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ABSTRACT

Formulations containing rheology modifying polymers and nanometer sized colloids have wide-

spread use in pharmaceuticals, personal care products, and waterborne coatings. When combined

in solution, hydrophobic endcaps of the polymers temporarily adsorb to the colloids and act as

bridges, forming a dynamic network with characteristic timescales spanning many orders of mag-

nitude. It is computationally infeasible to capture the full range of relaxation times while main-

taining atomistic resolution, but the coarse-grained hybrid population balance-Brownian dynamics

model (Pop-BD) has been shown to capture qualitative behavior consistent with more fine-grained

models[10, 11]. In this work, we detail efforts to improve Pop-BD to be more accurate, simu-

late experimentally relevant system sizes, and capture long timescale behavior. In the chapter 2,

we quantify the inter-colloidal repulsions induced by adsorbed polymers using a combination of

Brownian dynamics simulations and self-consistent field theory. With predictions of particle inter-

actions that account for polymer defects and non-uniform surface coverages, we can predict phase

behavior of these mixtures and inform the inter-colloidal potentials used in Pop-BD. In chapter

3, we use Brownian dynamics simulations to quantify bridge-to-loop and loop-to-bridge transi-

tion rates that are crucial to capturing dynamic behavior in Pop-BD. We show that the ratio of the

fraction of polymers in the bridge configuration to the fraction of those in the loop configuration

is equal to the ratio of the bridge-to-loop time to loop-to-bridge time, so that by using the equi-

librium bridge and loop configuration information from the self-consistent field theory approach

in chapter 2, we can easily compute the slower loop-to-bridge time from the bridge-to-loop time.

In studying bridge-to-loop transition times, we observe two distinct regimes, one where the poly-

mer relaxation time dominates for weak hydrophobes and long chains, and another, for strong

hydrophobes and short chains, where the hydrophobe desorption time dominates and transition
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time scales exponentially with the hydrophobic strength. The complexities seen in the scaling

of the bridge-to-loop times indicate that Brownian dynamics simulations are currently necessary

for experimentally-relevant parameters, and so we present bridge-to-loop and the corresponding

loop-to-bridge transition times for the systems of interest. Chapter 4 contains a thorough investi-

gation of existing theories for modeling the escape of a particle from an adsorptive surface along

with a general equation for predicting this escape time across all damping regimes. The Brownian

(overdamped) escape times from this study are additionally used to understand the bridge-to-loop

transition in Chapter 3. In Chapter 5, we drastically improve the computational efficiency of Pop-

BD by integrating it into HOOMD-blue, adopting on-the-fly correlator, and introducing dynamic

bonding functionality. We also incorporate the findings from the smaller-scale models in chapters

2-4 into the Pop-BD model so that it may capture the complexities of polymer-colloid interactions

more accurately. In doing so, we have made significant progress toward developing the first multi-

scale model to understand and predict the behavior of these formulations with the ultimate goal of

aiding the formulation development process for waterborne coatings.
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CHAPTER 1

Introduction

1.1 Introduction to Waterborne Coatings

Waterborne coatings offer a cost-effective and environmentally friendly alternative to more tradi-

tional solvent-based coatings, which rely on volatile organic compounds (VOCs) [12]. However,

their rheological behavior is significantly different from that of the more established VOC-based

coatings and can be challenging to formulate. Qualities such as poor levelling, short open time, and

strong shear-thinning behavior all contribute to the difficulty of formulating a waterborne coating

with a precise viscosity profile [13]. Computational models can aid this formulation process by

providing insight into and predictions of waterborne coatings’ rheological behavior.

The primary components of waterborne coatings are water, colloidal particles (often latex),

pigments, rheology modifying polymers, and surfactants, as shown in Fig.1.1 and Table 1.1.

Rheology-modifying polymers are added to colloidal suspensions in water to control viscosity

at relatively low colloidal volume fractions [9]. Common rheology-modifying polymers, such hy-

Component Example Concentration Size
colloidal particles Latex 5-35% (vf) 100-300 nm diameter
rheology-modifying polymers HEUR 0.02-5% (w/w) 30-65 kg/mol
pigments TiO2 7% (vf) 300-10,000 nm diameter
surfactants SDS 0.1-1% (w/w) 288 g/mol

Table 1.1: Typical composition of a latex paint formulation [9]. A common surfactant, sodium
dodecyl sulfate, is abbreviated as SDS.

1



drophobically modified ethylene oxide urethanes (HEUR), are telechelic polymers that consist of

hydrophilic poly(ethylene oxide) (PEO) backbones with hydrophobic regions, or “stickers”. The

hydrophobic groups typically end-cap the PEO backbone, making a telechelic polymer, but can

also be incorporated along the backbone. Solutions of only rheology modifying polymers and wa-

ter been studied extensively and have complex rheological behavior. Below their critical micelle

concentration (CMC), HEUR solutions have very low viscosities. At moderate concentrations just

above the CMC, the HEURs self-assemble into flower-like micelles with hydrophobic cores and

latex particles (50-150 nm radius)
poly(methyl methacrylate)-r-poly(butyl acrylate)  

pigments 
TiO2

surfactants
SDS: sodium dodecyl sulfate  

rheology modifiers (Mw=30-65 kg/mol)
HEUR: hydrophobically modified ethoxylated urethanes

water

poly(methyl methacrylate)-r-poly(butyl acrylate)  hydrophobically modified ethoxylated 
urethanes

R=C12, C16, …

A)

B) C)

PMMA

hydrophilic

hydrophobic

Figure 1.1: A) Approximate composition of a waterborne coating formulation, precise values given
in Table 1.1. B) Colloidal latex particles and chemical structure of a common latex poly(methyl
methacrylate)-r-poly(butyl acrylate). C) Chemical structure of hydrophobically-modified ethoxy-
lated urethanes where hydrophilic region is highlighted in blue and hydrophobic end cpas are
highlighted in yellow.
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hydrophilic (PEO) coronas [14]. At higher concentrations, bridges begin to form between adjacent

micelles, where the end cap from one HEUR is in the center of one micelle, and its second end cap

is in the center of the adjacent micelle [15]. When concentrations are high enough to have many

bridges, it is possible for a percolative or gelled network to form.

Because the hydrophobic interactions between the stickers are relatively weak (and of the same

order of magnitude as the thermal vibrations in the system), the bridges between micelles can

continually break and reform, leading to interesting rheological behavior. For example, network

solutions of HEURS exhibit a non-monotonic viscosity vs. shear stress profile. At moderate shear

stress, the bridges between the micelles are stretched and these spring stretching forces cause

shear-thickening behavior. When shear stress is sufficiently high, the bridges then break and the

formulation shows shear thinning behavior. Tanaka and Edwards determined that the relaxation of

a transient network of telechelic polymers is dependent on the escape time of a sticker end from

a hydrophobic micelle core. They defined this relationship as τ = τ0 exp[∆G/kBT ], where ∆G

is the free energy cost of the sticker leaving the micelle and τ0 ∼ 1 − 10 ns [16]. Tam et al.

expanded on this model in their experimental studies and developed a structural model to explain

the Maxwellian behavior at low shear stress, shear-thickening at moderate shear stress, and shear-

thinning at high shear stresses.

Although there are extensive theoretical and experimental studies of transient polymer net-

works, the addition of colloidal particles to an aqueous solution of telechelic polymers introduces

further rheological complexities. At very dilute concentrations of colloids, there is a decrease in

viscosity due to the hydrophobic stickers adsorbing to colloids and interrupting the network. At

sufficiently high concentrations, the ”gallery spacing”, or gap, between colloids is small enough

that polymer bridges between colloids form, resulting in a net increase in viscosity [6]. Beshah

et al. demonstrated through diffusion-weighted pulsed field gradient NMR that essentially all hy-

drophobes are absorbed to colloid surfaces at typical formulation concentrations. These results

established the currently accepted model of loops with sticker ends adsorbed to the colloid sur-

faces, with and bridges forming when a the sticker ends adsorb to neighboring colloids [17]. This
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A) B)

Figure 1.2: A) Diagram showing self-assembly of HEUR flower-like networks formation for in-
creasing concentration in water, where “CMC” refers to the critical micelle concentration, adapted
from Tam et. al [1]. B) Diagram showing HEUR network response for increasing shear stress and
the resulting non-monotonic viscosity, adapted from Yekta et. al [2].

is in contrast to the prior model that treated the composition as primarily flower-like micelles with

some colloids acting as nodes [18]. At concentrations where a viscosity increase is observed, the

viscosity of these polymer-colloid mixtures is often at least an order of magnitude higher than the

viscosity of either of the constituents alone [13]. In addition to this synergistic viscosity-building,

polymer-colloid mixtures exhibit multiple relaxation times, in contrast to the single relaxation

time typically seen in pure HEUR solutions. Experimental data alone cannot explain the molecu-

lar arrangements responsible for this complex rheology, but simulations offer a method to connect

analytical theory and experimental results in an effort to explain and predict the phase behavior,

structure, and dynamics of these complex polymer-colloid interactions in waterborne coatings.

1.2 Overview of Models of Waterborne Coatings at Multiple

Scales

The work in this thesis builds on many years of simulations aimed at modeling waterborne coatings

by understanding the small-scale interactions between components. Yuan and Larson presented a
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coarse-grained model based on atomistic simulations of HEUR polymers that predicted escape

times of hydrohobes from the HEUR micelle core that are in agreement with experimental data

[19]. At the same time, Wang and Larson took a similar approach, but to parameterize an implicit-

solvent model of PEO from explicit-solvent and atomistic models. They used this implicit-solvent

PEO model to simulate hydrophobe end-capped PEO molecules on the order of 100 monomomers

in length and showed good agreement between their predicted phase separation concentrations and

experimental data [20].

Ginzburg and coworkers expanded on this coarse-graining to model the adsopriton of HEURs

on latex surfaces, additionally incorporating a self-consistent field theory method to access a wider

parameter space of interest to expermentalists. They were able to show that structures of the

adsorbed HEUR layers include admicelles and suggest that micelles in solution may form nodes

that allow for two HEUR polymers to join and span colloidal particles as a two-component bridge

[21]. In 2018, Rezvantalab and Larson used Brownian dynamics simulations along with forward

flux sampling to model the multimode transition of a polymer chain from the loop configuration to

bridge configuration. They also show the feasibility of a high, 20-to-1, degree of coarse-graining

for modeling polymer chains without excluded volume [11]. The two models that immediately

pre-date this work and simulate both colloidal particles and rheology-modifying polymers are the

FENE-BD model presented by Wang and Larson and the Population-Balance Brownian Dynamics

model, presented by Hajizadeh, Yu, and Larson [10, 22].

FENE dumbbell Brownian dynamics model The FENE dumbbell Brownian dynamics (FENE-

BD) model is able to capture multiple relaxation times characteristic of latex colloids in solution

with HEUR polymers [22]. In this model, colloids are represented as spheres with excluded volume

defined by a Weeks-Chandler-Anderson potential and HEUR polymers are represented as finitely

extensible nonlinear elastic (FENE) dumbbells. The dumbbell ends, representing the hydrophobic

end caps of the HEUR molecules, are modeled as having no excluded volume. The hydrophobic

attraction between the dumbbell and the colloid surface is represented as a shifted Lennard Jones
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Figure 1.3: Schematic depicting varying degrees of coarse-graining from atomistic (bottom left)
up to Pop-BD (top right), with increasing degree of coarse-graining from left to right.

potential where the attractive strength between the dumbbell beads and the colloids is mapped to

the strengh of the hydrophobic end-cap of a HEUR polymer, or approximately 6−10kBT , meaning

that the dumbbell beads and bind and unbind from the colloidal surface during the simulation.

The FENE-BD model qualitatively captures four distinct relaxation times, which from shortest to

longest timescale are attributed to (1) chain stretching, (2) translational-rotational rearrangements

of polymer loops over the colloidal surface, (3) loop/bridge transitions, and (4) particle or particle

cluster relaxation. It is important to note that this model captures the characteristic behavior of such

polymer-colloid formulations, but is computationally limited to small colloids and few particles

because it must resolve every polymer in the system as two beads and one spring bond.

Population Balance Brownian Dynamics The Population Balance Brownian dynamics (Pop-

BD) model was developed as the next level of coarse-graining after the FENE-BD model. As

such, the Pop-BD builds off of and is validated by the FENE-BD model. The colloid-colloid
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repulsions remain modeled as Weeks-Chandler-Anderson potentials, but rather than a dumbbell

representation of the telechelic polymers, only the spring force from bridging is applied between

the two colloids’ centers of mass. A key advantage of Pop-BD is that it scales independently of the

number of polymer chains in the system, since the polymers are represented implicitly. Pop-BD

considers only bridge and loop polymer configurations, because dangling and free-chains are rare

at the concentrations of interest [18]. The number of bridges per particle pair at each time step is

determined by the population balance algorithm, which includes bridge-to-loop and loop-to-bridge

transition rates. The loop-to-bridge rate, L(dij) is defined as

L(dij) = Ω exp
[
− 1

kBT
(∆G+ US(dij − rc))

]
(1.1)

and the loop formation (bridge destruction) rate, M(dij) is defined as

M(dij) = Ω exp
[
− 1

kBT
(∆G− US(dij) + US(dij − rc))

]
(1.2)

where Ω = 1.2×109s−1 is the thermal fluctuation frequency, determined fitting the stress relaxation

predictions to those of the FENE-BD model. ∆G is well depth of the attraction potential, rc is the

width of the potential well, and the spring potential Us(d) is equivalent to UFENE described in the

FENE-BD model.

As seen in Figure 1.4, the efficiency of Pop-BD comes with the caveat that short timescale be-

havior (on the order of 1× 10−9 seconds) is lost because the rearrangement and hydrophobe fluc-

tuations that are captured by the FENE-BD model are not accounted for. However, long timescale

behavior is the primary focus of experimental data, and so the convergence of Pop-BD to the

FENE-BD simulations is satisfactory for the end-goal of predicting experimental behavior.

7



1.3 Objectives and Outline

The primary aim of this thesis is to inform and improve the coarse-grained Pop-BD model through

a series of finer-grained studies that investigate the complex interactions between the telechelic

rheology-modifying polymers and colloidal particles in waterborne coatings. In Chapter 2, we

model the intercolloidal potential between two interacting colloids with coronas of telechelic poly-

mers adsorbed to their surfaces. We use a lattice self-consistent field theory approach that is in-

formed and validated by Brownian dynamics simulations. This study shows that when the colloids

are squeezed together, the polymer loops rearrange on the colloids’ surfaces to create a long range

and relatively weak intercolloidal potential. Using this same self-consistent field theory method,

we predict overall effective potentials that account for the attractive contributions of the polymer

bridges at equilibrium. From simulations using these potentials we offer insights into defects lead-

ing to phase stability in experimental systems.

Chapters 3 and 4 focus on capturing the dynamic behavior of the hydrophobic end caps on

telechelic rheology-modifiers. In chapter 3, we simulate the polymers transitioning between loop
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Figure 1.4: A example of stress relaxation curves compute from the Pop-BD method (red) and the
FENE-BD (blue) method for 10 and 40 polymer chains per colloid, as indicated in the figure. B)
A simulation snapshot of a FENE-BD simulation and C) a Pop-BD simulation .
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and bridge configurations, approximating the colloids as flat surfaces. We show that using the

equilibrium number of bridges and loops, from the self-consistent field theory approach in chapter

2, to relate the bridge-to-loop and loop-to-bridge transitions times allows us to focus only on simu-

lating the faster bridge-to-loop transition. From Brownian dynamics simulations of experimentally

relevant system sizes, we present a complete picture of transition times between surfaces for a wide

parameter space. Chapter 4 supports the work in chapter 3, in that it focuses specifically on the

escape of a lone hydrophobe (not connected to a HEUR) from an adsorptive wall, but also investi-

gates the transition from underdamped to overdamped particle motion. We perform Langevin and

Brownian dynamics simulations and compare the simulated escape times to three theories from

Kramers, Mel’nikov and Meshkov (MM), and Larson and Lightfoot (LL). We show that the more

commonly used Kramers and MM approaches do not apply to a Lennard-Jones potential for an

overdamped particle. By combining the MM theory in the underdamped regime and the LL theory

in the overdamped regime, we present a comprehensive approach to predicting the escape of a

particle from a Lennard-Jones potential for all damping regimes.

In chapter 5, we extend the functionality of the open-source simulation software, HOOMD-

blue, sothat it can perform Pop-BD simulations with signficantly improved efficiency. We also

apply the work from chapters 2 and 3 to improve the accuracy of the Pop-BD method. From chapter

2, we include intercolloidal potentials calculated by self-consistent field theory that account for

softer, longer range interactions induced by the the polymer loops. From chapter 3, we introduce

bridge-to-loop and loop-to-bridge rates to PopBD that account for the more complicated transitions

observed in our simulations. This new, updated, Pop-BD model is able to simulate experimentally-

relevant system sizes efficiently enough to capture long timescale behavior and account for the

complex polymer-colloid interactions we observe in our more detailed studies.
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CHAPTER 2

Modeling Intercolloidal Interactions Induced by

Adsorption of Mobile Telechelic Polymers onto

Particle Surfaces

Disclosure: ”Reprinted (adapted) with permission from Zhang, W., Travitz, A., and Larson, R.G.

Modeling Intercolloidal Interactions Induced by Adsorption of Mobile Telechelic Polymers onto

Particle Surfaces. Macromolecules, 52, 5357–5365 (2019). Copyright 2019 American Chemical

Society.”

2.1 Abstract

We combine self-consistent field theory and the Derjaguin approximation to predict the polymer-

induced colloidal interactions and the non-uniform distributions of loops and bridges of telechelic

polymers adsorbed onto particle surfaces when the polymers are compressed or stretched as a

function of inter-particle distance. We validate our approach by comparing its predictions to those

of Brownian dynamics simulations. We also determine the dependence of inter-colloidal interac-

tions on particle size and surface coverage as well as molecular structures of telechelic polymers,

including chain length and missing associating ends, which are important parameters in the de-

sign of commercial latex coatings. By mapping the predicted inter-particle interaction strengths to

Baxter temperatures, we can quantitatively predict the phase behaviors of mixtures of colloids and
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telechelic polymers.

2.2 Introduction

Amphiphilic polymers can selectively adsorb onto different surfaces in aqueous solutions. For

example, the hydrophobic ends of telechelic polymers can adsorb onto the hydrophobic surfaces

of colloids, leading to the formation of polymer loops on single particles and bridges between

two nearby particles. These loops and bridges thus induce effective interactions between particles,

which in turn affect the assembly and flow behaviors of colloid/polymer mixtures for a wide variety

of biological and synthetic fluids, such as blood, in which platelet-polymer plugs assemble at the

site of injury[23, 24], and waterborne coatings [25, 17].

The strength and range of the induced interactions in such polymer/colloid suspensions depend

on many factors, including the polymer lengths and architectures, and surface densities of the asso-

ciating polymers, as well as the size of the colloids. Polymers with one associating block per chain

can only form dangling chains, that induce only repulsive interactions between colloids[26, 27].

Telechelic polymers with two associating ends, one at each end of the chain, can generate short-

ranged attraction by forming bridges between the surfaces of two colloids[28, 29, 30, 31]. Such an

attraction may induce the formation of a transient network of particles that in turn affects the rhe-

ology of the colloidal suspension[17]. Predicting the effective interactions induced by telechelic

polymers would be useful for designing polymer/colloid mixtures, such as latex paints.

However, analytical tools for predicting quantitatively these polymer-induced effective poten-

tials for colloids are still mostly lacking. While particle-based simulations have been applied to

predict the colloidal interactions induced by associating polymers, they generally are limited to

small particles[26, 27] or low surface densities of polymer[31] to keep computational costs man-

ageable. Self-consistent field theory (SCFT) calculations, on the other hand, have been used to cal-

culate interactions induced by telechelic polymers between two flat surfaces[28] and the swelling

of the center B block in lamellar ABA triblock copolymer mesogels[32], but to date have not been
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used for polymers bridging particle pairs. Indeed, while calculations in bi-spherical coordinates

have been performed for phantom telechelic chains on two particles[29], SCFT calculations in

bi-spherical coordinates, however, are numerically expensive for telechelic chains with excluded

volume interactions. While brush theory (under the strong stretching approximation)[33, 34], to-

gether with the Derjaguin approximation, has been used to approximate the interactions between

large colloids coated by telechelic chains[30],this approach neglects fluctuations of chain config-

urations about their classical paths and may only work for colloids coated with strongly stretched

brushes.

