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ABSTRACT

The Hilbert geometry of properly convex domains is a generalization of real hy-

perbolic geometry using the real projective space. In this dissertation, we study

the Hilbert geometry of properly convex domains by developing analogies with vari-

ous notions of non-positive curvature in geometry and geometric group theory. We

use the resulting geometric tools to study convex co-compact groups, which are a

generalization of convex co-compact Kleinian groups.

In the first part, we introduce a notion of rank one properly convex domains

and prove that rank one groups are either acylindrically hyperbolic or contain a

finite index cyclic subgroup. This is analogous to rank one non-positively curved

Riemannian manifolds. In the second part, we develop the notion of “properly convex

domains with strongly isolated simplices” which is a ‘finer’ notion than rank one. We

prove that this notion completely characterizes convex co-compact groups that are

relatively hyperbolic with respect to Abelian subgroups of rank at least two. This

answers a question of Danciger-Guéritaud-Kassel and provides a plausible direction

for generalizing Anosov representations beyond Gromov hyperbolic groups. We also

establish an analogue of the Flat Torus Theorem from CAT(0) geometry for studying

Abelian subgroups of convex co-compact groups.

vii



CHAPTER I

Introduction

The Beltrami-Klein model of the real hyperbolic space H2 is an open disk in an

affine chart in P(R3) where the distance between points is determined by projective

cross-ratios. This is a motivating example in convex projective geometry. Convex

projective geometry is a generalization of real hyperbolic geometry where we replace

the open disk with properly convex domains in the real projective space P(Rd).

A properly convex domain Ω is an open subset of P(Rd) that can be realized as a

Euclidean bounded convex domain in some affine chart. The projective cross-ratio

distance function on the Beltrami-Klein model also generalizes to such domains - it

is called the Hilbert metric on Ω and denoted by dΩ. The symmetries of a properly

convex domain Ω consist of all projective linear transformations that preserve Ω.

This is the automorphism group Aut(Ω) of the domain and it acts properly and

isometrically on (Ω, dΩ). Then, convex projective geometry can be defined as the

study of manifolds (more generally, orbifolds) diffeomorphic to Ω/Λ where Ω is a

properly convex domain and Λ ≤ Aut(Ω) is a discrete subgroup of Aut(Ω). In this

sense, it generalizes real hyperbolic geometry.

A different much-studied generalization of real hyperbolic geometry is the geom-

etry of Riemannian manifolds of variable negative curvature, and more generally,
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non-positive curvature. This dissertation begins with the following question:

Question 1. Is there a similarity between the geometry of properly convex domains

(induced by the Hilbert metric) and the Riemannian geometry of non-positively curved

manifolds?

An old theorem of Kelly-Strauss [KS58] says that a naive answer to this question

is “no”, since the geometry induced by the Hilbert metric lacks global non-positive

curvature. In particular they prove that: (Ω, dΩ) is a CAT(0) space (a much-studied

generalization of non-positively curved Riemannian manifolds in metric geometry) if

and only if (Ω, dΩ) is isometric to the real hyperbolic space Hd−1 (in which case Ω is

an open ball in an affine chart in P(Rd)).

The goal of this thesis is to overcome this obstacle and develop analogies be-

tween the geometry of properly convex domains and geometry of CAT(0) spaces.

Our approach will be to develop tools motivated by geometric group theory to study

properly convex domains. Informed by the analogy with CAT(0) geometry, we will

then use these tools to develop a good understanding of properly convex domains and

groups that act on such domains. This work draws inspiration from earlier results of

Y. Benoist on strictly convex domains (i.e. properly convex domains Ω whose topo-

logical boundary ∂Ω does not contain non-trivial projective line segments). Benoist

showed that if Ω is a strictly convex domain and Λ ≤ Aut(Ω) is a torsion-free discrete

subgroup that acts co-compactly on Ω, then the compact manifold Ω/Λ has some

properties reminiscent of compact manifolds of negative curvature.

Theorem I.1 ([Ben04]). Suppose Ω ⊂ P(Rd) is a properly convex domain that is

strictly convex and Λ ≤ Aut(Ω) acts co-compactly on Ω. Then:

(1) Λ is a Gromov hyperbolic group,
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(2) the projective geodesic flow is Anosov,

(3) ∂Ω is a C1-submanifold.

This analogy between strictly convex domains and Riemannian negative curvature

has been generalized further to finite volume and geometrically finite actions by

several authors, see for instance [CLT15, CM14]. But until recently, not much was

known about the geometry of more general properly convex domains (i.e. properly

convex domains Ω that contain non-trivial projective line segments in ∂Ω). The

results of this dissertation aim to fill this gap by studying general properly convex

domains from the perspective of CAT(0) geometry using geometric group theory.

1.0.1 Rank One Hilbert Geometries

Hyperbolicity of the geodesic flow has played a key role in the study of the ge-

ometry and dynamics of non-positively curved Riemannian manifolds. Although

properly convex domains have a projective geodesic flow, they are not even C1 for a

generic properly convex domain. Thus the dynamical notion of hyperbolicity is not

as useful in convex projective geometry. Hence, our starting point is to identify a

notion of weak hyperbolicity that is well-suited in this setting.

In Riemannian non-positive curvature, the rank rigidity theorem establishes a

remarkable dichotomy between the presence of weak hyperbolicity and a complete

lack thereof. We need some terminology to state the rank rank rigidity theorem. A

compact manifold M is said to have rank one if its unit tangent bundle has a vector

v such that the space of parallel Jacobi fields along the geodesic γv determined by v

is one dimensional. The Riemannian rank rigidity theorem then says:

Theorem I.2 ([Bal85, BS87]). Suppose M is a compact non-positively curved Rie-

mannian manifold. Then,
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(1) either M has rank one,

(2) or M splits as a Riemannian product,

(3) or the universal cover M̃ of M is a higher rank symmetric space.

In the case of irreducible Riemanninan manifolds, the non-hyperbolicity then cor-

responds to the higher rank Riemannian symmetric spaces. Their analogues in con-

vex projective geometry are higher rank symmetric convex domains [Ben08, Zim20].

Taking a cue from Riemannian non-positive curvature, one can then ask the following

natural questions.

Question 2. Is there a notion of rank one properly convex domains? Does a rank

rigidity theorem hold for properly convex domains?

Figure 1.1: Illustration of a contracting element (see Definition III.20)

We answer the first question by characterizing a notion of weak hyperbolicity (the

so called, rank one phenomena) in properly convex domains using ideas from geomet-

ric theory. The required notion from geometric group theory is that of contracting

elements that we now informally state (see III.20 for a more precise definition). Sup-

pose a group G acts properly and isometrically on a proper metric space (X, d) and

PSX is a path system on X that G preserves. Informally, an element g ∈ G is

called (X,PSX)-contracting if for some (hence any) 〈g〉-orbit Ap := 〈g〉 · p in X, the
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following holds: for any two points x, y ∈ X, either the path in PSX joining them

travels close to the 〈g〉-orbit for a long time, or the closest-point projection πAp of

x and y on the 〈g〉-orbit is within a uniformly bounded distance (see Figure 1.1).

Prominent examples of contracting elements are pseudo-Anosov homeomorphisms in

most mapping class groups, rank one isometries in rank one CAT(0) groups, etc.

We introduce the notion of rank one automorphisms of a properly convex domain

and prove that they are precisely the contracting elements. Before stating this theo-

rem, we will briefly discuss the notion of rank one automorphisms. An automorphism

g ∈ Aut(Ω) of a properly convex domain is called a rank one automorphism if g has

positive translation length in Ω, has an axis in Ω, and none of its axes are contained

in a half triangle in Ω (see Definition IV.12). This definition is motivated by a prop-

erty in CAT(0) geometry - the axis of CAT(0) rank one isometry is not contained in

a half flat, i.e. an isometrically embedded copy of R×[0,∞). Although the definition

of rank one automorphisms do not require any compactness assumption, the rank

one automorphisms admit a simpler characterization when the action is co-compact.

If a discrete group Λ ≤ Aut(Ω) acts co-compactly on Ω, then g ∈ Λ is a rank one

automorphism if and only if g is biproximal (as a matrix in PGLd(R)) and g has an

axis in Ω (see Lemma IV.16).

We now state the theorem connecting rank one automorphisms and contracting

elements.

Theorem I.3 ([Isl19, Theorem 1.4], Chapter V). Suppose Ω ⊂ P(Rd) is a properly

convex domain and PSΩ := {[x, y] : x, y ∈ Ω}. An element g ∈ Aut(Ω) is contracting

for (Ω,PSΩ) if and only if g is a rank one automorphism.

Remark I.4. An element g ∈ Aut(Ω) is contracting for (Ω,PSΩ) if and only if it

is contracting in the sense of BF, as PSΩ is a geodesic path system (cf. III.24 and
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III.26).

We say that a discrete group Λ is a rank one group provided Λ preserves a prop-

erly convex domain Ω and some element of Λ is a rank one automorphism in Aut(Ω).

Using the above correspondence between contracting elements and rank one automor-

phisms, we prove in Chapter V that rank one groups are examples of acylindrically

hyperbolic groups. Acylindrically hyperbolic groups embody a notion of generalized

“non-positive curvature” in geometric group theory and includes many important

classes of groups like mapping class groups of non-exceptional surfaces, the outer

automorphism groups of free group on at least two generators, rank-one CAT(0)

groups, etc. Before stating our theorem, we recall that a group is called “virtually

cyclic” if it contains a finite index cyclic subgroup.

Theorem I.5 ([Isl19, Theorem 1.5], Chapter V). Suppose Λ is a rank one group.

Then either Λ is virtually cyclic or Λ is an acylindrically hyperbolic group.

This is analogous to a theorem characterizing rank one CAT(0) groups [Sis18].

This theorem allows us to use the rich theory of acylindrically hyperbolic groups to

derive several results about rank one groups. But before discussing those applica-

tions, we mention some recent results which complement our above discussion. While

our results on rank one properly convex domains work without any compactness as-

sumption on the action, the complementary results that we are going to discuss now

will require the action to be co-compact. To state the precise result, we will need to

make some definitions. A properly convex domain is irreducible if it does not split

as a non-trivial direct sum of two properly convex domains (cf. II.9). A prototypical

k-dimensional projective simplex in P(Rd) is

Sk := P ({[x1 : x2 : . . . : xk+1 : 0 : . . . : 0] : x1 > 0, . . . , xk+1 > 0}) .
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Definition I.6. Suppose Ω ⊂ P(Rd) is a properly convex domain. We will say that

S ⊂ Ω is a properly embedded k-dimesional simplex if S = gSk for some g ∈ PGLd(R)

and S ↪→ Ω is a proper map.

Now we state the complementary results proven by A. Zimmer in [Zim20]. Zimmer

introduces a notion of “higher rank” properly convex domains: a properly convex

domain Ω has higher rank if for any two points x, y ∈ Ω, there exists a properly

embedded simplex S such that [x, y] ⊂ S. Zimmer proves that, under some as-

sumptions, his notion of higher rank is ‘special’ and exactly complementary to our

definition of rank one.

Theorem I.7 ([Zim20]). Suppose Ω is an irreducible properly convex domain and

Λ ≤ Aut(Ω) is a discrete group that acts co-compactly on Ω. Then:

(1) either Λ is a rank one group

(2) or Ω is a higher rank symmetric domain.

The higher rank symmetric domains are classified, see [Ben08, Zim20]. They

are projective analogues of the higher rank Riemannian symmetric spaces. Thus

Theorem I.7 is the convex projective analogue of the rank rigidity theorem (in the

co-compact case) for Riemannian non-positive curvature. This also shows that our

proposed definition of rank one does indeed capture a good notion of hyperbolicity

for properly convex domains. We also remark that recently Blayac has studied a

notion of rank one that is closely related to ours [Bla20]. He studies the projective

geodesic flow on rank one domains and proves hyperbolicity results reminiscent of

rank one manifolds of non-positive curvature.

We now end our detour and discuss applications of Theorem I.5 in studying rank

one properly convex domains.
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The first application of Theorem I.5 deals with ‘non-trivial’ quasi-morphisms. If

G is a group, a quasi-morphism of G is a function f : G→ R such that

sup
g,h∈G

|f(gh)− f(g)− f(h)|

is finite. The ‘trivial’ quasi-morphisms are bounded functions and group homomor-

phisms (of G into R). We say that two quasi-morphisms of G are equivalent if they

differ by a ‘trivial’ quasi-morphism. The equivalence classes of quasi-morphisms

constitute the space of ‘non-trivial’ quasi-morphisms Q̃H(G) of G. This classical ob-

ject (or its dimension as a R-vector space to be precise) has connections with weak

hyperbolicity and has played an important role in various rigidity theorems.

Theorem I.8 ([Isl19, Theorem 1.6], Section 5.5.1). Suppose Λ is a torsion-free rank

one group that is not virtually cyclic. Then dim(Q̃H(Λ)) =∞.

The vector space Q̃H(Λ) can also be interpreted as the kernel of the comparison

map between the second bounded cohomology and the second (ordinary) cohomology

groups of Λ, modulo the subspace generated by bounded functions and homomor-

phisms. By virtue of this interpretation, there are more general analogues of Q̃H(Λ)

arising from cohomology with more general coefficients. See Section 5.5.1 for more

general versions of this theorem in that setting.

In the co-compact case, the higher rank rigidity theorem I.7 and Theorem I.8

provide a rigidity result. This is analogous to a rigidity theorem of Bestvina-Fujiwara

for Riemannian non-positive curvature [BF09].

Corollary I.9 ([Isl19, Corollary 1.7], Section 5.5.1). Suppose Ω is an irreducible

properly convex domain and Λ ≤ Aut(Ω) is a discrete torsion-free group that acts

co-compactly on Ω. Then Λ is a rank one group if and only if dim Q̃H(Λ) = ∞.
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Otherwise, dim Q̃H(Λ) = 0 (and Λ is isomorphic to a uniform lattice in a Lie group

G where G is locally isomorphic to a simple Lie group of real rank at least two).

The second application of Theorem I.5 is in counting of conjugacy classes. Let

τΩ(g) be the translation length of g in Ω (cf. II.32).

Theorem I.10 ([Isl19, Theorem 1.8], Section 5.5.2). Suppose Ω is a properly convex

domain, Λ ≤ Aut(Ω) is a rank one group that is not virtually cyclic, and Λ acts

co-compactly on Ω. Let C(t) := {[[g]] ∈ Λ : τΩ([[g]]) ≤ t} where [[g]] denotes the

conjugacy class of g in Λ. Then there exist D′ ≥ 1 such that for all t ≥ 1,

1

D′
exp (tωΛ)

t
≤ C(t) ≤ D′

exp (tωΛ)

t

where

ωΛ := lim sup
n→∞

1

n
log (#{g ∈ Λ : dΩ(x, gx) ≤ n}) .

The third application of Theorem I.5 is to random walks. Let Λ be a finitely

generated rank one group that is not virtually cyclic. Consider a simple random walk

on Λ, i.e. a random walk generated by a measure supported on a finite symmetric

generating set of Λ (see Definition V.17). Then the probability that such a random

walk does not encounter a rank one automorphism after n steps decays exponentially

fast as n goes to infinity.

Theorem I.11 ([Isl19, Proposition 1.9], Section 5.5.3). Suppose Λ is a finitely gen-

erated rank one group that is not virtually cyclic. If {Xn} is a simple random walk

on Λ, then there exists a constant C ≥ 1 such that for all n ≥ 1,

P [Xn is not a rank one automorphism ] ≤ Ce−Cn.
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1.0.2 Convex Co-compact Groups and Relative Hyperbolicity

In the first part of the thesis, our goal was a broad classification of properly

convex domains into rank one and higher rank domains in the spirit of Riemannian

non-positive curvature. Here we did not have any other assumptions on the action

like compactness. The second part of the thesis aims for a finer classification and a

more detailed analysis of the structure of properly convex domains. The trade-off

is that we will work with a more restricted class of properly convex domains, i.e.

domains that are associated to the so-called convex co-compact groups. The notion

of convex co-compact subgroups of PGLd(R) generalize convex co-compact Kleinian

groups from the rank one Lie group SO(d, 1) (d ≥ 2) to higher rank Lie groups like

PGLd(R) for d ≥ 3. We now define convex co-compact groups.

Definition I.12 ([DGK17]). A discrete subgroup Λ ≤ PGLd(R) is called convex

co-compact if:

(1) there exists a properly convex domain Ω ⊂ P(Rd) such that Λ ≤ Aut(Ω), and

(2) the set CΩ(Λ) ⊂ Ω is non-empty and Λ acts co-compactly on CΩ(Λ), where CΩ(Λ)

is the convex hull in Ω of the full orbital limit set Lorb
Ω (Λ) :=

⋃
x∈Ω

(
Λx \ Λx

)
.

Since the Ω in the definition of convex co-compact groups is not canonical, we will

remove this ambiguity by explicitly mentioning the properly convex domain wherever

necessary, i.e. we will say that “Λ ≤ Aut(Ω) is a convex co-compact group” instead

of “Λ is a convex co-compact group”.

A recent result of Danciger-Guéritaud-Kassel, independently Zimmer, establishes

a connection between the Hilbert geometry of the properly convex domain (CΩ(Λ), dΩ)

and Anosov representations. More precisely, they prove the following.
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Theorem I.13 ([DGK17, Zim17]). Suppose Ω is a properly convex domain and

Λ ≤ Aut(Ω) is a convex co-compact group. Then the following are equivalent:

(1) (CΩ(Λ), dΩ) is a Gromov hyperbolic space,

(2) Λ is a Gromov hyperbolic group, and

(3) the inclusion Λ ↪→ PGLd(R) is a projective Anosov representation.

Anosov representations are a class of representations of Gromov hyperbolic groups

into real semi-simple Lie groups that generalizes classical Teichmüller theory, i.e. the

study of discrete faithful representations of hyperbolic surface groups into PSL2(R).

They are discrete faithful representations that have good dynamical and geomet-

ric properties. Introduced by Labourie [Lab06] and studied subsequently by many

authors, this area has received much attention lately, see for instance [GGKW17,

KLP17, BIW14, Poz19].

The above Theorem I.13 can be interpreted as a way associating convex projective

structures to projective Anosov representations. This opens up a more geometric way

of thinking about Anosov representations. In their paper, Danciger-Guéritaud-Kassel

asked the following natural question [DGK17, Appendix A, Question A.2].

Question 3. What geometric conditions on CΩ(Λ) will correspond to Λ relatively

hyperbolic with respect to virtually Abelian subgroups of rank at least two?

By virtue of Theorem I.13, this question can be interpreted as seeking a gener-

alization of projective Anosov representations to relatively hyperbolic groups. Note

that the current definition of Anosov representations work only for Gromov hyper-

bolic groups and generalizing it beyond Gromov hyperbolicity is an area of active

research, see for instance [Kas18, Gui19]. The notion of relative Anosov represen-

tations due to [KL18] and [Zhu19] provide an approach. But we note that those
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approaches do not provide an answer to the above question. Indeed, the peripheral

subgroups in the work of [KL18, Zhu19] consist of unipotent elements while it is easy

to verify that convex co-compact subgroups cannot contain unipotent elements other

than the identity.

There are many interesting examples of convex co-compact groups coming from

Coxeter groups and 3-manifold theory that satisfy the conditions in Question 3, see

for instance Figure 1.2 or the papers [Ben06, BDL18, DGK17].

Figure 1.2: Examples of three-dimensional properly convex domains Ω that admit co-compact ac-
tion by Λ where the groups Λ are relatively hyperbolic with respect to subgroups vir-
tually isomorphic to Z2 [RSS+19]

We answer Question 3 in joint work with A. Zimmer in [IZ19] by introducing

the notion of properly convex domains with strongly isolated simplices. We will

now introduce the definition here. We will say that a properly embedded simplex

is maximal if it is not properly contained in any other properly embedded simplex.

Note that this notion of maximality does not mean that we are looking only at

simplices of the maximal possible dimension.

Definition I.14 ([IZ19, Definition 1.15], Chapter VI). Suppose Λ ≤ Aut(Ω) is a

convex co-compact group and SΛ is the collection of all maximal properly embedded

simplices in C of dimension at least two. We will say that (CΩ(Λ), dΩ) has strongly
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isolated simplices provided: for any r ≥ 0, there exists D(r) ≥ 0 such that if S1, S2 ∈

S are distinct, then

diamΩ (NΩ(S1; r) ∩NΩ(S2; r)) ≤ D(r).

We answer Question 3 by proving a theorem connecting relative hyperbolicity

(with respect to virtually Abelian subgroups of rank at least two) of a convex co-

compact group and properly convex domains with strongly isolated simplices. The

precise statement is as follows.

Theorem I.15 ([IZ19, Theorem 1.7], Chapter VII). Suppose Ω ⊂ P(Rd) is a properly

convex domain, Λ ≤ Aut(Ω) is a convex co-compact group, and SΛ is the family of

all maximal properly embedded simplices in CΩ(Λ) of dimension at least two. Then

the following are equivalent:

(1) (CΩ(Λ), dΩ) has strongly isolated simplices,

(2) (CΩ(Λ), dΩ) is a relatively hyperbolic space with respect to SΛ,

(3) Λ is a relatively hyperbolic group with respect to a collection of virtually Abelian

subgroups of rank at least two.

Theorem I.15 can be viewed as a real projective analogue of a CAT(0) result. In

[HK05], Hruska-Kleiner study CAT(0) spaces with isolated flats and proves an anal-

ogoues result in that setting. In this analogy, maximal properly embedded simplices

correspond to maximal totally geodesic flats in CAT(0) spaces (see [IZ21, Ben04]).

We also establish some finer geometric properties of CΩ(Λ) when Λ ≤ Aut(Ω) is

a convex co-compact group and (CΩ(Λ), dΩ) has strongly isolated simplices. We will

need some terminology to state the theorem precisely. The ideal boundary of CΩ(Λ)

is defined as ∂i CΩ(Λ) := CΩ(Λ)∩∂Ω, i.e. it is the part of the boundary of CΩ(Λ) that
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is at “infinity” in (CΩ(Λ), dΩ). If C ⊂ Ω is a convex subset and x ∈ C, then

FC(x) = {x} ∪ {y ∈ C : ∃ an open line segment in C containing both x and y}.

Theorem I.16 ([IZ19, Theorem 1.8], Chapter VI). Suppose Λ ≤ Aut(Ω) is a convex

co-compact group and (CΩ(Λ), dΩ) has strongly isolated simplices. Then

(1) Λ has finitely many orbits in SΛ.

(2) If S ∈ SΛ, then StabΛ(S) acts co-compactly on S and contains a finite index

subgroup isomorphic to Zk where k = dimS.

(3) If A ≤ Λ is an infinite Abelian subgroup of rank at least two, then there exists

a unique S ∈ SΛ with A ≤ StabΛ(S).

(4) If S ∈ SΛ and x ∈ ∂S, then FΩ(x) = FCΩ(Λ)(x) = FS(x).

(5) If S1, S2 ∈ SΛ are distinct, then #(S1 ∩ S2) ≤ 1 and ∂S1 ∩ ∂S2 = ∅.

(6) If ` ⊂ ∂i CΩ(Λ) is a non-trivial line segment, then there exists S ∈ SΛ with

` ⊂ ∂S.

(7) If x, y, z ∈ ∂i CΩ(Λ) form a half triangle in CΩ(Λ) (i.e. [x, y] ∪ [y, z] ⊂ ∂i CΩ(Λ)

and (x, z) ⊂ CΩ(Λ)), then there exists S ∈ SΛ such that x, y, z ∈ ∂S.

(8) If x ∈ ∂i CΩ(Λ) is not a C1-smooth point of ∂Ω (i.e. Ω does not have a unique

supporting hyperplane at x), then there exists S ∈ SΛ with x ∈ ∂S.

At this point, it is natural to ask how the notion of strongly isolated simplices

connects with the notion of rank one introduced in the first part of the dissertation.

To answer this, we need to adapt the notion of rank one to the convex co-compact

setting (because the dynamics of a convex co-compact group can only “see” the limit

set Lorb
Ω (Λ) instead of the entire boundary ∂Ω). We can show that if (CΩ(Λ), dΩ)

has strongly isolated simplices, then Λ is a convex co-compact rank one group (see
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Section 6.3). Thus “strongly isolated simplices” identifies a very special class of rank

one properly convex domains, in the case of convex co-compact actions.

It is worthwhile to note at this point that, to the best of our knowledge, all

known examples of “indecomposable” convex co-compact groups correspond to prop-

erly convex domains (CΩ(Λ), dΩ) with strongly isolated simplices. We are using the

word “indecomposable” here as an informal term that excludes many of the obvi-

ous counterexamples. For example, one could consider the convex co-compact group

π1(Σg) × Z where Σg is a closed hyperbolic surface. This is clearly not a relatively

hyperbolic group with respect to the Z2-subgroups. But one can rule out these ex-

amples by requiring that Ω is irreducible. For a more sophisticated example, one

could take a free product of two uniform lattices in PGLd(R) where d ≥ 3. By a

result of [DGK17], it is a convex co-compact group but it is not relatively hyperbolic

with respect to virtually Abelian subgroups (see [Wei20, Section 2.6.3]). But such

examples can also be ruled out by requiring that the convex co-compact group Λ is

freely indecomposable. It is not clear to us whether these two conditions are enough

to provide a good definition of “indecomposable convex co-compact groups”.

1.0.3 Convex Projective Flat Torus Theorem

In joint work with A. Zimmer, we prove a key technical result concerning the

Abelian subgroups of a convex co-compact group [IZ21]. It is a convex projective

analog of the well-known Flat Torus theorem in CAT(0) geometry [BH99].

Theorem I.17 ([IZ21, Theorem 1.6], Chapter VIII). Suppose that Λ ≤ Aut(Ω) is a

convex co-compact group. If A ≤ Λ is a maximal Abelian subgroup of Λ, then there

exists a properly embedded simplex S ⊂ CΩ(Λ) such that

(1) S is A-invariant,
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(2) A acts co-compactly on S, and

(3) A fixes each vertex of S.

Moreover, A has a finite index subgroup isomorphic to Zdim(S).

A key step in the proof of Theorem I.17 is studying the centralizer CΛ(A) of an

Abelian subgroup A of a convex co-compact group Λ. Recall that

CΛ(A) :=
⋂
a∈A

{g ∈ Λ : ga = ag}.

We will denote the minimal translation set of g ∈ Λ by

MinΩ(g) := {x ∈ Ω : dΩ(x, gx) = τΩ(g) = inf
y∈Ω

dΩ(y, gy)}.

Theorem I.18 ([IZ21, Theorem 1.10], Chapter VIII). Suppose Λ ≤ Aut(Ω) is a

convex co-compact group and A ≤ Λ is an Abelian subgroup. Then

MinCΩ(Λ)(A) := CΩ(Λ)∩
⋂
a∈A

Min(a)

is non-empty and CΛ(A) acts co-compactly on ConvHullΩ
(
MinCΩ(Λ)(A)

)
.
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CHAPTER II

Preliminaries

2.1 Properly Convex Domains and Hilbert Geometry

2.1.1 Basics of Projective Geometry

Suppose V is a vector space over R. Consider the equivalence relation ∼ on V

defined by: v ∼ w if and only if there exists r ∈ R \ {0} such that v = r · w. Then

the real projective space of V is defined as

P(V ) := (V \ {0}) / ∼ .

Since we can always identify V with Rdim(V ) by choosing a basis of V , we will mostly

work with P
(
Rdim(V )

)
. If v ∈ V \ {0}, we will denote by [v] or π(v) its image in

P(V ). Conversely, if u ∈ P(V ), ũ will denote a lift of u in V .

If W ⊂ V is a non-zero linear subspace, we will call P(W ) the projective subspace

W . Let Span(X) denote the linear span of a non-empty subset X of V . Taking

linear span is well-defined operation in P(V ): if Y ⊂ P(V ) is non-empty, let

Span(Y ) := Span ({ỹ ∈ V : [ỹ] ∈ Y }) .

An affine chart in P(Rd) is an open subset of P(Rd) obtained by removing a

projective linear subspace of co-dimension one. For instance, if we remove P(Hd) :=

P({(x1, . . . , xd) ∈ Rd : xd = 0}) from P(Rd), then we obtain an affine chart A :=
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P(Rd) \P(Hd). The affine chart A is diffeomorphic to Rd−1 and the diffeomorphism

is given by (x1, . . . , xd) 7→ (x1

xd
, . . . , xd−1

xd
). If s1, . . . , sd−1 ∈ R, then [s1 : . . . : sd−1 : 1]

are the homogeneous coordinates on A.

The group of projective linear transformations is defined as

PGLd(R) := GLd(R)/ ∼G

where ∼G is an equivalence relation on GLd(R) given by: A ∼G B if and only if

A = cB for some c ∈ R \ {0}. If A ∈ GLd(R), [A] denotes its image in PGLd(R).

If B ∈ PGLd(R), B̃ will denote a lift of B in GLd(R). The group PGLd(R) acts

transitively on P(Rd). Let SL±d (R) be the subgroup of GLd(R) consisting of matrices

of determinant ±1. Then the homomorphism SL±d (R) → PGLd(R) taking A to [A]

descends to an isomorphism between SL±d (R)/{± Id} and PGLd(R).

The set of all linear transformations on Rd, denoted by End(Rd), forms a R-vector

space. Hence we can define P(End(Rd)) which is a compact set. We will often think

of the non-compact group PGLd(R) as a subset of this compact set.

