
Semiparametric Estimation Methods for Survival
and Biomarker Data

by

Theresa P. Devasia

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in the University of Michigan
2021

Doctoral Committee:

Professor Alexander Tsodikov, Chair
Assistant Professor Walter Dempsey
Professor Susan Murray
Associate Professor Ted Skolarus



Theresa P. Devasia

tdevasia@umich.edu

ORCID ID: 0000-0002-0348-1407

©
Theresa P. Devasia 2021

All Rights Reserved



For my family

ii



ACKNOWLEDGEMENTS

This dissertation is the product of my five wonderful years at Michigan, which

have been the most academically challenging yet rewarding of my life. I would like

to thank all of the amazing professors and students I have met during my time here.

You have all left an impression on me, and I will always remember my time as a

graduate student fondly. I would also like to thank all of the mentors I had as an

undergraduate student at the University of Georgia for encouraging me to pursue my

Ph.D and the Emory Winship Cancer Institute’s Summer Scholars Research Program

for introducing me to biostatistics.

This work would not have been possible without the support and guidance of my

advisor Alex, whose knowledge of statistical theory is unparalleled. He took what

I knew about survival analysis and expanded it beyond measure. He has been the

most kind and patient mentor, gently guiding me along the way while providing me

the independence to explore my own ideas, however misguided they may be. He has

taught me how to be a better statistician, writer, and researcher.

I would like to thank my other committee members as well. Susan made me fall

in love with survival analysis and taught me everything I know about martingales.

Walter provided invaluable insight on joint modeling and stochastic process models.

Ted gave me the opportunity to learn about prostate cancer and work on impactful

clinical research at the VA. They have all provided incredible feedback and questions

throughout my dissertation.

I would also like to thank my GSRA advisor Matt. He has been a wonderful mentor

iii



and has allowed me to gain experience working on cancer research that impacts patient

care. He has taught me how to be a better applied statistician and collaborator. I

thank the wonderful investigators I have worked with in the Departments of Radiology

and Radiation Oncology at Michigan Medicine for allowing me to contribute to a

diverse set of research projects.

Lastly, I would like to thank my family. Without their love and support, I would

not have made it through graduate school. I would like to thank my parents for all

the sacrifices they have made and all the love they have given me. I would like to

thank my brother and sister for their constant encouragement. Together, they have

all helped me tremendously over the past five years, and I cannot say “thank you”

enough to each of them.

The bulk of this dissertation was completed during the COVID-19 pandemic, and I

have been extremely fortunate to be able to continue pursuing my research during this

difficult time. This work was supported by methodological grants from the National

Cancer Institute’s Division of Cancer Control and Populations Sciences’ (DCCPS)

portfolio in statistical and analytic methods, 1R01CA242559, and 1U01CA253915

(Cancer Interventions Surveillance Modeling Network, CISNET).

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Efficiency of the Breslow Estimator in Semiparametric Trans-
formation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Likelihood . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Nonparametric Maximum Likelihood Estimation . . 11
2.2.4 Estimating Equations . . . . . . . . . . . . . . . . . 13
2.2.5 Estimation Algorithm for NPMLE . . . . . . . . . . 14
2.2.6 Relative Efficiency of the Breslow Estimator . . . . 15

2.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 SEER Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III. Reconsidering the Role of Endogenous Covariates in Survival
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Time-Varying Covariates . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Defining Survival Functions . . . . . . . . . . . . . . 38

3.3 Exponential Form of Survival . . . . . . . . . . . . . . . . . . 39
3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Valid Survival Functions for Endogenous Markers . . . . . . . 40
3.5 Bivariate Shared Frailty Model . . . . . . . . . . . . . . . . . 43

3.5.1 Conditional Survival Assuming X Fully Observed . 44
3.5.2 Conditional Survival Assuming X Partially Observed 44

3.6 Semicompeting Risks Type Model . . . . . . . . . . . . . . . 46
3.6.1 Conditional Survival Assuming X is Fully Observed 49
3.6.2 Conditional Survival Assuming X is Partially Observed 50

3.7 Threshold Regression Model . . . . . . . . . . . . . . . . . . 51
3.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.2 Fixed Threshold and Fully Observed Marker . . . . 52
3.7.3 Fixed Threshold and Partially Observed Marker . . 53
3.7.4 Random Threshold and Fully Observed Marker . . . 54
3.7.5 Random Threshold and Partially Observed Marker . 55

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

IV. Joint Modeling of a Time-to-Event and Partially Observed
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ABSTRACT

In many clinical studies, the outcome of interest is an event time. In addition,

longitudinal data on biomarkers may be collected, and such information may provide

insight into underlying disease risk or severity. The goal in this dissertation is to

develop models and estimation procedures that can incorporate survival and longi-

tudinal data to provide patients and clinicians with knowledge of a subject’s disease

risk, which may influence future treatment decisions.

Traditional survival analysis methods often place strong assumptions on the effect

of covariates on a patient’s predicted risk. More flexible models have been proposed,

but estimation of the cumulative baseline hazard function, which is of infinite dimen-

sion, proves difficult. In Chapter II, we consider two estimators of the cumulative

baseline hazard: the nonparametric maximum likelihood estimator (NPMLE) and a

Breslow-type estimator derived from a martingale estimating equation. The Breslow

estimator relies solely on current event information, while the NPMLE depends on

future data for risk predictions. We derive the asymptotic relative efficiency of the

Breslow estimator in comparison to the NPMLE and demonstrate that while theo-

retically the Breslow estimator might not be fully efficient, in practice it is virtually

identical to the NPMLE. The practical implication of this result is that the Breslow

estimator may be used with minimal loss of efficiency while being conceptually and

computationally more straightforward.

In Chapter III, we consider the role of internal or endogenous time-varying co-

variates in joint models of survival and biomarker data. The current belief, based

largely on intuition, is that the future history of the endogenous marker should not

xiii



be incorporated into the hazard function. To the contrary, we show that the hazard

function conditional on an endogenous process is a construct incorporating missing

data associated with the future unobserved trajectory of the process. In addition, in

the presence of an endogenous covariate, the validity of the exponential relationship

between the survival and the hazard function is questioned. In this chapter, we offer

explicit theory and examples of such models and use it to derive a generalized hazard

function that satisfies the exponential relationship.

In Chapter IV, we extend prior work on joint models of survival and biomarker

data and utilize the framework developed in Chapter III. We consider a discretely

observed marker process at measurement times that may be informative. We focus in

particular on the case of marked survival, where the marker is measured at the event

time for subjects who experience the event of interest. We assume that the marker

process can be modeled as a Lévy process that is connected to a survival model

through a time transformation. Considering the partially observed marker and an

informative measurement time, we derive estimators of the marker parameters.

xiv



CHAPTER I

Introduction

Survival analysis entails the examination of time-to-event outcomes in order to un-

derstand the probability of occurrence of an outcome of interest at some future time.

Most survival models are defined using two components: a fully specified function

of subject-specific factors and an unspecified function of time shared across subjects.

In addition to event data, longitudinal marker data may be available for individuals

in clinical studies. The information supplied by the marker could provide additional

insight into the underlying disease process, improve survival predictions, and inform

future treatment decisions. In this dissertation, we focus on developing semiparamet-

ric estimation methods for complex survival models, particularly in the case where

partially observed biomarker data are available.

In the first chapter, we focus on estimation of the cumulative baseline hazard func-

tion in the semiparametric transformation model. The most popular survival model

is Cox’s proportional hazards model (1972), wherein the risk of the event is speci-

fied as the product of a parametric regression function incorporating covariates and

a nonparametric cumulative baseline hazard function. Due to the presence of both

a parametric and nonparametric term, the proportional hazards model is “semipara-

metric.” Estimation is done using the partial likelihood method (Cox , 1972), which

“profiles out” the unspecified cumulative baseline hazard that is of infinite dimension.
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The asymptotic properties of Cox’s model have been well established both directly

and using counting processes (Tsiatis , 1981; Andersen and Gill , 1982).

One consequence of Cox’s original model is that it assumes proportionality of the

covariate effects, meaning that the hazard ratio between two covariate values remains

constant over time. Due to potential heterogeneity that may evolve over the course

of a study, the proportional hazards assumption can be restrictive. More flexible sur-

vival models, known as semiparametric transformation models, have been proposed

(Chen et al., 2002; Zeng and Lin, 2007). However, these more general models still face

difficulties in terms of estimation due to the unspecified cumulative baseline hazard.

Previous work has established that the nonparametric likelihood estimator (NPMLE)

relies on future event information for a given risk set, which can lead to conceptual

and computational challenges (Chen, 2009). A Breslow-type estimator derived from a

martingale estimating equation has been proposed as an alternative, and it has been

shown to rely solely on current event information for a given risk set (Chen et al.,

2002).

In Chapter II, we investigate the Breslow-type estimator of the cumulative baseline

hazard and derive its asymptotic relative efficiency (ARE) compared to the NPMLE.

We rely on martingale process theory to determine the ARE and study its behav-

ior under different model settings. Because the cumulative baseline hazard can be

thought of as a nuisance parameter, we also consider the asymptotic properties of

the regression parameters associated with both the NPMLE and the Breslow-type

estimator. We apply both estimators to SEER registry data on prostate-cancer spe-

cific survival by disease stage and demonstrate that the regression estimates obtained

using each estimator for the cumulative baseline hazard are nearly identical. The

Breslow-type estimator can be used with minimal loss of efficiency in certain cases,

which allows for potential interim analysis as it relies solely on current event infor-

mation.
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The simplest survival models include only baseline covariate information in the

parametric regression function. However, in observational clinical studies, biomarker

data that are dynamic may provide insight into a patient’s future survival. In such

instances, models that can incorporate time-varying covariate information are needed

to calculate accurate risk predictions. There are two main types of time-varying co-

variates: (1) external or exogenous and (2) internal or endogenous. The difference

between the two types is largely defined by intuition on how the covariate relates to

the subject. Exogenous covariates are thought to exist outside of the subject, whereas

endogenous covariates exist within the subject and rely on the subject’s survival to

be observed. While these intuitive definitions allow for simple classification of any

time-varying covariate, they lack satisfactory theoretical development and reflect as-

sumptions made before modeling.

However, mathematical definitions for both exogenous and endogenous covariates

exist (Kalbfleisch and Prentice, 2002), and they relate to how the level of available

marker information impacts the risk of failure. Equivalently, exogenous and endoge-

nous covariates can be distinguished based on how occurrence of the event impacts

the distribution of the covariate trajectory. Let W denote a stochastic covariate re-

lated to the underlying health status of a patient. Then by the definition put forth in

Kalbfleisch and Prentice (2002), W will be exogenous if the hazard of failure at time

s remains the same conditional onW(s) orW(t), whereW(u) = {W (x) : 0 ≤ x ≤ u}

represents the marker history up to time u and s < t. W will be endogenous if the

hazard changes dependent on the covariate history. Thus, the difference between the

two types of time-varying covariates is largely based on the how the current risk of

the event is related to the future covariate information: for exogenous covariates, the

future is irrelevant, but for endogenous covariates, the future impacts the hazard at

the current point in time. Based on these definitions, survival functions at time t

conditional on the covariate history of an endogenous marker up to time t will be

3



mathematically invalid.

In Chapter III, we focus on clarifying the differences between exogenous and en-

dogenous covariates. We reformulate the difference as a missing data problem, where

endogenous covariates are linked to the unobserved future, but exogenous covariates

are not. Under this formulation, we reexamine the role endogenous covariates play

in survival models. In particular, we develop mechanistic survival models conditional

on an endogenous marker history by treating the unobserved future path as a latent

variable and applying the definition of a conditional expectation. Related to survival

functions defined to be conditional on a time-varying covariate is the validity of the

exponential form, which provides a link between the survival and hazard functions

for continuous event times. While it is commonly thought that exponential forms

are invalid for endogenous covariates, the legitimacy is related to the continuity of

the event time (Aven and Jensen, 1999; Finkelstein, 2004). As part of our explo-

ration of endogenous covariates, we delineate and decouple time-varying covariates

and exponential forms. To do so, we consider illustrative examples including bivariate

shared frailty models (Hougaard , 2000), bivariate semicompeting risks-type models

(Fine et al., 2001; Tran et al., 2018), and threshold regression models where the event

time can be thought of as the first-hitting time of a marker reaching a boundary state

(Ting Lee and Whitmore, 2006). Through these examples, we highlight the short-

comings associated with the current understanding of time-varying covariates, and

we demonstrate the advantages of our proposed framework.

Stochastic markers can play an important role in risk prediction for patients in

biomedical studies. Ideally, they would be continuously monitored to understand how

their levels and any associated fluctuations impact the probability of experiencing a

health-related event. In reality, however, such markers will only be intermittently

observed, either at scheduled clinical visits or possibly at some time related to the

event of interest, for example at the event time itself. In such cases, models that

4



can account for the impact the marker has on future survival and for the marker

measurements themselves are needed in order to accurately predict the risk of failure.

The most common way to examine both event and marker information is through

joint modeling, wherein a model for survival conditional on the marker and a model

for the marker are specified such that there are latent factors shared between the two

submodels (Tsiatis et al., 1995; Jewell and Kalbfleisch, 1996; Henderson et al., 2000;

Tsiatis and Davidian, 2004; Rizopoulos , 2008). Joint modeling makes explicit how

the marker impacts survival, and it also assumes a functional form for the marker

process. In reality, however, the marker might be sparsely observed, particularly if it

is only collected at event-related times. Thus, it may be difficult to properly assess

the assumed functional form.

In Chapter IV, we consider joint models where we treat the marker process as

a stochastic process that is partially observed. We largely focus on the case where

the marker is measured at the event time if the event is observed, which is known as

marked survival. Because the marker may be observed at the event time, the measure-

ment time of the marker is informative. The informative observation of the marker

is built into our proposed joint model through the survival modeling framework pro-

posed in Chapter III and the marginal distribution of the marker. The proposed

joint model is flexible and can also be applied in settings where measurement times

are uninformative. A popular choice for the marker process is the non-negative Lévy

process, which has a tractable Laplace functional and preserves the non-negativity of

the hazard function (Hoyle, 2010). Prior work has focused on applying Lévy frailties

as a multiplicative effect (Gjessing et al., 2003; Suresh, 2018), whereas we explore

introducing a time transformation into the Lévy frailty itself for even greater flexi-

bility. The specific Lévy process we use is the Gamma process, where the mean and

variance of the process can be specified to be functions of baseline covariates (Suresh,

2018).
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In our survival submodel, we treat the marker process as a time-transformed frailty

process, where the time transformation allows us to consider time on the scale of the

accumulated risk of failure. Because the marker is a partially observed endogenous

covariate, naively specifying the hazard of failure at time t conditional on the marker

history up to t will result in an invalid survival function. To overcome this problem,

we utilize the framework proposed in Chapter III. Using both components of the joint

model, we derive estimators of the marker parameters. We explore the use of both

a parametric cumulative baseline hazard function and a Breslow-type estimator of

the cumulative baseline hazard function. We demonstrate the validity of the model

through various simulation settings, and we apply our joint model to SEER registry

data on prostate cancer diagnosis, where the marker prostate-specific antigen is mea-

sured at the age of diagnosis.

This dissertation investigates semiparametric estimation methods for survival mod-

els and joint models of time-to-event and longitudinal data. The methods outlined

in this dissertation can be applied to a variety of clinical research projects, but they

may be particularly useful in the context where a biomarker that acts as a surrogate

of the underlying disease process is partially observed at an event time. We hope that

our work can lead to better knowledge of subject-specific risk and the development of

further methods to explore the complex associations between various disease-related

processes.
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CHAPTER II

Efficiency of the Breslow Estimator in

Semiparametric Transformation Models

2.1 Introduction

The proportional hazards (PH) model proposed by Cox (1972) is one of the most

ubiquitous methods in modern survival analysis. The hazard of failure is modeled as

the product of a nonparametric baseline hazard function and a parametric function

of covariates, thus making Cox’s model semiparametric. As interest lies mostly in the

effect of the covariates on the hazard, the partial likelihood method proposed by Cox

(1972) provides an elegant solution to estimate the regression parameters while elimi-

nating the infinite-dimensional baseline hazard. However, the statistical properties of

the partial likelihood estimators were not immediately known. The asymptotic prop-

erties of the partial likelihood regression estimator and the nonparametric maximum

likelihood estimator (NPMLE) of the cumulative baseline hazard function proposed

by Breslow (1972) were proved directly by Tsiatis (1981). Andersen and Gill (1982)

later developed counting process models for failure times, and using properties of

martingales, they established the asymptotic behavior of these estimators as well.

Recent history has seen the development of more general semiparametric transfor-

mation models (Chen et al., 2002; Zeng and Lin, 2007). Nonparametric estimation
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in semiparametric transformation models proceeds by maximizing the likelihood over

the nonparametrically-specified baseline cumulative hazard, an infinite-dimensional

parameter, jointly with the other finite-dimensional parameters of the model. Profile

likelihood obtained by maximizing out the infinite-dimensional parameter is often

used for estimation (Murphy and van de Vaart , 2000). General maximization meth-

ods and expectation-maximization (EM) algorithms were proposed to deal with the

high dimensionality of the problem (Tsodikov , 2003; Zeng and Lin, 2007), with the

asymptotic theory supplied by empirical processes providing consistency, asymptotic

normality, and efficiency of the NPMLE (Kosorok et al., 2004; Zeng and Lin, 2006,

2007). Chen (2009) elucidated the martingale structure of the NPMLE and proposed

the so-called “Weighted Breslow” NPMLE. The NPMLE of the cumulative baseline

hazard has been shown to rely on future event information for a given risk set in the

form of weights built using a martingale transform (Chen, 2009). Despite such suc-

cessful developments, the dependence on the future made estimation computationally

and theoretically challenging.

Before the NPMLE theory and algorithms were established, a simpler non-MLE

Breslow-type estimator was derived from a martingale estimating equation (MEE)

setting observed and expected counts of failures under the model equal, conditional

on the past history (Chen et al., 2002). This estimator could be considered a special

case of the Weighted Breslow when weights are set to one, and we will refer to it as

the Breslow estimator to distinguish it from the Weighted Breslow NPMLE. Since

the weights house the future path of the functional hazard parameter and the event

data in the Weighted Breslow estimator, setting weights equal to one in the Breslow

estimator makes it dependent on the past history only. Despite the perception of

lacking full efficiency (Chen, 2009), the unweighted Breslow estimator continues to

be used in practice due to its computational efficiency.

The purpose of this paper is to consider the relative efficiency of the Breslow es-
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timator, which relies solely on event information at the current point in time, and

explore how this estimator compares to the NPMLE in practice. First, we define

our model and estimators in Sections 2.2.1-2.2.5. Then, we derive the form of the

relative efficiency of the Breslow estimator compared to the NPMLE in Section 2.2.6.

Next, we compare their performance in simulation studies in Section 2.3 and in a

SEER prostate cancer data set used previously to illustrate the EM algorithm for the

NPMLE in Section 2.4 (Tsodikov , 2003). Finally, we conclude in Section 2.5 with a

general discussion and comparison of the two estimators of the cumulative baseline

hazard.

2.2 Methods

2.2.1 Model

Consider the failure time T and covariate Z, which may be time-dependent. Con-

ditional on covariates Z, we assume that T is absolutely continuous under any Z.

This is needed to ensure that the exponential relationship between the survival and

hazard functions, represented by S and λ, respectively, holds. Consider

S(t|β,Z) = L(Ht|β,Z)

Λ(Ht|β,Z) = − lnL(Ht|β,Z)

dΛ(Ht|β,Z) = −dL(Ht|β,Z)

L(Ht|β,Z)
= λ(Ht|β,Z)dt

(2.1)

where Λ is the cumulative hazard, H is the baseline cumulative hazard, and β is a

finite-dimensional parameter vector, usually of regression coefficients. The differen-

tials dΛ and dL are taken with respect to Ht. In equation (2.2) below, S,Λ, λ,L,

and Θ0(Ht|β,Z) are generally functionals of the past history of H(t). To ensure the
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Breslow-form of the NPMLE, we assume that

dΛ(Ht|β,Z) = Θ0(Ht|β,Z)dHt (2.2)

Time-dependent covariates are assumed to be external or exogenous, in which

case the observed hazard function λ(Ht|β,Z) = λ(Ht|β,Zt), which allows us to

avoid discussion of the model for the covariate process that would otherwise need to

be incorporated into the hazard. Dependent on the model, we will understand Ht

and Zt either as values of the function or process at t or as the respective histories up

to t. We will use the same notation when the meaning is clear based on the context.

Examples of the framework in equation (2.2) include (1) the semiparametric trans-

formation model considered by Zeng and Lin (2007)

Λ(Ht|β,Z) = G

{ t∫
0

eβZ(s)dHs

}
(2.3)

where G is a continuously differentiable, strictly increasing function, and (2) transfor-

mation models induced by univariate frailty (Tsodikov , 2003; Kosorok et al., 2004),

where L is the Laplace transform of a nonnegative frailty random variable U whose

distributional parameters depend on covariates and regression coefficients, evaluated

at H(t) with S = LU(Ht) = EU{e−UHt}.

2.2.2 Likelihood

Let C be the right censoring time with survival function G and assume that

T ⊥ C|Z. Let τ be the maximum follow-up time in the study. The observed data are

(Xi,∆i,ZXi)
n
i=1, where Xi = min(Ti, Ci) and ∆i = I(Ti ≤ Ci), with I(·) defining the

indicator function. Subjects are assumed to be independent. Then, the observed-data
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log-likelihood is given by

l(β, H) =
n∑
i=1

∆i ln
{
dΛ(HXi |β,ZXi)

}
− Λ(HXi |β,ZXi)

=
n∑
i=1

τ∫
0

dNi(u) ln
{
dΛ(Hu|β,Zu,i)

}
− Yi(u)dΛ(Hu|β,Zu,i)

(2.4)

where dNi(u) = I(Xi = u,∆i = 1) and Yi(u) = I(Xi ≥ u). Here, dNi(u) is the incre-

ment of the observed event process, which only jumps when an event occurs at u, and

Yi(u) is the at-risk process. If we define our filtration as Ft− = σ{Ni(s), Yi(s),Zs : s ∈

[0, t); i = 1, . . . , n}, then under the true model, E(dNi(t)|Ft−) = Yi(t)dΛ(Ht|β,Zt,i) =

Yi(t)Θ
0(Ht|β,Zt,i)dHt is the compensator of the increment of the counting process

N . Note that given Ft− , Θ0 is assumed to be predictable.

2.2.3 Nonparametric Maximum Likelihood Estimation

Recall that our model in (2.2) is semiparametric as H is a completely unspecified

increasing function. For estimation purposes, we treat H as a step-function with a set

of jumps {dH} at each of the m observed event times t1 < t2 < · · · < tm. To jointly

estimate the parameters (β, H), we make use of profile maximum likelihood estima-

tion, wherein l(β, H) is first maximized over H for fixed β and then maximized over

β with Ĥ(β) substituted in for H. Because H is an infinite-dimensional function, to

maximize l(β, H) with respect to H, we take a functional derivative. For a functional

F (H), consider the argument function Hx perturbed in the direction of an indicator

function I(x − t) with a jump at t, i.e., Ĥ(x) = H(x) + aI(x − t). We can define a

local directional functional derivative with respect to H as

∂F (H(·))
∂dHt

=
dF (H(·) + aI(· − t))

da

∣∣∣∣
a=0

(2.5)

The definition in (2.5) corresponds to taking a derivative of l(β, H) with respect to
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the set of jumps {dH}, and it is valid for both discrete (finite sample) and continuous

(asymptotic) settings. Applying this definition, we have ∂Hx
∂dHt

= I(x ≥ t) and ∂dHx
∂dHt

=

I(x = t). Define the increment of the martingale process as dMi(t) = dNi(t) −

Yi(t)Θ
0(Ht|β,Zt,i)dHt, i = 1, . . . , n. Then, the log-likelihood can be rewritten as

l(β, H) =

n∑
i=1

τ∫
0

dNi(u)
[

ln(Θ0(Hu|β,Zu,i)) + ln(dHu)
]
− Yi(u)Θ0(Hu|β,Zu,i)dHu (2.6)

The score equation UdHt = ∂
∂dHt

l(β, H) and NPMLE of dHt for fixed β are

UdHt =

n∑
i=1

dNi(t)

dHt
− Yi(t)Θ0(Ht|β,Zt,i) +

τ∫
t+

[Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)]dMi(u)

d̂Ht

W
(β) =

1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

0(Ht|β,Zt,i)−
∫ τ
t+

[
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
dMi(u)

(2.7)

where Θ1(Ht|β,Zt) = Θ0(Ht|β,Zt) − ∂
∂dHt

ln[Θ0(Ht|β,Zt)] and the superscript W

represents the NPMLE. The notation for the functions Θc, c = 0, 1, stems from

frailty models where they have the meaning of the conditional expectation of the

frailty variable U , given the observed data on the subject (Tsodikov et al., 2020).

In this context, Θ0 = E(U |censored) and Θ1 = E(U |failure). It can be shown that

for a subject at risk at t, Θ0(Ht|·) = E{Θ∆(HX |·)|X ≥ t}, where ∆ is the subject’s

random indicator of failure, and X is the subject’s time at risk. This implies that

a prediction of a subject’s risk at t without knowledge of future data (∆, X) is an

average of the risk prediction with knowledge of prospective data over the subject’s

random future data.

The martingale transform over the future in (2.7) can be represented as

τ∫
t+

[
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
dMi(u) = Θ0(Ht|β,Zt,i)−Θ∆i(HXi |β,Zt,i) (2.8)

Using the expression in (2.8), an equivalent representation of the NPMLE would be

d̂Ht

W
=

1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

∆i(HXi |β,Zt,i)
(2.9)
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showing that future information (∆i, Xi) is used to predict the risk for subjects at

risk at t in the denominator of the estimator. The NPMLE d̂Ht can be expressed as

a Weighted Breslow-type estimator, as suggested in Chen (2009), where

d̂Ht

W
=

1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

0(Ht|β,Zt,i)wi(Ht|β,Zt,i)

wi(Ht|β,Zt,i) = 1−
∫ τ
t+

[
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
dMi(u)

Θ0(Ht|β,Zt,i)

=
Θ∆i(HXi |β,Zt,i)

Θ0(Ht|β,Zt,i)

(2.10)

Based on the form in equation (2.10), we refer to the NPMLE as the Weighted

estimator. Note that the weight at time t in (2.10) depends on future values of H.

Given Ft− , the expected value of the weight is one (Appendix A.1). Using Ĥ obtained

from integrating d̂H in (2.10) with respect to time, which we will denote by ĤW
t , we

can derive the estimator of β, β̂W , as the solution to the profile likelihood score

0 = Uβ =
n∑
i=1

τ∫
0

∂

∂β
ln(Θ0(Ĥu(β)|β,Zu,i))dMi(u) (2.11)

Derivations of the profile likelihood score equations for β and dHt are given in Ap-

pendix A.2.

2.2.4 Estimating Equations

An alternative estimator for H can be obtained via a martingale estimating equa-

tion. The form of the estimating equation is based on the martingale property

E(dNi(t)|Ft−) = Yi(t)Θ
0(Ht|β,Zt,i)dHt. This leads to

1

n

n∑
i=1

dNi(t) =
1

n

n∑
i=1

Yi(t)Θ
0(Ht|β,Zt,i)dHt

=⇒ d̂Ht

B
=

1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

0(Ht|β,Zt,i)

(2.12)
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where the superscript B denotes the estimating equations or Breslow estimator. The

estimating equations estimator of H is referred to as the Breslow estimator. Previous

work has shown this estimator to be consistent for H, yet it is not believed to be

asymptotically efficient (Chen, 2009). Using Ĥ obtained by integrating d̂H over

time in (2.12), which we will denote by ĤB
t , we can obtain the estimator of β, β̂B,

via equation (2.11). Note that the Breslow estimator is equivalent to the Weighted

Breslow NPMLE with all weights wi set to one.

2.2.5 Estimation Algorithm for NPMLE

The algorithm for the NPMLE ĤW outlined below is adapted from the one pro-

posed in Chen (2009). At the first step, assume β is known, all weights w
(0)
i are set to

one, and ĤW,(0) can be computed from the Nelson-Aalen estimator given in equation

(2.13).

d̂Ht

NA
=

1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)

ĤNA
t =

t∫
0

1
n

∑n
i=1 dNi(s)

1
n

∑n
i=1 Yi(s)

(2.13)

The following steps are repeated until convergence is achieved, meaning that the

difference between consecutive estimators is less than some pre-specified tolerance ξ:

1. For fixed weights w
(k)
i , obtain ĤW,(k+1) from equation (2.10) by estimating the

set of jumps {dH} at the observed failure times. This is done by solving an

equation for each jump.

2. Update w
(k+1)
i in equation (2.10) using ĤW,(k+1).

Using this algorithm in combination with profile maximum likelihood estimation al-

lows us to obtain estimates of β and H. For estimation of ĤB, this same algorithm
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can be used, except now we only execute step 1. Note that because ĤB relies only

on current event information, a recurrent algorithm is used.

