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Abstract 

 

As we are inching closer to the end of the COVID-19 pandemic, it is important for us to be 

better prepared for other potential pandemic scenarios such as a potential new strain of super 

bacteria that can resist known antibiotics. Nitric oxide (NO) is utilized by our immune system to 

fight invading pathogens. Through natural selection, some pathogens have adapted flavodiiron 

proteins (FDPs) to reduce NO to nitrous oxide (N2O) (so-called flavodiiron NO reductases, 

FNORs). These enzymes protect the microbes from nitrosative stress and mitigate the toxicity of 

NO generated in the human immune response. Mechanistic studies on the Thermatoga maritima 

(Tm) FDP have shown that a high-spin (hs) diiron dinitrosyl intermediate, or [hs-{Fe(NO)}7]2 in 

Enemark-Feltham notation, is the critical intermediate that forms prior to NO reduction. However, 

the succeeding steps of the reaction and the other intermediates prior to N2O release have remained 

elusive. 

In this thesis, several new mono- and dinuclear Fe(II) model complexes are reported. The 

reactivity of these complexes towards NO and hyponitrite (N2O22-) was then investigated to (a) 

explore different mechanistic possibilities for FNORs, (b) determine under which conditions 

different mechanistic pathways are activated, and (c) characterize potential intermediates of the 

reaction. Whereas mechanistic studies on Tm FDP favor the so-called direct NO reduction 

pathway, no diiron dinitrosyl model complex is able to mediate this reaction. All known model
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systems prior to my work require one-electron reduction to generate N2O (the semireduced 

pathway) via a proposed hs-{Fe(NO)}7/hs-{Fe(NO)}8 intermediate.  

Here, I report the new model complex [FeII2((Py2PhO2)MP)(OAc)2]- (1), which is the first 

model system that can catalyze the direct reduction of NO to N2O. My results show that reduction 

potential is a key trigger to activate the direct NO reduction pathway in diiron complexes. The 

reaction of 1 with NO is so efficient (even at -80oC) that the isolation of reaction intermediates 

was not possible. By using a mononuclear model of 1 I was able to isolate a highly activated 

mononuclear hs-{FeNO}7 complex with a record low N–O stretching frequency of 1689 cm-1. 

These studies demonstrate that hs-{FeNO}7 species with N–O stretching frequencies £ 1700 cm-1 

are activated for direct NO reduction, but that a diiron core is critically important to enable this 

reaction. Additionally, the role of second coordination sphere hydrogen bond donors and the 

chemistry of non-heme iron complexes with hyponitrite relevant for the NO reduction in FNORs 

were also evaluated through the synthesis and characterization of new complexes reported in this 

thesis. 

Using mononuclear systems, I explored unique reactions that hs-{FeNO}8 complexes can 

mediate.  The hs-{FeNO}7 complex with the weak-field ligand BMPA-tBu2PhOH forms a 

dinitrosyl iron complex (DNIC) upon reduction, in line with previous observations in the literature. 

When TPA is used as the ligand scaffold, stabilization of an unprecedented complex with a 

Fe2(NO)2 diamond core structure is observed instead. This complex is stabilized by a change to 

the low-spin state of the iron centers. I propose that a similar Fe2(NO)2 motif is the key intermediate 

for DNIC formation when the irons remain high-spin.  

Finally, to investigate iron-nitrosyl complexes beyond the {FeNO}8 state, a novel ls-

{FeNO}8-10 series (prepared by Peters and coworkers) was spectroscopically and theoretically 
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characterized. The results show that a reverse-dative FeàB interaction is the key to stabilize the 

unique oxidation states that go beyond the {FeNO}8 state. 
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Chapter 1 

Introduction 

 

Adapted from (1) Lehnert, N.; Fujisawa, K.; Camarena, S.; Dong, H. T.; White, C. J. Activation 
of Non-Heme Iron-Nitrosyl Complexes: Turning up the Heat. ACS Catal. 2019, 9, 10499-10518 
and the submitted article (2) Lehnert, N.; Kim, E.; Dong, H. T.; Harland, J. B.; Hunt, A. P.; 
Manickas, E. C.; Oakley, K. M.; Pham, J.; Reed, G.; Alfaro, V. S. The Biologically Relevant 
Coordination Chemistry of Nitric Oxide: Electronic Structure and Reactivity. Chem. Rev., 2021, 
manuscript accepted after revision 
 

1.1 Historical View of NO as A Molecule 

 Nitric oxide has been viewed for a long time as an environmental pollutant due to its highly 

toxic and corrosive properties. It is generated from the burning of fossil fuels in power plants, 

furnaces and engines. It is one of the main contributors to chemical smog happen around industrial 

areas. NO is poisonous to humans at very low concentrations of only 100 ppm in air, by formation 

of highly toxic NO2, shutting down respiration, disabling iron-sulfur proteins like aconitase and 

reacting with oxy-hemoglobin (oxy-Hb, Hb(II)-O2) to form met-Hb (Hb(III), with iron in the +III 

state). This view of NO was quickly changed in the 1980s when it was first realized that NO plays 

an important role in immune defense and signaling in humans. NO sparked the curiosity of the 

scientific community, which lead to a new era of research on its role in the human body. This 

eventually lad to it being named the “Molecule of the Year” by the Science magazine, and 

subsequently in 1998 the Nobel Prize in Medicine was awarded to Furchgott, Ignarro and Murad 

for the discovery that NO is an endogenously produced vasodilator in mammals, and an important
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signaling molecule in general.1-3 Iron plays a dominant role in much of the biologically relevant 

chemistry of NO, including NO generation, sensing, and break-down, which explains the surge in

studies on the iron-based coordination chemistry of NO and its oxidized and reduced derivatives 

(especially nitrite and HNO) in the last four decades. 

 In mammals, nitric oxide is produced by the Nitric Oxide Synthase (NOS) family of 

enzymes, which use a {heme-thiolate} active site, similar to Cyt. P450s, to oxidatively convert L-

arginine to citrulline and NO.4-7 Mammals make use of the fact that NO is actually highly toxic, 

and use it for immune defense.8,9 For example, our macrophages use inducible NOS (iNOS) to 

produce up to micromolar concentrations of NO (and other toxic chemicals, especially superoxide) 

to kill invading pathogens.10,11 In particular, NO is able to inhibit a number of important enzymes 

(including Cyt. P450s, heme-copper oxidases (respiration), etc.) and break down iron-sulfur 

cluster, which are all believed to be ways in which NO can kill infectious microbes. In addition, 

NO and superoxide combine in a very fast reaction (second order rate constant, k = 5×109 M–1s–1) 

to generate peroxynitrite, 

 NO  +  O2�  Æ  ONOO�               (1) 

which is a highly toxic molecule that oxidatively damages cells, including pathogens, and which 

is therefore another key component of immune defense. However, NO’s important function in 

immune defense has a dark side as well:12 here, the constant flux of micromolar concentrations of 

NO produced in areas of chronic infection (inflammation) causes tissue and cartilage degradation, 

organ failure, etc.13,14 Similarly, overproduction of NO causes neurodegeneration and neuropathic 

pain,15,16 and NO is also being considered now a key contributor to neurodegenerative diseases.17 

Finally, NO is a key player in septic shock.18-21 
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Interestingly, a number of pathogens have evolved defense strategies against NO toxicity, 

using flavodiiron NO reductases (FNORs) to catalyze the breakdown of NO by reduction to less 

toxic N2O,22-28 following the ‘classic’ NO reduction reaction in denitrification: 

2 NO + 2 e� + 2 H+  Æ  N2O + H2O                         (2) 

 Here, transcription factors are used to sense NO, and when NO is detected, transcription of 

genes expressing these defense proteins is induced.24  

1.2 Flavodiiron Nitric Oxide Reductases (FNORs) 

 NO eliminating enzymes are found in pathogens and they function to combat nitrosative 

stress. Besides nitric oxide dioxygenases, pathogens can also express FNORs, which are active in 

low oxygen environments.23 FNORs are scavenging flavodiiron proteins (FDPs) whose gene 

sequences are found in numerous pathogenic bacteria, including Escherichia coli, Klebsiella 

pneumoniae, and Salmonella typhimurium.24 Considering the ability of these pathogens to 

counteract NO-based immune defense mechanisms and prolong disease, studying these enzymes 

is of particular interest. Unsolved questions surrounding these enzymes include (but are not limited 

to) what determines specificity of NO reduction activity in these enzymes, what is the mechanism 

of this reaction, how does the SCS contribute to catalysis and what is the nature of the key, N-N-

coupled intermediates. These questions, along with structural and reactivity properties, are 

addressed in the following.  

FDPs contain a conserved minimal structural core that consists of N-terminal metallo-β-

lactamase-like and C-terminal flavodoxin-like domains.29 The metallo-β-lactamase-like domain 

houses the diiron catalytic site, whereas the flavodoxin-like domain contains a flavin 

mononucleotide (FMN) cofactor capable of transferring electrons to the diiron site.29 Within a 

single monomer of the minimal structural core, the diiron site and the FMN cofactor are ~35 Å 
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away, which renders electron transfer between them essentially impossible without additional 

cofactors.29,30 However, in the “head-to-tail homodimer” quaternary structure of FDPs (see Figure 

1.1), the two monomers are arranged such that the diiron site of one monomer is only ~5 Å away 

from the FMN cofactor of the other monomer, enabling fast and efficient electron transfer between 

them (Figure 1.2).30  

 

Figure 1.1 PYMOL generated image of the crystal structure of M. thermoacetica FDP (Mt FDP; PDB: 
1YCH), showing the homodimer with the two monomers in blue and cyan in a “head-to-tail” arrangement. 
Iron atoms and FMN are shown as orange spheres and gray ball-and-stick models, respectively.   
 
 FDPs can be grouped together based on how well these enzymes mediate dioxygen 

reductase (O2R) or nitric oxide reductase (NOR) activity. FDPs were first recognized as O2Rs for 

their ability to protect microanaerobic bacteria from residual O2, by reducing it in a non-metabolic 

(scavenging) function to water.29 In addition, because of how FDPs act as scavenging enzymes in 

the presence of O2 and NO to counteract oxidative and nitrosative stress, respectively, it is 

hypothesized that NOR function evolved from O2R function in these enzymes.23 However, it is 

worth noting that not all FDPs have NOR and/or O2R functionality. While Desulfovibrio gigas 

Rubredoxin Oxygen:Oxidoreductase (Dg ROO) and Moorella thermoacetica FDP (Mt FDP) 
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exhibit NOR and O2R reactivity at similar rates, Thermotoga maritima FDP (Tm FDP) and FDP 

from E. histolytica exhibit better O2R than NOR reactivity.28,31-33 On the other hand, Escherichia 

coli flavorubredoxin (Ec FlRd) exhibits better NOR than O2R activity, making this enzyme a bona 

fide FNOR.34 However, there are no obvious differences in the iron coordination spheres and 

active site structures between O2Rs and NORs, so the structural and/or electronic differences 

responsible for this dichotomy have yet to be definitively determined (see discussion below).  

Considering the primary coordination sphere, the diiron core binding motif is generally 

conserved across all FDPs. In the diiron core, each iron is 5C with a sixth site left open for substrate 

binding, as shown in Figure 1.2.30 Here, each iron coordinates to two histidine residues and one 

carboxylate residue (either aspartate or glutamate). Bridging hydroxo and carboxylate (usually 

aspartate) ligands position the iron centers between 3.3 - 3.6 Å apart. A notable exception includes 

Dg ROO, which has one of the histidine ligands unbound from one of the irons and replaced with 

water.29 Kurtz and coworkers expressed deflavinated Tm FDP with mutated plasmids that replace 

His90 (one of the Fe-coordinating histidine ligands) to assess whether altering the primary 

coordination sphere of one of the iron centers would modulate NOR or O2R activity.31 Among the 

variants, there exists little change to the substrate binding pocket, other Fe-coordinating residues, 

and Fe-ligand distances. For the H90N and H90A variants, the respective Fe-OAsn and Fe-OH2 

bond distances are 2.3 and 2.4 Å, respectively, versus 2.4 Å for the Fe-NHis bond in wt enzyme.31 

Not surprising, this variation in the primary coordination sphere does not drastically alter steady-

state NOR activity (0.05 and 0.09 s-1 for H90A and H90N, respectively, versus 0.03 s-1 for wt 

enzyme), as is the case for steady-state O2R activity.31 In addition, total conservation of the primary 

coordination sphere is observed for both Mt FDP and Tm FDP, although lower NOR reactivity 

(relative to O2R reactivity) was found in the latter compared to the former enzyme.31,33  
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Figure 1.2 Left: PYMOL generated image of the crystal structure of the active site of deflavinated T. 
maritima FDP, including the proposed SCS hydrogen-bond donor Y197 (PDB: 1VME). Right: PYMOL 
generated image of the crystal structure of the active site of D. gigas ROO, including the proposed SCS 
hydrogen-bond donors H24 and Y193 (PDB: 1E5D).  
 

Differences between primary NORs and similarly NOR and O2R active enzymes start to come 

to light when considering the SCS and beyond. Comparison of Dg ROO and Mt FDP shows that 

both enzymes contain histidine and tyrosine residues within hydrogen-bonding distances of iron-

bound substrates, and both enzymes act as decent NORs.28,33 Moreover, mutation studies using Mt 

FDP revealed a ~7-fold and ~34-fold reduction in NOR reactivity when the tyrosine and histidine 

residues (Y195 and H25, represented for the analgous Dg ROO as Y193 and H24 in Figure 1.2), 

respectively, were substituted for non-hydrogen bonding residues.30 While it is clear that the SCS 

residues Tyr and His are important for NOR activity, whether these residues truly distinguish 

NORs from O2Rs is not clear, since it was not reported how their removal by mutagenesis affected 

the O2R activity of the enzyme. In M. marburgensis FDP, the SCS Tyr is oriented away from the 

active site, towards one of the carboxylate residues, but this enzyme still shows O2R activity, which 

indirectly supports these ideas (assuming that the Tyr stays in this position during catalysis).35 In 

addition, Tm FDP, which is primarily a O2R, lacks the histidine that is available for hydrogen-

bonding in the SCS of the Mt FDP active site.31 The Tm FDP active site does contain the SCS 

Y197 

Y193 
H24 
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tyrosine (Figure 1.2), and site-directed mutagenesis studies show that this residue is crucial for 

NOR activity of this enzyme.36 Beyond the catalytic site, clusters of aromatic residues have been 

found in conserved positions near the active site and the FMN cofactor of most FDPs, which 

include tryptophan and tyrosine residues.37 These amino acids are hypothesized to protect the 

enzymes from oxidative damage when dioxygen reduction occurs, by reducing radical species or 

highly reactive intermediates.38  

 

1.3 Electronic Structure of Non-Heme Hs-{FeNO}7 Complexes and Mechanism of NO 

Reduction by FNORs  

Since NO is a redox non-innocent ligand, it is often difficult to determine the exact electronic 

structure of transition-metal nitrosyl complexes. To overcome this complication in terms of 

communication, the Enemark-Feltham notation is often utilized.39 The general form of the 

Enemark-Feltham notation is {M(NO)x)n where x is the number of nitric oxide bound to the metal 

center M and n is the total number of e� in the d orbitals of the metal center M and the NO S* 

MOs. The properties of hs-{FeNO}7 complexes have been studied in much detail using a variety 

of spectroscopic techniques including UV-Vis absorption, IR, rRaman, MCD, EPR, XAS and 

NRVS, besides other methods. Since NO is a non-innocent ligand, the electronic structure of hs-

{FeNO}7 complexes is not a priori clear. Solomon and coworkers used XAS, rRaman, UV-Vis 

absorption, MCD and EPR spectroscopy in combination with scattered-wave (SW) SCF-XD 

calculations to investigate the electronic structures of the hs-{FeNO}7 complexes 

[Fe(Me3TACN)(N3)2(NO)] and [Fe(EDTA)(NO)]2� as well as that of the ferrous NO adduct of the 

enzyme soybean lipoxygenase.40,41 These studies showed that hs-{FeNO}7 complexes are best 

described as hs-Fe(III)-3NO� systems, where the spins of hs-FeIII (S = 5/2) and the triplet 3NO� 
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ligand (S = 1) are antiferromagnetically (AF) coupled, resulting in the experimentally observed St 

= 3/2 spin state of these complexes.41 This electronic structure is illustrated in the MO diagram in 

Figure 1.3. Further studies by Lehnert and coworkers have shown that the 3NO� ligand acts 

predominantly as a strong S-donor ligand in these complexes, leading to a very covalent Fe-NO 

bond.42,43 This is reflected by the strong admixture of d-orbital character into the singly-occupied 

(E-spin, in a spin-unrestricted scheme) 3NO�(S*) orbitals. The corresponding bonding 

combinations, S*x_dxz and S*y_dyz (with the Fe�N(O) vector corresponding to the z axis), usually 

have around 20-35% dxz/dyz contributions. Unlike the original SW SCF-XD calculations by 

Solomon and coworkers, DFT calculations with typical functionals (BP86, B3LYP, etc.) do not 

show significant V donation from the 2V* orbital of 3NO� to the hs-FeIII center.42,44 Instead, a weak 

S-backbonding interaction between the occupied (mixed) D-dz2/dxz orbital of Fe and the empty in-

plane D-S* orbital of 3NO��is sometimes observed, which is related to the bending of the FeNO 

unit. Overall, 3NO� is a weak S-acceptor (D-spin manifold) and a strong S-donor (E-spin manifold) 

ligand in hs-{FeNO}7 complexes. 
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Figure 1.3 MO diagram showing the typical electronic structure of different hs-{MNO}7-9 complexes, as 
indicated. 
 
 Stopped-flow experiments on wt Tm FDP by Caranto et al. show that coordination of the 

first NO ligand to the reduced diiron core of the enzyme is exceedingly fast and proceeds within 

the mixing time of the solutions (about 1.3 ms).45 This is followed by a slower phase, which 

proceeds in 130 ms and which corresponds to the binding of the second NO and the formation of 

a diiron dinitrosyl intermediate, [hs-{FeNO}7]2. These assignments are based on the characteristic 

UV-Vis absorption features of non-heme hs-{FeNO}7 complexes, and were further confirmed by 

Mössbauer spectroscopy (see below). The [hs-{FeNO}7]2 intermediate then decays over the course 

of 120 seconds, along with the appearance of oxidized FMN cofactor. Importantly, only after 

forming the [hs-{FeNO}7]2 intermediate does cofactor oxidation occur. Using RFQ-EPR, sub-

stoichiometric amounts of NO (~0.5 equivalent NO per diiron site) were added to Tm FDP to yield 

an intense St = 1/2 signal after 200 ms.45 With a g-value of 2.10, the rapidly forming species was 
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identified as the diferrous mononitrosyl intermediate (see above), where the hs-FeII (S = 2) is AF 

coupled to the hs-{FeNO}7 (S = 3/2) center, in agreement with the stopped-flow results. Using 

RFQ-Mössbauer spectroscopy, reactions with excess NO (~3 equivalents NO per diiron site) were 

conducted and then quenched at multiple time points. After 20 ms, the spectrum reveals a mixture 

of species that, based on simulated Mössbauer spectra, match up to the hs-FeII/hs-{FeNO}7 species 

(76%) and the starting diferrous complex (16%), among others. Samples quenched at 200 ms and 

2 s after NO addition also reveal a mixture of species, including the hs-FeII/hs-{FeNO}7 

intermediate (54%) and a new species, identified as the [hs-{FeNO}7]2 complex (41%; isomer shift 

G = 0.71 mm/s and 'EQ = 1.85 mm/s). The data further show that the latter species is diamagnetic 

(St = 0), indicative of AF coupling between two S = 3/2 hs-{FeNO}7 centers. After 120 s, the [hs-

{FeNO}7]2 intermediate has completely disappeared and a new FeIII2 complex appears (13%; 

isomer shift G = 0.47 mm/s and 'EQ = 0.99 mm/s), which is the product after N2O release. Hence, 

even under RFQ conditions, no intermediate can be observed between the initial dinitrosyl 

intermediate and the diferric product. Accompanying UV-Vis measurements further show that a 

single turnover completes with the formation of the diferric product, before any Flavin oxidation 

occurs. In summary, these stopped-flow and RFQ experiments on Tm FDP have two important 

mechanistic implications: first, the diiron dinitrosyl intermediate, [hs-{FeNO}7]2, is the 

catalytically competent intermediate that is formed prior to any N2O generation, ruling out other 

pathways where N-N coupling starts from the diiron mononitrosyl complex,46 and second, the 

reaction follows the direct coupling pathway, where the flavin is not directly involved in catalysis 

(see below).  

 The latter result is further solidified in a follow up study by Kurtz and coworkers on 

deflavo-Tm FDP, which still undergoes NO reduction, albeit at a slower rate and lower yield than 
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the wt enzyme.45,47 Using RFQ-EPR, sub-stoichiometric amounts of NO (0.6 equivalent NO per 

diiron site) were added to deflavo-Tm FDP and quenched after 200 ms to yield an intense St = 1/2 

signal with a g value of ~2, which corresponds to the hs-FeII/hs-{FeNO}7 intermediate.47 Using 

RFQ-Mössbauer, excess NO (~3 equivalents NO per diiron site) was added and first quenched 

after 100 ms to yield a prominent [hs-{FeNO}7]2 species, comprising 55% of total iron in the 

sample. This species shows isomer shift and quadrupole splitting parameters of 0.74 and 1.85 

mm/s, respectively. Additionally, a FeIII2 species appears in the Mössbauer spectra with isomer 

shift and quadrupole splitting parameters of 0.44 and 0.92 mm/s, respectively, which are distinct 

from the as-isolated, oxidized state of deflavo-Tm FDP. After 60 s, the FeIII2 product is the 

predominant species in the Mössbauer spectra, and no signal of the starting FeII2 species remains. 

With the absence of the FMN cofactor, these RFQ experiments demonstrate the ability of Tm FDP 

to reduce NO to N2O via an [hs-{FeNO}7]2 intermediate, without the assistance of the Flavin 

cofactor.  

 

Scheme 1.1 Mechanistic possibilities for N-N coupling from the [hs-{FeNO}7]2 intermediate in FNORs. 
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 Alternatively, the FMN cofactor could reduce the [hs-{FeNO}7]2 intermediate by either 

one or two electrons (and potentially transfer protons) under turnover, creating highly reactive hs-

{FeNO}7/hs-{FeNO}8 or [hs-{FeNO}8]2 intermediates prior to N-N bond formation. These 

pathways are shown in Scheme 1.1, middle and bottom, and are referred to as the semireduced and 

superreduced mechanisms. In particular, the semireduced mechanism has been demonstrated in 

model complexes as a highly efficient pathway for NO reduction (see below).48-50 In this case, N-

N bond formation from the hs-{FeNO}7/hs-{FeNO}8 intermediate yields N2O and a mixed-valent 

FeII/FeIII µ-oxo (or µ-hydroxo) product. This step would be followed by another electron and 

proton transfer to the diiron center to release water and regenerate the diferrous active site. A 

variation of the semireduced pathway is the superreduced mechanism, where the FMN cofactor 

transfers two electrons (and possibly protons) to the diferrous dinitrosyl complex, generating a [hs-

{FeNO}8]2 intermediate, which subsequently releases N2O and water and regenerates the diferrous 

form of the active site. Intramolecular superreduction has not been observed yet in model 

complexes, possibly because the semireduced mechanism is so efficient that the complex proceeds 

to generate N2O after the first reductive equivalent has been transferred to the [hs-{FeNO}7]2 

complex.51 Just like in the case of the RFQ studies on Tm FDP, intermediates of NO reduction 

have not been observed in model complexes either, leaving us with a large knowledge gap about 

the nature of the N-N coupled intermediates in these systems (and which are therefore omitted in 

Scheme 1.1). Further studies are necessary to elucidate the mechanistic details of NO reduction by 

non-heme diiron complexes. 

Alternative explanations for the lack of NOR reactivity of sMMO and RNR have recently 

been proposed, based on spectroscopic and theoretical studies on Tm FDP.52 One possible 

explanation involves the differences in bridging ligands between the iron centers in the active sites 
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of NOR-active FDPs and the NOR-unreactive enzymes sMMO and RNR. For the diferrous forms 

of sMMO and RNR, the exchange coupling constants between the iron centers are only J = 0.5 

cm-1 and J = -0.5 cm-1, respectively.53,54 Compared to diferrous Tm FDP, this weaker exchange 

coupling can be attributed to the lack of hydroxo bridges between the iron centers.55,56 However, 

the presence of bridging carboxylates only may not be enough to (a) force the open binding sites 

on each iron center to be in the proper syn conformation, and (b) keep the iron centers at a close 

distance. Accordingly, the lack of NOR activity in sMMO and RNR could be linked to less rigid 

diiron centers in these enzymes that impede N-N coupling. Another possible explanation is based 

on the fact that both sMMO and RNR lack proper SCS residues near the diiron site, unlike many 

FDPs (Figure 1.2).55,56 Here, the lack of a tyrosine and/or histidine SCS residue could preclude 

NOR activity in these enzymes, as demonstrated in mutagenesis experiments with FDPs that 

highlight the crucial roles of these amino acid side chains for catalysis (see above).30,36 

 

1.4 Enzymes and Model Complexes 

Enzymes are often challenging subjects of study due to their complicated structure and the 

lack of spectroscopic handles. Direct investigations of reactions in enzymes are often obscured by 

the massive amount of amino acids that construct its structure. Dynamics of these amino acids 

often produce noisy signals in NMR spectroscopy as well as reducing the resolution of protein X-

ray crystal structures, thus, lowering the clarity of direct enzymatic investigation. At the same time, 

the desired reactions that these metalloenzymes catalyze are often carried out at the active site at 

which the metal center is coordinated. Therefore, model complexes that mimic the active site of 

complicated massive enzymes are key tools utilized in bioinorganic chemistry to investigate 

important mechanisms of metalloenzymes, identify putative intermediates, and elucidate the roles 
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that the metals’ first and second coordination sphere (SCS) play in catalysis (including H-bonding 

and electrostatic interactions). Generally, studies on model complexes and enzymes are seen as 

complimentary methods to each other in order to investigate a desired reaction in details. On the 

one hand, models are not the same as the “real” enzymes, but on the other hand, they allow us to 

explore a given enzymatic reaction in a broader perspective, investigate the reactivity spectrum of 

key intermediates and identify site reactions that may be suppressed in the enzyme, trap 

intermediates at cryogenic temperatures (typical at -80 oC), define the spectroscopic signatures of 

such intermediates for future identification in enzymes, and develop small-molecule catalysts that 

can catalyze similar reactions as the enzymes. Reactions can be conducted in strictly controlled 

environments, for example water-free conditions, in the hopes of trapping intermediates that may 

not be accessible in aqueous environments. Finally, the influence of steric and electronic effects 

on a given reaction are often more straightforward to investigate in model systems, where 

modifications to the ligand scaffold with predictable outcomes can easily be made, compared to 

creating corresponding variants in enzymes where we are restricted by the naturally occurring 

amino acids. 

 

1.5 Model Complexes of FNORs 

Due to the debate about the mechanism of NO activation in FNORs (Scheme 1.1) and the 

challenges in identifying intermediates in the protein, model complexes have been employed to 

study the mechanism of FNORs.22 For example, Lippard’s synthetic model complex [Fe2(N-Et-

HPTB)(O2CPh)(NO)2](BF4)2 (N-Et-HPTB = N,N,N′,N′-tetrakis-(2-(1-ethylbenzimidazolyl))-2-

hydroxy-1,3-diaminopropane; see Figure 1.5a) is capable of stabilizing a [hs-{FeNO}7]2 species 

that produces substoichiometric N2O upon photocleavage of one of the Fe�NO bonds.57 This 



 15 

generates a bridging mononitrosyl that is proposed to be attacked by the photocleaved NO, 

generating N2O and a bridging µ-oxo product. While this mechanism is chemically feasible, 

detailed enzyme studies on the T. maritima FDP by Kurtz and coworkers45,47,58 have shown that 

although a diiron mononitrosyl is generated in this enzyme upon sequential addition of NO 

equivalents, the diiron dinitrosyl complex, [hs-{FeNO}7]2, is the catalytically relevant 

intermediate that accumulates before any N2O is formed (see above).45,47   

 
Figure 1.4 Functional model complexes for FNORs that show N2O generation via photochemistry, direct 
reduction, semireduction, and superreduction. 
 

 Since the FMN cofactor distinguishes FNORs from other non-heme diiron enzymes like 

methane monooxygenase (MMO)59 and ribonucleotide reductase (RNR),60 which lack such 

efficient NO reductase activity, it might be expected that the FMN cofactor participates in catalysis 

by activating the initially formed [hs-{FeNO}7]2 dimer via reduction (following the 

“semireduction” or “superreduction” pathways). In support of these ideas, synthetic mono- and 

dinuclear non-heme hs-{FeNO}7 complexes are typically stable in solution,50,61-65 due to the 

covalent nature of the Fe�NO bond,41 and these complexes show no propensity to generate N2O 
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without the assistance of a chemical reductant. Interestingly, however, mechanistic studies on the 

deflavinated T. maritima FDP (discussed in more detail below) suggest that N�N coupling can 

occur without the participation of the FMN cofactor in a “direct-reduction” pathway,47 indicating 

at a minimum that this reaction is possible. 

 Our efforts to model the active site of FNORs were inspired (in terms of ligand choice and 

modifications) by the efforts to model the active site of purple acid phosphatases.66-73 We have 

previously reported the stable [hs-{FeNO}7]2 model complex, [Fe2(BPMP)(OPr)(NO)2](X)2 (X = 

BPh4�, OTf�, BF4�) (BPMP� = 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenolate; 

see Figure 1.4), which contains two coplanar hs-{FeNO}7 units (in a cis orientation) with an N-N 

distance of 2.803 Å.50  The coplanar orientation of the NO units is believed to aid in N-N coupling. 

While the BPMP� ligand is symmetric, the crystal structure of the [hs-{FeNO}7]2 complex reveals 

that it coordinates each iron center asymmetrically, with one NO bound trans to a tertiary amine 

while the other NO is bound trans to a pyridine. This is reflected in slightly different Fe�NO bond 

lengths at 1.774 Å and 1.796 Å and Fe-N-O angles at 155.5o and 144.7o, respectively, typical for 

non-heme hs-{FeNO}7 complexes. The two hs-{FeNO}7 units with St = 3/2 are then AF coupled 

in the dimer, to afford a total spin of St = 0 in the ground state. Typical exchange coupling constants 

J for such [hs-{FeNO}7]2 complexes are in the 5 – 20 cm-1 range (H = -2J(S1•S2)).60,61,74,75. A more 

detailed description of the hs-{FeNO}7 electronic structure is presented in the next section. The 

complex [Fe2(BPMP)(OPr)(NO)2](X)2 is capable of undergoing a one-electron reduction via 

external reductants, leading to very rapid intramolecular N-N coupling and quantitative N2O 

release.49 This complex can turn over in the 156 ms dead time of a stopped-flow IR instrument, 

with kobs > 102 s-1 at room temperature, following the semireduced mechanism. Indeed, the mixed-

valent byproduct of this reaction, where one electron is delivered via the chemical reductant and 
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the other one is provided by the diferrous core, is captured at -80 oC by EPR spectroscopy. In 

contrast, Meyer’s [L{Fe(NO)}2(μ-OOCR)](X)2 [hs-{FeNO}7]2 model complex (where L is a 

dinucleating pyrazole/triazacyclononane ligand 4,4'-((1H-pyrazole-3,5-diyl)bis(methylene))bis(1-

methyl-1,4,7-triazonane), R is Me or Ph, and X� is ClO4� or BPh4�) contains two hs-{FeNO}7 units 

in trans orientation (Figure 1.4).75 This complex does not generate N2O upon reduction, but 

instead, the one-electron reduced complex undergoes a redox and ligand disproportionation to 

form a [{Fe(NO)2}9]2 DNIC dimer and the diferrous complex (both characterized by X-ray 

crystallography). Based on these findings, the relative orientation of the Fe-N-O units is expected 

to be a key structural pre-requisite for efficient N2O formation in diiron complexes. 

 So far, no synthetic [hs-{FeNO}7]2 model complex is known that formally undergoes 

intramolecular superreduction. We believe that this is due to the fact that semireduction is such an 

efficient process that once the [hs-{FeNO}7]2 unit is reduced by one electron, fast intramolecular 

N2O generation is observed before a second electron can be transferred. In agreement with this, 

DFT calculations on the complex [Fe2(BPMP)(OPr)(NO)2](X)2 show that semireduction and 

superreduction have essentially identical barriers for N-N bond formation (see below).62 However, 

there are some examples of NO activation via intermolecular N�N coupling by the superreduced 

mechanism in non-heme mononitrosyl species. The first example is Goldberg’s 

[Fe(NO)(N3PyS)]BF4 complex, where N3PyS is (N-(2-(l1-sulfaneyl)benzyl)-1,1-di(pyridin-2-yl)-

N-(pyridin-2-ylmethyl)methanamine) (Figure 1.4), which can be chemically reduced to the hs-

{FeNO}8 state. This species is metastable at room temperature (t1/2 = 0.5 hr) and slowly releases 

substiochiometric amounts of N2O (54%) over 20 hrs.65 Majumdar’s diiron mononitrosyl complex, 

[Fe2(N-Et-HPTB)(NO)(DMF)3](BF4)3 (Figure 1.4), on the other hand, undergoes rapid and 

quantitative intermolecular N�N coupling upon reduction of the FeII/hs-{FeNO}7 to the FeII/hs-
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{FeNO}8 complex, affording N2O in 89 % yield within 5 minutes.64 Although these complexes do 

not directly model the FNOR mechanism, they further demonstrate that reduction is a potent means 

of activating otherwise stable non-heme hs-{FeNO}7 complexes for N�N coupling (and other 

reactivity), and that superreduction is in principle possible. 

 Our laboratory has recently evaluated the energetic differences of the super-, semi-, and 

direct-reduction mechanisms, and elucidated the nature of all hyponitrite intermediates that form 

after N�N coupling but precede N�O cleavage, with an in silico study of the complex 

[Fe2(BPMP)(OPr)(NO)2]2+/+/0 in the [hs-{FeNO}8]2, hs-{FeNO}7/hs-{FeNO}8, and [hs-

{FeNO}7]2 redox states.62 While N�N coupling from the [hs-{FeNO}7]2 complex has a 

dissociative potential energy surface, consistent with the stability of the [hs-{FeNO}7]2 complex 

in the absence of any external reductant, the [hs-{FeNO}8]2 and hs-{FeNO}7/hs-{FeNO}8 species 

are both activated for N�N coupling. Reduction of a hs-{FeNO}7 unit leads to a decrease in 

covalency of the corresponding Fe�NO S-bonds and an increase in radical character of the bound 

3NO� ligand, which causes the increase in reactivity.63  Interestingly, the activation barrier for N�N 

bond formation from the hs-{FeNO}7/hs-{FeNO}8 dimer (semireduction) is only 1-2 kcal/mol 

larger than what is predicted for superreduction, which starts from the [hs-{FeNO}8]2 state, in 

agreement with our report on the semireduced mechanism for N�N coupling in this model 

complex.49 Upon radical N�N coupling to generate N-bound N2O22�, the hyponitrite must 

rearrange in order to facilitate N�O bond cleavage and formation of a µ-oxo product. This is 

achieved in two sequential steps, first from the N�N coordinated structure to a “side-on” N�O 

coordinated species, a binding mode that was recently observed experimentally in a dinickel 

complex.76 This is followed by rearrangement to a κ2-O2N22� bound species with a bridging µ-oxo 

group. Finally, N�O bond cleavage and N2O release occurs, with a very low free energy barrier of 
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only 5.6 kcal/mol. The key κ2-O2N22� binding mode of hyponitrite that is primed for N2O release 

is only possible due to the flexibility in coordination mode of the bridging carboxylate 

(propionate/acetate) ligand, which undergoes a carboxylate shift to a monodentate coordination 

mode to allow for N2O22� binding in the κ2 geometry. Importantly, N2O release provides a 

substantial thermodynamic driving force for the reaction of -17.4 kcal/mol. 

 Overall, these results identify the structural and electronic prerequisites of NO activation 

in FNORs and related diiron complexes. A coplanar orientation of the two Fe-N-O units is essential 

for facile N�N coupling. The mechanism by which NO is reduced is then highly dependent on the 

redox-tuning of the diiron core, and correspondingly, the strength of the Fe�NO bonds. These 

properties can be tuned in chemical systems quite dramatically depending on the nature of the 

coligands, while FNORs likely use both primary and secondary coordination sphere interactions 

to tune the reactivity of the NO ligands to facilitate N�N coupling. 

 

1.6 Scope of Thesis 

 As discussed above, there is currently a debate concerning the mechanistic pathway of NO 

reduction in FNORs. At the same time, characterization of species prior to N2O formation is 

important to prove that the proposed mechanistic pathway suggested by DFT is valid. Therefore, 

my thesis is focussed on tackling these questions from multiple angles to find a way to access key 

intermediates of NO reduction by diiron cores and study them.  

 In Chapter 2, I focus on testing the feasibility of the direct reduction pathway using model 

complexes of the non-heme diiron active site of FNORs. In this chapter, I hypothesize that by 

replacing two pyridine groups of the [BPMP]� ligand with two phenolate groups, I can obtain a 

more donating trianionic ligand, [(Py2PhO2)MP]3�� ��2,6-Bis[((2-hydroxybenzyl)(2-
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pyridylmethyl)amino)methyl]-4-methylphenol), which gives rise to more reducing iron centers, 

thus, capable of donating two equivalents of electrons to perform the direct reduction of NO to 

N2O. The results show that my new model complex [Fe2((Py2PhO2)MP)(OAc)2](CoCp2) can 

indeed stabilize much more reducing iron centers with redox potentials shifted about 1V more 

negative, compared to [Fe2(BPMP)(OPr)(NO)2](X)2. This new complex can directly reduce NO to 

N2O quantitatively, proving that the direct reduction pathway is indeed a valid mechanistic 

possibility for FNORs.  

 In Chapter 3, I attempt to find a way to trap the NO species that is formed at -80oC by 

[Fe2((Py2PhO2)MP)(OAc)2](CoCp2) in chapter 1. I hypothesize that if I can separate the iron 

centers of [Fe2((Py2PhO2)MP)(OAc)2](CoCp2) and react them with NO, I can potentially trap a 

mononitrosyl iron complex that have similar electronic property to the one I observed at -80 oC, 

thus, giving further insight into the key features of direct reduction of FNORs.  

