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sian as input, which shows the same trends as the constant Gaussian
case, but with significant noise due to the randomness of the Gaus-
sian component. The scale of this figure is larger than figures a and
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ABSTRACT

This thesis presents the design of three radiation hydrodynamics experiments
at the largest high-energy-density-physics facilities in the United States. Two of
these experiments explore the first measurements of photoionization fronts, in the
laboratory on two independent facilities. The third is a radiative shock experiment at
the National Ignition Facility, which is novel in its use of temperature measurements
of shocks in foam targets. The results also use a novel analysis of streaked self-
emission data and x-ray Thomson scattering measurements to understand the post-
shock electron temperature.

The design and execution of a photoionization front experiment at the Omega
laser facility resulted in the characterization of a platform to perform measurements of
photoionization fronts using absorption spectroscopy as the primary diagnostic. These
experiments use laser to produce ionizing radiation that drives a photoionization front
into a gas cell that contains a mixture of nitrogen with argon as a spectroscopic
dopant. The data allows for a characterization of the flux emitted from the rear
surface of the gold drive source, the capsule implosion backlighter, and the geometry
of the absorption measurement. An analysis of the capsule implosions introduces
a new metric for comparing the implosion performance based on the initial laser
irradiation pattern.

A computational study to design a photoionization front experiment at the Z-

Machine provides a complementary experiment to those at Omega also using nitro-



gen gas but utilizing optical emission spectroscopy as the primary diagnostic. This
design provides a comparison between the laser-driven foil source on Omega and the
wire array z-pinch source to produce a photoionization front. The simulation study
explores the parameter space for the experiment, suggests experimental conditions
that should create a photoionization front and varies the physics detail in the model
to validate the approximations used in the design. Estimates of the streaked visible
spectroscopy show evolution of the line structure as the front passes the diagnostic
viewing window before continuum emission dominates the signal.

Radiative shock experiments at the National Ignition Facility use a hohlraum to
launch a shock into 20 mg cm~? plastic foam. These experiments use x-ray Thomson
scattering and streaked, self-emission measurements to observe the shock velocity
and electron temperature as a function of time. The analysis of the self-emission
data uses the thick-thin model of a radiative shock to extract the temperature using
the measured velocity and making some assumptions about the upstream conditions.
The scattering measurements largely agree with the self-emission results providing
further confidence in the analysis.

The work presented in this thesis introduces and characterizes a new experimental
design for the Omega laser facility to measure photoionization fronts in the laboratory,
which has never been done before. An additional design for a new photoionization
front experiment on the Z-machine shows that a complementary experiment is possi-
ble on this facility. The differences between the velocity of a photoionization front and
Marshak-like waves are explored in greater detail and an analysis of the curvature of
each type of heat front shows this could be a measurable feature to distinguish a pho-
toionization front from a Marshak wave. Finally, radiative shock experiments on the
National Ignition Facility use x-ray Thomson scattering and self-emission data with
a novel data analysis technique to make multiple electron temperature measurements

for the first time.
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CHAPTER I

Introduction

1.1 High-Energy-Density-Physics

High-energy-density-physics (HEDP) is typically defined as the science of matter
at pressures greater than one million atmospheres[1]. These types of conditions can
also lead to very high temperatures, typically from thousands to tens of million Kelvin.
To put these numbers in perspective, the pressure of a full-grown elephant sitting on a
human’s chest is about two atmospheres, which surprisingly one should survive fairly
easily if the elephant sits slowly, and the temperature of a hot stove is about 530
Kelvin. These HEDP systems are in very extreme conditions and are commonly in
a plasma state. However, at the same time, they are able to exist in a wide range
of physics regimes, from low density, hot plasmas to dense, strongly-coupled and
electron degenerate plasmas as well as everywhere in between, as seen in Figure 1.1.
This makes these systems quite complicated and interesting to study because they
require considerations of many different areas of physics including electrodynamics,
quantum mechanics, fluid mechanics, thermodynamics, and the list goes on.

It is very rare to directly interact with HED objects in everyday life, but HED
conditions exist throughout the universe, including the interiors of massive planets [8].
There are many examples of astrophysical objects that are in HED conditions. For

example, the interiors of stars, supernovae, supernova remnants, black hole accretion
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Fig. 1.1. Regimes of high-energy-density physics. Adapted from the NRC Report:
High Energy Density Physics: The X-Games of Contemporary Science

Figure 1.1: A parameter space plot that shows the boundary of the HEDP regime
and where different physics are relevant in HEDP conditions. This image was taken
from Chapter 1 of Reference 1[1].

disks, white dwarf stars, neutron stars, gas giant planets, and the cores of rocky
planets[9, 10, 11, 12, 13, 14]. There are also efforts to create these conditions in the
laboratory as a way to harness nuclear fusion energy in inertial confinement fusion
(ICF) schemes|[15, 16, 17, 18, 19]. These ICF approaches to fusion energy use some
mechanism, typically lasers or current, to compress a shell of material that confines
heavy isotopes of hydrogen, deuterium (D) and tritium (T), to heat and confine the
DT fuel, creating a runaway fusion reaction that releases more energy as neutrons
than the input energy. There are many approaches to ICF and increasing the amount
of DT fuel that burns to a point of ignition is an active area of research in HEDP.
This thesis will not present ICF in any further detail, but it is perhaps the most
visible research effort in HEDP and required mentioning.

HED spans many different research areas, including material science, nuclear



physics, hydrodynamic instabilities, magnetized plasmas, and radiation hydrodynam-
ics. The experiments to study these sub-disciplines use shock and ramp compression
to study the equations of state (EOS) of different materials, radiative heating to study
opacity, and proton radiography to study magnetic field generation in plasmas[10, 11,
12, 20, 21, 22]. These experiments use lasers or current to drive compression, produce
radiation sources, probe sources, and magnetic fields[5, 6, 21, 22, 23, 24, 25]. Focus-
ing on the radiation hydrodynamics experiments, there are two main categories of
experiments that explore the effects of radiation plasmas. The first is where the radi-
ation field develops in the plasma due to interacting flows or shocks, and the second
uses an external radiation source to influence the gas or plasma where the physics of
interest takes place. The first type appears in radiative shock and in flows that are
radiatively cooling[9, 26]. The second type of experiment is typical of heat front ex-
periments where the external radiation source can be a laser-driven hohlraum or foil,
or a z-pinch[10, 27, 28, 29, 30, 31, 32, 33, 34]. These experiments use a wide variety
of diagnostics to measure the temperature and density profiles of these plasmas with
significant radiation effects, as well as the flow parameters.

The objects of interest here are all astrophysically motivated and rely on the large
temperatures possible in HEDP systems, such that radiation is significant in their evo-
lution. These systems include the x-rays from young stars heating the surrounding
gas, the x-rays from the first stars and galaxies in the universe heating the intergalac-
tic medium, and shocks from supernovae sufficiently heating the compressed, stellar
plasma that it begins to emit x-rays that affect the circumstellar material. When
there is significant radiation in the plasma, it is necessary to use the radiation hydro-
dynamics equations to describe the system and this is where one can find observables
to measure in an experiment. The radiation can enter the equations in two ways,
through the radiation energy flux or the radiation pressure and energy density. The

former affects the energy conservation in the system, while the later has contributions



in the energy and momentum conservation equations[35, 36]. Marshak was the first
to derive the Rankine-Hugoniot jump conditions for the radiation hydrodynamics
equations in 1958 and went on to evaluate supersonic heat front problems considering
only the radiation energy flux in the fluid[37]. About five years later, Zel’Dovich
and Raizer expanded that understanding to the structure of radiative acoustic waves
and shocks with a focus on optically thick media[35]. They also, briefly, considered
the effects of the radiation energy density and pressure on the structure of radia-
tive shocks[35]. In the mid 1980s Mihalas and Weibel-Mihalas further developed the
knowledge of radiation hydrodynamics by deriving the relativistically consistent set
of equations. They then went on to explore non-relativistic, radiating flows including
steady and propagating radiative shocks, including systems with an optically thin
upstream and ionization fronts[36]. Mihalas and Weibel-Mihalas cover applications
that include the radiation energy density and radiation pressure, but they do not
explore any relativistic, radiating plasmas. This is a clear next step in the history of
radiation hydrodynamics, but since none of the work in this thesis is relativistic, the

discussion of this history will stop here.
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Figure 1.2: The x-ray emission from the super-luminous supernova SN2006gy, which
shows that it is comparable in brightness and size to the galactic core of the pro-
genitor host galaxy. Supernovae and their remnants produce radiative shocks and
can drive photoionization fronts in the surrounding gas, which this work tries to
replicate in the laboratory. This image was adapted from NASA/CXC M.Weiss; X-
ray: NASA/CXC/UC Berkeley/N.Smith et al.; IR: Lick/UC Berkeley/J.Bloom &
C.Hansen.

1.2 Radiation Hydrodynamics in Astrophysics and Cosmol-
ogy

The specific objects this thesis will explore are photoionization (PI) fronts and
radiative shocks. Chapter II will give detailed descriptions of the physics of these

objects.

1.2.1 Photoionization Fronts

In present-day astrophysics, radiation from the forward shock of supernovae (SN)
heats the relatively stationary, circumstellar medium (CSM) through photoionization
(PI) fronts[38, 39, 40, 41, 42, 43]. Specifically, type IIn SN have narrow lines in their
observed spectra that correspond to the recombination of the photoionized CSM|38],
but a variety of other SN show interactions with the CSM during their evolution, such
as type IIP, super-luminous SN, and type la-CSM SN[42, 44, 45, 46, 47, 48]. Figure 1.2

shows an x-ray image of a super-luminous SN that is about the same brightness and
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Figure 1.3: The timeline of the universe’s evolution with a particular focus on the age
of reionization, which is relevant to the physics of PI fronts. This image was taken
from the work of Robertson et al.[2].

size as the galactic core of the galaxy that hosted the progenitor star. The ionization
states present in these narrow lines are higher than one would expect from ionization
due to electron collisions, which indicates photoionization is the mechanism behind
this heating. There are few places in the SN literature that discuss the physics
occurring in the photoionizing CSM[38, 42|, let alone discuss the properties of the
resulting heat front. This is likely due to insufficient angular resolution in the current
observatories to discern this behavior and the need to understand the wind structure
for each SN discovered[44].

In the setting of early universe cosmology, the first galaxies produced very large,
zero-age main sequence stars having masses greater than 100Mg, where Mg, is the
mass of the sun. These massive stars ionized the surrounding nebula and are thought
to have led to the reionization of the intergalactic medium (IGM) through photoion-
ization fronts[2, 49, 50]. Knowledge of the fraction of ionizing radiation that escapes
these galaxies is important for determining the cause of reionization at the end of the
cosmic dark ages[2], but current, space-based measurement techniques can have large
uncertainties [51], which provides a role for laboratory experiments. Figure 1.3 shows
the evolution of the universe from the big bang to the current epoch. The region of
Figure 1.3 that is most relevant to this work is from about 13.5 to 13 billion years
ago during the age of reionization.

The typical method for identifying high redshift galaxies involves observing changes



in emission across images using different filtration in the infrared called the Lyman or
Balmer break technique, depending on the energy range of the filters[2, 52]. This mea-
surement exploits the change in the escaping galactic emission across the K or L edge
in H for the Lyman and Balmer break galaxies respectively. Lyman-break galaxies
have more active star formation and Balmer-break galaxies are less actively forming
stars[52, 53, 54, 55]. However, the redshifted line and continuum emission from the
heated nebula can affect the magnitude of this change in signal across the filtered im-
ages, which changes the model fits, significantly, and the stellar ages[52, 53, 54, 55].
Specifically, the inferred ages of these galaxies depend on the inclusion of the nebular
emission in the model fitting[52, 53, 54, 55]. Measurements of high redshift galaxies
are difficult due to the limited number of photons that arrive at earth from these dis-
tant galaxies. This also makes spectroscopic measurements very difficult and means
the emission spectra used to fit the observational data are exclusively dependent on
models. The difficulty of making highly precise measurements of these early galaxies
suggests that laboratory experiments can play a useful role in understanding their
evolution, in which PI fronts play a role.

There has been much work to understand the theory of PI fronts starting in the
1930s with the work of Strémgren[56]. Followinng this, the work of Kahn explores
the effects of varying intensity of the driving source and develops the theory of the
subsonic and supersonic cases for PI fronts[57]. This also introduces the idea of
the M-type front which develops a shock when the radiation is not strong enough
to drive a supersonic front but is still larger than the critical value for a subsonic
front. Goldsworthy further explored self-similar solutions to the PI front problem in
cylindrical and spherical geometries with details about the different types of fronts,
which the next chapter will explain in more detail, and Axford published a follow-up
paper providing additional computational results plus some mathematical properties

of the equations in this problem[58, 59, 60]. Mihalas and Weibel-Mihalas provide



an overview of the physics of the problem and the resulting structure for the differ-
ent types of fronts in their book on radiation hydrodynamics[36]. The next major
advance, relevant to the work presented here, are the papers of Drake et al. and
Gray et al.[61, 62, 63]. These papers describe the design of experiments to observe
PI fronts in the laboratory using purely analytic techniques, the CRASH radiation
hydrodynamics code, and the Helios-CR radiation hydrodynamics code[64, 65].

There have been numerous HEDP experiments that explore heat fronts with many
different energy sources to drive the experiments and resulting x-ray sources to sup-
port the front[27, 28, 29, 30, 31, 66]. These experiments vary from investigating
diffusive, radiative heating to a more optically thin environment where the diffusive
approximation does not hold as well. However, to the Author’s knowledge, all pre-
vious heat front experiments have had non-negligible electron heating and therefore
did not produce PI fronts[61].

This thesis introduces experiments to specifically measure PI fronts and demon-
strates, through the use of simulation tools, that photoionization dominates the en-
ergy deposition at the heat front. Simple physics models and arguments introduce
observables for PI fronts that can be diagnosable features in an experiment to prove
the existence of a PI front. Additionally, this thesis presents the development of an
experimental platform for the Omega laser facility as well as a design study for an
experiment on the Z-Machine, which will provide independent measurements of the

same physics at different conditions and using different diagnostics.

1.2.2 Radiative Shocks

Radiative shocks are a fundamental problem in radiation hydrodynamics and they
are prevalent throughout astrophysics. The forward shock in a supernova, while it
is inside the star, as well as the ejecta-driven shock in supernova remnants can be

radiative[9, 38]. Thermonuclear explosions or the collapse of an iron core drive the



shock inside the star, while the ejected material from the supernova explosion impacts
the circumstellar material, which drives the shock in the supernova remnant[9, 38].
There is also the possibility of a radiative shock in the accretion column onto a star
or compact object[36]. This occurs when the material from an accretion disk is able
to transport away its angular momentum and can fall onto the compact object or
star. The interaction of the infalling material with the atmosphere of the compact
object or star produces the shock, which has the potential to be radiative[36].
Section 1.1 has a brief overview of the history of radiation hydrodynamics and
radiative shocks, which follows the development of radiative shocks fairly well. The
work of Zel’Dovich and Raizer develops the structure of radiative shocks for the case
where only radiation energy flux influences the hydrodynamics, for an optically thick
medium[35]. Mihalas and Weibel-Mihalas then extended this work to include the
effects of optically thin upstream materials and goes into detail on the effects of
radiation energy density and pressure[36]. Both of these developments of radiative
shock physics describe, in detail, the effects of strong radiation on shock structure,
where they discuss the ability of radiation to smooth out the typical discontinuous
jump in density and temperature across a shock until it is a continuous transition,
when radiation energy density and pressure dominate the dynamics[35, 36]. This
happens even without the considering viscous effects and electron heat transport that
can create a continuous shock transition in hydrodynamic systems[35, 36]. Bouquet
et al. developed the theory with the total energy density and pressure to analytically
solve for the shock structure under local thermodynamic equilibrium (LTE) conditions
relevant to astrophysical phenomena[67]. The theory continued to develop through
work at the Omega laser facility and the LULI laser in France[4, 68, 69, 70, 71, 72].
This work considered the four different combinations of the optical depth in the
upstream and downstream regions with a focus on the optically thick radiative shock

and the case with an optically thick downstream and an optically thin upstream that



are most achievable in laboratory experiments[4, 70]. The work at LULI proceeded
in parallel to the Omega experiments and developed an analytic approach to finding
the temperature of laboratory radiative shock measurements|71, 72, 73]. These later
advances in the theory of radiative shocks are the result of interpreting and analyzing
the data from experiments at laser and pulsed-power facilities, which the following
paragraphs describe.

Some early laser-driven radiative shock experiments set out to measure the up-
stream heating due to the radiative precursor that the emission from the shock front
supports[74, 75]. These experiments used SiOy foam on the Omega laser facility
and Xe gas at the LULI laser in France. The Omega experiments used absorption
spectroscopy to observe the increasing ionization states due to the radiative heating
of the upstream material and the LULI experiments use interferometry to observe
the increase in electron density due to the precursor heating the upstream material.
Both then compare the experimental results with the output from available radiation
hydrodynamics codes.

Further radiative shock experiments at the Omega laser facility have made mea-
surements in Xe and Ar using a variety of different diagnostics, with x-ray radiography
being the primary observation tool[76, 77, 78, 79, 80]. The general geometry of these
experiments used a Be disk coupled to a polyimide shock tube that is gas tight to
allow for a nominally one dimensional, planar system. The first result of these experi-
ments was the observation of radiative collapse in the cooling layer of a radiative shock
in Xe gas where post-shock compression was much larger than the limit of four in
monatomic ideal gases[76, 81, 82]. These experiments exploit the high atomic weight
of Xe, which causes increased radiative effects compared to those seen in shocks in-
volving lower-atomic-weight nuclei at the same conditions. This work continued with
more detailed analysis of the shock layer thickness to better understand the magni-

tude of the radiative collapse by measuring the angle of the shock front relative to
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the axis of the experimental platform, which used statistical methods to extract the
true compression from the collected data[83]. Doss et al. explored the interaction of
the radiative shock with the walls of the shock tubes to determine the behavior of
oblique radiative shocks and to develop the structure of the interaction region as a
diagnostic for the shock Mach number|[84, 85]. There is another push in the work at
the Omega laser to understand repeatability and perform uncertainty quantification
of these radiative shock experiments to provide a best comparison for benchmark-
ing the results of the CRASH radiation hydrodynamics code[79, 86]. There were
additional experiments that used Ar with x-ray Thomson scattering to measure the
electron temperature of the radiative shock, to understand the early time evolution of
radiative shocks, and experiments to observe radiative reverse shocks to that mimic
accretion flows onto stars[77, 82, 87, 88, 89].

The experiments at the LULI laser have happened in parallel to the Omega experi-
ments in the previous paragraph. These experiments all use Xe in a shock tube setup,
but instead of Be the laser irradiates a plastic foil with a buried layer of Ti to prevent
x-rays from the laser interacting with the plastic from preheating the gas[71]. The
work used interferometry and velocity interferometry to identify the radiative pre-
cursor and shock velocity. They also used absolute photon counting measurements
to understand the brightness temperature of the shock heated region. This work
continued to diagnose the nature of radiative shocks with a gated optical imager to
observe the shock front curvature and the precursor, as well as the interferometry and
emission measurements of the previous study[72].

There are a variety of experiments conducted at other laser facilities exploring the
physics of radiative shocks. Experiments at the GEKKO XII laser used interferom-
etry, streaked shadowgraphy, and streaked self-emission to understand the electron
density and the shock velocity in Xe gas with comparisons to one and two dimensional

simulation results[90]. Using the PALS laser system in the Czech Republic, Busquet
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et al. used interferometry and the absorption of a probe laser to understand the
extent of the precursor from radiative shocks in Xe gas and compared these results
to two and three dimensional simulations with non-diffusive radiation transport to
understand the lateral radiation losses and the wall albedo[91]. The work of Hoarty et
al. using the VULCAN laser system used spatially resolved absorption spectroscopy
of the Cl K-shell to observe the temperature and density profiles of a radiative shock
in chlorinated triacrylate foam through comparisons with an atomic kinetics code[92].
It is important to note that those experiments directly irradiate the foam propagat-
ing medium with the laser rather than using a some kind of solid density piston to
shock the foam. Experiments using Xe on the Orion laser observed the interaction
of counter-propagating radiative shocks using interferometry and x-ray radiography
to observe the electron densities and the features due to the interaction of the shocks
and the interaction region[93]. These experiments also compared the measurements
with simulations to understand the expected temperatures of the forward shocks as
well as the temperature and compression of the reverse shocks that form after the
interaction[93]. Additional experiments at the Orion laser created a plasma flow
that strikes a solid obstacle to emulate the accretion flow in binary star systems
with streaked, self-emission measurements to observe the dynamics of the system and
x-ray radiography to visualize the structures formed during the interaction[94]. Ex-
periments at the National Ignition Facility used a hohlraum to drive a radiative shock
in SiO, foam to observe the effects of the strong radiation field on the development of
the Rayleigh-Taylor instability of a perturbed interface with the radiation providing
a mitigating effect to the instability growth rate[9, 95]. There have also been radiative
shock experiments using pulsed power devices, such as the Z-Machine at Sandia Na-
tional Laboratories, where Rochau et al. measured very fast radiative shocks in CHs
foam using a wire array implosion to drive the converging shock in the foam, which

sits on the pinch axis[96].
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The radiative shock experiments presented in this thesis use low density plastic
foams with a hohlraum to drive the shock and x-ray Thomson scattering and streaked,
self-emission measurements to observe the electron temperature and shock velocity.
First, these experiments are one of the few that use x-ray Thomson scattering to make
measurements of radiative shocks, with the work of Reigard et al. and Visco et al.
the only other examples the author identified[77, 82]. This is also the first time that
a single target has combined x-ray Thomson scattering and streaked, self-emission
measurements. The data analysis uses the temperature measurement from the scat-
tering data and compares that with an analytically extracted temperature from the
self emission, which is the first radiative shock experiment to make two temperature
measurements. Additionally, the self-emission data allowed for a measurement of the
time derivative of the shock temperature, which previous work has only deduced from

simulation[91].

1.3 HEDP Experiments at Large Facilities

The bridge between HEDP and space-based astrophysics and cosmology mea-
surements is the field of laboratory astrophysics[1]. The work in this field designs
experiments, using the experimental infrastructure of HEDP, to capture the physics
of a small portion of an astrophysical object or problem. These experiments are of-
ten scaled to the astrophysics or cosmology of interest[9, 94, 97], but can also be at
the same density and temperature conditions as the objects they imitate[10, 11, 24].
These types of experiments can provide more detail about a system, especially the dy-
namics, than the space-based observations because of the ability to tune the plasma
parameters and initial conditions, which is obviously not possible in astrophysical
objects. Laboratory experiments also provide a means for producing repeat measure-
ments with the well-constrained initial conditions that are possible in HEDP.

There are a number of HEDP facilities in the United States and abroad that
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are capable of driving these sorts of experiments. Here, the focus will be on the
three largest facilities in the United States: The Omega laser facility, The National
Ignition Facility (NIF), and The Z-Machine. These are all Department of Energy
funded facilities that users can submit proposals for access to experiment time. The
chapters that use the facilities will provide more detail about the capabilities of these

research tools.

1.4 Organization of This Thesis

The approach taken here is to introduce most everything the reader needs to
understand this work in the next chapter, which covers much of the theory that
drives the experiments. Then, each of the chapters addressing the experiments or
experimental design are fairly self-contained. So, each of those chapters will motivate
the experiments, discuss the facility and the primary measurement techniques used,
and present the results to give a complete story within the chapter. This should,
hopefully, reduce the need to search through the document to understand what is in
any one section.

Chapter I provides the context for the thesis and sets the scope of the work within
the broader field of HEDP. It provides examples of PI fronts and radiative shocks
in astrophysics and cosmology, that still contain open questions where laboratory
experiments can assist in furthering the understanding. It follows this with historical
perspectives on the development of the theory for PI fronts and radiative shocks as
well as the results from laboratory experiments relevant to the topics.

Chapter II introduces the current theoretical understanding of PI fronts and ra-
diative shocks to provide a foundation for analyzing and motivating the experimental
approaches and results presented in later chapters. It starts with the derivation of the
Euler equations then presents the non-relativistic, semi-classical treatment of radia-

tion in a plasma as a starting point for understanding the radiation hydrodynamics
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problems that follow. It then focuses on the theory of heat fronts to introduce the
theory of PI fronts as Drake et al. and Gray et al. derived and distinguish this physics
from that of nonlinear diffusion waves, which are commonly studied [61, 62, 63]. It
concludes with the development of radiative shock theory in the opacity regimes that
are potentially relevant to a laboratory experiment. The author’s original contribu-
tions are the further analytical developments of PI front velocity and the distinction
between the curvature of PI fronts and Marshak waves as a function of time.

