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Abstract 

 

Quantum materials are a class of materials where charge, orbit, spin, and lattice degrees of 

freedoms (DOFs) entangle to give rise to novel phases. A major subset of quantum materials, 

quantum magnets, span a broad spectrum including quantum dimer magnets hosting singlet ground 

states, pseudospin magnets with strong spin-orbit coupling (SOC), spin liquid and spin ice magnets 

where magnetic frustrations lead to absence of magnetic long-range order (LRO) and 

fractionalized excitations, 2-dimensional (2D) magnets with strong quantum fluctuations, as well 

as topological magnets whose magnetic order is an essential ingredient in their topological phases.  

 

Using a combination of polarized Raman spectroscopy, an inelastic optical scattering technique, 

and spin-wave calculations, we study magnetic excitations in two classes of quantum magnets, 

namely, the bilayer perovskite iridate Sr3Ir2O7 with strong SOC and the 2D Ising ferromagnet (FM) 

CrI3 which is one of the first 2D magnets discovered.  

 

In Sr3Ir2O7, we discovered two sets of two-magnon modes, one of which arises from a pair of 

Brillouin zone-center optical magnons, and the other one from zone-boundary magnons. In 

particular, the former type is unconventional as it preserves the full symmetries of the underlying 

crystal lattice (i.e., A1g). Our findings not only reveal such A1g magnetic excitation, but also show 



 

 xvii 

the magnetic ground state (GS) of Sr3Ir2O7 is a conventional antiferromagnet (AFM), which offers 

insight into the heated debate on the nature of Sr3Ir2O7 magnetism.  

 

In CrI3, which has been thought to be an interlayer AFM in its few-layer form and an interlayer 

FM in its bulk form, we found that bulk CrI3 in fact hosts a mixed state with interlayer AFM at its 

surface and interlayer FM in its deep bulk. By applying an out-of-plane magnetic field, we induced 

an interlayer AFM to FM phase transition at a critical field of BC = 2 T, and observed a concurrent 

structural phase transition. Our results unambiguously address the puzzle of how the interlayer 

magnetism evolves upon decreasing thickness in CrI3.  

 

In conclusion, we used polarized Raman measurements and spin-wave calculations to study two 

types of quantum magnets. In the SOC magnet, Sr3Ir2O7, we discovered a unique A1g zone-center 

optical two-magnon excitation and confirmed its conventional AFM GS. In the bulk form of the 

2D magnet, CrI3, we uncovered a coexistence of interlayer AFM and FM, and induced concurrent 

magnetic and structural phase transitions with external magnetic field.  
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Chapter 1 Introduction 

 

Quantum materials are a huge class of novel materials where quantum mechanics plays an essential 

role in their electronic or magnetic properties [1-4], as compared to traditional materials which can 

be described by classical or semi-classical approaches. The interplay between various DOFs, 

including orbital, spin, lattice, and electronic interaction, gives rise to a plethora of exotic quantum 

phases. Although there is no general consensus on the classification of this large material family, 

three major categories of quantum materials draw considerable interest, namely the strongly 

correlated materials, for example high-TC cuprate [5,6] and iron [7-9] superconductors (SC), low-

dimensional materials,  for example graphene [10-12], and topological materials, for example 

topological insulators (TI) [13-16], topological semimetals [17-22] and topological magnets [23-

28]. Quantum materials hold great promise in applications as they show various unusual responses 

under external stimulus (e.g., large anomalous Hall effect [29,30] and giant nonlinear optical 

response [31]) and have much wider tunability than conventional materials. For the above reasons, 

quantum materials are at the heart of the frontier condensed matter studies in the 21st century. 

 

Quantum magnets are an important subset of quantum materials, including the spin liquid or spin 

ice magnets where magnetic frustration leads to a large degeneracy in their GS and fractionalized 

excitations [32], dimerized magnets with entangled spin singlet GS [33,34], unconventional SOC 

pseudospin magnets [35], topological magnets whose time-reversal symmetry (TRS)-breaking 

magnetic LRO plays an essential role in their topological phases, as well as low-dimensional 
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magnets where quantum fluctuations play an important role [36,37]. As the starting point, 

understanding of the magnetic GS and corresponding low-energy excitations is crucial in further 

study or even application of quantum magnets. For this reason, in this thesis, we select two 

interesting types of quantum magnets: the perovskite iridates with SOC pseudospin moments and 

2D magnets with exotic thickness-dependence. To solve the magnetic puzzles, we use a 

combination of Raman spectroscopy and spin-wave theory.  

 

In contrast to the intriguing 3d transition metal (TM)-based systems like high-TC cuprates and iron 

SC [38,39], where SOC can be treated as a perturbation, compounds with partially filled 4d and 

5d orbitals have a significant SOC comparable to or even exceeding the kinetic energy, crystal 

field and electronic interactions. Therefore, surprisingly rich electronic and magnetic phases 

emerge as a result of the combined effect of SOC and electronic correlations [35,40]. For example, 

correlated TRS-breaking Weyl semimetal and magnetic axion insulator phases are predicted in 

pyrochlore iridates, such as R2Ir2O7 [35,39,40], coexisting with complex noncollinear magnetic 

orders. Among the large family of heavy TM compounds, the Ruddlesden-Popper (RP) series 

iridate Sr2IrO4 and Sr3Ir2O7 with perovskite structure have attracted great attention [41-45], mainly 

because Sr2IrO4 shows a remarkable similarity to high-TC SC cuprates in terms of its Mott-

insulating AFM GS [44,45], and even the Fermi arcs [46] and d-wave gap [47] in doped 

compounds. The strong SOC plays an essential role in the description of both magnetic and 

electronic GS of RP iridates, where SOC intertwines the spin and orbital DOFs and drives the 

valence bands into Jeff = 1/2 state together with Hubbard repulsion [41,42]. Moreover, distinct 

anisotropic magnetic exchange interactions have been proposed in perovskite iridates [48], and 
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novel magnetic orders have indeed been observed in RP iridates including a dimensionality-driven 

spin-flop transition [49] and a giant magnetic gap in Sr3Ir2O7 [50].  

 

To further understand the interesting magnetic excitations and the underlying exchange 

interactions, we performed polarized Raman spectroscopy on Sr3Ir2O7 [51]. Through 

characterizing the temperature dependence and symmetry properties of the magnetic modes and 

utilizing spin-wave theory, we discovered an unconventional zone-center optical two-magnon 

excitation, which is unique to the bilayer system and shares a similar energy with the giant spin 

gap in RIXS spectra [50]. Our results also showed that Sr3Ir2O7 holds a conventional AFM GS. 

 

Magnetic LRO has been recently discovered in several 2D van der Waals (vdW) materials 

experimentally, including FePS3 [52,53], CrI3 [37], Cr2Ge2Te6 [36], VSe2 [54] and MnSe2 [55], 

ranging from semiconducting AFM to itinerant FM. Since their discovery, they have offered an 

ideal playground for testing well-established theories, such as KBT theory for XY magnets [56], 

and realizing various exotic phases, for example quantum spin liquids [57], their wide tunability 

subject to pressure [58], electric field [59], gating [60] and other external stimuli provides also has 

promising technological and industrial value [61,62].  

 

CrI3 is one of the first monolayer 2D FMs and attracts great research attention [37,63-66]. In the 

thin flake limit, each FM layer couples AFM to the neighboring layer below its Neel temperature 

of 45 K, thus forming an out-of-plane interlayer AFM order [37]. However, CrI3 shows FM order 

in the bulk form, with a Curie temperature of 61K [67]. To investigate this interesting thickness-

dependent crossover, we use magnetic field- and temperature-dependent circularly polarized 
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Raman spectroscopy to study the phonon and magnon modes of bulk CrI3 [68]. Surprisingly, we 

found that the bulk crystals host a mixed magnetic state with AFM existing in the surface layers 

and FM order dominating in the deep bulk. Additionally, a magnetic field-induced first order 

structural phase transition was observed with 2 T external field, accompanied with an AFM to FM 

transition of the top layers. Our results reveal the intriguing evolution from bulk FM to thin-film 

AFM and suggest the close interplay between magnetism and structure in CrI3, opening up new 

possibilities for realizing new devices based on strong magnetoelastic properties.  

 

In Chapter 2, we will introduce detailed background information on both types of magnets 

aforementioned. To investigate the magnetic excitations, a combination of polarized Raman 

spectroscopy and spin-wave calculations is used, which will be introduced in Chapter 3. Our work 

on the perovskite iridates will be discussed in Chapters 4 and 5, with emphases of experimental 

results in Chapter 4 and theoretical calculations in Chapter 5. Both the experiment and the 

calculations, are equally important in revealing the nature of the magnetic excitations and ground 

state in Sr3Ir2O7. In Chapter 6, we will introduce our highly collaborative work on bulk CrI3. And 

lastly, chapter 7 is a summary and outlook of our work.  
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Chapter 2 Background 

Starting from the usage of loadstone in navigation, magnetism has played an essential role in both 

academy and technology for more than a thousand years. Despite the long history of application 

and study, only until 20th century people have started to realize that the magnetic order in various 

magnets is a fully quantum mechanical phenomenon. Van Leeuwen stated in 1918 that without 

assuming a finite magnetic moment on each atom, classical Boltzman statistics applied to any 

dynamical system cannot produce either a susceptibility or a magnetic moment [2]. The required 

finite magnetic moment, either comes from the orbiting electron or spin, thus originates from 

quantized orbital or spin angular momentum. 

   

Under the assumption of finite magnetic momentum, magnets can be divided into two main 

categories: classical magnets and quantum magnets. Semiclassical approach is sufficient to explain 

the collective behavior of the magnetic moments in classical magnets, while a full quantum 

description involving various DOFs is necessary for quantum magnets. Consequently, the key 

questions for understanding quantum magnets are: how do these DOFs interplay with one another 

in forming various exotic magnetic orders and which factors are the most important? 

 

In this chapter, by introducing previous studies on two important class of quantum magnets, 

perovskite iridates and 2D vdW magnets, we aim to present the intriguing interplay between SOC, 



 

 12 

correlation, dimension and magnetic anisotropy in quantum magnets, with particular emphasis of 

SOC and correlation in perovskite iridates, and dimension and magnetic anisotropy in 2D magnets.  

 

2.1 Phase diagram of high-TC cuprate SC 

 

In this section, we will first briefly summarize the phases in high-TC cuprates, which is intimately 

related to the perovskite iridates and serves as an model system to study strongly correlated Mott 

system. The concept of strongly correlated systems has been introduced for describing phases 

where canonical Laudau quasiparticle description fails to capture the essential physics properties. 

One classical example is high-TC copper-based SC, or cuprates, which own a rich phase diagram 

with different doping levels and temperatures (Figure 2.1).  

 

 

Figure 2.1 Schematic temperature-doping phase diagram of electron- and hole-doped cuprate 

SC, adapted from Reference [1] with permission. 
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As a single-band system, the low-energy electronic states of cuprates are dominated by Cu 3d 

orbitals. Although simple band-filling argument suggests a metallic ground state, the strong onsite 

electron-electron Coulomb interaction drives undoped cuprates into a correlated Mott insulating 

state with AFM LRO below its Neel temperature [4,5]. The charge localization of the insulating 

phase can be alleviated by electron/hole doping, which gives rise to a plethora of exotic phases. 

Dome-shape unconventional d-wave superconductivity phase shows up with both electron doping 

and hole doping [6], after the AFM LRO being destroyed with excessive carriers. A spin glass 

phase characterized by slow spin dynamics [7],  charge density wave (CDW) order and spin stripes 

[8,9] and coherent normal metallic state [10] can also be induced by gradually increasing hole 

doping level. The strong electronic interaction in cuprates also manifests itself through emergent 

phases with elevated temperature, especially the strange metal phase [11,12], which appears above 

the superconducting transition temperature and below critical doping and featured with anomalous 

linear resistivity [13] and large self-energy correction in the spectrum [14].  

 

2.2 Jeff = 1/2 pseudospins in Mott-insulating Sr2IrO4 and Sr3Ir2O7 

 

As we move from 3d to 5d TM on the periodic table, the electron orbitals become more extended 

so that the local Hubbard repulsion U is reduced. On the other hand, the relativistic SOC effect 

which increases with the larger atomic number becomes significant in 5d TM compounds. The 

competing interactions can result in a plethora of novel phases, as shown in Figure 2.2, which is 

plotted in terms of the relative strength of U/t and /t, where  is the SOC strength and t is the 

hopping energy. When U is much larger than the band width t, we enter the Mott insulator regime 

where metal-insulator transition (MIT) occurs along with AFM order due to the strong electron-
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electron interaction. Typical example includes the high-temperature superconductor La2-xBaxCuO4 

[15]. When  becomes the dominating energy scale, band inversion can happen in certain metal 

and semiconductor, and drive them into TI or topological semimetal state, for example the TI Bi1-

xSbx [16]. In the intermediate region where both U and  are non-negligible, SOC leads to the 

splittings of the bands and effectively decreasing the kinetic energy t. As a result, only a relatively 

smaller U is necessary to induce a Mott-insulating phase, and thus U and  cooperate in creating 

a SOC Mott insulator. 

 

 

Figure 2.2 Schematic phase diagram in terms of U/t and /t adapted from Reference [17] 

with permission. 

 

In this interesting intermediate region of SOC Mott insulators, several transition metal oxides 

(TMO) have been experimentally observed to show insulating behavior despite partially filled 5d 

bands in band structure calculation, including iridium oxides [3,18-36] and osmium oxides [37,38]. 
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Iridium oxides, or iridates, are a large family of TMOs that display a range of emergent phases in 

this SOC Mott-insulating region. Optical data on Ir4+ suggest a high value of the SOC  ~380 meV 

[39], which is large enough to lock the orbit and spin angular momentum locally and thus total 

angular momentum becomes a well-defined quantum number in describing the band structure. 

Among the large family of iridates, the hexagonal insulators (Na/Li)2IrO3 have been shown to 

possess an AFM Mott-insulating GS [25,27] and their magnetic GS hold the potential for realizing 

quantum spin liquids [26,30]. The pyrochlore iridate R2Ir2O7 shows an MIT and unconventional 

magnetic instability [32,33,36]. The spinel structure iridate Na4Ir3O8 is theoretically predicted to 

be a candidate for spin liquid [34].  

 

We are particularly interested in the RP series of perovskite iridates Srn+1IrnO3n+1 (n = 1, 2, ∞). 

This family of iridates has drawn considerable interest because its single-layer compound Sr2IrO4 

shows strong similarity to the high-TC cuprate SC in terms of Mottness and electronic structure, 

and efforts have been made in searching for SC in doped Sr2IrO4, despite so far no direct evidence 

of SC has been found.   

 

To understand the role of SOC and interaction in Srn+1IrnO3n+1 family, here we summarize the 

current consensus on the electronic and spin structure of Sr2IrO4 and Sr3Ir2O7. The octahedral 

crystal field potential splits the states of the Ir d-electrons into an eg doublet and a t2g triplet, with 

t2g states being the lower-energy states (Figure 2.3 b). The d5 configuration of Ir4+ is thus equivalent 

to a hole in the t2g states.  SOC further splits the t2g multiplet into Jeff = 1/2 doublet and Jeff = 3/2 

quartet as shown in Figure 2.3 c. Simple electron counting leads to fully occupied low-energy Jeff 

= 3/2 states and a half-filled Jeff = 1/2 state.  
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Figure 2.3 (a) The octahedral crystal field of Ir4+, (b) crystal field splitting of the d5 states 

into the t2g
5 states, and (c) SOC induced Jeff = 1/2 doublet and Jeff = 3/2 quartet. This figure 

is adapted from Reference [40] with permission. 

 

The t2g orbital states have effective angular momentum of l = 1 [41]. They can be written with 

basis of the xy, xz, and yz orbitals.  

|𝑙𝑧 = 0⟩ = |𝑥𝑦⟩

|𝑙𝑧 = ±1⟩ = −
1

√2
(𝑖|𝑥𝑧⟩ ± |𝑦𝑧⟩)

 (2.1) 

Considering the SOC, the single-ion Hamiltonian becomes [42] 

𝐻0 = 𝜆𝑙 ∙ 𝑠 + Δ𝑙𝑧
2 (2.2) 

Δ is the tetragonal splitting term. The lowest energy level Jeff = 1/2 states are 

|𝐽𝑒𝑓𝑓 = +
1

2
⟩ = sin 𝜃 |0, ↑⟩ − cos 𝜃 |+1, ↓ ⟩

|𝐽𝑒𝑓𝑓 = −
1

2
⟩ = sin 𝜃 |0, ↓⟩ − cos 𝜃 |−1, ↑ ⟩

 (2.3) 
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where the first parameter 0, ±1 denote lz of the orbital angular momentum, and ↑, ↓ denote the z-

component of the spin angular momentum. 𝜃 is determined by the relative strength of SOC and 

the tetragonal splitting energies, where tan 2𝜃 = 2√2𝜆/(𝜆 − 2Δ).  

 

 

Figure 2.4 A schematic temperature versus electron-doping phase diagram of Sr2IrO4, 

based on Reference [43,44]. 

 

Although the on-site Hubbard repulsion U is relatively small in iridates, it is sufficient to split the 

Jeff = 1/2 band, driving Sr2IrO4 and Sr3Ir2O7 into SOC-induced Mott insulators [45]. Sr2IrO4 shows 

interesting similarity to the high-TC SC cuprate La2CuO4, both of which show AFM insulating GS 

with comparable exchange interactions on the order of J ~100 meV [20,21], and charge gaps much 

larger than J. Efforts have been made searching for SC in doped Sr2IrO4, with discoveries of Fermi 

arcs [44] and d-wave gap [43] analog to doped cuprates (Figure 2.4). Although SC has been 

predicted theoretically in this d-wave gap region [46], no SC behavior has been observed 
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experimentally so far. Figure 2.5 shows the temperature versus La-doping phase diagram of (Sr1-

xLax)3Ir2O7. Our study is focused on the insulating AFM region of both compounds.   

 

 

Figure 2.5 Temperature versus La-doping phase diagram of (Sr1-xLax)3Ir2O7 summarizing 

experiments with various techniques, adapted from Reference [47] with permission. The 

Neel temperature TN and the structural phase transition temperature Ts are acquired with 

neutron powder diffraction [48]. TDW marks the onset temperature of a possible CDW 

instability from pump probe optical reflectivity [49]. Tcr is the crossover temperature from 

resonant elastic X-ray scattering [50]. Tcoh cooresponds to loss of coherent spectral weight 

by angle-resolved photoelectron spectroscopy [51]. T1 (T2) marks the onset (end) of 

constant 𝒅𝝆/𝒅𝑻 [48,52].  

 

Unlike the isotropic spin exchange interactions that dominate in cuprates, the 3D density profile 

of the Jeff = 1/2 pseudospins (the top panel of Figure 2.3 c and Figure 2.6) in iridates results in 

additional anisotropic magnetic interactions including the Dzyaloshinsky-Moriya (DM) and 
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pseudodipolar (PD) interactions [42]. In Chapter 3, we will discuss in more detail on the form of 

the magnetic interactions of the  Jeff = 1/2 pseudospins. As a result, novel magnetic GSs emerge 

including the large in-plane net magnetic moment in Sr2IrO4 [42,53], and the transition from in-

plane magnetic moments in Sr2IrO4 to out-of-plane magnetic moments in Sr3Ir2O7 [22]. 

 

 

Figure 2.6 The spatial distribution of Jeff,z = + 1/2 state as a superposition of Sz = + 1/2, Lz = 

0 state, and Sz = - 1/2, Lz = + 1 state. The color red and blue represent spins up and down. 

This figure is adapted from Reference [42] with permission. 

 

2.3 Resonant inelastic X-ray scattering of magnetism in Sr2IrO4 and Sr3Ir2O7 

 

Resonant inelastic X-ray scattering (RIXS) studies of Sr2IrO4 revealed a gapless magnon band (the 

blue dots in Figure 2.7) [21]. This magnon dispersion is well described with spin wave theory of 

an isotropic Heisenberg AFM (the purple line in Figure 2.7), similar to La2CuO4 [21].  

 

Sr3Ir2O7, on the contrary, displays a large magnetic gap ~92 meV (Figure 2.8) [3,54]. The nature 

of this gap has been on a debate regarding the dominating magnetic interactions in bilayer Sr3Ir2O7. 

Two distinct models have been proposed to explain the giant magnon gap. The first model assumes 

the GS is a traditional bilayer AFM, and the magnetic branch B in the RIXS data is attributed to 
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degenerate acoustic and optical single-magnon excitations (Figure 2.8 b: theoretical fittings, and 

Figure 2.9 a: a schematic illustration). The gap is due to a large interlayer PD interaction [3,50].  

 

 

Figure 2.7 RIXS data of the magnon dispersion in Sr2IrO4 (blue dots) and spin wave fitting 

of Heisenberg AFM model (purple line), adapted from Reference [21] with permission. 

 

 

 

 

 

 

 

Figure 2 

 

Sr2IrO4 

 

 

(a) (b) 

Figure 2.8 (a) RIXS data of magnetic excitations in Sr3Ir2O7 that are composed of three dispersive 

features: A is the elastic scattering branch, B is the magnetic branch whose origin is on debate, 

and C is the multi-magnon branch. (b) Fitting of feature B assuming two degenerate acoustic and 

optical single-magnon branches. This figure is adapted from Reference [3] with permission. 
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Figure 2.9 Schematic illustration of the two theories of the magnetic excitation discovered 

in Sr3Ir2O7, which are (a) the spin wave picture, and (b) the dimer triplet picture. This 

figure is adapted from [54] with permission. 

 

Because feature B shows moderate dispersion throughout the entire Brillouin zone, the second 

model assumes that the GS is the quantum dimer state formed by the adjacent spins from two 

layers because of a large interlayer coupling [54,55]. The gap corresponds to the dimer triplet 

excitation (Figure 2.9 b) and the moderate dispersion is due to the localized nature of the dimers. 

Either explanation assumes that bilayer Sr3Ir2O7 holds special anisotropies that differ drastically 

from single-layer Sr2IrO4 or cuprates.  

 

To provide more insight into the nature of this gap, we use a combination of polarized Raman 

spectroscopy and spin wave calculations, which will be introduced in Chapter 3, to probe an 

excitation with the same energy as the 92 meV magnetic gap. Polarized Raman spectroscopy 

provides much higher energy resolution and additional symmetry resolution compared to RIXS, 

which is crucial in determining the nature of the magnon gap. Combined with spin wave 

calculations, our study shows that the gap is not a single magnon excitation as the previous studies 

(a)   (b) 
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suggested, but rather a two-magnon process. More importantly, our model requires minimal 

anisotropy in bilayer Sr3Ir2O7 suggesting its similarity to its single layer counterpart Sr2IrO4.  

 

2.4 Mermin-Wagner theorem 

 

Since the discovery of graphene in 2004 [56], a wide range of 2D materials have been discovered 

which display various electronic properties. The existence of 2D magnet has been studied both 

theoretically and experimentally. In this section, we introduce the Mermin- 

Wagner theorem which imposes constraints on the magnetic order in low dimensions, which 

provides guidance in the search of the layered magnets that hold magnetic LRO down to the 

monolayer limit.  

 

Mermin and Wagner proved in their paper in 1966 that AFM or FM order does not exist in 1-

dimensional (1D) or 2D isotropic Heisenberg model with finite-range exchange interaction at any 

finite temperature [57]. Let us prove a subset of Mermin-Wagner theorem in an alternate form: 

thermal fluctuations will destroy FM LRO in 2D isotropic Heisenberg model.  

