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Abstract 

 
All opioids - whether they are addictive opioid analgesics or endogenous opioids 

like endorphins produced by our body - activate one of three receptors in our brain. 

However, different opioids cause different effects, including effects on pain and addiction. How 

opioids generate this variety in signaling has been a long-standing question in the field. My 

thesis tests the exciting new idea that specific opioids traffic receptors to different compartments 

of the cell, from where they can signal in a compartment-specific manner.  

In this dissertation I review the selective mechanisms that regulate G protein-coupled 

receptor (GPCR) trafficking, which highlight the complex framework underlying spatial 

regulation of receptor function. Lipid membrane dynamics, post-translational modifications, cell-

specific protein interactors, and agonist-selectivity are all key determinants for selective GPCR 

trafficking.  

Specifically, I focus on how opioid peptides may cause distinct functional outcomes 

through activation of the same receptor. To address this question, I use high-resolution imaging 

assays to examine how different dynorphin peptides regulated kappa opioid receptor (KOR) 

trafficking and post-endocytic sorting. Interestingly, we observe that highly related dynorphin 

peptides caused distinct opioid receptor trafficking fates (recycling vs. degradation) as well as 

compartment-specific signaling from late endosomes and lysosomes, depending on the peptide 

ligand that activated the receptor. Specifically, we show that KOR activation by dynorphin A 

leads to receptor degradation and activation from late endosomal compartments, while KOR 



 

 xi 

activation by the highly related dynorphin B leads to receptor recycling from Rab5 and Rab11 

compartments, without endosomal signaling. 

 Further, I investigate the dynamic relationship between receptor signaling and receptor 

trafficking. Initially, we observed that agonist washout caused a decrease in mu opioid receptor 

(MOR) recycling. This finding led us to hypothesize that signaling downstream of receptor 

activation regulated receptor trafficking back to the cell surface, which regulates resensitization. 

To test this, I used total internal reflection fluorescence (TIRF) microscopy to detect real-time 

exocytic fusion events in living cells. I tested various components of known signaling pathways 

downstream of MOR activation using pharmacological inhibitors and phosphodeficient and 

phosphomimetic receptor mutants to quantitate differences in MOR recycling. Our results 

indicate that MOR recycling is regulated via an agonist-dependent Gβγ signaling pathway, 

resulting in the phosphorylation of the receptor’s C-terminal tail to increase receptor recycling. I 

follow up on this work by further testing the role of receptor phosphorylation in regulating MOR 

trafficking and signaling. By understanding the signaling pathways that regulate receptor 

trafficking and resensitization, this work opens new avenues for potential druggable targets. 

Collectively, this work increases our understanding of opioid physiology. Further, 

because the opioid receptor is a prototype for GPCRs - the largest and highly conserved family 

of signaling receptors in humans - the principles could be relevant across many physiologically 

relevant members of this family. 
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Chapter 1 Introduction 
 
 

1.1 Mechanisms of Selective G protein-coupled Receptor 
Localization and Trafficking 

 

Published as Kunselman, J. M., Lott, J., & Puthenveedu, M. A. (2021). Mechanism of Selective 

GPCR Trafficking. Curr. Opin. Cell Biol. 71, 158-165. 

Abstract 

The trafficking of G protein–coupled receptors (GPCRs) to different membrane 

compartments has recently emerged as being a critical determinant of the signaling profiles of 

activation. GPCRs, which share many structural and functional similarities, also share many 

mechanisms that traffic them between compartments. This sharing raises the question of how the 

trafficking of individual GPCRs is selectively regulated. Here, we will discuss recent studies 

addressing the mechanisms that contribute to selectivity in endocytic and biosynthetic trafficking 

of GPCRs. 

Introduction 

The regulation of signaling by membrane trafficking has traditionally been attributed to 

trafficking’s role in controlling the number of signaling receptors on the cell surface (Sorkin and 

von Zastrow, 2009). For G protein-coupled receptors (GPCRs), the largest single family of 

signaling receptors (Pierce et al., 2002), the removal of activated receptors from the cell surface
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by endocytosis and recovery of receptors on the surface by either recycling of internalized 

receptors or delivery of new receptors control the strength of response to extracellular ligands 

(Hanyaloglu and von Zastrow, 2008; Hausdorff et al., 1990). Recent studies, however, have 

highlighted more complex aspects of how trafficking regulates signaling. One is that GPCRs can 

signal from a variety of intracellular compartments (Sposini and Hanyaloglu, 2018; Lobingier 

and von Zastrow, 2019). Another is that mechanisms that regulate GPCR trafficking are 

heterogeneous, allowing selective control over the location and trafficking of individual GPCRs 

(Hanyaloglu and von Zastrow, 2008). These aspects have highlighted a new idea that the primary 

role of trafficking might be to move specific GPCRs between specific signaling complexes on 

different membrane domains, as opposed to simply regulating cell surface receptors (Crilly and 

Puthenveedu, 2020; Calebiro and Koszegi, 2019). In this review, we will discuss recent studies 

on endocytic and biosynthetic trafficking of GPCRs, focusing on example mechanisms that 

provide specificity in the midst of shared mechanisms.  

Endocytic trafficking  

The mechanisms of GPCR endocytosis and post-endocytic trafficking after receptor 

activation, which are common features of many GPCRs, have been exhaustively addressed in 

several reviews (Hanyaloglu and von Zastrow, 2008; Bowman and Puthenveedu, 2015; Bahouth 

and Nooh, 2017; Weinberg and Puthenveedu, 2019). We will discuss recent findings on receptor 

interactions and signaling pathways that provide selectivity within these mechanisms.  
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Selectivity in endocytosis of GPCRs  

How the endocytosis of GPCRs is individually controlled has been a long-standing 

question, considering that the general mechanism is shared broadly across most GPCRs 

(Weinberg and Puthenveedu, 2019). Activated GPCRs undergo specific conformational changes 

that, in addition to catalyzing guanosine triphosphate (GTP) exchange on G proteins, allow 

GPCR kinases to phosphorylate the receptor C-termini. These phosphorylated C-termini are 

recognized by arrestins, which act as adapters that link receptors to the clathrin endocytic 

machinery (Tian et al., 2014; Gurevich and Gurevich, 2019A; Caron and Barak, 2019).   

One aspect of this process that could be selective is receptor phosphorylation. Many 

GPCRs have multiple phosphorylation sites on its C-terminal tail, which are required for receptor 

internalization (Patwardhan et al., 2021; Gurevich and Gurevich, 2019B). For example, in the 

mu-opioid receptor (MOR), a phosphorylation cluster within residues 375-379 is the primary 

mediator of endocytosis (Lau et al., 2011; Arttamangkul et al., 2019), which might be driven 

mainly by GRK2 in HEK293 cells (Bouley et al., 2020). C-terminal sites may be phosphorylated 

hierarchically by multiple kinases (Just et al., 2013; Duarte and Devi, 2020), suggesting that each 

GPCR could have a set of kinases that phosphorylate it and drives endocytosis. For example, the 

receptor tyrosine kinase anaplastic lymphoma kinase (ALK) associates with the dopamine D2 

receptor (D2R) but not the closely related dopamine D1 receptor. An inhibitor of ALK blocks 

internalization of D2R but not of D1R. ALK-mediated activation of protein kinase C g (PKCg) 

downstream of dopamine is required and sufficient for D2R internalization in HEK293 cells (He 

and Lasek, 2020). The exact ALK-dependent internalization mechanism is not clear, but PKCg 
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may influence the phosphorylation patterns of D2R and target interactions between D2R and 

arrestin.  

For the vasopressin 2 receptor (V2R), differences in phosphorylation at specific residues 

tuned the strength of arrestin interactions and regulate endocytosis. Mutation of Ser 357 or Thr 

360 to alanines reduced arrestin binding as measured by co-immunoprecipitation but still 

retained enough binding to be visualized as membrane recruitment by microscopy. This reduced 

binding in the case of Ser 357 mutation was still sufficient for qualitatively similar levels of V2R 

and arrestin localization to endosomes. In contrast, reduced binding in the case of Thr 360 

mutation abolished arrestin localization to endosomes, although its effect on V2R endocytosis 

was not directly measured (Dwivedi-Agnihotri et al., 2020). Similarly, a naturally occurring 

variant at Thr 282 for the angiotensin II receptor 1 induced a distinct conformation of arrestin 

upon binding, which was less stable but still supported endocytosis (Cao et al., 2020). The 

second aspect of endocytosis that could be selective are “checkpoints” that exist after GPCR 

localization to endocytic domains (Figure 1.1). GPCR C-terminal tails contain specific sequences 

that interact with several components of the endocytic machinery. For example, a type I PDZ 

ligand on the C-terminus of the beta 2 adrenergic receptor indirectly links receptors to the actin 

cytoskeleton in clathrin-coated pits. This link delays the recruitment of dynamin, a GTPase that 

is required for membrane scission during endocytosis (Puthenveedu and von Zastrow, 2006). In 

contrast, PDZ-mediated interaction of mGluR1 and mGluR5, two metabotropic glutamate 

receptors, with the scaffold protein tamalin is essential for receptor endocytosis (Pandey et al., 

2020). In this case, tamalin might link the receptors to motors via a scaffold protein S-SCAM, 

suggesting that it acts at a late step. An unrelated “bileucine” sequence on the C-terminal tail of 

MOR delays scission even after dynamin is recruited (Weinberg et al., 2017). The same receptor 
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might contain multiple discrete sequences that regulate endocytosis. The first intracellular loop 

of MOR contains specific lysines that are ubiquitinated by the ubiquitin ligase Smurf2. This 

ubiquitination, recognized by the endocytic accessory protein Epsin1, is required for endocytic 

scission (Henry et al., 2012). For the protease-activated receptor 1, ubiquitination- dependent 

recruitment of Epsin1 and the endocytic adapter AP-2 can induce receptor endocytosis in the 

absence of arrestins (Chen et al., 2011). The third intracellular loop of the beta 1 adrenergic 

receptor (B1AR) recruits endophilin, a BAR domain-containing protein that generates membrane 

curvature as part of the endocytic machinery, when linked to Giant Unilamellar Vesicles. 

Endophilin, once recruited via interactions of the third loop with the endophilin SH3 domain, can 

generate membrane curvature on these vesicles (Mondal et al., 2021). Specific local protein 

interactions of individual GPCRs might therefore delay or facilitate their own endocytosis by 

modulating endocytic components.  

Figure 1.1 

 
 
Figure 1.1 GPCR endocytosis is regulated by selective mechanisms. GPCR endocytosis from 
the plasma membrane can be regulated at multiple steps. The 5-HT1AR can switch between 
clathrin-dependent or caveolin-dependent endocytosis depending on cholesterol levels in the 
plasma membrane, which suggests that GPCR endocytosis can be regulated by the local 
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membrane environment. GPCR interactions with arrestin, a shared endocytic adapter, could be 
regulated by the slate of kinases that determine the phosphorylation patterns on the GPCR C-
termini. The GPCR C-termini and cytoplasmic loops contain additional sequences that regulate 
later steps in endocytosis by interacting with structural scaffold proteins such as PDZ proteins or 
tamalin. Although these mechanisms are still not fully understood, newer methods including high 
resolution live cell microscopy and single molecule tracking may help us decipher the interplay 
between these factors, GPCRs, and the endocytic machinery. 

A third aspect is the selective interaction of GPCRs with membrane lipids. The third 

intracellular loop of the B1AR, described previously, electrostatically interacts with anionic 

phospholipids, which interfere with SH3 recruitment (Mondal et al., 2021). GPCRs might 

localize to micro- domains, such as lipid rafts or caveolae on the surface, often in a regulated 

manner (Patel et al., 2008; Briddon et al., 2018). Activation of the glucagon-like peptide-1 

receptor (GLP-1R) in pancreatic beta cells redistributes the receptors to membrane nanodomains 

that contain the lipid raft marker flotillin (Buenaventura et al., 2019). When cholesterol was 

depleted by methyl-b-cyclodextrin, GLP-1R failed to redistribute to nano- domains and to 

internalize. Receptor palmitoylation and different agonists regulated this redistribution, raising 

the possibility that the process could be regulated by signaling. The role that cholesterol 

interactions play could be specific for each GPCR. When cholesterol was depleted by statin 

drugs, 5-HT1A receptors (5-HT1AR) internalized, but the pathway switched from clathrin- 

mediated to caveolin-mediated endocytosis (Kumar and Chattopadhyay, 2020). Interestingly, 

when cholesterol was depleted to similar levels using methyl-b-cyclodextrin, 5-HT1AR still 

internalized via a clathrin-mediated pathway, although post-endocytic sorting was altered 

(Kumar and Chattopadhyay, 2021).  

Several cholesterol-binding motifs, termed cholesterol consensus motifs, cholesterol 

recognition amino acid consensus (CRAC) motifs, or CARC motifs when they exist in reverse, 

have been identified in GPCRs (Fantini et al., 2016; Fatakia et al., 2019). In many cases, the 
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motifs have been functionally confirmed as being required for normal GPCR trafficking. A 

recent analysis of structural data across available GPCR structures, however, concluded that 

CRAC motifs are not predictive of cholesterol binding (Taghon et al., 2021). One potential way 

to reconcile these observations is that the motifs reflect potential hot spots of interactions (Sarkar 

and Chattopadhyay, 2020). Another way is to consider that lipid binding might be hierarchical, 

where allosteric changes caused by lipid binding on one site increases or decreases the affinity of 

other lipid-binding sites. In this context, it is important to note that the structural informatics 

(Taghon et al., 2021) was based largely on structures generated under conditions using 

synthesized lipids or detergents, which are different from in vivo environments where a full 

complement of lipids and proteins are present. Overall, much less is known about how lipids 

interact with GPCRs, compared with how proteins interact with GPCRs.		

Selectivity in post-endocytic trafficking of GPCRs  

Internalized GPCRs typically have two fates once they are internalized and trafficked to 

the endosomal system. They may recycle back to the cell surface or may be degraded in the 

lysosome (Bowman and Puthenveedu, 2015; Bahouth and Nooh, 2017). Nutrient receptors such 

as the transferrin receptor are recycled largely by bulk membrane flow (Mayor et al., 1993), but 

GPCR recycling requires specific sequences on receptors. These sequences both restrict GPCRs 

from recycling by bulk flow and direct GPCRs to sequence-dependent recycling or degradation 

(Hanyaloglu and von Zastrow, 2008; Bahouth and Nooh, 2017). Mutating two protein kinase A 

(PKA) phosphorylation sites on B2AR converts the receptor into a bulk recycling protein, 

suggesting that bulk sorting is hierarchically above sorting between sequence-dependent 
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recycling and degradation (Vistein and Puthenveedu, 2013). At present, the factors that restrict 

GPCRs from accessing the bulk recycling pathway are not known.  

Spatial segregation of GPCRs in the endocytic pathway. 

The endolysosomal system is now recognized as a complex mix of partially overlapping 

membrane systems that constantly mature along the endocytic pathway (Figure 1.2). The current 

model is that endocytosed GPCRs pass through the very early endosome (VEE) to the early 

endosome (EE). The VEE is marked by APPL1 but devoid of Rab5 and EEA1, which mark the 

EE. The luteinizing hormone receptor (LHR) and the follicle- stimulating hormone receptor 

(FSHR) are localized to the VEE after activation (Jean-Alphonse, et al., 2014). Many other 

GPCRs such as the prototypical B2AR are localized mainly to EE after activation (Puthenveedu 

et al., 2010).   

Figure 1.2 
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Figure 1.2. A sequential model for GPCR sorting throughout the endolysosomal network. 
After internalization from the plasma membrane, GPCRs are sequentially transported through the 
VEE and EE, at which point they are sorted into the RE or the late endocytic/degradative 
pathway. These compartments are marked by specific biochemical components. GPCRs can 
interact with specific recycling trafficking proteins in these compartments that direct them to the 
recycling pathway. Selected examples of markers for compartments and GPCRs that recycle 
from them are shown. It is important to note that these compartments are depicted separately to 
denote where the majority of components are at steady state. In vivo, these compartments are 
likely to overlap significantly because of dynamic membrane exchange and maturation. 

The steady-state segregation of GPCRs in distinct compartments likely represents receptor 

recycling from that compartment. LHR and FSHR are rapidly recycled from the VEE via 

interactions of receptor C-termini with the PDZ-containing protein GIPC. Disrupting PDZ-GIPC 

interactions decreases recycling and shifts the steady state distribution of LHR to the EE and 

later compartments (Jean-Alphonse, et al., 2014). Similarly, B2AR is recycled from the EE by 

interactions of a PDZ ligand on its C-terminal tail with proteins in the actin-sorting nexin-

retromer tubular domains of endosomes. Disrupting PDZ interactions decreases recycling and 

drives B2AR into the late endosomal pathway to be degraded (Cao et al., 1999). For the atypical 

chemokine receptor 3, overexpression of RAMP3, a PDZ-containing member of a family of 

single-transmembrane proteins that associate with GPCRs, and NSF qualitatively changes 

receptor localization from Rab7 late endosomes to Rab4 early endosomes, after an hour of 

agonist treatment and 4 h of washout (Mackie et al., 2019). GPCRs in the EE may also be 

trafficked to a dedicated recycling endosome marked by Rab11, from which they can recycle. 

