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PREFACE

The following essays are loosely organized around the theme of generational eco-

nomic links between childhood and adulthood. This field is an active and rapidly

expanding domain in empirical research, given that there is an intuitive link between

people’s early life experiences and their later life outcomes. While these early life

experiences are not determinative, they play an important role in physical and emo-

tional development, as discussed in the introduction to the first chapter below. Better

understanding these linkages may show how adverse outcomes in adulthood are pre-

dicted by specific circumstances in childhood, and help policy-makers better target

interventions in childhood that prevent those adverse outcomes later in life.

While this link seems intuitive, quantifying it remains a di�cult task for two main

reasons. First, the limited time horizon of most data resources makes it di�cult to

measure how circumstances in childhood link up to adulthood. Second, it is often

di�cult to identify treatments and treated populations for causal analysis. With some

exceptions, it is di�cult to find clearly defined treatments that a↵ected one group

compared to another. For example, researchers have demonstrated a correlational

income gradient in many metrics of child development, where children from higher

income families often do better on metrics of child development. However, sources of

experimental variation in income are few, so it remains an open question how much

of this relationship is causal.

Because of these di�culties, future research using newly unlocked large-scale ad-

ministrative data and restricted government data hold great promise. These data
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resources, along with increased computing power, allow researchers to calculate re-

vealing large-scale correlations. Additionally, with these more detailed datasets, re-

searchers can better calculate eligibility for programs with more finely grained data

on place of residence and family economic conditions. For example, many benefits

to families with children are means-tested. Depending on how families react to those

cuto↵s, they may allow opportunities for research leveraging the program eligibility

rules. This dissertation’s first chapter o↵ers new evidence from one such eligibil-

ity cuto↵, and o↵ers strategies for econometrically dealing with endogenous sorting

around similar cuto↵s.

However, doing careful research with such resources will depend on producing

quality data. As using data for these kinds of long-term analyses often requires linking

one resource with another (e.g. school records with earnings records), the quality of

the linking may impact empirical results. Therefore, doing careful linking is necessary

to ensure these resources are used to their full potential. The second and third

chapters of this dissertation explore methodological issues related to linking, showing

that di↵erent linking procedures themselves may alter measured results. They also

o↵er practical advice on how to improve the quality of linking.

In terms of future research, I believe the discontinuity in after-tax income I exam-

ine in my first chapter o↵ers ripe variation for further examination. Any dataset that

includes child date of birth, outcomes among children, and information on the eco-

nomic conditions of parents allows a potential setting for looking at the e↵ect of this

income shock. Furthermore, as I suggest, tracking discontinuities in outcomes among

children who were born after 2000 may be promising for researchers, as the size of the

discontinuity in after-tax income at birth has only increased with time. In general, I

believe more research looking at links between the conditions children face growing

up and their outcomes as adults will be fruitful. Hendren and Sprung-Keyser (2020)

show that, on average, interventions among children show more ”bang per buck” in
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social outcomes than interventions among adults. These results, together with the

findings in my first chapter, suggest that studying more potential interventions among

children may find similarly sized e↵ects. Future research distinguishing between the

e↵ectiveness of di↵erent types of interventions, and the relative impact at di↵erent

ages among children will be of great interest to policy makers. I hope this dissertation

can add to this ongoing research, and inspire further research for the future.
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ABSTRACT

My dissertation examines the economic links between people’s experiences in early

and later-life. It o↵ers new empirical evidence on the e↵ect of income in infancy on

later-life outcomes, and investigates the performance and econometric properties of

the linking tools often used to create data for these long-term empirical investigations.

In my first chapter, I estimate a relationship between family income in infancy and

later-life outcomes for children. Eligibility for child-related tax benefits depends on

the calendar year in which a child is born. Families with children born in December

are eligible for tax benefits a year earlier than families with children born a few days

later in January. These di↵erences create a discontinuity in after-tax income in infancy

worth on average approximately $2,000 for families in tax year 2016. I use regression

discontinuity techniques to calculate the e↵ect of this change in after-tax income on

outcomes for children and young adults in Census data. Evidence show that a $1,000

increase in after-tax income in infancy results in a 1.2 percentage point increase in

the probability of a student being grade-for-age by high school, a basic indicator of

academic achievement and social maturity. E↵ects of this income shock are larger for

children from families that are more likely disadvantaged at a child’s birth, including

Black families, and families with low education attainment. After high school, small

di↵erences in labor force attachment, earnings and education attainment persist for

the adults who experienced the income increase as children. These e↵ects are again

pronounced for Black adults and adults born in counties with low average education

attainment.
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In my second and third chapters, I investigate methodological problems that arise

when linking data. Linking is often necessary to investigate generational economic

links between childhood and adulthood.

In the second chapter, my coauthors Martha Bailey, Catherine Massey, Morgan

Henderson and I review the literature in historical record linkage in the U.S., and ex-

amine the performance of widely-used automated record linking algorithms. Focusing

on algorithms in current practice, our findings highlight the important e↵ects of link-

ing methods on data quality. We then extend our analysis to look at the consequences

of these di↵erences in data quality on inference by computing intergenerational in-

come elasticities between fathers and sons. Many of the methods produce estimated

elasticities that are statistically distinguishable from the estimated intergenerational

elasticity with hand-linked data, suggesting that the linking algorithms themselves

may bias inference. However, eliminating false matches renders elasticity estimates

similar to each other, and statistically indistinguishable from the elasticity estimated

with the hand-linked data.

In the third chapter, my coauthors Martha Bailey, Catherine Massey and I inves-

tigate two complementary strategies to address the issues we highlight in my second

chapter. We investigate the use of validation variables to identify higher quality links

and a regression-based weighting procedure to increase the representativeness of cus-

tom research samples. We demonstrate the potential value of these strategies using

the 1850-1930 Integrated Public Use Microdata Series Linked Representative Samples

(IPUMS-LRS). We show that, while incorrect linking rates appear low in the IPUMS-

LRS, researchers can reduce error rates further using validation variables. We also

show researchers can reweight linked samples to balance observed characteristics in

the linked sample with those in a reference population using a simple regression-based

procedure.
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CHAPTER I

E↵ects of Family Income in Infancy on Child and

Adult Outcomes: New Evidence Using Census

Data and Tax Discontinuities

Researchers are finding growing evidence of sustained relationships between family

economic resources in childhood and later life outcomes. Descriptive research from the

U.S. shows that children from lower-income families are at higher risk of poor physical

health as children (Case, Lubotsky and Paxson, 2002; Currie, 2009), more likely to

perform worse in school (Michelmore and Dynarski, 2017; Reardon, 2011), and less

likely to graduate high school (Stark, Noel and McFarland, 2012; Autor et al., 2019).

These di↵erences persist into adulthood, as disadvantaged children are less likely to

earn college degrees (Bailey and Dynarski, 2011), more likely to have experiences in

the criminal justice system, including incarceration (Chetty et al., 2019), more likely

to have lower earnings (Chetty et al., 2014a) and more likely to have reduced longevity

(Ferrie and Rolf, 2011).

The causal mechanisms underlying these relationships are an active field of study,

as family income is correlated with unobservable determinants of outcomes for chil-

dren. Research show that changes in permanent family income can have pronounced

impacts on children from lower-income families (Akee et al., 2010; Loken, Mogstad
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and Wiswall, 2012; Shea, 2000; Chevalier et al., 2013; Bastian and Michelmore, 2018),

although permanent income changes produced by specific transfer programs may have

smaller e↵ects (Jacob, Kapustin and Ludwig, 2014). In comparison, research on the

e↵ects of transitory changes in family income o↵ers more mixed conclusions. Some

papers find that changes in transitory family income have short-term impacts on per-

formance of school students (Dahl and Lochner, 2012; Chetty, Friedman and Rocko↵,

2011), some papers find long-term impacts (Black et al., 2014), and some papers

find neither short nor long-term impacts (Cesarini et al., 2016). One critical topic

left largely unaddressed in this evidence is the long-term e↵ect of modest changes

in transitory income in infancy on outcomes for children. Research suggests that

conditions in infancy and early childhood may be consequential for long-term pat-

terns of child development, so it is possible that e↵ects could be strong at these early

ages (Cunha et al., 2006; Duncan, Ludwig and Magnuson, 2011; Currie and Almond,

2011). If impacts are stronger at di↵erent ages, such a finding has consequences for

transfer policy design. Most transfer policies in the U.S. are not child age-specific,

and di↵erences in impacts by age would suggest that increasing benefits at certain

ages and decreasing them in others may be a low cost reform that improves outcomes

for children.

This paper addresses this gap in the literature by analyzing the e↵ect of a shock

to transitory family income that happens in the first year of a child’s life. If a child

is born before New Year’s Day, that child’s family is eligible for tax benefits for that

child one year earlier than if a child is born after New Year’s. This discontinuity

in tax policy means that the parents of children born one day earlier have larger

after-tax income in the first year of a child’s life. The increase in income is modest

but non-trivial, worth about $2,000 on average in tax year 2016, and resulting in an

average 5% increase in after-tax income. Furthermore, this increase is experienced

by a broad share of families, so its e↵ects may be analyzed and compared for families
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with di↵erent income levels. Note that this increase is a speeding up of the tax credit

and deduction process for a child, as the families with children born in December,

several years later, will be eligible for tax benefits for one year less than families of

children born in January. Thus, the cost to the government of this increase in after-

tax income comes from just altering the timing of the tax benefits and moving them

from a child’s later adolescence to infancy.

This research setting is closest to the work in Black et al. (2014) and Bastian

and Michelmore (2018). Both of these papers analyze the long-term e↵ects of income

shocks from tax policy that happen early in life. Black et al. (2014) find that a

$1,700 tax credit income transfer to a child’s family at age 5 has e↵ects on student

achievement 10 years later. Bastian and Michelmore (2018) use implementation of

state Earned Income Tax Credit programs, and conclude that increases in income

in ages 0-4 have no detectable e↵ects on high school graduation status and earnings

in adulthood. This paper builds on these results with new evidence from a di↵erent

research setting. Compared to Black et al. (2014), this paper looks at the e↵ects of

an income shock that happens even earlier in life, and extends analysis to e↵ects on

later life outcomes after school. Compared to Bastian and Michelmore (2018), this

research looks at changes in income that reflect transitory income alone, and has more

power to distinguish heterogeneous e↵ects at di↵erent income levels.1

This paper calculates the e↵ect of the shock in after-tax income around the New

Year using a regression discontinuity design with date of birth as a running variable.

Endogenous birth timing around the New Year is a threat to identification, and this

paper accounts for this issue by omitting from the estimation process a region of

observations around the New Year. This omitted region is identified using bunching

estimation techniques (Chetty et al., 2011; Kleven and Waseem, 2013; Saez, 2010).

1The introduction of a state Earned Income Tax Credit program would impact earnings of families
for years into the future and may change labor supply incentives. Hence, the results in Bastian and
Michelmore (2018) are best interpreted as a mixture of changes in transitory income and permanent
income.
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Three assumptions are su�cient for this strategy to identify the causal e↵ect of this

boost in after-tax income on later life outcomes. First, no other treatments must

coincide with the passing of the New Year. Second, the region a↵ected by endoge-

nous birth timing must be consistently identified using the omitted region estimation

technique. Third, the evolution of an outcome must be consistently estimated using

extrapolation through the omitted region.

Results show that this change in income in infancy has impacts on a child being

grade-for-age by high school. Students are grade-for-age if they are in the school grade

they would be in had they entered kindergarten or first grade on or before the year

they were eligible to enter those grades, and if they progressed through school without

ever repeating a grade.2 Being grade-for-age is an indication that a student has

met academic standards and shown social maturity in school (Xia and Kirby, 2009),

so improvements in the share of students grade-for-age indicate multi-dimensional

improvements in student development. Consistent with validity of the research design,

there is no discontinuity in pre-school attendance and kindergarten entrance around

the New Year. Children born before the New Year, who experience the increase

in after-tax income, enter pre-school and kindergarten at roughly the same rate as

the children born after the New Year, who do not experience it.3 However, by the

time students reach high school, students born before the New Year who experienced

the increase in family income are approximately 1.1 percentage points more likely to

be grade-for-age than students born after the New Year who did not. This finding

is robust to a variety of checks, including restricting to students who live in their

2Most school systems define grade-for-age status starting from the first year a child entered
kindergarten or 1st grade. As these entrance dates are not observable in Census data, this definition
is the closest analogue.

3The claim that this result is consistent with the validity of the research design will be described
in more detail later. Technically, there could be gaps that open up in this measure early on either
because the grade-for-age status calculation is incorrect (which would suggest that the research set-
up is flawed), or because parents want to hold back their children early on before they enter school
(which would still be valid with the research design, but is more di�cult to interpret). Since there
is no detectable gap either way, it suggests that both possibilities have not happened.
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birth state, and dividing up the sample by birth cohort to use di↵erences in after-tax

income by birth cohort to look at e↵ects. Reinterpreting this reduced form e↵ect as

a direct e↵ect of income, this evidence shows that an extra $1,000 in the first year

of life increases the probability of the average student being grade-for-age by high

school by 1.2 percentage points.

These e↵ects of an extra $1,000 on grade-for-age status by high school are largest

for groups that had lower family income at birth, including children whose mothers

have a high school degree or less, and Black children. These results are consistent

with the finding in Loken, Mogstad and Wiswall (2012) that the relationship between

income and child outcomes is non-linear; similarly-sized increases in income have

larger e↵ects on lower-income families and smaller e↵ects on higher-income families.

The e↵ects of this increase in income in infancy persist after high school. Fol-

lowing Kling, Liebman and Katz (2007), this paper combines income, participation

in the labor force, high school degree attainment and Supplemental Nutrition As-

sistance Program (SNAP) receipt into a single measure of economic self-su�ciency.

In the years after young adults turn 19, there are suggestive but not statistically

significant discontinuities in this measure in the full sample between adults who did

and did not experience the income increase as infants. However, there are larger and

significant discontinuities for young Black adults and adults born in counties with

comparatively lower education attainment.4 These discontinuities in outcomes last

until young adults reach their mid-20s, with the discontinuities driven by di↵erences

in high school education attainment and earned income. However, these e↵ects fade

somewhat at later ages. This evidence is consistent with income in infancy having

a small e↵ect on adult outcomes that attenuates with age as young adults gather

4Note that looking at adults born in counties with comparably low education attainment is a
slightly di↵erent subgroup than what was looked at before, children with mothers who have education
attainment of a high school degree or less. A large fraction of children move away from home in
their 20s, so parent education attainment cannot be defined for them. This subgroup is an imprecise
proxy necessitated by data limitations.
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experience in the labor force.

These results suggest that family income in infancy has e↵ects on child develop-

ment with ramifications stretching into adulthood, especially for families more likely

disadvantaged at a child’s birth. Furthermore, compared to some of the previous

literature looking at similarly-sized income shocks at later ages, the e↵ects on adult

outcomes here are relatively large. This finding may suggest that e↵ects of income

in infancy are larger than e↵ects from income at later ages. Overall, these findings

fit within and expand on two directions of research: research into the gaps in the

development of children that open up before children enter formal schooling, and re-

search focusing on early childhood as a critical period for development. The relatively

large e↵ects measured here suggest that transfer policies aimed at families with young

children may have substantial long-term benefits. As these e↵ects come from altering

the timing of tax benefits from adolescence to infancy, refocusing transfer benefits on

earlier periods of life may o↵er a low-cost way of increasing such transfers to improve

outcomes for children.

1.1 Data

The data used in this paper come from three sources: the long form sample of the

2000 Census, the 2001-2016 American Community Survey (ACS), and the Current

Population Survey (CPS). The paper uses the first two resources for all reduced form

regressions looking at the e↵ect of the income shock of being born before the New

Year on all outcomes. It uses the third resource to estimate the discontinuity in

after-tax income for having a child born before the New Year, and to analyze general

patterns of grade repetition by grade.

The long form of the 2000 Census is a household survey covering 17% of the

U.S. population, or approximately 22 million U.S. households (U.S. Census Bureau,

2009). It includes a wide variety of demographic and economic data, including data
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on levels and sources of income, household structure, labor force participation and

education attainment for respondents ages three and up. The ACS is an annual

survey of households. The number of households sampled varies from year to year,

but since 2011 the Census Bureau has targeted approximated 3.5 million households

(U.S. Census Bureau, 2014) per year. The ACS covers many questions similar to those

in the 2000 Census long form, but some question definitions are di↵erent. Appendix

A covers some of the di↵erences in definitions in more detail and describes how this

paper combines the questions into single measures that can be used across years.

Both the ACS and the 2000 Census long form were matched to the Numident file

of the Social Security Administration using a Protected Identification Key from the

Census Bureau. The Numident file o↵ers a listed place of birth for each individual,

which was coded into a county of birth by researchers at the University of Michigan.

One of the key outcomes this paper looks at is whether or not a student is grade-

for-age. This research assigns grade-for-age status to a student based on four pieces

of information: highest grade completed (or most recent grade enrolled), the state of

birth of the child, the date of birth of the child and the date on which the household

responds to the survey. Many states set explicit kindergarten and 1st grade age en-

trance requirements that require students to be a specific age by a certain date before

being eligible to enter either kindergarten or 1st grade. Comprehensive data on these

state policies for kindergarten entrance were collected by Bedard and Dhuey (2012),

and they generously provided their most recent data covering 1955 to 2015. This data

was compiled directly from state statutes and legislative history on school entry poli-

cies, and cross-checked against a variety of other data sources. This research assigns

expected completed grades to students assuming that they entered kindergarten or

1st grade in the first year that they were eligible for those grades and then progressed

through all other grades sequentially without repeating a grade. A student is grade-

for-age if they have completed the most recent grade that this measure lists. Note
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that if students drop out of high school and do not continue on to further education,

then they would be counted as not being grade-for-age.

Three complications are worth noting about this measure. First, some states do

not specify statewide kindergarten entrance rules and allow local school districts to

set their own cuto↵s. As no clear expected grade can be assigned to these individuals

without more detailed data on individual school district practices, this paper drops

any individuals born in these states from any further calculation. Second, some states

make the eligibility cuto↵ January 1st or December 31st. In the years that such

cuto↵s are present, children born before and after the New Year would, in addition

to the di↵erence in after-tax income, also experience the treatment of di↵erent grade

eligibility rules. This paper also drops these individuals from any further calculation.

Lastly, there are only a handful of grades where grade-for-age status can be reliably

assigned due to the nature of the grade attainment and enrollment questions in the

2000 long form Census and 2001-2007 ACS (although grade-for-age status can be

reliably assigned in the 2008-2016 ACS for all grades). This issue is described more

in Appendix A. The consequence of this limitation is that grade-for-age status can

only be consistently calculated in pre-school, kindergarten, 1st grade, 5th grade, 7th

grade, and 9th through 11th grades.

Since this paper analyzes grade-for-age status at di↵erent grades using data from

2000 to 2016, the distribution of birth cohorts included in each calculation will di↵er.

For example, the high school grade-for-age calculations include individuals born from

1982 to 2001, but the kindergarten enrollment calculations involve individuals born

1996 to 2011. In all, results looking at grade-for-age status include children who were

born from 1982 to 2011, with the exact birth cohort of children analyzed depending

on the grades looked at. To ensure that analyses of outcomes for adults continue to

follow these same cohorts, this paper restricts analysis to adults who were born in

1980 and later.
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Thus, the sample for analysis could broadly be described as adults and children

born 1980 and later in states that had statewide kindergarten entrance cuto↵s away

from the New Year in the year that the student would have entered kindergarten in

that state.

The CPS is a monthly sample of households in the U.S.. Although sizes of samples

di↵er by year, the current CPS samples approximately 60,000 households per month

(Bureau of Labor Statistics, 2018).

1.2 Overview of Tax Policy Relating to Children

The variation that drives this paper is the discontinuity in after-tax income for

families in the first year of an infant’s life depending on the birth timing of the child.

There are four main child-related tax benefits that parents are eligible for: a personal

exemption for a dependent, the Earned Income Tax Credit (EITC), the Child Tax

Credit (CTC) and the Child and Dependent Care Credit. Parents are eligible for

these tax benefits for a child starting in the tax year that a child is born. So, as

Figure 1.1 shows, parents with children born in December are eligible to claim child-

related tax benefits in their child’s first year in life. In comparison, parents of children

born a few days later in January can only claim them on tax forms starting with the

next year.

Figure 1.2 estimates the average discontinuity in after-tax income for having a

child born before the New Year produced by these four benefits. Without access to

administrative data on tax records, it is di�cult to precisely calculate the value of

this discontinuity, but Figure 1.2 o↵ers the best approximation to this calculation

possible with survey data from the March CPS.5 These estimates are in line with

5This paper calculates this after-tax income discontinuity by using data from the March CPS
in a four year radius of a given tax year, and restricting the sample to families with at least one
child three years old or younger. It then assigns the family the total income from their household
of residence, and treats one of those children three years old and younger as an ”infant.” Finally, it
computes the after-tax return for the family both with and without the ”infant” three years old and
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calculations from administrative data. For example, this paper estimates that the

average tax benefit of having a child before the New Year was $2,150 for tax filers

from 2000 to 2010. LaLumia, Sallee and Turner (2015) estimate with administrative

data that the same benefit over the same time period was $2,100.

Figure 1.2 shows that this discontinuity has been steadily increasing over time, ris-

ing from about $800 in 1980 to a little over $2,000 in 2016, due primarily to increased

generosity of the EITC and CTC (see Appendix B). Furthermore, the discontinuity is

positive for the vast majority of families. The share of parents with no change in their

tax liabilities in this calculation is around 10% prior to 1994 and falls to about 6%

thereafter. These parents have zero change in tax liabilities for three reasons: either

they have very low income, they have already received the maximum of relevant tax

credits, or they have high incomes and high deductions. Thus, the vast majority of

families experience a modest increase in after-tax income.6

Figure 1.2 also shows average changes in after-tax income for having a child born

before the New Year for two subgroups: families where a child’s mother has education

attainment of a high school degree or less and Black families. These are subgroups this

paper will look at later, as they have lower average income at birth than families with

younger, and the di↵erence between the two tax returns identifies the discontinuity. Ideally, this
comparison would only include parents with infants born around December and January given the
fact that seasonality in the patterns of birth ensure that the characteristics of parents evolve over
time (Buckles and Hungerman, 2013b). However, the CPS data do not identify month or quarter of
birth. The use of children three years old and younger as ”infants” and the use of additional years
of CPS data ensure more precision and have minimal e↵ects on point estimates. More details and
robustness checks for the choices in this calculation are in Appendix A.

6This paper, like many papers in the EITC literature that do not have access to administrative
tax data, assumes 100% take-up of tax benefits to calculate the change in after-tax income produced
by these tax policies (Hoynes, Miller and Simon, 2015). Take-up rates lower than 100% would mean
that the true discontinuity would be lower than the discontinuity in Figure 1.2, so Figure 1.2 is best
interpreted as an upper bound. While take-up is not 100%, it is still likely high. LaLumia, Sallee
and Turner (2015) find that 85% to 90% of newborns born in late December are claimed on a tax
return in the 2000s. To understand how di↵erent take-up patterns might a↵ect the discontinuity
in after-tax income, Appendix A describes an exercise that adjusts Figure 1.2 for a lower bound
on the estimated discontinuity. This analysis suggests that the lower bound on the discontinuity in
after-tax income is at most 10% to 20% lower than the upper bound recorded in Figure 1.2. The
e↵ect of this potentially lower discontinuity in after-tax income on later results is also discussed in
further detail in Appendix A.
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higher education attainment and White families. As is clear, the average increases in

after-tax income for these groups are similar to or slightly less than the average for

all families in early years. However, they gradually increase and become equal to or

larger than the average over time. The fact that these discontinuities in income are

relatively large for these groups reflects the fact that the EITC and to a lesser extent

the CTC are aimed at lower income families. Critical to the size of these tax benefits

for these families is the fact that the EITC is a refundable tax credit and the CTC

is partially refundable, meaning that individuals who have low tax obligations can

actually see a positive tax return from the government.7

Figure 1.3 presents these changes in after-tax income as percentage increases in

after-tax income. The average percent increase in after-tax income is generally larger

for families where the mother has a high school degree or less and for Black families

than it is for all families on average.8 In particular, the lines rapidly diverge as the

generosity of the CTC and EITC ramp up in the 1990s.

As is clear in Figure 1.1, the discontinuity in after-tax income described here in

infancy does not persist into the next year.9 In the next tax filing year parents of

infants born before and after the New Year will be eligible for the same tax credits

and deductions. Furthermore, parents are only eligible for these tax credits and

deductions for a set number of years for a given child. Since parents of newborns

born in December are eligible for tax credits and deductions a year earlier, then the

parents of newborns born in January will be eligible for tax credits and deductions

for one year later. For example, when children born in January turn 19, their parents

7The CTC was not partially refundable until tax year 2001. The CTC is partially refundable
because it becomes refundable for tax filers with income over a certain threshold (Crandall-Hollick,
2016).

8A small share of households each year report no income, less than 5% across all years. These
observations are included as a 0 percent change in after-tax income.

9This claim assumes that the permanent income of households is una↵ected by the income shock.
However, researchers have found examples where temporary income shocks result in long-term in-
creases in earned income, presumably from parents seeking out better paying work (Black et al.,
2014). This paper discusses this possibility later in the discussion section, and in Appendix B.
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are still eligible for the EITC for the previous tax year. Conversely, when children

born in December turn 19, their parents will not be eligible for the EITC for that tax

year.10 So, the e↵ect of having a child born in December as opposed to January of

the next year is a speeding up of the tax credit and deduction process for that child.11

1.3 Birth Timing Patterns

Causal analysis of the e↵ect of this change in after-tax income needs to account

for the fact that parents and doctors have some degree of control over birth timing.

Doctors may deliver children using Cesarian section (C-section) surgery (32% of all

births in 2017) or by inducing labor through a variety of methods, including the use

of drugs (26% of all births in 2017) (Martin et al., 2018). These delivery methods can

be used to alter timing of birth.

There is clear evidence of this control over birth timing in the well-known fact that

fewer births happen on weekends. As is clear in Figure 1.4, there are large dips in

counts of births on Saturday and Sunday. This fall on the weekends reflects a decrease

in C-section surgeries, but there is a smaller but still noticeable fall in vaginal births

as well (Martin et al., 2010). Figure 1.4 also shows that mothers who give birth on the

weekend have slightly lower education attainment. This data alone suggest that some

parents, especially parents with slightly higher education attainment, exercise some

degree of control over birth timing and have specific preferences over birth timing.

10Parents with full-time students living at home are able to claim their children for the EITC until
their children turn 24, and parents with ”permanently and totally disabled” children can claim the
EITC at any age.

11If families have perfect foresight and perfect liquidity, then knowledge of this future change
in after-tax income should attenuate the size of this discontinuity in current family income after
accounting for discounting. Assuming a rate of return of 5%, then ability to borrow against future
tax benefits may attenuate the current discontinuity by slightly over 40%. However, many of the
lower income families with the largest after-tax increases in income are likely liquidity-constrained
and hence less able to borrow against future income (Gross and Souleles, 2002). Additionally,
evidence suggests that some share of families do not understand timing of how eligibility for tax
benefits expires as children age (Feldman, Katuscak and Kawano, 2016). These complications likely
mean that attenuation from discounting in the estimated discontinuity in family income is limited.
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After regression adjusting for day of week in Figure 1.5 and taking an average

of birth counts over 5 years, the distributions of births and the characteristics of

births are much smoother.12 However, there are clear disruptions in the distribution

of births, especially around major holidays (including New Year’s Day, Christmas

and July 4th).13 Around these days, there are always fewer births on the holidays

alone, and more births on the days around them. Similar to mothers who give birth

on weekends, mothers with births that occur on holidays have slightly lower average

years of education than mothers with births that do not occur on holidays. However,

the average years of education return to previous levels quickly in the days around a

holiday. Focusing in particular around New Year’s, there is a drop in births on New

Year’s Day, and a slightly larger drop on Christmas Day, with larger counts of births

occurring before and after these holidays. Interestingly, there are relatively few births

after New Year’s Day compared to before, suggesting that parents and their doctors

with some level of control over birth timing are more likely to move births before the

New Year compared to after. This pattern may be indicative of strategic timing of

births to take advantage of tax benefits, but it also may reflect other preferences over

12For this regression adjustment, this paper estimates the following model:

Y
birthcount =

6X

i=1

�i [d = i] +
X

H

5X

i=�5

�iH
[dH = i] + ✏ (1.1)

where the first set of indicator variables [d = i] are a set of six dummy variables (excluding
Monday), and the second set of indicator variables [dH = i] are 11 dummy variables for each day
within 5 days of each major holiday (indexed by H). The second set of dummy variables exclude
from the estimation process all days around holidays, and the first set of dummy variables indicate
the average births that are observed on a given day that di↵er from the births observed on Monday
(the omitted category variable). Then, the regression adjusted counts of births would be:

Ŷ
birthcount

adj
= Y

birthcount �
6X

i=1

�̂i [d = i] (1.2)

13Within individual years there are also spikes on Memorial Day, Thanksgiving Day, and Labor
Day, but those spikes are not visible in this graph as this graph averages birth counts over 5 years.
While New Year’s Day, Christmas and July 4th are anchored to specific days in the calendar,
Memorial Day, Thanksgiving Day, and Labor Day are not, so the disruptions that happen on these
days are not visible when taking an average of birth counts.
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birth timing, including concerns about hospital sta�ng. LaLumia, Sallee and Turner

(2015) find limited evidence of specifically tax-related shifting in birth-timing around

the New Year, with most tax-correlated shifting concentrated in a narrow window

around the New Year.14

1.4 Methods

Evidence in the previous section suggests that the treatment of being born before

New Year’s Day is not random for some children, at least within a window of New

Year’s Day. However, the distribution of births outside of days around New Year’s

appears relatively smooth, save for other holidays. Intuitively, while parents can

shift births in a specific region, they may have limited desire to do so further away,

either because the costs of shifting are too high, or the benefits to shifting are too

low. Appendix C develops microeconomic theory foundations to justify such a way of

thinking, but this general intuition inspires a regression discontinuity strategy with

an omitted region (sometimes referred to as a ”doughnut regression discontinuity”).

Specifically, this paper estimates the following model:

Y = � [d < 0] +
cX

i=1

�1i d
i +

cX

i=1

�id
i [d < 0] + ✓X + ✏ (1.3)

Where Y is some outcome, d is the distance in days to the New Year’s, c is the

scale of polynomial in d, X is a list of additional covariates (specifically, state fixed

e↵ects and day of week fixed e↵ects), and the estimation process includes days in

some range [D, D̄] but excludes observations in an omitted range of [d, d̄]. Note that

� is the regression discontinuity estimate that reflects the estimated drop in outcome

14Furthermore, LaLumia, Sallee and Turner (2015) show compelling evidence that the correlation
of after-tax income and birth timing may largely reflect income tax reporting responses rather than
tax-motivated shifting. Note that this result di↵ers from Dickert-Conlin and Chandra (1999), who
use data from the PSID and conclude that parents with large potential tax benefits had a high
probability of altering the timing of childbirth. LaLumia, Sallee and Turner (2015) show evidence
that these patterns happen primarily in a narrow window around the New Year.
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Y on New Year’s Day, as on that day d is 0. We can conceptualize this estimate of �

as the limit of the estimated means at either side of d = 0, even when some region of

observations is omitted in the estimation process:

� = lim
✏1"0

[Y |d = 0 + ✏1, X]� lim
✏2#0

[Y |d = 0 + ✏2, X] (1.4)

Following the recommendations in the theoretical and applied literatures regard-

ing regression discontinuity estimation, this paper adds three more features to the

estimation procedure. First, it uses local linear regressions where c = 1 (Hahn, Todd

and der Klaauw, 2001). Second, it uses a triangle kernel that weighs observations

more in the regression if they are closer to the discontinuity (Fan et al., 1996). Third,

it uses a variety of bandwidth choices of [D, D̄] to demonstrate sensitivity of the re-

sults to the region of observations included. Demonstrating how bandwidth a↵ects

these estimates more continuously pushes the limits of disclosure of restricted data

from the Census Bureau.15

Before discussing the su�cient conditions this paper builds up to estimate � and

the validation strategies suggested by those conditions, it is useful to first review the

typical su�cient conditions that would apply in this setting if there were no omitted

region. First, there must be no other treatment that coincides with the passing of the

New Year. Second, as described by Lee and Lemieux (2010), the joint probability of

observing various values of d conditional on X and ✏, or f(d|X, ✏), must be continuous

in d. That is, for given values ofX and ✏, the treatment as determined by the birthdate

of a child is randomly determined.

To argue that this condition holds in normal settings without an omitted region,

many researchers perform two tests to argue validity of the research design:

15There is a robust literature on optimal bandwidth selection in regression discontinuity designs
(e.g. Imbens and Kalyanaraman, 2011) with the goal of minimizing expected mean squared error in
estimated regression discontinuities. This paper splits the di↵erence between the practical demands
of disclosure and the theoretical recommendations by showing robustness to di↵erent choices of
bandwidths.
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1. Test the null hypothesis that f(X|d) is continuous by testing for discontinuous

changes in variables at New Year’s that should not be impacted by treatment.16

2. Test the null hypothesis that f(d|X) is smooth at the threshold. A rejection

of smoothness at the treatment threshold arguably indicates precise and hence

non-random control over assignment to treatment (McCrary, 2008).

Without an omitted region, both of these traditional tests are violated in this

paper. Figure 1.5 shows graphical evidence of a discontinuous change in average

levels of mothers’ education attainment from December 31st to January 1st. Average

mother’s education attainment is an untreated covariate that should evolve smoothly

if the first test were met. Furthermore, there is clear strategic timing of births, with

more births occurring around New Year’s than on New Year’s. If the second test were

met, this distribution would be smooth.

With an omitted region, the treatment e↵ect can be consistently estimated under

four su�cient conditions. The first two are the same as before but the third and fourth

are new. First, there must be no other treatment that coincides with the passing of

the New Year. Second, f(d|X, ✏) must be continuous in d. Third, the region of

manipulated birth timing must be consistently identified and dropped from analysis.

Fourth, the remaining data must be su�cient to consistently estimate and extrapolate

means into the omitted region. Note that the fourth condition is stronger than the

conditions from Lee and Lemieux (2010) discussed above. To see why this addition

requirement is necessary, suppose that f(d|X, ✏) is continuous, but the evolution of

an outcome cannot be consistently extrapolated. Then, the evolution of the outcome

may behave unpredictably in the omitted region, and the estimated discontinuity may

be inconsistent.

To validate this set-up, note that, if the four conditions above are met, then the

first test regarding covariate smoothness described before should still be applicable.

16This test comes from the fact that applying Bayes’ rule: f(X, ✏|d) = f(d|X, ✏) f(X,✏)
f(d) .
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Assuming the regression discontinuity specification is valid, there should be no discon-

tinuities in variables that are not impacted by treatment. However, the second test is

no longer applicable as a substantial share of the data is omitted, and extrapolating

an estimated density into an omitted region rapidly loses power.

Using this estimation strategy depends on properly identifying the region of ma-

nipulated birth timing around the New Year. Currently, there is no standardized

procedure researchers use to estimate this region. Many papers use ad hoc visual

analyses of the size of the manipulated region (Barreca et al., 2011; Gauriot and

Page, 2019; Almond and Doyle, 2011), but some papers suggest more regularized

methods that are not applicable in this setting.17

This paper estimates an omitted region by applying data-driven techniques from

a method widespread in the public economics bunching estimation literature (Chetty

et al., 2011; Saez, 2010; Kleven and Waseem, 2013). Bunching estimation papers

look at situations similar to this paper where individuals alter a running variable to

take advantage of some benefit tied to that running variable. The first step of this

technique estimates the length of the running variable a↵ected by bunching. In this

setting, those observations would be equivalent to the section of observations that see

birth timing shifting. Thus, using this first step o↵ers an estimate of the region of

observations that should be omitted.

To apply this method, this paper uses the regression-adjusted counts of births by

day from the 2000 Census for August 1989 to July 1994 graphed in Figure 1.6.18 This

17Dahl, Loken and Mogstad (2014) are able to use other years where a treatment does not exist
as a counterfactual to estimate the extent of the regions that are not manipulated. Hoxby and
Bulman (2016) suggest a method of estimating the region using locally estimated density functions
that estimate a counterfactual density. They then estimate the size of the bias in outcomes present
due to sorting. In this setting, there is no counterfactual year for comparison as this discontinuity
in after-tax income is always present at the New Year, and the nature of the selection process into
treatment is not as clear as in Hoxby and Bulman (2016) for estimating bias.

18The process described here could be run for birth counts separately by year of birth, creating
di↵erent omitted regions for di↵erent years of birth. This strategy would likely make the most sense
with full count natality data, but given the need to weight population estimates in the Census, it
seems less obvious how meaningful slight di↵erences in birth counts are. Averaging over a number
of years o↵ers a simpler and less error-prone measure of birth counts by day.
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paper follows a five step process to estimate the region of manipulated observations:

1. Visually choose an upper bound on the days that demonstrate shifted births

(d̄), following Kleven and Waseem (2013).

2. Select a lower bound (d) and estimate:

Y birthcount
d =

cX

i

�i · di +
d̄X

i=d

 i · [d = i] + ✏ (1.5)

Where the first term is a flexible polynomial of order c. Similar to Kleven and

Waseem (2013), this paper uses c = 5, although the results are unchanged with

higher order polynomials. The second term omits from the estimation process

observations that fall between d and d̄.

3. Calculate the counterfactual distribution of births implied by the estimates in

step one for the days that were omitted from the estimation process in the

region, [d, d̄]:

Ŷ birthcount
d =

cX

i

�̂i · di (1.6)

This counterfactual distribution of births represents the distribution of births

that would be believed to exist in the absence of strategic timing of births.

4. Calculate the absolute value of the gap between the counterfactual distribution

and the observed distribution of birth counts:

Gapd,d̄ =

������

d̄X

d

h
Ŷ birthcount
d � Y birthcount

d

i
������

(1.7)

5. Repeat this procedure over values of d. Choose the value of d that minimizes

the gap.
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Note that this choice ensures that the surplus births observed for the days before

New Year’s roughly equals the lost births that occur in the days on and after

New Year’s.19

Because the omitted region needs to be estimated, calculating proper standard

errors for this setting means accounting for error introduced by the first step of esti-

mating an omitted region. To do so, this paper bootstraps the estimation procedure

in 2,000 replications, using a bootstrapped set of estimated cuto↵s, and then applying

these estimated cuto↵s to bootstrapped data.

Beyond the reduced form e↵ect identified by this discontinuity, this paper also

converts these estimated e↵ects into a direct estimated e↵ect of $1,000 of income.

One strategy of identifying this e↵ect is to divide the reduced form e↵ect by the

estimated change in income in Figure 1.2, and then multiply by 1,000. Letting ↵ be

the estimated increase in after-tax income, this Wald estimator would be:

Ŵ =
�̂

↵̂
· 1000 (1.8)

This strategy is not as e�cient as the two-sample two-stage least squares estimator,

but that estimation procedure is not readily applicable here as the first stage was not

estimated using the same regression discontinuity design (Inoue and Solon, 2010).

The delta method shows that the variation of this estimate is approximately:

V (Ŵ ) ⇡ 10002

↵̂2

h
V
�
�̂
�
+
�̂2

↵̂2
V
�
↵̂
�
� 2

�̂

↵̂
Cov

�
↵̂, �̂

�i
(1.9)

Following Angrist and Krueger (1992), this paper assumes that �̂ and ↵̂ are inde-

19In some respects, this estimation process ensures that the remaining data meet a smoothness
condition similar to the second validity test described above. Omitting dates that demonstrate
shifted births isolates attention to births that can be modeled with the counterfactual polynomial.
This process e↵ectively finds a region of births where the density of the running variable is smooth.
Of course, the density estimation process here ensures that, by design, any estimated density created
with this data is smooth, but the estimation process drops observations from the analysis would not
fit that smoothness.
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pendent and hence the covariance term is 0.

These instrumental variables estimates should be interpreted with caution given

that the increase in after-tax income, ↵, may be imprecisely estimated. As described

in Section 3 above, the calculation in Figure 1.2 is not done with administrative tax

data, and its estimation process is fundamentally di↵erent than the regression discon-

tinuity estimation procedure for the reduced-form treatment e↵ects. Nevertheless, if

both ↵ and � are consistently estimated, then W is also consistently estimated.

1.4.1 Estimating the Omitted Region

Figure 1.6 shows results from the density estimation procedures described in equa-

tions 1.5, 1.6 and 1.7. The horizontal lines indicate the endpoints of the region of days

the procedure suggests should be omitted. Following Kleven and Waseem (2013), 9

days after the New Year appears a good endpoint for the upper region of birth dates

demonstrating manipulation in birth timing. The estimation process then calculates

that the lower endpoint for the omitted region is 20 days before the New Year. More

days are dropped in December than January due to disruptions in birth timing around

Christmas. As births shifted away from the New Year cannot be distinguished from

births shifted away from Christmas, the calculation process drops all days a↵ected

by birth shifting around both holidays. This magnitude of shifting, on the order

of between one to two weeks before or after a major holiday (either New Year’s

or Christmas), is comparable with the birth timing shifting documented elsewhere.

Other papers that look at changes in birth timing to qualify for either cash or pro-

gram benefits tied to birth timing of children have found similar responses (Gans and

Leigh, 2009; Neugart and Ohlsson, 2013; Dahl, Loken and Mogstad, 2014). As is clear

visually, the density of births appears to return to a smooth distribution outside of

these dates.20

20A period of five days before and four days after Thanksgiving are also omitted from these density
calculations. This omitted region was calculated using a similar process as the calculation around
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1.5 Results

Having estimated the omitted region, the next step is to validate the research

design. As mentioned in Section 1.4, one test for the validity of this design with this

omitted region is to look for discontinuous di↵erences in pre-treatment and untreated

covariates. If the research design is valid, there should be no detectable di↵erences

except those observed at random. Table 1.1 shows the results from regression discon-

tinuity estimates testing whether these untreated covariates for infants’ families vary

discontinuously.21 All of these regression discontinuity estimates include state fixed

e↵ects, and day-of-week fixed e↵ects. The variables analyzed include household and

parent income, intensive and extensive parent labor force participation in the previ-

ous year, education attainment of parents, race of child, marital status of parents and

household size.

