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Abstract 

Peptoids as Transcription Factor Mimics to Target the Coactivator Med25 

Protein-protein interactions (PPIs) play significant roles in all cellular activities. The interactions 

are guided by cellular signals which direct how and where these proteins assemble. The 

information encoded by DNA is transcribed, for example, as a result of complex PPI networks 

formed by dynamic transcriptional proteins. If any of the PPIs malfunction, then the resulting 

dysregulation leads to human diseases such as cancer, neurodegenerative disorders, developmental 

disorders, and abnormal metabolic activities.  

At the core of the transcriptional PPI network are proteins known as transcriptional 

activators that bind to specific sequences of DNA. The other basic component of activators is the 

transcriptional activator domain (TAD), which functions to recruit coactivators in the process of 

assembling the transcription machinery. Coactivators play a key role in transcriptional regulation 

as they serve to interact with multiple protein partners, including activators. The complexes formed 

between activators and coactivators have modest affinity and are often transient in nature, since 

they are formed as part of the assembly/disassembly part of the transcriptional machine. 

Additionally, coactivators use binding sites with large surface areas to form PPIs with activators 

and other binding partners. This aids the recruitment of the RNA polymerase following the 

interactions of these classes of proteins. 

Typically, small molecules tend to be most potent when they act as ligand for proteins such 

as enzymes that have deeper grooves and small surface areas. However, coactivator proteins have 
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large surface areas and produce moderate affinities when interacting with binding partners. 

Because of these characteristics, it has been challenging using small molecules to target these 

interactions. In the case of the target coactivator for this study, Med25, the domain that interacts 

with activators has two 900 Å2 binding surfaces that are intractable for small molecule ligands. 

Med25 is dysregulated in many human diseases and there is thus a strong need to identify synthetic 

modulators that would be useful for mechanistic studies.  

Towards this end, we first identified minimal binding sequences from known 

transcriptional activators that interact with  the Activator Interaction Domain (AcID). The 

information gleaned from these studies presented the opportunity to develop synthetic ligands of 

Med25 AcID using peptidomimetics based on those sequences. Peptoids were chosen as the 

scaffold due to their ability to resist proteolytic degradation, cover large surface areas and present 

diverse functional groups as sidechains. We demonstrated that we could design peptoids based on 

identified minimal peptides that interact with Med25 AcID to recapitulate binding to the Med25. 

After optimization, the best peptoid exhibited low micromolar affinity for Med25 AcID and good 

selectivity against a related coactivator.   

The work yielded promising results leading us to improve the compounds so that that they 

have intercellular applications. Cell penetrating peptides were appended to the optimal peptoid and 

the cell permeability assessed by visualizing  Vari-068 cells, a triple-negative  breast cancer cell 

line, treated with fluorescently-labeled variants of the peptoid. One version could be seen 

throughout the cell, including the nucleus, after 6 hours. Taken together, this work demonstrates 
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that we can design mimics of native TADs to interact with larger surface areas with moderate 

affinities for the target proteins and eventually modify these for efficient intracellular delivery and 

inhibition. 
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Chapter 1 

The Challenges and Opportunities of Targeting Transcriptional Activator•Coactivator 

Complexes 

 

Abstract 

Protein-protein interactions play a significant role in maintaining cellular processes in cells. These 

are complex networks involving numerous proteins interacting with each other in a transient 

fashion. One of the essential functions of cellular systems is transcription, which is a process in 

which genetic information is regulated. This involves key proteins such as transcriptional 

activators, which at a minimum comprise a DNA binding domain (DBD), that binds to a specific 

DNA sequence and transcriptional activation domain (TAD) that recruits coactivators to the DNA 

transcription site. The coactivator interacts with the TAD with its Activator Binding Domain 

(ABD) as it helps to assemble the other components of the transcription machinery such as the 

RNA polymerase II enzyme. Misregulation of activator-coactivator complexes contributes to a 

wide range of human diseases. As a result, these complexes are attractive therapeutic targets. One 

of the most common techniques for targeting activator-coactivator PPIs is discovery of small 

molecule ligands. However, due to the large surface areas of the PPIs these molecules are often 

incapable of being effective modulators as they are incapable of covering large surface areas. Here, 

we propose using peptidomimetics as a strategy that could address the limitations of small 

molecules as they possess diverse chemical structures, can interact with large binding surfaces, 

and are resistant to proteolytic degradation. 
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1.2 Transcriptional Activator-Coactivator Complexes 

Protein-protein interactions (PPIs) are essential for biological systems to function, and, as a result 

PPIs are tightly regulated by preprogrammed cellular signals.1 An example of a functionally 

important class of PPIs are those formed between transcriptional activators and coactivators in the 

earliest step of gene transcription. Transcriptional activators recognize particular sequences in the 

promoter regions of genes in a signal-responsive fashion and then form short-lived PPIs with 

transcriptional coactivators to initiate formation of the transcriptional machinery.2,3 At the core of 

this multiprotein network is the RNA polymerase II (Pol II), which is the central enzyme in the 

transcriptional machine.2,4,5 The well-characterized protein family ETV/PEA3 includes examples 

of transcriptional activators that form PPIs with the coactivator protein Med25; ETV/PEAS-

Med25 complexes lead to the recruitment of the Mediator complex to genes such as MMP-1, 

stimulating transcription.  

Figure 1.1 Transcriptional Machinery Assembly. Activator-coactivator complexes facilitate assembly of the 

transcriptional machinery in a signal-responsive fashion. Transcriptional activators are often held by masking proteins 

(MP) in inactive form until needed. A signal, often in the form of a post-translational modification, causes the masking 

protein-activator interaction to change. The DNA binding domain (DBD, deep blue) of the activator localizes the 

activator to particular sites in the genome. The transcriptional activation domain (TAD, red) then forms PPIs with 

coactivators to stimulate formation of the transcriptional machine.  
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Misregulation of activator-coactivator PPIs, not surprisingly, results in myriad diseases such as 

autoimmune diseases, cancers, neurological degenerative and cardiovascular diseases to name a 

few.6–14 To ameliorate situations arising from misregulation of activator•coactivator complexes, it 

is important to understand the mechanism(s) through which these molecules function. 

Transcriptional activators are minimally composed of a DNA-binding domain that localizes the 

protein to particular sites within a genome and a transcriptional activation domain, or TAD, that 

forms complexes with coactivators.15–18 Activators are often classified based upon the sequence of 

their TAD, falling into the category of amphipathic/acid-rich, glutamine-rich, or proline-rich. The 

largest class is that of the amphipathic group, in which the TAD sequences are (as the name 

suggests) comprised of hydrophobic residues that are interspersed with polar amino acids, often 

glutamic or aspartic acid.3,19–22 

 

TADs commonly interact with two classes of proteins. One class comprises masking proteins, and 

the well-studied tumor suppressor and transcriptional activator p53 and its masking protein partner 

MDM2 are an excellent example.23–26  Another example is the yeast transcription factor Gal4 and 

Figure 1.2. TADs interact with coactivator protein. The CBP/p300 KIX domain interacts 

with several TADs using both of its binding sites. The TADs represent examples of 

diseases in which they are implicated. 
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its binding partner Gal80 masking protein-TAD PPI.23,24 Typically, masking proteins bind with 

high affinity to activator partners, with dissociation constants in the low nanomolar range.24 

Conversely, TADs interact with coactivators, the second class of binding partners, with low to 

moderate affinities (micromolar to high nanomolar dissociation constants).25 TADs are diverse in 

size as they range from a few amino acids to over 100 amino acids in length. Some activators such 

as VP16 and p53 have multiple TAD domains that allow them to interact independently with other 

proteins.26–32 

A remarkable feature of transcriptional activators and their coactivator binding partners is that they 

are hub proteins, using a single domain to interact with many different binding partners. The TAD 

within the yeast activator Gal4, for example, interacts with more than 10 different  

coactivators.33–36  The hub domains within coactivators are called activator-binding domains or 

ABDs. Some coactivators such as cAMP-response element binding protein (CREB-binding 

protein – CBP) contain multiple ABDs. The CBP ABD KIX interacts with CREB, MLL, c-Jun, c-

Myb and p53 along with other proteins (Figure 1.2).37 A similar KIX domain in the Mediator 

subunit Med15 interacts with several unique proteins including Pdr1p, Pdr3p, Oaf1p, Gcn4p and 

Gal4p.38–42  
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As noted above, the complexes formed between transcriptional activators and their coactivator 

binding partners are implicated in a number of diseases. This can be due to up- or down-regulation 

of one or both binding partners, altered signaling pathways, or mutations/deletions/translocations 

of the transcription factor. For example, in a subset of AML, chromosomal translocation of the 

transcriptional activator MLL leads to loss of function, contributing to leukomogenesis.43–45 In an 

example relevant to this dissertation, the ETV/PEA3 transcriptional activators are up-regulated in 

a number of cancers (Figure 1.3).44,46–49 Table 1 illustrates  further examples of misregulated 

transcription factors and cancer and other diseases are highlighted.  

 

 

Figure 1.3 ETV/PEA3 activators. a) The three ETV family members have nearly identical transcriptional activation 

domains.50  b) Although all three ETV family members are considered to be oncogenes, there is considerable evidence 

for activation of ETV1 and ETV4 inducing invasion and migration programs through several mechanisms. There is 

less data for ETV5 but The cancer Genome Atlas (TCGA) database analysis reveals that it is in the top 1% amplified 

genes in head and neck cancer.50–53  52-55 
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Transcriptional Activator Result of Misregulation 

TAL-1 T cell acute lymphoblastic leukemia 

c-Myb hematopoietic malignancies/breast cancer 

ETV-1 Early prostate cancer 

ETV-5 Head & Neck cancer 

ETV-4 Prostate cancer 

FoxO-3 Degenerative disorder 

P53 Cancer, DNA damage 

CREB Degenerative disorder 

IRF-5 Inflammation/immunodeficiency 

STAT-1 immunodeficiency 

STAT-2 immunodeficiency 

STAT-3 immunodeficiency 

XBP-1 Neurodegenerative disease 

RUNX-2 Developmental disorder 

MLL Acute myelogenous leukemia 

 

HIF1-a Cancer (solid tumors) 
 

Table 1: Examples of transcription and the consequences of misregulation. These transcriptional activators are 

involved in a complex network of protein-protein interactions with coactivators and other proteins. If there are any 

anomalies in the formation of the PPIs, the result can lead to diseases.7  

 

As noted in Figure 1.3, a group of particularly exciting activator•coactivator complexes are those 

formed between the ETV/PEA3 activators and the coactivator Med25. The ETV activators regulate 

the transcriptional status of their cognate genes through a direct interaction between their 

transcriptional activation domains and the coactivator Med25.54–56 More specifically, the Activator 

Interaction Domain (AcID) of Med25 is the target of the ETV activators, with a KD of ~500 nM.57  

Med25 is anchored to the Mediator complex via its VWA domain and formation of the ETV-

Med25 AcID complex leads to recruitment of Mediator to promoters, a critical step in assembly 

of the transcriptional pre-initiation complex.58 Overexpression of the Med25 AcID or the VWA 

domain inhibits ETV-mediated transcription. In triple-negative breast cancer cells, for example, 
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overexpression of AcID led to down-regulation of metastasis-associated genes such as matrix 

metalloproteases, as did shRNA knockdown of ETV1, 4 and 5; importantly, the most effective 

inhibition was observed when all three ETV activators were knocked down.54 Taken together, the 

hypothesis that emerges from these data is that a synthetic inhibitor of the Med25-ETV complex 

would block key metastasis pathway and, as a result, be effective mechanistic probes for defining 

the role(s) of the ETV/PEA3 transcription factors in the metastatic transformation. However, as 

described below, Med25 AcID presents a challenge for small-molecule modulator discovery. 

 

 

 

Figure 1.4 Med25 AcID is the critical binding partner for ETV/PEAs and other activators. a) The domains and 

function of Med25. b) Solution structure of Med25 AcID in complex with the transcriptional activation domain 

of VP16(413-490) (not shown). Highlighted residues indicate the predicted activator binding sites, with dark blue 

and maize colors indicating residues that shift significantly upon addition of VP16.(11) The blue site is termed 

the H1 binding surface as it interacts with the amino terminal residues of VP16 while the maize site is the H2 

surface, targeted by the C-terminus of VP16. Figure derived from PDB 2L23. 
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1.3 Activator•Coactivator Complexes are Considered ‘Undruggable’ 

Activator•coactivator complexes have long been deemed ‘undruggable’ because of their 

undesirable biophysical characteristics.59–62 As noted above, they typically are modest in affinity 

and transient. Additionally, they typically occur over large surface areas, ranging from 700-2000 

Å2 unlike enzyme active sites with an average surface area between 300 and 500 Å2 (Figure 1.5). 

 

Figure 1.5: Chemical space of protein-protein interactions. Some PPIs exist in the high affinity-small surface area, 

low affinity small surface area, high affinity large surface area, or the low affinity-large surface area space. Examples 

of these proteins are shown in each of these spaces.  

Previous work by former co-worker Dr. Steve Sturlis with the VP16(438-454) - Med25 AcID 

complex illustrates that the coactivator Med25 has a large binding surface, rather than one or more 

binding ‘hot spots’ (Figure 1.6). Replacement of each of the amino acids within the VP16 sequence 

with alanine and measurement of the binding affinity for Med25 revealed that the binding energy 

is spread over a large surface area, rather than localized to a few specific residues. As discussed in 

later sections, this is consistent with the challenge of identifying small molecule binders of 
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coactivators such as Med25 as small molecules typically do not have the array of functional groups 

needed for effective binding.63 

 

Figure 1.6: Alanine scan of VP16 (438-454). The Direct binding was measured for the peptide against Med25 Acid. 

