
Enforcing Realism and Temporal Consistency
for Large-Scale Video Inpainting

by

Ryan B. Szeto

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in The University of Michigan

2021

Doctoral Committee:

Professor Jason J. Corso, Co-Chair

Associate Professor Honglak Lee, Co-Chair

Assistant Professor Justin Johnson

Assistant Professor Andrew Owens

Ryan B. Szeto

szetor@umich.edu

ORCID iD: 0000-0002-2966-7138

© Ryan B. Szeto 2021

DEDICATION

This dissertation would not exist without the help of those who have fundamentally shaped my

educational career. First, I would like to thank Daniel Gabriner, Dennis McCowan, and Prof. Jack

Wileden for introducing me to computer science and for teaching me the joy of logical problem

solving. Next, I want to thank Profs. Rick Adrion, Timothy Richards, and Paul Dickson for fostering

both my primary undergraduate research and my interest in graduate school. In addition, I wish

to thank the friends made during my undergraduate and graduate careers, as well as my therapist

Jessica Berner, for supporting me during the lows and highs of my education. Furthermore, I would

like to thank my mother and father for teaching me the importance of education, dedication, and

respect for others. Last but not least, I want to thank the squirrels of U-M for teaching me the beauty

of nature and for helping me retain my mental health during unprecedented life challenges.

ii

ACKNOWLEDGEMENTS

Thank you to the committee members—Prof. Jason J. Corso, Prof. Honglak Lee, Prof. Justin

Johnson, and Prof. Andrew Owens—for providing advice and constructive feedback throughout the

dissertation process.

The bi-TAI project was partly supported by ARO W911NF-15-1-0354, DARPA FA8750-17-2-

0112, and DARPA FA8750-16-C-0168. It reflects the opinions and conclusions of its authors, but

not necessarily the funding agents.

The HyperCon project was partially completed while the author was a research scientist intern

at Samsung Semiconductor, Inc. The Moving Symbols project was partially completed while the

author was a research scientist intern at Toyota Research Institute.

The DEVIL project greatly benefited from the exploratory contributions made by Xuetong Sun

and Jing-An Tzeng. The material is based upon work supported by the National Science Foundation

under Grant No. 1628987. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . ix

Abstract . xiii

Chapter

1 Introduction . 1

1.1 Background . 1

1.2 Video Inpainting . 3

1.2.1 Problem Statement . 4

1.2.2 Semantic Ambiguity . 5

1.2.3 Measuring Visual Quality . 7

1.3 Contributions . 8

1.3.1 Temporal Context . 8

1.3.2 Diagnostic Evaluation . 9

1.4 Thesis and Impact Statement . 10

2 Related Work . 11

2.1 Datasets and Reconstruction . 11

2.2 Evaluation . 12

Realism . 12

Temporal Consistency . 12

Reconstruction Performance . 13

2.3 Methods . 13

2.3.1 General Tensor Completion . 13

2.3.2 Object-Based Methods . 15

2.3.3 Repetitive Tensor-Based Methods . 15

2.3.4 Deep Learning . 16

2.3.4.1 Losses . 17

Mean absolute/square error . 17

Perceptual loss . 18

iv

Style loss . 18

Optical flow loss . 18

Warping loss . 19

Generative adversarial network loss 19

3 Video Frame Inpainting . 20

3.1 Introduction . 20

3.2 Approach . 23

3.2.1 Problem Statement . 23

3.2.2 Model Overview . 23

3.2.3 Bidirectional Video Prediction Network 24

3.2.4 Temporally-Aware Interpolation Network 25

3.2.5 Network Architecture Details . 25

3.2.5.1 Bidirectional Video Prediction Network Details 26

MCnet . 26

Computing intermediate activations for TAI 26

3.2.5.2 TAI Network Details . 26

3.2.6 Training Strategy . 28

3.3 Experiments . 29

3.3.1 Experimental Setup . 29

3.3.1.1 Datasets . 29

Constructing video clips for training and testing 30

3.3.1.2 Baselines . 30

3.3.1.3 Training Hyperparameters . 31

3.3.2 KTH . 32

3.3.3 Ablation Studies . 35

3.3.4 UCF-101 and HMDB-51 . 38

3.3.5 ImageNet-VID . 42

3.4 Conclusion . 42

4 Temporally-Consistent Video-to-Video Translation 45

4.1 Introduction . 45

4.2 Related Work . 48

4.3 HyperCon . 48

4.3.1 Generating the Interpolated Video . 49

4.3.2 Translating the Interpolated Video . 49

4.3.3 Temporal Aggregation . 50

4.3.4 HyperCon for Masked Videos . 51

4.3.5 HyperCon Implementation Details . 52

4.4 Experiments: Video Style Transfer . 52

4.4.1 Datasets . 53

4.4.2 Evaluation Metrics . 53

4.4.3 Hyperparameter Analysis . 53

4.4.4 Comparison To Prior State-of-the-Art 55

4.4.4.1 Human Evaluation . 57

v

4.5 Experiments: Video Inpainting . 60

4.5.1 Datasets . 60

4.5.2 Evaluation Metrics . 61

4.5.3 Comparison to Prior State-of-the-Art 61

4.6 Discussion and Conclusion . 65

5 Generalization Performance of Video Prediction Models 66

5.1 Introduction . 66

5.2 Moving Symbols . 67

5.3 Experiments . 67

5.4 Discussion and Future Work . 70

6 Diagnostic Video Inpainting Benchmark . 71

6.1 Introduction . 71

6.2 Related Work . 73

6.2.1 Methods . 73

6.2.2 Datasets . 74

6.3 Overview of the DEVIL Benchmark . 74

6.4 The DEVIL Dataset . 75

6.4.1 Collecting Source Videos for the DEVIL 75

6.4.2 Annotating DEVIL Source Video Attributes 76

6.4.3 DEVIL Masks and Attributes . 77

6.5 The DEVIL Evaluation . 78

6.5.1 Slices of the DEVIL Dataset . 78

6.5.2 Evaluation Metrics . 79

Reconstruction . 79

Realism . 79

Temporal consistency . 80

6.6 Experiments . 80

6.6.1 Aggregate Analysis . 82

DEVIL Attribute Difficulty . 83

6.6.2 Model Sensitivity to DEVIL Attributes 84

6.7 Discussion . 88

7 Future Directions and Conclusion . 90

Bibliography . 92

vi

LIST OF TABLES

3.1 Summary of the training and testing sets used in our experiments. (*) The HMDB-51

source clips have varying aspect ratios, and thus varying widths. 30

3.2 Performance on the KTH test set where each value is computed as the mean score

across all predicted frames (higher is better). We stylize values that are higher than the

others by a statistically significant margin. 32

3.3 Performance of our bi-TAI model and the ablative variants described in Sec. 3.3.3 on

the KTH test set. Each value is computed as the mean score across all predicted frames

(higher is better). We stylize values that are higher than the others by a statistically

significant margin. 38

3.4 Performance on the UCF-101 and HMDB-51 test sets where each value is computed

as the mean score across all predicted frames (higher is better). 39

3.5 Performance on the ImageNet-VID test set where each value is computed as the mean

score across all predicted frames (higher is better). We stylize values that are higher

than the others by a statistically significant margin. 43

4.1 Quantitative comparison between frame-wise style transfer (FST) , baseline blind video

consistency (FST-vcons) , and HyperCon (ours) for style transfer. ↑ and ↓ indicate

where higher and lower is better; bold indicates the best score; and the values after ±
are standard error over all videos. FID for FST is blank since this equates to comparing

FST to itself. HyperCon obtains lower FID scores than FST-vcons, indicating greater

coherence to the intended style of FST, as well as better warping errors and patch-based

consistency scores, indicating better temporal consistency. 57

4.2 Human evaluation of style transfer quality. (a) For each style, we list how often subjects

favorably select each method across all videos of that style, as well as the p-value of

the corresponding χ2 test. 0* indicates a p-value less than 1 × 10−10. In all cases,

subjects select HyperCon (ours) significantly more often than FST-vcons . (b) A

detailed breakdown of responses for each style and dataset. 60

4.3 Comparison between baseline methods and HyperCon (ours) on the simulated video

inpainting task. ↓ indicates that lower is better. Bold+underline and bold respectively

indicate the 1st- and 2nd-place methods. Among the evaluated methods, the HyperCon

models consistently place in the top two across all performance measures. 62

5.1 Experimental setup. The row for each trial describes the objects and motion speeds

seen during training and the out-of-domain objects and motion speeds seen during testing. 68

vii

6.2 Methods sorted by performance from best to worst based on three variables: the metric

(LPIPS/VFID), the attribute (FG displacement/camera motion), and the setting of said

attribute (low/high). The strongest method (highlighted in bold) depends on all three

variables, showing that no one method dominates our challenging benchmark. 84

viii

LIST OF FIGURES

1.1 Search results for “video editor” on Google Play. Hundreds of easy-to-use video editors

are available in phone app stores. 1

1.2 Video manipulation techniques exist across a spectrum of required expertise and

resources. In this diagram, techniques decrease in complexity from left to right. Figure

modified from Paris and Donovan ; both the source and the adapted figure are available

under the CC BY-NC-SA 4.0 license. 2

1.3 Video inpainting applications. 4

1.4 Visualization of video inpainting and related tasks. The input row corresponds to

the input video V , and the white area corresponds to the placeholder values and the

occlusion mask M . The yellow area corresponds to the desired inpainting prediction

f ∗(V,M). 5

1.5 Rhetorical visualizations of how semantic ambiguity can arise in video inpainting and

related tasks. (a) The masked region can be inpainted with or without a person; both

options are equally sensible. (b) The input sequence can lead to the vase breaking or

not. (c) The two input frames can result from the pendulum swinging or standing still. 6

3.1 A visual comparison of various video interpolation/extrapolation tasks. In this paper,

we explore (e) video frame inpainting. Unlike general video inpainting methods, we

recover whole, contiguous frames; and unlike frame interpolation and video prediction

methods, we predict the desired sequence using multiple frames that appear both before

and after it. 21

3.2 An overview of our bi-TAI method for video frame inpainting. We predict middle

frames by blending forward and backward intermediate video predictions (generated

by φpred) with a Temporally-Aware Interpolation network (φblend). 22

3.3 The Bidirectional Video Prediction Network. 24

3.4 (a) The architecture of TAI’s encoder-decoder network. (b) The TAI network applied

to the intermediate predictions from the Bidirectional Video Prediction Network. . . . 27

3.5 Performance on the KTH test set for each time step (higher is better). 32

3.6 The distributions of performance on the video clips in the KTH test set. Performance

per video is computed as the mean score across all predicted middle frames (higher is

better). Outliers are shown as light gray lines. 33

3.7 Qualitative results from the KTH dataset for predicting five middle frames from five

preceding and five following frames (we depict every other frame for easier viewing).

We indicate preceding and following frames with a green border, predicted middle

frames with a yellow border, and ground-truth middle frames with a green border. . . . 34

ix

https://creativecommons.org/licenses/by-nc-sa/4.0/

3.8 Additional predictions from bi-TAI on the KTH test set (m = 5). The yellow frames

indicate predictions from bi-TAI, and green frames indicate the ground truth. We show

the first, third, and fifth middle frame for each video. 35

3.9 Negative result on the KTH test set (m = 5). We show the first, third, and fifth middle

frames, and zoom in on the area indicated in orange. 36

3.10 Qualitative comparison of the various intermediate predictions made by bi-TAI and

its ablative variants (Sec. 3.3.3). We visualize the fourth predicted middle frame (out

of five) from a “handwaving” video clip, and zoom in on a specific region (indicated

in orange). (a) The ground-truth middle frame. (b) Comparison of the forward and

backward predictions from the Bidirectional Video Prediction Network and the final

predictions. (c) Inputs and outputs of the interpolation networks of bi-TWI and bi-TAI.

The cyan images correspond to the forward prediction frame before and after adaptive

convolution, and the purple images correspond to the backward prediction frame before

and after adaptive convolution. 37

3.11 Performance on the UCF-101 and HMDB-51 test sets for each time step (higher is

better). Light colors are used to highlight within two standard errors of each curve. . . 39

3.12 Qualitative results from the UCF-101 dataset (m = 3). On the left of each figure, we

visualize the last preceding frame in green, the second middle frame in yellow, and the

first following frame in green. On the right, we show the prediction from each method

at the region indicated in orange. 40

3.13 Failure case from UCF-101 (heavy camera motion). 40

3.14 Qualitative results from the HMDB-51 dataset (m = 3). 41

3.15 Failure case from HMDB-51 (shot transitions). 41

3.16 Performance on the ImageNet-VID test set for each time step (higher is better). Light

colors are used to highlight within two standard deviations of each curve. 43

3.17 Qualitative results from the ImageNet-VID dataset (m = 3). 43

4.1 Video-to-video translation models designed and trained from scratch, e.g., VINet are

temporally consistent, but exhibit poor generalization performance due to the limited

size of high-fidelity video datasets (note the lack of defined texture). Image-to-image

models, e.g., Contextual Attention , generalize well thanks to large image datasets,

but lack temporal consistency (note the changing texture). HyperCon leverages the

generalization performance conferred by image datasets while enforcing the temporal

consistency properties of video-to-video models. 46

4.2 Visual overview of our Hyperconsistency (HyperCon) method. We begin by artificially

inserting frames into the input video V with a frame interpolation network to produce an

interpolated video V s. Then, we independently translate each frame in the interpolated

video with an image-to-image translation model. Finally, we aggregate frames (i.e.,

align with optical flow and pool pixel-wise) within a local sliding window to produce

the final temporally consistent output video O. This can be applied to tasks with or

without masked inputs (e.g., inpainting and style transfer, respectively). 47

x

4.3 Temporal aggregation. Context frames from the translated interpolated video Os are

aligned via optical flow to reference frames associated with integer time steps (white

columns) and then pooled at each pixel location to generate the final video O. Despite

inconsistencies between aligned frames (e.g., near the arrows), temporal aggregation

selects stable components by majority vote. 51

4.4 Visualization of the hyperparameters included in our grid search (Section 4.4.3). . . . 54

4.5 Ablative analysis plots. Left plots show FID (style adherence) and right plots show

Ewarp (temporal consistency). Lower is better. 54

4.6 Qualitative comparison between frame-wise style transfer (FST) and ablative variants of

HyperCon. The “Lowest FID” model reproduces flickering artifacts (e.g., the changing

tone near the arrow), while the “Lowest Ewarp” model overly blurs predictions. Our

final model adheres to the intended style without overly blurring predictions. 55

4.7 Style transfer comparison for mosaic (top) and rain-princess (bottom) styles. We show

one full frame and crops from three consecutive frames centered at the presented frame.

Unlike the baselines, HyperCon draws three consistent lines across the top of the violin

(top), and removes the flickering spot on the truck (bottom), thus producing temporally

consistent results. 56

4.8 Examples of the interfaces used for the “preferred” and “style adherence” surveys. . . 58

4.9 HyperCon substantially reduces flickering compared to the other image-to-video model

transfer baselines Cxtattn and Cxtattn-vcons. (a) The pole appears for just one frame

with the baselines but not with HyperCon. (b) The gray circle is apparent in the baseline

predictions, but not in the HyperCon one. 62

4.10 Cxtattn-vcons distorts the hue of the inpainted region; HyperCon does not. As a result,

our HyperCon predictions blend in more convincingly with the surrounding area. . . . 63

4.11 HyperCon generates substantially fewer checkerboard artifacts than Cxtattn and Cxtattn-

vcons due to their instability across frames. 63

4.12 Qualitative comparisons between VINet and HyperCon (ours) for video inpainting.

(a) VINet distorts the boundaries of the masked wall (left) and practice mat (right),

whereas HyperCon successfully recovers them. (b) VINet predicts textureless regions

instead of realistic textures; in contrast, HyperCon produces sensible results thanks

to its better generalization performance. (c) In this negative result, VINet remembers

regions that were unmasked in prior frames, whereas HyperCon incorrectly extends

surrounding components from the current frame into the inpainted region. 64

5.1 Sample predictions for each experiment from Table 5.1. From top to bottom: (i) sample

input frames observed by each prediction model at t = {3, 6, 9}; (ii) sample ground

truth frames (unobserved) at t = {13, 16, 19}; (iii) corresponding predictions from a

model tested under the same conditions as the training set; and (iv) predictions from a

model tested under different conditions, as per Table 5.1. 69

5.2 Quantitative results to compare in-domain (dotted line) and out-of-domain evaluation

performance (solid line), with standard error shown in gray. Across future time steps,

we report median values for two metrics: positional Mean Squared Error (MSE)

between the oracle’s predicted position and ground truth (left plots), and cross-entropy

between the oracle’s digit prediction and true label (right plots). 70

xi

6.1 A visual overview of our DEVIL dataset. (a) The content attributes that characterize

our dataset and are used to create dataset slices for evaluation (i.e., sets of video-

mask pairs with a fixed attribute). We label low/high background scene motion or

camera motion for videos exhibiting these attribute settings beyond a certain threshold

(Section 6.4.2). For occlusion masks, we construct sampling parameters that capture

the desired attribute settings and use them to render masks (Section 6.4.3). (b) Videos,

masks, and annotations from our dataset. A given video or mask may have multiple

attribute labels or none; labels for the same attribute are mutually exclusive (e.g., a

mask cannot have both low and high FG displacement). 72

6.2 High temporal consistency may indicate overly blurry predictions if reconstruction or

realism performance is low (as shown in the results of VINet and CPNet). The area to

be inpainted is outlined in yellow in (a). 80

6.4 Visualizations of each model’s performance across the five evaluation metrics aver-

aged over all DEVIL slices; larger area is better. Performance is scaled linearly and

independently per metric such that the innermost and outermost pentagons respectively

correspond to the weakest and strongest observed mean performance. 82

6.5 Comparison of DEVIL slice difficulty based on average model performance. ▼ and

▲ indicate that lower and higher is better, respectively; error bars show standard error

across the seven evaluated methods. The type of content given at test time, especially

the mask content, greatly affects the difficulty of the task. 83

6.6 Relative improvement of each method under reconstruction and realism metrics when

camera motion changes from low to high. 85

6.7 VINet prediction examples. VINet improves with high camera motion since content

“moves into” the missing region (arrows show the direction of camera motion). 85

6.8 Relative improvement of each method under reconstruction and realism metrics when

BG scene motion changes from low to high. 86

6.9 Example inpainting predictions from the high BG scene motion slice. For DFCNet and

FGVC, the predictions diverge from the original content, but still exhibit semantically

sensible appearance. 86

6.10 Relative improvement of each method under reconstruction and realism metrics when

DEVIL mask attributes change from low to high. Within each plot, the methods are

sorted by PVCS performance. 87

6.11 Relative improvement in temporal consistency when DEVIL attributes change from

low to high. 87

xii

ABSTRACT

Today, people are consuming more videos than ever before. At the same time, video manipula-

tion has rapidly been gaining traction due to the influence of viral videos, as well as the convenience

of editing software. Although video manipulation has legitimate entertainment purposes, it can also

be incredibly destructive. In order to understand the positive and negative consequences of media

manipulation—as well as to maintain the integrity of mass media—it is important to investigate the

capabilities of video manipulation techniques.

In this dissertation, we focus on the manipulation task of video inpainting, where the goal is to

automatically fill in missing parts of a masked video with semantically relevant content. Inpainting

results should possess high visual quality with respect to reconstruction performance, realism, and

temporal consistency, i.e., they should faithfully recreate missing contents in a way that resembles

the real world and exhibits minimal flickering artifacts.

Two major challenges have impeded progress toward improving visual quality: semantic

ambiguity and diagnostic evaluation. Semantic ambiguity exists for any masked video due to

several plausible explanations of the events in the observed scene; however, prior methods have

struggled with ambiguity due to their limited temporal contexts. As for diagnostic evaluation, prior

work has overemphasized aggregate analysis on large datasets and underemphasized fine-grained

analysis on modern inpainting failure modes; as a result, the expected behaviors of models under

specific scenarios have remained poorly understood.

Our work improves on both models and evaluation techniques for video inpainting, thereby

providing deeper insight into how an inpainting model’s design impacts the visual quality of its

outputs. To advance state-of-the-art in video inpainting, we propose two novel solutions that improve

visual quality by expanding the available temporal context. Our first approach, bi-TAI, intelligently

integrates information from multiple frames before and after the desired sequence. It produces

more realistic results than prior work, which could only consume limited contextual information.

Our second approach, HyperCon, suppresses flickering artifacts from frame-wise processing by

identifying and propagating consistencies found in high frame-rate space; we successfully apply it

to tasks as disparate as video inpainting and style transfer.

Aside from methodological improvements, we also propose two novel evaluation tools to

diagnose failure modes of modern video inpainting methods. Our first such contribution is the

xiii

Moving Symbols dataset, which we use to characterize the sensitivity of a state-of-the-art video

prediction model to controllable appearance and motion parameters. Our second contribution is the

DEVIL benchmark, which provides a dataset and a comprehensive evaluation scheme to quantify

how several semantic properties of the input video and mask affect video inpainting quality.

Through models that exploit temporal context—as well as evaluation paradigms that reveal

fine-grained failure modes of modern inpainting methods at scale—our contributions enforce better

visual quality for video inpainting on a larger scale than prior work. We enable the production of

more convincing manipulated videos for data processing and social media needs; we also establish

replicable fine-grained analysis techniques to cultivate future progress in the field.

xiv

CHAPTER 1

Introduction

1.1 Background

If a picture is worth a thousand words, then videos are worth orders of magnitude more. Since

they engage both our visual and aural senses across time, videos can be incredibly expressive and

emotionally provocative. Nowadays, they form a major part of our daily lives. Consider the last

time you watched a video to entertain yourself, learn a new skill, or understand an ongoing news

story; it was likely within the past week, if not the past 24 hours. They are so important that at least

50% of people under the age of 30 say that they “do not know how they would get through life

without video” [1].

People are creating and consuming more videos now than ever before [2], which we believe is

largely due to recent trends in social media and content creation software. Social media platforms

such as YouTube and TikTok have made it incredibly easy to share videos with massive audiences.

At the same time, video content creation is now quick and convenient due to modern editing

apps, which allow creators to modify videos by splicing clips, overlaying text, applying low-level

filters, and more. During their inception, video editors were rare, complex, and limited to desktop

computers [3]; however, they are now incredibly common (Figure 1.1), easy to use [4], and widely

Figure 1.1: Search results for “video editor” on Google Play. Hundreds of easy-to-use video editors

are available in phone app stores.

1

Figure 1.2: Video manipulation techniques exist across a spectrum of required expertise and

resources. In this diagram, techniques decrease in complexity from left to right. Figure modified

from Paris and Donovan [12]; both the source and the adapted figure are available under the CC

BY-NC-SA 4.0 license.

available on phones. The popularity and accessibility of social media and video editing software

have helped cement videos as a significant portion of our current media consumption.

Given the influence of video and the accessibility of video editors, it is no wonder that video

manipulation has gained substantial attention in creative content and national media [5]–[8]. Video

manipulation refers to the broad set of techniques that alter videos to achieve specific outcomes.

They exist across a wide range of complexity (Figure 1.2) and are remarkably popular. For instance,

Instagram “filters”—whose abilities range from applying low-level filters to making subjects appear

more attractive with cosmetic changes (despite heavy criticism regarding mental health [9])—have

helped the app grow its user base to over 1 billion monthly active users [10]. Even single-purpose

manipulation apps, e.g., for artistic stylization, have achieved remarkable success, claiming more

than 100 million installations [11].

Video manipulation based on deep neural networks (DNNs) has become especially prevalent in

the public eye due to the alarmingly convincing nature of manipulated content. They are often used

in humorous situations, e.g., to put Nicolas Cage in popular movies [13] or to reveal Tom Cruise’s

passion for industrial cleaning [5], [14]. However, they can also be used to harm victims, e.g., by

creating pornographic content [6], [7] or by humiliating political figures [8], [15]. The severity of

2

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

these negative applications has mobilized organizations in academia, industry, and the government

to counteract them [16]–[18]. Understanding the full capabilities of video manipulation techniques

is crucial to developing countermeasures that will help protect society and the integrity of mass

media.

The most advanced video manipulation techniques exist in the form of generative video models,

which characterize an interesting distribution of videos through a process that can be sampled,

typically with some conditioning input. Examples include video interpolation networks, which

artificially slow down time [19], and style transfer networks, which make videos look like classical

art [20], [21]. Generative video models must be advanced enough to handle a variety of challenges,

e.g., reasoning over a complex spatiotemporal space and generating realistic structure in said space.

In recent years, most generative visual modeling research has revolved around a particular set of

core tasks, including but not limited to generation from scratch [22]–[24], super-resolution [25]–

[28], style transfer [20], [21], frame interpolation [19], [29], [30], and generalized video-to-video

translation [31], [32].

1.2 Video Inpainting

This dissertation focuses on the core task known as video inpainting [33]–[36]. At a high

level, video inpainting methods aim to replace a certain missing portion of a video with sufficiently

“plausible” values, meaning that the replacement should cause the resulting video to become

indistinguishable from a real one. The missing portion of the video, a.k.a. the masked region, may

cover a small or large part of the video across both spatial dimensions (i.e., width and height) and

the temporal dimension.

Video inpainting has major applications in social media, film, and beyond [33], [35], [37]. As

an illustrative example, imagine a picturesque sunset on a beach with calm, soothing waves rolling

in and out. It is the perfect scene that makes you want to pull out your phone and film it to preserve

the memory. You press the record button, but right after doing so, a young boy runs into view and

starts playing around in the sand. By the time he gets out of the way, the sun has already set, and

all you have on your phone is a recording of a naı̈ve boy to haunt your memories. Given labels

of where the boy is in the video, a video inpainting method can replace him with the background,

restoring the memory that you wanted to capture and allowing you to share it with friends without

embarrassment (Figure 1.3a).

Object removal is just one of many video inpainting applications for social media; it can also be

used for watermark and caption removal. For example, suppose you upload your sunset video to

a video hosting website, and then delete the original to save space on your phone. But then your

relative, who has not set up an account for that site, asks for a copy. You download the remote copy,

3

(a) Object removal (b) Watermark removal

OMG never wanna

leave

(c) Caption removal

Figure 1.3: Video inpainting applications.

only to find that the website has overlaid a huge watermark that ruins the moment. In this case,

video inpainting would let you remove the watermark and share the moment with your relative as

intended (Figure 1.3b). Similarly, videos shared on social media often include custom captions that

are meant to be funny, but actually backfire. In this case, video inpainting can remove the offending

caption and restore the original content (Figure 1.3c).

Furthermore, video inpainting can be used to produce useful research data for other computer

vision tasks, particularly when foreground objects distract from the desired downstream task.

For instance, imagine a roboticist who wants to create a 3D model of the static parts of a work

environment for motion planning purposes; additionally, imagine that they only have access to

RGB cameras to capture the scene, and that physically clearing the room of dynamic objects is

prohibitively expensive (e.g., due to heavy objects or the potential disruption of daily activities).

Video inpainting would allow the roboticist to remove dynamic objects from the captured scene,

facilitating a reconstruction of the static environment (via Structure from Motion) with minimal

physical effort.

1.2.1 Problem Statement

We formally define the video inpainting task as follows. Let X be a set of possible values for a

pre-determined color space (e.g., {0, 1, . . . , 255} for RGB), and let V ∈ XH×W×C×T be an input

video with a resolution of H ×W pixels, C color channels, and T frames. V contains a placeholder

value for missing voxels (i.e., spatio-temporal pixels) whose locations are indicated by the occlusion

4

O
u
tp

u
t

In
p
u
t

(a) Video inpainting

O
u
tp

u
t

In
p
u
t

(b) Video prediction

O
u
tp

u
t

In
p
u
t

(c) Frame interpolation

Figure 1.4: Visualization of video inpainting and related tasks. The input row corresponds to the

input video V , and the white area corresponds to the placeholder values and the occlusion mask M .

The yellow area corresponds to the desired inpainting prediction f ∗(V,M).

mask M ∈ {0, 1}H×W×T . Additionally, let scorevq denote an abstract function that quantifies the

visual quality of a video given an auxiliary information context A (both scorevq and A are defined

concretely in Section 1.2.3). The goal of video inpainting is to determine, given V and M , the

function f ∗ yielding values that, when used to inpaint V , maximize the visual quality of the result:

f ∗ = argmax
f

scorevq

(
f(V,M), A

)
(1.1)

Video inpainting is typically studied as a reconstruction problem. Specifically, input video V is

generated by taking a real-world source video—denoted as V ∗—and masking out the voxels of M .

As described in Section 1.2.3, V ∗ is usually required to compute the visual quality of f(V,M).

We visualize the video inpainting task in Figure 1.4a. Constrained formulations of video

inpainting have been studied under different names—for instance, video prediction aims to produce

a sequence of frames that follow an input sequence (Figure 1.4b), and frame interpolation aims to

produce one or more frames that depict the progression between two input frames (Figure 1.4c).

With respect to Equation 1.1, these formulations correspond to forcing Mi,j,k to be 1 for all i, j if k

is in a set of missing time steps τ ⊂ {0, . . . , T − 1}.

1.2.2 Semantic Ambiguity

It is worth noting that f ∗ as introduced in Equation 1.1 is not well-defined, i.e., the video

inpainting problem does not establish any particular f as the only correct solution. This leads to

the primary challenge of video inpainting: semantic ambiguity. In other words, there are many

5

Masked

input

Inpainting

w/ person

Inpainting

w/o person

(a) Video inpainting

Input frames

Predictions

(b) Video prediction

Input frame 1 Input frame 2

Interpolated frames

(c) Frame interpolation

Figure 1.5: Rhetorical visualizations of how semantic ambiguity can arise in video inpainting and

related tasks. (a) The masked region can be inpainted with or without a person; both options are

equally sensible. (b) The input sequence can lead to the vase breaking or not. (c) The two input

frames can result from the pendulum swinging or standing still.

plausible ways to fill in the missing area, each arising from a different explanation of the events

in the scene observed through V and M . For example, given a video recorded in a public park, it

would be reasonable to fill in the missing area either with a continuation of the background or an

object that typically appears in a park, such as a person or a bench (Figure 1.5a).