11 out of 114 tests show significant discontinuities at the 5 percent level. This

rejection rate is within the levels that would be expected with random sampling

variation and independent tests if the null hypothesis of no discontinuous changes in

characteristics were true. Additionally, as these tests are likely positively correlated,

rates of rejection expected under this null hypothesis may be even higher. Lastly, it

should be noted that most of the rejections take place within the smallest bandwidth.

When bandwidths of two months or more are used, three out of 76 tests are significant.

All of the point estimates discussed below will use the two month bandwidth, although

New Year’s. This omission does not translate to a change in the average density depicted in Figure
1.6, as the timing of Thanksgiving (falling on the fourth Thursday in November) varies from year
to year. The results estimating this estimated region are available on request.

21Although the results regarding outcomes for children below use pooled data from the 2001-2016
ACS and the 2000 Census, this section uses only the data from the 2000 Census for infants born
1999-2000. The Census data are better suited for looking at these questions than the ACS primarily
because the 2000 Census asks for data about income types and levels in 1999 specifically, while
the ACS ask about income in the ”previous 12 months.” This phrasing in the ACS means that,
depending on the month in which families respond, they may post responses that reflect common
changes in income and labor supply after birth of the newborn (Wingender and LaLumia, 2017).
Hence, restricting attention to the cohort of children born 1999-2000 in the 2000 Census long form
o↵ers the cleanest test of whether characteristics di↵er for children born across the New Year.
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other results with di↵erent bandwidths will be discussed when relevant. Hence, these

results with this omitted region meet the validation test implied by the research

design.

1.5.1 E↵ect of Family Income in Infancy on Grade-for-Age Status in

School

The next step is to use this after-tax income discontinuity to examine the impact of

the income discontinuity on school outcomes. The primary school outcome observable

in the Census and ACS data is grade-for-age status. A student being grade-for-age is

often interpreted as a basic indication of that student achieving academic and social

maturity in earlier grades. Table 1.2 reports all basic results for discontinuities in

grade-for-age status by grade. Figures 1.8 through 1.14 show graphical depiction of

these regression discontinuities. As a reminder, all of these regression discontinuity

estimates include state fixed e↵ects and day-of-week fixed e↵ects.

In the year that students are eligible for kindergarten, Table 1.2 and Figure 1.8

show that enrollment in kindergarten or a higher grade in the first year of kindergarten

eligibility shows no discontinuity across the threshold. This result suggests that there

is no detectable di↵erence in parents delaying their child’s entrance into kindergarten

across the New Year. These delays are often referred to as ”red-shirting.”

This lack of a discontinuity in kindergarten attendance is important for contextual-

izing later results. This finding suggests that any subsequent detected discontinuities

in grade-for-age status reflect students being retained in a grade and not kindergarten

red-shirting. It is di�cult to interpret the meaningfulness of changes in grade-for-age

status from red-shirting. The population of students who are red-shirted do not on

average have lower cognitive skills and social maturity before they enter school than

children who are not red-shirted (Bassok and Reardon, 2013).22 In contrast, repeat-

22Researchers often interpret parents who red-shirt children as looking to gain an advantage for
their child in school by having their child enter school slightly older than the rest of the children in
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ing a grade after entering school is usually interpreted as a negative signal about a

student’s social, emotional or academic readiness for the next grade. Students who

are retained in a grade are more likely to have poorer academic performance prior to

retention, lower social skills and poorer emotional adjustment. They also are more

likely to display problem behaviors in class, including inattention and absenteeism

(Xia and Kirby, 2009).23 Thus, any subsequent detected changes in grade-for-age

status in this setting are an indication of changes in the conditions that make stu-

dents more likely to be retained within a grade.24

Figure 1.8 also shows an important pattern in the omitted region that is worth

noting for all subsequent graphs in Figures 1.8 through 1.14. The students born

right after the New Year appear to be slightly less likely to have entered kindergarten

on time than the students born right before. These data were excluded from the

regression discontinuity estimation process for the reasons discussed earlier regarding

strategic birth timing. This drop that happens right after the New Year likely reflects

both the fact that students born after the New Year did not get the income boost,

and the fact that these children are negatively selected compared to the children born

before the New Year. As was discussed previously regarding Figure 1.5, these children

born right after the New Year come from households where mothers have, on average,

slightly lower education attainment.

As children enter first grade, Table 1.2 and Figure 1.9 show that a small gap

their grade (Deming and Dynarski, 2008).
23Note also that students who repeat grades are more likely to be children of color from less

educated and lower income households (Xia and Kirby, 2009) while red-shirted children tend to
come from families with higher incomes and are more likely to be White (Bassok and Reardon,
2013).

24Retention policies di↵er across states, districts and schools, and the students that are retained in
one location may not have been retained in another. As of 2018, 16 states have 3rd grade retention
policies that require students to repeat a grade if those students have not reached some minimum
threshold of achievement (Education Commission of the States, June 2018b). Even across school
districts in the same state, rates of retention can vary (French, 2013), as do district policies and
implementation of standards (Schwager et al., 1992). Thus, the meaningfulness of this outcome may
di↵er from location to location, with some teachers in some states being much more willing to use
it as a tool than others.
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opens up in the probability of a child being grade-for-age around the New Year, with

students who experience the income shock being slightly more likely to be grade-

for-age than students who do not. This gap is relatively small, at around half a

percentage point, and not statistically distinguishable from 0. As Figure 1.7 shows,

kindergarten is one of the grades students are most likely to repeat, so a change in

grade-for-age status around the New Year by this grade would not be surprising. It

is worth noting that this result, unlike the other results discussed here, is relatively

sensitive to the size of the omitted region. With a smaller omitted region, the gap

is larger and statistically distinguishable from 0 (results available on request). These

results o↵er suggestive evidence that a discontinuity has opened up in the share of

students grade-for-age, but that discontinuity is relatively modest.25

These results are confirmed when looking at the share of students grade-for-age

in 5th grade in Table 1.2 and Figure 1.10. As before, there is a drop in the share

of students grade-for-age among the students born right after the New Year, but the

estimated discontinuity reported in Table 1.2 is close to 0. This small discontinuity,

coupled with the somewhat larger but still statistically insignificant discontinuity

from first grade, suggest that there is at most only a modest change in the share of

students grade-for-age across the New Year by this point.

Moving forward to 7th grade in Table 1.2 and Figure 1.11, a larger detectable

discontinuity has opened up in the share of students grade-for-age. The regression

discontinuity estimate shows that students born before the New Year see a 1.05 per-

centage point increase in the probability of being grade-for-age. The increase in the

discontinuity here makes sense, given that Figure 1.7 shows that there is a gradual

25While repetition of kindergarten may represent a type of red-shirting (Deming and Dynarski,
2008), it is worth noting that the characteristics of children who repeat kindergarten are on average
di↵erent than those of students who delay entrance into kindergarten. As mentioned above, children
who delay entrance into kindergarten tend to be White and come from better-educated families with
higher incomes than their peers who do not. The characteristics of children who repeat kindergarten
tend to be similar to the characteristics of students who are held back in grades; compared to their
peers they are more likely to repeat later grades, have below-average school work, and be described
by their teachers as having behavioral issues (National Center for Education Statistics, 2000).
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increase in retention rates from 5th grade to 7th grade. As is clear from visual in-

spection of Figure 1.11, this result appears somewhat sensitive to the upper bound

of dates excluded, but this result is suggestive evidence of an eventual shift in grade-

for-age status taking place. Table 1.2 also converts this reduced form impact into an

instrumental variables estimate of the e↵ect of $1,000 of income in infancy. These re-

sults show that $1,000 more in family income in infancy results in an 0.88 percentage

point increase in the probability of a student being grade-for-age by 7th grade.

Lastly, looking at 9th, 10th and 11th grades in Table 1.2 and Figures 1.12 through

1.14, the discontinuity in the share grade-for-age appears to eventually grow in magni-

tude. Although there is some variation in the estimated discontinuity in grade-for-age

status, the estimated discontinuity is consistently positively signed and generally sig-

nificant at the 5 percent level. Furthermore, the results depicted in Figures 1.12

through 1.14 appear to become less sensitive to the upper bound on dates omitted,

unlike Figure 1.11. Table 1.2 and Figure 1.14 show the average discontinuity in grade-

for-age status using all high school years together. These results show that children

born just before the New Year are approximately 1.13 percentage points more likely

to be grade-for-age in high school. As the control mean for the share of students

grade-for-age by high school is 87%, this is a meaningful shift in grade-for-age sta-

tus.26 Table 1.2 converts these reduced form results into a direct estimate of the e↵ect

of income, and shows that a $1,000 increase in income in the first year of life results

in a 1.2 percentage point increase in the probability of a student being grade-for-age

by high school.

26Changes in grade-for-age status that occur in high school are harder to interpret than changes
that happen in earlier grades. Retention in high school may reflect students failing to accumulate
enough credits to advance their academic standing. Hence rather than being required to repeat
an entire grade, as might be the case in earlier grades, such retention may reflect students being
only required to repeat one specific course (West, 2012). However, two features are worth noting
of this discontinuity. First, this sort of retention, while not necessitating an additional year of
schooling, indicates that a student has not met certain benchmarks, and is hence meaningful in its
own right. Second, the previous results show the discontinuity in grade-for-age status evolving over
time, suggesting that the discontinuity in grade-for-age status in high school reflects changes that
occur both in high school and in the grades beforehand.
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While estimates of specific discontinuities are often noisy, the pattern of the evo-

lution of the discontinuity across grades is worth noting. By 1st grade, a slight

discontinuity that is statistically insignificant opens up, and by 5th grade the discon-

tinuity is still indistinguishable from 0. While it is di�cult to read much into this

early pattern, it may be weak evidence of a small if undetectable gap beginning. The

estimated discontinuity in grade-for-age status in 7th and 9th grade is larger, and in

high school, it continues to grow. While these estimates are imprecise, they suggest

a gradual increase over time in the size of the discontinuity, with perhaps the largest

increases happening in grades where students are most likely to be retained.27

Heterogeneous E↵ects for Subgroups in Grade-for-Age Status Results

Tables 1.3 through 1.5 and Figures 1.15 through 1.17 break these results down

further by showing how these results vary among subgroups. Here, for concision, the

only grades analyzed are grades 5, 7 and then 9, 10 and 11 conjointly.28

Much of the previous research looking at the e↵ects of income on outcomes for

children has found non-linear impacts. Similarly sized increases in income in this

research have often had larger e↵ects for lower income families than higher income

families. Ideally, to test for that non-linearity here, data would be available on the

characteristics of families at birth so that families could be identified that have lower

income at time of child’s birth. However, without such information, identifying high

impact samples depends on choosing information that retroactively could indicate

high-impact groups. This paper uses two possible signifiers of high impact groups:

Black students, and students with mothers who have a high school degree or less.

Both of these groups have lower average income at time of child’s birth because they

27The reasons that students are retained may di↵er by grade. In early grades, students are often
retained on the basis of social and emotional immaturity (Xia and Kirby, 2009; Byrd and Weitzman,
1994), while in later grades retention is additionally correlated with other risk factors and grade-
specific metrics of academic achievement (Peixoto et al., 2016).

28The use of data from high school grades conjointly is for precision. Results for individual grades
are similar.
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have lower average income throughout childhood (Tamborini, Kim and Sakamoto,

2015).

When comparing Black children with White children in Table 1.3 and Figure

1.16, both White and Black children have virtually no detectable discontinuity in

grade-for-age status in 5th grade. For the subsequent grades, both groups show some

discontinuity in the share grade-for-age around the New Year. However, in 7th grade

and high school, the estimated discontinuity shows a larger point estimate for Black

children. By high school, for example, the estimated discontinuity in the share grade-

for-age for Black children is 1.3 percentage points, while the estimated discontinuity

for White children is one percentage point. Converting these reduced form estimates

into a direct e↵ect of income in Table 1.3 shows that a $1,000 increase in family

income in infancy results in a one percentage point increase for White children in the

probability of being grade-for-age by high school. For Black children, the same income

shock results in a 1.6 percentage point increase in grade-for-age status. It should be

noted, though, that the di↵erence between the two is significant at the 10 percent

level in 7th grade and insignificant in high school. However, these tests for di↵erences

in discontinuities between White and Black children are likely imprecise given the size

of the omitted region and the smaller number of Black children compared to White

children. In all, these results suggest that the discontinuity is larger for Black children

than White children, although the magnitude of the di↵erence is unclear.

There are even stronger di↵erences when comparing children born to mothers with

di↵erent education attainment levels. The results in Table 1.4 and Figure 1.17 show

that a large share of the estimated discontinuity in grade-for-age status in high school

comes from e↵ects on children with mothers who have lower education attainment.

The discontinuity is a statistically insignificant 0.19 percentage points for children

from mothers who have more than a high school degree, and 1.73 percentage points

for children with mothers who have earned a high school degree or less. Furthermore,

27



the di↵erence between the two groups is significant at the 10 percent level among

children in high school. Converting these results into a direct e↵ect of income in Table

1.4 shows that $1,000 of income in infancy results in a 0.17 percentage point increase

in grade-for-age status for children of more educated mothers. Among children of less

educated mothers, the same increase of income in infancy results in a 2.05 percentage

point increase in grade-for-age status in high school.

In general, these results show that the e↵ect of $1,000 of income in infancy is larger

for groups that are more likely to be disadvantaged at a child’s birth. This result

suggests that the impacts of this additional income are nonlinear, in that the benefits

of increased income are stronger for families with comparatively lower incomes.

1.5.2 Robustness Checks on Grade-for-Age Status Results

Conditioning on State of Birth

This paper assigns kindergarten age eligibility cuto↵s to children depending on the

state in which they were born, and these cuto↵s determine what the grade-for-age

status of a student is. However, the appropriate state eligibility rules that children

face when entering kindergarten would be those for the state the child lived in when

the child was first eligible to enter kindergarten at age 5. As information on state

of residence at age 5 is not available retrospectively in this data, state of birth is an

imperfect proxy, and some students may have misaligned grade-for-age status.

Students will have misaligned grade-for-age status if the grade they are expected

to have completed to be grade-for-age is not correct.29 For example, if this paper’s

29Misalignment will only happen if the child’s birthdate is between both the correctly and incor-
rectly assigned kindergarten birthdate cuto↵s. If the birthdate is after both of the cuto↵s, or before,
then the student would need to be in the same grade to be grade-for-age under both cuto↵s, and
grade-for-age status would be the same in both. Assuming that the child’s birthdate is between both
the correct and incorrect birthdate cuto↵s, grade-for-age status is biased upwards if the incorrectly
assigned birthdate cuto↵ is before the correct cuto↵. For example, say a child is born in November
in a state that had a kindergarten age-eligibility cuto↵ of October 1st, and moved to a state at age 5
that had an age-eligibility cuto↵ of December 1st. The incorrectly assigned birthdate cuto↵ suggests
that a student should be in a grade to be grade-for-age that is lower than the grade a student would
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metric of grade-for-age says that a student should have completed 8th grade to be

grade-for-age, but the true grade that a student should have completed to be grade-

for-age is 9th grade, then that misalignment may result in a student being improperly

marked as being grade-for-age. In this setting, misaligned grade-for-age status will

only bias the estimated discontinuity in grade-for-age status upwards.30 Particularly

concerning is the possibility that students may have moved from birth states to states

or districts that have age-eligibility cuto↵s for kindergarten that coincide with January

1st or December 31st, as this misalignment could especially bias the estimated e↵ect

upward.

One test for bias is to further restrict the sample to children who are currently

residing in the same state as their state of birth. Under the assumption that students

living in their state of birth did not live in another state with di↵erent age eligibility

rules at age 5, these students would have correctly assigned grade-for-age status.

Table 1.5 shows that e↵ects observed among this subsample are even larger than

those observed in the full sample. Notably, the control mean of students who are

grade-for-age here is lower than the full sample. This pattern makes sense, as the

population of students who continue to reside in their state of birth is negatively

selected; families that do not engage in interstate migration are more likely to be

actually need to be in if that student were grade-for-age. Thus, even if this student were retained
once, this measure will mistakenly record that student as being grade-for-age. Conversely, grade-
for-age status would be biased downwards if the incorrectly assigned birthdate cuto↵ is after the
correct cuto↵. For example, suppose a child is born in November in a state that had a kindergarten
age-eligibility cuto↵ of December 1st, and moved to a state at age 5 that had an age-eligibility cuto↵
of October 1st. The incorrectly assigned birthdate cuto↵ suggests that a student should be in a
grade to be grade-for-age that is higher than the grade a student would actually need to be in if
that student were grade-for-age. Thus, even if this student never skipped a grade and was never
retained, this measure will mistakenly that student as not-being grade-for-age.

30Data in the regression discontinuities is organized by school cohort. Consider the first example
in the previous footnote, where the true kindergarten eligibility age cuto↵ a child experienced was
after the one assigned via birth state. This observation would be included in a cohort born before
the New Year. As discussed in the previous footnote, that child’s recorded grade-for-age status is
likely biased upwards. However, the other child, who experienced a true age cuto↵ that was before
the one assigned from the child’s birth state, would not be included in a cohort before the New
Year, as the first observations in that cohort would begin with the children born after the assigned
birth state cuto↵. Thus, misaligned grade-for-age status can only bias the estimated discontinuity
upward.
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less educated than families who do (Molloy, Smith and Wozniak, 2011), and previous

results have already shown that e↵ects of income on grade-for-age status are larger

for less-educated families.

Thus, the findings discussed before are robust to whatever error is added from the

misassignment of state of residence at age 5.

Separating Data by Birth Cohort

All of the preceding results have pooled together data across years for additional

precision. However, as is clear in Figure 1.2, the size of the discontinuity in after-tax

income has increased over time, so later birth cohorts see a larger discontinuity in

after-tax income than earlier birth cohorts. Hence, an alternate way to use the data

to explore the relationship between family income and outcomes for children is to

compare the estimated discontinuity across di↵erent birth cohorts. If the relationship

between after-tax income and grade-for-age status by high school is positive, then

there should be increases in this discontinuity for later cohorts that saw a larger

change in after-tax income for being born before the New Year.

Table 1.6 separates the sample of students in grades 9 through 11 into three

di↵erent groups depending on year of birth: students born 1982-1986, 1987-1993,

and 1994-2001. This combination of cohorts into years of birth reflects di↵erent eras

of the EITC and CTC programs. As is clear in Figure 1.2, the average value of the

discontinuity in after-tax income for having a child born before the New Year actually

falls in real terms from 1982 to 1986, then begins rising from 1987 to 1993 following

changes to the EITC, and then lastly increases substantially from 1994 to the early

2000s following further changes to the EITC and the introduction of the CTC.

Table 1.6 shows that an increase in the discontinuity in after-tax income by birth

cohort happens alongside an increase in the estimated discontinuity in grade-for-age

status by high school. Notably, the estimated discontinuity in grade-for-age status for
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being born before the New Year for the cohort born 1994-2001 is 60% larger than the

estimated discontinuity for the cohort born 1982-1986. Since the only statistically

significant change in grade-for-age status comes from the cohort of students born

1994-2001, the previous results that group all cohorts together are largely driven by

children who were born in this later cohort when the EITC and CTC were most

generous.

Note that this way of analyzing the data allows a check on the identifying as-

sumption that no other treatments coincide with the passing of the New Year. If

the previously observed results reflected some other treatment that occurred with the

passing of the New Year, and if that other treatment remained constant, then the

reduced form discontinuities in grade-for-age status across these birth cohorts should

be constant. The di↵erences across years are evidence that the previous results do

not just reflect a constant New Year-specific treatment.

Interestingly, the direct e↵ect of $1,000 on grade-for-age status by high school is

relatively stable over time. Receiving $1,000 in infancy results in a 1.14 percentage

point increase in grade-for-age status by high school for the 1982-1986 cohort, a

0.78 percentage point increase in the 1987-1993 cohort, and a 0.90 percentage point

increase for the 1994-2001 cohort. As all these estimates have substantial standard

errors on them, they are not distinguishable from each other. Hence, it is di�cult to

read too much into the specific pattern of results over time.

1.5.3 E↵ect of Income in Infancy on Outcomes in Early Adulthood

When extending analysis beyond grade-for-age status in school, the context of

the treatment changes. First, there is a second discontinuity in after-tax income

that happens as a child ages into adulthood. As is clear in Figure 1.1, parents of

children born in December see various tax benefits expire one tax year before parents

of children born in January. Research shows that the size of those tax benefits at
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those ages has consequences for behavior of their families, including enrollment of

children in college (Manoli and Turner, 2018) and parent labor force participation

(Lippold, 2019).31

Second, when looking at outcomes other than grade-for-age status, it is important

to remember that being retained in grade is both a potential indicator of that child’s

progression through school but also a form of mediation that may have long-term

repercussions. Research suggests that the cumulative e↵ects of not being grade-

for-age are unclear and may di↵er depending on the age at which retention occurs.

Researchers looking at red-shirting and retention in the early grades have found that

these changes may result in short-term improvements in school achievement (Datar,

2006). Researchers have also analyzed retention in later gradess related to test scores.

Some researchers have found no impacts or negative impacts of retention on short-

term achievement in early grades (Roderick and Nagaoka, 2005) and increases in

high school dropout rates that vary by grade of retention (Jacob and Lefgren, 2009).

Other researchers have found positive short-term impacts of retention on achievement

and no impact on eventual high school graduation (Schwerdt, West and Winters,

2017).32 Thus while the initial income shock treatment in infancy is clear, other

compensating responses happen subsequently that may complicate interpretation of

e↵ects in adulthood.

As the discontinuity in grade-for-age status was concentrated among more likely

disadvantaged households, discontinuities in outcomes in early adulthood are likely

concentrated in these groups as well. However, as children age into young adulthood,

many move away from their parents. Consequently, it is harder to identify children

who grew up in more likely disadvantaged households as they get older. This pa-

31These later discontinuities in after-tax income are likely small, as the share of families that claim
EITC benefits for newborns is much larger than the share of families that claim EITC benefits for
older children. Appendix B discusses these patterns in more detail.

32The di↵erence in these results highlights the fact that the e↵ects of retention likely depend on
other interventions related to retention.
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per uses two strategies to identify these groups. First, this paper looks at outcomes

among Black children. While Black children did not display consistently statistically

di↵erent results in grade-for-age discontinuities than White children, Black children

had larger point estimates of changes in grade-for-age status. Second, this paper

looks at outcomes for children born in counties that have average mother’s educa-

tion attainment in the bottom quarter of the education distribution (weighted by

population). Mother’s education levels were a strong predictor of the discontinuity

described previously, but no parent education attainment variables are observable for

young adults no longer living at home. Hence, conditioning on education attainment

levels in county of birth is a proxy for this group of individuals.

For relevant later life outcomes, this paper looks at high school completion rates,

earned income, labor force participation, and SNAP receipt from ages 19 to 32 for

children born in 1980 forward.33 This paper follows Kling, Liebman and Katz (2007)

in combining these four measures of outcomes into a single unitary measure of eco-

nomic su�ciency. This single measure allows more precision in measuring e↵ects that

move in the same positive direction. To compute this measure, this paper normalizes

each outcome into a z-score and adds the four z-scores with signs reflecting whether

the outcome is beneficial (positive for labor force participation, earned income, and

high school attainment, and negative for SNAP receipt). The normalizing mean and

standard deviation for each of the z-scores come from outcomes for adults born in

the month and a half after the New Year, excluding the omitted region.

Figures 1.18 through 1.20 show some of the basic variation in post-high school

33Age 18 is excluded here. Given the way the sample is constructed, young adults aged 18 are
expected to have completed high school if they graduated on time. By definition, the previously
estimated discontinuities in grade-for-age status ensure that high school graduation rates at age 18
would be di↵erent. Young adults aged 19, on the other hand would be expected to have completed
high school if they graduated either on time or one year later. The results look at individuals born
1980 and later for reasons discussed earlier in the data section. This sample restriction ensures
that outcomes for adults are analyzed for cohorts for which there is data from the previous section
showing changes in grade-for-age status. Age 32 is an arbitrary ending age reflecting the fact that
data get sparse for later ages in the 2001 to 2016 ACS when looking at adults born 1980 and later.
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outcomes by age of adults. These figures show average outcomes for children born

in December and January, excluding children born in the region around the New

Year who are omitted in this paper. As such, they only demonstrate the underlying

variation in outcomes and are not meant to be interpreted as causal impacts. As is

clear, there is little detectable di↵erence in high school graduation rates, nor in labor

force attachment in the population as a whole between people born in January and

December. However, there is a slightly more persistent gap in earnings, with adults

born right before the New Year often earning slightly more than adults born right

after the New Year. While these gaps are within the margin of error for most years,

the gap varies from about $50 to $500 depending on the year. Importantly, the gap

seems to attenuate or disappear in later years.

Figure 1.21 combines all four measures into a unitary measure of economic self-

su�ciency for all adults. Note that, by construction, this measure has average value

0 for people born in January, but there is still a standard error on the estimate as it is

an average and has sampling variation. Figure 1.21 shows that, while there is a gap of

0.04 to 0.01 standard deviations in the self-su�ciency measure in the early years, the

gap disappears over time. Figures 1.22 and 1.23 show similar graphs for Black young

adults and adults born in counties with comparatively low education attainment.

The composite measure is recalibrated for these samples such that the measure again

has average value 0 and standard deviation 1 for people born in January within this

subgroup. Here, the patterns are much noisier given the smaller sample sizes, but

similarly the gap varies from 0.09 to 0.01 standard deviations, and attenuates over

time to low numbers by the time adults reach their late 20s and early 30s.

To formalize these comparisons, Table 1.7 computes regression discontinuities over

the conjoint measure of economic self-su�ciency and each of the four outcomes sep-

arately for the full sample. Figure 1.24 shows results for discontinuities in the self-

su�ciency measure. Given the small di↵erences observed in Figures 1.21 through
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1.23, it is useful to compile di↵erent ages into bins to increase precision. While the

exact grouping of the bins can be somewhat arbitrary, this paper computes disconti-

nuities for adults aged 19-22, 23-27 and 28-32 to demonstrate how patterns evolve over

time. As is clear in Figure 1.21, however, there are individual outliers within these

age groups that can be important for driving measured e↵ects, so it is worthwhile to

be cautious in interpreting any one given result.

Table 1.7 and Figure 1.24 show that adults aged 19-22 who experience the higher

income in infancy see an estimated increase in their self-su�ciency measure of ap-

proximately 0.02 standard deviations. Converting this discontinuity into a direct

e↵ect of income, $1,000 in infancy results in a 0.03 standard deviation increase in

the self-su�ciency measure. However, this gap has a wide standard error, so it is

not statistically distinguishable from 0 at the 10 percent confidence level. Looking

at the individual components, Table 1.7 shows that adults who experienced the in-

come boost as children are an estimated 0.1 percentage points more likely to have

completed high school o↵ a baseline rate of 90%, and earn an estimated $8 more

annually. Neither of these e↵ects are distinguishable from 0 at the 10 percent level.

Moving to ages 23-27, young adults who experience the higher income in infancy

see an estimated drop in their self-su�ciency measure of 0.02 standard deviations,

again not statistically distinguishable from 0 at the 10 percent level. Converting to

a direct e↵ect of income, $1,000 in infancy results in a 0.02 standard deviation drop

in the su�ciency measure. Table 1.7 shows that adults who experienced the higher

income are an estimated 0.002 percentage points more likely to have completed high

school, and earn an estimated $280 less annually, but again neither of these e↵ects

are distinguishable from 0.

Lastly, looking at ages 28-32, the estimated fall in the self-su�ciency measure for

adults who experience the income boost is still 0.02 standard deviations, again not

distinguishable from 0 at the 10 percent confidence level. Similarly, the direct e↵ect of
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$1,000 of income is -0.03 standard deviations. The adults who experienced the income

shock are an estimated 0.4 percentage points less likely to have completed high school,

and estimated to earn $2 less annually than adults who did not experience the income

increase as infants, but again neither of these e↵ects are distinguishable from 0.

Taking these point estimates at face value, like Figure 1.24, they suggest a weak

treatment e↵ect in early adulthood that falls over time as young adults age into their

mid to late 20s, although strictly speaking no e↵ects are distinguishable from 0.

Heterogeneous E↵ects by Subgroups on Outcomes in Early Adulthood

Table 1.8 and Figure 1.25 compute regression discontinuities for White and Black

young adults separately. The table only reports discontinuities in the conjoint measure

of self-su�ciency for concision. As most of these individual discontinuities are noisy,

they should be interpreted with caution, but the high school graduation status and

earned income discontinuities are referenced here for context.

White young adults who experienced the income boost as infants display a small

estimated treatment in their self-su�ciency measure in ages 19-22 of 0.009 standard

deviations. However, Black young adults display a much larger estimated treatment

e↵ect of 0.134 standard deviations. Both estimates are not distinguishable from 0 at

the 10 percent level, but they are distinguishable from each other at the 10 percent

level. Converting these reduced form results into a direct e↵ect of income suggests

that White young adults see a 0.02 standard deviation increase in their economic

self-su�ciency score from $1,000 in infancy. Black young adults see a 0.18 standard

deviation increase from the same sized shock. This increase in the composite score

for Black young adults comes from increases in high school graduation rates. Black

young adults who experienced the income boost are 2 percentage points more likely to

have completed high school o↵ a baseline high school graduation rate of 81%. While

this is a large e↵ect and distinguishable from 0 at the 1 percent level, it still has a
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wide standard error on it, and the e↵ect is not sustained into later ages, so it should

be interpreted with caution. Black young adults also earn $18 more annually o↵ a

mean of $6,007, but again this e↵ect is not distinguishable from 0 at the 10 percent

level.

Moving to young adults aged 23-27, White young adults who experienced the

income shock display a treatment e↵ect of -0.03 standard deviations in their self-

su�ciency measure while Black young adults display a treatment e↵ect of 0.11 stan-

dard deviations. Both estimates are not distinguishable from 0, and they are not

distinguishable from each other at the 10 percent level. Converting these results into

a causal e↵ect of income suggests that a $1,000 increase in income in infancy for

White children results in a decrease in their self su�ciency score of 0.05 standard

deviations. For Black young adults, the same sized income shock increases their self-

su�ciency score of 0.18 standard deviations. These e↵ects among Black adults come

from changes in labor force participation and earnings. Black young adults who expe-

rience the income boost are 0.5 percentage points more likely to have graduated high

school o↵ a baseline rate of 83.8%, 2 percentage points more likely to be in the labor

force o↵ a baseline rate of 69%, and earn $700 more annually o↵ a baseline mean of

$13,200. However, again, none of these indfvidual e↵ects are distinguishable from 0

at the 10 percent level.

Note that when combining all young adults aged 19-27, the estimated treatment

e↵ect for White young adults is -0.005 standard deviations in their self-su�ciency

measure. However, the estimated treatment e↵ect for Black young adults is 0.12

standard deviations. The increase for Black young adults is statistically distinguish-

able from 0 at the 10 percent confidence level, and distinguishable from the treatment

e↵ect for Whites at the 5 percent level. Converting these reduced form results into

a direct e↵ect of income shows that White young adults who experienced $1,000 in

after-tax income in infancy see a 0.01 standard deviation drop in their self-su�ciency
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score. Black young adults who experienced the same income shock see a 0.19 standard

deviation increase in their self-su�ciency score.

Lastly, looking at young adults aged 28-32, the treatment e↵ect for Whites is

-0.03 standard deviations in their self-su�ciency score, and the treatment e↵ect for

Black young adults is to 0.03 standard deviations. These e↵ects are not statistically

distinguishable from 0, or distinguishable from each other at the 10 percent level.

Converting to direct e↵ects, these estimates say that for a $1,000 shock in income in

infancy, White adults see a 0.02 standard deviation drop in outcomes, but Black young

adults see a 0.07 standard deviation increase. Black young adults who experience the

income boost are 0.6 percentage points less likely to have graduated high school o↵ a

baseline rate of 86.1%, and earn $1,227 less annually o↵ a baseline mean of $20,500.

None of these e↵ects are distinguishable from 0 at the 10 percent level.

Overall, the treatment e↵ects are larger for Black young adults than White young

adults. Furthermore, observed treatment e↵ects for Black young adults follow the

pattern established earlier in the sample as a whole, where estimated treatment ef-

fects are largest in earlier years and appear to attenuate with time. The pattern of

results here is likely more suggestive than the previous results looking at grade-for-

age status. The previous results showed that White children saw an increase in the

probability of being grade-for-age if they experienced the income shock as children.

Taken at face value, however, some of these estimated coe�cients on post-schooling

outcomes for Whites suggest negative treatment e↵ects, which would be odd given the

positive e↵ects seen on grade-for-age status earlier. The noisiness of these estimates

likely reflects the fact that the sample sizes become much smaller when looking at

older adults. Ultimately, what seems more instructive is that Black adults display

consistently larger estimated treatment e↵ects, and some of these treatment e↵ects

are statistically distinguishable from 0 and distinguishable from estimated treatment

e↵ects for Whites.
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Table 1.9 and Figure 1.26 o↵er a similar exercise for young adults born in counties

with average mothers’ education attainment above and below the lowest quartile.

Again, the table only shows e↵ects on the composite measure of outcomes, and most

of the individual discontinuities in that measure are noisy. However, as before, the

high school graduation status and earned income discontinuities are referenced for

context.

When looking at young adults aged 19-22, the estimated discontinuity in the

self-su�ciency score for young adults born in counties with high average mothers’

education attainment is 0.02 standard deviations. The estimated discontinuity for

young adults born in counties with low education attainment is 0.05 standard devi-

ations. Converting these discontinuities into a direct e↵ect of income, young adults

from counties with higher education attainment see an 0.02 standard deviation in-

crease in their self-su�ciency score from a $1,000 shock to income in infancy. Young

adults from counties with lower education attainment see an 0.06 standard devia-

tion increase in the score from the same shock. These estimates are not statistically

distinguishable from 0, or from each other at the 10 percent level. Young adults in

counties with low education attainment who experience the income increase see an

increase in $68 in earned income o↵ a baseline mean of $9,074 and an 0.3 percentage

point increase in the probability of having graduated high school o↵ a baseline mean

of 87.9%. None of these e↵ects are distinguishable from 0 at the 10 percent level.

Larger e↵ects appear when looking at young adults aged 23-27. The estimated

treatment e↵ect for young adults born in counties with high mothers’ education at-

tainment is -0.02 standard deviations, but the estimated treatment e↵ect for young

adults born in counties with low mothers’ education attainment is 0.09 standard de-

viations. Note that these treatment e↵ects are statistically distinguishable at the

10 percent level in the widest bandwidth. Converting these estimates into a direct

e↵ect, adults born in counties with high education attainment see a 0.04 standard de-
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viation increase in their self-su�ciency score from a $1,000 income shock, but adults

from counties with high education attainment saw a 0.12 standard deviation decrease.

The young adults from counties with low education attainment who experience the

income increase see a 1.0 percentage point increase in the probability of graduating

high school o↵ a baseline mean of 88.7%, and an increase of annual earned income in

$679 o↵ a baseline mean of $19,280, although again none of these e↵ects are distin-

guishable from 0 at the 10 percent level.

When combining all young adults aged 19-27, the estimated treatment e↵ect is

-0.003 standard deviations for adults born in counties with higher average mothers’

education attainment, and 0.07 standard deviations for adults born in counties with

lower average mother’s education attainment. Converting to a direct e↵ect, adults

born in counties with higher education attainment see an 0.016 standard deviation

increase in their self-su�ciency score from $1,000 in income in infancy. adults born in

counties with lower education attainment saw an 0.098 standard deviation decrease

from the same shock.

Finally, looking at adults aged 28-32, the estimated treatment e↵ect is 0.01 stan-

dard deviations for adults born in counties with higher average mothers’ education

attainment and -0.12 standard deviations for adults born in counties with lower aver-

age mothers’ education attainment. Converting both in to direct e↵ects, adults born

in counties with higher average mothers’ education attainment saw an 0.012 stan-

dard deviation increase in their self-su�ciency score from a $1,000 shock in infancy,

but adults born in counties with lower education attainment saw a 0.20 standard

deviation decrease. Young adults from counties with low education attainment who

experience the income increase see a 1.4 percentage point decrease in the probability

of having graduated high school o↵ of a control mean of 90.5% and a $150 decrease

in annual earned income o↵ of a control mean of $29,120. Neither of these e↵ects are

distinguishable from 0.
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These long-term e↵ects tell a consistent story: while e↵ects of the income increase

in infancy seem to persist in terms of impacts on education attainment and earnings

after turning 19, these impacts apparently attenuate with time as students age into

their late 20s and early 30s. Again, as before, estimated e↵ects are largest for groups

that had lower average income at birth, specifically Black adults and adults born

in counties with lower average education attainment. It is possible that the lower

e↵ects measured here at later ages reflect the fact that the cohorts analyzed in these

regressions would have been born in the early 1980s when take-up of tax benefits may

have been lower, and the size of the first stage jump in after-tax income in infancy

more inconsistent. Future research will need to follow the current and future cohorts

of graduates to see if their e↵ects are similar to the e↵ects measured here.

1.6 Discussion

The e↵ects found in this research show a relationship between income in infancy

and educational outcomes while in school. These estimated e↵ects appear to persist

as di↵erences in income, education attainment and labor force attachment into early

adulthood for at least some subgroups. It is di�cult to directly relate these findings

to other estimates. Few other papers have used such a specific, sharply defined, and

relatively modest change of income in the first year of a child’s life. However, some

comparisons are possible to other research on the e↵ect of family income on child

outcomes.

First, the results here suggest a non-linear relationship between family income and

student achievement that has been found in other settings from changes in permanent

income. The e↵ect of an additional $1,000 in transitory income in infancy on outcomes

is largest for groups that likely had lower average earnings in the first year of a

child’s life, including Black children and children with mothers with lower education

attainment. Similarly, Loken, Mogstad and Wiswall (2012) and Akee et al. (2010) find
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that changes in permanent family income for lower-income families have the largest

impacts on outcomes for children in school and in early adulthood.

Second, this paper suggests that a $1,000 change in family income in infancy

results in changes in school performance, and other papers find that similarly-sized

income shocks later in a child’s life also have e↵ects on school performance. Both

Chetty, Friedman and Rocko↵ (2011) and Dahl and Lochner (2012) find that $1,000

of contemporaneous income results in a 0.06 to 0.09 standard deviation rise in con-

temporaneous test scores. Black et al. (2014) find that a $1,000 income shock at age

5 results in a 0.1 to 0.6 standard deviation increase in test scores at age 15. These

papers do not consider grade-for-age status, likely because there is less year-to-year

variation in that measure compared to test scores. However, such changes in tests

scores, especially if they happen in the lower part of the test score distribution, may

have non-trivial impacts on retention. Data from Florida on test scores and retention

patterns suggest that a 0.06 to 0.09 standard deviation increasein test scores corre-

lates to a reduction in the probability of students being retained in grade 4 by 0.6 to

0.8 percentage points.34 While this relationship from the Florida data is not causal,

it is suggestive that changes in test scores from a $1,000 change in after-tax income

may result in similar e↵ects on retention as those measured in this paper.

Third, this paper finds that a $1,000 change in income in infancy results in modest

long-term changes in outcomes in adulthood, and other papers show a similar rela-

tionship. Chetty, Friedman and Rocko↵ (2011) provide a method of linking changes

in test scores to changes in future earnings. They then use these estimates to convert

the impact of $1,000 in after-tax income in childhood on test scores into the impact

of the income shock on later life earnings of adults. Using this method, they con-

34This estimate comes from the evidence reported in Schwerdt, West and Winters (2017). In
Figure 2A of their paper, the authors o↵er average retention rates by test scores. In Appendix
Figure A-2 the authors show the distribution of test scores. Shifting the distribution of test scores
in the lower regions up by 0.06 to 0.09 standard deviations produces the 0.6 to 0.8 percentage point
reduction in retention. Baseline retention rate in this data among all students is 1.87%.
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clude that a $1,000 increase in after-tax income when children are in later primary

and high school grades results in a 0.38 to 0.57 percentage point increase in earnings

as adults. Similar sized e↵ects are present in this paper from an income shock in

infancy for some subgroups. The point estimates in this paper show that a $1,000

increase in income in infancy results in a 0.56 percentage point increase in earned

income for Black young adults from ages 20-30. The same income shock results in

a 0.60 percentage point increase in earned income for young adults born in coun-

ties with low average education attainment. Both estimates, it should be noted, are

not distinguishable from 0 at the 10 percent level, and there are minimal e↵ects in

the population at large. Nevertheless, it is suggestive that these point estimates are

within similar ranges as Chetty, Friedman and Rocko↵ (2011).

However, while the pattern of results in this paper fit within the pre-existing

literature, the magnitudes of these estimated e↵ects are often near or above the upper

bound of previous estimates of impacts. Arguably, the larger relationships found here

reflect the fact that this paper looks at the e↵ect of family income in infancy, while

other papers primarily focus on shocks to income that happen later in a child’s life.

To think about the context for this di↵erence, it is necessary to look more broadly at

the literature on links between experiences in childhood and later life outcomes.

