demand. I examine the incentives

of an informed firm to share its private information with a competitor in a market

with product differentiation and price competition. I show that the informed firm

can have incentives to fully disclose its private information even without receiving

information in return, because it allows them to influence competitor pricing. When

firms offer substitutes, they benefit from price correlation, which implies that it is
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optimal for the informed firm to fully reveal its private information to the unin-

formed firm. When firms offer complements, it is optimal for the informed firm to

not share any private information, which reduces the expected profits of its competi-

tor. Accordingly, it can be optimal for a designer with the objective of maximizing

producer surplus or maintaining competition to intervene and force information dis-

closure.

Further, information disclosure also impacts consumers. Even though complete in-

formation disclosure can help firms, it hurts consumers. I find that a regulator with

the objective of protecting consumers would either completely restrict information

disclosure between firms or only allow private partial disclosure, determined by the

degree of differentiation between products. If goods are sufficiently close substitutes,

partial disclosure is optimal, because it increases arbitrage opportunities for con-

sumers. The consumer optimal partial disclosure reveals low levels of demand and

obfuscates high levels to the uninformed firm.

Moreover, the preferences for information disclosure between firms and consumers

are not aligned. When firms offer substitutes, the optimal disclosure depends on the

degree of substitution, which determines the effect of disclosure on consumers and

firms. If firms offer sufficiently differentiated goods, no disclosure maximizes expected

welfare. If firms offer sufficiently close substitutes, full disclosure is optimal. For

intermediate levels of differentiation, partial disclosure is optimal. Since incentives for

partial disclosure derive from consumers, the optimal partial disclosure also reveals

low levels and obfuscates high levels to the uninformed firm. My results highlight

the wide scope for potential intervention by regulators, depending on their objective

function and product differentiation.

An important aspect not considered in this paper is the effect of information disclo-

sure on firm entry and exit decisions. In particular, the informed firm may reduce its

information disclosure, reducing its current profits, to increase its market share and

profits in the future by inducing uninformed firms to exit the market. In this con-

text, a regulator may have incentives to force information disclosure between firms

in order to maintain the level of competition in the market, which indirectly may

also benefit consumers.
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CHAPTER III

Strategic Incentives and the Optimal Sale of

Information

3.1 Introduction

Agents often make decisions under uncertainty. The presence of firms who collect,

aggregate and sell information allows agents to potentially supplement their private

information and improve their decision making. Often, agents who buy information,

data-buyers, interact with others in markets. For instance, retailers acquire infor-

mation about demand conditions to improve their pricing decisions and compete

more effectively. Similarly, investors purchase information about the profitability of

their investment choices and may have incentives to coordinate with others. Since

individual information decisions can affect equilibrium outcomes, demand for infor-

mation and the optimal information offering of a data-seller depend on the strategic

incentives between data-buyers.

In this paper, I analyze the direct sale of supplemental information in a stylized

game of incomplete information. A data-seller owns a database containing informa-

tion about a binary payoff-relevant state. The data-seller offers information to two

privately informed data-buyers who play a two-stage game of incomplete informa-

tion. In the information stage, data-buyers can simultaneously acquire supplemental

information to reduce their uncertainty about the state. Data-buyers’ information

acquisition decisions are unobservable to other data-buyers and signal realizations

are private as well as conditionally independent. In the action stage, each data-

buyer simultaneously selects an action from a binary set to maximize her expected
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payoffs. The existence of private information implies that the data-seller is uncer-

tain about demand for information and that data-buyers make inferences about the

private information observed by others. In this context, I answer the following ques-

tions. What is the data-seller’s optimal menu of information offerings with multiple

privately informed data-buyers? How does it depend on the strategic incentives of

data-buyers and the correlation between their private information?

Data-buyers’ willingness to purchase supplemental information from the data-seller

is determined by the precision and correlation of their private information, as well

as strategic incentives in the action stage. The precision of their private informa-

tion determines their overall demand for supplemental information. In particular,

less informed data-buyers attach a higher value to supplemental information. The

correlation between their private information impacts their beliefs regarding the in-

formation observed by others, which can affect willingness to pay for information

based on strategic incentives in the action stage. Data-buyers have coordination

incentives (anti-coordination incentives) if the expected gain of choosing an action

increases (decreases) in the probability that the other data-buyer chooses the same

action. Accordingly, with coordination incentives (anti-coordination incentives), the

willingness to pay of a data-buyer for information increases (decreases) in the preci-

sion of the information observed by others.

Data-buyers’ private information induces two possible interim beliefs, interpreted as

their type. When the state is also binary, types are one-dimensional and characterized

by the probability that they assign to a given state. The “high type” is defined as

the one that attaches a higher value to the fully informative experiment. The data-

seller designs a menu of Blackwell experiments and prices to screen data-buyer types,

distorting the information provided to the low type in order to charge higher prices

to the high type. The interaction between strategic incentives and correlated private

information of data-buyers expands the opportunity of the data-seller to serve both

segments of the market, increasing profits.

The optimal menu satisfies two standard properties of the screening literature: “no

distortion at the top” and “no rent at the bottom”. However, the data-seller can also

extract all the surplus from the high type.The full surplus extraction result arises

from the nature of data-buyers’ preferences for information. Since information is
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valuable to a data-buyer if and only if it affects their choice, data-buyer preferences

for information depend on its precision (quality) and what the information is about

(position). In fact, different types value experiments differently and may disagree

on the ranking of partially informative experiments. As a result, willingness to

pay for information cannot be ordered across types, which is a common feature

of multidimensional screening models (Rochet and Stole, 2003). The data-seller

captures all the surplus by distorting the information provided to the low type and

selecting the position of information such that the high type is indifferent between

both experiments.

The main features of the optimal menu are as follows. The optimal menu contains

the perfectly informative experiment offered to the high type and a concentrated

experiment designed for the low type. The complete characterization of the informa-

tion offered to the low type is determined by the distribution of data-buyer types and

strategic incentives in the action stage. Consistent with previous work (Bergemann,

Bonatti, and Smolin, 2018), if all data-buyer types would take different actions with-

out supplemental information (non-congruent beliefs), their preferences over partially

informative experiments are not aligned. This disagreement implies that there are

partially informative experiments which are valuable to the low type but not to the

high type, because they improve the low type’s decision making without impacting

the choices of the high type. Accordingly, the data-seller offers partial information

to the low type without attracting the high type. In contrast with previous work,

if data-buyer types would choose the same action without supplemental information

(congruent beliefs), I show that the data-seller still offers partial information to the

low type when: (i) data-buyers have coordination incentives in the action stage and

their private information is negatively correlated, or (ii) data-buyers have anti-coor-

dination incentives and their private information is positively correlated. Further, for

both congruent and non-congruent beliefs, I show that the quantitative properties of

the optimal menu are determined by the strategic incentives and the correlation of

private information.

In the special case in which private information is conditionally independent, the

qualitative features of the optimal menu are independent of the strategic incentives.

If instead private information is conditionally dependent, the data-seller offers partial

information to the low type when beliefs are congruent whenever the interaction be-
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tween strategic incentives and the correlation of private information increases the de-

mand for information. Intuitively, when private information is negatively correlated,

data-buyers assign a higher probability to observing different private information.

Hence, demand for supplemental information increases when data-buyers have co-

ordination incentives, since it increases the correlation between their action choices.

Similarly, when their private information is positively correlated and they have anti-

coordination incentives, acquiring conditionally independent information is valuable,

because it allows them to reduce the correlation between their actions.

These results highlight that the interaction between strategic incentives and the cor-

relation of private information determines the features of the optimal menu. This

interaction can relax the incentive compatibility constraints, allowing the data-seller

to increase profits by not excluding the low type from the market. This emphasizes

the importance of considering strategic interactions between data-buyers when de-

signing information offerings, given that data-buyers generally interact with others

in a market. The results also extend to a setting with N data-buyers in which payoffs

depend on whether they match the state and the choice of the majority.

This paper contributes the the literature on information design in games with pri-

vately informed players. In contrast to papers in which players have common priors

(Taneva (2019) and Mathevet, Perego, and Taneva (2020)), I consider the role of pri-

vate information and its correlation in determining the seller’s optimal information

offering. Data-buyers can have heterogeneous previous experiences which provide

private information about the state, affecting their demand for information and in-

centives for the data-seller to provide information. The paper also contributes to the

literature on selling information to imperfectly informed decision makers. Within

the mechanism design approach to selling information, it is most closely related to

Bergemann, Bonatti, and Smolin (2018), which studies the design and ex-ante pric-

ing of Blackwell experiments for a single privately informed receiver. I extend their

analysis to a setting with multiple data-buyers and explicitly consider how the op-

timal information offering depends on strategic interactions among data-buyers and

the correlation of private information. Eső and Szentes (2007) and Li and Shi (2017)

also consider multi-player settings, but in which the data-seller engages in ex-post

pricing and data-buyers’ actions are contractible. In contrast, I restrict prices to be

contingent only on the information itself. In recent work, Krähmer (2020) studies
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a mechanism design problem with quasi-linear utility where the principal designs a

selling mechanism and can also design and disclose supplemental information that

affects agents’ valuations. The main difference is that the seller in their setting not

only offers information, but also sells a good whereas I consider a model in which only

transfers are contractible and the agent takes a non-contractible action after informa-

tion is revealed. Previous work (Admati and Pfleiderer (1986), Admati and Pfleiderer

(1990) and Kastl, Pagnozzi, and Piccolo (2018)) also studies the monopolistic sale

of information to multiple receivers with strategic interactions but no private infor-

mation. In contrast, I consider a setting in which data-buyers are privately informed

and study the the interaction between correlated private information and strategic

incentives in determining the optimal information offering. Lastly, the non-exclusion

result is consistent with the multidimensional screening literature (Rochet and Stole,

2003), in which the data-seller offers distorted partial information to the low type to

ensure that the high type is indifferent between the information offerings.1

The remainder of the paper is organized as follows: Section 1 outlines the model,

Section 2 derives preliminary results, Section 3 characterizes the optimal menu and

Section 4 extends results to N data-buyers, and Section 5 concludes.

3.2 Model

Consider a setting with two data-buyers and one data-seller. Data-buyers play a

game of incomplete information, where i indexes a generic data-buyer and j denotes

the other. The payoff-relevant state ω is drawn from a binary set Ω = {ω1, ω2}.
Each data-buyers is privately informed about the state and attaches probability

θ ∈ {θL, θH} to state ω1, where the correlation between the data-buyers’ private

information is characterized by ρ and ν. Formally, the joint distribution of data-

buyers’ private information is defined in Table 3.1, where ρ ∈ (0, 1) and ν ∈
(
0, 1−ρ

2

)
.2

1More specifically, I consider a screening problem in which the data-seller’s chooses the quality
and position of information. Preferences over these dimensions are determined by their single-
dimensional type.

2This can be interpreted as data-buyers sharing a common prior and privately observing either
good or bad news about the likelihood of state ω1. Let µ0 = P(ω = ω1) be their common prior and
assume they observe a conditionally independent signal s0 ∈ {s1

0, s
2
0} where P(s = s1

0|ω = ωk) = µk
with k ∈ {1, 2}. Then,

ρ = µ0(1− µ1)2 + (1− µ0)(1− µ2)2 and ν = µ0(1− µ1)µ1 + (1− µ0)(1− µ2)µ2.
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Data-buyer j’s type
θL θH

Data-buyer i’s type θL 1− 2ν − ρ ν
θH ν ρ

Table 3.1: Joint distribution of private information.

The game has two stages: the information stage and the action stage. In the in-

formation stage, the data-seller offers a menu of Blackwell experiments and prices

to the privately informed data-buyers. Data-buyers simultaneously decide whether

or not to purchase information from the menu. If a data-buyer purchases informa-

tion, she observes a private signal realization and updates her beliefs accordingly.

Data-buyers don’t observe each others’ choices from the menu. In the action stage,

each data-buyer simultaneously selects her action from the binary set A = {a1, a2}
to maximize her expected payoffs conditional on her signal realization. The payoffs

u : A × Ω → R, defined in Table 3.2, are symmetric and characterized by c > 0.3

ω = ω1 a1 a2

a1 1, 1 c, 0
a2 0, c 0, 0

ω = ω2 a1 a2

a1 0, 0 0, c
a2 c, 0 1, 1

Table 3.2: Action stage payoffs.

Under these assumptions, it is an ex-post dominant strategy for each data-buyer to

match the state ω. Data-buyers are said to have coordination (anti-coordination)

incentives if the expected gain of choosing an action increases (decreases) in the

probability that the other data-buyer chooses the same action. That is, data-buyers

have coordination incentives if c < 1 and have anti-coordination incentives when

c > 1.4

3Any 2×2 symmetric game in which players prefer to match the state can be normalized in this
manner.

4Let Ii be data-buyer i’s information set. Define σk as the probability that i assigns to j selecting
a1 conditional on state ωk and Ii. Data-buyer i’s expected gain of choosing action a1 instead of a2
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Experiments. An individual experiment Em = (Sm, {πm(·|ω)}ω∈Ω) consists of a

finite set of signal realizations sm` ∈ Sm and a family of conditional distributions πm

where

πm`,k := P(sm` |ωk), πm`,k ≥ 0 and
Lm∑
`=1

πm`,k = 1

with Lm = |Sm|. Denote by E the set of feasible experiments. The seller’s cost of

providing information is zero.

An experiment Em can represented by a stochastic matrix in which each column

represents a state and each row a signal realization, as in Table 3.3.

ω1 ω2

s1 πm1,1 πm1,2
s2 πm2,1 πm2,2
...

...
...

sLm πmLm,1 πmLm,2

Table 3.3: Matrix representation of experiment Em.

Assume that the realizations of data-buyers’ private information and the realization

of the signal s ∈ Sm from any experiment Em are independent conditional on the

state ω. Moreover, assume that signal realizations between data-buyers are condi-

tionally independent. The first assumption implies that the value of an experiment

is determined by a data-buyer’s private information, its correlation with the private

information observed by others, and the nature of the strategic incentives. It also

implies that the value of an experiment can be derived independently of its price.

The second assumption rules out that signals can be used as a coordination device,

except through their correlation with the state. As such, data-buyers attach no value

to the uninformative experiment.

conditional on her information set Ii, ∆Ui, is given by

∆Ui :=P(ω = ω1|Ii)[σ1 + (1− σ1)c]− (1− P(ω = ω1|Ii)) [σ2c+ (1− σ2)]

where ∂∆Ui
∂σk

≥ 0 if and only if c ≤ 1 for all k. That is, i’s expected gain from selecting action a1

instead of a2 increases in the probability of j choosing action a1 if and only if c ≤ 1. Analogously,
i’s gain of choosing a2 instead of a1 increases in the probability that j chooses a2 if and only if
c ≤ 1.
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Data-seller’s strategy space. The data-seller offers a symmetric menu of indi-

vidual Blackwell experiments and prices with arbitrarily informative signals. Let

M = (Em, tm)Mm=1 denote the menu of experiments offered by the data-seller, where

experiment Em is offered at price tm and M is the number of experiments included

in the menu with m ∈ {1, 2..,M}. Assume that only the experiment itself is con-

tractible, not its realization, the realized state, or the data-buyers’ actions. For-

mally, a strategy for the data-seller is a menu M = (Em, tm)Mm=1 where tm ∈ R and

Em ∈ E .

Data-buyer’s strategy space. Each data-buyer i of type θ decides whether to

supplement its private information. Let ιiθ ∈ {0, 1, ...,M} denote data-buyer i’s

information acquisition decision, where ιiθ = 0 represents the case in which i doesn’t

acquire supplemental information and ιiθ = m denotes the case in which i acquires

experiment Em. Conditional on all their information, data-buyer i chooses an action

from the set {a1, a2}. Formally, a pure strategy for data-buyer i of type θ consists of

a pair (ιiθ, αiθ) where ιiθ ∈ {0, 1, ...,M} and αiθ = (αi,ιiθ : Sιiθ → {a1, a2})Mιiθ=0.

Timing. Before the state ω is realized, the data-seller offers a menu of experiments

and prices. After the state ω is realized, each data-buyer observes her private infor-

mation, simultaneously decides whether or not to purchase a Blackwell experiment,

and if so which one to acquire. If a data-buyer acquires an experiment, she observes

a private signal realization and updates her belief accordingly. Data-buyers don’t ob-

serve each others’ choices from the menu.5 Lastly, data-buyers simultaneously choose

actions from the binary set {a1, a2} to maximize their expected payoff conditional

on their information choices and signal realizations.

Solution concept. The solution concept is the data-seller’s preferred perfect ex-

tended Bayesian equilibrium.6 An equilibrium is an extended assessment satisfying

consistency of beliefs, Bayesian updating, and sequential rationality in each infor-

5Data-buyer i’s deviations in information choices are unobservable, so that there are no strategic
effect on the choices of others. That is, action and information choices are strategically simultaneous.

6This definition is equivalent to weak Perfect Bayesian Equilibrium with the additional assump-
tion that data-buyers do not update their beliefs about the state after observing a deviant menu.
This holds since the strategic independence assumption only requires this additional constraint
given that the data-seller chooses a menu before the state is realized. See Battigalli (1996) or
Watson (2016) for details.

44



mation set. That is, conditional on the offered menu and information choices, each

data-buyer i’s action choice maximizes her expected payoff. Given the optimal menu,

data-buyer i’s information choice maximizes the difference between her expected pay-

off in the action state and the price of information. Lastly, the optimal menu for the

data-seller is the one that maximizes their expected profits, anticipating data-buyers’

equilibrium choices.

Definition III.1 A strategy profile (ι∗, α∗), a menu M∗ and a belief system µ form

an equilibrium if:

1. (ι∗, α∗) and M∗ satisfy sequential rationality. That is:

(a) Given M∗,

E[Uiθ(ι
∗, α∗)] ≥ E[Uiθ(ι

∗, (α′i, α
∗
−i))] (3.1)

for all α′i conditional on ι∗iθ, for all i ∈ {1, 2} and

ι∗iθ ∈ arg max
ιiθ∈{0,...,M}

E[Uiθ((ιiθ, ι
∗
−i), α

∗)]− tιiθ (3.2)

where the expectations are taken over the state ω, the private information

of the other data-buyer, and her choices.

(b) A menu M∗ is optimal if

M∗ ∈ arg max
M

∑
θ∈Θ

M∑
m=1

P(θi = θ)P(ι∗iθ = m) · tm.

2. µ satisfies extended Bayesian updating.

3. µ satisfies strategic independence: data-buyers don’t infer anything about the

state if the data-seller offers a deviant menu.

The value of information. The expected value of experiment Em is defined as the

marginal value of information, which corresponds to the difference in expected equi-

librium payoffs with and without observing experiment Em. Denote by VM(Em; θ)

data-buyer i’s expected value of experiment Em when her interim belief is θ and the
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data-seller offers menu M. Formally,

VM(Em, θ) = max{0,E[Uiθ((m, ι
∗
−i), α

∗)]− E[Uiθ((0, ι
∗
−i), α

∗)]}.

The value of experiment Em for an individual data-buyer depends on her private

information, her belief about the private information of others, the strategic incen-

tives in the action stage, and the menu offered. It is determined by the probability

of matching the state, the probability of matching the actions of other data-buyers,

and the payoff structure. The chance of matching the state depends on i’s private

information, but is independent of the information acquisition decision of other data-

buyers. In contrast, the likelihood of matching data-buyer j’s action depends on j’s

private information. Lastly, the strategic environment in the action stage determines

the preferences of data-buyers over equilibrium outcomes.

Let E denote the perfectly informative experiment. The high type θH is defined

as the type that assigns higher value to E. That is, VM(E, θH) ≥ VM(E, θL). For

example, if c = 1, data-buyers prefer action ak if they assign a higher probability

to state ωk for k ∈ {1, 2} and they are indifferent between actions a1 and a2 if they

assign equal probability to each state. In this case, the high type is the type closest

to the cutoff θ̂ = 1
2
, as illustrated in Figure 3.1.

θ
0

θ̂ θH θL

1

(a) Distribution in which both types choose action a1

θ
0

θ̂ θHθL

1

(b) Distribution in which types choose different actions

Figure 3.1: Example of definition of high (red) and low (blue) types
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3.3 Preliminary results

3.3.1 Simplifications

The data-seller’s problem can be simplified along two dimensions. First, the reve-

lation principle of mechanism design implies that it is without loss of generality to

focus on direct mechanisms in which the data-seller assigns one experiment to each

data-buyer type θ. Second, the revelation principle of games of communication im-

plies that it is without loss of generality to focus on experiments in which signals act

as action recommendations. These two results imply that I can restrict attention to

menus with at most two elements (M ≤ 2) and experiments with two possible signal

realizations (Sm = {s1, s2} for all m.).

It is not trivial that the revelation principle for mechanism design holds in this

setting. Unlike in standard mechanism design, where the information environment

S = ((Si)
2
i=1, π) is fixed and the designer chooses G = (({a1, a2}, ui)2

i=1, µ0) to induce

a desirable outcome, the data-seller takes the game G as given and controls S. As

such, each menu of experiments induces a different game of incomplete information.

Lemma III.1 shows that the outcome of every menu can be attained by a direct

menu, which includes at most two elements.

Lemma III.1 The data-seller offers a menu which includes at most two experi-

ments.

Given any direct menu M, an experiment Em with private signals is responsive if

every signal s ∈ S leads to a different action choice for data-buyer i of type θ. A

direct menuM is responsive if every experiment Em ∈M is responsive. Lemma III.2

shows that it is without loss of generality to focus on menus in which the cardinality

of the signal space equals to the cardinality of the action space. I refer to these

menus as responsive.

Lemma III.2 The outcome of every direct menu can be attained by a responsive

menu.

Lemma III.2 generalizes Proposition 1 from Bergemann, Bonatti, and Smolin (2018)

to a setting with multiple data-buyers. This result relies on two main assumptions:

signals are private and information acquisition decisions are unobservable. This
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ensures that a change in the set of signals observed by one data-buyer has no effect

on the other data-buyer’s action choices. Hence, it is without loss of generality to

consider Sm = {s1, s2} and πm : Ω → [0, 1]2 for all m ∈ {1, ...,M}. Then, an

experiment Em can be represented by the following stochastic matrix:

s/ω ω1 ω2

s1 πm1 1− πm2
s2 1− πm1 πm2

where (πm1 , π
m
2 ) ∈ [0, 1]2 for all m ∈ {1, ...,M}. Given that signals act as action

recommendations, after observing signal s1, data-buyer i must be willing to choose

action a1 when j follows her action recommendation if she chooses to acquire supple-

mental information. Similarly, after observing signal s2, data-buyer i must be willing

to choose action a2 when j follows her action recommendation if she chooses to ac-

quire supplemental information. That is, if i acquires experiment n and j acquires

experiment m, then

θπn1 [πm1 + (1− πm1 )c] ≥ (1− θ)(1− πn2 )[(1− πm2 )c+ πm2 ] and

(1− θ)πn2 [(1− πm2 )c+ πm2 ] ≥ θ(1− πn1 )[πm1 + (1− πm1 )c]

Also, assume that the likelihood of observing signal s1 is higher conditional on state

ω1 than on ω2 compared to s2.7 That is:

P(s = s1|ω1)

P(s = s1|ω2)
≥ P(s = s2|ω1)

P(s = s2|ω2)
⇔ πm1

1− πm2
≥ 1− πm1

πm2
⇔ πm1 + πm2 ≥ 1.

