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ABSTRACT 

 

Drug discovery is the leading motivation for the development of new chemical entities. 

Improving computational methodologies is an important scientific endeavor for 

facilitating the development and optimization of new therapeutic agents. Particularly, 

this dissertation focuses on increasing the accuracy of molecular dynamics simulations 

which employ molecular mechanics force fields (MMFFs). MMFFs provide an 

atomistic representation of drug-target binding which enables the elucidation of 

structural information necessary to evolve compounds into viable drug candidates. The 

accuracy and efficiency of such computational assays are highly dependent on the 

initial set of force field parameters required to begin the simulation. Through many 

years of training and refinement, the parameters developed for macromolecules are 

well developed; however, the generation of force field parameters for novel chemical 

scaffolds can be challenging due to the vastness of small molecule chemical space. 

The work herein addresses this obstacle by employing machine learning models for 

the development of a framework which facilitates small molecule parametrization 

across various MMFFs.  

 

The presented framework, Machine learning based Multipurpose AtomTyper for 

CHARMM (ML-MATCH), considers each molecule from an atom-centric viewpoint. 

This framework has two components, with the first being the machine learning 
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application. Using Random Forest, two key parameters can be predicted: atom types 

and partial charges. With the CHARMM General Force Field (CGenFF) as the training 

set, we found an average accuracy score of 96% for the classification of atom types 

and a Pearson R-value of 0.974e and RMSE of 0.028e for the assignment of partial 

charges. To validate the models, we compared ML-MATCH derived parameters to 

that of PARAMCHEM, the current gold standard for CGenFF based parameterization, 

for molecules within the FreeSolve Database. This resulted in an accuracy score of 

90% for atom types and RMSE of 0.049e for partial charges. The second component 

of this framework is the MATCHing algorithm which serves to identify the closest 

MATCH between the bonded parameters of the query and those which exists in the 

force field’s training set. ML-MATCH derived bonded parameters were validated by 

conducting free energy of hydration calculations for benzene derivatives within 

FreeSolve which were subsequently compared to both experimental free energies and 

calculated hydration free energies computed using PARAMCHEM derived 

parameters. With the GBMV2 implicit solvent model, we found an average Pearson 

R-value of 0.7223 and 0.4635 for ML-MATCH and ParamChem when compared to 

experiment, respectively. Similarly, for the FACTS model, we found an average 

Pearson R-values of 0.7505 and 0.5353. These findings show that ML-MATCH 

derived parameters are well-suited for reproducing experimental data in simulation. 

Application of ML-MATCH derived parameters in more complex simulations and 

retraining on various force fields, shows that this framework goes beyond the status 

quo of current atom parameterization software in its ability to identify the underlying 

rules and assumption for a given force field without being explicitly programmed to 
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do so. Therefore, the novel developed ML-MATCH platform for small molecule 

parametrization will be particularly useful for ligands in the studies of computer-aided 

drug design and developing therapeutic agents.  
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Chapter 1 

Introduction 

 

1.1 Advancement of Drug Discovery Using CADD  

Over the last three decades, the utilization of computers for the prediction of chemical 

properties and structures of biomolecules has grown in both prevalence and necessity. 

Molecular modeling and computational chemistry have quickly become integral 

approaches for the modeling of complex molecular systems. Such approached 

facilitate the understanding of complex molecular systems and prediction of their 

activity at an atomic level [1-2]. Theoretical chemistry, when coupled with efficient 

computer algorithms, allow for the imitation or mimicking of molecular behavior in 

an in-silico environment. These methodologies have a broad range of applications 

from material sciences, biophysics, biomedical engineering, and quite notedly in the 

past few decades, the field of drug discovery [2].  

 

Drug discovery is the process of identifying new chemical entities or repurposing 

existing ones to generate a medicinal therapeutic for a disease state. Concisely, one 

attempts to identify a lead compound that shows pharmacological activity against a 

biological target. Researchers must select the macromolecular target or pathways 

whose inhibition or activation will result in a positive disease resolution. This target's 

structure, which may range from that of a specific strand of RNA to a large membrane-
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bound receptor, must be 'druggable,' i.e., able to bind a specific compound [3]. Once 

the target is identified, researchers must begin the long and risky process of lead 

identification [4]. High throughput screening (HTS) is employed to determine a large 

compound library's activity directed against the characterized target to determine those 

compound(s) with the most significant efficacy. Although this is the method of choice 

in the pharmaceutical industry, it has its limitations, including high cost and 

uncertainty of the mechanism of action (4). According to the 2018 Grand View 

Research HTS Market Report, the market size of HTS in 2016 was valued at 15.62 

billon and is expected to expand 7.86% over the forecasted period until 2025. We see 

in Figure 1 from this report that more that 50% of the HTS market in Europe is targeted 

toward drug discovery.  

 

Figure 1.1: Report for European HTS market analysis. Graphic of the prediction of 

the HTS market comparing various HTS applications. From Grand View Research 

HTS Market Report. 

 

To combat this cost and increase the certainty of activity between a potential drug and 

receptor, researchers have made strides in developing and refining computer-aided 
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drug design (CADD) methodologies. CADD, combined with wet-lab experiments, has 

been used to more rapidly elucidate the relationship between a potential drug candidate 

and its target [4]. CADD modeling strategies are categorized into structure-based drug 

design (SBDD) and ligand-based drug design (LBDD) methodologies. Generally, 

SBDD approaches use the 3D macromolecular structure of the target to identify to 

potential modulators. As shown in Figure 1.2 taken from Macalino et.al., docking and 

scoring methodologies are used to evaluate ligands based on their intra-/intermolecular 

interactions within the binding region of the macromolecule [5]. Conversely, LBDD 

focuses predominately on a collection of molecules, normally with dissimilar 

structures, to determine their functionality when bound to a specific macromolecule 

which elucidates significant structural and physiochemical properties within the 

complex. In this project, we are particularly focused on SBDD and the use of 

molecular mechanics (MM) in solving macromolecule and ligand interactions.  
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Figure 1.2: Representative workflow for computer-aided drug design. From Arch. 

Pharm. Res. 38, 1686–1701 (2015). 

 

1.2 Molecular Mechanics and Drug Discovery 

Molecular Mechanics provides an atomistic depiction of drug-target binding 

interactions, which enable the elucidation of pertinent structural information necessary 

to evolve lead compounds into viable drug candidates through the use of MMFFs [6]. 

MMFFs are mathematical expressions that consist of an analytical form of the 

interatomic potential energy and the set of parameters that enter this form [7]. Due to 

the simplicity of the MM potential energy functional form, one can simulate very large 

systems. While the potential energy functional form is simple, which results in rapid 

and effortless calculations; the accuracy of such empirical methods greatly depends on 

the set of empirically derived parameters that enter this form to describe the atoms and 

their interactions. When an MMFF is well parameterized, it has a comparable or higher 

accuracy [8] when compared to high-level quantum mechanical methodologies. It is 

important to note that the generation of the necessary pre-defined parameters is time-

consuming and computationally expensive. Initial simulation parameters are usually 

generated by ab-initio quantum mechanical calculations or by fitting to experiment.  

 

As shown in Eq.1, an MMFF [1-2] quantifies both intramolecular and intermolecular 

forces within a simulation. The intramolecular part calculates the energies of four 

covalent bonded interactions including bond stretching terms, angle bending terms, 

torsional terms and improper terms.  Bonds and angles are approximated as a function 
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of bond length (𝑏), valence angle (𝜃), and their associated equilibrium force constants 

[𝑏0,𝜃0], respectively. While the bond and angle terms dominate the local covalent 

structure around an atom, there are instances where the angular force constants (𝐾𝜃) 

are not high enough to reproduce the energetics of out-of-plane motions. Motions such 

as this are accounted for using improper dihedral terms as a function of the out-of-

plane angle (𝜑) and its equilibrium force constant (𝐾𝜑).  Lastly, the dihedral terms are 

a sum of cosine functions and a function of amplitude (𝜙) and phases (𝛿𝑛). In 

nonbonded interactions, the electrostatics are accounted for using Coulomb 

interactions between fixed point charges 𝑞𝑖 and 𝑞𝑗,centered on the atoms. These 

electrostatic interactions are referred to as additive because the charges do not affect 

each other, and all the individual atom-atom electrostatic interactions can be summed 

to yield the total electrostatic energy of the system. For the van der Waals interaction 

component, a classical LJ 6-12 potential defined by radius (𝑅(𝑚𝑖𝑛,𝑖𝑗)) and well depth 

(𝜀𝑖) is used.  

 

Equation 1.1  

Bonded (intramolecular, internal) terms  

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜑(𝜑 − 𝜑0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ ∑ 𝐾𝜙,𝑛(1 + cos(𝑛𝜙 − 𝛿𝑛)) +

6

𝑛=1𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠
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Nonbonded (intermolecular, external) terms 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = ∑
𝑞𝑖𝑞𝑗

4𝜋𝐷𝑟𝑖𝑗𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠
𝑖𝑗

+ ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

𝑖𝑗

 

 

Many empirical force fields exist. Those designed for biological macromolecules are 

AMBER [9-10], CHARMM [11] and GROMOS [12]. GAFF [13] and CGenFF [14] 

were developed to represent small organic molecules in complex with 

macromolecules. OPLS [15] and COMPASS [16] were initially developed to simulate 

condensed phase matter. GLYCAM [17] was specifically developed for 

carbohydrates. While many of these force fields’ functional form is similar to that of 

Equation 1.1, they regularly differ in non-bonded terms and atomic parameters.  

 

MMFFs have shown great success in predicting the affinities of ligands within the 

binding site of specific target and the experimental binding modes [5]. An example of 

this was shown in a study done by Ivetac and McCammon [18] in which they 

successfully elucidated the inhibition mechanism of HIV-1 Non-Nucleoside Reverse 

Transcriptase Inhibitors (NNRTIs) when in complex with HIV-1 Reverse 

Transcriptase (HIV-1 RT) through the use of molecular dynamics which employ 

MMFFs. Using all-atom MD simulations of HIV-1 RT, both in apo form and in 
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complex with the Nevirapine, this project found that this NNRTI constrains a key 

rigid-body motion between the “fingers” and “thumb” domain of the p66 subunit in 

HIV-1 RT, shown in the figure below. This impaired movement resulted in the loss of 

catalysis for the polymerase activity of this enzyme. This was a key finding for this 

particular disease as it obstructs the HIV-1 retroviral proliferation by inhibiting its 

conversion into DNA which is necessary for viral replication.  

 

Figure 1.3: Graphic depicting that NNRTIs block a key hinge region in the 

polymerase region of RT. From J Mol Biol. 2009 May 8;388(3):644-58. 

 

1.3 The Small Molecule Parameters Issue  

Generally, to perform such molecular modeling experiments one must utilize two (or 

more) MMFFs. This first is a macromolecular force fields which represents the target. 

The second is a general (organic) force field which represents the small drug-like 
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molecule. These force fields are used to parameterize which moiety which provides 

the initial forces and interactions of the complex in simulation. In the example above, 

HIV-1 RT was parameterized using the GROMOS force field while the ligand, 

Nevirapine, was parametrized using the PROGRG2 program [19].  To ensure accurate 

interactions, researchers who have developed biomolecular force fields usually put 

forth the effort to create a matching small organic force field. Doing so is essential 

because of the inconsistent strategies used to optimize both bonded and nonbonded 

parameters and differential methods used to reproduce experimental data [20]. Thus, 

combining a random biomolecular force field and an arbitrary ligand force field would 

likely lead to unbalanced intermolecular interactions.  

Due to many years of refinement, biomolecular force fields are well developed. 

However, the same cannot be said for small molecules force fields. This results from 

the vastness of chemical space and the virtually infinite ways in which functional 

groups may be bound. Creating small molecule force fields, which effectively spans 

this space, remains a challenge in the field. An even more significant challenge has 

been the efficient parameterization of many small molecules for high-throughput 

computational assays. To efficiently handle a substantial number of small molecules 

in MM calculations, one needs to develop a software framework which automatically 

assigns atom types, charges, bond types and then generate proper topologies that 

encode force field parameters for an arbitrary molecule. 
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1.4 Process of Atomic Parameterization  

The paradigm of parameterization is vital in molecular mechanics. Forces fields and 

their associated parameters sets must be capable of reproducing experimental data for 

the molecules on which they were trained and chemical moieties outside of the training 

set [21-23]. As a result of this interest, researchers frequently thread the delicate 

balance between increasing the force field’s accuracy and ultimately making a force 

field impracticable. There are three main steps in the parameterization process: atom 

typing, charges and parameter assignment which account for this imbalance [24].  

 

1.4.1 Assignment of Atom Types  

Atom typing is the task of assigning descriptive terms, called atom types, to each atom 

in a given system. Atom types aim to describe an atom’s chemical environment such 

that it is readily distinguishable between atoms with different properties (chemical, 

structural, and electronic). Differing force fields have unique methodologies for 

defining atom types and in some cases an MMFF may not have atom types available. 

This task is quite simple and well developed in protein force fields. However, we have 

seen significant challenges in the assignment of atom types for small molecules due to 

the various ways functional groups may be arranged around a particular atom. The 

assignment of atom types is a compounding issue as different atom types are first 

assigned for each element. Concurrently, we must consider the differing hybridization 

states and chemical environment of each representation of that element within the 

training set. A solution for this has been to create more atom types which better depict 

the distinguishing features between atomic environments. However, having a higher 
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number of atom types escalates the chance that a user’s molecule of interest may 

contain an arrangement of atom types that was not measured during the force field’s 

design. Thus, decreasing the transferability of the force field from explicitly 

parametrized chemical groups to novel moieties.  