In constrained formulations of video inpainting, other forms of semantic ambiguity become more

prominent. For example, for video prediction, challenges arise from many plausible futures—for

instance, in Figure 1.5b, the vase might or might not break. For frame interpolation, aliasing can

lead to multiple explanations of the input, such as in Figure 1.5c, where the pendulum could be

moving or standing still.

Semantic ambiguity raises challenges both for solution design and for evaluation. In terms of

solution design, it is important for video inpainting models to leverage the available information

in a way that eliminates spurious predictions. Two broad approaches include reasoning about

uncertainty explicitly within the model [38]–[40] and augmenting the given information in some

way (as discussed in Section 1.3, the latter approach constitutes a major thrust of our work). As for

evaluation, it is worth considering alternative schemes that do not penalize inpainting predictions

for deviating from an assumed ground truth. Concretely, this suggests that the reconstruction-based

6

formulation of video inpainting should be evaluated not only with reconstruction-based metrics, but

also with metrics that measure complementary properties like realism and temporal consistency

(Section 1.2.3).

1.2.3 Measuring Visual Quality

Delving further into the visual quality function, scorevq depends on three complementary

aspects—realism, temporal consistency, and reconstruction performance—each of which depends

on its own sources of auxiliary information (A is the union of all auxiliary information). We express

this statement as a weighted sum of three individual functions scorereal, scoretemp, and scorerecons,

each of which consumes the inpainting result f(V,M) and its own auxiliary context A∗:

scorevq = λrealscorereal

(
f(V,M), Areal

)
+ λtempscoretemp

(
f(V,M), Atemp

)

+ λreconsscorerecons

(
f(V,M), Arecons

)
(1.2)

Each λ∗ is a constant denoting the weight of one visual quality aspect. Furthermore, the source video

from which the video inpainting input V is derived, V ∗, is considered a component of auxiliary

information A within our formulation. Additional examples of auxiliary information are discussed

in Chapter 2.

We now provide an overview and motivation for each of the three aspects of visual quality

(technical details are available in Chapter 2). First, realism captures how well an inpainted video

fits within the distribution of real videos. It is often measured by comparing the statistics of DNN

features between artificial and real videos, e.g., with the Fréchet Inception Distance [41]. Realism

best captures the desired goal of plausibility since its generality imposes minimal constraints on

the inpainted video. However, modeling the distribution of real videos, even discriminatively, is

extremely challenging; for this reason, it is useful to measure complementary aspects of visual

quality.

Meanwhile, temporal consistency measures the change in color among pixels that correspond to

the same location in the captured scene across time. Techniques to quantify temporal consistency

include comparing colors at the endpoints of optical flow estimates [42] and scoring patch similarity

across frames [21]. These measurements leverage the fact that real-world scenes, as well as camera

motion, tend to change gradually with respect to standard video frame rates, i.e., 24-30 frames

per second (FPS). Low temporal consistency manifests in the form of flickering artifacts, which

simultaneously distract viewers and give away the artificial nature of the video inpainting result.

Finally, reconstruction performance penalizes any deviations between the inpainted video,

f(V,M), and the source video from which V was derived, V ∗. Corresponding frames of inpainted

and source videos can be compared via pixel-wise differences (e.g., Mean Square Error and Peak

7

Signal-to-Noise Ratio), semantic feature distances (e.g., the Learned Perceptual Image Patch

Similarity metric [43]), or intermediate metrics (e.g., Structural Similarity [44]). Reconstruction

performance reflects the standard reconstruction-based formulation of video inpainting, and is the

least ambiguous aspect of visual quality discussed in this dissertation (the solution that maximizes

it is self-evident and non-degenerate). However, as discussed in Section 1.2.2, it fails to capture the

ill-defined nature of video inpainting, hence the need for complementary metrics.

1.3 Contributions

The contributions of this dissertation revolve around two aspects of video inpainting: temporal

context (Section 1.3.1) and diagnostic evaluation (Section 1.3.2). Temporal context refers to relevant

information from neighboring frames, and is important for video inpainting because it provides

semantic information that distinguishes plausible solutions from implausible ones. Meanwhile,

diagnostic evaluation refers to techniques that elucidate when video inpainting models fail, how

failures manifest in the output, and what properties of a given model lead to failures. Such evaluation

strategies are valuable because they provide stronger guarantees on when video inpainting models

can be expected to perform well.

1.3.1 Temporal Context

To inpaint a given video frame, a video inpainting model does not need to rely solely on

information within that frame; instead, it can leverage information from neighboring frames, which

forms the temporal context for the task. Temporal context provides two benefits to inpainting

models. First, it reduces the ambiguity of the task by providing semantic constraints. For instance,

in Figure 1.5c, the set of possible intermediate states of the pendulum can be reduced by providing

additional input frames. Second, temporal context provides appearance information that can be

replicated in the target frame due to the redundant nature of video frames.

In this dissertation, we propose two methods that exploit the benefits of temporal context.

Our first method, the Bidirectional Temporally-Aware Interpolation Network (bi-TAI), predicts

several contiguous full frames using a wider temporal context than prior work. In particular, prior

full-frame solutions could only consume one frame from both sides of the desired sequence, or

multiple frames from one side; on the other hand, ours leverages multiple frames from both sides.

By leveraging an extended temporal context, bi-TAI successfully reduces semantic ambiguity on

four video classification datasets, thereby producing results with better visual quality and semantic

agreement with the input data.

Our second method, Hyperconsistency (HyperCon), applies frame-wise models to videos in a

temporally consistent manner by synthesizing and exploiting temporal context between input frames.

8

Specifically, it identifies temporally consistent components within a processed, frame-interpolated

version of the input video, and then transfers these consistencies to the final output at the desired

frame rate. Unlike prior work, our method improves temporal consistency without introducing

discolorations; it also exhibits stronger performance on tasks as disparate as video inpainting and

style transfer.

1.3.2 Diagnostic Evaluation

In early video inpainting work, researchers relied on individual qualitative examples to analyze

their proposed methods; as a result, it was difficult to judge their efficacy in broad, real-world

scenarios. However, researchers have more recently demonstrated their methods on larger video

datasets, e.g., DAVIS [45] and YouTube-VOS [46], and have leveraged quantitative metrics such as

Learned Perceptual Image Patch Similarity [43] and Fréchet Inception Distance [41] to summarize

visual quality, thereby providing more compelling evidence of robust performance. Quantitative

evaluation on large-scale datasets is quickly becoming the norm in video inpainting, bringing it

closer in line with other popular computer vision tasks.

Despite these advances, most video inpainting evaluation focuses on demonstrating strong

performance over an entire dataset without thoroughly analyzing how and when a given method

fails. For instance, can an inpainting method reconstruct the appearance of an object that has never

appeared during training? Can it extrapolate a part of the background that is never visible throughout

the video? The answers to behavior-oriented questions such as these remain poorly understood,

primarily due to the lack of sufficient quantitative evaluation under fine-grained failure modes.

Our diagnostic evaluation techniques address this gap in knowledge by highlighting failure

modes and quantifying failure along orthogonal, interpretable axes. We propose two such solutions:

the Moving Symbols software library (Chapter 5) and the DEVIL benchmark (Chapter 6). Moving

Symbols allows researchers to produce synthetic video datasets governed by easily modifiable ap-

pearance and motion statistics; furthermore, objects in Moving Symbols videos have accompanying

metadata to enable a fine-grained analysis of video prediction performance. Using this software, we

demonstrate that a state-of-the-art video prediction model fails to extrapolate appearance and motion

information—despite its presence in the input sequence—and instead relies on the memorization of

priors from the training set.

Meanwhile, the DEVIL benchmark is a comprehensive suite of evaluation tools that illumi-

nate the strengths and weaknesses of modern video inpainting methods at scale. The available

videos target failure modes specific to video inpainting, namely those induced by the camera and

background scene motion in RGB videos, as well as the motion and size of occlusion masks.

Moreover, the evaluation scheme comprehensively summarizes performance under several failure

modes with metrics that assess multiple aspects of visual quality. The DEVIL benchmark allows us

9

to objectively compare the behaviors of seven state-of-the-art inpainting models in the largest study

of its kind to date.

1.4 Thesis and Impact Statement

Through innovations in temporal context and diagnostic evaluation, our work enforces a higher

standard of visual quality in video inpainting results on a larger scale than prior work. Specifically,

we propose novel algorithmic and diagnostic techniques that illuminate the relationship between

visual quality and video inpainting model design. We assess visual quality along three orthogonal

axes—realism, temporal consistency, and reconstruction performance—and propose algorithms that

demonstrably improve performance by exploiting temporal context. Furthermore, we introduce

evaluation tools that highlight video inpainting failure modes and quantify their impact on visual

quality at scale in a fine-grained manner.

The impact of our work is two-fold. First, our techniques enable researchers and ordinary

consumers to produce more convincing manipulated videos for their data processing and social

media needs, as well as to understand the positive and negative consequences of video manipulation.

Second, our diagnostic tools elevate standards for future video inpainting evaluation by facilitating

analysis that is fine-grained, replicable, open, and directly comparable between video inpainting

methods.

10

CHAPTER 2

Related Work

2.1 Datasets and Reconstruction

Video inpainting is generally studied as a reconstruction problem: masked input videos are

produced by masking out certain values of regular RGB videos, and the goal is to recover the

original masked values. Since this dissertation relies on large-scale evaluation and reconstruction

data samples, we provide a detailed explanation of the techniques used to generate reconstruction

samples at scale. We mainly consider the context of deep learning methods, which have provided

the deepest exploration of this topic among prior work.

Within deep learning methods, the reconstruction formulation of video inpainting lends itself to

a self-supervised approach, i.e., the supervised data used to train the inpainting model are generated

automatically without expert annotations. Because deep neural networks (DNNs) are sensitive

to training data [47], [48], the structure of the mask can greatly affect their performance at test

time. It is possible to apply simple dropping schemes such as uniform selection (as is standard for

general tensor completion methods); however, more sophisticated schemes are needed to simulate

the primary applications of video inpainting (i.e., object and watermark removal) and therefore

improve DNN model performance under real-world settings. Typically, such schemes produce

masks of contiguous regions that resemble a static or moving object in the video.

To train and evaluate video inpainting DNNs, most researchers source videos from large datasets

such as the Caltech Pedestrian Detection dataset [49], FaceForensics [50], YouTube-VOS [51], and

the DAVIS video object segmentation dataset [45]. However, Lee et al. [52] and Oh et al. [53]

adopt alternative strategies during training: specifically, they extract a random set of frames from

self-selected YouTube videos, or apply a sequence of random affine transformations on single

images from the Places dataset [54].

As for simulating object masks, researchers have employed a wide variety of techniques. One

simple option is to randomly mask out a rectangular region within the frame, and either update the

size and position at every time step or keep them fixed [55], [56]. Another approach is to utilize

the irregular mask dataset from Liu et al. [57], originally proposed to evaluate image inpainting

11

methods; Kim et al. [56] construct video masks from this dataset via random transformations at

each time step. Yet another technique is to generate moving objects in a procedural manner as

done by Chang et al. [37], [58]. In particular, they manipulate strokes defined by a sequence of

control points, where each stroke varies in width and each control point randomly moves based on

its velocity and acceleration.

In addition to purely automated strategies, video inpainting masks can also be produced in ways

that utilize real data. One such option is to copy real shapes from an object database such as the

MIT Saliency Benchmark [59] or the PASCAL VOC 2012 challenge [60]; Lee et al. [52] and Oh et

al. [53] opt for this approach by overlaying shapes onto the video frame and translating them over

time. Another option, adopted by Kim et al. [56], is to copy foreground object masks from a video

object segmentation dataset such as YouTube-VOS [51]. Although segmentations must be annotated

manually, they provide more realistic foreground object shapes than automatic approaches.

2.2 Evaluation

As motivated by Section 1.2.3, we evaluate visual quality in this dissertation along three

orthogonal axes, following prior video inpainting work [37], [53], [56], [61], [62]. These axes

are realism, temporal consistency, and reconstruction performance, which are described in the

remainder of this section.

Realism The Fréchet Inception Distance [41] (FID) is a realism metric that has been popularized

by image generative adversarial network literature. FID is computed by first fitting multivariate

normal distributions over samples of deep neural network representations of artificial and real

images, and then computing the Fréchet distance between these distributions [63]. In video

inpainting literature, FID has been adapted to consume videos instead of images [37], [53], [56]—in

this case, the artificial videos correspond to inpainted videos, and the real videos correspond to

those from which the masked videos to inpaint are derived. In the context of Equation 1.2, the

auxiliary information Areal encapsulates the distribution of real videos.1

Temporal Consistency One way to compute temporal consistency, assuming that the optical flow

of a given video is known, is to take the mean difference of colors of corresponding points between

consecutive frames. In blind video consistency work, optical flow is extracted by applying a flow

estimation model on the unprocessed video [42]. Likewise, in video inpainting, optical flow is

estimated from the source of the masked video, V ∗ [62]. Note that collecting ground-truth optical

1Video FID is slightly inconsistent with our formulation of plausibility in Equation 1.2 since it consumes sets of

inpainted videos rather than individual ones; regardless, we retain our formulation for pedagogical clarity.

12

flow in real videos requires specialized capture setups, and is thus generally unavailable. For this

reason, there exist other temporal consistency metrics that leverage the redundancy of video frames

without assuming that optical flow is given. For instance, the patch consistency metric proposed by

Gupta et al. [21] randomly samples a patch from one frame and computes the best similarity score

between it and neighboring patches in the next frame.

Reconstruction Performance The most straightforward way to measure reconstruction perfor-

mance is by computing an established image similarity metric between corresponding frames,

e.g., Peak Signal-to-Noise Ratio, Structural Similarity [44], or Learned Perceptual Image Patch

Similarity (LPIPS) [43]. However, extensions of these metrics to contiguous video frames are also

possible, and are capable of summarizing high-level differences that occur on a wider time scale.

For instance, LPIPS may be modified to extract video clip features from a 3D convolutional neural

network such as I3D [64]; we adopt this approach in our DEVIL benchmark (Chapter 6).

2.3 Methods

In this section, we provide an overview of the various classes of video inpainting approaches:

• General tensor completion methods, which find values that minimize the rank of the inpainted

video tensor (Section 2.3.1);

• Object-based methods, which repair foreground and background objects by exploiting their

typical behaviors (Section 2.3.2);

• Repetitive tensor-based methods, which capitalize on the repetitive nature of videos to borrow

suitable patches from the known region (Section 2.3.3); and

• Deep learning methods, which train deep neural networks (DNNs) to produce inpainting

values (Section 2.3.4).

2.3.1 General Tensor Completion

Given that videos are tensors with specific dimensions, video inpainting can be viewed as a

type of tensor completion problem, for which several solutions have been proposed. General tensor

completion methods—general in that the tensors need not represent any specific type of data—

assume that the completed tensor has a low rank, which is done to make the problem well-posed

and tractable. Specifically, given incomplete tensor T , they aim to find the complete tensor X with

13

minimal rank whose entries are consistent with T :

minimize
X

rank∗(X)

subject to XΩ = TΩ . (2.1)

Ω denotes observed entries, and rank∗ is a rank operator chosen from assumptions made on T .

One major class of general tensor completion methods focuses on minimizing the tensor trace

norm, i.e., a high-dimensional generalization of the matrix trace norm. These approaches are

inspired by the fact that the matrix trace norm provides the tightest lower bound on the matrix rank

obtainable by convex methods [65]. In particular, Liu et al. [66] define the tensor trace norm ‖X‖∗

as a convex combination of trace norms of X unfolded along each dimension:

‖X‖∗ :=
∑

i

αi‖X(i)‖∗ , (2.2)

where X(i) is the matrix obtained by unfolding X along dimension i, and the αis are nonnegative

coefficients that sum to 1. From this definition, they propose three ways to minimize ‖X‖∗, one that

adds a smoothness term and two that use non-smooth descent algorithms. Mu et al. [67] improve

efficiency by reshaping the unfolded matrices to be more square while preserving their low-rank

properties.

The other major class of tensor completion methods relies on decomposition. Rather than

solving for the missing values directly, they decompose the tensor into a product of several simpler

elements with pre-determined maximum ranks; the problem is then reduced to determining the

simpler elements from the incomplete tensor. The primary decompositions used in prior work

include the CANDECOMP/PARAFAC (CP) decomposition [68], which expresses a tensor as the

outer product of several vectors; and the Tucker decomposition [69], which uses a core tensor

multiplied by matrices along each dimension. Representative approaches include Zhang et al. [70],

who utilize the Tensor Singular Value Decomposition (t-SVD) [71] to perform video completion

and denoising; and Kasai [72], who proposes a CP decomposition-based algorithm for 3D tensors

in which one dimension grows over time (i.e., streaming video).

The aforementioned general tensor completion methods have been demonstrated in small video

inpainting experiments as proofs-of-concept. However, they are not well-suited for real-world

applications, such as object and watermark removal, due to their assumption that unmasked entries

are uniformly distributed. Because objects and watermarks consist of several contiguous pixels per

frame, this assumption is usually violated in practice. Furthermore, the amount of storage required

for intermediate computations can be prohibitively large, especially for long, high-resolution

videos [73]. For more information on general tensor completion methods, we refer the reader to the

14

excellent survey by Song et al. [74].

2.3.2 Object-Based Methods

Among the earliest methods specifically designed for video inpainting, it is common to exploit

typical behaviors of foreground objects and the background to repair them in a tractable manner.

For example, Zhang et al. [75] stitch background elements into several reference layers, and

then warp the reference layers back into each video frame. Similarly, Jia et al. [76] construct

background templates and paste them into each frame, and additionally reconstruct foreground

objects by modeling and completing their periodic motion. Patwardhan et al. [77] take an alternative

approach by first repairing the moving foreground, and then the background as subsequent processes.

Specifically, they repair the foreground by searching for and copying fragments guided by a

foreground mosaic/stitch image; then, they repair the remaining content by aligning and copying

pixels from neighboring frames. Jia et al. [78] do not explicitly divide foreground and background

recovery into separate processes; however, they exploit object motion through mean-shift tracking,

which is used to prioritize missing patches on the edge of the missing region and to locate suitable

source patches to copy into the missing region. These methods make strong assumptions about

foreground and background appearance within the video—e.g., repetitive foreground motion,

consistently-ordered background layers, and consistent object appearance and illumination across

frames—and are thus applicable only in limited use cases.

More recent object-based methods relax the aforementioned assumptions by leveraging piece-

wise homographies. For instance, Granados et al. [79] align foreground and background layers

across frames with piece-wise homographies, copy pixels from the aligned frames, and then

post-process the result to remove inconsistent illumination. Ebdelli et al. [80] follow a similar

approach, using pixel-wise weighted homographies for alignment and Poisson blending [81] for

post-processing. Although these methods have improved performance and increased the number of

applicable use cases, they rely on strong homography estimates, which may be difficult to obtain

on untextured or indistinguishable backgrounds; furthermore, they fail to account for foreground

motion near masked regions.

2.3.3 Repetitive Tensor-Based Methods

Repetitive tensor-based methods for video inpainting assume that spatiotemporal patches are

repeated often throughout the inpainted video, and leverage this assumption to either model or

directly borrow from the unmasked region in pursuit of the masked region. They differ from

general tensor completion methods in that they aim to recover contiguous missing regions given the

availability of contiguous observed regions, forgoing the assumption of uniform random missing

15

data. They also contrast with object-based methods in that they make no assumptions about the

foreground and background content of the video, theoretically enabling better performance when

the typical assumptions for object-based methods are broken.

It is possible to express the completed video with a probabilistic model—for instance, Cheung

et al. [82] learn video epitomes that express the statistics of the video with a 3D grid of multivariate

normal distributions from which inpainted values can be sampled. However, it is more common

for repetitive tensor-based methods to explicitly borrow elements from unmasked parts of the

video by solving an objective that encourages consistency among borrowed elements and/or their

neighborhoods. For example, Granados et al. [33] copy voxels into the inpainted region such that

adjacent voxels in the inpainted region have similar source neighborhoods.

Repetitive tensor-based methods operate more frequently at the patch level than at the voxel

level. Patch-level techniques have largely been inspired by Wexler et al. [83], who induce global

consistency by promoting local consistency among spatiotemporal patches that overlap a voxel in

the missing region. Subsequent patch-based methods have focused on improving search features and

speed; for instance, Newson et al. [34] expedite search by extending the image-based PatchMatch

algorithm [84] to spatiotemporal patches, and Huang et al. [35] incorporate optical flow and

geometric transforms to further improve the quality of borrowed patches. Although repetitive tensor-

based techniques can perform well without strict assumptions on the foreground and background

content, they can perform poorly under large camera motion and changes in illumination.

2.3.4 Deep Learning

Deep learning methods for video inpainting estimate a mapping between incomplete videos

and their completed counterparts by fitting a deep neural network (DNN) to self-supervised data.

Although most deep learning methods rely on self-supervision from a held-out training set, there

exist exceptions; for example, Zhang et al. [36] train a frame-wise 2D CNN strictly on the masked

video to be inpainted. They utilize losses that encourage the predicted frames and the optical flow

maps to match corresponding information that is available within the masked video.

Prior approaches can be subdivided into several classes, where each class encourages certain

behaviors of the model through carefully-designed network architectures. For instance, one class

adapts traditional image autoencoder architectures (e.g., UNet [85]) for use on masked videos; in

particular, they utilize 3D convolutional neural networks (CNNs), applying tweaks to manage the

explosion of data from the additional time dimension and reduce the total number of floating-point

operations (FLOPS). Chang et al. [37], for example, implement an autoencoder with gated 3D

convolutional filters whose outputs strictly depend on unmasked values from their inputs; they

further extend this model in [37] with semi-separable 3D kernels, allowing it to maintain a similar

level of performance with significantly fewer parameters and FLOPS. Wang et al. [55] propose a

16

stacked autoencoder network that first processes the video at a downsampled resolution with a 3D

CNN, and then refines the result frame-wise with a 2D CNN.

Meanwhile, flow-based deep learning methods predict optical flow to either borrow pixel values

from the unmasked region directly or modulate intermediate features in an interpretable manner.

For example, Xu et al. [61] predict the optical flow of the completed video in a coarse-to-fine

manner (i.e., at three gradually-increasing resolutions), and then propagate unmasked pixels via the

predicted flow. Kim et al. [56] propose a recurrent model that generates intermediate flow maps,

which are used to align features from neighboring frames to the current predicted frame.

Yet another class of deep learning methods provides explicit mechanisms for copying intermedi-

ate features from distant frames. For instance, Lee et al. [52] align reference frames to the target

frame via affine transformations that are estimated with an alignment network; then, they copy

features from the reference frames at corresponding spatial locations using self-attention. Oh et

al. [53] train a model to select values from reference frames based on the similarity between encoded

reference keys and target queries; this removes the need to find explicit global affine alignments

between frames.

2.3.4.1 Losses

Loss functions play a key role in training deep learning models to perform specific tasks. The

majority of those used for video inpainting quantify the similarity between the inpainted video

V̂ = f(V,M) and a corresponding “ground-truth” video V ∗ from which input V is derived (per the

notation from Chapter 1, V is an RGB video with placeholder values at missing voxels, M is the

mask indicating the missing voxels of V to inpaint, and f is the inpainting model).

Mean absolute/square error The most common losses among deep video inpainting methods are

the mean absolute/square error (MAE/MSE), which compare the values between the inpainted and

ground-truth videos at corresponding spatial locations across all frames. Let H,W, T denote the

height, width, and number of frames of the input video respectively. MAE/MSE are then defined as:

LMAE =

∑
h,w,t‖V

∗
h,w,t − V̂h,w,t‖

HWT
, (2.3)

LMSE =

∑
h,w,t‖V

∗
h,w,t − V̂h,w,t‖

2
2

HWT
, (2.4)

where h, w, and t index a voxel in the video. Different weights can be assigned to the masked and

unmasked parts of the video, as is done in [52], [53], [55].

17

Perceptual loss Originally developed for image super-resolution and style transfer [86], the

perceptual loss compares the features between corresponding inpainted and ground-truth frames

from multiple levels of an image classification network. Let Ît and I∗t respectively denote a frame

of the inpainted video and its corresponding ground truth. Also, let φl(x) denote the operation that

extracts features from layer l of an image classification network given an arbitrary image x, and let

L be the set of layer indexes from which features are extracted. Furthermore, let T be the number

of frames in the video, and Hl,Wl, Cl be the dimensions of feature activations from layer l. The

perceptual loss is defined as:

Lperc =
1

T

T∑

t=1

∑

l∈L

1

HlWlCl

‖φl(I
∗
t)− φl(Ît)‖

2
2 . (2.5)

Video inpainting methods that use perceptual loss include Lee et al. [52], Chang et al. [37], [58],

and Zhang et al. [36].

Style loss Adapted from the style transfer approach of Gatys et al. [87] and used in [37], [52], [58],

the style loss compares the correlations between features in corresponding frames by comparing

Gram matrices defined on feature activation tensors. Specifically, let Gφ
l (x) denote a Gram matrix

defined by the feature activations of an image classification network at layer l given an arbitrary

image x. Gφ
l (x) is computed by unfolding the feature activation tensor φl(x) along the spatial

dimensions—thereby producing a matrix ψl(x) of size Cl ×HlWl—and then multiplying ψl(x) by

its transpose:

Gφ
l (x) = ψl(x)ψl(x)

⊤ . (2.6)

The style loss is the scaled MAE between Gram matrices of corresponding inpainted and ground-

truth frames summed across all layers and time steps:

Lstyle =
1

T

T∑

t=1

∑

l∈L

1

ClCl

‖Gφ
l (I

∗
t)−Gφ

l (Ît)‖ . (2.7)

Optical flow loss For models that produce optical flow, e.g., [36], [56], [61], it is typical to

supervise the flow against corresponding estimates from the ground-truth video V ∗. Given ta and tb

as two distinct video frame indexes, let F̂ta→tb be the dense flow between them as generated by the

video inpainting model, and let F ∗
ta→tb

be the flow estimated between time steps ta and tb from V ∗,

e.g., by FlowNet2 [88]. The optical flow loss is the error between F̂ta→tb and F ∗
ta→tb

across several

18

frame pairs P:

Lflow =
1

|P|

∑

(ta,tb)∈P

1

HW
‖F ∗

ta→tb
− F̂ta→tb‖ . (2.8)

The pairs that make up P can correspond to both adjacent and distant frames [36], [56].

Warping loss As used by Kim et al. [56] and Zhang et al. [36], the warping loss traces inpainted

pixels through the optical flow produced by the video inpainting model, checking that corresponding

pixels have similar colors. For target time step tv and source time step tu, let F̂tv→tu be the flow

from time tv to time tu produced by the inpainting model. Also, let warp(Îtu , F̂tv→tu) be the result

of bilinearly sampling from the inpainted frame at time step tu, Îtu , using the displacements given

by F̂tv→tu . The warping loss is the mean error between the warped source frame warp(Îtu , F̂tv→tu)

and the corresponding target frame Îtv across several source and target pairs given by the set P:

Lwarp =
1

|P|

∑

(tv ,tu)∈P

1

HW
‖Îtv − warp(Îtu , F̂tv→tu)‖ . (2.9)

Generative adversarial network loss The generative adversarial network (GAN) loss adaptively

penalizes a video inpainting model by training a discriminator to distinguish real video clips from

inpainted ones. The discriminator is updated in alternation with the inpainting model (i.e., the

generator) to improve its ability to distinguish real and inpainted videos; meanwhile, the inpainting

model is optimized under a total loss that incorporates the discriminator’s output alongside other

objectives (i.e., task-based losses).

Chang et al. [37], [58] adapt the original cross-entropy formulation from Goodfellow et al. [89]

to include video inpainting task-based losses. To be precise, let f and D denote the inpainting and

discriminator models. Also, let R and F respectively denote the set of real videos and the set of

videos generated by the inpainting model f . Finally, let Ltask(v) be the sum of inpainting task-based

losses on a video v. The losses used to update f and D are:

Lf = Ev∼F [Ltask(v)− log(D(v)] , (2.10)

LD = −Ev∼R[log(D(v))]− EVF∼F [1− log(D(v))] . (2.11)

19

CHAPTER 3

Video Frame Inpainting

3.1 Introduction

There exist multiple video interpolation/extrapolation tasks where the goal is to synthesize pixels

across space and time conditioned on multiple input frames. In particular, three such tasks have

received a substantial amount of attention in recent years. In the first task, general video inpainting,

we are given a video that is missing arbitrary voxels (spatio-temporal pixels), and the goal is to fill

each voxel with the correct value. In the second task, frame interpolation, the goal is to predict the

appearance of one or more frames that lie in between two (typically subsequent) input frames. In

the final task, video prediction, the goal is to take a sequence of input frames and extrapolate the

appearance of multiple future frames.

Unfortunately, these three tasks are limited in terms of their assumptions or well-posed they

are. For example, general video inpainting methods are designed to fill in relatively small spatio-

temporal regions, and may therefore perform poorly when whole, contiguous frames are missing.

Frame interpolation methods fill in whole frames, but they cannot leverage enough contextual

information to rule out several plausible predictions (for instance, to predict the appearance of a

swinging pendulum, we would need more than two frames to determine its speed). Similarly, video

prediction methods cannot leverage information to determine which of several possible futures to

predict.

In light of the limitations of these video interpolation/extrapolation tasks, we focus on an

underexplored task that lies at their intersection, video frame inpainting (shown in Figure 3.1e). In

this task, the goal is to reconstruct a missing sequence of middle video frames given contiguous

sequences of frames that come immediately before and after it (the preceding and the following

frames). For example, given a clip of someone winding up a baseball pitch and a clip of that person

after he/she has released the ball, we would predict the clip of that person throwing the ball. Video

frame inpainting methods can be used in multiple applications, e.g. to upsample videos temporally

or to smoothly splice video clips taken at different times.