The methods mentioned above also neglect the fact that polymers under compression can mi-

grate away from the zone of near contact between particles, since the associating ends are not

chemically bound to the particle surfaces. Such rearrangements of polymers can lead to non-

uniform distributions of chains and reduced effective repulsions at small inter-particle distances.

In fact, Pincus and coworkers predicted using a scaling approach that such redistribution can occur

for “polymer mushrooms” compressed between the flat surface on which they adsorbed and a par-

allel disk[35]. We expect that a similar rearrangement may occur for semidilute telechelic brushes

on colloids under compression due to presence of another nearby particle.

Here, we develop a theoretical approach that combines SCFT and the Derjaguin approximation

to calculate the effective interactions induced by telechelic polymers that may slide along colloid

surfaces to avoid compressed zones, thereby giving rise to changes in translational entropy. We

minimize the total free energy of the polymers, including both the compression free energy and

translational entropy, with respect to the local surface density to obtain the non-uniform distribu-

tion of the polymers. At small inter-particle distances, polymers tend to escape from the small-gap

region between the poles of particles. In this way, excluded volume interactions among the poly-

mers are reduced at the cost of reduced translational entropy. We validate our predictions by

comparing them to those of direct Brownian dynamics (BD) simulations. Using these simulations,

we also show that the rearrangement of polymers on particle surfaces becomes less pronounced as

the average polymer surface density increases.
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For colloids coated rather densely with telechelic chains, we assume a uniform surface distribu-

tion of polymers and predict the interactions between a pair of colloids as a function of the number

of telechelic bridges. Because the dynamic breakage and formation of bridges and loops can lead

to slowly-varying inter-particle forces, the bridge-dependent potentials will be useful for construct-

ing coarse grained models for predicting the rheological behaviors of telechelic polymer/colloid

mixtures in flows[10].

Because excluded volume interactions near colloidal surfaces can stretch real polymers and

in turn promote the formation of telechelic bridges, the bridge-dependent potentials would also

be helpful for improving the previous predictions of loop-to-bridge transition rates, obtained by

treating telechelic polymers as phantom and multi-mode Rouse chains[11].

Finally, we demonstrate that varying surface densities and lengths of telechelic chains can

modulate the strength and range of effective interactions between colloidal particles. We also

predict that by incorporating small fractions of chains with missing telechelic ends (as is typical in

commercial products), the attractive interactions between colloids are significantly reduced, which

may help explain the stability of commercial latex suspensions with telechelic polymers against

phase separation.

2.3 Methods

2.3.1 Theory for polymers adsorbed uniformly on colloids

Slow transitions between the loop and bridge states of telechelic polymers prevent direct sampling

of the equilibrium potential of mean force between colloids in molecular simulations. We therefore

combine self-consistent field theory (SCFT), the Derjaguin approximation, and the calculus of

variations to predict the effective interactions induced by mobile telechelic polymers on colloidal

particles.

The free energies and configurations of telechelic chains are first calculated using a lattice

version of self-consistent field theory, which has been successfully applied to describe many
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interfacial phenomena, including chain adsorption onto a surface and gradient copolymer self-

assembly[36, 37, 28, 38, 39, 40]. In the lattice SCFT, we treat the telechelic chains as random

walks of Kuhn segments on a pseudo-one-dimensional lattice with discrete distances from the

surface {hi}, biased by a chemical potential field W (hi). The value of hi represents the spatial lo-

cation of the ith lattice layer. The lattice spacing in our work equals the Kuhn length lk of PEO (1.1

nm) so that each lattice site represents a layer of PEO solution with a thickness of lk. In this way,

our results can be mapped onto hydrophobically modified ethoxylated urethane (HEUR) polymer,

a rheology modifier used in waterborne coatings. The hydrophilic interior monomers of HEUR are

PEO segments.

The chemical potential fieldW (hi) arises from the excluded volume interactions between Kuhn

monomers. Here we assume that polymer segments interact via pair-wise excluded volume inter-

actions:
W (hi)

kT
= vρ(hi) (2.1)

where v is the excluded volume of a Kuhn segment and ρ is the local number density of Kuhn

monomers (in units of l−3
k ).

We assume a strong short-ranged attraction between the chain ends and particle surfaces so that

the conditional Boltzmann factors (propagators) for placing the first monomer is non-zero only in

the surface layer:

p(hi, 1) =

 e−W (hi)/kT if hi = surface layer,

0 if hi 6= surface layer,
(2.2)

In this way, telechelic chain ends always absorb on colloid surfaces and no dangling chains can

form. The second argument in the function p(hi, n) is the chain coordinate, ranging from 1 to N

in numbers of Kuhn monomers, along the chain.

For chains between two flat surfaces, the initial propagator is zero everywhere except at the left
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(h1) and right (hL) surfaces:

pr(h1, 1) = e−W (h1)/kT

pl(hL, 1) = e−W (hL)/kT

(2.3)

in which r and l denote the right and left surfaces, respectively, and L is the total number of lattice

layers. Tracking the evolution of Boltzmann factors from pr(h1, 1) and pl(hL, 1) separately allows

us to calculate the fractions of loops and bridges.

The evolution of the conditional Boltzmann factor is governed by a recursion relation, which

is a discretized version of the SCFT propagator equation:

p(hi, n) = [λ−p(hi−1, n− 1) + λ0p(hi, n− 1) + λ+p(hi+1, n− 1)]e−W (hi)/kT (2.4)

The transition probabilities λ−, λ0, and λ+ describe the probabilities that a Kuhn step along the

polymer from step n − 1 to n leads to layer i, from, respectively, layer i − 1, i and i + 1 [40].

For chains on a cubic lattice (between flat surfaces), λ−, λ0, and λ+ are 1/6, 4/6, 1/6, respectively,

reflecting the fractions of nearest neighbors on the cubic lattice in each of the three layers on which

the next Kuhn step might reside. For chains on a spherical lattice (on an isolated spherical particle),

the transition probabilities λ−, λ0, and λ+ are functions of radial distances from the particle center,

as (R + hi − lk)/(6(R + hi)), 4/6, and (R + hi + lk)/(6(R + hi)), respectively, where R is the

radius of the particle. The differences arise because for sites of equal volume, the numbers of sites

are different in different lattice layers. Later we fit our SCFT results for polymers near an isolated

particle to results from Brownian dynamics (BD) simulations to obtain the excluded volume of a

HEUR monomer.

To describe chains on an isolated particle, we apply non-penetration and reflecting boundaries

so that

p(h0, n) = 0 (2.5)
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and

p(hL+1, n) = p(hL, n) (2.6)

We choose L to be large enough that p(hL+1, n) is zero. For chains between two flat surfaces, two

non-penetration boundaries are applied so that

p(h0, n) = p(hL+1, n) = 0 (2.7)

The Boltzmann weight for a chain segment n to reside at the ith layer is

Q(hi, n) = p(hi, n)p(hi, N − n+ 1)eW (hi)/kT (2.8)

Because both p(hi, n) and p(hi, N−n+1) include the bias for placing segment n at the same lattice

layer, the total penalty for monomer n to reside at layer i, calculated using p(hi, n)p(hi, N−n+1),

is double-counted as e−2W (hi)/kT . We use the exponential term in eqn 2.8 to cancel this double-

counting. The single chain partition function Z is therefore the sum of Boltzmann weights for

chain conformations to have any monomer located at any lattice layer:

Z =
N∑
n=1

L∑
i=1

A(hi)Q(hi, n) (2.9)

where A(hi) is the number of sites in the ith lattice layer. On a spherical lattice, A(hi) = 4π(R +

hi)
2. On a cubic lattice, A(hi) is a constant A for all hi.

The density distribution ρ(hi) is therefore calculated as:

ρ(hi) =
JN

∑N
n=1Q(hi, n)

Z
(2.10)

where J equals the total number of chains, given as A(R)σ0 and 2Aσ0 for chains on an isolated

particle and between two flat surfaces, respectively. The value of σ0 represents the uniform surface

density of telechelic chains.
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We can self-consistently solve the density distribution of polymers for any given excluded

volume v near isolated particles. To obtain the excluded volume v for HEUR polymers, we perform

coarse grained BD simulations of telechelic chains near isolated particles. In our BD simulations,

the HEUR polymers are purely repulsive beads connected by harmonic springs of rest length lk

and spring constant 400kT/l2k. Monomer beads interact with each other via a Weeks-Chandler-

Anderson potential:

Ubb(r) =

 4εbb
[(

σbb
r

)12 −
(
σbb
r

)6
+ 1

4

]
r < 21/6σbb

0 r ≥ 21/6σbb

(2.11)

where εbb = 1.0kT . The interaction range σbb is set to be 0.4lk, which was chosen so that the

BD simulations give the correct radius of gyration for PEO in dilute aqueous solutions (Fig. 2.1a).

The attractions between the end monomers of the telechelic chains and the colloid surfaces are

described using a shifted Lennard-Jones (LJ) potential with a deep attractive well (40 kT). In this

way, the end monomers of HEUR polymers are always absorbed on particle surfaces. Details of

our BD simulations are included in the section 2.6 Appendix: Brownian Dynamics Simulation

Methodology.

By fitting our SCFT-calculated Kuhn monomer distributions of adsorbed loops on an isolated

particle to the corresponding results for BD simulations with BD bead size determined from ex-

periments as described above, we can obtain the SCFT excluded volume v = 0.23l3k for HEUR

polymers. The distribution of polymer segments in the radial direction is governed by the excluded

volume interactions. For various surface densities of polymers, the distributions of Kuhn segments

from our SCFT calculations with v = 0.23l3k agree well with the results from our BD simulations

(Fig. 2.1b). For brush-like telechelic chains absorbed on particle surfaces, the mean-field SCFT

theory works well, indicating the fluctuations in the polymer density field are negligible. However,

for chains in the mushroom-regime, the SCFT model may fail due to the significant fluctuations in

the density field of polymer segments.

Because the osmotic pressure of a semidilute polymer solution is vρ̄2kT/2 (ρ̄ is the monomer
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Figure 2.1: (a) Radius of gyration Rg vs. number of Kuhn segments N for PEO in water from
coarse grained BD simulations. Light scattering data from Devanand et al.[3] (b) Density distri-
bution of monomers ρ(∆H) of polymers with length N = 40 near isolated particles of radius
R = 25lk. ∆H is radial distance from particle surface. BD simulations (symbols and solid
curves). SCFT with v = 0.23l3k (dashed curve). (c) Osmotic pressure Π of aqueous PEO solutions
vs. Kuhn monomer concentration ρ̄ at two temperatures. Experimental data (symbols)[4]. Fit to
Π = vρ̄2kT/2 (curves).
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number concentration)[41], the value of v can be also measured experimentally using osmome-

try. Using the reported osmotic pressures of aqueous PEO solutions with concentrations similar to

those in the brush layers near colloidal particles[4], we estimate v to be about 0.23l3k at room tem-

perature (see Fig. 2.1c), which matches the value we obtained by fitting the polymer distributions

from SCFT to BD simulation results.

After justifying our choice of v, we now calculate the free energy of HEUR chains between

two flat surfaces, which will be used with the Derjaguin approximation to predict the effective

interactions between two colloidal particles. We solve the SCFT equations for p(hi, n) on a cubic

lattice, from which the single chain partition function Z can be obtained. The free energy per chain

is:
F (∆H)

kT
= − lnZ − lk

4σ0

L∑
i=1

vρ(hi)
2 (2.12)

where σ0 is the surface density of telechelic chains (the total number of chains is 2σ0A, where A

is the area of a flat surface). The distance between the two flat surfaces in the lattice description

is given by ∆H = Llk. The last term in eqn 2.12 is used to avoid double counting the pair-wise

excluded volume interactions.

We use the Derjaguin approximation and the free energy for chains between two flat surfaces

to estimate the effective interactions between two spherical colloidal particles. In the Derjaguin

approximation, the curved surfaces of particles are discretized into a series of circular bands

(Fig 2.2a). The polymer chains are assumed to be confined between the two facing parallel bands

on different particles. The inter-band distance and surface area of the discretized bands increase as

we move from the poles to the equators of the particles.

Assuming a uniform surface density σ0, the net interactions between two particles are obtained

by integrating the polymer free energy over all the discretized bands:

f(∆H0)

kT
= 4πR2

∫ 1

−1

σ0F (∆H0, µ)dµ (2.13)

in which ∆H0 is the distance between the poles of two particles (see Fig. 2.2) and µ = cos θ. The
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Figure 2.2: (a) Cartoon of two colloidal particles discretized using the Derjaguin approximation.
(b-d) Effective repulsion between two colloids of radius R = 25lk, induced by telechelic loops
of N = 40 Kuhn steps at various average surface densities σ0. Theory for uniform (red), and
non-uniform (blue) density. BD simulations that allow non-uniform surface density (green). The
average density imposed for each non-uniform case (both blue and green curves) is the same as in
the corresponding uniform distribution.
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inter-band distance ∆H(µ) is 2R(1− µ) + ∆H0.

To validate this approach, we compare its prediction of the effective potential generated by

telechelic loops to that predicted by BD simulations. The free energy per loop between two flat

surfaces can be easily obtained from eqn 2.12 and a modified Boltzmann weight for loops Ql:

Ql(hi, n) = (pr(hi, n)pr(hi, N − n+ 1) + pl(hi, n)pl(hi, N − n+ 1)) eW (hi)/kT (2.14)

where pr and pl are the propagators evolved from the initial Boltzmann factors for placing a

monomer at right and left walls.

The effective interactions between two colloids coated by telechelic loops is obtained from BD

simulations by varying the inter-particle gap ∆H0 and measuring the net force on each particle

fn to obtain the effective potential from f(∆H0) =
∫∞

∆H0
dHfn(H). The same approach has

been used to compute the effective potential of nanoparticles induced by one-end grafted polymer

brushes[27]. We only measured the effective interactions induced by loops because obtaining the

equilibrium numbers of bridges in BD simulations is impractical due to the excessively long runs

required to equilibrate the bridge/loop ratio.

Assuming uniform distributions of polymers on particle surfaces, the predicted repulsive in-

teractions agree with those sampled from BD simulations at large inter-particle distances ∆H0

(Fig. 2.2b–d). At small ∆H0, however, our theory with uniform surface density of loops overpre-

dicts the repulsive interactions, especially for small σ0 as shown by comparing the red and green

lines in Fig. 2.2b–d. The weaker repulsion in BD simulations seen in Fig. 2 relative to the theory

with uniform polymer distribution likely arises from the depletion in BD simulations of telechelic

loops from the compression region at small ∆H0. By escaping from the compression region where

the distance between particle surfaces is smaller than the chain size, polymers in BD simulations

reduce the compression penalty at the expense of some decrease in translational entropy.
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2.3.2 Theory for non-uniform surface distributions of telechelic chains

We therefore now account for the rearrangement of polymers on the particle surface within our

theory by allowing the chain density to vary along the particle surface and by including the resulting

translational entropy in the Derjaguin approximation:

f(∆H0) = 4πR2

∫ 1

0

(σ(µ)F (σ(µ),∆H0, µ) + σ(µ) lnσ(µ)) dµ (2.15)

Here F is the free energy per chain between two flat surfaces, calculated at different surface den-

sities of chains. We can solve the polymer density distribution σ(µ) by minimizing the above free

energy with respect to σ(µ) under the constraint:
∫ 1

0
σ(µ)dµ = σ0, where σ0 is the uniform surface

density attained when ∆H0 is sufficiently large.

Indeed, this modified Derijaguin approximation predicts that polymers may rearrange on col-

loidal surfaces to reduce the compression free energy (Figure 2.3a). At small σ0, our theory accu-

rately predicts the rearrangement of polymers seen in the BD simulations. The polymer distribu-

tions in the BD simulations are calculated by projecting the centers of mass of polymer loops onto

the particle surfaces. For dense polymer layers, however, our theory overpredicts the depletion at

small ∆H0. Dense telechelic polymer brushes may not be able to escape the compression region

since the colloidal surfaces are too crowded for the sticky ends to rearrange. Instead, in the BD

simulations those dense chains may tilt to reduce the excluded volume interactions (Fig. 2.3b),

which cannot be captured by our theory, which relies on the Derjaguin approximation with its

assumption that each chain sees only a flat surface.

By including the non-uniform distributions σ(µ) of polymers on particle surfaces, our theory

predicts a weaker effective repulsion induced by loops when ∆H0 is small (Fig. 2.2b, c, and d)

than when a uniform adsorbed density is assumed. The weaker repulsion agrees nicely with BD

simulations when the average surface density σ0 is low. For denser loops, the assumption of a

uniform polymer distribution agrees better with the BD simulations (Fig. 2.2d).

We next compute the effective potential induced by non-uniformly distributed polymers in the
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Figure 2.3: (a) Polymer distributions on surface of particle with radius R = 25lk when ∆H0/lk =
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presence of the equilibrium number of bridges, which can be calculated using the single-chain par-

tition functions of loops and bridges (details in the next section). As in the case without bridges, the

rearrangement of chains reduces the repulsion at small ∆H0 relative to uniform chain distribution.

The bridge-induced attraction, however, is rather similar to that obtained by assuming a uniform

polymer distribution (Fig. 2.3c). Since dense telechelic brushes produce relatively uniform chain

distributions, we may assume a constant σ0 to predict their polymer-induced effective interactions.

2.3.3 Theory for systems with non-equilibrium numbers of bridges

Using a uniform distribution of polymers on the particle surface, we can also compute the effec-

tive interactions between colloids with any given number of bridges Nb. The bridge-dependent

potentials will be useful in future work for predicting the rheological properties of telechelic poly-

mer/colloid mixtures in flows, where the dynamical breakage and formation of bridges and loops

are important[10].

We first compute the free energy per chain of telechelic chains between two flat surfaces with

fixed bridge and loop fractions:

F (∆H, η)

kT
= −(1− η) lnZl − η lnZb −

lk
4σ0

L∑
i=1

vρ(hi)
2 + η ln η + (1− η) ln(1− η) (2.16)

where η is the fraction of chains that are bridges, and the last two terms give the Shannon entropy,

arising from the possible ways of assigning different polymers as loops and bridges. Zl and Zb are

the single-chain partition function of loops and bridges, obtained using eqn 2.9 and the Boltzmann

weights for loops (eqn 2.20) and bridges:

Qb(hi, n) = 2pl(hi, n)pr(hi, N − n+ 1)eW (hi)/kT (2.17)
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For a given value of η, we self-consistently solve Qb, Ql, and the density field ρ:

ρ(hi, η) =
ηJN

∑N
n=1Qb(hi, n)

Zb
+

(1− η)JN
∑N

n=1 Ql(hi, n)

Zl
(2.18)

Unless η equals the equilibrium bridge fraction, the density distribution ρ should be different from

the equilibrium density profile (eqn 2.10). The gap-dependent free energy of a system with equi-

librium numbers of loops and bridges (eqn 2.12) is represented as the locus of saddle points on the

free energy surface F (∆H, η) (Fig 2.4a).
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Figure 2.4: (a) Free energy per chain as a function of seperation ∆H and bridge fraction η. (b)
Total free energy of two colloids with constrained number of bridgesNb. In both (a) and (b), saddle
points are given by red symbols. (c) Distributions ofNb bridges on particles for various separations
∆H0. Surface density σ0 = 0.051l−2

k , chain length N = 40, and particle radius R = 25lk for all
plots.

We minimize the polymer free energy under the Derjaguin approximation with respect to the

distribution of bridge fractions η(µ). The minimization is carried out with the total number of

bridges constrained to Nb =
∫ 1

0
4πR2σ0η(µ)dµ. Using the η that minimizes the free energy,

we generate a free energy surface in the Nb − ∆H0 plane for two interacting colloidal particles
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(Fig 2.4b).

Our model described above for systems with constrained numbers of bridges is useful for val-

idating our SCFT approach using BD simulations, which are not fast enough to equilibrate the

bridge/loop ratio. Thus, in Fig. 4(c), we compare BD to SCFT results for fixed numbers of

bridges. The distribution of bridge fractions η(µ), obtained by free energy minimization, allows

us to further test the validity of SCFT and the modified Derjaguin approximation by comparing

their predictions against BD simulations with a specified fixed number of permanent bridges. In

theory, we can obtain the bridge distribution nb(µ), which quantifies the bridge density per unit µ,

for any imposed fixed total number of bridges Nb =
∫ 1

0
nb(µ)dµ and inter-particle distance ∆H0.