 Hyponitrite intermediate is an important intermediate of the mechanism of NO reduction 

in FNORs and it is formed right before N2O release. One can approach designing a system to 

stabilize hyponitrite in different ways. First approach is to design a model complex with moderate 

NO reduction capability to slow down the reaction enough in order to trap and observe species at 

low temperature or potentially thermodynamically trap the hyponitrite intermediate. The other is 

to introduce hyponitrite ligand directly into the system to see how hyponitrite as a ligand interact 

with model complexes that has been shown to be efficient at NO reduction.  

 In Chapter 4, I explore the role of the different secondary coordination sphere hydrogen 

bonds group towards stabilization of intermediates in the NO reduction reaction of FNORs. Here 

I rationalize that the use of a scaffold that can retain the primary coordination sphere similar to the 

BPMP ligands is an important starting point since this complex has been proven to be able to 
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stabilize the diiron dinitrosyl intermediate while the bis-phenolate version can directly reduce NO 

to N2O. With that in mind I targeted three different ligands, BPMP-NHCOC(CH3)3, BPMP-

NH2CH2C(CH3)3 and BPMP-NH2. There three ligands represent different level of acidity at the 

proton of amine and serves as a great starting point for our exploration into the secondary 

coordination sphere space.  

 In Chapter 5, I explore the fundamental coordination chemistry of trans-hyponitrite with 

iron complexes. In this study, I chose trans-hyponitrite as a target for investigation because of the 

availability of this compound and its stability and ease of handling. Cis-hyponitrite has been 

proposed to be the crucial intermediate in the NO reduction of FNORs, however, cis-hyponitrite 

precursors are often instable at room temperature and have the tendency to be explosive. Therefore, 

I opted to try and understand the chemistry of trans-hyponitrite first as it has also been proposed 

to be important in the mechanisms of heme complexes and NorBC. Using a series of mononuclear 

iron complexes, I tested their reactivity with sodium hyponitrite in different solvents. The result 

show that sodium trans-hyponitrite decomposes very quickly in protic solvent therefore I opted for 

an aprotic solvent. In this case, I chose acetonitrile acetonitrile. I was able to observe a range of 

reactivity between these hyponitrite ligands and non-heme iron complexes providing structural 

insight into how these unique ligands interact with different iron centers. 

 In Chapter 6, I want to revisit the semireduction mechanism of model complex of FNORs 

and explore the property of these hs-{FeNO}7 moiety after undergo reduction to form hs-{FeNO}8 

complex. For this purpose, I once again turn to the isolation of these iron centers using 

mononuclear iron nitrosyl complexes with analogous primary coordination sphere to 

[Fe2(BPMP)(OPr)(NO)2](X)2 and explore their reductive chemistry. The hs-{FeNO}7 complex, 

[Fe(TPA)(OTf)(NO)](OTf), is chosen due to its well defined coordination environment and its 
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similarity to the primary coordination environment of [Fe2(BPMP)(OPr)(NO)2](X)2. Interestingly, 

further exploration of the property of this hs-{FeNO}7 reveals that it is has a very unique electronic 

structure that is on the border of spin-crossover that can be induced by coordination of solvent. 

Further investigation into this chemistry reveals unexpected insight into the decomposition 

pathways of hs-{FeNO}8 complexes. 

 In Chapter 7, I want to explore the electronic structure of iron nitrosyl complexes that is 

beyond the {FeNO}8 oxidation state. These complexes are rarely observed because adding 

additional electrons into an {FeNO}8 complex would be very difficult due to formation of either a 

low valent Fe(I)/Fe(0) center or an NO2-/NO3- species which are extremely unstable. In recent 

study, Chalkley et al reported a series of stable {FeNO}8-10 complexes using their unique ligand 

scaffold trisphosphineborane ligand (TPB = Tris[2-(di-iso-propylphosphino)phenyl]borane).77 

These complexes are suggested to be low spin complexes and the reduction is suggested to be iron 

centered reduction. However, their Mossbauer data show little to no change in isomer shift which 

are usually sensitive towards changes in iron oxidation state. Therefore, I set out to solve this 

mystery using NRVS and DFT as the key techniques to access the electronic structure of this seires. 
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Chapter 2 

Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic 

Insight into Flavodiiron NO Reductases 

 

Adapted from published article: Dong, H. T.; White, C. J.; Zhang, B.; Krebs, C.; Lehnert, N. Non-
Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight into 
Flavodiiron NO Reductases. J. Am. Chem. Soc. 2018, 140, 13429-13440. 
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As discussed in Chapter 1, a new mechanism of N-N coupling has been observed by our 

group for the model complex [Fe2(BPMP)(OPr)(NO)2](X)2 (H[BPMP] = 2,6-bis[[bis(2-

pyridylmethyl)amino]methyl]-4-methylphenol, see Figure 2c; OPr� = propionate bridging ligand,  

X� = BPh4�, OTf�), which is the first functional model system for FNORs. This [hs-{FeNO}7]2 

complex is stable and has been structurally and spectroscopically characterized.1 Upon one 

electron reduction, however, the complex shows very fast (kobs > 100 s-1) and quantitative N2O 

formation, using the semireduced mechanism shown in Scheme 1.1.2 The semireduced mechanism 

is therefore a very efficient pathway for N2O formation from a diiron core. Based on our results 

for [Fe2(BPMP)(OPr)(NO)2](X)2 and the ability of this complex to mediate N2O formation via the
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semireduced pathway, I hypothesized that a complex with more reducing iron centers might allow 

for the direct reduction of NO to N2O from the [{FeNO}7]2 intermediate.  

To test the feasibility of this hypothesis, I prepared the model complex 

[FeIII2((Py2PhO2)MP)(OPr)2](OTf) (1) [(Py2PhO2)MP]3�� �2,6-Bis[((2-hydroxybenzyl)(2-

pyridylmethyl)amino)methyl]-4-methylphenol where two of the pyridine groups in the H-BPMP 

ligand used previously are replaced by more electron-donating phenolate groups (Figure 2.1).3 

Complex 1 was characterized through spectroscopic methods and electrochemical studies. This 

complex can be reduced (using CoCp2) to the diferrous complex (2), which was structurally 

characterized using X-ray crystallography. Excitingly, the reduced complex produces N2O in 

quantitative yield when reacted with NO, making (2) the first model complex that is capable of 

mimicking the direct reduction of NO to N2O as proposed for FNORs.4 Additionally, the products 

after reduction of NO to N2O at both room temperature and -80oC were spectroscopically 

characterized, providing further insight  into the mechanism of N2O generation by 2.  

 

Figure 2.1 Left: Complex 1. Right: Simplified drawing of the active site of FNORs.5 
 
2.1 Synthesis and Spectroscopic Characterization of Complexes 1 and 2 

Synthesis of the diferric complex [FeIII2((Py2PhO2)MP)(OPr)2](OTf) (1) was accomplished 

by reaction of Fe(OTf)2 with the ligand in the presence of excess NaOPr (OPr� = propionate) under 

ambient condition. The analogous complexes with acetate (OAc�) bridges, 

[FeIII2((Py2PhO2)MP)(OAc)2](OTf) (1-OAc), and the corresponding perchlorate salts were also 
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prepared (the latter for X-ray crystallography) for comparison. The deep-blue complex 1 is 

characterized by a broad absorption band at 630 nm (H = 6840 M-1cm-1, in CH2Cl2) as shown in 

Figure 2.2. 1H-NMR spectroscopy in CD2Cl2 shows signals ranging from -10 to 50 ppm. The wide 

range of chemical shifts as well as the broad nature of the features are an indication of 

paramagnetic iron centers. The Mössbauer spectrum of complex 1 shows a quadrupole doublet 

with an isomer shift G = 0.54 mm/s and a quadrupole splitting parameter 'EQ = 1.10 mm/s (Figure 

2.3). These parameters are consistent with an antiferromagnetically (AF) coupled high-spin 

diferric complex, and they are also in agreement with the Mössbauer parameters of the 1-OAc 

complex, which have previously been reported (G = 0.54 mm/s, 'EQ = 1.06 mm/s).6 Indeed, 

magnetic susceptibility measurement of 1-OAc show weak AF coupling between the Fe centers, 

with a reported coupling constant J = -6.0 (r1) cm-1. X-band electron paramagnetic resonance 

(EPR) spectroscopy of 1 at 4 K in frozen CH2Cl2 solution further reveals that 1 is EPR silent, in 

agreement with these results.  

 

Scheme 2.1 Synthesis of 1, 1-OAc, 2, and 2-OAc. 
 

Interestingly, previous studies have shown that by replacing a pyridine on the H-BPMP 

ligand by one phenolate group, the redox potential of the diiron complex is shifted by 

approximately 500 mV.7 To assess the redox properties of our complex, the cyclic voltammogram 
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(CV) of complex 1 in dichloromethane (CH2Cl2) was recorded by scanning negatively from the 

open circuit potential at various scan rates. The resulting CVs of 1 are shown in Figure 2.4. Two 

reversible redox couples are observed with E1/2 of -0.28 V and -1.0 V versus Fc+/Fc. These 

correspond to the FeIII/FeIII to FeIII/FeII and FeIII/FeII to FeII/FeII couples, respectively. Importantly, 

compared to complex [Fe2(BPMP)(OPr)2](OTf) studied previously, these redox potentials are 

negatively shifted by about 1 V, demonstrating that our goal to prepare a more electron-rich analog 

of the BPMP� complex has been accomplished. Compared to FNORs, complex 1 shows a more 

negative redox potential of about 300 mV.8,9  

 

 

Figure 2.2 Absorption spectra of complexes 1 and 2 in dichloromethane at 0.1 mM concentration at room 
temperature. 
 



 

32 
 

 

Figure 2.3 4.2 K/53 mT Mössbauer characterization of complexes 1 (A, top) and 2 (B, bottom). The solid 
lines overlaying the experimental data are simulations using the parameters quoted in the main text. 
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Figure 2.4 Left: [Fe2(BPMP)(OPr)2](X) and its redox potentials measured by cyclic voltammetry. Right: 
[CoCp2][Fe2((Py2PhO2)MP)(OAc)2] with the redox potentials shifted by about -1 V, due to the use of a 
more electron-donating coligand. Adapted from ref. 10.  
 

The diferrous state of 1-OAc, denote here as 2-OAc, has been reported to be unstable and 

thus prevented further spectroscopic and structural characterization in a previous report.6 In this 

work, however, I show that complex 1 can conveniently be reduced to the diferrous complex 2 in 

situ by addition of exactly 2 equivalents of cobaltocene (CoCp2), as illustrated by a corresponding 

redox titration. The reduction leads to the disappearance of the 630 nm band of 1, and a smaller 

band appears at 530 nm (H = 2620 M-1cm-1, in CH2Cl2) indicating the formation of 2 (Figure 2.2). 

This goes along with a characteristic color change of the solution from dark blue to dark orange. 

The Mössbauer spectrum of 2 (Figure 2.3) shows a quadrupole doublet with G�= 1.25 mm/s and 

'EQ = 2.97 mm/s, consistent with a high-spin diferrous complex. X-band EPR spectroscopy of 2 

at 4 K in frozen CH2Cl2 solution reveals that 2 is EPR silent, as expected. Note that complex 2 can 

also be accessed by direct reaction of H3[(Py2PhO2)MP] with Fe(OTf)2 in the presence of base and 

the bridging propionate (NaOPr), but, as mentioned above, it is advantageous to enter this 

chemistry via the diferric complex 1, which is much more stable. Interestingly, complex 2 shows 

an unexpected temperature-dependent property where it changes color from deep orange to very 

faint yellow (almost no color) when a solution of this compound is cooled down from room 

temperature to -80 oC in dichloromethane. The absorption band at 530 nm disappears as the 

temperature decreases, and the resulting absorption spectrum shows just a weak feature at ~500 

nm (Figure 2.5, top). I hypothesize that in solution, the bridging propionate ligands of complex 2 

are fluxional, such that at room temperature, these ligands can dissociate (partly or completely) to 

form five-coordinate iron centers. As the temperature is decreased, the propionates (either 

dissociated or still bound as monodentate ligands) rebind to the iron centers (driven by entropy), 

forming six-coordinate Fe(II) centers with two bridging propionates at -80 oC. This hypothesis is 
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supported by the crystal structure of 2-OAc and the Mössbauer spectra of the reaction product of 

2 with NO at -80 oC. 

 

 

Figure 2.5 Top: spectral changes in the absorption spectrum of 2 upon cooling from room temperature to -
80 oC. Note that these changes are fully reversible. In the process, the color of the solution changes from 
deep orange to light yellow. The spectra were collected at 0.1 mM concentration of 2 in dichloromethane. 
Bottom: Comparison of the UV-Vis spectrum obtained from crystalline material in KBr (black line) with 
the absorption spectra of complex 2 in solution at RT (red line) and -80 oC (blue line). 
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2.2 Structural Comparison of Complexes 1-OAc and 2-OAc 

Structural characterization of complex 1 has proven to be challenging due to the high 

degree of disorder caused by the –CH2CH3 groups of the bridging propionate ligands, and further 

disorder introduced by the counter anion.11 Initially, I attempted to determine the crystal structure 

of complex 1. For this purpose, I diffused toluene into an acetonitrile solution of the complex to 

grow single crystals of 1. In our best attempt, I obtained a structure for 1 in which the position of 

the diiron core, the ligand scaffold, and the triflate counter anion are well defined. However, the 

propionate groups are highly disordered, making it impossible to locate the electron density 

associated with the propionate side chains. The obtained structure of the {FeIII2((Py2PhO2)MP)} 

core itself is very similar to that of 1-OAc, in the case of which a fully solved crystal structure has 

been reported in the literature.6 However, the structure of the diferrous complex 2-OAc could not 

be obtained so far. Conveniently, I can generate 2-OAc by reduction of 1-OAc with two 

equivalents of CoCp2, thus allowing us to isolate, crystallize, and structurally characterize 2-OAc 

for the first time. By diffusion of hexane into a solution of 2-OAc in CH2Cl2, orange rod crystals 

of this complex could be obtained, suitable for diffraction. The crystal structure of 2-OAc is shown 

in Figure 7.  
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Figure 2.6 Crystal structure of 2-OAc, obtained from diffusion of hexane into a saturated solution of 2-
OAc in dichloromethane. The numbering scheme is similar to that reported for the crystal structure of 1-
OAc for better comparison. Solvent molecules, the CoCp2+ counter cation, and hydrogen atoms have been 
omitted for clarity. 
 

Table 1 compares the structural parameters for 1-OAc and 2-OAc. Both complexes have 

very similar structures that feature two six-coordinate iron centers that are connected by the central 

phenolate unit and the two bridging carboxylate (acetate) ligands. In 2-OAc, the metal-ligand 

bonds are all elongated as expected, due to the reduction of the iron centers from +III to +II (see 

Table 2.1). In 1-OAc, the two iron centers are essentially equivalent. Upon reduction to 2-OAc, 

the diiron core become much more asymmetric, as evident from the Fe-O(carboxylate) bond 

distances: whereas these bond lengths are essentially all equivalent in 1-OAc, they differ by up to 

0.1 Å in 2-OAc. In the reduced complex, each iron has one short and one long Fe-O(carboxylate) 

bond, which suggests that these bridging ligands can be fluxional in solution. This supports the 

idea that the iron centers in 2-OAc could become five-coordinate at room temperature in solution, 

which would explain the temperature-dependent changes in the absorption spectrum of this 

compound. In this regard, it should be noted that the absorption spectrum of 2-OAc in the 
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crystalline form is equivalent to that of the low-temperature form in solution (Figure S4, bottom). 

This strongly indicates that the low-temperature form of 2-OAc in solution has a similar structure 

as the crystal structure of this complex (Figure 2.6) with six-coordinate Fe(II) centers and two 

bridging carboxylate ligands. At room temperature, the Fe(II) centers could then become five-

coordinate, as discussed above. This would also explain why the process is fully reversible. 

Table 2.1 Structural comparison between 1-OAc and 2-OAc. Values are listed in Å and deg. 
Structure 1-OAc (ref. 27) 2-OAc a 

Fe1-O1 2.054 2.1 

Fe2-O1 2.055 2.077 

Fe1-Fe2 3.528 3.572 

Fe1-O1-Fe2 118.34 117.57 

Fe1-N1 2.179 2.247 

Fe2-N3 2.169 2.253 

Fe1-N2 2.134 2.22 

Fe2-N4 2.127 2.253 

Fe1-O4 1.965 2.143 

Fe2-O5 1.993 2.093 

Fe1-O6 1.98 2.107 

Fe2-O7 1.956 2.188 

                                                      a This work. 

The bonds between the iron centers and the amine ligands are also significantly elongated 

in 2-OAc compared to 1-OAc. Despite the significant elongation of the bonds around the iron 

centers, the core structure of 2-OAc remains intact and strongly resembles that of 1-OAc in our 

crystal structure as shown in Figure 2.6. 
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2.3 Reaction of 2 with NO Gas at Room Temperature 

Upon addition of NO gas into the headspace of a dark orange solution of 2, the solution 

changes color immediately to red. Notably, the IR spectrum of the resulting reaction product does 

not show any band associated with an N-O stretch (for high-spin {FeNO}7 complexes, the N-O 

stretch is usually observed in the 1700 – 1800 cm-1 range12). I therefore conducted an IR gas 

headspace analysis of the reaction flask and detected N2O in high yield (Figure 2.7). Further 

experiments determined that N2O is generated in quantitative yield in the reaction of 2 with NO 

gas as shown in Figure 2.8. The same result is obtained when complex 2, generated directly by 

metalation of H3[(Py2PhO2)MP] with Fe(OTf)2, is used. Similarly, 2-OAc generates quantitative 

amounts of N2O when reacted with NO gas. This result shows, for the first time, that non-heme 

diiron sites can in fact directly reduce NO to N2O from the {FeNO}7 redox state. This provides 

support for the proposal that FNORs are able to mediate direct NO reduction to N2O from the 

diferrous state, without involvement of the flavin cofactor in the reaction. Interestingly, N2O 

production by 2 does not require any external source of acid, which confirms our previous result 

that water formation is not required as a driving force for N2O generation from NO.7 This suggests 

the formation of a bridging P-oxo unit, FeIII-O-FeIII, as the direct reaction product besides N2O. 

Indeed, the Mössbauer spectrum of the product after the reaction of 2 with NO gas at room 

temperature shows two quadrupole doublets which are responsible for ~95% of iron, with 

parameters that are consistent with two antiferromagnetically (AF) coupled high-spin diferric 

complexes (Figure 2.13D). The isomer shifts and quadrupole splittings of the two diferric 

components, 0.53 and 0.80 mm/s (71%) and 0.52 and 1.70 mm/s (22%), respectively, are different 

from the diferric complex 1 (see Figure 2.3, top), in agreement with the formation of unique 
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diferric products after the reduction of NO. The two diferric reaction products likely differ in the 

exact ligation of the iron centers, leading to the observed difference in quadrupole splittings. The 

absorption spectrum of the product shows a shift in the main absorption band from 530 nm in 

complex 2 to 470 nm with a shoulder at 515 nm, in agreement with the color change from dark 

orange to red (Figure 2.9, black). Excitingly, when two equivalents of acetic acid are added to this 

red product solution, it immediately turns back to the deep blue color of complex 1. Absorption 

spectra and mass spectrometry show that the product has indeed turned back into complex 1 after 

acetic acid addition, supporting the idea that the diferric reaction products contain FeIII-O-FeIII 

units. Subsequent addition of two equivalents of CoCp2 regenerates complex 2/2-OAc, which can 

be reacted again with NO gas to produce a second, quantitative amount of N2O as shown by gas 

headspace IR (Figure 2.10). Through this experiment I have successfully demonstrated the 

capability of our complex to carry out the catalytic reduction of NO to N2O, via the proposed 

catalytic cycle shown in Figure 2.16. Note that because CoCp2 reacts directly with NO gas (see 

Experimental Section), it is not possible to run the reaction of 1 with NO under catalytic conditions 

(i.e., with excess CoCp2, NO and acetic acid).   
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Figure 2.7 IR gas headspace detection of N2O at room temperature (RT), showing the prominent N-N 
stretch of N2O at 2234 and 2214 cm-1, which is used to quantify N2O production. 

 

Figure 2.8 Calibration curve for the quantitative detection of N2O by IR gas headspace analysis. Data for 
the reaction of 2 with NO gas at room temperature are indicated. See ref. 4 for the procedure to generate 
the calibration curve. The black line is the calibration curve generated from Piloty’s acid, the black dots are 
the observed amounts of N2O formed in our experiments using chemically synthesized 2, and the blue dots 
are from complex 2 generated by chemical reduction of complex 1 by CoCp2, quantified using the 
calibration curve. 
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Figure 2.9. Changes in the absorption spectrum of 2-OAc upon reaction with NO gas at room temperature. 
These spectral changes occur in less than a minute. Spectra were collected at a concentration of 0.1 mM 2-
OAc in dichloromethane. 
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Figure 2.10. Comparison of the IR gas headspace analysis for N2O formation for the reaction of 8 Pmol of 
2-OAc with NO gas in dichloromethane at room temperature. Top: first cycle, bottom: second cycle. Since 
CoCp2 also reacts with NO gas directly to produce N2O, it is difficult to quantify the amount of N2O that is 
solely generated by 2-OAc when an excess amount of CoCp2 is present in the reaction mixture. Therefore, 
I decided to run the reaction in cycles and only add quantitative amounts of CoCp2 as needed to reduce 1-
OAc 

 

2160 2180 2200 2220 2240 2260 2280

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
bs

or
ba

nc
e

Wavenumber (cm-1)

Area=4.60296
FWHM=48.65359

Expected Area: 4.11
Yield: 111%

2120 2140 2160 2180 2200 2220 2240 2260 2280

0.00

0.05

0.10

A
bs

or
ba

nc
e

Wavenumber (cm-1)

Area=4.07698
FWHM=48.32

Expected Area: 4.11
Yield: 99%



 

43 
 

The observed reactivity for 2 with NO is in stark contrast to our previously reported 

complex [Fe2(BPMP)(OPr)(NO)2](X)2, which forms a diferrous dinitrosyl complex that is stable 

in both the solid and solution state at room temperature.1,2 Our results prove that the strongly 

donating ligand scaffold in 2 is indeed necessary to create more reducing iron centers that are able 

to promote direct N-N coupling of NO for N2O formation.  

 

2.4 Reaction of 2 with NO Gas at -80oC 

 In order to study the mechanism of N2O generation in more detail, I monitored the reaction 

of 2 with NO gas at low temperatures (-80 oC) by a combination of spectroscopic and analytical 

methods. Solution UV-Vis spectroscopy of the reaction mixture at -80 oC (Figure 2.11, red) shows 

the appearance of a new absorption band at 430 nm with a shoulder at 525 nm, indicating that the 

reaction still proceeds, even at this low temperature. Accordingly, solution and gas headspace IR 

spectroscopy confirm the formation of N2O under these conditions. Further kinetic analysis of the 

UV-Vis data in Figure 2.11 delivers a kobs = 0.1 s-1 for the reaction at -80 oC. Curiously, however, 

the maximum yield of N2O at -80 oC is only about 10 – 30% (depending on the exact experimental 

conditions), even when the reaction mixture is kept for 90 minutes (note that there are no more 

changes in the UV-Vis spectrum past ~30 minutes reaction time). I then further analyzed the 

reaction mixture at -80 oC after the “steady state” was reached (no more spectral changes). At this 

point, low-temperature IR spectroscopy shows two bands at 1726 and 1707 cm-1 (see Figures 2.12), 

which indicates the presence of {FeNO}7 complexes in solution as potential intermediates of the 

reaction. Electron paramagnetic resonance spectroscopy (EPR) reveals two signals at geff = 3.94 

(major component) and g = 2.01 (minor species); however, double integration of the spectrum 

reveals that these signals correspond to only ~5% of total iron. Mössbauer spectroscopy indicates 
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the presence of at least three distinct Fe-species in the reaction mixture at -80 oC. The 4.2K / 53mT 

spectrum (Figure 2.13A) shows a quadrupole doublet associated with the diferrous precursor (δ = 

1.25 mm/s, ΔEQ = 3.01. mm/s, 34% red line), a quadrupole doublet with parameters indicative of 

the EPR-silent [{FeNO}7]2 complex (δ = 0.70 mm/s, ΔEQ = 1.26 mm/s, 21%, blue line), and a 

magnetically split component exhibiting broad absorption features extending from -10 to +10 

mm/s (ca 45% intensity). In the 60 K/0 mT spectrum (Figure 2.13B), the magnetically split 

component collapses into two quadrupole doublets with parameters typical of high-spin ferric and 

ferrous iron, suggesting that the broad magnetic component emanates from a mixed-valent 

FeII/FeIII complex (δ = 1.23 mm/s, ΔEQ = 2.89 mm/s, 23%, turquois line, δ = 0.56 mm/s, ΔEQ = 

0.93 mm/s, 23%, orange line). Additional spectra indicate a ferromagnetically coupled FeII/FeIII 

cluster with an Stot=9/2 electronic ground state. The Mössbauer parameters determined for this 

species are strikingly similar to those reported previously for (Et4N)[Fe2(salmp)2], a similar species 

with ferromagnetically coupled FeII/FeIII centers and the same Stot=9/2.13 This complex is a dimer 

with two bridging phenolate ligands that connect the two iron centers. This indicates that in our 

mixed-valent intermediate, additional bridging phenolates might be present, which might then 

favor the Stot=9/2 ground state. Importantly, this mixed-valent species is distinctly different from 

the mixed-valent state that is accessible by simple one-electron reduction of 1 and 1-OAc. The 

mixed-valent state of 1-OAc has been reported to have an Stot=1/2 electronic ground state with J = 

-5.3 cm-1, suggesting a weak AF coupling between the two iron centers.6 Mössbauer spectroscopy 

of this species shows no magnetically split components in the presence of a magnetic field (as 

observed for the mixed-valent reaction intermediate), but instead, two sets of quadrupole doublets 

can be fit that correspond to a high spin ferric (δ = 0.53 mm/s, ΔEQ = 0.96 mm/s, 50%) and a high 

spin ferrous (δ = 1.13 mm/s, ΔEQ = 2.86 mm/s, 50%) center. I expect the mixed-valent form of 1, 
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when prepared by simple (electro)chemical reduction, to have similar properties (since 1 and 1-

OAc only differ slightly in the nature of the carboxylate bridges). Therefore, the mixed-valent 

reaction intermediate formed at -80 oC is clearly a distinct species that likely contains phenolate-

bridged iron centers. 

 

Figure 2.11. Changes in the absorption spectrum of 2-OAc upon reaction with NO gas at -80 oC. Spectral 
changes stop after about 30 minutes of reaction time. Spectra were collected at a concentration of 0.1 mM 
2-OAc in dichloromethane. 
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Figure 2.12. 15N18O labelling study using solution IR spectroscopy. The data show the product of the 
reaction of 5 mM 2 with NO/15N18O gas (black/red spectra) in dichloromethane at -80 oC. The spectra 
demonstrate that the two signals at 1707 and 1726 cm-1 originate from N-O stretches in nitrosyl complexes 
that are formed in the low-temperature reaction.  
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Figure 2.13. Mössbauer spectra of a sample of 2 reacted with NO gas at -80 oC for 60 min, recorded at 4.2 
K/53 mT (A) and 60 K/0 mT (B). (C) 4.2 K/53 mT spectrum of a duplicate sample of (A), after warming 
to RT. Simulation parameters: δ = 0.53 mm/s, ΔEQ = 0.82 mm/s, 53%, green line and δ = 0.51 mm/s, ΔEQ 
= 1.64 mm/s, 22%, purple line. (D) 4.2 K/53 mT spectrum of a sample of 2 reacted with NO gas at RT for 
15 min. Simulation parameters: δ = 0.53 mm/s, ΔEQ = 0.80 mm/s, 71%, green line and δ = 0.52 mm/s, ΔEQ 
= 1.70 mm/s, 22%, purple line. In all spectra, the black line overlaying the experimental data represents the 
sum of all individual contributions from the fit. Spectral features not captured by the simulation are 
attributable to the broad, magnetically split features of the S=9/2 species. 
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[L{Fe(NO)}2(μ-OOCR)](X)2, which contains two orthogonal Fe-N-O units, is unable to produce 

N2O upon reduction (in contrast to [Fe2(BPMP)(OPr)(NO)2](X)2, where the Fe-N-O units are in a 

cis position).14 The presence of unreacted diferrous precursor is likely due to the fact that this 

complex contains six-coordinate Fe(II) centers at low temperature (see above), which lowers their 

affinity for NO. The formation of the FeII/FeIII mixed-valent species at low-temperature could be 

due to redox comproportionation between the FeIII/FeIII reaction product and the precursor 2, or 

this species could correspond to the product of oligomerization of the diferric reaction product and 

the diferrous complex. It is also possible that the reaction proceeds by a different mechanism at 

low temperature; this point requires further study. I have attempted to isolate the mixed-valent 

complex (by precipitation) as a solid at -80 oC for further characterization. However, under these 

conditions, all iron-containing species seem to precipitate, and I was not able to derive further 

information about the Stot=9/2 intermediate from these mixtures (which also seem to decompose 

at room temperature, even in the solid state 
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Figure 2.14. UV-visible absorption spectra of the reaction product of 0.1 M 2 with excess NO in CH2Cl2 
at -80 oC (red), of this product warmed up to RT (blue), and of the product that is obtained when the reaction 
is conducted at RT (black). 
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Figure 2.15 Changes in the absorption spectrum of the reaction product of 2-OAc and NO gas (reaction 
run at -80 oC; see Figure S11) upon warming up of the solution to room temperature over the course of 45 
minutes. Spectra were collected at a concentration of 0.1 mM 2-OAc in dichloromethane. 
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absorption features of the room temperature product, appear at 470 nm with a shoulder at 515 nm 

(see Figure 2.15). When the low-temperature reaction mixture is warmed up to room temperature, 

the Mössbauer spectrum reveals again two diferric products (~80% total iron, see Figure 2.13C) 

with parameters typical for AF coupled high-spin FeIII/FeIII complexes. Here, the two components 

show isomer shifts and quadrupole splittings of 0.53 mm/s and 0.82 mm/s (53%) and 0.51 mm/s 

and 1.64 mm/s (22%), respectively. Hence, the same products are formed as in the room 

temperature reaction, but in a different ratio (which explains the slight differences in the absorption 

spectra of the warmed up low-temperature and the room temperature products). As mentioned 

above, these results indicate that the diferric product exists in the form of different coordination 

isomers with slightly different properties. 

 

2.5 The Nature of the [{FeNO}7]2 Intermediate Observed at Low Temperature 

The observation of the two IR bands at 1726 and 1707 cm-1 (Figure S31), which belong to 

the [{FeNO}7]2 intermediate observed by Mössbauer spectroscopy and shown to be EPR silent 

(see above), indicates that the reaction of 2 with NO proceeds via the formation of a diferrous 

dinitrosyl intermediate, similar to the mechanism proposed for FNORs by Kurtz and coworkers.15 

However, isolation and further characterization of this species have proven to be challenging. I 

therefore used DFT calculations, which have proven to be effective at predicting structural 

parameters and vibrational properties of non-heme (hs) iron-nitrosyl complexes,16-18 to gain further 

insight into the properties of this species. Based on our previously obtained crystal structure of 

[Fe2(BPMP)(OPr)(NO)2](BPh4)2, I constructed an analogous model, 

[Fe2((Py2PhO2)MP)(OPr)(NO)2]� and then optimized the structure of this species in the AF coupled 

state using BP86/TZVP.19-22 The fully optimized structure of this complex is shown in Figure 2.17. 
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The calculations predict the N-O stretching frequencies for this structure to be Qsym(N-O) = 1723 

cm-1 and Qasym(N-O) = 1678 cm-1, respectively, which is in good agreement with our experimental 

observations. This result therefore supports our conclusion that the two IR bands at 1726 and 1707 

cm-1 observed by IR spectroscopy correspond to the dinitrosyl species observed by Mössbauer 

spectroscopy, and that this is indeed a diferrous dinitrosyl intermediate. However, it should be 

noted that the intermediate observed by Mössbauer spectroscopy is unable to mediate N2O 

formation (at low temperature), and hence, the two Fe-N-O units are probably not coplanar in this 

structure. Since the available information about this intermediate is limited, I did not attempt 

further calculations on structural isomers of [Fe2((Py2PhO2)MP)(OPr)(NO)2].  

 

Figure 2.16. Proposed catalytic cycle of NO reduction at room temperature by complexes 2/2-OAc in 
CH2Cl2. Here, the R group is a general alkyl chain (R = -CH2CH3 in complex 2 and -CH3 in complex 2-
OAc. 
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donating ligand than [BPMP]�. This trend can be explained with the triplet NO� ligand being 

predominantly a S-donor from its singly-occupied S* orbitals in these types of complexes (which 

are best described as Fe(III)-NO�).23,24 Here, more electron-rich iron centers show reduced charge 

donation from the NO� ligand, leading to an increase in the electron density in the S* orbitals of 

NO�, and correspondingly, a decrease in the N-O stretch. This effect further reduces the covalency 

of the Fe-NO bond, and hence, weakens this bond (and lowers the Fe-NO stretch). The lower N-

O stretching frequencies for the low-temperature [{FeNO}7]2 intermediate observed here 

(compared to the [BPMP]� complex), in combination with our DFT results, are therefore again 

consistent with the formation of a dinitrosyl complex of type “[Fe2((Py2PhO2)MP)(OPr)(NO)2]” 

in our experiments. As shown recently, N-N bond formation constitutes the key energy barrier for 

the reduction of NO to N2O by non-heme diiron sites;18 thus, weakening of the Fe-NO bonds in 

the presence of a strongly donating coligand is in fact advantageous for NO reduction. As the 

result, the highly donating ligand used here is suitable for allowing for the direct reduction of NO 

to N2O, without the need to add any extra reducing equivalents to activate the hs-{FeNO}7 units. 

 

Figure 2.17. DFT-optimized structure (BP86/TZVP) of the proposed diferrous dinitrosyl intermediate 
formed at -80 oC. The spin densities are calculated to be about -3 and +3 for each iron center and about +0.5 
and -0.5 for each NO ligand. The calculated stretching frequencies of the N-O units are Qsym(N-O) = 1723 
cm-1 and Qasym(N-O) = 1678 cm-1. 
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2.6 Conclusions  

In conclusion, the direct reduction of NO to N2O by a diferrous diiron complex was achieved 

here for the first time, using the new model complex [Fe2((Py2PhO2)MP)(OPr)2](OTf). Although 

previous work on [Fe2(BPMP)(OPr)(NO)](X)2 (X = BPh4�, OTf�) has shown that reduction of 

non-heme diiron dinitrosyl complexes induces fast and efficient N-N coupling and N2O 

generation,1,2 our new results demonstrate that this is not a requirement for N2O production. In 

fact, I show here that via tuning of the iron redox potential, the direct pathway for NO reduction 

can be activated. In comparison to our previously reported model complex, 

[Fe2(BPMP)(OPr)2](OTf)2, the redox potentials of [Fe2((Py2PhO2)MP)(OPr)2](OTf) are shifted 

negatively by about 1 V, which was accomplished by the simple substitution of a pyridine ligand 

with a phenolate group at each iron center. This large negative shift in potential makes the FeIII/FeIII 

redox state of the dimer accessible, thus allowing the reaction to go forward by oxidizing the diiron 

core by two electrons. Importantly, I was able to demonstrate the ability of this model complex to 

perform multiple turnovers of (quantitative) NO reduction in the presence of acetic acid, which 

mimics the reactivity of the enzyme. Despite the lack of structural characterization, our results 

further indicate that the product of NO reduction is a bridging diferric oxo product.  

In summary, our results provide direct support for the recent proposal that FNORs mediate 

NO detoxification via direct NO reduction by their diferrous active sites, without the involvement 

of the flavin cofactor in the reaction.4 In the protein, a fine tuning of the redox potential of the 

diiron active site could be accomplished by the electrostatic environment of the diiron core, 

hydrogen bonding, etc., as demonstrated for blue copper proteins.25 Finally, our results show that 

N-N bond formation by 2 proceeds with a very small activation barrier, allowing the reaction to 
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proceed, even at -80 oC. The direct reduction mechanism is therefore a surprisingly facile pathway 

for NO reduction to N2O, if the diiron core has the “right” redox potentials. Further work will now 

focus on identifying the precise nature of the intermediates observed at low temperature, and on 

determining the exact redox potentials needed to activate the direct reduction pathway of NO.  

 

2.7 Experimental Section 

Reactions were generally performed using inert gas (Schlenk) techniques. All solvents were 

dried and freeze pump thawed to remove dioxygen and water. Preparation and handling of air 

sensitive materials was performed under a dinitrogen atmosphere in an MBraun glovebox, 

equipped with a circulating purifier (O2, H2O <0.1 ppm). Nitric oxide (99.95%) was first passed 

through an Ascarite II column and then a -80 oC cold trap to remove higher nitrogen oxide 

impurities prior to use.  

Infrared spectra of solid samples were obtained using PerkinElmer BX and GX and Bruker 

Alpha-E FTIR spectrometers. The IR spectra of solution samples were obtained in thin-layer 

solution cells equipped with CaF2 windows. Gas IR spectra were obtained using a Pike 

Technologies short-path HT gas cell with 100 mm path length, equipped with CaF2 windows, on 

the same instruments.  

UV-Vis/Immersion Probe: Spectra were obtained using an Analytic Jena Specord S600 UV-

Vis spectrometer. Dip probe experiments used the same spectrometer, with a Helma low-

temperature immersion probe.  

1H-NMR spectra were recorded on a Varian Inova 400 MHz instrument and referenced against 

residual solvent signals.  
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Electron paramagnetic resonance spectra were recorded on a Bruker-X-band EMX 

spectrometer equipped with Oxford Instruments liquid nitrogen and liquid helium flow cryostats. 

EPR spectra were typically obtained on frozen solutions using ~20 mW microwave power and 100 

kHz field modulation with the amplitude set to 1 G. Sample concentrations were ~2 mM, and ~ 4 

mM for reaction products. 

Cyclic voltammograms (CVs) were obtained on a CH instruments CHI660C electrochemical 

workstation using a three component system, consisting of a glassy carbon working electrode, a 

platinum auxiliary electrode, and a Ag wire reference electrode. CVs were recorded in 0.1 M 

tetrabutylammonium triflate in CH2Cl2. Potentials were corrected to the Fc/Fc+ standard by 

independently measuring the ferrocene/ferrocenium couple under the same conditions (Fc/Fc+ = 

624 mV vs. SHE). 

