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ABSTRACT

The analysis and understanding of the maneuvering characteristics of seafaring

vessels is critical for their successful operation. Ships operate in the harsh ocean en-

vironment and must be able to either withstand the storms that they sail through or

alter course to avoid particularly severe storms. As vessels become more automated

and design practices shift toward reducing emissions it is important to gain an under-

standing of the expected maneuvering characteristics of vessels both in calm water

and in waves. One way to determine the maneuvering characteristics of a vessel is

by using Computational Fluid Dynamics (CFD) to account for effects like transient

flow separation over appendages and green water over the deck of the ship. Both

the propeller and the rudder are critical components of this analysis, but it is dif-

ficult to accurately and efficiently determine the forces generated by these surfaces.

The differences in time and length scales between the propeller and the hull create a

bottleneck for efficiently modeling a vessel with numerical methods since the limiting

time step size is that of the propeller. There is complex flow interaction between

the hull, propeller, and rudder which is important to capture to properly model the

multi-dimensional forces on each surface.

One way to alleviate the cost of directly modeling the rotating propeller is to apply

a propeller model. Existing propeller models often use simplifying assumptions and

may predict incorrect forces especially in off-design conditions. A propeller model is

useful to reduce computational cost, but it is desirable for the propeller model to be

as accurate as a high-fidelity method.

The objective of this work is to develop a framework for a data-driven propeller

xx



and rudder model that can predict the forces with sufficient accuracy, such that the

propeller model maintains the accuracy of a high-fidelity method but can be imple-

mented in a maneuvering simulation at a significantly reduced cost. The data-driven

model is trained with CFD simulations of the propeller operating in the behind con-

dition with the rudder deflected to account for the flow interaction between the hull,

propeller, and rudder. Different data-driven techniques are compared and evaluated.

The rudder forces are also directly modeled by the data-driven model.

The data-driven propeller and rudder model is trained, evaluated, and imple-

mented for two different model scale vessels. The first demonstration is on the KRISO

Container ship which is a single screw model container ship with a semi-horned rud-

der. The second case study is on the twin-screw twin-rudder Office of Naval Research

Tumblehome model scale surface combatant. The accuracy of the data-driven model

is evaluated with different techniques and the accuracy is considered in terms of the

underlying discretization and turbulence modeling uncertainty. Maneuvering simula-

tions with the data-driven propeller and rudder model are performed for each vessel

performing turning circle maneuvers in calm water and in waves.

This work demonstrates how a data-driven propeller and rudder model can be

trained, validated, and implemented in a CFD maneuvering simulation. The compu-

tational cost is significantly reduced in both case studies performed and promising

results are found.
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CHAPTER I

Introduction

Seafaring vessels are critical for the transportation of goods and people to support

the global economy. The marine industry must adapt the design of vessels to reduce

greenhouse gas emissions to help combat climate change in the coming years. Vessels

are also becoming more autonomous. These societal drivers will lead to changes in

how vessels are designed and operated.

Vessels operate in harsh seaways and in storms. The maneuvering capabilities of

a vessel must be understood to properly operate the vessel to prevent damage and to

ensure the safety of crew and/or passengers on board. An alternative is to reroute

ships to avoid severe storms which lengthens the voyage and increases emissions as

well as costs. If the maneuvering characteristics of a vessel are better understood it

not only leads to a safer vessel but also more efficient operational guidelines.

To assess the maneuvering characteristics of a vessel in waves it is important to

generate engineering methods that are accurate but are also inexpensive enough that

multiple simulations can be performed to gain a statistical understanding of how a

vessel behaves in various sea conditions. Data-driven models that are trained with

high fidelity simulations can enable fast calculations that are also accurate.

One aspect that makes modeling the maneuvering vessel with numerical methods

particularly challenging is accurately determining the forces on both the propeller and
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the rudder at a reasonable cost. The propeller and rudder operate in the wake of the

vessel and the rudder also operates in the wake of the propeller. This complicated flow

field is challenging to accurately resolve. Viscous numerical methods like Reynolds

Averaged Navier Stokes Computational Fluid Dynamics (RANS CFD) can accurately

determine the forces on the hull, propeller, and rudder (Carrica et al. (2007), Cura-

Hochbaum (2006), Shen et al. (2015), Tezdogan et al. (2015)). These simulations

model the turbulent two-phase flow but at a relatively high computational cost. The

propeller is much smaller than the hull and rotates rapidly which leads to a significant

difference in time and length scales. To model the rotating propeller with the hull in

the same simulation requires that the vessel be modeled with the time step size of the

propeller which significantly increases the cost. Even RANS CFD can be inaccurate

for heavily separated flows, so numerical alternatives like Detached Eddy Simulation

(DES) or Large Eddy Simulation (LES) are more expensive but are more suitable

for heavily separated flows (Breuer et al. (2003); Persson et al. (2006)). An example

of this phenomenon is when a propeller undergoes crashback (Kumar and Mahesh

(2016); Liao et al. (2020); Verma et al. (2012)).

When a vessel maneuvers it has forward speed, but it also has sway velocity, yaw

rate, and the propeller interacts with both the hull and rudder. In a maneuver, the

vessel has six degrees of freedom and to correctly model the maneuvering trajectory

the six degree of freedom force must be determined for the hull, propeller, and the

rudder. Correctly calculating the propeller force is critical since the propeller thrust

not only determines how much force drives the vessel, but also determines the inflow

to the rudder which produces most of the turning moment.

The objective of this work is to maintain the accuracy of a high-fidelity RANS CFD

simulation of a complete vessel with a discretized rotating propeller and rudder, but

at a significantly reduced cost. The cost reduction is a factor of both the reduction in

computational cost for the maneuvering simulation using the propeller model as well
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as the means by which the model is trained to mitigate training expense. This work

explores the use of data-driven models that are trained with RANS CFD simulations

of the full vessel at specified conditions to sample the parameter space that the vessel

operates in during a maneuver. The goal is for the data-driven model to determine

the force vector of the propeller and rudder based upon the instantaneous forward

speed, sway velocity, rudder angle, and yaw rate of the vessel.

By utilizing the data-driven model for the propeller and the rudder, only the bare

hull is needed for a RANS CFD maneuvering calculation which significantly reduces

the computational cost. This reduced computational cost can allow engineers to

perform more simulations to gain a better understanding of how a vessel performs in

various maneuvers in different conditions which will enable the design of safer vessels.

The method is demonstrated for RANS CFD maneuvering calculations but is also

applicable for problems such as autonomous ship control and optimal vessel route

planning based on sea conditions.

1.1 Literature Review for Modeling a Propeller for Maneu-

vering and Seakeeping

The maneuvering and seakeeping characteristics of a vessel can be modeled in

several ways including experiments, analytical methods, semi-empirical methods, and

CFD. Experiments are useful for examining model scale vessels but require a physical

model and time in a tow tank and the results must be scaled to determine full-scale

vessel performance. CFD can be used to analyze both model scale and full scale

vessels (Tezdogan et al. (2015)). CFD also can resolve viscous effects and provide

more details than less expensive methods. CFD methods like RANS Volume of Fluid

(VOF) CFD can be used to capture free surface and viscous flow effects but are

computationally expensive. Araki et al. (2012) show how CFD can be more accurate

3



than a traditional systems-based model and also illustrate how a systems-based model

can be improved by calibrating the coefficients with data from a select number of CFD

maneuvering simulations.

Systems-based methods solve the equations of motion using a mathematical model,

but require semi-empirical coefficients from either CFD or experiments to determine

the propeller and rudder forces as shown by Araki et al. (2012). Systems-based

methods are inexpensive and are widely used to examine vessel seakeeping and ma-

neuvering characteristics as illustrated by Umeda et al. (2008), Guo and Zou (2017),

and Araki et al. (2012); however, these methods can suffer from limited accuracy for

arbitrary motion.

CFD maneuvering simulations of surface vessels typically use the Volume of Fluid

(VOF) (Hirt and Nichols (1981)) formulation to account for the interface between the

water and the air. A challenge with modeling the maneuvering or seakeeping of a ves-

sel with CFD is to find a balance between the computational cost and accuracy. The

propeller rotates at a high rate and is also much smaller than the hull. The difference

in time and length scales between the propeller and hull drives up the computational

cost since the vessel must be modeled with small temporal discretization and small

spatial discretization around the propeller to accurately model the propeller forces.

In a maneuver the propeller spins about the shaft axis and the rudder also ro-

tates about the rudder stock causing the vessel to turn. The rotating mesh for the

propeller and/or rudder can be connected to the outer mesh via the overset method

(Carrica et al. (2012), Wang et al. (2018)) or the sliding mesh method Mizzi et al.

(2017). A challenge with the rotating sliding mesh approach is that due to the close

proximity between the rudder and propeller these two zones may overlap. If the zones

overlap then this approach cannot be used unless a simplification to the geometry.

Additionally, if the rudder has a stationary part it may need to be simplified to allow

a rotating sliding mesh approach (Piro et al. (2020)), whereby the rudder geometry
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is modified which also alters the performance. The overset grid approach can be used

to model the rotating propeller and/or rudder as performed by Araki et al. (2012),

Wang et al. (2018), and Shen et al. (2015). Implementing the overset grid adds a

layer of complexity to the model setup but can effectively handle multiple moving and

stationary surfaces that are in close proximity to each other, but the computation

expense is still large.

Both the rotating sliding mesh method and overset grid method are computation-

ally expensive since the transient solution must be calculated for both the propeller

and the vessel. When the propeller is discretized and spinning, the simulation must

take a very small time step to accurately resolve the propeller forces, however, dis-

cretizing the propeller can provide accurate propeller forces which are critical for

modeling vessel seakeeping and maneuvering performance. Carrica et al. (2012) per-

formed a CFD study on the Office of Naval Research (ONR) Tumblehome with ro-

tating propellers and rotating rudders to examine broaching. In 2015, a model scale

simulation of a 10/10 zigzag maneuver of the KRISO containership at model scale

took 123 hours with 96 E5-2650 v2, 2.60 GHz processors on the Neon HPC cluster

at the University of Iowa. The total grid size was 3.8 million cells and the Froude

number was 0.26 (Shen et al. (2015)). More recently, in 2018, a 10/10 zigzag in calm

water of the ONR Tumblehome operating at a Froude number of 0.2 at model scale

cost 325 hours of clock time with 40 processors to compute 19.5 seconds of simulated

time (Wang et al. (2018)).

To mitigate the computational cost in a CFD analysis a body force propeller model

can be used which enables a larger time step. A body force propeller model applies the

force of the propeller to the equations of motion and to the fluid domain using a body

force term in the Navier-Stokes equations. Similarly, for systems-based maneuvering

calculations the force of the propeller is determined using a propeller force model. A

common method for determining the propeller force is to only determine the thrust,
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and in some cases the swirl, of the propeller based upon the open water propeller

performance examples of which are shown by Araki et al. (2012), Hoekstra (2006),

Mousaviraad (2010), Sadat-Hosseini et al. (2014), Jin et al. (2019), and White et al.

(2019). The thrust of the propeller operating behind the vessel can be determined

from the open water thrust coefficient, the propeller revolution rate, the propeller

diameter, the wake fraction, the vessel velocity, and the density of water as performed

by Araki et al. (2012).

The propeller forces can also be determined from numerical methods like panel

methods or Boundary Element Methods (BEM) (Chu et al. (2018), Gaggero et al.

(2019b)), lifting-line or lifting-surface methods (Mao and Young (2016), Parsons et al.

(1980)), Vortex Lattice Methods (VLM) (Cura-Hochbaum (2006), He and Kinnas

(2017), Kinnas et al. (2012)), Blade Element Momentum Theory (BEMT) (Dubbioso

et al. (2017), Gaggero et al. (2019b), Ortolani et al. (2018), Trodden et al. (2016),

Winden (2014)), and CFD based methods(Knight and Maki (2019), Yao (2015)).

BEMs account for asymmetric inflow to the propeller due to the interaction with the

hull and rudder, and can also account for geometric effects like skew. Other potential-

flow methods like lifting-line methods or VLM can be used to determine the sectional

lift and distribution along the propeller blade. BEMT combines blade element theory

(Froude (1878)) with momentum theory (Froude (1889), Rankine (1865)). BEMT

accounts for the induced velocity of the propeller and the variation in inflow to the

propeller disk due to interactions with the hull and the rudder.

Potential-flow methods can be less accurate than viscous-flow methods like CFD

when the propeller operates off design. Gaggero et al. (2019b) examined off design

behind condition propeller loads between the RANS CFD prediction of a discretized

rotating propeller, a BEM implementation and a BEMT implementation. The find-

ings illustrated that the BEM body force distribution agreed better with the RANS

CFD prediction but also noted that BEMT implementation in a maneuvering CFD
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package is simpler. Cura-Hochbaum (2006) computed the results for a propeller with

different inflow velocities and implemented a body force method in a RANS calcu-

lation of a maneuvering vessel in which the force for each region of the disk are

determined from offline calculations and the local inflow velocity to the propeller

disk. Yao (2015) developed a database propeller force model that is based off of

RANS CFD simulations of an open water propeller with a sliding grid at different

advance coefficients and oblique flow angles.

Vessels operate in the ocean environment and encounter irregular waves of different

heights and frequencies. Unsteady propeller forces can be determined as a function

of the velocity and the acceleration of the propeller (Parsons and Vorus (1981),

Martio et al. (2017), Knight and Maki (2019), Li et al. (2018)). However, to predict

the propeller forces for a vessel performing a maneuver the acceleration is typically

low enough that forces can be determined with quasi-steady methods that neglect

the acceleration of the propeller. In general, the acceleration of the propeller is

neglected and only the velocity at the propeller plane is used for a vessel seakeeping

or maneuvering simulation when using a body force propeller model.

Beyond the calculation of the propeller force, the propeller force distribution is

also important since the rudder often operates in the wake of the propeller. Depend-

ing upon the body force distribution the forces on the rudder can change. There are

several methods that are used to distribute the body force. The simplest approach

is to apply only the thrust in a uniform distribution over the body force zone which

encompasses the swept volume of the propeller. The thrust distribution can be mod-

ified to be more representative of an open water propeller and to include the effects

of the torque on the flow by using models like those developed by Hoekstra (2006)

and Hough and Ordway (1965). These methods are both developed for open water

propellers and the force distribution neglects the effect of the interaction of either the

hull or the rudder on the propeller force distribution; but the model developed by
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Hoekstra includes the effect of a duct for a ducted propeller. Sadat-Hosseini et al.

(2014) compared the effect of three propeller modeling techniques for a maneuver-

ing vessel. This included two body force distributions including an axisymmetric

body force distribution and the Yamazaki potential-flow propeller model (Yamazaki

(1968)) as well as a discretized rotating propeller case. Sadat-Hosseini et al. (2014)

showed that the Yamazaki propeller model led to maneuvering characteristics that

were in better agreement with discretized propeller than the axisymmetric propeller

model. Phillips et al. (2010) examined an open water propeller with a rudder in its

wake using three body force propeller models including a uniform thrust approach, a

Hough and Ordway distribution, and a BEMT distribution. This study found that

the uniform thrust case, which neglects swirl, does not predict the drag of the rudder

as well as the other two methods. This study also notes that the BEMT approach is

the best approach of the three methods examined since it can account for the effect

of the hull and the effect of the rudder acting on the propeller. Broglia et al. (2013)

also compares BEMT to a modified Hough and Ordway distribution that accounts

for the velocity at the propeller plane due to hull effects and also determines the side

force of the propeller.

In a maneuver, the thrust is not the only propeller force that is critical to prop-

erly determining the vessel motions. The propeller side force can also be important

(Broglia et al. (2013), Guo et al. (2018)). The propeller side force applies a force in

the sway degree of freedom of the vessel and also applies a yaw moment. Different

methods can be used to determine the propeller side force. Guo et al. (2018) analyzes

the ONR Tumblehome with a systems-based method and calculates the propeller

side force based upon the hydrodynamic derivative of the propeller side force, the

drift angle, and the yaw rate. Other methods can be used to determine the propeller

side force such as BEMT (Broglia et al. (2013), Dubbioso et al. (2017)) or it can be

determined directly with a discretized propeller. Systems-based methods that use
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hydrodynamic derivatives for the determination of the propeller side force neglect the

variation of the propeller side due to changes in forward speed, non-linear effects, and

cross-coupling between forward speed and the effective inflow angle. Dubbioso et al.

(2017) investigated the multiple degree of freedom propeller force and distribution

using BEMT coupled with RANS CFD and the effect of the rudder deflection an-

gle. The work of Dubbioso et al. (2017) also examines simpler acutator disk methods

that can predict the propeller side force like that of Ribner (1943). Dubbioso et al.

(2017) shows how Ribner’s method can provide reasonable predictions especially for

low rudder angles.

An effective propeller model is inexpensive to use in a maneuvering simulation

and should accurately predict the multi-degree of freedom force of the propeller oper-

ating in the behind condition. Additionally, the propeller model should either enable

accurate prediction of the rudder force via an accurate body force distribution or

allow for an accurate rudder force prediction through another means. One way of

accomplishing this is by using a data-driven model trained with high fidelity simu-

lations of a discretized propeller operating in the behind condition with a deflected

rudder to account for both hull and rudder interaction effects. The ultimate goal

when using data-driven methods is to be able to predict the quantity of interest as

accurately as the method which is used to train the data-driven model. Additionally,

if a data-driven model is used to predict the force of a propeller for use in a maneu-

vering simulation, it is desirable to limit the amount of training required since high

fidelity simulations of the the propeller are expensive.

1.2 Literature Review for Data-Driven Modeling

Data-driven methods and machine-learning techniques use data to train mathe-

matical algorithms to understand a phenomenon and to predict a result based upon

new data. There are many data-driven techniques, some of which include linear
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regression, neural networks, and Gaussian Process Regression (GPR) or Kriging.

Neural networks are most applicable for multi-dimensional problems and with

large amounts of training data. Hornik et al. (1989) show that any mathematical

function can be predicted to any level of accuracy by using a neural network with

sufficient training and a sufficient number of hidden units. The application of neural

networks in the discipline of fluid mechanics is broad. Singh et al. (2017) uses a neural

network to improve a RANS turbulence model to better predict separation over an

airfoil. Zhang and Duraisamy (2015) compares neural networks to Gaussian process

regression for the purpose of data-driven turbulence modeling. Abramowski (2005)

applies neural networks for the prediction of a propeller operating in crash-back,

crash-ahead, and backing conditions. Roddy et al. (2008) uses a feedforward neu-

ral network to predict the multi-degree of freedom propeller force for a maneuvering

submarine. The neural network is trained with a series of free-running maneuvers of

the submarine including operational parameters in the crashback flow regime. Roddy

et al. (2008) uses data from 65 total maneuvers in the study, wherein 53 maneuvers

were used to train the model and 12 were used to validate the model. Knight and

Maki (2020) compare the performance of a neural network to regression for the de-

termination of the propeller thrust, torque, and side force for a propeller operating in

both open water and in the behind condition for a container ship without a rudder

present. In this study the two degree of freedom effect of oblique flow angle and the

advance coefficient are considered such that only two degrees of freedom are consid-

ered unlike Roddy et al. (2008) who considered a full six degree of freedom model

for a submarine. To train the models, Knight and Maki (2020) uses a significantly

smaller amount of training data than Roddy et al. (2008) to examine a lower di-

mensional space for which the CFD results of one unsteady maneuver as well as open

water propeller data extended to the behind condition using the thrust identity ITTC

(2017). Vesting and Bensow (2014) found that surrogate models constructed with a
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feed forward neural network and with a Kriging model could be used to optimize a

propeller. One drawback of neural networks can be their sensitivity to over-training

which can especially be a problem for noisy data, especially when data is limited;

however, procedures like early stopping can mitigate this Prechelt (1998).

Kriging was originally developed for geostatistics (Krige (1951), Matheron (1963)),

but it is also commonly used to generate surrogate models for engineering applica-

tions as originated by Sacks et al. (1989). Response surfaces generated with Kriging

are popular for optimization studies since it is desirable to evaluate the function in

a computationally efficient manner and for gradient based optimization the objective

function should be a continuous function (Bouhlel and Martins (2019), Liem et al.

(2015), Vesting and Bensow (2014)). Laurenceau and Sagaut (2008) compared differ-

ent sampling techniques for modeling an aerodynamic response surface with Kriging

and Cokriging which also uses the gradient at each sample point to improve the re-

sponse surface. This study illustrates that a benefit of Kriging is that since both a

prediction and a Kriging model uncertainty is provided throughout the design space,

samples can be selected to construct an accurate response surface more efficiently.

Filip et al. (2014) used CFD to model nine different bulb designs for a container

ship and developed a Kriging response surface that was used to develop an improved

design.

There are many variations of Kriging based methods with different underlying

assumptions. Gaussian Process Regression (Rasmussen and Williams (2006)) is a

useful tool and in general assumes underlying noise in the samples. This can be useful

for experiments when the underlying variance is known Zhang and Duraisamy (2015)

and is applicable for applications like vessel maneuvering identification (Xue et al.

(2020)). Gaggero et al. (2019a) examined multi-fidelity Gaussian Process Regression

applied to an open-water propeller in straight ahead motion.

Body force propeller models that use the open water propeller curves often describe
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the thrust coefficient as a function of the advance coefficient which can be determined

by linear regression. Additionally, systems-based methods often use linear regression

to determine the propeller side force (Guo et al. (2018)). Other regression models

like multiple regression are used in the literature. Bernitsas et al. (1981) developed a

regression form for the open water thrust, torque, and efficiency of the Wageningen

B-Series propellers based upon the advance coefficient, the pitch to diameter ratio, the

expanded area ratio, and the number of blades. Bhattacharyya et al. (2016) developed

a multiple linear regression based model to determine the forces on both the duct and

the propeller for a ducted propeller to improve the prediction of the performance based

on scaling. To train the model, 75 simulations were used to account for differences

in scale, advance coefficient, and pitch ratio. In this study the simulations are run

in a structured form such that five variations in the scale, five variations in advance

coefficient, and three variations in pitch ratio are examined.

Various methods can be used to sample the parameter space to train and validate

a data-driven model. For the purpose of developing a data-driven model to determine

the propeller force during a maneuver it is necessary to have an accurate model, one

that is inexpensive to use during the simulation, but also one that has a reasonable

training expense. A full factorial grid approach uniformly samples the parameter

space in uniform increments. Alternative approaches like Latin Hypercube Sampling

(LHS) are more suitable for higher dimensions and are a popular way for sampling

a design space (Laurenceau and Sagaut (2008), Tang et al. (2017)). LHS points are

stratified and in the simple case of two dimensions only one sample point is used for

each row and column. Alternatively, purely random sampling could be used, but this

may neglect regions of the parameter space.

When developing data-driven models it is important to characterize the uncer-

tainty associated with the model. The goal is to accurately calculate the truth with a

predictive model. Both experimental and computational calculations contain underly-
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ing error εd. Depending upon the underlying approach used to perform an experiment

or computation the uncertainty in the calculation can be small or large. When a data-

driven model is constructed with training data and validated with validation data,

the model can only be expected to be as accurate as the data that it is trained with.

Thus, the uncertainty in the data used to train and validate a data-driven model is

propagated into the model.

In addition to the underlying uncertainty of the data used to train and validate

the model, there is error in the prediction of the data-driven model as well. In

machine learning, the data for developing the data-driven model is generally split

into a training cohort and a validation cohort. A data-driven model is constructed

with the training data, and to limit over-training to the data that it is trained with,

it is validated with the validation data. The goal for a data-driven model is for the

model to predict seen and unseen (validation) data as accurately as the method that

is used to train the model. The data-driven modeling error with respect to the data

that is used for training and validation can be referred to as εr.

Regardless of the method used to sample and develop a data-driven model, there

is error in the model εm. εm is a measure of how close the model prediction is to the

truth. The εm is a function of the error inherent in the data that it is trained with εd

and the error of the data-driven model’s prediction of the data that it is trained and

validated with εr.

In the case of high-fidelity data for which the underlying uncertainty in the data

can be assumed to be negligible, the εm is the same as the εr; however, for data-

driven models that are constructed for complex problems, the underlying data often

contains some degree of uncertainty. In the case of uncertain training data, the model

is trained with data that contains error and is validated against data that contains

error. The εm can be quantified by comparing the prediction of the data-driven model

relative to the best available calculation of the truth. For CFD predictions, often the
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finest grid or experimental results are treated as the truth.

1.3 Outline and Contributions of this Thesis

This work investigates a novel approach for modeling the control surfaces of a

vessel using CFD simulations to generate data-driven models for use in maneuvering

and seakeeping analyses. The objective of this work is to demonstrate a framework

that allows for the use of a data-driven model to predict the forces on the vessel’s

propeller(s) and rudder(s), such that the forces can be applied during a maneuvering

simulation. The goals for the data-driven model are to be efficient to train, to ac-

curately predict the propeller and rudder forces with regards to the method used to

train the model, and to significantly reduce the computational cost of a maneuvering

simulation.

A novel approach is used to train and validate data-driven models based upon

CFD simulations of the propeller and rudder operating in the behind condition. This

work applies a unique methodology to efficiently develop a propeller model that cap-

tures the effects of the complex viscous flow interaction between the hull, propeller,

and rudder in a maneuver by training the data-driven model from CFD simulations

of the propeller operating in the behind condition with a deflected rudder. In the

literature, propeller force models do not directly account for the viscous effects of the

discretized rotating propeller and rudder. The data-driven models presented in this

work are trained with CFD simulations that directly model the propeller and rudder

in the behind condition to account for the complex viscous flow effects. Further-

more, the data-driven models constructed in this work remove the need for complex

computational techniques like overset grids since only the bare hull is required for ma-

neuvering simulations and the forces of the propeller(s) and rudder(s) are calculated

using the data-driven model. The approach outlined in this work significantly reduces

the computational cost of performing CFD maneuvering simulations. Additionally,
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the training simulation cost for the data-driven models is significantly less than the

cost required to perform just one maneuvering simulation with a discretized propeller

and rudder. The model training expense is justified even if only one maneuvering

simulation is performed, but the benefits of the model are especially advantageous

when many maneuvering simulations are performed.

Different data-driven methods and machine learning techniques are examined to

train and validate the propeller and rudder model. Each set of data contains a

different level of uncertainty based upon discretization error and turbulence modeling

error. The sources of error are quantified and the effect on the predictions of the

data-driven model are analyzed. This work provides a comprehensive analysis of how

much training data is required to train the model and how accurate the data-driven

model is. To accomplish this, different grids and different turbulence models are used

in the training CFD simulations and the results are compared. The accuracy of the

data-driven models is calculated from the underlying uncertainty in the data used to

train and validate the model as well as the error in the data-driven model prediction.

A comprehensive analysis of the effect of data-driven model uncertainty and its effect

on the maneuvering characteristics of vessels is explored in detail.

Specifically, this work investigates the determination of the propeller and rudder

force coefficients using both linear regression and Gaussian process regression. The

amount of training data relative to accuracy is also investigated for both methods.

Linear regression is a technique that has been used for many years, and it is applied

in a novel way to determine the forces of the propeller and the rudder through the

lens of machine learning validation techniques. Similarly, Gaussian process regression

is a potentially more robust data-driven technique that is suitable for generating

surrogate models. The accuracy of each of the models are evaluated in the context

of the accuracy and the volume of training data available. The implementation of

the body force propeller and rudder model reduces the computational cost of the
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maneuvering simulations, but training is also limited such that the cost of training

the model is less than the cost of one maneuvering simulation.

This study applies the method of using a data-driven propeller model to two ves-

sels. The KRISO Container ship (KCS), which is a single screw container ship with

a semi-horned rudder, is analyzed at model scale. The seakeeping and maneuvering

characteristics of this vessel have been widely studied in the literature (Piro et al.

(2020), White (2020), Shen et al. (2015), Wang et al. (2018), SIMMAN (2008), SIM-

MAN (2020)). The ONR Tumblehome is also examined. The ONR Tumblehome is a

twin screw vessel with two rudders and is also analyzed at model scale. The maneu-

vering characteristics of the ONR Tumblehome have been analyzed using a variety of

methods in the literature ranging from experimental results (Elshiekh (2014), Sanada

et al. (2019), SIMMAN (2020)), to systems-based methods (Araki et al. (2012), Guo

et al. (2018)) to full RANS CFD simulations with a discretized propeller (Carrica

et al. (2012), Wang et al. (2016)).

Practitioners of methods described in this work can elect to use the method of their

choice to train the data-driven model. In this work RANS CFD is used for developing

and evaluating the model. For example, for off-design conditions very high fidelity

simulation tools like LES or DES could be used; while for on-design conditions a lower

fidelity tool like BEM or BEMT could be used. The goal of this work is to illustrate

how a data-driven model for the propeller and rudder can be trained at a reasonable

cost, implemented into a custom CFD package with reasonable effort, and accurately

predict the forces of the propeller and rudder for very low computational cost while

maintaining accuracy of the viscous CFD solution. In this work the models are

applied to CFD simulations; however, this method could also be used in conjunction

with a vessel’s autopilot to improve the performance of automated vessel control.

This method can also be used to provide a propeller and or rudder model for a

systems-based maneuvering method.
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This work expounds upon the author’s published works that form the foundation

of this dissertation (Knight and Maki (2019), Knight and Maki (2020), Knight et al.

(2020), and Piro et al. (2020)). Chapter II describes the methods used in this work

and provides a mathematical foundation for this work. Chapter III develops the data-

driven propeller and rudder model for the KCS, while Chapter IV applies the data-

driven propeller model for the analysis of the turning circle characteristics of the KCS

both in calm water and in waves. In Chapter V the data-driven propeller and rudder

model is developed for application to the twin-screw twin-rudder ONR Tumblehome

and in Chapter VI the turning circle characteristics of the ONR Tumblehome are

examined in calm water and in regular waves.
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CHAPTER II

Framework for Data-Driven Propeller and Rudder

Model

The force generated by the propeller depends upon the motions of the vessel as

well as the complex flow interaction between the hull, propeller, and rudder. The

propeller and rudder operate in the wake of the hull. The propeller pushes the vessel

forward, but also has forces acting in other degrees of freedom that can affect the

maneuvering characteristics of the vessel. Additionally, the rudder operates in the

propeller wake and this has a significant effect on the maneuvering characteristics of

the vessel. During a maneuver the propeller and rudder operate off-design which can

lead to flow separation and stall. The propeller and rudder move with the rigid ship

hull and also have their own respective rotations relative to the hull. The rudder

rotates about the rudder stock to turn the vessel and the propeller rotates about the

propeller shaft which pushes the vessel forward.

There is a significant difference in time and length scales in the ship maneuvering

problem. For a full scale vessel, a maneuver like a turning circle or a zig-zag takes on

the order of minutes, the wave period for ambient waves is on the order of seconds to

tens of seconds, and the propeller blade passing frequency is a fraction of a second.

The goal of this work is to derive data-driven propeller and rudder models to reduce

the computational cost of ship maneuvering simulations using CFD, such that the
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time-step required is driven by the time scale of the hull instead of the propeller.

This work removes the need to discretize the propeller and the rudder by develop-

ing a data-driven model to predict the force vector on each propeller and each rudder.

In this work, CFD simulations are used to train and evaluate data-driven propeller

and rudder models. Additionally, maneuvering simulations are performed to evaluate

the maneuvering characteristics of different vessels. OpenFOAM version 2.4.x is used

for all of the CFD in this work. For the maneuvering simulations, a customized six

degree of freedom solver is used (White (2020), White et al. (2021)).

In this chapter, the reference frames and motions for the nonlinear maneuvering

problem are presented first. Following a discussion on the ship maneuvering problem,

a discussion on the determination of the propeller and rudder forces for arbitrary mo-

tion is presented. Following the general discussion of how to determine the propeller

and rudder forces, the data-driven techniques used to determine the force coefficients

are discussed. Finally, a simple case study comparing two data-driven techniques is

presented for the simple problem of the open water thrust coefficient as a function of

the advance coefficient for a propeller in open water.

2.1 Ship Maneuvering Reference Frames and Motions

When a vessel performs a maneuver there is a six degree of freedom force acting on

the the hull, the propeller(s), and rudder(s). The nonlinear equations of motion are

solved (White (2020),White et al. (2021)) to determine the motions and maneuvering

characteristics of the vessel. In this work, when the maneuvering characteristics of

the vessel are analyzed the hull is modeled with VOF CFD, but a data-driven model

is derived to determine the multi-degree of freedom force acting on the propeller(s)

and rudder(s).

The motions and coordinate systems of a vessel are illustrated by Fig. 2.1. To

note, the vessel shown in this image is the KCS. There are two coordinate systems:
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Figure 2.1: Motions and reference frames for the maneuvering problem .

the earth-fixed frame and the body-fixed frame. The earth-fixed coordinate system is

specified at the original origin of the domain with X in the original forward direction

of the vessel, Y in the direction towards port, and Z vertically upwards. The body-

fixed frame is located at the center of gravity of the vessel with direction x towards

the bow, y towards port, and z upwards. The ship velocity vector
−→
U has components

u, v, and w for directions x, y, and z respectively. The rotation rates are about the

x, y, and z axes and thus the roll rate is θ̇, the pitch rate is φ̇, and the yaw rate is ψ̇.

Right hand rule convention is used for the different rotations and rotation rates.

The force and moment acting on the vessel
−→
FV is a six degree of freedom force,

which is applied at the center of gravity of the vessel. The six degree of freedom

force of the hull
−→
FH , propeller(s)

−→
FP , and rudder(s)

−→
FR determine the force acting

on the vessel as shown by Eqn. 2.1. The nonlinear equations of motion are solved in

the customized OpenFOAM six degree of freedom solver. Fig. 2.2 shows a schematic

with the components of the different forces as well as some geometric details that

affect the motions of the vessel. The geometric details shown are the distance that

the propeller is aft of the center of gravity of the vessel d, the distance that the rudder

stock is aft of the vessel center of gravity dr, and the rudder angle about the rudder
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stock δ with positive δ correlating to the right hand rule about the upwards pointing

rudder stock axis. The six degree of freedom force of the total force acting at the

center of gravity of the vessel is
−→
FV , with three force components and three moment

components. The force components of
−→
FV are FV x, FV y, and FV z in the body-fixed x,

y, and z directions respectively; the three moment components of
−→
FV are MV x, MV y,

and MV z about the body-fixed x, y, and z directions respectively. Each component of

the six degree of freedom force is the sum of the components of the force on the hull,

the rudder, and the propeller applied to the center of gravity of the vessel as shown

by Eqn. 2.2. To note, in a maneuver, the propeller and rudder moments calculated

about the center of gravity of the vessel are what affect the maneuver and this is

what is illustrated in Eqns. 2.3. Separately, the six degree of freedom force about the

propeller shaft axis at the hub fixed plane as well as the six degree of freedom force

of the rudder about the rudder stock can affect other aspects of design and analysis.

−→
FV =

−→
FH +

−→
FP +

−→
FR (2.1)

FV x = FHx + Fx + FRx

FV y = FHy + Fy + FRy

FV z = FHz + Fz + FRz

(2.2)

MV x = MHx +MPx +MRx

MV y = MHy +MPy +MRy

MV z = MHz +MPz +MRz

(2.3)

The equations of motion can be described in terms Newton’s second law as well

as Euler’s equations as shown by Eqn. 2.4 (White et al. (2021)). The equations of

motion depend upon the ship state defined by the six degree of freedom motion, the

propeller rate n, and the rudder angle δ. The force acting on the body is a function

21



Figure 2.2: Forces applied to the vessel in the maneuvering problem.

of the force vector on the vessel projected into the earth-fixed frame
−−→
FV E, the mass

matrix of the vessel m, and the accelerations of the vessel in the earth-fixed frame Ẍ.