3.3.2 The data-seller’s problem

Assume that the data-seller designs experiment EL for data-buyer type θL and EH

for θH . The presence of private information implies that the data-seller is uncertain

about the demand for experiments and must screen data-buyer types. The data-

seller’s problem is then to design a menu of experiments to maximize expected trans-

fers subject to data-buyers’ incentive-compatibility and participation constraints.8

7This condition is equivalent to the monotone likelihood ratio property.
8Payments are conditional only on the information product itself and not on the types of other

data-buyers. This assumption rules out the use of the Cremer-McLean condition (Crémer and
McLean, 1988).
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That is:

max
(Em,tm)m∈{L,H}

(1− 2ν − ρ)2tL + 2ν(tL + tH) + ρ2tH

subject to the participation constraints

IRL : VM(EL, θL)− tL ≥ 0, IRH : VM(EH , θH)− tH ≥ 0

and the incentive-compatibility constraints

ICL : VM(EL, θL)− tL ≥ VM(EH , θL)− tH

ICH : VM(EH , θH)− tH ≥ VM(EL, θH)− tL.

Optimality of a menu with two distinct experiments. The data-seller can

either offer a menu with two distinct items or offer only the perfectly informative

experiment at a fixed price, p, equal to the low type’s willingness to pay. It is optimal

for the seller to offer a menu with two distinct items if and only if:

(1− ν − ρ)tL + (ν + ρ)tH ≥ p⇔ ν + ρ ≥ p− tL

tH − tL

where ν + ρ is the probability that a data-buyer is the high-type.

3.3.3 The value of experiments

In this section, I derive a closed form expression for the value of experiments. Assume

that data-buyer j type θj follows her equilibrium strategy, and denote by m her

experiment choice. Since signals act as action recommendations, data-buyer j type

θj conditions her action choice on the realized signal and selects action ak after

observing signal sk.
9 Define vk(E

n, θi;m) as data-buyer i’s expected gain of acquiring

experiment En if, without information, she would choose action ak while j plays her

equilibrium strategy. Data-buyer i’s expected gain of acquiring information when

9Hence, consistency of beliefs implies that

P(ιj = m|θj) = 1 and P(aj = ak|θj , ιj = m, sj = sk) = 1 for all k ∈ {1, 2}.
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choosing action a2 and a1 without supplemental information followed by action ak

after observing signal sk, respectively, are given by:

v2(En, θi;m) = θiπ
n
1 [πm1 + (1− πm1 ) c]︸ ︷︷ ︸

P(ω=ω1)P(si=s1|ω=ω1)[P(sj=s1|ω=ω1)+P(sj=s2|ω=ω1)c]

−
P(ω=ω2)P(si=s1|ω=ω2)[P(sj=s1|ω=ω2)c+P(sj=s2|ω=ω2)]︷ ︸︸ ︷

(1− θi) (1− πn2 ) [(1− πm2 ) c+ πm2 ] and

v1(En, θi;m) = (1− θi)πn2 [(1− πm2 ) c+ πm2 ]− θi (1− πn1 ) [πm1 + (1− πm1 ) c] .

That is, vk(E
n, θi;m) is the difference between the data-buyer’s expected gain in

state ω′k and her expected loss in state ωk after observing signal s′k. Then, data-

buyer i’s value of experiment En when the data-seller offers the menu M is given

by:

VM(En, θi) = max

{
0,

∑
m∈{L,H}

P(θj = θm|θi)vk(En, θi;m) s.t. k solves αi,ιiθ=0 = ak

}
.

Assume that the value of experiment En is weakly increasing in its precision, i.e.

c ∈ (1
2
, 2).10

3.4 Optimal menu of experiments

3.4.1 General properties

The optimal menu shares some of the structural properties of the one data-buyer

setting established in Bergemann, Bonatti, and Smolin (2018). Proposition III.1

generalizes these results to a two data-buyer setting and identifies which constraints

are binding as well as the information provided to the high type in any optimal

menu.

Proposition III.1 In an optimal menu:

1. Both participation constraints bind.

2. The incentive-compatibility constraint of the high type binds.

10Lemma B.1 in Appendix B.1 shows that c ∈ ( 1
2 , 2) is a sufficient condition for VM(En, θ) to be

increasing in the precision of experiment En.
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3. EH is perfectly informative. That is, πH1 = πH2 = 1.

4. EL is concentrated, i.e, πLk = PEL(s = sk|ω = ωk) = 1 for some k ∈ {1, 2}.

The optimal menu satisfies two standard properties of the screening literature: ”no

distortion at the top” and ”no rent at the bottom”. However, the data-seller can

also extract all the surplus from the high type, because information is valuable only

when it affects data-buyers’ decision making. As such, information has two relevant

dimensions: its precision and its position.11 All data-buyer types prefer experiments

with higher precision. However, different data-buyer types may disagree on their

preferences for the position of information, given that they may select different ac-

tions if they don’t supplement their private information. Hence, different types value

experiments differently and disagree on the ranking of partially informative exper-

iments, a common feature in multidimensional screening models. The data-seller

captures all the surplus by selecting the position of information such that the high

type is indifferent between the experiments offered.

Additionally, the perfectly informative experiment is part of any optimal menu. It

is the most valued by any buyer type, since it allows them to perfectly match the

state. Hence, if this experiment is not part of a menu, the data-seller can replace

the currently most informative experiment by the perfectly informative one, weakly

increasing profits by charging a higher price for this experiment while ensuring that

the incentive-compatibility constraints are satisfied. Furthermore, it is optimal for

the data-seller to offer this experiment to the high type, since their willingness to

pay is higher.

The low type is offered a concentrated experiment in which the distribution of signals

conditional on one state ωk is degenerated, eliminating uncertainty for one state.

Given that data-buyers have incentives to match the state, the data-seller can shift

the probability mass from 1 − πmk to πmk with k ∈ {1, 2} until one of them reaches

1. In particular, if the low type would choose action a1 (a2) without supplemental

information, it is optimal to set πL1 = 1 (πL2 = 1). Intuitively, the data-seller offers

the low type an experiment that reveals without noise the state that matches the

action that they would have selected without supplemental information.

11For example, define πm1 + πm2 as the precision of experiment Em and πm1 − πm2 as its position.
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3.4.2 Complete characterization.

The complete characterization of the information provided to the low type depends

on the:

1. Payoff environment : The payoff environment determines the presence of coor-

dination or anti-coordination incentives, which pins down the effect of infor-

mation observed by others on their willingness to pay for an experiment.

2. Correlation between data-buyers’ private information: The correlation between

data-buyers’ private information affects their beliefs about the information ob-

served by others. In particular, data-buyers’ private information is positively

(negatively) correlated if ν <
√
ρ− ρ (ν >

√
ρ− ρ).12

3. Support of the distribution of data-buyer types : The support of the distribution

of data-buyer types determines whether or not they choose the same action if

they don’t supplement their information, which impacts a data-buyer’ ranking

of partially informative experiments.

Data-buyers’ interim beliefs are strictly congruent (non-congruent) if both types

choose the same action (different actions) without supplemental information, for any

menu M. Assume that the high type θH chooses action a1 without supplemental

information. In this case, beliefs are strictly congruent if

i) θL > θH ≥
1

2c
when c ∈

(
1

2
, 1

)
and

ii) θL > θH ≥
c

2
when c ∈ (1, 2)

and strictly non-congruent if

i) θH ≥
1

2c
, θL ≤

c

2
and θL < 1− θH when c ∈

(
1

2
, 1

)
ii) θH ≥

c

2
, θL ≤

1

2c
and θL < 1− θH when c ∈ (1, 2).

12The Pearson’s correlation coefficient is positive if and only if ν <
√
ρ− ρ.
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3.4.2.1 Optimal menu with non-congruent beliefs

When beliefs are strictly non-congruent, the optimal experiment offered to the low

type is partially informative, as stated in Proposition III.2. Proposition III.2 implies

that qualitative results from Bergemann, Bonatti, and Smolin (2018) for one data-

buyer setting extend to multiple data-buyers. That is, the high type is offered the

perfectly informative experiment and the low type is offered a partially informative

experiment.

Proposition III.2 Suppose that beliefs are strictly non-congruent. In an optimal

menu, the data-seller offers perfect information to the high type and partial informa-

tion to the low type.

With strictly non-congruent beliefs, different data-buyer types may disagree on the

ranking of partially informative experiments, as illustrated in Figure 3.2. For in-

stance, if (θL, θH) = (0.2, 0.6), the low type prefers experiment (1/2, 1) to experi-

ment (1, 1/2), whereas the high type prefers experiment (1, 1/2) to (1/2, 1). As a

result, the data-seller can offer the low type information that has no value to the high

type, by making it sufficiently imprecise (πL1 sufficiently low). In an optimal menu,

the data-seller selects πL1 such that the high type is indifferent between acquiring

experiment EL or EH . That is,

tH − tL = θH(1− πL1 )

[
ν

ν + ρ
(πL1 + (1− πL1 )c) +

ρ

ν + ρ

]
.

The right-hand side is the product of the probability of state ω1, the additional

precision, and the gain of choosing action a1 over action a2 when the state is ω1. The

left-hand side is the price differential. Hence, the information offered to the low type

is such that the price differential equals the expected gain in state ω1.

Even though the qualitative properties of the optimal menu are independent of the

strategic incentives and the correlation of private information, its quantitative prop-

erties are determined by their interaction, as stated in Lemma III.3.

Lemma III.3 The precision of the optimal EL decreases as coordination incentives

increase. Moreover, the effect of increasing the correlation of private information

depends on coordination incentives:
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Figure 3.2: Value of EL when private information is conditionally independent
((ν, ρ) =

(
1
4
, 1

4

)
), data-buyers have coordination incentives (c = 2

3
) and EH is fully

informative.

1. If data-buyers have coordination incentives, the precision of EL decreases in

the correlation of private information.

2. If data-buyers have anti-coordination incentives, the precision of EL increases

in the correlation of private information.

The precision of the optimal experiment EL decreases as coordination incentives in-

crease, because the value of EL increases for the high type and decreases for the

low type. Then, an increase in coordination incentives implies that the high type

has higher incentives to deviate, reducing the data-seller’s scope to provide infor-

mation to the low type. As a result, the precision of the optimal EL, character-

ized by VM(EL, θH) = VM(EL, θL), decreases. Moreover, with coordination (anti-

coordination) incentives, the precision of EL decreases (increases) in the correlation of

private information. When data-buyers have coordination (anti-coordination) incen-

tives, an increase in the correlation of their private information decreases (increases)

the willingness to pay of both types and decreases (increases) the precision of the

optimal EL.

3.4.2.2 Optimal menu with congruent beliefs

When data-buyers’ beliefs are strictly congruent, the information offered to the low

type is determined by the interaction between strategic incentives in the action stage

and the correlation of private information, as stated in Proposition III.3.
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Proposition III.3 Assume data-buyers’ beliefs are strictly congruent. In an optimal

menu, the data-seller offers perfect information to the high type and offers the low

type:

1. partial information, if data-buyers’ private information is negatively correlated

and θL < θ̂ if they have coordination incentives.

2. partial information, if data-buyers’ private information is positively correlated

and θL < θ̂ if they have anti-coordination incentives.

3. no information, otherwise.

Coordination incentives play no role in determining the features of an optimal menu

if and only if private information is conditionally independent (ν =
√
ρ− ρ) or data-

buyers’ payoffs are independent of each others’ choices (c = 1). In both cases, the

qualitative properties of a one data-buyer menu generalize to a two data-buyer set-

ting. That is, in any optimal menu, the high type learns the state and the low type is

offered no information. Otherwise, the optimal menu is determined by the interaction

between strategic interactions and the correlation of private information.

When there are coordination incentives (c < 1), data-buyers face no trade-off between

matching the state and each others’ actions. Hence, the value of an experiment in-

creases in the precision of the experiment observed by others, because it increases

the correlation between the state and their action choices, allowing data-buyer i to

better predict j’s action choice. Information acts a coordination device and is valu-

able for two reasons: it reduces uncertainty about the state and about the choices

of other data-buyers. When predicting the action choice of other data-buyers, each

data-buyer makes inferences about what information has been gathered by others,

which depends on the correlation between their private information. If their private

information is positively (negatively) correlated, data-buyers assign a higher (lower)

probability to observing the same private information and acquiring the same experi-

ment. Thus, demand for information is higher when private information is negatively

correlated, since it reduces further the probability of mis-coordination. The increase

in demand creates a scope for the data-seller to offer partial information to the low

type, as long as the low type is sufficiently unsure about the state. When private in-

formation is positively correlated, demand for information is reduced in comparison
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to the conditionally independent case in which the low type is offered no information.

As such, the low type is also offered no information.

When data-buyers have anti-coordination incentives (c > 1), the trade-off between

matching the state and each others’ actions implies that the value of experiment En

decreases in the precision of the information observed by others, since it increases the

correlation between their action and the state. Data-buyers want to be as informed

as possible about the state, but their choices to be as uncorrelated with each other as

possible. Information is still valuable because it allows data-buyers to learn about the

state, but they value information more when their private information is positively

correlated, because it reduces the correlation between their action choices. If the

low type is sufficiently uncertain about the state, this increase allows the data-seller

to offer partial information to the low type even when beliefs are strictly congruent

without incurring any cost in terms of surplus extraction from the high type. In

contrast, acquiring supplemental information when private information is negatively

correlated increases the correlation between action choices through increasing the

correlation with the state, decreasing data-buyers’ willingness to pay for supplemen-

tal information with respect to the conditionally independent case. As such, the

data-seller also offers no information to the low type.

In both cases, the partially informative experiment offered to the low type is such

that the price differential equals the expected gain in state ω2. That is:

tH − tL = (1− θH)(1− πL2 )

[
1 + πL2

(
ν

ν + ρ

)
(1− c)

]
.

The left-hand side is the price differential. The right-hand side is the product of

the probability of state ω2, the probability of observing signal s1 in state ω2 and

the expected payoff gain. The expected payoff gain depends on the probability of

observing different private information, the presence of coordination incentives and

the precision of experiment E1 in state ω2.

The quantitative properties of the optimal menu also depend on strategic incentives

and the correlation of private information, as stated in Lemma III.4. This result and

its intuition are analogous to Lemma III.3.
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Lemma III.4 Assume that the optimal EL is partially informative. The precision

of the optimal EL decreases as coordination incentives increase and:

1. decreases in the correlation of private information if data-buyers have coordi-

nate incentives.

2. increases in the correlation of private information if data-buyers have anti-

coordination incentives.

3.4.2.3 Example

This example derives the optimal menu for two data-buyer type distributions, one

with strictly congruent beliefs and one with strictly non-congruent beliefs, assuming

the same strategic environment and correlation of private information. It illustrates

how the interaction between strategic incentives and correlated private information

creates scope for the data-seller to offer partial information to the low type, even

when data-buyers have strictly congruent types.

Let c = 2
3

and (ν, ρ) = (0.4, 0.2) so data-buyers have coordination incentives and

negatively correlated private information and consider two type distributions:

(θL, θH) ∈
{(

4

5
,
3

4

)
,

(
1

5
,
3

4

)}
.

If (θL, θH) =
(

4
5
, 3

4

)
, data-buyers have strictly congruent beliefs, whereas if (θL, θH) =(

1
5
, 3

4

)
, data-buyers have strictly non-congruent beliefs. In the first case, the optimal

menu offers the perfectly informative experiment to the high type at a price of tH =

0.2 and partial information to the low type, characterized by πL1 = 1 and πL2 = 0.1,

at a price of tL = 0.05. In the second case, the high type is offered the perfectly

informative experiment at a price of tH = 0.25 and partial information to the low

type, characterized by πL1 = 0.9 and πL2 = 1, at a price of tL = 0.18.

Figure 3.3 illustrates the optimal menus for these two type distributions. It depicts

the value of two experiments, EL and EH , net of their prices, as a function of data-

buyer type θ. A first feature of the optimal menu is full surplus extraction by the

data-seller. This is shown by the intersection of VM(EL, θL)−tL and VM(EH , θH)−tH

with the x-axis (net value of zero) at their type. Second, the net value of EL for

the high type (VM(EL, θH) − tH) is also zero at θL, implying that the high type is
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Figure 3.3: Optimal menu with coordination incentives (c = 2
3
) and negatively cor-

related private information (ρ = 0.2 and ν = 0.4).

indifferent between acquiring experiments EL and EH . Compared to previous work

in the literature, VM(EL, θH) and VM(EL, θL) differ due to the correlation between

data-buyers’ private information.

3.5 N data-buyers

In this section, I extend my results to a setting with N ≥ 2 data-buyers. Data-

buyers are privately informed about the state and attach probability θ ∈ {θL, θH}
to state ω1. Data-buyers’ private information is correlated. In particular, assume

that data-buyers’ types θ1, ...θN are exchangeable random variables with correlation

given by

ηL = P(θj = θL|θi = θL) ∈ (0, 1] and ηH = P(θj = θH |θi = θH) ∈ (0, 1]

for all j.13 Let k ∈ {0, 1, ..., N} be the number of high types among the N data-

buyers. Denote by ρk the probability of observing k high type data-buyers and N−k
low types, where ρk ≥ 0 and

∑N
k=0 ρk = 1.

In the action stage, ex-post payoffs depend on whether or not data-buyer i matches

13Exchangeability is a property of the joint distribution of random variables. Exchangeable
random variables, though correlated, have equal distributions, i.e., the probability of θi = θH is
constant across i.
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the state and on whether or not the majority of data-buyers choose the same action

as i. In particular, ex-post payoffs are given by:

ui(a, ω) =



1 if ai = a`, κ
`
−i + 1 > dN

2
e and ω = ω`

c if ai = a`, κ
`
−i + 1 ≤ dN

2
e and ω = ω`

0 if ai = a`, κ
`
−i + 1 ≤ dN

2
e and ω = ω`′

0 if ai = a`, κ
`
−i + 1 > dN

2
e and ω = ω`′

where κ`−i is the number of data-buyers −i who choose action a` ∈ {a1, a2} and c > 0.

As in the two data-buyer case, it is an ex-post dominant strategy to select the action

that matches the state. Data-buyers are said to have coordination incentives if they

prefer to match the majority and anti-coordination incentives otherwise. That is,

data-buyers have coordination (anti-coordination) incentives if c < 1 (c > 1).

The data-seller’s problem is to select the optimal menu of experiments to maxi-

mize her expected profits subject to the data-buyers’ participation and incentive-

compatibility constraints. That is:

max
(Em,tm)m=1∈{L,H}

N∑
k=0

ρk
(
(N − k)tL + k · tH

)
subject to

VM(EL, θL)− tL ≥ 0

VM(EH , θH)− tH ≥ 0

VM(EL, θL)− tL ≥ VM(EH , θL)− tH and

VM(EH , θH)− tH ≥ VM(EL, θH)− tL.

Value of information. Suppose that all buyers but i purchase the experiment

designed for their corresponding type. The number of data-buyers −i who choose

action a1 conditional on the state ω and on the type of data-buyer i, κ1
−i|(ω, θi), is

distributed according to a Conway-Maxwell-Binomial distribution,14 with parameters

14The Conway-Maxwell-Binomial distribution generalizes the binomial distribution and allows
both positive and negative correlation among the exchangeable Bernoulli trials. See Kadane et al.
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N − 1, ν and

pω,θi = P(θj = θH |θi)P(sj = s1|ω, θj) + P(θj = θL|θi)P(sj = s1|ω, θj).

The parameter ν characterizes the underlying correlation among Bernoulli trials,

which captures the correlation among data-buyers’ private information. In particular,

if ν > 1, the Bernoulli random variables are negatively correlated. Conversely, when

ν < 1, the Bernoulli random variables are positively correlated. Lastly, if ν = 1,

the Conway-Maxwell-Binomial distribution simplifies to a Binomial distribution in

which Bernoulli trials are independent.

Define Λθ
k as the expected gain of choosing the action that matches state ωk with

k ∈ {1, 2} conditional on data-buyer i being type θ. That is:15

Λθ1 = P
(
κ1
−i + 1 ≤

⌈
N

2

⌉
|ω = ω1

)
c+ P

(
κ1
−i + 1 >

⌈
N

2

⌉
|ω = ω1

)
and

Λθ2 = P
(
κ1
−i ≥ N −

⌈
N

2

⌉
|ω = ω2

)
c+ P

(
κ1
−i < N −

⌈
N

2

⌉
|ω = ω2

)
.

Data-buyer i’s expected gain of acquiring information when she would choose a2

and a1 without observing supplemental information are respectively given by:

V2(En, θ|κ1
−i) = θπn1 Λθ

1 − (1− θ)(1− πn2 )Λθ
2 and

V1(En, θ|κ1
−i) = (1− θ)πn2 Λθ

2 − θ(1− πn1 )Λθ
1.

Then, data-buyer i’s willingness to pay for experiment En is

VM(En, θ) =

max{0, V2(En, θ|κ1
−i)} if αi,ιiθ=0 = a2

max{0, V1(En, θ|κ1
−i)} if αi,ιiθ=0 = a1.

(2016) and Daly and Gaunt (2015) for details. Note that the probability of a data-buyer j choosing
action a1 conditional on the state and θi is constant across j.

15Note that κ1
−i + κ2

−i = N − 1. Then, κ2
−i + 1 ≤ dN2 e is equivalent to κ1

−i ≥ dN2 e.
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Assume that the value of experiment En is increasing in its precision.16 That is:

c < 1 and c

(
1 +

⌈
N

2

⌉)
≥
⌈
N

2

⌉
(3.3)

or

c > 1 and

(
1 +

⌈
N

2

⌉)
≥ c

⌈
N

2

⌉
. (3.4)

Optimal menu. Proposition III.1 extends to the case with N data-buyers if will-

ingness to pay for an experiment goes up as its precision increases. Hence, it is

optimal for the data-seller to offer the perfectly informative experiment to the high

type, whereas the information provided to the low type depends on the coordina-

tion incentives and the distribution of data-buyers types. Specifically, it depends on

whether or not interim beliefs are strictly congruent.

