
Enabling Hyperscale Web Services

by

Akshitha Sriraman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2021

Doctoral Committee:

Professor Thomas F. Wenisch, Chair
Professor David Brooks, Harvard University
Assistant Professor Jean-Baptiste Jeannin
Assistant Professor Baris Kasikci
Professor Margo I. Seltzer, University of British Columbia

Akshitha Sriraman

akshitha@umich.edu

ORCID iD: 0000-0003-4780-9483

© Akshitha Sriraman 2021

To the ones who raised me to believe that anything is possible, Sriraman and Rajalakshmi.

To the one who made many things possible, Akshay.

And to the one who makes everything possible, Amrit.

ii

ACKNOWLEDGEMENTS

My Ph.D. experience was a roller coaster: ups and downs, twists and turns. But boy,

was it a ride! For all the marvelous times when I built large systems that somehow just

worked, had papers accepted, and won fellowships, there were just as many, if not more,

challenging times when I built large systems that somehow just didn’t work, floundered with

no clue about what I was doing, and struggled with imposter syndrome. I express my deepest

gratitude to the village of phenomenal people who made the challenging times conquerable

and the marvelous memorable, enabling a Ph.D. that I didn’t think would happen.

AMMA & APPA. Starting with the people who have always been there, I thank my parents,

my Amma and Appa, Rajalakshmi Sriraman and P.R. Sriraman. Rather, I will attempt

to thank them, because I know that words will always fall short in this case.

My father aspired to be an electrical engineer, but his chance of realizing his dreams

perished when he lost his father at a young age. I thank you, Appa, for teaching me the

gratification of sincere efforts—you never gave up, endured a job that kept you far from

home, and pursued an advanced degree well into adulthood. Learning to persevere like you

iii

has helped me come a long way. Appa, I thank you for the seemingly small things that made

the biggest difference—for setting alarms to wake up at odd hours to then wake me up with

a coffee in hand before my deadlines, for staying up on Skype for hours on end to “keep me

company” when I was working and was feeling homesick, for always reading every word I

write, and for texting me every single day to tell me you love me. Thank you for your value

of education and for always encouraging me to push boundaries. Because of you, I have

become the person I always dreamed of being. I hope that makes you proud. I thank you

for being my inspiration—wanting to make you proud is the fire that fuels me to revive the

dreams you once dreamed, by living them. Appa, this Ph.D. is for you.

As my first teacher, I thank you, Amma, for instilling in me from an early age the idea

that anything is possible, any dream attainable. Today, several of my dreams have come

true. And I want you to know that it is because of you. I thank you for believing in me even

at times when I did not believe in myself. I will forever be indebted to you for all that I

am today. You told me that you do not understand the meaning behind several technical

details in my dissertation. While that may be true, I want you to know that this dissertation

is meaningless without you. And for this reason, Amma, I dedicate this dissertation to you.

அ"மா ம&'" அ(பா,	நா+ இ-த ஆ012 க45ைரைய அ+ேபா5 உ;க<2= அ>(பண@2கிேற+.	

AKSHAY SRIRAMAN. I thank the best brother I could ask for, Akshay Sriraman. In the

past, when I had trouble figuring out who I wanted to be, I simply followed Akshay without

question. I followed him when I decided to pursue engineering and I followed him again

when I decided to study electronics. I knew that if I did what he did, I would do great.

I thank Akshay for putting me before himself so many times. He sacrificed his goals

of getting a Master’s degree because he knew that I wanted to pursue one. So, instead, he

took up a job to monetarily back my (extremely expensive) Master’s education at UPenn1.

These sacrifices, like a skyscraper’s foundation, are the kinds of things that seemingly go

unseen, but actually form the very cornerstone of a person’s achievements. I don’t think I
1As the picture suggests, Akshay did eventually get a Master’s degree, also from the University of

Pennsylvania. So, perhaps, he followed me this time around?

iv

would be writing this dissertation if not for him. How else could I have traveled to the US?

Pursued further education? Received my first exposure to research and decided on a Ph.D.?

Recognized that my dream is to become a professor? And later go on to achieve that dream?

I start at Carnegie Mellon University in January 2022, and I am forever indebted to Akshay

for enabling the cascading set of events that brought me to this point.

JOSEPH DEVIETTI. I will forever be grateful to Joe Devietti, my Master’s advisor at

UPenn, who started it all. Joe took me on when nobody would have given me a second

glance, and also despite me not doing great in his course2. I thank him for believing that I

could do research; his belief made a world of difference. I recall telling him he was making

a mistake—although I wanted to try doing research, I didn’t think I could. He said that I was

hard working, motivated, and passionate, and those are the only things I would need. Thank

you, Joe, for showing me what truly matters—every time I felt overwhelmed due to my lack

of prior CS education, your words kept me going. Your faith in me made me push myself

harder every day—I didn’t want you to be wrong and I just didn’t want to let you down.

When I struggled with visualizing software, Joe pointed out how I could use my strength

of networking with people to learn from others about how they might build the software

I was working on. Joe, Chapter III of this dissertation, my biggest software effort, is for

you. Thank you for identifying my strengths; knowing, and using them to my advantage has

made me come a long way. But most importantly, I thank you for giving meaning to my

entire life and career. You are the reason I dreamed of becoming a professor—if I can pass

on what you did for me to at least one other student, I shall declare my life wildly successful.

THOMAS WENISCH.When I moved from Penn to Michigan, I didn’t initially work with

my Ph.D. advisor, Tom. I thank Tom for taking me on from another lab (resulting in me

naming our research group “The Sanctuary Lab”). That single decision changed the entire

course of my Ph.D., making it into a more fabulous experience that I ever dreamed possible.

Tom is famous for (amongst other things, e.g., a Maurice Wilkes award) saying the

2This happened to be a graduate course on computer architecture. Ironic, isn’t it? Goes to show that grades
don’t really define the career you can go on to have.

v

words: “I already have a PhD. I don’t have a need to get another PhD via you”. Although

these words might seem like a joke at first blush, I realize that they summarize how Tom

shaped me as a researcher. Tom did everything to make me an independent researcher, so

that I could define my Ph.D. in a way that was uniquely me. From guiding me every step of

the way when he knew I was utterly lost, to taking a back seat when he knew I was ready, I

thank Tom for doing it all in the most beautiful way imaginable.

Tom knows me as a researcher even better than I know myself. He encouraged me to

independently see a project through and write a paper about it (see Chapter VI); “We are

taking the training wheels off,” he said. Although I felt unprepared initially, I emerged much

more confident in my abilities and much closer towards winning my battle against imposter

syndrome. I will always maintain that “Tom knows everything about everything.” Tom, I

know that if I become at least half as great an advisor as you, I will be ridiculously happy.

DOCTORAL COMMITTEE MEMBERS.Margo Seltzer, for taking me under her wing and

being such a fabulous role model to me. Having Margo as my mentor exemplifies the notion

that sometimes the most incredible things in life happen by accident. She leads by example

and has always gone above and beyond whenever I needed help, be it technical, professional,

or personal. I thank Margo for reading every single word of this dissertation and I thank

her for always accepting nothing less than my absolute best. I am incredibly lucky to have

Margo as my mentor. Everyone needs a Margo in their life.

Baris Kasikci, for being such a constant pillar of support. The past couple of years

vi

of working with Baris and EFES Lab members have truly helped me grow and thrive as a

researcher. I am so grateful to Baris for everything he does: from letting me know whether

an email draft looks okay, to helping me with the job search process, Baris has been there

for it all. I thank him for being the perfect mix of a mentor who is also a friend.

David Brooks, for giving an opportunity to mentor Ph.D. students when I was a Ph.D.

student myself. And Jean-Baptiste Jeannin, for the valuable feedback on my work.

MENTORS and COLLABORATORS. I thank Sarita Adve for being my biggest role model.

I thank her for leading by example in teaching me how to be a tough cookie at times when I

encounter bias. I am grateful to Peter Chen for always insisting that I think about a research

problem from first principles and Christos Kozyrakis for teaching me how to write grant

proposals. I thank all three of them for helping me land my dream job.

I thank Reetu Das for reaching out to me at a time when I was thinking about quitting

the Ph.D. program, for her kindness, and for our “lunch dates” every semester. I thank Kim

Hazelwood for recruiting me for a Facebook internship that opened a world of research

possibilities, and for helping me land my dream job. When I was concerned about how

my research approach didn’t always fit the mould (e.g., introducing humour, or rather my

version of humour, in my talks), Kim told me something that I will always remember: “You

are a unicorn. Don’t let people chop off your horn and convert you into yet another sheep.”

I am grateful to Abhishek Dhanotia, my Facebook internship mentor, for his research

advice during multiple Facebook internships. I thank him for showing me how much fun

research can be when one is not constantly worrying about the next paper deadline. My time

at Facebook was always intellectually enriching because of stimulating conversations with

so many people who were merely a ping away. I especially thank Vijay Balakrishnan, Car-

los Torres, Pallab Bhattacharya, Hsien-Hsin Lee, Carole-Jean Wu, Xiaodong Wang,

Jonathan Haslam, Denis Sheahan, Jay Kamat, and Shobhit Kanaujia for helping me

understand production systems. I thank Facebook for granting me access to real-world data

centers, significantly enhancing my dissertation’s contributions. I also thank Facebook for

vii

the free food during my internships (especially for the best boba and ramen I’ve ever had)!

I thank Ed Nightingale and Galen Hunt, my MSR internship mentors, for teaching me

to never take no for an answer because there will always be a workaround if I looked hard

enough. I am grateful to many MSR researchers who helped me create a concrete research

vision at a time when I was floundering. I especially thank Ricardo Bianchini for helping

me realize µTune; “The moment you have an inflection point, you have a story,” he said.

Gilles Pokam and Rajeev Alur, for helping me get into one of the best Ph.D. programs.

Rajagopalan Nadathur, without whom I couldn’t have moved to the US and started at

Penn. James Mickens, Abhishek Bhattacherjee, Brandon Reagen, and my WICArch

friends for all their advice. In loving memory of my English teacher, Ms. Stephens, without

whom I couldn’t have authored my papers. I wish I could share them with her.

SANCTUARY LAB. A huge shout-out to Aasheesh Kolli and Neha Agarwal for always

encouraging me. I thank Amlan Nayak, Brendan West, Hossein Golestani, Harini

Muthukrishnan, Steve Zekeny, Ofir Weisse, and Amir Mirhosseini for all the tech-

nical discussions, but more importantly, for being my partners in crime when pulling

unicorn-themed pranks on Tom. (Remember the time we TP’d Tom’s office with prancing

unicorn-themed toilet paper?) All of you made graduate school memorable and fun.

But, this Ph.D. wouldn’t have happened without Vaibhav Gogte. From teaching me

how to write code (yes, that indeed happened since I entered a Ph.D. program in CS without

prior programming education—smh), to spending long hours entertaining my (half-baked)

ideas, Vaibhav has been my greatest source of inspiration. I thank him for being my go-to

(inside joke: more like “gogo”) person for everything. Vaibhav exemplified an ideal Ph.D.

student by living his own quote: “Your Ph.D. is just another job. It is not a higher calling.”

His words stuck with me and made graduate school so much more than just about publishing

papers. I thank him for making graduate school the most valuable experience of my life.

EFES LAB. A huge shout-out to Tanvir Khan, Kevin Loughlin, Andrew Quinn, Ma-

rina Minkin, Sara Shahri, Ian Neal, Jiacheng Ma, and Gefei Zuo—for tirelessly attend-

viii

ing my many (bad) practice talks. I thank them for making me one of their own and for being

my new research home. I thank Tanvir for making me look forward to being a professor.

MICHIGAN CSE. I thank Manos Kapritsos for caring so deeply about every student.

Mahdi Cheraghchi, Mark Guzdial, John Laird, and Emily Provost, for helping me

at key phases. And Karen Liska, Ashley Andrea, Stephen Reger, Jamie Goldsmith,

Laura Fink, Sylvia Galaty, Cindy Estell, and Erika Hauff, for being CSE’s true heroes.

GRANTS.My work was supported by (1) the Center for Applications Driving Architec-

tures (ADA), one of six centers of JUMP, a Semiconductor Research Corporation program

co-sponsored by DARPA and (2) NSF Grant IIS1539011 and gifts from Intel. I also thank

Facebook for a fellowship that allowed me to freely explore new research directions.

FRIENDS. I thank my best friend, Amritha Varshini, for being the sister I never had.

Thank you for always having my back. Thank you for being the loving, encouraging, and

nonjudgemental person that you are, all wrapped into one small, amazing package. When I

started at Penn, I had no idea that I would come away with the greatest gift of my life.

A big shout-out to the Juwaris group—Kumar Aanjaneya, Aditi Kulkarni, Sneha

Joshi, Shriya Sethuraman, Poorwa Shekhar, Ripudaman Singh, Niket Prakash, Har-

shad Dharmatti, Kunal Garg, Saurabh Mahajan, Bharadwaj Mantha, and Keval Ra-

mani—for the boisterous board game nights that helped me stay sane during the dark

times. Meeting Zahra Tarkhani at MSR made me realize that soulmates are real—our

similarities are too strong to be a coincidence; but, perhaps, building a bare-metal hypervisor

from scratch, together, does that to you? Thank you, Zahra, for the laughs and the crazy,

impromptu drives. I thank Nilmini Abeyratne, Sai Gouravajhala, Amir Rahmati, and

Earlence Fernandes for helping me move to Sanctuary Lab. Animesh Jain, for the walk

ix

along the Sammamish river, where µTune took a concrete form for the first time. Vidushi

Goyal, for all our “discussions” over chai. Caroline Trippel, for being such a trailblazer

and passing on advice on how to become one. Tumpa Chakraborty, for all her support.

RELATIVES. In loving memory of my grandpa, Thathappa, who was the first person

to tell me that I should do a Ph.D., introducing the word to me. I miss you, Thathappa, and I

wish I could share this dissertation with you. I thank my grandma, Momma, for being the

sweetest person I’ve ever met. In loving memory of my grandma, Radha paatti. I hope

she would be proud. I never got to meet my grandpa, but I hope he would be proud too.

I thank my extended parents, Anandhi and Gopal, for all their love and for always being

there; they are my life’s most beautiful gifts. I thank Shruthi and Abhinaya for their love.

When I first moved to the US, I was terribly homesick and wanted to move back to India

in a grand total of three days. I thank Ranga uncle, Anu aunty, Sumun, Pranav, and Leo

for everything they did to make Philly my home away from home. I am also very grateful to

Krishnan uncle and Shankar uncle for helping me navigate the US academic system.

PO GOPAL. I thank Po, my oh-so-adorable puppy. Po is my lucky charm: my dissertation

work took off only after he entered my life. Po sat with me (more like slept near me) through

every deadline and was my rubber duck (dog, rather) for debugging. Thank you, Po, for

being fluffy, for being silly, and for your (literally) warm presence that kept me company.

AMRIT GOPAL. Saving the best for last, to my husband, Amrit, a few private words

addressed to you in public. Thank you for your love, patience, and unwavering support

x

towards my growth—you have always been my rock. From spending numerous hours

critiquing my work, to squandering your vacation days traveling to conferences so that you

could sit in the front row and record my talk (like some kind of a proud parent), you have

done it all. Amrit, you are a true partner, and I feel truly blessed that I get to have you by

my side. During the past six years, I felt a lot like I did just the front-end UI development

work, when you were the back-end data center holding the fort together.

Amrit, this Ph.D. is as much yours as it is mine.

And finally, Amrit, Amma, and Appa, you know the past few years were not easy:

When I felt so lost, like I’d lost my way,

When I didn’t know what to do or say,

When I didn’t know if my research was sound,

When I was floundering all around,

When my research vision was rare to see,

When I didn’t know what I’d grow to be,

When paper acceptances were rare,

When Reviewer C just didn’t care,

When I had no clue and felt very blue,

I knew I could always turn to you.

I knew you’d always be there.

I knew you’d always care.

All I’d do was close my eyes and think of you

And I knew I’d come through.

“The city of Pittsburgh gleaming suddenly before her . . .

so startling in its vastness and its beauty that she had gasped and slowed,

afraid of losing control of the car.”

Kim Edwards

xi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . xvi

LIST OF TABLES . xxi

ABSTRACT . xxii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.1.1 Web Services Powered by Data Centers are Here, There,

and Everywhere . 1
1.1.2 Radical Shift in Hyperscale Computing 3
1.1.3 Decline in Technology Trends that Drive Processor Per-

formance Scaling . 4
1.1.4 Consequences on the Software and Hardware Research

Landscape . 5
1.2 Research Challenges and Goals 12

1.2.1 Enabling the Study of Modern Web Services 14
1.2.2 Redesigning Software Based on Underlying Data Center

Hardware Constraints 16
1.2.3 Architecting Commodity Hardware for New Web Ser-

vice Software Paradigms 18
1.2.4 Architecting Custom Hardware for New Web Service

Software Paradigms 22
1.3 Dissertation Contributions . 25
1.4 Dissertation Outline . 29

II. A Benchmark Suite for Microservices 31

xii

2.1 Prior Work . 34
2.2 µSuite: Benchmarks Description 35

2.2.1 HDSearch . 36
2.2.2 Router . 40
2.2.3 Set Algebra . 43
2.2.4 Recommend. 45

2.3 µSuite: Framework Design . 49
2.4 Methodology . 51
2.5 Results . 52

2.5.1 Saturation Throughput 52
2.5.2 End-to-end Response Latency 53
2.5.3 OS and Network Overheads 54

2.6 Long-Term Impact Potential . 59
2.7 Chapter Summary . 61

III. Auto-Tuned Software Threading for Microservices 63

3.1 Motivation . 66
3.1.1 The Need for a Threading Model Taxonomy 66
3.1.2 The Need for Automatic Load Adaptation 67
3.1.3 A Microservice Framework 68

3.2 A Taxonomy of Threading Models 68
3.2.1 Key Dimensions . 69
3.2.2 Synchronous Models 71
3.2.3 Asynchronous Models 73

3.3 µTune: System Design . 75
3.3.1 Framework . 76
3.3.2 Automatic Load Adaptation 76

3.4 Implementation . 78
3.5 Experimental Setup . 79
3.6 Evaluation . 80

3.6.1 Threading Model Characterization 81
3.6.2 Load Adaptation . 89

3.7 Discussion . 96
3.8 Related Work . 97
3.9 Long-Term Impact Potential . 98
3.10 Follow-On Research . 101
3.11 Chapter Summary . 102

IV. Optimizing Commodity Server Architectures for Microservice Diver-
sity at Hyperscale . 105

4.1 Understanding Microservice Performance 108
4.1.1 The Production Microservices 109

xiii

4.1.2 Characterization Approach 110
4.1.3 System-Level Characterization 111
4.1.4 Architectural Characterization 116

4.2 “Soft” SKU . 124
4.3 µSKU: System Design . 126
4.4 Methodology . 128
4.5 Evaluation . 131

4.5.1 Knob Characterization 131
4.5.2 Soft SKU Performance 136

4.6 Discussion . 137
4.7 Related Work . 138
4.8 Long-Term Impact Potential . 139
4.9 Follow-On Research . 142
4.10 Chapter Summary . 145

V. Redesigning Commodity Server Architectures for Efficient Event No-
tification at Hyperscale . 148

5.1 Why do Widely-Used Notification Paradigms Fall Short? 151
5.1.1 Microservice Requirements 151
5.1.2 Interrupts . 152
5.1.3 Spin-polling . 155
5.1.4 MWAIT . 158

5.2 The µNotify Paradigm . 159
5.2.1 Design Goals . 159
5.2.2 System Model . 160
5.2.3 µNotify Overview . 161
5.2.4 µNotify’s Back-end Microarchitecture 163
5.2.5 µNotify’s Front-end Programming Model 165

5.3 Evaluation . 168
5.3.1 Experimental Setup . 168
5.3.2 Microservices . 169
5.3.3 Peak Throughput . 170
5.3.4 Queue Scalability . 172
5.3.5 Median and Tail Latency 173
5.3.6 Overheads . 174

5.4 Discussion . 174
5.5 Related Work . 175
5.6 Chapter Summary . 176

VI. Understanding Hardware Customization Opportunities at Hyperscale 179

6.1 Understanding Microservice Overheads 183
6.1.1 The Production Microservices 183
6.1.2 Characterization Approach 184

xiv

6.1.3 Leaf Function Characterization 185
6.1.4 Service Functionality Characterization 193

6.2 The Accelerometer Model . 196
6.2.1 Acceleration Strategies 197
6.2.2 System Abstraction . 198
6.2.3 Parameter Definition 199
6.2.4 Modeling Diverse Threading Designs 199
6.2.5 Accelerometer Use Cases 204

6.3 Validating the Accelerometer Model 205
6.3.1 Validation Methodology 205
6.3.2 Experimental Setup . 205
6.3.3 Case Study 1: AES-NI for Cache1 206
6.3.4 Case Study 2: Encryption for Cache3 208
6.3.5 Case Study 3: Inference for Ads1 209

6.4 Applying the Accelerometer Model 210
6.4.1 Compression . 211
6.4.2 Memory Copy . 213
6.4.3 Memory Allocation . 213

6.5 Related Work . 213
6.6 Long-Term Impact Potential . 215
6.7 Chapter Summary . 218

VII. Future Work and Conclusions . 221

7.1 Future Directions . 221
7.1.1 Enabling Cross-Stack Designs for Emerging Web Ser-

vice Paradigms and Application Domains 221
7.1.2 Rethinking Hardware-Software Co-Design for System

Overheads that Arise at Hyperscale 222
7.1.3 Mitigating the Killer Microsecond Problem in Modern

Web Services . 223
7.1.4 Redesigning Software Stacks for Emerging Hardware

Accelerators . 223
7.1.5 Designing Systems to Support Emerging Device Tech-

nologies . 224
7.1.6 Using Machine Learning to Self-Navigate the Hyper-

scale Design Space . 225
7.1.7 Designing Energy-Efficient Data Centers 225
7.1.8 Making Intersectionality, Equity, and Fairness as First-

Order System Design Metrics 226
7.2 Dissertation Conclusions . 227

BIBLIOGRAPHY . 233

xv

LIST OF FIGURES

Figure

1.1 A timeline of the work presented in this dissertation, organized horizon-
tally according to the years when portions of the individual dissertation
chapters were published. The timeline is divided into this dissertation’s
software and hardware thrusts to show a bird’s eye view of the software
and hardware design space studied in this dissertation. Each work of
research is annotated with the dissertation chapter in which it is covered
and the publication venue where portions of that chapter were published.
The background color of the box representing each work of research is
color coordinated with the levels of the systems stack (shown on the right)
that the technologies presented in that chapter cover. 25

2.1 A typical web application fan-out: Modern web services are composed of
a complex web of microservices that interact via RPCs. 33

2.2 HDSearch: Front-end presentation microservice. 37
2.3 HDSearch: Back-end request and response pipelines. 38
2.4 An example of HDSearch’s request (left) and 1-NN response (right):

Response’s highlighted circular segment illustrates why the images match. 40
2.5 Router: Back-end request and response pipelines. 42
2.6 Set Algebra: Back-end request and response pipelines. 45
2.7 Recommend: Back-end request and response pipelines. 48
2.8 µSuite’s mid-tier microservice design: µSuite’s mid-tier microservices

block on the front-end network socket, dispatch processing of front-end
requests, and asynchronously communicate with leaf microservices. . . . 49

2.9 Saturation throughput (QPS): µSuite is similar to real-world web services. 52
2.10 End-to-end response latency across different loads for each benchmark:

Median latency is higher at low load. 53
2.11 HDSearch’s counts of OS system call invocations per QPS: The futex

system call is predominantly invoked. 54
2.12 Router’s counts of OS system call invocations per QPS: The futex system

call is predominantly invoked. 55
2.13 Set Algebra’s counts of OS system call invocations per QPS: The futex

system call is predominantly invoked. 55

xvi

2.14 Recommend’s counts of OS system call invocations per QPS: The futex
system call is predominantly invoked. 55

2.15 HDSearch’s breakdown of OS overheads: Time to switch a thread from
the active to the running state is high. 56

2.16 Router’s breakdown of OS overheads: Time to switch a thread from the
active to the running state is high. 57

2.17 Set Algebra’s breakdown of OS overheads: Time to switch a thread from
the active to the running state is high. 58

2.18 Recommend’s breakdown of OS overheads: Time to switch a thread from
the active to the running state is high. 59

2.19 Context switches (CS) and thread contention (HITM) incurred (in millions)
for each benchmark across diverse loads: Thread contention is a significant
overhead. 59

3.1 A typical web application fan-out. 64
3.2 99th% tail latency for an RPC handled by a block-based and poll-based

model: Poll-based model reduces latency by 1.35x at low load, and satu-
rates at high load. 67

3.3 Execution of an RPC by (a) SIB/SIP (b) SDB/SDP. 72
3.4 Execution of an RPC by (a) AIB/AIP (b) ADB/ADP. 74
3.5 µTune: System design. 75
3.6 Synchronous vs. asynchronous model’s saturation throughput: The asyn-

chronous model performs better by 42% on average. 81
3.7 Ratio of the best synchronous model’s latency to the best asynchronous

model’s latency: The best asynchronous model is faster by a mean 12% at
the loads that are achievable by the best synchronous model, and infinitely
faster at higher loads. 82

3.8 Graph: Latency vs. load trade-off for HDSearch’s synchronous models.
Table: Latencies at each load normalized to the best latency for that load:
No threading model is always the best. 83

3.9 HDSearch synchronous thread wakeups at 64 QPS: Block incurs more
wakeups. 85

3.10 Relative frequency of synchronous contention, context switches, and cache
misses at 10K QPS: SIP performs the worst. 86

3.11 Graph: Latency vs. load for Set Algebra’s asynchronous models. Table:
The latency at each load level normalized to the best latency for that load:
No threading model is always the best. 87