Chapter III shows the results of experiments using the Omega laser facility at the
Laboratory for Laser Energetics demonstrating a platform to make measurements of
PI fronts. This discusses the results of simulations to design the experiment, the
capabilities of the primary measurement, and the outcomes of characterizing the
platform. The experiments used absorption spectroscopy as the primary diagnostic
and the analysis of the backlighter for that measurement contains excerpts from a
recently submitted paper to Review of Scientific Instruments titled, “Effectiveness of
capsule backlighters with an anisotropic irradiation pattern”. The author’s original
contributions to this work include radiation hydrodynamics simulations to design the
experiment, modeling of the gas cell target, simulations of the capsule backlighter,
running the Omega experiments, and analysis of the experimental data to characterize
the platform.

Chapter IV designs an experiment to observe PI fronts using the Z-Machine at
Sandia National Laboratory, which would provide a complementary experiment to
the ones at Omega. This shows a simulation study and demonstrates that the atomic
model used to design the experiment contains sufficient detail for the available compu-
tational tool. It also presents estimated measurements using the simulations output.
Much of this analysis is taken from a paper submitted to Physics of Plasmas titled
“The design of a photoionization front experiment using the Z-machine as a driv-

ing source and estimated measurements”. The author’s original contributions to this
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work include running and post-processing radiation hydrodynamics simulations to
design the experiment, running further simulations to validate the physics model ap-
proximations, and using a radiation transport code to estimate the streaked visible
spectroscopy measurement.

Chapter V presents the experimental results of radiative shock measurements con-
ducted on the National Ignition Facility using x-ray Thomson scattering and streaked,
self-emission diagnostics. This shows the target design that was published in Review
of Scientific Instruments and the analysis of the shock physics showing agreement
between the two diagnostics [98]. Kevin Ma provided simulation work that aided in
the target design and measurement timing and Tilo Doppner and Mike MacDonald
provided support in making the scattering measurement and configuring the laser.
These results present novel measurements of radiative shocks and a publication is
in preparation to report these findings. The author’s original contributions to this
work include developing the target shielding, running the experiments at the NIF,
analyzing the x-ray Thomson scattering data, and performing a novel analysis of the
streaked self-emission data to extract the electron temperature.

Chapter VI summarizes the work presented in this thesis, then discusses the con-
clusions from the preceding chapters. It concludes with an outlook of the future
directions each of these experiments can take and some potential pitfalls or failure
modes that one should pay particular attention to when attempting to advance this

work.
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CHAPTER II

Relevant Theory for these Experiments

The previous chapter described the astrophysics and cosmology motivations for
studying radiation hydrodynamic systems. It also presented the historical develop-
ment of the theory and experiments relating to PI fronts and radiative shocks. This
chapter will introduce the theory of these objects in a quantitative way, such that
it can assist in the development and analysis of the experiments presented below.
The derivations will start by developing the Euler equations and the radiation trans-
port equation followed by the radiation hydrodynamics equations, which describe the
physics of fluids with significant contributions from a radiation field. Following this,
a description of the physics of radiation-driven heat fronts indicated the difference
between nonlinear diffusion waves and PI fronts with suggested observables that can
distinguish between the two. Finally, the theory of radiative shocks, as it pertains
to experimental studies, shows the results that are useful in connected measurable
quantities to the shock structure. This treatment will limit the results to the non-

relativistic regime, as that matches the physics of the experimental work.

2.1 Hydrodynamics

In many nanosecond timescale HEDP problems, it is reasonable to use a fluid

approximation, at least to describe the bulk behavior. This is clearly not the case
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in short-pulse laser experiments or work that focuses on interactions of lasers with
matter. However, for all of the problems discussed here, it is reasonable to consider a
fluid approximation solution, at least as a first approach for designing an experiment.
This section will arrive at the Euler equations describing a continuum approximation
to plasma dynamics by deriving an equation governing the evolution of the velocity
distribution of an ensemble of particles and taking the velocity moments of that
equation assuming a Maxwellian distribution. This will also lay the foundation of the
basic shock physics that a later section will expand upon by including the effects of

radiation to describe the resulting modifications to the shock structure.

2.1.1 Derivation of the Euler equations

Starting from a general distribution function in a six dimensional position-momentum
phase space with an independent time dependence, one can derive the Boltzmann
equation. The derivation here will not include any collision or interaction term re-
sulting in a derivation of the Vlasov equation as the details of particle interactions is
outside the scope of this work. The distribution function f = f (Z, p;t) represents the
velocity distribution as a function of position, momentum, and time within a volume.
Displacing this volume leads to a new distribution [ = f (¥ + AZ, p'+ Ap;t + At).
This makes Af = f' — f the displacement of the velocity distribution for this col-
lection of plasma particles. The particle species is intentionally not specified because
this derivation is the same for any single species plasma. Adding multiple species
would result in interaction terms, which are not considered here, as mentioned above.
Taylor expanding f’ and taking only the first order terms results in the following

expression for the displacement,

of
oF

of
AT+ 2L
. x—l—aﬁ

0

Af=f+
Po ot

At — (2.1)

to
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where the subscript o represents the initial values of the variables in the non-displaced
distribution. The values of f cancel, then dividing by At and taking the limit as the

displacement goes to zero results in,

d af
=T+ FVaf 5 =0, (2.2)

where v is the velocity, F is the force on the particles, and V7 represents the gradient
in the subscript vector space.
To construct the fluid equations out of the Vlasov equation requires taking the

velocity moments of equation 2.2 with a Maxwellian velocity distribution, f (v) =

3/2 _ m|y?
<ﬁ) e 27T with mass m, Boltzmann constant kg, and temperature 7. In
these integrals, the macroscopic quantities of interest such as the density, momentum
density, energy density, and pressure are the zeroth, first, second scalar, and second

tensor velocity moments of f.The results of these integrals are,

ap L
5% + V- (pu) =0, (2.3a)
dpu
+ V- put = —Vp, (2.3b)
ot
o [ pu? ~ u? ~
En (— + pe) +V- {pu (e + 3) +pu} ) (2.3¢)

where p is the material density, « is the fluid velocity, € is the specific internal energy
density, and p is the pressure. These equations assume an isotropic pressure and
no body forces or viscous effects as this is sufficient for the desired outcome of this

section.
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2.1.2 Hydrodynamic shocks

To evaluate the change in conditions across a shock, it is useful to derive the so
called jump conditions. One finds these conditions by integrating across the shock
along the direction normal to the shock surface, which results in the time derivative
terms reducing to zero, but the flux terms maintain finite values mathematically by
the divergence theorem. The physical reason for this is that the change in conditions
must converse the fluxes across the boundary, which makes the following equations

the mass, momentum, and energy conservation conditions for the formation of a

shock[99],
P1U1 = P2uUs2, (24&)
pl“% +p1 = ,02U§ + P2, (2.4b)
ui uj
prur | €1+ B + prur = paug | €2 + B + paua, (2.4c)

where the subscripts indicate the upstream (1) and downstream (2) material. The
above fluid equations and therefore jump conditions are not a closed system. The fluid
equations are five equations in, at least, six variables, so in order to close this system
a minimum of one more equation is necessary. These closure equations are called
equations of state and these are an active area of research on their own. However,
there are some common assumptions used to make analytic work tractable and the
polytropic equation of state is probably the most prevalent. This relates the specific

internal energy density to the pressure by,

pe = ——, (2.5)
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where v = 2—"; is the polytropic index, cy is the specific heat at constant volume,
and cp is the specific heat at constant pressure. The polytropic index is a function
of the degrees of freedom in a system with v being approximately g in an ideal gas
and % in a radiation-dominated or ionizing system. In the small amount of space this
document dedicates to shock physics, it would be impossible to cover even a fraction
of the accumulated work on the subject and clearly this is not a complete treatment of
the topic, but it should be enough to motivate the radiation hydrodynamics material
below.

The next section will discuss the nature of radiation using a classical description
that is applicable to the experiments presented later on. The remainder of this chapter
presents the application of this radiation to fluid problems by developing the radiation

hydrodynamics equations from the Euler equations and the relevant solutions.

2.2 Radiation transport

2.2.1 Definitions

In plasmas where the radiation field acts to transport significant energy within and
out of the system, a mathematical framework is necessary to describe the evolution
of this radiation field. Following the derivation in Chandrasekhar[100], the change in
radiation energy, in a frequency range v + dv, in a region with solid angle df2, with a

duration dt, due to an emitter with area dA at an angle 6 is,

dE, = I,cos6dAdQdtdv, (2.6)

where dFE, is the change in energy. The above expression uses a particular direction,
6, for a pencil of radiation, one can generalize this to an arbitrary angular distribution
using cosfdA — n - d/f, where 7 is the unit vector representing the angle of incidence

for the radiation field and dA is the normal vector describing the infinitesimal area dA.
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To calculate the net flux from a surface due to a pencil of radiation, defined as parallel
rays of radiation with some spatial extent, one integrates the radiation intensity, in
equation 2.6, over the solid angle of the surface through which the radiation passes.

This results in the expression,
nF, = /IVCOSHdQ, (2.7)

where F), is the net flux. Further results require knowledge of the system geometry,
an example using spherical symmetry allows for a tractable solution. In a system
with spherical symmetry, one can use spherical polar coordinates, which results in
d§) = sinfdfd¢ as the expression for the differential of solid angle and the net flux is
then,

mF, = /Iy (0, ¢) cosfsinfdOde. (2.8)

For an isotropic radiation field, the radiation intensity has no dependence on viewing
angle, therefore the integrand is cosfsinfdfd¢. Integrating this over the sphere results
in 0 net flux, as expected.

Another quantity of interest is the radiation energy density, as this is relevant
to the energy balance in the radiation hydrodynamic equations. To calculate this
quantity, which is the amount of radiation energy per unit volume local to some
point, P, it is necessary to construct an infinitesimal volume, v, bounded by a surface
0. Then, have v exist inside a much larger volume bounded by a surface 3. Figure 2.1
shows the detail of this geometry. To calculate the radiation emitted from a patch,
do, one must consider the solid angle, d?’, that ¥ can observe from an infinitesimal
patch, d¥, in the frequency range v to v+ dr. The radiation intensity from do to dX
is then,

Qoss = I,cos0dXdY dv, (2.9)

where (),_,x is the radiation energy per second per area, © is the incidence angle

22



/
/

Figure 2.1: This describes the geometry for the radiation energy density calculation
showing the volume v where the radiation propagates and the encapsulating surface

Y.

between the radiation and d¥. One then writes the solid angle, d€)', as dQ) = Coi#,

where 6 is the viewing angle between d¥ and do, and r is the distance between do

and dX. Combining the solid angle with the expression for @), s,

0
O vz = L,%cos@dZdadu, (2.10)

Taking [ as the path length of the radiation through the volume, v, and using ¢ as the
speed of light, é is the time it takes for radiation to travel through v. One can then
multiply equation 2.10 by é to get the energy passing through the volume v and using
the expressions df2 = "%GdE and dv = [cosfdo as the differentials of solid angle for
dY: and the intercepted volume provides a simple expression for the energy density

in terms of the spectral intensity. Integrating over the solid angle and volume, then
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dividing through by the integrated volume gives the radiation energy density,

1
u, = - /dmy, (2.11)
C

where u,, is the, frequency-resolved, radiation energy density. One can then integrate

over the radiation frequency to get the frequency-averaged radiation energy density,

up = 1/alQ/aluL,. (2.12)
c

An additional useful quantity is the average intensity over a sphere, which has the
definition,
1

J,=— | dQ1,. (2.13)
47

Inserting equation 2.13 into the equation 2.11 provides an expression relating the

average intensity to the radiation energy density,

4
wy = —J,. (2.14)
C

The above material dealt with the definitions of the radiation field and relevant de-
rived quantities. It is now necessary to characterize the ways the propagating medium
can interact with the radiation field. Principally, there are three ways the radiation
field interacts with the propagating medium, which are absorption, emission, and
scattering. Absorption is when the propagation medium converts of radiation energy
of a particular frequency into another form and the specific material opacity, «,, in
units cm? g~teV 7!, describes this interaction. An example of this is photoionization
where the medium absorbs one, or more, quanta of radiation energy and converts it
to electron kinetic energy. Emission extracts energy from the medium, which it then

emits as radiation energy, with spontaneous emission of a photon from an excited
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atomic state serving as one example. The emissivity, 7,, in units erg s~ cm™ sr

eV 1, describes the emission properties of a medium. Scattering of radiation energy
by a medium results in the randomization of the propagation direction according to
a process dependent distribution. The scattered radiation can also deposit or extract
energy from the medium through inelastic scattering processes. The scattering opac-
ity, Ku.se, where the sc subscript indicates scattering, accounts for the effects of total

scattering, elastic and inelastic processes, in analyzing radiation transport problems,

any more detail requires knowledge of a specific scattering process or phenomenon.

2.2.2 Derivation of the Transport Equation

The above definitions and derived relations are useful for describing the radiation
field. It is now necessary to use the opacity and emissivity, which are material de-
pendent terms, to formulate an equation that captures the evolution of the spectral
intensity with the spatial and temporal dynamics of the plasma. Following the treat-
ment in Drake[l], there is some [, = [, (¥,t,7,v), where ¥ is the position vector for
the volume element of plasma, t is the time, n is the normal vector parallel to the di-
rection of transport, and v is the frequency of the radiation. It is also useful to define
an infinitesimal path length, ds, to transport the radiation along. This radiation field
changes when moving to the next fluid element to I, (;f +dsn,t + %, n, 1/). Taking
the difference between the spectral intensities in the two different volume elements
and multiplying by the differentials for area, solid angle, and frequency provides the

change in energy with time,
d
AL dAdQdy = {I,'/ (:E’—i— dsn,t + ?8, n, I/) — I, (%, t,n, I/):| dAdQ)dv. (2.15)

Dividing the expression for Al, by ds and taking the limit as ds goes to zero is the

definition of a derivative and leads to the following left-hand-side of a differential

25



equation,
Energy

ime

{i + li] 1,dAdQdvds =

2.1
ds cdt (2.16)

The right hand side of equation 2.16, is the difference between the emission and
absorption over a length s through the plasma, which the emissivity and opacity,
defined above, describe. The right-hand-side of equation 2.16, is then,

d 1d
— ‘|‘ - I - 14 v Ill? 21
[ds cdt] v =1 = X o] (2.17)

where here y, = pk, is the absorption with units of length™, o, is the scattering with
units of length~!, and 7, is the emissivity with the subscript v indicating frequency-
resolved quantities, as above. The scattering is not typically relevant for HEDP
plasmas because the absorption dominates the opacity in the regions of the spectrum
containing the majority of the energy. Equation 2.17 is a generalization of the well
known Beer’s law for transmission through cold material. Rewriting equation 2.17 to
move all of the spectral intensity terms to the left side and dividing through by the
absorption results in the following,

1 |1d d M,
——t— |+, =*=S5, 2.1
Xv L dt + ds} + Xv S (2.18)

where S, is the source function, which characterizes the emission from the plasma
and has the same units as the spectral intensity. It is relevant to note that the time
derivative term in the transport equation is only necessary for relativistic plasmas

and that it will be negligible for the physics discussed below.

2.2.3 Moments of the Transport Equation

HEDP plasmas can often have significant radiation fields, and it can be useful to

take the solid angle moments of the radiation transport equation to facilitate com-
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bining radiation physics with the fluid equations. Section 2.3 will cover the resulting
radiation hydrodynamic equations in more detail. The most useful is the zeroth mo-
ment in solid angle, which rewrites the transport equation in terms of the net flux,

F,. Taking the integral of equation 2.17 over the solid angle,
——F,+—F, = / (1, — xo1,) AdS). (2.19)

To simplify the derivative along the path length, s, the directional derivative reduces
to the divergence of the net flux, in a planar geometry. It is also reasonable to set
the time derivative to zero for non-relativistic plasmas treated here, therefore, the

moment of the transport equation is,

V.-F,= / (1 — Xu 1)) RdSQ. (2.20)

Integrating this over frequency, because this will be most useful in the radiation

hydrodynamics equations later, gives the following expression,
V. Fp= 47?/)(,, (S, — J,)dv, (2.21)

where F is the frequency integrated net flux. The first moment, in solid angle, of
the transport equation will be useful in describing systems with diffusive transport
and is,
Lidg  v.p 1/( L) 7d (2.22)
> . tv : = - v Xvdv) T s .
cdt c X
4

where P is the radiation pressure tensor and the bar above the P represents the fact

that this is a rank two tensor.
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2.2.4 Solutions to the Transport Equation

It is useful to demonstrate some solutions, or at least simplifications, of the trans-
port equation that are analytically accessible as a first step to understanding the
effects of radiation in a particular problem. Starting with the assumption that the
time derivative in equation 2.18 is negligible, and changing variables to the frequency-
resolved optical depth, 7,

d

_Iy -[V - SV v)> 2.23
pog v+ (1) (2.23)
where d7, = x,uds, with = cosf, and 6 is the angle a ray makes with the surface

_ ‘7—577—0‘

normal. This equation has an analytic solution using the integrating factor e # |

|Tu,s*‘ru,o‘ a |T;,577V70‘
L (1) =1 » + / e w S,dr, (2.24)

Tv,o

where the subscripts o represent values at the boundary and s values at some distance
away in the plasma. It is then possible to evaluate the integral on the right hand
side using atomic codes to evaluate the source function for a particular set of plasma
parameters and materials. To proceed from this point analytically, it is necessary
to make further assumptions about the source function. This document will limit
the analysis to two cases, one where the source function is a linear combination of
the thermal emission and coherent scattering and a diffusion approximation for the
flux in systems extending over a large number of photon mean free paths, which are
common in HEDP problems and the next two sections describe. There are more
details about solutions to the transport equation under a variety of conditions in the

books by Drake, Mihalas and Weibel-Mihalas, and Chandrasekhar[1, 36, 100].
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2.2.4.1 Transport Regime

In the first case, it is reasonable to describe the emissivity of the medium as
the linear combination of thermal self emission and isotropic, coherent scattering, as

described above. This takes the form,

Ny = XVBV (T) + Uu,stua (225)

where B, (T') is the thermal spectral intensity, o, s is the coherent scattering absorp-
tion, and I, = J, because the scattering is isotropic. The thermal spectral intensity
is the emission from a material in equilibrium, or local-thermodynamic equilibrium,
which has temperature as the only parameter and follows a Planckian distribution,
B, (E,T)dE = B ! dE (2.26)
v ) - 02h3 e% . 1 ) .
where c is the speed of light in vacuum in units of cm s™1, A is the reduced Planck’s
constant in units of erg s, E is the photon energy in erg, k is the Boltzmann constant
in units of erg eV~! and T is the plasma temperature in eV. The total absorption is

then the sum of x, and o, ., which makes the source function,

B, (T
g, = BB D) oty (2.27)
Ky + 0y,

Inserting these values for the emissivity and absorption,

d
1, =r, (B, 1) +0,(J,~ 1), (2.28)

and since J, = [, in the isotropic, coherent scattering regime the second term in

equation 2.28 is zero. Integrating the result over frequency and solid angle produces
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an expression for the net flux,
V- Fr =47k [B(T) — Jg], (2.29)

where B (T) = US%WTAL is the thermal radiation flux, ogp is the Stefan-Boltzmann

constant, and k is a weighted average of the continuum absorption term k,,.

2.2.4.2 Radiation Diffusion Regime

The limit where the system scale length is a large number of mean free paths, it
is possible to simplify the transfer equation into a diffusion equation. Using equa-
tion 2.22 and making the same assumptions of the time derivative term being negligi-
ble and isotropic radiation as before, leading to a relationship between the divergence

of the radiation pressure tensor and the radiation flux,

V-P=-XF, (2.30)
C

Under the further assumptions of a planar system and the Eddington approximation,
which says that the radiation pressure is proportional to the radiation energy density,
P, = fgu,, reduces the divergence of the pressure tensor to the gradient of a scalar
pressure, due to the systems isotropy, Near equilibrium the proportionality factor,
f, — % and the radiation energy density, u, — %By (T'). Since the temperature
only varies in space, one can rewrite the flux as the gradient of the temperature. The

frequency-integrated flux is most useful in the radiation hydrodynamics equations,

and will be useful in the discussions of heat waves and radiative shocks below,

- 47 OB
Frp=——22VyT 2.31
= 3xr 0T =’ (2.31)
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where XLR is the Rosseland mean opacity, which has a functional form,

1 fO 1 0By dv

— Ofg"aBd . (2.32)

XR Jo

Since B is a known function of 7', one can evaluate 22, which results in F R =

8T’
—mgi—iT?’VT . Defining the coefficient to the temperature gradient as x,,q, with units

1

energy length™! time™! temperature™ improves the aesthetics of the resulting equa-

tions and is the diffusion coefficient for the divergence of the radiation flux,

V- Fp=-V-(5uVT). (2.33)

2.3 Radiation hydrodynamics

After deriving some relations for radiation transport that are relevant for HED sys-
tems above, the next logical step is to combine these results with the Euler equations
discussed in section 2.1. This addresses the physical systems where a fluid approxi-
mation is appropriate and the radiation field is significant for the fluid evolution. The
experiments discussed below are all in this radiation hydrodynamics regime, and this
section will broadly discuss the underlying physics of Marshak-like nonlinear diffu-
sion heat fronts, photoionization fronts, and radiative shocks, which the experimental
results in later chapters will explore in greater detail.

The derivation of these equations in a way that is consistent in relativistic frames
of reference and between inertial and co-moving frames is very involved and this doc-
ument will not cover it in any detail. The derivation in full is in the book by Mihalas
and Weibel-Mihalas[36], which starts from the transport equation and relativistic
fluid equations then ends with a set of equations handling the momentum and energy
in the radiation and material. For the equations in the co-moving reference frame, it

is possible to assume the material parameters as isotropic. This frame also makes the
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Figure 2.2: a) The calculated values of k.4 in N over a range of density and temper-
ature values using PrismSPECT to generate the opacities. b) The calculated values
of k,.qq in CH over a range of density and temperature values using PrismSPECT to
generate the opacities

bulk fluid velocity zero, which cancels out any velocity dependent terms that arise in
the derivation. Keeping terms to order 2, where v is the fluid velocity and c is the
speed of light, results in the total energy and momentum being equal to the sum of

radiation and fluid components,

Pr =p+Pr, (2.34)

and

peT = pPE + UR, (2.35)

where the subscript R indicates the contribution from the radiation pressure and en-
ergy density in equations 2.34 and 2.35 respectively and the subscript 7' indicates
the total quantity. Since the plasmas discussed here are firmly in the non-relativistic
regime, the material variables are constant between reference frames and no spec-

ification is necessary. This leaves the mass conservation equation unchanged from
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equation 2.3a. Therefore, the radiation hydrodynamic equations are,

Ppe0 = —Vpr, (2.36)
D v? .
P = V- Vpr, (2.37)
a9 [ pv? L (u? =
a (% + peT> +V- {pv (? + ’YTET):| = —V - Fg, (2-38)

where 7 is the appropriate index for the EOS when radiation is significant. Equa-
tion 2.36 is the total momentum equation, equation 2.36 is the mechanical momentum
equation, and equation 2.38 is the total energy equation. The radiation energy and
momentum equations are 2.21 and 2.22, which one uses to derive a radiation trans-
port model to close the system of equations.. These equations exclude the terms
for gravity and thermonuclear interactions from the Mihalas and Weibel-Mihalas[36]

derivation as they are not relevant to the experiments presented below.

2.3.1 Nonlinear Diffusion Waves

To begin an investigation into supersonic heat fronts, it makes sense to start with
the diffusion approximation of equation 2.33 where the propagation medium extends
for many photon mean-free-paths. This results in a nonlinear diffusion wave in the
fluid temperature, which allows for self-similar solutions under certain assumptions.
The simplest form of this is the Marshak wave, from the 1958 Marshak paper [37],
which has the base assumptions of a planar geometry and negligible radiation energy
density and pressure. However, the radiation flux has significant energy, otherwise the
radiation hydrodynamics equations converge to the Euler equations. These assump-

tions, along with a radiation diffusive conductivity that is a power law in temperature,

Rrad = ("@”ad)TD Tna
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where (nmd)To is a temperature independent constant and n is a number that has
a value of 4 to 5 in HEDP plasmas, while it is 6 to 7 in astrophysical plasmas|l,
36, 37]. Figure 2.2 shows the values of k.. for N over a range of temperatures and
densities relevant to the experiments described below using the atomic physics code
PrismSPECT[101] to calculate the Rosseland mean opacity. Additional assumptions
of constant density and supersonic propagation of the heat front, combined with the

previous assumptions, allows one to simplify the energy equation to,

86 (Fﬂrad>T 2
I o T?’L—‘rl 2
ot n+1 v ’ (2:39)

where € is the material specific internal energy. Additionally, assuming that the

material internal energy be written as € = pcy/T', with a constant specific heat, allows

one to write a diffusion equation in temperature.