 

In an effort to make these force field more transferable, researchers may use the same 

atom type for similar but not identical local atomic environments. This results in a 

compounding issue when we attempt to quantify the relationship between local atomic 

environment and atom types. This is due to the fact that there is no one-to-one mapping 

that exists for a given atom type because many local environments may describe a 

single atom type. Below is an example of this in CGenFF. The HGPAM1 hydrogen 

atom type is described as polar hydrogen whose environment can be both in a neutral 

dimethylamine and terminal alkyne. We see this particular atom type as both H1 in a 

reduced nicotinamide and HN1 in a dimethylamine. As seen in the figures below, the 

hydrogens have quite different local atomic environment, but according to the force 

field, they are assigned the same atom type. We see this across differing MMFFs, thus, 

we must take this into account when building a machine learning base atom typer. 
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(a)  

(b)  

(c)  

Figure 1.4: Depiction of CGenFF overlapping local atomic environment descriptors. 

(a) The description of HGPAM1 as defined in the CHARMM General Force Field. (b) 

Reduced nicotinamide parameters in CGenFF which depict HGPAM1 with a ring 

containing local environment. (c) Dimethylamine parameters in CGenFF which depict 

HGPAM1 in a less complex local atomic environment.  
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1.4.2 Assignment of Atomic Partial Charges  

The second step of parameterization is the assignment of a partial charge to each atom 

in the system. Partial charges are typically assigned independently of atom types. The 

paradigm of charge assignment has been well-though-out for protein force fields. They 

generally have set charges for each atom in a monomer, assigned using quantum 

mechanical target data then further optimized. Unfortunately, this method is not 

feasible for small molecules. Existing charging schemes primarily use “on-the-fly” 

charging methodologies including techniques such as bond charge increment schemes 

and electronegativity equalization. These methodologies can quantify atomic charges 

significantly faster than usual ab initio [25] approaches.  

 

Bond charge increments (BCIs) describe the direction and magnitude of charge 

transfer between two covalently bonded atoms. These are often expressed in terms of 

bond charge increment rules related to the two atoms associated with the chemical 

bond. The purpose of bond charge increment rules is to define a set of BCIs can be 

extrapolated to novel chemical moieties [25-26]. This is accomplished by 

decomposing the atomic charge, defined by an ab initio method, of training set 

molecules into these increments. This method has seen success in a number of small 

molecule parameterization paradigms including ANTECHAMBER [27] and the 

Multipurpose Atom Typer for CHARMM (MATCH) [28]. BCIs are calculated for 

each bonded atom type pair that is represented in the training set. BCIs for each atom 

type combination are typically readable from a predetermined table. Once given a 

query molecule, BCIs are used to approximate the atomic partial charge of each atom. 



 

 13 

The formal charge of the molecule is assigned by first setting a charge of 0 for all 

atoms except those in a chemical group having a net charge. The charges are then 

iteratively transferred between bonded partners. 

 

Just as with the bond charge increment paradigm, the electronegativity equalization 

method [29-30] (EEM) is based on previously defined ab initio charges.  The basis of 

EEM is closely related to the density functional theory (DFT) [31-32]. According to 

DFT, the charge-dependent electronegativity of an atom 𝑖 in a molecule may be 

calculated as [33-36] ,  

 

Equation 1.2 

𝓍𝑖 = 𝐴𝑖 + 𝐵𝑖 ∙ 𝑞𝑖 + 𝜅 ∙ ∑
𝑞𝑗

𝑅𝑖,𝑗

𝑁

𝑗=1 (𝑗≠𝑖)

 

 

Where 𝑞𝑖 and 𝑞𝑗 are the atomic charges centered on atoms 𝑖 and 𝑗, respectively, 𝑁 is 

the number of atoms in the molecules, 𝑅𝑖,𝑗 is the Euclidean distance between atoms 𝑖 

and 𝑗, and 𝜅 is the adjusting factor. Coefficients 𝐴𝑖 and 𝐵𝑖 are defined as, 

 

Equation 1.3  

𝐴𝑖 =  𝓍𝑖
∗ =  𝓍𝑖

0 + ∆𝓍𝑖 

𝐵𝑖 = 2𝜂𝑖
∗ = 2(𝜂𝑖

0 + ∆𝜂𝑖) 
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where 𝓍𝑖
𝑜 is the electronegativity of isolated neutral atom 𝑖, 𝜂𝑖

0 is the chemical hardness 

of atom 𝑖, ∆𝓍𝑖
0 and ∆𝜂𝑖 are descriptors of the molecular environment while the 

coefficients 𝐴𝑖, 𝐵𝑖 and 𝜅 are empirical parameters defined by EEM parameterization. 

EEM [37] parameterization is done for the Hartree-Fock method with the STO-3G 

basis set and charges are calculated using Mulliken population analysis. The result of 

this parameterization will yield a readable table in which all defined atom types within 

the training set have a predetermined inherent electronegativity and chemical 

hardness. 

 

To parameterize a new molecule, one must first calculate the instantaneous 

electronegativity of each atom as shown in Equation 1.4,  𝓍𝑖
0 is the inherent 

electronegativity, 𝜂𝑖 is the chemical hardness and 𝑞𝑖 is the predetermined atomic 

charge dependent on atom type.  

 

Equation 1.4  

𝓍𝑖 =  𝓍𝑖
0 + 2𝜂𝑖𝑞𝑖 

 

Each atom’s charge is then distributed in an iterative fashion until all atoms have an 

equivalent instantaneous electronegativity. 

 

Although both methods have had some success, it is essential to note that there is no 

current “on-the-fly” charging scheme that is considered perfect. The development of 

such schemes remains a challenge in this field.  



 

 15 

1.4.3 Parameter Assignment  

The third step to parameterization is the assignment of parameters to all bonds, angles, 

torsion and improper dihedrals. This task this based on the previously defined atom 

types in Section 1.3.1. All covalent parameters are calculated using ab initio 

methodologies and readable from predetermined tables. Considering Equation 1.1, 

these parameters include the equilibrium bond length (𝑏𝑜) and the bond force constant 

(𝐾𝑏) for every covalent bond between existing atom types in the training set, the 

equilibrium angle (𝜃0) and angle force constant (𝐾𝜃) for each covalent chain of three 

atom types and all improper [𝜑0 , 𝐾𝜑)] and dihedral [𝜙, 𝛿𝑛, 𝐾𝜙,𝑛] parameters for each 

relevant covalent chain of four atoms. Additionally, atom types carry a specific 

Leonard-Jones potential, which are averaged between atoms 𝑖 and 𝑗 to obtain 

parameters 𝑅(𝑚𝑖𝑛,𝑖𝑗) and 𝜀𝑖𝑗. It is also important to note that empirical force fields 

calculate these averages using dissimilar methods. OPLS and GROMOS utilize the 

geometric mean to calculate both 𝑅(𝑚𝑖𝑛,𝑖𝑗) and 𝜀𝑖𝑗. While AMBER and CHARMM 

use the Lorentz-Berthelot combining rules which quantifies the arithmetic mean for 

𝑅(𝑚𝑖𝑛,𝑖𝑗) and the geometric mean for 𝜀𝑖𝑗. It is because of this that it is ill-advised to 

transfer Leonard-Jones parameters between force fields.  

 

My thesis will be focused on extending the current efforts of rapid atom 

parameterization. Below is an explanation the currently available software.  
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1.5 Existing Solutions to the Small Molecule Issue  

The overall purpose of parameterization is extrapolation. With ab intio calculations 

considered to be the “gold standard”, one expects to be able to parameterize novel 

chemical entities based on previously parameterized molecules. Thus, efforts have 

been put forth to generate parameterization models trained on this data to accelerate 

the process of parameterizing large compound libraries.  

1.5.1 Antechamber Software  

Antechamber is a software package for identification of bond and atom types, 

discernment of atomic equivalence, generation of topology files and investigation of 

missing force field parameters. Antechamber is made to be compatible with the 

AMBER molecular mechanics packages for automatic parameterization of small 

organic molecules. Antechamber is trained on the General AMBER Force Field 

(GAFF) which is made up of small molecules, selected to span a wide chemical space 

comprising of H, C, N, O, S, P, and halogens, which is compatible with the existing 

AMBER force fields for proteins and nucleic acids. This software package uses a 

simple functional form, similar to that of Equation 1.1, which has a limited number of 

atom types and incorporates empirical and heuristic models for the estimation of force 

constants and atomic partial charges. In GAFF’s functional form, 𝐾𝑟, 𝐾𝑢,  and 𝑉𝑛, are 

the force constants for bond length stretching, bond angle bending and torsional angle 

twisting, respectively; 𝑟𝑒𝑞,  and 𝜃𝑒𝑞,  are the equilibrium bond lengths and bond angles, 

respectively; 𝛾 is the phase angles of the Fourier series in the dihedral terms of out-of-

plane angle 𝜙; 𝐴𝑖𝑗, and 𝐵𝑖𝑗, are the parameters of Lennard–Jones 12-6 potentials; 𝑞𝑖,  

and 𝑞𝑗,  are the point charges of atoms 𝑖 and 𝑗, respectively. 
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Equation 1.5  

 

Bonded (intramolecular, internal) terms  

 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝐾𝑟(𝑟 −  𝑟𝑒𝑞)
2

 

𝑏𝑜𝑛𝑑𝑠

+  ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞)
2

 + ∑
𝑉𝑛

2
[(1 + cos(𝑛𝜙 + 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠

+ 

 

 

Nonbonded (intermolecular, external) terms 

 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ [
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
]

𝑖<𝑗

 

 

As with most parameterization paradigms, Antechamber begins with the automatic 

assignment of atom types based upon bond connectivity information within the 

provided input file (MOL2 or CSD). This methodology uses an atomic path concept 

that considers all possible paths from a particular atom in a molecule to a defined 

terminal atom. The path is then evaluated with a score function shown in Equation 1.6, 

where 𝑖 is the position index in the path and 𝑎𝑛𝑖 is the atomic number of the atom at 

position 𝑖. This score is then ranked by magnitude. If there exists an atom with the 

same score, those atomic environments are said to be equivalent. Atom types are then 



 

 18 

assigned in a rule-based manner that considers bond connectivity (bond type, 

aromaticity etc.).  

 

Equation 1.6  

𝑆𝑐𝑜𝑟𝑒 =  ∑ 𝑖 ∗ 0.11 +  𝑎𝑛𝑖 ∗ 0.08 

 

Charges are generated using the AM1-BCC [31-32] model to which resemble 

restrained electrostatic potential (RESP) charges for a training set. Antechamber 

attempts to ensure that atoms with equivalent chemical properties have equivalent 

atomic charges. This is imperative for all automatic parameterization schemes for the 

accuracy of a MM simulation as well as to account for symmetric molecules and 

enantiomers. AM1-BCC has also been shown to have good performance in 

approximating molecular structure and conformational energy. The AM1-BCC 

scheme first calculates the Mulliken charges at the AM1 semi-empirical level and the 

conducts bond charge corrections to generate RESP-like charges. Jakalian and Bayly 

first introduced the method to develop a fast and efficient model AM1-BCC to 

generate high quality atomic charges which resemble RESP charges.  

 

1.5.2 MATCH Software  

MATCH [28] (Multipurpose Atom-Typer for CHARMM) is an automated toolset for 

the assignment of atom types and force field parameters to arbitrary organic molecules. 

MATCH was generated to be compatible with the CHARMM biomolecular force 

fields for protein, nucleic acids and carbohydrates and trained on the CHARMM 
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general force field (CGenFF).  The CGenFF functional form is shown below in 

Equation 1.7. Equation 1.7 is very similar to Equation 1.1 with the main dissimilarity 

being the inclusion of the Urey-Bradley terms.   

Equation 1.7  

 

Bonded (intramolecular, internal) terms  

 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜙(𝜙 − 𝜙0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜑,𝑛(1 + cos(𝑛𝜑 − 𝛿𝑛))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝐾𝑈𝐵(𝑟1,3 − 𝑟1,3;0)2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ 

 

Nonbonded (intermolecular, external) terms 

 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = ∑
𝑞𝑖𝑞𝑗

4𝜋𝐷𝑟𝑖𝑗
+ 𝜀𝑖𝑗 [(

𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

 

 

 

Unlike Antechamber, MATCH has the functionality such that it can be extrapolated 

to other existing force fields. MATCH is a fragment-based atom parameterization 

engine that allows for fragments from existing parameterized molecules to be applied 

or extrapolated to novel molecules. The MATCH algorithm represents molecular 
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structures as graphs, a methodology shown to excel in molecular pattern recognition. 

In MATCH, molecular graphs are used to quantify chemical environment similarity 

between atom types, ring identification and identification of out-of-plane geometry. 

Molecular graphs are generated based on structural information (PDB, MOL2, SDF 

etc.). Each atom is represented as a vertex which stores information about the atom’s 

element, bond connectivity, ring membership and covalent neighbors. To calculate 

molecular graph similarity and identify the atom type, MATCH conducts a procedure 

similar to that of a tree data-structure comparison where first, an atom’s feature must 

be contained in the larger graph and second, the element and bond connectivity of each 

existing node must be similar. 

 

For the calculation of atomic charges, MATCH utilizes BCI rule libraries as described 

in Section 1.3.2. BCIs are generated for a specified training set and represented as a 

readable table which consists of the BCI between each existing covalently bonded 

atom types. A disadvantage of using the BCI rule is that the charging scheme is based 

solely upon connectivity that is present in the training set. If one attempts to 

parameterize a molecule that consists of a bond between two atom types which is not 

represented in the training, MATCH will be unable to type such molecule.  

 

1.5.3 ParamChem  

ParamChem [38-39] is a group of algorithms for the bond perception and atom typing 

of the CHARMM General Force Field, shown in Equation 1.7. As with other solutions, 

ParamChem first determines the valence, bond order and ring membership to the atom 
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and bonds in the molecule. It then assigns the partial charge to each atom in the system 

while using a matching algorithm for the assignment of other nonbonded parameters.  