 

Consider the isotropic Heisenberg model with FM exchange interaction 

𝐻𝐻𝐹𝑀 = −𝐽 ∑ 𝑆𝑖 ∙ 𝑆𝑗
<𝑖,𝑗>

 (2.4) 

where <i, j> sums over the nearest-neighbor spin products, J is the exchange interaction, 𝑆𝑖 is the 

spin vector on site i. In the case of FM Heisenberg model, the overall negative sign combined with 

a positive J favors the spins to be parallel to each other to lower the GS energy.  
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Using Holstein-Primakoff transformations in the �⃗⃗�-space which will be discussed in detail in 

Section 3.6 [58],  

𝑆𝑖
+ = 𝑆𝑖

𝑥 + 𝑖𝑆𝑖
𝑦
= √

2𝑆
𝑁
∑ 𝑎�⃗⃗�𝑒

𝑖�⃗⃗�∙𝑟𝑖
�⃗⃗�

𝑆𝑖
− = 𝑆𝑖

𝑥 − 𝑖𝑆𝑖
𝑦
= √

2𝑆
𝑁
∑ 𝑎

�⃗⃗�
+𝑒−𝑖�⃗⃗�∙𝑟𝑖�⃗⃗�

𝑆𝑖
𝑧 = 𝑆 −

1
𝑁
∑ 𝑎

�⃗⃗�
+𝑎�⃗⃗�′𝑒

𝑖(�⃗⃗�′−�⃗⃗�)∙𝑟𝑖
�⃗⃗�,�⃗⃗�′

 (2.5) 

the FM Heisenberg Hamiltonian in Equation 2.7 can be diagonalized to  

𝐻𝐻𝐹𝑀 =∑𝐸�⃗⃗�𝑎�⃗⃗�
+𝑎�⃗⃗�

�⃗⃗�

 (2.6) 

where 

𝐸
�⃗⃗�
𝐻𝐹𝑀 = 𝐽𝑆𝑍(1 − 𝛾�⃗⃗�) (2.7) 

𝛾�⃗⃗� =
1

𝑍
∑𝑒𝑖�⃗⃗�∙(𝑟𝑖−𝑟𝑗)

<𝑗>

 (2.8) 

 

Equations 2.7 and 2.8 give the spin wave dispersion relations. Near the Brillouin-zone center where 

�⃗⃗� → 0, the spin energy is quadratic in wave vector 𝐸�⃗⃗�~𝑘
2, the 2D density of states (DOS) per unit 

volume N(E) is thus a constant 

𝑁(𝐸)𝑑𝐸 =
𝑘𝑑𝑘

(2𝜋)2
~𝑑(𝑘2)~𝑑𝐸 (2.9) 

The thermal occupation of spin waves causes a reduction in the magnetization  

Δ𝑀~∫ 𝑑𝐸
1

𝑒
𝐸
𝑘𝐵𝑇 − 1

 → ∞
∞

0

(2.10) 
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This integral diverges which means that the reduction in magnetization is sufficient to destroy any 

2D magnetic order at a finite temperature.  

 

If we consider anisotropic Ising FM,  

𝐻𝐼𝐹𝑀 = −𝐽𝑥𝑦 ∑(𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝑆𝑗
𝑦
)

<𝑖,𝑗>

− 𝐽𝑧 ∑ 𝑆𝑖
𝑧𝑆𝑗
𝑧

<𝑖,𝑗>

(2.11) 

the spin wave spectrum becomes gapped whose energy gap is determined by the z-axis anisotropy 

𝐸
�⃗⃗�
𝐼𝐹𝑀 = (𝐽𝑧 − 𝐽𝑥𝑦𝛾�⃗⃗�)𝑆𝑍 (2.12) 

Because of this energy gap, the lower bound of the integral in Equation 2.10 is no longer 0, so that 

Δ𝑀 becomes a finite value. Rigorous proof of the existence of 2D Ising FM can be found in 

Reference [59].  

 

2.5 Introduction of 2D magnets 

 

Historically, the attempts to experimentally realize 2D magnetic order started since the successful 

growth of epitaxial thin film and superlattices. The giant magnetoresistance (MR), for instance, 

was demonstrated in artificially constructed layered magnetic structures [60,61]. However, the 

doubt over whether thin films can be viewed as an intrinsic 2D magnetic system has been long-

existing, because film structure suffers from substrate effect like strain and nonuniformity with 

small islands [62]. Therefore, a substrate-free clean 2D flatland with magnetic LRO is highly 

desirable.  
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Since the discovery of graphene, tremendous efforts have been dedicated to inducing magnetic 

order in nonmagnetic 2D exfoliated samples. Various strategies have been employed including 

introducing local moments through defects [63,64], band structure engineering for obtaining high 

density of states (DOS) near Fermi level and causing Stoner instability [65-67], and magnetic 

proximity effect by fabricating 2D magnetic – nonmagnetic structures [68]. Particularly, great 

success has been achieved via band engineering, as correlation and instability-induced FM order 

is realized in pristine magnetic angle twist-bilayer graphene [69] and related systems. However, 

the relatively small magnetic moment and low Curie temperature hinder further application in 

ambient condition. 

 

Instead of introducing magnetism in 2D systems, finding an exfoliated bulk crystal with intrinsic 

magnetic order down to few-layer limit has been a long-sought goal. Based on Mermin-Wagner 

theorem, bulk Ising magnet is a preferred starting point. In 2017, the first two intrinsic 2D magnetic 

systems, Cr2Ge2Te6 [70] and CrI3 [71], were reported, where Cr2Ge2Te6 hosts 2D Heisenberg FM 

with a small applied magnetic field, and few-layer CrI3 can be viewed as 2D Ising interlayer AFM. 

Since then, the field of 2D magnetic atomic crystals has been advancing rapidly, with more notable 

2D VDW magnetic systems being discovered or predicted [72].  More importantly, the key feature 

of magnetic flatlands, control of the magnetism via external stimuli, has been demonstrated in 

various material platforms. For example, spin-lattice coupling, strain or pressure can substantially 

alter the magnetic moment direction and transition temperature in Cr2Ge 2Te6 [73]. Giant electric-

field tunability has been observed in few-layer CrI3 [74], where gating completely changes the 

magnetic GS from interlayer AFM to FM. The diverse magnetic properties and tunability of 2D 

magnets promise various device applications. Benefiting from atomically uniform and ultra-thin 
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layered structure, VDW magnets provide ideal ingredient for constructing magnetic tunnel 

junctions, the key building block of modern spintronics industry. For instance, although still 

limited in operating temperature, graphite-CrI3-graphite heterostructure shows giant MR up to 106 % 

at 1.4 K [75], holding great promise in high-efficiency spintronic applications.   

 

2.6 Previous studies on the structural and magnetic phases of CrI3 

 

In this section, we will briefly summarize the previous studies of semiconducting FM CrI3, one of 

the first-discovered monolayer FM magnet. Our detailed Raman study on the magnetic structure 

of bulk CrI3 will be presented in Chapter 6.  

 

The Cr3+ ions of CrI3 form a honeycomb lattice in edge-sharing octahedra. At room temperature, 

CrI3 has monoclinic crystal structure with point group C2h [76]. Below 220K, CrI3 undergoes a 

first-order structural phase transition into a rhombohedral C3i phase, with changes in the in-plane 

bond distance and a shearing of the layers. Although both phases stack in ABC sequence, the high-

temperature structure has an in-plane displacement between layers which breaks the three-fold 

rotational symmetry, while in the low-temperature phase, each Cr3+ ion is directly over the 

honeycomb vacancy of the two adjacent layers, and thus the structure preserves the three-fold 

rotational symmetry along z-axis.  

 

Magnetic measurements including magnetization, magnetic susceptibility [76] and Mössbauer 

spectroscopy [77] have shown that bulk CrI3 is a strong anisotropic FM below its Curie 

temperature of 61K, with the magnetic moments of Cr ions pointing perpendicular to the layers. 
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With weak interlayer VDW bonding, relatively high Curie temperature, and a large magnetic 

anisotropy, CrI3 and the family of CrX3 (X = Br, Cl, I) have been theoretically predicted to be 

promising candidates for realizing intrinsic 2D FM [64,65]. Indeed, with exfoliated CrI3 flakes, 

clear signature of FM order in monolayer CrI3 is revealed with magneto-optical Kerr effect 

(MOKE) measurements (Figure 2.10 a). Similar to the bulk crystal, the FM order in monolayer 

CrI3 has out-of-plane easy axis and the Curie temperature is around 45K [71]. However, systematic 

layer dependent magnetic measurement shows completely unexpected behavior. Figure 2.10 

shows the evolution from FM order in monolayer to the vanishing net moment in bilayer CrI3 at 

low field, then to the stored net moment in tri-layer CrI3, strongly suggesting the interlayer AFM 

coupling in the thin flake limit, distinct from the bulk [71]. Tunneling measurements also displays 

stepped tunneling currents with external magnetic field, confirming the interlayer AFM in CrI3 

flakes [78-80]. Figure 2.11 shows the puzzling evolution from bulk FM to few-layer interlayer 

AFM and it remains an open question on the mechanism behind the layer dependent crossover, 

although some tentative explanations including external effects introduced by strain or capping 

layer have been given [81-84].  
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Figure 2.10 (a-c) MOKE measurements on 1-3 layers of CrI3 flakes, adapted from 

Reference [71] with permission.  

 

 

Figure 2.11 Illustrations of the thickness dependence of CrI3 magnetism. 
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To solve this magnetic puzzle, our collaborative study probes the magnetic structure of  bulk CrI3. 

It is the limited penetration depth of optical techniques that permits the probing of its thin-layer 

magnetism within its bulk. With magnetic field-dependent Raman spectroscopy of the magnons, 

our study unambiguously shows the coexistence of AFM and FM magnons even in bulk CrI3, 

which further suggests that bulk CrI3 actually hosts interlayer AFM at its surface and interlayer 

FM in its deeper bulk (Fig 2.12), instead of the uniform FM order as reported in previous literature. 

It provides a natural explanation of the evolution from the FM in 3D bulk to the layered AFM in 

2D flakes. 

 

Figure 2.12 Coexistence of surface interlayer AFM and bulk interlayer FM in bulk CrI3. 
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Chapter 3 Experimental and Theoretical Techniques 

Having discussed the two quantum magnet systems of our interest, in this chapter we will focus 

on our experimental and theoretical techniques, polarized Raman spectroscopy and spin-wave 

calculations. We will first introduce Raman spectroscopy as a widely used tool for charactering 

material properties, followed by a theoretical description of Raman scattering process and selection 

rules. Then we will elaborate on our Raman setup at the University of Michigan. In the end, we 

will present our main theoretical tool, the spin wave theory, for understanding our Raman 

experimental observations.   

 

3.1 Basic Principles of Raman Spectroscopy  

 

Raman scattering is an inelastic scattering process of visible light photon by the excitations in 

matter. It is named after the Nobel Prize laureate C. V. Raman who observed the effect in organic 

liquid in 1928 [1], 5 years after the theoretical prediction [2]. During a Raman scattering process, 

an incident photon excites the electrons into a virtual state. Instead of a real excited state which 

tends to fully absorb the light, the virtual state is unstable and quickly radiates a photon. Depending 

on the energy of the radiated photon equal, lower or higher than the incident photon, the scattering 

process is named an elastic Rayleigh process, a Stokes process, or an anti-Stokes process. Raman 

scattering is an inelastic scattering process, where the energy loss or gain of the photon corresponds 

to an excitation of the matter. Through analyzing the energy spectrum of the scattered photon, the 
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energy of the excitation can be obtained. Typical Raman-accessible excitations include phonons 

[3,4], plasmon [4], magnons [5], charge order [6], etc., with excitation energies ranging from a few 

meV to hundreds of meV.  

 

Nowadays, Raman spectroscopy has become a powerful tool for identifying crystals, molecules 

and even proteins and DNAs by providing their unique structure fingerprints, i.e. phonons, and is 

thus widely used in both academy and industry. With modern designs of lasers and detectors, 

Raman spectroscopy has achieved higher sensitivity, faster data acquisition speed, and higher 

energy resolution comparing with other common techniques. Moreover, different variants of 

Raman techniques have been developed to satisfy various requirements. For instance, in order to 

obtain high spatial resolution, Raman microscopy (𝜇𝑚 spatical resolution) and near-field scanning 

Raman microscopy (nm spatial resolution) utilize high NA objective and atomically sharp metallic 

tip. Polarized Raman spectroscopy, which will be discussed in detail later, provides additional 

symmetry information of the excitations, which is crucial in understanding the physics origin of 

Raman active modes and also the structure, orientation and symmetry of the study subject.   

 

In order to gain more intuitive understanding of the Raman scattering process, we adopt a 

macroscopic approach to describe the phenomenon theoretically. If we consider an incident light 

with electric field �⃗⃗�𝐼, it induces a polarization in a material  

�⃗⃗� = 𝜖0𝜒�⃗⃗�𝐼 (3.1) 

where 𝜒 is the linear electric susceptibility tensor of the material. The various excitations of the 

matter, for example phonons of the lattice vibrational modes, cause fluctuations in 𝜒 and thus �⃗⃗�. 
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Due to the oscillations of the electric dipole, the electrons radiate scattered light out of the material, 

whose electric field satisfies 

(∇2 + 𝑘𝑆
2)�⃗⃗�𝑆 = −

𝜔𝑆
2

𝜖0𝑐2
�⃗⃗� (3.2) 

where the subscript S denotes scattered light. kS and S represent the wave vector and energy of 

the scattered photon, respectively. 

 

The solution to Equation 3.2 is 

�⃗⃗�𝑆(𝑟, 𝜔𝑆) =
𝜔𝑆
2

4𝜋𝜖0𝑐2
∫𝑑3𝑟′

𝑒𝑖𝑘𝑆|𝑟−𝑟
′|

|𝑟 − 𝑟′|
�⃗⃗�(𝑟′, 𝜔𝑆) (3.3) 

where the integration is over the scattering region. Consider |𝑟| ≫ |𝑟′|, Equation 3.3 becomes  

�⃗⃗�𝑆(𝑟, 𝜔𝑆) =
𝜔𝑆
2

4𝜋𝜖0𝑐2
𝑒𝑖𝑘𝑆|𝑟|

|𝑟|
∫𝑑3𝑟′ 𝑒−𝑖�⃗⃗�𝑆∙𝑟

′
�⃗⃗�(𝑟′, 𝜔𝑆) (3.4) 

 

The intensity of the scattered light with polarization 𝜖𝑆 can be written as  

2𝜖0𝑐𝑛𝑆〈𝜖𝑆 ∙ �⃗⃗�𝑆
∗(𝑟, 𝜔𝑆)𝜖𝑆 ∙ �⃗⃗�𝑆(𝑟, 𝜔𝑆)〉 (3.5) 

where the bracket denotes an average.  

 

Combining Equations 3.4 and 3.5, we arrive at the cross section of Raman scattering [7-9] 

𝑑2𝜎

𝑑Ω𝑑𝜔𝑆
=

𝜔𝐼𝜔𝑆
3𝑉

(4𝜋𝜖0)2𝑐4
𝑛𝑆
𝑛𝐼

1

|�⃗⃗�𝐼|
2
〈𝜖𝑆 ∙ �⃗⃗�

∗(�⃗⃗�𝑆, 𝜔𝑆)𝜖𝑆 ∙ �⃗⃗�(�⃗⃗�𝑆, 𝜔𝑆)〉 (3.6) 

where 𝜔𝐼  and 𝜔𝑆  are the frequencies of the incident and scattered light, 𝑛𝐼  and 𝑛𝑆  are the 

refractive indices of the incident and scattered light in the material, V is the volume of the material 
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that contributes to the scattering process, and 𝜖𝑆 is the direction of the scattered light. Although 

the scattered light radiates in all directions, its intensity varies as a function of 𝜖𝑆, which contains 

symmetry information that is especially important in our work.  

 

Next we replace the incident light-induced polarization �⃗⃗�  in Equation 3.6 with Equation 3.1, 

whose form depends on the nature of the excitations that we are interested in. For nonmagnetic 

excitations, 𝜒 can be expanded in terms of the fluctuations caused by the excitations X around its 

equilibrium position. If we take the leading order expansion 

𝜒 = 𝜒0 + (
𝑑𝜒

𝑑𝑋
)
0
𝑋 +⋯ (3.7) 

The resulting Raman cross section is given by  

𝑑2𝜎

𝑑Ω𝑑𝜔𝑆
=
𝜔𝐼𝜔𝑆

3𝑉

(4𝜋)2𝑐4
𝑛𝑆
𝑛𝐼
|𝜖𝑆 ∙

𝑑𝜒

𝑑𝑋
∙ 𝜖𝐼|

2

〈𝑋(𝑞, 𝜔)𝑋∗(𝑞, 𝜔)〉 (3.8) 

 

For magnetic excitations, due to the symmetry properties of the magnetization, the polarization 

fluctuation and Raman cross section can be written as 

�⃗⃗�(1) = 𝜖0
𝑑𝜒

𝑑𝑀
�⃗⃗⃗� × �⃗⃗�𝐼 (3.9) 

𝑑2𝜎

𝑑Ω𝑑𝜔𝑆
=
𝜔𝐼𝜔𝑆

3𝑉

(4𝜋)2𝑐4
𝑛𝑆
𝑛𝐼
(𝜖𝑆 × 𝜖𝐼)𝑖(𝜖𝑆 × 𝜖𝐼)𝑗〈𝑀𝑖𝑀𝑗

∗〉 (3.10) 

where �⃗⃗⃗� is the magnetic moment vector. Note that Equation 3.9 again involves only the leading 

order expansion in magnetization �⃗⃗⃗�. A higher order expansion might be necessary depending on 

the material system, for example the magnons in CrI3. Details will be given in Section 6.4. 
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3.2 Raman Scattering Selection Rules 

 

Using group theoretical methods, we can determine whether two states (𝜖𝑆 and 𝜖𝐼 in our case) are 

coupled to the interaction matrix (
𝑑𝜒

𝑑𝑋
 in the non-magnetic case as an example) by symmetry 

analysis [10]. In the case of Raman spectroscopy, we vary the polarizations of the incident and 

scattered light 𝜖𝐼 and 𝜖𝑆 to observe different modes with certain symmetry properties. The terms 

|𝜖𝑆 ∙
𝑑𝜒

𝑑𝑋
∙ 𝜖𝐼|  in Equation 3.8 and (𝜖𝑆 × 𝜖𝐼)𝑖(𝜖𝑆 × 𝜖𝐼)𝑗  in Equation 3.10 contain this symmetry 

information. It is required that those terms must be invariant under all the symmetry operations of 

the crystal’s point group, i.e. transform as the fully symmetric A1 representation, to be non-

vanishing [8,10-12]. In other word, a phonon can be observed in a Raman process if its irreducible 

representation corresponds to one of the reduced irreducible representations of the representation 

of the polarizability tensor.  

 

As an example, we show how to derive the symmetry-allowed phonon modes of the tetragonal D4h 

point group. The polarizations 𝜖𝑆 and 𝜖𝐼 transform as polar vectors. In the D4h point group, the 

irreducible representations A2u and Eu transform as polar vectors, representing light polarizations. 

By taking the direct product of A2u and Eu, we arrive at the collection of the irreducible 

representations of all the Raman phonons [8,10]. Equation 3.11 shows the decomposition of the 

reducible representation of 𝐴2𝑢⨂𝐴2𝑢 + 𝐸𝑢⨂𝐸𝑢, which suggests that the Raman-allowed phonons 

take the symmetry from 𝐴1𝑔, 𝐴2𝑔, 𝐵1𝑔, 𝐵2𝑔, or 𝐸𝑔.  

𝐴2𝑢⨂𝐴2𝑢 + 𝐸𝑢⨂𝐸𝑢 = 𝐴1𝑔 + 𝐴2𝑔 + 𝐵1𝑔 + 𝐵2𝑔 + 𝐸𝑔 (3.11) 
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For any irreducible representation of a specific crystal symmetry, a Raman tensor can be written 

which relates the polarization of the scattered light with the polarization of the incident light. A 

table of the Raman-active irreducible representations and their corresponding Raman tensors for 

different crystal symmetries are available in many Raman-related materials [9,12].  

 

The selection rule for magnetic excitations is drastically different. From the term (𝜖𝑆 × 𝜖𝐼)𝑖(𝜖𝑆 ×

𝜖𝐼)𝑗 in Equation 3.10, we see that to probe magnetic excitations, the polarizations of the incident 

and scattered light need to be orthogonal. This orthogonality is very important in distinguishing 

magnetic from non-magnetic excitations in Raman spectroscopy technique. However, we note that 

Equations 3.9 and 3.10 assume that the magnetic excitation alters the net magnetization of the 

material, for example the local spin-flip excitation or the collective single magnon excitation. If 

the magnetic excitation does not induce a net magnetization, for example the two-magnon 

excitation, the selection rule above does not apply anymore. Additionally, as aforementioned in 

the last section, higher order expansion of the magnetization also leads to the break-down of this 

orthogonality rule, for example in the case of the single magnon in CrI3. A detailed discussion of 

a quadratic expansion in CrI3 magnetization will be given in Section 6.4. 

 

3.3 Polarized Raman Spectroscopy Setup 

 

Figure 3.1 shows the design of our Raman setup. Because the laser source and the spectrometer 

are commercial ones, my responsibility is to build the beam path which directs the incident light 

to the sample and collects the scattered light to the spectrometer with an ideal efficiency. Following 

the light propagation direction, the optical components are in order as follows: 
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Figure 3.1 Schematics of the polarized Raman spectroscopy setup at the University of 

Michigan. A photo of the real setup will be shown in Figure 4.6 in Section 4.2.2. 

 

• A 514 nm Argon ion laser (Spectra Physics 2580CWR), which runs in continuous-wave 

(CW) mode with high frequency and power stability. A chiller (Spectra Physics Model 314) 

is used for stabilizing the temperature of the laser. 

• A zero-order half-wave plate (HWP) that rotates the linearly polarized light to our desired 

polarization. 

• A collimating lens (f = 3”) that focuses the beam of ~100 m on the sample in a high-

vacuum optical cryostat (Janis ST-300).  

mirror 

Collecting objective 

λ/2 plate 

Analyzer 

2φ 

x 
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φ 

Credit to Wencan Jin 
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• A small mirror (radius = 1/8”) which directs the incident beam while not blocking too much 

of the back-scattered Raman signal.  

• A high numerical aperture (NA = 1.2) collecting objective (Nikon Nikkor 50 mm 1:1.2) 

which collimates the Raman signal. 

• An analyzer which determines the 𝜖𝑆. 

• Another HWP that rotates the 𝜖𝑆 to the vertical direction, because Raman spectrometers 

are an order of magnitude more sensitive to vertically polarized light than horizontally 

polarized light. 

• Raman spectrometer (triple-grating Dilor XY spectrometer). It allows for switching 

between a 600 g/mm and a 1800 g/mm grating. 

 

Similar to other spectroscopy techniques that involves a light source, Raman spectroscopy requires 

a highly monochromatic and frequency-stabilized light source for obtaining high resolution data. 

Thus a temperature stabilized CW laser is usually adopted.  

 

A typical Raman setup measures the mode energy and linewidth but not necessarily its symmetry. 

In our work, as aforementioned, symmetry information is very important in distinguishing 

magnetic from non-magnetic excitations. Thus our setup utilizes the polarizer and analyzer, and 

“polarized” is emphasized throughout this thesis. 

 

In some Raman setups, an optical filter is used to block the back-scattered elastic scattered beam. 

However, the filter is not necessary for our setup, as the high power Rayleigh scattering is blocked 

by an internal slit of our Dilor Raman spectrometer. Through rotating the direction of the gratings, 
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we can also avoid the laser line and protect the high-sensitivity detector. A recently manufactured 

Raman spectrometer normally uses a notch filter to attenuate the Rayleigh scattering at a specific 

wavelength. Additionally, using a notch filter allows for measuring the Stokes and anti-Stokes side 

at the same time. Ultra-low energy excitations (< 10 cm-1) can also be observed with this type of 

spectrometer. On the contrary, if we try to measure such low-energy excitations with Dilor Raman 

spectrometer, the Rayleigh scattering will be spatially too close to the slit edge so that it gets 

diffracted into the CCD camera and show up as low-energy Raman signal, preventing such low-

energy measurement of real signal. On the other hand, Dilor Raman spectrometer has its own 

advantage. Because notch filters only work at a specific wavelength, we need to carefully design 

the notch filter given the laser source. Dilor Raman spectrometer, on the contrary, can work with 

a wide range of laser wavelength. The two setups outside of the University of Michigan that have 

been used in our work are both equipped with notch filter-based spectrometers.   