Although our task can be seen as a generalization or modification of other standard video

interpolation/extrapolation tasks, ours provides a new combination of challenges that enable method-

20

(b) General video inpainting

FEDCBA

FEDCBAA

O
ut

pu
t

In
pu

t

(c) Frame interpolation

FEDCBA

FEDCBA

O
ut

pu
t

In
pu

t

(d) Video prediction

FEDCBA

FEDCBA

O
ut

pu
t

In
pu

t

(e) Video frame inpainting (this work)

FEDCBA

FEDCBA

O
ut

pu
t

In
pu

t

(a) A sequence of video frames. Video interpolation/extrapolation methods aim to recover parts of this sequence from other parts.

A B C D E F

Figure 3.1: A visual comparison of various video interpolation/extrapolation tasks. In this paper,

we explore (e) video frame inpainting. Unlike general video inpainting methods, we recover whole,

contiguous frames; and unlike frame interpolation and video prediction methods, we predict the

desired sequence using multiple frames that appear both before and after it.

ological insight. For example, it resembles general video inpainting in the case where the missing

voxels are arranged in a certain pattern, but our formulation emphasizes the completion of multiple

contiguous frames without ground-truth spatial information at the inpainted time steps, whereas

general video inpainting typically emphasizes the completion of regions over a long temporal

extent but a limited spatial extent. It also resembles frame interpolation and video prediction with

additional input frames, but to the best of our knowledge, prior works in these areas have not

leveraged extended temporal context both before and after the desired sequence. Furthermore,

compared to frame interpolation and video prediction, the appearance of middle frames is greatly

constrained by the extended context on either side, making our formulation more well-defined and

reconstruction error more interpretable.

In this work, we present the first deep neural network (DNN) specifically designed for video

frame inpainting. Inspired by the recent successes of DNNs for video prediction and frame

interpolation, we address the problem in two steps as shown in Figure 3.2. First, we use a video

prediction subnetwork to generate two intermediate predictions of the middle frames: the “forward

prediction” conditioned on the preceding frames, and the “backward prediction” conditioned on

the following frames. Then, we blend each pair of frames corresponding to the same time step to

obtain the final prediction. The blending process uses a convolutional neural network (CNN) that

interpolates the final frame from the two input frames as well as the corresponding time step in a

21

Input frames

Intermediate
predictions

Final
predictions

… …

…

Preceding frames Following frames

…
Time step input

Predicted middle frames

Backward predicted framesForward predicted frames

… …

…

Figure 3.2: An overview of our bi-TAI method for video frame inpainting. We predict middle

frames by blending forward and backward intermediate video predictions (generated by φpred) with

a Temporally-Aware Interpolation network (φblend).

data-driven manner. In short, we perform bidirectional prediction followed by temporally-aware

interpolation (TAI) to predict the middle frames; therefore, we name our full method and model

bi-TAI.1 As we show in our experiments, bi-TAI yields the most accurate predictions among several

state-of-the-art baselines and across multiple human action video datasets.

Blending the intermediate frames generated by the bidirectional prediction process is a non-

trivial task; therefore, we develop a TAI strategy that exploits three characteristics of bidirectional

prediction. First, a pair of intermediate frames for the same time step might be inconsistent,

e.g. an actor might appear in two different locations. To address this, we introduce a CNN for

blending/interpolation that modulates the pair of frames with adaptive convolutional kernels and

then adds them together; this process can cleanly merge the pair of frames by reconciling the

differences between them. Second, for any given time step, the forward and backward predictions

are not equally reliable: the former is more accurate for earlier time steps, and the latter is more

accurate for later time steps. Hence, we feed time step information directly into the blending

network, making it temporally-aware by allowing it to blend differently depending on which time

step it is operating at. Finally, the intermediate predictions come from a DNN whose hidden features

may be useful for blending. To leverage these features, we use them to condition the adaptive

convolutional kernels that are used to modulate the intermediate predictions. We implement this

strategy with a novel blending CNN called the Temporally-Aware Interpolation Network (or TAI

network for short), which we describe in Sec. 3.2.4.

In summary, we make the following contributions. First, we propose bi-TAI, a DNN for video

frame inpainting that generates two intermediate predictions and blends them together with our

1bi-TAI was originally proposed by this dissertation’s author in [90], [91].

22

novel TAI network. Second, we compare our approach to several state-of-the-art methods from

the video inpainting, video prediction, and frame interpolation literature, and demonstrate that our

method outperforms them quantitatively and qualitatively on several human action video datasets.

Finally, we perform ablation studies to demonstrate that using a temporally-aware interpolation

network (as opposed to simple blending strategies or an interpolation network that does not learn

to use temporal information dynamically) is key to blending bidirectional predictions well. We

provide an implementation of our model on GitHub.2

3.2 Approach

3.2.1 Problem Statement

We define the video frame inpainting problem as follows. Let V = {v1, v2, . . . , vT} be a

sequence of frames from a real video, p, m, and f be the number of “preceding”, “middle”, and “fol-

lowing” frames such that p+m+ f = T , and PV = {v1, . . . , vp} ,MV = {vp+1, . . . , vp+m} , FV =

{vp+m+1, . . . , vT} be the sequences of preceding, middle, and following frames from V respec-

tively. We seek an approximation to the oracle video frame inpainting function φ that satisfies

MV = φ (PV , FV) for all V .

3.2.2 Model Overview

We propose a DNN to approximate the oracle video frame inpainting function φ (see Figure 3.2).

Our model decomposes the problem into two sub-problems and tackles them sequentially with

two modules: the Bidirectional Video Prediction Network (Sec. 3.2.3) and the Temporally-Aware

Interpolation Network (Sec. 3.2.4).

• The Bidirectional Video Prediction Network generates two intermediate predictions of the

middle sequence MV , where each prediction is conditioned solely on the preceding sequence

PV and the following sequence FV respectively.

• The Temporally-Aware Interpolation (TAI) Network blends corresponding frames from

the predictions made by the Bidirectional Video Prediction Network, thereby producing the

final prediction M̂V . It accomplishes this by leveraging intermediate activations from the

Bidirectional Video Prediction Network, as well as scaled time steps that explicitly indicate

the relative temporal location of each frame in the final prediction.

Even though our model factorizes the video frame inpainting process into two steps, it is optimized

end-to-end.

2https://github.com/MichiganCOG/video-frame-inpainting

23

https://github.com/MichiganCOG/video-frame-inpainting

Preceding frames

Forward prediction

Backward prediction

Following frames

Figure 3.3: The Bidirectional Video Prediction Network.

3.2.3 Bidirectional Video Prediction Network

We use the Bidirectional Video Prediction Network φpred, shown in Figure 3.3, to produce

two intermediate predictions—a “forward prediction” M̂P
V = {v̂Pp+1, . . . , v̂

P
p+m} and a “backward

prediction” M̂F
V = {v̂Fp+1, . . . , v̂

F
p+m}—by conditioning on the preceding sequence PV and the

following sequence FV respectively:

M̂P
V = φpred (PV) , (3.1)

M̂F
V =

[
φpred

(
(FV)

R
)]R

, (3.2)

where (·)R is an operation that reverses the input sequence. We use the same parameters to generate

the forward and backward predictions for two reasons: (i) it substantially reduces the size of the

Bidirectional Video Prediction Network, and (ii) forward and backward motion behave similarly

in terms of low-level pixel dynamics, so it is beneficial to share the parameters that predict such

motion.

The Bidirectional Video Prediction Network recurrently generates each frame by conditioning

on all previous frames. For example, for the forward prediction:

v̂Pk+1 = φpred

(
{ṽP1 , ṽ

P
2 , . . . , ṽ

P
k }

)
, (3.3)

where for a given t, ṽPt is either vt (an input frame) if t ∈ {1, . . . , p} or v̂Pt (an intermediate predicted

frame) if t ∈ {p + 1, . . . , p +m}. During this phase, we also store a subset of the intermediate

activations from the Bidirectional Video Prediction Network, denoted as πt = {π1
t , π

2
t , . . . }, that

24

serve as inputs to the TAI network. We apply an analogous procedure to obtain each frame in the

backward prediction v̂Ft and its corresponding intermediate activations ρt = {ρ1t , ρ
2
t , . . . }.

3.2.4 Temporally-Aware Interpolation Network

Following the Bidirectional Video Prediction Network, the TAI network φblend takes correspond-

ing pairs of frames from M̂P
V and M̂F

V with the same time step, i.e.
(
v̂Pt , v̂

F
t

)
for each time step

t ∈ {p+ 1, . . . , p+m}, and blends them into the frames that make up the final prediction M̂V :

v̂t = φblend

(
v̂Pt , v̂

F
t

)
, (3.4)

M̂V = {v̂t | t = p+ 1, . . . , p+m} . (3.5)

Blending v̂Pt and v̂Ft is difficult because (i) they often contain mismatched content (e.g. between

the pair of frames, objects might be in different locations), and (ii) they are not equally reliable

(e.g. v̂Pt is more reliable for earlier time steps). As we show in Sec. 3.3.3, equally averaging v̂Pt and

v̂Ft predictably results in ghosting artifacts (e.g. multiple faded limbs in human action videos), but

remarkably, replacing a simple average with a state-of-the-art interpolation network (e.g. Niklaus et

al. [92]) also exhibits this problem.

In order to blend corresponding frames more accurately, our TAI network utilizes two additional

sources of information. Aside from the pair of frames to blend, it receives the scaled time step to

predict, defined as wt = (t− p)/(m+ 1), and the intermediate activations from the Bidirectional

Video Prediction Network πt and ρt. We feed wt to the TAI network so it can learn how to

incorporate the unequal reliability of v̂Pt and v̂Ft into its final prediction; we feed πt and ρt to

leverage the high-level semantics that the Bidirectional Video Prediction Network has learned, as

well as to backpropagate errors through the Bidirectional Video Prediction Network more easily.

We contrast standard interpolation with TAI algebraically:

v̂t = φinterp

(
v̂Pt , v̂

F
t

)
, (3.6)

v̂t = φTAI

(
v̂Pt , πt, v̂

F
t , ρt, wt

)
. (3.7)

3.2.5 Network Architecture Details

Our high-level approach to video frame inpainting places few constraints on the network

architectures that can be used to implement each module (Sec. 3.2.2). To demonstrate the full

potential of our approach, we base the network architectures for each module on the top-performing

architectures for video prediction and frame interpolation (to the best of our knowledge as of this

writing). We instantiate the Bidirectional Video Prediction Network φpred with MCnet [93] (we

review the architecture of MCnet and its use in bi-TAI in Sec. 3.2.5.1). As for the TAI network, we

25

modify the Separable Adaptive Kernel Network [92] to take as input the scaled time step wt and the

intermediate activations πt and ρt (we elaborate on this extension in Sec. 3.2.5.2). An additional

benefit of these architectures is that they are both fully-convolutional, which allows us to modify

the video resolution at test time. We believe that the individual subnetworks can be improved to

leverage the structure of our task more effectively, but we leave this for future work.

3.2.5.1 Bidirectional Video Prediction Network Details

MCnet Instead of learning the spatiotemporal representation via a single encoding network,

MCnet [93] disentangles the spatial and temporal encoding via two sets of three VGG [94] encoder

blocks each (the weights are not shared). The spatial encoder operates on the previous RGB video

frame, and the temporal encoder operates on the difference between the last two video frames

vt−1− vt−2. The temporal encoder also employs a Convolutional LSTM [95] to encode the temporal

history of the sequence. After computing the spatial and temporal encodings, MCnet concatenates

them along the feature dimension and decodes them into the next frame. The decoder also takes in

the intermediate activations of corresponding VGG blocks in the content and temporal encoders,

which are concatenated feature-wise and then fused via multiple convolution layers (residual layers).

Computing intermediate activations for TAI To obtain the intermediate features πt and ρt to

be fed to the TAI network, we concatenate the intermediate activations from corresponding VGG

blocks in the spatial and temporal encoders. For example, π1
t is the concatenation of the activations

from the first VGG blocks in the forward prediction, ρ2t is the concatenation of the activations from

the second VGG blocks in the backward prediction, and so on. We thus have three intermediate

features for each of the forward and backward predictions for each time step, i.e. πt = {π1
t , π

2
t , π

3
t }

and ρt = {ρ1t , ρ
2
t , ρ

3
t}.

3.2.5.2 TAI Network Details

Similarly to the Separable Adaptive Kernel Network [92], our TAI network blends a pair of

intermediate frames (v̂Pt , v̂
F
t) by first applying a unique, adaptive 2D kernel to each patch in the two

input frames, and then summing the resulting images pixel-wise. The primary way in which our

TAI network differs from the Separable Adaptive Kernel Network is in how the adaptive kernels are

computed. Both use an encoder-decoder network structure [96] that outputs the adaptive kernels;

however, the Separable Adaptive Kernel Network uses the two frames to interpolate as inputs to the

encoder-decoder network, whereas we use intermediate activations from the Bidirectional Video

Prediction Network, πt and ρt, as well as the scaled time step wt = (t − p)/(m + 1). Note that

we still apply the adaptive kernels to the intermediate frames (v̂Pt , v̂
F
t), not to the intermediate

26

10
24

, 2
56

25
6,

 5
12

51
2,

 5
12

51
2,

 2
56

25
6,

 1
28

12
8,

 6
4 65

, 5
1

3,
 3

, 5
1,

 5
1

65
, 5

1

3,
 3

, 5
1,

 5
1

65
, 5

1

3,
 3

, 5
1,

 5
1

65
, 5

1

3,
 3

, 5
1,

 5
1

Text block with center
alignment and no

padding

3, 3, a, b

Element-wise addition

Stack

3x3 convolution

Bilinear upsampling

Max pooling

ReLU

=

3, 3, a, b

3, 3, a, b

3, 3, a, bVGG Block

a,b

(a)

Element-wise
addition

Local
convolution

Encoder-
decoder

(b)

Figure 3.4: (a) The architecture of TAI’s encoder-decoder network. (b) The TAI network applied to

the intermediate predictions from the Bidirectional Video Prediction Network.

predictions πt and ρt.

To be more precise, we take the scaled time step wt and three sets of intermediate activations

from the forward and backward predictions (πt = {π1
t , π

2
t , π

3
t }, ρt = {ρ1t , ρ

2
t , ρ

3
t}), and feed them to

an encoder-decoder network to compute the parameters of the adaptive kernels KP
t and KF

t :

KP
t , K

F
t = φenc dec

blend (πt, ρt, wt) , (3.8)

where KP
t and KF

t are 3D tensors whose height and width match the frame resolution and whose

depth equals the number of parameters in each adaptive kernel. We inject the scaled time step

by replicating it spatially and concatenating it to one of the decoder’s hidden activations as an

additional channel. As with the Separable Adaptive Kernel Network, we predict the parameters for

a set of separable 2D kernels instead of standard 2D kernels to scale the size of the adaptive kernels

more efficiently. The encoder-decoder network architecture is summarized in Figure 3.4a.

Afterwards, we apply the adaptive kernels to each input frame and sum the resulting images

pixel-wise:

v̂t(x, y) = KP
t (x, y) ∗ P

P
t (x, y) +KF

t (x, y) ∗ P
F
t (x, y) , (3.9)

where v̂t(x, y) is the pixel value of the final prediction v̂t at (x, y), K
(·)
t (x, y) is the 2D kernel

parameterized by the depth column of K
(·)
t at (x, y), ∗ is the convolution operator, and P

(·)
t (x, y) is

the patch centered at (x, y) in v̂
(·)
t . We summarize our use of the TAI network in Figure 3.4b.

27

3.2.6 Training Strategy

To train bi-TAI, we use both reconstruction-based and adversarial objective functions, the latter

of which has been shown by Mathieu et al. [97] to improve the sharpness of predictions. Elaborating

on the adversarial objective, we train a discriminator D, which is a binary classification CNN, to

distinguish between clips from the dataset and clips generated by bi-TAI. Meanwhile, we train

bi-TAI—the “generator”—to not only fool the discriminator, but also generate predictions that

resemble the ground truth.

We update the generator and the discriminator in an alternating fashion. In the generator update

step, we update bi-TAI by minimizing the following structured loss:

Lg = αLimg

(
M̂P

V ,MV

)
+ αLimg

(
M̂F

V ,MV

)

+ αLimg

(
M̂V ,MV

)
+ βLGAN

(
M̂V

)
, (3.10)

LGAN

(
M̂V

)
= − logD

([
PV , M̂V , FV

])
, (3.11)

where α and β are hyperparameters to balance the contribution of the reconstruction-based loss

Limg and the adversarial loss LGAN . Note that we supervise the final prediction M̂V as well as the

intermediate predictions M̂P
V and M̂F

V simultaneously. The loss Limg consists of the squared-error

loss L2 and the image gradient difference loss Lgdl [97], which encourages sharper predictions

by penalizing the difference between the image gradients of the ground truth frames and the

intermediate/final predictions at every pixel:

Limg

(
M̂

(·)
V ,MV

)
= L2

(
M̂

(·)
V ,MV

)
+ Lgdl

(
M̂

(·)
V ,MV

)
, (3.12)

L2

(
M̂

(·)
V ,MV

)
=

∑

t

∥∥∥vt − v̂
(·)
t

∥∥∥
2

2
, (3.13)

Lgdl

(
M̂

(·)
V ,MV

)
=

∑

t,i,j,k

[
|∇vt −∇v̂

(·)
t |

]

i,j,k

. (3.14)

Here, M̂
(·)
V can be one of the intermediate predictions

{
M̂P

V , M̂
F
V

}
or the final prediction M̂V . In

the discriminator update step, we minimize the cross-entropy error:

Ld = − logD(V)− log

(
1−D

([
PV , M̂V , FV

]))
. (3.15)

This loss encourages D to assign a high score to real video clips and a low score to clips that include

generated middle frames. We use the same discriminator as Villegas et al. [93], but replace each

layer that is followed by batch normalization [98] with a spectral normalization layer [99], which

28

we have found results in more accurate predictions.

3.3 Experiments

3.3.1 Experimental Setup

3.3.1.1 Datasets

We perform our experiments on videos from several human action and object video datasets:

KTH Actions [100], UCF-101 [101], HMDB-51 [102], and ImageNet-VID [103]. KTH Actions and

UCF-101 are commonly used in video prediction and frame interpolation work [19], [93], [97], and

HMDB-51 is a dataset we have added to further explore performance on challenging human action

videos. ImageNet-VID is used to investigate performance on videos that do not primarily feature

humans. We summarize the training and testing sets in Table 3.1, and now proceed to describe them

in detail.

KTH Actions contains a total of 2,391 grayscale video clips with resolution 120×160 (height

× width), which are divided into a standard training and testing set. Each video clip contains one

of 25 subjects performing one of six actions (e.g. handwaving, jogging, boxing, etc.). We divide

the standard training set into a smaller training set and a validation set based on the identity of the

person in each video (the former includes subjects 1-14, and the latter includes subjects 15-16);

these sets are used for training and hyperparameter search respectively. Following Villegas et

al. [93], we reduce the resolution to 128×128. We train each model to predict up to five middle

frames from up to five preceding and following frames (i.e. up to ten input frames in total); at

inference time, we evaluate each model on its ability to predict either five or ten middle frames,

given exactly five preceding and five following frames in both cases. The ten-frame case allows us

to evaluate generalization performance (similarly to Villegas et al. [93], who double the number of

frames to predict between training and testing time).

UCF-101 contains 13,320 RGB video clips from YouTube with resolution 240×320 across 101

action classes (e.g. horse riding, playing guitar, rowing, etc.). It provides three cross-validation folds

for action recognition (each fold specifies a training and a test set); we take the test videos from the

first fold as our test set and separate the remaining videos into our training and validation sets (clips

are separated into an approximate 80-20 split such that the clips from any given source video do not

appear in both sets). During training, we reduce the resolution of each video to 160×208 (due to

the hardware limitations encountered with our bi-TAI model), and train each model to predict up to

three middle frames from up to four preceding and following frames (i.e. up to eight input frames in

total). At test time, we scale all videos to 240×320 resolution, and evaluate each model’s ability to

predict either three or five middle frames given exactly three preceding and three following frames.

29

Dataset
source

clips

Resolution

(source)

Resolution

(train)

Resolution

(val/test)

Grayscale /

color

Max p/f
(train)

Max m
(train)

p/f

(val/test)

Small m
(val/test)

Large m
(val/test)

KTH [100] 2,391 120×160 128×128 128×128 Grayscale 5 5 5 5 10

UCF-101 [101] 13,320 240×320 160×208 240×320 Color 4 3 4 3 5

HMDB-51 [102] 6,849 240×var. (*) 160×208 240×320 Color 4 3 4 3 5

ImageNet-VID [103] 5,354 Varies - 240×320 Color - - 4 3 5

Table 3.1: Summary of the training and testing sets used in our experiments. (*) The HMDB-51

source clips have varying aspect ratios, and thus varying widths.

Due to the large size of this dataset, we only evaluate on the first clip of each test video.

HMDB-51 contains 6,849 RGB video clips across 51 action classes (e.g. golf, hugging,

somersaulting, etc.) from movie clips, YouTube, and other publicly available datasets; each video

has a fixed height of 240 pixels. The dataset provides three cross-validation folds; we construct

the training, validation, and test sets using the same strategy used for UCF-101. The rest of our

experimental setup for HMDB-51 matches that of UCF-101.

ImageNet-VID is a video object detection dataset provided as part of the ILSVRC Chal-

lenge [103]. We use the 2015 version, which contains 5,354 RGB video clips across 30 animal and

vehicle object classes. For this dataset, we use all models pre-trained on UCF-101 and evaluate

on the provided test set. To preprocess the test set, we resize all videos to 240×320 and filter out

videos with fewer than 13 frames.

Constructing video clips for training and testing During training, we construct minibatches

by randomly sampling the number of preceding, middle, and following frames (p, m, and f

respectively), selecting a video subclip with the appropriate number of frames, and then splitting that

clip into the ground truth preceding, middle, and following sequence. Each video clip is randomly

flipped horizontally or time-reversed before splitting with probability 0.5 for data augmentation.

We construct the validation and test sets differently for each of the three datasets. For KTH, we

extract all subclips across all validation/test video clips from a sliding window of size T = p+m+f

and stride s. In our experiments, p = f = 5, m is 5 or 10, and s depends on the action class

(s = 3 for the running and jogging classes, and s = m for the walking, boxing, handclapping,

and handwaving classes, following the stride selection process used by Villegas et al. [93]). For

UCF-101, HMDB-51, and ImageNet-VID, we only evaluate each model on the first T frames of

each video in the test set (following Villegas et al. [93]), where T = p+m+ f , p = f = 4, and m

is 3 or 5.

3.3.1.2 Baselines

As a sanity check, we compare our bi-TAI method to a linear time-weighted average of the last

preceding frame and the first following frame, where the weights for the following and preceding

30

frames for time t are wt = (t − p)/(m + 1) and 1 − wt respectively. We refer to this baseline

as TW P F for time-weighted preceding and following frame. We also compare bi-TAI to state-

of-the-art methods for general frame inpainting, video prediction, and frame interpolation [19],

[34], [93] to demonstrate that casting our video frame inpainting problem as a different video

interpolation/extrapolation task does not yield optimal performance.

The first baseline, Newson et al. [34], is a general video inpainting method that iteratively fills

in missing voxel patches with nearest neighbors in the unoccluded portion of the video, using a

multi-resolution pyramid to improve the distance metric. For this method, we completely mask the

middle frames and run the authors’ publicly-available code to recover them. We omit their pre- and

post-alignment of video frames in order to compare fairly against the other methods, which lack

this step. Note that this method does not have a training phase (it has no parameters to tune based

on training data).

The second baseline, MCnet [93], is a video prediction method that sequentially predicts frames

by first decomposing the preceding clip into motion difference frames and an RGB content frame,

and then regressing this representation to the next frame using an encoder-decoder network. We

use this method to predict the middle frames given only the preceding frames as input (this method

cannot take following frames because it is a video prediction method). We re-implement their code

in PyTorch [104] based on their available implementation in TensorFlow [105]. We use the same

loss functions as the original authors to train this model, but for a fairer comparison with bi-TAI, we

improve their discriminator by using spectral normalization [99] instead of batch normalization [98].

The final baseline, Super SloMo [19], is a frame interpolation method that uses a CNN to predict

the optical flow between the two input frames and the frame at an arbitrary intermediate time step.

We use Super SloMo to predict each middle frame given only the last preceding frame and the first

following frame as input (it cannot take multiple preceding or following frames because it is a frame

interpolation method). Since the original code is unavailable, we re-implement it from scratch in

PyTorch [104].

3.3.1.3 Training Hyperparameters

We train bi-TAI for 200,000 iterations with a batch size of 4. We use the Adam optimizer [106]

with initial learning rate α = 1e-4, first decay rate β1 = 0.5, and second decay rate β2 = 0.999.

In the generator loss, we set the weight of the reconstruction losses α to 1 and the weight of the

adversarial loss β to 0.02. The discriminator’s spectral normalization layers require a hyperparameter

that specifies the number of power iterations used to approximate the spectral norm; we set this

value to 3. We use Xavier initialization [107] for each convolutional layer and uniform initialization

for each linear layer (with mean 0 and variance 1e-4 for the weights). The biases of each layer are

initialized to 0.

31

1 2 3 4 5
Time step (m=5)

25

30

35

PS
N

R

1 2 3 4 5 6 7 8 9 10
Time step (m=10)

1 2 3 4 5
Time step (m=5)

0.85

0.90

0.95

SS
IM

1 2 3 4 5 6 7 8 9 10
Time step (m=10)

bi-TAI (ours)
Super SloMo
MCnet
Newson et al.
TW_P_F

Figure 3.5: Performance on the KTH test set for each time step (higher is better).

m = 5 m = 10

Model PSNR SSIM PSNR SSIM

TW P F 29.25±0.053 0.8953±7.27e-4 27.56±0.051 0.8661±8.61e-4

Newson et al. 31.20±0.034 0.9205±4.57e-4 29.11±0.033 0.8890±5.94e-4

MCnet 32.58±0.032 0.9236±4.34e-4 30.21±0.032 0.8844±5.96e-4

Super SloMo 31.93±0.046 0.9365±4.13e-4 28.94±0.045 0.9028±5.78e-4

bi-TAI (ours) 36.11±0.031 0.9594±2.52e-4 33.33±0.031 0.9340±3.73e-4

Table 3.2: Performance on the KTH test set where each value is computed as the mean score

across all predicted frames (higher is better). We stylize values that are higher than the others by a

statistically significant margin.

For MCnet, we use the same optimization parameters and loss weights as the original authors,

and the same number of spectral normalization power iterations as bi-TAI. For Super SloMo, the

original authors use the Adam optimizer with an initial learning rate of 1e-4 and 500 total epochs,

and divide the learning rate by 10 every 200 epochs. Since this model converges more rapidly

on our datasets, we reduce the total epochs and the frequency of learning rate updates. Since the

authors do not specify other Adam hyperparameters, we use the same ones used for bi-TAI.

The method by Newson et al. [34] requires hyperparameters for the size of the spatiotemporal

patches and the number of levels in the multi-resolution pyramid. We set these values to (3, 3, 3)

and 2 for KTH and (5, 3, 3) and 2 for UCF-101 and HMDB-51 (determined by performing grid

search on the KTH and UCF-101 validation sets).

3.3.2 KTH

To evaluate the performance of our bi-TAI model and the proposed baselines, we report the

Peak Signal-Noise Ratio (PSNR) and the Structural Similarity (SSIM) [44] between each predicted

frame and the ground truth. We report these metrics to be consistent with existing video prediction

literature [93], [97], but acknowledge that these metrics have a limited correlation with human

perception as noted by Zhang et al. [43].

PSNR is defined as a logarithmic function of the inverse of pixel-wise mean-square error

32

20 30 40
Mean PSNR (m=5)

bi-TAI (ours)

Super SloMo

MCnet

Newson et al.

20 30 40
Mean PSNR (m=10)

0.8 0.9 1.0
Mean SSIM (m=5)

0.8 0.9 1.0
Mean SSIM (m=10)

Figure 3.6: The distributions of performance on the video clips in the KTH test set. Performance per

video is computed as the mean score across all predicted middle frames (higher is better). Outliers

are shown as light gray lines.

between two images:

PSNR(x̂, x) = 10 log10

(
2552

MSE(x̂, x)

)
(3.16)

SSIM measures structural similarity as a function of means, variances, and covariances between

many corresponding patches between two images, and its value can range between -1 and 1 (we

refer the reader to the original paper [44] for more information). We use the implementations of

PSNR and SSIM provided by scikit-image [108].

Figure 3.5 and Table 3.2 compare the quantitative performance of each method on the KTH

test set when predicting five and ten middle frames. As expected, TW P F performs worse than our

method and all state-of-the-art baselines because it does not use any temporal context or motion

model to predict the middle frames. Newson et al. [34] does better, but its performance is restricted

by its need to borrow spatio-temporal patches from the preceding and following sequence. MCnet

yields good performance during the first few frames, but gradually does worse over time because it

cannot reconcile the predicted middle frames with the following frames. Super SloMo yields the

strongest performance across most metrics, but is restricted by only having access to one preceding

and one following frame. Finally, our bi-TAI method significantly outperforms Super SloMo thanks

to its ability to aggregate information across all preceding and following frames.

To understand the distribution of each model’s performance across the dataset, we compute the

average PSNR and SSIM score across all predicted frames for each video, and plot the distribution

of these averages in Figure 3.6. Our method obtains the highest median and the smallest interquartile

range, indicating that its predictions are more stable and of higher quality than the baselines.

Next, we demonstrate in Figure 3.7 that compared to the baselines, bi-TAI is better at predicting

periodic motion, retaining body structure, and maintaining consistency with both the preceding

and the following frames. Observe in the ground truth row that the man lowers his arms down

to his sides and then raises them back up. MCnet and Newson et al. [34] fail to predict the arms

33

MCnet

Newson et al.