2.2.6 Relative Efficiency of the Breslow Estimator

Recall that our two estimators of H are

ĤB
t =

t∫
0

d̂Hs

B
=

t∫
0

1
n

∑n
i=1 dNi(s)

1
n

∑n
i=1 Yi(s)Θ

0(Hs|β,Zs,i)

ĤW
t =

t∫
0

d̂Hs

W
=

t∫
0

1
n

∑n
i=1 dNi(s)

1
n

∑n
i=1 Yi(s)Θ

0(Hs|β,Zs,i)wi(Hs|β,Zs,i)

(2.14)

where ĤB
t refers to the Breslow estimator and ĤW

t refers to the Weighted Breslow

estimator or NPMLE. We explore the efficiency of the Breslow estimator using mar-

tingale properties. We assume that the standard regularity conditions used to show

consistency and asymptotic normality of both estimators ĤB
t and ĤW

t hold (Ander-

sen and Gill , 1982; Zeng and Lin, 2007; Chen, 2009). As a direct consequence of

these conditions and previous arguments, we assume that martingale transforms are

square integrable. Additionally, we assume that Uniform Laws of Large of Numbers

and the Martingale Central Limit Theorem hold as d̂Ht

B
and d̂Ht

W
both

p−→ dHt

uniformly over t. Then,

1

n

n∑
i=1

ϕi(t)
p−→ E(ϕ(t))

1√
n

n∑
i=1

ψi(t)
d−→ GP

(
0, Cov(ψ(x)ψ(y)) = E(ψ(x)ψ(y))

)
,

E(ψ(t)) = 0, t ∈ [0,∞)

(2.15)

for a variety of subject-specific functions ψ, ϕ, and where GP denotes a Gaussian

Process.

Since
√
n(d̂Ht

B
− dHt) and

√
n(d̂Ht

W
− dHt) have already been shown to be

asymptotically Normal with finite variances (Andersen and Gill , 1982; Zeng and Lin,
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2007; Chen, 2009), to compare asymptotic variances, it is enough to consider the

normalized difference in the two estimators of the jump dHt. For brevity Θc =

Θc(Hx|β,Zx), with the understanding that x can be replaced with the appropriate

time. First, we represent the difference between the two estimators as

√
n(d̂Ht

B
− d̂Ht

W
) =

1√
n

∑n
i=1 dMi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

·
− 1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

+
−dHt√

n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

(2.16)

See Appendix A.3 for a detailed derivation of this expression. By the Law of Large

Numbers, as noted above, 1
n

∑n
i=1(·) terms will converge to a non-random constant

or function in probability. Specifically, using this fact and Lenglart’s inequality,

1

n

n∑
i=1

τ∫
t+

[Θ0
i −Θ1

i ]dMi(u)
p−→ 0

1

n

n∑
i=1

Yi(t)Θ
0
i

p−→ EZt
{
S∗T |Zt(t)G

∗
C|Zt(t)Θ

0
}
> 0

(2.17)

where S∗T |Zt and G∗C|Zt are the true survival functions of the event time and censor-

ing time, respectively, conditional on the covariate trajectory Zt. The key term is

−dHt√
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u), which is asymptotically Normal with a variance that

is O((dHt)
2) (Appendix A.3). We can express this term as

− dHt√
n

n∑
i=1

τ∫
t+

[Θ0
i −Θ1

i ]dMi(u) = −dHt√
n

n∑
i=1

Xit (2.18)

While, V ar(−dHt√
n

∑n
i=1Xit) = O((dH(t))2), we cannot say that V ar(

∫ t
0
−dHx√

n

∑n
i=1Xix) =∫ t

0
O((dH(x))2) because the independent increments assumption no longer holds. This

is because Xix is not independent of Xiy, x 6= y, as they share
∫ τ

max(x,y)
[Θ0

i−Θ1
i ]dMi(u).

Therefore, we will consider the relative efficiency of ĤB
t in comparison to ĤW

t . To do

so, let us derive the variances of
√
n(ĤB

t −Ht) and
√
n(ĤW

t −Ht).

First consider
√
n(ĤB

t −Ht). For ĤB
t , independence of the martingale increments
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will hold. Thus,

V ar
[√
n(ĤB

t −Ht)
]

= V ar

[√
n

( t∫
0

1
n

∑n
i=1 dNi(x)

1
n

∑n
i=1 Yi(x)Θ0

i

− dHx

)]
= V ar

( t∫
0

1√
n

∑n
i=1 dMi(x)

1
n

∑n
i=1 Yi(x)Θ0

i

)

=

t∫
0

dHx

Ax
, Ax = EZ(S∗T |Z(x)G∗C|Z(x)Θ0

x)

= V arB(t)

(2.19)

Details are provided in Appendix A.4. Now, consider
√
n(ĤW

t −Ht). Then,

V ar
[√
n(ĤW

t −Ht)
]

= V ar

[√
n

( t∫
0

1
n

∑n
i=1 dNi(x)

1
n

∑n
i=1 Yi(x)Θ0

i −
∫ τ
x+ [Θ0

i −Θ1
i ]dMi(u)

− dHx

)]

= V ar

( t∫
0

1√
n

∑n
i=1 dMi(x) + dHx√

n

∑n
i=1

∫ τ
x+ [Θ0

i −Θ1
i ]dMi(u)

1
n

∑n
i=1 Yi(x)Θ0

i −
∫ τ
x+ [Θ0

i −Θ1
i ]dMi(u)

)

= V ar

( t∫
0

1√
n

∑n
i=1 dMi(x)− dHx√

n

∑n
i=1Xix

1
n

∑n
i=1 Yi(x)Θ0

i

)
+ op(1)

(2.20)

The last line of (2.20) has an op(1) by noting that the second term in the denominator

p−→ 0. Let dVt = 1√
n

∑n
i=1 dMi(t)−XitdHt, where dMi(t) ⊥ Xit by the independence

of martingale increments. Then,

√
n(ĤW

t −Ht) =

t∫
0

dVx
1
n

∑n
i=1 Yi(x)Θ0

i

+ op(1)

V ar
[√
n(ĤW

t −Ht)
]

=

t∫
0

t∫
0

Cov(dVx, dVy)

AxAy
+ op(1)

(2.21)

Please see Appendix A.4. for further details. By the independence of subjects,

Cov(dVx, dVy) = E(dVxdVy) =
1

n

n∑
i=1

E
{

(dMi(x)−XixdHx)(dMi(y)−XiydHy)
}

=
1

n

n∑
i=1

E(dMi(x)dMi(y))− E(dMi(x)XiydHy)− E(dMi(y)XixdHx) + E(XixXiydHxdHy)

= AxdHxI(x = y)−BxdHxdHyI(x > y)−BydHxdHyI(x < y) + dHxdHy

t∫
max(x,y)

BadHa,

Bx = EZ([Θ0
x −Θ1

x]2S∗T |Z(x)G∗C|Z(x)Θ0
x)

(2.22)
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The expressions for each term in the second line of (2.22) are given in Appendix A.4.

Then, applying the definition of variance in (2.21) and using symmetry of x and y,

V ar
[√
n(ĤW

t −Ht)
]

= V arB(t)−
t∫

0

[
Bx −

t∫
x

BadHa

]
dV ar2

B(x) + op(1) (2.23)

where dV ar2
B(x) = 2dHx

Ax
V arB(x) = 2dHx

Ax

∫ x
0

dHy
Ay

. Therefore, ignoring the op(1) terms,

the asymptotic relative efficiency (ARE) of the Breslow estimator will be

AREB(t) =
V ar

[√
n(ĤB

t −Ht)
]

V ar
[√
n(ĤW

t −Ht)
] =

V arB(t)

V arB(t)−
∫ t

0

[
Bx −

∫ t
x
BadHa

]
dV ar2

B(x)

=
1

1−
∫ t
0 [Bx−

∫ t
x BadHa]dV ar2

B(x)

V arB(t)

(2.24)

The Breslow estimator is not expected to be efficient when the integral term in the

denominator is positive. The asymptotic distribution and efficiency of the NPMLE

of β and its profile-likelihood variance are established in Appendix A.5. Comparison

of the asymptotic variances for the corresponding β estimators, β̂W and β̂B, is given

in Appendix A.6, using both a profile likelihood argument and an argument similar

to Zucker (2005).

2.3 Simulation Study

We studied the behavior of the ARE of the Breslow estimator under various set-

tings. We consider a single time-independent covariate Z, where Z ∼ Bernoulli(p),

p ∈ {0.3, 0.5, 0.7} . The baseline cumulative hazard function is assumed to be Weibull,

with either Ht = t2

4
(increasing hazards) or Ht =

√
t
2

(decreasing hazards). The true

survival function of the failure time T given covariate Z was assumed to be the propor-

tional odds model in Tsodikov (2003), with frailty U ∼ Exp(eβZ) and β ∈ {−1, 0, 1}.

18



Details of the model are given in the Appendix A.7. The true survival function of

censoring C was assumed to be the uniform survival function 1 − x
τ
, for 0 < x < τ

and τ ∈ {5, 10, 15}. A summary of all simulation settings is provided in Table A.1.

Calculation of the ARE in the simulation settings is detailed in Appendix A.8.

Results of the simulations are given in Table 2.1 and Figures 2.1-2.6. Table 2.1

displays summary statistics of the AREs across time. The Breslow estimator performs

worst on average in Settings 10-12, where β = −1, the baseline hazard is decreasing,

and τ = 5. The Breslow estimator performs best on average in Settings 40-45, where

β = 0 or β = 1, the baseline hazard is increasing, and τ = 15. From Figures 2.1-2.6,

certain trends can be seen. The NPMLE is upwards of 150% more efficient than the

Breslow estimator early on in settings where β = −1 and p = 0.7. When β = 0, the

NPMLE is at most 30% more efficient than the Breslow estimator, and when β = 1,

the NPMLE is at most 25% more efficient than the Breslow estimator (Table 2.1).

For settings with increasing hazards, the Breslow estimator actually becomes slightly

more efficient after t = 5 when τ = 10 or τ = 15. In settings with decreasing haz-

ards, the Breslow estimator is never more efficient than the NPMLE. In each setting,

the NPMLE is more efficient early on, but as time progresses, the Breslow estimator

becomes more efficient. The differences in the denominators of the two estimators

may be more prominent early on because there is more information contained in the

future, but as the study progresses, the amount of future data decreases and becomes

less important.

It may be useful to know how much more efficient the NPMLE is than the Breslow

estimator at some interim analysis time. Assuming this time is 0.5τ , when τ = 5,

the NPMLE is between 13% and 55% more efficient than the Breslow estimator at

t = 2.5. When τ = 10, the NPMLE is between 1% and 37% more efficient than

the Breslow estimator at t = 5. When τ = 15 and the hazards are increasing, the

NPMLE is actually 3% less efficient than the Breslow estimator at t = 7.5. When the
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hazards are decreasing, the NPMLE is between 10% and 29% more efficient at t = 7.5.

Table 2.1: Summary statistics for AREs across all times in each setting. Please refer
to Table A.1 for a description of each simulation setting.

Setting Min Median Mean Max ARE at 0.5τ
1 1.01 1.21 1.28 1.69 1.30
2 1.01 1.24 1.37 2.04 1.35
3 1.02 1.27 1.47 2.44 1.40
4 1.00 1.13 1.14 1.28 1.22
5 1.00 1.13 1.14 1.28 1.22
6 1.00 1.13 1.14 1.28 1.22
7 1.00 1.11 1.12 1.23 1.18
8 1.00 1.10 1.10 1.19 1.15
9 1.00 1.08 1.08 1.14 1.12
10 1.12 1.38 1.41 1.73 1.38
11 1.13 1.46 1.53 2.12 1.46
12 1.15 1.55 1.66 2.58 1.55
13 1.10 1.24 1.22 1.28 1.24
14 1.10 1.24 1.22 1.28 1.24
15 1.10 1.24 1.22 1.28 1.24
16 1.08 1.20 1.19 1.24 1.20
17 1.07 1.16 1.16 1.20 1.17
18 1.06 1.13 1.12 1.15 1.13
19 0.98 1.03 1.14 1.72 1.03
20 0.98 1.03 1.19 2.10 1.03
21 0.98 1.03 1.25 2.54 1.04
22 0.98 1.02 1.07 1.29 1.03
23 0.98 1.02 1.07 1.29 1.03
24 0.98 1.02 1.07 1.29 1.03
25 0.98 1.02 1.06 1.24 1.02
26 0.98 1.01 1.05 1.20 1.02
27 0.98 1.01 1.03 1.15 1.01
28 1.08 1.28 1.33 1.74 1.28
29 1.08 1.33 1.41 2.13 1.33
30 1.09 1.37 1.50 2.60 1.37
31 1.07 1.21 1.20 1.29 1.21
32 1.07 1.21 1.20 1.29 1.21
33 1.07 1.21 1.20 1.29 1.21
34 1.06 1.17 1.17 1.24 1.17
35 1.05 1.15 1.14 1.20 1.15
36 1.04 1.12 1.11 1.15 1.12
37 0.95 0.98 1.08 1.73 0.97
38 0.95 0.98 1.11 2.12 0.97
39 0.95 0.98 1.15 2.57 0.97
40 0.95 0.98 1.03 1.29 0.97
41 0.95 0.98 1.03 1.29 0.97
42 0.95 0.98 1.03 1.29 0.97
43 0.95 0.98 1.02 1.24 0.97
44 0.95 0.98 1.01 1.20 0.97
45 0.95 0.97 1.01 1.15 0.97
46 1.06 1.23 1.28 1.74 1.23
47 1.06 1.26 1.35 2.14 1.26
48 1.07 1.29 1.41 2.60 1.29
49 1.05 1.18 1.19 1.29 1.18
50 1.05 1.18 1.19 1.29 1.18
51 1.05 1.18 1.19 1.29 1.18
52 1.05 1.15 1.15 1.24 1.15
53 1.04 1.13 1.13 1.20 1.13
54 1.04 1.10 1.10 1.15 1.10
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Figure 2.1: ARE for increasing hazards, τ = 5.
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Figure 2.2: ARE for decreasing hazards, τ = 5.
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Figure 2.3: ARE for increasing hazards, τ = 10.
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Figure 2.4: ARE for decreasing hazards, τ = 10.
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Figure 2.5: ARE for increasing hazards, τ = 15.
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Figure 2.6: ARE for decreasing hazards, τ = 15.
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To assess the finite-sample properties of both estimators, we evaluated their perfor-

mance in multiple simulation settings. The settings are modified from the ones used in

Hu and Tsodikov (2014). We consider two time-independent covariates Z = (Z1, Z2),

with Z1 ∼ N(0, 1) and Z2 ∼ Bernoulli(0.5). The baseline cumulative hazard func-

tion is assumed to be Weibull, with either Ht = t2

4
(increasing hazards) or Ht =

√
t
2

(decreasing hazards). The true failure time T was simulated from a proportional

odds model as parameterized in Tsodikov (2003), where the frailty U ∼ Exp(eβZ)

with β = (β1, β2) = (−0.25, 0.75). Censoring time C ∼ Uniform(0, τ = 15) was

generated to yield approximately 25% censoring for settings with increasing baseline

hazards and approximately 45% censoring for settings with decreasing baseline haz-

ards. Sample sizes of 50, 250, and 500 were considered. For each simulation setting,

1,000 data sets were generated. A summary of all simulation settings is provided in

Table 2.2.

Results of the simulations are given in Tables 2.3 and A.2 and Figures 2.7 and A.1.

Figure 2.7 displays estimated and true AREs for the Breslow estimator in each of the

settings outlined in Table 2.2. In the settings with increasing hazards, the Breslow

estimator starts off as being less efficient but at some point it becomes more efficient

than the NPMLE. Unlike the curves in Figures 2.1-2.6, the peaks of the estimated

AREs tend to be at early event times, and the estimated curves do not converge to

one at late event times. In the small sample settings, a few estimated ARE curves

demonstrate very poor performance of the Breslow estimator, but this could be due

to simulation error and small-sample bias. In the settings with decreasing hazards,

the estimated curves are similar to those from the increasing hazards settings, but the

Breslow estimator does not have as large of an efficiency gain at the late event times.

For both increasing and decreasing hazards, the small-sample settings are reflective

of the expected trends, though there is greater variation in the individual estimated

curves. The estimated AREs are similar in shape to the true ARE curves in each
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simulation setting.

From Table 2.3, both estimators generally result in unbiased estimates of the re-

gression parameters, though there is small-sample bias present. In most simulation

settings, the Breslow and Weighted Breslow estimators result in equal estimates of β.

For the small-sample settings, the Breslow estimator is slightly less biased than the

Weighted Breslow estimator. In terms of variance, average standard errors (ASEs)

and empirical standard deviations (ESDs) are in good agreement, and the two es-

timators are nearly identical in every scenario. Coverage probabilities for the two

estimators are also close to the nominal 95% level in all simulation settings. Addi-

tional simulation results are presented in Appendix A.9.

Table 2.2: Settings used in proportional odds (PO) simulation study. n = sample size.
k and λ are parameters of the Weibull baseline hazard function. τ = administrative
censoring time. Z1 ∼ N(µ, σ) and Z2 ∼ Bernoulli(p). % censoring is approximate.

Setting n k λ β = (β1, β2) τ µ σ p % Censoring
1 250 2 2 (-0.25, 0.75) 15 0 1 0.5 25
2 500 2 2 (-0.25, 0.75) 15 0 1 0.5 25
3 250 0.5 2 (-0.25, 0.75) 15 0 1 0.5 45
4 500 0.5 2 (-0.25, 0.75) 15 0 1 0.5 45
5 50 0.5 2 (-0.25, 0.75) 15 0 1 0.5 45
6 50 2 2 (-0.25, 0.75) 15 0 1 0.5 25

Table 2.3: Simulation results for estimator β̂ for the PO model. ASE = average
standard error. ESD = empirical standard deviation. CP (%) = coverage probability
of 95% Wald-based confidence interval. Weighted Breslow estimator = NPMLE.

Setting Estimator β̂ = (β̂1, β̂2) (ESDβ̂1
,ESDβ̂2

) (ASEβ̂1
,ASEβ̂2

) (CPβ1 ,CPβ2 )

1 Breslow (-0.25, 0.75) (0.11, 0.25) (0.12, 0.24) (95.0, 93.3)
Weighted (-0.25, 0.75) (0.11, 0.25) (0.12, 0.24) (95.1, 93.3)

2 Breslow (-0.25, 0.77) (0.09, 0.16) (0.08, 0.17) (94.2, 96.8)
Weighted (-0.25, 0.77) (0.09, 0.16) (0.08, 0.17) (94.2, 96.7)

3 Breslow (-0.25, 0.77) (0.12, 0.24) (0.12, 0.24) (95.9, 95.3)
Weighted (-0.25, 0.77) (0.12, 0.24) (0.12, 0.24) (95.8, 95.3)

4 Breslow (-0.25, 0.75) (0.08, 0.17) (0.08, 0.17) (95.9, 95.5)
Weighted (-0.25, 0.75) (0.08, 0.17) (0.08, 0.17) (95.9, 95.6)

5 Breslow (-0.27, 0.78) (0.32, 0.56) (0.29, 0.57) (93.2, 96.0)
Weighted (-0.27, 0.79) (0.32, 0.57) (0.29, 0.57) (93.1, 96.0)

6 Breslow (-0.25, 0.80) (0.29, 0.57) (0.28, 0.55) (94.8, 94.9)
Weighted (-0.26, 0.81) (0.29, 0.57) (0.28, 0.56) (94.4, 94.9)
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Figure 2.7: Estimated ARE for simulation settings 1-6 in Table 2.2.
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2.4 SEER Data Analysis

We applied the Breslow estimator and the Weighted Breslow NPMLE to data

from the National Cancer Institute’s Surveillance, Epidemiology, and End Results

(SEER) program. Using the SEER database, a total of 19,819 cases of primary

prostate cancer diagnosed in the state of Utah between 1988 and 1999 were identi-

fied (Tsodikov , 2003). The subset of 11,621 cases with positive survival time, valid

stage of the disease, and age ≥ 18 years was used for analysis. Disease stage was

defined as localized (stage 1), regional (stage 2), or distant (stage 3). For more de-

tails on the data and the definition of stages, please refer to SEER documentation

(http://seer.cancer.gov/). Prostate cancer specific survival was analyzed using

a proportional odds model with stage of disease as the sole covariate. We compared

survival curves estimated using Breslow and Weighted Breslow estimators to observed

survival summarized using the Kaplan-Meier method.

There were 9,052 (77.9%) men with localized prostate cancer, 1,713 (14.7%) men

with regional prostate cancer, and 856 (7.4%) men with distant prostate cancer. Esti-

mates of the effect of stage are given in Table 2.4. The Breslow and Weighted Breslow

estimates are identical for regional and distant disease, and both methods converge

in the same number of iterations. The 95% confidence intervals for both methods are

identical as well, suggesting that there are negligible differences in the variances of

the regression parameters. In fact, the differences between the Breslow and Weighted

Breslow estimates of the effects of regional and distant stage are both < 0.00001 in

magnitude. Predicted survival curves for both estimators are shown in Figure 2.8.

For all stages, there are minimal differences in the estimated survival curves: curves

for the Breslow and Weighted Breslow estimators appear superimposed. Further-

more, both estimated curves are close to the observed curves, suggesting that the

proportional odds model is appropriate to describe observed trends in prostate can-

cer specific survival by disease stage: more advanced stage at diagnosis is associated
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with increased risk of prostate-cancer related death.

Table 2.4: Parameter estimates of the PO model fit to prostate cancer specific survival
data extracted from SEER. Weighted Breslow estimator = NPMLE. Stage refers to
disease stage, which may be localized (stage 1–reference group), regional (stage 2), or
distant (stage 3). OR = odds ratio. 95% Wald-based confidence interval is reported.

Method Stage ln(OR) 95% CI β̂ Iterations {d̂H} Iterations
Breslow Regional −0.58 (−0.76,−0.40) 3 8

Distant −3.43 (−3.61,−3.26)
Weighted Regional −0.58 (−0.76,−0.40) 3 8

Distant −3.43 (−3.61,−3.26)
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Figure 2.8: Observed and estimated survival curves by stage and estimation method.
Observed survival summarized via Kaplan-Meier method. Estimated survival curves
calculated using either Breslow (red) or Weighted Breslow estimator/NPMLE (blue).
Disease stage indicated by line type: solid = localized/stage 1; dashed = re-
gional/stage 2; dotted = distant/stage 3.
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2.5 Discussion

We have derived the relative efficiency of the Breslow estimator of the cumulative

baseline hazard for a general class of survival models. We have demonstrated via

simulation that despite the theoretical inefficiency of the Breslow estimator, there are

cases when it is nearly as efficient or even more efficient than the Weighted Breslow

NPMLE. Through simulations and application to a large, clinically relevant data set,

the Breslow estimator was shown to be virtually equivalent to the Weighted Breslow

estimator in terms of the estimated regression parameters and survival curves. The

practical implications of this finding are that investigators may utilize the Breslow

estimator without large sacrifices in efficiency on average. This allows for faster es-

timation in semiparametric transformation models. While large differences were not

observed in how quickly the estimators converged in simulation (Table A.2), the Bres-

low estimator of the regression parameter always took fewer iterations to converge on

average. As the effect of the covariates on the hazard of failure is what is of greater

interest, this finding is practically relevant. While the differences observed in Table

A.2 are not large, the simulation scenarios considered had a maximum sample size

of 500. In our analysis of prostate cancer specific survival by disease stage in SEER

data, we observed virtually no differences in the Breslow and Weighted estimators:

all parameter estimates were identical and the numbers of iterations to converge were

equal.

The Breslow estimator relies solely on present information at any given event time,

while the Weighted Breslow estimator incorporates information on future events which

have not yet occurred. This makes the Weighted Breslow estimator conceptually and

computationally more difficult. The dependence on the future precludes the devel-

opment of recurrent algorithms for estimation of the set of jumps at event times. In

contrast, the Breslow estimator can be estimated using a recurrent algorithm. Both

the Breslow and Weighted Breslow estimators can be connected to EM algorithms for
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semiparametric transformation models with frailty by recognizing that the denomina-

tors of both estimators involve the expectation of the latent frailty given the observed

data.

While our simulations demonstrated that the Breslow estimator performed as well

as the NPMLE and sometimes converged faster, we use a specific PO model for illus-

tration. However, we expect the performance to be similar in other semiparametric

transformation models, such as the proportional hazards frailty model with Gamma

frailty. We also assumed that the covariates were either time-independent or external

time-dependent covariates. There is a question of whether our findings will hold when

the time-varying covariate is internal, considering the necessary modifications to the

model and the likelihood associated with averaging hazards over the future path of

the covariate process. We plan to investigate this further. We also demonstrated

that for an interim analysis time equal to half the administrative censoring time, the

Breslow estimator generally performed well. However, had an earlier interim analy-

sis time been chosen, this may not have been the case. We caution investigators to

carefully consider at what point it makes sense to perform such analyses. Because

there is an abundance of future information available at the beginning of the study,

the NPMLE may be preferred for early interim analysis.

Given that the Breslow estimator relies only on present event information, a nat-

ural extension to the current study would be to explore alternative estimators of the

jump in the cumulative baseline hazard that make use of past and present event infor-

mation. For example, an estimator similar in form to the Weighted Breslow estimator,

except with the weight now incorporating an integral over the past rather than the

future. We expect that such an estimator should also be practically equivalent to the

NPMLE. This estimator is currently being explored.
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CHAPTER III

Reconsidering the Role of Endogenous Covariates

in Survival Models

3.1 Introduction

In many clinical studies, event information and longitudinal biomarker data are

collected simultaneously. The marker of interest measures some aspect of a patient’s

health history over time. For example, in prostate cancer studies, time to various

prostate cancer related events and prostate-specific antigen (PSA) levels at regular

follow-up may be recorded for each patient. The level of the biomarker may be prog-

nostic for disease status or severity, which motivates the use of models to capture the

association between the event time and the biomarker as two manifestations of the

underlying disease process.

To understand the impact of the prior marker history on the failure process, sur-

vival models incorporating the longitudinal biomarker data are needed. Because the

marker is rarely observed continuously, the marker trajectory is only partially ob-

served at discrete points in time. This implies that a model for the biomarker is also

needed. The models for the event time conditional on the marker and the marker

itself are often linked using shared latent factors, and this approach is known as joint

modeling (Henderson et al., 2000; Tsiatis and Davidian, 2004; Rizopoulos , 2008). In
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the context of prostate cancer, frequentist and Bayesian joint models have been used

to study the association between PSA and prostate cancer progression (Pauler and

Finkelstein, 2002; Law et al., 2002; Yu et al., 2004, 2008; Proust-Lima and Taylor ,

2009; Taylor et al., 2013; Serrat et al., 2015) and overall survival (Desmée et al., 2015,

2017a,b). Joint latent class models, which assume similar marker trajectories within

heterogeneous latent classes, have been used to model the association between PSA

and prostate cancer onset (Lin et al., 2002; Proust-Lima et al., 2014).

Focusing on the survival submodel that incorporates the longitudinal biomarker as

a covariate, the marker in this model constitutes a time-varying covariate, as its value

may fluctuate over the course of the study. The magnitude of fluctuation may be in-

formative for risk prediction. Two types of time-varying covariates exist: exogenous,

also known as external, and endogenous, also known as internal. The covariates are

intuitively defined by how they relate to the survival of the individual subject, with

exogenous covariates assumed to exist outside the subject and endogenous covariates

assumed to exist within the subject and directly depend on the subject’s survival.

In many contexts, the biomarker is an endogenous covariate. To study the impact

of the marker on the failure time, it can be included as a covariate in the model

for the event time. However, naively specifying the survival at time t conditional

on the marker history up to t results in an invalid survival function. Namely, while

predicted survival probabilities at different points in time t1 and t2 can be obtained,

the function used to obtain these probabilities is not continuous and cannot be used

to “link” the two predictions. In contrast, if the marker were exogenous, the survival

function would be valid and could be used to obtain predicted survival probability

curves over a continuous time interval.

The purpose of this work is to clarify the role of endogenous markers in survival

models. We focus on models where the marker is a covariate for the hazard of fail-

ure. In Section 3.2, we review current definitions for time-varying covariates, and we
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formulate the difference between exogenous and endogenous covariates as a missing

data problem. In Section 3.3, we review the validity of exponential forms for sur-

vival functions and discuss how it relates to time-varying covariates. We demonstrate

the separation in the definition of a time-varying covariate from the validity of the

exponential form of the survival function. In Section 3.4, we derive a mechanistic

survival function that incorporates an endogenous covariate and is mathematically

tractable. We illustrate the utility of our framework using the examples of bivariate

shared frailty models in Section 3.5, semicompeting risks-type models in Section 3.6,

and threshold regression models in Section 3.7. Our illustrative examples demon-

strate the shortcomings of the current approach to specifying survival models that

incorporate endogenous marker trajectories. We conclude with a discussion of our

framework and future research directions in Section 3.8.

3.2 Time-Varying Covariates

3.2.1 Definitions

There are two types of time-varying covariates: (1) external or exogenous and (2)

internal or endogenous (Kalbfleisch and Prentice, 2002). In practice, the difference

between the two types of time-varying covariates is driven by intuition on how the

covariate relates to the survival of the individual patient. Exogenous covariates are

thought to exist outside the patient, while endogenous covariates exist within the

patient and rely on the patient’s survival, hence the alternative names of “external”

and “internal.” These definitions are largely based on one’s philosophical view of any

given covariate. Common examples of exogenous covariates include air pollution lev-

els and daily temperature. Common examples of endogenous covariates include blood

pressure, PSA in the context of prostate cancer, and CD4 cell counts in the context

of HIV. While these intuitive definitions may be helpful to differentiate exogenous
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and endogenous covariates conceptually, they offer little mathematically.

Mathematical definitions, however, do exist for both types of covariates (Kalbfleisch

and Prentice, 2002). Let T represent the event time of interest. We assume that we

observe a marker W whose value can change as a function of time t. Let W (t) denote

the value of the marker at time t and W(t) = {W (u) : 0 ≤ u ≤ t} represent the

marker history up to time t. Then, for an exogenous W ,

λ(u|W(u)) = λ(u|W(t)), 0 ≤ u ≤ t (3.1)

where λ(u|W(u)) = lim
du→0

P (u<T≤u+du|T≥u,W(u))
du

represents the hazard of failure, condi-

tional on the marker history up to u. The definition in (3.1) implies that the hazard

of failure will remain the same whether we condition on the past or future trajectory

of an exogenous W . Equivalently, the unobserved future trajectory at any point in

time u does not impact the hazard at u and is therefore not needed. An alternative

definition of an exogenous covariate can be formulated using the distribution of the

trajectory of W :

P (W(t)|W(u), T ≥ u) = P (W(t)|W(u), T = u), 0 < u ≤ t (3.2)

From the alternative definition in (3.2), the path of an exogenous covariate remains

unchanged if the event occurs at T = u.