Receptor interactions with these specific components and localization depend on a slate of 

posttranslational modifications on the receptor, such as phosphorylation or ubiquitination 

(Patwardhan et al., 2021). 
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Regulation of GPCR sorting by signaling  

Signaling pathways downstream of the same receptor (homologous) or other receptors 

(heterologous) could selectively regulate the rates of sorting and recycling of GPCRs by 

inducing posttranslational modifications on select GPCRs. B2AR activity reduces the rate of 

B2AR recycling via receptor phosphorylation by PKA (Vistein and Puthenveedu, 2013). MOR 

activity, however, increases MOR recycling independent of PKA via phosphorylation at Ser 363 

and Thr 370 by PKC downstream of receptor activation (Kunselman et al., 2019). The same sites 

on MOR can also be phosphorylated by PKC downstream of neurokinin-1 signaling to increase 

MOR recycling and resensitization, allowing for cross- talk between these signaling pathways 

(Bowman et al., 2015). For the chemokine receptor CXCR4, however, PKC activation drives 

receptor degradation, suggesting that the same signaling pathway can affect different receptors 

differently (Caballero et al., 2019). PKC phosphorylation of CXCR4 at Ser 324/ 325 recruits the 

ubiquitin ligase AIP4. PKC was sufficient but not necessary for CXCR4 degradation, suggesting 

that another kinase might phosphorylate one of these residues and recruit AIP4 (Caballero et al., 

2019). Importantly, post-endocytic sorting mechanisms might be leveraged by physiological 

systems to fine tune the effects of receptor activation. Two endogenous ligands regulated the 

post-endocytic fate of the kappa opioid receptor (KOR) differently (Kunselman et al., 2021). 

Dynorphin B caused KOR to rapidly recycle via Rab11, whereas Dynorphin A caused KOR to 

be degraded in the lysosomes. Interestingly, KOR localized to the lysosomes was able to signal 

from there, causing a sustained signaling compared with when KOR was recycled.  
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Biosynthetic trafficking  

The folding and export of GPCRs from the endoplasmic reticulum is regulated by a 

variety of interacting proteins and by exogenous drugs that act as chaperones (Zhang and Wu, 

2019; Doly and Marullo, 2015). In contrast, whether and how GPCR trafficking after ER export 

is regulated is less well understood. In this section, we will discuss recent data describing the 

heterogeneous mechanisms that regulate GPCRs transport from compartments after ER export 

(Figure 1.3).  

Figure 1.3 

 
 
Figure 1.3. Post-Golgi trafficking of GPCRs can be regulated by diverse mechanisms. 
Example pathways by which GPCR export can be regulated. GPCRs such as the ⍺-2B adrenergic 
receptor and angiotensin II receptor type I are exported by interactions with GGA proteins. 
SSTR5 and B1AR are retained in the Golgi via interactions with PIST, a PDZ-binding 
protein. DOR, on the other hand, is kept in the Golgi by constant retrieval via COPI interactions. 
CB1 is routinely trafficked to lysosomal compartments via AP-3 interactions, and disrupting 
these interactions redirects receptors to the plasma membrane. It is possible that additional 
pathways exist and that these pathways and interactions are relevant to different receptors in 
different cell types based on expression of components. 
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Many “general” trafficking proteins, such as small monomeric GTPases and their 

interactors, have been implicated in GPCR export from the Golgi apparatus (Zhang and Wu, 

2019). For example, the trafficking of a2B-adrenergic receptors depends on the Golgi-localizing, 

gamma-adaptin ear homology domain, ARF-binding (GGA) family of proteins and Rab26 

(Zhang et al., 2016A; Zhang et al., 2016B; Wei et al., 2019). GGA1, 2, and 3 all interact with the 

third intracellular loop of a2B-adrenergic receptor, although by different mechanisms. Depleting 

any one of the GGAs causes a partial reduction in surface delivery of a2B-adrenergic receptor, 

suggesting that each of them is partially required. GGA3 binds an RRR motif in the loop, 

whereas GGA1 and 2 do not. GGA3 depletion reduces export also of a2C-adrenergic receptors, 

but not of a2A-adrenergic receptors. Rab26 also binds the same intracellular loop in a GTP-

dependent manner, regulated by the putative GAP TBC1D6 (Wei et al., 2019). Unlike for 

GGA3, linear motifs on the receptor required for GGA1, GGA2, or Rab26 could not be 

identified by deletion studies, suggesting that they may bind a multipartite motif based on a 

specific conformation of the loop. Interestingly, an alternatively spliced variant of GGA1 lacks 

the hinge region of GGA1 that interacts with the a2B-adrenergic receptor, suggesting that 

isoform expression could provide selectivity (Zhang et al., 2019). As another example, the export 

of PAR2 from the Golgi requires the activation of protein kinase D (PKD). In this case, PKD is 

activated by Gβγ translocation to the Golgi after PAR activation, causing a feedback loop for 

repopulating the surface after receptor downregulation (Zhao et al., 2019). Gβγ and PKD are 

required for general TGN export (Diaz Anel and Malhorta, 2005), and whether other cargo 

molecules are also regulated downstream of PAR2 activation is not clear. Nevertheless, it is clear 

that some GPCRs use the predominant TGN export pathways to traffic to the cell surface.  
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Selective mechanisms that localize specific GPCRs without affecting trafficking in 

general have also been recently identified. The Leukotriene B4 Receptor Type 2 (BLT2) contains 

an unidentified sequence on its C- terminal tail, which enables it to interact with the scaffold 

protein LIN7C (Hara et al., 2021). A truncated BLT2 without this tail accumulates in the Golgi. 

But when LIN7C is depleted, BLT2 accumulates in intracellular compartments not restricted to 

the Golgi. In contrast, over- expression of the PDZ protein PIST localizes somatostatin receptor 

5 and B1AR to the Golgi (Wente et al., 2005; Koliwer et al., 2015), presumably by interacting 

with the C-terminal PDZ ligand on the receptor.  

The delta opioid receptor (DOR) provides a unique and interesting example of a GPCR 

whose Golgi localization is cell type specific and highly regulated. In neurons, newly 

synthesized DOR is retained in intracellular compartments that overlap with the Golgi, but in 

nonneuronal cells, DOR is efficiently expressed on the surface (Shiwarski et al., 2017A; 

Gendron et al., 2016). This Golgi localization is highly regulated by signaling. In the 

neuroendocrine PC12 cells, DOR is normally expressed at the cell surface, but a short exposure 

to Nerve Growth Factor, which inhibits phosphoinositide 3 kinase class 2 and reduces PI(3,4)P 

levels, induces Golgi localization of DOR (Shiwarski et al., 2017B). The current model for this 

retention is that in neurons or in NGF-treated PC12 cells, DOR is constantly retrieved to earlier 

compartments in the Golgi by regulated interactions with the coatomer protein 1 (COPI) 

complex. DOR contains two atypical COPI-binding RXR motifs in its C-terminal tail (Shiwarski 

et al., 2019), which are required and sufficient for regulated Golgi localization. DOR contains 

additional canonical COPI-binding motifs in the second and third intracellular loops (St. Louis et 

al., 2017), which could contribute to a basal level of intracellular DOR. At present, whether these 

interactions are regulated is not known.  
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In contrast to DOR, endogenous cannabinoid receptor 1 (CB1R) is localized to the late 

endosomal compartments and axonal surface in hippocampal neurons (Rozenfeld and Devi, 

2008; Fletcher-Jones et al., 2019). The late endosomal localization could be because of the 

shunting of CB1R in the TGN to an adaptor protein 3demediated export pathway (Rozenfeld and 

Devi, 2008). The deletion of helix 9 (H9) in the C-terminus caused CB1R to lose axonal 

polarization, but it was still delivered to the surface (Fletcher-Jones et al., 2019). This suggests 

that the receptor might be able to access multiple export pathways out of the TGN. The 

mechanism by which H9 regulates export is not known. The amphipathic nature of the helix 

might play a role, as amphipathicity of H8 was required for the export of apelin receptor from 

intracellular compartments and for efficient surface expression (Pandey et al., 2019).  

Outside of specific adapters and interacting proteins, receptor oligomerization is an 

exciting possibility that could provide specificity to trafficking. For example, the transport 

protein RTP4 interacts with MOR and DOR and selectively increases expression of heteromers 

on the surface (Decaillot et al., 2008), without affecting individually expressed MOR and DOR 

or CB1R or dopamine 2 receptors (Fujita et al., 2019). Overall, the diversity of mechanisms that 

regulate Golgi retention and export suggest that GPCR delivery via the secretory pathway could 

be selectively regulated for individual GPCRs.  

Conclusions  

The subcellular location of GPCRs could be a master regulator of GPCR function, as the 

list of GPCRs capable of signaling from intracellular compartments is rapidly growing (Sposini 

and Hanyaloglu, 2018; Lobingier and von Zastrow, 2019; Crilly and Puthenveedu, 2020). 

Modulating signals from specific compartments, by either relocating receptors to the plasma 
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membrane (Bowman et al., 2015; Shiwarski et al., 2017A) or specifically targeting signaling 

from endosomes (Jimenez-Vargas et al., 2020), has clear effects on signaling and behavior. As 

we develop sophisticated tools to study both the mechanisms of selective trafficking and 

localized signaling of GPCRs (Calebiro and Grimes, 2020; Halls and Canals, 2018; Maziarz et 

al., 2020), we will be able to generate a more precise understanding of spatial patterns of 

signaling for each member of this important family of signaling receptors.  
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Selectively Modulated by Different Dynorphin Peptides 
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Compartment-specific opioid receptor signaling is selectively modulated by different Dynorphin 

peptides. Elife, 10, e60270. 

 

Abstract 
 

Many signal transduction systems have an apparent redundancy built into them, where 

multiple physiological agonists activate the same receptors. Whether this is true redundancy, or 

whether this provides an as-yet unrecognized specificity in downstream signaling, is not well 

understood. We address this question using the kappa opioid receptor (KOR), a physiologically 

relevant G protein-coupled receptor (GPCR) that is activated by multiple members of the 

Dynorphin family of opioid peptides. We show that two related peptides, Dynorphin A and 

Dynorphin B, bind and activate KOR to similar extents in mammalian neuroendocrine cells and 

rat striatal neurons, but localize KOR to distinct intracellular compartments and drive different 

post-endocytic fates of the receptor. Strikingly, localization of KOR to the degradative pathway 

by Dynorphin A induces sustained KOR signaling from these compartments. Our results suggest 

that seemingly redundant endogenous peptides can fine-tune signaling by regulating the 

spatiotemporal profile of KOR signaling. 
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2.1 Introduction 

The endogenous opioid system provides an excellent and physiologically relevant example 

to study redundancy in signaling systems in our body. Over 20 endogenous opioids have been 

identified, all of which preferentially activate one of three opioid receptors – delta, kappa, and 

mu opioid receptors – which are all members of the G protein-coupled receptor (GPCR) family 

of proteins (Gendron et al., 2016; Chavkin, 2013; Williams et al., 2013). All these opioid 

peptides activate their cognate GPCRs broadly at similar levels in most of the readouts that have 

been used to measure activation (Sternini et al., 2013). Whether all these opioid peptides are 

truly redundant or whether they contribute to signaling diversity beyond the initial signaling has 

been a long-standing question in the field.  

Signaling from intracellular compartments, after the initial signaling from the surface, is 

emerging as a key determinant of the downstream consequences of receptor activation (Irannejad 

et al., 2013; Yarwood et al., 2017; Eichel and von Zastrow, 2018). While this is still an emerging 

field, a growing body of evidence suggests that GPCRs are active in endosomes and other 

intracellular compartments, and that receptors in endosomes can cause distinct signaling 

outcomes compared to receptors on the cell surface (Vilardaga et al., 2014; Bowman et al., 2016; 

Stoeber et al., 2018). Receptors rapidly and dynamically move between intracellular 

compartments and the surface by trafficking. Trafficking could therefore act as a master 

regulator of GPCR signaling by selectively amplifying signals from specific locations (Weinberg 

et al., 2019; Hanyaloglu, 2018). Whether physiological systems take advantage of trafficking to 

localize receptors to different compartments and dictate location-biased signaling, however, is 

still unanswered.  
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Here we bridge both questions by asking whether different endogenous opioid peptides can 

sort receptors to distinct intracellular compartments and drive different location-biased signaling 

outcomes. Using the kappa opioid receptor (KOR) as a model GPCR, we show that although 

related Dynorphin peptides can activate KOR on the surface to a similar extent, they induce 

different trafficking fates and endosomal localization of the receptor. Dyn B predominantly 

localized KOR to Rab11 recycling endosomes and caused KOR recycling, while Dyn A 

predominantly localized KOR to late endosomes and caused KOR degradation. Strikingly, Dyn 

A-activated KOR, but not Dyn B-activated KOR, was in an active conformation in lysosomes 

and induced cAMP signaling from intracellular compartments. The differences are likely a result 

of differences in how the peptides activate KOR, as opposed to peptide stability. Our results 

show that seemingly redundant opioid peptides, which activate receptors on the surface to similar 

levels, can drive spatially and temporally different signaling outcomes by differentially sorting 

receptors to distinct endosomal compartments after internalization. 

 

2.2 Results 

To examine activation and internalization of KOR by Dynorphin peptides we first focused 

on four physiologically relevant endogenous peptides – Dynorphin A17 (Dyn A), Dynorphin A8 

(Dyn A8), Dynorphin B (Dyn B), and a-neoendorphin (a-neo). These peptides differ mainly in 

their length and C-terminal peptide sequence (Figure 2.1A). We carried out our studies using 

neuroendocrine PC-12 cells stably expressing KOR tagged with a pH-sensitive GFP (SpH-KOR) 

(Sankaranarayanan et al., 2000) that facilitates visualization of agonist-mediated KOR 

trafficking, and CHO cells stably expressing Flag epitope tagged KOR (CHO-KOR). Consistent 
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with previous findings, we find that in these cells Dyn A, Dyn A8, Dyn B, and a-neo bind KOR 

at relatively comparable affinities (Table 1).  

Next, we measured the inhibition of cAMP levels and KOR endocytosis induced by these 

peptides. Dose–response curves with Dyn A and Dyn B in SpH-KOR cells showed maximal 

inhibition ~1 mM (Supplemental Figure 2.1A). At this concentration, Dyn A8 and a-neo 

inhibited whole cell cAMP to levels comparable to that of Dyn A and Dyn B (Figure 1B). 

Measurement of cell surface levels of KOR by ELISA show that Dyn A and Dyn B endocytose 

the receptor to a similar extent in SpH-KOR cells and in CHO-KOR cells (Supplemental Figure 

2.1B and C; Gupta et al., 2016), with maximal endocytosis at ~1 mM. Examination of surface 

SpH-KOR fluorescence by live cell imaging using Total Internal Reflection Microscopy (TIR-

FM) shows similar extent of agonist-mediated KOR clustering into endocytic domains and 

receptor endocytosis by the four Dynorphin peptides (1 mM) (Figure 2.1C and D). Together 

these results indicate that different Dynorphin peptides activate KOR and induce KOR 

internalization to similar levels.  

Figure 2.1 
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Figure 2.1 . Initial activation and internalization of KOR by Dynorphins are comparable.  
(A) Schematic of the regions of Pro-dynorphin from which Dynorphin A8 (Dyn A8), Dynorphin 
A (Dyn A), Dynorphin B (Dyn B), and α-neoendorphin (α-neo) peptides are generated, showing 
that Dyn A and Dyn B are processed from adjacent regions. (B) Dyn A8, Dyn A, Dyn B, and α-
neo (1 μM) inhibit intracellular cAMP levels to a similar extent in PC12 cells stably expressing 
SpH-KOR. Values were normalized to basal cAMP measurements in the absence of peptide, 
which were set as 100% (mean ± SEM shown). (C) Representative TIR-FM images of PC12 
cells stably expressing SpH-KOR treated with Dyn A8, Dyn A, Dyn B, and α-neo (1 μM) show 
roughly similar agonist-mediated receptor clustering at the cell surface following 1 min 
treatment. Scale bar = 2 µm. (D) Quantitation of the loss of surface SpH-KOR fluorescence, as 
an index of internalization, after 5 min of treatment with each peptide (1 μM), normalized to 
surface fluorescence before agonist treatment, show similar levels of internalization for all four 
peptides (mean ± SEM shown, Dyn A: n = 10 cells; Dyn B: n = 10 cells; Dyn A8: n = 10 cells; 
ɑ-neo: n = 11 cells). 
 