Super SloMo

bi-TAI (ours)

Ground truth

Figure 3.7: Qualitative results from the KTH dataset for predicting five middle frames from five

preceding and five following frames (we depict every other frame for easier viewing). We indicate

preceding and following frames with a green border, predicted middle frames with a yellow border,

and ground-truth middle frames with a green border.

moving up, despite this motion being observable in the following frames (but recall that MCnet is

a video prediction model, so it does not have access to the following frames). Meanwhile, Super

SloMo fails to predict the arms moving all the way in, since it lacks the context from multiple

preceding and following frames that indicates that the man is moving his arms rather than keeping

them still. In contrast, bi-TAI predicts both the inward and the outward motion of the arms. We

present additional results generated by our method in Figure 3.8.

In Figure 3.9, we present a negative result in which the strongest baseline, Super SloMo,

outperforms bi-TAI quantitatively. In this example, Super SloMo predicts accurate, clear frames,

whereas bi-TAI predicts slightly blurry frames (most evident in the most central middle frame). We

have found that Super SloMo performs better than bi-TAI if it can accurately predict motion from

two input frames (i.e. infer rate and direction of motion without the additional context provided by

multiple preceding and following frames). However, the quantitatively lower performance shown in

Figure 3.5 and Table 3.2 suggests that such cases are rare.

34

(a) (b)

(c) (d)

Figure 3.8: Additional predictions from bi-TAI on the KTH test set (m = 5). The yellow frames

indicate predictions from bi-TAI, and green frames indicate the ground truth. We show the first,

third, and fifth middle frame for each video.

3.3.3 Ablation Studies

In this section, we perform ablative studies to demonstrate that blending pairs of frames from

the forward and backward predictions with a neural network—in particular, one that is explicitly

aware of the time steps corresponding to its inputs—is key to producing high-quality predictions.

For this experiment, we propose three approaches that perform bidirectional prediction as with our

method, but blend corresponding pairs of intermediate frames in different ways:

• The bidirectional simple average model (bi-SA) blends a pair of frames by simply taking their

average.

• The bidirectional time-weighted average model (bi-TWA) blends a pair of frames by taking

a time-weighted average between them. The weights are 1− wt for the forward prediction

frame and wt for the backward prediction frame, where wt = (t−p)/(m+1), p andm are the

number of preceding and middle frames, and t is the index of a middle frame (p < t ≤ p+m).

• The bidirectional temporally-weighted interpolation model (bi-TWI) is a variant of the bi-TAI

model where the time weight wt is used as a term for summing the modulated bidirectional

35

Super SloMo

bi-TAI (ours)

Ground truth

Figure 3.9: Negative result on the KTH test set (m = 5). We show the first, third, and fifth middle

frames, and zoom in on the area indicated in orange.

predictions rather than as a feature channel in the encoder-decoder portion of the interpolation

network φblend. To accomplish this, we first remove the injection of wt as a feature channel

within φblend. Then, we replace the simple sum in Eq. 3.9 with a time-weighted average. In

short, we replace Eqs. 3.8 and 3.9 with Eqs. 3.17 and 3.18 respectively:

KP
t , K

F
t = φenc dec

blend (πt, ρt) , (3.17)

v̂t(x, y) = (1− wt)
[
KP

t (x, y) ∗ P
P
t (x, y)

]

+ wt

[
KF

t (x, y) ∗ P
F
t (x, y)

]
. (3.18)

As with bi-TAI, all of these models are trained from scratch.

In Fig 3.10b, we show a qualitative comparison between our approach and these methods

when predicting the second-to-last middle frame (out of five). Unsurprisingly, bi-SA and bi-TWA

produce ghosting artifacts (i.e. multiple faded copies of the actor appear in the predictions) because

they do not possess a mechanism to make the bidirectional predictions consistent with each other.

bi-TWI reduces the ghosting problem dramatically because the interpolation network can transfer

information between the bidirectional predictions as it modulates them; however, ghosting artifacts

do occasionally appear (e.g. we see an extraneous faded blob above the head). In contrast, bi-TAI

manages to overcome the ghosting issue.

To understand what causes the difference in behavior between bi-TAI and its ablative variants, we

visualize the intermediate pixel-space predictions from each model’s Bidirectional Video Prediction

Network and interpolation network. First, in Figure 3.10b, we compare the final predictions of each

model to the corresponding outputs of the Bidirectional Video Prediction Network. We observe that

the forward and backward predictions can differ substantially from each other (in terms of body

36

(a)

Fwd Bkwd Final

bi-SA

bi-TWA

bi-TWI

bi-TAI

(b)

Before
adpt. conv.

After
adpt. conv.

Final
prediction

bi-TWI

bi-TAI

(c)

Figure 3.10: Qualitative comparison of the various intermediate predictions made by bi-TAI and

its ablative variants (Sec. 3.3.3). We visualize the fourth predicted middle frame (out of five)

from a “handwaving” video clip, and zoom in on a specific region (indicated in orange). (a) The

ground-truth middle frame. (b) Comparison of the forward and backward predictions from the

Bidirectional Video Prediction Network and the final predictions. (c) Inputs and outputs of the

interpolation networks of bi-TWI and bi-TAI. The cyan images correspond to the forward prediction

frame before and after adaptive convolution, and the purple images correspond to the backward

prediction frame before and after adaptive convolution.

pose), but tend to be similar across methods. The discrepancy between the forward and backward

predictions explains why simple and time-weighted averages lead to ghosting. bi-TWI and bi-TAI

can reduce/eliminate ghosting by modulating the bidirectional predictions with convolutions before

summing them.

Next, we emphasize the importance of making the interpolation network temporally-aware

via injection of the time weight wt. Figure 3.10c compares the predictions of bi-TWI and bi-TAI

with respect to the three pixel-space representations that the interpolation network handles: (i) the

two intermediate predictions from the Bidirectional Video Prediction Network; (ii) the two frames

output by the interpolation network after adaptive convolution, but before time-weighted averaging

(in bi-TWI) or simple summing (in bi-TAI); and (iii) the final predicted frame. Again, we show an

instance of predicting the second-to-last frame, where the backward prediction has more weight

than the forward prediction. Although the outputs of the Bidirectional Video Prediction Network

are similar for both methods, bi-TWI distorts the man’s arms when it modulates the backward

prediction. We believe this is because bi-TWI has no information about which of the two input

frames is more reliable, which causes the inaccurate forward prediction to corrupt the backward

37

m = 5 m = 10

Model PSNR SSIM PSNR SSIM

bi-SA 33.69±0.031 0.9456±3.21e-4 30.95±0.030 0.9124±4.58e-4

bi-TWA 35.36±0.031 0.9553±2.73e-4 32.92±0.030 0.9296±3.94e-4

bi-TWI 36.12±0.032 0.9585±2.53e-4 33.33±0.032 0.9331±3.78e-4

bi-TAI (full) 36.11±0.031 0.9594±2.52e-4 33.33±0.031 0.9340±3.73e-4

Table 3.3: Performance of our bi-TAI model and the ablative variants described in Sec. 3.3.3 on

the KTH test set. Each value is computed as the mean score across all predicted frames (higher is

better). We stylize values that are higher than the others by a statistically significant margin.

prediction during the modulation process. When bi-TWI applies the time-weighted average to the

two modulated outputs, the corruption heavily impacts the final prediction because the backward

prediction has more weight. On the other hand, bi-TAI modulates the two predictions by enhancing

the backward prediction and reducing the contribution of the forward prediction, which better

matches our original intent of adding the interpolation network.

Moving on to quantitative results, Table 3.3 shows the average PSNR and SSIM score across

all middle frames in the KTH test set when predicting five or ten middle frames with bi-TAI and

the ablative methods. The quantitative results follow our qualitative analysis: bi-TWI and bi-TAI

perform better than bi-SA and bi-TWA because they use an interpolation network to modulate

the bidirectional predictions before summing. According to the quantitative metrics, it is not

obvious whether bi-TAI or bi-TWI is better—bi-TAI performs better than bi-TWI according to

SSIM, but comparably to bi-TWI according to PSNR. However, it is important to note that PSNR

is less sensitive to structural changes in reconstructed images than SSIM (PSNR is a logarithmic

function of per-pixel error, whereas SSIM is based on correlations between corresponding image

patches). This suggests that SSIM is more suitable for evaluating predicted middle frames than

PSNR, especially when comparing structural distortions that tend to occur with the ablated models,

and further supports bi-TAI’s superior performance.

3.3.4 UCF-101 and HMDB-51

We continue our analysis by comparing our model to the state-of-the-art baselines on video

clips from the UCF-101 [101] and HMDB-51 [102] action classification datasets. Unlike the KTH

dataset, these two datasets contain videos with unconstrained camera motion and dynamic lighting,

making them substantially more challenging. Figure 3.11 shows the average PSNR/SSIM score

for each time step when the number of middle frames is either 3 or 5 (recall that for these datasets,

we train each method to predict at most three middle frames). Our model clearly outperforms

the baseline methods when predicting the most central middle frames, but yields a less decisive

improvement when predicting the first and last middle frame out of five. In Table 3.4, we report

the performance of each model averaged across all predicted frames, which shows that our method

38

UCF-101

1 2 3
Time step (m=3)

24

26

28

30

32

PS
N

R

1 2 3 4 5
Time step (m=5)

1 2 3
Time step (m=3)

0.80

0.85

0.90

SS
IM

1 2 3 4 5
Time step (m=5)

bi-TAI (ours)
Super SloMo
MCnet
Newson et al.
TW_P_F

HMDB-51

1 2 3
Time step (m=3)

24

26

28

30

32

PS
N

R

1 2 3 4 5
Time step (m=5)

1 2 3
Time step (m=3)

0.75

0.80

0.85

0.90

SS
IM

1 2 3 4 5
Time step (m=5)

bi-TAI (ours)
Super SloMo
MCnet
Newson et al.
TW_P_F

Figure 3.11: Performance on the UCF-101 and HMDB-51 test sets for each time step (higher is

better). Light colors are used to highlight within two standard errors of each curve.

UCF-101 HMDB-51

m = 3 m = 5 m = 3 m = 5

Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TW P F 29.09±0.110 0.8696±2.203e-3 27.69±0.103 0.8429±2.371e-3 29.65±0.199 0.8474±4.047e-3 27.87±0.181 0.8148±4.155e-3

Newson et al. 28.20±0.091 0.8734±1.868e-3 26.80±0.087 0.8483±2.066e-3 28.94±0.168 0.8521±3.638e-3 27.21±0.156 0.8189±3.811e-3

MCnet 27.15±0.089 0.8447±2.117e-3 25.35±0.083 0.8067±2.308e-3 27.61±0.168 0.8160±4.055e-3 25.65±0.157 0.7725±4.311e-3

Super SloMo 28.86±0.088 0.8876±1.858e-3 27.42±0.087 0.8611±2.084e-3 29.50±0.162 0.8659±3.589e-3 27.85±0.153 0.8333±3.810e-3

bi-TAI (ours) 30.65±0.095 0.9033±1.624e-3 28.62±0.091 0.8697±1.926e-3 30.72±0.175 0.8782±3.324e-3 28.28±0.165 0.8372±3.581e-3

Table 3.4: Performance on the UCF-101 and HMDB-51 test sets where each value is computed as

the mean score across all predicted frames (higher is better).

significantly outperforms the baseline methods except on HMDB-51 (m = 5) under SSIM, where it

performs similarly to Super SloMo.

In Figure 3.12, we present two video clips from UCF-101 in which our method outperformed

the most competitive baselines, Newson et al. [34] and Super SloMo [19]. We have found that

bi-TAI is better at preserving object structure than the baselines in many cases, but it may also

generate blurrier predictions. For example, in Figure 3.12a, Newson et al. [34] replaces parts of the

torso with background pixels, and Super SloMo distorts the area around the arms and the back leg.

Furthermore, the pose predicted by Super SloMo differs substantially from the ground truth. On

the other hand, bi-TAI maintains a coherent structure for the athlete’s body, and more accurately

predicts his pose. We observe similar phenomena in Figure 3.12b: Newson et al. [34] replaces the

person’s feet with sidewalk pixels, Super SloMo produces distorted, inconsistent outlines of the

front leg, and bi-TAI generates a more consistent, accurate body pose.

39

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

(a)

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

(b)

Figure 3.12: Qualitative results from the UCF-101 dataset (m = 3). On the left of each figure,

we visualize the last preceding frame in green, the second middle frame in yellow, and the first

following frame in green. On the right, we show the prediction from each method at the region

indicated in orange.

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

Figure 3.13: Failure case from UCF-101 (heavy camera motion).

In Figure 3.13, we show a negative result in which our bi-TAI method was outperformed by

Newson et al. [34] and Super SloMo quantitatively. Our method performs worse when there is a

large amount of camera motion: in these cases, the predictions become excessively blurry. Newson

et al. [34] also performs poorly due to its inability to maintain the structure of objects; for example,

in Figure 3.13, the face blends in with the trees. Super SloMo performs the best thanks to its ability

to preserve structure and texture under heavy camera motion, but the camera poses in its predictions

tend to differ from the ground truth (e.g. the biker’s head is further to the left than in the ground

40

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

(a)

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

(b)

Figure 3.14: Qualitative results from the HMDB-51 dataset (m = 3).

Newson et al.

Super SloMo

bi-TAI (ours)

Ground truth

Figure 3.15: Failure case from HMDB-51 (shot transitions).

truth).

Moving on to the HMDB-51 dataset, we present qualitative results on sampled video clips

in Fig 3.14. Again, we observe that our method is often able to preserve object structure more

coherently and more accurately than the baselines. In Figure 3.14a, bi-TAI is the only method

that successfully retains the entirety of the woman’s right arm in its prediction. In Fig 3.14b,

Super SloMo produces strange artifacts near the man’s arms (likely remnants of the legs from the

preceding and the following frames). Newson et al. [34] generates a more coherent body structure,

but the pose is less accurate than in bi-TAI’s prediction (e.g. the man’s right leg does not bend

downward). bi-TAI produces the most accurate and structurally coherent prediction among the

evaluated methods.

41

In Figure 3.15, we present a video clip from HMDB-51 where Newson et al. [34] and Super

SloMo outperformed our model. Compared to the baselines, our model is relatively worse at

handling shot transitions because it tends to predict smooth motion. On the other hand, Newson et

al. [34] and Super SloMo can generate abrupt transitions by borrowing pixels/patches solely from

the appropriate input sequence. For example, in Figure 3.15, an outline of the boy appears in the

first frame predicted by bi-TAI, whereas it does not appear in the first frames predicted by Newson

et al. [34] and Super SloMo. Despite the existence of several shot transitions in HMDB-51 (where

our model is at a disadvantage), bi-TAI still manages to achieve slightly higher performance overall;

we suspect that the gap is even larger when only considering videos without shot transitions.

3.3.5 ImageNet-VID

We conclude our analysis with ImageNet-VID, where we pre-train each method on UCF-101

and evaluate on the ImageNet-VID test set. We investigate this setting to compare how well each

method extrapolates motion from human action datasets to generic videos. In Figure 3.16, we show

that our model achieves comparable or better quantitative performance than the baselines across

all time steps. Table 3.5 reveals a similar trend—bi-TAI outperforms other models by a significant

margin except under the SSIM metric when m = 5, where it performs on par with Newson et

al. [34].

In Figure 3.17, we present cases in which our model captured motion better than the baselines.

We observe in Figure 3.17a that the dog is most visible in bi-TAI’s prediction. In Figure 3.17b,

Newson et al. [34] erase the horse’s legs, and Super SloMo produces ghosting leg artifacts. Our

model accurately predicts the positions of the horse’s legs, but produces a blurry result. The

quantitative and qualitative results indicate that our method can extrapolate from human action

videos to predict motion in general videos, although blur can still be observed as with UCF-101 and

HMDB-51.

3.4 Conclusion

In this paper, we have tackled the video frame inpainting problem with bi-TAI, which generates

two sets of intermediate predictions conditioned on the preceding and following frames respectively,

and then blends them together with a novel TAI network. Our experiments on videos from multiple

datasets show that our method generates smoother and more accurate predictions than state-of-

the-art baselines, particularly on videos that contain articulated body motion and little camera

movement. Furthermore, our in-depth analysis has revealed that our bi-TAI network successfully

leverages time step information to reconcile inconsistencies in the intermediate predictions.

42

1 2 3
Time step (m=3)

24

26

28

30
PS

N
R

1 2 3 4 5
Time step (m=5)

1 2 3
Time step (m=3)

0.70

0.75

0.80

SS
IM

1 2 3 4 5
Time step (m=5)

bi-TAI (ours)
Super SloMo
MCnet
Newson et al.
TW_P_F

Figure 3.16: Performance on the ImageNet-VID test set for each time step (higher is better). Light

colors are used to highlight within two standard deviations of each curve.

m = 3 m = 5

Model PSNR SSIM PSNR SSIM

TW P F 26.97±0.249 0.7523±7.11e-3 25.66±0.241 0.7147±7.35e-3

Newson et al. 27.54±0.236 0.8124±5.58e-3 26.12±0.226 0.7781±6.03e-3

MCnet 25.46±0.201 0.7471±6.22e-3 23.94±0.187 0.7033±6.44e-3

Super SloMo 26.96±0.205 0.7903±6.15e-3 25.61±0.203 0.7486±6.66e-3

bi-TAI (ours) 28.39±0.213 0.8204±5.36e-3 26.74±0.200 0.7767±5.82e-3

Table 3.5: Performance on the ImageNet-VID test set where each value is computed as the mean

score across all predicted frames (higher is better). We stylize values that are higher than the others

by a statistically significant margin.

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

(a)

Newson et al. Super SloMo

bi-TAI (ours) Ground truth

(b)

Figure 3.17: Qualitative results from the ImageNet-VID dataset (m = 3).

There are several challenges that we plan to address in future work. First, compared to state-of-

the-art baselines, our model sometimes generates relatively blurry results, especially under heavy

camera motion. This is a common artifact of “pixel synthesis” methods that generate pixels from

scratch. Taking inspiration from optical flow-based approaches, which borrow pixels from the input,

may help alleviate the blurriness problem. Additionally, our network is very large because it encodes

43

and decodes several pixel-level representations of the preceding, middle, and following frames; this

places a limit on the sizes of video clips that can be generated or used to train our model. To address

this problem, we aim to explore more tightly-integrated network architectures that generate only

one pixel-level prediction. Finally, we plan to explore methods that exploit semantic knowledge

about the video content, e.g. by modeling human poses or the periodicity of certain actions.

44

CHAPTER 4

Temporally-Consistent Video-to-Video Translation

4.1 Introduction

Developments in both large-scale datasets and deep neural networks (DNNs) have led to

incredible advancements in image-to-image [110], [111] and video-to-video [31], [112]–[114]

translation tasks such as color restoration [115], [116], super-resolution [117], inpainting [57], [109],

[118], and style transfer [86], [87]. But compared to images, videos pose an additional challenge:

not only do the video frames need to satisfy the intended translation, they must also be temporally

consistent. Otherwise, they will exhibit flickering artifacts.

Existing video-to-video translation techniques address temporal consistency through one of

two types of strategies. The first incorporates temporal consistency directly into the method

through optical flow-based losses [20], [21], [27], [36], [56] or network layers that operate on

the time dimension, e.g., 3D convolutional layers [37] or recurrent layers [56]. These techniques

leverage self-supervised video data and tailor models to specific tasks using relevant losses, e.g.,

reconstruction error [56], [57], [109] or style loss [21], [86]. However, they require models and

losses that are defined exclusively on videos and tuned for a specific application.

The other type of strategy uses a blind video consistency model to reduce flicker in a frame-wise

translated video as a post-processing step [42], [119]–[121]. For example, Lai et al. [42] train a

recurrent encoder-decoder network to improve the temporal consistency of independently processed

frames via warping and structural preservation losses. Blind video consistency methods relax

the need for task-specific video models and losses, and also enables image-to-image models to

be applied immediately to videos without sacrificing consistency. However, they require dense

correspondences between unprocessed frames during optimization, making them unsuitable for

tasks in which certain input regions have no meaningful structure, e.g., video inpainting.

Similarly to blind video consistency methods, we opt to impart image-to-image models with tem-

poral consistency, motivated primarily by generalization issues inherent to video-tailored approaches.

To elaborate, consider in Figure 4.1 a failure case from the otherwise impressive state-of-the-art

video inpainting network VINet [56]; here, it fails to hallucinate a sensible texture for the missing

45

Contextual Attention HyperCon (ours)

Trained on:

Temp. consistency?

Generalization?

Videos✓
✗

Trained on:

Temp. consistency?

Generalization?

Images

✗✓
Trained on:

Temp. consistency?

Generalization?

Images✓✓

VINet

Time Time TimeInput

Figure 4.1: Video-to-video translation models designed and trained from scratch, e.g., VINet [56]

are temporally consistent, but exhibit poor generalization performance due to the limited size of high-

fidelity video datasets (note the lack of defined texture). Image-to-image models, e.g., Contextual

Attention [109], generalize well thanks to large image datasets, but lack temporal consistency (note

the changing texture). HyperCon leverages the generalization performance conferred by image

datasets while enforcing the temporal consistency properties of video-to-video models.

region. Now consider a state-of-the-art image inpainting model, Contextual Attention [109]: this

method produces realistic textures on the same example (but exhibits temporal inconsistency). The

reason for this difference lies in the diversity of data used to train each model. Whereas the video

model was trained on about 5,000 examples from one of the largest video segmentation datasets to

date [51], the image model was trained on over 1,000,000 images [54]. Regardless of application,

the vast scale of image datasets enables image models to encapsulate broader visual knowledge than

video models trained from scratch and, as a result, better generalize to new data. Because storage

and cost limitations make it intractable to collect high-quality video datasets as diverse as modern

image datasets, video-tailored models are doomed to generalize poorly compared to image models.

To overcome this challenging generalization issue, we propose a method of image-to-video

model transfer for video-to-video translation tasks. Rather than optimize an image or video model

from scratch, we aim to transform a black-box image-to-image translation model into a strong

video-to-video translation model without fine-tuning—specifically, to automatically induce temporal

consistency while achieving the same visual effect as the image-to-image model. Compared to prior

techniques in blind video consistency [42], [119], which target these goals and therefore fall under

the same problem space, ours broadens the scope of applicable tasks to include those in which the

input and output videos have differing visual structure, such as video inpainting and edge-deforming

style transfer (e.g., the mosaic style from PyTorch’s examples repository).

Key to our approach is the view of image-to-image models as noisy models in which small

changes in the input lead to substantial changes in the output (e.g., Figure 4.1, middle). To strengthen

the desired signal and filter out noise, we synthesize several perturbed, but related predictions and

aggregate over them. We obtain perturbations in a way that conditions on multiple neighboring

frames to enhance temporal consistency. Our hyperconsistency approach (HyperCon for short)

implements these principles by inserting frames into the video with a frame interpolation network,

46

Frame
interpolation

Frame-wise
translation

Aggregation
(align + pool)

Style
Transfer

Inpainting

Figure 4.2: Visual overview of our Hyperconsistency (HyperCon) method. We begin by artificially

inserting frames into the input video V with a frame interpolation network to produce an interpolated

video V s. Then, we independently translate each frame in the interpolated video with an image-

to-image translation model. Finally, we aggregate frames (i.e., align with optical flow and pool

pixel-wise) within a local sliding window to produce the final temporally consistent output video

O. This can be applied to tasks with or without masked inputs (e.g., inpainting and style transfer,

respectively).

translating the interpolated video’s frames independently, and aggregating within overlapping

windows of appropriate stride to obtain a final video whose length matches the original (Figure 4.2).1

As the first method among image-to-video model transfer techniques to reason in interpolated

video space, HyperCon forgoes the traditional post-processing paradigm by integrating frame-wise

translation within itself as an intermediate step, not as a step that precedes it. Since it does not

require dense correspondences in the unprocessed input video, it performs well on video-to-video

translation tasks with or without masked inputs—e.g., inpainting and style transfer respectively—as

verified by our extensive experiments across these two widely differing applications. HyperCon

outperforms a prior state-of-the-art video consistency model [42] in terms of reducing flicker and

adhering to the intended translation; when combined with a strong image inpainting method, it

also produces better predictions than a state-of-the-art video inpainting model [56]. It achieves

competitive performance in both tasks despite not being trained with any masked or stylized videos.

Our contributions are as follows. First, we motivate image-to-video model transfer as a way to

leverage the superior generalization performance of image models for video-to-video translation

without sacrificing temporal consistency. Second, we propose HyperCon, which supports a wider

span of tasks than prior video consistency work thanks to its support for both masked and unmasked

inputs. Finally, we show that HyperCon performs favorably compared to state-of-the-art video

consistency and inpainting methods without the need to be fine-tuned on these tasks. Our project

1HyperCon was originally proposed by this dissertation’s author in [122].

47

website is available at ryanszeto.com/projects/hypercon.

4.2 Related Work

Image-to-image translation [110], [111], [123]–[126] has garnered significant attention thanks to

advancements in conditional generative adversarial networks [127]. This movement has also helped

spur interest in video-to-video translation, particularly in two broad cases: (i) the paired setting [31],

[128], which learns a one-way mapping between a source and a target modality given corresponding

video pairs, and (ii) the unpaired setting [112]–[114], which learns a bidirectional mapping between

two modalities given two sets of videos representing them. For specific tasks, performance can be

further improved by incorporating a task-based objective, e.g., a pixel-wise reconstruction loss for

inpainting [56], [57], [109], [118], [129], [130] or style reconstruction and total variation losses

for style transfer [21], [86]. Unlike these works, our goal is not to train an image or video model

optimally from scratch, but to transform a trained image model into a strong, temporally consistent

video model, which boosts generalization performance as motivated by Figure 4.1.

Among existing work, our goals for image-to-video model transfer best align with those of blind

video consistency [42], [119]–[121], which reduces flicker from frame-wise translated videos by

leveraging correspondences in the input. For example, Bonneel et al. [119] minimize an energy

functional with a flow-based temporal consistency term and an edge-based scene consistency term,

both of which are defined between corresponding frame-wise translated and output frames. Lai et

al. [42] extend their work by training a DNN with loss terms that emulate their functional. These

methods require accurate dense correspondences between input frames during optimization, making

them unsuitable for video-to-video translation tasks where certain regions have no meaningful

structure, e.g., inpainting. Our method does not rely on dense correspondences in the input, allowing

it to be applied to such tasks. Additionally, our method forgoes the typical post-processing paradigm

of prior work [119], [120] by integrating frame-wise translation within itself as an intermediate step

rather than as a step that precedes it.

4.3 HyperCon

Given an input video V = {v1, . . . , vN}, our goal is to generate an output video O =

{o1, . . . , oN} representing the N frames of V translated by some image-to-image model g. The

frames of O should closely resemble the frames of V translated frame-wise by g; at the same time,

O should be temporally consistent, i.e., exhibit as few flickering effects as possible. We quantify

these notions of resemblance and consistency concretely in Sections 4.4.2 and 4.5.2.

With HyperCon (Figure 4.2), we generate O as follows. First, we artificially insert i frames

48

https://ryanszeto.com/projects/hypercon

between each pair of frames in V with a frame interpolation network (Section 4.3.1). Denoting

this interpolated version of V as V s = {vs1, . . . , v
s
N ′}, where N ′ is the number of frames in

the interpolated video, we then independently translate frames in V s with g, yielding Os =

{os1, . . . , o
s
N ′} (Section 4.3.2). Finally, we aggregate frames in Os over a temporal sliding window

with appropriate stride to produce the frames of the final output video O (Section 4.3.3). Additional

considerations for masked inputs are discussed in Section 4.3.4.

4.3.1 Generating the Interpolated Video

To generate the interpolated video V s, we insert i interpolated frames between each pair of

frames in V , which essentially allows us to obtain several perturbed versions of each input frame for

translation. We opt for a vector-based sampling method for frame interpolation instead of a kernel-

based one2 which, as we justify in Section 4.3.4, allows us to handle the case of masked inputs

appropriately. Specifically, for each pair of consecutive frames va and va+1 (a ∈ 1, . . . , N − 1) and

intermediate frame index b ∈ {1, . . . , i}, we predict two warping grids (F s
a+b′→a, F

s
a+b′→a+1) and a

weight map wa+b′ (where b′ ≡ b+1
i+1

) with some function wrpgrd (e.g., a pre-trained DNN), and use

them to generate the corresponding interpolated frame vsj (j ∈ {1, . . . , N ′}):

(F s
a+b′→a, F

s
a+b′→a+1, wa+b′) = wrpgrd(va, va+1, b

′) , (4.1)

vsj = (1− wa+b′)⊙ warp(va, F
s
a+b′→a)

+wa+b′ ⊙ warp(va+1, F
s
a+b′→a+1) . (4.2)

⊙ is an element-wise product; warp(v, F) bilinearly samples from v via displacements specified by

vector field F .

4.3.2 Translating the Interpolated Video

At this point, we have computed the interpolated video V s. We generate the translated interpo-

lated video Os by simply translating each frame in V s independently:

osj = g(vsj), j ∈ {1, . . . , N ′} . (4.3)

Clearly, Os is not temporally consistent. However, we expect that most spatial regions in this video

will exhibit consensus within small temporal windows. For example, a patch might have a distinct

color profile in one frame, but a common color profile in the other frames in the local temporal

window. Since we have more frames in Os than frames needed in the output, we can remove the

2This distinction is discussed in more detail in Reda et al. [131].

49

spurious artifacts of frame-wise translation by mapping several neighboring frames in Os to one

frame in our desired output video O. We call this mapping temporal aggregation (Section 4.3.3).

4.3.3 Temporal Aggregation

We perform temporal aggregation over a sliding window on the translated interpolated video Os

(Figure 4.3). The stride is such that the frame in each window’s center, i.e., the reference frame,

corresponds to a frame from the (non-interpolated) input video V , resulting in N windows. Within

each window, we align the off-center frames, i.e., the context frames, to the reference frame via

optical flow warping, and then pool the reference and aligned context frames pixel-wise (e.g., with

a mean or median filter) to produce a final frame in the output video O. Note that we compute the

flow between interpolated, translated frames Os, not the unprocessed input frames V like prior

work [119].