Euler’s equations of motion are a function of the applied moments
−−→
MV , the rotational

inertia matrix I, the rotational rate of the body about the vessel’s center of gravity

−→ωV , and the rotational acceleration of the body about the vessel’s center of gravity

−→̇
ωV

−−→
FV E = m

−→̈
X

−−→
MV = I

−→̇
ωV +−→ωV × (I−→ωV )

(2.4)

The six degree of freedom propeller force is the force vector that describes the

three forces and three moments. The three forces are: Fx (or thrust T when the

propeller shaft axis is aligned with the body-fixed frame) aligned with the propeller
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Figure 2.3: Forces acting on propeller.

shaft axis, Fy (or propeller side force S), and the vertical propeller force Fz. The

thrust of the propeller T is aligned with the propeller shaft axis, so for a propeller

with no shaft inclination Fx and T are the same. The moment contributions of the

six degree of freedom propeller force applied to the center of gravity of the vessel are

MPx, MPy, MPz. Additionally, the moments about the center of the propeller are

denoted as: the moment about the x axis Mx, the moment about the y axis My, and

the moment about the z axis Mz. The propeller torque Q is the moment required to

drive the propeller about the propeller shaft axis. The torque induces a swirl effect

to the flow which can affect the rudder force and it is also important for determining

how much power is applied to the propeller. Fig. 2.3 shows a schematic for these

forces for an open water propeller. Eqn. 2.5 shows the dimensionless form of the

propeller force coefficients and Eqn. 2.6 shows the dimensionless torque coefficient,

for which the other moments about the propeller can be calculated in the same form.

The propeller force coefficients are determined by each respective force, the density

of the fluid ρ, the propeller revolution rate n, and the propeller diameter D.
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KT =
T

ρn2D4

KX =
Fx

ρn2D4

KY =
Fy

ρn2D4

KZ =
Fz

ρn2D4

(2.5)

KQ =
Q

ρn2D5
(2.6)

The force vector of the propeller affects the maneuvering and seakeeping charac-

teristics of a vessel. The generalized propeller force depends upon the six degree of

freedom motions of the vessel, the propeller revolution rate, as well as the effect of

the deflected rudder. While the torque required to rotate the propeller affects how

much power must be delivered to the propeller, if the propeller revolution rate is held

constant the most important forces on the propeller in a maneuver are the thrust and

the side force. The propeller thrust affects the forward velocity of the vessel u. The

propeller side force contributes to the sway velocity v of the vessel and also induces

a yaw moment on the vessel which contributes to the yaw rate of the vessel ψ̇. For

a maneuver, the six degree of freedom force about the propeller hub fixed frame is

not the only critical component, but the moment caused by the propeller about the

center of gravity of the vessel is also important for the equations of motion. In turn,

the force of the propeller can be determined as a function of the motions of the vessel

specifically u, v, and the tangential velocity at the propeller plane determined by the

product of ψ̇ and the distance between the center of gravity of the vessel and the

propeller plane d. Likewise, the rudder force is a function of u, v, ψ̇, and the distance

between the center of gravity of the vessel and the rudder stock dr. The rudder force
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is also a function of the thrust induced by the propeller upstream of the rudder. In

this work, these motions are used to determine the propeller and rudder forces.

The most important propeller and rudder forces to consider for a maneuvering

vessel are the forces in the x and y directions as well as the yaw moment about the

z axis. Therefore, instead of determining the full six degree of freedom force on each

propeller and rudder, the problem can be simplified to only determining the three

dimensional force on each propeller and rudder. Certainly, other degrees of freedom

can be calculated as well and included in the model. For example, if experimental

results provide additional force parameters like propeller torque, it can be useful to

include in the model to help validate it.

2.2 Modeling Propeller Forces for Arbitrary Motion

In this section, the equations for modeling the propeller with arbitrary vessel

motion are discussed. When a vessel performs a maneuver, the effects of the oblique

flow angle change the propeller and rudder forces. The propeller thrust affects how

fast the vessel travels and the propeller torque affects how much power must be

delivered. Furthermore, the propeller side force can be important to consider in order

to accurately determine the vessel maneuvering motions. This work uses data-driven

modeling to train a model to predict the propeller force, and the model is implemented

in a maneuvering CFD simulation.

For straight ahead motion the forces of importance for a propeller are the thrust

T and the torque about the propeller shaft Q. For a given propeller design, the

force on the propeller is a function of the forward velocity u, the propeller revolution

rate n, and the diameter of the propeller D. A propeller is easiest to model at its

design condition, but in a maneuver the propeller operates off-design. When a vessel

maneuvers it no longer operates in the surge-only degree of freedom. In addition to

surge the other degrees of freedom are sway, heave, pitch, yaw, and roll. The sway and
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yaw degrees of freedom produce an oblique flow angle acting on the propeller which

can alter the forces on the propeller as well as the rudder. When the propeller operates

off-design more separation occurs and higher fidelity modeling methods that are more

expensive are required to achieve accurate predictions. Methods like Vortex Lattice

Method (VLM), Boundary Element Models (BEM), or Blade Element Momentum

Theory (BEMT) are most accurate near the design condition and are comparatively

inexpensive methods to determine the propeller force. Viscous numerical methods

like RANS CFD or LES can be more accurate off design but are also much more

expensive. RANS CFD with wall functions is used in this work.

The dimensionless forward velocity that is used to model a propeller is the advance

coefficient J , which is a function of u, n, and D as shown by Eqn. 2.7. In the behind

condition the interaction between the hull and the propeller is important. The wake

of the hull induces nonuniform velocity in the propeller plane. A common method to

address this is to use the wake fraction wf which is calculated as a function of the

forward velocity of the vessel u and the advance velocity uA as shown by Eqn. 2.8,

where uA is the average nominal velocity at the propeller plane. wf indicates how

much the flow is blocked, where a zero value of wf indicates that the advance velocity

is the same as if the propeller was operating in open water on average, whereas larger

values of wf indicate more of a velocity reduction at the propeller plane due to the

wake of the hull. The wake fraction can be calculated with a variety methods ranging

from averaging the velocity at the propeller plane with no propeller action (averaging

the nominal wake) to using the thrust identity (ITTC (2017)) by performing a single

behind condition simulation to extend the open water propeller curves to the behind

condition by using the advance velocity based advance coefficient JA as shown by

Eqn. 2.9. This approach can be accurate for characterizing the forces in straight ahead

motion as has been illustrated in Knight and Maki (2019). For maneuvering vessels,

the effect of the rudder and other rigid body motions of the vessel are important
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for determining the propeller force. Furthermore, the wake fraction can change as a

function of oblique flow, thus, it is desirable to account directly for the forces acting

on the propeller and rudder as a function of the oblique flow angle while accounting

for the interaction between the hull, propeller, and rudder. In this work, the advance

coefficient J is calculated using the forward speed of the vessel in accordance with

Eqn. 2.7. Thus, the forward speed of the vessel is used and the effect of the wake is

ignored when calculating this parameter; the effect of the wake of the hull is captured

by determining the force of the propeller operating in the behind condition for the

training CFD simulations.

J =
u

nD
(2.7)

wf =
u− uA
u

(2.8)

JA =
uA
nD

(2.9)

The drift angle β is the angle between the forward velocity and the sway velocity as

shown by Eqn. 2.10. For a vessel that operates purely with forward velocity and sway

velocity, the drift angle is representative of the oblique flow angle at both the propeller

and rudder positions; however, during a maneuver, the effect of the yaw rate and the

distance of the respective surface from the center of gravity of the vessel alters the

oblique flow angle for each respective surface. The oblique flow angle for a propeller

operating in the behind condition β is a function of the the forward velocity, the sway

velocity, the yaw rate ψ̇ (measured in radians/second) and the longitudinal distance

between the propeller and the vessel’s center of gravity d as shown by Eqn. 2.11.

Similarly, the oblique flow for the rudder βR is the oblique flow angle at the rudder

stock which is calculated as a function of the rigid body motion of the vessel in terms
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of u, v, ψ̇, and the distance between the center of gravity of the vessel and the rudder

stock.

β = tan−1
(v
u

)
(2.10)

βP = tan−1

(
v − dψ̇
u

)
(2.11)

βR = tan−1

(
v − drψ̇

u

)
(2.12)

When the propeller acts in the behind condition the wake of the hull changes and

this also changes the inflow to the propeller. When the propeller is exposed to oblique

flow the propeller produces a side force S (or Fy) that can be important to include

for the accurate prediction of a vessel’s maneuvering characteristics. The side force

of the propeller not only applies a side force to the vessel, but it also produces a yaw

moment about the center of gravity of the vessel. The oblique flow also leads to a

vertical component of the force which can also be modeled, but in this work that term

is neglected for the maneuvering simulations. The data-driven models derived in this

work simplify the full six degree of freedom force and only require the calculation

of KX , KS, and the yaw moment generated by the propeller. In one of the case

studies performed in Chapters III and IV, the experiments with which the model are

compared also predicted the torque, so the torque is also calculated for that case.

Eqn. 2.13 shows the propeller force coefficients that are calculated in this work for

application in the CFD based maneuvering simulations. To note, in the analysis of the

KCS in Chapters III and IV, the shaft inclination is 0◦ so KX and KT are identical.

The yaw moment induced by the propeller is shown by Eqn. 2.14 and is a function of

FX , S, d, and the distance that the propeller is off center dy (with positive dy towards

port).
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KX =
Fx

ρn2D4

KS =
S

ρn2D4

KQ =
Q

ρn2D5

(2.13)

MPz = −(d S + dy Fx) (2.14)

2.3 Rudder Forces for Arbitrary Motion

In addition to the propeller force, the rudder force is also critical for determining

the maneuvering characteristics of the vessel. The importance of modeling the pro-

peller forces accurately is important not only because the propeller forces affect the

vessel’s equations of motion, but the propeller also affects the inflow to the rudder

and thereby affects the rudder force. The rudder operates in the wake of the propeller

and the induced velocity of the propeller plays an important role in the rudder force.

When the vessel is maneuvering, the rudder is deflected and the rudder changes the

inflow to the propeller, which alters the propeller force. Thus, the rudder force is

a function of the full eight degree of freedom ship state vector. However, the most

critical dimensional components of the state are u, v, ψ̇, n, and δ. Thus, for a given

δ, a data driven model can be constructed to determine the rudder force coefficients

as a function of J and β if ψ̇ is is neglected while training the model.

Alternatively, the rudder could be discretized if an accurate propeller body force

distribution can be determined. Some approaches to develop a body force distribution

include using potential flow distributions, BEMT, or a data-driven model to predict

the distribution. All of these approaches inherently contain a level of error, so in this

29



work the force of the rudder is directly calculated with a similar data-driven approach

as is used to model the propeller. This also alleviates the need to discretize the rudder

in the maneuvering simulation and removes the need to determine the propeller body

force distribution.

The most important rudder forces to account for in a maneuver are the forces in the

x and y directions as well as the yaw moment contribution. The rudder forces can be

non-dimensionalized in terms of the inflow to the rudder velocity uR, the lateral area of

the rudder SR, the density of water, and the force components. The force component

in the forward direction in the body-fixed frame is FRx and the corresponding force

coefficient is CFx as shown by Eqn. 2.15. Similarly the force component in the lateral

direction in the body-fixed frame is FRy and the corresponding force coefficient is

CFy as shown by Eqn. 2.16. The rudder yaw moment about the center of gravity of

the vessel MRz is critical for evaluating a vessel’s maneuvering characteristics. The

rudder yaw moment coefficient CMz can be determined using Eqn. 2.17 in terms of

the inflow to the rudder velocity, the lateral area of the rudder, the density of water,

the rudder yaw moment, and the magnitude of the distance between the center of

gravity of the vessel and the rudder stock dr. The CMz can also be determined by

approximating it as the product of CFy and dr as shown by Eqn. 2.18. In the case

of a single rudder that is aligned with the center line of the vessel Eqn. 2.18 is a

convenient approach. On the other hand, if the rudder is off-centerline, it may be

easier to use Eqn. 2.17 since the moment induced is a function of both the side force

of the rudder as well as a smaller component due the resistance of the rudder and the

distance that the rudder is from centerline.

CFx =
2FRx
ρu2RSR

(2.15)

CFy =
2FRy
ρu2RSR

(2.16)
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CMz =
2MRz

ρu2RSRdr
(2.17)

CMz = −drCFy (2.18)

The thrust coefficient CT can be described as a function of KT and J as shown

by Eqn. 2.19 which in turn can be used to determine the axial velocity at the rudder

uRx as shown by Eqn. 2.20. This approach is similar to that used by Kose et al.

(1981) which is used for systems-based methods that determine the rudder force using

empirical coefficients such as the work performed by Araki et al. (2012). The approach

used here simplifies the empirical model and neglects the velocity reduction at the

rudder due to the hull wake, but it incorporates the effect of the induced velocity of

the propeller. The lateral velocity at the rudder uRy is determined as a function of

the sway velocity of the vessel, the yaw rate of the vessel, and the distance between

the rudder stock and the center of gravity of the vessel dr as shown by Eqn. 2.21.

The rudder velocity is the resultant magnitude of the lateral velocity and the axial

velocity as shown by Eqn. 2.22.

CT =
8KT

πJ2
(2.19)

uRx = u(1 + CT ) (2.20)

uRy = v − drψ̇ (2.21)

uR =
√
u2Rx + u2Ry (2.22)

In this work, only turning circle maneuvers are performed. Thus, the rudder force

coefficients can be determined simply with the basis of the deflected rudder. On the

other hand, if a zig-zag maneuver is performed, or another variation of a maneuver

that requires the rudder to be deflected to different angles, small adjustments to the

form of Eqn. 2.27 should be made. For example, depending upon which direction

the rudder is deflected, it may be more convenient to use a βR of |βR|. For a single
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screw vessel with one rudder, the performance for a port turn and a starboard turn

will be different due to the effects of the propeller rotation direction with the rudder,

for which the training sample space should include both positive and negative β.

Additionally, to handle rudder angles that are not equal to the position that the

rudder was trained at, interpolation could be used or the methods investigated here

could be expanded to include a third feature of the rudder angle δ.

2.3.1 Modeling of Multiple Propellers and Rudders

When multiple rudders or propellers are present a separate data-driven model can

be generated for each set. Depending upon the position of each respective propeller

and rudder different interactions between each propeller, rudder, and hull occur.

For example, for a twin screw vessel with two rudders operating in the wake of

each respective propeller a regression model can be generated for the port side and

starboard side propeller-rudder sets respectively. In this case, when the rudder angle

is non-zero and/or there is a non-zero oblique flow angle the forces acting on the

propellers and rudders are different on the port side and starboard side. The case

study on the maneuvering of the ONR Tumblehome illustrates these effects. When

the propellers and rudders are not located on centerline, the yaw moment contribution

of each surface becomes a function of not only the side force and the distance that

the surface is aft of the center of gravity of the vessel, but it also depends upon the

force in the x direction generated by that surface and the distance that the surface

is off of centerline.

Additionally, when there are multiple propellers and rudders the training for the

propeller and rudder model does not depend upon the sign of δ. For example, in the

case of a twin-screw twin-rudder vessel performing a zig-zag maneuver, if both rudders

are deflected to the same angle and both propellers are either inward spinning or both

are outward spinning, the data-driven model can be adapted for either positive or
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negative δ. Based on the direction of β and δ that is used for training, if the direction

of β and δ are switched, then the side that originally saw clean inflow (windward) now

becomes the leeward side, and the side that originally was the leeward side becomes

the windward side in the new model. When this occurs the side force of both the

propeller and rudder flip in direction and the yaw moment also flips in direction.

2.4 Data-Driven Modeling Techniques

There are multiple data-driven algorithms that can be applied to propeller mod-

eling such as linear regression, neural networks, and Gaussian process regression. In

this work the focus is upon linear regression and Gaussian process regression. Each of

these can be used in terms of the feature of the advance coefficient J and the oblique

flow angle β.

Regardless of the data-driven model used, the application of the data-driven model

to a maneuvering simulation is outlined in Fig. 2.4. The purpose of the data-driven

model is to determine the propeller and rudder force coefficients based on the motions

of the vessel. To accurately determine the propeller forces with a data-driven method

a specific technique must be selected. Each data-driven method has benefits and

limitations.

2.4.1 Training Data Generation

The force vector acting on the vessel is a six degree of freedom force. However,

some of the forces from the propeller and rudder can be omitted while still accurately

capturing the maneuvering characteristics of the vessel. This work uses behind con-

dition RANS CFD simulations of the propeller with a deflected rudder to directly

capture the effect of the viscous flow interaction between the hull, propeller, and

rudder. A double-body approximation is applied such that the free surface effects

are assumed small and are neglected, such that the Froude number does not have a
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Figure 2.4: Flow chart for the implementation of the data-driven propeller and rudder
model.

significant effect on the propeller and rudder performance. The method also assumes

that the motion is slowly varying such that the force on the propeller and rudder

depend only upon the instantaneous ship state.

The Froude number Fn, defined in Eqn. 2.23, is an important dimensionless param-

eter which relates the inertial and gravitational forces. The Froude number depends

upon u, the length of waterline Lwl, and the gravitational constant g. This parameter

is important for characterizing free surface effects like the wave drag on the hull, but

it is assumed in this work that the propeller and rudder forces have small depen-

dence upon the free surface effects. If the vessel operates with too large of a Froude

number or if the vessel operates in a very high amplitude sea state, the double-body

approximation which assumes a smooth free surface will break down.

Fn =
u√
gLwl

(2.23)
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For the training simulations the vessel is held at a constant position, the rudder

is fixed at the desired deflected angle, and the propellers rotate about the propeller

shaft with a rotating sliding mesh. The forces of specific interest in this work are the

thrust of the propeller, the torque of the propeller, the side force of the propeller,

the yaw moment of the propeller induced at the center of gravity of the vessel, the

resistance of the rudder, the side force of the rudder, and the yaw moment of the

rudder induced at the center of gravity of the vessel.

Modeling a discretized propeller rotating in the behind condition using RANS

CFD is expensive, therefore it is desirable to limit the number of data points required

to train the data-driven models. In this work, Latin Hypercube Sampling is used to

sample in the J-β space in the parameter range that the vessel operates in a maneuver.

By sampling in the dimensionless J-β space instead of the dimensional space it allows

for simple scaling to different vessel operating conditions. The J-β parameters are

used to determine the dimensional velocity that is specified at the inlet of the CFD

domain, such that the commensurate forward velocity and sway velocity that match

the desired J-β values for each sample point. In the training CFD simulations, only

forward velocity and sway are accounted for while n is held constant, thus, β, βP ,

and βR are all equal since there is no yaw. To note, in this work all of the models use

the oblique flow angle specified in radians to train and utilize the models. Using the

J-β parameter space reduces the number of independent variables of J , β, βR, and

βP to just two independent variable (J and β). By using J-β space, the dependence

upon u, v, ψ̇, and n is accounted and the model can be scaled for n larger or smaller

than it was trained with. Thus, by sampling and training a model to predict the

force coefficients on the propeller and rudder in J-β space the dimensionalality of the

problem is reduced and the forces can be scaled for a reasonable range of Reynolds

number and provided that the Froude number is not so large that free surface effects

alter the propeller and rudder force.
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The Reynolds number, defined by Eqn. 2.24 is a dimensionless parameter which

characterizes the importance of inertial versus viscous forces. The Reynolds number

is a function of the characteristic velocity uc, the characteristic length Lc, and the

kinematic viscosity ν. In the laminar flow regime the Reynolds number is low and

viscous forces are dominant. In the turbulent flow regime the Reynolds number is high

and the inertial forces are dominant. Model scale propellers operate in the transitional

flow regime between laminar to turbulent flow, whereas full-scale propellers operate in

the turbulent flow regime. Different turbulence models assume different flow regimes.

In this work the Spalart-Allmaras (Spalart and Allmaras (1994)) and k − ω SST

(Menter and Esch (2001), Menter et al. (2003)) turbulence models are used which

assume a fully turbulent boundary layer and wall functions are used. The use of

wall functions can lead to less accurate results than using wall resolved grids with y+

1.0, however, they are less expensive (Eca et al. (2015)). A RANS based alternative

to fully turbulent RANS models are transitional models which can account for the

transition from laminar flow to turbulent flow (Langtry and Menter (2009), Furst

et al. (2013)) and are applicable to model scale marine propellers (Wang and Walters

(2012), Baltazar and Rijpkema (2017), Webster et al. (2019)), but the use of wall

functions is limited with these models.

Re =
ucLc
ν

(2.24)

While Latin Hypercube Sampling is used in this work, other sampling techniques

could be used as long as the sampled space is representative of the expected values of J

and β that the vessel would operate in during a maneuver. To expand the coefficients

that the different data-driven models determine in the J-β space to applications in a

maneuver, the propeller oblique flow angle βP and the rudder oblique flow angle βR

are used for the propeller and rudder forces respectively.
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A data-driven model for a given application should be able to predict the output

variable with a similar level of accuracy as the data that it is trained with. RANS CFD

with the propeller discretized and rotating is used for training the data-driven model

in this work, therefore, each data point analyzed to train the model is expensive.

Restricting the number of required training and validation points is desirable to keep

the overall expense of the model reasonable. Even with expensive methods like RANS

CFD there is also error inherent to the training points used. The error of the data-

driven model prediction with respect to experimental results is a function of the

underlying error in the CFD based training and validation data (such as discretization

error) as well as the error associated with the data-driven model itself.

An additional criterion for evaluation of different data-driven models is the ease of

implementation. For engineers to incorporate this approach into their workflow they

must be able to train the models and once a model is trained it must be implemented

in a given CFD package. If two models have similar accuracy and training cost, it is

desirable to implement the more straightforward algorithm.

2.4.1.1 Linear Regression

Linear regression is a simple but powerful tool for constructing and implementing

a data-driven model. For a vessel undergoing sway and yaw, the oblique flow angle

must be considered. A drawback of linear regression is that the form of the polynomial

must be specified so the form of the response surface must be known or estimated. A

sample feature vector which includes a scalar coefficient J to the first and second order,

βP to the first and second order, as well as a cross coupling term J-βP is shown by

Eqn. 2.25. The corresponding force coefficients KX , KS, and KQ of the propeller are

shown by Eqn. 2.26. In addition to the forces calculated from these force coefficients,

the yaw moment contribution of the propeller is determined as a function of d, KX ,

dp and KS as shown by Eqn. 2.14. The regression model determines the coefficients
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based upon a set of training data for which the values of the force coefficients and the

features are supplied. Alternative feature vectors could neglect the quadratic term,

or additional terms could be added such as a cubic term. Additional features could

lead to over-fitting the data depending upon how many samples are used to train the

model; on the other hand, too few features could lead to an overly simplistic model.

The linear regression models in this work are generated using the MATLAB function

fitlm.

~x = [1, J, J2, βP , β
2
P , JβP ]T (2.25)

KX = a1 + a2J + a3J
2 + a4βP + a5β

2
P + a6JβP

KS = b1 + b2J + b3J
2 + b4βP + b5β

2
P + b6JβP

KQ = c1 + c2J + c3J
2 + c4βP + c5β

2
P + c6JβP

(2.26)

To note, when the data-driven model is implemented in the CFD maneuvering

simulation, the βP and βR are used in lieu of β since in a maneuver the propeller

oblique flow angle is affected by the yaw rate and the distance that the propeller is

aft of the center of gravity of the vessel. On the other hand, it is most convenient to

train the model with only forward velocity and sway velocity such that β, βP , and

βR are equal, and the J-β space only requires two dimensions to sample for each δ.

If dimensional parameters were to be used and the yaw rate was accounted for then

the sample space would become four dimensional (u, v, ψ̇, n) for a given δ.

Using linear regression similar to Eqn. 2.26, the rudder force coefficients can be

determined with Eqn. 2.27. It is important to once again note that for the training

of the model, β and βR are equal since there is no yaw rate, but in the course of a

maneuver, βR depends upon the yaw rate.
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CFx = e1 + e2J + e3J
2 + e4βR + e5β

2
R + e6JβR

CFy = f1 + f2J + f3J
2 + f4βR + f5β

2
R + f6JβR

CMz = g1 + g2J + g3J
2 + g4βR + g5β

2
R + g6JβR

(2.27)

The accuracy of the model can be evaluated based on how well it predicts the data

that it is trained with, but more importantly how well it predicts unseen data. In this

work, the regression model is trained and validated with RANS CFD simulations of

the propeller operating in the behind condition with a rotating sliding mesh, therefore,

it is desirable to also limit computational cost and mitigate the number of training

and validation points. As noted in the literature review, many body force propeller

models are based upon linear regression and determine only the thrust and the torque

of the propeller based upon the advance coefficient of the vessel based upon the wake

fraction. In this study the J is calculated as a function of the forward speed of the

vessel and it is shown that the β can be important for the prediction of the propeller

force.

2.4.1.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is another data-driven technique that is suit-

able to generate a response surface. GPR is more complicated to implement in a

custom CFD package for performing maneuvering vessel analysis, but has some dis-

tinct advantages over linear regression. GPR provides not only a prediction of the

output variable based on the input parameters, but also provides an uncertainty

bound, which can be useful for determining where to add additional samples in the

parameter space to improve the accuracy. The uncertainty bound is available since

the method uses a Gaussian process to develop the model. Additionally, if the input
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data is noisy and the standard deviation of the noise is known, this can be incorpo-

rated into the model. For example, for CFD applications the discretization and/or

turbulence modeling uncertainty could be considered; alternatively, for experiments,

the experimental error can be used. If the input data is noise-free, then the error

of the prediction at the training points is zero. In this work the GPR is modeled in

MATLAB using the function fitrgp which is based off of Rasmussen and Williams

(2006), which is subsequently summarized.

For each desired output variable y (for example KT , KS, or KQ) the model is

trained with N training points. Eqn. 2.28 shows that the output variable is deter-

mined by a function of the input vector ~x, the weight vector ~w, and the error between

the function evaluation f(~x) and the output variable y denoted by ε, which is shown

by Eqn. 2.29. The error ε is a Gaussian noise with a variance of σ2
n with a zero mean.

If the samples used to train the model are assumed to be free of noise, then the model

will predict the training point prediction with no error. If on the other hand, the

level of noise in the sample points is known, this can be applied to the GPR. For the

purpose of modeling the propeller forces, the input vector is the value of J and β for

each correlating output parameter y. Thus, the set of training for KT would be the

vector of length N points of the CFD based calculation of KT and the ~x would be

the corresponding J and β values.

y = f(~x) + ε = ~xT ~w + ε (2.28)

ε ∼ N (0, σ2
n) (2.29)

f(~x) can be described as a Gaussian process of the mean of the expected value

of the function m(~x) and the covariance function k(~x, ~x′), as shown by Eqns. 2.30 to

2.32. For the series of training outputs Y and the corresponding inputs X of length

N , the covariance can be shown in index notation by Eqn. 2.33 and Eqn. 2.34 shows
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the matrix form of the equation. Thus, the covariance is dependent upon the noise of

the samples. In this work the kernel function used is a squared exponential function

for which a different length scale is used for the different inputs of ~x as shown by

Eqn. 2.35. For the problem of determining the propeller force coefficient in terms

of J and β, the length of the feature vector length dg is two. σf , l, and σn are free

parameters that can either be solved for or specified. The K is an N by N matrix,

thus specifying a GPR in the a customized CFD package requires specifying a matrix

with size equal to the number of training points.

f(~x) ∼ GP(m(~x), k(~x, ~x′)) (2.30)

m(~x) = E[f(~x)] (2.31)

k(~x, ~x′)) = E[f(~x−m(~x))(f(~x′)−m(~x′))] (2.32)

cov(yq, yp) = k( ~xp, ~xq) + σ2
nδpq (2.33)

cov(Y ) = K(X,X) + σ2
nI (2.34)

k( ~xp, ~xq) = σ2
f exp

[
−1

2

dg∑
m=1

(xp,m − xq,m)2

l2

]
(2.35)

2.5 A Simple 1-D Case: Open Water Propeller Thrust Co-

efficient

The open water relationship between KT and J can be used to illustrate the

capabilities of linear regression and GPR. Gaggero et al. (2019a) illustrated how a

GPR could be used to construct a model for an open water propeller using BEM and

a high fidelity model as a demonstration for how GPR could be used for propeller

modeling. In the study presented here, the open water propeller curve determined

by Knight and Maki (2019) for different grid densities for RANS CFD simulations of
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Figure 2.5: Linear regression prediction of open water propeller curve trained with
CFD points of varying fidelity.

an open water propeller can be used and compared to experiments from SIMMAN

(2008). The purpose of this illustrative example is to demonstrate the effect that the

inherent error in the data points has upon a data-driven model.

In this simple case study, the model scale propeller for the KCS vessel is analyzed

in open water at various values of J . Three RANS CFD grids are used by Knight and

Maki (2019) at five different values of J are modeled using OpenFOAM version 2.4.x

with the solver simpleFoam. The finest grid G3 has 7.2 million cells, the medium grid

G2 has 1.3 million cells, and the coarsest grid has 0.3 million cells. To note, Knight

and Maki (2019) show a Grid Convergence Index (GCI) using the method proposed

by Celik et al. (2008), which indicates that the numerical uncertainty for the G3 grid is

3.27% on average. The Multiple Reference Frame (MRF) approach is used in a steady

state simulation since the flow is axisymmetric. The k − ω SST turbulence model is

used. The propeller is simulated at five different J values of 0.1, 0.3, 0.5, 0.7, and

0.9. A second-order linear regression model with features [1, J, J2] is used to model

the KT for each grid as shown by Fig. 2.5. In this figure, the experimental results are
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shown along with the CFD calculations and the linear regression model prediction

of KT across the single parameter J . The fidelity of the CFD model increases with

the size of the grid which scales with the computational cost of the model. Thus, the

G3 grid is more accurate than the G1 grid, especially at the low values of J when

the propeller operates off-design. Fig. 2.5 illustrates how the simple linear regression

model captures the data that it is trained with well, however, for low-fidelity training

data like that generated by the G1 grid, there is poor agreement with the experiment,

especially at low values of J . On the other hand, the regression model trained with

the G3 grid agrees well with the experiment, except for some deviation at low values

of J , which could be corrected with even higher fidelity training data. Thus, in this

simple one dimensional case, the linear regression model performs well at predicting

the KT as a function of J for the data that it is trained with.

Similarly, a GPR model is used to predict the KT as a function of the input J .

Fig. 2.6 shows the GPR prediction for each set of data, as well as the 95% prediction

interval. The models trained with the G1 grid are at the top, the models trained with

the G2 grid are in the middle, and the models trained with the G3 grid are on the

bottom. The left hand column of images in this figure show the predictions if σn is

assumed to be nearly zero, such that the training points based upon CFD are truth.

When a σn of zero is used, the GPR prediction exactly predicts the correlating CFD

prediction that is used for training and the result is very similar to that found with

the linear regression model.

On the other hand, σn can be specified to a non-zero number correlating to the

standard deviation of the error of each respective CFD model relative to the exper-

imental results, such that σn can be determined as a function of the error between

the CFD and the experimental prediction εd. For the purposes of this study, the

experimental values are taken as truth, and thus the εd for each point is simply the

difference between the experimental value and the CFD prediction. Eqn. 2.36 shows
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Figure 2.6: GPR prediction of open water propeller curve trained with CFD points of
varying fidelity. The fidelity of the training model increases in the figures
from from top to bottom. The left hand figures show results for a low σn,
while the right shows results for a calculated σn.
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how the sample standard deviation of the error can be determined as a function of

the number of samples N , the discretization error εd, and the mean of the error µε

across all samples. For a sample size as small as is examined here there is some

bias that would be removed for a larger sample set. For this reason, the prediction

interval provided by the GPR does not encapsulate the experimental calculation at

the lowest J . When the σn is calculated from the error of the training data the size

of the prediction interval increases, thus, the model trained with the G3 grid has a

much smaller prediction interval than the model trained with G1 grid. Additionally,

the prediction interval is smaller near the training points and increases further away

from the training points. This prediction interval is useful since it can indicate where

points should be sampled to improve the fidelity of the model, and when a calculated

σn is used it can indicate if higher fidelity simulations are needed. In the case exam-

ined here, for the G1 and G2 grids the uncertainty interval grows at the low values

and high values of J .

σn =

√√√√ 1

N − 1

N∑
i=1

(εd,i − µε)2 (2.36)

This simple case also illustrates the viability of multi-fidelity data-driven modeling,

whereby a low fidelity tool can be used in the regime in which it is accurate, while a

higher fidelity tool can be used when the propeller operates off design. For example,

when the propeller operates on-design the coarse grid could be used, but at low

values of J the propeller operates off-design and a higher fidelity grid like the G3

grid should be used. Commensurately, this could apply in the larger context where

tools like BEMT can be used on-design, but viscous flow solvers like RANS CFD

should be used for off design points. For heavily separated flows DES or LES could

also be used. To illustrate this concept Fig. 2.7 shows a linear regression model and

a GPR model prediction for which the G3 grid is used to train the points for J
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Figure 2.7: Linear regression and GPR prediction of open water propeller curve
trained with CFD points trained with multi-fidelity. The left hand figure
show results for a low σn, while the right hand figure shows results for a
calculated σn.

values of 0.1 and 0.3, while the G1 grid is used for the other three values of J . The

practitioner of the method can use engineering judgment to determine what tool is

best used at a given condition. In this example case, either linear regression or GPR

could be used to get results very similar to a method trained with only the G3 grid,

but at a significantly reduced cost, since only 40% of the finest grid simulations are

required. This same approach could be applied to more complicated problems with

higher dimensions, like determining the forces on both the propeller and rudder for a

maneuvering simulation. Lower fidelity methods could be used when attached flow is

expected, and higher fidelity methods can be used to train data-driven models when

the flow is more complex.

This simple one dimensional test case of determining KT as a function of J is

meant to illustrate how a data-driven problem with a simple scope is dependent upon

both the fidelity of the data-driven method itself, but also upon the data that is used

to train and evaluate the model. This study illustrates that both linear regression

and Gaussian process regression are suitable methods for constructing a simple one
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dimensional data-driven model based on CFD results. A benefit of the Gaussian

process regression model is that it provides a confidence interval which could be useful

for indicating where else should be sampled in the parameter space, which could be

useful for a more complex function. On the other hand, the implementation of linear

regression is simpler and scales with the number of features used in the model. The

implementation of Gaussian process regression in a custom CFD package is somewhat

more complicated and scales with the number of training points. These principles are

important to consider when constructing data-driven models based upon data that

is challenging to model accurately, like the flow over the propeller and rudder for a

maneuvering vessel.
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CHAPTER III

Propeller and Rudder Data-Driven Model

Development for the KRISO Container Ship

(KCS)

The KRISO Container Ship (KCS) is a single screw container ship with a semi-

balanced horn rudder. Model scale experiments have been performed for the SIM-

MAN (2020) workshop and these are used to evaluate the performance of the CFD

method. Specifically, this work compares to Case 3.3 of the workshop for which the

particulars of the geometry are shown in Table 3.1. This chapter shows how a data-

driven model can be developed using select RANS CFD simulations of the propeller

and deflected rudder operating in the behind condition. Different variations of the

data-driven propeller and rudder model are evaluated by comparing the propeller and

rudder force to the experimental values during the maneuver using the experimental

motions of the vessel as input to the model. In Chapter IV a select number of these

data-driven models for the propeller and rudder forces are further evaluated by per-

forming a turning circle maneuver with the KCS at model scale in both calm water

and in waves. Fig. 3.1 shows the vessel from two different perspectives along with the

direction that the propeller rotates and the rudder deflection angle.