This shows that binding is spread over a large surface area. Experiments were conducted by Dr. Steve Sturlis. 

 

In addition to the large surface area and modest affinity of activator-coactivator complexes posing 

a challenge for inhibitor discovery, both the individual binding partners and the resulting 

complexes are structurally highly dynamic. Transcriptional activation domains are unstructured 

prior to binding and the activator-binding domains within coactivators exist in numerous 

conformations (Figure 1.7). There is little high resolution structural data of activator-coactivator 

complexes, and, as a result, structure-based design strategies are ineffective.  

An additional challenge associated with ‘drugging’ activator•coactivator  complexes is that with 

transcription taking place in the nucleus, inhibitors must be not just cell permeable but also traffic 

to the nucleus.64 The cell membrane serves not just as a barrier to contain the components of the 

cell, but also poses a great challenge to efficiently delivering potent inhibitors of transcription. 

Native chemical elements of the cell membrane dictate what compounds it permits to pass through. 

The phospholipid bilayer would repel drug molecules that are negatively charged thus defeating 
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any hope for targeting transcription. Modulating the PPIs of activators and coactivators often 

mimics the amphipathic activators involved the in complex formation. In targeting the 

coactivators, the amphipathic molecule must successfully cross the membrane after introducing it 

to the biological system; however, this will be repelled upon interaction with the negatively 

charged phosphate heads of the membrane. For all of the reasons discussed in this section, 

activator-coactivator complexes have historically considered ‘undruggable’.59 

 

Figure 1.7. Protein adopts helical conformation upon interaction with target protein. PPIs are highly dynamic, thus 

posing as a great challenge for designing structure-based PPIs 

. 

1.4 Small Molecule Modulators of Activator•Coactivator PPIs 

Despite the challenges outlined in the previous section, there has been a great deal of effort devoted 

to identifying small-molecule inhibitors of activator-coactivator targets as mechanistic probes and 

as therapeutics. In this section I describe some key examples and summarize the lessons learned.  
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Figure 1.8: Examples of small molecules inhibitors of the KIX activator-binding domain found in CBP/p300, 

ARC105, SREBP and other coactivtors. KIX domains, like other coactivator motifs, are tough to target due to 

conformational dynamics. Thus, although a number of potential inhibitors have been identified they all have modest 

to poor affinity for the their target, KIX.  

 

One of the most investigated coactivator targets is the master coactivator CPB/p300. Within that 

multi-domain coactivator is the KIX activator-binding domain (Figure 1.2, Figure 1.8) that through 

its interactions with the Myb and MLL transcriptional activators regulates hematopoiesis. The 

ternary Myb-KIX-MLL complexes is frequently dysregulated in acute myeloid leukemias (AML) 

and genetic and pharmacological studies have shown that disruption of KIX is sufficient to block 

leukemogenesis. Additionally, the PPI formed with the transcriptional activator CREB plays a 

prominent role in certain cancers as well as in neuropathic pain. For these reasons, multiple small 

molecule libraries have been screened against the KIX domain to identify inhibitors and design 

strategies have also been attempted.65   

Med15/Arc105 KIX CBP KIX Med15 KIX (yeast) 

K
D
 115 M 

PNAS 2004, 101, 17622; 
Bioorg Med Chem Lett  
2012, 20, 6811 

K
D
 1 mM 

Angew Chem Int Ed Eng 2015, 54, 3735   

N O

H
RHO

K
D
 >200 M 

Mol Cancer Ther. 2013, 12, 1515;  
ACS Med Chem. Lett. 2012, 3, 30;  
ACS Chem. Biol. 2009, 4, 335;  
J. Am. Chem. Soc. 2007, 129, 10654. 

K
D
 740 M 

ChemBioChem 2018, 9, 963  

  Nature 2016, 1–5  

IC
50

  192 M 
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One of the earliest compounds to achieve success in targeting activator-coactivator interactions is 

the 2-naphthol-AS-E-phosphate (top left structure, Figure 1.8). This compound was identified 

from a drug discovery screen with over 700 compounds, and has been shown to bind specifically 

at a binding interface between CREB-CBP binding complex. Through a series of HSQC NMR 

experiments, the residues responsible for participating in the interaction were identified and further 

provided information for the most critical residue in the interaction. This surface that interacts with 

CREB also interacts with other proteins such Myb despite differing binding mechanisms, thus 

creating an opportunity to investigate whether the inhibitor has the ability to function specifically 

or broadly. Later results have illustrated that 2-naphthol-AS-Ephosphate is more a more potent 

inhibitor of Myb-CBP interaction compared to the CREB-CBP complex.  Nonetheless, even after 

optimization, the KD for KIX remains poor, 115 mM. Further, the selectivity of the molecule for 

CBP/p300 KIX over other coactivators (even other KIX domains) has not been established.4,5,22 

Several synthetic KIX ligands demonstrated that they can inhibit transcriptional activators such as 

Myb and MLL, which bind to opposite faces of the KIX domain of CBP. For example, small 

molecule inhibitors for KIX identified from library screening include depsides (Sekikaic acid) and 

depsidones (lobaric acid) (Figure 1.9). These molecules successfully inhibited the MLL binding 

surface of KIX, thus underscoring the ability to use of the small molecules to target coactivators 

and show some specificity for a particular surface of the targeted protein despite the challenges. 

However, the structural complexity of the ligands has hampered further optimization.  
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Figure 1.9: Library screening identified small molecule inhibitors of activator coactivator PPI. Sekikacic acid and 

Lobaric acid have been identified as two of the more potent  inhibitors of activator-coactivator interactions.  

 

The coactivator that is the focus of this thesis, Med25, has also been a target of interest. It was 

demonstrated that Med25 AcID-activator complexes are able to be disrupted, like KIX-activator 

complexes, using natural products. Norstictic acid, psoromic acid and garcinolic acid were 

identified as effective inhibitors of the PPIs of Med25 AcID, which could potentially be used to 

inhibit transcription activation of genes regulated by the Med25 protein network.  Co-workers Dr. 

Steve Sturlis, Dr. Paul Bruno and Julie Garlick identified norstictic acid from two different screens 

of a complex between Med25 AcID and the activator ERM. It is a covalent inhibitor that binds to 

a loop on the H2 face of Med25 and in doing so inhibits complex formation at both the H1 and H2 

face with low micromolar apparent IC50 values in vitro and in cells. A related structure, psoromic 

acid, shows similar activity. Norstictic acid also shows excellent selectivity (5-100-fold) for 

Med25 AcID over all coactivators tested. As in the KIX examples, however, due to the structural 

complexes of norstictic acid and psoromic acid, further optimization has not been possible. 

sekikaic acid lobaric acid 

Ki
 
11 M (MLL), 12 M (pKID/CREB) 
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Figure 1.10: Natural products identified as inhibitors for activator-Med25 AcID complexes. These natural product 

inhibitors have shown to be potent inhibitors of TAD-Med25 AcID interactions. 

 

The examples above show that it is possible to identify inhibitors, even selective inhibitors, of 

activator-coactivator complexes. However, the most successful inhibitors are natural products with 

structural complexities that prevent further optimization. Co-workers in the Mapp lab and other 

groups have attempted to identify more drug-like scaffolds for KIX, Med25, and other 

coactivators. In the case of Med25, for example, former co-workers Dr. Steve Sturlis and Dr. Paul 

Bruno screened all 150,000 small molecules in the Center for Chemical Genomics collection and 

obtained not a single hit. Co-worker Julie Garlick has screened focused libraries from the 

University of Illinois and from AtomWise, again with no success. Given these results, our focus 

shifted to developing peptidomimetics that could be based on the amino acid sequences of 

transcriptional activators. The advantage would be the synthetic ease with which the size and 

psoromic acid norstictic acid 
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complexity of peptidomimetics can be tailored and, specifically, we chose peptoids as the 

peptidomimetic scaffold on which to focus. 

1.5 Peptoids as Protein Ligands and PPI Inhibitors  

Peptoids were first reported in the 1980s as modular peptidomimetics. Like peptides, individual 

peptoid monomers are connected through amide bonds that can be formed via solid-phase 

synthesis. What distinguishes peptoids is that the side chain of each monomer is on the nitrogen, 

rather than on the a-carbon as in peptides, leading to a-chiral molecules and the ability to install a 

wide range of functional groups during the synthesis (Figure 1.11). By the early 1990s peptoid 

pioneer Ronald Zuckerman along with others had developed many peptoids with improved 

pharmacokinetics compared to their peptide counterparts and with a variety of applications.66,67  

Because peptoids can be synthesized using automated strategies, the ease with which libraries can 

be prepared lead to screening approaches to identify protein-protein interaction inhibitors. An early 

example yielded one of the first peptoid ligands with a high affinity for 7-transmembrane G 

protein-coupled receptors. The identification of CHIR 2279 binding to α1-adrenoreceptors with a 

low nanomolar Ki proved that it was possible to develop a peptidomimetic library and successfully 

select lead compounds that can be used in a biological system.68  

 



16 
 

 

Figure 1.11: Comparison of peptide and peptoid structures. Peptoids mimic peptides with the substitution on the 

nitrogen atom instead of the alpha carbon. 

 

The Src homology 3 domains are frequently found in eukaryotic signaling proteins and thus are 

important targets for PPI inhibitors. These proteins are attractive targets as they are implicated in 

diseases such as cancer and degenerative diseases. They make contact with their target proteins 

via proline-rich regions of the targets. Jack Nguyen and colleagues developed a hybrid peptide-

peptoid library of molecules to improve selectivity. A library was developed with peptides and 

peptide-peptoid library and screened to identify potent binding ligands. The characteristics of 

peptoids were leveraged by substituting at least one amino acid in some sequences, which resulted 

in an improvement in affinity by 100-fold and specificity by 300-fold.  These hybrids illustrate 

that incorporating peptoids in a canonical motif can remedy the challenge of designing potent 

inhibitors of protein-protein interactions.  

A third example of peptoids working to modify PPI networks is in the realm of transcriptional 

PPIs. p53 is transcriptional activator that is regulated by associating with masking protein MDM2 

in normal cells. However, upon abnormal cellular functioning such as cellular stress or genomic 
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damage, it performs its transcriptional tasks to regulate transcription by binding to many proteins 

including coactivator proteins such as CBP/p300 and PC4 to regulate the cell cycle.69–72 Toshiaki 

Hara and colleagues demonstrated the successful design of a peptoid that inhibits the association 

of p53 with its binding partner MDM2. They were able to identify a peptoid with comparable 

affinity for the masking protein as the native p53 peptide. In another example, Kodadek and co-

workers carried out a screen of a peptoid library against the transcriptional coactivator Med15 and 

in doing so identified a number of short (7-residue) peptoids with micromolar affinity for the 

coactivator. Also, peptoids stability exceeds that of peptides In vivo due to their ability to withstand 

proteolytic degradation, withstand denaturants have shown to not produce anti-immune 

response.73–75  Taken together, these examples indicate that peptoids are a good scaffold for 

developing ligands of Med25 and, in the future, modulators of the Med25 PPI network.76,77 

 

1.5. Dissertation Summary 

The overall goal of this thesis is to develop peptidomimetics that can inhibit native protein-protein 

interactions between activators and coactivators. In these studies, we use Med25 AcID as our 

model to garner key insights into the engagement mechanism between Med25 AcID and its 

binding partners. Med25 AcID functions primarily as the key domain of coactivator Med25 

subunit that allows the protein to interact with activators. Because a number of the activator 

proteins that interact with Med25 are implicated in multiple diseases, synthetic ligands would have 

high value as mechanistic probes. We hypothesize that we can leverage the characteristics of 

peptidomimetics to develop lead compounds to form inhibitors of activator coactivator 

interactions.  
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In Chapter Two we show that Med25 has two discrete binding faces that selectively bind to the 

activators ERM and ATF6a. Additionally, truncation studies of the Med25-dependent activator 

VP16 were used to identify minimal peptide sequences needed for Med25 binding. Through  The 

work described in Chapter Three demonstrated that we could identify minimal sequences with 

good affinity for Med25 and optimize the peptoids to identify a structure with low micromolar 

affinity for Med25 and good cell permeability.  
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Chapter Two 

Coactivator Med25 Contains Two Binding Surfaces Targetable by Minimal Activator 

Sequences1 

2.1 Abstract 

Transcriptional coactivators are a molecular recognition marvel because a single domain within these 

proteins, the activator binding domain or ABD, interacts with multiple compositionally diverse 

transcriptional activators to regulate transcription. Also remarkable is the structural diversity among ABDs, 

which range from conformationally dynamic helical motifs to those with a stable core such as a -barrel. 

A significant objective is to define properties of ABD•activator complexes that allow them to be targeted 

by inhibitors. The ABD of the coactivator Med25 (Activator Interaction Domain or AcID) is unique in that 

it contains secondary structural elements that are on both ends of the spectrum: helices and loops that 

display significant conformational mobility and a seven-stranded -barrel core that is structurally rigid.  

Here, we use protein NMR and mutational analysis to identify the binding surfaces used by the natural 

activators ERM and ATF6α for complex formation. We further find that a minimal 8-residue sequence 

from the transcriptional activator binding partners is sufficient for binding. Taken together, these data 

indicate that modulating the Med25 PPI network should be possible using mimetics of the core 

transcriptional activation domain sequences.  

 
1 Portions of this chapter are taken from “Conservation of coactivator engagement mechanism 

enables small-molecule allosteric modulators” A. R. Henderson, M.J. Henley, N. J. Foster, A.L. 

Peiffer, M.S. Beyersdorf, K.D. Stanford, S. M. Sturlis, B. M. Linhares, Z.B. Hill, J. A. Wells, T. 