We can also obtain the bridge distribution nb(µ) from BD simulations which shows, as expected,

that the bridges tend to distribute near the narrowest gap µ = 1 (Fig. 2.4c). A discrepancy between

theory and simulations can be observed at small inter-particle distance ∆H0 (Fig. 2.4c- top). The

reduced surface density of polymers in the BD simulations near µ = 1 (see Fig. 2.3a) may lead

to the smaller nb than that predicted by our theory. Nonetheless, our predicted bridge distributions

agree reasonably well with those from the BD simulations.

In our theory and BD simulations, the telechelic polymers only form loops and bridges. In

reality, since the attraction between the hydrophobic ends of polymers and colloidal surfaces is

finite, these telechelic chains may form dangling and even free chains (polymers that are desorbed

from colloidal surfaces) when the surface absorption density σ0 is sufficiently high. For telechelic

polymers such as HEUR in water-borne coatings, however, typical attractions between chain ends

and colloidal surfaces are about 10 kT[42]. The rather large attraction prevents the formation of

dangling and free chains.

To demonstrate that the dangling and free chains are negligible when the attraction between

chain ends and colloidal surfaces is large, we estimate the fractions of dangling and free chains
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near isolated particles using SCFT by modifying the initial propagator (eqn 2.2):

ps(hi, 1) = e−(W (hi)−E)/kT δi,1

pm(hi, 1) = e−W (hi)/kTΘ(i− 1)

(2.19)

where ps and pm are the conditional Boltzmann weights for placing a chain end at the colloidal sur-

face and in the solution, respectively, and E is the strength of attraction between particle surfaces

and chain ends. Θ and δ are the Heaviside theta and Kronecker delta functions. The attraction E

enhances the probability for a chain end to reside at the particle surface. When E is sufficiently

large, ps is much greater than pm. Using the modified initial propagator, we self-consistently solve

the density field and compute the fractions of loops (fl), dangling (fdg) and free chains (ff ) as:

fl =
ps(h1, 1)ps(h1, N)e(W (h1)−E)/kT

Q0

fdg =
ps(h1, 1)pm(h1, N)e(W (h1)−E)/kT

Q0

ff =

∑L
i=2 pm(hi, 1)pm(hi, N)eW (hi)/kT

Q0

(2.20)

where Q0 is a normalization factor, and ps(hi, N) and pm(hi, N) are the conditional Boltzmann

weights for a chain end to locate at hi after N steps, given that the initial conditions ps(hi, 1)

and pm(hi, 1) are different. When the attraction strength E is greater than 10 kT, the fractions of

dangling and free chains are negligible even for rather large surface densities of absorbed chains

(Fig. 2.5). For interacting particles, we expect that the strong attractions between chain ends and

the colloidal surfaces promote the formation of bridges, instead of dangling chains. As a conse-

quence, our current model is valid for telechelic chains with strong attractive ends. For polymers

with weak attractive ends, the formation of dangling and free chains can be easily included by

modifying our model.
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Figure 2.5: Fractions of (a) dangling and (b) free chains on isolated particles vs. attraction strength
E between chain ends and colloidal surfaces. Chain length N = 40 and particle radius R = 25lk.
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Figure 2.6: Effective interactions induced by telechelic polymers: (a) for chain length of N = 40
at different surface densities σ0 on particles of different sizesR, (b) for chains of various lengthsN
on particles of different sizes R for surface density σ0 = 2l−2

k N−1, (c) for chains of N = 40 with
various fractions fd of defective dangling chains (one sticker end per chain) for surface density
σ0 = 0.051l−2

k .

2.4 Results and Discussions

Having validated our model, we now compute the effective interactions between two colloidal

particles that are coated by brush-like telechelic polymers with various surface densities σ0, particle

radii R, and lengths N . Here we assume that the surface density is sufficiently high that polymer

distributions on particle surfaces are uniform. Because smaller curvature can enhance the contact

areas for polymers on different particles, the effective potential increases linearly with particle

radius R (Fig. 2.6).

For polymers with a given lengthN , the strength and range of induced attraction increases with
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increasing surface density σ0 (Fig. 2.6a). The enhanced attraction results from the extra bridges

formed in denser polymer layers. Because higher surface densities lead to more stretched chain

conformations and promote the formation of bridges at larger ∆H0, the range of attraction also

increases with increasing σ0.

At a fixed ratio of total polymer size to particle surface area (σ0l
2
kN ), increasing polymer length

results in longer ranged but weaker attractions between the colloidal particles (Fig 2.6b). Although

longer chains can form longer bridges at larger ∆H0, the total number of bridges decreases with

decreasing σ0, which leads to weaker attractions.

We also predict that small amounts of single-end functionalized chains can significantly reduce

the attraction between particles. In our lattice SCFT calculations, we introduce an initial Boltz-

mann factor for the defective ends as pd(hi, 1) = e−W (hi)/kT , which can be non-zero in lattice

layers that are not adjacent to particle surfaces. By evolving pd(hi, n) from the initial state, we can

compute the Boltzmann weight for dangling chains as:

Qd(hi, n) = (pl(hi, n) + pr(hi, n))pd(hi, N − n+ 1)eW (hi)/kT (2.21)

where pl and pr are obtained from monomers that are initially placed next to the left and right

surfaces, respectively. By summing Qd over all lattice layers and monomer indices, we obtain the

single chain partition function for dangling polymers Zd. The free energy of telechelic polymers

with dangling chains of fraction fd between two flat surfaces is simply:

F (∆H, fd)

kT
= −(1−fd) lnZ−fd lnZd−

lk
4σ0

L∑
i=1

vρ(hi)
2 +fd ln fd+(1−fd) ln(1−fd) (2.22)

in which Z is the single chain partition function of perfect telechelic polymers that can form loops

and bridges, obtained using eqn 2.9.

By introducing about 20% defective chains, the interactions between particles, induced by

telechelic chains of length N = 40, is reduced to nearly zero (Fig 2.6c). These dangling chains

provide long ranged repulsion between particles and compensate the net attraction induced by
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telechelic bridges.

We expect small fractions of defective telechelic chains can be useful for stabilizing colloidal

suspensions. To show this, we map our attractive effective interactions to the Baxter temperature

τ , which quantifies the phase behaviors of hard spheres with short range attractions (adhesive hard

spheres)[43, 44]. Lu and coworkers have demonstrated that various short-ranged attractive inter-

actions, such as square-well, Lennard-Jones, and Asakura-Oosawa potentials, can be all mapped

to τ for predicting phase separation in colloidal suspensions[45].

The value of τ can be obtained by equating the reduced second virial coefficient B∗2 of the

effective inter-colloid potential f(∆H0) to that of an adhesive hard sphere:

B∗2 = 1− 1

4τ
=

3

8R3
∗

∫ ∞
2R

(1− e−f(r−2R)/kT )r2dr (2.23)

in which R∗ = R + ∆H∗0/2 is the overall radius of the polymer coated particle[45]. ∆H∗0 is the

value of ∆H0 at which the potential is zero, and beyond which the effective potential f becomes

attractive. Using τ , the phase behaviors of colloids coated by different telechelic chains can be

estimated using the phase diagram of adhesive hard spheres[5, 46, 47] (Fig. 2.7a).

We test the phase behaviors of colloidal suspensions by performing Monte Carlo (MC) simu-

lations in the NVT ensemble for 500 colloids of size R = 25lk starting from random initial con-

figurations using the Metropolis method and the effective potentials corresponding to telechelic

polymers of length N = 40 and surface densities σ0 = 0.051l−2
k including the effect of a gap-

dependent equilibrium number of bridging chains, which assumes that the number of bridges in-

stantaneously adjusts as the gap between particles changes. Different fractions of dangling chains

fd are used to control the strengths of the inter-colloid interactions. When a sufficient fraction of

dangling chains is introduced (fd > 0.10), the colloids remain dispersed with a gas-like pair corre-

lation function g(r), whose intensity decays quickly to unity after a single peak (Fig. 2.7c). When

fd is small, however, the inter-particle attractions are strong and the colloidal suspension can un-

dergo a gas-liquid phase separation, indicated by the formation of dense liquid domains (Fig. 2.7b
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near the bottom) and a liquid-like g(r) with multiple short-range peaks. The phase behaviors in

simulations for colloidal suspensions with 5% colloids by volume show a transition to a phase

separated structure (Fig. 6b) at a fraction of dangling chains between 10% and 12%, which agrees

with the transition predicted by the Baxter phase diagram for adhesive hard spheres[5] with Baxter

temperature obtained from the potential calculated for these systems, as shown in Fig. 6a.

Mapping the polymer-induced interactions to Baxter temperature τ is also useful for estimating

the percolation behaviors of colloids. We show that the percolation transition of colloids can be

rather accurately captured by the prediction for adhesive hard sphere using the Percus-Yevick (PY)

approximation[5]. To show this, we estimate the critical volume fraction for percolation in MC

simulations by first computing the cluster size distribution:

p(nc) = 〈Nnc

Ntot

〉 (2.24)

in whichNnc is the number of clusters that are composed of nc colloids andNtot is the total number

of particles in the simulations. We group colloids that share common neighbors into a cluster. Two

particles are considered to be neighbors when the inter-particle distance is smaller than the range

of the effective attraction (about 15 lk). The percolation transition is characterized using the second

moment of p(nc):

Nw =
1

Ntot

〈
∑
nc

n2
cp(nc)〉 (2.25)

When Nw is greater than 0.5, we consider the system to be percolated[48] (Fig. 2.7d). The crit-

ical volume factions for percolation in our MC simulations agree well with the PY percolation

boundary (Fig. 2.7a).

2.5 Conclusion

We have applied an analytical approach, combining self-consistent field theory (SCFT) and

the Derjaguin approximation to predict the effective interactions between colloids induced by
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telechelic polymers in solutions. The chain ends of telechelic polymers can physically absorb

onto the particle surfaces, forming loops and bridges, which in turn induce effective interactions

between colloidal particles. We validate our theoretical approach by comparison to direct Brown-

ian dynamics simulations.

When two spheres are pressed together, our theory predicts that telechelic polymers may rear-

range and distribute non-uniformly on the colloidal surfaces. In this way, polymers reduce their

excluded volume interactions at the cost of a reduction in translational entropy. Our predicted non-

uniform distributions of polymers agree with results from BD simulations when polymer surface

density is relatively low but still in the brush regime, so that the SCFT is still valid. However, such

rearrangement of polymers become less likely when the surface density increases, as observed in

our BD simulations. Dense brushes of telechelic chains distribute rather uniformly on particle

surfaces even under rather strong compression.

We expect our overall approach to be useful for designing formulations for applications such as

waterborne coatings, in which telechelic rheology modifier is adsorbed on latex particles[25]. For

example, the bridge-dependent inter-colloid potential, calculated using our method, is necessary

for constructing hybrid coarse grained simulation methods for predicting the viscoelastic response

of telechelic polymer/colloid mixtures in flows[10]. Our approach also enables efficient estimation

of the stability of colloidal suspensions in which the molecular structures and surface densities of

associating polymers vary.

2.6 Appendix: Brownian Dynamics Simulation Methodology

All simulations were performed using HOOMD-blue, a particle simulation software package op-

timized for GPU performance [49, 50, 51]. HEUR polymers are represented as series of purely

repulsive beads connected by stiff harmonic springs, with each spring representing one Kuhn step.
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The harmonic spring between adjacent beads is defined as

Ubond(r) =
1

2
k(r − r0)2 (2.26)

where k = 400kT/l2k and r0 = 1.0lk. The value of lk is 1.1 nm in our work, representing the length

of one Kuhn step of PEO, the interior segments of HEUR.

The repulsive interactions between polymer beads are modeled using a Weeks-Chandler-

Anderson potential,

Ubb(r) =

 4εbb
[(

σbb
r

)12 −
(
σbb
r

)6
+ 1

4

]
r < 21/6σbb

0 r ≥ 21/6σbb

(2.27)

where εbb = 1.0kT and σbb = 0.4lk.

We choose the value of σbb so that our model generates the correct radius of gyration for PEO

in dilute aqueous solutions as shown by light scattering results[3] as shown in Fig. 2.8.
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Figure 2.8: Radius of gyrationRg vs. number of Kuhn segmentsN for PEO in water. Experimental
data from Devanand et al.[3]

We model the attraction of the hydrophobic chain ends of telechelic HEUR polymers to the
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hydrophobic colloid surfaces using a shifted Lennard-Jones potential,

Usc(r) =

 4εsc
[(

σsc
r−∆sc

)12 −
(

σsc
r−∆sc

)6]
r < 3.0 + ∆sc

0 r ≥ 3.0 + ∆sc

(2.28)

where ∆sc =
[
Dcolloid+Dsticker

2
− 1

]
lk, Dcolloid = 50.0lk, Dsticker = 1.0lk, and σsc = 0.4lk.

The strong interaction parameter εsc = 40 kT prevents chain ends from detaching while pre-

serving translational freedom on the colloid surface. The interior beads of the polymer chain are

purely repulsive with respect the colloid surface, and are represented by a shifted Weeks-Chandler-

Anderson potential

Ubc(r) =

 4εbc
[(

σbc
r−∆bc

)12 −
(

σbc
r−∆bc

)6
+ 1

4

]
r < 21/6σbc + ∆bc

0 r ≥ 21/6σbc + ∆bc

(2.29)

where ∆bc =
[
Dcolloid+Dbead

2
− 1
]
lk, Dcolloid = 50.0lk, Dbead = 1.0lk, εbc = 1.0kT, and σ = 0.4lk.

At each time step, the following Langevin equation for the particle velocities is integrated

m
d~v

dt
= ~FC − γ · ~v + ~FR (2.30)

in which ~FC is the conservative force from all potentials, ~v is the particle’s velocity, and ~FR is

the random force. The drag coefficient γ is taken to be 1.0 [m]
[t]

for polymer beads and 100.0 [m]
[t]

for colloids, where [m] is set to unity, thereby defining the unit of mass in our simulations and

[t] =
√

[m]l2k/kT is similarly set to unity. Hereafter, all units of length are assumed to be lk and

energies are in units of kT . Time steps are made small enough that results are insensitive to the

exact value.

We prepare initial configurations for all simulations by generating two colloids with the given

number of polymer loops randomly distributed on their surfaces using Packmol, an initial config-

uration generator [52]. The energy of the polymers is minimized for 104 time steps to avoid any

overlaps or non-physical behavior, and then the polymer chains are equilibrated for 105 time steps.
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To generate density distributions, ρ(∆H), for non-interacting colloids, the colloids remain fixed at

a distance ∆H0 � 2 ∗ Rg, where ∆H is the distance from the surface of a particle in the radial

direction, ∆H0 is the closest surface-to-surface distance between two particles andRg is the radius

of gyration of a telechelic chain. Polymer chains are allowed to relax while data is sampled for

5× 106 time steps.

For simulations where a specific interparticle gap is of interest, such as for polymer distribu-

tions at small ∆H0 or for calculations of inter-particle force, we follow a protocol similar to that

described by Verso et al. [26, 27, 53] First, we initialize two colloids at a distance large enough

that the particles and chains adsorbed on them do not interact, and equilibrate the polymers on both

colloids for 10,000 time steps. We then shift the particles closer by a distance δr = 0.05lk and re-

equilibrate the system, repeating this shift and equilibration procedure until the target interparticle

gap is reached. We then run the simulations for 107 time steps, recording system information at

intervals of 100 time steps. At each interparticle gap ∆H0 of interest, the net force on each colloid

is calculated by summing over all forces on the colloid and all polymers adsorbed to that colloid.

The effective interaction f(∆H0) between particles can then be calculated by integrating over the

net forces, fn(∆H0), calculated at all interparticle gaps: f(∆H0) =
∫∞

∆H0
fn(H0)dH0.
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CHAPTER 3

Bridging Dynamics of Telechelic Polymers Between

Hydrophobic Surfaces

3.1 Abstract

We use Brownian dynamics (BD) simulations resolved at the level of a Kuhn step to calculate the

rate at which a telechelic polymer with surface-adhering endcaps transitions from a bridge between

two flat surfaces to a loop on a single surface. We then use self-consistent field theory (SCFT) to

obtain the equilibrium ratio of bridges to loops and apply the principle of detailed balance to

obtain the slower loop-to-bridge times from the faster bridge-to-loop times. The bridge-to-loop

transition time has two scaling regimes: one where it is approximately equal to the time for a lone

hydrophobic particle to desorb from a surface, and the other where it is dominated by the retraction

time of the polymer; approximate formulas for both times are given. The results are important for

interpretating the dynamics and rheology of latex coating fluids, in which colloidal particles are

dynamically bridged by telechelic rheology-modifying polymers.

3.2 Introduction

Telechelic rheology-modifying polymers have widespread applications in waterborne coatings (i.e.

latex paints), pharmaceuticals, and personal care products [13, 12]. The addition of rheology-

modifying polymers to these formulations allows for tuning of their rheological profiles, such as
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controlling the zero-shear viscosity or increasing the controlling the high-shear viscosity for ease

of application of a coating [13]. A common class of rheology-modifying polymers are Hydropho-

bically Modified Ethoxylated Urethanes, or HEURs, which consist of a hydrophilic polyethylene

oxide (PEO) backbone and hydrophobic groups along the PEO backbone and/or end-capping the

polymers.

The behavior of solutions of telechelic HEURs, with a purely hydrophilic backbone and two

hydrophobic endcaps, in water (without colloids) is a rich area of study. The HEURs form flower-

like micelles, in which the hydrophobic endcaps are aggregated into micelles bridged by some of

the HEURs. Because the strength of the hydrophobic interactions is not much greater than the

thermal energy, these bridges can easily break and reform. At sufficiently high concentrations,

dynamic networks of flower-like micelles form [14]. Tanaka and Edwards determined that the

characteristic relaxation time, τ , of a HEUR network is exponentially related to the strength of the

HEURs’ hydrophobic endcaps ∆G : τ ∝ exp[∆G/kBT ] [54]. Using Monte Carlo simulations

of a transient network of flower-like micelles and dynamic bridges, Annable et al. were able to

semi-quantitively capture the dynamics and linear viscoelasticity of experimental HEUR solutions,

confirming the formation of isolated flower-like micelles at low concentration and micelles linked

into a network by bridges at higher concentrations [15]. Tripathi et al. then presented a constitutive

model for the dynamic behavior of these telechelic polymer networks, approximating bridge-to-

loop and loop-to-bridge transition rates that quantitatively capture the shear-dependent behavior of

HEUR solutions [55]. These transition rates have since been used as approximate transition rates

in the Population balance - Brownian dynamics model of polymer-colloid mixtures by Hajizadeh

and coworkers [10].

While the rheological behavior of solutions of HEURs is often relatively simple, in that it is

often dominated by a single relaxation time, the addition of colloidal particles to HEUR solutions

results in significantly more complex rheology [56, 57]. As in solutions of HEURs, the hydropho-

bic end-groups aggregate, not into micelles, but instead onto to the colloids’ surfaces, forming

coronas of hydrophobic loops coating the colloids. Just as with pure HEUR solutions, bridges
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can form between colloids, resulting in a transient network of colloids interconnected by HEURs.

However, experimental linear rheological data show much more complex behavior than with sim-

ple HEUR solutions [56, 57]. A partial explanation is suggested by recent Brownian dynamics

simulations that represent the HEUR’s by dumbbells whose beads stick to much larger colloids.

These simulations suggest that there are at least four distinct relaxation modes governing the be-

havior of these solutions, including the characteristic times describing the transition of a telechelic

polymer between bridge and loop configurations [22].

A prior study by Rezvantalab and Larson investigated the loop-to-bridge transition process for

bead-spring chains using forward flux sampling that neglected polymer excluded volume effects

both within an individual polymer and between polymers, essentially limiting the work to dilute

polymer adsorption. Their work found that the loop-to-bridge time depended on the level of res-

olution of the bead-spring molecule, suggesting that accurate results could only be attained by

resolution at the level of a Kuhn step. Rezvantalab and Larson also assumed that the bridge-to-

loop rate is a constant, independent of the stretch of the molecule [11]. Thus, a comprehensive,

accurate, description of both bridge-to-loop and loop-to-bridge transition times of telechelic poly-

mers between surfaces is still lacking. Such a description is needed to understand the dynamics of

polymer-colloid interactions, as well as to inform coarse-grained modeling that might lead to an

accurate theory of the rheology of suspensions of colloidal and telechelic polymers [10].