This vessel presents challenges for analysis using CFD methods with a discretized
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Figure 3.1: KCS geometry. Top: Vessel viewed front-starboard side. Bottom: Ves-
sel viewed from underneath with propeller rotation direction and rudder
angles shown.

Table 3.1: Parameters for KCS geometry and case setup.

Parameter Value
Length Between Perpendiculars (LPP ) 3.057 m

Model Scale (λs) 1/75.24
Initial velocity uo 0.860 m/s
Rudder angle δ 35 ◦

Distance of center of gravity to rudder stock dr 1.482 m
Displacement 0.122 m3

Draft 0.144 m
Number of propeller blades 5

Propeller diameter D 0.105 m
Distance of center of gravity to propeller d 1.428 m
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propeller and rudder. Like many vessels, the rudder is in close proximity to the pro-

peller therefore fitting a rotating sliding mesh region for both the propeller and the

rudder is infeasible. Additionally, a sliding mesh approach does not work because

the stationary part of the rudder and the moving part of the rudder cannot be sep-

arated with this approach. To address this, the geometry must be either simplified

as performed in Piro et al. (2020) to enable the use of a sliding mesh or a different

approach such as an overset grid or immersed boundary method could be used, but

these add computational complexity. This work removes this challenge by using a

data-driven propeller and rudder model, which removes the complexity of multiple

moving regions in the CFD simulation.

The model development is discussed in terms of the CFD technique used as well

as how the data-driven model is constructed and validated. Double-body RANS CFD

grids with the propeller operating in the behind condition with the deflected rudder

are used to train the data-driven model. This data-driven model is applied to VOF

simulations of the vessel performing a turning circle maneuver both in calm water

and in waves.

3.1 CFD Model Development

OpenFOAM version 2.4.x is used for all CFD in this work. The background grids

are generated using the OpenFOAM utility blockMesh and the vessel geometry is

incorporated using snappyHexMesh. Two separate CFD models are created; one

is for training the data-driven model and the other is for performing maneuvering

simulations using the data-driven model. The CFD model used for the training of

the data-driven model uses a double-body approximation for which the water-plane

is modeled as a symmetry plane. For the maneuvering CFD simulations the VOF

approach is used to capture the interface between the water and air (described in

Chapter IV).
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Figure 3.2: Slice of KCS double-body grid at the propeller plane (0.089 m) below the
water-plane with Z normal. Left: G1 grid. Middle: G2 grid. Right: G3
grid

3.1.1 Double-Body CFD of Discretized Propeller and Rudder

The double-body RANS CFD of the hull, discretized propeller and rudder is run

using the OpenFOAM solver pimpleDyMFoam. The horned rudder is deflected to

an angle δ of 35◦. Three grids are examined. The G1 grid has 2.0 million cells, the

G2 grid has 5.2 million cells, and the G3 grid has 14.1 million cells. Fig. 3.2 shows

a slice through the domain with Z normal at the propeller rotation axis for each of

the grids. The propeller rotates at n=10.4 rps and the duration of each simulation

is 5.77 s which correlates to 60 propeller revolutions. During the simulation, the

propeller is rotated at no more than one degree per time-step using a rotating sliding

mesh.

The CFD domain is 4 LPP long, 3 LPP wide, and 1 LPP deep. The vessel is

located at the top of the domain in the longitudinal and lateral center of the domain.

The top of the domain is a plane of symmetry. The bottom of the domain, the side at

maximum value of positive Y , and the side at the maximum positive X are velocity

inlets. The sides of the domain at the maximum value of negative Y and negative

X are outlets. The hull, propeller, and rudder are non-slip walls modeled with wall

functions. The bow is pointed in positive X; positive Y is towards port; positive Z is

vertical upwards. Figure 3.3 shows the CFD domain on the left as well as the surface

grid of the propeller and rudder on the right. In the image the vessel is shown in red.
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Figure 3.3: KCS Double Body G2 mesh. Left: Domain for double-body simulations
of KCS. Right: Surface grid on KCS propeller and rudder.

In the region around the hull, extending +/− 1.86 m (0.6 LPP ) fore and aft from

the vessel center of gravity, 0.32 m laterally in each direction, and from the waterline

to 0.2 m below the waterline the cells of the grid are nearly isotropic, such that

the cell discretization length in the X, Y , and Z directions are within 2% of the

characteristic length of each cell ∆g. ∆g is the average of the cell length in X, Y , and

Z directions. Outside of the region immediately surrounding the vessel, stretching is

applied to the cells to reduce grid count as illustrated in Fig. 3.3. A refinement region

is applied around the propeller and rudder to better capture the complex flow and

three levels of refinement are applied using snappyHexMesh. Each level of refinement

halves the ∆g. Different levels of refinement are applied to each surface. One level

of refinement is applied to the hull and in regions with large curvature a second level

of refinement is applied, four levels of refinement are applied to the rudder, and five

levels of refinement are applied to the propeller. Five prism layers with a thickness

of 0.3 of the local ∆g are applied to each surface. Table 3.2 shows the mesh size on

each grid for the different regions and surfaces.
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Table 3.2: KCS double-body CFD grid details.
Grid G1 G2 G3

Isotropic region ∆g(m) 2.86E-02 2.02E-02 1.43E-02
Refinement zone ∆g (m) 3.58E-03 2.53E-03 1.79E-03

Hull ∆g (m) 1.43E-02 1.01E-02 7.15E-03
Rudder ∆g (m) 1.79E-03 1.26E-03 8.94E-04

Propeller ∆g (m) 8.94E-04 6.32E-04 4.47E-04

3.2 Data-Driven Model Development

The double-body CFD simulations with a discretized propeller and rudder are

used to train a series of data-driven models. Data-driven models are constructed to

determine the KT , KS, KQ, CFx, and CFy. As noted in Chapter II, two methods for

generating data-driven models are examined: linear regression and Gaussian process

regression. In this chapter these two methods are compared. Beyond the effect of

what method is used to train a data-driven model, the effect of the fidelity of the

data used to train the data-driven model is studied in detail. The fidelity of the

data is measured by comparing different CFD grid densities and the effect on the

underlying discretization error. Additionally, two different turbulence models are

used in the double-body CFD, and the differences between the prediction of force on

the propeller and rudder is discussed.

The effect of the number of sample points used to train the models are also consid-

ered. The J-β space is sampled with bounds of J between 0.2 and 0.9, and β between

0◦ and 45◦. This bounding box in two-dimensional space, which encompasses the

expected J-β bounds while the vessel performs a turning circle maneuver, is sampled

using Latin Hypercube Sampling (LHS). Three distinct LHS sets are generated to

train and evaluate different data-driven models. One set has four sample points, one

set has eight sample points, and the last set has sixteen sample points. Predomi-

nantly, the data split between training and validation is such that the four point data

set is used for validation and the eight point and sixteen point sets are used to train
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models, either individually or in combination. This set of data is shown in Fig. 3.4

in the J − β space and the experimental results (SIMMAN (2020)) are shown in

conjunction with the sample points in Fig. 3.5. The specific values are also shown in

Tables A.1-A.3. Later, LHS points one through four are used primarily as validation

data for the data-driven models, while LHS points five through twenty-eight are used

for training the data-driven model. By using the four point set of data for validation,

it makes it so that the data split between the training and validation data is two

thirds of the data for training and one third of the total data for validation when the

eight point set of data is used to train the model. On the other hand, the data split

between training and validation data is: 80% training and 20% validation when the

sixteen point set of data is used to train the model. By always using the same set of

data for validation it creates a constant comparison point for when different sets of

data are used.

In the double-body CFD analysis used to train the model, the propeller revolution

rate is held constant at n 10.4 rps and the velocity is specified at the inlet, such that

the vessel operates at the desired drift angle. Since only forward velocity and sway

velocity are considered, β, βP , and βR are all equal. This simplifies the training of the

method, since only β is necessary to train the models, but the yaw rate is accounted

for in the CFD maneuvering simulations (for the calculation of βP and βR) in Chapter

IV.

The goal of the data-driven model is to determine the multi-degree-of-freedom

force acting on both the propeller and rudder based upon the value of J and β

calculated in radians per second. To train the model, the double body CFD cases are

calculated and the forces on the propeller and rudder are averaged over the second

half of each simulation. The y+ for LHS sample point 2 is in Table A.4. The flow

field is complex since both the propeller and rudder operate in the wake of the hull,

and the rudder operates in the wake of the propeller as shown by Figure 3.6. This
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Figure 3.4: LHS points for training the KCS data-driven model.
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Figure 3.5: LHS points for training the KCS data-driven model with experimental
data (SIMMAN (2020)). The experimental data points show βP .
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Figure 3.6: Q criterion of 2500 contour for G3 LHS point 11 illustrating the propeller-
rudder interaction.

image illustrates the complex flow field around the propeller and rudder which shows

the importance of modeling this phenomenon with high fidelity CFD.

The data-driven models trained with CFD simulations contain several types of

error which determine the total error in the data-driven model εm. These include:

discretization error εd, turbulence modeling error εT , and data modeling error εr.

The discretization error is an error based in the CFD mesh discretization and can

be categorized by comparing the forces predicted with the different grid densities.

The turbulence modeling error can be categorized by comparing the forces predicted

for different turbulence modeling techniques, but it is also influenced by the wall

functions used and discretization error. For this case we examine the use of both the

Spalart-Allmaras (SA) turbulence model as well as the k− ω SST turbulence model.

The data-driven modeling error can be determined by calculating how well the model

predicts the data that it is trained on as well as how well it predicts the validation

data.

The total error of the model can be determined by the difference between the

truth value ŷ and the model prediction y as shown by Eqn. 3.7. The truth is not

56



known. The closest that the truth can be predicted by is either experimental results

or the finest CFD results, both of which still contain error. In this study, the results

using the model are compared to both experimental results and when experimental

results are unavailable fine CFD results are used.

εm = ŷ − y (3.1)

3.2.1 Discretization Error

To compare the mesh discretization error the calculated forces are compared be-

tween the different grids (G1, G2, G3) for different samples. Tables 3.3, A.5, A.6,

and 3.4 show the values and discretization percent error relative to the finest grid for

the KT , 10KQ, CFx, and CFx respectively. These tables show the results for LHS

points one through twelve. Oscillatory convergence is present for many of the cases

so quantifying the discretization error with Richardson extrapolation is not possible.

Eca and Hoekstra (2009) indicate that if a CFD study does not have monotonic con-

vergence, then the discretization error can be estimated by three times the maximum

difference of that quantity across all three grids. In this study the discretization error

is characterized by calculating the relative error of the force coefficients from G1 and

G2 grids with respect to the G3 results as shown by Eqns. 3.2-3.3 similar to Celik

et al. (2008). ε13 denotes the error for the G1 grid relative to the G3 grid prediction,

in terms of the G1 grid prediction φ1 and the G3 grid prediction φ3; similarly, ε23

denotes the error for the G2 grid prediction relative to the G3 grid prediction in terms

of the G2 grid prediction φ2 and φ3. The average of the absolute value of the ε13 and

ε23 across a data-set is used as the measure of discretization error for that data-set

and is denoted |εi3|. Thus for a data-set with N samples calculated with grid i (for i

equal to 1 or 2), the average of the absolute value of the relative error (with respect

to G3) across all N samples is denoted |εi3|.
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Table 3.3: Discretization error between different grids for KT .

LHS point G1 G2 G3 ε23 ε13
(KT ) (KT ) (KT ) (%) (%)

1 0.321 0.330 0.327 -0.933 1.697
2 0.384 0.407 0.404 -0.905 4.852
3 0.281 0.272 0.266 -2.069 -5.508
4 0.252 0.237 0.242 1.924 -4.267
5 0.253 0.247 0.235 -5.019 -7.533
6 0.297 0.309 0.316 2.129 5.865
7 0.408 0.423 0.420 -0.531 2.929
8 0.334 0.340 0.339 -0.308 1.604
9 0.198 0.194 0.183 -5.887 -8.068
10 0.330 0.320 0.322 0.474 -2.670
11 0.394 0.394 0.390 -0.968 -0.967
12 0.238 0.214 0.206 -3.855 -15.205

ε13 =
φ3 − φ1

φ3

(3.2)

ε23 =
φ3 − φ2

φ3

(3.3)

The average magnitude of the KT percent error between the G3 and G2 grids

is 2.08% while the average magnitude of the percent error between the G3 and G1

grids is 5.10%. The average percent error in 10KQ is 2.20% between G3 and G2 but

increases to 4.49% between G3 and G1. If only the LHS points one through four

are analyzed the average magnitude of the KT percent error between the G3 and G2

grids is 1.46% while the average magnitude of the percent error between the G3 and

G1 grids is 4.08%. Similarly for 10KQ the percent error between the G3 and G2 grids

for LHS points one through four is 1.55%; while the error increases to 3.60% when

G3 and G1 are compared for LHS points one through four. Fig. 3.7 illustrates the

average discretization error for KT and KQ for each grid.

There is more discretization error for the forces on the rudder compared to the
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Figure 3.7: Average absolute value of the discretization error (|εi3|) for KT (left) and
KQ (right) for G1, G2, and G3. The average error is presented for the
validation set (LHS points one through four) as well as for LHS points
one through twelve.

forces on the propeller. The average percent error in CFx is 3.87% between G3 and

G2; this increases to 8.35% between G3 and G1. Similarly, the average percent error

in CFy is 8.39% between G3 and G2; this increases to 16.72% between G3 and G1.

The maximum error on the rudder forces occurs for LHS point 12, which correlates

to the highest value of J and a relatively low value of β. For this point the flow is

challenging to model since the rudder operates at a high angle of attack when β is low

and the rudder is deflected to 35◦. Thus, it is sensible that the discretization error

is high when the flow is highly separated. If only the LHS points one through four

are analyzed the average magnitude of the CFx percent error between the G3 and G2

grids is 3.94% while the average magnitude of the percent error between the G3 and

G1 grids is 8.12%. Similarly for CFy the percent error between the G3 and G2 grids

for LHS points one through four is 9.96%; while the error increases to 18.11% when

G3 and G1 are compared for LHS points one through four. Fig. 3.8 illustrates the

average discretization error for CFx and CFy for each grid.
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Table 3.4: Discretization error between different grids for CFy.

LHS point G1 G2 G3 ε23 ε13
(CFy) (CFy) (CFy) (%) (%)

1 0.244 0.265 0.274 3.176 10.858
2 0.245 0.261 0.278 6.282 12.015
3 0.330 0.383 0.453 15.483 27.162
4 0.387 0.424 0.498 14.923 22.406
5 0.334 0.338 0.380 11.023 12.157
6 0.368 0.395 0.446 11.328 17.362
7 0.241 0.245 0.250 2.278 3.623
8 0.222 0.241 0.255 5.638 13.089
9 0.174 0.219 0.223 2.034 22.043
10 0.306 0.367 0.403 9.030 24.100
11 0.298 0.316 0.313 -0.768 4.876
12 0.362 0.426 0.525 18.735 31.007
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Figure 3.8: Average absolute value of the discretization error (|εi3|) for CFx (left) and
CFy (right) for G1, G2, and G3. The average error is presented for the
validation set (LHS points one through four) as well as for LHS points
one through twelve.
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3.2.2 Turbulence Modeling Error

The turbulence modeling error is evaluated by comparing the results using the

Spalart Allmaras versus the k − ω SST turbulence models for a given LHS point for

a given mesh discretization. Thus, the relative error for a quantity φ is determined

as a function of the prediction with the Spalart Allmaras turbulence model φSA and

the prediction with the k−ω SST turbulence model φk−ω SST can be denoted εT and

is defined by Eqn. 3.4. The average of the absolute value of the εT for a data-set for

a given grid is used as the measure of turbulence modeling error across the data-set

and is denoted |εT |. Thus for a data-set with N samples calculated for a given grid,

the average of the absolute value of the εT across all N samples is denoted |εT |.

εT =
φSA − φk−ω SST

φSA
(3.4)

The four point LHS set is run with both turbulence models for all three training grids.

The calculated value for each case and the εT in KT , 10KQ, CFy, and CFy are shown

in Tables 3.5, A.7, A.8, and 3.6 respectively. These tables depict the values of the

force coefficients predicted with each turbulence model for each respective grid and

LHS point as well as the percent error of the difference between the two turbulence

models with respect to the Spalart Allmaras turbulence model results.

The best agreement between the turbulence models for the G2 and G3 grids for

the calculation of KT and KQ occurs with LHS point one while the worst agreement

occurs for LHS point three. In the flow conditions for LHS point one the J is relatively

low but the β is high which leads to a low angle of attack acting on the rudder. The

rudder is less heavily loaded for LHS point one relative to LHS points three and four

which leads to less effect of the rudder induced velocity on the propeller. Another

means of evaluating the performance of the propeller is to determine the propeller

efficiency ηp as shown by Eqn. 3.5. The propeller is most efficient near its design
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Table 3.5: Turbulence modeling error between Spalart Allmaras and k − ω SST for
KT .

Grid LHS point Spalart Allmaras k − ω SST εT
(KT ) (KT ) (%)

G1 1 0.321 0.328 -2.186
G2 1 0.330 0.330 -0.133
G3 1 0.327 0.324 0.812
G1 2 0.384 0.412 -7.308
G2 2 0.407 0.423 -3.829
G3 2 0.404 0.421 -4.303
G1 3 0.281 0.319 -13.597
G2 3 0.272 0.317 -16.518
G3 3 0.266 0.317 -18.801
G1 4 0.252 0.248 1.503
G2 4 0.237 0.254 -7.302
G3 4 0.242 0.252 -4.390

condition which occurs at an open water advance coefficient of approximately 0.8

(SIMMAN (2020)). At low values of J the propeller is more heavily loaded and

becomes less efficient. For LHS point 3, the k − ω SST turbulence model predicts

more thrust but commensurately less torque than the Spalart Allmaras turbulence

model for all grids examined. This leads to the propeller operating more efficiently

for all grids with the k−ω SST turbulence model. If the average of of the magnitude

of ηp is calculated for all grids, the Spalart Allmaras turbulence model predicts that

the propeller is 3.76% less efficient for LHS point 3 than the k − ω SST turbulence

model. A similar phenomenon occurs for LHS point 2 which is the lowest J value

examined and is also the least efficient data point in this set as calculated with both

turbulence models. For LHS points one and four, the G1 and G2 calculation have a

higher efficiency with the k − ω SST turbulence model but G3 is more efficient with

the Spalart Allmaras turbulence model.

ηp =
JKT

2πKQ

(3.5)
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Table 3.6: Turbulence modeling error between Spalart Allmaras and k − ω SST for
CFy.

Grid LHS point Spalart Allmaras k − ω SST εT
(CFy) (CFy) (%)

G1 1 0.244 0.187 23.618
G2 1 0.265 0.195 26.475
G3 1 0.274 0.192 30.025
G1 2 0.245 0.254 -3.721
G2 2 0.261 0.287 -9.897
G3 2 0.278 0.288 -3.330
G1 3 0.330 0.311 5.679
G2 3 0.383 0.310 19.047
G3 3 0.453 0.374 17.421
G1 4 0.387 0.445 -15.155
G2 4 0.424 0.373 12.163
G3 4 0.498 0.374 24.982

The turbulence modeling error is a larger source of error on average than the

difference in calculated values between different grids for the calculation of KT and

10KQ. For LHS points one through four the average of the absolute value of the

percent error for KT calculated with the Spalart Allmaras turbulence model between

G3 and G2 is 1.46%, while the percent error between G3 and G1 is 4.08%. The

turbulence modeling error between the two turbulence models is 6.15% for G1, 6.94%

for G2, and 7.08% for G3. Similarly for the same LHS points the average of the

absolute value of the percent error for 10KQ calculated with the Spalart Allmaras

turbulence model between G3 and G2 was 1.55%, while the percent error between

G3 and G1 was 3.60% on average. The turbulence modeling error between the two

turbulence models is 3.92% for G1, 4.70% for G2, and 7.05% for G3.

The prediction for the rudder force coefficients differ significantly between the

two turbulence models examined. Depending upon the turbulence model used the

separation point for flow over a foil can vary and when separation occurs the forces

can change radically for small differences in angle of attack. Furthermore, the two

turbulence models used in this work assume a fully turbulent boundary layer, but
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due to the small scale of the vessel, a transitional turbulence model may be more

accurate for determining the propeller and rudder forces; however, using a transitional

turbulence model would require finer wall-resolved grids. For all grids and LHS points,

except the G1 LHS point four case, the Spalart Allmaras turbulence model predicts

a larger magnitude of CFx compared to the k − ω SST turbulence model. Table 3.6

shows that for LHS points one and three the Spalart Allmaras turbulence model

predicts a higher CFy than the k − ω SST turbulence model, whereas for LHS point

2 the opposite occurs. Mixed results for LHS point four are seen for the calculation

of CFy depending upon which grid is used. The magnitude of the percent error is

largest for the calculation of LHS point one with all three grids for both CFx and

CFy. Conversely, the magnitude of the percent error for LHS point two is the lowest

for this data set. LHS point two correlates to the lowest rudder force coefficients for

the Spalart Allmaras turbulence model, whereas lowest rudder force coefficients for

the k − ω SST turbulence model occur at LHS point one. The highest rudder forces

occur with LHS point four, which follows intuition since this is the highest J value

and lowest β value such that the rudder operates a high angle of attack; however the

two turbulence models are not in very good agreement at this data point. With the

Spalart Allmaras turbulence model as the grid is refined the CFx and CFy increase

in magnitude, whereas the G1 grid predicts the highest force when the k − ω SST

turbulence model is used at this LHS point. Another important item to note is that

the Spalart Allmaras turbulence model tends to have more variation in the prediction

of rudder force across different grids for a given LHS point compared to the k−ω SST

turbulence model.

3.2.3 Data-Driven Model for KCS Propeller and Rudder

Two variations of data-driven models are generated for the KCS propeller and rud-

der. The first approach generates a linear regression model and the second generates
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a model using Gaussian process regression. The linear regression model is generated

using the MATLAB function fitlm. The Gaussian process regression model is gener-

ated using the MATLAB function fitgrp. Data-driven models using these techniques

are generated for the propeller thrust, propeller side force, propeller torque, rudder

side force, and rudder resistance force. Two separate sets of data-driven models

are generated for the rudder: the first accounts for both the movable and stationary

parts of the rudder while the second only accounts for the movable part of the rudder.

When the propeller and rudder model are implemented for CFD based maneuvering

simulations, the rudder model that accounts for the force on the whole rudder (both

movable and stationary parts) is used. On the other hand, a separate model for just

the movable part of the rudder is developed since the experimental results (SIMMAN

(2020)) report the rudder normal force FN on the movable part of the rudder, but

not on the stationary part.

The diameter of the propeller is 0.105 m and the propeller revolution rate is

10.4 rps. In Chapter IV, when the propeller and rudder model are implemented

in the CFD simulation for the maneuvering of the vessel, the full lateral area of the

rudder SR of 0.0096 m2 is used. This SR accounts for both the stationary and movable

parts of the semi-horned rudder. This SR is used for evaluating the error of the linear

regression model with respect to the training data and subsequently the comparison

between different linear regression model response surfaces.

The data modeling error with linear regression is examined in the context of

the underlying discretization error and turbulence modeling error. Subsequently,

the effect of using different sets of training data for the linear regression model is

examined. The response surfaces generated with linear regression versus Gaussian

process regression are compared.

For the comparison of the rudder normal force predicted using data-driven mod-

eling predictions, the SR used is that of only the movable part of the rudder which is
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0.008 m2 and the rudder force of only the movable part of the rudder is accounted for.

An analysis is also performed for which the linear regression model and the Gaussian

process regression model are compared.

3.2.4 Data Modeling Error With Regression

A data-driven model can be evaluated based on how well it predicts validation

data. The four point LHS set is used to validate the models. The eight point and

sixteen point sets of data are used to train the models. Thus the ratio of training to

validation data when the eight point set is used is 2:1, whereas when the sixteen point

set of data is used to train the model, the ratio is 4:1. A set of tables demonstrate the

error of the εr, which is the regression model prediction of specific force parameters

relative to the CFD prediction at each respective sample. The model is evaluated

based on its accuracy to the CFD grid density that it was trained with; for example,

the regression models that are trained with the G1 grid are compared to the G1 grid

CFD predictions and the regression models that are trained with the G2 grid are

compared to the G2 grid CFD predictions. Thus, for a model prediction φm and

a CFD based calculation which is treated as a validation sample φV , the εr can be

calculated by Eqn. 3.6. The average of the absolute value of the εr for a data-set is

used as the measure of regression modeling error for a given validation data-set and

is denoted |εr|. Thus for a data-set with N validation samples, the average of the

absolute value of the εr across all N samples is denoted |εr|. The regression models

use different sets of training data including the eight point LHS set and the sixteen

point LHS sets for the G1 and G2 double-body training grids, as well as the eight

point LHS set for the G3 double-body training grid. In this study of the modeling

error, all cases use the Spalart-Allmaras turbulence model for training and validating

the models. All of these regression models are constructed using the feature vector

shown by Eqn. 2.25.
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Table 3.7: Modeling error for KT .

LHS Point 8 LHS G1 16 LHS G1 8 LHS G2 16 LHS G2 8 LHS G3
εr (%) εr (%) εr (%) εr (%) εr (%)

1 1.621 5.351 2.652 -0.021 2.621
2 -4.191 -4.526 0.470 1.111 0.434
3 -1.682 -0.495 -0.332 -0.411 -0.040
4 1.715 3.859 1.596 6.394 4.899

εr =
φV − φm
φV

(3.6)

Table 3.7 shows the percent error of the prediction of KT using the regression

based prediction relative to the CFD calculation at each validation data point. The

average value of the absolute error for each model can be calculated. All of the models

predict the KT within 4% on average; the worst performing model on average is the

sixteen point LHS set trained with the G1 grid. Fig. 3.4 shows that some of the

samples are quite close between the four point and eight point LHS sets, which may

contribute to the improved prediction with the eight point set compared to the sixteen

point set. The model trained with the eight point LHS set on the G2 grid is the most

accurate with 1.26% error on average relative to the G2 grid CFD prediction.

Similarly, Table 3.8 shows the percent error of the prediction of KQ using the

regression based prediction relative to the CFD calculation at each LHS validation

data point. The average value of the absolute error for each model shows that all

of the models predict the KQ within 3%; the worst performing model on average is

the sixteen point LHS set trained with the G1 grid. The model trained with the

eight point LHS set on the G2 grid is the most accurate with 0.74% error on average

relative to the G2 grid CFD prediction.

The error magnitude is larger for the rudder force coefficient predictions compared

to the propeller force coefficient predictions. Table 3.9 and Table 3.10 show the

percent error of the prediction of CFx and CFy respectively using the regression based
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Table 3.8: Modeling error for 10KQ.

LHS Point 8 LHS G1 16 LHS G1 8 LHS G2 16 LHS G2 8 LHS G3
εr (%) εr (%) εr (%) εr (%) εr (%)

1 1.264 4.183 1.554 0.002 1.925
2 -3.542 -3.814 0.296 0.891 0.225
3 -1.184 -0.390 -0.081 -0.108 -0.231
4 1.437 2.425 1.012 4.293 3.641

Table 3.9: Modeling error for CFx.

LHS Point 8 LHS G1 16 LHS G1 8 LHS G2 16 LHS G2 8 LHS G3
εr (%) εr (%) εr (%) εr (%) εr (%)

1 2.603 0.823 1.281 3.630 1.394
2 -3.782 -7.178 -2.820 -2.366 -1.056
3 -3.007 -2.526 -3.001 0.543 -0.709
4 -0.760 7.022 -1.697 -0.488 -5.131

prediction relative to the CFD calculation at each LHS validation data point. The

average value of the absolute error for each model shows that all of the models predict

the CFx within 5% and the CFy within 7%; the worst performing model on average

is the sixteen point LHS set trained with the G1 grid. The model trained with the

sixteen point LHS set on the G2 grid is the most accurate on average for the prediction

of CFx with 1.75% error on average relative to the G2 grid CFD prediction. The

model trained with the eight point LHS set on the G3 grid leads to the most accurate

prediction relative to the CFD model it was trained with for the prediction of CFy,

with less than 3% error. The model trained with the eight points on the G2 grid also

leads to a reasonably good prediction of CFx and CFy with 2.20% and 3.29% error

respectively.

Ultimately, the regression modeling error εr is small relative to the other sources of

error including the discretization error and turbulence modeling error. As is shown in

Tables 3.7-3.10, there is some modeling error induced by using the regression approach

as compared to directly modeling it with CFD; however, the CFD has uncertainty as
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Table 3.10: Modeling error for CFy.

LHS Point 8 LHS G1 16 LHS G1 8 LHS G2 16 LHS G2 8 LHS G3
εr (%) εr (%) εr (%) εr (%) εr (%)

1 1.494 1.364 3.599 14.385 0.457
2 -7.818 -12.055 -6.023 -1.353 -0.871
3 -7.423 -5.938 -0.998 2.141 2.556
4 1.609 7.713 -2.548 -7.238 -7.019

well. The data modeling error can be compared to the discretization and turbulence

modeling errors as shown in Figs. 3.9-3.12. These figures compare the average of the

absolute value of each source of error in the modeling of the LHS points one through

four that were used to validate the model. In these figures the discretization error is

shown as a percent error relative to the G3 grid for each respective force coefficient;

this is shown by the red bars and the yellow bars for the |ε13| and |ε23| respectively.

The turbulence modeling error (|εT |) is calculated based on the average of the absolute

value of the difference in the calculation of each force coefficient for each respective

grid between the two turbulence models examined; this is shown by the black bars.

The data modeling error |εr| is characterized by determining the average magnitude

of the error for the validation points using the 8 point LHS set and 16 point LHS

set for training each model respectively, these are denoted by 8 point LHS Model

|εr| and 16 point LHS Model |εr| respectively in the figures. The |εr| and |εT | are

shown for each respective grid (G1, G2, and G3), but the discretization error is shown

separately since all cases contain discretization error. If the |ε33| were to be shown

it would deceptively be 0% because the G3 model is treated as the ‘truth’ in this

framework; but of course since there is oscillatory convergence there is indeed also

uncertainty in the G3 grid CFD.

Fig. 3.9 shows the error terms for the prediction of KT . For the G1 grid, the

discretization and turbulence modeling uncertainty are greater than the uncertainty

from either set of regression models. The turbulence modeling uncertainty grows as
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Figure 3.9: Average of the absolute value of the different error terms for calculating
KT for LHS points 1-4.

the grid is refined. For both the G2 and G3 grids, the turbulence modeling uncertainty

is greater than the regression modeling uncertainty. This indicates that the regression

model does a sufficient job at predicting the thrust of the propeller since when either

the eight point or sixteen point set of data is used to train the model, the uncertainty

of the regression model is less than the sum of the discretization and turbulence

modeling uncertainty. Fig. 3.10 illustrates a similar set of features for the calculation

of the torque. Fig. 3.11 and Fig. 3.12 illustrate the uncertainty in the prediction of CFx

and CFy respectively. The difference in the prediction of the rudder force coefficients

tends to be dominated by the turbulence modeling error, except in the case of the CFy

calculation on the G1 grid, for which there is larger discrepancy between the G1 grid

and the G3 grid, thus the |ε13| dominates. Ultimately, these figures illustrate that

the regression modeling error is small relative to the uncertainty in the CFD itself

and that the regression model trained with eight LHS points is sufficient to predict

the propeller and rudder force coefficients with less induced uncertainty than the

underlying inaccuracy as the CFD itself. Furthermore, it can be seen that either the
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Figure 3.10: Average of the absolute value of the different error terms for calculating
KQ for LHS points 1-4.

G2 or G3 grids should be used to train the model, and that is is useful to compare the

effect of using the Spalart Allmaras turbulence model and the k − ω SST turbulence

model to train the model to evaluate the effect on a maneuver.

To further characterize the error, each component of the error including the dis-

cretization error, the turbulence modeling error, and the regression modeling error

can be combined into an error metric |ε| as defined by Eqn. 3.7. This error metric is

the L2 norm of the different components of error.

|ε| =
√
|εi3|

2
+ |εT |

2
+ |εr|

2
(3.7)

The |ε| for theKT , KQ, CFx, CFy is 7.21%, 5.02%, 16.57%, and 19.89% respectively

when the regression model is generated with the eight point training set with the G2

grid with the Spalart-Allmaras turbulence model. Similarly, the |ε| for the KT , KQ,

CFx, CFy is 7.36%, 5.12%, 16.52%, and 20.60% respectively when the regression model

is generated with the sixteen point training set with the G2 grid with the Spalart-

Allmaras turbulence model. The differences in |ε| whether the eight point or the
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Figure 3.11: Average of the absolute value of the different error terms for calculating
CFx for LHS points 1-4.
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Figure 3.12: Average of the absolute value of the different error terms for calculating
CFy for LHS points 1-4.
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sixteen point sets is quite small. Furthermore, the |εr| is small relative to |ε|.

3.2.5 Comparison Between Different Models

The difference between the different models can also be visualized in J-β space

and characterized by the difference between the different models with respect to each

other. First, different linear regression models are compared to each other by examin-

ing the response surface in J-β space. Subsequently, an alternative to linear regression

is examined by generating response surfaces using Gaussian process regression.

Side Force Coefficient It is important to note that the KS for this vessel is small.

Therefore, the examination of the different components of the error associated with

the KS has not been emphasized in this chapter. However, the response surface for

the -10KS generated with different sets of training data can be seen in Fig. A.1. The

force is scaled by a factor of ten to help illustrate the variation in the response surface

and it is negative since the force is towards starboard.

Comparison Between Linear Regression Models Fig. 3.13 shows the KT , KQ,

CFx, and CFy for the linear regression based data-driven model trained with eight

LHS points with the G3 grid. The rudder force coefficients are based on the force of

the complete semi-horned rudder. The KT and KQ are dominated by J but there is

some variation due to β. The propeller is more heavily loaded at low J than high

J and also tends to have higher loading at lower β values. The magnitude of the

force coefficients on the rudder are greatest at high J and low β. Since the rudder

is deflected it operates at a high angle of attack at this condition which causes the

force on the rudder to be high. As the vessel performs a turning circle maneuver the

vessel slows down reducing J and the β increases, thus, as the vessel performs the

maneuver the loading on the rudder decreases. At high β and high J the rudder force

coefficients become small; similarly at low β and low J the rudder force coefficients
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Figure 3.13: Contours of force coefficients in J-β space. KT is shown in the upper
left. KQ is shown in the upper right. CFx is shown in the lower left.
CFy is shown in the lower right.

become small, but the vessel does not operate in these regions of J-β space as shown

by Fig. 3.5.