(Hrad)To
pey (n+1)

Defining a value W = to simplify the notation, the similarity variable
is then, ¢ = \/%, rewriting things in terms of ¢ reduces the equation to the second

order ordinary differential equation (ODE),

d2fn+1 _ _§ﬁ
de? 2dt’

(2.40)

where f is the boundary-normalized temperature profile. One is able to solve equa-

tion 2.40 numerically, but assuming a constant flux in equation 2.31 allows for an

¢ 1/(n+1)
f= (1 - 5—) , (2.41)

analytic solution for f,

where &, is the location of the front in the similarity variable. The increase in wave

energy as a function of time then allows for the evaluation of £, from which one can
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find the front location and velocity in real space coordinates,

_ vn + 2 (’ﬁrad)To \/Q_t

0 (2.42)
n+1 pcy
vV 2 | (Rra 1
uy = Y1 F2 [Frad), (2.43)

n+1\ pev V2t

The above solution to the radiation hydrodynamic equations has many assump-
tions, but the one that is most glaringly incorrect for HEDP systems is the assumption
of constant ¢y because the heating in these kinds of experiments typically results in
significant ionization. This will change the effective charge per ion through the factor
Z, using a simple Hydrogenic model of the atom, Drake[1] provides this approximate

model for the specific heat at constant volume in an ionizing medium as,

3 2 3
o — (3) 1+ (3) Z] ks N kpEy Z +62% 4+ 127 (2.44)

2 Am,, 12T Am,, ’

where kp is the Boltzmann constant, A is the number of nucleons in an atom, m,, is
the mass of a proton, Fy is the binding energy of the Hydrogen atom at 13.6 eV, and
Z is the ionization of an atom. Z is a function of temperature and approximating
the relationship as Z o« v/T, while limiting ¢y to the highest order terms in Z allows
for a self-similar solution to an ionization wave. The self-similar ordinary differential
equation is then,

L&f__Ld (2.45)

VEde 24t
Following the same analysis as in the Marshak wave, and assuming a constant ra-
diation flux, results in expressions for the position and velocity of the ionizing heat

front.

- 2\/ 2n+6 ("irad)To \/g

2n + 3 PCVo

(2.46)

o
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vV 2n +6 ("frad)To 1
Uy = —, (2.47)
2n+ 3 peve V't

where ¢y, is the constant value of the specific heat used in the Marshak wave deriva-

tion above.

2.3.2 Photoionization fronts

Photoionization (PI) fronts are heat fronts where photoionization is the dominant
mechanism for depositing energy at the front, which Stromgren first explored in the
1930s[56]. This section will explore atomic kinetics and radiation hydrodynamics of
PI fronts developing useful dimensionless parameters along the way, in addition, there
will be a comparison to the nonlinear diffusion waves of the previous section. This will
demonstrate the measurable differences that an experiment could use to distinguish
the different transport mechanisms. The small number of downstream photon mean
free paths in a PI front disallows the assumption of diffusive radiation transport, as
the radiation streams to the interface, and V - F' does not have a simple relationship
to the plasma parameters.

The physics of a PI front has an external radiation source driving the heating,
at the front. This means that the flux term in the previous paragraph only includes
the flux from the external source, there are no significant contributions from the self
emission of the heated plasma or from the electron energy flux transported along the
temperature gradient. To calculate the minimum external flux needed to sustain a
PI front, one starts with interaction rate for photoionziation, vp; (F) = ng.o (E) ¢,
where vp; (E) is the interaction rate, n, is the atomic number density, o (£) is the
interaction cross section, and c is the speed of light. Multiplying vp; (E) with the
photon energy spectrum, f(E)dE, and then integrating over energy provides the
source power delivered to an atom or ion. This results in an expression in the average

photon energy and cross section, w = E,,n,0.,¢c, where w is the delivered power,
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E,, is the average photon energy, and the subscript av represents an averaged value.
Normalizing this expression to the area of an atom or ion provides the required flux

to photoionize a population of n, atoms or ions,

FE,.c

Uav>\av

F= , (2.48)

where Ay, = — (1}_ is the average photon mean free path.

av

2.3.2.1 Atomic kinetics

The atomic kinetics, at the front, will dictate the microphysics processes that con-
tribute most to the heating of the medium. As it is necessary to have photoionization
dominate the energy deposition in a PI front, it is necessary to find conditions where
that is the dominant microphysical process. Following the descriptions in Drake and
Gray[61, 62, 63], the two or three level atom model has sufficient detail to give some
insight into the scale length over which the ionization state changes as the front passes
by, while still being tractable with pencil and paper calculations. However, to utilize
the full detail of the atomic structure calculations currently available, one must use
computational tools, such as PrismSPECT or FLYCHK]101, 102], to solve the large
matrix equations incorporating thousands of atomic levels.

To find the ionizations state populations, one needs to solve the system of rate
equations, which compare the processes that increase or decrease the state popula-
tion densities. In LTE systems, the Saha equation is sufficient for describing the
relationship between the different ionization state densities. This generalizes to the
collisional-radiative equations in systems that are not collisional enough for LTE
physics[103].  The collisional-radiative rate equations for a three-level system are

then,
dnl

& = <O‘U>172 neny — Uy i1ny + Ry inens, (2.49)
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dng dn1 dn3
e [ Ei 2.
di <dt+dt>’ (2.50)

dn3
E = <0'U>273 NeMo — F2737’L2 —+ R372nen3, (251)
where n; is the population number density of the ith ionization state, (ov), ;. is the
electron collisional ionization rate in units of cm® s™', T'; ;1 is the photoionization

rate in units of s~!

, and R;;q,; is the recombination rate coefficient in units of cm?
s~!. The recombination rate considers radiative recombination, dielectronic recombi-
nation, and three-body recombination using the fits of Verner and Ferland and the
Lotz formula[104, 105]. Equations conserving the total number of particles closes the

set of equations,

Ne = Z1nq + Zang + Z3ns, (2.52)
nr = ny + ng + ns, (2.53)

where Z; is the ionization of the ith ionization state, and ny is the total ion number
density. This system allows for the number of optical depths, 7 from the source to act
as an additional independent variable due to the dependence of the photoionization
rate on the photon flux. The photoionization rate is the cross section-weighted integral

over the incident photon flux,

o
Fi,i—i—l = /UPI,VFR,ldEJ (2'54)
0
where opy, is the frequency-dependent photoionization cross section that is a function
of photon energy, ionization state, and electron bound state. Here the photoionization
cross section uses the Verner and Ferland[106, 107] fits and assumes a blackbody

radiation source to calculate the integral. Assuming the flux has the form, Fr; =
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Frog[7r] and the dependence on changing optical depth goes as follows,

dg [7] _ (fiopra + f20p12) 97 (2.55)

dt 2 2 ’
Opra1 T 0pr2

where f; is the ionization fraction of the ith state, and op;; is the average pho-

toionization cross section of the ith state. In addition, the analysis identifies two

dimensionless parameters that identify the physics regime of the atomic kinetics,

o = Mt Hiane (2.56)

n; Fz‘,z‘+1

n; <UU>i,i+1

B=1+ ,
Njt+1 Ri+1,i

(2.57)

where « shows if photoionization occurs more frequently than recombination at the
front and 8 determines the importance of electron impact ionization. In order to
have a PI front, an experiment needs an « value less than unity and a value of
that is approximately unity. If this in not the case, the system may have significant
photoionization with non-negligible contributions from electron heat transport if the
value of 3 is larger than one, or one may have a system with insufficient flux to sustain

a PI front if « is greater than one.

2.3.2.2 Heat front analysis

Since the previous paragraphs explored the microphysics of the PI front, it makes
sense to now look at the macrophysics using the radiation hydrodynamics equations
described above. With the assumption of a steady-state front, the jump conditions

across the interface are,

p1ur = pPauUsa, (258)

p1u; + p1 = paus + Po, (2.59)
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(2 22 Y= = (2524 22 (2.60)
where ~ is the polytropic index from the assumption of an adiabatic EOS, and the
remaining variables correspond to their usual values. It is important to note that Fr
in the above equation comes from the flux term in equation 2.38 without an assumed
functional form for the flux and that, similarly to nonlinear diffusion waves, this
problem considers the radiation momentum and energy density as negligible. This
breaks the assumption of diffusive radiation transport, as one can no longer simply
relate the flux to the temperature gradient.

One can rearrange equation 2.48 to solve for the velocity, ¢ = 5—1, where F} is
the photon number flux. Here the velocity is ¢ because the calculation considered

interactions with individual atoms or ions, in a PI front ¢ goes to the front velocity

uy. This results in the following expression for the flux,

Eav
FR = — MCIOIUI = —Q2,01U1, (261)

where ( is the average number of electrons removed from the ion, M is the average
ion mass, and () has units of velocity. Following the normalization in the Drake
paper[61], the variables are then, Z—f = W, ay = Qga1, Uy = Uiay, Uy = ﬁl%, and
Q= Qal, where a? = % is the isothermal sound speed. Substituting these values into

the jump conditions provides a set of normalized equations for PI fronts,
pat (p—1) — azp® =0, (2.62)

12 [(2@2 + a?) (y—1)+ 27} — 2y (82 +1) + a2 (y+1) =0. (2.63)

Solving those equations for a, and p gives,

~9 —

I
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Figure 2.3: The density ratio, front Mach number, and flow Mach number for the
heat front analysis of a PI front for the four types described in the text with a @ of
10 and a v of %. This demonstrates the limited density jump for the weak R-type
front, which is the focus of the experiments described in this thesis. The abscissa is
different between the plots on the left and right hand side, which demonstrates the
extent of the region where there is no purely real solution.
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(4 1) £\ (3 ) - 202 (12— 1)
N 20 (Y= 1)+ @3 (v —1)2v '

o (2.65)

In the above equations, %; and Q are the independent variables. This leads to four
different regions of solutions to these equations, which the literature call the strong D-
type, weak D-type, strong R-type, and weak R-type[57, 58, 59, 60]. The weak R-type
front is a supersonic heat front that has no density jump across the interface, which
results in a low opacity region that radiation streams through until the upstream
material rapidly absorbs it. The strong R-type front is a modified shock where the
radiation acts to reduce the compression. The weak D-type front is a subsonic expan-
sion wave with moderate heating. The strong D-type front is a supersonic rarefaction
where the density drops behind the interface. For the experiments discussed below,
the most relevant types are the weak-R and strong-D type fronts. This is because
the experiments intend to produce weak-R type fronts, as the radiation decreases the
pressure creates a shock, which allows for the development of a strong D-type front.
The Strong R-type front is not possible as there is no incoming flow to support the

modified shock and the boundary conditions will not support a weak D-type front.

2.3.2.3 Propagation and curvature

All of the heat front analysis to this point has been in one dimension to keep the
calculations simple. However, it is very difficult to create a 1D heat front experi-
mentally because the geometric falloff of the source alone causes changes in the flux
transverse to the source axis. This introduces two dimensional, at least, effects in the
system through the curvature of the heat front and can also affect the velocity of a
PI front through a medium. This section will present the differences in the curva-
ture and velocity of between nonlinear diffusion waves and PI fronts as a means of

experimentally distinguishing the two systems.
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Figure 2.4: A comparison of the PI front propagation with constant-flux, geometri-
cally decaying flux, and geometrically decaying, time-dependent flux to constant flux,
nonlinear diffusion wave models. This comparison shows that PI fronts travel faster
than nonlinear diffusion waves, even considering the upper bound of velocity for the
nonlinear diffusion waves. The inset shows the different distances the constant-flux,
nonlinear diffusion waves and PI fronts with real source models travel in more detail.

2.3.2.4 PI front Propagation Compared to Nonlinear Diffusion Waves

Under constant flux models, the propagation velocity of nonlinear diffusion waves
and PI fronts are quite different. The fastest nonlinear diffusion wave propagation
is proportional to \/%, while a PI front propagates linearly with time. However, the
constant flux model isn’t accurate for the characteristics of a real source that one

would find in an experiment. To account for this, one needs to add spatial and

temporal dependence to the flux, which makes the velocity a function of time. This

allows for the simple equation for the PI front velocity, vy = F:"”, mentioned above

pr[(:r,t) . F(x,t)
dt T ne

to be written as a differential equation, , where Xp; is the PI front
location, x is the spatial axis, and t is the time. Using different flux models in this
equation will let various real source effects, such as geometric decay and source pulse
shape, alter the location of the front. Comparing the results of these models with
the constant flux models of nonlinear diffusion waves will show how useful location

measurements are for distinguishing between different types of heat fronts.

Here, the analysis will use three flux models, one with a spatial dependence, one
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with temporal dependence, and one with both spatial and temporal dependence.
None of the solutions will use normalized coordinates to facilitate a comparison with
the nonlinear diffusion wave solutions discussed above. The general form of the flux
for these models is,

F(t)=Fa(t)b(), (2.66)

where F, is the initial flux, a (¢) is the temporal dependence, and b (Xp; (t)) is the

spatial dependence. The temporal dependence of the source will be quadratic in time,
a(t) = (t—to)° + co, (2.67)

where ¢; and ¢y are constants. The spatial dependence is the on-axis geometric decay

2
R
(=)
R 27
1+ <X_PI>

where R is the source radius. For the model where F' = aF), the resulting solution for

1 C 3 C 2
(2
3 c1 c1

The solutions to the equations % = b(t) 5—2 and % = a(t)b(t) 5—: are found

profile for a finite source,

b(Xpr) = (2.68)

Xp] (t) iS,
_FO

Xp[ (t) = C1 + Cot. (269)

o

numerically with the solutions shown in figure 2.4. The nonlinear diffusion wave
propagation uses 4 10'" erg s™" cm™' eV~ for (Kyaq)y, and the PI front models use
—4 %10 and 1 for ¢; and ¢y respectively. These results show that a PI front with
real source features is faster or similar to multiple constant flux, nonlinear diffusion
wave models under the same material conditions. A nonlinear diffusion wave under
the constant flux model will have the maximum velocity shown and adding features
of a real source will only act to slow down the nonlinear diffusion wave. Since a PI

front is already faster than the constant flux, nonlinear diffusion waves after a couple
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Top-down Projection

3D Geometry

Figure 2.5: The 3D and top down projection geometries for the calculations used to
determine the average path length of an arbitrary point above a disk of radius R.

hundred picoseconds, real source effects will make them substantially slower than PI
fronts later in time. This means that the PI front velocity is a powerful tool for
distinguishing between different types of heat fronts and can act as a metric for an

experiment as well as a testable parameter for computer simulations.

2.3.2.5 PI Front Curvature Compared to Marshak Waves

The radiation in a PI front streams through the optically-thin, downstream region
to an interface where the cold upstream rapidly absorbs it. This means that the front
properties should be equivalent at locations of the same average path length from the
source; suggesting geometry provides a decent estimate of the curvature. To calculate
the average path length, it is necessary to calculate the distance from a point to an
arbitrary location on the source. Figure 2.5 shows the details of this geometry. Here
the source is a disk and the average path length is the integral over the radial and
polar dimensions of the source. It is important to point out that there are two regimes
of solution to the geometry, one for a point inside and outside the radius of the source.

To solve the geometry, the length, I, between the points u and P’ combined with
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the height, z, above the source plane provides the distance between the observation
point and an arbitrary location on the source disk, L. = v/22 4+ [I’2. For r > R, the

length from u to [ is, in number of source radii,

L 1 w?sin? B ? )
Z - - 7 — 2.
R R\/[r — + 1 —wcosfB| + 22, (2.70)

where = [) — 6|. For the case where r < R, the length to an arbitrary point on the

source disk is,

L 1 —
Z== W reosg + 22, (2.71)
R R sin [atan (%ﬁi’;‘ﬁ)]

where ¢ is the angle uP’o in the projection of P to the source plane. This geometry
makes the length from a point on the source disk to the point P a function of r, z, w,
and either 3 or ¢ depending on where P is. Integrating over w and the angle variable

provides an average distance to the point P from the source,

- (2.72)

<L> [P dedwt r <R
fOR Jy dBdw%  r > R.

Figures 2.6 a and b show the average path length with sources smaller than and
similar to the dimensions of the propagating medium. This analysis shows that the
radius of curvature for a PI front should increase as it moves away from the source,
which makes intuitive sense because as one moves farther away from a point source,
the resulting spherical wavefronts approach a plane wave. Additionally, figure 2.6 b
shows that, for a one dimensional system, the curvature of a PI front changes very
little as it propagates away from the source.

In order for this to be useful information for diagnosing the presence of a PI front,
there needs to be differences between the evolution of curvature in different types

of heat fronts. Back’s experiments in the early 2000’s[27, 28] show a curvature that
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Figure 2.6: a) The average path length where the dimensions of the propagation vol-
ume is larger than the source radius with contours showing the curvature decreasing
with distance. b The average path length where the dimensions of the propagation
volume is smaller than the source radius with contours showing the curvature de-
creasing with distance. ¢) The source in the curvature calculations is Lambertian due
to the geometric nature of the system. d) The bent Marshak wave results[3] show the
increase of front curvature due to losses through the walls of the propagating medium
container.
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increases with propagation distance in the measured diffusive heat fronts and theory
confirmed these results[3], shown in 2.6 d. This is due to heat leaving through the walls
in these diffusive heat fronts. As the heat front propagates through the medium, the
radiation energy diffuses along the axis, but if the walls are not perfectly insulating,
which is never the case in experiment, there is additional lateral heat loss that acts
to cool the edges of the propagating medium. There should not be as significant wall
losses in PI fronts because the radiation from the source is non-diffusive meaning there
are only conductive loses through the walls and geometric losses of the source flux.
This means that the curvature of nonlinear diffusion waves evolves in the opposite

way to a PI front, making this a diagnostic tool for heat front experiments.

2.3.3 Radiative shocks

The previous paragraphs discussed the inclusion of radiation in the Euler equa-
tions to produce the radiation hydrodynamics equations, then showed solutions to
to these equations for heat fronts in static media. To continue this discussion, the
following will discuss the effects of radiation on fluid motion and the development
of radiative shocks. The opacity in the upstream and downstream material dictates
the behavior and structure of the shock[l, 68] depending on the number of optical
depths. Laboratory systems using foams as the propagating medium typically have an
optically thick downstream and optically thick or thin upstream|[4, 70]. This section
will focus on the behavior of optically thick and thick-thin shocks, then will calculate
some relevant quantities.

Starting from the radiation hydrodynamics equations and assuming a v law equa-

tion of state, the following shock frame jump conditions result,

PU = — Pyl (2.73a)
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P+ pu? = po + poti: (2.73b)

3 3
Y pu Polls Y

4+ Fp=-"2———pyus+ Fr, 2.73
7_1pu+ 5 t1r 5 7_1pu+ R, (2.73¢)

where u, is the shock velocity with positive velocity in the upstream direction, and
the remainder of the variables have the usual definition. The variables with subscript
o represent upstream material quantities and variables without subscripts are down-
stream materials. This analysis will use a three region model, shown in figure 2.7,
with a final state downstream, a radiative precursor upstream, and an optically thin
cooling layer just after the density jump that allows the radiation to affect the up-
stream material. There are actually five regions with adaptation zones on either side
of the cooling layer that transition between the upstream and downstream conditions
and the cooling layer[70], but this analysis will not include those regions. Setting
the boundary conditions allows one to solve energy conservation equations across the
boundaries and generate shock profiles.

It is useful to define normalizations of typical radiation hydrodynamic variables
that will be utilized in the analysis below, starting with the inverse compression,

n= ’)—p”. The normalized pressure is then, from equation 2.73b p,, = —£5 and, assuming

POUE

RT

an ideal gas equation of state p = pRT, the normalized temperature is RT,, = W
where R = % is the gas constant. Using the jump condition above, it is possible
to write the normalized pressure and temperature as functions of only the inverse
compression independent of the boundary conditions in the upstream and downstream
media. Combining equations 2.73a and 2.73b, the expression for the normalized

pressure is

Pn=1—n+Ppon. (2.74)

Then from equation 2.73b and the ideal gas equation of state, one can derive the
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following expression for normalized temperature as a function of inverse compression,

RTn = 77(1 -n +po,n) (275)

2.3.3.1 Thick-Thick Shocks

For the optically thick shock, the upstream and downstream states are optically
thick, naturally, this means that far enough upstream there is no radiation flux and
downstream there is no net flux. The upstream pressure p, is negligible compared
to the shock generated pressures and the analysis will take it to be zero from here
on. Considering equation 2.73c with p,, = 0 and F,, = 0 because the upstream
is optically thick and cold, one can write an expression for the normalized flux as a

function of the inverse compression

2y v+ 1
Fpo=—-14+—""n—-n*1—), 2.76
R, S (7 — 1> (2.76)
where Fg,, = 2. The next step is to use the energy equation at the two boundaries
] Pol

in the three layer model to find the optical depth and upstream temperature of the
cooling layer by assuming the strong shock limit.

In the three-layer model, shown in figure 2.7, the optically thick downstream mate-
rial has a temperature 7'y and an isotropic thermal radiation field B (7). The cooling
layer, as stated above, is optically thin with an optical depth 7., which is necessary
to accurately account for the energy balance across the boundaries. The thermal
radiation field in the cooling layer is a function of the optical depth, B, (7), where
the optical depth in the cooling layer increases monotonically from the upstream edge
to the beginning of the downstream state, and, therefore, the intensity decreases to-
wards the downstream state. The temperatures just upstream and downstream of

the density jump have the subscripts us and ds respectively. This analysis assumes
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Figure 2.7: The three layer model that demonstrates the fluxes in an optically-thick,
radiative shock structure with a downstream state, an optically thin cooling layer,
and a precursor region.

a very optically thick precursor region and that the upstream temperature can be
written as proportional to the final temperature, T;,; = f;Tt. Across the downstream
cooling layer boundary, the energy balance is the result of the flux from the edge of
final state, the cooling layer, and the precursor. The flux from the downstream is
0T}, form the cooling layer is —1.2740Ty,, and from the precursor is floT} (1 — 7).
The factor of 1.2 in the cooling layer flux term comes from the integral of the solu-
tion to the transport equation over solid angle. The precursor flux term propagates,
at temperature T, to the downstream boundary, where (1 — 7,) is the exponential
decay of the source under the approximation of small 7;. The sum of these fluxes is
zero because there is no flux in the downstream final state. The energy conservation
at the boundary between the cooling layer and the precursor uses the same fluxes just
described, but with the inclusion of the material energy flux from upstream, which

results in the expression,

(2.77)

2 1 US>
(1 —7q) 0T} + 1.2740Ty, — fioT} = <_1 S 0 S 2) polly

7—177 v—1 2
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Figure 2.8: The shock compression and normalized temperature in the cooling layer
(a) and precursor (b) using a @ of 10° and v of %. The precursor is diffusive and
shows a transmissive region at the leading edge before the unaffected upstream state.

On the left hand side of the above equation, the first term is the emission from the
downstream state with the decay from the opacity in the cooling layer, the second
term is the emission from the cooling layer, the third term is the emission from the
precursor. The right hand side of the equation is the normalized photon flux times

the material energy flux from upstream. Solving these two equations under the strong

shock conditions, Ty = (3 — v) Ty and ngs = 2(77;11), results in values for 7; and f,. It
is useful to simplify these equations with the shock strength parameter Q = z:;i and

the shock v as the free parameters. When numerically solving these equations using
v = % and @ = 10°, the values of 74 and f, are 0.0019 and 0.996 respectively.
Evaluating the radiation transport in the three-layer model allows one to solve for
the inverse compression profile. Since the optical depth of the cooling layer is small
and considering the flux must be continuous across boundaries, it is reasonable to
assume that Jg is constant in the cooling layer. This also implies that the flux in the
cooling layer equals the final state flux, Jgp = UTT? Taking the derivative with respect

to the propagation direction z of equation 2.76 is,

OFpn, [-2yv+2n(y+1)] On
S = - . (2.78)
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Using the transport model, described above, for the radiation and the assumptions
for Jg in the cooling layer described above, one is left with the following equation for

7 in the cooling layer,

27+ 2n(v+1)] a9y 4 1 y+1\* y+1\*
M opaont—nt=20(12) (1-272) . (@
200D 24t (- = a0 (1 =) e

4

zand Q = 10° results in the compression

Numerically solving equation 2.79 with v =
and temperature profiles shown in figure 2.8 a.