Table 1 

 

Supplemental Figure 2.1  

 
 
Supplemental Figure 2.1. Ligand-mediated decreases in intracellular cAMP levels and 
endocytosis of KOR saturates at 1 µM for Dyn A and Dyn B.  
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(A) Dyn A- and Dyn B-mediated decreases in intracellular cAMP levels were measured by 
carrying out doseresponse curves (0–10 µM) in PC12 cells stably expressing SpH-KOR treated 
for 30 min at 37°C. (B) Dyn A- and Dyn B-mediated changes in surface receptor levels were 
measured by ELISA by carrying out dose–response curves (0–10 µM) in PC12 cells stably 
expressing SpH-KOR treated for 30 min at 37°C. (C) Dyn A- and Dyn B-mediated changes in 
surface receptor levels were measured by ELISA by carrying out dose–response curves (0–10 
µM) in CHO cells stably expressing Flag-KOR treated for 60 min at 37 °C. 
 

We next examined if different Dynorphins selectively regulate the fate of KOR after initial 

activation and internalization, by adapting a discrete-event imaging method to quantitate the rate 

of individual KOR recycling events over unit time. SpH-KOR fluorescence is quenched in acidic 

endosomal compartments and is rapidly dequenched when receptors recycle back to the cell 

surface and are exposed to the extracellular media. This dequenching can be visualized as single 

events using Total Internal Reflection Fluorescence microscopy (TIR-FM), where the recycling 

events appear as distinctive sudden spikes in fluorescence followed by an exponential decay as 

the receptors diffuse on the cell membrane (Figure 2.2A–C). This method allows us to quantitate 

individual recycling events in the same cells over time without the confounding effects of 

continuing endocytosis (Kunselman et al., 2019). When the number of SpH-KOR recycling 

events were quantitated and normalized to time and cell area, a significantly higher number of 

recycling events was seen 5 min after Dyn B-induced KOR internalization , compared to Dyn A, 

Dyn A8, or a-neo (Figure 2.2D).  

To test whether this increase in the rate of discrete recycling events corresponded to an 

increase in receptor levels at the cell surface, we measured ensemble changes in surface KOR 

levels by two different methods – whole-cell fluorescence and ELISA-based methods. We 

focused on Dyn A and Dyn B as a highly relevant and interesting pair, as both are processed 

from adjacent regions of prodynorphin and are often co-expressed in physiologically relevant 

brain regions (Nikoshkov et al., 2005; Corder et al., 2018). When SpH-KOR fluorescence was 
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followed by live confocal imaging, surface fluorescence decreased after Dynorphin addition, as 

was expected with receptor internalization. The fluorescence decrease reached a plateau at 10 

min, suggesting an equilibrium between endocytosis and recycling at this time point (Figure 

2.2E). When agonist was removed by washing out the media and replacing with fresh media 

containing antagonist (naltrexone; 10 mm), to specifically measure recycling without the 

contribution of endocytosis, the fluorescence recovery rate was higher with Dyn B than with Dyn 

A at the 30 min time point (Figure 2.2F and G).  

A potential reason for the differences we observe could be differences in the rate of 

proteolytic degradation of the peptides (Mzhavia et al., 2003; Fricker et al., 2020). Therefore, we 

directly tested whether inhibiting proteolysis abolishes the difference between Dyn A and Dyn B. 

We first used a protease inhibitor cocktail in the media to inhibit general proteolysis. When 

discrete recycling events were quantitated as in Figure 2D, Dyn B showed a higher number of 

KOR recycling events even in the presence of protease inhibitors (Supplemental Figure 2.2A). 

When the recovery of surface KOR levels after agonist washout were measured by an 

independent ELISA-based method, Dyn B-treated cells showed a higher rate of recovery 

compared to Dyn A, even in the presence of protease inhibitors (Figure 2.2H). These 

experiments indicate that differences in general proteolysis of the peptides did not contribute to 

the increased KOR recycling we observe with Dyn B. Because Dyn B, but not Dyn A, can be 

cleaved by Endothelin Converting Enzyme 2 (ECE2) in vitro, we next tested whether this 

differential proteolysis by ECE2 could contributes to the differences between Dyn A and Dyn B-

induced KOR recycling. We used S136492, which inhibits ECE2 relatively selectively in vitro in 

purified systems (Mzhavia et al., 2003), to test whether ECE2 activity was required for Dyn B to 

drive increased recycling. S136492 significantly reduced recycling for both Dyn A and Dyn B, 
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indicating that the differences in trafficking between Dyn B and Dyn A cannot be explained 

solely by ECE2 sensitivity (Supplemental Figure 2.2B). Together, these results suggest that 

intrinsic differences between Dyn A and Dyn B contribute to differences in KOR recycling when 

activated by these peptides.  

Because KOR did not recycle efficiently when activated by Dyn A, we next asked whether 

Dyn A-activated KOR was sorted into the degradative pathway. To test this, PC12 cells 

expressing SpHKOR were pretreated with cycloheximide (3 mg/ml) 2 hr before agonist addition 

to inhibit any new protein synthesis and to measure agonist-mediated turnover of KOR. Total 

KOR levels were determined through immunoblotting, after Dyn A or Dyn B treatment for 30 

min or 2 hr (Figure 2.2I). When total receptor levels were quantified, 2 hr treatment with Dyn A 

caused a loss of 50% of KOR, while Dyn B treatment caused no loss (Figure 2.2J). These results 

suggest that, after endocytosis, Dyn A preferentially sorts KOR into the degradative pathway, 

while Dyn B sorts KOR into the recycling pathway.  
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Figure 2.2 

 
 
Figure 2.2. The post-endocytic fate of KOR is determined by the specific Dynorphin that 
activates it.  
(A) Frames from a time lapse movie of a representative region of a PC12 cell stably expressing 
SpH-KOR (SpH-KOR cells) shown in (B), treated for 5 min with Dyn B (1 μM) and imaged in 



 

 31 

TIR-FM, showing two examples of exocytic events (white arrows in A) associated with KOR 
recycling. (C) Fluorescence traces of the two exocytic events, arbitrary units, showing a 
characteristic abrupt increase in maximum fluorescence intensity followed by exponential decay. 
(D) Quantitation of the number of exocytic events/µm2/min showing a significant increase for 
Dyn B compared to the other peptides (mean ± SEM, **p<0.01, ****p<0.0001 in multiple 
comparisons after ANOVA, n = 14, 39, 52, and 33 cells for α-neo, Dyn A, Dyn B, and Dyn A8, 
respectively). (E) Ensemble SpH-KOR surface fluorescence measured over time using confocal 
microscopy shows a decrease in fluorescence upon agonist addition because of quenching of 
internalized SpH-KOR, and an increase upon peptide washout as receptors recycle to the surface 
and SpH-KOR is dequenched. (F) Quantification of change in ensemble surface fluorescence 
over 30 min following treatment with Dyn A or Dyn B (1 μM), normalized to fluorescence 
before agonist addition, showing the loss during endocytosis and increase during recycling. (G) 
Quantitation of the amount of SpH-KOR recycled, normalized to the amount endocytosed after 
Dyn A or Dyn B treatment B (1 μM), shows that a higher amount of receptor is recycled after 
Dyn B washout (mean ± SEM, ****p<0.0001 by Mann–Whitney; n = 33 and 30 fields for Dyn 
A and Dyn B, respectively). (H) Recycling of SpH-KOR to the cell surface after treatment with 
100 nM Dyn A or Dyn B measured by ELISA shows a much higher rate and extent of recycling 
after Dyn B washout. (I) Representative immunoblot of total receptor levels in SpH-KOR cells 
treated with cycloheximide (3 µg/ml) for 2 hr prior to Dyn A or Dyn B treatment (1 μM) for the 
indicated times show receptor loss after 120 min of Dyn A but not Dyn B treatment. GAPDH is 
used as a control. (J) Quantification of total receptor levels normalized to untreated control cells 
under each condition (**p<0.01 by post hoc comparison after two-way ANOVA; n = 5). 
 
Supplemental Figure 2.2 
 

 
 
Supplemental Figure 2.2. The differences in KOR recycling between Dyn A and Dyn B 
cannot be explained entirely by peptide degradation.  
(A) Quantitation of the number of exocytic events/μm2/min in SpH-KOR PC12 cells shows a 
significantly higher number of events for Dyn B compared to Dyn A (1 µM) in the continued 
presence of protease inhibitors (***p<0.001, in unpaired t-test n = 9 and 6 cells for Dyn B and 
Dyn A, respectively). (B) Quantitation of the percent change of exocytic events in PC12 SpH-
KOR cells treated with Dyn A or Dyn B in the presence or absence of 10 µM phosphoramidon 
(PHOS), a neprilysin/ECE inhibitor, or 20 μM S136492, an ECE2 inhibitor (ECE2 inh). Both 
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inhibitors decreased % events/minute for both Dyn A and Dyn B, suggesting that ECE2 
inhibition on its own cannot explain the differences between the peptides. 

Considering the emerging importance of spatial encoding in diversifying the outcomes of 

GPCR signaling (Eichel and von Zastrow, 2018; Weinberg et al., 2019; Hanyaloglu, 2018), we 

next asked whether Dyn A or Dyn B generated distinctive intracellular localization patterns of 

KOR at steady state. Because Dyn A drove KOR degradation, we first tested whether Dyn A-

activated KOR was differentially localized to the late endosomal pathway. When PC12 cells 

expressing FLAG-KOR and Rab7-GFP, to mark the late endocytic pathway, were treated with 1 

mM Dyn A for 20 min and imaged live, KOR colocalized predominantly with Rab7 (example in 

Figure 2.3A). To quantitate the distribution of KOR in the endosomal pathway more 

comprehensively, we treated cells expressing SpH-KOR with 1 mM Dyn A or Dyn B for 20 min, 

and fixed and stained for APPL1 (very early endosomes), EEA1 and Rab5 (early endosomes), 

Rab11 (recycling endosomes), Rab7 (late endosomes), and Lamp1 (lysosomes), as markers for 

the biochemically distinct compartments along the early, recycling, and late endosomal pathway. 

Using automated object-picking, we then quantitated the fraction of KOR that colocalized with 

each endosomal marker under these conditions. KOR localized mainly to compartments marked 

by Rab7 and Lamp1 when activated by Dyn A, but to compartments marked by EEA1, Rab5, 

and Rab11 when activated by Dyn B (Figure 2.3B and C). These results show that KOR is 

concentrated in different endosomal compartments based on the Dynorphin that activates it.  

The agonist-selective localization of KOR to specific endosomes raised the exciting 

possibility that different Dynorphins could generate distinct subcellular spatial patterns of KOR 

signaling. To test this possibility, we combined conformation-selective biosensors and high-

resolution imaging of FLAG-KOR to ask whether KOR was active in endosomes. A nanobody 

(Nb39) that specifically recognizes the active conformation of KOR (Che et al., 2018), when co-
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expressed with FLAG-KOR in PC12 cells, localized efficiently to endosomes that also contained 

Dyn A-activated KOR. In contrast, Nb39 localized less to endosomes containing Dyn B-

activated KOR (Figure 2.3D and E). When the fraction of total number of KOR endosomes/cell 

that colocalized with Nb39 was quantitated by analyzing 3D stacks, endosomes containing Dyn 

A-activated KOR recruited Nb39 at a significantly higher level (Figure 2.3F and G), suggesting 

that KOR was in an active conformation in the endosomes specifically after activation by Dyn A. 

Nb39 recruitment to endosomes required KOR endocytosis, as recruitment was abolished when 

cells were treated with agonist in the presence of 40 µM Dyngo4A, an endocytosis inhibitor 

(Supplemental Figure 2.3A and B). To directly examine whether Dyn A-activated KOR in 

lysosomes was in an active conformation, we used three-color live cell imaging of FLAG-KOR, 

Nb39, and LysoTracker. In cells treated with 1 µM Dyn A, a subset of KOR endosomes 

colocalized with both Nb39 and Lysotracker. In cells treated with 1 mM Dyn B, however, 

virtually no KOR endosomes colocalized with both Nb39 and Lysotracker (Figure 2.3H). When 

the colocalization was quantitated in Dyn A-treated cells, ~15% of all KOR endosomes 

colocalized with both markers, suggesting that a subset of Dyn A-activated KOR in the lysosome 

was in the active conformation (Figure 2.3I). In contrast, in cells treated with 1 mM Dyn B, 

virtually no KOR endosomes colocalized with both Nb39 and Lysotracker (Figure 2.3H).  

To test whether the subset of Dyn A-activated KOR in the active conformation in late 

endosomes and lysosomes was capable of signaling, we measured cAMP inhibition under 

conditions where the agonist was washed out to avoid continued signaling from the surface. 

Twenty-five minutes after agonist washout, Dyn A-activated KOR was still localized 

predominantly to Rab7-labeled late endosomal compartments, while Dyn B-activated KOR was 

localized predominantly to Rab11-labeled recycling endosomes (Supplemental Figure 2.3C–H). 
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This distribution was comparable to that observed in the continued presence of agonist, and at 

this time point, there was little to no KOR degradation (Figure 2.2I and J). Strikingly, Dyn A, but 

not Dyn B, caused sustained decrease in cAMP levels under conditions where the majority of 

KOR was in late endosomes and lysosomes (Figure 2.3J). Together, our results suggest that Dyn 

A, but not Dyn B, specifically coordinates activation and cAMP inhibition by KOR in late 

endosomes and lysosomes.  

Figure 2.3 

 
 

Figure 2.3. Dyn A selectively drives KOR signaling from late endosomal compartments.  
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(A) Representative image of a PC12 cell expressing FLAG-KOR and Rab7-GFP, treated with 1 
µM Dyn A for 20 min. Yellow arrows denote KOR endosomes that colocalize with Rab7. (B) 
SpH-KOR cells treated with 1 μM Dyn A for 20 min were fixed and processed for 
immunofluorescence with the noted markers. Quantitation, across multiple cells, of the 
percentage of KOR containing endosomes that colocalize with each of the endosomal markers is 
noted. KOR primarily localizes in Rab7 and Lamp1 positive late endosomes after Dyn A (n = 8, 
10, 9, 11, 20, and 17 cells for APPL1, EEA1, Rab5, Rab11, Rab7, and Lamp1, respectively). (C) 
A similar quantitation of immunofluorescence images after Dyn B treatment (1 μM for 20 min) 
shows that KOR localizes less with late endosomes, and more with markers of early/recycling 
endosomes (n = 18, 16, 15, 18, 23, and 29 cells for APPL1, EEA1, Rab5, Rab11, Rab7, and 
Lamp1, respectively). (D) Representative images of PC12 cells expressing FLAG-KOR and 
Nb39, imaged live after treatment with 1 µM Dyn A or Dyn B for 20 min. Yellow arrows in Dyn 
A show KOR endosomes that recruited Nb39, while cyan arrows in Dyn B show KOR 
endosomes that do not show obvious recruitment of Nb39. (E) Linear profile plots of 
fluorescence of KOR and Nb39, measured along lines drawn across regions of the cell with KOR 
endosomes after treatment with 1 μM Dyn A or Dyn B for 20 min, show that Nb39 fluorescence 
increases along with KOR in Dyn A, but less noticeably with Dyn B. (F) Ratios of integrated 
fluorescence of Nb39:KOR in endosomes identified by 3D object analysis show higher amounts 
of Nb39 relative to KOR in Dyn A-treated cells (****p<0.0001 by Mann–Whitney, n = 766 and 
800 endosomes for Dyn A and Dyn B, respectively). (G) Quantitation of the percentage of KOR 
endosomes per cell with a noticeable increase in Nb39 fluorescence above background shows a 
higher fraction of KOR endosomes recruited Nb39 in 1 µM Dyn A-treated cells (***p<0.001 by 
Mann–Whitney, n = 11 and 14 cells for Dyn A and Dyn B, respectively). (H) Representative 
images of PC12 cells expressing FLAG-KOR and Nb39 and labeled with LysoTracker imaged 
live after treatment with 1 μM Dyn A or Dyn B for 20 min. Yellow arrows in Dyn A show KOR 
endosomes that recruited Nb39 that were also labeled with Lysotracker, while cyan arrows in 
Dyn B show KOR endosomes that do not show obvious labeling with Nb39 and Lysotracker. (I) 
The average composition of total KOR endosomes that are positive for ±Nb39 and ±Lysotracker 
after 20 min treatment with Dyn A (1 μM). n = 10 cells. −Lyso/−Nb39 = 23.4 ± 8.1%; 
−Lyso/+Nb39 = 38.4% ± 17.4%; +Lyso/−Nb39 = 23.7 ± 11.4%; +Lyso/+Nb39 = 14.6 ± 5.1%. 
(J) cAMP levels after initial Dynorphin treatment (1 μM) for 5 min, washout for 25 min, or a 
Dynorphin rechallenge (1 μM) at end of the washout, show comparable initial cAMP inhibition 
by both Dyn A and Dyn B, but persistent signaling by Dyn A after agonist washout. 
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Supplemental Figure 2.3 