 

For the assignment of atom types, ParamChem uses a programmable decision tree to 

assign them based on a “language”. This algorithm is completely rule based and 

contains a number of categories that attempt to discern atom types from one another. 

ParamChem atom typer is based on a one-rule-per-atom-type scheme. The atom 

typer’s program first begins in the “main” or root node which first determines that 

atom’s element grouping in different subcategories. The tree then determines the 

hybridization and environment of said atom. This step to key to defining whether or 

not an atom is in or near a ring and ring type (𝑠𝑝2, 𝑠𝑝3), aromaticity, bond order, 

resonance etc. As an atom moves through this decision tree, the atom typer moves 

closer to a decision on which CGenFF atom type class this atom most closely matches. 

Since this decision tree is specifically based on CGenFF, atom types are able to be 

defined with varying specificity. This scheme utilizes generic atom types for certain 

moieties and more complex atom types for others. It is also important to note that 

during the parametrization process of CGenFF, more and more specific atoms types 

were added empirically as the need arose. A disadvantage to this approach is that this 

typing scheme will not be easily extensible to new chemical moieties and the rules for 

more specialized atom type would become exceedingly long and nontransparent in a 

one-rule-per-atom-type scheme.  
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As the purpose of small molecule force fields is extrapolation to unseen or 

unparameterized molecules, ParamChem consists of an algorithm to assign nonbonded 

parameters by analogy to determine the closest match for any missing bond, angle, 

torsion and improper parameters in the query molecule that does not exist in CGenFFF. 

For the charging of each atom in the molecule, ParamChem (34) uses an extended 

bond charge increment scheme. In this scheme, which looks at charge from an “atom-

centric” view, the final partial charge of an atom can be formalized as 𝑞𝑖 = 𝑞𝑖
0 −

∑ 𝛽𝑖𝑗𝑖 n where 𝑞𝑖 is the final partial charge on atom 𝑖, 𝑞𝑖
0 is the previously assigned 

partial charge and 𝛽𝑖𝑗 is the bond charge increment between atoms 𝑖 and 𝑗, where 𝛽𝑖𝑗 =

−𝛽𝑖𝑗. Although this scheme is similar to that described in Section …, ParamChem not 

only assigns a BCI to each covalent bond present in CGenFF but also to all angles and 

dihedrals. Thus, angles are assigned two charge increments (𝛼𝑖𝑗 , 𝛼𝑗𝑘) and dihedrals are 

assigned three charge increments (𝛿𝑖𝑗, 𝛿𝑗𝑘 , 𝛿𝑘𝑙). If such a parameter does not exist, 

ParamChem uses charge increments from a similar atom type grouping.  

 

A major pitfall of ParamChem is that it is specifically programmed to assign CGenFF 

parameters and is not easily extensible to other force fields. In addition, although 

ParamChem can be extended to atom groupings not parameterized in CGenFF it 

cannot parameterize unique atomic binding unrepresented in CGenFF. Thus, work 

needs to be done to build parameterization engines which may use alternative small 

molecule force fields as well as parameterize unique atomic bindings.  
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1.6 Machine learning and Force Field Development 

This dissertation work addresses the above-mentioned pitfalls by creating a new 

automated atom parameterization scheme based on machine learning. Recent work has 

shown the ability of machine learning to capture the non-linear relationship between 

atomic configurations and potential energy [40-42].  In 1989, Feymann theorized that 

the forces experiences on atom is directly related to the configurations of the atoms 

around it [43]. Thus, if one can accumulate enough atomic environment to force 

examples, one should be able to derive the non-linear connections of said relationship 

and predict an atom’s force (and the force acting upon it) from its structure. This has 

been done successfully in force field development research [44-46]. In addition to this 

finding, Bleizffer et.al has found that one can accurately predict partial atomic charges 

from the local atomic environment when depicted as atomic fingerprints [47]. Thus, a 

key question in this project is, “Can we predict empirical parameters for small organic 

molecules to provide an initialization configuration for simulation based on the 

individual atom environment?” We hope to predict atom types and partial charges 

while assigning non-bonded parameters by analogy.  

With the use of machine learning, we have the ability to use QM derived parameters 

from a given force field to predict parameters of newly synthesized or not yet 

parameterized molecules. This project seeks to increase both the efficiency and 

accuracy of small molecule parameterization and provide a more easily updatable 

parameterization engine which is extensible across organic force fields as it represents 

atomic environments in a more generalized manner. This dissertation lays out the 
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accomplishment of these goals with the creation of a Machine Learning based 

Multipurpose Atom Typer for CHARMM (ML-MATCH).  

 

1.7 Potential Drawbacks in ML based Force Field Design 

As in the other applications of machine learning in force field development, there are 

expected hurdles that may be necessary to overcome in the creation of ML-MATCH. 

The most obvious and important hurdles being the set of molecules that form the basis 

on which the algorithm is trained [40]. Empirically fitted force fields are unable to 

traverse a vast space of atomic configurations. As a result, algorithms fit on such data 

will be unable to accurately describe molecules outside of this set, particularly those 

with diverse structural environments [41]. In the case of small molecules force fields 

such as CGenFF and GAFF, it would be difficult to well parameterize molecules with 

exceedingly complex chemical moieties, including rare functional group connectivity, 

that are not present in the force field’s basis set. A well optimized machine learning 

algorithm can help overcome this hurdle [42]; however, one must be aware of the 

effects that such a drawback may have in simulation as a result of the uncertainty in 

parameter prediction. ML-MATCH provides a readily updateable pipeline and a single 

resource that can encompass many known force fields and can be easily extended to 

newly generated force fields.  
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Chapter 2  

Machine Learning Multipurpose Atom Typer for CHARMM 

Methodology 

Murchtricia Jones and Charles L. Brooks III 

 

2.1 Background  

Computational drug discovery tools are rapidly developing to meet the challenge of 

designing and optimizing new chemical scaffolds [1]. In particular, the role of classical 

molecular dynamics (MD) and molecular mechanics simulations have been well 

established for the computational analysis of structure-based drug design including in 

silico high-throughput docking methods and statistical mechanical free energy 

approaches [1,2]. These methods provide an atomistic description of protein/ligand 

binding interactions using molecular mechanics force fields (MMFFs) [3]. MMFFs 

are mathematical expressions which represent the molecular interactions comprising 

the interatomic potential energy (U) and the set of parameters that best represent the 

fit of these expressions to a particular collection of molecules or molecular fragments, 

as shown in Equation 1.1 [3].  

In a protein-ligand molecular simulation, the protein is represented by a specialized 

macromolecular force field, while the ligand is represented by a corresponding general 

organic force field [4,5]. Protein force fields have, over the years, been well-developed 
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and tested; however, organic forces fields are continually growing due to the vastness 

of small molecule chemical space [5]. Thus, the parameterization of transferable and 

precise force fields for such entities has proven to be difficult. The task of 

parameterization also serves as a major bottleneck for subsequent molecular 

simulations due to the computationally extensive nature of representing this 

complicated quantum chemical behavior as a simplified analytical form. 

 

Individual quantum mechanical (QM) calculations [6] for single molecules in a high 

throughput computational assay has its drawbacks [7, 8]. The most notable being the 

computational resources needed to perform such calculations. To accomplish this, 

researchers tend to use less accurate but rapid QM calculations that may cause 

improperly balanced intermolecular interactions when force field parameterization 

methods are “mixed and matched”. To address this bottleneck, efforts have been made 

to establish automatic atom typing toolkits; tools such as Antechamber [9] for the 

AMBER [10,11] biomolecular force field and its corresponding general AMBER force 

field (GAFF) [12], MATCH [13] and ParamChem [14] for the CHARMM additive 

biomolecular force field [15] and its corresponding CHARMM general force field 

(CGenFF) [16], LigparGen [17]  for the OPLS [18] force field, and most recently the 

Open Force Field Initiative (OpenFF) [19]. However, the status quo as it pertains to 

current parameterization software is that each is specifically designed around a 

specific set of rules and assumptions for each developed force field and can be difficult 

to expand once force fields are updated.  
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This work aims to expand upon the efforts noted above with the generation of a newly 

automated ligand parameterization tool that utilizes a knowledge-based approach that 

exploits previously calculated force field parameters to infer information of not yet 

parameterized chemical scaffolds through inference based on a machine learning (ML) 

model. Utilization of machine learning to predict semi-empirical and force field 

parameters from QM reference data has been shown to have great success. Despite 

this success, only a few efforts have applied ML approaches for the learning and 

prediction of force field parameters within the context of existing force fields. In this 

project, we describe the development of the Machine Learning based Multipurpose 

Atom Typer for CHARMM (ML-MATCH); a framework based on machine learning 

for the classification of atomic environments and identify atom types and prediction 

of atomic charges based on a database of parameterized molecules. We developed a 

novel atomic fingerprint and were able to type molecules based on learned associations 

between the perceived environments and atomic force field parameters. Following this 

assignment of atom types and nonbonded parameters, internal energy terms were 

established using a hierarchical matching algorithm. ML-MATCH relies on the ability 

of the underlying algorithm to accurately predict the atom type and partial charge of 

each atom in a given molecule based on the local environment of that atom. Thus, it is 

critically dependent on the quality of data which is utilized in its training which is 

derived from ab initio calculations. This algorithm and subsequent work shows the 

ability of ML-MATCH to be extended to various general force fields depicting its 

independence of the physical principles of the force field on which it is based. We note 

that our objective here is to extend the scope of existing force fields in a manner that 
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is consistent with their underlying parameterization, and hence, presumably 

compatible with the remaining components of the molecular force field family of 

interest, e.g., CHARMM, AMBER, OPLS, etc. 

 

 

Figure 2.1: Workflow for the generation of ML-MATCH. ML-MATCH model 

generation follow a common preparation pipeline. Beginning with a curated group of 

parameterized molecules which are then split into training and testing set. The training 

set is used to select and optimize the ML algorithm of choice. ML-MATCH creates a 

classification and regression model for each element present in the basis set of 

molecules. Optimized models are then tested and validated using the testing set.  
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2.2 Data Set  

2.2.1 Training Data  

 The objective of this effort is to take existing “well-vetted” force field models and 

extend the scope of represented molecules by the use of machine learning methods to 

map chemical environments to molecular force field parameters. However, the 

accuracy of a machine learning model greatly depends on the size of the data set on 

which it is trained. More recently, however, particularly in the field of drug discovery, 

it has been shown that one can use fragments of small organic molecules to predict 

characteristics of larger systems [20].  Thus, ML-MATCH will have capability to 

utilize “learned” parameters from small fragments to predict parameters for larger 

chemical moieties. CGenFF was compiled with various molecules and fragments 

meant to span the chemical space of drug-like molecules. CGenFF consists of ~500 

lead-like molecules and fragments, i.e., predominately ≤ 7 rotatable bonds and 

molecular weights of 250-350 g/mol as shown in Figure 2.2.  This force field and its 

corresponding database of molecules and molecular fragments contains organic 

molecules consisting of elements C, H, O, N, I, Br, Cl, I, P, and S. The prevalence of 

element groupings is shown in Figure 2.3. As is evident from this figure, some element 

types are abundant whereas others are minimally represented in the underlying 

molecular dataset. It is important to note that the parameterization of new chemical 

entities cannot go beyond the element types represented in the given force field as the 

atom types and intermolecular terms will be absent.  
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(a) (b)  

Figure 2.2:  Insight into structural makeup of CGenFF. Histograms of number of (a) 

rotatable bonds and (b) heavy atoms for molecules in CGenFF.  

 

 

Figure 2.3:  Histogram of the element grouping counts in CGenFF.  

 

2.2.2 Chemical Space  

To understand the extent to which our generated models can be extrapolated to novel 

chemical moieties (within reason) we must quantify the chemical space that our 

training set spans.  To explore this question, we compared the CGenFF training set to 
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publicly available drug-like molecules in the ZINC15 [21] database. We used the 

Haider et.al checkmol [22] software to quantify the prevalence of over 200 functional 

groups. Using this software, we were able to identify the functional groups which are 

in common between CGenFF and ZINC15 FDA (a database of all FDA approved drug 

molecules). In addition, we identified the functional groups in which CGenFF has no 

representation when compared to ZINC15 FDA. While extending the range of 

molecules within CGenFF is beyond the scope of this work, the identification of 

missing and potentially important chemical entities or subsequent parameterization 

could increase the accuracy of both CGenFF and ML-MATCH as well as expand the 

chemical diversity of the force field such that one is able to better calculate pertinent 

ADMET characteristics of small organic molecules.  

 

Once we acquired the count of existing functional groups in both datasets, the 

normalized count was calculated in order to more accurately compare the prevalence 

of each functional group between datasets. The normalized count was calculated as 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − min (𝑋)

max(𝑋) − min (𝑋)⁄ , where x is the actual count of a specific 

functional group and X represents the vector of all counts of that specific functional 

group within the database. The normalized counts [(0,1)] are shown in Appendix I 

Figures 1 and 2.  
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We see that for many moieties the CHARMM General Force Field shows lower 

prevalence than in ZINC15 FDA, these include groups like phenol rings and ring 

bound akyl and aryl groups. In Appendix I Table 1, we see that there are 36 chemical 

moieties, as defined by the checkmol software, that are not present in CGenFF when 

compared to ZINC15 FDA. Appendix I Table 2 shows that there are 6 moieties that 

are present in CGenFF and not in ZINC15 FDA. To be more accurately used as a 

resource for the calculation of ADMET properties or protein-ligand binding, efforts 

should be made to expand the chemical space of CGenFF. This exercise gave us a 

good starting point in determining the chemical moieties for which ML-MATCH may 

not perform well due to lack of presence in the training set.  