3.12 Asynchronous thread pools for best tail latency: Big thread pools content. 88
3.13 Asynchronous Set Algebra’s relative frequency of contention, context

switches, and cache misses over the best asynchronous model at peak load:
AIP performs worst. 88

3.14 Synchronous (top) and asynchronous (bottom) steady-state adaptation. . . 92
3.15 Synchronous µTune’s instruction overhead for steady-state loads: Less

than 5% mean overhead incurred. 93
4.1 Variation in system-level & architectural traits across microservices: Face-

book’s microservices face extremely diverse bottlenecks. 106

xvii

4.2 (a) A single request’s latency breakdown for each µservice: Few µservices
block for a long time, (b) Web’s request latency breakdown: Thread over-
subscription causes scheduling delays. 113

4.3 Max. achievable CPU utilization in user- and kernel-mode across µservices:
Utilization can be low to avoid QoS violations. 114

4.4 Fraction of a second spent context switching (range): Cache1 & Cache2
can benefit from context switch optimizations. 115

4.5 Instruction type breakdown across microservices: Instruction mix ratios
vary substantially across microservices. 116

4.6 Per-core IPC across Facebook’s microservices and prior work (IPC mea-
sured on other platforms): Facebook’s microservices have a high IPC
diversity. 117

4.7 Top-down bottleneck breakdown: Several of Facebook’s microservices
face high front-end stalls. 118

4.8 L1 & L2 code & data MPKI: Facebook’s microservices typically have
higher L1 MPKI than comparison applications. 120

4.9 LLC code & data MPKI: LLC data MPKI is high across microservices
and Web incurs a high code LLC MPKI. 121

4.10 LLC code and data MPKI vs. LLC size: Some microservices may benefit
from trading LLC capacity for more cores. 121

4.11 I-TLB & D-TLB (load & store) MPKI breakdown: Some microservices
can benefit from huge page support. 122

4.12 Memory bandwidth vs. latency: Microservices under-utilize memory
bandwidth to avoid latency penalties. 123

4.13 µSKU: System design. 125
4.14 Performance trend with (a) core frequency scaling, (b) uncore frequency

scaling: The maximum frequency offers the best performance. 131
4.15 Performance trend with core count scaling: Web is core-bound. 133
4.16 Performance trend with CDP scaling: (a) Web (Skylake) & Ads1 benefit

due to lower code MPKI (b) Web (Broadwell) has no gains. 133
4.17 Performance trends with varied prefetcher configurations: Turning off

prefetchers can improve bandwidth utilization in Web (Broadwell). 134
4.18 Performance trends with varied (a) THP: Web (Skylake) benefits from

THP ON, (b) SHP: There is a sweet spot in optimal SHP count. 135
4.19 Performance gain with µSKU over stock and hand-tuned servers: µSKU

outperforms even hand-tuned production servers. 136
5.1 (a) Epoll latency with increasing load: Interrupts face µs-scale context

switches & thread wakeups. (b) Thread wakeups at low & high load:
Low-load wakeups are costlier. 154

5.2 (a) Peak throughput when spin-polling many queues: Throughput reduces
due to empty queue checks. (b) Latency when polling many queues: Long
loop traversals dominate. 157

5.3 High-level system model. 160
5.4 High-level diagram of µNotify’s operations. 161
5.5 High-level cache coherence controller with µNotify. 164

xviii

5.6 Peak throughput achieved by µNotify compared to spin-polling and inter-
rupts across different queue counts and traffic shapes for LSH: µNotify
consistently achieves a higher throughput compared to state-of-the-art
paradigms. 170

5.7 Peak throughput achieved by µNotify compared to spin-polling and in-
terrupts across different queue counts and traffic shapes for McRouter:
µNotify consistently achieves a higher throughput compared to state-of-
the-art paradigms. 170

5.8 Peak throughput achieved by µNotify compared to spin-polling and inter-
rupts across different queue counts and traffic shapes for Word Stemming:
µNotify consistently achieves a higher throughput compared to state-of-
the-art paradigms. 171

5.9 Peak throughput achieved by µNotify compared to spin-polling and in-
terrupts across different queue counts and traffic shapes for Recommend:
µNotify consistently achieves a higher throughput compared to state-of-
the-art paradigms. 171

5.10 µNotify’s latency under light traffic with increasing queues (Y-axis is
log-scale): µNotify achieves lower latency. 172

5.11 µNotify’s latency with increasing load compared to state-of-the-art: µNotify
sustains higher load with low latency. 174

6.1 Breakdown of cycles spent in core application logic vs. orchestration
work: Orchestration overheads can significantly dominate. 181

6.2 Breakdown of cycles spent in leaf functions: Memory functions consume
a significant portion of total cycles. 186

6.3 Breakdown of cycles spent in memory leaf functions as a fraction of total
cycles: Memory copy, allocation, & free consume significant cycles. . . . 188

6.4 Breakdown of service functionalities that invoke memory copies: There is
significant diversity in dominant functionalities that perform copies. . . . 189

6.5 Breakdown of cycles spent in various kernel leaf functions: Kernel sched-
uler, event handling, and network overheads can be high. 190

6.6 Breakdown of CPU cycles spent in synchronization functions: Cache
frequently uses spin locks to avoid thread wakeup delays. 191

6.7 Breakdown of CPU cycles spent in C libraries: ML services perform
several vector operations while dealing with large feature vectors. 192

6.8 Cache1’s IPC scaling across three CPU generations for key leaf functions:
Kernel IPC is typically low & scales poorly. 193

6.9 Breakdown of CPU cycles spent in various microservice functionalities:
Orchestration overheads are significant & fairly common. 194

6.10 Cache1’s IPC scaling across three CPU generations for key functionality
categories: A low I/O IPC is primarily due to a low kernel IPC. 196

6.11 Example timeline of host & accelerator. 198
6.12 Modeling SyncCS and CL for one offload. 200
6.13 Modeling Sync-OSCS and CL for one offload. 202
6.14 Modeling AsyncCS and CL for one offload. 203
6.15 CDF of bytes encrypted in Cache1: <512B are frequently encrypted. . . 207

xix

6.16 Breakdown of cycles spent in Cache1’s functionalities for both the no-
AES-NI (unaccelerated) & with-AES-NI (accelerated) cases: 12.8% of
cycles are freed up with AES-NI. 207

6.17 Breakdown of cycles spent in Cache3’s functionalities when encryption is
accelerated vs. not: Secure IO calls are optimized with acceleration. . . . 208

6.18 Breakdown of cycles spent in Ads1’s functionalities for both the inference
unaccelerated & accelerated cases: All inference cycles are freed up. . . . 209

6.19 CDF of bytes compressed in Feed1 and Cache1: Feed1 often compresses
large granularities. 211

6.20 Accelerometer-estimated speedup for key overheads we identified: Perfor-
mance bounds from accelerator offload limit achievable speedup. 212

6.21 CDF of memory copies across microservices: Most microservices fre-
quently copy small granularities. 212

6.22 CDF of memory allocations across microservices: Most microservices
frequently allocate small granularities. 213

xx

LIST OF TABLES

Table

1.1 Timeline of the application layer’s evolution in response to the unprece-
dented growth in hyperscale web service trends and today’s hardware
reality: There has been a shift from monolithic web application architec-
tures to more granular architectures such as microservices. 6

1.2 Timeline of the evolution of software abstraction layers in response to
the unprecedented growth in hyperscale web service trends and today’s
hardware reality: There has been a shift from heavy-weight abstractions
(e.g., virtualization) to light-weight abstraction layers (e.g., containers). . 9

1.3 Timeline of the hardware layer’s evolution in response to the unprece-
dented growth in hyperscale web service trends and today’s hardware
reality: There has been a shift towards building specialized hardware for
various “killer” web applications. 11

2.1 Summary of a comparison of µSuite with prior works: Unlike prior works,
µSuite is open-source, has web services composed of microservices, and
enables the study of mid-tier microservices. 35

2.2 Mid-tier microservice processor specification. 51
3.1 Mid-tier microservice processor specification. 80
3.2 99th% tail latency (ms) for load transients. 95
4.1 Skylake18, Skylake20, Broadwell16’s key attributes. 110
4.2 Average request throughput, request latency, & path length across mi-

croservices: We observe great diversity across services. 112
4.3 Summary of findings and suggestions for future optimizations. 124
6.1 GenA, GenB, and GenC CPU platforms’ attributes. 184
6.2 Categorization of leaf functions. 185
6.3 Categorization of microservice functionalities. 193
6.4 Summary of findings and suggestions for future optimizations. 197
6.5 Description of the Accelerometer analytical model parameters. 198
6.6 Model parameters used to compare Accelerometer-estimated speedup with

measured speedup on production systems. 206
6.7 Parameters used to model speedup and latency reduction for a few acceler-

ation recommendations from Table 6.4. 211

xxi

ABSTRACT

Modern web services such as social media, online messaging, web search, video stream-

ing, and online banking often support billions of users, requiring data centers that scale to

hundreds of thousands of servers, i.e., hyperscale. In fact, the world continues to expect

hyperscale computing to drive more futuristic, complex applications such as virtual reality,

self-driving cars, conversational AI, and the Internet of Things. This dissertation presents

technologies that will enable tomorrow’s web services to meet the world’s expectations.

The key challenge in enabling hyperscale web services arises from two important trends.

First, over the past few years, there has been a radical shift in hyperscale computing due

to an unprecedented growth in data, users, and web service software functionality. Second,

modern hardware can no longer support this growth in hyperscale trends due to a steady

decline in hardware performance scaling. To enable this new hyperscale era, hardware

architects must become more aware of hyperscale software requirements and software

researchers can no longer expect unlimited hardware performance scaling. In short, systems

researchers can no longer follow the traditional approach of building each layer of the

systems stack separately. Instead, they must rethink the synergy between the software and

hardware worlds from the ground up. This dissertation establishes such a synergy to enable

futuristic hyperscale web services.

This dissertation bridges the software and hardware worlds, demonstrating the impor-

tance of that bridge in realizing efficient hyperscale web services via solutions that span the

systems stack. This dissertation’s specific goal is to (1) design software that is aware of new

hardware constraints and (2) architect hardware that efficiently supports new hyperscale

software requirements. To this end, this dissertation spans two broad thrusts: (1) a software

xxii

and (2) a hardware thrust to analyze the complex software and hardware hyperscale design

space and use insights from these analyses to design efficient cross-stack solutions for

hyperscale computation.

In the software thrust, this dissertation contributes µSuite, the first open-source bench-

mark suite of modern web services built with a new hyperscale software paradigm. µSuite

facilitates future research and is being used in academia and industry to study hyperscale be-

haviors. Next, this dissertation uses µSuite to study software threading design implications

in light of today’s hardware reality and identifies new insights in the age-old research area

of software threading. Driven by these insights, this dissertation demonstrates how software

threading models must be redesigned at hyperscale by presenting an automated approach

and tool, µTune, that makes intelligent threading decisions during system runtime.

In the hardware thrust, this dissertation architects both commodity and custom hardware

to efficiently support hyperscale software requirements. First, this dissertation characterizes

the shortcomings in commodity hardware running hyperscale web services, revealing insights

that influenced commercial CPU designs. Based on these insights, this dissertation presents

a design approach and tool, SoftSKU, that enables cheap commodity hardware to efficiently

support new hyperscale software paradigms, improving the efficiency of real-world web

services that serve billions of users, saving millions of dollars, and meaningfully reducing

the global carbon footprint. This dissertation also presents a hardware-software co-design

system, µNotify, that redesigns commodity hardware with minimal modifications by using

existing hardware mechanisms more intelligently to overcome new hyperscale overheads.

Next, this dissertation presents a systematic characterization of how custom hardware

must be designed at hyperscale, resulting in industry-academia joint benchmarking efforts,

commercial hardware changes, and improved software development. Based on this char-

acterization’s insights, this dissertation presents Accelerometer, an analytical model that

estimates realistic gains from hardware customization. Multiple hyperscale enterprises and

hardware vendors have adopted Accelerometer to make well-informed hardware decisions.

xxiii

CHAPTER I

Introduction

Bridging the software and hardware worlds via efficient solutions that span the systems

stack enables hyperscale web services.

1.1 Motivation

1.1.1 Web Services Powered by Data Centers are Here, There, and Everywhere

The phrase “data center” is a presumption, a misnomer at best. It recalls an era when an

enterprise’s compute infrastructure was mostly devoted to data storage resources that were

cobbled together in a basement or a coat closet [100]. For example, the first semblance to

“large-scale” data processing came about in 1946 when the Electronic Numerical Integrator

and Computer (ENIAC) was built for the U.S. Army to primarily store artillery firing codes

and was dubbed as the first mainframe general-purpose digital computer [237]1. At the time,

data centers, like a sewer system or a highway’s foundation beneath the potholes, were not

something meant to be seen or paid attention to.

Over the course of time, the original assumptions about a data center started to evolve.

In the 1960s, IBM developed commercial mainframe computers that required their own

mainframe rooms in dedicated free-standing buildings [49]. The 1980s saw the launch of

1Fun fact: The institutions I attended for graduate school, the University of Pennsylvania and the University
of Michigan, are two of the nine institutions that hold pieces of the ENIAC. So, perhaps it is no surprise that I
decided to focus my dissertation research on making large-scale computation more efficient.

1

Personal Computers (PCs) that were commonly networked with remote servers, allowing a

user on a PC to access files over a network [100]. By the time the internet became widely

available in the 1990s, internet exchange buildings had sprung up in key international

cities, leading to much larger facilities that housed hundreds or thousands of distributed

servers. The “data center as a service” model became popular at this time, with these internet

exchange buildings becoming the most important data centers of their time. Today, a data

center is a multi-billion dollar warehouse-scale building that houses hundreds of thousands

of servers to serve billions of users around the world [149].

This drastic evolution of a data center is fueled by the fact that the world has been

undergoing a technological revolution in which web applications or services are growing

in variety and complexity [102], dealing with exponentially-increasing data [108], and

serving billions of users [31]. For example, modern web services such as social media,

online messaging, web search, video/movie streaming, and online banking are becoming

ubiquitous2, performing increasingly new and sophisticated operations.

Modern web services require data centers that scale to hundreds of thousands of servers,

i.e., hyperscale [445]. While at face value, hyperscale web services seem instantaneously

available at the touch of a button, they, in fact, barely meet performance requirements despite

running on prohibitively expensive data centers that consume enough power to light up entire

countries [446]. As hyperscale computing grows to drive more futuristic applications such

as virtual reality, self-driving cars, conversational AI, and the Internet of Things, existing

hyperscale systems will face greater efficiency challenges due to these more complex tasks.

More specifically, we have reached a new inflection point in web service complexity where,

unless we improve the efficiency of web services and the data centers they run in, we cannot

realize futuristic hyperscale web services. This dissertation enables the hyperscale web

services of tomorrow by designing efficient system stacks for hyperscale computation.

2How often do you, dear reader, find yourself subconsciously reaching for your phone to skim through
email or scroll through social media? The answer to this rhetorical question might implicitly motivate this
subsection much better than I explicitly could.

2

1.1.2 Radical Shift in Hyperscale Computing

Over the past few years, there has been a radical shift in hyperscale computing due to an

unprecedented growth in data [108], users [31], and web service functionality [102]. Data

centers must now be able to handle this rapid growth in hyperscale trends.

Growth in data. Web services must increasingly process and store exponentially

growing data [108]. In 2006, Clive Humby, a data scientist and mathematician, first coined

the catchphrase “data is the new oil” [61]. At the time, the total global data recorded

amounted to an estimated 160 exabytes [109]. Since then, data has exploded in volume,

growing exponentially to approximately 33 zettabytes by 2018 [109]. As we move from an

oil-driven era to a data-driven age that is shaped by the digital revolution (also known as

the “Fourth Industrial Revolution”), data is increasingly becoming voluminous and varied in

type, growing at a breakneck speed. In 2018, a white paper “Data Age 2025”, predicted that

data volumes would increase from 33 zettabytes in 2018 to 175 zettabytes by 2025 [28].

Growth in users. Web service usage has seen tremendous growth where, from 2000

to 2009, the number of users globally rose from 394 million to 1.9 billion [419]. By 2010,

22% of the world’s population had access to computers with 1 billion Google searches

every day, 2 billion daily YouTube views, and 300 million users reading blogs [59]. In

2014, web service users surpassed 3 billion, i.e., 44% of the world’s population, with most

users belonging to the world’s richest countries [31]. As more countries enter the scene,

hyperscale enterprises must cope with more and more users accessing their web services.

Growth in web service functionality. Initially, web services were primarily text-based,

where a user was limited to reading information provided by content producers (e.g., news

articles). There was no option for the user to communicate back since services were built

statically. As web services evolved to facilitate more interaction between users, there was a

sudden growth in the “social web”, with the emergence of social media platforms such as

Facebook and Twitter that found newer ways to enable and engage users [101]. The modern

web service has grown to interpret user-generated data in more meaningful ways with the

3

help of Artificial Intelligence (AI) and Machine Learning (ML) [102]. As user needs grow,

web services must also become richer and more sophisticated, tailoring content to each

user’s specific needs. In the future, data centers must support futuristic applications such as

self-driving cars, virtual reality, conversational AI, and the Internet of Things.

This rapid growth in web service functionality imposes an urgent need on hyperscale en-

terprises to enable futuristic web services while still making voluminous, multi-dimensional

data/content instantaneously available to billions of users. In the next subsection, I ex-

plore whether hyperscale enterprises can rely on the hardware to rise up to meet these new,

unprecedented web service expectations.

1.1.3 Decline in Technology Trends that Drive Processor Performance Scaling

The early data center server processors enjoyed the promise of two significant technology

design trends that sustained fifty years of exponential computing advances. The first, Moore’s

Law, was the 1965 forecast by Intel co-founder Gordon Moore that transistor densities on

integrated circuits would double about every two years [373]. The second, Dennard scaling,

was the 1974 observation by Dennard et al. that transistor power densities would remain

constant as transistors sizes are scaled down [203].

With Moore’s Law and Dennard scaling working in cohesion, transistor sizes scaled

down in each technology generation, and processor clock frequency increased at the same

power consumption, resulting in faster circuits. As a result, hardware architects leveraged

doubling transistor densities to create complex hardware features that further enhanced

performance [252], while paying minimal attention to their designs’ energy efficiency.

These hardware enhancements enabled hyperscale enterprises to primarily focus on cranking

up web service performance, to cater content instantaneously to the end user, improving

end-user experience, maintaining service availability, and increasing revenue of operation.

Although performance and power scaling weathered several technology challenges

throughout the history of Moore’s Law and Dennard scaling, the last ten to fifteen years have

4

posed particularly formidable challenges [480, 167, 469]. In particular, one challenge en-

countered around 2005, was caused by the breakdown of Dennard scaling, resulting in a com-

puting power wall that made further compute improvements power-limited [167, 294, 437].

More recently, the decline of Moore’s Law has resulted in computing performance not scal-

ing as expected [480]. Hence, whereas processor performance scaled almost exponentially

from the 1980s to around 2005, resulting in a 1000x performance increase, there has been

only around a 5x performance improvement since 2005 [196]. These inflection points in

the history of computer architecture have marked the end of almost half of a century of

exponential growth in single-core processor performance [469].

Due to a decline in these hardware technology design trends, major hyperscale enterprises

have reported that successive server generations running hyperscale web services exhibit

diminishing performance returns [444]. Today, hyperscale data centers face a bleak situation

where the hardware no longer rises to meet modern web service requirements, especially at

a time when hyperscale web services have been facing an unprecedented growth in data,

users, and functionality (detailed in Subsection 1.1.2). To enable futuristic hyperscale web

services, there is now an urgent need to redesign the compute stack to efficiently deal with

the rapid growth in web service data, users, and functionality, when the hardware does not

scale as well as it used to.

1.1.4 Consequences on the Software and Hardware Research Landscape

To enable hyperscale computing in light of the unprecedented growth in web service

trends and the decline in hardware performance scaling, there is a critical need to holistically

design the systems stack to support these emerging trends. In other words, hardware

architects must design the hardware layer to become more aware of hyperscale software

needs and software researchers must design software layers to cope with the decline in

hardware performance scaling. However, we find that systems researchers typically continue

the traditional approach of building each layer of the systems stack separately. We now

5

highlight how individual systems stack layers, i.e., the application layer, software abstraction

layers, and the hardware layer, have evolved in response to the unprecedented growth in

hyperscale web service trends and today’s hardware reality.

1.1.4.1 Application layer: The shift towards a granular application architecture

Table 1.1: Timeline of the application layer’s evolution in response to the unprecedented growth in
hyperscale web service trends and today’s hardware reality: There has been a shift from monolithic
web application architectures to more granular architectures such as microservices.

1997 · · ·• IBM releases Enterprise Java Bean to provide a “small” service that
works with web-related software components [2]

1999 · · ·•
Microsoft introduces the Simple Object Access Protocol to utilize object
methods using Hypertext Transfer Protocol (HTTP) [99]
Web services start being built with Service-Oriented Architectures [107]

2005 · · ·• Dr. Peter Rodgers used the term “Micro-Web-Services” during a
presentation on cloud computing [2, 432]

2011 · · ·• Several companies such as Netflix and Gilt adopt the microservice
architecture [7, 94]

2014 · · ·• Amazon introduces AWS Lambda, popularizing the serverless
computing model [96]

2015 · · ·• Kanev et al. use the term “microservice” for the first time in an ISCA
paper (appears as a footnote on page 2) [285]

2018 · · ·• Sriraman et al. introduce µSuite, the first benchmark suite of end-to-end
web services composed of microservices [448]

2019 · · ·•
Gan et al. release the DeathStarBench microservice benchmark
suite [230]
Facebook reveals its adoption of the microservice architecture [443]

2020 · · ·• Microsoft studies the wide-spread adoption effects of building web
services using the serverless paradigm [429]

Table 1.1 references a selected timeline of events that influenced the application layer in

response to the unprecedented growth in hyperscale trends and today’s hardware reality.

1995 - 2005: The era of monolithic service architectures. In the early days, web

services were built with monolithic architectures, where a service’s different functionality

components were developed as a single program that was run on a single hardware plat-

form [477]. For example, when a video streaming service is built as a monolith, its various

6

operations such as authorizing a user, fetching cached videos, recommending related videos,

and displaying advertisements, are all performed by the same application binary running

on a single server. However, with the unprecedented growth in data, users, and service

functionality, building web services as monoliths is no longer a sustainable approach due to

challenges in development, deployment, reliability, and scalability [60]. To overcome these

challenges, web services are starting to be built in a more distributed and granular manner.

2005 - Present (2021): The era of granular web service architectures. The idea of a

granular web service architecture is not entirely new. As early as 1997, IBM released the

Enterprise Java Bean, one of the earliest efforts to provide a “small” service that interacts

with web-related software components [2]. The limitation of working only with Java,

brought about the solution known as Service-Oriented Architecture (SOA) which became

the next evolutionary step for building web services in a granular manner [107]. SOA is

an enterprise-wide approach to software development of application components that takes

advantage of reusable software components and services. In SOA, each service has the code

and data integrations required to execute a specific business function (e.g., authenticating a

user).

As web services continued to grow, there emerged a need to develop services granules

in a way that was not enterprise-wide, i.e., there was a need to build individual application

granules that perform a specific service functionality in a way that is more agile, scalable,

and resilient. An example of this need is reflected in an event that occurred in 2008,

where a single missing semicolon brought down the entire Netflix website for several

hours [74]. Hyperscale enterprises realized that having an entire system that is a single point

of failure leads to stringent governance processes, long development cycles, and scalability

issues. These challenges resulted in the evolution of “microservices”3 that have become the

mainstream web service architecture today.

Today, modern web services are composed of numerous independent, specialized, dis-

3In the “Profiling a warehouse-scale computer” paper, the term “microservice” appears for the first time in
a systems/architecture venue as a footnote on page 2 [285].

7

tributed microservices [286, 207, 378] such as HTTP connection termination, key-value serv-

ing [223], query rewriting [144], click tracking, access-control management, and protocol

routing [69]. Unlike the catastrophe in 2008, today, hundreds of microservices give Netflix

the availability, scale, and speed needed to handle growing user numbers [7]. In fact, several

other companies, such as Amazon [17], Gilt [94], LinkedIn [42], and SoundCloud [21],

adopted microservice architectures to improve service development and scalability [477].

Microservices are reusable and interoperable as they are composed via standardized

service interfaces such as Remote Procedure Calls (RPC) (e.g., Google’s Stubby and

gRPC [45] or Facebook/Apache’s Thrift [37]). Of late, with the evolution of Amazon’s

AWS Lambda [96], several microservices are being built with the more granular serverless

paradigm that allows allocating server resources on demand. This dissertation is one of

the first works to comprehensively study hyperscale microservices’ system-level implica-

tions [448, 449, 443, 446, 450, 444, 445], facilitating future research in this space [230, 367].

1.1.4.2 Software abstraction layers: The shift towards light-weight abstractions

Table 1.2 references a selected timeline of events that influenced software abstractions

in response to the unprecedented growth in hyperscale trends and today’s hardware reality.

1960 - 2007: The era of virtualization. In the 1960s, IBM came up with the concept

of a “virtual machine” to develop an interactive system that could support multiple users

and applications, thereby beginning the virtualization era [111]. Fast forward to the early

2000s and a different problem was brewing. Data centers were filled with expensive servers

running at very low utilization levels because the software stack was unable to effectively

utilize processor resources. Again, the solution was a form of virtualization that established

a stranglehold in enterprise data centers. VMware, then a startup out of Stanford, enabled

enterprises to dramatically increase server utilization by allowing multiple applications

(including Operating Systems) to be packed into a single server [105]. The server utilization

and cost savings from virtualization resulted in cloud computing as we know it today.

8

Table 1.2: Timeline of the evolution of software abstraction layers in response to the unprecedented
growth in hyperscale web service trends and today’s hardware reality: There has been a shift from
heavy-weight abstractions (e.g., virtualization) to light-weight abstraction layers (e.g., containers).