 

High energy resolution is a significant advantage of Raman spectroscopy. Figure 3.2 shows the 

components inside the Dilor Raman spectrometer. Many factors affect the energy resolution of a 

Raman spectrometer, including the diffraction grating, the slit size, the spectrometer focal length, 

and the detector [13]. The groove density of the grating typically ranges from 300 g/mm to 1800 

g/mm. Higher groove density allows for higher energy resolution with sacrifice of its spectral range. 

The slit size balances the spectral resolution and throughput. The higher slit size, the lower energy 

resolution and the higher power throughput. The spectrometer focal length is the distance between 

the focusing mirror (M10) and the detector (CCD). Longer focal length allows for larger spatial 

separation and higher resolution, but the spectrometer is less compact in size. The detector of a 

Raman spectrometer is often a high-solution CCD array whose pixel size affects the resolution.  
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Three different Raman spectroscopy setups have been used for my studies. Magnetic field 

tunability is not supplied in our Raman setup, thus we turn to external resources. Raman 

measurements of perovskite iridates Sr3Ir2O7 and Sr2IrO4 are performed at the University of 

Michigan and the National High Magnetic Field Lab (NHMFL). The Raman data of our 

collaborative work on bulk CrI3 were acquired at Texas Tech University. 

 

At NHMFL, a 532 nm sapphire laser (Coherent Sapphire SF NX 532) provides the continuous-

wave (CW) incident light, and a Princeton Instrument TriVista spectrometer (PI Acton TriVista 

557) is used to collect the scattered light. Samples are placed inside a magnetic cryostat with base 

temperature down to Helium temperature. A superconducting magnet provides magnetic field up 

to 17 T. Comparing with our domestic Raman setup, selection rules measurements cannot be 

performed at NHMFL, because the large numerical aperture of the focusing objective tilts the light 

and causes undesired out-of-plane component of light polarization. The stray magnetic fields 

Figure 3.2 The components inside Dilor Raman spectrometer [14]. S/M/G stands for slit/ 

mirror/grating. 
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induce Faraday effect in optical components which further contaminates the linearly polarized 

light.  

 

At Texas Tech University, a 633 nm He-Ne laser is used to match the resonance of CrI3 and 

enhances the scattering cross section. A Raman spectrometer (Horiba Labram HR) collects the 

scattered light. The optical cryostat implemented in this setup can provide a 0 – 7 T magnetic field 

and liquid Helium temperature. The magnetic field-induced Faraday artifact is eliminated on this 

setup since we use circularly polarized light.  

 

3.4 Magnetic Interactions in the Spin Hamiltonian  

 

The theoretical tool we use to study the magnetic excitations in quantum magnets is the spin-wave 

theory, which describes a low energy collective magnetic excitation where the excited spins 

oscillate collectively near its ground state (Figure 3.3). The notation of “magnon” is equivalent to 

“spin wave”, both of which are used interchangeably in this thesis. The spin wave can be treated 

with either a semi-classical or a quantum approach. We use the latter approach which we will 

describe in detail in Section 3.5. Detailed calculations applied to the actual magnets of Sr3Ir2O7 

and CrI3 will be given in Chapter 5 and Chapter 6, respectively. 

 

Figure 3.3 Schematics of the spin waves, adapted from Reference [15] with permission. 
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The first step to perform spin wave calculation is to determine the type of magnetic interactions in 

the material and construct the spin Hamiltonian. In the following sections, we will introduce 

several types of magnetic interactions which commonly appear in the spin Hamiltonian. 

 

3.4.1 Magnetic Dipole-Dipole Interaction  

 

Magnetic dipole-dipole interaction is the direct interaction between two magnetic moments 

through exchange of photons, in analogue to the Coulomb interaction between the electric dipoles. 

The dipole-dipole interaction has the following form 

𝐸𝐷𝑃 =
𝜇

4𝜋|𝑟|3
(�⃗⃗⃗�1 ∙ �⃗⃗⃗�2 − 3(�⃗⃗⃗�1 ∙ 𝑟)(�⃗⃗⃗�2 ∙ 𝑟)) (3.12) 

where �⃗⃗⃗� = 𝛾ℏ𝑆 is the magnetic moment of the electron spin, and 𝛾 is the gyromagnetic ratio. 

 

Compared to the exchange interaction which will be introduced in Section 3.4.2, magnetic dipole-

dipole interaction is magnetic in nature and interacts at a longer range. Generally, the magnetic 

dipole-dipole interaction tends to align the magnetic moments in the same direction and form 

ferromagnetic order.  

 

3.4.2 Exchange Interaction  

 

Exchange interaction arises from the Pauli exclusion principle which states that identical fermions 

cannot occupy the same state and is thus a purely quantum mechanical effect. Because electrons 
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are fermions with both spin and orbital degrees of freedom, their spin and orbital states are 

intertwined as the total wavefunction must be antisymmetric under the permutation of two 

electrons. Therefore, the real-space electronic wavefunction, which is subject to the Coulomb 

interaction, has a strong influence on the spin configuration.  

 

For simplicity, let’s consider a two-electron system which forms either a singlet (total spin S = 0) 

or a triplet (S = 1) state [16]. The total spin satisfies 

𝑆2 = (𝑆1 + 𝑆2)
2
=
3

2
+ 2𝑆1 ∙ 𝑆2 (3.13) 

Because 𝑆2 = 0 (2) for the singlet (triplet) state, 𝑆1 ∙ 𝑆2 = −3/4 (1/4) for the singlet (triplet) 

state. The spin Hamiltonian of the system can be written as 

𝐻𝑠𝑝𝑖𝑛 =
1

4
(𝐸𝑠 + 3𝐸𝑡) − (𝐸𝑠 − 𝐸𝑡)𝑆1 ∙ 𝑆2 (3.14) 

so that 𝐻𝑠𝑝𝑖𝑛 = 𝐸𝑠 (𝐸𝑡) for the singlet (triplet) state. Omitting the constant energy term, we arrive 

at the spin Hamiltonian  

𝐻𝑠𝑝𝑖𝑛 = −𝐽𝑆1 ∙ 𝑆2 (3.15) 

where 𝐽 = 𝐸𝑠 − 𝐸𝑡  is the exchange coupling parameter, which is determined by the energy 

difference between the singlet and triplet state. The singlet (triplet) state has antisymmetric 

(symmetric) spin so that it has symmetric (antisymmetric) electronic wave function 

Ψ𝑠(𝑡)(𝑟1, 𝑟2) =
1

√2
(𝜙𝑎(𝑟1)𝜙𝑏(𝑟2) ± 𝜙𝑎(𝑟2)𝜙𝑏(𝑟1)) (3.16) 

The different wave function overlap of the singlet and triplet states lead to different Coulomb 

energy, and thus a difference in 𝐸𝑠 and 𝐸𝑡. In an actual solid, we sum over all the magnetic ions 

which yields the Heisenberg Hamiltonian  
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𝐻𝐻𝑒𝑖𝑠𝑒𝑛𝑏𝑒𝑟𝑔 = −∑𝐽𝑖𝑗𝑆𝑖 ∙ 𝑆𝑗  (3.17) 

If 𝐽𝑖𝑗 > 0, parallel spin alignment is favored and the GS is FM. If 𝐽𝑖𝑗 < 0, the GS is AFM. 

 

The exchange mechanism described above in the two-electron case is the direct exchange. Here 

several types of exchange interactions are listed.  

 

• Direct exchange arises directly from the Coulomb interaction between the electrons from 

two magnetic ions. The nonmagnetic ions have no contribution to the exchange interaction 

in this case.  

 

• Superexchange refers to the case where the nonmagnetic ions mediate the exchange 

interaction between the magnetic ions. Both the perovskite AFM Srn+1IrnO3n+1 (n = 1, 2, ∞) 

and the layered FM CrI3 fall into this category. In Srn+1IrnO3n+1, the Oxygen ions mediate 

the superexchange interaction of the Iridium ions of the Ir-O octahedral cage. In CrI3, the 

Chromium ions are the magnetic ions and the Iodine ions are the mediators.  

 

• Indirect exchange is mediated through the coupling between the magnetic ions and the 

surrounding conduction electrons, which typically dominates in partially filled f-shell 

systems.  

 

In Equation 3.17, the exchange interaction of all directions of the magnetic moments are described 

with a universal Jij, i.e., the Heisenberg Hamiltonian is isotropic. Anisotropic exchange 
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interactions, on the other hand, are common in real magnets and may lead to interesting magnetism 

that are under intensive research investigations.  

 

Consider the following spin Hamiltonian: 

𝐻 = −∑𝐽𝑖𝑗(𝑆𝑖𝑥 ∙ 𝑆𝑗𝑥 + 𝑆𝑖𝑦 ∙ 𝑆𝑗𝑦 + 𝛼𝑆𝑖𝑧 ∙ 𝑆𝑗𝑧) (3.18) 

𝛼 measures the anisotropy of the Hamiltonian. If 𝛼 > 1, the spin Hamiltonian in Equation 3.18 

becomes the Ising model. The GS of the Ising model is the out-of-plane FM. An example of the 

Ising magnet is the monolayer FM CrI3 whose anisotropy counteracts the 2D thermal fluctuations, 

as discussed in Section 2.3. If 𝛼 < 1, Equation 3.18 becomes the XY model whose GS is the in-

plane FM.  

 

DM interaction is another type of interesting anisotropic exchange interaction, which only occurs 

when the inversion symmetry is broken, such as interface or crystals with no inversion center. It 

is known as the antisymmetric interaction with the following form   

𝐻𝑖𝑗
𝐷𝑀 = �⃗⃗⃗�𝑖𝑗 ∙ (𝑆𝑖 × 𝑆𝑗) (3.19) 

DM interaction causes spin canting in FM or AFM states and is the main driving force of magnetic 

skyrmions and magnetoelectric effect in multiferroics.  

 

3.4.3 Other Interactions 

 

Single-ion anisotropy, or magnetocrystalline anisotropy, is primarily caused by SOC. It has the 

following form 
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𝐻𝑆𝐼𝐴 =∑𝐴𝑖𝑆𝑖𝑧
2

𝑖

(3.20) 

Zeeman energy is proportional to the external magnetic field 

𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = −𝑔𝜇𝐵∑𝑆𝑖 ∙ �⃗⃗�

𝑖

(3.21) 

The single ion anisotropy and the Zeeman energy are similar in the sense that they both provide 

an easy axis which the spins tend to align to.  

 

3.5 Spin Hamiltonians of Sr3Ir2O7 and CrI3 

 

In this section we construct the spin Hamiltonians of the two materials Sr3Ir2O7 and CrI3 using the 

magnetic interactions we previously introduced.  

 

In the case of iridates, the dominating magnetic interaction is the exchange interaction. It is 

mentioned in Section 2.1 that for Ir4+ ion in an Ir-O octahedral cage, the lowest energy states are 

the Kramer’s doublet of total angular momentum Jeff = 1/2 [17]. 

 

In the case of a 180 Ir-O-Ir bond, the superexchange Hamiltonian includes a regular isotropic 

exchange term, and a special term in the form of a dipole-dipole interaction, namely the 

pseudodipolar (PD) interaction [17,18].  

𝐻𝑖𝑗 = 𝐽1𝑆𝑖 ∙ 𝑆𝑗 + 𝐽2(𝑆𝑖 ∙ 𝑟𝑖𝑗)(𝑆𝑗 ∙ 𝑟𝑖𝑗) (3.22) 

It will be shown in Chapter 5 that this PD exchange interaction is crucial in providing the 92 meV 

magnetic gap with the special A1g symmetry.  
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In the family of CrX3 (X = Cl, Br, I), the spin Hamiltonian consists of the anisotropic exchange 

interaction which stabilizes z-axis or xy-plane FM GS, and the Zeeman interaction which induces 

the external field-induced phase transitions  

𝐻 = −∑𝐽𝑖𝑗(𝑆𝑖𝑥 ∙ 𝑆𝑗𝑥 + 𝑆𝑖𝑦 ∙ 𝑆𝑗𝑦 + 𝛼𝑆𝑖𝑧 ∙ 𝑆𝑗𝑧) − 𝑔𝜇𝐵∑𝑆𝑖 ∙ �⃗⃗�

𝑖

 (3.23) 

 

3.6 Spin-Wave Calculations 

 

The quantum treatment of the spin wave theory uses the Holstein-Primakoff transformations which 

map the spin operators 𝑆𝑥 and 𝑆𝑦 to magnon creation 𝑏+ and annihilation 𝑏 operators [19] 

𝑆+ = 𝑆𝑥 + 𝑖𝑆𝑦 = √2𝑆 − 𝑏+𝑏 𝑏

𝑆− = 𝑆𝑥 − 𝑖𝑆𝑦 = 𝑏
+√2𝑆 − 𝑏+𝑏

 (3.24) 

𝑏+ and 𝑏 satisfy the bosonic commutation relations [𝑏𝑖, 𝑏𝑗
+] = 𝛿𝑖𝑗. Equation 3.24 assumes that the 

GS is FM, so that the excitation of a magnon decreases the total spin moment. If the GS is AFM, 

𝑆+ and 𝑆− are related to 𝑏 (𝑏+) and 𝑏+ (𝑏) on the sites that carry +z (-z) spins.  

 

Because 𝑆 ∙ 𝑆 = 𝑆(𝑆 + 1), 𝑆𝑧 can be computed using Equation 3.24 

𝑆𝑧
2 = 𝑆(𝑆 + 1) − 𝑆𝑥

2 − 𝑆𝑦
2 = (𝑆 − 𝑏+𝑏)2 (3.25) 

and 

𝑆𝑧 = 𝑆 − 𝑏
+𝑏 (3.26) 
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It can be verified that 𝑆𝑥, 𝑆𝑦 and 𝑆𝑧 satisfy the spin commutation relations. Equation 3.26 confirms 

that the excitation of a magnon decreases the spin moment size. 

 

Although Equation 3.24 preserves the commutation relations of spins, in practice a square root is 

too complicated to perform computations. Thus we expand Equation 3.24 

𝑆+ = √2𝑆 − 𝑏+𝑏 𝑏 = √2𝑆 (𝑏 −
𝑏+𝑏𝑏

4𝑆
+⋯)

𝑆− = 𝑏+√2𝑆 − 𝑏+𝑏 = √2𝑆 (𝑏+ −
𝑏+𝑏+𝑏

4𝑆
+⋯)

 (3.27) 

Applying Equation 3.27 to the exchange interaction 𝑆𝑖 ∙ 𝑆𝑗, we can see that magnetic problems are 

correlated by nature, because high order terms of 𝑏+ and 𝑏 show up. In our work, however, high 

order terms are neglected which are not significant in spin wave calculations. We thus arrive at the 

simple form 

𝑆+ = √2𝑆𝑏

𝑆− = √2𝑆𝑏+

𝑆𝑧 = 𝑆 − 𝑏
+𝑏

 (3.28) 

 

Next, real-space creation and annihilation operators 𝑏+  and 𝑏  are transformed into �⃗⃗� -space 

operators 𝑎+ and 𝑎. 

𝑎�⃗⃗� =
1

√𝑁
∑𝑒−𝑖�⃗⃗�∙𝑟𝑖𝑏𝑖
𝑖

𝑎
�⃗⃗�
+ =

1

√𝑁
∑𝑒𝑖�⃗⃗�∙𝑟𝑖𝑏𝑖

+

𝑖

 (3.29) 

�⃗⃗� (𝑟𝑖) denotes the momentum (position) of the �⃗⃗�-space (real-space) excitation, and N is the total 

number of spin sites. It can be verified that 𝑎+  and 𝑎  also satisfy the bosonic commutation 
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relations. Combining the highest order approximation of the Holstein-Primakoff transformations 

and the Fourier transformations, we arrive at Equation 2.5 

𝑆𝑖
+ = 𝑆𝑖

𝑥 + 𝑖𝑆𝑖
𝑦
= √

2𝑆
𝑁
∑ 𝑎�⃗⃗�𝑒

𝑖�⃗⃗�∙𝑟𝑖
�⃗⃗�

𝑆𝑖
− = 𝑆𝑖

𝑥 − 𝑖𝑆𝑖
𝑦
= √

2𝑆
𝑁
∑ 𝑎

�⃗⃗�
+𝑒−𝑖�⃗⃗�∙𝑟𝑖�⃗⃗�

𝑆𝑖
𝑧 = 𝑆 −

1
𝑁
∑ 𝑎

�⃗⃗�
+𝑎�⃗⃗�′𝑒

𝑖(�⃗⃗�′−�⃗⃗�)∙𝑟𝑖
�⃗⃗�,�⃗⃗�′

 (3.30) 

which is ready to be applied to the spin Hamiltonian.  

 

Consider again the nearest neighbor (NN) FM Heisenberg Hamiltonian  

𝐻𝐻𝐹𝑀 = −𝐽 ∑ 𝑆𝑖 ∙ 𝑆𝑗 = −𝐽 ∑ [𝑆𝑖𝑧𝑆𝑗𝑧 +
1

2
(𝑆𝑖
+𝑆𝑗

− + 𝑆𝑖
−𝑆𝑗

+)]

<𝑖,𝑗><𝑖,𝑗>

= −
𝑁𝑍𝐽𝑆2

2
− 𝐽𝑆 ∑ (𝑏𝑖

+𝑏𝑗 + 𝑏𝑗
+𝑏𝑖)

<𝑖,𝑗>

+ 𝐽𝑍𝑆∑𝑏𝑖
+𝑏𝑖

𝑖

= −
𝑁𝑍𝐽𝑆2

2
−
𝐽𝑆

2
∑(𝑏𝑖

+𝑏
𝑖+�⃗⃗⃗�
+ 𝑏

𝑖+�⃗⃗⃗�

+ 𝑏𝑖)

𝑖,�⃗⃗⃗�

+ 𝐽𝑍𝑆∑𝑏𝑖
+𝑏𝑖

𝑖

 (3.31) 

Z = 4 is the number of NN spins. 𝛿 is the position vector 𝛿 = �⃗�𝑗 − �⃗�𝑖 and the sum is over four NN 

spin sites. The first term −𝑁𝑍𝐽𝑆2/2 is the GS energy.  

 

We continue to rewrite Equation 3.31 in the �⃗⃗�-space 

 

𝐻𝐻𝐹𝑀 = −
𝑁𝑍𝐽𝑆2

2
+ 𝐽𝑆𝑍∑[1 −

1

𝑍
cos(�⃗⃗� ∙ 𝛿)

�⃗⃗�,�⃗⃗⃗�

]𝑎
�⃗⃗�
+𝑎�⃗⃗�

𝐻𝐻𝐹𝑀 = −
𝑁𝑍𝐽𝑆2

2
+ 𝐽𝑆𝑍∑(1 − 𝛾�⃗⃗�)

�⃗⃗�,�⃗⃗⃗�

𝑎
�⃗⃗�
+𝑎�⃗⃗�

(3.32) 
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where 𝛾�⃗⃗� ≡ 1 − 1/𝑍 cos(�⃗⃗� ∙ 𝛿) is determined by the lattice structure. Since now the Halmitonian 

is diagonal, the energy eigenvalues can be directly read out and the result is shown in Equation 

2.7.  

 

A real magnet, however, is often more complicated than the NN FM Heisenberg model, and the 

spin Hamiltonian is not diagonal. In this case, Bogoliubov transformations for bosonic particles 

are applied which diagonalize the spin Hamiltonian.  

 

Consider the transformations 

𝛼 = 𝑢𝛽 + 𝑣𝛽+

𝛼+ = 𝑢∗𝛽+ + 𝑣∗𝛽
 (3.33) 

To preserve the bosonic commutation relations  

[𝛼, 𝛼+] = [𝑢𝛽 + 𝑣𝛽+, 𝑢∗𝛽+ + 𝑣∗𝛽] = (|𝑢|2 − |𝑣|2)[𝛽, 𝛽+] (3.34) 

we need the canonical transformation condition |𝑢|2 − |𝑣|2 = 1. In practice, if we write the spin 

Hamiltonian in the matrix form 

𝐻𝐻𝐹𝑀 = (𝑎�⃗⃗�
+ ⋯ 𝑎−�⃗⃗�) (

𝑀11 ⋯ 𝑀1𝑛
⋮ ⋱ ⋮
𝑀𝑛1 ⋯ 𝑀𝑛𝑛

)(

𝑎�⃗⃗�
⋯
𝑎
−�⃗⃗�
+
) = 𝑉𝑇𝑀𝑉 (3.35) 

finding the Bogoliubov transformations is essentially diagonalizing the matrix JM, where J is the 

n-dimensional matrix  

𝐽 = (
𝐼𝑛
2

0𝑛
2

0𝑛
2
−𝐼𝑛

2

) (3.36) 
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where 𝐼𝑛  (0𝑛 ) is the identity (zero) matrix of dimension n. Detailed calculations applied to 

perovskite iridates and CrX3 (X = Cl, Br, I) are given in Chapters 5 and 6. In the next two 

paragraphs I will briefly introduce the results of those calculations.  

 

In the treatment of the perovskite iridates Sr3Ir2O7 and Sr2IrO4, the spin Hamiltonian Equation 3.22 

includes the exchange couplings and the PD interaction. Polarized Raman spectroscopy shows that 

the magnetic gap in Sr3Ir2O7 carries the A1g symmetry, which is not allowed by a single magnon 

process. A two-magnon scattering process instead explains both the energy and the symmetry 

properties of the gap. In addition, the exchange energies turn out to be in perfect agreement with 

single layer Sr2IrO4, indicating the similarity of Sr3Ir2O7 and Sr2IrO4. The spin wave theory is 

significant in this study to provide a quantitative explanation that pinpoints the nature of the gap. 

Detailed calculations will be shown in Chapter 5.  

 

In the study of the magnetic field dependent magnon energies in CrX3 (X = Cl, Br, I), the spin 

Hamiltonian Equation 3.23 includes the anisotropic magnetic exchange couplings and a Zeeman 

term. In the work on CrI3, two spin Hamiltonians are established assuming either interlayer FM or 

AFM GS. Comparing the theoretical results of spin wave theory and our Raman data, it is evident 

that AFM and FM magnons coexist in bulk CrI3. In the work on the CrX3 family (X = Cl, Br, I), 

the anisotropy parameters  are determined for different halogen X, based on the experimental 

results. Details will be discussed in Chapter 6.   
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Chapter 4 Raman Scattering of Single- and Bi-Layer Perovskite Iridates 

In this chapter, I will discuss the experimental details of our Raman studies on the single-layer and 

bilayer perovskite iridates Sr2IrO4 and Sr3Ir2O7, and the electron-doped compounds of Sr3Ir2O7. 

Polarized Raman measurements have been performed on both samples with the setup at the 

University of Michigan. Magnetic field-dependent data have been collected at NHMFL. 

 

As has been discussed in Chapter 2,  RIXS has been the primary experimental technique to study 

the magnetic excitations of perovskite iridates [1-5]. Although the community has come to a 

consensus about the Heisenberg AFM nature of the magnetism in Sr2IrO4 [1], two distinct models 

have been proposed for Sr3Ir2O7 [2,3], leaving it an open question of the nature of its magnetic GS 

and excitation. To address this question, we utilize polarized Raman spectroscopy, which has 

higher energy resolution and can provide additional symmetry information,  to probe the magnetic 

excitations of Sr3Ir2O7. We have observed a broad A1g mode at 800 cm-1 together with a broad A1g 

+ B2g mode at 1400 cm-1, both of which have been attributed to two-magnon scatterings with our 

spin-wave theory.   

 

Although different instrument has its own energy resolution, in general the energy resolution of a 

Raman spectrometer is ~1 cm-1 (0.12 meV). The experimental way to determine the energy 

resolution is to measure the linewidth of the stabilized monochromic laser. Such measurement on 

our Dilor Raman spectrometer yields a full width at half maximum (FWHM) of ~4 cm-1 under our 

experimental conditions. RIXS, on the other hand, typically has an energy resolution of ~100 meV 
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[6] and achieving high energy resolution requires building rather large spectrometer [6,7]. Modern 

high-resolution RIXS spectrometers can resolve the energy down to ~10 meV [7]. Compared to 

RIXS, Raman spectroscopy has a much higher energy resolution.   