The information provided to the low type is stated in Proposition III.4 and Propo-

sition III.5, which extend the previous results to the N data-buyer case. The inter-

pretation is analogous as for the two data-buyer case.

Proposition III.4 Assume that data-buyers’ beliefs are strictly non-congruent. In

an optimal menu, the high type observes perfect information and the low type observes

partial information.

Proposition III.5 Assume that data-buyers’ beliefs are strictly congruent. In an

optimal menu, the high type observes perfect information and the low type observes

1. partial information when data-buyers’ private information is negatively corre-

lated and θL < θ̃ if data-buyers have coordination incentives.

2. partial information when data-buyers’ private information is positively corre-

lated and θL < θ̃ if data-buyers have anti-coordination incentives.

3. no information otherwise.

16These restrictions on the payoff structure are sufficient but not necessary conditions for the
value of experiment En to be increasing in its precision. See appendix B.2 for details.
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3.6 Conclusion

This paper considers a setting in which a monopolist data-seller offers supplemen-

tal information to privately informed data-buyers. Consistent with previous work,

data-buyers’ demand for information depends on the precision of their private in-

formation. However, it also depends on the correlation of the data-buyers’ private

information and their strategic interactions. The correlation between private in-

formation and coordination incentives interact in a meaningful way. In particular,

positive correlation increases (decreases) data-buyer’s demand for information with

respect to the conditionally independent case if they have anti-coordination (coordi-

nation) incentives. Similarly, negative correlation increases (decreases) data-buyers

demand for information with respect to the conditionally independent case if they

have coordination (anti-coordination) incentives.

The data-seller offers a menu of experiments to screen the data-buyers’ types. The

interaction between coordination incentives and the correlation of private informa-

tion is the main determinant of the features of the optimal menu. Whenever this

interaction increases demand for information, the data-seller is able to offer partial

information to the low type even when beliefs are strictly congruent. In any opti-

mal menu, the data-seller reveals the state to the data-buyer type with the highest

willingness to pay for such information. If private information leads data-buyers to

choose different actions in the absence of supplemental information, the data-seller

can exploit the position of information to provide partial information to the data-

buyer with the lowest willingness to pay, without conceding rents to the high type.

Indeed, the data-seller can provide partial information to the low type if data-buyers

have coordination incentives and their private information is negatively correlated

or if data-buyers have anti-coordination incentives and their private information is

positively correlated.

These results highlight that the interaction of strategic incentives and correlated

private information can relax the incentive compatibility constraints, allowing the

data-seller to increase profits by not excluding the low type segment from the mar-

ket. Considering strategic interactions between data-buyers when designing informa-

tion offerings is of central importance, both qualitatively and quantitatively, given

that data-buyers often interact with others in markets. This non-exclusion result is
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consistent with results from the multidimensional screening, in which the data-seller

offers distorted partial information to the low type designed to ensure that the high

type is indifferent between the information offerings.
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CHAPTER IV

Product Reviews - Information Source or

Persuasion Device?

joint work with Anne-Katrin Roesler

4.1 Introduction

Online platforms with reviews are widely used by consumers. Reviews allow con-

sumers to share information about a good’s quality, influencing others’ purchasing

decisions and their willingness to pay for a good. When buyers have heterogeneous

preferences, the seller’s pricing choices can influence the set of consumers who trade

and, therefore, the information shared with future consumers through reviews. As

such, reviews are not only an information source for consumers, but can also act as

a persuasion device if the seller appropriately chooses prices to persuade consumers

to trade in the future.

We analyze a setting in which a seller offers a good of ex-ante unknown quality

through a platform with a review system to sequentially arriving short-lived hetero-

geneous buyers. Reviews by previous buyers provide consumers with information

about the quality of the good. Based on the review system, the seller chooses an

optimal pricing scheme. Buyers make their purchasing decision based on the infor-

mation available through reviews, their type, and the price. In this context, we plan

to address the following questions: How should a platform design the optimal review

system, having the best interest of consumers in mind? What pricing scheme will a

64



seller adopt on such a platform? Is the review system only an information transmis-

sion source or can it be used as an indirect persuasion device by the seller?

When buyers have homogeneous preferences, we fully characterize the buyer-optimal

review system. We show that when there is only one buyer-type and two periods,

the designer’s problem is equivalent to Roesler and Szentes (2017), who characterize

buyer-optimal learning in a bilateral-trade model in which the buyer only observes

a (noisy) signal about her valuation prior to facing a take-it-or-leave-it offer by the

seller. This is because in the first period, the buyer has no information about the

quality of the good prior to making her purchasing decision and, therefore, she cannot

base her decision on any information about the quality of the good except her prior.

Accordingly, from an ex-ante point of view, the distribution of reports is equal to

the prior distribution of quality. It follows that the set of feasible distributions over

reviews is given by the set of all distributions G for which the prior distribution of the

quality is a mean-preserving spread. The optimal review system implements buyer-

optimal learning as defined in Theorem 1 from Roesler and Szentes (2017). Given

the review system, it is straightforward to identify the optimal pricing strategy for

the seller and the optimal purchasing decision for the buyer. We also use this insight

to solve the T -period model with homogeneous buyers. Since the distribution of

reports is equal to the prior distribution of quality in every period and there is no

inter-temporal effect of prices on the distribution of reports, maximizing expected

buyer-surplus is equivalent to maximizing per-period buyer-surplus.

We then show that the presence of heterogeneous buyers meaningfully affects the

characterization of the buyer-optimal distribution over posterior quality estimates.

In a two period model, we show that the buyer-optimal distribution with homo-

geneous buyers is no longer optimal. For the special case of K-piecewise linear

distributions with K ≤ 2, we characterize the buyer-optimal distribution over pos-

terior quality estimates, which approximates the buyer-optimal distribution. Given

the distribution of types, we show that the buyer-optimal distribution induces the

seller to set the lowest price in the set of undominated prices, benefiting both the

low and high type buyers. Trade occurs with a probability strictly less than 1 and is

typically inefficient since a subset of buyers with strictly positive expected valuation

don’t purchase the good.
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Related Literature. This paper contributes to the large literature on information

design surveyed in Kamenica (2019) and Bergemann and Morris (2019). Specifically,

it contributes to the literature on information design in monopoly pricing models,

focusing on buyer-optimal learning. Roesler and Szentes (2017) considers a one-

period bilateral-trade model in which a single buyer observes a signal about her

willigness to pay and the seller makes a take-it-or-leave-it offer. We show that their

setting provides a benchmark for the simplest version of our model with two periods

and homogeneous consumers, and we extend this benchmark to consider a dynamic

bilateral trade model with heterogenous buyer preferences. In a related paper, Ravid,

Roesler, and Szentes (2019) consider a static bilateral trade model in which buyer-

learning is unobservable but costly. They argue that there is a qualitative difference

between information being extremely cheap and truly free, by showing that even an

infinitesimal cost to the buyer can lead to discontinuously worse outcomes.

In dynamic settings, this paper relates to Acemoglu, Makhdoumi, Malekian, and

Ozdaglar (2019) and Che and Hörner (2018), which study buyer-learning in review

systems. Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2019) analyze learning

dynamics and characterizes the conditions for asymptotic learning of two classes of

review systems: one in which buyers observe all previous reviews and on in which

buyers observe only summary statistics. In their setting, the set of buyers who

trade in a given period also influences the set of buyers who trade in future periods

through the information transmitted by reviews. In our model, the seller has the

ability to influence the set of buyers who purchase the good by selecting a pricing

scheme and, therefore, can persuade future consumers to purchase by determining

the information transmitted through reviews. Che and Hörner (2018) analyzes how

a recommendation system provides incentives to users to learn about a product in a

bandit setting.

The project also ties into the dynamic pricing literature. Related papers include Lib-

gober and Mu (2018), Bergemann and Ozmen (2006) and Bergemann and Välimäki

(2006). The first paper considers a setting with short-lived buyers, while the others

focus on heterogeneous long-lived buyers. Libgober and Mu (2018) studies a dynamic

pricing model where buyers learn about their value for a good over time. The authors

characterize the optimal pricing scheme robust to information arrival. In contrast,

we characterize the optimal review system, conditional on a seller’s optimal pricing.
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Bergemann and Ozmen (2006) and Bergemann and Välimäki (2006) study optimal

pricing by a seller who offers a good of unknown quality. Over time, buyers can

learn their valuation by purchasing the good. In contrast with our setting, these

papers take the information transmission process as given and assume that buyers

learn from their own experiences, rather than the experiences of others.

The remainder of the paper is organized as follows: Section 1 presents the model,

Section 2 derives results in a two period setting, Section 3 discusses future plans,

and Section 4 concludes.

4.2 The model

Consider a long-lived seller who offers a good through a platform operated by a third

party, the designer. Time is discrete and finite, with t ∈ {0, 1, ..., T}. In each period,

one short-lived buyer arrives.

Let q denote the good’s quality, distributed according to the continuous CDF H on

[q, q] where µ =
∫ q
q
qdH(q). The good’s quality is constant over time. Initially, the

prior H is common knowledge, but the realization q is unknown to both players. A

buyer’s private type is either high or low, αt ∈ {α`, αh} with α` < αh and P(αt =

αi) = fi, and E[αt] = 0 for all t ∈ {0, 1, ..., T}. Buyer types are independent across

periods. A buyer’s valuation, vt, depends on the good’s quality and her private type,

vt := q + αt. If trade occurs in period t at price pt, the seller’s in-period payoff is

pt and the buyer’s payoff is vt − pt. Otherwise, both get a payoff of zero. The seller

and the designer discount future payoffs at rate δ ∈ (0, 1). The seller, the designer,

and buyers are risk neutral.

The timing is as follows. At time t = 0, prior to observing the value of the good

and buyer types, the designer chooses and implements a review system to maximize

expected consumer surplus. A review system π = (S, {G(·|r)}r∈R) is a set of signals

S ⊆ R and conditional distributions {G(·|r)}r∈R that determines how feasible reports

r ∈ R ⊆ R are mapped into signal realizations (reviews) s ∈ S observed by future

consumers. Based on the implemented review system, but prior to observing the

quality of the good, the seller commits to a pricing scheme.1 A buyer arrives each

1From a technical perspective, we abstract away from the signaling component of prices - we do
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period, observes her private type, the price, and information about the good’s quality

provided through previous reviews. Based on this information, the buyer chooses

whether or not to buy the good. If the buyer purchases the good, she learns her

valuation and reports the quality of the good to the review system, turning it into

a signal realization for future buyers. That is, only buyers who purchase the good

write reviews. Since buyers have no stakes in the decisions of future consumers, we

assume that buyers report truthfully.

Each buyer’s objective is to maximize her expected payoff given the price, her type,

and the information provided by the review system. The seller chooses a pricing

scheme in order to maximize her expected profits given the implemented review

system. The designer chooses and implements the review system that maximizes

expected consumer surplus.

Benchmark: Two-periods with homogeneous consumers. As a benchmark,

consider the case in which there is only one buyer-type and two periods, T = 1.

For simplicity, assume α = 0. The designer’s problem reduces to selecting what

information about the good’s quality is revealed to future customers through the

review system, in order to maximize expected buyer-surplus. As it turns out, from

the designer’s perspective, the two period benchmark essentially reduces to a static

setting. Accordingly, the results from Roesler and Szentes (2017), who characterize

buyer-optimal learning in a bilateral-trade model in which the buyer only observes

a (noisy) signal about her valuation prior to facing a take-it-or-leave-it offer by the

seller, naturally generalize to this setting.

To see the connection to the Roesler-Szentes setting, note that in the first period,

the buyer has no information about the quality of the good prior to making her

purchasing decision. Hence, the buyer cannot base her decision on any information

about the quality of the good except her prior. The price in the first period is such

that the buyer either always or never buys. In the former case, the buyer reports

the good’s quality. Since reports in the first period are not pre-selected, from an

ex-ante point of view, the distribution of reports is equal to the prior distribution of

quality. It follows that the set of feasible distributions over reviews is given by the

set of all distributions G for which the prior distribution of q is a mean-preserving

not allow the seller to use prices as signals about quality.
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spread. The optimal review system implements buyer-optimal learning as defined in

Theorem 1 from Roesler and Szentes (2017). In period t = 1, this review system

generates a unit-elastic demand, the seller sets the lowest price on its support, and

trade occurs with probability 1. In period t = 0, demand only depends on the price

and the expectation of the quality µ, implying that it is optimal for the seller to set

a price p0 = µ which induces trade with probability 1.

This insight can be used to solve the T -period model with homogeneous buyers.

With homogeneous buyers, the distribution of reports is equal to the prior distribu-

tion of quality in every period. Since there is no inter-temporal effect of prices on the

distribution of reports, maximizing expected buyer-surplus is equivalent to maximiz-

ing per-period buyer-surplus. Hence, the static solution from Roesler and Szentes

(2017) is optimal. In period t = 0, the seller sets a price p0 = µ and trade occurs

with certainty, whereas for all t ≥ 1, the seller sets the lowest price on the support

of the buyer-optimal distribution and trade also occurs with probability 1.

Our model builds on the analysis of Roesler and Szentes (2017) by introducing two

features: buyers with heterogeneous preferences and a dynamic model in which se-

quentially arriving buyers learn from and post reviews.

4.3 Heterogeneous buyers with two-periods

We now consider the case with heterogeneous buyers and two periods t ∈ {0, 1}.
We assume that each buyer’s type αt is either high, αh, or low, α`. As previously

discussed, the two-period case essentially reduces to a static setting from the point

of view of the designer. In this section, we show that the presence of heterogeneous

buyers meaningfully affects the characterization of the buyer-optimal distribution

over posterior quality estimates. In fact, we show that the buyer-optimal distribution

with homogeneous buyers is no longer optimal.

Set of feasible information structures. Recall that the review system is an in-

formation structure which determines how reports are translated into reviews. Since

buyers and the seller are risk-neutral, only the posterior quality estimate after ob-

serving a signal matters for the buyer’s purchasing decision (besides her type), and

we can thus restrict attention to unbiased signals s = E[q|s] without loss of gen-
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erality. It is by now well-known in the literature that the set of feasible CDFs of

posterior estimates is the set of mean-preserving contractions of the prior:

GH = {G ∈ ∆([q, q]) :

∫ x

q

H(q)dq ≥
∫ x

q

G(s)ds for all x ∈ [q, q] and

∫ q

q

sdG(s) = µ}.

The designer’s problem. In period t = 1, the buyer’s trading decision depends

on E[q|s] and her type. A buyer type α1 purchases the good if α1 + E[q|s] ≥ p1. If

the CDF induced by the review system is G, then the buyer’s payoff is

U(α1, G, p1) =

∫ q

p1−α1

(α1 + s− p1)dG(s).

The buyer’s type is unknown to the seller. From the seller’s perspective, expected

demand at price p1 is given by the mixture distribution

G = f` · G̃` + fh · G̃h,

where G̃i(s) := G(s− αi) with i ∈ {`, h}. The seller’s optimal price in period t = 1,

p1, is thus given as a solution to2 maxs s[1−G(s−)].

Similarly, from the designer’s perspective, the buyer’s expected payoff in period t = 1

is

f`

∫ q

p1−α`
(s+ α` − p1)dG(s) + fh

∫ q

p1−αh
(s+ αh − p1)dG(s) =

∫ q+αh

p1

(s− p1)dG(s).

Putting this together, the designer’s problem is

max
G∈GH

∫ q+αh

p1

(s− p1)dG(s)

s.t. p1 ∈ arg max
s

s[1−G(s−)]

where G(s) = f`G(s− α`) + fhG(s− αh).
2Here G(s−) denotes the left limit.
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Benchmarks: Full and no information. Consider first as a benchmark the case

in which the implemented review system reveals no information about the good’s

quality. Then, the induced distribution over posterior value estimates, denoted by

GNo, is given by

GNo(s) =


0 if s < µ+ α`

f` if s ∈ [µ+ α`, µ+ αh)

1 if s ≥ µ+ αh

.

Facing this distribution of posterior value estimates, the seller’s optimal price is

p∗1 = µ+ α` if fh ≤
µ+ α`
µ+ αh

and p∗1 = µ+ αh otherwise.

Hence, trade occurs with probability one when the probability of the high type αh

is sufficiently low, yielding profits of µ + α` for the seller and an expected buyer

surplus of fh(αh − α`). Otherwise, only the high type purchases the good and pays

her willingness to pay for it, implying that the seller’s profits are fh(µ+αh) and the

expected buyer surplus is 0.

As a second benchmark, if the implemented review system reveals all information

about the good’s quality, the induced distribution over posterior value estimates,

GFull corresponds to

H(q) = f`H(q − α`) + fhH(q − αh).

The seller’s optimal price p1 maximizes his expected profits,

p1 ∈ arg max
s

s[1−H(s−)],

and the expected buyer surplus is
∫ q+αh
p1

(s− p1)dH(s).

Another natural benchmark to consider is the buyer-optimal signal distribution with

homogeneous buyers, to investigate whether buyers are better off under this dis-

tribution than under no or full information. The following example illustrates and

compares these three benchmarks for the case in which the good’s quality is uniformly

distributed on [0, 1]. It shows that buyers can be better off when the distribution of
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posterior quality estimates is given by the buyer-optimal distribution with homoge-

neous types than than when they learn the good’s quality.

Example 1 Assume that the good’s quality is distributed uniformly on [0, 1] and that

the distribution of buyer types is given by αh = −α` = 1
4

and f` = fh = 1
2
. When

the implemented review system reveals no information, the induced distribution over

posterior value estimates and the seller’s problem are illustrated in Figure 4.1(a).

The solid blue line represents the seller’s expected demand and the dashed black line,

the highest attainable iso-profit curve. It is optimal for the seller to set a price of

p∗ = 3
4
, yielding expected profits of 3

8
and a buyer expected surplus of 0.

Iso-profit curve

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
p

0.2

0.4

0.6

0.8

1.0
1 -G

(a) No information

Iso-profit curve
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(b) Full information

Figure 4.1: Seller’s optimal price

In contrast, if the implemented review system reveals all information, the induced

distribution over posterior value estimates is GFull(s) = H(s). With full information

revelation, the seller’s problem is illustrated in Figure 4.1(b). It is optimal for the

seller to set a price of p∗ = 1
2
, yielding expected profits of 1

4
and a buyer expected

payoff of 5
32

.

As mentioned before, it is natural to analyze how the buyer-optimal signal with ho-

mogeneous consumers performs in comparison to these two benchmarks. Accordingly,

suppose now that the implemented review system is the buyer-optimal signal for the

case in which buyers have homogeneous preferences. That is, the induced distribution

over posterior quality estimates is

G0.87
0.2 (s) =


0 if s < 0.2

1− 0.2
s

if s ∈ [0.2, 0.87)

1 if s ≥ 0.87.
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Then, the induced mixture distribution, which corresponds to the distribution of pos-

terior value estimates, is G(s) = f`G
0.87
0.2 (s−α`)+fhG

0.87
0.2 (s−αh). Figure 4.2(a) illus-

trates the construction of this mixture distribution, which characterizes the expected

demand faced by the seller in the presence of buyer heterogeneity. The solid orange

line represents the distribution of posterior quality estimates. The dashed lines rep-

resent the distribution of posterior value estimates for the high and low types. Lastly,

the solid blue line represents the expected demand faced by the seller.

G0.2
0.87 G

˜
l

G
˜
h G

-0.2 0.2 0.4 0.6 0.8 1.0 1.2
s

0.2

0.4

0.6

0.8

1.0

G

(a) Construction of the induced demand.
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(b) Seller’s optimal price.

Figure 4.2: The seller’s problem.

The seller’s problem is illustrated in Figure 4.2(b). As before, the solid blue line rep-

resents the seller’s expected demand and the dashed black line, the highest attainable

iso-profit curve. It is optimal for the seller to set a price of p∗ = 0.45, yielding ex-

pected profits of 0.29 and a buyer expected surplus of 0.17. Hence, the seller is better

off when the review system reveals no information about the good’s quality, whereas

the buyer is better off when the distribution over posterior quality estimates is given

by the buyer-optimal distribution for the case of homogeneous preferences.

Figure 4.3(a) compares the buyer’s expected surplus for the truncated Pareto and

fully disclosing distributions, illustrating that the buyer is better off under the trun-

cated Pareto distribution than fully learning the quality of the good. In fact, both

buyer-types are better off when the distribution over posterior quality is given by the

buyer-optimal signal for the case in which buyers have homogeneous preferences, as

illustrated in Figure 4.3(b) and (c). In particular, the low type’s expected surplus

under the truncated Pareto distribution is 0.04 whereas it is 1
32

with full disclosure.
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Similarly, the high type’s expected surplus under the truncated Pareto distribution is

0.29 whereas it is 9
32

with full disclosure.
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p

0.2

0.4

0.6

0.8

1.0
1 -G

(a) Expected demand
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(c) High type

Figure 4.3: Buyer-surplus comparison under G (Blue) and H (Orange).

However, as shown in Figure 4.2(a), buyer heterogeneity implies that the distribu-

tions of their valuations are given by shifts of the quality distribution. As a result, the

demand curve that the seller faces is a mixture distribution. Therefore, the presence

of heterogeneous preferences creates a kink (and a jump) in the demand-curve faced

by the seller when applying the results from the homogeneous buyer case, because

it yields a truncated Pareto distribution over the posterior quality. This suggests

that one can improve buyer surplus by smoothing out the demand curve in a way

that reduces the seller’s profit while not decreasing the gains from trade. This is

illustrated in Figure 4.4, which compares the expected buyer surplus when the dis-

tribution of posterior quality estimates is given by a truncated Pareto distribution,

represented as the blue line, and the one resulting from a distribution of posterior

quality estimates given by

Ĝ(s) =


0 if s < 0.13

0.26 if s ∈ [0.13, 0.26)

s if s ∈ [0.26, 1]

,

represented as the blue line. As shown in this figure, when buyers have heteroge-

neous preferences, the buyer-optimal solution is no longer a truncated Pareto distri-

bution.

More generally, any review system that yields a truncated Pareto distribution as the

CDF of posterior quality estimates has a kink and a jump in the resulting mixture

distribution G over posterior value estimates. Hence, a similar construction to the
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Figure 4.4: The result from the homogeneous buyer case does not directly apply.

one just illustrated can be used to obtain a signal structure that makes the buyer

better off.