Elemental analysis:  Elemental analyses were conducted by Atlantic Microlabs (Norcross, 

GA) 

Structure Determination. Orange rods of [Fe2((Py2PhO2)MP)(OAc)2](CoCp2) (2-OAc) 

were grown from a dichloromethane/hexane solution of the compound at 25 oC.  A crystal of 

dimensions 0.20 x 0.05 x 0.05 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based 

X-ray diffractometer equipped with a low temperature device and a Micromax-007HF Cu-target 

micro-focus rotating anode (λ = 1.54187 Å), operated at 1.2 kW power (40 kV, 30 mA).  The X-

ray intensities were measured at 85(1) K with the detector placed at a distance of 42.00 mm from 

the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω. The 

exposure times were 1 sec. for the low angle images, and 4 sec. for high angle. Rigaku d*trek 

images were exported to CrysAlisPro for processing and corrected for absorption.  The integration 

of the data yielded a total of 83840 reflections to a maximum 2θ value of 139.83° of which 10012 
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were independent and 8304 were greater than 2σ(I).26,27 The final cell constants (Table S1) were 

based on the xyz centroids of 17825 reflections above 10σ(I). Analysis of the data showed 

negligible decay during data collection. The structure was solved and refined with the Bruker 

SHELXTL (version 2016/6)28 software package, using the space group C2/c with Z = 8 for the 

formula C51H53N4O7Cl4Fe2Co + CH2Cl2. All non-hydrogen atoms were refined anisotropically 

with the hydrogen atoms placed in idealized positions.  Full matrix least-squares refinement based 

on F2 converged at R1 = 0.0553 and wR2 = 0.1500 [based on I > 2sigma(I)], R1 = 0.0668 and 

wR2 = 0.1616 for all data.  Two dichloromethane solvate molecules were disordered in two 

orientations but were able to be refined with discrete atomic positions.  The SQUEEZE subroutine 

of the PLATON program suite29,30 was used to address additional disordered solvent present in 

four accessible voids of the lattice.  Further details are presented in Table S1 and are given as 

Supporting Information in a CIF file.   

Mössbauer spectroscopy. The Mössbauer sample of 1 was prepared by metallating the ligand, 

H3[(Py2PhO2)MP, with 57Fe(OTf)3 in the presence of NaOPr (see below). The subsequent 

preparation of samples of 2 and of the reaction products was carried out using 1 as precursor. 

Samples were dissolved in butyronitrile and then slowly frozen at liquid nitrogen temperature in a 

cold well under a dinitrogen atmosphere. 

Mössbauer data were recorded on a spectrometer from WEB Research, equipped with a Janis 

SVT-400 variable-temperature cryostat. All isomer shifts are quoted relative to the centroid of the 

spectrum of α-Fe at room temperature. Simulation of the Mössbauer spectra was conducted with 

the WMOSS spectral analysis package, using the Spin Hamiltonian shown in the following 

equation:  

𝐇 =  β𝐒 ∙ 𝐠 ∙ 𝐁 + D (𝐒𝐳
𝟐 −  

𝑆(𝑆 + 1)
3

) + 𝐸(𝐒𝐱
𝟐 − 𝐒𝐲

𝟐) +
𝑒𝑄𝑉𝑧𝑧

4
[𝐈𝐳

𝟐 −
𝐼(𝐼 + 1)

3
+

𝜂
3

(𝐈𝐱
𝟐 − 𝐈𝐲

𝟐)] 
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+𝐒 ∙ 𝐀 ∙ 𝐈 − gnβn𝐁 ∙ 𝐈 

The first term represents the electronic Zeeman effect, the second and third term represent the axial 

and rhombic zero field splitting (ZFS), the fourth term describes the interaction between the 

nuclear quadrupole moment and the electric field gradient, the fifth term represents the magnetic 

hyperfine interaction of the electronic spin with the 57Fe nucleus, and the last term describes the 

57Fe nuclear Zeeman effect. 

    DFT calculations. Gaussian 09 was used to carry out all of the calculations performed here.31 

The optimization of the broken symmetry structure of the diferrous dinitrosyl intermediate, 

[Fe2((Py2PhO2)MP)(OPr)(NO)2], was performed with the gradient corrected functional BP86, 

which has been shown to give good geometric structures for related {MNO}n species,18 and the 

TZVP basis set. A guess calculation is performed first on the ferromagnetically coupled state of 

the dimer, and used as the initial guess to generate the broken-symmetry wavefunction. Subsequent 

single point calculations during the geometry optimization were carried out to ensure that the two 

iron centers remain antiferromagnetically coupled (and are not spin quenched). A frequency 

calculation was further performed on the optimized structure to determine the N-O stretching 

frequencies.  

2,6-Bis[((2-hydroxybenzyl)(2-pyridylmethyl)amino)methyl]-4-methylphenol 

(H3[(Py2PhO2)MP], H3L). H3L was synthesized according to published procedures.32 1H-NMR 

(400 MHz, Chloroform-d) δ 10.83 (s, 3H), 8.63 (d, 2H), 7.65 (td, 2H), 7.26 – 7.19 (m, 4H), 7.17 – 

7.11 (m, 2H), 7.03 (d, 2H), 6.87 (s, 2H), 6.81 (d, 2H) 6.75 (td, 2H), 3.83 (s, 4H), 3.80 (s, 4H), 3.75 

(s, 4H), 2.21 (s, 3H); see Figure S38. 

[Fe2((Py2PhO2)MP)(OPr)2](OTf)•H2O (1). To a solution of 0.1 g (0.178 mmol) of H3L in 

2 ml of Methanol, a solution of 100 mg (1.03 mmol) sodium propionate (denote as NaOPr) in 1 

ml of MeOH was added. A solution of 155.7 mg (0.356 mmol) Fe(OTf)2•2CH3CN in 1 mL of 



 

59 
 

methanol was then added to the stirring solution. The resulting solution was stirred for 30 minutes 

at 50 oC under ambient conditions and then filtered. The crude solid was washed with 2-propanol 

and diethyl ether until the filtrate is colorless to obtain the product as a dark blue solid; yield: 

0.134g, 77%. Characterization: Elemental anal. calcd. for C42H43Fe2F3N4O10S: C, 51.34; H, 4.62; 

N, 5.70; found (1st attempt) (%):C, 51.07; H, 4.57; N, 5.50 (2nd attempt) (%):C, 51.56; H, 4.68; N, 

5.82. Mass spectroscopy m/z: calcd. for the cationic fragment C41H43Fe2N4O7: 815.18; Found: 

815.19. Mass spectroscopy m/z: calcd. for the 57Fe labeled cationic fragment C41H4357Fe2N4O7: 

817.18; Found: 817.19 UV-Vis (CH2Cl2) (Omax) 630 nm. 

[Fe2((Py2PhO2)MP)(OPr)2](ClO4)•H2O (1/ClO4). A similar procedure was used as in the 

case of 1, but the metalation was performed with Fe(ClO4)2 under ambient conditions. 

Characterization: Elemental anal. calcd. for C42H43Fe2N4O11Cl: C, 52.78; H, 4.86; N, 6.01; found 

(%):C, 53.29; H, 4.85; N, 5.99. 

[Fe2((Py2PhO2)MP)(OAc)2](ClO4)•H2O (1-OAc). This complex was prepared and 

characterized according to a previously reported procedure.6  

Complex 2 and 2-OAc can be obtained through chemical reduction of 1 and 1-OAc, 

respectively, using cobaltocene. Single crystals of 2-OAc suitable for X-ray crystallography were 

grown by diffusion of hexane into a CH2Cl2 solution of the compound. 

IR Gas Headspace Analysis for N2O Detection. N2O quantification was carried out by 

gas headspace analysis using infrared spectroscopy. The general protocol for gas headspace 

analysis is described in the following (taken from ref. 33): to a sealed 25 ml round-bottom flask 

containing ~8.7 mg of [Fe2((Py2PhO2)MP)(OPr)2](OTf) in 2.5 mL of CH2Cl2 were added ~2 

equivalents of CoCp2. After allowing the reduction to proceed, ~2 mL of NO gas were added into 

the headspace of the round-bottom flask. The reaction was allowed to stir for 15 minutes before 
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the headspace was transferred by vacuum to a sealed gas IR cell with CaF2 windows. 

Quantification of N2O was performed via integration of the prominent IR features at 2235 and 

2212 cm-1 of this molecule (N-N stretching vibration) against separately determined N2O 

standards, which were generated from the breakdown of Piloty’s acid in basic solution under 

exactly the same conditions. Using this calibration method, a maximum N2O yield of 105% ± 10% 

was obtained for 1, as shown in Figure S25. The advantage of using Piloty’s acid to construct the 

calibration curve is that this compound is a solid that can be weighted out at high accuracy. Hence, 

exact amounts of N2O can be generated in this way. The disadvantage is that Piloty’s acid has to 

be used in an aqueous environment, which is different from the organic solvents used for the 

reaction of 2 with NO gas. However, the error generated due to the somewhat different solubility 

of N2O in water and organic media (at the concentrations used for the experiments) is well within 

the ± 10% error noted above.  

Additional Control Experiments. As an additional control, NO-saturated CH2Cl2 was 

exposed to cobaltocene under identical conditions to those used for N2O generation from the 

reaction of 2 with NO gas. While cobaltocene is able to reduce NO (NO is reduced around -1 V 

versus Fc/Fc+ in organic solvents), the rate for N2O generation and total percent yield differ greatly 

from those observed for 2.1 In addition, I am adding exactly two equivalents of CoCp2 to the 

solution of 1 to generate 2 (prior to reaction with NO gas), so the amount of free CoCp2 present in 

solution at the time when NO gas is added is minute, if there is any present at all. A direct reduction 

of NO by CoCp2 can therefore be ruled out in our experiments. 
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Chapter 3 

What is the Right Level of Activation of a High-Spin {FeNO}7 Complex to Enable Direct N-

N Coupling? New Mechanistic Insight into Flavodiiron NO Reductases 
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As mentioned in Chapter 1, recent computational studies by Van Stappen et al. using 

density functional theory (DFT) calculations on our model system [Fe2(BPMP)(OPr)(NO)2]2+ have 

shown that this stable [hs-{FeNO}7]2 complex can be activated by one-electron reduction, leading 

to N-N coupling to form a cis-hyponitrite intermediate.1 The calculated activation barrier for N-N 

bond formation in this complex is 13.7 kcal/mol. These results further indicate that it is essential 

to have the right conformation, with the two [FeNO] units in a coplanar (or syn/cis) arrangement, 

for N-N coupling to occur. In [Fe2(BPMP)(OPr)(NO)2]2+, one-electron reduction of one of the hs-

{FeNO}7 centers to the hs-{FeNO}8 state provides the necessary activation to allow for the N-N 

coupling reaction to proceed. The DFT calculations predict that the increased activation of the 

reduced hs-{FeNO}8 unit is reflected by a shift of the N-O stretch below 1700 cm-1; however, this 

prediction could not be confirmed experimentally due to the very short lifetime of this 
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intermediate.2 Nevertheless, based on these results, I speculated that a sufficiently activated [hs-

{FeNO}7]2 complex might be able to mediate direct NO reduction, without the need for additional 

reducing equivalents, and that this level of activation would be indicated by a low N-O stretching 

frequency of d1700 cm-1. This idea is supported by the high degree of stability of all of the reported 

[hs-{FeNO}7]2 model complexes in the literature, which all show Q(N-O) > 1750 cm-1.2-7 However, 

this hypothesis still awaits experimental verification. 

 

Scheme 3.1 Ligands used for this study that mimic half of the H3[(Py2PhO2)MP] ligand used in Chapter 
2. 
 

In Chapter 2, I was able to show that the electron-rich complex [CoCp2] 

[FeII2((Py2PhO2)MP)(OAc)2] can in fact mediate direct NO reduction.8 Here, (Py2PhO2)MP3� is a 

derivative of the initially used ligand BPMP� where two Py (pyridine) donors (one per iron center) 

are replaced by strongly donating phenolate groups (Scheme 3.1, left). This diferrous complex is 

highly reactive with NO and can perform multiple cycles of quantitative direct NO reduction to 
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N2O in the presence of excess protons and reductant. The product after reaction of this complex 

with NO is a ferric P-oxo complex (as shown by Mössbauer spectroscopy), confirming that the 

complex does indeed perform NO reduction and not NO disproportionation. However, because of 

this high reactivity, no NO-bound intermediate could be isolated under ambient reaction 

conditions. Some evidence for NO-bound species was obtained in low-temperature IR studies, 

which indicate hs-{FeNO}7 adducts with low N-O stretching frequencies of 1705-1730 cm-1. 

Computational results further support the idea that hs-{FeNO}7 complexes with N-O stretching 

frequencies d1700 cm-1 are activated for direct N-N coupling.8 Going forward, this presented us 

with the unique challenge to construct a model system with a similar level of activation as the NO-

bound intermediate of [FeII2((Py2PhO2)MP)(OAc)2]�, but where NO reduction was somehow 

stalled, allowing us to isolate and study the electronic properties of the corresponding hs-{FeNO}7 

complex that has the proper level of activation for direct NO reduction.  

In order to tackle this problem, I decided to take advantage of the fact that efficient NO 

reduction to N2O seems to require a diiron complex.9 In  chapter 3, I therefore chose a new ligand 

system that corresponds to half of the H3[(Py2PhO2)MP] ligand, as indicated in Scheme 3.1, right, 

to promote the formation of corresponding, mononuclear complexes. Isolation of a highly 

activated mononuclear hs-{FeNO}7 complex would in turn further support the hypothesis that 

diiron complexes are critical to allow for efficient NO reduction to occur. The resulting ligand 

system, H2[MPA-(PhO)2] (bis(2-hydroxybenzyl)(2-pyridylmethyl)amine), was further decorated 

with sterically bulky groups to promote formation of mononuclear complexes, and to potentially 

provide steric protection for a reactive intermediate, which is a concept that is often employed in 

synthetic inorganic chemistry.10-13 Iron complexes of the resulting ligand system, H2[MPA-

(tBuMePhO)2], were then studied in direct comparison to those of the unfunctionalized version of 
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this ligand, H2[MPA-(PhO)2]. Excitingly, whereas the bulky ligand allowed for the isolation and 

characterization of a highly activated hs-{FeNO}7 complex, the ferrous complex of the 

unfunctionalized ligand undergoes N-N coupling and N2O formation following the direct NO 

reduction mechanism, which is only the second demonstration of this reaction in a model complex. 

These results further demonstrate that I was able, for the first time, to capture the mononuclear 

version of a reactive [hs-{FeNO}7]2 complex that has sufficient activation for direct NO reduction. 

This complex was further studied using a number of spectroscopic methods, including UV-Vis, IR, 

Mössbauer and Nuclear Resonance Vibrational Spectroscopy (NRVS). These results are 

summarized in this chapter.  

 

3.1 Synthesis and Characterization of the Ferrous Complexes with Ligands H2[MPA-(PhO)2] 

and H2[MPA-(tBuMePhO)2] 
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Figure 3.1 UV-Vis absorption spectra of complexes 1, 2, 3 and the product of the reaction of complex 1 
with NO gas (after 24 hours), all collected in CH2Cl2 solution at room temperature. 
 

The ligand H2[MPA-(tBuMePhO)2] (2-pyridylamino-N,N-bis(2-methylene-4-methyl-6-

tert-butylphenol)) is metalated by deprotonating the phenol groups of the ligand using KOMe in 

MeOH, followed by reaction with one equivalent of Fe(OTf)2. MeOH is then removed under 

reduced pressure, and the crude product is re-dissolved in CH2Cl2, filtered, and recrystallized to 

obtain the pure, bright green crystalline product 2. Complex 2 is characterized by a very broad 

absorption band at 522 nm with a small shoulder at 683 nm (see Figure 3.1). As mentioned in the 

Introduction, I had designed the ligand H2[MPA-(tBuMePhO)2] to give mononuclear complexes, 

but, to our surprise, X-ray diffraction of a single-crystalline green prism of 2, grown from slow 

diffusion of hexane into a saturated CH2Cl2 solution of 2 at -33 oC, revealed that 2 has a dimeric 

structure, [{FeII(MPA-(tBuMePhO)2)}2]. As shown in Figure 3.2, in the crystal structure two 

monomers are bridged through the phenolate arms of the coligand, even in the presence of the 

bulky tert-butyl substituents in the secondary coordination sphere (SCS). The Fe-Fe distance in 2 

is unusually short, 2.98 Å, and each iron is penta-coordinated with an adjacent, open coordination 

site. In the dimeric structure of 2 shown in Figure 3.2, the two open coordination sites are in trans 

position to each other. The Fe2O2 diamond core is slightly asymmetric, with Fe-O(Ph) bond 

distances of 2.12 and 2.04 Å, respectively. Complex 2 is EPR silent due to both iron centers being 

high-spin (hs) Fe(II). Mössbauer spectroscopy shows isomer shifts and quadrupole splittings of G 

= 1.07 and 'EQ = 1.68 mm/s for 2, in agreement with the hs-Fe(II) oxidation state.   
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Figure 3.2 Crystal structure of complex 2 with ellipsoids drawn at 50% probability. Solvent molecules and 
hydrogen atoms are omitted for clarity. 
 

The ferrous complex 1 was synthesized by metalation of H2[MPA-(PhO)2] with Fe(OTf)2, 

using a similar protocol as described above for complex 2, and obtained as a light orange 

crystalline product. Unlike complex 2, complex 1 is unstable in the inert atmosphere of a glovebox 

and oxidizes even at very low concentrations of O2. Based on the structure of 2 shown in Figure 

3.2, I assumed that 1 also has a dimeric structure in solution, [{Fe(MPA-(PhO)2)}2], but further 

oligomerization is possible, as observed for similar types of ligands in previous studies.14-17 Efforts 

to characterize complex 1 with X-ray diffraction proved to be difficult due to its high sensitivity 

towards residual O2, and its predisposition to form very fine needles that do not sufficiently 

diffract. I was ultimately able to obtain a crystal structure that shows that the complex can form 

larger oligomeric structures, using again the phenolate groups as bridges. In the successful 

crystallization attempt, part of the material had decomposed over the course of the crystallization 

(several days), providing additional iron centers that bridge individual {Fe(MPA-(PhO)2)} units. 

This leads to the formation of giant rings with the formula [Fe{Fe(MPA-(PhO)2)}(HCOO)2]8, as 
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shown in Figure 3.3, that contain a total of sixteen Fe(II) centers. Here, the iron centers in the 

{Fe(MPA-(PhO)2)} units are six-coordinate, with all of the coordination sites occupied by the 

ligand and additional formate ions that formed due to contamination during the workup process, 

and that bridge between the iron centers. These iron centers show an octahedral “N2O4” 

coordination environment. Additional iron centers, coordinated only by phenolate and formate 

groups with an octahedral “O6” ligation, bridge between the {Fe(MPA-(PhO)2)} units. The rings 

have a diameter of about 12 Å and, as evident from the side view in Figure 3.3, are bent. The iron 

centers are about 3.15 - 3.2 Å apart from each other in the structure. Interestingly, in the crystal 

lattice, the rings are stacked on top of each other, forming large channels that run through the 

crystal. 

In contrast to this structure that contains two distinct types of iron(II) centers, 

characterization of freshly prepared complex 1 by Mössbauer spectroscopy, either in solution or 

as a precipitate, revealed the presence of only one type of iron species with an isomer shift and 

quadrupole splitting of G = 1.15 mm/s and 'EQ = 2.89 mm/s, respectively. These parameters are 

indicative of hs-Fe(II) centers, and show that freshly prepared 1 does not contain the large ferrous 

wheels of [Fe{Fe(MPA-(PhO)2)}(HCOO)2]8 type, which contain two different types of Fe(II) 

centers. Instead, I propose that freshly prepared 1 has a dimeric structure, [{FeII(MPA-(PhO)2)}2], 

similar to 2 (see Figure 3.2). Interestingly, whereas the Mössbauer isomer shifts are very similar 

for 1 and 2, their quadrupole splittings are notably different, indicating that in 1, the iron centers 

are likely six-coordinate in solution. The absorption spectrum of 1 in CH2Cl2 exhibits a weak band 

at 460 nm, as shown in Figure 3.1. Complex 1 is EPR silent due to the presence of hs-Fe(II) centers.  
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Figure 3.3 Crystal structure obtained for complex 1 from CH3CN/ether solution over several days. Here, 
partial decomposition of the compound in solution provided extra iron centers which bridge {Fe(MPA-
(PhO)2)} units, giving rise to the large ring structure. Ellipsoids are drawn at 50% probability. Solvent 
molecules and hydrogen atoms are omitted for clarity. 
 
3.2 Reactivity of Complex 2 with NO Gas 

Exposure of the dimeric complex 2 to NO gas led to an immediate color change of the 

solution from green to very dark brown. The solution was then charged with hexane, and a clean, 

dark brown single-crystalline product was obtained after further recrystallization at -33 oC. X-ray 

diffraction of the brown block-shaped crystals revealed the formation of the unique, pseudo 

trigonal-bipyramidal mononitrosyl complex [Fe(MPA-(tBuMe-PhO)2)(NO)] (3), as shown in 

Figure 3.4. Hence, although the ferrous precursor complex 2 is dimeric, the steric bulk provided 

by the tBuMe-PhO� arms forces the NO complex to become monomeric, which stabilizes the 

complex against further reactions (see Section III.3). Complex 3 is very sensitive and readily loses 

Top View 

Side View 
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NO under vacuum; however, this complex is stable in the solid state at room temperature under an 

inert atmosphere. Interestingly, 3 shows Fe-NO and N-O bond distances of 1.79 Å and 1.15 Å, 

respectively, which is in line with other hs-{FeNO}7 complexes previously characterized that 

contain phenolate ligands. For example, the complex [Fe(BMPA-tBu2PhO)(OTf)(NO)] (4) shows 

Fe-NO and N-O bond distances of 1.78 Å and 1.10 Å, respectively. It is important to note that 

H2[MPA-(tBuMePhO)2] is a more donating ligand than H[BMPA-tBu2PhO], which should reduce 

the S-donation from the 3NO� ligand to the Fe(III) center in 3 (note that hs-{FeNO}7 complexes 

have hs-Fe(III)-3NO� type electronic structures where the 3NO� ligand serves as a strong S-donor 

to the hs-Fe(III) center).14,18 Accordingly, the Fe-NO and N-O bond distances in 3 are larger than 

those of 4, indicative of a weaker Fe-NO bond in 3. The Fe-N-O bond angle of 3 is 149o, which is 

surprising, since the Fe-N-O bond of complexes with steric bulk in the SCS is usually closer to 

linear.19 On the other hand, the small Fe-N-O angle is again in agreement with the large degree of 

NO reduction in 3.20 Interestingly, the NO moiety is bent towards the bulky tert-butyl group in the 

SCS, and not towards the pyridine ring, which I attribute to crystal packing effects in the solid 

state. The Fe-O(Ph) bond distances are 1.90 and 1.92 Å, respectively, and the Fe-N(Py) bond 

length is 2.14 Å.  
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Figure 3.4. Crystal structure of complex 3 with ellipsoids drawn at 50% probability. The solvent molecules 
and hydrogen atoms are omitted for clarity. 
 
 Complex 3 is characterized by an absorption band at 452 nm in the UV-Vis spectrum 

(Figure 3.1) and shows an EPR spectrum with major signals at geff = 4, 2, typical for an axial hs-

{FeNO}7 complex (see Figure 3.5, top). The EPR signals arise from antiferromagnetic coupling 

between the hs-Fe(III) center (S = 5/2) and the 3NO� ligand (S = 1), resulting in a complex with a 

total spin St = 3/2. What is unusual about the EPR spectrum of 3 is the large amount of hyperfine 

coupling that is visible on top of the geff = 4 signal. DFT calculations show that this is due to partial 

oxidation of the phenolate rings (S orbitals) in the complex, leading to the transfer of a distinct 

amount of radical character onto the phenolates. Figure 3.5, bottom shows a spin density plot of 3, 

obtained with B3LYP/TZVP, which indicates calculated spin densities on the phenolate carbons. 

The observed hyperfine couplings in Figure 3.5, top therefore originate from the nuclear spins of 

the 13C and 1H atoms of the phenolate groups. In total, a spin density of about +0.19 is transferred 

to the phenolate rings (not counting the O atoms). In this sense, complex 3 could be considered a 

“non-classical” hs-{FeNO}7 complex with multiple, redox-active ligands, although only partial 

oxidation of the phenolates is observed here.     
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Figure 3.5 X-band EPR spectrum of complex 3 in CH2Cl2 at 2 mM concentration, showing signals at geff 
= 4, 2, typical for an S = 3/2 hs-{FeNO}7 complex, with additional hyperfine features. The EPR spectrum 
was collected at 4 K using ~20 mW microwave power and 100 kHz field modulation with the amplitude 
set to 1 G. b) Spin density plot (B3LYP/TZVP) with important spin density values indicated. Note that the 
total spin density of the phenolate rings is +0.19 (not counting the O atoms). 
 

Mössbauer spectra exhibit an isomer shift of 0.56 mm/s and a quadrupole splitting of 'EQ 

= 0.92 mm/s for 3. Importantly, solid state IR spectroscopy of 3 shows the N-O stretch of this 

a) 

b) 
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complex at 1689 cm-1, which shifts to 1654 cm-1 in the 15NO analog (Figure 3.6). This is the lowest 

N-O stretching frequency reported so far for a mononuclear hs-{FeNO}7 complex, which supports 

the idea that 3 contains a highly activated (reduced) NO ligand. In comparison, the N-O stretching 

frequency in 4 is located at 1742 cm-1, in agreement with this conclusion. This result is also in 

agreement with the DFT-calculated N-O stretch for 3, predicted at 1699 cm-1 with BP86/TZVP 

(this method has been shown to give particularly accurate N-O stretching frequencies in previous 

studies on hs-{FeNO}7 complexes1). The DFT calculations also reproduce the structural features 

of the [FeNO] unit well, with predicted Fe-NO and N-O bond distances of 1.74 and 1.18 Å (exp: 

1.79 and 1.15 Å), respectively. 

 

Figure 3.6 Solid state IR spectrum of complex 3, taken in a KBr disk, which shows the N-O stretching 
frequency at 1689 cm-1. This vibration shifts to 1659 cm-1 in the 15NO-labeled form of complex 3. 
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To further address the unique vibrational properties of 3, NRVS was used to measure the 

Fe-NO stretch of this complex, which is observed at 467 cm-1 (Figure 3.7). This band shifts to 460 

cm-1 upon 15NO labeling, confirming the assignment of this feature to the Fe-NO stretch. As 

mentioned above, previous work has shown that the 3NO� ligand acts predominantly as a strong 

S-donor in hs-{FeNO}7 complexes, which is reflected by a direct correlation of the Fe-NO and N-

O bond strengths, and hence, vibrational frequencies.14 This is due to the fact that a reduction in 

S-donicity weakens the Fe-NO bond and lowers the Fe-NO stretch, and, at the same time, due to 

the increased electron density in the S* orbitals of the 3NO� ligand, weakens the N-O bond and 

lowers the N-O stretch as well. Hence, this direct correlation is a hallmark of complexes with a 

bound, 3NO� ligand. I have previously established this correlation with hs-{FeNO}7 complexes 

that feature N-O stretching frequencies in the 1720 - 1820 cm-1 range.14 Complex 3 fits this analysis 

well and extends our correlation further into the <1700 cm-1 range for the N-O stretch. This is 

illustrated in Figure 3.8, where complex 3 is now added to the correlation line initially reported by 

Berto et al. in 2011.14 Complex 3 lies on the lower end of the correlation line, due to being the 

most activated mononuclear hs-{FeNO}7 complex reported to this date. The weak Fe-NO and N-

O bonds in 3 mean that this complex has an unprecedented, large amount of unpaired electron 

density in its S* orbitals, which is suitable for N-N coupling and N2O formation. In addition, the 

weak Fe-NO bond in this complex lowers the activation barrier for N-N bond formation.1 

However, the complex lacks the ability to induce N-N bond formation and N2O generation due to 

its strictly monomeric form. In contrast, the reaction of complex 1 with NO leads to almost 

quantitative N2O formation (see next). 
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Figure 3.7 NRVS data of complex 3 (black) in comparison to the data of the 15NO-labeled analog (red), 
showing the Fe-NO stretch at 467 cm-1. Note that the difference in intensity of the Fe-NO stretch is due to 
only partial nitrosylation in the 15NO-labeled complex, due to a lower concentration of the isotopically 
labeled gas. 
 

 

Figure 3.8 Fe-NO vs N-O stretching frequency correlation plot, generated from available data in the 
literature. Here, complex 3 extends the correlation to lower frequencies and in this way, helps refine the 
correlation line (previous fit: black dashed line; revised fit: red line), due to its lowest Fe-NO and N-O 
vibrational frequencies in the series so far.  
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3.3 Reactivity of Complex 1 with NO Gas: NO Reduction to N2O 

As discussed above, I propose that complex 3 represents a hs-{FeNO}7 complex that has 

the right level of activation for direct NO reduction, but that is stabilized by the fact that it is forced 

to be monomeric, due to steric bulk. In order to obtain further support for this hypothesis, I then 

studied the reaction of complex 1 with NO, where such steric restrictions do not apply. Upon 

charging a round bottom flask containing a CH2Cl2 solution of freshly prepared complex 1 with 

excess NO gas, the solution immediately turned dark brown. The reaction was further monitored 

using UV-vis and IR spectroscopy. Analysis of the absorption spectra indicates that the reaction 

goes through two stages. Upon addition of NO, there is an immediate change in the signal at 460 

nm, concomitant with the appearance of a new band at 451 nm (Figure 3.9a). IR spectra taken <5 

min after NO addition show the formation of several different NO complexes with different 

degrees of activation with the major signal observed at 1734 cm-1. The rapid formation of multiple 

NO complexes is then followed by a slower, second phase of the reaction. Here, the absorption 

signals slowly change over the course of 24 hours, showing a clean isobestic point at 484 nm, with 

the final product exhibiting a characteristic absorption band at 500 nm (Figure 3.9c). Solution IR 

data in Figure 3.10 show that this is concomitant with the disappearance of the N-O stretching 

signals in the IR spectrum, and the appearance of the N-N stretch of N2O. After 24 hours, the total 

N2O yield is 81%, indicating almost quantitative NO reduction by 1. Solution IR data in Figure 

3.10 show that after 24 h, there is still a noticeable amount of NO complex left in solution, with 

N-O stretching bands at 1750 and 1712 cm-1, which likely accounts for the missing ~20% of iron-

NO complexes that have not formed N2O (yet). Considering the stability and slow decay observed 

for the NO complexes with N-O stretching frequencies >1710 cm-1 in the IR data, these are likely 

not the species responsible for N2O formation. 
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These results further demonstrate the ability of the sterically unhindered complex 1 to 

mediate direct NO reduction, supporting the claim that both complexes 1 and 2 have suitable 

electronic properties to support this reaction, and that it is simply the inability of 3 to form dimeric 

(or oligomeric) structures that stabilizes this reactive species. In addition, complex 1 represents 

only the second example of direct NO reduction by a synthetic model complex. 

 

 

 

Figure 3.9 UV-Vis spectra monitoring the reaction of complex 1 with NO gas in DMF at 0.2 mM 
concentration at room temperature. The data were taken in the 24 hour time frame of the reaction a) was 
taken within the first 15 minutes of the reaction. b) was taken every five minutes after that for an hour. c) 
was taken every 15 minutes until the reaction is complete at around 25 hours mark (final spectrum in red). 
 

a) b) 

c) 
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Figure 3.10 Solution IR spectra of the reaction of complex 1 with NO gas in CH2Cl2 at 10 mM 
concentration, showing the formation of multiple NO complexes right after the addition of NO gas (black 
line, taken immediately upon adding NO gas) and their disappearance over time (gray lines), concomitant 
with formation of N2O as indicated. The final spectrum in blue was taken after 24 hours. 
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Figure 3.11 Mössbauer spectra following the reaction of 1 with NO gas at room temperature, at the 
indicated reaction times. SM = starting material (freshly prepared complex 1). N2O yields at the given time 
points are indicated as red numbers on the right. 
 

In order to obtain further insight into the mechanism of NO reduction by 1, the reaction of 

this complex with NO gas at room temperature was then followed using EPR and Mössbauer 

spectroscopy. Figure 3.11 shows Mössbauer spectra that provide further insight into the evolution 

of iron species in solution during the reaction of 1 with NO, with N2O yields at these time intervals 

N2O yield = 0 % 

38 % 

49 % 

51 % 

81 % 

80 % 



 

82 
 

indicated as well (in red). As evident from the 15 minutes time point, reaction of NO with 1 is fast, 

leading to the consumption of the diferrous starting material and the generation of a mixture of 

iron-NO complexes in solution, as indicated by the solution IR data. Due to the ability of ligand 

H2[MPA-(PhO)2] to form oligomers, it is not clear what the different species are that form in 

solution. Gas head space analysis show that the N2O yield at this time is 38%. EPR spectra taken 

at this time point show signals around geff = 4 and 2. Taken together, the spectroscopic data indicate 

the formation of mononitrosyl complexes (St = 3/2), diiron mononitrosyls (hs-Fe(II)/hs-{FeNO}7, 

St = 1/2), diiron dinitrosyls ([hs-{FeNO}7]2, St = 0), and probably larger oligomers, as indicated in 

Scheme 3.2. Here, the geff = 4 signal would correspond to the mononitrosyl complex, whereas the 

g = 2 signal could be assigned to a hs-Fe(II)/hs-{FeNO}7 dimer where the spins of the iron centers 

are antiferromagnetically coupled. Precedence of such species has been reported in the literature 

by Jana et al.3,4 All of these species are likely in an equilibrium; however, only a [hs-{FeNO}7]2 

complex with the NO ligands in cis position (or a corresponding unit in a larger oligomer) is able 

to go on and form N2O. I propose that the cis-[FeNO]2 dimer that is activated for N-N coupling 

only forms in low concentration, which would explain why N2O formation only proceeds slowly 

in the reaction of 1 with NO gas.  

After around 8 hours, no more changes are observed in the Mössbauer data, whereas the 

UV-Vis spectra still show subtle changes for up to 24 hours. During this time, additional N2O is 

produced; however, the yield increases by only about ~1% (within error) between 8 and 24 hours. 

The yield at this time point is 80%, indicating that the reaction is not quantitative, and accordingly, 

the solution IR data show that there are remaining NO complexes in solution, which are trapped 

in unfavorable conformations preventing them from forming more N2O (see above).  
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Scheme 3.2 Proposed reaction pathway and species presents in solution based on spectroscopic analysis. 
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3.4 Conclusions 

In conclusion, I have demonstrated the stabilization of the most activated mononuclear hs-

{FeNO}7 complexes using steric protection. I have shown that an analog of this complex without 

the steric protection is prone to N2O formation via the direct reduction pathway. It is striking that 

whereas complex 1 directly reacts with NO to generate N2O, the same is not true for complex 2. I 

rationalize this difference with the need for a dimeric structure for a model system to mediate 

efficient NO reduction. I propose that in the case of 1, due to the absence of steric bulk, the complex 

forms a diiron dinitrosyl intermediate, [{FeII(MPA-(PhO)2)(NO)}2], which rapidly proceeds to 

form N2O, similar to our previous model complex, [FeII2((Py2PhO2)MP)(OAc)2]�. In contrast, due 

to the sterically bulky phenolate groups, initial nitrosylation of 2 breaks up the dimeric structure, 

leading to the formation of the stable mononitrosyl complex 3. Complex 3 is the most activated 

hs-{FeNO}7 complex in the literature to this date. The stabilization of this complex is achieved via 

classical inorganic design to incorporate steric protection in the secondary coordination sphere. 

Complex 1 can react with NO over the court of 24 hours to yield 81% of N2O and a mixture of 

diferric products and potentially some unreacted mononitrosyl complexes. This result is very 

similar to what achieved in the enzymatic study carried out by Caranto et al where they observed 

ferric species and unreacted mononitrosyl complexes at the end of the reaction.21 This result show 

that direct reduction can be achieved via a strongly activated hs-{FeNO}7 intermediate, however, 

these intermediate need to be able to dimerize for N-N bond formation to happen. This study 

confirms the theoretical suggestion that the direct reduction of NO to N2O can happen with 

extremely activated hs-{FeNO}7 intermediate with the N-O stretching frequency < 1700 cm-1. 

Even though the reaction of complex 1 is slow to reach completion, the initial formation of about 

40% N2O happens quite fast. I was unable to isolate any hyponitrite intermediate which is an 
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important intermediate on pathway towards formation of N2O. Further ligand modification and 

redox tuning is currently underway to slow down the reaction enough to hopefully observe and 

trap this elusive intermediate. 

 

3.5 Experimental Section 

 Reactions were generally performed using inert gas (Schlenk) techniques. All solvents 

were dried and freeze pump thawed to remove dioxygen and water. Preparation and handling of 

air sensitive materials was performed under a dinitrogen atmosphere in an MBraun glovebox, 

equipped with a circulating purifier (O2, H2O <0.1 ppm). Nitric oxide (99.95%) was first passed 

through an Ascarite II column and then a -80 oC cold trap to remove higher nitrogen oxide 

impurities prior to use.  

 Bis(2-hydroxybenzyl)(2-pyridylmethyl)amine (H2[MPA-(PhO)2]) was synthesized 

according to published procedures.22 2-pyridylamino-N,N-bis(2-methylene-4-methyl-6-tert-

butylphenol) (H2[MPA-(tBuMePhO)2]) was prepared according to published procedures.23 The 

quality of these ligands was established by 1H-NMR spectroscopy (400 MHz, Chloroform-d) 

 [{Fe(MPA-(PhO)2)}2] (1): Under an inert atmosphere, the ligand H2[MPA-(PhO)2] (100 

mg, 0.31 mmol) and KOMe (43.8 mg, 0.62 mmol) are dissolved in a minimal amount of MeOH 

(about 5 ml) and stirred for 30 minutes. 136 mg (0.31 mmol) of Fe(OTf)2.2CH3CN is then added 

into the reaction and the solution immediately turns orange. The reaction is stirred for overnight at 

room temperature, and MeOH is then removed under reduce pressure. The crude product mixture 

is re-dissolved in CH2Cl2, and a solid impurity is removed via filtration. The CH2Cl2 is then 

removed under reduce pressure. The crude product is dissolved in CH3CN, and diethyl ether is 

added for precipitation. The solution is allowed to recrystallize at -33 oC overnight. The solution 
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is then filtered under an inert atmosphere to yield light an orange product, complex 1. Yield: 109 

mg (92%). 