Endogenous covariates are largely defined by being “not exogenous,” but mathe-

matical definitions can be established by taking the converse of both (3.1) and (3.2):

λ(u|W(u)) 6= λ(u|W(t))

P (W(t)|W(u), T ≥ u) 6= P (W(t)|W(u), T = u), 0 < u ≤ t

(3.3)

Interpreting the first definition in (3.3), an endogenous covariate is one for which
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the hazard of failure differs depending on the marker history or level of covariate

information. Equivalently, the hazard depends on the unobserved future trajectory

that exists beyond u. Using the second definition in (3.3), occurrence of the event

at T = u is informative of the future path of W . It is clear from the definitions

in (3.1)-(3.3) that the main difference in the hazard functions for exogenous and

endogenous W is due to the dependence on the unobserved future in the latter. Thus,

the difference between the two types of covariates can be formulated as a missing data

problem, where the unobserved future path of W constitutes the missing data.

3.2.2 Defining Survival Functions

The past trajectory can easily be incorporated into survival models for exogenous

markers. In particular, applying the results of (3.1) and (3.2), the survival function

evaluted at time t conditional on the marker history up to t for an exogenous W can

be defined as

S(t|W(t)) = e−
∫ t
0 λ(s|W(s))ds = e−

∫ t
0 λ(s|W(t))ds, s ≤ t (3.4)

Defining survival functions conditional on the trajectory of an endogenous marker

is more challenging as observation of the covariate depends on the survival of the

subject. In fact, naively defining a survival function at t conditional on W(t) for an

endogenous W results in an invalid survival function that is unrelated to its value

at any other time s. Namely, S(t|W(t)) and S(s|W(s)), s 6= t, are two disjoint pre-

dicted probabilities that are not linked by a continuous function. Thus, S(·|W(·)) is

not a valid survival function for an endogenous W , but it can be used to generate

dynamic predicted probabilities at various points in time that depend on the observed

marker values. This approach is known as landmarking, and it allows for dynamic

risk predictions based on a patient’s past marker history (Jewell and Nielsen, 1993;
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van Houwelingen and Putter , 2012; Suresh et al., 2017).

Furthermore, for an endogenous marker, S(t|W(t)) is not a mathematically tractable

function. When conditioning on W(t), it is assumed to be fixed for the purposes of

prediction. In reality,W(t) is a function of the argument t of S. This results in a con-

tradiction asW(t) is actually dynamic with t. To resolve this inherent contradiction,

we can consider conditioning on the marker history at some time x that is unrelated

to t. Note that x is not restricted to be less than t. Thus if we consider x > t, we can

specify the survival model conditional on future values of W that, by definition, are

related to the trajectory at time t. Such ideas are explored further in Section 3.4.

3.3 Exponential Form of Survival

3.3.1 Definition

For an absolutely continuous event time T , the survival function is directly related

to the hazard function through the exponential form:

S(t) = e−
∫ t
0 λ(u)du (3.5)

The relationship in (3.5) will hold in the presence of covariates Z assuming that T |Z

remains absolutely continuous. For time-varying covariates, the exponential form

of the survival function is thought to be satisfied for all exogenous markers. The

observation of an endogenous marker relies on the survival of the subject, thus it is

commonly thought that for such markers, the exponential relationship will be violated

when we condition on the past history up to the time of survival prediction, but it

will be satisfied if we condition on a fixed marker history up to and beyond the point

of prediction.

39



3.3.2 Validity

The validity of the exponential form of the survival function conditional on a given

marker history W is dependent on the continuity of T |W . If T is a sudden failure

time, then the form in (3.5) will be satisfied. A sudden failure time is one that cannot

be predicted or fully explained given the full history W(∞), which represents the

trajectory of the marker W over all time. In most settings, it is reasonable to assume

that T is sudden and W does not fully explain the failure process. T being a sudden

failure time can be inferred if T is a totally inaccessible stopping time (Aven and

Jensen, 1999; Finkelstein, 2004) and if no trajectory of W induces discreteness in T .

If the trajectoryW(t) for an endogenous marker provides knowledge on the occur-

rence of T , the exponential form will be invalid due to the dicreteness that has been

introduced on T . Thus, the validity of the exponential form of the survival function

is a consequence of the continuity of T and not whether the marker is endogenous.

While conditioning on the marker trajectory may induce discreteness in T , there is no

one-to-one association between the type of time-varying covariate and the legitimacy

of the exponential form in (3.5). In fact, it is possible to define tractable survival

functions for endogenous markers that satisfy the exponential relationship in (3.5),

as shown in Section 3.4.

3.4 Valid Survival Functions for Endogenous Markers

To define a valid survival function satisfying (3.5), let W be a marker process and

Wt represent the value of W at time t. W̄ b
a will denote the trajectory of W between a

and b, i.e., W̄ b
a = {Wt}|t=bt=a. For brevity, we define W̄t = W̄ t

0 and W̄ = W̄∞
0 . Let FWt

and FW denote the filtrations induced by W̄t and W̄ , respectively, where the filtration

FWs for some time s captures all past event, marker, and covariate information up to

time s−.
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Regardless of whether W is endogenous or exogenous, mathematically, the expo-

nential relationship

S(t|FW ) = exp

{
−

t∫
0

λ(x|FW )dx

}
(3.6)

is satisfied as long as S and λ are conditional on the full information FW . Many

survival models are specified conditional only on the past information FWt . Under

this level of conditioning, the exponential relationship in (3.6) will not be satisfied

unless W is an exogenous marker as S(t|FWt ) = S(t|FW ). For endogenous W , the

relationship will be satisfied conditional on fixed FWx , where x can be < t or > t and

including x =∞.

Applying the Law of Total Expectation, a valid survival function conditional on

fixed FWx for endogenous W can be derived as

S(t|FWx ) = S(t|W̄x) = E
{
S(t|FW )

∣∣W̄x

}
= E

{
exp

{
−

t∫
0

λ(u|W̄ )du

}∣∣∣∣W̄x

}
(3.7)

In (3.7), the expectation is taken over the future trajectory W̄∞
x+ conditional on the

past history W̄x. Similar expressions can be derived for the density and hazard

functions:

f(t|FWx ) = f(t|W̄x) = E
{
f(t|FW )

∣∣W̄x

}
= E

{
λ(t|W̄ ) exp

{
−

t∫
0

λ(u|W̄ )du

}∣∣∣∣W̄x

}

λ(t|FWx ) = λ(t|W̄x) =
f(t|W̄x)

S(t|W̄x)
=

E

{
λ(t|W̄ ) exp

{
−
∫ t

0
λ(u|W̄ )du

}∣∣∣∣W̄x

}
E

{
exp

{
−
∫ t

0
λ(u|W̄ )du

}∣∣∣∣W̄x

}
(3.8)

Note that f(t|FWx ) = − ∂
∂t
S(t|FWx ) and λ(t|FWx ) = − ∂

∂t
lnS(t|FWx ), but f(t|FWt ) 6=

− ∂
∂t
S(t|FWt ) and λ(t|FWt ) 6= − ∂

∂t
lnS(t|FWt ) unless W is assumed to be an exogenous
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marker. For an endogenous W , f(t|FWt ), λ(t|FWt ), and S(t|FWt ) are not legitimate

distributions or functions for T . This implies that the distributional characteristics

of T are bivariate functions of x and t when dynamic information is provided by the

endogenous process as future behavior of the process at x > t is informative for the

process at t.

Using the quantities defined in (3.7) and (3.8), we can mechanistically define valid

functions f(t|FWt ), λ(t|FWt ), and S(t|FWt ) via conditional expectations and specifying

functions conditional on a fixed marker history at time x:

S(t|W̄x)|x=t = E
{
S(t|FW )

∣∣W̄x

}∣∣
x=t

= E

{
exp

{
−

t∫
0

λ(u|W̄ )du

}∣∣∣∣W̄x

}∣∣∣∣
x=t

f(t|W̄x)|x=t = E
{
f(t|FW )

∣∣W̄x

}∣∣
x=t

= E

{
λ(t|W̄ ) exp

{
−

t∫
0

λ(u|W̄ )du

}∣∣∣∣W̄x

}∣∣∣∣
x=t

λ(t|W̄x)|x=t =
f(t|W̄x)|x=t

S(t|W̄x)|x=t

=

E

{
λ(t|W̄ ) exp

{
−
∫ t

0
λ(u|W̄ )du

}∣∣∣∣W̄x

}∣∣∣∣
x=t

E

{
exp

{
−
∫ t

0
λ(u|W̄ )du

}∣∣∣∣W̄x

}∣∣∣∣
x=t

(3.9)

The mechanistic definitions in (3.9) are constructed by fully specifying each func-

tion conditional on W̄x for a fixed x unrelated to t. Once each function has been

fully specified, x = t can be plugged in to represent the fact that the fixed trajectory

of the marker is observed to occur at t. The definitions in (3.9) are demonstrated

using illustrative examples in Sections 3.5-3.7. In addition, we use these examples

to highlight the lack of direct correspondence between the type of marker process,

which may be exogenous or endogenous, and the validity of the exponential form of

the survival function.
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3.5 Bivariate Shared Frailty Model

Consider two event times X and Y that are assumed to be conditionally inde-

pendent given a random variable U , representing a shared frailty (Hougaard , 2000).

We assume that there is no censoring on X and Y . We conceptualize X and Y as

two correlated event times originating from a subject, for example time to prostate

cancer progression and time to death from prostate cancer. The frailty U captures

the dependence between X and Y . Under this assumption, the joint survival model

conditional on U can be specified as

SX,Y |U(x, y|U) = e−U [HX(x)+HY (y)] (3.10)

where HX(x) and HY (y) represent the cumulative hazard functions of X and Y at

times x and y, respectively. To ensure identifiability of the model, the cumulative

hazard functions are specified in the absence of any covariates Z. As U is a latent

frailty, it is unobserved in practice and must be averaged out in order to obtain the

marginal joint survival function.

SX,Y (x, y) = EU
{
SX,Y |U(x, y|U)

}
= EU

{
e−U [HX(x)+HY (y)]

}
= LU(HX(x) +HY (y))

(3.11)

where LU(v) = E{e−Uv} denotes the Laplace transform of U . From the joint survival

function SX,Y , we can derive the joint density function:

fX,Y (x, y) =
∂

∂x

∂

∂y
SX,Y (x, y) = L′′U(HX(x) +HY (y))hX(x)hY (y) (3.12)

where hX(x) and hY (y) are the hazard functions of X and Y evaluated at times x

and y, respectively.
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3.5.1 Conditional Survival Assuming X Fully Observed

It is often of interest to derive the hazard and survival functions of Y conditional

on X. Using the example stated earlier, these functions would model the risk of death

from prostate cancer given prostate cancer recurrence. We assume X is fully observed

and uncensored, meaning the exact event time X = x is known for each subject. The

conditional density and survival functions of Y |X = x are

fY |X=x(y|X = x) =
fY,X(y, x)

fX(x)
= −L

′′
U(HX(x) +HY (y))

L′U(HX(x))
hY (y)

SY |X=x(y|X = x) =

∞∫
y

fY |X=x(v|X = x)dv =
L′U(HX(x) +HY (y))

L′U(HX(x))

(3.13)

Detailed derivations of the functions in (3.13) are given in Appendix B.1. Because no

discreteness has been induced on Y when we condition on X, the exponential form

of survival will be valid, and the conditional hazard function can be written as

λY |X=x(y|X = x) =
fY |X=x(y|X = x)

SY |X=x(y|X = x)
= −L

′′
U(HX(x) +HY (y))

L′U(HX(x) +HY (y))
hY (y)

= Θ1(HX(x) +HY (y))hY (y)

(3.14)

where Θ1 is a functional of the cumulative hazard functions ofX and Y and derivatives

of the Laplace transform of the shared frailty U with respect to its argument. Θ1 can

be interpreted as the predicted risk of failure at y for a subject observed to fail at

X = x.

3.5.2 Conditional Survival Assuming X Partially Observed

Rather than exactly observing X = x, we may only know that X occurred before

Y . Using the example from the beginning of Section 3.5, the exact time of prostate

cancer progression may be unknown, but knowledge of whether cancer progressed

by a certain time t before death from prostate cancer may be available. In such a
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setting, we can define a marker process Wt = I(X ≥ t). Then, it can easily be seen

that W̄ = W̄∞
0 is equivalent to full knowledge of X, i.e., W̄ ⇔ {X = x}. We now

want to derive the hazard and survival functions for Y conditional on W̄y.

Naively applying the definition of the hazard function results in

λY |W (y|W̄y) =


λY |X=x(y|X = x), x ≤ y

lim
dy→0

P (Y ∈(y,y+dy]|Y≥y,X>y)
dy

, x > y

(3.15)

The hazard in (3.15) has discreteness introduced as its form depends on how x relates

to y. In the first case when x ≤ y, knowledge of when X occurs will be captured in

W̄y, thus the conditional hazard is equal to the hazard function in (3.14) that assumes

X is fully observed.

In the second case, where x > y, the conditional probability can be written as

P (Y ∈ (y, y + dy]|Y ≥ y,X > y) =
P (Y ∈ (y, y + dy], X > y)

P (Y ≥ y,X > y)
=
− ∂
∂y
SX,Y (x, y)|x=y

SX,Y (x, y)

= −L
′
U(HX(x) +HY (y))hY (y)|x=y

LU(HX(y) +HY (y))

= −L
′
U(HX(y) +HY (y))

LU(HX(y) +HY (y))
hY (y)

= Θ0(HX(x) +HY (y))hY (y)

(3.16)

where Θ0 is a functional of the cumulative hazard functions of X and Y and the

Laplace transform of U . Θ0 represents the predicted risk of failure at y for a subject

who has not yet experienced a failure event of type X by y. Therefore, the naive

hazard function given W̄y is

λY |W (y|W̄y) =


Θ1(HX(x) +HY (y))hY (y), x ≤ y

lim
dy→0

Θ0(HX(x)+HY (y))hY (y)
dy

, x > y

(3.17)
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Because of the discreteness introduced on Y , the survival function does not satisfy

the exponential relationship and is not linked to the hazard in (3.17) through the

exponential form.

To define mathematically valid survival and hazard functions that satisfy the

exponential relationship, we can make use of the functions defined in (3.9). As W̄ ⇔

{X = x}, we can rewrite the functions in (3.9) as

S(y|W̄x)|x=y = E
{
S(y|X = x)

∣∣W̄x

}∣∣
x=y

= E

{
L′U(HX(x) +HY (y))

L′U(HX(x))

∣∣∣∣W̄x

}∣∣∣∣
x=y

f(y|W̄x)|x=y = E
{
f(y|X = x)

∣∣W̄x

}∣∣
x=y

= E

{
− L

′′
U(HX(x) +HY (y))

L′U(HX(x))
hY (y)

∣∣∣∣W̄x

}∣∣∣∣
x=y

λ(y|W̄x)|x=y =
f(y|X = x)|x=y

S(y|X = x)|x=y

=

E

{
− L

′′
U (HX(x)+HY (y))

L′U (HX(x))
hY (y)

∣∣∣∣W̄x

}∣∣∣∣
x=y

E

{
L′U (HX(x)+HY (y))

L′U (HX(x))

∣∣∣∣W̄x

}∣∣∣∣
x=y

(3.18)

The expressions in (3.18) constitute mathematically valid functions for the failure

time Y conditional on partial knowledge of X. In general, these expressions will not

be equal to those in (3.13) and (3.14), which assume full observation of X. Thus, the

marker W satisfies the definition of an endogenous time-varying covariate. This exam-

ple illustrates that we can define a valid survival function for an endogenous covariate

that can incorporate its observed history up to the point of survival prediction.

3.6 Semicompeting Risks Type Model

An alternative set of bivariate survival models that may be of interest can be

conceptualized using two conditional models specifying how the event times X and

Y are related: (1) Y does not depend on X until a failure of type X occurs and (2)

X does not depend on Y until a failure of type Y occurs. Such a framework has been

previously studied in the context of incidence, metastasis, and mortality for prostate
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cancer (Tran et al., 2018). This particular model setup can be thought of as a special

case of semicompeting risks data (Fine et al., 2001), where in model (1), Y can be

likened to the “terminal event” and X can be likened to the “non-terminal” event

and vice versa for model (2). For illustrative purposes, we focus on model (1) where

Y does not depend on X until X occurs. An analogous derivation for model (2) can

be obtained by switching the roles of X and Y in what follows.

Our setup is largely based on the models constructed in Tran et al (2018). Let Z1

be the set of baseline covariates, Z2 be the covariates related to Y , and Z = Z1 ∪Z2

be the complete set of covariates. Hx and hx represent the baseline cumulative hazard

function and baseline hazard function, respectively, pertaining to X at time x. We

assume that the cumulative baseline hazard for Y can be written as HδY
y at time

y, where δY is a parameter related to Y that may modify the cumulative baseline

hazard function for X through some power transformation. Then, the baseline hazard

function for Y is δYH
δY −1
y hy at time y. Note that when δY = 1, we assume a common

cumulative baseline hazard function for X and Y .

We can set up the hazard for X conditional on covariates Z as

λX(x|Z) = hx
[
ηI(x ≤ Y ) + η̃I(x > Y )

]
(3.19)

where η = eβηZ and η̃ = eβη1Z1 . The hazard for Y conditional on observation of X

and covariates Z can be specified as

λY |X(y|X,Z) = δYH
δY −1
y hyθµ

I(y≥X) (3.20)

where θ = eβθZ1 and µ = eβµZ2 . The expressions in (3.19) and (3.20) are similar to

the ones expressed in Tran et al (2018). Based on (3.19) and (3.20), we can derive
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the survival functions for both X and Y :

SX(x|Z) = exp

{
−

x∫
0

λX(u|Z)du

}
= exp

{
− ηHy − η̃[Hx −Hy]

}

SY |X(y|X,Z) = exp

{
−

y∫
0

λY |X(u|X,Z)du

}
= exp

{
−HδY

y θµ−HδY
x θµ̄

} (3.21)

where µ̄ = 1 − µ. Detailed derivations for the survival functions in (3.21) can be

found in Appendix B.2.

By the ideas of conditional modeling (Arnold et al., 1999), the joint survival func-

tion from models (1) and (2) in the introduction of Section 3.6 should be equivalent,

meaning

SY |X(y|X,Z) · SX(x|Z) = SX|Y (x|Y,Z) · SY (y|Z) = SX,Y (x, y|Z) (3.22)

By Theorem 11.1 of Arnold et al (1999), we should have

SX|Y,Z
SY |X,Z

=
a(x, y)

b(x, y)
=
u(x)

v(y)
(3.23)

where u(x) and v(y) are one-dimensional survival functions. Using the second survival

function specified in (3.21),

SX|Y,Z
SY |X,Z

=
exp

{
−HδX

x θµ−HδX
y θµ̄

}
exp

{
−HδY

y θµ−HδY
x θµ̄

} =
exp

{
−HδX

x θµ+HδY
x θµ̄

}
exp

{
−HδY

y θµ+HδX
y θµ̄

} =
u(x)

v(y)
(3.24)

It can be easily checked that u(x) is a valid survival function as u′(x) ≤ 0, u(0) = 1,

limx→∞ u(x) = 0, and u(x) is right continuous. Similarly, it can be shown that v(y)

is a valid survival function. Please see Appendix B.3 for further details.
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3.6.1 Conditional Survival Assuming X is Fully Observed

As in the previous development and assuming there is no censoring, the survival

models for X and Y |X are given by

SX(x|Z) = exp
{
− ηHy − η̃[Hx −Hy]

}
SY |X(y|X,Z) = exp

{
−HδY

y θµ−HδY
x θµ̄

} (3.25)

Of interest is the survival function for Y conditional on observing X = x which can

be expressed as

SY |X=x,Z(y|X = x,Z) =
SY,X=x|Z(y,X = x|Z)

fX(x|Z)
=
− ∂
∂x
SY,X|Z(y, x|Z)

− ∂
∂x
SX|Z(x|Z)

=

(
1 +

δYH
δY −1
x θµ̄

η̃

)
exp

{
− θ[HδY

y µ+HδY
x µ̄]

} (3.26)

where

− ∂

∂x
SY,X|Z(y, x|Z) = hx

(
δYH

δY −1
x θµ̄+ η̃

)
exp

{
−HδY

y θµ−HδY
x θµ̄− ηHy − η̃[Hx −Hy]

}
− ∂

∂x
SX|Z(x|Z) = hxη̃ exp

{
− ηHy − η̃[Hx −Hy]

}
(3.27)

Because X is assumed to be fully observed, the exponential form of the survival

function is valid, and we can calculate the hazard function directly from the survival

function.

λY |X=x,Z(y|X = x,Z) = − ∂

∂y
lnSY |X=x,Z(y|X = x,Z) = θδYH

δY −1
y hyµ

I(y≥x) (3.28)

Please refer to Appendix B.4 for detailed derivations of the conditional survival and

hazard functions in (3.27) and (3.28).
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3.6.2 Conditional Survival Assuming X is Partially Observed

In certain contexts, we may only know whether X occurred before Y and not

exactly when X occurs. In such cases, we can define a marker process Wt = I(X ≥ t).

It can easily be seen that W̄ is equivalent to full knowledge of X, i.e., W̄ ⇔ {X = x}.

We now want to derive the hazard and survival functions for Y conditional on W̄y.

Note that λY |X=x,Z(y|X = x,Z) = λ(y|W̄ ,Z) = θδYH
δY −1
y hyµ

I(y≥x). If only the

partial trajectory of Wt is observed, the conditional hazard can be written as

λY |W̄y ,Z(y|W̄y,Z) =


λY |Z(y|Z) = θδYH

δY −1
y hy, x > y

λY |X=x,Z(y|X = x,Z) = θδYH
δY −1
y hyµ, x ≤ y

= θδYH
δY −1
y hyµ

I(x≤y)

= λ(y|X = x,Z)

= λ(y|W̄ ,Z)

(3.29)

While the hazard of Y conditional on W̄y and Z relies on how X relates to Y , it is

equivalent in form to the hazard function conditional on the full marker trajectory

W̄ . Thus, by the Kalbfleisch and Prentice definition (2002), Wt is an exogenous

covariate.

In general, this bivariate survival model highlights that despite the marker Wt

being defined in relation to a subject’s event time X, it satisfies the mathematical

definition of an exogenous covariate. Therefore, the intuitive definitions of endogenous

and exogenous covariates as originating within and outside a subject, respectively, are

not sufficient for this particular model. Wt clearly originates within the subject, but

by the Kalbfleisch and Prentice (2002) definition, it is an exogenous covariate. By an

analogous argument, the marker Vt = I(Y ≥ t) is also an exogenous covariate in the

alternative model specification where X does not depend on Y until Y fails. This

can easily be seen by switching the roles of X and Y above.

50



3.7 Threshold Regression Model

3.7.1 Definition

The event time T can often be interpreted as a first hitting time (FHT) of a

boundary or threshold state by a stochastic process which may be latent or observed

(Ting Lee and Whitmore, 2006). For example, the time to prostate cancer onset can

be thought of as the first time PSA exceeds a latent threshold. In general, FHT

models have two components: a parent stochastic process X(t) and a boundary set

B. For the parent process X(t), t ∈ T and x ∈ X , where T is the time space and X

is the state space of the process. Sample paths of the parent process can be observed

or unobserved. The boundary set is assumed to be a subset of the state space, i.e.,

B ⊂ X . Then the first hitting time T of B is a random variable such that

T = inf{t : X(t) ∈ B} (3.30)

The state X(T ) ∈ B is the threshold state. As the boundary set B defines a stopping

condition for the process, the FHT is usually a stopping time. If we define a set

of filtrations {Ft} representing the past history up to t, then T is a stopping time

if information in Ft indicates whether T has occurred by t. In the case where T is

a stopping time, knowledge of the past history induces discreteness in T , and the

exponential form of the survival function will be invalid because of this discreteness.

In the following sections, we consider cases where the threshold B is fixed or

random and the stochastic marker process X(t) is fully or partially observed. In each

case, we determine whether the marker is endogenous or exogenous by considering

the hazard functions conditional on the past and full trajectories of the marker.

We also consider the validity of the exponential form in each case and illustrate

the lack of a one-to-one correpondence between its legitimacy and whether a given

marker is endogenous. In our examples, T represents the event time or FHT, B
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represents the boundary which may be fixed or random, Wt represents a fully observed

marker process, and Vt represents a partially observed marker process. We assume

that Wt can be modeled via a process in the Lévy family, which is a large class

of stochastic processes with stationary and independent increments (Bertoin, 1998;

Hoyle, 2010). Common examples of Lévy processes include the Wiener process and

the non-decreasing Gamma process. For the fully observed process Wt, we define W̄t

and W̄ as in Section 3.4. For the partially observed process Vt, we can represent V̄t as

the collection of observed values V measured at a set of measurement times all less

than t, i.e., V̄t = {Vτj : τj ≤ t}. We assume that higher marker values are associated

with increased risk of failure, and failure will occur once Wt ≥ B or Vt ≥ B.

3.7.2 Fixed Threshold and Fully Observed Marker

When the threshold B is fixed and Wt is fully observed, we want to consider the

hazard and survival functions when we observe W̄t and W̄ . We assume that Wt is

predictable given W̄t and known given W̄ . Then,

S(t|W̄t) = P (T > t|W̄t) = P (Wt < B|W̄t) =


1, Wt < B

0, Wt ≥ B

S(t|W̄ ) = P (T > t|W̄ ) = P (Wt < B|W̄ ) =


1, Wt < B

0, Wt ≥ B

(3.31)

In (3.31), conditioning on the past or full history of the marker process induces

discreteness in the survival function because at any point t, we can determine whether

Wt < B and whether failure has occurred. It can easily be seen that

λ(t|W̄t) = λ(t|W̄ ) = δ(Wt −B) =


∞, Wt = B

0, otherwise

(3.32)
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where δ(·) in (3.32) denotes Dirac’s delta function. Therefore, Wt is an exogenous

covariate by the definition provided in Kalbfleisch and Prentice (2002), but the ex-

ponential form of the survival model is not valid when B is fixed as T is a stopping

time given the trajectory of W . This scenario illustrates that the exponential form

can be illegitimate for an exogenous marker.

3.7.3 Fixed Threshold and Partially Observed Marker

We assume the partially observed marker Vt is observed at non-informative times

τ1, . . . , τk, with the additional assumption that V (τj) = W (τj), j = 1, . . . , k, where

Wt is now taken to be the latent true marker process. Some of the measurements

may be taken after the event time if it is non-terminal. Let τx− = sup{τj : τj ≤ x}

represent the last measurement before x and τx+ = inf{τj : τj ≥ x} represent the first

measurement after x. Then, we can define survival functions given V̄x = {Vτj : τj ≤ x}

and V̄ = {Vτj} using the framework introduced in Section 3.4.

S(t|V̄x)|x=t = P (T > t|V̄x)|x=t = 1− EW̄
{
SW (B − Vτx− )|V̄x

}
|x=t

S(t|V̄ ) = P (T > t|V̄ ) = 1− EU
{
SU

(
B − Vτt−
Vτt+ − Vτt−

)∣∣∣∣V̄}
(3.33)

Please see Appendix B.5 for more details on the survival models in (3.33). In S(t|V̄ )

in (3.33), U represents a bridge stochastic process that describes the behavior of W

between the two observed values Vτt− and Vτt+ . If we assume Wt can be modeled using

a Lévy process, Vt will be a partially observed Lévy process and U will be a Lévy

bridge process (Hoyle, 2010). Note that if Vτx− |x=t ≥ B or Vτt− ≥ B, the respective

survival functions will be 0. If Vτt+ < B, S(t|V̄ ) = 1. The exponential form will be

valid for both S(t|V̄x)|x=t and S(t|V̄ ) by the arguments provided in Section 3.4. The
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hazard functions are

λ(t|V̄x)|x=t =
∂
∂t
EW̄
{
SW (B − Vτx− )|V̄x

}
1− EW̄

{
SW (B − Vτx− )|V̄x

}∣∣∣∣
x=t

λ(t|V̄ ) =

∂
∂t
EU

{
S

(
B−Vτ

t−
Vτ
t+
−Vτ

t−

)∣∣∣∣V̄}
1− EU

{
S

(
B−Vτ

t−
Vτ
t+
−Vτ

t−

)∣∣∣∣V̄}
(3.34)

By the Kalbfleisch and Prentice (2002) definition, Vt is an endogenous covariate,

but the exponential form of the survival function remains valid under the framework

introduced in Section 3.4, which treats the unobserved marker trajectory as a latent

variable. This example once more highlights the fact that the exponential form is not

immediately violated in models that condition on the trajectory of an endogenous

marker.

3.7.4 Random Threshold and Fully Observed Marker

We now assume that the threshold B is random, and we assume that its distri-

bution is related to the trajectory of the marker Wt, i.e., B|W̄t ∼ fB(b|W̄t). B is

assumed to be absolutely continuous with a valid survival function that satisfies the

exponential relationship. Then, the survival functions conditional on W̄t and W̄ can

be expressed as

S(t|W̄t) = P (T > t|W̄t) = P (Wt < B|W̄t) = SB|W̄ (Wt)

S(t|W̄ ) = P (T > t|W̄ ) = P (Wt < B|W̄ ) = SB|W̄ (Wt)

(3.35)

The survival functions in (3.35) are defined in terms of the survival function of the

random threshold B, and they will be identical. Thus, the hazard functions will be

identical as well. The hazards can be derived through the exponential relationship

54



that is satisfied for the survival function of B.