More precisely, for an interpolated frame index j ∈ {1, 1+(i+1), . . . , N ′−(i+1), N ′}, we first

estimate the optical flow between reference frame oj and each context frame in {osj−dγ, o
s
j−d(γ−1), . . . ,

osj−d, o
s
j+d, . . . , o

s
j+d(γ−1), o

s
j+dγ} (denoted F a

j→(∗)), where γ and d respectively parameterize the num-

ber of frames in the sliding window and a temporal dilation factor. We then warp the context frames

to align them to osj , and afterwards perform pixel-wise pooling over osj and the warped context

frames:

o′j,k =




osj k = 0

warp(osj+dk, F
a
j→j+dk) k 6= 0

, k ∈ {−γ, . . . , γ} , (4.4)

oj = pool
(
o′j,k | k ∈ {−γ, . . . , γ}

)
. (4.5)

Pooling is applied over values per spatial location, color channel, and time step; i.e., if P =

pool(I1, I2, . . .), then

P (lh, lw, lc) = f
(
I1(lh, lw, lc), I2(lh, lw, lc), . . .

)
, (4.6)

where P (lh, lw, lc) and I(lh, lw, lc) denote the value of 3D image tensors P and I at location

(lh, lw, lc), and f is a mean or median operation. In the cases where the sliding window samples

outside the valid frame range, we only align and pool over valid frames.

To illustrate why HyperCon induces temporal consistency, we visualize intermediate outputs for

style transfer in Figure 4.3. Even among interpolated frames with similar appearances, flickering

artifacts can occur. By selecting pixel values by a majority vote over several interpolated frames,

our method automatically incorporates stable components into the final prediction, thereby reducing

flicker.

50

29.5 30 30.5 31 31.5Time step

Interpolated

+ translated

()

Aligned

to reference

()

Pixel-wise

pooled

()

Figure 4.3: Temporal aggregation. Context frames from the translated interpolated video Os are

aligned via optical flow to reference frames associated with integer time steps (white columns) and

then pooled at each pixel location to generate the final video O. Despite inconsistencies between

aligned frames (e.g., near the arrows), temporal aggregation selects stable components by majority

vote.

4.3.4 HyperCon for Masked Videos

Having described HyperCon in the unmasked input case in Sections 4.3.1-4.3.3, we now extend

it to handle tasks in which the input frames have masked pixels (e.g., inpainting). This case differs

from the unmasked input case in three ways. First, in addition to the normal RGB video V , we now

have as input a mask video M = {m1, . . . ,mN} in which 1 marks an unmasked pixel and 0 marks

a masked pixel. Second, when generating the interpolated data, we must create an interpolated

mask video M s = {ms
1, . . . ,m

s
N ′} to accompany the interpolated RGB video V s. Finally, the

image-to-image translation model g now takes a mask as input in addition to an RGB video frame.

We modify the interpolated video generation step (Section 4.3.1) to produce both V s and M s;

this is done by generating i interpolated frames between each pair of frames in V and M . For this

to be valid, the motion of the interpolated mask video must match that of the interpolated RGB

video—for example, if we interpolate the motion of a removed person, the mask must cover that

person throughout the interpolated sequence. If this is not handled properly, we risk polluting the

final result with mask placeholder values. Thus, we opt for a vector-based sampling method for

frame interpolation instead of a kernel-based one, since the same warping grid can be applied to

both RGB and mask frames to achieve the desired result.

To generate V s, recall that we predict warping grids and weight map (F s
a+b′→a, F

s
a+b′→a+1, wa+b′)

from frames in V using Equation 4.1. To obtain the interpolated masks M s, we apply these

51

parameters to the masks in M and follow up with a thresholding operation:

ṁs
j = (1− wa+b′)⊙ warp(ma, F

s
a+b′→a)

+ wa+b′ ⊙ warp(ma+1, F
s
a+b′→a+1) , (4.7)

ms
j = thresh(ṁs

j , 1) . (4.8)

Warping the masks in this way allows us to detect the “partially-masked” pixels in vsj , i.e., the ones

that received a contribution from a masked pixel in either va or va+1. Specifically, if a pixel in ṁs
j is

not 1, then the warping operation used a source value of 0 from ma or ma+1, which corresponds to

borrowing from a masked pixel. Thus, thresholding turns partially-masked pixels into fully-masked

pixels in the interpolated masks so that the subsequent translation step is not incorrectly influenced

by these pixels.

At this point, we have generated the interpolated RGB and mask videos V s and M s. We apply

the image-to-image model g to them:

osj = g(vsj ,m
s
j), j ∈ 1, . . . , N ′ , (4.9)

and then apply temporal aggregation (Section 4.3.3) as usual.

4.3.5 HyperCon Implementation Details

For the frame interpolation step, we use Super SloMo [19] as our wrpgrd function to predict

warping grids and weight masks. This method is well-suited for our approach since it predicts

warping parameters for multiple intermediate time steps, contrasting with kernel-based sampling

methods that interpolate one frame [92]. To estimate optical flow in the temporal aggregation

step, we use a third-party implementation of PWC-Net from Sun et al. [90]. Since HyperCon is

agnostic to the specific instantiations of frame interpolation and flow estimation, we have chosen

state-of-the-art models to demonstrate the full potential of our overall approach. Although we do not

fine-tune network weights, we observe good performance regardless and postulate that performance

can be further improved by fine-tuning.

4.4 Experiments: Video Style Transfer

To demonstrate HyperCon on unmasked inputs, we apply it to video style transfer. For the

frame-wise style transfer subroutine, we use the Fast Style Transfer (FST) models from Johnson et

al. [86] with the pre-trained mosaic and rain-princess weights from PyTorch’s examples repository.

52

4.4.1 Datasets

For evaluation, we use the ActivityNet [132] and DAVIS [45] video datasets, which primarily

consist of dynamic indoor and outdoor scenes of animals and people. We split them into validation

and test sets to validate HyperCon hyperparameters and evaluate performance, respectively. For

ActivityNet, we manually curate clips from the official training/validation and test splits (∼100

videos per split with ∼100 frames per video), filtering by properties of high-quality videos such as

non-negligible motion, no splash screens, one continuous camera shot, etc. For DAVIS, we use the

official training/validation set for validation, and combine the development and challenge sets from

the DAVIS 2017 and 2019 challenges to produce two test sets, one for each year. We pre-process all

videos by resizing and center-cropping them to 832×480 resolution, and scaling RGB values to

(-1, 1).

4.4.2 Evaluation Metrics

For video style transfer, our goal is to transfer the desired style to all video frames while

minimizing flickering effects (i.e., maximizing temporal consistency) in the output video as much

as possible. To evaluate temporal consistency, we measure warping error Ewarp [42] and patch-

based consistency measures CPSNR and CSSIM [21]. Ewarp is defined as the mean of ewarp over all

consecutive pairs of output frames (oa, oa+1), where

ewarp(oa, oa+1) =
1∑

pM
f
a (p)

∑

p

M f
a (p)‖Da(p)‖

2
2 . (4.10)

Here, Da = oa−warp(oa+1, Fa→a+1) (where Fa→a+1 is the estimated flow between input frames va

and va+1); p indexes the pixels in the frame; andM f
a is a mask that indicates pixels with reliable flow

(1 for reliable, 0 for unreliable). M f
a is computed based on flow consistency and motion boundaries

as defined by Ruder et al. [20]. CPSNR is defined as the mean of cPSNR over all consecutive pairs of

output frames, where cPSNR is computed by taking a random 50×50 patch in frame oa and computing

the maximum PSNR between it and all patches in its spatial neighborhood in the next frame oa+1

(within a Chebyshev distance of 20 pixels). CSSIM is defined similarly to CPSNR, except it computes

Structural Similarity [44] in place of PSNR. To quantify how well a method adheres to the intended

style, we measure Frechét Inception Distance (FID) [41] between the set of all frames generated by

frame-wise translation and the set of all frames generated by the method under evaluation.

4.4.3 Hyperparameter Analysis

We perform a grid search over our method’s hyperparameters to link them concretely to style

adherence and temporal consistency. These hyperparameters consist of the number of frames to

53

(a) Interpolation step (Section 4.3.1)

c'

d

(b) Temporal aggregation step (Section 4.3.3)

Figure 4.4: Visualization of the hyperparameters included in our grid search (Section 4.4.3).

d1 d3 d5 d7

c'9
c'7
c'5
c'3

i = 1

d1 d3 d5 d7

i = 3

d1 d3 d5 d7

i = 5

d1 d3 d5 d7

i = 7

20

40

d1 d3 d5 d7

i7
i5
i3
i1

c' = 3

d1 d3 d5 d7

c' = 5

d1 d3 d5 d7

c' = 7

d1 d3 d5 d7

c' = 9

0.0025

0.0050

0.0075

(a) rain-princess, DAVIS train/val

d1 d3 d5 d7

c'9
c'7
c'5
c'3

i = 1

d1 d3 d5 d7

i = 3

d1 d3 d5 d7

i = 5

d1 d3 d5 d7

i = 7

25

50

75

d1 d3 d5 d7

i7
i5
i3
i1

c' = 3

d1 d3 d5 d7

c' = 5

d1 d3 d5 d7

c' = 7

d1 d3 d5 d7

c' = 9

0.005

0.010

(b) mosaic, DAVIS train/val

d1 d3 d5 d7

c'9
c'7
c'5
c'3

i = 1

d1 d3 d5 d7

i = 3

d1 d3 d5 d7

i = 5

d1 d3 d5 d7

i = 7

20

40

d1 d3 d5 d7

i7
i5
i3
i1

c' = 3

d1 d3 d5 d7

c' = 5

d1 d3 d5 d7

c' = 7

d1 d3 d5 d7

c' = 9

0.002

0.004

0.006

(c) rain-princess, ActivityNet val

d1 d3 d5 d7

c'9
c'7
c'5
c'3

i = 1

d1 d3 d5 d7

i = 3

d1 d3 d5 d7

i = 5

d1 d3 d5 d7

i = 7

25

50

75

d1 d3 d5 d7

i7
i5
i3
i1

c' = 3

d1 d3 d5 d7

c' = 5

d1 d3 d5 d7

c' = 7

d1 d3 d5 d7

c' = 9

0.005

0.010

(d) mosaic, ActivityNet val

Figure 4.5: Ablative analysis plots. Left plots show FID (style adherence) and right plots show

Ewarp (temporal consistency). Lower is better.

insert between each pair i, the total number of interpolated frames to aggregate for each output

frame c′ = 2γ + 1, and the spacing between aggregated interpolated frames d (Figure 4.4). We

quantify each setting’s performance on the DAVIS and ActivityNet validation sets and present their

trends in Figure 4.5.

Lai et al. [42] observe that style adherence and temporal consistency are competing objectives;

our hyperparameter grid search supports this claim. Specifically, FID decreases with more interpo-

lated frames, fewer aggregated frames, and a smaller dilation rate, indicating that style adherence is

54

Time

Final

Lowest

FID

Lowest
Ewarp

FST

Figure 4.6: Qualitative comparison between frame-wise style transfer (FST) and ablative variants of

HyperCon. The “Lowest FID” model reproduces flickering artifacts (e.g., the changing tone near

the arrow), while the “Lowest Ewarp” model overly blurs predictions. Our final model adheres to the

intended style without overly blurring predictions.

maximized when HyperCon aggregates over few frames that are very similar to the reference frame.

On the other hand, Ewarp decreases gradually with more aggregated frames, and follows the trend of

a parabolic cylinder given fixed c′, i.e., there is a sweet spot for i given fixed d and vice-versa. The

trends of Ewarp suggest that temporal consistency is maximized when many frames are aggregated

over some effective frame rate. Due to the inherent trade-off between style adherence and temporal

consistency, our hyperparameter selection process considers the strongest models in the former

criterion and chooses the one that best satisfies the latter; specifically, among the models ranked in

the top 15% by FID, we select the one that minimizes Ewarp.

Turning to qualitative results in Figure 4.6, we confirm that a low FID indicates strong style

adherence and that a low Ewarp indicates strong temporal consistency. However, strictly minimizing

one or the other does not yield the most visually satisfying results. For instance, the hyperparameters

that minimize FID exhibit the same flickering artifacts as frame-wise style transfer (FST)—observe

that the region next to the cow’s foot suddenly changes from blue to orange in the final frame for

both FST and the lowest FID model. Meanwhile, the hyperparameters that minimize Ewarp yield

blurry predictions, which is the result of overly smearing several intermediate predictions across

frames. Our final model produces consistent tones without overblurring, indicating that our selection

strategy sensibly compromises between the two objectives.

4.4.4 Comparison To Prior State-of-the-Art

Now we compare HyperCon to frame-wise style transfer (FST) [86] and a state-of-the-art video

consistency method from Lai et al. (FST-vcons) [42]. For FST-vcons, we first apply FST to the

55

(a) FST (b) FST-vcons (c) HyperCon

(d) FST (e) FST-vcons (f) HyperCon

Figure 4.7: Style transfer comparison for mosaic (top) and rain-princess (bottom) styles. We show

one full frame and crops from three consecutive frames centered at the presented frame. Unlike the

baselines, HyperCon draws three consistent lines across the top of the violin (top), and removes the

flickering spot on the truck (bottom), thus producing temporally consistent results.

video, and then apply the consistency model of Lai et al. as a post-translation step. Note that

FST-vcons must process inputs sequentially, whereas HyperCon can operate on several time steps

in parallel due to its short-range dependencies. Given efficient implementations of both methods,

HyperCon’s parallelizability gives it an advantage in terms of inference time on long videos.

In Figure 4.7, we visually compare FST, FST-vcons, and HyperCon on two DAVIS 2017 test

videos. Naturally, FST generates temporally inconsistent predictions by operating on each frame

independently: observe the changing arrangement of lines across the top of the violin in Figure 4.7a,

as well as the flashing red spot in Figure 4.7d. Meanwhile, FST-vcons has two systematic failures.

First, it greatly desaturates predictions, observable across the full frame in Figure 4.7b and in the

dulled orange and blue hues of the sky in Figure 4.7e. Second, it leaves inconsistencies intact as a

result of darkening regions instead of shifting their hue; for instance, in Figure 4.7b, the pattern of

lines on the violin match the inconsistent appearance of FST. HyperCon, on the other hand, properly

addresses both of these challenges—in Figure 4.7c, HyperCon maintains a consistent pattern of

56

mosaic rain-princess

Dataset Method FID↓ Ewarp
↓ CPSNR

↑ CSSIM
↑ FID↓ Ewarp

↓ CPSNR
↑ CSSIM

↑

DAVIS 2017

FST [86] - 0.024829 ± 0.001174 16.72 ± 1.43 0.5166 ± 0.0152 - 0.013934 ± 0.000903 19.75 ± 1.39 0.6030 ± 0.0156

FST-vcons [42] 24.50 0.010194 ± 0.000500 20.51 ± 1.37 0.5830 ± 0.0140 10.87 0.007071 ± 0.000477 22.73 ± 1.35 0.6717 ± 0.0136

HyperCon (ours) 18.04 0.008810 ± 0.000493 21.04 ± 1.37 0.6662 ± 0.0157 10.53 0.006110 ± 0.000487 23.38 ± 1.35 0.7480 ± 0.0143

DAVIS 2019

FST [86] - 0.029379 ± 0.001684 14.88 ± 0.29 0.4737 ± 0.0184 - 0.017614 ± 0.001309 17.61 ± 0.38 0.5550 ± 0.0189

FST-vcons [42] 24.89 0.011999 ± 0.000672 18.79 ± 0.29 0.5451 ± 0.0169 14.77 0.008938 ± 0.000644 20.86 ± 0.38 0.6365 ± 0.0159

HyperCon (ours) 23.11 0.010677 ± 0.000710 19.20 ± 0.32 0.6105 ± 0.0192 13.59 0.008117 ± 0.000730 21.13 ± 0.43 0.6960 ± 0.0175

ActivityNet

FST [86] - 0.017895 ± 0.000847 19.29 ± 0.81 0.6478 ± 0.0134 - 0.008428 ± 0.000516 23.45 ± 0.81 0.7469 ± 0.0116

FST-vcons [42] 26.37 0.006727 ± 0.000311 22.58 ± 0.38 0.7075 ± 0.0115 9.07 0.003923 ± 0.000240 25.97 ± 0.42 0.8008 ± 0.0093

HyperCon (ours) 10.09 0.005946 ± 0.000298 23.61 ± 0.77 0.7848 ± 0.0102 5.50 0.003379 ± 0.000233 26.95 ± 0.76 0.8544 ± 0.0083

Table 4.1: Quantitative comparison between frame-wise style transfer (FST) [86], baseline blind

video consistency (FST-vcons) [42], and HyperCon (ours) for style transfer. ↑ and ↓ indicate where

higher and lower is better; bold indicates the best score; and the values after ± are standard error

over all videos. FID for FST is blank since this equates to comparing FST to itself. HyperCon

obtains lower FID scores than FST-vcons, indicating greater coherence to the intended style of

FST, as well as better warping errors and patch-based consistency scores, indicating better temporal

consistency.

violin lines by passing relevant information between frames, and in Figure 4.7f, it removes the

flashing red spot without desaturating the rest of the frame like FST-vcons.

In Table 4.1, we provide a quantitative comparison of our method against the baselines. Since

FST stylizes each frame independently, it naturally yields the worst temporal consistency as indicated

by its relatively poor warping errors and patch-based consistency scores. Between FST-vcons and

our HyperCon approach, the latter obtains better FID scores, warping errors, and patch-based

consistency scores, indicating that it is more temporally consistent and better captures the intended

style and content compared to FST-vcons.

4.4.4.1 Human Evaluation

To ensure that our quantitative conclusions match those derived from human judgements, we

devise a survey on Amazon Mechanical Turk (AMT) to compare HyperCon and the FST-vcons

baseline. Specifically, to judge overall quality, we present subjects with two corresponding videos

from HyperCon and FST-vcons, and ask which video is more appealing. As for style adherence,

we present the two aforementioned videos alongside the frame-wise translated one from FST, and

ask method is more similar to FST. For each style, we generate surveys for the 236 videos across

our three test sets (Section 4.4.1), and collect five responses for each video-style combination. This

yields 5× 236 = 1,180 responses per question per style, i.e., a total of 4,720 responses across both

questions and both styles.

For our study, we developed custom web interfaces shown in Figure 4.8. The displayed videos

are synchronized at all times, and playback can be toggled by pressing the “Play/Pause” button.

Users can choose to display one or multiple videos at a time; if one video is selected, it is centered

at the top of the page, and if multiple videos are selected, any non-selected video is replaced with a

57

(a) Preferred

(b) Style adherence

Figure 4.8: Examples of the interfaces used for the “preferred” and “style adherence” surveys.

58

black frame. Playback does not reset when different videos are selected, so users can effectively

perform A/B-style viewing without losing their place in the video.

Using these interfaces, we asked subjects two questions:

• “Which video is more appealing?” (preferred)

• “Which video looks more to 1?” (style adherence)

For the “preferred” question, we intentionally omitted instructions on what exactly makes a video

more appealing since such qualities are inherently ambiguous. As for the “style adherence” question,

we framed it in terms of comparing the pairs of videos under evaluation to the frame-wise stylized

video as reference; we determined this to be the most concrete, unambiguous way to define the

intended video stylization for subjects.

For each combination of style and source video, we randomly selected which method (between

HyperCon and the FST-vcons baseline) would appear as the first and second video under evaluation

(i.e., videos 1 and 2 in Figure 4.8a and videos 2 and 3 in Figure 4.8b). This forces subjects to

watch all videos carefully when answering each question. For the “style adherence” question, the

frame-wise stylized video (FST) always appeared as video 1.

We also provided a checkbox to allow the subject to indicate that a question was difficult.

We considered an alternative survey formulation that only asked one question, but offered three

responses (e.g., “1”, “2”, or “neither” for the “preferred” survey), but opted for the two-question

approach to ensure that rejecting the null hypothesis would lead to an interpretable result.

We paid $0.10 USD per task, which equates to $12 USD/hour if each survey takes 30 seconds to

answer. Surveys were generated as separate Human Intelligence Tasks (HITs), so it is not necessarily

the case that any given subject saw both questions for any or all videos/styles. In terms of filtering

subjects, we did not utilize any demographic-based filters; instead, we created a qualification test

utilizing an interface equivalent to Figure 4.8b. The videos used in this test were derived from a

source video not included in our DAVIS and ActivityNet test videos, and had a simple variable

darkening filter applied to each frame (i.e., multiplying all RGB values by some constant). Examples

of the effects we applied include darkening all frames by the same amount, darkening each frame

by a random amount, and not darkening any frame. For each video triplet, we always included

one of the possible answers as the reference; this effectively forced subjects to match the reference

video with one of the other two. We also ensured that the odd video out was blatantly different to

make the qualification test straightforward. We generated 10 triplets of qualification test videos, and

required subjects to answer correctly for at least 8 of them before working on our tasks.

We provide an aggregate view of our human evaluation results in Table 4.2a. For the “preferred”

question, subjects select HyperCon more often than FST-vcons, enough to reject the null hypothesis

that subjects select each method with equal probability—in short, they prefer our predictions over

59

mosaic rain-princess

Preferred Style adherence Preferred Style adherence

FST-vcons [42] 42.7% 20.9% 44.5% 23.2%

HyperCon (ours) 57.3% 79.1% 55.5% 76.8%

p-value 5.53× 10−7 0* 1.54× 10−4 0*

(a)

DAVIS 2017 (60 source videos) DAVIS 2019 (60 source videos) ActivityNet (116 source videos)

mosaic rain-princess mosaic rain-princess mosaic rain-princess

Method Preferred
Style

adherence
Preferred

Style

adherence
Preferred

Style

adherence
Preferred

Style

adherence
Preferred

Style

adherence
Preferred

Style

adherence

FST-vcons [42] 137 45 128 68 133 43 147 63 234 159 250 143

HyperCon (ours) 163 255 172 232 167 257 153 237 346 421 330 437

Total 300 300 300 300 300 300 300 300 580 580 580 580

(b)

Table 4.2: Human evaluation of style transfer quality. (a) For each style, we list how often

subjects favorably select each method across all videos of that style, as well as the p-value of the

corresponding χ2 test. 0* indicates a p-value less than 1 × 10−10. In all cases, subjects select

HyperCon (ours) significantly more often than FST-vcons [42]. (b) A detailed breakdown of

responses for each style and dataset.

those of the baseline. Furthermore, for the “style adherence” question, which asks for the video that

is more similar to the reference style video, subjects also select our HyperCon method significantly

more often; this means that our method is better at preserving the intended style than FST-vcons.

This matches the conclusion made from our method’s lower FID scores, and indicates that FID

correlates with video quality and style adherence. In Table 4.2b, we provide a detailed breakdown

of responses for each question and dataset.

4.5 Experiments: Video Inpainting

To evaluate HyperCon on masked inputs, we apply it to video inpainting. For the frame

inpainting subroutine, we re-train the Contextual Attention model from Yu et al. [109] using a

modified training scheme that yields higher-quality predictions. Specifically, whereas Yu et al. use

the WGAN-GP formulation [133] to update the discriminators of their adversarial loss, we use

the original cross-entropy GAN formulation [89] with spectral normalization layers [99] in the

discriminator, which stabilize GAN training. Our model achieves a Peak Signal-to-Noise Ratio

(PSNR) of 20.41 dB on the Places dataset [54], surpassing the original reported performance of

18.91 dB [109] under the same evaluation setting.

4.5.1 Datasets

To evaluate video inpainting methods quantitatively, we automatically synthesize occlusion

masks and use the method under evaluation to inpaint the masked area. As in prior work [55], [61],

60

our masks take the form of a rectangle at a fixed location throughout time. For each video, we

randomly select the corner locations of the rectangle, restricting its height and width to lie between

15-50% of the full frame’s dimensions (the masks are the same for all evaluated methods). We use

the same videos for hyperparameter tuning and evaluation as those described in Section 4.4.1.

4.5.2 Evaluation Metrics

The performance measures that we use for inpainting broadly assess temporal consistency,

reconstruction quality, and realism of the composited frames, i.e., the predicted frames with

unoccluded pixels replaced by those from the input. We measure temporal consistency usingEwarp as

described in Section 4.4.2. For reconstruction quality, we report mean LPIPS distance (DLPIPS) [43]

between corresponding composited and ground-truth (i.e., unoccluded) frames. Although traditional

quality measures such as PSNR and SSIM [44] have been used in prior image inpainting work [57],

[109], Zhang et al. [43] have shown that LPIPS better correlates with human judgment for paired

image comparisons. Additionally, to capture spatio-temporal similarity, we define a new video-

based version of LPIPS, VLPIPS, which is a distance between several layers of activations from the

I3D action recognition network [64]. We exhaustively compute VLPIPS between corresponding

10-frame segments from the composited and ground-truth videos and report the overall mean.

Finally, to evaluate realism, we report FID [41] between the sets of composited and ground-truth

frames, as well as a video variant VFID [31] between the sets of 10-frame segments from the

composited and ground-truth videos. We compute VFID using the output of I3D’s final average

pooling layer.

4.5.3 Comparison to Prior State-of-the-Art

For inpainting, we consider two variants of our model: one using a mean filter during temporal

aggregation (Section 4.3.3), and the other using a median filter. We compare our models to

three state-of-the-art baselines. The first method, Contextual Attention (Cxtattn), inpaints frames

independently using the model from Yu et al. [109] with our improved weights (Section 4.5). The

second method, Cxtattn-vcons, inpaints frame-wise using Cxtattn, then reduces flickering with

the blind video consistency method of Lai et al. [42]. The second phase of Cxtattn-vcons takes

the original video and the frame-wise translated video as inputs, which in this case correspond to

the masked video (with a placeholder value in the masked region) and the frame-wise inpainted

video, respectively. The final method, VINet [56], is a state-of-the-art DNN specifically designed

and trained for video inpainting; we use their publicly-available inference code in our experiments.

Among these methods, VINet is the only one tasked with inpainting videos at training time, and thus

has an advantage over the other methods from having observed natural motion in masked videos.

61

DAVIS 2017 DAVIS 2019 ActivityNet

Method DLPIPS
↓ DVLPIPS

↓ FID↓ VFID↓ Ewarp
↓ DLPIPS

↓ DVLPIPS
↓ FID↓ VFID↓ Ewarp

↓ DLPIPS
↓ DVLPIPS

↓ FID↓ VFID↓ Ewarp
↓

Cxtattn [109] 0.0457 0.5838 20.94 1.435 0.002186 0.0442 0.5575 15.55 1.361 0.002539 0.0432 0.5981 21.5173 1.4417 0.000894

Cxtattn-vcons [42] 0.0480 0.6076 23.23 1.502 0.001780 0.0478 0.5964 18.52 1.490 0.002166 0.0448 0.6067 23.1642 1.4383 0.000689

VINet [56] 0.0616 0.6062 29.24 1.465 0.001882 0.0539 0.5455 18.22 1.195 0.002292 0.0608 0.6139 29.3806 1.3783 0.000678

HyperCon-mean (ours) 0.0450 0.5272 18.49 1.073 0.001540 0.0437 0.5179 16.07 1.274 0.001847 0.0454 0.5728 22.5111 1.2251 0.000640

HyperCon-median (ours) 0.0424 0.5217 17.75 1.074 0.001614 0.0419 0.5089 15.24 1.254 0.001950 0.0441 0.5812 22.2705 1.2601 0.000683

Table 4.3: Comparison between baseline methods and HyperCon (ours) on the simulated video

inpainting task. ↓ indicates that lower is better. Bold+underline and bold respectively indicate the

1st- and 2nd-place methods. Among the evaluated methods, the HyperCon models consistently

place in the top two across all performance measures.

HyperCon

(ours)

Cxtattn

Time

Cxtattn
-vcons

(a)

HyperCon

(ours)

Cxtattn

Time

Cxtattn
-vcons

(b)

Figure 4.9: HyperCon substantially reduces flickering compared to the other image-to-video model

transfer baselines Cxtattn and Cxtattn-vcons. (a) The pole appears for just one frame with the

baselines but not with HyperCon. (b) The gray circle is apparent in the baseline predictions, but not

in the HyperCon one.

In Table 4.3, we report quantitative results on our test videos for the inpainting task. Across the

three test sets, HyperCon-mean obtains the lowest warping error, indicating that its predictions are

most consistent with the motion of the ground-truth video (since warping error effectively checks

against the estimated flow of the ground-truth video). Between HyperCon-mean and HyperCon-

median, the latter generally scores slightly worse in Ewarp but better in the reconstruction and

realism metrics; we suspect that the median filter produces sharper predictions that are more in line

with real images, but are harder to match via optical flow (when computing Ewarp) due to a wider

variety of color intensities. Both HyperCon models generally outperform Cxtattn and Cxtattn-vcons

across the evaluated datasets and metrics, suggesting that HyperCon is the most reliable method

among image-to-video model transfer techniques. Impressively, HyperCon outperforms VINet by a

substantial margin in all cases except on DAVIS 2019 under VFID despite not having seen a single

masked video at training time; this highlights the potential of transferring frame-wise models to

video.

Next, we provide a qualitative analysis in the context of real-world object removal for DAVIS

2017 training/validation videos. Comparing our HyperCon method to Cxtattn and Cxtattn-vcons,

we found several cases where the baseline methods produce flickering artifacts while ours does

62

(a) Cxtattn-vcons (b) HyperCon (ours) (c) Cxtattn-vcons (d) HyperCon (ours)

Figure 4.10: Cxtattn-vcons distorts the hue of the inpainted region; HyperCon does not. As a result,

our HyperCon predictions blend in more convincingly with the surrounding area.

Cxtattn Cxtattn-vcons HyperCon (ours)

(a) Flamingo

Cxtattn Cxtattn-vcons HyperCon (ours)

(b) Hike

Figure 4.11: HyperCon generates substantially fewer checkerboard artifacts than Cxtattn and

Cxtattn-vcons due to their instability across frames.

not (e.g., the pole in Figure 4.9a and the circle in Figure 4.9b). Additionally, due to the darkening

behavior mentioned in Section 4.4.4, Cxtattn-vcons generates darkened predictions that do not blend

in with the surrounding region as convincingly as those from HyperCon (Figure 4.10). Furthermore,

HyperCon produces the fewest “checkerboard artifacts” [134] since they are temporally unstable

and thus get filtered out by HyperCon during aggregation (Figure 4.11).