 [{Fe(MPA-(tBuMePhO)2)}2] (2): Under an inert atmosphere, in a 20 ml vial, the ligand 

H2[MPA-(tBuMePhO)2] (200 mg, 0.435 mmol) and KOMe (61 mg, 0.87 mmol) are dissolved in a 

minimal amount of MeOH (about 5 ml) and stirred for 30 minutes. 190 mg (0.435 mmol) of 

Fe(OTf)2.2CH3CN is then added into the reaction and the solution immediately turns green. The 

reaction is stirred overnight at room temperature, and MeOH is then removed under reduce 

pressure. The crude product mixture is re-dissolved in CH2Cl2, and a solid impurity is removed via 

filtration. The filtrate is then layered with hexane, and recrystallization is carried out at -33 oC 

overnight. Filtration yields a bright green crystalline product that is suitable for X-ray 

crystallography. Yield: 101 mg (45%). Elemental anal. calcd. for C60H76Fe2N4O4 single crystals 

co-packed with CH2Cl2 (6:8 ratio): C, 63.03; H, 6.65; N, 4.90; found (%):C, 63.32; H, 6.90; N, 

4.75.  

 [Fe(MPA-(tBuMePhO)2)(NO)] (3): Under an inert atmosphere, in a 3-neck round bottom 

flask charged with a stir bar, 100 mg (0.097 mmol) of complex 2 is dissolve in a minimal amount 

of CH2Cl2 until the solution is homogeneous. Excess amount of dried and purified NO gas is then 

added into the gas headspace, and the solution immediately turns very dark brown. The reaction is 

stirred for 1 hour. The NO gas is then purged from the head space of the flask before hexane is 

added into the reaction mixture (from the top, with the septum removed to prevent build up of 

pressure), and the solution is allowed to recrystallize at -33 oC overnight. The solution is then 

filtered under an inert atmosphere to yield very dark brown crystals of complex 3 that are suitable 

for X-ray crystallography. Yield: 30% Elemental anal. calcd. for C30H38FeN3O3: C, 66.18; H, 7.03; 

N, 7.72; found (%):C, 66.36; H, 7.27; N, 7.43. IR: Q(N�O) = 1689 cm-1. 



 

87 
 

 Structure Determination. Green prisms of [{Fe(MPA-(tBuMePhO)2)}2] were grown 

from a dichloromethane/hexanes solution of the compound at -33 oC.  A crystal of dimensions 0.10 

x 0.10 x 0.06 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and a Micromax-007HF Cu-target micro-

focus rotating anode (λ = 1.54187 Å) operated at 1.2 kW power (40 kV, 30 mA). The X-ray 

intensities were measured at 85(1) K with the detector placed at a distance of 42.00 mm from the 

crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω. The exposure 

times were 1 sec. for the low angle images, 5 sec. for high angle. Rigaku d*trek images were 

exported to CrysAlisPro for processing and corrected for absorption. The integration of the data 

yielded a total of 43,386 reflections to a maximum 2θ value of 138.64° of which 5421 were 

independent and 5012 were greater than 2σ(I). The final cell constants were based on the xyz 

centroids of 17,458 reflections above 10σ(I). Analysis of the data showed negligible decay during 

data collection. The structure was solved and refined with the Bruker SHELXTL (version 2018/3) 

software package, using the space group C2/c with Z = 4 for the formula C62H80N4O4Cl4Fe2. All 

non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized 

positions. The complex lies on a two-fold rotation axis. Full matrix least-squares refinement based 

on F2 converged at R1 = 0.0431 and wR2 = 0.1176 [based on I > 2sigma(I)], R1 = 0.0467 and 

wR2 = 0.1214 for all data.  

 Brown blocks of [Fe(MPA-(tBuMePhO)2)(NO)] were grown from a 

dichloromethane/hexanes solution of the compound at -33 oC. A crystal of dimensions 0.22 x 0.16 

x 0.14 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer 

equipped with a low temperature device and a Micromax-007HF Cu-target micro-focus rotating 

anode (λ = 1.54187 Å) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were 
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measured at 85(1) K with the detector placed at a distance of 42.00 mm from the crystal. A total 

of 2028 images were collected with an oscillation width of 1.0° in ω. The exposure times were 1 

sec. for the low angle images, 3 sec. for high angle. Rigaku d*trek images were exported to 

CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total 

of 19,767 reflections to a maximum 2θ value of 138.57° of which 4905 were independent and 4847 

were greater than 2σ(I). The final cell constants were based on the xyz centroids of 17,758 

reflections above 10σ(I).  Analysis of the data showed negligible decay during data collection. The 

structure was solved and refined with the Bruker SHELXTL (version 2018/3) software package, 

using the space group P1bar with Z = 2 for the formula C30H38N3O3Fe. All non-hydrogen atoms 

were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix 

least-squares refinement based on F2 converged at R1 = 0.0408 and wR2 = 0.1139 [based on I > 

2sigma(I)], R1 = 0.0412 and wR2 = 0.1143 for all data.  

 Pale yellow needles of [Fe{Fe(MPA-(PhO)2)}(HCOO)2]8 were grown by diffusion of 

diethyl ether into an acetonitrile solution of the compound at 20 oC.  A crystal of dimensions 0.05 

x 0.02 x 0.02 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and a Micromax-007HF Cu-target micro-

focus rotating anode (λ = 1.54187 Å) operated at 1.2 kW power (40 kV, 30 mA). The X-ray 

intensities were measured at 85(1) K with the detector placed at a distance of 42.00 mm from the 

crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω. The exposure 

times were 10 sec. for the low angle images, 80 sec. for high angle. Rigaku d*trek images were 

exported to CrysAlisPro for processing and corrected for absorption. The integration of the data 

yielded a total of 79,913 reflections to a maximum 2θ value of 141.07° of which 19,891 were 

independent and 10,946 were greater than 2σ(I). The final cell constants were based on the xyz 
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centroids of 12,043 reflections above 10σ(I). Analysis of the data showed negligible decay during 

data collection.  The structure was solved and refined with the Bruker SHELXTL (version 2018/3) 

software package, using the space group I-4 with Z = 4 for the formula C176H160N16O48Fe16 [+ 

solvent].  All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in 

idealized positions. The structure has two independent Fe16 clusters each on a -4 symmetry site of 

the lattice.  Full matrix least-squares refinement based on F2 converged at R1 = 0.0804 and wR2 

= 0.2107 [based on I > 2sigma(I)], R1 = 0.1351 and wR2 = 0.2700 for all data. The SQUEEZE 

subroutine of the PLATON program suite was used to address the disordered solvent contained in 

solvent accessible voids present in the structure.  
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Chapter 4 

The Effects of Secondary Coordination Sphere Interactions on NO Reduction in FNORs 

Investigated Using Model Complexes 

 

Acknowledgement: I would like to thank my undegraduate student Yu Zong for her assistance in 
the optimization of the ligand synthesis procedure and the crystal structure of the complex 3. I 
would like to thank my undergraduate student Abigail Bracken for her assistance in obtaining the 
crystal structures of the precursor complexes 1 and 2.  

 

In Chapter 4, I explore the reactivity of model complexes of FNORs, featuring second 

coordination sphere (SCS) interactions, with NO gas. SCS hydrogen bonding effects have been 

shown computationally to play crucial roles in stabilizing the hyponitrite intermediate. Moreover, 

mutagenesis studies using Mt FDP revealed a ~7-fold and ~34-fold reduction in NOR reactivity 

when the tyrosine and histidine residues (Y195 and H25l, respectively) in the active site were 

substituted for non-hydrogen bonding residues.1 Recent mutagenesis study with T. maritima FDP 

on the variant Y197F showed that this variant follows the same reaction path as the wild-type 

enzyme, up to and including the formation of the [hs-{FeNO}7]2 intermediate. However, no N2O 

formation was observed. Instead, the [hs-{FeNO}7]2 intermediate forms an inactive mononitrosyl 

species.2 The residue Y197 is proposed to assist in the rearrangement of the hyponitrite ligand by 

reducing the energetic barrier required for the Fe-N bonds scission. To study the effects of the SCS 

residues in FNORs, I designed a system that can mimic the interactions of the Y197 residue in the
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active site. Here, I chose to modify the classic BPMP- ligand scaffold mentioned in Chapter 2 

since it can stabilize the [hs-{FeNO}7]2 intermediate.3 

 

4.1 Synthesis and Characterization of [Fe2(BPMP-NHCOC(CH3)3)(OAc)](OTf)2 (2) and 

[Fe2(MeOH)2(BPMP-NHCOC(CH3)3)](OTf)3 (3) 

 

Scheme 4.1 Synthetic routes for the chosen ligand scaffolds.4 
 

The ligand H[BPMP-NHCOC(CH3)3] was synthesized based on reported procedures with 

a modified work up detailed in the experimental section.4 Complex [Fe2(BPMP-

NHCOC(CH3)3)(OAc)2](PF6) (1) were synthesized and reported in the literature.5 This complex 

is structurally characterized by X-ray crystallography (Figure 4.1) and the reported result shows 

that the Fe���Fe distance is 3.45 Å. Importantly, complex 1 features hydrogen bonds between the 

SCS amides and the oxygen of the bridging acetate ligands. The hydrogen bond distances are 2.22 
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and 2.21 Å, respectively. Based on this crystal structure, I reasoned that nitrosylation to bind two 

NO molecules in place of one of the acetate bridging ligands would result in formation of a 

hydrogen bond to one of the newly bound NO, thus mimicing the active site of FNORs.  

            

Figure 4.1 Left: Crystal structure of complex 1 with ellipsoids drawn at 50% probability. The triflate 
counter anion, solvent molecules, and hydrogen atoms are omitted for clarity. The crystal structure shows 
that hydrogen bonds are formed between the bridging acetate ligands and the protons of the amide 
functional groups. The crystal structure is taken from ref. 5. Right: ChemDraw structure of complex 1. 
 

The ligand BPMP-NHCOC(CH3)3 was first deprotonated by one equivalent of KOMe and 

then metallated with two equivalents of Fe(OTf)2●2CH3CN (Scheme 4.2). One equivalent of 

NaOAc was subsequently added at the end of the reaction. The resulting mixture was worked up 

by first removing methanol under reduced pressure to yield a crude solid. The crude solid was 

redissolved in CH2Cl2 and filtered to remove salt byproducts. CH2Cl2 was then removed under 

reduced pressure. The solid was redissolved in THF and recrystallized via slow diffusion of 

diethylether at -33oC to yield a crystalline product. X-ray crystallography characterization of the 

crystals revealed the dimeric complex, [Fe2(BPMP-NHCOC(CH3)3)(OAc)](OTf)2 (2), which 

features a single bridging acetate. Interestingly, the pseudo-octahedral geometry of the iron centers 

is completed with the coordination of the oxygen atoms of the amide groups. The Fe���Fe distance 
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is 3.64 Å which is elongated compare to complex 1 (3.45 Å). This observation highlights the role 

of the bridging acetate(s) in bringing the irons together and fix them at a closer distance. The Fe-

O(Ac) bond lengths are 2.10 and 2.09 Å, respectively (Table 4.1). Interestingly, the acetate 

bridging ligand is extremely twisted to accommodate the coordination of the amides (Figure 4.2). 

The Fe-O(Amide) bond lengths are 2.15 and 2.09 Å, respectively, showing that they are strongly 

coordinated to the iron centers. This result shows that there is no open coordination site for NO 

ligation. This is a problem which can lead to destabilization of the [hs-{FeNO}7]2 intermediate. 

Further characterization of complex 2 with UV-Vis spectroscopy showed a broad band at 391 nm. 

IR spectroscopy revealed a signal at 1699 cm-1, which is indicative of the bridging acetate ligand. 

This same signal is observed in the reported complex 1.5  

 
Scheme 4.2 Metallation scheme for ligands used in this chapter (the ChemDraw shows complex 2 as an 
example). The only difference is the equivalent of NaOAc used to form the bridging ligand. 
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Figure 4.2 Left: Crystal structure of complex 2 with ellipsoids drawn at 50% probability. The triflate 
counter anion, solvent molecules, and hydrogen atoms are omitted for clarity. Right: Chemdraw of complex 
2. 
 

To complete the series, I decided to remove the acetate bridging ligand completely to 

evaluate the Fe���Fe distances and their effects on reactivity of these complexes with NO gas. 

Complex [Fe2(BPMP-NHCOC(CH3)3)(MeOH)2](OTf)3 (3) (Figure 4.3) was synthesized 

according to the procedure described above for 2, without the addition of NaOAc. X-ray 

crystallography of crystals, grown from slow diffusion of diethyl ether into a saturated solution of 

3 in methanol, revealed a dimeric structure with an Fe���Fe distance of 3.80 Å (Figure 4.3, Table 

4.1). The open coordination sites are occupied by MeOH solvent molecules, which complete the 

pseudo-octahedral geometry of the iron centers. Since solvent molecules often bind weakly to 

irons, it is likely this complex can be fully nitrosylated when react with NO gas. Complex 3 showed 

a UV-Vis signal at 386 nm. The solid-state IR spectrum of this complex in a KBr pellet revealed 

the lack of the C=O stretch of the acetate bridging ligand, observed at 1699 cm-1 in 2.  

          

Figure 4.3 Left: Crystal structure of complex 3 with ellipsoids drawn at 50% probability. The triflate 
counter anion, solvent molecules, and hydrogen atoms are omitted for clarity. Right: ChemDraw of complex 
3 showing the coordination environment of the complex.  
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Fe-O 
(Bridging)* 

2.04 2.06 2.06 2.08 2.06 

Fe-Oac* 2.03 (OPr) 2.10 2.10 N/A 2.07 

Fe-O (Amide)* N/A N/A 2.12 2.08 2.06 

Fe-N (tertiary)* 2.21 2.23 2.24 2.22 2.20 

Fe-N (Pyr)* 2.16 2.25 2.18 2.20 2.19 

Fe-NO 1.79 N/A N/A N/A 1.82 

N-O 1.17 N/A N/A N/A 1.16 

O���H (H-bond) N/A 2.21 N/A N/A 2.10 

* = average value 
Table 4.1 Comparison of structural parameters of different complexes mentioned in this chapter 

 

4.2 Nitrosylation of Iron Complexes with NO Gas 

First, I synthesized [Fe2(BPMP-NHCOC(CH3)3)(OAc)2](OTf) (1-OTf) using the 

procedure mentioned above and immediately reacted it with NO gas in CH2Cl2. The product was 

collected via gravity filtration after recrystallization with hexane overnight at -33 oC to prevent 

NO loss often observed with vacuum filtration. IR spectroscopy revealed a partially nitrosylated 

product due to the extremely low intensity of the N-O stretching band (Figure 4.4). This 

observation is expected because there is no open coordination sites for NO ligation. The weak NO 

band observed as a shoulder (Figure 4.4) corresponds to a small amount of NO complex formed 

due to the equilibrium with the dissociation of the acetate bridging ligand in solution (which favors 

binding of the acetate bridge at room temperature), as previously reported in Chapter 2.7 
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Figure 4.4 Solid state IR spectra of complexes with different amounts of bridging acetate ligands (from 0 
to 2 bridging acetate ligands), showing that the complexes with acetate bridges reduce NO binding, resulting 
in weaker N-O bands in the IR spectrum.  
 

Reaction of complex 2 with an excess amount of NO gas in CH2Cl2 at 25 oC yielded a 

brown crystalline material. Recrystallization overnight via slow diffusion of hexane yielded a dark 

brown solid that was collected by gravity filtration through a filter frit. IR spectroscopy showed a 

new signal at 1746 cm-1 (Figure 4.6), which indicates the formation of a hs-{FeNO}7 complex. 

The cyclic voltammogram of this complex showed a reduction at -1.30 V vs Fc+/Fc. Interestingly, 

slow diffusion of NO saturated hexane into a saturated NO solution of this product in CH2Cl2 

yielded single crystals suitable for X-ray diffraction. Surprisingly, the crystal structure revealed a 

mononitrosyl diiron complex, [Fe2(BPMP-NHCOC(CH3)3)(OAc)(NO)](OTf) (4) (Figure 4.5), 
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where one of the amides is deprotonated. However, EPR spectroscopy in CH2Cl2 showed a weak 

signal for this complex, suggesting that there is only a small portion of this species formed in 

solution. Therefore, I propose that the majority of the complexes in solution is EPR silent. Complex 

4 likely crystallized out due to having the lowest solubility, thus does not represent the bulk 

material. This observation indicates that complex 2 binds NO very weakly, likely due to the 

competitive ligation of the amides, which results in a low binding constant for NO. Indeed, 

Mössbauer spectroscopy showed that only 55% of the species in solution is complex 4, the rest is 

unreacted starting material complex 2 formed via NO loss. Therefore, I propose that the dinitrosyl 

complex, if formed, was very short-lived and immediate lose NO to form complex 2 and 4.  

Nevertheless, this crystal structure provides valuable insights into the structure of the potential 

dinitrosyl complex formed in solution. 

         

Figure 4.5 Left: Crystal structure of complex 4 with ellipsoids drawn at 50% probability. The triflate 
counter anion, solvent molecules, and hydrogen atoms are omitted for clarity. Right: ChemDraw structure 
of 4. 
 

I attempted to protonate this amide group by adding weak acid, [Et3NH4]OTf, into our 

reaction before adding NO gas. The intensity of the N-O band was monitored through several 

different control experiments shown in Figure 4.6. The result showed that protonation does not 
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play any role in increasing the intensity of the N-O stretching band. Instead, extra NO gas alone 

was enough to increase the intensity of this band. This observation confirmed that complex 2 binds 

NO very weakly and loses NO over time, even in solid state at -33 oC. Complex 4 was, indeed, a 

decomposition product in the bulk material that happened to crystallize out due to lower solubility. 

 

Figure 4.6 Control reactions with complex 4 showing that the amount of NO gas is the key to increase the 
intensity of the N-O stretching bands. The addition of the proton source [Et3NH4]OTf does not affect the 
intensity of the N-O band. 
 

Even though 4 was only a minor species, the crystal structure shown in Figure 4.5 still 

provides important structural information of the potential dinitrosyl complex. 4 has a bent FeNO 

moiety typical for hs-{FeNO}7 complexes.6,8-12 It is important to note that the formation of clean 

diiron mononitrosyl complexes is extremely hard to achieve in diiron systems. The reported 
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complex [Fe2(BPMP)(OPr)(NO)2](BPh4)2 can only form a dinitrosyl complex after nitrosylation. 

This is only the second example of such a complex in the literature, the other example is a complex 

reported by Majumdar and coworkers.9,10 Here, the N-O and Fe-NO bond distances of complex 

4 are 1.16 and 1.82 Å, respectively. These bond distances are very similar to that of 

[Fe2(BPMP)(OPr)(NO)2](BPh4)2 (1.17 and 1.79 Å). The Fe���Fe distance is shortened to 3.59 Å in 

the NO complex compared to the 3.64 Å observed in 2. Fe-O bond distances of the bridging 

phenolate are 2.02 and 2.10 Å. The Fe-O bond distances of the acetate bridging ligand are 2.02 

and 2.11 Å for the hs-{FeNO}7 moiety and the hs-Fe(II) center, respectively. The Fe-O(amide) 

bond distance is 2.08 Å. In order to bind two NO molecules, I decided to remove the acetate 

bridging ligand completely to open up coordination sites for NO, using complex 3. 

Upon reacting the yellow complex 3 with NO gas in CH2Cl2, a green product was collected 

after recrystallization with hexane at -33 oC. IR spectroscopy of this product in a KBr pellet showed 

a much more intense N-O stretching band at 1751 cm-1 (Figure 4.4). Based on the structure of 

complex 3, it is proposed that the NO molecules replaced the solvent molecules to bind both iron 

centers, thus forming the new complex [Fe2(BPMP-NHCOC(CH3)3)(NO)2](OTf)3 (5). This 

complex is EPR silent. Even though 5 formed a dinitrosyl product, because of the coordination of 

the amides to the irons, complex 5 does not feature hydrogen bonds with the bound NO ligands. 

To overcome the problem of amide coordination to the iron centers, it is necessary to go to SCS 

hydrogen bond donors that are non-coordinating, such as primary and secondary amines. Initial 

work on these new systems is presented in Chapter 8. 

 

4.3 Experimental Section 

N2O yield determination. 
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Structure Determination.  

Yellow needles of 2 were grown by layering a hexane/dichloromethane solution of the 

compound at 25 deg. C.  A crystal of dimensions 0.15 x 0.07 x 0.02 mm was mounted on a Rigaku 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device 

and a Micromax-007HF Cu-target micro-focus rotating anode (l = 1.54187 Å) operated at 1.2 kW 

power (40 kV, 30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed 

at a distance of 42.00 mm from the crystal.  A total of 2028 images were collected with an 

oscillation width of 1.0° in w.  The exposure times were 1 sec. for the low angle images, 8 sec. for 

high angle.  Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption.  The integration of the data yielded a total of 44463 reflections to a maximum 2q value 

of 140.29° of which 10747 were independent and 9361 were greater than 2s(I).  The final cell 

constants (Table 1) were based on the xyz centroids of 16480 reflections above 10s(I).  Analysis 

of the data showed negligible decay during data collection.  The structure was solved and refined 

with the Bruker SHELXTL (version 2018/3) software package, using the space group P1bar with 

Z = 2 for the formula C49H58N8O11F6S2Cl4Fe2. All non-hydrogen atoms were refined 

anisotropically with the hydrogen atoms placed in a combination of refined and idealized positions.  

Full matrix least-squares refinement based on F2 converged at R1 = 0.0734 and wR2 = 0.2015 

[based on I > 2sigma(I)], R1 = 0.0808 and wR2 = 0.2131 for all data. 

Yellow needles of 3 were grown by methanol/diethyl ether vapor diffusion of the 

compound at 25 deg. C.  A crystal of dimensions 0.12 x 0.12 x 0.04 mm was mounted on a Rigaku 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device 

and a Micromax-007HF Cu-target micro-focus rotating anode (l = 1.54187 Å) operated at 1.2 kW 

power (40 kV, 30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed 
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at a distance of 42.00 mm from the crystal.  A total of 2028 images were collected with an 

oscillation width of 1.0° in w.  The exposure times were 1 sec. for the low angle images, 8 sec. for 

high angle.  Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption.  The integration of the data yielded a total of 181810 reflections to a maximum 2q 

value of 139.72° of which 22253 were independent and 18485 were greater than 2s(I).  The final 

cell constants (Table 1) were based on the xyz centroids of 40190 reflections above 10s(I).  

Analysis of the data showed negligible decay during data collection.  The structure was solved and 

refined with the Bruker SHELXTL (version 2018/3) software package, using the space group P2/n 

with Z = 4 for the formula 2(C45H59N8O5Fe2), 6(CF3SO3), 2.5(CH4O).  All non-hydrogen atoms 

were refined anisotropically with the hydrogen atoms placed in a combination of refined and 

idealized positions.  Two trifilate anions and one bound methanol are disordered.  Full matrix least-

squares refinement based on F2 converged at R1 = 0.0859 and wR2 = 0.2388 [based on I > 

2sigma(I)], R1 = 0.0973 and wR2 = 0.2589 for all data.   

Brown needles of 4 were grown from a dichloromethane/hexane solution of the compound 

at -33 deg. C.  A crystal of dimensions 0.14 x 0.04 x 0.04 mm was mounted on a Rigaku AFC10K 

Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and a 

Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 Å) operated at 1.2 kW power 

(40 kV, 30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed at a 

distance of 42.00 mm from the crystal.  A total of 2028 images were collected with an oscillation 

width of 1.0° in ω.  The exposure times were 5 sec. for the low angle images, 40 sec. for high 

angle.  Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption.  The integration of the data yielded a total of 15872 reflections to a maximum 2θ value 

of 139.93° of which 11248 were independent and 8437 were greater than 2σ(I).  The final cell 
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constants (Table 1) were based on the xyz centroids of 15872 reflections above 10σ(I).  Analysis 

of the data showed negligible decay during data collection.  The structure was solved and refined 

with the Bruker SHELXTL (version 2018/3) software package, using the space group C2/c with Z 

= 8 for the formula C46H53N9O9F2SFe2 + [solvent].  All non-hydrogen atoms were refined 

anisotropically with the hydrogen atoms placed in idealized positions.  Full matrix least-squares 

refinement based on F2 converged at R1 = 0.0693 and wR2 = 0.1879 [based on I > 2sigma(I)], R1 

= 0.0891 and wR2 = 0.2073 for all data.  The SQUEEZE subroutine of the PLATON program suite 

was used to address the disordered solvent in the two large cavities present in the structure.   

Ligand Synthesis 

Step 1: 2-amino-6-methylpyridine (20.86 g, 192 mmol) was stirred with 250 mL DCM. 

Et3N (19.5 g, 192 mmol) was added to the flask. Pivaloyl chloride (23.5 g, 195 mmol) was added 

dropwise with stirring overnight at RT. The crude product was extracted three times with DI water, 

once with 500 mL 0.5 M HCl, and once with 500 mL 0.5 M NaHCO3. The resulting organic product 

was dried with sodium sulfate and solvent was removing using rotary evaporation; yield: 19.42 g, 

52%. 1H-NMR (400 MHz, Chloroform-d) δ = 8.05 (d, J = 8.3 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 

6.88 (d, J = 7.4 Hz, 1H), 2.45 (s, 3H), 1.32 (s, 9H), 1.26 (t, J = 1.8 Hz, 1H). 

Step 2: N-(6-methylpyridin-2-yl)pivalamide (14.0 g, 72.9 mmol), N-bromosuccinimide 

(13.0 g, 73.0 mmol), and azobisisobutyronitrile (0.233 g, 1.42 mmol) were added to a 1-neck 

Schlenk flask with a glass stopcock and stir bar. The flask was flushed with N2. CCl4 (~250 mL) 

was added to the flask using cannula transfer under N2 with stirring. A reflux condenser was 

attached to the flask under positive N2 pressure. The flask was heated to 80ºC and stirred for 24 

hours. The solids were filtered and solvent was removed using rotary evaporation. The product 

was isolated using a silica column. The mobile phase was 4:1 petroleum ether:ethyl acetate; yield: 
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7.72 g, 39%. 1H-NMR (400 MHz, Chloroform-d) δ = 8.16 (d, J = 8.5 Hz, 1H), 8.01 (s, 1H), 7.67 

(t, J = 7.9 Hz, 1H), 7.13 (dd, J = 7.5, 0.8 Hz, 1H), 4.40 (s, 2H), 1.31 (s, 9H). 

Step 3: 2-picolylamine (4.86 g, 44.9 mmol) and sodium carbonate (4.60 g, 43.4 mmol) 

were stirred with ACN for 1 hour at 40ºC. N-(6-(bromomethyl)pyridin-2-yl)pivalamide (5.7 g, 21.0 

mmol) was dissolved in ACN was added dropwise into the flask over 2 hours at 40ºC with stirring. 

The resulting product was filtered and separated using a basified silica column. Silica and silica 

plates were basified using hexanes with 10% Et3N. The mobile phase was ethyl acetate with 10% 

methanol and 1% Et3N; yield: 3.39 g, 54%. 1H-NMR (400 MHz, Chloroform-d) δ 8.48 (dd, J = 

4.9, 1.6 Hz, 1H), 8.08 – 8.01 (m, 2H), 7.56 (ddd, J = 7.8, 5.4, 3.3 Hz, 2H), 7.27 (d, J = 7.3 Hz, 

1H), 7.09 (dd, J = 7.5, 4.9 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 4.04 (q, J = 7.1 Hz, 4H), 3.90 (s, 2H), 

3.81 (s, 2H), 3.06 (s, 1H), 1.25 (s, 9H). 

The rest of the steps for BPMP-NHCOC(CH3)3 are carried out as reported previously.4  

Iron Complex synthesis: 

[Fe2(BPMP-NHCOC(CH3)3)(OAc)](OTf)2 (2) In a glovebox, BPMP-NHCOC(CH3)3 

ligand (100 mg, 0.137 mmol) and KOMe (9.62 mg, 0.137 mmol) were stirred with ~5 mL MeOH 

for 10 min. Fe(OTf)2·2CH3CN (120 mg, 0.275 mmol) was added and the contents were stirred for 

10 min. NaOAc (11.25 mg, 0.137 mmol) was added and the contents were stirred overnight. A 

vacuum was used to remove the solvent and the dry product was dissolved in CH2Cl2. Solids were 

filtered out of the solution and a vacuum was used to remove the solvent to obtain crude product 

of complex 1. Yield: Undetermined due to the impurities present in the bulk material. This is also 

reflected in the elemental analysis, which shows that the complex is not pure. More work is 

necessary to obtain a pure compound. Elemental analysis calculated for C47H55F6Fe2N8O11S2: 

Expected: C, 47.13; H, 4.63; N, 9.36. Found: C, 43.05; H, 4.42; N, 8.31. This complex is then 
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redissolved into THF and recrystallize with ether to yield the desired yellow complex 1. UV-Vis: 

386 nm IR: n(C=O) = 1699 cm-1. Mössbauer spectroscopy: d = 1.19 mm/s and DEQ = 2.85 mm/s 

collected at 53 mT //, 4.2 K. 

[Fe2(BPMP-NHCOC(CH3)3)(MeOH)2](OTf)3 (3) In a glovebox, BPMP-NHCOC(CH3)3 

ligand (100 mg, 0.137 mmol) and KOMe (9.62 mg, 0.137 mmol) were stirred with ~5 mL MeOH 

for 10 min. Fe(OTf)2·2CH3CN (120 mg, 0.275 mmol) was added and the contents were stirred 

overnight. A vacuum was used to remove the solvent and the dry product was dissolved in CH2Cl2. 

Solids were filtered out of the solution and a vacuum was used to remove the solvent to obtain 

crude product of complex 3. This complex is then redissolved into THF and recrystallize with ether 

to yield the desired yellow complex 3. Yield was not recorded. Elemental analysis calculated for 

C50Cl2H61F9Fe2N8O14S3: Expected: C, 40.99; H, 4.28; N, 7.80 Found: C, 40.91; H, 4.21; N, 8.17.  

UV-Vis: 391 nm  

[Fe2(BPMP-NHCOC(CH3)3)(OAc)(NO)](OTf) (4) In a glovebox, 100 mg of complex 1 

is dissolved in to a minimal amount of CH2Cl2 in a Schlenk flask charged with a stirrbar. The 

solution is then reacted with an excess amount of NO gas on a Schlenk line, causing the yellow 

solution to turn dark brown upon reacting with NO gas. The reaction is then allowed to stir 

overnight before hexane is then added to crash out the desired product. Yield determined based on 

Mössbauer spectroscopy: 55% with 45% unreacted/product formed due to the loss of NO overtime. 

The product is then gravity filtered through a frit and let air dry in the glovebox overnight. IR: 

n(C=O) = 1746 cm-1. 

A similar nitrosylation protocol is used to nitrosylate complex 5. Like complex 4, complex 

5 lose NO overtime and Mössbauer spectroscopy is required for determination of the amount of 

NO complex formed in this reaction. It is worth noting that even though both reactions used excess 
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amount of NO gas, complex 4 can only form mononitrosyl product. This is likely due to the 

immediate loss of NO upon nitrosylation at room temperature.  

 

4.4 Appendix with Spectroscopic Data 

 

Figure 4.7 1H-NMR of N-(6-methylpyridin-2-yl)pivalamide in CDCl3. The highlighted peak positions 
show ethyl acetate solvent residues (CH2Cl2 and hexane). The product overall is clean with correct 
integration of peaks. 
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Figure 4.8 1H-NMR of mono-brominated product, N-(6-(bromomethyl)pyridin-2-yl)pivalamide, in CDCl3. 
The highlighted peak positions show ethyl acetate solvent residues. The product overall is clean with correct 
integration of peaks. 
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Figure 4.9 1H-NMR of N-(6-Pivaloylamido-2-pyridylmethyl)-N-(2-pyridylmethyl)amine in CDCl3. The 
highlighted peak positions show ethyl acetate solvent residues. The product overall is clean with correct 
integration of peaks.  
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Figure 4.10 1H-NMR of N,N′-(6,6′-((((2-Hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-
ylmethyl)azanediyl))bis(methylene))bis(pyridine-6,2-diyl))bis(2,2-dimethylpropanamide) in CDCl3. The 
highlighted peak positions show CH2Cl2 solvent residues. The product overall is clean with correct 
integration of peaks.  
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Chapter 5 

Non-heme Iron Trans-Hyponitrite Complexes 

 

Acknowledgement: I would like to acknowledge Michael O. Lengel who assisted me with carrying 
out N2O yield experiments, the IR spectroscopy labeling study, and the generation of the new N2O 
calibration curve in this study. I would like to thank Dr. Debangsu Sil and Prof. Carsten Krebs for 
carrying out all the Mössbauer experiments and the corresponding data analysis. I would like to 
thank Prof. George B. Richter Addo for his detailed protocol for the synthesis of Na215N2O2.  
 

The goal of Chapter 5 is to explore the biologically relevant coordination chemistry of 

hyponitrite with non-heme iron centers. In particular, I report the first structural characterization 

of a unique non-heme iron-hyponitrite complex, using the model [Fe2(BMPA-PhO)2(OTf)2] as the 

starting point. The results underline the plasticity and versatility of hyponitrite as a ligand, which 

can interact with metal centers both through its N- and O-atoms, with the potential to form a 

multitude of bridging structures. In addition, based on the Lewis-acidity of the iron center, different 

reactions are observed, as summarized in this chapter. 

 

5.1 Reaction of [Fe(TPA)(MeCN)2](OTf)2 (1) with Na2N2O2
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Scheme 5.1 Reaction Scheme of complex 1 with Na2N2O2 in MeOH. 
 

In order to explore the coordination chemistry of non-heme iron complexes and hyponitrite, 

I synthesized the ferrous complex [Fe(TPA)(MeCN)2](OTf)2 (1, TPA = tris(methylpyridyl)amine) 

using a reported procedure.1 Complex 1 was then reacted with dried, commercially available 

sodium trans-hyponitrite (Na2N2O2) in methanol (Scheme 5.1). The orange solution of complex 1 

immediately changed color to red, accompanied by a distinct change in the UV-Vis spectrum. 

Here, the absorption band of 1 at 380 nm shifted to 413 nm upon the addition of Na2N2O2 in 

methanol. The reaction was worked up according to a procedure described in the experimental 

section of this chapter. Single crystals suitable for X-ray diffraction were obtained by slow 

diffusion of ether into a saturated MeCN solution of the product at room temperature. X-ray 

crystallography revealed a dimeric complex, [Fe2(TPA)2(OMe)2](OTf)2 (2), with a Fe2O2 diamond 

core structure formed by the bridging methoxide ligands (Figure 5.1). I hypothesized that Na2N2O2 

reacted with methanol (either bound or unbound to complex 1) to form N2O, H2O, and methoxide 

under this reaction condition. To determine whether complex 1 played a role in the formation of 

N2O, I performed a control experiment to quantify the amount of N2O formed in a methanol 

solution that only contains Na2N2O2 and 15-crown-5. A yield of 60-75% of N2O was obtained 

within 15 minutes. This result showed that a significant amount of Na2N2O2 would have already 
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reacted with methanol to form N2O even before this solution was added into a solution of complex 

1 (Scheme 5.2).  

          

Figure 5.1 Left: Crystal structure of the complex 2 with ellipsoids drawn at 50% probability. The triflate 
counter anions, solvent molecules, and hydrogen atoms are omitted for clarity. Right: ChemDraw structure 
of complex 2. 
 

 
Scheme 5.2 Proposed formation of complex 2 due to decomposition of the Na2N2O2 salt in methanol. 
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that in this case, hyponitrite indeed binds to two molecules of 1. However, instead of forming a 

stable hyponitrite complex, the N=N bond is broken due to the strong Lewis acidity of the Fe(II) 

centers in 1. This is surprising because by reducing the hs-{FeNO}7 complex, 

[Fe(TPA)(NO)(OTf)](OTf), to hs-{FeNO}8, I can obtain the same complex 3 through dimerization 

the unstable hs-{FeNO}8 complex (Scheme 5.3).  

 

Scheme 5.3 Synthetic routes towards complex 3 using either a hs-{FeNO}7 or an Fe(II) precursor. 
 

 

Figure 5.2 Mass spectrometry of the reaction between complex 1 and a mixture of 1:1 Na2N2O2:Na2
15N2O2 

in MeCN showing formation of a clean 1:1 product ratio of exclusively 14N and 15N products. No isotope 
exchange was observed in mass spectrometry. 
 

In order to determine the mechanism of this process, I reacted this complex with a 1:1 

mixture of Na2N2O2 and Na215N2O2 in MeCN, with the idea that I could isolate the product and 

analyze it by IR spectroscopy. However, I discovered that 15-crown-5 has a significantly intense 

IR signal at ~1353 cm-1, which is the region where the N�O stretch of 3 is located. Based on my 
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to purify 15-crown-5 out of the products obtained in these reactions were unsuccessful. I decided 

to carry out the reaction in neat condition (without 15-crown-5) at both room temperature and 

reflux condition. However, due to solubility problems, as well as the decomposition of Na2N2O2 

at high temperature, I could not obtain enough product for IR spectroscopic characterization. 

Nevertheless, I was able to obtain mass spectrometry data showing m/z signals at 376.085 for 

reactions with Na2N2O2 and 377.084 when Na215N2O2 is used (Figure 5.2). Assuming the molecule 

is not fragmented during mass spectrometry, I expect an m/z ~ 376.5 if the reaction formed an 

isotope exchanged product ([Fe2(14NO)(15NO)] diamond core). Here, I propose two different 

scenarios that can lead to formation of the diamond core product. First, the diamond core of 

complex 3 can be formed directly through N=N bond scission of the hyponitrite ligand through a 

one-step mechanism (Scheme 5.4) that involves the formation of a [Fe2(N2O2)]2+ dimer. The 

thermodynamic stability of the diamond core structure (see Chapter 6) then drives the N=N bond 

cleavage and the formation of 3. In this case, an isotope exchanged product is not expected. 

Second, the N=N bond scission could potentially form a transient monomeric hs-{FeNO}8 

intermediate, which is then rapidly dimerized in solution to form 3 through the mechanism 

proposed in Chapter 6. However, in this case, an isotope exchange product is expected (Scheme 

5.4). Based on our data, I therefore propose that the formation of 3 follows the dimer mechanism 

that suppressed isotope scrambling. 
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Scheme 5.4 Proposed binding modes of hyponitrite to complex 1 and possible mechanistic scenarios for 
this reaction to form the isolated complex 3. 
 