 

2.2.3 Newly Developed Atomic Descriptors  

 ML-MATCH looks at every molecule from an atom-centric view. As an effort to 

generate atom centered predictions, atomic fingerprint vectors have been utilized to 

relate the local atomic environment to a specific chemical or physical property. Atomic 

fingerprints are developed similarly to those generated for molecular fingerprints used 

for similarity substructure matching. Such vectors have shown great success solving 

the electronic structure of a molecule, understanding the physical properties of grain 

boundaries in crystalline materials and recently, structure-based predictions in drug 

discovery, to name a few [23-27]. The development of the numeric representation of 

the atomic environment is based on Feymann’s findings [28], which essentially states 

that the force that an atom experiences is based on the configuration of its neighbors. 
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Consequently, atoms with similar environments are expected to have similar force 

field parameters, making this methodology a great fit for our efforts.  

 

Effective development of these local atomic descriptors requires the fulfillment of 

mathematical properties such that developed models may be generalizable to unseen 

data. First, they must be correlated to the target property of interest, in the case of this 

project, the atomic environment must be able to identify the relationship between the 

local atomic environment with the atom type and partial charge, respectively. 

Secondly, this fingerprint must be invariant to the physical molecular structure while 

generalizable to a three-dimensional molecular representation. Thirdly, these vectors 

must be capable of capturing long distance interactions between atoms. 

 

We developed new atomic fingerprints that are aimed to describe the local 

environment of each atom in a given molecule. The 

generation of these fingerprints was aided by the 

cheminformatics software, OpenBabel [29]. OpenBabel 

enables us to encode each molecule in CGenFF as a python 

object and through embedded functionalities provides chemical and geometric 

information of each atom in a molecule given an accurate starting structure 

representation.  

Features considered include: 
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1. Atomic number; encoded by one-hot encoding (1,6,7,8,9,15,16,17,35,53)  

2.  Ring size; {openbabel.OBMol.OBAtom.MemberofRingSize()}  

3. Hybridization {openbabel.OBMol.OBAtom.GetHyb()}  

4. Valency; {openbabel.OBMol.OBAtom.GetValence()}  

5. Additional Characteristics for functional group identification; encoded by one-hot 

encoding {openbabel.OBMol.OBAtom.[IsAromatic(), IsCarboxylOxygen(), 

IsPhosphateOxygen(), IsSulfateOxygen(), IsAmideNitrogen(), isNitroOxygen()].} 

 

Compilation of these features results in a vector length of 20 elements and when extended 

to second-nearest neighbor, by covalent bonds, each vector is extended to 340 elements. 

Inclusion of second-nearest neighbor was done to provide distinguishing features between 

similar atom types. Zero padding is used for atoms without second-nearest neighbors, i.e 

if molecule of interest is a small molecule like methane. Permutations of each atomic 

fingerprint is performed to ensure invariance of bond paths from each central atom, (𝑋), 

to the first [(𝑁𝑘) where k in 𝜖 [1,2,3,4]] and second-nearest neighbor [(𝑁𝑘𝑗
) where j in 𝜖 

[1,2,3]]. This yielded a total of 31,104 permutations with the removal of duplicates. In 

addition to accounting for invariance, permutations act to increase the representation of  

those atomic environments with limited presentation in a given force field. Figure 2.5 

shows the varied representations of atom types (i.e atomic environments) in CGenff. 
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Figure 2.4: Atom type representation in CGenFF. Only 9 of 10 are shown in the figure 

since Iodine has one representative in this force field. In each subsection histogram there 

are differing levels of representation of atom types in each element grouping.  

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Element 

Grouping 

Original AFp Count Permutated AFp Count 

Bromine 7 108 

Carbon 3485 1217811 

Chlorine 8 120 

Fluorine 31 412 

Hydrogen 4828 74476 

Nitrogen 537 233996 

Oxygen 810 53902 

Phosphorus 86 4860 

Sulfur  88 7826 

Iodine 1 12 

 

Table 2.1: Count of generated atomic fingerprints per elements grouping. Permutations of 

generated AFps for all atom in CGenFF allow a large training set and more chemical 

environment to parameter examples.  

 

2.2.4 Atom type and Partial Charge Extraction from CGenFF  

CGenFF uses the CHARMM additive potential energy function which consists of two 

terms: the intramolecular potential energy (bonded terms) and intermolecular potential 

energy (non-bonded terms). The CGenFF functional form is shown in Equation 1.2. The 

description of molecules within CGenFF consists of two data sources, the topology file, 

which consists of approximately 500 molecules whose atomic partial charges and atom 

types have already been assigned, and the parameter file, which contains all previously QM 

calculated bonded terms as well as Leonard-Jones potentials.   
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2.3 Approach and Algorithm  

2.3.1 Machine Learning Algorithms 

 For each element grouping, i.e., [C, H, O, N, I, Br, Cl, I, P, S], a classification model and 

regression model was constructed, resulting in 20 different models. The newly developed 

atomic fingerprints were used to train the ML models. Classification was used for the 

prediction of atom types, labels which describe the local chemical environment around an 

atom, while regression was used for the prediction of all partial charges. Random Forest 

[30] was chosen as the underlying supervised machine learning algorithm used in ML-

MATCH. Random Forests are a compilation of decision trees in which each tree is 

dependent on an independently and identically distributed random vector sampled from 

provided feature vectors (atomic fingerprints). An atom type classification 

decision, 𝑎𝑇𝑝𝑟𝑒𝑑, is predicted using the margin function described in Equation 2.2, 

where ℎ𝑁𝑡𝑟𝑒𝑒𝑠
, 𝑎𝑣𝑁𝑡𝑟𝑒𝑒𝑠

 represent the individual tree-like classifier and average number of 

votes, respectively. 𝑿, 𝒀 represent the input atomic fingerprint and the randomly 

distributed feature set on which ℎ𝑁𝑡𝑟𝑒𝑒𝑠
is formed, respectively. The margin measures the 

extent to which the average number of votes for the correct class exceeds the average vote 

for any other class, otherwise known as bootstrap aggregation. While the prediction of 

atomic partial charge,𝑞𝑝𝑟𝑒𝑑, quantifies and average of all predicted charges given by each 

tree in the forest, as shown in Equation 2.3.  

 

Equation 2.2. 

𝑎𝑇𝑝𝑟𝑒𝑑 = 𝑚𝑔(𝑋, 𝑌) = 𝑎𝑣𝑁𝑡𝑟𝑒𝑒𝑠
𝐼 (ℎ𝑁𝑡𝑟𝑒𝑒𝑠

 (X = Y)) − 𝑚𝑎𝑥𝑗≠𝑌(𝑎𝑣𝑁𝑡𝑟𝑒𝑒𝑠
𝐼 (ℎ𝑁𝑡𝑟𝑒𝑒𝑠

 (X = j)) 
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Equation 2.3 

 

𝑞𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅ =
1

𝑁𝑡𝑟𝑒𝑒𝑠
∑ (ℎ𝑗(𝑋))

𝑁𝑡𝑟𝑒𝑒𝑠

𝑗=1

 

 

For each atom in the molecule, the regression model predicts the partial charge independent 

of all other atoms within the molecule. As a result, a method of normalization, which 

disributes this excess charge around the molecule, is needed such that the sum of all partial 

charges in a molecule is equal to the molecules formal charge. A methodology such as this 

was employed recently by Rai et.al [31] and Bleiziffer et al. [32]. 

 

A molecule’s formal charge, 𝑄𝑓𝑜𝑟𝑚𝑎𝑙, is computed algorithmically using the OpenBabel 

toolkit. 𝑄𝑝𝑟𝑒𝑑is calculated as the sum of the predicted charges, 𝑞𝑝𝑟𝑒𝑑𝑖
, where 𝑁𝑎𝑡𝑜𝑚𝑠is the 

number of atoms in the molecule. 𝑞∆ is the difference between the formal charge and ML-

MATCH total predicted charges for a specific molecule.  

Equation 2.4 

𝑄𝑝𝑟𝑒𝑑 = ∑ 𝑞𝑝𝑟𝑒𝑑𝑖

𝑁𝑎𝑡𝑜𝑚

𝑖=1

 

Equation 2.5 

𝑞∆= 𝑄𝑝𝑟𝑒𝑑 − 𝑄𝑓𝑜𝑟𝑚𝑎𝑙 

 

The standard deviation of the predicted charge for each atom in the molecule is defined as, 
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Equation 2.6  

𝜎𝑖 = √
∑ (𝑞𝑝𝑟𝑒𝑑𝑖

𝑇𝑗 − 𝑞𝑝𝑟𝑒𝑑𝑖
̅̅ ̅̅ ̅̅ ̅̅ )2𝑁𝑡𝑟𝑒𝑒𝑠

𝑖

𝑁𝑡𝑟𝑒𝑒𝑠
 

𝑞𝑝𝑟𝑒𝑑𝑖
𝑇𝑗 represents the predicted atomic charge for tree, 𝑇𝑗.  𝑞𝑝𝑟𝑒𝑑𝑖

̅̅ ̅̅ ̅̅ ̅̅  is the overall predicted 

charge of the model given as the average of all tree predictions. Finally, the normalized 

charge is given as,  

Equation 2.7  

𝑞𝑛𝑜𝑟𝑚 = 𝑞𝑝𝑟𝑒𝑑𝑖
− 

𝜎𝑖|𝑞𝑝𝑟𝑒𝑑𝑖
|𝑞Δ

∑ 𝜎𝑎|𝑞𝑝𝑟𝑒𝑑𝑎
|

𝑁𝑎𝑡𝑜𝑚
𝑎

 

The charge renormalization scheme is shown in Appendix I.  

 

2.3.2 Calculation of Parameter Metrics  

As an effort to provide a metric of predictive certainty, our algorithm provides scores which 

describe the algorithm’s certainty of atom type classification and standard deviation of 

partial charge assignment. These metrics take advantage of the ensemble nature of the 

random forest algorithm. The certainty of prediction refers to the percentage of trees in the 

random forest which made the decision that corresponds to the selection made by the 

margin function in Equation 2.8, where 𝑘 is the number of trees with max vote and 𝑁 is 

the total number of trees.  

Equation 2.8  

𝛼 =
𝑘 − 𝑁𝑡𝑟𝑒𝑒𝑠

𝑁𝑡𝑟𝑒𝑒𝑠
 

While the standard deviation-based charge metric is calculated as in Eq. 2.8. This metric 

gives the user of ML-MATCH an idea of how well each tree in the random forest correlates 
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with each other, and consequently a measure of the confidence of the atomic charge. Lastly, 

we provide the user with the out-of-bag error for each prediction.  

 

2.3.5 Optimization of Random Forest Models 

Each model in ML-MATCH is implemented using the sci-kit [33] learn module in Python. 

To assign atom types the RandomForestClassfier ensemble algorithm was employed while 

RandomForestRegressor algorithm was employed for the assignment of partial charges To 

ensure optimal performance for each classification and regression model, we must 

carefully tune them to identify the model parameters leading to the most accurate 

predictions. We used the Bayesian optimization [34-35] cross validation search in sci-kit 

learn to determine the hyperparameters for each model. The BayesSearchCV functionality 

allows for rapid traversing of a search space to quickly determine the model with the best 

generalization estimate. Table 2.2 defines the parameters. All model parameters are not 

shown as not many diverted from default model parameters in sci-kit learn. The 

hyperparameters for each model are in the tables below. All models were trained to predict 

CGenFF atom types and partial charges. As such, Tables 2.3 and 2.4 reflect only the 

element groupings existing in that given force field. It is important to note that there is only 

one iodine atom type in CGenFF. Thus, a classification model was not generated for that 

element group and all query molecules typed by CGenFF based ML-MATCH will 

automatically be assigned that atom type.  
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Meaning of Parameters 

Number of 

Trees 

number of trees in the Forest 

Max Depth depth of each tree in the forest. The deeper the tree the more 

information is captured. If = None, then tree traverses until pure. 

Min Sample 

Split 

minimum number of samples required to split and internal node 

Max Features number of random feature subsets to consider when splitting a node. 

If = None, then max features = number of features.  

Bootstrap If True, bootstrap sampled are used when building trees. If False, 

the entire dataset is used to build each tree.  

 

Table 2.2: Random Forest model parameters considered for hyperparameter optimization. 

Parameters for which Bayesian Optimization hyperparameters diverted from default sci-

kit learn model parameters.  

 

Atom Type Classification Models 

Model Number of 

Trees 

Max 

Depth 

Min Sample 

Split 

Max Features Bootstrap Class 

Weight 

Bromine 100 None 2 None TRUE None 

Carbon 100 None 2 None TRUE None 

Chlorine 100 None 2 None TRUE None 

Fluorine 100 None 2 None TRUE None 

Hydrogen 100 None 2 None TRUE None 

Nitrogen 100 None 2 None TRUE None 

Oxygen 100 None 2 None TRUE None 

Phosphorus 100 None 2 None TRUE None 

Sulfur  200 None 3 None TRUE None 

 

Table 2.3: Bayesian optimized hyperparameters for each atom type classification model.  
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Model Number of Trees Max Depth Min Sample Split Max Features Bootstrap 

Bromine 100 None 2 None FALSE 

Carbon 100 None 2 None TRUE 

Chlorine 100 None 2 None FALSE 

Fluorine 100 None 6 None TRUE 

Hydrogen 100 None 2 None TRUE 

Nitrogen 200 None 3 None TRUE 

Oxygen 100 None 2 None TRUE 

Phosphorus 100 None 3 None TRUE 

Sulfur  100 None 2 None TRUE 

Iodine  100 None 2 None TRUE 

 

Table 2.4: Bayesian optimized hyperparameters for each partial charge regression model.  