Assuming diffusive radiation transport for the precursor region, which is reason-
able for the system with many photon mean free paths described here, one finds two
coupled equations for n as a function of optical depth. Using equation 2.76 for the

flux as a function of 17 and combining this with an Eddington diffusion model results

in an expression relating the average intensity to 7,

2")/ Y +1 2 471'/€pr 8JR7n
n+ U/ =
y—1" " ~-=1 X or

=0, (2.80)

where frp = % is the Eddington factor, Jg, is the normalized average intensity, xkp
is the Planck mean opacity, Y is the Rosseland mean opacity, and 7 = kp0z is the
optical depth. The second equation comes results from an approach similar to the

derivation of the cooling layer equation above. The result is,

(2.81)

- JR,n_%nzx(l_n)zx] _ {n(vﬂtl)—'y} an

v—1 or
Simultaneously solving equations 2.80 and 2.81 with the same v and () values as above
results in the precursor compression and temperature profiles shown in figure 2.8 b.
The temperature profile in figure 2.8 b shows a diffusive precursor, which is reasonable
based on the assumptions of the radiation transport, and the required transmissive

region at the leading edge[1].
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Figure 2.9: The three-layer model describing the physical picture of the thick-thin
radiative shock. The upstream state has an initial pressure and radiation flux com-
pared to the optically thick case, which sets these values to zero. This figure was
adapted from the work of McClarren et al. [4]

In laboratory experiments, the upstream material is finite in extent and therefore,
if it starts optically thick, always becomes optically thin. This further implies there is
a point where the upstream medium is several mean free paths in length and neither
an optically thick or thin treatment is applicable. In this situation, it is necessary to
evaluate the precursor flux in the transport regime described above and evaluate the
integral for Ji explicitly in order to correctly satisfy the energy balance. This is not
treated further here, but the author points this out to acknowledge the limits of the

theory in the analysis of experimental results.

2.3.3.2 Thick-Thin Shocks

As previously stated, when the upstream is optically thin, whether by the nature
of the medium or due to its finite extent, there are changes to the physical picture of
the shock structure. This section will discuss the differences in the guiding equations
and the results of the analysis that will be useful for comparing to experimental results
later.

The thick-thin shock uses a three-layer model, similar to the optically thick shock,
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but here the upstream region has a constant value for the flux because the radiation
is streaming through this region and is not readily absorbed. This model also uses
po # 0 and Frop # 0 due to the radiation present in the upstream material. The
results presented below follow the approach McClarren et al. take in deriving the
final state and immediate downstream conditions in a thick-thin radiative shock [4].
Progressing in the same way as for the optically thick shock, combining the three
jump condition equations, equations 2.73a, 2.73a, and 2.73a, into a single expression

results in the equation,

Fita = Fron = =1+ =25 [ = pon (1= )] = 5 (282)
where the subscript n indicates the normalized values and the 0 represents the up-
stream values. The variable names have the same definitions as in the optically thick
shock case. This equation allows one to come up with fairly simple expressions for
the final state temperature and inverse compression.

One can find the final state inverse compression from equation 2.82 with the
realization that the net flux is zero in the final state due to the fact that it is optically
thick. This allows for the solution of equation 2.82 as a function of the upstream

pressure and radiation flux. The solution of this quadratic equation is,

i (1 +p0n> — \/<p0n7 - 1)2 + FRnO (72 - 1)
v+1 '

0= (2.83)

Using the normalized temperature, described above, and inserting the final value of

the inverse compression provides an expression for the final temperature,

1 2
RT,; = ——— [ponY + 7 — \/ (Pony — 1)" + Frn 2—1}
f (7+1)2[0’Y g \/(0 ) o (Y )

{pOn +1+ \/(poﬂ —1)? + Frao (12 — 1)} , (2.84)
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which has a dependence on the upstream pressure and radiation flux. Under the
assumption of a small optical depth of the cooling layer, the cooling layer flux is, to

accuracy of order 72,

Frao = 2Q [0y (1 + pon — np)]" (2.85)

where 7, is the optical depth of the cooling layer, as in the optically thick shock. This
expression for the upstream flux allows one to solve for the final inverse compression,
and consequently the final state temperature [4]. This results in an eighth order
polynomial where the numerical solution typically has one real root, that is less than
one and physical.

The immediate post-shock state describes the conditions on the post-shock side
of the density jump and the fact that the flux at that point must be the same as the
upstream flux allows for simple analysis understand this state. Solving equation 2.82
for n under this condition results in the following expression for the initial downstream
inverse compression,

-1, 2y

s = ——— + ——Don, 2.86
& v+1 ’y—l—lpo (2.86)

where 7y, is the initial downstream inverse compression, and is only a function of the
upstream pressure. The normalized temperature is then the result of substituting the

above result in equation 2.75,

2 — (v —1) poa] [2vpon + 7 — 1]

RT, sn
’ (v+1)

. (2.87)

The last feature of thick-thin shocks that this document will discuss is the optical
depth of the cooling layer. This is a relevant value for understanding the volume of the
region providing the greatest cooling effect to the post-shock material and will verify
the assumption used to determine the final state conditions. The radiation leaving
the final must balance the cooling layer flux, as the upstream does not contribute

a flux traveling towards the downstream state, an expression for the cooling layer
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flux is necessary to determine the cooling layer optical depth [4]. Leaving the details
to the work of McClarren et al., the cooling layer optical depth, to a second order
approximation is,

Ty

Tel = o
277,

(2.88)

This means that in order for the earlier assumption to hold, T, must be larger than
the final state temperature, T. For a reference point, a factor of 2 difference between
the final and downstream temperatures results in a cooling layer optical depth of
about 0.03. These conditions can occur in a shock with ) of a few thousand, with
the exact threshold depending on the upstream pressure, which is very achievable in

the laboratory.
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CHAPTER III

Photoionization Front Experiments on the Omega

Laser Facility

Heat fronts have been a topic of experimental studies in HEDP for at least the
last three decades [27, 28, 29, 30, 31, 66]. None of these experiments have definitively
shown that they produced photoionization (PI) fronts as described in the previous
chapters [61]. To fully understand the evolution and behavior of PI fronts, it is neces-
sary to design an experiment that has the correct conditions and set of measurements
to distinguish between the physics regime of the atomic kinetics. This means that
one needs to measure enough of the plasma parameters to determine o and 3. The
following sections will describe the Omega Laser Facility at the Laboratory for Laser
Energetics located on the University of Rochester campus, which is the energy source
used to create the x-ray drive for the heat front. It will continue with a discussion of
x-ray absorption spectroscopy as the primary diagnostic technique, the setup of the
experiment, design simulations, and the analysis of the data from a day of experiments

in September of 2018.
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Figure 3.1: The Omega laser facility at the Laboratory for Laser Energetics taken
from the image gallery at lle.rochester.edu.

3.1 Omega Laser Facility

The Omega Laser Facility, called Omega from here on, is a 60 beam ND:glass
laser that produces pulses on the order of 1 ns with up to 500 J per beam for a total
available energy of 30 kJ. It uses three seed pulses, which are then split into a total
of 60 beams, arranged in a sphere, that can have independent pointing within the
3 m diameter target chamber [108]. A variety of phase plates are available to users
to smooth the spatial profile of the beams and smoothing by spectral dispersion to
change the speckle pattern in time. Each of the 60 beams has the capability for an
independent time delay of about -7 ns to 9 ns, depending on the particular beam. The
benefits of a user facility like the Omega laser facility is the large number of diagnostics
available to perform the measurements desired for a particular experiment. There
are six diagnostic ports on the target chamber that are able to house a wide array of

instruments based on a standard interface called the ten-inch manipulator (TIM).
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3.2 Primary Diagnostic: Absorption Spectroscopy

The primary measurement in these experiments on PI fronts conducted on Omega
is K-shell absorption spectroscopy. This means that the collected spectra will show
line features corresponding to the electronic transitions from the n = 1 state to the
n = m state where n is the principal quantum number and m is an integer greater than
1. This measurement probes the ground states of the ions and allows one to determine
a wealth of information about the plasma conditions including the ionization state
distribution, the temperature, and the density under various assumptions [34, 109].
The bound-bound electron transitions in an atom or ion introduce sharp line features
in the opacity, with the exact details captured in the line shape functions that are
very dependent on the particular transition of interest.[103, 109] The appearance of
the absorption features depends on the shape of the input spectrum and the material
opacity with the dependence Iy, = Ip,e™""* where I, is the absorbed spectrum,

3 K, is the frequency-

Iy, is the initial spectrum, p is the mass density in g cm™
resolved opacity in cm? g=!, and z is the propagation distance. Each ionization state
of a particular element has a different set of energy levels due to the increase of
effective nuclear charge that an electron sees. This leads to a change in the line
structure due to the differing number of electrons and effective nuclear charge in
addition to a general blue shift in the bound-bound transitions and the bound-free
continuum.

The practical application of this measurement technique requires an external ra-
diation source that is spectrally featureless. Typically, experiments accomplish this
using unresolved transition arrays from high-7Z elements, capsule implosions, or foil
emission above the K-edge [13, 110, 111, 112, 113, 114, 115]. In order to make ab-
sorption measurements, the external source flux must exceed the self-emission from

the plasma. This corresponds to the first term in equation 2.24 dominating over

the second, integral term and therefore the detector only sees contributions from the
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plasma opacity in the exponent.

3.3 Design Simulations

In order to make informed decisions on measurement timing, diagnostic window
locations, and data estimates, this work conducted a simulation study that should
reasonably approximate the experiment. This is an important step in any experimen-
tal work as it provides all of the information about a system, which is not the case in
an experiment, and can help one develop a physical intuition for the processes at play.
This comes with the tradeoff that simulations always require assumptions to make it
possible for a computer to reach a stable answer. This has the secondary benefit of
requiring the scientist to think critically about the simulation output to determine if
the results are physical or an artifact of the numerical methods and computational
errors at play.

Here, there are two simulation tools used in the design of photoionization front
experiments: Radiation hydrodynamics simulations and atomic kinetics calculations.
The radiation hydrodynamics simulations provide a view of the macrophysics that oc-
curs due to the heat front passing through the gas cell, such as changes in temperature,

density, and velocity. The atomic kinetics calculations investigate the microphysics of

a) Nominal Model for Helios-CR Simulations b)1§3diation Source Temperature Profile
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Figure 3.2: a) The geometry of the Helios-CR simulations used to design the Omega
experiments to measure PI fronts with the zoning, the materials, and the physics
model. b) The time dependence of the temperature boundary, which use the results
of Davis et al. to determine the rise time and maximum temperature [5, 6].
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the plasma by evaluating the rate coefficients to determine the ionization state distri-
bution and resulting opacities and emissivities at different temperature and density
conditions. As section 2.3.2 described above, it is necessary to have both pictures of

the PI front to fully understand what is happening.

3.3.1 Helios-CR Radiation Hydrodynamics Simulations

The Helios-CR from Prism Computational Sciences code is one dimensional, ra-
diation hydrodynamics code that uses Lagrangian spatial coordinate and allows for
non-diffusive radiation transport and in-line atomic kinetics calculations [65]. The
non-diffusive radiation transport model evaluates the general solution to the radia-
tion transport equation with 1, 2, or 5 angles and uses absorption and scattering
opacities. The atomic kinetics calculations solve the collisional radiative equations
using the following atomic processes: Radiative recombination, stimulated recom-
bination, photoionization, three-body recombination, electron collisional ionization,
electron collisional deexcitation, electron collision excitation, spontaneous emission,
stimulated emission, photoexcitation, dielectronic recombination, and autoionization.
The code calculates the rate coefficients for these processes using a subset of the elec-
tron energy levels in the ATBASE atomic structure database on a highly resolved
frequency grid and solves the matrix equation to produce an ionization state distri-
bution. The work of Gray et al. showed the differences between multi-group diffusion
with tabular opacities and the physics model available in Helios-CR for the PI front
problem [62, 63].

3.3.1.1 PI Front Simulations

The simulations used a temperature boundary to act as the ionizing radiation
source driving the PI front, using the time profile in Figure 3.2 b with a maximum

temperature of 80 eV [5, 6]. The gas cell model uses a 0.75 pm mylar window followed

62



a)4 log o at 3 ns and 8.56 atm b) 3 at 3 ns and 8.56 atm

T : 112
NII->NIII o NII->NIII o
\ 140 > \ 140 »>
\ NIII->NIV & 11H NIII->NIV 2
2t —NIV->NV 2 \ —NIV->NV 2
—NV->NVI 130 £ 108 —NV->NVI |30 £
3 --T, 5 - -T, 5
e 0 £R1.06¢ g
k= 120 § 120 §
T 104l =
2 (=] (=]
110 & 110 &
g 102 8
-~ ) )

-4 T 0 1 ‘ = 0

0 01 02 03 04 05 06 0 01 02 03 04 05 0.6
Position (cm) Position (cm)

Figure 3.3: The calculated values of a, a), and /3, b), from the Helios-CR simulations
with the electron temperature overlaid to give a more physical reference. These figures
show a selection of ionization state transitions with the minimum value of « indicating
the location of the PI front. The values of o are well below one suggesting the plasma
is photoionizing and the values of 8 at the locations of minimum « are about one,
satisfying the conditions for a PI front.

by 7000 pum of N gas, as follows the experimental parameters. There are 5 zones of
mylar using LTE physics due to the fact that it is at solid density, tabular EOS
and opacity tables with a quotidian EOS model, and multi-angle radiation transport.
The N uses a pressure of 8.5 atm in 100 zones to provide adequate mass matching to
the mylar and uses detailed configuration accounting (DCA) in-line atomic kinetics
calculations to generate opacity values for the radiation transport and the radiation
hydrodynamics uses tabular EOS values.

As discussed in section 2.3.2, the atomic kinetics determine the physics regime
of the PI front through the dimensionless parameters o and 3. To do this, a post-
processing script takes the plasma parameters and calculates the atomic rate coeffi-
cients to determine the dimensionless parameters for each ionization state using the
Verner and Ferland rates and the Lotz formula [104, 105]. The photoionization rate,
I';i+1, defined in equation 2.54, needs to account for the changes in radiation flux
between zones due to absorption. To accomplish this, the post-processing follows the

treatment in Gray et al. and uses the fourth power of the ratio between the local
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radiation temperature to the source temperature to scale the source flux,

Tri\*
F = ) R, 3.1
: (TRs) (3.1)

where T is the temperature and F' is the flux with s and [ indicating the source and
local values respectively.

Evaluating the rate coefficients for spatial grid points in the N, the calculated
values of o and (8 in figures 3.3 a and b suggest that this experimental design will
produce a PI front out to over 1 mm from the source about halfway through the
x-ray drive. This is because in the locations where « is much lower than unity, g is
about one. These simulations additionally show that the evolution of the dominant
ionization state happens over a fairly small region up until the NV state when the
opacity is at a low enough value that the photon mean free path is significant, relative
to the experimental length scales. Further investigation of the « profiles provides the
insight that the minimum « value coincides with the location of the PI front in that

ionization state.

3.4 September 11th 2018 Experiments

Experiments at Omega in September of 2018 were the first to use a gas cell
platform with absorption spectroscopy using a capsule implosion as the probe source
to characterize PI fronts. As this is the first experiment with this platform, the desired
outcome was to characterize the absorption spectroscopy platform and acquire data

on all of the diagnostics.

3.4.1 Experiment Geometry

This experiment requires a gas cell to hold the propagating medium, an x-ray

source to drive the PI front, and a probe source. Figure 3.4 a shows a cartoon version
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Figure 3.4: a) A cartoon of the experiment geometry showing the dimensions and
measurement geometry. b) An image of the target used in the experiments showing
how this connects to the cartoon in a).

of the geometry used here. The gas cell is a single, machined structure made of acrylic
that has all of the features needed to stalk, fill, and shield the target. The gas cell
is mostly cylindrical with a 7 mm long interior dimension and an inner diameter of
3.2 mm, but along the measurement axis there are flat walls with a 3 mm separation
to simplify the measurement geometry and to set the window thickness. There is a
cone at the front end of the gas cell that extends out 11.75 mm from the front at a
45° angle to support 100 gym Au shielding. There are two 1 mm diameter diagnostic
windows, positioned over the flat inner surfaces of the gas cell, which are blind holes
leaving 50 pum of acrylic to support the gas but allow the probe x-rays through. In
order to limit the spatial integration of the measurement and to limit background, a
piece of 100 pm thick Au shielding sits over the diagnostic window towards the TIM
3 spectrometer that limits the detection window to 600 pum along the propagation
direction and 1 mm in the transverse direction. There is a well at the front of the
gas cell to fit a window that allows the drive x-rays to interact with the gas, which
is a 750 nm thick LUXfilm foil from the LUXEL corporation with a 100 pgm thick
stainless steel hexagonal grid support. The hexagonal grid has a 4 mm OD and a

3 mm ID with 610 um pitch hexagons and 50 um thick support bars. The x-ray
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source is a 0.5 pm thick Au foil irradiated with 10* W ¢cm~=2 for 5 ns, which the work
of Davis et al. showed produces a quasi-blackbody of approximately 80 eV on the
surface opposite the laser incidence with a 0.5 ns rise time [5, 6]. The Au foil sits on
a 100 pum thick Au washer with a 5 mm OD and a 3 mm ID. There is an additional
well at the front of the gas cell to seat the Au foil, which places the front surface of
the Au foil 1250 pum from the center of the probe windows. The stalk is made of a
hollow Tungsten Carbide with an 800 pm OD and sits at the rear of the target using
a blind hole drilled along the axis of the gas cell to allow gas to flow into the target.
Figure 3.4 b shows an image of the target and identifies the drive foil, gas cell, and
stalk.

The probe source is a CH capsule from General Atomics, described in more detail
below, with an about 860 ym OD, an 8.7 ym wall thickness and an interior volume
held at vacuum. The interior volume is initially held at vacuum, but it is almost
certain that air leeches into the capsule through the wall before the experiments
occur. The Silicon Carbide stalk is 130 pm thick and attached using glue to secure
the capsule in place. The capsule positioning in the target chamber places it 10 mm
from the gas cell axis 1250 pm from the front surface of the Au drive foil and 25 pm
below the center of the measurement windows. In order to limit the source size of
the capsule emission, there were two Al posts that attach to a W foil containing a
600 pm by 125 pum slit that the design fixes over the center of the diagnostic window
in the axial direction, but is 20 pm below the center of the window in the transverse
direction. This shift off of center is to adjust the spectrometer energy range to include
the Ar k-shell within the limitations of the target. The W aperture foil sits 5 mm
away from the gas cell axis towards the capsule target and figure 3.4 b shows the

aperture foil attached to the gas cell.
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3.4.2 Laser Configuration

This experiment uses thirty of the available sixty beams on Omega with ten di-
rected towards the Au foil for creating the drive source and 20 towards the CH capsule
to produce the probe source. All of these beams use smoothing by spectral dispersion
to prevent laser “hot spots” from sitting in the same place through the duration of
the pulse.

This experiment uses ten beams to create the x-ray drive, called the drive beams
from here on, using SG-5 phase plate that have the effect of smoothing the spatial
profiles and limiting the spot size to an ellipse with 850 ym major axis and 630 um
minor axis [116]. These drive beams point 1250 pm off of TCC towards the Au foil
and each uses a 1 ns square pulse with 450 J in each beam. To drive the foil for 5 ns,
the beams are incident in pairs of two beams with delays of 0, 1, 2, 3, and 4 ns to
produce a 5 ns long laser pulse. The angle of incidence determines the beam pairing
with the largest angles paired to the smallest angle, and so on, to keep the irradiated
area similar throughout the duration of the drive. This results in a laser intensity of
about 10 W cm™2 for each pair of beams.

Due to the size of the gas cell target, only twenty beams are available to drive
the capsule implosion that probes the conditions at the PI front, from here on called
the probe beams. These beams do not use phase plates, as they point too far away
from the center of the target chamber. Each of the beams uses a 1 ns square pulse
and nineteen have an 800 um spot diameter with one having a 400 pm spot diameter
to compensate for the lack of available beams due to the large gas cell target acting
as an obstacle. The probe beam pointing is 10 mm off of the center of the target
chamber along the diagnostic window axis at the CH capsule. By the nature of
the beams available, the laser irradiation pattern is not uniform across the capsule
surface, section 3.4.4 quantifies this anisotropy, and so the figure of merit is the

average intensity, which is about 4 * 10 W cm™2. The range of the intensities over
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Diagnostic Port Diagnostic Pointing
TIM 1 ADP Time-Integrated Spectrometer | Capsule
TIM 2 X-Ray Framing Camera Capsule
TIM 3 ADP Time-Integrated Spectrometer | Gas Cell
TIM 4 TIM Target Positioner Gas Cell
TIM 5 Soft X-Ray Framing Camera Au Foil
TIM 6 Soft X-Ray Framing Camera Capsule
Dante Dante Diode Array Capsule

Table 3.1: The diagnostic configuration on the Omega laser facility for the experi-
ments to measure PI fronts.

the capsule surface spans 10 to 7 * 10'* W cm~2.

3.4.3 Diagnostic Choices and Configurations

This experiment uses a variety of diagnostics to measure the properties of PI
fronts and to characterize the drive and probe sources. This approach is especially
necessary in spectroscopic measurements where numerous processes contribute to the
total spectrum and it is necessary to extract any background sources or features
inherent to the source to produce an accurate analysis. Before going into the details,
it is important to define the geometry of the diagnostic ports on Omega. There are
six ports that support TIM-based diagnostics, which are arranged in such a way that
TIMs 2 and 3 and TIMs 4 and 6 are opposite each other, called the TIM 23 and TIM
46 axes from here on. In addition, the angle between the TIM 23 and TIM 46 axes
is 79.8° making them nearly orthogonal. TIMs 1 and 5 view the plane made by the
TIM 23 and TIM 46 axes at oblique angles. The gas cell target positioning aligns
the diagnostic window axis with the TIM 23 axis having the capsule sit on the TIM
2 side and the Au foil parallel with the TIM 23 and TIM 46 plane.

Table 3.1 provides an overview of the diagnostic selection and relative positions
for these experiments. Both of the time-integrated spectrometers, in TIMs 1 and
3, use Ammonium Dihydrogen Phosphate (ADP) crystals at an angle of 19°, which

is steeper than the standard 15.56° for the diagnostic housing to shift the spectral
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a) TIM 1 View b) TIM 2 View °) TIM 3 View

9 TIM 5 View ®  TIM 6 View % Dante View

N\ Y

Figure 3.5: The different diagnostic views of the target for these experiments. a) The
view of the target from the time-integrated spectrometer in TIM 1. b) The view of
the target from the x-ray framing camera in TIM 2. ¢) The view of the target from
the time-integrated spectrometer in TIM 3. d) The view of the target from the soft
x-ray framing camera in TIM 5. e) The view of the target from the soft x-ray framing
camera in TIM 6. f) The view of the target from the Dante diagnostic.
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range from 2-3.25 keV to 2.25-4 keV to accommodate the target geometry for the Ar
k-shell lines. These spectrometers use image plates to record data and use a Saran foil
over half of the entrance slit to use the Cl K-Edge at 2.82 keV as a spectral fiducial
[117, 118, 119].

The TIM 1 spectrometer has a direct line of sight to the capsule emission, which
provides a reference spectrum to compare the absorption data to and to remove source
features. The TIM 3 spectrometer observes the transmission of the capsule emission
through the gas cell. Figures 3.5 a and ¢ show the views of the TIM 1 and TIM 3
spectrometers respectively.

The x-ray framing camera (XRFC) in TIM 2 provides a measure of the source size
with four independently timed multichannel plate (MCP) using a 50 ps pulse forming
network (PFM) on each strip. An array of sixteen, 15 ym pinholes arranged in a 4x4
grid allows for four images per strip with a magnification of 4.6. There was a 300 V
bias applied to each strip to reduce the gain and prevent the images from saturating.
Figure 3.5 b shows the view of the experimental target from the TIM 2 camera.

It is possible to use a TIM as a target positioner to add more targets if that is
what an experiment calls for. Here, the experiment uses TIM 4 to position the gas
cell, which means that in order to correctly align the diagnostic windows with the
TIM 23 axis the stalk angle must be 10.8°.

TIMs 5 and 6 have a soft x-ray framing cameras that use two grazing incidence
mirrors to select x-rays with energies below about 750 eV along with a center channel
that contains higher energy photons. The TIM 5 camera views the front surface of
the Au foil with a 200 ps PFM and a four strip MCP that each have a 200 V bias.
The TIM 6 camera views the implosion capsule using a 200 ps PFM and a 0 V bias
on all four MCP strips with a magnification of 3. There are three channels in each
camera with the input channel having a 25 ym pinhole and a 3° Al mirror with a 5

pm thick parylene-N filter, the center, harder x-ray channel has a 10 gm pinhole with
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Figure 3.6: a) The laser intensity on the surface of the capsule used in the experiments
described here from the VisRad view factor code. b)The spherically symmetric case,
modeled with the Omega-60 laser geometry, to approximate a uniformly-irradiated
capsule using the VisRad view factor code. ¢) The polar drive case, modeled with the
NIF laser geometry, to show a cylindrically symmetric irradiation pattern using the
VisRad view factor code. d) The laser intensity pattern used in the capsule implosions
from the work of Hansen et al. [7].

a 25.4 um Be filter, and the output channel has a 25 pym pinhole and a 3° Al mirror
with a 1 gm V filter. Figures 3.5 d and e show the target views from TIMs 5 and 6.