Suppose A,B,C,D ∈ P(Rd) lie in a projective subspace P(L) where L is two

dimensional subspace L := Span{A,B,C,D} ⊂ Rd. We can find homogeneous

coordinates such that

P(L) := {[x : 0 : . . . : 0 : 1] : x ∈ R} t {[1 : 0 : . . . : 0 : 0]}

and {A,B,C,D} ∩ {[1 : 0 : . . . : 0 : 0]} = ∅. Then there exist a, b, c, d ∈ R such

that A := [a : 0 : . . . : 0 : 1], B := [b : 0 : . . . : 0 : 1], C := [c : 0 : . . . : 0 : 1]

and D := [d : 0 : . . . : 0 : 1]. Assume that A,B,C,D are ordered in such a way

that a ≤ b ≤ c ≤ d. Then the projective cross-ratio determined by the four points

A,B,C,D is given by:

[A,B,C,D] :=
(c− a)(d− b)
(b− a)(d− c)

.
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The definition of cross-ratio is independent of the choice of homogeneous coordi-

nates [Fau06, Chapter II, 10]. We now recall two classical facts about cross-ratios.

Proposition II.1 ([Fau06, Chapter II, 11]). The projective cross-ratio is invariant

under the action of PGLd(R) on P(Rd).

Proposition II.2 ([Fau06, Chapter II, 11]). Suppose L1, L2, L3, L4 are four lines in

R2 concurrent at p (the lines Li are ordered clockwise around p by their indices). Let

` (resp. `′) be a line in R2 that does not pass through p and intersects L1, L2, L3,

L4 at A,B,C,D (resp. A′, B′, C ′, D′), in this order. Then

[A,B,C,D] = [A′, B′, C ′, D′].

2.1.2 Convex Subsets

A set C ⊂ P(Rd) is convex if it is a convex set in some affine chart A ⊂ P(Rd). Note

that this notion of convexity is independent of the affine chart since the corresponding

affine charts are related by an element of PGLd(R). A convex set set C ⊂ P(Rd) is

properly convex if there exists an affine chart A such that C is a bounded convex

subset of A.

Definition II.3. A properly convex set Ω ⊂ P(Rd) which is also open in P(Rd) is

called a properly convex domain.

A properly convex domain Ω inherits the subspace topology from P(Rd). The

closure (resp. the boundary) of Ω is its closure (resp. boundary) in P(Rd) and is

denoted by Ω (resp. ∂Ω).

Definition II.4. Suppose Ω ⊂ P(Rd) is a properly convex domain and X ⊂ Ω

is non-empty. Then the convex hull of X in Ω, denoted by ConvHullΩ(X), is the

smallest convex subset in Ω that contains X. We define the convex hull of X in Ω
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as:

ConvHullΩ(X) := ConvHullΩ(X) ∩ Ω.

For any two points x, y ∈ P(Rd), ←→xy := P(Span{x, y}) is the projective line

through x and y. Any connected proper subset of ←→xy is a projective line segment.

We observe that given two points x, y ∈ P(Rd), there is no canonical way to associate

a projective line segment to them. However, when a properly convex domain is

present, we can make the following canonical choice.

Convention: If Ω is a properly convex domain and x, y ∈ Ω, then we define [x, y]

to be the unique closed projective line segment in ←→xy ∩ Ω that joins x and y. We

will refer to [x, y] as the projective line segment between x and y.

We also set (x, y) := [x, y] \ {x, y}, [x, y) := [x, y] \ {y} and (x, y] := [x, y] \ {x}.

2.1.3 Hilbert Metric and Hilbert Geometry

Figure 2.1: Definition of the Hilbert metric

Suppose Ω is a properly convex domain. We now introduce the Hilbert metric on Ω

(see Figure 2.1). Let us fix some system of homogeneous coordinates on Ω, i.e. an

affine chart A. If x, y ∈ Ω, then there exist a, b ∈ ∂Ω such that←→xy ∩Ω = [a, b] where

the points are in the order a, x, y, b. The distance between x and y in the Hilbert

metric is defined by

dΩ(x, y) :=
1

2
log[a, x, y, b].
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We now collect some basic facts about the metric space (Ω, dΩ).

Proposition II.5. Suppose Ω ⊂ P(Rd) is a properly convex domain.

(1) Projective line segments in Ω are geodesics in (Ω, dΩ).

(2) The metric balls BΩ(p, r) := {x ∈ Ω : dΩ(p, x) < r} are convex and relatively

compact for all p ∈ Ω and r > 0.

(3) The metric space (Ω, dΩ) is proper, complete, and geodesic.

Although (Ω, dΩ) is a geodesic metric space, the geodesics in Ω are not necessarily

unique. Consider the example of the two dimensional simplex S2 := P(R+e1⊕R+e2⊕

R+e3) in Figure 2.2. It shows that there are uncountably many geodesics between x

and y. The non-uniqueness of geodesics can be traced back to line segments in ∂Ω

(see [dlH93] for details).

Figure 2.2: Non-uniqueness of geodesics in (S2,dS2
): [x, z] ∪ [z, y] and [x, y] are both geodesics

between x and y

Convexity is preserved under taking r-neighbourhoods in the Hilbert metric of

closed convex sets.

Proposition II.6 ([CLT15, Corollary 1.10]). If C ⊂ Ω is a closed convex set and

r > 0 then

NΩ(C; r) := {x ∈ Ω : dΩ(x,C) < r}
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is a convex set. The corresponding closed neighbourhood of C, i.e. NΩ(C; r), is also

convex.

The group of automorphisms of a properly convex domain Ω is

Aut(Ω) := {g ∈ PGLd(R) : gΩ = Ω}.

Proposition II.7. The group Aut(Ω) acts on (Ω, dΩ) properly and by isometries.

Definition II.8. If Ω is a properly convex domain, then the triple (Ω, dΩ,Aut(Ω))

is called a Hilbert geometry.

We will often shorten the notation and say that Ω is a Hilbert geometry. A

primary example of a Hilbert geometry is the projective model of the real hyperbolic

space Hd. Another example is the projective triangle (see Figure 2.2).

A cone in Rd is a set D ⊂ Rd such that: if d1, d2 ∈ Rd and r1, r2 > 0, then

r1d1 + r2d2 ∈ D.

Definition II.9. A properly convex domain Ω ⊂ P(Rd) is reducible if there exist

convex cones C1 ⊂ Rd1 and C2 ⊂ Rd2 with d1, d2 ≥ 1 and d = d1 + d2 such that

Ω = P(C1⊕C2). A properly convex domain that is not reducible is called irreducible.

Projective triangle is a reducible domain while the projective model of Hd is

irreducible.

2.1.4 Topological Preliminaries

Suppose A ⊂ P(Rd) is a non-empty convex set. Then the relative interior of A is,

denoted by rel-int(A), is defined as

rel-int(A) := int(A) ∩ P(Span(A)).
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The A is relatively open (or open in its span) if rel-int(A) = A. Since rel-int(A) is an

open subset of the projective space P(Span(A)), its dimension is well defined. The

dimension of A can then be defined as

dim(A) := dim(rel-int(A)).

Note that rel-int(A) is homeomorphic to Rdim(A).

Recall that the boundary of a properly convex set A ⊂ P(Rd) is ∂A := A\ int(A).

The ideal boundary of A is ∂i A := ∂A \ A while the non-ideal boundary is ∂nA :=

∂A ∩ A. The ideal and non-ideal boundaries decompose ∂A into two disjoint sets.

If A ⊂ B ⊂ P(Rd), then A is said to be properly embedded in B provided the

inclusion map A ↪→ B is proper.

Proposition II.10. Suppose A ⊂ B ⊂ P(Rd). Then A is properly embedded in B if

and only if ∂i A ⊂ ∂i B.

2.1.5 Structure of the Boundary

For this subsection, fix a properly convex domain Ω ⊂ P(Rd). Consider the

equivalence relation ∼Ω on Ω is given by: x ∼Ω y if and only if there exists an open

projective line segment in Ω containing x and y. The equivalence class of x ∈ Ω is

denoted by FΩ(x) [CM14, Section 3.3]. The following results are simple consequences

of convexity, see for instance [IZ21, Isl19].

Proposition II.11.

(1) FΩ(x) is open in its span.

(2) FΩ(x) = Ω whenever x ∈ Ω and FΩ(x) ⊂ ∂Ω whenever x ∈ ∂Ω.

(3) y ∈ FΩ(x) if and only if x ∈ FΩ(y) if and only if FΩ(x) = FΩ(y).
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(4) Suppose x, y ∈ Ω, p ∈ FΩ(x), q ∈ FΩ(y), and z ∈ (x, y). Then

(p, q) ⊂ FΩ(z).

In particular, (p, q) ⊂ Ω if and only if (x, y) ⊂ Ω.

(5) If y ∈ ∂FΩ(x), then FΩ(y) ⊂ ∂FΩ(x),

Proposition II.11 shows that FΩ(x) is a relatively open convex subset of ∂Ω for all

x ∈ ∂Ω. Thus FΩ(x) can be equipped with a Hilbert metric dFΩ(x) for any x ∈ ∂Ω.

We will now state some estimates that relate the Hilbert metric in the interior of Ω

with the Hilbert metric on the faces FΩ(x). These results are elementary and can be

found in many places, for instance [IZ21].

Proposition II.12. Suppose {xn} is a sequence in Ω and xn → x ∈ Ω. If {yn} is

another sequence in Ω, yn → y ∈ Ω, and

lim inf
n→∞

dΩ(xn, yn) < +∞,

then y ∈ FΩ(x) and

dFΩ(x)(x, y) ≤ lim inf
n→∞

dΩ(xn, yn).

Corollary II.13. Suppose A,B ⊂ Ω be non-empty subsets such that A ⊂ NΩ(B; r)

for some r > 0. If a ∈ A, then there exists b ∈ B such that a ∈ FΩ(b) and

dFΩ(b)(a, b) ≤ r.

Proof of Corollary. If a ∈ Ω, then any b ∈ B works since FΩ(b) = Ω. So suppose

a ∈ ∂Ω. Choose a sequence {an} in Ω such that an → a. Then there exists a sequence

{bn} in B such that dΩ(an, bn) < r. Up to passing to a subsequence, we can assume

that bn → b ∈ Ω. Then, by Proposition II.12, a ∈ FΩ(b) and dFΩ(b)(a, b) ≤ r.
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Corollary II.14 ([DGK17, Corollary 3.5]). Suppose Ω ⊂ P(Rd) is a properly convex

domain, y ∈ ∂Ω, and {ym} and {zm} are two sequences in Ω. If ym → y and

dΩ(ym, zm)→ 0, then zm → y.

Proof. Up to passing to a subsequence, we can assume that z := limm→∞ zm exists.

Then Proposition II.12 implies that dFΩ(y)(y, z) = 0. Thus z = y.

Lemma II.15 ([Cra09, Lemma 8.3]). Suppose that σ1, σ2 : [0, T ] → Ω are two unit

speed projective line geodesics, then for 0 ≤ t ≤ T ,

dΩ(σ1(t), σ2(t)) ≤ dΩ(σ1(0), σ2(0)) + dΩ(σ1(T ), σ2(T )).

Let dΩ
Hauss denote the Hausdorff distance on subsets of Ω induced by dΩ, that is:

for subsets A,B ⊂ Ω define

dΩ
Hauss(A,B) = max

{
sup
a∈A

inf
b∈B

dΩ(a, b), sup
b∈B

inf
a∈A

dΩ(a, b)

}
.

Proposition II.16. Assume p1, p2, q1, q2 ∈ Ω, FΩ(p1) = FΩ(p2), and FΩ(q1) =

FΩ(q2). If (p1, q1) ∩ Ω 6= ∅, then (p2, q2) ⊂ Ω and

dHauss
Ω

(
(p1, q1), (p2, q2)

)
≤ max{dFΩ(p1)(p1, p2), dFΩ(q1)(q1, q2)}.

The local Hausdorff topology is a natural topology on the set of all closed subsets of

Ω induced by the Hausdorff distance dΩ
Hauss. For a closed subset C0 ⊂ Ω, r0, ε0 > 0,

and x0 ∈ Ω, define U(C0, r0, ε0, x0) to be the set of all closed subsets C of Ω such

that

dΩ
Hauss(BΩ(x0, r0) ∩ C,BΩ(x0, r0) ∩ C0) < ε0.

The local Hausdorff topology is the topology generated by U(·, ·, ·, ·) on the set of

closed subsets of Ω.
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2.2 Projective Simplices

For 0 ≤ k ≤ d, consider the following subsets of P(Rd):

Sk :=
{

[x1 : · · · : xk+1 : 0 : · · · : 0] ∈ P(Rd) : x1 > 0, . . . , xk + 1 > 0
}
.

Definition II.17. A subset S ⊂ P(Rd) is a k−dimensional simplex if there exists

g ∈ PGLd(R) such that S = gSk. In this case, the k points

g[1 : 0 : · · · : 0], g[0 : 1 : 0 : · · · : 0], . . . , g[0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ ∂S

are the vertices of S.

We now discuss some basic properties of projective simplices. All these properties

are fairly elementary, see for instance [IZ19, Section 5]. Choosing suitable projective

coordinates, we write a (d− 1) dimensional projective simplex as

S =
{

[x1 : · · · : xd] ∈ P(Rd) : x1 > 0, . . . , xd > 0
}
.

The Hilbert metric on S can be explicitly computed as:

dS

(
[x1 : · · · : xd], [y1 : · · · : yd]

)
= max

1≤i,j≤d

1

2

∣∣∣∣log
xiyj
yixj

∣∣∣∣ .
For details, see [Nus88, Proposition 1.7], [dlH93], or [Ver14]. Let G ≤ GLd(R) denote

the group generated by the group of diagonal matrices with positive entries and the

group of permutation matrices. Then

Aut(S) = {[g] ∈ PGLd(R) : g ∈ G}.

Proposition II.18. If S ⊂ P(Rd) is a simplex, then (S,HS) is quasi-isometric to

real Euclidean space of dimension dimS.

We will frequently use the following observation about the faces of properly em-

bedded simplices.
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Observation II.19. Suppose Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω is

a properly embedded simplex. If x ∈ ∂S, then

(1) FS(x) is properly embedded in FΩ(x).

(2) FS(x) = S ∩ FΩ(x).

The following lemma allows us to “wiggle” the vertices of a properly embedded

simplex S and obtain a new properly embedded simplex “parallel” to S.

Proposition II.20 ([IZ19, Lemma 3.18]). Suppose that Ω ⊂ P(Rd) is a properly

convex domain and S ⊂ Ω is a properly embedded simplex with vertices v1, . . . , vp. If

wj ∈ FΩ(vj) for 1 ≤ j ≤ p, then

S ′ := Ω ∩ P(Span{w1, . . . , wp})

is a properly embedded simplex with vertices w1, . . . , wp. Moreover,

dHauss
Ω (S, S ′) ≤ max

1≤j≤p
dFΩ(vj)(vj, wj).

Proof. The first part follows from Proposition II.11 part (4) by an induction argu-

ment. The moreover part follows from a similar induction argument and Proposi-

tion II.16. See [IZ19, Section 3.6] for details.

Proposition II.21. Suppose that Ω ⊂ P(Rd) is a properly convex domain. The set

of all properly embedded simplices in Ω of dimension at least two is a closed set in

the local Hausdorff topology.

2.3 Linear Projection on Simplices

In this section we construct certain linear projection maps associated to a properly

embedded simplex in a properly convex domain. This notion was introduced in [IZ19]

and all results in this section appear in [IZ19].
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Definition II.22. Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω

is a properly embedded simplex with dimS = (q − 1) ≥ 1. A set of co-dimension

one linear subspaces H := {H1, . . . , Hq} is S-supporting when:

(1) Each P(Hj) is a supporting hyperplane of Ω,

(2) If F1, . . . , Fq ⊂ ∂S are the boundary faces of maximal dimension, then (up to

relabelling) Fj ⊂ P(Hj) for all 1 ≤ j ≤ q.

Proposition II.23. Suppose that Ω ⊂ P(Rd) is a properly convex domain, S ⊂ Ω is

a properly embedded simplex, and H is a set of S-supporting hyperplanes. Then

SpanS ⊕ (∩H∈HH) = Rd and Ω ∩ P (∩H∈HH) = ∅.

Proof. Suppose H := {H1, . . . , Hq}, F1, . . . , Fq ⊂ ∂S are the boundary faces of max-

imal dimension, and v1, . . . , vq are the vertices of S labelled so that Fj ⊂ P(Hj) and

vj /∈ Fj. Let v1, . . . , vq ∈ Rd \ {0} be lifts of v1, . . . , vq respectively.

First notice that

Ω ∩ P (∩H∈HH) = ∅

since P(Hj) ∩ Ω = ∅ for every j.

Since S ⊂ P(vj +Hj) and S ∩ P(Hj) = ∅, we must have vj /∈ P(Hj) and hence

vj ⊕Hj = Rd(2.1)

for every j. Further,

v1, . . . , vj−1, vj+1, . . . , vq ∈ Fj ⊂ P(Hj)(2.2)

for each j.

Define W := ∩H∈HH. We claim that

SpanS ⊕W = Rd.
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Since

dimW + dim SpanS ≥ (d− q) + q = d,

it suffices to show that

SpanS ∩W = {0}.

If not, we can find α1, . . . , αq ∈ R such that

0 6=
q∑
j=1

αjvj ∈ W.

By relabelling we can assume that α1 6= 0. Then by Equation (2.2)

v1 ⊂ Span{v2, . . . , vq}+W ⊂ H1

which contradicts Equation (2.1). So

SpanS ⊕W = Rd.

Using Proposition II.23, we define the following linear projection.

Definition II.24. Suppose Ω ⊂ P(Rd) is a properly convex domain, S ⊂ Ω is a

properly embedded simplex, and H is a set of S-supporting hyperplanes. Define

LS,H ∈ End(Rd) to be the linear projection

SpanS ⊕ (∩H∈HH) −→ SpanS

We call LS,H the linear projection of Ω onto S relative to H.

We now derive some basic properties of these projection maps. We use the nota-

tion

FΩ(X) = ∪x∈XFΩ(x)

where Ω ⊂ P(Rd) and X ⊂ Ω.
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Proposition II.25. Suppose Ω ⊂ P(Rd) is a properly convex domain, S ⊂ Ω is a

properly embedded simplex, and H is a set of S-supporting hyperplanes. Then

(1) LS,H(Ω) = S.

(2) If x ∈ ∂Ω ∩ P (∩H∈HH) and y ∈ ∂S, then [x, y] ⊂ ∂Ω.

(3) P (∩H∈HH) ∩ FΩ(∂S) = ∅.

Proof. (1) By Proposition II.23, P(kerLS,H) ∩ Ω = ∅, so LS,H is well-defined on Ω.

The set LS,H(Ω) ⊂ P(SpanS) is connected and contains S = LS,H(S). Further

L−1
S,H(∂S) = ∪qj=1L

−1
S,H

(
Fj

)
⊂ ∪qj=1P(Hj)

and so Ω ∩ L−1
S,H(∂S) = ∅. Thus LS,H(Ω) = S.

(2) Suppose x ∈ ∂Ω∩ P(∩H∈HH) and y ∈ ∂S. Then there exists a boundary face

F ⊂ ∂S of maximal dimension such that y ∈ F . Then there exists some H ∈ H such

that F ⊂ P(H). Then [x, y] ⊂ P(H) and so [x, y] ∩ Ω = ∅. Thus [x, y] ⊂ ∂Ω.

(3) Next, suppose for a contradiction that

x ∈ P(∩H∈HH) ∩ FΩ(∂S).

Then there exists y ∈ ∂S with x ∈ FΩ(y). Pick y′ ∈ ∂S such that (y, y′) ⊂ S. Then

by Proposition II.11 part (4) we also have (x, y′) ⊂ Ω. But this contradicts part

(1).

For a general properly embedded simplex, there could be many different sets of

supporting hyperplanes, but the next result shows that the corresponding linear

projections form a compact set.

Definition II.26. Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω

is a properly embedded simplex. Define

LS := {LS,H : H is a set of S-supporting hyperplanes} ⊂ End(Rd).
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Proposition II.27. Suppose that Ω ⊂ P(Rd) is a properly convex domain and S ⊂ Ω

is a properly embedded simplex. Then LS is a compact subset of End(Rd).

Proof. Suppose that F1, . . . , Fq ⊂ ∂S are the boundary faces of S of maximal dimen-

sion. Fix a sequence LS,Hn of projections. Then

Hn = {Hn,1, . . . , Hn,q}

where Fj ⊂ P(Hn,j). Since Grd−1(Rd) is compact we can find nk →∞ such that

Hj := lim
k→∞

Hnk,j

exists in Grd−1(Rd) for every 1 ≤ j ≤ q. Then Fj ⊂ P(Hj) and P(Hj) ∩ Ω = ∅

for every 1 ≤ j ≤ q. So H = {H1, . . . , Hq} is a set of S-supporting hyperplanes.

Further, by definition,

LS,H = lim
k→∞

LS,Hnk

in End(Rd). Since LS,Hn was an arbitrary sequence, LS is compact.

2.4 Closest-point Projection

Definition II.28. Suppose Ω ⊂ P(Rd) is a properly convex domain and A ⊂ Ω is a

non-empty closed convex set. If p ∈ Ω, the closest-point projection of p on A is

πA(p) := A ∩ BΩ(p, dΩ(p,A)).

Lemma II.29. If p ∈ Ω, πA(p) is a compact convex set.

Proof. By Proposition II.5, BΩ(p, dΩ(p,A)) is a compact convex set. Moreover, the

intersection of two closed convex sets is a closed convex set. Hence the result.

Lemma II.30. If g ∈ Aut(Ω), then g ◦ πA = πgA ◦ g.
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2.5 Center of Mass

There is a notion of “center of mass” for compact subsets of a properly convex

domain. Let Kd denote the set of all pairs (Ω, K) where Ω ⊂ P(Rd) is a properly

convex domain and K ⊂ Ω is a compact subset.

Proposition II.31 ([IZ21]). There exists a function

(Ω, K) ∈ Kd 7−→ CoMΩ(K) ∈ P(Rd)

such that:

(1) CoMΩ(K) ∈ ConvHullΩ(K),

(2) CoMΩ(K) = CoMΩ(ConvHullΩ(K)), and

(3) if g ∈ PGLd(R), then gCoMΩ(K) = CoMgΩ(gK),

for every (Ω, K) ∈ Kd.

There are several ways of proving the existence of such a “center of mass”. Propo-

sition II.31 appears in [IZ21] and their argument is inspired by Frankel [Fra89]. An

alternative approach to this construction appears in [Mar14, Lemma 4.2].

2.6 Dynamics of Automorphisms in Hilbert Geometry

If g ∈ GLd(R), let λ1(g), λ2(g), . . . , λd(g) denote the absolute values of eigen-

values of g (over C), indexed such that

λ1(g) ≥ λ2(g) ≥ . . . ≥ λd(g).

In particular, we will use the notation λmax(g) := λ1(g) and λmin(g) := λd(g).

If h ∈ PGLd(R), we define

λi
λj

(h) :=
λi(h̃)

λj(h̃)

where h̃ ∈ GLd(R) is some (hence any) lift of h.
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Proposition II.32 ([CLT15]). Suppose Ω is a properly convex domain and g ∈

Aut(Ω). Then the translation length of g, defined as

τΩ(g) := inf
x∈Ω

dΩ(x, gx),

is given by

τΩ(g) = log

(
λ1

λd
(g)

)
.

2.6.1 Geometry of ω-limit Sets of Automorphisms

For the rest of this section, fix a properly convex domain Ω ⊂ P(Rd). Let γ ∈

Aut(Ω) with τΩ(γ) > 0. We will describe the set of all accumulation points of

{γnx : x ∈ Ω, n ∈ N} in Ω. It is called the ω-limit set of γ and denoted by ω(γ,Ω).

Let γ̃ be any lift of γ in GLd(R) and let Eγ̃ be its set of eigenvalues (over C). If

λ ∈ Eγ̃, let

• Wλ be the subspace of Rd such that (Wλ)C is the generalized eigenspace of γ̃

for λ, and

• Eλ be the subspace of Rd such that (Eλ)C is the eigenspace of γ̃ for λ.

Define the subspace Eγ̃, Lγ̃ and Kγ̃ such that

(Eγ̃)C :=
⊕
λ∈Eγ̃

|λ|=λmax(γ̃)

Eλ , (Lγ̃)C :=
⊕
λ∈Eγ̃

|λ|=λmax(γ̃)

Wλ and (Kγ̃)C :=
⊕
λ∈Eγ̃

|λ|<λmax(γ̃)

Wλ.

An elementary computation using Jordan blocks shows that if w ∈ P(Rd)\P(Kγ̃),

then the accumulation points of {γnw : n > 0} lie in P(Eγ̃) (see for instance [Mar91,

II.1] or [CLT15, Lemma 2.5]).

Further observe that, after scaling by λmax(γ̃), the action of γ̃ on Eγ̃ can be

conjugated into O(Eγ̃), the group of orthogonal linear transformations on Eγ̃. This

implies that Ω ∩ P(Eγ̃) = ∅. Otherwise, Ω ∩ P(Eγ̃) is a properly convex open set in
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P(Eγ̃) and < γ|P(Eγ̃) >⊂ O(Eγ̃) is a compact subgroup of Aut(Ω ∩ P(Eγ̃)). Then by

[Mar14, Lemma 2.1], γ has a fixed point in Ω implying τΩ(γ) = 0, a contradiction.

We also note that Ω ∩ P(Kγ̃) = ∅. Otherwise,

τΩ∩P(Kγ̃)(γ) = log

(
λmax(γ̃|Kγ̃ )
λmin(γ̃|Kγ̃ )

)
< log

(
λmax(γ̃)

λmin(γ̃)

)
= τΩ(γ)

which is impossible.

Thus Ω ⊂ P(Rd)\P(Kγ̃), which implies that ω(γ,Ω) ⊂ P(Eγ̃). Moreover ω(γ,Ω) ⊂

Ω. Thus ω(γ,Ω) ⊂
(
Ω ∩ P(Eγ̃)

)
=
(
∂Ω ∩ P(Eγ̃)

)
where last equality holds because

Ω ∩ P(Eγ̃) = ∅.

Finally also note that the subspaces Eγ̃, Lγ̃ and Kγ̃ defined above are independent

of the lift γ̃ chosen. Thus we introduce:

E+
γ := P

(
Eγ̃
)
∩ Ω and K+

γ := P
(
Kγ̃

)
∩ Ω

E−γ := P
(
Eγ̃−1

)
∩ Ω and K−γ := P

(
Kγ̃−1

)
∩ Ω

We can sum up the above discussion in the following proposition. Note that the

same proposition is true if we replace γ by γ−1 and E+
γ by E−γ .

Proposition II.33 ([Isl19]). If Ω is a properly convex domain, γ ∈ Aut(Ω) and

τΩ(γ) > 0, then:

(1) ω(γ,Ω) ⊂ E+
γ .

(2) the action of γ on E+
γ is conjugated into the projective orthogonal group PO(Eγ̃).

(3) there exists an unbounded sequence of positive integers {mk} such that

lim
k→∞

(
γ
∣∣∣
E+
γ

)mk
= Id

∣∣∣
E+
γ

.

We prove the following proposition about faces FΩ(x) for x ∈ E−γ .
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Proposition II.34 ([Isl19]). Suppose Ω ⊂ P(Rd) is a properly convex domain and

γ ∈ Aut(Ω) with τΩ(γ) > 0.

(1) If y ∈ E−γ , then FΩ(y) ∩ E+
γ = ∅.

(2) If y ∈ E−γ , z ∈ FΩ(y) and {ik} is a sequnece in Z such that z∞ := limk→∞ γ
ikz

exists, then

either z∞ ∈ E−γ , or, z∞ ∈ ∂Ω \
(
E+
γ t E−γ

)
.

Proof. (1) Suppose there exists x ∈ FΩ(y) ∩ E+
γ . Since E+

γ ∩ E−γ = ∅, x 6= y. Then

there exists a maximal line segment I = [a, b] ⊂ ∂Ω containing x and y as its interior

points (order: a, x, y, b). Since y ∈ E−γ , by Proposition II.33 part (3), there exists

an unbounded sequence {dk}k∈N of positive integers such that limk→∞ γ
dky = y. Up

to passing to a subsequence, the following limits exist in Ω:

x∞ := lim
k→∞

γdkx, a∞ := lim
k→∞

γdka and b∞ := lim
k→∞

γdkb.

Since x ∈ I ∩ E+
γ and E+

γ is a closed γ-invariant set, x∞ ∈ E+
γ . Hence, x∞ 6= y.

The sequence γdkI converges to the projective line segment I∞ = [a∞, b∞] ⊂ ∂Ω in

the same affine chart. Since x∞ 6= y, I∞ is a non-degenerate projective line segment

in ∂Ω containing both of them. We claim that x∞ and y are interior points of the

line segment I∞. Observe that since γ is a projective transformation and preserves

cross-ratios, limk→∞[γdka, γdkx, γdky, γdkb] = [a, x, y, b]. Thus

[a∞, x∞, y, b∞] = lim
k→∞

[γdka, γdkx, γdky, γdkb]

exists and is finite. However

[γdka, γdkx, γdky, γdkb] =

(
1 +
|γdkx− γdky|
|γdka− γdkx|

)(
1 +
|γdkx− γdky|
|γdky − γdkb|

)
.
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Since x∞ 6= y, limk→∞ |γdkx− γdky| 6= 0. Then [a∞, x∞, y, b∞] <∞ implies

lim
k→∞
|γdka− γdkx| 6= 0 and lim

k→∞
|γdky − γdkb| 6= 0.