A wide array of research in social science suggests that family conditions in in-

fancy and early childhood are particularly consequential for patterns of long-term

development for children. First, gaps in measured cognitive and non-cognitive abili-

ties between children open up at early ages and are observable clearly before students

enter school (Loeb and Bassok, 2007; Cunha and Heckman, 2007). Similar gaps

open up in many measures of child health (Figlio et al., 2014; Case, Lubotsky and

Paxson, 2002; Currie and Almond, 2011). These gaps are highly correlated with

family economic resources. Second, a literature in biology suggests the existence of

critical periods for development where inputs are especially important for later life
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outcomes (Reviewed in Cunha et al. (2006)). Lastly, research shows that some pol-

icy interventions that a↵ect the resources available to low-income families can have

both short-term consequences (Hoynes, Miller and Simon, 2015; Almond, Hoynes and

Schanzenbach, 2011; Rossin-Slater, 2013) and long-term consequences for outcomes

for children (Black et al., 2014; Hoynes, Schanzenbach and Almond, 2016; Aizer et al.,

2016a; Milligan and Stabile, 2009). Those papers find e↵ects across health, cognitive

skills, non-cognitive skills, and other metrics of child development. Thus, it would

not be surprising that an income shock in infancy would relate to multi-faceted im-

provements in outcomes for children that may have di↵erent long-term e↵ects than

income shocks later in life.

The literature on the e↵ects of family conditions in infancy and early childhood

on later life outcomes o↵ers a few clues as to potential mechanisms. Disadvantaged

families with infants are likely to be income constrained. Over the sample period

included here, around 50% of Black newborns and 35% of newborns in families where

the mother has a high school degree or less are in poverty. By the time those children

turn 15, the shares of those families in poverty drop to 40% and 23% respectively.

Releasing this constraint may have three impacts on families. First, changes in income

of these families in infancy might have significant impacts on consumption patterns.

Di↵erences in income between families correlate to di↵erences in spending patterns

on children (Caucutt, Lochner and Park, 2017). Research shows that changes in

income from tax credits result in changes in spending on resources that might a↵ect

child development (McGranahan and Schanzenbach, 2013). Even if parents do not

spend the money directly on their children, they may spend it on goods that increase

the family’s earnings over time. For example, research suggests that EITC recipients

use the increase in their after-tax income from the EITC to pay down debt and

spend on transportation (Goodman-Bacon and McGranahan, 2008; Mendenhall et al.,
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2012).35 Second, to the degree that these spending patterns might enable slightly

higher labor force attachment in subsequent years, such patterns may increase the

family’s permanent income (Ramnath and Tong, 2017; Black et al., 2014). Third,

even if consumption patterns on children and permanent income are una↵ected, the

simple act of loosening the family’s budget constraint may have impacts on how

parents interact with their children. Research has found that parental stress, parental

depression, and martial conflict are all highly correlated with family income, and in

turn correlated with adverse outcomes for children (Wadsworth et al., 2005; Conger

et al., 1994; Gersho↵ et al., 2007). Thus, even small changes in the economic resources

of families can have consequences for important early life experiences of children,

either through changes in consumption patterns, changes in permanent income, or

changes in the family environment.

Finally, note that the experiment created by the income variation in this paper

has interesting consequences for policy. First, the results suggest that shifting the

eligibility for child-related deductions and credits a year earlier would improve stu-

dents’ achievement in school. Second, the results also suggest that shifting eligibility

for these tax benefits forward while removing eligibility for an additional year in ado-

lescence may improve some outcomes in adulthood. Families with children born in

January are eligible for an additional year of tax benefits after children born in De-

cember are no longer eligible. But, adults born in December, especially from groups

that were more likely disadvantaged at birth, still see an increase in the self-su�ciency

score as adults from the income shock in infancy. Thus, the benefits that children

born in January receive from that additional year of eligibility do not completely

counteract the benefits that children born in December received from that year of

eligibility as infants. The cost of implementing such a policy would simply come from

35This research looks at spending of these recipients on average and does not specifically look at
spending of parents with newborns.
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altering children’s age of eligibility.36

A full cost-benefit analysis of the e↵ects of shifting the eligibility timeline forward

is beyond the scope of this paper. Such a calculation would require taking into account

all the benefits that researchers have from that additional year of eligibility (e.g.

including increased college enrollment (Manoli and Turner, 2018). However, these

results are suggestive that benefits geared towards families with younger children may

have lasting repercussions in ways that benefits aimed at families with older children

do not. Most transfer programs, including SNAP and the tax credits analyzed in this

paper, do not change benefit levels in ways that relate to a child’s age.37 But, the

natural experiment created by this setting suggests that increasing these transfers

to families with young children may o↵er a cost-e↵ective reform that would improve

outcomes for children and adults.

1.7 Conclusion

This paper demonstrates compelling e↵ects of family income in infancy on out-

comes in childhood and early adulthood. Specifically, this paper shows that a $1,000

change in family income in infancy results in a 1.2 percentage point increase in the

probability of a student being grade-for-age in high school. These results are driven by

large treatment e↵ects for children more likely disadvantaged in infancy, specifically

Black children and children from families with low education attainment. Small but

suggestive e↵ects on adult outcomes in earnings, labor force attachment, high school

graduation status and SNAP usage persist into early adulthood, in particular among

Black young adults, and adults from counties with low education attainment. As

36As discussed in Appendix B, the share of families that receive EITC benefits for older children
is substantially lower than the share of families who receive them for newborns. So, altering the age
of eligibility would also result in an increase in receipt of EITC benefits, and hence additional costs.
For more on these points, turn to Appendix B.

37A clear exception is the Special Supplemental Nutrition Program for Women, Infants, and
Children (WIC) Program which is aimed at parents with infants and children up to age 5.
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the e↵ects of an additional $1,000 in infancy are largest for children from these more

likely disadvantaged groups, they suggest a non-linear relationship between changes

in income and changes in child outcomes.

These results are on the upper end of estimated relationships between family

income and outcomes for children. However, they fit in line with a broad literature

suggesting that changes in family economic resources in infancy may have substantial

long-term impacts on outcomes for children. This increase in income could a↵ect

children’s outcomes through changing family spending patterns, improving future

family earnings, or changing the home life circumstances that young children face

early in life.

Furthermore, it is notable that these results come from altering timing of receipt

of tax benefits from adolescence to infancy. These results may indicate that transfer

programs focused on families with very young children may result in larger e↵ects

on child and adult outcomes than transfer programs aimed at families with older

children. More broadly, these results suggest that altering transfer programs to be

more child age-specific may a fruitful and low-cost avenue for policy reform.

In all, these results suggest that changing the resources available to low-income

families can result in long-term improvements for their children. Directions for future

research in this project include examining e↵ects on siblings, and investigation into

mechanisms of e↵ects in consumption data.
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1.8 Figures and Tables

Figure 1.1: Eligibility for Child Tax Benefits for Children Born in December and
January by Child Age

Claim Child as Dependent

Earned Income Tax Credit

Child Tax Credit

Child and Dependent Care Credit

Claim Child as Dependent

Earned Income Tax Credit

Child Tax Credit

Child and Dependent Care Credit

0 5 10 15 20

Born in January

Born in December

Child Age as of April 15th

Notes: Figure depicts eligibility for tax benefits by child age and birth month. The age
variable on the horizontal axis lists age as would be recorded by a family on April 15th. For
example, newborns in their first year of life born in January and December would be age 0
by April 15th.
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Figure 1.2: Family Tax Benefit in Infant’s First Year of Life from Birth in December
Compared to January

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

A
ve

ra
g
e
 C

h
a
n
g
e
 in

A
ft
e
r−

T
a
x 

In
co

m
e
 (

2
0
1
9
 D

o
lla

rs
)

1980 1990 2000 2010 2020
Tax Year

All Families

Families with Mothers with a High School Degree or Less

Black Families

Notes: Figure depicts average estimated di↵erence in family after-tax income in the first
year of a child’s life for families that have a child born in December compared to January of
the next year. Incomes measured in 2019 dollars. Year variable on horizontal axis records
tax year of birth. For example, the di↵erence reported for 1986 measures the di↵erence in
after-tax income in tax year 1986 for having a child born in December 1986 compared to
January 1987. Estimation process draws inspiration from Hoynes, Miller and Simon (2015)
and uses the March CPS. Additional details on estimation are in the text and in Appendix
A. Standard error bars here omitted for clarity, but standard errors are less than $10 for all
groups and all years.
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Figure 1.3: Percent Increase in Family After-Tax Income in Infant’s First Year of Life
from Birth in December Compared to January
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Notes: Figure depicts average percent increase in after-tax family income in the first year
of a child’s life for families that have a child born in December compared to January of
the next year. Year variable on horizontal axis records tax year of birth. For example, the
di↵erence reported for 1986 measures the di↵erence in after-tax income in tax year 1986
for having a child born in December 1986 compared to January 1987. Figure uses same
estimation process as described in Figure 1.2, the main text, and Appendix A. Standard
error bars omitted for clarity, but standard errors are less than 0.2 percentage points for all
groups and all years.
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Figure 1.4: Births by Day of Year - 1996 to 1997

Notes: Figure depicts birth counts by day of year estimated in the 2000 Census from July
1st 1996 to June 30th 1997, centered on New Year’s Day in 1997.

Figure 1.5: Births by Day of Year Adjusted by Day of Week

Notes: Figure depicts average births by day of year from 1989-1994 regression-adjusted for
day of birth following equations 1.1 and 1.2.
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Figure 1.6: Estimated Birth Timing Manipulation

Notes: Figure depicts average births by day of year from 1989-1994 regression-adjusted
for day of birth following equations 1.1 and 1.2. Vertical bars indicate manipulated region
omitted from calculation. Upper bound selected visually at 9 days after the New Year.
Lower bound selected through estimation process described in the text.
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Figure 1.7: Average Share of Students Retained in Grade
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Notes: Figure depicts average share of students retained in each grade. Values estimated in
the October CPS with data over the years 1990 to 2005. Standard error bars omitted for
clarity, but are less than 0.1 percentage points across all groups and years.
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Figure 1.8: Estimated Reduced Form Discontinuities in Grade-for-Age Status -
Kindergarten

Notes: Figures depicts discontinuity in share of students attending kindergarten around
the New Year. Red empty circles are data omitted from estimation process, and grey solid
circles are data that could be included. The estimated line uses a bandwidth of two months
around the New Year, and the solid grey circles covered by the estimated line represent data
included in the estimation process. See Table 1.2 for point estimates. Regressions include
fixed e↵ects by day of week, and state of birth. Estimation process detailed in text.
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Figure 1.9: Estimated Reduced Form Discontinuities in Grade-for-Age Status - 1st
Grade

Notes: Figures depicts discontinuity in share of students grade-for-age in 1st grade around
the New Year. See notes to Figure 1.8 for more detail.

Figure 1.10: Estimated Reduced Form Discontinuities in Grade-for-Age Status - 5th
Grade

Notes: Figures depicts discontinuity in share of students grade-for-age in 5th grade around
the New Year. See notes to Figure 1.8 for more detail.
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Figure 1.11: Estimated Reduced Form Discontinuities in Grade-for-Age Status - 7th
Grade

Notes: Figures depicts discontinuity in share of students grade-for-age in 7th grade around
the New Year. See notes to Figure 1.8 for more detail.

Figure 1.12: Estimated Reduced Form Discontinuities in Grade-for-Age Status - 9th
Grade

Notes: Figures depicts discontinuity in share of students grade-for-age in 9th grade around
the New Year. See notes to Figure 1.8 for more detail.
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Figure 1.13: Estimated Reduced Form Discontinuities in Grade-for-Age Status - 10th
Grade

Notes: Figures depicts discontinuity in share of students grade-for-age in 10th grade around
the New Year. See notes to Figure 1.8 for more detail.

Figure 1.14: Estimated Reduced Form Discontinuities in Grade-for-Age Status - 9th-
11th Grade

Notes: Figures depicts discontinuity in share of students grade-for-age in 9th-11th grade
around the New Year. See notes to Figure 1.8 for more detail.
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Figure 1.15: IV Treatment E↵ect of $1,000 in Infancy in Grade-for-Age Status by
Grade
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Notes: Figures depicts estimated instrumental variable treatment e↵ect of $1,000 in in-
fancy on grade-for-age status in 5th, 7th and 9th-11th grades recorded in Table 1.2 with
a bandwidth of two months. Regressions include fixed e↵ects by day of week, and state of
birth fixed e↵ects. Standard errors calculated with 2,000 bootstrap replications. Estimation
process detailed in text.
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Figure 1.16: IV Treatment E↵ect of $1,000 in Infancy in Grade-for-Age Status by
Grade - Separated by Race
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Notes: Figures depicts estimated instrumental variable treatment e↵ect of $1,000 in infancy
on grade-for-age status for White and Black children separately in 5th, 7th, and 9th-11th
grades recorded in Table 1.3 with a bandwidth of two months. See additional details in
Figure 1.15
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Figure 1.17: IV Treatment E↵ect of $1,000 in Infancy in Grade-for-Age Status by
Grade - Separated by Mother’s Education Attainment
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Notes: Figures depicts estimated instrumental variable treatment e↵ect of $1,000 in infancy
on grade-for-age status for children with mothers separated by education attainment in
5th, 7th and 9th-11th grades recorded in Table 1.3 with a bandwidth of two months. See
additional details in Figure 1.15
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Figure 1.18: Share Adults Graduated High School by Age and Birth Month
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Notes: Figure depicts average share that have graduated high school in the full sample of
adults by age and month of birth, omitting adults born December 11th through January
9th. ”December” births are children born from November 15th to December 10th, and
”January” births are children born from January 10th to February 15th.

Figure 1.19: Average Earned Income of Adults by Age and Birth Month
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Notes: Figure depicts average earned income in the full sample of adults by age and month
of birth, omitting adults born December 11th through January 9th. ”December” births are
children born from November 15th to December 10th, and ”January” births are children
born from January 10th to February 15th.
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Figure 1.20: Share Adults in Labor Force by Age and Birth Month
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Notes: Figure depicts average share that in the labor force in the full sample of adults by age
and month of birth, omitting adults born December 11th through January 9th. ”December”
births are children born from November 15th to December 10th, and ”January” births are
children born from January 10th to February 15th.
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Figure 1.21: Average Composite Measure of Outcomes by Age and Birth Month
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Notes: Figure depicts average trends in a composite measure of adults’ outcomes by age
and birth month, omitting adults born December 11th through January 9th. ”December”
births are children born from November 15th to December 10th, and ”January” births are
children born from January 10th to February 15th. The composite measure reflects labor
force participation, earned income, SNAP receipt and high school graduation status. The
process that creates this composite measure is described in text. Note that the measure
takes on average value 0 for individuals born after New Year’s Day by construction, but
there is a standard error present due to sampling variation.
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Figure 1.22: Average Composite Measure of Outcomes for Black Adults by Age and
Birth Month
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Notes: Figure depicts average trends in a composite measure of Black adults’ outcomes
by age and birth month, omitting adults born December 11th through January 9th. See
additional details in Figure 1.21.
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Figure 1.23: Average Composite Measure of Outcomes for Adults Born in Counties
with Lower Education Attainment by Age and Birth Month
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Notes: Figure depicts average trends in a composite measure of outcomes by age and birth
month for adults born in counties with lower education attainment, omitting adults born
December 11th through January 9th. See additional details in Figure 1.21.
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Figure 1.24: Estimated IV Treatment E↵ect of $1,000 in Infancy on Composite Mea-
sure of Outcomes by Age Group
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Notes: Figures depicts estimated instrumental variable treatment e↵ect of $1,000 in infancy
on composite measure of outcomes for adults aged 19-22, 23-27 and 28-32. Results recorded
in Tables 1.7 with a bandwidth of two months. Regressions include fixed e↵ects by day
of week, and state of birth. Standard errors calculated with 2,000 bootstrap replications.
Estimation process detailed in text.
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Figure 1.25: Estimated IV Treatment E↵ect of $1,000 in Infancy on Composite Mea-
sure of Outcomes by Age Group - Separated by Race
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Notes: Figures depicts estimated instrumental variable treatment e↵ect of $1,000 in infancy
on composite measure of outcomes for White and Black adults separately aged 19-22, 23-27
and 28-32. Results recorded in Table 1.8 with a bandwidth of two months. Regressions
include fixed e↵ects by day of week, and state of birth. Standard errors calculated with
2,000 bootstrap replications. Estimation process detailed in text.
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Figure 1.26: Estimated IV Treatment E↵ect of $1,000 in Infancy on Composite Mea-
sure of Outcomes by Age Group - Separated by Birth County
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Notes: Figures depicts estimated instrumental variable treatment e↵ect of $1,000 in infancy
on composite measure of outcomes for adults aged 19-22, 23-27 and 28-32. Results are
separated into adults born in counties with average mothers’ education attainment in the
lowest quartile, and adults born into counties with average mothers’ education attainment in
higher quartiles. Results recorded in Table 1.9 with a bandwidth of two months. Regressions
include fixed e↵ects by day of week, and state of birth. Standard errors calculated with
2,000 bootstrap replications. Estimation process detailed in text.
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Table 1.1: Validating Regression Discontinuity Procedures

Outcome Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Child is White 0.725 -0.0410 -0.0227* -0.0172* -0.0119
(0.001) (0.0258) (0.0119) (0.0097) (0.0340)

Child is Black 0.117 0.00140 0.00400 0.00240 0.00210
(0.001) (0.0129) (0.0066) (0.0055) (0.0069)

Child is non-White, non-Black 0.159 0.0396** 0.0187** 0.0147* 0.00980
(0.001) (0.0193) (0.0092) (0.0077) (0.0279)

Child State of Residence Same as Birth 0.955 -0.00430 -0.00240 -0.00480 -0.00120
(0.001) (0.0101) (0.0053) (0.0042) (0.0045)

Total Children in Household 1.937 -0.0480 -0.0295 -0.0299 -0.0155
(0.001) (0.0466) (0.0218) (0.0197) (0.0450)

Child Live with Both Parents 0.706 0.00980 -0.00900 -0.00560 -0.00470
(0.001) (0.0235) (0.0122) (0.0093) (0.0147)

Child’s Household Has Any Earned Income 0.807 0.0457** 0.0144 0.00600 0.00760
(0.001) (0.0178) (0.0092) (0.0077) (0.0218)

Child’s Household Has Any Other Income 0.112 -0.00510 0.000500 0.000600 0.000300
(0.001) (0.0130) (0.0078) (0.0061) (0.0042)

Child’s Household Has Any Retirement Income 0.0300 -0.00390 0.00290 0.00440 0.00150
(0.001) (0.0066) (0.0039) (0.0031) (0.0048)

Notes: Table records estimated discontinuities in child and family covariates for a child being born before the New Year, and an
instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy. Results estimated using children in the 2000
Census born between 1999 and 2000. Regressions include fixed e↵ects by day of week, and state of birth. Standard errors calculated
with 2,000 bootstrap replications. Estimation strategy described in text. Table continued in page below.
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Table 1.1: Validating Regression Discontinuity Procedures (Continued)

Outcome Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Child’s Household Has Any Supplemental Income 0.0150 0.00300 0.00330 0.00310 0.00170
(0.001) (0.0058) (0.0035) (0.0030) (0.0051)

Child’s Household Has Any Welfare Income 0.0600 -0.0138 -0.00200 -0.00340 -0.00110
(0.001) (0.0215) (0.0105) (0.0081) (0.0063)

Child’s Household’s Earned Income 41500 2300 474.8 79.18 249.7
(71600) (1700) (950) (800) (859.9)

Child’s Household’s Other Income 469.8 -8.781 4.689 20.45 2.465
(182.3) (85.16) (53.63) (42.86) (29.04)

Child’s Household’s Suppemental Income 84.83 11.92 13.89 14.39 7.309
(23.32) (30.15) (19.57) (16.46) (22.93)

Child’s Household’s Total Income 42000 1600 1300 814.7 683.6
(84000) (1600) (843.7) (712.7) (1966.)

Child’s Household’s Wage Income 39500 1300 70.91 -137.6 37.28
(68500) (1800) (950.9) (790.2) (510.8)

Child’s Household’s Welfare Income 119.3 -72.69** -27.29 -18.18 -14.35
(19.20) (35.38) (19.45) (15.35) (41.51)

Maximum Age of Parents 30.72 0.142 0.103 0.0206 0.0541
(0.002) (0.3087) (0.1557) (0.1246) (0.1724)

Notes: Continued from page above. Table records estimated discontinuities in child and family covariates for a child being born before
the New Year, and an instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy. Results estimated
using children in the 2000 Census born between 1999 and 2000. Regressions include fixed e↵ects by day of week, and state of birth.
Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text. Table continued in page below.
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Table 1.1: Validating Regression Discontinuity Procedures (Continued)

Outcome Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Either Parent has Any Wage Income 0.880 0.0174 0.00170 -0.00160 0.000900
(0.001) (0.0113) (0.0069) (0.0055) (0.0044)

Either Parent has Any Welfare Income 0.0480 -0.00960 -0.00240 -0.00540 -0.00130
(0.001) (0.0132) (0.0080) (0.0066) (0.0055)

Maximum Education Attainment of Parents 13.68 0.136 -0.00610 -0.0222 -0.00320
(0.001) (0.1117) (0.0629) (0.0489) (0.0343)

Maximum Wage Income of Parents 33000 999 1000 806 525.8
(54500) (1600) (848.2) (670.9) (1539.)

Either Parent is in Labor Force 0.897 0.00260 -0.00300 -0.00250 -0.00160
(0.001) (0.0104) (0.0068) (0.0049) (0.0056)

Either Parent is Married 0.808 0.0147 0.00620 0.00640 0.00320
(0.001) (0.0169) (0.0104) (0.0082) (0.0106)

Maximum Usual Hours of Work of Parents 41.24 0.248 0.0283 -0.0144 0.0149
(0.013) (0.9542) (0.5250) (0.4227) (0.2792)

Maximum Weeks of Work Last Year of Parents 43.04 0.842 -0.0117 -0.0482 -0.00620
(0.013) (0.9000) (0.4911) (0.4152) (0.2588)

Either Parent Worked Last Year 0.936 0.00840 0.00260 0.00340 0.00130
(0.001) (0.0081) (0.0052) (0.0040) (0.0046)

Notes: Continued from page above. Table records estimated discontinuities in child and family covariates for a child being born before
the New Year, and an instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy. Results estimated
using children in the 2000 Census born between 1999 and 2000. Regressions include fixed e↵ects by day of week, and state of birth.
Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text. Table continued in page below.
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Table 1.1: Validating Regression Discontinuity Procedures (Continued)

Outcome Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Age of Mother 28.44 0.428 0.0868 0.0229 0.0457
(0.002) (0.3302) (0.1772) (0.1443) (0.1583)

Mother Has Any Wage Income 0.681 0.0548** 0.0192 0.0111 0.0101
(0.001) (0.0236) (0.0133) (0.0109) (0.0291)

Mother Has Any Welfare Income 0.0480 -0.00810 -0.00660 -0.00860 -0.00350
(0.001) (0.0122) (0.0072) (0.0060) (0.0104)

Mother’s Education Attainment 13.27 0.3927*** 0.0721 0.0196 0.0379
(0.001) (0.1312) (0.0841) (0.0676) (0.1152)

Mother’s Wage Income 15000 2900*** 1300** 850.0* 683.6
(26500) (1000) (567.4) (466.8) (1939.)

Mother is in Labor Force 0.554 0.0302 0.00210 0.00100 0.00110
(0.001) (0.0295) (0.0156) (0.0123) (0.0088)

Mother is Married 0.836 0.00420 0.00560 0.00840 0.00300
(0.001) (0.0175) (0.0107) (0.0079) (0.0100)

Mother is Single Household Head 0.0770 0.00570 0.0127** 0.00730 0.00670
(0.001) (0.0106) (0.0061) (0.0052) (0.0190)

Mother’s Usual Hours of Work 25.86 1.949** 0.8732* 0.653 0.459
(0.022) (0.8465) (0.4650) (0.3950) (1.310)

Notes: Continued from page above. Table records estimated discontinuities in child and family covariates for a child being born before
the New Year, and an instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy. Results estimated
using children in the 2000 Census born between 1999 and 2000. Regressions include fixed e↵ects by day of week, and state of birth.
Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text. Table continued in page below.
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Table 1.1: Validating Regression Discontinuity Procedures (Continued)

Outcome Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Mother’s Weeks of Work Last Year 29.36 2.157** 0.664 0.456 0.349
(0.031) (1.039) (0.5903) (0.5056) (1.027)

Mother Worked Last Year 0.711 0.0454* 0.0179 0.0137 0.00940
(0.001) (0.0239) (0.0132) (0.0110) (0.0272)

Notes: Continued from page above. Table records estimated discontinuities in child and family covariates for a child being born before
the New Year, and an instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy. Results estimated
using children in the 2000 Census born between 1999 and 2000. Regressions include fixed e↵ects by day of week, and state of birth.
Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text.

73



Table 1.2: Baseline Results for Regression Discontinuity Estimate of Treatment E↵ect
on Grade-For-Age Status in School

Grade Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Pre-K 0.758 -0.00253 0.00401 0.00418 0.00238
(0.001) (0.01336) (0.0081) (0.0068) (0.0052)

K 0.970 0.00610 -0.00230 -0.00220 -0.00150
(0.001) (0.0055) (0.0025) (0.0020) (0.0016)

1st 0.931 0.00280 0.00520 0.00610 0.00350
(0.001) (0.0121) (0.0059) (0.0045) (0.0039)

5th 0.915 -0.00520 -0.00180 0.00200 -0.00140
(0.001) (0.0083) (0.0048) (0.0041) (0.0037)

7th 0.903 0.0158 0.0105* 0.0102** 0.0088*
(0.001) (0.0102) (0.0057) (0.0044) (0.0048)

9th 0.878 0.0139** 0.0084** 0.0088*** 0.0089**
(0.001) (0.0059) (0.0042) (0.0032) (0.0044)

10th 0.864 0.00200 0.00560 0.00500 0.00630
(0.001) (0.0120) (0.0066) (0.0052) (0.0074)

11th 0.855 0.0245*** 0.0205*** 0.0211*** 0.0221***
(0.001) (0.0076) (0.0043) (0.0033) (0.0047)

9th-11th 0.866 0.0123** 0.0113*** 0.0114*** 0.0120***
(0.001) (0.0059) (0.0032) (0.0024) (0.0034)

Notes: Table records estimated discontinuity in grade-for-age status for a child being born
before the New Year by expected grade of student for full sample. Table also records an
instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy
on grade-for-age status. Results estimated using children in the 2000 Census and 2001-2016
ACS. Regressions include fixed e↵ects by day of week, and state of birth. Standard errors
calculated with 2,000 bootstrap replications. Estimation strategy described in text.
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Table 1.3: Regression Discontinuity Estimates of Treatment E↵ect on Grade-For-Age Status in School by Race

Grade Race Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

5th White 0.922 0.000600 -0.00130 0.00170 -0.00100
(0.001) (0.0080) (0.0049) (0.0041) (0.0038)

Black 0.871 -0.0194 -0.0127 -0.00550 -0.0110
(0.001) (0.0188) (0.0110) (0.0093) (0.0095)

Di↵erence -0.0200 -0.0114 -0.00720 -0.0100

7th White 0.912 0.00990 0.00680 0.00670 0.00560
(0.001) (0.0105) (0.0059) (0.0045) (0.0049)

Black 0.845 0.0218 0.0311** 0.0315*** 0.0282***
(0.001) (0.0223) (0.0118) (0.0097) (0.0107)

Di↵erence 0.0119 0.0244* 0.0248** 0.0226*

9th-11th White 0.879 0.00720 0.0102*** 0.0102*** 0.0106***
(0.001) (0.0065) (0.0036) (0.0028) (0.0037)

Black 0.793 0.0207 0.0132 0.0170* 0.0160
(0.001) (0.0207) (0.0111) (0.0088) (0.0134)

Di↵erence 0.0135 0.00310 0.00690 0.00540

Notes: Table records estimated discontinuity in grade-for-age status for a child being born before the New Year by expected grade of
student among White and Black children. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in
family income in infancy on grade-for-age status. Results estimated using children in the 2000 Census and 2001-2016 ACS. Regressions
include fixed e↵ects by day of week, and state of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy
described in text.
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Table 1.4: Regression Discontinuity Estimates of Treatment E↵ect on Grade-For-Age Status in School by Mother’s Education
Level

Grade Mother’s Education Level Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

5th Above High School 0.941 -0.00650 -0.00320 -0.000600 -0.00230
(0.001) (0.0078) (0.0052) (0.0043) (0.0037)

High School or Below 0.887 -0.00540 -0.00200 0.00440 -0.00170
(0.001) (0.0153) (0.0072) (0.0061) (0.0060)

Di↵erence 0.00110 0.00130 0.00500 0.000600

7th Above High School 0.932 -0.00120 -0.000700 0.00110 -0.000600
(0.001) (0.0081) (0.0047) (0.0038) (0.0035)

High School or Below 0.874 0.0207 0.0168 0.0159* 0.0153
(0.001) (0.0180) (0.0107) (0.0085) (0.0109)

Di↵erence 0.0219 0.0175 0.0148 0.0159

9th-11th Above High School 0.916 0.00350 0.00190 0.00340 0.00170
(0.001) (0.0058) (0.0031) (0.0025) (0.0029)

High School or Below 0.825 0.0105 0.0173** 0.0173*** 0.0205**
(0.001) (0.0117) (0.0067) (0.0053) (0.0097)

Di↵erence 0.00700 0.0155** 0.0139** 0.0187*

Notes: Table records estimated discontinuity in grade-for-age status for a child being born before the New Year by expected grade of
student among children with di↵erent levels of mothers’ education attainment. Table also records an instrumental variables estimate of
the e↵ect of a $1,000 increase in family income in infancy on grade-for-age status. Results estimated using children in the 2000 Census
and 2001-2016 ACS. Regressions include fixed e↵ects by day of week, and state of birth. Standard errors calculated with 2,000 bootstrap
replications. Estimation strategy described in text.
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Table 1.5: Regression Discontinuity Estimate of Treatment E↵ect on Grade-For-Age
Status in School - Children Living in Same State as Birth

Grade Control Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

5th 0.915 0.00150 0.00190 0.00420 0.00150
(0.001) (0.0093) (0.0056) (0.0047) (0.0044)

7th 0.904 0.0177 0.0110* 0.0100** 0.0092*
(0.001) (0.0114) (0.0063) (0.0050) (0.0053)

9th-11th 0.867 0.0172*** 0.0129*** 0.0125*** 0.0138***
(0.001) (0.0055) (0.0032) (0.0025) (0.0034)

Notes: Table records estimated discontinuity in grade-for-age status by grade of student for
a child being born before the New Year among children living in the same state as birth.
Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in
family income in infancy on grade-for-age status. Results estimated using children in the
2000 Census and 2001-2016 ACS. Regressions include fixed e↵ects by day of week, and state
of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy
described in text.
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Table 1.6: Regression Discontinuity Estimates of Treatment E↵ect on Grade-For-Age Status in School by Cohort Year of Birth

Grade Cohort Year Control Reduced Form RD Treatment IV Treatment E↵ect
of Birth Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

9th-11th 1982-1986 0.873 0.00770 0.00740 0.00680 0.0114
(0.001) (0.0101) (0.0054) (0.0043) (0.0084)

1987-1993 0.856 0.00720 0.00740 0.0090* 0.00780
(0.001) (0.0122) (0.0065) (0.0051) (0.0069)

1994-2001 0.875 0.0244** 0.0123* 0.0114** 0.0090*
(0.001) (0.0121) (0.0065) (0.0051) (0.0047)

Notes: Table records estimated discontinuity in grade-for-age status for a child being born before the New Year by expected grade
of student among children from di↵erent birth year cohorts. Table also records an instrumental variables estimate of the e↵ect of a
$1,000 increase in family income in infancy on grade-for-age status. Results estimated using children in the 2000 Census and 2001-2016
ACS. Regressions include fixed e↵ects by day of week, and state of birth. Standard errors calculated with 2,000 bootstrap replications.
Estimation strategy described in text.
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Table 1.7: Baseline Results for Regression Discontinuity Estimates of Treatment E↵ects for Young Adults

Outcome Age Range Control Mean Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Composite Measure 19-27 0.0000 -0.0473 0.0028 0.0101 0.0036
(1) (0.0484) (0.0261) (0.0216) (0.0334)

Composite Measure 19-22 0.0000 0.0481 0.0249 0.0197 0.0287
(1) (0.0597) (0.0409) (0.0336) (0.0473)

Composite Measure 23-27 0.0000 -0.1204* -0.0152 0.0016 -0.0201
(1) (0.0643) (0.0301) (0.0253) (0.0397)

Composite Measure 28-32 0.0000 -0.0819 -0.0175 -0.0236 -0.0260
(1) (0.0748) (0.0447) (0.0374) (0.0667)

Graduated High School 19-27 0.9161 0.0006 0.0012 0.0007
(0.0006) (0.0029) (0.0023) (0.0037)

Graduated High School 19-22 0.9092 0.0008 0.0011 0.0008
(0.0009) (0.0044) (0.0038) (0.0051)

Graduated High School 23-27 0.9210 0.0002 0.0011 0.0002
(0.0007) (0.0034) (0.0028) (0.0046)

Graduated High School 28-32 0.9321 -0.0047 -0.0044* -0.0070
(0.0009) (0.0034) (0.0026) (0.0051)

Notes: Table records estimated discontinuity in adult outcomes for an adult being born before the New Year by age group for the full
sample. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy on adult
outcomes. Results estimated using adults in the 2001-2016 ACS. Regressions include fixed e↵ects by day of week, and state of birth.
Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text. Table continued in page below.
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Table 1.7: Baseline Results for Regression Discontinuity Estimates of Treatment E↵ects for Young Adults (Continued)

Outcome Age Range Control Mean Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Earned Income 19-27 16780 -143 -111 -182.55
(42.6) (182) (155) (232.34)

Earned Income 19-22 9582 7.5 14 8.6628
(43) (169) (133) (195.20)

Earned Income 23-27 21920 -280 -217 -369.77
(62.7) (292) (244) (385.62)

Earned Income 28-32 33100 -1.76 -376 -2.6259
(129) (675) (569) (1.0e+0)

In Labor Force 19-27 0.7763 0.0048 0.0048 0.0061
(0.0009) (0.0048) (0.0037) (0.0061)

In Labor Force 19-22 0.7238 0.0070 0.0041 0.0081
(0.0014) (0.0086) (0.0064) (0.0099)

In Labor Force 23-27 0.8138 0.0028 0.0051 0.0037
(0.0010) (0.0051) (0.0039) (0.0067)

In Labor Force 28-32 0.8234 -0.0032 -0.0010 -0.0047
(0.0014) (0.0081) (0.0068) (0.0120)

Notes: Continued from page above. Table records estimated discontinuity in adult outcomes for an adult being born before the New Year
by age group for the full sample. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in family income
in infancy on adult outcomes. Results estimated using adults in the 2001-2016 ACS. Regressions include fixed e↵ects by day of week,
and state of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text. Table continued

in page below.

80



Table 1.7: Baseline Results for Regression Discontinuity Estimates of Treatment E↵ects for Young Adults (Continued)

Outcome Age Range Control Mean Reduced Form RD Treatment IV Treatment E↵ect
Mean E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

SNAP 19-27 0.1528 0.0015 0.0004 0.0018
(0.0007) (0.0050) (0.0040) (0.0064)

SNAP 19-22 0.1480 -0.0021 -0.0020 -0.0024
(0.0011) (0.0091) (0.0072) (0.0105)

SNAP 23-27 0.1561 0.0041 0.0022 0.0054
(0.0010) (0.0043) (0.0035) (0.0057)

SNAP 28-32 0.1566 -0.0036 -0.0026 -0.0053
(0.0013) (0.0069) (0.0055) (0.0103)

Notes: Continued from page above. Table records estimated discontinuity in adult outcomes for an adult being born before the New Year
by age group for the full sample. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in family income
in infancy on adult outcomes. Results estimated using adults in the 2001-2016 ACS. Regressions include fixed e↵ects by day of week,
and state of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text.
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Table 1.8: Regression Discontinuity Estimate of Treatment E↵ects on Composite Outcomes for Young Adults by Race and Age

Outcome Age Range Race Reduced Form RD Treatment IV Treatment E↵ect
E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Composite Measure 19-27 White -0.0658 -0.0121 -0.0059 -0.0145
(0.0582) (0.0334) (0.0269) (0.0404)

Black 0.0775 0.1240* 0.0990* 0.1925*
(0.1208) (0.0744) (0.0550) (0.1155)

Di↵erence 0.1433 0.1361* 0.1049** 0.2071*

Composite Measure 19-22 White 0.0382 0.0206 0.0090 0.0228
(0.0742) (0.0440) (0.0375) (0.0487)

Black 0.1101 0.1340 0.1100** 0.1794
(0.1489) (0.1086) (0.0660) (0.1454)

Di↵erence 0.0719 0.1134* 0.1010** 0.1566

Notes: Table records estimated discontinuity in composite measure of economic self-su�ciency for an adult being born before the New
Year by age group among White and Black adults. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase
in family income in infancy on the self-su�ciency measure. Results estimated using adults in the 2001-2016 ACS. Regressions include
fixed e↵ects by day of week, and state of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy
described in text. Table continued in page below.
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Table 1.8: Regression Discontinuity Estimate of Treatment E↵ects on Composite Outcomes for Young Adults by Race and
Age (Continued)

Outcome Age Range Race Reduced Form RD Treatment IV Treatment E↵ect
E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Composite Measure 23-27 White -0.1434* -0.0364 -0.0175 -0.0454
(0.0788) (0.0432) (0.0349) (0.0540)

Black -0.0148 0.1124 0.0971 0.1840
(0.2210) (0.1162) (0.0949) (0.1903)

Di↵erence 0.1286 0.1488 0.1146 0.2295

Composite Measure 28-32 White -0.0257 -0.0142 -0.0351 -0.0199
(0.1019) (0.0567) (0.0458) (0.0795)

Black -0.1497 0.0333 0.0672 0.0664
(0.2525) (0.1361) (0.1095) (0.2714)

Di↵erence -0.1240 0.0475 0.1023 0.0864

Notes: Continued from page above. Table records estimated discontinuity in composite measure of economic self-su�ciency for an adult
being born before the New Year by age group among White and Black adults. Table also records an instrumental variables estimate of
the e↵ect of a $1,000 increase in family income in infancy on the self-su�ciency measure. Results estimated using adults in the 2001-2016
ACS. Regressions include fixed e↵ects by day of week, and state of birth. Standard errors calculated with 2,000 bootstrap replications.
Estimation strategy described in text.
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Table 1.9: Regression Discontinuity Estimate of Treatment E↵ects on Composite Outcomes for Young Adults by Average
County Mothers’ Education Attainment and Age

Outcome Age Range Average County Educ. Reduced Form RD Treatment IV Treatment E↵ect
Attainment of Mothers E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Composite Measure 19-27 Above Lowest Quartile -0.0772 -0.0150 -0.0029 -0.0163
(0.0589) (0.0287) (0.0241) (0.0312)

Below Lowest Quartile 0.0496 0.0692 0.0555 0.0987
(0.0888) (0.0518) (0.0375) (0.0739)

Di↵erence 0.1269 0.0842 0.0584 0.1151

Composite Measure 19-22 Above Lowest Quartile 0.0146 0.0190 0.0243 0.0192
(0.0773) (0.0485) (0.0401) (0.0492)

Below Lowest Quartile 0.1527 0.0497 0.0049 0.0632
(0.1206) (0.0667) (0.0541) (0.0849)

Di↵erence 0.1381 0.0308 -0.0194 0.0440

Notes: Table records estimated discontinuity in composite measure of economic self-su�ciency for an adult being born before the New
Year by age group among adults born in counties where average mothers’ education is below the lowest quartile and above the lowest
quartile. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in family income in infancy on the
self-su�ciency measure. Results estimated using adults in the 2001-2016 ACS. Regressions include fixed e↵ects by day of week, and state
of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text. Table continued in page

below.
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Table 1.9: Regression Discontinuity Estimate of Treatment E↵ects on Composite Outcomes for Young Adults by Average
County Mothers’ Education Attainment and Age (Continued)

Outcome Age Range Average County Educ. Reduced Form RD Treatment IV Treatment E↵ect
Attainment of Mothers E↵ect Estimates by Bandwidth of $1,000 in Infancy

1.5 month 2 month 2.5 month 2 month
bandwidth bandwidth bandwidth bandwidth

Composite Measure 23-27 Above Lowest Quartile -0.1490** -0.0415 -0.0237 -0.0464
(0.0732) (0.0321) (0.0277) (0.0359)

Below Lowest Quartile -0.0173 0.0838 0.0912 0.1240
(0.1144) (0.0746) (0.0590) (0.1103)

Di↵erence 0.1317 0.1253 0.1149* 0.1705

Composite Measure 28-32 Above Lowest Quartile -0.0303 0.0102 -0.0080 0.0127
(0.0860) (0.0558) (0.0467) (0.0695)

Below Lowest Quartile -0.2692* -0.1171 -0.0754 -0.1956
(0.1490) (0.0873) (0.0730) (0.1459)

Di↵erence -0.2389 -0.1273 -0.0674 -0.2084

Notes: Continued from page above. Table records estimated discontinuity in composite measure of economic self-su�ciency for an adult
being born before the New Year by age group among adults born in counties where average mothers’ education is below the lowest
quartile and above the lowest quartile. Table also records an instrumental variables estimate of the e↵ect of a $1,000 increase in family
income in infancy on the self-su�ciency measure. Results estimated using adults in the 2001-2016 ACS. Regressions include fixed e↵ects
by day of week, and state of birth. Standard errors calculated with 2,000 bootstrap replications. Estimation strategy described in text.