5.2 Synthesis and Characterization of [Fe2(BMPA-PhO)2](OTf)2 (4) 

The fact that complex 1 is highly Lewis-acidic is evident from the corresponding NO 

complex, [Fe(TPA)(OTf)(NO)](OTf), which has an N�O stretching frequency >1800 cm-1. This 

value is at the upper end of N�O stretches observed for hs-{FeNO}7 complexes.2-4 Note that these 

complexes generally have Fe(III)-NO� type electronic structures (see Chapter 1).5 Here, the highly 

Lewis-acidic iron center receives strong electron donation from the 3NO� ligand, causing the high-

energy N�O stretching mode. In order to tame the Lewis-acidity of [Fe(TPA)(MeCN)2](OTf)2, I 
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group. The corresponding ligand BMPA-PhOH (= N-(2-hydroxybenzyl)-N,N-bis(2-

pyridylmethyl)amine) was synthesized using a reported procedure and characterized by 1H-NMR 

spectroscopy.6 Metallation of BMPA-PhOH was carried out using a procedure described in the 

experimental section of this chapter. The bright yellow complex 4 was characterized by a broad 

absorption band at 350 nm with a broad shoulder at around 400 nm. Single crystals suitable for X-

ray diffraction were grown by slow diffusion of diethyl ether into a saturated solution of 4 in 

acetonitrile at room temperature, yielding yellow rods. The crystal structure revealed that complex 

4 is a dimer with the two iron centers being bridged by the O-atoms of the phenolate arms of the 

BMPA-PhO� coligands, forming a Fe2O2 diamond core (see Figure 5.3). The Fe�O distances in 

the core are 2.01 and 2.04 Å for the short bonds and 2.15 and 2.16 Å for the longer bonds. 

Therefore, this core is quite asymmetric. The two iron centers are in pseudo-octahedral 

coordination environments with the sixth ligand being the triflate counter anion. They are 

separated by 3.26 Å. This is comparable to FNORs, indicating that complex 4 is a good structural 

model for the active sites of these enzymes. 

 

                

Figure 5.3 Left: Crystal structure of complex 4 with ellipsoids drawn at 50% probability. The triflate 
counter anion, solvent molecules, and hydrogen atoms are omitted for clarity. Right: ChemDraw structure 
of complex 4. 
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5.3 Characterization of the hyponitrite complex [{Fe2(BMPA-PhO)2}2(P-N2O2)](OTf)2 (5) 

Reaction of complex 4 with Na2N2O2/15-crown-5 in MeCN at 25 oC overnight led to a 

color change of the solution from orange to deep red. The solution was then filtered and 

recrystallization with diethyl ether yielding pure orange plates suitable for X-ray crystallography. 

The crystal structure revealed a unique dimerization of two molecules of 4 to form a tetra-iron 

complex, [{Fe2(BMPA-PhO)2}2(P-N2O2)](OTf)2 (5), with the hyponitrite ion bridging the two 

diiron cores as shown in Figure 5.4. Interestingly, the hyponitrite ion is bound to all four iron 

centers in the tetramer by both of its N- and O-atoms, which represents a truly unique binding 

mode that has not been observed before. In this binding mode, each diiron unit is bound to an O- 

and an N-atom of hyponitrite (Scheme 5.5). The average N�N bond distance (due to disorder in 

the crystal) of hyponitrite is 1.27 Å, which represents an N�N double bond. This is similar to the 

N N bond distance in Na2N2O2 (1.26 Å). The average N�O bond distance of the hyponitrite ligand 

in 5 is 1.35 Å, again comparable to Na2N2O2 (1.36 Å). The same is true for the N�N�O bond angle 

(5: 113o; Na2N2O2: 112o). Hence, despite the coordination of hyponitrite to four iron centers in the 

tetramer, the ligand does not seem to be activated. This supports the mechanistic conclusions 

where it was proposed that protonation is necessary in order to activate the bound hyponitrite 

ligand in FNORs for N2O generation.7 Finally, the average Fe�N and Fe�O distances are 2.27 and 

2.02 Å, respectively, which indicates that the Fe�O bond is distinctively stronger than the Fe�N 

bond. Based on this observation, I conclude that hyponitrite prefers O-coordination over N-

coordination to non-heme iron centers. This supports the mechanistic proposal for FNORs that 

N�N bond formation, which leads to the generation of a bridging, N-bound hyponitrite ligand, is 

immediately followed by hyponitrite rearrangement from N- to O-coordination.7,8 The Mössbauer 
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spectrum of complex 5 confirmed the presence of hs-Fe(II) centers. Moreover, the Mössbauer 

spectrum of a solution of 5 in CH3CN is unaltered compared to the solid state, which indicates that 

the tetrameric structure of the complex remains intact in solution. Complex 5 is EPR silent, due to 

antiferromagnetic coupling of the iron centers within the two phenolate-bridged diiron cores. 

Previous studies have shown that hyponitrite does not mediate magnetic exchange coupling,9 and 

hence, I propose that the two diiron cores in 5 are magnetically isolated.  

           

Figure 5.4 Crystal structure of complex 5 with ellipsoids drawn at 50% probability. The triflate counter 
anion, solvent molecules, and hydrogen atoms are omitted for clarity.  
 

                     

Scheme 5.5 Schematic representation of the crystal structure of 5, emphasizing the bridging hyponitrite 
binding mode.  
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5.4 Reactivity with of [Fe2(BMPA-(tBu)2PhO)2](OTf)2 (6) 

Due to the lack of steric protection around the iron centers, the cluster [{Fe2(BMPA-

PhO)2}2(P-N2O2)](OTf)2 is formed. I hypothesized that introduction of sterically protecting 

groups, such as tert-butyl groups, in the SCS of the complex could prevent the formation of cluster 

5 and potentially force the hyponitrite ligand to bind with the end-on binding mode (Figure 5.5, 

right). This binding mode has previously been observed in the reported heme system by Richter-

Addo and co-workers (Figure 5.5, left).10 

          

Figure 5.5 Left: crystal structure of the only heme complex reported in the literature so far that binds trans-
hyponitrite.10 Right: Proposed structure of the hyponitrite complex that potentially formed when reacting 
complex 6 with Na2N2O2 salt. 
 

[Fe2(BMPA-(tBu)2PhO)2](OTf)2 (6) was synthesized according to the procedure mentioned 

in the experimental section. The newly synthesized complex 6 is pale green, however, it turns 

green overtime even in the inert environment of the glovebox making it extremely hard to work 

with. Therefore, I synthesized 6 freshly every time before data collection. Reaction of complex 6 

with Na2N2O2 in acetonitrile immediately caused a color change of the solution from pale green to 

dark purple. I then performed gas headspace analysis to see if N2O was formed after the reaction. 

The result showed that there was no N2O (~8%) formation observed via gas headspace detection 
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at 15 minutes and 24 hours. This implies that potentially the formation of a new hyponitrite 

complex took place, or that this complex undergoes the same N=N bond scission observed with 

complex 1. Further experiments and analysis are required to determine the fate of this complex 

after reacting with Na2N2O2. 

 

5.5 Conclusion 

 In summary, the work described in this chapter provides key insight into the properties of 

hyponitrite complexes of non-heme iron centers. First, I show that the Lewis acidity of the Fe(II) 

center, which is easily gauged by the N�O stretching frequency of the corresponding hs-{FeNO}7 

complex, is a key feature that determines the stability of a hyponitrite complex. To my surprise, 

too Lewis-acidic iron centers actually cleave hyponitrite into two NO� units, followed by further 

reactions. In the case of the Fe(TPA) unit, formation of a unique Fe2(NO)2 structure was observed. 

I propose two possible mechanistic pathways that this reaction can undergo to form the diamond 

core product, one of which involves the cleaving of the N=N bond to form hs-{FeNO}8 transient 

intermediates. These hs-{FeNO}8 complexes then decompose to form complex 3 as observed in a 

previous study (see Chapter 6). The other pathway is the direct N=N bond cleavage to form the 

diamond core product from a [Fe2(N2O2)]2+ dimeric intermediate, without the formation of the hs-

{FeNO}8 intermediate. Mass spectrometry data indicates that the latter pathway is operative, as no 

14NO/15NO isotope scrambling was observed when a mixture of Na2(14N2O2)/Na2(15N2O2) is used 

in the reaction. Taming the iron center to make it less Lewis-acidic allowed for the isolation of a 

unique, tetrameric hyponitrite complex, where hyponitrite bridges between two dimeric 

Fe2(BMPA-PhO)2 units. This complex was structurally characterized, and the result shows that 

hyponitrite has a strong preference to bind to the non-heme iron centers via its O atoms, which 
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supports mechanistic proposals for FNORs that after hyponitrite formation, the ligand would 

quickly rotate from an N- to an O-coordination mode. Treatment of this complex with acid then 

leads to the formation of N2O. 

 

5.6 Experimental Section 

 Red blocks of complex 2 were grown from an acetonitrile/diethyl ether solution of the 

compound at 25 oC. A crystal of dimensions 0.10 x 0.08 x 0.06 mm was mounted on a Rigaku 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device 

and a Micromax-007HF Cu-target micro-focus rotating anode (O = 1.54187 Å), operated at 1.2 

kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector 

placed at a distance of 42.00 mm from the crystal. A total of 2028 images were collected with an 

oscillation width of 1.0° in w. The exposure times were 1 sec. for the low angle images, 5 sec. for 

high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption. The integration of the data yielded a total of 32,060 reflections to a maximum 2q value 

of 139.60° of which 4008 were independent and 3579 were greater than 2s(I).  The final cell 

constants were based on the xyz centroids of 10,100 reflections above 10s(I). Analysis of the data 

showed negligible decay during data collection. The structure was solved and refined with the 

Bruker SHELXTL (version 2016/6) software package, using the space group P2(1)/n with Z = 2 

for the formula C40H42N8O8F6S2Fe2. All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F2 

converged at R1 = 0.0598 and wR2 = 0.1635 [based on I > 2sigma(I)], R1 = 0.0662 and wR2 = 

0.1760 for all data. 
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 Yellow needles of complex 4 were grown from an acetonitrile/diethyl ether solution of the 

compound at 25 oC. A crystal of dimensions 0.16 x 0.11 x 0.09 mm was mounted on a Rigaku 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device 

and a Micromax-007HF Cu-target micro-focus rotating anode (O = 1.54187 Å), operated at 1.2 

kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector 

placed at a distance of 42.00 mm from the crystal. A total of 2028 images were collected with an 

oscillation width of 1.0° in w. The exposure times were 1 sec. for the low angle images, 5 sec. for 

high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption. The integration of the data yielded a total of 63,339 reflections to a maximum 2q value 

of 139.11° of which 7873 were independent and 7043 were greater than 2s(I).  The final cell 

constants were based on the xyz centroids of 22,120 reflections above 10s(I). Analysis of the data 

showed negligible decay during data collection. The structure was solved and refined with the 

Bruker SHELXTL (version 2016/6) software package, using the space group P2(1)/n with Z = 4 

for the formula C40H36N6O8F6S2Fe2. All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F2 

converged at R1 = 0.0658 and wR2 = 0.1701 [based on I > 2sigma(I)], R1 = 0.0713 and wR2 = 

0.1825 for all data. 

 Orange plates of complex 5 were grown from a diethyl ether/acetonitrile solution of the 

compound at -33 oC. A crystal of dimensions 0.17 x 0.10 x 0.04 mm was mounted on a Rigaku 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device 

and a Micromax-007HF Cu-target micro-focus rotating anode (O = 1.54187 Å), operated at 1.2 

kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector 

placed at a distance of 42.00 mm from the crystal. A total of 2028 images were collected with an 



 

125 
 

oscillation width of 1.0° in w. The exposure times were 1 sec. for the low angle images, 10 sec. 

for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected 

for absorption. The integration of the data yielded a total of 83,013 reflections to a maximum 2q 

value of 138.89° of which 10,090 were independent and 8361 were greater than 2s(I). The final 

cell constants were based on the xyz centroids of 20,341 reflections above 10s(I). Analysis of the 

data showed negligible decay during data collection. The structure was solved and refined with the 

Bruker SHELXTL (version 2018/3) software package, using the space group Fdd2 with Z = 8 for 

the formula C78H72N14O12F6S2Fe4. The structure was refined as a two-component inversion twin. 

All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized 

positions. Full matrix least-squares refinement based on F2 converged at R1 = 0.0461 and wR2 = 

0.1277 [based on I > 2sigma(I)], R1 = 0.0571 and wR2 = 0.1393 for all data. The SQUEEZE 

subroutine of the PLATON program suite was used to address the disordered solvent in the large 

cavity present in the structure. 

Sodium amalgam preparation 

On the benchtop, sodium metal was cut and washed with hexanes before being brought 

into a glove box. In the glove box, 1.05 grams of sodium metal was added piece by piece to 6 mL 

of mercury metal which caused an exothermic reaction to happen. After dissolving, the round 

bottom flask was allowed to sit in a cold well at ice water temperature for 10 minutes. It should be 

noted that the morphology of the sodium amalgam varied from batch to batch and could be either 

solid or liquid depending on the batches. 

Na215N2O2 Trans-hyponitrite Synthesis 

 Outside the box, 1 gram of Na15NO2 was dissolved 6 mL of deionized water and sparged 

with a constant stream of N2 to remove traces of dioxygen before being brought into the glove box. 
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33 mL of absolute ethanol was sparged with N2 and brought into the glove box. To the freshly 

prepared sodium amalgam above, the Na15NO solution was added dropwise. A white cloudy 

solution formed. Once added, the solution was stirred at room temperature for 30 minutes. The 

solution was, then, transferred to a 20 mL vial and the aqueous solution was extracted and added 

to the round bottom flask containing ethanol. A stir bar was added, and the solution was allowed 

to stir for 2 hours. During this time, a small amount of white powder had formed. The solution was 

then removed from the glove box and allowed to sit in a -20qC freezer overnight. The product was 

then filtered and collected on a frit. Yield varied significantly. Average yield below 10%.  

Synthesis of Metal Complexes: 

[Fe2(TPA)2(OCH3)2](OTf)2 (2): Under an inert atmosphere, 100 mg of 

[Fe(TPA)(CH3CN)2](OTf)2 was dissolved in a minimal amount of methanol in a 20 ml scintillation 

vial charged with a stirbar. An excess amount of Na2N2O2 was then added to the solution. The 

reaction was allowed to stir overnight and the solvent was removed under reduced pressure. The 

crude solid was then redissolved in CH2Cl2 and the solution was filtered to remove salt impurity. 

The filtrate was then concentrated down under vacuum and the solid was redissolved into MeCN. 

Single crystal suitable for X-ray diffraction is obtained via slow diffusion of ether into acetonitrile 

at 25oC. A direct synthesis of this complex can be achieved by reacting [Fe(TPA)(CH3CN)2](OTf)2 

with KOMe directly in methanol. Methanol was then removed under reduced pressure and the 

resulting crude solid was redissolved into CH2Cl2. The mixture was then filtered and the solution 

was layered with hexane. The solution was allowed to recrystallize at -33 oC overnight yielding 

crystalline product that was then collected and dried. Characterization: UV-Vis: 413 nm. Attempts 

to obtain a good elemental analysis is unsuccessful so far. The complex is paramagnetic based on 

1H-NMR due to the weak coupling of the high-spin iron centers.  
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[Fe2(TPA)2(NO)2](OTf)2 (3): Under an inert atmosphere, 100 mg of complex 1 was 

dissolved in a minimal amount of MeCN in a 20 ml scintillation vial charged with a stirbar. An 

excess Na2N2O2 was then added to the solution along with 15-crown-5. The reaction was allowed 

to stir overnight to yield a dark red solution. The resulting solution was then filtered and 

recrystallize with ether at -33oC multiple times until a minimal amount of 15-crown-5 

contamination was left. The resulting solid was collected and characterized. A detailed 

characterization of this complex is provided in Chapter 6. 

[Fe2(BMPA-PhO)2](OTf)2 (4): Under inert atmosphere, 566 mg (1.85 mmol) BMPA-

PhOH and 129 mg (1.84 mmol) potassium methoxide were combined in 5 mL MeOH.  The 

resulting suspension was stirred for several minutes, and 599 mg (1.69 mmol) Fe(OTf)2 was then 

added.  The reaction was stirred for 45 min, then filtered.  Diethyl ether was added to the filtrate, 

causing a yellow solid to precipitate.  The product was allowed to precipitate at -33°C overnight.  

The yellow solid was isolated by vacuum filtration and recrystallized from CH2Cl2/hexanes.  Yield: 

593 mg, 63%. Elemental analysis: Expected: C: 47.17, H: 3.56, N: 8.25; Found: C: 47.03, H: 3.75, 

N: 8.13. UV-Vis: 350 and 400 nm. 

[{Fe2(BMPA-PhO)2}2(P-N2O2)](OTf)2 (3): Under inert atmosphere, [Fe2(BMPA-

PhO)2](OTf)2 was dissolved in a minimal amount of MeCN in a 20 ml scintillation vial charged 

with a stirbar. An excess amount of Na2N2O2 was then added with 15-crown-5 and the reaction 

was allowed to stir overnight. The solution was filtered and the resulting solution was 

recrystallized by slow diffusion with ether at -33oC to obtain single crystals that are suitable for 

X-ray diffraction. UV-Vis: 446 nm. We were unable to obtain a sufficient amount of complex for 

elemental analysis. 
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[Fe2(BMPA-tBu2PhO)2](OTf)2: In the glovebox, 629 mg (1.50 mmol) BMPA-tBu2PhOH 

was dissolved in methanol with 104 mg (1.48 mmol) of KOMe and stirred for 5 minutes. 487 mg 

(1.38 mmol) of Fe(OTf)2 was then added resulting in an immediate color change to a deep 

yellow/green color. The reaction was allowed to stir for 5 hours. The solvent was then removed 

under reduced pressure. Minimal amount of tetrahydrofuran (THF) was added to dissolve and the 

solution was passed through a syringe filter. The filtrate was then precipitated with hexanes in the 

glovebox freezer at -33oC overnight. A pale green solid product was collected after filtration 

through a frit. Yield 550 mg, 59%. We were unable to obtain elemental analysis of this complex 

due to its high instability even in the inert environment of the glove box. 

IR Gas Headspace Analysis for N2O Detection With New Calibration Curve:  

N2O quantification was carried out by gas headspace analysis using infrared spectroscopy. 

The general protocol for gas headspace analysis is described in the following: to a sealed 25 ml 

round-bottom flask containing 7 Pmol of complex [Fe(TPA)(MeCN)2](OTf)2 and 7 Pmol of 

Na2N2O2, 2.5 ml of MeCN with excess 15-crown-5 (2 time excess with respect to Na2N2O2) was 

syringed into the sealed round-bottom flask. The reaction was allowed to stir for 15 minutes before 

the gas headspace was transferred by vacuum into a sealed gas IR cell with CaF2 windows. 

Quantification of N2O was performed via integration of the prominent IR features at 2235 and 

2212 cm-1 of this molecule (N-N stretching vibration) against separately determined N2O 

standards, which were generated from the breakdown of Piloty’s acid in basic solution under 

exactly the same conditions. The advantage of using Piloty’s acid to construct the calibration curve 

is that this compound is a solid that can be weighted out at high accuracy. Hence, exact amounts 

of N2O can be generated in this way. The disadvantage is that Piloty’s acid has to be used in an 

aqueous environment, which is different from the organic solvents used for the reaction of 
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[Fe(TPA)(MeCN)2](OTf)2 with NO gas. However, the error generated due to the somewhat 

different solubility of N2O in water and organic media (at the concentrations used for the 

experiments) is well within the ± 10% error note above. 

N2O Calibration Curve General Procedure. The calibration curve was generated using 

two different stock solutions. All solutions prepared outside the glovebox were sparged with N2 

and brought into the glovebox.  

Data points for < 5 µmol N2O. A stock solution of about 0.1 M NaOH was prepared by 

dissolving 0.4042 g of NaOH pellets in 100 mL of DI water. In a glovebox, a 0.0234 M stock 

solution of Piloty’s acid (PA) was prepared by dissolving 0.0810 g of PA in 20.0 mL of DI water. 

Data points for > 5 µmol N2O. A stock solution of about 0.1 M NaOH was prepared by 

dissolving 0.2495 g of NaOH pellets in 62.5 mL of DI water. In a glovebox, a 0.0464 M stock 

solution of PA was prepared by dissolving 0.084 g of PA in 10.0 mL of DI water. 

General procedure. To a 25 mL round bottom flask, 0.1 mL of PA stock solution and 0.4 

mL of DI water were added. The flask was capped with a septum and copper wire. To this flask, 

2 mL of NaOH stock solution was injected. After about 3 hours, the gas headspace was collected 

for 20 seconds using a gas IR cell. The N2O yield was obtained by integrating the absorbance 

spectrum from 2150-2275 cm-1. Each data point was obtained in triplicate.* 

Table 5.1 Data point for the calibration curve (0.6-5 Pmol) 

µmol N2O 

Expected 

0.0234 M PA 

solution 

Degassed 

H2O 

NaOH solution Area Obtained 

0.5846 0.05 mL 0.45 mL 2.0 mL 0.2763 

0.5846 0.05 mL 0.45 mL 2.0 mL 0.2980 
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0.5846 0.05 mL 0.45 mL 2.0 mL 0.2738 

1.169 0.10 mL 0.40 mL 2.0 mL 0.6230 

1.169 0.10 mL 0.40 mL 2.0 mL 0.7601 

1.169 0.10 mL 0.40 mL 2.0 mL 0.8337 

2.3385 0.20 mL 0.30 mL 2.0 mL 1.460 

2.3385 0.20 mL 0.30 mL 2.0 mL 1.330 

2.3385 0.20 mL 0.30 mL 2.0 mL 1.512 

3.5077 0.30 mL 0.20 mL 2.0 mL 1.998 

3.5077 0.30 mL 0.20 mL 2.0 mL 2.087 

3.5077 0.30 mL 0.20 mL 2.0 mL 1.776 

4.6769 0.40 mL 0.10 mL 2.0 mL 2.995 

4.6769 0.40 mL 0.10 mL 2.0 mL 2.804 

4.6769 0.40 mL 0.10 mL 2.0 mL 2.887 

 

Table 5.2 Data point for the calibration curve (7-9.2 Pmol) 

µmol N2O 

Expected 

0.0464 M PA 

solution 

Degassed H2O NaOH solution Area Obtained 

6.9635 0.30 mL 0.20 mL 2.0 mL 4.38357 

6.9635 0.30 mL 0.20 mL 2.0 mL 4.18873 

9.2846 0.40 mL 0.10 mL 2.0 mL 5.61328 

9.2846 0.40 mL 0.10 mL 2.0 mL 6.29651 

9.2846 0.40 mL 0.10 mL 2.0 mL 5.84426 

* Only two points were used for the 6.9635 µmol point due to an outlier 
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Figure 5.6 New calibration curve generated using method mentioned above 

[Fe(TPA)(CH3CN)2](OTf)2 + hyponitrite: N2O yields in methanol 

General Procedure (7 µmol N2O Expected) 

In a glovebox, 0.0090 g of [Fe(TPA)(CH3CN)2](OTf)2 and 0.0016 g of Na2N2O2 were 

added to a 25 mL round bottom flask charged with a stirbar. The flask was then sealed with a 

septum and copper wire. A solution containing 11.2 µL of 15-crown-5 in 2.50 mL of methanol 

was injected into the flask. The reaction was allowed to stir for 3 hours and the gas headspace was 

evacuated for 20 seconds into a gas cell. The details for the analysis have been previously 

described. The results were obtained in duplicate for this reaction yield more than 100% N2O 

indicating side reaction of excess Na2N2O2 decomposition in methanol. 
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Chapter 6 

The Fe2(NO)2 Diamond Core: A Unique Structural Motif in Non-Heme Iron-NO 

Chemistry 
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The coordination chemistry of non-heme iron centers with nitroxyl is not well developed. 

Recent studies on model complexes for flavodiiron NO reductases (FNORs) have demonstrated 

that stable high-spin (hs) diferrous dinitrosyl complexes, [hs-{FeNO}7]2, can be activated by 

reduction to the hs-{FeNO}8, or Fe(II)-nitroxyl, state for N2O formation.1,2 FNORs are important 

enzymes in bacterial pathogenesis, as they protect infectious microbes from the mammalian 

immune defense agent NO.3 Whereas few mononuclear non-heme iron-NO model complexes have 

been shown to generate N2O upon reduction to the hs-{FeNO}8 state,4 the main reactivity of these 

complexes seems to be disproportionation, leading to the formation of dinitrosyl iron complexes 

(DNICs):5,6 

2 hs-{FeNO}7 + 2e� Æ 2 hs-{FeNO}8 Æ {Fe(NO)2}10 + Fe(II)    (1)
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However, the mechanism of this disproportionation, which constitutes an elegant pathway 

for the generation of DNICs from simple non-heme iron centers, is unknown. Clearly, more work 

is necessary to elucidate the biologically-relevant reactivity of non-heme hs-{FeNO}8 complexes. 

DNICs of {Fe(NO)2}9/10 type are important in mammalian physiology, as they serve as a major 

pool of NO.7,8 In addition, DNICs with histidine ligation have been proposed to form at the non-

heme diiron core of the ferric uptake regulation protein (Fur),9 in serum albumin,10 and in ferritin.11 

In this regard, understanding the reactivity of hs-{FeNO}8 complexes provides important insight 

into how diiron sites can be predispositioned for the diverging functions of N2O or DNIC 

formation. However, the unstable nature of non-heme hs-{FeNO}8 complexes has so far prevented 

the isolation of any intermediates prior to DNIC formation.12  

I further investigated the reactivity of hs-{FeNO}8 complexes with TPA 

(tris(pyridylmethyl)amine) and related coligands. In particular, I serendipitously discovered a 

Fe2(NO)2 diamond core structure, which is unprecedented in non-heme iron-NO chemistry.13 This 

core structure is stabilized by a change in spin state of the iron centers to low-spin (ls) Fe(II). In 

contrast, a TPA derivative with a weaker ligand field that cannot support the spin-state change to 

ls proceeds to DNIC formation. These complexes were further characterized by X-ray 

crystallography, and Mössbauer and vibrational spectroscopy.  

 

6.1 Synthesis and Characterization of [Fe(TPA)(NO)(OTf)](OTf) (1) 
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Figure 6.1. Panel a) EPR spectrum of 1 in CH2Cl2 at 4 K showing 100% of the hs-{FeNO}7 complex with St = 3/2 
(top) vs. the EPR spectrum of 1 in CH3CN at various temperatures, where a noticable portion of the compound is 
converted to a ls-{FeNO}7 complex with St = 1/2. Panel b) Solution IR spectrum of 1 in CH2Cl2 at room temperature, 
showing the N-O stretch at 1800 cm-1, which belongs to the hs-{FeNO}7 complex (top) vs. the solution IR spectrum 
of 1 in CH3CN at room temperature, showing conversion of a fraction of 1 to a ls complex with the N-O stretch at 
1701 cm-1.  
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The ligand TPA was synthesized according to reported procedures, and characterized by 

1H-NMR spectroscopy.14 Metallation of TPA was carried out using Fe(OTf)2•2CH3CN in CH3CN 

to obtain a pure red solid of [Fe(TPA)(CH3CN)2](OTf)2. Synthesis of [Fe(TPA)(NO)(OTf)](OTf) 

(1) was accomplished by reacting the red solution of [Fe(TPA)(CH3CN)2](OTf)2 in CH3CN with 

excess NO gas, which led to an immediate color change to black. Complex 1 was isolated as a 

pure black solid upon crystallization. The formation of 1 is evident from UV-Vis spectroscopy, 

which shows the disappearance of the intense bands at 320 and 380 nm of the ferrous precursor, 

and the appearance of new bands at 326, 403, 490 and 655 nm upon reaction with NO. The solid 

state IR spectrum of complex 1 shows the characteristic N-O stretching band of a hs-{FeNO}7 

complex at 1806 cm-1, which shifts to 1766 cm-1 with 15NO and 1732 cm-1 with 15N18O (Figure 

6.2, right). The cyclic voltammogram of 1 is unusual, and shows two irreversible redox events at 

-690 mV and -1240 mV versus Fc+/Fc, respectively. The first event corresponds to the one-electron 

reduction of complex 1, forming an unstable hs-{FeNO}8 complex, 1red. This wave remains 

irreversible, even when the scan is stopped prior to the second redox event. The second redox event 

likely originates from a new species formed from 1red. EPR spectra of 1 in CH2Cl2 show an axial 

signal at geff = 3.91 and 2.00, characteristic of a non-heme hs-{FeNO}7 complex with St = 3/2 

(Figure 6.1a, top). Surprisingly, the EPR spectrum of 1 in CH3CN shows a new EPR signal at g = 

2, indicating the partial formation of a ls-{FeNO}7 complex with St = 1/2 in this solvent (Figure 

6.1a, bottom). This observation is supported by the appearance of a new signal at 1701 cm-1 in the 

solution IR spectrum of 1 in CH3CN (Figure 6.1b, bottom). In this regard it should be noted that 

ferrous TPA complexes are close to the spin crossover point as previously reported.15 In our case, 

the coordination of the solvent CH3CN is likely responsible for the spin change behavior, 

according to the equilibrium: 
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[Fe(TPA)(NO)(OTf)]+ + CH3CN <==> [Fe(TPA)(NO)(CH3CN)]2+ + OTf�    (2) 

where the CH3CN-coordinated compound is then ls. To test this hypothesis further, I prepared the 

analogous hs-{FeNO}7 complex with the weakly-coordinating tetrafluoroborate (BF4�) counter 

ion, 1-BF4. In the solid state, this complex shows the N-O stretch at 1795 cm-1. In CH3CN solution, 

the EPR spectrum of 1-BF4 now shows the major signal at g = 2.00, indicating dominant formation 

of the ls (St = 1/2) complex [Fe(TPA)(NO)(CH3CN)])(BF4)2. In the solution IR spectrum of 1-BF4 

in CH3CN, the N-O stretch is observed at 1701 cm-1, identical to complex 1 in CH3CN, indicating 

that the same ls species forms. These observations strongly support our hypothesis that CH3CN-

coordination is the cause for the spin state change in complex 1. This conclusion is further support 

by density functional theory (DFT) calculations (B3LYP*/TZVP), which show that the hs state of 

complex 1 is 3 kcal/mol lower in energy in comparison to the ls state. Upon replacing the bound 

triflate in 1 with a CH3CN solvent molecule, the hs and ls states become isoenergetic, with the ls 

state at slightly lower energy (0.34 kcal/mol). Spin density analysis shows that the ls complex 

(with CH3CN bound) has a Fe(II)-NO• type electronic structure, typically observed for six-

coordinate ferrous heme-nitrosyls.16 
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Figure 6.2 Left: Crystal structure of complex 1 with ellipsoids drawn at 50% probability. The triflate counter anion, 
solvent molecules, and hydrogen atoms are omitted for clarity. Right: IR spectra of complex 1 with isotopic labeled 
NO gas.  
 

Crystals suitable for X-ray diffraction were obtained via diffusion of diethyl ether into a 

saturated solution of 1 in acetonitrile (Figure 6.2, left). As has been observed previously for other 

non-heme hs-{FeNO}7 complexes, 1 exhibits a pseudo-octahedral geometry with a triflate counter 

ion bound in the sixth coordination site. Complex 1 shows Fe-NO and N-O bond lengths of 1.76 

and 1.14 Å, respectively. Interestingly, the Fe-N-O angle is 170o, which is surprising, considering 

that there is not much steric hindrance present in the TPA ligand scaffold. Similar linear Fe-N-O 

angles have been observed in other hs-{FeNO}7 complexes with Q(N-O) > 1800 cm-1.17 This 

indicates that the linear Fe-N-O angle in 1 originates from electronic factors, i.e. a very covalent 

Fe-NO bond due to an electron-poor Fe center.17,18 

 
6.2 Serendipitous Discovery of the Two Conformers of Complex 1 Using Nuclear Resonance 

Vibrational Spectroscopy (NRVS) 

To further investigate the exact electronic structure of 1 I performed NRVS at the 

Advanced Photon Source at Argonne National Lab. This technique is very useful for investigating 

the vibrational properties of iron complexes, due to its sensitivity to all vibrations involving the 

57Fe center. I decided to characterize complex 1 further using this technique to hopefully 

investigate its unique electronic structure. In a previous study by Berto et al using the analogous 

complex with the perchlorate counterion, [Fe(TPA)(NO)(ClO4)2, a mixture of NO complexes was 

observed with the major peak located around 495 cm-1.19 Therefore, I expected to see a peak around 

this frequency for 1, with only a change in counter anion to triflate. Interestingly, upon collecting 

NRVS spectra of the first sample I brought to the beamline, I observed the Fe-NO stretch at 533 

cm-1 (Figure 6.3). This is surprisingly higher than that of [Fe(TPA)(NO)(ClO4)2, which led us to 
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believe that this sample might have decomposed. A duplicate was also brought to the beamline as 

a backup sample, and surprisingly, in this case the Fe-NO stretch is observed at the usual position, 

495 cm-1 (Figure 6.3). It is important to note that both samples were checked with IR spectroscopy, 

before packing the NRVS sample holders, and both show the same N-O stretch of 1806 cm-1. 

Intrigued by this observation, I hypothesize that maybe I had accidentally prepared two different 

isomers of the same hs-{FeNO}7 complex (Figure 6.4). These two isomers are indistinguishable 

by any other techniques except for NRVS. To further investigate this possibility, I performed DFT 

calculation to see if I can predict this difference in the Fe-NO stretch by just changing the trans 

ligand to the NO molecule in the complex. The DFT calculations were able to replicate the 

experimental data with a excellent agreement. Specifically, while these two isomers essentially 

have the same N-O stretching frequency in the calculations (1882(h) vs 1890(v) cm-1 for 

B3LYP/TZVP or 1779(h) vs 1789(v) cm-1 for BP86/TZVP), but the Fe-NO stretching frequencies 

are drastically different. As shown in Figure 6.3, the vertical isomer with the NO ligand being trans 

to the tertiary amine has a higher Fe-NO stretch than the horizontal isomer with the NO ligand 

being trans to a pyridyl nitrogen. There is a 27 cm-1 difference in the stretching frequency in the 

DFT calculations, which is an underestimate compared to the experimental difference of 41 cm-1. 

Interestingly, there is no other product observed after reduction of multiple batches of [Fe(TPA)-

(NO)(OTf)](OTf), which consistently produce the same product (see below). Therefore, there is 

no observable difference in reactivity between these two isomers. Overall, this result demonstrates 

the power of NRVS, which is very sensitive towards the coordination environment around the 57Fe 

center. 
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Figure 6.3 NRVS data of the two forms of complex 1 in the solid state. 
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Figure 6.4 ChemDraw of the two forms of complex 1 and their DFT optimized structures. 
 
6.3 DNIC Formation after Reduction of [Fe(BMPA-tBu2PhO)(NO)(OTf)]  

As a control, I prepared an analogous complex with a ligand that provides a weaker ligand 

field (according to the spectrochemical series), to test whether formation of complex 2 is dependent 

on the ligand field strength. Previous studies have shown fast DNIC formation from our hs-

{FeNO}8 model complex, [Fe(TMG2dien)(NO)]+.12 Similar reactivity is observed for our new hs-

{FeNO}7 complex [Fe(BMPA-tBu2PhO)(NO)(OTf)] (3), which contains the weak field ligand [N-

(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine (BMPA-tBu2PhOH). Here, 

metallation of BMPA-tBu2PhOH was carried out using KOMe and Fe(OTf)2•2CH3CN in MeOH 

to obtain a pure yellow solid of [Fe(BMPA-tBu2PhO)(OTf)] after purification. Nitrosylation of 

this yellow solid in THF using dried NO gas resulted in the formation of pure complex 3. Complex 

3 shows an EPR spectrum with an axial signal at geff = 3.91 and 2.00, characteristic of a non-heme 

hs-{FeNO}7 complex with St = 3/2 regardless of the solvents (Figure 6.5).  
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Figure 6.5 EPR spectrum of 3 at 4 K in CH2Cl2 (top) and CH3CN (bottom), showing 100% of the hs-{FeNO}7 complex 
with St = 3/2. 
 

The solid state IR spectrum of 3 shows a typical X(N-O) = 1752 cm-1. Crystals suitable for 

X-ray diffraction were obtained via diffusion of pentane into a tetrahydrofuran solution of 3. The 

structure (shown in Figure 6.6, left) exhibits Fe-NO and N-O bond lengths of 1.78 and 1.10 Å, 

respectively, and an Fe-N-O angle of 163o. The cyclic voltammogram of 3 shows an irreversible 

signal at -1.07 V vs. Fc+/Fc (Figure S12), thus allowing us to use CoCp2 to reduce 3 to the hs-

{FeNO}8 product, 3red. Upon reduction with 1 eq. of CoCp2, the N-O stretch at 1752 cm-1 of 3 

immediately disappears, and two new features appear at 1632 and 1692 cm-1, which are typical for 
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{Fe(NO)2}10 DNICs (Figure 6.6, right).12 However, just as in the previous studies, no intermediate 

of the process (following eqn. 1) can be observed.  

     

Figure 6.6 Left: Crystal structure of the hs-{FeNO}7 precursor complex [Fe(BMPA‐tBu2PhO)(OTf)(NO)]. All H 
atoms are omitted for clarity. Right: Solution IR spectra showing the characteristic N-O stretching bands of the starting 
material and the DNIC product after one-electron reduction.13 
 
6.4 Characterization of the Product after Reduction of 1 

Upon reduction of 1 with 1 eq. of CoCp2 in CH2Cl2 (in which 1 is 100% hs) the solution 

immediately changes color from black to bright orange, indicating the formation of a new species 

(2). UV-Vis spectroscopic titration of 1 with CoCp2 shows a complete transformation of 1 with 

one equivalent of reductant via appearance of a new, highly intense band at 445 nm. Both solid 

state and solution IR spectra show the disappearance of the intense N-O stretching band of 1 upon 

reduction to 2, but surprisingly, no new band is observed at ~2220 cm-1 (N2O) and within the 1600-

1800 cm-1 region (expected for DNIC and hs-{FeNO}8 complexes). This indicates the possibility 

of NO dissociation from our metal complex upon reduction. However, mass spectrometry shows 

an m/z of 376.09 that shifts to 377.09 with 15NO and 379.09 with 15N18O. This proves that NO is 

still bound to the reduction product; however, the N-O stretch must have somehow shifted to 

significantly lower energy (<1500 cm-1). At the same time, the 1H-NMR spectrum of the isolated 
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product 2 shows a normal diamagnetic NMR spectrum, and all the protons of the ligand scaffold 

can be identified and integrated accordingly. The Evans method further confirms that the 

compound is strictly diamagnetic at room temperature. The Mössbauer isomer shift of 2 (δ = 0.31 

mm/s) supports the formation of diamagnetic low-spin Fe(II) centers (Figure 6.7). This suggests 

the clean formation of an St = 0 species upon reduction of 1, instead of the expected DNIC 

formation according to eqn. 1. 