Thus a∞ 6= x∞ and y 6= b∞ which shows that both x∞ and y are interior points of

I∞.

Recall that x ∈ E+
γ and y ∈ E−γ . Since dk > 0, up to passing to a subsequence,

limk→∞ γ
dkw = x∞ for any w ∈ (x, y). Thus

lim
k→∞

[γdka, γdkw, γdky, γdkb] = [a∞, x∞, y, b∞].

By projective invariance of cross-ratios,

lim
k→∞

[γdka, γdkw, γdky, γdkb] = [a, w, y, b].

Then [a, w, y, b] is the constant number [a∞, x∞, y, b∞] for all w ∈ (x, y). This is

impossible since x and y are distinct interior points of the line segment I = [a, b].

Hence we have a contradiction and this finishes the proof of (1).

(2) Since ∂Ω is a closed set, z∞ ∈ ∂Ω. If z∞ ∈ E−γ , there is nothing to prove. So, let

z∞ 6∈ E−γ .

Up to passing to a subsequence, we can assume that y∞ := limk→∞ γ
iky exists.

As E−γ is a closed γ-invariant set, y∞ ∈ E−γ . Thus, z∞ 6= y∞.

We claim that z∞ ∈ FΩ(y∞). Since z ∈ FΩ(y), there exists a maximal projective

line segment J := [a′, b′] ⊂ ∂Ω that contains both z and y as its interior points (order:

a′, z, y, b′). Up to passing to a subsequence, we can assume that a′∞ := limk→∞ γ
ika′

and b′∞ := limk→∞ γ
ikb′ exist in Ω. Then J∞ := limk→∞ γ

ikJ = [a′∞, b
′
∞]. By projec-

tive invariance of cross-ratios, limk→∞[γika′, γikz, γiky, γikb′] = [a′, z, y, b′]. Thus

[a′∞, z∞, y∞, b
′
∞] = lim

k→∞
[γika′, γikz, γiky, γikb′]
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exists and is finite. Since z∞ 6= y∞, then arguing as in part (1) of this proposition

(using cross-ratios) we can show that a′∞ 6= z∞ and y∞ 6= b′∞. Thus z∞ and y∞ are

interior points of J∞ = [a∞, b∞] ⊂ ∂Ω. Thus z∞ ∈ FΩ(y∞).

Since y∞ ∈ E−γ and z∞ ∈ FΩ(y∞), part (1) of this proposition implies z∞ 6∈ E+
γ .

Moreover z∞ 6∈ E−γ by assumption. Hence we have completed the proof.

2.6.2 Limits of Automorphisms and Boundary Faces

The results of this section are in [IZ21]. The next two results relate the faces of

a convex domain with the behavior of automorphisms.

Proposition II.35 ([IZ21]). Suppose Ω ⊂ P(Rd) is a properly convex domain, p0 ∈

Ω, and gn ∈ Aut(Ω) is a sequence such that

(1) gn(p0)→ x ∈ ∂Ω,

(2) g−1
n (p0)→ y ∈ ∂Ω, and

(3) gn converges to T in P(End(Rd)).

Then image(T ) ⊂ SpanFΩ(x), P(kerT ) ∩ Ω = ∅, and y ∈ P(kerT ).

Proof. For v ∈ Rd let ‖v‖ be the standard Euclidean norm of v and for S ∈ End(Rd)

let ‖S‖ denote the associated operator norm. Also let e1, . . . , ed denote the standard

basis of Rd.

Notice that

T (p) = lim
n→∞

gn(p)

for all p /∈ P(kerT ).

We can pick a lift gn ∈ GLd(R) of each gn with ‖gn‖ = 1 such that gn → T in

End(Rd) and T is a lift of T .

Claim 1: P(kerT ) ∩ Ω = ∅.
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Proof of Claim 1: Using the singular value decomposition, we can find kn,1, kn,2 ∈

O(d) and 1 = σ1,n ≥ · · · ≥ σd,n > 0 such that

gn = kn,1


σ1,n

. . .

σd,n

 kn,2.

By passing to a subsequence we can suppose that kn,1 → k1, kn,2 → k2, and

χj := lim
n→∞

σj,n ∈ [0, 1]

exists for every 1 ≤ j ≤ d. Then

T = k1



1

χ2

. . .

χd


k2.

Let

m := max {j : χj > 0} .(2.3)

Then kerT = k−1
2 Span{em+1, . . . , ed}.

Suppose for a contradiction that there exists [v] ∈ P(kerT ) ∩ Ω. Let

vn := k−1
n,2k2v ∈ k−1

n,2 Span{em+1, . . . , ed}.

Since Ω is open and vn → v, by passing to a tail we can assume that there exists

some ε > 0 such that { [
vn + sk−1

n,2e1

]
: |s| < ε

}
⊂ Ω

for all n ≥ 0. By passing to a subsequence we can suppose that

w := lim
n→∞

1

‖gnvn‖
gnvn ∈ Rd
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exists. Now fix t ∈ R and let tn := ‖gnvn‖ t. Since ‖gnvn‖ ≤ σm+1,n ‖vn‖ and

lim
n→∞

σm+1,n = 0,

for n sufficiently large we have |tn| < ε. Then

[w + tk1e1] = lim
n→∞

[
1

‖gnvn‖
(gnvn + tnkn,1e1)

]
= lim

n→∞

[
1

‖gnvn‖
(
gnvn + tngnk

−1
n,2e1

)]
= lim

n→∞
gn
[
vn + tnk

−1
n,2e1

]
∈ Ω.

Since t is arbitrary, we see that

{[w + tk1e1] : t ∈ R} ⊂ Ω

which contradicts the fact that Ω is properly convex. So P(kerT ) ∩ Ω = ∅.

Claim 2: T (Ω) ⊂ FΩ(x). In particular,

image(T ) ⊂ SpanFΩ(x).

Proof of Claim 2: Since P(kerT ) ∩ Ω = ∅,

T (p) = lim
n→∞

gn(p)

for all p ∈ Ω. Since gn(p0)→ x and

dΩ(gn(p), gn(p0)) = dΩ(p, p0),

Proposition II.12 implies that T (Ω) ⊂ FΩ(x).

Claim 3: y ∈ P(kerT ).

Proof of Claim 3: Notice that

hn := k−1
n,2


σ−1

1,n

. . .

σ−1
d,n

 k−1
n,1
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is a lift of g−1
n . Since 1 = σ1,n ≥ · · · ≥ σd,n > 0, we can pass to a subsequence and

assume that σd,nhn converges in End(Rd) to some non-zero S ∈ End(Rd). Then g−1
n

converges in P(End(Rd)) to [S] ∈ P(End(Rd)). Claim 1 applied to g−1
n implies that

P(kerS) ∩ Ω = ∅. So

S(p0) = lim
n→∞

g−1
n (p0) = y.

Further, Equation (2.3) implies that

image(S) ⊂ k−1
2 Span{em+1, . . . , ed} = kerT.

So y ∈ P(kerT ).

Given a group G ≤ PGLd(R) define G
End

to be the closure of the set

{g ∈ GLd(R) : [g] ∈ G}

in End(Rd).

Proposition II.36 ([IZ21]). Suppose Ω ⊂ P(Rd) is a properly convex domain, C ⊂ Ω

is a non-empty closed convex subset, and G ≤ StabΩ(C) acts co-compactly on C. If

x ∈ ∂i C, then there exists T ∈ GEnd
such that

(1) P(kerT ) ∩ Ω = ∅,

(2) T (Ω) = FΩ(x), and

(3) T (C) = FΩ(x) ∩ ∂i C.

Proof. Fix some p0 ∈ C and a sequence pn ∈ [p0, x) with pn → x. Since G acts

co-compactly on C, there exists R > 0 and a sequence gn ∈ G such that

dΩ(gnp0, pn) ≤ R

for all n ≥ 0.
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As before, for S ∈ End(Rd) let ‖S‖ be the operator norm associated to the

standard Euclidean norm. Let gn ∈ GLd(R) be a lift of gn with ‖gn‖ = 1. By

passing to a subsequence we can suppose that gn → T in End(Rd). Proposition II.35

implies that P(kerT ) ∩ Ω = ∅ and T (Ω) ⊂ FΩ(x). Then

T (p) = lim
n→∞

gn(p)

for all p ∈ Ω.

Claim 1: T (Ω) = FΩ(x).

Proof of Claim 1: We only need to show that FΩ(x) ⊂ T (Ω). So fix y ∈ FΩ(x). Then

we can pick yn ∈ [p0, y) such that

sup
n≥0

dΩ(yn, pn) <∞.

Thus

sup
n≥0

dΩ(g−1
n yn, p0) <∞.

So there exists nj →∞ so that the limit

q := lim
j→∞

g−1
nj
ynj

exists in Ω. Then

T (q) = lim
n→∞

gn(q) = lim
j→∞

gnjg
−1
nj
ynj = lim

j→∞
ynj = y.

Hence FΩ(x) ⊂ T (Ω).

Claim 2: T (C) = FΩ(x) ∩ ∂i C.

Proof of Claim 2: This is almost identical to the proof of Claim 1.
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2.7 Convex Co-compact Groups

Definition II.37. A discrete subgroup Λ ≤ PGLd(R) is called convex co-compact

if:

(1) there exists a properly convex domain Ω ⊂ P(Rd) such that Λ ≤ Aut(Ω), and

(2) the set CΩ(Λ) ⊂ Ω is non-empty and Λ acts co-compactly on CΩ(Λ), where CΩ(Λ)

is the convex hull in Ω of the full orbital limit set Lorb
Ω (Λ) :=

⋃
x∈Ω

(
Λx \ Λx

)
.

Remark II.38. If Λ acts co-compactly on a properly convex domain Ω, then CΩ(Λ) =

Ω and Λ is a convex co-compact group.

If Λ is convex co-compact, the boundary of CΩ(Λ) splits into the ideal boundary

∂i CΩ(Λ) := ∂Ω ∩ CΩ(Λ) and the non-ideal boundary ∂n CΩ(Λ) := Ω ∩ CΩ(Λ). We

recall some results from [DGK17] regarding properties of convex co-compact groups.

Theorem II.39 ([DGK17]). Suppose Λ ≤ Aut(Ω) is a convex co-compact group.

Then:

(1) CΩ(Λ) is the minimal non-empty Λ-invariant closed convex subset of Ω,

(2) Lorb
Ω (Λ) = ∂i CΩ(Λ),

(3) if x ∈ ∂i CΩ(Λ), then FCΩ(Λ)(x) = FΩ(x).
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CHAPTER III

Weak Hyperbolicity in Geometric Group Theory

3.1 Introduction

The key idea of geometric group theory is to study infinite groups using geometry.

We can view a group as a geometric object via its Cayley graph that we now explain.

If G is a group with a finite generating set S, we will use the notation: (G,S) is

a finitely generated group. If (G,S) is a finitely generated group, its Cayley graph

Cay(G,S) is an unordered graph whose vertex set is G with an edge between g and

gs for any g ∈ G and s ∈ S. Assigning length 1 to each edge, this graph can be

given the structure of a proper metric space that we denote by (G, dS). Note that

this metric structure depends on the generating set S. To show that this notion is

“coarsely” well-defined (up to quasi-isometries), we need some definitions.

Definition III.1. Consider two metric spaces (X, dX) and (Y, dY ). If K ≥ 1 and

C ≥ 0, a map F : X → Y is called:

(1) a (K,C)-quasi-isometric embedding if for any x, x′ ∈ X

1

K
dX(x, x′)− C ≤ dY (F (x), F (x′)) ≤ K dX(x, x′) + C

(2) a (K,C)-quasi-isometry if F is a (K,C)-quasi-isometric embedding and there
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exists D ≥ 0 such that:

sup
y∈Y

dY (y, F (X)) ≤ D.

The two metric spaces (X, dX) and (Y, dY ) are quasi-isometric if there exists a (K,C)-

quasi-isometry between them for some K ≥ 1 and C ≥ 0.

Proposition III.2. If S and S ′ are two finite generating sets of G, then (G, dS) and

(G, dS′) are quasi-isometric.

The fundamental lemma of geometric group theory establishes a coarse equiva-

lence between the geometry of the Cay(G,S) and the geometry of a space X on

which G acts.

Theorem III.3 ([BH99, Part I, Proposition 8.19]). Suppose (X, dX) is a proper

geodesic metric space and G is a group that acts on X properly and co-compactly by

isometries. Then G is finitely generated and if S is a finite generating set of G, then

F : (G, dS)→ (X, dX) defined by F (g) = g · x0 is a quasi-isometry for any choice of

base-point x0 ∈ X.

We now introduce some standard notations that we will be used frequently. If

(X, d) is a metric space and r > 0, we denote the metric r-tubular neighborhood of

A ⊂ X as

NX(A; r) := {x ∈ X : d(x,A) < r}

and the metric r-ball around x ∈ X as

BX(x, r) := {y ∈ X : d(x, y) < r}.

We also introduce the notion of paths and path systems.

Definition III.4 ([Sis18]). Suppose (X, d) is a proper geodesic metric space and a

group G acts on X properly and by isometries.
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(1) A path in X is the image of f : R → X where f is a (K,C)-quasi-geodesic

embedding for some K ≥ 1 and C ≥ 0. If I ⊂ R is an interval, then f(I) is a

subpath.

(2) A path system PS on X is a collection of paths in X for some fixed constants

K ≥ 1 and C ≥ 0 such that:

(a) any subpath of a path in PS is also in PS, and

(b) any pair of distinct points in X can be connected by a path in PS.

(3) A path system PS is called a geodesic path system if all paths in PS are

geodesics in (X, d).

(4) If G preserves PS, then (X,PS) is called a path system for the group G.

3.2 Gromov Hyperbolic Groups

Gromov hyperbolicity is a formulation of hyperbolicity or ‘negative curvature-like’

behavior in coarse geometry. For introducing this class of groups, we will require the

notion of slim triangles. If x and x′ are two points in a metric space X, let σx,x′

denote a geodesic joining x and x′.

Definition III.5 ([BH99, Part III, Definition 1.1]). Suppose (X, d) is a metric space

and x1, x2, x3 ∈ X. A geodesic triangle σx1,x2 ∪σx2,x3 ∪σx3,x1 is called δ-slim for some

δ ≥ 0 if

σxi−1,xi ⊂ NX
(
σxi,xi+1

∪ σxi+1,xi−1
; δ
)

(3.1)

for i ∈ {1, 2, 3} with the indices of xi counted modulo 3 in (3.1).

Definition III.6 ([BH99, Part III, Definition 2.1]).

(1) A geodesic metric space (X, d) is a Gromov hyperbolic space if there exists δ ≥ 0

such that all geodesic triangles in X are δ-slim.
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(2) A finitely generated group (G,S) is a Gromov hyperbolic (or word hyperbolic)

group if (G, dS) is a Gromov hyperbolic space.

This notion is well-behaved under quasi-isometries.

Proposition III.7. If (X, dX) and (Y, dY ) are quasi-isometric, then (X, dX) is a

Gromov hyperbolic space if and only if (Y, dY ) is a Gromov hyperbolic space.

Some examples of Gromov hyperbolic spaces are a regular tree of finite valence

and the real hyperbolic space Hd (equipped with the Riemannian metric of constant

curvature −1). Some examples of Gromov hyperbolic groups are Z, free groups on

finitely many generators, and fundamental groups of compact manifolds of negative

curvature. A non-example of Gromov hyperbolic groups is any group that contains

a subgroup isomorphic to Zr for r ≥ 2.

While the motivating examples of Gromov hyperbolic groups are discrete sub-

group of Isom(Hd), not all such groups are Gromov hyperbolic. For instance, the

fundamental group of a finite volume non-compact hyperbolic manifold of dimension

d ≥ 3 is not Gromov hyperbolic. It contains subgroups isomorphic to Zd−1 that cor-

respond to the cusp stabilizers. It is thus natural to seek generalizations of Gromov

hyperbolic groups. We will discuss two such generalizations: relatively hyperbolic

groups in Section 3.3 and acylindrically hyperbolic groups in Section 3.4.

3.3 Relatively Hyperbolic Groups

Relatively hyperbolic groups generalize fundamental groups of finite volume non-

compact hyperbolic manifolds. There are several equivalent definitions due to Bowditch,

Farb, and Druţu-Sapir to name a few. In this section, we will follow the approach

taken by Druţu-Sapir in [DS05]. For this, we recall the notion of asymptotic cones

and asymptotically tree-graded metric spaces.
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Definition III.8. Suppose ω is a non-principal ultrafilter, (X, d) is a metric space,

(xn) is a sequence of points in X, and (λn) is a sequence of positive numbers with

limω λn = ∞. The asymptotic cone of X with respect to (xn) and (λn), denoted by

Cω(X, xn, λn), is the ultralimit limω(X,λ−1
n d, xn).

For more background on asymptotic cones, see [Dru02].

Definition III.9 ([DS05, Definition 2.1]). Let (X, d) be a complete geodesic metric

space and let S be a collection of closed geodesic subsets (called pieces).

(1) We say that (X, d) is tree-graded with respect to S if:

(a) every two different pieces have at most one common point.

(b) every simple geodesic triangle (a simple loop composed of three geodesics)

in X is contained in one piece.

(2) We say that (X, d) is asymptotically tree-graded with respect to S if all its asymp-

totic cones, with respect to a fixed non-principal ultrafilter, are tree-graded with

respect to the collection of ultralimits of the elements of S.

Using asymptotically tree-graded metric spaces, we now introduce the definition

of relatively hyperbolic spaces and groups respectively.

Definition III.10 ([DS05]).

(1) A complete geodesic metric space (X, d) is relatively hyperbolic with respect to

a collection of subsets S if (X, d) is asymptotically tree-graded with respect to

S.

(2) A finitely generated group (G,S) is relatively hyperbolic with respect to a family

of subgroups {H1, . . . , Hk} if (G, dS) is relatively hyperbolic with respect to the

collection of left cosets {gHi : g ∈ G, i = 1, . . . , k}.
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Relative hyperbolicity is well-behaved under quasi-isometries.

Proposition III.11. Suppose (X, dX) is a relatively hyperbolic space with respect

to SX and f : (X, dX) → (Y, dY ) is a quasi-isometry. Then, (Y, dY ) is a relatively

hyperbolic space with respect to SY := f(SX).

We will require the following results about relatively hyperbolic spaces.

Theorem III.12. Suppose (X, d) is a relatively hyperbolic space with respect to S.

(1) [DS05, Theorem 4.1] For any r > 0 there exists Q(r) > 0 such that: if S1, S2 ∈ S

are distinct, then

diamX

(
NX(S1; r) ∩NX(S2; r)

)
≤ Q(r).

(2) [DS05, Corollary 5.8] If A ≥ 1, B ≥ 0, and f : Rk → X is an (A,B)-quasi-

isometric embedding, then there exists M = M(A,B) such that: if k ≥ 2, then

there exists some S ∈ S such that

f(Rk) ⊂ NX(S;M).

(3) [DS05, Theorem 5.1] If (Y, dY ) are complete geodesic metric spaces and f : X →

Y is a quasi-isometry, then (X, dX) is relatively hyperbolic with respect to S if

and only if (Y, dY ) is relatively hyperbolic with respect to f(S).

We end this section by stating a characterization of relative hyperbolicity due

to Sisto [Sis13]. In order to state his characterization, we introduce two notions:

“almost-projection system” and “asymptotically transverse-free with respect to a

geodesic path system”.

Definition III.13 ([Sis13]). Let (X, d) be a complete geodesic metric space and

S a collection of subsets of X. A family of maps ΠS = {πS : X → S}S∈S is an

almost-projection system for S if there exists C > 0 such that for all S ∈ S:
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(1) if x ∈ X and p ∈ S, then d(x, p) ≥ d(x, πS(x)) + d(πS(x), p)− C,

(2) diamX πS(S ′) ≤ C for all S, S ′ ∈ S distinct, and

(3) if x ∈ X and d(x, S) = R, then diamX πS(BX(x,R)) ≤ C.

Recall the notion of geodesic path systems from Definition III.4.

Definition III.14 ([Sis13]). Let (X, d) be a complete geodesic metric space and S

a collection of subsets of X.

(1) A geodesic triangle T in X is S-almost-transverse with constants κ and ∆ if

diamX(NX(S;κ) ∩ γ) ≤ ∆

for every S ∈ S and edge γ of T .

(2) The collection S is asymptotically transverse-free relative to a geodesic path

system G if there exists λ, σ such that for each ∆ ≥ 1, κ ≥ σ the following

holds: if T is a geodesic triangle in X whose sides are in G and is S-almost-

transverse with constants κ and ∆, then T is (λ∆)-thin.

We finally state Sisto’s characterization of relative hyperbolicity.

Theorem III.15 ([Sis13, Theorem 2.14]). Let (X, d) be a complete geodesic metric

space and S a collection of subsets of X. Then the following are equivalent:

(1) X is relatively hyperbolic with respect to S,

(2) S is asymptotically transverse-free relative to a geodesic path system and there

exists an almost-projection system for S,

In [Sis13], the theorem is stated for path systems instead of geodesic path systems.

But his methods also imply this result, see [IZ19, Appendix] for details.
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3.4 Acylindrically Hyperbolic Groups

3.4.1 Definition and examples

Osin introduced the notion of acylindrically hyperbolic groups in [Osi16] as a

generalization of Gromov hyperbolic groups.

Definition III.16. Suppose that a group G acts isometrically on a metric space

(X, dX). The action is called acylindrical provided: for every ε > 0, there exist

Rε, Nε > 0 such that if x, y ∈ X with dX(x, y) ≥ Rε, then

# {g ∈ G : dY (x, gx) ≤ ε and dY (y, gy) ≤ ε} ≤ Nε.

Suppose G acts properly and isometrically on a proper Gromov hyperbolic space

(X, d). There is a notion of bordification (or compactification) of (X, d) by adding

the Gromov boundary ∂∞X to X (see [BH99] for details). We will denote this

compactification by X := X ∪ ∂∞X. The limit set of the action ΛX(G) is the set

of accumulation points of some (hence any) orbit of G in X. It is a well-known

fact in the classification of group actions on Gromov hyperbolic spaces that either

0 ≤ #ΛX(G) ≤ 2 or ΛX(G) is an infinite set [Osi16, Section 3]. The group action

is called elementary in the first case and non-elementary in the second case. The

case of elementary actions is particularly simple (G is finite or virtually cyclic, see

[BH99]). We will be interested in non-elementary actions.

Definition III.17 ([Osi16]). A group G is called acylindrically hyperbolic if it admits

an isometric non-elementary acylindrical action on a Gromov hyperbolic metric space

(X, dX).

Examples: Mapping class group of closed surfaces of genus at least 2 are acylin-

drically hyperbolic because they act non-elementarily and acylindrically on the curve
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complex [PS15]. This is a particularly interesting example as these groups are nei-

ther Gromov hyperbolic nor relatively hyperbolic [AAS05]. Some other prominent

examples are outer automorphism groups of finitely generated free group on at least

two generators and rank one CAT(0) groups that are not virtually cyclic.

We now introduce the notion of hyperbolically embedded subgroups which was

used in [Osi16] to characterize acylindrically hyperbolic groups. Let H be a subgroup

of G and a (possibly infinite) subset S of G such that St(H\{1}) generates G. Then

S is called the relative generating set and let dSrel : H ×H → [0,+∞] be the relative

metric, where dSrel(g, h) is the length of the shortest path in Cay(G,S t (H \ {1}))

connecting g and h that has no edges in Cay(H,H \ {1}).

Definition III.18 ([Sis18, Definition 4.6]). A subgroup H of G is hyperbolically

embedded if there exists a relative generating set S such that Cay(G,S t (H \ {1}))

is Gromov hyperbolic and (H, dSrel) is a locally finite metric space.

Example: The subgroup Z∗{e} is a hyperbolically embedded subgroup of Z∗Z.

On the other hand, Z× {e} is not hyperbolically embedded in Z× Z. See [Sis18].

Osin characterizes acylindrically hyperbolic groups based on the existence of hy-

perbolically embedded subgroups.

Proposition III.19 ([Osi16, Definition 1.3]). A group G is acylindrically hyperbolic

if and only if G contains a proper infinite hyperbolically embedded subgroup.

In the next section, we will see another characterization of acylindrically hyper-

bolic groups (using contracting elements) that will be particularly useful in Chapter

V.

3.4.2 Contracting Elements I: Characterizing Acylindrical Hyperbolicity

Recall the definition of path and path system in Definition III.4.
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Definition III.20 ([Sis18]). Suppose (X, d) is a geodesic metric space, PS is a path

system on X, and G acts on X properly and by isometries.

(1) A set A ⊂ X is called PS-contracting (with constant C) if there exists a map

πA : X → A such that:

(a) if x ∈ A, then d
(
x, πA(x)

)
≤ C

(b) if x, y ∈ X with d
(
πA(x), πA(y)

)
≥ C and σ ∈ PS is a path joining x and

y, then

d
(
σ, πA(x)

)
≤ C and d

(
σ, πA(y)

)
≤ C.

(2) If (X,PS) is a path system for G, then g ∈ G is a contracting element for

(X,PS) provided for some (hence any) x0 ∈ X:

(a) g is an infinite order element,

(b) < g > x0 is a quasi-geodesic embedding of Z in X,

(c) there exists A ⊂ X containing x0 that is < g >-invariant, PS-contracting

and has co-bounded < g > action.

The following proposition will illustrate the geometric intuition behind the defi-

nition of contracting elements.

Proposition III.21. Suppose (X,PS) is a path system for G and g ∈ G is a con-

tracting element for (X,PS). Then:

(1) τX(g) := infx∈X d(x, gx) > 0.

(2) for any x0 ∈ X, Amin(x0) :=< g > x0 is the minimal PS-contracting, < g >-

invariant subset of X containing x0 with a co-bounded < g > action.

Proof. (1) Recall the definition of stable translation length:

τ stable
X (g) := lim

n→∞

d(x, gnx)

n
.
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Then triangle inequlaity shows that

τX(g) ≥ τ stable
X (g)

and it suffices to show τ stable
X (g) > 0. Fix any x0 ∈ X. Since g is contracting,

< g > x0 is a quasi-geodesic, that is, there exists K ′ ≥ 1 and C ′ ≥ 0 such that for

every n ∈ Z,

d(x0, g
nx0) ≥ 1

K ′
|n| − C ′.

Then, τ stable
X (g) ≥ 1/K ′ > 0.

(2) Let A be PS-contracting with constant CA and the map πA : X → A. Fix any

x0 ∈ X and set RA := diam
(
A/ < g >

)
, C0 := CA+2RA and Amin(x0) :=< g > x0.

Since Amin(x0) ⊂ A, if x ∈ X, then there exists m ∈ Z such that

d(πA(x), gmx0) ≤ RA.

Define πmin : X → Amin(x0) by setting πmin(x) = gmx0. Then, if x ∈ Amin(x0),

πmin(x) = x. If x, y ∈ X and d(πmin(x), πmin(y)) ≥ C0, then

d(πA(x), πA(y)) ≥ CA.

Thus, if σ ∈ PS is any path from x to y,

d(πA(x), σ) ≤ CA and d(πA(y), σ) ≤ CA.

Hence,

d(πmin(x), σ) ≤ C0 and d(πmin(y), σ) ≤ C0.

We now prove a characterization of acylindrically hyperbolic groups using con-

tracting elements. We will say that a group is virtually cyclic if it contains a finite

index cyclic subgroup.
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Theorem III.22 ([Osi16, Sis18]). Suppose G has a proper isometric action on a

geodesic metric space (X, dX), (X,PS) is a path system for G and g ∈ G is a

contracting element for (X,PS). Then, either G is virtually Z or G is acylindrically

hyperbolic.

We will spend the rest of this section discussing a proof of this theorem. The

key result comes from a result connecting the subgroup generated by a contracting

element with the notion of hyperbolically embedded subgroups [REF]. Fix a path

system (X,PS) for G where G acts properly and isometrically on the metric space

(X, dX). Suppose g ∈ G is contracting. Then, there exist a < g >-invariant set A

with a co-bounded < g >-action equipped with a projection π : G → A. Further,

assume that G is not virtually cyclic. Then we will prove that G is acylindrically

hyperbolic.

Consider

E(g) :=
{
h ∈ G : dHauss

X (πA(hA),A) <∞
}

=

{
h ∈ G : max

{
sup
b∈hA

dX(b,A), sup
a∈A

dX(a, hA)

}
<∞

}
.

Sisto proves:

Proposition III.23 ([Sis18, Theorem 4.7]). If g is a contracting element in G for

the path system (X,PS), then E(g) is a hyperbolically embedded subgroup which is

virtually cyclic.

Since E(g) is virtually cyclic while G is not, E(g) is a proper subgroup. Moreover,

E(g) is a hyperbolically embedded subgroup. Then Proposition III.19 implies that

G is an acylindrically hyperbolic group.
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3.4.3 Contracting Elements II: Other Notions of Contraction

In this section, we will discuss another notion of contraction that is due to

Bestvina-Fujiwara [BF09]; we will use the symbol BF to denote this. Fix a geodesic

metric space (X, d) and a group G that acts properly and isometrically on X. If

A ⊂ X and x ∈ X, let the closest-point projection on A be defined by:

ρA(x) := {y ∈ X : d(x, y) = d(x,A)}.

The following definition comes from [BF09] and [GY18].

Definition III.24. A set A ⊂ X is a contracting subset in the sense of BF if there

exists a constant C such that: if x ∈ X, R > 0 and B(x,R) ∩ A = ∅, then

diam (ρA(B(x,R))) ≤ C.