85



CHAPTER II

How Well Do Automated Linking Methods

Perform? Lessons from US Historical Data

New large-scale linked data are revolutionizing empirical social science.1 Record

linkage is increasingly popular as a tool to create or enhance data for observational

studies, randomized control trials, and lab and field experiments. Examples abound

across subfields in economics, including health economics and medicine, industrial

organization, development economics, criminal justice, political economy, macroeco-

nomics, and economic history. In addition, current U.S. data infrastructure projects

are linking national surveys, administrative data, and research samples to recently

digitized historical records, such as the full-count 1880 (Ruggles et al. 2015, Ruggles

2006) and 1940 U.S. Censuses (the first Census to ask about education and wage

income).2 These newly available ”big data” have the potential to break new ground

1This chapter was written with my coauthors Martha Bailey, Catherine Massey and Mor-
gan Henderson and published in the Journal of Economic Literature. Appendicies referenced in
this chapter have not been included in this dissertation for concision, and are available online at
https://assets.aeaweb.org/asset-server/files/13555.pdf.

2Many on-going initiatives link the 1940 U.S. Census to other datasets. The Census Bureau
plans to link the 1940 Census to current administrative and Census data (Census Longitudinal
Infrastructure Project, CLIP) and the Minnesota Population Center plans to link it to other historical
censuses. The Panel Survey of Income Dynamics and the Health and Retirement Survey are linking
their respondents to the 1940 Census. The Longitudinal, Intergenerational Family Electronic Micro-
Database Project (LIFE-M) is linking vital records to the 1940 Census (Bailey 2018). Supplementing
these public infrastructure projects, entrepreneurial researchers have also combined large datasets.
See, for example, Abramitzky, Boustan, and Eriksson (2012a), Abramitzky, Boustan, and Eriksson
(2013), Abramitzky, Boustan, and Eriksson (2014), Boustan, Kahn, and Rhode (2012), Mill (2013),
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on old questions and open entirely novel areas of inquiry.

Machine-linking methods are critical to these projects, especially those linking

U.S. Censuses. But outside of protected data enclaves, little is known about how

machine algorithms influence data quality and inference, due both to false matches

(Type I errors) and missed matches (Type II errors).3 This gap in knowledge reflects

the lack of ”ground truth” data. Although some diagnostic exercises are suggestive,

they typically rely on selected samples (genealogy), non-U.S. samples (Goeken et

al. 2017, Christen and Goiser 2007, Eriksson 2016), or rich administrative data

unavailable to most researchers (Scheuren and Winkler 1993, Winkler 2006, Massey

2017, Abowd 2017). Uncertainty about the quality of machine-linked data limits their

value to social science and also the development of methods to improve them.

This paper reviews the literature in historical record linkage in the U.S. and eval-

uates the e↵ects of di↵erent linking algorithms on data quality. Unlike contemporary

data, historical data are public and contain identifiable information, allowing us to

be fully transparent about our samples and assumptions in assessing algorithm per-

formance. Our samples include the Longitudinal Intergenerational Family Electronic

Micro-database’s (LIFE-M) sample of birth certificates linked to the 1940 Census

(Bailey 2018) as well as a sample of Union Army veterans which the Early Indicators

Project linked to the 1900 Census (Costa et al. 2017).

Even well-trained human linkers and genealogists make errors, so we also build

a synthetic ground truth to validate our findings. The synthetic ground truth de-

liberately introduces common errors in recording, transcription and digitization of

historical data. Although this synthetic ground truth is an imperfect representation

of the more complicated errors in original records, the dataset’s construction means

that there is complete certainty about the correct links. In all cases, the synthetic

Mill and Stein (2016), Hornbeck and Naidu (2014), Aizer et al. (2016), Bleakley and Ferrie (2013,
2017, 2016), Nix and Qian (2015), Collins and Wanamaker (2014, 2015, 2016), and Eli, Salisbury,
and Shertzer (2018) . This paper discusses many of the linking approaches used in these papers.

3”Ground truth” is defined as data obtained by direct observation of the true link.
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data produce very similar findings to the hand-linked records.

The results highlight how widely-used linking algorithms a↵ect data quality and il-

lustrate how di↵erent assumptions impact performance. First, we find that no linking

method produces samples that are consistently representative of the linkable popula-

tion, and the ways in which the data are not representative di↵er by algorithm. Sec-

ond, widely used automated-linking algorithms produce large numbers of links that

well-trained humans classify as incorrect, with rates ranging from 15 to 37 percent.

Similar results in synthetic ground truth suggest that links rejected in human review

are likely Type I errors. Third, false links produced by di↵erent algorithms tend to

be strongly associated with baseline sample characteristics, suggesting that linking

algorithms could induce systematic measurement error into analyses. In addition, the

systematic measurement error varies across algorithms and records, suggesting that

any bias may be di�cult to predict and correct.

Our analysis also investigates how algorithm assumptions impact data quality,

including phonetic name cleaning, linking more common names, and using methods

to resolve ties. We find that common uses of spelling standardization in deterministic

algorithms tend to increase both Type I errors, from 16 to 60 percent, as well as Type

II errors. Linking more common names dramatically increases Type I errors although

Type II errors fall. Lastly, including records with exact ties on name, age, and birth

place (often used in conjunction with simple probability weights) increases error rates

by an additional 55 to 79 percent.

After characterizing the theoretical implications of linking errors using a within-

between decomposition framework, we link the same fathers and sons to the 1940

Census using di↵erent algorithms and examine the resulting estimates of intergener-

ational mobility. We find that some linking algorithms attenuate intergenerational

income elasticity estimates by up to 20 percent. Frequently used variations in assump-

tions, such as including more common names and phonetic name cleaning, result in
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attenuation of more than 30 percent. Eliminating false matches, however, renders

intergenerational income elasticities from di↵erent algorithms statistically indistin-

guishable. In our case study, false links appear to have a larger impact on inferences

than sample composition - a finding that cautions against recent e↵orts to increase

match rates at the expense of precision. We conclude with easy-to-implement rec-

ommendations for improving machine linking and inference with linked samples. In

particular, we recommend reweighting to address sample non-representativeness and

using multiple linking algorithms and supervised learning methods (with training

data) to identify and reduce false links, break ties for multiple matches, and better

train machine algorithms.

2.1 The Evolution of U.S. Historical Record Linkage

Record linkage has been a mainstay of social science for over 80 years. The

earliest methods used painstaking manual searches to link hand-written manuscripts,

and recent developments in digitized records, computational speed, and probabilistic

linking techniques have expanded the possibilities for automated, or machine-based,

record linkage. We briefly summarize this early literature, focusing on the components

of this history that laid the groundwork for current practice.4

One feature important to historical and modern linking is blocking. Blocking

refers to the partition of a dataset into ”blocks” (or clusters of records) using a record

attribute (Michelson 2006). This technique limits the number of potential matches

according to the blocking attribute, thereby improving computational e�ciency while

(ideally) maintaining accuracy. For instance, blocking on place of birth and sex means

that a linking algorithm looking for Franklin Jones born in Kentucky would only

search within the set of candidate matches of men born in that state.
4See Ruggles, Fitch, and Roberts (2018) for a more detailed history of the findings in this early

literature.
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Historical linkage has always used blocking techniques to increase the feasibil-

ity of manually linking samples across manuscripts. The earliest blocking methods

involved identifying a group of individuals in a particular location (e.g., township,

county, or state) in one census and manually searching for the same people within

the same region (the block) in the subsequent census (Malin 1935, Curti 1959, Bogue

1963, Thernstrom 1964, Guest 1987). While making manual searching feasible, this

blocking strategy missed those who relocated or changed names between census years.

The resulting linked samples omitted the geographically mobile population and were,

therefore, unrepresentative (Ruggles 2006).

The creation of digitized state population indexes facilitated refinements in block-

ing.5 In one such approach that improved on previous methods, Steckel (1988) drew a

random sample of households with children at least 10 years old in a historical census.

He then searched for the same household in the previous census using the birth state

of the child to narrow the search. This technique was able to locate individuals who

moved between the census years, but it restricted the sample of linked households to

those with children surviving to age ten.

Advances in computing allowed improvements in automated matching, e↵ectively

replacing time-intensive human search with computer queries. Leveraging newly cre-

ated national population indexes and Public Use Microdata Samples (PUMS), auto-

mated matching began incorporating more data elements in the linking process. An

early example of this strategy was Atack, Bateman, and Gregson (1992)’s probabilis-

tic matching software, called ”PC Matchmaker.” PC Matchmaker transformed names

using phonetic codes and allowed for user-specified blocking and weighting schemes.

Atack (2004) used this software to create a linked sample between the agricultural

and population censuses between 1850 and 1880. Ferrie (1996)’s approach, which we

describe in more detail in the following sections, aimed to create large, representative

5A state ”index” is a list of individuals living in a state at a point in time.
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linked U.S. Census samples and has since been embraced by the literature, form-

ing the basis of prominent methods in use today. Before summarizing more modern

methods, we present an example linking problem to illustrate common challenges in

historical linking.

2.2 Current Approaches to Linking Historical Data

Matching records across sources requires choosing linking variables, also called

”features” in the computer science and statistics literatures. Modern administrative

records typically have multiple, high-quality features (e.g., full legal name, Social

Security Number, exact date of birth, address of residence). Outside of restricted

administrative enclaves, data typically contain a limited set of noisy linking features.

Historical data have the advantage of containing identifiable information, allowing

transparent study of how limited data and data errors a↵ect the quality of linked

samples. Like many modern linking problems, historical data have limited informa-

tion that is often measured with error.

As an example, consider the challenge of linking birth certificates to the 1940

U.S. Census. Researchers typically use ”time-invariant” features to do linking in

order to minimize concerns about selection bias and non-representativeness in linked

samples (Ruggles, 2006). For U.S. Census linking, these variables typically include

first name, last name, age, birth state, race, and sex.6 In practice, names may

vary over time, either because Census enumerators misspelled names, the individual

reported incorrectly, or the individual changed names (perhaps using a middle name

or nickname in place of the given name). Goeken et al. (2017) document that in two

6Matching in historical settings in other countries often makes greater use of characteristics not
available in U.S. data. Modalsli (2017) notes that in Norway before 1910 there is less first name
variation and more flexible surname traditions than in the U.S. In addition, Norwegian censuses
use 500 birthplaces (municipalities) for a population of under 2 million, whereas the U.S. Censuses
identify birthplaces as 48 states and foreign countries for a much larger population ( 132 million
residents in the 1940).

91



enumerations of St. Louis in the 1880 Census, nearly 46 percent of first names are

not exact matches. Similarly, the Early Indicators project notes that 11.5 percent

of individuals in the Oldest Old sample have a shorter first name in pension records

than in the original Civil War enlistment records (Costa et al. 2017).

Similar problems arise in reported age and birth state. The recording of age in

the Census tends to reflect age heaping, the common practice of rounding ages to

the nearest multiple of five (A’Hearn, Baten, and Crayen 2009, Hacker 2013). In

addition, birthplaces are often inaccurately recorded. Goeken et al. (2017) show that

8 percent of reported birthplaces do not match across the two enumerations of St.

Louis. In addition, rates of disagreement for mothers’ and fathers’ birthplaces for the

same individuals average 19 and 18 percent, respectively.

The digitization of hand-written manuscripts compounds errors in recording. Our

comparison of two independently digitized versions of the 1940 Census by Ances-

try.com and FamilySearch.org shows that 25 percent of records have di↵erent tran-

scriptions of last name due to digitization alone.

These data quality issues are well known, and linking algorithms account for them

by allowing for variation in age and name spellings. To deal with di↵erences in age,

researchers typically search over a range of ages. Researchers account for ortho-

graphic di↵erences by using metrics such as Jaro-Winkler or Levenshtein to quantify

the dissimilarity of two name strings. In some cases, researchers use phonetic string

cleaning algorithms to help account for spelling di↵erences, name Anglicization, and

transcription errors. Soundex, for example, was developed in the early 20th century

to help create Census links, simplifying names into phonetic codes to facilitate record

searches. For example, Soundex assigns the same code (S530) to similar sounding

names like ”Smith,” ”Smyth” and ”Smythe.” Another cleaning algorithm, NYSIIS,

the New York State Identification and Intelligence System, was developed as an im-

provement to Soundex in 1970. NYSIIS transforms the same root name to a common
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string, making names like ”Wilhem” and ”William” into ”WALAN.” While phoneti-

cally cleaned strings allow researchers to identify more candidate links, matching on

them deterministically treats distinct names as the same. One implementations of

NYSIIS, for instance, categorizes John and James as perfect matches (Ruggles, Fitch,

and Roberts 2018).

Figure 2.1 illustrates how limited information and measurement error create chal-

lenges for matching records. The linking problem is depicted as two-dimensional

scatter plot after blocking on birth state and sex, as is common in the literature.

The x-axis captures the similarity between the name on record to be linked and the

names of candidate links in the 1940 Census using the Jaro-Winkler similarity score,

which will equal 1 if the names are identical and is less than 1 otherwise.7 The y-axis

captures the di↵erence in the age implied by the birth certificate (which contains

exact date of birth) and the reported age in the 1940 Census. A perfect match in

ages occurs when the age di↵erence is zero.

In this two-dimensional space, candidate links fall into one of four categories:

(M1) A perfect (1,0), unique match in terms of name and age similarity (Figure 2.1A).

(M2) A single, similar match that is slightly di↵erent in terms of age, name, or both

(Figure 2.1B).

(M3) Many perfect (1,0) matches, leading to problems with multiple matches (Figure

2.1C).

(M4) Multiple similar matches that are slightly di↵erent in terms of age, name, or

both (Figure 2.1D).

As we discuss, historical linking algorithms generally treat M1 cases as matches.

However, methods di↵er in their treatment of candidates in the M2, M3, and M4

7Jaro-Winkler similarity score adapts the Jaro (1989) string score, the minimum number of single-
character transpositions required to change one string into another, to up-weight di↵erences that
occur at the beginning of the string. See Winkler (2006) for an overview.
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categories. To account for di↵erences in age as in M2, researchers typically search

within a band of ±3 or ±5 years. Prominent approaches to dealing with ties in

categories M3 or M4 include random selection among equally likely (tied) candidates

(Nix and Qian 2015), equal probability weighting of tied candidates (Bleakley and

Ferrie 2016), or the use of a weighted combination of linking features to classify true

matches (Feigenbaum 2016, Abramitzky, Mill, and Perez 2018). The next sections

describe how commonly used linking algorithms work and ultimately classify records

in cases such as M2, M3, and M4.

2.2.1 Ferrie (1996)

Ferrie’s (1996) path-breaking approach links men in the 1850 U.S. Census to

men who were 10 years and older in the 1860 U.S. Census. Ferrie (1996) begins

by selecting a sample of uncommon names from the 1850 Census.8 To correct for

minor orthographic di↵erences (category M2 above), his algorithm transforms last

names using NYSIIS codes and also truncates the untransformed first name at the

fourth letter. The algorithm then links his sample to the 1860 Census and eliminates

candidate links that were not born in the same state and not living with the same

family. The algorithm keeps all candidate links within a ±5 year di↵erence in age (or

”age band”) and, if more than two links remain, chooses the link with the smallest

age di↵erence. At the end of this process, the algorithm drops cases where two

individuals from 1850 link to the same observation in 1860.9 This process produces a

linked sample of 4,938 men - 9 percent of the male population in 1850, and 19 percent

of the population of men with uncommon names. Ferrie has used di↵erent approaches

in more recent work, including smaller age ranges, di↵erent ways of parameterizing

name dissimilarities like SPEDIS, or altered restrictions on common names. More

8Ferrie (1996) searched for 25,586 men in the 1860 Census whose surname and first name appeared
ten or fewer times in 1850.

9Ferrie (1996) does not specify a process for multiple match disambiguation; in his linking from
1850-1860, there were no ties after minimizing the di↵erence in age.

94



than 20 years later, Ferrie’s approach has become the foundation for much of the

historical linking literature.

Two features of this algorithm are especially worth noting. First, the decision to

make links among observations with uncommon names reduces both the computa-

tional burden and the number of candidate matches of the M3 variety. Consequently,

this method never attempts to link common names like ”John Smith.” Second, the

decision to use NYSIIS and truncate first name reduces problems associated with

minor orthographic di↵erences, but it may also increase ties of the M3 variety and,

therefore, the number of records the algorithm will not link. The independent e↵ects

of both of these choices are considered in our subsequent analysis.

2.2.2 Abramitzky, Boustan, and Eriksson (2012 and 2014)

Abramitzky, Boustan, and Eriksson’s (2012, 2014) ”Iterative Method” scale up

Ferrie (1996) to use the full-count census. This procedure relaxes Ferrie’s (1996)

uncommon name restriction to the extent that the combination of name and age

provide distinctive information. Summarized in a detailed web appendix, Abramitzky,

Boustan, and Eriksson (2012b) select a sample of boys ages 3 to 15 with unique name-

age combinations in the 1865 Norwegian Census, standardize first and last names

using NYSIIS codes, and look for exact, unique matches in U.S. and Norwegian

Censuses. For the observations in the 1865 Census without an exact, unique link

(M1), the algorithm then searches for a name match within a ±1 age band and, if

there is no match in this band, the algorithm searches within a ±2 age band. The

algorithm does not link a record if more than one candidate match exists within an

age band. The algorithm ultimately links a sample of 2,613 migrants and 17,833 non-

migrants from a primary sample of 71,644 individuals for a match rate of 29 percent.

Abramitzky, Boustan, and Eriksson (2014) use the same procedure to link men ages

18 to 35 with unique age-name combinations from the 1900 U.S. Census to the 1910
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and 1920 Censuses, producing a sample of 20,225 immigrant and 1,650 native-born

men for match rates of 12 percent and 16 percent. The authors provide the most

recent version of their code for our analysis, which has been used for record linkage

in a number of high profile papers.10 A variation on this approach is also reported in

Abramitzky, Boustan, and Eriksson (2014)’s appendix as a robustness check. Similar

to Ferrie’s (1996) uncommon name restriction, this robustness check requires that

names be unique within a five-year age band (a ±2 year di↵erence).

Two di↵erences to Ferrie (1996) are worth noting. First, Abramitzky, Boustan

and Erickson (2012, 2014) link more common names, while Ferrie’s (1996) algorithm

does not. Second, Abramitzky, Boustan and Erickson (2012, 2014) use a narrower

age band than Ferrie (1996).

2.2.3 Feigenbaum (2016) and IPUMS (2015)

A common feature of Ferrie (1996) and Abramitzky, Boustan, and Eriksson (2014)

is that they search among identical, phonetically cleaned names for a match that

uniquely has the minimum age di↵erence. This restriction reduces computational

10Many other papers have used variations on Ferrie (1996) and Abramitzky et al. (2014). These
variations are similar in that they require matches to match completely on a cleaned name variable.
For example, Abramitzky et al. (2013) use the Abramitzky et al. (2014) algorithm to match men
aged 3 to 15 in the 1865 Norwegian Census to the 1880 U.S. and Norwegian Censuses, and match
26 percent of records unique by name and birth year from the 1865 Census. Boustan et al. (2012)
link the IPUMS sample of the 1920 U.S. Census to the 1930 U.S. Census using a link uniqueness
age band that functions similar to an uncommon names restriction, and match 24 percent of men
unique by name, age and birthplace in their 1920 U.S. sample. This same dataset was used in
Hornbeck and Naidu (2014). Collins and Wanamaker (2015) use a variation on the Ferrie (1996)
method with an alternate name uniqueness requirement to match southern men younger than 40 in
the 1910 Census to the 1930 Census. They match 24 percent of their records from the 1910 Census.
Other papers use name similarity measures. Eli, Salisbury, and Shertzer (2018) match Civil War
recruitment records from Kentucky to U.S. Censuses before and after the Civil War using a variation
of Ferrie (1996) without an uncommon names restriction, and impose an additional restriction on
Jaro-Winkler string dissimilarity after generating candidate matches with NYSIIS. They match 30
percent of selected records of recruits from the 1860 U.S. Census to the 1880 U.S. Census. Aizer et
al. (2016) match state mother’s pension records to other data sources, including the Social Security
Death Master File, using a variation on Ferrie (1996) without an uncommon names restriction and
Soundex, but allow some additional matches to di↵er in exact name but have low SPEDIS and
Levenstein dissimilarity measures. Aizer et al. (2016) match 48 percent of their records to the
Social Security Death Master File, but this high match rate reflects the fact that they can use exact
date of birth to match their observations.
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burden, but comes at the cost of excluding very similar (though not exact) names

with exact or very close age matches. New methods in probabilistic linking relax these

assumptions and allow machine models to weight di↵erent kinds of disagreements in

names and ages.11 The key insight is that the best link may not exactly match on

name (or phonetically cleaned name) or age as in Figure 2.1B and Figure 2.1D but

it may dominate other candidates when simultaneously considering both age and

name di↵erences. One class of machine-learning algorithms are known as supervised

learning methods and use ”training data” to classify matches. Training data may be

a subset of data coded by humans (sometimes genealogists and sometimes by others)

or result from the observation of true links (called ground truth). If the training

data are ground truth and the model is well specified, the computer will learn how to

classify links to approximate this truth. However, if the training data are of limited

quality, the computer algorithm will replicate these incorrect decisions. Another

potential limitation is that if the training data have little in common with the records

to be linked, the supervised-learning algorithm will have unpredictable performance.

Consequently, the advantage and disadvantage of supervised-learning algorithms is

that they depend heavily on the quality of the training data and its similarity with

the data to be linked.

The Minnesota Population Center (MPC) uses a supervised learning method to

create the Integrated Public Use Microdata Series Linked Representative Samples

(IPUMS-LRS), a set of links between the 1850 to 1930 one-percent samples and the

1880 Census (Ruggles et al. 2015). Using clerically reviewed data, MPC trains a

Support Vector Machine (SVM) using features of matches that, after specifying a

few tuning parameter choices, classifies links as true or false (Goeken et al. 2011).

Illustrating the conservative nature of this approach, MPC produced final match

rates of 12 percent for native-born whites, 3 percent for foreign-born whites, and 6

11See Mullainathan and Spiess (2017) for a useful primer on machine learning for economists.
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percent for African Americans for the 1870-1880 links.12 Unfortunately, this model is

proprietary and we cannot use it in our analysis.

In a similar spirit, Feigenbaum (2016) uses a supervised-learning technique to link

the 1915 Iowa state Census to the 1940 U.S. Census. After creating training data by

hand, he estimates a probit model to quantify the joint importance of di↵erent record

feature in determining a link, including name Jaro-Winkler scores, di↵erences in age,

indicators for Soundex matches of first or last name, indicators for matches in letters

or names, and indicators for matching truncated first or last names. He then tunes

his model so that a link is only chosen if its probability of being a match is su�ciently

high and su�ciently greater than the second-best candidate’s match probability (if a

second-best candidate exists). These cuto↵s are derived from training data to assess

the Type I and Type II errors of di↵erent choices. Feigenbaum (2016) achieves a

match rate of 57 percent.13

2.2.4 Abramitzky, Mill, and Perez (2018)

An alternative to supervised learning is unsupervised learning, an approach which

evaluates the quality of di↵erent links without training data. These algorithms depend

on using observed patterns in the data to classify the data by quality of potential link.

Similar to other deterministic methods like Ferrie (1996) and Abramitzky, Boustan,

12Researchers have used the IPUMS-LRS for a variety of research questions, including the eco-
nomic e↵ects of racial fluidity (Saperstein and Gullickson 2013), long-term di↵erences in black
and white women’s labor-force participation (Boustan and Collins 2014), and intergenerational co-
residency (Ruggles 2011).

13We focus on Feigenbaum (2016) in this analysis because it was developed for U.S. data, and is
transparent and easy to replicate. Many other researchers have also incorporated probabilistic and
machine learning. Mill (2013) and Mill and Stein (2016) use an expectation maximization method.
Similar to the IPUMS-LRS, Wisselgren et al. (2014) use a support vector machine and link the 1890
Swedish Census to the 1900 Swedish Census in a few select parishes for match rates ranging from 25
to 72 percent. Antonie et al. (2014) link across historical Canadian census data and achieve linkage
rates from 17.5 percent (Quebec) to 25.5 percent (New Brunswick). Other work uses Ancestry.com’s
search algorithm to link records. Bailey et al. (2011) link records of lynching to the 1900 to 1930 U.S.
Censuses using the Ancestry.com’s algorithm, linking 45 percent of their lynching records. Collins
and Wanamaker (2014) and (2015) search Ancestry using Soundex for names as well as age and
place of birth for white and black men ages 0 to 40 resident in Southern states in the 1910 Census.
They match 19 and 24 percent of men, respectively, to a unique person in 1930.
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and Eriksson (2014), an advantage of unsupervised learning is that it creates links

without training data. Moreover, if training data are error ridden or too di↵erent from

the dataset of interest, the lack of reliance on them is a feature. Not relying on human

decisions may also be a limitation, because the algorithm’s performance depends

on di�cult-to-validate modelling assumptions. Abramitzky, Mill, and Perez (2018)

use unsupervised learning in the form of the expectation-maximization algorithm

(Fellegi and Sunter 1969, Winkler 2006, Dempster, Laird, and Rubin 1977) to link

Censuses in the U.S. and Norway. Building on Mill (2013), they fit a mixture model

that allows for conditionally independent multinomial probabilities of specific age

distances and discretized Jaro-Winkler scores for two distributions. They then fit

this model with observed data using the expectation-maximization algorithm. Then,

using their results, they calculate the estimated probability that a given potential

match is a correct match conditional on the Jaro-Winkler score and age distance of

the match. Like Feigenbaum (2016), they create a final set of matches by applying cut-

o↵s to these estimated probabilities so that links are chosen that reach a su�ciently

high estimated probability that is su�ciently greater than the second-best candidate

match. However, unlike Feigenbaum (2016), these cuto↵s are not guided by training

data. The approach is not completely automated, because it requires the user to

define tuning parameters, including discretization thresholds of Jaro-Winkler scores

and probability cut-o↵s for classifying a link.14 With regards to the latter, using lower

cut-o↵s will create more matches but potentially include more marginal matches less

likely to be correct. Conversely, higher cut-o↵s will create fewer matches but create

matches that have a higher estimated probability of being correct. To address this

trade-o↵, Abramitzky, Mill, and Perez (2018) use two cut-o↵s, a more conservative

and less conservative choice. Using these two cut-o↵s for their algorithm, they achieve

14These choices may be consequential. For example, setting a high Jaro-Winkler similarity thresh-
old corresponding to (0.92,1] assigns the same estimated match probability to a pair with first names,
Katherine/Catherine, as to a pair with an exact match on first name, all else equal.
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match rates of 5 percent and 15 percent in their Census data. Our analysis implements

these cuto↵s and considers the e↵ects of alternate cut-o↵s in an online appendix.

In summary, existing linking methods involve a variety of modelling choices with

unknown e↵ects on data quality. Which set of assumptions should researchers use in

di↵erent contexts? What are the implications of di↵erent assumptions for error rates?

The next sections answers these questions by presenting a systematic comparison of

methods in di↵erent records.

2.3 Data and Metrics of Automated Method Performance

Our analysis considers four di↵erent linking algorithms: Ferrie (1996); Abramitzky

(Abramitzky, Boustan, and Eriksson 2014); regression-based, supervised learning

(Feigenbaum 2016); and unsupervised machine learning (Abramitzky, Mill, and Perez

2018). Detailed web appendices, published articles, and posted code make replicating

these methods straightforward. Ferrie (1996) and Feigenbaum (2016) describe their

methods step by step, which we implement exactly.15 We present Feigenbaum (2016)

using both his regression coe�cients for the Iowa Census-1940 training data (labeled

”Iowa coef.”) as well as coe�cients estimated using hand-linked samples (called ”Es-

timated coef.”; see Online Appendix A for details and coe�cient estimates). To im-

plement Abramitzky, Boustan, and Eriksson (2014) and Abramitzky, Mill, and Perez

(2018), we use the code provided by the authors (see Online Appendix A) and report

two cuto↵ implementations per the latter’s recommendation, ”less conservative” and

”more conservative.” For interested readers, we created a public Stata ado-file that

implements these methods and the variations we consider in this paper (Bailey and

Cole 2019).

15Unlike Ferrie (1996), we do not limit links based on family continuity. In addition, we treat
records with multiple matches after the last step as having no link, although Ferrie reports having
none of these instances and, therefore, does not indicate how he would have dealt with them.
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2.3.1 Hand-linked and Synthetic Data

We examine the performance of each algorithm in two high-quality, hand-linked

historical samples: the LIFE-M sample of birth certificates linked to the 1940 Census

(Bailey 2018) and the Early Indicators Project’s genealogically linked sample of Union

Army veterans (Costa et al. 2017).

The LIFE-M sample is based on a random draw from birth certificates from Ohio

and North Carolina. These birth certificates are then linked to siblings’ birth cer-

tificates using parents’ names. We exclude girls because they typically changed their

name at marriage in this era, making them hard to find as adults in the Census (see

Online Appendix B). The LIFE-M sample consists of 42,869 boys born from 1881 to

1940, 24,408 of whom were born in North Carolina and 18,461 born in Ohio.

The LIFE-M sample of boys is then linked to the 1940 full-count U.S. Census using

a semi-automated process, making use of both computer programming and human

input. Our linking variables include first, middle (when available), and last name,

birth state, and age. We do not use race, because it is not available on all birth

certificates (see section 2.5.2 for an analysis of this limitation).

After cleaning and standardizing the data, we use bi-gram matching on name and

age similarity within a birth state to generate candidate links (Wasi 2014).16 Each

candidate is independently reviewed by two ”data trainers” who choose a correct link

(or no link) from the set of candidates. If the two trainers agree, we treat their choice

(link or no link) as the truth. In cases where the two trainers disagree, the records are

independently re-reviewed by three new trainers to resolve these discrepancies (see

section 2.3.2).17 LIFE-M data trainers are instructed to reject links if they are not

16We generate a set of candidate links using ”reclink.ado,” an algorithm that uses bi-gram com-
parisons of name strings. We also block on the first letter of last names to reduce computation
time.

17Data trainers participate in a rigorous orientation process where they receive detailed feedback
on their accuracy relative to an answer key. They continue this process for 10 to 20 hours per
week until their matches agree with the truth dataset 95 percent of the time. After completing this
orientation, trainers become part of the larger team that conducts independent clerical review.
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completely certain the links are correct.

LIFE-M trainers also work under a senior data trainer and receive multiple rounds

of feedback across approximately 30 hours of work. Before trainers are allowed to

work on the LIFE-M team, their decisions must reach a 0.95 correlation with a truth

dataset.18 After trainers achieve this threshold, they begin receiving training batches

from an automated distribution system, which guarantees that links are reviewed ini-

tially by two di↵erent trainers and that discrepancies are reviewed by three additional

trainers. This automated system also distributes audit batches at least once per week

to provide weekly feedback to trainers about their accuracy. Trainers meet weekly

to discuss their mistakes, di�cult cases, and learn about historical-contextual factors

a↵ecting the quality of the data.

The Family History and Technology Lab at Brigham Young University (BYU)

performed two independent quality checks of the LIFE-M links. First, BYU research

assistants used genealogical methods and multiple data sources to hand link a random

sample of 543 of the 18,461 Ohio boys, 241 of which had been linked by LIFE-M. The

BYU team had no knowledge of LIFE-M’s links. Among links made by both LIFE-

M and BYU, BYU agreed with LIFE-M matches 93.4 percent of the time (16/241

matches were discordant). Second, BYU compared 1,043 LIFE-M links to those

already on the FamilySearch.org ”Tree.” (FamilySearch.org tree links are created

by genealogists and users of FamilySearch.org, who are independent of the LIFE-

M process.) For 1,043 birth certificates linked to the 1940 Census by LIFE-M and

FamilySearch.org users, the LIFE-M links agreed with FamilySearch.org users 96.7

percent of the time. A link-weighted average of the two exercises implies that LIFE-

M’s false link rate is around 3.9 percent. To account for potential errors in the

LIFE-M data, we additionally require all links that di↵er from the LIFE-M sample

18This truth dataset has been vetted by multiple individuals for accuracy. The cases for this truth
dataset are selected to test the trainers’ knowledge and decision-making for a variety of linking
problems.
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to be re-reviewed using the ”police line-up” process described in section 2.3.2

Our second sample is the Oldest Old sample of Union Army veterans from the

Early Indicators Project. Costa et al. (2017) created this sample of 2,076 individuals

at least 95 years old linked to the 1900 complete-count U.S. Census using genealogical

methods and a rich set of supplementary information. These veterans tended to report

complete and accurate information to ensure they would receive their army pensions

and benefits. Moreover, sources such as gravestone databases, obituaries, newspaper

accounts, veterans associations and pension files allow multiple cross-validation exer-

cises, ultimately resulting in a high match rate of 90 percent among men confirmed

to live beyond the 1900 Census. The Early Indicators Project scores matches on a

scale of 1 to 4 to indicate their confidence in a match. We use 1,887 matches coded

as the highest quality (1 and 2) as the hand-linked sample. Importantly, we do not

use all possible records for which matches were attempted.

Because these hand-linked data may contain errors, we validate our conclusions

by building a third sample: a synthetic ground truth. This synthetic ground truth

adds noise to true links to mimic common errors in historical data while ensuring

complete certainty about correct and incorrect links. That is, this synthetic dataset

characterizes the performance of each matching algorithm relative to an objective

truth, which shares important commonalities with the LIFE-M sample.

We construct the synthetic ground truth in two steps. First, we take all of our Ohio

and North Carolina born boys’ birth certificates, randomly drop 10 percent to reflect

mortality and emigration and drop another 5 percent to reflect under-enumeration.19

Using the LIFE-M records as a basis allows us to retain sample name characteristics

19Based on life tables from 1939 to 1941, we calculate that 8 percent of our sample should be
un-linkable due to death prior to 1940 (National O�ce of Vital Statistics 1948). Moreover, Census
analyses estimate that around 5.4 percent of individuals were missed in 1940 (West and Robinson
1999). This calculation leaves some scope (about 1.5 percentage points) for emigration, which reflects
the fact that we think emigration for native-born boys would have been much lower than for those
born abroad. To the extent that our approximation of emigration is too low, the actual Type II
errors should be adjusted accordingly.
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(e.g., ethnic origin and other conventions and name commonness). To account for

orthographic di↵erences in enumeration or transcription errors, we add noise to names

and ages to reflect age heaping and transcription or digitization errors (Goeken et al.

2017, Hacker 2013, 2010).20 One limitation of this approach is that the true error

structure in names and ages is unknown, so our decisions about how to simulate error

may be simplistic and incomplete.

The resulting synthetic truth dataset is a noisy version of the truth for 85 percent

of the Ohio and North Carolina boys. Then, we append to a random sample of boys

from the 1940 Census who were born in Michigan, Indiana, Tennessee and South

Carolina. Because these states neighbor Ohio and North Carolina, these individuals

are incorrect links by construction. We chose these states because they share regional

naming conventions and have similar demographic and economic characteristics. The

size of our random sample of boys from neighboring states ensures that our set of

candidates for each state has the same number of observations as in the LIFE-M

linking exercise: 3,133,982 boys from the relevant age ranges born in Michigan and

Indiana for Ohio and 1,904,592 boys born in Tennessee or South Carolina for North

Carolina. When linking to this synthetic dataset, we emulate the common process

of blocking on birthplace and consider only the synthetic Ohio data as candidate

matches for the Ohio boys and only the synthetic North Carolina data as candidate

matches for the North Carolina boys.

20To mimic age-heaping, 25 percent of ages are rounded to the closest multiple of 5. We introduce
orthographic and transcription errors as follows. In 10 percent of cases, the first and middle names
are transposed (if a middle name exists) and, in 5 percent of cases, the first and last names are
transposed. In 5 percent of cases each, the first character of the first name or last name is randomly
changed. In 5 percent of cases, each second character of the first name or last name is randomly
changed. In 5 percent of cases, each third character of the first or last name is randomly changed.
In 5 percent of cases each, we add a repeated letter o first names (e.g., ”James” to ”Jamees”) or last
names. In 5 percent of cases each, a random letter is dropped or two letters are transposed in the
first or last name (e.g., ”Matthew” to ”Mathew” or ”William” to ”Willaim”). In 5 percent of cases,
we replace the first name with an initial. In 50 percent of cases, we drop middle names (resulting in
the same share of observations having middle names as is observed in the 1940 Census).
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2.3.2 Performance Criteria

We use four main criteria to measure performance. The first two are almost

universally reported in papers using linked samples.

(1) Match rate: We calculate the match rate as the share of records that were

linked of the sample that we attempted to link. Even if matching were perfect, this

rate is expected to be less than 100 percent due to emigration and mortality. Notably,

emigration and mortality are not expected to have di↵erent impacts by method, so

they should not impact the relative performance of methods.

(2) Representativeness: We compare characteristics for the linked sample to the

same characteristics for the unlinked sample. in a multivariate, linear probability

model with Huber-White standard errors (Huber 1967, White 1980). A heteroskedasticity-

robust Wald test of model significance tests the null hypothesis that the covariates are

jointly related to successful linkage.21 This straightforward, single summary metric

and the regression coe�cients describe the extent the extent of non-representativeness

as well as the subgroups that are under-represented.

These measures alone are inadequate to assess link quality. This fact is easily illus-

trated in an example. Consider a matching algorithm that randomly links individuals

between two datasets. This algorithm would perform very well in terms of the first

two criteria, because the entire sample would be matched and identical to the baseline

sample in observed characteristics (and, therefore, representative). Few researchers,

however, would want to work with these data, because - with large enough datasets

- the incidence of false links would approach 100 percent.

We, therefore, use two more criteria to assess link performance (Abowd and Vil-

huber 2005, Kim and Chambers 2012).

21We implement this in Stata by multiplying the F-statistic reported in Stata following a regression
with robust standard errors by the relevant degrees of freedom parameter. Note that this test could
be very conservative in the sense that it would reject the null hypothesis due to one variable’s
significance in the regression and does not weight for the ”importance” of di↵erent covariates.
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(3) False link rate (Type I error rate):22 We compare links for each automated

method to a measure of the truth. We treat the high-quality, hand-linked Early

Indicators dataset as the ”truth,” given that genealogists have used multiple data

sources to confirm each link. In the synthetic data, we know the true link, so we code

di↵erences in links between an algorithm and the synthetic data as Type I errors.

For the LIFE-M data, we subject discrepancies between the hand-links and the

algorithm to an additional blind review. Similar to a ”police line-up,” two reviewers

independently review the LIFE-M link (made by hand), the link made by the auto-

mated method, and close candidate links. Reviewers may choose to code any of these

links as correct or incorrect. This process gives the links from the hand-match and the

automated method an equal shot at being chosen to avoid preferential treatment. For

the LIFE-M data, only links that are rejected in clerical review as part of the police

line-up are treated as Type I errors. This analysis may understate the true Type I

error rate if the hand-links are incorrect and agree with the automated method.

(4) False negative rate (Type II error rate):23 This metric captures the fraction of

true links that are not found, or 1 - Match Rate*(1 - Type I Error Rate). With this

definition, the false negative rate can never be zero, because mortality and emigration

mean that many individuals cannot be linked even with perfect data.24

22Computer scientists focus on precision, or 1-T1 error rate presented here.
23Computer science focuses on a similar statistic, ”recall.” This measure is defined as the number

of true links found by the algorithm divided by number of linkable observations, or those linked by
the data trainers.

24Note also that, if the marginal link is more likely to be incorrect, an increase in the match rate
within a specific algorithm has a weakly negative e↵ect on Type II error rates and a weakly positive
e↵ect on Type I error rates. If the marginal link is wrong, then the Type II error rate would not
change but the Type I error rate would increase. However, if the marginal link is correct, the Type
II error rate would fall and the Type I error rate would decrease.
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2.4 The Performance of Prominent Automated Matching Meth-

ods

Because a central focus of a growing literature is linking to the newly available

1940 Census, we begin our analysis linking birth certificates to the 1940 Census. We

then corroborate our findings using our synthetic ground truth and the Oldest Old

sample from the Early Indicators Project.

2.4.1 Evaluating Algorithms Using the LIFE-M Data

Figure 2.2 compares the performance of selected, prominent automated linking

methods to the hand-linked LIFE-M data, where each of these methods uses the

same information to create links - name, age, and birth state. The length of each bar

represents the match rate, computed as the share of the baseline sample of 42,869

boys who were successfully matched to the 1940 complete count Census. LIFE-

M hand-review matched 45 percent of the baseline sample. Ferrie’s (1996) method

matched 28 percent of the baseline sample, and Abramitzky, Boustan, and Eriksson

(2014) achieve a higher link rate of 42 percent. This result makes sense because

Abramitzky, Boustan, and Eriksson (2014) do not impose Ferrie’s (1996) uncommon

name restriction. Feigenbaum’s (2016) regression-based machine learning method

matches 52 percent of the baseline sample both when using Iowa coe�cients and when

we estimate the coe�cients using a random sample of the LIFE-M links. Abramitzky,

Mill, and Perez (2018)’s expectation-maximization method links 46 percent of the

sample when using less conservative cuto↵s and 28 percent of the sample with more

conservative cuto↵s.

Across the board, these match rates are higher than in the original studies. For

instance, the Ferrie (1996) method matches 28 percent of the LIFE-M data versus his

published figure of 9 percent of all men between 1850 and 1860 Censuses. Similarly,
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Abramitzky, Boustan, and Eriksson (2014) link 40 percent of the LIFE-M sample,

whereas the same method links only 29 percent in Abramitzky, Boustan, and Eriksson

(2012b) and 16 percent of native-born men in Abramitzky, Boustan, and Eriksson

(2014). These higher match rates likely reflect two factors: the LIFE-M boys are on

average 24 years old in the 1940 Census, so mortality and outmigration are likely lower

for them than in other studies. In addition, birth certificate data quality is higher

compared to other sources. Birth certificates (1) contain a complete and correct full

name, often including middle names omitted in the Census; (2) record the exact date

of birth rather than age in years;25 and (3) capture the birth state by construction (it

is issued by the birth state and so should not have reporting error like the Census).