Cierpicki, C. L. Brooks III, C.A. Fierke, A. K. Mapp. Proc. Natl. Acad. Sci. USA 2018 115, 

8960-65.  
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2.2 Introduction 

Modulating the protein-protein interactions (PPIs) formed between activator binding domains 

(ABDs) of transcriptional coactivators and their cognate activator binding partners is a formidable 

task and the reasons are revealed by biophysical studies of these functionally critical complexes.1 

An excellent example of this is the ABD of the Mediator protein Med25, termed AcID (Activator 

Interaction Domain; Figure 1A).2–4 As is standard for ABDs, AcID is a binding partner of a diverse 

array of transcriptional activators, including VP16, ATF6α,5 and the ETV/PEA3 activators.6,7 

Through these interactions, Med25 plays significant roles in the unfolded protein response and in 

oncogenesis, generating significant interest in small molecule modulators. However, data from 

NMR studies of AcID in complex with VP16 and ETV/PEA3 activators suggest that modulating 

these PPIs would not be trivial.2–4  The VP16 transcriptional activation domain contacts a surface 

of approximately 1800 Å2 of AcID, wrapping around the topologically challenging β-barrel while 

also contacting two flanking helices. The transcriptional activation domain of the ETV/PEA3 

member ERM interacts with one face of the β-barrel, a binding surface referred to as H1 that is 

~900 Å2 in area.6,7 The β-barrel core of AcID is highly unusual among ABDs, with helices more 

commonly observed, and raises the question of the role that the barrel might play in the molecular 

recognition of activators relative to the other substructures within AcID.  
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Figure 2.1: Med25 AcID with transcriptional activators (A) The AcID is the binding partner of a growing number of 

transcriptional activators and contains at least two binding surfaces, termed H1 and H2. The sequences of the 

transcriptional activation domains of the three Med25-dependent activators used in this study are shown below the 

protein structure (PDB ID code 2XNF) (B) Equilibrium dissociation constants for each of. Med25 AcID–activator 

complexes, measured through fluorescence anisotropy experiments using fluorescein-labeled peptides. These values 

are the average of at least three independent measurements with the error indicated (standard deviation of the mean). 

Binding measurements were completed by Dr. Andrew Henderson and Dr. Matthew Henley. 

 

 

The observation that a portion of VP16 and ERM utilize the same H1 binding surface in AcID 

despite their distinct sequences suggests that conformational plasticity within the ABD could play 

a role in its molecular recognition capabilities and ultimately function, similar to helical 

coactivators.  Indeed, computational, and biophysical studies of Med25 and its complexes by our 

group demonstrate that Med25 recognizes its partners via a mechanism analogous to that of helical 

coactivators, in which the loops and helices flanking the β-barrel play a role in molecular 

recognition.8 Remaining questions about Med25-activator complexes included identifying the 

binding site for the native partner ATF6α and the determination of the minimal binding sequences. 

Through mutational analysis I find that, analogous to helical coactivators, a minimal 8-residue 

sequence from activators is sufficient for interaction with Med25. Taken together, these results 

indicate that, despite its structural uniqueness, Med25 uses a similar molecular recognition 
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mechanism to complex with transcriptional activators. This sets the stage for inhibitor 

development based upon the native transcriptional activation domains. 

 

 

Figure 2.2: VP16 TAD has two coactivator binding domains: the N-terminal half of the VP16 transcriptional 

activation domain (red; H1 domain)  and the C- terminal region (green; H2 domain) are capable of independently 

stimulating transcription when associated with DNA.9,10 11 

 

2.3 Results and Discussion 

Separate NMR studies of AcID in complex with the transcriptional activation domains of VP16 

and ERM suggest that the two activators both contact the H1 binding surface, with the significantly 

larger VP16 also interacting with the H2 surface.2–4  While several lines of evidence indicate that 

ATF6α interacts with Med25 AcID as part of its function,5 the binding site within the protein had 

not been established. We first measured the dissociation constants for each of the activators by 

fluorescence anisotropy experiments using fluorescein-tagged variants of VP16(438-490), 

ERM(38-68) and ATF6α(40-66) and this revealed that ERM and ATF6α interact with comparable 

affinities (Figure 1.1B).2–6 To provide a direct comparison of the binding modes of the three 

activators and identify the binding site of ATF6α, we measured the chemical shift changes in each 

activator-AcID complex via 1H, 15N-HSQC NMR titration experiments, with VP16(438-490), 

ERM(38-68) and ATF6α(40-66) in the presence of 15N-labeled Med25 AcID.  
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The amide proton perturbation patterns measured for the activator•AcID complexes suggest a 

different binding mode for each of the three activators. VP16 induced changes at both AcID 

binding surfaces and throughout the Med25 AcID structure, consistent with the tandem 

transcriptional activation domains within its sequence (Figure 2.3) 

Figure 2.3 A: 1H, 15N-HSQC spectra of chemical shifts of Med25 AcID residues. 1H,15N-HSQC spectra of Med25 

AcID show widespread chemical shifts changes upon titration with VP16(438-490). Med25 AcID apo (red), in 

solution with 0.2 (red orange), 0.5 (orange), 0.8 (gold) 1.1 (green), 2 (blue) and 3 (purple) equivalents of VP16. B) 

VP16 binding induces significant (>2 standard deviations above the average chemical shift change) chemical shift 

perturbations in the dynamic regions of  Med25 AcID. This includes residues on the H1 binding surface (blue-green, 

residues I453, Q539 and T54) and the H2 binding surface (red, residues Q456, V471, L464 and R466). HSQC 

experiments carried out in collaboration with Dr. Matthew Beyersdorf. 
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ERM binding predominantly lead to perturbations at residues on the H1 surface of the AcID β-

barrel, in agreement with the model in which it preferentially interacts at that site (Figure 

2.4A;).4,6,7 Key changes at residues K411, E538, and Q451, for example, were seen with both 

VP16 and ERM. In contrast, interaction with ATF6α led to significant chemical shifts changes on 

the H2 binding surface (Figure 2.4B). ATF6α induced shifts of residues Q456, M470, and H474 

which were also affected to varying degrees by VP16 and largely unaltered by ERM. This is 

illustrated in Figure 2.4C, which highlights the distinct patterns of overlap of the chemical shift 

patterns of ATF6a and ERM with VP16. Additionally, while the chemical shift perturbations 

indicate that residues in the β-barrel play a role in binding, the extensive shift changes in the 

flanking dynamic regions suggest that those dynamic substructures are also integral for binding.  
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Figure 2.4: ATF6α binds to the H2 surface of Med25 AcID. (A) Results of chemical shift perturbation experiments 

superimposed upon the Med25 AcID structure (PDB ID code 2XNF). Residues displaying chemical shift 

perturbation greater than 2 SD upon ERM binding are depicted in maize squares. (B) Results displaying chemical 

shift perturbation greater than 2 SD upon ATF6α binding depicted in rust spheres. (C) Scatter plot illustrating 

correlations between the chemical shift perturbations (CSPs) of individual Med25 AcID residues from HSQC 

experiments with ERM, ATF6α, and VP16. The position of each maize square represents the CSP of an individual 

residue in Med25 AcID upon binding to ERM (y axis) and VP16 (x axis). Thus, squares along the dotted diagonal 

are residues that shift similarly in both ERM–AcID and VP16–AcID complexes. The same analysis for ATF6α is 

shown in rust circles. (D) Results of direct binding experiments with fluorescein-labeled activators and the indicated 

mutants of Med25 AcID as measured by fluorescence polarization expressed the fold change relative to the 

dissociation constant of each activator for the WT AcID. The indicated error is propagated from three independent 

dissociation constant measurements. (HSQC experiments completed by Dr. Matthew Henley, Dr. Andrew 

Henderson, and Dr. Brian Linhares; mutant generation and binding studies carried out in collaboration with Dr. Nick 

Foster and Dr. Steve Sturlis) 

 

 

 

Consistent with ATF6α and ERM interacting on opposing sides of AcID, mutations introduced on one or 

the other of the binding surfaces produced distinct effects (Figure 2.4D). H1 mutations R538E, K411E, and 

Q451E inhibit ERM binding while ATF6α is largely unaffected. In contrast, H2 mutations R466D and 

M523E significantly inhibit ATF6α with minimal impact on ERM binding. Taken together these data 

indicate that ATF6α binds on the H2 binding surface of Med25 AcID, opposite the site of ERM. Further, 
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the distinct but overlapping chemical shift patterns observed upon binding of each of the activators to 

Med25 suggest several unique binding modes accommodated within AcID. This is analogous to helical 

activator binding domains such as GACKIX of CBP/p300, a three-helix bundle that contains at least two 

activator binding sites.12 

Since a number of charged residues within Med25 exhibited chemical shift changes by ATF6α 

binding, we sought to test if altering the charge could be used to further enhance binding. Within 

the H2 binding surface, M523 was a candidate for mutation as it appears directly adjacent to the 

ATF6α binding site but not directly engaged. Given the overall negative charge of ATF6a, we 

hypothesized that mutation of M523 to glutamic acid would inhibit binding but that mutation to 

arginine would enhance binding. Consistent with this hypothesis, the M523E mutant attenuated 

binding of ATF6α approximately 9-fold. Surprisingly, the M523R mutation did not alter ATF6α 

binding. One explanation is that there is a sufficient array of positively charged residues already 

in the vicinity of the binding surface such that an energetic gain is minimal. The loop flanking the 

binding surface, for example, contains three lysine residues (K518, K519, K520). A more detailed 

mutational analysis will be required to define the roles of the various residues.   

 

2.3A: Minimal 8-Residue Sequences from Activators Are Sufficient for Binding to Med25  

To better understand the important features of activator-coactivator PPIs, it has been a long-

standing strategy to develop synthetic activators, either de novo or by modifying existing activator 

sequences. One of the earliest synthetic designed activators is the 20 amino acid amphipathic helix 

(AH) peptide that has shown that it is possible to create minimal sequences that can function as 

transcriptional activation domains.13–15  Subsequent studies  identified shorter sequences (8-10 

residues) from phage display selections that are capable of low micromolar binding to coactivator 
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protein such as CBP/p300.16  Similarly, truncation studies of natural transcriptional activators 

indicate that sequences of 8-11 amino acids can be sufficient to interact with coactivators and 

stimulate transcription.1718   

Using the reporter gene chloramphenicol acetyl transferase (CAT) driven by a DNA binding 

domain fused to various activator sequences, truncations of activators have identified minimal 

sequences that are capable of interacting with coactivators and the transcriptional machinery for 

transcriptional initiation to occur.  Oaf1 is one of many activators that interact with the TAF9 

coactivator. Using the one-hybrid assay, the transactivation ability of a variety of truncated Oaf1 

TADs was tested in a mammalian cell line and even a 7-residue sequence demonstrated some level 

of activity, with a 10 residue sequence providing robust activation (Table 2.1).17  Truncation 

studies of artificial KIX TADs model from CREB and c-Myb produced 8-residue sequences that 

interact with the cognate coactivator CBP with micromolar affinities.19  Given the structural 

uniqueness of Med25, an open question at the outset of this work was if similar minimal activator 

sequences of transcriptional activators were sufficient to recognize Med25. 

 

Table 2.1: Truncated TAD has transactivation activity in mammalian cells.  Oaf1 TAD minimal sequence was 

identified, and transactivation activity was determined. CAT fold-induction is determined by normalizing CAT to β-

galactosidase activity of cotransfected β-galactosidase plasmid  17 Truncation studies of the Med25 binding 

Construct TAD Sequence Fold Induction 

(CAT) 

Gal4-DBD   1 

Gal4-DBD- Oaf1(1035-

1042) 

LFDYDFLF 4 

Gal4-DBD-Oaf1(1035-

1047) 

LFDYDFLFGNDFA 29 

Gal4-DBD-Oaf1(1021-

1047) 

ANNTPFPGYFGGLDLFDYDFLFGNDFA 38 



36 
 

partner VP16 carried out in our laboratory revealed that  VP16438-490  interacts with a sub-

micromolar affinity of 60 nM (Figure 2.1).20  Such tight binding arises in part from the ability of 

the nearly full-length transcriptional activation domain to contact both binding surfaces of Med25 

AcID, in contrast to smaller activation domains such as those from ERM and ATF6α. Former 

colleague Dr. Steve Sturlis demonstrated that, consistent with these results, the amino terminus of 

the sequence (residues 413-437) retains little detectable affinity for Med25 AcID (Figure 2.5).  

This set the precedent for further truncation to identify shorter sequences that retained at least 

micromolar affinity for the coactivator and could be used as starting points for peptidomimetic 

design. As illustrated in Figure 2.5, initial studies carried out by Dr. Sturlis revealed that relatively 

short sequences 15-20 amino acids in length retained micromolar affinity for Med25.  

 

Figure 2.5  VP16 TAD Truncation. The VP16 TAD was truncated into three peptides of approximately equally 

length and an additional two peptides were synthesized based on purported α-helices within the TAD (underlined 

sequences within the TAD). The peptides were conjugated to fluorescein and the Kd of each peptide was determined 

for AcID using fluorescence polarization. Curves represent the means of three independent experiments with error 

bars representing the standard deviation of the fraction bound at the indicated concentration of AcID protein  (Data 

adapted from the published dissertation of Dr. Steve Sturlis).21 
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Within the C-terminal sequence of 465-490 is a region predicted to become helical upon binding 

to Med25, amino acids 470-485, and an 8-residue sequence (472-479) that has been reported in 

the literature to function as a transcriptional activation domain when fused to a DNA binding 

domain (Table 2.1).15,22 Because VP16(472-479) must interact with coactivators such as Med25 

in order to active transcription, we chose this 8-residue sequence to further investigate. 