 

Figure 6.7 Mössbauer spectrum of complex 2 recorded at 4.2 K in an external 53-mT magnetic field applied parallel 
to the propagation direction of the γ beam. The experimental data are shown as black vertical bars. The blue line is a 
simulation using the following parameters:�G = 0.31 mm/s, |ΔEQ| = 1.40 mm/s. 
 

To determine the exact nature of the reduced product, crystals suitable for X-ray diffraction 

were grown from diffusion of diethyl ether into a saturated solution of 2 in acetonitrile. To our 

surprise, complex 2 is formed by the dimerization of two hs-{FeNO}8 units, bridged by the two 
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NO molecules (Figure 6.8, left), with a molecular formula of [Fe2(TPA)2(NO)2](OTf)2. To our 

knowledge, this is the first observation of an Fe2(NO)2 core in non-heme iron-NO chemistry. 

Further characterization by IR spectroscopy reveals the antisymmetric (as) N-O stretching 

frequency of 2 at 1350 cm-1 that shifts to 1330 cm-1 with 15NO and 1306 cm-1 with 15N18O (Figures 

6.8, right). In comparison, the hs-{FeNO}8 complex [Fe(TMG3tren)(NO)]+ shows Q(N-O) at 1618 

cm-1.12 The low N-O stretching frequencies observed for 2 indicate coordination of singlet NO�, 

i.e. complex 2 contains two ls-Fe(II) centers (S = 0) bound to two 1NO� units (S = 0) and is 

therefore strictly diamagnetic.   

 

Figure 6.8 Crystal structure of complex 2 with ellipsoids drawn at 50% probability. The triflate counter anion, solvent 
molecules, and hydrogen atoms are omitted for clarity. 
 

To further explore the electronic properties of this new complex, DFT calculations were 

performed. Geometry optimization of 2 with diamagnetic, bridged ls-{FeNO}8 centers (using 

BP86/TZVP, which has been shown to give good structures for nitrosyl complexes)20,21 shows 

good agreement with the structural parameters of 2. Subsequent frequency calculations predict 

Xas(N-O) = 1364 cm-1 and Xsym(N-O) = 1399 cm-1 with BP86/TZVP, where Xsym(N-O) is not IR 
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active (due to the centrosymmetric Fe2(NO)2 core). The calculated�Xas(N-O) is in very good 

agreement with experiment. Calculated Mössbauer parameters are also in excellent agreement with 

experimentally determined parameters (G�= 0.31(exp)/0.28(calc) mm/s and |'EQ| = 

1.40(exp)/1.66(calc) mm/s) and indicate that the Fe centers are in the ls +II state (Figure 6.8, right). 

As predicted by DFT, I do not observe the symmetric N-O stretch of complex 2. Interestingly, 

DFT calculations with hybrid functionals like B3LYP overestimate the stretching frequencies of 

the bridging NO ligands in the diamond core. In contrast, calculations where both of the iron 

centers are in the hs state immediately quench to the St = 0 spin state with various functional and 

basis set combinations, suggesting that the ls state of this complex is favorable, thus preventing us 

from directly calculating the energy of the analog of 2 where the Fe(II) centers are hs.  

Further characterization of complex 2 using NRVS revealed a vibrational feature at 765 

cm-1 that shifts to 748 cm-1 with 15NO labeling, and which originates from the Fe-NO symmetric 

stretching mode that is mixed with Fe-N-O bending mode. (Figure 6.9). A second signal observed 

at 596 cm-1 in the NRVS data shifts to 587 cm-1 with 15NO labeling, which likely originates from 

the Fe-N-O the out of plan bending mode of the Fe-N-O core. These assignments are supported by 

DFT results with high degree of agreement. This significant increase in the strength of the Fe-NO 

bond to 765 cm-1 correspond to the change in the electronic structure when the 3NO� ligand spin 

change to a bridging 1NO� ligand upon dimerization.  
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Figure 6.9 NRVS spectra of complex 2 in solid state. 
 

 
 
Figure 6.10 Crystal structure of complex 2 showing the distance of the agostic-type interactions between the 
hydrogen of the C-H bond of the coligand and the 1NO� ligand. 
 
Complex 2 is completely diamagnetic, therefore, NMR techniques are powerful tools to 

understand and confirm the structure of this complex in the solution state. The assignment of the 

proton signals in the 1H-NMR spectra of [Fe(TPA)2(NO)2](OTf)2 was performed using a 

Hf Hf’ 
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combination of 13C-NMR, HSQC, HMBC, and COSY. To our surprise, the assignment of these 

signals was complicated and challenging due to the unusual shift of some of the signals. The 

assignment of the protons and carbons are made based on the result from 2D-NMR experiment as 

shown in figure 6.11-13.  

 
Figure 6.11 2D-NMR HSQC of complex 2 in CD3CN. 



 

149 
 

 
Figure 6.12 2D-NMR HMBC of complex 2 in CD3CN. 

 
Figure 6.13 COSY of complex 2 in CD3CN. 
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Figure 6.14 1H-NMR of complex 2 in CD3CN, showing a completely diamagnetic NMR spectra, supporting the St = 
0 assignment of 2, which is further confirmed by Evans method. The spectrum is referenced against solvent residual 
signal. Assignment of proton peaks are confirmed by 2D-NMR techniques. The fragment of 2 with proton labeled is 
shown. 
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Figure 6.15 13C-NMR of complex 2 in CD3CN. The spectrum is referenced against solvent residual signal. The 
assignment of carbon signals is confirmed by 2D-NMR experiments.  
 

Based on the assignment, Hf’ and Ha are significantly shifted downfield in the NMR 

spectrum compared to their counterparts Hf and Hj, by about 2.11 ppm (Figure 6.14-15). Close 

examination of the crystal structure reveals a surprising agostic interaction of the Hf’ with the 

oxygen atom of one of the 1NO��ligands. The Hf’-O distances are 2.39 and 2.38 Å and the Ha-O 

distance is 2.26 Å, which are reasonable for this type of interaction (Figure 6.10). The Hf’ and Hf 

signals are split into two separate doublets that are shifted to 6.86 and 4.75 ppm (2.11 ppm 

difference), respectively. Hf’ is shifted downfield due to the H-bond with the oxygen of the 1NO� 

ligand, which deshields the proton nuclei. Therefore, this agostic-type interaction puts Hf’ and Hf 

into a different chemical environment. The chemical shift of the these Ha protons is around 8.50 

ppm for the pure TPA ligand; however, in complex 2, the signal of Ha is shifted to 10.61 ppm 

(2.11 ppm difference) which is also due to the agnostic-type interaction with the 1NO� ligand. This 

result shows that the 1NO� ligand is very negatively charged, thus making it capable of forming 

H-bonds with C-H groups that are in close proximity. To further analyze the strength of this 

hydrogen-bonding interaction, the quantum atom in molecule (QT-AIM) analysis was used. In 

addition, the hydrogen bond strength was calculated based on the 1H-NMR shifts using equation 

previously reported (EHB('GHf’) = 'GHf’ + (0.4 ± 0.2)) .22 The experimental results show that the 

interaction energy between Ha and O is 16.2 kJ/mol, while the bond between Hf’ and O is worth 

about 10.5 kJ/mol. This is in great agreement with QT-AIM analysis using the optimized structure 

of complex 2. In this case, the bond strength is predicted to be 15.9 kJ/mol and 11.2 kJ/mol for 

Hf’-O and Ha-O, respectively. This is a rare observation of a hydrogen bond between a C-H group 

and a coordinated NO, making this unique complex even more interesting.  
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6.5 Oxidation of Complex 2 to Form The Mixed Valent Diamond Core Complex 

Cyclic voltammetry performed on the dimer 2 reveals a quasi-reversible redox event at E1/2 = -296 

mV vs Fc+/Fc (Figure 6.16). A UV-Vis titration of 2 with FcPF6 shows that there is a significant 

change from the signal at 444 nm to a signal at 415 nm upon oxidation. EPR spectroscopy reveals 

a signal at g = 2.00, typical for S = 1/2 complexes, in agreement with a oxidation of the diamagnetic 

diamond core to form a mixed-valent product (Figure 6.17). Based on DFT calculations, this 

mixed-valent diamond core complex, [Fe2(TPA)2(NO)2](OTf)3, is a type III mixed valent complex 

with delocalized spin. NRVS spectroscopy reveals that the signal at 765 cm-1 of complex 2 is 

shifted to 747 cm-1 in the oxidized product, indicating only a small change in bonding upon 

oxidation, and most importantly, that the diamond core remains intact in the oxidized product 

(Figure 6.18).  
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Figure 6.16 Cyclic voltammogram of complex 2 in CH3CN at 5 mM concentration in TBA.OTf solution at 0.1 M 
concentration. 
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Figure 6.17 X-band EPR spectrum of the mixed valent complex in CH3CN in CH2Cl2 at 2 mM concentration at 4 K. 
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Figure 6.18 Solution state NRVS spectrum of the mixed valent complex overlay with the solid state NRVS spectrum 
of complex 2 showing the change after oxidation.  
 

6.6 Conclusion 

 

Scheme 6.1 Proposed mechanism for DNIC formation from hs-{FeNO}8 complexes based on the recent discovery of 
[Fe2(TMPA)2(NO)2](OTf)2.13    
 

In conclusion, I have discovered a new structural motif in non-heme iron-nitrosyl 

chemistry, an Fe2(NO)2 diamond core with two bridging NO ligands (complex 2), generated from 

the reduction of the non-heme hs-{FeNO}7 complex 1. I propose that the initially formed {FeNO}8 

complex (after reduction) is hs, but that upon dimerization the Fe centers undergo a spin crossover 

to ls, which leads to the stabilization of the Fe2(NO)2 core. The studies on the analogous complex 

3 show that this reactivity is unique for the TPA ligand scaffold, which has a ligand field that is 

on the borderline of spin-crossover. Spectroscopic data show that dimeric complex 2 contains ls-

Fe(II) with bound 1NO� ligands, and hence, is diamagnetic. It is interesting to note that 

dimerization of mononuclear hs-{FeNO}8 complexes has been proposed to be the key process in 
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the formation of N2O and DNICs, as also suggested by stoichiometry. To further support the idea 

that the one-electron reduced form of complex 1 (1red) is a hs-{FeNO}8 species, DFT calculations 

were performed on 1red (with triflate as the 6th ligand) in both the ls and hs state (using 

B3LYP*/TZVP). The results show that the hs state is clearly the ground state of 1red, being 15 

kcal/mol lower in energy compared to the ls state. Although previous studies have shown that 

DNICs are a common reaction product of hs-{FeNO}8 complexes, their mechanism of formation 

has remained elusive. I speculate that the dimeric structure of 2 could be a model for the 

corresponding intermediate that is responsible for DNIC formation (Scheme 6.1). Here, the 

{FeNO}8 units would remain hs in the dimer, which, after loss of Fe(II), generates a DNIC. In this 

sense, the Fe2(NO)2 structural motif observed in 2 is a perfect template for the formation of DNICs 

Because the N-O stretch of 2 is in an unexpected region, it is possible that these types of 

intermediates have been overlooked in previous protein and model complex studies. Given the 

close proximity of the iron centers in iron-sulfur proteins, this type of intermediate could 

potentially be formed. Nevertheless, whether a bridging structure like 2 exists in Nature remains 

to be seen. 

 

6.7 Experimental Section 

Reactions were generally performed using inert gas (Schlenk) techniques. All solvents were 

dried and freeze pump thawed to remove dioxygen and water. Preparation and handling of air 

sensitive materials was performed under a dinitrogen atmosphere in an MBraun glovebox, 

equipped with a circulating purifier (O2, H2O <0.1 ppm). Nitric oxide (99.95%) was first passed 

through an Ascarite II column and then a -80 oC cold trap to remove higher nitrogen oxide 

impurities prior to use.  
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Mass spectrometry experiments were conducted on an Agilent 6230 TOF HPLC-MS with 

manual injection. Compounds were dissolved in CH2Cl2 and then injected directly into the 

instrument. 

Structure Determination: Brown plates of complex 1 were grown from an acetonitrile/diethyl 

ether solution of the compound at 22 deg. C.  A crystal of dimensions 0.20 x 0.14 x 0.08 mm was 

mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low 

temperature device and a Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 Å) 

operated at 1.2 kW power (40 kV, 30 mA).  The X-ray intensities were measured at 85(1) K with 

the detector placed at a distance of 42.00 mm from the crystal.  A total of 3808 images were 

collected with an oscillation width of 1.0° in ω.  The exposure times were 2 sec. for the low angle 

images, 12 sec. for high angle. The integration of the data yielded a total of 35,038 reflections to 

a maximum 2θ value of 136.48° of which 4698 were independent and 4600 were greater than 

2σ(I). The final cell constants were based on the xyz centroids of 18,779 reflections above 10σ(I).  

Analysis of the data showed negligible decay during data collection; the data were processed with 

CrystalClear 2.0 and corrected for absorption.1 The structure was solved and refined with the 

Bruker SHELXTL (version 2018/3) software package, using the space group P1bar with Z = 2 for 

the formula C20H18N5O7F6S2Fe.2 All non-hydrogen atoms were refined anisotropically with the 

hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F2 

converged at R1 = 0.0311 and wR2 = 0.0843 [based on I > 2 (I)], R1 = 0.0315 and wR2 = 0.0846 

for all data.  

Purple blocks of complex 2 were grown from an acetonitrile/diethyl ether solution of the 

compound at -33 deg. C.  A crystal of dimensions 0.12 x 0.10 x 0.10 mm was mounted on a Rigaku 

AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device 
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and a Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 Å) operated at 1.2 kW 

power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector placed 

at a distance of 42.00 mm from the crystal.  A total of 2028 images were collected with an 

oscillation width of 1.0° in ω.  The exposure times were 1 sec. for the low angle images, 3 sec. for 

high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for 

absorption.3 The integration of the data yielded a total of 31,405 reflections to a maximum 2θ value 

of 138.32° of which 3875 were independent and 3769 were greater than 2σ(I).  The final cell 

constants were based on the xyz centroids of 18,500 reflections above 10σ(I). Analysis of the data 

showed negligible decay during data collection. The structure was solved and refined with the 

Bruker SHELXTL (version 2016/6) software package, using the space group P2(1)/c with Z = 2 

for the formula C38H36F6Fe2N10O8S2. All non-hydrogen atoms were refined anisotropically with 

the hydrogen atoms placed in idealized positions.  Full matrix least-squares refinement based on 

F2 converged at R1 = 0.0314 and wR2 = 0.0847 [based on I > 2 (I)], R1 = 0.0323 and wR2 = 

0.0856 for all data.  

Purple plates of complex 3 were grown from a tetrahydrofuran/pentane solution at 22 deg. C.  

A crystal of dimensions 0.31 x 0.14 x 0.02 mm was mounted on a Bruker SMART APEX-I CCD-

based X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-

ray tube (λ = 0.71073 A) operated at 1500 W power (50 kV, 30 mA).  The X-ray intensities were 

measured at 85(1) K; the detector was placed at a distance of 5.070 cm from the crystal.  A total 

of 2410 frames were collected with a scan width of 0.5°in ω and 0.45°in phi with an exposure time 

of 30 s/frame.  The integration of the data yielded a total of 58,299 reflections to a maximum 2θ 

value of 56.62°of which 7563 were independent and 5739 were greater than 2σ(I).  The final cell 
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constants (Table S16) are based on the xyz centroids of 9982 reflections above 10σ(I). Analysis of 

the data showed negligible decay during data collection; the data were processed with SADABS 

and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL 

(version 2018/3) software package, using the space group C2/c with Z = 4 for the formula 

C28H34N4O5F3SFe. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms 

placed in idealized positions. Full matrix least-squares refinement based on F2 converged at R1 = 

0.0402 and wR2 = 0.0928 [based on I > 2 (I)], R1 = 0.0623 and wR2 = 0.1052 for all data. The 

bound CF3SO3  ligand is disordered and was refined with partial occupancy orientations 

constrained to sum to one.  

 

Synthesis: 

The ligand TPA was synthesized according to reported procedures and purity was confirmed 

by NMR spectroscopy.7 1H-NMR (400 MHz, CDCl3): δ 8.52 (ddd, 3H), 7.64 (td, 3H), 7.58 (s, 

2H), 7.56 (s, 1H), 7.13 (ddd, 3H), 3.87 (s, 6H) 

The ligand BMPA-tBu2PhOH was synthesized according to reported procedures and purity 

was confirmed by NMR spectroscopy.8 Yield: 365 mg, 88%. 1H NMR (400 MHz, CDCl3):  10.62 

(s, 1H); 8.55 (d, 2H); 7.63 (t, 2H); 7.37 (d, 2H); 7.20 (s, 1H); 7.15 (t, 2H); 6.87 (s, 1H); 3.88 (s, 

4H); 3.80 (s, 2H); 1.45 (s, 9H); 1.26 (s, 9H). 

[Fe(TPA)(CH3CN)2](OTf)2: Under an inert atmosphere, 498 mg (1.15 mmol) 

Fe(OTf)2•2CH3CN and 351 mg (1.21 mmol) TPA were combined in 8 mL of CH3CN. The reaction 

was stirred for 2 hours, at which point 80 mL of diethyl ether was added, causing a red solid to 

precipitate. Filtration gave the title compound as a red solid. Yield: 789 mg, 95%. The 1H-NMR 

and UV-Visible spectra of this complex are in accordance with previous literature reports.9 
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[Fe(TPA)(NO)(OTf)](OTf) (1): Under an inert atmosphere, 200 mg (0.28 mmol) of 

[Fe(TPA)(CH3CN)2](OTf)2 was dissolved in a minimal volume of CH3CN and exposed to excess 

NO gas, causing the solution to change color from red to dark brown. The product was precipitated 

by addition of 24 mL of diethyl ether. Filtration afforded the title compound as a dark brown 

powder. Yield: 130 mg, 68%. Single crystals suitable for X-ray diffraction were grown by vapor 

diffusion of diethyl ether into a concentrated CH3CN solution of 1 in a Schlenk tube, charged with 

NO gas. 1H-NMR for the perchlorate analog has been reported by our laboratory previously10 (400 

MHz, CD2Cl2, all peaks appear as broad singlets): δ 102.1, 72.2, 64.0, 63.0, -5.0 ppm. 

Characterization: Elemental anal. calcd. for C20H18F6FeN5O7S2: C, 35.62; H, 2.69; N, 10.39; found 

(%): C, 35.73; H, 2.73; N, 10.13. 

[Fe2(TPA)2(NO)2](OTf)2 (2): Under an inert atmosphere, 200 mg (0.30 mmol) of complex 1 

was dissolved in a minimal volume of CH2Cl2 and 1 equivalent of CoCp2 was added into the 

solution, causing the immediate color change from dark brown to orange. A minimum amount of 

hexane was then added to crystallize the product out overnight, which gave a crude solid mixture 

of 2 and a cobaltocenium impurity. The crude product was then filtered and the resulting solid was 

washed with a minimum amount of cold tetrahydrofuran to wash out more cobaltocenium salt. The 

remaining solid was dissolved in acetonitrile and a minimum amount of diethyl ether was added 

to recrystallize overnight. The solution was then filtered again to obtain the pure complex 2 as a 

black crystalline solid. 1H-NMR (700 MHz, CD3CN): δ 10.61 (dd, 2H), 7.44 (td, 4H), 7.29 (m, 

8H), 7.12 (m, 4H), 6.85 (d, 4H), 6.36 (m, 6H), 4.73 (d, 4H), 3.48 (s, 4H). Characterization: 

Elemental anal. calcd. for C38H36F6Fe2N10O8S2: C, 43.44; H, 3.45; N, 13.33; found (%):C, 43.55; 

H, 3.53; N, 13.39. Mass spectrometry m/z: calcd. for the cationic half fragment C18H18FeN5O: 
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376.22; Found: 376.09. Mass spectrometry m/z: calcd. for the 15NO labelled cationic fragment 

C18H18FeN5O: 377.09; Found: 377.09. 

The preparation of complexes 1 and [Fe(TPA)(NO)](BF4)2 (1-BF4) is similar, except that 

Fe(BF4)2•2CH3CN is used in the latter case as the iron source. 

[Fe(BMPA-tBu2PhO)(OTf)]: Under an inert atmosphere, 629 mg (1.50 mmol) of BMPA-

tBu2PhOH and 104 mg of (1.48 mmol) potassium methoxide were combined in 5 mL of methanol.  

The suspension was stirred briefly, and 487 mg (1.38 mmol) Fe(OTf)2 was then added.  The 

reaction turned green.  After approximately 5 hours, the reaction was filtered and solvent is 

removed under reduced pressure. The solid was taken up in THF and excess ethanethiol was added. 

After the reaction had stirred for 45 minutes, all volatiles were removed under reduced pressure.  

The resulting material was recrystallized from THF/hexanes, giving a pale green solid. Yield: 550 

mg, 59%. 

[Fe(BMPA-tBu2PhO)(NO)(OTf)] (3):  Under an inert atmosphere, 200 mg [Fe(BMPA-

tBu2PhO)]OTf was dissolved in 5 mL THF and exposed to excess NO gas. The solution 

immediately turned purple. The reaction was stirred under NO headspace for 30 minutes.  Hexanes 

was then added, and the product was allowed to precipitate at -33 °C overnight. The solution was 

filtered under inert atmosphere to give the title compound as a purple solid. Yield: 181 mg, 86%.  

Single crystals suitable for x-ray diffraction were grown by slow diffusion of pentane into a 

concentrated THF solution. 

Spin state changes in 1 and 1-BF4. It is interesting to note that both complexes 1 and 3 have 

triflate bound as the sixth ligand, and even though these complexes are prepared and/or 

recrystallized in CH3CN solution, the triflate remains bound in the solid state. This indicates that 

triflate is actually a quite strong ligand for these high-spin (hs) {FeNO}7 complexes. Moreover, 
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the change in the N-O stretch between the solid and the CH2Cl2 solution state for these complexes 

is very small (1806 vs. 1800 cm-1 for 1, and 1752 vs. 1752 cm-1 for 3), again indicating that these 

complexes remain six-coordinate in solution with the triflate bound as the sixth ligand. In CH3CN 

solution, however, complex 1 shows formation of a distinct amount of low-spin (ls) complex (by 

solution IR and EPR), which we attribute to the equilibrium: 

[Fe(TPA)(NO)(OTf)]+ (hs)  +  CH3CN  <===>  [Fe(TPA)(NO)(CH3CN)]2+ (ls)  +  OTf� 

where the CH3CN-bound form is actually ls. In order to interrogate this point further, we then 

prepared the complex 1-BF4 where the triflate is replaced by the much more weakly coordinating 

counter ion BF4�. This complex is again hs in the solid state and when dissolved in CH3CN, shows 

formation of a large fraction of the ls complex. In solution at room temperature, the hs state is still 

dominant, although it is not a priori clear whether this fraction of the complex is either five-

coordinate or six-coordinate with BF4� bound. The hs N-O band in the solution IR spectrum is 

broad and shows at least two components, and the exact nature of these species it not clear. Upon 

cooling and freezing the solution, more of the CH3CN-bound complex forms, driven by entropy, 

resulting in an EPR spectrum that now almost exclusively shows the ls state. In comparison to 1, 

the EPR data in CH3CN solution therefore show quite clearly that it is indeed CH3CN coordination 

that is responsible for the formation of the ls state of 1. 
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Chapter 7 

Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-

Valent Non-Heme Iron-Nitrosyl Complexes 
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In Chapter 7, I present a full spectroscopic and electronic structure analysis of the unique 

[Fe(TPB)(NO)]+/0/��series.1 The Peters lab has previously reported the synthesis and 

characterization of these complexes; however, a concrete conclusion about their electronic 

structure is still up for debate.2 I collaborated with the Peters group to perform a detail electronic 

structure investigation using NRVS and DFT. In these complexes, a second redox-active unit, 

namely a borane, is positioned in close proximity to the metal by the ligand architecture. 

Ambiphilic ligands that utilize Lewis base donors both to coordinate a metal center and position a 

Lewis acid (LA) in its proximity have become increasingly popular in the past two decades.3-5 

However, given the constraints imposed by the ligand scaffolds used, evaluating the degree of M-

LA bonding is often challenging.
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Herein, I demonstrate the utility of force constants derived from quantum-chemistry 

centered normal coordinate analysis (QCC-NCA) of nuclear resonance vibrational spectroscopy 

(NRVS) data in deconvoluting the electronic structure and bonding at Fe in a highly covalent 

ligand sphere comprised of nitrosyl, boratrane, and phosphine ligands (Scheme 7.1). I find that, 

despite their low formal Fe redox states, an NO+ redox state with strong Fe-NO π-bonds is 

maintained throughout the redox series. This is made possible because of the high degree of 

structural and electronic flexibility in the TPB ligand, demonstrated via the breaking of an η4-

BCCP donor interaction present in the most oxidized complex, and formation of a reverse dative 

Fe→B bond in the most reduced complex. Similarly, a reverse dative Fe→B bond has also been 

identified in the structurally related [Fe(TPB)(N2)]− complex by NRVS, underscoring the 

relevance of this interaction in promoting small molecule functionalization (i.e., N2 fixation).6 

These conclusions are corroborated by continuous wave and pulse electron paramagnetic 

resonance spectroscopy (EPR) and density functional theory (DFT) calculations. 

 
 
Scheme 7.1 Reaction scheme for the [Fe(TPB)(XY)] complexes. 
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7.1 Nuclear Resonance Vibrational Spectroscopy (NRVS) for the ls-{FeNO}8-10 Series  

 The Fe-NO bonding in the ls-{FeNO}8-10 series is evaluated and analyzed herein based on 

NRVS measurements (see Figure 1). NRVS is a vibrational technique that selectively detects 

vibrations that involve the 57Fe center, making it well-suited for the identification of Fe-ligand 

stretching and bending modes. The experimental NRVS data of the ls-{FeNO}8 complex reveal 

an intense band at 610 cm-1 and weaker signals at 537 and 540 cm-1. The feature at 610 cm-1 is 

assigned to the Fe-NO stretch (see below), whereas those at 537 and 540 cm-1 are in the correct 

range for Fe-N-O bending modes. With an Fe-NO stretch of 610 cm-1, this complex has one of the 

strongest transition metal-NO bonds observed to this date and the strongest for an iron compound,7 

surpassing even ls-{FeNO}6 complexes in hemes (with typical Fe-NO stretching frequencies 

around 590 cm-1).8,9 In IR spectroscopy, the N-O stretch of this complex is observed at 1745 cm-1. 

The NRVS data of the ls-{FeNO}10 complex are remarkably similar to those of the ls-{FeNO}8 

species described above. In particular, its Fe-NO stretch is observed as the most intense signal at 

602 cm-1, with the weaker features at 525 and 543 cm-1 again associated with Fe-N-O bending 

modes (see Figure 1). The N-O bond of this complex is the weakest (and most activated) in the 

series, with an N-O stretching frequency of 1568 cm-1 as determined by IR spectroscopy.  
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Figure 7.1 Experimental NRVS VDOS data of the ls-{FeNO}8 complex [Fe(TPB)(NO)](BArF

4) (purple), 
the ls-{FeNO}9 complex [Fe(TPB)(NO)] (brown) and the ls-{FeNO}10 complex [Na(12-crown-
4)2][Fe(TPB)(NO)] (red) vs QCC-NCA fits (black). 
 

The intense, high-energy NRVS feature of the ls-{FeNO}9 species, observed at 583 cm-1, is 

again assigned to the Fe-NO stretch. This mode is significantly shifted compared to 610 cm-1 ('Q 

= -27 cm-1) and 602 cm-1 ('Q = -19 cm-1) in the other two complexes, respectively, which, as I will 

show below, is due to spin polarization. The Fe-N-O bending modes are similarly shifted as well 

(506 and 522 cm-1, see Figure 1). The N-O stretch of this complex is located at 1667 cm-1.  

In summary, comparison of the Fe-NO and N-O stretching frequencies along the ls-

{FeNO}8-10 series does not reveal a consistent trend. In a simple S-backbonding model (between 

the Fe-d and NO(S*) orbitals), I would anticipate that concomitant with the observed stepwise 
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weakening of the N-O bond along the ls-{FeNO}8-10 series there would be a stepwise strengthening 

of the Fe-NO bond. Instead, for the ls-{FeNO}8/9 pair, both the Fe-NO and N-O stretching 

frequencies (and bond strengths) decrease in the ls-{FeNO}9 compound. This trend is then 

reversed in the ls-{FeNO}9/10 pair (now showing a pattern that would be in line with an increase 

in S-backbonding upon reduction), creating a discontinuity in the observed behavior. Thus, it is 

clear that a more detailed analysis, one that considers all available experimental data supported by 

electronic structure calculations, is necessary. 

 

7.2 DFT Calibration for the ls-{FeNO}8-10 Series 

In our previous report, the ls-{FeNO}8 and ls-{FeNO}10 complexes were described as 

closed shell systems, on the basis of their diamagnetic ground states (from multinuclear nuclear 

magnetic resonance (NMR) spectroscopy). Alternatively, diamagnetic ground states could also 

arise from strong antiferromagnetic coupling between a hs iron center and a triplet NO� ligand, 

which is often observed for non-heme Fe-NO complexes.10 Furthermore, a recent interrogation of 

a related redox series, [Fe(TPB)(NNMe2)]+/0/−, by experiment and theory revealed 

antiferromagnetic coupling between the Fe center and a hydrazyl radical anion, [NNMe2]•− in some 

redox states.11 Therefore, I decided to re-evaluate whether the ground states of the 

[Fe(TPB)(NO)]+/0/� complexes are best described by closed shell (CS) or broken-symmetry (BS) 

wave functions. As in previous work, I applied both the gradient-corrected functional BP86 and 

the hybrid functional B3LYP, now in combination with the TZVP basis set, for these 

calculations.12-16 While BP86 has previously been shown to be a reliable functional in predicting 

geometric structures and spectroscopic properties of iron-nitrosyl complexes, B3LYP tends to 

underestimate the covalency of the Fe-N-O moiety.17,18 However, hybrid functionals like B3LYP 
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with a higher percentage of Hartree-Fock exchange often allow for the geometry optimization of 

BS states in strongly spin-coupled systems, which is difficult with gradient-corrected functionals 

like BP86.  

 
Figure 7.2 Experimental NRVS VDOS data of the ls-{FeNO}8 complex (top) in comparison with the 
spectra generated by closed-shell (middle) and broken-symmetry (bottom) calculations, using the indicated 
functionals together with the TZVP basis set.  
 

To our surprise, the structural features derived from X-ray crystallography were well-

reproduced by both the CS and BS state in B3LYP calculations on the ls-{FeNO}8 complex. For 

example, the N-O bond length only deviates by 0.01 Å for both states (1.16/1.17/1.17 Å for 

exp/CS/BS). Similarly, the Fe-NO bond distance shows very good agreement with the 

experimental data, with just 0.01-0.02 Å deviation for both states (1.66/1.65/1.68 Å for 

exp/CS/BS). Both calculations show moderate agreement with the experimental Fe-B bond 

distance (2.31/2.37/2.37 Å for exp/CS/BS). Finally, the BS state shows better agreement with the 
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experimental data for the Fe-N-O angle (176/172/175o for exp/CS/BS). Thus, although purely 

structural comparisons do not distinguish between a CS or BS electronic structure for the ls-

{FeNO}8 complex, the accuracy of the predicted NRVS spectra is dramatically different, as shown 

in Figure 2. Whereas the predicted spectrum for CS shows very good agreement with experiment, 

the BS calculation shows large deviations from the experimental data (Fe-NO stretch: 610/654/490 

cm-1 for exp/CS/BS). Interestingly, the BS-predicted Fe-NO stretch at 490 cm-1 is in line with 

experimentally determined Fe-NO stretching frequencies in complexes featuring 3NO− 

ligands,10,19,20 suggesting that the disagreement is not an artifact of the calculation. In summary, 

this result shows that the CS wavefunction provides a better representation of the ground state 

electronic structure of the ls-{FeNO}8 complex, which differs from most other (trigonal-

bipyramidal) non-heme iron-NO complexes.10,21-23 

              
 
 
 
Figure 7.3 Overlay of crystal structures (blue) and the BP86/TZVP-optimized structures (yellow) of the ls-
{FeNO}8-10 series, [Fe(TPB)(NO)]+/0/�, showing excellent agreement between the DFT-predictions and the 
experimental structures. 
 

Comparing CS solutions calculated with both B3LYP and BP86, I find that the BP86 

functional not only better reproduces the vibrational and structural data for the ls-{FeNO}8-10 

series, but is also able to accurately predict the isomer shift (δ) and quadrupole splitting (|Δeq|) 

derived from Mössbauer spectroscopy and the hyperfine parameters derived from pulse EPR 

ls-{FeNO}8 ls-{FeNO}9 ls-{FeNO}10 
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spectroscopy (Table 1). Thus, I confirm that a CS, highly covalent description of the ground state 

in the [Fe(TPB)(NO)]+/0/� complexes is most appropriate.  

Table 7.1 Experimental structural and spectroscopic data versus computational results for the series of ls-
{FeNO}8-10 complexes. 

 

The BP86-optimized structures show very good agreement with the crystal structures of all 

three compounds, as further demonstrated by the structural overlays in Figure 3. The ls-{FeNO}8 

complex has a distinct distorted trigonal-bipyramidal geometry, where one of the P-Fe-P angles in 

the trigonal plane is expanded to 154o allowing for an unusual intramolecular K4-BCCP interaction. 

 ls-{FeNO}8 ls-{FeNO}9 ls-{FeNO}10 
 Exp. BP86 Exp. BP86 Exp. BP86 

Geometric Parameters (Å and degrees) 
d(N�O) 1.16 1.18 1.19 1.19 1.22 1.21 

d(Fe�1O)� 1.66 1.66 1.67 1.66 1.65 1.65 
d(Fe�B)� 2.31 2.32 2.45 2.42 2.45 2.46 
�Fe�N�O 176 174 176 176 179 180 
d(Fe�P) 2.28 2.33 2.28 2.30 2.21 2.24 
d(Fe�P) 2.28 2.33 2.30 2.32 2.21 2.24 
d(Fe�P) 2.29 2.31 2.35 2.37 2.23 2.24 
P-Fe-P 100 99 106 107 115 116 
P-Fe-P 101 101 111 110 116 116 
P-Fe-P 154 154 126 126 116 116 

Spectroscopic Parameters: Vibrational (cm-1, mdyn/Å and mdyn•Å) 
Q(Fe�NO) 610 638 583 621 602 633 
Q(N-O) 1745 1751 1667 1692 1568 1607 

Glb(Fe-N-O) 540/537 531/525 522/506 516/508 543/525 561/535 

f(Fe-NO) 4.53 4.95 4.15 4.80 4.45 5.07 
f(N-O) 12.5 12.4 11.3 11.5 9.79 10.1 
f(Fe-B) 0.51 0.51 0.42 0.42 1.56 1.56 

Spectroscopic Parameters: Mössbauer (mm/s) 
G� 0.24 0.30 0.26 0.25 0.17 0.20 
'EQ 1.50 1.43 0.91 0.81 1.62 1.53 

Spectroscopic Parameters: Pulse EPR (MHz) 
A(14N) - - -6.0, -8.3, 

3.8 
-0.8, -5.1, 

8.8 
- - 

A(11B) - - 14.7, 14.7, 
18.0 

-15.2, -15.6, 
-20.3 

- - 
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Both of these features are well reproduced in the DFT optimized structure. As the compound is 

reduced to the ls-{FeNO}9 state, the complex becomes more symmetric (closer to an actual 

trigonal-bipyramidal geometry), and the unusually large P-Fe-P angle decreases from 154o to 126o. 

The ls-{FeNO}10 complex is the most symmetric with only about 1o difference between the three 

P-Fe-P angles.  

The BP86 calculations reproduce the vibrational properties of the ls-{FeNO}8-10 

complexes, especially the Fe-NO and N-O stretching frequencies, quite well with respect to 

experimental data (Figures S1). Importantly, the calculations capture the lack of a correlation 

between the change in Fe-NO and N-O stretching frequencies along the ls-{FeNO}8-10 series (see 

Table 1). Thus, I use these calculations as the basis to further analyze the NRVS data and refine 

the force constants of the Fe-N-O units in the three complexes. In this way, I further address the 

question of whether the reduction along the ls-{FeNO}8-10 series is metal- or NO-based.  

7.3 QCC-NCA for the ls-{FeNO}8-10 Series 

To obtain simulations of the NRVS data of the ls-{FeNO}8-10 complexes and determine 

high-quality (experimental) force constants for their Fe-N-O units, a quantum-chemistry centered 

normal coordinate analysis (QCC-NCA) was performed.11,24 This process allows us to correct the 

DFT-calculated force constants, vibrational frequencies and NRVS intensities by fitting the 

experimental NRVS data, starting from the DFT-predicted force field. In this way, I obtain high-

quality force constants for the modes of interest that afford detailed insight into the changes in Fe-

NO and N-O bonding along the ls-{FeNO}8-10 series, independent of potential vibrational (mode) 

mixing. In the spirit of the QCC-NCA approach,24 only the small number of force constants 

relevant to the Fe-N-O unit are varied, while the DFT-predicted force constants of the [Fe(TPB)] 

frame are kept unchanged.  
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For the ls-{FeNO}8 complex, the Fe-NO force constant was corrected from the calculated 

value of 4.95 to 4.53 mdyn/Å to fit the Fe-NO stretch at 610 cm-1 (DFT-calculated value: 638 cm-

1). Since the Fe-N-O unit is close to linear, the Fe-N-O unit has two linear bending vibrations, 

which are assigned to the modes at 537 and 540 cm-1 in the NRVS data, with force constants of 

0.41 and 0.57 mdyn•Å. The relatively high anisotropy of the two linear bends is consistent with 

the strong deviation from trigonal symmetry in the FeP3 plane. The experimental N-O force 

constant of 12.5 mdyn/Å is close to the initial, DFT-calculated value. Vibrational assignments are 

listed in Table 2, and the experimental and QCC-NCA simulated NRVS data are compared in 

Figure 1. All force constants that were fit are listed in Table 3.  