 

Another advantage of Raman spectroscopy is that it has well-defined selection rules. Because the 

wavelength of visible light (~100 nm) is much longer compared to the lattice constant (~0.1 nm), 

electric dipole approximation is fully valid and applicable in modeling Raman scattering process. 

On the contrary, the wavelength of X-ray is comparable to the lattice constant, and higher order 

multipolar transitions are present in RIXS process [6] which makes the selection rules less well-

defined [8].  

 

The above two factors of polarized Raman spectroscopy are crucial in our study of Sr3Ir2O7. Firstly, 

the previous literature proposed that the emergence of the 90 meV magnetic gap observed in RIXS 

is a first-order process [2,3]. Instead, our study provides key evidence that it is a second-order 

process [8], where the ultrahigh energy resolution of the Raman technique reveals the lineshape of 

the mode. First-order processes are normally sharp while second-order processes are generally 

broad [9-13]. Symmetry information is also important in the determination of the nature of an 

excitation, as has been discussed in Chapter 3.  

 

4.1 Previous Raman Studies on Sr2IrO4 and Sr3Ir2O7 

 

We have discussed the advantages of using polarized Raman spectroscopy to study the perovskite 

iridates. However, we are not the first to use this technique and Raman spectroscopy has been 
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utilized to study many properties of perovskite iridates. A majority of Raman studies have focused 

on the pseudospin-lattice coupling in Sr2IrO4 [11,14-16], Sr2-xLaxIrO4 [17], and Sr3Ir2O7 [11]. 

Other lattice and electronic properties of perovskites iridates have also been investigated with 

Raman spectroscopy. The A1g  phonon modes near 274 cm-1 provide direct indication of the level 

of lattice distortion [18]. Raman spectrum on Sr2IrO4 samples under low [19] and high [20] 

pressure have shown a pressure-driven first order structural phase transition above 40.6 GPa and 

a series of phonon anomalies in low-pressure phase which suggest the emergence of a rotation 

symmetry broken instability and potentially account for the striking persistency of the insulating 

GS in Sr2IrO4, in contrast to cuprates. The symmetry properties of charge order in electron-doped 

(Sr1-xLax)3Ir2O7 have been revealed with polarized Raman spectroscopy [21]. High-energy 

electronic transitions with different symmetries in Sr2IrO4 are also observed in Raman spectra, 

placing constraint on the possible theoretical interpretation of the electronic structure [22].  

 

Here we are most interested in the magnetic excitations in perovskite iridates. Both first- [17,23] 

and second-order [11,17,24] magnons have been reported. Figure 4.1 shows the broad two-magnon 

continuum in (a) Sr2IrO4 and (b) Sr3Ir2O7 starting from 1000 cm-1 and extending all the way to 

3000 cm-1 in B2g channel [11]. Figure 4.2 shows the low-energy single magnon excitations of ~10 

cm-1 in Sr2-xLaxIrO4 which disappear in the metallic phase at high temperature and large La-doping. 

Magnetic field-dependent studies have also been performed on this single magnon excitation in 

Sr2IrO4 [23]. As Raman scattering probes zero-momentum excitations, the single magnon mode 

corresponds to the zone-center excitation which appears to be gapless in RIXS [1]. The question 

arises whether the 92 meV (742 cm-1) magnetic gap [2,3] is also observable in Raman spectroscopy. 
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A thesis indeed reported a Raman continuum of ~700 cm-1 in Sr3Ir2O7 (Figure 4.3) which is 

hypothesized to be a second-order spin flop scattering [25].   

 

 

Figure 4.1 Temperature-dependent B2g Raman spectra of (a) Sr2IrO4 and (b) Sr3Ir2O7 

adapted from Reference [11] with permission. The phonon modes are below 1000 cm-1. The 

two-magnon continuum is above 1000 cm-1. 
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Figure 4.2 Temperature-dependent Raman spectra of Sr2-xLaxIrO4 with both Stokes and 

anti-Stokes sides in B2g channel. The shaded peaks are the low-energy single-magnon 

excitations. This figure is adapted from Reference [17] with permission. 

 

 

Figure 4.3 Temperature-dependent Raman spectra of Sr3Ir2O7 showing both the low 

energy broad continuum at ~700 cm-1 and the two-magnon scattering at ~1400 cm-1. 

This figure is adapted from Reference [25]. 
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4.2 Experimental Procedure 

4.2.1 Sample Preparation 

 

Single crystals of Sr2IrO4, Sr3Ir2O7, and (Sr1-xLax)3Ir2O7 are grown using flux method [26-28] by 

research groups at the University of California, Santa Barbara and the University of Colorado, 

Boulder. They are black opaque crystals with few millimeters lateral dimension and a few hundred 

microns in thickness. When unused, they are stored in a lab desiccator pumped down to 10-1 MPa 

(using Edwards RV8 Rotary Vane Pump) and dried with molecular sieve desiccant. Each time 

prior to experiment, the samples are cleaved in the air to expose a clean surface in xy-plane.  

 

The sample surface preparation process is different from the normal tape-cleave method, because 

the bonding force between layers of perovskite iridates are too strong to be cleaved with scotch 

tapes, so that we elaborate it in this paragraph. We use the top-post cleave method with Torr Seal 

and aluminum rod. First we grind the aluminum rod so that its face matches the shape of the sample. 

The rod should be thin at the top so that it stands by itself. Next we glue the rod to the sample top 

surface and the sample bottom surface to an oxygen-free bronze plate using the Torr Seal and let 

them stand to dry. The glue should be placed within the sample surface but not extend to the edge, 

otherwise it will be particularly hard to break from the sample. To speed up the drying process, we 

may choose to heat up the Torr Seal. After the rod is firmly glued to the sample, it will be broken 

apart from the sample so that a fresh sample surface is exposed. Microscope images of the sample 

surface are taken in ambient condition (Figure 4.4). Immediately after taking the photos, the bronze 

plate with the sample is installed in the cryostat (Janis ST-300) and pumped down to a pressure of 

2 × 10−7 mbar (using Pfeiffer Turbo Pumping Station HiCube 80 Eco).  
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Figure 4.4 A typical microscope image of a cleaved iridate sample. This figure shows the (a) 

Sr2IrO4, (b) (Sr1-xLax)3Ir2O7  (x = 2.25%) sample on the bronze plate. In Panel a, the blue 

labels are “Length = 735.10/878.57  m”. In Panel b, the magenta labels are “Length = 

235.20/202.83/224.21 m”. 

 

4.2.2 Experimental Procedure of Raman Measurements 

 

In this section we discuss the experimental procedures of the Raman experiment. Figure 4.5 shows 

a photo illustrating the compositions of our actual Raman setup. The incident beam with a power 

of 1.5 mW is focused to a sample spot of 100 m. A small mirror (radius = 1/8”) directs the incident 

beam to the sample while blocking the reflected beam. We use a normal incidence and back-

scattering geometry. A collecting objective (Nikon 50 mm 1:1.2) collimates the scattered light that 

passes through the mirror. To maximize the Raman signal, the mirror (radius = 1/8”) is as small as 

the size of the incident beam and the collecting objective has a large NA (1.2).   

 

(a) (b) 
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Figure 4.5 Photo showing our real Raman setup at the University of Michigan. Green line 

marks the beam path. The telescope collimates the incident beam. The lamp and the 

flipping mirror are used in sample imaging, whose functionalities are illuminating the 

sample and directing the beam to the imaging camera. The cryostat mount and the 

objective are equipped with translation stages. 

 

Although the Ar+ laser is linearly polarized itself, we use a polarizer to rotate it to the vertical 

polarization and a HWP with azimuth angle  to rotate its polarization direction to 2. In the 

collection path, a polarizer, namely an analyzer, selects the scattered light with a certain 

polarization. For example, if we want to select the scattered and incident light with the same 

polarization direction, the analyzer azimuth angle will be set to 2. Another HWP at an angle - 

rotates its linear polarization back to the vertical direction, because the gratings inside the 

spectrometer are more efficient in transmitting vertically polarized light.  

 

In the collecting path, we have inserted an imaging system to determine the beam size and beam 

position on the sample. Positioning the beam in the flat region of the sample is crucial for 
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performing scattering measurements, as cracks can lead to elastically scattered light in the 

undesired direction that passing through the mirror and reaching the detector. The microscope 

images have shown that the flat region on the sample is typically of ~100 m (Figure 4.5 b), 

comparable to the beam size.  

 

The collecting objective collimates the scattered light before sending it to the spectrometer. The 

objective is mounted on a 3-axes translation stage. The z-axis adjusts the collimation of the beam, 

while x- and y-axes adjust the position of the scattered light to maximize the collection efficiency 

of the spectrometer, which is achieved by focusing the scattered light on the entrance slit of the 

spectrometer. Real-time images of the entrance slit and the phonon intensities in the Raman spectra 

are utilized simultaneously to determine the optimal beam location.  

 

Next, we perform a survey of the sample position and look for the optimal spot. Raman spectra of 

each sample spot is taken at both 290 K and 80 K. The criteria for selecting such a sample spot are 

as follow. First, the elastic scattering should be low enough so that the low energy feature is clearly 

visible. Second, the phonon modes should be narrow and intensive. Once the sample spot has been 

selected, a series of temperature dependent measurements are performed from the liquid helium or 

nitrogen temperature to room temperature. Because of the design of the cryostat, the sample 

surface is parallel to the longest dimension of the cryostat. When the temperature is increased, the 

cryostat undergoes severe thermal expansion and the sample point drifts away. The camera is thus 

on to keep monitoring the beam position.  
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4.3 Polarized Raman Spectroscopy of Two-Magnon Scattering in Perovskite Iridates 

 

In this section, we present the temperature-dependent polarized Raman data on various compounds 

of the perovskite iridate family, including the parent compounds of the single-layer system  Sr2IrO4 

and the bilayer Sr3Ir2O7, and the electron-doped bilayer compound (Sr1-xLax)3Ir2O7. We will first 

discuss the published Raman data of Sr3Ir2O7 [8], and then data of the other compounds as a 

comparison. In Sr3Ir2O7, we uncovered two broad Raman modes at 800 cm-1 and 1400 cm-1, both 

of which are explained with a unified two-magnon picture, with the first mode arising from the 

zone-center optical magnon and the second mode from the zone-boundary magnon. We have 

further acquired unpublished Raman data which confirmed our two-magnon interpretation. The 

800 cm-1 mode is absent in Sr2IrO4 because of the absence of the optical branch in single-layer 

Sr2IrO4. Raman data in (Sr1-xLax)3Ir2O7 show that the 800 (1400) cm-1 modes disappears (dampens) 

with increasing x out of the AFM insulating phase, confirming their magnetic origin. Field-

dependent Raman data show no field response of both modes, consistent with our two-magnon 

interpretation.  

 

To study the symmetry properties of various modes, we introduce the matrix representation of the 

Raman tensor and derive the intensity profile in different polarization channels. The perovskite 

iridate family crystalizes with point group tetragonal D4h. As aforementioned in Section 3.2 that 

the symmetry of Raman-allowed phonon modes of the D4h point group can be classified with the 

representations 𝐴1𝑔 , 𝐴2𝑔 , 𝐵1𝑔, 𝐵2𝑔, or 𝐸𝑔 . Here we duplicate the standard table of the Raman 

tensors from References [29,30]. Because 𝐴2𝑔  mode has an antisymmetric Raman tensor 
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(
∙ 𝑏 ∙
−𝑏 ∙ ∙
∙ ∙ ∙

), it is associated with magnetic excitations that breaks TRS. Thus 𝐴2𝑔 is removed in 

the Raman tensor table typically designed for symmetric phonon modes.  

 

Because we use the normal incidence geometry in the experiment, our probe is sensitive to the x- 

and y-components of the tensor elements. The doubly degenerate 𝐸𝑔 modes have vanishing x- and 

y-components, and are thus not observed in our Raman data. For simplicity, in the following 

discussions we ignore the z-component of the light polarizations or Raman tensors.  

 

Table 4.1 Raman tensors of the D4h point group 

𝐴1𝑔 𝐵1𝑔 𝐵2𝑔 𝐸𝑔 𝐸𝑔

(

𝑎1 ∙ ∙
∙ 𝑎1 ∙
∙ ∙ 𝑎2

) (
𝑐 ∙ ∙
∙ −𝑐 ∙
∙ ∙ ∙

) (
∙ 𝑑 ∙
𝑑 ∙ ∙
∙ ∙ ∙

) (

∙ ∙ ∙
∙ ∙ 𝑒
∙ 𝑒 ∙

) (
∙ ∙ −𝑒
∙ ∙ ∙
−𝑒 ∙ ∙

)
 

 

The scattered light can be decomposed to two components either parallel or perpendicular to the 

incident light. When the two polarizations are parallel  

𝜖𝑆 = 𝜖𝐼 = (cos 𝜃 sin 𝜃) (4.1) 

Where 𝜖𝑆 𝑎𝑛𝑑 𝜖𝐼 are electric field vector of the scattered light and incident light, respectively. 

𝜃 denotes the angle between electric field vector and crystal axis.  

 

The Raman signal intensity is given by multiplying 𝜖𝑆 and 𝜖𝐼 with the Raman tensor: 
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𝐼𝐴1𝑔 ∝ |𝜖𝑆 ∙ (
𝑎1 0
0 𝑎1

) ∙ 𝜖𝐼|
2

= 𝑎1
2

𝐼𝐴2𝑔 ∝ |𝜖𝑆 ∙ (
0 𝑏
−𝑏 0

) ∙ 𝜖𝐼|
2

= 0

𝐼𝐵1𝑔 ∝ |𝜖𝑆 ∙ (
𝑐 0
0 −𝑐

) ∙ 𝜖𝐼|
2

= 𝑐2 cos2 2𝜃

𝐼𝐵2𝑔 ∝ |𝜖𝑆 ∙ (
0 𝑑
𝑑 0

) ∙ 𝜖𝐼|
2

= 𝑑2 sin2 2𝜃

 (4.2) 

 

On the other hand, when the two polarizations are perpendicular: 

𝜖𝐼 ∝ (cos 𝜃 sin 𝜃)

𝜖𝑆 ∝ (−sin 𝜃 cos 𝜃)
 (4.3) 

Similar to the parallel case, the intensity of each mode is:  

𝐼𝐴1𝑔 ∝ |𝜖𝑆 ∙ (
𝑎1 0
0 𝑎1

) ∙ 𝜖𝐼|
2

= 0

𝐼𝐴2𝑔 ∝ |𝜖𝑆 ∙ (
0 𝑏
−𝑏 0

) ∙ 𝜖𝐼|
2

= 𝑏2

𝐼𝐵1𝑔 ∝ |𝜖𝑆 ∙ (
𝑐 0
0 −𝑐

) ∙ 𝜖𝐼|
2

= 𝑐2 sin2 2𝜃

𝐼𝐵2𝑔 ∝ |𝜖𝑆 ∙ (
0 𝑑
𝑑 0

) ∙ 𝜖𝐼|
2

= 𝑑2 cos2 2𝜃

 (4.4) 

Based on equation (4.3) and (4.4), we plot I vs   in polar coordinates in Table 4.2.  

 

From Table 4.2 it is clear that if the polarizations of the scattered and incident light are parallel 

and both aligned to (45 relative to) the crystal axes, both 𝐴1𝑔 and 𝐵1𝑔 (𝐵2𝑔) modes will achieve 

their maximum intensity. If the polarizations of the scattered and incident light are perpendicular 

and aligned to (45 relative to) the crystal axes, 𝐵2𝑔  (𝐵1𝑔) modes will achieve their intensity 
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maximum, respectively. The correspondence between polarization channels and active Raman 

modes is summarized explicitly in Table 4.3.  

 

Table 4.2 Polar plots of the Raman intensities of the scattered light parallel/cross to the 

incident light of different symmetry-allowed modes 

 𝐴1𝑔 𝐵1𝑔 𝐵2𝑔 

Parallel 

  
 

Cross NA 

 
 

 

Table 4.3 Raman-accessible symmetry channels under different polarization geometries. 

The black (gray) arrow denotes the polarization of the incident (scattered) light. The third 

row shows the notations of the four geometries that will be used in this thesis.   

    

𝐴1𝑔 + 𝐵1𝑔 𝐴1𝑔 + 𝐵2𝑔 𝐵2𝑔 𝐵1𝑔 

Parallel 0 Parallel 45 Cross 0 Cross 45 
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4.3.1 Results on the Bilayer Perovskite Iridate Sr3Ir2O7 

 

In this section, we present our Raman data on the bilayer perovskite iridate Sr3Ir2O7. First we 

discuss two datasets taken above or below the AFM onset temperature TN = 230 K. Figure 4.6 

shows the low- and high-temperature Raman spectra measured in the parallel 45 geometry. This 

geometry can detect most of the Raman modes in perovskite iridates, as will be discussed later in 

this section (Figure 4.6). Several features in the dataset at 80 K are marked with symbols , , and 

. The low-energy sharp peaks marked with symbol  are phonon modes and consistent with 

previous reports [11,21]. They are present both above and below TN. On the high-energy side there 

are two broad features marked with  and . Asymmetric peak O is greatly enhanced below TN. 

and has been attributed to two-magnon scattering [11]. Feature  only emerges below TN, which 

strongly indicates its magnetic origin. Interestingly, it is centered at an energy of ~800 cm-1 (99 

meV), comparable to the magnetic gap observed in RIXS [2].  

 

Figure 4.6 Comparison of the low- and high-temperature Raman spectra across TN. This 

data is collected in the parallel 45 geometry. 

𝐴1𝑔 + 𝐵2𝑔 
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To confirm the magnetic origin of feature , 

detailed temperature dependent measurements 

from helium temperature to room temperature 

have been performed (shown in Figure 4.7). 

The two broad magnetic features are shaded 

with dark and light grey color. To acquire 

quantitative knowledge of the two modes, we 

extract their integrated intensity (Figure 4.8 a) 

and central energy (Figure 4.8 b) as a function 

of the temperature. Because we are unsure of 

the functional forms of both continuum, the 

data points in Figure 4.8 are not acquired from 

curve fitting. Instead, the integrated intensity 

is the shaded area above the background noise 

with the intensity of the 593 cm-1 phonon 

subtracted and its error bar defined by square 

root of the number of data points within the integral times the standard deviation of a single data 

point. The Raman shift is the maximum of the intensity continuum, with its error bar being the 

width above 0.99 times maximal intensity. As shown in Figure 4.8 a, the integrated intensities of 

both modes have a steep increase below 230 K, which is consistent with the AFM onset 

temperature measured with resonant X-ray diffraction [31]. In addition, both modes show 

softening behavior towards the transition temperature (Figure 4.8 b). We thus confirm the magnetic 

nature of both modes.  

Figure 4.7 Temperature-dependent 

unpolarized Raman data of Sr3Ir2O7 from 8 

K to 300 K in steps of 20 K, adapted from 

Reference [8]. 
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Figure 4.8 (a) Integrated intensity and (b) Raman shift as a function of temperature of both 

magnetic continuum at 800 (dark grey) and 1400 cm-1 (light grey), adapted from Reference 

[8]. The dashed line marks the AFM onset temperature TN = 230 K.  

 

 

Figure 4.9 Selection rule measurements of Sr3Ir2O7 at 80 K, adapted from Reference [8]. 

TN = 230 K 

TN = 230 K 
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To gain further insight of the nature of the feature , we perform selection rule measurements, as 

shown in Figure 4.9, in the four polarization geometries listed in Table 4.3. Panels 3 and 4 plot the 

Raman spectra with a single symmetry channel 𝐵2𝑔 and 𝐵1𝑔. Subtracting Panel 1 with Panel 4  

yields the Raman modes of symmetry 𝐴1𝑔.  

 

Clearly, the phonon modes at 122 cm-1, 147 cm-1, 183 cm-1, 283 cm-1, and 593 cm-1 belong to 𝐴1𝑔 

representation. The phonon modes at 334 cm-1 and 399 cm-1 are of 𝐵2𝑔 symmetry. There is only 

one 𝐵1𝑔 phonon mode at 674 cm-1. The assignment of the phonon symmetries agrees with the 

previous literature [11]. The two-magnon scattering at 1400 cm-1 shows up in both 𝐴1𝑔 and 𝐵2𝑔 

channels, with its majority in 𝐴1𝑔 channel. The broad feature at 800 cm-1 which has been attributed 

to a magnetic excitation, surprisingly open be present in the fully symmetric 𝐴1𝑔 channel.  

 

The broad line shape together with the 𝐴1𝑔  symmetry of the 800 cm-1 feature rules out the 

possibility of a single magnon excitation. To understand the mechanism of this peculiar mode, we 

construct a minimal spin model with the exchange interactions and a pseudodipolar interaction, 

whose results perfectly match the experiment observations. Using the standard spin wave theory, 

we show that both the 800 cm-1 and the 1400 cm-1 features arise from two-magnon scattering. The 

1400 cm-1 mode comes from the traditional zone-boundary two-magnon scattering. The 800 cm-1 

mode, on the other hand, arises from two-magnon scattering of the gapped zone-center optical 

magnon. Details of this calculation will be given in Chapter 5.   

 

Let us refer back to the temperature dependence of both two-magnon scattering modes. The 800 

cm-1 two-magnon mode vanishes while the 1400 cm-1 two-magnon mode persists above TN (Figure 
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4.7 and Figure 4.8 a). The reason of this discrepancy is as follows [11,32]. Although the 3D AFM 

order disappears above TN, quasi-2D spin-spin correlation still exists. Because optical two-magnon 

mode arise from interlayer coupling, it vanishes as soon as 3D AFM disappears. Zone-boundary 

two-magnon mode results from in-plane AFM, so that it persists above TN. 

 

4.3.2 Results on the Single-Layer Perovskite Iridate Sr2IrO4 

 

In the following two sections, we present our Raman results on the single-layer compound Sr2IrO4 

and the electron-doped bilayer compounds (Sr1-xLax)3Ir2O7, and compare them with the bilayer 

parent compound Sr3Ir2O7. Although these data have not been published, they are in good 

agreement with our two-magnon scattering interpretation of both Raman modes.  

 

We summarize the Raman data collected on Sr2IrO4 under all four polarization geometries in 

Figure 4.10, with Panel a/b taken at 80/290 K, respectively. Only one phonon mode at 691 cm-1 

shows up in the B1g channel, similar to Sr3Ir2O7. The B2g phonon mode at 393 cm-1 and the A1g 

phonon modes at 185 cm-1, 278 cm-1 and 562 cm-1 which appear in Sr3Ir2O7 are also present. 

However, the lower energy side peaks of the B2g phonon mode at 393 cm-1 and the A1g phonon 

mode at 185 cm-1 are missing, indicating that those side peaks arise from interlayer lattice 

vibrations. In addition to the phonon modes below 700 cm-1 which have been observed in Sr3Ir2O7, 

several peaks show up around 800 cm-1 which have been attributed to phonons [24]. Interestingly, 

there is a broad A1g mode centered at 847 cm-1, close to the low-energy two-magnon feature 

observed in Sr3Ir2O7. However, this mode is also present at room temperature. Thus it is assigned 

to a phonon mode rather than a magnetic scattering. 
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At high energy, we again observe the broad two-magnon scattering at 1470 cm-1 in both A1g and 

B2g channels, similar to Sr3Ir2O7. However, the two-magnon peak at 800 cm-1 is absent. This result 

is consistent our theoretical model, as the optical magnon branch only exists in the bilayer 

compound Sr3Ir2O7.  

 

 

Figure 4.10 Polarized Raman data of Sr2IrO4, taken at (a) 80 K, and (b) 290 K.  

(a) 

(b) 
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4.3.3 Results on the Electron-Doped Bilayer Perovskite Iridate (Sr1-xLax)3Ir2O7  

 

As we have introduced in Chapter 2, the La-doped (Sr1-xLax)3Ir2O7 undergoes an IMT at xc = 4%. 

To characterize this interesting transition, we performed Raman measurements on a series of 

compounds with various La-doping level x = 2.25%, x = 3.6%, and x = 6.7%. The x = 2.25% 

compound retains the AFM GS, while x = 3.6% compound falls on the edge of the IMT, and the 

x = 6.7% compound is paramagnetic (PM). We thus expect the two-magnon scattering to vanish 

with increasing La-doping.  