 
Supplemental Figure 2.3. Differential receptor sorting between Dyn A and Dyn B persists 
even after agonists are washed out from the surface.  
(A) Representative images of PC12 cells expressing FLAG KOR treated with Dyn A in the 
presence of 40 µM Dyngo4A for 30 min to block endocytosis. KOR (magenta in merge) 
fluorescence is restricted to the surface with little endosomal KOR after 20 min Dyn A (1 µM), 
and no recruitment of Nb39 (green) to internal endosomes. (B) A similar Dyngo4a treatment 
blocked recruitment of Nb33 to internal endosomes after 20 min Dyn A (1 µM). (C) 
Representative images of cells labeled live with anti-FLAG antibodies for surface KOR, treated 
for 5 min with 1 µM Dyn A or Dyn B followed by a 25 min washout, then fixed and stained for 
Rab7 to mark late endosomes. (D) Linear profile plots of fluorescence for KOR and Rab7, 
measured along lines drawn across regions of the cells in C, show that Rab7 fluorescence spikes 
correlate with KOR spikes in Dyn A, but less with Dyn B. (E) Quantitation of the percentage of 
KOR endosomes/cell colocalizing with Rab7 shows a higher fraction of KOR endosomes 
recruited Rab7 in Dyn A-treated cells (***p<0.001 by Mann–Whitney, n = 10 and 11 cells for 
Dyn A and Dyn B, respectively). (F) Representative images of cells labeled live with anti-FLAG 
antibodies for surface KOR, treated for 5 min with 1 µM Dyn A or Dyn B followed by a 25 min 
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washout, then fixed and stained for Rab11 to mark recycling endosomes. (G) Linear profile plots 
of fluorescence for KOR and Rab11, measured along lines drawn across regions of the cells in F, 
show that Rab11 fluorescence increases along with KOR in Dyn B, but less noticeably with Dyn 
A. (H) Quantitation of the percentage of KOR endosomes/cell colocalizing with Rab11 shows a 
higher fraction of KOR endosomes recruited Rab11 in Dyn B-treated cells (**p<0.01 by Mann–
Whitney, n = 9 and 10 cells for Dyn A and Dyn B, respectively). 
 

Importantly, this Dynorphin-selective coordination of KOR recycling and endosomal 

activation was conserved in striatal neurons. To directly measure KOR recycling, E18 rat 

primary embryonic striatal neurons were transfected with SpH-KOR, and individual recycling 

events were imaged using TIRFM. The number of individual exocytic events, when quantified 

per minute and normalized to cell area, was significantly lower in neurons treated for 30 min 

with 1 mM Dyn A compared to Dyn B (Figure 2.4A). This suggested that Dyn B, but not Dyn A, 

preferentially sorted KOR to recycling endosomes in neurons. We directly tested this by 

detecting the steady-state localization of KOR in endosomes after Dyn A or Dyn B treatment. 

KOR colocalized predominantly with Rab7 when activated by Dyn A, and with Rab11 when 

activated by Dyn B (Figure 2.4B and C). To test whether this differential localization correlated 

with differential location-based activation of KOR in endosomes, we expressed Nb33, a distinct 

nanobody that recognizes the active conformation of opioid receptors (Manglik et al., 2017), 

fused to GFP in neurons. Endosomes containing Dyn A-activated KOR recruited Nb33, while 

endosomes containing Dyn B-activated KOR recruited Nb33 to a noticeably lesser extent. This 

recruitment was readily apparent in dendritic projections, where endosomes were distinctly 

visible (Figure 2.4D). The percentage of KOR endosomes that recruited Nb33 was significantly 

higher for Dyn A-activated KOR than for Dyn B (Figure 2.4E), showing that dynorphin-selective 

spatial activation of KOR was conserved in neurons. 
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Figure 2.4 
 

 
 

Figure 2.4. Dyn A-specific late endosomal localization and signaling is conserved in striatal 
neurons.  
(A) The number of discrete exocytic events quantitated in rat medium spiny neuron (MSN) 
expressing SpH-KOR shows increased recycling for 1 μM Dyn B compared to Dyn A 
(***p<0.001, n = 8 cells). (B) Quantification of the percentage of KOR endosomes colocalized 
with Rab7 in MSN expressing SpH-KOR treated with 1 μM Dyn A or Dyn B for 30 min 
(**p<0.01, n = 5 cells for both). (C) Quantification of the percentage of KOR endosomes 
colocalized with Rab11 in MSN expressing SpH-KOR treated with 1 μM Dyn A or Dyn B for 30 
min (**p<0.01, n = 5 and 9 cells for Dyn A and Dyn B, respectively). (D) Colocalization of 
FLAG-KOR and Nb33-GFP in the soma and in dendrites of MSNs treated with 1 μM Dyn A for 
30 min, seen by confocal microscopy. Yellow arrows show KOR endosomes that recruit Nb33. 
(E) Quantitation of the percentage of KOR endosomes/cell with a noticeable increase in Nb33 
fluorescence above background shows that a higher fraction of KOR endosomes recruited Nb33 
in Dyn A-treated cells (1 μM for 30 min; ***p=0 < 0.001, n = 10 cells). All p-values were from 
non-parametric Mann–Whitney tests. 
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Supplemental Figure 2.4 

 
 
Supplemental Figure 2.4. mTOR signaling does not show significant differences between 
Dyn A and Dyn B.  
(A) Representative blots showing phosphorylated (pS6K) and total (tS6K) S6K levels in PC12 
cells stably expressing SpH-KOR treated with 1 µM Dyn A or Dyn B for 5 and 20 min. (B) 
Quantitation of the fold change over Ctrl baseline to measure mTOR activation: pS6K signal 
divided by tS6K signal in cells treated with Dyn A or Dyn B for 5 or 20 min. n = 5 biological 
replicates. 
 

2.3 Discussion 

Together, our results reveal an unanticipated difference between physiologically important 

endogenous opioid peptides in encoding the subcellular spatial patterns of KOR signaling. 

Peptidases localized to endosomes, like endothelin-converting enzymes (ECEs) may provide 

another level of regulation for agonist-dependent KOR trafficking (Padilla et al., 2007; 

Roosterman et al., 2007; Gupta et al., 2015). However, our results do not suggest that ECE 

peptide-sensitivity is the only or primary factor that determines agonist-dependent KOR 

localization (Supplemental Figure 2.2). Ubiquitination of KOR may also regulate its ability to 

traffic to and signal from late endosomal and lysosomal compartments (Li et al., 2008; Henry et 

al., 2011; Dores and Trejo, 2019).  

The exact mechanism by which KOR is localized to different compartments is not clear. 

Because the post-endocytic sorting of GPCRs is usually mediated by specific interactions of the 



 

 40 

unstructured cytoplasmic tail of the receptors with trafficking proteins, KOR sorting probably 

involves interactions with PDZ-interacting protein NHERF1/EBP50 (Liu-Chen, 2004). In this 

context, different Dynorphin peptides could lock KOR into conformations that selectively allow 

or inhibit interactions with trafficking and signaling proteins, essentially defining the receptor 

interactome in an agonist-specific manner. This conformational lock could require the presence 

of the ligand that is co-internalized with the receptor, although an exciting possibility is that the 

ligands provide a ‘conformational memory’ to KOR that is sustained through the endocytic 

trafficking pathway. At present it is not clear what could provide such a conformational memory. 

It is possible that different Dynorphins could cause agonist specific post-translational 

modifications, which is a general emerging theme for opioid receptors (Chiu et al., 2017; Mann 

et al., 2019). In any case, the differential subcellular localization and trafficking of KOR by two 

physiologically important ligands that we show here are important to underscore the 

physiological relevance of receptor sorting, which has been studied largely using receptor 

mutants or by depleting key components of the trafficking machinery (Bowman et al., 2016; 

Weinberg et al., 2019; Zhao et al., 2013; Sposini et al., 2017).  

One striking aspect of our results is that Dyn A-bound KOR activates Gi in the late 

endosomal pathway on its way to being degraded. This is surprising because early endosomes 

are the main compartments that support endosomal signaling for most other canonical GPCRs. 

For example, other Gi-coupled receptors such as the mu opioid receptor can exist in an active 

conformation in earlier endosomal compartments (Stoeber et al., 2018). Internalization is 

required for sustained inhibition of cAMP for many receptors, such as for the class B S1P 

receptor (Willinger et al., 2014). However, Gi is likely present on late endosomal and lysosomal 

compartments, as cannabinoid receptors trafficking from the Golgi can activate Gi on lysosomes 
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(Rozenfeld and Devi, 2008). Further, the binding of peptides to opioid receptors does not change 

dramatically at lower pH (Gupta et al., 2015). Therefore, it is possible that Gi could be activated 

at multiple endosomal compartments based on the specific opioid receptor and ligand, leading to 

distinct early and late phases of endosomal signaling.  

Post-translational modifications such as phosphorylation or ubiquitination could provide 

regulatory handles for this late phase of signaling. For example, three lysine residues on the C-

terminus of KOR are required for normal levels of degradation of KOR, but not for 

internalization from the surface (Li et al., 2008). Ubiquitination, however, plays complex roles in 

receptor trafficking and signaling at the endosome, controlling transport of receptors to 

lysosomes, entry of receptors into intralumenal vesicles, and recruitment of signaling scaffolds 

that could initiate non-canonical signaling pathways (Patwardhan et al., 2021). In this context, 

Dyn A-activated KOR could also activate alternate pathways, such as mTOR signaling, on late 

endosomes and lysosomes. Interestingly, mTOR signaling is involved in potentially deleterious 

effects of KOR, leading to efforts to generate agonists bypassing this signaling pathway (Che 

and Roth, 2018; Liu et al., 2018; Liu et al., 2019). However, under the conditions we tested, we 

did not see a significant increase in p70S6 phosphorylation, as a readout for mTOR activation, 

upon activation of KOR with either Dyn A or Dyn B. This could potentially be due to the high 

baseline of p70S6 phosphorylation in the PC12 cells (Supplemental Figure 2.4). However, it is 

possible that KOR could activate mTOR signaling from late endosomes or lysosomes in a subset 

of neurons yet to be identified, that could mediate aversive effects of KOR.  

Physiological systems could leverage receptor sorting to fine-tune both spatial and 

temporal aspects of GPCR signaling. KOR is activated by many opioid peptides that are 

generated from multiple precursor peptides, some of which bias signaling from the cell surface to 
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different outputs (Gomes et al., 2020). Our results suggest that, even for peptides where there are 

no obvious differences in surface signaling, there are differential effects in endocytic sorting and 

signaling from endosomes. Receptor sorting in cells is a dynamic and incomplete process. The 

fractions of receptors we see at steady state likely represent an equilibrium of many rounds of 

rapid iterative sorting as the endosome matures, where only a small fraction is recycled back to 

the surface in the case of Dyn A, while a large fraction is recycled in the case of Dyn B. Because 

Dyn A drives little KOR to recycle and promotes endosomal KOR activation, the net effect 

would be to cause a sustained cAMP inhibition from endosomes after a single exposure. Because 

Dyn B drives KOR recycling and induces endosomal signaling only to small amounts, the net 

effect would be short-lived cAMP inhibition primarily from the surface. On the other hand, the 

rapid recycling and resensitization caused by Dyn B would sensitize cells to repeated pulses of 

ligand release, unlike with Dyn A. This difference in steady-state localization, however, is 

enough to cause a difference in endosomal receptor activation and cAMP signaling, suggesting 

that small differences in steady-state localization can cause relevant changes in signaling.  

Whether these different Dynorphins are always co-released in the nervous system, or 

whether different brain regions selectively release specific Dynorphins, is still unclear. Dyn A 

and Dyn B are generated from prodynorphin likely in the late stages of dense core vesicle 

maturation and could be predominantly co-released, but there could be mechanisms that actively 

segregate or selectively release individual Dynorphins. In the case of co-released peptides, it is 

possible that one or more of the peptides could be dominant in dictating the conformational 

states in which receptors spend most of their time, in which case the signaling and trafficking 

fates would be determined primarily by these dominant peptides. In any case, our results that 
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highly related opioid peptides regulate spatial encoding of KOR suggest an unanticipated layer 

of granularity to the anatomical and functional maps of the brain. 

 
 

2.4 Materials and Methods 

Reagents, constructs, and cells  

Dynorphin A17 (Dyn A), Dynorphin B13 (Dyn B), Dynorphin A (Dyn A8), and a-

neoendorphin (a-neo) were purchased from Tocris Bioscience and/or Phoenix Pharmaceuticals. 

Naltrexone, protease inhibitor cocktail (Cat. No. P2714), anti-Flag M2 antibody (Cat. No. 

F3165) were purchased from Sigma Aldrich (St. Louis, MO). Anti-APPL1, -EEA1, -Rab5, -

Rab11, -Rab7, -Lamp1 rabbit monoclonal antibodies were purchased from Cell Signaling 

Technology. Anti-GFP rabbit polyclonal antibodies (Cat. No. A10260) were from Thermo Fisher 

Scientific. Nb39 and Nb33 constructs were provided by Dr. Bryan Roth (UNC Chapel Hill) and 

Dr. Mark von Zastrow (UCSF) respectively. Cell lines used were validated, and cells were 

purchased from ATCC. Cells in the lab are routinely tested for mycoplasma contamination. 

Stable non-clonal PC12 cells expressing KOR N-terminally tagged with superecliptic phluorin 

(SpH) (SpH-KOR cells) were selected in puromycin (Gibco) and grown in F12K media 

supplemented with 10% horse serum and 5% fetal bovine serum (Gibco) in collagen coated 

flasks. PC12 cells were also transiently transfected with KOR fused to FLAG on its N-terminus 

using Lipofectamine 2000 as per manufacturer’s protocol (ThermoFisher). Transfected cells 

were imaged 2–3 days after transfection. CHO cells stably expressing Flag epitope tagged KOR 

generated as described previously (Gupta et al., 2016) were grown in F12 media supplemented 

with 10% fetal bovine serum and 1% penicillin–streptomycin. E18 rat striatal neurons were 

obtained from BraintBits LLC and cultured on poly-d-lysine (Sigma) coated coverslips for 1 
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week in Neurobasal media (Gibco) supplemented with B27 (Gibco), 1% Glutamax (Gibco), and 

1% penicillin–streptomycin (Gibco) before transfection with SpH-KOR or Flag-KOR and Nb33-

GFP using Lipofectamine 2000 as per manufacturer’s protocol (ThermoFisher). Antibodies used 

are listed below. 

 

Displacement binding assays  

Displacement binding assays were carried out using membranes from PC12 cells stably 

expressing SpH-KOR (SpH-KOR cells) (100 mg) and CHO-KOR (15 mg) cells. Membranes 

were prepared as described previously (Gomes et al., 2003). Displacement binding assays were 

carried out as described previously (Gomes et al., 2004; Gomes et al., 2011) by incubating 

membranes with [3H] diprenorphine (3 nM) without or with different concentrations (1012to 105 

M) of Dyn A8, Dyn A17, Dyn B13, or a-neo-endorphin in 50 mM Tris-Cl buffer pH 7.4 

containing 100 mM NaCl, 10 mM MgCl2, 0.2 mM EGTA, and protease inhibitor cocktail 

(Sigma-Aldrich; cat No. P2714) for 1 hr at 37˚ C. Non-specific binding was determined in the 

presence of 10 mM cold diprenorphine. Specific Bound Counts obtained in the absence of 

peptides was taken as 100%. Data presented are mean ± SE of three independent experiments in 

triplicate.  

 

Live cell imaging  

Cells were plated onto poly-D-lysine (Sigma) coated 25 mm coverslips. Cells were 

imaged 2 days later in Leibovitz L15 imaging medium (Gibco) and 1% fetal bovine serum at 

37˚C in a CO-controlled imaging chamber, using a Nikon Eclipse Ti automated inverted 

microscope with a 60 or a 100 1.49 N.A. TIRF objective or a 20 0.75 N.A. objective. Images 
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were acquired with an iXon +897 electron-multiplying charge-coupled device camera with a 

solid state laser of 488 nm or 647 nm as a light source. Images were analyzed using FIJI 

(Schindelin et al., 2012).  