The Dante diagnostic is an array of absolutely calibrated, filtered diodes, using
either metal foils grazing incidence mirrors, that provides a time resolved flux mea-
surement. There are 18 channels on the Omega Dante that span from 50 to 20000
eV with bandwidths from tens to thousands of eV. These diodes provide information
on the time evolution of the capsule implosion and can provide an effective temper-
ature from unfolding the flux measurements with calibrated response functions for
each channel [6, 120, 121]. Figure 3.5 f shows the view of the target from the Dante

diagnostic.

3.4.4 Capsule Anisotropy Characterization

In the ideal case for capsule implosions, the laser intensity would be the same,
or within a small percentage of the average, over the whole surface of the capsule.
When this is not possible, it is useful to quantify the anisotropy in the irradiation
pattern, in at least a relative way. To develop an anisotropy parameter, one needs a
model of the initial laser intensity on the surface of the capsule. These calculations

will use the VisRad view factor code to generate a spatial grid on a sphere to perform
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this analysis [122]. These laser patterns, created in VisRad, capture the initial laser
pattern at zero time, but they will change shortly after irradiation when the capsule
surface forms a plasma. The average laser intensity, /7 in TW cm™2, on the capsule,

is the sum of the intensity in each grid divided by the number of gridded regions,

where N is the number of regions in the grid and I; is the intensity in the ith grid re-
gion. Since any line-of-sight to the capsule sees a hemisphere, it can never capture the
entire surface and the anisotropy should compare how different the capsule appears
from various observation directions, making the intensity for a particular line-of-sight

important,

where I7,s; is the laser intensity from the jth line-of-sight and n is the number of
grid regions in a single line-of-sight. I,s is the root-mean-square value of the inten-
sity, which will capture the range of values in a particular line-of-sight. With these
definitions it is possible to construct an anisotropy parameter, ¢, that characterizes

the difference between the line-of-sight values and the total capsule average,

1 Nros

0= Ze*

Iros,i
-t

LoS

where Np,s is the number of lines-of-sight in the VisRad model.

The anisotropy parameter, ¢ therefore takes into account the variation over the
surface by comparing any one view of the sphere to the average, with a uniform
irradiation pattern having ¢ = 1. This allows for the parameter to observe symmetries
in the irradiation pattern because symmetric lines of sight will have the same averages,

which will increase ¢ overall. Due to the exponential nature of the parameter, the
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Figure 3.7: a) X-ray emission, > 2 keV, from the stagnated implosion at 1.25 ns after
the start of the laser pulses. The image is saturated, but will provide an upper bound
of about 125 pm for the emitting source size. The red curve is the 50% contour from
the maximum pixel value. b) Soft x-ray emission, < 700 eV, from the capsule near
stagnation at 0.9 ns from the start of the laser pulses. This image similarly suffers
from saturation and provides an upper bound on the soft x-ray emission. The stalk
is visible to the bottom right of the image. The red curve is the 50% contour from
the highest pixel value.

minimum value of ¢ is zero. This occurs in a situation where the laser energy exists
in two opposing grid points as the number of grid points goes to infinity. There may
be other laser patterns that produce the minimum value of ¢, but they will not be
explored here. This is a very contrived scenario that is not practical on laser facilities
capable of driving a capsule implosion. Since the intensity is an area-normalized
quantity and the calculation normalizes ¢ to the average intensity, the scale of the
facility or capsule should not affect the interpretation described above.

As stated above, it is possible to compare laser-irradiation patterns using ¢.
Figs. 3.6 a-d show the laser irradiation patterns for four different configurations:
irradiated as in the experiment described here, in a spherical geometry at Omega, in
a polar geometry at NIF, and in the 10 beam pattern from the work of Hansen et al
[7]. The Omega capsules have an 850 pum diameter and the NIF capsule uses a 1.6
mm diameter [114]. To calculate the asymmetry parameter for each of these cases,

VisRad view factor models were created for the capsules using 100 azimuthal and 100
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Figure 3.8: The mass density from Helios-CR simulations that varied the incident
laser power over the range present in the laser irradiation pattern with the 8.52 TW
the average over the capsule.

polar grid points then applying 60 Omega beams to the uniformly irradiated capsule,
64 NIF beams to the polar irradiated capsule, 20 Omega beams for the current work,
and 10 Omega beams for the Hansen capsule design. This results in a ¢ of 0.9424 for
the experiment presented here, 0.9983 for the spherically symmetric model, 0.9648 for
the cylindrically symmetric model, and 0.7664 for the model in the work of Hansen
et al [7]. From the interpretation stated above, this means the spherically symmetric
model is the least anisotropic, followed by the cylindrically symmetric, then the cur-
rent experiment, followed by the Hansen capsule. This analysis captures the range of
intensity values in a particular line of sight, due to the use of the root-mean-square
value. This explains why the pattern in the 10 beam pattern from Hansen et al. in

Fig. 3.6 d is so much lower than the other three patterns with 20 or more beams.

3.4.5 Experimental Results and Simulations

This Omega shot day resulted in nine laser shots to execute the experiment. The
experimental plan for this shot day was to take a series of calibration and null shots

before moving into integrated physics targets while varying the probe source delay to
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measure the evolution of the PI front. Appendix A provides more details on the exact
experimental configuration for each shot. This approach provides the background and
noise levels from the Au foil and the heated gas, which allows for better understanding
of the data that results form the conditions inside the gas cell. The results of the
background and null shots showed that there is sufficient shielding on the target and
the Au foil and self emission from the gas cell contribute little to no signal to the
measurements.

The experimental data, collected as described above, shows the parameters of
the capsule implosion compare reasonably well with the data collected in previous
experiments [123, 124, 125]. In addition, 1D simulations using the Helios-CR code,
which is a Lagrangian radiation magnetohydrodynamics code that has diffusive and
non-diffusive radiation transport models, detailed atomic physics, and a ray-tracing
laser package, can provide information for designing a laser irradiation pattern [65].
Here, simulations using LTE conditions and diffusive radiation transport with 50
radiation groups varied the laser power on a CH capsule. The simulation used a
spherical geometry, with 3 zones of “vacuum”, which is actually 0.2 atm of air for
mass matching purposes, that is 420.9 pm thick followed by CH region of 500 zones
that is 8.7 pum thick. The simulations vary the laser power using the values 2.17,
5.34, 8.52, 12.1, and 15.67 TW where the first and last values are the minimum
and maximum values from the VisRad model and the middle value is the capsule
averaged laser power. The other two values are the averages between the minimum

and maximum values with the capsule average power.

3.4.5.1 Source Size and Timing Measurements

Characterizing the size of the stagnated implosion determines the dimensions of
the source, which is important for calculating the line broadening in spectroscopic

measurements. The views of the cameras are nearly orthogonal to each other, which
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Figure 3.9: a) A comparison of the spectra recorded on two different spectrometers
during the same shot. b) The raw image plate data showing the spectral fiducial from
the Saran filter and the line emission from the Ar and S contamination in the capsule
target and glue.

shows a reasonably uniform implosion at stagnation, to within the measurement res-
olution. Figs. 3.7a and b show the x-ray and soft x-ray camera data near stagnation
with the red contours representing 50% of the maximum signal in the image. The
signal from the capsule saturated the camera so the data gives an upper limit for the
source radius of about 62.5 um, and Fig. 3.8 shows the source radius in the simula-
tions, which is about 50 pum for the average laser power on the capsule and defining
the boundary as half the maximum density. The measured value is about 20% greater
than the simulated value, which is reasonable agreement for 1D simulations to this
3D system. This framing camera data also provides the timing of the x-ray flash,
which occurred at about 1.25 ns in the experiments. The capsule-average laser power
simulations show an x-ray flash timing of 1.13 ns, which is within about 10% of the

measured value.

3.4.5.2 Spectral Measurements

Two flat crystal spectrometers measured the spectral content of the x-ray flash
from the capsule implosion using a MS type image plate (IP) as the detector [117,

118]. To identify the spectrometers, the discussion will call one the “measurement”
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spectrometer and the other will be the “reference” spectrometer as this language
lends itself to a measurement with a probe source. Each had an ADP (101) crystal
at an angle of 19.5° relative to the spectrometer axis, which gave a spectral range of
about 2500-4000 eV, and a different line-of-sight to the capsule with a 142.6° rotation
between the two views.. A Saran filter covered half of the spectrometer aperture to
act as a spectral fiducial at the Cl k-edge (2.82 keV), shown in Fig. 3.9 a. The signal
on the IP gets recorded in photostimulated luminescence (PSL), but it is possible to
convert this into units of photons eV~! sr=!. Following a treatment used in analysis
of capsule spectra elsewhere in the literature, the photon number spectrum, S (E),

is,

PSL
S(E) = , (3.2)
Sie (E) SR ()T (B)
where PSL is the signal in PSL, S;p (F) is the IP sensitivity in mPSL !, g—ﬁ is the
solid angle per 25 pm?, Z—g is the crystal dispersion, R (F) is the crystal integrated

reflectivity, and T (FE) is the transmission through the spectrometer blast shield and
the IP protective layer [113, 114, 119]. The integrated reflectivity calculations used
the Xoh tool on Sergey Stepanov’s X-Ray Server [126, 127]. Fig. 3.9 b compares
the spectra recorded on the measurement and reference spectrometers during a single
shot and shows very comparable signal of around 3*10'° photons eV~! sr=!, however,
there is no cross calibration of the crystals. This is sufficient to produce a signal of
about 1 to 2 PSL after characterizing and subtracting high energy background from
a portion of the IP not visible to the crystal. The minimum signal on the IP is about
0.01 PSL with the scanner used in this study, which is two orders of magnitude lower
than the collected signal. There were contaminants in the capsules, which are the
cause of the observed line emission in the spectra. Analysis of the line emission shows
that these contaminants were Ar and S that are likely from storing the capsules in

air and the glue that fixes the capsule to a stalk respectively.
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Figure 3.10: a) The simulated net flux out of the surface that is half the maximum
density at each time step for the laser power range on the capsule with 8.52 TW
the average over the whole capsule. b) The Dante unfold of the capsule implosion.
This figure has a shifted time axis so that the peak emission is at 1.25 ns to match
the x-ray framing camera results. This is reasonable because the timing of the Dante
measurement is not connected to the laser timing. The small signal that occurs before
0 ns is likely the result of inaccuracies in the alignment of the Dante channels in time.

3.4.5.3 Flux Measurements

The Dante diode array, described above, records absolutely calibrated, time-
resolved flux from the capsule. Because these measurements are absolutely calibrated,
one can extract the power per steradian as a function of time. This can be difficult to
accomplish because the oscilloscope timing is separate from the laser timing and the
cables for each channel are not calibrated to co-time the data. Here the x-ray flash
at stagnation acts as a timing fiducial to align the Dante channels. Fig. 3.10 b shows
the measured power per steradian from the capsule using the matrix unfold method
and Gaussians as input functions with an 1.2° angle of incidence [120]. To correct for
the diode temporal response, the analysis deconvolves the Dante channels with a 160
ps Gaussian using a Lucy-Richardson algorithm [128, 129]. The time dependence in
Fig. 3.10 b show some signal at times earlier than zero, which is likely a result of the
difficulties in co-timing the channels accurately.

One can use the Helios-CR simulations mentioned above to estimate the flux

leaving the capsule that the Dante diagnostic measures. An accurate calculation of
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Figure 3.11: The dashed curve is the channel 11 Dante data, which spans 2-5 keV,
deconvolved with a 160 ps width Gaussian to account for the diode temporal response.
The dot-dash curve is a Gaussian fit to the Dante data, which has a FWHM of 200
ps. The solid curve is the flux calculated at half of the maximum density at each time
step using the capsule-average laser power, which has a width of 50 ps.

this flux would be quite involved. For each photon energy one would have to find the
ray intensity in each direction for a point on the capsule surface, using the radiation
transfer equation. Then one would need to integrate in angle to find the flux at
that energy and to sum over energies to find the net flux. However, because of the
asymmetric implosion there seems little point in doing this using a 1D simulation.
Instead, we did the simpler estimate described next.
Since the simulations use a diffusive radiation transport model and LTE physics,
it is reasonable to make the same assumptions in this estimate. In a diffusion model,
the radiation energy density is only a function of temperature and is proportional

to the radiation pressure.[1] Using an Eddington factor of % and assuming spherical

symmetry results in a frequency integrated radiation flux of,

- 4% 7 0BT | 1605513 0T
Fr=— T =
3XR oT Or

?)X—RET, (33)

where ypr is the Rosseland mean opacity in units of length™!, B is the blackbody

energy flux, and 7 is the radial unit vector.
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Our estimate amounts to assuming that each computational zone acts as an inde-
pendent emitter, whose radiation is then attenuated out to the edge of the imploded
capsule. Since the total emitted flux is dominated by those hot zones that are close
enough to the surface that their emission is not strongly attenuated, this is a plausible
approach to use. In detail, the calculation defines the capsule boundary as the loca-
tion with half of the maximum density in the +7 direction. It evaluates Equation 3.3
to find the radiation flux at each zone boundary for each time step. It calculates
the attenuation of the flux from each zone out to the capsule boundary, and sums
the product of the fluxes and attenuations to estimate the total emitted flux at each
time step. Fig. 3.10 a shows the result of this calculation. One sees that the x-ray
pulse magnitude decreases with lower laser power. For the 2.17 TW simulation, this
calculation results in no obvious peak in emission. Comparing the calculated flux for
the average laser power case in Fig. 3.10 a with the Dante analysis in Fig. 3.10 b
shows that the former is a factor of about 100 greater than the latter. This is likely
the result of a number of factors. The simulations are in 1D and the experiment is
very much a 3D system, which will act to reduce the radiation output. Additionally,
the x-ray flux from the simulations cover a much larger spectral range than the Dante
measurements, which only spans from about 50 to 5000 eV due to the active channels
for these experiments.

The duration of the x-ray pulse defines the integration time of the measurement.
Fig. 3.11 shows a broadband Dante channel, which covers the spectral range of in-
terest from 2000-5000 eV, deconvolved with a 160 ps width Gaussian to account for
the temporal response of the diode, a Gaussian fit to the data, and the simulation
output [130]. The Gaussian fit suggests an about 200 ps full-width at half-maximum
(FWHM) duration of the x-ray flash while the simulation suggests about a 50 ps
x-ray flash. This could be a result of not including the ablated plasma in the flux

calculation, the three dimensional effects in the implosion, or the line emission from
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Figure 3.12: The analyzed data from the Dante diagnostic with the dedicated target
to observe the emission from the rear surface of the Au foil.

the capsule. In addition, the deconvolution scheme used on this data was a Lucy-
Richardson algorithm, which tends to over estimate the width of the initial data and

could lead to an overestimate of the x-ray pulse duration [128, 129].

3.4.5.4 Characterization shots

In order to understand the sources of noise present in the absorption spectroscopy
measurements, there were four shots dedicated to understanding the different portions
of the experiments. One uses only a capsule to observe the unobstructed signal from
the probe on all of the relevant diagnostics, another uses a dedicated target, shown
in Figure 3.12 a, to observe the output of the Au foil source through the gas cell
front window using the Dante diode array to measure the flux. The second two
characterization shots determine the effects of the gas cell on the measurements where
one drives the gas cell target without the probe to observe any signal from the Au
foil that makes it to the detectors and the second uses the probe without the drive to
determine how the gas cell itself affects the measurements. The above sections detail
the results of the capsule only shots, the Au foil shot provides the time-resolved x-

ray flux that reaches the N and Figure 3.12 b shows these calculations. The peak
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brightness temperature is around 160 eV, but this calculation does not account for the
increasing source size, which means the actual temperature is lower than this. The
driven gas cell characterization shot shows almost zero signal on all of the diagnostics.
The only measured value is some very dim, broad emission on the time-integrated
spectrometer, which is due to the heated Ar in the gas cell. The probe only shot
shows bright signal through the gas cell, but the aperture collimates the source and
truncates the spectral range. The next section will discuss the effects of this in more

detail.

3.4.6 PrismSPECT Atomic Kinetics Calculations

As mentioned above, it is important to understand the spectral content of the
probe source when performing absorption spectroscopy measurements. The 50 group
approach taken in the radiation hydrodynamics simulations is too coarse for com-
parison to spectroscopic measurements. Atomic kinetics calculations can bridge this
gap with more sophisticated atomic models and finer frequency grids than are rea-
sonable in the hydrodynamic simulations. The PrismSPECT code by Prism Com-
putational Science solves the collisional-radiative equations or Saha equation, in non
Local Thermodynamic Equilibrium (NLTE) or LTE conditions respectively, for a set
of temperature with a flexible level of detail in the atomic model and the ability to
include external radiation sources and non-Maxwellian electron distributions [101].
These calculations will allow for the estimation of the emission spectrum from the
capsule implosion and the absorption spectrum from the PI front using the Helios-CR

output to set the plasma parameters in the calculations.

3.4.6.1 Calculated Capsule Emission Spectrum

Understanding the probe source is critical in absorption spectroscopy experiments

because there are many experimental contributions to features in the measured spec-

82



Q
~
N

Capsule Emission Spectrum b)1 Estimated Absorption Spectrum

z

a2

®1s) g

@ >

G’\c .4:

= 1t %

£ =

73} L]

S05¢

N

=

o
0 : ‘ : : : 0 : ‘ : : :
2000 2500 3000 3500 4000 4500 5000 2600 2800 3000 3200 3400 3600 3800

Energy (eV) Energy (eV)

Figure 3.13: a) The calculated emission spectra along a ray propagated through the
profiles from the Helios-CR simulations and integrated over 400 ps centered around
the implosion stagnation time. b) The estimated absorption spectrum, using the
calculated spectrum in a) integrated over the duration of the simulation.

tra and extracting the effects of the sample requires knowledge of each component.
For example, the crystal can produce features due to defects, absorption, and geome-
try in addition to the effects of contaminants, multiple emitters, and the sample itself.
Estimating the expected spectrum from simulation, combined with characterization
of the contributions from instruments and noise, allows one to extract the features
that result from the probe beam passing through the sample plasma, which is a PI
front here.

Here, the calculations to estimate the emission spectrum from the capsule use the
temperature and density profiles from the Helios-CR simulations and a single ray.
Then, using equation 2.24 and a table of frequency-resolved emissivities and opacities
from PrismSPECT calculations, one can treat each zone of the simulation as a slab of
plasma and calculate the transmission and self-emission through the system. These
calculations only propagate radiation in the 47 direction because that is all that a
spectrometer will see. The opacity and emissivity tables use a ten-by-ten temperature
and density grid and finds the grid location closest to the plasma parameters in the
current zone for the transport calculations. The estimated spectrum in Figure 3.13

a shows the output of the calculation integrated over 400 ps, centered on the time
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that the implosion stagnates and Figure 3.13 b shows the time integrated absorption

spectrum from the PI front simulations.

3.4.6.2 Estimations of the Absorption Spectrum

Atomic kinetics calculations using the conditions from the PI front simulation
output with 99% N and 1% Ar, used as a spectroscopic dopant detailed below, allow
for calculating the absorption inside the gas cell. These calculations, combined with
the capsule emission spectrum, supply the opacity of the PI front heated, which allows
the attenuation of the capsule probe spectrum and an estimation of the absorption
measurement. Using the capsule emission spectrum at stagnation, along with the
opacity and emissivity values from the PI front simulations from 1 to 3 ns, calculations
of the radiation propagation through the x-ray heated material with equation 2.24
integrated over time show the expected absorption spectrum. Figure 3.13 b shows the
results of these calculations and the presence of numerous lines from n= 1 to n= 2
and the n= 1 to n= 3 transitions. Since the electron temperature is about 10 eV or
less at the PI front, the ionization from the electron collisions alone is significantly

less than the ionization from photoionization.

3.4.6.3 Absorption Spectroscopy Measurements

There were four integrated physics shots where lasers drove the Au foil and the
capsule backlighter to probe the N plasma. However, the aperture on the gas cell acts
as a collimator and limits the angular divergence of the probe x-rays, which reduces
the spectral range of the measurement. This results in the small region of signal on
the image plate data in Figure 3.14. The second observation is that the signal starts
at about 3.4 keV, which is slightly above the expected energy for the 1—3 transitions
in Ar. This issue is easily correctable in future experiments by removing the aperture

and increasing the dimension of the windows transverse to the PI front propagation.
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Figure 3.14: The capsule emission spectrum measured through the gas cell. The
signal cuts off below about 3.4 keV due to the aperture on the target limiting the
angular divergence of the capsule emission.

These are reasonable changes because the measured upper limit on the capsule source
size is approximately 125 pum, which should result in acceptable broadening, and a

larger window will allow for more angular divergence of the probe x-rays.

3.5 Conclusions

Photoionization front experiments present numerous challenges in the computa-
tional design, the target construction, and the diagnostic selection. This work used
the post-processing of one-dimensional radiation hydrodynamics simulations to sug-
gest that it is possible to drive a PI front using the Omega-60 laser facility and to
determine a useful location and timing for experimental measurements. Additional
simulations similarly characterized the expected conditions and timing of the cap-
sule backlighter for an absorption spectroscopy measurement. An estimate of the
absorption spectroscopy measurement that uses the output of both of these radia-
tion hydrodynamics simulations and atomic kinetics calculations shows a reasonable

signal level for the designed experiment. Experiments conducted at the Omega-60
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laser facility characterized the drive source, probe source, and the spectroscopic di-
agnostic geometry. Although, these experiments were unable to collect absorption
spectra due to a restricted spectral range from a limiting aperture on the target, the
characterization data collected will be invaluable to improving the target design in
future experiments. Of particular use is the connection between the laser irradiation
pattern on the capsule backlighter and the probe timing. This will allow for adjust-
ments to the beam selection and pointing to accommodate changes to the gas cell
target without concerns about significantly changing the performance of the probe

source.
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CHAPTER IV

Photoionization Front Experiment Design for the

Z-Machine

When conducting experiments, especially when they require large user facilities,
the question of systematic uncertainties is always present and can be difficult to
resolve. One way of testing the effects of the experiment on the measurements is to
repeat them on an independent platform. Sandia National Laboratories’ Z-Machine
produces a significant soft x-ray flux, with the appropriate load, and should be capable
of driving a PI front. Experiments on Z would serve two purposes, one is to provide an
independent measurement of PI front physics for comparison with the ones conducted
at Omega, and the second is to use a different source geometry, which will provide a
different response from the material while producing the same physics. The later is
due to the different distances of the source to the gas cell and the size of the source
relative to the gas cell at the two facilities. This is related to the analysis of PI front
curvature found in section 2.3.2.5 with the Omega and Z experiments having the
source size smaller and larger than the propagating medium respectively.

This chapter will describe the design of a PI front experiment using Sandia Na-
tional Laboratories’ Z-Machine as an x-ray source. It will discuss the capabilities of
the Z-Machine for these measurements, a simulation study to design the gas cell, and

conclude with estimates of the measurements that these experiments could produce.

87



Figure 4.1: The Z-Machine at Sandia National Laboratories.

4.1 The Z-Machine at Sandia National Laboratories

The Z-Machine is a 26 MA pulsed-power facility that uses current to produce and
manipulate plasma into an HED state. For the purposes of a PI front experiment, the
nested wire array used in the Z Astrophysical Properties Platform (ZAPP) produces
about 2 MJ of soft x-rays [24, 96]. The 12 mm tall wire array has a 20 mm inner
diameter with 120 tungsten (W) wires and a 40 mm outer diameter with 240 W wires
[24]. The W wires are 11.4 um in diameter and there is a 14.5 mg cm™2, CHy foam
on the axis of the wire array that has a diameter of 6 mm.

In an experiment, the current ablates the wires, and the resulting J x B force and
magnetic pressure move the resulting plasma towards the axis. When the W plasma
reaches the plastic foam, the impact launches a cylindrically converging shock that is
strong enough to produce significant amounts of radiation. This radiation launches
a heat wave into the W and the resulting emission when the pinch stagnates on axis
is the result of the released radiation behind the heat wave and the thermal emission
from the hot, dense pinch plasma. Figure 4.1 shows the Z-Machine during a discharge

of the current.
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Figure 4.2: a) The general setup for the experiment on Z showing the radial flux from
the pinch driving a PI front into a N gas cell with a fiber to couple the self-emission to a
streaked, visible spectrometer. b) The geometry used in the HELIOS-CR simulations
and the physics models used to describe the mylar front window and the N gas.