We conclude our analysis by contrasting HyperCon with VINet [56], the only evaluated method

to have seen masked videos during training. We highlight two systematic failures of VINet that

HyperCon overcomes: (i) boundary distortion and (ii) textureless prediction. Regarding the first

failure, VINet often corrupts its inpainting result over time by incorrectly warping the inpainted

structure. For example, in Figure 4.12a, VINet distorts the boundaries of the wall and mat in the

shown frames due to the continuous occlusions in those regions; meanwhile, HyperCon successfully

produces rigid boundaries. As for the second issue, VINet sometimes initializes the inpainted region

with a textureless prediction and fails to populate it with realistic texture throughout the video. In

63

VINet

HyperCon (ours)

VINet

HyperCon (ours)

(a) Boundary distortion

VINet

HyperCon (ours)

VINet

HyperCon (ours)

(b) Texture comparison

T
im

e

Input VINet HyperCon (ours)

(c) Negative result for HyperCon

Figure 4.12: Qualitative comparisons between VINet [56] and HyperCon (ours) for video inpainting.

(a) VINet distorts the boundaries of the masked wall (left) and practice mat (right), whereas Hyper-

Con successfully recovers them. (b) VINet predicts textureless regions instead of realistic textures;

in contrast, HyperCon produces sensible results thanks to its better generalization performance.

(c) In this negative result, VINet remembers regions that were unmasked in prior frames, whereas

HyperCon incorrectly extends surrounding components from the current frame into the inpainted

region.

64

Figure 4.12b, we compare this behavior with HyperCon, which generates sensible background

textures. We posit that HyperCon is better able to hallucinate missing details because it has seen

substantially more scenes than VINet during training (i.e., millions of images versus thousands of

videos).

The main advantage that VINet has over HyperCon is memory. Thanks to its ConvLSTM unit,

VINet is capable of remembering what was behind a masked region for longer periods of time than

HyperCon. For instance, in Figure 4.12c, VINet recreates the sign and fence behind the car, while

HyperCon propagates the edges of the nearby statue downward. This highlights that memory is a

crucial part of properly handling masked regions over long time durations.

4.6 Discussion and Conclusion

In terms of weaknesses, HyperCon does not enforce long-range temporal dependencies beyond

the aggregation dilation rate, so it cannot commit to stylization or inpainting choices for the entirety

of extremely long videos. In addition, as with other image-to-video model transfer methods,

HyperCon is subject to egregious errors of the frame-wise model, which can propagate downstream

in certain cases. Integrating the three steps of HyperCon into one trainable, parameter-efficient

model could help alleviate these issues by sharing more information between steps and enabling

more input frames per unit of memory. Despite these pitfalls, HyperCon is still a promising image-

to-video model transfer method for video-to-video translation tasks as seen by its strength in two

widely different tasks. We hope that it helps pave the way for further progress in this direction.

65

CHAPTER 5

Generalization Performance of Video Prediction Models

5.1 Introduction

The question of whether modern video prediction models can correctly represent important

sources of variability within a video, such as the motion parameters of cameras or objects, has not

been addressed in sufficient detail. Moreover, the manner in which existing video prediction datasets

have been constructed—both real-world and synthetic—makes probing this question challenging.

Real-world datasets have thus far used videos from action recognition datasets [101], [135] or other

“in-the-wild” videos [136], assuring to some degree that the sets of sampled objects and motions will

vary realistically between training and testing time. However, as the parameters governing the video

appearance and dynamics are unknown, failures in prediction cannot be easily diagnosed. Synthetic

datasets, on the other hand, define a set of dynamics (such as object translation or rotation) and

apply them to simple objects with pre-defined appearances such as MNIST digits [137] or human

head models [138]. Since they are generated from known sets of objects and motion parameters,

representations from a video prediction model can be evaluated based on how accurately they predict

the generating parameters. However, up until now, both the training and testing splits of these

datasets have been generated by sampling from the same object dataset and set of motion parameters,

making it difficult to gauge the robustness of video representations to unseen combinations of object

and dynamics.

Our proposition is simple: a dataset that explicitly controls for appearance and motion parameters—

and can alter them between training and testing time—is essential to answering the question of

whether video prediction networks capture in their representations useful physical models of

the visual world. To this end, we propose the Moving Symbols dataset, which extends Moving

MNIST [139] with features designed to answer this question.1 Unlike existing implementations of

Moving MNIST, which hard-code the image source files and speed of dynamics, we allow these

parameters to change between training and testing time, enabling us to evaluate a model’s robustness

to multiple types of variability in the input. Additionally, we log the motion parameters at each

1Moving Symbols was originally proposed by this dissertation’s author in [140].

66

time step to enable the evaluation of motion parameter recovery, making it easier to evaluate model

robustness with respect to different combinations of input variability.

To demonstrate the utility of our dataset, we evaluate a state-of-the-art video prediction model

from Villegas et al. [93] on a series of dataset splits designed to stress-test its capabilities. Specifi-

cally, we present it with videos whose objects exhibit appearances and movements that differ from

the training set in a controlled manner. Our results suggest that modern video prediction networks

may fail to maintain the appearance and motion of the object for unseen appearances and rates, a

problem that, to the best of our knowledge, has not yet been clearly expounded.

5.2 Moving Symbols

The Moving MNIST dataset [139] is a popular toy dataset in the video prediction literature [141]–

[143]. Each video in the dataset consists of one or two single digit images that translate within a

64× 64 pixel frame with random velocities. Although recent approaches can generate convincing

future frames, they have been both trained and evaluated on videos generated by the same object

dataset and motion parameters, limiting our understanding of what the networks learn to represent.

In particular, it is unclear whether they memorize the object’s appearance and update its position

over time, or if they learn some low-level shortcut that does not properly capture these attributes.

Our Moving Symbols dataset overcomes this limitation by allowing sampling from different

object datasets or distributions of motion parameters at training and testing time. For example,

the training set may contain slow- and fast-moving MNIST digits while the test set may contain

Omniglot characters [144] at medium speed. By adjusting a configuration file, it is trivial to

generate paired train/test splits under varying conditions. Furthermore, the video generator logs

the image appearance, pose, and rate of movement of each object at each time step, which enables

semantically meaningful evaluation as we demonstrate in Section 5.3. This dataset can expose a

failure to correctly interpolate video physics, which has been difficult to determine in prior work.

5.3 Experiments

To demonstrate the insights we can gain from the Moving Symbols dataset, we construct two

groups of experiments, where each trial consists of different train/test splits (see Table 5.1). Our

first set of experiments on translation speed variation test whether a video prediction model can

generalize the motion seen during training to unseen speeds. We consider three cases: (1a/b) in

which the sampled speeds at test time are strictly higher or lower than those sampled at training

time, and (1c) in which the training speeds come from a high or low interval while the speeds at

test time come from an interval between the two. Our second set of experiments on appearance

67

Experiment group Train images Test images Training rates Testing rates

(1a) Translation speed variation, slow  fast MNIST MNIST

(1b) Translation speed variation, fast  slow MNIST MNIST

(1c) Translation speed variation, slow/fast  med MNIST MNIST

(2a) Appearance variation, MNIST  Icons8

(2b) Appearance variation, Icons8  MNIST

MNIST

Icons8

Icons8

MNIST

 Slow Medium Fast

Table 5.1: Experimental setup. The row for each trial describes the objects and motion speeds seen

during training and the out-of-domain objects and motion speeds seen during testing.

variation assesses whether video prediction performance worsens when the images observed at test

time differ significantly from those seen at training time, while motion dynamics are kept fixed. For

these experiments, the training image dataset and the testing image dataset contain vastly different

appearances and semantic categories. Specifically, we use MNIST [137] as well as a novel dataset of

5,000 vector-based icons from icons8.com. The Icon8 images contain more complex structure

than MNIST digits, but omit complex textures such as those in CIFAR-10 [145], which allows us

to evaluate the effect of structural complexity on video prediction performance in isolation from

textural complexity.

We use our evaluation framework to analyze MCNet [93], a state-of-the-art video prediction

model. For each experiment, we generate 10,000 training videos and 1,000 testing videos. We train

the model on each unique training set, using ten frames of input to predict ten future frames. After

training the model for 80 epochs using the same procedure as Villegas et al. [93], we evaluate it on

the out-of-domain test set with ten input frames and twenty predicted future frames.

Figure 5.1 shows a comparison of the predictions made for a random test sequence in each

experiment. For the speed variation experiments, we observe that when MCNet is evaluated on out-

of-domain videos, it propagates motion by replicating trajectories seen during training rather than

adapting to the speed seen at test time (e.g. in experiment (1a) from Table 5.1, MCNet slows down

test digits). More surprisingly, the model has difficulty preserving the appearance of the digit when

motion parameters change. Since MCNet explicitly takes in differences between subsequent frames

as input, it is possible that the portion of the model encoding frame differences inadvertently captures

and misrepresents appearance information. In the appearance variation experiments, MCNet clearly

overfits to the appearances of objects seen during training. For example, the MNIST-trained model

transforms objects into digit-like images, and the Icons8-trained model, which sees a broader variety

of object appearances, transforms digits into iconographic images. This may be due to the use of an

adversarial loss to train MCNet, which would penalize appearances that are not seen during training.

Regardless, the model cannot adapt to observing a new object behaving under familiar dynamics.

68

icons8.com

(i)

(ii)

(iii)

(iv)

 (1a) (1b) (1c) (2a) (2b)

Figure 5.1: Sample predictions for each experiment from Table 5.1. From top to bottom: (i) sample

input frames observed by each prediction model at t = {3, 6, 9}; (ii) sample ground truth frames

(unobserved) at t = {13, 16, 19}; (iii) corresponding predictions from a model tested under the same

conditions as the training set; and (iv) predictions from a model tested under different conditions, as

per Table 5.1.

To obtain quantitative results, we train an “oracle” convolutional neural network to estimate the

digit class and location of MNIST digits in a 64 × 64 pixel frame and compare them against the

logged ground truth. This allows us to draw more interpretable comparisons between generated

frames than is possible with common low-level image similarity metrics such as PSNR or SSIM [44].

For the oracle’s architecture, we use LeNet [137] and attach two fully-connected layers to the output

of the final convolutional layer to regress the digit’s location. On a held-out set of test digits, the

trained oracle obtains 98.47% class prediction accuracy and a Root Mean Squared Error (RMSE) of

3.5 pixels for 64x64 frames.

Figure 5.2 shows our quantitative results on the MNIST-based test sets (all rows except (2a)

from Table 5.1). For the speed variation experiments, the frames predicted for out-of-domain test

videos induce a large MSE from the oracle, especially during later time steps, whereas in-domain

evaluation yields frames that induce a small MSE. This matches our qualitative observation that

MCNet fails to propagate the out-of-domain object’s motion, instead adjusting it to match the

speeds seen during training. The digit prediction performance of the oracle also drops substantially

when evaluating on out-of-domain videos, supporting our observation that MCNet has trouble

preserving the appearances of objects that move faster or slower than those seen in training. In

the appearance variation experiment (2b), we observe a large digit classification cross-entropy

error for the out-of-domain case compared to the in-domain case because the Icons8-trained model

transforms digits into iconographic objects. Surprisingly, the model preserves the trajectory of

unseen digits better than the MNIST-trained model. This might be because predicting the wrong

location for pixel-dense Icons8 images would incur a larger pixel-wise penalty during training than

predicting the wrong location for pixel-sparse MNIST images.

69

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0

50

100

150

200

250
Speed variation, position regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Speed variation, digit classification

(1a) (1b) (1c)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0

50

100

150

200

250
Appearance variation, position regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Appearance variation, digit classification

(2b)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0

50

100

150

200

250
Speed variation, position regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Speed variation, digit classification

(1a) (1b) (1c)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0

50

100

150

200

250
Appearance variation, position regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frame #

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Appearance variation, digit classification

(2b)

Figure 5.2: Quantitative results to compare in-domain (dotted line) and out-of-domain evaluation

performance (solid line), with standard error shown in gray. Across future time steps, we report

median values for two metrics: positional Mean Squared Error (MSE) between the oracle’s predicted

position and ground truth (left plots), and cross-entropy between the oracle’s digit prediction and

true label (right plots).

5.4 Discussion and Future Work

We have shown that Moving Symbols can help expose the poor generalization behavior of a state-

of-the-art video prediction model, which has implications in the real-world case where unseen ob-

jects and motions abound. Only a fraction of our dataset’s functionality has been demonstrated here—

its other features can be used to construct more elaborate experiments, such as introducing scale,

rotation, and multiple symbols with increasing complexity, or making use of the pose information as

a further supervisory signal. The community’s adoption of this dataset as an objective, open standard

would lead to a new generation of self-supervised video prediction models. The Moving Symbols

dataset is currently available at https://github.com/rszeto/moving-symbols.

70

https://github.com/rszeto/moving-symbols

CHAPTER 6

Diagnostic Video Inpainting Benchmark

6.1 Introduction

Video inpainting, i.e., the task of filling in missing pixels in a video with plausible values, pushes

the boundaries of modern video editing techniques and enables remarkable applications for film and

social media such as watermark and foreground object removal [146], [147]. Compared to image

inpainting, video inpainting is more challenging due to the additional temporal dimension, which

not only increases the complexity of the solution space, but also places additional constraints on

what constitutes a high-quality prediction—in particular, predictions must be coherent in terms of

both spatial structure and motion. Despite the difficulty of the task, modern results have become

quite compelling thanks to the increasing amount of attention that the problem has received as of

late [36], [37], [53], [55], [56], [61], [62], [148].

Quantitative evaluation has increased dramatically among recent video inpainting work; however,

existing evaluation schemes underemphasize the importance of the contents of the videos and masks

used to gauge performance. Typically, video inpainting is evaluated as a reconstruction problem:

performance is quantified by masking out arbitrary regions from the video (i.e., “corrupting” it) and

scoring the model’s ability to recover the masked-out values [37], [52], [61]. However, the difficulty

of reconstruction depends on the mask’s shape and motion, as well as the content present in the

“uncorrupted” video. For example, given a static mask, it is harder to inpaint a video captured by a

fixed camera than one captured by a moving camera. In the former case, the region beneath the

mask is never visible, so the model effectively needs to “hallucinate” its appearance; in the latter

case, the model could transfer appearance information from other frames, a strategy that lies at the

heart of many video inpainting approaches [35], [52], [53], [83].

The difficulty of video inpainting is inherently tied to the content of the videos and masks being

inpainted; with this principle in mind, we push for more emphasis on content-informed diagnostic

evaluation, which can help identify the strengths and weaknesses of modern inpainting methods and

improve ablative analysis. To date, the videos used for evaluation have been underappreciated in this

regard, having been sourced from datasets for other tasks (e.g., facial analysis [50], [149] and object

71

bgsm-l bgsm-h
cm-l cm-h

bgsm-l bgsm-h
cm-l cm-h

bgsm-l bgsm-h
cm-l cm-h

bgsm-l bgsm-h
cm-l cm-h

bgsm-l bgsm-h
cm-l cm-h

fgd-l fgd-h
fgpm-l fgpm-h

fgs-l fgs-h

fgd-l fgd-h
fgpm-l fgpm-h

fgs-l fgs-h

fgd-l fgd-h
fgpm-l fgpm-h

fgs-l fgs-h

fgd-l fgd-h
fgpm-l fgpm-h

fgs-l fgs-h

fgd-l fgd-h
fgpm-l fgpm-h

fgs-l fgs-h

(a) DEVIL content attributes (b) DEVIL dataset w/ annotations

BG scene
motion

(bgsm-*)

Low (*-l) High (*-h)

Camera
motion
(cm-*)

FG dis-
placement

(fgd-*)

FG pose
motion

(fgpm-*)

FG size
(fgs-*)

Figure 6.1: A visual overview of our DEVIL dataset. (a) The content attributes that characterize

our dataset and are used to create dataset slices for evaluation (i.e., sets of video-mask pairs

with a fixed attribute). We label low/high background scene motion or camera motion for videos

exhibiting these attribute settings beyond a certain threshold (Section 6.4.2). For occlusion masks,

we construct sampling parameters that capture the desired attribute settings and use them to render

masks (Section 6.4.3). (b) Videos, masks, and annotations from our dataset. A given video or mask

may have multiple attribute labels or none; labels for the same attribute are mutually exclusive (e.g.,

a mask cannot have both low and high FG displacement).

localization [45], [46]) rather than selected to represent important inpainting scenarios. In particular,

they contain biases that are essential for the original task, but hinder fine-grained analysis for

video inpainting. For example, object localization videos consistently include prominent, moving

foreground objects; as a result, standard inpainting evaluation schemes inevitably underrepresent

performance on foreground-free videos. Furthermore, other types of motion, e.g., camera and

background scene motion, noticeably impact video inpainting performance, but are not controlled

for in standard datasets.

In this work, we propose the Diagnostic Evaluation of Video Inpainting on Landscapes (DEVIL)

benchmark.1 It is composed of two parts—the DEVIL dataset and the DEVIL evaluation scheme—

which combine to enable a finer-grained analysis than has been possible in prior work. Such

granularity is achieved through content attributes, i.e., properties of source videos or masks that

characterize key failure modes by affecting how easily video inpainting models can borrow ap-

pearance information from nearby frames. Specifically, the DEVIL dataset contains source videos

labeled with low/high camera and background scene motion attributes, and occlusion masks labeled

with low/high foreground displacement, pose motion, and size attributes (Figure 6.1). Meanwhile,

the DEVIL evaluation scheme constructs several slices of the DEVIL dataset—sets of video-mask

pairs in which exactly one content attribute is kept fixed—and summarizes inpainting quality

through metrics that capture reconstruction performance, realism, and temporal consistency (Sec-

tion 6.5.2). By controlling for content attributes and summarizing inpainting quality per attribute

1DEVIL was originally proposed by this dissertation’s author in [150].

72

across several metrics, our DEVIL benchmark provides valuable insight into the failure modes of a

given inpainting model and how mistakes manifest in the output.

We use our novel benchmark to analyze the strengths and weaknesses of seven state-of-the-art

video inpainting methods. By quantifying their inpainting quality on ten DEVIL dataset slices under

five evaluation metrics, we provide the most comprehensive and fine-grained evaluation of modern

video inpainting methods to our knowledge. Our head-to-head, multi-faceted comparisons allow

us to draw several important conclusions. For example, we show that video inpainting methods

in which time and optical flow are carefully modeled consistently achieve the best performance

across several types of input data. We also show that the relative rankings between methods are

highly sensitive to metrics as well as source video and mask content, highlighting the need for

comprehensive evaluation. Finally, we show that controlling for source video and mask attributes

reveals insightful failure modes which can be traced back to the design of the inpainting method in

question.

Our comprehensive diagnostic benchmark enables insightful analysis and serves as an invaluable

tool for video inpainting research. To summarize, we provide the following contributions:

• We present the first diagnostic dataset specifically designed for video inpainting to our

knowledge, which includes annotations for content-based attributes that represent numerous

inpainting failure modes;

• We introduce a novel and comprehensive evaluation scheme that spans ten dataset slices and

five evaluation metrics of video inpainting quality;

• We analyze seven state-of-the-art algorithms on our benchmark, providing the most compre-

hensive quantitative evaluation of video inpainting methods to date; and

• We identify systematic errors among video inpainting methods and highlight directions for

future work.

Our code is available at https://github.com/MichiganCOG/devil.

6.2 Related Work

6.2.1 Methods

Most video inpainting algorithms borrow visual appearance information from known parts

of the video to fill in unknown parts. For example, alignment-based methods compute local or

global alignments between neighboring frames, and then propagate pixels across aligned locations

(alignments are found either through classical feature correspondences [79], [80] or deep neural

73

https://github.com/MichiganCOG/devil

networks [52], [53], [62]). Patch-borrowing methods view videos as spatiotemporal tensors and

iteratively paste cuboids or voxels from the known region into the unknown region to maximize

global coherence [33], [34], [83]. Flow-guided methods propagate visual information along the op-

tical flows estimated between consecutive frames, where the flow for unknown regions is computed

iteratively or hierarchically based on known regions to improve performance [35], [56], [61], [148].

Although explicit appearance-borrowing is not leveraged for some methods, e.g., autoencoder-

based methods [36], [37], [55], [58], we use its prevalence to guide our experimental design.

Specifically, we control for content-based attributes that affect the difficulty of borrowing rele-

vant appearance information from other frames, which is possible through our varied data and

comprehensive annotations.

6.2.2 Datasets

The source video datasets used in early video inpainting work were small and oriented around

qualitative analysis [33], [34], [83]; as a result, it was difficult to compare the performance of early

methods across a wide variety of scenarios. Recent video inpainting methods have instead used

large-scale datasets—ranging in structure from aligned face videos [50] and driving videos [49] to

unconstrained videos from the Internet [45], [46]—to enable more comprehensive analysis. The

foreground object segmentation datasets DAVIS [45] and YouTube-VOS [46] have been particularly

popular since their annotations can be used to remove the object from the video. Unlike most prior

work, we collect novel videos specifically for the inpainting task, emphasizing attributes that affect

how well video inpainting models can transfer appearance information across frames. We also use

videos of background scenes instead of videos with foreground objects, which enables us to isolate

failure modes that are unrelated to foreground motion.

In terms of occlusion masks, static rectangles [55], [61] or foreground masks from other

videos [36], [52], [53], [56] are commonly used. Procedural mask generation has also been

explored; for instance, Chang et al. [37], [58] render several strokes on a canvas, where each stroke

has several control points that randomly move with a certain probability. We extend their work by

adding physical constraints for finer control over mask size and motion. Furthermore, we choose our

mask sampling parameters based on attributes that directly influence how easily video inpainting

models can transfer appearance information across frames.

6.3 Overview of the DEVIL Benchmark

Before introducing the DEVIL benchmark for video inpainting, we first define the task itself.

Let V ∈ {0, . . . , 255}H×W×3×T be an input RGB video with T frames and a resolution of W ×H .

V contains a placeholder value for missing voxels (e.g., 0) whose locations are indicated by an

74

input occlusion mask M ∈ {0, 1}H×W×T . Video inpainting aims to produce an inpainted version of

V , denoted V ∗, with the following characteristics:

• Reconstruction performance: V ∗ is a faithful reconstruction of V gt in the scenario where V

is a “corrupted” video derived from some uncorrupted ground truth source video V gt.

• Realism: V ∗ is indistinguishable from a real video.

• Temporal consistency: V ∗ exhibits minimal temporal flickering artifacts.

These criteria are defined more rigorously in Section 6.5.2.

Our DEVIL benchmark is a collection of tools designed to provide a detailed understanding of

video inpainting methods and their behavior across a variety of input data. There are two major

components of our benchmark: (i) the DEVIL dataset, which contains source videos and occlusion

masks that have been specially curated, rendered, and annotated to identify specific failure modes

in video inpainting; and (ii) the DEVIL evaluation scheme, which reports a set of quality-based

metrics on several “slices” of the DEVIL dataset, each of which represents a particular failure mode.

The DEVIL dataset captures content complexity along five video-level content attributes, i.e.,

properties that affect the difficulty of inpainting a given video-mask pair by influencing the relevance

and availability of appearance information from nearby frames. Specifically, it contains source

videos with low and high camera and background (BG) scene motion, and occlusion masks with

low and high foreground (FG) displacement, pose motion, and size (Figure 6.1a).2 Furthermore,

videos and masks are annotated with these attributes and their settings (low or high) to enable

targeted evaluation that controls for their presence. Section 6.4 rigorously defines these attributes

and describes our process for collecting videos, masks, and attribute annotations.

Meanwhile, our DEVIL evaluation scheme gauges inpainting quality under multiple slices of our

dataset, i.e., sets of video-mask pairs characterized by a certain attribute setting. Within each slice,

exactly one dataset attribute is kept fixed while the others change freely. By measuring inpainting

quality across several slices and metrics, our benchmark provides valuable information on when

and how models fail. In Section 6.5, we describe our DEVIL dataset slices and evaluation metrics

in further detail.

6.4 The DEVIL Dataset

6.4.1 Collecting Source Videos for the DEVIL

In the context of quantitative evaluation, video inpainting is generally posed as a reconstruction

problem [37], [52], [61]; thus, it is useful to evaluate on videos of background scenes without fore-

2The term “foreground” (FG) comes from FG object removal applications.

75

ground objects, where the complete ground-truth background appearance is known (and foreground

behavior can be controlled explicitly via occlusion masks). Data from other video understanding

tasks do not satisfy this criterion, since they generally feature foreground objects which ground

the original task. This is especially true for the two most popular datasets used in video inpainting

work, DAVIS [45] and YouTube-VOS [46], which were originally collected for foreground object

segmentation.

For this reason, we collect our own videos of background-only scenes, similar to Zhang et

al. [36]. In particular, we target scenic landscape videos in which people have filmed natural outdoor

locations from both casual and cinematic viewpoints. Because the primary subject of these videos

is the background, they are substantially less likely to contain prominent foreground objects, and

are thus good targets for curating our source video collection.

To identify a high-quality set of source videos depicting scenic landscapes, we begin by searching

Flickr [151] for videos that contain the term “scenic” in their metadata. From these preliminary

results, we identify a small number of users who upload a large volume of high-quality, non-

post-processed videos. We then refine our search to “scenic” videos from those users within a

given upload time frame (January 2017 - January 2019). From these videos, we automatically

detect and discard any that contain shot transitions, resolutions not equal to 1920×1080, or COCO

object classes [152] as detected by a Mask R-CNN model [153] provided by Detectron2 [154].

After automatic filtering, we manually inspect the remaining videos and remove those that contain

undetected foreground objects or shot transitions, as well as other signs of post-processing (e.g.,

sped-up videos). We split the remaining videos into clips containing between 45-90 frames, which

constitute a grand total of 1,250 source clips.

6.4.2 Annotating DEVIL Source Video Attributes

For our DEVIL source videos, we annotate two types of content attributes: camera motion and

BG scene motion (Figure 6.1a). Camera motion encompasses frame-to-frame differences that are

induced by changes in the camera’s pose relative to the scene (i.e., camera extrinsics); BG scene

motion refers to frame-to-frame differences that result from changes in the scene itself, such as

running bodies of water or trees that sway due to strong winds (i.e., motion among “stuff” classes in

the object detection sense [155]).

We select these attributes for two reasons. First, they represent two sources of complex motion

with different low-level characteristics that video inpainting models must replicate well to produce

convincing predictions. Second, they impact video inpainting models by influencing the similarity

and relevance of appearance information across frames. For instance, high camera motion can

reveal or obscure parts of the scene, or otherwise change the scene’s appearance due to perspective;

high BG scene motion continuously changes the frame-wise appearance of textures.

76

These attributes are difficult to quantify concretely based on RGB video frames alone; however,

it is possible to distinguish extreme examples of low and high motion by visual inspection and

proxy estimates. Thus, for a given attribute, we label videos as containing either low or high motion,

but only for a small percentage of videos lying at the extreme ends (videos not labeled for the

given attribute may still appear in slices that do not control for it). Not only does this reduce label

ambiguity, it also magnifies any performance differences caused by changing a given attribute

between low and high settings, thereby highlighting failure modes.

To annotate high BG scene motion, we manually identify clips that contain running bodies of

water that cover at least 40% of the frame for all frames; for low BG scene motion, we identify

clips that contain no running bodies of water (we establish our BG scene motion annotations based

on bodies of water since they are prevalent in our data and easy for people to identify by visual

inspection). We did not use automatic classifiers for this attribute due to their poor performance and

the automatic bias that would have been introduced through their usage.

To annotate camera motion, we use classical affine alignment techniques and measure the

amount of invalid pixels introduced via warping as a proxy for camera motion. The intuition behind

this classifier is that high camera motion produces frames with poor pairwise affine alignments,

and that warping frames by such transforms introduces a high percentage of invalid pixels into the

field of view (the converse is true for low camera motion). Despite the simplicity of this approach,

we found that it achieves a sufficiently high precision-recall AUC for our purposes (0.90 on a

manually-annotated version of the DAVIS train/val set [45]).

Concretely, we label camera motion as follows: between a given pair of video frames, we first

compute bidirectional robust affine transformations using RANSAC [156] over matched SURF

keypoints [157]. Then, we warp the frames by the corresponding affine transformation and compute

the number of invalid pixels introduced by the warp; we define the inverse of this quantity as the

pairwise compatibility between the given frames. For a given clip, we sample ten evenly-spaced

frames and compute the minimum pairwise compatibility between all pairs, which we define as the

total frame compatibility of the clip. Finally, we obtain camera motion annotations by thresholding

the total frame compatibility.

6.4.3 DEVIL Masks and Attributes

For occlusion masks, we consider three attributes that influence the availability of relevant

appearance information in nearby frames (Figure 6.1a):

• FG displacement: How much the mask’s centroid moves over time with respect to the field

of view;

• FG pose motion: How much the shape of the mask changes over time with respect to the

77

field of view (independent of the displacement of its centroid); and

• FG size: The average number of pixels that are occupied by the mask per frame.

Masks with high FG displacement or pose motion reveal complementary parts of the scene over

time, whereas FG size explicitly determines how much appearance information can be relied on as

ground truth.

To generate occlusion masks with our desired DEVIL attributes, we opt for a procedural

generation approach inspired by Chang et al. [37], which enables fine-grained control over mask

shape and behavior. In their framework, an initial mask shape is generated by sampling control

points along a random walk with momentum (i.e., biased toward an initial direction), and then

connecting the control points with a stroke of random thickness. The mask is animated by moving

all control points with a given velocity and then slightly perturbing their positions at each time step.

We extend the code of Chang et al.with several changes to enable even finer control over mask

size and motion. For example, we reduce the impact of momentum in the initial mask-drawing

phase to increase the diversity of mask shapes. Additionally, we apply inward-facing acceleration

to the control points whenever they are sufficiently far from the mask’s centroid, which effectively

constrains its maximum possible area. Furthermore, we force the control points to bounce off the

edge of the frame to prevent them from leaving the field of view. Finally, we randomly reverse the

temporal dimension of masks with a 50% probability since they tend to grow in size over time.