Table 7.2 Experimental NRVS data vs. QCC-NCA simulation results (in cm-1) and vibrational assignments 
for the ls-{FeNO}8-10 series. 

 

The same process was applied to the ls-{FeNO}9 and ls-{FeNO}10 compounds, and the 

resulting QCC-NCA simulated NRVS data are compared to experiment in Figure 1. Vibrational 

assignments are provided in Table 2, and key force constants of the ls-{FeNO}8-10 series are listed 

in Tables 2 and 4. Reduction of the ls-{FeNO}8 to the ls-{FeNO}9 complex causes both the Fe-

NO and N-O bonds to become weaker (with force constants decreasing from 4.53/12.5 to 4.15/11.3 

mdyn/Å, respectively), confirming that this unusual drop in both the Fe-NO and N-O stretching 

frequencies is not caused by unforeseen mode mixing. 

Whereas this trend is not in agreement with a simple change in S-backbonding, as discussed 

above, this type of behavior actually resembles that observed for the hs-{FeNO}7/8 complexes, 

 ls-{FeNO}8 ls-{FeNO}9 ls-{FeNO}10 

 Exp. QCC-NCA Exp. QCC-NCA Exp. QCC-NCA 

Q(Fe�N) 610 610 583 583 602 602 
Q(N-O) 1745 1745 1667 1667 1568 1568 

G(Fe-N-O) 537 535 506 (500) 506 (504) 525 536 
G(Fe-N-O) 540 544 522 527 543 570 
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[Fe(TMG3tren)(NO)]2+/+, where reduction leads to a decrease in S-donation from the 3NO� ligand 

to the hs-Fe center.10 Reduction from the ls-{FeNO}9 to the ls-{FeNO}10 state causes a further 

weakening of the N-O bond (N-O force constant: 11.3 vs 9.79 mdyn/Å), but at the same time, the 

Fe-NO bond now becomes stronger (Fe-NO force constant: 4.15 to 4.45 mdyn/Å). This is opposite 

to the trend observed for the ls-{FeNO}8/9 pair, but in agreement with the trends derived from the 

vibrational frequencies (see above).  

A distinct Fe-B stretching mode is not observed in the experimental NRVS data. Because 

of this, I was unable to optimize the corresponding Fe-B force constants via the QCC-NCA 

process, and Table 3 lists the DFT-calculated Fe-B force constants. Nonetheless, the close 

agreement between the DFT-predicted and the experimental force constants gives us confidence 

that the Fe-B force constants are accurate (±10%). 

Table 7.3 Summary of key force constants. 
 

Force 
Constant 

ls-{FeNO}8 ls-{FeNO}9 ls-{FeNO}10 {FeN2}9 Force 
Constant 

Fe�NO 4.53 4.15 4.45 2.62 Fe�N2 

Fe�B 0.51 0.42 1.56 1.21 Fe�B 

N�2 12.5 11.3 9.79 14.9 N�1 

Fe�P4/P5/
P6 

1.40/1.56/1.91 1.03/1.17/0.98 1.96/1.99/1.93 3.06/1.36/1.32 Fe�P4/P5/P6 

Fe�N�2lb 0.41 0.46 0.54 0.51 Fe�N�1lb  

Fe�N�2lb 0.57 0.43 0.54 0.62 Fe�N�1lb  
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In the ls-{FeNO}8 and ls-{FeNO}9 complexes, the Fe-B interaction is relatively weak, with 

a calculated force constant of ~0.5 mdyn/Å. Reduction to the ls-{FeNO}10 state then causes a 

remarkable increase in the Fe-B bond strength, with the Fe-B force constant increasing to 1.56 

mdyn/Å. The data thus suggest that an Fe-B single bond forms in the ls-{FeNO}10 state via a 

reverse dative bond with the Fe center serving as a Lewis base, donating a pair of electrons to the 

borane Lewis acid. This clearly shows that dz2 is doubly occupied in the ls-{FeNO}10 state. 

Relatedly, a dative B−→Cu bond has previously been identified computationally and 

spectroscopically in [Cu(TPB)]−, 25 and Fe-B flexibility has been implicated as a key feature in 

stabilizing Fe across formal redox states.26,27 

 

7.4 Pulse EPR Measurements of the ls-{FeNO}9 Complex – Done by the Peters Lab 

 The ls-{FeNO}9 complex [Fe(TPB)(NO)] has an St = 1/2 ground state and is therefore EPR 

active. As previously reported, this complex displays an axial EPR signal (g = 1.99, 1.99, 2.45) 

with a large gz value (2.45). This is consistent with the approximate trigonal-bipyramidal geometry 

of the complex and an electronic structure in which the electron hole is mostly located in the xy-

plane (with the Fe-NO vector corresponding to the z-axis) and on the metal center (directly 

indicated by the large g shift). This leads to strong 2nd order spin-orbit coupling in the z direction. 

Indeed, similar axial EPR spectra with large gz shifts have been measured for a number of TPB 

and P3Si (features Si in place of B) complexes with similar electronic structures (i.e., eg3 ground 

states).28 As these complexes vary primarily in the identity of their axial ligand, information about 

that Fe-L interaction can be extracted from the g-anisotropy. This is further analyzed in the 

Discussion section, in direct comparison to the isoelectronic N2-adduct [Fe(TPB)(N2)]�.  
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Figure 7.4 Field-dependent X-band HYSCORE spectra of the ls-{FeNO}9 complex [Fe(TPB)(14/15NO)]. 
The experimental data are plotted in color in the top panels, ranging from dark blue to red in increasing 
intensity. These same data are plotted in grey in the bottom panels, with 14/15N and 11B simulations overlaid 
in red and green, respectively. Unsimulated features centered around 15 MHz in the (+,+) quadrant arise 
from weakly coupled 1H nuclei of the ligand or from solvent. Acquisition parameters: Temperature = 7 K; 
microwave frequency = 9.711 GHz; B0 = 290 mT (g = 2.393), 327 mT (g = 2.122), 347 mT (g = 2.000); 
MW pulse length (π/2, π) = 8 ns, 16 ns; τ = 142 ns (g = 2.393), 144 ns (g = 2.122), 136 ns (g = 2.000); t1 = 
t2 = 100 ns; Δt1 = Δt2 = 16 ns; shot repetition time (srt) = 1 ms. 
 

Interestingly, if we include all (P3E)Fe-L complexes (E = B in TPB, Si) with an eg3 ground 

state for which an X-ray structure and EPR spectrum has been measured, we find a strong linear 

correlation between Δgz and the Fe–P distance (R2 = 0.92). This suggests that the covalency of the 

Fe-P bond and/or the out-of-plane displacement of the Fe center might play a key role in 

determining Δgz. Furthermore, we find that the Fe center in [Fe(TPB)(NO)] has a Δgz that lies 

between those found for formally FeI and FeIII ions in (P3E)Fe-L complexes. Given the vibrational 

and computational data are consistent with an NO+ ligand state and thus the Fe is formally Fe−I, 



 

178 
 

this demonstrates the tremendous ability of a covalently bonded NO+ ligand to accept electron 

density.  

Analysis of X-band hyperfine sublevel correlation (HYSCORE) spectroscopy acquired on 

samples prepared with natural abundance (14N) and 15N labeled NO bound (see Figure 4) allowed 

us to accurately determine relatively weak hyperfine coupling constants to the coordinated 

14/15N(O) and 11B centers, providing further insight into the electron spin distribution in the 

complex. The observed coupling to the 14N nucleus is largely axial consistent with the axial g-

tensor observed in the CW EPR measurements. Simulation of the 15N HYSCORE data allowed for 

determination of the nitrogen hyperfine coupling tensor as A(15N) = [8.4, 11.6, -5.4] MHz, 

independent of any influence from the nuclear quadrupole interaction present in the natural 

abundance data due to the presence of the 𝐼 = 1 14N nucleus. Accounting for the relative 

gyromagnetic ratios of 14/15N (γ14N/γ15N = -0.7129) the 14N hyperfine coupling tensor is A(14N) = 

[-6.0, -8.3, 3.8] MHz, which can be decomposed into an isotropic component aiso(14N) = -3.5 MHz 

and an anisotropic component of T(14N) = [−2.5, −4.8, 7.3] MHz. The small aiso value indicates 

that minimal spin (estimated: 0.002 e−) is an a1-type orbital (s or pz) with most spin (estimated: 

0.065 e−) in the e-symmetric px and py set. These results would be consistent with a spin 

polarization mechanism that transfers electron density from the dxy/dx2-y2 orbitals into the px/py 

orbitals of the NO ligand. The total spin density of −0.07 e− on the N atom is consistent with the 

DFT predictions for a CS state. Comparison of these hyperfine parameters with those similarly 

extracted for [Fe(TPB)(NNMe2)]+/− further supports the CS rather than a BS electronic ground 

state for the ls-{FeNO}9 complex. 

Comparison of the HYSCORE data of the 14N and 15N isotopologues allows for accurate 

determination of not only the hyperfine coupling constants, but also the electric interaction of the 
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I = 1 14N nuclear quadrupole with the inhomogeneous electric field induced by electron density in 

p-orbitals at the nucleus. This interaction is parameterized by the nuclear quadrupole coupling 

constant (e2qQ/h = 0.8) and the electric field gradient (EFG) asymmetry (η = 0). The low 

magnitude of e2qQ/h and negligible EFG rhombicity indicates nearly spherical charge density 

about the nitrogen nucleus in this complex, in agreement with the linear Fe-N-O unit and equal 

spin distribution in the px and py orbitals. 

The hyperfine coupling to boron with A(11B) = [14.7, 14.7, 18.0] MHz can be decomposed 

into aiso(11B) = 15. 8 MHz and a small anisotropic contribution of T(11B) = [−1.1, −1.1, 2.2] MHz. 

These data indicate that significantly less electron density is on that ligand (0.006 e− in a1 type 

orbitals and 0.017 e− in e-type orbitals) and are consistent with the DFT results. We interpret these 

results as being consistent with the lack of available orbitals of appropriate symmetry to accept 

electron density from the xy-plane via spin polarization. X-band ENDOR experiments to 

determine the hyperfine coupling to 31P of the phosphine ligands are best modeled with a single 

class of fairly isotropic coupling constants, A(31P) = [82, 70, 70] MHz, which corresponds to 

aiso(31P) = 74 MHz and an anisotropic component of T(31P) = [8, −4, −4] MHz. The large hyperfine 

coupling to the 31P centers again supports the idea that the electron hole is mostly located in the 

xy-plane. 

 

7.5 Electronic Structure Analysis 

The ls-{FeNO}8 Complex has eight valence electrons, as indicated by the Enemark-

Feltham index, and, as discussed above, the complex has a closed-shell singlet ground state, which 

means that of the total seven valence MOs (5 Fe(d) + 2 NO(S*) orbitals), four valence MOs are 

doubly occupied, and three are empty. The MOs themselves are strongly mixed, and Scheme 7.2 

represents a simplified version of the bonding scheme. Here, the Fe-N-O unit corresponds to the 
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molecular z-axis. The strong distortion away from C3 symmetry towards a T-shaped geometry in 

the FeP3 plane, characterized by a large P-Fe-P angle (154°), causes a large energy splitting 

between the dxy and dx2-y2 orbitals of 1.97 eV, as indicated in Scheme 7.3. In this geometry, the 

lower energy orbital, dxy (HOMO-1), is essentially V-nonbonding with respect to the phosphine 

ligands (80% Fe character). Whereas, the lowest unoccupied molecular orbital (LUMO), the empty 

dx2-y2 orbital, shows strong antibonding (σ*) interactions with the in-plane phosphine donors (see 

Scheme 7.3). Unexpectedly, the dx2-y2 orbital also has a strong admixture of one of the NO(S*) 

orbitals (38% Fe, 14% NO), but because the MO is unoccupied, it does not play a role for bonding 

in the ls-{FeNO}8 complex. This type of admixture, however, becomes relevant in the more 

reduced species. 

 
 
Scheme 7.2 Schematic MO diagram of the ls-{FeNO}8 complex, calculated with BP86/TZVP.  
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The highest occupied molecular orbital (HOMO) of the ls-{FeNO}8 complex is the doubly-

occupied dz2 orbital, which has a notable contribution from the unoccupied boron(p)-orbital (43% 

Fe, 12% B). This leads to a stabilization of the dz2 orbital, which normally is the highest energy 

orbital in a trigonal-bipyramidal coordination geometry. This weak Lewis base (Fe) – Lewis acid 

(B) interaction (Fe-B force constant: 0.51 mdyn/Å) is indicative of a fractional Fe-B bond order. 

Hence, despite the relatively short Fe-B distance (2.31 Å), the bonding between the doubly-

occupied dz2 orbital and the unoccupied boron(p)-orbital is reduced by poor orbital overlap 

resulting from the tilt of the BC(Ph)3 plane away from the Fe-B axis.  

The lowest-lying valence orbitals are the doubly-occupied, Fe-NO S-bonding 

combinations of the dxz_S*x and dyz_S*y orbitals (HOMO-2 and HOMO-3). These bonds are very 

covalent, with about 60% Fe(d) and 30% NO(S*) contribution.   

Based on this analysis, and assigning MOs to the atom or group with the dominant charge 

contribution, the ls-{FeNO}8 complex can formally be assigned an Fe(0)-NO+ type electronic 

structure with all 8 valence electrons originating primarily from the Fe center, and two very strong 

S-backbonds with the NO+ ligand (consistent with the large Fe-NO force constant of 4.53 

mdyn/Å). The presence of an NO+ ligand explains the absence of spin polarization in this system. 

This is similar to six-coordinate ls-{FeNO}6 complexes in hemes, which have been shown to have 

a closed-shell Fe(II)-NO+ type ground state with no spin polarization.14,29 In this sense, the FeNO 

unit in the ls-{FeNO}8 complex could be considered an electronic analog to that of heme ls-

{FeNO}6 complexes, where two additional electrons of the Fe center are stabilized by the dz2�B(p) 

interaction. This becomes more evident in the ls-{FeNO}10 system (see below). 

Finally, the crystal structure of the ls-{FeNO}8 complex reveals a unique S-bond between 

the iron center and the C=C bond of one of the aromatic benzene rings. This interaction is unique 
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in the ls-{FeNO}8 complex and explains the observed, significant contributions of phenyl orbitals 

to the valence MOs in this complex, which complicates the analysis. However, this interaction 

does not affect the FeNO moiety significantly.  

The ls-{FeNO}9 Complex has an EPR-active St = 1/2 ground state, which provides 

additional spectroscopic handles to further interrogate its ground state electronic structure. Due to 

spin-polarization effects, the D- and E-spin covalencies differ in the ls-{FeNO}9 complex, which 

complicates the analysis of its electronic structure. As we might expect based on its more C3-

symmetric structure, reduction of the ls-{FeNO}8 complex results in an orbital ordering more 

similar to that of a canonical trigonal bipyramid (see Scheme 7.3). The SOMO of the ls-{FeNO}9 

complex is the dx2-y2 orbital, as indicated in Scheme 7.4, pointing towards an iron-based reduction 

(in agreement with the EPR results). Because of this, the Fe-P covalency in the xy-plane is reduced, 

and the energy splitting between the dx2-y2 and dxy orbitals decreases to 1.02 eV.  Accordingly, the 

dxy orbital is now higher in energy than the dz2 orbital, and becomes the SOMO-1. The two lowest 

energy valence orbitals remain the Fe-NO π-bonding interactions, which again correspond to the 

bonding combinations of the dxz and dyz orbitals and the NO(π*x/y) orbitals. Finally, the dz2 orbital 

is again lowered in energy by the Fe-B interaction. Scheme 7.4 shows the resulting bonding 

scheme of the ls-{FeNO}9 complex, which points towards an unusual Fe(−I)-NO+ type ground 

state. 
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Scheme 7.3 Ligand field splitting between the dx2-y2 and the dxy orbitals, as a function of the FeP3 geometry 
in the xy-plane.  

 
 
Scheme 7.4 Schematic MO diagram of the ls-{FeNO}9 complex, calculated with BP86/TZVP.  
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The experimental data show that the Fe-NO bond becomes weaker upon reduction of the 

ls-{FeNO}8 to the ls-{FeNO}9 state, as reflected by a drop of the corresponding Fe-NO force 

constant from 4.53 to 4.15 mdyn/Å and of the Fe-NO stretch from 610 to 583 cm-1. This indicates 

a reduction in the covalency of the two Fe-NO S-bonds in the ls-{FeNO}9 state. The DFT 

calculations underestimate the weakening of the Fe-NO stretch (' = −27 cm-1 experimentally 

versus −17 cm−1 by DFT) and the weakening of the N-O stretch (' = −78 cm−1 experimentally 

versus −59 cm−1 by DFT). Nonetheless, DFT captures the seemingly counterintuitive trend that 

the Fe-NO and N-O bond both weaken upon reduction. 

Due to spin polarization, both Fe-NO S-bonds are stronger and more covalent in E-spin 

compared to D-spin, which manifests itself in the appearance of about −0.1 negative spin density 

on the NO ligand, in the S*x/y orbitals. This finding is supported by the pulse EPR measurements, 

showing weak, mostly anisotropic hyperfine coupling with the 14N atom of the coordinated NO 

ligand. Based on this finding alone, one would predict that the N-O stretch should increase in 

energy in the reduced complex, but this is not the case experimentally. The reason for the sharp 

drop in the N-O stretch from 1745 to 1667 cm-1 upon reduction requires an increase in the 

occupation of the NO(S*x/y) orbitals in the reduced complex, without increasing the Fe-NO bond 

strength. This in fact is the case. As shown in Scheme 7.4, both the dx2-y2 SOMO (41% Fe(d) and 

4% NO character) and the doubly-occupied dxy orbital (63% Fe(d) and 5% NO character) of the 

ls-{FeNO}9 complex show a distinct admixture of the NO(S*x/y) orbitals. Occupation of these 

MOs effectively transfers electron density into the NO(S*x/y) orbitals, weakening the N-O bond, 

but without significantly affecting the Fe-NO bond strength. Although one might initially dismiss 

this orbital interaction as an artefact of DFT, the available data show that this is a real effect. 
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Indeed, it is significant and likely underestimated in the DFT calculations, considering the larger 

experimental shift in the N-O stretch (' = −78 cm−1) compared to ' = −59 cm−1 predicted by DFT. 

Using a linear scaling approach, I can roughly estimate from the N-O stretches of free NO+ (2387 

cm-1) and NO (1876 cm-1; ' | 500 cm-1) that a shift in the N-O stretch of ~80 cm-1 requires an 

increase in the occupation of the NO(S*x/y) orbitals by 0.16 electrons (assuming similar electronic 

structures), which is slightly underestimated in the calculations (Loewdin charges for NO: ls-

{FeNO}8: +0.02; ls-{FeNO}9: -0.11, Δ(e−) = 0.13).   

Further support for the importance of spin polarization effects to the bonding in the ls-

{FeNO}9 complex is that the Fe-B interaction is predicted to be similarly polarized. Except in this 

case the relevant ligand orbital is B(pz) with asymmetry in the dz2�B(pz) interaction. This bond is 

distinctively more covalent in E-spin (22% B(pz) admixture into dz2) compared to D-spin (10% 

B(pz) contribution), again resulting in about −0.1 negative spin density on the boron atom. This is 

supported by the pulse EPR measurements, showing weak hyperfine coupling to the 11B nucleus 

with a relatively larger component of its unpaired spin in an a1-type (s or pz) orbital. The DFT 

calculations predict that the Fe-B bond interaction becomes slightly weaker in the ls-{FeNO}9 

compared to the ls-{FeNO}8 complex (due to the spin polarization), although in the absence of 

any vibrational information, it is difficult to confirm this. Therefore, I consider the Fe-B bond to 

be largely unchanged in the ls-{FeNO}9 complex.  

Based on these observations, it is puzzling that despite the iron-based reduction in the ls-

{FeNO}9 relative to the ls-{FeNO}8 complex, both the experimental and DFT-calculated 

Mössbauer isomer shifts only show a very small change (see Table 1). The main reason for this 

finding is the fact that the occupation of the dx2-y2 orbital in the ls-{FeNO}9 complex leads to the 

weakening of the Fe-P interactions, since the dx2-y2 orbital is Fe-P antibonding. This is reflected in 
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the corresponding Fe-P force constants, which drop from an average value of ~1.6 mdyn/Å to ~1.1 

mdyn/Å upon reduction. This decrease in the Fe-P bonding partially compensates for the electron 

that is added to the dx2-y2 orbital, as does the transfer of electron density from the xy-plane to the 

NO(S*) orbitals (see above). This “redox buffering” causes a negligible change in the effective 

nuclear charge of the iron center upon reduction, and minimizes the change in the Mössbauer 

isomer shift.  

The ls-{FeNO}10 Complex is completely diamagnetic with a CS ground state, as shown in 

Scheme 7.5. Compared to the ls-{FeNO}9 complex, the extra electron is located in the dx2-y2 orbital, 

completing the d10 shell of the iron center. Therefore, once again, the reduction is iron-centered. 

As a consequence of the now [dxy,dx2-y2]4 electron configuration, the ls-{FeNO}10 complex adapts 

an almost perfect trigonal symmetry of the FeP3 unit, causing the dxy and dx2-y2 orbitals to form a 

degenerate set (Scheme 7.3). 

 
Scheme 7.5 Schematic MO diagram of the ls-{FeNO}10 complex, calculated with BP86/TZVP. 
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In agreement with this analysis, both orbitals show identical charge contributions, with 

62% Fe(d) character and a 5% contribution from the NO(S*) orbitals. Likewise, the lowest lying 

valence orbitals are also a now degenerate dxz/dyz pair. This pair shows 53% Fe(d) and 38% NO(S*) 

contributions, indicating the presence of a very covalent Fe-NO bond, similar to that in the ls-

{FeNO}8 complex (60% Fe and 30% NO). Indeed, the similar orbital contributions of the 

corresponding dxz_S*x and dyz_S*y bonding pairs and the similar Fe-NO force constants of 4.53 

and 4.45 mdyn/Å are strongly suggestive of similar Fe-NO bonding interactions in the ls-{FeNO}8 

and ls-{FeNO}10 complexes. Nonetheless, the N-O stretching frequency in the ls-{FeNO}10 

complex is 177 cm−1 lower than in the ls-{FeNO}8 complex, and the N-O force constant is reduced 

by about 2.7 mdyn/Å. As discussed for the ls-{FeNO}9 compound, this is best explained not by 

increased Fe-NO π-backbonding but rather by the transfer of electron density from the xy-plane 

into the NO(π*) orbitals. Indeed, in the ls-{FeNO}10 complex, the dxy/dx2-y2 pair contains 5% 

NO(π*) character each, as indicated in Scheme 7.5. Once again, this likely represents a lower 

bound on the magnitude of this effect, given the reduction in the N-O stretching frequency ('exp = 

−99 cm−1 vs 'DFT = −85 cm−1 compared to ls-{FeNO}9) is underestimated in the calculations. 

Due to the formal d10 configuration, the Fe center becomes unusually low-valent (Fe(−II)) 

in the ls-{FeNO}10 complex. However, this charge accumulation on the Fe center is largely 

compensated by a dramatic strengthening of the Fe-B interaction, indicated by the increase in the 

Fe-B force constant to 1.56 mdyn/Å, which corresponds to the formation of an Fe-B V single bond. 

Here, the iron center becomes a Lewis base and donates one electron pair, located in the doubly-

occupied dz2 orbital, to the boron center, which therefore functions as a Lewis acid in the ls-

{FeNO}10 complex. This mechanism is key to the stabilization of the ls-{FeNO}10 system. 

Because of the formation of a full Fe-B single bond, the dz2 orbital drops in energy after reduction 
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and is now located significantly below the dxy/dx2-y2 degenerate pair. Orbital analysis further reveals 

that the corresponding (bonding) MO has 35% Fe(d) and 23% B(pz) charge contributions (the rest 

is ligand contribution), in agreement with a very covalent Fe-B interaction. Thus, the ls-{FeNO}10 

complex has an Fe(-II)-NO+ type electronic structure, but with the electron pair in the dz2 orbital 

being strongly stabilized by donation to the boron Lewis acid. In this sense, the ls-{FeNO}10 

complex contains two non-innocent ligands and could be designated as ls-{BFeNO}10. 

Curiously, the ls-{FeNO}10 complex has the Fe center with the most positive effective 

nuclear charge, based on the Mössbauer isomer shift. I attribute the positive isomer shift of the 

complex relative to the ls-{FeNO}9 system to (a) the newly formed Fe-B single bond, which 

reduces the electron density on the Fe center, and (b) the onset of Fe-P backbonding. Our 

observations emphasize the uniqueness of the TPB coligand scaffold and its ability to stabilize 

extremely low-valent metal centers through an adjustable interaction between the metal center and 

the empty pz orbital of boron. Surprisingly, the effect on the N-O bond strength observed for the 

ls-{FeNO}8 and ls-{FeNO}10 pair is not so much due to changes in the Fe-NO S-bond itself, but 

due to a secondary effect, i.e. the admixture of NO(S*) character into the dx2-y2/dxy orbital pair as 

discussed above.  

 
7.6 Discussion 

In previously characterized redox series of Fe-NO complexes, Mössbauer spectroscopy has 

been a key tool for understanding the redox state of the Fe center. In the cyclam-ac supported Fe-

NO series from Wieghardt and coworkers, the change in isomer shift (δ) across redox states is 

linear (Δδ ~ 0.2 mm/s per redox state), which has been interpreted in terms of NO-centered redox 

changes, dramatically affecting the Fe-NO bond and, in turn, the isomer shift.30,31 In the TMG3tren 

supported Fe-NO series from Lehnert and coworkers even larger changes in the isomer shift are 
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observed (Δδ ~ 0.4 mm/s per redox state), which, in combination with other findings, was taken 

as evidence of Fe-centered redox changes.10,32 More recently, Meyer’s hs-{FeNO}7-9 series with 

the TIMENMes coligand has also been shown to follow metal-centered reductions, with changes in 

isomer shift of Δδ ~ 0.2 mm/s.23 

 
 
Figure 7.5 Comparison between the [Fe(TPB)(NO)]+/0/� and the [Fe(TIMENMes)(NO)]+/0/� series. Stretching 
frequencies Q are in cm-1, 'EQ and G are in mm/s. S is the total spin of the complex. 

 

A direct comparison between the [Fe(TPB)(NO)]+/0/� and the [Fe(TIMENMes)(NO)]+/0/� 

complexes in Figure 6 highlights the stark contrast in stability and reactivity of these low-valent 

FeNO systems.33 In addition, the FeNO redox series studied here presents a notable difference to 
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the previously reported examples in that the Mössbauer isomer shift does not trend linearly with 

the redox state of the complex, and the complete range spans less than 0.1 mm/s (0.17-0.26).2 This 

small overall range speaks to a consistent effective nuclear charge at Fe across our redox series. 

Similar observations have been reported in a recent study by Moore et al. on a bimetallic Fe-Ti 

system. In this case, redox-induced changes of the effective nuclear charge at Fe are buffered by 

the Lewis-acidic Ti center. Thus, changes in the covalency of the Fe-Ti interaction minimize 

changes in the isomer shift across the redox series.34 The main objective of this study was therefore 

to interrogate the electronic structural changes of the FeNO unit in our [Fe(TPB)(NO)]+/0/� series, 

and to identify the origins of the “redox-buffering”. For this purpose, I used different spectroscopic 

methods, especially NRVS and pulse EPR, coupled to DFT calculations.   

The ls-{FeNO}8 complex has a low-spin, diamagnetic ground state with Fe-NO and N-O 

stretching frequencies of 610 and 1745 cm-1. Whereas optimized structures cannot distinguish 

between possible closed-shell (CS) and broken-symmetry (BS) electronic ground states, the 

predicted NRVS data (especially the Fe-NO stretch) clearly show that the CS state is the better 

description of the ground state of the complex (see Figure 2). These findings highlight the 

unreliability of deriving electronic structural information purely from geometric structures. This 

reminds us that a bond distance only probes the minimum of a potential energy surface (pes), 

whereas a vibrational frequency probes the curvature of the pes around the energy minimum, 

which is a much more sensitive gauge for electronic structure and the strength of a bond. Hence, 

vibrational data (especially stretching frequencies, in the absence of significant mode-mixing) 

provide a superior measure of bond strength. The electronic structure of the ls-{FeNO}8 complex 

is best described as Fe(0)-NO+, with two strong, highly covalent Fe-NO S-backbonds (see below). 
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The dz2 orbital is doubly occupied and undergoes a weak but distinct interaction with the boron 

center, and the LUMO of the complex is the dx2-y2 orbital.  

Upon one-electron reduction, the dx2-y2 orbital becomes singly occupied, leading to an St = 

1/2 ground state in the ls-{FeNO}9 complex. The resulting spin-polarization (directly visible as 

hyperfine coupling interactions as measured by pulse EPR methods) perturbs both the Fe-NO and 

Fe-B interactions, which become weaker. This is reflected by a drop in the Fe-NO stretching 

frequency to 583 cm-1. In the Fe-NO S-backbonding picture, this should lead to an increase in the 

N-O stretch, but this is counteracted by further occupation of the NO(S*) orbitals via unusual 

mixing with the dx2-y2 and dxy orbitals, which causes the N-O stretch to drop to 1667 cm-1.  

Lastly, reduction to the diamagnetic ls-{FeNO}10 state leads to the double occupation of 

the dx2-y2 orbital. The strength of Fe-NO bond is restored, evident from an increase in the Fe-NO 

stretch to 602 cm-1. This increase in Fe-NO S-backbonding (compared to the ls-{FeNO}9 complex) 

as well as the further occupation of the NO(S*) orbitals (via mixing with the dxy/dx2-y2 pair) causes 

a significant drop in the N-O stretch to 1568 cm-1. Based on all of these observations, I conclude 

that the Fe-NO S-bonds are essentially unchanged along the ls-{FeNO}8-10 series. 

Counterintuitively, the “weak link” in this series is actually the ls-{FeNO}9 complex, due to spin 

polarization. Importantly, this significant effect of spin polarization on a metal-ligand bond is often 

proposed but can rarely be directly observed, as in the NO complexes described in this paper. 

The Fen-NO+ (n = 0, -1, -2) electronic structure descriptions for our ls-{FeNO}8-10 

complexes include a very strong S-backbond, so from a charge perspective the complexes are on 

average best described as Fen+1-NO(neutral). Considering that the occupied dxz and dyz orbitals 

involved in S-backbonding have roughly 30 - 35% NO(S*) character, in line with the low N-O 

stretching frequencies of the series, the Fen-NO+ description is certainly pushed to an extreme here, 
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especially in the ls-{FeNO}10 complex, where the charges are estimated around Fe-0.6-NO-0.4. 

Nevertheless, besides applying the IUPAC rule (“the winner takes it all”), I also believe that the 

Fen-NO+/strong S-backbond description has merit and is the most accurate representation of the 

electronic structure of the complexes. The two strong S-backbonds lead to the transfer of roughly 

the same amount of D- and E-spin electron density back from Fen to the NO+ ligand (in all 

complexes), leading to charge accumulation on the NO ligand, without generating any spin (hence, 

atypically, the ligand is NO(neutral), but not NO•). Thus, this does not correspond to an actual 

electron transfer, as an electron has a charge and a spin but rather is an effect of metal-ligand 

covalency. If an actual electron transfer were to happen, the electronic structure would change to 

an open shell (BS) ground state like Fen+1-NO• or Fen+2-NO�, where the spin(s) of the NO• (S = 

1/2) or 3NO� (S =1) ligand would likely couple antiferromagnetically to the unpaired electrons of 

the iron center to which the ligand is directly bound. However, as I demonstrate in this paper, such 

broken symmetry descriptions are not in agreement with the experimental vibrational (NRVS) 

data, and can therefore be ruled out. This finding is further supported by the pulse EPR data, 

showing only small 14N hyperfine coupling constants in the ls-{FeNO}9 complex. This difference 

is not semantic, as our previous work on ferric heme-nitrosyls has shown that the closed-shell Fen-

NO+/strong S-backbond versus open shell Fen+1-NO• ground states lead to different electronic 

properties and Fe-NO/N-O bond strengths of the complexes.14 

It is notable and worth emphasizing that although the dz2 orbital of Fe is doubly occupied 

throughout the redox series, only the ls-{FeNO}10 complex has a strong Fe-B single bond. Thus, 

iron only adopts a high degree of Lewis base character upon reduction to formal Fe(−II), not at 

Fe(0). Through this reverse dative Fe→B bond, the redox non-innocent tri(aryl)borane subunit of 

the TPB ligand system can de facto serve as a redox buffer or electron reservoir by storing two 
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electrons on site (with minimal effect on the Fe-XY bond of an axially coordinated diatomic). In 

this way, the Fe(TPB) platform shifts the accessible redox states of the complex down by 2, and 

the anionic complex can be best described as ls-{BFeNO}10. Thus, although the electron density 

at Fe is similar in the cationic and anionic complexes, the NO ligand is far more activated due to 

the NO(S*) admixture into the dxy/dx2-y2 pair. In comparison, the only other known, stable ls-

{FeNO}10 complex is Hieber’s anion, [Fe(CO)3(NO)]�.35-37 In this case, the three strongly S-

backbonding CO ligands take on the role of the boron Lewis acid, and allow for the stabilization 

of the highly reduced iron center in this unusual compound.  

I suggest that Fe→B bond formation should be an important mechanism for storing 

electrons that can facilitate small molecule functionalization steps, such as axial ligand 

protonations that oxidize the metal. Such a role has previously been articulated in the context of 

N2 fixation catalysis mediated by Fe(TPB).26,38 However, the key intermediate prior to N2 

functionalization, [Fe(TPB)(N2)]− (or {FeN2}9 in analogy to the Enemark-Feltham notation), is 

isoelectronic to the ls-{FeNO}9 complex, and hence might not be expected to have a signficant 

Fe→B bond. Both complexes can be described as Fe(-I) systems with bound N2 and NO+ ligands, 

respectively. 
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Figure 7.6 Experimental NRVS VDOS data of the {FeN2}9 complex [Na(12-crown-4)2][Fe(TPB)(N2)] 
(blue) vs a QCC-NCA fit (black). 
 

I therefore evaluated the {FeN2}9 complex by NRVS coupled to QCC-NCA analysis to 

determine the extent of an Fe→B interaction (Figure 5). The {FeN2}9 species shows a much 

weaker Fe-N bond compared to the ls-{FeNO}9 complex, with the Fe-NN stretch observed at 488 

cm-1 (corresponding to an Fe-N force constant of 2.62 mdyn/Å, compared to 4.15 mdyn/Å for ls-

{FeNO}9; see Table 3). In turn, a significantly stronger Fe-B interaction is observed in the {FeN2}9 

complex (Fe-B force constant 1.21 vs. 0.42 mdyn/Å). Thus, the formally Fe(-I) center is much less 

stabilized by N2 than by NO+, consistent with their relative π-accepting abilities. Accordingly, in 

the N2 complex, formation of an Fe-B V-bond already occurs at the d9 state. These data provide 
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further support for the hypothesis that Fe-B bonding is critical for achieving productive small 

molecule functionalization, including N2 fixation, in this system.26,38  

These observations serve to underscore that the formation of a reverse dative interaction 

between a transition metal Lewis base and a main group Lewis acid cannot be reliably predicted 

by formal oxidation states. Thus, even at highly reduced metal centers such as these, there remains 

significant ambiguity as to whether, and the extent to which, reverse dative interactions form. This 

ambiguity is often true in ambiphilic ligands, such as TPB, where the relatively soft reverse dative 

M→Lewis acid (LA) interaction can be dominated by the stronger dative Lewis base (LB)→M 

interactions.3-5,39,40,41 

Although the presence of Fe-B interactions in the ls-{FeNO}8-10/{FeN2}9 complexes 

cannot be directly observed in the NRVS data, internal calibration of the DFT predicted Fe-B force 

constants using the experimentally validated Fe-N and Fe-P interactions provides significant 

confidence in the theoretical predictions. Furthermore, the formation of an Fe-B bond in the ls-

{FeNO}10 complex is supported by the significant upfield shift of the 11B NMR chemical shift 

relative to the ls-{FeNO}8 species (19.9 ppm vs 36.6 ppm).2 These predictions run counter to the 

expectations based on a simple geometric analysis and led us to evaluate how predicted Fe-B force 

constants correlate with more typically used geometric measures of M→LA bonding, the M-LA 

distance and the degree of pyramidalization at the LA.5 

In the ls-{FeNO}8-10 series, the Fe-B distance is by far the shortest in ls-{FeNO}8 and is 

identical, within error, in the ls-{FeNO}9/10 congeners. Nonetheless, the ls-{FeNO}10 complex has 

a significantly larger Fe-B force constant (1.56/0.41/0.52 for ls-{FeNO}10/9/8; see Table 3). The 

short Fe-B distance in ls-{FeNO}8 is a result of the aforementioned η4-BCCP→Fe interaction, a 
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reminder that even in highly related complexes the M-LA distance can be a poor measure of the 

M→LA bonding. 

Similarly, although both [Fe(TPB)(N2)]� (fFe-B = 1.21 mdyn/Å) and [Fe(TPB)(NO)]� (fFe-B 

= 1.56 mdyn/Å) feature significant pyramidalization at boron (Σ(<CBC) = 332.0°, and 331.0°), an 

identical degree of pyramidalization is also observed in [Fe(TPB)(NNMe2)]−  Σ(<CBC) = 332.1°); 

nonetheless, the latter features a much weaker Fe-B bond (fFe-B = 0.44 mdyn/Å).11 Just as structural 

comparisons were insufficient to differentiate between CS and BS wavefunctions, they are 

insufficient for evaluating the Fe→B interaction. While other spectroscopic techniques, such as 

NMR and pulse EPR, can provide insight into M→LA bonding, vibrational spectroscopy provides 

a powerful tool to directly interrogate such interactions without the limitations of spin selection 

rules. In combination with theoretical methods, this enables a thorough mapping of the degree of 

M→LA bonding.  

Since both the ls-{FeNO}9 and {FeN2}9 complexes have paramagnetic St =1/2 ground 

states, further comparisons on their electronic structures can be made using EPR spectroscopy. 