An element g ∈ G is a contracting element in the sense of BF if for any x0 ∈ X:

(1) g has infinite order,

(2) < g > x0 is a quasi-geodesic embedding of Z in X, and

(3) < g > x0 is a contracting subset in the sense of BF.

We will now connect the two notions of contraction. The proof is fairly elementary

and this argument is given in [Isl19, Appendix]. For that, we first prove the following

lemma.

Lemma III.25. If A ⊂ X is PS-contracting (with constant C) for the projection

map πA : X → A, then d(πA(x), ρA(x)) ≤ 2C for all x ∈ X.

Proof. If x, y ∈ X, let σx,y ∈ PS denote a path joining x and y.

Suppose there exists x ∈ X such that

d(πA(x), ρA(x)) > 2C.(3.2)
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Since A is PS-contracting and ρA(x) ∈ A,

d(πA(ρA(x)), ρA(x)) ≤ C.

Then

d(πA(x), πA(ρA(x))) ≥ d(πA(x), ρA(x))− d(πA(ρA(x)), ρA(x)) > C.

Since A is PS-contracting, there exists z ∈ σx,ρA(x) such that d(z, πA(x)) ≤ C. Then

d(ρA(x), z) = d(ρA(x), x)− d(z, x) ≤ d(πA(x), x)− d(z, x)

≤ d(πA(x), z) + d(z, x)− d(z, x) ≤ C.

Hence

d(ρA(x), πA(x)) ≤ d(ρA(x), z) + d(z, πA(x)) ≤ 2C.

This contradicts (3.2).

We now prove the equivalence of the two notions of contraction for geodesic path

systems.

Proposition III.26. If (X,PS) is a geodesic path system for G, then:

(1) A ⊂ X is PS-contracting if and only if A is contracting in the sense of BF.

(2) g ∈ G is a contracting element for (X,PS) if and only if g ∈ G is a contracting

element in the sense of BF.

Proof. (1) Suppose A is contracting in the sense of BF. If x ∈ X, d(x, ρA(x)) =

d(x,A). Then, by [Sis18, Lemma 2.3], A is (X,PS) contracting.

Conversely, supposeA in PS-contracting (with constant C and the map πA : X →

A). Suppose x ∈ X and 0 < R < d(x, ρA(x)). If y ∈ B(x,R), let δ := σx,y ∈ PS
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be a geodesic joining x and y. Let x1 ∈ δ be a point closest to πA(x), that is,

x1 ∈ ρδ(πA(x)). There are two cases to consider.

Case 1: If d(x1, πA(x)) > C, then d(δ, πA(x)) > C. Since A is PS-contracting (in

the sense of Sisto), this implies that d(πA(x), πA(y)) < C.

Case 2: If d(x1, πA(x)) ≤ C, then by Lemma III.25, d(x1, ρA(x)) ≤ 3C. Thus

d(x, ρA(x)) ≤ d(x, x1) + d(x1, ρA(x)) ≤ d(x, x1) + 3C.

Since y ∈ B(x,R) and R < d(x, ρA(x)),

d(y, x1) = d(y, x)− d(x, x1) ≤ d(x, ρA(x))− d(x, x1) ≤ 3C.

Then,

d(y, ρA(y)) ≤ d(y, πA(x)) ≤ d(y, x1) + d(x1, πA(x)) ≤ 4C.

Then

d(ρA(y), ρA(x)) ≤ d(ρA(y), y) + d(y, x1) + d(x1, ρA(x)) ≤ 10C

Thus, if x ∈ X and 0 < R < d(x, ρA(x)), diam(ρA(B(x,R)) ≤ 20C.

(2) Follows from definitions and part (1).
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CHAPTER IV

Rank One Hilbert Geometries

This chapter is based on results that appear in [Isl19].

4.1 Axis of Automorphisms

Definition IV.1. Suppose Ω ⊂ P(Rd) is a properly convex domain and g ∈ Aut(Ω).

An axis of g is a non-trivial projective line segment `g := P(Vg) ∩ Ω where Vg ≤ Rd

is a two-dimensional g-invariant linear subspace.

If `g is an axis of g, then `g ∩ ∂Ω consists of two points both of which are fixed

points of g. Let `g ∩ ∂Ω = {g+, g−}. Assume that τΩ(g) > 0 and recall the notation

E+
g , E

−
g ⊂ P(Rd) from Section 2.6.1.

Lemma IV.2. Suppose Ω is a properly convex domain and g ∈ Aut(Ω) such that

τΩ(g) > 0 and g has an axis `g = (g+, g−). Assume that g̃, g̃+, and g̃− are lifts of g,

g+, and g− respectively such that

g̃ · g̃+ = λ+g̃+ and g̃ · g̃− = λ−g̃−

where λ+, λ− ∈ R and |λ−| ≤ |λ+|. Then

(1) |λ+| = λmax(g̃), |λ−| = λmin(g̃), τΩ(g) = log

(∣∣∣∣λ+

λ−

∣∣∣∣),

(2) g+ ∈ E+
g , and g− ∈ E−g .
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Proof. Let W = Span{g+, g−}. Then g̃
∣∣∣
W

can be conjugated to

λ+ 0

0 λ−

 in

PGL2(R). Then τΩ(g) ≤ τΩ∩P(W )(g
∣∣
Ω∩P(W )

) which implies that

log
λmax

λmin

(g̃) ≤ log

∣∣∣∣λ+

λ−

∣∣∣∣ .
But |λ+| ≤ λmax(g̃) while |λ−| ≥ λmin(g̃). Thus∣∣∣∣λ+

λ−

∣∣∣∣ =
λmax

λmin

(g̃).

Then |λ+| ≤ λmax(g̃) and |λ−| ≥ λmin(g̃) implies that |λ+| = λmax(g̃) and |λ−| =

λmin(g̃). This finishes the proof.

An isometry g ∈ Aut(Ω) may or may not have any axis. Hence we introduce the

notion of a pseudo-axis.

Definition IV.3. Suppose Ω ⊂ P(Rd) is a properly convex domain and g ∈ Aut(Ω).

A pseudo-axis of g is a non-trivial projective line segment σg := P(Wg) ∩ Ω where

Wg ≤ Rd is a two-dimensional linear subspace and P(Wg) ∩ Ω = ∅.

Observation IV.4. If τΩ(g) > 0, then either g has an axis or a pseudo-axis.

This observation essentially comes from the following result of Benoist (also see

[Mar14, Proposition 2.2]). For stating the result, we will require some notation. If

Ω is a properly convex domain, then a cone above Ω is a connected component of

π−1(Ω) := {v ∈ Rd : π(v) ∈ Ω}. We will denote a cone above Ω by Ω̃. In other

words, π−1(Ω) = Ω̃t−Ω̃ where Ω̃ and −Ω̃ are the connected components of π−1(Ω).

Note that if g ∈ Aut(Ω), then we can choose a lift g̃ of g such that g̃ · Ω̃ = Ω̃. Indeed,

if a lift g̃ does not preserve Ω̃, then g̃ · Ω̃ = −Ω̃ which implies that −g̃ preserves Ω̃.

Now we state Benoist’s result.
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Proposition IV.5 ([Ben05, Lemma 3.2]). Suppose Ω is a properly convex domain,

g ∈ Aut(Ω), and τΩ(g) > 0. Assume that g̃ is a lift of g such that g̃ · Ω̃ = Ω̃ where Ω̃

is a cone above Ω. Then λmax(g̃) is an eigenvalue of g̃ and

P
(

ker
(
g̃ − λmax(g̃) · Id

))
∩ Ω 6= ∅.

The same remains true if we replace λmax(g̃) by λmin(g̃).

We will now discuss a few examples to illustrate the notions introduced. An

isometry may have a unique axis, infinitely many axes, or no axes at all. An isometry

can have pseudo-axes without having an axis and vice versa.

Example A. (Unique axis, no pseudo-axes) Consider the properly convex do-

main Ω in P(R3) which is an open ball in an affine chart. It is the projective model

of H2 and Aut(Ω) = PO(2, 1). If g ∈ SO(2, 1) has τΩ([g]) > 0 (i.e. is a hyperbolic

isometry in Isom(H2)), then [g] has a unique axis. This is essentially because Ω is a

strictly convex domain.

Example B. Consider the two-dimensional simplex S2.

Uncountably many axes, several pseudo-axes: Let g2 = [diag(λ1, λ2, λ2)] where

λ1 > λ2 > 0 and λ1λ
2
2 = 1. For 0 ≤ t ≤ 1, let Qt := (e1, te2 + (1 − t)e3). Then,

{Qt}t∈(0,1) is an uncountable family of axes of g2. There are three pseudo-axes:

[e1, e2], [e2, e3], and [e1, e3].

Several pseudo-axes, no axis: Let g1 := [diag(λ1, λ2, λ3)] where λ1 > λ2 > λ3 > 0

and λ1λ2λ3 = 1. The pseudo-axes of g1 are [e1, e2], [e2, e3] and [e1, e3]. But g1 does

not have an axis.

We conclude this section by establishing three lemmas that will be used in the

next section. Recall the notation E+
g , E

−
g from Section 2.6.1.

The first lemma is a simple consequence of Lemma IV.2.
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Lemma IV.6 ([Isl19, Lemma 5.8]). Suppose Ω is a properly convex domain, g ∈

Aut(Ω) with τΩ(g) > 0, and a, b, c are three fixed points of g. If a ∈ E+
g , b ∈ E−g and

c 6∈ E+
g ∪ E−g , then [a, c] ∪ [b, c] ⊂ ∂Ω.

Proof. If (a, c) ⊂ Ω, then (a, c) is an axis of g by definition. Then Lemma IV.2 implies

that c ∈ E−g which is a contradiction. Thus [a, c] ⊂ ∂Ω. Similarly, [b, c] ⊂ ∂Ω.

The next lemma shows that if g ∈ Aut(Ω) (with τΩ(g) > 0) has an axis (a, b) and

#(E+
g ) > 1, then FΩ(a) conatins a non-trivial projective line segment in ∂Ω.

Lemma IV.7 ([Isl19, Lemma 5.6]). Suppose Ω is a properly convex domain, g ∈

Aut(Ω) with τΩ(g) > 0, and g has an axis `g = (g+, g−) with g+ ∈ E+
g and g− ∈ E−g .

If u ∈ E+
g \ {g+}, then

diamFΩ(g+) (FΩ(g+) ∩ P(Span{g+, u})) > 0.

Remark IV.8.

(1) The conclusion of this lemma is that FΩ(g+) ∩ P(Span{g+, u}) is a non-trivial

projective line segment in ∂Ω containing g+.

(2) The same result is true if we replace g by g−1 and g+ by g−.

Proof. Let Ω̃ be a cone over Ω. Fix the lifts g̃, ũ, g̃+, g̃− of g, u, g+, g− such that

g̃ · Ω̃ = Ω̃ and ũ, g̃+, g̃− ∈ Ω̃. Since u ∈ E+
g , there exist a sequence of positive integers

{mk}k∈N such that

lim
k→∞

( g̃

λmax(g̃)

)mk
ũ = ũ.

Let p̃t :=
g̃+ + g̃−

2
+ tũ. Then π(p̃0) ∈ (g+, g−) ⊂ Ω. Since Ω is open, there exists
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ε > 0 such that pt := π(p̃t) ∈ Ω for all t ∈ (−ε, ε). Then, if t ∈ (−ε, ε)

pt,∞ := lim
k→∞

gmkpt

= lim
k→∞

π

(( g̃

λmax(g̃)

)mk
p̃t

)
= lim

k→∞
π

(
g̃+

2
+
(λmin(g̃)

λmax(g̃)

)mk g̃−
2

+ t
( g̃

λmax(g̃)

)mk
ũ

)

= π
(
g̃+ + 2tũ

)
.

Note that p0,∞ = g+. By Proposition II.12,

dFΩ(g+)(g+, pt,∞) ≤ lim inf
k→∞

dΩ(gmkp0, g
mkpt) = dΩ(p0, pt) <∞.

Thus for all t ∈ (−ε, ε) \ {0}, pt,∞ ∈ FΩ(g+) and pt,∞ 6= g+. This finishes the

proof.

The next lemma shows that if γ ∈ Aut(Ω) has an axis and #(E−γ ) = 1, then γ−1

is a proximal element in PGLd(R) (i.e.
λ1

λ2

(γ−1) > 1).

Lemma IV.9. Suppose Ω ⊂ P(Rd) is a Hilbert geometry and γ ∈ Aut(Ω) where

τΩ(γ) > 0, and γ has an axis. If #(E−γ ) = 1, then
λd−1

λd
(γ) > 1.

Remark IV.10. Replacing γ by γ−1, we see that #(E+
γ ) = 1 implies

λ1

λ2

(γ) > 1.

Proof. Suppose the axis of γ is (a, b) with a ∈ E+
γ and b ∈ E−γ . Let us fix Ω̃, a cone

over Ω. Fix lifts γ̃, ã and b̃ where ã, b̃ ∈ Ω̃ and γ̃ · Ω̃ = Ω̃. Set λmax := λmax(γ̃) and

λmin := λmin(γ̃). Since γ̃ · Ω̃ = Ω̃, b ∈ E−γ and b̃ ∈ Ω̃, we have

γ̃ · b̃ = λmin · b̃.

Similarly, γ̃ · ã = λmax · ã.

Since #(E−γ ) = 1, there is a one-dimensional eigenspace of γ̃ (namely Rb̃) and

a single Jordan block Jmin corresponding to eigenvalues of modulus λmin. Thus in
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order to prove
λd−1

λd
(γ) > 1, it is enough to show that the Jordan block Jmin has size

1. Suppose this is false. Then there exists w̃ ∈ Rd+1 such that if k ∈ Z, then

γ̃kw̃ = kλk−1
min b̃+ λkminw̃.(4.1)

Setting w := π(w̃), limk→∞ γ
kw = b. Since γka = a for all k, limk→∞ γ

k[a, w] = [a, b].

Fix p ∈ (a, b) ⊂ Ω. Then there exists yk ∈ (a, w) such that

lim
k→∞

γkyk = p.(4.2)

Since p ∈ Ω and Ω is open, γkyk ∈ Ω for k large enough. Thus, up to truncating

finitely many terms of the sequence {yk}, we can assume that for k ≥ 1,

yk ∈ (a, w) ∩ Ω.

Let us fix lifts ỹ′k of yk in Ω̃. Then ỹ′k = c′kã+ d′kw̃ where c′k, d
′
k ≥ 0 and c′k + d′k > 0.

Setting ỹk := ỹ′k/(c
′
k + d′k), we get ck, dk ∈ [0, 1] such that

ỹk := ckã+ dkw̃.(4.3)

Thus, upto passing to a subsequence, we can assume that c∞ := limk→∞ ck and

d∞ := limk→∞ dk exist. Then ỹ∞ := limk→∞ ỹk exists and set

y∞ := π(ỹ∞) = π(c∞ã+ d∞w̃).

We now claim that y∞ = w. If this is not true, then c∞ 6= 0. Then, there exists

k0 ∈ N such that ck > 0 for all k > k0 and limk→∞(dk/ck) = d∞/c∞ exists in R.

Then using equations (4.2) and (4.3),

p = lim
k→∞

γkyk = lim
k→∞

π

(
γ̃kỹk
ckλkmax

)
= lim

k→∞
π

(
ã+

dk
ck

(
k

λmax

(λmin

λmax

)k−1

b̃+
(λmin

λmax

)k
w̃

))
= π(ã) = a.
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This is a contradiction since p ∈ Ω while a ∈ ∂Ω. Thus y∞ = w.

Since yk ∈ Ω for k ≥ 1, w = y∞ implies that w ∈ Ω. Then for all k ∈ Z,

(4.4) [w, γkw] ⊂ Ω.

For t > 0, let

Ht :=
{
π
(
w̃ + rb̃

)
: −t ≤ r ≤ t

}
.

Let H := ∪t>0Ht and note that

H = P(Span{b, w}).

Observe that if k ∈ Z, then equation (4.1) implies that

γkw = π

(
γ̃kw̃

λkmin

)
= π

(
w̃ +

k

λmin

b̃

)
.

For every t > 0, set kt := dλminte. Then

Ht ⊂ [γ−(kt−1)w,w] ∪ [w, γktw].

Then

P(Span{w, b}) = H ⊂
⋃
t>0

Ht ⊂ Ω,

where the last containment comes from equation (4.4). Thus Ω contains the projec-

tive line H, which is impossible as Ω is a properly convex domain. Hence we have a

contradiction.

4.2 Definition of Rank One

In this section, we introduce the notion of rank one automorphisms for Hilbert

geometries following Ballmann-Brin’s definition for CAT(0) spaces [Bal82, BB95].
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Some of the dynamical properties of rank one automorphisms for Hilbert geometries

are reminiscent of Ballmann’s early results in rank-one Riemannian non-positive

curvature [Bal82, Bal95].

We first introduce the notion of half triangles which are analogues of half flats

used in the CAT(0) setting.

Definition IV.11. If Ω is a properly convex domain, then three points x, y, z ∈ ∂Ω

form a half triangle if

[x, y] ∪ [y, z] ⊂ ∂Ω and (x, z) ⊂ Ω.

A projective line segment (x, y) ⊂ Ω is said to be contained in a half triangle in Ω if

there exists a point z ∈ ∂Ω \ {x, y} such that x, y, z form a half triangle.

We now introduce the notion of rank one automorphisms for Hilbert geometries.

Definition IV.12. Suppose Ω is a properly convex domain. Then γ ∈ Aut(Ω) is

called rank one automorphism if:

(1) τΩ(γ) = log
λ1

λd
(γ) > 0 and γ has an axis

(2) none of the axes `γ of γ are contained in a half triangle in Ω.

A projective line segment ` ⊂ Ω is a rank one axis if ` is the axis of a rank one

automorphism γ ∈ Aut(Ω).

Using the definition of rank one automorphisms, we now introduce rank one

Hilbert geometries and rank one groups.

Definition IV.13.

(1) A pair (Ω,Λ) is called a rank one Hilbert geometry if Ω is a properly convex

domain, Λ ≤ Aut(Ω) is a discrete subgroup, and Λ contains a rank one auto-

morphism.
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(2) A discrete group Λ ≤ PGLd(R) is called a rank one group if there exists a

Hilbert geometry ΩΛ such that (ΩΛ,Λ) is a rank one Hilbert geometry.

A prime example of a rank one Hilbert geometry is the projective model Ω0 ⊂

P(R3) of the real hyperbolic space H2. Consider a discrete subgroup Λ1 ≤ Aut(Ω0) =

PO(2, 1) that contains a hyperbolic isometry (i.e. it has a positive translation

distance in H2). Then (Ω0,Λ1) is a rank one Hilbert geometry. A prime non-

example of rank one is the two-dimensional projective simplex S2. Suppose Λ2 :=

{[diag(2m, 2n, 2−(m+n))] : m,n ∈ Z} ≤ PGL3(R). Then (S2,Λ2) is non-rank one

Hilbert geometry.

4.3 Properties of Rank One Automorphisms

In this section, we will establish some key geometric and dynamical properties of

rank one automorphisms. We will use the following terminology: g ∈ PGLd(R) is

called biproximal if
λ1

λ2

(g) > 1 and
λd−1

λd
(g) > 1.

Proposition IV.14 ([Isl19, Proposition 6.3]). Suppose γ is a rank one automor-

phism with a rank-one axis `γ = (a, b) where a ∈ E+
γ and b ∈ E−γ . Then:

(1) γ is biproximal,

(2) `γ is the unique axis of γ in Ω,

(3) the only fixed points of γ in Ω are a and b,

(4) if z′ ∈ ∂Ω \ {a, b}, then (a, z′) ∪ (b, z′) ⊂ Ω,

(5) if z ∈ ∂Ω \ {a, b}, then neither (a, z) nor (b, z) is contained in a half triangle in

Ω.

Proof. Let Ω̃ be cone above Ω. For the rest of this proof, fix lifts γ̃, ã and b̃ where

ã, b̃ ∈ Ω̃ and γ̃ · Ω̃ = Ω̃. Set λmax := λmax(γ̃) and λmin := λmin(γ̃). Note that ã is an
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eigenvector of γ̃ corresponding to the eigenvalue λmax or −λmax. But since γ̃ · Ω̃ = Ω̃,

γ̃ · ã = λmax · ã.

Thus a ∈ E+
γ and #(E+

γ ) ≥ 1. Similarly, γ̃ · b̃ = λmin · b̃, b ∈ E−γ and #(E−γ ) ≥ 1.

(1) In order to prove that γ is biproximal, we first prove the following.

Claim IV.15. #(E+
γ ) = #(E−γ ) = 1.

Proof of Claim. It suffices to prove the claim for E+
γ since the same arguments

with γ replaced by γ−1 implies the result for E−γ . Now suppose the claim is false and

there exists u ∈ E+
γ \ {a}. Then Lemma IV.7 implies that there exist z−, z+ ∈ ∂Ω

such that a ∈ (z−, z+) and

FΩ(a) ∩ P(Span{a, u})) = (z−, z+).

Then, Iz :=
[
z−, z+

]
is the maximal projective line segment in ∂Ω containing both

z− and z+.

Since γ is a rank-one isometry, its axis (a, b) cannot be contained in a half triangle

in Ω. But [a, z+] ⊂ ∂Ω which implies that (z+, b) ⊂ Ω. Similarly, (z−, b) ⊂ Ω. Choose

x+ ∈ (z+, b) ∩Ω and x− ∈ (z−, b) ∩Ω. By Proposition II.33 part (3), there exists an

unbounded sequence {mk} of positive integers such that

lim
k→∞

(
γ
∣∣
E+
γ

)mk
= IdE+

γ
.

Since z+ ∈ P(Span{a, u}), z+ ∈ E+
γ . Fix a lift z̃+ ∈ Ω̃ of z+. Then

lim
k→∞

(
γ̃

λmax

)mk
z̃+ = z̃+.

On the other hand,
(

γ̃
λmin

)mk
b̃ = b̃. Then, since x+ ∈ (z+, b),

lim
k→∞

γmkx+ = z+.
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Similarly

lim
k→∞

γmkx− = z−.

Since limk→∞ dΩ(γmkx+, γ
mkx−) = dΩ(x+, x−) < ∞, Proposition II.12 implies that

z+ ∈ FΩ(z−). Thus there is an open projective line segment in ∂Ω containing both

z+ and z−. This contradicts the maximality of Iz and finishes the proof of Claim

IV.15.

By the above claim #(E+
γ ) = #(E−γ ) = 1 where τΩ(γ) > 0 and γ has an axis

(a, b). Then Lemma IV.9 implies that γ is biproximal.

(2) This follows from biproximality of γ.

(3) Suppose c is a fixed point of γ in ∂Ω that is distinct from both a and b. By part

(1) of this Proposition, γ is biproximal. Thus c 6∈ E+
γ ∪ E−γ . Then, by Lemma IV.6,

[a, c] ⊂ ∂Ω and [b, c] ⊂ ∂Ω. Thus, the axis `γ = (a, b) of γ is contained in a half

triangle, contradicting that γ is a rank one automorphism.

(4) Let v ∈ ∂Ω \ {a, b}. Suppose [a, v] ⊂ ∂Ω. Since γ is biproximal, there exists a γ

invariant decomposition of Rd given by:

Rd = Rã⊕ Rb̃⊕ Ẽ.

Choose any lift ṽ of v. Then ṽ decomposes as

ṽ = c1ã+ c2b̃+ ṽ0

where c1, c2 ≥ 0 and ṽ0 6= 0 (since v ∈ ∂Ω \ {a, b}). If c2 6= 0, then limn→∞ γ
−nv = b,

that is, limn→∞ γ
−n[a, v] = [a, b]. Since [a, v] ⊂ ∂Ω (by assumption) and ∂Ω is

Aut(Ω) invariant, [a, b] ⊂ ∂Ω. This is a contradiction since (a, b) ⊂ Ω. Thus, c2 = 0.

Set λẼ := λmax

(
γ̃
∣∣
Ẽ

)
. Since γ is biproximal, λẼ < λmax. Then, for every n > 0,( γ̃

λẼ

)−n
ṽ = c1

(λmax

λẼ

)−n
ã+

( γ̃∣∣
Ẽ

λẼ

)−n
ṽ0.
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Then, up to passing to a subsequence, we can assume that v∞ := limn→∞ γ
−nv exists

and v∞ ∈ EΩ, where EΩ = Ω ∩ P
(
Ẽ
)
. Then EΩ is a non-empty convex compact

subset of Rd and Brouwer’s fixed point theorem implies that γ has a fixed point in

EΩ. But EΩ ⊂ Ω \ {a, b}. This contradicts part (3). Hence, (a, v) ⊂ Ω. Similarly we

can show that (b, v) ⊂ Ω.

(5) This is a consequence of part (4).

We can prove a simpler characterization of rank one automorphisms for co-compact

actions.

Lemma IV.16 ([Isl19, Proposition 6.4]). Suppose Ω is a properly convex domain,

Λ ≤ Aut(Ω) is a discrete group that acts co-compactly on Ω, and γ ∈ Λ with τΩ(γ) >

0. If γ has an axis, then the following are equivalent:

(1) γ is biproximal.

(2) none of the axes of γ are contained in half triangles in Ω.

(3) γ is a rank one automorphism.

Proof. Note that (2) ⇐⇒ (3) is by definition (cf. IV.12) and (3) =⇒ (1) is

Proposition IV.14 part (1). We will prove (1) =⇒ (2), under the assumption that

Ω/Λ is compact.

Let (a, b) be the axis of γ with a ∈ E+
γ and b ∈ E−γ . We first show that γ has no

other fixed points in ∂Ω except a and b. If this is not true, let v be such a fixed point

of γ. Since γ is biproximal, v 6∈ E+
γ ∪ E−γ . Then Lemma IV.6 implies that

[a, v] ∪ [v, b] ⊂ ∂Ω.(4.5)

Let Aγ := 〈γ〉. Recall the notation MinΩ(Aγ) = ∩h∈Aγ{x ∈ Ω : dΩ(x, h ·x) = τΩ(h)}.

Claim: ConvHullΩ{a, v, b} ⊂ MinΩ(Aγ).
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Proof of Claim. If x ∈ ConvHullΩ{a, v, b}, there exists y ∈ (a, b) such that x ∈ [y, v).

Since γv = v, γx ∈ [γy, v). Let Lx′,x′′ denote the Euclidean line in the affine chart

through x′ and x′′. Then Lv,a, Lv,y, Lv,γy and Lv,b are four distinct lines concurrent

at v. Both Lx,γx and Ly,γy intersect these four lines and do not pass through v. Then,

by Proposition II.2, dΩ(x, γx) = dΩ(y, γy). But since y ∈ (a, b), dΩ(y, γy) = τΩ(γ)

which implies that x ∈ MinΩ(Aγ). This finishes the proof of this claim.

The group Λ acts co-compactly on Ω. Then, Theorem I.18 implies that CΛ(Aγ)

acts co-compactly on ConvHullΩ(MinΩ(Aγ)). Fix p ∈ (a, b) and choose vn ∈ [p, v)

such that limn→∞ vn = v. By the above claim, vn ∈ MinΩ(Aγ). Then there exists

hn ∈ CΛ(Aγ) such that q := limn→∞ hnvn exists in Ω. Thus limn→∞ dΩ(h−1
n q, vn) = 0.

Then Proposition II.12 implies that, up to passing to a subsequence,

lim
n→∞

h−1
n q = lim

n→∞
vn = v.

Pick a point q′ ∈ (a, b). Up to passing to a subsequence, v′ := limn→∞ h
−1
n q′ exists

in Ω. Since limn→∞ dΩ(h−1
n q, h−1

n q′) = dΩ(q, q′), Proposition II.12 implies that v ∈

FΩ(v′). Now we show that v′ ∈ {a, b}. Since hn ∈ CΛ(Aγ), hn(a, b) is an axis of

γ. As γ is biproximal, Lemma IV.2 implies that hn(a, b) = (a, b). Thus v′ ∈ {a, b}.

Hence

v ∈ FΩ(a) ∪ FΩ(b).

By equation 4.5, [a, v]∪ [v, b] ⊂ ∂Ω. Now, by Proposition II.11 part (4), v ∈ FΩ(a)

and [v, b] ⊂ ∂Ω implies that [a, b] ⊂ ∂Ω. This is a contradiction as (a, b) ⊂ Ω. Thus,

v 6∈ FΩ(a). By a similar reasoning, v 6∈ FΩ(b). Thus we have a contradiction.

So we have shown that if γ has an axis (a, b) and is biproximal, then γ has no

fixed points in ∂Ω other than a and b. Then the proof of Proposition IV.14 part (4)

goes through verbatim. Thus (a, z) ∪ (z, b) ⊂ Ω for all z ∈ ∂Ω \ {a, b}, that is, the
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axis (a, b) cannot be contained in a half triangle in Ω. This finishes the proof.

4.4 Rank One Axis and Slim Triangles

A projective geodesic triangle in a properly convex domain Ω is defined as follows:

if v1, v2, v3 ∈ Ω, let ∆(v1, v2, v3) := [v1, v2] ∪ [v2, v3] ∪ [v3, v1]. Recall the notion of

slim triangles in a geodesic metric space from III.5. In this section, we will prove

that any projective geodesic triangle in Ω with one of its edges on a rank one axis `

is D`-slim for some constant D`.

Theorem IV.17 ([Isl19, Theorem 8.1]). If ` is a rank one axis in a properly convex

domain Ω, then there exists a constant D` ≥ 0 such that: if ∆(x, y, z) is a projective

geodesic triangle in Ω with [y, z] ⊂ `, then ∆(x, y, z) is D`-slim.

Remark IV.18. The constant D` depends only on the axis ` (and not on a rank one

automorphism whose axis is `).