Remark: Initially, one may consider taking the distribution of buyer-valuations as

the prior, i.e. the mixture distribution

H(q) = f`H(q − α`) + fhH(q − αh),

and then apply the construction from Roesler and Szentes (2017) to this. However,

with heterogeneous buyers and a review system that uses qualities as inputs, the

resulting demand faced by the seller is given by 1− G, where G is the mixture dis-

tribution over posterior value estimates induced by the signal. That is, any CDF

in the set of feasible posterior value estimate CDFs induced by signals is a mix-

ture distribution. However, a truncated Pareto distribution, and hence the solution

from Roesler and Szentes (2017) applied to H, cannot be represented as a mixture

distribution.3

3To see this, notice that a truncated Pareto distribution has an atom at the top, but is smooth
everywhere else. Such a CDF cannot be represented as a mixture distribution.
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4.3.1 Simple review systems

As a first step to characterize the buyer optimal review system when buyers have

heterogeneous preferences, we restrict attention to a simple class of review systems

which induce piecewise linear distributions over posterior quality estimates. A K-

piecewise linear distribution is defined as

GK(s) =



0 if s < a0

m1s+ n1 if s ∈ [a0, a1)

...

mKs+ nK if s ∈ [aK−1, 1)

1 if s ≥ 1

where q ≤ a0 ≤ ... ≤ aK ≤ q, mk ≥ 0 for all k ∈ {1, ..., K}, mkak + nk = mk+1ak +

nk+1 for all k ∈ {1, ..., K − 1} and mK + nK = 1. Note that it is possible to

approximate the buyer optimal review system as we increase K. In the future, we

plan to use the insights and intuition gained from these simple distributions to derive

a general result, yet the simplicity of these review systems makes them particularly

interesting from an application perspective.

In what follows, we assume that the good’s quality is distributed uniformly on [0, 1]

and that the distribution of buyer types is characterized by αh = −α` = α ∈
(
0, 1

2

)
,

where each buyer type is equally likely.

4.3.1.1 K=1

We start by considering K = 1 and characterize the optimal 1-piecewise linear dis-

tribution, given by

G1(s) =


0 if s < a

m · s+ n if s ∈ [a, 1)

1 if s ≥ 1
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where 0 ≤ m · a+ n ≤ m+ n = 1 and m ≥ 0. G1(s) is a feasible distribution if and

only if

a ∈
[
0,

1

2

]
, m =

1

(1− a2)
and n = − a2

1− a2
.

Hence, the distribution over posterior quality estimates is characterized by a ∈[
0, 1

2

]
.

Lemma IV.1 characterizes the seller’s optimal pricing strategy as a function of the

distribution of buyer types and the one over posterior quality estimates, which de-

termine the seller’s expected demand.

Lemma IV.1 Given the distribution over posterior quality estimates G1(s) charac-

terized by a ∈
[
0, 1

2

]
and the distribution of buyer types characterized by α ∈

(
0, 1

2

)
,

the seller’s optimal price, p∗(α, a), satisfies

p∗(α, a) ∈ P ∗(α, a) :=


{a− α, a+ α, 1/2} if (α, a) ∈

(
0, 1

4

]
×
[
0, 1

2

]
{a+ α, 1/2, (1 + α)/2} if (α, a) ∈

(
1
4
, 1

2

]
× [0, 1− 2α)

{a+ α, (1 + α)/2} if (α, a) ∈
(

1
4
, 1

2

]
×
[
1− 2α, 1

2

] .

The following example illustrates the seller’s optimal pricing strategy and the char-

acterization of the buyer optimal distribution over posterior quality estimates within

this class of 1-piecewise linear distributions.

Example 2 Assume α = 1
4

as in Example 1. The seller’s optimal pricing strategy

is

p∗
(

1

4
, a

)
=

1
2

if a < 0.11

a+ 1
4

if a ≥ 0.11
.

Figure 4.5(a) illustrates the buyer’s expected surplus as a function of a. It shows

that the buyer’s expected surplus is maximized by choosing the smallest a such that

the seller is willing to set a price of a + 1
4
. That is, a∗ = 0.11. Figure 4.5(b) shows

the demand induced by the buyer-optimal distribution G∗1. Under this distribution,

the seller charges a price p∗ = 0.11 + 1
4
, obtaining expected profits of 0.253 and the

buyer, an expected surplus of 0.236.

77



0.1 0.2 0.3 0.4 0.5
a

0.05

0.10

0.15

0.20

0.25
Buyer surplus

(a) Buyer’s expected surplus

Iso-profit curve

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
p

0.2

0.4

0.6

0.8

1.0
1 -G1

(b) Demand induced by the buyer-optimal G∗1

Figure 4.5: Buyer-optimal distribution within this class and induced demand

Seller’s profit Eα[U(α,G, p∗)] U(α`, G, p
∗) U(αh, G, p

∗)
GNo

3
8

0 0 0
GFull

1
4

5
32

1
32

9
32

G0.87
0.2 0.29 0.17 0.04 0.29
G∗1 0.253 0.236 0.075 0.3975

Table 4.1: Seller’s profits and Buyer surplus

Table 1 compares the buyer’s expected surplus for each type for the benchmarks of

full and no information, the buyer optimal distribution G∗1 and the buyer optimal

distribution with homogeneous types. Under the buyer optimal distribution G∗1, both

types achieve higher expected surplus.

In the previous example, the main intuition behind the characterization of the buyer

optimal G1 is to choose a ∈
[
0, 1

2

]
such that the seller is willing to set the lowest

feasible price given the distribution of buyer types. Formally, define

p∗(a|α) := min{p : p ∈ P ∗(α, a) for a fixed α}

as the minimum optimal price given the distribution of buyer types characterized by

α. Proposition IV.1 formalizes the buyer-optimal distribution G∗1.

Proposition IV.1 Given the distribution of buyer types characterized by α ∈
(
0, 1

2

)
,

the buyer-optimal distribution G∗1 is characterized by the smallest a such that the

seller is willing to set a price equal to p∗(a|α).

Remark IV.1 For all α ≥ 0.003, the buyer is better off when the distribution of

posterior quality estimates is given by G∗1 instead of the buyer-optimal distribution
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for homogeneous types. Moreover, the buyer is always better off when the distribution

over posterior estimates is G∗1 than full information.

4.3.1.2 K=2

Consider now the class of 2-piecewise linear distributions under the assumption that

G2(s) is continuous at a0, given by

G2(s) =



0 if s < a0

m1s−m1a0 if s ∈ [a0, a1)

m2s−m2a1 +m1(a1 − a0) if s ∈ [a1, 1)

1 if s ≥ 1

where m1 ≥ m2 ≥ 0, 0 ≤ a0 ≤ a1 ≤ 1 and m2(1 − a1) + m1(a1 − a0) ≤ 1. This

distribution is feasible if and only if

i) m∗1(a0, a1) =
a1

(1− a0)(a1 − a0)
, m∗2(a0, a1) =

1− a0 − a1

(1− a0)(1− a1)
and

ii) a1 ∈
[
0,

1

2

]
and a0 ∈ [0, a1] or a1 ∈

(
1

2
, 1

)
and a0 ∈ [0, 1− a1] .

The following example illustrates the construction of the buyer optimal 2-piecewise

linear distribution, which follows the same intuition as in the K = 1 case.

Example 3 Assume again α = 1
4
. Consider the case in which a1 ∈

[
0, 1

2

]
and

a0 ∈ [0, a1].4 It is easy to verify that any price p < a0 + 1
4

yields strictly lower profits

for the seller than p = a0 + 1
4
, implying that the seller would never find it optimal

to set such prices. Similarly, any price p > 3
4

is also never optimal for the seller

since p = a0 + 1
4

yields also strictly higher profits. In fact, the seller’s optimal price

satisfies

p∗(a0, a1) ∈
{
a0 +

1

4
,
(1− a0)a0(4a1 − 7) + 8(1− a1)a1

8(2a1(1− a1)− a0(1− a0))
,
1

2

}
,

as illustrated in Figure 4.6.

4The procedure to construct the buyer optimal G2 when a1 ∈
(

1
2 , 1
)

and a0 ∈ [0, 1− a1] is
analogous, but yields a strictly lower buyer surplus.
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Figure 4.6: Seller’s optimal pricing.

The buyer’s expected surplus is maximized by choosing the smallest a0 such that the

seller is willing to charge a price p = a0 + 1
4
. In fact, the optimal (a∗0, a

∗
1) are such

that the seller is indifferent between the three possible optimal prices. That is, the

optimal distribution over posterior quality estimates is characterized by

(a∗0, a
∗
1) = (0.102, 0.163).

Under this distribution, the seller charges a price p∗ = a∗0 + 1
4
, the seller’s profits are

0.244 and the buyer’s expected surplus is 0.238, as illustrated in Figure 4.7.
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(a) Induced demand by G∗2
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0.8
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1 -G

(b) Comparison to induced demand byG∗1

Figure 4.7: Induced demand by distribution G∗2 (Blue) and G∗1 (Orange).
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Seller’s profit Eα[U(α,G, p∗)] U(α`, G, p
∗) U(αh, G, p

∗)
GNo

3
8

0 0 0
GFull

1
4

5
32

1
32

9
32

G0.87
0.2 0.29 0.17 0.04 0.29
G∗1 0.253 0.236 0.075 0.3975
G∗2 0.244 0.238 0.0775 0.398

Table 4.2: Seller’s profits and Buyer surplus

Table 2 compares the buyer’s expected surplus for each type for the benchmarks of full

and no information, the buyer optimal distributions G∗1, G∗2 and the buyer optimal

distribution with homogeneous types. Under the buyer optimal distribution G∗2, both

types achieve higher expected surplus.

Formally, given the distribution over buyer-types characterized by α ∈
(
0, 1

2

)
, define

P((a0, a1)|α) as the set of undominated prices for the seller. That is, a price p ∈
P((a0, a1)|α) if and only if p ∈ arg maxs s[1−G2(s−)] for some feasible (a0, a1) given

α. Define

p∗((a0, a1)|α) := min{p : p ∈ P((a0, a1)|α) for a fixed α}

as the minimum optimal price given the distribution of buyer types characterized by

α. Proposition IV.2 formalizes the buyer-optimal distribution G∗2.

Proposition IV.2 Given the distribution of buyer types characterized by α ∈
(
0, 1

2

)
,

the buyer-optimal distribution G∗2 is characterized by the smallest (a0, a1) such that

the seller is willing to set a price equal to p∗((a0, a1)|α).

4.4 Discussion and conclusion

We use an approximation approach to characterize the buyer-optimal distribution

over posterior quality estimates within a simple class of K-piecewise linear distri-

butions. We show that these distributions yield higher buyer surplus in comparison

to the buyer-optimal distribution with homogeneous buyers. The simplicity of these

review systems is attractive from an application perspective and helps to understand

the trade-off between the simplicity of a review system and its effects on the expected

buyer surplus. In the future, we plan to use the insights and intuition gained from
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the K-piecewise linear distributions to derive a general result for the two period

setting.

We also plan to extend the analysis to a dynamic setting. When consumers have

heterogeneous preferences, the seller’s pricing influences the set of consumers who

trade and the information shared with future consumers through reviews. Accord-

ingly, we conjecture that reviews are not only an information source for consumers,

but can also act as a persuasion device, through which the seller induces selection

bias in the set of reviews, persuading consumers to trade in the future.
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CHAPTER V

Conclusion

This dissertation focuses on information economics in games. In Chapter II, I ana-

lyze the welfare effects of information disclosure in a duopoly model with differen-

tiated substitutes, price competition, and uncertain demand, in which one firm has

an information advantage over a competitor. My main result shows that a regu-

lator can increase expected consumer surplus and welfare by restricting disclosure

between firms, but that, surprisingly, consumers can benefit from the regulator pri-

vately disclosing some information to the competitor. Disclosure increases the ability

of firms to extract surplus from consumers by pricing to better match the level of

demand. But, private disclosure can create a pricing coordination failure between

firms by introducing uncertainty in their choices, which increases price volatility and

opportunities for consumers to arbitrage prices. The benefit from private disclo-

sure depends on the differentiation between goods, because it determines consumers’

willingness to substitute between goods and therefore the extent to which disclosure

affects relative demand across firms. Thus, I show that private partial disclosure is

optimal for consumers when firms offer sufficiently close substitutes and, otherwise,

no disclosure is optimal.

In Chapter III, I study the optimal sale of information by a monopolist data-seller

to multiple privately informed data-buyers who play a two-stage game of incomplete

information. In the information stage, buyers can simultaneously acquire supple-

mental information to reduce their uncertainty about the state. In the action stage,

buyers simultaneously select an action between two options to maximize their ex-

pected payoffs. The seller’s optimal menu screens between the two types of buyers.

The interaction between coordination incentives and the correlation of private infor-
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mation is the main determinant of the features of the optimal menu. In particular,

the seller offers perfect information to the buyer with highest willingness to pay (the

high type) and partial or no information to the other type (the low type). Partial

information is offered to the low type whenever the mentioned interaction increases

demand for information. That is, i) if they play a coordination game and their pri-

vate information is negatively correlated; or ii) if they play anti-coordination game

and their private information is positively correlated.

In Chapter IV, which is joint work with Anne-Katrin Roesler, we study the opti-

mal design of review systems by a platform that has the best interest of consumers

in mind. We analyze a setting in which a seller offers a good of ex-ante unknown

quality through a platform with a review system to sequentially arriving short-lived

heterogeneous buyers. Reviews by previous buyers provide consumers with informa-

tion about the quality of the good. Based on the review system, the seller chooses

an optimal pricing scheme. Buyers make their purchasing decision based on the in-

formation available through reviews, their type, and the price. We focus on how a

platform should design the optimal review system, having the best interest of con-

sumers in mind. When buyers have homogeneous preferences, we fully characterize

the buyer-optimal review system. We also show that the presence of heterogeneous

buyers meaningfully affects the characterization of the buyer-optimal distribution

over posterior quality estimates. In a two period model, we characterize the buyer-

optimal distribution over posterior quality estimates within the class of K-piecewise

linear distributions with K ≤ 2.
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APPENDIX A

Appendix for Chapter II

A.1 Useful results for the binary signal bench-

mark

In this section, I derive the optimal information structures for the benchmark case in

which signals are restricted to be binary. Assume that the set of signals is binary and

given by S = {sL, sH}2. The information structure (S, x) with conditional distribu-

tions x : Θ→ ∆(S) can be represented in matrix form where rows represent firm 1’s

signal realization and columns firm 2’s signal realization. Define π as follows:

θ = θL sL sH

sL xL 1− xL
sH 0 0

θ = θH sL sH

sL 0 0

sH 1− xH xH

The set of feasible information structure, denoted by D, is

D := {(xL, xH) ∈ [0, 1]2 : xL + xH ≥ 1}.

A.1.1 Optimal pricing and equilibrium outcomes

Given the information structure (S, x) and conditional on the realization of signal
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si, firm i chooses pi(si) ≥ 0 to maximize her expected profits,

max
pi(si)≥0

Πi(pi(si), p−i(s−i)) = pi(si) [E[θ|si] + bE [p−i (s−i) |si]− api(si)] .

Equilibrium prices (p∗1(s1), p∗2(s2)) are the unique solution to:

E[θ|si] + bE [pj(sj)|si]− 2api(si) = 0

for all si ∈ Si, i ∈ {1, 2} and j 6= i where

E[θ|si = s`] = P(θ = θL|si = s`)θL + P(θ = θH |si = s`)θH and

E [p−i(s−i)|si = s`] = P(s−i = sL|si = s`)p−i(sL) + P(s−i = sH |si = s`)p−i(sH).

A.1.2 Consumer and welfare optimal disclosure

Consumer optimal disclosure. Assume that the designer’s objective is to max-
imize expected consumer surplus, given by

E[(CS(p1, p2); θ)] =
∑

i∈{1,2},θ∈Θ,(k,n)∈{L,H}2
µθ

[
P(si = sk ∩ sj = sn|θ)

(
θ + bp∗i (sk)− ap∗j (sn)

)2
2a

]

The optimal disclosure is determined by the relationship between goods, as stated

in Lemma A.1.

Lemma A.1 If the designer’s objective is to maximize expected consumer surplus,

partial disclosure is optimal if δ ∈ (ĉ, 1) and no disclosure is CS-optimal, otherwise.

Proof. Lemma A.1. First, full disclosure is never CS-optimal since expected

consumer surplus is higher with no information disclosure than with full disclosure

since

CS (xL, 1− xL)− CS (1, 1) ≥ µLµH (a4 + b4) (θH − θL)2

8a3(2a− b)2
≥ 0,

implying that either no or partial disclosure maximizes consumer surplus.
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Second, I show that there exists ĉ ∈ (0, 1) such that partial disclosure is optimal if

δ ≥ ĉ and no disclosure is optimal otherwise. Define ∆E[CS](x) as the difference

between the expected consumer surplus with no disclosure πN = (xL, 1 − xL) and

the expected consumer surplus with disclosure (xL, xH). The sign of ∆E[CS](x) is

determined by

Φ(a, b, x) = f1(a, b)V[s2] + f2(a, b)µLµH(xL + xH − 1)2 − f3(a, b)E[V[s2|θ]]

where

f1(a, b) = a2
(
4a2(6a+ b)− b2(18a+ 7b)

)
f2(a, b) = b4(2a+ b)

f3(a, b) = a2b2(6a+ 5b)

and fk(a, b) > 0 for all k ∈ {1, 2, 3}, min{f1(a, b), f3(a, b)} > f2(a, b) for all a > b >

0, f1(a, b) > f3(a, b) if and only if δ < ĉ ≈ 0.9. This implies that

f1(a, b)V[s2] > f3(a, b)E[V[s2|θ]] if δ < ĉ

since f1(a, b) > f3(a, b) and V[s2] > E[V[s2|θ]]. Thus, no disclosure maximizes the

expected consumer surplus if δ ≤ ĉ. Otherwise, partial disclosure is CS-optimal since

for all δ > ĉ, there exists x ∈ D such that Φ(a, b, x) < 0.

Welfare optimal disclosure. Assume that the designer’s objective is to maximize

expected welfare, defined as the sum of expected consumer surplus and expected firm

profits.

Lemma A.2 Assume that the designer’s objective is to maximize expected welfare.

If

1. δ ∈ (0, c̃1], no disclosure is optimal

2. δ ∈ (c̃1, c̃2), partial disclosure is optimal.

3. δ ∈ [c̃2, 1), full disclosure is optimal.

Proof. Lemma A.2. First, define ∆E[TS1](x) as the difference in expected welfare

with full disclosure xF and a partial disclosure characterized by x. The sign of this
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difference is determined by

ρ1(a, b, µ, x) = f4(a, b)V[s2] + f5(a, b)E[V[s2|θ]] + µLµHf6(a, b)(xL + xH − 1)2

where

f4(a, b) = 16a5(3b− a), f5(a, b) = 4a2b2
(
5a2 − b2

)
and

f6(a, b) = b2(16a4 − 12a3b+ a2b2 − b4)

Note that ρ1(a, b, µ, x) > 0 for all x ∈ D if δ ≥ c̃2 ≈ 0.31 and there exists x ∈ D
such that ρ1(a, b, µ, x) < 0 if δ < c̃2. Thus, full disclosure is optimal if δ ≥ c̃2 and

either partial or no disclosure is optimal otherwise.

Second, define ∆E[TS2](x) as the difference of expected welfare with no disclosure

xN and with partial disclosure x. The sign of ∆E[TS2](x) is determined by the sign

of

ρ2(a, b, µ, x) = f7(a, b)V[s2]− f8(a, b)E[V[s2|θ]]− f9(a, b)µLµH(xL + xH − 1)2

where

f7(a, b) = 4a4(2a− 5b), f8(a, b) = 12a2b2(2a+ b) and f9(a, b) = b2
(
22a3 + 5a2b− b2(2a+ b)

)
and fk(a, b) > 0 for all k ∈ {7, 8, 9} since a > b > 0. Note that ρ2(a, b, µ, x) ≥ 0

for all x ∈ D if δ ≤ c̃1 ≈ 0.29 and for δ > c̃1, there exists x ∈ D such that

ρ2(a, b, µ, x) < 0. Thus, no disclosure is optimal if δ ≤ c̃1 and either full or partial

disclosure is optimal otherwise. In summary, no disclosure is optimal if δ ≤ c̃1,

partial disclosure is optimal if δ ∈ (c̃1, c̃2] and full disclosure is optimal if δ > c̃2.

A.2 Proofs

A.2.1 Preliminary results: proofs

Proof. Lemma II.1. The pricing game is a smooth concave game since Πi((·, p−i); θ) :

R+ → R is concave and continuously differentiable for each p−i ∈ R+ since the de-
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mand is linear in p−i. Define the payoff gradient as

∇Π(p, θ) :=

(
∂Πi((pi, p−i); θ)

∂pi

)
i∈{1,2}

,

where firm i’s ex-post payoff function is given by Πi((pi, p−i); θ) = pi(θ− api + bp−i).

Then, the payoff gradient, given by

∇Π(p, θ) = (θ + bp−i − 2api)i∈{1,2} ,

is continuously differentible. The Jacobian matrix of the payoff gradient, given

by

F∇Π(p, θ) :=

(
∂2Π1((p1,p2);θ)

∂p2
1

∂2Π1((p1,p2);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)

∂p2
2

)
=

(
−2a b

b −2a

)
,

is negative definite because −2a < 0 and 4a2 − b2 > 0 since a > |b|. This implies

that the payoff gradient ∇Π(p, θ) is strictly monotone by Lemma 4 from Ui (2016).

Furthermore, since for all p, there exists c > 0 such that

pTF∇Π(p, θ)p < −cpTp,

the payoff gradient is also strongly monotone by the same lemma. Then, the unique-

ness of the Bayesian Nash equilibrium of the pricing game follows from Proposition

1 from Ui (2016), which states that if the payoff gradient is strictly monotone, the

Bayesian game as at most one Bayesian Nash equilibrium. The existence of a unique

Bayesian Nash equilibrium follows from Proposition 2 from Ui (2016).

Proof. Lemma II.2. First, I show that the set of BCE is a subset of ∪(S,ψ)E(S, ψ).
Assume σ ∈ BCE. Then, σ satisfies

∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

(A.1)

for all pi ∈ supp σ, p′i ∈
[
0, θH

a−b

]
and i ∈ {1, 2}.