 

Quantification of individual recycling events  

PC12 cells stably expressing SpH-KOR (SpH-KOR cells) were treated with KOR 

agonists: Dyn A17, Dyn B13, Dyn A8, or a-neo endorphin (1 mM) for 5 min to induce receptor 

clustering and internalization at 37˚C. Receptor clustering was visualized using TIRF 

microscopy. Images were acquired every 3 s for a total of 5 min. Following internalization, a 

recycling movie was recorded at 10 Hz for 1 min in TIRF. The number of exocytic recycling 

events were manually scored in FIJI (Fiji Is Just Image J) to determine the recycling rate for each 

agonist. Recycling events were counted throughout the 1 min movie and the total number of 

events were normalized by the cell area to determine a recycling rate. Recycling events were also 

recorded using the same method in primary striatal rat medium spiny neurons transfected with 

the SpH-KOR plasmid. Recycling movies were taken 30 min after agonist addition in neurons. 

Statistical significance was determined using a one-way ANOVA 

 

Ensemble recycling assay  

Receptor surface levels were measured in PC12 cells stably expressing SpH-KOR (SpH-

KOR cells) by using confocal microscopy on a 20 objective and 488 nm laser. Images were 

collected in 30 s intervals across 20 different cell fields. After 2 min of baseline an agonist (1 

mM Dyn A17 or Dyn B13) was added to imaging media. Following agonist addition, images 

were collected for 15 min. After 15 min, agonist was removed, and the imaging media was 
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replaced with fresh media containing antagonist (naltrexone; 10 mm). Images were then 

collected for another 15 min. Fluorescence intensities were corrected by a background threshold 

and normalized by the average fluorescence of the baseline frames before agonist treatment. 

Surface fluorescence analysis was conducted using an ImageJ Macro automated script (National 

Institutes of Health) (Weinberg et al., 2019). Fluorescence recovery/loss ratios after washout 

were quantified by normalizing the fluorescence values after washout to the total fluorescence 

lost before washout. Cell fields that did not respond to Dynorphin treatment were excluded from 

analysis. Statistical significance was determined by using Student’s paired t-test comparing the 

endpoints between agonist treatment.  

 

ELISA internalization assays  

CHO cells expressing Flag-epitope tagged KOR (CHO-KOR cells) or PC12 cells stably 

expressing SpH-KOR (SpH-KOR cells) were seeded in complete growth media into 24-well 

plates (2 105 cells per well). Next day, cells were rinsed with PBS followed by labeling with 

mouse anti-Flag antibodies for CHO-KOR cells or chicken anti-GFP antibodies for SpH-KOR 

cells (1:1000 in PBS containing 1% BSA) for 1 hr at 4˚C, followed by treatment with 0–10 mM 

of Dyn A or Dyn B in growth media containing protease inhibitor cocktail (Sigma-Aldrich; Cat. 

No. P2714) for 60 min at 37˚C. Cells were briefly fixed (3 min) with 4% paraformaldehyde 

followed by three washes (5 min each) with PBS, and incubation with anti-mouse or anti-chicken 

antibody coupled with horse-radish peroxidase (1:1000 in PBS containing 1% BSA) for 90 min 

at 37˚C. Cells were washed three times with 1% BSA in PBS (5 min each wash), and color was 

developed by the addition of the substrate o-phenylenediamine (5 mg/10 ml in 0.15 M citrate 

buffer [pH 5] containing 15 ml of H2O2). Absorbance at 490 nm was measured with a Bio-Rad 
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ELISA reader. Values obtained with secondary antibody in the absence of primary antibody were 

taken as non-specific and subtracted from all points. The percentage of internalized receptors 

was calculated by taking total cell surface receptors before agonist treatment for each individual 

experiment as 100% and subtracting percent surface receptors following agonist treatment. Data 

presented are mean ± SE of three independent experiments in triplicate.  

 

ELISA recycling assays  

CHO cells expressing Flag-epitope tagged human KOR (CHO-KOR cells) or PC12 cells 

stably expressing SpH-KOR (SpH-KOR cells) were seeded in complete growth media into 24-

well plates (2 105 cells per well). Next day, cells were rinsed with PBS followed by labeling 

with mouse anti-Flag antibodies for CHO-KOR cells or chicken anti-GFP antibodies for SpH-

KOR cells (1:1000 in PBS containing 1% BSA) for 1 hr at 4˚C, followed by treatment with 100 

nM Dyn A, Dyn B, or BAM-22 in growth media containing protease inhibitor cocktail (Sigma-

Aldrich; Cat. No. P2714) for 30 min to elicit receptor internalization. The cells were washed to 

remove the agonist and incubated with medium without or with the ECE2 inhibitor (S136492, 20 

mM) for 0–120 min to allow for receptor recycling. At the end of the incubation period, cells 

were chilled to 4˚C and then fixed briefly (3 min) with 4% paraformaldehyde followed by three 

washes (5 min each) with PBS and incubation with antimouse or anti-chicken antibody coupled 

with horse-radish peroxidase (1:1000 in PBS containing 1% BSA) for 90 min at 37˚C. Cells were 

washed three times with 1% BSA in PBS (5 min each wash), and color was developed by the 

addition of the substrate o-phenylenediamine (5 mg/10 ml in 0.15 M citrate buffer [pH 5] 

containing 15 ml of H2O2). Absorbance at 490 nm was measured with a Bio-Rad ELISA reader. 

Values obtained with secondary antibody in the absence of primary antibody were taken as non-
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specific and subtracted from all points. % recycled receptors were calculated by subtracting 

receptors at t = 0 (30 min internalization) from each recycling time point; this represents 0% 

recycled receptors. Data presented are mean ± SEM of three independent experiments in 

triplicate. 

 

Immunofluorescence of endosomal markers  

PC12 cells stably expressing SpH-KOR were plated on poly-d-lysine (Sigma Aldrich) 

coverslips and grown for 24–48 hr at 37˚C. Cells were then incubated with different agonists 

(Dyn A, Dyn B, Dyn A8, or a-neo) for 20 min at 37˚C. Cells were then fixed with 4% 

paraformaldehyde (PFA), pH 7.4, for 20 min. Cells were then rinsed with complete PBS twice 

and then blocked in PBS containing calcium, magnesium, with 5% FBS, 5% 1M glycine, and 

0.75% Triton X-100. SpH-KOR cells were then incubated with an antibody for one of the 

endosomal markers for 1 hr. Cells were washed three times with PBS containing calcium and 

magnesium and then labeled with Alexa 647 goat anti-rabbit secondary antibody (1:1000) in a 

blocking buffer for 1 hr. Confocal imaging of cells was performed using spinning disk confocal 

microscope (Andor) and 100 objective. Representative images were taken across 10–20 fields for 

each agonist treatment and endosomal marker. Three biological replicates were performed in 

each condition.  

 

Endosomal KOR colocalization in live cells with nanobodies and lysotracker  

PC12 cells were transiently transfected with FLAG-KOR and Nb39-YFP or (Nb33-GFP). 

Cells were labeled with M1-647 for 10 min prior to imaging 3 days after transfection. Images 

were taken before and after cells were treated with 1 mM Dyn A or Dyn B for 20 min. Confocal 
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imaging of cells was performed using spinning disk confocal microscope (Andor) and 100 

objective. Representative images were taken across 10–20 fields for each agonist treatment. In 

the experiments with Dyngo4A, cells were pretreated with 40 mM Dyngo4a for 30 min prior to 

imaging. In the Lysotracker experiments, cells were labeled with 25 nM Lysotracker-561 for 5 

min prior to imaging.  

 

Endosomal colocalization quantification  

The percent colocalization of the endosomal marker with the total number of receptor 

positive endosomes was determined using an ImageJ Macro: Object.picker (Weinberg, 2020; 

doi.10.5281/ zenodo.3811031) to identify the total number of endosomes containing receptor in 

one channel and determine the colocalization with an endosomal marker in another channel. The 

Image J macro: 3D Object Counter was used as another method of quantification for 

colocalization. Integrated density values for each object detected in both the receptor and 

endosome marker channels were used to determine a ratio of endosomal colocalization by 

dividing the endosomal marker signal by the receptor signal.  

 

Immunoblotting  

PC12 cells stably expressing SpH-KOR were grown in a PDL coated 12-well plate for 2 

days at 37˚C. Cells were treated with cycloheximide (3 mg/ml) for 2 hr before agonist 

incubation. Cells were treated with Dyn A17 or Dyn B13 for 30 min or 2 hr. A non-agonist 

treated well of PC12 cells stably expressing SpH-KOR and a well of PC12 cells not expressing 

SpH-KOR were used as controls. Following agonist treatments, cells were placed on ice and 

rinsed twice with PBS containing calcium and magnesium. Cells were directly lysed in the plate 
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using 2 RSB (Bio-Rad, Hercules, CA). Lysates were placed on ice for 30 min and then sonicated 

in 5 s pulses. Following sonication, lysates were incubated at 37˚C for 1 hr. Lysates were run on 

10% stain-free gels (BioRad), which were then transferred to nitrocellulose membrane overnight. 

Membranes were blocked in 5% milk and then probed with anti-GFP Chicken pAB (Abcam) to 

detect total receptor levels in each condition. Blots were developed using the iBright imager for 

chemiluminescence signal and quantified using FIJI software. Receptor signal for each condition 

was normalized to the no treatment control. Five biological replicates were performed. Statistical 

analysis was performed using two-way ANOVA across time and drug treatment. To test for 

mTOR activation, PC12 cells stably expressing SpH-KOR were grown in a PDL coated 12-well 

plate for 2 days at 37˚C. Cells were starved overnight in serum-free media and then treated with 

1 mM Dyn A or Dyn B for 5 min or 20 min. Cells were placed on ice and rinsed twice with PBS 

containing calcium and magnesium. Cells were directly lysed in the plate using 2 RSB (Bio-Rad, 

Hercules, CA). Lysates were placed on ice for 5 min and then placed at 95˚C for 5 min. Lysates 

were run on 10% stain-free gels (BioRad), which were then transferred to nitrocellulose 

membrane overnight. Membranes were blocked in 5% BSA and then probed with phospho-p70 

S6K (CST) to detect phosphorylated S6K levels in each condition. Blots were developed using 

the iBright imager for chemiluminescence signal and quantified using FIJI software. Membrane 

was stripped and probed with total p70 S6K (CST) to determine total levels of S6K present in the 

samples. The phospho-p70 S6K signal was normalized to the total p70 S6K signal for each 

condition. All samples were then normalized to the no treatment control to determine the fold 

change over baseline for each condition. Five biological replicates were performed. Statistical 

analysis was performed using two-way ANOVA across time and drug treatment.  
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cAMP assays  

PC12 cells stably expressing SpH-KOR (SpH-KOR cells) or CHO cells stably expressing 

Flag epitope tagged human KOR (CHO-KOR cells) cells (10,000/well) were treated with Dyn A, 

Dyn B, Dyn A8, or a-neo (1 mM) for 30 min at 37˚C in HBSS assay buffer containing 10 mM 

HEPES, 20 mM forskolin, and protease inhibitor cocktail (Sigma-Aldrich; Cat. No. P2714) and 

cAMP levels were quantified using the HitHunter cAMP detection kit from DiscoveRx 

according to the manufacturer’s protocol. In a separate set of experiments dose–response curves 

were carried out with Dyn A or Dyn B (0–10 mM). In another set of experiments cells were 

treated Dyn A or Dyn B (1 mM) for 5 min, after which peptides were washed out and cells were 

incubated in assay buffer for 25 min. Cells were then given a second 5 min treatment with Dyn A 

or Dyn B (1 mM) and cAMP levels measured. Values obtained in the absence of peptide were 

taken as 100%. Data presented are mean ± SEM of three independent experiments in triplicate. 
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Abstract 

Membrane trafficking and receptor signaling are two fundamental cellular processes that 

interact constantly. Although how trafficking regulates signaling is well studied, how signaling 

pathways regulate trafficking is less well understood. Here we use the mu opioid receptor 

(MOR), the primary target for opioid analgesics, to define a signaling pathway that dynamically 

regulates post-endocytic receptor recycling. By directly visualizing individual MOR recycling 

events, we show that agonist increases MOR recycling. Inhibition of Gβγ, Phospholipase-C, or 

Protein Kinase C mimicked agonist removal, while activation of Gβγ increased recycling even 

after agonist removal. Phosphorylation of serine 363 on the C-terminal tail of MOR was required 

and sufficient for agonist-mediated regulation of MOR recycling. Our results identify a feedback 

loop that regulates MOR recycling via Gβγ, Protein Kinase C, and receptor phosphorylation. 

This could serve as a general model for how signaling regulates post-endocytic trafficking of G 

protein-coupled receptors. 
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3.1 Introduction 

The dynamic relationship between trafficking and signaling of receptors is currently being 

redefined by new paradigms that are emerging in the field. This is especially true in the case of G 

protein–coupled receptors (GPCRs), the largest class of signaling receptors in humans (Pierce et 

al., 2002; Sriram and Insel, 2018). Activated GPCRs signal via multiple signaling pathways, 

some of which cause receptors to be internalized and trafficked to endosomes. Internalized 

GPCRs may be either recycled back to the surface or degraded. Classically, this endocytic 

trafficking was thought to primarily control the desensitization and resensitization of signaling 

via G proteins by removing receptors from or returning receptors to the cell surface (Lefkowitz 

et al., 1997; Marchese et al., 2008). However, recent evidence shows that many GPCRs can 

signal from intracellular sites, and that intracellular signaling can have distinct downstream 

effects compared with signaling from the surface (Irannejad et al., 2013; Vilardaga et al., 

2014; Thomsen et al., 2018). Intracellular signaling from endosomal microdomains might be a 

general characteristic of GPCRs, as the list of GPCRs that can signal from intracellular 

compartments is still growing (Caengprasath and Hanyaloglu, 2019; Weinberg et al., 2019). This 

supports the emerging idea that an equally important role of trafficking is to transfer receptors 

between distinct signaling environments within a cell. 

In the endosome, receptors need to be localized to specific endosomal microdomains both 

to sort into specific recycling pathways and to signal (Ferrandon et al., 2009; Vistein and 

Puthenveedu, 2013; Bowman et al., 2016). The localization of receptors in these domains and 

their further intracellular sorting are mediated by specific sequences on the C-terminal tails of the 

receptors (Tanowitz and von Zastrow, 2003; Bowman and Puthenveedu, 2015; Bahouth and 

Nooh, 2017). For some of these sequences, interacting proteins that mediate this sorting and 
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recycling have been identified (Romero et al., 2011; Dunn and Ferguson, 2015; Broadbent et al., 

2017). Nevertheless, how this sorting and recycling is dynamically regulated by signaling 

pathways is a fundamental question that is still not well understood. 

The mu opioid receptor (MOR) is an excellent model GPCR that can be used to address 

this question. MOR is highly physiologically relevant, as it is the primary target for many 

currently used and abused opioid drugs. Endosomal sorting of MOR, based on a unique leucine-

based sequence, can dynamically regulate its responses to different agonists at cellular and 

organismal levels (Williams et al., 2013; Bowman et al., 2015; Weinberg et al., 2017) MOR 

undergoes rapid phosphorylation and dephosphorylation in response to agonists, and 

heterologous manipulation of this phosphorylation regulates its plasma membrane localization, 

trafficking, and signaling (Feng et al., 2011; Just et al., 2012; Bowman et al., 2015; Halls et al., 

2016; Arttamangkul et al., 2018). 

In this study, we used a real-time live-cell-imaging assay that resolves MOR recycling at 

single-event resolution to study the homologous signals that allow self-regulation of endosomal 

sorting of MOR. We show that activation of MOR initiates downstream signaling cascades that 

enhance postendocytic receptor recycling back to the cell surface. The signaling cascade requires 

the Gβγ-activated phospholipase C (PLC)/protein kinase C (PKC) signaling pathway, which 

results in the phosphorylation of serine 363 on MOR’s C-terminal tail. This phosphorylation is 

required for increased MOR recycling. The positive feedback loop that regulates MOR endocytic 

trafficking that we describe here may serve as a template for similar adaptive self-regulatory 

mechanisms for many GPCRs. 
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3.2 Results 

The Opioid Agonist DAMGO Increases Post-endocytic Recycling of MOR. 