In this work, we use Brownian dynamics simulations to model HEUR polymers as bead-spring

chains resolved at the level of a Kuhn step with excluded volume and study their transition times

between two hydrophobic colloids approximated as flat surfaces. The study of transitions of chains

between flat surfaces is a needed first step to determining transitions between curved spherical col-

loidal surfaces, which can be inferred from the flat-surface results by using the well-known Der-

jaguin approximation. BD simulations can be used to compute bridge-to-loop and loop-to-bridge

transition times for systems with short chains, but are too computationally expensive for experi-

mental chain lengths. Therefore, we show that the self-consistent field theory (SCFT) presented

by Zhang et al. reasonably predicts the equilibrium number of bridges and loops for a given sys-
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tem [58]. Using the detailed-balance principle, we then use the equilibrium SCFT information to

obtain the ratio of the bridge-to-loop to the loop-to-bridge transition times, so that we need only

to compute the faster bridge-to-loop transition time directly with BD simulations to obtain the full

picture of bridging dynamics.

We compute bridge-to-loop transition times for varying chain lengths, and show that the time

for a bridge’s hydrophobe to desorb from a wall converges to the desorption time of a hydrophobic

particle (not connected to a spring) for small normalized gaps. However, the total bridge-to-loop

transition time is usually much longer than the hydrophobe desorption time, especially for long, ex-

perimentally relevant, 200-Kuhn-step chains. At small gaps we propose that this longer transition

time is due to multiple re-entries into the potential well, and at large gap, and lower hydrophobe

adsorption strength, the required time for the polymer to retract once the hydrophobe desorbs be-

gins to dominate the bridge-to-loop time. This contradicts the assumption, commonly made for

solutions of HEURs without colloids, that the bridge-to-loop transition time can be simply approx-

imated as the desorption time of a lone hydrophobe, with no influence of the connecting polymer

chain.

3.3 Simulation Model

HEURs (hydrophobically modified ethoxylated urethanes) are telechelic polymers that consist of

PEO backbones with typical molecular weights around 24-35 kg/mol and hydrophobic endcaps

that adsorb to the surface of colloids with an attractive strength of 10-20 kBT [57, 18]. Since,

for PEO, the number of Kuhn steps is related to the molar mass through the relationship MW ≈

NK ·137g/mol, the above range of molecular weights correspond to chains that are 175-255 Kuhn

steps in length [59] The simulations in this study use reduced units that can be mapped to real units.

Thus, all energies are in units of kBT where kB is Boltzmann’s constant and T is 298 K. Lengths

are in units of bK , which represents one Kuhn step of a PEO polymer, or 1.1 nm, and the water

solvent viscosity is held constant at ηs = 8.90 × 10( − 4)Pa · s at 298K [59] All other reduced
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units can then be derived from these definitions of kBT ,ηs, and bk. In particular, the reduced time

unit, [t], is calculated to be [t] = (ηsb
3
K)/kBT = 0.288ns.

All simulations were performed using HOOMD-blue, a particle simulation software pack-

age optimized for GPU performance [60]. We represent each HEUR as a chain of purely re-

pulsive beads connected by stiff harmonic springs with zero force at a finite extension (i.e., a

“Fraenkel spring”), with each spring representing one Kuhn step, and the hydrophobic end group

(or “sticker”) represented by a single bead whose binding strength to the colloid can be varied. The

harmonic spring potential between adjacent beads is

Ubond(r) =
1

2
k(r − r0)2 (3.1)

where k = 400kBT/b
2
k, r0 = 1.0bK , and r is the distance between the particle centers. The

purely repulsive polymer bead-bead interactions (including the “sticker” bead) are modeled using

a Weeks-Chandler-Anderson (WCA) potential,

Ubb(r) =

 4εbb
[(

σbb
r

)12 −
(
σbb
r

)6
+ 1

4

]
r < 21/6σbb

0 r ≥ 21/6σbb

(3.2)

where εbb = 1.0kBT and σbb = 0.4bK and r is the center-to-center distance between beads. In

our earlier work, this value of σbb was chosen to generate the correct radius of gyration for PEO in

dilute aqueous solutions as shown by light scattering results [58, 3].

We model the attraction of the hydrophobic sticker bead to the hydrophobic flat surfaces by

defining a shifted-Lennard-Jones potential in terms of the distance from the wall to the particle

center, ∆x,

Uws(∆x) =

 4εws
[(

σws

∆x

)12 −
(
σws

∆x

)6]
∆x < 2.5σws

0 ∆x ≥ 2.5σws

(3.3)

where σws = 1.0bK , and εws depends on the length of the experimental hydrophobe and ranges

from 4-12 kBT in this study. We choose the cutoff distance to be where the potential goes ap-
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proximately to zero, ∆x = 2.5σws, and the potential is shifted slightly vertically so that it goes to

exactly zero at this cutoff. The minimum in the potential is at ∆x = 2(1/6)σws. We take the origin

of the simulation box to be where the left wall’s potential goes to infinity, and so ∆x = x is the

distance from the left wall, where x is the particle’s position with respect to the origin. The right

wall location Lx, is also where the potential goes to infinity, so that for the right wall, ∆x = Lx−x,

in Eq. 3.3. The interior beads of the polymer chain are taken to be purely repulsive with respect to

the flat surfaces, as represented by a shifted WCA potential:

Uwb(∆x) =

 4εwb
[(

σwb

∆x

)12 −
(
σwb

∆x

)6
+ 1

4

]
∆x < 21/6σwb

0 ∆x ≥ 21/6σwb

(3.4)

where σwb = 1.0bK and εwb = 1.0kBT so that the particle begins to interact with the wall at the

same position that the sticker potential, Uws, is at its minimum, and so both potentials approach

infinity at 0 and Lx for the left and right walls, respectively.

An actual PEO polymer in solvent at low concentration has a relaxation time that is influenced

by hydrodynamic interactions (HI), but our simulated chains are freely draining, i.e., they approx-

imate Rouse chains. We can correct, approximately, for the omission of HI, by choosing the drag

coefficient of each bead ζbead in the freely draining Rouse chain to account implicitly for hydrody-

namic interaction. We start by noting that the Rouse relaxation time for a polymer chain is related

the intrinsic viscosity of that chain by [61]

τRouseR =
6[η]MWηs
π2NAkBT

(3.5)

where ηs = 8.9× 10−4Pa · s is the solvent viscosity of water, MW = NK · 137g/mol is the PEO

polymer molecular weight, NA is Avogadro’s number, and [η] = KMν
W is the intrinsic viscosity of

the polymer. For dilute PEO, the empirical constants in this expression areK = 8.75×10−6m3/kg

and ν = 0.79 [62]. For these given values, the “Rouse” relaxation time from Eq.3.5 is then

τRouseR = 1.277 × 10−11N1.79
K s. We note that this relaxation time is a “Rouse” time only in the
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sense that it depends on the intrinsic viscosity according to the formula, Eq.3.5, from Rouse theory.

But the intrinsic viscosity, [η] = KMν
W with empirical exponent ν = 0.79, scales with molecular

weight according to “good solvent” scaling with internal HI within the chain. Thus, the formula

for relaxation time above accounts for excluded volume (EV) and internal HI indirectly through

the formula for intrinsic viscosity.

Because the simulated chains are Rouse chains with NK Kuhn steps, the Rouse relaxation time

can be related to the bead drag coefficient by

τmultibeadR =
ζbead(NK + 1)2

4π2kBT

2b2
K

3
(3.6)

Therefore, by setting τmultibeadR = τRouseR , the bead drag coefficient ζbead can be estimated by:

ζbead =
36[η]MWηs

NA(NK + 1)2b2
K

(3.7)

Since [η] ∝M0.79
W , andMW ∝ NK , the bead drag coefficient given by Eq.3.7 is dependent on chain

length. This is necessary so that the Rouse scaling of τRouseR ∝ N2
K is corrected to the scaling of

τRouseR ∝ N1.79
K expected for a PEO chain in water, which is influenced by HI and excluded volume.

The drag coefficients of a bead in chains of various lengths are given in Table 3.1. Transition times

between loop and bridge conformations will be all given in terms of τ0, a characteristic frictional

time defined as τ0 ≡ ζbeadb
2
K/kBT . We note that this use of the experimental intrinsic viscosity to

calculate a chain-length-dependent bead drag coefficient is approximate not only in that it neglects

the influence of HI and EV on the shape of the polymer relaxation mode distribution, but it also

neglects screening of HI due to other nearby chains. The polymer adsorption density considered

here however, is roughly in the “mushroom” to weakly overlapping “brush” regime, and so these

approximations are hopefully not too severe.
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NK τRouseR /s τRouseR /[t] ζbead[t]/[m] or ζbead(ηsbK)−1

10 7.87 ×10−10 2.73 1.34
40 9.41 ×10−9 32.70 1.15

200 1.68 ×10−7 582.99 0.85

Table 3.1: Rouse times and drag coefficients of HEUR polymer chains, as calculated from Eqs.
3.5, 3.6, and 3.7.

3.4 Simulation Methods

We consider the geometry in Fig. 3.1A of two parallel surfaces to which the polymers’ hydropho-

bic endcaps can adsorb and seek to calculate the times to transition between the loop state in which

both stickers are attached to the same surface, and the bridge state in which the two stickers are

attached to opposing surfaces, where the attachment interaction is governed by Eq. 3.3. Our pri-

mary goal is to investigate transitions between loop and bridge configurations, between which is a

“dangling” configuration with one of the stickers binding to neither surface. To avoid uninteresting

(and very rare) “free chain” states in which both stickers are unbound, we simplify the simulations

by taking one sticker to be adsorbed essentially irreversibly to its “anchoring wall” with binding

strength εws = 40kBT , and the other “weak” sticker to be attracted to both walls with strength

εws set to a value between 4 and 12 kBT . To relate our calculated times to those for chains with

two weak sticker, we consider that, for a loop with two weak stickers transitions to a bridge, either

sticker can break to form the bridge so that the transition rate is twice that of a chain with one

permanently adsorbed sticker. When a polymer bridging two colloids breaks, it forms a loop on

either particle with the average time of the time for a bridge with an anchored sticker to transition

from bridge-to-loop, and so it does not require a correction factor.

Bridge, loop, and dangling configurations are defined by dividing the simulation box into three

distinct regions along the x axis, as shown in Fig. 3.1. The boundaries of these three regions

are defined using a distance ∆xcut,−1 from each wall, at which U(∆xcut,−1) = −1kBT , for that

wall’s LJ potential, also shown in Fig. 3.1A. The value of ∆xcut,−1, based on the criterion that

U(∆xcut,−1) = −1kBT , varies over the range 1.57 bK - 1.91 bK , depending on the well potential
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depth and justification for this criterion is given in the Supplemental Information in section 3.7.

A chain is defined as a “loop” if its weak sticker is within the distance ∆xcut,−1 of the anchoring

wall, as a “bridge” if its weak sticker is within ∆xcut,−1 of the opposite wall, and as “dangling” if

the weak sticker is between the adsorption cutoffs of either wall. The 40 kBT attraction strength

between the irreversibly strong sticker end and the anchor wall ensures that the chain is always a

loop, a bridge, or a dangling chain, and is never a free chain. For simplicity, from here forward,

values of “sticker strengths” will always refer to the weaker of the two stickers, since we only vary

the strength of this weaker sticker.

We control the grafting density of the chains by keeping the number of chains per surface fixed

(Nchains = 500 unless stated otherwise) and adjusting the length, Ly, of a periodic simulation box

with dimensions Lx × Ly × Ly, with x as the direction perpendicular to the surfaces. Polymer

chains are all randomly initialized in the loop configuration (unless otherwise stated) and tethered

to each of the two flat walls, with the same number of loops anchored to each wall [52]. The

grafting density to each surface is then σ0 = Nchains

L2
y

, which we make dimensionless as 2σ0R
2
g,

where Rg =
√

1
2
NK

6
bK is the radius of gyration of a polymer half chain, since we assume the

majority of the polymers are in the loop configuration.

When 2σ0R
2
g < 1, the system is in the “mushroom” regime where chains are isolated, and

when 2σ0R
2
g > 1, it begins to enter the “brush” regime, where chains overlap and begin to stretch

perpendicular to the adsorption surface.

We now wish to calculate the mean time that a chain requires to transition between loop and

bridge configurations. In doing so, we wish to leave out the dangling category, which is a tran-

sitional state between a bridge and a loop. Thus, as seen in Fig. 3.1B, we regard a chain that

transitions from loop to dangling and back to loop again as having not left the loop configuration,

and likewise with bridge configurations. We eliminate the intermediate dangling classification be-

cause coarse-grained models, such as the population balance model of Hajizadeh et al., ignore

the dangling chains, whose existence is relatively brief, because of the relatively high binding

strength of the sticker [10, 21]. In addition, the “dangling” category represents a broad range of
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Figure 3.1: A) Diagram of a 10-Kuhn-step chain and the attractive shifted Lennard-Jones poten-
tials defining the interaction between the weak hydrophobe (yellow) and the two boundary walls.
The gap, H , indicates the distance between the two well minima. The distance ∆xcut,−1 from
either wall is where the interaction strength between the particle and the anchor or opposing wall,
respectively, is U(xcut,−1) = −1.0kBT . The black bead represents the strong, “anchored,” hy-
drophobe that is adsorbed to the anchor wall with a strong potential strength εws = 40kBT (this
strong adsorption potential is not shown), and the grey interior beads are purely repulsive with
respect to the boundary walls. Green, grey, and blue shaded regions define loop, dangling, and
bridge classifications for determining configuration fractions φbridge, φloop, φdangling. B) Example
trajectory of a hydrophobe transitioning between bridge and loop configurations. Dashed lines
represent distances xcut,−1 from either anchor or opposing wall as indicated. Each blue highlighted
region begins when a bridge has formed by migration of the weak hydrophobe into the region
denoted as “bridge” (within ∆xcut,−1 of the opposing wall at x = Lx, and ends when the bead
has crossed into the region denoted “loop” (within ∆xcut,−1 of the anchor wall, at x = 0) which
initiates the beginning of the green region. The width of each region samples the bridge-to-loop
and loop-to-bridge transition times, respectively.
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chain configurations spanning from “almost bridge” to “almost loop,” and so bridge-to-loop and

loop-to-bridge transitions are more relevant than accounting for various intermediate stages. Thus,

we define the bridge-to-loop transition time as the time between the crossing of a chain’s weak

sticker to within the distance ∆xcut,−1 of the non-anchoring, opposite, wall (on the right side of

Fig. 3.1A), and the first time it not only escapes that surface but crosses to within ∆xcut,−1 of the

anchoring wall (blue shaded region of Fig. 3.1A). Similarly, the loop-to-bridge time is the time

between a crossing to within ∆xcut,−1 of the anchoring wall and the first crossing thereafter back

to within ∆xcut,−1 of the non-anchoring wall (green shaded region of Fig. 3.1A). All times at

which the chain is in a dangling state are thus allocated to either the bridge-to-loop interval or the

loop-to-bridge interval. Examples of the assignment of loop-to-bridge and bridge-to-loop intervals

are shown in Fig. 3.1B.

3.5 Results and Discussion

3.5.1 Equilibrium Configurations

We first investigate short chains of 10 Kuhn steps. We equilibrate the system by running the

simulation until the numbers of bridges, loops, and dangling chains reach constant values except

for fluctuations. As seen in Fig. 3.2A, the loop-to-bridge and bridge-to-loop transition times are

approximately equal at small normalized gap H/(NKbK), where H is the distance between the

minima at each of the two walls, as show in Fig. 3.1A, and is defined as H = Lx−2(21/6σws). For

larger gaps, there is a stretching penalty for the polymer chains to achieve the bridging configura-

tion, and so the loop-to-bridge time becomes longer and the bridge-to-loop time becomes shorter,

by as much as two orders of magnitude for the former at large normalized gap. Fig. 3.2B shows

transition times for varying surface coverage, which has its most pronounced effect at intermediate

gap.

Although it is relatively easy to equilibrate a small system of 10-Kuhn-step chains, chain

lengths more relevant to typical HEUR polymers are on the order of 200 Kuhn steps long (molec-
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bridge-to-loop bridge-to-looploop-to-bridge loop-to-bridge

Figure 3.2: Normalized loop-to-bridge transition and bridge-to-loop transition times for equili-
brated simulations of 10-Kuhn-step chains for varying normalized gap, H/NKbK , for A) varying
sticker adsorption strength, εws, at 2σ0R

2
g = 0.037 and B) varying surface coverage, 2σ0R

2
g at

εws = 8kBT

ular weight MW ≈ 27kDa) and thus require timescales too long to readily equilibrate the bridge

and loop populations and the transitions between them. However, we can circumvent these compu-

tationally expensive simulations by using the self-consistent theory (SCFT) described by Zhang et

al. to compute the equilibrium numbers of bridge, loop, and dangling configurations for telechelic

polymers with hydrophobes adsorbed to parallel walls [58]. At thermodynamic equilibrium, the

ratio of transition rates between loops and bridges should be equivalent to the ratio of equilibrium

fractions of bridges and loops φbridgesand φloops, that is:

φbridge
φloop

=
τbridge−to−loop
τloop−to−bridge

(3.8)

To check the accuracy of Eq. 3.8, we first assess how well self-consistent field theory predicts

the equilibrium configuration fractions of loops, bridges, and dangling chains as calculated by the

equilibrated Brownian dynamics simulations. Fig. 3.3A shows that as the sticker strength becomes

large, the fraction of dangling species seen in the BD simulations diminishes and the SCFT pre-

dictions predict the configuration fractions well. However, at a high surface coverage (Fig. 3.3B),

simulations show a significant fraction of dangling chains not predicted by self-consistent field

theory, such that both loop and bridge configurations are less than predicted by SCFT.
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B)

A)

Figure 3.3: Fraction of polymer chains in loop (triangles), bridge (squares), and dangling (cir-
cles) configurations as a function of normalized gap (H/NKbK) for A) varying hydrophobic
strengths (εws = 6, 8, 10kBT ) at 2σ0R

2
g = 0.037 and B) varying surface densities (2σ0R

2
g =

0.037, 0.333, 0.926) for hydrophobic sticker strength of εws = 8kBT . For all sub-figures, symbols
represent configuration fractions from equilibrated Brownian dynamics simulations and dashed
lines are configuration fractions from self-consistent field theory, for 10-Kuhn-step chains.
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A) B)

Figure 3.4: SCFT predictions for the ratio of chains in bridge and loop configurations, φbridge/φloop
(dashed lines), and the ratio of transition times, τbridge−to−loop/τloop−to−bridge, calculated from equi-
librated BD simulations (markers) for A) varying weak hydrophobic strengths (εws = 6, 8, 10kBT )
at 2σ0R

2
g = 0.037 and B) varying surface densities (2σ0R

2
g = 0.037, 0.333, 0.926) for hydrophobic

sticker strength of εws = 8kBT .

A comparison of φbridge/φloop predicted by SCFT and τbridge−to−loop/τloop−to−bridge calculated

from BD simulations is shown in Fig. 3.4A. Both the predictions and simulations each collapse

onto curves that are independent of the sticker strength, indicating that these ratios are equilibrium

properties. There is a noticeable difference between predicted and simulated results at small inter-

surface gap, which is likely due to the SCFT calculations being discretized on a lattice of 1 bK

segments. At small gaps that are approaching the size of the lattice segments themselves, the

lattice is no longer an accurate approximation of continuous space.

Fig. 3.4B shows that the ratios Nbridge/Nloop and τbridge−to−loop/τloop−to−bridge both increase for

increasing surface coverage, but SCFT over-predicts this effect. The increase in this ratio is likely

due to “squeeze-out” of chains from loops configurations into less crowded bridge configurations

as chain density increases. However, given the slight-to-moderate effect of surface density on

transition rate, only low surface coverage cases will be considered in the remainder of this work.