The response surfaces generated with other linear regression models can be eval-

uated with respect to the baseline model shown in Fig. 3.13. Fig. 3.14 shows how

the response surfaces for different sets of training compare to the response surface

generated with the eight point LHS set on the G3 grid for the prediction of KT in

J-β. The comparison is made by using the prediction of the model trained with the

eight point set on the G3 grid M3, subtracting the prediction of the comparison model

Mi, and dividing the difference by M3 as shown by Eqn. 3.8.
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εi3 =
M3 −Mi

M3

(3.8)

The response surfaces illustrated in these figures show the percent difference value

in the KT predicted with each model, with respect to the KT value predicted by

the linear regression generated with the G3 eight point LHS set. All of the cases

are generated with the linear regression models trained with the double body CFD

simulations that use the Spalart Allmaras turbulence model. The title of each image

in the figure denotes the training data used to train the model and the grid density

used to train the model. The top row of images shows the percent difference in the

prediction of the two linear regression models’ prediction of KT with respect to the

linear regression model generated from the eight point LHS set for the G3 grid; and

the bottom row shows the difference between the linear regression models generated

with the G2 versus the G3 grids. The left column shows the effect of using eight

points to train the model and the column on the right shows the effect of using

sixteen points. It is evident that there is more discrepancy between the G1 and G3

grids than there is between the G2 and G3 grids. This is logical since the data that is

used to train the model, which was examined earlier, demonstrated that the G2 grid

had less underlying discretization error and this has propagated to the data-driven

model. The largest magnitude of error occurs in the lower left hand corner of the

J-β space and at high values of J with large β; both of these regions are outside

of the operating space of the vessel. In general there is rather low error in the J-

β region that the vessel predominantly operates in during a maneuver as shown by

Fig. 3.5. The form of the response surface illustrating the difference between each

model in comparison to the eight point LHS G3 linear regression response surface is

very similar for the calculation of KQ and KT as shown by Fig. A.2.

As shown earlier by Fig. 3.5, the rudder force coefficients are low in magnitude

in the upper-right and lower-left corners of the J-β space considered in these figures
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Figure 3.14: Contours of percent difference of different linear regression models’ pre-
diction of KT with respect to the 8 point LHS G3 model in J-β space.
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showing the response surfaces. For this reason, in Fig. A.3 and Fig. 3.15, this region

of the plot is clipped since even small differences in the force coefficients would lead

to deceivingly large amplitudes of error. These figures show the percent difference

in CFx and CFy respectively for the different linear regression response surfaces with

respect to the linear regression trained with the eight point G3 set of data. The

deviation is largest for the models generated with the G1 grids in comparison to the

G3 based model. Furthermore, the deviation is largest for high values of J and low

values of β. This is sensible since the rudder is deflected to 35◦ and at low values of β,

the rudder operates at a high angle of incidence which leads to separation. Thus, this

indicates that the level of separation on the rudder is modeled differently between

the grids and that this difference in underlying discretization uncertainty manifests

itself in the data-driven model, which is a straightforward, yet important conclusion

to draw.

Comparison between linear regression and Gaussian process regression

It is important to consider the effect of utilizing different data-driven modeling ap-

proaches beyond the number of samples used and the quality of data used to train

the model. Here, the linear regression model is compared to the Gaussian process

regression model. For this, the rudder forces modeled are those of only the movable

part of the rudder. Later in this chapter, the linear regression and Gaussian process

regression predictions of the rudder force are calculated as a function of experimental

motions, and only the force of the movable part of the rudder was reported by the

experiments (SIMMAN (2020)). The models examined here use the CFD results

from the G2 double-body grid with the Spalart-Allmaras turbulence model.

Two variations of the Gaussian process regression model are examined. One that

assumes that the noise in the training is very small (σn=0.0001) and another that

calculates the σn based upon the uncertainty of the underlying CFD used to train and
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Figure 3.15: Contours of percent difference of different linear regression models’ pre-
diction of CFy with respect to the 8 point LHS G3 model in J-β space.
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validate the model. The standard deviation of the uncertainty due to discretization

error between the G2 and G3 grid using the Spalarat Allmaras turbulence model

is used to calculate σnd. The standard deviation of the uncertainty to turbulence

modeling uncertainty between the two turbulence models examined on the G2 grid for

LHS points one through twelve is calculated and denoted σnT . When σn is calculated

from the uncertainty in the underlying CFD, σn is calculated by the sum of σnd and

σnT . When σn is calculated from the uncertainty in the underlying CFD.

First, the variation in the response surface between the linear regression prediction

and the Gaussian process regression that assumes a low σn is examined. Fig. 3.16

shows the response surface prediction of KT for the linear regression model on the

left and the Gaussian process regression for a low level of σn=0.0001 on the right.

The overall form of the response surfaces for the prediction of KQ is very similar,

so this is shown in Fig. A.4. The response surface of all the linear regression model

predictions are quite smooth. On the other hand, the response surface predicted with

the Gaussian process regression with a low level of noise has lots of variation, especially

as training points are added for the 16 and 24 point sample sets. Both methods

illustrate that the KT and KQ are predominantly dependent upon J , but there is some

β dependence. Intuitively, the response surfaces for KT and KQ should be dominated

by J and the response surface should be smooth. The large amounts of variation

in the response surface predicted with the Gaussian process regression prediction is

likely caused by over-fitting to spurious data. To elucidate this, a Gaussian process

regression model is also generated for a calculated σn and the error of each model

relative to the validation CFD data is examined once this set of response surfaces is

analyzed further.

Fig. 3.17 and Fig. 3.18 show the response surfaces for the linear regression model

and the Gaussian process regression model with a low σn for the CFx and CFy of

the movable part of the rudder. Intuition dictates that the rudder loading should
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be largest at low values of β when the deflected rudder operates at a high angle

of incidence. Additionally, except in regions of deep stall when the flow is heavily

separated, the response surface should be smooth. The response surfaces generated

with the linear regression model fit this intuition, but the response surfaces generated

with the Gaussian process regression are not smooth. With the Gaussian process

regression models, the response surface changes as more points are added. However,

one can visually see that the response surface for the linear regression model converges

as more samples are used. That said, all of the models generated for these figures

predict that the rudder force coefficients are largest when J is high and β. The rudder

is less heavily loaded at higher values of β and lower values of J (based on the domain

examined), which is where the steady state part of the turn occurs. The rudder is least

heavily loaded for high J and high β, but this is outside of the operating parameter

space for the vessel during a maneuver.
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Figure 3.16: Contours of KT in J-β space for the KCS propeller with different sets of
training data, with black dots illustrating the different samples used to
train the model. Linear regression response surface is shown on the left.
Gaussian process regression with σn=0.0001 predicted response surface
is shown on the right. More training points are used for each subsequent
row.
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Figure 3.17: Contours of CFx in J-β space for the KCS rudder with different sets of
training data, with black dots illustrating the different samples used to
train the model. Linear regression response surface is shown on the left.
Gaussian process regression with σn=0.0001 predicted response surface
is shown on the right. More training points are used for each subsequent
row.
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Figure 3.18: Contours of CFy in J-β space for the KCS rudder with different sets of
training data, with black dots illustrating the different samples used to
train the model. Linear regression response surface is shown on the left.
Gaussian process regression with σn=0.0001 predicted response surface
is shown on the right. More training points are used for each subsequent
row.
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An alternative to setting σn to a very low number is to instead use a calculated

σn with Gaussian process regression. Accounting for the uncertainty caused by dis-

cretization error and turbulence modeling error, σn can be calculated as 0.024 for

KT , 0.034 for 10KQ, 0.046 for CFx, and 0.079 for CFy. Fig. 3.19 shows the response

surfaces for KT and CFy and Fig. A.5 shows the response surfaces for KQ and CFx.

When the inherent noise in the training data is accounted for, the curves become

much smoother such that the noise is assumed to be very small. In the case of the

KT the response surface becomes very similar to that predicted with the linear regres-

sion models, especially when more sample points are added. A similar trend is shown

for the prediction of KQ. On the other hand, the CFy prediction becomes obfuscated

by noise. In the case of only eight training points the CFy is almost constant and

when additional training points are added there is only dependence upon β. The σn

for the CFx is not as substantial as the σn for the CFy, but when the calculated σn for

the CFx is used in conjunction with the eight point sample, the prediction is again

dominated by noise. On the other hand, smooth predictions that are qualitatively

similar to the linear regression model are found when more samples are used.

The reason for the discrepancy in terms of the response surface based upon the

treatment of σn can be investigated by examining the bounds of the 95% confidence

interval. In Chapter 2, the bounds of the 95% confidence interval were shown for the

simple one dimensional case. Here, in two dimensions, it is most straightforward to

illustrate the bounds of this 95% confidence interval range by the difference between

the upper and lower bounds of the 95% confidence interval for each respective coeffi-

cient. For clarity, this value can then be nondimensionalized by the local value of the

desired coefficient. Fig. 3.20 shows the uncertainty prediction interval of KT (∆KT ) as

a percent value of the local value of KT predicted by the respective Gaussian process

regression model. Eqn. 3.9 shows how ∆KT is calculated in terms of the upper bound

of KT provided by the GPR uncertainty KTU , and the lower bound of the KT pro-
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Figure 3.19: Contours of KT and CFy in J-β space for the KCS propeller and rud-
der with different sets of training data, with black dots illustrating the
different samples used to train the model. All results are for Gaussian
process regression with a calculated σn. The left column of images show
KT while the right column shows CFy. More training points are used for
each subsequent row.
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vided by the GPR uncertainty KTL. On the left of Fig. 3.20 the uncertainty interval

is plotted for the low σn based models and on the right the calculated σnmodels are

shown. This illustrates that when σn is assumed low the uncertainty at the training

point is low. If σn was to be zero, then the error at each training point would be

zero. On the other hand, when the expected noise in the training is accounted for, the

training points cease to be treated as exact and uncertainty is present even at training

points. In the case of assuming negligible noise, if the uncertainty of the training data

was negligible, then the uncertainty plots shown here would indicate where additional

samples should be made to improve the prediction and uncertainty of the Gaussian

process regression. The plots shown here indicate that the uncertainty induced by

the discretization and turbulence modeling error is significant. The percent value of

this bound is especially high for high values of J when the calculated σn is used since

the value of KT is low for high values of J .

∆KT = KTU −KTL (3.9)

In the case of the KT prediction, the expected response surface is easier to predict

than the response surface for the rudder force coefficients. Additionally, it has been

illustrated that the rudder force coefficients contain more discretization uncertainty

and turbulence modeling uncertainty compared to the KT . Thus, it is also useful to

consider the 95% confidence interval for the CFy which is shown in Fig. 3.21. This

figure illustrates that the uncertainty when σn is near a training point the uncertainty

is near zero. As training points are added, the regions of high uncertainty decrease,

whereas there are pockets of uncertainty when only eight training points are used. On

the other hand, very large levels of uncertainty are present when the σn is calculated.

When there are only eight training points used, the response surface is dominated

by noise and there is no coherent response. In this case, the uncertainty is also very

large, on the order of 100% of the prediction itself.
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Figure 3.20: Contours of the uncertainty in the 95% confidence interval for KT non-
dimensionalized by the local value of KT predicted by the GPR models
in J-β space for the KCS propeller with different sets of training data,
with black dots illustrating the different samples used to train the model.
The left column show results for the low value of σn and the right column
shows the results for calculated σn. More training points are used for
each subsequent row.
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Figure 3.21: Contours of the uncertainty in the 95% confidence interval for CFy non-
dimensionalized by the local value of CFy predicted by the GPR models
in J-β space for the KCS rudder with different sets of training data, with
black dots illustrating the different samples used to train the model. The
left column show results for the low value of σn and the right column
shows the results for calculated σn. More training points are used for
each subsequent row.
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The three different models examined (Gaussian process regression with low σn,

Gaussian process regression with calculated σn, and linear regression) can be evalu-

ated based on how well the respective models predict validation CFD data. For this

the CFD results for the four point LHS set of data on the G2 grid is used. The average

absolute value of the percent error between each respective model’s prediction of the

CFD result for each respective parameter is averaged and reported in Table 3.11. On

average, across all of the parameters and all of the training sets, the linear regression

models outperform the Gaussian process regression models. Also, when σn is very

low, the prediction outperforms the equivalent model for when σn is calculated. In-

cidentally, the linear regression model with only eight training points performs the

best of all of the linear regression models, but the 24 point based model outperforms

the model trained with 16 points in general. This table indicates that the linear

regression model is likely a better choice for training a surrogate model for sparsely

sampled CFD data, which may contain inherent error. Higher fidelity CFD models

would reduce the calculated σn, but the added work associated with implementing

Gaussian process regression in a CFD package is not appealing unless there is high

confidence in the predictions across the J-β space, such that the lack of smoothness

in the response surface can be attributed to real effects, instead of uncertainty in the

training data. Gaussian process regression could also be useful as a means to select

additional points to improve the training of a linear regression model.

3.3 Calm Water Turning Circle Force Analysis

The data-driven model predictions of the propeller and rudder forces are compared

to the experimental forces for the vessel performing a turning circle with the rudder

deflected to 35◦ at an initial Froude number of 0.157. In Chapter IV, several variations

of the linear regression based propeller and rudder model are applied to VOF CFD

maneuvering simulations of the vessel performing the maneuver with the body force
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Table 3.11: Modeling error for different Gaussian process regression models and linear
regression models for KT , KQ, CFx on the movable part of the rudder,
and CFy on the movable part of the rudder.

Training set Parameter GPR σn calculated GPR σn=0.0001 Linear regression
Average % error Average % error Average % error

8 point KT 2.358 1.384 1.263
16 point KT 3.865 2.249 1.984
24 point KT 2.484 1.228 1.410
8 point KQ 2.313 0.967 0.736
16 point KQ 3.041 1.828 1.323
24 point KQ 1.797 1.019 0.918
8 point CFx 8.223 2.667 2.567
16 point CFx 4.385 3.654 1.956
24 point CFx 3.543 3.300 2.354
8 point CFy 8.213 3.880 1.764
16 point CFy 7.635 4.070 3.360
24 point CFy 6.812 3.050 2.803

based model.

3.3.1 Comparison of Model Forces with Calm Water Experimental Forces

The propeller thrust coefficient, propeller torque coefficient, and rudder normal

force are provided in the experimental results as a function of time. Using the motions

of the vessel in the experiments the model can be used to determine these force

coefficients. For this, a new data-driven regression model is generated for the rudder

forces since only the normal force on the moving part of the rudder, with surface area

SR of 0.008 m2 is reported. The rudder normal force is calculated from the rudder

forces calculated from CFy and from CFx.

Comparison between different linear regression models Fig. 3.22, Fig. 3.23,

and Fig. 3.24 show the thrust, torque, and rudder normal force on the movable part

of the rudder for different linear regression based models in comparison to the ex-

perimental forces. The linear regression models use the experimental motions of the
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vessel to predict the force on the propeller and the rudder. The rudder is actuated at

0 s, but the flow has been established over the hull before this point. The propeller

and rudder models neglect the rudder actuation and assume that the rudder is fully

deflected. These plots illustrate the results of six different linear regression models.

It is noteworthy, that then noise in the force prediction is based on the noise in the

experimental motions. All of these models use the same feature vector as defined by

Eqn. 2.25. The difference between the different models is the data that is used to

train them. The figure legends denote the experimental data, which set of LHS points

are used to train a specific model (8 point versus 16 point LHS sets), which double

body grid is used to train the model (G1, G2, or G3), and which turbulence model is

used. The Spalart Allmaras turbulence model is used to train all of the data-driven

models shown in these figures except for the 8 point G2 k−ω SST case, which uses

the k − ω SST turbulence model for training.

Fig. 3.22 and Fig. 3.23 illustrate that the model that uses the k−ω SST turbulence

model for training produces more thrust and torque than the models that are trained

with the Spalart Allmaras turbulence model. The propensity for the k − ω SST

turbulence model to produce more thrust than the Spalart Allmaras turbulence model

is highlighted by Table 3.5 shown earlier. This illustrates how the turbulence modeling

discrepancy propagates into the data-driven model and can lead to different results.

Conversely, Fig. 3.24 illustrates how the model trained with k − ω SST turbulence

model produces less rudder normal force than the other data-driven models examined

here.

An alternative to the feature vector that includes the features J2 and β2, is to

use a low order feature (LOF) feature vector that includes [1 J β Jβ]. This can help

illustrate whether the original feature vector over-fits or under-fits the data and it

also permits the ability to use a smaller training set to develop a model to evaluate if

fewer than eight points are suitable for constructing a data-driven model. Fig. 3.25,
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Figure 3.22: Experimental thrust compared to linear regression based data-driven
thrust using motions of experiment in calm water.
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Figure 3.23: Experimental torque compared to linear regression based data-driven
torque using motions of experiment in calm water.
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Figure 3.24: Experimental rudder normal force compared to linear regression based
data-driven rudder normal force using motions of experiment in calm
water.

Fig. 3.26, and Fig. 3.27 show the propeller thrust, propeller torque, and rudder normal

force on the movable part of the rudder respectively for a variety of linear regression

models trained with different numbers of sample points and grids using the double-

body training CFD with the Spalart Allmaras turbulence model. This set of plots

focuses only upon methods trained with the G2 and G3 grids, since there is less

discretization uncertainty. As in the previous set of figures the eight point data set

for the G2 and G3 grid is used with the original feature vector, along with the sixteen

point data set on the G2 grid. The four point LHS set is also used to train a linear

regression model with the low order feature vector. Furthermore, the sixteen point

G2 set is used to train a low order linear regression model, along with the eight point

G3 set. Fig. 3.25 and Fig. 3.26 show that there is rather good agreement between

the different models and their prediction of the thrust and torque respectively with

regard to each other. In the figures, the four point sets are all trained with the low

order feature vector, and the denotation of LOF indicates that the model is trained
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with the low order feature vector for models that are trained with more data points.

The LOF cases tend to produce slightly more thrust than the other cases, but the

differences are very small between the different cases. There are more discernible

differences in the prediction of the rudder normal force with the different methods as

shown by Fig. 3.27. After the rudder is actuated and before the vessel reaches the

steady part of the turn there is deviation when the low order feature vector is used.

For example, the sixteen point LOF G2 case calculates a level rudder normal force

much earlier than the other cases. On the other hand, if only the four point LHS

set is used to train the model with the G3 grid, an excessive rudder normal force is

predicted at five seconds. In the steady part of the turn, most of the cases are in

good agreement with each other with the model trained with the eight point LHS

set on the G3 grid predicting the highest rudder normal force. This investigation

illustrates that reasonable results can be predicted when only four samples are used

in J-β space, but it is prudent to use more samples such as to prevent over-fitting

and to gain the accuracy of including quadratic terms, since it is not expected that

the response surface is purely linearly dependent upon J and β. Assuming a linear

variation in terms of J and β can provide reasonable results; however, it is known

that even open water propeller curves show nonlinear dependence upon J and in

oblique flow when separation occurs the dependence upon β is nonlinear as well. It is

also noteworthy that once the vessel reaches the steady part of the turn it has nearly

constant J and β, thus, the steady forces predicted in these plots are only evaluating

one point in J-β space.

Table 3.12 shows the experimental mean, standard deviation σ, and standard

error for the thrust, torque, and rudder normal force. The standard error is defined

by Eqn. 3.10 in terms of σ and the number of samples N .

εE =
σ√
N

(3.10)
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Figure 3.25: Experimental thrust compared to linear regression based data-driven
thrust using motions of experiment in calm water with low order features.
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Figure 3.26: Experimental torque compared to linear regression based data-driven
torque using motions of experiment in calm water with low order fea-
tures.
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Figure 3.27: Experimental rudder normal force compared to linear regression based
data-driven rudder normal force using motions of experiment in calm
water with low order features.

Table 3.12: Experimental force quantities after 40 s of model scale time.

Quantity T (N) Q (N-m) FN (N)
Experimental Mean 5.140 0.0883 2.923

Experimental σ 0.256 0.0062 0.179
Experimental Standard Error (εE) 0.167 0.0040 0.117

Tables 3.13-3.15 show the average thrust, torque, and rudder normal force (after

40 s) for a sample set of the linear regression models examined in Fig. 3.22 to Fig. 3.27.

These tables also illustrate the error with respect to the average forces predicted

by the experiment (see Table 3.12). Incidentally, it is shown that the thrust and

torque predicted with four point LHS G2 based linear regression model is the most

accurate relative to the experiment for the models trained with the Spalart Allmaras

turbulence model. The most accurate model for the thrust and torque with regards

to the experiment is the eight point LHS G2 k−ω SST based linear regression model,

which has a fraction of a percent error in thrust, and is within 5% of the torque

calculated in the experiment. On the other hand, the model that is trained with the
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Table 3.13: Error using linear regression based data-driven model thrust predicted
with experimental motions.

Model T (N) εm (%) εm/εE
8 point LHS G1 4.870 5.260 1.622
16 point LHS G1 4.785 6.905 2.130
4 point LHS G2 5.040 1.948 0.601
8 point LHS G2 4.920 4.272 1.318
16 point LHS G2 4.953 3.643 1.123
4 point LHS G3 5.025 2.231 0.688
8 point LHS G3 4.876 5.135 1.584

8 point LHS G2 k − ω SST 5.143 -0.055 -0.017

Table 3.14: Error using linear regression based data-driven model torque predicted
with experimental motions.

Model Q (N-m) εm (%) εm/εE
8 point LHS G1 0.0815 7.671 1.674
16 point LHS G1 0.0804 8.881 1.938
4 point LHS G2 0.0834 5.508 1.202
8 point LHS G2 0.0821 7.040 1.536
16 point LHS G2 0.0823 6.804 1.485
4 point LHS G3 0.0829 6.121 1.336
8 point LHS G3 0.0810 8.234 1.797

8 point LHS G2 k − ω SST 0.0844 4.418 0.964

k − ω SST based data under-predicts the experimental rudder normal force by over

20%, whereas the best performing case is the eight point LHS G3 model.
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Table 3.15: Error using linear regression based data-driven model rudder normal force
predicted with experimental motions.

Model FN (N) εm (%) εm/εE
8 point LHS G1 2.482 15.175 3.804
16 point LHS G1 2.424 17.172 4.304
4 point LHS G2 2.437 16.714 4.190
8 point LHS G2 2.618 10.544 2.643
16 point LHS G2 2.459 15.963 4.001
4 point LHS G3 2.436 16.767 4.203
8 point LHS G3 2.738 6.440 1.614

8 point LHS G2 k − ω SST 2.287 21.840 5.474

Comparison between linear regression and Gaussian process regression

It is also important to consider if the method used to train a data-driven model

significantly alters the prediction. This can be evaluated by testing different data-

driven methods (linear regression and Gaussian process regression) that are developed

with the same training data. Here, the Spalart-Allmaras turbulence model results on

the G2 grid are used to compare the accuracy of Gaussian process regression based

models and linear regression based models. Earlier, the response surfaces generated

with the different methods were compared. The Gaussian process regression based

model generates a response surface with lots of variation if the σn is assumed low, but

when σn is calculated a smoother response surface is generated. Fig. 3.28, Fig. 3.29,

and Fig. 3.30 show the predictions of thrust, torque, and rudder normal force for

the different models in comparison to the experimental results. The experimental

motions are used as input for the data-driven models to calculate the respective forces.

The linear regression model, the Gaussian process regression model with a low σn,

and the Gaussian process regression model with a calculated σn are applied. Each

respective model is trained with three different training sets: the eight point LHS, the

sixteen point LHS, and a combination of the eight point and sixteen point sets. The

response surfaces for these models are earlier. The discrepancy between the different

models in the prediction of thrust and torque as a function of time is quite small.
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Figure 3.28: Experimental thrust compared to data-driven thrust using motions of ex-
periment in calm water of linear regression models (LR) and a Gaussian
process regression models (GPR) trained with various sample sets of the
double-body G2 grid simulations with the Spalart-Allmaras turbulence
model.

In terms of the calculation of the rudder normal force, the eight point set of data

used to train the linear regression model and the Gaussian process regression model

with a calculated σn lead to a force prediction that is larger than the other cases.

However, the discrepancy between the different models shown here is less than the

discrepancy illustrated for different sets of training data for which discretization and

turbulence modeling uncertainty is demonstrated. Thus, using either linear regression

or Gaussian process regression leads to a very similar prediction of the force, such

that the differences between the models is rather small relative to the underlying

uncertainty of the data with which they were trained.
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Figure 3.29: Experimental torque compared to data-driven thrust using motions of
experiment in calm water of linear regression models (LR) and a Gaus-
sian process regression models (GPR) trained with various sample sets
of the double-body G2 grid simulations with the Spalart-Allmaras tur-
bulence model.
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Figure 3.30: Experimental rudder normal force compared to data-driven thrust using
motions of experiment in calm water of linear regression models (LR)
and a Gaussian process regression models (GPR) trained with various
sample sets of the double-body G2 grid simulations with the Spalart-
Allmaras turbulence model.
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Since Gaussian process regression is more complicated to implement in a CFD

package and there is not a demonstrable benefit to Gaussian process regression over

linear regression, the linear regression method is implemented in the CFD package

to apply the data-driven propeller and rudder force for the VOF CFD maneuvering

calculations in Chapter IV.
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CHAPTER IV

Maneuvering of the KRISO Container Ship (KCS)

The turning circle characteristics of the KCS are examined in calm water and

in waves for a δ of 35◦. Different linear regression based data-driven propeller and

rudder models are examined. The data-driven models are trained with different sets

of training data and the effects on the maneuvering characteristics of the vessel are

examined.

In this chapter the VOF CFD model is discussed first. Following the discussion

on the maneuvering CFD setup the calm water turning circle characteristics are dis-

cussed. The methods are extended to analyzing the vessel operating in regular waves.

For the discussion on the performance in regular waves, the data-driven propeller

model force predictions of the propeller and rudder are first compared to the experi-

mental force predictions. Following this, different linear regression based models are

applied to the VOF CFD maneuvering simulations. The effect of using different sets

of data to train the data-driven model is discussed in terms of how the maneuvering

characteristics change based on the quantity of training data and the method used to

generate the training data.
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4.1 VOF CFD Model Development for KCS

The VOF CFD simulations are used to analyze the vessel maneuvering both in

calm water and in waves. Both VOF grid setups are constructed in a similar way as

the double-body grid with the main exception that the air domain is also modeled.

Additionally, the propeller and rudder geometry are removed from the simulation and

are instead modeled with the data-driven model. The body force of the propeller is

applied to the flow via a body force region which is the cylinder that encompasses the

swept volume of the propeller. The data-driven propeller and rudder model deter-

mines the forces of the propeller and the rudder based on the instantaneous motions

of the vessel determined by a customized six-degree of freedom motion solver. The

flow chart illustrating how the data-driven propeller and rudder forces are calculated

and implemented is shown in Fig. 4.1. The model determines the thrust, side force,

and torque of the propeller, as well as the yaw moment contribution to the equations

of motion due to the propeller side force. Additionally, the model determines the

rudder side force, resistance force, and yaw moment. Note that for the calculation of

the yaw moment, the side force of the propeller and the rudder is positive towards

the port side and that d and dr are positive scalar values. These forces are applied

to the equations of motion of the body and to the fluid. The body-force of the pro-

peller thrust and torque are applied in the swept volume of the propeller according

to the distribution specified by Hoekstra (2006), with the assigned coefficients of the

model correlating to the typical open-water propeller distribution specified by Hoek-

stra (2006). The body force contribution of the side force is applied with the same

distribution as the thrust, but in the orthogonal direction aligned with the direction

of the side force. The body force of the rudder is neglected.

A customized six degree of freedom rigid body motion solver is used for each

simulation. The vessel is accelerated from rest to the specified initial forward speed

of 0.86 m/s over eight seconds of model scale time. During this ramp the vessel is free
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Figure 4.1: Flow chart for the implementation of the data-driven propeller and rudder
model for KCS.

to pitch and heave. Once the vessel has obtained the desired speed, the speed is held

constant for four seconds before it is released, and all six degrees of freedom are solved

for. The data-driven propeller and rudder model apply the body force to the flow

and the force and moments of the propeller and rudder to the equations of motion to

perform the desired maneuvers. In this study, the force predicted by the data-driven

model is calculated assuming the rudder angle is deflected to the maximum deflection

angle for the duration of the simulation. In the experiment the rudder deflection

rate was 20.1◦ per second, thus it takes 1.74 s for the propeller to deflect from the

undeflected position to the maximum deflected position. This transient is ignored in

this study, and instead when the CFD results are compared to the experiment the

time and position are adjusted by 0.87 seconds, or the time that it would take for

the propeller to reach its midway deflection point. Alternatively, the forces could

be interpolated between the prediction of the data-driven model of the force with
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a deflected rudder versus a calculation of the propeller and rudder forces with the

rudder undeflected.

The domain for all of the VOF CFD simulations is 12.4 m long (4 LPP ), 3.1 m

deep below the calm waterplane and 1.55 m above the calm waterplane. There are

small differences in terms of the CFD domain setup between modeling the vessel

in calm water and in waves. For the calm water CFD cases the domain extends

4.65 m in each lateral direction whereas for VOF CFD simulations in waves, the

domain extends 6.2 m laterally, such that the domain is square when viewed from

above. The vessel is at the center of the domain longitudinally and laterally and

is floating on the waterplane. The boundary condition on the hull is non-slip wall

modeled with wall functions. The Spalart Allmaras turbulence model is used. For

the calm water CFD simulations, the domain surfaces upstream, port, and at the

bottom of the domain are wave velocity inlets with zero gradient pressure. The

surfaces downstream and starboard are wave velocity inlets with fixed flux pressure

for the calm water case; while the surface downstream for the case in ambient waves

is instead modeled with a velocity inlet with zero gradient pressure. These slight

differences in boundary conditions do not result in demonstrable differences in the

maneuvering characteristics. The top of the domain is a pressure inlet-outlet for all

cases.

The grid setup is very similar to the double-body grids with the main difference

being that the air region is also modeled. The grid densities examined are based off of

the G1 and G2 grid densities for the double-body CFD simulations. One modification

is that the region of the waterplane, which extends above and below the waterplane

by 0.2 m, is also refined for some of the cases in the Z direction by a factor of
√

2 or by

a factor of 2. This enables better resolution of the free surface while not significantly

altering the overall grid count and driving up computational cost. The square domain

used for the VOF CFD in waves uses only one grid density which is the G1 grid with
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Table 4.1: Grid size for KCS VOF simulations.

Grid Grid size (million cells) ∆g (m) ∆gx (m) ∆gy (m) ∆gz (m)
Calm G1 2.20 0.029 0.028 0.029 0.029

Calm G1 ∆z/
√

2 2.34 0.026 0.028 0.029 0.020
Calm G1 ∆z/2 2.44 0.024 0.028 0.029 0.014

Calm G2 5.78 0.020 0.020 0.020 0.020
Waves G1 ∆z/2 2.96 0.024 0.028 0.029 0.014

Figure 4.2: KCS G1 ∆z/2 Calm Water VOF grid.

the waterplane region refined by a factor of 2. Fig. 4.2 shows the VOF grid used for

the calm water CFD simulations with G1 grid density with the waterplane region

refined by a factor of two. Table 4.1 shows the number of cells used for each grid

as well as the discretization length in each direction in the region around the hull,

extending +/− 1.86 m fore and aft from center of the domain, 0.32 m laterally in

each direction, and from 0.2 m below the waterplane to 0.2 m above the waterplane.

The discretization lengths in this region denoted ∆gx, ∆gy, and ∆gz for the x, y, and

z directions respectively. SnappyHexMesh is used to generate the mesh and applies

one level of refinement to the whole hull. In regions of high curvature, two levels of

refinement are used. The hull also has five prism layers applied with a thickness of

0.3 times the dimension of neighboring cell in the normal direction to the face.

A customized waves2Foam (Jacobsen et al. (2011)) package is used for the VOF

simulations. In the CFD simulations for the vessel in waves a wave velocity inlet
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boundary condition is applied on all of the domain surfaces except for the top where

the pressure inlet-outlet is specified. For calm water cases the relaxation zones are

rectangular and extend laterally and longitudinally along the perimeter of the domain

except for a square in the center of the domain with length 2 LPP . A potentialCurrent

wave type, which specifies uniform velocity along the vertical extent of the boundary

(Jacobsen et al. (2011)), is used with zero velocity for rectangular relaxation zones

that extend to the exterior boundaries. For cases with ambient waves, the waves are

specified as regular fifth order Stokes waves with a cylindrical wave relaxation zone

specified with an inner radius of 1 LPP from the center of gravity of the vessel, and

an outer radius of the maximum extent of the domain.

4.2 CFD Maneuvering Simulations in Calm Water

The vessel is modeled with the data-driven propeller and rudder model in calm

water and compared to the SIMMAN (2020) results. The vessel trajectory, dimen-

sionless forward velocity, and sway velocity are examined. The forward velocity is

made dimensionless by dividing the instantaneous forward velocity by the initial for-

ward velocity of the vessel uo which is 0.86 m/s. The vessel is examined with VOF

grids with different mesh density, different temporal discretizations, and with differ-

ent sets of training data for generating the data-driven propeller and rudder model.

The results shown here demonstrate an improvement over initial applications of this

method which used a linear regression based model to predict the forces of only the

propeller, and used a simple body force distribution in conjunction with a simplified

spade rudder to allow actuation of the rudder with a rotating sliding mesh (Piro et al.

(2020), White (2020)).
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4.2.1 Effects of Spatial Discretization

Four different spatial discretizations are examined using a baseline time step of

approximately 0.008 s. The different VOF grid mesh discretizations examined include

the G1 VOF grid, the G1 ∆z/
√

2 VOF grid, the G1 ∆z/2 VOF grid, and the G2 VOF

grid. The G1 ∆z/
√

2 VOF grid and the G1 ∆z/2 VOF grid offer a means of adding

extra refinement to the waterplane without significantly increasing the mesh count.

The linear regression based propeller and rudder model is trained with the eight point

LHS double-body G2 training set for all cases. This highlights a distinct advantage

of using the data-driven propeller and rudder model, since the data-driven model can

be trained with a rather fine grid, but it can then be applied to VOF grids that are of

coarser mesh density. This is a convenient way to reduce the computational cost, since

not only does the propeller and rudder model allow for a significant improvement in

time step, but it also allows for the use of coarser VOF grids that do not require the

fine spatial discretization around the propeller and rudder.

Fig. 4.3 shows the trajectories once the rudder is actuated for the different vessels.

The rudder is deflected at the origin and the vessel begins to turn. Table 4.2 shows the

maximum advance AM , the maximum transfer TM , and the turning circle diameter

DT for the prediction using each grid and for the experiment. The maximum advance

is the maximum distance that the vessel travels in the X direction after the rudder

is deflected. The maximum transfer is the maximum distance that the vessel travels

in |Y |. The turning circle diameter is the diameter of the circle that the trajectory

of the vessel makes when viewed from above during the steady part of the turn. The

maximum advance (maximum value of X) is predicted within 4.2% for all of the

cases relative to the experimental value. The largest deviation from the experimental

prediction of the maximum advance is for the G2 grid, while the best agreement with

the experiment is the G1 ∆z/2 VOF grid, which has less than 1% error relative to

the experiment. The maximum transfer, which is the maximum distance that the
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Figure 4.3: KCS turning circle maneuver trajectories with different VOF mesh dis-
cretizations using the 8 point LHS G2 training set for the data-driven
propeller and rudder model.

vessel travels in |Y |, is predicted within 9% for all cases. Again, the G2 grid agrees

least with the experimental results with an 8.7% under-prediction with respect to

the experimental results. The best agreement occurs for the G1 ∆z/2 grid with an

under-prediction of only 2.8% with respect to the experimental results. The steady

turning diameter is calculated within 5% for all cases relative to the experimental

result. The experimental turning circle diameter is 2.6 LPP , and the G1 grid predicts

a diameter that is 4.9% larger, while the G2 grid predicts a turning circle diameter

that is 1.7% tighter. Overall, the G2 grid predicts a tighter turn than the other grids.