To determine if the signals downstream of activated MOR regulate its own post-

endocytic recycling, we quantitated MOR recycling using a live cell imaging assay that resolves 

individual MOR recycling events without the confounding effects of endocytosis. To visualize 

recycling events, MOR was N-terminally tagged with a pH-sensitive GFP (SpH) 

(Sankaranarayanan et al., 2000). HEK293 cells stably expressing MOR that was N-terminally 

tagged with the pH-sensitive GFP superecliptic phluorin (SpH-MOR) were imaged using total 

internal reflection fluorescence microscopy. SpH-MOR on the cell surface is fluorescent and 

readily detectable. After activation, receptors are internalized into acidic endosomal 

compartments where the SpH fluorescence is quenched. When recycling vesicles containing 

receptors fuse back to the plasma membrane during an exocytic event, the SpH fluorescence is 

exposed to the neutral pH of the extracellular medium and is therefore dequenched. This 

coordinated dequenching generates a characteristic “puff” of fluorescence that is readily 

detectable (Supplemental Movie 1). We and others have extensively characterized these and 

similar puffs previously and confirmed that they represent individual vesicle fusion events during 

receptor recycling (e.g., Yudowski et al., 2006; Bowman et al., 2015; Logan et al., 2017). 

Individual fusion events were readily observed after cells expressing SpH-MOR were 

treated with the opioid agonist DAMGO for 5 minutes (Figure 3.1A and B). Agonist-containing 

medium was washed out and replaced with medium containing naltrexone. Recycling movies 

were recorded 1 and 6 minutes after this washout (Figure 3.1C) and the number of individual 

events was normalized to the area in each cell. The raw recycling rate per cell area ± washout 
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was determined for each recycling movie (Figure 3.1D). This approach allowed us to follow 

changes in the same cells over time and to normalize the raw values to the baseline recycling rate 

in each condition for each cell (Figure 3.1E). When compared with cells continuously exposed to 

agonist for similar times (Figure 3.1D), the number of MOR recycling events decreases from 

baseline following agonist removal (P < 0.0001). Additionally, the normalized data matched at 

the same time points indicate statistically significant differences in recycling at 1 minute (P < 

0.0001) and 6 minutes (P < 0.0001) for −washout versus +washout (Figure 3.1E). These results 

indicate that MOR signaling positively regulates MOR recycling. 

Figure 3.1 
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Figure 3.1. The opioid agonist DAMGO increases postendocytic recycling of MOR. (A) 
HEK293 cell expressing SpH-MOR imaged with total internal reflection fluorescence 
microscopy after DAMGO addition. The appearance of an individual exocytic recycling event is 
denoted by red boxes. Images are 100 ms apart. Scale bar, 5 µm. (B) Profile of an individual 
exocytic event (puff) over 1 s. Frames are 100 ms apart. Scale bar, 1 μm. The event begins as a 
defined spot of fluorescence intensity that appears suddenly. The fluorescence diffuses on the 
cell membrane as shown by the heat map surface plot. (C) Experimental paradigm to study MOR 
postendocytic recycling. (D) The number of recycling events normalized to cell area (square 
micrometer) over time ± DAMGO washout after the baseline recording. In the −washout 
condition, P > 0.999 for baseline versus +1 minute and P = 0.306 for baseline versus +6 minutes 
(n = 15 cells). In the +washout condition, ****P < 0.0001 for both baseline versus 1-minute 
washout and baseline versus 6-minute washout (n = 27 cells). Mean and S.E.M. are plotted for 
each time point. (E) The percentage of recycling events in each condition (±washout) was 
normalized to the baseline events for each condition. ****P < 0.0001 for −washout 1 minute 
versus +washout 1 minute. ****P < 0.0001 for −washout 6 minutes versus +washout 6 minutes 
(−washout: n = 15 cells; +washout: n = 27 cells.) Box and whisker plots are shown with all 
points from each condition. 
 

The Agonist-Mediated Increase in MOR Recycling Rate Requires G Protein Signaling. 

To address which signals downstream of receptor activation are involved in regulating 

postendocytic MOR recycling, we first probed the role of G proteins that couple to MOR by 

using the G protein inhibitor pertussis toxin (PTX). In SpH-MOR cells treated with PTX 14–16 

hours before imaging, DAMGO-induced MOR clustering into endocytic domains was not 

inhibited (Figure 3.2A and B), consistent with previous studies (Halls et al., 2016; (Gondin et al., 

2019)). Fluorescence values normalized to the first frames after DAMGO addition were 

quantified for control and PTX-treated cells as an index of receptor internalization. The decrease 

in fluorescence over the first 5 minutes after DAMGO addition was not different between control 

and PTX-treated cells, suggesting that endocytosis of the receptor was not altered due to PTX 

treatment (Figure 3.2C). When individual recycling events were quantified in the PTX condition, 

however, the baseline recycling rate was decreased compared with control (P = 0.0064), as 

shown in the summary data (Figure 3.2D). The full box plots and statistical comparisons are 
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shown in the corresponding panel of Supplemental Figure 3.2 (Supplemental Figure 3.2B). 

Following agonist washout, the recycling rate was unchanged compared with before washout in 

the PTX condition (Figure 3.2D). The normalized recycling for each baseline condition indicates 

a statistically significant change in the percentage of initial recycling between ±PTX at the time 

point 6 minutes after washout (P = 0.0003). These results show that agonist-mediated increase in 

MOR recycling requires G protein signaling. 

Since Gαi negatively regulates protein kinase A (PKA) through its primary effector 

adenylate cyclase, we next tested whether PKA activity changed MOR recycling. PKA inhibition 

by KT5720, an acute PKA inhibitor, did not change MOR recycling compared with untreated 

cells (Figure 3.2F). Further, neither forskolin, which activates adenylate cyclase, thereby 

increasing cAMP and activating PKA, nor subsequent inhibition of PKA in the same cells 

changed MOR recycling rates (Figure 3.2F). These results suggest that, in our cells, cAMP and 

PKA signaling downstream of Gαi does not regulate MOR recycling. 
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Figure 3.2 

 
Figure 3.2. The agonist-mediated increase in MOR recycling requires G protein signaling. 
(A) Representative images of HEK293 cell expressing SpH-MOR imaged with total internal 
reflection fluorescence microscopy before and after DAMGO addition. Cells pretreated with 
PTX 14–16 hours before imaging. Scale bar, 5 µm. (B) Following DAMGO addition, SpH-MOR 
clusters on the cell surface before internalizing in both control (Ctrl) and PTX-treated cells. Scale 
bar, 2.5 µm. (C) Quantification of percentage of normalized fluorescence in control and PTX 
conditions for the first 5 minutes following DAMGO addition. Values are normalized to the first 
frames following DAMGO addition (Ctrl: n = 10 cells; PTX: n = 8 cells). (D) Number of 
recycling events per cell area (square micrometer) over time in response to DAMGO washout ± 
PTX. P = 0.0064 for control baseline versus PTX baseline (Ctrl: n = 10 cells; PTX: n = 8 cells). 
Mean and S.E.M. are plotted for each time point. (E) Percentage of baseline recycling events/min 
at washout 6 minutes for each condition; ***P = 0.0003 for control washout 6 minutes versus 
PTX washout 6 minutes (Ctrl: n = 10 cells; PTX: n = 8 cells). Box and whisker plots are shown 
with all points from each condition. (F) Percentage of baseline recycling events/min in response 
to KT5720 (KT; n = 14 cells), forskolin (Fsk; n = 14 cells), or Fsk + KT (n = 14 cells); treatment 
normalized to initial baseline recycling events (one-sample t test: P = 0.908 for baseline vs. +KT; 
P = 0.9758 for baseline vs. +Fsk; P = 0.7886 for baseline vs. +Fsk+KT). Box and whisker plots 
are shown with all points from each condition. ns, not significant. 
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Gβγ Signaling Is Required and Sufficient to Increase Post-endocytic Recycling of MOR. 

We next tested whether Gβγ activation regulates MOR recycling. To test whether 

Gβγ activation was required, we inhibited Gβγ using gallein, a small-molecule inhibitor of 

Gβγ activation, and measured MOR recycling (Bonacci et al., 2006). In cells incubated with 

gallein 30 minutes prior to imaging, receptor-mediated clustering and endocytosis were not 

altered with gallein treatment (Supplemental Figure 3.1A), but baseline recycling decreased 

compared with that of untreated cells (P = 0.0046) (Figure 3.3A). Agonist washout in gallein-

treated cells did not decrease recycling to the same extent compared with the control (Figure 

3.3B), suggesting that the agonist-mediated increase in MOR recycling requires Gβγ signaling. 

To test whether Gβγ signaling was sufficient to increase MOR recycling, we activated Gβγ in the 

absence of agonist and measured MOR recycling. We used mSIRK, a cell-permeable peptide 

activator of Gβγ, and the compound 12155, a cell-permeable small-molecule activator of 

Gβγ (Goubaeva et al., 2003; Lehmann et al., 2008; Surve et al., 2014), to activate Gβγ. Both 

Gβγ activators increased the rate of MOR recycling at 1 and 6 minutes after washing out 

DAMGO compared with control cells (Figure 3.3C and D). Interestingly, 12155 increased MOR 

recycling to a lesser degree than mSIRK, which may reflect different Gβγ activation mechanisms 

by these two drugs (Bonacci et al., 2006; Surve et al., 2014). Together, these results indicate that 

Gβγ signaling is required and sufficient to enhance MOR recycling back to the cell surface. 

Our results indicating that Gβγ signaling is required and sufficient to enhance MOR recycling 

were also confirmed by measuring surface levels of SpH-MOR at an ensemble level in live cells 

over time. Since SpH is only fluorescent on the cell surface and not when the receptor is in 

endosomes, the fluorescence signal accurately measures surface levels of MOR (Yudowski et al., 

2009; Vistein and Puthenveedu, 2013). After DAMGO addition, there is a significant decrease in 



 

 65 

fluorescence intensity (∼50%) as predicted due to receptor internalization. This level reaches a 

plateau around 10 minutes, which indicates a steady state between endocytosis and recycling. 

When agonist is removed in a washout, the steady state is shifted by removing the contribution 

of endocytosis. This results in an increase in fluorescence intensity, which allows us to capture 

the contribution of receptor recycling. 

Multiple fields (n > 15) of cells expressing SpH-MOR were selected for each experiment. 

After collecting a 2-minute baseline signal for each field, DAMGO was added, and the 

fluorescence signal was recorded for 15 minutes until the signal plateaued. After 15 minutes, the 

medium containing DAMGO was washed out and replaced with fresh medium containing 

antagonist (naltrexone) and ±mSIRK or ±12155. The recovery of fluorescence signal was 

measured for 15 minutes after washout to determine a measurement of ensemble MOR recycling 

across cells (Figure 3.3E). In the Gβγ-activating conditions, we observed an initial spike in 

fluorescence signal consistent with the increase we observed in the orthogonal puffs assay 

(Figure 3.3F and G). Overall the increase in fluorescence signal indicates an increase in the 

number of receptors recycled back to the cell surface in response to sustained Gβγ activation 

(Figure 3.3H). These results strongly support that Gβγ signaling is required and sufficient to 

increase MOR recycling. 
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Figure 3.3 

 
 
Figure 3.3. Gβγ activation is required and sufficient to increase MOR recycling. (A) 
Number of MOR recycling events per cell area (square micrometer) over time in response to a 
DAMGO washout in control (Ctrl) and gallein conditions. Cells were treated with gallein 30 
minutes prior to imaging. P = 0.0046 for control baseline versus gallein baseline (Ctrl: n = 9 
cells; gallein: n = 25 cells). Mean and S.E.M. are plotted for each time point. (B) Percentage of 
baseline recycling events/min at washout 6 minutes for each condition: P = 0.0015 for control 
washout 6 minutes versus gallein washout 6 minutes (Ctrl: n = 9 cells; gallein: n = 25 cells). Box 
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and whisker plots are shown with all points from each condition. (C) Number of MOR recycling 
events per cell area (square micrometer) over time in response to a DAMGO washout in control, 
mSIRK, and 12155 conditions. Cells were treated acutely with mSIRK or 12155 during the 
washout. Mean and S.E.M. are plotted for each time point (Ctrl: n = 10 cells; mSIRK: n = 12 
cells; 12155: n = 12 cells). (D) Percentage of baseline recycling events/min at washout 1 minute 
for each condition: ***P = 0.0003 for control washout 1 minute versus mSIRK washout 1 
minute; *P = 0.0488 for control washout 1 minute versus 12155 washout 1 minute (Ctrl: n = 10 
cells; mSIRK: n = 12 cells; 12155: n = 12 cells). Box and whisker plots are shown with all points 
from each condition. (E) Changes in surface MOR fluorescence over time measured after 
DAMGO addition and washout. MOR fluorescence decreased upon receptor internalization after 
DAMGO addition and returned upon recycling after DAMGO washout. Gβγ activation by either 
mSIRK or 12155 increased the rate of recovery of fluorescence. Scale bar, 10 μm. (F) 
Quantification of fluorescence recovery over 30 minutes following DAMGO treatment 
normalized to the baseline fluorescence. (G) Quantification of fluorescence recovery normalized 
to the fluorescence loss before washout for control, mSIRK, or 12155 conditions. (H) Box and 
whisker plots showing the fluorescence after 15 minutes of agonist washout in control, mSIRK, 
or 12155 conditions. Gβγ activation by either mSIRK or 12155 increased the receptors recycled; 
****P < 0.0001 for control versus mSIRK, **P = 0.0058 for control versus 12155 (Ctrl: n = 48 
fields; mSIRK: n = 44 fields; 12155: n = 38 fields, all across three independent experiments). 
 

MOR Regulates Its Own Recycling via Phospholipase C, Protein Kinase C, and Serine 363. 

To determine the signals downstream of Gβγ activation that regulated MOR recycling, 

we first examined the role of PLC, which is activated by Gβγ. To test whether PLC inhibition 

changed DAMGO-mediated regulation of MOR recycling, we acutely inhibited PLC with 

U73122 and measured the change in MOR recycling from baseline recycling before PLC 

inhibition. U73122 decreased MOR recycling even in the presence of DAMGO, whereas 

U73343, an inactive control, did not change MOR recycling compared with baseline (Figure 

3.4A). These results suggest that PLC activation is required for the DAMGO-mediated increase 

in MOR recycling. We next tested whether PKC signaling was required to increase MOR 

recycling in the presence of DAMGO. To do this, we acutely inhibited PKC by treating cells 

with chelerythrine or Gö6983 and measured the change in MOR recycling from baseline 



 

 68 

recycling before PKC inhibition (Figure 3.4B). MOR recycling was reduced when PKC was 

inhibited, suggesting that PKC increased MOR recycling. 

Because the C-terminal tail of MOR contains predicted PKC phosphorylation sites (Doll 

et al., 2011), we tested whether the receptor itself was a target of DAMGO-mediated regulation 

of MOR recycling. Specifically, we focused on serine 363, a putative PKC phosphorylation site, 

as a potential regulator of PKC signaling. To test whether serine 363 was required for DAMGO-

mediated homologous regulation of MOR recycling, we mutated serine 363 on MOR to alanine. 

Receptor-mediated clustering and endocytosis were not different between S363A and wild-type 

(WT) MOR (Supplemental Figure 3.1B). In cells expressing this mutant construct (S363A), 

however, the number of recycling events was decreased compared with the cells expressing the 

wild-type MOR (Figure 3.4C). The reduction in recycling seen upon washout of drug was 

smaller for S363A compared with the wild-type MOR but was not fully abolished, suggesting 

that other residues or mechanisms may be involved in the regulation of DAMGO-mediated 

recycling (Figure 3.4D). Further, the recycling of S363A was also insensitive to Gβγ inhibition 

by gallein (Figure 3.4C and D) Together, these data indicate that phosphorylation at serine 363 is 

required to increase MOR recycling after activation. 