VP16(472-479) as well as mutant in which Q477 was replaced with an additional glutamic acid 

were synthesized and labeled with fluorescein for direct binding studies (Figure 2.6). The latter 

was initially prepared as a negative control, as prior studies have shown that increasing negative 

charge in a transcriptional activator sequence typically decreases binding.23,24 

 

Name Sequence 

VP16 (465-490) YGALDMADFEFEQMFTDALGIDEYGG 

VP16 (470-485) MADFEFEQMFTDALGI 

VP16 (472-479) DFEFEQMF 

VP16 (472-479) Q477E DFEFEEMF 
 

Table 2.2 Sequences of the helical region of the C-terminus of the VP16 TAD. The 8-amino acid sequence is 

contained within the longer helical sequences. 

 

As can be seen in Figure 2.6C, VP16(472-479) shows good binding to Med25 AcID, despite its 

considerably smaller size. Additionally, this short peptide preferentially binds to Med25 compared 

to the related activator binding domain of CBP, KIX (Figure 2.6D). However, the negative control, 

the Q477E mutant, showed greater than 2-fold increase in binding (Figure 2.6E). In retrospect, this 

was not an unexpected result; Med25 AcID has an unusually high percentage of positively-charged 

residues relative to other coactivators. Since these experiments were done, Dr. Nick Foster in the 

Mapp lab has carried out studies of Med25 in the presence of salts of different composition and 
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concentrations and found that indeed, activator binding to Med25 is substantively dependent upon 

electrostatic interactions.  

 

 

 

Figure 2.6: Direct binding assays of VP16 ligands to coactivator proteins. A. WT 8- amino acid sequence (VP16 472-

479 bind to Med25 AcID with low micromolar affinity. B. Replacing the glutamine with glutamic acid retains low 

micromolar affinity for Med25 AcID. C. The WT ligand was tested for binding to CBP KIX and the KD could not be 

determined under the conditions used. The curves were obtained from plotting three the mean of three independently 

run experiments. The errors represent the standard deviations (Some error bars are smaller than data point symbols). 

 

Further examination of the sequence of VP16 revealed a second 8 residue sequence (441-448) with a very 

similar sequence to VP16(472-479), termed VN8 in the literature.22 Additionally, a nearly identical 

sequence is observed in the activator ATF6α, residues 61-68. We hypothesized that the ATF6α VN8 

sequence would function similar to the VP16 sequence and interact with Med25 AcID. To test this, the 

sequence was synthesized by standard methods and direct binding experiments revealed an affinity of 6.1 
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± 0.5 µM for Med25 AcID (Figure 2.7). This peptide also showed good selectivity for Med25, with little 

binding to a coactivator with a similar set of binding partners, the KIX motif of CBP/p300. Thus, this 

octameric peptide similar seemed like a good starting point for peptidomimetic design. 

 

 

ATF6α VN8 = DFDLDLMP 

 

 

Figure 2.7: ATF6α VN8 Peptide shows selectivity for Med25 AcID. The curves were obtained from plotting the 

mean of three independently run experiments. The errors represent the standard deviations. 

 

 

 

Kd > 25 µM 

Kd = 6.1 ± 0.5 µM 

µM 
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2.4 Conclusions   

Med25 AcID is a transcriptional coactivator with a unique structure that nonetheless interacts with 

its transcriptional activator binding partners through a mechanism similar to that of other 

coactivators. Prior work and the results in this chapter illustrate that Med25 AcID uses two distinct 

binding surfaces located on opposite sides of its central β-barrel to interact specifically with 

different TAD sequences. More specifically, structural and biophysical experiments illustrated that 

the activators ERM and ATF6α interact with opposing binding surfaces on the β-barrel, the H1 

and H2 sites, respectively. Med25 is a potential therapeutic target for breast and prostate cancer 

and as such, it would be especially useful to be able to target those two sites with synthetic ligands. 

Building on previous work done in the Mapp lab, we sought to identify minimal peptide sequences 

capable of interacting with Med25 that could then be used to design peptidomimetic inhibitors. By 

truncating the VP16 TAD we identified two different octamer sequences that retain single digit 

micromolar KDs. And, preliminary data suggests that these sequences have at least modest 

selectivity for Med25 relative to other coactivators. A similar octamer sequence was found in 

another Med25 binding partner, ATF6α. Taken together these studies suggest that short peptides 

are an excellent starting point for the development of Med25 inhibitors, a strategy that is 

investigated in Chapter 3.    
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2.5 Materials and Methods 

The pET21b-Med25 (394-543)-His6 plasmid was a generous gift from the Patrick Cramer lab. The 

mutations were carried out through standard site-directed mutagenesis protocols. 

Protein Expression and purifications  

Med25 AcID(394-543) was purified by following standard expression protocols. The pET21b-

Med25 (394-543)-His6 plasmid was transformed into heat-shock competent Rosetta pLys cells 

(Novagen) and plated onto LB plates containing ampicillin and chloramphenicol antibiotics then 

placed in the incubator inverted at 37 °C overnight for approximately 15-16 hours. The plates were 

then placed at 4 °C until needed. Starter cultures were prepared by pipetting 5 ml of Luria Broth 

into two disposable culture tubes each followed by 0.1 mg/ml ampicillin and 0.034mg/mL 

chloramphenicol. Using a sterile pipette tip, a single isolated colony was selected from the 

transformed plate and placed in each of the culture tubes after which the tubes were placed in an 

incubator at 37 °C with a rotation speed of 250RPM overnight. The following morning 1-2 mL of 

the starter culture was placed in 1L autoclaved Terrific Broth along with 0.1mg/mL of ampicillin, 

then placed in an incubator at 37 °C at 250 RPM and grown to an OD600 of 0.8-1.0. The culture 

was placed in an incubator at 18 °C for at least 30 minutes before the cells were induced with 0.2 

mM Isopropylβ-d-1-thiogalactopyranoside (IPTG) and shaken at 200 RPM overnight. The following 

morning the cells were collected and centrifuged at 6000 x g RPM for 20 minutes at 4 °C. The 

pellets were collected and placed in 50 mL centrifuge tubes, centrifuged at 2000 RPM for 2 

minutes to concentrate the pellet to the tube bottom then stored at -80 °C for later purification. 

Med25 AcID was purified using manual protocol involving Ni-NTA resins and an automated 

protocol Ni-NTA 5mL HiTrap FPLC columns. The collected pellet was suspended in 35 mL lysis 
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buffer (50 mM phosphate, 300 mM sodium chloride, 10 mM imidazole, pH 7.2) with 35 µL β-

mercaptoethanol (1:1000 dilution)and  one cOmplete, Mini, EDTA-free Protease Inhibitor tablet 

(Sigma-Aldrich). The cells were then lysed via sonication on ice for a total of 6 minutes with pulse 

on for 3 seconds and off for 10 seconds. After the cells were fully lysed, the solution was placed 

in a 50 mL centrifuge tube and placed in a fixed angle centrifuge rotor to centrifuge at 9500 RPM 

for 30 minutes at 4 °C. At the completion of the spin cycle, the supernatant was poured into a new 

50 mL centrifuge tube then placed back in the centrifuge and spun at 9500 RPM for 10 minutes at 

4 °C to further separate large particulates. The supernatant from the second centrifugation was 

filtered into a clean 50 mL centrifuge tube using 0.45 µm syringe filters and placed on ice. 

The supernatant was loaded onto a 5 mL Ni-NTA HiTrap  equilibrated with Buffer A/Lysis Buffer 

( 50 mM phosphate, 300 mM sodium chloride, 10 mM imidazole, pH 7.2) on an AKTA pure FPLC 

chromatography system. The sample was loaded onto the column at a rate of 2.5 mL per minute. 

The method was created to follow the following sequence: the loaded column was washed with 5 

column volumes of Buffer A, then with 5 column volumes of 10% Buffer B (50 mM phosphate, 

300 mM sodium chloride, 400 mM imidazole, pH 7.2), followed by a wash with 5 column volumes 

of 15% Buffer B: 85% Buffer A and finally, elution with a gradient from 15-100% Buffer B. The 

column was subsequently washed with 5 column volumes of 100% Buffer B.  

Following the collection of the fractions, those containing the Med25 AcID protein were collected 

and combined into a chilled 50 mL centrifuge tube then diluted to 50 mL using chilled (4 °C) 

Source S buffer A (50 mM phosphate, pH 7.2). 

The Med25 AcID protein was further purified using 5 mL Source S HiTrap column using the 

AKTA pure FPLC chromatography system. The column was equilibrated with Source S buffer A 

(50mM phosphate, pH 7.2) then the diluted sample was loaded onto the column. Next, the column 
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was washed with 5 column volumes of Buffer A. Next, the protein was eluted with high 

concentration of sodium ions as the column was washed with 10 column volumes over a 

concentration gradient of 0-100% Buffer B (50 mM phosphate, 1M sodium chloride, pH 7.2). The 

fractions were collected and analyzed via SDS-PAGE using a 12% acrylamide gel. The pure 

fractions were then combined and 1 mM DTT was added then buffer exchanged in storage buffer 

(10mM phosphate, 100mM sodium chloride, 10% glycerol, 1 mM DTT, pH 6.8) overnight. The 

protein was concentrated and stored in 150 µL aliquots at 100-200 µM concentrations at -80 °C. 

Protein concentrations were determined using UV-Vis spectroscopy with the extinction 

coefficient, ε = 22550 M-1cm-1 and mass confirmation was carried out by electrospray mass 

spectrometry. 

Site-Directed Mutagenesis  

Primers used for site-directed mutagenesis  

Plasmid Primer Sequence 

pET21b-Med25(394- 

543)K411E-His6 

 

F: CTGGAGTGGCAAGAGGAGCCCAAACCTGCCTCA 

R: TGAGGCAGGTTTGGGCTCCTCTTGCCACTCCAG 

 

pET21b-Med25(394- 

543)R538E-His6 

 

F:GGCTTCGTCAACGGCATCGAACAGGTCATCACCAACCTC 

R:GAGGTTGGTGATGACCTGTTCGATGCCGTTGACGAAGCC 

 

pET21b-Med25(394- 

543)Q451E-His6 

 

F: CCAGAAGCTGATCATGGAACTCATCCCCCAGCAG 

R: CTGCTGGGGGATGAGTTCCATGATCAGCTTCTGG 

pET21b-Med25(394- 

543)R466D-His6 

 

F: CTGGACCATCCTTGAGTTATCGAACAAAGGGCCCAG 

R: CTGGGCCCTTTGTTCGATAACTCAAGGATGGTCCAG 
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pET21b-Med25(394- 

543)M523E-His6 

 

F: AAGAAGAAGATCTTCGAAGGCCTCATCCCCTA 

R: TAGGGGATGAGGCCTTCGAAGATCTTCTTCTT 

 

pET21b-Med25(394- 

543)M523R-His6 

 

F:TCGTCCAAGAAGAAGATCTTCCGGGGCCTCATCCCCTACGACCAG 

R:CTGGTCGTAGGG 

GATGAGGCCCCGGAAGATCTTCTTCTTGGACGA 

 

 

Peptide Synthesis  

Peptide synthesis was carried out using conventional solid phase peptide synthesis and microwave 

assisted peptide synthesis (CEM Liberty Blue).  

Peptides were synthesized on 50 µmole scale using CEM rink-amide resin (0.19-0.21 meq). The 

synthesis was carried out with dimethylformamide as the main solvent. Fmoc-amino acid 

concentrations were made to be 0.2M, deprotection solution was made up containing 20% 

piperidine, 0.2M Oxyma Pure. Diisopropylcarbodiimide (DIC) was the activator acid and Oxyma 

Pure was the activator base. The amino acids were coupled using 4-minute single coupling for 

peptide sequences shorter than 20 amino acids. The peptides were cleaved with 95% TFA:2.5% 

TIPS: 2.5% H2O. Excess cleavage cocktail was evaporated using nitrogen gas flow. The resulting 

solution was treated with cold diethyl ether then centrifuged to collect the peptide precipitate. The 

ether was decanted, and the pellet was redissolved in 30% 0.1% TFA/H2O and acetonitrile and 

lyophilized before purification. Peptides were redissolved in minimal acetonitrile (25%) and 0.1% 

TFA/H2O solution and purified using reverse-phase HPLC (Agilent) with C-18 columns and 

0.1%TFA/H2O-acetonitrile solvent system. The purified fractions were collected and analyzed 

using mass spectrometry. These pure fractions were combined after identifying through mass 

spectrometry and lyophilized until a dry powder was left.  
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Manual Peptide Synthesis 

Peptides were synthesized using CLEAR amide resin (Peptide International) or rink amide resin 

(CEM). Manual synthesis reagents for CLEAR rink amide resin were HOBT, HBTU and DIPEA 

and that for CEM rink amide was DIC and HOBT. The first amino acids were coupled for a 

minimum of six hours followed by 2 hours of amino acid coupling up to the 10th residue and 

subsequently 2.5 hours beyond 10 residues. After the completion of the sequence, the N-terminus 

was deprotected. For fluorescein labeling, beta alanine was coupled to the N-terminus and then 2 

eq fluorescein isothiocyanate was coupled in the presence of 4 eq DIPEA. The N-terminus was 

acetylated for unlabeled peptide using 50 eq acetic anhydride and 50 eq DIPEA. 

The peptides were cleaved with 95% TFA:2.5% TIPS: 2.5% H2O. Excess cleavage cocktail was 

evaporated using nitrogen gas flow. The resulting solution was treated with cold diethyl ether then 

centrifuged to collect the peptide precipitate. The ether was decanted, and the pellet was 

redissolved in 30% 0.1% TFA/H2O and acetonitrile and lyophilized before purification. Peptides 

were redissolved in minimal acetonitrile (25%) and 0.1% TFA/H2O solution and purified using 

reverse-phase HPLC (Agilent) with C-18 columns and 0.1%TFA/H2O-acetonitrile solvent system. 