λ(t|W̄t) = λ(t|W̄ ) = − ∂

∂t
lnSB|W̄ (Wt) (3.36)

Thus, by the Kalbfleisch and Prentice (2002) definition, Wt is an exogenous covariate,

and the exponential relationship is satisfied. This example demonstrates that for a

fully observed exogenous marker, there is a threshold regression model that satisfies

the exponential relationship.

3.7.5 Random Threshold and Partially Observed Marker

We once more assume Vt is observed at non-informative times τ1, . . . , τk, with

V (τj) = W (τj), j = 1, . . . , k. We let τx− = sup{τj : τj ≤ x} represent the last

measurement before x and τx+ = inf{τj : τj ≥ x} represent the first measurement

after x. We also assume that B|W̄t ∼ fB(b|W̄t) with a valid survival function that

satisfies the exponential relationship. Then, the survival functions conditional on V̄t

and V̄ can be expressed as

S(t|V̄x)|x=t = P (T > t|V̄x)|x=t = EW̄
{
SB|W̄ (Vτx− +Wt−τx− )|V̄x

}∣∣
x=t

S(t|V̄ ) = P (T > t|V̄ ) = EU
{
SB|U(Vτt− + U[0,τt+−τt− ](Vτt+ − Vτt− ))|V̄

} (3.37)

Please refer to Appendix B.5 for more details. The survival functions in (3.37) are

derived under the assumptions that Wt|V̄x = Vτx− + Wt−τx− and Wt|V̄ = Vτt− +

U[0,τt+−τt− ](Vτt+ − Vτt− ), where U represents the bridge stochastic process related to

W . Thus, the hazard functions can be derived through the exponential relationship
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that is satisfied for the survival function of B:

λ(t|W̄t) = − ∂

∂t
lnS(t|V̄x)|x=t = − ∂

∂t
lnEW̄

{
SB|W̄ (Vτx− +Wt−τx− )|V̄x

}∣∣
x=t

λ(t|W̄ ) = − ∂

∂t
lnS(t|V̄ ) = − ∂

∂t
lnEU

{
SB|U(Vτt− + U[0,τt+−τt− ](Vτt+ − Vτt− ))|V̄

}
(3.38)

Thus, by the Kalbfleisch and Prentice (2002) definition, Wt is an endogenous covari-

ate, and the exponential relationship is satisfied. This particular model demonstrates

the validity of the exponential form for an endogenous covariate.

3.8 Discussion

We have carefully considered the definitions of time-varying covariates and illus-

trated through various examples how current beliefs regarding the definitions of such

variables fall short. Rather than basing our understanding of these covariates off of

intuition, we used the mathematical definitions outlined in Kalbfleisch and Prentice

(2002) to reformulate the difference between exogenous and endogenous covariates

as a missing data problem. By doing so, we were able to emphasize that the major

difference between these covariates lies in how the future trajectory impacts the haz-

ard of failure at any point in time. For exogenous covariates, the future is irrelevant,

but for endogenous covariates, it is inextricably linked to the present. Thus, models

that only condition on the past for an endogenous marker fail to account for the

dependence on the future. Naively specifying survival at time t conditional on the

trajectory of an endogenous marker up to t results in an invalid survival function due

to the trajectory changing as a function of t but being held fixed for the purposes of

prediction. Our newly developed mechanistic framework for specifying valid survival

functions circumvents this issue by using the Law of Total Expectation to first specify

survival conditional on the full trajectory of the marker and then average over the
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unobserved future, given that a history up to some fixed time x is observed, where x

can be less than or greater than t. In this sense, the unobserved future trajectory of

the marker is treated as a latent variable, similar to a frailty or random effect term.

Another important point we sought to clarify was the lack of a one-to-one corre-

spondence between the type of time-varying covariate and the validity of the expo-

nential form of survival. Once more, whether a covariate is endogenous or exogenous

is related to how the future trajectory of the marker affects the hazard of failure. The

validity of the exponential form, however, is influenced by the continuity of the event

time T . This continuity may depend on the trajectory of the marker process, namely

through any possible discreteness that may be induced on T as a result of the path

of the marker. However, as seen through our illustrative examples, there are cases

where the exponential form is valid for an endogenous covariate and invalid for an

exogenous covariate. One specific example we and others (Ting Lee and Whitmore,

2006) have explored is the threshold regression model where the marker is fully ob-

served and the boundary is fixed. In this model, the marker is exogenous due to being

fully observed, but knowledge of the marker at any point in time allows one to fully

determine whether the event has occurred at time t. More specifically, T is now a

stopping time for which the exponential form, by definition, is no longer valid (Aven

and Jensen, 1999; Finkelstein, 2004). Decoupling the legitimacy of the exponential

form and the definitions of time-varying covariates allows us to more accurately define

survival functions in different settings where complex marker data may impact the

risk of failure.

Our framework sits opposite the intuitive understanding about time-varying co-

variates. Current practice is to treat time-varying covariates originating outside a

subject as being exogenous and those being measured on a subject as being endoge-

nous. From our theoretical construction and illustrative examples, we highlight where

the current belief falls short. Our approach is to formulate the difference as a missing
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data problem, which allows for quantitative examination of whether a covariate is en-

dogenous or exogenous. This is philosophically different from the current approach,

where covariates are deemed internal or external before analysis is done in order to

determine how to define our models. Under our framework, legitimate survival mod-

els can be defined regardless of the type of time-varying marker, and this allows us to

incorporate both exogenous and endogenous markers into our models. Therefore, not

only is our framework quantitatively different from what it done in practice, it is also

a philosophical shift in how we think about endogenous markers. Recently, there has

been work by others to try to extend the current understanding of how markers play

a role in survival models (Dempsey and McCullagh, 2018). Our framework stands in

contrast to the one explored in Dempsey and McCullagh (2018), which formulates a

model for the marker conditional on the event time backwards in time. In fact, our

approach can be seen as complementary: we condition on the latent marker trajectory

looking forward in time. Regardless of the difference, both the approach outlined in

Dempsey and McCullagh (2018) and the approach we develop herein seek to elucidate

the role that endogenous covariates can play in survival models.

An important aspect of time-varying covariates that needs to be carefully consid-

ered is their role in the context of clinical trials. As interest lies in understanding

the effect of a treatment or intervention on a health-related outcome, models for data

originating from a clinical trial should include the treatment and baseline factors only.

Incorporating time-varying marker measures after the initiation of treatment can ob-

fuscate any treatment effect that may have occurred. Thus, time-varying markers

should not be incorporated into survival models in the clinical trial setting. We do

not dispute that this should be the case. Our framework was largely motivated by

observational data, particularly screening studies for prostate cancer where men will

have serially measured PSA values. In this context, there is no intervention or treat-

ment being studied in a carefully selected sample of patients. Therefore, our methods
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are appropriate for observational data, which are common in clinical studies of lon-

gitudinal biomarkers and survival.

While our framework was set up in a general way and should be applicable to

a range of survival model specifications, we only studied its application in specific

examples. These examples were chosen based on common settings where a marker

process would be appropriate to define the time-varying covariate. Exploration of

other common survival models with marker processes is needed. In the context of

joint modeling, our framework largely focuses on the survival model. There is a ques-

tion about how we can also define a marker process model that can be linked to the

survival model in order to define the joint model. Our framework should still be valid

in such models, but the difficulty may lay in how to define the latent factors needed

to link the two submodels. Such work is ongoing. This framework should also apply

in the competing risks and recurrent event settings, and we plan to explore these

models in future work.
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CHAPTER IV

Joint Modeling of a Time-to-Event and Partially

Observed Marker Process Using Lévy Processes

4.1 Introduction

Often in clinical research, event information and longitudinal biomarker data will

be collected for each subject. In prostate cancer studies, time to diagnosis or recur-

rence and prostate-specific antigen (PSA) levels may be recorded at each clinical visit.

The various events that may be observed for a given patient can be conceptualized as

resulting from an underlying disease process that accumulates over time until failure

occurs. One specific instance of this setup is the first-hitting time model, wherein

failure is defined as the first time at which a stochastic process hits a threshold or

boundary state (Ting Lee and Whitmore, 2006). In general, the latent disease pro-

cess can be conceptualized as a stochastic process (Jewell and Kalbfleisch, 1996), and

it may be captured by some known biomarker that is partially observed over time

through longitudinal measurements. The level of the marker may be prognostic for

disease status or severity, which motivates the use of joint models to capture the as-

sociation between failure and the marker as two manifestations of the latent disease

process.

Joint models are specified through submodels for the failure process and longi-
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tudinal marker process and terms that link the two individual models (Henderson

et al., 2000; Tsiatis and Davidian, 2004; Rizopoulos , 2008). The most common joint

model specification is a shared random effects model where the longitudinal submodel

is specified as a linear mixed effects model and the failure model is given as a Cox

proportional hazards model incorporating the marker as a covariate. This model

specification assumes a linear form for the marker. Sparse observation of the marker

via longitudinal measurements may make it difficult to accurately assess the assump-

tion of linearity. Thus, the most common joint model specification does not allow for

nonlinear biological variability in the marker process. Others have explored the use of

nonlinear mixed models for the longitudinal marker data (Wu et al., 2008; Murawska

et al., 2012; Desmée et al., 2015, 2017a; Köhler et al., 2018), with a particular focus

on Bayesian algorithms for estimation and individualized prediction.

An alternative approach to modeling the longitudinal marker data uses a stochas-

tic process (Henderson et al., 2000; Wang and Taylor , 2001; Hashemi et al., 2003;

Arbeev et al., 2014). Due to the partially observed nature of the marker process,

the model for observed data is averaged over the latent trajectory that is unobserved

between longitudinal measurement times. This average is taken conditional on the

observed value; thus, the latent process being averaged over is a bridge process. The

difficulty with stochastic process marker models stems from mathematical complexity,

as averaging over the latent trajectory may involve an infinite dimensional integral.

To overcome this difficulty, most joint models involving stochastic processes make

use of approximations or place strong assumptions on the stochastic process itself.

While motivated by tractability, these approximations and assumptions can be hard

to justify if there are few measurements for each subject.

However, there are stochastic process models that are precisely specified. One

example considered by Yashin and Manton (1997) proposed a model using a squared

Gaussian process to link a hazard function with a discretely observed stochastic pro-
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cess. However, in their model, a U- or J-shaped hazard is possible, which may not

be reasonable in cases where the risk of a disease-related event correlates with higher

marker values. Maximum likelihood is used for parameter estimation, and it in-

volves solving stochastic differential equations which are conceptually and technically

challenging. In contrast to the approach proposed by Yashin and Manton (1997),

Dempsey and McCullagh (2018) model the stochastic process in reverse time condi-

tional on the failure time and define “revival models.” Their proposed model avoids

any averaging over the latent trajectory, but it assumes that the survival time will

be finite with probability one and fully explained by the marker process. In prac-

tice, however, the failure process may be related to but not fully explained by the

biomarker process of interest. Dempsey and McCullagh’s (2018) approach is comple-

mentary to joint modeling and works in the case of extreme dependence between the

marker and the failure time when the marker cannot exist, theoretically or counter-

factually, after failure.

When longitudinal measurements on an individual subject are sparse, making

strong assumptions on the marker process, either through a mixed effects model or

a stochastic process model with approximations, can potentially lead to an inflexible

joint model. Ideally, we want a marker process model that can properly explain the

assumed latent and actually observed trajectory. In this work, we propose a joint

model specification that makes use of a specific type of Lévy subordinator process

and a time transformation to model the accumulated risk of failure. Our model has a

tractable form and avoids the computational cost associated with other joint models.

We outline the longitudinal marker and failure process submodels of the joint model

in Section 4.2. In Section 4.3, we describe our model formulation and estimation un-

der different observation scenarios for the marker process. In Section 4.4, we examine

the performance of our model in simulation studies. We apply our model to SEER

prostate cancer incidence data, where PSA is measured at the age of diagnosis for
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men diagnosed with prostate cancer, in Section 4.5. We conclude with a discussion

of the strengths and limitations of our model in Section 4.6.

4.2 Joint Model

4.2.1 Survival Model

Let T be the failure time for the event of interest, Z be a vector of baseline

covariates, and Wt be a time-dependent covariate. Wt may be observed continuously

or intermittently at discrete time points. The most common survival model is the Cox

proportional hazards model (1972), which specifies the survival function conditional

on baseline covariates as

S(t|Z) = e−
∫ t
0 h0(u) exp{βZ}du = e−H0(t) exp{βZ} = e−H(t|Z) (4.1)

In (4.1), h0(t) and H0(t) represent the baseline hazard and baseline cumulative

hazard, respectively. H(t|Z) represents the cumulative hazard that is conditional on

baseline covariates, and β is a vector of regression parameters corresponding to Z.

While the Cox model in (4.1) is the most common approach to modeling survival,

it comes with a strong assumption of proportionality. In addition, it assumes the

same level of risk for each subject. To account for the heterogeneity that exists

among individuals, extensions to the Cox model involving frailty terms (Vaupel et al.,

1979), which are essentially random effect terms, have been developed. It is assumed

that at baseline, each subject has a non-negative frailty random variable Ui that acts

multiplicatively on the baseline hazard h(t|Z). As the frailty represents a latent effect

that is never observed in practice, it must be integrated over to obtain the marginal

survival function.

S(t|Z) = EU
{
e−U exp{βZ}H0(t)|Z} = EU{e−UH(t|Z)|Z} (4.2)
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The expectation in (4.2) has the form of a Laplace transform of U with H(t|Z) as the

argument. Recall that the Laplace transform is defined as LU(s) = EU{e−sU}. The

frailty random variable U is typically drawn from a parametric family, most often the

Gamma or compound Poisson distributions (Vaupel et al., 1979; Aalen, 1992).

While standard frailty models account for heterogeneity across subjects, they fail

to account for potential heterogeneity across time within a given subject. Assuming

that a patient’s risk can change dynamically over time, we can consider a gener-

alization of proportional hazards frailty models where the frailty is now allowed to

vary with time. In other words, the frailty random variable for subject i, Ui, now

becomes a stochastic process Ui(t). Such process frailty models have been previously

considered, particularly in the context of multivariate survival data (Aalen, 1994;

McGilchrist and Yau, 1996; Huibin and Chan, 1997; Perperoglou et al., 2006; Aalen

et al., 2008). In these models, the marginal survival function is now an average over

all possible trajectories of U up to any time t, represented by Ū[0,t].

S(t|Z) = EŪ[0,t]

{
e−

∫ t
0 Ush0(s) exp{βZ}ds∣∣Z} = EŪ[0,t]

{
e−

∫ t
0 Ush(s|Z)ds

∣∣Z} (4.3)

The expectation in (4.3) now represents a Laplace function for the process U(t) with

respect to the hazard h(s|Z), i.e., EŪ[0,t]
{e−

∫ t
0 Usf(s)ds}, where f(s) = h(s|Z).

As U(t) acts multiplicatively on the hazard, the process must be non-negative

in order to preserve the non-negative property of the hazard function. Prior work

by Gjessing et al (2003) modeled the stochastic process using a non-negative Lévy

process. Lévy processes are a class of stochastic processes with independent and sta-

tionary increments (Bertoin, 1998; Hoyle, 2010). The Lévy process family includes

Wiener processes, Gaussian processes, and compound Poisson processes. A particular

sub-family of non-negative Lévy processes, known as Lévy subordinators, includes the

compound Poisson process and its limits, which include the Gamma process, and ex-
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cludes Gaussian processes. Using a Lévy subordinator in (4.3) will lead to a tractable

form for the survival and hazard function. However, this model specification assumes

that all subjects will have proportional hazards and that the random effect acting on

the hazard is increasing over time.

Work by Putter and Van Houwelingen (2015) focused on dynamic frailty models

that used Lévy processes to flexibly model serial correlation of the frailty process.

Under their framework, the time-dependent frailty U(t) was constructed from inde-

pendent frailty components X(u, v), representing a compound birth-death stochastic

process. X(u, v) contributes to the hazard only if u ≤ t and v ≥ t, meaning that

each component will only contribute in the time period after they are “born” and

before they “die.” Therefore, the frailty components were specified as a Lévy process

in two dimensions. Parameters were estimated using the expectation-maximization

(EM) algorithm for a multivariate survival model. Estimation via the EM algorithm

can be computationally demanding and slow in this context.

In both the Gjessing et al (2003) and Putter and Van Houwelingen (2015) frame-

works, the frailty process is fully unobserved and the marginal survival model is used

in maximum likelihood estimation. However, if we think of the frailty U(t) as a

stochastic marker process, such as PSA in the context of prostate cancer, it may be

observed intermittently at discrete time points. Let us assume that U(t) is observed

at time points τ = {0, τ1, τ2, . . . , τk} and remains a latent process in the intervals

between measurement times (0, τ1), (τ1, τ2), . . . , (τk−1, τk). We can assume that U(t)

is itself the marker process, but it is also possible to model U(t) given the observed

measurements as a function of the marker process. As the process is observed only

at discrete measurement times, the Lévy bridge process can be used to link the dis-

crete measurements in order to model the full trajectory of U(t) over a given interval

(Hoyle, 2010). The Lévy bridge process will be scaled by the observed values of the

marker process at each point in time. In general, a bridge process is a stochastic
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process conditioned on a known value at a fixed future time point (Mansuy and Yor ,

2008). A Lévy bridge is a Lévy process defined over a finite interval, and it is assumed

that the initial and final values over the process needed to construct the bridge are

known at baseline (Hoyle, 2010).

In the dynamic frailty framework, the non-negative Lévy process is applied multi-

plicatively to the hazard. An alternative model specification explored in Suresh (2018)

uses the Lévy frailty process as a multiplicative effect in the cumulative hazard func-

tion in order to account for the non-decreasing assumption. Specifically, survival was

defined as S(t|U) = e−U(t)H(t), where H(t) represents the cumulative baseline haz-

ard function. The cumulative baseline hazard is a transformation of time and can

be thought of as an underlying risk of disease common to all subjects. Then, the

stochastic frailty U(t), which can be thought of as a subject-specific transformation

of the risk, could be recast as a function of H(t), namely U(H(t)). Essentially, we

can introduce a time transformation into the frailty process U(t), where the trans-

formation is the cumulative baseline hazard. Under this model, each subject’s risk of

disease is the combination of an underlying level of risk H(t) and an individual level

of risk which may be modified by subject-specific covariate values through the pa-

rameters of U(t). Thus, an alternative model specification we focus on assumes that

U(H(t)) = UHt is itself the cumulative hazard function, and the survival function

can be written as S(t|U) = e−UHt . This model specification has greater tractability

and convenience due to being able to use the Laplace transform of UHt rather than a

Laplace functional to obtain the marginal survival function.

Survival models involving a time-transformed Lévy frailty process have been pre-

viously considered by Gjessing et al (2003). Others have examined alternative times

scales in survival and threshold regression models based on an underlying stochas-

tic process (Ting Lee and Whitmore, 1993; Oakes , 1995; Whitmore and Schenkel-

berg , 1997; Duchesne and Lawless , 2000; Ting Lee and Whitmore, 2006). Our pro-
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posed model introducing a time transformation on the latent process U(t) allows for

greater flexibility relative to other models that assume a multiplicative effect (Peng

and Huang , 2007; Suresh, 2018).

4.2.2 Developing the Joint Model

4.2.2.1 General Model Notation, Assumptions, and Likelihood

Much of what follows is based on the notation and models for valid survival func-

tions that incorporate endogenous marker histories outlined in Chapter III, Section

3.4. Let M be a marker process and let Mt represent the value of M at time t. M̄ b
a

will denote the trajectory of M between a and b, i.e., M̄ b
a = {Mt}|t=bt=a. For brevity,

we define M̄t = M̄ t
0 and M̄ = M̄∞

0 . Let FMt and FM denote the filtrations induced

by M̄t and M̄ , respectively, where the filtration FMs for some time s captures all past

event, marker, and covariate information up to s−.

Let the random variables T be the survival time and M be the generally endoge-

nous, or internal, stochastic marker process that provides dynamic information on

T . M is potentially observed as it may be informatively censored by T and by the

non-informative right censoring time C that may censor both T and M . We assume

that T and M satisfy the following conditions:

1. The process M is left continuous and therefore predictable. This assumption is

needed for the integrals of the process over time to be well defined.

2. The conditional random variable T |M̄ is absolutely continuous. This assump-

tion implies that T is a sudden failure, which is one that cannot be predicted or

fully explained if the full history FM were available. In most situations when the

marker does not fully explain when failure occurs, this assumption makes bio-

logical sense. This condition can also be implied by a weaker set of assumptions

by postulating that T is a totally inaccessible stopping time (Aven and Jensen,
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1999) and that no behavior of M can induce discreteness in T . For example,

when T is defined as the first time that M passes a threshold, the assumption is

violated if the threshold is non-random as T is non-random or discrete for fixed

M . However, the assumption will be satisfied when the threshold is random,

unobserved, and absolutely continuous (Finkelstein, 2004).

The above conditions ensure that the well-known exponential relationship between

the survival function S and the hazard function λ of T |F holds true.

S(t|FM) = exp

{
−

t∫
0

λ(x|FM)dx

}
(4.4)

For the relationship in (4.4) to be satisfied, both S and λ should be conditional on

the full information FM , including values in the future of time t or x.

Many survival models are specified conditional only on the past information FMt .

Under this level of conditioning, the exponential relationship in (4.4) will not be

satisfied unless M is an exogenous marker as S(t|FMt ) = S(t|FM) (Kalbfleisch and

Prentice, 2002). For endogenous M , the relationship will be satisfied conditional on

fixed FMx , where x can be < t or > t and including x = ∞. Applying the Law of

Total Expectation, a valid survival function conditional on fixed FMx for endogenous

M can be derived as

S(t|FMx ) = S(t|M̄x) = E
{
S(t|FM)

∣∣M̄x

}
= E

{
exp

{
−

t∫
0

λ(u|M̄)du

}∣∣∣∣M̄x

}
(4.5)

In (4.5), the expectation is taken over the future trajectory M̄∞
x+ conditional on the

past history M̄x. Similar expressions can be derived for the density function f and
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the hazard function λ:

f(t|FMx ) = f(t|M̄x) = E
{
f(t|FM)

∣∣M̄x

}
= E

{
λ(t|M̄) exp

{
−

t∫
0

λ(u|M̄)du

}∣∣∣∣M̄x

}

λ(t|FMx ) = λ(t|M̄x) =
f(t|M̄x)

S(t|M̄x)
=

E

{
λ(t|M̄) exp

{
−
∫ t

0
λ(u|M̄)du

}∣∣∣∣M̄x

}
E

{
exp

{
−
∫ t

0
λ(u|M̄)du

}∣∣∣∣M̄x

}
(4.6)

Using the quantities defined in (4.5) and (4.6), we can mechanistically define valid

functions f(t|FMt ), λ(t|FMt ), and S(t|FMt ) via equation (3.9) in Chapter III, Section

3.4:

S(t|M̄x)|x=t = E
{
S(t|FM)

∣∣M̄x

}∣∣
x=t

= E

{
exp

{
−

t∫
0

λ(u|M̄)du

}∣∣∣∣M̄x

}∣∣∣∣
x=t

f(t|M̄x)|x=t = E
{
f(t|FM)

∣∣M̄x

}∣∣
x=t

= E

{
λ(t|M̄) exp

{
−

t∫
0

λ(u|M̄)du

}∣∣∣∣M̄x

}∣∣∣∣
x=t

λ(t|M̄x)|x=t =
f(t|M̄x)|x=t

S(t|M̄x)|x=t

=

E

{
λ(t|M̄) exp

{
−
∫ t

0
λ(u|M̄)du

}∣∣∣∣M̄x

}∣∣∣∣
x=t

E

{
exp

{
−
∫ t

0
λ(u|M̄)du

}∣∣∣∣M̄x

}∣∣∣∣
x=t

(4.7)

The expressions in (4.7) can be conceptualized by first defining the functions S, λ,

and f conditional on a fixed marker history up to time x, and then equating x to t.

In this study, we are interested in the process V representing a partially observed

biomarker process W , where W represents the process if it were continuously ob-

served. We assume that FV ⊂ FW . By the Law of Total Expectation, the survival,

hazard, and density functions conditional on V̄x are those given in (4.7) for general

x > 0, including x =∞. When the marker W is external, we can write W̄u in the ex-

pressions in (4.7) under the integral and W̄t in λ outside the integral. The philosophy
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underpinning this model is similar to modeling dependence using a frailty term. In

such models, conditional independence given the frailty is assumed. In our model, a

simpler form of dependence is assumed given the latent, exogenous W that explains

the dependence between the failure time T and the endogenous partially observed

biomarker process V .

Given a set of observation times τ = {τ1, τ2, . . . , τk}, we assume that W (τj) =

V (τj), j = 1, . . . , k. In other words, the observed marker values V at each measure-

ment time are assumed to be observations of the true underlying marker process Wt.

The true W is otherwise unobserved between measurement times τ and W̄ |V̄ can

be represented by a bridge process. The observed V are measured at discrete time

points, thus to define V in continuous time, we assume that it is constant between

measurement times. Such a construction induces an endogenous structure on V , and

future observations of V provide information on the latent W between measurement

times.

Based on the general formulation of the joint model, we can write the joint log-

likelihood for a sample of size n as

l =
n∑
i=1

(1−∆i) lnS(xi|V̄xi) + ∆i ln f(xi|V̄xi) + ln g(V̄xi)

=
n∑
i=1

∆i ln dΛ(xi|V̄xi)− Λ(xi|V̄xi) + ln g(V̄xi)

(4.8)

where ∆i is an indicator of failure, xi = min(ti, ci) is the observed failure time for each

subject (ti =failure time; ci = censoring time), g is the joint pdf of the subject-specific

observed biomarker measurements V̄xi , and

dΛ(x|V̄x) = λ(x|V̄y)|y=xdx

Λ(x|V̄x) =

x∫
0

λ(ξ|V̄y)dξ
∣∣∣∣
y=x
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4.2.2.2 Marker Process Model

We assume that the risk of failure is associated with an underlying stochastic

process {Wt}0≤t≤∞ that is 0 at baseline and increasing over time. Wt is rarely con-

tinuously observed, and a set of discrete measurements {Vτ} collected at observation

times τ = {τ1, . . . , τk} may be observed instead. We thus make the assumption that

Wt is partially observed, and the observed Vτ at each τj, j = 1, . . . , k, represent the

true values of the underlying process W . Between the measurement times τ , the

latent process Wt takes the form

Wt = B{t}[0,τj−τj−1](Vτj − Vτj−1
), j = 1, . . . , k (4.9)

where [B{t}]0≤t≤τj−τj−1
is a Lévy bridge process over the interval [0, τj − τj−1] that

takes on values between 0 to 1. We scale B{t} by the difference in observed values

at τj and τj−1 in order to have the latent and observed marker values on the same

scale. Thus, at baseline, the bridge process is assumed to be 0, and it increases to

Vτj − Vτj−1
. Under our modeling framework outlined in Section 4.2.1, the process Wt

will be subordinated by the cumulative baseline hazard Ht, which represents the ac-

cumulated risk inherent to each subject. As we introduce a time transformation H(t)

into the latent marker process W , any processes related to W will also be specified

on the transformed time scale. By the assumption of no measurement error on the

observed marker values, we have that WHτ = VHτ . Additionally, the bridge process

can be written on the transformed time scale as B{H(t)}.

The use of a Lévy process to model the true marker process is largely done for

mathematical tractability. In the model where the marker is partially observed, the

latent trajectory over intervals where the process is unobserved must be averaged

over. This generally involves high dimensional integration and can be computation-

ally difficult, but the assumption of a process in the Lévy family leads to closed form
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solutions. There are many choices for the marker model, but we will focus on the

Gamma process model. The Gamma process is often used to model marker processes

due largely to its convenient distributional properties (Gjessing et al., 2003; Lawless

and Crowder , 2004; Putter and van Houwelingen, 2015). In financial mathematics,

the Gamma bridge process has had applications in aggregate claims data, and prior

work has derived useful properties of the bridge process (Brody et al., 2008; Hoyle,

2010; Suresh, 2018). The Gamma process is suitable to describe the accumulation of

disease risk associated with a stochastic marker process, and we apply the Gamma

process in a joint model for survival and longitudinal data.

Under this assumption, the underlying marker Wt can be modeled using the

Gamma process. For our specific model, where we consider the subordinated pro-

cess WHt , we assume that WHt can also be modeled via the Gamma process. By

assumption, the process has independent increments, initial value WH0 = 0, and

WHt follows a Gamma distribution with mean µHt and variance σ2Ht. We define

a subordinated bridge process B{Ht} that is independent of the final observed VHτ .

Because the underlying WHt follows a Gamma distribution, it can be shown that

B{Ht} conditional on the observed values follows a Beta distribution (Brody et al.,

2008). Therefore, to average over the unobserved Gamma bridge process when con-

structing the observed data likelihood, we must make use of the Laplace transform

of the bridge process, which corresponds to the Laplace transform of a Beta random

variable.

The survival model outlined in Section 4.2.1 and the marker model developed

above fully specify a joint model for the marker process and event time, where we

choose a model for the marker process that is mathematically tractable. This joint

model allows us to use the complete set of observed marker values for a given subject,

including those that may be observed after the event time in the case of a non-

terminal event. Baseline covariates Z can be incorporated into the Gamma process
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parameters of the underlying marker W or into the time transformation H(t). By

construction, there is positive dependence between the marker process and the event

time that stems from the variance and covariance of W .

4.3 Likelihood Construction

Our model can be formulated under different observation mechanisms for the

marker. In particular, we focus on three scenarios: (1) the marker process is com-

pletely observed; (2) the marker process is observed at an informative measurement

time; (3) the marker process is partially observed at a set of uninformative mea-

surement times. In each scenario, estimation is done by maximizing the likelihood

with respect to the marker parameters. If H is assumed to be a parametric function,

standard errors for the parameters can be obtained from the Hessian matrix using

numerical differentiation. If H is estimated nonparametrically, standard errors of the

estimators must be obtained in an alternative way, either by deriving the appropriate

variance expressions or by using an empirical procedure such as the bootstrap.