 

 

2.3.4 Matching Algorithm 

The training set of a general organic force field consists of molecules and fragments curated 

to span the chemical space of drug-like molecules. However, due to the vastness of this 

space and computational constraints, these chemical moieties are normally unable to 

traverse such a large area in its entirety. This shortfall results in bond, angle and dihedral 

covalent connections, as defined by atom types, which are present in a query molecule of 

interest but unrepresented in a given force field training set. Thus, we must quantitatively 

determine the best MATCH between the unrepresented bond, angle or dihedral of the query 

molecule and what currently exists in the training set. With the ML-MATCHing algorithm, 

we seek to determine this best fit by analogy. 
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To quantitatively determine the parameters in a force field that are best suited to the query 

molecule, we begin by generating a representation of each bond, angle and torsion that 

exists within our training set, which can be used comparatively with the query molecule. 

This is accomplished by generating representative atomic fingerprints. It is important to 

note that when considering a training set of molecules whose parameters have been 

calculated to fit to a given force field, there may be numerous instances of a covalent 

connection between atom type 𝑖 (𝑎𝑇𝑖) and atom type 𝑗 (𝑎𝑇𝑗). Thus, it is imperative to 

calculate a representation of that bond. This calculation is conducted for all bonds, 

[𝑎𝑇𝑖, 𝑎𝑇𝑗]𝑖=𝑗,𝑖≠𝑗, angles, [𝑎𝑇𝑖, 𝑎𝑇𝑗 , 𝑎𝑇𝑘]𝑖=𝑗=𝑘,𝑖≠𝑗≠𝑘, and 

torsions[𝑎𝑇𝑖, 𝑎𝑇𝑗, 𝑎𝑇𝑘, 𝑎𝑇𝑚]𝑖=𝑗=𝑘=𝑚,𝑖≠𝑗≠𝑘≠𝑚. A schematic of how each representation is 

calculated is shown in Figure 4.  

 

The first step of this process is to convert the 2D representation of all bonds, angles and 

dihedrals between atom types to atomic fingerprints. This is done identically to the process 

described previously for the generation of atomic descriptors. Secondly, we simply 

calculate the average atomic fingerprint representation of each covalent connection in the 

training set. The third step involves calculating the Euclidean distance between the average 

representation and all instances to determine the instance of that bond with the shortest or 

minimum distance from the overall average instance. This instance is used as the 

representative of that specific bond in the MATCHing algorithm. Calculating the 

representative bond also reduces the computational resources and time involved in making 

a MATCH as it drastically reduces the number of distance calculations needed to find the 

closest MATCH to the query molecule.  
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To quantify how different the missing moieties within the query molecule are from 

covalent bond groupings (bonds, angles, torsions) in each force field term and then identify 

the most similar MATCH, we must first determine how environmentally dissimilar all 

instances of a given parameter is within the training set. This is accomplished by 

calculating what we call a “basis score” (𝛽𝑠𝑐𝑜𝑟𝑒). Once all instances of a particular covalent 

bond grouping are represented as an atomic fingerprint, we calculate the Euclidean distance 

between all instances and compute the standard deviation of those calculated differences, 

where 𝑁 is the total number of instances. To normalize these distances based on the number 

of atoms in the covalent bond grouping, we divide this the summed standard deviation by 

the number of atoms in the groupings (𝑁𝑏𝑜𝑛𝑑𝑠 = 2, 𝑁𝑎𝑛𝑔𝑙𝑒𝑠 = 3, 𝑁𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 = 4). The 

schematic of this calculation is shown in Figure 5. Basis scores for every bond, angle and 

dihedral present in the training set are stored in a readable table.  
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Figure 2.5: Schematic of the generation of representative bonds, angles and dihedrals for 

a given force field. Specifically shown for bonds, however, this quantification is the same 

for angles and dihedrals. 
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Figure 2.6: Schematic of the calculation of basis scores. Specifically shown for bonds, 

however, this quantification is the same for angles and dihedrals.  
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The final step of developing the MATCHing algorithm is the integration of a functionality 

for the quantification of the dissimilarity between the missing moiety in the query molecule 

to the existing moieties in the force field. This allows us to identify the closest MATCHed 

parameter. As all atoms in the query molecule are represented as atomic fingerprints and 

all covalent bond groupings are represented as covalent fingerprints, we simply calculate 

the Euclidean distance between all AFps of that missing moiety to the existing atomic 

fingerprints from the training set. The grouping with the smallest average distance is 

considered to be the closest MATCH. The existing parameters for that closest match are 

then assigned to the missing covalent moiety in the query molecule. In addition, we 

calculate the ∆𝑠𝑐𝑜𝑟𝑒, which is the computed absolute value of the difference between the 

overall average distance between the missing moiety and the closest MATCH and the 

𝛽𝑠𝑐𝑜𝑟𝑒of the closest MATCH. To reduce the computational time, we only consider the 

grouping of specific elements in the training set. For example, if there does not exist a 

perfect MATCH between the query dihedral with atom types reflecting elements N-C-C-

N, we only compare that dihedral to the existing N-C-C-N groupings in the training set.  

 

Equation 2.9  

∆𝑠𝑐𝑜𝑟𝑒= ||
√∑ (𝐴𝐹𝑝𝑞𝑢𝑒𝑟𝑦𝑖−𝐴𝐹𝑝𝑘)2𝑁

𝑘 + √∑ (𝐴𝐹𝑝𝑞𝑢𝑒𝑟𝑦𝑗−𝐴𝐹𝑝𝑘)2𝑁
𝑘

𝑁𝑏𝑜𝑛𝑑𝑠
− 𝛽𝑠𝑐𝑜𝑟𝑒𝑖𝑗|| 

, where 𝑁 is the number of instances of the that particular element grouping the in 

representative groups of the training set.  
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2.4 Summary 

The use of molecular mechanics force fields for computer aided drug development has 

Machine Learning based Atom Typer for CHARMM offers a novel framework for both 

the prediction of atom types and partial charges as well as an analogous matching algorithm 

for the assignment of bonded terms. ML-MATCH is expected to increase both the 

efficiency and accuracy of small molecule atom parameterization. This proposed algorithm 

takes advantage of the ensemble nature of the Random Forest to provide the user with a 

quantified confidence in the assignment of partial charges and atom types. While the 

MATCHing algorithm exploits the atomic fingerprint representation for the identification 

of similar bonds, angles and dihedrals that may be present in a query molecule but not 

represented in a force field’s training set.  

 

Chapter 3 will show that the ML-MATCH framework has promising applications in drug 

discovery and may be able to be extrapolated other fields in which accurate 

parameterization of small organic molecules are necessary.  
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2.5 Appendix I.   

Appendix I Table 1: Depicts the functional moieties that exist in ZINC15 FDA and not 

in the CHARMM General Force Field as define by the checkmol software.  

 

 

1. nitrate  

2. 
carboxylic acid imide-N-

substituted  

3. 

thiourea  

4. nitroso compound  

5. 

thiocarbamic acid  

6. 

1-2-diphenol  

7. 

phosphonic acid ester  

8. 

ketene acetal or derivative  

9. carboxylic acid imide-N-

unsubstituted  
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10. 

hemithioaminal  

11. 

enediol  

12. 

phosphine oxide  

13. 

sulfuric acid  

14. 

oxime  

15. 

enol  

16. 

boronic acid ester  

17 

isourea  

18. 

boronic acid derivative  

19. 
isonitrile  

20. 

thiocarbamic acid ester  
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21. 

boronic acid  

22. 

carbonic acid derivative  

23. 

alpha-hydroxyacid  

24. 

imido ester  

25. 

hydroxamic acid  

26. 

thiolactam  

27. 

thiocarboxylic acid ester  

28. 
azo compound  

29. 

carboxylic acid hydrazide  

30. 
peroxide  

31. 
azide  
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32. 

semicarbazone  

33. 

oxime ether  

34. 

thiocarboxylic acid amide  

35. 

imino(het)arene  
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Appendix I Table 2: Depicts the functional moieties that exist in the CHARMM General 

Force Field and not in ZINC15 FDA as define by the checkmol software.  

 

1. isothiourea 

 

2. isocyanate 
 

3. alkyl bromide 
 

4. carbonyl hydrate 

 

5. thiocarbonic acid derivative 

 

6. thiocarbonic acid diester 
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Appendix I Figure 1: Charge renormalization workflow for query molecule 

parameterized with ML-MATCH. 
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Appendix I Figure 2: 
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Appendix 1 Figure 3:  
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Chapter 3  

Machine Learning Multipurpose Atom Typer for CHARMM 

Results and Application 

Murchtricia Jones and Charles L. Brooks III 

 

3.1 Selection of Machine Learning Algorithm 

The ML-MATCH framework is a two-part system. The first partition is the machine 

learning engine developed for the prediction of atom types and partial charges for each 

atom in a query molecule. To this end, we examined simple machine learning algorithms 

to test how well they could predict both the atom types and partials charges from a 

general description of the local atomic environments. We incorporated all molecules in 

the CGenFF basis set (500). All atoms were encoded using the newly developed atomic 

fingerprint described in Chapter 2.  

 

To determine the algorithm which best captured the relationship between the local atomic 

environment and atom types/partial charges, we employed sci-kit learn. We separated all 

atomic fingerprints based on element grouping and developed separate classification, for 

the assignment of atom types, and regression, for the assignment of partial charges, 

algorithms for each grouping, respectively. We used 70% of the dataset for training and 

optimization of our models and 30% for testing and validation. We tested three simple 
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and well vetted algorithms for this task, Naïve Bayes (classification) [1-2], Bayesian 

Regression [2], K- Nearest Neighbors [3] and Random Forests [4]. In the following, we 

describe the methodologies and results for each algorithm tested.  

3.1.2 Naïve Bayes Methodology and Results for Assignment of Atom Types 

Naïve Bayes classifiers are considered to be naïve due to the working assumption that the 

features are independent of a given class. This is shown in Equation 3.1, where 𝐗 =

(𝑋1, … , 𝑋𝑛) is a feature vector and C which is a class. When applied to this research 

question, X is the atomic fingerprint where n is a natural number from 1 – 340 which is 

the length of each feature vector and C is the associated atom type as defined by 

CGenFF. This methodological explanation was adapted from Rish [1].  

Equation 3.1  

𝑃(𝐗|𝐶) =  ∏ 𝑃(𝑋𝑖|𝐶)

𝑛

𝑖=1

 

Although the assumption of independence is naïve, this classifier has been successful in 

the fields of medical diagnosis, text classification and drug target identification. Due to 

this shown success in diverse fields, we believed that it could be well suited for our 

research question. The basis of this algorithm is Bayes theorem. With this theorem we 

can find the probability of event A occurring given that B has occurred, where A is the 

hypothesis and B is the evidence or known information and in this, we assume that the 

presence of one feature does not affect another.  

Equation 3.2  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
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Given that our atomic fingerprint is represented as 𝐗 = (𝑋1, … , 𝑋𝑛), where each feature 

takes values from its domain 𝐷𝑖. The set of all AFps is denoted as 𝜔 =  𝐷1  × … × 𝐷𝑛  

and C is an unobserved random variable which represents the class of an example. C can 

take the value of any m value where 𝐶 ∈ {0, … , 𝑚 − 1}.  This algorithm uses a functional 

mapping of ℎ: 𝜔 → {0, … , 𝑚 − 1} where the ℎ(𝐱) = 𝐶 would always assign the same 

atom type, C, to a given example, x. Essentially, the idea is to associated a given class, 

𝐶 = 𝑖, using a discriminant function 𝑓𝑖(𝐱) where  𝑖 ∈ {0, … , 𝑚 − 1} and the classifier 

selects the class with the maximum value of the discriminant function on a given 

example.  

Equation 3.3 

ℎ(𝑥) =  arg 𝑚𝑎𝑥𝑖 ∈{0,…,𝑚−1} 𝑓𝑖(𝐱) 

Thus, the Bayes a classifier ℎ∗(𝐱) uses a discriminant function to calculate the posterior 

probability of C given a feature vector defined as 𝑓∗ (𝐱) =  𝑃(𝐶 = 𝑖  | 𝐗 = 𝐱). When the 

Bayes theorem is applied it gives the equation below. 

Equation 3.4 

𝑃(𝐶 = 𝑖  | 𝐗 = 𝐱) =  
𝑃(𝐗 = 𝐱 |𝐶 = 𝑖) 𝑃(𝐶 = 𝑖)

𝑃(𝐗 = 𝐱)
 

 Where 𝑃(𝑋 = 𝑥) is the same for all classes so the Bayes classifier is given as,  

Equation 3.5 

ℎ∗(𝑥) =  arg 𝑚𝑎𝑥𝑖 ∈{0,…,𝑚−1} 𝑃(𝑋 = 𝑥 |𝐶 = 𝑖) 𝑃(𝐶 = 𝑖) 

However, quantifying 𝑃(𝐗 = 𝐱 |𝐶 = 𝑖) becomes increasingly difficult with high 

dimensional data. So, we must use an approximate by assuming all atomic fingerprints 

are independents from the given atom type. Thus, the discriminant function becomes,  

Equation 3.6  
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𝑓𝑖
𝑁𝐵(𝑥) =  ∏ 𝑃(𝑋𝑗 = 𝑥𝑗|𝐶 = 𝑖)𝑃(𝐶 = 𝑖)

𝑛

𝑗=1

 

similar, to what we see in Equation 3.1.  

 

Specifically, in sci-kit learn, we used the GaussianNB() functionality which has been 

developed to extend this methodology to real-valued attributes [5-6].  In this 

implementation the likelihood of features is calculated as, 

Equation 3.7 

𝑃(𝑋𝑗 = 𝑥𝑗|𝐶 = 𝑖) =  
1

√2𝜋𝜎𝑖
2 

exp (−
(𝑥𝑗 − 𝜇𝑖)

2

2𝜎𝑖
2 ) 

To determine how well this method approximates the relationship between atomic 

environment and atom type, we calculated the accuracy score. We found that in some 

element groupings Naïve Bayes performed well, specifically in bromine, chlorine, 

fluorine and iodine. However, these were not trustworthy results for a few reasons. The 

first being that these particular groups have the lowest representation as shown in Section 

2.2.3. This low sample count caused overfitting. In addition, the low performance for the 

carbon, hydrogen, nitrogen and sulfur groupings indicated that this method has difficulty 

discerning atom types from one another.  
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Figure 3.1: Naïve Bayes results on training set. Naïve Bayes algorithm shows varied 

performance across the element groupings.  