Consider an information structure
([

0, θH
a−b

]2
, ψ∗
)

where
[
0, θH

a−b

]2
is the set of signal
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realizations and ψ∗ : Θ→ ∆(
[
0, θH

a−b

]2
) coincides with σ, i.e. σ = ψ∗. Let

β∗i (pi|p′i) =

1 if pi = p′i

0 otherwise

be the obedient strategy. Then, the right-hand side of (A.1) can be written as

∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

]Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

=
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

]Πi((p
′
i, p−i), θ)dψ

∗((pi, p−i)|θ)

=
∑
θ∈Θ

µθ

∫
s−i∈

[
0,
θH
a−b

]
∫
p−i∈

[
0,
θH
a−b

]Πi((p
′
i, p−i); θ)dβ

∗
−i(p−i|s−i)dψ∗((si, s−i)|θ)

The first equality holds by definition of ψ∗. The second equality holds by definition

of the obedient strategy and Fubini’s theorem since, fixing θ, Πi((pi, p−i); θ) is σ-

integrable because Πi|θ :
[
0, θH

a−b

]2 → R+ is a bounded and continuous real-valued

function on a compact set.1 Hence, the BNE incentive-compatibility constraints are

implied by the BCE obedience constraints. This, in turn, implies that if σ ∈ BCE,

then σ is also a BNE of the game. Thus, the set of BCE is a subset of the set of

BNE of the game.

Second, I show that ∪(S,ψ)E(S, ψ) is a subset of BCE. Consider a BNE composed by an

information structure (Ŝ, ψ̂) with ψ̂ : Θ → ∆(S) and measurable behavioral strate-

gies (β̂i, β̂−i).
2 Given the behavioral strategies (β̂i, β̂−i), define β̂ : S → ∆

([
0, θH

a−b

]2)
as the joint measure. Let σ̂ : Θ → ∆

([
0, θH

a−b

]2)
be the composition of ψ̂ and β̂,

defined as σ̂ = β̂ ◦ ψ̂. Then, by definition σ̂ ∈ ∪(S,ψ)E(S, ψ). The definition of BNE

implies that (Ŝ, ψ̂) and β̂ satisfy:

∑
θ∈Θ

µθ

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

]Πi((pi, p−i); θ)dβ̂−i(p−i|s−i)dψ̂((si, s−i)|θ)

≥
∑
θ∈Θ

µθ

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

]Πi((p
′
i, p−i); θ)dβ̂−i(p−i|s−i)dψ̂((si, s−i)|θ) (A.2)

1See theorem 11.27 from Aliprantis and Border (2013) where the condition of theorem are
satisfied by Proposition 3.3 and Theorem 4.4 from from Royden (1968)

2Behavioral strategies βi : Si → ∆
([

0, θHa−b

])
for all i ∈ {1, 2} are defined as a regular conditional

probabilities as defined in Appendix C from Bass (2011).
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for all p′i ∈
[
0, θH

a−b

]
, s ∈ S and i ∈ {1, 2}. Integrating both sides of the BNE

incentive-compatibility constraint, we have

∑
θ∈Θ

µθ

∫
Ŝi

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

]Πi((pi, p−i); θ)dβ̂i(pi|si)dβ̂−i(p−i|s−i)dψ̂(s|θ)

≥
∑
θ∈Θ

µθ

∫
Ŝi

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

]Πi((p
′
i, p−i); θ)dβ̂i(pi|si)dβ̂−i(p−i|s−i)dψ̂(s|θ)

Then, (A.2) implies that

∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

]Πi((pi, p−i), θ)dσ((pi, p−i)|θ)

≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

]Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

Proof. Lemma II.3. Consider a distribution σ ∈ ∪(S,ψ)E(S, ψ). Lemma II.2

implies that σ ∈ BCE. Consider the recommendation mechanism (
[
0, θH

a−b

]2
, ψσ)

where ψσ = σ for all (p1, p2) ∈
[
0, θH

a−b

]2
and θ ∈ Θ and the obedient behavioral

strategy

β∗i (pi|p′i) =

1 if pi = p′i

0 otherwise
.

The interim expected payoff of firm i when firm −i follows β∗−i is

∑
θ∈Θ

µθ

∫
S−i

∫ θH
a−b

0
Πi((p

′
i, p−i); θ)dβ

∗
−i(p−i|p′−i)dψσ((pi, p

′
−i)|θ)

=
∑
θ∈Θ

µθ

∫ θH
a−b

0
Πi((p

′
i, p−i); θ)dψσ((pi, p−i)|θ)

=
∑
θ∈Θ

µθ

∫ θH
a−b

0
Πi((p

′
i, p−i); θ)dσ((pi, p−i)|θ) (A.3)

for all i. Hence, the definition of BCE and (A.3) imply

∑
θ∈Θ

µθ

∫ θH
a−b

0
Πi((pi, p−i); θ)dψσ((pi, p−i)|θ) ≥

∑
θ∈Θ

µθ

∫ θH
a−b

0
Πi((p

′
i, p−i); θ)dψσ((pi, p−i)|θ)
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for all p′i ∈
[
0, θH

a−b

]
and i. The distribution of prices conditional on the state θ under

β∗ and (
[
0, θH

a−b

]2
, σ) is ψσ = σ. Thus, σ ∈ E

([
0, θH

a−b

]2
, σ
)

.

Lemma A.3 The support of the distribution σ(p|θ) is a subset of [pF (θL), pF (θH)]2

for all θ ∈ Θ, where pF (θ) is the equilibrium price with full disclosure when the state

θ is realized.

Proof. Lemma A.3. The minimum and maximum price in any equilibrium is

charged when both firms know that the state is low and that the state is high, respec-

tively. That is, the highest and lowest equilibrium prices occur with full disclosure.

Under full disclosure σF , both firms learn the state. Let pF (θ) be the equilibrium

price under full disclosure when the state is θ, where

pF (θL) =
θL

(2a− b)
and pF (θH) =

θH
(2a− b)

Hence, any obedient recommendation mechanism must recommend prices in the set

of feasible equilibrium prices denoted by [pF (θL), pF (θH)]2.

Proof. Lemma II.4. The set of BCE is the collection of distributions σ : Θ →
∆([pF (θL), pF (θH)]2) such that

i) σ((p1, p2)|θ) ≥ 0 for all (p1, p2) ∈ [pF (θL), pF (θH)]2 and θ ∈ Θ,

ii)

∫
dσ((p1, p2)|θ) = 1 for all θ ∈ Θ and

iii)
∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

for all pi ∈ supp σ, p′i ∈ R+ and i ∈ {1, 2}.

First, Theorem A from Stinchcombe (2011) establishes the existence of Correlated

equilibrium in games in which players receive private signals and then simultaneously

choose actions from compact sets. Formally, consider a game in which the set of play-

ers I is finite and for each i, the type ωi belongs to the measure space (Ωi,Fi). Each

player i simultaneously chooses an action from a compact set Ai and denote by ∆i

the set of countably additive Borel probabilities in Ai, with the weak* topology. Let

Bi(Fi) be the set of i’s behavioral strategies, defined as the Fi-measurable functions

from Ωi to ∆i. Given a vector b ∈ B := ×iBi(Fi), player i’s expected utility if b is
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played is defined by

uPi (b) =

∫
Ω

〈ui(ω),×ibi(ω)〉P (dω)

where 〈f, ν〉 :=
∫
A
f(a)ν(da) for f : A → R and Borel probabilities ν, and ×ibi is

the product probability on A having bi as the marginal. (Bi(Fi), uPi )i∈I) denotes the

normal form game. Then, Theorem A shows that all games (Bi(Fi), uPi )i∈I) have

correlated equilibria.

In the pricing game, two firms simultaneously choose a price to maximize their

expected equilibrium profits,

∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((pi, p−i), θ)dσ((pi, p−i)|θ).

Note that pi ∈
[
0, θH

a−b

]
for all i ∈ {1, 2}. Hence, firms simultaneously choose prices

from compact sets. Thus, this result implies that the set of BCE is non-empty.

Second, the set of BCE is the collection of distributions

σ : Θ→ ∆([pF (θL), pF (θH)]2),

which corresponds to the set of all probability measures on [pF (θL), pF (θH)]2 for each

θ ∈ Θ where Θ is finite. Then, the set of BCE is compact since [pF (θL), pF (θH)]2

is compact in the weak* topology, by Theorem 15.11 from Aliprantis and Border

(2013).

The designer’s objectives are

i) Informed firm optimal :
∑
θ∈Θ

µθ

∫
Π1((p1, p2), θ)dσ((p1, p2)|θ)

ii) PS optimal :
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
Πi((pi, p−i), θ)dσ((pi, p−i)|θ)

iii) CS-optimal :
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
qi((pi, p−i); θ)

2dσ((pi, p−i)|θ)
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and

iv) Welfare-optimal :
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
Πi((pi, p−i), θ)dσ((pi, p−i)|θ)

+
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
qi((pi, p−i); θ)

2dσ((pi, p−i)|θ)

Third, the continuity of all objective functions in the weak* topology follows from

Corollary 15.7 from Aliprantis and Border since because both Πi((pi, p−i), θ) and

qi((pi, p−i), θ) are continuous and bounded functions. Hence, the integral∫
Πidσ((pi, p−i)|θ) and

∫
q2
i dσ((pi, p−i)|θ)

is continuous in σ. Thus, the designer’s problem is to maximize a continuous ob-

jective function in a compact set. The existence of a solution is guaranteed by the

Weierstrass extreme value theorem.

A.2.2 Informed firm optimal disclosure: proofs

Proof. Proposition II.1. The fully disclosing information structure recommends

prices (pF (θ), pF (θ)) with probability 1 for all θ ∈ Θ.

Full disclosure is optimal for the informed firm if her expected equilibrium payoffs

with full disclosure exceed her expected equilibrium payoffs induced by any other

obedient recommendation mechanism. That is,

∑
θ∈Θ

µθΠ1((pF (θ), pF (θ)); θ) ≥
∑
θ∈Θ

µθ

∫
Π1((p1, p2); θ)dσ((p1, p2)|θ) (A.4)

for all σ : Θ→ ∆([pF (θ), pF (θ)]2) that satisfy the obedience constraints and p1. The
obedience constraints requires that given p2, p1 must be a best response for firm 1.
Then, for all recommendation mechanism σ that satisfy the obedience constraints,
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the RHS of (A.4) is given by

∑
θ∈Θ

µθ

∫
Π1((p1, p2); θ)dσ((p1, p2)|θ) =

∑
θ∈Θ

µθ

∫
θ + bEσ[p2|θ]

2a

[
θ + bp2 −

θ + bEσ[p2|θ]
2

]
dσ(p1, p2|θ)

= aEµ

[(
θ + bEσ[p2|θ]

2a

)2
]

= aEµ[pσ1 (θ)2]

The first equality holds since Π1((p1, p2); θ) = p1(θ + bp2 − ap1) and since firm 1’s

best response, denoted by pθ1(θ), is

pσ1 (θ) =
θ + bEσ[p2|θ]

2a
.

When firms offer substitutes, firm 1’s expected equilibrium profit is an increasing

and convex function of the expected equilibrium price p2. Then, Jensen’s inequality

implies that maximizing expected equilibrium profits is equivalent to maximizing the

distance between the expected equilibrium prices set by firm 2, Eσ[p2|θ] (or, equiv-

antly, by maximizing the distance between pσ1 (θ)). When firms offer substitutes,

Lemma A.3 shows that supσ((p1, p2)|θ) ∈ [pF (θL), pF (θH)]2 for all θ ∈ Θ. Hence,

recommending (pF (θL), pF (θL))) in the low state and (pF (θH), pF (θH))) in the high

state maximizes expected equilibrium profit which implies that full disclosure is op-

timal for the informed firm.3

A.2.3 Consumer optimal disclosure: proofs

Proof. Proposition II.2. Lemma A.1 shows that full disclosure is never optimal
for consumers. Consider instead any partial disclosure policy σ and define σ(s2|θ)
the distribution of price recommendation p2 conditional on the state θ. Expected
consumer surplus, denoted by E(µ,σ)[CS((p1, p2); θ)], is

E(µ,σ)[CS((p1, p2); θ)] =
1

2a

∑
θ∈Θ

µθ

[∫
(θ + bp2 − ap1)2dσ((p1, p2)|θ)

]
+

1

2a

∑
θ∈Θ

µθ

[∫
(θ + bp1 − ap2)2dσ((p1, p2)|θ)

]
(A.5)

3That is, to maximize the expectation of a quadratic function in an interval, it is necessary to
put all mass on the extremes of such interval.
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where, in the unique BNE, p1 satisfies

p1 =
1

2a

[
θ + b

∫
p2dσ(p2|θ)

]
.

Substituting this expression in (A.5), expected consumer surplus can be written
as

E(µ,σ)[CS((p1, p2); θ)] =
1

2a
Eµ

[
Eσ

[(
θ

2
+ b

(
p2 −

1

2
Eσ[p2|θ]

))2 ∣∣∣∣θ
]]

+
1

2a
Eµ

[
Eσ

[[
θ

(
1 +

b

2a

)
+
b2

2a
Eσ[p2|θ]− ap2

]2 ∣∣∣∣θ
]]

Define ∆E[CS](σ) as the difference in expected consumer surplus with partial and
no disclosure. This difference is given by

∆E[CS](σ) =
a

2

(
δ2 + 1

)
V(µ,σ)[p2]−

[(
1− δ2

2

)(
δ

2
+ 1

)
− δ

4

]
Cov(µ,σ)(θ, p2)

− bδ

8

(
7− δ2

)
Vµ[Eσ[p2|θ]],

where the equality holds by the law of iterated expectations, the definition of vari-

ance, conditional variance and covariance and the law of total variance. Hence, the

difference in expected consumer surplus, ∆E[CS](σ), is a continuous function of δ.

This difference is also a strictly increasing function of δ. In particular, Lemma A.1

shows that ∆E[CS](σ) converges to a positive number as δ → 1 which, in turn,

implies that

b >
2Cov(µ,σ)[θ, p2]

4V(µ,σ)[p2]− 3Vµ[Eσ[p2|θ]]
,

and this condition ensures that ∆E[CS](σ) is a strictly increasing function of δ.

First, if δ → 0, the expected consumer surplus with partial and no disclosure converge

to

∆E[CS](σ) →
δ→0

a

2
V(µ,σ)[p2]− Cov(µ,σ)[θ,E[p2|θ]] = −Cov(µ,σ)

[
θ − a

2
p2, p2

]
.

The equality holds by properties of covariance and since the covariance between θ

and Eσ[p2|θ] equals the covariance between θ and p2. The price p2 is an increasing
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function of θ since the state is a positive demand shifter and

∂p2

∂θ
≤ 1

2a− b
≤ 2

a

since a > b > 0. Then, the covariance between θ − a
2
p2 and p2 is the covariance

between two increasing functions of θ. Hence, this covariance is positive, which

implies that ∆E[CS](σ) converges to a negative number when δ → 0.

Second, Lemma A.1 shows that partial disclosure yields higher expected consumer

surplus than no disclosure if δ ∈ (ĉ, 1). That is, ∆E[CS](σ) > 0 for all δ ∈ (ĉ, 1).

Hence, the Intermediate Value theorem implies that there exists α̂ ∈ (0, ĉ] such that

∆E[CS](σ) = 0 when δ = α̂. Moreover, since ∆E[CS](σ) is strictly increasing in δ,

partial disclosure is optimal for all δ ∈ (α̂, 1) where α̂ ∈ (0, ĉ] and no disclosure is

optimal otherwise.

Lemma A.4 Assume that σ is partially informative and σ(p2|θ) is degenerated,

placing all mass on p̂ ∈ [pFL , p
F
H ]. For any obedient σ, supp σ(p2|θ′) = {p̂, p̂′} for

all θ 6= θ′.

Proof. Lemma A.4. The recommendation mechanism σ is not fully informa-

tive. First, I show that p̂ ∈ supp σ(p2|θ′). Suppose not. Then, supp σ|θ ∩
supp σ|θ′ = ∅ which implies that price recommendations fully reveal the state.

However, this contradicts the assumption that σ is partially informative. Hence,

p̂ ∈ supp σ(p2|θ′).

Second, I show that the support of σ(p2|θ′) is binary. Firm i’s obedience constraint

is

∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

for all i, pi ∈ supp σ and p′i ∈ [pFL , p
F
H ]. The left-hand side of the uninformed firm

obedience constraint can be simplified as follows:
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∑
θ∈Θ

µθ

∫
p1∈[pFL ,p

F
H ]

p2 (θ + bp1 − ap2) dσ((p1, p2)|θ)

=
∑
θ∈Θ

µθ

∫
p1∈[pFL ,p

F
H ]

p2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

]
dσ((p1, p2)|θ)

=
∑
θ∈Θ

µθp2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

] ∫
p1∈[pFL ,p

F
H ]

dσ((p1, p2)|θ)

=
∑
θ∈Θ

µθp2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

]
σ(p2|θ)

The first equality holds by the best response function of firm 1. The last equality

holds since
∫
p1∈[pFL ,p

F
H ]

dσ((p1, p2)|θ) = σ(p2|θ). Hence, the uninformed firm obedience

constraint is

∑
θ∈Θ

µθp2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

]
σ(p2|θ) ≥

∑
θ∈Θ

µθp
′
2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap′2

]
σ(p2|θ)

for all p2 ∈ supp σ(p2|θ) and p′2 ∈ [pFL , p
F
H ]. The obedience constraint for p2 = p̂

is

µθ′σ(p̂|θ′)p̂
[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap̂

]
+ µθp̂

[
θ + b

(
θ + bp̂

2a

)
− ap̂

]
≥ µθ′σ(p̂|θ′)p′2

[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap′2

]
+ µθp

′
2

[
θ + b

(
θ + bp̂

2a

)
− ap′2

]

for all p′2 ∈ [pFL , p
F
H ]. Similarly, the obedience constraint of σ for p2 6= p̂ is

p2

[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap2

]
≥ p′2

[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap′2

]
(A.6)

for all p′2 ∈ [pFL , p
F
H ]. The uninformed firm’s profits are strictly concave in p2 which

implies there exists a unique p̂′ ∈ [pFL , p
F
H ] that satisfies (A.6) and p̂′ 6= p̂. Hence, the

support of σ̂|θ′ is binary and given by {p̂, p̂′}.

Lemma A.5 Assume that σ is partially informative and σ(p2|θH) is degenerated,
placing all mass on p̂H ∈ [pFL , p

F
H ]. For any obedient σ, supp σ(p2|θL) = {p̂L, p̂H}
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where λ = σ(p̂L|θL),

p̂L =
4a2[1− µLλ]θL + b2muH [(1− λ)θH − θL]

(2a− b) [4a2(1− µLλ)− b2µHλ]
and

p̂H =
4a2 [µHθH + µL(1− λ)θL]− b2µHλθH

(2a− b) [4a2(1− µLλ)− b2µHλ]

Proof. Lemma A.5. Lemma A.4 implies that the support of σ(p2|θL) is binary

and given by {p̂L, p̂H} if the support of σ(p2|θH) is degenerated and given by p̂H .

Define σ(p̂L|θL) = 1− σ(p̂H |θL) := λ ∈ (0, 1). By definition,

Eσ[p2|θL] = λp̂L + (1− λ)p̂H and Eσ[p2|θH ] = p̂H .

Then, taking Eσ[p2|θL] and Eσ[p2|θH ] as given, p̂L and p̂H are characterized by

p̂L = arg max
p2

p2

[
θL + b

(
θL + bEσ [p2|θL]

2a

)
− ap2

]
p̂H = arg max

p2

µL(1− λ)p2

[
θL + b

(
θL + bEσ [p2|θL]

2a

)
− ap2

]
+ µHp2

[
θH + b

(
θH + bEσ [p2|θH ]

2a

)
− ap2

]

The first order conditions of the previous maximization problems are

p̂L =
1

2a

[
θL +

b

2a
(θL + bEσ[p2|θL])

]
p̂H =

µL(1− λ)
[
θL + b

2a (θL + bEσ[p2|θL])
]

+ µH
[
θH + b

2a (θH + bEσ[p2|θH ])
]

2a (µL(1− λ) + µH)

Using the definition of Eσ[p2|θL] and Eσ[p2|θH ], we have that p̂L and p̂H are given
by

p̂L =
4a2[1− µLλ]θL + b2µH [(1− λ)θH − θL]

(2a− b) [4a2(1− µLλ)− b2µHλ]
and

p̂H =
4a2 [µHθH + µL(1− λ)θL]− b2µHλθH

(2a− b) [4a2(1− µLλ)− b2µHλ]

where λ fully characterizes σ.

Proof. Proposition II.3. This proof applies to a more general result which states

that is optimal for the designer to select σ(p2|θ) to be degenerated for any θ. Here I

present the proof for σ(p2|θH) but the proof for the other case is analogous.

Suppose not. Assume that the optimal recommendation mechanism σ∗ = {σ∗(p2|θ)}θ∈Θ
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is partially informative where both σ∗(p2|θ) are not degenerated. Consider an al-

ternative partially informative recommendation mechanism σ̂ in which σ̂(p2|θH) is

degenerated and places all its mass on one point p̂H ∈ [pF (θL), pF (θH)] = [pFL , p
F
H ]

where p̂H ∈ supp σ̂(p2|θL). By Lemma A.5, for any obedient σ̂, the support of σ̂|θL is

{p̂L, p̂H} where p̂L and p̂H are defined in Lemma A.4 and λ = σ̂(p̂L|θL) fully character-

izes σ̂. Next, I show that there exists λ ∈ (0, 1) such that ∆E[CS](σ̂) ≥ ∆E[CS](σ∗).

Given that Eσ[p2] = Eσ′ [p2] for all feasible σ, σ′,4 the difference between ∆E[CS](σ̂)

and ∆E[CS](σ∗), denoted as ∆E[CS]σ̂−σ∗ , is

∆E[CS]σ̂−σ∗ =
a

2

(
1 + δ2

) (
Eσ̂[p2

2]− Eσ∗ [p2
2]
)
−
[(

1− δ2

2

)(
1 +

δ

2

)
− δ

4

]
(Eσ̂[θ · p2]− Eσ∗ [θ · p2])

− bδ

8
(7− δ2)

(
Eσ̂[E[p2|θ]2]− Eσ∗ [E[p2|θ]2]

)
For any feasible σ∗, the expectation Eσ∗ [p2|θL] satisfies

Eσ∗ [p2|θL] ∈
(

θL
2a− b

,
Eµ[θ]

2a− b

)
.

Moreover, by definition, Eσ̂[p2|θL] = λp̂L + (1− λ)p̂H , and

Eσ̂[p2|θL] =
θL

2a− b
if λ = 1 and Eσ̂[p2|θL] =

E[θ]

2a− b
if λ = 0.