4.3.1 Completely Observed Marker

Let Ti and Ci denote the true event and censoring times, respectively. Let Xi =

min(Ti, Ci) be the observed event time and ∆i = I(Ti ≤ Ci) be the event indicator.

Let Z represent a vector of baseline covariates that can include the initial value of

the marker process. Let {WHt}0≤t≤X be the Lévy process representing the completely

observed marker process on the H-transformed time scale. The observed data for each

subject can be represented as Oi = {Xi,∆i,Zi, W̄Xi}ni=1, where W̄Xi is the history of

the process W up to the observed event time Xi. The conditional survival function

can be expressed as

S(t|W̄t,Z) = eΛ(t|W̄t) = e−W (H(t)) (4.10)
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where Λ(t) is the cumulative hazard and H(t) is the cumulative baseline hazard. Re-

call that the baseline covariates Z can be incorporated into the parameters governing

WHt or into H(t) itself. Also recall that because WHt is assumed to be completely

observed or exogenous, the model specification in (4.10) is mathematically valid. Go-

ing forward, we will exclude Z from our model specifications for brevity. Then, the

hazard function corresponding to the survival model represented by (4.10) is

dΛ(t|W̄t) = dW (H(t)) (4.11)

Estimation is done by maximizing the log-likelihood

l =
n∑
i=1

∆i ln
[
dΛ(Xi|W̄Xi)S(Xi|W̄Xi)

]
− (1−∆i)Λ(Xi|W̄Xi)

=
n∑
i=1

∆i ln
[
dΛ(Xi|W̄Xi)

]
− Λ(Xi|W̄Xi)

(4.12)

4.3.2 Marker Observed at Informative Measurement Time

It may be the case that the marker is measured at some informative observa-

tion time related to the event process. The most straightforward example is when

the marker is observed at the event time, in which case we have a marked survival

endpoint. For simplicity, we will assume that the marker is observed at a single

informative measurement time that is the event time. To set up a mathematically

valid and tractable model, we will make use of the mechanistic model specifications

in Section 4.2.2.1.

Let {Wt}0≤t≤τ be the underlying Lévy process defined on the horizon [0, τ ]. As our

model is specified on the H-transformed time scale, we can write WHt . We assume

a parameterization similar to Suresh (2018), where WHt is a scaled gamma process

with mean µHt and variance σ2Ht. Thus, WHt will follow a Gamma distribution with

shape αHt and scale β, where α = µ2

σ2 and β = σ2

µ
. We assume subjects will have a
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marker value V measured at their observed event time t only if the event is observed

to occur, i.e., we will have a bivariate outcome (t, Vt) for subjects who experience the

event and a univariate outcome t for those that do not. We assume that (1) Vt = Wt

for an underlying Lévy process W and (2) both V and W can be expressed on the

H-transformed time scale.

In the case of a marked survival endpoint, the joint distribution of the event time

T and the marker value observed at T can be written as

f(t, Vt) = f(t|Vx)|x=tf(Vt) = f(Vt|T = t)f(t) (4.13)

Considering the first expression in (4.13),

f(t|Vx)|x=t =

[
− d

dt
S(t|Vx)

]
x=t

=

[
− d

dt
E
{
S(t|W̄ )

∣∣Vx}]
x=t

=

[
− d

dt
E
{
e−W (Ht)

∣∣Vx}]
x=t

=

[
− d

dt
E
{
e−[V (Hx)+W (Ht−Hx)]

∣∣Vx}]
x=t

=

[
− d

dt
E
{
e−B{Ht}V (Hx)

∣∣Vx}]
x=t

f(Vt) =

∞∫
0

f(Vy|T = y)f(y)dy

=⇒ f(t|Vx)|x=tf(Vt) =

[
− d

dt
E
{
e−B{Ht}V (Hx)

∣∣Vx}]
x=t

×
∞∫

0

f(Vy|T = y)f(y)dy

(4.14)

Use of the first expression in (4.13) involves a complicated integral for the marginal

distribution of the marker in order to account for informative observation at the event

time. The explicit form of this integral is derived in Appendix C.1. In addition, the

final two lines in the expression for f(t|Vx)|x=t in (4.14) reflect the fact that the same

density should result whether we assume x < t or x > t.
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Use of the second expression in (4.13), however, results in a much simpler and

more straightforward joint model specification:

f(Vt|T = t) =
vαHt−1e−v/β

Γ(αHt)βαHt

f(t) = − d

dt
EW
{
e−W (Ht)

}
= − d

dt
LW (1) = − d

dt
(1 + β)−αHt

= αht ln(1 + β)(1 + β)−αHt

=⇒ f(Vt|T = t)f(t) =
vαHt−1e−v/β

Γ(αHt)βαHt
αht ln(1 + β)(1 + β)−αHt

(4.15)

where the marginal distribution of T in (4.15) is derived from the completely observed

model in (4.10) by taking the expectation with respect to the latent W . Note that

this expectation corresponds to the Laplace transform of a Gamma random variable.

If a subject does not have a marker value measured at their event time t, the

marginal survival and hazard functions can be derived from the model specified using

the completely observed marker W .

S(t) = EW
{
S(t|W̄ )

}
= EW

{
e−W (Ht)

}
= LW (1) = (1 + β)−αHt

dΛ(t) = −d lnS(t) = α ln(1 + β)dHt

(4.16)

The marginal functions in (4.16) are derived from the Laplace transform of a Gamma

random variable. Details for (4.13)-(4.16) are provided in Appendix C.1.

To set up the log-likelihood for estimation, we assume that subjects will have a

marker value observed only if they experience the event of interest. In this case, the

marker value VHXi will be observed at Xi for subjects with ∆i = 1. If ∆i = 0 and the

subject does not experience the event of interest, no marker measure will be observed.

Under this setup, the observed data for each subject is Oi = {Xi,∆i,Zi, VHτ |τ=Xi}ni=1.
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Estimation is done by maximizing the log-likelihood

l =
n∑
i=1

∆i ln
[
dΛ(Xi|VHτ )|τ=Xi · S(Xi|VHτ )|τ=Xi · gVHτ (Vi)|τ=Xi

]
+ (1−∆i) ln

[
S(Xi)

]
(4.17)

The likelihood in (4.17) uses the first joint model specification from (4.13). The

computationally simpler log-likelihood based on the equivalent model specification is

l =
n∑
i=1

∆i ln
[
f(VHXi |Xi) · f(Xi)

]
+ (1−∆i) ln

[
S(Xi)

]
(4.18)

Thus, estimation can be done by maximizing the log-likelihood in (4.18) instead.

4.3.3 Marker Observed at Set of Uninformative Measurement Times

We may also assume that each subject has a set of observed marker values mea-

sured at noninformative measurement times. In the simplest case, each subject may

have a single measurement at some time τ . Once more, let {Wt}0≤t≤τ be the underly-

ing Lévy process defined on the horizon [0, τ ]. Let B{t}[0,τ ] be the Lévy bridge process

starting at 0 and ending at 1 at time τ . Then, we can write the process Wt as the

bridge process B{t}[0,τ ] scaled by the observed value at time τ . As our model is speci-

fied on theH-transformed time scale, we can writeWHt = B{Ht}[0,Hτ ]VHτ . We assume

the same parameterization as in Section 4.3.2, where WHt will follow a Gamma distri-

bution with shape αHt and scale β, where α = µ2

σ2 and β = σ2

µ
. Then, B{Ht}[0,Hτ ] will

follow a Beta distribution with parameters a = αHt and b = α(Hτ −Ht), 0 ≤ t ≤ τ .
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Thus, the survival function conditional on a single observed marker value will be

S(t|VHτ ) =


EW̄
{
S(t|W̄Hτ )

∣∣VHτ} = EB
{
e−B{Ht}VHτ

∣∣VHτ}, 0 ≤ t < τ

EW̄
{
S(t|W̄Hτ )

∣∣VHτ} = EW̄
{
e−(VHτ+WHt−Hτ )

∣∣VHτ}, t ≥ τ

=


LB(VHτ ) = M(αHt, αHτ ,−VHτ ), 0 ≤ t < τ

e−VHτ (1 + β)−α(Ht−Hτ ), t ≥ τ

(4.19)

where M represents Kummer’s confluent hypergeometric function of the first kind,

which is the Laplace transform of a Beta-distributed random variable (Hoyle, 2010;

Suresh, 2018).

In many cases, subjects may have multiple marker measurements V collected at

a set of noninformative times τ = {τ1, . . . , τk}. At each τj, we assume VHτj = WHτj
.

Then the survival function conditional on V will be

S(t|V) =


e
−VHτk−1M

(
α(Ht −Hτk−1

), α(Hτk −Hτk−1
),−(VHτ − VHτk−1

)
)
, τk−1 ≤ t < τk

e
−VHτk (1 + β)−α(Ht−Hτk ), t ≥ τk

(4.20)

The survival function in (4.20) depends only on the marker values immediately be-

fore or after t. Without loss of generality, we assume that t falls between the last two

consecutive measurement times in the first case in (4.20). Note that in this partic-

ular case, we assume that occurrence of the event does not terminate observation of

the marker process, i.e., the event is non-terminal. From the survival function, the

conditional hazard can be calculated as

dΛ(t|V) =


− d
dt lnM

(
α(Ht −Hτk−1

), α(Hτk −Hτk−1
),−(VHτk − VHτk−1

)
)
dt, τk−1 ≤ t < τk

α ln(1 + β)dHt, t ≥ τk

(4.21)

For subjects with no observed marker measurements, the marginal survival and

78



hazard functions are given by

S(t) = (1 + β)−αHt

dΛ(t) = α ln(1 + β)dHt

(4.22)

The survival function in (4.22) will be equivalent to the one in (4.20) if τk = 0 and

VHτk = 0, for t ≥ τk. Note that the marginal functions in (4.22) also match those in

(4.16) from Section 4.3.2, as expected. Assuming τ0 = 0 and VHτ0 = 0 and using the

independent increments assumption, the joint distribution of all marker measurements

is given by

g(V) = g(VHτ1 , VHτ2 , . . . , VHτk )

= g(VHτ1 )g(VHτ2 |VHτ1 ) · · · · · g(VHτk |VHτk−1
)

=

k∏
j=1

(VHτj − VHτj−1
)α(Hτj−Hτj−1 )−1e

−(VHτj
−VHτj−1

)/β

Γ
(
α(Hτj −Hτj−1)

)
βα(Hτj−Hτj−1 )

(4.23)

Details are provided in Appendix C.2.

To set up the log-likelihood, we let δi be an indicator of whether subject i has

at least one observed marker value. The observed data for each subject is Oi =

{Xi,∆i,Zi, δi,Vi, τi}ni=1, where τi = {τij : j = 1, . . . , ki} is the set of ki measurement

times at which we observe W for subject i, and Vi = {VHτij : j = 1, . . . , ki} is the

set of corresponding observed marker values. Estimation is done by maximizing the

log-likelihood:

l =
n∑
i=1

∆i ln
{[
dΛ(Xi|Vi)S(Xi|Vi)g(Vi)

]δi[dΛ(Xi)S(Xi)
]1−δi}

+ (1−∆i) ln
{[
S(Xi|Vi)g(Vi)

]δiS(Xi)
1−δi
} (4.24)

In the present study, we focus largely on the case of a single marker observed at an

informative event time for methodological development. This case can be extended

further by incorporating (1) multiple uninformative observation times and a single
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informative observation time; (2) multiple informative observation times; (3) multiple

uninformative and informative observation times. Using the derivations in Sections

4.3.2 and 4.3.3, extensions to these additional cases are straightforward.

4.3.4 Nonparametric Estimation of the Cumulative Baseline Hazard

In the preceding sections, the likelihood was constructed using a general function

H(t) to represent the cumulative baseline hazard time transformation. The simplest

estimation method would assume a parametric function for H, as in Suresh (2018).

However, the assumption of a particular parametric form may not accurately describe

the true underlying hazard process. An alternative approach uses a nonparametric

estimator to approximate H(t).

Using ideas from Chapter II, we may use a Breslow-type estimator for the set

of jumps {dHt} observed at each event time to approximate the cumulative base-

line hazard function. We construct a martingale estimating equation based on the

marginal survival model S(t) = (1 + β)−αHt .

n∑
i=1

dNi(t) =
n∑
i=1

Yi(t)dΛ(t|Zi) =
n∑
i=1

Yi(t)αi ln(1 + βi)dHt

=⇒ d̂Ht =

∑n
i=1 dNi(t)∑n

i=1 Yi(t)αi ln(1 + βi)

=

∑n
i=1 I(Xi = t)∆i∑n

i=1 I(Xi ≥ t)αi ln(1 + βi)

(4.25)

where dNi = I(Xi = t,∆i = 1) is the increment of the observed counting process N

and Yi(t) = I(Xi ≥ t) is the at-risk process. The subscripts on α and β in (4.25)

indicate that the parameters are subject-specific. Note that the expression for d̂Ht

in (4.25) is obtained by applying the definition of a functional derivative. Use of the

marginal survival model allows for both subjects with marker values and subjects

without marker values to contribute to estimation of the cumulative baseline hazard

function.
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When H is estimated using the Breslow estimator in (4.25), the marker parameters

can be estimated using an iterative quasi-profile maximum likelihood algorithm. At

the first step, we assume α and β are known and Ĥ(0) can be computed from the

Nelson-Aalen estimator given in equation (4.26).

d̂Ht

NA
=

1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)

Ĥt

NA
=

t∫
0

1
n

∑n
i=1 dNi(s)

1
n

∑n
i=1 Yi(s)

(4.26)

The following steps are repeated until convergence is achieved, meaning that the

difference between consecutive estimators is less than a pre-specified tolerance ξ:

1. For fixed α(k), β(k), obtain Ĥ(k+1) from equation (4.25) by estimating the set of

jumps {dH} at the observed failure times. This is done by recurrently solving

an equation for each jump.

2. Update α(k+1), β(k+1) by maximizing the log-likelihood using Ĥ(k+1).

Asymptotic results for the marker parameters estimated using the Breslow-estimated

H are expected to be close to the maximum likelihood estimators based on the re-

sults of Chapter II. Due to the structure of the proposed joint model, the variances

may have complex expressions, but they can be approximated empirically via the

bootstrap procedure.

4.4 Simulation Study

To assess the finite-sample properties of the proposed estimators, we evaluated

their performance in multiple simulation settings for a marked survival endpoint.

The settings are modified from the ones used in Suresh (2018). We consider a single

time-independent baseline covariate Z ∼ Bernoulli(0.3). The baseline cumulative
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hazard function is assumed to be Weibull with Ht = t2, implying increasing baseline

hazards. The true failure time T for each subject was simulated from the marginal

model given in (4.16), with the appropriate marker parameters substituted. A Gamma

marker value was simulated at the event time T assuming µ = exp{ν0 + ν1Z} and

σ2 = exp{η0 + η1Z}. In all simulations, ν0 was restricted to be 0 for identifiability.

The true parameter values were (ν1, η0, η1) = (0.3,−2.1, 0.5), as in Suresh (2018).

Uniform censoring over the interval (0, c) was assumed with c = 4 and c = 3 cor-

responding to approximately 20% and 30% censoring, respectively. Sample sizes of

250, 500, and 1,000 were considered. For each simulation setting, 1,000 data sets were

generated. A summary of all simulation settings is provided in Table 4.1.

In each simulation, estimates resulting from use of a parametric Weibull cumula-

tive baseline hazard function and a nonparametric Breslow-type estimator of H were

compared. For simulations based on the Breslow estimator of H, standard errors were

estimated using parametric bootstrap samples. One-hundred bootstrap samples were

taken per simulation, and the standard errors of each parameter were estimated as

the standard deviation of the respective bootstrap sample estimates. Further details

on the simulations are provided in Appendix C.3.

Table 4.1: Settings used in simulation study. n represents the sample size. k and λ are
parameters of the Weibull baseline hazard function. Z ∼ Bernoulli(p). ν1 and (η0, η1)
relate to mean and variance, respectively, of the Gamma process representing the
marker. c = administrative censoring time. Exp Censoring = % censoring anticipated.
Obs Censoring = % censoring observed.

Setting n k λ p ν1 (η0, η1) c Exp Censoring Obs Censoring

1 250 2 1 0.3 0.3 (-2.1, 0.5) 4 20% 21.8%
2 250 2 1 0.3 0.3 (-2.1, 0.5) 3 30% 29.2%
3 500 2 1 0.3 0.3 (-2.1, 0.5) 4 20% 21.9%
4 500 2 1 0.3 0.3 (-2.1, 0.5) 3 30% 29.1%
5 1000 2 1 0.3 0.3 (-2.1, 0.5) 4 20% 21.9%
6 1000 2 1 0.3 0.3 (-2.1, 0.5) 3 30% 29.2%
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Results of the simulations based on a parametric H are given in Tables 4.2 and 4.3.

Overall, the estimates exhibit little bias and have coverage near the expected level of

95%. Average standard errors (ASEs) and empirical standard deviations (ESDs) are

in good agreement for each parameter. In general, the ASEs and ESDs for the settings

with c = 4, corresponding to approximately 20% censoring, are slightly lower. From

Table 4.3, estimates of k and λ, the parameters governing the underlying Weibull

cumulative baseline hazard function, are unbiased with ASEs and ESDs that are

equal in each setting. Coverage probabilities for k and λ are close to the nominal

95% level as well.

Table 4.2: Simulation study results with parametric Weibull H. True parameter
values are (ν1, η0, η1) = (0.3,−2.1, 0.5). Est = average estimate across all simulations.
ASE = average standard error. ESD = empirical standard deviation. CP (%) =
coverage probability for 95% Wald-based interval.

Setting
ν1 η0 η1

Est ASE ESD CP Est ASE ESD CP Est ASE ESD CP
1 0.30 0.06 0.06 95.4 -2.12 0.12 0.12 94.6 0.48 0.24 0.24 94.3
2 0.30 0.06 0.06 95.3 -2.13 0.13 0.13 94.8 0.50 0.25 0.26 94.7
3 0.30 0.04 0.04 95.0 -2.11 0.09 0.09 96.0 0.48 0.17 0.17 95.2
4 0.30 0.04 0.04 93.8 -2.11 0.09 0.09 95.0 0.49 0.18 0.18 94.8
5 0.30 0.03 0.03 94.5 -2.10 0.06 0.06 95.2 0.49 0.12 0.12 95.5
6 0.30 0.03 0.03 94.4 -2.10 0.06 0.06 94.7 0.49 0.12 0.13 93.8

Table 4.3: Simulation study results using Weibull H. True Weibull hazard parameter
values are (k, λ) = (2, 1). Est = average estimate across all simulations. ASE =
average standard error. ESD = empirical standard deviation. CP (%) = coverage
probability for 95% Wald-based interval.

Setting
k λ

Est ASE ESD CP Est ASE ESD CP
1 2.00 0.05 0.05 95.4 1.00 0.02 0.02 94.7
2 2.00 0.06 0.06 94.0 1.00 0.02 0.02 94.7
3 2.00 0.04 0.04 95.5 1.00 0.01 0.01 95.4
4 2.00 0.04 0.04 95.2 1.00 0.01 0.01 95.5
5 2.00 0.03 0.03 93.5 1.00 0.01 0.01 95.3
6 2.00 0.03 0.03 94.9 1.00 0.01 0.01 94.5
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Simulation results based on the Breslow-estimated H are presented in Table 4.4.

Parameter estimates exhibit slight bias for small sample sizes, particularly for the

variance parameters η0 and η1. However, as the sample size increases, bias decreases

and average parameter estimates approach the true values. There is generally good

agreement between the bootstrap ASEs and ESDs. For, η1, however, there are no-

ticeable differences for small samples, but these decrease as the sample size increases.

Coverage probabilities for ν1 are close to the nominal 95% level, but for η0 and η1,

they are inflated, suggesting that the intervals are conservative. These parameters

model the variance of the marker process, which may be difficult to ascertain based

on a single observed value. With multiple marker measures at informative or uninfor-

mative times, coverage would likely be closer to 95%. Nonetheless, with large sample

sizes, coverage should approach the nominal level. Based on these trends, we expect

that asymptotically, the estimators will be unbiased with 95% confidence intervals

that achieve proper coverage.

Table 4.4: Simulation study results with Breslow estimated H. True parameter val-
ues are (ν1, η0, η1) = (0.3,−2.1, 0.5). Est = average estimate across all simulations.
ASEB = average standard error estimated from bootstrap samples. ESD = empirical
standard deviation. CPB (%) = coverage probability for 95% Wald-based interval
constructed using bootstrap standard error.

Setting
ν1 η0 η1

Est ASEB ESD CPB Est ASEB ESD CPB Est ASEB ESD CPB
1 0.28 0.14 0.12 96.9 -1.94 0.24 0.21 97.3 0.36 0.46 0.35 98.8
2 0.29 0.14 0.13 96.6 -1.95 0.25 0.22 96.2 0.39 0.48 0.37 99.3
3 0.29 0.09 0.09 95.7 -2.01 0.15 0.14 97.2 0.42 0.30 0.24 98.5
4 0.29 0.10 0.09 96.0 -2.01 0.16 0.14 96.6 0.43 0.32 0.25 98.7
5 0.30 0.06 0.06 94.9 -2.05 0.10 0.09 96.9 0.46 0.21 0.17 98.2
6 0.30 0.07 0.06 95.7 -2.06 0.11 0.10 97.0 0.46 0.22 0.17 98.2

4.5 SEER Data Analysis

We apply the proposed joint model to prostate cancer incidence data collected by

the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)
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program. In SEER incidence data, PSA is collected at the age of diagnosis for men

diagnosed with prostate cancer in a given year, thus this is an example of a marked

survival endpoint. Incidence data for 1973-2013 were obtained from the SEER reg-

istry. This database includes PSA values in the range of 0.0 ng/mL to 97.9 ng/mL.

Any values ≥ 98.0 ng/mL were discarded due to these representing missing values.

Prior work has investigated the error rate of PSA values reported in SEER and found

that the error was less than 10% (Adamo et al., 2016; Schultheiss et al., 2016), thus

it is reasonable to use the PSA values reported in SEER for the purposes of method-

ological illustration. More details about the SEER registry and how PSA information

is collected and coded can be found at https://seer.cancer.gov/.

In the incidence data, PSA was only recorded for patients diagnosed between 2010

and 2013, so analysis was restricted to patients diagnosed during this interval. In ad-

dition, analysis was restricted to men aged 40-84. The primary covariate we consider

is race, which is coded as White, Black, or Other. Less than 5% of men diagnosed

with prostate cancer between 2010 and 2013 were of Other races, thus analysis fo-

cused on the subset of White and Black men.

SEER incidence data only records men diagnosed with prostate cancer. In order

to calculate the survival curve for time to diagnosis with prostate cancer, information

on the risk set at each age of diagnosis in a given calendar year is needed. Population

counts for the years 1969-2017 were downloaded from the SEER registry. Risk set

information for men of each race category considered for analysis (White or Black)

for the years 2010-2013 was used.

Because the risk set is presented in terms of group counts, to perform estimation,

we must rewrite the log-likelihood in (4.18) to be compatible with cross-sectional risk

set information. This can be done by expressing the log-likelihood in counting process
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notation:

l =

τ∫
0

n∑
i=1

dNi(u)
[

ln
(
f(VHu|u,Zi)

)
+ ln

(
dΛ(u|Zi)

)]
−
∑
zm∈Z

Ym(u)dΛ(u|zm) (4.27)

where dNi(u) = I(Xi = u,∆i = 1) is the increment of the counting process N , zm is a

covariate value in the set of all unique covariate values Z, and Ym(u) =
∑n

i=1 I(Xi ≥

u,Zi = zm) is the at-risk indicator for all subjects at risk at time u with covariate

value zm. A detailed derivation of (4.27) is given in Appendix C.4. Note that the

first sum in (4.27) is taken over individual subjects who are diagnosed with prostate

cancer and have PSA available, whereas the second sum is over unique covariate val-

ues and is for the entire set at risk at time u.

PSA is modeled as a Gamma process with mean µH(t) and variance σ2H(t),

where µ is specified as exp{ν0 + ν1I(Race=Black)} and σ2 is specified as exp{η0 +

η1I(Race=Black)}. A common H(t) is estimated using the Breslow-type estimator

defined in (4.25). Standard errors of the marker parameters were estimated using 100

bootstrap samples of the set of men diagnosed with prostate cancer. Marker param-

eters were estimated separately for years 2010, 2011, 2012, and 2013. For illustrative

purposes, we present only the results of the year 2010.

In total, 157,857 men had PSA available at the age of diagnosis for the years

2010 to 2013. Of this group of men, 43,018 (27.3%) were diagnosed in 2010, 43,406

(27.5%) were diagnosed in 2011, 36,538 (23.1%) were diagnosed in 2012, and 34,895

(22.1%) were diagnosed in 2013. Observed survival curves summarized using the

Kaplan-Meier method for time to prostate cancer diagnosis stratified by race and the

distribution of PSA values for the year 2010 are displayed in Figures 4.1 and 4.2,

respectively. From Figure 4.1, Black men tend to be diagnosed earlier compared to

White men. The marginal distribution of PSA values in Figure 4.2 is right-skewed

with mean and median values of 9.3 ng/mL and 6.1 ng/mL, respectively.
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Figure 4.1: Observed age of prostate
cancer diagnosis by race, 2010.
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Figure 4.2: Distribution of PSA at age of
prostate cancer diagnosis, 2010.

A summary of our marker parameter estimates for 2010 is given in Table 4.5.

Using a Wald-based test with the bootstrap standard error, each estimate is statis-

tically significant at the α = 0.05 level. In particular, the significance of ν1 and

η1 indicate significant differences in the mean and variance of the underlying PSA

process observed at age of diagnosis by race.

Table 4.5: Marker parameter estimates in 2010. 95% Wald-based interval constructed
using bootstrap standard error. p-value estimated using Wald Z value = Est

Bootstrap SE
.

Parameter Estimate Bootstrap SE 95% CI p
ν0 2.811 0.006 (2.798, 2.824) < 0.001
ν1 0.775 0.022 (0.733, 0.818) < 0.001
η0 6.255 0.014 (6.228, 6.283) < 0.001
η1 1.036 0.040 (0.958, 1.114) < 0.001

Estimated and observed curves for time to diagnosis are displayed in Figure 4.3

with 95% Wald-based confidence bands obtained using the bootstrapped standard

errors. Use of the Breslow estimator for H results in a close fit between the estimated

and observed curves, particularly for White men. For Black men, there is separation
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between the observed and estimated curves at the tail, but overall, the fitted survival

curve accurately describes the shape of the observed curve. We conduct a likelihood

ratio test for the null hypothesis that there is no difference between µ and σ2 by race,

which is equivalent to testing H0 : ν1 = 0, η1 = 0. We observe a significant difference

(p < 0.001), confirming the results in Table 4.5 and providing further evidence of a

difference in the underlying distribution of the PSA process related to prostate cancer

diagnosis by race.
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Figure 4.3: Observed (solid) and estimated (dashed) survival curves for time to
prostate cancer diagnosis for men diagnosed in 2010. 95% Wald-based confidence
bands (dotted) constructed using bootstrap standard errors.

The tables and figures analogous to Table 4.5 and Figures 4.1-4.3 for years 2011,

2012, and 2013 are included in Appendix C.5.
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4.6 Discussion

We have developed a novel joint model where the partially observed biomarker is

modeled using a stochastic process from the Lévy family. Use of a stochastic model for

the biomarker avoids restriction of patterns to a given functional form. In addition, it

accounts for biological variability by incorporating individual fluctuations. While we

make use of the Gamma process due to its tractability and attractive mathematical

properties, our model can be generalized by considering alternative Lévy processes

as long as they satisfy the conditions for the hazard and cumulative hazard function.

In our model, the marker is subordinated by the cumulative baseline hazard function

H(t), essentially representing the fact that time is on the scale of accumulated risk.

The benefit of using this approach is that is allows for greater flexibility in modeling

the marker process.

We consider both a parametric function for H and estimating H using the Breslow-

type estimator derived from a martingale estimating equation based on the marginal

survival model. Our results demonstrate the potential to use a Breslow-approximated

H in large samples. The poorer performance of the Breslow estimator relative to a

parametric form for H in small samples is in line with the general loss in power as-

sociated with nonparametric methods. Based on the results in Chapter II, we expect

estimates based on the Breslow estimator to be close to those derived using the non-

parametric maximum likelihood estimator (NPMLE) of H, which can be obtained by

maximizing the log-likelihood with respect to the jump at any event time. While we

approximate the standard errors of our marker parameter estimators using the para-

metric bootstrap procedure, closed forms may be derived using a partial likelihood

argument. We plan to investigate this in future work.

For model development and illustration, we focused in particular on the case of

marked survival wherein the continuous marker is observed at the event time for sub-

jects who experience the event of interest. While our work largely focused on the
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marked survival model, the methods we develop can also be applied to settings with

longitudinally collected biomarkers. Previous work has investigated marked survival

endpoints with a categorical mark (Hu and Tsodikov , 2014). In Hu and Tsodikov

(2014), the mark of interest was stage of disease for investigating time to recurrence

for breast cancer. Using the framework developed in Chapter III, we construct math-

ematically valid joint models in the case of marked survival with a continuous mark.

In our study, we consider application of our method to the continuous biomarker

PSA and time to diagnosis with prostate cancer. In SEER data where PSA is known

at the age of diagnosis, our method performed well and provided good fit to the ob-

served survival curves stratified by race. We observed a significant difference in the

mean and variance of the underlying PSA process observed at the age of prostate

cancer diagnosis by race. This difference may be due to socioeconomic differences

between the two groups, differences in access to healthcare, or differences in PSA

screening. Our findings are hypothesis generating and may be used to drive changes

in screening practices in order to eliminate the observed disparity between White and

Black men.