 

These results were not promising and shows that the application of this algorithm for this 

task is not sufficient for determining the relationship between atomic environment and 

atom types for this training set.  

 

3.1.3 Bayes Regression Methodology and Results for Assignment of Partial Charges 

Bayes regression is very similar to Bayes classification at its foundation as both are based 

on the Bayes Theorem shown in Equation 3.2. Bayesian regression assumes both the 

parameter set, 𝛽, and samples, X, are from a Gaussian distribution.  

Equation 3.8 

𝐶~ 𝑁(𝛽𝑿, 𝜎2) 
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C is generated from the Gaussian distribution which is characterized by the mean and 

variance. 𝛽 is the regression coefficient matrix and the variance is calculated as the 

standard variation squared. The posterior probability is given by,  

Equation 3.9 

𝑃(𝛽|𝐶, 𝑋) =  
𝑃(𝐶|𝛽, 𝑋) 𝑃(𝛽, 𝑋)

∫ 𝑃(𝐶, 𝑋|𝛽𝑖) 𝑑𝛽𝑖

 

where 𝑃(𝐶|𝛽, 𝑋) is the likelihood of data, 𝑃(𝛽, 𝑋) is the prior probability of parameters 

and the denominator is the marginal probability. Figure 3.2 shows the results of this 

regression methodology as defined by the RMSE metric for model analysis. The average 

RMSE across all groupings is 0.05. This is not an acceptable RMSE when compared to 

the RMSE of 0.008 for the ParamChem atom parameterization software [8] from 

Vanommeslaeghe et. al.  

 

 

Figure 3.2: Bayesian regression results for the prediction of partial charges.  
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3.1.4 K-Nearest Neighbors Methodology and Results for Assignment of Atom Types 

and Partial Charges 

K-Nearest Neighbors (KNN) is a non-probabilistic classification procedure. The basis of 

this method is the assumption that observations that are closest to another would have the 

same classification or similar attributes. In this project we measured nearness using the 

Euclidean distance between samples in 𝐗 = (𝑋1, … , 𝑋𝑛) . This distance between atomic 

fingerprints 𝑋𝑖 and 𝑋𝑗 is computed as,  

Equation 3.10 

𝑑(𝑋𝑖, 𝑋𝑗) =  √(𝑋𝑖1
− 𝑋𝑗)2 + ⋯ + (𝑋𝑖𝑛

− 𝑋𝑛)2  

This model is dissimilar to others in that the training procedure is not based on 

determining the relationship between atomic environment and atom type/partial charge 

but consists of only storing the atomic fingerprints and labels. The algorithm then uses 

the distance formula to determine the closest neighbors to the query atom. In 

classification, the atom type is selected by plurality vote of its neighbors; meaning that 

the class assigned is the one which is most common among its neighbors. In regression, 

the partial charge is calculated as the average partial charge of its neighbors. Although 

this model is simple in nature, we found it to have good performance for our dataset.  

 

Figure 3.3(a) shows the accuracy scores for the KNN Classifier for atom type 

assignment. The average accuracy score in 99.6% which depicts very high performance 

in relating atomic environment to atom type. While Figure 3.3(b) depicts the regression 

models RMSE with an average RMSE of 0.0165 which is large improvement from the 

Bayes regression model.  
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(a)  (b)  

Figure 3.3: KNN training set results. (a) KNN model accuracy scores for all atom type 

prediction models. (b) KNN model RMSE for all partial charge prediction models. 

 

3.1.5 Random Forest Methodology and Results for Assignment of Atom Types and 

Partial Charges 

Decision trees are tree-like models which are flowchart-like in structure. A random forest 

is a combination of decision trees which depend on random vectors that are 

independently sampled. In classification, the ensemble of trees vote for the most popular 

class while in regression tasks that the average of the decisions is the output. For a given 

ensemble of tree-like classifiers, ℎ1(𝑋𝑖),…, ℎ𝐾(𝑋𝑖),where K is the number of trees in the 

forest. The training set is drawn at random from the distribution of the random vector X, 

C and the margin function is defined as  

Equation 3.11 

𝑚𝑔(𝐗, 𝐶) =  𝑎𝑣𝑘𝐼(ℎ𝑘(𝑿) = 𝐶) − 𝑚𝑎𝑥𝑗≠𝐶𝑎𝑣𝑘𝐼(ℎ𝑘(𝐗) = 𝑗) 

The margin, 𝑚𝑔(𝐗, 𝐶), measures the extent to which the average number for votes at 

(𝐗, 𝐶) for the correct class exceeds the average vote for any other class. 𝐼(∙) is the 

indicator function. The larger the margin the more confidence the ensemble has in the 

classification. Random Forests for regression are formed in a similar manner where the 
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output values are numerical rather than class labels. A random forest regressor is formed 

by taking the average of partial charge prediction over k trees of the forest.  

Equation 3.12 

𝐶 =  
1

𝐾
∑ ℎ𝑖(𝐗)

𝐾

𝑖=1

 

 

(a)     (b)  

Figure 3.4: Random Forest training set results. (a) Random Forest model accuracy scores 

for all atom type prediction models. (b) Random Forest model RMSE for all partial 

charge prediction models. 

 

The Random Forest models have similar performance to the KNN models with an 

average classification accuracy of 99.6% and an average partial charge regression RMSE 

of 0.018.  

 

Based on these findings, we decided to go forward with Random Forest as there are more 

tuning parameters for this algorithm and as such, we would have a greater space to 

traverse for model improvement. The optimization of the random forest models can be 

found in Section 2.3.5.  
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3.2 Algorithm Performance on Test Set 

The Random Forest-derived models were tested using 30% of the CGenFF AFps for each 

respective element grouping. Atom type assignment is the first step of parameterization. It 

is important to note that atom types vary with the force field. The following data is for the 

prediction of atom types specifically for the CHARMM General Force Field. These results 

are a first step in determining whether the ML-MATCH algorithm is effective in capturing 

such atomic characteristics. Using a Random Forest classification model, we generated 9 

models for atom type assignment. These models exclude iodine atom type assignment since 

only 1 such atom type exists in CGenFF. Figure 3.5 shows correlation matrices for each 

model based in the test set. For the classification of each atom type, we have an average of 

96% accuracy. Our lowest accuracy is in the H model. This was expected due to the nature 

of CGenFF because different H atom types are assigned to environments that are quite 

similar to each other. As a result, the AFps that extends to the second nearest neighbors do 

not span a large enough space to capture these differences. We note, however, that the 

charges and van der Waals radii, as well as intramolecular force constants are not largely 

varying within this atom type either. In creating these models, we had to balance the length 

of the AFps, as too much information may cause overfitting, with model accuracy.  

 

In each correlation matrix, we have drawn red horizontal and vertical lines which group 

similar atom type environments together. The allows us to depict that in areas where we 

see misclassification, that event in minimal in that they normally reside in that boxed area. 

In addition, if the misclassification occurs between similar atom types, we expect that the 

bonded parameters will also be similar based on the similarities in atomic environment. 
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Figure 3.5: Testing results for Random Forest classification models. Correlation matrices 

for each atom type assignment model in CGenFF based ML-MATCH. (Top: Br, Cl, C, F, 

N Bottom: O, H, P, S). 

 

The second step of parameterization is charge assignment. We have created 9 random 

forest regression models for the prediction of partial atomic charges (𝑒−), again excluding 

iodine atoms. The result for charge assignment is shown in Figure 7. Charges are calculated 

independently from atom types. For the CGenFF test set based models, the average Pearson 

R-value and average RMSE of charge assignment is 0.974 and 0.028e. respectively.  
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Figure 3.6: Testing results for Random Forest regression models. Graphs for each charge 

assignment model in CGenFF based ML-MATCH. (Top: Br, Cl, C, F, N Bottom: O, H, P, 

S). The solid black line is x=y while the two bordering dashed lines represent ±0.05𝑒−.  

  

3.3 Validation Test Set 

The Free Solvation Database [5] contains 642 drug-like molecules and fragments. It is 

described as a curated database of experimental and calculated experimental hydration 

free energies for small neutral molecules in water. The solvation of small molecules is of 

particular importance because macromolecule and ligand binding interactions typically 

involve a partial transfer of the ligand from solution to the binding site. The ability to 

accurately model the hydration and dehydration of small molecules suggests the level of 

precision that one may expect under ideal conditions in a binding free energy calculation. 

More thoroughly, one can not expect to find higher accuracy in binding free energy 

calculations compared to what one calculates for hydration free energies. Thus, we argue 

that this database is a good validation set for both parameterization and accuracy of force 

field as it provides a set of molecules that traverse a large chemical space, shown in Figure 
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6, and contains the experimental hydration free energies needed to test the force field 

parameters produced by ML-MATCH.  

 

3.3 ML-MATCH Models in Comparison to ParamChem Model 

As a method to determine the accuracy of the underlying Random Forest Algorithms in 

ML-MATCH, we compare our models to ParamChem [6], which is described in Section 

1.5.3. ParamChem is currently the gold standard for atom parameterization trained with the 

CHARMM General Force Field. For all FreeSolve molecules, we used both ML-MATCH 

and ParamChem to generate the atom types and partial charges for each molecule. Overall, 

we found an average RMSE of 0. 0494e for partial charge prediction between models and 

an accuracy score of 90.3% for the assignment of atom types compared with results from 

ParamChem. These results are very promising for ML-MATCH performance. In addition, 

within the FreeSolve paper, examples were given to show the large chemical space for 

which the database spans. Below are those specific examples and the calculated accuracy 

score and RMSE for model comparison. As shown in Table 3.1, we see varying correlation  

across molecules. It is also important to note the atom type classification model 

performance in ML-MATCH does not directly correlate with the partial charge regression 

model results.  
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(a) (b) (c)  

(c) (e) (f)  

Figure 3.7: Six FreeSolve molecules that depict the span of the FreeSolve chemical space. 

(a) 1,2,3,4,5-pentachloro-6-(2,3,4,5,6-pentachlorophenyl)benzene,  (b) 4-nitroaniline, (c) 

1,1,2,2,3,3,4,4-octafluorocyclobutane, (d) (2R,3R,4S,5S,6R)-6-

(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol, (e) decane and (f) 1,3,5-triazinane-2,4,6-

trione. Table attached contains the average RMSE and accuracy metrics comparing ML-

MATCH and ParamChem atom types and partial charges. 

 

  Chemical  

Average RMSE 

ML-MATCH vs 

ParamChem 

Average Accuracy 

ML-MATCH vs 

ParamChem 

(a) 

1,2,3,4,5-pentachloro-6-

(2,3,4,5,6-

pentachlorophenyl)benzene 0.203607561 0.4375 

(b) 4-nitroaniline 0.294438382 1 

(c) 

1,1,2,2,3,3,4,4-

octafluorocyclobutane 0.101294641 0.333333333 

(d) 

(2R,3R,4S,5S,6R)-6-

(hydroxymethyl)tetrahydropyra

n-2,3,4,5-tetrol 0.0368448 1 

(e) decane 0.000685056 1 

(f) 1,3,5-triazinane-2,4,6-trione 0.227667656 0.25 

 

Table 3.1: ML-MATCH vs ParamChem results for 6 FreeSolve molecules. Shows the 

average RMSE and accuracy metrics comparing ML-MATCH and ParamChem atom types 

and partial charges. 
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3.4 Free Energy of Hydration Calculations  

The results in Section 3.3 show that for the FreeSolve database, we find an RMSE of 

0.0494e for the assignment of partial charges and an accuracy of 90.3% for the prediction 

of atom types. Coupled with an average Pearson R-value of 0.974 and average RMSE 0.028 

across ML-MATCH models for the testing set taken from CGenFF for which ParamChem 

is trained, we expect to see similar results between ML-MATCH and ParamChem in 

simulation. To test this,  we extracted all benzene derivatives from the FreeSolve database 

as an effort to more efficiently identify those chemical moieties for which ML-MATCH 

may produce parameters which are insufficient for reproducing experimental data in 

simulation.  This was done due to ML-MATCH predicted atom types and partial charges 

are nearly identical to those produced by ParamChem for benzene. Thus, benzene 

derivatives give us a good common core substructure such that we can identify moieties to 

which it is bound that may lead to inaccurate simulation when using ML-MATCH or 

ParamChem for small molecule parameterization. We used exactly 60 molecules from the 

FreeSolve database. Relative hydration free energies were calculated via FACTS and 

GBMV2 implicit solvation models, whose results where then compared to experimental 

data reported in the database. The Mobley database has been used as a standard for 

benchmarking force fields and various hydration free energy prediction methods since 

many of the functional groups present in these molecules are relevant for drug design 

purposes and are representative of drug-like chemical space [9-11].  
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Figure 3.8: Depiction of the thermodynamic cycle for solvation free energy calculations.   

 

The relative free energies of hydration were calculated using two different parameterization 

schemes independently of one another: the novel ML-MATCH presented herein and 

ParamChem, both of which are based on CGenFF. For the FACTS simulations, the “lone 

pair” charges, associated with halogens in aromatic rings, which both ML-MATCH and 

ParamChem output in their topology files, were reincorporated to their respective halogens. 

This was done because the FACTS module in CHARMM does not yet support the inclusion 

of lone pairs.  