The intermediate value theorem implies that there exists λ̃ ∈ (0, 1) such that Eσ̂[p2|θL]

equals Eσ∗ [p2|θL] since Eσ̂[p2|θL] is a continuous function of λ. Since Eσ[p2] = Eσ′ [p2]

for all feasible σ and σ′, λ̃ also satisfies Eσ̂[p2|θH ] = Eσ∗ [p2|θH ]. Then, the difference

between ∆E[CS](σ̂) and ∆E[CS](σ∗) for σ̂ characterized by λ̃ is

4Note that Eπ[p2] = Eπ′ [p2] for all feasible π, π′ since

Eπ[p2] =
1

2a

[
E[θ]

(
1 +

b

2a

)
+
b2

2a
Eπ[p2]

]
⇔ Eπ[p2] =

Eµ[θ]

2a− b
.

The equality holds by the uninformed firm’s and informed firm’s best response functions and by
the law of iterated expectations. Then, Eπ[p2] doesn’t depend on π. Given the equivalence between
π2 and σ, it also follows that Eσ[p2] = Eσ′ [p2] for all feasible σ, σ′.
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∆E[CS]σ̂−σ∗ =
a

2

(
1 + δ2

) [
Eσ̂[p2

2]− Eσ∗ [p2
2]
]

=
a

2

(
1 + δ2

) [
µL

(
λ̃p̂2

L + (1− λ̃)p̂2
H − Eσ∗ [p2

2|θL]
)

+ µH
(
p̂2
H − Eσ∗ [p2

2|θH ]
)]

Hence, Eσ̂[p2
2] ≥ Eσ∗ [p2

2] by Jensen’s inequality. Then, for all demand parameters and

σ∗ such that δ ≤ ĉ, there exists λ ∈ (0, 1) such that ∆E[CS]σ̂−σ∗ ≥ 0. This contra-

dicts the optimality of σ∗. Thus, the optimal partially informative recommendation

mechanism is such that supp σ|θH = {p̂H} and supp σ|θL = {p̂L, p̂H}.

Lastly, the optimal recommendation mechanism is characterized by

λ∗ ∈ arg max
λ∈[0,1]

∆E[CS](λ)

where

∆E[CS](λ) =
a

2

(
δ2 + 1

)
µLλ [µL(1− λ) + µH ] (p̂H − p̂L)

2

−
[(

1− δ2

2

)(
δ

2
+ 1

)
− δ

4

][
µLθL [λp̂L + (1− λ)p̂H ] + µHθH p̂H −

(µLθL + µHθH)
2

2a− b

]

− bδ

8

(
7− δ2

) [
µL [λp̂L + (1− λ)p̂H ]

2
+ µH p̂

2
H − [µLλp̂L + (1− µLλ)p̂H ]

2
]

and p̂L and p̂H are functions of λ defined in Lemma A.4. The optimal λ∗ ∈ (0, 1) is

characterized by the first order condition of ∆E[CS](λ) and it is given by

λ∗ =
4
[
δ(1− 3δ2) + 6(1− δ2)

]
µHδ5 + 2µHδ4 − (12− µH)δ3 − 6(4− µH)δ2 + 4(1− µH)δ + 24(1− µH)

.

A.2.4 Producer surplus optimal disclosure: proofs

Proof. Lemma II.5. For the informed firm, the difference in expected profits with

full disclosure σF and any disclosure σ is

Π2(σF )−Π2(σ) = aEµ

[(
θ

2a− b

)2

− 2
θ

2a− b
Eσ[p2|θ] + Eσ[p2

2|θ]

]

+
b2

2a
Eµ
[

θ

2a− b
Eσ[p2|θ]− Eσ[p2|θ]2

]
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Then, this difference is positive since

Π2(σF )−Π2(σ) ≥ aEµ

[(
θ

2a− b
− Eσ[p2|θ]

)2
]

+
b2

2a

∑
θ∈θ

µθ

[
Eσ[p2|θ]

(
θ

2a− b
− Eσ[p2|θ]

)]

≥ aEµ

[(
θ

2a− b
− Eσ[p2|θ]

)2
]
≥ 0

The first inequality holds by Jensen’s inequality. The second since a > |b| > 0,

θL
2a− b

≤ Eσ[p2|θL] ≤ Eσ[p2|θH ] ≤ θH
2a− b

and
∑
θ∈Θ

µθEσ[p2|θ] =
Eµ[θ]

2a− b

for all feasible σ. Hence, Π2(σF ) ≥ Π2(σ) which implies that full disclosure is optimal

for the uninformed firm.

A.2.5 Welfare optimal disclosure: proofs

Proof. Proposition II.4. First, I show that full disclosure yields a higher expected

welfare than no disclosure if δ ≥ α̃. First, full disclosure σF yields a higher expected

welfare than no disclosure σN if and only if δ ≥ α̃. Hence, if δ ≥ α̃, either full

or partial disclosure is optimal whereas if δ < α̃, either no or partial disclosure is

optimal.

Second, consider δ < α̃. The difference between the total expected surplus with

partial disclosure σ and no disclosure σN is given by

E(µ,σ) [W ((p1, p2); θ)]− E(µ,σN ) [W ((p1, p2); θ)]

=
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

]
Cov(µ,σ)[θ, p2]− a

2

(
1− δ2

)
V(µ,σ)[p2]− b

8
δ
(
1− δ2

)
Vµ[Eσ[p2|θ]]

This difference is a continuous and strictly increasing function of δ. Moreover, as δ

converges to 0, the difference in expected consumer surplus converges to

E(µ,σ) [W ((p1, p2); θ)]− E(µ,σN ) [W ((p1, p2); θ)] →
δ→0
−a

2
V(µ,σ)[p2] < 0

and Lemma A.2 shows that E(µ,σ) [W ((p1, p2); θ)] > E(µ,σN ) [W ((p1, p2); θ)] for all

δ > c̃1. Then, the intermediate value theorem implies that there exists a α̃1 ∈ (0, c̃1]
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such that

E(µ,σ) [W ((p1, p2); θ)] = E(µ,σN ) [W ((p1, p2); θ)] .

Also, since this difference is strictly increasing in δ, this also implies that

E(µ,σ) [W ((p1, p2); θ)] > E(µ,σN ) [W ((p1, p2); θ)] for all δ > α̃1 and

E(µ,σ) [W ((p1, p2); θ)] < E(µ,σN ) [W ((p1, p2); θ)] for all δ < α̃1.

That is, partial disclosure is welfare if δ ∈ [α̃1, α̃) and no disclosure is welfare optimal

if δ < α̃1.

Now, consider δ ≥ α̃. The difference between expected welfare with full disclo-

sure E(µ,σF ) [W ((p1, p2); θ)] and with partial disclosure E(µ,σ) [W ((p1, p2); θ)] is given

by

E(µ,σF ) [W ((p1, p2); θ)]− E(µ,σ) [W ((p1, p2); θ)]

=
bδ

2

(
δ2 − 3

2

)
Eµ

[(
θ

2a− b

)2

− Eσ[p2|θ]2
]
− bδ

2
Eµ
[
Eσ[p2

2|θ]− Eσ[p2|θ]2
]

+ δ

(
3

4
+
δ

2
+
δ2

4

)
Eµ
[
θ

(
θ

2a− b
− Eσ[p2|θ]

)]
− a

2
Eµ

[(
θ

2a− b

)2

− Eσ[p2
2|θ]

]
,

which is a continuous function of δ.

First, as δ → 1, this difference converges to

E(µ,σF ) [W ((p1, p2); θ)]− E(µ,σ) [W ((p1, p2); θ)] →
δ→1

3

4a
Eµ

[(
θ

a
− Eσ[p2|θ]

)2
]
> 0

Second, Lemma A.2 shows that partial disclosure yields higher expected welfare than

full disclosure if δ < c̃2. Then, the intermediate value theorem implies that there

exists α̃2 ∈ [c̃2, 1) such that

E(µ,σF ) [W ((p1, p2); θ)] = E(µ,σ) [W ((p1, p2); θ)] .

Analogously as before, E(µ,σF ) [W ((p1, p2); θ)]− E(µ,σ) [W ((p1, p2); θ)] > 0 for δ > α̃2
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and negative for δ ∈ [α, α̃2). Hence, full disclosure is welfare optimal if δ > α̃2

and partial disclosure is optimal if δ ∈ [α, α̃2). In summary, full disclosure is welfare

optimal if δ ≥ α̃2, partial disclosure is welfare optimal if δ ∈ (α̃1, α̃2) and no disclosure

is welfare optimal if δ ∈ (0, α̃1].

Proof. Proposition II.5. The proof is analogous to the proof of Proposition II.3.

Suppose not. Assume that the optimal recommendation mechanism σ∗ = {σ∗(p2|θ)}θ∈Θ

is partially informative where both σ∗(p2|θ) are not degenerated. Consider an al-

ternative partially informative recommendation mechanism σ̂ in which σ̂(p2|θH) is

degenerated and places all its mass on one point p̂H ∈ [pF (θL), pF (θH)] = [pFL , p
F
H ]

where p̂H ∈ supp σ̂(p2|θL). By Lemma A.5, for any obedient σ̂, the support of

σ̂|θL is {p̂L, p̂H} where p̂L and p̂H are defined in Lemma A.4 and λ = σ̂(p̂L|θL) fully

characterizes σ̂.

Consider first the case in which δ < α̃. Next, I show that there exists λ ∈ (0, 1) such

that E[W ](σ̂)− E[W ](σN) ≥ E[W ](σ∗)− E[W ](σN) where

E[W ](σ)− E[W ](σN ) =
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

]
Cov(µ,σ)[θ, p2]− a

2

(
1− δ2

)
V(µ,σ)[p2]

− b

8
δ
(
1− δ2

)
Vµ[Eσ[p2|θ]]

The difference between E[W ](σ̂)− E[W ](σN) and E[W ](σ∗)− E[W ](σN) is

∆E[W ]Nσ̂−σ∗ ≥
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

]
(Eσ̂[θ · p2]− Eσ∗ [θ · p2])

−
(
a

2
+
b

8
δ

)(
1− δ2

) (
Eσ̂[p2

2]− Eσ∗ [E[p2|θ]2]
)

where the inequality holds since Eσ[p2] = Eσ′ [p2] for all feasible σ, σ′ and Eσ[p2
2] ≥

Eσ[E[p2|θ]2] for all σ. Note that Eσ̂[p2
2] is a continuous function of λ and for any

σ∗,

Eσ∗ [E[p2|θ]2] ∈

((
E[θ]

2a− b

)2

,Eσ∗ [p2
2]

)
⊂

((
E[θ]

2a− b

)2

, µL

(
θL

2a− b

)2

+ µH

(
θH

2a− b

)2
)

Eσ̂[p2
2] =

(
E[θ]

2a− b

)2

if λ = 0 and Eσ̂[p2
2] = µL

(
θL

2a− b

)2

+ µH

(
θH

2a− b

)2

if λ = 1

Hence, the intermediate value theorem implies that there exists λ̂ ∈ (0, 1) such
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that Eσ̂[p2
2] = Eσ∗ [E[p2|θ]2]. Then, the difference between E[W ](σ̂)− E[W ](σN) and

E[W ](σ∗)− E[W ](σN) for λ̂ satisfies

∆E[W ]Nσ̂−σ∗ ≥
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

]
(Eσ̂[θ · p2]− Eσ∗ [θ · p2])

≥ δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

] (
θL1(Eσ̂ [p2|θ]≥Eσ∗ [p2|θ]) + θH1(Eσ̂ [p2|θ]<Eσ∗ [p2|θ])

)
[Eσ̂[p2]− Eσ∗ [p2]]

where Eσ̂[p2] = Eσ∗ [p2], contradicting the optimality of σ∗. Thus, the optimal dis-

closure has binary support and it is characterized by λ∗ ∈ arg maxλ∈[0,1] ∆E[W ]N(λ)

where

∆E[W ]N (λ) =
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

][
µLθL [λp̂L + (1− λ)p̂H ] + µHθH p̂H −

(µLθL + µHθH)2

2a− b

]
− a

2

(
1− δ2

)
µLλ [µL(1− λ) + µH ] (p̂H − p̂L)2

− b

8
δ
(
1− δ2

) [
µL [λp̂L + (1− λ)p̂H ]2 + µH p̂

2
H − [µLλp̂L + (1− µLλ)p̂H ]2

]
The optimal λ∗ ∈ (0, 1) is characterized by the first order condition of ∆E[W ]N(λ).

Consider now the case in which δ ≥ α̃. Next, I show that

E[W ](σ̂)− E[W ](σF ) ≥ E[W ](σ∗)− E[W ](σF ).

The difference between E[W ](σ̂)−E[W ](σF ) and E[W ](σ∗)−E[W ](σF ), denoted by
∆E[W ]Fσ̂−σ∗ , is

∆E[W ]Fσ̂−σ∗ =
δ

2

[(
δ

2
+ 1

)
δ +

3

2

]
(Eσ̂[θ · p2]− Eσ∗ [θ · p2])− a

2

(
1− δ2

) (
Eσ̂[p2

2]− Eσ∗ [p2
2]
)

− bδ

2

(
5

2
− δ2

)(
Eσ̂[E[p2|θ]2]− Eσ∗ [E[p2|θ]2]

)

Analogously as before, there exists λ̂ ∈ (0, 1) such that Eσ̂[p2
2] = Eσ∗ [E[p2|θ]2] and the

difference between E[W ](σ̂)−E[W ](σF ) and E[W ](σ∗)−E[W ](σF ) for λ̂ satisfies

∆E[W ]Fσ̂−σ∗ ≥
δ

2

[(
δ

2
+ 1

)
δ +

3

2

]
(Eσ̂[θ · p2]− Eσ∗ [θ · p2])
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and since Eσ̂[θ · p2] ≥ Eσ∗ [θ · p2], this contradicts the optimality of σ∗. Thus, the

optimal partially informative recommendation mechanism is such that supp σ|θH =

{p̂H} and supp σ|θL = {p̂L, p̂H}. The optimal disclosure is characterized by λ∗ ∈
arg maxλ∈[0,1] ∆E[W ]F (λ) where

∆E[W ]F (λ) =
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

][
µLθL [λp̂L + (1− λ)p̂H ] + µHθH p̂H −

(µLθL + µHθH)2

2a− b

]
− a

2

(
1− δ2

)
µLλ [µL(1− λ) + µH ] (p̂H − p̂L)2

− b

2
δ

(
5

2
− δ2

)[
µL [λp̂L + (1− λ)p̂H ]2 + µH p̂

2
H − [µLλp̂L + (1− µLλ)p̂H ]2

]
The optimal λ∗ ∈ (0, 1) is characterized by the first order condition of ∆E[W ]F (λ).

A.3 Non-linear demand

Consider the same environment as before but assume firm i’s demand, q(pi, p−i; θ),

is continuous and differentiable and satisfies the following properties:

i)
∂q(pi, p−i; θ)

∂pi
≤ 0, ii)

∂q(pi, p−i; θ)

∂θ
> 0, and iii) |∂q(pi, p−i; θ)

∂pi
| > |∂q(pi, p−i; θ)

∂p−i
|

The first condition ensures that quantity demanded decreases as price increases, the

second condition implies that the state is a positive demand shifter and, lastly, the

third condition implies that goods are differentiated and that a change of its own

price has a bigger effect on the demand than a change of the price of a competitor.5

Assume that firm’s ex-post profits are strictly concave in pi. That is,

pi
∂2q(pi, p−i; θ)

∂p2
i

< −2
∂q(pi, p−i; θ)

∂pi
for all pi.

Furthermore, assume that

∂2Πi(pi, p−i; θ)

∂p2
i

∂2Π−i(p−i, pi; θ)

∂p2
−i

≥
(
∂2Πi(pi, p−i; θ)

∂pi∂p−i

)2

.

5This ensures that equilibrium prices are finite.
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Firms offer substitutes (complements) if

∂q(pi, p−i; θ)

∂p−i
> 0(< 0).

When firms offer substitutes, assume that the elasticity of demand of firm i is a non-

increasing function of the other firm’ price and that the demand is supermodular in

the state θ and the price of the other firm p−i, i.e.,

∂2q(pi, p−i; θ)

∂pi∂p−i
≥ 0 for all (pi, p−i) and

∂2q(pi, p−i; θ)

∂θ∂p−i
≥ 0.

Similarly, when firms offer complements, assume that the elasticity of demand of

firm i is a non-decreasing function of the other firm’ price and that the demand is

submodular in the state θ and the price of the other firm. That is,

∂2q(pi, p−i; θ)

∂pi∂p−i
≤ 0 for all (pi, p−i) and

∂2q(pi, p−i; θ)

∂θ∂p−i
≤ 0.

Note that these assumptions imply that firms choices are strategic complements

(substitutes) when they offer substitutes (complements).

Pricing game equilibrium. For all information structures (S2, π2), the existence

and uniqueness of the BNE is guaranteed by Ui (2016), which provides sufficient con-

ditions for the existence and uniqueness of BNE in Bayesian games with concave and

continuously differentiable payoff functions. This is formalized in Lemma A.6.

Lemma A.6 For all information structures (S2, π2), the set of Bayesian Nash equi-

libria in the pricing game Ê(S2, π2) is a singleton.

Simplifications. The strict concavity of firm’s ex-post profits in pi imply that

firms’ profits are bounded and continuous functions and that there exists p such that

it is without loss of generality to restrict attention to the compact action space

pi ∈ [0, p]. The equivalence to recommendation mechanism σ is established in

Lemma II.2 and Lemma II.3. The existence and uniqueness of BNE imply that

it is sufficient to restrict attention to the distribution σ(p2|θ) since for any obedient

recommendation mechanism there exists a function p1(θ, σ(p2|θ)) which represents

firm 1’s best response when the state is θ and the price recommendations are given
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by σ where

p1(θ, σ(p2|θ)) = arg max
p1

∫
p2

v1(p1, p2; θ)dσ(p2|θ).

By Leibniz rule, p1(θ, σ(p2|θ)) is implicitly characterized by∫
p2

q(p1, p2; θ)dσ(p2|θ) + p1

∫
p2

∂q(p1, p2; θ)

∂p1

dσ(p2|θ) = 0.

Then, firm 1’s expected equilibrium profits given information structure σ are

E(µ, σ)[Π∗1(p1, p2; θ)] =
∑
θ∈Θ

µθEσ[Π∗1(p1, p2; θ)|θ]

=
∑
θ∈Θ

µθ

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θ)

Furthermore, for any information structure σ, the set of recommended equilibrium

prices for firm 2 in the pricing game is a subset of the interval between the equilibrium

prices with full disclosure. This is formalized in Lemma A.7.

Lemma A.7 The support of any obedient distribution σ(p2|θ) is a subset of

[pF (θL), pF (θH)] for all θ ∈ Θ

where pF (θ) is the equilibrium price with full disclosure when the state θ is realized.

Informed firm optimal disclosure. Assume the designer wants to maximize

the informed firm’s expected equilibrium payoffs. First, I show that when firms

offer substitutes, the informed firm’s expected equilibrium payoff conditional on the

state is supermodular in the state and the price of the other firm. Similarly, I also

show that the informed firm’s expected equilibrium payoff conditional on the state is

submodular in the state and the price of the other firm when firms offer complements.

This is formalized in Lemma A.8.

Lemma A.8 When firms offer substitutes (complements), Eσ[Π∗1(p1, p2; θ)|θ] is su-

permodular (submodular) in θ and p2.
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Second, I show that it is optimal for the informed firm to share all its private in-

formation with the uninformed firm when the informed firm expected equilibrium

profits are supermodular in the state and the uninformed firm’s price. I also show

that it is optimal for the informed firm to share none of its private information

with the uninformed firm when the informed firm expected equilibrium profits are

submodular in the state and the uninformed firm’s price. This is formalized in

Proposition A.1.

Proposition A.1 If Eσ[Π∗1(p1, p2; θ)|θ] is supermodular in p2 and θ, full disclosure

is optimal for the informed firm. Similarly, if Eσ[Π∗1(p1, p2; θ)|θ] is submodular in p2

and θ, no disclosure is optimal for the informed firm.

These two results imply that full disclosure is optimal for the informed firm when

firms offer substitutes and no disclosure is optimal when firms offer complements.

These results also extend to Cournot competition using same equivalence arguments

as before.

A.3.1 Proofs

Proof. Lemma A.6. The pricing game is a smooth concave game since Πi(·, p−i; θ) :

R+ → R is concave and continuously differentiable for each p−i ∈ R+ since

∂2Πi(pi, p−i; θ)

∂p2
i

< 0 for all p−i ∈ R+.

Define the payoff gradient as

∇Π(p, θ) :=

(
∂Πi((pi, p−i); θ)

∂pi

)
i∈{1,2}

.

The payoff gradient is continuously differentible. The Jacobian matrix of the payoff

gradient, given by

F∇Π(p, θ) :=

(
∂2Π1((p1,p2);θ)

∂p2
1

∂2Π1((p1,p2);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)

∂p2
2

)
,
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is negative definite because

∂2Πi(pi, p−i; θ)

∂p2
i

< 0 and
∂2Πi(pi, p−i; θ)

∂p2
i

∂2Π−i(p−i, pi; θ)

∂p2
−i

≥
(
∂2Πi(pi, p−i; θ)

∂pi∂p−i

)2

.

This implies that the payoff gradient ∇Π(p, θ) is strictly monotone by Lemma 4 from

Ui (2016). Furthermore, since for all p := (pi, p−i), there exists c > 0 such that

pTF∇Π(p, θ)p < −cpTp,

the payoff gradient is also strongly monotone by the same lemma. Then, the unique-

ness of the Bayesian Nash equilibrium of the pricing game follows from Proposition

1 from Ui (2016), which states that if the payoff gradient is strictly monotone, the

Bayesian game as at most one Bayesian Nash equilibrium. The existence of a unique

Bayesian Nash equilibrium follows from Proposition 2 from Ui (2016).

Proof. Lemma A.7. With full disclosure, there is no uncertainty about the state.

Each firm chooses pi : Θ → R+ to maximize Πi(pi, p−i; θ). That is, firm i’s best

response to p−i is implicitly defined by

q(pi, p−i; θ) + pi
∂q(pi, p−i; θ)

∂pi
= 0

In equilibrium, both firms choose the same price, denoted by pF (θ). Since q(p2, p1; θL) <

q(p2, p1, θH), the highest (lowest) equilibrium price the uninformed firm is willing to

price is when both firms are certain that the state is high (low). Hence, the support

of any obedient recommendation σ(p2|θ) is a subset of [pF (θL), pF (θH)].