 

 

Figure 4.11 Doping dependent Raman spectra of (Sr1-xLax)3Ir2O7 taken in the parallel 45 

polarization geometry (A1g + B2g) at 80 K. The shaded area highlights the zone-center two-

magnon mode at ~800 cm-1. 

  

The Raman data of (Sr1-xLax)3Ir2O7 taken at 80 K in the A1g + B2g geometry are plotted in Figure 

4.11 with the region around 800 cm-1 highlighted. As expected, the zone-center two-magnon 

scattering peak gradually disappears as the electron doping destroys the AFM order. It is greatly 

damped but clearly visible in the x = 2.25% compound, while hardly visible in the x = 3.6% 
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compound and vanishes in the x = 6.7% compound. The zone-boundary two-magnon scattering at 

1400 cm-1, on the other hand, persists into the PM phase, similar to the results in the parent 

compound (Figure 4.7).  

 

4.3.4 Magnetic Field-Dependent Raman Spectroscopy of Sr2IrO4 and Sr3Ir2O7 

 

We performed unpolarized field-dependent Raman measurements on both Sr2IrO4 and Sr3Ir2O7 up 

to 17 T at the NHMFL. Despite their magnetic origin, the two-magnon scatterings of both 

compounds display no observable field dependence, as shown in Figure 4.12 bd. The relative 

intensities of the phonons differ from the data taken at the University of Michigan, because an 

excitation wavelength of 532 nm is used at the NHMFL.  

 

There are several reasons that the two-magnon modes show no response to external magnetic field. 

The characteristic energy scale of magnetic field response is given by 𝑔𝜇𝐵𝐵, where g is the g-

factor and 𝜇𝐵 is the Bohr magneton. With 𝐵 = 17 T, the energy is on the order of 1 meV, or 10 

cm-1. This energy is too small to perturb the AFM GS whose exchange interaction is 458 cm-1 

(details given in Chapter 5). It is also negligible compared to the energy scale of the two-magnon 

scatterings of 800 and 1400 cm-1.  

 

Another reason lies in the scattering mechanism of two-magnon scattering of an AFM compound 

[10]. The zone-center two-magnon scattering can be classified with its net magnetic moment and 

parity  
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|𝐽𝑧 = 2, Parity +⟩ = |↑ �⃗⃗�, ↑ −�⃗⃗�⟩

|𝐽𝑧 = 0, Parity +⟩ = |↑ �⃗⃗�, ↓ −�⃗⃗�⟩ +|↓ �⃗⃗�, ↑ −�⃗⃗�⟩

|𝐽𝑧 = 0, Parity −⟩ = |↑ �⃗⃗�, ↓ −�⃗⃗�⟩ −|↓ �⃗⃗�, ↑ −�⃗⃗�⟩

|𝐽𝑧 = −2, Parity +⟩ = |↓ �⃗⃗�, ↓ −�⃗⃗�⟩

 (4.5) 

 

The parity – state is active in optical absorption rather than Raman scattering. The 

|𝐽𝑧 = ±2, Parity +⟩  states excite mainly one sublattice of the AFM state, while the 

|𝐽𝑧 = 0, Parity +⟩ state excite both sublattices. Because the two-magnon scattering is coupled 

through the electronic exchange interactions connecting neighboring spin sites, the dominating 

(a) 

(b) 

(c) 

(d) 

Raman shift (cm-1) 

Figure 4.12 Unpolarized Raman spectra of (a) (b) Sr2IrO4 and (c) (d) Sr3Ir2O7 under 

external magnetic field at 10 K. (a) (c) Individual spectra from 0 T to 17 T. (b) (d) The 

spectra in (a) (c) plotted with the same base level. 

 



 

 83 

two-magnon scattering is the |𝐽𝑧 = 0, Parity +⟩ state which is expected to have no response to 

external magnetic fields. 

 

4.4 Single Magnon Excitations in Perovskite Iridates 

 

It is worth mentioning the magnetic excitation at ~10 cm-1 observed in Sr2IrO4 (Figure 4.2) [17,23]. 

This low-energy mode with a narrow linewidth is attributed to a single magnon excitation in the 

previous literature. On the one hand, it experiences mode softening and damping with increasing 

temperature [23] and electron doping [17,23] towards the critical point. On the other hand, its 

energy responds strongly to external magnetic field [23]. Its low energy is consistent with the fact 

that magnon band in Sr2IrO4 appears to be gapless in RIXS measurements [1]. However, this mode 

shows up in the B2g symmetry channel [17] rather than the cross A2g channel, which is yet not 

understood with the standard selection rule analysis of first-order magnetic excitation introduced 

in Section 3.2.   

 

In (Sr1-xLax)3Ir2O7, theoretically it is predicted that it hosts both the low-energy acoustic single 

magnon and the finite-energy optical single magnon in the parent and electron-doped compounds. 

However, no such single magnon Raman scattering on the low-energy side has been observed so 

far with a narrow linewidth and strong magnetic field dependence. In over-doped (Sr1-xLax)3Ir2O7, 

a low-energy narrow mode of ~26 cm-1 emerges, however, in the metallic phase [21], which has 

been reported in Reference [33] and is attributed to CDW instability.  
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Chapter 5 Two-Magnon Calculations of Sr3Ir2O7 

5.1 Previous Studies on the Magnetism of Sr2IrO4 and Sr3Ir2O7 

5.1.1 The Spin-Wave Model of La2CuO4 and Sr2IrO4 

 

As introduced in Chapter 2, single-layer perovskite iridate Sr2IrO4 has been shown to be analogue 

to the high-TC SC cuprate La2CuO4, where both compounds hold a 2D Heisenberg AFM with in-

plane magnetic moments.  

 

 

Figure 5.1 (a) The crystal structure of La2CuO4. (b) The Cu-O2 plane viewed from the c-

axis. J and J2 are the NN and second-NN exchange interactions. 
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The crystal structure of La2CuO4 is the tetragonal D4h structure with the magnetic Cu atoms 

residing in the center of the Cu-O octahedrons (Figure 5.1 a). We focus on one layer of Cu atoms 

to establish the spin Hamiltonian. Two exchange couplings, the NN and second-NN exchange 

parameters J and J2, are used to fit the spin-wave dispersion from the inelastic neutron scattering 

data (Figure 5.1 b) [1]. The spin Hamiltonian takes the form 

𝐻La2CuO4 = 𝐽 ∑ 𝑆𝑖 ∙ 𝑆𝑗
<𝑖,𝑗>

+ 𝐽2∑𝑆𝑖 ∙ 𝑆𝑖′

𝑖

(5.1) 

 The sum <i, j> is over the neighboring spin up and spin down sites i and j. i' marks the second-

NN spin relative to site i which has the same spin direction as spin i. From fitting the inelastic 

neutron scattering data, J and J2 are determined to be 104.1 meV and - 18 meV at 10 K [1]. 

 

 

Figure 5.2 The Ir-O plane viewed from the c-axis. J, J2, and J3 are the NN, second-NN, and 

third-NN exchange couplings, respectively. The angle between the Ir-Ir bond and the Ir-O 

bond is around 11.  

 

Sr2IrO4 has a similar perovskite structure as La2CuO4, except that the Ir-O octahedra are rotated 

by ~11 (Figure 5.2) [2,3] with canted magnetic moments locked with the rotation of the octahedra 

[3-15]. The magnetic structure can be described with a Heisenberg model with the NN, second-

NN, and third-NN exchange couplings J, J2, and J3 (Figure 5.2). 
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𝐻Sr2IrO4 = 𝐽 ∑ 𝑆𝑖 ∙ 𝑆𝑗
<𝑖,𝑗>

+ 𝐽2∑𝑆𝑖 ∙ 𝑆𝑖′

𝑖

+ 𝐽3∑𝑆𝑖 ∙ 𝑆𝑖′

𝑖

(5.2) 

The exchange parameters are experimentally determined as J = 60 meV, J2 = - 20 meV, and J3 = 

15 meV [4].  

 

5.1.2 Magnetism of Sr3Ir2O7: Spin Wave or Quantum Dimer?  

 

The magnetism of the bilayer iridate Sr3Ir2O7 is not as straightforward as Sr2IrO4, because an 

unusually large magnetic gap ~99 meV has been observed in RIXS data [16]. Two models have 

been proposed to explain its magnetic excitations, the spin-wave model [16,17] and the quantum 

dimer model [18,19] (Figure 2.9). 

 

As we have introduced in Chapter 2, magnetic bands have been observed with RIXS. In the earlier 

work, only one energy band has been identified, which has been attributed to two almost-

degenerate acoustic and optical magnon branches [16]. The detailed spin Hamiltonian is given in 

Equation 5.3 which includes the intralayer and interlayer couplings 𝐻𝑖𝑛𝑡𝑟𝑎 and 𝐻𝑖𝑛𝑡𝑒𝑟 [16] 

𝐻 = 𝐻𝑖𝑛𝑡𝑟𝑎 + 𝐻𝑖𝑛𝑡𝑒𝑟

𝐻𝑖𝑛𝑡𝑟𝑎 = ∑ [𝐽𝑆𝑖 ∙ 𝑆𝑗 + Γ𝑆𝑖
𝑧𝑆𝑗
𝑧 + 𝐷(𝑆𝑖

𝑥𝑆𝑗
𝑦
− 𝑆𝑖

𝑦
𝑆𝑗
𝑥)]

<𝑖,𝑗>

+ 𝐽2∑𝑆𝑖 ∙ 𝑆𝑖′

𝑖

+ 𝐽3∑𝑆𝑖 ∙ 𝑆𝑖′

𝑖

𝐻𝑖𝑛𝑡𝑒𝑟 =∑[𝐽𝐶𝑆𝑖 ∙ 𝑆𝑖+𝑧 + Γ𝐶𝑆𝑖
𝑧𝑆𝑖+𝑧
𝑧 + 𝐷𝐶(𝑆𝑖

𝑥𝑆𝑖+𝑧
𝑦
− 𝑆𝑖

𝑦
𝑆𝑖+𝑧
𝑥 )]

𝑖

+ 𝐽2𝐶∑𝑆𝑖 ∙ 𝑆𝑖′+𝑧
𝑖

 (5.3) 

The parameters J, J2, J3, JC, and J2C are the isotropic exchange interactions where the subscript 1, 

2, and 3 again denote the NN, second-NN, and third-NN, respectively, and the subscript C denotes 

interlayer couplings. Figure 5.3 displays a pictorial illustration of the various isotropic exchange 
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interactions by connecting the spins at different sites with blue solid lines. The parameters Γ is the 

anisotropic exchange term resulting from the PD interactions from Hund’s exchange and Γ𝐶 

represents the exchange interaction due to the staggered rotations of the Ir-O octahedra [20]. D 

and DC are the DM interactions arising from the rotations of the octahedra.     

 

 

Figure 5.3 Various exchange interactions are represented with blue solid lines connecting 

different spin sites (red arrows), adapted from Reference [16] with permission.  

 

J, JC, Γ, Γ𝐶, D, and DC can be expressed in terms of two microscopic parameters 𝜂 = 𝐽𝐻/𝑈, the 

ratio of the Hund’s coupling to the Coulomb interaction, and 𝜃 which parametrizes the tetragonal 

distortion [20]. Thus there are only five free parameters in the spin Hamiltonian, 𝜂, 𝜃, J2, J3, and 

J2C. The fitting parameters are given in Table 5.1 and the fitting curves (red solid lines) of the 

magnon dispersion and mode intensity (black dots) are plotted in Figure 5.4 [16]. Two fitting 

curves are present in Figure 5.4 a, corresponding to the overlapping acoustic and optical magnon 

branches. Notably, large 𝜂 and 𝜃, which yields large anisotropic exchange interactions, are key in 

reproducing the large magnon gap.  
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Figure 5.4 Fittings (red solid line) to the experimental (black dots) (a) magnon energy 

dispersion, and (b) mode intensity using the spin Hamiltonian in Equation 5.3. This figure 

is adapted from Reference [16] with permission. 

 

Table 5.1 The fitting parameters of the spin-wave model of Sr3Ir2O7 in meV [16] 

J J2 J3 JC J2C Γ Γ𝐶 D DC 

93 11.9 14.6 25.2 6.2 4.4 34.3 24.5 28.1 

 

In a following RIXS study, a second magnon branch with a lower intensity has been identified 

using higher-resolution RIXS instruments [18]. The presence of the second magnon band is hard 

to reconcile with the spin-wave model, because it is asymmetric with respect to the wave vector 

point (1/4 π, 1/4 π) (feature D of Figure 5.5). Therefore, a bond operator mean-field theory has 

been developed which attributes the new magnon band to quantum dimer excitations [18].  
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Figure 5.5 High-resolution RIXS data featuring multiple magnetic energy bands in 

Sr3Ir2O7. A is due to the elastic scattering with almost-zero energy. B is the lower energy 

magnetic branch that has been identified in Reference [16]. C is the newly discovered 

magnetic branch at a higher energy. D is higher-order magnetic scattering. This figure is 

adapted from Reference [18] with permission. 

 

In the bilayer Heisenberg model, a quantum phase transition (QPT) emerges as the interlayer 

coupling increases relative to the intralayer coupling, concurrent with an excitation gap [21-27]. 

In the limit of large or small ratio of J/JC, this model can be solved accurately with either the spin-

wave theory or perturbation theory. However, in the intermediate region, only approximate results 

can be acquired using the bond-operator mean-field theory. The obtained fitting parameters are 

given in Table 5.2. 

 

Table 5.2 The fitting parameters of the quantum dimer model of Sr3Ir2O7 in meV [18] 

J J2 J3 JC Γ D 

7.2 -15 6 90 18.8 25 
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In the sections to follow, I will introduce our theoretical treatment of two-magnon scatterings to 

explain the polarized Raman data, which is based on spin-wave theory and provide a third 

interpretation to the inelastic scattering results.  

 

5.2 Two-Magnon Scattering of a Bilayer Square-Lattice AFM: NN Heisenberg Model 

5.2.1 Magnon Dispersions and DOS 

 

Figure 5.6 Four different sites a, b, c, and d within one unit cell of Sr3Ir2O7. a and d sites are 

spin up. b and d sites are spin down. 

 

Consider the spin Hamiltonian of a bilayer AFM system (𝐽 > 0) 

𝐻 = 𝐽∑<𝑖,𝑗>,𝑛𝑆𝑖,𝑛 ∙ 𝑆𝑗,𝑛 + 𝐽𝐶∑𝑖𝑆𝑖,1 ∙ 𝑆𝑖,2 (5.4) 

As shown in Figure 5.6, there are four different spin sites in Sr3Ir2O7 marked as a, b, c and d. 

Applying the Holstein-Primakoff transformation (up to the leading order) followed by the Fourier 

transform  
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𝑆𝑖,1
+ = 𝑆𝑖,1

𝑥 + 𝑖𝑆𝑖,1
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑎�⃗⃗�𝑒

−𝑖�⃗⃗�∙𝑟𝑖 , 𝑆𝑖,1
− = 𝑆𝑖,1

𝑥 − 𝑖𝑆𝑖,1
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑎�⃗⃗�

+𝑒𝑖�⃗⃗�∙𝑟𝑖

𝑆𝑗,1
+ = 𝑆𝑗,1

𝑥 + 𝑖𝑆𝑗,1
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑏�⃗⃗�

+𝑒𝑖�⃗⃗�∙𝑟𝑗 , 𝑆𝑗,1
− = 𝑆𝑗,1

𝑥 − 𝑖𝑆𝑗,1
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑏�⃗⃗�𝑒

−𝑖�⃗⃗�∙𝑟𝑗

𝑆𝑖,2
+ = 𝑆𝑖,2

𝑥 + 𝑖𝑆𝑖,2
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑐�⃗⃗�

+𝑒𝑖�⃗⃗�∙𝑟𝑖 , 𝑆𝑖,2
− = 𝑆𝑖,2

𝑥 − 𝑖𝑆𝑖,2
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑐�⃗⃗�𝑒

−𝑖�⃗⃗�∙𝑟𝑖

𝑆𝑗,2
+ = 𝑆𝑗,2

𝑥 + 𝑖𝑆𝑗,2
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑑�⃗⃗�𝑒

−𝑖�⃗⃗�∙𝑟𝑗 , 𝑆𝑗,2
− = 𝑆𝑗,2

𝑥 − 𝑖𝑆𝑗,2
𝑦
= √2𝑆/𝑁∑�⃗⃗�𝑑�⃗⃗�

+𝑒𝑖�⃗⃗�∙𝑟𝑗

(5.5) 

where 𝑆+ and 𝑆− are the spin ladder operators, 𝑆𝑥 and 𝑆𝑦 are the x- and y-components of spins, 

𝑆 = 1/2 is the total effective angular momentum of Ir atoms, N is the total number of primitive 

cells, 𝑎�⃗⃗�, 𝑏�⃗⃗�, 𝑐�⃗⃗�, and 𝑑�⃗⃗� are bosonic operators with momentum �⃗⃗�, and 𝑟𝑖 is the position vector of 

lattice site i. The spin Hamiltonian Equation 5.4 can be rewritten below using bosonic creation and 

annihilation operators in the momentum space,  

𝐻 = 𝐽𝑆𝑧∑�⃗⃗�[𝛾�⃗⃗�(𝑎�⃗⃗�𝑏�⃗⃗� + 𝑐�⃗⃗�𝑑�⃗⃗� + 𝑎�⃗⃗�
+𝑏
�⃗⃗�
+ + 𝑐

�⃗⃗�
+𝑑

�⃗⃗�
+) + (𝑎

�⃗⃗�
+𝑎�⃗⃗� + 𝑏�⃗⃗�

+𝑏�⃗⃗� + 𝑐�⃗⃗�
+𝑐�⃗⃗� + 𝑑𝑘

+𝑑𝑘)]

+𝐽𝑐𝑆∑�⃗⃗�(𝑎�⃗⃗�𝑐�⃗⃗� + 𝑏�⃗⃗�𝑑�⃗⃗� + 𝑎�⃗⃗�
+𝑐
�⃗⃗�
+ + 𝑏

�⃗⃗�
+𝑑

�⃗⃗�
+ + 𝑎

�⃗⃗�
+𝑎�⃗⃗� + 𝑏�⃗⃗�

+𝑏�⃗⃗� + 𝑐�⃗⃗�
+𝑐�⃗⃗� + 𝑑�⃗⃗�

+𝑑�⃗⃗�)
(5.6) 

where 𝑧 = 4 is the coordination number and 𝛾�⃗⃗� = (cos 𝑘𝑥 + cos 𝑘𝑦)/2. This Hamiltonian can be 

diagonalized via the Bogoliubov transformation, which transforms these bosonic operators into 

magnon creation (𝛼+, 𝛽+, 𝛾+, 𝛿+) or annihilation operators (𝛼, 𝛽, 𝛾, and 𝛿),  

(

𝛼
𝛽

𝛾+

𝛿+

) =

(

 
 
 
 
 
 
 

𝑢1 + 𝑣1

√8𝑢1𝑣1

𝑢1 + 𝑣1

√8𝑢1𝑣1

−𝑢1 + 𝑣1

√8𝑢1𝑣1

−𝑢1 + 𝑣1

√8𝑢1𝑣1
𝑢2 + 𝑣2

√8𝑢2𝑣2

−𝑢2 − 𝑣2

√8𝑢2𝑣2

𝑢2 − 𝑣2

√8𝑢2𝑣2

−𝑢2 + 𝑣2

√8𝑢2𝑣2
−𝑢1 + 𝑣1

√8𝑢1𝑣1

−𝑢1 + 𝑣1

√8𝑢1𝑣1

𝑢1 + 𝑣1

√8𝑢1𝑣1

𝑢1 + 𝑣1

√8𝑢1𝑣1
𝑢2 − 𝑣2

√8𝑢2𝑣2

−𝑢2 + 𝑣2

√8𝑢2𝑣2

𝑢2 + 𝑣2

√8𝑢2𝑣2

−𝑢2 − 𝑣2

√8𝑢2𝑣2 )

 
 
 
 
 
 
 

(

𝑎
𝑑
𝑏+

𝑐+

) (5.7) 

where  



 

 95 

𝑢1 = √𝐽𝑧(1 − 𝛾�⃗⃗�)

𝑣1 = √2𝐽𝐶 + 𝐽𝑧(1 + 𝛾�⃗⃗�)

𝑢2 = √𝐽𝑧(1 + 𝛾�⃗⃗�)

𝑣2 = √2𝐽𝐶 + 𝐽𝑧(1 − 𝛾�⃗⃗�)

 

After diagonalization with the 4 × 4 matrix in Equation 5.7, the eigen energies can be obtained: 

𝐸1 = 𝑆𝑢1𝑣1, and 𝐸2 = 𝑆𝑢2𝑣2. (5.8) 

Each energy band is doubly degenerate with one spin-up and one spin-down magnon branch.  

 

As shown in Figure 5.7, the non-zero optical magnon energy at 𝛤-point is unique to the bilayer 

compound and contributes to a jump in the DOS at ~400 cm-1, therefore leading to the observation 

of two-magnon feature M1 at ~800 cm-1. Furthermore, 𝐸1 and 𝐸2 are dispersionless along the X-M 

line, both contributing to the diverging DOS at ~950 cm-1, which is the origin of the two-magnon 

feature M2 at ~1900 cm-1.  
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Figure 5.7 (a) The magnon dispersions, (b) the magnon DOS – magnon energy diagram, 

and (c) two-magnon cross section – two-magnon energy diagram using the NN Heisenberg 

model. Energies are in unit of cm-1 to compare with our Raman data.  

 

Although detailed calculations of the two-magnon scatterings will be discussed in the next section, 

here we directly use the results to derive the exchange parameters we use in Fig 5.8. The energy 

of M1 is twice of the zone-center optical magnon energy, 4√𝐽𝐽𝐶, and the energy of M2 can be 

obtained by 0.73 times twice of the zone-boundary magnon energy, 1.46√𝐽(4𝐽 + 2𝐽𝐶). The factor 

of 0.73 is a quantum correction to the divergent DOS at zone boundary [28]. The validity of this 

number has already been confirmed in Sr2IrO4, because the ratio of its two-magnon energy of 160 

meV [29] to twice its single magnon energy at X-point of 220 meV [4] is ~0.73. Solving for 

4√𝐽𝐽𝐶 = 800 cm-1 and 1.46√𝐽(4𝐽 + 2𝐽𝐶) = 1400 cm-1, we obtain 𝐽 = 458 cm-1 (56.8 meV) and 

𝐽𝐶 = 87 cm-1 (11 meV). As we introduced in Section 5.1.2, a QPT from an AFM to a quantum 

dimer phase exists with increasing 𝐽𝐶  in bilayer Heisenberg AFM. The quantum critical point 

(a) (b) (c) 
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(QCP) of the ratio 𝐽/𝐽𝐶  is predicted to be 𝑟𝑐 = 2.522 [30,31]. The ratio of 𝐽/𝐽𝐶  in Sr3Ir2O7 is r = 

0.19, much smaller than the QCP, which is self-consistent with our choice of the spin-wave theory 

in the first place. 

 

5.2.2 Two-Magnon Cross Section  

 

In this section, we will present our derivation of the two-magnon cross section plotted in Fig 5.8 

(c). The interaction between light and two-magnon excitations can be described by the following 

scattering Hamiltonian (Loudon-Fleury Hamiltonian), which includes all the symmetry-allowed 

combinations of NN spin products [32] 

𝐻𝑆 = 𝛼∑<𝑖,𝑗>,𝑛𝜙𝑖𝑗𝑆𝑖,𝑛 ∙ 𝑆𝑗,𝑛 (5.9) 

 

Figure 5.8 Bond-dependent 𝝓𝒊𝒋 factor of NN bonds in (a) A1g and (b) B2g scattering 

Hamiltonian. 𝝓𝒊𝒋 = +𝟏 for bonds marked by red solid lines, and 𝝓𝒊𝒋 = −𝟏 for bonds 

marked by red dashed lines. 