1964 · · ·• IBM introduces the concept of a “virtual machine” [111]
1971 · · ·• The original idea behind “containers” is employed on Unix systems [1]
1980 · · ·• Kernel bypass is invented for High Performance Computing [29]

1998 · · ·•
VMWare begins as a startup out of Stanford to create a virtualization
layer that runs multiple applications on a single server, marking the start
of an era where virtualization establishes a stranglehold in every
enterprise data center [105]

2007 · · ·•
Linux becomes the primary OS used in many hyperscale data centers,
eliminating the need for a separate virtualization layer that supports
multiple Operating Systems on the same server [30]

2010 · · ·• Intel releases the Data Plane Development Kit for kernel bypass [3]

2012 · · ·• Containers become mainstream, isolating an application from the
underlying hardware while still providing bare-metal performance [27]

2014 · · ·• Kernel bypass becomes more common in data centers [154]
2018 · · ·• Software Defined Data Centers begin to emerge [63]

In the late 2000s, a quiet technology revolution got under way at companies like Google

and Facebook. Faced with the unprecedented challenge of serving billions of users in real

time, these companies realized the need to build tailored systems stacks that aggregated

(rather than carved) thousands of small, cheap servers and replaced larger, expensive

monoliths. What these smaller, cheaper servers lacked in computing power they made

up for in number, and sophisticated software (e.g., efficient request schedulers [475])

glued it all together to create a hyperscale computing infrastructure. The data center’s

shape changed. Linux became the Operating System (OS) of choice, making moot one of

virtualization’s core value propositions: the ability to simultaneously run different “guest”

Operating Systems on the same physical server [30].

2007 - Present (2021): The era of light-weight abstractions. More recently, there is a

shift towards developing “slimmer” abstraction layers in response to the growth in hyperscale

trends and today’s hardware reality. For example, virtual machines have been replaced by

containers as a key abstraction primitive in many data centers [27]. Although containers

9

are not new (the concept initially came about in the 1970s [1]), they are taking off now as

they are a lighter-weight abstraction primitive. Unlike virtual machines that virtualize the

hardware and contain an OS with the application stack, containers virtualize only the OS and

contain only the application. As a result, containers have very small footprints and can be

launched in mere seconds, enabling them to efficiently support granular microservices [27].

Another example of a “slimmer” abstraction and isolation software trend is the advent

of OS kernel bypass mechanisms [3]. Over the past decade, I/O devices in data centers have

sped up while CPU performance scaling has declined. To compensate, software researchers

proposed eliminating the work the CPU performs upon receiving an I/O, i.e., eliminating

the processing of OS handlers altogether [154]. Modern kernel-bypass techniques such as

Software Data Planes have become mainstream today, with several hyperscale enterprises

reimagining their software stacks around them [357]. More generally, hyperscale enterprises

appear to be moving towards building Software Defined Data Centers (SDDC), where each

data center resource component (e.g., network, storage, and CPU) is virtualized and delivered

as a software service via suitable Applications Programming Interfaces (APIs) [63].

1.1.4.3 Hardware layer: The shift towards hardware specialization

Table 1.3 references a selected timeline of events that influenced the hardware layer in

response to the unprecedented growth in hyperscale trends and today’s hardware reality.

2005 - Present (2021): The era of multicore architectures. With the end of Dennard

scaling around 2005 [203], power consumption became a primary constraint for computer

hardware development, resulting in new power-aware hardware design trends. Since the

hardware industry continued to provide increasing transistor densities [373], architects

were able to leverage this opportunity to turn from single-core processors to multi-core

processor designs [208, 233, 395] that made use of the available extra transistors with a

constrained power budget [138, 256]. Multicore architectures still dominate the design of

today’s commodity server-class processors [446].

10

Table 1.3: Timeline of the hardware layer’s evolution in response to the unprecedented growth in
hyperscale web service trends and today’s hardware reality: There has been a shift towards building
specialized hardware for various “killer” web applications.

<2005 · · ·• Exponential growth in single core processor performance that lasted for
almost half of a century [373]

2005 · · ·• Computer architects recognize the beginning of the new era of
power-aware computer hardware design [294]

2006 · · ·• Multi-core architectures become mainstream [208, 233, 395]
2016 · · ·• Moore’s Law has been steadily grinding to a halt [480]
2017 · · ·• Google announces its Tensor Processing Unit [279]

2018 · · ·•

John Hennessy and David Patterson win the 2017 ACM A.M. Turing
Award and speak about Domain Specific Architectures in the wake of
the Moore’s Law decline at ISCA 2018 [62]
Microsoft announces its Neural Processing Unit for Deep Neural
Network operations performed by web services [86]

2019 · · ·• Intel delays its 10 nm process multiple times [52]
2020 · · ·• IBM announces a compression accelerator for web applications [116]
2021 · · ·• Google announces its in-house development of a System on Chip [43]

2015 - Present (2021): The era of hardware specialization. About a decade after the

end of Dennard scaling, Moore’s Law is steadily grinding to a halt [480]4. As a result,

architects have been specializing hardware to meet emerging web services’ performance

and power needs [413, 279, 181, 116]. An early example of hardware specialization is the

Graphics Processing Unit (GPU) that was developed to execute highly-parallel applications.

More recently, instead of solely relying on traditional hardware vendors, hyperscale enter-

prises are developing highly specialized hardware in-house [413, 279, 181, 116] to improve

the efficiency of their important web services (e.g. Google’s Tensor Processing Unit [279])5.

4For example, Intel delayed its 10 nm process multiple times [52]
5Google recently announced the in-house development of a System on Chip that will integrate numerous

specialized hardware components for individual web service functionalities [43]. The fact that Google, tradi-
tionally a software company, recruited Intel veteran Uri Frank as Google’s Vice President of Engineering [43],
appears to imply that the future holds the promise of highly-specialized enterprise-specific hardware designs.

11

1.2 Research Challenges and Goals

Current software and hardware systems were conceived at a time when we had scarce

compute and memory resources, limited data and users, and easy hardware performance

scaling due to Moore’s Law. These assumptions are not true today. Today, the world is

undergoing a technological revolution where emerging web services require data centers

that scale to hundreds of thousands of servers, i.e., hyperscale, to efficiently process requests

from billions of users. This technological revolution of hyperscale computing is emerging at

a time when hardware is facing a steady decline in performance scaling [480].

To enable this new era of hyperscale computing, there is a clear need for systems

researchers who design efficient computing systems that can both support today’s key web

services as well as enable the web services of tomorrow. However, to design efficient

computing systems in light of modern hyperscale web service trends and today’s hardware

reality, systems researchers can no longer afford to build each layer of the systems stack

separately (as shown in Tables 1.1, 1.2, and 1.3). Instead, the first research goal is that

systems researchers must rethink the synergy between the software and hardware worlds

from the ground up. Specifically, to improve hyperscale efficiency, computer architects must

now be aware of web service software requirements, and software developers can no longer

treat hardware as a black box that magically becomes faster every year.

The main challenge in rethinking the synergy between the software and hardware worlds

is a large and complex software and hardware design space that makes it intractable to

manually identify optimal designs. As one example, work related to this dissertation

discovered that the software threading design space has complex implications induced by

the decline of hardware performance scaling, making it impractical for a software developer

to manually identify the best threading design [449]. As a second example, the hardware

customization design space has complex implications on web service software depending

on whether the hardware customization is an on-chip CPU optimization or an off-chip or

12

remote hardware accelerator [444].

Manually navigating this vast and complex design space to make efficient design deci-

sions is often intractable at hyperscale since (1) design implications vary across secondary

conditions such as web service load variations, (2) trial-and-error methods or experience-

based intuition cannot systematically capture design space implications, (3) web service

code evolves quickly, (4) synthetic experiments do not necessarily capture complex pro-

duction behavior, and (5) the effects of tuning a single design configuration are often too

small to be manually captured with sufficient statistical significance. Hence, even though

systems researchers have been working to improve web service efficiency for the past twenty

years, they cannot enable futuristic web services unless they achieve the second research

goal of automatically navigating, i.e., self-navigating, the complex software and hardware

hyperscale design space.

Given the widespread need for web services, to achieve both these research goals,

it is of paramount importance to devise mechanisms that can automatically enhance the

synergy between the complex software and hardware worlds. In other words, rather than

following the traditional approach of building each layer of the systems stack separately,

modern hyperscale web service trends and today’s hardware reality have created a need to

automatically (1) bring new hardware insights when designing software stack layers and (2)

draw on fundamental software design principles to systematically architect the hardware

layer.

My work pursues the vision of bridging the software and hardware worlds, demonstrating

the importance of that bridge in enabling the hyperscale web services of tomorrow via

efficient self-navigating solutions that span the systems stack. Specifically, this dissertation’s

vision is to (1) redesign web service software based on new overheads induced by the decline

of hardware performance scaling and (2) rearchitect data center commodity and custom

hardware to support new software requirements that are a consequence of the unprecedented

growth in hyperscale web service trends.

13

To achieve this research vision in a way that self-navigates the complex software and

hardware design space, this dissertation spans two broad thrusts: (1) a software and (2)

a hardware thrust to study both the complex software and hardware design space. In the

software thrust, I ask the question: how do we design hyperscale web service software based

on the overheads induced by today’s hardware reality? In the hardware thrust, I ask the

question: how do we architect data center commodity and custom hardware to support the

unprecedented growth in hyperscale software trends? In light of emerging hyperscale trends

and today’s hardware reality, it is critical to systematically answer both questions to enable

the hyperscale web services of tomorrow.

To answer both questions, I employ a three-fold research approach. First, I systematically

lay out a taxonomy of various design axes in a particular software or hardware design space

(e.g., microservices’ software threading designs), analyzing their efficiency implications in

a structured and comprehensive manner. Second, I use insights from my characterization

to design practical, scalable solutions that self-navigate a complex software or hardware

design space to improve hyperscale efficiency. I also mitigate key overheads identified in

my analyses. Third, I build these systems and when possible, deploy them in real hyperscale

systems.

Overall, the work related to this dissertation addresses the gap between hyperscale

efficiency and growth expectations and today’s hardware reality. The remainder of this

section provides an overview of the specific challenges addressed by this dissertation,

highlighting this dissertation’s goals and contributions along the way.

1.2.1 Enabling the Study of Modern Web Services

Challenge: Lack of open-source benchmarks to study modern web services

Modern web services are increasingly built using microservice architectures, wherein

a complex web service is composed of numerous distributed microservices such as HTTP

connection termination, key-value serving [223], query rewriting [144], click tracking,

14

access-control management, and protocol routing [69]. Whereas monoliths face greater than

100 ms Service Level Objectives (SLOs) (e.g.,∼300 ms for web search [471]), microservices

must often achieve sub-ms SLOs (e.g., ∼100 µs for protocol routing [501]) as many

microservices must be invoked serially to serve a user’s query. Hence, sub-ms–scale

OS/network overheads (e.g., a context switch cost of 5-20 µs [470]) are often insignificant

for monoliths. However, the microservice regime differs fundamentally: OS/network

overheads (e.g., context switches, network protocol delays, inefficient thread wakeups, and

lock contention) that are often minor with monolithic request service times of 100s of

milliseconds, can dominate microservice latency distributions. For example, even a single

20 µs spurious context switch implies a 20% latency penalty for a request to a 100 µs-

response latency protocol routing microservice [501]. Hence, it is critical to revisit prior

conclusions on sub-ms–scale OS/network overheads for this new microservice regime [145].

At the time I started my dissertation work, there existed no representative, open-source

benchmarks to study the microservice regime. Widely-used academic data center benchmark

suites, such as CloudSuite [221] or Google PerfKit [78], were unsuitable for characterizing

sub-ms–scale overheads in microservices as they use monolithic rather than microservice

architectures and largely have request service times that are greater than 100 ms. Hence,

there was a real need for open-source benchmarks that enable the study of microservices.

Goal: Open-source a benchmark suite of representative modern web services

To study microservices, as a part of this dissertation’s software contributions, I introduce

the first open-source benchmark suite6 of end-to-end modern web services composed of

microservices, called µSuite [448]. µSuite includes four end-to-end web services that

incorporate open-source software: a content-based high dimensional search for image

similarity—HDSearch, a replication-based protocol router for scaling fault-tolerant key-

value stores—Router, a service for performing set algebra on posting lists for document

retrieval—Set Algebra, and a user-based item recommender system for predicting user

6Available at https://github.com/wenischlab/MicroSuite

15

ratings—Recommend. Since its publication [448], µSuite has been used by researchers in

academia and industry (e.g., MIT, UIUC, UT Austin, Georgia Tech, Cornell, ARM, and

Intel).

In this dissertation, I use µSuite to study the OS/network performance overheads incurred

by microservices. My main finding is that the threading interactions with the OS and

network layers introduce microsecond-scale overheads that significantly affect microservices,

but are insignificant to their monolithic counterparts. I also observe that inefficient OS

scheduler decisions can degrade microservice latency by up to 87%. Hence, intelligent thread

scheduling and better threading models can greatly improve microservice performance.

1.2.2 Redesigning Software Based on Underlying Data Center Hardware Constraints

Challenge: Software threading models are unaware of overheads caused by hardware

constraints

My study of OS/network performance overheads using µSuite showed that microser-

vices can benefit from better threading designs. These threading-induced overheads that

microservices face are due to today’s hardware reality, where network devices have sped up

while CPU performance scaling has nearly stopped [196]. Today, a CPU thread’s accesses to

the underlying OS/network stacks cause threading-induced overheads that arise from sources

such as thread contention on locks, thread wakeup delays, and context switching of threads.

Hence, analyzing various software threading designs’ implications and rethinking software

threading models for modern microservices has become a deeply important problem.

Goal: Rethink threading models to overcome overheads faced by modern web services

To study threading-induced software overheads that arise due to hardware constraints,

there is a need to systematically analyze the sub-ms–scale OS and network overheads that

arise from threading and concurrency design decisions. As a part of this dissertation’s

software contributions, I use µSuite to systematically introduce and comprehensively char-

acterize a taxonomy of threading models [449]. My taxonomy is composed of software

16

threading dimensions that are commonly used to build a microservice, such as synchronous

or asynchronous RPCs, in-line or dispatched RPC handlers, and interrupt- or poll-based

network reception. I also vary thread pool sizes dedicated to the various functionalities,

i.e., network polling, RPC handling, and response execution. These threading design axes

yield a rich space of microservice software threading architectures that interact with the

underlying OS and hardware in starkly varied ways. Hence, my threading taxonomy and

analysis enables expert and novice developers alike to guide their microservice threading

designs.

This dissertation makes the important observation that no single threading model is best

across all hyperscale load conditions, paving the way for an automatic load adaptation system

that tunes threading models to improve microservice efficiency. Specifically, my threading

model characterization demonstrates that the relationship between optimal threading model

and service load is complex—one could not expect a developer to pick the best threading

model a priori. For example, at low load, models that poll for network traffic perform best,

as they avoid thread wakeup delays. Conversely, at high load, models that separate network

polling from RPC execution enable higher service capacity and blocking outperforms

polling for incoming network traffic as it avoids wasting CPU on fruitless poll loops. Hence,

exploiting these inherent threading model trade-offs during system runtime can significantly

improve microservice latency.

To exploit threading trade-offs at runtime, I present a system, µTune [449]7, that features

a framework that builds upon open-source RPC platforms [45] to abstract threading model

design from service code. µTune’s second feature is an intelligent run-time system that

determines load via event-based monitoring and automatically adapts to time-varying service

load by self-navigating the threading design space, i.e., tuning threading models and scaling

thread pool sizes. Both features enable µTune to dynamically curtail microservice latency

by 1.9× over static peak load-sustaining threading models (that an expert developer might

7Available at https://github.com/wenischlab/MicroTune

17

have picked) and state-of-the-art adaptation techniques [242, 316, 117]8.

In follow-on work, my co-authors and I mitigate OS/network-induced microsecond-scale

stalls identified in my threading characterization [449]. We present Duplexity, a heteroge-

neous server architecture that schedules latency-insensitive jobs when a microservice faces

microsecond-scale stalls, improving data center performance and energy efficiency.

1.2.3 Architecting Commodity Hardware for New Web Service Software Paradigms

At global user population scale, important web services that are composed of numerous

microservices can grow to account for an enormous installed base of physical hardware.

For example, across Facebook’s global server fleet, seven key microservices in four service

domains run at hyperscale, occupying a large portion of the compute-optimized installed

base [446]. In light of this new microservice software paradigm, it is important to answer

the question: do commodity server platforms serve microservices well? Are there com-

mon bottlenecks across microservices that we might address when designing future server

architectures?

Challenge: Commodity hardware does not efficiently support modern web service

software paradigms

To identify whether commodity hardware efficiently supports microservices, I undertake

comprehensive system-level and architectural characterizations of important microservices

on Facebook production systems serving live traffic. I find that web service functionality

disaggregation across microservices has resulted in enormous diversity in system and CPU

architectural requirements, with new CPU bottlenecks (e.g., high I/O processing latency

and high instruction cache misses). The bottlenecks identified in this work made hardware

vendors reconsider the benchmarks they used for decades to evaluate new servers.

As examples, I find that caching microservices [171] require intensive I/O and microsecond-

8My conversations with researchers at several hyperscale enterprises revealed that µTune could find an
immediate application in their data centers; I was invited to intern at several of these companies to integrate
µTune into their hyperscale web services.

18

scale response latency and frequent OS context switches comprise 18% of CPU time. In

contrast, a Feed [506] microservice computes for seconds per request with minimal OS

interaction. Facebook’s Web [388] microservice exhibits massive instruction footprints,

leading to astonishing instruction cache misses and branch mispredictions, while other

microservices exhibit much smaller instruction footprints. Some microservices depend

heavily on floating-point performance while others have no floating-point instructions. This

great diversity in hardware bottlenecks across microservices makes it challenging for a

one-size-fits-all commodity processor to efficiently support diverse microservices.

Goal 1: Extract greater performance from existing commodity data center hardware

The diversity in hardware bottlenecks across microservices might suggest a strategy

to specialize CPU architectures to suit each microservice’s distinct needs. Indeed, this

dissertation has identified new hardware bottlenecks that have since influenced the design of

commercial server-class processors [446, 445]. However, hyperscale enterprises have strong

economic incentives to limit hardware platforms’ diversity to (1) maintain fungibility of

hardware resources, (2) preserve procurement advantages that arise from economies of scale,

and (3) limit the overhead of qualifying/testing myriad hardware platforms. As such, there is

an immediate need for strategies that extract greater performance from existing commodity

server architectures to efficiently support diverse microservices on commodity hardware.

As a part of this dissertation’s hardware contributions, I introduce an automated approach

and tool to improve hyperscale microservice performance on cheap commodity server

architectures (often called “SKUs,” short for “Stock Keeping Units”). This approach called

SoftSKU, which is presented in Chapter IV, is a design-time strategy that tunes coarse-grain

(e.g., boot time) OS and hardware configuration knobs available on commodity processors

to help a processor platform or SKU better support its assigned microservice. OS and

CPUs provide several specialization knobs; I focus on seven: (1) core frequency, (2) uncore

frequency, (3) active core count, (4) code vs. data prioritization in the last-level cache ways,

(5) hardware prefetcher configuration, (6) use of transparent huge pages, and (7) use of

19

statically-allocated huge pages. I also propose new CPU knobs (e.g., Branch Target Buffer

ways) that can be made configurable to create finer-grained soft SKUs.

Manually identifying a microservice-specific SoftSKU is impractical since the design

space is large, code evolves quickly, synthetic load tests do not often capture production

behavior, and the effects of tuning a single knob are often small. Hence, I build an automated

design tool—µSKU—that self-navigates the hardware configuration design space to opti-

mize a hardware SKU for each microservice. µSKU automatically varies configurable server

knobs, by searching within a predefined design space via A/B testing, where it compares the

performance of two identical servers that differ only in their knob configuration. µSKU col-

lects copious fine-grain performance measurements while conducting automated A/B tests

on production systems serving live traffic to search for statistically significant performance

gains. I evaluate µSKU on hyperscale production microservices and demonstrate that the

soft SKUs designed by µSKU outperform stock and production server configurations by up

to 7.2% and 4.5% respectively, with no additional hardware requirement.

SoftSKU demonstrates that before resorting to hardware customization, there is still

significant performance that can be extracted from commodity processors by tuning their

OS and hardware knobs. In this manner, soft SKUs significantly improve the performance

efficiency of real-world Facebook production microservices that serve billions of users.

Moreover, by better utilizing cheap commodity hardware, soft SKUs save millions of dollars

and also meaningfully reduce the global carbon footprint [5]. Since the publication of this

work [446], several hyperscale enterprises have dedicated teams of engineers to explore

additional configurable hardware/OS soft-SKU knobs (e.g., SIMD width).

Goal 2: Redesign commodity hardware to overcome new web service overheads

In my characterization of system-level and architectural bottlenecks faced by Facebook

microservices, I observe that several microservices frequently make I/O requests and await

I/O responses. This behavior is because a microservice typically communicates with nu-

merous I/O devices and queues. For example, a microservice may receive network requests

20

from tens to hundreds of other microservices via the Network Interface Controller alone.

Since several microservices expect microsecond-scale service times, the microsecond-scale

I/O notification latency [449], which used to be insignificant for monolithic services, can

now dominate the microservice regime. Moreover, the I/O notification overhead also quickly

adds up across microservice chains to dominate the end-to-end web service latency [448].

Since I/O notification overheads dominate in microservices, it is critical to understand

why existing I/O notification paradigms (which were primarily built for monoliths), fall short

for microservices. This understanding paves the way for redesigning I/O event notification

paradigms for the microservice regime. To this end, I comprehensively characterize state-of-

the-art I/O notification paradigms that real-world microservices use [18, 73, 89, 97] (e.g., OS

interrupts, spin-polling, and MWAIT variants) to analyze how well they meet microservice

requirements. The main takeaway from my characterization is that existing notification

paradigms do not scale well and execute expensive I/O stacks. Hence, there is a critical need

to redesign I/O notification for the microservice regime.

As a part of this dissertation’s hardware contributions, I present µNotify, the first

I/O notification paradigm to achieve scalable, near-constant time notification. µNotify

reimagines a commodity CPU core’s software and hardware design dedicated for monitoring,

prioritizing, and receiving I/O. Such a design must (1) bypass expensive I/O stacks, (2) scale

across tens to hundreds of I/O queues, and (3) prioritize I/O work items. To achieve these

design goals, µNotify’s key insight is to make better use of cache coherence signals generated

by existing commodity processors. Specifically, µNotify observes writes to I/O queues

by tracking hardware-generated cache line invalidation coherence signals generated by an

I/O device writing to a I/O queue. Recording hardware-generated coherence invalidation

signals takes near-constant time, serving as low-overhead notification. Since the invalidation

is hardware-generated, µNotify bypasses the OS and scales across numerous I/O queues,

achieving 15.63x better throughput and 14.2x better latency than the state-of-the-art I/O

notification mechanisms.

21

In follow-on work [298, 299, 297], my co-authors and I mitigate the architectural

bottlenecks in the frontend of the processor pipeline (e.g., instruction cache misses) that I

found to be significant in my characterization of Facebook’s microservices [446]. We use

profile-guided optimization techniques to inform frontend operations (e.g., I-cache and BTB

prefetching and replacement decisions) to achieve near-ideal frontend performance.

1.2.4 Architecting Custom Hardware for New Web Service Software Paradigms

Challenge: Lack of a systematic understanding of hardware acceleration opportuni-

ties at hyperscale

My prior work [446] revealed that modern microservices are so diverse that they could

benefit from running on custom hardware. In fact, to improve hardware efficiency, sev-

eral architects today work on developing numerous specialized hardware accelerators for

important microservice domains (e.g. Machine Learning tasks). Designing such custom

hardware accelerators for each microservice operation might improve performance or energy.

However, designing custom hardware for each microservice operation is prohibitively expen-

sive at hyperscale since data center operators lose procurement advantages that arise from

economies of scale and must also develop and test on myriad custom hardware platforms.

Hence, an important question arises: which microservice software operations consume the

most CPU cycles and are worth accelerating in the hardware?

To build specialized accelerators for these key microservice operations, it is important to

first systematically identify which type of accelerator meets microservice requirements and

is worth designing and deploying. Deploying specialized hardware is risky at hyperscale,

as the hardware might under-perform due to performance bounds from the microservice’s

software interaction with the hardware, resulting in high monetary losses. For example, when

hyperscale data center operators tried to adopt a few new accelerators, they observed that

these accelerators reduced performance due to overlooked microservice software interaction

overheads, inducing high monetary losses [445]. To make well-informed hardware decisions,

22

it is crucial to systematically answer the following question early in the design phase of a

new accelerator to determine whether the new accelerator is worth designing: how much

can the accelerator realistically improve its targeted microservice overhead?

Goal: Analytically model hardware acceleration opportunities at hyperscale

To answer the first question posed above (i.e., which microservice software operations

consume the most CPU cycles and are worth accelerating in the hardware?), I undertake a

comprehensive characterization of how microservices spend their CPU cycles (as a part of

this dissertation’s hardware contributions). I study seven important hyperscale Facebook

microservices in four diverse service domains that run across hundreds of thousands of

servers, occupying a large portion of Facebook’s global server fleet. My characterization

reveals that microservices spend only a small fraction of CPU cycles executing their main

application functionality (e.g., performing a Machine Learning operation); the remaining

cycles are spent in common orchestration overheads, i.e., operations that are not critical

to the main microservice functionality (e.g., I/O notification, logging, and compression).

Accelerating such common building blocks can greatly improve data center performance.

Already, a few hardware vendors have used this study’s insights to influence hardware

customization for orchestration overheads [445].