We can now use self-consistent field theory to predict φbridge/φloop, and therefore the ratio of

transition times, for longer chain lengths whose equilibration is inaccessible with BD simulations.
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Fig. 3.5A the shows predicted bridge, loop, and dangling configurations for 10, 40, and

200 Kuhn step chains. For all chain lengths, the configuration fractions converge at high sticker

strengths (εws ≥ 10kBT ), with longer chains requiring larger values of εws to converge. As seen in

Fig. 3.5B, the ratios φbridge/φloop for all chain lengths collapse onto a single curve when the inter-

surface gap is normalized by bK
√
NK , or the root-mean-squared end-to-end distance of a freely

jointed polymer chain NK Kuhn steps in length. We empirically fit the following function to the

collapsed curve:
φbridge
φloop

=
1

1 + exp
[
4.88

(
H

bK
√
NK

)
− 1.32

] (3.9)

This curve, shown in Fig. 3.5B, and can be used along with the relationship given in Eq. 3.8 to

calculate the inaccessibly long τloop−to−bridge times from the much shorter, more computationally

feasible, τbridge−to−loop times:

τloop−to−bridge = τbridge−to−loop
(
1 + exp

[
4.88

( H

bK
√
NK

)
− 1.32

])
(3.10)

Therefore, the focus of the remainder of this work is the calculation of bridge-to-loop transition

times for longer, more experimentally relevant, polymer chains.

3.5.2 Calculating bridge-to-loop transition times

To calculate the bridge-to-loop transition times, we run simulations identical to those described in

the previous section, but with 200 of the 500 polymers on each surface initialized in the bridging

configuration. For 200-Kuhn-step polymers, 100 of 200 polymers on each surface were initialized

as bridges to the opposite surface and the remainder were left as loops. The simulations were

then run until all the polymers initialized as bridges had transitioned to the loop configuration, as

indicated by τbridge−to−loop in Fig. 3.1A.

We analyze the bridge-to-loop transition time by dividing it into two distinct processes as

shown in Fig. 3.1A, each with a characteristic time: 1) τesc, the time for the sticker (attached

to a polymer) to escape from the Lennard Jones well and 2) τspring, the time for a sticker to travel
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A)

B)

Figure 3.5: A) Self-consistent field theory predictions for fraction of chains in loop (dashed lines),
bridge (solid lines), and dangling (dot-dashed lines) configurations for polymer chains 10, 40,
and 200 Kuhn steps in length. B) Ratio of the number of chains in bridge configurations to the
number of chains in loop configurations for 10, 40, and 200 Kuhn steps where the inter-surface
gap, H , is normalized by the theoretical root-mean-squared end-to-end distance of the polymer
chain, bK

√
NK . Black dashed line represents Eq. 3.9.
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B)

** * *

A)

Figure 3.6: A) Normalized escape times for polymers with lengths 10 (circles), 40 (x’s), and 200
(diamonds) Kuhn steps and hydrophobic sticker strengths listed in the legend. Open squares rep-
resent normalized escape times of a single hydrophobic particle not attached to a polymer τ particleesc ,
also indicated by the “*” label on the x-axis. B) Identical data to A), but combined into a single
plot, where the symbols have the same meaning as in A).

from the edge of the potential back to the loop configuration in the absence of the sticker wall

potentials. At small normalized gap, the escape time of the polymer’s hydrophobic end-bead, τesc,

converges to the particle escape time for a lone hydrophobic bead not attached to a polymer chain,

τ particleesc , (open squares in Fig. 3.6). At large normalized gap, the tension of the stretched poly-

mer chain counteracts the attractive adsorption potential, so that the escape time decreases with

increasing normalized gap. Fig. 3.6B demonstrates that τesc is nearly independent of the polymer

chain length, NK , and instead only depends on the normalized gap that the polymer chain spans

in the bridging configuration, H/NKbK , and the hydrophobe strength, εws. Because for 200 Kuhn

steps (the chain length of experimental interest) there is a vanishingly small fraction of bridges at

inter-surface distances larger than 50 bK , we are most interested in capturing the behavior smaller

than this inter-surface distance, or where H/(NKbK) ≤ 0.25. Therefore, we can assume that, in

the regime of long chains and small or moderate interparticle gaps, that the escape time, τesc for a

hydrophobe attached to a chain is approximately equal to that of a lone particle.

In models of HEUR telechelic chains, it has been approximated that τ particleesc is equivalent to

τbridge−to−loop, which assumes that the bridge-to-loop transition time is not dependent on either
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Figure 3.7: Characteristic times τspring (black line, x symbols), τesc (open symbols, dashed lines),
and τbridge−to−loop(filled symbols, solid lines) as shown in Fig. 3.1 for A) 10, B) 40, and C) 200
Kuhn step polymer chains with attractive sticker strength εws = 6kBT (blue) and 10kBT (red) at
grafting density σ0R

2
g = 0.037.

the normalized gap or the chain length (NK) of the telechelic polymer [55, 10]. However, as

seen in Fig. 3.7, τbridge−to−loop is longer than τesc (as well as τ particleesc ), and the difference between

these two characteristic times becomes much larger for longer chain lengths. It is important to

note that, for high hydrophobic strength, at small normalized gap, the deviation between τesc and

τ + bridge− to− loop decreases as normalized gap increases. At high normalized gap, there is a

low probability of the hydrophobe re-entering the potential well after its initial escape, due to the

retractive spring force of the polymer chain, which causes a transition to a loop configuration once

the sticker has escaped its well. The number of re-entries to the bridge state, which increases at

smaller gaps, multiplies the escape time τesc, to give an increased bridge-to-loop transition time,

since for every re-entry the particle must undergo a new escape process with time scale τesc.

The data in Fig. 3.7 show that for sufficiently long chains and weak hydrophobic strengths,

τspring dominates the bridge-to-loop transition time and the wall potential has little effect. For long

chains and moderate hydrophobic binding strength (εws), the spring retraction time is considerably

longer than the time required for a particle to escape the wall potential, τspring � τ particleesc , since the
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polymer retraction force is weak and the hydrophobe has a relatively long distance to retract. Fig.

3.8 shows that when inter-surface gap normalized by the root-mean-squared end-to-end distance is

held fixed, the spring retraction time scales as the Rouse time, τRouseR /τ0 ∝ N2
K . Note that while we

attain Rouse scaling for τRouseR /τ0, τRouseR itself scales as N1.79
K because τ0 depends on the number

of beads, through dependence of the drag coefficient, ζbead, on NK as discussed earlier.

To understand how the scaling of τesc relates to τbridge−to−loop, we use Larson and Lightfoot’s

theory for predicting the escape time of an overdamped Brownian particle from a Lennard-Jones

potential well [63, 61]:

τesc = τ0

(πkBT
εws

)1/2
∆xcut
bK
− ( 4ε

kBT
)1/nΓ(1− 1

n
)

n21/n
eεws/kBT (3.11)

In Eq. 3.11, the characteristic frictional time is τ0 ≡ ζbeadb
2
K/kBT , ∆xcut is the distance
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from the wall at which the particle is considered escaped, taken here to be ∆xcut,0 = 2.5bK , and

n = 6 is the Lennard-Jones coefficient for the 12-6 LJ potential we are using. In Fig. 3.9, it is

clear that there are two distinct scaling regimes: 1) where τbridge−to−loop converges to τspring for

weaker hydrophobic strength, and 2) where τbridge−to−loop appears to scale as τ particleesc when the

τ particleesc � τspring. The short 10 Kuhn step chains’ bridge-to-loop times have the same scaling as a

lone particle’s escape time for εws > 4kBT . However for NK = 40 and NK = 200, this transition

doesn’t occur until approximately εws > 8kBT and > 12kBT , respectively. From the trend shown

in Fig. 3.9, it appears that the bridge-to-loop time of a 200 Kuhn step chain will approach the same

scaling with εws as exhibited by τ particleesc at sufficiently high εws, although likely with an offset in

the prefactor that depends on chain length, as indicated by the lack of convergence of the red and

green curves to the grey one at large εws.

Experimental HEUR polymers most relevant to waterborne coatings have hydrophobic

strengths in the range of εws ≈ 10 − 20kBT , and chain lengths of around NK ≈ 100 − 500.

Thus, within these relevant ranges, τbridge−to−loop can be approximated to be a factor of 2-5 times

τesc, at relatively high εws (> 12kBT ) and/or low NK (∼ 200). At the other extreme of lower

εws (∼ 10kBT ) and higher NK (> 100), τspring can provide an appropriate approximation of

τbridge−to−loop. For typical experimental HEURs for intermediate conditions between these ranges,

neither τspring nor τesc provide appropriate approximations of τbridge−to−loop.

More generally, we can directly compute bridge-to-loop transition times using BD simulations,

and then use the relationship in Eq. 10 to compute the loop-to-bridge transition times to present a

complete picture of bridging dynamics of HEUR polymers, as shown in Fig. 10.

3.6 Conclusions

We performed simulations of rheology-modifying polymers using a bead-spring model with ex-

cluded volume to compute the characteristic transition times between bridge and loop config-

urations between flat parallel surfaces. We used the equilibrium ratio of bridges and loops,
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Figure 3.9: Bridge-to-loop transition times (solid symbols and solid lines) and spring retraction
times (dot-dashed lines) for varying chain lengths, NK , all at normalized gap H/bKNK = 0.36.
Grey dashed line represents Larson-Lightfoot predictions from Eq. 3.11 and open grey squares
with solid grey line represent escape times, τ particleesc , for a hydrophobic particle not connected to a
polymer chain.
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Figure 3.10: Normalized bridge-to-loop transition times (filled circles) of chains initialized in
bridging configurations and corresponding predicted loop-to-bridge transition times (open squares)
calculated from SCFT predictions and Eq. 3.10. Inset on far right shows data for NK = 200 and
εws = 8kBT , with an extended y-axis not shown on the main plot.
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φbridge/φloop, predicted by an established lattice self-consistent field theory (SCFT) method, and

showed that the equilibrium information from SCFT can be used to compute the slow loop-to-

bridge transition from the faster and more computationally feasible bridge-to-loop time. We

showed that φbridge/φloop ratios from SCFT for various chain lengths as a function of the inter-

surface gap collapses onto a single curve when the inter-surface gap is normalized by the root-

mean-square end-to-end distance of the polymer chain. This eliminates the need for SCFT to be

used for other chain lengths and allows the slower loop-to-bridge transition time to be calculated

from BD simulations of the faster bridge-to-loop transition. From these elements, we present

a complete picture of transition times for experimentally relevant chain lengths and hydrophobe

strengths. We show that the bridge-to-loop transition time (τbridge−to−loop) can only be approx-

imated roughly by the time for a hydrophobe to desorb from a surface (τesc), in limited circum-

stances of strong hydrophobe binding and relatively short chains. For longer chains, but still within

the typical experimental range, and weaker sticker strengths, the chain retraction time (τspring) is

several orders of magnitude longer than the desorption time.

This approach to predicting dynamic polymer behavior can be useful for understanding the

behavior of formulations containing colloids and telechelic polymers. Specifically, these transition

rates have direct application to the Population balance – Brownian Dynamics (Pop-BD) simu-

lations, a coarse-grained method for predicting the rheological behavior of waterborne coatings

containing HEUR polymers and latex colloids [10]. Connecting the results obtained here to simu-

lations of networks of HEURs bound to colloids will be the subject of future work.

3.7 Supplemental Information: Rationale of cutoff distance for

computing transition times

In our studies of 10-Kuhn-step polymer chains at equilibrium, we initially took the value of ∆xcut,

(the boundary between bridge and dangling or between loop and danging) to be 2.5 bK from either

wall, so that ∆x = 2.5bK in Eq. 3.3. Using this criterion, we observed a discrepancy between the
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breakage times for chains that are initialized as bridges, or “primary bridges,” and chains that are

initialized as loops and subsequently form bridges, or “secondary bridges.” This secondary bridge

escape time can be significantly faster than the primary bridge time for large ∆xcut because the

primary bridges are all allowed to go to the well minimum before the simulation starts, whereas

the secondary bridges might only reach the cutoff distance ∆xcut without going fully to the well

minimum before breaking again. These weakly adsorbed bridges thus can break faster than those

initialized at the deepest part of the Lennard-Jones well.
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Figure 3.11: Primary (purple triangles connected by solid lines) and secondary (orange circles con-
nected by dashed lines) for polymer chains 10 Kuhn steps in length and for weak sticker strengths,
εws, equal to 6kBT (top) and 8kBT (bottom) and “gap” or box length, Lx equal to 6, 7, and 8
bK .Vertical grey dashed lines indicate ∆xcut,−1.

To take advantage of the relationship described in Eq. 3.8, we wished to specifically study the

bridge-to-loop transition time of longer, 40- and 200-Kuhn-step, polymer chains by initializing a

fraction of the polymer chains as primary bridges and tracking their transition to becoming loops.

In this section, we show that choosing the cutoff criteria to be xcut,−1, or the position at which
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U(x) = −1kBT , satisfies this requirement for our system of interest.
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Figure 3.12: Histograms of bridge-to-loop times for varying ∆xcut and primary (left, purple) and
secondary (right, orange) bridges.

We compare the bridge-to-loop times for varying values of ∆xcut, so that we can determine the

value of ∆xcut at which primary and secondary bridges have approximately equal escape times.

Once we have identified an appropriate value of ∆xcut, we can use the primary bridge breakage

time as representative of the bridge-to-loop time for a polymer in an equilibrated system. Fig. 3.11

shows the bridge-to-loop times for primary and secondary bridges for a range of ∆xcut values.

The primary bridge-to-loop transition times are nearly independent of ∆xcut, since all the sticker

particles are initialized in the well minima. However, the secondary transition times decrease

significantly with increasing ∆xcut, because there is a significant fraction of sticker particles that

do not reach the bottom of the potential well, and thus contribute an artificially small bridge-to-

loop time. This effect can be seen in Fig. 3.12, which shows the distribution of breakage times

for primary and secondary bridges at ∆xcut = 2.5bK . There is a large population of very short

secondary bridge-to-loop transition times that is absent from the distribution of primary bridge-to-

loop transition times.
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CHAPTER 4

Transitioning From Underdamped to Overdamped

Behavior in Theory and in Langevin Simulations of

Desorption of a Particle From a Lennard-Jones

Potential

Disclosure: The content of this chapter has been reproduced from Travitz, A., Mani, E., and Lar-

son, R.G. Transitioning From Underdamped to Overdamped Behavior in Theory and in Langevin

Simulations of Desorption of a Particle From a Lennard-Jones Potential. Journal of Rheology

(accepted), with the permission of AIP Publishing.

4.1 Abstract

We investigate the transition between the overdamped and underdamped regimes in Langevin dy-

namics simulations with significant conservative forces by comparing direct simulations with the-

ory by Kramers, by Mel’nikov and Meshkov, and by Larson and Lightfoot. The need for clarifica-

tion is made evident by noting that the most commonly cited theories of Kramers and of Mel’nikov

and Meshkov (MM) do not apply in the overdamped limit to escape times from a Lennard-Jones

(LJ) potential, because Kramers and MM do not account for the flatness of the LJ potential at

the escape position, which allows for a region of nearly free Brownian diffusion near the escape
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position. While the little-known Larson-Lightfoot (LL) approach does consider a Lennard-Jones

potential, it does not properly consider the underdamped regime, and so a complete description

is only achieved by combining the LL and MM results into a single general equation, which we

validate for the first time by explicit comparison with Langevin simulations.

4.2 Introduction

Langevin and Brownian dynamics simulations of complex fluids are becoming increasingly com-

mon as computational power increases and these tools are being extended to ever more com-

plex systems. While simulations of simple monodisperse polymers and suspensions of spheres

have been carried out for many years, such tools can now be applied to more complex sys-

tems, including, for example, mixtures of polymers and colloids[66], gelling systems[67], mi-

cellar systems[68], semi-flexible polymers, etc.[69]. Open-source tools for such simulations are

often used instead of homegrown code due to their efficiency, flexibility, and reproducibility. Such

open-source software, including the well-known LAMMPS and HOOMD-blue packages, solve the

Langevin equation [60, 70]:

mi
d2ri
dt2

= −ζi
dri
dt

+ FC
i + FR

i (4.1)

Here, mi is the mass of ith species, ri is the particle position, ζi is its drag coefficient, FC
i is the

conservative force due to inter- and intra-species interactions, and FR
i is the random force due to

solvent interactions (Gaussian noise). This equation is typically solved at constant NVT (canonical

ensemble). In HOOMD-blue, the drag coefficient is directly defined, while in LAMMPS, one

specifies the drag coefficient, ζ , via an inertial time defined for each species as

tin =
m

ζ
(4.2)

where the subscript, i, denoting the ith species, is omitted here for clarity. Because tin is inversely

proportional to the drag coefficient, viscous damping actually becomes weaker as this so-called
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“damping parameter,” as defined in LAMMPS, becomes larger. When t� tin, a free particle (with

FC
i = 0) undergoes ballistic motion dominated by inertia due to its mass m, while for t � tin, it

undergoes diffusive motion dominated by its drag coefficient, ζ . That is, it attains the overdamped

regime at long times, where inertia becomes unimportant. The limit in which particle mass is

taken to be zero is the overdamped limit, and solutions of corresponding equations, lacking the

acceleration term in Eq.4.1, are referred to as “Brownian dynamics,” since apart from conservative

forces only Brownian forces drive particle motion.

Since most problems of interest in such simulations are concerned with behavior in the over-

damped regime, when solving the Langevin equation, one must be careful to choose to achieve the

overdamped regime where particle masses no longer affect the results. A simple “rule of thumb”

for doing so is to make sure that the inertial time tin is less than any relaxation time relevant to

the physical problem, so that inertial effects present at short times have decayed by the time the

physics of interest emerge in the solution. While choosing a small value for tin helps ensure attain-

ment of the overdamped regime, smaller values can be computationally wasteful, since time step

sizes generally must be on the order of, or smaller than, tin, unless the mass is set to zero.

Although the above criterion, t� tin for attaining the overdamped limit applies to free particle

diffusion in the absence of a conservative force, it is well known that when a potential is present,

the escape time of the particle from a potential can be affected by inertia even when the particle’s

escape time is much longer than tin [71]. Much literature addresses this escape time in the presence

or absence of inertia, including the classic paper of Kramers[71], the more recent and complete

work of Mel’nikov and Meshkov (MM) [72] and the little-noticed work of Larson and Lightfoot

[61] (LL, where this Larson is not an author of our paper). However, we have found that the

application of this literature to complex fluid simulations can be confusing, because of several

points that need clarifying:

1. When an attractive potential is present, attainment of the overdamped regime is not con-

trolled only by the timescale of the escape relative to the inertial time, tin = m/ζ , but is

influenced by the depth and shape of the potential well.
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2. The standard Kramers theory, and even the more complete theory by Mel’nikov and

Meshkov, only apply to the overdamped regime if the escape from a potential well occurs at

a local maximum with downward curvature in the potential. Therefore, these approaches do

not apply to conventional and widely used Lennard-Jones potential wells, which become flat

at the position where the particle escapes the well.

3. The only theory that considers particle escape from a Lennard-Jones potential is the little-

cited work by Larson and Lightfoot. However, their work is also incomplete in its description

of the transition to the fully underdamped regime because it does not account for the action

of the particle or the entire shape of the potential in limit of small friction.

4. The slope of the potential at the point of escape is irrelevant in the underdamped regime, so

that the Mel’nikov-Meshkov (MM) theory correctly describes particle escape in this regime

even for a Lennard-Jones potential. As a result, a complete description of particle escape

from the LJ potential is obtained by combining the LL theory for the overdamped limit with

the MM theory for the underdamped regime.

Because few of those simulating complex fluids seem to be aware all of the above points, as

demonstrated by earlier work in our group which includes errors resulting from this ignorance, it

is useful to review carefully the implications of the key papers by Mel’nikov and Meshkov (MM),

Larson and Lightfoot (LL), and Kramers [71, 72, 61, 22]. It is also important to compare the predic-

tions of these theories with Langevin simulations of the escape of a particle from a Lennard-Jones

potential well, so that the various regimes and effects of the different approximations are clearly

demonstrated and the conditions for transition between underdamped and overdamped regimes

are clearly defined. We also seek to provide an expression for the average escape time from a

Lennard-Jones potential well that encompasses all regimes of inertia and well depth that can be

used in mesoscopic simulations.
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4.3 Evaluating theoretical approaches

One-dimensional transport of a particle in either free space or in a potential well is described by

a Fokker-Planck equation for position and momentum, given in multiple sources[71, 61, 73]. The

non-dimensionalized mean first passage time for particle escape, τesc/τ0, is defined as the time for

first crossing of a distance criteria, zcut (typically near or at the upper edge of a potential well),

where τ0 is a characteristic frictional time defined as τ0 ≡ ζa2/kBT . Assuming a fixed value of

zcut, this dimensionless escape time τesc/τ0 is a function of two dimensionless groups, namely the

dimensionless well depth ε/kBT and the dimensionless friction constant α ≡ ζ2a2

mkBT
, where a is

the distance unit comparable to the width of the well. The classical and best-known solutions to

this problem define the crossing point for escape of the particle to be at the local maximum of the

potential well, denoted as zcut in Fig.4.1A, providing an unambiguous location for escape beyond

which the potential acts as a barrier to re-entry.