Proof. Lemma A.8. By definition, Eσ[Π∗1(p1, p2; θ)|θ] is given by

Eσ[Π∗1(p1, p2; θ)|θ] =

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θ)

When firms offer substitutes, for any obedient σ(p2|θ) we have that∫
p2

q(p1, p2; θ)dσ(p2|θH) ≥
∫
p2

q(p1, p2; θ)dσ(p2|θL) and∫
p2

∂q(p1, p2; θ)

∂p1
dσ(p2|θH) ≥

∫
p2

∂q(p1, p2; θ)

∂p1
dσ(p2|θL) for all p1 and θ (A.7)
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since q(p1, p2; θ) is strictly increasing in p2,
∫ x

0
dσ(p2|θL) ≥

∫ x
0

dσ(p2|θH) for all x

and ∂2q(p1,p2;θ)
∂p1∂p2

> 0. Then, since p1(θ, σ(p2|θ)) is implicitly defined by

∫
p2

q(p1, p2; θ)dσ(p2|θ) + p1

∫
p2

∂q(p1, p2; θ)

∂p1
dσ(p2|θ) = 0,

(A.7) implies that p1(θ, σ(p2|θH)) ≥ p1(θ, σ(p2|θL)) for all θ ∈ Θ. Then, ∂2q(p1,p2,θ)
∂p1∂p2

≥
0 also implies that∫

p2

q(p1(θ, σ(p2|θH)), p2; θ)dσ(p2|θH) ≥
∫
p2

q(p1(θ, σ(p2|θL)), p2; θ)dσ(p2|θL).

Then, when firms offer substitutes,∫
p2

Π1(p1(θ, σ(p2|θH)), p2; θ)dσ(p2|θH)−
∫
p2

Π1(p1(θ, σ(p2|θL)), p2; θ)dσ(p2|θL) ≥ 0 (A.8)

for all θ ∈ Θ. By Leibnitz rule,

∂
∫
p2

Π1(p1(θ, σ(p2|θH)), p2; θ)dσ(p2|θH)

∂θ

=

∫
p2

∂p1(t, σ(p2|θH))

∂t

∣∣∣∣
t=θ

[
q(p1(θ, σ(p2|θH)), p2; θ) + p1(θ, σ(p2|θH))

∂q(p1, p2; t)

∂p1

]
dσ(p2|θH)

+

∫
p2

p1(θ, σ(p2|θH))
∂q(p1(θ, σ(p2|θH)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θH)

=

∫
p2

p1(θ, σ(p2|θH))
∂q(p1(θ, σ(p2|θH)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θH)

where the last inequality holds by the first order condition of the informed firm’s
pricing decision. Similarly,

∂
∫
p2

Π1(p1(θ, σ(p2|θL)), p2; θ)dσ(p2|θL)

∂θ
=

∫
p2

p1(θ, σ(p2|θL))
∂q(p1(θ, σ(p2|θL)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θL)

Then, the left-hand side of (A.8) is non-decreasing in θ since∫
p2

p1(θ, σ(p2|θH))
∂q(p1(θ, σ(p2|θH)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θH)

≥
∫
p2

p1(θ, σ(p2|θL))
∂q(p1(θ, σ(p2|θL)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θL)

because p1(θ, σ(p2|θH)) > p1(θ, σ(p2|θL)) and ∂2q(p1,p2;θ)
∂θ∂p2

> 0. Thus, when firms offer
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substitutes,∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH)−
∫
p2

Π1(p1(θH , σ(p2|θL)), p2; θH)dσ(p2|θL)

≥
∫
p2

Π1(p1(θL, σ(p2|θH)), p2; θL)dσ(p2|θH)−
∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

which implies that Eσ[Π∗1(p1, p2; θ)|θ] is supermodular in θ and p2. The proof for the

complement case is analogous.

Proof. Proposition A.1. Consider first the case in which Eσ[Π∗1(p1, p2θ)|θ] is

supermodular in p2 and θ. Next, I show that for all σ and p2 ∈ [pF (θL), pF (θH)],

EσF [Π∗1(p1, p2; θL)|θL] ≤ Eσ[Π∗1(p1, p2; θL)|θL] ≤ Eσ[Π∗1(p1, p2; θH)|θH ] ≤ EσF [Π∗1(p1, p2; θH)|θH ].

That is,

Π1(p1(θL, σ
F (p2|θL)), pF (θL); θL) ≤

∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤ Π1(p1(θH , σ
F (p2|θH)), pF (θH); θH)

First,∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL) ≥
∫
p2

Π1(p1(θL, σ
F (p2|θL)), p2; θL)dσF (p2|θL)

= Π1(p1(θL, σ
F (p2|θL)), pF (θL); θL) (A.9)

since σF (p2|θL) recommends pF (θL) with probability 1, the informed firm’s demand

is increasing in p2 and p1(θL, σ(p2|θL)) ≥ p1(θL, σ
F (p2|θL)).6 Similarly,∫

p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤
∫
p2

Π1(p1(θH , σ
F (p2|θH)), p2; θH)dσF (p2|θH)

= Π1(p1(θH , σ
F (p2|θH)), pF (θH); θH) (A.10)

because σF (p2|θH) recommends pF (θH) with probability 1, the informed firm’s de-

mand is increasing in p2 and p1(θH , σ(p2|θH)) ≤ p1(θH , σ
F (p2|θH)).

6The proof of p1(θL, σ(p2|θL)) ≥ p1(θL, σ
F (p2|θL)) follows an analogous argument as in

Lemma A.8.
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Second, supermodularity implies that∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL) ≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH)

(A.11)

since p1(θL, σ(p2|θL)) ≤ p1(θH , σ(p2|θH)), ∂2q(p1,p2;θ)
∂θ∂p2

> 0 and the state is a positive

demand shifter, implying that σ(p2|θH) recommends on average higher prices than

σ(p2|θL). Thus, (A.9), (A.10) and (A.11) imply that

Π1(p1(θL, σ
F (p2|θL)), pF (θL); θL) ≤

∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤ Π1(p1(θH , σ
F (p2|θH)), pF (θH); θH)

Then,

EσF ,µ[Π∗1(p1, p2; θ)] =
∑
θ∈Θ

µθΠ1(p1(θ, σF (p2|θ)), pF (θ); θ)

≥
∑
θ∈Θ

µθ

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θ)

= Eσ,µ[Π∗1(p1, p2; θ)]

where the inequality holds by Jensen’s inequality.

Consider now the case in which Eσ[Π∗1(p1, p2; θ)|θ] is submodular in θ and σ(p2|θ).
Analogously as in the supermodular case, it is possible to show that

Π1(p1(θL, σ
N(p2|θL)), pN ; θL) ≤

∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤ Π1(p1(θH , σ
N(p2|θH)), pN ; θH)
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which in turn implies that

EσN ,µ[Π∗1(p1, p2; θ)] =
∑
θ∈Θ

µθΠ1(p1(θ, pN), pN ; θ)

≥
∑
θ∈Θ

µθ

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θH)

= Eσ,µ[Π∗1(p1, p2; θ)]

where the inequality holds by Jensen’s inequality.

A.4 Extensions proofs

Proof. Lemma II.6. Proposition II.1 and Lemma II.5 imply that full disclosure is

optimal if firms offer imperfect substitutes. If firms offer complements, the informed

firm prefers to not disclose her private information whereas the uninformed firm

prefers to learn the state. First, full disclosure yields higher producer surplus than

no disclosure if and only if δ < 2
1+
√

2
. Next, I show that full disclosure is optimal when

firms offer complements if δ < 2
1+
√

2
and no disclosure is optimal otherwise.

Consider first the case in which δ < 2
1+
√

2
. The difference in expected producer

surplus of full disclosure σF and disclosure policy σ is

PS(σF )− PS(σ) ≥
(
a+ b− b2

4a

)
Eµ

[(
θ

2a− b
− Eσ[p2|θ]

)2
]
≥ 0

The first inequality holds by Jensen’s inequality, a > |b| and b < 0, whereas the

second one holds for all δ < 2
1+
√

2
. Hence, full disclosure is optimal if δ < 2

1+
√

2
.

Consider now the case in which δ ≥ 2
1+
√

2
. The difference in expected producer

surplus of no disclosure σN and disclosure policy σ is

PS(σN )− PS(σ) = aV(µ,σ)[p2]− (1− δ)Cov(µ,σ)[p2, θ] +
3b

4
· δVµ[Eσ[p2|θ]]

Note that this difference is a strictly increasing function of δ because

∂PS(σN)− PS(σ)

∂δ
= Cov(µ,σ)[p2, θ] +

3b

4
Vµ[Eσ[p2|θ]],

Cov(µ,σ)[p2, θ] > 2aV(µ,σ)[p2], δ < 1 and V(µ,σ)[p2] ≥ Vµ[Eσ[p2|θ]] ≥ 0.
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This implies that

PS(σN )− PS(σ) ≥ aV(µ,σ)[p2]−
(

1− 2

1 +
√

2

)
Cov(µ,σ)[p2, θ] +

3b

4
· 2

1 +
√

2
Vµ[Eσ[p2|θ]] ≥ 0

for all δ > 2
1+
√

2
since Cov(µ,σ)[p2, θ] ∈

[
2aV(µ,σ)[p2], (2a− b)V(µ,σ)[p2]

]
and V(µ,σ)[p2] ≥

Vµ[Eσ[p2|θ]].7 Hence, no disclosure is optimal if δ > 2
1+
√

2
.

Proof. Lemma II.7. With public signals, the informed firm’s expected equilibrium

profits, given by

E(µ,σPub)[Π
∗
1((p1, p2); θ)] = aEµ

[
EσPub

[(
θ + bp2

2a

)2 ∣∣∣∣θ
]]

,

are higher than its expected equilibrium profits with private signals. This holds

because

E(µ,σPub)[Π
∗
1((p1, p2); θ)] = aEµ

[
EσPub

[(
θ + bp2

2a

)2 ∣∣∣∣θ
]]
≥ aEµ

[(
EσPub

[
θ + bp2

2a

∣∣∣∣θ])2
]

= aEµ

[(
θ + bEσPub [p2|θ]

2a

)2
]

= aEµ

[(
θ + bEσPriv [p2|θ]

2a

)2
]

= E(µ,σPriv)[Π
∗
1((p1, p2); θ)]

where the inequality holds by Jensen’s inequality.

Proof. Lemma II.8. The expected consumer surplus with public disclosure is given

by

CS(σPub) =
1

2a
Eµ

[
EσPub

[
q1

(
θ + bp2

2a
, p2; θ

)2

+ q2

(
p2,

θ + bp2

2a
; θ

)2 ∣∣∣∣θ
]]

,

whereas expected consumer surplus with private disclosure is

CS(σPriv) =
1

2a
Eµ

[
EσPriv

[
q1

(
θ + bEσPriv [p2|θ]

2a
, p2; θ

)2

+ q2

(
p2,

θ + bEσPriv [p2|θ]
2a

; θ

)2 ∣∣∣∣θ
]]

.

7The highest covariance between prices and the state occurs with full disclosure. In this case,
p2(θ) = θ

2a−b . Hence,

Cov(µ,σ)[p2, θ] ≤ Cov(µ,σ)[p2, (2a− b)p2] = (2a− b)V(µ,σ)[p2]
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The difference between expected consumer surplus with private and public disclosure

is

CS(σPriv)− CS(σPub) =
b2

8a

(
7− b2

a2

)(
E(µ,σ)[p

2
2]− Eµ

[
Eσ[p2|θ]2

])
Then, CS(σPriv) ≥ CS(σPub) because a > |b| and

E(µ,σ)[p
2
2]− Eµ

[
Eσ[p2|θ]2

]
= Eµ[Eσ[p2

2|θ]]− Eµ
[
Eσ[p2|θ]2

]
≥ 0

where the equality holds by the law of iterated expectations and the inequality by

Jensen’s inequality.

Proof. Lemma II.9. First, no disclosure is optimal when firms offer complements

since CS(σPub) ≤ CS(σPriv). Similarly, no disclosure is optimal when firms offer

substitutes and firms offer sufficiently far substitutes (δ < ĉ). Consider then the case

in which firms offer substitutes (b > 0) and δ ≥ ĉ. The expected gain of consumer

surplus with public disclosure with respect to no disclosure is given by:

CS(σPub)− CS(σN ) ≤ 1

2a

(a
2
V(µ,σPub)[p2]− Cov(µ,σPub)(θ, p2)

)
< 0

where the first inequality holds by definition of variance, covariance and δ. The

second inequality holds because CS(σPub) < CS(σN) for δ = 0.

Proof. Lemma II.10. The designer commits to an information structure with

private signals, denoted by ψ̂k, to share all the informed firm’s private information

with k firms and share no information with N−1−k firms, where k ∈ {0, 1, 2, ..., N−
1}. Firms who observe a perfectly informative signal condition their pricing choices

on the state and select a mapping pF : Θ→ R+ to maximize their expected profits,

whereas firms who observe no information select a price pN ∈ R+ to maximize their
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expected profits. Equilibrium prices are

pF (θL) =
θL(2a(N − 1)− bk) + bµH(N − k − 1) (θH − θL)

(2a− b)(2a(N − 1)− bk)
,

pF (θH) =
θH(2a(N − 1)− bk)− bµL(N − k − 1) (θH − θL)

(2a− b)(2a(N − 1)− bk)
, and

pN =
µLθL + µHθH

2a− b
.

Consider first the case in which the designer’s objective is to maximize the informed

firm’s expected equilibrium profits, given by

E[Π∗1(ψ̂k)] = a
∑
θ∈Θ

µθp
F (θ)2.

The informed firm’s expected equilibrium profits are maximized by sharing its private

information with all other firms (k∗ = N−1). Similarly, when the designer’s objective

is to maximize expected producer surplus, given by

PS(ψ̂k) = (N − k − 1)a(pN)2 + (k + 1)a
∑
θ∈Θ

µθp
F (θ)2,

it is optimal to share information with all firms (k∗ = N − 1), eliminating all infor-

mation asymmetry between firms.

In contrast, if the designer’s objective is to maximize expected consumer surplus, in-

formation disclosure between firms is at least partially restricted. Expected consumer

surplus, given by,

CS(ψ̂k) =
(k + 1)

2a

∑
θ∈Θ

µθ

[
θ + b

(N − k − 1)

N − 1
pN −

(
a− b k

N − 1

)
pF (θ)

]2

+
(N − k − 1)

2a

∑
θ∈Θ

µθ

[
θ + b

k + 1

N − 1
pF (θ)−

(
a− bN − k − 2

N − 1

)
pN
]2

The optimal information structure, characterized by k∗(N, δ), is determined by the
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degree of substitution and the number of firms in the market, where

k∗(N, δ) =


0 if δ ≤ 3

4 for all N ≥ 3

0 if δ ∈
(

3
4 , 0.76

)
and N ∈

[
3, 1 + 1

2

√
δ2

4δ−3 −
δ
2

]
f(N, δ) otherwise

and

f(N, δ) = d
2(N − 1)

(
δ3 + δ2(4N − 5) + δ(4N − 7)(N − 1)− 3(N − 1)2

)
δ (δ + (N − 1)) (δ + 3(N − 1))

e

if

CS

[
π̂
d 2(N−1)(δ3+δ2(4N−5)+δ(4N−7)(N−1)−3(N−1)2)

δ(δ+(N−1))(δ+3(N−1))
e

]
≥ CS

[
π̂
b 2(N−1)(δ3+δ2(4N−5)+δ(4N−7)(N−1)−3(N−1)2)

δ(δ+(N−1))(δ+3(N−1))
c

]
and

f(N, δ) = b
2(N − 1)

(
δ3 + δ2(4N − 5) + δ(4N − 7)(N − 1)− 3(N − 1)2

)
δ (δ + (N − 1)) (δ + 3(N − 1))

c,

otherwise.
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APPENDIX B

Appendix for Chapter III

B.1 Proofs with two data-buyers

Proof. Lemma III.1. I show that for any menu M̂ and BNE σ̂, there exists a direct

menu MD and σD such that (i) every data-buyer i of type θ ∈ {θL, θH} purchases

the experiment designed for her type; (ii) for every type vector, the distribution over

outcomes under M̂ if σ̂ is played is the same as the distribution over outcomes that

results under MD and σD.

Suppose instead that M ≥ 3. First, suppose that ι̂iθ ∈ {0, 1, ...,M} for all i type θ.

Hence, only two elements of the menu are traded in equilibrium. Then, it is possible

to eliminate the redundant elements of the menu and offer menu MD which only

includes the ones that are purchased in equilibrium. In this case, it is trivial that

the distribution over outcomes remains unchanged. Second, assume that there exist

i type θ such that ι̂i ∈ ∆({0, 1, ..,M}). Construct an alternative menuMD in which

the experiments that are chosen by i type θ with positive probability are replace by

one experiment that randomizes over those experiments such that induces the same

distribution over outcomes. That is, define

πD((si, sj)|ω, (ιi, ιj)) =
M∑
m=0

P(ι̂i = m|ω)π̂((si, sj)|ω, (m, ιj)).

Note that the overall distribution over outcomes remains unchanged. Thus, MD
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implements the same outcome as M̂ and, since σ̂ is a Bayes Nash equilibrium, σD

is also an equilibrium. Therefore, it is without loss of generality to consider menus

with at most two elements.

Proof. Lemma III.2. Consider i type θ and an experiment Em ∈ M where the

menu M is a incentive-compatible and individually rational. Let i type θ choose

a single action after each signal. Given the equilibrium strategies, let Smk denote

the subset of signals in experiment Em that induces buyer i type θ to choose action

ak ∈ {a1, a2} where ∪2
k=1S

m
k = Sm.

Construct Êm = (Ŝm, π̂m) where Ŝm = {s1, s2} and, for all s` ∈ {s1, s2} and ω ∈
{ω1, ω2},

π̂m(s`|ω) =

∫
Smk

πm(s|ω)ds.

Em and Êm are constructed such that both experiments induce the same outcome

for buyer i type θ. Thus, i attaches the same value to both experiments, i.e.,

VM(Em, θ) = VM̂(Êm, θ). Furthermore, Êm is a weakly less informative than Em

and Blackwell’s theorem implies that VM(Em, θ′) ≤ VM̂(Êm, θ′) for all θ′. This re-

laxes the incentive constraints of types θ′ 6= θ. Therefore, for any M, it is possible

to construct M̂ that replaces Em with Êm that is also incentive compatible and

individually rational and yields weakly larger profits.

Lemma B.1 The value of experiment En is weakly increasing in its precision if

c ∈
(

1
2
, 2
)
.

Proof. Lemma B.1. Data-buyer i type θ’s willingness to pay for an experiment

is determined by v1(En, θ;m) and v2(En, θ m). First, if i purchases experiment En

with n 6= m, both expressions are increasing in πn1 and πn2 since

∂v2(En, θ;m)

∂πn1
=
∂v1(En, θ;m)

∂πn1
= θ[πm1 + (1− πm1 )c] and

∂v2(En, θ;m)

∂πn2
=
∂v2(En, θ;m)

∂πn2
= (1− θ)[(1− πm2 )c+ πm2 ]
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Second, if i acquires the same experiment as j (n = m), we have that

∂vk(E
m, θ;m)

∂πm1
=

θ [πm1 (2− c) + (1− πm1 )c] if k = 2

θ [πm1 + (1− πm1 )(2c− 1)] if k = 1

and

∂vk(E
m, θ;m)

∂πm2
=

(1− θ) [(1− πm2 )(2c− 1) + πm2 ] if k = 2

(1− θ) [(1− πm2 )c+ πm2 (2− c)] if k = 1
.

Hence, c ∈
(

1
2
, 2
)

ensures that VM(En, θ) increases in πn1 and πn2 for all experiments

En.

Proof. Proposition III.1.

1. First, I show that IRL binds. Suppose not. Then, IRH must bind.1 Since the high

type observes E, tH = VM(E, θH) > VM(E, θL) and tL < VM(EL, θL). Moreover, the

incentive compatibility constraints imply

ICL : VM(EL, θL)− tL ≥ VM(E, θL)− tH and ICH : 0 ≥ VM(EL, θH)− tL.

Since VM(EL, θL) − tL > 0 and VM(E, θL) − tH < 0, it is possible to increase tL by

a small ε > 0 without violating any compatibility constraint, yielding a contradic-

tion.

Second, I show that the participation constraint of the high type also binds. Since

the IRL and ICH bind, the data-seller’s maximization can be written as:

max
(Em,tm)m∈{L,H}

(1− ν − ρ)VM(EL, θL) + (ν + ρ)
(
VM(EH , θH)− [V (EL, θH)− VM(EL, θL)]

)
subject to

IRH : V (EL, θH)− VM(EL, θL) ≥ 0 and

ICL : VM(EH , θH)− V (EH , θL) ≥ VM(EL, θH)]− V (EL, θL).

Hence, IRH implies ICL. As a result, we can further simplify the data-seller’s max-

1At least one participation constraint binds. Otherwise, the seller can increase prices and profits.
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imization problem to

max
(Em,tm)m∈{L,H}

VM(EL, θL) + (ν + ρ)
(
VM(EH , θH)− V (EL, θH)

)
such that V (EL, θH) ≥ VM(EL, θL). Note that

ΠM ≤ VM(EL, θH) + (ν + ρ)
(
VM(EH , θH)− V (EL, θH)

)
since VM(EL, θH) ≥ VM(EL, θL). Thus, it is optimal for the data-seller to choose EL

such that VM(EL, θH) = VM(EL, θL) which implies that IRH binds.

2. Suppose ICH does not bind. Since IRH binds, it is possible to increase both

the precision of EL and tL since payoffs are continuous in πLk , yielding a contradic-

tion.

3. First, I show that if E is part of the optimal menu, it is offered to the high type.

Suppose instead that only the low type purchases this experiment, implying that its

price cannot exceed VM(E, θL). If the high type does not purchase this experiment,

incentive-compatibility implies that tH < VM(E, θL). Thus, only offering E at price

VM(E, θL) improves the seller’s profits. This yields a contradiction.

Second, I show that E is part of the optimal menu. Assume without loss of generality

that θH chooses action a1 in the absence of supplemental information. Consider first

the case in which θL also chooses action a1 under the same circumstances. Proposition

1.4 implies that πH1 = πL1 = 1. The data-seller’s expected profits from a menu M
are

ΠM = (1− θL)πL2 (1− ν − ρ)

[
(1− 2ν − ρ)(c(1− πL2 ) + πL2 )

1− ν − ρ
+
ν(c(1− πH2 ) + πH2 )

1− ν − ρ

]
+ (ν + ρ) (1− θH)πH2

[
ν(c(1− πL2 ) + πL2 )

ν + ρ
+
ρ(c(1− πH2 ) + πH2 )

ν + ρ

]
First, if c < 1, it is trivial that the data-seller’s profits are strictly increasing in πH2 ,

implying that it is optimal to set πH2 = 1. Second, if c > 1, the same result is true

since

∂ΠM
∂πH2

≥ (1− θH) [ν(1− πL2 ) + ρ(1− πH2 )],
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c ∈ (1, 2) and θL > θH . Consider now the case in which the low type chooses a2 in
the absence of supplemental information. Proposition 1.4 implies that πH1 = πL2 = 1
and the expected profits from a menu M are

ΠM = θLπ
L
1

[
ν + (1− 2ν − ρ)(c(1− πL1 ) + πL1 )

]
+ πH2 (1− θH)

[
ν + ρ

[
(c(1− πH2 ) + πH2 )

]]
.