Based on this work and previous DFT studies, the SOMO of both complexes is the dx2-y2 orbital, 

with a d9 valence electron configuration.6 This situation is analogous to tetragonal Cu(II) 

complexes, and one might therefore expect a large gz value to originate from spin-orbit coupling 

(SOC) in the z-direction between the ground state and the dxy excited state. This is in fact the case, 

but interestingly, the g-tensor of the NO+ complex (g = 1.99, 1.99, 2.45) is significantly more axial 

(larger Δgz) than that of the N2 complex (g = 2.04, 2.04, 2.31). Based on the usual 2nd order SOC 

formalism,42,43  the larger Δgz shift of the ls-{FeNO}9 complex can result from three possibilities: 

(a) a distinctly larger spin-orbit coupling constant (which is unlikely), (b) a smaller covalency 
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factor for the dx2-y2 and dxy orbitals, or (c) a reduction in the energy splitting between the dx2-y2 and 

dxy orbitals. 

From the crystal structures, we observe a greater out-of-plane shift for the Fe center in the 

NO+ complex, which could reduce the dx2-y2/dxy energy splitting and, in this way, increase the g 

shift. However, this possibility is not supported by the DFT calculations, which show a very similar 

energy gap between the dx2-y2 and the dxy orbital (1.02 vs. 0.96 eV).44 On the other hand, the DFT 

calculations point to substantially different orbital covalencies for dx2-y2 in these complexes (50% 

dx2-y2 character in the N2 compared to 63% in the NO+ complex). Using these numbers and starting 

from gz = 2.45 in the ls-{FeNO}9 complex, the gz value for the {FeN2}9 complex would be 

predicted to be 2.35, in very good agreement with experiment. Based on this result, I conclude that 

the differential covalency of the dx2-y2 orbital is to a large degree responsible for the difference in 

gz values between these complexes.   

In summary, the EPR data further support the notion of an approximate d9 ground state in 

the ls-{FeNO}9 and {FeN2}9 complexes, where the larger gz shift in the former complex is due to 

the much stronger Fe-NO compared to the Fe-NN bond (evident from the corresponding stretching 

frequencies), affecting the metal-ligand covalencies in the xy-plane. 

 
7.7 Conclusions 

The electronic descriptions developed here for the ls-{FeNO}8-10 series are in agreement 

with all available spectroscopic data, and emphasize the special role of the TPB ligand in allowing 

for the storage of two electrons in the Fe-B bond, enabling the Fe(TPB) complex to reach a very 

low oxidation state while allowing for the utilization of these two extra electrons for reductive 

catalysis. This complements the more conventional approach in small molecule model chemistry 

of storing electrons in the S* orbitals of supporting ligands with extended S-systems. A prominent 
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example for this approach is the bis(imino)pyridine ligand platform, shown in Figure 7, left.45,46 

These approaches are reminiscent of that used by Nature, in which larger metalloclusters, such as 

Fe-S cluster, are electron-loaded before activating small molecules. Prominent examples of this 

strategy include the nitrogenase and CO dehydrogenase enzymes (see Figure 7, right).47-50 While 

in the case of Fe(TPB) a very low formal oxidation state at Fe must be reached in order for the 

borane to adopt this special role, tuning of M→LA interactions potentially provides a route to 

small molecule activation under milder conditions. 

 
Figure 7.7 Left: In typical non-innocent ligands, like the bis(imino)pyridine system, electrons can be stored 
in a ligand S system. Middle: The TPB ligand used here is unusual, as it stores two electrons in a Fe→B 
dative bond. Right: In the active site of the enzyme nitrogenase, iron-sulfur cluster are used for electron 
storage. In all cases, the electrons stored in this way can then be utilized for small-molecule activation.  
 

7.8 Experimental Section 

All complexes including 57Fe complexes were prepared as previously reported and obtained as 

pure compounds, as determined by Mössbauer and IR spectroscopy.2 Efforts to label the 

complexes with 15NO were largely unsuccessful. However, trace amounts of the ls-{FeNO}9 

complex [Fe(TPB)(15NO)], sufficient for pulse EPR measurements, could be obtained via reaction 

of [Fe(TPB)(N2)] with [TBA][15NO2] followed by extraction by pentane and filtration through 

celite. 
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NRVS measurements. Nuclear resonance vibrational spectroscopy (NRVS) data were 

obtained as described previously3 at beamline 3-ID at the Advanced Photon Source (APS) at 

Argonne National Laboratory. Samples were loaded in copper sample holders with lucite lids. 

During data collection, samples were maintained at cryogenic temperatures using a liquid helium-

cooled cryostat. Spectra of solid samples were recorded from 0 to +90 meV in 0.25 meV steps. 

Multiple scans were taken, normalized to the intensity of the incident beam, and added together to 

achieve adequate signal to noise ratios; the final spectra represent averages between 6 and 10 scans. 

The program Phoenix4 was used to convert the raw NRVS data to the vibrational density of states 

(VDOS).  

Pulse EPR measurements for the ls-{FeNO}9 complex. All pulse X-band (ν ≈ 9.7 GHz) EPR 

and electron nuclear double resonance (ENDOR) experiments were performed using a Bruker 

(Billerica, MA) ELEXSYS E580 pulse EPR spectrometer equipped with a Bruker MD-4 resonator. 

Temperature control for experiments at 7 K was achieved using an ER 4118HV-CF5-L Flexline 

Cryogen-Free VT cryostat manufactured by ColdEdge (Allentown, PA), while ENDOR 

experiments at 5 K were performed using an Oxford Instruments CF935 helium flow cryostat. An 

Oxford Instruments Mercury ITC was used for temperature regulation with both cryostats. 

X-band Electron spin-echo detected field swept spectra (ESE-EPR) were acquired using the 2-

pulse Hahn echo sequence (𝜋
2

− 𝜏 −  𝜋 −  𝜏 − 𝑒𝑐ℎ𝑜), while the magnetic field was varied. The 

“CW-EPR like” 1st derivative spectrum was generated by use of the pseudomodulation function in 

EasySpin, an EPR simulation toolbox for use with Matlab.51,52 

Pulse X-band ENDOR was acquired using the Davies pulse sequence (𝜋 − 𝑇𝑅𝐹 −  𝜋𝑅𝐹 −

𝑇𝑅𝐹 −  𝜋/2 – 𝜏 – 𝜋 – echo), where 𝑇𝑅𝐹 is the delay between mw pulses and RF pulses, 𝜋𝑅𝐹 is the 

length of the RF pulse and the RF frequency is randomly sampled during each pulse sequence.  
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X-band Hyperfine sublevel correlation (HYSCORE) spectra were acquired using the 4-pulse 

sequence (𝜋/2 − 𝜏 −  𝜋/2 − 𝑡1 −  𝜋 –𝑡2– 𝜋/2 – echo), where 𝜏 is a fixed delay, while 𝑡1 and 𝑡2 

are independently incremented by Δ𝑡1 and Δ𝑡2, respectively. The time domain data was baseline-

corrected (third-order polynomial) to eliminate the exponential decay in the echo intensity, 

apodized with a Hamming window function, zero-filled to eight-fold points, and fast Fourier-

transformed to yield the 2-dimensional frequency domain. The intensity of this FT data was plotted 

as a series of contours on a logarithmic scale, in colors ranging from blue to red in increasing 

intensity. 

EPR Simulations. Simulations of all EPR data were achieved using the EasySpin simulation 

toolbox (release 5.2.28) with Matlab 2019a.51 For more details of these simulations, I refer readers 

to the SI. 

DFT Calculations using Gaussian 09 and Normal Coordinate Analysis. Geometry 

optimization of the ls-{FeNO}8-10 complexes was carried out using the BP86 and B3LYP 

functionals with the TZVP basis set, using both closed shell and broken symmetry wavefunctions 

(see text). All calculations were performed using the program Gaussian 09.53 Subsequent 

frequency calculations on the optimized structures show no imaginary frequencies, indicating that 

true energy minima were obtained. The DFT-calculated force constants in Cartesian coordinates 

were extracted from the Gaussian output files and transformed into internal coordinates using a 

modified version of the program Redong. Modified normal coordinate analysis (NCA) programs 

based on QCPE 576 were used for the subsequent fitting of the experimental NRVS data. The 

fitting was performed by adjusting a minimal set of force constants (in the spirit of the QCC-NCA 

approach)54 to reproduce the vibrations of the Fe-N-O units in the ls-{FeNO}8-10 series of 

complexes (see text). 
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DFT Calculations using ORCA 4.0. The Gaussian-optimized structures of the ls-{FeNO}8-10 

complexes were used for following single-point calculations (BP86/TZVP) with ORCA 4.0 to 

predict Mössbauer and EPR parameters, and to further analyze the electronic structures of the 

complexes. This includes the use of unrestricted corresponding orbitals (UCOs) for the ls-

{FeNO}9 complex.55 
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Chapter 8 

Conclusion 

 

Reduction of NO to N2O is an important reaction employed by pathogens to overcome the 

toxicity of NO gas in human immune defense.1 As a result, they can proliferate and cause chronic 

infections in humans. It has been shown in enzymology that non-heme diiron active sites, such as 

those found in FNORs, are capable of mediating the NO reduction reaction.2-5 Understanding of 

the mechanism of how NO reduction is carried out by FNORs is beneficial for the development of 

new treatments and therapies for chronic bacterial infections. While studies on the Tm FDP have 

shown that the hs-[{FeNO}7]2 adduct is the crucial intermediate formed right before the detection 

of N2O,2,3 the exact mechanism of how these two, seemingly stable, hs-{FeNO}7 units can undergo 

efficient N-N coupling (via the so-called direct reduction mechanism) to form N2O is still unclear. 

Kurtz and coworkers proved that the diferrous reactive state of Tm FDP can reduce NO directly to 

N2O via the removal of the FMN cofactor from the enzyme.3 The single turnover in this experiment 

is slow, taking ~120 seconds, but nevertheless, this result demonstrates that FDPs  can generate 

N2O in the absence of the FMN cofactor. At the same time, multiple model complex studies have 

shown that N2O formation in these hs-[{FeNO}7]2 model systems is only possible via at least one-

electron reduction to the hs-{Fe(NO)}7/hs-{Fe(NO)}8 state. These observations raise questions 

regarding the role of the FMN cofactor in the enzymes and whether it is needed/utilized for NO 

reduction under turnover conditions. If direct reduction of NO is possible in the enzymes, as the 
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biochemical studies suggest, then what are the key properties that allow FNORs to mediate this 

reaction in a way that model complexes (so far) have not been able to? Vice versa, what design 

elements are needed that would allow a model complex to directly reduce NO? These are key 

questions regarding the mechanism of FNORs that are addressed in this thesis. 

 

 

Scheme 8.1 Direct coupling mechanism involving Y197, as proposed by Chen and coworkers.6 Energies 
indicated in the figure are relative to the starting [hs-{FeNO}7]2 complex. Boxed letters correspond to 
reaction steps. Transition states are indicated in brackets. 
 

One hint in this regard comes from recent biochemical (mutagenesis) experiments on Tm 

FDP and computational (QM/MM) studies. Here, it is shown that hydrogen bonding residues in 

the SCS, specifically the conserved Y197, play a critical role in the N-N bond formation reaction 

that leads to the generation of a hyponitrite intermediate (Scheme 8.1).6,7 The mutagenesis 

experiments on Tm FDP revealed that removal of the SCS hydrogen bond in the Y197F variant 

completely shut down the NO reduction reaction.7 Other factors (Scheme 8.2) that could affect the 

ability of a diiron core to mediate NO reduction are geometric considerations (Fe���Fe distance, 
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(O)N-Fe-Fe-N(O) dihedral angle, etc.) and electronic properties of the core. I, therefore, started 

a comprehensive investigation to identify the key features that enable the direct NO reduction in 

diiron centers in order to adopt these strategies into the next generation of FNOR model complexes. 

In particular, the synthesis, characterization, and reactivity of the first model complex of FNORs 

that directly reduces NO to N2O is reported in this thesis. Along with this, the degree of activation 

of the hs-{FeNO}7 unit in this complex is addressed, and it is shown that N-O stretching 

frequencies £ 1700 cm-1 are indicative of reactive hs-{FeNO}7 units that are activated for direct 

NO reduction. In addition, a diiron core with coplanar NO binding sites is a key requirement for 

this reaction. I further started the synthesis and characterization of model complexes of FNORs 

with NHC(O)R-type hydrogen bond donors in the SCS, and initial results on the NO reactivity of 

corresponding diiron complexes are reported as well. Finally, the coordination chemistry of non-

heme iron complexes with hyponitrite is discussed, to investigate how hyponitrite interacts with 

non-heme iron centers, and how this may relate to its ability to produce N2O.  

 

Scheme 8.2 Factors to consider in FNORs that can affect the ability of the diiron core to mediate NO 
reduction. 
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As mentioned above, hs-[{FeNO}7]2 model complexes require reduction to the reactive hs-

{FeNO}8 state to induce N2O formation. This process, as well as the geometric and electronic 

properties of the resulting hs-{FeNO}8 centers, have been studied in detail by former graduate 

students Corey White and Amy Speelman.8-10 Since hs-{FeNO}8 complexes are reactive, one 

interesting question is what other reactions these species can undergo, besides N2O formation in 

diiron cores. A reaction of mononuclear hs-{FeNO}8 complexes that has been reported is the 

formation of dinitrosyl iron complexes (DNICs).9,11-13 However, these studies did not address the 

intermediates formed in the process of DNIC formation. In this thesis, the synthesis and 

characterization of different mononuclear hs-{FeNO}7 complexes are reported, as well as the 

reactivity of the corresponding, one-electron reduced hs-{FeNO}8 species. This effort led to the 

isolation and characterization of a novel complex with a unique Fe2(NO)2 diamond core, in line 

with a previously proposed dimerization mechanism for DNIC formation from mononuclear hs-

{FeNO}8 complexes. In addition, the investigation of the electronic structures of iron-nitrosyl 

complexes beyond the {FeNO}8 state, using spectroscopic and theoretical methods, is reported. 

This project was carried out in collaboration with Peters and coworkers (CalTech). 

 

8.1 Summary of Thesis 

In Chapter 2, the synthesis of the new model complex [FeII2((Py2PhO2)MP)(OPr)2]-, 

featuring the tri-anionic ligand [(Py2PhO2)MP]3-, is reported and its reactivity with NO is 

investigated.14 The key difference between this new model complex and its BPMP- analog, 

[Fe2(BPMP)(OPr)]2+, is the more negative reduction potential (different by ~1V) of the former. 

This drastic shift in reduction potential is the key to unlock the direct reduction of NO to N2O in 

this complex. Indeed, [FeII2((Py2PhO2)MP)(OPr)2]- spontaneously reduces NO to N2O 
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quantitatively at room temperature, while [Fe2(BPMP)(OPr)]2+ stabilizes the hs-[{FeNO}7]2 

intermediate (complex [Fe2(BPMP)(OPr)(NO)2]2+), making the former the first model complex of 

FNORs capable of direct reduction of NO to N2O. This reaction is catalytic and quantitative 

amounts of N2O were accomplished through several cycles in the presence of excess acetic acid 

and CoCp2. Due to the extremely reducing irons, this reaction proceeded even at -80 oC, albeit 

slower and with lower N2O yields (10-30%) due to unproductive side reactions at low temperature. 

Interestingly, in the low-temperature studies, a small amount of a hs-[{FeNO}7]2 species was also 

observed, but could not be characterized further. When warmed up to room temperature, in the 

presence of excess NO gas, the reaction returned to the original productive pathway and 

quantitative amounts of N2O were again observed. 

 Chapter 3 expands on the work discussed in Chapter 2, in particular to determine the 

degree of activation of the hs-{FeNO}7 units required to enable direct NO reduction to N2O. I 

hypothesized that by separating the two irons and breaking the coplanar geometry, I could stop the 

direct NO reduction and trap the activated hs-{FeNO}7 complex. By using a truncated derivative 

of the ligand [(Py2PhO2)MP]3-, I hoped to obtain a monomeric hs-{FeNO}7 complex with a 

primary coordination environment that is similar to the iron centers in [FeII2((Py2PhO2)MP)-

(OPr)2]+, and then study its chemical properties. For this purpose, the model complex [{Fe(MPA-

(tBuMePhO)2)}2], in which the coligand is further decorated with sterically protective groups, was 

synthesized and characterized. Despite the steric protection from the tert-butyl substituents on the 

phenolate rings, this complex forms a dimeric precursor with the two iron centers bridged by the 

oxygen atoms of the phenolates to form an Fe2O2 diamond core structure. Importantly, reaction of 

[{Fe(MPA-(tBuMePhO)2)}2] with excess NO gas produced the monomeric, stable hs-{FeNO}7 

complex [Fe(MPA-(tBuMePhO)2)(NO)]. This compound has the lowest N-O stretching frequency 
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observed in a monomeric hs-{FeNO}7 complex to this date, at 1689 cm-1. Consequently, a low 

Fe-NO stretch of 467 cm-1 was observed using NRVS, in agreement with the direct correlation of 

the Fe-NO and N-O stretching frequencies in hs-{FeNO}7 complexes, a consequence of their 

electronic structure (first shown by former graduate student Tim Berto).15 This result suggests that 

the proposed hs-[{FeNO}7]2 intermediate formed by reaction of [FeII2((Py2PhO2)MP)(OPr)2]- with 

NO is extremely activated due to the strongly reducing iron centers. As a result, this provides the 

extra driving force needed to reduce NO directly. Accordingly, removal of the steric protection 

provided by the bulky tert-butyl substituents in [MPA-(PhO)2]2- leads to a new model complex, 

[{Fe(MPA-(PhO)2)}2], which is now capable of directly reducing NO to N2O. However, due to the 

lack of proper preorganization of the iron centers with open cis coordination sites, as in 

[FeII2((Py2PhO2)MP)(OPr)2]-, NO reduction by [{Fe(MPA-(PhO)2)}2] is much slower, and 

proceeds over 8 hours. Nevertheless, this makes [{Fe(MPA-(PhO)2)}2] only the second model 

complex capable of directly reducing NO to N2O. The yield of N2O formation topped off at 81% 

due to formation of unreactive iron-nitrosyl byproducts. This study demonstrates that hs-{FeNO}7 

species with N-O stretching frequencies £ 1700 cm-1 are activated for direct NO reduction. 

However, a coplanar diiron core is critically important to make this an efficient process. 

 Though I have shown above that model complexes can indeed reduce NO directly to N2O, 

by tuning the reduction potential of the diiron core, it is important to note that native FNORs do 

not operate at such negative redox potentials. Instead, FNORs contain a beautifully crafted network 

of hydrogen bonding residues around the active site to assist with NO reduction.7 It is likely that 

FNORs can directly reduce NO to N2O without reaching such negative redox potentials by using 

SCS hydrogen bonds to assist in NO activation. These hydrogen bonds, therefore, “compensate” 

for the less reducing iron centers in the enzymes compared to [FeII2((Py2PhO2)MP)(OPr)2]-.  
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 In Chapter 4, new model complexes based on our original BPMP- ligand scaffold are 

presented, which carry NHC(O)R-type hydrogen bond donors in the SCS. Several starting 

materials were prepared and characterized first, specifically, [Fe2(BPMP-

NHCOC(CH3)3)(OAc)](OTf)2 (1) and [Fe2(BPMP-NHCOC(CH3)3)(MeOH)2](OTf)3 (2), with one 

and no bridging carboxylate ligands. Further studies showed that the oxygen atoms of the amide 

substituents used in these ligands have a strong tendency to bind to the iron centers, competing 

with NO. This competitive binding lowers the apparent binding constants of NO to the diiron core 

of 1, leading to low nitrosylation yields and NO lability in solution. Upon reacting 1 with NO gas, 

IR spectroscopy indicated the formation of NO complexes in solution, although the corresponding 

IR band for the N-O stretch was unusually weak. I crystallized and characterized one of the species 

from such reactions, and obtained the diiron mononitrosyl complex [Fe2(BPMP-

NHCOC(CH3)3)(OAc)(NO)](OTf) (3). This was surprising, as these types of complexes are 

exceedingly rare with only one report in the literature. However, EPR and solution IR studies 

further showed that this complex is only a minor species in the reaction mixture. Injection of NO 

gas into a solution of 3 resulted in the increase of the intensity of the N-O stretching band in IR 

spectroscopy, indicative of the formation of some amount of the dinitrosyl complex. On the other 

hand, nitrosylation of 2 yielded a complex with a more intense N-O stretching band observed via 

IR spectroscopy. This observation implies that this complex binds NO better, due to the extra 

coordination sites that are not blocked by a bridging carboxylate. I propose that complex 

[Fe2(BPMP-NHCOC(CH3)3)(NO)2](OTf)3 (4) formed after nitrosylation, but further structural 

characterization is needed to prove this point. Due to the proposed binding of both amide O atoms 

to the iron centers in 4, the NO ligands do not actually experience any hydrogen bonding. In 

summary, the application of amide groups as hydrogen-bond donors in the SCS of our BPMP- 
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complexes is problematic, and the goal of achieving hydrogen bonding to the coordinated NO 

ligands could likely not be accomplished, although some interesting compounds were nevertheless 

obtained. In future studies, we will use amine groups instead where such problems can be avoided 

(see below).  

  Following N-N bond formation in the hs-[{FeNO}7]2 complex, the next key intermediate 

that is proposed to form in FNORs is a hyponitrite complex.6,7,16 However, the chemistry of 

hyponitrite with non-heme iron centers has not been investigated much in the literature. In 

Chapter 5, I describe my work on the coordination chemistry of hyponitrite with non-heme iron 

complexes. Here, I reacted two ferrous non-heme iron complexes, [Fe(TPA)(MeCN)2](OTf)2 and 

[Fe2(BMPA-PhO)2](OTf)2, with pre-formed hyponitrite (Na2N2O2). I discovered that protic 

solvents, such as methanol, decompose Na2N2O2 to form N2O, and hence, are unsuitable reaction 

media. The reaction of [Fe(TPA)(MeCN)2](OTf)2 with Na2N2O2 in acetonitrile yielded 

[Fe2(TPA)2(NO)2](OTf)2, which is a new compound that is discussed in detail in Chapter 6. Here, 

I propose that the high Lewis acidity of the Fe(TPA) unit causes the N-N bond of hyponitrite to 

break. The less Lewis acidic complex [Fe2(BMPA-PhO)2](OTf)2 , on the other hand, does not 

break the N-N bond, but instead, allowed for the stabilization of a novel hyponitrite cluster, 

[{Fe2(BMPA-PhO)2}2(µ-N2O2)](OTf)2. Here, the hyponitrite ligand is sandwiched between two 

diiron units. The average N-N bond distance (due to disorder in the crystal) of hyponitrite is 1.27 

Å, which represents an N-N double bond. This is similar to the N-N bond distance in Na2N2O2 

(1.26 Å). The average N-O bond distance of the hyponitrite ligand in [{Fe2(BMPA-PhO)2}2(µ-

N2O2)](OTf)2 is 1.35 Å, again comparable to Na2N2O2 (1.36 Å). Therefore, despite coordination 

to four iron centers, the hyponitrite ligand is not activated, thus allowing me to crystallize and 

characterize the cluster. This study therefore provides the foundation for future studies on 
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hyponitrite complexes with our dimeric complexes, like [Fe2(BPMP)(OPr)]2+, to explore which 

coordination modes of hyponitrite to diiron cores lead to an activation of this ligand. These studies 

will be continued by new graduate student Michael Lengel. 

 

Scheme 8.3 Known possible products from the decomposition of unstable hs-{FeNO}8 complexes. 
This includes the novel diamond core structural motif that is discovered and studied in detail for 
the first time in this thesis. 
 
 Studies presented in Chapter 6 investigated the reactivity of mononuclear hs-{FeNO}8 

complexes. For this purpose, I reacted hs-{FeNO}7 complexes with primary coordination spheres 

similar to that of [Fe2(BPMP)(OPr)(NO)2]2+ (using TPA and BMPA-tBu2PhO- ligands) with one 

equivalent of CoCp2 and characterized the reaction products. The weak field ligand BMPA-PhO- 

stabilizes the hs S = 3/2 complex [Fe(BMPA-tBu2PhO)(NO)(OTf)], which does not change spin 

state regardless of solvent coordination (instead of triflate). Reduction of [Fe(BMPA-

tBu2PhO)(NO)(OTf)] with CoCp2 yielded a typical dinitrosyl iron complex (DNIC), which is a 

commonly observed decomposition product of hs-{FeNO}8 complexes (Scheme 8.3).9,17-19 In 

contrast, characterization of [Fe(TPA)(OTf)(NO)](OTf) revealed an unusual electronic structure 

where coordination of the solvent acetonitrile induces a spin state change to ls (S = 1/2). Reduction 
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of [Fe(TPA)(OTf)(NO)](OTf) with CoCp2 yielded a diamagnetic product. X-ray crystallography 

revealed the formation of the novel dimeric complex [Fe2(TPA)2(NO)2](OTf)2 with a diamond 

core motif bridged by NO ligands. I propose that this complex is formed through dimerization of 

two hs-{FeNO}8 moieties that undergo an immediate spin change upon dimerization. Through 

these observations, I propose that dimeric diamond core structures, like in 

[Fe2(TPA)2(NO)2](OTf)2, are potentially the intermediates on the pathway towards DNIC 

formation. Due to the spin change upon dimerization, this type of intermediate is “trapped” in 

[Fe2(TPA)2(NO)2](OTf)2. This is the first report of such diamond core species in non-heme iron 

chemistry. 

 

Figure 8.1 Force constants showing weak Fe-B interactions in the ls-{FeNO}8,9 complexes, but a covalent 
bond is formed in the ls-{FeNO}10 complex. 
 

In Chapter 7, I explored the electronic structure of a series of iron nitrosyl complexes, 

[Fe(TPB)(NO)]+/0/-, beyond the {FeNO}8 state. Using spectroscopy and theoretical methods, I 

determined the exact electronic structure of this series in collaboration with Jonas Peters’ group at 

CalTech. I pinpointed the factors that help stabilize these complexes in such unusual oxidation 

states. All three complexes are low-spin iron-nitrosyls with a bound NO+ ligand. Specifically, the 

electronic structure of the ls-{FeNO}8 complex is best described as Fe(0)-NO+, with two strong, 
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highly covalent Fe-NO p-backbonds. The dz2 orbital is doubly occupied and undergoes a weak but 

distinct interaction with the boron center in the ligand backbone (as shown in the force constants 

of the Fe-B interaction, Figure 8.1). The LUMO of the complex is the dx2-y2 orbital. Upon one-

electron reduction, the dx2-y2 orbital becomes singly occupied, leading to an St = 1/2 ground state in 

the ls-{FeNO}9 complex. The resulting spin-polarization perturbs both the Fe-NO and Fe-B 

interactions, which become weaker. This is reflected by a drop in the Fe-NO stretching frequency 

to 583 cm-1. In the Fe-NO p-backbonding picture, this should lead to an increase in the N-O stretch, 

but this is counteracted by further occupation of the NO(p*) orbitals via unusual mixing with the 

dx2-y2 and dxy orbitals, which causes the N-O stretch to drop to 1667 cm-1. Finally, reduction to the 

diamagnetic ls-{FeNO}10 state leads to the double occupation of the dx2-y2 orbital. The strength of 

Fe-NO bond is restored, evident from an increase in the Fe-NO stretch to 602 cm-1. This increase 

in Fe-NO p-backbonding (compared to the ls-{FeNO}9 complex) as well as the further occupation 

of the NO(p*) orbitals (via mixing with the dxy/dx2-y2 pair) causes a significant drop in the N-O 

stretch to 1568 cm-1. It is worth emphasizing that although the dz2 orbital of Fe is doubly occupied 

throughout the redox series, only the ls-{FeNO}10 complex has a strong Fe-B single bond. Thus, 

iron only adopts a high degree of Lewis base character upon reduction to formal Fe(−II), not at 

Fe(0). Through this reverse dative Fe→B bond, the redox non-innocent tri(aryl)borane subunit of 

the TPB ligand system can de facto serve as a redox buffer or electron reservoir by storing two 

electrons on site (with minimal effect on the Fe-XY bond of an axially coordinated diatomic). In 

this way, the Fe(TPB) platform shifts the accessible redox states of the complex down by 2, and 

the anionic complex can be best described as ls-{BFeNO}10. This unique ability of this ligand 

scaffold to buffer extra electron density in an extremely low valent state is the key to unlock the 

unique chemistry of the Fe(TPB) platform in small molecule activation, most famously for N2.20 
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8.2 Future Directions 

 My work in Chapter 2 shows that reduction potential is a key property that allows for the 

direct NO reduction pathway to be activated. However, due to the quite negative reduction 

potentials of this complex, I could not observe any intermediate, not even the [{FeNO}7]2 adduct, 

prior to N-N bond formation. A future goal is to have a model complex with a reduction potential 

that is closer to FNORs. I speculate that such a complex can still carry out direct NO reduction, 

but at a much slower rate, which might allow for the observation of intermediates of the reaction 

using spectroscopy, especially at low temperature. Therefore, a future direction of this project is 

to dampen the strong donicity of the ligand [(Py2PhO2)MP]3- to a lower level by replacing one of 

the phenolate groups in the ligand scaffold by a pyridine, resulting in the ligand [(Py3PhO)MP]2- 

(Figure 8.2, Right). This modification was shown in a previous study to shift the reduction potential 

of a corresponding diiron complex more positively compared to [FeII2((Py2PhO2)MP)(OPr)2]-,21 

putting this new ligand system closer to the reduction potential of native FNORs. Preliminary 

experiments conducted on the complex [FeII2((Py3PhO)MP)(OAc)2] showed  that this compound 

is indeed able to mediate the direct reduction of NO to N2O. Importantly, nitrosylation of 

[FeII2((Py3PhO)MP)(OAc)2] at -80 oC showed a significant amount of a [hs-{FeNO}7]2 complex 

formed, which will allow for the study of this intermediate going forward.22 By varying the 

reaction temperature, other intermediates might be accessible as well with this complex. 
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Figure 8.2 Left: ChemDraw of the ligand H3[(Py2PhO2)MP] used in Chapter 2. Right: The proposed 
[(Py3PhO)MP]H2 ligand proposed for reduction potential tuning. 
 
 FNORs are extremely efficient at NO reduction even though they operate at a relatively 

mild reduction potential. Nature typically engineers the active sites of enzymes, using both primary 

and secondary coordination groups, to carry out reactions as efficiently as possible. As discussed 

above, several DFT and experimental studies have emphasized the importance of a SCS tyrosine 

residue for NO reduction, by hydrogen bonding to one of the bound NO ligands, and mediating N-

N bond formation. In Chapter 4, I carried out initial investigations on the effects of SCS hydrogen 

bond donors on the structure and reactivity of hs-[{FeNO}7]2 complexes, using amide groups 

installed on the BPMP- ligand scaffold. However, these amide groups bind strongly to iron via 

their O atoms, which greatly complicates matters. To overcome this problem, I propose to use 

amine groups instead of amides, because in this case, the SCS groups cannot directly bind to the 

iron centers and interfere with the coordination of NO.   

In preliminary studies, I prepared the ligand H[BPMP-NH2] which contains primary 

amines instead of amides in the SCS, incapable of coordinating to the iron centers and competing 

with NO ligation, using a reported procedure.23 Metallation of this ligand was carried out similarly 

to the complexes described in Chapter 4. The reaction yielded a bright yellow complex with the 

proposed chemical structure [Fe2(BPMP-NH2)(OAc)](OTf)2 (5). Mössbauer spectroscopy 
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revealed a clean quadrupole doublet with an isomer shift d = 1.19 mm/s and a quadrupole doublet 

DEQ = 2.58 mm/s. Nitrosylation of the yellow solution of 5 in CH2Cl2 yielded a dark brown 

solution. After recrystallization with hexane, a dark brown solid was collected. UV-Vis 

spectroscopy of the brown solid revealed a new band at 383 nm. Importantly, IR spectroscopy of 

a KBr pellet of the complex showed two new bands at 1762 and 1718 cm-1, indicative of the 

formation of an asymmetric [hs-{FeNO}7]2 complex with two chemically inequivalent NO ligands. 

In the structure of this complex, [Fe2(BPMP-NH2)(OAc)(NO)2](OTf)2 (6), I propose that one of 

the NO ligands is involved in hydrogen bonding with an SCS amine group, whereas the other one 

is not. The proposed structure is shown in the Appendix (Figure A1, left). The other primary amine 

likely forms a hydrogen bond with the bridging acetate, which would mimic the exact asymmetry 

of the FNOR active site. This is an exciting result that demonstrates that the use of amine SCS 

groups might be a fruitful route to explore the effect of hydrogen bonds on the geometric and 

electronic structure of hs-{FeNO}7 units, and how this might affect reactivity.  

In addition, the cyclic voltammogram of 6 shows an irreversible reduction event at -460 vs 

Fc+/Fc (Appendix, Figure A1, left). It is worth noting that the reported reduction potential of 

[Fe2(BPMP)(OPr)(NO)2](OTf)2 is -1.1 V vs Fc+/Fc. This implies that the presence of a hydrogen 

bond has a dramatic effect on the reduction potential of the hs-{FeNO}7 unit. These results are 

very promising, but further work needs to be conducted to solidify these conclusions, and further 

explore the potential role of the SCS in FNORs. Additional data obtained on complex 6 and 

discussion are provided in the Appendix. 

 we can further fine tune the hydrogen bonds of the ligand H[BPMP-NH2] by modifying 

the primary amines into secondary amines with either an aryl ring (Ph-R type groups with R = 

electron withdrawing groups (EWGs): -NO2, -COOR’, -F or electron donating groups (EDGs): 



 

219 
 

tBu, -NH2, -OR) or more bulky alkyl groups for steric protection (Scheme 8.4 and Figure 8.3). By 

introducing EDGs and EWGs, we can tune the acidity of the amines and in this way, the strength 

of the resulting hydrogen bonds, to find the right hydrogen bond strength that is required for either 

direct NO reduction, or the potential stabilization of the key hyponitrite intermediate. The initial 

studies should focus on modifying the SCS of BPMP- type ligands that can stabilize the [hs-

{FeNO}7]2 intermediate. However, other ligands such as [(Py3PhO)MP]3- could also be considered 

for the purpose of tuning the reduction potential at the same time (Figure 8.3).  Ultimately, this 

approach would allow us to design a “perfect” model complex of FNORs, which can directly 

reduce NO to N2O, and which can be tuned to potentially observe further intermediates of the 

reaction.  

 

Scheme 8.4 Reported ligand synthesis for BPMP-NH2 and proposed synthesis for new derivatives of this 
ligand that incorporate different EDG and EWG to tune the acidity of the proton of the amine substituent.23 
Additionally, a synthetic route for the transformation of the amide groups of the BPMP-NHCOC(CH3)3 
ligand into secondary amines is proposed. 
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Figure 8.3 Proposed ligand modifications for different scaffolds that feature hydrogen bond donors in the 
SCS, suitable for modeling FNORs. 
 
 

In Chapter 5, the coordination chemistry of hyponitrite with non-heme iron complexes is 

explored. However, these complexes are not the best models for the active site of FNORs. The 

future direction of this project should be to study the chemistry of hyponitrite with complexes such 

as [Fe2(BPMP)(OPr)]2+, [Fe2((Py2PhO2)MP)(OPr)2]-, [Fe2(BPMP-NH2)(OAc)]2+, etc., as 

described in this thesis. Using these model complexes, with structural and chemical properties that 

better reflect those of the active sites of FNORs, we can potentially isolate and characterize a 

hyponitrite complex on the pathway towards N2O formation. Additionally, we could introduce 

Lewis acids into the putative hyponitrite complexes, such as [Fe2(BPMP)(OPr)(N2O2)]. These 

Lewis acids can potentially help isolate or activate stable hyponitrite complexes, or change the 

coordination mode of the hyponitrite ligand (Figure 8.4). The investigation of the relationship 

between the coordination mode of hyponitrite to non-heme diiron cores and the activation of the 

ligand towards N2O formation would provide key insights into the reaction mechanism of not only 

FNORs, but other NO reductases as well. 

OH

NN

N

N

N

N

NHHN
R R

R = H
R = CO-tBu, Ph-EWG (EWG = NO2, CF3, F,…) 
R = tert-butyl, iso-propyl (bulky groups)

OH

NN

NN

NHHN
R R

OH OH

OH

NN

COOH

N

HOOC

N

NHHN
R R

BPMP-(NHR)2 (RNH-Py2PhOH2)MP (RNH-Py2Ac2)MP



 

221 
 

 

Figure 8.4 Proposed alternative coordination mode of hyponitrite in non-heme iron complex [{Fe2(BMPA-
PhO)2}2(µ-N2O2)](OTf)2 under the influences of different Lewis acids. 
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Appendix 

 

A.1 Chapter 8 

 

Figure A1 Left: ChemDraw of the proposed structure of the dinitrosyl complex 6. Right: ATR IR spectra 
of 5 and 6 in the solid state taken in a KBr pellet. 
 

Since primary amines are EDGs, the ligand supposed to be more donating, thus shifts the 

redox potential more negatively if primary coordination plays an important role. However, the 

redox potential shifted positively in this case, implied that the primary effect is the hydrogen bonds 

in the SCS which activated one of the hs-{FeNO}7 moiety and decreased the barrier for 

semireduction. Reduction of 6 with one equivalent of CoCp2 resulted in the complete 

disappearance of the NO stretching bands and a new band at 1692 cm-1 was revealed. Spectro-

electro chemistry with IR spectroscopy showed a significant amount of N2O formation 

immediately upon reduction, concomitant with the disappearance of the NO stretching bands 
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(Figure A1, right). Therefore, 6 can undergo semireduction, similar to 

[Fe2(BPMP)(OPr)(NO)2](OTf)2, to form N2O. Fascinatingly, IR spectroscopy under spectro-

electro chemistry condition at -800 mV further revealed that the two NO signals did not disappear 

simultaneously. The stronger N�O band at 1762 cm-1 disappeared before the second one at 1718 

cm-1 diminished along with another signal at 1762 cm-1 (Figure A2 and A3). This observation 

supports the asymmetry induced by the hydrogen bonds between the two NO ligands, mimicking 

the active site of FNORs. Future studies will focus on characterizing the product formed after 

reduction and the identity of the species formed at both room temperature and -80oC. 

 

 

Figure A2 Left. Cyclic Voltammogram of complex 6 vs Fc+/Fc. Right. IR Spec-Echem with potential 
holding at -0.8 V showing slow asymmetric decade of the two NO signals to form N2O and a new signal at 
1691 cm-1. 
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Figure A3 Break down of the changes in solution IR when 6 is reduced under spectro-electro chemistry 
conditions.  
 
 