Refining the waterplane alone also leads to oscillatory convergence. For example,

the G1 and the G1 ∆z/2 grids both have larger maximum transfers and maximum

advances than the G1 ∆z/
√

2 VOF grid.

Fig. 4.4 and Fig. 4.5 show the dimensionless forward velocity and the sway velocity

respectively for the different spatial discretization cases relative to the experiment.

All of the CFD results under-predict the experimental forward velocity and sway
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Table 4.2: Dependence of KCS turning circle characteristics on spatial discretization.

Experiment G1 G1 ∆z/
√

(2) ∆z/2 G2
Maximum Advance (AM/LPP ) 3.1 3.03 3.02 3.07 2.97
Maximum Transfer (TM/LPP ) 3.22 3.12 3.04 3.13 2.94

Diameter (DT/LPP ) 2.602 2.73 2.67 2.70 2.56
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Figure 4.4: KCS turning circle maneuver dimensionless forward velocity with different
VOF mesh discretizations using the 8 point LHS G2 training set for the
data-driven propeller and rudder model.

velocity. Both the G1 ∆z/
√

2 grid and the G1 ∆z/2 grid lead to very similar forward

velocities. The G2 grid has approximately 3% less forward velocity and the G1 grid

has 1% more forward velocity in the steady part of the turn with respect to the G1

∆z/
√

2 grid and the G1 ∆z/2 grid. In terms of sway velocity, the G1 grid has the least

sway velocity whereas when the waterplane is better refined the sway velocity is larger

and is in better agreement with the experiments. The fact that the forward speed

is under-predicted is logical since the thrust produced by the data-driven propeller

model is less than the thrust measured in the the experiment.

Overall, the G1 ∆z/2 VOF grid produces reasonable results with regards to the

experiments and offers a good balance between computational cost and accuracy.
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Figure 4.5: KCS turning circle maneuver sway velocity with different VOF mesh dis-
cretizations using the 8 point LHS G2 training set for the data-driven
propeller and rudder model.

4.2.2 Effects of Temporal Discretization

Four different temporal discretizations are examined using the G1 ∆z/2 VOF

grid with the eight point LHS G2 training set with a linear regression model for the

data-driven propeller and rudder model. The allowable time step is controlled by

increasing the maximum allowable Courant number. The second-order backwards

in time scheme is used for the time integration. Each simulation is run for 120 s,

during which the first seconds ramp the velocity from rest to the initial full speed,

after which the vessel is held at that constant forward speed for four seconds until the

vessel is released to maneuver. Thus, the vessel performs the turning circle maneuver

for 108 s which is sufficient to perform over one and a half circles. The temporal

discretizations are referred to as ∆t/2, the base case, 2∆t, and 3∆t; the average time

step size for each of these cases over the course of the simulation is 0.004 s, 0.008 s,

0.016 s, and 0.025 s. Thus, four time steps are evaluated, the base time step size

∆to, and multiples of the time step [0.5, 1, 2, 3]. These time step sizes can also be
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compared to the amount that the propeller would rotate with each of these time steps

while rotating at a rate of n=10.4 rps. The equivalent propeller rotation is 15◦, 30◦,

60◦, and 94◦ per time step for the ∆t/2, base, 2∆t, and 3∆t cases respectively. This

leads to a substantial improvement in computational cost if any of these temporal

discretizations are used compared to using a discretized propeller which would rotate

approximately 1◦ per time step. The simulations are run with 120 cores with 2.2-GHz

processors. The number of cores required for the ∆t/2, base, 2∆t, and 3∆t cases

are 3691 core hours, 1845 core hours, 948 core hours, and 607 core hours respectively.

Despite the fact that significant computation gains can be made by allowing very

large time steps, it is important to characterize the accuracy of the turning circle

maneuvering characteristics to ensure that the accuracy does not degrade.

In general, the ∆t/2, the base case, and the 2∆t cases are in good agreement with

each other, but the 3∆t case deviates. Fig. 4.6 shows the turning circle trajectory for

the different temporal discretizations and the experimental results. All of the cases

predict a maximum advance within 2% of the experiment, however, the 3∆t case has

4.2% less of a maximum transfer; whereas the baseline temporal discretization has

2.8% less of a maximum transfer with respect to the experiment. The steady state

turning circle diameter of the 3∆t case actually agrees best with the experiment and is

2.5% greater than the experiment, whereas the other temporal discretizations predict

3.3%, 3.8% and 3.8% for the ∆t/2, the base case and the 2∆t cases respectively.

Fig. 4.7 shows the maximum transfer and the turning circle diameter for the different

temporal discretizations in relation to the experimental results.

The dimensionless forward velocity and the sway velocity can also be compared

for the different temporal discretizations in Fig. 4.8 and Fig. 4.9 respectively. Fig. 4.8

shows that all of the CFD predictions under-predict the mean experimental forward

velocity, but all of the CFD simulations except the 3∆t case have very good agreement

with each other. The 3∆t case under-predicts the forward velocity of the other CFD
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Figure 4.6: KCS turning circle maneuver trajectories with different VOF temporal
discretizations using the G1 ∆z/2 VOF grid with the 8 point LHS G2
training set for the data-driven propeller and rudder model.
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Figure 4.7: KCS turning circle maneuvering characteristics with different VOF tem-
poral discretizations using the G1 ∆z/2 VOF grid with the 8 point LHS
G2 training set for the data-driven propeller and rudder model. Left:
Maximum transfer. Right: Turning circle diameter.

113



0 10 20 30 40 50 60 70 80 90
t (s)

0

0.2

0.4

0.6

0.8

1

u/
u o

Figure 4.8: KCS turning circle maneuver dimensionless forward velocity with different
VOF temporal discretizations using the G1 ∆z/2 VOF grid and the 8
point LHS G2 training set for the data-driven propeller and rudder model.

cases in the steady part of the turn by approximately 3%. Fig. 4.9 shows that all of

the CFD simulation under-predict the experimental sway velocity, but all of the CFD

results are in good agreement with each other except the 3∆t case which over-predicts

the sway velocity of the other CFD cases by almost 2%.

These results indicate that for this grid, a time step correlating to 15◦, 30◦, and

60◦ of propeller rotation lead to similar maneuvering characteristics and represent

a significant improvement in the allowable time step compared to what would be

required if the propeller was discretized. It is also noticeable that if very large time

steps are used, then the maneuvering characteristics of the vessel are affected.

4.2.3 Effects of Different Linear Regression Based Models

It has been shown that a data-driven propeller model allows for computationally

efficient modeling of the vessel performing a maneuver. It has also been demonstrated

in Chapter III that the uncertainty associated with the accuracy of the data-driven
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Figure 4.9: KCS turning circle maneuver sway velocity with different VOF temporal
discretizations using the G1 ∆z/2 VOF grid with the 8 point LHS G2
training set for the data-driven propeller and rudder model.

propeller and rudder model is heavily dependent upon the uncertainty of the data

that it is trained with. The grid density used to train the data-driven model and the

turbulence model used to train the model have significant effects on both the propeller

and rudder forces. To help quantify the difference in the effect of the using different

data-driven models, several linear regression based models are examined here.

The linear regression model that is trained with the eight point LHS training set,

which used the Spalart Allmaras turbulence model, on the G2 grid is used and in the

following figures the results are denoted by G2. Earlier when the experimental motions

of the vessel were used to predict the thrust of the propeller it was found that this

data-driven model slightly underestimated the thrust calculated in the experiment.

For this reason, the effect of modifying the propeller revolution rate is examined.

By increasing the propeller revolution rate, the propeller thrust increases. Thus,

instead of applying a propeller revolution rate that matches the experimental propeller

revolution rate (n=10.2 rps), variations are also applied which use an n of 10.6 rps
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Table 4.3: Dependence of KCS turning circle characteristics on data-driven model.

Maximum Advance Maximum Transfer Diameter
(AM/LPP ) (TM/LPP ) (DT/LPP )

Experiment 3.10 3.22 2.60
G2 3.07 3.13 2.70

G2 k − ω SST 3.21 3.35 2.93
G2 n=10.6 rps 3.05 3.12 2.70
G2 n=10.8 rps 3.03 3.11 2.70

G3 2.93 3.00 2.60

and 10.8 rps, denoted G2 n = 10.6 and G2 n = 10.8 respectively in the following

figures. On the other hand, it was found earlier that the linear regression model

trained with the eight point LHS set on the G2 grid with the k − ω SST turbulence

model, denoted G2 k − ω SST, slightly over-predicted the experimental thrust and

also under-predicted the rudder normal force relative to other data-driven models.

For this reason it is important to consider the effect that using a different turbulence

model has on the turning circle characteristics. As has been illustrated throughout

Chapter III, the differences between these models predominantly is based upon how

the training data is generated, and most of the uncertainty present would be present

even if the propeller was discretized for the maneuvering simulation. The final data-

driven model examined is the linear regression model trained with the eight point LHS

set of data using the Spalart Allmaras turbulence model on the G3 grid, denoted G3.

This model was shown in Chapter III to produce more rudder force than the other

models. The linear regression coefficients for three different sets of training data are

shown in Tables A.9-A.11 for reference.

Fig. 4.10, Fig. 4.11, and Fig. 4.12 show the turning circle trajectory, the dimension-

less forward velocity, and the sway velocity respectively for these different cases run

with the baseline time step on the G1 ∆z/2 VOF grid. Table 4.3 shows the turning

circle maneuvering characteristics for the different cases as well as the experimental

results for reference.
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Figure 4.10: KCS turning circle maneuver trajectories with different data-driven pro-
peller and rudder models using the G1 ∆z/2 VOF grid with the baseline
time step.
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Figure 4.11: KCS turning circle maneuver dimensionless forward velocity with differ-
ent data-driven propeller and rudder models using the G1 ∆z/2 VOF
grid with the baseline time step.
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Figure 4.12: KCS turning circle maneuver sway velocity with different VOF data-
driven propeller and rudder models using the G1 ∆z/2 VOF grid with
the baseline time step.

The G2 k − ω SST data-driven model produces the largest turning circle, which

over-predicts the experimental maximum advance, maximum transfer, and steady

turning diameter by 3.2%, 3.4%, and 2.9% respectively. The sway velocity for this

case is in good agreement with the experiment. The forward velocity predicted with

this model is larger than the other CFD cases and the experiment. Furthermore, this

model was shown to under-predict the rudder force, thus, since the rudder force is

under-predicted and the forward velocity is over-predicted the turn is wider than the

experiment. On the other hand, the cases that use the Spalart Allmaras turbulence

model for training lead to a tighter turn with the maximum advance under-predicted

by 1.0%, 1.8%, 2.4%, and 5.5% for the G2, G2 n=10.6 rps, G2 n=10.8 rps, and G3

cases respectively. In the same order the maximum transfer is under predicted by

2.8%, 3.1%, 3.3%, and 6.8%; while the turning circle diameter is over-predicted by

2.7%, 3.8%, 3.9%, and 0% respectively. One thing to note is that when the propeller

is run at a faster rate (n increasing) the turn becomes tighter since the load on the
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rudder also goes up due to the induced velocity. Of course, when n is increased,

the vessel forward velocity also increases as shown by Fig. 4.11. The G3 case most

significantly under-predicts the forward velocity of the experiment, while as noted the

G2 k − ω SST model has the largest steady forward velocity. The difference between

the steady forward velocity between these two cases is nearly 15%. There is also a

similar variation in terms of the sway velocity.

This illustrates how a data-driven propeller model can be used to evaluate the

maneuvering characteristics of a vessel in calm water, but, the uncertainty of the

data used to train the models propagates into the data-driven model. Depending upon

which set of data is used to train the model, the maneuvering trajectory can either

be tighter or wider than the experimental results, and the forward velocity can either

be greater or less than the experiment. This illustrates that if high quality training

data can be generated a very accurate data-driven model can also be constructed.

4.2.4 Computational Cost Discussion

The computational cost of both the training simulations for the data-driven model

as well as the maneuvering simulations are important to consider. The methods dis-

cussed in this paper allow for a significant reduction in computational cost compared

to using a discretized propeller. When the baseline time-step ∆to is used, less than

2000 core hours are required to perform the turning circle simulations, which includes

the twelve second period of time during which the vessel is accelerated from rest to

before the rudder is actuated, as well as the nearly 100 s of the model-scale simulation

time after the rudder is actuated.

In comparison, the overset grid analysis performed by Shen et al. (2015) showed

that a larger KCS model with λs of 1/52.667 and a Fn of 0.26 required over 11,000 core

hours to model 26 s of model time for the vessel performing a zig-zag maneuver with

rotating discretized propellers and rudders on a grid with nearly four million cells.
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Adwaith (2020) examined the KCS, with λs of 1/37.9 and a Fn of 0.26, performing a

turning circle with different approaches for modeling the propeller including the use

of a discretized propeller with the overset method. This work showed that for a 6.97

million cell grid, only three quarters of a turn cost over 100,000 core hours when the

propeller was discretized. This study also showed that propeller models can reduce

the computational cost.

When a propeller model is used it substantially increases computational efficiency.

As noted earlier in the discussion on the temporal discretization, the time-step can

be increased further to make the computational cost even lower. The time required

to perform the VOF maneuvering simulations is independent of the training cost

for the data-driven propeller model; however, depending upon the spatial fidelity

and quantity of training data used to generate the data-driven propeller and rudder

model, the training cost is variable. A substantial benefit of the methods used here

is that the VOF maneuvering analysis can be performed on a grid with much lower

spatial discretization than the CFD simulation with a discretized rotating propeller,

and the temporal discretization can be much larger when performing the maneuver.

The training costs associated with the double-body grid CFD training simulations

are: 800 core hours for the G1 grid, 3,000 core hours for the G2 grid, and over 34,000

core hours for the G3 grid. The sample point correlating to LHS point two is used

to generate the reference training cost. To note, all cases have a time step limit

such that the propeller rotation does not exceed 1◦ per time-step and also have a

Courant number limit which drives up the computational cost for the G3 grid since

the time step taken is less than 1◦ per time-step. Also, 40 cores are used for the

G1 grid, 120 cores are used for the G2 grid, and 200 cores are used for the G3 grid.

Some parallelization effects drive up the computational cost for the G3 grid since the

efficiency of each core hour is less when many cores are used. Table 4.4 shows the

length of time (in model scale) that the discretized propeller is modeled as a function
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Table 4.4: Cost of double-body CFD simulations for KCS.

1 point 4 points 8 points 16 points 28 points
Model time (s) 5.7 22.8 45.6 91.2 159.6
G1 (core hours) 800 3200 6400 12800 22400
G2 (core hours) 3000 12000 24000 48000 84000
G3 (core hours) 34000 136000 272000 544000 952000

of the number of sample points used to train the data-driven model. The table also

shows the number of core hours that are necessary to perform one, four, eight, sixteen,

and twenty-eight double-body CFD simulations.

It is also useful to view the computational cost graphically in terms of the cost

of the implemented model in comparison to the cost if the propeller is discretized.

Fig. 4.13 shows the cost of a double-body CFD simulation on the G2 grid with a

discretized rotating propeller with the solid blue line, the implemented cost of the

data-driven model trained with the eight point set on the G2 double-body grid with

the dashed blue line, and the cost to train the data-driven model with the solid

green line. This highlights that the computational cost of the implemented model is

dominated by the training cost, and that the cost to model a maneuvering ship is

significantly less expensive than modeling a discretized propeller. The solid blue line

shows the cost of modeling a discretizized propeller operating in the behind condition,

but with a double-body approximation, which is less expensive than the cost of using

a discretized propeller for a VOF maneuvering analysis. Thus, this plot shows a lower

bound for the comparison between the model computational cost and the discretized

propeller computational cost for a maneuvering vessel; in reality, the computational

savings using the model are even more substantial. The blue dot highlights the cross-

over point at which point it is less expensive to train the data-driven model and

use it to model the maneuvering vessel with the G1 ∆z/2 VOF grid. The time to

complete one circle is 61.2 s in model time after the rudder is actuated. Thus, it is

less expensive to train and implement the model than use a discretized propeller even
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Figure 4.13: Computational cost to train and implement a data-driven model trained
with eight points on the G2 double-body grid and implemented on the
G1 ∆z/2 VOF grid compared to using a discretized propeller on the G2
double-body grid.

if only one turning circle is examined, but this approach is especially applicable if

multiple maneuvers are examined.

The left hand side of Fig. 4.14 shows the training cost for the G1, G2, and G3

models with different sets of training data, for which the sample point correlating to

LHS point two is used to generate the reference training cost. The right hand side of

Fig. 4.14 shows the cost of training a model using eight samples of double-body CFD

simulation on the G1, G2, and G3 grids with a discretized rotating propeller. For

each color the solid line represents the cost using a double-body discretized propeller

simulation while the implemented cost of the data-driven model trained with the eight

point set for each respective double-body grid is shown with the dashed lines. This

highlights that the computational cost of the implemented model is dominated by the

training cost for all grids examined, and that the cost to model a maneuvering ship

is significantly less expensive than modeling a discretized propeller. The dots show

the cross-over point at which point it is less expensive to train the data-driven model
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Figure 4.14: Left: Computational cost to train different sets of training data. Right:
Computational cost to train and implement a data-driven model trained
with eight points on the different double-body grids and implemented
on the G1 ∆z/2 VOF grid compared to using a discretized propeller.

and use it to model the maneuvering vessel with the G1 ∆z/2 VOF grid. The time

to complete one circle is 61.2 s in model time after the rudder is actuated. Thus, it

is less expensive to train and implement the model for all of the different cases than

use a discretized propeller even if only one turning circle is examined. Furthermore,

it is illustrated that as finer training grids are used, the cross-over point moves to the

left, thus as finer grids are used to train the model, they can be implemented on a

coarser VOF grid for maneuvering simulations which reduces cost.

Figs. 4.13-4.14 highlight a distinct advantage of this method which is that a high

fidelity simulation with small temporal and spatial discretization on the propeller and

rudder can be used to train the model (G2 or G3), while the VOF maneuvering simu-

lation can be performed on a much coarser grid (G1). Table 4.4 illustrates that if eight

samples are used, the double-body training time is less than 50% of the time that it

would take to perform the turning circle maneuver. It has been shown that generating

a linear regression based data-driven propeller and rudder model with eight samples
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on the G2 grid leads to good results with regards to the experiment. The VOF ma-

neuvering simulations performed on the G1 grid with extra refinement around the

waterplane costs less than 2000 core hours, and the training cost is approximately

24000 core hours. This illustrates, that even if just one turning circle maneuver is

performed, the approach used in this work reduces the computational cost of perform-

ing a single maneuver (which requires over 100 s of model time simulation) by over

50% when both training cost and implementation modeling cost are accounted for.

Furthermore, if multiple simulations are performed, the computational cost of the

maneuver is small relative to the training cost. Thus, if it is desired to perform mul-

tiple maneuvering simulations, this method is especially appropriate. This method

enables the computationally efficient analysis of multiple Froude numbers, the effect

of different hull displacements, the effect of small hull geometry modifications, and

the analysis of the vessel operating in waves.

4.3 Turning Circle in Waves

Similar to the case of calm water, the data-driven propeller model is compared to

the experimental results. First, the propeller and rudder forces are evaluated in rela-

tion to the experimental forces using the experimental motions. Second, the motions

using the data-driven propeller and rudder model are compared to the experimental

motions. For the maneuver in waves, the experimental propeller revolution rate is

increased to n equal to 13.2 rps and the initial forward speed of the vessel at the time

the rudder is actuated is 0.86 m/s. The CFD model uses the same initial forward

speed and the propeller model uses the experimental value of n.

4.3.1 Comparison of Model Forces with Experimental Forces in Waves

Several linear regression based data-driven models are evaluated by using the

experimental motions of the vessel as inputs to the models and comparing the output
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propeller thrust, propeller torque, and rudder normal force of the movable part of

the rudder to the experimental force calculations. All of the cases except for one

are trained with CFD data using the Spalart Allmaras turbulence model. The one

exception is the 8 point G2 k − ω SST case which is trained with the eight point

LHS set results on the G2 grid using the k − ω SST turbulence model.

The nomenclature for naming the models is the same as earlier. In the name of the

model, the first number denotes the number of training points used, and the number

following the G specifies which grid was used to develop the training data. The eight

point and sixteen point LHS sets on both the G1 and G2 double-body grids are used

to train the 8 point G1 model, the 16 point G1 model, 8 point G2 model, and the

16 point G2 model. Finally, the eight point LHS training set on the G3 grid is used

to develop the 8 point G3 model.

Fig. 4.15, Fig. 4.16, and Fig. 4.17 show the thrust, torque, and rudder normal force

respectively for the different linear regression based models as well as the experimental

predictions. The rudder is actuated at 0 s, but the flow has been established over the

hull before this point. The propeller and rudder models neglect the rudder actuation

and assume that the rudder is fully deflected. Again, it is important to note that the

force predictions made here use the experimental motions as input. It can be seen

that the predicted thrust and torque are slightly less than the mean experimental

values, but also within the bounds of the variation in thrust as a function of time.

The model trained with CFD using the k − ω SST turbulence model predicts the

largest thrust but also predicts the least rudder normal force, as was the case in the

calm water analysis. The rudder models trained with the eight point LHS set of

data on either the G2 grid or the G3 grid predict larger rudder normal force than

the other models. The G3 grid case predicts the largest rudder normal force. That

said, the average rudder normal force predicted by the linear regression based models

under-predicts the average experimental force.
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Figure 4.15: Experimental thrust compared to data-driven thrust using motions of
experiment in waves.
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Figure 4.16: Experimental torque compared to data-driven torque using motions of
experiment in waves.
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Figure 4.17: Experimental rudder normal force compared to data-driven rudder nor-
mal force using motions of experiment in waves.

To further investigate the discrepancies between the different CFD models and

the experiment, the forces are analyzed during the steady part of the turn (after

40 s of model time after the actuation of the rudder). Table 4.5, Table 4.6, and

Table 4.7 show the tabulated predictions of the thrust, torque, and rudder normal

force as well as the error of the model with respect to the experiment εm. These

tables illustrate that the propeller and rudder trained with the k−ω SST turbulence

model results agree best with the experiment for thrust and torque, but the worst

for the prediction of the rudder normal force. The models trained with the G1 grid

contain too much discretization error and do not agree well with the experiments.

The difference between the use of the eight point versus the sixteen point LHS set

to train the model on the G2 Grid leads to small differences in εm for the thrust

and torque, but the sixteen point training set leads to worse prediction of the rudder

normal force. For these reasons, the most interesting cases to examine in more detail

are the cases trained with the eight point LHS set on the G2 with differences in

turbulence modeling approach and the effect of using the finer G3 grid.
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Table 4.5: Mean error using data-driven model thrust predicted with experimental
motions for KCS in waves after 40 s.

Model T (N) εm (%)
Experiment 8.461 0.000

8 point LHS G1 7.852 7.198
16 point LHS G1 7.736 8.570
8 point LHS G2 7.963 5.895
16 point LHS G2 8.009 5.341
8 point LHS G3 7.907 6.550

8 point LHS G2 k − ω SST 8.299 1.923

Table 4.6: Mean error using data-driven model torque predicted with experimental
motions for KCS in waves after 40 s.

Model Q (N-m) εm (%)
Experiment 0.143 0.000

8 point LHS G1 0.131 8.246
16 point LHS G1 0.130 9.281
8 point LHS G2 0.132 7.396
16 point LHS G2 0.133 7.195
8 point LHS G3 0.131 8.453

8 point LHS G2 k − ω SST 0.136 5.088

Table 4.7: Mean error using data-driven model normal force predicted with experi-
mental motions for KCS in waves after 40 s.

Model FN (N) εm (%)
Experiment 4.441 0.000

8 point LHS G1 3.948 11.098
16 point LHS G1 3.893 12.340
8 point LHS G2 4.168 6.158
16 point LHS G2 3.949 11.071
8 point LHS G3 4.334 2.408
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4.3.2 Vessel Motions with CFD Versus Experiment in Waves

Several data-driven propeller and rudder models are applied to a maneuvering

CFD analysis of the vessel operating in regular waves. The vessel is in head seas with

a height of 48 mm, a wave length equal to the ship length, with a wave period of

1.4 s. The square G1 ∆z/2 VOF grid is used for all cases. The propeller revolution

rate applied to the propeller model is 13.2 rps, which is the same as the experiment.

The initial forward speed of the vessel is 0.86 m/s.

As noted earlier when the experimental propeller and rudder forces were compared

to different data-driven model predictions for the vessel operating in waves, there

is some discrepancy between different models based on the data with which they

are trained. To highlight the ways that these differences manifest themselves in a

maneuver in waves four different linear regression based propeller and rudder models

are used in a VOF CFD analysis. The training sets include several variations that

use the eight point LHS set of data. The G2 set of training data that is generated

with the Spalart Allmaras turbulence model (denoted G2), the G2 set of training data

with the k − ω SST turbulence model (denoted G2 k − ω SST), and the G3 set of

training data trained with the Spalart Allmaras turbulence model (denoted G3).

Fig. 4.18 shows the trajectory of the vessel predicted with the different CFD

approaches and the experiments, for which the rudder is deflected at the origin.

Similar to the calm water turning circle results, the G2 k−ω SST model over-predicts

the experimental maximum advance and maximum transfer. When a vessel operates

in waves, a second order hydrodynamic force acts on the vessel which causes it to drift.

Overall, the second order drift angle of the CFD results is similar to the experiments,

but the drift distance is substantially less. The G2 k − ω SST case agrees best with

the experiment in terms of second order drift distance. Overall, the G3 grid predicts

a tighter circle with a similar drift angle and distance as the G2 grid.

Fig. 4.19 and Fig. 4.20 show the dimensionless forward velocity and sway velocity
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Figure 4.18: Trajectory of for KCS turning circle maneuver in waves with different
variations of the linear regression based propeller and rudder model on
the square G1 ∆z/2 VOF grid.

as a function of time during the maneuver. Good agreement between the G2 k −

ω SST model and the experiment is illustrated for the forward speed. This is again

sensible since when the forces were calculated using experimental motions, this model

predicted larger thrust and less rudder force than the other models, which leads to

a wider turn, but a higher forward velocity. The G3 based model produces slightly

lower forward velocity predictions compared to the G2 grid based models. All of the

sway velocities predicted with the CFD are similar and are near the experimental

mean, but the amplitude of the oscillation predicted with the experiment is larger

than that predicted with the CFD.

Differences in the way that the propeller and rudder model are trained, particularly

the fidelity of the training data, can manifest in noticeable differences in maneuver-

ing characteristics. This illustrates that as the uncertainty in the underlying CFD

training data decreases, the uncertainty in the maneuvering prediction also improves.

The most substantial difference is found with regards to the effect of using different

turbulence models to train the methods.
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Figure 4.19: Forward velocity for KCS turning circle maneuver in waves with different
variations of the linear regression based propeller and rudder model on
the square G1 ∆z/2 VOF grid.
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Figure 4.20: Sway velocity for KCS turning circle maneuver in waves with different
variations of the linear regression based propeller and rudder model on
the square G1 ∆z/2 VOF grid.
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CHAPTER V

Data-Driven Model Development of the Propellers

and Rudders for the ONR Tumblehome

This chapter develops different data-driven models for the propellers and rudders

of the ONR Tumblehome for application to turning circle maneuvers both in calm

water and in waves. A select group of data-driven models for the propellers and

rudders are applied to CFD maneuvering simulations of the vessel in Chapter VI.

Table 5.1 shows the parameters of the vessel.

In this chapter the modeling techniques are discussed. Double-body RANS CFD

with a discretized rudder and rotating propeller are used to generate training data for

the models. The double-body RANS CFD training cases are discussed first. Following

the discussion on the CFD setup, the data-driven model generation is discussed. A

series of data-driven models are trained with the results of the training CFD. The

data-driven models are used to predict theKX , KS, CFx, CFy, and CMz. Two methods

are used to generate the data-driven models: linear regression and Gaussian process

regression. The discrepancies between different regression based models are discussed

in terms of discretization error, turbulence modeling error, and error in the data-

driven model itself. The asymmetry between the port and starboard propellers and

rudders is also highlighted.
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Figure 5.1: ONR Tumblehome geometry. Left: Vessel viewed front. Right: Ves-
sel viewed from underneath with propeller inward rotation direction and
rudder angles shown.

Table 5.1: Parameters for ONR Tumblehome geometry and case setup.

Parameter Value
Length of Waterline (LWL) 3.147 m
Beam of Waterline (BWL) 0.3838 m

Draft 0.1435 m
Model Scale (λs) 1/48.935

Displacement 72.6 kg
Initial velocity uo 1.11 m/s
Rudder angle δ -35 o

Lateral area of rudder SR 0.012 m2

Axial distance from center of gravity to rudder stock dr 1.384 m
Number of propeller blades 4

Propeller diameter (D) 0.1066 m
Propeller shaft angle 5◦

Axial distance from center of gravity to propeller d 1.291 m
Lateral distance from centerline to propeller dy 0.084 m
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5.1 CFD Model Development

OpenFOAM version 2.4.x is used for the analysis. The grids are generated using

the OpenFOAM utilities blockMesh and snappyHexMesh. Like in the analysis of the

KCS, two separate CFD models are created. The simulation used for training the

data-driven model uses a double-body approximation at the waterplane and models

each of the propellers rotating. For the maneuvering CFD simulations the VOF

approach is used to capture the interface between the water and air and the data-

driven model is used to determine the force of both propellers and both rudders.

5.1.1 Double-Body CFD of Discretized Propeller and Rudder

The double-body RANS CFD of the hull, discretized propellers and twin rudders

is run using the OpenFOAM solver pimpleDyMFoam. Both rudders are deflected to

a δ of -35 degrees. The propeller is rotated at no more than one degree per time-step

using a rotating sliding mesh. Three grids are examined, the G1 grid has 2.5 million

cells, the G2 grid has 6.2 million cells, and the G3 grid has 16.4 million cells. Fig. 5.2

shows a slice of each grid around the propellers and rudders. The propeller rotates at

an n of 8.97 rps and the duration of each simulation is 5.57 s which correlates to 50

propeller revolutions. The data-driven model uses the average force on each propeller

and each rudder for the second half of the simulation time for training and validation.

This allows the flow to develop over the vessel, such that steady state forces are used

to train the data-driven model.

The CFD domain is 4 LWL long, 3 LWL wide, and 1 LWL deep. The vessel is

located at the top of the domain in the longitudinal and lateral center of the domain.

The top of the domain is a plane of symmetry. The bottom of the domain, the side at

maximum value of negative Y , and the side at the maximum positive X are velocity

inlets. The sides of the domain at the maximum value of positive Y and negative X

are outlets. The hull, propeller, rudder are non-slip walls modeled with wall functions.
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Figure 5.2: Slice of ONR Tumblehome double-body grid at the 0.11 m below the
waterplane with Z normal. Left: G1 grid. Middle: G2 grid. Right: G3
grid

The bow is pointed in positive X, positive Y is towards port, positive Z is vertical

upwards. Figure 5.3 shows the CFD domain on the left as well as the surface grid of

the propellers and rudders on the right. In the image of the CFD domain the vessel

is shown in red and the mesh on the boundaries is also shown.

In the region around the hull, extending +/- 1.9 m fore and aft from the vessel

center of gravity, 0.24 m laterally in each direction, and from the waterplane to

0.14 m below the waterplane the cells of the grid are nearly isotropic, such that

the cell discretization length in the X, Y , and Z directions are within 3.5% of the

characteristic length of each cell ∆g. ∆g is the average of the cell length in X, Y , and

Z directions. Stretching is applied to the cells in the regions outside of this region to

reduce grid count as illustrated in Fig. 3.3. SnappyHexMesh is used to refine the grid,

for which each level of refinement halves the ∆g. Different levels of refinement are

applied to each surface. One level of refinement is applied to the hull. Two levels of

refinement are applied to the Misc. Appendages: the bulb, bilge keels, struts, and

propeller shaft. Three levels of refinement are applied to the rudder and five levels

of refinement are applied to the propeller. Five prism layers with a thickness of 0.3

of the local ∆g are applied to each surface. Three levels of refinement are applied
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Figure 5.3: ONR Tumblehome Double-body G2 mesh. Left: Domain for double-
body simulations of ONR Tumblehome. Right: Surface grid on ONR
Tumblehome propeller and rudder.

Table 5.2: ONR Tumblehome double-body CFD grid details.
Grid G1 G2 G3

Isotropic region ∆g(m) 2.76E-02 1.95E-02 1.38E-02
Refinement zone ∆g (m) 3.45E-03 2.44E-03 1.73E-03

Hull ∆g (m) 1.38E-02 9.76E-03 6.90E-03
Misc. Appendages ∆g (m) 6.90E-03 4.88E-03 3.45E-03

Rudder ∆g (m) 3.45E-03 2.44E-03 1.73E-03
Propeller ∆g (m) 8.63E-04 6.10E-04 4.31E-04

in the region around the propellers and rudders to better capture the complex flow.

Table 5.2 shows the mesh size on each grid for the different regions and surfaces.

5.2 Data-Driven Model Development for ONR Tumblehome

The data-driven model is generated in a similar way as it was for the KCS. The

main exceptions to this are that for the ONR Tumblehome the model must be gen-

erated for each propeller-rudder pair and a different operating J and β space is ex-

amined. Three distinct sets of training/validation data are generated corresponding

to a four point LHS set, an eight point LHS set, and sixteen point LHS set. These
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Figure 5.4: LHS points for training the ONR Tumblehome data-driven model with
experimental data for Fn=0.2, δ=-35◦ turning circle (SIMMAN (2020)).

samples are examined in the J-β space correlating to a turning circle maneuver for

a Froude number of 0.2 with the rudder deflected to -35◦. For this maneuver the

starting forward velocity is 1.11 m/s. Fig. 5.4 show the sample points along with the

J and β values for the calm water turning circle in the SIMMAN (2020) experimental

results. The tabulated values of J , β, u, and v, are shown in Table B.1. LHS points

1-4 correlate to the four point LHS set, LHS points 5-12 correlate to the eight point

LHS set, and LHS points 13-28 correlate to the sixteen point LHS set.

The data-driven model is generated using the regression based data-driven model.

The four point LHS set is used to validate the model, while the eight point and

sixteen point sets are used to train the model. The models are also trained with both

the Spalart Allmaras turbulence model and the k − ω SST turbulence model so that

the differences between turbulence models can be characterized. Additionally, the

effect of grid density is examined. Just like in the KCS set of data, there is error and

uncertainty in the data-driven model. Discretization error and turbulence modeling

error is inherent in the training and validation data. Additionally, there is error in
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Figure 5.5: Flow velocity over the propeller and rudder with Q criterion of 2500 shown
along with a slice across the rudder plane illustrating asymmetric flow and
separation on the LHS point seven data-driven model training case with
16.4 million cells.

the model itself that is used to predict the propeller and rudder forces.

The forces on the propellers and rudders are asymmetric. Fig. 5.5 illustrates the

asymmetry of the flow for LHS point seven with the Spalart Allmaras turbulence

model. A slice through the rudder plane colored by velocity magnitude is shown

along with a contour of Q criterion equal to 2500, which illustrates the evolution of

the tip vortex of the propeller blades washing over the rudder. The mesh on the

surface of the hull, propeller shafts, propeller, and rudder are shown. The force of

the propellers is asymmetric and the interaction of each propeller with each rudder is

different. This image shows the view from the bottom of the vessel with the rudder

deflected to -35◦ for this training case at a J of 0.6 at a |β| of approximately 26◦. With

the rudder deflected to this angle the vessel has a positive yaw rate and a negative

sway velocity. Thus, the starboard side propeller and rudder see a clean inflow, while

the port side propeller and rudder have a more perturbed inflow due to the wake of

the hull. The starboard side rudder sees a lower angle of attack and produces less

force than the port side rudder which sees a large angle of attack and has larger force.
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The data-driven model is used to resolve the forces on each propeller and rudder

across the operational J-β space. The error sources are discussed in terms of dis-

cretization error, turbulence modeling error, and the error in the model prediction.