Figure 2.2 also summarizes the share of links that human reviewers rejected in a

blinded review using the ”police line-up” method. These rejected links are presented

in two ways. First, the share of the entire sample determined to be wrong for each

method is displayed in red. For less than 2 percent of original sample, trainers reversed

LIFE-M decisions upon re-review in favor of the link chosen by one of the automated

methods. Consistent with genealogical validation by BYU, these reversals are rare.

Second, the column on the far right in Figure 2.2 presents that share of links that

were rejected by human reviewers (the estimated Type I error). We compute this

share by dividing the share of the total sample that is incorrect by the match rate.

Because the LIFE-M match rate is 45 percent, this implies a Type I error rate of

4 percent (approximately 0.017/0.445). As shown in section 2.6, the implications

of measurement error for inference is linked to the share of incorrect links, so our

discussion focuses on this second metric.

Relative to clerical review, the share of false links for automated methods is higher

across the board. The lowest Type I error rate occurs in the more conservative

version of Abramitzky, Mill, and Perez (2018) at 15 percent. Ferrie’s (1996) method

25Massey (2017) shows that decreasing the noise in age results in higher match rates and lower
Type I error rates.
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of selecting uncommon names achieves the second lowest Type I error rate at 25

percent. These error rates are consistent with Massey (2017) who uses contemporary

administrative data linked by Social Security Number as the ground truth. She finds

that methods similar to Ferrie (1996) are associated with 19 to 23 percent Type I

error rates.. Abramitzky, Boustan, and Eriksson (2014)’s refinement of Ferrie (1996)

increases match rates to 40 percent, but only half of the added links appear to be

correct, and the Type I error rate increases to 32 percent. Feigenbaum’s (2016)

supervised, regression-based machine learning model produces a Type I error rate of

34 percent when using the Iowa coe�cients, and the Type I error rate decreases to

29 percent when estimated using LIFE-M data. Finally, Abramitzky, Mill, and Perez

(2018)’s less conservative cut-o↵ results in the highest error rate at 37 percent. The

di↵erence between the conservative and less conservative versions of Abramitzky, Mill,

and Perez (2018) highlights the sensitivity of performance to the tuning parameters.

In terms of missed links, Ferrie (1996) correctly linked the lowest share of the

sample without error at 21 percent, and Feigenbaum (2016)’s algorithm estimated

with the LIFE-M data correctly linked the largest share of the sample without error

at 37 percent. It is worth noting that Feigenbaum (2016) and Abramitzky, Mill, and

Perez (2018) allow for a variety of di↵erent choices of sample restrictions within their

linking methods that alter the trade-o↵ between Type I and Type II errors in their

matches. We implemented versions of these methods that reflected how they were

implemented in each. Our Online Appendix Figures A1 and A5-A7 show how altering

these restrictions impacts results in both cases.

Table 2.2 describes the representativeness of the linked sample. Because birth

certificates do not contain socio-demographic measures found in the Census (race,

age, or incomes of the parents), we regress a binary dependent variable (1= linked

records) on a variety of covariates from the birth certificates. These variables include
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the individual’s exact date of birth;26 the number of siblings in the family; the number

of characters in the infants’ (boys’), mothers’, and fathers’ names - a characteristic

which is strongly positively correlated with years of schooling and income from wages

in the 1940 Census; and the share of family records with a misspelled mother’s or

father’s name, which we expect to be negatively correlated with years of schooling

and income (Aizer et al. 2016).27 Table 2.2 presents the Wald-statistic for tests of

whether these covariates are jointly associated with an observation being linked (p-

value beneath). If a representative set of birth certificates were linked, then these

characteristics would not be jointly related to whether an observation was linked.

However, Wald-statistics for the joint test of the association of these characteristics

with linking show a persistent association. For all methods, including LIFE-M’s

clerical review, we reject representativeness at the 1-percent level.

The signs and magnitudes of the regression results provide clues about the indi-

viduals easier to link (see the full set of regression results in Online Appendix C).

Many automated methods are more likely to link boys with higher incidence of mis-

spelled father’s last name, and more likely to link boys with a longer mother’s name.

All methods except Feigenbaum (2016) with estimated coe�cients are more likely to

link children with longer names. Based on the correlation of name length with wage

income in the 1940 Census, this finding indicates that linked records are drawn from

more a✏uent families. Some methods are more likely to link individuals with more

siblings, while other methods are more likely to link individuals with fewer siblings.

In short, even though no linking algorithm generates representative samples, di↵erent

algorithms yield samples that are non-representative in di↵erent ways.

Finally, Table 2.3 tests for the systematic correlation of links rejected in hand

26Exact day of birth (1-366, due to leap years) is as close to a continuous measure as we can get
in historical records, and season of birth is strongly correlated with socio-economic characteristics
in modern data (Buckles and Hungerman 2013).

27We measure misspellings in father and mothers’ names as the number of name spellings in the
birth certificates of all siblings that di↵er from the modal spelling divided by the total number of
children in a family
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review with baseline characteristics. The method is identical to what is presented in

Table 2.2 but that the dependent variable is equal to 1 if the link was rejected in a

blind review. If the rejected links are systematically related to baseline characteristics,

this suggests that the algorithm introduces systematic measurement error in variables

of interest. Column 1 of Table 2.3 reports the heteroskedasticity-robust Wald-statistic

(p-value beneath) by method for the LIFE-M data (see the full set of regression results

are in Online Appendix D). For each algorithm, we reject the null hypothesis that

errors in linking are unrelated to baseline characteristics at the 1-percent level. False

links are significantly negatively associated with the length of a mother’s name and

length of a father’s name in nearly all samples, suggesting that being falsely linked is

negatively associated with a✏uence. Patterns across other variables are more varied.

For example, the number of siblings is positively associated with the probability that

a link is incorrect for the Feigenbaum (2016) algorithm, but the number of siblings is

negatively associated with the probability that a link is incorrect in the Abramitzky,

Boustan, and Eriksson (2014) sample. In short, di↵erent algorithms appear to induce

di↵erent types of systematic measurement error.

2.4.2 Evaluating Algorithms Using the Synthetic Ground Truth and Early

Indicators Samples

One critique of these findings is that human errors survive even the blind review

process. This could lead the incidence of Type I errors in the LIFE-M analysis to be

too high or too low relative to the truth. To address this potential issue, we reevaluate

algorithm performance in synthetic data (where the truth is known). Because this

objective truth is not influenced by human reviewers at all, this exercise validates

those obtained from human review. We also evaluate the same algorithms using the

Early Indicators, data, proving a complimentary perspective using a sample that was

linked by genealogists and is known to be highly accurate.
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For both the synthetic and Early Indicators data, Table 2.1 compares the match

rates and error rates for each prominent algorithm. Recall, for the synthetic data, a

perfect match rate is 85 percent, because 15 percent of the original links are absent

by design. Patterns in match rates across methods are slightly higher in the synthetic

data but generally within a few percentage points of the LIFE-M match rates, with

the exception of Feigenbaum (2016) and Abramitzky, Mill, and Perez (2018). Notably,

both methods perform substantially better in the synthetic data than in the LIFE-M

data with match rates of 56 and 57 percent for Feigenbaum (2016) with the Iowa and

estimated coe�cients and 52 and 32 percent for Abramitzky, Mill, and Perez (2018)

with the less and more conservative cuto↵s. The match rates for Early Indicators’

veterans linked to the 1900 complete count Census are generally higher than in the

LIFE-M sample, which reflects the fact that all individuals in these data are known

to be linkable. The LIFE-M data, however, contains both individuals who can be

linked and those who cannot.

Table 2.1 also shows that patterns of error rates in the synthetic and Early Indica-

tors data are similar to those in LIFE-M. Importantly, the best performing algorithms

in LIFE-M continue to perform the best in the synthetic and Early Indicators data.

Figure 2.2 describes patterns of error rates graphically across algorithms and datasets.

In most cases, the error rates are slightly lower in the synthetic data and Early Indi-

cators data relative to the LIFE-M records, ranging from 11 to 33 percent. Because

there was no hand linking involved in producing the synthetic data, similar error

levels suggest that the results of the LIFE-M hand-linking process and blind review

reflect true errors in the automated linking algorithms. Larger reductions in error

rates for machine-learning algorithms like Feigenbaum (2016) and Abramitzky, Mill,

and Perez (2018) suggest that these methods may be e↵ective at detecting the simple

errors we simulated. Because the Early Indicators data contain only individuals who

have been successfully linked by genealogists, Type I error rates are lower, ranging
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from 10 to 24 percent versus 15 to 37 percent in the LIFE-M data. The fact that

the patterns of error rates are the similar in all datasets, however, provides strong

support for the notion that prominent machine linking methods in current practice

make considerable errors.

The findings for representativeness in the synthetic and Early Indicators data are

also similar, with Table 2.2 suggesting that the linked samples are unrepresentative.

For the synthetic data, this exercise allows a particularly strong test of the hypothesis

that the non-representativeness of linked samples reflects the linking algorithm per se.

Because we randomly dropped 15 percent of individuals, non-random attrition due

to di↵erential death, enumeration, or emigration is ruled out by construction. The

only reason that the linked synthetic sample would not be representative is that the

methods link certain groups more systematically than others. Consistent with this

hypothesis, the Wald-statistics and p-values in column 2 reject representativeness

for all methods in the synthetic data at the 1-percent level. Most methods are less

likely to link individuals with more siblings. In the Early Indicators data, nearly all

methods are more likely to link individuals with U.S.-born mothers; some methods are

more likely to link individuals with longer first or last names, while others exhibit the

reverse correlation.28 (See Online Appendix C for the full set of regression results.)

Table 2.3 underscores the finding that false are systematically related to baseline

sample characteristics. For all methods in both the synthetic and Early Indicators

data, we reject the null hypothesis that false links are unrelated to baseline covariates

- a pattern that may complicate inference by introducing systematic measurement

error. (See Online Appendix D for the full set of regression results.)

28For the synthetic dataset, we use the same covariates as in the LIFE-M data when considering
representativeness. For the Early Indicators data, we use continuous variables in age and length
of first and last names and dummy variables for speaks English, owns a farm, currently married,
foreign born, day of birth by year, literacy, and foreign born status of parents.
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2.4.3 Summary of Findings

Prominent algorithms yield widely varying results - even using the same data and

linking variables. In the LIFE-M data, match rates range from 28 to 52 percent, while

the share of links rejected in the police line-up ranges from 15 to 37 percent and the

associated Type II error rate ranges from 63 to 79 percent. A synthetic ground truth

dataset confirms these patterns and also suggests that machine-learning algorithms

like Feigenbaum (2016) and Abramitzky, Mill, and Perez (2018) are e↵ective at de-

tecting and correcting for synthetic errors, which speaks to their potential value in

improving the quality of linked data. An equally important finding is that error rates

vary across datasets - even when links are created using the same algorithm and link-

ing variables. The share of links rejected by humans in the Early Indicators data is

slightly lower and the match rates are higher, possibly owing to the fact that the data

consist of individuals selected on having been linked by genealogists (i.e., living in the

U.S. and also less likely to have changed a name or its spelling). However, error rates

likely di↵er across the datasets due to di↵erences in data quality that are di�cult to

easily measure and diagnose. This variation across datasets cautions against gener-

alizing this paper’s findings and recommends that researchers examine their linked

samples for clues about error rates, representativeness, and systematic measurement

error.

2.5 How Variations in Algorithms Alter Method Performance

Understanding what drives di↵erences in algorithm performance is key to improv-

ing existing methods and current practice. This section considers how the perfor-

mance of these algorithms changes when varying key features of their set-ups. First,

we examine the role of di↵erent phonetic name cleaning strategies for algorithms

that require agreement in cleaned names. Second, we extend the Ferrie (1996) algo-
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rithm to include more common names or eliminate them using a narrow age-band as

in Abramitzky, Boustan, and Eriksson (2014)’s robustness test. Third, we examine

equal weighting of exact ties (i.e., multiple, exact matches). A final section examines

the robustness of these findings across all methods to using middle names, information

on race, and extensions to population-to-population linking.

2.5.1 Phonetic Name Cleaning, Common Names, and Ties

Phonetic string cleaning algorithms account for orthographic di↵erences that could

lead a true match to be missed, such as minor spelling di↵erences, name Anglicization,

and transcription/digitization errors. Figure 2.3 and Table 2.4 show how the perfor-

mance of the Ferrie (1996) and Abramitzky, Boustan, and Eriksson (2014) algorithms

vary with three types of phonetic name cleaning: no cleaning (labeled ”Name”),

Soundex (labeled ”SDX”), and NYSIIS. Interestingly, although name cleaning is in-

tended to increase match rates, it can also decrease match rates if it increases ties

(by removing meaningful spelling variations). This interaction is important for the

Ferrie (1996) method, which matches between 20 and 33 percent of baseline sam-

ple depending on the phonetic name cleaning used. Because this cleaning creates

more common name strings, and Ferrie’s algorithm restricts the sample to uncom-

mon names, the algorithm discards more links due to ties when cleaning is used: the

match rate falling from 33 (Name) to 28 (NYSIIS), to 20 percent (Soundex). Because

Abramitzky, Boustan, and Eriksson (2014) does not restrict to uncommon names, it

does not show reductions.

The likelihood of Type I errors increases with the use of phonetic name cleaning

in Ferrie (1996) and Abramitzky, Boustan, and Eriksson (2014). As shown in Table

2.4 and Figure 2.3, using NYSIIS rather than uncleaned names increases Type I

error rates by an average of 18 percent, ranging from as little as 5 to as much as

25 percent across datasets. Using Soundex rather than uncleaned names increases
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Type I error rates by an average of 36 percent, ranging from 14 to as much as 64

percent. These increases occur because, in addition to orthographic and transcription

errors, phonetic codes may remove meaningful spelling variation. For example, both

Soundex and NYSIIS would code ”Meyer” and ”Moore” as the same name, whereas

reviewers tend to treat these as di↵erent names. Counterintuitively, the increase in

error rates induced by phonetic name cleaning universally decreases the share of the

sample that is correctly linked.

Another modification to Ferrie (1996) is to link more common names. Recall

that, for computational reasons, Ferrie (1996) discarded matches if there were 10 or

more candidate matches, regardless of age di↵erences. We relax this assumption and

include records with 10 or more candidates when we find links (labeled ”Ferrie 1996

+ common names”). Table 2.4 and Figure 2.3 show that including common names

results in significantly higher match rates, including higher shares of true links than

in the original method. The results are almost identical to those of Abramitzky,

Boustan, and Eriksson (2014), which is because this method’s key deviation from

Ferrie’s (1996) is attempting to link more common names. The inclusion of common

names roughly doubles the share of incorrect links but it also decreases Type II error

rates.

Similar in spirit to the common names restriction, Abramitzky, Boustan, and

Eriksson (2014) implement a robustness check that discards links if a name tie occurs

within a two-year age band. As reported in Figure 2.3 under Abramitzky, Boustan,

and Eriksson 2014 (NYSIIS, Robustness), this restriction lowers the match rate to

24 percent but it also halves the share of the sample that is incorrectly linked, from

14 percent to 6 percent, and changes the Type I error rate from 32 percent to 23

percent. This robustness check is very similar to the uncommon names restriction

and, therefore, performs almost identically to Ferrie (NYSIIS) in terms of match rates

and Type I errors. Relatedly, the Abramitzky, Mill, and Perez (2018) algorithm with
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more conservative cut-o↵s is also similar to an uncommon names restriction. By

requiring a high threshold of the probability of a candidate match being a correct

match, and requiring the second-best options for the observations in the match to be

much lower, this restriction ensures that the links made have no close analogues either

due to di↵erences in spelling or age. This unsupervised approach slightly outperforms

Ferrie (NYSIIS) in terms of Type I and Type II error rates.

A third variation on prominent algorithms relates to how ties are handled (e.g.,

cases like M3 in Figure 2.1C and M4 in Figure 2.1D). Ties are very common in

contexts with limited information (such as matching between U.S. Censuses). If one

could break exact ties or use ties in the analysis, researchers could match the majority

of the sample, raising match rates substantially. For the Ferrie (1996) algorithm, using

both common names and ties raises the match rates from 20 to 33 percent to 69 to

86 percent.

Two main approaches to using exact ties have been suggested by the literature.

First, the statistics literature o↵ers an alternative to tie-breaking by using probability

weighting. For instance, one could use a weight that is the conditional probability

that the match is correct (Scheuren and Winkler 1993, Lahiri and Larsen 2005). In

the absence of other data features, this suggestion simplifies to weighting by 1
Jr
, where

Jr is the number of exact ties for record r.29 Nix and Qian (2015)’s random selection

among ties is similar in spirit. Their process draws one of the candidate matches

with probability 1
Jr
. Importantly, simple probability weighting and random selection

among ties have the same expected performance in certain contexts such as those we

consider later for our case study. 30 We label results that include ties as ”Ferrie 1996

29This simple probability weighting di↵ers from Lahiri and Larsen (2005), because match proba-
bilities vary in their data due to a specifically defined data generating process, and they are able to
trim candidate links with lower match probabilities. We do not assume a specific data generating
process. Furthermore trimming is not possible when all records are equally tied.

30We explain this result later in more detail, but the intuition is straightforward. Let N be the
number of observations, M be the number of primary records with multiple exact ties as their best
matches, Jr the number of ties for a primary record r= 1, 2, ...,M . Assuming that one of the ties is the
correct link, the expected number of false matches for records with ties is

P
M

r=1
Jr�1
Jr

= M�
P

M

r=1
1
Jr
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+ ties.” Table 2.4 shows that including ties may dramatically increase match rates,

but Figure 2.3 shows that this substantially increases the share of observations that

are incorrectly matched in every sample. This makes sense, because at most one of

the candidate links can be correct. For instance, if there are ten candidate ”John

Smith” links and only one of these is the correct link, nine out of ten of these links

are incorrect. Notably, the Type I error rate is higher in the Early Indicators data,

reflects the fact that they are selected upon being successfully linked and have fewer

close ties.

Figure 2.5 describes the mixed progress in historical automated linking since 1996.

As the literature has moved from the use of Ferrie’s (1996) uncommon name sample

and increased match rates, some methods have also increased Type I errors (and de-

creased precision). The hope of researchers using these methods is that, on net, they

are increasing the share of true links in their sample as well as sample representa-

tiveness. However, for the synthetic and Early Indicators data, the pattern of Type I

and Type II errors suggest that there may be scope to improve in both dimensions by

leveraging the strengths of di↵erent algorithms.31 Similar to the findings for promi-

nent methods, each of these variations produces samples that are unrepresentative

(Table 2.5). Moreover, these variations produce false links that are systematically

related to baseline sample characteristics in all datasets (Table 2.6).

for both random selection and simple probability weighting. As the number of multiples increases
for a given record, the probability weight on a false match gets smaller as does the weight on the
true match. The results from probability weighting may di↵er slightly due to sampling variation.

31Of course, the level of Type II errors in the LIFE-M and synthetic data is overstated, because
some infants did not survive until the 1940 Census, emigrated, or were missed by enumerators in
the 1940 Census. We estimate that these factors likely account for around 15 percent of missed links
(see footnote 16). A linking method that linked all LIFE-M or synthetic data individuals correctly
would locate at (0.15, 0), missing only the 15 percent individuals who are unlinkable and making no
errors. Because these sources of attrition a↵ect all methods equally, these factors do not influence
our comparisons across methods.
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2.5.2 Robustness: Middle Names, Race, and Population-to-Population

Linking

How much should we expect these results to change with the addition of infor-

mation commonly available in historical datasets? A first robustness check considers

how the addition of middle name or race could reduce Type I error rates. For middle

names, we examine a subsample of cases where middle name or initial was available

for both the birth certificate and the linked Census record. Then, we calculate the

number of false links that would have been eliminated had the automated method

required that middle initial match for all potential matches after running a match-

ing algorithm. We apply this restriction ex post, but it would also be possible to

include middle name agreement in the matching process as a feature considered by

an algorithm in the process of making matches.

Table 2.7 shows that the availability of middle initials may reduce match rates

but also the reduce rate of false matches. For comparison, columns 1 and 2 reprint

the information on match rates and Type I error rates from Table 2.4. Column 3

shows the share of matched observations that have information on middle initial in

the birth certificate and the Census record, which range from a quarter to a third

of matches. Column 4 reports the share of matches that have discordant middle

initials among the subset of matches that have middle names in both records, ranging

from 20 percent to 57 percent. Column 5 reports the Type I error rate among the

matches with discordant middle initials. What is clear is that the Type I error rate

is always above 87 percent within this subset. Presumably, these error rates are high

because disagreements among middle initials mattered to the trainers considering

these observations when making matches. Finally, columns 6 and 7 recalculate the

match rate and Type I error rates after dropping observations that have discordant

middle initials. Match rates tend to drop by several percentage points, but Type I

error rates drop by more. For example, Ferrie (1996) with NYSIIS drops from a match
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rate of 28 percent and an associated Type I error rate of 25 percent to a match rate of

26 percent and an associated Type I error rate of 20 percent. Type II error rates are

nearly unchanged despite the drop in match rates, with all changes in Type II error

rates never exceeding one percentage point. This result suggests that the addition of

more information contained in middle names can substantially reduce Type I linking

errors with minimal changes in Type II errors, at least among observations that have

middle initials in the LIFE-M data.

A second robustness check compares race indicated on the 1940 Census for LIFE-

M linked records to the race reported on an individual link.32 Column 3 of Table 2.8

shows the share of linked birth certificates that would not have been erroneously linked

by an algorithm that blocked on race. Interestingly, only a small share of incorrect

links have discordant races, ranging from 0 to 5 percent. When we omit incorrect

links with discordant races in column 5, we find that the match rate drops slightly

and the Type I error rates decrease by no more than two percentage points across

methods. This is consistent with Massey (2017), who finds that errors in linking the

2005 Current Population Survey to the Numident only decreased by 0.07 percentage

points when blocking on race. In contrast to using middle initial, race does not appear

to add much information to reduce errors. Note, however, that including race may

result in better link disambiguation among links that appear to be close substitutes.

A third robustness check examines to the implications of linking a sample (rather

than a population) to a Census. The critical di↵erence in these two settings is that

an observation could appear to be unique in a sample while having duplicates or

near-duplicates in the population. This is important because many algorithms drop

a match if (1) it occurs more than once in the set of records to be linked or (2) more

than one observation links to the same record. Both are more likely to occur for a

32To the extent that some individuals ”pass” for other races, this robustness check may eliminate
true links (Nix and Qian 2015, Mill 2013). Note that race is only observable for the observations
that LIFE-M successfully linked, as we infer race from the 1940 Census given that it is not reported
on birth certificates.
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population than a sample. Sample-to-population linkage may, therefore, result in a

higher share of incorrect matches than population-to-population linkage.

To quantify the importance of linking a sample to a population as we do here, we

compare our results to matching the universe (e.g., the population) of birth certificates

to the 1940 Census. First, we match the universe of Ohio and North Carolina birth

certificates to the 1940 Census using each automated method, including adjustments

described above. Then, we isolate attention to the subset of records in the LIFE-M

sample to assess performance. Since the LIFE-M sample is a random subsample of

birth certificates, we expect the results to generalize to the population.

Figure 2.6 displays the results, with the horizontal axis depicting Type I error

rates in matching between the sample and the 1940 Census and the vertical axis

displaying the results matching the population of birth certificates to the 1940 Census.

Results along the 45-degree line indicate perfect agreement in the two procedures. As

expected, false link rates fall below the 45-degree line for all methods that use the

post-linking adjustments, suggesting that Type I error rates are somewhat higher

for sample-to-population linkage. The Type I error rate in Ferrie (1996) with exact

names is 20 percent for a sample but 17 percent for the population; for Abramitzky,

Boustan, and Eriksson (2014) with exact names, the Type I error rate is 25 percent for

the sample versus 20 percent for the population. In short, population-to-population

linking may reduce errors but the improvements are not large, as no method achieves

a Type I error rate lower than 15 percent.

2.5.3 Summary of Findings

Variations on machine-linking algorithms may improve or worsen performance.

Deterministic algorithms that clean names using Soundex or NYSIIS perform worse

than using raw name strings. Similarly, trying to link common names (especially in

conjunction with phonetic name algorithms) tends to increase error rates and the
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share of the initial sample correctly linked. Tie breaking or weighting ties equally

could dramatically increase sample sizes but may have the unintended e↵ect of using

more incorrect matches in analyses. Including middle names as a linking criterion

appears to have large e↵ects on Type I error rates. However, using race information

or using population-to-population linking appears to alter data quality only modestly.

2.6 How Automated Methods A↵ect Inferences

Our final analysis explores the consequences of Type I and Type II errors for in-

ferences about historical rates of intergenerational mobility. Following the intergen-

erational literature (Solon 1999, Black and Devereux 2011), we consider the following

benchmark specification,

log(y) = ⇡ log(x) + ✏ (2.1)

where the dependent and independent variables have been rescaled to capture

only individual deviations from population means. The dependent variable, log(y),

refers to the log of son’s wage income in adulthood in the 1940 Census. The key inde-

pendent variable, log(x), refers to the parent’s log wage income in the 1940 Census.

Within this framework, we interpret ⇡ as the intergenerational income elasticity. The

magnitude of ⇡ is an important indicator of the role that parents’ wage incomes play

in determining their children’s wage income. Intergenerational mobility is measured

as 1- ⇡, which is often regarded as a metric of economic opportunity. Our analysis

uses the LIFE-M sample of 19,486 boys (43 percent of the 45,442 that were linked to

the 1940 Census) and samples linked using di↵erent automated methods to estimate

intergenerational mobility. Unlike other analyses using the Census and Panel Survey

of Income Dynamics, we must link fathers from birth certificates to the 1940 Cen-
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sus to obtain their income information. Links for fathers are obtained using only the

LIFE-M clerical review method, so that father links remain constant in all regressions.

By using the same links for fathers and di↵erent methods to link sons, our analysis

describes di↵erences in the estimates that are driven by di↵erences in methods used

to link sons.

2.6.1 How Type I Errors A↵ect Inferences

Di↵erent kinds of Type I errors could have di↵erent implications for inferences

about intergenerational mobility. Within the regression framework in equation (2.1),

measurement error in son’s income (the dependent variable in the regression) that

is uncorrelated with father’s income will still allow us to estimate ⇡ consistently

using OLS, though the estimates will be less precise. However, measurement error on

the right-hand side in father’s income (the independent variable in the regression) is

more consequential. At first glance, considering measurement error in father’s income

seems counter to our problem of using di↵erent linking methods to link sons. Note,

however, that linking a boy to the wrong man in 1940 is equivalent to assigning the

wrong father’s income to that man.

Our conceptual framework for thinking about linking-induced measurement error

is similar to Horowitz and Manski (1995). We assume that a linking method, `,

induces Type I error in matches by erroneously linking a father to a son (we do not

derive bounds here, but that is a useful avenue for future research). The presence

of this measurement error allows us to divide the sample into two groups, g: one

for which the links are correct, denoted with a ⇤, and another for which the link

is imputed (or incorrectly classified), i. Following Greene (2008) and Stephens and

Unayama (2017), we decompose the OLS estimate of ⇡ for a sample linked with

method, l, into the sum of within and between covariance for the correct, ⇤, and

imputed groups, i. b denotes the between component. Let s`⇤xy + s`ixy =
P

g s
`g
xy =
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P
g

P
k

�
log(xkg) � log(xkg)

��
log(ykg) � log(ykg)

�
and let s`bxy =

P
g Ng

�
log(xkg) �

log(xkg)
��
log(ykg) � log(ykg)

�
where group means are defined with a single bar and

overall means are defined by two bars, such that:

⇡̂` =
s`xy
s`xx

=
s`⇤xy + s`ixy + s`bxy

s`xx
=

s`⇤xx
s`xx

⇡̂`⇤ +
s`ixx
s`xx

⇡̂`i +
s`bxx
s`xx

⇡̂`b (2.2)

Equation (2.2) shows that an OLS estimator converges in probability to a weighted

average of the plim for the correct links, ⇡`⇤, imputed links, ⇡`i, and the between group

term (⇤ vs. i) ⇡`b, where the weights on each term reflect the share of variance due

to each component, ✓:

plim ⇡̂` = ✓`⇤plim ⇡̂`⇤ + ✓`iplim ⇡̂`i + ✓`bplim ⇡̂`b (2.3)

The between group component can be thought of as the ”selection” term. In some

cases, we expect that the plim of the between term is zero (e.g., if the means of son’s

income or father’s income are the same for the imputed and correctly linked groups).

This pattern could happen in practice if errors (e.g., enumeration or transcription

error) randomly assign records to these groups. Initially, we assume this term is zero

to simplify exposition but later relax this assumption. Note also that, if the variances

of father income are equal across all groups, the weights ✓ become the share of the

sample in each category. Now, consider the probability limit of the two remaining

non-weight terms, ⇡̂`⇤ and ⇡̂`i. The first term represents the elasticity for the linked

subsample, plim ⇡̂`⇤ = ⇡. The second term is an estimated elasticity for the imputed

observations. If we assume cov
�
✏, log(x`i)

�
= 0, then
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plim ⇡̂`i =
cov

�
log(y⇤), log(x`i)

�

var
�
log(x`i)

� =
cov

�
⇡ log(x⇤) + ✏, log(x`i)

�

var
�
log(x`i)

�

=⇡
cov

�
log(x⇤), log(x`i)

�

var
�
log(x`i)

�
(2.4)

If the imputed father’s income is the same as the true father’s income, log(x⇤) =

log(x`i), then plim ⇡̂`i=plim ⇡̂i. However, if
cov

�
log(x⇤),log(x`i)

�

var
�
log(x`i)

� 6= 1, then plim ⇡̂`i 6= ⇡

and the degree of the inconsistency depends on the relationship between the true and

imputed father’s income.

There are several special cases of interest. First, suppose that there is no re-

lationship between the true father’s income and the imputed father log income, or

that
cov

�
log(x⇤),log(x`i)

�

var
�
log(x`i)

� = 0. Then, the plim ⇡̂`i = 0 and the estimator is inconsistent

in proportion to the share of imputed links, plim ⇡̂` = ✓`⇤⇡. Second, consider the

case where imputed father’s income equals the true father’s income plus noise, or

log(x`i) = log(x⇤) + u. Under the assumptions of the classical errors in variables

model (plim( u✏) = 0, plim
�
u log(x⇤)

�
= 0, and plim

�
u log(y)

�
= 0), then plim

⇡̂`i = ✓`i �2
x

�2
x+�2

u
⇡. Moreover, plim ⇡̂` = (1� ✓`i)⇡ + ✓`i �2

x
�2
x+�2

u
⇡.

Third, it is well known that non-classical measurement error for the imputed

fathers could lead to under or over-statement of the parameter of interest, plim ⇡̂`i > ⇡

or plim ⇡̂`i < ⇡.

As a final exercise, consider the e↵ect of Type I errors on inference using exact

ties. Consider a setting where N is the total number of records that one wishes to

link and for M  N of these records, r = 1, 2, ...M , there are Jr candidate matches

that are tied. For instance, if the first record with ties involves 30 potential matches

for a John Smith, age 40, then for r = 1, J1 = 30. A second record, however, may

only have 4 ties, so r = 2 and J2 = 4. Assume that there is one correct link among

the ties for record, r, indexed by j = 1, log(y), and imputed (but incorrect links)
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log(yj), j = 2, ...Jr. From the researcher’s perspective, the correct link is unknown

and the probability that any one of the ties is correct is 1
Jr
.

Assume that one of these records would be selected at random to use in the

analysis. By the same logic as in equation (2.2), a regression estimate of the inter-

generational income elasticity can be decomposed into a variance-weighted sum of

elasticities for three groups of observations - correct, unique links, denoted ⇤; a cor-

rect link from the ties, denoted j = 1; incorrect links from the ties, denoted j > 1,

and a ”selection term” (which we assume is zero). Therefore, the estimated elasticity

will be ⇡̂` = s⇤xx
sxx
⇡̂⇤` + sj=1

xx
sxx

⇡̂j=1,` + sj>1,`
xx
sxx

�PJr
j=2

sj,`xx

sj>1,`
xx

⇡̂j`
�
and plim

�PJr
j=2

sj,`xx

sj>1,`
xx

⇡̂j`
�
=

PJr
j=2 �jplim ⇡j`

Therefore, the estimate of the intergenerational income elasticity using random

selection to break ties is,

plim ⇡̂` = ⇡
h
✓⇤j + ✓j=1,` + ✓j>1,`

� JrX

j=2

�j j`

�i
(2.5)

Note that this estimator is inconsistent if  j` =
cov

�
log(x1),log(xj)

�

�2
xj

< 1.33

The degree of inconsistency is, again, determined by how much information is

in the incorrect ties. If the weights, ✓ and �, simplify to the expected shares of

observations in each group (as they would if variances were equal across all groups as

we note above), the degree of inconsistency is also related to the share of all records

with exact ties, M
N (implicit in the weight), as well as the number of multiples for

each record, Jr.

These conclusions are identical if the elasticity is estimated with a probability-

weighted estimator where the weight is the probability that any exact multiple in a

set of exact multiples is the true match, or 1
Jr
. The probability limit of the estimator

will be the same, although the performance of these methods may diverge in smaller

33Note that
cov

�
log(yj),log(x1)

�

�2
xj

=
cov

�
⇡ log(xj)+✏,log(x1)

�

�2
xj

=
cov

�
log(xj),log(x1)

�

�2
xj

⇡ = plim (⇡j).
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samples.34 This result is intuitive because the same share of imputed observations

would be present using probability weighting or random selection for exact ties. In

summary, the presence of imputed links - either through random selection or proba-

bility weighting - will generally lead to inconsistency, with the degree of inconsistency

increasing in the number of records with ties, the number of exact ties for a given

record, as well as the relationship between imputed observation and the truth. After

examining the role of Type II errors, we examine the quantitative importance of these

errors in a case study.

2.6.2 How Type II Errors A↵ect Inferences

Social scientists are accustomed to working with small representative samples. As

long as links are representative of the underlying population, higher Type II error

rates should only reduce precision. Across linking methods and datasets, however,

this paper finds evidence that samples of links are not representative. If Type II

errors result in the selective representation of di↵erent groups and the relationship

of interest is heterogeneous across these groups, Type II errors may also lead to

inconsistent estimates of population parameters in linked samples.

Heterogeneity in intergenerational income elasticities is believed to exist for many

reasons. For instance, researchers have concluded that intergenerational income elas-

ticities are larger for blacks than whites (Duncan 1968, Margo 2016) and that patterns

of mobility are substantially di↵erent for farmers compared to non-farmers (Hout and

Guest 2013, Xie and Killewald 2013). If one group is over-represented in the linked

data, this will bias inferences about the historical rate of the population’s intergen-

34Reducing the influence of observations with less information is why some statisticians recommend
truncating lower probability links, where presumably the covariance between the income of the father
for the imputed link and the true link is small (Scheuren and Winkler 1993, Lahiri and Larsen 2005).
Although Lahiri and Larsen (2005) propose an exactly unbiased estimator of ⇡, this result only holds
when the estimated link probability is uncorrelated with father’s income and where an exact data
generating process for links is estimated. But this result breaks down in many historical settings,
because the distribution of matching variables (name, age, and birth place) are correlated with
outcomes and, often, a parent’s socioeconomic status (see Online Appendix C and D.
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erational mobility.

To make this point concretely, assume that the two groups in equation (2.3) are

high mobility, h, and low mobility, l (rather than correctly and imputed links). Denote

the intergenerational income elasticities of these groups as ⇡h and ⇡l (where ⇡h  ⇡l),

and the share of the variation attributable to each group is ✓h and ✓l, respectively.

Finally, assume that there are no errors in linking. Therefore, following the logic of

equation (2.2), the regression estimate of the population elasticity parameter for a

given linking method, `, is,

plim ⇡̂` = ✓`hplim ⇡̂`h + ✓`lplim ⇡̂`l + ✓`bplim ⇡̂`b (2.6)

The inconsistency of the probability limit in equation (2.6) depends upon several

factors. First, if ⇡h = ⇡l and the means for both groups of fathers and sons are

the same, the selection term is 0 and having a non-representative sample will not

a↵ect inference. Having a representative sample matters only to the extent that the

relationship of interest varies across those groups or the group’s characteristics di↵er.

Second, if ⇡h 6= ⇡l (and the group means are the same), Type II errors that e↵ectively

decrease the share of variation attributable to one group will lead to an inconsistent

estimate of the population intergenerational elasticity parameter. Suppose that a

linking method introduces Type II errors, which e↵ectively decreases the variation

attributable to observations representing the low mobility group. (In the extreme,

high rates of Type II errors could imply that none of the total variation is attributable

to low mobility group.) These Type II errors would result in an elasticity estimate that

puts lower weight on the low-mobility group, resulting in a lower estimated elasticity.

Third, if ⇡h = ⇡l but the group means are di↵erent, then the selection term will

not be 0 and inferences will be a↵ected in an ambiguous way. Both heterogeneity
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and selection, of course, may vary greatly across samples. The following case study

examines the combined implications of non-representativeness (through heterogeneity

and selection) using inverse propensity weights to adjust for di↵erences in observed

characteristics (DiNardo, Fortin, and Lemieux 1996, Heckman et al. 1998).

2.6.3 Results: Intergenerational Elasticity Estimates from the 1940 Cen-

sus

Di↵erent linking methods could have large e↵ects on intergenerational income

elasticity estimates through their influence on both Type I and Type II error rates.

Figure 2.7A reports estimates of the intergenerational elasticity using samples of sons

linked using di↵erent methods. For the LIFE-M links, we estimate an income elasticity

of 0.24 between fathers and sons. Consistent with lifecycle bias and transitory income

fluctuations attenuating our estimates, this estimate is lower than modern estimates.35

These biases, however, should not a↵ect our comparisons across di↵erent linking

methods for the same set of records.

Several important patterns emerge. First, higher Type I errors in matching tend to

be associated with smaller intergenerational elasticities. Consistent with attenuation

described in equations (4) and (5), estimates using linking samples with higher Type

I error rates tend to be smaller. Using NYSIIS and Soundex tends to increase Type I

error rates and produce smaller estimates than using the reported name. Moreover,

weighting ties results in Type I error rates ranging from 50 to 67 percent and yields

35For instance, Chetty et al. (2014) estimates 0.33, which is itself smaller than estimates for
the same period using survey data (Mazumder 2015). Life-cycle bias may attenuate the estimated
intergenerational elasticity regardless of matching method (Mazumder 2005, Haider and Solon 2006,
Black and Devereux 2011, Mazumder 2015). In addition, wage income observed in the 1940 Census
is an imperfect measure of permanent income, and we expect the single year observation of income
for both generations can generate downward bias in estimated elasticities due to the importance of
transitory income (Solon 1992, Zimmerman 1992, Mazumder 2005, Ward 2019). On the other hand,
the absence of farm and self-employed income in 1940 may lead this analysis to overstate mobility
by excluding father-son pairs of farmers - an occupation that tends to be highly persistent across
generations (Hout and Guest 2013, Xie and Killewald 2013). However, lifecycle bias and transitory
income fluctuations should have similar e↵ects for all methods.
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intergenerational income elasticity estimates of 0.19 to 0.11. However, Type I error

is not the only factor determining bias. It is notable that the more conservative

Abramitzky, Mill, and Perez (2018), the method with the lowest Type I error rates,

yields an intergenerational income elasticity that is 20 percent smaller and statistically

di↵erent than the true coe�cient. Conversely, a method with a comparatively high

Type I error rate such as Feigenbaum (2016) achieves an estimated intergenerational

income elasticity that is statistically indistinguishable from the LIFE-M elasticity.

These results may reflect the fact that sample composition or a more systematic

correlations of the errors with certain characteristics impact the coe�cient. Online

Appendix Figures A1 through A10 consider alternate implementations of Feigenbaum

(2016) and Abramitzky et al. (2018). In general, the implementations that place more

weight on precision (minimizing Type I errors) achieve estimated elasticities that are

closer to the estimate with the hand-linked data. However, the decrease in Type I

error is accompanied by a decrease in match rates and an increase in standard errors.

To examine the role of non-representativeness, we use inverse propensity-score

weights to reweight the linked sample to have the characteristics of the LIFE-M

birth certificate sample (Bailey, Cole, and Massey 2019).36 Figure 2.7B shows that

the reweighted intergenerational income elasticities tend to be slightly smaller in

magnitude than the unweighted Figure 2.7A estimates. This result may stem from

the modest over-representation of larger, less-mobile families in the linked sample.

The attenuation of the coe�cient for the more conservative Abramitzky, Mill, and

Perez (2018) is cut in half, however, by using weights. For this case study, however, the

e↵ects of non-representativeness (as measured by the changes induced by reweighting)

36To construct these weights, we first run a probit model of link status (for each method) on
covariates, X, which include an indicator variable for presence of middle name, length of first,
middle, and last name, polynomials in day of birth, polynomials in age, an index for first name
commonness, an index for last name commonness, number of siblings, an indicator variable for
presence of siblings, and the length of own name as well as father’s and mother’s names. We
then use the estimated propensity of being linked, Pi(Li = 1|Xi), for each method and reweight

observations by 1�Pi(Li=1|Xi)
Pi(Li=1|Xi)

q

1�q
, where q is the share of records that are linked. Distributions of

inverse propensity score weights are plotted in Online Appendix E
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on observed characteristics appear modest in comparison to the role of errors in

linking. Of course, one might also choose to re-weight the sample to resemble the

1940 Census. Online Appendix E shows that these results are nearly identical to

results presented here.

While estimates using machine-linked samples appear attenuated relative to LIFE-

M, the attenuation is not always as severe as one might expect with random error.