To test if phosphorylation at serine 363 was sufficient to increase MOR recycling in the 

absence of MOR activation, we examined recycling in cells expressing a phosphomimetic MOR 

mutant where serine 363 was mutated to an aspartate (S363D). Baseline recycling was not 

different between the WT MOR and the S363D mutant. However, unlike WT MOR, recycling of 

the S363D mutant did not decrease from baseline after agonist washout (Figure 3.4C), 

suggesting that the phosphomimetic mutation was sufficient to keep MOR recycling at a high 

level even after agonist washout. Together, our results suggest a model of homologous regulation 
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of MOR recycling, where MOR activation phosphorylates the receptor at serine 363 via 

Gβγ signaling, PLC, and PKC and increases MOR recycling back to the cell surface (Figure 

3.4E). 
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Figure 3.4 

 

 
 



 

 71 

Figure 3.4. Homologous regulation of MOR recycling by MOR phosphorylation at serine 
363. (A) Percentage of baseline recycling events/min in response to U73122 (n = 17 cells) or 
U73343 (n = 21 cells) treatment normalized to initial baseline recycling events. One-sample t 
test: ***P = 0.0002 for baseline versus U73122; P = 0.8910 for baseline versus U73343. Box 
and whisker plots are shown with all points from each condition. (B) Percentage of baseline 
recycling events/min in response to chelerythrine (n = 20 cells) or Gö6983 (n = 21 cells) 
treatment normalized to initial baseline recycling events. One-sample t test: ***P = 0.0007 for 
baseline versus chelerythrine; ****P < 0.0001 for baseline versus Gö6983. Box and whisker 
plots are shown with all points from each condition. (C) Number of recycling events per cell area 
(square micrometer) over time in response to DAMGO washout in control (Ctrl), S363A, S363A 
+ gallein, or S363D conditions. P = 0.0392 for control baseline vs. S363A baseline; P = 0.0429 
for control baseline vs. S363A + gallein baseline; P = 0.7203 for control baseline vs. S363D 
baseline; P = 0.9391 for S363D baseline vs. S363D washout 6 minutes (Ctrl: n = 18 cells; 
S363A: n = 15 cells; S363A + gallein: n = 19 cells; S363D: n = 10 cells). Mean and S.E.M. are 
plotted for each time point. (D) Percentage of baseline recycling events/min at washout 6 minute 
for each condition: ***P = 0.0003 for control washout 6 minute versus S363A washout 6 
minutes; **P = 0.0077 for control washout 6 minutes versus S363A + gallein washout 6 
minutes; ****P < 0.0001 for control washout 6 minutes versus S363D washout 6 minutes (Ctrl: 
n = 18 cells; S363A: n = 15 cells; S363A + gallein: n = 19 cells; S363D: n = 10 cells). Box and 
whisker plots are shown with all points from each condition. (E) Proposed model of self-
regulation of postendocytic recycling of MOR. ns, not significant. 
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Supplemental Figure 3.1 
 

 

Supplemental Figure 3.1 Clustering and Internalization of MOR across conditions (A) 9.04 
µm x 9.04 µm ROI of HEK293 cell expressing SpH MOR in TIRF +/- gallein and +/- DAMGO 
addition. SpH-MOR clusters on the cell surface in response to DAMGO before internalizing in 
both control and gallein treated cells. Right panel: Quantification of % normalized fluorescence 
in control and gallein conditions for the first 5 minutes following DAMGO addition. Values are 
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normalized to the first frame following DAMGO addition. n=15 cells for Ctrl; n=15 cells for 
gallein. (B) 9.04 µm x 9.04 µm ROI of HEK293 cell expressing SpH MOR WT or S363A in 
TIRF +/- DAMGO addition. SpH-MOR clusters on the cell surface in response to DAMGO 
before internalizing in both control and S363A conditions. Right panel: Quantification of % 
normalized fluorescence in control and S363A conditions for the first 5 minutes following 
DAMGO addition. Values are normalized to the first frame following DAMGO addition. n=6 
cells for Ctrl; n=15 cells for S363A. (C) 9.04 µm x 9.04 µm ROI of HEK293 cell expressing 
SpH MOR WT or S363A(treated with gallein) in TIRF +/- DAMGO addition. SpH-MOR 
clusters on the cell surface in response to DAMGO before internalizing in both control and 
S363A + gallein conditions. Right panel: Quantification of % normalized fluorescence in control 
and S363A + gallein conditions for the first 5 minutes following DAMGO addition. Values are 
normalized to the first frame following DAMGO addition. n=6 cells for Ctrl; n=10 cells for 
S363A + gallein. (D)9.04 µm x 9.04 µm ROI of HEK293 cell expressing SpH MOR WT or 
S363D +/- DAMGO addition. SpH-MOR clusters on the cell surface in response to DAMGO 
before internalizing in both control and S363D conditions. Right panel: Quantification of % 
normalized fluorescence in control and S363D conditions for the first 5 minutes following 
DAMGO addition. Values are normalized to the first frame following DAMGO addition. n=5 
cells for Ctrl; n=9 cells for S363D. 
 
 
 
Supplemental Figure 3.2 
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Supplemental Figure 3.2. Raw MOR recycling events across all conditions. 
“*” denotes statistical significance (p<0.05) within family (condition) in Two-Way ANOVA.  

“#” denotes statistical significance (p<0.05) between families at the same time points. 
(A)  Number of recycling events per cell area (μm2) over time in response to DAMGO in +/-
Washout conditions. p>0.9999 for - Washout baseline vs. - Washout 1 min; p=0.3063 for - 
Washout baseline vs. - Washout 6 min. p<0.0001 for + Washout baseline vs. + Washout 1 min; 
p<0.0001 for + Washout baseline vs. + Washout 6 min. Unpaired t test: p=0.2854 for - Washout 
baseline vs. + Washout baseline; p=0.0042 for - Washout 1 min vs. + Washout 1 min; p<0.0001 
for - Washout 6 min vs. + Washout 6 min; - Washout: n=15 cells; + Washout: n=27 cells 
(B)  Number of recycling events per cell area (μm2) over time in response to DAMGO washout 
in control or PTX conditions. p =0.0090 for Ctrl baseline vs. Ctrl 1 min; p<0.0001 for Ctrl 
baseline vs. Ctrl 6 min. p=0.8650 for PTX baseline vs. PTX 1 min; p=0.6789 for PTX baseline 
vs. PTX 6 min. Unpaired t test: p=0.0064 for Ctrl baseline vs. PTX baseline; p=0.0127 for Ctrl 1 
min vs. PTX 1 min; p=0.3216 for Ctrl 6 min vs. PTX 6 min. Ctrl: n=10 cells; PTX: n=8 cells 
(C)  Number of recycling events per cell area (μm2) over time in response to DAMGO washout 
in control or gallein conditions. p<0.0001 for Ctrl baseline vs. Ctrl 1 min; p<0.0001 for Ctrl 
baseline vs. Ctrl 6 min; p=0.1561 for gallein baseline vs. gallein 1 min; p=0.0018 for gallein 
baseline vs. gallein 6 min. Unpaired t test: p=0.0046 for Ctrl baseline vs. gallein baseline; 
p=0.0778 for Ctrl 1 min vs. gallein 1 min; p=0.2675 for Ctrl 6 min vs. gallein 6 min. Ctrl: n=9 
cells; Gallein n=25 cells (D)  Number of recycling events per cell area (μm2) over time in 
response to DAMGO washout in control, mSIRK, or 12155 conditions. p=0.0083 for Ctrl 
baseline vs. Ctrl 1 min; p=0.0002 for Ctrl baseline vs. Ctrl 6 min; p=0.0026 for mSIRK baseline 
vs. mSIRK 1 min; p=0.3378 for mSIRK baseline vs. mSIRK 6 min; p=0.7501 for 12155 baseline 
vs. 12155 1 min; p=0.9174 for 12155 baseline vs. 12155 6 min. Sidak’s multiple comparisons 
test: p=0.8845 for Ctrl baseline vs. mSIRK baseline; p=0.8397 for Ctrl baseline vs. 12155 
baseline; p=0.0005 for Ctrl 1 min vs. mSIRK 1 min; p=0.2760 for Ctrl 1 min vs. 12155 1 min; 
p=0.0021 for Ctrl 6 min vs. mSIRK 6 min; p=0.1079 for Ctrl 6 min vs. 12155 6 min. Ctrl: n=10 
cells; mSIRK: n=12 cells; 12155: n=12 cells (E)  Number of recycling events per cell area (μm2) 
over time in response to DAMGO washout in control, S363A, S363A + gallein, or S363D 
conditions. p<0.0001 for Ctrl baseline vs. Ctrl 1 min; p<0.0001 for Ctrl baseline vs. Ctrl 6 min; 
p=0.9682 for S363A baseline vs. S363A 1 min; p=0.0047 for S363A baseline vs. S363A 6 min; 
p=0.1553 for S363A + gallein baseline vs. S363A + gallein 1 min; p=0.0093 for S363A + gallein 
baseline vs. S363A + gallein 6 min; p=0.9539 for S363D baseline vs. S363D 1 min; p=0.9391 
for S363D baseline vs. S363D 6 min; Sidak’s multiple comparisons test: p=0.0392 for Ctrl 
baseline vs. S363A baseline; p=0.0429 for Ctrl baseline vs. S363A + gallein baseline; p=0.7023 
for Ctrl baseline vs. S363D baseline; p=0.8718 for Ctrl 1 min vs. S363A 1 min; p=0.5442 for 
Ctrl 1 min vs. S363A + gallein 1 min; p=0.0370 for Ctrl 1 min vs. S363D; p=0.9752 for Ctrl 6 
min vs. S363A 6 min; p=0.9990 for Ctrl 6 min vs. S363A + gallein 6 min; p<0.0001 for Ctrl 6 
min vs. S363D 6 min. Ctrl: n=18 cells; S363A: n=15 cells; S363A + gallein: n=9 cells; S363D: 
n=10 cells.  
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3.3 Discussion 

We identify a positive feedback mechanism that mediates homologous regulation of MOR 

recycling. Activation of MOR initiates a signaling cascade via Gβγ and PKC that increases the 

rate of MOR recycling. This increase in recycling requires the phosphorylation of MOR at serine 

363, a site that can be directly phosphorylated by PKC. 

Our results provide new information on how receptor phosphorylation can regulate MOR 

trafficking. Phosphorylation of MOR, mainly at the TSST (residues 354–357) and the STANT 

(residues 375–379) motifs, by multiple kinases, has been studied extensively for its role in 

receptor internalization and desensitization (Williams et al., 2013; Arttamangkul et al., 

2018; Miess et al., 2018; Kliewer et al., 2019). PKC can phosphorylate MOR at multiple sites, 

but the residues that are phosphorylated in vivo and the role of PKC phosphorylation in 

regulating MOR trafficking and function are still being investigated (Doll et al., 2011; Feng et 

al., 2011; Yousuf et al., 2015). The serine 363 residue that we identified as critical for regulating 

MOR recycling can be phosphorylated in vitro by PKCε, although whether this is the primary 

enzyme that phosphorylates it in vivo is not clear (Doll et al., 2011; Feng et al., 2011). PKC 

activation by MOR on the plasma membrane varies between different agonists used (Halls et al., 

2016). Further, activation of PKC downstream of Gβγ can regulate receptor localization to 

different domains on the plasma membrane (Halls et al., 2016). Once internalized, the 

phosphorylation of MOR at specific residues can determine receptor sorting between Rab4- and 

Rab11-dependent recycling compartments (Wang et al., 2008). In this context, the rate and 

extent of dynamic changes in phosphorylation at S363 of MOR is not clear. In biochemical 
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assays, the bulk levels of S363 phosphorylation do not change after agonist treatment (Lau et al., 

2011; Moulédous et al., 2015). Considering our data, that this site is required and sufficient to 

mediate agonist-mediated increase in MOR recycling, it is possible that phosphorylation at this 

site is locally and transiently regulated in response to receptor activation. 

Regulation of MOR recycling by Gβγ-, PLC-, and PKC-mediated receptor phosphorylation 

is a novel example of homologous regulation of GPCR recycling. Receptor phosphorylation has 

been studied mainly in the context of receptor desensitization and endocytosis, but 

phosphorylation can regulate the recycling of other receptors such as the β adrenergic receptors. 

In the case of the β2-adrenoreceptor (β2AR), a prototypical Gαs-coupled receptor, receptor 

recycling is regulated by receptor phosphorylation downstream of receptor signaling. However, 

unlike for MOR, agonist stimulation decreased the postendocytic recycling of β2AR. This 

decrease required PKA-mediated phosphorylation of β2AR on serine 345/346 (Yudowski et al., 

2009; Vistein and Puthenveedu, 2013). PKA signaling, however, does not play a role in MOR 

recycling in our cells (Fig. 2F). MOR recycling in striatal neurons has been reported to be 

inhibited by forskolin, although PKA was not directly tested (Roman-Vendrell et al., 2012). This 

difference could reflect differences in mechanisms of recycling of β2AR and MOR, which might 

also differ between cell types. In HEK cells, β2AR recycles via a specialized set of endosomal 

tubules, termed ASRT tubules, characterized by the presence of an actin-SNX-retromer complex 

(Puthenveedu et al., 2010; Temkin et al., 2011). β2AR sorting into these tubules requires the 

interaction of a C-terminal post-synaptic density-95/disc large tumor suppressor/zonula 

occludens-1 (PDZ) ligand sequence with a set of PDZ-containing proteins, which ultimately link 

the receptor to the endosomal actin cytoskeleton (Temkin et al., 2011). MOR seems to recycle 

via a distinct mechanism, although the mechanism itself is not understood. MOR recycling 
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requires a unique “bileucine” sequence on the receptor C-terminal tail. There is no evidence that 

this sequence interacts with the PDZ-containing proteins or actin. Further, β2AR and MOR 

might also use different sets of Rab proteins to recycle (Wang et al., 2008). The use of both Gα- 

and Gβγ-mediated pathways to phosphorylate receptor cargo via distinct kinases to regulate 

recycling of receptors through potentially distinct pathways suggests that homologous regulation 

of receptor recycling by modifying receptor phosphorylation states is a conserved mechanism on 

a global level, although the specific mechanisms might vary between different GPCRs. 

The changes we observe in MOR recycling based on PKC-mediated receptor 

phosphorylation could have direct effects on MOR signaling and function. Many canonical 

GPCRs have been shown to signal from endosomes in the recent past, raising the idea that 

endosomal signaling is the norm rather than the exception (Calebiro et al., 2009; Vilardaga et al., 

2014; Bowman et al., 2016; Jensen et al., 2017; Eichel and von Zastrow, 2018). When localized 

to specific microdomains on the endosome, β2AR activates the transcription of a complement of 

genes that are distinct from those activated by signaling from the plasma membrane (Tsvetanova 

and von Zastrow, 2014; Bowman et al., 2016). Endosomal signaling of the neurokinin-1 receptor 

in spinal neurons, or the calcitonin gene-related peptide-targeted calcitonin-like receptor, 

contributes to nociception (Jensen et al., 2017; Yarwood et al., 2017; Weinberg et al., 2019). 

Whether MOR signaling from endosomes has a distinct signaling consequence is less clear. 

However, increased recycling of MOR, induced by neurokinin-1 receptor signaling, can decrease 

acute tolerance to opioids, suggesting that the rate of recycling can regulate opioid physiology 

(Bowman et al., 2015). PKC-mediated phosphorylation of MOR could therefore serve as a 

convergence point for both homologous regulation of MOR recycling by Gβγ and heterologous 

regulation by other signaling pathways. Importantly, considering emerging data that the precise 
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location of receptors could dictate PKC-mediated phosphorylation of MOR, this could regulate 

both the rate of resensitization as well as the spatial encoding of opioid signaling, which has 

emerged as an exciting area of study in the recent past (Sorkin and von Zastrow, 

2009; Tsvetanova and von Zastrow, 2014; Bowman et al., 2016; Eichel and von Zastrow, 2018). 

Similar feedback loops may serve as templates for adaptive self-regulation of signaling for many 

GPCRs, although the specific mechanisms may vary between different receptors. Understanding 

the regulation of GPCR trafficking, using assays that can directly detect and measure these 

dynamic events in real time, will allow us to better analyze the relationship between receptor 

trafficking and the spatiotemporal aspects of GPCR signaling. 

 

3.4 Materials and Methods 

Reagents, Constructs, and Cells. 

[D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO; used at 10 µM), naltrexone (10 µM), 

pertussis toxin (100 ng/ml, overnight treatment), forskolin (10 µM), KT5720 (1 µM), myr-

SIRKALNILGYPDYD-OH (mSIRK; 10 µM), U73122 (10 µM), and chelerythrine (5 µM) were 

purchased from Sigma-Aldrich (St. Louis, MO). Gallein (20 µM, 30 minute treatment), U73343 

(10 µM), and Gö6983 (5 µM) were purchased from Tocris Bioscience. Compound 12155 

(10 µM) was provided by Dr. Alan Smrcka (University of Michigan). Stable nonclonal HEK293 

cells (American Type Culture Collection CRL-1573) expressing superecliptic phluorin (SpH)-

MOR were selected in Geneticin (Invitrogen) and grown in Dulbecco’s modified Eagle’s 

medium (Hyclone) + 10% fetal bovine serum (Gibco). The SpH-MOR-S363A point mutant 

thereof has been described previously (Soohoo and Puthenveedu, 2013; Bowman et al., 2015). 
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SpH-MOR-S363D was generated by Q5 Site-Directed Mutagenesis Kit (New England Biolabs) 

using ACAGCAAAACGATGCTCGAATCCG as the forward primer and TCGATTGTGGAG

GAAGTTG as the reverse primer. 

Live Cell Imaging. 