Because the mask generation procedure is parameterized, we can produce occlusion masks that

correspond to our desired DEVIL attribute settings by sampling from distinct configurations. To

generate masks with small and large FG sizes, we sample from two corresponding ranges of stroke

widths, and also change the maximum possible distance of each control point to the centroid. To

vary the FG displacement, we sample the initial velocity of the overall mask from two different

ranges. Finally, to generate masks with low and high pose motion, we vary the stochasticity of the

control points (i.e., for low pose motion masks, the control points are less likely to accelerate in a

random direction per frame).

6.5 The DEVIL Evaluation

6.5.1 Slices of the DEVIL Dataset

The naı̈ve way to evaluate on the DEVIL dataset would be to randomly sample a test set

of paired source videos and occlusion masks without accounting for their attributes; however,

this provides little insight into the failure modes that cause prediction errors for a given method.

Instead, we control for one attribute at a time to isolate its impact on the prediction. Specifically,

for each attribute setting, we construct slices of the DEVIL dataset, i.e., pre-determined sets of

78

video-mask pairs where the given attribute is fixed as low or high and the others are uncontrolled.

By reporting performance on each slice separately, our benchmark can highlight failure modes with

finer granularity.

We construct the DEVIL dataset slices as follows. Given the desired attribute setting (e.g., low

camera motion), we randomly sample either 150 source videos or masks with that setting (recall

that an attribute applies exclusively to either the source video or the mask modality). Then, within

the other modality, we sample 150 instances from all available DEVIL instances (e.g., for the low

camera motion slice, we sample all rendered DEVIL masks). Finally, we pair together the selected

source videos and masks.

6.5.2 Evaluation Metrics

We evaluate on composited inpainting results (i.e., the known region is composited over the

inpainting prediction). Inputs are resized to 832×480 resolution; for methods that cannot consume

this resolution, we apply mirror padding to both the source video and the mask, run the method,

and crop out padded regions from the result for fairness. We quantify performance along three

axes of inpainting quality—reconstruction, realism, and temporal consistency—as described in the

remainder of this section.

Reconstruction captures the extent to which a video inpainting method predicts the original

content in a given reference video (i.e., the version of the video without the occlusion mask).

We report two reconstruction metrics: the Learned Perceptual Image Patch Similarity (LPIPS)

metric [43] with a pre-trained AlexNet backbone [158], and our own video-based variant called

the Perceptual Video Clip Similarity (PVCS) metric with a pre-trained I3D backbone [64]. These

metrics measure the distance between corresponding features of a deep neural network. LPIPS is

computed between corresponding frames of the reference and inpainted video, whereas PVCS is

computed between corresponding 10-frame clips in a sliding window.

Realism indicates how well the inpainting result resembles the appearance and motion observed

in a reference set of real videos, independent of the original video from which the input is derived.

Unlike reconstruction, realism enforces a smaller penalty for deviating from the original content as

long as the prediction exhibits sensible appearance and motion. For our image-based realism metric,

we use the Fréchet Inception Distance [41] (FID), which fits multivariate normal distributions over

the feature activations of two sets of images and measures their distance; in our case, the two

sets correspond to all predicted frames and all reference frames. We also report the video-based

equivalent Video FID [56] (VFID), which corresponds to the sets of all inpainted videos and all

reference videos (the features are extracted from a pre-trained I3D backbone [64]).

79

(a) Ground truth (b) VINet (c) CPNet

Figure 6.2: High temporal consistency may indicate overly blurry predictions if reconstruction or

realism performance is low (as shown in the results of VINet and CPNet). The area to be inpainted

is outlined in yellow in (a).

Temporal consistency measures the proliferation of flickering artifacts, i.e., how much colors

at corresponding points of the scene change between consecutive frames. We adapt the patch

consistency metric, denoted PCons, from Gupta et al. [21]: for each frame, we extract the 50×50

patch at the centroid of the occlusion mask, compute the maximum Peak Signal-to-Noise Ratio

(PSNR) between this patch and neighboring patches in the next frame, and average the result across

all frames. Note that stronger temporal consistency is not always ideal: low-quality predictions,

such as constant-color or blurry inpainting results, can produce high temporal consistency scores

(see Figure 6.2).

6.6 Experiments

To demonstrate the utility of our DEVIL benchmark, we analyze the performance of seven

representative state-of-the-art video inpainting methods, using the publicly-available code, model

weights, and default runtime arguments provided by the original authors:

• Joint optimization of flow and color (JointOpt) [35]: Alternates between optimizing an

optical flow estimate and finding suitable patches along the flow. Among our methods, this is

the only non-deep learning one.

• VINet [56]: Recurrently predicts the next frame by warping intermediate features spatially

via optical flow.

• Deep Flow Completion Network (DFCNet) [61]: Predicts the optical flow of the video,

then inpaints the missing region by propagating known values along the flow.

80

Low FG displacement High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00504 0.1910 7.73 0.0513 36.96 JointOpt 0.00206 0.0995 1.71 0.0197 36.07

0.00643 0.3053 21.68 0.1064 47.92 VINet 0.00370 0.2258 8.29 0.0648 44.39

0.00479 0.1822 7.29 0.0507 55.81 DFCNet 0.00190 0.1028 2.08 0.0241 56.35

0.00419 0.2254 12.72 0.0740 42.36 CPNet 0.00236 0.1462 4.85 0.0367 40.33

0.00379 0.1887 7.29 0.0466 35.14 OPN 0.00253 0.1474 3.46 0.0305 34.60

0.00411 0.2265 8.18 0.0660 39.90 STTN 0.00293 0.1602 3.68 0.0390 38.39

0.00465 0.1914 9.17 0.0495 37.02 FGVC 0.00200 0.0986 1.89 0.0182 38.15

0.00471 0.2158 10.58 0.0635 42.16 Mean 0.00250 0.1401 3.71 0.0333 41.18

Low FG pose motion High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00401 0.1643 5.79 0.0419 36.84 JointOpt 0.00296 0.1266 3.85 0.0282 36.56

0.00618 0.2869 17.00 0.0956 46.40 VINet 0.00435 0.2456 10.51 0.0730 46.03

0.00354 0.1604 5.06 0.0430 54.07 DFCNet 0.00294 0.1237 3.38 0.0305 55.17

0.00383 0.2060 10.34 0.0655 41.60 CPNet 0.00323 0.1681 6.33 0.0481 41.16

0.00319 0.1794 6.01 0.0433 35.18 OPN 0.00289 0.1606 3.68 0.0367 34.54

0.00395 0.2101 6.96 0.0575 39.80 STTN 0.00328 0.1809 4.77 0.0481 39.14

0.00391 0.1634 6.03 0.0392 37.58 FGVC 0.00290 0.1261 4.39 0.0259 37.75

0.00409 0.1958 8.17 0.0551 41.64 Mean 0.00322 0.1617 5.27 0.0415 41.48

Low FG size High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00078 0.0495 1.99 0.0102 36.18 JointOpt 0.00591 0.2324 7.30 0.0530 37.19

0.00118 0.1094 6.31 0.0288 43.81 VINet 0.00839 0.4312 23.63 0.1488 50.07

0.00069 0.0519 0.93 0.0119 53.80 DFCNet 0.00556 0.2240 7.71 0.0627 57.80

0.00073 0.0680 2.35 0.0155 39.17 CPNet 0.00679 0.3048 13.21 0.0969 43.91

0.00084 0.0563 0.95 0.0119 34.30 OPN 0.00571 0.2874 8.71 0.0708 35.09

0.00113 0.0786 2.02 0.0194 38.24 STTN 0.00645 0.3149 10.89 0.0911 41.12

0.00087 0.0528 1.66 0.0119 37.89 FGVC 0.00543 0.2322 9.76 0.0564 38.26

0.00089 0.0666 2.32 0.0157 40.48 Mean 0.00632 0.2896 11.60 0.0828 43.35

Low BG scene motion High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00247 0.1199 3.70 0.0257 39.36 JointOpt 0.00512 0.1680 3.89 0.0333 34.91

0.00434 0.2549 13.01 0.0791 47.87 VINet 0.00543 0.2793 14.39 0.0796 47.02

0.00275 0.1381 5.97 0.0387 54.00 DFCNet 0.00362 0.1620 3.40 0.0398 40.00

0.00279 0.1691 6.57 0.0499 43.38 CPNet 0.00398 0.2070 5.24 0.0591 41.48

0.00254 0.1587 4.90 0.0397 36.67 OPN 0.00367 0.1819 4.27 0.0349 33.55

0.00299 0.1873 6.60 0.0569 40.82 STTN 0.00447 0.2030 4.15 0.0438 38.78

0.00314 0.1347 7.70 0.0370 39.16 FGVC 0.00376 0.1697 4.57 0.0356 36.50

0.00300 0.1661 6.92 0.0467 43.04 Mean 0.00429 0.1958 5.70 0.0466 38.89

Low Camera motion High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00269 0.1311 3.03 0.0253 39.39 JointOpt 0.00275 0.1319 2.36 0.0220 33.84

0.00610 0.2909 17.87 0.0863 48.39 VINet 0.00467 0.2417 10.44 0.0613 44.00

0.00254 0.1169 3.58 0.0224 55.22 DFCNet 0.00352 0.1353 3.34 0.0293 45.13

0.00344 0.1585 5.25 0.0339 44.04 CPNet 0.00496 0.2227 7.21 0.0697 39.56

0.00357 0.1749 3.64 0.0340 34.81 OPN 0.00327 0.1679 4.60 0.0332 32.35

0.00349 0.1521 4.34 0.0280 41.95 STTN 0.00529 0.2410 8.95 0.0783 36.38

0.00284 0.1378 6.28 0.0258 42.65 FGVC 0.00312 0.1239 3.05 0.0206 34.61

0.00352 0.1660 6.28 0.0365 43.78 Mean 0.00394 0.1806 5.71 0.0449 37.98

Table 6.1: The performance of each inpainting method on each DEVIL slice

and evaluation metric. Bold indicates the best method; ▼ and ▲ indicate that

lower or higher is better, respectively.

Figure 6.3: Mean per-

formance of each method

across all DEVIL slices. Er-

ror bars show standard er-

ror across the ten slices.

• Copy-Paste Network (CPNet) [52]: Estimates affine transformations between frames with a

task-driven deep neural network, and then copies features across aligned frames via attention.

• Onion Peel Network (OPN) [53]: Iteratively inpaints the exterior of the current missing

region by attending to relevant locations in the known region.

• Spatio-Temporal Transformer Network (STTN) [62]: Decodes the missing region with a

Transformer [159] that consumes multi-scale patches from the entire video.

• Flow-Edge Guided Video Completion (FGVC) [148]: Extends DFCNet [61] by leveraging

flow between non-adjacent frames and using edge information to solve for piecewise-smooth

flow predictions.

81

LPIPS

PVCS

FIDVFID

PCons

JointOpt

LPIPS

PVCS

FIDVFID

PCons

VINet

LPIPS

PVCS

FIDVFID

PCons

DFCNet

LPIPS

PVCS

FIDVFID

PCons

CPNet

LPIPS

PVCS

FIDVFID

PCons

OPN

LPIPS

PVCS

FIDVFID

PCons

STTN

LPIPS

PVCS

FIDVFID

PCons

FGVC

Figure 6.4: Visualizations of each model’s performance across the five evaluation metrics averaged

over all DEVIL slices; larger area is better. Performance is scaled linearly and independently per

metric such that the innermost and outermost pentagons respectively correspond to the weakest and

strongest observed mean performance.

6.6.1 Aggregate Analysis

In Table 6.1, we report the performance of all evaluated methods on each DEVIL slice; in

Figure 6.3, we compare their performance averaged across all slices. We observe that JointOpt,

DFCNet, and FGVC consistently outrank or perform within one standard error of the other methods

in terms of the reconstruction metrics LPIPS/PVCS and the realism metrics FID/VFID. They all ex-

plicitly solve for the optical flow of the inpainted video during inference, suggesting that computing

task-driven flow is an essential ingredient in producing the highest-quality video inpainting results.

Additionally, JointOpt remains competitive among recent deep learning-based solutions, suggesting

that improvements may arise by adapting traditional subroutines, e.g., PatchMatch [84], to deep

learning.

The three mid-tier methods—OPN, STTN, and CPNet—borrow intermediate features across

distant time steps, but do not use time as an ordered structure. Meanwhile, VINet models time

through a recurrent unit, but has the shortest temporal receptive field among the evaluated methods

and cannot propagate information from future time steps back through the entire video. These

results indicate that modeling time as a proper ordered structure with long-range dependencies

greatly improves inpainting quality.

In terms of temporal consistency, DFCNet achieves the highest PCons since it propagates pixel

values directly along the predicted flow maps of adjacent frames. Interestingly, JointOpt and FGVC

82

(a) LPIPS (b) PVCS

(c) FID (d) VFID

(e) PCons

Figure 6.5: Comparison of DEVIL slice difficulty based on average model performance. ▼ and

▲ indicate that lower and higher is better, respectively; error bars show standard error across the

seven evaluated methods. The type of content given at test time, especially the mask content, greatly

affects the difficulty of the task.

achieve lower PCons despite also propagating values along the flow, likely due to their ability

to transfer candidate values from non-adjacent frames. VINet and CPNet achieve high temporal

consistency at the cost of low-quality predictions lacking appropriate texture or motion (Figure 6.2);

the behaviors of these two models indicate that temporal consistency is most meaningful when

reconstruction and realism performance is also high.

In Figure 6.4, we visualize the strengths and weaknesses of each method. DFCNet is strong and

well-rounded, nearly achieving the best performance across all metrics. JointOpt, OPN, and FGVC

exhibit strong reconstruction and realism performance, but are relatively weak in terms of temporal

consistency. CPNet is well-rounded, but its overall performance is weaker than that of DFCNet.

Finally, VINet performs poorly overall, although it achieves decent temporal consistency.

DEVIL Attribute Difficulty We now analyze how DEVIL attributes impact overall inpainting

difficulty to highlight their utility in video inpainting evaluation. In Figure 6.5, we compare the

difficulty of each DEVIL attribute setting by computing each metric over all methods on the

83

Low High Low High

OPN DFCNet DFCNet JointOpt

STTN FGVC JointOpt FGVC

CPNet JointOpt FGVC OPN

FGVC CPNet CPNet DFCNet

DFCNet OPN STTN VINet

JointOpt STTN OPN CPNet

VINet VINet VINet STTN

Low High Low High

OPN FGVC DFCNet FGVC

FGVC JointOpt JointOpt JointOpt

DFCNet DFCNet FGVC DFCNet

JointOpt OPN STTN OPN

STTN CPNet CPNet VINet

CPNet STTN OPN CPNet

VINet VINet VINet STTN

LPIPS

VFID

Camera motionFG displacement

Table 6.2: Methods sorted by performance from best to worst based on three variables: the metric

(LPIPS/VFID), the attribute (FG displacement/camera motion), and the setting of said attribute

(low/high). The strongest method (highlighted in bold) depends on all three variables, showing that

no one method dominates our challenging benchmark.

corresponding test slice. As evidenced by the reconstruction and realism metrics, the mask attributes

substantially impact the difficulty of video inpainting; in particular, higher FG displacement and

pose motion, as well as smaller FG size, lead to better performance. These trends make sense—more

relevant appearance information is available in other frames when the occlusion mask is smaller

and moves more over time. In contrast, the overall impact of camera and BG scene motion is small

due to the differing sensitivities of each method to these attributes (Section 6.6.2). The temporal

consistency metric PCons changes less dramatically under the DEVIL attributes (Figure 6.5e),

suggesting that temporal consistency performance is relatively stable under changes in the source

video and mask content.

6.6.2 Model Sensitivity to DEVIL Attributes

Next, we compare the performance of each method on individual DEVIL slices to demonstrate

the impact of video and mask content, as well as the metric, on their rankings. Table 6.2 lists the

methods sorted by performance and grouped by three variables: (i) the metric, (ii) the DEVIL

attribute, and (iii) the particular setting of the attribute (i.e., low or high). Note that the two

attributes shown, FG displacement and camera motion, span the two modalities of the DEVIL

dataset (masks and videos, respectively); also note that these three variables span the complexity of

the DEVIL evaluation scheme in terms of metrics and dataset slices. Even among the eight different

combinations of variables shown out of the possible 50, four methods achieve the best performance

for at least one combination; this demonstrates that our DEVIL benchmark is a substantial challenge

84

LPIPS VFIDPVCS FID

Figure 6.6: Relative improvement of each method under reconstruction and realism metrics when

camera motion changes from low to high.

(a) Low camera motion (b) High camera motion

Figure 6.7: VINet prediction examples. VINet improves with high camera motion since content

“moves into” the missing region (arrows show the direction of camera motion).

for video inpainting methods.

Finally, we analyze the sensitivity of the methods to each DEVIL attribute by changing the label

and plotting the relative difference in performance. Specifically, for a given attribute, we compute

the relative improvement as (scorehi − scorelo)/scorelo (or the negation of this value if a lower score

is better), where scorehi and scorelo correspond to model performance on the high and low slices of

the attribute, respectively. As evidenced by the following observations, our DEVIL attributes enable

a fine-grained comparison of failure modes among different inpainting models.

In Figure 6.6, we see divergent behavior among the methods when camera motion is increased:

for example, STTN and CPNet experience dramatic performance drops under all reconstruction

and realism metrics, whereas VINet experiences substantial gains. From a design standpoint, the

behaviors of STTN and CPNet make sense because they rely on aligning patches or entire frames

from other time steps to borrow their features, which can fail catastrophically under heavy camera

motion. On the opposite end, VINet’s behavior reflects its tendency to inpaint realistic textures

only after they move into the missing portion of the frame (Figure 6.7), which is unlikely to occur

without camera motion.

From Figure 6.8, we see that reconstruction performance under LPIPS and PVCS consistently

85

LPIPS VFIDPVCS FID

Figure 6.8: Relative improvement of each method under reconstruction and realism metrics when

BG scene motion changes from low to high.

(a) GT (b) DFCNet (c) FGVC

Figure 6.9: Example inpainting predictions from the high BG scene motion slice. For DFCNet

and FGVC, the predictions diverge from the original content, but still exhibit semantically sensible

appearance.

worsens when BG scene motion increases, reflecting the challenge of replicating complex dynamics

precisely. Interestingly, frame realism under FID actually improves dramatically for some methods

such as DFCNet and FGVC because they inpaint “alternate realities”, i.e., appearance that diverges

from the original content, but still captures the original broad structure (Figure 6.9). Among the

methods that explicitly infer and propagate across flow (FGVC, JointOpt, and DFCNet), only

JointOpt achieves worse frame realism performance, suggesting that video inpainting quality can be

improved by simply learning flow in a task-driven, end-to-end manner.

Moving on to mask attributes, Figure 6.10a-b shows that all methods perform better with in-

86

(a) FG displacement (b) FG pose motion

(c) FG size

Figure 6.10: Relative improvement of each method under reconstruction and realism metrics when

DEVIL mask attributes change from low to high. Within each plot, the methods are sorted by PVCS

performance.

(a) Camera motion (b) BG scene motion (c) FG displacement (d) FG pose motion (e) FG size

Figure 6.11: Relative improvement in temporal consistency when DEVIL attributes change from

low to high.

creased FG displacement and pose motion, indicating that they all leverage the increased availability

of background information. The flow propagation methods generally benefit the most, likely due to

the explicit transmission of more ground-truth appearance information along predicted flows.

In Figure 6.10c, we observe worse performance when the mask FG size grows, reflecting the

inherently greater difficulty of inpainting more values. Although this trend is universal and intuitive,

the quantitative difference between methods still lends insight into their failure modes. For example,

OPN is most sensitive to the increased mask size because it iteratively inpaints more outer layers of

the unknown region based on its own predictions, thereby accumulating error across more iterations.

Figure 6.11 shows the relative change in temporal consistency performance (PCons) when

each DEVIL attribute changes from low to high. Overall, we found that temporal consistency is

87

the aspect of inpainting quality that is least sensitive to changes in DEVIL attributes; however,

some models still experience more noticeable differences than others (e.g., DFCNet is remarkably

sensitive to BG scene motion).

6.7 Discussion

We have presented the DEVIL benchmark for video inpainting and used it to analyze seven

state-of-the-art methods, thereby providing the largest fine-grained analysis of video inpainting to

our knowledge. By controlling for five content attributes of the source videos and masks used at

test time, our analyses have provided novel insight into the behaviors, strengths, and weaknesses of

these methods. We plan to develop an evaluation server so that future video inpainting researchers

can easily assess their models using DEVIL.

We note that there are a few important limitations of our benchmark—for instance, run time

is not a measurement that is considered. In the construction of DEVIL, we chose to emphasize

the importance of rigorous, head-to-head visual quality assessment; however, performance versus

speed is an important trade-off that impacts a user’s decision to apply one approach over others.

Measuring run time would enhance the utility of our benchmark to users who want to identify the

most appropriate method for their applications. Additionally, our foreground masks do not fully

model the behavior of real-world objects, especially since they are superimposed independent of the

source scene dynamics. To composite masks into the scene more convincingly, reliable knowledge

of the 3D scene and the camera extrinsics would be necessary.

In terms of our analysis, one important consideration is the selection of algorithms that we

have evaluated. The seven methods used in this work cover the primary categories of modern

video inpainting approaches (i.e., object-based methods, repetitive tensor-based methods, and deep

attention-based methods); our observations therefore lend insights that should help steer overall

progress in the task. We note that full-frame inpainting methods such as bi-TAI (Chapter 3) are

inappropriate since they assume that the input frames are complete. Our analysis also omits the

class of two-stage approaches that combine image inpainting with temporal consistency post-

processing, e.g., HyperCon (Chapter 4). Given that this class constitutes a minority of video

inpainting approaches, we limit our comparative analysis to a brief discussion here, and leave further

analysis to future work.

The emphasis of two-stage approaches on highly modular design facilitates improvements that

target specific aspects of visual quality, which are assessed in our benchmark. For instance, if a

model exhibits low realism but high temporal consistency, it would indicate that more effort should

be spent on improving the image inpainting module than the temporal consistency module. As

image inpainting and temporal consistency methods improve in parallel, we anticipate a wider

88

adoption of models that combine them, as well as a better understanding of how competitive such

models are compared to self-contained video inpainting solutions.

89

CHAPTER 7

Future Directions and Conclusion

In this dissertation, we have proposed models and diagnostic tools that enforce better visual

quality from video inpainting algorithms in terms of realism, temporal consistency, and reconstruc-

tion performance. Our models leverage novel temporal contexts to reduce semantic ambiguity

and improve visual quality compared to prior work. For instance, bi-TAI (Chapter 3) utilizes

an expanded temporal context in the input to inpaint frames with greater coherence; HyperCon

(Chapter 4) synthesizes and exploits the temporal context between consecutive input frames to

improve temporal consistency. Meanwhile, our diagnostic evaluation tools enable fine-grained, yet

scalable analysis of video inpainting model behavior. Specifically, our Moving Symbols dataset

(Chapter 5) enables granular control over its appearance and motion statistics, which we use to

analyze a state-of-the-art video prediction model and reveal its overreliance on training set priors.

Similarly, our DEVIL benchmark (Chapter 6) investigates the fine-grained failure modes of modern

video inpainting methods on a larger scale than prior work. It provides a dataset that accounts for

influential video and occlusion mask properties, as well as an evaluation scheme that illustrates the

effects of these properties on video inpainting along three orthogonal axes of visual quality.

Our work impacts researchers and content creators who need video inpainting models to support

their advanced end tasks. Researchers aiming to develop robust algorithms for video inpainting

benefit from our publicly available diagnostic tools, which aim to foster the adoption of open,

replicable, and fine-grained evaluation in the inpainting community. In addition, consumers of

general video manipulation techniques—both content creators and academics alike—benefit from

our advanced inpainting models, which enable the production of more impressive and convincing

content for their needs.

Despite the advancements presented in this dissertation, several open challenges remain. With

regard to inpainting model design, we have seen generalization issues arise from the deployment

of trained models that do not adapt to the input (Chapter 5). While large datasets can help deep

learning models handle a wide variety of data, the models may also suffer due to inherent training

set biases that do not reflect the data provided at test time. Given the complexities of real world

scenes and video data, it is unreasonable to expect all test instances to neatly fit within the span of

90

training examples—more concretely, unobserved events are likely to occur in the test video. To

manage this challenge, deep learning models need to explicitly adapt to the input data at test time,

similarly to how repetitive tensor-based methods adapt the patches to borrow based on the input

(Chapter 2). Although Zhang et al. [36] have adopted this idea of test-time optimization by training

a deep model solely on the test instance from scratch, improvements could be made by fine-tuning

a pre-trained model at test time. Alternatively, repetitive tensor-based methods and deep learning

methods could be combined by training deep features that are informed by a downstream, iterative

patch-borrowing scheme in an end-to-end manner.

Aside from inpainting model design, characterizing the space of real world videos also presents

an exciting future direction. As part of the DEVIL benchmark (Chapter 6), we have identified a

limited number of real world video properties that cause inpainting performance to fluctuate (i.e.,

camera and background scene motion). However, it is likely that several unaccounted factors such

as texture complexity, changes in illumination, and overall video quality (e.g., bit rate or reencoding

artifacts) also affect performance. Furthermore, it is unreasonable to exhaustively identify every

property of video data that impacts inpainting quality, considering the richness of the video medium

and the technical challenges of quantifying such properties unambiguously. In this regard, unsuper-

vised machine learning techniques may be helpful since they can identify meaningful variations in

data without manual labels. In particular, they could produce low-level video representations whose

features correspond to influential factors of video inpainting performance.

Finally, there remains the open problem of evaluating visual quality at scale in a replicable,

reliable manner. While the automated video quality metrics used in this dissertation are well-

established in prior work (Chapter 2), the extent to which they correlate with human judgement is

relatively unknown compared to image-based metrics [43]. On the other hand, human evaluation

also has its pitfalls: large-scale evaluation costs a substantial amount of money and human labor,

and results between methods may not be comparable if the survey designs or the demographics of

those being surveyed are not sufficiently similar. By studying and improving the correlation between

automated and human judgements of video quality, researchers would improve the reliability of

automated evaluation and, as a result, reduce the cost of trustworthy visual quality assessment.

91

BIBLIOGRAPHY

[1] Video Data Shows Changing Youtube Habits, en. [Online]. Available: https://www.

thinkwithgoogle . com / feature / youtube - video - data - watching -

habits/ (visited on 05/26/2021).

[2] P. Bump, How Video Consumption is Changing in 2021 [New Research], en-us. [On-

line]. Available: https://blog.hubspot.com/marketing/how- video-

consumption-is-changing (visited on 05/26/2021).

[3] Celebrating 25 Years of Premiere Pro, en, Mar. 2017. [Online]. Available: https://

blog.adobe.com/en/publish/2017/03/14/celebrating-25-years-

of-premiere-pro.html (visited on 05/26/2021).

[4] S. Bernazzani, The 20 Best Video Editing Apps for 2021, en-us. [Online]. Available: https:

//blog.hubspot.com/marketing/best-video-editing-apps (visited on

05/26/2021).

[5] A. Hern, ’I Don’t Want to Upset People’: Tom Cruise Deepfake Creator Speaks Out, en,

Section: Technology, Mar. 2021. [Online]. Available: http://www.theguardian.

com/technology/2021/mar/05/how-started-tom-cruise-deepfake-

tiktok-videos (visited on 05/26/2021).

[6] S. Compton, More and More Women Are Facing the Scary Reality of Deepfakes, en-US,

Mar. 2021. [Online]. Available: https://www.vogue.com/article/scary-

reality-of-deepfakes-online-abuse (visited on 05/26/2021).

[7] A. Romano, Why Reddit’s Face-Swapping Celebrity Porn Craze Is a Harbinger of Dystopia,

en, Jan. 2018. [Online]. Available: https : / / www . vox . com / 2018 / 1 / 31 /

16932264/reddit-celebrity-porn-face-swapping-dystopia (visited

on 05/26/2021).

[8] M. Kelly, Distorted Nancy Pelosi Videos Show Platforms Aren’t Ready to Fight Dirty

Campaign Tricks, en, May 2019. [Online]. Available: https://www.theverge.

com/2019/5/24/18637771/nancy-pelosi-congress-deepfake-video-

facebook-twitter-youtube (visited on 05/26/2021).

92

https://www.thinkwithgoogle.com/feature/youtube-video-data-watching-habits/
https://www.thinkwithgoogle.com/feature/youtube-video-data-watching-habits/
https://www.thinkwithgoogle.com/feature/youtube-video-data-watching-habits/
https://blog.hubspot.com/marketing/how-video-consumption-is-changing
https://blog.hubspot.com/marketing/how-video-consumption-is-changing
https://blog.adobe.com/en/publish/2017/03/14/celebrating-25-years-of-premiere-pro.html
https://blog.adobe.com/en/publish/2017/03/14/celebrating-25-years-of-premiere-pro.html
https://blog.adobe.com/en/publish/2017/03/14/celebrating-25-years-of-premiere-pro.html
https://blog.hubspot.com/marketing/best-video-editing-apps
https://blog.hubspot.com/marketing/best-video-editing-apps
http://www.theguardian.com/technology/2021/mar/05/how-started-tom-cruise-deepfake-tiktok-videos
http://www.theguardian.com/technology/2021/mar/05/how-started-tom-cruise-deepfake-tiktok-videos
http://www.theguardian.com/technology/2021/mar/05/how-started-tom-cruise-deepfake-tiktok-videos
https://www.vogue.com/article/scary-reality-of-deepfakes-online-abuse
https://www.vogue.com/article/scary-reality-of-deepfakes-online-abuse
https://www.vox.com/2018/1/31/16932264/reddit-celebrity-porn-face-swapping-dystopia
https://www.vox.com/2018/1/31/16932264/reddit-celebrity-porn-face-swapping-dystopia
https://www.theverge.com/2019/5/24/18637771/nancy-pelosi-congress-deepfake-video-facebook-twitter-youtube
https://www.theverge.com/2019/5/24/18637771/nancy-pelosi-congress-deepfake-video-facebook-twitter-youtube
https://www.theverge.com/2019/5/24/18637771/nancy-pelosi-congress-deepfake-video-facebook-twitter-youtube

[9] S. Chandler, “Instagram’s Filter Ban Isn’t Enough To Stop Rise In Cosmetic Surgery,”

en, Forbes, Oct. 2019. [Online]. Available: https://www.forbes.com/sites/

simonchandler/2019/10/23/instagrams-filter-ban-isnt-enough-

to-stop-rise-in-cosmetic-surgery/ (visited on 05/21/2020).