After the model is constructed and evaluated, the model is applied to the vessel per-

forming turning circle maneuvers. The propeller force coefficient in the surge degree

of freedom direction of the vessel KX , the propeller side force coefficient KS, the

rudder resistance coefficient aligned with the surge degree of freedom direction CFx,

the rudder side force coefficient CFy, and the rudder yaw moment coefficient CMz are

analyzed. The KX and the KS are determined by Eqn. 2.13, and the rudder coeffi-

cients are determined by Eqn. 2.15-2.17. Each propeller and rudder force coefficient

is calculated separately for the port and starboard sides. The forces of the propeller

and rudder are calculated from the coefficients and the instantaneous motions of the

vessel as described in Chapter II.

5.2.1 Discretization Error

The discretization error is important to quantify. The G1, G2, and G3 double-

body grids with the discretized rudder and propeller are used to examine LHS points

one through twelve. The propeller axial force coefficient KX and the propeller side

force coefficient KS are considered. The rudder axial force coefficient CFx, the rud-

der side force coefficient CFy, and the rudder yaw moment coefficient CMz are also

examined. The analysis of three grids with
√

2 refinement on the background mesh

size shows oscillatory convergence for some of the cases examined.

Table 5.3 and Table 5.4 quantify the difference in the KX prediction for the port

side and starboard side propeller respectively for each of the grids and LHS points.

These tables show the values for each LHS point, the prediction of KX for each of the

grids as well as the percent error with respect to the G3 value for the G2 grid and

the G1 grid. The discretization error is calculated in the same way as Eqns. 3.2-3.3.
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Table 5.3: Discretization error between different grids for ONR Tumblehome port side
KX .

LHS point G1 G2 G3 ε23 ε13
(KX) (KX) (KX) (%) (%)

1 0.313 0.321 0.330 2.653 5.137
2 0.386 0.386 0.381 -1.242 -1.166
3 0.298 0.310 0.316 1.731 5.651
4 0.252 0.259 0.256 -0.869 1.891
5 0.235 0.233 0.222 -4.647 -5.560
6 0.345 0.353 0.359 1.755 3.804
7 0.395 0.388 0.389 0.337 -1.594
8 0.335 0.338 0.349 3.344 4.005
9 0.181 0.194 0.197 1.644 8.112
10 0.359 0.368 0.381 3.555 5.747
11 0.415 0.434 0.435 0.163 4.672
12 0.216 0.217 0.216 -0.603 -0.189

The left hand side of Fig. 5.6 shows the average absolute value of the discretization

error for KX . The average of the absolute value of the percent error between the G3

and G2 grid (|ε23|) for the KX on the port side is 1.88% and 1.25% on the starboard

side. The maximum absolute value of the percent difference between the G3 and

G2 grids is less than 5%. On the other hand, the maximum absolute value of the

percent difference between the G3 and G1 grids is over 8% on the port side LHS

point nine case. On average the absolute value of the percent error between the G3

and G1 grid (|ε13|) for KX is larger, with 3.96% error on the port side and 1.8% on

the starboard side. Since the port side propeller is on the leeward side it has less

clean inflow compared to the starboard side, so it is sensible that the error between

different grid densities is larger for the port side propeller.

The right hand side of Fig. 5.6 shows the average absolute value of the discretiza-

tion error for KS for each grid i, for G1, G2, and G3. The magnitude of the KS is

much smaller than that of the KX , but is still important to consider in a maneu-

ver. The KS acts toward port when the rudder performs a maneuver for which v

is negative (towards starboard) and/or the yaw rate is positive about the vertical Z
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Table 5.4: Discretization error between different grids for ONR Tumblehome star-
board side KX .

LHS point G1 G2 G3 ε23 ε13
(KX) (KX) (KX) (%) (%)

1 0.445 0.441 0.443 0.583 -0.268
2 0.499 0.505 0.502 -0.603 0.636
3 0.332 0.332 0.331 -0.270 -0.468
4 0.255 0.254 0.247 -2.850 -3.198
5 0.322 0.320 0.306 -4.689 -5.243
6 0.336 0.336 0.332 -1.223 -1.227
7 0.523 0.530 0.526 -0.671 0.677
8 0.467 0.465 0.473 1.730 1.436
9 0.309 0.300 0.295 -1.494 -4.850
10 0.395 0.399 0.399 -0.107 0.827
11 0.470 0.478 0.477 -0.130 1.485
12 0.251 0.249 0.247 -0.681 -1.296
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Figure 5.6: Average absolute value of the discretization error for KX (left) and KS

(right) on port and starboard sides for G1, G2, and G3 for LHS points
one through twelve.
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Figure 5.7: Average discretization error for CFx (left) and CFy (right) on port and
starboard sides for G1, G2, and G3 for LHS points one through twelve.

axis. The propeller side force counteracts the force of the rudders. Additionally, when

examined on the basis of percent error between different grids, the magnitude of the

error tends to be larger than the KX . Table B.2 and Table B.3 quantify the difference

in the KS prediction for the port side and starboard side propeller respectively for

each of the grids and LHS points. On average, the port side values of KS are 0.041,

0.043, and 0.041 for G1, G2, and G3 respectively. On average, the values of KS on

the starboard side are 0.067, 0.069, and 0.070 for G1, G2, and G3 respectively. Thus,

the starboard side propeller (or the windward propeller) tends to produce a larger

side force than the port side propeller. On the other hand, the KX of the port side

propeller tends to be larger as shown by Table 5.3 and Table 5.4.

Table B.4 and Table B.5 quantify the difference in the CFx prediction for the port

side and starboard side rudder respectively for each of the grids and LHS points one

through twelve. The left hand side of Fig. 5.7 shows the average absolute value of

the discretization error for CFx; the right hand side of the figure shows the average

absolute value of the discretization error for CFy.

Table 5.5 and Table 5.6 quantify the difference in the CFy prediction for the port
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Table 5.5: Discretization error between different grids for ONR Tumblehome port side
CFy.

LHS point G1 G2 G3 ε23 ε13
(CFy) (CFy) (CFy) (%) (%)

1 -0.333 -0.356 -0.369 3.338 9.553
2 -0.442 -0.442 -0.431 -2.527 -2.476
3 -0.330 -0.364 -0.359 -1.496 8.068
4 -0.394 -0.418 -0.484 13.768 18.738
5 -0.303 -0.325 -0.358 9.144 15.492
6 -0.386 -0.443 -0.482 8.061 19.936
7 -0.408 -0.392 -0.383 -2.279 -6.563
8 -0.351 -0.359 -0.370 3.109 5.057
9 -0.273 -0.282 -0.331 14.799 17.552
10 -0.389 -0.418 -0.411 -1.580 5.465
11 -0.429 -0.441 -0.423 -4.141 -1.385
12 -0.384 -0.403 -0.443 8.994 13.301

side and starboard side rudder respectively for each of the grids and LHS points one

through twelve. On average the absolute value of the percent error between the G3

and G2 grid for the CFy on the port side is 6.10% and 14.84% on the starboard side.

On average the absolute value of the percent error between the G3 and G1 grid for

the CFy on the port side is 10.30% and 12.32% on the starboard side. Table B.6

and Table B.7 quantify the difference in the CMz prediction for the port side and

starboard side rudder respectively for each of the grids and LHS points one through

twelve. Since the yaw moment of the rudders are dominated by the side force of

the rudders, with some influence from the resistance of the rudder, the discretization

error is very similar to the results shown in Table 5.5 and Table 5.6.

Oscillatory convergence occurs for many of the the LHS points wherein the agree-

ment between the G1 and G3 grids is better than the agreement between the G2 and

G3 grids. Separation is present when a rudder operates at a high angle of attack, and

this is difficult to resolve with RANS CFD with wall functions. These discretization

errors are significant and influence the data-driven model when the model is con-

structed, but they would also influence the maneuvering simulation if a discretized
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Table 5.6: Discretization error between different grids for ONR Tumblehome star-
board side CFy.

LHS point G1 G2 G3 ε23 ε13
(CFy) (CFy) (CFy) (%) (%)

1 -0.143 -0.124 -0.143 13.401 0.092
2 -0.235 -0.236 -0.275 14.096 14.491
3 -0.497 -0.464 -0.526 11.813 5.523
4 -0.400 -0.429 -0.529 18.806 24.295
5 -0.383 -0.312 -0.449 30.433 14.799
6 -0.450 -0.453 -0.541 16.192 16.716
7 -0.202 -0.204 -0.234 12.597 13.448
8 -0.095 -0.081 -0.094 13.761 -0.603
9 -0.199 -0.219 -0.264 17.093 24.650
10 -0.485 -0.445 -0.500 10.909 2.959
11 -0.388 -0.312 -0.345 9.693 -12.582
12 -0.398 -0.438 -0.483 9.329 17.656

propeller and rudder were used.

5.2.2 Turbulence modeling error

The level of grid refinement can affect the propeller and rudder forces, but the

choice of turbulence models can also have a significant effect. In this study the

Spalart Allmaras turbulence model and the k − ω SST turbulence model are used

with wall functions. RANS CFD simulations with wall-resolved turbulence models,

DES, or LES could be used to improve accuracy but these would require substantially

increased computational cost. When separation occurs over a lifting foil and stall

occurs there is a sudden loss in lift. Different turbulence models, the use of wall

functions, and the grids used can influence the calculation of the separation point.

Eca et al. (2018) illustrates how different turbulence models have different sensitivities

to near wall spacing and even y+ values of 1.0 can be insufficient.

Subsequently the prediction of the KX , KS, CFx, and CFy are discussed for LHS

points five through twelve, correlating to the eight point LHS set. The G2 double-

body grid is used. The percent error is calculated with respect to the Spalart Allmaras
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prediction. Table 5.7 quantifies the difference between the prediction of KS for the

Spalart Allmaras turbulence model and the k − ω SST turbulence model for these

LHS points for both the port and starboard side propellers. On average the starboard

side is predicted more similarly between the two turbulence models compared to the

port side. The average difference in terms of the absolute value for the prediction

of KX between the two turbulence models is only 1.61% on the starboard side, but

5.82% on the port side. This is sensible since the port propeller operates in the

wake of the hull and this highlights how the interactions are calculated differently

between the different turbulence models. LHS points seven and eight are closest to

the experimental steady turn parameters of J and β. On the starboard side the KX

predicted by the k−ω SST turbulence model is 0.60% and 0.51% larger than the KX

predicted with the Spalart Allmaras turbulence model for LHS points seven and eight

respectively. On the other hand the KX predicted by the k−ω SST turbulence model

is 10.20% larger and 6.57% smaller than the KX predicted with the Spalart Allmaras

turbulence model for LHS points seven and eight respectively. This illustrates the

sensitivity of results to the turbulence model selection. For each of these LHS points

the starboard side KX is larger than the port side KX when either turbulence model

is used.

Table B.8 quantifies the difference between the prediction of KS for the Spalart

Allmaras turbulence model and the k−ω SST turbulence model for these LHS points

for both the port and starboard side propellers. On average the starboard side is

predicted more similarly between the two turbulence models compared to the port

side. Table B.9 shows the differences between the two turbulence models prediction

of CFx for each rudder.

Table 5.8 and Table B.10 show the differences between the two turbulence models

prediction of CFy and CMz respectively for each rudder. The average absolute value

of the difference between the CFy predictions between the two turbulence models is
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Table 5.7: Turbulence modeling error between Spalart Allmaras and k − ω SST for
KX .

Side LHS point Spalart Allmaras k − ω SST εT
(KX) (KX) (%)

Port 5 0.233 0.255 -9.659
Port 6 0.353 0.379 -7.392
Port 7 0.388 0.427 -10.200
Port 8 0.338 0.315 6.567
Port 9 0.194 0.184 5.400
Port 10 0.368 0.365 0.696
Port 11 0.434 0.433 0.252
Port 12 0.217 0.231 -6.360

Starboard 5 0.320 0.321 -0.220
Starboard 6 0.336 0.352 -4.704
Starboard 7 0.530 0.533 -0.604
Starboard 8 0.465 0.468 -0.512
Starboard 9 0.300 0.310 -3.450
Starboard 10 0.399 0.403 -0.914
Starboard 11 0.478 0.484 -1.405
Starboard 12 0.249 0.247 1.073

14.43% on the port side and 8.24% on the starboard side. Similarly, the average

absolute value of the difference between the CMz predictions between the two tur-

bulence models is 14.28% on the port side and 8.17% on the starboard side. The

largest difference occurs at LHS point nine, for which the k − ω SST turbulence

model prediction for the port side rudder has 31.21% more CFy than that predicted

with the Spalart Allmaras turbulence model as well as a 30.28% larger CMz. This

illustrates how lifting surfaces are sensitive to the turbulence models used and that

modeling a lifting surface in the wake of an upstream body like a hull is challenging.

A transitional turbulence model could also be examined and may be more accurate

for determining the propeller and rudder forces due to the low Reynolds number on

the propellers and rudders; however, using a transitional turbulence model would

require finer wall-resolved grids.
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Table 5.8: Turbulence modeling error between Spalart Allmaras and k − ω SST for
CFy.

Side LHS point Spalart Allmaras k − ω SST εT
(CFy) (CFy) (%)

Port 5 -0.325 -0.356 -9.581
Port 6 -0.443 -0.384 13.280
Port 7 -0.392 -0.365 7.011
Port 8 -0.359 -0.280 21.949
Port 9 -0.282 -0.370 -31.211
Port 10 -0.418 -0.380 9.174
Port 11 -0.441 -0.391 11.189
Port 12 -0.403 -0.452 -12.041

Starboard 5 -0.312 -0.337 -7.793
Starboard 6 -0.453 -0.465 -2.715
Starboard 7 -0.204 -0.214 -4.618
Starboard 8 -0.081 -0.073 9.824
Starboard 9 -0.219 -0.199 9.353
Starboard 10 -0.445 -0.472 -5.907
Starboard 11 -0.312 -0.351 -12.680
Starboard 12 -0.438 -0.495 -13.044

5.3 Data-Driven Model Development for ONR Tumblehome

Propellers and Rudders

Different techniques are used to generate data-driven models models for each pro-

peller and rudder. A set of different linear regression based data-driven models are

trained and tested for different training sets. Linear regression models are generated

and compared for the different grid densities for the training CFD simulations as

well as for different turbulence models. Additionally, a Gaussian process regression

model is developed for for the G2 double-body grid that uses the Spalart Allmaras

turbulence model and model is compared to the linear regression based models.
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5.3.1 Linear Regression Based Data-Driven Model Development

The regression based model is constructed using the methodology discussed in

Chapter II. The form of the KX and KS are shown by Eqn. 2.26. The diameter of the

propellers is 0.1066 m and the propeller revolution rate is 8.97 revolutions per second.

The features used are those shown by Eqn. 2.25, which include J , J2, β, β2, and the

cross coupling term Jβ. The linear regression model is generated using the MATLAB

function fitlm. The regression model is trained with β in radians, however, for

visualization purposes it is more natural to show β in degrees. The form of the rudder

forces are shown by Eqn. 2.27. CFx, CFy, and CMz are calculated using Eqn. 2.15,

Eqn. 2.16, and Eqn. 2.17 respectively for which the SR is 0.012 m2 and the dr is

1.384 m. The resultant rudder velocity uR for each propeller and the resulting βR

used in the rudder regression equation are calculated using Eqns. 2.19-2.12, where the

KX prediction using the model is used for the calculation of CT . Fig. 5.8 shows the

response surface of the KX and KS on both the port and starboard side propellers

for the regression based data-driven model trained with the eight point LHS set with

the G3 double-body grid. Fig. 5.9 shows the response surface of the CFx and CFy

on both the port and starboard side propellers for the regression based data-driven

model trained with the eight point LHS set with the G3 double-body grid.

5.3.2 Data-Driven Modeling Error Using Linear Regression

The data-driven model contains multiple sources of error including the discretiza-

tion error and turbulence modeling error used to train and validate the model as

well as the error in the model itself. The error inherent to the data-driven modeling

technique used εr can be evaluated by how well the model predicts unseen validation

data, for which LHS points one through four are used.
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Figure 5.8: Response surface contours of force coefficients in J-β space for the model
developed with the 8 point LHS set using the G3 training grid. KX is
shown at the top. KS is shown on the bottom. The port side forces are
shown on the left and the starboard forces are shown on the right.
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Figure 5.9: Response surface contours of force coefficients in J-β space for the model
developed with the 8 point LHS set using the G3 training grid. CFx is
shown at the top. CFy is shown on the bottom. The port side forces are
shown on the left and the starboard forces are shown on the right.
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Table 5.9: Regression modeling error εr for the G2 eight point LHS set with respect
to LHS points 1-4.

Side Parameter point 1 (%) point 2 (%) point 3 (%) point 4 (%)
Starboard KX 0.454 -0.579 -2.134 -2.572
Starboard KS 0.477 -2.602 0.402 -33.295
Starboard CFx -5.150 2.131 5.332 -1.405
Starboard CFy -9.916 -2.459 12.780 -5.476
Starboard CMz -9.521 -2.416 12.928 -5.534

Port KX 2.021 -3.828 6.348 7.054
Port KS -0.913 5.401 -17.587 11.566
Port CFx 3.847 2.000 2.774 0.875
Port CFy 4.528 5.703 -2.377 2.994
Port CMz 4.582 5.512 -2.168 2.891

Modeling Error with the Eight Point LHS Set on the G2 Grid Table 5.9

shows the error of the regression model prediction with respect to the CFD validation

point prediction εr. The results are presented terms of percent error of the regression

model prediction of each parameter for each propeller/rudder pair with respect to the

CFD prediction for LHS points one through four. The regression model used here is

trained with the eight point LHS set with the G2 double-body grid using the Spalart

Allmaras turbulence model.

The average absolute value of the error (|εr|) for the KX is 1.44% and 4.8% for

starboard and port side propellers respectively. The |εr| for the KS is 9.19% and

8.67% for starboard and port side propellers respectively. On the starboard side

propeller, the largest deviation between the CFD calculation and the data-driven

model prediction is for LHS point four. For this point, the CFD prediction of KX is

0.254 versus a data-driven model prediction of 0.260, which is the smallest magnitude

of KX of the four points examined here. Similarly, the KS is very small with a CFD

prediction of only 0.009, thus determining the error in terms of percent error skews

the perception of the performance. Furthermore, this point correlates to a J of 1.25

and a β of 4.38◦, thus it only has an influence on the maneuver when the rudder is
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first actuated. On the port side propeller, the model error compared to the CFD

prediction is largest for LHS point four with regards to the KX prediction and is

largest for LHS point three with regards to the KS prediction with a magnitude of

error of 7.05% and 17.59% respectively. LHS point three is also in the transient phase

of the maneuver, whereas the predictions for LHS points one and two on both the

starboard and port side are better predicted with the model.

The average magnitudes of the errors between the CFD and the data-driven model

predictions for the rudder coefficients CFx, CFy, and CMz are 3.50%, 7.66%, and 7.6%

respectively on the starboard side and 2.37%, 3.90%, and 3.79% on the port side. The

largest percent error occurs for LHS point three on the starboard side for which the

CFx, CFy, and CMz are 5.33%, 12.78%, and 12.93% respectively. Closer to the steady

state operating point in the J − β space, LHS point one has relatively large error

with up to 9.92% error for the calculation of CFy, but for this point the starboard

rudder has relatively low loading since it sees a clean inflow and a rather low level of

incidence. Thus, the percent error is inflated since at this point the port side rudder

has nearly three times more force and the model predicts this within 5% of the CFD

calculation.

It is also important to consider the accuracy of the data-driven model in the

context of the uncertainty in discretization error and turbulence modeling error. The

KX predicted by the model is within 1.5% and 5% of the CFD prediction on the

starboard and port sides respectively, whereas the average discrepancy between the

turbulence models examined with LHS points five through eight is in excess of 1.6% on

the starboard side and 5.8% on the port side. Additionally, the average discretization

error between the G2 and G3 grids for LHS points one through four using the Spalart

Allmaras turbulence model is over 1.0% on the starboard side and greater than 1.6%

on the port side. The uncertainty of the data-driven model prediction of the CFD

calculation for the validation points is smaller than the sum of the discretization
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uncertainty and turbulence modeling uncertainty.

Similarly, the KS prediction of the data-driven model is within 9.2% on the star-

board side and 8.9% on the port side. The average turbulence modeling discrepancy

for LHS points five through twelve was found to be over 16% on the starboard side

and over 18.7% on the port side. Additionally, the magnitude of the percent error

between the G3 and G2 grids for LHS points one through four is over 6.9% on the

starboard side and over 6.2% on the port side.

The rudder coefficients are also predicted accurately with the consideration of the

uncertainty associated with the data that the model is trained with. The starboard

side magnitude of the discrepancy between the G3 and G2 grids for the calculation

of CFx and CFy using the Spalart Allmaras turbulence model for LHS points one

through twelve is 7.6% and 14.9% respectively. Similarly, the average magnitude

of the difference between the calculation of LHS points five through eight between

the two turbulence models is nearly 5% for CFx and 8.2% for CFy. In comparison

the data-driven model prediction has 3.5% and 7.6% error in terms of the average

magnitude of the error of CFx and CFy respectively for the validation points, which is

less than the uncertainty of both the discretization error and the turbulence modeling

error.

The results for the port side rudder are similar. The port side magnitude of the

discrepancy between the G3 and G2 grids for the calculation of CFx and CFy using

the Spalart Allmaras turbulence model for LHS points one through twelve is 4.2%

and 6.0% respectively. Similarly, the average magnitude of the difference between the

calculation of LHS points five through eight between the two turbulence models is

10.6% for CFx and 14.6% for CFy. In comparison, the data-driven model prediction

has only 2.4% and 3.9% error in terms of the average magnitude of the error of CFx

and CFy respectively for the validation points, which is less than the uncertainty of

both the discretization error and the turbulence modeling error.
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Table 5.10: Regression modeling error εr for the G2 sixteen point LHS set with respect
to LHS points 1-4.

Side Parameter point 1 (%) point 2 (%) point 3 (%) point 4 (%)
Starboard KX 1.271 -1.380 -1.004 0.016
Starboard KS 0.833 -2.143 2.102 -19.337
Starboard CFx -11.414 7.346 3.973 -7.201
Starboard CFy -9.248 -1.994 12.493 -18.824
Starboard CMz -8.966 -1.773 12.596 -18.856

Port KX 5.989 -8.961 8.942 -4.561
Port KS -5.973 -2.957 -23.151 -3.663
Port CFx 4.973 -1.823 2.839 0.369
Port CFy 6.129 3.683 -2.943 4.696
Port CMz 6.114 3.431 -2.684 4.492

Modeling Error with the Sixteen Point LHS set on the G2 Grid Table 5.10

shows the εr in terms of percent error of the regression model prediction of each

parameter for each propeller/rudder pair with respect to the CFD prediction for

LHS points one through four. The regression model used here is that trained with

the sixteen point LHS set with the G2 double-body grid using the Spalart Allmaras

turbulence model.

The KX on the starboard side is more accurate using the sixteen sample set instead

of the eight point sample set with 0.9% error compared to 1.4% error respectively when

the model prediction is compared to the four point LHS set of the CFD calculation

using the same method that the model was trained with. Additionally, the starboard

side KS is more accurate when more samples are used with the average error reducing

to 6.1% with the sixteen point LHS set compared to 9.2% with the eight point LHS

set. On the other hand, the rudder force coefficients on the starboard side are less

accurately predicted with the sixteen point LHS set predicting 7.5% error, 10.6%

error, and 10.5% error for the average magnitude of the error for CFx, CFy, and CMz

respectively; this is increased from the model which uses an eight point LHS set which

predicted 3.5% error, 7.6% error, and 7.6% error for the average magnitude of the
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error for CFx, CFy, and CMz respectively.

On the port side the average magnitude of the percent error of εr increases for each

of the coefficients for the sixteen point LHS set. The average magnitude of the error

for the port side KX increases form 4.8% to 7.1%, the average magnitude of the error

for the port side KS increases form 8.87% to 8.94%, the average magnitude of the

error for the port side CFx increases form 2.4% to 2.5%, the average magnitude of the

error for the port side CFy increases form 3.9% to 4.4%, and the average magnitude

of the error for the port side CMz increases form 3.8% to 4.2%. Overall, these changes

are quite small, but it is unexpected that adding more samples leads to more error.

One aspect that could affect this is that some of the samples in the sixteen point LHS

set are far away from the operational space, notably for high J and high β.

Fig. 5.10 shows the different sources of error for the calculation KX , KS, CFx, and

CFy for the G2 grid. The sources of error are the discretization error, the uncertainty

due to turbulence modeling error, and the error of using the eight point set versus

the sixteen point set for training the regression model. The discretization error is

calculated by taking the average of the error between the G2 and G3 grid for each

coefficient (|ε23|). The turbulence modeling uncertainty is the average of the absolute

value of the difference between the predictions of each sample point between the two

turbulence models examined (|εT |). The 8 Point LHS Model error is the |εr| when

the model is trained with the eight point LHS set and validated with regards to

the CFD prediction of the four point validation data set; likewise the 16 Point LHS

Model error is the |εr| when the model is trained with the sixteen point LHS set and

validated with regards to the CFD prediction of the validation data set. All sources

of error for the prediction of KX are less than 6%. The largest average error is on

the port side. The turbulence modeling uncertainty dominates. The linear regression

model predicts the starboard side KX well, but the |εr| on the port side is nearly as

large as the underlying turbulence modeling uncertainty. For the prediction of KS, the
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Figure 5.10: Average error for KX (upper left), KS (upper right), CFx (lower left) and
CFy (lower right) for G2 based linear regression models. This summa-
rizes the underlying discretization error and turbulence modeling error
in the context of how well the linear regression models predict the CFD
validation data.

turbulence modeling uncertainty is again dominant, and the error induced by using

the linear regression models is on the same order as the underlying discretization

error. For the rudder force coefficients, the linear regression model trained with

the eight point set outperforms the model trained with the sixteen point set. The

discretization error on the starboard side is large, especially for the prediction of CFy.

The turbulence modeling error on the port side, which is the rudder that operates

in the wake of the vessel is also large. The error induced by the linear regression

models is less than underlying uncertainty due to discretization error and turbulence

modeling uncertainty.
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Figure 5.11: |ε| for the different force coefficients based on the G2 based linear regres-
sion model trained with the eight point sample.

To further characterize the error, each component of the error including the dis-

cretization error, the turbulence modeling error, and the regression modeling error

can be combined into an error metric |ε| as defined earlier by Eqn. 3.7. The |ε| for

the KX , KS, CFx, CFy is shown by Fig. 5.11 for both the port and starboard sides.

5.3.3 Effect of Training Data on Linear Regression Data-Driven Model

Predictions

One way to examine the effect of training data in more detail is to compare the

differences in the response surfaces themselves. This is useful to do for different LHS

sets for training the models, different turbulence models, and different grids. Ad-

ditionally, the various models generated with different sets of data are implemented

for the vessel performing maneuvers and the differences between the models can be

quantified in terms of the differences between the different maneuvering character-

istics. Here, the differences between the response surfaces generated with the eight

point LHS set using the G2 grid are compared if the data used utilizes the Spalart
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Allmaras turbulence model in the CFD training versus the k − ω SST turbulence

model. Fig. 5.12 compares the port and starboard side propellers for the prediction

of KX . In the figure, the response surface generated using the CFD simulations that

use the Spalart Allmaras turbulence model are shown on the top, the response sur-

faces generated using the CFD simulations that use the k− ω SST turbulence model

for training are shown in the middle, and the percent difference between the two,

with respect to the Spalart Allmaras response surface is shown on the bottom. The

left hand side shows the plots for the port side propeller, while the plots on the right

show the results for the starboard side propeller. While the forms of the two models

are quite similar overall, the curvature of the contour lines is different between the

two models. The differences on the starboard side propeller are quite low, but the

port side propeller has more significant differences, especially for high values of J and

β, however this region of the plot is outside of the operating space of the vessel.

Fig. 5.13 compares the port and starboard side rudders for the prediction of CFy.

The response surface generated using the CFD simulations that use the Spalart All-

maras turbulence model are shown on the top, the response surfaces generated using

the CFD simulations that use the k−ω SST turbulence model for training are shown

in the middle, and the difference between the two, with respect to the Spalart All-

maras response surface is shown on the bottom. The left hand side shows the plots for

the port side rudder, while the plots on the right show the results for the starboard

side rudder. The form of the response surface on the starboard side is quite similar,

with the largest difference being the minimum value of CFy, for which the magnitude

is largest when |β| is low so the rudder operates at a high angle of incidence. On

the port side, the form of the surrogate model is different. For the model generated

with the Spalart Allmaras turbulence model based CFD training points, the largest

magnitude force is when |β| is low and J is low and the magnitude of CFy decreases

as each of the parameters J and |β| increase. On the other hand, the model gener-
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Figure 5.12: Contours of KX in J-β space. The KX predicted with the eight point
LHS using the Spalart Allmaras turbulence model is shown at the top.
The KX predicted with the eight point LHS using the k−ω SST turbu-
lence model is shown in the middle. The percent difference of the KX

predicted by the two models with respect to the eight point LHS using
the Spalart Allmaras turbulence model is shown on the bottom. The
port side forces are shown on the left and the starboard forces are shown
on the right.
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ated with the training points that use the k−ω SST turbulence model has the lower

magnitude of CFy at high |β|, but at a lower J .

5.3.4 Gaussian Process Regression Based Data-Driven Model Develop-

ment

The MATLAB function fitrgp is used to train, validate, and examine the re-

sponse surfaces generated with different amounts of training data based on the CFD

results from the G2 double-body grid with the Spalart Allmaras turbulence model.

The four point LHS set is used to validate the model and to compare the performance

versus the linear regression predictions. The eight point LHS set and the sixteen point

LHS set are used to train the GPR models for each force coefficient. Three different

sets of training are examined: the eight-point LHS set, the sixteen-point LHS set,

and the combination of both the eight point and sixteen point sets to generate a

twenty-four point training set.

As σn approaches zero the prediction of the GPR at the training points improves.

Thus, when σn is zero, the training point values are exactly predicted. This is a good

assumption if the data used to train the model is high fidelity and it is safe to assume

that any noise in the GPR prediction is not caused by spurious data points that are

used to train the model. If on the other hand, there are spurious training points, then

the model over-fits the prediction based on training data that may not be correct.

Two different approaches are used to generate GPR models. The first approach

assumes that the noise in the training data is near zero (σ = 0.0001). The second

approach calculates the noise in the training and validation data by determining the

standard deviation of the uncertainty.

σn Near-zero First the effect of using a very small σn of 0.0001 is characterized.

With this small value of noise, the GPR fits very accurately to the data that it is
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Figure 5.13: Contours of CFy in J-β space. The CFy predicted with the eight point
LHS using the Spalart Allmaras turbulence model is shown at the top.
The CFy predicted with the eight point LHS using the k−ω SST turbu-
lence model is shown in the middle. The difference of the CFy predicted
by the eight point LHS using the Spalart Allmaras model minus the CFy
predicted with model trained with the k − ω SST turbulence model is
shown on the bottom. The port side forces are shown on the left and
the starboard forces are shown on the right.
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trained with. Fig. 5.14 shows the KX for the propellers trained with the eight point

sample set (in the top row), the 16 point sample set (in the middle row), and the

combination of the 16 point and 8 point sample set (in the bottom row). The left

hand column of images correlates to the response surface for the port side propeller,

while the right hand column corresponds to the response surface for the starboard

side propeller. The black dots in this figure and in subsequent figures illustrates

the training points used. When only eight points are used to generate the response

surface, the contours are rather smooth. On the other hand, when the number of

samples is increased, the response surface becomes less smooth because the response

surface conforms to each of the training points. Using the GPR prediction when

σn of 0.0001 is used, adding more training points leads to an improved prediction

of the four validation points based on the results of LHS points one through four.

The average percent error of the GPR prediction with relation to the four validation

points calculated with CFD for the KX of the port side propeller is 6.47%, 3.86%,

and 1.74% respectively for the eight point LHS set, the sixteen point LHS set, and

the combination of both the eight and sixteen point LHS sets for training the model;

for the starboard side prediction of KX , the GPR predicts with 1.18%, 3.71%, and

0.72% respectively. It is notable that the sixteen point set of training data leads to

a worse prediction than the eight point set of data for the starboard side propeller;

however, when all twenty four points of data are used the accuracy of the GPR model

improves. This illustrates that the GPR is able to predict the results for the model

that it is trained with better as more training data is used. It is also noteworthy

that the linear regression model trained with the eight point LHS set more accurately

predicted the port side propeller KX , but predicted the starboard side KX slightly

less accurately. Conversely, the linear regression model trained with sixteen points

outperforms the GPR with sixteen training points for the starboard side KX , but the

port side KX is better predicted with the GPR when the same training set is used. It
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is important to note that the response surface has more variation than what would be

expected for the propeller KX , which intuition suggests should produce a smoother

response surface, and that this variation could be due to the noise or uncertainty in

the CFD calculations.

Fig. B.1 shows the KS for the propellers trained with the eight point sample set,

the 16 point sample set, and the combination of the 16 point and 8 point sample set

for a σn of 0.0001. The average percent error of the GPR prediction with relation to

the four validation points calculated with CFD for the KS of the port side propeller

is 10.36%, 4.28%, and 6.90% respectively for the eight point LHS set, the sixteen

point LHS set, and the combination of both the eight and sixteen point LHS sets for

training the model; for the starboard side prediction of KS, the GPR predicts with

10.80%, 8.46%, and 9.83% respectively. The linear regression model outperforms the

GPR in terms of accuracy for the port side for both the eight point and sixteen point

LHS sets, as well as on the starboard side for the eight point LHS set, but not the

sixteen point LHS set.

Fig. B.2 shows the CFx for the rudders trained with the eight point sample set,

the 16 point sample set, and the combination of the 16 point and 8 point sample set

for a σn of 0.0001. The average percent error of the GPR prediction with relation to

the four validation points calculated with CFD for the CFx of the port side rudder

is 3.86%, 1.60%, and 2.09% respectively for the eight point LHS set, the sixteen

point LHS set, and the combination of both the eight and sixteen point LHS sets

for training the model; for the starboard side prediction of the rudder CFx, the GPR

predicts with 4.68%, 10.42%, and 2.61% accuracy respectively.

Fig. B.3 shows the CFy for the rudders for a σn of 0.0001. The average percent

error of the GPR prediction with relation to the four validation points calculated with

CFD for the CFy of the port side rudder is 2.71%, 3.02%, and 2.89% respectively for

the eight point LHS set, the sixteen point LHS set, and the combination of both
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Figure 5.14: Contours of KX in J-β space predicted with Gaussian process regression
with σn of 0.0001. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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the eight and sixteen point LHS sets for training the model; for the starboard side

prediction of the rudder CFy, the GPR predicts with 10.30%, 8.45%, and 4.36%

accuracy respectively. The linear regression model outperforms the GPR prediction

of the validation data for the the prediction of CFx on both the port and starboard side

when the eight point set of training data is used to train the models. Additionally, the

linear regression model outperforms the GPR prediction of CFx on the starboard side

for the sixteen point set of training data, but not on the port side. For the prediction

of CFy with the eight point set of training data, the linear regression model better

predicts the starboard force, but the GPR predicts the port side force better. The

CFy for the sixteen point set of data is better predicted on both port and starboard

side by the GPR model compared to the linear regression model prediction. From

comparing the prediction of the validation data using both the linear regression and

the GPR, one is not substantially more accurate than the other.