4.2 Primary Diagnostic: Streaked Visible Spectroscopy

To measure a PI front with the Z-Machine as a driving radiation source, the best
available diagnostic is streaked visible spectroscopy. This will provide a time-resolved
measurement of the ionization states present in the plasma. The end of this chapter
presents the expected outcome of these measurements, but here it will be useful to
describe what they are capable of observing.

Since this is an emission spectroscopy measurement, it captures the excited states
of the plasma and since it is in the optical band the transitions are typically among the
higher principal quantum numbers, n. It is possible to observe transitions at lower
principal quantum numbers, if they are within a single value of n, but the dipole
selection rules forbid these transitions, so they will be less frequent. Identifying
lines from different ionization states will indicate the relative populations and which
state is dominant. Fitting the spectrum can potentially provide information on the
temperature, but these photoionized plasmas can make this measurement difficult

due to the larger ionization than one would expect from the electron temperature

[34].
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4.3 Description of Problem

As mentioned in the previous chapter, an experiment observing PI fronts requires
a bright, ionizing radiation source and a medium for it to propagate through, with
Figure 4.2 a showing what that may look like for an experiment at a z-pinch. The
source must be bright enough that the photoionization at the heat front that separates
the hot and cold material is the dominant process of energy transfer to the plasma.
There is the additional requirement that the radiation streams through the heated
downstream before being rapidly absorbed over a few mean free paths at the heat
front, making the transport non-diffusive for a significant portion of the propagating
medium. The implication of these features in PI fronts is that any modeling will need
to consider the radiation hydrodynamics, radiation transport, and atomic kinetics in
order to best treat the problem with the tools available. Additionally, this places a
requirement on the experiment to evaluate the system in a way that provides adequate
information about the regimes of radiation transport and dominant atomic processes
to ensure the simulations and experiments are observing approximately the same
physics.

Many authors have considered the radiation hydrodynamics of this problem, which
chapter II presents the relevant portions of, and this chapter will not reproduce these
results as they are well documented [57, 58, 59, 60, 61, 62, 63]. To provide context,
using the nomenclature and results of Drake et al. and Gray et al., the simulations
shown here will explore a weak-R type front, which is one of four solutions to the
steady-state jump conditions of the radiation hydrodynamics equations under the
assumption that the radiation pressure and energy density are negligible, but the
radiation flux is not [61, 62, 63]. A weak-R type front is a supersonic heat front that
has no density change across the front and limited hydrodynamic motion associated
with its passage across a region of material [61].

As mentioned above, the analysis of this problem can not neglect the atomic kinet-
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ics because this problem has the requirement that photoionization dominate without
significant contributions from electron collisional ionization and the hydrodynamics
alone can not determine this. Drake et al. and Gray et al. address this with two and
three level atomic models respectively in an analytic solution of the steady-state rate
equations and the simulations in Gray et al. uses an atomic model that is averaged
over many of the available states [61, 62, 63]. The relevant results from the analytic
solutions are two dimensionless parameters comparing the ratios of atomic rates. The
first is,
_ i1 neRi+1,i

o= — (4.1)

n; Fi,z’-i—l

3

where n; is the ion number density of the ith ionization state in cm™, n, is the

electron number density in cm ™3, Ri+1; is the recombination rate from the 7 4- 1th to

3 1

the ith ionization state in cm” s™, and I'; ;41 = f %dE is the photoionization rate
from the ith to ¢ + 1th ionization state in units of s~! with F} the local radiation flux,
opr the photoionization cross section, and F the energy. The recombination rate,
R;111 is the sum of three-body recombination using the Lotz formula and detailed
balance, dielectronic recombination using the fits described in Salzmann, and radiative
recombination using the Verner and Ferland fits [103, 104, 105]. The dimensionless
number « is the ratio of recombination to photoioniziation and determines if the
plasma is actively photoionizing. For a PI front, it is necessary to have a << 1, which

indicates that the photoionization is occurring more rapidly than recombination. The

second dimensionless number is,

n; <Uv>i,i+1

b
Nj+1 Ri+1,i

B=1+ (4.2)

3

where (ov), ., is the electron collisional ionization rate using the Lotz formula in cm

it
s~! and the remaining variables are as defined in Equation 4.1 [105]. 3 is one plus the

ratio of the electron collisional ionization to the recombination and should be about
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unity in the case of a PI front. This is equivalent to saying that the ionizations due to
electron collisions occur less frequently than recombinations, which are already much
less frequent than photoionizations under the condition o << 1. These dimensionless
numbers take the place of the photoionization parameter, & = #, where L is the
luminosity, n. is the electron density, and r is the radius from the source, which is

common in the astrophysics literature of photoionized plasmas [131, 132].

4.4 Photoionization Front Simulations with the Nominal Physics

Model

4.4.1 Simulation Setup and PI Front Analysis

The simulation study to design a PI front experiment on Z used the Helios-CR
code by Prism Computational Sciences [65]. This is a 1D Lagrangian radiation-
magnetohydrodynamics code that has the ability to use tabular equations-of-state,
tabular or inline detailed atomic calculations for the opacities, and multi-group dif-
fusion or discrete ordinates radiation transport. The inline, frequency-resolved, and
non-equilibrium atomic physics calculations generate population distributions, which
the code uses to generate opacities and emissivities. The code uses these material
properties in the solution of the radiation transport equation using the method of
short characteristics for the angle-resolved radiation transport. The radiation flux
used in each zone is the angle-averaged value of the specific intensities calculated
using the short characteristics method with the selected number of rays. As Gray
showed, a more detailed physics model using inline atomic calculations for opacities
and multi-angle radiation transport produces significant changes in the propagation
of the front compared to a tabular opacity values on a coarse frequency grid and
diffusive radiation transport [63]. Additionally, Helios-CR allows for user-input flux

boundaries and previous work using the Z radiative properties platform produced a
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Figure 4.3: The time evolution of the input flux file about the peak emission time of
100 ns.

spectrally-resolved input file of the Z emission, in units of J em™2 s7! eV™!, at a

radial location 45 mm from the source [24, 96]. The source has a color temperature
of 63 eV and its spectral content is best fit by the sum of three geometrically diluted
Planckians due to emission from the pinch plasma and the heated, surrounding load
hardware. Figure 4.3 shows the calibrated input file at three times over the peak
emission and figure 1 in reference 38 shows the contributions of the three Planckians
to the total flux.

The nominal setup of the simulations uses 5 zones of mylar with a thickness of
1.44 pm that uses quotidian equations-of-state tables and local thermodynamic equi-
librium, tabular opacities from the Prism Computational Sciences code Propaceos.
Following the mylar, there are 100 zones of N with a thickness of 1.35 cm, which
utilizes the non-equilibrium atomic physics, inline detailed configuration accounting
opacity calculations on a fine frequency grid that uses more resolution around line fea-
tures. The radiation transport uses the angle-resolved, short characteristics method
for the entire simulation domain. The nominal atomic model for N excludes all au-
toionizing states from the calculated energy levels in the ATBASE database. The
radiation transport uses a S,, model with 5 angles. Figure 4.2 b shows an overview of

the physics model and the zoning configuration.
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Figure 4.4: The values of a and ( calculated from the HELIOS-CR simulations
while varying the pressure of the N gas. Here, there are only a subset of ionization
states shown because preheat affects the NI—NII front and the states above NVI are
not desirable for making a measurement. a)-c) and g)-i) show that increasing the
pressure reduces the velocity of the front, but does not affect the magnitude of «
significantly. The values of 5 in d)-f) and j)-1) show the same spatial behavior but a
gradual decrease in the 8 value for the NV—NVT transition as the pressure increases
while the value increases slightly for the other transitions shown. This suggests that
the photoionization rate changes similarly to the recombination rate with increasing
particle density, but the electron collisional ionization rate grows more slowly for the
NV—NVTI transition and faster for the other transitions shown.
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Figure 4.5: These values of a with mylar window thickness of 1.44 um, 2.16 pym, and
2.88 pm at three different pressures (a)-c) 0.5 atm, d)-f) 0.75 atm, and g)-i) 1.5 atm)
show a reduction in velocity when increasing either parameter. All three pressures
show slightly lower values of a with increased window thickness, which is likely due
to the radiation having to travel through less material to get to the front, reducing
the amount of absorption.
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Figure 4.6: The values of § with mylar window thicknesses of 1.44 pum, 2.16 pm,
and 2.88 pm at three different pressures (a)-c) 0.5 atm, d)-f) 0.75 atm, and g)-i) 1.5
atm). These figures show [ stays relatively constant at the location of the front, but
the downstream behavior is more complicated. The downstream values of 3 decrease
with increasing window thickness with a spike, likely due to the shock propagating
into the N from the released window material, that can break this trend.
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Helios-CR does not output the atomic rate coefficients needed to calculate the
values of o and [, therefore it is necessary to post-process the simulation output. To
calculate the rate coefficients, this analysis uses fits to the radiative and dielectronic
recombination rate coefficients and the Lotz formula for the electron collisional ion-
ization rate, which combined with detailed balance and the Saha equation provides
the three-body recombination rate coefficient [103, 104, 105]. The photoionization
rate is slightly more complicated. Gray et al. derived a scheme for approximating the

photoionization rate from the discrete ordinates radiation transport in Helios-CR as,

T 4 OPIL
Tiir1 = / A (%) B, (Tk.) If:i dv, (4.3)

where Tx; is the local radiation temperature from Helios-CR, T s is the radiation
temperature of the source, B, is a Planckian at the source temperature, opy, is the
photoionization cross section using the fits of Verner et al., h is the Planck constant,
and v is the photon frequency [63, 106, 107]. This was reasonable due to the use
of a temperature boundary in that simulation study, but, here, there is not one
temperature to prescribe to the input flux file, as mentioned above. The analysis

below modifies Equation 4.3 using the brightness temperature, T g, of the input flux

1 i
Ty, = [— / Fs,,,dy} , (4.4)

0SB

file,

where ogp is the Stefan-Boltzmann constant and F, is the frequency-resolved flux

from the input file. Using Equation 4.4, the resulting photoionization rate is,

T . 4 TR,Z ! OPIv
Bitl = s T, F, I dv. (4.5)

This calculation neglects the thermal, self-emission from the plasma as Gray et al.

showed that it is not a significant contribution to the radiation field [63].

97



4.4.2 Parameter space study

The parameter space for the experiment design spans the thickness of the mylar
window and the pressure of the N gas. There is also the freedom to change the gas
species, but this study does not explore that aspect of the problem. The decision
to use N gas allows the atomic physics to be reasonably simple while having the
photoionization opacity significantly overlap with the peak of the source spectrum.
This deviates from the astrophysical case where the tail of the photon distribution
provides the energy to drive the PI front, but it is necessary to change this in the
experiment to generate a large enough photoionization rate. The window thickness
has a limited role in the PI front physics, other than altering the incident radiation
flux on the N, but it is necessary to determine the effects of thicker material for
constructing a gas cell in a real experiment. The ablation pressure on the front
window does launch a shock into the N, indicated by the peak in temperature around
0.175 c¢m in Figures 4.4 a-f, but this should not significantly impact the measurements
as it is several millimeters behind the PI front.

Using two images as an example, the interpretation of these figures is as follows,
Figure 4.4 b shows the log of the parameter «, from equation 4.1, for a selection of N
ionization states calculated at each of the 100 spatial zones of N in a single time step.
Figure 4.4 e shows the calculation of 3, from equation 4.2, under the same conditions
as Figure 4.4 b. These figures allow for one to observe where the dimensionless
parameters satisfy the conditions for a PI front. To relate this to Figures 4.4 b and
e, the former shows values of loga, for this time step, are at a minimum much less
than 1 for the NII and NIII states around 1.1 cm with the higher ionization states
having minima closer towards the source. The corresponding locations in Figure 4.4
e, which shows the calculated values of 3, shows that this parameter is unity at the
location of minimum « for each ionization state. The decision to use transitions

starting with the NII state and ending with the transition into the NVI state is due
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to the preheating of the N from the rise time of the pinch and the decrease in opacity
once the N reaches the He-like state. In order to assist the reader in understanding
the structure of the heat front, the figures overlay the electron temperature in red,
dashed lines over the calculated dimensionless parameters. Figures like this allow for
comparisons of the ability to generate PI fronts with different gas pressures and front
window thicknesses.

The mylar window thicknesses in this study are 1.44 pym, 2.16 pm, and 2.88 pum
with gas pressures of 0.5 atm, 0.75 atm, 1.5 atm, 2.5 atm, 5 atm, and 10 atm.
The design parameters of interest are the propagation length of the PI front, which
should propagate about the length of the N in the 3 ns of peak emission, and the
dimensionless numbers o and f.

The simulations at 2.5, 5, and 10 atm suggest that these densities are too high
for the radiation to penetrate a significant distance into the gas and this thesis does
not include them in further discussion. The 0.5 atm simulations show the heat front
propagating through the gas cell before the peak flux arrives, which is also not a
useful design as this will not take advantage of the largest possible photoionization
rate. Comparing the electron temperature profiles in addition to the a and g values
for the remaining pressures in figures 4.4 a through f show that while all seem to
produce PI fronts, 0.75 atm does so in the most convincing fashion. It also seems
that the PI front reaches the end of the gas cell during the peak emission, while
having sufficient spatial extent between the different ionization states to differentiate
them in measurement.

Changing the window thickness reduces the temperature and penetration of the PI
front, which makes sense as more of the source energy goes into heating and expanding
the window when there is more material. Figures 4.5 and 4.6 show the results for
the o and S calculations, respectively, over the range of window thicknesses and a

small sample of gas pressures. These have the same interpretation as the values in
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Figure 4.4. Increasing the window thickness acts to reduce the radiation flux that is
available to support the PI front. This results in lower PI front velocities and therefore
smaller propagation distances into the gas cell. Viewing the rows of Figure 4.5 (a-c, d-
f, g-1), one sees a similar trend of the minima of loga shifting to positions closer to the
source as the window thickness increases at this simulation time step. Additionally,
these values of loga are sufficiently less than one indicating a photoionizing plasma.
The corresponding values of 5 in Figure 4.6, similarly arranged in rows (a-c, d-f, g-1),
show that at the locations of minimum «, the values of § are unity, which shows
that all of these window thicknesses allow for sufficient radiation fluxes to support PI

fronts without generating significant electron heating.

4.5 Testing the model validity

Gray et al. justifies the physics included in the simulations by comparing different
models, and this study goes further by probing the effects of changing the resolution on
the results. A resolution study, atomic model study, and angular grid for radiation
transport study show that the nominal model reasonably captures the physics of
interest. The following sections describe these investigations in more detail. The

studies compare values from two different simulations using the following metric,

where ¢ is the percent difference between the deviated model and the nominal model,

€4 1s the value from the deviated model, and ¢, is the value from the nominal model.

4.5.1 Resolution study

The nominal spatial resolution, in the N, is 135 pum. Since the inline atomic cal-

culations produce a fine frequency grid, there is a significant amount of line structure
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Figure 4.7: The comparisons, at 100 ns, between plasma parameter values when
increasing the resolution from the nominal 100 zones of N show minimal deviation
in a) and b) with 200 and 400 zones respectively. However, there are lower electron
temperatures of about 5% in the downstream region in ¢) and d) with 800 and 1000
zones respectively. There is also an increase in upstream electron temperature in d),
but this is less than 5% from the nominal model. The large deviation below 0.2 cm
are due to the mylar window and are not of concern to the propagation of a PI front.
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captured by the model that would have large opacity values, which could then have
photon mean free paths that are less than the grid spacing of the simulation. To
try and capture the possible effects of this, a systematic increase in the number of
zones from 100 zones to 200, 400, 800 and 1000 zones, decreased the minimum spatial
element to 13.5 um. Since Helios-CR is a Lagrangian code, the zone boundaries are
able to change with each time step, which would change the spatial resolution. How-
ever, there are no significant changes in the zone boundaries as a function of time in
the N. This makes sense because the PI front is supersonic and results in little to no
change in mass density in the propagating medium. Examining the difference plots
in Figures 4.7 a-d show that there is less than 10% differences between the deviated
model and the nominal model for any possible number of zones. This suggests that
to spatial scales of 13.5 um the nominal model captures all of the relevant physics
reasonably well. To improve the mass matching, the simulations with 800 and 1000
zones of N used 20 and 40 zones of mylar respectively instead of the 5 mylar zones
in the nominal model. These simulations also used a simplified atomic physics model
with a maximum principal quantum number of n = 4 to reduce the computation

time, which the next section justifies.

4.5.2 Atomic model sophistication

Helios-CR allows the user to vary the number of energy levels in the atomic model
used when solving the collisional radiative (CR) equations for the inline opacity calcu-
lations. The nominal model excludes only the autoionizing states for each ionization
state. To test if the assumption that the autoionizing states contribute little to the
radiative heating, a series of simulations systematically increased and decreased the
number of levels in the atomic model leaving the rest of the nominal model unchanged.

The process used to decrease the number of atomic levels was to eliminate levels by

principal quantum number between simulations until the percent difference exceeded
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Figure 4.8: The comparison of variations in the atomic model to the nominal model,
which only excludes autoionizing states, show minimal differences in the plasma pa-
rameters and radiation temperature for models with maximum principal quantum
number larger than 6 in a)-c¢). When the maximum principal quantum number is be-
tween 3 and 5 in d)-f) there is a decrease of electron temperature in the downstream
with small decreases in the mean charge and electron density, then there are increases
of these values compared to the nominal model in the upstream. All of these devi-
ations are limited to within 15%. When the maximum principal quantum number
is 2 in g) the behavior flips with a relative increase in the plasma parameters in the
downstream and a decrease in the upstream with maximum deviations of 20%. The
more sophisticated atomic models in h) and i) show less than 10% deviations from
the nominal model with increases in plasma parameters in the downstream material
and decreases in the upstream.
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Figure 4.9: The comparison between the nominal 5 angle radiation transport calcula-
tions and a 2 angle calculation in a) show minimal differences below 5%. The single
angle calculations in b) show very large decreases in the plasma parameters in the
upstream material compared to the nominal model.

20%. For example, if a model had n = 5 as the highest principal quantum number,
the next simplified model would have n = 4 as the highest principal quantum number
for the available states. The largest principal quantum number used here was n = 10
and the smallest was n = 2. Figure 4.8 a-g show that these changes in the atomic
model produce parameter variations that stay under 10% in the N during the peak
emission time of the Z radiation flux for a maximum principal quantum number of
4 or greater and generally under 20% over longer periods. This has the physical
interpretation that most of the interaction comes from the photoionization of inner
shell electrons. It is interesting to note that for the figures 4.8 a-f there is a reduction
of the plasma parameters before about 0.5 cm and an increase after, but that changes
in figure 4.8 i where the maximum principal quantum number is 2 and the opposite
behavior occurs. It is not clear why this is, but it may be due to the calculated
opacity values when the atomic model is so drastically simplified.

To increase the complexity of the atomic model, states were added to the model
until an electron gets promoted to the next principal quantum number. Here, this
analysis used two iterations of this process before the computation time was excep-

tionally long. Figures 4.8 h and i show there are no variations beyond about 10% from
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the nominal model suggesting that this level of atomic complexity capture the physics

a reasonable degree at least in line with the assumptions of 1D planar geometry.

4.5.3 Number of angles in the radiation transport

The multi-angle model of radiation transport in Helios-CR solves the transport
equation along a ray through a slab of material on a frequency-resolved optical depth
grid. In a planar geometry, this model allows for 1-angle, 2-angle, or 5-angle for solving
the transport equation. Comparing the results of simulations using the different
angles and an atomic model that has n = 4 as the maximum principal quantum
number, which has less than 10% deviation from the nominal atomic model, with
a window 1.44 pm thick and 0.75 atm N shows minimal difference between the 5-
angle and 2-angle calculations. Using the same model configuration in a simulation
except with l-angle for radiation transport shows a drastic difference with the 5-
angle calculation. Figures 4.9 a and b compare the differences between the 1-angle
and 2-angle calculations and the 5-angle model with the percent difference parameter
described above. This study shows that the 1-angle calculation results in a much
different distribution of the radiation energy over the spatial grid and that at least

2-angle calculations are necessary.
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Figure 4.10: The attenuation of the input flux at the peak emission time using the
iterative process described in the text for the first and second iterations.

4.6 Artificially Attenuated source

The results of the parameter space scan in section 4.4.2 are useful for initial de-
sign, but to gain an understanding of the real effects present in an experiment, multi-
dimensional simulation tools are necessary. Unfortunately, at the time of this writing,
there aren’t any tools that provide the detailed atomic model and non-diffusive ra-
diation transport desired for a PI front with multi-dimensional spatial grids easily
accessible to university users. However, there are ways of emulating 3D geometric
effects to the source flux, which is of the most importance here, within the constraints
of a 1D code. Since the radiation streams up to the heat front interface, the location
of the front from the gas cell window is the the relevant distance for geometric dilu-
tion. Using a geometric decay model of the on axis dilution of a finite extent source,
the resulting attenuation factor is,

)’

f = T()Qa (4°6)

olf=y

where R is the radius of the source and D is the distance from the source. To apply

this to the simulation, consider D to be a function of time equal to the position of the
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Figure 4.11: The calculated values of o and [ using the second iteration of the
attenuated input file, which shows that this source is sufficient to produce a PI front.
a) This shows a slowed front velocity, similar to the effects of increased density and
window thickness, but it also shows an order of magnitude decrease in the value of
a, which is a result of the reduced radiation flux. b) This shows increased values of
[ compared to the simulations without consideration of the geometric flux losses in
the upstream and downstream material.

PI front. Then, using an iterative method, one can calculate the front locations to get
D(t), use D(t) to calculate f(t), and apply f(t) to the input flux file at the appropriate
times to get a geometrically attenuated flux. Figure 4.10 shows the attenuation of
the source for two iterations at the peak emission time using this method. Applying
this technique over two iterations in a simulation using 0.75 atm of N and a 1.44 ym
window shows that the second iteration produces a PI front using a source radius of
2.82 mm, which is the radius of a circle with the same area as a 5 mm x 5 mm square
as this is the smallest window an experiment would use.

This provides a lower limit on the flux in an experiment because the attenuation
factor assumes the source is at the front of the mylar window when in reality it
is 45 mm away, which makes the real source much more collimated than in this
attenuation method assumes. Figures 4.11 a-f show the calculated values of a and (8
for the iterations of the artificially attenuated input flux. These simulations suggest
that even under very conservative estimates of the flux there is still a PI front with

the value of g still unity and a about an order of magnitude larger, which still makes
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it less than one. There is a reduction in velocity as one sees with increasing gas
pressure and window thickness, but here there is also a significant increase in « due

to the reduction in photon flux.
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Figure 4.12: Calculations using SPECT3D use the HELIOS-CR results to estimate
the expected signal of a one meter streaked, optical spectrometer. Both a) and b),
which show the spectra calculations using the nominal model with the input flux
file and the second iteration of the geometric attenuation respectively, display line
emission early in time and as the plasma heats the thermal emission becomes the
dominant signal. Figures ¢ and d show the evolution of the line emission early in
time with the nominal and attenuated input flux. These figures have two primary
results, one is that there are not significant differences in line structure between the
two different sources and the second is the transition from significant NII to NIII
populations in the plasma.
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4.7 Estimated measurements

While the simulations suggest that it is possible to generate a PI front with the Z
flux, an experiment has to use the measurement tools available to observe the front.
Since a and 8 are not directly observable values, it is necessary to measure the plasma
parameters that these quantities depend on, which in this case are electron tempera-
ture, density, and ionization, in addition to knowledge of the source flux. Additionally,
the propagation velocity is a useful parameter to measure for characterizing the PI
front behavior. To make this measurement, the most relevant diagnostic technique
available on Z is temporally-resolved visible light spectroscopy using a streak camera
coupled to a grating spectrometer. This provides spectral information from 1.56 eV
to 3.5 eV over timescales of 30-100 ns depending on the streak camera settings. A
fiber optic cable couples the emission from the heated N plasma to the grating, which
provides spectral information about one location in space as a function of time. The
line emission will provide information about the ionization states present in the N
at the location of the fiber and fitting this line emission provides information about
the electron temperature and density. If thermal emission dominates the plasma, it
is still possible to collect a temperature measurement by fitting the spectrum to a
blackbody. To measure the velocity, it is necessary to have spectral information from
at least two different locations because of an about 3 ns jitter in the peak current on
Z.

To estimate the measured self emission from the plasma, the SPECT3D code takes
the output from Helios-CR and places it on a 3D spatial grid to calculate the emission
and radiation transport in the desired geometry [133]. SPECT3D calculations using
the output from the nominal model described above using the unattenuated and
second iteration attenuated input flux file coupled to a 1 m spectrometer show the
anticipated spectra over the peak emission times. Figure 4.12 a and b show the two

spectra with line emission early in time that decays to thermal emission after the
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front passes the location of the fiber. As stated above, this allows for measurements
based on line emission early in time and thermal emission later in time.