In order to simplify the proof, we first establish a simple criteria for determining

when a geodesic triangle in Ω is D-slim.

Lemma IV.19 ([IZ19, Lemma 13.8]). If R ≥ 0 and ∆(x, y, z) is projective geodesic

triangle in Ω with [y, z] ⊂ NR
(
[x, y] ∪ [x, z]

)
, then ∆(x, y, z) is (2R)-slim.

Proof of Lemma. Since [y, z] ⊂ NR
(
[x, y] ∪ [x, z]

)
, there exists myz ∈ [y, z], mx,y ∈

[x, y] and mxz ∈ [x, z] such that dΩ(myz,mxy) ≤ R, and dΩ(myz,mxz) ≤ R. By

Proposition II.16, dΩ
Hauss([y,myz], [y,mxy) ≤ R , dΩ

Hauss([z,myz], [z,mxz]) ≤ R, and

dΩ
Hauss([x,mxy], [x,mxz]) ≤ 2R. Hence, ∆(x, y, z) is (2R)-slim. This finishes the

proof of Lemma IV.19.

Now we begin the proof of the theorem. Fix a properly convex domain Ω and a

rank one axis ` in Ω. The remark following the theorem will follow as a consequence
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of the arguments we give during the course of the proof - we only use the fact that

there is some rank one automorphism γ that translates along `; we do not require

any other property of γ.

Note that Lemma IV.19 implies that is enough to prove the following proposition.

Proposition IV.20. If ` is a rank one axis, then there exists a constant B` with the

following property: if ∆(x, y, z) is any projective geodesic triangle in Ω with [y, z] ⊂ `,

then [y, z] ⊂ NB`
(
[x, y]∪ [x, z]

)
. Moreover, this constant B` depends only on the rank

one axis `.

We spend the rest of this section proving this result. The moreover statement will

follow from the proof since the proof works independent of the choice of the rank

one automorphism which has ` as its axis.

Suppose the proposition is false. Then for every n ≥ 0, there exists a sequence

of geodesic triangles ∆(an, bn, cn) ⊂ Ω with [an, bn] ⊂ `, cn ∈ Ω \ ` and en ∈ (an, bn)

such that

dΩ(en, [cn, an]) ≥ n and dΩ(en, [cn, bn]) ≥ n.

Since ` is a rank one axis, there exists a rank one automorphism γ′ whose axis is `.

Thus, translating ∆(an, bn, cn) by < γ′ >, we can assume that e := limn→∞ en exists

and e ∈ `. Up to passing to a subsequence, we can assume that a := limn→∞ an,

b := limn→∞ bn and c := limn→∞ cn exist. Observe that:

dΩ(e, [a, c] ∪ [c, b]) = lim
n→∞

dΩ(en, [an, cn] ∪ [cn, bn]) ≥ lim
n→∞

n =∞.

Thus [a, c] ∪ [c, b] ⊂ ∂Ω. But (a, b) ⊂ Ω since e ∈ (a, b) ∩ Ω. Thus a, b, c form a half

triangle in Ω.

But since an, bn ∈ `, ` = (a, b). Thus the rank one axis ` is contained in a half

triangle, which is a contradiction. This concludes the proof the proposition.
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CHAPTER V

Acylindrical Hyperbolicity of Rank One Groups

This chapter is based on results that appear in [Isl19].

5.1 Outline

In this chapter, we will prove Theorem I.5 which we now restate.

Theorem I.5. If Λ is a rank one group, then either Λ is virtually cyclic or Λ is an

acylindrically hyperbolic group.

The proof of this theorem involves two steps. The first (and the key) step is

proving the following result.

Theorem I.3. Suppose Ω ⊂ P(Rd) is a properly convex domain and PSΩ := {[x, y] :

x, y ∈ Ω}. An element g ∈ Aut(Ω) is contracting for (Ω,PSΩ) if and only g is a

rank one automorphism.

Remark V.1. An element g ∈ Aut(Ω) is contracting for (Ω,PSΩ) if and only if it

is contracting in the sense of BF, as PSΩ is a geodesic path system (cf. III.26).

In the second step, we observe that Theorem I.3 implies that a rank one group Λ

necessarily contains at least one contracting element. Then Theorem III.22 implies

Theorem I.5.
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The chapter will be structured as follows. In Section 5.2, we prove that rank one

automorphisms are contracting. We prove the converse in Section 5.3. These two

sections taken together proves Theorem I.3 - this is done in Section 5.4. Then, we

discuss several applications of Theorem I.5 in Section 5.5:

(1) Cohomological characterization of rank one groups and infinite dimensionality

of group of quasi-morphisms (Section 5.5.1)

(2) Asymptotic counting results for conjugacy classes (Section 5.5.2)

(3) Genericity of rank one automorphisms from the viewpoint of random walks

(Section 5.5.3)

5.2 Rank one automorphisms are contracting

Theorem V.2 ([Isl19, Theorem 10.1]). If γ ∈ Aut(Ω) is a rank one automorphism,

then γ is a contracting element for (Ω,PSΩ).

We devote the rest of this section for the proof of this theorem. The key step will

be part (2) of Lemma V.3 which shows that a rank one axis is PSΩ-contracting.

First, we construct a suitable projection map onto the rank one axis. Suppose `

is a rank one axis parametrized by σ : R → Ω to have unit speed. Let π` be the

closest-point projection onto the closed convex set ` (see Definition II.28). If p ∈ Ω,

there exist T−p , T
+
p ∈ R with T−p ≤ T+

p such that π`(p) = [σ(T−p ), σ(T+
p )]. Define the

map π : Ω→ ` via

π(p) := σ

(
T−p + T+

p

2

)
.

Lemma V.3. If ` ⊂ Ω is a rank one axis, then there exists C` ≥ 0 such that

(1) if x ∈ Ω and z ∈ `, then there exists pxz ∈ [x, z] such that

dΩ

(
π(x), pxz

)
≤ 3 C` .
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(2) ` is PSΩ-contracting with constant C` (and the map π).

Proof. (1) Let x ∈ Ω and z ∈ `. Set C` ≥ D`, where D` is the constant from Theorem

IV.17. By Theorem IV.17, ∆(x, π(x), z) is D`-thin. Then there exists p ∈ [x, π(x)],

q ∈ [π(x), z] and r ∈ [z, x] such that

dΩ(q, p) ≤ D` and dΩ(q, r) ≤ D` .

Then

dΩ

(
π(x), p

)
= dΩ

(
π(x), x

)
− dΩ

(
p, x
)

≤ dΩ

(
q, x
)
− dΩ

(
p, x
)
,

≤ dΩ

(
p, q
)
≤ D` .

Thus

dΩ

(
π(x), q

)
≤ dΩ

(
π(x), p

)
+ dΩ

(
q, p
)
≤ 2D` .

Set pxz := r. Then

dΩ

(
π(x), pxz

)
≤ dΩ

(
π(x), q

)
+ dΩ

(
q, r
)
≤ 3D` ≤ 3C`.

(2) Let us label the endpoints of ` such that ` := (a, b). Observe that it suffices

to verify part (1b) in Definition III.20. Suppose that it is not satisfied. Then, for

n ≥ 1, there exists xn, yn ∈ Ω such that

dΩ

(
π(xn), π(yn)

)
≥ n

and

dΩ

(
[xn, yn], π(xn)

)
≥ n.

Since ` is a rank one axis, fix a rank one automorphism γ whose axis is `. Then

γ ◦ π = π ◦ γ. Hence, up to translating xn and yn using elements in < γ >, we can
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assume that α := limn→∞ π(xn) exists in ` ⊂ Ω. Up to passing to a subsequence,

we can further assume that the following limits exist in Ω: x := limn→∞ xn, y :=

limn→∞ yn, β := limn→∞ π(yn). Then limn→∞[xn, yn] = [x, y]. We will now show that

(5.1) [x, y] ⊂ ∂Ω.

This follows from the following estimate:

dΩ(α, [x, y]) = lim
n→∞

dΩ(α, [xn, yn]) ≥ lim
n→∞

(
dΩ

(
π(xn), [xn, yn]

)
− dΩ

(
π(xn), α

))

≥ lim
n→∞

(
n− dΩ

(
π(xn), α

))
=∞.

We also observe that:

dΩ(α, β) = lim
n→∞

dΩ

(
α, π(yn)

)
≥ lim

n→∞

(
dΩ

(
π(xn), π(yn)

)
− dΩ

(
π(xn), α

))

≥ lim
n→∞

(
n− dΩ

(
π(xn), α

))
=∞.

Thus β ∈ ∂Ω. However, since β ∈ ` = [a, b], β ∈
{
a, b
}

. Thus, up to switching labels

of endpoints of `, we can assume that

(5.2) β = b.

Claim V.4. x = y = b.

Proof of Claim We first show that y = b. Since yn ∈ Ω and α ∈ `, part (1) of Lemma

V.3 implies that there exists pn ∈ [yn, α] such that

dΩ

(
pn, π(yn)

)
≤ 3 C` .

Up to passing to a subsequence, we can assume p := limn→∞ pn exists in Ω. Then,

by Proposition II.12, p ∈ FΩ(β). By equation (5.2), β = b which implies p ∈ FΩ(b).

Since b is an endpoint of the rank one axis `, part (4) of Proposition IV.14 implies
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that FΩ(b) = b. Thus p = b. On the other hand, since pn ∈ [yn, α], we have p ∈ [y, α].

Since p = b, p ∈ ∂Ω. Thus,

p ∈ [α, y] ∩ ∂Ω =
{
y
}
.

Hence,

y = p = b.

We now show that x = b. By (5.1), [x, y] ⊂ ∂Ω. But since y = b, this contradicts

part (4) of Proposition IV.14 unless x = y. Hence x = y = b. This concludes the

proof of Claim V.4.

Consider points xn ∈ Ω and π(yn) ∈ `. By part (2) of Lemma V.3, there exists

qn ∈
[
xn, π(yn)

]
such that dΩ

(
π(xn), qn

)
≤ 3 C` . Up to passing to a subsequence,

we can assume that q := limn→∞ qn exists in Ω. Then by Proposition II.12, q ∈

FΩ(α) = Ω. Thus limn→∞[xn, π(yn)] is a projective line segment containing q and

hence intersects Ω . However, limn→∞[xn, π(yn)] = [x, β] = {b} ⊂ ∂Ω which is a

contradiction. This shows that the rank one axis ` is PSΩ-contracting.

We will now use Lemma V.3 to prove Theorem V.2. Suppose γ ∈ Aut(Ω) is a rank

one automorphism. Then τΩ(γ) > 0 which implies that γ has infinite order. Since

γ is a rank one automorphism, part (2) of Proposition IV.14 implies that γ has a

unique axis `γ. Fix x0 ∈ `γ. Then < γ > x0 is a quasi-geodesic embedding of Z

in Ω. Part (3) of Lemma V.3 implies that `γ is a PSΩ-contracting set. Then `γ is

< γ >-invariant, contains x0, and has a co-bounded γ action. Thus γ is a contracting

element for (Ω,PSΩ) (see Definition III.20).
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5.3 Contracting automorphisms are rank one

Theorem V.5 ([Isl19, Theorem 11.1]). If γ ∈ Aut(Ω) is a contracting element for

(Ω,PSΩ), then γ is a rank one automorphism.

The rest of this section is devoted to the proof of this theorem. We begin by

recalling a result of Sisto which says that contracting elements are ‘Morse’ in the

following sense.

Proposition V.6 ([Sis18, Lemma 2.8]). If PS is a path system on (X, d) and A ⊂ X

is PS-contracting with constant C, then there exists a constant M(C) such that: if

θ is a (C,C)-quasi-geodesic with endpoints in A, then θ ⊂ NM(C)(A) :=
{
x ∈ X :

d(x,A) < M(C)
}
.

We use this Morse property to show that a contracting element has at least one

axis and none of the axes are contained in half triangles in ∂Ω. The first step is the

next lemma.

Lemma V.7. Suppose γ ∈ Aut(Ω) is a contracting element. If there exist x0 ∈ Ω

and two sequences of positive integers {nk}k∈N and {mk}k∈N such that

p := lim
k→∞

γnkx0 belongs to E+
γ

and

q := lim
k→∞

γ−mkx0 belongs to E−γ ,

then

(1) (p, q) ⊂ Ω,

(2) (p, q) is not contained in any half triangle in ∂Ω.

Proof. Since γ is contracting, by Proposition III.21, τΩ(γ) > 0. Thus results of Section

2.6.1 apply.
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(1) Suppose this is false. Then [p, q] ⊂ ∂Ω. Choose any r ∈ (p, q). Set Lk :=[
γ−mkx0, γ

nkx0

]
. Then L∞ := limk→∞ Lk = [q, p]. Thus we can choose rk ∈ Lk such

that limk→∞ rk = r.

Since γ is contracting, (2) of Proposition III.21 implies that Amin(x0) :=< γ > x0

is PSΩ-contracting. Since the Lk are geodesics with endpoints in Amin(x0), Propo-

sition V.6 implies that there exists a constant M such that for all k ≥ 1, Lk ⊂

NM(Amin(x0)). Thus for every k ≥ 1, there exists γtkx0 ∈ Amin(x0) such that

(5.3) dΩ(rk, γ
tkx0) ≤M.

Up to passing to a subsequence, we can assume that

t := lim
k→∞

γtkx0

exists in Ω. Since rk leaves every compact subset of Ω, {tk} is an unbounded sequence.

Then by Proposition II.33 part (1), t ∈
(
E+
γ tE−γ

)
. On the other hand, by Proposition

II.12 and (5.3), t ∈ FΩ(r) ⊂ ∂Ω. We now analyze the two possibilities:

Possibility 1: Suppose t ∈
(
E−γ ∩ ∂Ω

)
.

Consider the sequence {γnkr}∞k=1. Up to passing to a subsequence, we can assume

that r∞ := limk→∞ γ
nkr exists in ∂Ω. Since r ∈ (p, q) with nk > 0, p ∈ E+

γ and

q ∈ E−γ , we observe that

(5.4) r∞ = lim
k→∞

γnkr = lim
k→∞

γnkp ∈ E+
γ .

Recall however that r ∈ FΩ(t). Since t ∈ E−γ and r∞ = limk→∞ γ
nkr, part (2) of

Proposition II.34 implies that either r∞ ∈ E−γ or r∞ ∈ ∂Ω \ (E+
γ t E−γ ). Both of

these contradict equation (5.4).

Possibility 2: Suppose t ∈
(
E+
γ ∩ ∂Ω

)
.

We can repeat the same argument as in Possibility 1 by considering the sequence
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{γ−mkr}∞k=1 and arrive at a contradiction (we need a version of Proposition II.34

with γ replaced by γ−1; see the comments preceding the proposition).

The contradiction to both of these possibilities finishes the proof of (1).

(2) By part (1), (p, q) ⊂ Ω. Suppose there exists z ∈ ∂Ω such that the points p,

q and z form a half triangle. Choose any sequence of points zk ∈ [γx0, z] ∩ Ω such

that limk→∞ zk = z. Since γ is contracting, part (2) of Proposition III.21 implies

that Amin(x0) =< γ > x0 is PSΩ-contracting (with constant, say C). Thus there

exists a projection π : Ω→ Amin(x0) that satisfies Definition III.20. We will analyze

the sequence π(zk). Since π(zk) ∈ Amin(x0) =< γ > x0, there exists a sequence of

integers {ik} such that π(zk) = γikx0. Up to passing to a subsequence, we can assume

that the following limit exists in Ω,

(5.5) w := lim
k→∞

π(zk) = lim
k→∞

γikx0.

Claim V.8. w ∈ (E+
γ t E−γ ) ∩ ∂Ω.

Proof of Claim. Suppose w ∈ Ω. Then, by (5.5), limk→∞ dΩ(w, π(zk)) = 0. Since

γnkx0 ∈ Amin(x0), (1a) of Definition III.20 implies that dΩ(γnkx0, π(γnkx0)) ≤ C.

This implies that

lim
k→∞

dΩ(π(zk), π(γnkx0) ≥ lim
k→∞

(
dΩ(w, γnkx0)− dΩ(w, π(zk))− dΩ(γnkx0, π(γnkx0))

)
≥ lim

k→∞
dΩ(w, γnkx0)− C =∞

Thus, for k large enough, dΩ

(
π(zk), π(γnkx0)

)
≥ C. Since π is a projection into a

PSΩ-contracting set, (1b) of Definition III.20 implies that

dΩ

(
π(zk), [zk, γ

nkx0]
)
≤ C.
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Thus

dΩ(w, [z, p]) = lim
k→∞

dΩ(π(zk), [zk, γ
nkx0]) ≤ C.

Then [z, p] ∩ Ω 6= ∅. But since p, q and z form a half triangle, [z, p] ⊂ ∂Ω. This is a

contradiction, hence w ∈ ∂Ω.

Since w ∈ ∂Ω and w = limk→∞ γ
ikx0 with x0 ∈ Ω, Proposition II.33 part (1)

implies that w ∈ E+
γ t E−γ . This concludes the proof of this claim.

Claim V.9. w ∈ FΩ(z).

Proof of Claim: Since w = limk→∞ π(zk) ∈ ∂Ω and π(γx0) ∈ Ω, limk→∞ dΩ(π(zk), π(γx0)) =

∞. Thus, for k large enough, dΩ

(
π(zk), π(γx0)

)
≥ C. Again, as π is a projection

into a PSΩ-contracting set, we have

dΩ(π(zk), [γx0, zk]) ≤ C.

Choose ηk ∈ [γx0, zk] such that dΩ(π(zk), ηk) ≤ C. Up to passing to a subsequence,

we can assume that η := limk→∞ ηk exists. By Proposition II.12, η ∈ FΩ(w). By

Proposition II.11(1), η ∈ ∂Ω. But η ∈ [γx0, z], which intersects ∂Ω at exactly one

point, namely z. Thus, η = z implying z ∈ FΩ(w), or equivalently, w ∈ FΩ(z). This

concludes the proof of Claim V.9.

Since p, q, z form a half triangle, [q, z] ∪ [p, z] ⊂ ∂Ω. By Claim V.9, w ∈ FΩ(z).

Then part (4) of Proposition II.11 implies that

(5.6) [p, w] ∪ [q, w] ⊂ ∂Ω.

By Claim V.8, w ∈ E+
γ t E−γ . We will now show that (5.6) contradicts this.

Suppose w ∈ E+
γ . Since limk→∞ γ

ikx0 = w ∈ E+
γ and limk→∞ γ

−mkx0 = q ∈ E−γ ,

then part (1) of Lemma V.7 implies that (w, q) ⊂ Ω. This contradicts (5.6). On the

other hand, if we suppose w ∈ E−γ , then similar arguments show that (p, w) ⊂ Ω
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which again contradicts (5.6). These contradictions show that p, q and z cannot

form a half triangle.

We now prove Theorem V.5 using the above lemma. Let γ ∈ Aut(Ω) be a con-

tracting element for (Ω,PSΩ). Then the following will imply that γ is a rank one

automorphism:

Translation distance τΩ(γ) > 0: This is part (1) of Proposition III.21.

γ has an axis: By Proposition IV.5, there exists (a, b) ⊂ Ω where a, b are fixed

points of γ, a ∈ E+
γ , and b ∈ E−γ . We will show that (a, b) ⊂ Ω, hence it is an axis

of γ.

Fix x0 ∈ Ω. Proposition II.33 part (1) implies {γnx0 : n ∈ N} has an accumulation

point p in E+
γ and {γ−nx0 : n ∈ N} has accumulation point q in E−γ . By part (1)

of Lemma V.7, (p, q) ⊂ Ω. Moreover, since a, p ∈ E+
γ and E+

γ ⊂ ∂Ω (cf. II.33),

[a, p] ⊂ ∂Ω. Similarly, [b, q] ⊂ ∂Ω.

By Part (2) of Lemma V.7, (p, q) ⊂ Ω is not contained in any half triangle. Since

[b, q] ⊂ ∂Ω, this implies that (p, b) ⊂ Ω. Let y0 ∈ (p, b). By Proposition II.33 part (3),

there exists a sequence of positive integers {nk} such that limk→∞

(
γ|E+

γ

)nk
= IdE+

γ
.

Then limk→∞ γ
nkp = p which implies limk→∞ γ

nky0 = p ∈ E+
γ . On the other hand,

limk→∞ γ
−ky0 = b ∈ E−γ . Then, by Part (2) of Lemma V.7, (p, b) ⊂ Ω cannot be

contained in a half triangle. But we know that [a, p] ⊂ ∂Ω. Thus, (a, b) ⊂ Ω.

None of the axes of γ are contained in a half triangles in ∂Ω: Let (a′, b′) ⊂ Ω

be any axis of γ with a′ ∈ E+
γ and b′ ∈ E−γ . If z0 ∈ (a′, b′), then limk→∞ γ

kz0 = a′

and limk→∞ γ
−kz0 = b′. Then, by Part (2) of Lemma V.7, (a′, b′) cannot be contained
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in a half triangle in Ω.

5.4 Proof of Theorem I.5

Since Λ is a rank one group, Λ contains a rank one automorphism. Then Theorem

I.3 implies that Λ contains a contracting element for (Ω,PSΩ). The result follows

from Theorem III.22.

5.5 Applications of Theorem I.5

5.5.1 Cohomological Characterization of Rank One and Quasi-morphisms

The goal of this section is to prove Theorem I.8 and its generalizations. In order

to state our theorem, we first introduce some definitions from group cohomology.

See [BBF16, Section 1] or [Fri17] for details.

Suppose G is a group, (E, || · ||) is a complete normed R-vector space, and ρ :

G→ U(E) is a unitary representation. If F : G→ E, let

∆(F ) := sup
g,g′∈G

||F (gg′)− F (g)− ρ(g)F (g′)||.

F is called a cocycle if ∆(F ) = 0 and a quasi-cocycle if ∆(F ) is finite. We say that

two quasi-cocyles are equivalent if they differ by a bounded function (on G, taking

values in E) or a cocycle. The set of equivalence classes of quasi-cocycles is denoted

by Q̃C(G; ρ). Group cohomology of G affords a different interpretation of Q̃C(G; ρ):

it is the kernel of the comparison map H2(G, ρ) → H2(G; ρ) modulo the subspace

generated by bounded functions and cocycles.

We now mention two important special cases of Q̃C(G; ρ).

� Suppose ρtriv : G → R is the trivial representation. Then cocycles are homo-

morphisms of G into R and quasi-cocycles are quasi-morphisms of G. Then
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Q̃C(G; ρ) recovers a classical object Q̃H(G), the space of ‘non-trivial’ quasi-

morphisms of G (see the definitions preceding Theorem I.8).

� Suppose G is a discrete group and ρpreg : G → U (`p(G)) is the left regular

representation of G on `p(G). When 1 < p < ∞, `p(G) is a uniformly convex

Banach space and Q̃C(G; ρpreg) will be of interest to us.

This group cohomology data often carries important geometric information. For

non-positively curved Riemannian manifolds, Bestvina-Fujiwara proves:

Theorem V.10 ([BF09, Theorem 1.1]). Suppose M is a complete finite volume

Riemannian manifold of non-positive curvature such that Γ := π1(M) is neither

virtually cyclic nor is a product of two infinite groups. Then, either dim(Q̃H(Γ)) =

∞ or M̃ is a higher rank symmetric space.

A more general result is proven in [BBF16].

Theorem V.11. ([BBF16, Corollary 1.2]) If G is an acylindrically hyperbolic group,

E 6= 0 is a uniformly convex Banach space, ρ : G → U(E) is a unitary representa-

tion and any maximal finite normal subgroup of G has a non-zero fixed vector, then

dim
(
Q̃C(G; ρ)

)
=∞.

On the other hand, higher rank lattices have no ‘non-trivial’ quasi-morphisms.

Theorem V.12 ( [BM02, Theorem 21]). Suppose Γ ≤ G is an irreducible lattice in

a semi-simple Lie group G with finite center. Then Q̃H(Γ) = 0.

Proof of Theorem I.8 and Generalizations

In the same spirit as Riemannian non-positive curvature, we now prove a coho-

mological characterization of rank one for properly convex domains.
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Theorem V.13 ([Isl19, Theorem 13.1]). Suppose Λ is torsion-free rank one group

and ρ is any unitary representation of Λ on a uniformly convex Banach space E 6= 0.

Then either Λ is virtually cyclic or dim
(
Q̃C(Λ; ρ)

)
=∞.

Proof. If Λ is not virtually cyclic, then Theorem I.5 implies that Λ is an acylindrically

hyperbolic group. Since Λ is torsion-free, there are no finite normal subgroups. The

claim then follows from Theorem V.11.

This theorem implies some straightforward corollaries.

Corollary V.14 ([Isl19, Theorem 1.6]). Suppose Λ is a torsion-free rank one group

and Λ is not virtually cyclic. Then

(1) dim
(
Q̃H(Λ)

)
=∞, and

(2) dim
(
Q̃C(Λ; ρpreg)

)
=∞ if 1 < p <∞.

Note that part (1) of this Corollary is Theorem I.8. Theorem I.8, along with

Theorem V.12 and the higher rank rigidity theorem I.7, proves Corollary I.9 which

we restate here.

Corollary I.9. Suppose Ω is an irreducible properly convex domain and Λ ≤ Aut(Ω)

is a discrete torsion-free group that acts co-compactly on Ω. Then Λ is a rank one

group if and only if dim Q̃H(Λ) =∞. Otherwise, dim Q̃H(Λ) = 0.

5.5.2 Counting of Conjugacy Classes

We will prove Theorem I.10 in this section. If Ω is a Hilbert geometry and

g ∈ Aut(Ω), define the translation length (cf. 2.6)

τΩ(g) := inf
x∈Ω

dΩ(x, gx)

and the stable translation length

τ stable
Ω (g) := lim

n→∞

dΩ(x, gnx)

n
.
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Note that τ stable
Ω (g) is independent of the base point x ∈ Ω. Now suppose (Ω,Λ) is

a rank one Hilbert geometry. Let [[g]] denote the conjugacy class of g ∈ Λ. Both

τΩ and τ stable
Ω are well-defined on the set of conjugacy classes in Λ. Then for t > 0,

define

C(t) := #{[[g]] : g ∈ Λ, τΩ([g]) ≤ t} and

Cstable(t) := #{[[g]] : g ∈ Λ, τ stable
Ω ([g]) ≤ t}.

Here C(t) (resp. Cstable(t)) counts the number of conjugacy classes in Λ whose trans-

lation length (resp. stable translation length) is at most t. We also introduce the

notion of pointed length for a conjugacy class [[g]] of g ∈ Λ. Fix a base point p ∈ Ω.

The pointed length of [[g]] is

Lp([[g]]) := inf
g′∈[[g]]

dΩ(p, g′p).

Let CLp(t) := #{[[g]] : g ∈ Λ,Lp([[g]]) ≤ t}.

For co-compact rank one Hilbert geometries, we prove an asymptotic growth for-

mula for C(t) and Cstable(t). To state our result, we will require the critical exponent

of Λ which is defined as

ωΛ := lim sup
n→∞

log #{g ∈ Λ : dΩ(x, gx) ≤ n}
n

for some (and hence any) base point x ∈ Ω.

Theorem V.15 ([Isl19, Theorem 1.8]). Suppose Ω is a properly convex domain and

Λ ≤ Aut(Ω) is a rank one group that acts co-compactly on Ω. Assume that Λ is not

virtually cyclic. Then there exists a constant D′ such that if t ≥ 1,

1

D′
exp(tωΛ)

t
≤ C(t) ≤ D′

exp(tωΛ)

t
.(5.7)

The function Cstable(t) and CLp(t) also satisfy a similar growth formula as above.
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Remark V.16. Counting of conjugacy classes in Λ is usually connected to counting

of closed geodesics in Ω/Λ. However this connection is subtle for Hilbert geome-

tries since there could be isometries in Λ that do not act by a translation along any

projective line in Ω (i.e. do not have an axis, see Section 4.1).

We will devote the rest of this section to the proof of this theorem. Fix a rank

one Hilbert geometry (Ω,Λ). We first show that

τΩ([[g]]) = τ stable
Ω ([[g]]).

Indeed, triangle inequality implies τ stable
Ω (g) ≤ τΩ(g). On the other hand, using

Proposition II.32,

τ stable
Ω (g) ≥ lim

n→∞

τΩ(gn)

n
=

1

n
log

λmax(g̃n)

λmin(g̃n)
= log

λmax(g̃)

λmin(g̃)
= τΩ(g).

Next, we show that if Ω/Λ is compact and R := diam(Ω/Λ), then

τΩ([[g]]) ≤ Lp([[g]]) ≤ τΩ([[g]]) + 2R.

Clearly τΩ([[g]]) ≤ Lp([[g]]). On the other hand, if x ∈ Ω then there exists hx ∈ Λ

such that dΩ(x, hxp) ≤ R. Then

Lp([[g]]) ≤ dΩ(p, h−1
x ghxp) ≤ 2 dΩ(hxp, x) + dΩ(x, gx) ≤ 2R + dΩ(x, gx).

Thus Lp([[g]]) ≤ τΩ([[g]]) + 2R.

Based on the above discussion,

C(t) = Cstable(t).

If Ω/Λ is compact and R = diam(Ω/Λ), then

CLp(t) ≤ C(t) ≤ CLp(t+ 2R).
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Thus, it is enough to prove the asymptotic growth formula for CLp(t). This is a

direct consequence of the Main Theorem in [GY18]. The Main Theorem part (1) in

[GY18] implies that if Λ is a non-elementary group with a co-compact action (more

generally, statistically convex co-compact action) on a geodesic metric space and Λ

contains a contracting element (in the sense of BF; cf. 3.4.3), then CLp(t) satisfies the

growth formula in (5.7). If (Ω,Λ) is as above, then it satisfies all of these conditions

(cf. I.3 and III.26). Then CLp(t) satisfies equation (5.7) and it finishes our proof.