 

For A1g symmetry, 𝜙𝑖𝑗 = +1  for all NN sites (Figure 5.8 a), which preserves all symmetry 

operations of the D4h point group. Expressed in the form of magnon operators and only considering 
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the quadratic terms which make dominant contributions to the two-magnon scattering [28], 

Equation 5.9 can be written as 

𝐻𝐴1𝑔
𝑆 = Γ1∑�⃗⃗�(𝛼�⃗⃗�𝛾�⃗⃗� + 𝛼�⃗⃗�

+𝛾
�⃗⃗�
+) + Γ2∑�⃗⃗�(𝛽�⃗⃗�𝛿�⃗⃗� + 𝛽�⃗⃗�

+𝛿
�⃗⃗�
+) (5.10) 

where Γ1 = −𝐽𝐶𝑆𝑢1/𝑣1, and Γ2 = 𝐽𝐶𝑆𝑢2/𝑣2.   

 

For B2g symmetry, 𝜙𝑖𝑗 = ±1 depending on the direction of the NN bond (Figure 5.8 b). This B2g 

scattering Hamiltonian written in magnon operators takes the form 

𝐻𝐵2𝑔
𝑆 = Γ3∑�⃗⃗�(𝛼�⃗⃗�𝛾�⃗⃗� + 𝛼�⃗⃗�

+𝛾
�⃗⃗�
+) + Γ4∑�⃗⃗�(𝛽�⃗⃗�𝛿�⃗⃗� + 𝛽�⃗⃗�

+𝛿
�⃗⃗�
+), (5.11) 

where Γ3 = 𝛾−(𝐽𝐶 + 𝐽𝑧)/(𝑢1𝑣1), Γ4 = 𝛾−(𝐽𝐶 + 𝐽𝑧)/(𝑢2𝑣2), and 𝛾− = (cos 𝑘𝑥 − cos 𝑘𝑦)/2.  

 

The calculated A1g and B2g two-magnon scattering cross sections are plotted in Panel c of Figure 

5.7. In A1g channel, because all lattice symmetries are preserved, the two-magnon cross section 

captures all DOS features, resulting in two intensity maxima. The lower-energy intensity 

maximum is originated from the 𝛤-point optical magnon, and the higher-energy one from zone-

boundary magnon. In B2g channel, however, because the c-axis four-fold rotational symmetry is 

broken, the contribution from 𝛤-point vanishes, and thus only one intensity maximum shows up 

from the zone-boundary magnon.  

 

It is worth-noting that in single-layer Sr2IrO4, only intralayer exchange term contributes to the 

Heisenberg spin Hamiltonian, which commutes with the A1g scattering Hamiltonian. As a result, 

this channel does not create any two-magnon excitations, unless other terms (e.g. beyond NNs) 
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are included in the spin Hamiltonian. In contrast, for a bilayer system that we consider here, 

[𝐻,𝐻𝐴1𝑔
𝑆 ] ≠ 0, and thus two-magnon excitations are allowed in the A1g channel. 

 

5.3 Two-Magnon Scattering of a Bilayer Square-Lattice AFM: Beyond-NN Heisenberg 

Model with SOC 

5.3.1 Magnon Dispersions and DOS 

 

In the simple model above, only the intralayer NN and interlayer exchange interaction 𝐽 and 𝐽𝐶  are 

considered. In this section, we further include intralayer second-NN and third-NN exchange 

interactions 𝐽2  and 𝐽3  (Figure 5.2) [4], and dipole-like SOC interaction Δ  [20] in the spin 

Hamiltonian. All these terms exist naturally in iridates with significant amplitudes. In Reference 

[20], only NN SOC interaction has been demonstrated. Here we extend the same type of SOCs to 

beyond-NN neighbors. Specifically, the SOC term we consider here is the second-NN interaction, 

which can be explicitly written as  

𝐻𝑆𝑂𝐶 = Δ∑𝑖,𝑖′,𝑛(𝑆𝑖,𝑛 ∙ �⃗�2)(𝑆𝑖′,𝑛 ∙ �⃗�2), (5.12) 

where �⃗�2 = 𝑟𝑖′ − 𝑟𝑖 is a vector pointing from site i to the its second-NN 𝑖′.  

 

Here, we apply the Holstein-Primakoff transformations and the Bogoliubov transformations to the 

spin Halmitonian, which in this case take the form 
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(

 
 
 
 
 

𝛼
𝛾
𝛿
𝛽

𝛼+

𝛾+

𝛿+

𝛽+)

 
 
 
 
 

=
1

4

(

 
 
 
 
 

𝑖𝑀11 𝑀11 𝑀11 𝑖𝑀11 𝑀12 𝑖𝑀12 𝑖𝑀12 𝑀12
𝑖𝑀21 𝑀21 −𝑀21 −𝑖𝑀21 −𝑀22 −𝑖𝑀22 𝑖𝑀22 𝑀22
−𝑖𝑀31 𝑀31 −𝑀31 𝑖𝑀31 −𝑀32 𝑖𝑀32 −𝑖𝑀32 𝑀32
−𝑖𝑀41 𝑀41 𝑀41 −𝑖𝑀41 𝑀42 −𝑖𝑀42 −𝑖𝑀42 𝑀42
𝑀12 −𝑖𝑀12 −𝑖𝑀12 𝑀12 −𝑖𝑀11 𝑀11 𝑀11 −𝑖𝑀11
−𝑀22 𝑖𝑀22 −𝑖𝑀22 𝑀22 −𝑖𝑀21 𝑀21 −𝑀21 𝑖𝑀21
−𝑀32 −𝑖𝑀32 𝑖𝑀32 𝑀32 𝑖𝑀31 𝑀31 −𝑀31 −𝑖𝑀31
𝑀42 𝑖𝑀42 𝑖𝑀42 𝑀42 −𝑖𝑀41 𝑀41 𝑀41 −𝑖𝑀41)

 
 
 
 
 

(

 
 
 
 
 

𝑎
𝑏
𝑐
𝑑
𝑎+

𝑏+

𝑐+

𝑑+)

 
 
 
 
 

 

   (5.13) 

where 

𝑀11,21,31,41 = −
𝑓1,2,3,4 + 𝑔1,2,3,4

√𝑓1,2,3,4𝑔1,2,3,4 
 

𝑀12,22,32,42 =
−𝑓1,2,3,4 + 𝑔1,2,3,4

√𝑓1,2,3,4𝑔1,2,3,4 
 

and 

𝑓1 = √𝐽(1 + 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) − Δ𝛾�⃗⃗�′′ + 𝐽𝐶/2  

𝑔1 = √𝐽(1 − 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) + Δ𝛾�⃗⃗�′′  

𝑓2 = √𝐽(1 − 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) + Δ𝛾�⃗⃗�′′ + 𝐽𝐶/2 

𝑔2 = √𝐽(1 + 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) − Δ𝛾�⃗⃗�′′  

𝑓3 = √𝐽(1 − 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) − Δ𝛾�⃗⃗�′′ + 𝐽𝐶/2 

𝑔3 = √𝐽(1 + 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) + Δ𝛾�⃗⃗�′′  

𝑓4 = √𝐽(1 + 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) + Δ𝛾�⃗⃗�′′ + 𝐽𝐶/2 

𝑔4 = √𝐽(1 − 𝛾�⃗⃗�) − 𝐽2(1 − 𝛾�⃗⃗�′) − 𝐽3(1 − 𝛾2�⃗⃗�) − Δ𝛾�⃗⃗�′′  

  

and  
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𝛾�⃗⃗�′ = cos 𝑘𝑥 cos 𝑘𝑦
𝛾2�⃗⃗� = (cos 2𝑘𝑥 + cos 2𝑘𝑦)/2

𝛾�⃗⃗�′′ = −sin 𝑘𝑥 sin 𝑘𝑦

 

The eigen energies are  

𝐸1
′ = 4𝑆𝑓1𝑔1
𝐸2
′ = 4𝑆𝑓2𝑔2
𝐸3
′ = 4𝑆𝑓3𝑔3
𝐸4
′ = 4𝑆𝑓4𝑔4

 (5.14) 

 

 

Figure 5.9 (a) The magnon dispersions, (b) the magnon DOS – energy diagram, and (c) 

two-magnon cross section – energy diagram using the J-J2-J3-JC model with SOC.  

 

The intralayer exchange energies used in the calculations are consistent with the RIXS study of 

Sr2IrO4 [4], which are 𝐽 = 60 meV (484 cm−1) , 𝐽2 = −20 meV (−161 cm
−1) , and 𝐽3 =

15 meV (121 cm−1). Interlayer exchange energy 𝐽𝐶  is determined as 91 cm-1, which minimizes 

the overall energy deviations of both M1 and M2. Again 𝐽𝐶  is found to be a small value compared 
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to 𝐽 (~0.19 of 𝐽), which justifies our choice of the spin-wave model. The strength of the SOC term 

Δ is chosen as a small value (16 cm-1). It is worthwhile to emphasize that as long as Δ is small, its 

value only changes the overall amplitude of the B2g two-magnon intensity, while other qualitative 

features reported below are insensitive to the value of Δ. We observe a gap of ~400 cm-1 at 𝛤-point 

(Figure 5.9 a), similar to the previous model, and large dispersions along the X-M line, which is a 

mimic of Sr2IrO4. The SOC term slightly breaks the two-fold degeneracy of each magnon band. 

In this case, X-point is a van Hove singularity point with a divergent DOS (Figure 5.9 b). In the 

current model, only the single Van Hove singularity point contributes to the large DOS peak at 

~800 cm-1, in contrast to the model above with only NN exchange interaction, where the entire X-

M line is responsible for its divergent DOS.  

 

5.3.2 Two-Magnon Cross Section  

 

Through calculating the scattering Hamiltonian of Equation 5.9, the two-magnon cross section 

maintains the main shape as in the simplified model in the A1g channel, with two intensity maxima 

at ~800 cm-1 and ~1700 cm-1. However, the van Hove singularity point is invisible to the B2g 

scattering Hamiltonian with only NN exchange interaction. Because 𝐽2 is not negligible (1/3 𝐽), 

another B2g scattering Hamiltonian can be constructed including second-NN exchange interaction, 

which has a checkerboard pattern as shown in Figure 5.10.  

𝐻𝐵2𝑔
𝑆′ = 𝛼′∑𝑖,𝑖′,𝑛𝜙𝑖𝑖′𝑛(𝑆𝑖,𝑛 ∙ 𝑆𝑖′,𝑛) (5.15) 

𝜙𝑖𝑖′𝑛 = +1 for bonds marked in red solid line, and 𝜙𝑖𝑖′𝑛 = −1 for bonds marked in red dashed 

line. This scattering Hamiltonian flips sign under the vertical mirror operation (black dashed line). 
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This light-spin interaction term is sensitive to contributions from the van Hove singularity point. 

Thus the corresponding cross section kinks up at ~1700 cm-1 as shown in Panel c of Figure 5.9.  

 

 

Figure 5.10 Checkerboard pattern of bond-dependent 𝝓𝒊𝒊′𝒏 factor of second-NN bonds in 

the new B2g scattering Hamiltonian. 𝝓𝒊𝒊′𝒏 = +𝟏 for bonds marked by red solid lines, and 

𝝓𝒊𝒊′𝒏 = −𝟏 for bonds marked by red dashed lines. 

 

5.4 Comparison of Two Models  

 

Through comparison of the two models discussed above, our first observation is that the physics 

of the first two-magnon mode M1 is quite robust regardless of the model we choose. Firstly, the 

A1g symmetry ensures that the 𝛤-point magnon gap shows up in the two-magnon scattering cross 

section. Secondly, the gap energy is not sensitive to the number of neighbors included in the second 

model. Because 𝛤-point magnon represents a collective motion where equivalent spins have the 

same motion, adding neighbors from two equivalent sites (i.e., J2 and J3) does not affect its energy.  

 



 

 104 

We now proceed to the zone boundary where the second two-magnon mode M2 is originated. In 

the first model, the entire zone boundary is dispersionless, resulting in a divergent DOS, which is 

the origin of M2. As second- and third-NN spin exchanges are included in the second model, the 

X-point becomes a van Hove singularity point with a divergent DOS. Similar to the first model, 

this divergent DOS also results in two-magnon features. However, as mentioned in the previous 

section, this two-magnon feature arises from two-magnon excitations beyond NN. The 

mathematical reason is that every NN term in B2g scattering Hamiltonian contains cosine pre-

factors of 𝑘𝑥  or 𝑘𝑦 . At the X-point, because 𝑘𝑥 = 𝑘𝑦 = 𝜋/2  and cos 𝑘𝑥 = cos 𝑘𝑦 = 0 , its 

contribution to two-magnon scattering vanishes. Because beyond-NN exchange interaction is not 

negligible in our spin Hamiltonian, it is natural to include second-NN in B2g scattering Hamiltonian. 

These terms contain cosine terms of 𝑘𝑥 + 𝑘𝑦 and 𝑘𝑥 − 𝑘𝑦, which are non-zero at the X-point. Thus, 

the divergent DOS associated with the X-point becomes visible in two-magnon scattering and 

results in M2. Similarly, SOC becomes a necessary ingredient in generating M2 in the second model. 

 

In summary, although M2 appears in both models with similar energies, they actually have different 

origins. The first simple model is sufficient in the situation where beyond-NN exchanges are 

negligible, for example in cuprates [1]. In comparison, the second model offers a realistic and 

interesting manifestation of both the large magnon dispersions along the X-M line as established 

in the single layer Sr2IrO4, and the strong SOC in perovskite iridates. 
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5.5 Comparison of A1g Two-Magnon and Amplitude Mode of a Bilayer AFM 

 

Having established zone-center two-magnon scattering as the origin of M1, we discuss the relation 

between M1 and the amplitude mode which appears near the QCP. Both modes share some 

similarities leading to difficulty in distinguishing the two modes from the data only. Firstly, zone-

center two-magnon excitation and the amplitude mode (i.e., Higgs mode) are both of A1g symmetry 

and can both be characterized by the Loudon-Fleury scattering Hamiltonian [31]. Secondly, the 

amplitude mode is in general damped by other low-energy excitations, resulting in a broad line 

shape similar to that of the two-magnon excitation. However, the amplitude mode and the zone-

center two-magnon excitation do happen at different 𝑟. In our calculations, the zone-center two-

magnon excitations is visible only when 𝐽𝐶  is weak compared with 𝐽 (i.e., well below 𝑟𝑐). In a 

recent numeric study [31], the amplitude mode is only well-defined in a very small window near 

the QCP. Neither amplitude mode nor zone-center two-magnon mode appears for intermediate 𝑟 

between the two regimes. Based on our fitted value 𝑟 = 0.19, it is more reasonable to attribute M1 

to zone-center two-magnon excitations.  
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Chapter 6 Magnetic Field-Induced Phase Transitions of the CrX3 Family (X = Cl, Br, I) 

 

In this chapter, I will introduce our work on the second family of quantum magnets CrX3 (X = Cl, 

Br, I). Our work on CrX3 contains two parts, a temperature- and magnetic field-dependent 

polarized Raman study on the phonon and magnon excitations of bulk CrI3 which reveals the 

coexistence of surface-AFM (SAFM) and bulk-FM (BFM), as well as a field-induced structural 

and magnetic phase transition in bulk CrI3 (Sections 6.1 – 6.4), and an electron tunneling study on 

the halogen-dependent spin-wave parameters in bilayer CrX3 (Section 6.5). 

 

Prior to or concurrent with our Raman study on bulk CrI3, intensive research has been performed 

on CrI3 with Raman spectroscopy, ranging from experimental [1-8] to first-principle studies [9,10], 

or a combination of the two [11]. The structural phases in bulk [11] and thin CrI3 [1] have been 

mapped through the phonon symmetries. Two intriguing modes at 78 cm-1 and 128 cm-1 have been 

widely studied in few-layer CrI3 due to their unique selection rules, which have been proposed 

first as magnons [2], and then as optical phonons modified by magnetic order in several field-

dependent studies [3-5], followed by a first-principle study [10]. Magneto-Raman [6] and 

magneto-optical effects [7] have been studied on few-layer CrI3 with external magnetic field 

applied.  

 

Albeit being a bulk CrI3 study, our field-dependent polarized Raman data revealed a coexistence 

of the thin-film (interlayer AFM) and bulk (interlayer FM) features. We also examined the nature 
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of the 78 cm-1 and 128 cm-1 magnetic modes, and uncovered the concurrent field-induced magnetic 

and structural phase transitions. In the next section, I will start by introducing our innovative 

Raman selection rule measurements with circularly polarized light.  

 

6.1 Raman Selection Rules with Linearly and Circularly Polarized Light 

 

 

Figure 6.1 Top view of the atomic structure of one layer of CrI3. 

 

Figure 6.1 shows the atomic structure of CrI3. As mentioned in Chapter 2, at low temperature, the 

crystal point group of bulk CrI3 is the rhombohedral C3i. Referring again to the Raman tensor table 

[12,13], the Raman-allowed irreducible representations of the C3i point group are Ag and the 

doubly-degenerate Eg, with their corresponding Raman tensors listed in Table 6.1.  

 

Table 6.1 Raman tensors of the point group C3i 

𝐴𝑔 𝐸𝑔 𝐸𝑔

(

𝑎1 ∙ ∙
∙ 𝑎1 ∙
∙ ∙ 𝑎2

) (
𝑏1 𝑏2 𝑐1
𝑏2 −𝑏1 𝑐2
𝑐1 𝑐2 ∙

) (
𝑏2 −𝑏1 −𝑐2
−𝑏1 −𝑏2 𝑐1
−𝑐2 𝑐1 ∙

)
 

 

a

b

Cr

I
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Instead of scanning the entire range of the incident and outgoing polarization angles, we utilize the 

four polarization channels, parallel 0, parallel 45, cross 0, and cross 45. Normal incidence and 

back-scattering geometry are used so that only the x- and y-components of the Raman tensors are 

active. We follow similar calculation processes as shown in Section 4.3. When the two 

polarizations are parallel  

𝐼𝐴𝑔 ∝ 𝑎1
2

𝐼𝐸𝑔1 ∝ (𝑏1 cos 2𝜃 + 𝑏2 sin 2𝜃)
2

𝐼𝐸𝑔2 ∝ (𝑏2 cos 2𝜃 − 𝑏1 sin 2𝜃)
2

 (6.1) 

When the two polarizations are perpendicular 

𝐼𝐴𝑔 ∝ 0

𝐼𝐸𝑔1 ∝ (𝑏1 sin 2𝜃 − 𝑏2 cos 2𝜃)
2

𝐼𝐸𝑔2 ∝ (𝑏1 cos 2𝜃 + 𝑏2 sin 2𝜃)
2

 (6.2) 

 

Table 6.2 Selection rules of point group C3i with linearly polarized light 

     

 Parallel 0 Parallel 45 Cross 0 Cross 45 

𝐴𝑔 𝑎1
2 𝑎1

2 0 0 

𝐸𝑔
1 𝑏1

2 𝑏2
2 𝑏2

2 𝑏1
2 

𝐸𝑔
2 𝑏2

2 𝑏1
2 𝑏1

2 𝑏2
2 

 

The resulting selection rules are listed in Table 6.2. The Ag mode shows up in the parallel channels 

but not in the cross channels. The Eg mode, on the other hand, shows up in all four polarization 

channels. Raman spectra of bulk CrI3 in the four linear polarization channels at 10 K are shown in 
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Figure 6.2 [2]. The Ag phonons (A1 – A3) show up only in parallel channels (black line) while the 

Eg phonons (E1 – E4) are present in both parallel and cross channels, consistent with the selection 

rule analysis shown in Table 6.2. M1 and M2 are magnetic excitations which will be discussed in 

Section 6.2. 

 

 

Figure 6.2 Raman spectra of bulk CrI3 in linear polarization channels at 10 K, adapted 

from Reference [2]. The Ag phonons (A1 – A3) show up only in parallel channels (black line) 

while the Eg phonons (E1 – E4) show up in both parallel and cross channels. M1 and M2 are 

magnetic excitations which show up only in cross channels.  

 

In the magnetic field-dependent study of bulk CrI3, circularly polarized light has been adopted 

instead of linearly polarized light, because the magneto-optical Faraday effect of the quartz-based 

optical components rotates the transmitting linearly polarized light under external magnetic field. 

This effect introduces artifacts in selection rule measurements, which are observable in the phonon 

modes shown in Fig 6.3. For simplicity, we analyze this artifact using Ag phonons, and instead of 

all four linear polarization channels relative to the crystal axes, here we measure with two 
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geometries, the vertical-vertical (VV) polarization (parallel) and the horizontal-vertical (HV) 

polarization (cross) channels with respect to the lab frame. The Ag phonons (shaded in red) should 

show up only in the VV parallel channel according to Table 6.2 (Figure 6.3 a), as is the case at 0 

T. However, their intensities leak into the HV cross channel with increasing external field (Figure 

6.3 b). As there is no structural phase transition at low magnetic field and the phonon selection 

rule only depends on the symmetry of the crystal, this intensity leak is purely due to magneto-

optical Faraday effect of the optical components. 

 

 

Figure 6.3 Magnetic field-dependent Raman data of bulk CrI3 at room temperature with 

(a) VV parallel, and (b) HV cross polarization geometries. The Ag phonons are shaded in 

red for clarity. The varying intensities of Ag phonons in both parallel and cross channels 

are artifacts due to the field-induced Faraday effect.  
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We have quantitatively studied the field dependence of this Faraday rotation angle. Because we 

are using the lab frame instead of the crystal frame, it is necessary to check that the Ag Raman 

tensor keeps the same form. Setting the rotation angle between the lab frame and the crystal axes 

as 𝛼, the Raman tensor in the lab frame is given by 

𝜒𝐴𝑔
′ = 𝑅𝑜𝑡(−𝛼)𝜒𝐴𝑔𝑅𝑜𝑡(𝛼) = 𝜒𝐴𝑔  (6.3) 

where 𝑅𝑜𝑡(𝛼) = (
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

) is the rotation matrix. It is thus confirmed that the form of the 

Ag Raman tensor is independent of the reference frame.  

 

We assume the Faraday rotation angles of both the incident and outgoing beam are 𝛽. The observed 

Raman intensity is  

𝐼𝑉𝑉/𝐻𝑉 = |�̂�𝑉/𝐻𝑅𝑜𝑡(𝛽)𝜒𝐴𝑔𝑅𝑜𝑡(𝛽)�̂�𝑉|
2

= |�̂�𝑉/𝐻𝑅𝑜𝑡(2𝛽)�̂�𝑉|
2
= cos/ sin2 2𝛽 (6.4) 

Fitting the field-dependent mode intensities of the Ag phonons at 78 cm-1 and 128 cm-1 assuming 

a linear relation between 𝛽 and external field B (Figure 6.4), we acquire 𝛽 ~0.1 B where B is in 

tesla and 𝛽 is in radian.  

 

In reality, instead of correcting the mode intensities using the field-dependent Faraday angles we 

just unveiled, we choose to alter the experimental procedures, i.e. using circularly polarized light 

instead of linearly polarized light for selection rule measurements. The question naturally arises 

what the selection rules are of circularly polarized light of the C3i point group. To solve this 

question, we can express the Raman intensity using circularly polarized light basis. The left and 

right circular polarizations are written as 

�̂� =
1

√2
(
1
𝑖
)  and �̂� =

1

√2
(
1
−𝑖
) (6.5) 
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in the Cartesian basis. Inserting Equation 6.5 into the Raman intensities given by |�̂�𝑆
+ ∙ 𝜒 ∙ �̂�𝐼|

2, we 

find that Ag modes only show up in the symmetry channel with left and left circularly polarized 

light (LL) while Eg modes only show up in the symmetry channel with opposite circular 

polarizations of incident and scattered light (i.e. LR). In addition to the phonon modes with 

symmetric Raman tensors, we also find that the magnetic antisymmetric Raman tensor 𝜒𝑀 =

(
∙ 𝑚
−𝑚 ∙

)  only show up in the LL channel. The selection rules in the circular polarization 

channels are summarized in Table 6.3. The validity of this result is confirmed with our data, which 

will be shown in the sections to follow.  