The purified fractions were collected and analyzed using mass spectrometry. These pure fractions 

were combined after identifying through mass spectrometry and lyophilized until a dry powder 

was left.  

The peptide was dissolved in DMSO. A sample of the DMSO was diluted 1:1000 in storage buffer 

to ascertain the concentration. Using UV-Vis, the concentration was measured at λ=495 nm for 

the FITC and an extinction coefficient, ε=72,000 M-1cm-1. Unlabeled peptides were weighed, and 

concentration determined. 
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Fluorescence Polarization  

Fluorescence polarization direct binding assays were done in triplicate with a final volume of 20 

µL in a low volume, non-binding, 384-well black plate (Corning). Fluorescein-labeled DMSO 

peptide stocks were diluted to 50 nM using assay buffer (5 mM HNa2PO4, 5 mM NaH2PO4, 100 

mM sodium chloride, 10 % glycerol, pH 6.8). 10 µL of Med25 AcID was serially diluted two-fold 

going down the column of the 384-well plate using the assay buffer (10 µL assay buffer was placed 

in each well). No protein was added to the last row as it was a negative control with peptide only. 

Finally, 10 µL of peptide was added to each well to provide a final peptide concentration of 25 nM 

and the resulting mixtures left to incubate at room temperature for 30 minutes. After 30 minutes, 

the fluorescence polarization was measured using Tecan Genios Pro or PHERAstar plate reader 

(polarized excitation at 485 nm and emission intensity measured through a parallel and perpendicularly 

polarized 535 nm filter). Data was analyzed by binding isotherm that accounts for liganddepletion 

(assuming a 1:1 binding model of peptide to ACID) was fit to the observed 

polarization values as a function of AcID to obtain the equilibrium dissociation, 

Kd. Each data point is an average of the triplicate experiments from each peptide with Med25 AcID 

and the error for standard deviation. “a” and “x” are the total concentrations of fluorescent peptide and 

Acid, respectively, “y” is the observed anisotropy at a given AcID concentration, “b” is the maximum 

observed anisotropy value, and “c” is the minimum observed anisotropy value.  

𝑦 = 𝑐 + (𝑏 − 𝑐) 𝑋 
(𝐾𝐷 + 𝑎 + 𝑥) − [√(𝐾𝐷 + 𝑎 + 𝑥)2 − 4𝑎𝑥]

2𝑎
    

 

Fold change =  
 𝐾𝐷 for Mutant Med25 AcID−peptide interaction

𝐾𝐷 𝑓𝑜𝑟 𝑊𝑇 𝑀𝑒𝑑25 𝐴𝑐𝐼𝐷−𝑝𝑒𝑝𝑡𝑖𝑑𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
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Fold Change = 
 𝐾𝐷 for  Med25 AcID−minimal peptide interaction

KD for Med25 AcID−full−length peptide interaction
 

  

1H, 15N-HSQC NMR analysis of Med25 AcID-peptide 

Purified 15N- labeled Med25 AcID protein was complexed with purified N-acetylated peptides at 

varying equivalents. The experiments were carried out using a Bruker Advanced III 600 MHz 

spectrophotometer equipped with a cryogeneic probe at 30 °C. The varying titrations were done 

using Med25 AcID stored in 15N-Med25 storage buffer (20 mM sodium phosphate, 150 mM 

sodium chloride, 5% D2O, pH 6.5) with a final concentration of 73 µM. Acetylated peptides were 

added at 0, 0.2, 0.5, 0.8, 1.1, 2 and 3 equivalents and 2% final DMSO concentration. Our control 

sample was with Med25 and DMSO only. Two stocks of each peptides were prepared at 

concentrations of 2.5 and 25 mM. To keep the DMSO concentration at 2%, the 2.5 mM stock was 

used for 0.2, 0.5 and 0.8 equivalents samples and the 25 mM stock was used for the 1.1, 2 and 3 

equivalents. Data processing and visualization was performed using NMR pipe and Sparky. 

 

Circular Dichroism 

Circular Dichroism (CD) spectra of Med25 was obtained using J-715 spectropolarimeter (Jasco 

Inc) using a 1mm path length quartz cuvette. The Med25 protien was dialyzed overnight into CD 

buffer (5mM NaH2PO4, 5mM Na2HPO4, 100 mM NaF, pH 6.8). The spectra was measured from 

260-180 nm at 1 nm increments at 200 nm/minute. A baseline spectra was obtained using CD 

buffer only followed by measurement of Med25 AcID at 25 µM. The background spectra was 

subtracted from that of the protein before converting to mean residue ellipticity, θ using the 

following equation, where ψ = is the cd signal in degrees, n is the number of residues, l is the path 

length on centimeters and c is the concentration of the protein/peptide decimoles per cm3. 
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[𝜃] =
𝜓

1000 ∗ 𝑛 ∗ 𝑙 ∗ 𝑐
 

 

Circular Dichroism-Observed Thermal Melt 

After the CD spectra were collected, a CD-observed thermal melt spectrum was collected using 

without changing the buffer mentioned above. This was done using the variable temperature 

module. The protein was heated from 20- 100 °C by increasing the temperature at 1°C per minute. 

The spectrum was monitored at 222 and 208 nm. The data was collected using every two degrees 

throughout the interval. The data was then converted to Fraction unfolded and Tm was determined 

using the Prism’s log ‘(inhibitor vs response – variable slope)’ equation. 
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Chapter 3 

Peptoid Transcription Factor Mimics Interact with Med25 and Are Cell Penetrant 

3.1 Abstract 

Targeting activator-coactivator interfaces has been a challenge in part due to the structurally 

dynamic nature of the complexes. Additionally, the binding interface is typically large and thus 

small molecules ligands have shown little success. Alternatively, peptoids have been used as an 

effective synthetic tool to mimic and modulate protein-protein interactions. Most notable is their 

ability to mimic peptides and capability of covering larger surface areas. In this Chapter, we 

demonstrate that peptoids based upon the minimal activator sequences identified in Chapter 2 

have similar affinity for Med25 as do the native binding partners. The affinity can be enhanced 

by incorporating additional activator sequences. We tested the hypothesis that a helical peptoid 

would exhibit further affinity enhancement and, unexpectedly, found that this did not increase 

the potency. Additionally, we were also able to modify the peptoids to improve the efficiency of 

transportation across the plasma membrane. Thus, the peptoids Med25 ligands developed here 

will be useful tools for mechanistic studies of the Med25 PPI network. 

 

3.2 Introduction 

It has been established that transcription regulation is essential for the successful conversion of 

genetic information to proteins, and that dysregulation of this process can result in disease.1–5 
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Although the protein-protein interactions (PPIs) involved in the assembly of the transcriptional 

machine are thus attractive therapeutic targets, the characteristics of these proteins render them 

difficult to target with ligands; these characteristics include the large surface areas of the proteins, 

the transient nature of these interactions, the weak to moderate affinities for binding to partners, 

and the lack of high resolution structural information due to the disordered nature of the binding 

partners. All these characteristics have led to many activator-coactivator interactions being labeled 

as “undruggable.” Consistent with the above characterization, multiple strategies have been 

employed in targeting activator-coactivator interactions with small-molecules and yet have not 

yielded much success. Coactivator complex formation requires more points of contact than can 

easily be recapitulated with small molecules.  

An excellent example of an important yet challenging coactivator is the focus of this work, Med25 

(Figure 1.1). Within Med25 is the Activator-Interaction Domain (AcID) that forms protein-protein 

interactions with several activators, including VP16, the ETV/PEA3 activators, and ATF6. The 

AcID PPI network is dysregulated in a number of cancers either through upregulation of Med25 

or through upregulation of the binding partners. For example, the Merajver lab at the University 

of Michigan has found several examples of triple-negative breast cancers with significant 

upregulation of Med25 and in our group’s collaborative work with them, genetic or 

pharmacological inhibition of Med25 decreases cell motility as well as markers of metastasis.6–8 

There has thus been great interest in identifying small molecule ligands of Med25 but the 900 Å2 

binding surfaces have been a nearly insurmountable barrier.  
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Figure 3.1 The coactivator Med25 has three domains: a VWA domain that interacts with the Mediator complex, the 

Activator Interaction Domain (AcID) that forms PPIs with transcriptional activators and coactivators, and the 

Nuclear Receptor (NR) motif that is an interaction site for several nuclear receptors. Figure adapted from 

doi: https://doi.org/10.1101/2021.03.26.437253 and created by Amanda Peiffer. 

 

An alternative to small molecules is the use of peptidomimetics. In particular, N-substituted 

glycine oligomers or peptoids have been proven to be potent ligands of a number of different 

challenging PPI interfaces.9–11 Peptoids are suitable for interacting with larger surface areas 

because structures as long as 48 monomers can be synthesized in a machine-assisted fashion, with 

each monomer containing a functional group that can potentially interact with the target. Another 

key property of peptoids is the ease with which diverse side chains can be introduced into the 

structures. Thus, functional groups that are identified in fragment screenings or other target studies 

can be readily incorporated into the larger structure of a peptoid.12–14 Further, incorporation of 

chiral side chains into the oligomer induces helicity to the structure, thus enhancing affinity in 

cases where the preferred binding conformation is a helix.15 Finally, this class of peptidomimetic 

is resistant to proteolytic degradation due its non-native amide backbone.16 

Consistent with the above description, there are examples of successful targeting of coactivators 

and other transcriptional proteins with peptoids. For example, our group has successfully identified 

peptoids based upon the sequence of synthetic peptides discovered by Montminy that 

demonstrated improved binding to the GACKIX domain of CBP by ~6-fold (Figure 3.2).17–19 This 

https://doi.org/10.1101/2021.03.26.437253
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suggests that the conformational flexibility of peptoids could be advantageous for interacting with 

dynamic protein surfaces.   

 

Figure 3.2 Peptoid improve binding to KIX. Previous work from the Mapp lab showed that peptoid variants of 

peptide ligands for the KIX motif of CBP/p300 showed improved binding. a) Illustration of KIX bound to a native 

partner, CREB. b) Sequences of natural transcriptional activators (CREB, cMyb) and non-natural ligands (KBP 

1.66, 2.20) that bind to KIX. c,d) Schematic of peptidomimetic variants of the KBP 1.66 and KBP 2.20. Figure 

adapted from Biopolymers, Volume: 89, Issue: 7, Pages: 578-581, DOI: (10.1002/bip.20946)  

 

In Chapter 2 I demonstrated that peptides as short as 8 residues derived from native transcriptional 

activators were sufficient to complex to Med25. In this Chapter, I test the hypothesis that peptoid 

variants of these sequences will interact with Med25 AcID and in doing so serve as ligands for 

future mechanistic studies. I identify an effective and stable Med25 ligand that will be an important 

tool for dissecting the Med25 PPI network in future studies. 
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3.3 Results and Discussion 

As shown in the data of Chapter 2, I identified two octamer peptides derived from the Med25-

dependent activators VP16 and ATF6a that retain low micromolar affinity for Med25 (Table 1). 

These octamers thus served as the starting point for peptoid ligand design.  

Peptide name Sequence  KD for Med25 

VP16(472-479) DFEFEQMF 8 ± 1 M 

ATF6 VN8 DFDLDLMP 6.1 ± 0.5 M 

  

Table 3.1: Octamer peptides interact with Med25 AcID with low micromolar affinity 

 

The sequence of VP16(472-479) can be mapped onto a peptoid backbone in a straightforward 

fashion (Figure 3.2), as it simply requires moving the amino acid side chain in the peptide to the 

adjacent amine. This produces an achiral amide polymer that can be readily synthesized by solid 

phase synthesis. Each monomer is constructed on the resin, via coupling of bromoacetic acid to 

the growing peptoid chain followed by addition of a primary amine bearing the relevant side chain 

that is suitably protected. There are constraints presented by this synthetic strategy, however, as 

some functional groups are incompatible with the synthetic procedure, either due to reactivity 

issues (methionine, asparagine/glutamine) or due to solubility challenges.20 To address this in my 

peptoid design methionine was replaced with a simple hydrophobic side chain and the glutamine 

residue was replaced with glutamic acid. In the latter case, this particular change was found to 

enhance binding affinity of the peptide (Chapter 2, Figure 2.6). Peptoid 1 was synthesized on an 
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automated peptide synthesizer and was purified by HPLC. The identity and purity were verified 

by mass spectrometry and by analytical HPLC analysis. 

 

Figure 3.3: VP16(472-479) minimal peptide sequence. The peptoids were designed by substituting amines that 

mimic the side chains of the corresponding amino acids. Methionine replaced by norleucine mimic (norleucine 

commonly replaces methionine to avoid oxidation).  

 

Following synthesis and isolation of peptoid 1, the structure of the peptoid in solution was assessed 

using circular dichroism at 25 °C. The molar residual ellipticity was measured from 260-185 nm 

with 5 scans that were averaged and mean residual ellipticity was calculated from the measured 

ellipticity observed in millidegrees. As expected with an achiral peptoid, a net mean residual 

ellipticity of zero was observed.  
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The affinity of peptoid 1 for Med25 AcID was measured using fluorescence polarization. To 

accomplish this, peptoid 1 was labeled at the amino terminus with fluorescein isothiocyanate for 

use in binding assays. Following standard protocols, the KD was determined to be 6.7 ± 0.2 µM 

(Figure 3.3). This demonstrates peptoid peptidomimetics can successfully recapitulate binding of 

even a minimal transcriptional activator, despite lacking the backbone hydrogen bonding network 

that even in short peptides facilitates secondary structure formation upon binding. The data further 

suggest that this is a lead compound that can be modified improve affinity for Med25 and 

ultimately inhibitor potency. 
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Figure 3.4 Results from a fluorescence polarization assay of peptoid 1 in the presence of increasing concentrations of 

Med25 AcID. The curve represents the mean of three independent experiments ran in triplicate with the error 

representing the standard deviation. 