5.5.3 Genericity from the Viewpoint of Random Walks

Suppose Λ is a finitely generated rank one group that is not virtually cyclic. If S

is a finite symmetric generating set of Λ, let Wn(S) be the set of words of length n

in the elements of S.

Definition V.17. A simple random walk on Λ (with support S) is a sequence of

Λ-valued random variables {Xn}n∈N with laws µn defined by: if n ≥ 1 and g ∈ Λ

µn({g}) =
#{w ∈ Wn(S) : w represents g}

#Wn(S)
.

We now prove Theorem I.11. Note that under the hypotheses of Theorem I.11, Λ

is an acylindrically hyperbolic group. The result then follows from [Sis18, Theorem

1.6].
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CHAPTER VI

Properly Convex Domains with Strongly Isolated Simplices

This chapter is based on results that appear in [IZ19] which is a joint work with

A. Zimmer. In [IZ19], we prove all our results for naive convex co-compact groups,

a class that strictly contains all convex co-compact groups. In this chapter (and the

ones that follow), we work only with convex co-compact groups (see Section 2.7).

This makes for a cleaner exposition, simplifies many of the proofs, and we hope that

it will make the proof ideas clearer.

6.1 Definitions

In this chapter, we will introduce a special class of properly convex domains

called “properly convex domains with strongly isolated simplices”. This definition

is motivated by Hruska-Kleiner’s work on CAT(0) spaces with isolated flats [HK05].

We will work with convex co-compact groups; recall the definition from Section 2.7.

If Ω′ is a properly convex domain and S ⊂ Ω′ is a properly embedded simplex

of dimension at least two, then S is called maximal provided S is not properly

contained in any other properly embedded simplex in Ω′. If X ⊂ Ω, let diamΩ(X) :=

supx1,x2∈X dΩ(x1, x2).

Definition VI.1 ([IZ19, Definition 1.15]). Suppose Λ ≤ Aut(Ω) is a convex co-

compact group and SΛ is the collection of all maximal properly embedded simplices
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in CΩ(Λ) of dimension at least two.

(1) We will say that S ⊂ SΛ is strongly isolated provided: for any r ≥ 0, there

exists D(r) ≥ 0 such that if S1, S2 ∈ S are distinct, then

diamΩ (NΩ(S1; r) ∩NΩ(S2; r)) ≤ D(r).

(2) We will say that (CΩ(Λ), dΩ) has strongly isolated simplices if SΛ is strongly

isolated.

Observation VI.2. If S ⊂ SΛ is strongly isolated, then S is closed and discrete in

the local Hausdorff topology induced by dΩ.

Proof. See the proof of Proposition VI.3 part (1).

In the next chapter, we will discuss our key result, Theorem I.15, on properly

convex domains with strognly isolated simplices. In this result proven jointly with

A. Zimmer [IZ19], we show that for a convex co-compact group Λ, the properly

convex domain CΩ(Λ) having strongly isolated simplices is equivalent to the property

that Λ is a relatively hyperbolic group with respect to virtually Abelian subgroups

of rank at least two. In order to prove Theorem I.15, we need to understand the

geometric consequences of the property - “strongly isolated simplices”. This will be

our focus in this chapter. In particular, we will prove Theorem I.16 in Section 6.2.

We will prove in Section 6.3 that if (CΩ(Λ), dΩ) has strongly isolated simplices, then

Λ is a convex co-compact rank one group.

6.2 Geometric Properties: Proof of Theorem I.16

In this section, we will prove the Theorem I.16. It establishes some key geometric

properties of (CΩ(Λ), dΩ) with strongly isolated simplices where Λ ≤ Aut(Ω) is convex
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co-compact. We will use this theorem in the next chapter for proving Theorem I.15.

We restate Theorem I.16 before beginning the proof.

Theorem I.16 ([IZ19, Theorem 1.8]) Suppose Λ ≤ Aut(Ω) is a convex co-compact

group and (CΩ(Λ), dΩ) has strongly isolated simplices. Then

(1) Λ has finitely many orbits in SΛ.

(2) If S ∈ SΛ, then StabΛ(S) acts co-compactly on S and contains a finite index

subgroup isomorphic to Zk where k = dimS.

(3) If A ≤ Λ is an infinite Abelian subgroup of rank at least two, then there exists

a unique S ∈ SΛ with A ≤ StabΛ(S).

(4) If S ∈ SΛ and x ∈ ∂S, then FΩ(x) = FCΩ(Λ)(x) = FS(x).

(5) If S1, S2 ∈ SΛ are distinct, then #(S1 ∩ S2) ≤ 1 and ∂S1 ∩ ∂S2 = ∅.

(6) If ` ⊂ ∂i CΩ(Λ) is a non-trivial line segment, then there exists S ∈ SΛ with

` ⊂ ∂S.

(7) If x, y, z ∈ ∂i CΩ(Λ) form a half triangle in CΩ(Λ) (i.e. [x, y] ∪ [y, z] ⊂ ∂i CΩ(Λ)

and (x, z) ⊂ CΩ(Λ)), then there exists S ∈ SΛ such that x, y, z ∈ ∂S.

(8) If x ∈ ∂i CΩ(Λ) is not a C1-smooth point of ∂Ω, then there exists S ∈ SΛ with

x ∈ ∂S.

For the rest of this chapter, fix a properly convex domain Ω ⊂ P(Rd) and a convex

co-compact subgroup Λ ≤ Aut(Ω). Let SΛ denote the family of all maximal properly

embedded simplices in CΩ(Λ) of dimension at least two. For ease of notation, we set

C := CΩ(Λ)

The proof of Theorem I.16 is split into the next few sections in the following order:

� parts (1)− (3) of is proven in Section 6.2.1,
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� part (5) is proven in Section 6.2.2,

� part (4) is proven in Section 6.2.3

� parts (6) and (7) are proven in Section 6.2.4, and

� part (8) is proven in Section 6.2.5.

6.2.1 Maximal Simplices are Periodic

In this section we show that if (CΩ(Λ), dΩ) has strongly isolated simplices, then

each simplex S ∈ SΛ is periodic, i.e. StabΛ(S) acts co-compactly on S.

Proposition VI.3 ([IZ19, Proposition 8.1]). Suppose (C, dΩ) has strongly isolated

simplices. Then the collection SΛ satisfies the following properties:

(1) SΛ is closed and discrete in the local Hausdorff topology.

(2) SΛ is a locally finite collection, that is, for any compact set K ⊂ Ω the set

{S ∈ SΛ : S ∩K 6= ∅} is finite.

(3) Λ has finitely many orbits in S.

(4) If S ∈ SΛ, then StabΛ(S) acts co-compactly on S and contains a finite index

subgroup isomorphic to Zk where k = dimS.

(5) If A ≤ Λ is an infinite Abelian subgroup of rank at least two, then there exists

a unique S ∈ SΛ with A ≤ StabΛ(S).

We spend the rest of this section proving this proposition. The proofs are almost

analogous to results in the CAT(0) setting, see Wise [Wis96, Proposition 4.0.4],

Hruksa [Hru05, Theorem 3.7], or Hruska-Kleiner [HK05, Section 3.1].

(1) Suppose Sn is a sequence in SΛ that converges to S in the local Hausdorff topology.

By Proposition II.21, S is a properly embedded simplex in Ω of dimension at least

two. It is enough to show that Sn = S for n large enough.
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Fix ε > 0. Since SΛ is strongly isolated, there exists D(ε) ≥ 0 such that: if

S1, S2 ∈ SΛ are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).

Let rε := D(ε) + 1 and fix x ∈ S. Since Sn → S, there exists N0 ∈ N for all n ≥ N0,

dΩ
Hauss(Sn ∩ BΩ(x, rε), S ∩ BΩ(x, rε)) < ε.

Observe that there exists x1, x2 ∈ S such that (x1, x2) ⊂ S∩BΩ(x, rε) and dΩ(x1, x2) =

rε. Thus, for any m 6= n ≥ N0,

(x1, x2) ⊂ NΩ(Sn; ε) ∩NΩ(Sm; ε).

Thus

diamΩ (NΩ(Sn; ε) ∩NΩ(Sm; ε)) ≥ rε > D(ε)

implying that Sm = Sn for all m,n ≥ N0. Thus Sn = S for all n large enough.

(2) Follows from part (1).

(3) Follows from part (2).

(4) Fix S ∈ SΛ and a compact set K ⊂ Ω. Let

X := {g ∈ Λ : S ∩ gK 6= ∅}.

Then S = ∪g∈XS ∩ gK. Since (g−1S) ∩K 6= ∅ when g ∈ X, Part (2) implies that

the set

{g−1S : g ∈ X}

is finite. Since g−1S = h−1S if and only if gh−1 ∈ StabΛ(S) if and only if StabΛ(S)g =

StabΛ(S)h, there exists g1, . . . , gm ∈ X such that⋃
g∈X

StabΛ(S)g =
m⋃
j=1

StabΛ(S)gj.
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Then the set K̂ := ∪mj=1S ∩ gjK is compact and

StabΛ(S) · K̂ = ∪g∈XS ∩ gK = S.

So StabΛ(S) acts co-compactly on S.

It is now easy to show that StabΛ(S) contains a finite index subgroup isomorphic

to Zdim(S).

(5) This is a straightforward application of the convex projective Flat Torus Theorem.

Suppose Â ≥ A is a maximal abelian subgroup containing A. By Theorem I.17,

there exists Ŝ ∈ SΛ such that Â acts co-compactly on Ŝ. Thus A ≤ StabΛ(Ŝ). If A

preserves another simplex, then it violates the strong isolation property because A

is infinite. Thus Ŝ is the unique properly embedded simplex preserved by A.

6.2.2 Intersections of Simplices

This result follows easily from the strong isolation property.

Proposition VI.4 ([IZ19, Section 12]). Suppose (C, dΩ) has strongly isolated sim-

plices. If S1, S2 ∈ SΛ are distinct, then #(S1 ∩ S2) ≤ 1 and ∂S1 ∩ ∂S2 = ∅.

Suppose x 6= y ∈ S1∩S2. Let (x1, y1) ⊂ S1 be the maximal projective line segment

in S1 containing [x, y]. By convexity, (x1, y1) ⊂ S1∩S2. However diamΩ((x1, y1)) =∞

which implies S1 = S2 since SΛ is a strongly isolated. This is a contradiction.

For the second part, suppose y ∈ ∂S1 ∩ ∂S2. Let p1 ∈ S1 and p2 ∈ S2. By

Proposition II.16

dΩ
Hauss([p1, y), [p2, y)) ≤ R := dΩ(p1, p2).

Then,

[p1, y) ⊂ S1 ∩NΩ(S2;R).
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As SΛ is strongly isolated, if S1 and S2 are distinct, then there exists D(R) ≥ 0 such

that

diamΩ(NΩ(S1;R) ∩NΩ(S2;R)) ≤ D(R) <∞.

But diamΩ(p1, y) =∞. Thus S1 = S2, a contradiction.

6.2.3 Boundary Faces of Simplices

In this subsection, we will prove the following result about boundary faces of

simplices.

Proposition VI.5 ([IZ19]). Suppose (C, dΩ) has strongly isolated simplices. If S ∈

SΛ and x ∈ ∂S, then FΩ(x) = FC(x) = FS(x).

Fix S ∈ SΛ and x ∈ ∂S. By Theorem II.39 part (3), FΩ(x) = FC(x). So it is

enough to show that FS(x) = FC(x). Also observe that if dim(FC(x)) = 0, then

FC(x) = FS(x) = {x} and the result is immediate. So, without loss of generality, we

can assume that dim(FC(x)) ≥ 1.

In order to prove this theorem, it is enough to show that ∂FC(x) ⊂ ∂FS(x).

Indeed,

FC(x) = rel-int(ConvHullΩ(∂FC(x)))

and

FS(x) = rel-int(ConvHullΩ(∂FS(x))).

So, ∂FC(x) ⊂ ∂FS(x) implies that FC(x) ⊂ FS(x). On the other hand, FS(x) ⊂ FC(x)

since S ⊂ C. This shows that proving ∂FC(x) ⊂ ∂FS(x) is enough to prove the

theorem.

95



In order to prove ∂FC(x) ⊂ ∂FS(x), we will require the following general result

about convex co-compact groups. Note that the following lemma does not require

the assumption that SΛ is strongly isolated.

Lemma VI.6. Suppose w ∈ ∂i C with dim(FC(w)) ≥ 1 and w′ ∈ ∂i FC(w). For any

r, ε > 0 and p ∈ C, there exists N ≥ 0 such that: if y ∈ (w,w′) with dFΩ(w)(w, y) > N ,

then there exists py ∈ [p, y) such that whenever q ∈ [py, y),

P(Span{w,w′, p}) ∩ BΩ(q, r) ⊂ NΩ(Sq; ε).

for some Sq ∈ SΛ.

Proof of Lemma VI.6. Suppose this fails. Then there exist r, ε > 0 and p ∈ C such

that: if n ≥ 1, there exist yn ∈ (w,w′) with dFΩ(w)(w, yn) ≥ n and qn,m ∈ [p, yn) with

limm→∞ qn,m = yn such that

P (Span{w,w′, p}) ∩ BΩ(qn,m, r) 6⊂ NΩ(S; ε)(6.1)

for any properly embedded simplex S ∈ SΛ. By Proposition II.12,

lim inf
m→∞

dΩ(qn,m, [p, w] ∪ [p, w′]) ≥ dFΩ(w)(yn, w) ≥ n.

Then for each n, we choose mn large enough such that

dΩ(qn,mn , [p, w] ∪ [p, w′]) ≥ n.(6.2)

Set q′n := qn,mn .

Since Λ acts co-compactly on C, we can pass to a subsequence and choose γn ∈ Λ

such that γnq
′
n → q′∞ ∈ C. Up to passing to another subsequence, we can assume

that

γnw
′, γnw, γnp, γnyn → w′0, w0, p0, y∞ ∈ C.
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By construction and by Equation (6.2),

[p0, w
′
0] ∪ [w′0, w0] ∪ [w0, p0] ⊂ ∂i C.

But (p0, y∞) ⊂ C since q′∞ ∈ (p0, y∞) ∩ C. Thus,

S := rel-int (ConvHull{w0, w
′
0, p0})

is a properly embedded two dimensional simplex in C. Note that

Sn := rel-int (ConvHull{γnw, γnw′, γnp})

converges to S in the local Hausdorff topology. Thus, for n large enough,

dΩ
Hauss (BΩ(q′∞, r) ∩ S,BΩ(q′∞, r) ∩ Sn) < ε/2.

Since γnq
′
n → q′∞,

dΩ
Hauss(BΩ(q′∞, r),BΩ(γnq

′
n, r)) < ε/2

when n is large enough. Thus, for large enough n,

dΩ
Hauss (BΩ(q′∞, r) ∩ S,BΩ(γnq

′
n, r) ∩ Sn) < ε.

Since q′∞ ∈ S, this implies that

BΩ(q′n, r) ∩ γ−1
n Sn ⊂ NΩ(γ−1

n S; ε).

Now observe that

BΩ(q′n, r) ∩ γ−1
n Sn = BΩ(q′n, r) ∩ P (Span{w,w′, p}) .

Thus, for n large enough,

BΩ(q′n, r) ∩ P (Span{w,w′, p}) ⊂ NΩ(γ−1
n S; ε).
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Let Ŝn ∈ SΛ be a maximal properly embedded simplex such that γ−1
n S ⊂ Ŝn. Thus,

BΩ(q′n, r) ∩ P (Span{w,w′, p}) ⊂ NΩ(Ŝn; ε)

This contradicts Equation (6.1) and concludes the proof of this lemma.

Now we finish the proof of Proposition VI.5. We want to prove ∂FC(x) ⊂ ∂FS(x).

Recall that dim(FC(x)) ≥ 1 which implies that ∂FC(x) 6= ∅. Let x′ ∈ ∂FC(x). We

will show that x′ ∈ ∂FS(x).

Fix ε > 0. Since (C, dΩ) has strongly isolated simplices, there exists D(ε) ≥ 0

such that: if S1, S2 ∈ SΛ are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).(6.3)

Fix Rε := D(ε) + 1. Fix p ∈ S. Applying the above Lemma VI.6 with Rε, ε and p,

we get N ≥ 0 which satisfies the conclusions of the lemma. Choose y ∈ (x, x′) such

that dFΩ(x)(x, y) > N . Then there exists py ∈ [p, y) such that whenever q ∈ [py, y),

there exists Sq ∈ SΛ such that

P(Span{x, x′, p}) ∩ BΩ(q, r) ⊂ NΩ(Sq; ε).

Pick a sequence qn ∈ [py, y) with qn → y such that dΩ(qn, qn+1) = Rε for all n ≥ 1.

There exist properly embedded simplices Sn such that

P(Span{x, x′, p}) ∩ BΩ(qn, Rε) ⊂ NΩ(Sn; ε)

for all n ≥ 1. Then, for n ≥ 1,

(qn, qn+1) ⊂ BΩ(qn, Rε) ∩ BΩ(qn+1, Rε) ∩ P (Span{x, x′, p})

⊂ NΩ(Sn; ε) ∩NΩ(Sn+1; ε).
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Thus

diamΩ (NΩ(Sn; ε) ∩NΩ(Sn+1; ε)) ≥ dΩ(qn, qn+1) = Rε > Dε.

Then Equation (6.3) implies that Sn = Sn+1 = S ′ for all n ≥ 1. Thus,

[py, y) ⊂ NΩ(S ′; ε).(6.4)

Let px ∈ S be such that dΩ(px, py) = dΩ(py, S). Then Proposition II.16 implies

that

dΩ
Hauss([px, x), [py, y)) ≤ R0 := max{dΩ(px, py), dFΩ(x)(x, y)}.

Then equation (6.4) implies that

[px, x) ⊂ S ∩NΩ(S ′;R0 + ε),

that is, diamΩ(S ∩ NΩ(S ′;R0 + ε)) =∞. This violates equation (6.3) unless S = S ′.

Thus, by equation (6.4),

[py, y) ⊂ NΩ(S; ε).

Then, by Corollary II.13, there exists ay ∈ ∂S such that y ∈ FΩ(ay) and

dFΩ(y)(y, ay) = dFΩ(x)(y, ay) ≤ ε.

Note that this is true for any y ∈ (x, x′) with dFΩ(x)(x, y) > N (here N depends on ε,

see Lemma VI.6). Thus, for m ≥ 1, we can find a sequence ym ∈ (x, x′) and am ∈ ∂S

with ym → x′ and dFΩ(x)(ym, am) < 1/m. Then, by Corollary II.14, limm→∞ am = x′.

Thus, x′ ∈ ∂S ∩ ∂FΩ(x) = ∂FS(x). This finishes the proof.
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6.2.4 Lines and Half Triangles in the Boundary

Proposition VI.7 ([IZ19]). Suppose (C, dΩ) has strongly isolated simplices. If ` ⊂

∂i C is a non-trivial line segment, then there exists S ∈ SΛ with ` ⊂ ∂S.

Proof. We can assume that ` is an open line segment with x′ as one of its endpoints.

Fix some x ∈ `, that is ` ⊂ FC(x). Then x′ ∈ ∂i FC(x). Now fix ε > 0 and p ∈ C.

Since (C, dΩ) has strongly isolated simplices, there exists D(ε) ≥ 0 such that: if

S1, S2 ∈ SΛ are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).(6.5)

Fix rε = D(ε) + 1. Applying Lemma VI.6 with rε, ε, and p, let N ≥ 0 be such that

it satisfies the conclusions of the lemma. Choose y ∈ ` with dFΩ(x)(x, y) > N . Then

there exists py ∈ [p, y) such that: if q ∈ [py, y), there exists Sq ∈ SΛ such that

P(Span{x, x′, p}) ∩ BΩ(q, rε) ⊂ NΩ(Sq; ε).

Pick a sequence qn ∈ [py, y) with qn → y such that dΩ(qn, qn+1) = rε. Let Sn ∈ SΛ

be such that

P(Span{x, x′, p}) ∩ BΩ(qn, rε) ⊂ NΩ(Sn; ε).

Then

(qn, qn+1) ⊂ BΩ(qn, rε) ∩ BΩ(qn+1, rε) ∩ P (Span{x, x′, p})

⊂ NΩ(Sn; ε) ∩NΩ(Sn+1; ε).

Thus,

diamΩ (NΩ(Sn; ε) ∩NΩ(Sn+1; ε)) ≥ rε = D(ε) + 1 > D(ε)
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Then equation (6.5) implies that Sn = Sn+1 = S for all n ≥ 1. Then {qn : n ≥

1} ⊂ NΩ(S; ε). Then Corollary II.13 implies that y ∈ FΩ(c) for some c ∈ ∂S. As

c ∈ ∂S, Proposition VI.5 implies that FΩ(c) = FS(c) ⊂ ∂S. Since y ∈ FΩ(x), this

implies that

FΩ(x) = FΩ(y) = FΩ(c) ⊂ ∂S.

Finally, since ` ⊂ FΩ(x),

` ⊂ ∂S.

Proposition VI.8 ([IZ19]). Suppose (C, dΩ) has strongly isolated simplices. If x, y, z ∈

∂i C form a half triangle in C, then there exists S ∈ SΛ such that x, y, z ∈ ∂S.

Proof. By Proposition VI.7, there exist S1, S2 ∈ SΛ such that [x, y] ⊂ ∂S1 and

[y, z] ⊂ ∂S2. Thus y ∈ ∂S1 ∩ ∂S2. Then Proposition VI.4 implies that S1 = S2 = S.

Hence x, y, z ∈ ∂S.

6.2.5 Corners in the Boundary

A supporting hyperplane of Ω at z ∈ ∂Ω is a co-dimension one projective subspace

P(H) such that P(H)∩Ω = ∅ and z ∈ P(H)∩Ω. We will say that a point z ∈ ∂i C is

not C1-smooth if Ω does not have a unique supporting hyperplane at z. We will show

that such a point is necessarily contained in the boundary of a properly embedded

simplex.

Proposition VI.9 ([IZ19]). Suppose (C, dΩ) has strongly isolated simplices. If z ∈

∂i C is not a C1-smooth point of ∂Ω, then there exists S ∈ SΛ with z ∈ ∂S.

In order to prove this, we first establish the following lemma about general convex

co-compact subgroups. Note that this lemma does not require that SΛ is strongly

isolated.
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Lemma VI.10 ([IZ19]). Suppose that z ∈ ∂i C is not a C1-smooth point of ∂Ω and

q ∈ C. For any r > 0 and ε > 0 there exists N > 0 such that: if p ∈ [q, z) with

dΩ(q, p) > N , then there exists a properly embedded simplex Sp ⊂ C of dimension at

least two such that

BΩ(p; r) ∩ (z, q] ⊂ NΩ(Sp; ε).(6.6)

Proof. Fix r > 0 and ε > 0. Suppose for a contradiction that such a N does not

exist. Then we can find pn ∈ (z, q] such that limn→∞ pn = z and

BΩ(p, r) ∩ (z; q] 6⊂ NΩ(S; ε)

for any properly embedded simplex S in C of dimension at least two.

We can find a 3-dimensional linear subspace V such that (z, q] ⊂ P(V ) and z ∈ ∂i C

is not a C1-smooth boundary point of P(V ) ∩ Ω. By changing coordinates we can

suppose that

P(V ) = {[w : x : y : 0 : · · · : 0] : w, x, y ∈ R},

P(V ) ∩ Ω ⊂ {[1 : x : y : 0 : · · · : 0] : x ∈ R, y > |x|},

z = [1 : 0 : 0 : · · · : 0], and

q = [1 : 0 : 1 : 0 · · · : 0].

We may also assume that P(V ) ∩ Ω is bounded in the affine chart

{[1 : x : y : 0 : · · · : 0] : x, y ∈ R}.

Then

pn = [1 : 0 : yn : 0 : · · · : 0]
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where 0 < yn < 1 and yn converges to 0. Let

Ln := {[1 : x : yn : 0 : · · · : 0] : x ∈ R} ∩ Ω.

By passing to a subsequence we can suppose that (yn)n≥1 is a decreasing sequence

and

lim
n→∞

dΩ(pn, Ln−1) =∞.(6.7)

Then

lim
n→∞

yn−1

yn
=∞.

Let an, bn ∈ ∂Ω be the endpoints of Ln = (an, bn). We claim that

lim
n→∞

dΩ

(
pn, (z, an−1)

)
=∞ = lim

n→∞
dΩ

(
pn, (z, bn−1)

)
.(6.8)

Consider gn ∈ PGL(V ) defined by

gn([w : x : y : 0 : · · · : 0]) =

[
w :

1

yn
x :

1

yn
y : · · · : 0

]
.

Since (yn)n≥1 is a decreasing sequence converging to zero, Dn := gn(P(V ) ∩ Ω) is an

increasing sequence of properly convex domains in P(V ) and

D := ∪n≥1Dn ⊂ {[1 : x : y : 0 : · · · : 0] : x ∈ R, y > |x|}

is also a properly convex domain. Notice that dDn converges to dD uniformly on

compact subsets of D. Also, by construction, there exist t ≤ −1 and 1 ≤ s such that

D = {[1 : x : y : 0 : · · · : 0] : x ∈ R, y > max{sx, tx}}.

Then an = [1 : t−1
n yn : yn : 0 : . . . : 0] where tn → t.

Now pick vn ∈ (z, an−1) such that

dΩ

(
pn, (z, an−1)

)
= dΩ(pn, vn).
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Since

lim
n→∞

gnan−1 = lim
n→∞

[
1 : t−1

n−1

yn−1

yn
:
yn−1

yn
: 0 : . . . : 0

]
= [0 : t−1 : 1 : 0 : · · · : 0]

any limit point of gnvn is in

{[0 : t−1 : 1 : 0 : · · · : 0]} ∪ {[1 : rt−1 : r : 0 : · · · : 0] : r ≥ 0} ⊂ ∂D.

Then

lim
n→∞

dΩ

(
pn, (z, an−1)

)
= lim

n→∞
dΩ(pn, vn) = lim

n→∞
dDn

(
gnpn, gnvn

)
=∞

since gnpn → [1 : 0 : 1 : 0 : · · · : 0] ∈ D.

For the same reasons,

lim
n→∞

dΩ

(
pn, (z, bn−1)

)
=∞.

This establishes Equation (6.8).

Next we can pass to a subsequence and find γn ∈ Λ such that γnpn → p∞ ∈ C.

Passing to a further subsequence we can suppose that γnan−1 → a∞, γnbn−1 → b∞,

γnz → z∞, and γnq → q∞.

Equation (6.7) implies that [a∞, b∞] ⊂ ∂Ω and Equation (6.8) implies that

[z∞, a∞] ∪ [z∞, b∞] ⊂ ∂Ω.

Thus a∞, b∞, z∞ are the vertices of a properly embedded simplex S ⊂ Ω which

contains p∞. Further, for n sufficiently large we have

BΩ(γnpn, r) ∩ γn(z, q] ⊂ NΩ(S; ε)

and so

BΩ(pn, r) ∩ (z, q] ⊂ NΩ(γ−1
n S; ε).
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To obtain a contradiction we have to show that γ−1
n S ⊂ C for every n or equiv-

alently that S ⊂ C. By construction, q∞ ∈ ∂i C ∩ (a∞, b∞). Then Theorem II.39

implies that

(a∞, b∞) ⊂ FΩ(q∞) = FC(q∞) ⊂ ∂i C.

Thus [a∞, b∞] ⊂ ∂i C. Since z∞ ∈ ∂i C and S has vertices a∞, b∞, z∞ we then see that

S ⊂ C.

We now finish the proof of Proposition VI.9. The strategy is similar to the proof of

Proposition VI.7. Fix ε > 0 and q ∈ C. Since (C, dΩ) has strongly isolated simplices,

there exists Dε ≥ 0 such that: if S1, S2 ∈ SΛ are distinct, then

diamΩ (NΩ(S1; ε) ∩NΩ(S2; ε)) ≤ D(ε).(6.9)

Fix rε := D(ε) + 1. Applying the above Lemma VI.6 with rε, ε and q, we get N ≥ 0

which satisfies the conclusions of the lemma. Pick a sequence zn ∈ [q, z) with zn → z,

dΩ(zn, zn+1) = rε, and dΩ(q, zn) ≥ N for n ≥ 1. Then, for each n ≥ 1, there exist

Sn ∈ SΛ such that:

[q, z) ∩ BΩ(zn, rε) ⊂ NΩ(Sn; ε).

Then, if n ≥ 1,

(zn, zn+1) ⊂ BΩ(zn, rε) ∩ BΩ(zn+1, rε) ∩ [q, z)

⊂ NΩ(Sn; ε) ∩NΩ(Sn+1; ε).

Thus

diamΩ (NΩ(Sn; ε) ∩NΩ(Sn+1; ε)) ≥ dΩ(zn, zn+1) = rε > Dε.

Then Equation (6.9) implies that Sn = Sn+1 = S for all n ≥ 1. Thus {zn : n ∈ N} ⊂

NΩ(S; ε). Corollary II.13 then implies that there exists c ∈ ∂S such that z ∈ FΩ(c).

As c ∈ ∂S, Proposition VI.5 implies that FΩ(c) = FS(c) ⊂ ∂S. Thus, z ∈ ∂S.
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6.3 Relationship with Convex Co-compact Rank One

This section is based on the Apppendix of [Isl19].