 

 

Figure 6.4 Fitting results (black solid lines) to the Raman intensities of the 78 cm-1 phonon 

in the VV/HV channel (black asterisk/circle) and the 128 cm-1 phonon in the VV/HV 

channel (blue asterisk/circle). 
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Table 6.3 The selection rules of the C3i point group in the circular polarization channels 

LL LR 

Ag, M Eg 

 

Our field-dependent Raman data at low temperature have unveiled a field-induced structural phase 

transition in CrI3 from point group C3i to C2h. We thus also examine the selection rules of C2h, 

which involve Ag and Bg modes. The Raman tensors and the selection rules in the circular 

polarization channels are summarized in Tables 6.4 and 6.5, respectively. The selection rules with 

linearly polarized light are irrelevant to our study, which is omitted here.  

 

Table 6.4 Raman tensors of the point group C2h 

𝐴𝑔 𝐸𝑔

(
𝑎1 𝑏 ∙
𝑏 𝑎2 ∙
∙ ∙ 𝑎3

) (

∙ ∙ 𝑐1
∙ ∙ 𝑐2
𝑐1 𝑐2 ∙

)
 

 

Table 6.5 The selection rules of the C2h point group in the circular polarization channels 

LL LR 

Ag Ag, Bg 
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6.2 Anomalous Magnetic Phonons in CrI3 

 

Having focused on the phonon modes with Ag and Eg symmetries, we move on to discuss two 

modes with an antisymmetric Raman tensor 𝜒𝑀 which are also present at 76 cm-1 and 125 cm-1 

(M1 and M2 in Figure 6.2), as previously reported in CrI3 thin layers [2]. Their integrated intensity 

and lifetime have been extracted whose turning points coincide with the AFM onset temperature 

TN = 45 K (Figure 6.5). It has thus been proposed that both modes are long-lived magnons with 

rather high energies [2]. Our field-dependent study, however, provides direct evidence of the 

phononic nature of both modes.   

 

Figure 6.5 Extracted temperature-dependent integrated intensity (Panels a and b) and 

lifetime (Panels c and d) of magnetic modes M1 (Panels a and c) and M2 (Panels b and d), 

adapted from Reference [2]. 

 

a b 

c d 
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Motived by this result, we have performed magnetic field-dependent Raman studies on bulk CrI3. 

Figure 6.6 shows our circularly polarized Raman spectra acquired at zero magnetic field and low 

temperature, where M and Ag modes appear in the LL channel (yellow curves in Panels a and c) 

and Eg modes appear in the LR channel (blue curve in Panel b). The symmetry of the modes are 

fully consistent with the selection rules derived in Table 6.3. 

 

 

Figure 6.6 Raman spectra of bulk CrI3 taken at 10 K and 0 T with circularly polarized 

light. LL (LR) channel is plotted in yellow (blue), adapted from Reference [14]. Panels a 

and c highlight modes with LL symmetry. Panel b highlights modes with LR symmetry.  

 

Having established the validity of the selection rules of the circularly polarized light (Table 6.3), 

Raman measurements under finite magnetic field have been performed. Comparing with the large 

oscillatory intensities using linearly polarized light, circularly polarized light indeed significantly 

improves the fidelity of the spectrum. First, we focus on the selection rule of the Ag phonons. As 

shown in the third and fifth columns of Figure 6.7, the intensities of the Ag phonons remain in the 

LL channel albeit a small leakage to the LR channel, which will be explained in Section 6.3. Next, 

we examine the field response of M1 and M2. Although magnon energy (for example M0 mode 
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shown in Fig 6.7) typically depends linearly on external field, the energies of M1 and M2 show no 

observable response from 0 T to 2 T, ruling out the magnonic nature of both modes. 

 

 

Figure 6.7 Magnetic field-dependent Raman data of bulk CrI3 at 10 K, adapted from 

Reference [14]. Panel a and c display both LL and LR channels at 0 T and 7 T, 

respectively. Panel b is a colormap of the field dependence of the LL channel. The shaded 

area covers the laser artifact in the LL/parallel channel.   

 

In Section 6.4, we will show that the low-field GS is a mixture of AFM and FM in bulk CrI3, while 

the high-field GS is FM. Since both M1 and M2 disappear above BC = 2 T, they are related to the 

AFM phase. Considering all the factors above, we bring up a new interpretation of the magnetic 

origin of M1 and M2, which will be discussed in the remaining part of this section.  
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We propose that M1 and M2 are originated from the paired excitations of c-axis zone-boundary 

phonons at �⃗� = (0, 0, 𝑘𝑐), Δ𝑋𝑘
�⃗⃗�
, and the AFM order with momentum −�⃗�, 𝑀𝑙

−�⃗⃗�
, which has a zero 

total momentum to be a Raman-active mode. Note that the relevant zone-boundary phonons for 

M1 and M2 are two distinct phonon modes. The selection rule of this composite object (Δ𝑋𝑘
�⃗⃗�𝑀𝑙

−�⃗⃗�
) 

can be acquired by performing an expansion of the linear optical susceptibility (𝜒𝑖𝑗) tensor with 

respect to both the phonon vibration and the magnetization. The induced change in linear optical 

susceptibility (Δ𝜒𝑖𝑗) is   

Δ𝜒𝑖𝑗 =
𝜕2𝜒𝑖𝑗

𝜕𝑋𝑘
�⃗⃗�𝜕𝑀𝑙

−�⃗⃗�
|

Δ𝑋𝑘
�⃗⃗⃗�
=0,𝑀𝑙

−�⃗⃗⃗�
=0

Δ𝑋𝑘
�⃗⃗�𝑀𝑙

−�⃗⃗� = 𝐾𝑖𝑗𝑘𝑙Δ𝑋𝑘
�⃗⃗�𝑀𝑙

−�⃗⃗� (6.6) 

where 𝐾𝑖𝑗𝑘𝑙 is a polar tensor that is invariant under the symmetry operations of the lattice point 

group of C3i, with 27 independent tensor elements [15], 

 

𝐾𝑖𝑗𝑘𝑙 =  

(

 
 
 
 
 
 
 
 (

𝐾𝑥𝑥𝑥𝑥 𝐾𝑥𝑥𝑥𝑦 𝐾𝑥𝑥𝑥𝑧
−𝐾𝑦𝑦𝑥𝑦 𝐾𝑥𝑥𝑦𝑦 −𝐾𝑦𝑦𝑦𝑧
𝐾𝑥𝑥𝑧𝑥 −𝐾𝑦𝑦𝑧𝑦 𝐾𝑦𝑦𝑧𝑧

) (

−𝐾𝑦𝑥𝑦𝑦 𝐾𝑥𝑦𝑥𝑦 −𝐾𝑦𝑦𝑦𝑧
𝐾𝑥𝑦𝑦𝑥 𝐾𝑥𝑦𝑦𝑦 −𝐾𝑥𝑥𝑥𝑧
−𝐾𝑦𝑦𝑧𝑦 −𝐾𝑥𝑥𝑧𝑥 𝐾𝑥𝑦𝑧𝑧

) (

𝐾𝑥𝑧𝑥𝑥 −𝐾𝑦𝑧𝑦𝑦 𝐾𝑥𝑧𝑥𝑧
−𝐾𝑦𝑧𝑦𝑦 −𝐾𝑥𝑧𝑥𝑥 𝐾𝑥𝑧𝑦𝑧
𝐾𝑦𝑧𝑧𝑦 𝐾𝑥𝑧𝑧𝑦 0

)

(

−𝐾𝑥𝑦𝑦𝑦 𝐾𝑥𝑦𝑦𝑥 −𝐾𝑦𝑦𝑦𝑧
𝐾𝑥𝑦𝑥𝑦 𝐾𝑦𝑥𝑦𝑦 −𝐾𝑥𝑥𝑥𝑧
−𝐾𝑦𝑦𝑧𝑦 −𝐾𝑥𝑥𝑧𝑥 −𝐾𝑥𝑦𝑧𝑧

) (

𝐾𝑥𝑥𝑦𝑦 𝐾𝑦𝑦𝑥𝑦 −𝐾𝑥𝑥𝑥𝑧
−𝐾𝑥𝑥𝑥𝑦 𝐾𝑥𝑥𝑥𝑥 𝐾𝑦𝑦𝑦𝑧
−𝐾𝑥𝑥𝑧𝑥 𝐾𝑦𝑦𝑧𝑦 𝐾𝑦𝑦𝑧𝑧

) (

−𝐾𝑦𝑧𝑦𝑦 −𝐾𝑥𝑧𝑥𝑥 −𝐾𝑥𝑧𝑦𝑧
−𝐾𝑥𝑧𝑥𝑥 𝐾𝑦𝑧𝑦𝑦 𝐾𝑦𝑧𝑦𝑧
−𝐾𝑥𝑧𝑧𝑦 𝐾𝑦𝑧𝑧𝑦 0

)

(

𝐾𝑧𝑥𝑥𝑥 −𝐾𝑧𝑦𝑦𝑦 𝐾𝑧𝑦𝑦𝑧
−𝐾𝑧𝑦𝑦𝑦 −𝐾𝑧𝑥𝑥𝑥 𝐾𝑧𝑥𝑦𝑧
𝐾𝑧𝑦𝑧𝑦 𝐾𝑧𝑥𝑧𝑦 0

) (

−𝐾𝑧𝑦𝑦𝑦 −𝐾𝑧𝑥𝑥𝑥 −𝐾𝑧𝑥𝑦𝑧
𝐾𝑧𝑥𝑥𝑥 𝐾𝑧𝑦𝑦𝑦 𝐾𝑧𝑦𝑦𝑧
−𝐾𝑧𝑥𝑧𝑦 𝐾𝑧𝑦𝑧𝑦 0

) (

𝐾𝑧𝑧𝑦𝑦 𝐾𝑧𝑧𝑥𝑦 0

−𝐾𝑧𝑧𝑥𝑦 𝐾𝑧𝑧𝑦𝑦 0

0 0 𝐾𝑧𝑧𝑧𝑧

)

)

 
 
 
 
 
 
 
 

 

 (6.7) 
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The Onsager relation of Δ𝜒𝑖𝑗(Δ�⃗�, �⃗⃗⃗�) = Δ𝜒𝑗𝑖(Δ�⃗�, −�⃗⃗⃗�) [16,17] further constraints the form of 

Equation 6.7 and Δ𝜒𝑖𝑗(Δ�⃗�, �⃗⃗⃗�) takes the following form 

Δ𝜒𝑥𝑥 = Δ𝜒𝑦𝑦 = Δ𝜒𝑧𝑧 = 0;

Δ𝜒𝑦𝑥 = −Δ𝜒𝑥𝑦 = −𝑋𝑧𝑀𝑧𝐾𝑥𝑦𝑧𝑧 +⋯

1

2
[(𝑋𝑦𝑀𝑥 − 𝑋𝑥𝑀𝑦)(𝐾𝑥𝑦𝑥𝑦 − 𝐾𝑥𝑦𝑦𝑥) + (𝑋𝑥𝑀𝑥 − 𝑋𝑦𝑀𝑦)(𝐾𝑦𝑥𝑦𝑦 − 𝐾𝑥𝑦𝑦𝑦)];

 

Δ𝜒𝑧𝑥 = −Δ𝜒𝑥𝑧 =
1

2
[(𝑋𝑥𝑀𝑥 − 𝑋𝑦𝑀𝑦)(𝐾𝑧𝑥𝑥𝑥 − 𝐾𝑥𝑧𝑥𝑥) + ⋯

(𝑋𝑦𝑀𝑥 + 𝑋𝑥𝑀𝑦)(𝐾𝑦𝑧𝑦𝑦 − 𝐾𝑧𝑦𝑦𝑦) + 𝑋𝑥𝑀𝑧(𝐾𝑧𝑦𝑦𝑧 − 𝐾𝑥𝑧𝑥𝑧) + ⋯

𝑋𝑦𝑀𝑧(𝐾𝑧𝑥𝑦𝑧 − 𝐾𝑥𝑧𝑦𝑧) + 𝑋𝑧𝑀𝑥(𝐾𝑧𝑦𝑧𝑦 − 𝐾𝑦𝑧𝑧𝑦) + 𝑋𝑧𝑀𝑦(𝐾𝑧𝑥𝑧𝑦 − 𝐾𝑥𝑧𝑧𝑦)];

Δ𝜒𝑧𝑦 = −Δ𝜒𝑦𝑧 =
1

2
[(𝑋𝑥𝑀𝑥 − 𝑋𝑦𝑀𝑦)(𝐾𝑦𝑧𝑦𝑦 − 𝐾𝑧𝑦𝑦𝑦) + ⋯

(𝑋𝑦𝑀𝑥 + 𝑋𝑥𝑀𝑦)(𝐾𝑥𝑧𝑥𝑥 − 𝐾𝑧𝑥𝑥𝑥) + 𝑋𝑥𝑀𝑧(𝐾𝑥𝑧𝑦𝑧 −𝐾𝑧𝑥𝑦𝑧) + ⋯

𝑋𝑦𝑀𝑧(𝐾𝑧𝑦𝑦𝑧 − 𝐾𝑦𝑧𝑦𝑧) + 𝑋𝑧𝑀𝑥(𝐾𝑥𝑧𝑧𝑦 − 𝐾𝑧𝑥𝑧𝑦) + 𝑋𝑧𝑀𝑦(𝐾𝑧𝑦𝑧𝑦 − 𝐾𝑦𝑧𝑧𝑦)].

(6.8) 

 

As shown in Equation 6.8, Δ𝜒𝑖𝑗 is antisymmetric, so that the mode for such a composite object 

only shows up in the crossed channel with the linear polarization basis or the LL channel with the 

circular polarization basis. 

 

6.3 Phonon Selection Rules: a Field-Induced Structural Phase Transition in CrI3 

 

Having analyzed the magnetic phonon modes at ~80 cm-1 and ~130 cm-1 in the third and fifth 

columns of Figure 6.7, we pay attention to the change of the phonon selection rules across BC. The 

colormap of the LR channel is also shown in Figure 6.8. Firstly, we notice an Eg phonon at ~109 

cm-1 which is present only in the LR channel under the C3i point group also appears in the LL 

channel above BC (the fourth panel of Figure 6.7 and Figure 6.9 b). Secondly, the Ag phonons at 
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~79 cm-1 and ~129 cm-1 appear in both LL and LR channel as well, in contrast to the low-field 

phase where only LL channel hosts Ag modes (the third and the fifth panels of Figure 6.8). For 

better illustrational purpose, we also extract and plot the intensity of the Ag phonons at ~129 cm-1 

in Figure 6.9 a. Thirdly, the intensity of the Eg phonon at ~240 cm-1 decreases in the LR channel 

while remaining absent in the LL channel above BC.  

 

 

Figure 6.8 Magnetic field-dependent Raman spectra of bulk CrI3 in LR channel at 10 K. 

 

These results indicate the cooccurrence of a first-order structural phase transition and the AFM to 

FM magnetic phase transition at BC. The leakage of the Ag phonons spectral weight from the LL 

into the LR channel suggests that the Raman tensor changes from (
𝑎1 ∙
∙ 𝑎1

) to (
𝑎1 ∙
∙ 𝑎2

) which is 

a result of breaking the three-fold rotational symmetry of the rhombohedral C3i point group. The 

symmetry of CrI3 thus shifts from the rhombohedral C3i point group to the monoclinic C2h point 

group, which also appears in the high-temperature phase [18]. Note that the Raman tensor 
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(
𝑎1 ∙
∙ 𝑎2

) is equivalent to the Ag Raman tensor (
𝑎1 𝑏
𝑏 𝑎2

) in Table 6.4 up to some rotational 

operations. Ag phonons in C3i remain in the Ag symmetry in C2h while the doubly degenerate Eg 

phonons transform to either Ag phonon or Bg phonon in C2h. The three observations listed in the 

last paragraph correspond to different types of phonon transformations. Referring to Tables 6.3 

and 6.5, the C3i Eg phonons in the LR channel transform to either C2h Ag phonon in both LL and 

LR channels, for example the 109 cm-1 phonon (Figure 6.9 b), or C2h Bg phonon in the LR channel, 

for example the 240 cm-1 phonon (Figure 6.9 c).  

 

 

Figure 6.9 Field-dependent intensities of (a) Ag phonon at 129 cm-1 which leaks from the LL 

to LR channel, (b) Eg phonon at 109 cm-1 which leaks from the LR to LL channel, and (c) 

Eg phonon at 240 cm-1 showing a discontinuity in the LR channel but remaining absent in 

the LL channel. This figure is adapted from Reference [14]. 
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Figure 6.10 Schematics of the field-induced C3i AFM to the C2h FM phase transition: 

shearing of the layers, adapted from Reference [14]. SAFM refers to surface-AFM which 

will be discussed in Section 6.4.  

 

We further propose that the structural phase transition from rhombohedral C3i to monoclinic C2h 

is due to a shearing between the layers away from the ABC stacking which breaks the three-fold 

rotational symmetry [18,19], as illustrated in Figure 6.10. 

 

6.4 Field-Dependent Magnon Behavior: a Mixed SAFM and BFM in bulk CrI3 

 

As we have introduced in Chapter 2, CrI3 has been considered to be an interlayer AFM in its few-

layer form and an interlayer FM in its bulk [20-23], while our study shows the coexistence of AFM 

and FM magnons even in bulk CrI3. We propose that this interlayer AFM resides at the surface 

(referred to as SAFM) of the FM CrI3 bulk. In this section, we will discuss how we unveil this 

interesting result using the low-energy part of the field-dependent Raman data.  
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Figure 6.11 Field-dependent low-energy anti-Stokes and Stokes Raman data highlighting 

M0 modes in the LL channel at 10 K. The shaded area blocks the laser artifact. The dashed 

line marks the transition field BC = 2 T. Below BC three magnon branches are clearly 

visible while only one magnon branch is present above BC. 

 

We zoom in the low-energy Raman data of Figure 6.7 and plot them in Figure 6.11. The energies 

of M0 modes show clear linear dependence of the external magnetic field, typical of the magnons. 

More intriguingly three magnon branches are present below BC, two of which harden with external 

field (spin +1) and one of which softens with external field (spin -1). Because a pair of magnons 

with spin 1 must result from AFM GS, the presence of such three magnon branches is a clear 

signature of the coexistence of the interlayer AFM and FM within the bulk CrI3. Above BC, only 

one magnon branch remains with spin -1 indicating a transition to FM.  

 

Temperature-dependent data shown in Figure 6.12 clearly shows that the energy of M0 decreases 

with increasing temperature towards the magnetic critical temperature of TC = 45 K, which is also 
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consistent with our assignment of M0 being magnon excitations. Panel b plots the extracted 

magnon energies fitted with the mean-field scaling law √𝑇𝐶 − 𝑇, where 𝑇𝐶 = 45 K.   

 

 

Figure 6.12 (a) Low-energy temperature-dependent Raman data of bulk CrI3 in the LR 

channel. Shaded area blocks the Rayleigh scattering and the laser artifact. (b) Extracted 

zero-field M0 frequencies fitted with the mean-field relation (solid line), adapted from 

Reference [14].  

 

We propose that the AFM resides on the surface of the bulk CrI3 because of surface reconstructions 

where a change in layer distance can result in this FM to AFM transition on the surface. We rule 

out the possibility of magnetic dipole-dipole interaction, because its energy scale of 1 eV [24] is 

negligible compared with the exchange energies, although magnetic dipole-dipole interaction 

favors FM order. The mixed SAFM and BFM of the bulk CrI3 gives a natural explanation to its 

thickness-dependent magnetic GS. Raman spectroscopy is ideal to probe this mixed state because 

of the finite penetration depth of optical techniques, which is estimated to be 30 layers at 633 nm 

excitation wavelength based on the optical absorption data of thin layers of CrI3.  
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To gain a qualitative understanding of the field evolution of M0, the field-dependent magnon 

energies have been extracted and plotted on the left panel of Figure 6.13, and the right panel shows 

the calculated energies using the standard spin-wave theory of a 3D magnet made of ABC-stacked 

2D honeycomb magnetic lattices. The theory and experiment data show remarkable consistency. 

Details of the calculations are as follow.  

 

 

Figure 6.13 Experimental (left) and calculated (right) field-dependent magnon energies, 

adapted from Reference [14].  

 

For the SAFM state, the spin Hamiltonian includes interlayer AFM exchange coupling and 

intralayer FM exchange coupling 

𝐻 = 𝐻0 + 𝐻𝐶 + 𝐻𝑍

𝐻0 = −
1

2
∑ [𝐽𝑧𝑆𝑙,𝑖

𝑧 𝑆𝑙,𝑗
𝑧 + 𝐽𝑥(𝑆𝑙,𝑖

𝑥 𝑆𝑙,𝑗
𝑥 + 𝑆𝑙,𝑖

𝑦
𝑆𝑙,𝑗
𝑦
)]

𝑙,<𝑖,𝑗>

𝐻𝐶 =
1

2
𝐽𝐶∑ 𝑆𝑙,𝑖 ⋅ 𝑆𝑙′,𝑗

𝑖,<𝑙,𝑙′>

𝐻𝑍 = −𝑔𝜇𝐵𝐵∑ 𝑆𝑙,𝑖
𝑧

𝑙,𝑖

 (6.9) 
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where 𝐽𝑥,𝑧 > 0 and 𝐽𝐶 > 0 are intra- and inter-layer exchange couplings, respectively, 𝑆𝑙,𝑖
𝑥(𝑦,𝑧)

 is 

the x (y, z)-component of the spin at site i of layer l, B is the strength of the external magnetic field 

along the z-direction, and H0, HC, and HZ are spin Hamiltonians for the intralayer FM interactions, 

intralayer AFM interactions, and Zeeman energy.   

 

There are four different spin sites per magnetic unit cell in SAFM. After applying the Holstein-

Primakoff transformation and the Bogoliubov transformation, the Γ-point magnon energies are 

acquired as 

𝐸1 =
1

2
𝑆√(𝐽𝑧 − 𝐽𝑥)𝑧[4𝐽𝐶 + (𝐽𝑧 − 𝐽𝑥)𝑧] ± 𝑔𝜇𝐵𝐵;

𝐸2 =
1

2
𝑆√(𝐽𝑧 + 𝐽𝑥)𝑧[4𝐽𝐶 + (𝐽𝑧 + 𝐽𝑥)𝑧] ± 𝑔𝜇𝐵𝐵.

(6.10) 

where z = 3 is the number of NN. When B = 0 T, each branch is doubly degenerate with one 

magnon carrying spin +1 and the other spin -1. The presence of an external field lifts this 

degeneracy, and magnons with opposite spins undergo Zeeman shifts in opposite trends with the 

same rate (i.e., the slope of ±𝑔𝜇𝐵).  

 

In the mixed SAFM and BFM state of 3D CrI3, the BFM provides an effective magnetic field 𝐵0 

to the SAFM even when there is no external field. This results in the slight splitting of the two 

magnons per branch at 0 T. In our experimental data, the magnon branch we observed is the 

acoustic branch 𝐸1 whose field dependence is shown in Figure 12 and labeled with the SAFM.  

 

Considering the BFM below 2 T or the FM above 2 T, we calculation the magnon energy using 

FM interlayer coupling, and there are only two inequivalent spin sites. They correspond to one 
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acoustic and one optical branch at 0 T, but are both spin -1 without any degeneracy. Experimentally, 

we observed the acoustic branch labeled as BFM in Figure 6.12. The interlayer exchange coupling 

𝐽𝐶  is no longer the same as in Equation 6.9, but this has no impact on the magnetic field dependence 

of the acoustic branch which takes the following form 

𝐸1
′ =

1

2
𝑆𝑧(𝐽𝑧 − 𝐽𝑥) + 𝑔𝜇𝐵𝐵. (6.11) 

Comparing 𝐸1
′  with 𝐸1, the magnon with spin -1 of BFM has smaller energy than that of SAFM, 

which is indeed consistent with our experimental observation. 

 

By comparing our calculated and experimental magnon energies, we have extracted the following 

important parameters:  

• Below 2 T: 

Interlayer exchange coupling:      𝐽𝐶  = 0.15 meV 

Intralayer exchange anisotropy:      𝐽𝑧 − 𝐽𝑥 = 0.13 meV 

Effective magnetic field from the BFM at 0 T external field: 𝐵0 = 0.32 T 

 

• Above 2 T: 

 Intralayer exchange anisotropy:      𝐽𝑧 − 𝐽𝑥 = 0.11 meV. 