 

3.3A Inducing Secondary Structure by Introducing Chirality 

Next, I tested the hypothesis that a helical peptoid would have improved affinity for Med25. We 

sought to induce helical structure of the peptoid by incorporating structural elements that have 

K
d
= 6.7 ± 0.2 µM 
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induced helical conformation in peptoids.21,22 It has been established that TADs remain largely 

unstructured in free solution; however, upon binding to their coactivators they adopt an α-helical 

conformation.15,23 By extension, amines with aromatic α-chiral side chains have been 

demonstrated to successfully induce helical conformations in peptoids by forming polyproline-like 

helices. As a result of this, we substituted the aromatic achiral side chain, benzylamine, with (S)-

(-)-α-methylbenzylamine to mimic an L-amino acid. To mimic a peptide constructed of D-amino 

acids, we introduced (R)-(+)-α-methylbenzylamine (Figure 3.4). The secondary structure of both 

peptoids was measured using circular dichroism and the mean residual ellipticity confirms a 

secondary structure profile that matches that of the enantiomer of the L-peptidomimetic, which 

would be the mimic of the D-peptide (Figure 3.5).  

 

 

 

Figure 3.5: Structures of chiral versions of peptoid 1. (S)- (-)-α-methylbenzylamine (Nspe) and (R)- (+)-α-

methylbenzylamine (Nrpe) replaced the achiral benzylamine. 
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Figure 3.6: CD spectra of peptoids. Induced secondary peptoid structure for peptoids 2a (orange) and 2b (blue). Mean 

residue ellipticity measured using circular dichroism of peptoids with (R)- or (S)- monomers.  

 

The affinities of the chiral peptoids were measured using fluorescence polarization assays. The 

conditions mentioned above were used to set up the experiments using these modified compounds. 

Peptoids 2a and 2b were shown to be 10 ± 1 µM for both, indicating that the stereochemistry of 

peptoids does not strongly affect the interaction with Med25. It is not surprising that the 

enantiomers show similar binding, as this has been shown with transcriptional activator peptides 

in several cases. It is, however, the first demonstration with a peptoid. It was somewhat unexpected 

that the helical peptoids bound essentially identically to the parent, unstructured peptoid, since the 

parent peptide is predicted to become helical upon binding to Med25.  
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Figure 3.7: Fluorescence polarization assay. Enantiomeric peptoids containing chiral aromatic monomers show 

identical affinity for Med25 AcID. 

 

From the information garnered from the VP16(472-479)-derived peptoids, I concluded that 

octamer peptoids are sufficient for moderate binding to Med25 and began to investigate if other 

octamer sequences such as ATF6 VN8 (Table 1), would show similar or even better affinity.  I 

designed a peptoid based upon the ATF6 VN8 peptide, illustrated in Figure 3.8.   

Kd = 10 ± 1 µM 

Kd = 10 ± 1 µM 

2a 

2b 
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Figure 3.8 Structures of ATF6α (61-68), also known as VN8 as well as two peptoids derived from that sequence. 

Note that peptoid 4 is a peptide-peptoid hybrid.  

 

The peptide ATF6 VN8 was synthesized and tested against Med25 AcID for affinity and, as 

originally shown in Chapter 2, the resulting dissociation constant is 6 µM (Figure 3.9). Following 

this, the peptoid 3 was synthesized using (S)-(-)-α-methylbenzylamine as the mimic for the 

monomer phenylalanine. Upon completion and assessment of the net mean residual ellipticity, the 

peptoid were labeled at the amino terminus with fluorescein and the affinity for Med25 AcID was 

measured using fluorescent polarization. As shown in Figure 3.9, peptoid 3 had significantly 

attenuated affinity relative to the parent peptide (>10-fold decrease). However, the peptoid did 
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retain selectivity for Med25 AcID, (2-fold). For this reason, the focus on ATF6-derived peptoids 

continued, with the goal of increasing the affinity while retaining or improving the selectivity. 

 

Figure 3.9: VN8-Med25 AcID direct binding. Results of direct binding experiments with fluorescein-tagged variants 

of ATF6α VN8, peptoid 3, and ATF6α (40-60). Three independent experiments were done in triplicate with 

curves representing the mean. The errors represent the standard deviation.  

 

3.3B Increasing the Peptoid length Improves the Binding Affinity for Med25 AcID 

As shown above, octamer peptoids can display good (<10 µM) affinity for Med25. However, 

peptoid 3 displayed modest affinity for the target and it was necessary to improve this, particularly 

for cellular studies. One established strategy for increasing affinity of peptoids is the appendage 

of short peptide sequences to the peptoid core. In our case, ATF6α (40-60) was added to peptoid 

3 to create peptoid 4 (Figure 3.8). The resulting peptoid-peptide hybrid showed a much-improved 

binding to Med25 AcID (Kd of 3 µM). This is not solely due to the intrinsic affinity of the peptide 

portion of the hybrid, as ATF6α(40-60) peptide (Figure 3.11) has a 12 mM affinity for Med25 

AcID.  

K
d
= 6.1 ± 0.5 µM 

K
d 

> 58 ± 12 µM 

K
d
= 2.5 ± 0.4 µM 

ATF6 VN8 

Peptoid 3 

Peptoid 4  
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Given the results of the peptide-peptoid hybrid 4, I synthesized and tested a wide range of peptoids 

and peptoid-peptide hybrids that incorporated additional components of the ATF6α transcriptional 

activation domain (Figure 3.10).  

 

 

Figure 3.10. Peptoids and peptide-peptoid hybrids. ATF6α-derived peptoids and peptide-peptoid hybrids designed 

to increase the affinity and maintain selectivity for the target Med25. 
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All of the peptide-peptoid hybrids and peptoids were labelled with fluorescein and assessed in 

direct binding assays with Med25 AcID. Hybrids 5 and 6 differed in affinity two-fold. A third 

hybrid tested was the ATF6α(40-60) sequence in which the alanine residues at positions 48 and 48 

were replaced with N-methyl glycine (labeled ATF6α(40-60)* in the figure). However, the affinity 

was unchanged from the peptide alone.  

Most interesting were the results from peptoids 7 and 8, which show improved binding compared 

to peptoids 5, 6 and ATF6α 40-60* (alanine replaced with N-methyl glycine) despite being shorter 

sequences. The peptoid based upon ATF6α (60-70) (peptoid 7) is shorter than the hybrid and 

peptide sequences but showed a significantly improved affinity of 7.7 M.  Replacement of the 

proline with a chiral phenylalanine mimic in peptoid 8 further increased the affinity to 3.6 M.  

 

Figure 3.11: Results of direct binding experiments with fluorescein-tagged variants of ATF6α with Med25 AcID. 

Three independent experiments were done in triplicate with curves representing the mean. The errors represent 

the standard deviation.  

5: 19 ± 3 µM 

ATF6 (40-60): 12 ± 1.0 µM 

ATF6 (40-60)*:  12.4 ± 0.7 µM 

6: 9.0 ± 0.4 µM 

7: 7.7 ± 0.3 µM 

8: 3.6 ± 0.2 µM 
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As noted earlier, one of the key questions was if the peptoid ligands could maintain selectivity for 

Med25 AcID over other coactivators. To test this, the affinity of each were measured for a 

coactivator with a similar binding profile, the KIX domain of CBP/p300 (Figure 3.12). These 

experiments revealed that lead peptoid 8 shows nearly five-fold selectivity for Med25 AcID, an 

excellent selectivity window. 

 

 

 

Figure 3.12 Results of direct binding experiments with fluorescein-tagged variants of ATF6α with CBP KIX. Three 

independent experiments were done in triplicate with curves representing the mean. The errors represent the standard 

deviation. 

 

 

5: > 40 µM 

ATF6 (40-60): > 71 µM 

ATF6 (40-60) *:  > 102 µM 

6: > 47 µM 

7: > 21 µM 

8: 16 ± 1 µM 
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Figure 3.13: Peptoids modified to improve permeability.  

 

 

 

3.3C Permeability 

From the direct binding studies above, peptoid 8 was shown to have a good affinity for Med25 

AcID and good selectivity relative to CBP KIX. With this promising result, we sought to modify 

the structure so that it would be transported across the plasma membrane for delivery. Earlier 

studies have identified the HIV-TAT sequence as an effective cell penetrating peptide (CPP) and 

has been used to delivery cargo to cells.24–28 CPPs are generally short to moderately long sequences 

with positively charged amino acid repeats. This aids in their ability to travel across the plasma 

membrane with little to no resistance. HIV-1 TAT49-57 has shown to aid in cell penetration by 
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keeping the structure to a minimum of 9 residues.29 Appending the TAT to a net negatively charged 

sequence converts the structure to a net positively charged molecule, increasing the probability of 

transportation across the negatively charged membrane. For the TAT-containing peptoid 10, 

fluorescein was added to the N-terminus of the TAT sequence to allow for visualization of the 

molecule in cell-penetration studies.  In parallel a second strategy was explored with peptoid 9, 

one in which the carboxylic acid side chains were masked as methyl esters expected to be 

hydrolyzed intracellularly.30 To complete the design of the molecule I selected TAMRA as the 

fluorophore due to its neutrally charged state.  

In collaboration with colleague Yejun Liu, the permeability of peptoids 9 and 10 were assessed in 

the triple negative breast cancer cell line VARIO68.8,31  Cells were treated with 9 or 10  with a 

final concentration of 115 µM then observed under a confocal microscope  at 3- and 6-hour 

intervals. After three hours (top panel) peptoid 9 shows increased trafficking relative to 10. This is 

also true at the 6-hour time point (bottom pane), with peptoid 9 appearing to show nuclear entry.  

In contrast, 10 appears to be largely trapped in endosomes (green punctae), a common issue.32,33 

Taken together, these modifications and derivatives of the compounds have suggested that the ester 

modification as the bioactive precursor would be more effective due to the passive diffusion across 

the cell membrane.30 These initial studies have provided valuable information to guide design of 

more efficient cell penetrants peptoids. Peptoid 9 is a promising compound for further studies. 
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Figure 3.14 Peptoid permeability. Peptoid 8 was modified by appending the CPP TAT (left pane), modified acidic 

residues for ester (right pane). They were labeled with the fluorophore FITC or TAMRA. DAPI used to visualize 

nucleus. Some fluorophores enhance endosomal entrapment. Here, TAT seems to promote endosomal entrapment.  

 

3.4 Conclusions and future Directions 

Peptoids have long been used as one class of peptidomimetics for developing ligands for different 

classes of PPIs.   In this Chapter I hypothesized that I could leverage the characteristics of peptoids 

to develop minimal sequence molecules that can bind to coactivators with low micromolar affinity. 

I showed that I could develop two peptoids with low micromolar affinities for the coactivator while 

maintaining specificity. This created the opportunity to further optimize the ATF6α peptoid since 
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it had an 8-fold weaker compared to the VP16. Amino acids flanking the core sequence allowed 

us to increase the length of the peptoid and improve binding. The resulting 11-residue sequence 

showed lower micromolar affinity and specificity for Med25 AcID. I demonstrated that we could 

deliver this sequence into cells by creating an ester derivative (peptoid 9).  

The results from these studies present questions to be answered in future studies. One such question 

to be addressed is how peptoid 9 affects the Med25 PPI network in vitro and in cell culture. My 

preliminary data suggests that the peptoid ligands enhance the binding of VP16-derived activators; 

the next question will be to test the full complement of Med25-dependent activators in such studies 

(ATF6α, the ETV/PEA3 activators). Additionally, a structural model of how peptoid 8 interacts 

with Med25 would be very useful for further optimizing the structure.  Towards that end, 1H, 15N 

HSQC NMR experiments and analysis are ongoing.  
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3.5 Materials and Methods 

The pET21b-Med25 (394-543)-His6 plasmid was a generous gift from the Patrick Cramer lab. The 

mutations were carried out through standard site-directed mutagenesis protocols. 

Protein Expression and Purifications  

Med25 AcID(394-543) was purified by following standard expression protocols. The pET21b-

Med25 (394-543)-His6 plasmid was transformed into heat-shock competent Rosetta pLys cells 

(Novagen) and plated onto LB plates containing ampicillin and chloramphenicol antibiotics then 

placed in the incubator inverted at 37 °C overnight for approximately 15-16 hours. The plates were 

then placed at 4 °C until needed. Starter cultures were prepared by pipetting 5 ml of Luria Broth 

into two disposable culture tubes each followed by 0.1 mg/ml ampicillin and 0.034mg/mL 

chloramphenicol. Using a sterile pipette tip, a single isolated colony was selected from the 

transformed plate and placed in each of the culture tubes after which the tubes were placed in an 

incubator at 37 °C with a rotation speed of 250 RPM overnight. The following morning 1-2 mL of 

the starter culture was placed in 1L autoclaved Terrific Broth along with 0.1mg/mL of ampicillin, 

then placed in an incubator at 37 °C at 250 RPM and grown to an OD600 of 0.8-1.0. The culture 

was placed in an incubator at 18 °C for at least 30 minutes before the cells were induced with 0.2 

mM Isopropylβ-d-1-thiogalactopyranoside (IPTG) and shaken at 200 RPM overnight. The following 

morning the cells were collected and centrifuged at 6000 x g RPM for 20 minutes at 4 °C. The 

pellets were collected and placed in 50 mL centrifuge tubes, centrifuged at 2000 RPM for 2 

minutes to concentrate the pellet to the tube bottom, then stored at -80 °C for later purification. 