Figures 4.12 ¢ and d show the line structure early in time before the transition to
thermal emission as the PI front heats the location observed with the spectrometer
in the nominal and attenuated input flux, respectively. There are limited differences
in the line structure between the brightness of the sources, which is a good indication
that photoionization is driving this behavior as it seems more dependent on the spec-
tral content of the source than the brightness, with the caveat that the source must be
bright enough to sustain the state of the plasma. The strongest lines in Figures 4.12 ¢
and d come from the NII and NIII states, with four transitions identified that inform
the evolution of the system. The lines identified here satisfy the dipole selection rules
and the labels that show n = 2 orbitals have a second excited electron. The selected
transitions all have a Al = £1 and the atomic physics model in SPECT3D averages
over the different magnetic and spin quantum numbers, which means these features
meet the Am = 0,+1 and As = 0 conditions. The earlier time spectra show bright
NII transitions from the 9f to 4d orbital at 3.42 eV and the 3p to the 3s with an
additional electron in the 2p orbital at 2.23 eV that decrease in relative intensity over
the nanosecond time interval shown. At the same time, the two, identified NIII lines,
one at 1.67 eV showing the 7p to 6d transition and the other at 2.74 eV showing the
3p to 3S transition, which increase in relative intensity over the one nanosecond time
interval. This indicates that the plasma is evolving to a condition where the NIII
ionization state is more prevalent than the NII state. It is important to note that
there are other lines and ionization states than those identified here, but these show

the decrease of the NII and increase of the NIII populations.
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4.8 Conclusions

An experiment to observe PI fronts is relevant to the to the understanding of
astrophysics, cosmology, and HED physics. The simulation study shown here suggests
that the emission from 7 is sufficient to produce the correct conditions for a PI front,
even with consideration of 3D source effects. The front window and distance of the
gas cell from the pinch plasma produces a reasonably collimated source to drive the PI
front. This allows for a system that more closely resembles the 1D simulations than
a smaller emitter that has to be closer to the gas cell. Estimates of streaked visible
spectroscopy measurements show that there is line structure that one can use to find
transitions between the NII and NIII states. Then, a temperature measurement is

possible after thermal emission dominates the line emission.
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CHAPTER V

Radiative Shock Experiments on The National

Ignition Facility

The previous two chapters dealt with radiation-driven heat fronts and the prop-
erties of those systems. However, in astrophysics, there has to be a source with its
own dynamics that drives the heat front or whatever other radiation-driven object
is under investigation. Radiative shocks appear in many places in astrophysics in-
cluding supernova and accretion columns, which are effective at converting energy
to radiation energy fluxes. Chapter II discusses some of the theory involved with
radiative shocks and the energy available at the NIF allows for large systems and
higher densities than smaller drivers. The experiments presented below use a half
hohlraum to produce an x-ray drive to launch a shock into a 20 mg cm=3 CH foam
with the goal of making measurements of the post-shock temperature. This is of in-
terest because while there has been much experimental work performed on radiative
shocks, most of the existing measurements are sensitive to the density of the system
9, 81, 84, 93, 94]. The experiment of Visco et al. does use x-ray Thomson scattering
to extract a temperature from a radiative shock in Ar gas, and the measurements
presented here provide additional information that allows for detailed results without
the explicit need for simulations [77].

This chapter will present recent experiments at the NIF making temperature mea-
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Figure 5.1: The National Ignition Facility at Lawrence Livermore National Labora-
tory taken from the laser.llnl.gov/media website

surements of radiative shocks. It will start by describing the NIF and the primary
diagnostics used in these experiments. Then, it will discuss the targets and experi-
mental configuration before concluding with the results from two shots days producing

radiative shocks.

5.1 The National Ignition Facility

The NIF is a ND:glass laser that has 192 beams capable of producing 1.8 MJ of
energy in the UV. Each beam is independent and produces about 2 TW of UV laser
power to irradiate a target [134, 135]. The NIF target chamber is cut into four cones
with the axis oriented normal to the ground. The cones have angles of 23.5°, 30°,
44.5°, and 50° from the cone axis. The beams are arranged in groups of four called
quads and each quad lies on one of the cones, which indicates the direction of the
beams relative to the target. All of the beams can use continuous phase plates and
smoothing by spectral dispersion to keep the spatial profile of the laser reasonably

smooth, similar to the Omega laser facility. As with the Omega laser facility, there
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are a number of established diagnostics that are available for the NIF and it is not

up to the experimenter to develop their own measurement devices.

5.2 Primary Diagnostics

These experiments made a velocity and two temperature measurements, which
will constrain the measurement and allow for connections to the other work in the
field of radiative shocks. To make these measurements, this experiment observed
the time-resolved self-emission of the plasma and the scattering of an x-ray probe to
measure the plasma electron temperature. The rest of this section will detail how

these measurements can provide the desired information about the radiative shock.

5.2.1 X-ray Thomson Scattering

X-ray Thomson scattering (XRTS) in the non-collective regime provides a mea-
surement of the electron temperature [136]. The non-collective scattering regime
requires that the electron screening length is larger than the electron density modu-

lation scale length. This amounts to the ratio,

(5.1)

where k = 4722sin (0/2) is the wavenumber of the density modulations that the
probe interacts with and Ej is the probe photon energy, h is the Planck constant,
¢ is the speed of light, and @ is the scattering angle, being less than one. Ay is the
screening length, which is the Debye length in the non-degenerate case that is relevant
here. In the non-collective regime the relatively large screening length means that the
scattering is from interactions between photons and individual electrons. Figure 5.2
shows the geometry of the scattering problem that leads to the scattering parameter,

Q.
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Scattering parameter
a=1/kA,

A_=screening length

1/k=electron density
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Figure 5.2: A depiction of the geometry in x-ray scattering that shows the scattering
vector k, which determines the electron density modulation scale length, and the
screening length in the plasma. To the right there are some useful relations regarding
x-ray Thomson scattering, such as the scattering parameter, «, and the doppler
broadening contribution to the Compton shift, which introduces the temperature
dependence in non-collective scattering.
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Figure 5.3: MCSS calculations that demonstrate the effect of changing temperature
on the scattering spectrum. These three synthetic spectra have the same input pa-
rameters except for the listed differences in electron temperature and the scaling of
the spectra makes the inelastic peak equal to one. It is clear that larger electron
temperatures lead to increased broadening of the inelastic scattering peak due to the
Doppler effect.
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The literature details the different components of the scattering spectrum, and
this overview will only give a qualitative discussion of these features to describe how
they are dependent on the electron temperature [136, 137, 138]. The non-collective
scattering spectrum in a non-degenerate plasma has an elastic scattering peak due to
the bound electrons and an inelastic scattering peak due to the free-free scattering,
and the bound-free scattering. The Compton energy determines the shift of the
inelastic scattering peak, with the shift in frequency being Aw = —% k- ¥, where
h is the reduced Planck constant, m, is the electron mass, and ¢ is the velocity
distribution. The second term in the inelastic frequency shift is due to Doppler
broadening. If one assumes a Maxwellian velocity distribution, then the Doppler
broadening depends on the electron temperature through the width of the peak. The
three synthetic scattering spectra in Figure 5.3 show the dependence of the inelastic
scattering peak on temperature with the larger temperature having a broader inelastic
feature. If the data is high enough quality, and the components of the plasma well-
known, then the ratio of the elastic to inelastic scattering peak can be a measure of
the ionization in the plasma [139, 140].

It is necessary to have a probe source with a reasonably narrow line width, at most
about 100 eV, to make scattering measurements. To make the probe source, most
experiments use a laser irradiated foil to produce He-av emission [77, 137, 139, 140].
These experiments use a Zn foil to generate the Zn He-a doublet with the resonance
line at 8999 eV and the intercombination line at 8950 eV. In these experiments, the
scattering volume is large enough in the dispersion direction of the crystal that it is

not possible to distinguish the two lines in the doublet.

5.2.2 Streaked Optical Self-Emission

Since the shock velocity provides a large amount of information about the condi-

tions in the plasma, as described in section 2.3.3, it is a useful measurement to make
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Figure 5.4: A cartoon of the target physics package, which shows the hohlraum, solid
plastic, and CH foam regions.

and provides a connection to the radiative shock literature. An axial imaging system
will allow for a measurement of the location of the shock because the brightest emis-
sion will correspond with the density jump. Streaking the line-imaged measurement
will produce a shock location for each time resolution unit in the camera, which will
allow for a measurement of the velocity. This will also be useful for the XRTS, as it
provides the location of the shock during the x-ray probe.

The second use of this measurement is to convert the signal level to a radiation flux,
which can then be used to find a temperature with the assumption of a blackbody
emitter. This requires that the detector is absolutely calibrated, which the NIF
diagnostic is not. However, it is also possible to find alternative calibrations of the

temperature scale based on the observed physics, which is the approach used here.
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Scattering Shield Probe Shield

Figure 5.5: The CAD model from the July shot day showing the scattering and probe
shields to provide an image to go along with the description in the text.

5.3 Target Design

These experiments use an x-ray drive to ablate a plastic foil, launching a pressure
wave into the solid plastic. After propagating through the plastic foil, the shock
breaks out the rear surface and launches a shock into a low density foam tube. This
lower density material allows for a much faster shock, which is the radiative shock of
interest. The remainder of the target supports the shock tube and provides shielding
for the two primary diagnostics.

The x-ray drive comes from a Au half hohlraum with a diameter of 4 mm, a height
of 3 mm, and a wall thickness of 50 ym, which the NIF lasers irradiate to produce the
radiation bath that creates the pressure wave in the plastic. The 150 pm plastic foil
sits on top of the hohlraum, then there is a 10 ym thick Au foil to absorb the M-band
emission from the hohlraum. On top of the Au foil is a plastic disk 150 gm thick and
1.5 mm in diameter with a flat surface, which the foam shock tube sits on top of.
The shock tube is a 20 mg cm ™2 CH foam cast in a 30 pm thick polyimide tube with
a 1.51 mm diameter. There is a 175 pm slit in the shock tube that extends 2 mm

from the top towards the hohlraum for the self-emission measurement. This results
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in a foam diameter of 1.45 mm and the shock tube is 5 mm long. There is a 250 pym
thick Au washer with a 4.1 mm outer diameter and a 1.55 mm inner diameter that
sits on top of the Au foil and supports the base of the shock tube against the extreme
pressure of the shock breaking out into the CH foam. Figure 5.4 shows these features
in the target construction. There is a large cone with support structures that shields
the slit in the shock tube for the self emission diagnostic. A Ta shield, with a similar
slit laser cut into it, covers the remaining opening of the cone shield and sets the
measurement region of the self-emission diagnostic. The remaining features on the
target are two alignment features, one on the side of the hohlraum and a second that
stands up from the top of the hohlraum parallel to the shock tube. The remainder
of this section will discuss the details of the XRTS shielding and probe foil in the
different target builds. There was a need to improve the shielding between the shot

days to fix an issue with background that section 5.6 will discuss.

5.3.1 First XRTS Shielding and Probe Design

The XRTS shielding in this target has two components, the first is a Au foil
on the shock tube that set the scattering volume and prevents scattered light from
other portions of the target from reaching the spectrometer, and the other is a large
structure that attenuates the x-rays from the expanding plume of plasma from the
foil probe. The document will call the Au foil shield the scattering shielding and the
large shielding structure the probe shielding from here on.

The scattering shielding is 25 pum thick Au foil that has a 300 ym by 500 pum
with the longer side aligned along the shock tube axis. The center of the window is
2.1 mm from the bottom of the shock tube and 2.41 mm above the drive surface of
the plastic foil. It extends from the Au washer 3.45 mm up the shock tube, which is
approximately the maximum height the the probe x-rays should reach. The scattering

shielding then extends to cover the portion rest of the target that the probe x-rays

120



Scattering Shield Probe Shield

Figure 5.6: The CAD model from the February shot day pointing out the scattering
and probe shields to indicate where the changes are in the second iteration of shielding.

could reach, which is the angled portion of the foil. Figure 5.5 shows the scattering
shielding in the center of the figure and the large probe shielding to the right.

The probe shielding contains the collimator to limit the scattering geometry, the
Zn foil that generates the probe x-rays, and the shielding to keep the Zn plasma
from dominating the signal. The collimator is built in to the front of the shielding
structure and consists of two 50 pum thick Au foils with 500 ym diameter apertures
and a separation of 1 mm from the front of the inner foil to the rear of the outer
foil. This limits the range of scattering angles to approximately £20°. The Zn foil
sits at a 21.6° angle relative to the shock tube axis and the front surface tilts towards
the hohlraum to allow the lasers to be closer to normal incidence. The center of the
beam spot on the Zn foil is about 1.5 mm from the inner collimator foil. Below the
Zn foil there is more Au shielding to prevent x-rays from reaching the outside surface
of the hohlraum facing that faces the spectrometer. The large shielding structure
extends out 11 mm in the spectrometer object plane, which is a design that has been

successful in other XRTS measurements on NIF [137, 139, 140].
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5.3.2 Second XRTS Shielding and Probe Design

The components of the XRTS shielding stay the same in this second iteration,
but there are some adjustments that improve the ability to collect scattering data
and make the shielding structure more x-ray tight. Figure 5.6 shows how the changes
would appear to the spectrometer.

The scattering shielding increased in height from 3.35 mm to 4 mm to ensure
that all of the probe beam is inside the bounds of the shielding. Additionally, the
scattering window increased in size to 1 mm by 0.4 mm with the long side again
along the shock tube axis. This is to increase the scattering volume and provide more
signal to the spectrometer, which is necessary due to the low signal nature of this
measurement.

The probe shielding has some minor changes to decrease the area of the gaps
between the different foils, which is especially necessary due to the dimpled shielding
on the NIF. These changes include increasing the size of the outer collimator foil
to better overlap with the large shielding structure. There was a similar increase
in the dimensions of the shielding that sits below the Zn foil. There was a 125
pm plastic foil added to the rear surface of the Zn foil to prevent any plasma from
traveling down the collimator and interacting with the shock tube. Finally, the second
design increased the length of the probe shielding structure in the object plane of the
spectrometer by almost 1 mm to ensure that none of the Zn plasma plume is visible

in the measurement.
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Figure 5.7: The drive laser pulse shape showing the power for each of the sixty beams.
5.4 Laser Configuration

There are two pointing locations on the target described above, one is the laser
entrance hole of the hohlraum and the other is the center of the probe foil. All of the
beams come from the bottom half of the NIF, which was a decision to protect the

upper half of the facility from debris.

5.4.1 Drive Lasers

The experiment used 60 beams to drive the hohlraum with the laser pulse shape
used in Figure 5.7 a. This resulted in about 400 kJ of laser energy incident on the

Au to create the radiation bath that drives the shock into the plastic foil.

5.4.2 Probe Lasers

There were two quads used to drive the probe foil with a total of about 50 kJ,
one of which came from the outer cone and the other from the inner cone. The inner
cone beams are the reason for the tilted probe foil as they have a large incidence

angle that would cause most of the energy to be reflected away. The pulse shape uses
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Figure 5.8: The probe x-ray pulse shape showing the power for each of the eight
beams.

a ramp followed by a 3 ns duration of peak power with a final intensity of 10> W
cm~? because work to develop backlighter foils on the NIF found that a pre-plasma
enhances the laser coupling [141, 142]. The work of Barrios et al. also found that
10> W em™2 produces the optimal conversion efficiency to K-shell line emission in
Zn of about 1% [141, 142]. Figure 5.8 shows the pulse shape used to drive the probe

foil.

5.5 Diagnostic Configuration

Section 5.2 presents an overview of the primary measurements used in these ex-
periments. This section will provide more detail about the instruments used to make

those measurements and the limitations of the diagnostics.

5.5.1 Monoangle Crystal Spectrometer (MACS)

The Monoangle Crystal Spectrometer (MACS) is an established spectrometer on
the NIF that, when paired with a highly oriented pyrolytic graphite (HOPG) crystal,

is typically used in XRTS measurements [143, 144]. The crystal is at a 12.4° angle to
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Figure 5.9: The physics package with labels indicating the shock propagation di-
rection and the relative locations of the self-emission measurement to the XRTS
measurement.

set a spectral range of 7.4 to 10 keV, which makes this spectrometer well suited to
observe the scattering of the Zn He-av around 9 keV. A charge-coupled device (CCD)
with a four-strip MCP coupled to the spectrometer records the signal from the exper-
iment. The MCP uses a 230 ps PFM and a 150 V bias, which provides a time gate
of about 200 ps [145, 146, 147]. These experiments use a spectrometer configuration
with two cylindrically curved HOPG crystals where the geometry focuses each crystal
to one MCP strip. Each strip has a 125 pum polyimide filter and there is a 50 um
Al-coated polyimide blast shield on the front of the spectrometer. The spectrome-
ter uses a Von Hamos geometry and satisfies the mosaic focussing condition, which
specifies that the source-to-crystal distance equals the crystal-to-detector distance,
to focus the x-rays in the non-dispersive direction and provide spatial resolution of
about 1 mm [143, 144]. This is not good enough spatial resolution to discern features
in the shock tube, but is helpful in locating sources away from the scattering window.

The timing of the different strips changed between shot days and later sections will
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present the specific values used for different shots.

5.5.2 VISAR and SOP Cameras

The self-emission diagnostic uses the line-imaging velocity interferometry system
from any reflector (VISAR) and streaked optical pyrometry (SOP) system on NIF to
collect this signal [148, 149]. There are three streak cameras in this system that this
document will refer to as VISAR A, VISAR B, and SOP from here on. The VISAR A
camera has a 31 ns sweep and a 1 mm field-of-view with a 2 nm bandwidth centered
at 660 nm. The VISAR B camera has a 21 ns sweep and 1 mm field-of-view with a 2
nm bandwidth centered at 660 nm. The SOP camera has a 45 ns sweep and a 2 mm
field-of-view with a 105 nm bandwidth centered at 580 nm. The spatial resolution of
the cameras are 2.5 p + 4%, 1.19 + 2.5%, and 1.12 £+ 2.8% for the SOP, VISAR A,
and VISAR B cameras, respectively. The time resolution of the cameras are about
32 ps, 25 ps, and 16 ps for the SOP, VISAR A, and VISAR B cameras, respectively.
The VISAR cameras will not use any fringes, as these experiments are not trying to
observe interferometry, however, the probe laser is on for these experiments because
it reflects off of the Ta shield and provides a reference location in the VISAR A and
VISAR B data. The probe laser does not appear in the SOP data because the optics
that lead to the camera front end filter out the probe wavelength. Each of the cameras
had neutral density (ND) filtering, which varied between shot days and the following

sections will present the values used in different experiments.
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Figure 5.10: a) The SOP camera data with a six pixel average over the time and
space axes with labels to indicate the location of the Ta shield and the line out in
c). b) The combined shock location data from all three cameras as well as the power
law fit to the trajectory. The right axis shows the calculated velocity, which is the
derivative of the power law fit, and provides an average velocity in the measurement
window of 130 ym ns™'. ¢) A line out from a) that shows the presence of upstream
heating due to the shock, which indicates this is a radiative shock.

5.6 July 17th Shot Day

A shot day on July 17th 2019 drove a radiative shock into one target using the
diagnostics described above. The MCP strip timing on the MACS spectrometer was
17.3 and 18.5 ns and the probe beams turned on 16.24 ns after the hohlraum drive
beams. The VISAR A and VISAR B cameras used ND 1 filters and the sweeps started
2 ns and 12 ns after the hohlraum drive lasers, respectively. The SOP camera used a

ND 2 filter and the sweep started -0.5 ns from the start of the hohlraum drive lasers.

5.6.1 Self-emission Data

It is important to note that since the measurement uses optical emission, the
plasma is above the critical density and therefore the signal is coming from the edge
of the plasma. This is not too much of an issue because previous work with this
geometry on the NIF measured a very flat shock front using x-ray radiography [9].
The self-emission diagnostic collected good signal with a clear interpretation of a
shock propagating through the foam, as seen in Figure 5.10 a. The ND filtering on
the VISAR cameras was too strongly attenuating and this made tracking the shock

slightly more difficult than on the SOP camera.
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Figure 5.11: The decay parameter from fitting the upstream heating in the SOP data.
Other than one outlier, this indicates that the upstream has an electron heating length
scale of about 1 mm, which should correspond to a similar value for the photon mean
free path, and indicates that there is a significant amount of radiation that can escape
through the end of the shock tube.

The analysis averages the self-emission data over six pixels in the time and spatial
axes to remove noise. It then tracks the shock location by finding the largest value
at each time because the shock transition should produce the largest temperature.
Figure 5.10 b shows the combined data from all three cameras where the analysis
interpolates the trajectories onto the same spatial grid and then the plot shows the
average of those values. The error bars in Figure 5.10 b are from fitting a Gaussian
to the peak in signal and taking the width of that fit to be the uncertainty in the
location. This results in fairly conservative estimates of the uncertainty in shock
location. Fitting the combined data with a power law provides a trajectory of the
shock earlier in time, which is useful for the XRTS measurements, and allows for a
calculation of the shock velocity. Here the shock velocity in the measurement window
is, on average, 130 um ns~!. Figure 5.10 ¢ shows a line out of the data at 25 ns and
demonstrates heating in the upstream, which this analysis attributes to the radiative
precursor from the shock front emission.

The exponentially decaying precursor region suggests a transmissive precursor and

the analysis fits this feature at each time step, which gives a decay parameter as a

128



a) b)

Final State Compression Final State Temperature
20 i ‘ i i ‘ 7 - | | | | |
1 50 -
1 Model value I
150\ | 1 40 !
I I
I 2 I
= o [ |
< 10 | e ! Model value
S
I 201 I
I I
St 1 1
| 10 |
I I
0 L] L L L L L 0 (] L L L L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Upstream Ionization Upstream Ionization

Figure 5.12: a) The final state compression from the thick-thin radiative shock model
as a function of the upstream ionization with a dashed line indicating the value used
in the analysis. b) The final state temperature from the thick-thin radiative shock
model as a function of upstream ionization with a dashed line showing the value used
in the analysis.

function of time. Figure 5.11 shows that this value is about 1 mm, except for a
single outlier early in the measurement window. These cameras actually measure the
electron temperature, not the radiation flux, because the optical emission will come
from the electrons. This means that this decay parameter is an electron heating rate
instead of an opacity. However, the radiation from the shock goes into heating the
electrons, so this decay parameter should be indicative of the absorption length of
the radiation. This suggests that the upstream is at most a small number of mean
free paths in extent and there is radiation energy leaving the end of the shock tube.
The shock has an optically thick downstream and an optically thin upstream.

Since this is a thick-thin shock, it is possible to extract more information from this
self-emission data with a fairly simple analytic model, where the following material
will remind the reader of the results from section 2.3.3.2. Using the three layer
model of McClarren et al., which is analogous to the thick-thick model discussed in
chapter II, one can find the final state temperature and compression as well as the

initial downstream temperature at the density jump [4]. The expression for the final
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inverse compression in the thick-thin model is,

(y+Dny =71+ FR) = —\/(Pov —1°+2Q [ (L+ P —mp)] (42— 1), (5.2)

where 7y is the polytropic index, 7y is the final inverse compression, F; is the initial
normalized upstream pressure, and () is the shock strength parameter defined in
chapter II. A numerical solution to this equation will give eight values for 7y, but the
imaginary, negative, and greater than one values can be thrown out as not physical,

which typically leaves a single root. The final state temperature is,

u
Tf:—j_l)g [VPO‘FW—\/(7P0—1)2+Fr0(72—1)]

[1 R/ OR - 12 Fo (2= )|, (53)

where T is the final temperature, u; is the shock velocity in units of cm s™!, R is the
gas constant in units of erg g=! eV~!, and F,, is the normalized upstream radiation
flux with all of the other values the same as in equation 5.2. Under the assumption

of a thin cooling layer, the expression for F,q is,

Fro=2Q[ns (1+ Py —np)]". (5.4)

This system of equations depends on the shock velocity, upstream temperature, and
upstream ionization. Making the further assumption that the upstream pressure

follows the ideal gas law and using the measured velocity of 130 pm ns™!

with a v
of 5/3, the system of equations only has the upstream temperature and ionization as
free parameters. The rest of this analysis will assume that the upstream ionization is
1 and that the upstream temperature is 1 eV. Figures 5.12 a and b show the results

for the final compression and temperature, respectively, as functions of the upstream

ionization. It turns out that for upstream temperatures up to 10 eV there are no real

130



Emission in SOP band with Te

o
T

Intensity (1013 erg/cmzls/sr)

0 50 100 150 200 250
Te(eV)

Figure 5.13: The scaling of the emission in the bandwidth of the SOP optical path
under the assumption of a Planckian emitter. This suggests that the response is linear
with temperature and that a mapping is possible if one has a measured value for the
temperature in one pixel.

changes to the final compression or temperature, so that portion of the parameter
space is not considered any further here.