 

Molecular dynamics simulations were performed using the CHARMM molecular 

dynamics package, developmental version 45a2.[13], [14] All atoms were coupled to a 

Langevin heat bath and maintained at a temperature of 298K with a frictional coefficient 

of 10ps-1. Trajectories for each molecule over a 10.5 ns period using a 1.5 fs time step were 

generated for each molecule in vacuum, GBMV2, and FACTS environments, of which the 

first 1.5 ns were used as equilibration and therefore not used during the free energy 

calculations. The SHAKE algorithm was used to constrain hydrogen bond lengths.[18] 

Electrostatic and van der Waals interactions were switched off between 10Å and 12Å.  
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The GBMV2 implicit solvent simulations used Still’s geometric cross-term and spherical 

polar integration grid with 5 phi angles. The FACTS implicit solvent model used all default 

parameters, except for a nonpolar surface tension coefficient, γ=0.015 kcal/ (mol Å2). All 

other specifications for these implicit solvent models were as described in the paper by 

Knight & Brooks[12].  

 

The FastMBAR solver [13] was used to calculate hydration free energies as the molecule 

is transferred from a gas into an implicitly hydrated state. The solver input was a total of 

3000 energy difference values that were calculated for each molecule for each state 

(vacuum and implicit water medium). The relative hydration free energies were then 

centered about the experimental mean and therefore converted to free energy values, as 

specified in the paper by Wang, et al.[14] 

 

3.4.1 Overall Free Energy of Hydration Calculations Results  

For this particular dataset, the results summarized in Table 3.2 show that ML-MATCH 

generally achieves better agreement with experiment and significant improvement from 

ParamChem. For both implicit solvent models, ML-MATCH outperforms ParamChem 

regarding linearity (Pearson coefficient) and ranking (Spearman coefficient) of the relative 

hydration as compared to experiment. This is very surprising given that both 

parameterization schemes use the same underlying force field and that the correlation 

between ML-MATCH and ParamChem for the assignment of atom types and partial 

charges is very high, as evidenced by the Pearson and Spearman correlation coefficients 

comparing both sets of results to each other.  
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Where ParamChem and ML-MATCH differ the most with respect to each other is their 

mean unsigned difference (MUD) and root mean square difference (RMSD). Therefore, 

while agreement with experiment, as measured by MUE and RMSE, is slightly better for 

ParamChem in most cases (yet still within 0.5kcal/mol from each other), ML-MATCH can 

predict better free energies for a molecule in comparison to another. This is especially 

useful in a prospective binding affinity study, for example, where limited experimental data 

is available for only a few hits (so agreement with experiment takes second priority) and 

the goal is to increase the potency relative to already identified hits.  

 

The fact that two different implicit solvation models yielded comparable overall statistics 

for ML-MATCH compared to ParamChem reinforces the claim that ML-MATCH is well-

suited as a parameterization engine for CGenFF and can make comparable assignment 

decisions that are not solely based on legacy rules and conditions. Thus, we find that we 

have generated a machine learning based framework which enables the learning of 

underlying force field rules and assumptions for arbitrary but consistently parameterized 

molecules. The next two sections offer a more thoroughly explanation of these findings.  
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GBMV FACTS 

 
MLM/ 

Exp. 

ParamChem 

/Exp. 

MLM 

/ParamChe

m 

MLM/Exp

. 

ParamChem 

/Exp. 

MLM 

/ParamChem 

Pearson 0.7223 0.4635 0.7794 0.7409 0.5979 0.8892 

MUE 1.1352 1.1140 0.8879 2.2093 2.2155 1.0218 

Spearman 0.7296 0.5881 0.8417 0.7454 0.6474 0.9306 

RMSD 1.0655 0.9883 1.5864 2.7363 2.9544 1.7014 

 

Table 3.2: Free energy of hydration results for GBMV2 and FACTS models.  

 

3.4.2 GBMV2 Free Energy of Hydration Results  

When comparing the experimental errors between both parameterization schemes, we find 

that ML-MATCH and ParamChem produce comparable results. Particularly, we find that 

ML-MATCH shows greatest improvement for trifluoromethyl containing molecules when 

compared to ParamChem, by greater than 4 kcal/mol. ML-MATCH also produced a 

significantly greater Pearson R-value of 0.72 compared to ParamChem’s 0.46 when 

compared to experimental free energy of hydration values. While ML-MATCH does not 

improve MUE or RMSE statistics for GBMV2 relative hydration free energies, it does 

significantly improve the ability to rank these compounds closer to the experimental 

ranking, as evidenced by the increase in the Spearman coefficient value for these 

compounds from 0.59 to 0.73. 



 

 81 

 

Figure 3.9: GBMV2 model free energy of hydration calculations result. Red circles are 

ML-MATCH vs Experimental free energy of hydration. Blue triangles are ParamChem vs 

Experimental free energy of hydration. Highlighted are the trifluoromethyl containing 

molecules for which ML-MATCH performs well.  

 

As shown in Figure 3.9, one could consider the trifluoromethyl containing molecules to be 

outliers for which ML-MATCH performs considerably better over ParamChem. To dig 

deeper into these results, we extracted those molecules and recalculated the comparison 

metrics. Once the trifluoromethyl containing molecules are removed we see that ML-

MATCH has much better agreement with ParamChem with ParamChem slightly 

outperforming ML-MATCH on average for these 57 molecules.  This yielded a much more 

expected outcome for this comparison exercise. In the metrics of linearity and ranking, we 

see very comparable results while ParamChem outperforms ML-MATCH in RMSE.  



 

 82 

 

  GBMV 

  MLM/Exp. 

ParamChem/ 

Exp. 

MLM/ 

ParamChem 

Pearson 0.7759 0.8285 0.9260 

MUE 1.0066 0.7442 0.5746 

Spearman 0.8032 0.8346 0.8934 

RMSD 1.4671 1.2081 0.8491 

 

Table 3.3: Free energy of hydration results for GBMV2 with removal of trifluoromethyl 

containing molecules. 

 

 There are 5 out of 60 molecules for which ML-MATCH performs worst than ParamChem 

by greater than 1 kcal/mol compared to experiment. Structures are shown in Figure 3.10. 

To identify the source of this disparity with experiment the Pearson R-value and RMSE for 

the charges were calculated. We see that for molecules (a) and (c) we have very good 

correlation between ML-MATCH and ParamChem produced charges as shown in Figure 

3.10. Thus, the difference in computed solvation free energies may be attributed to the 

dissimilarity in the bonded parameters defined by each parameterization scheme. In Figure 

3.9, we see that the predicted atom types for molecules (a) and (c) have a one-to-one 

correlation between ML-MATCH and ParamChem. In Appendix II Figure 3, we see that 

the greatest deviation in parameters lie in the dihedrals of molecule (a), although not 

shown, we see the same for molecules (c). In Table 3.4 we see that while this deviation 

exists, the difference in the computed solvation free energy between the parametrization 

schemes lies around 1.2-1.3 kcal/mol which is very close to the acceptable 1 kcal/mol 

difference. For molecules (b), (d) and (e), all which contain a benzene bound to many 

chlorine atoms, we see very poor partial charge correlation as shown in Figure 3.11. This 
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may be due to the charge renormalization scheme the ML-MATCH uses to incorporate 

lone pairs. This is an area of ML-MATCH that needs further optimization.  

 

  Pearson R Value RMSE Abs. Diff of ▲▲G (kcal/mol) 

(a) trimethoxymethylbenzene 0.9818 0.0353 1.3782 

(b) 1,2,3,4,5,6-

hexachlorobenzene 0.5174 0.1451 2.1940 

(c) diethoxymethoxybenzene 0.9698 0.0461 1.2083 

(d) 1,2,3,4-tetrachloro-5-

(2,3,4,6-

tetrachlorophenyl)benzene 0.0271 0.1890 1.1606 

(e) 1,2,4,5-tetrachloro-3-(3,4-

dichlorophenyl)benzene 0.3687 0.1459 1.2247 

 

Table 3.4: GBMV2 model results for ML-MATCH and ParamChem. ML-MATCH vs 

ParamChem charge comparison for those molecules which have a difference of greater 

than 1 kcal/mol and has a greater deviation in comparison to experiment in ML-MATCH 

than ParamChem with GBMV2 model.   
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Figure 3.10: Atom types correlation matrix for FreeSolve molecules with differentially 

calculated FEHs by GBMV2. Molecules which have a difference of greater then 1 kcal/mol 

and has a greater deviation in comparison to experiment in ML-MATCH than ParamChem 

given by the GBMV2 model.  The accuracy between the schemes for each molecule is (a) 

1.00, (b) 0.666, (c)1.00, (d)0.40, (e)0.50.  
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Figure 3.11: Partial charge comparison for FreeSolve molecules with differentially 

calculated FEHs by GBMV2. Partial charge comparison for those molecules which have a 

difference of greater then 1 kcal/mol and has a greater deviation in comparison to 

experiment in ML-MATCH than ParamChem as defined by the GBMV model.   

 

For molecules (b), (d) and (e) we see also see poor correlation in atom types between both 

schemes similarly shown for partial charges. We reason for the deviation between 

calculated solvation free energies is these compounding factors. It is important to note that 

within the CHARMM General Force Field these particular moieties are not well 
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represented. Thus, slightly poorer performance for such moieties is expected when 

comparing ML-MATCH to ParamChem, which is explicitly programed to reproduce 

CGenFF parameters. However, we still see deviations very close to 1 kcal/mol for 

molecules (d) and (e). We see much further deviation for molecules (b).  

 

3.4.2 FACTS Free Energy of Hydration Calculations Results  

Using the FACTS model, we see similar results. Just as with GBMV, with the FACTS 

model we see better performance on trifluoromethyl containing molecules when compared 

to experiment. We also see significant improvement (greater than 1 kcal/mol) for ML-

MATCH over ParamChem for multiple molecules with heavily chlorinated benzenes and 

benzyl bromide. Unlike with the GBMV2 results, ML-MATCH does improve results from 

those of ParamChem with respect to experiment by more than 1 kcal/mol for 7 compounds 

– those containing trifluoromethyl groups, benzyl bromide and two heavily chlorinated 

biphenyl derivatives which were predicted with worse accuracy for the GBMV2 

calculations using ML-MATCH. This suggests that there are some intrinsic differences 

between the solvation models. However, it may also mean that incorporating the “lone 

pair” (a restrained point charge to halogens in aromatic rings) charge into their respective 

halogens may be introducing a form of systematic error for heavily chlorinated molecules 

that becomes more evident with these compounds, since GBMV2 simulations did not 

involve this charge redistribution. As shown in Table 3.2, the superior ranking ability of 

ML-MATCH over ParamChem that was observed for the GBMV2 results are retained for 

the FACTS calculations, where significant improvement in Spearman coefficients was 
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observed from 0.60 for ParamChem to 0.78 for ML-MATCH. Increased linearity compared 

to experiment was also observed, from 0.54 for ParamChem to 0.75 for ML-MATCH.  

 

 

Figure 3.12: FACTS model calculations results. Red circles are ML-MATCH vs 

Experimental free energy of hydration. Blue triangles are ParamChem vs Experimental 

free energy of hydration. 

 

Just as with the GBMV2 module results, we performed the exercise of extracting the 

trifluoromethyl containing molecules. These results are shown in Table 3.5. We again see 

that the extraction of these molecules causes greater correlation between ML-MATCH 

results and ParamChem. However, for the FACTS model we see that ML-MATCH 

outperforms ParamChem when compared to experiment for these 57 molecules.  
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FACTS 

  MLM/Exp. ParamChem/Exp. MLM/ParamChem 

Pearson 0.7814 0.7575 0.9331 

MUE 2.2211 1.9817 0.8379 

Spearman 0.7951 0.8148 0.9673 

RMSD 2.7743 2.6970 1.3403 

Table 3.5: Free energy of hydration results for FACTS with removal of trifluoromethyl 

containing molecules.  

 

In addition to molecules (b) and (d) from the GBMV2 calculations, we have identified an 

additional 10 molecules whose calculated free energy of hydration negatively deviates 

from experimental values and whose error is 1 kcal/mol different than ParamChems’s when 

compared to experiment. We see that although ML-MATCH performs better than 

ParamChem on average for these molecules when using the FACTS model, for those that 

it does poorly predict the deviation is larger than that of GBMV. We see the highest 

deviation in molecule (j) of 4.4256 kcal/mol and a low of 1.2662 kcal/mol for molecule (i).  
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Pearson R 

Value RMSE 

Abs. Diff of ▲▲G 

(kcal/mol) 

(f) 1,2,3,4-tetrachloro-5-

(3,4,5-

trichlorophenyl)benzene 0.9693 0.0340 2.0212 

(g) 1,2,3-

trichlorobenzene 0.9727 0.0319 1.8702 

(h)1,2,3,4-

tetrachlorobenzene 0.9729 0.0332 1.4769 

(i) fluorobenzene 0.9428 0.0494 1.2663 

(j) N3,N3-diethyl-2,4-

dinitro-6-

(trifluoromethyl)benzene-

1,3-diamine 0.8929 0.1416 4.4257 

(k) 1,2,3,4-tetrachloro-5-

(3,4-

dichlorophenyl)benzene 0.9703 0.0326 1.7439 

(l) 1,3-dichloro-2-(2,6-

dichlorophenyl)benzene 0.9317 0.0457 1.7535 

(m) 1,2,3-trichloro-5-

(2,5-

dichlorophenyl)benzene 0.9642 0.0344 2.3731 

(n) 1,2,3,4-tetrachloro-5-

phenyl-benzene 0.9756 0.0283 1.4138 

(o) bromomethylbenzene 0.7219 0.0966 1.9995 

 

 Table 3.6: FACTS model results ML-MATCH and ParamChem. ML-MATCH vs 

ParamChem charge comparison for those molecules which have a difference of greater 

then 1 kcal/mol and has a greater deviation in comparison to experiment in ML-MATCH 

than ParamChem with FACTS model.   
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Figure 3.13: Partial charge comparison for FreeSolve molecules with differentially 

calculated FEHs by FACTS. Molecules which have a difference of greater than 1 kcal/mol 

and has a greater deviation in comparison to experiment in ML-MATCH than ParamChem 

as defined by the FACTS model.   