The most complete solutions to this problem are those of Kramers and of Mel’nikov and

Meshkov, both using a pseudo-steady-state (PSS) approximation, but with Kramers’ most “gen-

eral” solution also assuming that α is “not so small that energy uptake from the heat bath... is a lim-

iting factor in determining the escape rate”[71, 72, 61]. Kramers handled the limit of “very small”

α with a separate asymptotic formula, which was not encompassed by his otherwise “general”

solution for damping ranging from moderately damped to overdamped. The Mel’nikov-Meshkov

solution, however, does encompass the case of arbitrarily small α and provides a solution valid for

the entire range of α. Both the Kramers and Mel’nikov-Meshkov solutions, however, require the

presence of a well-defined potential well U(x) that is sufficiently deep to permit the PSS assump-

tion, with a region of positive curvature defining its bottom, and a region of negative curvature

defining its top, which is taken as the point zcut beyond which the particle has escaped (see Fig.

4.1A).

Thus, both Kramers and Mel’nikov-Meshkov solutions, and in fact, almost the entirety of the

literature on this problem, exclude one of the most common potentials, the Lennard-Jones (LJ)

potential, which has no local maximum, but only a gradual flattening of the potential at large dis-
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Figure 4.1: Schematic of potential curves wherein a Brownian particle is trapped. A) A potential
with both a minimum, zmin, and a local maximum, zcut. B) A Lennard-Jones potential with a
minimum, zmin, where zcut is set at some arbitrary position in the flat part of the potential. C)
The same as 1B, except superposing a mirror image of the same potential shifted so that zcut of the
mirror potential is at the same position as zcut of the original potential.
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tances from its minimum, as shown in Fig. 4.1B. In this work we consider the 12-6 Lennard-Jones

flat wall potential commonly used in HOOMD-blue, LAMMPS, and other simulation packages:

ULJ(z) =


4ε
[
(σ
z
)12 − (σ

z
)6
]

z < zcut

0 z ≥ zcut

(4.3)

Where in our Langevin and Brownian simulations we take zcut = 2.5a, σ = 1.0a, and the

potential is slightly shifted vertically so that the it smoothly goes to zero at zcut = 2.5a. We

are interested in τesc, the mean time for a particle to travel from the bottom of the potential well,

zmin = 21/6 a to zcut. All simulations here are performed using the HOOMD-blue Langevin and

Brownian integrators in the NVT ensemble.

The one comprehensive paper that explicitly considers the LJ case is that of Larson and Light-

foot (LL), whose solution method is specialized for escape at some arbitrary, relatively large, dis-

tance from the local minimum in the LJ potential, which then sets the cut-off value zcut of the

potential[61]. While Larson and Lightfoot solved the Fokker-Planck equation for the LJ potential,

they did so under the approximation that energy uptake from the heat bath is not limiting, which

is not valid for “very small” values of α, as noted above. However, the Kramers and Mel’nikov-

Meshkov solutions, while not valid for the LJ potential in the overdamped limit, should become

accurate for this potential at small enough α, where only the shape of the potential well around

zmin is relevant. Therefore, to solve the problem of escape of a particle from an LJ potential in

the overdamped limit, the little-known LL solution is necessary, while to solve the escape problem

outside of this limit, and to determine the transitions between the different limits, the Kramers and

especially the MM solutions are necessary. Our goal is to provide valid solutions for the escape

time in each limit for the LJ potential, to define the conditions necessary for each limit to apply,

and to provide a cross-over formula that would allow one to bridge between the limits. This in-

cludes defining the ranges of α and of ε/kBT that distinguish between “small” and of “very small”

α, where in the latter case the escape time is set by the rate of energy uptake from the heat bath.
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4.3.1 Overdamped particle

We first consider the overdamped regime, where the diffusive behavior of the particle near zcut is

dominant. Larson and Lightfoot present two approaches for calculating the escape rate of a particle

from a Lennard-Jones well in the overdamped regime. The first is in the overdamped limit, using

the Smoluchowski equation, which is valid for tin → 0, or α→∞.

τesc = τ0

(πkBT
ε

)1/2
zcut
a
− ( 4ε

kBT
)1/nΓ(1− 1

n
)

n21/n
eε/kBT (4.4)

Here the dimensional escape time is τesc/τ0, and n = 6 is the exponent in the 12-6 LJ potential.

Larson and Lightfoot carried out “exact” calculations confirming these expressions for zcut =

10a, which is considerably larger than the more practical and frequently used cutoff value of 2.5a,

where the potential is already quite flat. Therefore, we wish to assess the accuracy of the LL theory

for a range for cutoff values from 2.5a to 10a.

Kramers offers a well-known theory for the escape time of a moderately underdamped to over-

damped Brownian particle from a 1-D potential well with upward curved harmonic shape at the

bottom and downward harmonic at the top, as shown in Fig 1A. The predicted result depends on

the curvatures of the potential at both bottom and top. Near the bottom of the well at z = zmin, the

harmonic is defined by[71]:

U(z) = −ε+
1

2
k(z − zmin)2 = −ε+

1

2
mΩ2(z − zmin)2 (4.5)

where ε is the well depth, and k is a “spring” constant defining the curvature at the bottom of the

well. For a particle of mass m, in the above equation we express the constant, k, in terms of a

characteristic oscillation frequency Ω as k = mΩ2, where Ω is the frequency of oscillation of the

particle in the well in the underdamped limit where friction is negligible. Similarly, near the top of
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the well at z = zcut, we write

U(z) = −1

2
k′(z − zcut)2 = −1

2
mΩ2(z − zcut)2 (4.6)

where k′ is the magnitude of the curvature around zcut. Expressed in terms of these characteristic

frequencies, Kramers’ expression for the escape time is

τesc =
2π

Ω

1[√
1 + 1

4ω2t2in
− 1

2ωtin

]ekBT (4.7)

For 1
2ω
� tin, which is the overdamped limit, Eq. 7 can be approximated as:

τesc =
2π

Ωω

1

tin
ekBT =

2π√
k′k

ζeε/kBT (4.8)

Eq. 8 is widely known and used in the overdamped regime, where the escape time depends only

on the bead drag coefficient, ζ , and not on the bead mass.

To attempt to apply Eq. 7 to a potential such as the LJ potential that does not have a negative

(downward) curvature at the point of escape, we can artificially create such a region by adding to

the original potential a mirror reflection of the Lennard-Jones potential around zcut so that we may

define zcut as a local maximum, as shown in Fig.4.1C [61]:

ULJ,m = 4ε
[(σ
z

)12

−
(σ
z

)6

+
( σ

2zcut − z

)12

−
( σ

2zcut − z

)6]
(4.9)

We then can use a Taylor expansion to approximate ULJ,m(z) around zmin as

ULJ,m(z) ≈ −ε+
1

2
57.15ε

(z − zmin
a

)2

(4.10)
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so long as
(
zmin

zcut

)7

� 1. Expanding ULJ,m(z) around zcut gives

ULJ,m(z) ≈ 2× 4ε
[( σ

zcut

)12 −
( σ

zcut

)6
]

+
1

2
× 2× 4ε

[156σ12

z14
cut

− 42σ6

z8
cut

]
(z − zcut)2 (4.11)

The first term amounts to approximately −0.033ε at zcut = 2.5σ and decreases for larger zcut

values, and thus can be neglected. Thus, only the quadratic term required by Kramers’ theory

remains. Therefore, the mirrored LJ potential is approximated near zcut as

ULJ,m(z) ≈ 1

2
8ε
[156σ12

z14
cut

− 42σ6

z8
cut

]
(z − zcut)2 (4.12)

Comparing Eq. 5 with Eq. 10 and Eq. 6 with Eq. 12, we find that for the mirrored Lennard-Jones

potential:

mΩ2 = k = 57.15
ε

a
(4.13)

mω2 = k′ = −8ε
[156σ12

z14
cut

− 42σ6

z8
cut

]
(z − zcut)2 (4.14)

where for zcut = 2.5a, mΩ2 = 0.22ε.

4.3.2 Underdamped particle

We now will consider the case of an underdamped particle escaping a Lennard-Jones potential

well. Kramers’ presented a solution for a particle in the underdamped limit, which assumes that

the rate limiting step is energy uptake from the heat bath:

τesc =
2π

Ω

tin
S1

ekBT (4.15)

Here S1 is the “action” per oscillation cycle of the particle, defined as

S1 = 2

∫ zcut

1a

√
−2mULJ(z)dz (4.16)
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We obtain S1 by numerical integration of Eq. 16 using N-point quadrature with a spacing of

h = 0.025a, thus taking the entire shape of the potential-well into account. Eq. 15 can be used to

calculate the escape time for given values of {tin,m and ε} using relationships established above

(Eqs. 9-11 and 13-14).

The prediction of Eq. 15 is shown in Fig.4.2 by the dot-dashed lines for small values of α,

and Eq. 7 (which converges to Eq. 8 at high α) is shown by solid lines for large values of α.

Mel’nikov and Meshkov (MM) proposed a solution to Kramers problem for all damping regimes,

which spans Kramers’ two limits (although does not account for the flatness of the LJ potential

near the point of escape) and is shown by the dotted lines in Fig.4.2A. The MM result, given by

Eq. 17, is a more generalized form that encompasses Kramers’ Eqs. 7, 8, and 15, and includes the

prefactor 1/A(∆), which accounts for the coupling of the particle to the heat bath[72].

τesc =
2π

Ω

1[√
1 + 1

4ω2t2in
− 1

2ωtin

] 1

A(∆)
ekBT (4.17)

where

∆ =
S1

tinkBT
(4.18)

The function A(∆) covering all damping regimes is given by:

A(∆) = exp

[
−
∞∑
n=1

n−1erfc

[√
n∆

2

]]
(4.19)

Where the sum in Eq. 19 converges within n = 200 for all the cases studied in this work.

This result derived by Mel’nikov and Meshkov (MM) was originally presented as a solution

for a potential with harmonic bottom and harmonic top for all damping regimes. However, it can

be seen that both the MM and Kramers’ solutions fail in the high-α regime, since the harmonic

assumption is a poor approximation for the shape of a LJ well near zcut. Thus, we will see that

a complete solution to the escape problem for an LJ potential over all friction regimes requires

splicing a low-α solution with the LL solution at high α.
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Figure 4.2: Symbols represent simulation results for escape of a particle from the LJ potential given
in Eq. 3 using HOOMD-blue’s Langevin integrator and are the same in each sub-figure. Symbols
outlined in black on the far right of each sub-figure are from simulations using HOOMD-blue’s
Brownian integrator (denoted on the x axis by ”B”). A) Dot-dashed lines represent Kramers’ theory
for an underdamped particle (Eq. 15), solid lines represent Kramers’ theory for an overdamped
particle (Eq. 7), and the dotted lines represent Mel’nikov-Meshkov theory for all damping regimes
(Eq. 17). Dashed lines represent the high friction limit of Larson and Lightfoot (Eq. 4). Line
and symbol color designates a given value of ε/kBT , shown in the legend. There are no lines
corresponding to free diffusion, for which ε/kBT = 0, for which simulation results are denoted by
grey symbols.

4.3.3 Scaling behavior and solution for all damping regimes

From the LL (Eq. 4), Kramers (Eq. 7 and 8), and MM (Eq. 17) solutions, we can determine

scaling laws for the dimensionless escape time τesc/τ0 in the overdamped and underdamped limits.

In both limits, the dimensionless escape time is proportional to exp(ε/kBT ), with a prefactor of

order unity in the overdamped limit.

In the underdamped limit (α → 0, or tin → ∞), the escape time τesc from Kramers “general”

theory, Eq. 7, and from LL’s theory for the underdamped case, approach the scaling of the acti-

vated complex theory [61], wherein the prefactor is proportional to the inverse of the oscillation

frequency Ω in the potential well, and therefore scales as a
√
m/ε, which is independent of the
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drag coefficient ζ . The normalized escape time τesc/τ0, recalling that τ0 ≡ ζa2

kBT
, therefore has a

prefactor that scales as a
√

m
ε
/ ζa2

kBT
=
√

kBT
ε
α−1/2. It thus scales as the inverse square root of α.

As discussed above, however, this result fails in the limit of α→ 0, because of lack of equilibrium

with the heat bath, which requires the presence of friction because of the fluctuation-dissipation

theorem. Reducing friction allows one to approach the regime in which activated complex theory

is valid, but one cannot reach this theory at asymptotically small α, because equilibration with the

heat bath is lost as α → 0. Kramers therefore provided a separate equation for this limit, whose

results are given by the dot-dashed line in Fig.4.2, but only the MM theory bridges to this result

continuously as α→ 0.

The MM theory in the α→ 0 limit therefore differs from Kramers “general” theory, Eq. 7, by

the additional factor ofA(∆) (Eq.19) in the denominator, where ∆ scales as a
√

ε
m

ζ
kBT

. Thus, the

low-α behavior of the MM solution depends on the scaling of A(∆) with ∆ at low ∆. Mel’nikov

and Meshkov report thatA(∆) ≈ ∆−0.82∆3/2 at low α, which we can approximate byA(∆) ≈ ∆

in the asymptotic limit. We thus find that τesc/τ0 ∼ (a
√

m
ε

)/( ζa
2

kBT
∆) exp[ ε

kBT
], which is τesc/τ0 ∼

(kBT
ε

)α−1 exp[ ε
kBT

], where there is scaling of dimensionless escape time with α−1, rather than

α−1/2. This scaling of α−1 at low α is consistent with the observed scaling of the MM theory, the

Kramers α → 0 limit (Eq. 15), and the Langevin simulations, as seen in Fig.4.2. In dimensional

terms, in the underdamped limit, τesc ∼ m
ζ
kBT
ε

, where m
ζ

is the inertial time, and the escape time is

inversely proportional to the drag coefficient ζ , while in the overdamped limit τesc ∼ ζa2

kBT
exp[ ε

kBT
]

it is proportional to ζ . In between these, in the activated complex theory pseudo-limit, τesc ∼

a
√
m/ε exp[ ε

kBT
], which is independent of ζ .

When the escape time is scaled by the frictional time τ0, the prefactor of exp(ε/kBT ) from

the LL equation for the overdamped limit (Eq. 4) is independent of α and that from Kramers’

equation for an underdamped particle (Eq. 15) in the limit of small alpha is proportional to

α−1. Combining these two regimes into a cross-over formula gives (Eq. 22). The prefactor of

exp(ε/kBT ) in the overdamped limit, BLL(ε/kBT ), is constant with respect to α, while the pref-

actor of α−1 exp(ε/kBT ) in the underdamped limit, BK(ε/kBT ) is a constant with respect to α
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A)

B) C)

Figure 4.3: A) All symbols are the same as in Fig.4.2. Dashed lines represent Eq. 22, using
BK(ε/kBT ), and solid lines represent the theory presented in Eq. 24, using BMM(α, ε/kBT ).
B) Blue line: A(∆) as given in Eq. 19 and grey dashed line: A(∆) = ∆, both for ε = 8kBT ,
zcut = 2.5a. C) Prefactor from Eq. 24 for where zcut = 10a. Black dotted lines indicate scaling
for α−1 and α−1/2, as indicated on the plot.
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from Kramers’ Eq. 15. Thus,

BLL(ε/kBT ) = (
πkBT

ε
)1/2

zcut
a
− ( 4ε

kBT
)1/nΓ(1− 1

n
)

n21/n
(4.20)

BK(ε/kBT ) =
πakBT√
2
√

57.15ε

1∫ zcut
1a

√
−2mULJ(z)dz

(4.21)

τesc/τ0 =
(
BLL(ε/kBT ) +

BK(ε/kBT )

α

)
eε/kBT (4.22)

The prediction of Eq. 22 is shown as dashed lines in Fig.4.3A. This result reaches the correct

asymptotes for high and very low α, but does not capture the transition between the two accu-

rately and leaves out the activated complex theory pseudo limit which influences the behavior at

intermediate α. The reason for this deviation in the region of moderately small α is that while the

assumption that A(∆) = ∆ holds true in the underdamped limit, this limit is not reached until α is

very small, as shown in Fig.4.3B. For a more accurate solution, which also captures the activated

complex theory pseudo-limit, we can keep the exact form of the A(∆) correction factor in the

denominator, thus using the prefactor from Mel’nikov and Meshkov’s approach in Eq. 10. In this

case, the prefactor of eε/kBT , which is BMM(α, ε/kBT ), is not independent of α, but still scales as

α−1 in the limit of very small α. That is,

BMM(α, ε/kBT ) =
2π

Ω

1

A(∆)τ0

(4.23)

The form of the general equation is then

τesc/τ0 = (BLL(ε/kBT ) +BMM(α, ε/kBT ))ekBT (4.24)

whose predictions, shown by the solid lines in Fig.4.3A, are in much better agreement with the

simulation data than are those from Eq. 22, given by the dashed lines in Fig.4.3A. Eq. 24 is
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therefore the most complete solution for this case of escape from a Lennard-Jones potential for

arbitrary damping.

This solution also allows us to distinguish within the underdamped regime the conditions for

which the rate of energy uptake from the heat bath is limiting (i.e., “very small” α) from those

for which it is not limiting. To do so, we plot in Fig.4.3C the prefactor of Eq. 24, namely

BLL(ε/kBT ) +BMM(α, ε/kBT ) against α for various values of ε/kBT , noting that a clear regime

in which the prefactor scales as α−1/2 appears only for very high ε/kBT , around 10,000 or higher.

For smaller ε/kBT , the rate of energy uptake from the heat bath is not limiting only when α is high

enough to be out of the underdamped limit, and on the way towards overdamping. Only for very

high ε/kBT ≥ 10, 000, there is a clear α−1/2 underdamped scaling regime between “very small”

α (with scaling α−1) and the overdamped regime. The huge value of ε/kBT required to obtain

this regime, and the exponential dependence of escape time on ε/kBT , imply that this interme-

diate regime, described by the “Activated Complex Theory” (ACT), for which the escape time is

independent of the drag coefficient, is therefore essentially always a rough approximation.

4.4 Example Problem: Colloid-Polymer Mixtures

Here we demonstrate the relevance of these considerations by noting the need for a correction

to Wang and Larson’s recent report of Langevin dynamics simulations of the multiple relaxation

modes displayed in an aqueous suspension of colloidal particles of radii R = 10a or R = 25a and

telechelic polymers [22]. The telechelic polymers were modeled by dumbbells, with each bead

able to bind to the surface of a colloid, where binding was controlled by an attractive potential well

bounding the surface of each colloid. This potential well allowed the formation of polymer loops

on a single colloid particle when both beads of a dumbbell were bound to the same colloid, or of

bridges between neighboring particles, when the two beads were bound to different colloids[22].

The fastest relaxation times in the simulations involved diffusion of a polymer loops across the

surface of the particle, while a slower relaxation process was the breakage of a bridge by escape of
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Figure 4.4: Wang and Larson’s times of escape, τesc, of a particle of drag coefficient ζ and dif-
fusivity D = kBT/ζ from a potential well of depth ε calculated from Langevin dynamics using
LAMMPS (blue circles) compared with escape times from Brownian dynamics (green squares)
and Langevin dynamics (orange squares) using HOOMD-blue. Simulations are averages of es-
cape times over 100 stickers, initialized on the surface of a colloidal particle with diameter
Dcolloid = 20a, as described in the original paper. Predictions from Pham et al. [6] with and
without a potential (blue and green dashed lines) are included for s = (rc − rm) = 1.38a. Param-
eters used in these simulations: time step ∆t = 0.001τR, mass m = 1.0m0, and drag coefficient
ζ = 1.0m0/τR.

one of the beads from the colloid surface. The colloid radius was large enough that the diffusion

of the loop over the surface of the particle was able to reach the overdamped regime over the time

required for chain relaxation, as demonstrated by changing the dumbbell bead friction. Wang and

Larson naively assumed that all slower relaxation processes would then also be overdamped using

the same Langevin simulator, including the relaxation involving breakage of the bridge.