In Gaussian process regression, the standard deviation of the noise σn can be

accounted for in the generation of the model. If σn is zero, then the Gaussian process

regression predicts the sample points exactly and the training error would be zero

as is the case with traditional Kriging models Liem et al. (2015). If on the other

hand, σn is calculated based on the uncertainty of the data, the training points are

no longer treated as truth such that the error at the training points is non-zero, but

the response surface becomes smoother and does not over-fit the noisy training data

as is illustrated next.

σn Calculated The σn is calculated as a function of the discretization error and

the turbulence modeling error. The standard deviation of the discretization error is

calculated from LHS points one through twelve with the Spalart Allmaras turbulence

model, and the discretization error is approximated by the difference between the G2

grid and the G3 grid prediction. The effect of the turbulence modeling error is taken
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by examining the eight sample points for LHS points five through twelve for which

the G2 grid was run with both turbulence models. The standard deviation of the

turbulence modeling error is calculated using the difference in the calculation across

these eight samples. The total standard deviation is calculated as the sum of both the

discretization error standard deviation and the turbulence modeling error standard

deviation. This σn is calculated for each force coefficient.

Fig. 5.15 shows the KX for the propellers for a calculated σn of 0.037 for the port

side propeller and for 0.010 for the starboard side propeller. The image layout for the

figure is the same as the previous set of figures with the number of training sample

points increasing with each row, and with the port and starboard side coefficients

on the left and right respectively. A smooth response surface is seen for all sets

of training. The average percent error of the GPR prediction with relation to the

four validation points calculated with CFD for the KX of the port side propeller

is 5.90%, 6.10%, and 5.66% respectively for the eight point LHS set, the sixteen

point LHS set, and the combination of both the eight and sixteen point LHS sets for

training the model; for the starboard side prediction of the propeller KX , the GPR

predicts with 0.96%, 1.11%, and 1.15% accuracy respectively. Calculating σn leads

to an improvement for the sparsest sampled training set of data, but leads to worse

predictions of the validation data for training data sets that use more samples. This

again illustrates how when σn is assumed small it can lead to over-fitting of data,

but with enough samples it can predict unseen data points well. However, if there is

uncertainty in the data, using a calculated σn leads to a smoother prediction, that

may not predict the validation data as accurately, but if the validation data is not

the truth because it contains discretization and turbulence modeling uncertainty, it

makes sense to not over-fit the model to noisy data.

Fig. B.4 shows the KS for the propellers for a calculated σn of 0.022 for the port

side propeller and for 0.010 for the starboard side propeller. The average percent error
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Figure 5.15: Contours of KX in J-β space predicted with Gaussian process regression
with σn calculated. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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of the GPR prediction with relation to the four validation points calculated with CFD

for the KS of the port side propeller is 6.36%, 6.94%, and 6.18% respectively for the

eight point LHS set, the sixteen point LHS set, and the combination of both the eight

and sixteen point LHS sets for training the model; for the starboard side prediction

of the propeller KS, the GPR predicts with 24.10%, 25.07%, and 17.43% accuracy

respectively. Accounting for the noise in CFD calculations leads to an improvement in

the port side KS for the eight point sample, but otherwise leads to worse predictions

relative to the CFD calculations.

Fig. B.5 shows the CFx for the propellers for a calculated σn of 0.057 for the port

side rudder and for 0.023 for the starboard side rudder. The average percent error of

the GPR prediction with relation to the four validation points calculated with CFD

for the CFx of the port side rudder is 6.14%, 2.89%, and 3.21% respectively for the

eight point LHS set, the sixteen point LHS set, and the combination of both the eight

and sixteen point LHS sets for training the model; for the starboard side prediction

of the CFx, the GPR predicts with 4.87%, 6.23%, and 5.12% accuracy respectively.

Accounting for the noise in CFD calculations leads to an improvement in the starboard

side CFx for the model trained with sixteen sample points, but otherwise leads to worse

predictions relative to the GPR model that assumed no noise. In general, the GPR

model with the calculated σn performs worse at predicting the validation CFD data

points on average compared to assuming that there is no noise in the inputs. Fig. B.6

which shows the CFy for the propellers for a calculated σn of 0.106 for the port side

rudder and for 0.045 for the starboard side rudder. The average percent error of the

GPR prediction with relation to the four validation points calculated with CFD for

the CFy of the port side rudder is 8.55%, 5.12%, and 4.86% respectively for the eight

point LHS set, the sixteen point LHS set, and the combination of both the eight and

sixteen point LHS sets for training the model; for the starboard side prediction of the

CFy, the GPR predicts with 10.67%, 8.59%, and 7.56% accuracy respectively. When
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noise is accounted for, the GPR performs worse at predicting the validation points

than when the noise is assumed to be negligible. Additionally, it is noteworthy that

on the port side, the variation in the prediction of CFy is washed out since the noise

of the uncertainty in the CFD data dominates, especially for sparsely sampled data.

Overall, when the uncertainty of the CFD data is accounted for by calculating σn,

the benefit of using GPR over linear regression is small and can lead to over-fitting

of noisy data. With uncertain data, the GPR predicts smooth responses that are

qualitatively similar to the linear regression response surface. If the fidelity of the

inputs used to train and validate the model are high, then the GPR could be a very

useful tool since the noise in the response surface could be assumed true, however, the

uncertainty of the GPR with uncertain inputs is large. For example the uncertainty

response surface can be plotted for KX . Fig. 5.16 shows the breadth of the 95%

confidence interval of KX on the port side propeller (∆Kx) plotted in terms of the

percent value of the local KX for each respective J-β. Eqn. 5.1 shows how ∆Kx

is calculated in terms of the upper bound of KX provided by the GPR uncertainty

KXU , and the lower bound of the KX provided by the GPR uncertainty KXL. The

∆Kx non-dimensionalized by the KX predicted by the model is shown for each set of

training data for the GPR and the left hand column of images correlates to a σn of

0.0001, while the right hand column of images correlates to a calculated σn of 0.037.

This image illustrates that when σn is zero, the uncertainty predicted by the GPR at

the training points is very small. On the other hand, if σn is non-zero, then the GPR

predicts an uncertainty at the training points, since the data itself is uncertain. As

more training data is added the uncertainty for the GPR with low σn becomes small

across the whole J-β space. On the other hand, even with lots of training data, the

case with calculated non-zero σn is large. When σn is calculated there are no longer

regions of low uncertainty around the training points. Also it is important to note,

that in the upper right hand corner of the plot, the error is washed out due to the
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scale used, but this is outside of the operating J-β space of the vessel.

∆Kx = KXU −KXL (5.1)

Depending upon the fidelity of data that is available for training a model different

data-driven modeling techniques may be desirable. In this study, since the CFD

uncertainty is not small, linear regression is a better fit for implementation in the

CFD analysis of a maneuvering vessel. However, a practitioner of this method could

use GPR if the fidelity of the training data is very high and a large number of samples

are available such that the fidelity of both the data to train the model and the model

itself is very high. On the other hand, linear regression has been shown to do a good

job of predicting the validation data and is easier to implement in a custom CFD

package.
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Figure 5.16: Contours of ∆Kx in terms of a % of the local KX is shown in J-β space
predicted with Gaussian process regression. The model using the 8-point
LHS set is on the top. The model using the 16-point LHS set is in the
middle row. The model using the combination of the 8-point and 16-
point LHS set is on the bottom. The response surface with low value of
σn is shown on the left and the response surface with calculated σn is
shown on the right.
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CHAPTER VI

Maneuvering of the ONR Tumblehome

This chapter investigates the ONR Tumblehome performing turning circle maneu-

vers both in calm water and in waves. Various linear regression based data-driven

propeller and rudder models, differing from each other by the training data used,

are examined and applied to VOF CFD maneuvering simulations of the ONR Tum-

blehome. A discussion of the CFD and data-driven model setup, the maneuvering

characteristics are examined at a Froude number of 0.2 for turning circles towards

port with the rudder deflected to -35◦ in both calm water and waves. These maneu-

vers are compared to experiments (SIMMAN (2020). The importance of the propeller

side force on the maneuvering characteristics of the vessel. The ability for the model

to scale is also examined by examining the maneuvering characteristics of the vessel

at Froude numbers of 0.1, 0.2, and 0.3 relative to the experimental results provided

by Sanada et al. (2019).

6.1 VOF CFD Model Development

OpenFOAM version 2.4.x is used for the analysis. The maneuvering CFD simula-

tions use the VOF approach to capture the interface between the water and air and

the data-driven model is used to determine the force of both propellers and both rud-

ders (including both the stationary and moving parts). The VOF grid is constructed
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in a similar way as the double-body grid that is used to train the data-driven models

(in Chapter V) with the main exception that the air domain is also modeled. Addi-

tionally, the geometry of the propellers and rudders are removed from the simulation

and are instead modeled with the data-driven model. The body force of both the

propellers and both of the rudders are applied to the flow via a body force region.

The body force is important to include since it not only applies a velocity source at

the stern of the vessel which leads to the thrust deduction effect, but since the force

is asymmetric between the port and starboard sides, an asymmetric force acts on the

hull which can change the maneuvering characteristics. The body force regions for the

propellers are the the cylinders that encompasses the swept volume of each propeller.

The body force region for the rudders are the bounding boxes that encompasses each

rudder. The force on each propeller and rudder is calculated individually with the

linear regression based data-driven model and the body force is applied uniformly

across the respective zone in the lateral and axial directions only.

Several grid densities are examined based off of the same grid structure as the

G1 and G2 double body grids with the air region added. The region around the

vessel has isotropic cells and stretching is applied between this region and each of the

boundaries at the edge of the domain. The the effect of refining the region of the

waterline is examined by refining the Z direction by a factor of
√

2, and by a factor

of 2. In total five grids are examined, these include: a G1 VOF grid, a G1 VOF grid

with the waterline region refined by a factor of
√

2 (denoted G1 ∆z/
√

2), a G1 VOF

grid with the waterline region refined by a factor of two (denoted G1 ∆z/2), a G2

VOF grid, and a G2 VOF grid with the waterline region refined by a factor of
√

2

(denoted G2 ∆z/
√

2). The grid size as well as the dimensions of each cell (∆g) in the

region around the vessel for each of these grids is shown in Table 6.1. One level of

refinement is applied to the hull and two levels of refinement are applied to the bulb,

bilge keels, propeller shaft, and struts. By refining the waterline, the mesh density
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Table 6.1: Grid size for ONR Tumblehome VOF simulations.

Grid Grid size (million cells) ∆g (m) ∆gx (m) ∆gy (m) ∆gz (m)
G1 2.15 0.028 0.028 0.027 0.028

G1 ∆z/
√

2 2.25 0.025 0.028 0.027 0.020
G1 ∆z/2 2.37 0.023 0.028 0.027 0.014

G2 5.61 0.020 0.020 0.020 0.020

G2 ∆z/
√

2 5.91 0.018 0.020 0.020 0.014

at the interface between the water and air can be better captured, by refining the

waterline on the G1 grid by a factor of
√

2 the vertical grid density at the waterline is

the same as the G2 grid, and when the waterline is refined by a factor of 2 the vertical

grid density is the same as the vertical refinement of the G3 double body grid.

Fig. 6.1 shows the grid along the calm waterline and along the centerline of the

vessel. This figure also shows the domain extents with the light gray surfaces. The

boundary conditions on the hull, bulb, struts, bilge keels, and propeller shafts are walls

with wall functions. The Spalart Allmaras turbulence model is used unless otherwise

specified. The surfaces upstream, downstream, at the bottom of the domain, towards

port, and towards starboard are all wave inlets. The top of the domain is a pressure

inlet-outlet. A customized waves2Foam (Jacobsen et al. (2011)) package is used for the

VOF simulations. A cylindrical wave relaxation zone is specified with an inner radius

of 1 LWL from the center of gravity of the vessel, and a maximum radius corresponding

to the maximum extents of the domain. For calm water cases a potentialCurrent wave

type is used with zero velocity. For cases with ambient waves, the waves are specified

as regular fifth-order Stokes waves.

For each simulation a customized six degree of freedom rigid body motion solver

is used. The vessel is accelerated from rest to the specified Froude number over

eight seconds of model scale time. During this ramp the vessel is free to pitch and

heave. Once the vessel accelerated to the desired speed, the speed is held constant

for four seconds before it is released and all six degrees of freedom are solved for.
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Figure 6.1: ONR Tumblehome G1 ∆z/2 VOF grid.

The data-driven propeller and rudder model apply the body force to the flow and the

forces to the equations of motion to perform the desired maneuvers. In this study,

the force predicted by the data-driven model is applied assuming the rudder angle is

deflected to the maximum deflection angle for the duration of the simulation. In the

experiment the rudder deflection rate was 35◦ per second, thus it takes one second for

the propeller to deflect from the deflected position to the maximum deflected position.

This transient is ignored in this study, and instead when the CFD results are compared

to the experiment the time and position are adjusted by 0.5 seconds, or the time that

it would take for the propeller to reach its midway deflection point. Alternatively,

the forces could be interpolated between the prediction of the data-driven model of

the force with a deflected rudders versus a calculation of the propeller and rudder

forces with the rudders undeflected (δ = 0◦). The simulations ramp up to the initial

forward velocity of the vessel from rest over eight seconds and the model is held at

constant forward velocity four an additional four seconds before the vessel is released.

During the ramp of forward velocity, the vessel is free to heave and pitch, but the

other degrees of freedom are constrained.

Different variations of the linear regression based data-driven propeller and rudder

model are used to apply the forces of the propeller and rudder to the equations of
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Figure 6.2: Flow chart for the implementation of the data-driven propeller and rudder
model for the ONR Tumblehome maneuvering simulations.

motion and to the flow via the body force term in the Navier Stokes equations. The

propeller forces applied for this case include the propeller axial force based on the

force coefficient KX and the propeller side force S based on the side force coefficient

KS. The yaw moment of the propellers are included by accounting for the side force

of each propeller and the distance aft of the vessel center of gravity, along with

the moment engendered due to the discrepancy in the thrust between the port and

starboard side propellers times their distance off centerline of the vessel. The rudder

force coefficients CFx, CFy, and CMz are used to determine the resistance, side force,

and yaw moment of the rudder directly using Eqn. 2.15 to Eqn. 2.17. A flow chart

showing the process of implementing the data-driven propeller and rudder model for

this vessel is shown by Fig. 6.2.
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6.2 Calm Water Turning Circle

Using the regression based data-driven model the maneuvering characteristics of

the vessel are evaluated at a Froude number of 0.2 and compared to experimental re-

sults (SIMMAN (2020)). As discussed earlier, there is uncertainty in the data-driven

model due to CFD discretization error, turbulence modeling error, and modeling error

in the data-driven model itself. Additionally, there is discretization error in the VOF

model as well as uncertainty due to turbulence modeling. In this section the effect

of the VOF grid density is examined first using a single data-driven propeller and

rudder model. Additionally, the effect of using different data-driven models trained

with the different training grids, number of sample points, and different turbulence

models for training the model are examined. As part of this the effect of includ-

ing the side force of the propellers is examined. Finally, the effect performing the

VOF maneuvering simulation with the Spalart Allmaras turbulence model versus the

k − ω SST turbulence model is examined.

6.2.1 Effect of VOF Grid Density

The first 30 seconds of the turning circle maneuver from the release point is

examined with the series of five different VOF grids. This length of time is sufficient

for the vessel to reach its maximum transfer such that the numerical quantities of the

maneuver can be compared. The yaw rate, forward velocity made dimensionless by

the initial forward velocity of uo of 1.11 m/s, and sway velocity are shown in Fig.6.3-

6.5 for the five different grids examined relative to the experiment. These simulations

use the propeller model trained with the eight point LHS set of data with the G2

double-body grid using the Spalart Allmaras turbulence model.

The maximum advance predicted with all of the grids is within 2.5% of each other.

Similarly, the maximum transfer is predicted withing 3.5% of each other. The steady

state yaw rate and forward velocity is similar between all of the grids examined.
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Figure 6.3: Yaw rate for ONR Tumblehome turning circle maneuver at Fn=0.2 and
δ=-35◦ with eight point G2 Spalart Allmaras set of training data for the
data-driven propeller and rudder model with different VOF grids relative
to experimental results (SIMMAN (2020)).
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Figure 6.4: Forward velocity for ONR Tumblehome turning circle maneuver at
Fn=0.2 and δ=-35◦ with eight point G2 Spalart Allmaras set of train-
ing data for the data-driven propeller and rudder model with different
VOF grids relative to experimental results (SIMMAN (2020)).
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Figure 6.5: Sway velocity for ONR Tumblehome turning circle maneuver at Fn=0.2
and δ=-35◦ with eight point G2 Spalart Allmaras set of training data
for the data-driven propeller and rudder model with different VOF grids
relative to experimental results (SIMMAN (2020)).

The simulations predict a steady state forward velocity that is within 1.3% of each

other; however, all of the cases under-predict the forward velocity of the experiment.

Similarly all of the grids predict steady state yaw rates within 3% of each other. The

most significant difference is between the prediction of the sway velocity. The largest

difference is between the finest grid (G2 ∆z/
√

2) and the coarsest grid (G1) for which

there is over an 18% difference with respect to the finer grids value. This difference

is likely caused by the refinement of the waterline. As the waterline is better refined

there is better agreement with the finer grids and with the experiment. Since refining

the waterline is rather inexpensive in comparison to refining the whole domain, the

G1 ∆z/2 grid is used for the rest of this study.

6.2.2 Effect of Different Body Force Models on Maneuver

Six different regression based data-driven propeller and rudder models are exam-

ined using the G1 ∆z/2 VOF grid. The models include: the model trained with the
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Figure 6.6: Trajectory of ONR Tumblehome turning circle maneuver at Fn=0.2 and
δ=-35◦ with G1 ∆z/2 VOF grid with different training sets for the data-
driven propeller and rudder model relative to experimental results (SIM-
MAN (2020)).

G1 double body grid with the Spalart Allmaras turbulence model with eight LHS

points (G1 SA), the model trained with the G2 double body grid with the Spalart

Allmaras turbulence model with eight LHS points (G2 SA), the G2 SA model with

no propeller side force (G2 SA no KS), the model trained with the G2 double body

grid with the Spalart Allmaras turbulence model with sixteen LHS points (16 pt G2

SA), the model trained with the G2 double body grid with the k−ω SST turbulence

model with eight LHS points (G2 k − ω SST), and the model trained with the G3

double body grid with the Spalart Allmaras turbulence model with eight LHS points

(G3 SA). Figs. 6.6-6.9 shows the trajectory of the turning circle maneuver as viewed

from above, the yaw rate as a function of time, the dimensionless forward velocity

as a function of time, and the sway velocity as a function of time for the different

models examined.

The results that agree best with the experiment (SIMMAN (2020) are those gen-

erated using the G2 k−ω SST data-driven model, while the worst results with respect
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Figure 6.7: Yaw rate for ONR Tumblehome turning circle maneuver at Fn=0.2 and
δ=-35◦ with G1 ∆z/2 VOF grid with different training sets for the data-
driven propeller and rudder model relative to experimental results (SIM-
MAN (2020)).
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Figure 6.8: Forward velocity for ONR Tumblehome turning circle maneuver at
Fn=0.2 and δ=-35◦ with G1 ∆z/2 VOF grid with different training sets
for the data-driven propeller and rudder model relative to experimental
results (SIMMAN (2020)).
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Figure 6.9: Sway velocity for ONR Tumblehome turning circle maneuver at Fn=0.2
and δ=-35◦ with G1 ∆z/2 VOF grid with different training sets for the
data-driven propeller and rudder model relative to experimental results
(SIMMAN (2020)).

to the experiments is the case that neglects the propeller side force. This illustrates

the importance of considering the propeller side force. The propeller side force op-

poses the side force of the rudder, which reduces the magnitude of the yaw rate and

the sway velocity in the turn as illustrated by Fig. 6.7 and Fig. 6.9. Thus, when the

side force of the propellers is neglected, the turning circle is too tight as shown by

Fig. 6.6.

All of the cases examined under-predict the forward speed calculated from the

experiment. The case that uses the G1 SA model has the worst agreement with the

experimental forward speed, with less than 7% error; whereas the G2 k−ω SST model

has the best agreement with the experiment for which the error is less than 2%. The

most substantive difference in terms of calculating forward speed is what turbulence

model is used train the data-driven model. There is less than 1% difference in the

prediction of forward speed if 8 samples are used versus 16 samples to train the model

with the G2 SA model. The steady state forward velocity using the G2 SA model
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and the G3 SA model are nearly identical, while the G1 SA predicts approximately

2% less forward speed than either of the models trained with the finer grids.

All of the cases examined over-predict the steady turning yaw rate of the exper-

imental results. In the case that neglects the propeller side force the yaw rate is

over-predicted by nearly 15%. On the other hand, all of the cases that include the

propeller side force predict the yaw rate to within 5% during the steady turn.

The G2 k − ω SST model over predicts the steady yaw rate by less than 1%.

This slight over-prediction of yaw rate, coupled with the small under prediction of

forward velocity and sway velocity leads to a turning circle that is tighter than the

experiment, but in the best agreement with the experiment of all cases examined

here. The turning circle characteristics predicted with the G2 k − ω SST model

VOF simulation are within 5% of reported values based on Sanada et al. (2019) who

reported turning +/- 35◦ rudder turning circles at this Froude number. Since the

vessel is symmetric the discrepencies between the port and starboard turn in Sanada

et al. (2019) have been averaged and the advance is predicted within 5%, the transfer

is predicted within 3%, the tactical diameter is predicted within 1%, and the turning

radius is within 2.5% if the G2 k − ω SST model is used for the VOF simulation.

Linear Regression Coefficients The linear regression coefficients for four differ-

ent sets of training data are shown in Tables B.11-B.14.

6.2.3 Computational Cost Discussion

The computational cost of both the training simulations for the data-driven model

as well as the maneuvering simulation cost are important to consider. The compu-

tational cost of the maneuver is significantly reduced when the data-driven propeller

and rudder model is used. The time-step size is approximately the time it takes the

propeller to rotate seventeen degrees. The cost to complete a single turn of 360◦ is
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only 732 core hours (629 core hours once the rudder is actuated and 103 core hours to

accelerate the vessel from rest) on the G1 ∆z/2 VOF grid, for which the simulation

length is approximately 55 s in model time. The training costs associated with the

double-body grid CFD training simulations are: 1,190 core hours for the G1 grid,

4,344 core hours for the G2 grid, and 18,858 core hours for the G3 grid. The sample

point correlating to LHS point seven is used to generate the reference training cost.

To note, all cases have a limit of a time-step to not exceed 1◦ of propeller rotation per

time-step, but also use a Courant limiter which drives up the computational cost for

the G3 grid since this case has a time-step of less than 1◦ per time-step. Also, 40 cores

are used for the G1 grid, 120 cores are used for the G2 grid, and 200 cores are used for

the G3 grid, thus, some non-linear parallelization effects drive up the computational

cost for the G3 grid, since the computational efficiency of decomposing the domain

is less when additional cores are used.

In contrast, maneuvers that use a discretized propeller with an overset grid method

are much more expensive. Wang and Wan (2018) performed a turning circle maneu-

ver of the ONR Tumblehome in waves with a δ of 35◦ and a Fn of 0.2. This study

required 48,000 core hours to model 78 seconds of model time on a 7.13 million cell

grid. Similarly, Wang et al. (2018) showed that a zig-zag maneuver required nearly

13,000 core hours to model the maneuver in calm water and 14,000 core hours to

model the maneuver in waves to simulate almost 20 s of model time.

The use of the propeller and rudder model allows for high fidelity simulation with

small temporal and spatial discretization on the propeller and rudder for training the

model (G2 or G3), while the VOF maneuvering simulation can be performed on a

much coarser grid (G1). It is important to consider both the training cost as well as

the cost when the maneuver is performed. It is found in the results that using only

eight points for training the model is sufficient to generate a model with sufficient

accuracy, so the model can be trained and implemented in a maneuvering simulation
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Figure 6.10: Computational cost to train different sets of training data for the ONR
Tumblehome.

at less than the cost of performing a maneuvering CFD simulation with a discretized

propeller and rudder. For reference, each double-body simulation used to train the

model is run for 5.56 s in model time, so the total length of model time for generating

eight training points is 44.6 s.

Fig. 6.10 shows the training cost for the G1, G2, and G3 models with different

sets of training data, for which the sample point correlating to LHS point seven is

used to generate the reference training cost. Fig. 6.11 shows the cost of training

a model using eight samples of double-body CFD simulation on the G1, G2, and

G3 grids and implementing it with a VOF grid in comparison to using a discretized

rotating propeller. For each color the solid line represents the cost using a double-

body discretized propeller simulation while the implemented cost of the data-driven

model trained with the eight point set for each respective double-body grid is shown

with the dashed lines. This figure again highlights that the computational cost of

the implemented model is dominated by the training cost for all grids examined like

was shown with the KCS analysis. Also, the cost to model a maneuvering ship is
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Figure 6.11: Computational cost to train and implement a data-driven model trained
with eight points on the different double-body grids and implemented
on the G1 ∆z/2 VOF grid compared to using discretized propellers for
the ONR Tumblehome.

significantly less expensive than modeling a discretized propeller. The dots show the

cross-over point at which point it is less expensive to train the data-driven model

and use it to model the maneuvering vessel with the G1 ∆z/2 VOF grid. It is less

expensive to train and implement the model for all of the different cases than use a

discretized propeller even if only one turning circle is examined. Furthermore, it is

illustrated that as finer training grids are used, the cross-over point moves to the left,

thus as finer grids are used to train the model, they can be implemented on a coarser

VOF grid for maneuvering simulations which reduces cost. If multiple simulations are

performed, the computational cost of the maneuver is small relative to the training

cost. Thus, if it is desired to perform multiple maneuvering simulations, this method

is especially appropriate. This method enables the computationally efficient analysis

of analyzing the maneuvering characteristics of the vessel in waves and at multiple

Froude numbers.
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6.3 Turning Circle in Waves

The vessel is analyzed in regular waves and compared to the SIMMAN (2020)

experiments. The Froude number is 0.2, the wave height is 0.063 m at model scale,

the wave period is 1.42 s, and the wave length is equal to the ship length. The vessel

is in head seas when the rudder is actuated to -35◦, such that the waves propagate in

the −X direction.

The experimental result are compared to three CFD approaches. The eight point

Spalart Allmaras turbulence model set of data is used to train the propeller and

rudder regression based data-driven model for two of the cases. One of these cases

uses the G1 VOF grid with the waterline refined by a factor of
√

2, while the other

has the waterline refined by a factor of two; these are denoted by G1/
√

2 SA and

G1/2 SA respectively. The eight point k−ω SST turbulence model set of data is used

to train the propeller and rudder linear regression based model. The propeller and

rudder model is used on the G1 grid with the waterline refined by a factor of two and

this case is denoted G1/2 k − ω SST. All of the CFD cases use the Spalart Allmaras

turbulence model for the VOF simulations. The CFD simulations are run for a total

of 68 seconds once the rudder is actuated and the vessel is released.

Fig. 6.12 shows the trajectory of the experimental results and the CFD predictions.

Arrows are also included for each case which shows the effect of the second order drift

of the vessel turning in waves. The arrows connect the point in the trajectory for

when the ψ is equal to 180◦ and 540◦; the magnitude of this vector is the drift distance

Dd, and the drift angle µd is the angle of this vector. µd and drift distance Dd are

shown by Table 6.2. This illustrates the angle of µd with respect to the initial heading

of the vessel as well as the magnitude of the total drift distance over the course of a

turning circle. The CFD simulations are run for a duration of 68 seconds after the

rudder is deflected, which is sufficient for the vessel to perform one and a half turning

circles as shown by Fig. 6.13. The drift distance predicted by the different CFD
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Figure 6.12: Trajectory for ONR Tumblehome turning circle maneuver at Fn=0.2 and
δ=-35◦ in waves relative to experimental results (SIMMAN (2020)).

Table 6.2: Turning circle maneuvering characteristics for ONR Tumblehome in waves.

Case µd (degrees) Dd/LWL Tactical Diameter/LWL

Experiment -93.3 0.335 3.00

G1/
√

2 SA -109.6 0.263 2.84
G1/2 SA -110.5 0.260 2.86

G1/2 k − ω SST -107.7 0.287 3.02

techniques are within 10% of each other. The G1/2 k − ω SST case agrees best with

the experiment in terms of the overall trajectory, however, even with this case the drift

distance is 14% less than the experiment. On the other hand, this case predicts the

tactical diameter of the first turn to within one percent of the experiment; conversely

the G1/
√

2 SA has over five percent error with respect to the experimental tactical

diameter. The µd predicted with the CFD causes the vessel to drift more in the −X

direction (in the same direction as the waves). On the other hand, the experiment

predicts a magnitude of µd that is approximately 16◦ less than the CFD predicts, such

that the drift angle is more aligned with the −Y axis (or towards starboard from the

initial vessel heading).

Overall, the agreement between the G1/
√

2 SA and G1/2 SA cases is very good,
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Figure 6.13: ψ for ONR Tumblehome turning circle maneuver at Fn=0.2 and δ=-35◦

in waves relative to experimental results (SIMMAN (2020)).

similar to the calm water case in terms of the trajectory as well as forward speed and

sway velocity; whereas the G1/2 k − ω SST case agrees better with the experiment

compared to the other CFD cases. Fig. 6.14 shows the forward velocity and Fig. 6.15

shows the sway velocity for the different cases as a function of time after the rudder

is actuated. Similar to the calm water turning circle, the propeller and rudder model

trained with data using the k − ω SST turbulence model leads to a slightly larger u

compared to the cases that use the Spalart Allmaras turbulence model for training.

All of the CFD simulation predictions track relatively well with the experimental u,

but a phase shift and oscillation amplitude of u is observable. Similarly, the CFD

predictions track well with the experimental v, but the oscillation amplitude of v

about its mean is larger in the experiment.
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Figure 6.14: Forward velocity for ONR Tumblehome turning circle maneuver at
Fn=0.2 and δ=-35◦ in waves relative to experimental results (SIMMAN
(2020)).
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Figure 6.15: Sway velocity for ONR Tumblehome turning circle maneuver at Fn=0.2
and δ=-35◦ in waves relative to experimental results (SIMMAN (2020)).
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6.4 Froude Number Effects on Maneuver

To further evaluate the data-driven propeller and rudder model, the turning circle

parameters at different Froude numbers can be evaluated. The propeller model is

trained at the equivalent speed and propeller revolution rate expected for a turning

circle maneuver at a Froude number of 0.2. By evaluating the data-driven model

for maneuvers at both higher and lower speed it can illustrate how well the model

scales and the potential versatility of the model. Sanada et al. (2019) present the

tabulated data of the advance, transfer, tactical diameter, and turning radius for the

ONR Tumblehome performing a turning circle maneuver with the rudders deflected

to +/- 35 ◦ at Froude numbers of 0.1, 0.2, and 0.3. Sanada et al. (2019) present

slight differences between the port and starboard turns. In the CFD model, since it

symmetric regardless of weather it is a port or starboard turn, the results of Sanada

et al. (2019) have been averaged and presented in Fig. 6.16. Fig. 6.16 compares these

experimental results for each Froude number relative to the CFD prediction. The

CFD prediction is made using the G1 VOF grid with the waterline refined by a factor

of two (G1 ∆z/2) with the propeller model trained with the eight point G2-k−ω SST

set of data.

The advance, transfer, tactical diameter, and radius are calculated within 5%

of the average experimental results for each Froude number examined. The Froude

number of 0.3 contains the largest error relative to the experiments for the transfer,

tactical diameter, and radius predictions, for which it under-predicts the transfer by

4.62%, the tactical diameter by 4.56%, and the radius by 4.86% relative to the average

of the experimental results. As the Froude number increases, the effect of the wave

resistance increases whereas for lower Froude numbers the resistance is dominated by

friction; thus, a reason for more significant error in the Froude number of 0.3 case

could be that the free surface is not refined sufficiently. The most significant error in

the calculation of the advance is the Froude number of 0.2 case which over-predicts
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Figure 6.16: Comparison between Sanada et al. (2019) experimental results and CFD
for turning circle parameters of ONR Tumblehome with different Froude
Numbers. As a function of Froude number, the advance is shown in the
upper left, the transfer is shown in the upper right, the tactical diameter
is shown in the lower left, and the radius is shown in the lower right.
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the advance by 4.63%. The results are promising since it indicates that if training is

performed at a given speed and propeller revolution rate, the same model is applicable

to maneuvers at different speeds than it was trained with.
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CHAPTER VII

Conclusion

This work demonstrates how data-driven modeling and machine learning tech-

niques can be used to determine the propeller and rudder forces for a maneuvering

vessel. In this work, the data-driven model for the propeller(s) and rudder(s) has

been trained with RANS CFD calculations using a discretized rotating propeller with

a discretized deflected rudder. The operating space of the vessel is analyzed in terms

of the advance coefficient and the oblique flow angle to develop data-driven models

that can be easily scaled to maneuvers at alternative propeller revolution rates.

This work has investigated the effect of the quantity and fidelity of training data

on the accuracy of a data-driven propeller and rudder model. Specifically, differ-

ent levels of grid refinement, different turbulence models, and different data-driven

modeling techniques including linear regression and Gaussian process regression have

been examined in detail. This study illustrates how the fidelity of the training data

propagates to the accuracy of the data-driven model and also illustrates the effect of

how sparsely sampled the operating dimensionless space can be while still obtaining

accurate results. The results demonstrate a substantial reduction in computational

cost, that justify using the approach of using CFD calculations to train a data-driven

propeller and rudder model even if just one maneuver is performed; but the method

is applicable in scenarios when multiple maneuvering simulations are desired as long
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as the rudder angle is consistent with the training rudder angle. Some examples of

this include maneuvering in waves, maneuvering with different initial forward speeds,

or the analysis of the effect of displacement on a maneuver.

This study has shown that with linear regression and only eight training points,

the maneuvering characteristics of a vessel can be predicted with accuracy of within

5% of experiments. When using a data-driven propeller and rudder model, the compu-

tational cost of the maneuvering simulation is dramatically reduced from a simulation

which uses a discretized rotating propeller. Additionally, by removing the need to

discretize and actuate the rudder, the problem setup is simplified and the need for

certain moving mesh treatments like overset grids or immersed boundary methods

is removed. The data-driven model is trained with a CFD simulation with a fine

spatial and temporal time-step to capture the complex flow around the propeller and

rudder, but in maneuvering simulations, the data-driven model can be implemented

on a VOF grid that is spatially coarser and takes a significantly larger time-step.

Data-driven methods can only be expected to determine output parameters as

accurately as the model that they are trained with. Depending upon the fidelity of

data used to train and validate the data-driven model, different approaches can be

used. For training and validation data that inherently contains discretization and/or

turbulence modeling error, linear regression is a suitable data-driven approach. In

this work, it as been demonstrated that the maneuvering characteristics of a vessel

can be accurately predicted with a data-driven propeller and rudder model trained

with only eight samples of the propeller and rudder operating in the behind condition.

Alternatively, GPR could be used if σn is calculated from the error of the training

data; otherwise, the model may over-fit the training data which contains uncertainties.