For instance, Ferrie (1996) with name results in a 20 percent Type I error rate but

the intergenerational elasticity estimate obtained from these links is one percentage

point di↵erent from the LIFE-M estimate. If the selection term in equation (3) were

zero, and the signal to noise ratio in equation (4) were zero, one would expect to

estimate 0.19 (=0.80*0.24). Therefore, one might think that fathers’ incomes for

imputed links positively covaries with the truth or that the Ferrie (1996) is positively

selected on immobility. For tie-breaking methods, however, the attenuation appears

more consistent with random error. For instance, Ferrie (1996) with common names

and ties and Soundex shows a 69 percent Type I error rate and the intergenerational

elasticity estimate is 0.11 in Figure 2.7A.

Figure 2.7C and Figure 2.7D directly examine the e↵ects of incorrect matches by

plotting ⇡̂⇤, or the estimated elasticity for the ”true” links (plotted as o with 95-

percent confidence intervals) and ⇡̂i, or the estimated elasticity for the ”false” links

(plotted as x) from separate regressions. Without the incorrect links, the estimates of

the intergenerational income elasticity are very similar across groups at around 0.23

without weights (Figure 2.7C) and 0.23 with inverse propensity-score weights (Figure

2.7D). The comparability of unweighted estimates is especially striking given how

di↵erent in size and representativeness the samples are. For instance, the number

of true links varies from around 482 for Ferrie 1996 (Soundex) to 1,600 when using

exact ties Ferrie 1996 (Soundex), but the unweighted intergenerational income elas-

ticities are estimated to be 0.22 and 0.23, respectively. Consistent with Type I errors
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introducing attenuation, ⇡i tends to be smaller than ⇡⇤ across methods. And, con-

sistent with the observations about the magnitudes above, the unweighted estimated

intergenerational elasticities for the imputed links for Ferrie 1996 (Name) are 0.15

and only 0.05 for Abramitzky, Boustan, and Eriksson (2014) (Soundex) and 0.05 for

Ferrie 1996 with common names and ties (Soundex) - a statistical zero in the latter

two cases. On the other hand, the correlation of incorrect links for Feigenbaum (2016)

is very high, which shows how the regression-based classification system selects links

with a very high correlation to the true link in this setting - even when incorrect. In

short, the inclusion of imputed links appears to have large e↵ects on OLS estimates

of the intergenerational income elasticities, biasing them toward zero in most cases.

After purging incorrect links, reweighting the linked sample to resemble the set of

birth certificates has a minimal e↵ect on the estimates.

In summary, the lower attenuation for some methods reflects the fact that the

sample of correct links is selected on having lower intergenerational mobility (i.e., a

higher elasticity), pulling the point estimate up, while the measurement error tends

to pull the estimates down (see Figures 2.7C and 2.7D). Notably, the bias in esti-

mates from some linking algorithms is as large as transitory income bias or life-cycle

bias, which may each further attenuate intergenerational elasticities by more than

20 percent (Solon 1999, Haider and Solon 2006, Mazumder 2018). This case study

suggests that researchers should carefully consider the role of measurement error due

to linking algorithms, as their influence on inference could be significant.

We have discussed estimated elasticities here to explore the consequences of errors

in linking, and we do not intend to o↵er these estimates as an unbiased estimate of

the true elasticity in the early 20th Century due to issues with transitory income

bias and life-cycle bias in our data. However, with strong assumptions, we can relate

our estimates to the existing literature estimating intergenerational elasticities. If we

assume the independence of transitory income bias and life-cycle bias, and assume
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both factors attenuate elasticities by approximately 20 percent given the ages at which

we observe sons and fathers (Haider and Solon 2006), the true LIFE-M estimate of

the elasticity could be around 0.36 for the early 20th century (over 56 percent or

1/(0.64) larger than observed). This is smaller than recent estimates (Mazumder

2018), suggesting that the US was much more fluid historically than in the later 20th

century (Feigenbaum 2016, Ferrie and Long 2013). However, our estimate is based

on fathers and sons with wage income from Ohio and North Carolina, and to the

degree that the patterns of mobility present for this sample are not representative of

the country as a whole, these findings may not generalize (Ward 2019).

2.7 Lessons for Historical Record Linking

New large-scale linked data hold the potential to shift the knowledge frontier,

increasing the urgency for developing reliable linking methods. Using di↵erent U.S.

samples, this paper documents how linking algorithms and resulting errors could

have large e↵ects on scientific conclusions and policy inferences. Not only are linked

samples not representative, but existing algorithms yield high rates of false matches.

Moreover, the incidence of false matches are systematically related to baseline sam-

ple characteristics, suggesting that linking-induced measurement error may introduce

complicated forms of bias into analyses. Our case study shows that linking algorithms

may severely attenuate estimates of intergenerational income elasticities.

The variability in our estimates across datasets implies that it is di�cult to di-

agnose how much linking assumptions matter for di↵erent research questions using

di↵erent records. Nevertheless, our results suggest that reducing false matches and

choosing methods that generate false matches more highly correlated with the truth

are crucial for improving inferences with linked data - even when reducing Type I

errors increases Type II errors.

An easy remedy when linking richer data is to use more information - especially
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continuous variables or those with many values (e.g., Social Security Numbers or exact

dates of birth). In addition, higher quality information (e.g., administrative records

rather than individual reports) will result in lower error rates than we document.

For contexts with limited linking variables which are measured with error, system-

atic clerical review (e.g., LIFE-M) and genealogical methods (e.g., Early Indicators)

generally attain lower error rates than machine algorithms. Because these methods

are cost prohibitive for most projects, we draw on our findings to recommend several

easy-to-implement and lower-cost changes to current practice.

First, we recommend careful examination of a sample of links resulting from au-

tomated algorithms. Applying close scrutiny to a sample of links allows researchers

to diagnose and potentially remedy systematic problems with machine-linking algo-

rithms arising for specific records or in a particular historical context. In fact, many

of the links coded as incorrect in clerical review are easy to identify as such. These

cases can be used to improve machine-linking algorithms.

Second, caution is advised in linking phonetically cleaned names in determinis-

tic algorithms or in commonly occurring name-age combinations. Phonetic cleaning

tends to remove meaningful variation in names that allows algorithms to make better

links. Eliminating commonly occurring name-age combinations, like Ferrie’s (1996)

approach of only linking uncommon names or Abramitzky, Boustan, and Eriksson

(2014)’s robustness check using unique name-age combinations in a five-year window,

substantially reduces the incidence of false matches. Together with reweighting, these

restrictions achieve results in our case study that are statistically indistinguishable

from hand-linked data. In contrast, weighting name-age ties equally by the inverse of

their empirical frequency incorporates information from a large number of false links

and results in substantial attenuation. In addition, researchers may incorporate more

information in the linking process to break ties and distinguish true links from close

alternatives. One such example in historical data is middle name or middle initial.
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Third, using even a small sample of clerically reviewed data to train a machine-

learning algorithm (or applying the results of another researcher’s model based on

similar training data) can improve the quality of linked samples. Notably, even when

these machine-methods make incorrect links, the correlation of these links with the

truth appears to be much higher than for other algorithms in our setting. These errors,

therefore, have less impact on inference. An additional feature of some machine-

linking algorithms is that they allow researchers to choose the importance of Type I

and Type II errors, balancing the trade-o↵ to fit a particular application. Although

Feigenbaum (2016) and Abramitzky, Mill, and Perez (2018) choose a specific penalty

for Type I and Type II errors, di↵erent parameter choices can drive Type I error rates

lower while linking much of the sample correctly.

A fourth strategy for reducing Type I errors is to combine multiple methods and

use the intersection of the links across sets - a form of ensemble machine learning in

the spirit of ”bagging” or ”boosting.” By construction, requiring links to be classified

as such by more than one algorithm should tend to decrease match rates. But,

to the extent that di↵erent methods make errors for di↵erent reasons, taking the

set of common links helps avoid idiosyncratic reasons for errors. We illustrate the

value of this approach in Figure 2.8 for our example of intergenerational elasticity,

where we plot the Type I and Type II errors associated with the 131,071 possible

combinations (217 � 1) of the 17 algorithms in this paper for each dataset. Overall,

combining methods drives down Type I error rates and increases Type II error rates.

For example, when using LIFE-M data, combining two methods like Ferrie (1996)

and Feigenbaum (2016) drives the Type I error rate to 10 percent - a substantial

improvement over error rates for either method individually. Combining 12 methods

achieves error rates as low as 6 percent, which is almost as precise as hand-linking.

Using combinations of methods may also improve inference. As shown in Figure

2.9A, across all combinations of methods, unweighted intergenerational elasticity esti-
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mates range from 0.11 to 0.24 (circle markers) and inverse-propensity-score reweighted

estimates range from 0.13 to 0.24 (square markers). Based on an unweighted linear re-

gression, a 10 percentage point increase in the Type I error rate tends to decrease the

elasticity by 0.028, whereas this number is 0.015 in the weighted regression. Interest-

ingly, in both weighted and unweighted cases, the mean over all combinations yields

the value to the elasticity obtained in the hand-linked LIFE-M sample. As in our

intergenerational elasticity example using single methods, Figure 2.9B shows that

eliminating the incorrect links yields an average intergenerational elasticity nearly

identical to the hand-linked sample (0.22) whereas the average intergenerational elas-

ticity estimates for the incorrect links are less than half that value (0.096). These

findings hold even when considering only the most prominent matching algorithms.

Finally, after limiting the role of linking errors, we recommend using multiple

record features to assess and improve sample representativeness. Survey methods

for constructing weights and allocating values are easy to implement and have well-

documented properties. Making greater use of common record features such as name

length or other socio-demographic information also allows researchers to use survey

research methods or, as is more common in economics (and used in this paper),

construct inverse-propensity weights to reduce sample selection and improve repre-

sentativeness in observed characteristics (see Bailey, Cole, and Massey (2019) for a

simple how-to guide). Ideally, this reweighting also improves balance in terms of un-

observed characteristics, but there is no way to test this claim. A close examination of

what is referred to as the common support assumption also informs researchers about

where more time-intensive genealogical or clerical review methods may increase the

representation of hard-to-link groups.

Many discussions of inference with linked data implicitly or explicitly assume

that the match rate is just as important to inference as match quality. Our findings

suggest that the quality of inferences with linked data may be improved by putting
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less emphasis on increasing sample sizes (which in our analysis tend to be associated

with higher rates of false matches) and more emphasis on increasing the share of

correct links. That is, social scientists wishing to conduct inference on linked data

might increase the weight they place on decreasing Type I error rates over increasing

sample sizes (decreasing Type II error rates). In the parlance of machine learning, this

would involve weighting precision more heavily. Indeed, modern surveys such as the

Panel Survey of Income Dynamics and the National Longitudinal Survey demonstrate

that much can be learned from high-quality small samples with summary statistics

and weights to describe and adjust for non-representativeness. Ultimately, increasing

sample sizes for di�cult-to-link subgroups (such as individuals with common names)

will not likely be achieved without more data or higher quality record features to

disambiguate similar records. More research to uncover data to describe the groups

underrepresented in linked samples will serve both to broaden knowledge about them

and improve the ability of modern machine learning methods to link them.
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2.8 Figures and Tables

Figure 2.1: Examples of Common Linking Problems in Historical Samples
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Figure 2.2: Match Rates and False Links for LIFE-M Hand-Linked Data and Selected
Automated Linking Methods

Notes: The bars show the performance of di↵erent algorithms linking LIFE-M boys to the
1940 Census. See text for details and Table 2.1 for numerical estimates. As a reminder,
LIFE-M represents handlinked data before police batch review, and Ferrie (1996) NYSIIS,
Abramitzky et al. 2014 (NYSIIS), Feigenbaum 2016 (LIFE-M), Abramitzky et al. 2018
(Less conservative) and Abramitzky et al. 2018 (More conservative) reflect the methods
used to produce the main results from these papers.
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Figure 2.3: Match Rates and False Links for Common Variations on Automated
Linking Methods

Notes: See Figure 2.2 notes.
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Figure 2.4: Share of Incorrect Links (Type I Error Rate) by Method and Dataset

Notes: See Figure 2.2 notes and Table 2.1 for numerical estimates.
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Figure 2.5: Type I vs. Type II Error Rates by Method and Dataset

Notes: Points plot Type I and Type II error rates using di↵erent algorithms and data in
Table 2.2.
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Figure 2.6: A Comparison of Method Performance in Sample-to-Population and
Population-to-Population Linking

Notes: The y-axis plots the Type I error rate implied by linking birth certificates for all
boys in the same cohorts as the Ohio and North Carolina LIFE-M sample to the 1940
Census using di↵erent automated methods. The x-axis plots the Type I error rate implied
by linking the LIFE-M sample of boys in the Ohio and North Carolina birth certificates to
the 1940 Census using di↵erent automated methods.
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Figure 2.7: Intergenerational Income Elasticity Estimates

Notes: Di↵erences in estimates reflect the incidence of Type I and Type II errors. The sample sizes of father-son pairs are lower than
when matching sons only, because not all linked sons had income from wages and fathers who were also linked who also had income from
wages. Sample sizes are 1,834 for LIFE-M, 1,313 for Ferrie 1996 (Name), 1,064 for Ferrie 1996 (NYSIIS), 708 for Ferrie 1996 (Soundex),
1,751 for Ferrie 1996 (Name) + common names, 1,702 for Ferrie 1996 (NYSIIS) + common names, 1,466 for Ferrie 1996 (SDX) + common
names, 2,354 for Ferrie 1996 (Name) + common names + ties, 2,648 for Ferrie 1996 (NYSIIS) + common names + ties, 2,875 for Ferrie
1996 (SDX) + common names + ties, 1,610 for Abramitzky et al. 2014 (Name), 1,600 for Abramitzky et al. 2014 (NYSIIS, Robustness),
1,412 for Abramitzky et al. 2014 (SDX), 999 for Abramitzky et a. 2014 (NYSIIS, Robustness) 1,955 for Feigenbaum 2016 (Iowa), 1,855
for Feigenbaum 2016 (LIFE-M), 1774 Abramitzky et al. 2018 (Less conservative), 1206 Abramitzky et al. 2018 (More conservative).
Notes and figure continued in page below
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Figure 2.7: Intergenerational Income Elasticity Estimates (Continued)

Notes: Continued from page above. Reweighted estimates were reweighted to represent the LIFE-M sample of birth certificates linked to
the 1940 Census. Weighting variables include day of year measured from one to 365, polynomials in age, first and last name commonness
indexes and the interaction of the two, a dummy variable for presence of siblings, polynomials in the number of siblings, polynomials
in the length of child, mother, and father name, and state fixed e↵ects.. * indicates that the estimate is statistically di↵erent from the
LIFE-M estimate at the 10-percent, ** at the 5-percent, and *** at the 1-percent levels.
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Figure 2.8: Type I vs. Type II Error Rates for Di↵erent Combinations of Methods
and Dataset

Notes: Each point represents the Type I and Type II error rate for 131,071 di↵erent com-
binations of the 17 methods considered in this paper by dataset.
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s

Figure 2.9: Intergenerational Income Elasticity Estimates across Method Combina-
tions

Notes: Each point represents intergenerational elasticity estimate plotted against the Type
I error rate for one of the 131,071 di↵erent combinations of the 17 methods considered in
this paper. Panel A pools all links and panel B plots estimates separately for correct and
incorrect links. See also Figure 2.6 notes.
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Table 2.1: Summary of Performance of Prominent Linking Methods, by Algorithm and Dataset

A. Match Rates B. Type I Error Rate
(False Links)

C. Type II Error Rate
(Missed links)

LIFE-M Synthetic EI LIFE-M Synthetic EI LIFE-M Synthetic EI

Hand-links or Synthetic 0.45 0.85 1 0.04 0 0 0.57 0.15 0
Ferrie 1996 0.28 0.28 0.44 0.25 0.27 0.23 0.79 0.79 0.66
Abramitzky et al. 2014 0.42 0.42 0.48 0.32 0.33 0.24 0.72 0.72 0.64
Feigenbaum 2016 0.52 0.56 0.59 0.34 0.24 0.19 0.66 0.58 0.52

(Iowa coe�cients)
Feigenbaum 2016 0.52 0.57 0.57 0.29 0.26 0.14 0.63 0.58 0.52

(Estimated coe�cients)
Abramitzky et al. 2018 0.46 0.52 0.56 0.37 0.29 0.21 0.71 0.63 0.56

(Less conservative)
Abramitzky et al. 2018 0.28 0.32 0.37 0.15 0.11 0.1 0.76 0.72 0.66

(More conservative)

Notes: EI stands for the Early Indicators data. Each estimate in the table is for a match rate, Type I error rate, or Type II error rate
as described in text. These estimates are depicted in graphical form in Figures 2.2, 2.3 and 2.4.
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Table 2.2: Representativeness of Links Created by Prominent Linking Methods, by
Algorithm and Dataset

LIFE-M Synthetic
Data

EI

Ferrie 1996 (NYSIIS) 445.9 277.5 38.2
p-value 0 0 0
Abramitzky et al. 2014 (NYSIIS) 457 387.2 12.7
p-value 0 0 0.24
Feigenbaum 2016 (Iowa coef.) 195.7 34.9 50
p-value 0 0 0
Feigenbaum 2016 (Estimated coef.) 334.9 62.2 44
p-value 0 0 0
Abramitzky et al. 2018 (Less conservative) 788.3 485 46.6
p-value 0 0 0
Abramitzky et al. 2018 (More conservative) 1350 673 51.4
p-value 0 0 0

Observations 42,869 42,869 1,785

Notes: Each estimate is a heteroskedasticity-robust Wald-test from a separate regression
of a binary dependent variable (=1 for linked record) for samples described in the text.
Relevant p-values are reported in italics. The covariates included in the LIFE-M sample
and synthetic data are age, number of siblings, length of names of individuals and parents,
fraction of siblings with misspelled parents’ names, and an observation coming from Ohio.
The covariates included in the Early Indicators data are age, currently married, foreign
born, day of birth by year, literacy, length of first and last names, and foreign born status
of parents. These sample sizes are slightly smaller due to missing values. See appendices
for full regression results.
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Table 2.3: Randomness of False Links Created from Prominent Linking Methods, by
Algorithm and Dataset

LIFE-M Synthetic
Data

EI

Ferrie 1996 (NYSIIS) 242.9 35.1 26.2
p-value 0 0 0
Abramitzky et al. 2014 (NYSIIS) 500.9 64.3 39.4
p-value 0 0 0
Feigenbaum 2016 (Iowa coef.) 1806 448 38.9
p-value 0 0 0
Feigenbaum 2016 (Estimated coef.) 1559 802 19.4
p-value 0 0 0.03
Abramitzky et al. 2018 (Less conservative) 559.3 112.9 43
p-value 0 0 0
Abramitzky et al. 2018 (More conservative) 139.8 17.4 18.3
p-value 0 0.03 0.05

Notes: Each estimate is a heteroskedasticity-robust Wald-test from a separate regression of
a binary dependent variable (=1 for falsely linked record) for samples described in the text.
Relevant p-values are reported in italics. The covariates included in the LIFE-M sample
and synthetic data are age, number of siblings, length of names of individuals and parents,
fraction of siblings with misspelled parents’ names, and an observation coming from Ohio.
The covariates included in the Early Indicators data are age, currently married, foreign
born, day of birth by year, literacy, length of first and last names, and foreign born status
of parents. See appendices for full regression results.
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Table 2.4: Summary of Algorithm Performance When Varying Assumptions

A. Match Rates B. Type I Error Rate
(False Links)

C. Type II Error Rate
(Missed links)

LIFE-M Synthetic EI LIFE-M Synthetic EI LIFE-M Synthetic EI

Ferrie 1996 (Name) 0.33 0.33 0.46 0.2 0.23 0.22 0.74 0.75 0.64
Ferrie 1996 (NYSIIS) 0.28 0.28 0.44 0.25 0.27 0.23 0.79 0.79 0.66
Ferrie 1996 (SDX) 0.2 0.22 0.4 0.32 0.31 0.25 0.86 0.85 0.7
Ferrie 1996 (Name) 0.46 0.45 0.52 0.28 0.34 0.25 0.66 0.7 0.61

+ common names
Ferrie 1996 (NYSIIS) 0.46 0.46 0.54 0.35 0.4 0.27 0.7 0.72 0.61

+ common names
Ferrie 1996 (SDX) 0.41 0.44 0.53 0.43 0.45 0.32 0.76 0.76 0.64

+ common names
Ferrie 1996 (Name) 0.69 0.66 0.62 0.5 0.46 0.33 0.66 0.64 0.59

+ common names + ties
Ferrie 1996 (NYSIIS) 0.79 0.77 0.71 0.58 0.55 0.4 0.67 0.65 0.57

+ common names + ties
Ferrie 1996 (SDX) 0.86 0.86 0.76 0.67 0.62 0.45 0.71 0.68 0.58

+ common names + ties

Notes: See Table 2.1 notes. Notes and table continued in page below.
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Table 2.4: Summary of Algorithm Performance When Varying Assumptions (Continued)

A. Match Rates B. Type I Error Rate
(False Links)

C. Type II Error Rate
(Missed links)

LIFE-M Synthetic EI LIFE-M Synthetic EI LIFE-M Synthetic EI

Abramitzky et al. 2014 (Name) 0.41 0.41 0.44 0.25 0.29 0.21 0.69 0.71 0.65
Abramitzky et al. 2014 (NYSIIS) 0.42 0.42 0.48 0.32 0.33 0.24 0.72 0.72 0.64
Abramitzky et al. 2014 (SDX) 0.39 0.42 0.5 0.41 0.38 0.28 0.77 0.74 0.64
Abramitzky et al. 2014 0.24 0.26 0.33 0.23 0.23 0.17 0.81 0.8 0.72

(NYSIIS, Robustness)
Feigenbaum 2016 (Iowa coef.) 0.52 0.56 0.59 0.34 0.24 0.19 0.66 0.58 0.52
Feigenbaum 2016 (LIFE-M coef.) 0.52 0.57 0.57 0.29 0.26 0.16 0.63 0.58 0.52
Abramitzky et al. 2018 0.46 0.52 0.56 0.37 0.29 0.21 0.71 0.63 0.56

(Less conservative)
Abramitzky et al. 2018 0.28 0.32 0.37 0.15 0.11 0.1 0.76 0.72 0.66

(More conservative)

Notes: Continued from page above. See Table 2.1 notes.
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Table 2.5: Representativeness of Links When Varying Algorithm Assumptions

LIFE-M Synthetic
Data

EI

Ferrie 1996 (Name) 688.3 390.7 47.5
p-value 0 0 0
Ferrie 1996 (NYSIIS) 445.9 277.5 38.2
p-value 0 0 0
Ferrie 1996 (SDX) 130.6 71.1 57
p-value 0 0 0
Ferrie 1996 (Name) + common names 412.3 378.1 35.5
p-value 0 0 0
Ferrie 1996 (NYSIIS) + common names 402.6 447 16
p-value 0 0.1 0.1
Ferrie 1996 (SDX) + common names 208.8 310.6 25.6
p-value 0 0 0
Ferrie 1996 (Name) + common names 178.8 452.1 75.6

+ exact ties
p-value 0 0 0
Ferrie 1996 (NYSIIS) + common names 148.2 363.9 69.9

+ exact ties
p-value 0 0 0
Ferrie 1996 (SDX) + common names 104.7 174.7 43.6

+ exact ties
p-value 0 0 0
Abramitzky et al. 2014 (Name) 454.6 271.9 32.3
p-value 0 0 0
Abramitzky et al. 2014 (NYSIIS) 457 387.2 12.7
p-value 0 0 0.24
Abramitzky et al. 2014 (SDX) 255.7 257.8 17.1
p-value 0 0 0.07
Abramitzky et al. 2014 568.6 397.7 31.2

(NYSIIS, Robustness)
p-value 0 0 0
Feigenbaum 2016 (Iowa coef.) 195.7 34.9 50
p-value 0 0 0
Feigenbaum 2016 (Estimated coef.) 334.9 62.2 44
p-value 0 0 0
Abramitzky et al. 2018 (Less conservative) 788.3 485 46.6
p-value 0 0 0
Abramitzky et al. 2018 (More conservative) 1350 673 51.4
p-value 0 0 0

Observations 42,869 42,869 1,785

Notes: See Table 2.2 notes.
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Table 2.6: Randomness of False Links When Varying Algorithm Assumptions

LIFE-M Synthetic
Data

EI

Ferrie 1996 (Name) 468.3 79.3 45.8
p-value 0 0 0
Ferrie 1996 (NYSIIS) 242.9 35.1 26.2
p-value 0 0 0
Ferrie 1996 (SDX) 81.5 0.9 17.5
p-value 0 0.99 0.06
Ferrie 1996 (Name) + common names 772.1 115.3 48.6
p-value 0 0 0
Ferrie 1996 (NYSIIS) + common names 429 64.4 39.2
p-value 0 0 0
Ferrie 1996 (SDX) + common names 157.7 17.4 32.4
p-value 0 0.03 0
Ferrie 1996 (Name) + common names 1859 466.2 60.1

+ exact ties
p-value 0 0 0
Ferrie 1996 (NYSIIS) + common names 1163 249.6 92.3

+ exact ties
p-value 0 0 0
Ferrie 1996 (SDX) + common names 457.8 55.4 61.7

+ exact ties
p-value 0 0 0
Abramitzky et al. 2014 (Name) 744.4 100.2 54.3
p-value 0 0 0
Abramitzky et al. 2014 (NYSIIS) 500.9 64.3 39.4
p-value 0 0 0
Abramitzky et al. 2014 (SDX) 223.2 41.7 28.6
p-value 0 0 0
Abramitzky et al. 2014 239 24.3 32.4

(NYSIIS, Robustness)
p-value 0 0 0
Feigenbaum 2016 (Iowa coef.) 1806 448 38.9
p-value 0 0 0
Feigenbaum 2016 (Estimated coef.) 1559 802 19.4
p-value 0 0 0.03
Abramitzky et al. 2018 (Less conservative) 559.3 112.9 43
p-value 0 0 0
Abramitzky et al. 2018 (More conservative) 139.8 17.4 18.3
p-value 0 0.03 0.05

Notes: See Table 2.3 notes.
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Table 2.7: How Middle Initials Could Reduce Errors in Linking in LIFE-M Data

(1) (2) (3) (4) (5) (6) (7)
Table 4
Match
Rate

Table 4
Type I
Error
Rate

Share
Matches
with

Middle
Initials
for Both
Records

Share
of (3)
with

Discor-
dant

Middle
Initials

Type I
Error
Rate in
(4)

Revised
Match
Rate

Revised
Type I
Error
Rate

Ferrie 1996 (Name) 0.33 0.2 0.28 0.26 0.9 0.3 0.15
Ferrie 1996 (NYSIIS) 0.28 0.25 0.26 0.27 0.91 0.26 0.2
Ferrie 1996 (SDX) 0.2 0.32 0.24 0.3 0.93 0.19 0.27
Ferrie 1996 (Name) + common names 0.46 0.28 0.29 0.35 0.94 0.42 0.2
Ferrie 1996 (NYSIIS) + common names 0.46 0.35 0.27 0.37 0.95 0.41 0.28
Ferrie 1996 (SDX) + common names 0.41 0.43 0.26 0.41 0.96 0.37 0.36
Ferrie 1996 (Name) + common names 0.69 0.5 0.3 0.44 0.97 0.6 0.43

+ exact ties
Ferrie 1996 (NYSIIS) + common names 0.79 0.58 0.29 0.5 0.98 0.68 0.52

+ exact ties
Ferrie 1996 (SDX) + common names 0.86 0.67 0.28 0.57 0.98 0.72 0.61

+ exact ties

Notes: This table uses the LIFE-M data to evaluate changes in algorithm match rates and Type I error rates with the addition of middle
initials. Column 7 computes match rates after dropping links with discordant middle initials. Column 8 computes revised Type I error
rates by dropping links with discordant middle initials. See text for details. Table continued in page below.
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Table 2.7: How Middle Initials Could Reduce Errors in Linking in LIFE-M Data (Continued)

(1) (2) (3) (4) (5) (6) (7)
Table 4
Match
Rate

Table 4
Type I
Error
Rate

Share
Matches
with

Middle
Initials
for Both
Records

Share
of (3)
with

Discor-
dant

Middle
Initials

Type I
Error
Rate in
(4)

Revised
Match
Rate

Revised
Type I
Error
Rate

Abramitzky et al. 2014 (Name) 0.41 0.25 0.3 0.31 0.94 0.38 0.18
Abramitzky et al. 2014 (NYSIIS) 0.42 0.32 0.27 0.33 0.94 0.38 0.26
Abramitzky et al. 2014 (SDX) 0.39 0.41 0.27 0.39 0.96 0.35 0.35
Abramitzky et al. 2014 0.24 0.23 0.26 0.26 0.89 0.23 0.18

(NYSIIS, Robustness)
Feigenbaum 2016 (Iowa) 0.52 0.34 0.31 0.23 0.93 0.48 0.3
Feigenbaum 2016 (LIFEM) 0.52 0.29 0.33 0.23 0.93 0.48 0.24
Abramitzky et al. 2018 (Less conservative) 0.46 0.37 0.29 0.34 0.95 0.41 0.3
Abramitzky et al. 2018 (More conservative) 0.28 0.15 0.29 0.2 0.87 0.26 0.11

Notes: Continued from page above. This table uses the LIFE-M data to evaluate changes in algorithm match rates and Type I error
rates with the addition of middle initials. Column 7 computes match rates after dropping links with discordant middle initials. Column
8 computes revised Type I error rates by dropping links with discordant middle initials. See text for details.
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Table 2.8: How Using Race Could Reduce Errors in Linking in LIFE-M Data

(1) (2) (3) (4) (5)
Table 4
Match
Rate

Table 4
Type I

Error Rate

Share
Matches -
1940 Race
Variables
Di↵erent
than

LIFE-M

Revised
Match
Rate

Revised
Type I

Error Rate

Ferrie 1996 (Name) 0.33 0.2 0 0.33 0.2
Ferrie 1996 (NYSIIS) 0.28 0.25 0.01 0.28 0.25
Ferrie 1996 (SDX) 0.2 0.32 0.01 0.2 0.31
Ferrie 1996 (Name) + common names 0.46 0.28 0.01 0.46 0.27
Ferrie 1996 (NYSIIS) + common names 0.46 0.35 0.01 0.46 0.34
Ferrie 1996 (SDX) + common names 0.41 0.43 0.02 0.41 0.42
Ferrie 1996 (Name) + common names + exact ties 0.69 0.5 0.01 0.69 0.49
Ferrie 1996 (NYSIIS) + common names + exact 0.79 0.58 0.03 0.79 0.58
Ferrie 1996 (SDX) + common names + exact ties 0.86 0.67 0.06 0.86 0.66

Notes: This table uses the LIFE-M to evaluate changes in linking rates with the addition of race. Column 4 computes match rates after
dropping links with discordant race. Column 5 computes revised Type I error rates by dropping links with discordant race. See text for
details. Table continued in page below.

157



Table 2.8: How Using Race Could Reduce Errors in Linking in LIFE-M Data (Continued)

(1) (2) (3) (4) (5)
Table 4
Match
Rate

Table 4
Type I

Error Rate

Share
Matches -
1940 Race
Variables
Di↵erent
than

LIFE-M

Revised
Match
Rate

Revised
Type I

Error Rate

Abramitzky et al. 2014 (Name) 0.41 0.25 0.01 0.41 0.25
Abramitzky et al. 2014 (NYSIIS) 0.42 0.32 0.01 0.42 0.32
Abramitzky et al. 2014 (SDX) 0.39 0.41 0.02 0.39 0.4
Abramitzky et al. 2014 (NYSIIS, Robustness) 0.24 0.23 0.01 0.24 0.23
Feigenbaum 2016 (Iowa) 0.52 0.34 0.01 0.52 0.34
Feigenbaum 2016 (LIFEM) 0.52 0.29 0 0.52 0.29
Abramitzky et al. 2018 (Less conservative) 0.46 0.37 0.02 0.46 0.36
Abramitzky et al. 2018 (More conservative) 0.28 0.15 0 0.28 0.15

Notes: Continued from page above. This table uses the LIFE-M to evaluate changes in linking rates with the addition of race. Column 4
computes match rates after dropping links with discordant race. Column 5 computes revised Type I error rates by dropping links with
discordant race. See text for details.
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CHAPTER III

Simple Strategies for Improving Inference with

Linked Data: a Case Study of the 1850-1930

IPUMS Linked Representative Historical Samples

Until recently, the dearth of longitudinal or intergenerational U.S. data for the late

19th and 20th centuries limited the study of important social, economic, demographic,

and health questions.1 Much of the existing work on these questions has instead used

cross-sectional or aggregated data - data that answer some questions but that often

leave the mechanisms for both observed e↵ects and policy generalizability unclear.2

Large-scale linked data are allowing researchers to break new ground on older

questions and open entirely novel areas of inquiry.3 New work, however, suggests

1This chapter was written with my coauthors Martha Bailey and Catherine Massey
and published in Historical Methods. Appendicies referenced in this chapter have
not been included in this dissertation for concision, and are available online at
https://www.tandfonline.com/doi/suppl/10.1080/01615440.2019.1630343?scroll=top.

2See, for instance, early - life public health initiatives (Alsan & Goldin, 2015; Cutler & Miller,
2005), exposures to environmental pollutants (Clay, Lewis, & Severnini, 2016) and animal diseases
(Rhode & Olmstead, 2015), and access to medicines (Bleakley, 2007). Other examples include the
long-run e↵ects of exposure to human capital initiatives through Rosenwald schools (Mazumder &
Aaronson, 2011).

3On-going and proposed projects are linking national surveys, administrative data, and research
samples to recently digitized historical records, such as the full-count 1880 (Ruggles, 2006; Ruggles,
Genadek, Grover, & Sobek, 2015) and 1940 U.S. Censuses (the first U.S. census to ask about
education and wage income) and newly available administrative sources. The Census Bureau plans to
link the 1940 Census to current administrative and census data (Census Longitudinal Infrastructure
Project, CLIP) and the Minnesota Population Center plans to link it to other historical censuses.
The Panel Survey of Income Dynamics (PSID) and the Health and Retirement Survey (HRS) are
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that the prevalence of false links and missed matches in historical U.S. linked data

may limit the contributions of this research. Bailey, Cole, Henderson, and Massey

(2019) show that commonly used methods consistently produce non-representative

samples and high rates of false matches (or Type I errors), ranging from 15 to 37

percent, and higher rates of missed matches (or Type II errors), ranging from 63 to

79 percent, depending on the linking algorithm used. In addition, false matches do

not occur at random; they are systematically predicted by baseline characteristics,

suggesting that machine linking algorithms may introduce complicated forms of bias

into analyses. To this point, Bailey et al.’s (2019) case study of linking birth certifi-

cates to the 1940 Census shows that - for the same set of records - prominent linking

algorithms attenuate intergenerational income elasticity estimates by up to 20 per-

cent. In that setting, Bailey et al. (2019) show that false links generate a critical part

of this bias, and eliminating Type I errors from matches produces estimates that are

indistinguishable from estimates of elasticities in data linked by hand.

This paper proposes two practical and complementary methods that aim to ad-

dress these concerns and improve inference with linked data, regardless of the linking

method used to create the data. First, we suggest using ”validation variables” - vari-

ables that include information on the likelihood that a link is correct and information

that was not used in the original linking process. Validation variables can help iden-

tify subsets of lower quality links for greater scrutiny. Second, we recommend creating

custom weights for linked samples to improve their representativeness. These weights

mitigate the biases that arise from low linking rates (high Type II errors) as well as the

biases introduced by restricting samples with validation variables. We demonstrate

linking their respondents to the 1940 Census. The Longitudinal, Intergenerational Family Electronic
Micro-Database Project (LIFE-M) is linking vital records to the 1940 Census (Bailey, Anderson,
Karimova, & Massey, 2016). Supplementing these public infrastructure projects, entrepreneurial
researchers have also combined large datasets. See, for example, Abramitzky, Platt Boustan, and
Eriksson (2012, 2013, 2014), Boustan, Kahn, and Rhode (2012), Hornbeck and Naidu (2014); Mill
(2013); Mill and Stein (2016), Aizer, Eli, Ferrie, and Lleras-Muney (2016), Bleakley and Ferrie (2014;
2016; 2013), Nix and Qian (2015), Collins and Wanamaker (2016), and Eli, Salisbury, and Shertzer
(2016).
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how researchers can create these weights using inverse-propensity score reweighting.

Although neither of these methods is new, they have rarely been applied individually

or together in empirical papers using linked historical data.

This paper illustrates the value of these two strategies using the 1850-1930 Inte-

grated Public Use Microdata Series Linked Representative Samples (IPUMS-LRS), a

well-known and frequently used dataset in historical research. In section 3.1, we re-

view the linking and weighting methodology used to create the IPUMS-LRS dataset,

emphasizing the components of its construction that are relevant to our later analysis.

In section 3.2, we demonstrate two examples of validation variables: name common-

ness (which can be used in almost all historical samples) and parent birthplace dis-

agreement (which is specific to the IPUMS-LRS). Using a new hand-linked dataset,

we show that both validation variables produce subsamples with fewer observations

that human reviewers code as incorrect. In section 3.3, we show how generating

custom weights can improve the representativeness of the IPUMS-LRS, even relative

to the provided weights available in the linked data. In contexts where weights are

not available, analyzing representativeness and generating custom weights are even

more important. The value of these strategies for the IPUMS-LRS - a highly curated

dataset - demonstrates their potential to improve research with other linked datasets.

3.1 A Brief Overview of the IPUMS-LRS

The IPUMS-LRS consist of roughly 500,000 individuals for seven pairs of years:

1850-1880, 1860-1880, 1870-1880, 1880-1900, 1880-1910, 1880-1920, and 1880-1930

(the 1890 Census was excluded, because most of the original manuscripts were de-

stroyed in a fire). These samples were created by the Minnesota Population Center

(MPC), which linked the full-count 1880 Census (which was digitized by the Church

of Jesus Christ of Latter-Day Saints) to the one-percent samples of the 1850, 1920

and 1930 Censuses, the 1.2 percent samples of 1860, 1870 and 1900 Censuses, and
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the 1.4 percent sample of the 1910 Census (Ruggles, 2006). Our analysis focuses on

linked men from these samples.

To link men from one Census to the 1880 Census, the MPC produced a cross

product of individuals across the two Censuses (e.g. 1850 and 1880). Using the

Freely Extensible Biomedical Record Linkage software (FEBRL), the MPC kept each

potential match from the cross product if the two observations had names that met

a string similarity threshold, shared the same birthplace (state or country), and had

ages that fell in a specified window.4 They then trained a support vector machine

(SVM) classifier using a set of hand-matched Census data, and applied the SVM to the

non-training data in the cross product. Using these results, they kept all potential

matches that had a predicted match probability that exceeded a match ”quality”

threshold and dropped all matches that had multiple potential links to 1880.

The MPC used two strategies to create representative samples. First, like many

modern linking projects, they linked observations using theoretically time-invariant

characteristics such as name, age, and birthplace rather than characteristics like place

of residence, occupation, and family structure that may change over time. The use of

these time-invariant characteristics limits selection bias in creation of links (Ruggles,

2006). For instance, linking individuals by using information on state of residence

could make the sample much less geographically mobile than the population of interest

to researchers.

Second, because di↵erent population subgroups might have di↵erent likelihoods

of being linked, the MPC created weights to balance the representation of observed

characteristics for the ”linkable” population. Linkable men are those who were alive in

both years and resided in the U.S. and could, therefore, be enumerated by the Census

in both years. To determine the population of linkable men, the MPC took the final

4FEBRL is a record linking software developed by the ANU Data Mining Group and the Centre
for Epidemiology and Research in the New South Wales Department of Health. See Christen and
Churches (2005) for more information.
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year Census and dropped men younger than the gap in years between Censuses (e.g.

for 1880 in the 1860-1880 data, they drop everyone 20 years and younger). Because

Census data do not specify when foreign-born men immigrated to the U.S., the MPC

estimated the share of these foreign-born men who were present in the first year using

life tables.

The MPC created weights for the linkable population using an iterative process.

To start, the MPC assigned each observation a weight that was the inverse match rate

for the relevant birth and race group (with denominators described by the linkable

population). Then, they applied these weights and calculated weighted inverse match

rates for other covariates, including relationships to head of household, individual

birthplaces, 5-year age groups, and categories for size of place and occupation. They

used these new inverse match rates to iteratively alter the weights until arriving at a

final weight.

The IPUMS-LRS weights were designed to allow researchers to adjust the charac-

teristics of the linked sample to resemble a simple random sample from the linkable

population and, therefore, make inferences about this population’s characteristics.

The MPC is careful to note the potential limitations of these weights, saying ”re-

searchers must decide whether the constructed weights are appropriate for their spe-

cific samples” (Goeken, Huynh, Lynch, & Vick, 2011).

3.2 Validation Variable as a Method to Improve Match Qual-

ity

The first method that we suggest for improving inference in historical linked data

is to use one (or many) ”validation variables.” A validation variable is a variable that

is correlated with whether a link is correct but was not used deterministically in the

linking process. Consequently, a researcher can condition on a validation variable to
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obtain a subsample with a smaller Type I error rate. Additionally, researchers can use

validation variables to examine the links where the validation variable fails (i.e., links

that are expected to have a higher Type I error rate) to investigate the performance

of their algorithm by applying more scrutiny to a subset of more questionable records.

To motivate the purpose and practice of validation variables, we first lay out some

basic theory. Consider the full dataset of links observed, Li, and let whether or not

a given link is correct be described by the following function:

Ci = f(Y (Xi), Xi, Zi) (3.1)

where Ci is an indicator variable equal to 1 if the link is correct, Y (Xi)) is the

impact of the linking algorithm, which considers the information in Xi, and lastly Zi,

or variables that were not included in the linking process. Note that Xi impacts Ci

through the process of the linking function and independently of the linking function,

A validation variable, Vi, is a variable that satisfies the following properties:

1). cov(Ci, Vi, Li = 1) > 0

2). V ar(Vi|Li = 1) 6= 0

The first condition assures that the validation variable contains relevant infor-

mation on whether the links are correct. The second condition ensures that the

validation variable varies after conditioning on the observed links, which means that

the validation variable is adding information beyond what is in the linking algorithm.