The initial downstream temperature is important as well because it provides the
the quantity that is useful for calculating the radiative energy flux. The expression
for the initial downstream temperature is,

w2

Tds:m[2_(7_1>P0][27P0+7_1]7 (5.5)

where all of the values are as defined above.

The results of these calculations are a final compression of 10.2, a final temperature
of 49.3 eV, a () of 4500, and a Ty of 109 eV. The reason that @) is relatively low for
the HEDP conditions is due to the upstream ionization affecting the value of the gas
constant. If the upstream ionization is taken to be zero, then () is about 8 x 10, which
is a typical value for laboratory generated radiative shocks [1]. A last calculation from
this model is the ratio of the blackbody energy flux at Ty, to the incoming material
209T4

pTds with ogp the Stefan-Boltzmann constant in units of erg

S

energy flux, Rp =

cm~? eV*4, Ty, the initial downstream temperature in units of eV, p the mass density in
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units of g cm ™3, and u, the shock velocity in units of cm s~!. The model output using
the measured velocity, an upstream ionization of 1, and an upstream temperature of 1
eV gives Rp = 6.6, which indicates the radiative energy fluxes are significantly larger
than the material energy fluxes and further confirms that the shock is radiative.

Having a value of the shock temperature is useful, but it doesn’t take full advantage
of the self-emission data. To make this temperature value more useful it is necessary
to consider the response of the detector as a function of temperature of the emitting
plasma. A rough approximation is possible if one assumes a Planckian spectrum
from any portion of the plasma, which is fairly reasonable because the downstream
is optically thick and while the cooling layer would allow for a more complicated
spectrum, it is a very physically small region, to the point of not being resolvable,
and will not constitute a significant portion of the image. This makes the measured
quantity the post-shock material downstream of the cooling layer. As a comparison,
the immediate post-shock temperature for a 130  ns™! shock in the plastic foam used
in these experiments is 109 eV and the measured electron temperatures are several
tens of eV. Figure 5.13 shows the Planckian emission, integrated over the bandwidth
of the SOP camera, as a function of temperature, where it is also assumed that the
electron temperature is equal to the radiation temperature. Since this is a linear
relationship, it is reasonable to assume there is a linear mapping from the digitized
counts of the streak camera to temperature. This relies on the camera and digitizer
also having a linear response, which is not necessarily true, but is typically corrected
for in the processing of streak camera data.

Using the final state temperature calculated using the thick-thin model of a ra-
diative shock, and the assumed linear mapping justified above, it is possible to put
the SOP camera data onto a temperature scale. Figure 5.14 a and b show the SOP
data from Figure 5.10 a and b, but with the scaling to temperature. This shows that

the peak electron temperature of the post-shock region in the measurement window
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Figure 5.14: a) The SOP camera data with the temperature mapping from the thick-
thin model analysis. This shows a peak post-shock temperature of about 60 eV. b)
The line out at 25 ns shown in Figure 5.10 ¢ scaled to temperature. c) The post-
shock temperature as a function of time in the measurement window with a power
law fit to the data and the calculated derivative from the fit. This shows that the
time derivative is decreasing with time.

is about 60 eV.

From Figure 5.14 a, the shock temperature decreases with time as it radiates away
energy that escapes either through the upstream or radially. With the temperature
mapping, it is possible to find the time derivative of the shock temperature, which

Figure 5.14 ¢ shows and will be useful in future work to find the radiative cooling

rate.

5.6.2 XRTS Data

The fact that there is a second iteration of the XRTS shielding suggests that
the design used on the first shot day was not sufficient and that is the case. This
section will discuss the collected data and the expected cause for the lack of signal.
Figure 5.15 shows the top down geometry of the scattering measurement with a Zn
He-a probe and a 113° scattering angle. The data in Figure 5.16 a shows all four
strips of the MACS with the timing of the two that are collecting data from a crystal
indicated. This shows two bright line features on both strips, one at about 9 keV and
the other at about 9.6 keV. These lines are spatially shifted towards the hohlraum
indicating that is the likely source for the emission. These are Au L-shell lines with

the feature at 9 keV likely combined with elastic scattering of the Zn He-a doublet
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Figure 5.15: a) The top down view of the scattering geometry, which shows the
113° scattering angle and the shielding. b) The view from the MACS crystal of the

actual target, indicating the scattering window dimensions and the shock propagation
direction.
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Figure 5.16: a) The raw MACS data showing the Au L-shell lines that dominate
the signal and the strip timing for the camera. The vertical offset of the line data
suggests that these features originate at the hohlraum. b) A spatially integrated

spectrum from strip 1 at 17.3 ns showing the lines have no redshifted portion of the
spectrum, which would indicate scattering signal.
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[150]. This interaction was possible because the shielding structure used glue to make
it gas tight, but there were gaps in the Au that were transparent to the 9 keV probe
x-rays, which had lines-of-sight to the hohlraum. Figure 5.16 b shows a line out that
indicates there is no elastic scattering peak in this data. The reason for this lack of
observed scattering is most likely because background is too bright and dominates the
signal, even though predictions suggested the scattering signal would be observable
[98]. The way to correct this is to expand the scattering volume to increase the signal

and to seal the transparent gaps in the shielding to reduce the background.

5.7 February 10th Shot Day

This shot day used the improved XRTS shielding described above and changed
the strip timing to 18.3 ns and 20.5 ns with a probe laser timing of 17.5 ns relative to
the start of the drive lasers. The self-emission cameras still use the same sweep speeds
and the SOP camera still uses the 2 ND filtering, but the VISAR A and VISAR B

cameras have 0 ND filtering for this shot day to improve the signal to noise ratio.

5.7.1 Self-emission Data

The self-emission data in this experiment very clearly shows something propagat-
ing through the measurement window, however, it is not clear that it is the shock
propagating through the foam like it was for the previous shot day. The reasoning
for this is due to multiple inconsistencies in comparing the data with the expected
physics. In Figure 5.17 a, the SOP camera shows a feature that appears around 15 ns
and exits the field-of-view around 20 ns. This indicates a much faster shock than the

! compared to 130 p ns™!. However, the drive

previous shot day, about 350 pym ns™
energy is not significantly different and the components are all within 20% between
the shot days, which would not be enough to create this difference. Additionally,

Figure 5.17 b shows no radiative precursor, which would be unusual on its own be-
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Figure 5.17: a) The SOP data from the February shot day showing a very fast feature
that does not make sense for the physics in the experiment. If this is a shock, its
average velocity would be about 350 um ns~—! with the same drive energy for the lasers.
b) A line out at 16 ns showing the absence of a precursor, which is not consistent
with the large average velocity, further suggesting that this signal is not the shock
propagating in the foam.

cause the drive is similar, but the fact that the shock is supposedly over two and a
half times faster than the previous data would suggest a much stronger radiation field
from the shock front and therefore a hotter precursor.

This indicates several discrepancies between the data and a reasonable expectation
of the physics occurring in the shock tube. The best guess as to what is happening
here is, during the foam casting process, the drying foam shrinks and pulls away from
the wall of the shock tube. This allows the released material from the plastic foil to
freely propagate in this gap and reach the window before the shock, traveling rapidly,
and without any precursor because there is no upstream material. This means that
this data is not reliable for the shock timing of these experiments and the timing from

the previous shots is more relevant because of the consistent drive laser energy.

5.7.2 XRTS Data

To start, the fact that the self-emission diagnostic was not effective on this shot

day does not indicate that the XRTS data is not useful. As mentioned before, the
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Figure 5.18: a) The raw XRTS data from the MACS for the February shot day that
shows the reduced signal from the Au L-shell lines from the July shot day and the
presence of inelastic scattering in the center of the strips. b) The spatially averaged
data from strip 1 clearly showing the inelastic scattering feature extending to about
8.2 keV. ¢) A comparison of the data between strip one and strip two after the
background subtraction described in the text. The second strip (in red) clearly has
a narrower inelastic scattering feature, which indicates that the volume averaged
temperature is lower later in time after the shock has cooled and the entrained flow
moves into the scattering window.

self-emission data sees the edge of the plasma, but the XRTS data measures the
center of the shock tube and the gap at the edges of the foam should not affect the
scattering measurement.

With the increased scattering volume and the improved shielding, this experiment
was able to collect scattering signal on both strips of the MCP. There is clearly
redshifted signal in Figure 5.18 a and Figure 5.18 b shows this more definitively when
compared to the July shot day data. However, there is still some of that background
from the interaction of the probe with the hohlraum. To correct for this, the data
analysis puts the data from the July shot day on the same energy scale, then scales
and subtracts it from this data to remove the effects of these lines.

As a starting point in this analysis, it is important to make sure the data makes
sense with the physics occurring inside the shock tube. Figure 5.18 ¢ accomplishes this
check with a comparison of the scattering signal on the two strips. This shows that
the scattering signal at 18.3 ns has an inelastic scattering peak with a larger width

than the 20.5 ns data, which indicates that the integrated volume has a lower averaged
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Figure 5.19: a) A comparison of the scattering data at 18.3 ns with MCSS calculations
indicating a volume-averaged, electron temperature of around 80 eV. b) The same
as in a), but for the scattering data at 20.5 ns, which indicates a volume-averaged,
electron temperature of around 40 eV. This is in reasonable agreement with the 49 eV
final state temperature from the analysis of the self-emission data in the July shot.

temperature later in time. This makes sense because Figure 5.14 ¢ showed that the
shock itself is cooling and the scattering volume is now large enough to capture the
entrained flow from the plastic foil, which is dense and cold, in the integration volume.

The final step in understanding this data is to compare with calculated scattering
spectra. Here, these calculations will use the multi-component scattering simulation
(MCSS) software that Dave Chapman developed at the Atomic Weapons Establish-
ment in the United Kingdom. Using the random phase approximation and Debye-
Hiickel models for the plasma physics along with a model of the instrument function
for the MACS (provided by Tilo Déppner) are all reasonable assumptions due to the
weakly coupled, non-degenerate nature of the plasma in this experiment. The plasma
parameters used in the input deck are: Ze = 4.3, Zyg = 1, p = 0.1265 g cm 3, and
ne = 3 x 1022 cm™3. The results for the measurement at 18.3 ns in Figure 5.19 a
suggest an average electron temperature of about 80 eV. The measurement at 20.5
ns in Figure 5.19 b suggests an averaged electron temperature of about 40 eV. This
compares reasonably well with the measurement from the self-emission data on the

previous shot day, which is an additional confirmation that these results make sense.
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A relevant consideration is the fact that the scattering volume occurs closer to the
hohlraum than the self-emission measurement and the shock will be colder in the
self-emission measurement. It is relevant to note that this analysis focuses on fit-
ting the inelastic scattering peak and is not as concerned with the elastic scattering
peak due to the background subtraction. The background subtraction is necessary
to eliminate a distorting signal, but it does tend to affect the elastic scattering peak,
which unfortunately means this data is not able to provide any information about the
ionization of the shocked foam. However, the consistent temperature measurements

between the two independent diagnostics is a powerful result.

5.8 Conclusions

This chapter presents the design process of a target for radiative shock experi-
ments at the NIF and the analysis of the results from two experiment days at the
facility. The primary measurements were x-ray Thomson scattering and time-resolved
optical self-emission. It describes the changes made to the XRTS shielding between
the first and second shot day to improve the performance of the diagnostic and the
successful outcome of the modifications. The self-emission measurements provided
the shock velocity and the electron temperature when combined with an analytic
model of thick-thin radiative shocks. With the electron temperature as a function of
time, it was possible to calculate the time derivative of the final state shock electron
temperature, which is a novel result. The XRTS data collected on the second shot
day demonstrates the volume-integrated electron temperatures are comparable to the

self~emission measurements.
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CHAPTER VI

Conclusions

6.1 Summary

The goal of this work was to present the underlying physics of photoionization
fronts and radiative shocks, show the experimental capabilities of studying these
objects in the lab, and demonstrate the work of the author to produce interesting
results in the laboratory. The large, HEDP facilities make it possible to achieve
these feats experimentally, which is of great use to academia and the astrophysics
communities. This work was successful in producing results that are useful in gaining
deeper understanding of the physics occurring in radiation hydrodynamics systems
and developing experimental approaches to measure complex HEDP plasma systems
in the laboratory.

This work introduced an experimental platform for producing and measuring PI
fronts on the Omega laser facility, which made a good step towards producing data
on the physics of PI fronts. It also developed the geometry and probe source for the
absorption spectroscopy of a gas cell, which could have additional applications. At
the same time, a PI front experiment for the Z-Machine should be possible with the
design presented here, which will allow for independent tests of the physics results

and can identify any systematic errors in the measurements.
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6.2 Conclusions

The theory presented here allowed for identifying measurable features in these
experiments and for improved analysis of the data through the application of relatively
simple analytic models. The curvature and velocity of PI fronts should allow for one
to distinguish between PI fronts and non-linear diffusion driven heat waves. The
model of a thick-thin shock extended the analysis of the radiative shocks produced
on the NIF and compensated for the facility’s lack of an absolute calibration of the
SOP detector, which is incredibly powerful.

As mentioned previously, radiative shocks have been an active area of research for
many years, and the experiments on NIF presented here add a useful contribution
in the ability to combine two temperature measurements with a single target. Ad-
ditionally, this experiment presented these measurements in a foam target, which is

not typical of radiative shock experiments as most use gases.

6.3 Future Work

The work to create a PI front in the laboratory characterized a platform for making
absorption spectroscopy measurements. The clear path for continuing this work is to
further adjust the experiments so that they produce the desired spectroscopic data
on the primary diagnostic. This also opens up the possibility of streaked absorption
measurements, which would be able to capture the changing ionization state of the
Ar dopant as the PI front propagates through the gas cell. All of this results in a
solid foundation for a set of experiments that provide an understanding of PI front
physics and a starting point for feeding these results into the outstanding questions
in cosmology and astrophysics.

When running PI front experiments at the Omega-60 laser in the future, the most

likely failure mode will be the measurement geometry with specific considerations to
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the spectrometers available at the Omega-60 laser facility. A possible pitfall is the
dopant percentage being too low for the desired measurement. Estimates of the mea-
surement suggest this will not be the case, but there are many assumptions in those
estimates. A target filled with only Ar would ensure that the line opacity is large
enough for sufficiently strong signal. Due to the integrated nature of this experiment,
it is also critical to consider the effects of the changes made to one component on the
other components. For example, if there is a change made to the gas cell outer di-
ameter, this could affect the beams available to drive the capsule backlighter without
clipping the gas cell. For this reason, it will be important to continue the practice of
using diagnostics to monitor the performance of each component of this experiment,
so that the data analysis can account for any changes that may occur between ex-
periments. Another consideration, is to possibly change the primary diagnostic to an
imaging measurement to more easily exploit the front curvature and velocity results
presented in this thesis.

The designed experiments to observe PI fronts at the Z-machine do a nice job of
demonstrating that it is reasonable to produce an experiment that should reach the
desired physics regime and the obvious next step is to acquire facility time to conduct
an experiment. However, these simulations are not capable of including many of
the additional physics that occur in real experiments that could have a significant
affect on the measurements. For example, since the simulations are one-dimensional,
there is no consideration of the heating of the gas cell walls and its contribution to
the estimated spectroscopic measurement. There is an additional concern about the
interaction of the emission from the pinch interacting with the fiber used to couple the
emission from the gas cell to the spectrometer, which could cause loss of signal and
is difficult to simulate. Due to their being a jitter of a few nanoseconds in the arrival
time of the peak current on Z, it will be necessary to have at least two spectrometers

to record a PI front velocity measurement.
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There are only a small number of gases that researchers use for radiative shock
experiments in the relevant literature, but it is possible to make foams out of a
wide variety of materials and to dope low Z foams with higher Z elements. This
allows for experiments that tune the upstream and downstream opacities while having
temperature and velocity measurements, which would be a novel study. A shot that
places the self-emission window in the same location as the XRTS measurement would
provide a useful comparison of the temperature measurements from both diagnostics.
However, in order to prevent noise from the probe beam, XRTS would not run on
this shot.

To best conduct additional experiments with this platform, it would be useful
to make a third iteration of the XRTS shielding that is still more aggressive than
the second iteration. This would hopefully remove all of the background observed
in the data and allow for a more detailed analysis of the XRTS spectra that could
provide additional information about the shock conditions. Additionally, it will be
necessary to ensure that the foam adequately fills the shock tube after the casting
process. This may not be as much of a problem with silicon dioxide or carbon foams,
but it is still worth considering to ensure a quality self-emission measurement. A final
useful adjustment would be to include a piece of connecting material at the top of
the self-emission slit in the shock tube. This would provide additional stability and
consistency between targets and could help improve the ability of the foam to fill the

tube volume.
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APPENDIX A

Dante Analysis Technique

A.1 Dante Analysis

The Dante analysis described above provides a brightness temperature measure-
ment using the matrix unfold algorithm to extract a best fit of the spectral content
[5, 6, 120]. This method assumes the spectral intensity is a linear combination of
basis functions and then solves for the amplitudes, this analysis uses Gaussians for
the basis functions. Since independent measurements can provide detector solid an-
gle, emitter size, incidence angle, and response functions to the algorithm, the only
unknown quantity is the input spectrum. Therefore, it is important to understand
how changing the input spectrum alters the resulting brightness temperature calcula-
tion from the Dante data if one intends to use this as a means of describing a source.
The literature details that the matrix unfold method does not accurately recreate a
spectrum, but does produce a reasonable value for the flux [120, 121]. This will be
especially true for capsule emission presented above due to the line emission in the
spectrum, as one will see below.

To analyze the code output, a MATLAB script generated a synthetic temperature

profile in time. These temperatures were then used to create Blackbody spectra at
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Figure A.1: a) The synthetic Dante data using Planckian input at each time step. b)
The synthetic Dante data using a Planckian with a constant Gaussian component.
The channels show larger values than with only a Planckian component input. c)
The synthetic Dante date with a Planckian plus a random Gaussian component. The

randomness of Gaussian component introduces fluctuations in time that appear as
“noisy” signal on the channel output.
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Figure A.2: a) The unfold output from Planckian input compared to the temperature
profile values and the brightness temperature. The brightness and profile tempera-
tures are the same for this case as the spectrum is Planckian b) The unfold output
with a Planckian plus a constant Gaussian as input compared to the brightness tem-
perature and the Planckian temperature. This shows that the brightness temperature
is larger than the Planckian temperature, as one would expect, and the Dante unfold
temperature is larger than the Brightness temperature. ¢) The unfold output with a
Planckian plus a random Gaussian as input compared to the brightness temperature
and the Planckian temperature. The signal is noisy due to the random nature of the

Gaussian component, but the three temperatures follow the same trends as the other
two cases.

each point in time and construct the Dante output by applying response functions
from August 4th 2016 to these spectra. The response functions only contained data
from channels 1 through 14 and 18, and this analysis didn’t use channel 18 because
of some difficulties it caused in the analysis. The temperature profile is a line with a

slope of 9.95 % 10° and intercept of 1 to create temperatures from 1 to 200 eV over 20

ns.
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Figure A.3: a) A comparison between the ratios of the Planckian, brightness, and
Dante temperatures with a Planckian input. This shows that the unfolded temper-
ature is no more than 17% greater than the input Planckian temperature. b) A
comparison between the ratios of the Planckian, brightness, and Dante unfolded tem-
peratures with a Planckian plus a constant Gaussian as input. This shows under
about 20% difference between the unfolded temperature and the Planckian temper-
ature, then it shows a less than 10% difference between the unfolded temperature
and the brightness temperature. ¢) The comparison of the temperature ratios for a
Planckian plus a random Gaussian as input, which shows the same trends as the con-
stant Gaussian case, but with significant noise due to the randomness of the Gaussian
component. The scale of this figure is larger than figures a and b.

This analysis used three models to test how this unfold algorithm responds to
different spectral input: Pure Planckians using the linear temperature profile, the
Planckians plus a constant Gaussian component, and the Planckian plus a random
Gaussian component. The Gaussian components all had heights of one-tenth the
maximum Planckian value at each time step. The constant Gaussian had a width
of 700 eV and center value of 2200 eV, while the random Gaussian had widths from
1-1000 eV and center values from 0.1-20000 eV at each time step. The resulting
synthetic Figs. A.la, b, and ¢ show the synthetic Dante output for each of these
models using the linear temperature profile mentioned above.

To make comparisons between these different models, the analysis uses the Planck-
ian, brightness, and Dante unfold temperatures. Here, the definition of the brightness

1

ﬂ) Z, where wF is the radiation flux in W cm™

0SB

2 .
,and ogp is

temperature is T = (
the Stefan-Boltzmann constant in units of W ecm=2 eV~*. Figs. A.2a, b, and c show
these temperatures for the three different spectral models for times from the time

when the Dante unfold reaches 30 eV to 20 ns. This shows that for pure Planckian
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inputs the matrix unfold algorithm is able to replicate the brightness and thermal
temperature of the source to within 30%, as seen in Fig. A.3a. For the two models
with Gaussian components, the brightness temperature is greater than the Planckian
temperature, as expected, and Figs. A.3b and ¢ show that the brightness tempera-
ture converges with the Dante temperature at lower input flux values. The brightness
temperature in the constant Gaussian model is within 10% of the brightness temper-
ature at all calculated values of the unfold. The random Gaussian model seems to
follow this same trend, but the noise in that calculation makes it difficult to draw
further conclusions. It seems that spectrally narrow structures lead to very strong
deviations from the input spectral parameters in the calculated temperature. This
suggests that narrow line structures in the spectrum can significantly skew the results
of a Dante measurement when using the matrix unfold method with Gaussian basis
functions. In general, this matrix unfold method calculates larger temperatures than

what generates the input flux, which is the same result as in the Seifter work [120].
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B.1 Integrated Physics Target - RID 68435
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APPENDIX C

July 17th 2019 NIF Shot Day

C.1 High Drive Shot N190717-001

Diagnostic Timing Filtering DIM
17.3 ns and 18.3 ns | 125 pm Polyimide Filter and
MACS 230 ps PFM 50 pm Aluminized Polyimide DIM 90-78
SOP -0.5 ns; 45 ns sweep 2.0 ND DIM 90-315
VISAR A 2 ns; 31 ns sweep 1.0 ND DIM 90-315
VISAR B 12 ns; 21 ns sweep 1.0 ND DIM 90-315

Table C.1: The diagnostic configuration from the high drive shot during the July
2019 NIF shot day.

C.2 Low Drive Shot N190717-002
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Diagnostic Timing Filtering DIM
33.7 ns and 35.4 ns | 125 pm Polyimide Filter and
MACS 230 ps PFM 50 pm Aluminized Polyimide DIM90-78
SOP 10 ns; 45 ns sweep 1.6 ND DIM 90-315
VISAR A | 25 ns; 31 ns sweep 0.0 ND DIM 90-315
VISAR B | 35 ns; 21 ns sweep 0.0 ND DIM 90-315

Table C.2: The diagnostic configuration for the low drive shot during the July 2019
NIF shot day.
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APPENDIX D

February 10th 2020 NIF Shot Day

D.1 High Drive Shot N200210-001

Diagnostic Timing Filtering DIM
18.3 ns and 20.5 ns | 125 pm Polyimide Filter and
MACS 230 ps PFM 50 pm Aluminized Polyimide DIM 90-78
SOP -0.5 ns; 45 ns sweep 2.0 ND DIM 90-315
VISAR A 2 ns; 31 ns sweep 0.0 ND DIM 90-315
VISAR B 12 ns; 21 ns sweep 0.0 ND DIM 90-315

Table D.1: The diagnostic configuration for the first high drive shot during the Febru-
ary NIF shot day.

D.2 High Drive Shot N200210-002
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Diagnostic Timing Filtering DIM
18.9 ns and 19.5 ns | 125 pm Polyimide Filter and
MACS 230 ps PFM 50 pm Aluminized Polyimide DIM 90-78
SOP -0.5 ns; 45 ns sweep 2.0 ND DIM 90-315
VISAR A 2 ns; 31 ns sweep 0.0 ND DIM 90-315
VISAR B 12 ns; 21 ns sweep 0.0 ND DIM 90-315

Table D.2: The diagnostic configuration for the second high drive shot during the
February NIF shot day.

D.3 Low Drive Shot N200211-001

Diagnostic Timing Filtering DIM
33.7 ns and 35.4 ns | 125 pum Polyimide Filter and
MACS 230 ps PFM 50 gm Aluminized Polyimide DIM 90-78
SOP 10 ns; 45 ns sweep 1.6 ND DIM 90-315
VISAR A | 25 ns; 31 ns sweep 0.0 ND DIM 90-315
VISAR B | 35 ns; 21 ns sweep 0.0 ND DIM 90-315

Table D.3: The diagnostic configuration for the low drive shot during the February

NIF shot day.
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