Part of what sets our method apart from other joint modeling approaches is the

survival model we propose conditional on the observed history of the marker pro-

cess. We make use of the ideas explored in Chapter III regarding the incorporation

of endogenous time-varying covariates into survival models. Namely, we first specify

the survival at time t conditional on the fixed marker history observed up to time

x and then substitute x = t once the model is fully specified. This allows us to

construct a model that is mathematically well-defined, satisfies the exponential rela-

tionship between the survival and hazard functions, and is consistent with intuition.

However, the complexity of the marginal distribution in this specification of the joint

model makes maximum likelihood estimation difficult. Because we consider a marked

survival endpoint, we may reexpress the joint distribution in a way that makes es-
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timation more straightforward. Our simulation results demonstrate that use of this

equivalent form of the joint model results in proper inference.

One potential weakness of our model is the need for a large sample size in order to

achieve identifiability of the parameters and appropriate performance of the Breslow

estimator. Estimation of parameters governing the variance of the marker process

may be especially difficult to estimate when only a single marker value is observed,

and this may be even more difficult in small samples. Thus, a large sample size

and adequate variability among subjects in marker values may be needed to reliably

estimate parameters. This may be why the results based on SEER data, which is

collected at the population level, exhibit much better fit relative to the simulation

results, which were based on samples consisting of no more than 1,000 subjects, with

only a subset of subjects having marker data available. In small samples, it may be

better to assume a parametric form for H in order to obtain unbiased estimates of

the marker parameters. In our SEER analysis, we use PSA as the marker of interest.

While there has been controversy surrounding the use of PSA in the diagnosis and

surveillance of prostate cancer, we focus on its use as a marker for the purposes of

model development. In this work, we do not seek to comment on its performance

as a diagnostic marker for prostate cancer. In addition, we consider race as the sole

covariate, but there is the potential to adjust for other factors such as socioeconomic

status or healthcare access that may explain part of the difference we observed be-

tween White and Black men.

There are many potential extensions to this work. First, we can explore incorpo-

rating potential measurement error in the marker process as PSA may be observed

with some uncertainty. In addition, we may want to extend our method to incorpo-

rate multiple markers. One relatively straightforward way is to assume an additive

effect of the markers on survival. Assuming we have markers M1 and M2 both > 0,

we can write the conditional survival function as S(t|M̄1, M̄2) = e−[M1(Ht)+M2(Ht)].
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Alternative ways to incorporate multiple continuous marks can be explored further.

Another natural extension would be to consider combinations of uninformative and

informative observation times and specifying joint models in the stochastic marker

framework for a multivariate survival outcome. We can also consider relaxing the

proportional hazards structure inherent to the marginal survival model we developed

and utilizing alternative estimators of the cumulative baseline hazard function H(t).
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CHAPTER V

Conclusion

In this dissertation, we aim to extend semiparametric survival models to settings

where longitudinal biomarker data may provide additional information regarding a

patient’s risk of experiencing disease-related events. In particular, we focus on the

case where the marker of interest is endogenous or “internal.” The methods explored

in this dissertation can be widely applied in clinical research. With the advent of

screening for a variety of diseases and increased interest in personalized treatment

decisions, the methods developed in this dissertation can hopefully extend the utility

of longitudinally collected markers that may act as surrogates for the underlying dis-

ease process.

In Chapter II, we focused on comparing two estimators of the cumulative baseline

hazard function in the class of semiparametric transformation models for survival

data. The two estimators of interest were the nonparametric maximum likelihood

estimator (NPMLE) and a Breslow-type estimator derived from a martingale esti-

mating equation. The principal difference between the two estimators stems from

dependence on the future: the NPMLE relies on future data for predictions of esti-

mated risk, whereas the Breslow-type estimator relies solely on event information at

the current point in time. We derive the asymptotic relative efficiency of the Breslow-

type estimator and demonstrate via simulation that there are settings in which the
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Breslow-type estimator is slightly more efficient than the NPMLE. The asymptotic

relative efficiency was shown to be reliant on the censoring horizon, the covariate

distribution, and true regression parameter values.

As interest in semiparametric survival models lies in the regression parameters,

we compared the estimates of such parameters resulting from applying either the

NPMLE or Breslow-type estimator in finite samples. We demonstrated that despite

the perceived inefficiency of the Breslow-type estimator, it had nearly identical per-

formance to the NPMLE in terms of variance, and average estimates of regression

parameters were close as well. Thus, the Breslow-type estimator may be utilized

with minimal loss of efficiency in finite samples, and it may be preferred for certain

interim analyses. However, caution is needed before applying the Breslow-type esti-

mator in place of the NPMLE in all survival models, and further investigation of the

relative efficiency under more complex censoring mechanisms and in the presence of

endogenous time-varying covariates is needed. Nonetheless, the Breslow-type estima-

tor represents a conceptually and computationally simpler alternative to the NPMLE

that may be used in a variety of survival models with minimal loss of efficiency.

In Chapter III, we reexamine the role of internal or endogenous time-varying co-

variates in survival models. We explore the differences between endogenous covariates

and external or exogenous covariates. The current approach, based largely on intu-

ition, ignores any potentially useful information these covariates may provide beyond

the event time. Ignoring future covariate information may result in less accurate risk

predictions. In fact, we demonstrate via the mathematical definition of an endoge-

nous covariate that the hazard of failure at any time u conditional on the marker

history up to u is related to the future path of the marker up to time t, where t > u.

Through this inherent dependence on the future, we formulate the difference between

endogenous and exogenous covariates as a missing data problem, where the future

trajectory of the marker constitutes the missing data.
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Through this formulation, we mechanistically define a survival function condi-

tional on the history of an endogenous marker. Our survival function utilizes the

future marker trajectory as a latent variable that is averaged out given the observed

marker trajectory. As a consequence, our survival function satisfies all the necessary

properties and also has a legitimate exponential form that links the hazard and sur-

vival functions. As part of our discussion on exogenous and endogenous covariates, we

clarify that the legitimacy of the exponential form relates to continuity of the event

time T , which may be influenced by the marker. However, there is no one-to-one cor-

respondence between the type of time-varying covariate and whether the exponential

form will be valid.

We illustrate our novel survival function through bivariate shared frailty models,

bivariate semicompeting risks-type models, and threshold regression models. Through

each example, we highlight the shortcomings of the current understanding of time-

varying covariates and the utility of our modeling approach. The examples we con-

sider represent a subset of settings where endogenous marker information may be

available, and further study is needed to grasp how our survival function may be ap-

plied to other models. Regardless, the benefit of our framework is that it is general,

and we anticipate it being applied to a variety of settings with endogenous markers.

In Chapter IV, we apply the model developed in Chapter III to the setting of a

joint model of survival and biomarker data. In traditional joint models, a model for

survival conditional on the marker and a model for the marker are separately spec-

ified but linked through shared latent factors. In the specific context we consider,

the biomarker is measured longitudinally at a set of measurement times, where these

times may be uninformative (e.g. scheduled clinic visits) or related to the event time

of interest. The simplest informative observation time we consider is the event time

T itself, known as “marked survival.” We specify the survival submodel using the

general mechanistic model developed in Chapter III, where we take the expectation
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over the latent marker trajectory conditional on the observed marker values. We

specify the marker as a time-transformed Lévy stochastic process, which allows for

greater flexibility and maintains necessary properties of the hazard and cumulative

hazard functions. The specific transformation we consider is the cumulative baseline

hazard function itself. We demonstrate that our model results in unbiased estimates

when a parametric time transformation is used, and there is potential to use a non-

parametrically estimated transformation.

One drawback associated with our proposed joint model is that it is heavily de-

pendent on the specific properties of the marker process model. In our setup, we

considered the Gamma process due mathematical tractability and its inherent mono-

tonicity. However, further extensions of our model could make use of alternative

processes from the Lévy family. Additionally, our method utilizes either a parametric

form or a Breslow-type estimator for the cumulative baseline hazard. Use of the Bres-

low estimator required a large sample size for unbiased estimates. Based on results

from Chapter II, we expect minimal loss of efficiency relative to the NPMLE due to

the use of this estimator. While our simulation results demonstrate the promise of

using the Breslow-type estimator in estimation of the marker parameters, the asymp-

totic properties of our estimators need to be investigated further to ensure proper

inference.

An extension to the marker process model we developed would be to incorpo-

rate measurement error as the observed value may not be exactly equal to the true

value. To ensure desirable mathematical properties, we may be limited to a subset

of possible models. Two examples that may be explored, as in Suresh (2018), are the

compound Gamma model and the Normal-Gamma model. Introducing an additional

layer of modeling could also allow marker values to exhibit non-monotonic behavior

over time, which is likely the case for longitudinally collected biomarkers.

The methods explored in this dissertation are widely applicable to clinical research
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studies. They are particularly suitable to settings in which survival and biomarker

data are collected with the aim of using both types of data to predict subject-specific

risk of experiencing a failure of interest. Our methods can be applied when the

biomarker is collected at uninformative or informative observation times, most no-

tably when the marker is measured at the event time. We make use of previous ideas

in survival analysis and stochastic process theory to develop our methods. We hope

that this work extends the current understanding of incorporating biomarkers into

survival models, and we anticipate further avenues of research related to the ideas

explored in this dissertation.
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APPENDIX A

Efficiency of the Breslow Estimator in

Semiparametric Transformation Models

A.1 Expectation of Weight in NPMLE

Using the Law of Total Expectation, martingale properties, and assuming u ≥ t

E(wi(Ht|β,Zt,i)) = E

(
1−

∫ τ
t+

[
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
dMi(u)

Θ0(Ht|β,Zt,i)

)
= 1− E

(∫ τ
t+

[
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
dMi(u)

Θ0(Ht|β,Zt,i)

)
= 1− E

{
E

(∫ τ
t+

[
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
dMi(u)

Θ0(Ht|β,Zt,i)

∣∣∣∣Ft−)}
= 1− E

{∫ τ
t+ E

(
E
([

Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)
]
dMi(u)|Fu−

)
|Ft−

)
Θ0(Ht|β,Zt,i)

}
= 1− E

{∫ τ
t+ E

([
Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)

]
E
(
dMi(u)|Fu−

)
|Ft−

)
Θ0(Ht|β,Zt,i)

}
= 1− 0

= 1

(A.1)
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A.2 Derivation of Profile Likelihood Score Equations

Let l = l(β, H) denote the log-likelihood. The score equation for the jump dHt

given β is

UdHt (β) =
∂

∂dHt

{ n∑
i=1

τ∫
0

dNi(u)
[

ln(Θ0(Hu|β,Zu,i)) + ln(dHu)
]
− Yi(u)Θ0(Hu|β,Zu,i)dHu

}

=
n∑
i=1

τ∫
0

dNi(u)

[
∂

∂dHt
ln(Θ0(Hu|β,Zu,i)) +

∂

∂dHt
ln(dHu)

]
− Yi(u)

∂

∂dHt
Θ0(Hu|β,Zu,i)dHu

=

n∑
i=1

τ∫
0

dNi(u)

[ ∂
∂dHt

Θ0(Hu|β,Zu,i)
Θ0(Hu|β,Zu,i)

+

∂
∂dHt

dHu

dHu

]
− Yi(u)

[
∂Θ0(Hu|β,Zu,i)

∂dHt
dHu + Θ0(Hu|β,Zu,i)

∂dHu

∂dHt

]

=
n∑
i=1

τ∫
0

dNi(u)

[
Θ̇0(Hu|β,Zu,i)I(u ≥ t)

Θ0(Hu|β,Zu,i)
+
I(u = t)

dHu

]
− Yi(u)

[
Θ̇0(Hu|β,Zu,i)I(u ≥ t)dHu + Θ0(Hu|β,Zu,i)I(u = t)

]

=
n∑
i=1

dNi(t)

dHt
− Yi(t)Θ0(Ht|β,Zt,i) +

τ∫
t+

dNi(u)
Θ̇0(Hu|β,Zu,i)
Θ0(Hu|β,Zu,i)

− Yi(u)Θ̇0(Hu|β,Zu,i)dHu

=

n∑
i=1

dNi(t)

dHt
− Yi(t)Θ0(Ht|β,Zt,i) +

τ∫
t+

∂

∂Hu
ln(Θ0(Hu|β,Zu,i))

[
dNi(u)− Yi(u)Θ0(Hu|β,Zu,i)dHu

]

=

n∑
i=1

dNi(t)

dHt
− Yi(t)Θ0(Ht|β,Zt,i) +

τ∫
t+

{Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)}
[
dNi(u)− Yi(u)Θ0(Hu|β,Zu,i)dHu

]

=

n∑
i=1

dNi(t)

dHt
− Yi(t)Θ0(Ht|β,Zt,i) +

τ∫
t+

[Θ0(Hu|β,Zu,i)−Θ1(Hu|β,Zu,i)]dMi(u)

(A.2)

where Θ̇c denotes the first partial derivative of Θc with respect to the argument H.

The profile likelihood score equation for β given the estimator Ĥ(β) is

Uβ =
∂l(β, Ĥ(β))

∂β

=
∂

∂β

{ n∑
i=1

τ∫
0

dNi(u)
[

ln(Θ0(Ĥu(β)|β,Zu,i)) + ln(d̂Hu(β))
]
− Yi(u)Θ0(Ĥu(β)|β,Zu,i)d̂Hu(β)

}

=

n∑
i=1

τ∫
0

dNi(u)

∂
∂βΘ0(Ĥu(β)|β,Zu,i)

Θ0(Ĥu(β)|β,Zu,i)
− Yi(u)

∂

∂β
Θ0(Ĥu(β)|β,Zu,i)d̂Hu(β)

=

n∑
i=1

τ∫
0

∂

∂β
ln(Θ0(Ĥu(β)|β,Zu,i))

[
dNi(u)− Yi(u)Θ0(Ĥu(β)|β,Zu,i)d̂Hu(β)

]

=

n∑
i=1

τ∫
0

∂

∂β
ln(Θ0(Ĥu(β)|β,Zu,i))d̂M i(u)

(A.3)
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where d̂M is understood to be the increment of the martingale process with d̂H(β)

substituted for dH.

We want to express both of these scores as martingale transforms. For brevity, we

use Θc to represent Θc(Ht|β,Zt) and suppress the profile likelihood notation. The

normalized scores based on a sample of size n can be expressed as

Un(β) =
1

n

n∑
i=1

τ∫
0

∂

∂β
ln(Θ0

i )dMi(u)

Un(Ht) =
1

n

n∑
i=1

dMi(t)

dHt
+

τ∫
t+

[Θ0
i −Θ1

i ]dMi(u)

Note that the score for β is already in the form of a martingale transform. Let us

consider the score for H.

t∫
0

Un(Hx)dHx =

t∫
0

{
1

n

n∑
i=1

dMi(x)

dHx
+

τ∫
x+

[Θ0
i −Θ1

i ]dMi(u)

}
dHx

=
1

n

n∑
i=1

t∫
0

dMi(x)

dHx
dHx +

t∫
0

τ∫
x+

[Θ0
i (u)−Θ1

i (u)]dMi(u)dHx

=
1

n

n∑
i=1

t∫
0

dMi(x)

dHx

τ∫
x+

I(u = x)dHu +

t∫
0

τ∫
x+

[Θ1
i (u)−Θ1

i (u)]dMi(u)dHx

=
1

n

n∑
i=1

t∫
0

τ∫
x+

dMi(u)

dHu
I(u = x)dHu + [Θ0

i (u)−Θ1
i (u)]dMi(u)dHx

=
1

n

n∑
i=1

τ∫
0

min(u,t)∫
0

dMi(u)

dHu
I(u = x)dHu + [Θ0

i (u)−Θ1
i (u)]dHxdMi(u)

(switch order of integration)

=
1

n

n∑
i=1

τ∫
0

dMi(u)

min(u,t)∫
0

I(u = x) +

τ∫
0

[Θ0
i (u)−Θ1

i (u)]dMi(u)

min(u,t)∫
0

dHx

=
1

n

n∑
i=1

τ∫
0

dMi(u)I(u < t) +

τ∫
0

[Θ0
i (u)−Θ1

i (u)]dMi(u)H(min(u, t))

=
1

n

n∑
i=1

τ∫
0

{
I(u < t) + [Θ0

i (u)−Θ1
i (u)]H(min(u, t))

}
dMi(u)

Since this expression does not depend on t for u < t, Un(Ht) can be expressed as a

martingale transform.
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A.3 Asymptotic Difference of d̂Ht

B
and d̂Ht

W

The asymptotic difference between the two estimators of the jump dHt is

√
n(d̂Ht

B
− dHt)−

√
n(d̂Ht

W
− dHt) =

√
n(d̂Ht

B
− d̂Ht

W
)

=
√
n

( 1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

−
1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

)
=
√
n

( 1
n

∑n
i=1 dNi(t)

{
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
}
− 1

n

∑n
i=1 dNi(t)

{
1
n

∑n
i=1 Yi(t)Θ

0
i

}
1
n

∑n
i=1 Yi(t)Θ

0
i

{
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
} )

=
√
n

(
−

{
1
n

∑n
i=1 dNi(t)

}{
1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
}{

1
n

∑n
i=1 Yi(t)Θ

0
i

}{
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
})

=
√
n

( 1
n

∑n
i=1 dNi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

·
− 1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

)
=
√
n

( 1
n

∑n
i=1 dNi(t)− Yi(t)Θ0

i dHt + Yi(t)Θ
0
i dHt

1
n

∑n
i=1 Yi(t)Θ

0
i

·
− 1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

)
=
√
n

([ 1
n

∑n
i=1 dMi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

+
1
n

∑n
i=1 Yi(t)Θ

0
i dHt

1
n

∑n
i=1 Yi(t)Θ

0
i

]
·

− 1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

)
=
√
n

([ 1
n

∑n
i=1 dMi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

+ dHt

]
·

− 1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

)

=

1√
n

∑n
i=1 dMi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

·
− 1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
+

−dHt√
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

1
n

∑n
i=1 Yi(t)Θ

0
i −

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

= A+B

(A.4)

First consider A. By Lenglart’s inequality, with u′ = u− t as a transformation of

the time scale,

P

(
sup
u′≤τ ′

{
− 1

n

n∑
i=1

t′∫
0

[Θ0
i −Θ1

i ]dMi(u
′)

}
≥ ε
)
≤ η

ε
+ P

( τ ′∫
0

1

n2

n∑
i=1

[Θ0
i −Θ1

i ]
2Yi(u

′)Θ0
i dHu′ ≥ η

)

≤ η

ε
+ P

( τ ′∫
0

1

n2
· nc · dHu′ ≥ η

)
assuming Z is finite

=
η

ε
+ P

(
c

n

τ ′∫
0

dHu′ ≥ η
)

=
η

ε
+ P

(
c

n
Hτ ′ ≥ η

)
(A.5)
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For any ε > 0, we can find η to make (A.5) arbitrarily close to 0 as n→∞. Thus,

1

n

n∑
i=1

τ ′∫
0

[Θ0
i −Θ1

i ]dMi(u
′) =

1

n

n∑
i=1

τ∫
t+

[Θ0
i −Θ1

i ]dMi(u)
p−→ 0 (A.6)

By the Law of Large Numbers,

1

n

n∑
i=1

Yi(t)Θ
0
i

p−→ EZt
{
S∗T |Zt(t)G

∗
C|Zt(t)Θ

0
}
> 0 (A.7)

Applying the Continuous Mapping Theorem, the Law of Large Numbers, Lenglart’s

inequality, and Slutsky’s Theorem with
p−→ gives

1
n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)
1
n

∑n
i=1 Yi(t)Θ

0
i − 1

n

∑n
i=1

∫ τ
t+

[Θ0
i −Θ1

i ]dMi(u)

p−→ 0 ·
{
S∗T |Zt(t)G

∗
C|Zt(t)Θ

0 − 0
}−1

= 0 (A.8)

Now,

E

( 1√
n

∑n
i=1 dMi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

)
= E

(
E

( 1√
n
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∑n
i=1 Yi(t)Θ

0
i

)
= 0

V ar

( 1√
n
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=
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(A.9)

By the Central Limit Theorem,
1√
n

∑n
i=1 dMi(t)

1
n

∑n
i=1 Yi(t)Θ

0
i

d−→ N
(
0, dHt

EZt (S
∗
T |Zt

(t)G∗
C|Zt

(t)Θ0)

)
. There-

fore, by Slutsky’s Theorem,

A =

1√
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∑n
i=1 dMi(t)

1
n
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i=1 Yi(t)Θ

0
i

·
− 1
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i ]dMi(u)
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EZt(S
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T |Zt(t)G
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(A.10)

Now, let us consider B. We know from equations (A.6) and (A.7) that

(
1

n

n∑
i=1

Yi(t)Θ
0
i −

τ∫
t+

[Θ0
i −Θ1

i ]dMi(u)

)−1
p−→ EZt

{
S∗T |Zt(t)G

∗
C|Zt(t)Θ

0
}−1

(A.11)
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Then, by the independence of subjects and by the independence among increments

of a martingale,

E

(
−dHt√

n

n∑
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τ∫
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[Θ0
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i ]dMi(u)
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τ∫
t+

E
(
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)
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(A.12)

Let GP represent a Gaussian Process. Then, by the Martingale Central Limit Theo-

rem (for which all conditions are satisfied),

−dHt√
n

n∑
i=1

τ∫
t+

[Θ0
i −Θ1

i ]dMi(u)
d−→ GP

(
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(
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{EZt(S∗T |Zt(t)G
∗
C|Zt(t)Θ
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= GP

(
0, O((dH(t))2)

)
(A.13)

Therefore, by Slutsky’s Theorem,

√
n(d̂Ht

B
− d̂Ht

W
) = A+B

d−→ 0 +GP
(
0, O((dH(t))2)

)
= GP

(
0, O((dH(t))2)

)
(A.14)

This result implies that asymptotically, the difference in the Breslow and Weighted

estimators of the jump at time t is a Gaussian Process with mean 0 and a variance

that is negligible.
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A.4 Variances of Estimators

The variance of ĤB
t is

V ar
[√
n(ĤB

t −Ht)
]

= V ar
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0

1
n

∑n
i=1 dNi(x)

1
n
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=
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= V arB(t)

(A.15)

The variance of ĤW
t can be expressed as

√
n(ĤW

t −Ht) =

t∫
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Cov(dVx, dVy)

AxAy
+ op(1)

(A.16)
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The covariance can be expressed as

Cov(dVx, dVy) = E(dVxdVy)

=
1

n

n∑
i=1

E
{

(dMi(x)−XixdHx)(dMi(y)−XiydHy)
}

=
1

n

n∑
i=1

E(dMi(x)dMi(y))− E(dMi(x)XiydHy)− E(dMi(y)XixdHx) + E(XixXiydHxdHy)

(A.17)

Each term in (A.17) can be simplified as follows:

E(dMi(x)dMi(y)) = EZx(S
∗
T |Zx(x)G∗C|Zx(x)Θ0

x)dHxI(x = y)

= AxdHxI(x = y)

E(dMi(x)XiydHy) = EZx([Θ
0
x −Θ1

x]
2S∗T |Zx(x)G∗C|Zx(x)Θ0

x)dHxdHyI(x > y)

= BxdHxdHyI(x > y),
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x]
2S∗T |Zx(x)G∗C|Zx(x)Θ0

x)

E(dMi(y)XixdHx) = BydHxdHyI(x < y)

E(XixXiy)dHxdHy = dHxdHy

t∫
max(x,y)

BadHa

Then,

Cov(dVx, dVy) =AxdHxI(x = y)−BxdHxdHyI(x > y)−BydHxdHyI(x < y)

+ dHxdHy

t∫
max(x,y)

BadHa

(A.18)
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Based on (A.16), the variance of ĤW
t is
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(A.19)

A.5 Asymptotic Distribution and Profile Likelihood Infor-

mation

A.5.1 Asymptotic Properties of NPMLE

We now prove the asymptotic consistency and convergence of the Weighted Bres-

low estimator/NPMLE. Much of what follows mirrors the arguments in Hu and

Tsodikov (2014) and Rice and Tsodikov (2017). Let

‖·‖∞ denote the supremum norm in [0, τ ]

‖w‖TV denote the total variation of w(t) in [0, τ ]

Q = {w(t) : ‖w‖TV ≤ 1}
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Ĥt be regarded as a bounded linear functional in L∞[Q]

{β̂ − β∗, Ĥ −H∗} be a random element in the metric space Rp × L∞[Q]

H denote a compact convex set in the metric space Rp × L∞[Q] in which Ω∗ =

(β∗, H∗) is contained

We assume the following regularity conditions (Fleming and Harrington, 1991):

(1) The true cumulative baseline hazard H∗ is strictly increasing and differentiable,

and Ω∗ is in the interior of the compact convex set H.

(2) With probability 1, the covariate process Z(t) is left continuous with bounded

total variation on [0, τ ]. Z(t) is linearly independent, i.e., if there exist a(t) and

c such that a(t) + cTZ(t) = 0 with probability 1, then a(t) = 0 and c = 0.

(3) With probability 1, E(Y (τ)|Z) > 0, i.e., the risk set will not shrink to zero at

time τ

(4) Hessian matrix In evaluated at β∗, H∗ is positive definite and converges in

probability to I0, a deterministic and invertible operator.

(5) Identifiability condition: The model is identifiable such that H∗ = H uni-

formly over Ω =⇒ Ω = Ω∗. This ensures that for any sequence Ωn ∈ H,

lim inf
n→∞

l(Ωn) ≥ l(Ω∗) =⇒ ‖Ωn − Ω∗‖ p−→ 0

(6) Uniform convergence condition: For any sequence Ω ∈ H, we have uniform

convergence, i.e.,

sup
Ω∈H
|ln(Ω)− l(Ω)| p−→ 0

Theorem 1. Assuming regularity conditions (1)-(6) hold, then with probability 1, β̂

converges to β∗ and Ĥ converges to H∗ uniformly on the interval [0, τ ].
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Proof. By regularity conditions (5) and (6) and Theorem 2.12 of Kosorok (2008), we

have ln(Ω̂) = sup
Ω∈H

ln(Ω) + op(1), which implies that
∥∥∥Ω̂− Ω∗

∥∥∥ p−→ 0. To demonstrate

consistency, we will show 1) convexity and unique maximum of the likelihood; 2)

identifiability of the parameters; 3) uniform convergence of the parameters.

1) Convexity and unique maximum of the likelihood: The model may be charac-

terized as dΛt = dHtΘ
0(Ω), which is a functional depending on the processes

H(·) and Z(·) on [0, t]. Let Ft be the cumulative incidence function and Rt be

the survival function in the presence of censoring. The true likelihood can be

written as

l(Ω,Ω∗) = EZ

{ τ∫
0

ln(dΛt)dF
∗
t −R∗tdΛt

}
(A.20)

where the expectation is taken with respect to the covariate process. Consider

the true negative Kullback-Leibler distance.

D = l(Ω,Ω∗)− l(Ω∗,Ω∗)

= EZ

{ τ∫
0

ln(dΛt)dF
∗
t −R∗tdΛt

}
− EZ

{ τ∫
0

ln(dΛ∗t )dF
∗
t −R∗tdΛ∗t

}

= EZ

{ τ∫
0

ln

(
dΛt

dΛ∗t

)
dF ∗t − (dΛt − dΛ∗t )R

∗
t

}

= EZ

{ τ∫
0

[
ln

(
dΛt

dΛ∗t

)
−
(
dΛt

dΛ∗t
− 1

)]
dF ∗t

}

= EZ

{ τ∫
0

ν

(
dΛt

dΛ∗t

)
dF ∗t

}

(A.21)

where ν(x) = ln(x) − x + 1 is a convex, non-positive function with ν ′(x) =

1
x
− 1 = 0 =⇒ x = 1 and ν ′′(x) = − 1

x2 < 0 for all x =⇒ x = 1 is the unique

maximizer. Therefore, D has a unique maximum when dΛt = dΛ∗t uniformly.

Under an identifiable model, this implies that the unique maximum of D occurs
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at Ω∗.

2) Identifiability of parameters: Λ∗ is assumed to be a continuous, differentiable

functional of H, implying that the likelihood l(Ω) is also a continuous, differen-

tiable functional of H. From (A.21), Ω∗ = argmaxΩ∈Hl(Ω) is unique, i.e., the

model l(Ω,Ω∗) is identifiable. Let us assume that the model is identifiable in the

sense that Λ = Λ∗ uniformly over Ω implies that Ω = Ω∗ uniformly. Therefore,

by Lemma 14.3 of Kosorok (2008), lim infn→∞ l(Ωn) ≥ l(Ω∗), meaning that the

parameters are identifiable.

3) Uniform convergence of parameters: By regularity condition (1), Ω is in the

class of functions of bounded variation with integrable envelope, implying that

Ht is bounded. Therefore H is a Glivenko-Cantelli class whose ε-entropy with

bracketing number is bounded by A
ε
, where A is some constant. By the assump-

tion of continuity of functionals Λ and l(Ω) and the integrability of the envelope

of Ω, the integrand in l(Ω) is also Glivenko-Cantelli. Therefore, we can apply

the Uniform Law of Large Numbers to the empirical process counterparts of D

and l

Dn = ln(Ω,Ω∗)− ln(Ω∗,Ω∗)

ln(Ω,Ω∗) =
1

n

n∑
i=1

τ∫
0

[
ln(dHt) + ln(Θ0

i (β, Ht))
]
dNi(t)− Yi(t)Θ0

i (β, Ht)dHt

(A.22)

such that

sup
Ω∈H
|Dn(Ω)−D(Ω)| p−→ 0

sup
Ω∈H
|ln(Ω)− l(Ω)| p−→ 0

(A.23)
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n

Consider the linear functional

√
n

[
aT (β̂ − β∗) +

τ∫
0

b(t)d
(
Ĥt −H∗t

)]
(A.24)

where aT is a real-valued vector and b(t) is a function with bounded total variation.

Let B denote the vector of values of b(t) evaluated at the observed failure times. Let

CT = (aT ,BT ).