6.3.1 Definition of Convex Co-compact Rank One

If Λ is a convex co-compact group, then the ideal boundary ∂i CΩ(Λ) is the only

part of ∂Ω that is accessible by the dynamics of Λ on Ω. Thus it is necessary to

modify the notion of rank one automrophisms for convex co-compact actions. For

this, we consider half triangles in ∂i CΩ(Λ) instead of ∂Ω. We will say that x, y, z

form a half triangle in CΩ(Λ) provided [x, y] ∪ [y, z] ⊂ ∂i CΩ(Λ) and (x, z) ⊂ CΩ(Λ).

Definition VI.11 ([Isl19]). Suppose Λ ≤ Aut(Ω) is a convex co-compact group.

(1) An element g ∈ Λ is called a convex co-compact rank one automorphism if:

(a) τCΩ(Λ)(g) = log
λ1

λd
(g) > 0 and g has an axis,

(b) if `g is an axis of g, then `g is not contained in any half triangle in CΩ(Λ).

(2) Λ is called a convex co-compact rank one group if Λ contains a convex co-

compact rank one automorphism.

Remark VI.12.

(1) The notion of a convex co-compact rank-one automorphism that we just defined

differs from the notion of a rank-one automorphism only in the half triangle

condition: for the latter, we consider half triangles in CΩ(Λ) instead of Ω.

(2) Suppose Λ ≤ Aut(Ω) acts co-compactly on Ω. Then CΩ(Λ) = Ω which implies

that Λ is a rank one group if and only if Λ is a convex co-compact rank one

group.

We now have analogues of Proposition IV.14 and Lemma IV.16. The same proofs

go through after replacing Ω by CΩ(Λ) and ∂Ω by ∂i CΩ(Λ). This is essentially because
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E+
γ ∩ ∂Ω = E+

γ ∩ ∂i CΩ(Λ) (same for E−γ ).

Proposition VI.13. Suppose Λ ≤ Aut(Ω) is a convex co-compact rank one group

and g ∈ Λ is a convex co-compact rank one automorphism with axis `g = (a, b) where

a ∈ E+
g and b ∈ E−g . Then:

(1) g is biproximal,

(2) `g is the unique axis of g in Ω,

(3) the only fixed points of g in CΩ(Λ) are a and b,

(4) if z′ ∈ ∂i CΩ(Λ) \{a, b}, then (a, z′) ∪ (z′, b) ⊂ CΩ(Λ), and

(5) if z ∈ ∂i CΩ(Λ) \{a, b}, then neither (a, z) nor (z, b) is contained in a half triangle

in CΩ(Λ).

Lemma VI.14. Suppose Λ ≤ Aut(Ω) is a convex co-compact rank one group and

g ∈ Λ has an axis. Then the following are equivalent:

(1) g is biproximal.

(2) none of the axes of g is contained in a half triangle in CΩ(Λ).

(3) g is a convex co-compact rank one automorphism.

6.3.2 Strongly Isolated Simplices imply Convex Co-compact Rank One

Proposition VI.15 ([Isl19]). Suppose Λ ≤ Aut(Ω) is a convex co-compact group

and (CΩ(Λ), dΩ) has strongly isolated simplices. Then either Λ is a virtually Abelian

group or Λ is a convex co-compact rank one group.

By virtue of Theorem I.15, this proposition is equivalent to the following:

Proposition VI.16 ([Isl19]). Suppose Λ ≤ Aut(Ω) is a convex co-compact group that

is relatively hyperbolic with respect to {A1, A2, . . . , Am} where each Ai is a virtually

107



Abelian group of rank at least two. Then either Λ is a virtually Abelian group or Λ

is a convex co-compact rank one group.

We will spend the rest of this section proving Proposition VI.16. Note that we

will rely heavily on Theorem I.15 and Theorem I.16 in this proof.

For the rest of this section, fix a convex co-compact group Λ ≤ Aut(Ω). Set C :=

CΩ(Λ) and let SΛ be the collection of all maximal properly embedded simplices in C of

dimension at least two . We assume that (C, dΩ) has strongly isolated simplices and

that Λ is relatively hyperbolic with respect to {A1, A2, . . . , Am}. By [IZ19, Theorem

1.18], we can assume that Ai = StabΛ(Si) for 1 ≤ i ≤ m where SΛ = tmi=1ΛSi.

Since Λ is relatively hyperbolic with respect to {A1, A2, . . . , Am}, [DG18, Lemma

2.3] implies that either Λ is virtually contained in a conjugate of some Ai or Λ

contains an infinite order element that is not contained in any conjugate of any Ai

for 1 ≤ i ≤ m. In the first case, Λ is a virtually Abelian group. So we can now

assume that we are in the second case. Then there exists an infinite order element

γ ∈ Λ such that

γ 6∈
⋃
g∈Λ

m⋃
i=1

gAig
−1 =

⋃
S∈SΛ

StabΛ(S).

We will show that γ is a convex co-compact rank one automorphism. As the action

is convex co-compact τC(γ) > 0. We first show that γ has an axis in CΩ(Λ). Let

C+ := E+
γ ∩ C and C− := E−γ ∩ C. As C+ and C− are non-empty, compact, convex,

γ-invariant subsets of Rd, the Brouwer fixed point theorem implies the existence of

two fixed points γ+ and γ− of γ in C+ and C− respectively. If [γ+, γ−] ⊂ ∂i C, then

Theorem I.16 part (6) implies that there exists S ∈ SΛ such that [γ+, γ−] ⊂ ∂S.

Then ∂(γS) ∩ ∂S ⊃ [γ+, γ−]. Theorem I.16 part (5) implies that γS = S. Thus,

γ ∈ StabΛ(S), a contradiction. Thus (γ+, γ−) ⊂ C and is an axis of γ.

Suppose A+
γ , z, A

−
γ is contained in a half triangle in C where [A+

γ , A
−
γ ] is an axis of
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γ. By Theorem I.16 part (7), there exists S ∈ SΛ such that A+
γ , z, A

−
γ ∈ ∂S. Then

the axis of γ is contained in S. Arguing as above, γ ∈ StabΛ(S). This finishes the

proof that γ is a rank one automorphism.

Hence Λ is a convex co-compact rank one group.
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CHAPTER VII

Relative Hyperbolicity, Convex Co-compactness, and
Strongly Isolated Simplices

This chapter is based on results that are contained in [IZ19] which is a joint work

with A. Zimmer. In [IZ19], we prove all these results for naive convex co-compact

groups, a class which is strictly larger than convex co-compact groups. Restricting

to the case of convex co-compact groups makes many of the arguments much easier

and hence affords a clearer exposition.

7.1 Outline

This chapter is devoted to the proof of Theorem I.15 which we now restate.

Theorem I.15.([IZ19, Theorem 1.7]) Suppose Ω ⊂ P(Rd) is a properly convex do-

main, Λ ≤ Aut(Ω) is a convex co-compact group, and SΛ is the family of all maximal

properly embedded simplices in CΩ(Λ) of dimension at least two. Then the following

are equivalent:

(1) (CΩ(Λ), dΩ) has strongly isolated simplices,

(2) (CΩ(Λ), dΩ) is a relatively hyperbolic space with respect to SΛ,

(3) Λ is a relatively hyperbolic group with respect to a collection of virtually Abelian

subgroups of rank at least two.
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The most difficult part of the proof is (1) implies (2). This is done in Section 7.3.

For this proof, we rely on Sisto’s characterization of relative hyperbolicity (cf. The-

orem III.15). A key ingredient of this proof is the notion of closest-point projection

onto properly embedded simplices in CΩ(Λ) (cf. Definition II.28) and its comparison

with linear projections on simplices (cf. Definition II.24). Results proven in Section

7.2 play a key role in Section 7.3.

The proof of (3) implies (1) is also quite involved since we have to prove that

CΩ(Λ) is relatively hyperbolic with respect to the collection of all simplices in SΛ.

This is done in Section 7.4. The rest of the parts of the proof of Theorem I.15 is also

in this section.

7.2 Closest-point Projections on Simplices

For the rest of this section fix a convex co-compact group Λ ≤ Aut(Ω). Set

C := CΩ(Λ) and S := SΛ. We will assume that (CΩ(Λ), dΩ) has strongly isolated

simplices for rest of this section.

Suppose S is a properly embedded simplex in C. Since S is a closed convex subset,

we can follow Definition II.28 and define the closest-point projection onto S. We will

denote it by πS. On the other hand, if H is a set of S-supporting hyperplanes,

then we have a notion of linear projection onto S which we will denote by LS,H, see

Definition II.24.

We will establish a coarse equivalence between the two projections. But first we

need a continuity lemma for linear projections.

Lemma VII.1 ([IZ19, Lemma 13.4]). If S ∈ SΛ, then the map

(L, x) ∈ LS × C → L(x) ∈ S

is continuous.
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Proof. We first show that P(kerL)∩C = ∅ for all L ∈ LS. Suppose for a contradiction

that L ∈ LS and

x ∈ P(kerL) ∩ C.

Proposition II.23 implies that x ∈ ∂i C. Then Proposition II.25 implies that [y, x] ⊂

∂i C for every y ∈ ∂S. Next fix y1, y2 ∈ ∂S such that (y1, y2) ⊂ S. Then y1, x, y2

form a half triangle. By Theorem I.16, y1, x, y2 ∈ ∂S for some S ∈ SΛ. Since

x ∈ ∂S ⊂ Span(S), x 6∈ kerL, a contradiction.

Thus P(kerL) ∩ C = ∅ for all L ∈ LS.

Now suppose that limn→∞(Ln, xn) = (L, x) in LS × C. Let x̃n, x̃ denote lifts of

xn, x respectively such that limn→∞ x̃n = x̃. Then

L(x̃) = lim
n→∞

Ln(x̃n) ∈ Rd.

Since P(kerL) ∩ C = ∅, we have L(x̃) 6= 0. So

L(x) = [L(x̃)] = lim
n→∞

[Ln(x̃n)] = lim
n→∞

Ln(xn).

Now the proof of equivalence.

Proposition VII.2 ([IZ19, Proposition 13.7]). There exists δ1 ≥ 0 such that: if

S ∈ S, H is a set of S-supporting hyperplanes, and x ∈ C, then

max
p∈πS(x)

dΩ(LS,H(x), p) ≤ δ1.

Proof. Since S has finitely many Λ orbits (see Proposition VI.3), it is enough to

prove the result for some fixed S ∈ S.

Suppose the proposition is false. Then, for every n ≥ 0, there exist xn ∈ C, a set

of S-supporting hyperplanes Hn, and pn ∈ πS(xn) such that

dΩ(pn, LS,Hn(xn)) ≥ n.
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Let mn be the midpoint of the projective line segment [pn, LS,Hn(xn)] in the Hilbert

distance. Since StabΛ(S) acts co-compactly on S (see Proposition VI.3), translating

by elements of StabΛ(S) and passing to a subsequence, we can assume that m :=

limn→∞mn exists in S. Passing to a further subsequence and using Proposition II.27,

we can assume that there exists x, p, x′ ∈ ∂i C and LS,H ∈ LS where x := limn→∞ xn,

p := limn→∞ pn, x′ := limn→∞ LS,Hn(xn), and LS,H := limn→∞ LS,Hn . By Lemma

VII.1,

LS,H(x) = lim
n→∞

LS,Hn(xn) = x′.

We first show that [x′, x] ⊂ ∂i C. Observe that LS,H(v) = x′ for all v ∈ [x′, x] since

LS,H is linear and LS,H(x′) = x′ = LS,H(x). But LS,H(Ω) = S, implying [x′, x]∩Ω = ∅.

Hence,

[x′, x] ⊂ ∂i C.

Next we show that [p, x] ⊂ ∂i C. Suppose not, then (p, x) ⊂ C. Choose any

v ∈ (p, x) ∩ C and a sequence vn ∈ [pn, xn] such that v = limn→∞ vn. Since p ∈ ∂i C

and v ∈ C,

lim
n→∞

dΩ(vn, pn) =∞.

Fix any vS ∈ S. Then, choosing n large enough so that dΩ(vn, pn) ≥ 2 + dΩ(v, vS)

and dΩ(v, vn) ≤ 1,

dΩ(xn, vS) ≤ dΩ(xn, vn) + dΩ(vn, v) + dΩ(v, vS)

= dΩ(xn, pn)− dΩ(pn, vn) + dΩ(vn, v) + dΩ(v, vS)

≤ dΩ(xn, pn)− 1,

which is a contradiction since pn ∈ πS(xn). Hence, [p, x] ⊂ ∂i C.
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Thus, [p, x] ∪ [x, x′] ⊂ ∂i C and by construction, m ∈ (p, x) ⊂ C. Thus the three

points p, x, x′ form half triangle in C. Then Theorem I.16 part (7) implies that

p, x, x′ ∈ ∂S for some S ∈ SΛ. Then x′ = LS,H(x) = x which implies [p, x] = [p, x′] ⊂

∂i C. This is a contradiction since (p, x) ⊂ C by construction.

The next result proves δ-slimness of some special triangles built using linear pro-

jections.

Proposition VII.3 ([IZ19, Proposition 13.9]). There exists δ2 ≥ 0 such that: if

x ∈ C, S ∈ S, z ∈ S, and H is a set of S-supporting hyperplanes, then the geodesic

triangle [
x, z
]
∪
[
z, LS,H(x)

]
∪
[
LS,H(x), x

]
is δ2-thin.

Proof. Since S has finitely many Λ orbits (see Proposition VI.3), it is enough to

prove the result for some fixed S ∈ S. By Lemma IV.19, it is enough to show that

there exists δ2 ≥ 0 such that

[LS,H(x), z] ⊂ Nδ2/2([z, x] ∪ [x, LS,H(x)])

for all x ∈ C, z ∈ S, and H a set of S-supporting hyperplanes.

Suppose such a δ2 does not exist. Then, for every n ≥ 0, there exist zn ∈ S, a set

of S-supporting hyperplanes Hn, pn := LS,Hn(xn), and un ∈ [zn, pn] such that

dΩ(un, [zn, xn] ∪ [xn, pn]) ≥ n.

Since StabΛ(S) acts co-compactly on S, translating by elements of StabΛ(S) and

passing to a subsequence, we can assume that u := limn→∞ un exists and u ∈ S.

Passing to a further subsequence and using Proposition II.27, we can assume there
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exist x, z, p ∈ C and LS,H ∈ LS where x := limn→∞ xn, z := limn→∞ zn, p :=

limn→∞ pn, and LS,H := limn→∞ LS,Hn . Since

lim
n→∞

dΩ(u, [xn, zn] ∪ [xn, pn])

≥ lim
n→∞

(
dΩ(un, [xn, zn] ∪ [xn, pn])− dΩ(u, un)

)
=∞,

we have

[x, z] ∪ [x, p] ⊂ ∂i C.

By construction, u ∈ (p, z) ⊂ C. Thus, p, x, z form a half triangle in C.

By Theorem I.16 part (7), p, x, z ∈ ∂S for some S ∈ SΛ. Lemma VII.1 then

implies that

p = lim
n→∞

pn = lim
n→∞

LS,Hn(xn) = LS,H(x) = x.

Thus [p, z] = [p, x] ⊂ ∂i C which is a contradiction since (p, z) ⊂ C by construction.

Let δ1 and δ2 be the constants as in Propositions VII.2 and VII.3.

Proposition VII.4 ([IZ19, Proposition 13.10]). Set δ3 := δ1 + 3δ2. If x ∈ C, S ∈ S,

H is a set of S-supporting hyperplanes, and z ∈ S, then dΩ

(
LS,H(x), [x, z]

)
≤ δ3.

Proof. By Proposition VII.3, the geodesic triangle

[x, z] ∪ [z, LS,H(x)] ∪ [LS,H(x), x]

is δ2-thin. Thus, there exist y ∈ [LS,H(x), z], y1 ∈ [x, LS,H(x)], and y2 ∈ [x, z] such

that dΩ(y, y1) ≤ δ2 and dΩ(y, y2) ≤ δ2.

We claim that dΩ(LS,H(x), y1) ≤ δ1+δ2. Choose any p ∈ πS(x). Since [LS,H(x), z] ⊂

S,

dΩ(x, p) = dΩ(x, S) ≤ dΩ(x, y).
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Then, using Proposition VII.2,

dΩ(x, LS,H(x)) ≤ dΩ(x, p) + dΩ(p, LS,H(x)) ≤ dΩ(x, y) + δ1.

Then,

dΩ(LS,H(x), y1) = dΩ(LS,H(x), x)− dΩ(y1, x)

≤ dΩ(x, y) + δ1 − dΩ(y1, x)

≤ dΩ(y, y1) + δ1 ≤ δ2 + δ1.

Hence,

dΩ(LS,H(x), [x, z]) ≤ dΩ(LS,H(x), y2)

≤ dΩ(LS,H(x), y1) + dΩ(y1, y) + dΩ(y, y2)

≤ δ1 + 3δ2 = δ3.

Our next goal is to prove if the distance between the linear projections of two

points onto a simplex S ∈ S is large, then the geodesic between the two points spends

a significant amount of time in a tubular neighborhood of S. This is accomplished

in Corollary VII.6 using the next result.

Proposition VII.5 ([IZ19, Proposition 13.11]). There exists a constant δ4 ≥ 0 such

that: if S ∈ S, H is a set of S-supporting hyperplanes, x, y ∈ C, and dΩ(LS,H(x), LS,H(y)) ≥

δ4, then

dΩ(LS,H(x), [x, y]) ≤ δ4 and dΩ(LS,H(y), [x, y]) ≤ δ4.

Proof. Observe that the linear projections are Λ-equivariant, that is,

LgS,gH ◦ g = g ◦ LS,H
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for any g ∈ Λ, S ∈ S, and H a set of S-supporting hyperplanes. Moreover, by

Proposition VI.3 there are only finitely many Λ-orbits in S. Thus, it is enough to

prove this proposition for a fixed S ∈ S.

Suppose the proposition is false. Then, for every n ≥ 0, there exist xn, yn ∈ C

and a set of S-supporting hyperplanes Hn with

dΩ(LS,Hn(xn), LS,Hn(yn)) ≥ n

and

dΩ(LS,Hn(xn), [xn, yn]) ≥ n.

Let an := LS,Hn(xn) and bn := LS,Hn(yn). Then pick cn ∈ [an, bn] such that

(7.1) dΩ(cn, an) = n/2.

Then,

(7.2) dΩ(cn, bn) ≥ dΩ(an, bn)− dΩ(cn, an) ≥ n/2

and

(7.3) dΩ

(
cn, [xn, yn]

)
≥ dΩ

(
an, [xn, yn]

)
− dΩ(cn, an) ≥ n/2.

Since StabΛ(S) acts co-compactly on S (see Proposition VI.3), translating by ele-

ments of StabΛ(S) and passing to a subsequence, we may assume that c := limn→∞ cn

exists and c ∈ S. After taking a further subsequence, we can assume that the fol-

lowing limits exist in C: a := limn→∞ an, b := limn→∞ bn, x := limn→∞ xn and

y := limn→∞ yn.

We now observe that a, b, x, y ∈ ∂i C. Equation (7.1) and (7.2) imply that a, b ∈

∂i C. Equation (7.3) implies that [x, y] ⊂ ∂i C.
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We claim that x ∈ FΩ(a) and y ∈ FΩ(b). Since cn ∈ S, by Proposition VII.4, there

exists a′n ∈ [xn, cn] such that dΩ(an, a
′
n) ≤ δ3. Up to passing to a subsequence, we

can assume that a′ := limn→∞ a
′
n exists in C. Observe that a′ ∈ ∂i C since

lim
n→∞

dΩ(a′n, c) ≥ lim
n→∞

(
dΩ(an, cn)− dΩ(cn, c)− dΩ(an, a

′
n)
)

=∞.

Since a′n ∈ [xn, cn],

a′ ∈ ∂i C ∩ [x, c] = {x}.

Thus, limn→∞ a
′
n = x. Since limn→∞ an = a and dΩ(an, a

′
n) ≤ δ3, Proposition II.12

implies that x ∈ FΩ(a). Similar reasoning shows that y ∈ FΩ(b).

Since [x, y] ⊂ ∂i C, Proposition II.11 part (4) implies that [a, b] ⊂ ∂i C. This is a

contradiction since c ∈ (a, b) ∩ C 6= ∅.

Corollary VII.6 ([IZ19, Corollary 13.12]). If S ∈ S, H is a set of S-supporting

hyperplanes, R > 0, x, y ∈ C, and dΩ(LS,H(x), LS,H(y)) ≥ R + 2δ4, then:

(1) there exists [x0, y0] ⊂ [x, y] such that [x0, y0] ⊂ NΩ(S; δ4),

(2)
[
LS,H(x), LS,H(y)

]
⊂ NΩ

(
[x, y]; δ4

)
, and,

(3) diamΩ

(
NΩ(S; δ4) ∩ [x, y]

)
≥ R.

Proof. Since dΩ(LS,H(x), LS,H(y)) > δ4, Proposition VII.5 implies that there exists

x0, y0 ∈ [x, y] such that

dΩ(LS,H(x), x0) ≤ δ4 and dΩ(LS,H(y), y0) ≤ δ4.

By Proposition II.16,

dΩ
Hauss

([
x0, y0

]
,
[
LS,H(x), LS,H(y)

])
≤ δ4
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and, by convexity, [LS,H(x), LS,H(y)] ⊂ S. This proves parts (1) and (2). To prove

part (3), observe that

dΩ(x0, y0) ≥ dΩ

(
LS,H(x), LS,H(y)

)
− dΩ(LS,H(x), x0)− dΩ(LS,H(y), y0)

≥ R.

Then, diamΩ

(
NΩ(S; δ4) ∩ [x, y]

)
≥ dΩ(x0, y0) ≥ R.

7.3 Strongly Isolated Simplices implies Relative Hyperbolicity

For the rest of this section fix a convex co-compact group Λ ≤ Aut(Ω) for which

(CΩ(Λ), dΩ) has strongly isolated simplices. Set C := CΩ(Λ) and S := SΛ .

We will prove that (1) =⇒ (2) in Theorem I.15, that is, (C, dΩ) is a relatively

hyperbolic space with respect to SΛ. Since (C, dΩ) has strongly isolated simplices, the

results of Section 7.2 hold. For each S ∈ S, fix a set HS of S-supporting hyperplanes.

Consider the family of projection maps

ΠS := {LS,H : S ∈ S,H = HS}

and the geodesic path system

G := {[x, y] : x, y ∈ C}

on C. By Theorem III.15, it is enough to verify that ΠS is an almost projection

system and that S is asymptotically transverse-free relative to G. We complete this

in the next two subsections (cf. 7.3.1 and 7.3.2).

7.3.1 ΠS is an Almost Projection System

Let δ3 be the constant in Proposition VII.4.
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Lemma VII.7 ([IZ19, Lemma 13.13]). If S ∈ S, H a set of S-supporting hyper-

planes, x ∈ C, and z ∈ S, then

dΩ(x, z) ≥ dΩ(x, LS,H(x)) + dΩ(LS,H(x), z)− 2δ3.

Proof. By Proposition VII.4, there exists q ∈ [x, z] such that dΩ(LS,H(x), q) ≤ δ3.

Then,

dΩ(x, z) = dΩ(x, q) + dΩ(q, z) ≥ dΩ(x, LS,H(x)) + dΩ(LS,H(x), z)− 2δ3.

Lemma VII.8 ([IZ19, Lemma 13.14]). There exists a constant δ5 ≥ 0 such that: if

S 6= S ′ ∈ S and H is a set of S-supporting hyperplanes, then

diamΩ(LS,H(S ′)) ≤ δ5.

Proof. Since S is strongly isolated, for every r > 0 there exists D(r) > 0 such that

(7.4) diamΩ

(
NΩ

(
S1; r

)
∩NΩ

(
S2, r

))
≤ D(r)

for all S1, S2 ∈ S distinct.

Let δ4 be the constant in Proposition VII.5. Set δ5 := D
(
δ4

)
+ 2δ4 + 1. Fix

x, y ∈ S ′ and suppose for a contradiction that dΩ(LS,H(x), LS,H(y)) ≥ δ5. Then, by

Corollary VII.6,

diamΩ

(
NΩ(S; δ4) ∩ S ′

)
≥ diamΩ

(
NΩ(S; δ4) ∩ [x, y]

)
≥ D(δ4) + 1.

which contradicts Equation (7.4).

Let δ1 and δ4 be the constants in Proposition VII.2 and VII.5 respectively.

Lemma VII.9 ([IZ19, Lemma 13.15]). If x ∈ C, S ∈ S, H is a set of S-supporting

hyperplanes, and R := dΩ(x, S), then

diamΩ

(
LS,H

(
BΩ(x,R) ∩ C

))
≤ 8(δ4 + δ1).
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Proof. Fix y ∈ BΩ(x,R) ∩ C. We claim that

dΩ(LS,H(x), LS,H(y)) ≤ 4(δ4 + δ1).

It is enough to consider the case when dΩ(LS,H(x), LS,H(y)) ≥ δ4. Then by Propo-

sition VII.5, there exists x′ ∈ [x, y] such that dΩ(LS,H(x), x′) ≤ δ4. By Proposition

VII.2,

dΩ(x, y) ≤ R = dΩ(x, πS(x)) ≤ dΩ(x, LS,H(x)) + δ1.

Then,

dΩ(x′, y) = dΩ(x, y)− dΩ(x, x′) ≤ dΩ(x, LS,H(x))− dΩ(x, x′) + δ1

≤ dΩ(LS,H(x), x′) + δ1

≤ δ4 + δ1.

Thus,

dΩ(LS,H(x), y) ≤ dΩ(LS,H(x), x′) + dΩ(x′, y) ≤ 2δ4 + δ1.

Since LS,H(x) ∈ S, using Proposition VII.2 again,

dΩ(y, LS,H(y)) ≤ dΩ(y, πS(y)) + δ1 ≤ dΩ(y, LS,H(x)) + δ1

≤ 2(δ4 + δ1).

Finally

dΩ(LS,H(x), LS,H(y)) ≤ dΩ(LS,H(x), x′) + dΩ(x′, y) + dΩ(y, LS,H(y))

≤ 4(δ4 + δ1).

7.3.2 S is Asymptotically Transverse-free relative to G

This section is essentially the proof of [IZ19, Theorem 13.16]. Let δ4 be the

constant in Proposition VII.5. We will show that exists λ > 0 such that for each
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∆ ≥ 1 and κ ≥ 2δ4 the following holds: if T ⊂ C is a geodesic triangle whose sides

are in G and is S-almost-transverse with constants κ and ∆, then T is (λ∆)-thin.

Suppose such a λ > 0 does not exist. Then, for every n ≥ 1, there exist κn ≥ 2δ4,

∆n ≥ 1, and a S-almost-transverse triangle Tn ⊂ C with constants κn and ∆n such

that Tn is not (n∆n)-thin. Let an, bn, and cn be the vertices of Tn, labeled in a such

a way that there exists un ∈ [an, bn] ⊂ Tn with

(7.5) dΩ

(
un, [an, cn] ∪ [cn, bn]

)
> n∆n ≥ n.

Then the geodesic triangles Tn are also S-almost-transverse with constants 2δ4 and

∆n since κn ≥ 2δ4.

Since Λ acts co-compactly on C, translating by elements of Λ and passing to a

subsequence, we can assume that u := limn→∞ un exists and u ∈ C. By passing to

a further subsequence, we can assume that a := limn→∞ an, b := limn→∞ bn, and

c := limn→∞ cn exist in C. By Equation (7.5),

[a, c] ∪ [c, b] ⊂ ∂i C

whereas, by construction, u ∈ (a, b) ⊂ C. Thus, the points a, b, c form a half triangle.

Then, by Theorem I.16 part (7), there exists S ∈ SΛ such that a, b, c ∈ ∂S.

Fix a set of S-supporting hyperplanes H. Let a′n := LS,H(an), b′n := LS,H(bn),

and c′n := LS,H(cn). Up to passing to a subsequence, we can assume that the limits

a′ := limn→∞ a
′
n, b′ := limn→∞ b

′
n and c′ := limn→∞ c

′
n exist. By Lemma VII.1,

a′ = lim
n→∞

LS,H(an) = LS,H(a) = a.

Similarly, b′ = b and c′ = c.

Since a, b, c form a half triangle, the faces FΩ(a′), FΩ(b′), and FΩ(c′), are pairwise
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disjoint. Then, by Proposition II.12,

lim
n→∞

dΩ(a′n, b
′
n) =∞.

Thus, for n large enough, Corollary VII.6 part (2) and part (3) implies

(7.6) [a′n, b
′
n] ⊂ NΩ([an, bn]; δ4)

and

(7.7) diamΩ

(
NΩ(S; δ4) ∩ [an, bn]

)
≥ dΩ(a′n, b

′
n)− 2δ4.

Since Tn is S-almost-transverse with constants 2δ4 and ∆n, by Equation (7.7),

(7.8) dΩ(a′n, b
′
n) ≤ ∆n + 2δ4.

Similarly, for n large enough,

[b′n, c
′
n] ⊂ NΩ([bn, cn]; δ4) and dΩ(b′n, c

′
n) ≤ ∆n + 2δ4(7.9)

[c′n, a
′
n] ⊂ NΩ([cn, an]; δ4) and dΩ(c′n, a

′
n) ≤ ∆n + 2δ4.(7.10)

Let mab
n , mbc

n , and mca
n be the Hilbert distance midpoints of [a′n, b

′
n], [b′n, c

′
n], and

[c′n, a
′
n] respectively. By Equations (7.6), (7.9), and (7.10), there exists wabn , wbcn , and

wcan in [an, bn], [bn, cn], and [cn, an] respectively such that:

dΩ(wabn ,m
ab
n ) ≤ δ4, dΩ(wbcn ,m

bc
n ) ≤ δ4, and dΩ(wcan ,m

ca
n ) ≤ δ4.