If the validation variable agrees with all linking decisions, this condition will not be

met. Note that a validation variable could be either a variable that was not included

in the linking process (e.g. Zi) or a variable that was included in the linking process

but is used di↵erently than it was in the linking process (e.g. Xi). Good validation
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variables may be more or less di�cult to find depending on the linking setting, but

our next section provides several examples hiding in plain sight.

3.2.1 Examples of Validation Variables

We use two di↵erent validation variables to demonstrate how these variables may

reduce incorrect links: name commonness and disagreements in parents’ place of

birth. We chose these two variables because the first is available in almost all historical

linking contexts, but the second is specific to the IPUMS-LRS. Here we describe these

variables and o↵er intuition for why they might be e↵ective as validation variables.

Our first example of a validation variable, name commonness, is a broadly appli-

cable validation variable. Name commonness is available in many linking situations

and is intuitively correlated with whether a link is correct. More common names, for

example ”John Smith,” have more possible matches than less common names. There-

fore, measurement error in other features (age or birthplace) may lead an algorithm

to select an incorrect match more frequently for more common names. Observations

with uncommon names, on the other hand, have fewer potential matches available,

so measurement error in other linking variables are less likely to cause an algorithm

to choose an incorrect link. Bailey et al. (2019) provide empirical support for this

intuition and show that eliminating more common names from the linking process

significantly reduces incorrect links, or Type I errors, in some algorithms.

Some papers use name commonness restrictions in the matching process or as a

robustness check, implicitly treating it as a validation variable. Abramitzky et al.

(2012, 2014) use such a strategy, verifying that their results from their main dataset

hold for links that have name-birth place combinations that are unique in a two-year

age band. For our exercise, we similarly create a validation variable equal to 1 if a

name-birthplace combination has only one observation within a two-year band of the
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individual’s name.5 The validation variable would be equal to zero for very common

names and equal to one for less common names. As an example, the validation

variable for ”John Smith” born in Ohio aged 30 in the 1880 Census would be equal

to zero, if multiple ”John Smiths” ages 28 to 32 born in Ohio appeared in the 1880

Census.

Our second validation variable, parent birthplace disagreement, is specific to the

IPUMS-LRS. When matching the 1850, 1860 and 1870 Census samples to the 1880 full

count Census, the MPC did not include parent birthplaces in the linking process.6

If parent birthplaces are correctly recorded for an individual in the Census, they

should be consistent over time. Although some parent birthplaces may be measured

with error (Goeken, Lynch, Lee, Wellington, & Magnuson, 2017), limiting attention

to matches that agree in parent birthplaces would intuitively tend to select matches

that are more likely to be correct.7

3.2.2 Examining the E↵ectiveness of Validation Variables

Bailey et al. (2019) recommend that researchers create training data (hand-links)

for some of their observations in order to document the performance of their algorithm

and similarly defend their choice of validation variables. We follow this advice and

link a subsample of the 1850-1880 IPUMS-LRS to directly examine the quality of

5We are performing this restriction on the data ex post as we only have access to the finished
IPUMS-LRS matches. However, Abramitzky et al. (2012, 2014) as described in Bailey et al. (2019),
perform this restriction before engaging their matching algorithm.

6The MPC did use parental birthplace when linking the 1900, 1910, 1920 and 1930 Census
samples to the 1880 full count Census.

7Data quality issues prior to 1880 are the reason that the MPC did not use this variable in the
matching process for 1850-1870. For these years, parent birthplaces can only be inferred from indi-
viduals living at home with their parents. Furthermore, relationships within a household in those
years are not listed by Census takers, and need to be inferred from the order in which individuals
are listed in the Census and the ages of individuals. In Online Appendix I, we demonstrate that,
although parent birthplace is clearly measured with error, patterns of parental birthplace disagree-
ment between individuals living at home with their parents and those not living at home are similar
in the years after 1880. Therefore, assuming that the imputed household relationships are accurate
in the years prior to 1880, this evidence suggests that parent birthplace disagreement patterns for
children living at home might be similar to parent birthplace disagreements for people who are not
living at home with their parents.
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the IPUMS-LRS and the performance of our validation variables. To link these data,

we randomly selected 653 IPUMS-LRS linked men who were aged 0 to 25 and living

at home with their parents in 1850. An experienced group of genealogical linkers at

the Family History and Technology Lab at Brigham Young University (BYU) then

linked these observations by hand to the 1880 full count Census, without knowledge

of the IPUMS-LRS links. The team at BYU used all the information available to

the MPC and used additional information available to them through Ancestry.com

and FamilySearch.org’s databases. For the purpose of our exercise, we treat BYU’s

links as the truth and use these links to examine the performance of our validation

variables.8

Table 3.1 summarizes the di↵erences between the 1850-1880 IPUMS-LRS links

and BYU’s links.9 The resulting share of links rejected by hand linkers is 10.0 per-

cent, which is higher than the Type I error rate estimated by the MPC but is still

low relative to machine-linked datasets analyzed in Bailey et al. (2019). Seventy

percent of the di↵erences come from cases where BYU determined that there was not

enough data to reliably state a link. This outcome often occurred when a record had

several possible matches, and genealogists were unsure about which possible match

was correct. The remaining 30 percent of di↵erences come from matches where BYU

identified a link that disagreed with the IPUMS-LRS link.

Columns 3 and 4 of Table 3.1 examine the usefulness of our first validation variable,

keeping only records that are unique for a given name, birthplace and age within a

two-year band.10 The first row under column 3 shows that 627 out of the 653 links

considered by BYU make this cut using exact names. Given that many linking papers

8Online Appendix I provides more indirect evidence to demonstrate the relevance of parent
birthplace disagreement as a validation variable without using hand-linked data.

9It is worth noting that hand-linked data are not ”true” matches. Human error in matching may
also produce false matches or fail to capture all ’true’ matches. Given the dearth of longitudinal
historical data, we have no direct test of the e↵ectiveness of matching by hand.

10For completeness, we also considered other age bands, including a one-year and three-year age
band in addition to the two-year age band in Table 3.1. The larger the band, the more observations
tend to be dropped from consideration, but the Type I error rate also falls.

167

https://www.tandfonline.com/doi/suppl/10.1080/01615440.2019.1630343?scroll=top


use phonetic cleaning to alter names for matching, columns 5 and 7 summarize the

number of links that are unique in terms of NYSIIS or Soundex cleaned name and age

combinations for the same age band.11 The results show that requiring uniqueness of

first and last name within the two-year age-radius lowers the rate of disagreement with

hand linkers slightly, by 4 to 16 percent (0.4 to 1.6 percentage points on a base of 10.0

percentage points) depending on the name cleaning used. The drop in disagreements

is likely small in part due to the fact that error rates are lower in the IPUMS-LRS

data than in many other linked data. In other datasets, Bailey et al. (2019) show

that a similar restriction in the Abramitzky et al. (2012, 2014) algorithm reduces

rates of disagreement with hand linkers by as much as 10 percentage points.

Table 3.2 repeats this exercise using the validation variable for parent birthplace

disagreement. As was the case for common names, genealogists are more likely to

disagree with IPUMS-LRS links when parent birthplaces disagree. Dropping ob-

servations with a disagreement in father’s birthplace drops the discrepancies with

genealogists by 20 percent, a reduction of 2.0 points relative to a base of 10.0 per-

centage points. Dropping observations with a disagreement in mother’s birthplace

reduces disagreements by 18 percent, a reduction of 1.8 percentage points, and drop-

ping observations with a disagreement in both mother and father birthplaces drops

the error rate by 16 percent, a reduction of 1.6 percentage points.

If one takes records linked by genealogists as the truth, both sets of results suggest

that conditioning on validation variables could reduce incorrect links. As a final test,

we further probe the strength of the relationship between our validation variables and

the determination by linkers that a link is incorrect. Specifically, we regress BYU’s

determination that a link is incorrect on our two validation variables as well as other

data characteristics measuring a match’s quality, including di↵erences in age, own

11Researchers use name cleaning algorithms to adjust exact names for errors in transcription,
recording and changes in phonetic spelling. For more background on these algorithms, see Bailey et
al. (2019).
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birthplace, and di↵erences in recorded name using Jaro-Winkler similarity scores.

This regression tests whether the validation variable contains information beyond

that already present in these other features of the matches.

Table 3.3 shows the results from this regression using validation variables for name

commonness and parent birthplace disagreement. Columns 1 and 4 show the unad-

justed di↵erence in error rates between observations that meet the validation variable

and those that fail, demonstrating that the validation variables predict disagreements.

Columns 2 and 5 show the correlation between the validation variables - after adjust-

ing for the similarity of the individual’s first and last name, di↵erence in expected

age, and own birthplace disagreement. Records with a higher similarity in first and

last names or a smaller di↵erence in expected age are negatively associated with

BYU’s determination that the link is incorrect, which is consistent with these record

features partially determining matches. However, the inclusion of these covariates

barely alters the partial correlation of the validation variables with link correctness.

Similarly, the correlation between the validation variables with the likelihood of a link

being judged incorrect by a reviewer is nearly unchanged by the inclusion in columns

3 and 6 of additional covariates, including indicator variables for living in an urban

area, being in school, being born abroad, having a mother born abroad, having a

father born abroad, residence on a farm, race, and Census region of residence. Across

specifications, our validation variables remain a sizable and statistically significant

predictor of the IPUMS-LRS link agreeing with hand-linked records.

Overall, our findings suggest the value of using a validation variable to diagnose

and potentially increase link quality. Even though name commonness and discrepant

parent birthplaces are noisy determinants of link quality, they appear to help diagnose

errors and select higher quality links without having to examine the entirety of a

dataset by hand. Here we have only considered two validation variables, and other

validation variables may be more or less e↵ective in other settings depending on the
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matching process that produced the linked data. When selecting and implementing

validation variables, researchers should consider the strength of the correlation of

a validation variable with whether links are incorrect, and the e↵ect of restricting

on a validation variable on missed matches, called Type II errors. For instance,

imposing restrictions on name commonness using exact names produces a limited

decrease in Type I errors, but match rates drop non-trivially, resulting in increases

in Type II errors. This limited decrease in Type I error likely reflects the fact that

the MPC considered some variation of name commonness in their linking. On the

other hand, imposing restrictions on name commonness using NYSIIS- and Soundex-

cleaned names produces a larger drop in Type I errors and also a larger increase

in Type II errors, because these cleaned variables contain di↵erent information than

that which was used in the algorithm. Thus, name commonness in our setting is more

similar to an Xi variable, using the terminology of the linking example before: some

part of this information was included in the MPC algorithm, but using a di↵erent

part of the information still impacts incorrect link rates.

Parental birthplace was not explicitly used in the MPC’s linking process for the

1850 Census data and is, therefore, more similar to the Zi variable in our framework.

We see a large drop in Type I errors from using this information as a validation

variable, with the drop again potentially reflecting that the information from this

validation variable was not captured by the other variables in Xi. Thus, selecting

validation variables relies on knowledge of how the sample was initially constructed,

and researchers will want to balance improvements in link quality from drops in Type

I error rates against (sometimes) non-trivial increases in Type II errors.

3.3 Increasing the Representativeness of Linked Samples

Validation variables can help purge samples of lower quality links, but their e↵ect

on Type II errors raises concerns about sample representativeness. This concern
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motivates a second and complementary strategy for improving inference with linked

samples: generating customized weights for the analytic sample. Generating custom

weights may be important even in high quality linked data that contain weights (such

as the IPUMS-LRS), as problems with representativeness may occur when researchers

select certain subsamples for which weights do not balance covariates or because the

relevant covariates were not used in the creation of weights. Consequently, weights

may not create representative samples (Andrews & Oster, 2017; Angrist & Pischke,

2009; Caliendo & Kopeinig, 2008; Solon, Haider, & Wooldridge, 2015).

There are many ways to generate customized weights. Here, we document a

simple, two-part procedure. First, we recommend that researchers document the

degree to which their linked data are representative of the reference population using

a regression test. Note, this investigation can be implemented in a manner similar

to balance tests in randomized control trials (Duflo, Glennerster, & Kremer, 2007).

Some papers currently do this check by reporting means of covariates of interest for

the linked population and the reference population in the style of a covariate balance

test. While this approach is valid, a regression provides a more concise joint test of

representativeness. Second, we recommend that researchers construct and use custom

weights using inverse propensity-score matching and report weighted results alongside

unweighted results. While applying custom weighting may be especially important

when using restrictions like validation variables, this strategy can also be used with

nearly all historical linked data, as most historical linked samples have problems with

non-representativeness.

Testing the representativeness of linked data requires establishing the relevant

population for comparison - the reference population of interest. Consider a linking

setting like IPUMS-LRS where links are between two Census years. The reference

population would be the set of individuals who were alive and present in the U.S. in

the earlier year and was still alive and present in the U.S. in the later year. That

171



is, some of the observations present in the earlier year would not be linkable to the

later year due to mortality and migration. Some of the observations in the later year

would not be linkable to the earlier year if they had not been born yet, or if they had

immigrated into the U.S. between the Censuses. Depending on the research questions,

either year could be used for testing representativeness, so researchers would need to

decide which is the relevant reference population for their analysis.

When testing representativeness in the IPUMS-LRS samples, we follow the MPC

and identify the reference population as the individuals alive in the second Census:

the 1880 full count Census for the 1850-1880, 1860-1880, and 1870-1880 samples. We

examine the 1910 Census for the 1880-1910 sample, 1920 for the 1880-1920 sample,

and 1930 for the 1880-1930 sample. Following the MPC, we identify as the reference

population the potentially linkable individuals within this Census who would have

been alive in the previous year by dropping all individuals who (given their reported

age) would not have been alive in the earlier Census year (e.g. men younger than

30 in the 1880 Census in the 1850-1880 IPUMS-LRS). Unlike the MPC, we make

two further restrictions on the sample of links to simplify our analysis. First, we

drop from consideration all men born outside the U.S. The MPC included these

individuals and created weights for them using life tables to account for the fact that

some of the foreign-born men present in the later year may have immigrated into

the U.S. between the two Census years. For simplicity, we avoid these adjustments

by isolating attention to U.S. born men. Second, we drop all non-white men from

our analyses. The MPC included these individuals, but given issues with counting

African-American men in the 1850 and 1860 Censuses, we wanted to limit attention

to men who could have been counted in the previous Census.12 Thus, for our analysis,

we restrict attention to matches within the population of white U.S.-born men present

in the final year of the Census. Note that here we are not imposing any restrictions

12In 1850 and 1860, African-American slaves were enumerated separately under a slave schedule.
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related to our validation variables - we are considering the representativeness of the

IPUMS-LRS data overall.

3.3.1 A Simple Regression Test of Representativeness

Our representativeness test uses a simple regression method proposed in Bailey

et al. (2019). Specifically, we recommend that researchers take the reference popula-

tion data, create a dummy variable equal to 1 if an observation is linked, and then

regress the dummy variable on a series of covariates describing the reference popula-

tion. If using a linear probability model, we recommend researchers use Huber-White

standard errors to account for the fact that errors of a linear probability model are

heteroskedastic (Huber 1967, White 1980). Our representativeness test-statistic is

a heteroscedasticity-robust Wald test of joint significance of the covariates. Under

the null hypothesis of representativeness of the linked sample, there should be no

relationship between the covariates and the likelihood an observation is linked.

The advantage of this test over variable-by-variable balance test of means is that

it accounts for the correlations among covariates and the joint relationship of the

group of covariates with the likelihood of being linked, aggregating all information

in the relevant covariates into a single test statistic. Furthermore, the magnitudes

of the regression coe�cients conveniently quantify which characteristics are more or

less likely to result in a linked observation after controlling for other record char-

acteristics. Note, however, that this technique is only a diagnostic test of the null

hypothesis of representativeness, and rejecting the null hypothesis is not an indica-

tion that inference estimates are necessarily biased for two reasons. First, statistical

significance of di↵erences in covariates does not imply scientific significance, as mag-

nitude of the bias may be slight (McCloskey, 2005). Moreover, if the relationship of

interest (e.g. job mobility) is homogeneous for all groups in the population, selecting

a non-representative sample would not bias estimates.
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Table 3.4 summarizes the results of the representativeness tests for all of the

IPUMS-LRS samples. Since the MPC provides weights to adjust for the non-representativeness

of linked data, we compare the sample characteristics using both unweighted and

weighted data. The first two columns present the results of a regression of a binary

dependent variable (=1 if the observation is linked) on a subset of the covariates

that the MPC used to construct their weights. These include 11 binary variables

for relationship of an individual to the head of household (e.g. spouse, child, etc.);

eight binary variables for birthplaces by region (e.g. Northeast, Mid-Atlantic); and

up to 14 binary variables for the size of the place the individual currently lives in (see

table notes for details). For the unweighted results in column 1, the p-values show

that the Wald test easily rejects the null-hypothesis of representativeness. After we

apply IPUMS-LRS weights in column 2, we fail to reject representativeness at the

5-percent level in this subset of characteristics for three samples, which suggest the

IPUMS-LRS weights largely work as intended. However, for the other four samples,

applying the weights results in p-values that reject representativeness at conventional

levels of significance.

Columns 4 and 5 consider the entirety of the covariates that the MPC used in

their weighting procedure (all previous variables from columns 1 and 2 as well as

binary variables for five-year age groups and four categories for occupations) both with

and without weights. Unsurprisingly, we reject representativeness in the unweighted

samples at the 1-percent level in all cases. After we apply IPUMS-LRS weights in

column 5, we fail to reject representativeness for this full set of weighting covariates at

the 5-percent level for the 1850-1880, 1870-1880, 1880-1910, and 1880-1920 samples.

Finally, columns 7 and 8 consider all variables that were used by the MPC to

calculate weights and additional variables that were not. These additional variables

include binary variables for whether or not a man lives with his parents, whether

that man’s parents were born in the U.S., the region of the country that man lives in,
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his marital status, farm status, the number of co-resident siblings, and an indicator

variable for whether or not an individual lives in the same state as birth. In both

weighted and unweighted samples across all years, the p-values show we reject rep-

resentativeness at the 1-percent level for each sample. This result is less surprising,

as the IPUMS-LRS weights might only be expected to achieve balance in covariates

used to create these samples.13 Similarly, in other settings, weights may not create

representative samples for every research question or purpose and may not work well

when isolating attention to specific subgroups (Caliendo and Kopeinig 2008, Angrist

and Pischke 2009, Solon et al. 2015, Andrews and Oster 2017).

Looking beneath the test of statistical significance, this lack of representativeness

may have consequences for inference. For brevity, Table 3.5 presents a subset of

estimates for the 1860-1880 sample from the regressions underlying Table 3.4. We

report the full set of regression results for all samples in Online Appendix IV for

the interested reader. As a complement to these findings, Table 3.6 presents more

standard mean comparisons for a subset of covariates in the 1860-1880 sample (the

full set of mean comparisons for all samples are reported in Online Appendix III).

The IPUMS-LRS weights improve representativeness with respect to some variables,

especially those used in the construction of the weights, including age categories,

size of place categories and current location of residence categories. As one might

expect, however, the weights do little to balance the representation of characteristics

that were not included in their construction. Moreover, some categories that were

included in the weighting process remain unbalanced. For example, some IPUMS-

LRS samples after applying weights over-represent heads of household while others

underrepresent them. These patterns could be important for inference for a variety

13It is worth noting that these findings hold up in more traditional t-tests as well. Notably, we
reject the null hypothesis of equality of means among the variables not included by the MPC roughly
63 percent of the time across all samples. See Online Appendix III for the full set of results. Note
also that if the weights addressed all issues with representativeness of the data that there should not
be these issues with other variables.
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of research questions on family structure, particularly those relating to structure of

intergenerational co-residing families (Ruggles, 2011).

In terms of migration and nativity outcomes, the weighted IPUMS-LRS often pro-

duce unrepresentative samples of Census region of residence and parental birthplaces.

The weighted IPUMS-LRS samples over-represent individuals from the Northeast in

five of six samples, including the 1860-1880 data reported in Table 3.4. All sam-

ples underrepresent U.S.-born children with foreign-born parents - a finding that

could a↵ect inferences about U.S. immigration from Asia (Hatton, 2011) and Eu-

rope (Abramitzky et al., 2012). Furthermore, all IPUMS-LRS samples, including the

1860-1880 sample shown in Tables 3.4 and 3.5, over-represent individuals living in the

same state as where they were born. Living in the same state as birth increases the

probability of being linked among U.S.-born white men by 4 to 6 percentage points

across all samples after applying IPUMS-LRS weights. This suggests that the linked

IPUMS-LRS sample appears less geographically mobile, which could a↵ect inferences

about intergenerational occupational mobility, occupation selection, and generational

household structure.

Thus, overall, even in datasets like the IPUMS-LRS that have weights that work

as intended for adjusting the covariates that were included in the weighting process,

these weights may not be e↵ective when considering di↵erent subsamples of the data,

or other covariates that were not included in the weighting process. This lack of

representativeness may create biases in inference from over or under-representation

of specific groups if heterogeneous e↵ects are present (Bailey et al. 2019).

3.3.2 Creating Weights Customized to a Sample or Question of Interest

If non-representativeness or imbalance in certain characteristics is a concern, re-

searchers should report weighted results that adjust for that imbalance in addition to

traditional unweighted estimates. If weights are not available, or the weights do not
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adjust su�ciently for non-representativeness, then researchers may construct their

own using an application-specific inverse propensity (IP) score reweighting technique.

This approach requires that (1) the propensity of being linked is properly specified

and can be consistently estimated (often described as unconfoundedness assumption)

and that (2) the distribution of the propensity of being linked spans the same support

as the reference population (often described as a common support assumption). It

is impossible to test assumption (1) directly and it could be violated in a linking

situation where the probability of being linked depends on unobservable features of

an observation that are correlated with the variables included in the weight estimation

process. However, theory can guide the selection of variables for (1). Assumption (2),

on the other hand, can be tested directly by examining the estimated link propensities

of linked records and the reference population.

This method can be implemented using the following steps:

1). Append the data for the linked sample to the population which the researcher

wants the reweighted sample to represent.

2). Create a dependent variable, Li, equal to 1 for each observation, i, in the linked

sample and 0 for each observation in the reference population. Using this depen-

dent variable, estimate a probit model on covariates of record characteristics,

Xi (for instance, the variables used in columns 7-9 in Table 3.4).

3). Using the results from the probit, predict the conditional probability of being

linked, P (Li = 1|Xi), for each observation.

4). To check assumption (2) regarding common support, plot the probabilities of

being linked for the linked and unlinked observations. The overlap in the two

distributions provides information on which individuals can be compared. Also,

Crump, Hotz, Imbens, and Mitnik (2009) recommend trimming extreme prob-

abilities, which is another easy-to-implement strategy for improving inference.
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5). Using the predicted probabilities, researchers may calculate weights as Wi =

(1� P (Li = 1|Xi))/(P (Li = 1|Xi)) ⇤ q/(1� q), where q is the share of records

that are linked. If a certain set of characteristics is underrepresented in the

linked sample relative to the population of interest, this weight will increase

the influence of this particular observation. The second component normalizes

these probabilities to fit the size of the linked and unlinked samples.

We implement this procedure for each sample using the covariates in columns

7-9 in Table 3.4 and find evidence that the common support assumption holds. Intu-

itively, the common support assumption requires that there is su�cient overlap in the

characteristics of links and the reference population, as summarized by the propensity

score, so that the former can be reweighted to look like the latter.

Applying these weights to the IPUMS-LRS samples makes a meaningful di↵erence

in our representativeness calculations. Although only a handful of means in Online

Appendix III remain statistically significant after reweighting, column 3 of Table 3.4

shows that coe�cient estimates from the regression are very close to zero for a large

number of covariates in the 1860-1880 IPUMS-LRS. This finding is substantively dif-

ferent from the unweighted (column 1) and IPUMS-LRS weighted results (column 2).

Moreover, columns 3, 6 and 9 of Table 3.4 show that we fail to reject representative-

ness for all of the IPUMS-LRS samples (p-values very close to one) after applying

IP-weights for these covariates of interest. Of course, if we omit certain variables when

constructing the IP-weights and then test for representativeness in these same vari-

ables after applying IP-weights, we also tend to reject representativeness, just as we

did when considering the MPC’s weights with variables they had not included in the

reweighting process. It is important, therefore, that researchers specify the propensity

score equation in step 3 with covariates to achieve balance in characteristics relevant

for answering a particular research question.

Although we have only been considering the overall representativeness of the

178

https://www.tandfonline.com/doi/suppl/10.1080/01615440.2019.1630343?scroll=top
https://www.tandfonline.com/doi/suppl/10.1080/01615440.2019.1630343?scroll=top


IPUMS-LRS data, we find the same results regarding lack of representativeness of

linked data and e↵ectiveness of IP weights after imposing restrictions using our two

validation variables. We omit those results here for brevity.

Lastly, it is important to note that, even though this reweighting procedure pro-

duces a sample very similar in observed characteristics, the resulting data may still

be unbalanced in terms of unobserved characteristics, and reweighting will only accu-

rately address bias from non-representativeness if the unconfoundedness assumption

described earlier holds. That is, reweighting’s e↵ectiveness ultimately depends on the

assumptions specified earlier, although the hope is that reweighting at least mitigates

the problem of non-representativeness of linked data (DiNardo, Fortin, & Lemieux,

1996; Heckman, 1979).

3.4 Recommendations and Conclusions

Many important questions relate to how individuals, families, and communities

changed over time, and new linked samples are critical in facilitating new research on

these questions. As documented in Bailey et al. (2019), measurement error induced

by linking algorithms may have substantial implications for inference. In light of this

evidence, this paper suggests two complementary strategies to improve inference with

linked samples.

First, we recommend using a validation variable that is correlated with link quality

and not deterministically used in the linking process in order to improve inferences.

These two conditions imply that the validation variable will contain additional infor-

mation about link quality. These variables allow researchers to perform robustness

tests by purging links more likely to be incorrect from their analysis samples without

the high cost of hand linkage. For our case study using the 1850-1880 IPUMS-LRS,

we use name uniqueness and parental birthplaces to identify a set of links more likely

to be correct. Although both of these variables are noisy indicators of linking errors,
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regression evidence demonstrates that name commonness and discordance in both

parents’ birthplaces are nevertheless powerful predictors of incorrect links - even in

a high quality sample like the IPUMS-LRS. Purging samples of links with common

names reduces the error rate in the pre-1880 IPUMS by up to 15 percent, and drop-

ping observations with discordant parent birthplaces, reduces the error rate by up

to 20 percent. We have only examined two examples of variables but other contexts

may lead to other potential validation variables.

Limiting samples by purging potentially false links may also increase problems

with non-representativeness, an issue with almost all linked data. This problem

leads us to suggest a second, complementary strategy for improving inferences with

linked records. Like many surveys and historical samples, the IPUMS-LRS (even

with weights) are not generally representative of the reference population of poten-

tially linkable individuals. However, applications of inverse probability weighting can

substantially improve representativeness. To this end, we describe a simple inverse

propensity score reweighting approach similar to that proposed by DiNardo et al.

(1996) and demonstrate its e↵ectiveness for the IPUMS-LRS. This method is easily

adaptable to various applications and will generally produce representative samples

catered to specific research objectives under the assumptions we specify. A close ex-

amination of the value of these weights also informs researchers about where more

time-intensive genealogical or clerical review methods may increase the representa-

tion of hard-to-link groups. Used in combination with validation variables, custom

reweighting may help improve inference with linked data.
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3.5 Figures and Tables
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Table 3.1: Name uniqueness in 1850-1880 IPUMS-LRS and linking errors from comparison to genealogically linked sample

All IPUMS
Observations

Uniqueness in
Exact Name in

Two Year Radius

Uniqueness in
NYSIIS Name in
Two Year Radius

Uniqueness in
Soundex Name in
Two Year Radius

Count Percent Count Percent Count Percent Count Percent

Total IPUMS Observations 653 100.00% 627 100.00% 573 100.00% 489 100.00%
Total IPUMS-LRS Correct 588 90.05% 567 90.43% 525 91.62% 446 91.21%
Total IPUMS-LRS Incorrect 65 9.95% 60 9.57% 48 8.38% 43 8.79%
A) Matched by BYU 19 2.91% 16 2.55% 13 2.27% 12 2.45%
B) Not Matched by BYU 46 7.04% 44 7.02% 35 6.11% 31 6.34%

Notes: This table uses a hand-linked sample of the 1850-1880 censuses produced by the BYU Family History and Technology Lab. When
IPUMS-LRS agrees with BYU, we call the link ”correct.” When IPUMS-LRS di↵ers from BYU, we call the link ”incorrect.” Incorrect
links can be further divided into links where both IPUMS-LRS and BYU link an observation but they choose di↵erent links, and links
where IPUMS-LRS linked an observation but BYU did not.
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Table 3.2: Parent birthplace disagreements in 1850-1880 IPUMS-LRS and linking errors from comparison to genealogically
linked sample

All IPUMS Obser-
vations

Observations with-
out Father Birth-
place Disagreement

Observations with-
out Mother Birth-
place Disagreement

Observations with-
out Father and
Mother Birthplace
Disagreement

Count Percent Count Percent Count Percent Count Percent

Total IPUMS Observations 653 100.00% 514 100.00% 475 100.00% 547 100.00%
Total IPUMS-LRS Correct 588 90.05% 473 92.02% 436 91.79% 501 91.59%
Total IPUMS-LRS Incorrect 65 9.95% 41 7.98% 39 8.21% 46 8.41%
A) Matched by BYU 19 2.91% 13 2.53% 13 2.74% 15 2.74%
B) Not Matched by BYU 46 7.04% 28 5.45% 26 5.47% 31 5.67%

Notes: This table uses a hand-linked sample of the 1850-1880 censuses produced by the BYU Family History and Technology Lab. When
IPUMS-LRS agrees with BYU, we call the link ”correct.” When IPUMS-LRS di↵ers from BYU, we call the link ”incorrect.” Incorrect
links can be further divided into links where both IPUMS-LRS and BYU link an observation but they choose di↵erent links, and links
where IPUMS-LRS linked an observation but BYU did not.
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Table 3.3: Regression-adjusted measurement of validation variable correlation with linking errors in 1850-1880 IPUMS-LRS

Covariates Dependent Variable: 1=Incorrect Link
(1) (2) (3) (4) (5) (6)

Uniqueness of NYSIIS Name and -0.13** -0.12** -0.11**
Birthplace in 2-Year Age Radius -0.047 -0.046 -0.048

No Disagrement in Both Father -0.13** -0.13** -0.12**
and Mother Birthplaces -0.05 -0.051 -0.051

Jaro Winkler - Own Last Name -1.08* -1.04* -1.24** -1.09*
-0.581 -0.596 -0.588 -0.59

Jaro Winkler - Own First Name -0.23* -0.21 -0.27** -0.24*
-0.127 -0.137 -0.13 -0.137

Di↵erence in Expected Age 0.06** 0.06** 0.06** 0.06**
-0.024 -0.025 -0.025 -0.025

Own Birthplaces Disagree 0.14 0.21 0.14 0.22
-0.226 -0.229 -0.228 -0.23

Constant 0.21*** 1.46** 1.18* 0.21*** 1.66** 1.09*
-0.046 -0.6 -0.625 -0.049 -0.628 -0.615

Additional covariates N N Y N N Y

R-squared 0.006 0.01 0.022 0.011 0.051 0.088

Notes: The regression results are obtained from regressing a binary dependent variable (=1 if a link is incorrect, 0 if the link is correct)
on the indicated covariates in the male 1850-1880 Census links from the IPUMS-LRS. Additional covariates are all measured in the 1850
Census, and include an indicator variable for living in an urban area, being in school, being white, being born abroad, mother born
abroad, father born abroad, farm status, and region fixed e↵ects. In columns 1-3, regressions use 653 observations, and regressions in
columns 4-6 use 618 observations; the di↵erence in the number of observations in regressions reflects the fact that columns 4-6 require
that a man be living at home with both parents. Heterskedasticity-robust standard errors are reported beneath each estimate, and stars
indicate conventional levels of statistical significance, e.g., 10-percent (*), 5-percent (**), and 1-percent (***).
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Table 3.4: Regression test of representativeness of IPUMS-LRS

Restricted IPUMS
Covariates

All IPUMS Covariates Al IPUMS Covariates and
Other Covariates

Years
Matched

Unweighted IPUMS
Weighted

BCM
Weighted

Unweighted IPUMS
Weighted

BCM
Weighted

Unweighted IPUMS
Weighted

BCM
Weighted

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1850-1880 1287 13678 5 1529 15043 14 1714 1094 20
0 0 1 0 0 1 0 0 1

1860-1880 1819 92 8 2149 100 19 2503 332 24
0 0 1 0 0 1 0 0 1

1870-1880 3122 60 7 3560 71 22 4301 540 33
0 0 1 0 0.03 1 0 0 1

1880-1900 1970 25 2 2603 79 9 3275 355 13
0 0.73 1 0 0 1 0 0 1

Covariates C,B,H C,B,H C,B,H C,B,H,O C,B,H,O C,B,H,O C,B,H,O C,B,H,O C,B,H,O
Included A A A A,R,C,X A,R,C,X A,R,C,X

Notes: Each estimate is a heteroscedasticity-robust Wald-test from a separate regression of a binary dependent variable (=1 for linked
record) for samples described in the text. the associated p-values is printed beneath in italics. ”IP Weights” refers to inverse-propensity
score weighted estimates. Covariate abbreviations are as follows. C denotes dummy variables for size of local city (under 1,000 or
unincorporated; 1,000 to 2,499; 2,500 to 3,999; 4,000 to 4,999; 5,000 to 9,999; 10,000 to 24,999; 25,000 to 49,999; 50,000 to 74,999; 75,000
to 99,999, 100,000 to 199,999; 200,000 to 299,999; 300,000 to 499,999; 500,000 to 599,999; 600,000 to 749,999; 750,000 to 999,999; 1
million to 1.99 million and 2 million and up). B denotes dummy variables for birth location (Northeast, Mid-Atlantic Region, East North
Central Region, West North Central Region, South Atlantic Region, East South Central Region, West South Central Region, Mountain
Region, and born outside U.S.). Notes and table continued in page below.
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Table 3.4: Regression test of representativeness of IPUMS-LRS (Continued)

Restricted IPUMS
Covariates

All IPUMS Covariates Al IPUMS Covariates and
Other Covariates

Years
Matched

Unweighted IPUMS
Weighted

BCM
Weighted

Unweighted IPUMS
Weighted

BCM
Weighted

Unweighted IPUMS
Weighted

BCM
Weighted

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1880-1910 1512 46 18 1939 52 20 2355 293 25
0 0.03 0.95 0 0.26 1 0 0 1

1880-1920 961 44 23 1190 53 27 1390 204 29
0 0.05 0.8 0 0.17 0.98 0 0 1

1880-1930 772 130 18 937 335 18 1070 455 18
0 0 0.96 0 0 1 0 0 1

Covariates C,B,H C,B,H C,B,H C,B,H,O C,B,H,O C,B,H,O C,B,H,O C,B,H,O C,B,H,O
Included A A A A,R,C,X A,R,C,X A,R,C,X

Notes: Continued from page above. H denotes dummy variables for relationship of individual to household head (head/householder,
spouse, child, child-in-law, parent, parent-in-law, sibling, sibling-in-law, grandchild, other relatives, parent friend or visitor). O denotes
dummy variables for occupation (white collar occupation, farming occupation, semi-skilled occupation, unskilled occupation), and A
denotes age category variables (dummy variables for five-year categories of ages). R denotes dummies for region of residence (Northeast,
Midwest, West), E is a set of dummy variables for whether an individual lives with his mother, lives with his father, or lives with both
parents. X is a set of dummy variables for whether an individual’s father was born abroad, mother was born abroad, marital status, or
farm status and whether they were living in the same state as birth. It also includes number of siblings in the household. Weights for
BCM are described in text.
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Table 3.5: Regression estimates of representativeness of 1860-1880 IPUMS-LRS

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

IP
Weighted

Covariates (1) (2) (3) (4) (5) (6) (7)

Born in Northeast 0.05*** -0.05 0.04** -0.06 0.01 -0.10** -0.01
-0.016 -0.045 -0.016 -0.045 -0.016 -0.045 -0.043

Born in Mid-Atlantic -0.06*** -0.05 -0.06*** -0.05 -0.08*** -0.09** -0.01
Region -0.015 -0.044 -0.015 -0.044 -0.016 -0.043 -0.042
Born in East North -0.04** -0.04 -0.04** -0.05 -0.05*** -0.06 -0.01
Central Region -0.015 -0.043 -0.016 -0.044 -0.016 -0.042 -0.04
Born in West North -0.02 -0.04 -0.02 -0.04 -0.03** -0.05 -0.01
Central Region -0.016 -0.044 -0.016 -0.044 -0.016 -0.042 -0.041
Born in South Atlantic -0.02 -0.07 -0.02 -0.08* -0.03* -0.08* -0.01
Region -0.016 -0.044 -0.016 -0.045 -0.016 -0.044 -0.043
Born in East South -0.05*** -0.06 -0.05*** -0.07 -0.06*** -0.07* -0.01
Central Region -0.016 -0.044 -0.016 -0.045 -0.016 -0.044 -0.042
Born in West South -0.01 -0.03 -0.01 -0.04 -0.02 -0.04 -0.01
Central Region -0.017 -0.047 -0.017 -0.047 -0.018 -0.046 -0.044
Born in Mountain -0.06*** -0.03 -0.05** -0.03 -0.05** -0.02 -0.02
Region -0.021 -0.091 -0.021 -0.092 -0.021 -0.094 -0.089
Relationship to head: 0.05*** -0.02 0.04*** -0.03*** 0.03*** -0.06*** 0
head/householder -0.003 -0.012 -0.003 -0.013 -0.004 -0.015 -0.015

Notes: The regression results are obtained from regressing a binary dependent variable (=1 if a record is linked, 0 if in the linkable
population) on the indicated covariates (N = 8,673,750). Standard errors are reported beneath and stars indicate conventional levels of
statistical significance, e.g., 10-percent (*), 5-percent (**), and 1-percent (***). Table continued in page below.
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Table 3.5: Regression estimates of representativeness of 1860-1880 IPUMS-LRS (Continued)

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

IP
Weighted

Covariates (1) (2) (3) (4) (5) (6) (7)

Relationship to head: -0.01 -0.32*** -0.02 -0.33*** -0.03 -0.35*** -0.05
spouse -0.026 -0.092 -0.025 -0.091 -0.025 -0.09 -0.147
Relationship to head: 0.04*** 0.02 0.05*** 0.02 0.03*** -0.02 0.01
child -0.003 -0.014 -0.003 -0.014 -0.007 -0.024 -0.024
Relationship to head: -0.01 -0.32*** -0.02 -0.33*** -0.03 -0.35*** -0.05
spouse -0.026 -0.092 -0.025 -0.091 -0.025 -0.09 -0.147
Relationship to head: 0.04*** 0.02 0.05*** 0.02 0.03*** -0.02 0.01
child -0.003 -0.014 -0.003 -0.014 -0.007 -0.024 -0.024
Relationship to head: 0.02** -0.06 0.02* -0.06* 0.01 -0.09** 0.01
child-in-law -0.01 -0.036 -0.01 -0.037 -0.011 -0.038 -0.038
Relationship to head: 0.09*** -0.04 0.01 -0.06 0.01 -0.07** 0.01
parent -0.014 -0.033 -0.015 -0.035 -0.015 -0.035 -0.034
Relationship to head: 0.08*** -0.04 0.01 -0.06 0 -0.08* 0.01
parent-in-law -0.018 -0.042 -0.018 -0.043 -0.018 -0.043 -0.044
Relationship to head: 0.02*** -0.06** 0.02*** -0.07** 0.02** -0.07*** 0.01
sibling -0.007 -0.027 -0.007 -0.027 -0.008 -0.027 -0.027
Relationship to head: 0.02* -0.08* 0.02* -0.08* 0.02 -0.09** 0
sibling-in-law -0.011 -0.041 -0.011 -0.041 -0.011 -0.041 -0.041

Notes: Continued from page above. The regression results are obtained from regressing a binary dependent variable (=1 if a record is
linked, 0 if in the linkable population) on the indicated covariates (N = 8,673,750). Standard errors are reported beneath and stars
indicate conventional levels of statistical significance, e.g., 10-percent (*), 5-percent (**), and 1-percent (***). Table continued in page

below.
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Table 3.5: Regression estimates of representativeness of 1860-1880 IPUMS-LRS (Continued)

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

IP
Weighted

Covariates (1) (2) (3) (4) (5) (6) (7)

Lives with mother 0 0 0
-0.006 -0.018 -0.018

Lives with father 0 0.03 0.01
-0.009 -0.027 -0.027

Lives with both parents 0.02 0.03 -0.02
-0.009 -0.028 -0.028

Father: born abroad -0.02*** -0.05*** 0
-0.005 -0.018 -0.018

Mother: born abroad -0.02*** -0.08*** 0
-0.005 -0.019 -0.019

Lives in Northeast 0.02*** 0.05** 0
-0.005 -0.023 -0.023

Lives in Midwest 0.01*** 0.02 0
-0.004 -0.019 -0.02

Lives in West 0 0 0
-0.006 -0.036 -0.037

Number of siblings 0 0 0
-0.001 -0.003 -0.003

Notes: Continued from page above. The regression results are obtained from regressing a binary dependent variable (=1 if a record is
linked, 0 if in the linkable population) on the indicated covariates (N = 8,673,750). Standard errors are reported beneath and stars
indicate conventional levels of statistical significance, e.g., 10-percent (*), 5-percent (**), and 1-percent (***). Table continued in page

below.
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Table 3.5: Regression estimates of representativeness of 1860-1880 IPUMS-LRS (Continued)