My characterization drove a hardware vendor to consider more representative bench-

marks (in place of traditional ones they used for decades) when evaluating hardware de-

signs [445]. This characterization work has resulted in an industry-academia joint collabora-

tive effort to design and open-source data center benchmarks that represent the hyperscale

behaviors identified in my characterization. Additionally, my characterization tool has been

integrated into Facebook’s fleet-wide performance monitoring infrastructure; it currently

assimilates statistics from hundreds of thousands of servers from around the world to help

developers visualize the performance impact of their code changes at hyperscale [445].

To answer the second question posed above (i.e., how much can the accelerator re-

23

alistically improve its targeted microservice overhead?), I develop Accelerometer9, an

analytical model for hardware acceleration [444]. Accelerometer estimates realistic gains

from hardware acceleration by self-navigating the various performance bounds that arise

from a microservice’s software interactions with the hardware. Accelerometer identifies

performance bounds and design bottlenecks early in the hardware design cycle, and provides

insight into which hardware acceleration strategies may alleviate these bottlenecks.

Accelerometer models both synchronous and asynchronous microservice software inter-

actions for three hardware acceleration strategies—on-chip, off-chip, and remote. It assumes

an abstract system with three components (1) host: a general-purpose CPU, (2) accelerator:

custom hardware to accelerate a kernel, and (3) interface: the communication layer between

the host and the accelerator (e.g., a PCIe link). Accelerometer models the microservice

throughput speedup and the per-request latency reduction for the three acceleration strategies.

Modeling both speedup and latency reduction ensures that acceleration enables a higher

throughput without violating latency Service Level Objectives.

I validate Accelerometer’s utility via three retrospective case studies conducted on

production systems, by comparing model-estimated speedup with real microservice speedup.

In all three studies, Accelerometer estimates the real microservice speedup with an error that

is less than or equal to 3.7%. I also use Accelerometer to project speedup for the acceleration

recommendations derived from key common overheads identified by my characterization of

Facebook’s microservices.

As microservices evolve, Accelerometer’s generality makes it even more suitable in

determining new hardware requirements early in the design phase. Since I validated Ac-

celerometer in production and made it open-source [4]10, I am happy to report that it has

been adopted by multiple hyperscale enterprises (e.g., with developing their encryption and

compression accelerators) to make well-informed hardware decisions [445].

9Accelerometer has been recognized for its long-term impact potential with an IEEE Micro Top Picks
distinction (one of 12 total computer architecture papers to receive this recognition in 2020) [445].

10Available at https://doi.org/10.5281/zenodo.3612796

24

Application

Software Frameworks

Operating System

Hardware

Analytical Models

Software
Thrust

Hardware
Thrust

Threading

Commodity

Custom

μSuite:
Chapter 2
[IISWC ’18]

μTune:
Chapter 3
[OSDI ’18]

Accelerometer:
Chapter 6

[ASPLOS ’20, IEEE Micro Top Picks ’21]

μNotify:
Chapter 5

SoftSKU:
Chapter 4
[ISCA ’19]

Figure 1.1: A timeline of the work presented in this dissertation, organized horizontally according
to the years when portions of the individual dissertation chapters were published. The timeline
is divided into this dissertation’s software and hardware thrusts to show a bird’s eye view of the
software and hardware design space studied in this dissertation. Each work of research is annotated
with the dissertation chapter in which it is covered and the publication venue where portions of that
chapter were published. The background color of the box representing each work of research is color
coordinated with the levels of the systems stack (shown on the right) that the technologies presented
in that chapter cover.

1.3 Dissertation Contributions

My dissertation is motivated by the scale of the problems I am solving and the opportunity

for real-world technical and societal impact. This dissertation makes a number of novel

and impactful software and hardware contributions that bridge the software and hardware

worlds to enable the hyperscale web services of tomorrow. Rather than following the

traditional approach of building each layer of the systems stack separately, this dissertation

uniquely brings new hardware insights when designing software stack layers and draws on

fundamental software design principles to systematically architect the hardware layer.

Fig. 1.1 shows a graphical depiction of a timeline of the research work presented in

this dissertation. The timeline categorizes this dissertation’s software and hardware thrusts,

depicting an overview of the software and hardware design spaces studied in this dissertation.

Fig. 1.1 also annotates each research work to show the levels of the systems stack that the

25

technologies presented in that work cover.

As shown in Fig. 1.1, in the software thrust, this dissertation’s software contributions

in terms of a representative, open-source benchmark suite of modern web services built of

microservices facilitate future research on the modern microservice paradigm. Using this

benchmark suite, this dissertation builds on decades of software threading model research,

identifying gaps in existing software threading designs that arise due to the decline in

hardware performance scaling. This dissertation presents new software threading model

insights that enables fundamentally redesigning software threading models for the emerging

hyperscale microservice paradigm.

In the hardware thrust, this dissertation’s hardware contributions systematically architect

data center hardware in a way that is aware of fundamental software design principles

to support the unprecedented growth in hyperscale software trends. By comprehensively

characterizing the commodity and custom hardware design space in light of emerging hy-

perscale software trends, this dissertation facilitates a holistic approach to future hardware

design. This characterization has influenced the design of commercial hardware architec-

tures, enabled industry-academia joint benchmarking efforts, and improved the software

development process. My characterization’s insights enable techniques that help maintain

the performance improvement rate for commodity processors, triggering a significant shift

in the hardware industry, saving millions of dollars, and meaningfully reducing the global

carbon footprint. Furthermore, driven by this characterization, this dissertation presents a

rigorous, analytical alternative to ad hoc hardware customization approaches that enables

hyperscale enterprises to make well-informed hardware decisions.

Overall, through the software and hardware contributions summarized below, this disser-

tation realizes efficient web services from analytical models on paper to system deployment

at hyperscale.

• Demonstration of the benefits of cross-stack design to enable hyperscale web

services. This dissertation’s primary, unique contribution is bridging the software and

26

hardware worlds and demonstrating the importance of that bridge in realizing efficient

hyperscale web services via solutions that span the systems stack. Specifically, this

dissertation spans two broad thrusts: (1) a software and (2) a hardware thrust to

answer two important questions. First, how do we redesign hyperscale web service

software based on the overheads induced by today’s hardware reality? Second,

how do we rearchitect data center hardware to support the unprecedented growth

in hyperscale software trends? By systematically answering both questions, this

dissertation uniquely demonstrates the importance of cross-stack design in enabling

the hyperscale web services of tomorrow.

• Presentation of the first open-source benchmark suite of end-to-end modern web

services that facilitates future academic and industry research [448]. This disser-

tation is the first to present an open-source benchmark suite of web services built

with the microservice paradigm—µSuite. By demonstrating how this benchmark

suite can be used to study new overheads that manifest in the microservice regime,

this dissertation facilitates future research, with this benchmark suite being used by

researchers in academia and industry to analyze microservices.

• Identification of new insights in the age-old research area of software thread-

ing models that led to redesigning threading models for hyperscale web ser-

vices [449]. This dissertation revisits the study of threading models in the context of

today’s hyperscale web services by systematically laying out a taxonomy of threading

models and analyzing them to make important observations about new threading

implications that manifest at hyperscale. Driven by this systematic threading analysis,

this dissertation demonstrates how threading models must be redesigned for modern

web services by presenting an automated approach and associated tool, µTune, that

makes intelligent threading decisions during system runtime.

• Characterization of shortcomings in commodity hardware running hyperscale

27

web services that influenced the design of commercial CPU architectures [446].

This dissertation comprehensively characterizes system-level and architectural bottle-

necks faced by real-world, production web services running on commodity hardware

deployed at hyperscale. This characterization has influenced the design of commercial

server-class commodity processors.

• Demonstration of how existing commodity hardware can be used more effi-

ciently to enable hyperscale web services that resulted in real-world data centers

prioritizing this approach’s adoption over the modern-day trend of customizing

hardware [446]. In today’s trend of expensive hardware customization, this disserta-

tion presents an alternative approach and automated tool, SoftSKU, that demonstrates

how cheap commodity data center hardware can still efficiently support new web

service software paradigms in this post-Moore era. This dissertation demonstrates how

the SoftSKU approach significantly improves the performance efficiency of real-world,

production web services that serve billions of users, saving millions of dollars and

meaningfully reducing the global carbon footprint [5].

• Demonstration of how existing hardware mechanisms can intelligently be used

to overcome new web service software overheads [450]. This dissertation demon-

strates how commodity hardware can be redesigned with minimal modifications for

modern web services by intelligently extracting greater benefits from existing hard-

ware mechanisms. Specifically, by presenting µNotify, this dissertation demonstrates

how existing cache coherence mechanisms can be intelligently used better to mitigate

new I/O notification overheads that are faced by modern hyperscale web services.

• Presentation of a systematic understanding of hardware customization oppor-

tunities at hyperscale that enabled industry-academia joint benchmarking ef-

forts, influenced commercial hardware design, and improved software develop-

ment [444, 445]. In today’s era of developing custom hardware for “killer” applica-

28

tions, this dissertation takes a step back and systematically answers the Amdahl’s Law

question of which hyperscale web service software operations are worth accelerating

in the hardware. This study’s insights have received recognition in academia and

industry with (1) hardware vendors developing hardware customizations based on this

study’s insights, (2) an industry-academia joint collaborative effort to develop bench-

marks that represent the hyperscale behaviors identified in this study (and replace

traditional benchmarks used for decades), and (3) the deployment of the characteriza-

tion approach and tool in a hyperscale company’s fleet-wide performance monitoring

production infrastructure to improve the software development process.

• Presentation of a rigorous, analytical alternative to ad hoc hardware customiza-

tion approaches that enabled real-world hyperscale data centers to make well-

informed hardware investments [444, 445]. This dissertation presents an analytical

model, Accelerometer, to estimate realistic gains from hardware acceleration early in

the hardware design cycle. Accelerometer’s generality has resulted in multiple hyper-

scale companies and hardware vendors adopting Accelerometer to make well-informed

hardware decisions.

1.4 Dissertation Outline

This dissertation is designed to be educational, both to convey the results of the research

that I undertook as well as some of the lessons I learned about doing research. The latter

are captured in footnotes so as to not detract from the technical content. The rest of this

dissertation is organized as follows.

First, Chapters II and III detail this dissertation’s software contributions. Chapter II

introduces the first-ever benchmark suite of end-to-end modern web services composed

of microservices, µSuite. After introducing µSuite, the second half of Chapter II uses

µSuite to present a characterization of new OS and network overheads incurred by modern

29

web services. Chapter III uses the insights identified in Chapter II’s characterization to

systematically lay out a taxonomy of software threading models, analyzing the trade-

offs between the different threading models in light of the overheads induced by today’s

underlying hardware constraints. This chapter makes the important observation that no

single software threading model is best across all loads, paving the way for the second

half of Chapter III which presents µTune, an automatic load adaptation system that tunes

threading models and thread pool sizes to improve microservice performance efficiency.

Next, Chapters IV, V, and VI detail this dissertation’s hardware contributions. Chapter IV

presents a comprehensive characterization of system-level and architectural bottlenecks faced

by Facebook’s production microservices. Using this characterization’s insights, this chapter

introduces the first approach and associated automated tool, SoftSKU, to improve hyperscale

microservice performance on existing, cheap commodity hardware. The second half of

Chapter IV details an evaluation of how SoftSKU improves the performance efficiency of

Facebook production microservices that serve billions of users, saving millions of dollars and

meaningfully reducing the global carbon footprint. Chapter V makes better use of commodity

CPU architecture mechanisms to mitigate new I/O notification overheads identified in

Chapter IV’s analysis. After analyzing the limits of existing I/O notification paradigms, this

chapter introduces and evaluates the first I/O notification paradigm that achieves scalable,

near-constant time I/O notification, µNotify. While Chapters IV and V focus on making

better use of existing commodity hardware, Chapter VI focuses on developing and deploying

new custom hardware in a well-informed manner at hyperscale. Chapter VI presents a

systematic characterization of hardware acceleration opportunities at hyperscale. Based on

this characterization, the second half of Chapter VI introduces Accelerometer, an analytical

model that estimates realistic gains from hardware acceleration early in the hardware design

phase, to make well-informed hardware customization decisions at hyperscale.

Finally, Chapter VII presents ongoing and future research directions and subsequently

concludes this dissertation.

30

CHAPTER II

A Benchmark Suite for Microservices

As discussed in Chapter I, web services such as web search, advertising, and online retail

form a major fraction of data center applications [362]. Meeting soft real-time deadlines in

the form of SLOs determines end-user experience [135, 169, 307, 64] and is of paramount

importance. Whereas web services once had largely monolithic software architectures [146],

modern web services are composed of numerous, distributed microservices [448, 286, 207,

378]. These microservices are composed via standardized RPC interfaces, such as Google’s

Stubby and gRPC [45] or Facebook/Apache’s Thrift [37].

While monolithic applications face tail (99th+%) latency SLOs of the order of hundreds

of milliseconds (e.g., ∼300 ms for web search [471, 447]), microservices must often

achieve single-digit millisecond tail latencies implying sub-ms medians (e.g., ∼100 µs

for protocol routing [501]) as many microservices must be invoked serially to serve a

user’s query. For example, a Facebook news feed service [248] query may flow through

a serial pipeline of many microservices invoked via RPCs, such as 1) Sigma [38]: a

spam filter; 2) McRouter [385]: a protocol router; 3) Feed [446]: a news feed stories

extractor; 4) Tao [171]: a distributed social graph data store; and 5) MyRocks [75]: a

user database. Serial microservice interactions place tight single-digit millisecond latency

constraints on individual microservices. We expect continued growth in web service data sets

and applications with composition of ever more microservices with increasingly complex

interactions. Hence, the pressure for better microservice latency continually mounts.

31

Prior academic studies focused on monolithic services [221], which typically have

tail latency SLOs of the order of hundreds of milliseconds. [359]. Hence, sub-ms-scale

OS/network overheads (e.g., a context switch cost of 5-20 µs [470]) are often insignificant for

monolithic services. However, the sub-ms-scale regime differs fundamentally: OS/network

overheads that are often minor with latency SLOs of the order of hundreds of milliseconds,

such as spurious context switches, network and RPC protocol delays, inefficient thread

wakeups, or lock contention, can come to dominate microservice latency distributions. For

example, even a single 20 µs spurious context switch implies a 20% latency penalty for

a request to a 100 µs-response latency protocol routing microservice [501]. Hence, prior

conclusions must be revisited for the microservice regime [145].

Modern web services are composed of a complex web of microservices that interact via

RPCs [207] (Fig. 2.1). Many prior works have studied leaf servers [471, 340, 341, 198, 472,

409], as they are typically most numerous, making them cost-critical. However, we1 find

that mid-tier servers, which must manage both incoming and outgoing RPCs to many clients

and leaves, perhaps face even greater tail latency optimization challenges, but have not been

similarly scrutinized. The mid-tier microserver is a particularly interesting object of study

since (1) it acts as both an RPC client and an RPC server, (2) it must manage fan-out of a

single incoming query to many leaf microservers, and (3) its computation typically takes

tens of microseconds, about as long as OS, networking, and RPC overheads.

While it may be possible to study mid-tier microservice overheads in a purely synthetic

context, greater insight can be drawn in the context of complete end-to-end web services.

Widely-used academic data center benchmark suites, such as CloudSuite [221] or Google

PerfKit [78], are unsuitable for characterizing microservices as they (1) include primarily

leaf services, (2) use monolithic rather than microservice architectures, and (3) largely have

request service times of the order of hundreds of milliseconds.

1Some of the work in this chapter was performed in collaboration with my Ph.D. advisor, Thomas. F.
Wenisch [448]. Therefore, I use the “we” pronoun in this chapter to acknowledge Wenisch’s involvement in
this work.

32

Final response
Front-end
microserver

Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Intermediate response

Mid-tier response path:
Merge to form final response

Front-end
response path:
Response
presentation

Mid-tier request path:
1.  Process query
2.  Launch clients to leaf µsrvs

Query

Query

Query

Query

Intermediate response

Intermediate response

Figure 2.1: A typical web application fan-out: Modern web services are composed of a complex web
of microservices that interact via RPCs.

No existing open-source benchmark suite represents the typical three-tier microservice

structure employed by modern web services. As a part of this dissertation’s software

contributions, we introduce a benchmark suite—µSuite2—of end-to-end web services

composed of three microservice tiers that exhibit traits crucial for our study (sub-ms service

time, high peak request rate, scalable across cores, mid-tier with fan-out to leaves). We use

µSuite to study the OS/network performance overheads incurred by mid-tier microservices.

µSuite includes four end-to-end web services that incorporate open-source software: a

content-based high dimensional search for image similarity—HDSearch, a replication-based

protocol router for scaling fault-tolerant key-value stores—Router, a service for performing

set algebra on posting lists for document retrieval—Set Algebra, and a user-based item

2At the time, the decision to start my dissertation with a large benchmark development effort was a
challenge in and of itself. I knew that I couldn’t even start asking the interesting research questions until at
least after a year of development work. A year when everyone around me published research papers of their
own. Sometimes, these emotional challenges can be greater than the research challenge itself. Ultimately,
this “mere development work” served as a foundation for my own research and facilitated other researchers to
study microservices. Moral of the story: Instead of measuring success in terms of research papers, it is more
meaningful and rewarding to measure success in terms of contributions to the scientific community.

33

recommender system for predicting user ratings—Recommend. Each service’s constituent

microservices’ goal is to perform their individual functionality in at most a few single-digit

milliseconds for large data sets.

Upon using µSuite to study the OS and network overheads faced by microservices,

we find that the relationship between optimal OS/network parameters and service load

is complex. Specifically, we find that non-optimal OS scheduler decisions can degrade

microservice tail latency by up to ∼ 87%.

2.1 Prior Work

Existing works on benchmarking latency-critical web services suffer from several draw-

backs that make them unsuitable to study microservices (summarized in Table 2.1).

Closed-source. Many works [355, 499, 340, 341, 362, 501, 140] use services internal

to companies such as Google or Facebook and hence do not promote further academic study.

Too few latency-critical benchmarks. Some academic studies analyze only one

latency-critical benchmark [472, 261], thereby limiting the generality of their conclusions.

Not representative. Some works [184, 504] treat sequential and parallel applications

(e.g., SPEC CPU2006 [253] and PARSEC [162]) as web services. However, these appli-

cations are not representative of latency-critical web services as they intrinsically vary in

terms of continuous activity vs. bursty request-responses, architectural traits, etc.

Monolithic architectures. CloudSuite [221], PerfKit [78], and TailBench [293] are

perhaps closest to µSuite3. CloudSuite focuses on microarchitectural traits that impact

throughput for both latency-critical and throughput-oriented services. CloudSuite largely

incurs tail latencies of the order of hundreds of milliseconds and is less susceptible to

sub-ms–scale OS/network overheads faced by microservices. Moreover, CloudSuite load

3Published in 2018, µSuite is the first benchmark suite of web services composed of microservices [448].
The DeathStarBench microservice benchmark suite [230] was published after µSuite, in 2019. The fundamental
difference between the two benchmark suites is that µSuite employs a three-tiered microservice architecture,
while DeathStarBench builds web services as a Directed Acyclic Graph of microservices. Both types of
microservice architectures are used to build real-world web applications used in the industry [230, 445].

34

Table 2.1: Summary of a comparison of µSuite with prior works: Unlike prior works, µSuite
is open-source, has web services composed of microservices, and enables the study of mid-tier
microservices.

Prior work Open-source µservice arch. Mid-tier study
SPEC [253] 3 7 7

PARSEC [162] 3 7 7

CloudSuite [221] 3 7 7

TailBench [293] 3 7 7

PerfKit [78] 3 7 7

Ayers et al. [140] 7 3 3

µSuite 3 3 3

testers (YCSB [185] and Faban [36]) model only a closed-loop system [501], which is

methodologically inappropriate for tail latency measurements [501] due to the coordinated

omission problem [463]. BigDataBench [482] also lacks a rigorous latency measurement

methodology, even though it uses representative data sets. µSuite’s load testers account

for these problems and record robust and unbiased latencies. CloudSuite, PerfKit, and

TailBench employ monolithic architectures instead of microservice architectures, making

them unsuitable to study overheads faced by microservices.

Target only leaves. Several studies target only leaf servers [362, 471, 340, 341, 198,

472, 409, 261] as they are typically most numerous. Hence, conclusions from these works

do not readily extend to mid-tier microservers.

Machine-learning based. Recent benchmark suites such as Sirius [247] and Tonic [246]

mainly scrutinize ML-based services and incur higher latencies than microservices that

µSuite targets.

2.2 µSuite: Benchmarks Description

Although there are many open-source microservices, such as Memcached [223], Re-

dis [88], and McRouter [69], that can serve as individual components of a service with a

typical three-tier front-end; mid-tier; leaf architecture, there are no representative open-

source three-tiered web services composed of microservices. Hence, we develop four web

35

services in µSuite, each composed of three microservices. To include web services that

dominate today’s data centers in µSuite, we consider a set of information retrieval (IR)-based

internet services based on their popularity [126].

All µSuite web services/benchmarks are built using a state-of-the-art open-source RPC

platform—gRPC [45].

2.2.1 HDSearch

HDSearch performs content-based image similarity search. Like Google’s “find similar

images” [98], this service searches an image repository for matches with content similar

to a user’s query image. This technique entails Nearest Neighbor (NN) matching in a

high-dimensional abstract feature space to identify images that have similar content to the

query image.

Related work. High dimensional search is an intrinsic part of many user-facing web

services, hence its accuracy and performance have been extensively studied. Many prior

works [155, 156, 166, 175, 338, 361, 422] improve high dimensional search via tree-based

indexing. Since data sets are growing rapidly in both size and dimensionality, tree-based

indexing techniques that are efficient for modest dimensionality data sets no longer apply.

Instead, hash-based indexing techniques that exploit data locality are now more com-

mon [348, 460, 461, 132, 151, 430, 464, 438, 209]. Another indexing algorithm class

clusters adjacent data [324, 232, 222, 396, 358, 283, 375, 204]. These primarily theoretical

works explore high dimensional search’s algorithmic foundations; their contributions are

orthogonal to the software structure of a service such as HDSearch.

Service description. HDSearch indexes a corpus of 500K images taken from Google’s

Open Images data set [76]. Each image in the corpus is represented by a feature vector, an n-

dimensional numerical representation of image content. Today, feature vectors summarizing

each image are typically obtained from a deep learning technique. We use the Inception V3

neural network [458] implemented in TensorFlow [115] to represent each data set image in

36

the form of a 2048-dimensional feature vector. The data set size is ∼ 10 GB.

One can find images similar to a query image by searching the corpus for response

images whose feature vectors are near the query image’s feature vector [200, 314]. Proximity

is measured using distance metrics such as Euclidean or Hamming distance. The goal of

HDSearch’s constituent microservices is to perform this image search functionality in at

most a few single-digit milliseconds for a large image repository. We describe HDSearch’s

constituent microservices below.

Front-end microservice. HDSearch’s front-end presentation microservice is not stud-

ied in this work; we describe its components only to provide brief context (Fig. 2.2).

Send query

to backend

Query image
Image	
 –>Feature	

Vector	

Cache

Hit

Miss Extract
feature vector

Add
to cache

Send query to backend

Response

k-NN (point IDs) Serve response

images

k-NN
responses

End user

Web app

Figure 2.2: HDSearch: Front-end presentation microservice.

Web application. The web application is merely a useful interface that allows the

end-user to upload query images to the front-end microserver and view received query

responses.

Feature extraction. The query image is initially transformed into a discriminative

intermediate feature vector representation. We employ Google’s Inception V3 neural

network [458], implemented in TensorFlow [115], to extract a feature vector for the query

37

Top k-NN IDs

Front-end

HDSearch
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s k-NN IDs

Mid-tier response path:
Merge to form final k-NN

Front-end
response path:
Identify
& display images

Mid-tier request path:
1. LSH lookup
2. Map point ids -> leaf µsrvs
3. Launch clients to leaf µsrvs

Query

Query + point IDs

Query + point IDs

Query + point IDs

Leaf 2’s k-NN IDs

Leaf 3’s k-NN IDs

Figure 2.3: HDSearch: Back-end request and response pipelines.

image. This feature vector is sent to the mid-tier microservice to retrieve the IDs of the “k”

Nearest Neighbors, i.e., k-NN images. This query’s execution in the mid-tier is the object of

study for HDSearch in this dissertation.

Feature vector caching. To minimize feature vector extraction time, a mapping from

images to feature vectors is cached in a Redis [88] instance, avoiding repeated feature

computations.

Response image look-up. Once the query returns, a second Redis [88] instance is

consulted to map image IDs to URLs. The presentation microservice then constructs a

response web page and returns it to the web application.

Mid-tier microservice. Solving the k-NN problem efficiently is hard due to the curse

of dimensionality [266], and the problem has been studied extensively [234, 348, 460, 461,

132, 151, 430, 464]. To prune the search space, modern k-NN algorithms use indexing

structures, such as Locality-Sensitive Hash (LSH) tables, kd-trees, and k-means clusters to

exponentially reduce the search space relative to brute-force linear search.

HDSearch’s mid-tier microservice uses LSH, an indexing algorithm that optimally

38

reduces the search space within precise error bounds [197, 234, 348, 460, 461, 132, 151, 430,

464, 438, 209, 133]. We extend the LSH algorithm from the most widely-used open-source

k-NN library—the Fast Library for Approximate Nearest Neighbors (FLANN) [376]—into

HDSearch’s mid-tier. During an offline index construction step, we construct multiple LSH

tables for our image corpus. Each LSH table entry contains points that are likely to be near

one another in the feature space. Most LSH algorithms use multiple hash tables, and access

multiple entries in each hash table, to optimize the performance vs. error trade-off [348].

We extend FLANN’s [376] LSH indexes such that the mid-tier microservice does not

store feature vectors directly. Rather the LSH tables reference {leaf server, point ID list}

tuples, which indirectly refer to feature vectors stored in the leaves.