If on the other hand, the data used to train the model is very high fidelity and the

discretization error is small, GPR could be a very good choice but it would also

require more effort to implement in a custom maneuvering CFD package. It has
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been shown in this study that for a low-dimensional space like this problem in which

only J and β are used, as more training samples are used the GPR prediction of the

validation points improves. Thus, with sufficient training data, and high fidelity data

a GPR model can very accurately predict the true propeller and rudder force of a

vessel performing a maneuver, if the cost can be justified. If on the other hand, the

cost of training a very high fidelity model is out of reach due to computational cost,

quite reasonable predictions can be made training a data-driven propeller and rudder

model with RANS CFD and linear regression. In the two case studies performed

in this work, it has been demonstrated that a linear regression based data-driven

propeller and rudder model trained with a moderately sized (on the order of six

million cells) can be used to generate a model that leads to accurate maneuvering

characteristics.

7.1 Future Work

In this work the focus is upon illustrating how a data-driven propeller and rudder

model can be used to significantly reduce computational cost of a CFD based analysis

of a maneuvering vessel. In this work only turning circle maneuvers were examined;

however, this approach can be applied to other maneuvers like zig-zag maneuvers

or course keeping maneuvers which would require varying rudder angles. In this

work, the training for the data-driven propeller and rudder model was performed

for a single rudder angle to illustrate how the forces of the propeller and rudder

can be determined, the accuracy quantified, and how the model can be implemented

in a CFD package. A third parameter can be included in the data-driven analysis

to determine the forces based on varying rudder angles and the three dimensional

parameter space (J , β, δ) could be samples with LHS. On the other hand, a series of

common δ angles could be used to generate the models for slices through this three

dimensional space in just the J-β plane. Depending upon the δ, the forces on the
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propeller and rudder could be interpolated between different planes correlating to

different values of δ. Additionally, the use of oblique flow angle in the data-driven

model to predict the rudder force coefficients could be recast as the effective inflow

angle to the rudder based upon the βR as well as the rudder angle. This more general

expression could allow for the analysis of other rudder angles without generating

additional training data for a range of δ. Furthermore, the J-β space would likely

change depending upon the value of δ, since for low values of δ, the vessel would not

operate with as large of a β as it would for high values of δ. In this way, the training

cost of a more generalized data-driven propeller and rudder model could be mitigated

while maintaining accuracy.

While RANS CFD is capable of calculating viscous effects like separation, the

fidelity of RANS CFD for heavily separated flows is not as good as higher fidelity

methods like LES or DES. Higher fidelity calculations or experiments could be used

to train the propeller and rudder model derived in this work and then implemented in

a RANS VOF maneuvering simulation. With a large amount of very high fidelity pro-

peller and rudder forces for the operating parameter space of the vessel, a high fidelity

data-driven model can be constructed. For high fidelity data, with low expected noise

and σn, it may be more desirable to construct a Gaussian process regression based

propeller and rudder model than a linear regression model, if sufficient data can be

generated. However, for many applications, linear regression should provide sufficient

accuracy and is easier to implement in a custom CFD package.

Ultimately, the practitioner of the method discussed in this work should use their

engineering judgment in determining what fidelity of training data to use in con-

junction with this model. In future work, a multi-fidelity method could be used in

conjunction with either linear regression or Gaussian process regression to construct a

data-driven propeller and rudder model that is trained with very high fidelity results.

For example, RANS CFD could be used to train the model when heavily separated
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flows are not expected, while DES or LES could be used to generate training and

validation data for when heavily separated flow is expected. This model could be

used in conjunction with a RANS VOF simulation that could determine the pro-

peller and rudder forces with the fidelity of DES or LES, but at a cost of nearly

a bare hull simulation. With modern computers, a maneuvering simulation with a

discretized propeller with RANS CFD is limited to a select few number of simula-

tions; whereas this data-driven method could enable the examination of many more

maneuvers both in calm water and in waves. To further reduce the computational

cost, the data-driven model could also be constructed with lower fidelity methods like

BEMT augmented with higher fidelity viscous CFD simulations. This method could

also enable engineers to iterate with multiple designs to improve the performance of

a vessel. Ultimately, this could lead to safer and more efficient vessels.

This work has focused upon CFD applications of the model, however, the frame-

work for the data-driven propeller and rudder model can be extended to other ap-

plications. This work could be implemented on board autonomous vessels to predict

the force of the propeller and rudder. Furthermore, in the case of implementation

on autonomous vessels, the algorithm could be improved by using real-world data to

further train the model.
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APPENDIX A

Supplementary Tables and Figures for KCS

Analysis

In this appendix are supplementary tables and figures for the KCS analysis.

A.1 KCS Latin Hypercube Sample Points.

Table A.1: Values for each of the LHS points for KCS analysis in the four point LHS
set.

LHS point J β (degrees) u (m/s) v (m/s)
1 0.462 39.38 0.505 0.414
2 0.288 28.12 0.314 0.168
3 0.638 16.88 0.696 0.211
4 0.812 5.62 0.887 0.087
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Table A.2: Values for each of the LHS points for KCS analysis in the eight point LHS
set.

LHS point J β (degrees) u (m/s) v (m/s)
5 0.681 25.31 0.744 0.352
6 0.594 2.81 0.648 0.032
7 0.244 30.94 0.266 0.160
8 0.419 42.19 0.457 0.414
9 0.769 36.56 0.839 0.623
10 0.506 14.06 0.553 0.138
11 0.331 19.69 0.362 0.129
12 0.856 8.44 0.935 0.139

Table A.3: Values for each of the LHS points for KCS analysis in the sixteen point
LHS set.

LHS point J β (degrees) u (m/s) v (m/s)
13 0.441 4.22 0.481 0.035
14 0.309 37.97 0.338 0.264
15 0.834 32.34 0.911 0.577
16 0.703 26.72 0.768 0.386
17 0.747 12.66 0.816 0.183
18 0.572 18.28 0.624 0.206
19 0.397 21.09 0.433 0.167
20 0.222 9.84 0.242 0.042
21 0.266 43.59 0.290 0.276
22 0.528 35.16 0.577 0.406
23 0.484 29.53 0.529 0.300
24 0.659 7.03 0.720 0.089
25 0.616 1.41 0.672 0.017
26 0.878 40.78 0.959 0.827
27 0.353 15.47 0.386 0.107
28 0.791 23.91 0.863 0.383

Table A.4: KCS double-body CFD grid y+ for LHS point 2.
G1 G2 G3

Hull y+ 21.6 9.1 11.2
Propeller y+ 17.7 15.4 7.8
Rudder y+ 13.6 10.4 6.8
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Table A.5: Discretization error between different grids for 10KQ.

LHS point G1 G2 G3 ε23 ε13
(10KQ) (10KQ) (10KQ) (%) (%)

1 0.530 0.539 0.531 -1.369 0.266
2 0.606 0.633 0.625 -1.260 3.057
3 0.481 0.465 0.453 -2.596 -6.033
4 0.445 0.420 0.424 0.964 -5.033
5 0.448 0.436 0.417 -4.666 -7.390
6 0.498 0.506 0.512 1.036 2.674
7 0.637 0.653 0.647 -0.866 1.578
8 0.545 0.555 0.548 -1.283 0.553
9 0.382 0.376 0.351 -7.092 -8.869
10 0.540 0.523 0.521 -0.328 -3.649
11 0.621 0.616 0.608 -1.365 -2.162
12 0.428 0.394 0.380 -3.588 -12.598

A.2 Supplementary Tables for Data-Driven Model Develop-

ment

This section contains supplementary tables that are useful for describing the data-

driven model development for the KCS. Specifically, supplementary tables are shown

to augment the discussion on the underlying discretization error and turbulence mod-

eling error in the training data.

A.2.1 Discretization Error: Supplementary Tables
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Table A.6: Discretization error between different grids for CFx.

LHS point G1 G2 G3 ε23 ε13
(CFx) (CFx) (CFx) (%) (%)

1 -0.259 -0.267 -0.274 2.446 5.314
2 -0.224 -0.233 -0.229 -1.724 1.839
3 -0.294 -0.320 -0.346 7.546 15.085
4 -0.304 -0.325 -0.339 4.053 10.252
5 -0.291 -0.305 -0.326 6.553 10.975
6 -0.312 -0.326 -0.334 2.420 6.649
7 -0.217 -0.216 -0.207 -4.331 -4.649
8 -0.242 -0.250 -0.253 1.134 4.294
9 -0.194 -0.213 -0.221 3.600 12.251
10 -0.274 -0.310 -0.315 1.367 13.066
11 -0.249 -0.258 -0.249 -3.478 -0.020
12 -0.287 -0.314 -0.341 7.802 15.784

A.2.2 Turbulence Modeling Error: Supplementary Tables
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Table A.7: Turbulence modeling error between Spalart Allmaras and k − ω SST for
10KQ.

Grid LHS point Spalart Allmaras k − ω SST εT
(10KQ) (10KQ) (%)

G1 1 0.530 0.526 0.708
G2 1 0.539 0.537 0.212
G3 1 0.531 0.539 -1.377
G1 2 0.606 0.623 -2.704
G2 2 0.633 0.643 -1.504
G3 2 0.625 0.645 -3.132
G1 3 0.481 0.514 -6.993
G2 3 0.465 0.522 -12.153
G3 3 0.453 0.532 -17.365
G1 4 0.445 0.422 5.268
G2 4 0.420 0.440 -4.929
G3 4 0.424 0.451 -6.336

Table A.8: Turbulence modeling error between Spalart Allmaras and k − ω SST for
CFx.

Grid LHS point Spalart Allmaras k − ω SST εT
(CFx) (CFx) (%)

G1 1 -0.259 -0.189 27.012
G2 1 -0.267 -0.185 30.761
G3 1 -0.274 -0.181 33.897
G1 2 -0.224 -0.213 5.089
G2 2 -0.233 -0.230 1.036
G3 2 -0.229 -0.216 5.410
G1 3 -0.294 -0.270 8.083
G2 3 -0.320 -0.261 18.390
G3 3 -0.346 -0.270 21.995
G1 4 -0.304 -0.322 -5.748
G2 4 -0.325 -0.281 13.594
G3 4 -0.339 -0.266 21.402
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Figure A.1: Contours of -10KS in J-β space for linear regression models trained with
different data sets.

A.2.3 Comparison Between Linear Regression Models: Supplementary

Figures
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Figure A.2: Contours of percent difference of different linear regression models’ pre-
diction of 10KQ with respect to the 8 point LHS G3 model in J-β space.
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Figure A.3: Contours of percent difference of different linear regression models’ pre-
diction of CFx with respect to the 8 point LHS G3 model in J-β space.
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A.3 Gaussian Process Regression Supplementary Figures.
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Figure A.4: Contours of KQ in J-β space for the KCS propeller with different sets of
training data, with black dots illustrating the different samples used to
train the model. Linear regression response surface is shown on the left.
Gaussian process regression with σn=0.0001 predicted response surface
is shown on the right.
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GPR: 8 point training
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Figure A.5: Contours of KQ and CFx in J-β space for the KCS propeller and rud-
der with different sets of training data, with black dots illustrating the
different samples used to train the model. All results are for Gaussian
process regression with a calculated σn. The left column of images show
KQ while the right column shows CFx. More training points are used for
each subsequent row.
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Table A.9: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the G2
eight point LHS training set with the Spalart Allmaras turbulence model.

KT -10KS 10KQ CFx CFy
C1 0.5345290305 0.3975592637 0.7934156768 0.1471394965 -0.0601792772
C2 -0.4226926937 -1.0342701003 -0.5503789314 -1.3098336618 1.1571454275
C3 0.0808059427 0.7560195931 0.1239172574 0.8802890611 -0.6526409694
C4 0.0041557117 -1.1229502889 0.0032110496 -0.5136129952 0.5787844774
C5 0.0199300119 0.9598115597 0.0323423376 0.3165818193 -0.4476160331
C6 -0.1490251734 1.2731303479 -0.1657695166 0.6611638490 -0.8368780001

Table A.10: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the
G2 eight point LHS training set with the k − ω SST turbulence model.

KT -10KS 10KQ CFx CFy
C1 0.4922036967 0.3742254919 0.6834371641 -0.2114225631 0.1431476845
C2 -0.2702026946 -0.9635846231 -0.2079224697 -0.2320950820 0.4832225913
C3 -0.0237223366 0.5468384169 -0.1087395397 0.1592390946 -0.2449764051
C4 0.1671361242 -0.9812069765 0.2837225808 -0.0048276432 0.4118739945
C5 -0.1806143171 0.5356170570 -0.2703055103 0.0991507996 -0.4979861139
C6 -0.1813468948 1.8700159624 -0.2793355678 0.1452838384 -0.4515394650

A.4 Coefficients for Linear Regression Based Data-Driven

Models

The coefficients for the data-driven model are presented here. For the feature vec-

tor [1 J J2 β β2 Jβ], the corresponding coefficients are denoted [C1 C2 C3 C4 C5 C6].

Table A.11: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the
G3 eight point LHS training set with the Spalart Allmaras turbulence
model.

C1 0.552752337 0.36327798 0.7968946 0.258101568 -0.259840451
C2 -0.418277763 -0.901201585 -0.504391235 -1.573165635 1.681390292
C3 0.052683471 0.550472412 0.064430711 1.000354382 -0.830780534
C4 -0.079393167 -1.086120399 -0.062284774 -0.68709302 0.948868651
C5 0.098568493 0.896192311 0.10790787 0.404199133 -0.580375436
C6 -0.139083741 1.340375315 -0.202987519 0.838867534 -1.400438693
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APPENDIX B

Supplementary Tables and Figures for ONR

Tumblehome Analysis

In this appendix are supplementary tables and figures for the ONR Tumblehome

analysis.

B.1 ONR Tumblehome Latin Hypercube Sample points.
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Table B.1: Values for each of the LHS points for ONR Tumblehome analysis for all
LHS point.

LHS point J |β| (degrees) u (m/s) v (m/s)
1 0.850 30.625 0.813 -0.481
2 0.650 21.875 0.622 -0.250
3 1.050 13.125 1.004 -0.234
4 1.250 4.375 1.195 -0.091
5 1.100 19.687 1.052 -0.376
6 1.000 2.188 0.956 -0.037
7 0.600 24.063 0.574 -0.256
8 0.800 32.812 0.765 -0.493
9 1.200 28.438 1.147 -0.621
10 0.900 10.937 0.861 -0.166
11 0.700 15.313 0.669 -0.183
12 1.300 6.562 1.243 -0.143
13 0.825 3.281 0.789 -0.045
14 0.675 29.531 0.645 -0.366
15 1.275 25.156 1.219 -0.573
16 1.125 20.781 1.076 -0.408
17 1.175 9.844 1.124 -0.195
18 0.975 14.219 0.932 -0.236
19 0.775 16.406 0.741 -0.218
20 0.575 7.656 0.550 -0.074
21 0.625 33.906 0.598 -0.402
22 0.925 27.344 0.884 -0.457
23 0.875 22.969 0.837 -0.355
24 1.075 5.469 1.028 -0.098
25 1.025 1.094 0.980 -0.019
26 1.325 31.719 1.267 -0.783
27 0.725 12.031 0.693 -0.148
28 1.225 18.594 1.171 -0.394

213



B.2 Supplementary Tables for Discretization Error Discus-

sion

Table B.2 and Table B.3 show the values for each LHS point, the prediction of

KS for each of the grids as well as the percent error with respect to the G3 value

for the G2 grid and the G1 grid. On average the absolute value of the percent error

between the G3 and G2 grid for the KS on the port side is 8.52% and 6.65% on the

starboard side. The maximum absolute value of the percent difference between the

G3 and G2 grids is over 28%, which occurs when the value of KS is smallest on the

starboard side, which correlates to LHS point six. At the same LHS point, the error

between the G3 and G1 grids for the starboard side prediction of KS is over 60%.

LHS point six correlates to a relatively high J and low β. This case only affects the

data-driven model briefly in the maneuver when the vessel first begins the maneuver

as the rudder is deflected and the vessel begins to turn. On average the absolute

value of the percent error between the G3 and G1 grid for KS is larger than the error

between the G3 and G2 grids, with 18.0% error on the port side and 11.5% on the

starboard side. Similar to the prediction of KX , the error tends to be larger on the

port side than the starboard side.

Table B.4 and Table B.5 show the values of CFx for each LHS point and each grid

as well as the percent error with respect to the G3 value for the G2 grid and the G1

grid. The |ε23| for the CFx on the port side is 4.38% and 7.50% on the starboard

side. The |ε13| for the CFx on the port side is 7.79% and 7.03% on the starboard side.

Overall there less error between the finest grid G3 and medium grid G2, however, the

starboard side G1 prediction of CFx is in better agreement with the G3 grid prediction

compared to the G2 grid prediction on average. The maximum percent error between

the G3 and G2 grid is 12.04% on the port side and 15.62% on the starboard side.

The maximum percent error between the G3 and G1 grid is larger with 16.77% error
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Table B.2: Discretization error between different grids for ONR Tumblehome port
side KS.

LHS point G1 G2 G3 ε23 ε13
(KS) (KS) (KS) (%) (%)

1 0.053 0.057 0.059 2.179 9.667
2 0.037 0.041 0.037 -9.068 0.415
3 0.041 0.042 0.042 -1.904 1.741
4 0.034 0.036 0.032 -11.954 -5.209
5 0.068 0.071 0.064 -11.508 -6.011
6 0.006 0.006 0.005 -11.583 -5.788
7 0.039 0.042 0.036 -15.303 -7.480
8 0.044 0.051 0.051 0.533 14.289
9 0.078 0.077 0.072 -6.402 -7.326
10 0.028 0.030 0.034 12.689 18.024
11 0.020 0.023 0.021 -10.698 5.584
12 0.041 0.041 0.038 -8.412 -6.939

Table B.3: Discretization error between different grids for ONR Tumblehome star-
board side KS.

LHS point G1 G2 G3 ε23 ε13
(KS) (KS) (KS) (%) (%)

1 0.122 0.125 0.124 -0.378 2.089
2 0.066 0.068 0.068 0.073 3.743
3 0.054 0.055 0.056 1.732 4.389
4 0.010 0.009 0.013 25.506 20.684
5 0.088 0.090 0.089 -1.326 1.461
6 0.003 0.006 0.008 28.611 60.784
7 0.069 0.073 0.072 -0.945 3.426
8 0.126 0.129 0.130 0.573 2.741
9 0.150 0.151 0.149 -0.989 -0.312
10 0.040 0.041 0.044 5.526 8.630
11 0.051 0.052 0.054 3.681 6.833
12 0.021 0.025 0.028 10.429 23.329
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Table B.4: Discretization error between different grids for ONR Tumblehome port
side CFx.

LHS point G1 G2 G3 ε23 ε13
(CFx) (CFx) (CFx) (%) (%)

1 -0.239 -0.246 -0.246 0.160 2.765
2 -0.285 -0.280 -0.273 -2.479 -4.191
3 -0.262 -0.288 -0.283 -1.901 7.525
4 -0.296 -0.312 -0.342 8.606 13.409
5 -0.231 -0.237 -0.243 2.247 4.653
6 -0.290 -0.328 -0.348 5.838 16.773
7 -0.260 -0.246 -0.236 -4.064 -9.800
8 -0.248 -0.245 -0.245 -0.251 -1.303
9 -0.203 -0.210 -0.239 12.037 15.135
10 -0.295 -0.315 -0.310 -1.631 4.756
11 -0.284 -0.301 -0.285 -5.740 0.388
12 -0.292 -0.309 -0.334 7.569 12.742

on the port side and 18.91 on the starboard side.
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Table B.5: Discretization error between different grids for ONR Tumblehome star-
board side CFx.

LHS point G1 G2 G3 ε23 ε13
(CFx) (CFx) (CFx) (%) (%)

1 -0.149 -0.140 -0.144 2.630 -3.336
2 -0.193 -0.201 -0.208 3.505 7.179
3 -0.333 -0.308 -0.337 8.604 1.270
4 -0.306 -0.319 -0.377 15.617 18.908
5 -0.291 -0.258 -0.305 15.395 4.445
6 -0.322 -0.319 -0.371 14.053 13.239
7 -0.175 -0.180 -0.181 0.150 3.297
8 -0.122 -0.114 -0.116 1.612 -4.716
9 -0.204 -0.208 -0.222 6.262 8.146
10 -0.321 -0.297 -0.315 5.748 -1.937
11 -0.254 -0.231 -0.246 6.015 -3.573
12 -0.301 -0.315 -0.351 10.452 14.346

Table B.6: Discretization error between different grids for ONR Tumblehome port
side CMz.

LHS point G1 G2 G3 ε23 ε13
(CMz) (CMz) (CMz) (%) (%)

1 0.349 0.372 0.384 3.140 9.202
2 0.459 0.459 0.448 -2.480 -2.483
3 0.346 0.382 0.377 -1.396 8.300
4 0.412 0.438 0.507 13.557 18.642
5 0.316 0.340 0.374 9.079 15.269
6 0.404 0.465 0.505 7.948 19.970
7 0.424 0.407 0.398 -2.262 -6.608
8 0.367 0.374 0.385 2.896 4.663
9 0.285 0.295 0.346 14.756 17.653
10 0.408 0.439 0.432 -1.702 5.520
11 0.447 0.460 0.442 -4.206 -1.230
12 0.402 0.423 0.465 9.019 13.517

217



Table B.7: Discretization error between different grids for ONR Tumblehome star-
board side CMz.

LHS point G1 G2 G3 ε23 ε13
(CMz) (CMz) (CMz) (%) (%)

1 0.142 0.123 0.142 13.401 0.572
2 0.233 0.234 0.273 14.190 14.711
3 0.487 0.455 0.515 11.747 5.576
4 0.391 0.420 0.517 18.860 24.479
5 0.374 0.306 0.440 30.605 15.024
6 0.441 0.444 0.530 16.189 16.830
7 0.201 0.203 0.233 12.754 13.782
8 0.094 0.082 0.095 13.678 0.193
9 0.195 0.215 0.260 17.270 25.084
10 0.476 0.438 0.491 10.846 3.028
11 0.383 0.308 0.341 9.781 -12.204
12 0.388 0.429 0.473 9.336 17.815

B.3 Supplementary Tables for Turbulence Modeling Error

Discussion

Table B.8 shows the difference between the prediction of KS for the Spalart All-

maras turbulence model and the k − ω SST turbulence model for these LHS points

for both the port and starboard side propellers. The average absolute value difference

between the prediction of KS between the two turbulence models is 16.23% on the

starboard side and 18.76% on the port side. These numbers are somewhat skewed

since the percent differences when small numbers are involved can be quite large. The

KS is significantly lower that the KX and in the case of LHS point six, the k−ω SST

turbulence model predicts a KS of only 0.001, and the resulting percent error is nearly

80%. LHS points seven and eight are closest to the experimental steady turn param-

eters of J and β and provide more reasonable results on the starboard side. The KS

predicted by the k−ω SST turbulence model is 0.05% and 5.79% larger than the KS

predicted with the Spalart Allmaras turbulence model for LHS points seven and eight

respectively. On the other hand the KS predicted by the k−ω SST turbulence model
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Table B.8: Turbulence modeling error between Spalart Allmaras and k − ω SST for
KS.

Side LHS point Spalart Allmaras k − ω SST εT
(KS) (KS) (%)

Port 5 0.071 0.058 19.005
Port 6 0.006 0.005 15.845
Port 7 0.042 0.039 7.186
Port 8 0.051 0.067 -31.730
Port 9 0.077 0.100 -29.931
Port 10 0.030 0.025 14.794
Port 11 0.023 0.018 21.889
Port 12 0.041 0.037 9.670

Starboard 5 0.090 0.092 -1.560
Starboard 6 0.006 0.001 79.527
Starboard 7 0.073 0.073 -0.047
Starboard 8 0.129 0.136 -5.778
Starboard 9 0.151 0.160 -6.299
Starboard 10 0.041 0.037 9.477
Starboard 11 0.052 0.050 3.793
Starboard 12 0.025 0.019 23.401

is 7.19% smaller and 31.7% larger than the KS predicted with the Spalart Allmaras

turbulence model for LHS points seven and eight respectively. This illustrates the

sensitivity of results to the turbulence model selection.

Table B.9 shows the differences between the two turbulence models prediction of

CFx for each rudder. The average absolute value of the difference between the CFx

predictions between the two turbulence models is 10.34% on the port side and 5.02%

on the starboard side. The largest difference occurs at LHS point eight, for which

the k − ω SST turbulence model prediction for the port side rudder has 27.64% less

resistance than that predicted with the Spalart Allmaras turbulence model. This

again illustrates how it is challenging to correctly model the propeller and rudder

that operate in the wake of the hull.

Table B.10 shows the differences between the two turbulence models prediction of

CMz for each rudder.
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Table B.9: Turbulence modeling error between Spalart Allmaras and k − ω SST for
CFx.

Side LHS point Spalart Allmaras k − ω SST εT
(CFx) (CFx) (%)

Port 5 -0.237 -0.253 -6.664
Port 6 -0.328 -0.279 14.963
Port 7 -0.246 -0.238 3.164
Port 8 -0.245 -0.178 27.639
Port 9 -0.210 -0.227 -7.712
Port 10 -0.315 -0.279 11.522
Port 11 -0.301 -0.276 8.415
Port 12 -0.309 -0.317 -2.673

Starboard 5 -0.258 -0.269 -4.304
Starboard 6 -0.318 -0.316 0.666
Starboard 7 -0.180 -0.185 -2.743
Starboard 8 -0.114 -0.109 4.773
Starboard 9 -0.208 -0.194 6.545
Starboard 10 -0.296 -0.310 -4.444
Starboard 11 -0.231 -0.257 -11.477
Starboard 12 -0.315 -0.331 -5.176

Table B.10: Turbulence modeling error between Spalart Allmaras and k− ω SST for
CMz.

Side LHS point Spalart Allmaras k − ω SST εT
(CMz) (CMz) (%)

Port 5 0.340 0.372 -9.511
Port 6 0.465 0.402 13.560
Port 7 0.407 0.380 6.719
Port 8 0.374 0.291 22.208
Port 9 0.295 0.384 -30.278
Port 10 0.439 0.397 9.485
Port 11 0.460 0.409 11.117
Port 12 0.423 0.471 -11.355

Starboard 5 0.306 0.330 -7.845
Starboard 6 0.444 0.456 -2.654
Starboard 7 0.203 0.212 -4.312
Starboard 8 0.082 0.074 9.869
Starboard 9 0.215 0.195 9.233
Starboard 10 0.438 0.463 -5.900
Starboard 11 0.308 0.346 -12.423
Starboard 12 0.428 0.485 -13.088
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B.4 Supplementary Figures for Gaussian Process Regression

This section includes supplementary figures showing the response surfaces pre-

dicted with Gaussian process regression.

B.4.1 σn of 0.0001 (near-zero)

Fig. B.1 shows the KS for the propellers trained with the eight point sample set,

the 16 point sample set, and the combination of the 16 point and 8 point sample set

for a σn of 0.0001. The layout of the images corresponds to the same approach as

Fig. 5.14. A smooth response surface is seen for all sets of training and are qualita-

tively similar to the response surfaces found with regression.

Fig. B.2 shows the CFx for the rudders (port side on the left and starboard side

on the right) trained with the eight point sample set (in the top row), the 16 point

sample set (in the middle row), and the combination of the 16 point and 8 point

sample set (in the bottom row) for a σn of 0.0001. A response surface with lots of

variability is seen for sets of training data with a large number of samples.

Fig. B.3 shows the CFy for the rudders for a σn of 0.0001 in a similar layout as the

previous figure. A response surface with lots of variability is seen for sets of training

data with a large number of samples.
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Figure B.1: Contours of KS in J-β space predicted with Gaussian process regression
with σn of 0.0001. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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Figure B.2: Contours of CFx in J-β space predicted with Gaussian process regression
with σn of 0.0001. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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Figure B.3: Contours of CFy in J-β space predicted with Gaussian process regression
with σn of 0.0001. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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B.4.2 σn calculated

Fig. B.4 shows the KS for the propellers for a calculated σn of 0.022 for the port

side propeller and for 0.010 for the starboard side propeller. The image layout for the

figure is the same as the previous set of figures with the number of training sample

points increasing with each row, and with the port and starboard side coefficients

on the left and right respectively. A smooth response surface is seen for all sets of

training.

Fig. B.5 shows the CFx for the propellers for a calculated σn of 0.057 for the port

side rudder and for 0.023 for the starboard side rudder. The image layout for the

figure is the same as the previous set of figures with the number of training sample

points increasing with each row, and with the port and starboard side coefficients

on the left and right respectively. A smooth response surface is seen for all sets of

training.

Similar results are seen in Fig. B.6 which shows the CFy for the propellers for a

calculated σn of 0.106 for the port side rudder and for 0.045 for the starboard side

rudder. Again, a smooth response surface is seen for all sets of training.
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Figure B.4: Contours of KS in J-β space predicted with Gaussian process regression
with σn calculated. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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Figure B.5: Contours of CFx in J-β space predicted with Gaussian process regression
with σn calculated. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.

227



Port 8 point training

0.6 0.8 1 1.2
J

0

5

10

15

20

25

30

35

-
 (

de
gr

ee
s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

C
F

y

Starboard 8 point training

0.6 0.8 1 1.2
J

0

5

10

15

20

25

30

35

-
 (

de
gr

ee
s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

C
F

y

Port 16 point training

0.6 0.8 1 1.2
J

0

5

10

15

20

25

30

35

-
 (

de
gr

ee
s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

C
F

y

Starboard 16 point training

0.6 0.8 1 1.2
J

0

5

10

15

20

25

30

35

-
 (

de
gr

ee
s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

C
F

y

Port 24 point training

0.6 0.8 1 1.2
J

0

5

10

15

20

25

30

35

-
 (

de
gr

ee
s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

C
F

y

Starboard 24 point training 

0.6 0.8 1 1.2
J

0

5

10

15

20

25

30

35

-
 (

de
gr

ee
s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

C
F

y

Figure B.6: Contours of CFy in J-β space predicted with Gaussian process regression
with σn calculated. The model using the 8-point LHS set is on the top.
The model using the 16-point LHS set is in the middle row. The model
using the combination of the 8-point and 16-point LHS set is on the
bottom. The port side forces are shown on the left and the starboard
forces are shown on the right.
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Table B.11: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the
G2 eight point LHS training set with the Spalart Allmaras turbulence
model.

KT KS CFx CFy CMz

Cp1 0.738995787 -0.128710742 -0.247418435 -0.565757761 0.581403551
Cp2 -0.271740875 0.152146967 -0.224392458 0.100989001 -0.080774039
Cp3 -0.087155054 -0.032634583 0.119786783 -0.004505137 -0.007033881
Cp4 -0.561266578 0.38319183 0.134190991 0.191436376 -0.211143185
Cp5 0.284397848 -0.330712337 -0.107372029 -0.187535565 0.203974097
Cp6 0.194151747 -0.064648322 0.158670224 0.200522888 -0.208550824

Cs1 0.728931282 0.036215496 -0.202848515 -0.215941876 0.226893367
Cs2 -0.440469497 -0.044033337 -0.192556203 -0.478442768 0.446361167
Cs3 0.049498106 0.005386973 0.076970067 0.227659914 -0.215220485
Cs4 0.199946826 -0.057982587 0.175293678 0.261211913 -0.266461909
Cs5 -0.029877232 0.086577453 0.466039341 0.90778975 -0.879662291
Cs6 -0.109518742 0.281021988 -0.14042833 -0.170168985 0.172261932

B.5 Coefficients for Linear Regression Based Data-Driven

Models

The coefficients for the data-driven model are presented here. For the feature

vector [1 J J2 |β| |β|2 J |β|], the corresponding coefficients for the port side are denoted

[Cp1 Cp2 Cp3 Cp4 Cp5 Cp6] and the corresponding coefficients for the starboard side

are denoted [Cs1 Cs2 Cs3 Cs4 Cs5 Cs6].
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Table B.12: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the
G2 eight point LHS training set with the k − ω SST turbulence model.

KT KS CFx CFy CMz

Cp1 0.852123115 0.036462121 -0.449481034 -0.989022406 1.021346472
Cp2 -0.496412987 -0.108896238 0.373795584 1.19441866 -1.221889623
Cp3 0.034030919 0.07248407 -0.206366354 -0.598191729 0.611675429
Cp4 -0.46622017 -0.006477109 -0.018696565 0.399552928 -0.40837637
Cp5 0.147132232 0.03759758 0.407475841 0.189241444 -0.208878338
Cp6 0.125101507 0.139286644 -0.032626451 -0.33012187 0.337805214

Cs1 0.854716796 0.047282684 -0.118662554 -0.050719228 0.062149785
Cs2 -0.590754206 -0.064769082 -0.314271863 -0.695318982 0.662854429
Cs3 0.092843152 0.010214522 0.119623997 0.270311947 -0.258456874
Cs4 -0.104409325 -0.111182744 -0.162978093 -0.376956175 0.361286541
Cs5 0.156966809 0.139963555 0.827796926 1.461026117 -1.424560186
Cs6 0.071370056 0.330950364 0.013295912 0.220477517 -0.21079638

Table B.13: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the
G2 sixteen point LHS training set.

KT KS CFx CFy CMz

Cp1 0.94548959 -0.10729674 -0.30082505 -0.56227055 0.58031468
Cp2 -0.77750445 0.12927434 -0.07800106 0.15338923 -0.14174365
Cp3 0.20855341 -0.02305283 0.03850260 -0.03723984 0.03091580
Cp4 -0.35605234 0.34468910 0.00755244 -0.02569846 0.01600840
Cp5 0.25271046 -0.28510930 0.01703792 0.07950932 -0.07019431
Cp6 -0.03391258 -0.06120494 0.20850353 0.24706461 -0.25993036

Cs1 0.82379001 0.04820346 -0.06417102 -0.21386999 0.21755721
Cs2 -0.57665595 -0.06565278 -0.41085190 -0.33407280 0.31759591
Cs3 0.09376016 0.01397503 0.14669462 0.06420191 -0.06079153
Cs4 0.06038774 -0.07665131 0.06242754 -0.00603974 0.00181378
Cs5 0.01227026 0.09223277 0.36537628 0.76679381 -0.74584272
Cs6 -0.00414796 0.29885395 0.02855733 0.22001389 -0.21314318
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Table B.14: Linear regression coefficients for KT , KS, CFx, CFy, and CMz using the
G3 eight point LHS training set.

KT KS CFx CFy CMz

Cp1 0.75589936 -0.15569540 -0.36204429 -0.59852010 0.62171082
Cp2 -0.25046286 0.21731801 -0.02084615 0.15559644 -0.15155804
Cp3 -0.11073198 -0.06785736 0.00693630 -0.06230253 0.06049408
Cp4 -0.69072969 0.36731439 0.45429648 0.48500897 -0.51911256
Cp5 0.44248655 -0.29995330 -0.41433406 -0.52638533 0.55633012
Cp6 0.22464846 -0.07409698 0.02687844 0.09703435 -0.09872035

Cs1 0.74395868 0.03383845 -0.05517610 0.32592224 -0.30083130
Cs2 -0.46198040 -0.03383045 -0.52249864 -1.56175748 1.50163632
Cs3 0.05895599 0.00136333 0.21694023 0.72365341 -0.69856326
Cs4 0.15028068 -0.05869548 0.09459830 -0.36412710 0.34678918
Cs5 0.09488822 0.09619370 0.57045588 1.67079680 -1.63112584
Cs6 -0.13293063 0.26821930 -0.06571361 0.02595123 -0.01692304
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