Analogously as before, it is possible to verify that the data-seller’s profits are strictly

increasing in πH2 when c ∈ (1
2
, 2).

4. Assume without loss of generality that θH chooses action a1 in the absence of

supplemental information. Consider first the case in which θL also chooses action

a1 under the same circumstances. Suppose that in an optimal menu M̂, πL1 < 1.

Consider an alternative menu M that replaces ÊL characterized by πL1 < 1 and

πL2 with E
L

which replaces πL1 with 1. Since EH = E, the difference between the

data-seller expected profits with M, ΠM, and with M̂, ΠM̂, is

ΠM −ΠM̂
(1− ν − ρ)

= min

{
πL2 (1− θH)

[
ν(c(1− πL2 ) + πL2 )

ν + ρ
+

ρ

ν + ρ

]
, (1− πL1 )θH

[
ν(c(1− πL1 ) + πL1 )

ν + ρ
+

ρ

ν + ρ

]}
.

This contradicts the optimality of M̂.

Consider now the case in which θL chooses action a2 in the absence of supplemental

information. Suppose that in an optimal menu, M̂, πL2 < 1. Consider an alternative

menu M that replaces πL2 with 1. The difference between the profits resulting from

these two menus is

ΠM −ΠM̂ = (1− θH)[1− ρ− ν((1− πL2 )c+ πL2 )]

+ min

{
πL1 θL[(1− 2ν − ρ)(c(1− πL1 ) + πL1 ) + ν], (1− πL2 ) (1− θL) [(1− 2ν − ρ)(c(1− πL2 ) + πL2 ) + ν]

}
.

Note that ΠM−ΠM̂ ≥ (1−θH)(1−2ν−ρ) > 0 since both terms inside the minimum

are positive and c < 2.

Proof. Proposition III.2. Proposition III.1 implies that πL2 = 1 if beliefs are

strictly non-congruent and that πL1 is such that ICH binds. When θL attaches a
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positive value to EL,

VM(EL, θL) = θLπ
L
1

[(
1− 2ν − ρ
1− ν − ρ

)
[πL1 + (1− πL1 )c] +

(
ν

1− ν − ρ

)]
and

VM(EL, θH) = max

{
0, (1− θH)− (1− πL1 )θH

(
ν

ν + ρ
(πL1 + (1− πL1 )c) +

ρ

ν + ρ

)}
.

Define f(πL1 ) as follows:

f(πL1 ) : = (1− θH)− (1− πL1 )θH

(
ν

ν + ρ
(πL1 + (1− πL1 )c) +

ρ

ν + ρ

)
.

Note that f(πL1 ) is a continuous function of πL1 ∈ [0, 1], f(1) = (1 − θH) > 0

and f(0) < 0 since θH > 1
2c

when c ∈
(

1
2
, 1
)

and θH > c
2

if c ∈ (1, 2). Then, the

intermediate value theorem implies that there exists πL1 ∈ (0, 1) such that f(πL1 ) = 0.

Furthermore, since the graph of f(πL1 ) is a convex parabola, f(πL1 ) ≥ 0 for all πL1 ≥ πL1

and negative otherwise. Hence, VM(EL, θH) = f(πL1 ) if πL1 ≥ πL1 and V (EL, θH) = 0

otherwise. Define SN(πL1 ) as the high type surplus from acquiring experiment EL.

That is:

SN(πL1 ) = VM(EL, θH)− VM(EL, θL).

Note that SN(πL1 = πL1 ) < 0, SN(πL1 = 1) > 0 because θL < 1 − θH and SN(πL1 ) is

continuous on the closed interval [πL1 , 1]. Then, by the Intermediate value theorem,

there exists πL1 ∈ (πL1 , 1) such that SN(πL1 ) = 0. This implies that the low type

observes partial information whenever beliefs are strictly non-congruent.

Proof. Lemma III.3. The high type surplus from acquiring EL, SN(πL1 ), is an
increasing function of πL1 for all πL1 since

∂SN (πL1 )

∂πL1
≥ θH

[
ν

ν + ρ
[πL1 + (1− πL1 )(2c− 1)] +

ρ

ν + ρ

]
− (1− θH)

[
1− 2ν − ρ
1− ν − ρ

[πL1 (2− c) + (1− πL1 )c] +
ν

1− ν − ρ

]
≥ 0

where the first inequality holds since θL < 1− θH by definition of the high type and

the second holds for all non-congruent distribution of types, c ∈
(

1
2
, 2
)

and distribu-

tion of private information. The optimal πL1 , defined as πL1 such that SN(πL1 ) = 0,

increases in c since SN(πL1 ) is a decreasing function of c. This implies that the

precision of EL decreases as the coordination incentives increase.
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The effect of ν on SN(πL1 ) is determined by the coordination incentives since

∂SN(πL1 )

∂ν
= (1− πL1 )(c− 1)

[
1− ρ

(1− ν − ρ)2
θLπ

L
1 − θH(1− πL1 )

ρ

(ρ+ ν)2

]
.

First, if data-buyers have coordination incentives, SN(πL1 ) is an decreasing function

of ν if

θH(1− πL1 )
ρ

(ρ+ ν)2
− 1− ρ

(1− ν − ρ)2
θLπ

L
1 ≤ 0. (B.1)

Note that (B.1) holds for all

πL1 ≥
θHρ(1− ν − ρ)2

θHρ(1− ν − ρ)2 + θL(1− ρ)(ν + ρ)2
and SN

(
θHρ(1− ν − ρ)2

θHρ(1− ν − ρ)2 + θL(1− ρ)(ν + ρ)2

)
< 0.

(B.2)

Since the optimal πL1 satisfies (B.2), SN(πL1 ) is decreasing function of ν for all πL1

that satisfies (B.2) with coordination incentives. This also implies that the precision

of EL increases in ν with anti-coordination incentives.

Lemma B.2 Assume c ∈
(

1
2
, 1
)

and that beliefs are strictly congruent. In an op-

timal menu, the data-seller offers no information to θL if ν ≤ √ρ − ρ and partial

information otherwise.

Proof. Lemma B.2. Proposition III.1 implies that in an optimal menu EH = E,

πL1 = 1 and that πL2 is determined such that ICH binds. Given that both partic-

ipation constraints bind, ICH simplifies to VM(EL, θL) = VM(EL, θH) where both

expressions are computed by assuming that j does not deviate form her equilibrium

choices. The value of experiment EL for the θL and θH are given by

VM(EL, θL) = (1− θL)πL2

[(
1− 2ν − ρ
1− ν − ρ

)[
(1− πL2 )c+ πL2

]
+

(
ν

1− ν − ρ

)]
and

VM(EL, θH) = (1− θH)πL2

[(
ν

ν + ρ

)[
(1− πL2 )c+ πL2

]
+

(
ρ

ν + ρ

)]
.

It is trivial that ICH binds if πL2 = 0. Suppose now that πL2 ∈ (0, 1]. Assume first

126



that ν ≤ √ρ− ρ. Then:

VM(EL, θH)− VM(EL, θL) > (1− θL)πL2

(
(1− 2ν − ρ)

1− ν − ρ
[πL2 + (1− πL2 )c] +

ν

1− ν − ρ

)
− (1− θL) πL2

(
(1− 2ν − ρ)

1− ν − ρ
[πL2 + (1− πL2 )c] +

ν

1− ν − ρ

)
= 0

where the inequality holds since θL > θH , c < 1 and ν ≤ √ρ − ρ. Thus, it is

not possible for the data-seller to offer partial information to the low type without

inducing a deviation from the high type. Assume now that ν >
√
ρ−ρ. In this case,

there exists πL2 ∈ (0, 1] such that VM(EL, θL) = VM(EL, θH) if and only if

θL ≤
(1− ν − ρ)[c · ν + ρ]θH + [(ν + ρ)2 − ρ](1− c)

[c(1− 2ν − ρ) + ν](ν + ρ)

where

πL2 =
(1− ν − ρ) [νc+ ρ] θH +

[
(ν + ρ)2 − ρ

]
(1− c)− [c(1− 2ν − ρ) + ν] (ν + ρ)θL

(1− c) [(ν + ρ)2 − ρ− ν(1− ν − ρ)θH + (ν + ρ)(1− 2ν − ρ)θL]
. (B.3)

Thus, if the low type is sufficiently uncertain about the state, the data-seller is able

to provide supplemental information to the low type without attracting the high

type. Otherwise, the low type observes no supplemental information.

Lemma B.3 Assume c ∈ (1, 2) and that beliefs are strictly congruent. In an op-

timal menu, the data-seller offers no information to θL if ν ≥ √ρ − ρ and partial

information otherwise.

Proof. Lemma B.3. The proof is analogous to the proof of Lemma B.2

Proof. Proposition III.3 This proof is contained in Lemma B.2 and Lemma B.3.

Proof. Lemma III.4. In an optimal menu in which the low type observes partial

information, (B.3) defines the optimal E2. First, if data-buyers’ private information

is negatively correlated and they have coordination incentives, c ∈
(

1
2
, 1
)

and ν >
√
ρ− ρ. In this case, the sign of

∂πL2
∂c

depends on the sign of

(ν + ρ)2 − ρ− ν(1− ν − ρ)θH + (1− 2ν − ρ)(ν + ρ)θL

127



which is positive for all θL > θH and ν >
√
ρ − ρ. Hence, the precision of EL

increases in c. As c increases, data-buyers incentives to coordinate decrease. Thus,

the precision of EL increases as the incentives to coordinate decrease. Similarly, the

sign of
∂πL2
∂ν

depends on the sign of

(ν + ρ)(θHρ(2− ν − ρ)− θL(1− ρ)(ν + ρ) + ν − ρ) + (1− θH)ρ

which is positive for all θL > θH , ν >
√
ρ − ρ and c < 1. Hence, the precision

of EL increases in ν. An increase in ν decreases the correlation between their pri-

vate information. Thus, the precision of EL decreases in the correlation of private

information.

Second, if data-buyers’ private information is positively correlation and they have

anti-coordination incentives, c ∈ (1, 2) and ν <
√
ρ − ρ. Analogously, it is straight-

forward to show that
∂πL2
∂c

> 0 and
∂πL2
∂ν

< 0.

B.2 Proofs with N data-buyers

Lemma B.4 The value of experiment En is increasing in its precision if

c < 1 and c

(
1 +

⌈
N

2

⌉)
≥
⌈
N

2

⌉
or c > 1 and

(
1 +

⌈
N

2

⌉)
≥ c

⌈
N

2

⌉
.

Proof. Lemma B.4. Consider the case in which data-buyer i acquires experiment

EL. V (EL, θ) is increasing in πL1 if

Λθ
1 ≥ max

{
− πL1 ·

∂Λθ
1

∂πL1
, (1− πL1 )

∂Λθ
1

∂πL1

}
. (B.4)

A sufficient but not necessary condition for (B.4) is

Λθ
1 ≥ max

{
− ∂Λθ

1

∂πL1
,
∂Λθ

1

∂πL1

}
=| ∂Λθ

1

∂πL1
| (B.5)

since πL1 ∈ [0, 1]. Λθ
1 depends on the distribution of the Conway-Maxwell-Binomial

random variable, κ1
−i. The distribution function of a Conway-Maxwell-Binomial
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(n, p, ν) random variable is given by

F (k;n, p, ν) =

k∑̀
=0

p`(1− p)n−`
(
n
`

)ν
S(p, ν)

.

where S(p, ν) =
n∑
k=0

pk(1− p)n−k
(
n
k

)ν
is a normalizing constant. Given that πL1 only

affects pω1,θ, using the chain rule, we have:

∂F (k;n, pω1,θ, νω1,θ)

∂πL1
=
∂F (k;n, pω1,θ, νω1,θ)

∂pω1,θ

∂pω1,θ

∂πL1

where
∂pω1,θ

∂πL1
= P(θj = θL|θ) and

∂F (k;n, p, ν)

∂pω1,θ

=

∑k
`=1

(
n
`

)ν
p`−1(1− p)n−`−1 (`− np)−

[∑n
`=1

(
n
`

)ν
p`−1(1− p)n−`−1 (`− np)

]
F (k;n, p, ν)

S(p, ν)
.

Note that

∂F (k;n, p, ν)

∂pω1,θ

≤ (k − np)
∑k

`=1

(
n
`

)ν
p`−1(1− p)n−`−1

S(p, ν)
+ np

∑n
`=1

(
n
`

)ν
p`−1(1− p)n−`−1

S(p, ν)

≤ (k − np) + np = k.

Then,
∂Λθ1
∂πL1

is given by:

∣∣∣∣∣∂Λθ1
∂πL1

∣∣∣∣∣ = P(θj = θL|θ)

∣∣∣∣∣(1− c)∂F (dN2 e − 1; ·)
∂pω1,θ

∣∣∣∣∣ ≤
∣∣∣∣∣(1− c)dN2 e

∣∣∣∣∣
where the inequality holds since P(θj = θL|θ) ∈ [0, 1]. Moreover, Λθ

1 ≥ min{1, c}.
Then, (B.5) holds for all πL1 ∈ [0, 1] (or pω1,θ) if

c ≥ (1− c)dN
2
e if c < 1⇔ c

(
1 +

⌈
N

2

⌉)
≥
⌈
N

2

⌉
1 ≥ (c− 1)dN

2
e if c > 1 ⇔

(
1 +

⌈
N

2

⌉)
≥ c

⌈
N

2

⌉
.
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Analogously, I can show that VM(EH , θ) increases in πH1 under the same sufficient

conditions and that VM(En, θ) increases in πn2 .

Proposition B.1 Assume that payoffs satisfy (3.3). The high type observes E and

1. If ν ≤ 1, the low type observes no information if beliefs are strictly congruent

and partial information if beliefs are strictly non-congruent.

2. If ν > 1, the low type observes partial information if beliefs are strictly congru-

ent and θL < θ̃ and no information otherwise.

Proof. Proposition B.1. When beliefs are congruent, πL1 = 1 and πL2 such that

VM(EL, θL) = VM(EL, θH). First, the value that the low type attaches to experiment

EL is given by:

VM(EL, θL) = (1− θL)πL2 ΛθL
2

where κ1
−i|(ω2, θL) is distributed according to a CMB distribution with parameters

N − 1, pω2,θL = ηL(1− πL2 ) and ν. Second, the value that the high type attaches to

experiment EL is given by:

VM(EL, θH) = (1− θH)πL2 ΛθH
2

where κ1
−i|(ω2, θH) is distributed according to a CMB distribution with parameters

N−1, pω2,θH = (1−ηH)(1−πL2 ) and ν. Denote by F (k;N−1, pω,θi , ν) the distribution

function of a CMB distribution with these parameters. Given that the distribution

of κ1
−i|(ω2, θL) and κ1

−i|(ω2, θH) share two of those parameters, I simplify the notation

to F (k; pω,θi).

It is trivial the incentive compatibility constraint of the high type binds if πL2 = 0.

Assume now that πL2 ∈ (0, 1] and consider first the case in which data-buyers’ private

information is positively correlated or ν < 1. In this case, ηL > 1− ηH which implies

that pω2,θL > pω2,θH and

VM(EL, θL) < (1− θH)πL2

[
c+ (1− c)F

(
N − dN

2
e − 1; (1− ηH)(1− πL2 )

)]
= V (E1, θH)

where the inequality holds since θH < θL, ηL > 1 − ηH and c < 1. Then,

VM(EL, θL) < VM(EL, θH) which implies that the incentive-compatibility constraint
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of the high type is violated. Thus, it is not possible for the seller to offer information

to the low type. Analogously, we reach the same conclusion for ν = 1.

In contrast, if data-buyer types are negatively correlated (ν > 1) or ηL < 1− ηH , we

have that (1− θL) < (1− θH) but

c+ (1− c)F
(
N − dN

2
e − 1; ηL(1− πL2 )

)
> c+ (1− c)F

(
N − dN

2
e − 1; (1− ηH)(1− πL2 )

)
.

Define

∆VM(πL2 ) :=
VM(EL, θL)− VM(EL, θH)

π1
2

.

Note that ∆VM(1) < 0 by the definition of high type and

lim
πL2→0

∆VM(πL2 ) ≥ 0 iff θL ≤ 1−
(1− θH)

(
c+ (1− c)F

(
N − dN2 e − 1; (1− ηH)

))
c+ (1− c)F

(
N − dN2 e − 1; ηL

) . (B.6)

Then, the Intermediate value theorem implies that there exists at least one πL2 ∈
(0, 1) such that VM(EL, θL) = VM(EL, θH). Thus, the seller is able to offer partial

information to the low type if and only if (B.6) holds.

Consider now the case in which beliefs are non-congruent. In this case, πL2 = 1

and πL1 is such that VM(EL, θL) = VM(EL, θH). First, the value that the low type

attaches to experiment EL is given by:

VM(EL, θL) = θLπ
L
1 ΛθL

1

where κ1
−i|(ω1, θL) is distributed according to a CMB distribution with parameters

N − 1, pω1,θL = ηLπ
L
1 + (1 − ηL) and ν. Second, the high type attaches a value to

experiment EL given by

VM(EL, θH) = max{0, (1− θH)ΛθH
2 − θH(1− πL1 )ΛθH

1 }

where κ1
−i|(ω1, θH) is distributed according to a CMB distribution with parame-

ters N − 1, pω1,θL = ηH + (1 − ηH)πL1 and ν and κ1
−i|(ω2, θH) is distributed ac-

cording to a CMB distribution with parameters N − 1, pω2,θH = 0 and ν.2 Note

2Then, P(κ1
−i ≤ k|ω2) = 1 for all k ≥ 0.
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that VM(EL, θH) is a continuous and increasing function of πL1 , VM(EL, θH) < 0

if πL1 = 0 and VM(EL, θH) > 0. Then, the intermediate value theorem implies

that there exists π̂L1 ∈ (0, 1) such that VM(EL, θH) ≥ 0 for all πL1 ≥ π̂L1 . Define

∆VM(πL1 ) = VM(EL, θL) − VM(EL, θH). Note that ∆VM(πL1 ) is also a continuous

function of πL1 , ∆VM(π̂L1 ) ≥ 0 and ∆VM(1) = (θL − (1 − θH)) < 0 by the defini-

tion of high type. Thus, the intermediate value theorem implies that there exists

πL1 ∈ (π̂L1 , 1) such that ∆VM(πL1 ) = 0.

Proposition B.2 Assume that payoffs satisfy (3.4). The high type observes E and

1. If ν ≥ 1, the low type observes no information if beliefs are strictly congruent

and partial information if beliefs are strictly non-congruent.

2. If ν < 1, the low type observes partial information if beliefs are strictly congru-

ent and θL ≤ θ̃ and no information otherwise.

Proof. Proposition B.2. The proof is analogous to the proof of Proposition B.1.

Proof. Proposition III.4 This proof is contained in Proposition B.1 and Proposi-

tion B.2.

Proof. Proposition III.5 This proof is contained in Proposition B.1 and Proposi-

tion B.2.
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APPENDIX C

Appendix for Chapter IV

C.1 Proofs

Proof. Lemma IV.1. Consider first the case in which α ∈
[
0, 1

4

]
. The distribution

over posterior value estimates induced by the distribution over buyer types and the

distribution over posterior quality estimates is given by

G1(s) =



0 ifs < a− α
1
2
s+α−a2

1−a2 if s [a− α, a+ α)

s−a2

1−a2 if s [a+ α, 1− α)

1
2

+ 1
2
s−α−a2

1−a2 if s [1− α, 1 + α)

1 if s ≥ 1 + α

Next, I show that the seller’s optimal price p∗(α, a) ∈ {a − α, a + α, 1
2
}. Define by

Π1(s) the seller’s expected profits of setting a price of s given the distribution over

posterior value estimates characterized by G1, Π1(s) := s(1 − G1(s−)). First, note

that Π1(a−α) ≥ Π1(s) for all s < a−α, Π1(a+α) ≥ Π1(s) for all s ∈ [a−α, a+α)

and Π1(a + α) ≥ Π1(s) for all s ≥ 1 − α. Second, for all s ∈ [a+ α, 1− α),

max{Π1

(
1
2

)
,Π1(a + α)} ≥ Π1(s). Hence, all prices except a − α, a + α and 1

2
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are dominated for the seller and

p∗(α, a) =


a− α if and only if Π1(a− α) ≥ max{Π1(a+ α),Π1

(
1
2

)
}

a+ α if and only if Π1(a+ α) > max{Π1(a− α) and Π1(a+ α) ≥ Π1

(
1
2

)
1
2

if and only if Π1

(
1
2

)
> max{Π1(a− α),Π1(a+ α)}

Analogously, it is possible to show that p∗(α, a) ∈ {a + α, 1
2
, 1+α

2
} when α ∈

(
1
2
, 1

2

)
and a ∈ [0, 1− 2α) and p∗(α, a) ∈ {a+ α, 1+α

2
} when α ∈

(
1
2
, 1

2

)
and a ∈ [1− 2α, 1

2
].

Proof. Proposition IV.1. From the designer’s perspective, the buyer’s expected

payoff is depends on the distribution of types and the distribution of posterior value

estimates characterized by a ∈
[
0, 1

2

]
and it is given by

U(α, a) =
1

2

∫ 1

p∗(α,a)+α

(s− α− p∗(α, a))dG1(s) +
1

2

∫ 1

p∗(α,a)−α
(s+ α− p∗(α, a))dG1(s).

where G1(s) = 1[a,1](s)
s−a2

1−a2 + 1[1,∞)(s). Note that U(α, a) is a decreasing function of

the price p∗(α, a) and that p∗(α, a) is weakly increasing in a. Moreover, the effect of

a on U(α, a) is driven by the effect on the price p∗(α, a), implying that it is optimal

for consumers to choose a which induces the seller to choose the smallest price.

Consider the lowest price the seller is willing to set, p∗(a|α) := min{p : p ∈
P ∗(α, a) for a fixed α} given the information structure characterized by a and the

distribution of types characterized by α. Define a(α, p) as the minimum a ∈
[
0, 1

2

]
such that it is optimal for the seller to set a price of p given α. The optimal a∗(α) is

given by a(α, p) such that p = p(a|α).

Proof. Proposition IV.2. The proof of this result is analogous to the proof of

Proposition IV.1.
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