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

Unweighted IPUMS
Weighted

IP
Weighted

Covariates (1) (2) (3) (4) (5) (6) (7)

Lives in same state 0.02*** 0.05*** 0
as birth -0.002 -0.01 -0.01
Constant 0.08*** 0.56*** 0.18*** 0.51*** 0.18*** 0.51*** 0.46***

-0.019 -0.053 -0.053 -0.102 -0.053 -0.11 -0.112
Observations 97123 97123 97123 97123 97123 97123 97123
R-squared 0.017 0.002 0.022 0.003 0.025 0.012 0
Wald Statistic 1631 59.2 2029 67.7 2400 255 5.1
Prob � F 0 0 0 0.03 0 0 1

Notes: Continued from page above. The regression results are obtained from regressing a binary dependent variable (=1 if a record is
linked, 0 if in the linkable population) on the indicated covariates (N = 8,673,750). Standard errors are reported beneath and stars
indicate conventional levels of statistical significance, e.g., 10-percent (*), 5-percent (**), and 1-percent (***).
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Table 3.6: T-Tests of means in the 1860-1880 IPUMS-LRS and the linkable
population

Unweighted IPUMS
Weighted

IP Weighted

Variables

Age 3.787*** -0.088 0.161
-0.173 -0.166 -0.164

Born in Northeast 0.107*** 0.001 0.001
-0.004 -0.007 -0.007

Born in Mid-Atlantic Region -0.093*** 0.002 -0.005
-0.004 -0.008 -0.008

Born in East North Central Region -0.021*** 0.008 0.001
-0.004 -0.007 -0.007

Born in West North Central Region 0 0.003 0
-0.002 -0.003 -0.002

Born in South Atlantic Region 0.024*** -0.012* 0.002
-0.004 -0.006 -0.006

Born in East South Central Region -0.018*** -0.006 0
-0.003 -0.005 -0.005

Born in West South Central Region 0.003* 0.002 0
-0.002 -0.002 -0.002

Born in Mountain Region -0.001* 0 0
-0.001 0 -0.001

Born in Pacific Region 0 0.001 0
-0.001 -0.001 -0.001

Relationship to head: head/householder 0.066*** -0.021*** 0.001
-0.005 -0.006 -0.006

Relationship to head: spouse -0.000** -0.001*** 0
0 0 0

Relationship to head: child -0.003 0.023*** 0
-0.004 -0.005 -0.005

Relationship to head: child-in-law -0.002** -0.001 0
-0.001 -0.001 -0.001

Relationship to head: parent 0.004*** -0.001 0
-0.001 -0.001 -0.001

Relationship to head: parent-in-law 0.002** 0 0
-0.001 -0.001 -0.001

Notes: A selected set of mean comparisons shows the di↵erence between the means of the
linked IPUMS-LRS and the linkable population without IPUMS-LRS weights in column (1);
standard errors are reported beneath and stars indicate conventional levels of statistical
significance, e.g., 10-percent (*), 5-percent (**), and 1-percent (***). Columns (2) and
(3) present the same statistics using IPUMS-LRS and IP weights. The Online Appendix
presents the full set of mean comparisons for 1860-1880 and all other IPUMS-LRS years.
Table continued in page below.
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Table 3.6: T-Tests of means in the 1860-1880 IPUMS-LRS and the linkable
population (Continued)

Unweighted IPUMS
Weighted

IP Weighted

Variables

Relationship to head: sibling -0.003*** -0.003** 0
-0.001 -0.001 -0.002

Relationship to head: sibling-in-law -0.002** -0.002* 0
-0.001 -0.001 -0.001

Relationship to head: grandchild 0 0 0
0 -0.001 0

Relation to head: other -0.061*** 0.006 -0.002
-0.003 -0.006 -0.005

In white collar occupation 0.013*** 0 0
-0.004 -0.005 -0.005

In farming occupation 0.063*** -0.001 0.002
-0.005 -0.007 -0.007

In semi-skilled occupation -0.031*** 0.001 0
-0.004 -0.006 -0.006

In unskilled occupation -0.053*** -0.003 -0.002
-0.004 -0.006 -0.005

In other or N/A occupation 0.009*** 0.004 0
-0.003 -0.003 -0.003

Lives with mother -0.002 0.022*** -0.001
-0.004 -0.005 -0.005

Lives with father 0.005 0.027*** 0
-0.004 -0.005 -0.004

Lives with both parents 0.006 0.025*** 0
-0.004 -0.005 -0.004

Father: born abroad -0.063*** -0.040*** -0.001
-0.003 -0.005 -0.006

Mother: born abroad -0.061*** -0.041*** -0.001
-0.003 -0.005 -0.006

Lives in Northeast 0.042*** 0.023** -0.004
-0.005 -0.011 -0.011

Lives in Midwest -0.030*** -0.004 0
-0.005 -0.011 -0.011

Notes: Continued from page above. A selected set of mean comparisons shows the di↵er-
ence between the means of the linked IPUMS-LRS and the linkable population without
IPUMS-LRS weights in column (1); standard errors are reported beneath and stars indi-
cate conventional levels of statistical significance, e.g., 10-percent (*), 5-percent (**), and
1-percent (***). Columns (2) and (3) present the same statistics using IPUMS-LRS and
IP weights. The Online Appendix presents the full set of mean comparisons for 1860-1880
and all other IPUMS-LRS years. Table continued in page below.
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Table 3.6: T-Tests of means in the 1860-1880 IPUMS-LRS and the linkable
population (Continued)

Unweighted IPUMS
Weighted

IP Weighted

Variables

Lives in West -0.014*** -0.005** 0.003
-0.002 -0.005 -0.005

Lives in South 0.002 -0.014 0.002
-0.005 -0.01 -0.01

Currently married 0.058*** -0.008 0.002
-0.005 -0.006 -0.006

Farm status 0.054*** 0.01 0.003
-0.005 -0.008 -0.008

Number of siblings in household -0.031** 0.052*** -0.001
-0.015 -0.02 -0.018

Living in same state as birth 0.044*** 0.050*** -0.003
-0.005 -0.008 -0.009

Notes: Continued from page above. A selected set of mean comparisons shows the di↵er-
ence between the means of the linked IPUMS-LRS and the linkable population without
IPUMS-LRS weights in column (1); standard errors are reported beneath and stars indi-
cate conventional levels of statistical significance, e.g., 10-percent (*), 5-percent (**), and
1-percent (***). Columns (2) and (3) present the same statistics using IPUMS-LRS and
IP weights. The Online Appendix presents the full set of mean comparisons for 1860-1880
and all other IPUMS-LRS years.
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APPENDIX A

Additional Detail on Variables and Data

This paper uses the 2000 long-form Census and the 2001-2016 ACS to estimate

causal regression discontinuities. These estimates identify the e↵ect of an increase

in family income from being born before the New Year on later-life outcomes for

children. It also uses the CPS to estimate the size of the family’s discontinuity in

after-tax income from having a child born before the New Year. This appendix dis-

cusses data quality issues associated with these two data sources sequentially.

Assigning Grade-for-Age Status in the 2000 Census and 2001-2016 ACS

As described in the text, this paper assigns grade-for-age status to students based

on four pieces of information: a child’s highest grade completed or current grade

enrolled, the state of birth of the child, the year and date of birth of the child,

and the day on which households respond to the survey. Many states set explicit

Kindergarten and 1st grade age entrance requirements that require students to be

a specific age by a certain date before being eligible to enter either Kindergarten or

1st grade in that state. Comprehensive data on these state policies were collected

by Bedard and Dhuey (2012) and they generously provided their most recent data

covering 1955 to 2015. Using this data, this paper assigns expected completed grades

to students assuming that they entered Kindergarten or first grade in the first year
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that they were eligible for those grades and then progressed through all other grades

sequentially without repeating a grade. A student is grade-for-age for the purposes of

this research if they have completed the most recent grade that this measure records

a student as having completed.1

Four complications are worth noting about this measure. First, some states do

not specify statewide Kindergarten entrance rules and allow local school districts to

specify their own rules. No clear expected grade can be assigned to these individuals

without more detailed data on individual school district practices. Consequently,

this paper drops any individuals born in these states from any further calculation

involving either outcomes for children or outcomes for adults.

Second, some states make the eligibility cuto↵ January 1st or December 31st.

In the years that such cuto↵s are present, children born before and after the New

Year would, in addition to the treatment described, also experience the treatment

of di↵erent grade eligibility rules. This paper also drops these individuals from any

further calculation.

Third, there are only a handful of grades where grade-for-age status can be re-

liably assigned due to the nature of the grade attainment and enrollment questions

in the 2000 Census and 2001-2007 ACS. The 2008-2016 ACS allow respondents to

mark grade completion and grade attendance in all primary and secondary grades.

However, the 2000 Census and 2001-2007 ACS only allow respondents to list whether

their children have completed Nursery School/Preschool through 4th grade, 5th grade

through 6th grade, 7th grade through 8th grade, and 9th, 10th, 11th and 12th grades.

These same surveys only allow respondents to list whether their children have recently

attended Nursery School/Preschool, Kindergarten, 1st through 4th grade, 5th grade

through 8th grade, and 9th grade through 12th grade. Therefore, the best grades to

1As noted in the paper, most school systems define grade-for-age status starting from the first
year a child enters Kindergarten or 1st grade. As these entrance dates are not observable in Census
data, this definition is the closest analogue.
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measure grade-for-age status would be grades where students would be expected to

have completed or be currently attending a grade where the student’s family could

have listed completion or attendance of a prior grade. These grades would be pre-

Kindergarten, Kindergarten, 1st, 5th, 7th, 9th, 10th and 11th grades. To see why,

for example, 6th grade cannot be included, note that whether or not a student has

completed 5th or 6th grade cannot be distinguished from that student’s information

in the 2000 Census and the 2001-2007 ACS. Note that the recent grade completed

question can be used to determine grade-for-age status for 5th, 7th, 9th, 10th and

11th grades. The recent grade enrolled question can be used to calculate enrollment

status for pre-Kindergarten and Kindergarten, and grade-for-age status in 1st grade.

Fourth, the response day of a household will a↵ect the most recent grade a student

may have completed or attended. In both the Census and the ACS, the education

attainment question asks for the highest grade completed by a respondent and most

recent grade enrolled. Thus, the date of response to an individual survey matters for

determining the most recent grade a student has completed or recently attended.

The e↵ect of date of response di↵ers between the most recent grade enrolled and

the most recent grade completed questions. Consider first how date of response

will a↵ect completed grades, which are used to calculate grade-for-age status in 5th

grade and up. Suppose a student is in 5th grade in March 2001. If that family

were responding to the ACS in that month, that family would list that student as

having completed the fourth grade. However, suppose the student progressed to the

next grade, the school year ended in May, and the family responded to the ACS in

June. Then, that family would list that student as having completed the 5th grade.

To account for this issue, this paper assumes that households responding to surveys

between January 1st and April 10th will still have their children enrolled in the grade

that they would have enrolled in at the beginning of the school year. Thus, these

children will be recorded as having finished the previous grade they completed before
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enrolling in their current grade. This paper also assumes that households that respond

to surveys between July 1st and December 31st will either have completed the previous

grade (if the student passed and is grade-for-age) or will only have completed the grade

before that (if the student was retained and is not grade-for age). As grade-for-age

status cannot be ascertained reliably for the intervening months, this paper drops

individuals who respond in those months from consideration for all calculations.2 To

ensure that post-schooling outcomes look at similarly structured cohorts as well, this

paper also omits responses from these months when looking at outcomes for adults.

Date of response a↵ects the ways families answer the question regarding the most

recent grade enrolled in a slightly di↵erent manner. The most recent grade enrolled

question is used to calculate enrollment status for students in pre-Kindergarten and

Kindergarten, and grade-for-age status in 1st grade. Suppose a student is in Kinder-

garten in March 2001, and the family responded to the ACS in that month. That

family would list that student as being enrolled in Kindergarten. Now suppose the

student progressed to the next grade and the school year ended in May. If the family

responded to the ACS in June, that family would still list that student as having most

recently attended Kindergarten. If the households respond by October, however, it

is likely that the next school year has begun, and the family would list that student

as having been most recently enrolled in 1st grade. To account for this issue, this

paper assumes that households responding to surveys between January 1st and April

10th will still have their children enrolled in the grade that they would have enrolled

2Since almost all states allow districts to set school calendar start and end dates (Education
Commission of the States, April 2018a), there is substantial variation in the dates at which the
school year ends for students in the U.S.. Ideally, the April 10th date would be the latest possible
date before any school district has ended the school year and the July 1st date would be the earliest
possible date after any school district has ended the school year. Although national data for all
districts is not available on school start and end dates, Florida collects data on these dates for its
school districts. In Florida, all school districts start school in August to September, and end the
school year in May to June (Florida Department of Education, 2020). A sample of large school
districts surveyed by Pew indicates that most school districts start school in August to September
as well (Desilver, 2019). Hence, the sampling restrictions by date of response used in this paper fit
with the limited data available.
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in at the beginning of the school year. This paper also assumes that households

that respond to surveys between September 30th and December 31st will either be

enrolled in the next grade (if the student passed and is grade-for-age) or will still be

enrolled in the same grade (if the student was retained and is not grade-for age). As

grade-for-age status cannot be ascertained reliably for the intervening months when

using the current grade enrolled question, this paper drops individuals who respond

in those months from these calculations. Again, note that this specific adjustment

only happens when looking at enrollment in pre-Kindergarten and Kindergarten and

grade-for-age status in 1st grade.3

These sampling restrictions are necessary to ensure accurate assignment of grade-

for-age status, but they may introduce bias related to response dates. If di↵erent

types of households are more likely to respond to the survey at di↵erent times, then

restricting attention to individuals who respond in specific months may bias the sam-

ple. If these sample restrictions change the sample in ways that do not vary across

the New Year, it would mean that the treatment e↵ect measured by the discontinuity

is a local treatment e↵ect for the population created by the sampling restrictions. If

the sample restrictions change the sample in ways that vary across the New Year, it

could bias the estimated treatment e↵ect in complex ways that make any treatment

e↵ects measured harder to interpret.

The bias introduced in the ACS data by these sampling restrictions by date of

response is likely small. As mentioned in the text, the ACS samples households

throughout the year, with the vast majority of households assigned a sampling date

3Note that this set-up is similar to the previous adjustment when looking at grade-for-age status
by grade completed, but omits slightly more data from the summer months. It is possible to assign
families who respond in these summer months to a grade-for-age calculation with the most recent
grade enrolled variable. Families who respond in the summer would presumably list their children
as having been most recently enrolled in the grade that their student completed in the early spring.
However, the previously described restrictions on response dates are used throughout the paper
when looking at adults. Hence, omitting these months from the calculation keeps data sampling
decisions as similar as possible among all calculations.
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in the year at random (U.S. Census Bureau, 2019).4 Hence, children born before

and after the New Year are sampled at similar rates at di↵erent times across the

year, and restricting attention to households sampled in particular months should

not bias the composition of the sample of observations. The e↵ect of this sampling

restriction on the 2000 U.S. Census data is more complicated. The vast majority of

responses to the 2000 Census happened in March through the end of April (Stackhouse

and Brady, 2003a). Hence, most responses would have been sent in by April 10th.

However, the households that respond later are more likely to be harder to reach,

and more likely to be larger than households that respond earlier (Stackhouse and

Brady, 2003b). These factors may correlate with family disadvantage, meaning that

dropping responses in the summer months drops observations from families that are

more likely disadvantaged.

One check on the potential bias of this sampling feature of the 2000 Census data

is to drop this data from calculations. Table 6 o↵ers a version of such a check. This

table separates the data by birth cohorts when looking at grade-for-age status by high

school. The 2000 Census data would not be included in the regression discontinuity

calculations looking at children born 1987-1993 or 1994-2001, as the children born in

these cohorts were not in high school in 2000. As is clear, the measured discontinuities

in grade-for-age status for the cohorts born after 1987 are in the same range or

larger than those for the birth cohort born before. Thus, the bias introduced by this

sampling feature of the 2000 Census is likely minor.

One further issue with household response dates worth noting is how date of re-

sponse a↵ects enrollment rates in nursery school and pre-Kindergarten. Other school

grades are nearly always organized by regular school calendars. So, the previously

mentioned omissions of households by month of response result in data that reflect

the average likelihood of a child being grade-for-age within that grade. However,

4Exceptions include households in rural Alaska and areas with high concentrations of Native
Americans.
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with children in pre-Kindergarten, there are many di↵erent enrollment policies across

states, districts and local private care providers. The diversity of programs and pro-

gram structures ensures that more children tend to be enrolled in pre-Kindergarten

programs for months closer to the beginning of the next school year. The 2000 Cen-

sus responses happen primarily in the later spring months before the lead-up to the

next school year. Hence, the children in the 2000 Census are more likely to be en-

rolled in pre-Kindergarten than if these children were surveyed in the previous fall.

While including the 2000 Census data does not impact the significance of disconti-

nuities in enrollment across the New Year, it does increase average enrollment levels

in pre-Kindergarten. Thus, this paper restricts attention to individuals in the ACS

2001-2016 for this calculation. The average in this data o↵ers a more accurate esti-

mate of average likelihood of being enrolled in nursery school or pre-Kindergarten in

the year prior to Kindergarten enrollment.

Estimating the Discontinuity in After-Tax Income using CPS Data

As described in the text, this paper uses the March CPS to estimate the ize of

the discontinuity in after-tax income for a family for having a child born in December

rather than January. The estimation process draws inspiration from Hoynes, Miller

and Simon (2015). The sample for the estimation process are parents with at least

one infant under three who are in the March CPS in a four year radius for the year

after the tax year. So for example, when calculating the discontinuity for the 1986

tax year, this paper uses all parents with at least one infant under three in a four year

radius of the 1987 March CPS (1983 to 1991). Note that the central year in the data

included is the year after the relevant tax year. The CPS March income data reflect

income from the previous calendar year, which is the relevant year for computing

taxes for the tax year. Parents with an infant under three are treated as having at

least one infant under one who could have been born in January or December. The
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inclusion of other survey years and other child ages in the data is only to increase

precision when calculating e↵ects for smaller and more likely disadvantaged groups.

A later part of this section investigates potential bias introduced by this choice.

Using this sample, this paper calculates tax obligations for having a child born in

December by summing income measures at the family level and calculating the total

state and federal tax burden using TAXSIM assuming that the family with the infant

under three is the relevant tax filing unit.

This paper calculates tax obligations for having a child born in January using the

same data with the same income measures but reducing the number of dependents

under the age of 13 by one (as if the infant were born after December and hence

not claimed on that year’s tax return). The tax discontinuity is then the di↵erence

between the two calculated tax obligations. The percent change in after-tax income

is this change divided by the after-tax income calculated for that family assuming

the child was born in January. Families with no reported income are included in all

calculations, but they comprise a small share of households over all years, and are

included as a 0 increase in income and a 0 percent change in income.

Appendix Figure A.1 shows a check on the potential for bias from including parents

with slightly older children and other years of survey data in the calculation. This

figure shows the average estimated discontinuity when using only parents with infants

under 1 and responses in the current tax year, and compares it to the results in Figure

2. As is clear, the measure is somewhat noisier, reflecting the smaller sample sizes, but

the evolution of the discontinuity is similar over time, with the average gap between

the two measures being $44. Note that using just the individuals with newborns

who were born during the tax year results in a larger estimated increase in after-tax

income. This di↵erence is because families with older children are less likely to be

in poverty, and hence usually have smaller CTC and EITC tax credits. However,

the bias is relatively small across all years. Thus, it is likely the case that the other
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estimated discontinuities in Figure 2 are only slightly biased downwards by including

families with older children and other tax years of data.

This paper, like many papers in the EITC literature that do not have access to

administrative tax data, assumes 100% take-up of tax benefits to calculate the change

in after-tax income produced by these tax policies (Hoynes, Miller and Simon, 2015).

While take-up is not 100%, it is still likely high. LaLumia, Sallee and Turner (2015)

find that 85% to 90% of newborns born in late December are claimed on a tax return

in the 2000s. Of the remaining 15% to 10% of children who do not appear on tax

returns, 5 percentage points are children whose parents do file tax returns but do not

claim their newborn on that year’s tax return, a phenomenon driven by low-income

parents. Thus, likely 10 to 5 percentage points of the remaining share of newborns

not claimed on taxes likely come from parents who are not required to file tax returns.

While the data in LaLumia, Sallee and Turner (2015) do not allow a strict cal-

culation about take-up rates, a separate literature on take-up of the EITC suggests

that, conditional on eligibility, take-up of the EITC is substantial. Among eligible

families with children, Scholz (1994) estimates EITC take-up in 1990 of 80% to 86%,

and U.S. Government Accountability O�ce (2001) find EITC take-up in 1999 is 86%.

A large share of the families who do not claim EITC benefits are families not required

to file taxes. For example, Blumenthal, Erard and Ho (2005) suggest that take-up of

the eligible population of parents that are required to file taxes is 90% to 95%. Note

furthermore that these take-up rates consider families with all ages of children, but

the relevant take-up rate of interest for this paper would be take-up among families

with newborns. Research shows that take-up of benefits among families with new-

borns is especially large. For example, twice as many newborns appear in tax returns

as 11 year-olds (Dowd and Horowitz, 2011).

Take-up of child-related tax benefits like the EITC is likely high for three reasons.

First, the IRS has taken steps to ensure low income households claim EITC benefits.
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Prior to 1991, the IRS had a policy of o↵ering the EITC to tax filers they deemed

eligible even if they failed to claim it (U.S. Government Accountability O�ce, 1993).

After 1991, the IRS switched to mailing tax filers who they concluded might be eligible

to remind them of the availability of tax benefits (U.S. Government Accountability

O�ce, 1993). Second, private tax preparers encourage low-income filers to file for the

EITC since the tax preparers can claim a fraction of the tax return as compensation

(Blumenthal, Erard and Ho, 2005). These arrangements have likely boosted outreach

to low income eligible tax payers. Third, as the size of the credit has increased, so

has the willingness of families to file to claim it (Blumenthal, Erard and Ho, 2005).

Without administrative data, it is impossible to come up with a precise under-

standing of how di↵erential take-up might a↵ect the estimated discontinuity in after-

tax income used in this paper. Any decrease in take-up would by definition lower

the estimated discontinuity. As such, Figure 2 in the paper is best understood as an

upper bound on the size of the discontinuity in after-tax income.

A descriptive exercise with the CPS data o↵ers a lower bound. For each year,

assume that 10% of newborns are not claimed in tax returns, and assume that these

newborns come from families with either zero AGI, or families with the largest possible

increases in after-tax income among the families not required to file taxes. Assume an

additional 5% of newborns are also not claimed in tax returns, and assume that these

newborns come from families who are legally required to file taxes and have the largest

possible increases in after-tax income among this population. These percentages

follow the results in LaLumia, Sallee and Turner (2015) above, where 10% of newborns

were not claimed on taxes because their parents did not file taxes, and an additional

5% were not claimed even through the families filed tax returns. Note that because

this adjustment drops observations from the population of filers who see large changes

in after-tax income, it maximizes the drop in the estimated discontinuity that comes

from this adjustment.
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Appendix Figure A.2 below compares the results from this exercise to the esti-

mated discontinuity reported in the paper in Figure 2. As is clear, this process adjusts

the estimated discontinuity to be somewhere from 10% to 20% lower depending on

the year. The estimated EITC take-up rate in the CPS data after applying these

adjustments is 70% to 75%, which is lower than the take-up estimates listed above.

Hence, this lower bound is conservative.

This paper does not do similar exercises like Appendix Figure A.2 for the two

subgroups analyzed in the paper, children born to families with lower education at-

tainment and Black children. Doing a calculation like Appendix Figure A.2 for these

groups would require taking a clear stand on where the newborns not claimed on

tax returns come from and their distribution among di↵erent demographics. It is

not clear how to do such an exercise with available data. It is likely the case that a

larger proportional share of these newborns come from families with low education

attainment and Black families, as they likely have lower average income at time of a

child’s birth, and are hence more likely to not be required to file taxes. Hence, the

percentage drops could be larger for these groups.

If the true discontinuity in after-tax income across the New Year is lower than was

reported in the paper, then that would alter the instrumental variables estimates of

the direct e↵ect of income in infancy on later-life outcomes. A lower discontinuity in

after-tax income would suggest that the real size of the estimated coe�cient in the

first stage is smaller, which would suggest that the instrumental variables estimates

should be larger (as the denominator ↵ in equation 8, would be lower). The e↵ect of

this drop on each instrumental variable estimate would depend on the years included,

as the gap in the first stage di↵ers by year. However, as the maximum gap between

the upper bound and lower bound in after-tax income in Appendix Figure A.2 is

20%, that would suggest that instrumental variables estimates in the paper could be
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at most 25% higher.5

Figure A.1: Robustness of Estimated Average Increase in After-Tax Income from
Having Newborn in December Compared to January Under Alternate Samples (2019
Dollars)

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

A
ve

ra
g
e
 C

h
a
n
g
e
 in

A
ft
e
r−

T
a
x 

In
co

m
e
 (

2
0
1
9
 D

o
lla

rs
)

1980 1990 2000 2010 2020
Tax Year

All Families

Families Only with Newborns Born During Tax Year

Notes: Figure depicts average increase in after-tax income for all families. The solid line is
the average increase depicted in the paper. The dotted line uses an alternate subsample of
the data, restricting attention to families with children aged 0 in the relevant March CPS
year and using only CPS data from the relevant year. Details in the text. Standard error
bars omitted for clarity, but standard errors are less than $100 for both lines and for all
years.

5Note: 1
0.8 = 1.25
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Figure A.2: Bounding Exercise for Estimated Average Increase in After-Tax Income
from Having Newborn in December Compared to January (2019 Dollars)
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Notes: Figure depicts average estimated discontinuity in after-tax income for families for
having a child born in December compared to January of the next year by tax year of birth
in 2019 dollars. The solid line is the average increase depicted in the paper, and assumes
100% take-up of eligible benefits. The dotted line is a robustness exercise that o↵ers a lower
bound on the estimated average increase in family income. Details in the text. Standard
error bars omitted for clarity, but standard errors are less than $50 for both lines and for
all years.
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APPENDIX B

Tax Policies Related to Children

As discussed in the paper, the discontinuity depicted in Figures 2 and 3 reflects

four main child-related tax benefits that depend on timing of birth: personal exemp-

tions for a dependent, the EITC, the CTC and the Child and Dependent Care Credit.

These four tax benefits have changed substantially over time, but eligibility for them

in the first year of a child’s life has always been determined by calendar year of birth,

with children first eligible for them in the first tax year that they are born.

For all years in the data in Figure 2, parents may claim infant dependents as a

personal exemption for a reduction in their taxable income. In tax year 2017, if a

parent has a taxable income greater than 0 after applying other deductions, and if

that parent has an infant born in December 2017, that parent could reduce their

taxable income by up to $4,050. The value of this change in their tax obligations

depends on their marginal tax rate. However, it is important to note that this benefit

is not refundable, meaning that the additional benefit of the deduction can only

reduce a parent’s tax obligations to 0. Hence, it provides limited benefits to families

that already have low tax obligations.

Starting in 1975, parents were also eligible to claim EITC benefits for infant

dependents. This program, over time, has substantially increased the discontinuity in

after-tax income from claiming an infant on a tax return. The EITC o↵ers households
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with earned income above 0 a benefit that gradually increases in income until it

reaches a maximum level and eventually phases out to 0. Importantly, this benefit is

refundable, meaning that it can both reduce tax obligations and result in a tax refund

where a parent receives a refund for the di↵erence between tax obligations and the

size of the EITC credit. Following its enactment, the real value of the EITC declined

from 1975 to 1986 as the credit was not adjusted annually for inflation (Crandall-

Hollick, 2018b). Legislative changes since 1987 have gradually made the size of the

EITC credit more generous. This increase has happened through both raising the

maximum benefit in real dollars, and increasing the number of children for whom tax

filers can claim an EITC benefit.1

Since 1998, parents with infants who have incomes below a certain level are also

eligible for the Child Tax Credit (CTC). Similar to the EITC, the child tax credit

is partially refundable, and gradually phases out for tax filers with su�ciently high

incomes.

Technically, there is a fourth infant-related tax credit that parents are eligible

for if they have an infant born before December 31st of a tax year: the Child and

Dependent Care Credit. Given the lack of information on child care expenses in the

CPS, this credit is omitted from consideration here, although it would on average

increase the size of the discontinuity in after-tax income.2

1One notable change from 1986 complicating analysis of take-up in this data is the fact that,
beginning in tax year 1987, tax filers were required to list the Social Security Number for exemptions
for dependents that they claimed. It is well-known that this requirement resulted in a drop of the
number of dependents claimed from 77 million in tax year 1986 to 70 million in tax year 1987. Thus,
it is possible that there is not as sharp a discontinuity in claiming of dependents around the New
Year in years prior to 1987. Parents with children born after the New Year in those earlier years may
be claiming them inappropriately regardless of timing of birth. There is no way to accommodate
this issue in this data when calculating the increase in after-tax income in Figure 2. This issue
would complicate analysis of results because it would suggest that the discontinuity in after-tax
income is potentially less sharp in earlier years. However, it should be noted that Table 6 looks at
grade-for-age status of high schoolers, and separates the data into children born before and after
1987. As is clear, the measured change in grade-for-age status for being born before the New Year
is larger for the cohorts of children born after 1987. Whatever the take-up issues created by this
specific policy change in 1987, the same basic causal results are observed for cohorts born afterward.

2The average size of this credit among tax filers who claim it is smaller than credits from the
EITC and CTC. The average value of the credit is usually $500 to $600 as opposed to over $1,000.
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As depicted in Figure 1, eligibility for tax benefits phases out over time as children

age. As a result, there are later discontinuities in after-tax income that occur as

children reach various ages. For example, as shown in Figure 1, in the calendar year

in which children born in December turn 17, their families are no longer eligible to

claim the Child Tax Credit for them. However, families with children born in January

are still eligible to claim the Child Tax Credit for their children in that tax year.

Appendix Figure B.1 o↵ers an indication of how these changes in eligibility impact

after-tax income for families as their children age. This figure looks at the evolution

of the gap in after-tax income by child age for the cohort of families with children

born in December 1999 or January 2000. This gap is estimated in the March CPS

using the procedures discussed earlier in Appendix A. As is clear, when children are

infants, families with December births see the increase in after-tax income depicted in

Figure 2. In the next year, however, all families are eligible for the tax credits, so the

di↵erence disappears.3 When the children born in December turn 17, however, their

families are no longer eligible for the Child Tax Credit for them, so the families with

children born in January see slightly larger after-tax incomes. When these children

turn 18, there is again no di↵erence in their after-tax income as both groups are eligi-

ble for the same tax benefits. However, when these children turn 19, the families with

children born in January see slightly larger after-tax incomes, as they are eligible to

claim the EITC for these children and the families with children born in December

are not.

It is concentrated among middle and upper-middle income taxpayers, and is claimed by only 13
percent of taxpayers with children. Hence, its impact on after-tax income for the tax discontinuity
studied here is likely comparatively small. (Crandall-Hollick, 2018a)

3This estimation strategy cannot account for changes in income that might happen because of
responses to the income shock in infancy. Black et al. (2014) show that a modest shock of a slightly
larger size than the shock considered in this work resulted in a long-term change in labor force
participation of mothers. If similar dynamics happen here, then there may be a non-zero di↵erence
in income in the years after children are infants. This possibility is a direction for future work
described in the conclusion.
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Figure B.1: Di↵erence in After-Tax Income for December and January Births by
Age of Child for Children born in December 1999 compared to January 2000 (2019
Dollars)
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Notes: Figure depicts average estimated di↵erence in family after-tax income by child age
for families that have a child born in December 1999 compared to January of 2000. Incomes
measured in 2019 dollars. Age variable on the horizontal axis lists age as would be recorded
by a family on April 15th. For example, newborns in their first year of life born in January
and December would be age 0 by April 15th. Estimation process draws inspiration from
Hoynes, Miller and Simon (2015) and uses the March CPS. Additional details on estimation
are in the text and in Appendix A. Standard error bars here omitted for clarity, but standard
errors are less than $10 for all groups and all years.
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APPENDIX C

Theoretical Foundations of Birth Shifting

To better understand the choices families make about birth timing and the mean-

ing of the discontinuity described earlier, it is necessary to think about the incentives

families face when considering timing births around the New Year. This appendix

o↵ers theoretical foundations for two features of the intuition underlying the empir-

ical method. First, there is a limit on how far birth timing is moved by families as,

outside of a region around the New Year, there is less incentive to engage in strategic

birth-timing. Second, omitting data around the New Year restricts attention to a

sample that can identify the theoretical e↵ect of the change in treatment across the

threshold.

Consider the following one period family utility optimization problem:

max
d,C,F,L

V (�C,F, L)� f(d� d0)� ⌘ [d = 0]

w.r.t pCC + pFF = wL+ [d < 0]T (wL, d < 0) + [d � 0]T (wL, d � 0) + I
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Assume that:

@V

@C
> 0,

@V

@F
> 0,

@V

@L
< 0

@T

@L d<0
> 0,

@T

@L d�0
> 0,

@2T

@L2
= 0

V is concave

In the first equation, C is spending on a newborn, � is a multiplier on C drawn from

a distribution (where higher levels of � indicate high marginal utility of investments

in C), F is spending on the rest of the family, L is a unitary measure of labor for the

household, d is the realized date of birth (centered such that d = 0 is New Year’s day)

and d0 is the date of birth that would happen without a parent altering the timing

of birth, and f(d� d0) is a cost function that reaches a minimum when d = d0. This

term reflects the fact that altering the exact date of birth of a child away from the

expected due date, either by Cesearian section or induced labor, is costly to a family

in terms of consequences to an infant and a mother’s health. Given the relatively

smooth distribution of births outside of holidays depicted in Figure 5, assume that

d0 is randomly assigned. The final term, ⌘ is a utility cost to being born on the New

Year independent of tax benefits.

T (wL) is an equation representing tax obligations, but the tax schedule di↵ers in

this first year depending on whether a child is born before or after New Year’s Day.

So, there are two separate functions T if d is less than or greater than 0. Assume

that, for each level of wL, the after-tax income of having a child before the New Year

is greater than having a child after the New Year, or T (wL, d < 0) > T (wL, d � 0).

Assume that the tax schedule is linear for simplicity. I is a fixed endowment.

Lastly, suppose that the family optimization problem proceeds in the following

order:
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1). A family chooses L given a certain prior on d0, g(d0);

2). d0 is realized;

3). A family chooses C, F and d to maximize utility with respect to the budget

constraint.

Note that the later timing of choices over C, F and d compared to earlier decisions

over L reflects the fact that changes in real economic behavior, such as labor supply,

are more di�cult for births that might happen close to the New Year. Further away

from the New Year, there may be more opportunities to alter economic activity after

a child’s birth.

A critical piece of the family’s optimization problem that will determine their de-

cisions is the shape of the cost function for altering birth timing, f . Consider three

possibilities:

Case 1: f(d� d0) = 1 if d� d0 6= 0

Suppose that f(d � d0) is infinite for every value except f(0), and keep w, pC ,

pF and g(d0) the same for all families. Then, the infinite utility cost associated with

altering birth timing means that a family would have no desire to alter birth timing,

and families would be randomly assigned on either side of New Year’s Day depending

on their assignment of d0. In such a scenario, L would be constant for everyone with

the same �, and the additional shock to income given by being bumped into a di↵erent

tax bracket would be a pure income shock that would both impact investments in C

and F . Thus, a simple comparison of people born before and after the New Year will

identify the e↵ect of the income boost.

This outcome is depicted in a simulated example in Appendix Figure C.1. Note

that the counts of births are relatively smooth, as is average �. The lack of variation

in both variables reflects the fact that no selection across the New Year occurs in this
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setting.

Case 2: f 0(d� d0) = 0 and f � 0

Suppose that f 0(d�d0) = 0, and keep w, pC , pF and g(d0) the same for all families.

Then, the lack of a utility cost that varies with d means that families’ decisions about

birth timing is una↵ected by the assignment of d0.

In such a scenario, families’ choice of L and d would depend on their value of

� and the value of f . Families that have d < 0 would not have any incentive to

shift birth timing, as there is no tax benefit to doing so. Among the families that

have d � 0, families with higher � would be more willing to shift birth timing. They

would more highly value the marginal utility of an additional dollar of expenditure on

their newborn, and hence would value more highly the value of the tax benefit from

being born before the New Year. Importantly, though, families’ choices over d would

not change depending on d0, as the costs to altering birth-timing are constant. Note

that the selection here ensures that the families with births before the New Year are

di↵erent than families with births after the New Year.

This model has important implications for what happens near the discontinuity.

First, unlike the infinite cost setting before, actual observed birthdays d will not

be randomly distributed, and a larger mass of individuals will move from the days

after New Year’s Day to the day right before New Year’s Day. Second, comparing

spending patterns of individuals right before the New Year to spending patterns of

individuals born on New Year’s day is no longer indicative of the pure income e↵ect

of increasing a family’s economic resources. The individuals born after the New Year

will include people with comparatively low values of �, indicating that their spending

on their infants will be comparatively lower, and the individuals born before the New

Year will include people with comparatively higher values of �, indicating that their

spending on their infants will be comparatively higher. Thus, a comparison of their
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spending will both indicate the pure e↵ect of the increase in after-tax income, but also

the di↵erence in the distribution of � that comes from the people selecting to have

births before the New Year having higher marginal utility of spending on children.

These di↵erences would mean that a naive comparison of spending on children at the

New Year would o↵er a biased upwards treatment e↵ect.

This outcome is depicted in a simulated example in Appendix Figure C.2. For

this graph, assume that each family has a function f that is a constant draw from

some distribution. In this situation, there are an abnormally large number of births

that happen on the day before the New Year, reflecting shifting of births from fam-

ilies that would have otherwise had births after the New Year. Technically, in this

setting, families would be indi↵erent between scheduling births on the day before

New Year’s or on any other day before New Year’s. As is clear, there are perma-

nently lower births after New Year’s, reflecting the fact that families’ decisions to

alter birth timing is unrelated to d. Furthermore, the average � of births that happen

the day before the New Year is noticeably higher than the days around it, reflecting

the fact that the families that move to schedule a birth before New Year’s Day have

higher �. Conversely, the children who are born after New Year’s have lower average �.

Case 3: f(d� d0) is convex

Suppose alternatively that f is convex, and keep w, pC , pF and g(d0) the same for

families. As in case 2, families assigned births d0 that are before New Year’s Day see

no benefit from altering their birth timing as the tax benefits to having a child before

the New Year are always larger. So they will continue to select d0 as a child’s birth

date. However, families with d0 � 0 will choose d = �1 as long as the utility they

achieve from having their birth before the New Year is larger than that they would

216



have if they timed their births after the New Year. That is, as long as:

V (�C�1, F�1, L)� f(�1� d0) > V (�Cd0 , Fd0 , L)� ⌘ [d0 = 0]

Where C�1, F�1, Cd0 , Fd0 represent consumption choices such that budget sets balance

at either d = �1 or d = d0. As in case 2, families’ choice of L and d would depend on

their value of � and the value of f . Taking L and d as given, note that, for any given

level of � , the convex cost in d0 means that there is some maximum date past which

individuals will not move the timing of their birth. Furthermore, note that for each

level of d0, the individuals who move the timing of their birth will have larger values

of �, indicating a larger marginal utility of spending on children.

As in case 2, there is selection into birth timing around the New Year. However,

for each level of �, there is some birthdate d0 such that no family would move timing

of the birth. Thus, dropping birthdates that appear a↵ected by birth shifting and

restricting attention to days away from the New Year gives a sample una↵ected by

the bias created by the uneven distribution of �. A comparison of spending between

these restricted samples would identify, again, the pure income e↵ect of the change

in resources on investments in children.

This outcome is depicted in a simulated example in Appendix Figure C.2. Note

that there is a massive spike in births on the day before New Year’s Day, as this

would be the least costly day for families to move timing of birth to.

Some complications of how families perceive the discontinuity are important.

First, the analysis in this paper focuses less on immediate spending on children then

on intermediate and longer-term outcomes for children, which can be thought of as

demonstrating the long-term consequences of that spending. The discussion section

at the end touches on how similar income shocks tend to be spent by families in other

settings, but there are none directly comparable to the shock in this paper.
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Second, the size of the discontinuity in resources will depend on how families

understand the tax system. As discussed in the text, this income shock is technically

a speeding up of the tax benefits related to children, as families that have children born

in December are eligible for the tax benefits one year before families with children born

in January, but then their eligibility expires one year earlier as well. If families fully

understand this feature of how the system works, then the shock to their spending

might be smaller in the short-run, as they could borrow against future earnings (hence

increasing I in the model above). As discussed in the text, there is evidence that some

share of families misunderstand the timing of how benefits expire in the tax system.

Furthermore, the families that benefit from these transfers, especially less educated

families, are likely credit constrained, and thus less able to borrow against future

income. Both of these features of this setting mean that families with children born

in January have limited ability to borrow against future earnings.

Thus, this setting shows that basic microeconomic theory and simple assumptions

about the optimization process can explain the basic intuition motivating the empir-

ical approach in this paper. First, there is limited birth shifting outside of a window

around holiday. Second, omitting the data that demonstrate shifting ensures that a

comparison of people born after and born before the New Year identifies the e↵ect of

the increase in after-tax income.
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Figure C.1: Simulation Of Births by Day of Year Under Case 1 for f
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Notes: Graph shows simulated distribution of births by day of year under case 1 for f

described above, where f(d� d
0) = 1 if d� d

0 6= 0.

Figure C.2: Simulation Of Births by Day of Year Under Case 2 for f
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Figure C.3: Simulation Of Births by Day of Year Under Case 3 for f
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