Cells were passed to 25-mm glass coverslips coated with poly-D-lysine and imaged 2 

days later. Cells were imaged live in Leibovitz L15 imaging medium (Gibco) and 1% fetal 

bovine serum at 37°C in a temperature- and CO2-controlled chamber. A Nikon Eclipse Ti 

automated inverted microscope with a 60×/1.49 N.A. total internal reflection fluorescence 

objective and confocal 20×/0.75 N.A. objective was used for imaging. Images were acquired 

with an iXon+ 897 electron-multiplying charge-coupled device camera (Andor, Belfast, UK) 

with a solid-state laser of 488 nm as a light source. Images were scrambled using a scrambler.py 

script (https://gist.github.com/SavinaRoja/1629319) before analyzing them in FIJI (National 

Institutes of Health) (Schindelin et al., 2012). 

Quantification of Individual Recycling Events. 

HEK293 cells stably expressing SpH-MOR or its mutants were treated with DAMGO for 

5 minutes to induce receptor clustering and internalization at 37°C. Receptor clustering was 

visualized by acquiring an image every 3 seconds for 5 minutes. A baseline recycling movie was 

acquired at 10 Hz for 1 minute using total internal reflection fluorescence microscopy, followed 

by a washout with antagonist (naltrexone). Subsequent movies were collected 1 and 6 minutes 

after washout. The number of individual exocytic recycling events in each movie was manually 

scored. The box plots display the median and the entire range with outliers excluded. To evaluate 

the effect of agonist washout on the frequency of recycling events between treatment conditions, 
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two-way repeated-measures ANOVAs were conducted on the raw recycling rates followed by 

post hoc comparisons of means within the treatment condition to the baseline recycling rate. 

These tests were conducted separately for each of the sets of conditions shown in Figs. 

1D; 2D; 3, A and C; and 4C. Supplemental Figure 2. To compare the magnitude of the washout 

effect between treatment conditions, recycling events for each cell were normalized to that cell’s 

recycling rate in the baseline movie. The mean normalized recycling rate was then compared 

between conditions of interest using either a one-way ANOVA followed by the indicated post 

hoc comparisons using Dunnett’s multiple comparisons correction (Figures 3.1E, 3.3D, and 

3.4D) or a single paired Student’s t test when only two conditions were evaluated (Figures 3.2E 

and 3.3B). When testing whether a pharmacological treatment was able to perturb the basal rate 

of recycling, the normalized recycling events were compared with a theoretical mean of 100% 

using a single-sample Student’s t test (Figures 3.2F, 3.3A and B).  

Ensemble Recycling Assay. 

To measure ensemble recycling, receptor surface levels were imaged using confocal 

microscopy with a 20× objective and 488-nm laser. Images were collected at 30-second intervals 

for 20 different fields. Baseline recordings for 2 minutes (four frames) were collected before the 

addition of DAMGO. After the addition of agonist, images were collected for 15 minutes. After 

15 minutes, agonist was removed. The cells were rinsed with fresh imaging medium, and 

antagonist (naltrexone) was added to the new medium. After agonist washout, images were 

collected for another 15 minutes. Fluorescence intensities were corrected by a background 

threshold and normalized by the average fluorescence of the baseline four frames collected 

before DAMGO treatment. Surface fluorescence analysis was conducted using an ImageJ Macro 

automated script (National Institutes of Health) (https://zenodo.org/record/2645754). 
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Fluorescence recovery/loss ratios after washout were quantified by normalizing the fluorescence 

values after washout to the total fluorescence lost before washout. Cell fields that did not respond 

to DAMGO treatment were excluded from analysis. Statistical significance was determined by 

using a one-way ANOVA comparing endpoints of all conditions to the control condition, 

followed by post hoc comparisons between all means (Figure 3.3H).  
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Chapter 4: Regulation of Mu Opioid Receptor Trafficking and 
Signaling via receptor Phosphorylation 

 
 
Abstract 
   

Dynamic phosphorylation of the mu opioid receptor (MOR) is an important regulatory 

mechanism for receptor trafficking and signaling. Specifically phosphorylation sites on the c-

terminal tail have been implicated in changing receptor sorting in response to agonist activation. 

Here we investigate how two key phosphorylation sites serine363 (S363) and threonine370 

(T370) may affect MOR hierarchal sorting and signaling in response to opioid peptide activation.  

 
 

4.1 Introduction 

Post-translational modifications of G protein-coupled receptors (GPCRs) are key 

determinants for receptor function. Agonist-dependent phosphorylation of the C-terminus is one 

major regulatory post-translational modification. The physiologically relevant, mu opioid 

receptor (MOR) contains several phosphorylation sites in the C-terminal cytoplasmic tail located 

in the conserved 370TREHPSTANT379 sequence (Mann et al., 2015). Previous work from our lab 

suggests hierarchical sorting of MOR based on its phosphorylation state. As mentioned 

previously, phosphorylation at S363 regulates recycling back to the cell surface in an initial Gβγ-

dependent mechanism (Kunselman et al., 2019). As another example of phosphoregulatory 

sorting, T370A receptors sort primarily into actin-positive domains, suggesting a role for C-
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terminal tail phosphorylation in receptor endosomal distribution (Bowman, 2016). In light 

of previous work highlighted above with the kappa opioid receptor (KOR) and for the B2AR 

intracellular signaling (Kunselman et al., 2021; Bowman et al., 2016), we wanted to test the role 

phosphorylation had in regulating MOR signaling profiles and its activity in endosomes.  

4.2 Results 

To assess the role of phosphorylation at sites S363 and T370 on MOR recycling, we tested 

recycling in three stable HEK293 cell lines that express either wildtype (WT), S363A, and 

T370A SpH-MOR, which have been previously reported in Kunselman et al., 2019 and Bowman 

et al., 2015. We imaged cells using TIR-FM. After 5 min of DAMGO treatment, we 

photobleached the cell surface and recorded movies for 1 min at 10Hz. The number of exocytic 

events were recorded for each condition and normalized by cell area to determine the initial 

recycling rate. The initial rates of recycling were not statistically different between WT and 

T370A recycling, while S363A had decreased recycling (Figure 4.1A). Additionally, cells 

expressing the T370A receptor showed decreased recycling when treated with a Gβγ inhibitor, 

gallein, (Figure 4.1B) similarly to the WT receptor, while S363A showed gallein insensitivity as 

reported in Kunselman et al., 2019. 
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Figure 4.1  
 

 
Figure 4.1. Recycling rates for wildtype MOR and phosphodeficient mutants S363A and 
T370A in HEK293 cells. 

(A) HEK293 cells stably expressing WT, S363A, or T370A SpH-MOR. Number of recycling 
events per cell area (square micrometer) over time in response to 5 min DAMGO treatment. 
(B) Number of recycling events per cell area (square micrometer) over time in response to 5 
min DAMGO treatment in cells expressing T370A SpH-MOR treated with or without 30 min 
Gallein pretreatment.   
 

 
Next we wanted to test if these phosphodeficient mutants were capable of signaling from 

intracellular compartments. To do this we used three stable HEK293 cells expressing either WT, 

S363A, or T370A FLAG-MOR. We transfected Nb39-YFP, a nanobody that recognizes that 

active conformation into each cell line to examine if MOR was in the activate conformation after 

DAMGO treatment. After 20 minutes of DAMGO, Nb39 colocalizes to endosomal receptor in 

all three conditions (Figure 4.2A). To quantify colocalization, we scored the total number of 

MOR positive endosomes using an Image J macro “Object Picker” to determine the percent 

colocalization with Nb39, which showed that all conditions had similar Nb39 recruitment 

(Figure 4.2B). 
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Figure 4.2 
  

 
Figure 4.2. Endosomal recruitment of active conformation biosensor (Nb39) for wildtype 
MOR and phosphodeficient mutants S363A and T370A in HEK293 cells. 
(A)  HEK293 cells stably expressing WT, S363A, or T370A FLAG-MOR transfected with 
Nb39-YFP. Representative images show endosomal FLAG-MOR colocalized with Nb39 after 
20 min DAMGO treatment. (B) The percent colocalization of Nb39 with total MOR endosomes 
is quantified for each WT, S363A, and T370A expressing cells.  

 
 

We next wanted to test if the phospho-deficient mutants had altered extracellular signal-

regulated kinases (ERK) signaling, based on previous data, which shows that different opioid 

ligands and the bileucine receptor sequence regulate lifetimes at the cell surface and ERK 

signaling (Weinberg et al., 2017). To do this we used three stable HEK293 cells expressing 

either WT, S363A, or T370A FLAG-MOR. We treated cells with +/- DAMGO for 5 minutes and 

then blotted for phosphoERK and total ERK to measure activation of ERK signaling. The S363A 

mutant showed increased phosphoERK in comparison to the T370A mutant and WT receptor 

(Figure 4.3A and B). 
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Figure 4.3 
 

 
Figure 4.3. Phosphorylated ERK after activation of wildtype MOR and phosphodeficient 
mutants S363A and T370A in HEK293 cells.  
(A) HEK293 cells stably expressing WT, S363A, or T370A FLAG-MOR were treated with 5 
min DAMGO and phosphoERK (pERK) levels were probed in an immunoblot. The membrane 
was stripped and reprobed with totalERK (tERK). (B) Fold change over baseline was calculated 
for each receptor condition by normalizing the pERK signal over the tERK signal for DAMGO 
treated conditions to the untreated conditions.  
 

4.3 Discussion 

These experiments suggest that there are some key differences in trafficking and signaling 

between the phosphorylation mutants. The S363A mutant shows decreased initial recycling and 

increased ERK signaling, while the T370A mutant is more similar to the wildtype receptor in 

readouts for recycling and ERK signaling. Wildtype MOR, S363A, and T370A all show similar 

levels of Nb39 recruitment to endosomal compartments after 20 minutes of DAMGO treatment. 

However, there may be differences detected under other conditions, such as different cell-types  

or changes in the signaling environment. Interestingly, T370A receptors appear to sort primarily 

into actin-positive domains, which further suggests that phosphorylation may regulate 

hierarchical receptor sorting (Bowman, 2016). 
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Another interesting question to address is the stage at which receptor phosphorylation is 

occurring during endocytosis and whether that correlates with distinct sorting throughout the 

endolysosomal pathway. Previous studies that used phospho-antibodies developed to recognize 

these specific sites showed that S363 is constitutively phosphorylated, while T370 

phosphorylation is dependent on the agonist (Doll et al., 2011). However, phosphorylation at 

S363 does occur in a homologous mechanism regulated by DAMGO activation (Kunselman et 

al., 2019), suggesting that these sites could be dynamically regulated at different points after 

receptor activation and at steady-state. The kinases involved in phosphorylation may also change 

depending on the cell-type. For example, previous evidence suggests that T370 is phosphorylated 

by GRK 2/3 in addition to PKC (Mann et al., 2015).  

 Taken together these findings support additional layers of regulation through changes in 

MOR phosphorylation. The combination of homologous and heterologous signaling resulting in 

distinct spatial and temporal phosphorylation may be a mechanism of cellular resensitization in 

response to numerous external stimuli.   

 

4.4 Materials and Methods 

 
Live Cell Imaging 

  
Cells were imaged using a Nikon TE-2000E inverted microscope with a 60X 1.49 NA 

TIRF objective, Andor Revolution XD spinning disk confocal system, and 488 and 647 nm 

solid-state lasers. Cells were imaged in Leibowitz’s L15 medium (Gibco), 1% FBS, at 37˚C. 

Images were acquired using an Andor iXon+ EM-CCD camera using Andor IQ.  

Quantification of Individual Recycling Events. 
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HEK293 cells stably expressing SpH-MOR or its mutants were treated with DAMGO for 

5 minutes to induce receptor clustering and internalization at 37°C. Receptor clustering was 

visualized by acquiring an image every 3 seconds for 5 minutes. A baseline recycling movie was 

acquired at 10 Hz for 1 minute using total internal reflection fluorescence microscopy, followed 

by a washout with antagonist (naltrexone). Subsequent movies were collected 1 and 6 minutes 

after washout. The number of individual exocytic recycling events in each movie was manually 

scored. The box plots display the median and the entire range with outliers excluded 

 
Immunoblotting  
 

HEK293 cells stably expressing FLAG-MOR (WT, S363A, or T370A) were grown in a 

PDL coated 12-well plate for 2 days at 37˚C. Cells were for four hours in serum-free media and 

then treated with 10 µM DAMGO for 5 min. Cells were placed on ice and rinsed twice with PBS 

containing calcium and magnesium. Cells were directly lysed in the plate using 2 RSB (Bio-Rad, 

Hercules, CA). Lysates were placed on ice for 5 min and then placed at 95˚C for 5 min. Lysates 

were run on 10% stain-free gels (BioRad), which were then transferred to nitrocellulose 

membrane overnight. Membranes were blocked in 5% BSA and then probed with 

phosphoERK(CST) to detect phosphorylated ERK 1/2 levels in each condition. Blots were 

developed using the iBright imager for chemiluminescence signal and quantified using FIJI 

software. Membrane was stripped and probed with total ERK 1/2 (CST) to determine total levels 

of ERK 1/2 present in the samples. The phospho-ERK signal was normalized to the total ERK 

signal for each condition. All samples were then normalized to the no treatment control to 

determine the fold change over baseline for each condition. Five biological replicates were 

performed. Statistical analysis was performed using two-way ANOVA across time and drug 

treatment. 
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Chapter 5: Conclusions and Future Directions 
 

Together, the data presented in this thesis highlight the mechanisms regulating G protein-

coupled receptor (GPCR) function via modulation of receptor trafficking and signaling. 

Specifically, I investigated the mechanisms underlying differential opioid receptor activity in 

response to endogenous opioid peptide ligands. In chapter one, I reviewed regulators of GPCR 

endocytic trafficking and biosynthetic trafficking, which showcased various points of regulation 

from lipid membrane composition to post-translational modifications of the receptor itself. 

Additionally, agonist-dependent sorting is an area of particular interest in this dissertation. 

In chapter two, I examined kappa opioid receptor (KOR) trafficking and signaling in 

response to different, yet highly-related, dynorphin peptides. Interestingly, we observed that 

dynorphin A localizes KOR to lysosomes and drives degradation, while dynorphin B localizes 

KOR into recycling endosomes and drives recycling. Strikingly, KOR activated by dynorphin 

A, but not dynorphin B, remains in an active conformation on lysosomes and causes sustained 

cAMP signaling. This study shows that different endogenous opioid peptides fine-tune KOR 

signaling by regulating receptor localization to and signaling from different endosomal 

compartments.  

Currently, I am investigating changes in gene expression in the context of spatial signaling 

in response to different dynorphin treatments. Additionally, changes in the phosphoproteome in 

response to different agonists may provide insight for functional differences in signaling 

profiles between peptides. Since many of these peptides are thought to be released from the 

same vesicles, I am also interested in testing combinatorial effects of several co-released 
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peptides on receptor trafficking and signaling. Overall this work suggests that physiological 

systems generate diversity in signaling by inducing different subcellular spatial and temporal 

profiles of receptors, which should be an important consideration in drug development. 

In chapter three, I investigated the relationship between receptor signaling and trafficking 

by examining mu opioid receptor (MOR) recycling. My findings show that DAMGO-activated 

MOR initiated downstream signaling via a Gβγ, PLC, and PKC pathway, resulting in the 

phosphorylation of serine 363, which increased MOR recycling. Interestingly, this is in contrast 

to the mechanism regulating agonist-dependent recycling for the β-2 adrenergic receptor  

(B2AR), where agonist washout actually increases recycling for B2AR (Vistein and 

Puthenveedu, 2013). It is unknown if receptor phosphorylation at serine 363 occurs at the 

plasma membrane or at the endosome. The timing and location of this phosphorylation may 

play a significant regulatory role in the receptor’s post-endocytic sorting and its ability to 

interact with downstream signaling complexes. This example again highlights the unique 

trafficking profiles of various GPCRs.  

 Moreover, previous work from the lab studied the role of serine 363 and threonine 370 in a 

heterologous PKC signaling model, which further emphasizes the importance of these 

phosphorylation sites on MOR with respect to receptor trafficking (Bowman et al., 2015). In 

chapter four, we explored how these sites contributed to endosomal signaling and ERK 

signaling. I did not observe statistically significant differences between phosphodeficient 

mutants S363A and T370A in endosomal recruitment of a biosensor that recognizes an active 

conformation of MOR. However, there may be differential coupling to G proteins and other 

signaling complexes in addition to differential sorting into endosomal compartments and 
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microdomains (Crilly et al., 2021; Bowman, 2016). Future studies should investigate how the 

spatial encoding of signals differs between relevant cell types.  

Overall my thesis work provides additional evidence for a hierarchical sorting model for 

GPCRs leading to spatially distinct signaling outcomes and increases our understanding of 

receptor physiology.  
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