During query execution, the mid-tier performs look-ups in its in-memory LSH tables

to gather potential NN candidates, as shown in Fig. 2.3. It formulates an RPC request to

each leaf microserver with a list of point IDs that may be near the query feature vector.

Each leaf calculates distances and returns a distance-sorted list. The mid-tier then merges

these responses and returns the k-NN across all shards. We quantify HDSearch’s accuracy

in terms of the cosine similarity between the feature vector it reports as the NN for each

query and ground truth established by a brute-force linear search of the entire data set.

Various LSH parameters can be tuned based on accuracy and latency requirements. We tune

these LSH parameters to target a sub-ms end-to-end median response time with a minimum

accuracy score of 93% across all queries.

Leaf microservice. Distance computations are embarrassingly parallel and can be accel-

erated with SIMD, multi-threading, and distributed computing techniques [200]. We employ

all of these. We distribute distance computations over many leaves until the computation

time and network communication are roughly balanced. Hence, the mid-tier microservice

latency and its ability to fan out RPCs quickly is extremely critical: mid-tier microservice

and network overheads limit leaf scalability.

Leaf microservers compare query feature vectors against point lists sent by the mid-

39

Figure 2.4: An example of HDSearch’s request (left) and 1-NN response (right): Response’s
highlighted circular segment illustrates why the images match.

tier. We use the Euclidean distance metric, which has been shown to achieve a high

accuracy [234]. A sample request and response image4 are shown in Figure 2.45.

2.2.2 Router

Memcached-like key-value stores are widely used by web services as they are highly

performance efficient and scalable [70]. However, memcached [223] has many drawbacks:

(1) its servers are a single point of failure [81] causing frequent fallback to an underlying

database access, (2) it is not scalable beyond 200K Queries Per Second (QPS) [70], and

(3) it faces network saturation due to network congestion-based timeouts [81]. Memcached

must be made as available and performance efficient as the database it fronts. These goals

can be achieved by distributing load across many memcached servers via efficient routing.

Routing-based redundancy can avoid the failure issue.

4These images belong to the Google’s Open Images data set [76].
5Fun fact: After taking a few months to develop HDSearch, when I ran it for the first time, I fed it the query

image shown in Fig. 2.4. At the time, I did not realize that the query image was a portion of a paddle wheel. I
was also completely expecting a nonsensical response image. (Whoever heard of something working in the
first try?!) Both these factors made me utterly convinced that the response image was in no way similar to the
request image. I also showed it to my labmate, Vaibhav Gogte, who burst out laughing because he did not
identify the similarity either. When I told my Ph.D. advisor, Tom Wenisch, the sad story and showed him the
images, he looked extremely confused. It took him a hilarious few minutes to realize that I had not spotted the
similarity. This episode resulted in one of Tom’s favorite stories—he still likes to tell people about how an
ML-based application turned out to be smarter than two of his Ph.D. students.

40

Related work. McRouter [69] is one such memcached protocol router that helps scale

memcached deployments at Facebook. Through efficient routing, McRouter [69] can handle

up to 5 billion QPS. It offers features such as connection pooling, prefix routing, replicated

pools, production traffic shadowing, and online reconfiguration. We introduce a µSuite

service called Router that includes a simplified subset of McRouter’s features, while still

drawing insights from McRouter.

Service description. Router’s features include (1) routing key-value store queries to

memcached deployments, (2) abstracting the routing and redundancy logic from clients,

allowing clients to use standard memcached protocols, (3) requiring minimal client modifi-

cation (i.e., it is a drop-in proxy between the client and memcached hosts), and (4) providing

replication-based protocol routing for fault-tolerant memcached deployments.

Router’s primary functionality is to route client requests to suitable memcached servers.

It supports typical memcached [223] client requests. In this study, we evaluate only get

and set requests. We describe Router’s functionality as a series of stages. In the first

stage, Router parses the clients’ requests and forwards them to the route computation

code, which uses a proven well-distributed hashing algorithm, SpookyHash [19], to dis-

tribute keys from clients’ get or set requests uniformly across destination memcached

servers. SpookyHash [19] is a non-cryptographic hash function that is used to produce

well-distributed 128-bit hash values for byte arrays of any length. Router uses Spooky-

Hash [19] as it (1) enables quick hashing (1 byte/cycle for short keys and 3 bytes/cycle for

long keys), (2) can work for any key data type, and (3) incurs a low collision rate. Based on

the SpookyHash [19] outcome, Router invokes its final stage where it calls internal client

code to suitably forward the clients’ requests to specific destination memcached servers.

The internal client code opens only one TCP connection to a given destination per Router

thread. All requests sent to that memcached server will share the same connection.

Router also provides fault-tolerance for memcached. For large-scale memcached de-

ployments, the frequently-accessed data are read by numerous clients. Too many concurrent

41

“Set” ack

Front-end

Router
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s “set” ack

Mid-tier response path:
Merge leaf responses

Front-end
response path:
Receive get/set
response

Mid-tier request path:
1. Spookyhash
2. Map get/set -> leaf µsrvs
3. Launch clients to leaf µsrvs

Query “Set” query to replica 2

“Set” query to replica 1

Leaf 2’s “set” ack

Figure 2.5: Router: Back-end request and response pipelines.

client connections may overwhelm a memcached server. Furthermore, ensuring high avail-

ability of critical data even when servers go down is challenging. Router uses replicated

key-value store data pools, detailed below, to solve both these problems.

Front-end microservice. Our front-end microservice provides a client library that

transports memcached get/set requests over a gRPC [45] interface. We do not study

the front-end in this work. We emulate a large pool of Router clients using a synthetic

load generator that picks key or key-value pair queries from an open-source “Twitter” data

set [221]. The load generator’s get and set request distributions mimic YCSB’s Workload

A [185] with 50/50 gets and sets.

Mid-tier microservice. The mid-tier uses SpookyHash [19] to distribute keys uniformly

across leaves and then routes get or set requests as shown in Fig. 2.5. Router uses

replication both to spread load and to provide fault tolerance. Router’s mid-tier forwards

sets to a fixed number of leaves (i.e., a replication pool; three replicas in our experiments),

allowing the same data to reside on several leaves. The mid-tier randomly picks a leaf

replica to service get requests, balancing load across leaves.

42

Leaf microservice. The leaf microserver uses gRPC [45] to build a communication

wrapper around a memcached [223] server process. The leaf microservice is written such

that it can handle multiple concurrent requests from several mid-tier microservices. The

leaf uses gRPC APIs to receive the mid-tier’s get and set queries. It then rewrites received

queries to suitably query its local memcached server. The memcached server’s responses

are then sent to the mid-tier via the gRPC [45] response.

2.2.3 Set Algebra

Fast processing of set intersections is a critical operation in many database and informa-

tion retrieval query processing tasks. For example, in the database realm, set intersections

are used for data mining, text analytics, and evaluation of conjunctive predicates. They are

also the key operations in enterprise and web search.

Related work. Many open-source web search platforms, such as Lucene [359] and

CloudSuite’s Web Search [221], perform set intersections for document retrieval. How-

ever, these monolithic web searches face response latencies of the order of hundreds of

milliseconds as they perform many other tasks (querying a database, scoring page ranks,

custom filtering, etc.) apart from set intersections. Hence, these searches are unsuitable for

characterizing microservice OS/network overheads. While Set Algebra draws algorithmic

insights from these works [359, 221], its microservices perform only set intersections to

achieve single-digit millisecond tail latencies.

Service description. Set Algebra performs document retrieval for web search by

performing set intersections on posting lists. The posting list of each term is a sorted list

of document identifiers, stored as a skip list [410]. A skip is a pointer i→j between two

non-consecutive documents i and j in the posting list. The number of documents skipped

between i and j is defined as the skip size. For a term t, the posting list L(t) is a tuple (St ,Ct)

where St = s1,s2, ...,sk is a sequence of skips and Ct contains the remaining documents

(between skips). These remaining documents can be stored using different compression

43

schemes [507] where decompression can be handled by a separate microservice. Skips are

typically used to speed up list intersections.

Set Algebra searches through a corpus of 4.3 million WikiText documents (approxi-

mately 10 GB in size) randomly drawn from Wikipedia [110] and sharded uniformly across

leaves, to return documents containing all search terms to the client. The leaf microser-

vices index posting lists for each term in their sharded document corpus. We reduce leaf

computations by excluding extremely common terms, called stop words, that have little

value in helping select documents matching a user’s need from the leaves’ inverted index.

Set Algebra determines a stop list by sorting terms by their collection frequency (the total

number of times each term appears in the document collection), treating the most frequent

terms as a stop list. Members of the stop list are discarded during indexing.

Front-end microservice. We synthetically emulate multiple clients via a load generator

that picks search queries from a query set. Each search query typically spans fewer than

ten words [14]. We synthetically generate a query set of 10K queries, based on Wikipedia’s

word occurrence probabilities [110].

Mid-tier microservice. The mid-tier forwards client queries of search words or terms

to the leaves, which return intersected posting lists to the mid-tier, as portrayed in Fig. 2.6.

The mid-tier then merges intersected posting lists received from all leaves via set union

operations and sends the outcome to the client.

Leaf microservice. The leaf microservice performs the set intersection operations.

Leaves hold ordered posting lists as an inverted index where documents are identified via

a document ID, and for each term t, the inverted index is a sorted list of all document IDs

containing t. Using this representation, the leaves intersect two sets L1 and L2 using a

linear merge by scanning both lists in parallel, requiring an O(|L1|+ |L2|) time complexity

(“merge” step in merge sort). The resulting intersected posting list is then passed to the

mid-tier.

44

Final posting list
Front-end

Set Algebra
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s posting list

Mid-tier response path:
Set union on posting lists
received from leaves

Front-end
response path:
Receive final
posting list

Mid-tier request path:
1.  Forward search terms to

leaf µsrvs
2.  Launch clients to leaf µsrvs

Query

Query of search terms

Query of search terms

Query of search terms

Leaf 2’s posting list

Leaf N’s posting list

Figure 2.6: Set Algebra: Back-end request and response pipelines.

2.2.4 Recommend.

Recommendation systems help real-world services generate revenue, notably in the fields

of e-commerce and behavior prediction [26]. Many web companies use smart recommender

engines that study prior user behavior to provide preference-based data, such as relevant job

postings, movies of interest, suggested videos, friends users may know, and items to buy.

Related work. Open-source recommendation engines, such as PredictionIO [82], Rac-

coon [85], HapiGER [47], EasyRec [6], Mahout [68], and Seldon [95], use various rec-

ommendation algorithms. However, these recommendation engines lack the distributed

microservice structure (i.e, front-end, mid-tier, and leaf) that we study. We build Recommend

using the state-of-the-art fast, flexible open-source ML library—mlpack [189] such that

Recommend is composed of distributed microservices.

Service description. Recommend is a recommendation service that uses numerous users’

overall preference to predict user ratings for specific items. For each {user, item} query pair,

Recommend performs user-based collaborative filtering to predict the user’s preference for

45

that item, based on how similar users ranked the item. Collaborative filtering is typically

performed on {user, item, rating} tuple data sets. Our collaborative filtering technique

has three stages of (1) sparse matrix composition, (2) matrix factorization, and (3) rating

approximations for missing entries in the sparse matrix (e.g., a movie that a user has not

rated) via a neighborhood algorithm.

Sparse matrix composition. Recommend’s data set is 10K {user, item, rating} tuples

from the MovieLens [245] movie recommendation data set. We represent the data set as a

sparsely populated user-item rating matrix V ∈ Rm×n—the utility matrix—where m is the

number of users and n is the number of items (i.e., movies) in the data set. Hence, Vi j (if

known), represents the rating of movie j by user i. Each user typically rates a small subset

of movies. Many techniques address the cold start problem of recommending to a fresh

user with no prior ratings. For simplicity, Recommend only focuses on users for whom the

system has at least one rating.

Matrix factorization. Collaborative filtering often uses matrix factorization. For instance,

a matrix factorization model won the Netflix Challenge in 2009 [310]. Matrix factorization’s

goal is to reduce the sparse user-item rating utility matrix V ’s dimensionality and to aid

similarity identification. We decompose the sparse low-rank matrix V into two “user” and

“item” matrices W and H. These decomposed matrices approximate missing values in the

utility matrix V .

We employ Non-negative Matrix Factorization (NMF) to decompose V . NMF performs

V ≈WH to create two non-negative matrix factors W and H of V . NMF approximately

factorizes V into an m× r matrix W and r×n matrix H.

46

V =



v1,1 v1,2 . . . v1,n

v2,1 v2,2 . . . v2,n

...
...

vm,1 vm,2 . . . vm,n


=WH

where,

Wm×r =



w1,1 w1,2 . . . w1,r

w2,1 w2,2 . . . w2,r

...
...

wm,1 wm,2 . . . wm,r


, Hr×n =



h1,1 h1,2 . . . h1,n

h2,1 h2,2 . . . h2,n

...
...

hr,1 hr,2 . . . hr,n


Dimension r is V ’s rank, and it represents the number of similarity concepts NMF

identifies [201]. For example, one similarity concept may be that some movies belong to

the “comedy” category, while another may be that most users that liked the movie “Harry

Potter 1” also liked “Harry Potter 2”. W captures the correlation strength between a row

of V and a similarity concept—it expresses how users relate to similarity concepts such

as preferring “comedy” movies. H captures the correlation strength of a column of V to a

similarity concept—it identifies the extent to which a movie falls in the “comedy” category.

The NMF representation, hence, results in a compressed form of the user-item rating utility

matrix V .

Neighborhood algorithm. The NMF decomposed matrix is used to approximate missing

movie ratings in the user-item rating utility matrix V . We also remember the initial movies

that the users rated. We use a neighborhood algorithm, allknn [189], which relies on

similarity measures such as cosine, Pearson, and Euclidean, to generate ratings for movies

in a user’s neighborhood. This algorithm can also be further extended to recommend items

47

Final rating
Front-end

Recommend
Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Leaf 1’s rating

Mid-tier response path:
Average of ratings
received from leaves

Front-end
response path:
Receive final
rating

Mid-tier request path:
1.  Forward user,item pair to

leaf µsrvs
2.  Launch clients to leaf µsrvs

Query

Query: user,item

Query: user,item

Query: user,ite
m

Leaf 2’s rating

Leaf N’s rating

Figure 2.7: Recommend: Back-end request and response pipelines.

which were not rated by the user.

Front-end microservice. We emulate multiple Recommend clients via a load generator

that picks 1K {user, item} query pairs from the MovieLens [245] movie recommendation

data set. The {user, item} query pairs are different from the user→item rating mappings

present in the data set (utility matrix). In other words, the load generator always picks

queries from the “empty” cells of the utility matrix V so that we do not test on the same data

that Recommend trained on.

Mid-tier microservice. Recommend uses the mid-tier microservice primarily as a for-

warding service, as shown in Fig. 2.7. The mid-tier microserver receives {user, item} query

pairs from the client and forwards them to the leaves. Item ratings returned by the leaves are

then averaged and sent back to the client.

Leaf microservice. Leaves perform collaborative filtering by first performing sparse

matrix composition and matrix factorization offline. During run-time, they perform col-

laborative filtering on their corresponding matrix V ’s shard using the allknn neighborhood

approach [189], to predict movie ratings. Rating predictions are then sent to the mid-tier.

48

Front-end server

Request

Network poller:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier server Leaf server

Leaf
computations

Response

Network (client)
socket

Network (server)
socket

Resp. pick-up
thread:

<block>

Figure 2.8: µSuite’s mid-tier microservice design: µSuite’s mid-tier microservices block on the front-
end network socket, dispatch processing of front-end requests, and asynchronously communicate
with leaf microservices.

2.3 µSuite: Framework Design

We present the software designs used to build µSuite’s mid-tier microservers.

Thread-pool architecture. µSuite has a thread-pool architecture that concurrently

executes requests by judiciously “parking” and “unparking” threads to avoid thread creation

and deletion overheads. µSuite uses thread-pool architectures (vs. architectures such as

thread-per-connection), as thread-pool architectures scale better for microservices [332].

We describe the following µSuite framework designs with the aid of a simple figure

(Fig. 2.8) of a three-tier service with a single client, mid-tier, and leaf.

Blocking on the front-end network socket. µSuite’s blocking design is composed of

network poller threads awaiting new work from the front-end via blocking system calls,

yielding the CPU if no work is available. Threads block on I/O interfaces (e.g., read() or

49

epoll() system calls) awaiting work. Blocking designs conserve precious CPU resources

by avoiding wasting CPU time in fruitless poll loops, unlike poll-based designs. Hence,

services such as Redis BLPOP [18] employ a block-based design.

Asynchronous communication with leaf microservers. There is no fixed association

between an execution thread and a particular RPC—all RPC state is explicit. Asynchronous

services are event-based—an event, such as the completion of an outgoing leaf request,

arrives on any leaf response reception thread and is matched to a particular parent RPC

through a shared data structure. Hence, mid-tier microservers can proceed to process succes-

sive requests after sending requests to leaf microservers. We build µSuite asynchronously to

leverage the greater performance efficiency that asynchronous designs offer compared to

synchronous ones [486]. For this reason, several cloud applications such as Apache [13],

Azure blob storage [71], Redis replication [89], Server-Side Mashup, CORBA Model, and

Aerospike [9] have an asynchronous architecture.

Dispatch-based processing of front-end requests. µSuite’s dispatch-based design

separates responsibilities between network threads, which accept new requests from the

underlying RPC interface, and worker threads, which execute RPC handlers. Network

threads dispatch the RPC to a worker thread pool by using producer-consumer task-queues

and signalling on condition variables. Workers pull requests from task queues and then

process them by forking for fan-out and issuing asynchronous leaf requests. A worker then

goes back to blocking on the condition variable to await new work. To aid non-blocking

calls to both leaves and front-end microservers, we add another thread pool that exclusively

handles leaf server responses. These response threads count down and merge leaf responses.

We do not explicitly dispatch responses, as all but the last response thread do negligible work

(stashing a response packet and decrementing a counter). Several cloud applications such

as IBM’s WebSphere for z/OS [65, 254], Oracle’s EDT image search [50], Mule ESB [24],

Malwarebytes [46], Celery for RabbitMQ and Redis [23], Resque [91] and RQ [92] Redis

queues, and NetCDF [227] are dispatch-based.

50

Table 2.2: Mid-tier microservice processor specification.

Processor features Specification
Microarchitecture Intel Gold 6148 CPU “Skylake”
Clock frequency 2.40 GHz

Cores / HW threads 40 / 80
DRAM 64 GB
Network 10 Gbit/s

Linux kernel version 4.13.0

2.4 Methodology

We now describe the experimental setup that we use to characterize µSuite’s OS and

network overheads.

We characterize each service in terms of its constituent mid-tier and leaf microservices.

We use service-specific synthetic load generators that mimic many end-users to issue

queries to the mid-tier. These load generators are operated in a closed-loop mode to

establish each service’s peak sustainable throughput. We measure tail latencies by operating

the load generators in an open-loop mode, selecting inter-arrival times from a Poisson

distribution [172]. Load generators are run on separate hardware, and we validated that

neither the load generator nor the network bandwidth is a performance bottleneck in our

experiments. We average measurements over five trials.

We run experiments on a distributed system of a load generator, a mid-tier microservice,

and (1) a four-way sharded leaf microservice for HDSearch, Set Algebra, and Recommend

and (2) a 16-way sharded leaf microservice with three replicas for Router. Our setup’s

hardware configuration is shown in Table 2.2. The leaves run within Linux tasksets

limiting them to 18 logical cores for HDSearch, Set Algebra, and Recommend and 4

logical cores for Router. Each microservice runs on dedicated hardware. The mid-tier is

not CPU bound; peak-load performance is limited by leaf CPU.

On this setup, we run load generators in open loop mode to characterize OS and network

overheads for various loads. We use the eBPF [66] syscount tool to first characterize system

51

0"

5000"

10000"

15000"

20000"

HDSearch" Router" Set"algebra" Recommend"

Sa
tu
ra
8o

n"
th
ro
ug
hp

ut
"(Q

PS
)"

Workload"

Figure 2.9: Saturation throughput (QPS): µSuite is similar to real-world web services.

call invocations for the mid-tier. We then study request latency breakdowns incurred within

the OS (e.g., interrupt handler latency for network-based hard interrupts and scheduler-based

soft interrupts, time to switch a thread from “active” to “running” state) using eBPF’s [66]

hardirqs, softirqs, and runqlat tools. We report network delays in terms of the number

of TCP re-transmissions measured using eBPF [66]’s tcpretrans tool. Additionally, we

use Linux’s perf utility to profile context switch overheads faced by the mid-tier. We use

Intel’s HITM (as in hit-Modified) PEBS coherence event, to detect true sharing of cache

lines; an increase in HITMs indicates a corresponding increase in lock contention [347].

2.5 Results

2.5.1 Saturation Throughput

Production services typically saturate at tens of thousands of QPS [44]. µSuite is

representative of production services, achieving a similar saturation throughput range for

each of its benchmark services. Using our load generator in closed-loop mode, we measure

the saturation throughput for all benchmarks. We find that HDSearch saturates at ∼ 11.5K

QPS, Router at ∼ 12K QPS, Set Algebra at ∼ 16.5K QPS, and Recommend at ∼ 13K

QPS, as shown in Fig. 2.9.

52

Load (Queries Per Second)

HDSearch Router Set Algebra Recommend

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Load (Queries Per Second)

E
nd

-to
-e

nd
 la

te
nc

y
di

st
rib

ut
io

n
(m

s)

Figure 2.10: End-to-end response latency across different loads for each benchmark: Median latency
is higher at low load.

2.5.2 End-to-end Response Latency

Several web services face (1) drastic diurnal load changes [248], (2) load spikes due to

“flash crowds” (e.g., traffic after a major news event), or (3) explosive customer growth that

surpasses capacity planning (e.g., the Pokemon Go [79] launch). Supporting wide-ranging

loads aids rapid web service scale-up. Furthermore, we cannot meaningfully measure latency

at saturation, as the offered load is unsustainable and queuing grows without any bounds.

Hence, we characterize µSuite’s end-to-end (across mid-tier and leaves) response latency vs.

load trade-off (Fig. 2.10) across wide-ranging loads up to saturation—100 QPS, 1K QPS,

and 10K QPS.

Each end-to-end response latency distribution is portrayed as a violin plot with the bars

in the violin centers representing the median latency and the thin black lines representing

the higher-order tail latency. While the tail latency increases with an increase in load, we

53

0"

500"

1000"

1500"

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"

rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

HDS:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

HDSearch

Figure 2.11: HDSearch’s counts of OS system call invocations per QPS: The futex system call is
predominantly invoked.

find that the median latency at 100 QPS is up to 1.45× higher than the median latency at

1,000 QPS since there is better temporal locality at a higher load, and OS and networking

performance tend to improve due to batching effects in the networking stack. We explain

this behavior further when we subsequently characterize µSuite’s OS and network over-

heads. Additionally, we note that the worst-case end-to-end web service tail latency (across

all constituent microservices) is never more than 22 ms for any service; the constituent

microservices face a worst-case tail latency of at most a few single-digit milliseconds.

2.5.3 OS and Network Overheads

For each service, we show a breakdown of (1) number of invocations of heavily-invoked

system calls, (2) latency distributions across OS and network stacks, (3) network delays due

to TCP re-transmissions, and (4) OS-induced effects such as context switches and thread

contention. As before, we characterize the OS and network overheads at three distinct loads

of 100 QPS, 1,000 QPS and 10,000 QPS.

System call invocations. We first analyze various system call invocation distributions

per QPS load level for µSuite in Figs. 2.11, 2.12, 2.13, and 2.14. We find that futex (fast

userspace mutex) system calls are invoked most frequently by all services. Our services

involve (1) network threads locking the front-end query reception network sockets, (2)

54

0"

500"

1000"

1500"

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"

rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

Router:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

Router

Figure 2.12: Router’s counts of OS system call invocations per QPS: The futex system call is
predominantly invoked.

0"

500"

1000"

1500"

Sy
sca
ll""

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"
rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

Set"Algebra:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

Set Algebra

Figure 2.13: Set Algebra’s counts of OS system call invocations per QPS: The futex system call is
predominantly invoked.

0"

500"

1000"

1500"

mp
rot
ec
t"

op
en
at" brk

"

sen
dm
sg"

ep
oll
_p
wa
it"

wr
ite
"
rea
d"

rec
vm
sg"

clo
se"

fut
ex
"
clo
ne
"

mm
ap
"

mu
nm
ap
"

N
um

be
r"o

f"c
al
ls"
pe

r"Q
PS
"

Recommend:"OS"system"calls"

Load"="100" Load"="1000" Load"="10000"

Recommend

Figure 2.14: Recommend’s counts of OS system call invocations per QPS: The futex system call is
predominantly invoked.

55

Load = 100 QPS Load = 1K QPS Load = 10K QPS

HDSearch

Figure 2.15: HDSearch’s breakdown of OS overheads: Time to switch a thread from the active to the
running state is high.

response threads locking the leaf response reception network socket, and (3) worker threads

blocking on producer-consumer task queues via condition variables, while awaiting new

work. These high-level locking abstractions result in several futex system call invocations.

Furthermore, we find, much like the end-to-end median latency distribution, futex invo-

cations per QPS are higher at low load. At low load, several threads invoke futex(), but,

only one thread successfully acquires the synchronization object the futex() protects (e.g.,

network socket lock). The remaining threads wake up and try to acquire the network socket

lock via further futex() calls. Hence, for a small QPS count (low load), a relatively large

number of futex() calls are invoked by various thread pools.

We also see several sendmsg, recvmsg, and epoll_pwait invocations as these system calls

are regularly invoked by blocking network/worker/response threads to send/receive RPCs

on the incoming/outgoing network sockets.