Med25 AcID was purified using manual protocol involving Ni-NTA resins and an automated 

protocol with Ni-NTA 5mL HiTrap FPLC columns. The collected pellet was suspended in 35 mL 
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lysis buffer (50 mM phosphate, 300 mM sodium chloride, 10 mM imidazole, pH 7.2) with 35 µL 

β-mercaptoethanol (1:1000 dilution)and  one cOmplete, Mini, EDTA-free Protease Inhibitor tablet 

(Sigma-Aldrich). The cells were then lysed via sonication on ice for a total of 6 minutes with pulse 

on for 3 seconds and off for 10 seconds. After the cells were fully lysed, the solution was placed 

in a 50 mL centrifuge tube and placed in a fixed angle centrifuge rotor to centrifuge at 9500 RPM 

for 30 minutes at 4 °C. At the completion of the spin cycle, the supernatant was poured into a new 

50 mL centrifuge tube then placed back in the centrifuge and spun at 9500 RPM for 10 minutes at 

4 °C to further separate large particulates. The supernatant from the second centrifugation was 

filtered into a clean 50 mL centrifuge tube using 0.45 µm syringe filters and placed on ice. 

The supernatant was loaded onto a 5 mL Ni-NTA HiTrap  equilibrated with Buffer A/Lysis Buffer 

( 50 mM phosphate, 300 mM sodium chloride, 10 mM imidazole, pH 7.2) on an AKTA pure FPLC 

chromatography system. The sample was loaded onto the column at a rate of 2.5 mL per minute. 

The method was created to follow the following sequence: the loaded column was washed with 5 

column volumes of Buffer A, then with 5 column volumes of 10% Buffer B (50 mM phosphate, 

300 mM sodium chloride, 400 mM imidazole, pH 7.2), followed by a wash with 5 column volumes 

of 15% Buffer B: 85% Buffer A and finally, elution with a gradient from 15-100% Buffer B. The 

column was subsequently washed with 5 column volumes of 100% Buffer B.  

Following the collection of the fractions, those containing the Med25 AcID protein were collected 

and combined into a chilled 50 mL centrifuge tube then diluted to 50 mL using chilled (4 °C) 

Source S buffer A (50 mM phosphate, pH 7.2). 

The Med25 AcID protein was further purified using 5 mL Source S HiTrap column using the 

AKTA pure FPLC chromatography system. The column was equilibrated with Source S buffer A 

(50mM phosphate, pH 7.2) then the diluted sample was loaded onto the column. Next, the column 
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was washed with 5 column volumes of Buffer A. Next, the protein was eluted with high 

concentration of sodium ions as the column was washed with 10 column volumes over a 

concentration gradient of 0-100% Buffer B (50 mM phosphate, 1M sodium chloride, pH 7.2). The 

fractions were collected and analyzed via SDS-PAGE using a 12% acrylamide gel. The pure 

fractions were then combined and 1 mM DTT was added then buffer exchanged in storage buffer 

(10mM phosphate, 100mM sodium chloride, 10% glycerol, 1 mM DTT, pH 6.8) overnight. The 

protein was concentrated and stored in 150 µL aliquots at 100-200 µM concentrations at -80 °C. 

Protein concentrations were determined using UV-Vis spectroscopy with the extinction 

coefficient, ε = 22550 M-1cm-1 and mass confirmation was carried out by electrospray mass 

spectrometry. 

Peptide Synthesis  

Peptide synthesis was carried out using conventional solid phase peptide synthesis and microwave 

assisted peptide synthesis (CEM Liberty Blue).  

Peptides were synthesized on 50 µmole scale using CEM rink-amide resin (0.19-0.21 meq). The 

synthesis was carried out with dimethylformamide as the main solvent. Fmoc-amino acid 

concentrations were made to be 0.2M, deprotection solution was made up containing 20% 

piperidine, 0.2M Oxyma Pure. Diisopropylcarbodiimide (DIC) was the activator acid and Oxyma 

Pure was the activator base. The amino acids were coupled using 4-minute single coupling for 

peptide sequences shorter than 20 amino acids. The peptides were cleaved with 95% TFA:2.5% 

TIPS: 2.5% H2O. Excess cleavage cocktail was evaporated using nitrogen gas flow. The resulting 

solution was treated with cold diethyl ether then centrifuged to collect the peptide precipitate. The 

ether was decanted, and the pellet was redissolved in 30% 0.1% TFA/H2O and acetonitrile and 

lyophilized before purification. Peptides were redissolved in minimal acetonitrile (25%) and 0.1% 
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TFA/H2O solution and purified using reverse-phase HPLC (Agilent) with C-18 columns and 

0.1%TFA/H2O-acetonitrile solvent system. The purified fractions were collected and analyzed 

using mass spectrometry. These pure fractions were combined after identifying through mass 

spectrometry and lyophilized until a dry powder was left.  

The peptide was dissolved in DMSO. A sample of the DMSO was diluted 1:1000 in storage buffer 

to ascertain the concentration. Using UV-Vis, the concentration was measured at λ=495 nm for 

the FITC and an extinction coefficient, ε=72,000 M-1cm-1. Unlabeled peptides were weighed, and 

concentration determined. 

 

Manual Peptide Synthesis 

Peptides were synthesized using CLEAR amide resin (Peptide International) or rink amide resin 

(CEM). Manual synthesis reagents for CLEAR rink amide resin were HOBT, HBTU and DIPEA 

and that for CEM rink amide was DIC and HOBT. The first amino acids were coupled for a 

minimum of six hours followed by 2 hours of amino acid coupling up to the 10th residue and 

subsequently 2.5 hours beyond 10 residues. After the completion of the sequence, the N-terminus 

was deprotected. For fluorescein labeling, beta alanine was coupled to the N-terminus and then 2 

eq fluorescein isothiocyanate was coupled in the presence of 4 eq DIPEA. The N-terminus was 

acetylated for unlabeled peptide using 50 eq acetic anhydride and 50 eq DIPEA. 

The peptides were cleaved with 95% TFA:2.5% TIPS: 2.5% H2O. Excess cleavage cocktail was 

evaporated using nitrogen gas flow. The resulting solution was treated with cold diethyl ether then 

centrifuged to collect the peptide precipitate. The ether was decanted, and the pellet was 

redissolved in 30% 0.1% TFA/H2O and acetonitrile and lyophilized before purification. Peptides 

were redissolved in minimal acetonitrile (25%) and 0.1% TFA/H2O solution and purified using 
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reverse-phase HPLC (Agilent) with C-18 columns and 0.1%TFA/H2O-acetonitrile solvent system. 

The purified fractions were collected and analyzed using mass spectrometry. These pure fractions 

were combined after identifying through mass spectrometry and lyophilized until a dry powder 

was left.  

The peptide was dissolved in DMSO. A sample of the DMSO was diluted 1:1000 in storage buffer 

to ascertain the concentration. Using UV-Vis, the concentration was measured at λ=495 nm for 

the FITC and an extinction coefficient, ε=72,000 M-1cm-1. Unlabeled peptides were weighed, and 

concentration determined by what method? 

 

Peptoid Synthesis  

Peptoid synthesis was carried out using conventional solid phase peptide synthesis and microwave 

assisted peptide synthesis (CEM Liberty Blue).  

Peptoids were synthesized on 50 µmole scale using CEM rink-amide resin (0.19-0.21 meq). The 

synthesis was carried out with dimethylformamide as the main solvent. Bromoacetic acid 

concentration was made to be 2M, deprotection solution was made up containing 20% piperidine, 

0.2M Oxyma Pure to be used to deprotect Fmoc on amide resin and Fmoc-β-alanine. 2M 

Diisopropylcarbodiimide (DIC) was used as the coupling reagent for bromoacetic acid. The amines 

were made in 1M solutions and coupled using 4-minute single coupling. The peptoids were cleaved 

with 95% TFA:2.5% TIPS: 2.5% H2O. Excess cleavage cocktail was evaporated using nitrogen 

gas flow. The resulting solution was treated with cold diethyl ether then centrifuged to collect the 

peptide precipitate. The ether was decanted, and the pellet was redissolved in 30% 0.1% TFA/H2O 

and acetonitrile and lyophilized before purification. Peptides were redissolved in minimal 

acetonitrile (25%) and 0.1% TFA/H2O solution and purified using reverse-phase HPLC (Agilent) 
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with C-18 columns and 0.1%TFA/H2O-acetonitrile solvent system. The purified fractions were 

collected and analyzed using mass spectrometry. These pure fractions were combined after 

identifying through mass spectrometry and lyophilized until a dry powder was left.  

The peptoid was dissolved in DMSO. A sample of the DMSO was diluted 1:1000 in storage buffer 

to ascertain the concentration. Using UV-Vis, the concentration was measured at λ=495 nm for 

the FITC and an extinction coefficient, ε=72,000 M-1cm-1. Unlabeled peptoids were weighed, and 

concentration determined by what method. 

 

 

Fluorescence Polarization  

Fluorescence polarization direct binding assays were done in triplicate with a final volume of 20 

µL in a low volume, non-binding, 384-well black plate (Corning). Fluorescein-labeled DMSO 

peptide stocks were diluted to 50 nM using assay buffer (5 mM HNa2PO4, 5 mM NaH2PO4, 100 

mM sodium chloride, 10 % glycerol, pH 6.8). 10 µL of Med25 AcID was serially diluted two-fold 

going down the column of the 384-well plate using the assay buffer (10 µL assay buffer was placed 

in each well). No protein was added to the last row as it was a negative control with peptide only. 

Finally, 10 µL of peptide was added to each well to provide a final peptide concentration of 25 nM 

and the resulting mixtures left to incubate at room temperature for 30 minutes. After 30 minutes, 

the fluorescence polarization was measured using Tecan Genios Pro or PHERAstar plate reader 

(polarized excitation at 485 nm and emission intensity measured through a parallel and perpendicularly 

polarized 535 nm filter). Data was analyzed by binding isotherm that accounts for liganddepletion 

(assuming a 1:1 binding model of peptide to ACID) was fit to the observed 

polarization values as a function of AcID to obtain the equilibrium dissociation, 
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Kd. Each data point is an average of the triplicate experiments from each peptide with Med25 AcID 

and the error for standard deviation. “a” and “x” are the total concentrations of fluorescent peptide and 

Acid, respectively, “y” is the observed anisotropy at a given AcID concentration, “b” is the maximum 

observed anisotropy value, and “c” is the minimum observed anisotropy value.  

𝑦 = 𝑐 + (𝑏 − 𝑐) 𝑋 
(𝐾𝐷 + 𝑎 + 𝑥) − [√(𝐾𝐷 + 𝑎 + 𝑥)2 − 4𝑎𝑥]

2𝑎
    

 

 

Circular Dichroism 

Circular Dichroism (CD) spectra of Med25 was obtained using J-715 spectropolarimeter (Jasco 

Inc) using a 1mm path length quartz cuvette. The peptoids were dissolved in acetonitrile (Toshiaki 

Hara et al) as they were insoluble in water. The spectra were measured from 260-180 nm at 1 nm 

increments at 200 nm/minute. A baseline spectrum was obtained using acetonitrile only followed 

by measurement of peptoids at 60 µM. The background spectra were subtracted from that of the 

peptoid before converting to mean residue ellipticity, θ using the following equation, where ψ = is 

the cd signal in degrees, n is the number of residues, l is the path length on centimeters and c is the 

concentration of the protein/peptide decimoles per cm3. 

[𝜃] =
𝜓

1000 ∗ 𝑛 ∗ 𝑙 ∗ 𝑐
 

 

Permeability Assay for CPP-Peptoids 

Dishes were pre-equilibrated by incubating 15 mm CELL-NEST dishes with 10% FBS DMEM. 2 

ml of medium were pipetted the dishes then placed in the incubator for 15 minutes. The VARI-

068 cells were passaged, counted, and suspended in 10% FBS DMEM. The cell culture medium 

was aspirated from the dish and cells were plated on the glass surface. 500 µl of cell suspension 
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was pipetted into 15 mm microwells. The cells were suspended in 35 mm culture dishes at 3 X 105 

cells per well. The dishes were subsequently incubated for 1 hour at 37 °C. After 1 hour the 

remainder of the dishes were filled with medium.  2 ml of medium was added to the 35 mm dishes 

then incubated for 24 Hours. The medium was aspirated after 24 hours then 500µL of 1% 

FBS/DMEM and 1 uL of peptoid for a final concentration of 5µM was added. The cells were 

incubated for 3 and 6 hours.  

The medium was removed after 1 hour and dished were washed with PBS 3 times. Cells were then 

fixed with 4% paraformaldehyde solution in PBS for 15 minutes at 37 °C The dishes were washed 

three times with PBS to remove non-specific binding. The cells were then treated with DAPI for 

15 minutes then washed with PBS three times. The cells were then observed under the confocal 

microscope. 
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Chapter 4 

4.1 Conclusions 

 

Protein-protein interactions (PPIs) are vital for the regular functioning of cellular systems. These 

interactions are the hallmarks of the transcription, which involves many proteins interacting in 

complex networks.1 There are several areas where abnormalities can occur in the PPI network and 

can result in diseases. 2Some of the most vital proteins involved in the transcription process are 

activators and coactivators. Activators have at minimum a DNA binding domain that binds to 

specific DNA sequences and a transcriptional activation domain (TAD) that recruits coactivators. 