[10] J. Chen, “Important Instagram Stats You Need to Know for 2020,” en-US, Sprout So-

cial, May 2020. [Online]. Available: https://sproutsocial.com/insights/

instagram-stats/ (visited on 05/21/2020).

[11] N. Lomas, “Prisma Labs raises $6M for its AI-powered approach to visual editing,” en-

US, TechCrunch, Apr. 2019. [Online]. Available: https://social.techcrunch.

com/2019/04/30/prisma-labs-raises-6-7m-for-its-ai-powered-

approach-to-visual-editing/ (visited on 05/21/2020).

[12] B. Paris and J. Donovan, Deepfakes and Cheap Fakes, en-US, Publisher: Data & Society

Research Institute, Sep. 2019. [Online]. Available: https://datasociety.net/

library/deepfakes-and-cheap-fakes/ (visited on 05/26/2021).

[13] C. Purdom, Deep Learning Technology Is Now Being Used to Put Nic Cage in Every

Movie, en-us, Jan. 2018. [Online]. Available: https://www.avclub.com/deep-

learning-technology-is-now-being-used-to-put-nic-c-1822514573

(visited on 05/26/2021).

[14] E. Nolan, Tom Cruise Cleans up in Latest Deepfake Tiktok Video, en, Section: Culture,

May 2021. [Online]. Available: https://www.newsweek.com/tom-cruise-

deepfake-tiktok-new-1594525 (visited on 05/26/2021).

[15] D. Mack, This PSA About Fake News From Barack Obama Is Not What It Appears, en,

Apr. 2018. [Online]. Available: https://www.buzzfeednews.com/article/

davidmack/obama-fake-news-jordan-peele-psa-video-buzzfeed

(visited on 05/26/2021).

[16] Media Forensics. [Online]. Available: https://www.darpa.mil/program/

media-forensics (visited on 05/26/2021).

[17] Deepfake Detection Challenge Results: An Open Initiative to Advance AI, en. [Online].

Available: https : / / ai . facebook . com / blog / deepfake - detection -

challenge-results-an-open-initiative-to-advance-ai/ (visited

on 05/26/2021).

[18] S. Agarwal, H. Farid, T. El-Gaaly, and S.-N. Lim, “Detecting Deep-Fake Videos from

Appearance and Behavior,” in IEEE International Workshop on Information Forensics and

Security, Dec. 2020.

93

https://www.forbes.com/sites/simonchandler/2019/10/23/instagrams-filter-ban-isnt-enough-to-stop-rise-in-cosmetic-surgery/
https://www.forbes.com/sites/simonchandler/2019/10/23/instagrams-filter-ban-isnt-enough-to-stop-rise-in-cosmetic-surgery/
https://www.forbes.com/sites/simonchandler/2019/10/23/instagrams-filter-ban-isnt-enough-to-stop-rise-in-cosmetic-surgery/
https://sproutsocial.com/insights/instagram-stats/
https://sproutsocial.com/insights/instagram-stats/
https://social.techcrunch.com/2019/04/30/prisma-labs-raises-6-7m-for-its-ai-powered-approach-to-visual-editing/
https://social.techcrunch.com/2019/04/30/prisma-labs-raises-6-7m-for-its-ai-powered-approach-to-visual-editing/
https://social.techcrunch.com/2019/04/30/prisma-labs-raises-6-7m-for-its-ai-powered-approach-to-visual-editing/
https://datasociety.net/library/deepfakes-and-cheap-fakes/
https://datasociety.net/library/deepfakes-and-cheap-fakes/
https://www.avclub.com/deep-learning-technology-is-now-being-used-to-put-nic-c-1822514573
https://www.avclub.com/deep-learning-technology-is-now-being-used-to-put-nic-c-1822514573
https://www.newsweek.com/tom-cruise-deepfake-tiktok-new-1594525
https://www.newsweek.com/tom-cruise-deepfake-tiktok-new-1594525
https://www.buzzfeednews.com/article/davidmack/obama-fake-news-jordan-peele-psa-video-buzzfeed
https://www.buzzfeednews.com/article/davidmack/obama-fake-news-jordan-peele-psa-video-buzzfeed
https://www.darpa.mil/program/media-forensics
https://www.darpa.mil/program/media-forensics
https://ai.facebook.com/blog/deepfake-detection-challenge-results-an-open-initiative-to-advance-ai/
https://ai.facebook.com/blog/deepfake-detection-challenge-results-an-open-initiative-to-advance-ai/

[19] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J. Kautz, “Super SloMo:

High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,” in IEEE

Conference on Computer Vision and Pattern Recognition, Jun. 2018.

[20] M. Ruder, A. Dosovitskiy, and T. Brox, “Artistic Style Transfer for Videos,” in German

Conference on Pattern Recognition, 2016.

[21] A. Gupta, J. Johnson, A. Alahi, and L. Fei-Fei, “Characterizing and Improving Stability in

Neural Style Transfer,” in IEEE International Conference on Computer Vision, Oct. 2017.

[22] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating Videos With Scene Dynamics,” in

Neural Information Processing Systems, 2016, pp. 613–621.

[23] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “MoCoGAN: Decomposing Motion and

Content for Video Generation,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 1526–1535.

[24] M. Saito, E. Matsumoto, and S. Saito, “Temporal Generative Adversarial Nets with Singular

Value Clipping,” in IEEE International Conference on Computer Vision, 2017, pp. 2830–

2839.

[25] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video Super-Resolution with Con-

volutional Neural Networks,” IEEE Transactions on Computational Imaging, vol. 2, no. 2,

pp. 109–122, 2016.

[26] J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-Time

Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4778–4787.

[27] M. S. M. Sajjadi, R. Vemulapalli, and M. Brown, “Frame-Recurrent Video Super-Resolution,”

in IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2018.

[28] M. Haris, G. Shakhnarovich, and N. Ukita, “Recurrent Back-Projection Network for Video

Super-Resolution,” in IEEE Conference on Computer Vision and Pattern Recognition, Jun.

2019.

[29] S. Niklaus and F. Liu, “Context-Aware Synthesis for Video Frame Interpolation,” in IEEE

Conference on Computer Vision and Pattern Recognition, Jun. 2018.

[30] S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross, and C. Schroers,

“PhaseNet for Video Frame Interpolation,” in IEEE Conference on Computer Vision and

Pattern Recognition, Jun. 2018.

[31] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro, “Video-to-

Video Synthesis,” in Neural Information Processing Systems, Dec. 2018.

94

[32] T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, B. Catanzaro, and J. Kautz, “Few-Shot Video-to-

Video Synthesis,” in Neural Information Processing Systems, 2019, pp. 5014–5025.

[33] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and C. Theobalt, “How Not to Be

Seen — Object Removal from Videos of Crowded Scenes,” Computer Graphics Forum,

vol. 31, no. 2pt1, pp. 219–228, 2012.

[34] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Pérez, “Video Inpainting of

Complex Scenes,” SIAM Journal on Imaging Sciences, vol. 7, no. 4, pp. 1993–2019, 2014.

[35] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf, “Temporally Coherent Completion of

Dynamic Video,” ACM Transactions on Graphics, vol. 35, no. 6, p. 196, 2016.

[36] H. Zhang, L. Mai, N. Xu, Z. Wang, J. Collomosse, and H. Jin, “An Internal Learning

Approach to Video Inpainting,” in IEEE International Conference on Computer Vision, Oct.

2019.

[37] Y.-L. Chang, Z. Y. Liu, K.-Y. Lee, and W. Hsu, “Free-Form Video Inpainting With 3D Gated

Convolution and Temporal PatchGAN,” in IEEE International Conference on Computer

Vision, Oct. 2019.

[38] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic Variational

Video Prediction,” in International Conference on Learning Representations, Feb. 2018.

[39] E. Denton and R. Fergus, “Stochastic Video Generation with a Learned Prior,” in Interna-

tional Conference on Machine Learning, Jul. 2018.

[40] D. Jayaraman, F. Ebert, A. Efros, and S. Levine, “Time-Agnostic Prediction: Predicting

Predictable Video Frames,” in International Conference on Learning Representations, Sep.

2018.

[41] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs Trained

by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” in Neural

Information Processing Systems, Dec. 2017.

[42] W.-S. Lai, J.-B. Huang, O. Wang, E. Shechtman, E. Yumer, and M.-H. Yang, “Learning

Blind Video Temporal Consistency,” in European Conference on Computer Vision, 2018.

[43] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The Unreasonable Effective-

ness of Deep Features as a Perceptual Metric,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 586–595.

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment:

From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing,

vol. 13, no. 4, pp. 600–612, 2004.

95

[45] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung,

“A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 724–732.

[46] N. Xu, L. Yang, Y. Fan, J. Yang, D. Yue, Y. Liang, B. Price, S. Cohen, and T. Huang,

“YouTube-VOS: Sequence-to-Sequence Video Object Segmentation,” in European Confer-

ence on Computer Vision, 2018.

[47] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain

Adaptation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[48] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang, “Domain Adaptation Under Target and

Conditional Shift,” in International Conference on Machine Learning, Jun. 2013.

[49] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection: An Evaluation of the

State of the Art,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34,

no. 4, pp. 743–761, 2012.

[50] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner, “FaceForensics:

A Large-Scale Video Dataset for Forgery Detection in Human Faces,” arXiv preprint

arXiv:1803.09179, 2018.

[51] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang, “YouTube-VOS: A

Large-Scale Video Object Segmentation Benchmark,” arXiv preprint arXiv:1809.03327,

2018.

[52] S. Lee, S. W. Oh, D. Won, and S. J. Kim, “Copy-and-Paste Networks for Deep Video

Inpainting,” in IEEE International Conference on Computer Vision, 2019, pp. 4413–4421.

[53] S. W. Oh, S. Lee, J.-Y. Lee, and S. J. Kim, “Onion-Peel Networks for Deep Video Comple-

tion,” in IEEE International Conference on Computer Vision, 2019, pp. 4403–4412.

[54] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 Million Image

Database for Scene Recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Jun. 2018.

[55] C. Wang, H. Huang, X. Han, and J. Wang, “Video Inpainting by Jointly Learning Temporal

Structure and Spatial Details,” in AAAI Conference on Artificial Intelligence, vol. 33, 2019,

pp. 5232–5239.

[56] D. Kim, S. Woo, J.-Y. Lee, and I. S. Kweon, “Deep Video Inpainting,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 5792–5801.

96

[57] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image Inpainting for

Irregular Holes Using Partial Convolutions,” in European Conference on Computer Vision,

2018.

[58] Y.-L. Chang, Z. Y. Liu, K.-Y. Lee, and W. Hsu, “Learnable Gated Temporal Shift Module

for Deep Video Inpainting,” in British Machine Vision Conference, Sep. 2019.

[59] T. Judd, F. Durand, and A. Torralba, “A Benchmark of Computational Models of Saliency

to Predict Human Fixations,” Massachusetts Institute of Technology, Technical report, Jan.

2012. [Online]. Available: https://dspace.mit.edu/handle/1721.1/68590.

[60] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal

Visual Object Classes (VOC) Challenge,” International Journal of Computer Vision, vol. 88,

no. 2, pp. 303–338, Jun. 2010.

[61] R. Xu, X. Li, B. Zhou, and C. C. Loy, “Deep Flow-Guided Video Inpainting,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 3723–3732.

[62] Y. Zeng, J. Fu, and H. Chao, “Learning Joint Spatial-Temporal Transformations for Video

Inpainting,” in European Conference on Computer Vision, 2020.

[63] D. C. Dowson and B. V. Landau, “The Fréchet Distance Between Multivariate Normal

Distributions,” Journal of Multivariate Analysis, vol. 12, no. 3, pp. 450–455, Sep. 1982.

[64] J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition? A New Model and the

Kinetics Dataset,” in IEEE Conference on Computer Vision and Pattern Recognition, Jul.

2017.

[65] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed Minimum-Rank Solutions of Linear

Matrix Equations via Nuclear Norm Minimization,” SIAM Review, vol. 52, no. 3, pp. 471–

501, Aug. 2010.

[66] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor Completion for Estimating Missing Values

in Visual Data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 1, pp. 208–220, Jan. 2013.

[67] C. Mu, B. Huang, J. Wright, and D. Goldfarb, “Square Deal: Lower Bounds and Improved

Relaxations for Tensor Recovery,” in International Conference on Machine Learning, Jun.

2014.

[68] F. L. Hitchcock, “The Expression of a Tensor or a Polyadic as a Sum of Products,” Journal

of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.

[69] L. R. Tucker, “Some Mathematical Notes on Three-Mode Factor Analysis,” Psychometrika,

vol. 31, no. 3, pp. 279–311, 1966.

97

https://dspace.mit.edu/handle/1721.1/68590

[70] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel Methods for Multilinear Data

Completion and De-noising Based on Tensor-SVD,” in IEEE Conference on Computer

Vision and Pattern Recognition, Jun. 2014.

[71] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-Order Tensors as Operators

on Matrices: A Theoretical and Computational Framework with Applications in Imaging,”

SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 1, pp. 148–172, Jan. 2013.

[72] H. Kasai, “Online Low-Rank Tensor Subspace Tracking from Incomplete Data by Cp

Decomposition Using Recursive Least Squares,” in IEEE International Conference on

Acoustics, Speech and Signal Processing, Mar. 2016.

[73] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “GigaTensor: Scaling Tensor

Analysis up by 100 Times - Algorithms and Discoveries,” in ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Aug. 2012.

[74] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor Completion Algorithms in Big Data

Analytics,” ACM Transactions on Knowledge Discovery from Data, vol. 13, no. 1, pp. 1–48,

Jan. 2019.

[75] Y. Zhang, J. Xiao, and M. Shah, “Motion Layer Based Object Removal in Videos,” in IEEE

Workshops on Applications of Computer Vision, vol. 1, Jan. 2005, pp. 516–521.

[76] J. Jia, W. Tai-Pang, Y.-W. Tai, and C.-K. Tang, “Video Repairing: Inference of Foreground

and Background Under Severe Occlusion,” in IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, Jun. 2004.

[77] K. A. Patwardhan, G. Sapiro, and M. Bertalmio, “Video Inpainting Under Constrained

Camera Motion,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 545–553, Feb.

2007.

[78] Y.-T. Jia, S.-M. Hu, and R. R. Martin, “Video Completion Using Tracking and Fragment

Merging,” The Visual Computer, vol. 21, no. 8, pp. 601–610, Sep. 2005.

[79] M. Granados, K. I. Kim, J. Tompkin, J. Kautz, and C. Theobalt, “Background Inpainting

for Videos with Dynamic Objects and a Free-Moving Camera,” in European Conference on

Computer Vision, 2012, pp. 682–695.

[80] M. Ebdelli, O. Le Meur, and C. Guillemot, “Video Inpainting with Short-Term Windows:

Application to Object Removal and Error Concealment,” IEEE Transactions on Image

Processing, vol. 24, no. 10, pp. 3034–3047, Oct. 2015.

[81] P. Pérez, M. Gangnet, and A. Blake, “Poisson Image Editing,” in ACM SIGGRAPH, Jul.

2003.

98

[82] V. Cheung, B. J. Frey, and N. Jojic, “Video Epitomes,” International Journal of Computer

Vision, vol. 76, no. 2, pp. 141–152, Feb. 2008.

[83] Y. Wexler, E. Shechtman, and M. Irani, “Space-Time Completion of Video,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 463–476, 2007.

[84] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “PatchMatch: A Randomized

Correspondence Algorithm for Structural Image Editing,” ACM Transactions on Graphics,

vol. 28, no. 3, 24:1–24:11, Jul. 2009.

[85] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical

Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention,

2015.

[86] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and

Super-Resolution,” in European Conference on Computer Vision, 2016.

[87] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image Style Transfer Using Convolutional Neural

Networks,” in IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016.

[88] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet 2.0: Evolution

of Optical Flow Estimation with Deep Networks,” in IEEE Conference on Computer Vision

and Pattern Recognition, Jul. 2017.

[89] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, “Generative Adversarial Nets,” in Neural Information Processing

Systems, Dec. 2014.

[90] X. Sun, R. Szeto, and J. J. Corso, “A Temporally-Aware Interpolation Network for Video

Frame Inpainting,” in Asian Conference on Computer Vision, Dec. 2018.

[91] R. Szeto, X. Sun, K. Lu, and J. J. Corso, “A Temporally-Aware Interpolation Network for

Video Frame Inpainting,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

May 2020.

[92] S. Niklaus, L. Mai, and F. Liu, “Video Frame Interpolation via Adaptive Separable Convo-

lution,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 261–

270.

[93] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, “Decomposing Motion and Content for

Natural Video Sequence Prediction,” in International Conference on Learning Representa-

tions, 2017.

[94] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” in International Conference on Learning Representations, 2015.

99

[95] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, “Convolutional

LSTM Network: A Machine Learning Approach For Precipitation Nowcasting,” in Neural

Information Processing Systems, 2015, pp. 802–810.

[96] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural

Networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[97] M. Mathieu, C. Couprie, and Y. LeCun, “Deep Multi-Scale Video Prediction Beyond Mean

Square Error,” International Conference on Learning Representations, 2016.

[98] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” in International Conference on Machine Learning, 2015,

pp. 448–456.

[99] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral Normalization for Generative

Adversarial Networks,” in International Conference on Learning Representations, Feb.

2018.

[100] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing Human Actions: A Local SVM Ap-

proach,” in International Conference on Pattern Recognition, vol. 3, 2004, pp. 32–36.

[101] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset Of 101 Human Actions Classes

From Videos In The Wild,” UCF Center for Research in Computer Vision, Technical report,

2012. [Online]. Available: https://www.crcv.ucf.edu/papers/UCF101_

CRCV-TR-12-01.pdf.

[102] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A Large Video

Database For Human Motion Recognition,” in IEEE International Conference on Computer

Vision, 2011, pp. 2556–2563.

[103] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, Berg, Alexander C., and L. Fei-Fei, “ImageNet Large Scale

Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3,

pp. 211–252, 2015.

[104] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic Differentiation in PyTorch,” in Neural Information

Processing Systems (Workshop Track), 2017.

[105] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

100

https://www.crcv.ucf.edu/papers/UCF101_CRCV-TR-12-01.pdf
https://www.crcv.ucf.edu/papers/UCF101_CRCV-TR-12-01.pdf

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng,

“TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” Google, White

paper, 2015, p. 19. [Online]. Available: https://www.tensorflow.org/.

[106] D. P. Kingma and J. L. Ba, “Adam: A Method For Stochastic Optimization,” in International

Conference on Learning Representations, 2015.

[107] X. Glorot and Y. Bengio, “Understanding The Difficulty Of Training Deep Feedforward

Neural Networks,” in International Conference on Artificial Intelligence and Statistics,

2010.

[108] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager,

E. Gouillart, and T. Yu, “Scikit-image: Image processing in Python,” PeerJ, vol. 2, e453,

2014.

[109] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative Image Inpainting with

Contextual Attention,” in IEEE Conference on Computer Vision and Pattern Recognition,

Jun. 2018.

[110] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional

Adversarial Networks,” in IEEE Conference on Computer Vision and Pattern Recognition,

Jul. 2017.

[111] X. Yang, D. Xie, and X. Wang, “Crossing-Domain Generative Adversarial Networks for

Unsupervised Multi-Domain Image-to-Image Translation,” in ACM Multimedia, Oct. 2018.

[112] A. Bansal, S. Ma, D. Ramanan, and Y. Sheikh, “Recycle-GAN: Unsupervised Video Retar-

geting,” in European Conference on Computer Vision, 2018.

[113] K. Park, S. Woo, D. Kim, D. Cho, and I. S. Kweon, “Preserving Semantic and Temporal

Consistency for Unpaired Video-to-Video Translation,” in ACM Multimedia, Oct. 2019.

[114] Y. Chen, Y. Pan, T. Yao, X. Tian, and T. Mei, “Mocycle-GAN: Unpaired Video-to-Video

Translation,” in ACM Multimedia, Oct. 2019.

[115] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Colorization,” in European Conference

on Computer Vision, 2016.

[116] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros, “Real-Time User-

Guided Image Colorization with Learned Deep Priors,” ACM Transactions on Graphics,

vol. 36, no. 4, 119:1–119:11, Jul. 2017.

101

https://www.tensorflow.org/

[117] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep Convolu-

tional Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38,

no. 2, pp. 295–307, Feb. 2016.

[118] X. Hong, P. Xiong, R. Ji, and H. Fan, “Deep Fusion Network for Image Completion,” in

ACM Multimedia, Oct. 2019.

[119] N. Bonneel, J. Tompkin, K. Sunkavalli, D. Sun, S. Paris, and H. Pfister, “Blind Video

Temporal Consistency,” ACM Transactions on Graphics, vol. 34, no. 6, 196:1–196:9, Oct.

2015.

[120] X. Dong, B. Bonev, Y. Zhu, and A. L. Yuille, “Region-Based Temporally Consistent Video

Post-Processing,” in IEEE Conference on Computer Vision and Pattern Recognition, Jun.

2015.

[121] C.-H. Yao, C.-Y. Chang, and S.-Y. Chien, “Occlusion-Aware Video Temporal Consistency,”

in ACM Multimedia, Oct. 2017.

[122] R. Szeto, M. El-Khamy, J. Lee, and J. J. Corso, “HyperCon: Image-To-Video Model Transfer

for Video-To-Video Translation Tasks,” in IEEE Winter Conference on Applications of

Computer Vision, Jan. 2021.

[123] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified Generative

Adversarial Networks for Multi-Domain Image-to-Image Translation,” in IEEE Conference

on Computer Vision and Pattern Recognition, Jun. 2018.

[124] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image Translation Networks,”

in Neural Information Processing Systems, Dec. 2017.

[125] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised Dual Learning for Image-

to-Image Translation,” in IEEE International Conference on Computer Vision, Oct. 2017.

[126] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation Using

Cycle-Consistent Adversarial Networks,” in IEEE International Conference on Computer

Vision, Oct. 2017.

[127] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv preprint

arXiv:1411.1784, Nov. 2014.

[128] X. Wei, J. Zhu, S. Feng, and H. Su, “Video-to-Video Translation with Global Temporal

Consistency,” in ACM Multimedia, Oct. 2018.

[129] L. Shen, R. Hong, H. Zhang, H. Zhang, and M. Wang, “Single-Shot Semantic Image

Inpainting with Densely Connected Generative Networks,” in ACM Multimedia, Oct. 2019.

102

[130] Z. Guo, Z. Chen, T. Yu, J. Chen, and S. Liu, “Progressive Image Inpainting with Full-

Resolution Residual Network,” in ACM Multimedia, Oct. 2019.

[131] F. A. Reda, G. Liu, K. J. Shih, R. Kirby, J. Barker, D. Tarjan, A. Tao, and B. Catan-

zaro, “SDC-Net: Video Prediction Using Spatially-Displaced Convolution,” in European

Conference on Computer Vision, 2018.

[132] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “ActivityNet: A Large-Scale

Video Benchmark for Human Activity Understanding,” in IEEE Conference on Computer

Vision and Pattern Recognition, Jun. 2015.

[133] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved Training

of Wasserstein GANs,” in Neural Information Processing Systems, Dec. 2017.

[134] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and Checkerboard Artifacts,” Distill,

vol. 1, no. 10, Oct. 2016. [Online]. Available: http://distill.pub/2016/deconv-

checkerboard.

[135] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-

Scale Video Classification With Convolutional Neural Networks,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

[136] E. Santana and G. Hotz, “Learning a Driving Simulator,” arXiv preprint arXiv:1608.01230,

2016.

[137] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied To

Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[138] FaceGen — 3D Faces and Heads. [Online]. Available: https://facegen.com/

(visited on 05/27/2020).

[139] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised Learning of Video

Representations Using LSTMs,” in International Conference on Machine Learning, 2015,

pp. 843–852.

[140] R. Szeto, S. Stent, G. Ros, and J. J. Corso, “A Dataset To Evaluate The Representations

Learned By Video Prediction Models,” in International Conference on Learning Represen-

tations (Workshop Track), Apr. 2018.

[141] V. Pătrăucean, A. Handa, and R. Cipolla, “Spatio-Temporal Video Autoencoder with Differ-

entiable Memory,” in International Conference on Learning Representations (Workshop

Track), May 2016.

103

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://facegen.com/

[142] N. Kalchbrenner, A. v. d. Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves, and K.

Kavukcuoglu, “Video Pixel Networks,” in International Conference on Machine Learning,

2017.

[143] E. Denton and V. Birodkar, “Unsupervised Learning of Disentangled Representations from

Video,” in Neural Information Processing Systems, Dec. 2017.

[144] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-Level Concept Learning

Through Probabilistic Program Induction,” Science, vol. 350, no. 6266, pp. 1332–1338,

2015.

[145] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features from Tiny Images,”

University of Toronto, Technical report, 2009. [Online]. Available: https://www.cs.

toronto.edu/˜kriz/learning-features-2009-TR.pdf.

[146] C. Yeager, Everything You Need to Know About Chroma Key and Green Screen Footage,

Jul. 2019. [Online]. Available: https://www.premiumbeat.com/blog/chroma-

key-green-screen-guide/ (visited on 06/07/2020).

[147] Production Notes: Match Moving — Nevada Film Office, Feb. 2018. [Online]. Available:

https://nevadafilm.com/production-notes-match-moving/ (visited

on 06/07/2020).

[148] C. Gao, A. Saraf, J.-B. Huang, and J. Kopf, “Flow-Edge Guided Video Completion,” in

European Conference on Computer Vision, 2020.

[149] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tzimiropoulos, and M. Pantic, “The

First Facial Landmark Tracking In-the-Wild Challenge: Benchmark and Results,” in IEEE

International Conference on Computer Vision Workshops, Dec. 2015.

[150] R. Szeto and J. J. Corso, “The DEVIL is in the Details: A Diagnostic Evaluation Benchmark

for Video Inpainting,” arXiv preprint arXiv:2105.05332, May 2021.

[151] Flickr, https://www.flickr.com/. [Online]. Available: https://www.flickr.com/

(visited on 03/04/2021).

[152] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick, “Microsoft COCO: Common Objects in Context,” in European Conference on

Computer Vision, 2014.

[153] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[154] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2, 2019. [Online].

Available: https://github.com/facebookresearch/detectron2.

104

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.premiumbeat.com/blog/chroma-key-green-screen-guide/
https://www.premiumbeat.com/blog/chroma-key-green-screen-guide/
https://nevadafilm.com/production-notes-match-moving/
https://www.flickr.com/
https://github.com/facebookresearch/detectron2

[155] D. A. Forsyth, J. Malik, M. M. Fleck, H. Greenspan, T. Leung, S. Belongie, C. Carson, and

C. Bregler, “Finding Pictures of Objects in Large Collections of Images,” in International

Workshop on Object Representation in Computer Vision, 1996.

[156] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography,” Communications

of the ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[157] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in European

Conference on Computer Vision, 2006.

[158] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convo-

lutional Neural Networks,” in Neural Information Processing Systems, 2012.

[159] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is All You Need,” in Neural Information Processing Systems,

2017.

105

	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Video Inpainting
	Problem Statement
	Semantic Ambiguity
	Measuring Visual Quality

	Contributions
	Temporal Context
	Diagnostic Evaluation

	Thesis and Impact Statement

	Related Work
	Datasets and Reconstruction
	Evaluation
	Realism
	Temporal Consistency
	Reconstruction Performance

	Methods
	General Tensor Completion
	Object-Based Methods
	Repetitive Tensor-Based Methods
	Deep Learning
	Losses
	Mean absolute/square error
	Perceptual loss
	Style loss
	Optical flow loss
	Warping loss
	Generative adversarial network loss

	Video Frame Inpainting
	Introduction
	Approach
	Problem Statement
	Model Overview
	Bidirectional Video Prediction Network
	Temporally-Aware Interpolation Network
	Network Architecture Details
	Bidirectional Video Prediction Network Details
	MCnet
	Computing intermediate activations for TAI

	TAI Network Details

	Training Strategy

	Experiments
	Experimental Setup
	Datasets
	Constructing video clips for training and testing

	Baselines
	Training Hyperparameters

	KTH
	Ablation Studies
	UCF-101 and HMDB-51
	ImageNet-VID

	Conclusion

	Temporally-Consistent Video-to-Video Translation
	Introduction
	Related Work
	HyperCon
	Generating the Interpolated Video
	Translating the Interpolated Video
	Temporal Aggregation
	HyperCon for Masked Videos
	HyperCon Implementation Details

	Experiments: Video Style Transfer
	Datasets
	Evaluation Metrics
	Hyperparameter Analysis
	Comparison To Prior State-of-the-Art
	Human Evaluation

	Experiments: Video Inpainting
	Datasets
	Evaluation Metrics
	Comparison to Prior State-of-the-Art

	Discussion and Conclusion

	Generalization Performance of Video Prediction Models
	Introduction
	Moving Symbols
	Experiments
	Discussion and Future Work

	Diagnostic Video Inpainting Benchmark
	Introduction
	Related Work
	Methods
	Datasets

	Overview of the DEVIL Benchmark
	The DEVIL Dataset
	Collecting Source Videos for the DEVIL
	Annotating DEVIL Source Video Attributes
	DEVIL Masks and Attributes

	The DEVIL Evaluation
	Slices of the DEVIL Dataset
	Evaluation Metrics
	Reconstruction
	Realism
	Temporal consistency

	Experiments
	Aggregate Analysis
	DEVIL Attribute Difficulty

	Model Sensitivity to DEVIL Attributes

	Discussion

	Future Directions and Conclusion
	Bibliography