Given the fact that only the acoustic magnon branch is probed experimentally, we can only extract 

the intralayer exchange anisotropy 𝐽𝑧 − 𝐽𝑥, but not the individual values of 𝐽𝑥 and 𝐽𝑧.  

 

Apart from studying magnetic excitations, we can also estimate the interlayer exchange coupling 

𝐽𝐶  using the magnetic transition field of 2 T. The AFM interlayer exchange coupling favors spins 
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in adjacent layers aligning along opposite directions, whereas the external field favors all the spins 

aligning along the field direction. From Equation 6.9, the GS energies of SAFM and FM per spin 

are given in Table 6.6. 

 

The magnetic phase transition happens when the total energy of FM becomes lower than that of 

the SAFM. With 𝐵𝐶 = 2 T, we get 𝐽𝐶  = 0.15 meV, which corroborates the previous result of  𝐽𝐶  = 

0.15 meV obtained using magnon energies. 

 

Table 6.6 Analytic forms of the SAFM and FM interlayer energies 𝑯𝑪 and Zeeman 

energies 𝑯𝒁 

 SAFM FM 

𝐻𝐶 −
1

2
𝑆2𝐽𝐶  

1

2
𝑆2𝐽𝐶 

𝐻𝑍 0 −𝑔𝜇𝐵𝐵𝑆 

 

As a closing remark, we comment on the selection rule of M0. Although M0 modes are assigned as 

single magnon excitations, they show up in both LL and LR channels (Figure 6.12 b), in contrast 

to the selection rules in Table 6.3. As introduced in Section 3.2, the fact that M modes appear in 

the LL channel assumes that the change in electric susceptibility tensor is linear to magnon-

induced magnetization. In CrI3, however, a linear expansion is not sufficient so that we derive the 

Raman tensor of a quadratic expansion.   

 

The response of the linear electric susceptibility tensor to the quadratic magnetization is a 4th rank 

tensor 𝜒(2). We impose the following constraints to 𝜒(2): 
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• 𝜒(2) is invariant under all the symmetry operations of the crystal point group C3i. 

 

• 𝜒𝑖𝑗𝑘𝑙
(2) = 𝜒𝑖𝑗𝑙𝑘

(2)
 because the 3rd and 4th components are multiplied by the same vector of induced 

magnetization which obey permutation invariance. 

 

• The Onsager relation requires that 𝜒𝑖𝑗
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝜒𝑗𝑖

(2)
(−�⃗⃗⃗�, −�⃗⃗⃗�) where �⃗⃗⃗�  is the induced 

magnetization.  

 

We thus acquire the form of 𝜒𝑖𝑗
(2)(�⃗⃗⃗�, �⃗⃗⃗�), a 2nd rank tensor, following the constraints above. 

Because this matrix is too large, we write down each tensor element individually  

𝜒𝑥𝑥
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝑀𝑦

2𝜒𝑥𝑥𝑦𝑦
(2) + 2𝑀𝑥𝑀𝑧𝜒𝑥𝑥𝑧𝑥

(2) +𝑀𝑥
2 (𝜒𝑥𝑥𝑦𝑦

(2) + 2𝜒𝑥𝑦𝑥𝑦
(2) ) +𝑀𝑧

2𝜒𝑦𝑦𝑧𝑧
(2)

𝜒𝑥𝑦
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝜒𝑦𝑥

(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 2𝑀𝑦 (𝑀𝑥𝜒𝑥𝑦𝑥𝑦

(2) −𝑀𝑧𝜒𝑥𝑥𝑧𝑥
(2) )

𝜒𝑦𝑦
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝑀𝑥

2𝜒𝑥𝑥𝑦𝑦
(2) − 2𝑀𝑥𝑀𝑧𝜒𝑥𝑥𝑧𝑥

(2) +𝑀𝑦
2 (𝜒𝑥𝑥𝑦𝑦

(2) + 2𝜒𝑥𝑦𝑥𝑦
(2) ) +𝑀𝑧

2𝜒𝑦𝑦𝑧𝑧
(2)

𝜒𝑧𝑦
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝜒𝑦𝑧

(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝑀𝑦 [𝑀𝑧(𝜒𝑦𝑧𝑦𝑧

(2) + 𝜒𝑧𝑦𝑧𝑦
(2) ) − 𝑀𝑥(𝜒𝑥𝑧𝑥𝑥

(2) + 𝜒𝑧𝑥𝑥𝑥
(2) )]

𝜒𝑧𝑧
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = (𝑀𝑥

2 +𝑀𝑦
2)𝜒𝑧𝑧𝑦𝑦

(2) +𝑀𝑧
2𝜒𝑧𝑧𝑧𝑧
(2)

𝜒𝑧𝑥
(2)
(�⃗⃗⃗�, �⃗⃗⃗�) = 𝜒𝑥𝑧

(2)
(�⃗⃗⃗�, �⃗⃗⃗�) =

1

2
[(𝑀𝑥

2 −𝑀𝑦
2)(𝜒𝑥𝑧𝑥𝑥

(2) + 𝜒𝑧𝑥𝑥𝑥
(2) ) + 2𝑀𝑥𝑀𝑧(𝜒𝑦𝑧𝑦𝑧

(2) + 𝜒𝑧𝑦𝑧𝑦
(2) )]

(6.12) 

 

Because CrI3 is a z-axis Ising FM, its magnon excitation induces xy-plane magnetization. With 

𝑀𝑧 = 0, 𝜒𝑖𝑗
(2)(�⃗⃗⃗�, �⃗⃗⃗�) is reduced to 

(

  
 
𝑀𝑦
2𝜒𝑥𝑥𝑦𝑦
(2) +𝑀𝑥

2 (𝜒𝑥𝑥𝑦𝑦
(2) + 2𝜒𝑥𝑦𝑥𝑦

(2)
) 2𝑀𝑦𝑀𝑥𝜒𝑥𝑦𝑥𝑦

(2) 1

2
(𝑀𝑥

2 −𝑀𝑦
2)(𝜒𝑥𝑧𝑥𝑥

(2) + 𝜒𝑧𝑥𝑥𝑥
(2) )

2𝑀𝑦𝑀𝑥𝜒𝑥𝑦𝑥𝑦
(2) 𝑀𝑥

2𝜒𝑥𝑥𝑦𝑦
(2) +𝑀𝑦

2 (𝜒𝑥𝑥𝑦𝑦
(2) + 2𝜒𝑥𝑦𝑥𝑦

(2)
) −𝑀𝑥𝑀𝑦(𝜒𝑥𝑧𝑥𝑥

(2) + 𝜒𝑧𝑥𝑥𝑥
(2) )

1

2
(𝑀𝑥

2 −𝑀𝑦
2)(𝜒𝑥𝑧𝑥𝑥

(2) + 𝜒𝑧𝑥𝑥𝑥
(2) ) −𝑀𝑥𝑀𝑦(𝜒𝑥𝑧𝑥𝑥

(2) + 𝜒𝑧𝑥𝑥𝑥
(2) ) (𝑀𝑥

2 +𝑀𝑦
2)𝜒𝑧𝑧𝑦𝑦

(2)

)

  
 

 

 (6.13) 
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Combining both linear and quadratic expansions in magnetization, it is not surprising that single 

magnons in CrI3 show up in both LL and LR channels. 

 

6.5 Calculations of the X-Dependent Magnetism in CrX3 (X = Cl, Br, I) 

 

In this last section, we present our study of the field-dependent magnon in atomically thin CrX3 

(X = Cl, Br, I) [25]. This is a highly collaborative work where Professor Adam Wei Tsen’s group 

at the University of Waterloo performs inelastic electron tunneling measurements, and our group 

is responsible for the spin-wave calculations, which will be presented in detail below.  

 

6.5.1 Spin Hamiltonian of a 2D Honeycomb FM 

 

We perform spin-wave calculations with an external magnetic field for monolayer honeycomb 

magnets CrX3. Here our spin Hamiltonian only considers a monolayer spin lattice because 

interlayer interactions (JC = 0.15 meV as determined in Section 6.4) are negligible compared to 

intralayer exchange interactions (J ~1-2 meV). Although the Raman data shows clear signature of 

field-induced breaking of the two-fold degeneracy of AFM magnons, there is no evidence of 

interlayer AFM in the inelastic electron tunneling measurement.  

 

We construct the anisotropic Heisenberg spin model  

𝐻 = −𝐽∑ (𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦
𝑆𝑗
𝑦
+ 𝛼𝑆𝑖

𝑧𝑆𝑗
𝑧) − 𝑔𝜇𝐵 (𝐵𝑧∑𝑆𝑖

𝑧

𝑖
+ 𝐵𝑥∑𝑆𝑖

𝑥

𝑖
)

<𝑖,𝑗>
 (6.14) 
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where J is the NN exchange energy, i and j denote the two inequivalent nearest Cr3+ site, and 𝛼 

scales the z-direction exchange strength. In particular, 𝛼 is greater than, equivalent to, or smaller 

than 1 for Ising, isotropic Heisenberg, or XY magnets, respectively. g is the g-factor for Cr3+ 

magnetic moments, 𝜇𝐵 is the Bohr magneton, and �⃗⃗� is external magnetic field. Depending on the 

experimental geometry, either 𝐵𝑧 or 𝐵𝑥 is nonzero, representing the magnetic field perpendicular 

to or parallel to the plane of CrX3 layers.  

 

Without external magnet field, the spins in CrX3 align either along the z-axis or in the xy-plane 

depending on the magnitude of 𝛼. When a field is applied perpendicular to the easy axis or easy 

plane, it tilts the spins to a new direction that minimizes the energy (Equation 6.15). To keep it 

general for all three types of magnets, we characterize the spin orientation by its tilt angle from the 

z-axis, 𝜃. 𝜃 = 0 corresponds to the spins along the z-axis and 𝜃 = 𝜋/2 for spins in the xy-plane. 

To determine 𝜃 for a given external magnetic field, a rotational transform is applied, where �̃⃗� is 

the spin orientation in the new ground state under the external field 

𝑆𝑥 = �̃�𝑥𝑐𝑜𝑠𝜃 + �̃�𝑧𝑠𝑖𝑛𝜃
𝑆𝑧 = −�̃�𝑥𝑠𝑖𝑛𝜃 + �̃�𝑧𝑐𝑜𝑠𝜃

 (6.15) 

 

After applying Holstein-Primakoff transform for both site i and site j 

�̃�𝑧 = 𝑆 − 𝑎†𝑎

�̃�+ = √2𝑆 (1 −
𝑎†𝑎

2𝑆
)𝑎

�̃�− = √2𝑆𝑎†

 (6.16) 

we arrive at the following Hamiltonian where magnon interactions are ignored 

𝐻 = 𝐻𝑐𝑜𝑛𝑠𝑡 + 𝐻1 + 𝐻2 (6.17) 

𝐻𝑐𝑜𝑛𝑠𝑡 = −𝑆𝑁[𝐽𝑧𝑆(𝛼 cos
2 𝜃 + sin2 𝜃) + 2𝑔𝜇𝐵(𝑠𝑖𝑛𝜃𝐵𝑥 + 𝑐𝑜𝑠𝜃𝐵𝑧)] 
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𝐻1 = [
1

2
𝐽𝑆𝑧(𝛼 − 1)𝑠𝑖𝑛2𝜃 + 𝑔𝜇𝐵(𝐵𝑧𝑠𝑖𝑛𝜃 − 𝐵𝑥𝑐𝑜𝑠𝜃)]√𝑆/2∑ (𝑎𝑖

† + 𝑎𝑖)
𝑖

 

𝐻2 = −
1

2
𝐽𝑆(𝛼 sin2 𝜃 + cos2 𝜃 − 1)∑ (𝑎𝑖

†𝑏𝑗
† + 𝑎𝑖𝑏𝑗)

<𝑖,𝑗>

−
1

2
𝐽𝑆(𝛼 sin2 𝜃 + cos2 𝜃 + 1)∑ (𝑎𝑖

†𝑏𝑗 + 𝑎𝑖𝑏𝑗
†)

<𝑖,𝑗>

+ 𝐽𝑆(𝛼 cos2 𝜃 + sin2 𝜃)∑ (𝑎𝑖
†𝑎𝑖 + 𝑏𝑗

†𝑏𝑗)
<𝑖,𝑗>

+ 𝑔𝜇𝐵(𝑠𝑖𝑛𝜃𝐵𝑥 + 𝑐𝑜𝑠𝜃𝐵𝑧)(∑ 𝑎𝑖
†𝑎𝑖 +∑ 𝑏𝑗

†𝑏𝑗
𝑗

)
𝑖

 

where N is the number of sublattices, and z is the number of NN spins. Minimizing 𝐻𝑐𝑜𝑛𝑠𝑡 yields 

the new spin orientation 𝜃 and eliminates 𝐻1. If �⃗⃗� is parallel to the original spin orientation, the 

spin directions remain the same. If �⃗⃗� is perpendicular, 𝜃 can be expressed as a function of |�⃗⃗�|. At 

low field,  

𝜃 = sin−1
𝑔𝜇𝐵𝐵𝑥

𝐽𝑆𝑧(𝛼 − 1)
 (𝐵𝑧 = 0, 𝛼 > 1) (6.18) 

and  

𝜃 = cos−1
𝑔𝜇𝐵𝐵𝑧

𝐽𝑆𝑧(1 − 𝛼)
(𝐵𝑥 = 0, 𝛼 < 1) (6.19) 

A critical field strength 𝐵𝐶 exists above which the spins are completely aligned along the external 

field direction. 

 

To obtain the spin-wave dispersions under external magnetic field, Fourier and Bogoliubov 

transformations are applied to 𝐻2. Fourier transform yields 

𝐻2 = 𝑄1∑ (𝑎𝑘
†𝑏−𝑘
† 𝛾−𝑘 + 𝑎𝑘𝑏−𝑘𝛾𝑘)

𝑘
+ 𝑄2∑ (𝑎𝑘

†𝑏𝑘𝛾−𝑘 + 𝑎𝑘𝑏𝑘
†𝛾𝑘)

𝑘

+𝑄3∑ (𝑎𝑘
†𝑎𝑘 + 𝑏𝑘

†𝑏𝑘)
𝑘

 
(6.20) 
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where 

𝛾𝑘 =
1

𝑧
∑ 𝑒𝑖𝑘𝛿

𝛿

𝑄1 = −
1

2
𝐽𝑆𝑧(𝛼 sin2 𝜃 + cos2 𝜃 − 1)

𝑄2 = −
1

2
𝐽𝑆𝑧(𝛼 sin2 𝜃 + cos2 𝜃 + 1)

𝑄3 = 𝐽𝑆𝑧(𝛼 cos
2 𝜃 + sin2 𝜃) + 𝑔𝜇𝐵(𝑠𝑖𝑛𝜃𝐵𝑥 + 𝑐𝑜𝑠𝜃𝐵𝑧)

 

𝑎𝑘 and 𝑏𝑘 correspond to the Fourier-transformed spin-wave operators of real-space operators 𝑎𝑖 

and 𝑏𝑗, respectively. Bogoliubov transform for bosonic excitations is applied 

(

 
 

𝜙−𝑘
𝜓−𝑘

𝜙𝑘
†

𝜓𝑘
†

)

 
 
= 𝑀

(

 
 

𝑎−𝑘
𝑏−𝑘

𝑎𝑘
†

𝑏𝑘
†

)

 
 
 (6.21) 

where 

𝑀 =

(

 
 
 
 
 
 
 
 
 
 

𝑄3 − 𝑄2𝑃1 − 𝑃2
𝑄1𝛾𝑘

−
𝑄3 − 𝑄2𝑃1 − 𝑃2

𝑄1𝑃1
−√

𝛾−𝑘
𝛾𝑘

1

𝑄3 + 𝑄2𝑃1 − 𝑃3
𝑄1𝛾𝑘

𝑄3 +𝑄2𝑃1 − 𝑃3
𝑄1𝑃1

√
𝛾−𝑘
𝛾𝑘

1

𝑄3 − 𝑄2𝑃1 + 𝑃2
𝑄1𝛾𝑘

−
𝑄3 − 𝑄2𝑃1 + 𝑃2

𝑄1𝑃1
−√

𝛾−𝑘
𝛾𝑘

1

𝑄3 + 𝑄2𝑃1 − 𝑃3
𝑄1𝛾𝑘

𝑄3 +𝑄2𝑃1 − 𝑃3
𝑄1𝑃1

√
𝛾−𝑘
𝛾𝑘

1
)

 
 
 
 
 
 
 
 
 
 

 

and 

𝑃1 = √𝛾𝑘𝛾−𝑘

𝑃2 = √𝑄3
2 − 2𝑄3𝑄2𝑃1 + (𝑄2

2 − 𝑄1
2)𝑃1

2

𝑃3 = √𝑄3
2 + 2𝑄3𝑄2𝑃1 + (𝑄2

2 − 𝑄1
2)𝑃1

2
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M is the Bogoliubov transform matrix under which the new operators 𝜙𝑘 and 𝜓𝑘 satisfy bosonic 

commutation relations up to a normalization factor. Finally, spin-wave dispersions as a function 

of external field strength can be obtained as  

𝐸1 = 𝑃2
𝐸2 = 𝑃3

 (6.22) 

If �⃗⃗� is parallel to the original spin orientation, spin-wave energies increase by 𝑔𝜇𝐵|�⃗⃗�|. If �⃗⃗� is 

perpendicular, spin-wave energies show an anomaly at 𝐵𝐶, consistent with the inelastic electron 

tunneling results shown in Figure 6.14. 

 

6.5.2 Comparison with Inelastic Electron Tunneling Measurements 

 

Having acquired the functional forms of the field-dependent magnon dispersions, we compare 

them with the inelastic electron tunneling measurements to extract important spin-wave parameters 

in the family of  CrX3. Due to high spin-wave DOS at Γ- and M-points (because of the flat energy 

dispersions around Γ- and M-points, as evident from References [2,26]), the experimentally 

observed peaks (Panel A of Figure 6.14) are mainly related with two Γ-point excitations and two 

M-point excitations. The functional forms of field-dependent Γ- and M-point magnon energies and 

the transition fields BC can be obtained from Equations 6.22, 6.18 and 6.19.  

 

If  > 1, the transition field is 

𝐵𝐶 =
𝐽𝑆𝑧(𝛼 − 1)

𝑔𝜇𝐵
 (6.23) 

and the zero-field magnon energies are  
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𝛤− = 𝐽𝑆𝑧(𝛼 − 1) 
𝛤+ = 𝐽𝑆𝑧(𝛼 + 1) 

𝑀− =
1

3
𝐽𝑆𝑧(3𝛼 − 1)

𝑀+ =
1

3
𝐽𝑆𝑧(3𝛼 + 1)

(6.24) 

 

If  < 1, the transition field is 

𝐵𝐶 =
𝐽𝑆𝑧(1 − 𝛼)

𝑔𝜇𝐵
 (6.25) 

and the zero-field magnon energies are 

𝛤− = 0

𝛤+ = 𝐽𝑆𝑧√2(𝛼 + 1) 

𝑀− =
2

3
𝐽𝑆𝑧√

3 − 𝛼

2

𝑀+ =
2

3
𝐽𝑆𝑧√3 + 𝛼

(6.26) 

  

For Cr3+, the spin angular moment is 𝑆 = 3/2. In the honeycomb lattice, the number of NN is 𝑧 =

3. At large fields, the spin-wave energies increase by 𝑔𝜇𝐵𝐵. g-factor is then extracted from the 

slope of the spin-wave energies as a function of external field. g is taken to be 2.1788, which is the 

average of the slopes of all three compounds. 

 

To acquire the values of the two free parameters J and 𝛼, we can further use the transition fields 

𝐵𝐶  and the zero-field magnon energies from the field-dependent inelastic electron tunneling 
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spectroscopy to identify their values by fitting experimental results. Table 6.7 summarizes 𝐵𝐶, J 

and 𝛼 for all three compounds determined from experiments.   

 

Table 6.7 Spin-wave parameters in CrX3 compounds 

Compound 𝐵𝐶 (T) J (meV) 𝛼 

CrI3 3.63 2.286 1.0445 

CrBr3 0.44 1.562 1.0079 

CrCl3 0.23 0.9208 0.9930 

 

We can further compare the obtained spin-wave parameters of CrI3 with previous Raman 

experiments. The intralayer exchange anisotropy determined from inelastic electron tunneling 

data is 𝐽(1 − 𝛼) = 0.10 meV, consistent with 𝐽𝑧 − 𝐽𝑥 = 0.13 meV calculated based on Raman 

results, as discussed in Section 6.4. 
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Figure 6.14 (A) Field-dependent inelastic tunneling data of bilayer CrX3. (B) Spin-wave 

calculations of field-dependent - and M-point magnon energies. This figure is adapted 

from Reference [25]. 
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Chapter 7 Summary and Outlook 

In summary we studied two types of quantum magnets, the SOC bilayer perovskite iridate Sr3Ir2O7 

and the 2D magnets CrX3 (X = Cl, Br, I).  

 

In Sr3Ir2O7, we found that despite its novel SOC pseudospin moments, its interlayer coupling falls 

into the weak coupling regime so that its magnetic excitation can be well-described by the 

conventional spin wave theory rather than the dimer excitation. We reproduced both the puzzling 

A1g magnetic excitation at 800 cm-1 together with the higher-energy two-magnon scattering at 1400 

cm-1 in Raman data [1] with a unified theory of two-magnon scattering [2], which sheds light on 

the previous debate on the nature of the magnetic excitations in RIXS [3-6]. We revealed that the 

magnetism of Sr3Ir2O7 is analogue to its single-layer counterpart Sr2IrO4 with comparable 

exchange energy scale [7]. 

 

As a follow-up of this work, we are also interested in studying the two-magnon Raman scattering 

in perovskite iridates with time-resolved Raman spectroscopy, which is under development in our 

lab. From the scientific point of view, ultrashort pulses are capable of inducing novel phenomena 

in materials, including MIT [8-10], superconductivity [11], and magnetic order [12]. A previous 

time-resolved Raman study on the two-magnon scattering in KNiF3 has demonstrated optically 

induced modifications of its exchange energies [13]. The question thus arises whether optical 

pumping can induce novel magnetism in perovskite iridates. From the technical point of view, 
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time-resolved Raman spectroscopy is limited to probing excitations with a large linewidth, because 

the ultrashort probe pulse has a much larger linewidth compared to the CW pulses in conventional 

Raman spectroscopy. Two-magnon scatterings (FWHM ~100 cm-1) in perovskite iridates are much 

broader than its phonon excitations (FWHM ~5 cm-1), thus allowing for simple measurement with 

time-resolved Raman spectroscopy. 

 

In CrX3 (X = Cl, Br, I), we studied the X-evolution of various spin parameters including the 

anisotropy and exchange energies, using spin wave calculations to fit field-dependent electron 

tunneling data [14]. We found that the CrX3 family displays increasing exchange energy with 

increasing X atom number, and that their magnetic GS evolve from in-plane moments in CrCl3 to 

out-of-plane moments in CrBr3 and CrI3. Albeit their minor magnetic anisotropy ( is close to 1), 

their magnetic order can be stabilized down to the monolayer limit.  

 

In a more focused field-dependent polarized Raman study on CrI3, we uncovered the coexistence 

of SAFM and BFM in bulk CrI3 which was thought to be entirely FM [15]. This result offers a 

natural explanation to the puzzling layer-dependent magnetism in CrI3 from bulk FM to few-layer 

AFM [16-20]. We also found that below TC = 45 K, external magnetic field induces a magnetic 

phase transition from AFM to FM concurrent with a structural phase transition from rhombohedral 

C3i to monoclinic C2h at BC = 2 T. We were thus able to construct the phase diagram of bulk CrI3.  

 

My colleagues at the University of Michigan have further conducted extensive Raman studies on 

few-layer CrI3, which are shown to remain in the monoclinic structure despite its magnetism [21]. 

The field-induced AFM to FM phase transition is accompanied by enhanced monoclinic distortion, 
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similar to bulk CrI3 [21]. Raman technique have also unveiled a plethora of novel phenomena 

including magnetic phonons [22] and excitons [23].  
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