The coactivators are large proteins that are often a part of larger coactivator hub complexes such 

as Mediator. Domains of the coactivators interacting with the TAD, activator-binding domains or 

ABDs, often bear large surface areas for PPIs without defined binding sites, thus making them 

challenging therapeutic targets.3 Additionally, the transient interactions of these PPIs serve as a 

challenge to better understand the mechanisms. Nonetheless, some progress has been achieved by 

using kinetic tools to measure the time of interactions and provide data to predict conformations 

of the complexes formed.4 

Despite the recent successes in the discovery of PPI-targeting small molecules, the same success 

has not been seen with activator-coactivator interactions due to the large surface area of the binding 

interfaces. As a result of these limitations, designing molecules for targeting these PPIs can be a 

daunting task. Hence, my strategy turned to designing molecules that can cover a larger surface 
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area by constructing mimics from the structure of  the native TADs that can be more 

conformationally dynamic and more biologically robust.5 

This work sought to identify the minimal binding sequences for the coactivator by identifying PPIs 

between identified TADs for the coactivators Med25 AcID. Previous work has proposed a 

structure for Med25 AcID that is structurally unique in comparison to other coactivators that are 

usually composed of the primarily a-helical structures.6 Two distinct binding surfaces on Med25 

AcID interact with specific TADs and the binding surfaces are denoted as H1 and H2. They   are 

located on the opposite faces of the protein (Figure 4.1). 

 

Figure 4.1 The AcID motif of the coactivator Med25 has two binding surfaces to interact with activators. These 

binding surfaces are denoted H1 and H2. This figure is adapted from  and created by Amanda Peiffer. 

 

The studies of Chapter Two confirmed that Med25 AcID interacts with three different activators 

despite the different sequences of each (Figure 4.1). Also, we confirmed that Med25 AcID binding 

surfaces show specificity for different TADs as demonstrated by mutations at the H1 and H2 

surfaces that differentially affect the TADs.7–9 Through experiments done by us and others, it was 

shown that ERM interacts with AcID in the H1 face. Mutations of three residues in the H1 face 
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affected binding of the ERM TAD by 3-6-fold. This did not affect the ATF6α TAD as it was 

known to interacts with H2 face of the coactivator.4  

To identify the minimal sequences needed for binding to Med25, VP16 was truncated in three 

equal sections. Additionally, two sequences were synthesized based on the location of the putative 

α-helices. These sets of data, obtained by Dr. Steve Sturlis, suggest that we were able to design 

minimal sequences from the largest TAD to obtain low micromolar affinity. From this information, 

I demonstrated that we could reduce the sequences to even lower number VP16 472-479 has been 

shown to minimal activate transcription. This is an 8-residue peptide  that is in the C-terminal 

domain of VP16 TAD. The direct binding was measured and produced a low micromolar affinity 

for Med25 AcID. The results of this suggest that we can use this to understand binding to Med25 

AcID and to design peptidomimetics.  Based on these results, I identified an octamer of similar 

sequence located in ATF6α that also binds to the H2 face Med25 with a sub-micromolar affinity.  

In Chapter Three we showed that we synthesized peptoids mimicking minimal sequences 

identified in Chapter two. These were synthesized on solid support using amines mimicking the 

side chains of the parent peptides. We demonstrated that these can be mimicked and recapitulate 

binding to Med 25 AcID. We also addressed the question of specificity by comparing the binding 

to the CBP-KIX coactivator. The peptoids retained specificity for the target protein, thus allowing 

us to further address questions such as ability to improve the binding. These were done by 

extending the sequence with the surrounding residues.  

We later sought to answer the question of cell permeability. We used the HIV-1 TAT49-57 as the 

cell penetrating peptide to append to the modified peptoid.10–14 Some of the preliminary work 

illustrates that we can deliver mimicked TADs into cells. The ability for us to deliver these are 
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promising with the evidence we have garnered; we will seek to deliver peptoids of known TADs 

to create potent inhibitors. 

 

4.2 Future Directions 

The use of peptidomimetics for the development of effective activator•coactivator inhibitors hold 

great promise based on what has been established in this work and previous work of others. These 

peptoids hold great promise because they are comparable to small molecules inhibitors reported in 

previous studies. As can be gleaned from this dissertation, peptoids were developed with low 

micromolar affinities for the coactivator Med25 AcID. One example is the small molecule 

compound MS120/Ischemin, which has been an effective inhibitor of the CREB-p53 PPI despite 

having an affinity of 19 µM.15,16 This is close to the affinities I have reported in the previous 

chapters. Therefore, this shows that these synthetic molecules reported earlier are promising 

synthetic molecules for successfully targeting coactivator-activator PPIs. 

One other example of small molecule with affinity similar to peptoids reported in this dissertation 

is KG-501, which inhibits CBP-CREB interaction, and has an affinity for CBP of 50µM, a direct 

affinity up to 15-fold lower that what is described here. The third example is compound 2 

(10074A4) with a Kd of ~5 µM, which is similarly a low micromolar affinity compound. Like the 

two small molecules mentioned earlier, this has successfully inhibited the c-Myc-Max 

interaction.17  

With these similar numbers, these studies have established that despite not having a submicromolar 

affinity for their target proteins, they can successfully inhibit the PPI of coactivators and their 

binding partners.  
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 Peptoids are dynamic mimetics that can be modified and synthesized with ease and are very cost-

efficient. These allow for the testing and designing of diverse molecules that are capable of 

interacting with larger surface areas. By identifying the components of native TADs, these can be 

designed to create a lead compound that can be easily modified to improve potency. With the 

number of amines available, this allows for larger library creations with diverse functional groups. 

Lead compounds can be identified using traditional library synthesis and screenings. In creating 

these large number of compounds this allows us to modify leads to improve the activities. As a 

result, this helps to better design these compounds and possible incorporate unnatural side chains 

to improve potency.  

Following the identification of molecules, we can modify these and compare their activities by 

synthesizing both linear and cyclic versions of these molecules.  Past studies have utilized cyclic 

versions of peptides to improve permeability as they are delivered to the sites. As recent as 2017, 

the Unites States Food and Drug Administration approved plecanatide, which is a cyclic peptide 

used to treat idiopathic constipation.18 We will be able to develop the potent molecules with 

inspirations from various molecules that have successfully been developed. 

As we understand more about the interactions, we hope to identify key components of other TADs 

that can help us to better understand how we can leverage the characteristics of peptoids to improve 

activities of the peptoids. We hope to use various mammalian systems and study the effect that 

these will have on toxicity as we improve the use of CPPs.19 

By using many techniques to create a large toolbox and create a design consensus, we hope to 

better design peptidomimetics with improved activities. This can help us to better understand wider 

activator-coactivator interactions by obtaining information at a rapid rate and develop efficiency 
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of our designs. We will be able to produce more naturally occurring peptides and peptidomimetics 

that will help us to better understand PPIs and by extension develop therapeutics by design. 
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Appendix 

Characterization of synthesized peptides and peptoids 

The appendix contains the analytical chromatograms and mass spectrometry of the peptide and 

peptoids used in the fluorescence polarization assays and cell-penetrations studies throughout 

this thesis.  
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Analytical chromatogram of VP16 (472-479) 

Sig= 214 
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Sig= 495 

 

 

 

Analytical chromatogram of VP16 (472-479) Q→E 
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Sig=280 
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Peptoid 1 

 

Sig=280 

 

 

 

 

 

min5 10 15 20 25 30 35

mAU

0

500

1000

1500

2000

 DAD1 A, Sig=214,4 Ref=off (S:\MAPPLAB...-479) PEPTOID ACHIRAL (PEPTOID 1) 2021-05-14 16-35-27\001-0101.D)

 1
.3

9
8

 6
.4

1
7

 1
2
.8

3
7

 1
5
.4

5
5

 1
6
.2

4
8  1
7
.2

2
2

 2
1
.1

2
9

 2
1
.1

5
3

 2
1
.5

6
8

 2
1
.6

0
3

 2
1
.6

9
6

 2
1
.7

5
5

 2
3
.5

5
2

 3
1
.1

3
7

 3
4
.2

9
5

 3
5
.4

0
8

min5 10 15 20 25 30 35

mAU

0

200

400

600

800

1000

1200

1400

1600

 DAD1 B, Sig=280,4 Ref=off (S:\MAPPLAB...-479) PEPTOID ACHIRAL (PEPTOID 1) 2021-05-14 16-35-27\001-0101.D)

 1
.2

6
2

 6
.4

5
4

 1
2
.8

5
4

 1
6
.2

5
4

 2
1
.1

4
2

 2
3
.5

4
7



96 

 

Sig=495 

 

 

Peptoid 2A 

 

 

 

 

min5 10 15 20 25 30 35

mAU

0

10

20

30

40

50

 DAD1 C, Sig=495,4 Ref=off (S:\MAPPLAB...-479) PEPTOID ACHIRAL (PEPTOID 1) 2021-05-14 16-35-27\001-0101.D)

 2
1
.1

4
3

min5 10 15 20 25 30 35

mAU

0

500

1000

1500

2000

 DAD1 A, Sig=214,4 Ref=off (S:\MAPPLAB...C_VP16(472-479) PEPTOID NSPE_NRPE 2021-05-19 15-55-23\001-0101.D)

 1
.4

3
6

 7
.9

0
2

 1
4
.1

3
5

 1
5
.5

6
7

 1
9
.7

5
2

 2
1
.9

6
2



97 

 

Sig=280 

 

Sig = 495  

 

  

min5 10 15 20 25 30 35

mAU

0

100

200

300

400

500

600

 DAD1 B, Sig=280,4 Ref=off (S:\MAPPLAB...C_VP16(472-479) PEPTOID NSPE_NRPE 2021-05-19 15-55-23\001-0101.D)

 1
.5

1
0

 1
9
.7

5
6

min5 10 15 20 25 30 35

mAU

-20

-10

0

10

20

30

 DAD1 C, Sig=495,4 Ref=off (S:\MAPPLAB...C_VP16(472-479) PEPTOID NSPE_NRPE 2021-05-19 15-55-23\001-0101.D)

 1
9
.7

5
3



98 

 

Peptoid 2B 

 

Sig=280 

 

 

 

 

 

min5 10 15 20 25 30 35

mAU

0

500

1000

1500

2000

2500

 DAD1 A, Sig=214,4 Ref=off (S:\MAPPLAB...C_VP16(472-479) PEPTOID NSPE_NRPE 2021-05-19 15-55-23\002-0201.D)

 1
.4

0
7

 1
5
.5

9
6

 1
7
.4

5
0

 1
9
.6

7
8

 1
9
.7

0
3

 1
9
.7

3
5

 1
9
.7

7
2

 2
1
.9

1
7

min5 10 15 20 25 30 35

mAU

0

200

400

600

800

1000

 DAD1 B, Sig=280,4 Ref=off (S:\MAPPLAB...C_VP16(472-479) PEPTOID NSPE_NRPE 2021-05-19 15-55-23\002-0201.D)

 1
9
.7

3
3



99 

 

Sig = 495 

 

 

Atf6α VN8 Peptide 

Sig=214 

 

 

 

min5 10 15 20 25 30 35

mAU

-5

0

5

10

15

20

25

30

 DAD1 C, Sig=495,4 Ref=off (S:\MAPPLAB...C_VP16(472-479) PEPTOID NSPE_NRPE 2021-05-19 15-55-23\002-0201.D)

 1
9
.7

3
7

min5 10 15 20 25 30 35

mAU

0

500

1000

1500

2000

 DAD1 A, Sig=214,4 Ref=off (S:\MAPPLAB... _ DERIVITIVES PEPTOID _ PEPTOIDS 2021-05-19 18-17-51\001-0101.D)

 1
.4

2
2

 5
.9

0
7

 9
.7

0
3

 1
0
.1

0
5

 1
2
.1

7
9

 1
4
.1

9
3

 1
5
.5

1
1

 1
5
.7

7
0

 1
6
.4

7
4

 1
6
.8

7
6

 1
7
.9

6
7

 1
8
.0

9
9

 1
8
.1

7
0

 1
8
.2

3
0

 2
0
.0

1
0

 2
0
.6

0
2

 3
5
.4

8
9



100 

 

Sig=280 

 

Sig=495 

 

  

min5 10 15 20 25 30 35

mAU

0

500

1000

1500

2000

2500

 DAD1 B, Sig=280,4 Ref=off (S:\MAPPLAB... _ DERIVITIVES PEPTOID _ PEPTOIDS 2021-05-19 18-17-51\001-0101.D)

 1
.5

3
6

 1
5
.5

1
3

 1
5
.7

6
1

 1
6
.4

7
8

 1
6
.8

8
4

 1
7
.9

8
5

 1
8
.1

6
5

 2
1
.6

2
0

min5 10 15 20 25 30 35

mAU

-20

0

20

40

60

80

100

 DAD1 C, Sig=495,4 Ref=off (S:\MAPPLAB... _ DERIVITIVES PEPTOID _ PEPTOIDS 2021-05-19 18-17-51\001-0101.D)

 1
8
.1

6
8



101 
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Peptoid 4 
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Sig =495 
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Peptoid 5 
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Peptoid 6 
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Peptide 60-70 P→F 
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Peptoid 8 
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Peptoid 9 (TAMRA + ester) 
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Peptoid 10 (FITC-TAT) 
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Mass spectrometry of peptides and peptoids used throughout this thesis. 

 

 

Peptoid 1 (m/z = 1087.50) 

 

 

Peptoid 2 (m/z = 1129.53) 

 

 

Peptoid 3 (m/z = 1461.62) 
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Peptoid 4 (m/z = 3499.61) 

 

 

Peptoid 5 (m/z = 2489.20) 

 

 

Peptoid 6 (m/z = 2555.20) 

 

 

ATF6α VN8 Peptide (m/z = 1405.55) 

 

 

ATF6α VN8 Peptide P→F (m/z = 1455.57) 
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Peptoid 7 (m/z = 1514.81) 

 

Peptoid 8 (m/z = 1509.82) 

 

Peptoid 9 (m/z= 1563.86) 

 

Peptoid 10 (m/2 = 1415.83) 

 

 