Overheads due to OS operations. We next scrutinize latency distributions of fine-

56

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Router

Figure 2.16: Router’s breakdown of OS overheads: Time to switch a thread from the active to the
running state is high.

grained OS operations performed while serving mid-tier requests. We study these latencies

across various loads for each service, as shown in Figs. 2.15, 2.16, 2.17, and 2.18. In each

graph, the X-axis represents various sources of OS overhead, and the Y-axis shows the

latency distribution across all mid-tier requests served in a 30s time frame, represented as a

violin plot. The various OS overheads are: (1) Hardirq—interrupt handler latency while

receiving hard network interrupts, (2) Net_tx—soft interrupt handler latency while sending

network messages, (3) Net_rx—soft interrupt handler latency while receiving network

messages, (4) Block—soft interrupt handler latency while a thread enters the “blocked” state,

(5) Sched—soft interrupt handler latency while triggering scheduling actions, (6) RCU—soft

interrupt handler latency for read-copy-updates, (7) Active-Exe—time from when a thread

enters the active or runnable state to when it starts running on a CPU, and (8) Net—total

mid-tier latency.

We find that µSuite’s mid-tier tail latencies arise mainly from the OS scheduler. Active-

57

Set Algebra

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Figure 2.17: Set Algebra’s breakdown of OS overheads: Time to switch a thread from the active to
the running state is high.

Exe contributes to mid-tier tails by up to ∼ 50% for HDSearch, ∼ 75% for Router, ∼ 87%

for Set Algebra, and ∼ 64% for Recommend. These latencies are a part of thread wakeup

delays and can arise from (1) network thread wakeups via interrupts on query arrivals, (2)

worker wakeups upon RPC dispatch, or (3) response thread wakeups upon leaf response

arrivals. We also see some Sched overheads.

Context switch and thread contention overheads. We next analyze µSuite’s context

switch (CS) and thread contention (HITM) overheads across all three load levels in Fig. 2.19.

We find that the CS and HITM overheads are similar for all µSuite services (“HDS”—

HDSearch, “SA”—Set Algebra, and “Rec”—Recommend)—both overheads increase as

load increases. HITM counts are more than CS counts as various threads are woken up

when a futex returns, and they all contend with each other while trying to acquire a network

socket lock. Additionally, we see only a single-digit number of TCP re-transmissions for all

services, and hence do not report it.

58

Recommend

Load = 100 QPS Load = 1K QPS Load = 10K QPS

Figure 2.18: Recommend’s breakdown of OS overheads: Time to switch a thread from the active to
the running state is high.

0	

5	

10	

15	

20	

25	

30	

100	
 1000	
 10000	

Co
un

ts
	
 (i
n	

m
ill
io
ns
)	

Load	
 (Queries	
 Per	
 Second)	

HDS	
 CS	
 HDS	
 HITM	
 Router	
 CS	
 Router	
 HITM	
 SA	
 CS	
 SA	
 HITM	
 Rec	
 CS	
 Rec	
 HITM	

Figure 2.19: Context switches (CS) and thread contention (HITM) incurred (in millions) for each
benchmark across diverse loads: Thread contention is a significant overhead.

2.6 Long-Term Impact Potential

We discuss how µSuite has facilitated additional research and can do so in the future.

59

Further study of microservices. When this work was published [448], there existed

no representative open-source benchmarks to study microservices. µSuite is the first open-

source benchmark suite of end-to-end web services composed of microservices [448]6.

µSuite can aid future microservice research in both academia and industry. Already, µSuite

has been used by researchers in academia and industry (e.g., MIT, UIUC, UT Austin,

Georgia Tech, Cornell, ARM, and Intel) to study microservice behaviors.

Latency degradation caused by blocking designs. µSuite blocks on the front-end

request reception network socket and leaf response reception sockets. We choose this design

since polling can be prohibitively expensive as it wastes CPU time in fruitless poll loops,

degrading a data center’s energy efficiency. However, our results show that blocking incurs

OS-induced thread wakeup latencies that significantly increase microservice tail latency. The

insights that µSuite provides about these new threading-induced OS and network overheads

in the microservice context leads directly to our contributions in the next chapter. We use

µSuite to present an automated approach and associated tool that dynamically switches

between block- and poll-based threading designs at system runtime.

Thread wakeups due to dispatch-based designs. Thread wakeup latencies that dom-

inate microservice latency tails arise from both (1) network threads picking up requests

from the front-end socket and (2) workers waking up to receive dispatched requests. In-line

designs that avoid explicit state hand-off and thread-hops to pass work from network to

worker threads may avoid expensive thread wakeups. However, in-line models are only effi-

cient at low loads and for short requests where dispatch overheads undermine service times.

Since leaf nodes computationally dominate in most distributed services, most mid-tiers can

benefit from dispatching. Moreover, if a single in-line thread cannot sustain the service load,

multiple in-line threads contending for work will typically outweigh the dispatch design’s

hand-off costs, which can be carefully tuned. Additionally, in-line models are prone to high

queuing, as each thread processes whichever request it receives. In contrast, dispatched

6µSuite is available at https://github.com/wenischlab/MicroSuite

60

models can explicitly prioritize requests. µSuite will enable researchers to explore (1)

policies that trade-off in-line vs. dispatched designs (as presented in Chapter III) and (2)

dispatch paradigms to identify optimal microservice dispatch designs.

Thread pool sizing. µSuite’s design supports large thread pools that sustain peak loads

by “parking” or “unparking” on conditional variables, as needed. However, these large pools

can contend on (1) the front-end socket while receiving requests, (2) the producer-consumer

task queue while picking up dispatched requests, or (3) the leaf response reception socket.

Hence, a user-level thread scheduler that dynamically selects suitable thread pool sizes

can reduce thread contention and improve scalability. We use these insights to study the

implications of thread pool sizing in Chapter III.

2.7 Chapter Summary

We summarize our contributions as follows:

• µSuite: We introduced the first benchmark suite of end-to-end web services composed

of microservices built using a state-of-the-art open-source RPC platform. µSuite is

open source and publicly available [448].

• A comprehensive characterization of OS and network overheads incurred by

microservices. We used µSuite to comprehensively characterize the OS and network

overheads incurred by mid-tier microservices. Our characterization revealed that

the OS scheduler can significantly influence microservice tail latency. Hence, we

identified that threading interactions with the underlying OS and network stacks can

significantly influence microservice performance.

• Facilitating future microservice research. By demonstrating how µSuite can be

used to study new overheads that manifest in the microservice regime, this work

facilitates future research, with µSuite being used by researchers in academia and

industry to analyze microservices.

61

Modern web services have evolved from monolithic systems to instead comprise nu-

merous, distributed microservices interacting via RPCs. Microservices face sub-ms to

single-digit millisecond RPC latency goals—much tighter than their monolithic ancestors

that must meet latency targets that are of the order of hundreds of milliseconds. Sub-ms–

scale OS/network overheads that were once insignificant for such monoliths can now come

to dominate in the sub-ms–scale microservice regime. It is therefore vital to characterize the

influence of OS and network effects on microservices.

Unfortunately, widely-used academic data center benchmark suites are unsuitable to aid

the characterization of OS and network overheads faced by microservices. These benchmark

suites use monolithic rather than microservice architectures and largely have request service

times that are of the order of hundreds of milliseconds. In this chapter, we investigated how

OS and network overheads impact microservice median and tail latency by developing a

complete benchmark suite of end-to-end web services composed of microservices, called

µSuite, that we used to facilitate our study. µSuite includes four web services composed of

microservices: image similarity search, protocol routing for key-value stores, set algebra on

posting lists for document search, and recommender systems.

Our characterization of OS and network overheads incurred by microservices revealed

that the relationship between optimal OS and network parameters and service load is

complex. Our primary finding is that non-optimal OS scheduler decisions can degrade

microservice tail latency by up to ∼ 87%. In other words, threading interactions with

the underlying OS and network stacks can significantly affect microservice performance.

Additionally, by demonstrating how µSuite can be used to study new overheads that manifest

in the microservice regime, this work enables researchers to further analyze microservices

(e.g., performance analyses, power analyses, and micro-architectural overhead analyses).

62

CHAPTER III

Auto-Tuned Software Threading for Microservices

Threading and concurrency design have been shown to critically affect web service

response latency [486, 242]. However, prior works [221] focus on monolithic services,

which typically have tail latency SLOs of the order of hundreds of milliseconds [359]. In

Chapter II, we demonstrated that threading interactions with the OS and network stacks can

have a greater impact on the sub-ms–scale microservice regime.

The new sub-ms–scale overheads that arise from threading interactions with the OS

and network stacks are due to today’s hardware reality, where network devices have sped

up while CPU performance scaling has nearly stopped [196]. As discussed in Chapter II,

these sub-ms–scale threading-induced OS and network overheads (e.g., a context switch

cost of 5-20 µs [470, 325]) are often insignificant for monolithic services. However,

sub-ms–scale microservices differ intrinsically: spurious context switches, network/RPC

protocol delays, inept thread wakeups, or lock contention can dominate microservice latency

distributions [106]. For example, even a single 20 µs spurious context switch implies a 20%

latency penalty for a request to a 100 µs SLO protocol routing microservice [501]. Hence,

prior conclusions on threading interactions with the OS and network stacks must be revisited

for the microservice regime [145].

In this chapter, as a part of this dissertation’s software contributions, we1 study how

1Some of the work in this chapter was performed in collaboration with my Ph.D. advisor, Thomas. F.
Wenisch [449]. Therefore, I use the “we” pronoun in this chapter to acknowledge Wenisch’s involvement in
this work.

63

Final response
Front-end
microserver

Mid-tier
microserver

Leaf microserver 1

Leaf microserver 2

Leaf microserver N

Intermediate response

Mid-tier response path:
Merge to form final response

Front-end
response path:
Response
presentation

Mid-tier request path:
1.  Process query
2.  Launch clients to leaf µsrvs

Query

Query

Query

Query

Intermediate response

Intermediate response

µTune

Figure 3.1: A typical web application fan-out.

software threading design affects microservice tail latency and leverage these design effects

to dynamically reduce microservice tail latency. We develop a system called µTune2,

which features a framework that builds upon open-source RPC platforms [45] to enable

microservices to abstract threading model design from microservice code. We analyze a

taxonomy of threading models enabled by µTune. We examine synchronous or asynchronous

RPCs, in-line or dispatched RPC handlers, and interrupt- or poll-based network reception.

We also vary thread pool sizes dedicated to various purposes (network polling, RPC handling,

and response execution). These design axes yield a rich space of microservice architectures

that interact with the underlying OS and hardware in starkly varied ways. We find that these

threading models often have surprising OS and hardware performance effects including

cache locality and pollution, scheduling overheads, and lock contention.

We study µTune in the context of four end-to-end web services adopted from µSuite [448]

(detailed in Chapter II). Each web service is composed of sub-ms microservices that operate

2Available at https://github.com/wenischlab/MicroTune

64

on large data sets. We focus our study on mid-tier microservers: widely-used [146] mi-

croservices that accept service-specific RPC queries, fan them out to leaf microservers that

perform relevant computations on their respective data shards, and then return results to be

integrated by the mid-tier microserver, as illustrated in Fig. 3.1. As discussed in Chapter II,

the mid-tier microserver is a particularly interesting object of study since (1) it acts as both

an RPC client and an RPC server, (2) it must manage fan-out of a single incoming query to

many leaf microservers, and (3) its computation typically takes tens of microseconds, about

as long as OS, networking, and RPC overheads.

We investigate threading models for mid-tier microservices. Our results show that the

best threading model depends critically on the offered load. For example, at low loads,

models that poll for network traffic perform best, as they avoid expensive OS thread wakeups.

Conversely, at high loads, models that separate network polling from RPC execution enable

higher service capacity and blocking outperforms polling for incoming network traffic as it

avoids wasting precious CPU on fruitless poll loops.

We find that the relationship between optimal threading model and service load is

complex—one could not expect a developer to pick the best threading model a priori.

Hence, we build an intelligent system that uses offline profiling to automatically adapt to

time-varying service load.

µTune’s second feature is an adaptation system that determines load via event-based load

monitoring and tunes both the threading model (polling vs. blocking network reception; in-

line vs. dispatched RPC execution) and thread pool sizes in response to load changes. µTune

reduces tail latency by up to 1.9× over static peak load-sustaining threading models and

state-of-the-art adaptation techniques, incurring less than 5% mean latency and instruction

overhead. Hence, µTune can be used to dynamically reduce sub-ms–scale threading-induced

OS/network overheads that dominate in modern microservices.

65

3.1 Motivation

We motivate the need for a threading taxonomy and adaptation systems that respond

rapidly to wide-ranging loads.

As discussed in Chapter II, many prior works have studied leaf servers [471, 340, 341,

198, 472, 409], as they are typically most numerous, making them cost-critical. Mid-tier

servers [216, 317], which manage both incoming and outgoing RPCs to many clients and

leaves, perhaps face greater tail latency optimization challenges, but have not been similarly

scrutinized. Their network fan-out multiplies underlying software stack interactions. Hence,

performance and scalability depend critically on mid-tier threading model design.

Expert developers extensively tune critical web services via trial-and-error or experience-

based intuition [263]. Few services can afford such effort; for the rest, we must appeal to

software frameworks and automatic adaptation to improve performance. µTune empowers

small teams to develop performance efficient mid-tier microservices that meet latency goals

without enormous tuning efforts.

3.1.1 The Need for a Threading Model Taxonomy

We develop a structured understanding of rational threading design options for architect-

ing microservices’ OS/network interactions in the form of a taxonomy of threading models.

We study these models’ latency effects under diverse loads to offer guidance on when certain

models perform best.

Prior works [486, 263, 262, 483, 219] broadly classify monolithic services as: thread-

per-request synchronous or event-driven asynchronous. We note threading design space

dimensions beyond these coarse-grain designs. We build on prior works’ insights, such as

varying parallelism to reduce tail latency [242], to consider a more diverse taxonomy and

identify sub-ms performance concerns.

66

0	

0.5	

1	

1.5	

2	

10	
 100	
 1000	
 10000	
 99
th
	
 p
er
ce
n/

le
	
 ta

il	

la
te
nc
y	

(m

s)
	

Load	
 (Queries	
 Per	
 Second)	

Block-­‐based	
 threading	
 model	
 Poll-­‐based	
 threading	
 model	

1.35x	

satura/on	

inflec/on	

point	

∞

Figure 3.2: 99th% tail latency for an RPC handled by a block-based and poll-based model: Poll-based
model reduces latency by 1.35x at low load, and saturates at high load.

3.1.2 The Need for Automatic Load Adaptation

Subtle changes in a microservice’s OS interaction (e.g., how it accepts incoming RPCs)

can cause large tail latency differences. For example, Fig. 3.2 depicts the 99th% tail latency

for a sample RPC handled by an example mid-tier microservice as a function of load. We

use a mid-tier microserver with 36 physical cores that dispatches requests received from

the front-end to a group of worker threads, which then invoke synchronous calls to the

leaf microservices. The yellow line is the tail latency when we dedicate a thread to poll

for incoming network traffic in a CPU-unyielding spin loop. The blue line blocks on the

OS socket interface awaiting work to the same RPC handler. We see a stark load-based

performance inflection even for these simple designs. At low load, the poll-based model

gains 1.35× latency as it avoids OS thread wakeups. Conversely, at high load, fruitless poll

loops waste precious CPU that might handle RPCs. The poll-based model becomes saturated,

with arrivals exceeding service capacity and unbounded latency growth. Blocking-based

67

models conserve CPU and are more scalable.

We assert that such design trade-offs are not obvious: no single threading model is

optimal at all loads, and even expert developers have difficulty making good choices.

Moreover, most software adopts a threading model at design time and offers no provision to

vary it at runtime.

3.1.3 A Microservice Framework

We present a novel microservice framework in µTune that abstracts threading design

from the RPC handlers. The µTune system adapts to the service load by choosing optimal

threading models and thread pool sizes dynamically to reduce tail latency.

µTune aims to allow a microservice to be built once and be scalable across wide-ranging

loads. Many web services experience drastic diurnal load variations [248]. Others may

face “flash crowds” that cause sudden load spikes (e.g., intense traffic after a major news

event). New web services may encounter explosive customer growth that surpasses capacity

planning (e.g., the meteoric launch of Pokemon Go [79]). Supporting load scalability over

many orders of magnitude in a single framework facilitates rapid scale-up of a popular new

web service.

3.2 A Taxonomy of Threading Models

A threading model is a software system design choice that governs how responsibility

for key application functionality will be divided among threads and how the application will

achieve request concurrency. Threading models critically impact the service’s throughput,

latency, scalability, and programmability. We characterize preemptive instead of co-operative

(e.g., Node.js [466]) threading models.

68

3.2.1 Key Dimensions

We identify three key threading model dimensions and discuss their programmability

and performance implications.

Synchronous vs. asynchronous communication. Prior works have identified syn-

chronous vs. asynchronous communication as a key design choice in monolithic web

services [486, 263, 262, 483, 219]. Synchronous models map a request to a single thread

throughout its lifetime. Request state is implicitly tracked via the thread’s Program Counter

(PC) and stack—programmers simply maintain request state in automatic variables. Threads

use blocking I/O to await responses from storage or leaf nodes. In contrast, asynchronous

models are event-based—programmers explicitly define state machines for a request’s

progress [262]. Any ready thread may progress a request upon event reception; threads and

requests are not associated.

Programmability: Synchronous models are typically easier to program, as they entail

writing straight-forward code without worrying about elusive concurrency-related subtleties.

Conversely, asynchronous models require explicit reasoning about request state, synchro-

nization, and races. Ensuing code is often characterized as “spaghetti”—control flow is

obscured by callbacks, continuations, futures, promises, and other sophisticated paradigms.

Due to this vast programmability gap, we spent three weeks implementing synchronous

models and four months implementing asynchronous models.

Performance: As synchronous models await leaf responses before processing new

requests, they face request/response queuing delays, producing worse response latencies and

throughput than asynchronous models [374, 483, 219]. Adding more synchronous threads

can allay queuing, but can induce secondary bottlenecks, such as cache pollution, lock

contention, and scheduling/thread wakeup delays.

Synchronous applications: Several real-world applications such as Azure SQL [16],

Google Cloud SQL’s Redmine [22, 323], and MongoDB replication [73] are built using the

synchronous threading dimension.

69

Asynchronous applications: Several real-world applications such as Apache [13], Azure

blob storage [71], Redis replication [89], Server-Side Mashup [335], CORBA Model, and

Aerospike [9] are built using the asynchronous threading dimension.

In-line vs. dispatch-based RPC processing. In in-line models, a single thread manages

the entire RPC lifetime, from the point where it is accepted from the RPC library until

its response is returned. Dispatch-based models separate responsibilities between network

threads, which accept new requests from the underlying RPC interface, and worker threads,

which execute RPC handlers.

Programmability: In-line models are simple; thread pools block/poll on the RPC arrival

queue and execute an RPC completely before receiving another. Dispatched models are

more complex; RPCs are explicitly passed from network to worker threads via thread-safe

queues.

Performance: In-line models avoid the explicit state hand-off and thread-hop to pass

work from network to worker threads. Hence, they are efficient at low loads and for

short requests, where dispatch overheads dominate service times. However, if a single

thread cannot sustain the service load, multiple threads contending to accept work typically

outweighs hand-off costs, which can be carefully honed. In-line models are prone to high

queuing, as each thread processes whichever request it receives. In contrast, dispatched

models can explicitly prioritize requests.

In-line applications: Several real-world applications such as Redis [88, 112] and MapRe-

duce workers [199] process requests in-line.

Applications that dispatch: Several real-world applications such as IBM’s WebSphere

for z/OS [65, 254], Oracle’s EDT image search [50], Mule ESB [24], Malwarebytes [46],

Celery for RabbitMQ and Redis [23], Resque [91] and RQ [92] Redis queues, and NetCDF

[227] dispatch requests to worker threads.

Block- vs. poll-based RPC reception. While the synchronous and in-line dimensions

address outgoing RPCs, the block vs. poll dimension concerns incoming RPCs. In block-

70

based models, threads await new work via blocking system calls, yielding the CPU if no

work is available. Threads block on I/O interfaces (e.g., read() or epoll() system calls)

awaiting work. In poll-based models, a thread spins in a loop, continuously looking for new

work.

Performance: The poll vs. block trade-off is intrinsic: polling reduces latency, while

blocking frees a waiting CPU to perform other work. Polling incurs lower latency as it

avoids OS thread wakeups [339] to which blocking is prone. However, polling wastes CPU

time in fruitless poll loops, especially at low loads. Yet, many latency-sensitive services

opt to poll [89], perhaps solely to avoid unexpected hardware or OS actions, such as a

slow transition to a low-power mode [148]. Many polling threads can contend to cause

pathologically poor performance [277].

Applications that block: Real-world applications such as Redis BLPOP [18] use blocking

system calls to await new work.

Applications that poll: Several real-world applications such as Intel’s DPDK Poll

Driver [83], Redis replication [89], Redis LPOP [67], DoS attacks and defenses [416, 442,

380], and GCP Health Checker [97] use poll-based models to look for new work.

These three threading dimensions lead to eight mid-tier threading models. Within these

eight coarse-grain threading model choices, we can further vary individual thread pool sizes.

3.2.2 Synchronous Models

In synchronous models, we create maximally sized thread pools on start-up and then

“park” extraneous threads on condition variables to rapidly supply threads as needed without

pthread_create() call overheads. To simplify our figures, we omit parked threads from

them.

The main thread that handles each RPC uses fork-join parallelism to fan concurrent

requests out to many leaf microservices. The main thread wakes a parked thread to issue

each outgoing RPC, blocking on its reply. As replies arrive, these threads decrement a

71

Mid-tier Leaf

Front end

Request

Compute

In-line thread

In-line thread

Response

NW socket

In-line thread:
<block/poll>

Synchronous
Request

Worker

Response

NW socket

Network thread:
<block/poll>

Worker awaits
 notification

Synchronous

Compute

Mid-tier Leaf

Front end

Worker notified

Task queue

(a) (b)

Dispatch

Figure 3.3: Execution of an RPC by (a) SIB/SIP (b) SDB/SDP.

shared atomic counter before parking on a condition variable to track the last reply. The

last reply signals the main thread to execute the continuation that merges leaf results and

responds to the client.

We next detail each synchronous model with respect to a single RPC execution. For

simplicity, our figures show a three-tier service with a single client, mid-tier, and leaf.

Synchronous In-line Block (SIB). This model is the simplest, having only a single

thread pool (Fig. 3.3(a)). In-line threads block on network sockets awaiting work, and then

execute a received RPC to completion, signalling parked threads for outgoing RPCs as

needed. The thread pool must grow with higher load.

Synchronous In-line Poll (SIP). SIP differs from SIB in that threads poll for new work

using non-blocking APIs (Fig. 3.3(a)). SIP avoids blocked thread wakeups when work

arrives, however, each in-line thread fully utilizes a CPU.

Synchronous Dispatch Block (SDB). SDB comprises two thread pools (Fig. 3.3(b)).

The network threads block on socket APIs awaiting new work. However, rather than

executing the RPC, they dispatch the RPC to a worker thread pool by using producer-

72

consumer task-queues and signalling condition variables. Workers pull requests from task

queues, and then process them much like the prior in-line threads (i.e., forking for fan-out

and issuing synchronous leaf requests). A worker sends the RPC reply to the front-end,

before blocking on the condition variable to await new work. Both network and worker

pool sizes are variable. Concurrency is limited by the worker pool size. Typically, a single

network thread is sufficient.

SDB restricts incoming socket interactions to the network threads, which improves

locality; RPC and OS interface data structures do not migrate among threads.

Synchronous Dispatch Poll (SDP). Unlike SDB, in SDP, network threads poll on

front-end sockets for new work (Fig. 3.3(b)).

3.2.3 Asynchronous Models

Asynchronous models differ from synchronous ones in that they do not tie an execution

thread to a specific RPC—all RPC state is explicit. Such models are event-based—an event,

such as a leaf request completion, arrives on any thread and is matched to its parent RPC

using shared data structures. Hence, any thread may progress any RPC through its next

execution stage. This approach requires drastically fewer thread switches during an RPC

lifetime. For example, leaf request fan-outs require a simple for loop, instead of a complex

fork-and-wait.

To aid non-blocking calls to both leaves and front-end servers, we add another thread

pool that exclusively handles leaf server responses—the response thread pool.

Asynchronous In-line Block (AIB). AIB (Fig. 3.4(a)) uses in-line threads to handle

incoming front-end requests and response threads to execute leaf responses. Both thread

pools block on their respective sockets awaiting new work. Book-keeping on an RPC’s

progress is explicit. An in-line thread initializes a data structure for an RPC, records the

number of leaf responses it expects, records a functor for the continuation to execute when

the last response returns, and then fans leaf requests out in a simple for loop. Responses

73

Worker awaits
signal

Mid-tier Leaf

Front end

Request

Compute

In-line thread

NW (server) socket

In-line thread:
<block/poll>

(a)

Resp. thread:
<block/poll>

Asynchronous NW
(client)
socket

Response

Resp. thread

Front-
end

Request

Network
thread:
<block/poll>

Worker notified

Dispatch

Mid-tier Leaf

NW (server) socket

(b)

Resp. thread:
<block/poll>

Asynchronous NW
(client)
socket

Response

Resp.
thread

Compute

Task queue

Figure 3.4: Execution of an RPC by (a) AIB/AIP (b) ADB/ADP.

arrive (potentially concurrently) on response threads, which record their results in the RPC

data structure and count down until the last response arrives. The final response invokes the

continuation to merge responses and complete the RPC.

Asynchronous In-line Poll (AIP). Unlike AIB, in AIP, in-line and response threads

poll their respective sockets (Fig. 3.4(a)).

Asynchronous Dispatch Block (ADB). In ADB, dispatch enables network thread con-

centration, improving locality and socket contention (Fig. 3.4(b)). Like SDB, network and

worker threads accept and execute RPCs, respectively. Response threads count-down and

merge leaf responses. We do not explicitly dispatch responses, as all but the last response

thread do negligible work (stashing a response packet and decrementing a counter). All

three thread pools vary in size. Typically, one network thread is sufficient, while the other

pools must scale with load.