 

Figure 3.14 shows that ML-MATCH and ParamChem offer similar decisions for atom 

types within this subset of molecules with the highest accuracy being in molecule (j) at 
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0.9714 and lowest being in molecules (m) at 0.7407. Just as with GBMV, this agreement 

in parameterization of atom types and partial charges between ML-MATCH and 

ParamChem highlights that the potential deviation stems from the bonded parameters. 

Further investigation is needed to thoroughly understand the impact that the dissimilar 

bonded parameters have in simulation. 
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Figure 3.14: Atom types correlation matrices for FreeSolve molecules with differentially 

calculated FEHs by GBMV2. Molecules which have a difference of greater than 1 kcal/mol 

and has a greater deviation in comparison to experiment in ML-MATCH than ParamChem 

given by the FACTS model.  The accuracy between the schemes for each molecule is (f) 

0.8276, (g) 0.8667,(h) 0.8750, (i) 0.8333, (j) 0.9714, (k) 0.8214, (l) 0.7696, (m) 0.7407, (n) 

0.8864 and (o) 0.8750.  

 

3.5 Summary 

In this Chapter, we provided the outcomes of the ML-MATCH framework. We offered the 

reasoning behind the selected underlying algorithm, Random Forest and implemented ML-

MATCH parameterized molecules in simulation. We have shown through free energy of 

hydration simulations that ML-MATCH is both useful and accurate in simulation. This 

exercise highlighted areas in which ML-MATCH produces comparable or even better 

results when compared to ParamChem as well as chemical entities for which ML-MATCH 

parameters perform poorer in simulation when compared to experiment for this dataset.  

Overall statistics of solvation free energy predictions presented herein demonstrate that 

ML-MATCH is able to provide parameters for the studied molecules that yield relative free 

energy results that rank similarly and correlate linearly to experiment – all at the expense 

of little to no loss of accuracy when compared to other parameterization schemes. This is 

particularly significant in that ML-MATCH is not explicitly programmed to produce the 

parameters of a specific force field. With the implementation of a general representation of 

the local atomic environment, ML-MATCH is able to well capture the relationship between 

small molecule force field parameters and an atom’s nearby surroundings. In Chapter 4, 



 

 93 

we provide insight into the current efforts towards the optimization and implementation of 

ML-MATCH as well as future directions.  
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Chapter 4 

 

Implications and Future Directions 

 

 

The overarching motivation for the work presented in this dissertation is Feynman’s 

finding that if one has a sufficient number of examples of local atomic environment 

atomic forces, one can predict the force acting upon an atom based on the configuration 

of its neighbors. This body of work which builds the Machine Learning based Atom 

Typer for CHARMM (ML-MATCH), extrapolates this finding for the purpose of small 

molecule parametrization by looking at each molecule from an atom-centric viewpoint. 

From this work emerged the understanding of several themes for the field of small 

molecule parameterization. This chapter explains the implications of our findings and the 

future direction that we can take to further optimize and extrapolate this framework.  

 

4.1 Well-defined atomic descriptors enable accurate force field parameter 

predictions  

As one of the first steps of this work, we generated a new atomic fingerprint. The 

reasoning for this is that we wanted to more readily determine the characteristics that 

would be pertinent in distinguishing local atomic environments. With the use of 

OpenBabel, we were able to create a fingerprint of length 340 that encompassed 

environmental characteristics for each atom out to its second nearest covalently bonded 

neighbor. With the use of Random Forest algorithms implemented using sci-kit learn, we 



 

 96 

were able to show that these newly developed fingerprints well depicted the atomic local 

environments and provide the necessary information to relate environment to atom type. 

In addition, we found that these descriptors also allow for accurate predictions of partial 

charges. Although we did not extend our work to using existing atomic fingerprints, we 

found our average regression RMSE of 0.028e to be very similar to published findings 

with an RMSE of 0.030e [1] which also used Random Forest for the prediction of partial 

charges. This suggests that this newly developed fingerprint performs as well for this 

particular task when compared to the widely use atomic fingerprint produced by the 

GetHashedAtomPairFingerprintAsBitVec() RDKit function. The next step in the further 

development of this atomic environment descriptor is comparison with other existing 

fingerprints in RDKit [2] and OpenBabel to further optimize and validate its usage. 

  

Additionally, we have found that ML-MATCH not only provided good parameters when 

trained using CGenFF but we have also seen that ML-MATCH can be well trained using 

other force fields. We have trained ML-MATCH to predict AM1-BCC partial charges as 

an effort to depict this paradigm’s ability to be extrapolated to additional force fields. 

AM1-BCC charges were generated using ANTECHAMBER for all molecules contained 

in the CHARMM General Force Field. The machine learning algorithms were developed 

just as in Chapter 2. The preliminary findings are in the table below.  
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Element Grouping R^2 RMSE MAE 

Br 0.629 3.00E-04 1.42E-02 

C 0.974 1.00E-03 1.12E-02 

Cl 0.861 3.00E-04 1.23E-02 

F 0.989 2.59E-05 3.72E-03 

H 0.957 3.78E-04 1.06E-02 

I -0.198 2.05E-04 1.44E-02 

N 0.95 1.95E-04 7.17E-03 

O 0.34 1.50E-02 4.12E-02 

P 0.243 4.76E-01 3.23E-01 

S 0.999 2.36E-04 9.15E-03 

 

Table 4.1: Results for ML-MATCH trained on AM1-BCC. ML-MATCH partial charge 

regression models results trained using AM1-BCC charges defined by 

ANTECHAMBER.  

 

We found the AM1-BCC trained Random Forest regression models perform very well 

overall with some element groupings [O,P,Br] needing further improvement. The iodine 

regression model performed poorly which is expected has there only exists one iodine 

sample in the training set. Further improvement of these models will come with 

identifying those atomic environments for which the model does not perform well and 

determining the reasoning. Optimization may come in the form of further model hyper-

parameterization procedures or the addition of molecules which contain atomic 

environments that are not well represented in the training set. These results show that the 
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newly developed atomic fingerprints can recapitulate varied charges which depicts the 

generalizability of the ML-MATCH framework. 

 

4.2 The application of machine learning is well suited to force field development  

The body of work adds to the existing applications of machine learning to force field 

development. Small molecule parameterization is increasingly complex as time goes on 

and it is important for us to be able to use the knowledge that we have gained in the past 

through QM calculations and other parameterization engines to inform how we handle 

this issue in the future. ML-MATCH is a step in the right direction as it takes advantage 

of a well-curated group of molecules and well-vetted parameterization to generate force 

field parameters for novel chemical moieties. We see the promising results of ML-

MATCH in Chapter 3, and we hope that subsequent optimization will further improve the 

accuracy and precision of this methodology.  

 

4.3 Further and more complex simulations are necessary for optimizing ML-

MATCH 

As an effort to determine how far we can push the parameters defined by ML-MATCH 

we ran Multisite – 𝜆 Dynamics (MSLD) [3] calculations to compute the binding free 

energy of a β–site amyloid precursor protein cleaving enzyme β-Secretase (BACE) and 

potential inhibitors. MSLD is thoroughly explained in Reference 3. It has been found that 

the accumulation of amyloid β (Aβ) oligomers in the brain is a pathological event of 

Alzheimer’s disease [4]. The inhibition of BACE blocks the first step of Aβ formation 

subsequently reducing build up. Figure 4.1 shows the structure of BACE while Figure 
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4.1(b) shows the common inhibitor substructure and the substituent which is placed at 

each site.   

 

Figure 4.1: Crystal structure of β-Secretase PDB ID: 3SKF. [5] 

 

(a) (b)  

Figure 4.2: Collection of BACE inhibitors. (a) Depicts the common core substructure of 

BACE inhibitors which is a triazole moiety bound to a six-member aromatic ring. (b) All 

substituents which make up the potential inhibitors of BACE when bound to Site 1 and 2 

on the common core substructure of the inhibitor.  
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To test ML-MATCH’s accuracy in simulation we parametrized ten inhibitors using both 

ML-MATCH and ParamChem. These simulations specifically investigate the comparison 

of the charging schemes between models. MSLD was run using ParamChem and the 

charges were perturbed in simulation and transitioned to ML-MATCH to compare the 

goodness binding free energy approximations between models. This test was quite a 

presumptuous secondary test for ML-MATCH. The running of MSLD is quite complex 

and involves charge perturbations which may affect simulation performance and 

convergence.  We first compare the predicted atom types and partial charges given by 

ML-MATCH and ParamChem. Figure 4.3 shows the correlation matrices for each 

molecule where ML-MATCH predicted molecules are on the x-axis and ParamChem on 

the y-axis. We found an average accuracy score of 79.9% between ML-MATCH and 

ParamChem predicted atom types. We find that for each molecule, the approximately 

20% deviation comes from the atom types within the triazole ring. Which is to be 

expected as this particular moiety is not well represented in the CHARMM General Force 

Field.  
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Figure 4.3: ML-MATCH vs ParamChem correlation matrices for atom type assignment. 

Correlation matrices for the assignment of atom type for 10 tested BACE inhibitors. 

Large deviations in atom types come from the unique triazole moiety within common 

core substructure of the molecule.  

 

In addition, we compared the regression algorithms for the assignment of partial charges 

between models. Figure 4.4 shows relatively decent correlations constants with an 

average Pearson R-value of about 0.695. Again, we found that the deviation in partial 

charges between models stems of the triazole moiety.  

 

Figure 4.4: ML-MATCH vs ParamChem scatter plots for partial charge assignment. 

Scatter plots comparing partial charges assignments for 10 tested BACE inhibitors. Large 

deviations in atom types come from the unique triazole moiety within common core 

substructure of the molecule.  
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It was unsurprising to see varying performances across the molecules. Table 4.2 shows 

the breakdown for each substituent at each site and the corresponding experimental and 

calculated binding free energies. We found that ML-MATCH performed better than 

ParamChem for two molecules, very similarly for three molecules and poorer than 

ParamChem for 5 out of ten molecules. As a first in-depth test of this algorithm, these 

findings are promising. We must note that due to the rules-based nature of ParamChem as 

described in Chapter 1, generally when a common core substructure is within a group of 

chemical moieties, the charges of atom within that substructure will be the same across 

that subset of molecules. We see that with this group of molecules.  As a result, the 

scheme is well suited for MSLD. However, the same cannot be said for ML-MATCH. 

Since the parameterization scheme of ML-MATCH is more general in nature and is 

based solely on an atom’s local environment and not rules, we generally see slight charge 

deviations in the common substructure which then leads to increased charge 

renormalization for this method. This process may skew results. Further investigation is 

needed to determine this.  

 

Ligand Site 1 Site 2 

Water 

dG 

Protein 

dG  ddG 

ParamChem 

UE 

ML-

MATCH 

UE 

UE 

Diff  

13f 1 1 6.866 6.501 -0.218 1.365 2.931 1.566 

13d 2 1 6.601 7.58 0.526 1.807 0.985 -0.822 

4c 3 2 18.275 18.12 1.266 1.192 1.274 0.082 

13b 4 1 27.574 28.794 0.855 0.04 0.534 0.494 

4l 3 3 30.029 30.888 0.93 0.593 0.175 -0.418 

13m 5 1 145.001 148.244 3.9509 0.569 2.033 1.464 

4k 3 4 17.488 18.021 1.168 1.569 1.749 0.18 

13n 6 1 -54.212 -53.613 2.695 0.924 2.271 1.347 

13o 7 1 27.225 31.245 3.325 1.369 3.269 1.9 

13a 8 1 64.365 64.4814 -0.94 0.043 2.245 2.202 
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Table 4.2: MSLD binding free energy results for BACE inhibitors. Binding free energy 

results for charge perturbation simulation from ParamChem charges to ML-MATCH 

defined charges for 10 potential inhibitors of BACE.  

 

4.4 Concluding Remarks 

Machine learning based Atom Type for CHARMM is an atom parameterization engine 

that surpasses current atom parameterization schemes in its unique ability to understand 

and traverse the complex physical principles of existing small molecule force fields 

without having to be explicitly programed to do so. ML-MATCH takes advantage of the 

power of machine learning to quantify the non-linear relationship between local atomic 

environment at force field parameters. We have found that with enough atomic 

environment to force field parameter examples, we can accurately and efficiently 

parameterize novel chemical entities.  In this dissertation, we show that the ML-MATCH 

framework can be well applied to the CHARMM general force field and subsequently 

applied to various other small molecules force fields.  

 

The work performed during this dissertation highlights the power of machine learning 

and its vast applications. From applying techniques normally used for text processing for 

the generation of atomic fingerprints to the generation of a brand-new atom 

parametrization paradigm, this dissertation provides a unique perspective for the 

application of machine learning to the prediction of small molecule force field 

parameters. We demonstrate the ML-MATCH is a paradigm that could be applied to a 

number of organic force fields and could eventually be developed to give the user their 
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choice of force field. It is our hope that ML-MATCH enables the advancement of 

molecular mechanics-based drug discovery through the use of machine learning. 
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Appendix II 

 

Appendix II Figure 1: ML-MATCH output for the simple benzaldehyde for which exact 

matches are found.  
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Appendix II Figure 2: ML-MATCH output for [(1S)-1-methylpropyl]benzene for which 

there are missing angles and dihedrals as defined by the predicted atom types.  
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Appendix II Figure 3 (a): Molecule (a) trimethoxymethylbenzene parameterization by 

ML-MATCH 
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Appendix II Figure 3 (b): Molecule (a) trimethoxymethylbenzene parameterization by 

ParamChem. 

 

 

 