However, as is evident from our simulations and our above discussion, the slow escape of the

bead from a narrow potential binding a dumbbell bead to the colloid can be underdamped even

when a faster free diffusion of the same particle is overdamped. Fig.4.4 shows a correction to

Wang and Larson’s Fig.5, including the original data from Wang and Larson (blue symbols) along
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with our replication of the study using HOOMD-blue’s Langevin and Brownian integrators (orange

and green square symbols, respectively) Our simulations here thus show that the particles’ escape

from the LJ potential was not overdamped in Wang and Larson’s paper, and as a result, the bridge

breakage process proved to be outside of the overdamped regime, despite the much faster loop

diffusion process being overdamped.

As a result, as shown in Fig.4.5, the predicted results from Wang and Larson for the relaxation

modulus of a network of colloids bridged by dumbbells is sensitive to the dimensionless inertial

time tin/τR down to values of around 10−2 rather than reaching convergence at unity, as was

naively assumed by Wang and Larson.

The slow bridge breakage was not in the overdamped regime even while the fast loop diffusion

was overdamped because the width of the potential well binding the bead was less than the distance

of free diffusion required for loops relaxation. This can be anticipated by the results in Fig.4.3, by

noting that the transition from underdamped to overdamped behavior is only completed when α
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tin/τR = 0.10
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Figure 4.5: Effect of dimensionless inertial time tin on relaxation modulus computed by Langevin
simulations, for the problem described in Fig. 4 of Wang and Larson. In the Wang-Larson paper,
tin/τR was taken to be 1.0, which is outside of the overdamped limit, as shown by its effect on the
result.
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reaches approximately 102 − 103, regardless of the well depth, or even the presence of a potential,

as shown by the grey symbols for ε = 0. For free diffusion over the surface of the particle, the

relevant length scale is comparable to the colloid radius, and the length scale a in the expression

α ≡ ζ2a2

mKBT
shown be taken as the colloid radius R, while for escape from the potential well, a

is the well width, which was an order of magnitude or more smaller than R. Thus, the relevant

value of α was high enough to attain the overdamped limit for free diffusion, but too low to attain

this limit for the much slower escape from the potential well. Failing to consider the appropriate

condition for attaining the overdamped regime when a conservative force was present, Wang and

Larson unwittingly presented results that were significantly affected by inertia.

Finally, we note that the combined formula for the escape time given above is valuable not only

for determining conditions needed for reaching the overdamped regime in Langevin simulations,

but also gives a good estimate of the escape time in situations where a good estimate of the escape

time is needed. An example is the case of mesoscale population-balance simulations in which

the polymers are included only implicitly and rates of breakage and formation of bridges must be

given by explicit formulas[10].

4.5 Conclusions

In Langevin simulations of systems with multiple relaxation processes, especially those involv-

ing escape from potential wells, attainment of the overdamped regime requires careful attention

to the dimensionless damping coefficient,α. We assessed the validity of theories from Kramers,

Mel’nikov and Meshkov (MM), and Larson and Lightfoot (LL) for all damping regimes by com-

parison to Langevin dynamics simulations of a particle escaping from a 12-6 Lennard-Jones poten-

tial. We demonstrate that the standard Kramers theory is not accurate for a Lennard-Jones potential

in the underdamped regime because it does not account for the coupling of the particle to the heat

bath, and in the overdamped regime because it does not apply to a potential that becomes flat near

the escape condition, as is the case for the LJ potential. Because MM theory is accurate in the un-
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derdamped regime for an arbitrary potential, and LL theory is accurate in the overdamped regime

for the LJ potential, we determine prefactors from each of these approaches that allow presentation

of a general equation for arbitrary damping for escape from an LJ potential well. This general

theory also shows that the validity of the Activated Complex Theory is limited to extraordinarily

high values of the dimensionless well depth.
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CHAPTER 5

Improving the Efficiency and Accuracy of

Population Balance Brownian Dynamics

5.1 Introduction and Background

The ultimate goal of the prior three chapters is to inform the Population Balance Brownian Dynam-

ics model such that we can simulate experimental systems for run times on the order of seconds.

However, Pop-BD was initially developed as a proof-of-concept, and therefore was only used for

small system sizes due to its computational inefficiencies[10]. The original population balance

Brownian dynamics (Pop-BD) method was developed to capture the behavior of the polymer-

colloid system at long time scales by treating all telechelic polymer chains as phantom springs that

connect colloidal particles by their centers of mass [10]. It is a coarse-grained model informed

and validated by a model that uses LAMMPS to resolve the polymer chains as FENE dumbbells

(referred to from here on as the ”FENE BD” model) that can migrate on the surface of the colloids,

which has been shown to capture four distinct relaxation modes in polymer-colloid mixtures [22].

5.1.1 Overview of Population Balance Brownian Dynamics

The full details of Pop-BD can be found in the work by Hajizadeh and Larson, but the key model

components are as follows. Colloidal particles are represtented as Weeks-Chandler-Anderson re-

pulsive spheres, which assumes the colloids are bare and does not account for polymer-mediated
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interactions. All polymer chains are implicit and accounted for by a Ncolloid × Ncolloid matrix,

where the diagonal matrix component represents the number of loops on the N th colloid, and the

off-axis components represent the number of bridges between the ith and jth colloids. Two equa-

tions, based on the work of Tripathi and coworkers, describe the bridge-to-loop and loop-to-bridge

transition rates [55]. The loop-to-bridge transition rate rate, L(dij) is defined as

L(dij) = Ω exp
[
− 1

kBT
(∆G+ US(dij − rc))

]
(5.1)

and the bridge-to-loop transition rate, M(dij) is defined as

M(dij) = Ω exp
[
− 1

kBT
(∆G− US(dij) + US(dij − rc))

]
(5.2)

where Ω is the thermal fluctuation frequency, ∆G is well depth of the attraction potential, rc is the

width of the potential well, and the spring potential Us(d) is equivalent to UFENE described in the

FENE-BD model.

To account for the geometric restrictions the colloid curvature imposes on the loop/bridge tran-

sition rates, an “effective cap fraction” Scap/Ssphere is defined as the ratio of the area accessible to

a polymer for bridge formation normalized by the total surface area of the colloid. The area Scap is

determined using a Metropolis scheme, the details of which can be seen in the paper by Hajizadeh

et al.[10]

The bridge/loop transition rates determine the probability of a bridge forming or breaking at

each times step. The probability of a loop-to-bridge transition at a single timestep is

p = L(dij)∆t (5.3)

and the probability of a bridge-to-loop transition is

q = M(dij)∆t (5.4)
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Therefore, the probability of a single bridge forming between two particles i and j from the de-

tachment of a loop on particle i is

Pij = Nii
Scap
Ssphere

p(1− p)Nii
Scap

Ssphere
−1

(5.5)

and the probability of a single loop forming on particle i or j from the breakage of a bridge between

particles i and j is

Qij = Nijq(1− q)Nij−1 (5.6)

Where Nii is the number of loops on particle i and Nij is the number of bridges between particles

i and j.

At each time step, the following algorithm is applied to each pair of particles to update the

number of bridges and loops on every particle in the system:

1. Compute Pij , Pji, and Qij

2. Generate uniformly distributed random numbers between 0 and 1:µ1, µ2, µ3, and µ4

3. If µ1 < Pij: Nii −= 1 and Nij += 1

4. If µ2 < Pij: Njj −= 1 and Nij += 1

5. If µ3 < Qij:

(a) if µ4 ≤ 0.5: Nii += 1 and Nij −= 1

(b) if µ4 > 0.5: Njj += 1 and Nij −= 1

6. If µ3 ≥ Qij: no change

The linear relaxation modulus can be determined from the stress tensor as follows:

G(t) =
V

kBT
〈Sxy(t)Sxy(0)〉 (5.7)
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Where V is the system volume and the off-diagonal elements of the stress tensor Sxy follow the

form of

Sxy =
1

V

∑
k

dk,xFk,y (5.8)

where dk,x is the end-to-end vector of the polymer bridge along the x-axis, Fx,y is the chain stretch-

ing force along the y-axis, and k iterates over all bridges between particle pairs in the system.

5.1.2 Limitations to Pop-BD and Proposed Solutions

There are two main limitations to Pop-BD’s computational efficiency: 1) the autocorrelation

method used to compute the stress-relaxation of the system is prohibitively slow, and 2) the orig-

inal Pop-BD code was a home-grown code written without the optimizations of larger molecular

dynamics software packages. This chapter will detail how we address both of these limitations by

integrating both the Pop-BD algorithm and an on-the-fly correlation method into HOOMD-blue, an

open-source simulation software. HOOMD-blue’s user interface is a Python API, which allows for

flexibility and customization, while its backend is written in C++ for performance advantages. In

the first section, we incorporate an exisiting on-the-fly autocorrelation method into HOOMD-blue

as a plug-in, or stand-alone code that is compiled alongside HOOMD. In the section section, we

write Pop-BD as a custom ‘integration method‘ that dyanmically adds and removes bonds between

particles during runtime. We show that, with these two modifications, we are able to run Pop-BD

simulations of sufficiently large system sizes for experimentally-relevant simulations times.

5.2 On-the-Fly Autocorrelation as a HOOMD-blue plug-in

Disclosure: This section includes material adapted from a final project report submitted for NERS

590: Methods and Practice of Scientific Computing, completed in collaboration with Alexander

Adams, Chemical Engineering, University of Michigan, Ann Arbor, MI.

The FENE-BD model is executed using the LAMMPS package, which offers the option of

implementing an on-the-fly autorcorrelation during the simulation run. When the LAMMPS BD
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model was coarse-grained to Pop-BD, which is executed as a home-grown code written in C, the

on-the-fly correlation functionality was not carried over. Even without the on-the-fly correlation,

Pop-BD showed an improvement in run-time for systems with many particles. In this section, we

show the benefit of integrating Likhtman’s on-the-fly multi-tau correlation with HOOMD-blue,

with the ultimate goal of running Pop-BD simulations in HOOMD-blue an autocorrelating its

output during runtime.

As with most MD software, one can readily access system or per-particle data, such as vol-

ume, temperature, pressure (as a tensor), or particle velocities at each time step during a HOOMD

simulation. To compute dynamic properties of the simulation, such as the complex modulus or

diffusion coefficients, we process the system data with time correlation functions (hereon referred

to as correlation functions) [74]. Many properties calculated from correlation functions rely on the

fluctuation-dissipation theorem, which states that a system’s response to spontaneous fluctuations

within a system is equivalent to its response to small applied force. We take advantage of the

fluctuation dissipation theorem and use correlation functions to compute relaxation and transport

properties of physical systems. For example, we can autocorrelate the off-axis stress values to cal-

culate the stress relaxation modulus of a system, or autocorrelate particle velocities to determine

the related diffusion coefficients. The general form of an autocorrelation function, or a correlation

of a property with itself over a delay, is:

R(t) =

N−τ∑
i=1

(Y − Y )(Yi+τ − Y )

N∑
i=1

(Yi − Y )2

(5.9)

where t is the time point for which the correlation is being performed, Y is the value of a given

property at time i, τ is the lag time between measurements, and N is the total number of timesteps.

The stress tensor of the system is defined as follows:

Sxy =
1

V

∑
dk,xFk,y (5.10)
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where dk, x is the end-to-end vector of a chain along the x axis, and Fx,y is the chain stretching

force between two particles, and V is the volume of the system. The linear relaxation modulus is

related to the stress tensor as

G(t) =
V

kBT
〈Sxy(t)Sxy(0)〉 (5.11)

The Likhtman Correlator Calculating correlation functions can require significant compute

time and memory, especially if per-particle calculations are necessary. A large part of this over-

head is the time and memory required to write all data points to an output file, reading the data into

a correlator, then writing an equally large data file containing the correlated values. In 2010, the

Likhtman group proposed an algorithm that uses block averaging and a multiple-tau correlation

method to produce highly efficient and accurate calculations[74]. As data is correlated, the corre-

lated values at short time scales accumulate redundant data which can be represented accurately

as the average of a given time block. Ramirez and coworkers demonstrate that their algorithm

maintains accuracy through the block averaging, and that the final amount of raw data produced

is greatly reduced. They also use a multiple-tau method, which controls the ratio between the

averaging time and and the lag time of the correlator. Parameters m and p are user defined as a

way of controlling relative error, the smaller the ratio m/p is, the smaller the relative error. The

recommended values (and default values in our implementation) are m = 2 and p = 16. This is

crucial for calculations spanning very long time scales to reduce the memory and minimize error.

Autocorrelation is a computationally heavy process, with the number of operations required to

calculate as single value scaling linearly with N. A typical simulation will run for 106 to 1010 time

steps, and we often require autocorrelation functions for more than one value in each simulation.

Additionally, a significant amount of the computation time is comprised of reading or writing

values to or from a disk. Ramirez and coworkers presented a multiple tau correlation method that

utilizes averaging and smoothing for more efficient computing, while also working ”on-the-fly”

to avoid the in/out bottleneck previously mentioned[74]. The general structure of the multiple-tau

algorithm is as follows, but more detail is available in their paper[74].
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• User-defined parameters: m, p, and S

• Dij : array to store data (S+1 by p)

• Cij : array to store correlation results (S+1 by p)

• Nij : counter array for calculating averages (S+1 by p)

• Ai : accumulator (S+1)

• Mi: counter (S+1)

At each simulation time step, a new data value ω is sent to correlator level i, and the following

algorithm takes place:

1. ω is stored at the first position of D, and all other data values are pushed up one value

2. The correlation array is updated as Cij = Cij +Di0Dij and the correlation counter is incre-

mented Nij = Nij + 1 (for maximum efficiency, this calculation iterates of j=0...p-1 at level

0 and j=p/m...p-1 for all other values)

3. w is added to the accumulator asAi = Ai+ω, and the counter is incremented asMi = Mi+1

When Mi = m, Ai/m is sent to the next level, (i+ 1), and Ai and Mi are reset to 0.

The Likhtman group provides their code as a standalone C++ package (hereon referred to as

the Likhtman correlator) that can be used as a post-processing method. However, the algorithm is

intended to be used during run time as an on the fly method to avoid the large memory and require-

ments of writing each data point into an external file, then reading the data into the correlator. Our

goal is to bring this efficiency to the HOOMD-blue software package.

5.2.1 Software Design

Our design decisions while developing this plug-in were motivated by our conversations with

HOOMD’s lead developer, Joshua Anderson, Ph.D., and our own experiences as HOOMD users.
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The ultimate goal is to develop a plug-in correlator that is simple and customizable. For simplicity,

the only required arguments are the quantities to be correlated and the period at which to send

values to the correlator; all other arguments are optional and set to default values if no argument is

passed. A powerful tool within HOOMD is the ability to use a callback function, which allows the

user to define a lamba function that is evaluated at every time step. We defined the quantities

argument as a HOOMD vector string, which allows the user to pass callback functions to the corre-

lator in the same way they would pass to a standard HOOMD logger. To implement this, the C++

Correlator class inherits from the Logger class. However, the Correlator directly inherits from

the Analyzer class in Python, since Logger is not an HOOMD-defined Python class. This gives

us all necessary functionalities because Logger inherits directly from Analyzer, so all inherited

methods are preserved.

Figure 5.1: Schematic of HOOMD-blue plug-in architecture. Solid boxes indicate external code
(HOOMD main code or the Likhtman Correlator), dashed boxes represent our plug-in. Lines
represent inheritance, from top down. Arrows represent communication between components.

We integrated the Likhtman correlator into the architecture of HOOMD-blue, evaluated its

accuracy and computational performance, and developed both user documentation and a developer

guide. Figure 5.1 is a simplified diagram of HOOMD-blue’s architecture and depicts how the

plug-in is integrated into each level of the software. HOOMD is considerably larger and more

complex than we were able to diagram, so we only show the relevant pieces of code that our plug-

in directly inherits from or communicates with. HOOMD is a multi-language software package,
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where the user interfaces with HOOMD through Python, but the back-end is written entirely in

C++. HOOMD uses pybind to communicate between the Python and C++ levels. For this level of

implementation, we provided the user with high-level options (file name, quantities to correlate,

correlation and logging frequencies) but hard-coded the recommended algorithm parameters (m,

p, S) into the C++ code.

Part of the inherent advantage of the Likhtman correlator is its separate functions for correlating

and evaluating. During the correlating stage, no values are being actively written to a file, which

saves overhead. The evaulate() call then iterates over the current data and writes it to a file. This

means that the current state of the correlator can be written to a file at any given time step. This

flexible output method is useful but must be used carefully. Dumping the data at every time step

would defeat the purpose of the on-the-fly method, but writing the data exclusivley at the end of

the run can be risky for very long simulations that may experience instabilities or exceed walltime.

Therefore, by default we set the correlator to write the data at the end of the simulation, but also

created the ”eval period” parameter. The ”eval period” allows the user to specify how frequently

the correlator data is written to a file. This is recommended to be only a few times throughout the

simulation, as a sort of ”safety,” or to allow the user to check in on the progress of their simulation

in real time.

We also realize that it may be of interest to evaluate the correlator at specific points in a simula-

tion, such as after volume or temperature are changed in connection with equilibration or other pro-

cesses. To address this, users can call correlate.evaluate() at a specific line in their HOOMD

code. The evaluate method is entirely independent from the primary correlator, but both methods

access the same instance of LikhtmanCorrelator. This highlights the importance of our decision to

define the instance of LikhtmanCorrelator as a class attribute, so that both methods can access the

correlator.
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5.2.2 Testing and Validation

We designed regression and unit tests to verify the functionality and efficacy of the plug-in as we

continued to develop it. We test basic functionality such as intializing the correlator and creating

the correct output file as simple unit tests. TestValues is a regression test that performs a short

simulation and compares Correlator plug-in data to an already-verified post-processing workflow

with the same data. Best-practice frameworks such as removing output from routine testing and use

of variables are employed to assist with altering or expanding unit testing as further functionality

is added.

The performance of the Likhtman algorithm is well studied in [74], which demonstrates that it

is more accurate and efficient when compared with a standard single-tau correlator. Therefore, the

purpose of our performance testing is not to demonstrate the performance of the algorithm, but to

demonstrate accurate implementation and quantitatively compare the efficiency of the correlator

plug-in with the correlator used as a post-processing method. The motivation for conducting this

performance test is to ensure that our implementation is efficient in its method of communicating

the simulation values to the correlator. It is possible, if the plug-in is poorly designed, that the on

the fly method would be slower than the post-process method.

We chose a bead-spring network as our testing system because it is computationally inexpen-

sive and we are familiar with its stress relaxation behavior from previous research. The network is

composed of spheres connected by dumbbell springs, as seen in Figure 3a. The xy component of

the pressure tensor matrix is the correlated property. All units are left as reduced units, since there

is no physical relevance to the system and it is used simply for validation purposes.

5.2.3 Performance Testing

The same bead-spring network system used to validate the plug-in was also used for performance

testing. The plug-in was tested by equilibrating the system, initializing the correlator, running

for the given number of time steps, then evaluating the correlator. The post-processed correlation

was tested by equilibrating the system, intializing a logger (a HOOMD method), then running for

93



(a)

(b)

Figure 5.2: (a) Autocorrelation of xy component of pressure implemented on the fly and as a post-
processing method. All units are reduced units. Both simulations were equilibrated for 1×105 time
steps, then data was sent to the correlator every 10 time steps for 1×107 time steps (b) Visualization
of the simulation initial configuration. Large spheres are initialized on a face centered cubic lattice
and connected with nearest neighbors by harmonic spring dumbbells [7, 8]

.

the given number of time steps. The raw data from the logger was then formatted as a Likhtman

correlator input script and passed to the Likhtman correlator. The results of this study, Figure

5.3, show that the plug-in is consistently more efficient than the post-processed implementation.

Note that in unit testing validation both cases were run in a single simulation, but to assess the

performance of the methods we ran the cases as entirely separate simulations.

Table 5.1: Run Time Analysis of On the Fly and Post-Processed Data

# time steps on the fly (sec.) post-process (sec.) seconds per time step
1.00E+06 151 166 1.50E-05
5.00E+06 669 772 2.06E-05
1.00E+07 1330 1572 2.42E-05
5.00E+07 6497 8933 4.87E-05
1.00E+08 13446 15785 2.34E-05

average 2.64E-05
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Figure 5.3: Performance data for post-processed and plug-in data. Number of time steps refers
to the number of time steps after a 1 × 105 equilibration run. Shaded regions represent a 95%
confidence interval.