Asynchronous Dispatch Poll (ADP). Unlike ADB, in ADP, network and response

74

Mid-tier Leaf

Front end

Request

Compute

In-line thread

In-line thread

Response

NW socket

In-line thread:
<block>

Synchronous

Mid-tier Leaf

Front end

Request

Compute

In-line thread

Response

NW socket

Synchronous

(a) (b)

Mid-tier Front-
end

Request

Worker

Response

NW socket

Network thread:
<block>

Task queue

Worker notified

Worker awaits
 notification

Synchronous

Dispatch

Leaf

Compute

Mid-tier Front-
end

Request

Worker

Response

NW socket

Network thread:
<poll>

Task queue

Worker notified

Worker awaits
 notification

Synchronous

Dispatch

Leaf

Compute

(a) (b)

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<block>

Response

NW (server)
socket

In-line thread:
<block>

Asynchronous

Leaf

NW (client)
socket

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<poll>

Response

NW (server)
socket

In-line thread:
<poll>

Asynchronous

Leaf

NW (client)
socket

(a) (b)

Front-
end

Request

Network thread:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier Leaf

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<block>

Request

Network thread:
<poll>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<poll>

Front-
end

Mid-tier Leaf

(a) (b)

SIB SIP SDB SDP AIB AIP ADB ADP

(a) µTune framework

Offline
training

(b) Async. µTune’s automatic load adaptation system

1

Create
piecewise
linear model

Request	
 rate	
 Best	
 TM	
 Ideal	
 no.	
 of	
 threads	

0	
 –	
 128	
 QPS	
 AIP	
 Inline:	
 one	

.	

.	

4096	
 –	
 8192	

QPS	

ADB	
 NW	
 poller:	
 one	
 	

Workers:	
 few	
 (eg.	
 4),	

Resp.	
 threads:	
 few	

Online:
Request from
front-end gRPC

Circular event buffer 1

2

Request	

rate	

compute	

Send to
switching
logic

Switch	
 to	
 best	

TM	
 and	

thread	
 poll	

sizes	
 if	
 needed	

ProcessRequest()

InvokeLeafAsync()

Request
to leaf

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<block>

Response

NW (server)
socket

In-line thread:
<block>

Asynchronous

Leaf

NW (client)
socket

Mid-tier Front-
end

Request

Compute

In-line
thread

Resp.
thread:
<poll>

Response

NW (server)
socket

In-line thread:
<poll>

Asynchronous

Leaf

NW (client)
socket

(a) (b)

Front-
end

Request

Network thread:
<block>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Mid-tier Leaf

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<block>

Request

Network thread:
<poll>

Task queue

Worker notified

Dispatch

Worker awaits
notification

Asynchronous

Compute Response

NW (client)
socket

NW (server) socket

Resp.
thread:
<poll>

Front-
end

Mid-tier Leaf

(a) (b)

FinalizeResponse() Response from leaf Response to
front-end

3

4

5

6

7

10 11

8

9

2

Figure 3.5: µTune: System design.

threads poll for new work (Fig. 3.4(b)).

3.3 µTune: System Design

µTune has two features: (a) an implementation of all eight threading models, abstracting

RPC (OS/network interactions) within the framework (Fig. 3.5(a)); and (b) an adaptation

system that judiciously tunes threading models and scales thread pool sizes under changing

load (Fig. 3.5(b)). µTune’s system design challenges include (1) offering a simple interface

that abstracts threading design from service code, (2) quick load shift detection for efficient

dynamic adaptation, (3) adept threading models switches, and (4) sizing thread pools without

thread creation, deletion, or management overheads. We discuss how µTune’s design meets

75

these challenges.

3.3.1 Framework

µTune abstracts the threading model boiler-plate code from service-specific RPC im-

plementation details, wrapping the underlying RPC API. µTune enables characterizing the

pros and cons of each model.

µTune offers a simple abstraction where service-specific code must implement RPC exe-

cution interfaces. For synchronous modes, the service must supply a ProcessRequest()

method per RPC. ProcessRequest() is invoked by in-line or worker threads. This method

prepares a concurrent outgoing leaf RPC batch and passes it to InvokeLeaf(), which fans

it out to leaf nodes. InvokeLeaf() returns to ProcessRequest() after receiving all leaf

replies. The ProcessRequest() continuation merges replies and forms a response to the

client.

For asynchronous modes, µTune’s interface is slightly more complex. Again, the service

must supply ProcessRequest(), but, it must explicitly represent RPC state in a shared

data structure. ProcessRequest() may make one/more calls to InvokeLeafAsync().

These calls are passed an outgoing RPC batch, a tag identifying the parent RPC, and a

FinalizeResponse() callback. The tags enable request-response matching. The last

arriving response thread invokes FinalizeReponse(), which may access the RPC data

structure and response protocol buffers from each leaf. A developer must ensure thread-

safety. FinalizeResponse() may be invoked any time after InvokeLeafAsync(), and

may be concurrent with ProcessRequest(). Reasoning about races is the key challenge

of the asynchronous RPC implementation.

3.3.2 Automatic Load Adaptation

A key feature of µTune is its ability to automatically select among threading models in

response to load, thereby relieving developers of the burden of selecting a threading model a

76

priori.

Synchronous vs. asynchronous microservices have a major programmability gap. Al-

though µTune’s framework hides some complexity, it is not possible to switch automatically

and dynamically between synchronous and asynchronous modes, as their API and applica-

tion code requirements necessarily differ. If an asynchronous implementation is available, it

will outperform its synchronous counterpart. Hence, we build µTune’s adaption separately

for synchronous and asynchronous models.

µTune picks the latency-optimal model among the four options (in-line vs. dispatch;

block vs. poll) and tunes thread pool sizes dynamically with load to reduce the 99th% tail

latency. It monitors service load and (a) picks a latency-optimal threading model and (b)

scales thread pools by parking/unparking threads. Both adaptations use profiles generated

during an offline training phase. We describe the training and adaptation steps shown in

Fig. 3.5(b).

Training phase. (1) During offline characterization, we use a synthetic load generator

to drive specific load levels for sustained intervals. During these intervals, we vary threading

model and thread pool sizes and observe 99th% tail latencies. The load generator then

ramps load incrementally, and we re-characterize at each load step. (2) µTune then builds a

piece-wise linear model relating offered load to observed tail latency at each load level.

Run-time adaptation. (1) µTune uses event-based windowing to monitor loads offered

to the mid-tier at runtime. (2) µTune records each request’s arrival timestamp in a circular

buffer. (3) It then estimates the inter-arrival rate using the circular buffer’s size and the

youngest and oldest recorded timestamps. The adaptation system’s responsiveness can be

tuned by adjusting the circular buffer’s size. Careful buffer size tuning can ensure quick,

efficient adaptation by avoiding oscillations triggered by outliers. Event-based monitoring

can quickly detect precipitous load increases. (4) The inter-arrival rate estimate is then given

as input to the switching logic that interpolates within the piece-wise linear model to estimate

tail latency for each configuration under each model and thread pool size. (5) µTune then

77

transitions to the predicted lowest latency threading model. µTune transitions by “parking”

the current threading model and “unparking” the newly selected model using its framework

abstraction and condition variable signaling, to (a) alternate between poll/block socket

reception, (b) process requests in-line or via predefined task queues that dispatch requests to

workers, or (c) park/unpark various thread pools’ threads to handle new requests. Successive

asynchronous requests invoke the (6) ProcessRequest(), (7) InvokeLeafAsync(), and

(10) FinalizeResponse() pipeline as dictated by the new threading model. In-flight

requests during transitions are handled by the earlier model.

3.4 Implementation

Framework. µTune builds upon Google’s open-source gRPC library [45], which uses

protocol buffers [84]—a language-independent interface definition language and wire

format—to exchange RPCs. µTune’s mid-tier framework uses gRPC’s C++ APIs: (1) Next()

and AsyncNext() with a zero second timeout are used to respectively block or poll for

client requests, (2) RPCName() and AsyncRPCName() are called via gRPC’s stub object to

send requests to leaf microservices. µTune’s asynchronous models explicitly track request

state using finite state machines. Asynchronous models’ response threads call Next() or

AsyncNext() for block- or poll-based receive.

µTune uses AsyncRPCName() to handle asynchronous requests to leaf microservices.

For asynchronous µTune, the leaf microservices must use gRPC’s Next() API variants to

accept requests through explicitly managed completion queues; for synchronous, the leaf

microservices can use underlying synchronous gRPC abstractions.

Using µTune’s framework to build a new microservice is simple, as only a few service

specific functions must be defined. We took ∼2 days to build each service in Sec. 3.5.

Automatic load adaptation. We construct the piece-wise linear model of tail latency

by averaging five 30s measurements of each threading model-thread pool pair at varying

loads. µTune’s load detection relies on a thread-safe circular buffer built using scoped

78

locks and condition variables. The circular buffer capacity is tuned to quickly detect load

transients while avoiding oscillation. We find that a 5-entry circular buffer works best in

all our experiments. µTune’s switching logic uses C++ atomics and condition variables to

switch among threading models seamlessly. µTune’s adaptation code is 2371 LOC of C++.

3.5 Experimental Setup

We characterize threading models in the context of four information retrieval web

services’ mid-tier and leaf microservices adopted from µSuite [448]. Specifically, we study

threading models in the context of a content-based high dimensional search for image

similarity—HDSearch, a replication-based protocol router for scaling fault-tolerant key-

value stores—Router, a service for performing set algebra on posting lists for document

retrieval—Set Algebra, and a user-based item recommender system for predicting user

ratings—Recommend (detailed in Chapter II).

We use a load generator that mimics many clients to send queries to each mid-tier

microservice under controlled load scenarios. It operates in a closed-loop mode while

measuring peak sustainable throughput. We measure end-to-end (across all microservices)

99th% latency by operating the load generator in open-loop mode with Poisson inter-

arrivals [172]. The load generator runs on separate hardware and we validated that the load

generator and network bandwidth are not performance bottlenecks3.

Our distributed system has a load generator, a mid-tier microservice, and (1) a four-way

sharded leaf microservice for HDSearch, Set Algebra, and Recommend and (2) a 16-way

3Fun (?) fact: It took nearly 1.5 months of debugging a large code base to write this single sentence in this
chapter. For a while, network bandwidth was the performance bottleneck, causing large queue build-ups. Since
our system is multi-tiered, I had to painstakingly debug each entry and exit point (building novel, approximate
clock synchronization mechanisms along the way) to somehow “look” at invisible queuing effects. My Ph.D.’s
lowest point was when I called the vertical blank space between two consecutive lines of code the “problem”
to Tom Wenisch, causing him to give me the most incredulous look I’ve seen him wear. That’s what elusive
queuing effects do—they make you lose your mind in your quest for them. Moral of the story: With research,
sometimes it takes months of effort to write little to no related content in your manuscript. But, that does not
mean those efforts are meaningless; you grow as a researcher even if it seems like the world will never read
about your painstaking efforts. Research growth is not measured by merely the papers written.

79

Table 3.1: Mid-tier microservice processor specification.

Processor features Specification
Microarchitecture Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10 Gbit/s

Linux kernel version 3.19.0

sharded leaf microservice with three replicas for Router. The hardware configuration of

our measurement setup is in Table 3.1. The leaf microservers run within Linux tasksets

limiting them to 20 logical cores for HDSearch, Set Algebra, and Recommend and 5

logical cores for Router. Each microservice runs on a dedicated machine. The mid-tier is

not CPU bound; saturation throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation system and measure its respon-

siveness to load changes, we construct the following load generator scenarios. (1) Load

ramp: We increase offered load in discrete 30s steps from 20 Queries Per Second (QPS)

up to a microservice-specific near-saturation load. (2) Flash crowd: We increase load

suddenly from 100 QPS to 8K/13K QPS. In addition to performance metrics measured by

our load generator, we also report OS and microarchitectural statistics. We use Linux’s perf

utility to profile the number of cache misses and context switches incurred by the mid-tier

microservice. We use Intel’s HITM (hit-Modified) PEBS coherence event to detect true

sharing of cache lines; an increase in HITM events indicates a corresponding increase in

lock contention [347]. We measure thread wakeup delays (reported as latency histograms)

using the BPF run queue (scheduler) latency tool [66].

3.6 Evaluation

We first characterize our threading models. We then compare µTune to state-of-the-art

adaptation systems.

80

0"

5"

10"

15"

20"

25"

30"

HDSearch" Router" Set"Algebra" Recommend"

Workloads"

Synchronous" Asynchronous"

Sa
tu
ra
>o

n"
th
ro
ug
hp

ut
"(t
ho

us
an
ds
"o
f"Q

PS
)"

Figure 3.6: Synchronous vs. asynchronous model’s saturation throughput: The asynchronous model
performs better by 42% on average.

3.6.1 Threading Model Characterization

We explore microservice threading models by first comparing synchronous vs. asyn-

chronous performance. We then separately explore trade-offs among the synchronous and

asynchronous models to report how the latency-optimal threading model varies with load.

3.6.1.1 Synchronous vs. Asynchronous

The synchronous vs. asynchronous trade-off is one of programmability vs. performance.

It would be unusual for a development team to construct both microservice designs; if

the team invests in the asynchronous design, it will almost certainly be more performance

efficient. Still, our performance study serves to quantify this gap.

Saturation throughput. We record saturation throughput for the “best” threading

model at saturation (SDB/ADB). In Fig. 3.6, we see that the greater asynchronous efficiency

improves saturation throughput for µTune’s asynchronous models, a 42% mean throughput

improvement across all services. However, we spent 5× more effort to build, debug, and

81

0"

0.5"

1"

1.5"

2"

64" 128" 256" 512" 1K" 2K" 4K" 8K" 16K"

Load"(Queries"Per"Second)"

HDSearch" Router" Set"Algebra" Recommend"

∞ ∞ ∞ ∞
99

th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

ra
tio

 (s
yn

c:
as

yn
c)

Figure 3.7: Ratio of the best synchronous model’s latency to the best asynchronous model’s latency:
The best asynchronous model is faster by a mean 12% at the loads that are achievable by the best
synchronous model, and infinitely faster at higher loads.

tune the asynchronous models.

Tail latency. Latency cannot meaningfully be measured at saturation, as the offered load

is unsustainable and queuing delays grow unbounded. Hence, we compare tail latencies

at load levels from 64 QPS up to synchronous saturation. In Fig. 3.7, we show the best

sync-to-async ratio of 99th% tail latency across all threading models and thread pool sizes

at each load level; we study inter-model latencies later. We find asynchronous models

reduce tail latency up to ∼ 1.3× (mean of ∼ 1.12×) over synchronous models (for loads that

synchronous models can sustain; i.e., ≤ 8K). This substantial tail latency gap arises because

asynchronous models prevent long queuing delays.

82

0	

0.5	

1	

1.5	

2	

10	
 100	
 1000	
 10000	

99
th
	
 p
er
ce
n/

le
	
 ta

il	

la
te
nc
y	

(m

s)
	

Load	
 (Queries	
 Per	
 Second)	

SIB	
 SIP	
 SDB	
 SDP	

satura/on	

QPS	
 64	
 128	
 256	
 512	
 1K	
 2K	
 4K	
 8K	
 10K	

SIB
 1.4	
 	

 1.3
 1.3
 1
 1
 1
 1.1
 1.1
 ∞

SIP
 1
 1
 1
 1.6
 1.6
 1.9
 2.6
 ∞
 ∞

SDB
 1.3
 1.3
 1.3
 1.1
 1.1
 1.1
 1
 1
 1

SDP
 1.2
 1.1
 1
 1
 1
 1
 1.1
 1.4
 ∞

HDSearch

Figure 3.8: Graph: Latency vs. load trade-off for HDSearch’s synchronous models. Table: Latencies
at each load normalized to the best latency for that load: No threading model is always the best.

3.6.1.2 Synchronous models

We study the tail latency vs. load trade-off for services built with µTune’s synchronous

models. We show a cross-product of the threading taxonomy across loads for HDSearch

in Fig. 3.8. Each data point is the best 99th% tail latency for that threading model and

load based on an exhaustive thread pool size search. Points above the dashed line are in

saturation, where tail latencies are very high and meaningless. The table reports the same

data as the graph with each load latency normalized to the best latency for that load, which

83

is highlighted in blue. We omit graphs for other applications as they match the HDSearch

trends.

We make the following observations:

SDB enables highest load. The Synchronous Dispatch Block model, with a single

network thread and a large worker pool of 50 threads is the only model that sustains peak

loads (≥ 10K QPS). SDB is best at high loads as (1) its worker pool has enough concurrency

so that leaf microservers, rather than the mid-tier, pose the bottleneck; and (2) the single

network thread is sufficient to accept and dispatch the offered load. SDB outperforms SDP

at high load as polling consumes CPU in fruitless poll loops. For example, at 10,000 QPS,

the mid-tier microserver receives one query every 100 microseconds. In SDP, poll loops

are often shorter than 100 microseconds. Hence, some poll loops that do not retrieve any

requests are wasted work and may delay critical work scheduling, such as RPC response

processing. Under SDB, the CPU time wasted in empty poll loops can instead be used to

progress an ongoing request.

SIP has lowest latency at low load. While SDB sustains peak loads, it is latency-

suboptimal at low loads. SIP offers 1.4× better low-load tail latency by avoiding up to two

OS thread wakeups relative to alternative models: (1) network thread wakeups via interrupts

on query arrivals, and (2) worker wakeups for RPC dispatch. Work hand-off among threads

may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being the best model when the offered

load grows too large for one in-line thread to sustain. Adding more in-line polling threads

causes contention in the OS and RPC reception code paths. Additional in-line blocking

threads are less disruptive, but SIB never outperforms SDP. By switching to a dispatched

model, a single network thread can still accept the incoming RPCs, avoiding contention and

locality losses of running the gRPC [45] and network receive stacks across many cores. The

workers add sufficient concurrency to sustain RPC and response processing. We further note

that SDP tail latencies at intermediate loads are better than at low load, since there is better

84

0"

2"

4"

6"

8"

0"'
"1"

2"'
"3"

4"'
"7"

8"'
"15
"

16
"'"3
1"

32
"'"6
3"

64
"'"1
27
"

Wakeup"latency"distribu<on"(us"range)"

SIB" SIP" SDB" SDP"
N
o.
"o
f"t
hr
ea
d"
w
ak
e'
up

s"(
th
ou

sa
nd

s)
"

Figure 3.9: HDSearch synchronous thread wakeups at 64 QPS: Block incurs more wakeups.

temporal locality and OS and networking performance tend to improve due to batching

effects in the networking stack.

OS and microarchitectural effects. We report OS thread wakeup latency distributions

for HDSearch synchronous models at 64 QPS in Fig. 3.9. Although some OS thread

wakeups are fast (∼5 µs), blocking models frequently incur 32-64 µs range wakeups. This

data also depicts the advantage of in-line over dispatched models with respect to low-load

worker wakeup costs.

Fig. 3.10 shows the relative frequency of true sharing misses (HITM), context switches,

and cache misses for threading models at high load (10K QPS). These results show why SIP

fails to scale as load increases. SIP needs multiple threads to sustain loads that are greater

than or equal to 512 QPS. Multiple pollers contend pathologically on the network receive

processing, incurring many sharing misses, context switches, and cache misses. SIB in-line

threads contend less as they block, rather than poll. SDB and SDP exhibit similar contention.

However, SDB outperforms SDP, since SDP incurs a mean ∼ 10% higher wasted CPU

85

0	

0.5	

1	

1.5	

2	

2.5	

	
 HITMs	
 	
 Context	
 switch	
 Cache	
 miss	

SIB	
 SIP	
 SDB	
 SDP	

N
or
m
al
ize

d	

	
 in
cr
ea
se
	
 o
ve
r	
 b

es
t	
 m

od
el
	

OS	
 and	
 microarchitectural	
 overheads	

Figure 3.10: Relative frequency of synchronous contention, context switches, and cache misses at
10K QPS: SIP performs the worst.

utilization.

Additional Tests. (1) We measured µTune with null (empty) RPC handlers. Complete

services incur higher tails than null RPCs as mid-tier and leaf computations add to tails. For

null RPCs, SIP outperforms SDB by 1.57× at low loads. (2) We measured HDSearch on

another hardware platform (Intel Xeon “Skylake” vs. “Haswell”). We notice similar trends

as on our primary Haswell platform, with SIP outperforming SDB by 1.42× at low loads.

(3) We note that the median latency follows a similar trend, however, with lower absolute

values (e.g., HDSearch’s SIP outperforms SDB by 1.26× at low load). We omit figures for

these tests as they match the reported HDSearch trends. Threading performance gaps will

be wider for faster services (e.g., 200K QPS Memcached [70]) as slightest OS/network

overheads become magnified [408].

86

0	

0.5	

1	

1.5	

2	

10	
 100	
 1000	
 10000	

99
th
	
 p
er
ce
n/

le
	
 ta

il	

la
te
nc
y	

(m

s)
	

Load	
 (Queries	
 Per	
 Second)	

AIB	
 AIP	
 ADB	
 ADP	

satura/on	

QPS	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	
 20K	

AIB
 1.3	
 	

 1.3
 1.3
 1.2
 1.1
 1.1
 1.2
 1.9
 ∞

AIP
 1
 1
 1
 1
 1
 1
 1.1
 2.1
 ∞

ADB
 1.4
 1.4
 1.3
 1.1
 1.1
 1.1
 1.1
 1
 1

ADP
 1.1
 1.1
 1.1
 1
 1
 1
 1
 1.8
 ∞

Set Algebra

Figure 3.11: Graph: Latency vs. load for Set Algebra’s asynchronous models. Table: The latency
at each load level normalized to the best latency for that load: No threading model is always the best.

87

0"
2"
4"
6"
8"
10"

64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K" 64
"

25
6" 1K
"

4K
"

20
K"

To
ta
l"t
hr
ea
ds
"

Load"(QPS)"for"each"threading"model"

Response"threads" Workers" Inline/network"threads"

AIB" AIP" ADB" ADP"

Set Algebra

Figure 3.12: Asynchronous thread pools for best tail latency: Big thread pools content.

0"
1"
2"
3"
4"
5"
6"

"HITMs" "Context"switch" Cache"miss"

OS"and"microarchitectural"overheads"

AIB" AIP" ADB" ADP"

N
or
m
al
ize

d"
in
cr
ea
se
"

ov
er
"A
DB

"

Figure 3.13: Asynchronous Set Algebra’s relative frequency of contention, context switches, and
cache misses over the best asynchronous model at peak load: AIP performs worst.

88

3.6.1.3 Asynchronous models

We show results for Set Algebra’s asynchronous models in Fig. 3.11. As above, we

omit figures for additional services as they match Set Algebra trends. Broadly, trends

follow the synchronous models, but latencies are markedly lower. We note the following

differences:

Smaller thread pool sizes. Significantly smaller (≤ 4 threads) thread pool sizes are

sufficient at various loads, since asynchronous models capitalize on the available concurrency

by quickly moving on to successive requests.

Fig. 3.12 shows Set Algebra’s asynchronous thread pool sizes that achieve the best

tails for each load level. We find four threads enough to sustain high loads. Larger thread

pools deteriorate latency by contending for network sockets or CPU resources. In contrast,

SIB, SDB, and SDP need many threads (as many as 50) to exploit available concurrency.

AIP scales much better than SIP. AIP with just one in-line and response thread can

tolerate much higher load (up to 4096 QPS) than SIP, since queuing delays engendered

by both the front-end network socket and leaf node response sockets are avoided by the

asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and response threads copes worse

than SDP at loads ≥ 8192 QPS even though it does not have a large thread pool contending

for CPU (in contrast to SDP at high loads). This design fails to scale since response threads

contend on the completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP, ADP incurs more context switches,

caches misses, and HITMs, due to response thread contention (Fig. 3.13).

3.6.2 Load Adaptation

We next compare µTune’s load adaptation against state-of-the-art baselines [242, 316,

117] for various load patterns.

89

3.6.2.1 Comparison to the state-of-the-art

We compare µTune’s run-time performance to state-of-the-art adaptation techniques [242,

316, 117]. We find that µTune offers better tail latency than these approaches.

Few-to-Many (FM) parallelism. FM [242] uses offline profiling to vary parallelism

during a query’s execution. The FM scheduler decides when to add parallelism for long-

running queries and by how much, based on the dynamic load that is observed every 5 ms. In

consultation with FM’s authors, we decide to treat a microservice as an FM query, to create a

fair performance analogy between µTune and FM. In our FM setup, we mimic FM’s offline

profiling by building an offline interval table that notes the software parallelism to add for

varied loads in terms of thread pool sizes. We use the peak load-sustaining synchronous and

asynchronous models (SDB and ADB). During run-time, we track the mid-tier’s loads every

5 ms and suitably vary SDB/ADB’s thread pool sizes. FM varies only pool sizes (vs. µTune

also varying threading models), and we find that FM underperforms µTune (as we show

later).

Integrating Polling and Interrupts (IPI). Langendoen et al. [316] propose a user-level

communication system that adapts between poll- and interrupt-driven request reception. The

system initially uses interrupts. It starts to poll when all threads are blocked. It reverts to

interrupts when a blocked thread becomes active. We study this system for synchronous

modes only; as its authors note [316], it does not readily apply for asynchronous modes.

To implement this technique, we keep (1) a global count of all threads and (2) a shared

atomic count of blocked threads for the mid-tier. Before a thread becomes blocked (e.g., in-

vokes a synchronous call), it increments the shared count and decrements it when it becomes

active (i.e., synchronous call returns). After revising the shared count, a thread checks if

the system’s active thread count exceeds the machine’s logical core count. If higher, the

system blocks, otherwise, it shifts to polling. We will demonstrate that µTune outperforms

this technique, as it considers additional model dimensions (such as inline/dispatch), as well

as dynamically scales thread pools based on load.