Theorem 2: Assuming all regularity conditions hold,
√
n

{(
β̂ − β∗

)T
, Ĥt − H∗t

}T
converges weakly to a zero-mean Gaussian process. Additionally, nCTI−1

n C converges

in probability to the asymptotic covariance function of the linear functional (A.24),

where In is the negative Hessian matrix of the log-likelihood.

Proof. Consider the score U(Ω) = (Uβ, UH)T , which is a multivariate martingale

transform under Ω∗. Then, by the Martingale Central Limit Theorem, 1√
n
U(Ω∗)

converges weakly to U(t) = (Uβ,UHt)T , where Uβ is a mean-zero multivariate Normal

random variable and UHt is a mean-zero Gaussian process. The variance-covariance

function of (Uβ,UHt)T is characterized by the limiting values of the scaled predictable

variation processes V (β), V (H), V (β, H). Note that the scaled score equations can

be written as the following martingale transforms

√
nUn(β) =

1√
n

n∑
i=1

τ∫
0

∂

∂β
ln(Θ0

i )dMi(u) =
1√
n

n∑
i=1

τ∫
0

∂
∂βΘ0

i

Θ0
i

dMi(u)

√
nUn(H) =

1√
n

n∑
i=1

τ∫
0

εi(u, t)dMi(u),

εi(u, t) = I(u < t) + [Θ0
i −Θ1

i ]H(min(u, t))

(A.25)
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Then, using the fact that V ar(dMi(u)|Fu−) = Yi(u)Θ0
i dHu,

V (β) =
n∑
i=1

τ∫
0

1

n

[ ∂∂βΘ0
i ]

2

[Θ0
i ]

2
Yi(u)Θ0

i dHu =
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1

n

[ ∂∂βΘ0
i ]

2

Θ0
i

Yi(u)dHu

p−→
τ∫

0

[ ∂∂βΘ0]2

Θ0
P (X ≥ u)dHu =

τ∫
0

[ ∂∂βΘ0]2

Θ0
S∗T (u)G∗C(u)dHu = σ2

β

V (H) =
n∑
i=1

τ∫
0

1

n
ε2i (u, t)Yi(u)Θ0

i dHu

p−→
τ∫

0

ε(u, t)ε(u, s)P (X ≥ u)Θ0dHu =

τ∫
0

ε(u, t)ε(u, s)S∗T (u)G∗C(u)Θ0dHu = σ2
H

V (β, H) =

n∑
i=1

τ∫
0

1

n

∂
∂βΘ0

i

Θ0
i

εi(u, t)Yi(u)Θ0
i dHu =

1

n

n∑
i=1

τ∫
0

∂

∂β
Θ0
i εi(u, t)Yi(u)Θ0

i dHu

p−→
τ∫

0

ε(u, t)
∂

∂β
Θ0P (X ≥ u)dHu =

τ∫
0

ε(u, t)
∂

∂β
Θ0S∗T (u)G∗C(u)dHu = σ2

β,H

(A.26)

Define a linear transformation operator as

I∗(t, s) =
∂U∗

∂Ω
= −

 ∂2l∞
∂β∂βT

∂2l∞
∂β∂dHs

∂2l∞
∂βT ∂dHt

∂2l∞
∂dHt∂dHs


Ω=Ω∗

(A.27)

where l∞ is the limit in probability of 1
n
l(β, H) and U∗ = (∂l∞

∂β
, ∂l∞
∂dHt

)T . The operator

I∗ will act on an arbitrary vector element Ωs = (βT , dHs)
T as

I∗(t, s)Ωs = −

 ∂2l∞
∂β∂βT

β +
∫ τ

0
∂2l∞

∂β∂dHs
dHs

∂2l∞
∂βT ∂dHt

β +
∫ τ

0
∂2l∞

∂dHt∂dHs
dHs

 (A.28)

Expanding the score U(Ω̂) about the true Ω∗ gives

I∗(t, s)
√
n(Ω̂s − Ω∗s) = U(t) + op(1) (A.29)

Assume that the Fredholm operator expressed by the kernel I∗ of the Fredholm
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integral equations of the first kind in (A.29) is square integrable and that I∗Ω = 0

only has the trivial solution Ω = 0. Then equation (A.29) has a unique solution, and

there exists an inverse information operator I∗−1(s, t) such that, by Theorem 3.3.1 of

van der Vaart and Wellner (1996)

√
n(Ω̂s − Ω∗s) = I∗−1(s, t)U(t) + op(1) (A.30)

Differentiating the equation E{U(Ω∗)} = 0 with respect to Ω at the true Ω∗ gives the

usual equivalence between I∗ represented by second derivatives and

I∗(s, t) =

 ∂l∞
∂β

∂l∞
∂βT

∂l∞
∂β

∂l∞
∂dHs

∂l∞
∂βT

∂l∞
∂dHt

∂l∞
∂dHt

∂l∞
∂dHs


Ω=Ω∗

(A.31)

which represents the variance of the normalized score Gaussian process U(t). By the

functional delta method from Section 2.2.4 of Kosorok (2008), for a differentiable

functional F (Ω),
√
n{F (Ω̂)− F (Ω)} converges weakly to a mean zero Gaussian pro-

cess with variance-covariance function given by Ḟ (Ω)TI∗−1Ḟ (Ω), where Ḟ (Ω) = ∂F
∂Ω

.

Operator products are defined as in equation (A.28). Applying this to the linear

functional in (A.24) and replacing operator products by matrix multiplication and I∗

by its consistent matrix estimator n−1În gives the desired result. n

The elements of the observed information matrix for Ω̂ = (β̂, {d̂H}) are explicitly

given in (A.32). Note that asymptotically, the integrals over the future,
∫ τ
t+

, will

converge to zero in probability due to the presence of the martingale increment.

Thus, the elements of the expected information matrices for the NPMLE and the
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Breslow estimator are expected to be close for large samples.

Jββ = − ∂

∂β
Un(β) = − 1

n

n∑
i=1

τ∫
0

∂

∂β

∂

∂βT
ln(Θ0

i )dMi(u)

JdHtβ = − ∂

∂dHt
Un(β) = − 1

n

n∑
i=1

τ∫
0

∂

∂dHt

∂

∂β
ln(Θ0

i )dMi(u)

JβdHt = − ∂

∂β
Un(dHt) = − 1

n

n∑
i=1

−Yi(t)
∂

∂β
Θ0
i +

τ∫
t+

∂

∂β
[Θ0
i −Θ1

i ]dMi(u)

JdHsdHt = − ∂

∂dHs
Un(H) = − 1

n

n∑
i=1

−Yi(t)
∂

∂dH(s)
Θ0
i −

dNi(t)I(t = s)

dHtdHs
+

τ∫
t+

∂

∂dH(s)
[Θ0
i −Θ1

i ]dMi(u)

JdHtdHt = − ∂

∂dHt
Un(H) = − 1

n

n∑
i=1

−Yi(t)
∂

∂dH(t)
Θ0
i −

dNi(t)

dH2
t

+

τ∫
t+

∂

∂dH(t)
[Θ0
i −Θ1

i ]dMi(u)

(A.32)

A.5.2 Profile Likelihood Hessian and Information Matrix

We now show, using the arguments of Rice and Tsodikov (2017), that the variance

of β̂ derived via profile likelihood is a consistent estimator of the covariance matrix

of β̂, which will be the ββ submatrix of I∗−1, the asymptotic covariance “matrix”

operator of the score, where

I∗ =

 Iββ IβH

IHβ IHH

 =

 − ∂2l∞
∂β∂βT

− ∂2l∞
∂β∂dHs

− ∂2l∞
∂dHt∂β

− ∂2l∞
∂dHt∂dHs

 (A.33)

For fixed β, let Ĥβ be the solution to UH = 0. Then, the profile likelihood can be

written as l̂ = l(Ĥβ(·),β). Note that for any block matrix or “operator” I∞, the

inverse has the form

I−1
∞ =

 Q−1 −Q−1IβHI
−1
HH

−I−1
HHIHβQ

−1 I−1
HH + I−1

HHIHβQ
−1IβHI

−1
HH


Q = Iββ − IβHI−1

HHIHβ

(A.34)
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Thus, we want to show that asymptotically, V ar
[√
n(β̂ − β∗)

]
= Q−1 = I−1

pr up

to op(1) terms in the profile matrix. Let JHβ =
∂d̂Hβ(s)

∂β
be the Jacobian. The full

derivative of the profile likelihood l̂ with respect to β (which includes a derivative

over β in Ĥβ) is given by

dl̂

dβ
=

∫
∂l̂

∂dH(s)
· ∂d̂Hβ(s)

∂β
+

∂l̂

∂β
(A.35)

Then, since UĤβ = 0, the profile score is given by

Upr = UĤβJHβ + Uβ|H=Ĥβ
= Uβ|H=Ĥβ

(A.36)

The profile likelihood Hessian is

−Ipr =
d2 l̂

dβdβT

=

∫
y

∫
s

∂

∂dH(y)

[
∂l̂

∂dH(s)
· ∂d̂Hβ(s)

∂β

]
∂d̂Hβ(y)

∂βT
+

∫
y

∂l̂

∂β∂dH(y)
· ∂d̂Hβ(y)

∂βT

+

∫
s

∂

∂βT

[
∂l̂

∂dH(s)
· ∂d̂Hβ(s)

∂β

]
+

∂2 l̂

∂β∂βT

=

∫
y

∫
s

[
∂2 l̂

∂dH(s)∂dH(y)
· ∂d̂Hβ(s)

∂β
· ∂d̂Hβ(y)

∂βT
+

∂l̂

∂dH(s)
· ∂

2d̂Hβ(s)

∂β∂dH(y)
· ∂d̂Hβ(y)

∂βT

]

+

∫
s

[
∂2 l̂

∂β∂dH(s)
· ∂d̂Hβ(s)

∂βT
+

∂2 l̂

∂dH(s)∂βT
· ∂d̂Hβ(s)

∂β
+

∂l̂

∂dH(s)
· ∂

2d̂Hβ(s)

∂β∂βT

]
+

∂2 l̂

∂β∂βT

= −JβH ÎHHJHβ + ÛĤβ
JHβHJHβ − ÎβHJHβ − JβH ÎHβ + ÛĤβ

JHββ − Îββ

= −Îββ − JβH ÎHHJHβ − ÎβHJHβ − JβH ÎHβ

=⇒ Ipr = Îββ + JβH ÎHHJHβ + ÎβHJHβ + JβH ÎHβ

(A.37)

Note that

0 =
d

dβ

(
∂l

∂dH(s)

∣∣∣∣
H=Ĥβ

)
=

∂2 l̂

∂dH(s)∂β
+

∫
∂2 l̂

∂dH(s)∂dH(y)
· ∂d̂Hβ(y)

∂β
= −ÎHβ − ÎHHJHβ

=⇒ ÎHHJHβ = −ÎHβ

JHβ = −Î−1
HH ÎHβ

(A.38)
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Then,

Ipr = Îββ + ÎβH Î
−1
HH ÎHH Î

−1
HH ÎHβ − ÎβH Î

−1
HH ÎHβ − ÎβH Î

−1
HH ÎHβ

= Îββ + ÎβH Î
−1
HH ÎHβ − 2ÎβH Î

−1
HH ÎHβ

= Îββ − ÎβH Î−1
HH ÎHβ

= Q

(A.39)

Then, I∗−1 has ββ submatrix Q−1 = I−1
pr . Direct algebraic manipulations lead to an

expression for the normalized observed information matrix, given as

In,ΩΩT =
1

n

n∑
i=1

∞∫
0

∂ log dΛi(x)

dΩ

∂ log dΛi(x)

∂ΩT
Yi(x)dΛi(x) +

∂2 log dΛi(x)

∂Ω∂ΩT
dMi(x) (A.40)

where Ω = (β, H), Λi = subject-specific cumulative hazard, Yi = at-risk process, Ni =

subject’s failure counting process, and dMi = dNi − YidΛi = martingale increment

under the true model. Note that ∂Λ(x)
∂dH(s)

= 0, s > x, meaning that terms corresponding

to the dH(s) functional component of Ω under the integral are 0 until x ≥ s. As the

martingale term turns into an op(1) term and the first term is a consistent estimator

of the covariance of the normalized score, we have

Cov
(√

nU∗
)

= I∞ + op(1)

√
n(Ω̂− Ω∗) = I−1

∞
√
nU∗ + op(1)

=⇒ V ar
[√
n(Ω̂− Ω∗)

]
= I−1

∞ Cov
(√

nU∗
)
I−1
∞ = I−1

∞ I∞I
−1
∞ = I−1

∞

=⇒ V ar
[√
n(β̂ − β∗)

]
= Q−1 = I−1

pr , up to op(1)

(A.41)

Thus, the profile likelihood estimator β̂ is asymptotically efficient for β when we use

the NPMLE Ĥ(β).
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A.6 Asymptotic Variances of β̂B and β̂W

From Rice and Tsodikov (2017), the variance of β̂W derived via profile likelihood is

a consistent estimator of the covariance matrix of β̂, which will be the ββ submatrix

of I∗−1, given in (A.33). From (A.41), V ar
[√
n(β̂W−β∗)

]
= Q−1 = I−1

pr , up to op(1),

where β∗ is the true parameter value. We establish the asymptotic variance of β̂B.

In Rice and Tsodikov (2017), it was assumed that all scores were normalized (i.e.

multiplied by 1
n
). We make the same assumption here. Consider the estimating

equation UB(β, ĤB(β)) that β̂B solves, i.e., UB(β̂B, ĤB(β̂B)) = 0. This estimating

equation is identical in form to the profile likelihood score for β in Chapter II, Section

2.2.3, equation (2.11), which can be represented as U(β, ĤW (β)) when using the

NPMLE of H. Then, we can express the normalized estimating equation for β as

0 =
√
nUB(β̂B , ĤB(β̂B)) =

√
nU(β̂B , ĤB(β̂B)) =

1√
n

n∑
i=1

Ui(β̂
B , ĤB(β̂B)) (A.42)

Now, we take a Taylor expansion of the profile likelihood “score” for β about the

true β∗. This leads to

0 =
√
nUB(β̂B , ĤB(β̂B))

=
1
√
n

n∑
i=1

Ui(β
∗, ĤB(β∗)) +

[
1
√
n

n∑
i=1

U̇i,β(β∗, ĤB(β∗)) +
1
√
n

n∑
i=1

U̇i,H(β∗, ĤB(β∗))ĴBHβ

]
(β̂B − β∗)

+
1
√
n
o(||β̂B − β∗||2)

(A.43)

where U̇i,β = ∂
∂β
Ui(β), U̇i,H = ∂

∂H
Ui(β), and ĴBHβ = ∂

∂β
ĤB(β) = the Jacobian of ĤB

with respect to β. For brevity, we drop the (β∗, ĤB(β∗)) argument from UB
i and

Ui. Note that 1√
n
o(||β̂B − β∗||2) and all higher order terms will be asymptotically

negligible. Thus,

0 =
√
nUB(β̂B , ĤB(β̂B)) =

1√
n

n∑
i=1

Ui+

[
1

n

n∑
i=1

U̇i,β+
1

n

n∑
i=1

U̇i,H Ĵ
B
Hβ

]√
n(β̂B−β∗)+op(1) (A.44)
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Moving the term involving
√
n(β̂B − β∗) to the left hand side results in

−
[

1

n

n∑
i=1

U̇i,β +
1

n

n∑
i=1

U̇i,H Ĵ
B
Hβ

]√
n(β̂B − β∗) =

1√
n

n∑
i=1

Ui + op(1)

=⇒
√
n(β̂B − β∗) = −

[
1

n

n∑
i=1

U̇i,β +
1

n

n∑
i=1

U̇i,H Ĵ
B
Hβ

]−1
1√
n

n∑
i=1

Ui + op(1)

(A.45)

By results from Rice and Tsodikov (2017) and consistency of ĤB,

1√
n

n∑
i=1

Ui
d−→ N(0, E{UUT })

1

n

n∑
i=1

U̇i,β
p−→ −Iββ

1

n

n∑
i=1

U̇i,H Ĵ
B
Hβ

p−→ −IβHJHβ = −Iββ(−I−1
HHIHβ) = IββI

−1
HHIHβ

(A.46)

Therefore,

−
[

1

n

n∑
i=1

U̇i,β+
1

n

n∑
i=1

U̇i,H Ĵ
B
Hβ

]−1
p−→ −

{
−Iββ+IβHI

−1
HHIHβ

}−1
=
{
Iββ−IβHI−1

HHIHβ
}−1

= Q−1

(A.47)

Thus,

√
n(β̂B − β∗) = −

[
1

n

n∑
i=1

U̇i,β +
1

n

n∑
i=1

U̇i,H Ĵ
B
Hβ

]−1
1√
n

n∑
i=1

Ui + op(1)

d−→ Q−1N(0, E{UUT }) = N(0, Q−1E{UUT }Q−1)

(A.48)

From (A.46), the estimating equation for β when using ĤB does not have the

same property as the score where E{UUT} = E{− ∂
∂β
U}. Therefore, the asymptotic

variance of β̂B contains additional terms that do not cancel. Nonetheless, the differ-

ence in the variances of β̂W and β̂B is expected to be small, especially for large n.

Alternatively, following an argument similar to Zucker (2005), we can write

0 =
√
nU(β̂W , ĤW (β̂W )) =

√
nU(β∗, H∗(β∗)) +

√
n
[
U(β∗, ĤW (β∗))− U(β∗, H∗(β∗))

]
+
√
n
[
U(β̂W , ĤW (β̂W ))− U(β∗, ĤW (β∗))

]
0 =
√
nUB(β̂B , ĤB(β̂B)) =

√
nU(β̂B , ĤB(β̂B))

=
√
nU(β∗, H∗(β∗)) +

√
n
[
U(β∗, ĤB(β∗))− U(β∗, H∗(β∗))

]
+
√
n
[
U(β̂B , ĤB(β̂B))− U(β∗, ĤB(β∗))

]
(A.49)
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Once more, we assume all scores and estimating equations are normalized, i.e., mul-

tiplied by 1
n
. It can be shown that when we take the appropriate Taylor expansions

about the true β∗ and H∗, the asymptotic distributions of β̂B and β̂W are

√
n(β̂B − β∗) d−→ N(0, Q−1{Iββ + IβHV arBIHβ}Q−1)

√
n(β̂W − β∗) d−→ N(0, Q−1{Iββ + IβH(V arB −R)IHβ}Q−1)

(A.50)

where V arB represents the Breslow estimator variance in Chapter II, Section 2.2.6,

equation (2.19) and R is the integral term in the NPMLE variance in Chapter II,

Section 2.2.6, equation (2.23). Because the asymptotic variance of β̂W has an addi-

tional term being subtracted, its variance will be smaller than that of β̂B. However,

this difference is expected to be small, particularly for large n.

A.7 Details of Proportional Odds Model

The proportional odds (PO) model as parameterized in Tsodikov (2003) is given

by

S(Ht|β,Z) =
exp{βZ}

Ht + exp{βZ}
(A.51)

where Z is a vector of baseline and external time-dependent covariates. Assume we

have underlying time-independent frailty U . Then,

S(Ht|β,Z) =
exp{βZ}

Ht + exp{βZ}
= LU (Ht)

U ∼ Exp(exp{βZ})

dΛ(Ht|β,Z) = d{− lnS(Ht|β,Z)} =
1

Ht + exp{βZ}
· dHt = Θ0dHt

(A.52)

In our simulation study, we assume that the true baseline hazard function for the event

time T is specified by the Weibull cumulative baseline hazard function Ht =
(
t
λ

)k
and

baseline hazard function ht = ktk−1

λk
. In the hazard function, k controls whether the

hazards are increasing (k > 1) or decreasing (k < 1).
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A.8 Details of Simulations

The ARE of the Breslow estimator is

AREB(t) =
1

1−
∫ t
0 [Bx−

∫ t
x BadHa]dV ar2

B(x)

V arB(t)

=
1

1−
∫ t
0

∫ x
0

dHy
Ay

2Bx
dHx
Ax
−
∫ t
0

∫ x
0

∫ t
x BadHa2

dHy
Ay

dHx
Ax∫ t

0
dHx
Ax

(A.53)

where

V arB(t) =

t∫
0

dHx

Ax

dV ar2
B(x) = 2

dHx

Ax
V arB(x) = 2

dHx

Ax

x∫
0

dHy

Ay

Ax = EZx{S∗xG∗xΘ0
x}

Bx = EZx{[Θ0
x −Θ1

x]2S∗xG
∗
xΘ0

x}

S∗x = P (T > x|Z)

G∗x = P (C > x|Z)

(A.54)

We assume

P (T > t|Z) = S∗T (t|β,Z) =
eβZ

Ht + eβZ
=⇒ dΛ∗T (t|β,Z) =

1

Ht + eβZ
· dHt

Θ0 =
1

Ht + eβZ

Θ1 =
2

Ht + eβZ

[Θ0 −Θ1]2 =
1

(Ht + eβZ)2

P (C > t|Z) = 1− t

τ
, C ∼ Uniform(0, τ)

Ht =

(
t

λ

)k
=⇒ ht =

ktk−1

λk
(Weibull hazard)

Z ∼ Bernoulli(p)

Ax = EZ
{
S∗xG

∗
xΘ0

x} =

(
1− x

τ

){
1− p

(Hx + 1)2
+

peβ

(Hx + eβ)2

}
Bx = EZ

{
[Θ0

x −Θ1
x]2S∗xG

∗
xΘ0

x} =

(
1− x

τ

){
1− p

(Hx + 1)4
+

peβ

(Hx + eβ)4

}

(A.55)
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We can plug the expressions for Ax and Bx into (A.53) over a range of t ∈ (0, τ) to

study the behavior of the ARE over time.

Table A.1: Simulation settings for ARE of the Breslow estimator.

Setting p β λ k τ
1 0.3 -1 2 2 5
2 0.5 -1 2 2 5
3 0.7 -1 2 2 5
4 0.3 0 2 2 5
5 0.5 0 2 2 5
6 0.7 0 2 2 5
7 0.3 1 2 2 5
8 0.5 1 2 2 5
9 0.7 1 2 2 5
10 0.3 -1 2 0.5 5
11 0.5 -1 2 0.5 5
12 0.7 -1 2 0.5 5
13 0.3 0 2 0.5 5
14 0.5 0 2 0.5 5
15 0.7 0 2 0.5 5
16 0.3 1 2 0.5 5
17 0.5 1 2 0.5 5
18 0.7 1 2 0.5 5
19 0.3 -1 2 2 10
20 0.5 -1 2 2 10
21 0.7 -1 2 2 10
22 0.3 0 2 2 10
23 0.5 0 2 2 10
24 0.7 0 2 2 10
25 0.3 1 2 2 10
26 0.5 1 2 2 10
27 0.7 1 2 2 10
28 0.3 -1 2 0.5 10
29 0.5 -1 2 0.5 10
30 0.7 -1 2 0.5 10
31 0.3 0 2 0.5 10
32 0.5 0 2 0.5 10
33 0.7 0 2 0.5 10
34 0.3 1 2 0.5 10
35 0.5 1 2 0.5 10
36 0.7 1 2 0.5 10
37 0.3 -1 2 2 15
38 0.5 -1 2 2 15
39 0.7 -1 2 2 15
40 0.3 0 2 2 15
41 0.5 0 2 2 15
42 0.7 0 2 2 15
43 0.3 1 2 2 15
44 0.5 1 2 2 15
45 0.7 1 2 2 15
46 0.3 -1 2 0.5 15
47 0.5 -1 2 0.5 15
48 0.7 -1 2 0.5 15
49 0.3 0 2 0.5 15
50 0.5 0 2 0.5 15
51 0.7 0 2 0.5 15
52 0.3 1 2 0.5 15
53 0.5 1 2 0.5 15
54 0.7 1 2 0.5 15
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A.9 Additional Simulation Results

From Table A.2, for estimation of β, the Breslow estimator takes fewer itera-

tions to converge on average than the Weighted Breslow NPMLE. For estimation of

{dH}, the Breslow and Weighted Breslow estimators have the same average number

of iterations in the large sample settings, while the Breslow estimator has slightly

fewer iterations in the small sample settings. Table A.3 summarizes differences in

the estimated variances of β̂ between the Breslow and Weighted Breslow estimators.

In each setting, including the small-sample cases, the differences in the estimated

variances are small. Figure A.1 displays boxplots of bias in β for both estimators in

each simulation setting. We observe that the bias in estimation for both estimators is

nearly identical in all settings. Furthermore, the range in bias for both estimators is

comparable, suggesting that they are similar in terms of consistency and asymptotic

variance.

Table A.2: Average number of iterations to converge for each estimator and average
percent censoring in PO model simulations. Weighted Breslow estimator = NPMLE.

Setting Estimator β̂ Iterations {d̂H} Iterations % Censoring
1 Breslow 3.6 22.0 23.2

Weighted 4.3 22.0
2 Breslow 3.6 21.0 23.1

Weighted 4.0 21.0
3 Breslow 3.6 10.8 46.6

Weighted 4.2 10.8
4 Breslow 3.7 10.4 46.6

Weighted 4.0 10.4
5 Breslow 3.6 12.4 47.0

Weighted 5.1 12.5
6 Breslow 3.6 23.4 23.8

Weighted 5.5 23.6
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Table A.3: Summary of differences in regression parameter variances for each esti-
mator. V̂ (β̂B) = estimated variance of Breslow-derived β and V̂ (β̂W ) = estimated
variance of Weighted Breslow/NPMLE-derived β.

Setting V̂ (β̂1
B

)− V̂ (β̂1
W

) V̂ (β̂2
B

)− V̂ (β̂2
W

)
Mean [Min, Max] Mean [Min, Max]

1 −2.5× 10−5 [−2.1× 10−4, 1.9× 10−4] −5.0× 10−5 [−1.8× 10−3, 9.9× 10−4]

2 −5.2× 10−7 [−4.9× 10−5, 7.9× 10−5] −1.2× 10−5 [−3.4× 10−4, 5.0× 10−4]

3 −7.7× 10−7 [−1.7× 10−4, 2.7× 10−4] −2.7× 10−5 [−8.5× 10−4, 1.1× 10−3]

4 −1.4× 10−6 [−4.5× 10−5, 5.0× 10−5] −1.3× 10−5 [−3.0× 10−4, 2.6× 10−4]

5 −5.4× 10−5 [−6.6× 10−3, 2.8× 10−3] −1.0× 10−3 [−7.8× 10−2, 2.2× 10−2]

6 −6.3× 10−5 [−8.9× 10−3, 4.8× 10−3] −1.4× 10−3 [−4.1× 10−2, 2.8× 10−2]
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Figure A.1: Boxplots of bias for Breslow and Weighted Breslow estimators in each
PO simulation setting. Weighted estimator = NPMLE.
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APPENDIX B

Reconsidering the Role of Endogenous Covariates

in Survival Models

B.1 Bivariate Shared Frailty Model

Assuming X is fully observed, the conditional density and survival functions of

Y |X = x in Chapter III, Section 3.5.1 can be derived as

fY |X=x(y|X = x) =
fY,X(y, x)

fX(x)
=
L′′U(HX(x) +HY (y))hX(x)hY (y)

− ∂
∂x
SX(x)

=
L′′U(HX(x) +HY (y))hX(x)hY (y)

− ∂
∂x
LU(HX(x))

= −L
′′
U(HX(x) +HY (y))

L′U(HX(x))
hY (y)

SY |X=x(y|X = x) =

∞∫
y

fY |X=x(v|X = x)dv =

∞∫
y

−L
′′
U(HX(x) +HY (v))

L′U(HX(x))
hY (v)dv

=

∞∫
HY (y)

−L
′′
U(HX(x) + v)

L′U(HX(x))
dv

=
L′U(HX(x) +HY (y))

L′U(HX(x))

(B.1)
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B.2 Semicompeting Risks Type Model Survival Functions

The survival functions for X and Y given in Chapter III, Section 3.6, equation

(3.21) can be derived as

SX(x|Z) = exp

{
−

x∫
0

λX(u|Z)du

}
= exp

{
−

x∫
0

hu[ηI(u ≤ Y ) + η̃I(u > Y )]du

}

= exp

{
−

x∫
0

ηhuI(u ≤ Y )du−
x∫

0

η̃huI(u > Y )du

}

= exp

{
−

y∫
0

ηhudu−
x∫
y

η̃hudu

}

= exp
{
− ηHy − η̃[Hx −Hy]

}
SY |X(y|X,Z) = exp

{
−

y∫
0

λY |X(u|X,Z)du

}
= exp

{
−

y∫
0

δYH
δY −1
u huθµ

I(u≥X)du

}

= exp

{
−

x∫
0

δYH
δY −1
u huθdu−

y∫
x

δYH
δY −1
u huθµdu

}

= exp
{
−HδY

x θ − [HδY
y θµ−HδY

x θµ]
}

= exp
{
−HδY

y θµ−HδY
x θ[1− µ]

}
= exp

{
−HδY

y θµ−HδY
x θµ̄

}
(B.2)

B.3 Validity of Univariate Survival Functions

We demonstrate that the univariate survival function u(x) = exp{−HδX
x θµ +

HδY
x θµ̄} in (3.24) is a legitimate survival function by showing that it is nonincreasing

and right continuous with u(0) = 1 and limx→∞ u(x) = 0.
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(1) u(x) nonincreasing:

u′(x) = e−H
δX
x θµ+H

δY
x θµ̄ ·

{
− δXHδX−1

x hxθµ+ δYH
δY −1
x hxθµ̄

}
= −θhxe−H

δX
x θµ+H

δY
x θµ̄

{
δXH

δX−1
x µ− δYHδY −1

x µ̄
}

= −θhxe−H
δX
x θµ+H

δY
x θµ̄

{
δXH

δX−1
x µ− δYHδY −1

x (1− µ)
}

≤ 0

(2) u(0) = 1: Assuming HδX
0 = HδY

0 = 0,

u(0) = e−H
δX
0 θµ+H

δY
0 θµ̄ = e0 = 1

(3) limx→∞ u(x) = 0:

lim
x→∞

u(x) = lim
x→∞

e−H
δX
x θµ+H

δY
x θµ̄

= lim
x→∞

e−H
δX
x θµ+H

δY
x θ(1−µ)

= 0

This assumption in combination with (1) and (2) ensures that the total variation

of u(x) is one.