It is important to note that quantifying this improved efficiency as a percent speed increase

would be arbitrary, as the reduced time is only a function of time steps at which data is written.

Instead, we present the decrease in time per time step as a metric for understanding the relative

speeds. This is a rough calculation, but gives the order of magnitude of time that using the corre-

lator as a plug-in offers as a speed up. It is common for simulations to run for 1 × 108 to 1 × 109

time steps, occasionally more. This translates to a time savings of 45 minutes to 7.5 hours for a

single property to be calculated. For simulations where per-particle properties must be calculated,

this time savings scales with the number of particles which is often on the order of 1× 108.

The improved speed is only part of the advantage of the on the fly implementation. To use the

correlator as a post-processing method, we must write every time step (or every period) to a file,

then parse that file into input file for the correlator. This can result in data files that are several

gigabytes for very long time scales. Just as with the run time, if we must calculate per-particle
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values, this amount of memory can difficult to store and manage. The autocorrelation output

files are only on the order of kilobytes, essentially eliminating the memory storage burden of the

correlator.

Conclusions and Future Work In this section, we have produced an open-source functioning

autocorrelation plug-in for HOOMD-blue. We also introduced additional features, such as the

evaluate() function and periodic logging. Our performance testing demonstrates the improved

efficiency of implementing the correlator as a plug-in. Currently, we have only tested on individual

CPUs, and have not attempted running on GPUs or in parallel. Incorporating GPU compatibility

should be a relatively straightforward process of adding in CUDA capabilities through flags in

the plug-in. Achieving a correlator that works with a simulation running in parallel should also

be straightforward as the entire plugin is lightweight and could be performed on a singular node

without performance losses. The last high priority feature is restartable jobs. The framework

is there in the periodic logging capabilities, but the process of reading in the multi-tau arrays to

initialize the liktman correlator is non-trivial and was not a priority to develop.

Another area of improvement is adding more user-defined parameters. For example, the Likht-

man correlator allows for m, p, and S parameters to be defined as a means of tuning error and

efficiency. These would be simple to add into our plug-in, but would require additional unit test-

ing. Other helpful plug-in arguments might be file parameters such as headers and delimiters to

make plotting and processing the correlated data simpler for the user. It would also be beneficial to

the user to include helpful error messages and warnings, which we have not yet included. Although

Likhtman’s mutiple-tau correlator is favorable for our research, some HOOMD users might prefer

a linear correlator. In the future, we can add a linear correlation algorithm into the same plug-in.
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5.3 Implementing Population Balance Brownian Dynamics in

HOOMD-blue

A primary advantage of the Population Balance Brownian Dynamics method (Pop-BD) is that

over the FENE-BD method is that its runtime and memory scale independently of the number of

polymers in the system, since all the polymer chains are accounted for in the Ncolloid × Ncolloid

bond matrix and a simple multiplicative factor to the transition rates and bond strengths. However,

this means that the (usually) sparse bond matrix requires memory that scales as O(N2). More

critically, because Pop-BD was written as home-grown code that computes the interaction between

every particle pair in the system at every time step, Pop-BD’s runtime scales asO(N2). In contrast,

the open-source simulation software HOOMD-blue uses many advanced optimizations to perform

huge simulations efficiently, but it does not offer the capability to add and remove bonds at runtime.

In this section, we detail how we integrated the Pop-BD model into HOOMD-blue, including

custom interparticle potentials and bridging transition rates from chapters 2 and 3, as well as a

dynamic bonding functionality.

5.3.1 Intercolloidal Potentials

In chapter 2, we demonstrate that we can use self-consistent field theory (SCFT) to predict the loop-

mediated repuslive interactions between colloids. To incorporate this new knowledge into Pop-

BD, we use the md.bond.table() feature, which linearly interpolates a user-provided tabulated

potential.

The potentials used to simulate colloids and their adsorbed polymer loops are dependent on

the colloid radius, Rcolloid, the number of polymers per colloid, Npolymer, the chain length of the

polymers in Kuhn steps, NKuhn, and the fraction of chains that have only one sticker end, fd.

Note that, to define a tabluated bond potential using md.bond.table(), both the potential, U(r)

(denoted V (r) in the HOOMD documentatin), as well as the force, V (r), must be defined. The

interparticle force is defined as F (r) = −∂V/∂r, so we simply calculate this derivative when
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constructing the tabulated potential. Although the SCFT approach is highly efficient, we suggest

keeping library of intercolloidal potentials, and only rerun the SCFT code needed to compute them

for new parameter spaces. Fig. 5.4 shows intercolloidal potentials representative of those used in

the updated Pop-BD method.

Figure 5.4: Intercolloidal potentials for Rcolloid = 60bK , NK = 200, and Npolymer = 500 polymers
per particle for 0, 10, and 20 percent of the polymers having only one sticker end (fd).

5.3.2 Transition Rates

In chapter 3, we showed that loop-to-bridge transition rates can be computed from bridge-to-loop

transition rates. We use this relationship when updating the Pop-BD method, but must adjust for

the fact that the work in Ch. 3 studies polymer chains that have one sticker that is permanently

adsorbed to its anchor wall. When a loop with two weak stickers transitions to a bridge, either

sticker can break to form the bridge so that the transition rate is twice that of a a chain with one

permanently adsorbed sticker. When a polymer bridging two colloids breaks, it forms a loop on
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either particle with an average time of the time for a bridge with an anchored sticker to transition

from bridge-to-loop, and so it does not require a correction factor. This means that the updated M

and L rates are defined as follows:

L(dij) = 2× 1

τloop−to−bridge
(5.12)

M(dij) =
1

τbridge−to−loop
(5.13)

Similar to the md.bond.table feature in HOOMD-blue, we add a set rates from file() method

in the Pop-BD version of HOOMD-blue. An example of how rates are tabulated for input is shown

in Table 5.2.

30 40 50 60 70
H/bK
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L(
d i
j),
M

(d
ij) 

L(dij)                 M(dij) 
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Figure 5.5: Rates for loop-to-bridge (L(dij), square markers) and bridge-to-loop (M(dij), circle
markers) transitions.
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d M L
120 0.0001 0.00008145
122 0.0001 0.00006989
124 0.0001 0.00005972
126 0.0001 0.00005069
128 0.0001 0.00004263
... ... ...

Table 5.2: An example of a reaction rates table used as input to the Pop-BD method in HOOMD-
blue, where d is the center-to-center particle distance in units of bK and the bridge-to-loop (L) and
loop-to-bridge (M ) rates are in units of [t]−1 where the time unit for a Pop-BD simulation [t] is
typically taken to be 3.9× 10−9 seconds.

5.3.3 Dynamic Bonding at Runtime in HOOMD-blue

The biggest challenge of improving the performance of Pop-BD was developing a way to modify

HOOMD-blue such that we could add or remove bonds between arbitrary particle pairs during

runtime. Trying to implement dynamic bonding at the Python level in HOOMD would require

taking a simulation snapshot, reading it, evaluating bridge breakage and formation probablities,

updating the snapshot, then re-loading it. Since Pop-BD updates the number of bridges and loops

at every time step, it is necessary to develop a more efficient way to translate this to bond forma-

tion/breakage in HOOMD. We present a method of passing in the reaction rates, M(dij) and Lij ,

on the Python level, and then using the PopBD equations on the C++ level of HOOMD-blue to

compute the bond breakage and formation probabilities for particle pairs at run time. The solution

provided here does re-introduce the time scaling dependency on the number of polymers in the

system, since every polymer bridge is represented as a distinct bond in HOOMD-blue. However,

this performance sacrifice is significantly less than the benefit gained from HOOMD’s other per-

formance enhancements, which vastly improve the time scaling with the number of colloids in the

system.

The loop and bridge tracking is significantly different from the original Pop-BD code in that

the number of loops on each particle is tracked in a vector object, m nloops, where each entry is

an int that stores the number loops on the particle whose particle tag corresponds to the vector

100



0 6 15

1 14 19 22 33

2 2 5 8 13 44 23

3

4 4 33 41 50

5 7 12

6 3 8 51

…

pa
rti

cl
e 

in
de

x

bond id

Figure 5.6: An example of a bond table as implemented in HOOMD-blue. Particle indexes are
are shown in blue (leftmost column) and bond indexes are shown in black. In this given example,
particles 1 and 4 are bonded by bond 33.

index. The number of bridges between particle pairs is stored in m nbonds, a map object where

the keys are a pair of particle tags, (i, j), and the values are an int containing the number

of bridges between particle pairs. However, m nbonds is a convenience structure, and changing

values in m nbonds will not update the number of bonds in the HOOMD simulation. HOOMD uses

a hash table type data structure to track the bonds in the system. This structure makes it possible

to optimize HOOMD to run massively parallel simulations, but assumes that the topology of the

system is static. It can be seen in Fig. 5.6 that this structure is not conducive to counting the number

of bonds that each particle has, which is a crucial component of Pop-BD. The modifications made

to HOOMD are only able to run on a single CPU, but as will be shown later in this section, the

performance benefit is still significant.

To add a bond (representing a polymer bridge) between two particles with tags i and j, the

addBondedGroup() method of m bond data is called, which takes the bond type (this version of
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Pop-BD only allows one bond type, so the bond type is always 0), and the particle tags of particles

i and j. It is slightly more complicated to remove a bond from between particles i and j, since it

is necessary to find the tag of the bond to remove. Removing a bond between a specific pair of

particles requires iterating over all of the bonds in the system, and using the getMembersByIndex

method of m bond data, which returns the particle pair bonded by the bond number passed to the

function. The first bond that is found that connects particles i and j is then removed from the system

using removeBondedGroup, which takes only the bond tag as an argument.

At each time step, the following actions are performed within the PopBD method.

update and access neighborlist
access the bond table, h bond table
m delta bonds = 0
for i in all particles do

for j in in particle i’s neighborlist do
compute distance between i and j
get number of loops particles i and j
generate 4 random numbers
compute bridge-to-loop and loop-to-bridge probabilities, Pij , Pji, Qij

update m delta bonds to tabulate which particle pairs should have bonds added or deleted
end for

end for
iterate through m delta bonds and remove or add bonds as necessary

Brownian dynamics and all other components of the simulation are performed elsewhere in

HOOMD-blue. PopBD is called within a HOOMD simulation context. Below is an example of

how PopBD might be called within a HOOMD simulation:

...

nl = md.nlist.cell()

integrator = md.integrate.mode_standard(dt=job.sp.timestep)

md.integrate.brownian(group=hoomd.group.all(), kT=1.0, seed=1)

popbd = md.update.popbd(table_width=rxn_width,

group=hoomd.group.all(),

nlist=neigh_list,
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seed=1,

integrator=integrator,

period=1,

)

popbd.set_params(r_cut=75,

bond_type="polymer",

n_polymer=500

)

popbd.set_rates_from_file("rxn_rates.txt")

nl.reset_exclusions(exclusions=None)

Note that it is necessary to pass in a table of reaction rates as a text file, but also to pass in the

expected length of the reaction rates table as an argument to the md.update.popbd() function.

This is because memory must be allocated for the reaction rates tables upon intialization of the

popbd object.

5.3.4 Performance Testing

We evaluate the performance of the HOOMD Pop-BD implementation against the original Pop-BD

method as published by Hajizadeh and Larson [10]. A realistic runtime is 2×109 time steps, and so

we represent the efficiency both as timesteps per second and the time required to run 2× 109 time

steps, as a practical measure. For both simulation methods, we run the simulation for a few minutes

to get an approximation of the average timesteps per second, then use that value to compute how

long it would take to run the simulations for 2 × 109 time steps. Fig. 5.7 shows that the original

Pop-BD method scales as slightly less thanO(N2), while the HOOMD implementation of Pop-BD

scales as close to O(N). This considerable speed-up has a significant practical payoff in that, for

240 particles, the time to run 2× 109 time steps is on the order of 2 days instead of on the order of

2 weeks. A more robust performance analysis and code profiling would be valuable, as well as a

comparison of memory required.
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5.4 Conclusions and Future Work

The work in this chapter significantly improves the efficiency of simulations of waterborne coatings

using the Pop-BD method by integrating both Pop-BD and an on-the-fly autocorrelation method

into HOOMD-blue. Fig. 5.8 shows a diagram of how all of these components come together to

generate a prediction of a stress-relaxation curve.

Both the autocorrelation and dynamic bonding components of this chapter can have great ben-

efit to the greater scientific community if they are released as general, standalone packages. The

autocorrelation plug-in is already offered as open-source software on github, but could benefit

from more peer-review and some additional functionality such as compatability with restartable

simulations and the ability to specify the p and m constants. The prodedure used to add, remove,

and track bonds in the HOOMD-blue version of Pop-BD has applications beyond simulating wa-

terborne coatings. This type of dynamic bonding is useful for modeling chemical reactions or
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Figure 5.7: Time to run 2× 109 time steps for the original Pop-BD implementation.
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HOOMD-blue/Pop-BD hybrid code

pre-calculated inputs

autocorrelator plug-in

Colloid-colloid interaction table : U(r), F(r)

Bridge formation and breakage rates: RF(r), RB 

Polymer spring potential: U(NK, r), F(NK, r)

R_cut: radius at which to search for bridge formation

N_polymer: initial number of polymer loops per colloid
 
seed: random number generator seed

Sxy, Sxz, Syz

Figure 5.8: A diagram of a workflow using inputs calculated from BD simulations and SCFT
(orange), the Pop-BD implementation of HOOMD-Blue (blue), and the on-the-fly autocorrelation
method as a HOOMD plug-in (green). The output on the right is an example of the type of stress
relaxation curve generated by this workflow.

any other type of dynamic network. Work would need to be done to develop a general API for

dynamic bonding, and a bigger challenge would be to make dynamic bonding compatible with

parallelization and/or GPU-based simulations.

The efficiency of the Pop-BD package could also be improved. As with a general dynamic

bonding implementaiton, it would be incredibly beneficial ot expand Pop-BD to be functional in

parallel or GPU-based simulations. If the drawback of representing polymer bridges explicitly be-

comes a limitation Pop-BD’s efficiency, we recommend re-introducing bonds with a multiplicative

factor, so that only one bond between particles could represent multiple bridges, as is done in the

original Pop-BD method. This approach would require modifying the bond class in HOOMD and

add a mult attribute, which would indicate the number of polymer bridges a given bond represents.

We chose not to make this optimization so far, since the number of bonds between particle pairs

has not been so high that it hindered performance.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

In this work, we present a collection of studies that each contribute either improved accuracy or

efficiency to the original Pop-BD method. Individually, each chapter presents an in-depth study

of some element of the interactions between rheology-modifying polymers and colloidal particles,

using waterborne coatings as a model system.

In chapter 2, we use both lattice self-consistent field theory and Brownian dynamics simu-

lations to quantify the inter-colloidal interactions resulting from the excluded volume effects of

HEUR polymers adsorbed on the colloid surfaces. The focus of this work was on the equilibrium

distributions of the polymers and resulting effective interactions. We observed that the rearrange-

ments of the polymers due to excluded volume and a “squeeze-out” effect result in non-uniform

distributions on the colloids. Using the lattice SCFT method, we accounted for these non-uniform

distributions and predicted both the purely-repulsive contributions of polymer loops as well as the

total effective interaction potentials that result from a combination of loops and bridges at equi-

librium. Monte Carlo simulations using the effective potentials to define colloid-colloid interac-

tions provided insight into the phase stability of experimental systems under quiescent conditions,

demonstrating the cruicial stabilizing effects of HEUR chains with only one hydrophobic end cap.

In chapter 3, we showed that the bridge-to-loop and loop-to-bridge transition times can be re-

lated using detailed-balance and self-consistent field theory predictions of equilibrium bridge and
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loop configuration fractions. By empirically fitting a function to the φbridge/φloop vs. H/bK
√
NK

curve to which 10, 40, and 200 Kuhn step chains all collapse, we present an approach to comput-

ing transition times that requires only Brownian dynamics simulations of the faster bridge-to-loop

transition time. An analysis of the particle escape and spring retraction stages of the bridge-to-

loop transition showed that the approximation that the hydrophobe desorption time is equal to the

bridge-to-loop transition time is only valid for very short chains and very high sticker strengths.

We ultimately present transition rates for experimentally-relevant chain lengths that can be incor-

porated into Pop-BD simulations.

Chapter 4 informed chapter 3, in that it focuses on the specific problem of a particle escaping

from a Lennard-Jones potential well. We observed an error in prior simulations of polymer-colloid

interactions that resulted from a lack of understanding of the effect of damping on the escape

time of a particle, and the consquences of this for more complex simulations. This chapter pro-

vides a thorough assessment of existing theories’ predictions for particle escape times for different

damping regimes, and offers a comprehensive formula for predicting particle escape times from a

Lennard-Jones potential for all damping conditions.

Finally, chapter 5 incorporates the information obtained from chapters 2 and 3 into a new

implementation of Pop-BD. This updated version of Pop-BD is an extension of HOOMD-blue

that breaks and forms bonds (representing HEUR bridges) during runtime, using the Pop-BD rate

equations. Incorporating the open-source autocorrelation code provided by Ramirez et al. into

HOOMD-blue as a plug-in module greatly improves the efficiency of computing stress relaxation

curves from Pop-BD simulation data. Both the dynamic bonding developed as a part of the Pop-

BD/HOOMD code and the Likhtman autocorrelator plug-in are features that are desired by the

greater molecular simulation community.
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6.2 Future Work

We know from experimental studies that under shear, the corona of loops on the surface of the

colloids deforms anisotropically[56]. If this effect is pronounced, it might be interesting to in-

troduce a force-dependent anisotropic potential that captures this effect. Additionally, we know

that the results of the phase diagrams presented in chapter 2 qualitatively agree with experimental

results through informal discussion with experimental collaborators, but it would be beneficial to

conduct a thorough exploration of how the potentials computed in chapter 2 directly correspond to

experimental results.

In chapter 3, we show that there are two regimes for the bridge-to-loop transition, one dom-

inated by τspring and the other dominated by τesc. However, where the crossover between these

two regimes occurs appears to be dependent on the interparticle gap and chain length of the poly-

mers. Because of these complexities, we continue to use BD simulations to generate tabulated

bridge-to-loop transition times. It would be preferable and more efficient to develop a theoretical,

semi-empirical, or even machine learning approach to predicting bridge-to-loop transition times.

This would allow for the exploration of a wider parameter space using Pop-BD without the need

to re-run computationally expensive simulations.

The computational efficiency improvmenets shown in chapter 5 are not limited to the Pop-BD

methodology. The autocorrelation method developed by Ramirez and coworkers has wide appli-

cations, and is already a part of the LAMMPS simulation package. With some more rigorous unit

testing and additional features for flexiblity, the autocorrelation method could either be integrated

into HOOMD v3, should there be enough user-interest, or simply be used as a stand-alone plug-in

that is compatible with HOOMD-blue.

The modifications we made to HOOMD-blue that allow for bond breakage and formation dur-

ing run time is a feature that has been requested by several HOOMD-blue users. Simplifying the

Pop-BD code to just the dynamic bonding component, then generalizing it appropriately so that

other users can apply it to their applicaitons, is an obvious next step. However, Pop-BD does

not require massive system sizes to obtain valuable information, but many systems of interest to
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HOOMD-blue users do. Because one of the primary reasons users choose HOOMD-blue is be-

cause of its ability to scale to large numbers of GPUs, a CUDA-compatible implementation of

dynamic bonding should be developed before it is released as a component of HOOMD-blue.

Finally, this thesis presents few results of actual Pop-BD simulations, and instead focuses on

the subcompoents and code development necessary to improve it. The ideal next steps for Pop-

BD are to run large simulations for long timescale behavior, and begin comparing these results to

experimental simulations. Specifically, introducing steady-shear to Pop-BD simulations has been

a long-standing target for this project. The modularity of the Pop-BD/HOOMD code also offers

opportunity for incorporating machine learning techniques, since it is likely that adjustments will

need to be made upon comparison to experimental data. Behavior of waterborne coatings such

as non-monotonic viscosity vs. shear curves, negative first normal stress, and G’ and G” curves

whose scaling are non-Maxwellian and difficult to predict are all of interest and Pop-BD may lend

insight intno these areas.
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