Then,

dΩ(wabn , w
bc
n ) ≤ dΩ(wabn ,m

ab
n ) + dΩ(mab

n ,m
bc
n ) + dΩ(mbc

n , w
bc
n )

≤ δ4 + dΩ(mab
n , b

′
n) + dΩ(b′n,m

bc
n ) + δ4

= 2δ4 +
dΩ(a′n, b

′
n) + dΩ(b′n, c

′
n)

2

≤ 4δ4 + ∆n (by Equations (7.8) and (7.9))
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Similarly,

(7.11) dΩ(wbcn , w
ca
n ) ≤ ∆n + 4δ4 and dΩ(wcan , w

ab
n ) ≤ ∆n + 4δ4.

Then, for n large enough, the triangles Tn are (∆n + 4δ4)-thin, since

dΩ
Hauss

(
[an, w

ab
n ], [an, w

ca
n ]
)
≤ ∆n + 4δ4,

dΩ
Hauss

(
[bn, w

bc
n ], [bn, w

ab
n ]
)
≤ ∆n + 4δ4, and

dΩ
Hauss

(
[cn, w

ca
n ], [cn, w

bc
n ]
)
≤ ∆n + 4δ4.

Since ∆n ≥ 1, we have ∆n + 4δ4 ≤ (1 + 4δ4)∆n. Thus, for n large enough, Tn is

(λ∆n)-thin for λ := 1 + 4δ4, which contradicts the assumption that Tn is not (n∆n)-

thin.

7.4 Proof of Theorem I.15

For the rest of the section suppose that Λ ≤ Aut(Ω) is a convex co-compact group.

Set C := CΩ(Λ) and let SΛ be the family of all maximal properly embedded simplices

in C of dimension at least two.

(1) implies (2). See Section 7.3.

(2) implies (1). This follows from Theorem III.12 part (1).

(1) and (2) implies (3). Suppose (C, dΩ) is relatively hyperbolic with respect to

SΛ. Equivalence of (1) and (2) implies that (C, dΩ) has strongly isolated simplices.

Then, by Theorem I.16 part (1), there exists m ∈ N such that

SΛ = tmi=1Λ · Si.(7.12)

Theorem I.16 part (2) implies that for each i ∈ {1, . . . ,m}, there exists an Abelian

subgroup Ai ≤ Λ of rank at least two such that Ai acts co-compactly on Si. We
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will show that Λ is a relatively hyperbolic group with respect to the subgroups

{A1, . . . , Am}.

Fix p ∈ C. Since Λ acts co-compactly on C, Theorem III.3 implies that the orbit

map F : (Λ, dS)→ (C, dΩ) defined by F (g) = g · p is a quasi-isometry . Here dS is a

word metric on Λ obtained by fixing a finite generating set S of Λ.

Since Ai acts co-compactly on Si for 1 ≤ i ≤ m, there exists R > 0 such that

sup
g∈Λ

sup
1≤i≤m

dΩ
Hauss(gAi · p, gSi) ≤ R.

Then equation (7.12) implies that up to modifying the map F by a bounded quantity

determined by R, we can assume that

F ({gAi : g ∈ Λ, 1 ≤ i ≤ m}) = SΛ .

Then by Proposition III.11, (Λ, dS) is a relatively hyperbolic space with respect to

the collection of left cosets {gAi : g ∈ Λ, 1 ≤ i ≤ m}. This completes the proof.

(3) implies (2). Suppose that Λ is a relatively hyperbolic group with respect to

a collection of subgroups {H1, . . . , Hk} each of which is a virtually Abelian group

of rank at least two. For each 1 ≤ j ≤ k, let Aj ≤ Hj be a finite index Abelian

subgroup with rank at least two. Then, by definition, Λ is a relatively hyperbolic

group with respect to {A1, . . . , Ak}.

Fix some x0 ∈ Ω and consider the orbit map F : (Λ, dΛ) → (C, dΩ) defined by

F (g) = g · x0. By Proposition III.3, F is a quasi-isometry. Let G : C → Λ be a

quasi-inverse. Fix a word metric dΛ on Λ. We will use the following notation: if

U ⊂ Λ and r > 0, let

NΛ(U ; r) := {g ∈ Λ : dΛ(g, U) < r}
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and

diamΛ(U) = sup{dΛ(g1, g2) : g1, g2 ∈ U}.

For each 1 ≤ j ≤ k, let Âj be a maximal Abelian subgroup of Λ that contains

Aj. By Theorem I.17, there exists a properly embedded simplex Sj ⊂ C such that

Âj ≤ StabΛ(Sj), Âj acts co-compactly on Sj, and Âj has a finite index subgroup

isomorphic to Zdim(Sj). Since Aj (and hence Âj) has rank at least two, this implies

that dimSj ≥ 2.

Claim VII.10. (C, dΩ) is a relatively hyperbolic space with respect to

S0 := {gSj : g ∈ Λ, 1 ≤ j ≤ k}.

Proof of Claim. We claim that Aj ≤ Âj has finite index and hence Aj also acts co-

compactly on Sj. By Observation II.18, the metric space (Sj, dΩ) is quasi-isometric

to RdimSj . So, by the fundamental lemma of geometric group theory [BH99, Chapter

I, Proposition 8.19], (Âj, dΛ) is also quasi-isometric to RdimSj . Since dimSj ≥ 2,

Theorem III.12 part (2) implies that there exists r1 > 0, gj ∈ Λ, and 1 ≤ ij ≤ k such

that

Âj ⊂ NΛ(gjAij ; r1).

Then

diamΛ

(
NΛ(gjAij ; r1) ∩NΛ(Aj; r1)

)
≥ diamΛ (Aj) =∞.

So Theorem III.12 part (1) implies that gjAij = Aj. Then,

Âj ⊂ NΛ(Aj; r1)

and hence Aj ≤ Âj has finite index.
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Then, using the fact that Aj acts co-compactly on Sj, there exists r2 > 0 such

that

F (gAj) ⊂ NΩ(gSj; r2)

and

G(gSj) ⊂ NΛ(gAj; r2)

for all g ∈ Λ and 1 ≤ j ≤ k. Then, by Theorem III.12 part (3), (C, dΩ) is relatively

hyperbolic with respect to S0.

In order to finish the proof, we will now show that S0 = SΛ.

We first show that S0 ⊂ SΛ. Suppose S ∈ S0 is properly contained in a maximal

properly embedded simplex S ′. Then, by Theorem III.12 part (2), there exists S ′′′ ∈

S0 such that

S ⊂ S ′ ⊂ NΩ(S ′′′;M).

This implies that diamΩ(NΩ(S ′′′;M) ∩ NΩ(S;M)) = ∞. Then Theorem III.12 part

(1) implies that S ′′′ = S, i.e. S ′ ⊂ NΩ(S;M). Hence, dim(S ′) ≤ dim(S) which is a

contradiction since S ′ properly contains S.

For proving SΛ ⊂ S0, we first need the following claim.

Claim VII.11. If S ∈ S0 and x ∈ ∂S, then FΩ(x) = FC(x) = FS(x).

Proof of Claim. Fix S ∈ S0. Recall that since Λ is a convex co-compact subgroup,

FΩ(x′) = FC(x
′) for any x′ ∈ ∂i C. Then, as in the proof of Proposition VI.5, if

x ∈ ∂S, then the claim fails only when

∂FS(x) $ ∂FC(x).

We will prove that ∂FS(x) = ∂FC(x) by induction on dim(FS(x)).
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Base case: dim(FS(x)) = 0.

Then x is a vertex of S. Suppose the claim fails, i.e. ∂FS(x) $ ∂FC(x). Let w0 ∈

∂FC(x) \FS(x). Then (w0, x)∩S = ∅. Otherwise, if there was x′′ ∈ (w0, x)∩S, then

Observation II.19 would imply that

FS(x′′) = S ∩ FΩ(x′′) = S ∩ FΩ(x) = FS(x) = {x},

that is x′′ = x, a contradiction.

Then, we fix w ∈ (w0, x) ⊂ FΩ(x) such that M + 1 ≤ dFΩ(x)(w, x). Set Rw :=

dFΩ(x)(w, x). Let us label the vertices of S as v1, . . . , vm where m = dim(S) + 1 and

v1 = x. By Proposition II.20, S ′ := ConvHullΩ(w, v2, . . . , vm) is a properly embedded

simplex in C such that dΩ
Hauss(S ′, S) ≤ Rw. Observe that

S ′ 6⊂ NΩ(S;M).

Indeed, if S ′ ⊂ NΩ(S;M), then applying Corollary II.13 to w ∈ ∂S ′, we get s ∈ ∂S

such that w ∈ FΩ(s) and dFΩ(s)(w, s) ≤ M . Since w ∈ FΩ(x), this implies that

x ∈ FΩ(s). Since x, s ∈ ∂S and x is a vertex of S, s = x. Thus dFΩ(x)(w, x) ≤ M , a

contradiction.

Then, by Theorem III.12 part (2), there exists S1 6= S ∈ S0 such that S ′ ⊂

NΩ(S1;M). Then we have

S ′ ⊂ NΩ(S;Rw) ∩N (S1;M)

which implies that diamΩ(NΩ(S;Rw) ∩ N (S1; 2M)) = ∞ for distinct S, S1 ∈ S0.

This contradicts Theorem III.12 part (1), as C is a relatively hyperbolic space with

respect to S0. This completes the proof in the base case.

Induction step: Suppose the proposition is true when dim(FS(x)) = k for some

k ≥ 0.
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Now suppose dim(FS(x)) = k + 1. Let y ∈ ∂FC(x). We will show that y ∈ ∂FS(x).

For n ≥ 1, choose yn ∈ (y, x) such that dFC(x)(yn, x) = n.

Let us label the vertices of S as v1, . . . , vm where m = dim(S) + 1 and v1 = x. By

Proposition II.20,

Sn := ConvHullΩ(yn, v2, . . . , vm)

is a properly embedded simplex in C of dimension at least two and dΩ
Hauss(S, Sn) ≤ n.

Then, by Theorem III.12 part (2), there exist Tn ∈ S0 such that

Sn ⊂ NΩ(Tn;M)

for each n ≥ 1. Then

S ⊂ NΩ(Tn;M + n).

Since diamΩ(NΩ(Tn;M + n)∩NΩ(S;M + n)) =∞, Theorem III.12 part (1) implies

that S = Tn for all n ≥ 1. Since Sn ⊂ NΩ(S;M) and yn ∈ ∂Sn, Corollary II.13

implies that for each n ≥ 1, there exists zn ∈ ∂S ∩FΩ(yn) such that dFΩ(yn)(yn, zn) ≤

M . Since yn ∈ FΩ(x), zn ∈ ∂S ∩ FΩ(x) and dFΩ(x)(yn, zn) ≤ M . Up to passing to a

subsequence, we can assume that zn → z ∈ S. By Proposition II.12,

y ∈ FFΩ(x)(z) = FΩ(z).

Observe that z ∈ ∂FS(x) = ∂S ∩ ∂FΩ(x) since

dFΩ(x)(x, z) = lim
n→∞

dFΩ(x)(x, zn) ≥ lim
n→∞

dFΩ(x)(x, yn)− dFΩ(x)(yn, zn)

≥ lim
n→∞

(n−M) =∞.

Since z ∈ ∂FS(x), FS(z) ⊂ ∂FS(x). Then

dim(FS(z)) ≤ dim(∂FS(x)) = dim(FS(x))− 1 = k.
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The induction hypothesis then implies that FΩ(z) = FS(z). Thus,

y ∈ FS(z) ⊂ ∂FS(x).

Hence ∂FC(x) ⊂ ∂FS(x) which finishes the proof of this claim.

Now fix any S ∈ SΛ. By Theorem III.12 part (2), there exists M such that

S ⊂ NΩ(S0;M) for some S0 ∈ S0. If q ∈ ∂S, then Corollary II.13 implies that there

exists q0 ∈ ∂S0 such that q ∈ FΩ(q0). Since S0 ∈ S0, the above claim implies that

FΩ(q0) = FS0(q0) ⊂ ∂S0. Thus q ∈ ∂S0. This implies that ∂S ⊂ ∂S0, that is, S ⊂ S0.

Since S is a maximal properly embedded simplex, S = S0 and S ∈ S0. This finishes

the proof that S0 = SΛ. Then, by Claim VII.10, C is a relatively hyperbolic space

with respect to SΛ.
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CHAPTER VIII

A Convex Projective Flat Torus Theorem

This chapter is based on results that appear in [IZ21] which is a joint work with

A. Zimmer.

8.1 Outline

In this chapter, we will prove Theorem I.17 which we now restate.

Theorem I.17. ([IZ21, Theorem 1.6]) Suppose that Λ ≤ Aut(Ω) is a convex co-

compact group. If A ≤ Λ is a maximal Abelian subgroup of Λ, then there exists a

properly embedded simplex S ⊂ CΩ(Λ) such that

(1) S is A-invariant,

(2) A acts co-compactly on S, and

(3) A fixes each vertex of S.

Moreover, A has a finite index subgroup isomorphic to Zdim(S).

In Section 8.2, we show convex co-compact actions of Abelian groups. In Section

8.3, we prove Theorem I.18. It is a result about the centralizer of an Abelian subgroup

in a convex co-compact group. Theorem I.17 is proven in 8.4 as a consequence of the

aforementioned theorems.
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8.2 Abelian Convex Co-compact Actions

In this section we show that every convex co-compact action of an Abelian group

comes from “fattening” a properly embedded simplex. We will use the following

notation to state our result: if X ⊂ Ω, then StabΩ(X) := {g ∈ Aut(Ω) : gX = X}.

Theorem VIII.1 ([IZ21, Theorem 6.1]). Suppose Ω ⊂ P(Rd) is a properly convex

domain, C ⊂ Ω is a non-empty closed convex subset, and G ≤ StabΩ(C). If G is

Abelian and acts co-compactly on C, then there exists a properly embedded simplex

S ⊂ C where

(1) G ≤ StabΩ(S),

(2) G acts co-compactly on S, and

(3) G fixes each vertex of S.

Remark VIII.2. Notice that we do not assume that G is a discrete subgroup of

Aut(Ω).

The rest of the section is devoted to the proof of the theorem. We will induct on

dim Ω + dim C.

The base case, when dim Ω = 1 and dim C = 0, is trivial.

Suppose that Ω, C, G satisfy the hypothesis of the theorem. From Proposition II.31

we immediately obtain the following.

Observation VIII.3. If C is compact, then G fixes the point CoMΩ(C).

Since a point is a 0-dimensional simplex, the above observation completes the

proof in the case when C is compact. So for the rest of the argument we assume that

C is non-compact and hence ∂i C 6= ∅. Our first goal will be to find a finite number
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of fixed points x1, . . . , xk of G in ∂i C such that

ConvHullΩ{x1, . . . , xk} ∩ Ω

is non-empty.

Lemma VIII.4 ([IZ21, Lemma 6.4]). If x ∈ ∂i C and F := FΩ(x), then

(1) G ≤ StabΩ(F ),

(2) G ≤ StabΩ(F ∩ ∂i C), and

(3) G acts co-compactly on F ∩ ∂i C.

Proof. By Proposition II.36 there exists some T ∈ GEnd
such that P(kerT ) ∩Ω = ∅,

T (Ω) = F , and T (C) = F ∩ ∂i C. Since G is Abelian, T ◦ g = g ◦ T for every g ∈ G.

Then for g ∈ G we have

gF = gT (Ω) = T (gΩ) = T (Ω) = F.

Since g ∈ G was arbitrary, G ≤ StabΩ(F ). Then G ≤ StabΩ(F ∩ ∂i C) since G ≤

StabΩ(C).

Since G acts co-compactly on C, there exists a compact set K ⊂ C such that

G ·K = C. Since P(kerT ) ∩ Ω = ∅, the map

p ∈ Ω 7→ T (p) ∈ FΩ(x)

is continuous. So KF := T (K) is a compact subset of F ∩ ∂i C. Then

G ·KF = G · T (K) = T (G ·K) = T (C) = F ∩ ∂i C.

So G acts co-compactly on F ∩ ∂i C.

Lemma VIII.5. There exists a properly embedded 1-dimensional simplex ` ⊂ C.
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Proof. Fix some x0 ∈ C. Since C is non-compact, there exists some x ∈ ∂i C. Then

pick xn ∈ [x0, x) converging to x. Since [x0, x) ⊂ C and G acts co-compactly on C,

there exist r > 0 and a sequence gn ∈ G such that

HΩ(gnxn, x0) ≤ r

for all n ≥ 0. By passing to a subsequence we can suppose that gnxn → q ∈ C.

By passing to another subsequence we can assume that gn · (x0, x) converges to a

properly embedded 1-dimensionial simplex ` ⊂ C.

Lemma VIII.6. There exists a finite number of fixed points x1, . . . , xm of G in ∂i C

such that

ConvHullΩ{x1, . . . , xm} ∩ Ω

is non-empty.

Proof. By the previous lemma there exists a properly embedded 1-dimensional sim-

plex ` ⊂ C. Let y1, y2 be the endpoints of ` and let Fj := FΩ(yj).

First, we will find a finite number of fixed points a1, . . . , ak of G in F 1 ∩ ∂i C such

that

ConvHullΩ {a1, . . . , ak} ∩ F1

is non-empty. By Lemma VIII.4 and induction there exists a properly embedded

simplex S1 ⊂ F1 where G fixes each vertex of S1. Let a1, . . . , ak be the vertices of

S1. Then

S1 = ConvHullΩ {a1, . . . , ak} ∩ F1

is non-empty.
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Applying the same argument to F2 yields a finite number of fixed points b1, . . . , bn

of G in F2 ∩ ∂i C such that

ConvHullΩ {b1, . . . , bn} ∩ F2

is non-empty.

Finally, we claim that

ConvHullΩ {a1, . . . , ak, b1, . . . , bn} ∩ Ω 6= ∅.

is non-empty. By construction, this convex hull contains some a′ ∈ F1 and b′ ∈ F2.

Since y1 ∈ F1, y2 ∈ F2, and ` = (y1, y2) ⊂ Ω, Proposition II.11 part (4) implies that

(a′, b′) ⊂ Ω. Then

(a′, b′) ⊂ ConvHullΩ {a1, . . . , ak, b1, . . . , bn} ∩ Ω

and we are done.

By the previous lemma, there exist fixed points x1, . . . , xm of G in ∂i C such that

S := ConvHullΩ{x1, . . . , xm} ∩ Ω

is non-empty. We can also assume that m is minimal in the following sense: if

y1, . . . , yk are fixed points of G in ∂i C with k < m, then

ConvHullΩ{y1, . . . , yk} ∩ Ω = ∅.

Also, notice that m ≥ 2 since x1, . . . , xm ∈ ∂i C and S 6= ∅. We complete the proof

of Theorem VIII.1 by proving the following.

Lemma VIII.7. S is a properly embedded simplex in Ω, G ≤ StabΩ(S), G acts

co-compactly on S, and G fixes each vertex of S.
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Proof. Let d0 := dimS. We claim that d0 = m− 1. By definition,

d0 = dimP(Span{x1, . . . , xm}) ≤ m− 1.

For the reverse inequality, fix p ∈ S. Then by Carathéodory’s convex hull theorem

there exists xi1 , . . . , xik with k ≤ d0 + 1 such that

p ∈ ConvHullΩ{xi1 , . . . , xik}.

Hence

∅ 6= ConvHullΩ{xi1 , . . . , xik} ∩ Ω.

So by our minimality assumption we must have k = m and so m ≤ d0 + 1. So

m = d0 + 1. Thus x1, . . . , xm are linearly independent and hence S is a simplex with

vertices {x1, . . . , xm}.

By the minimality property, for any proper subset {xi1 , . . . , xik} ⊂ {x1, . . . , xm}

we have

∅ = ConvHullΩ{xi1 , . . . , xik} ∩ Ω.

So S is a properly embedded simplex of Ω.

By construction G ≤ StabΩ(S) and G fixes each vertex of S. Finally, since S ⊂ C

is a closed subset and G acts co-compactly on C, we see that G acts co-compactly

on S.

8.3 Centralizers and Minimal Translation Sets: Proof of Theorem I.18

In this section we prove Theorem I.18 which we restate here.

Theorem I.18. Suppose Λ ≤ Aut(Ω) is a convex co-compact group and A ≤ Λ is

an Abelian subgroup. Then

MinCΩ(Λ)(A) := CΩ(Λ)∩
⋂
a∈A

Min(a)
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is non-empty and CΛ(A) acts co-compactly on ConvHullΩ
(
MinCΩ(Λ)(A)

)
.

For the rest of the section fix a co-compact group Λ ≤ Aut(Ω) and an Abelian

subgroup A ≤ Λ. Set C := CΩ(Λ).

We will need the following elementary observations [IZ21, Section 7].

Observation VIII.8. Suppose that Ω ⊂ P(Rd) is a properly convex domain and

g ∈ Aut(Ω). If V ⊂ Rd is a linear subspace where dimV > 1, Ω ∩ P(V ) 6= ∅, and V

is g-invariant, then

τΩ∩P(V )(g) = τΩ(g).

Observation VIII.9. Suppose that Ω ⊂ P(Rd) is a properly convex domain and

S ⊂ Ω is a properly embedded simplex. If g ∈ Aut(Ω) fixes every vertex of S, then

S ⊂ Min(g).

We will need the following fact about subgroups of solvable Lie groups.

Lemma VIII.10 ([Rag72, Proposition 3.8]). Let G be a solvable Lie group with

finitely many components and H ≤ G a closed subgroup. Let H0 be the connected

component of the identity in H. Then H/H0 is finitely generated.

Now we begin the proof of Theorem I.18. Let A
Zar

be the Zariski closure in

PGLd(R). Then A
Zar

is Abelian and has finitely many components. Since A ≤ A
Zar

is discrete, Lemma VIII.10 implies that

A = 〈a1, . . . , am〉

for some a1, . . . , am ∈ A. In particular,

CΛ(A) = ∩mj=1CΛ(aj).

Next for r > 0 define

Mr := {x ∈ C : HΩ(x, ajx) ≤ r for all 1 ≤ j ≤ m} .
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Lemma VIII.11. CΛ(A) ≤ StabΛ(Mr).

Proof. If γ ∈ CΛ(A) and x ∈Mr, then

HΩ(γx, ajγx) = HΩ(γx, γajx) = HΩ(x, ajx) ≤ r

Hence γx ∈ Mr. So γMr ⊂ Mr. Applying the same argument to γ−1 shows that

Mr ⊂ γMr.

Lemma VIII.12. For every r > 0, CΛ(A) acts co-compactly on Mr.

The following argument comes from the proof of Theorem 3.2 in [Rua01].

Proof. If Mr = ∅, then there is nothing to prove. So we may assume that Mr 6= ∅.

Suppose for a contradiction that CΛ(A) does not act co-compactly on Mr. Fix

some x0 ∈Mr. Then for each n there exists some xn ∈Mr such that

HΩ (xn, CΛ(A) · x0) ≥ n.

Since Λ acts co-compactly on C, there exist M > 0 and a sequence βn ∈ Λ such that

HΩ(βnx0, xn) ≤M.

for all n ≥ 0. Then for 1 ≤ j ≤ m

HΩ(β−1
n ajβnx0, x0) = HΩ(ajβnx0, βnx0)

≤ HΩ(ajβnx0, ajxn) +HΩ(ajxn, xn) +HΩ(xn, βnx0)

≤M + r +M = r + 2M.

Since Λ acts properly on Ω, for every 1 ≤ j ≤ m the set

{β−1
n ajβn : n ≥ 0}

138



must be finite. So by passing to a subsequence we can assume that

β−1
n ajβn = β−1

1 ajβ1

for all 1 ≤ j ≤ m and n ≥ 0. Then βnβ
−1
1 ∈ ∩mj=1CΛ(aj) = CΛ(A) for all n ≥ 0.

Then

n ≤ HΩ (xn, CΛ(A) · x0) ≤ HΩ

(
xn, βnβ

−1
1 x0

)
≤ HΩ (xn, βnx0) +HΩ

(
βnx0, βnβ

−1
1 x0

)
≤M +HΩ

(
x0, β

−1
1 x0

)
for all n ≥ 0, which is a contradiction. Hence CΛ(A) acts co-compactly on Mr.

Lemma VIII.13. For any r > 0,

ConvHullΩ (Mr) ⊂M2d−1r.

Remark VIII.14. A similar estimate is established in [CLT15, Lemma 8.4].

Proof. For n ≥ 0, let Cn ⊂ ConvHullΩ (Mr) denote the elements which can be written

as a convex combination of n elements in Mr. Then C1 = Mr and by Carathéodory’s

convex hull theorem, Cd = ConvHullΩ (Mr). We claim by induction that

Cn ⊂M2(n−1)r

for every 1 ≤ n ≤ d.

By definition C1 = Mr so the base case is true. Now suppose that

Cn ⊂M2(n−1)r

and p ∈ Cn+1. Then there exists p1, p2 ∈ Cn such that p ∈ [p1, p2]. Let σ : [0, T ]→ C

be the unit speed projective line geodesic with σ(0) = p1 and σ(T ) = p2. Then
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p = σ(t0) for some t0 ∈ [0, T ]. Next for 1 ≤ j ≤ m let σj = aj ◦σ. Then Lemma II.15

implies that

HΩ(p, ajp) = HΩ(σ(t0), σj(t0)) ≤ HΩ(σ(0), σj(0)) +HΩ(σ(T ), σj(T ))

= HΩ(p1, ajp1) +HΩ(p2, ajp2) ≤ 2(n−1)r + 2(n−1)r = 2nr

Since p ∈ Cn+1 was arbitrary, we have

Cn+1 ⊂M2nr

and the proof is complete.

Combining Lemma VIII.12 and Lemma VIII.13 we have the following.

Lemma VIII.15. For any r > 0, CΛ(A) acts co-compactly on ConvHullΩ (Mr).

Now we can complete the final step of the proof.

Lemma VIII.16. MinC(A) 6= ∅ and CΛ(A) acts co-compactly on ConvHullΩ(MinC(A)).

Proof. If r > max1≤j≤d τ(aj), then

MinC(A) = ∩a∈A MinC(a) ⊂ ∩mj=1 MinC(aj) ⊂Mr.

So ConvHullΩ(MinC(A)) is a closed CΛ(A)-invariant subset of ConvHullΩ (Mr). Fur-

ther, Lemma VIII.15 implies that CΛ(A) acts co-compactly on ConvHullΩ (Mr). So

CΛ(A) also acts co-compactly on ConvHullΩ(MinC(A)).

Next we show that MinC(A) 6= ∅. Pick A′ ≥ A a maximal Abelian subgroup in Λ.

Then A′ = CΛ(A′). By Lemma VIII.10 and the discussion following the lemma

A′ = 〈a′1, . . . , a′n〉

for some a′1, . . . , a
′
n ∈ A′. Notice that

MinC(A
′) = ∩a∈A′ MinC(a) ⊂ ∩a∈A MinC(a) = MinC(A)
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and so it is enough to show that MinC(A
′) 6= ∅.

For r > 0 define

M ′
r :=

{
x ∈ C : HΩ(x, a′jx) ≤ r for all 1 ≤ j ≤ n

}
.

Then for r sufficiently large, M ′
r 6= ∅. Further, by applying Lemma VIII.15 to A′, we

see that A′ acts co-compactly on the convex set

C ′ := ConvHullΩ(M ′
r) ⊂ C.

Then by Theorem VIII.1 there exists a properly embedded simplex S ⊂ C ′ ⊂ C

where A′ ≤ StabΩ(S), A′ acts co-compactly on S, and A′ fixes each vertex of S.

Then Proposition VIII.9 implies that

S ⊂ MinC(A
′)

and hence MinC(A
′) is non-empty.

8.4 Proof of Theorem I.17

Theorem I.17 is a straightforward consequence of Theorems VIII.1 and I.18. Sup-

pose that Λ ≤ Aut(Ω) is a convex co-compact group and A ≤ Λ is a maximal Abelian

subgroup. Since A is a maximal Abelian subgroup, A = CΛ(A). Then Theorem I.18

implies that A acts co-compactly on the non-empty convex subset

ConvHullΩ
(
MinCΩ(Λ)(A)

)
⊂ CΩ(Λ) .

Then by Theorem VIII.1 there exists a properly embedded simplex

S ⊂ ConvHullΩ
(
MinCΩ(Λ)(A)

)
⊂ CΩ(Λ)

where A ≤ StabΩ(S), A acts co-compactly on S, and A fixes each vertex of S. Now

it is straightforward to argue that A contains a finite index subgroup isomorphic of

Zdim(S), see for instance [IZ21].
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Mathématiques de l’IHÉS 82 (1995), 169–209.

[BBF16] Mladen Bestvina, Ken Bromberg, and Koji Fujiwara, Bounded cohomology with coef-
ficients in uniformly convex Banach spaces, Comment. Math. Helv. 91 (2016), no. 2,
203–218. MR 3493369

[BDL18] Samuel A. Ballas, Jeffrey Danciger, and Gye-Seon Lee, Convex projective structures on
nonhyperbolic three-manifolds, Geom. Topol. 22 (2018), no. 3, 1593–1646. MR 3780442

[Ben04] Yves Benoist, Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund.
Res., Mumbai, 2004, pp. 339–374. MR 2094116

[Ben05] , Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5,
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