(4) u(x) right continuous: Assuming the true H is right continuous, HδX and

HδY will also be continuous and therefore right continuous. Because u(x) is a

transformation of a right continuous function, it will also be right continuous

An analogous derivation for v(y) in Chapter III, Section 3.6, equation (3.24) can

be done using the same justification as above.
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B.4 Semicompeting Risks Type Model Assuming X Fully

Observed

Assuming X is fully observed, the survival function for Y conditional on X = x

is

− ∂

∂x
SY,X|Z(y, x|Z) = − ∂

∂x

{
exp

{
−HδY

y θµ−HδY
x θµ̄− ηHy − η̃[Hx −Hy]

}}
=
(
δYH

δY −1
x hxθµ̄+ η̃hx

)
exp

{
−HδY

y θµ−HδY
x θµ̄− ηHy − η̃[Hx −Hy]}

= hx
(
δYH

δY −1
x θµ̄+ η̃

)
exp

{
−HδY

y θµ−HδY
x θµ̄− ηHy − η̃[Hx −Hy]

}
− ∂

∂x
SX|Z(x|Z) = − ∂

∂x

{
exp

{
− ηHy − η̃[Hx −Hy]}

}
= hxη̃ exp

{
− ηHy − η̃[Hx −Hy]

}
SY |X=x,Z(y|X = x,Z) =

− ∂
∂xSY,X|Z(y, x|Z)

− ∂
∂xSX|Z(x|Z)

=
hx
(
δYH

δY −1
x θµ̄+ η̃

)
exp

{
−HδY

y θµ−HδY
x θµ̄− ηHy − η̃[Hx −Hy]

}
hxη̃ exp

{
− ηHy − η̃[Hx −Hy]

}
=

(
1 +

δYH
δY −1
x θµ̄

η̃

)
exp

{
− θ[HδY

y µ+HδY
x µ̄]

}
(B.3)

Because X is fully observed, the survival function in (B.3) has a valid exponential

form, and we can directly calculate the conditional hazard function.

λY |X=x,Z(y|X = x,Z) = − ∂

∂y
lnSY |X=x,Z(y|X = x,Z)

= − ∂

∂y

{
ln

(
1 +

δYH
δY −1
x θµ̄

η̃

)
− θ[HδY

y µ+HδY
x µ̄]

}
= −{−θδYHδY −1

y hyµ}, x ≤ y

= θδYH
δY −1
y hyµ

I(y≥x)

(B.4)
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B.5 Threshold Regression Models

B.5.1 Fixed Threshold and Partially Observed Marker

Consider the survival functions conditional on V̄x and V̄ . First, we recognize that

Wt|V̄x = Vτx− +Wt−τx− , x ≤ t

Wt|V̄ = Vτt− + U{t}[0,τt+−τt− ](Vτt+ − Vτt− )

(B.5)

where U represents a bridge stochastic process. Then, the survival functions can be

written as

S(t|V̄x)|x=t = P (T > t|V̄x)|x=t = EW̄
{
P (Wt < B)|V̄x

}
|x=t

= EW̄
{
P (Vτx− +Wt−τx− < B)|V̄x

}
|x=t

= EW̄
{
P (Wt−τx− < B − Vτx− )|V̄x

}
|x=t

= 1− EW̄
{
SW (B − Vτx− )|V̄x

}
|x=t

= 1− EW̄
{
SW (B − Vτt− )|V̄t

}
S(t|V̄ ) = P (T > t|V̄ ) = EW̄

{
P (Wt < B)|V̄

}
= EW̄

{
P (Vτt− + U(Vτt+ − Vτt− ) < B)|V̄

}
= EU

{
P

(
U <

B − Vτt−
Vτt+ − Vτt−

)∣∣∣∣V̄}
= 1− EU

{
SU

(
B − Vτt−
Vτt+ − Vτt−

)∣∣∣∣V̄}

(B.6)

B.5.2 Random Threshold and Partially Observed Marker

Consider the survival functions conditional on V̄x and V̄ . Once more, we have

Wt|V̄x = Vτx− +Wt−τx− , x ≤ t, and Wt|V̄ = Vτt− + U{t}[0,τt+−τt− ](Vτt+ − Vτt− ). Then,
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the survival functions are

S(t|V̄x)|x=t = P (T > t|V̄x)|x=t = EW̄
{
P (Wt < B|W̄ )

∣∣V̄x}∣∣x=t

= EW̄
{
SB|W̄ (Wt)

∣∣V̄x}∣∣x=t

= EW̄
{
SB|W̄ (Vτx− +Wt−τx− )

∣∣V̄x}∣∣x=t

= EW̄
{
SB|W̄ (Vτt− +Wt−τt− )|V̄t

}
S(t|V̄ ) = P (T > t|V̄ ) = EW̄

{
P (Wt < B|W̄ )

∣∣V̄ } = EW̄
{
SB|W̄ (Wt)

∣∣V̄ }
= EW̄

{
SB|U(Vτt− + U[0,τt+−τt− ](Vτt+ − Vτt− ))|V̄

}

(B.7)
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APPENDIX C

Joint Modeling of a Time-to-Event and Partially

Observed Marker Process Using Lévy Processes

Many of the derivations detailed below are based on those outlined in Appendix

B of Suresh (2018), p. 169-179.

C.1 Marker Observed at Informative Measurement Time

The joint model of interest can be written as

f(t, Vt) = f(t|Vx)|x=tf(Vt) = f(Vt|T = t)f(t) (C.1)

The first specification is based on the general survival function proposed in Chapter

III. Namely, we condition the event time distribution on the marker observed at the

the fixed time x and then substitute x = t. Note that the proper marginal distribution

of the marker V in this joint model is derived by averaging across all possible event

times T . This is done to account for the informative observation of the marker at

T . For brevity, we have dropped the conditioning on baseline covariates Z from our

expressions, but it is implicit that the distributions of the event time and marker will
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depend on these covariates as the shape and scale parameters α and β are functions

of Z. Then, the marginal distribution of V (on the H-transformed time scale) is

given by

fV (v) =

∞∫
0

fVT |T=x(v|T = x)fT (x)dx =

∞∫
0

fVT |T=x(v|T = x) ·
{
− d

dx
ST (x)

}
dx

=

∞∫
0

vαHx−1e−v/β

Γ(αHx)βαHx
· αhx ln(1 + β)(1 + β)−αHxdx

= α ln(1 + β)e−v/β
∞∫

0

vαHx−1

Γ(αHx)βαHx
hx(1 + β)−αHxdx

(C.2)

Using substitution with u = Hx and du = hxdx = dHx, we have

fV (v) = α ln(1 + β)e−v/β
∞∫

0

vαu−1

Γ(αu)βαu
(1 + β)−αudu

= α ln(1 + β)e−v/β
∞∫

0

vαu−1

Γ(αu)[β(1 + β)]αu
du

=
α ln(1 + β)e−v/β

β(1 + β)

∞∫
0

(v/β(1 + β))αu−1

Γ(αu)
du

(C.3)

Focusing on the integral term, another substitution with g = αu, dg = αdu =⇒

du = dg
α

, and s = v
β(1+β)

results in

∞∫
0

sg−1

Γ(g)

dg

α
=

1

α

∞∫
0

sg−1

Γ(g)
dg =

1

α

∞∫
0

g

g
· s

g−1

Γ(g)
dg =

1

α

∞∫
0

gsg−1

gΓ(g)
dg

=
1

αs

∞∫
0

gsg

Γ(2)Γ(g + 1)
dg

=
1

αs

∞∫
0

g1sg

Γ(1 + 1)Γ(g + 1)
dg

(C.4)
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The final integral expression in (C.4) can be recognized as the integral function µ(s, 1)

from Gradshteyn and Ryzhik (2014). Thus, we can write the marginal distribution

of the marker in the simplified form

fV (v) =
α ln(1 + β)e−v/β

β(1 + β)
·
µ
(

v
β(1+β)

, 1
)

α v
β(1+β)

=
e−v/β ln(1 + β)

v
µ

(
v

β(1 + β)
, 1

)
, v > 0

(C.5)

For the distribution of the event time conditional on the marker value, we can write

it in terms of the bridge process B{Ht} assuming x > t. Note that an equivalent

expression could be derived assuming x < t. This results in

f(t|Vx)|x=t =

[
− d

dt
E
{
e−B{Ht}V (Hx)

∣∣Vx}]
x=t

(C.6)

This expression will have a complicated form as it involves the derivative of a bridge

stochastic process with a time transformation. However, we can derive the explicit

form of this conditional distribution by applying Bayes rule:

f(t|Vx)|x=t =
f(t, Vt)

f(Vt)
=
f(Vt|T = t)f(t)

f(Vt)
(C.7)

The numerator in (C.7) will be the product of a Gamma density, by the assumption

that the marker process at any fixed meaurement time is Gamma distributed, and

the derivative of the Laplace transform of a Gamma random variable with respect

to t. The denominator is the marginal distribution of the marker given in (C.5).

Specifically,

f(t|Vx)|x=t =

vαHt−1e−v/β

Γ(αHt)βαHt
αht ln(1 + β)(1 + β)−αHt

e−v/β ln(1+β)
v

µ
(

v
β(1+β)

, 1
) =

vαHt−1

Γ(αHt)βαHt
αht(1 + β)−αHt

1
v
µ
(

v
β(1+β)

, 1
)

(C.8)
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Therefore, the joint model of interest is specified as

f(t, Vt) =
vαHt−1e−v/β

Γ(αHt)βαHt
αht ln(1 + β)(1 + β)−αHt (C.9)

The terms that contribute to the log-likelihood in Chapter IV, Section 4.3.2, equa-

tion (4.18) are

f(VHt |T = t) =
vαHt−1e−v/β

Γ(αHt)βαHt

f(t) = αht ln(1 + β)(1 + β)−αHt

S(t) = (1 + β)−αHt

C.2 Marker Observed at Uninformative Measurement Times

C.2.1 Single Measurement Time

To calculate the survival function S(t) conditional on an observed marker value

VHτ , we must consider how τ relates to t when applying the definition in Chapter IV,

Section 4.2.2.1, equation (4.7). There are two possibilities: τ ≤ t and τ > t > 0. Let

us consider the first case. If τ ≤ t, then we will have

S(t|VHτ ) = EW̄
{
S(t|W̄ )

∣∣VHτ} = EW̄
{
e−(VHτ+WHt−Hτ )

∣∣VHτ}
= e−VHτLW (1)

= e−VHτ (1 + β)−α(Ht−Hτ )

(C.10)

as W̄ |VHτ = VHτ + WHt−Hτ . The hazard conditional on the marker can be found by
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applying the definition

dΛ(t|VHτ ) = − d

dt
lnS(t|VHτ )dt

= − d

dt
ln
[
e−VHτ (1 + β)−α(Ht−Hτ )

]
dt

=
d

dt

[
VHτ + α(Ht −Hτ ) ln(1 + β)

]
dt

= dHtα ln(1 + β)

(C.11)

In the case where 0 < t < τ , we have W̄ |VHτ = B{Ht}VHτ , where B represents

the scaled Gamma bridge process. Then the conditional survival function will be

S(t|VHτ ) = EW̄
{
S(t|W̄ )

∣∣VHτ} = EB
{
e−B{Ht}VHτ

∣∣VHτ} = LB(VHτ )

= M(mHt,mHτ ,−VHτ )
(C.12)

Once again, when 0 ≤ t < τ , the hazard conditional on the marker can be found

by applying the definition

dΛ(t|VHτ ) = − d

dt
lnS(t|VHτ )dt

= − d

dt
lnM

(
mHt,mHτ ,−VHτ

)
dt

= − 1

M
(
mHt,mHτ ,−VHτ

) · d
dt
M
(
mHt,mHτ ,−VHτ

)
dt

(C.13)

Focusing on the derivative, we have

d

dt
M
(
mHt,mHτ ,−VHτ

)
=

d

dt

{
1 +

∞∑
k=1

[ k∏
r=1

mHt + r − 1

mHτ + r − 1

]
(−1)kV k

Hτ

k!

}

=
d

dt

∞∑
k=1

(mHt)(k)

(mHτ )(k)

(−1)kV k
Hτ

k!

(C.14)

where (x)(n) = Γ(x+n)
Γ(x)

is the Pochhammer symbol. Then,

d

dt
M
(
mHt,mHτ ,−VHτ

)
=

d

dt

∞∑
k=1

Γ(mHt + k)

Γ(mHt)

Γ(mHτ )

Γ(mHτ + k)

(−1)kV k
Hτ

k!

=
d

dt

∞∑
k=1

1

B(mHt, k)

Γ(mHτ )

Γ(mHτ + k)

(−1)kV k
Hτ

k

(C.15)
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where B(mHt, k) = Γ(mHt)Γ(k)
Γ(mHt+k)

and Γ(k + 1) = k! = kΓ(k) when k is an integer.

Therefore, applying the quotient and chain rules for differentiation results in

d

dt

∞∑
k=1

1

B(mHt, k)

Γ(mHτ )

Γ(mHτ + k)

(−1)kV k
Hτ

k

=
∞∑
k=1

d

dt

[
1

B(mHt, k)

]
Γ(mHτ )

Γ(mHτ + k)

(−1)kV k
Hτ

k

+
1

B(mHt, k)

d

dt

[
Γ(mHτ )

Γ(mHτ + k)

]
(−1)kV k

Hτ

k

+
1

B(mHt, k)

Γ(mHτ )

Γ(mHτ + k)

d

dt

[
(−1)kV k

Hτ

k

]
=
∞∑
k=1

mht
B(mHt, k)

{
ψ(mHt + k)− ψ(mHt)

} Γ(mHτ )

Γ(mHτ + k)

(−1)kV k
Hτ

k

+
1

B(mHt, k)

Γ(mHτ )

Γ(mHτ + k)
mht

{
ψ(mHτ )− ψ(mHτ + k)

}(−1)kV k
Hτ

k

+
1

B(mHt, k)

Γ(mHτ )

Γ(mHτ + k)
(−1)kV k−1

Hτ
V ′Hτht

=
∞∑
k=1

1

B(mHt, k)

Γ(mHτ )

Γ(mHτ + k)

(−1)kV k
Hτ

k

×
[
mht

{
ψ(mHt + k)− ψ(mHt) + ψ(mHτ )− ψ(mHτ + k)

}
+
d

dt
ln(VHτ )k

]
(C.16)

where ht = d
dt
Ht and ψ(x) = d

dx
ln Γ(x) is the digamma function. Note that because

τ > t and we consider our marker on the H-transformed time scale, there are addi-

tional terms capturing the fact that Hτ contains information relevant to time t. Thus,

the hazard conditional on the observed marker value is

dΛ(t|VHτ ) = −
1

M
(
mHt,mHτ ,−VHτ

) d
dt
M
(
mHt,mHτ ,−VHτ

)
dt

=−

∑∞
k=1

1
B(mHt,k)

Γ(mHτ )
Γ(mHτ+k)

(−1)kV kHτ
k

[
mht

{
ψ(mHt + k)− ψ(mHt) + ψ(mHτ )− ψ(mHτ + k)

}
+ d
dt

ln(VHτ )k

]
M
(
mHt,mHτ ,−VHτ

) dt

(C.17)

Therefore, the functions needed to maximize the log-likelihood in Chapter IV, Section
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4.3.3, equation (4.24) when only a single marker measure is available are

S(t|VHτ ) =


M(mHt,mHτ ,−VHτ ), 0 ≤ t < τ

e−VHτ (1 + β)−m(Ht−Hτ ), t ≥ τ

dΛ(t|VHτ ) =


−

d
dt
M
(
mHt,mHτ ,−VHτ

)
dt

M
(
mHt,mHτ ,−VHτ

) , 0 ≤ t < τ

dHtm ln(1 + β), t ≥ τ

g(VHτ )(v) =
vmHt−1e−v/β

Γ(mHt)βmHt

S(t) = (1 + β)−mHt

dΛ(t) = dHtm ln(1 + β)

C.2.2 Multiple Measurement Times

When the marker is observed at multiple measurement times, we can use the same

ideas as in (C.10)-(C.12). Let τ = {τ1, . . . , τk} be the set of measurement times, which

are assumed to be uninformative. The corresponding set of observed marker values

can be expressed as V = {VHτ1 , . . . , VHτk}. The goal is to derive the survival function

S(t) conditional on V. Once more, there are two cases to consider: t ≥ τk and

0 ≤ τ1 ≤ · · · ≤ τk−1 ≤ t < τk. In the latter, we assume, without loss of generality,

that the time of survival prediction t is between the last two measurement times.

This assumption can be relaxed further by having t between any two consecutive

measurement times.

In the first case where t ≥ τk, we have

S(t|V) = EW̄
{
S(t|W̄ )

∣∣V} = EW̄
{
e−(VHτk

+WHt−Hτk
)
∣∣V} = e−VHτkLW (1)

= e−VHτk (1 + β)−α(Ht−Hτk )

(C.18)

as W̄ |V = VHτk + WHt−Hτk , similar to (C.10). When τk−1 ≤ t < τk, we assume that

W̄ |V = VHτk−1
+ B{Ht}(VHτk − VHτk−1

). Then, the Laplace transform of the Lévy

process can once more be used to obtain the survival function conditional on observed
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data.

S(t|V) = EW̄
{
S(t|W̄ )

∣∣V}
= EB

{
e
−(VHτk−1

+B(VHτk
−VHτk−1

))∣∣V}
= e

−VHτk−1LB(VHτk − VHτk−1
)

= e
−VHτk−1M

(
m(Ht −Hτk−1

),m(Hτk −Hτk−1
),−(VHτk − VHτk−1

)
)

(C.19)

The hazard conditional on the observed marker can be generalized from (C.11)

and (C.17):

dΛ(t|V) =


dHtm ln(1 + β), t ≥ τk
− d
dtM

(
m(Ht−Hτk−1

),m(Hτk−Hτk−1
),−(VHτk

−VHτk−1
)
)

M
(
m(Ht−Hτk−1

),m(Hτk−Hτk−1
),−(VHτk

−VHτk−1
)
) dt, τk−1 ≤ t < τk

(C.20)

where

d

dt
M
(
m(Ht −Hτk−1 ),m(Hτk −Hτk−1 ),−(VHτk

− VHτk−1
)
)

=
∞∑
k=1

1

B(m(Ht −Hτk−1 ), k)

Γ(m(Hτk −Hτk−1 ))

Γ(m(Hτk −Hτk−1 ) + k)

(−1)k(VHτk
− VHτk−1

)k

k

×
[
mht

{
ψ(m(Ht −Hτk−1 ) + k)− ψ(m(Ht −Hτk−1 )) + ψ(m(Hτk −Hτk−1 ))− ψ(m(Hτk −Hτk−1 ) + k)

}
+

d

dt
ln(VHτk

− VHτk−1
)k

]

following an argument similar to the one in (C.16).

With multiple measurements, the contributions to the log-likelihood in Chapter

IV, Section 4.3.3, equation (4.24) that involve V are

S(t|V) =


e
−VHτk−1M

(
m(Ht −Hτk−1

),m(Hτk −Hτk−1
),−(VHτk − VHτk−1

)
)
, τk−1 ≤ t < τk

e−VHτk (1 + β)−m(Ht−Hτk ), t ≥ τk

dΛ(t|V) =


− d
dtM

(
m(Ht−Hτk−1

),m(Hτk−Hτk−1
),−(VHτk

−VHτk−1
)
)

M
(
m(Ht−Hτk−1

),m(Hτk−Hτk−1
),−(VHτk

−VHτk−1
)
) dt, τk−1 ≤ t < τk

dHtm ln(1 + β), t ≥ τk

g(V) =

k∏
j=1

(VHτj − VHτj−1
)m(Hτj−Hτj−1

)−1e
−(VHτj

−VHτj−1
)/β

Γ
(
m(Hτj −Hτj−1)

)
βm(Hτj−Hτj−1

)
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C.3 Details of Simulations

The setup of our simulations in the case of marked survival follows what is reported

in Suresh (2018) with some modification:

1. Define the mean and variance governing the true marker process WH(t) on the

H-transformed time scale as µH(t) and σ2H(t), respectively, where µ = eνZ

and σ2 = eηZ . We specify ν = ν0 + ν1 and η = η0 + η1. Z represents a single

binary covariate that is Bernoulli distributed with probability 0.3. The true

parameter values are ν = (0, 0.3) and η = (−2.1, 0.5), where ν0 is restricted to

0 for identifiability. H(t) represents the cumulative baseline hazard, which will

be assumed to be Weibull with λ = 1 and k = 2, i.e., H(t) = t2. Then, WH(t)

will be assumed to be follow a Gamma distribution with shape αH(t) and scale

β, where α = µ2

σ2 and β = σ2

µ
.

2. First generate the event time T using the marginal survival function via the

probability integral transform by generating a random variable u ∼ Uniform(0,1)

and solving S(t) = (1 + β)−αH(t) = u for t.

3. Generate the observed marker value V measured at T by simulating it from a

Gamma distribution with shape αH(T ) and scale β.

4. Generate administrative censoring time C ∼ Uniform(0, c), and calculate ob-

served event time X = min(T,C) and event indicator ∆ = I(T ≤ C)

5. Calculate the log-likelihood as in Chapter IV, Section 4.3.2, equation (4.18).

When the parametric Weibull function is used, Ht =
(
t
λ

)k
, where the maximum

likelihood estimators of λ and k are plugged in. The parameters ν, η, λ,

and k will be estimated using standard maximum likelihood estimation with a

parametric H(t). Alternatively, we can use the Breslow estimator in Chapter

IV, Section 4.3.4, equation (4.25) to approximate the cumulative baseline hazard
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function H(t). When H is estimated using the Breslow estimator, ν and η will

be estimated using an iterative quasi-profile maximum likelihood algorithm.

C.4 Derivation of Cross-Sectional Form of Likelihood

Recall that the log-likelihood for a standard survival model assuming longitudinal

follow-up for each of the n subjects is given by

l =
n∑
i=1

∆i ln
(
dΛT (Xi|Zi)

)
− ΛT (Xi|Zi) (C.21)

Rewriting the log-likelihood in (C.21) in counting process notation gives

l =

ξ∫
0

n∑
i=1

dNi(u) ln
(
dΛT (u|Zi)

)
− Yi(u)dΛT (u|Zi) (C.22)

where dNi(u) = I(Xi = u,∆i = 1) and Yi = I(Xi ≥ u). The log-likelihoods in both

(C.21) and (C.22) assume that longitudinal information is available for each subject

in the risk set at time u. In reality, this may not be the case. Instead, life-table risk

set information may only be available, wherein the number of subjects with covariate

value z at risk at time u is known. In such cases, the log-likelihood in (C.22) can be

written as

l =

ξ∫
0

n∑
i=1

dNi(u) ln
(
dΛT (u|Zi)

)
−
∑
z∈Z

Yz(u)dΛT (u|z) (C.23)

The first sum in (C.23) is taken over the subjects with event information, and the

second sum is over the unique covariate values. Yz(u) is a count of the number of

subjects with covariate value z in the set of unique covariate values Z who are at risk

at time u.

Using the form of (C.23), it is straightforward to see how the log-likelihood in

(4.18) can be written to conform with cross-sectional risk information.
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C.5 Additional SEER Analysis Results

C.5.1 Results for Year of Diagnosis 2011

Observed survival curves summarized using the Kaplan-Meier method for time to

prostate cancer diagnosis stratified by race and the distribution of PSA values for

the year 2011 are displayed in Figures C.1 and C.2, respectively. Black men tend to

be diagnosed earlier than to White men. The marginal distribution of PSA values

in Figure C.2 is right-skewed with mean and median values of 9.0 ng/mL and 6.0

ng/mL, respectively.

Estimated marker parameters obtained from the proposed joint model are given

in Table C.1. Estimated and observed survival curves are displayed in Figure C.3.

The fitted curve for White men is nearly identical to the observed survival curve. For

Black men, there is some slight deviation at the tail, but overall, the estimated curve

accurately describes the shape of the observed curve. Based on a likelihood ratio

test of the hypothesis H0 : ν1 = 0, η1 = 0, we reject the null hypothesis (p < 0.001)

and conclude that there is enough evidence to suggest a significant difference in the

parameters governing the underlying PSA process between Black and White men.

140



0.900

0.925

0.950

0.975

1.000

40 50 60 70 80
Age at diagnosis

S
ur

vi
va

l p
ro

ba
bi

lit
y

Race Black White

Figure C.1: Observed age of prostate
cancer diagnosis by race, 2011.
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Figure C.2: Distribution of PSA at age of
prostate cancer diagnosis, 2011.

Table C.1: Marker parameter estimates in 2011. 95% Wald interval constructed using
bootstrap standard error. p-value estimated using Wald Z value = Est

Bootstrap SE
.

Parameter Estimate Bootstrap SE 95% CI p
ν0 2.799 0.007 (2.784, 2.813) < 0.001
ν1 0.715 0.022 (0.672, 0.758) < 0.001
η0 6.222 0.017 (6.189, 6.255) < 0.001
η1 0.922 0.042 (0.840, 1.004) < 0.001
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Figure C.3: Observed (solid) and estimated (dashed) survival curves for time to
prostate cancer diagnosis for men diagnosed in 2011. 95% Wald-based confidence
bands (dotted) constructed using bootstrap standard errors.

C.5.2 Results for Year of Diagnosis 2012

Observed survival curves summarized using the Kaplan-Meier method for time

to prostate cancer diagnosis stratified by race and the distribution of PSA values

for the year 2012 are displayed in Figures C.4 and C.5, respectively. Black men are

diagnosed earlier compared to White men. The marginal distribution of PSA values

in Figure C.5 is right-skewed with mean and median values of 9.7 ng/mL and 6.3

ng/mL, respectively.

Estimated marker parameters obtained from the proposed joint model are given

in Table C.2. Estimated and observed survival curves are displayed in Figure C.6.

The fitted curve for White men is nearly identical to the observed survival curve. For

Black men, there is noticeable deviation at the tail, but overall, the estimated curve
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accurately describes the shape of the empirical curve. Based on a likelihood ratio

test of the hypothesis H0 : ν1 = 0, η1 = 0, we reject the null hypothesis (p < 0.001)

and conclude that there is enough evidence to suggest a significant difference in the

parameters governing the underlying PSA process between Black and White men.
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Figure C.4: Observed age of prostate
cancer diagnosis by race, 2012.
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Figure C.5: Distribution of PSA at age of
prostate cancer diagnosis, 2012.

Table C.2: Marker parameter estimates in 2012. 95% Wald interval constructed using
bootstrap standard error. p-value estimated using Wald Z value = Est

Bootstrap SE
.

Parameter Estimate Bootstrap SE 95% CI p
ν0 2.853 0.010 (2.834, 2.872) < 0.001
ν1 0.802 0.036 (0.732, 0.872) < 0.001
η0 6.370 0.021 (6.329, 6.411) < 0.001
η1 1.023 0.074 (0.877, 1.169) < 0.001
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Figure C.6: Observed (solid) and estimated (dashed) survival curves for time to
prostate cancer diagnosis for men diagnosed in 2012. 95% Wald-based confidence
bands (dotted) constructed using bootstrap standard errors.

C.5.3 Results for Year of Diagnosis 2013

Observed survival curves summarized using the Kaplan-Meier method for time to

prostate cancer diagnosis stratified by race and the distribution of PSA values for the

year 2013 are displayed in Figures C.7 and C.8, respectively. Black men are diagnosed

earlier than White men as evidenced by the observed survival curves. The marginal

distribution of PSA values in Figure C.8 is right-skewed with mean and median values

of 9.9 ng/mL and 6.4 ng/mL, respectively.

Estimated marker parameters obtained from the proposed joint model are given

in Table C.3. Estimated and observed survival curves are displayed in Figure C.9.

The fitted curve for White men is nearly identical to the observed survival curve. For

Black men, there is slight deviation at the tail of the survival curve, but overall, the
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estimated curve accurately describes the shape of the empirical curve. Based on a

likelihood ratio test of the hypothesis H0 : ν1 = 0, η1 = 0, we reject the null hypoth-

esis (p < 0.001) and conclude that there is enough evidence to suggest a significant

difference in the parameters governing the underlying PSA process between Black

and White men.
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Figure C.7: Observed age of prostate
cancer diagnosis by race, 2013.
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Figure C.8: Distribution of PSA at age of
prostate cancer diagnosis, 2013.

Table C.3: Marker parameter estimates in 2013. 95% Wald interval constructed using
bootstrap standard error. p-value estimated using Wald Z value = Est

Bootstrap SE
.

Parameter Estimate Bootstrap SE 95% CI p
ν0 2.880 0.008 (2.864, 2.896) < 0.001
ν1 0.786 0.021 (0.745, 0.828) < 0.001
η0 6.436 0.018 (6.401, 6.470) < 0.001
η1 0.988 0.040 (0.910, 1.066) < 0.001
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Figure C.9: Observed (solid) and estimated (dashed) survival curves for time to
prostate cancer diagnosis for men diagnosed in 2013. 95% Wald-based confidence
bands (dotted) constructed using bootstrap standard errors.

C.5.4 Comparison of SEER Parameter Estimates

Plots of the marker parameter estimates by year of diagnosis are displayed in

Figure C.10. Estimates of all parameters except for η1 tend to increase with year,

though estimates for the year 2011 are noticeably lower than those of other years.

Estimates for the intercept term η0 related to the variance of the marker process

were the most variable from year to year. Overall, the point estimates and bootstrap

standard errors are similar across years.
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