90

Time window-Based Detection (TBD). Abdelzaher et al. [117] periodically observe

request arrival times in fixed observation windows to track request rate. In our setup,

we replace µTune’s event-based detector with this time-based detector. We pick 5 ms

time-windows (like FM) to track low loads and react quickly to load spikes.

We evaluate the tail latency exhibited by µTune across all services and compare it to

these state-of-the-art approaches [242, 316, 117] for both steady-state and transient loads.

We examine µTune’s ability to pick a suitable threading model and size thread pools for

time-varying load. We offer loads that differ from those used in training. We aim to study if

µTune selects the best threading model, as compared to an offline exhaustive search.

3.6.2.2 Steady-state adaptation

Fig. 3.14 shows µTune’s ability in converging to the best threading model and thread

pool size for steady-state loads. Our test steps up and down through the displayed load

levels. We report the tail latency at each load averaged over five trials. The SIP1, SDP1-20,

and SDB1-50 bars are optimal threading configurations for some loads. The nomenclature is

the threading model followed by the pool sizes, in the form model-network-worker-response.

The FM [242], Integrated Poll/Interrupt (IPI) [316], and Time-Based Detection (TBD) [117]

bars are the tail latency of state-of-the-art systems. The red bars are µTune’s tail latency;

bars are labelled with the configuration µTune chose.

In synchronous mode (Fig. 3.14 (top)), µTune first selects an SIP model with a single

thread, until load grows to about 1K QPS, at which point it switches to SDP, and begins

ramping up the worker thread pool size. At 8K QPS, it switches to SDB and continues

growing the worker thread pool, until it reaches 50 threads, which is sufficient to meet the

peak load the leaf microservice can sustain.

µTune reduces tail latency by up to 1.7× for HDSearch, 1.6× for Router, 1.4× for Set

Algebra, and 1.5× for Recommend (at 20 QPS) over SDB—the static model that sustains

peak loads. µTune reduces tail latency by a mean 1.3x over SDB across all loads and

91

0"

0.5"

1"

1.5"

2"

20" 50" 100" 1K" 8K" 11K"

99
th
"p
er
ce
n1

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

SIP1% SDP1'20% SDB1'50% FM% IPI% TBD% μTune%%

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 15K	

Load	
 (Queries	
 Per	
 Second)	

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 12K	

Load	
 (Queries	
 Per	
 Second)	

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 13K	

Load	
 (Queries	
 Per	
 Second)	

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 11K	

Load	
 (Queries	
 Per	
 Second)	

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

(m
s)

∞ ∞ HDSearch ∞ ∞ ∞ Router ∞ ∞

∞ Set Algebra ∞ ∞ ∞ ∞ ∞
Recommend

S
D

P
1-

20

S
D

B
1-

50

S
D

B
1-

50

S
D

B
1-

50

S
D

B
1-

50

S
D

P
1-

20

S
D

P
1-

20

S
D

P
1-

20

99
th
 p

er
ce

nt
ile

 ta
il

la
te

nc
y

(m
s)

S
IP

1

S
IP

1
S

IP
1

S
IP

1

S
IP

1

S
IP

1 S
D

B
1-

50

S
D

B
1-

50

S
IP

1

S
IP

1

S
IP

1

S
IP

1 S
D

B
1-

50

S
IP

1

S
IP

1 S
D

B
1-

50

0"

0.5"

1"

1.5"

2"

20" 50" 100" 1K" 8K" 14K"

99
th
"p
er
ce
n2

le
"ta

il"
la
te
nc
y"
(m

s)
"

Load"(Queries"Per"Second)"

AIP1%0%1' ADP1%4%1' ADB1%4%4' FM' TBD' μTune''

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 13K	

Load	
 (Queries	
 Per	
 Second)	

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 14K	

Load	
 (Queries	
 Per	
 Second)	

99
th

 p
er

ce
nt

ile
 ta

il
la

te
nc

y
(m

s)

3 Set Algebra
∞

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 13K	

Load	
 (Queries	
 Per	
 Second)	

99
th

 p
er

ce
nt

ile
 ta

il
la

te
nc

y
(m

s)

Router
∞

∞ 6.17
∞

HDSearch

0	

0.5	

1	

1.5	

2	

20	
 50	
 100	
 1K	
 8K	
 14K	

Load	
 (Queries	
 Per	
 Second)	

Recommend
∞

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
D

P
1-

4-
1

A
D

B
1-

4-
4

A
IP

1-
0-

1
A

IP
1-

0-
1

A
IP

1-
0-

1
A

IP
1-

0-
1 18.33

4.8 3.1

A
IP

1-
0-

1

A
IP

1-
0-

1

A
D

B
1-

4-
4

A
D

B
1-

4-
4

A
IP

1-
0-

1

A
IP

1-
0-

1

A
IP

1-
0-

1

A
IP

1-
0-

1

A
D

B
1-

4-
4

A
D

B
1-

4-
4

A
IP

1-
0-

1

A
IP

1-
0-

1

Figure 3.14: Synchronous (top) and asynchronous (bottom) steady-state adaptation.

92

0"

2"

4"

6"

8"

10"

12"

20" 50" 100" 1K" 8K" 11K"

Sy
nc
."μ

Tu
ne

’s
"in
st
ru
c8
on

"o
ve
rh
ea
d"
(%

)"

Load"(Queries"Per"Second)"

HDSearch"
Router"
Set"Algebra"
Recommend"
Geomean"

<0.005"
<0.005"

<0.005" <0.005"

<0.005" <0.005"

Figure 3.15: Synchronous µTune’s instruction overhead for steady-state loads: Less than 5% mean
overhead incurred.

services. µTune also outperforms all state-of-the-art [242, 316, 117] techniques (except

TBD) for at least one load level and never underperforms them. µTune outperforms FM by

up to 1.3× for HDSearch and Recommend, and 1.4× for Router and Set Algebra under

low loads, as FM only varies SDB’s thread pool sizes and hence incurs high network poller

and worker wakeups. µTune outperforms the IPI approach by up to 1.6× for HDSearch,

1.5× for Router and Recommend, and 1.4× for Set Algebra under low loads. At low load,

IPI polls with many threads (to sustain peak load), succumbing to expensive contention.

TBD does as well as µTune as the requests mishandled during the 5 ms monitor window

fall in tails greater than the 99th% percentile that we monitor for 30s for each load level.

In asynchronous mode (Fig. 3.14 (bottom)), µTune again initially selects an in-line poll

model with small-sized pools, transitioning to ADP and then ADB as load grows. Four

worker and response threads suffice for all loads. We show that µTune outperforms static

threading choices and state-of-the-art techniques by up to 1.9× for at least one load level.

Across all loads, µTune selects threading models and thread pool sizes that perform

93

within 5% of the best model as determined by offline search. µTune incurs less than 5%

mean instruction overhead over the load-specific “best” threading model, as depicted in

Fig. 3.15. Hence, we find our piece-wise linear model sufficient to make good threading

decisions. Note that µTune always prefers a single thread interacting with the front-end

socket. This finding underscores the importance of maximizing locality and avoiding

contention on the RPC receive path.

3.6.2.3 Load transients

Table 3.2 indicates µTune’s response to load transients, where the columns are a series of

varied-duration load levels. The rows are the 99th% tail latency for the models between which

µTune adapts in this scenario (SIP/AIP and SDB/ADB), state-of-the-art [242, 316, 117]

techniques, and µTune. The key step in this scenario is the 8K/13K QPS load level, which

lasts only 1s. We pick spikes of 8K QPS and 13K QPS for synchronous and asynchronous

as these loads are SIP and AIP saturation levels, respectively.

We find that the in-line poll models accumulate a large backlog during the transient

period as they saturate, and thus perform poorly even during successive low loads. FM

and TBD incur high transient tail latencies as they allow requests during the 5 ms load

detection window to be handled by sub-optimal threading choices. FM saturates at 8K QPS

for Recommend since the small SDB thread pool size selected by FM at 100 QPS causes

unbounded queuing during the load monitoring window. IPI works only for synchronous

models and performs poorly at low loads, as its fixed-size thread pool leads to polling

contention. We show that µTune detects the transient and transitions from SIP/AIP to

SDB/ADB fast enough to avoid accumulating a backlog that affects tail latency. Once

the flash crowd subsides, µTune transitions back to SIP/AIP, avoiding the latency penalty

SDB/ADB suffer at low load.

94

Synchronous Asynchronous

10
0

Q
PS

(0
-3

0s
)

8K
Q

PS
(3

0s
-3

1s
)

10
0

Q
PS

(3
1

-6
1s

)

10
0

Q
PS

(0
-3

0s
)

13
K

Q
PS

(3
0s

-3
1s

)

10
0

Q
PS

(3
1

-6
1s

)

SIP 0.99 >1s >1s AIP 0.95 >1s >1s
SDB 1.49 1.07 1.40 ADB 1.48 1.10 1.40
FM 1.35 13.00 1.32 FM 1.28 4.73 1.33
IPI 1.59 1.10 1.50 IPI NA NA NA

H
D
S
e
a
r
c
h

TBD 1.03 8.69 1.02 TBD 1.06 2.63 1.08
µTune 1.01 1.09 0.99 µTune 0.98 1.13 0.96

SIP 1.10 >1s >1s AIP 1.01 >1s >1s
SDB 1.31 0.83 1.36 ADB 1.35 1.13 1.31
FM 1.33 9.40 1.40 FM 1.30 12.95 1.30
IPI 1.4 1.10 1.38 IPI NA NA NA

R
o
u
t
e
r

TBD 1.13 4.51 1.11 TBD 1.03 6.24 1.01
µTune 1.12 0.88 1.13 µTune 0.99 1.02 0.98

SIP 0.95 >1s >1s AIP 1.04 >1s >1s
SDB 1.30 0.92 1.32 ADB 1.26 0.99 1.23
FM 1.30 12.00 1.25 FM 1.28 4.14 1.27
IPI 1.20 0.94 1.12 IPI NA NA NA
TBD 1.00 8.45 1.03 TBD 1.09 6.62 1.1

S
e
t
A
l
g
e
b
r
a

µTune 0.97 0.92 1.03 µTune 1.06 1.1 1.06

SIP 1.00 >1s >1s AIP 1.03 >1s >1s
SDB 1.26 0.96 1.22 ADB 1.37 1.30 1.32
FM 1.23 >1s >1s FM 1.28 8.61 1.20
IPI 1.13 1.02 1.13 IPI NA NA NA
TBD 1.02 4.96 1.03 TBD 1.06 6.00 1.07

R
e
c
o
m
m
e
n
d

µTune 1.00 1.00 1.00 µTune 1.06 1.39 1.04

Table 3.2: 99th% tail latency (ms) for load transients.

95

3.7 Discussion

We briefly discuss open questions and µTune limitations.

Offline training. µTune uses offline training to build a piece-wise linear model. This

phase might be removed by dynamically analyzing OS and hardware signals, such as

context switches, thread wakeups, queue depths, cache misses, and lock contention, to

switch threading models. Designing heuristics to switch optimally based on such run-time

metrics remains an open question; our performance characterization can help guide their

development.

Thread pool sizing. µTune tunes thread pool sizes using a piece-wise linear model.

µTune differs from prior thread pool adaptation systems [242, 273, 302] in that it also tunes

threading models. Some of these systems use more sophisticated tuning heuristics, but we

did not observe opportunity for further improvement in our microservices.

CPU cost of polling. µTune polls at low loads to avoid thread wakeups. Polling can

be costly as it wastes CPU time in fruitless poll loops. However, as most operators over-

provision CPU to sustain high loads [431], when load is low, spare CPU time is typically

available [248].

µTune’s asynchronous framework. Asynchronous RPC state must be maintained in

thread-safe structures, which is challenging. More library/language support might simplify

building asynchronous microservices with µTune. We leave such support to future work.

Comparison with optimized systems that use kernel-bypass, multi-queue NICs, etc.

It may be interesting to study the implications of optimized systems [402, 289, 274, 154,

408, 329] that incorporate kernel-bypass, multi-queue NICs, etc., on threading models

and µTune. Multi-queue NICs may improve polling scalability; multiple network pollers

currently contend for the underlying gRPC [45] queues under µTune. OS-bypass may further

increase the application threading model’s importance; for example, it may magnify the

trade-off between in-line and dispatch RPC execution, as OS-bypass eliminates latency and

96

thread hops in the OS TCP/IP stack, shifting the break-even point to favor in-line execution

for longer RPCs. However, we have limited our scope to study designs that can layer upon

(unmodified) gRPC [45]; we defer studies that require extensive gRPC [45] changes (or an

alternative reliable transport) to future work.

3.8 Related Work

We discuss several categories of related work.

Web server architectures. Web servers can have (a) thread-per-connection [390], (b)

event-driven [394], (c) thread-per-request [263], or (d) thread-pool architectures [332]. Pai

et al. [390] build thread-per-connection servers as multi-threaded processes. Knot [479] is a

thread-per-connection non-blocking server. In contrast, µTune is a thread-per-request thread-

pool architecture that scales better for microservices [332]. The Single Process Event-Driven

(SPED) [390] architecture operates on asynchronous ready sockets. In contrast, µTune

supports both synchronous and asynchronous I/O. The SYmmetric Multi-Process Event-

Driven (SYMPED) [394] architecture runs many processes as SPED servers via context

switches. The Staged Event-Driven Architecture (SEDA) [486] joins event-driven stages

via queues. A stage’s thread pool is driven by a resource controller. Apart from considering

synchronous and asynchronous I/O as prior works [394, 486, 263, 262, 483, 219] did, µTune

also studies a full microservice threading model taxonomy. gRPC-based systems such as

Envoy [34] or Finagle [39] act as load balancers or use a single threading model.

Software techniques for tail latency: Prior works [486, 263] note that monolithic

service software designs can significantly impact performance. However, micro-second–

scale OS and network overheads that dominate in µTune’s regime do not manifest in

these slower services. Some works improve web server software via software pattern re-

use [424, 425], caching file systems [263], or varying parallelism [242], all of which are

orthogonal to the questions we investigate. Kapoor et al. [289] also note that OS and network

97

overheads impact short-running cloud services, however, their kernel bypass solution may

not apply for all contexts (e.g., a shared cloud infrastructure).

Parallelization to reduce latency: Several prior works [164, 190, 280, 306, 321, 412,

457, 485, 332] reduce tails via parallelization. Others [220, 360, 143, 250] reduce medians

by adaptively sharing resources. Prior works use prediction [273, 302], hardware paral-

lelism [242], or data parallelism [225] to reduce monolithic services’ tail latency. Lee et

al. [321] use offline analysis (like µTune) to tune thread pools. We study microservice

threading, and vary threading models altogether. However, we build on prior works’ thread

pool sizing insights.

Hardware mechanisms for tail latency: Several other prior works reduce leaf service

tail latency via better co-location [327], voltage boosting [261, 292], or applying hetero-

geneity in multi-cores [243]. However, they do not study microservice tail latency effects

engendered by software threading, OS, or network.

3.9 Long-Term Impact Potential

This work identifies new insights in the age-old research area of software threading

models that resulted in redesigning threading models for hyperscale microservices [449].

To quote an anonymous expert reviewer for the USENIX Symposium on Operating Systems

Design and Implementation (OSDI) 2018, “When I started reading the paper, I thought that

it was yet another threading model paper, which it was; however, the systematic nature of

the paper and new measurement comparisons applied to an important emerging service

paradigm made it very interesting.” We discuss impact in terms of (1) long-term impact in

industry and academia and (2) potential for follow-on research.

µTune can improve data center performance/watt. Microservices are an important

data center software trend that have profound implications on the future design of system

features that currently induce sub-ms–scale overheads. Current sub-ms system overheads

arise from threading designs that affect OS and I/O interactions, accesses to emerging storage-

98

class memories, rack-scale memory disaggregation, 100+ Gbps network communication,

accelerator/GPU micro-offloads, etc. We study a critical source of sub-ms system overhead—

threading model design. Curtailing microservice tail latency by using µTune to enable

efficient threading can result in significant data center performance/watt improvements.

These benefits improve user experience, energy, and cost. To quote an anonymous expert

OSDI 2018 reviewer, “µTune abstracts all threading models under simple APIs, is practical,

and shows tail latency benefits across the load spectrum”, “The core idea of µTune is simple,

but, very useful.” For this reason, my conversations with researchers at several hyperscale

enterprises (e.g., Microsoft and Facebook) revealed that µTune could find an immediate

application in their data centers.

Threading design space clarity. We show that threading trade-offs are not obvious: no

single threading model achieves the best latency across all loads, and even expert developers

have difficulty making good choices. Our threading taxonomy provides clarity to the

microservice threading design space. Expert OSDI reviewers’ comments include “Great

tutorial on RPC threading options”, “The taxonomy brings clarity to different threading

choices”, “I feel like this is a very clear exploration of the different choices and when they

improve and don’t improve performance”, “The work brings clarity to the threading design

space”. We enable expert and novice developers alike to use our taxonomy framework

as well as latency trade-offs revealed from our taxonomy characterization to guide their

microservice threading designs.

Applying µTune in a broad range of server tiers. One OSDI reviewer felt that µTune

could be broadly used in all server tiers instead of solely the mid-tier. We conversed with

researchers at several hyperscale enterprises about µTune’s applicability in other server tiers.

We discovered that several hyperscale enterprises’ leaf microservices have a sub-ms-scale

latency, and threading design decisions such as in-line vs. dispatch or poll vs. block can

significantly impact the leaf tier.

Conversations with these hyperscale enterprises’ edge computing teams revealed that

99

µTune can have even broader implications than merely the middle/leaf tiers. Systems

researchers who work on edge data centers perpetually face threading challenges due to

the highly distributed edge systems’ structure. These researchers expressed interest in a

threading model auto-tuner that is analogous to µTune, but applies to edge servers. µTune (or

its variants) can therefore help reduce tail latency in several tiers of a hyperscale distributed

system.

Future Research. Our threading taxonomy characterization and µTune can influence a

wide spectrum of future research.

(1) µTune’s offline training phase can be removed by dynamically analyzing microarch-

itectural and OS signals, such as context switches, thread wakeups, queue depths, cache

misses, and lock contention, to switch threading models and scale thread pools. Designing

heuristics to switch optimally based on such run-time metrics remains an open question; our

performance characterization can help guide their development4.

(2) It will be interesting to study optimized systems that use kernel-bypass, multi-queue

NICs, etc., on threading models and µTune. Multi-queue NICs might improve polling

scalability. OS-bypass might further increase the application threading model’s importance;

for example, it might magnify the trade-off between in-line and dispatch RPC execution,

as OS-bypass eliminates latency and thread hops in the OS TCP/IP stack, shifting the

break-even point to favor in-line execution for longer RPCs.

(3) We show that thread wakeups can significantly deteriorate tail latency. As detailed

in Chapter II, thread wakeup breakdowns indicate that OS scheduler decisions can be

inefficient—thread wakeup delays primarily arise from an increase in the time from when a

thread enters the active or runnable state to when it starts running on a CPU. Superior OS

scheduling policies for microservices can diminish tail latency spikes that arise due to thread

wakeup delays. Based on these insights, in Chapter V, we also design a more efficient event

notification paradigm.

4Fun fact: I was invited to intern at Microsoft Research and use such run-time heuristics to integrate µTune
into Microsoft Azure.

100

(4) µTune minimizes tail latency across wide-ranging load. µTune can be extended to

optimize a myriad of data center-critical performance metrics. For example, µTune’s tuning

mechanism can be altered to pick the Pareto optimal point in relation to tail latency, CPU

cost/query, and energy efficiency.

(5) We find that the best threading model depends critically on the offered load. However,

threading latency trade-offs can depend on other parameters that fluctuate at runtime such as

co-runners, CPU power states, and garbage collection activities. µTune can be extended to

include such variables.

3.10 Follow-On Research

In follow-on work5, my co-authors and I masked the OS/network-induced microsecond-

scale stalls identified in my threading analysis (detailed in Section 3.6). Specifically, due

to these OS/network-induced microsecond-scale stalls, we are entering an era of “killer

microseconds” in hyperscale web services. Killer microseconds refer to microsecond-scale

“holes” in CPU schedules caused by stalls to access fast I/O devices (e.g., network devices)

or brief idle times between requests in high throughput microservices. Whereas modern

computing platforms can efficiently hide nanosecond-scale and millisecond-scale stalls

through micro-architectural techniques and OS context switching respectively, they lack

efficient support to hide the latency of microsecond-scale stalls. Simultaneous Multithread-

ing (SMT) is an efficient way to improve core utilization and increase server performance

density. Unfortunately, scaling SMT to provision enough hardware threads to hide frequent

microsecond-scale stalls is prohibitive and SMT co-location can often drastically increase

the tail latency of microservices.

We presented Duplexity [368, 369], a heterogeneous server architecture that employs

aggressive multithreading to hide the latency of killer microseconds, without sacrificing

5This follow-on research was performed in collaboration with fellow graduate student Seyedamirhossein
Mirhosseininiri (who is the lead author) and other contributors [368]. Concepts summarized in Section 3.10
are detailed in Mirhosseininiri’s dissertation in Section 2 [370].

101

the Quality-of-Service (QoS) of latency-critical microservices. Duplexity provisions dyads

(pairs) of two kinds of cores: director-cores6, which each primarily executes a single latency-

critical director-thread, and lender-cores, which multiplex latency-insensitive throughput

threads. When the director-thread stalls, the director-core borrows filler-threads from the

lender-core, filling microsecond-scale utilization holes of the microservice. We introduced

critical mechanisms, including separate memory paths for the director-thread and filler-

threads, to enable director-cores to borrow filler-threads while protecting director-threads’

state from disruption. Duplexity facilitates fast director-thread restart when microsecond

stalls resolve and minimizes the microservice’s QoS violation. We demonstrated that

Duplexity achieves 1.9× higher core utilization and 2.7× lower iso-throughput 99th-percentile

tail latency over an SMT-based server design, on average.

3.11 Chapter Summary

We summarize our contributions as follows:

• A taxonomy of threading models. We revisited the age-old research area of software

threading models in the context of today’s hyperscale microservices by systemati-

cally laying out a taxonomy of threading models for the microservice regime and

analyzing them to identify new threading implications that manifest for hyperscale

microservices.

• A detailed performance study of threading model implications. We systematically

characterized our taxonomy of threading models to make the important and non-

obvious observation that no single threading model is best across all hyperscale

load conditions. We enable expert and novice developers alike to use our taxonomy

framework as well as latency trade-offs revealed from our taxonomy characterization

6In the research paper that describes Duplexity [368], we call these cores “master-cores”. In this dissertation,
I have replaced the term “master-core” with the term “director-core” to promote the use of more inclusive
language in technical writing.

102

to guide their microservice threading designs.

• µTune’s framework. µTune’s framework for developing microservices abstracts

microservice threading design from application code and supports a wide variety of

threading models. By abstracting complex threading details, µTune empowers small

software developer teams to develop performance-efficient microservices that meet

latency goals without spending enormous effort on optimizing complex threading

details.

• µTune’s load adaptation system. Driven by our observation that no single threading

model is best across all hyperscale load conditions, we demonstrated how threading

models must be redesigned for microservices by presenting µTune’s run-time load

adaptation system that intelligently tunes threading models and thread pool sizes

under varying loads. We also presented a detailed performance study of web services’

key tier (i.e., the mid-tier microserver) built with µTune.

Our study of OS/network performance overheads in Chapter II revealed that threading

interactions with the underlying OS and network stacks can impact the tail latency of

microservices more significantly than their monolithic counterparts. Threading-induced

overheads that microservices face are due to today’s hardware reality, where network and

I/O devices have sped up while CPU performance scaling has nearly stopped [196]. Hence,

we recognized the critical need to analyze threading effects for the microservice regime.

We investigated how threading design critically impacts microservice tail latency by

developing a taxonomy of threading models—a structured understanding of the implications

of how microservices manage concurrency and interact with RPC interfaces under wide-

ranging loads. We used our taxonomy of threading models to systematically characterize

threading-induced performance behaviors under wide-ranging load conditions.

We made the important observation that no single threading model is best across all load

conditions. Driven by this observation, we developed µTune, a system that has two features:

103

(1) a novel framework that abstracts threading model implementation from application

code, and (2) an automatic load adaptation system that curtails microservice tail latency

by exploiting inherent latency trade-offs revealed in our taxonomy to transition among

threading models at system runtime. We studied µTune in the context of µSuite’s web

services to demonstrate up to 1.9× microservice tail latency reduction over static threading

choices and state-of-the-art adaptation techniques.

We also described follow-on work, Duplexity [368], on hiding OS/network-induced

microsecond-scale stalls identified in our threading analysis (detailed in Section 3.6). Du-

plexity is a heterogeneous server architecture that schedules latency-insensitive jobs when a

microservice faces microsecond-scale stalls, improving data center performance and energy

efficiency.

104

CHAPTER IV

Optimizing Commodity Server Architectures for

Microservice Diversity at Hyperscale

The increasing user base and feature portfolio of web applications is driving precipitous

growth in the diversity and complexity of the back-end services comprising them [285].

As described in Chapter I, there is a growing trend towards microservice implementation

models [17, 7, 94, 477, 106], wherein a complex web application is decomposed into

numerous, specialized, distributed microservices [286, 378, 448, 443]. This deployment

model enables application components’ independent scalability by ramping the number

of physical servers/cores dedicated to each in response to diurnal and long-term load

trends [477].

At global user population scale, important microservices can grow to account for an

enormous installed base of physical hardware. Across Facebook’s global server fleet, seven

key microservices in four web service domains run on hundreds of thousands of servers,

i.e., at hyperscale, and occupy a significant portion of the compute-optimized installed

base. These microservices’ importance begs the question: do our existing commodity server

platforms serve them well? Are there common bottlenecks across microservices that we

might address when selecting a future commodity server CPU architecture?

105

1.E-02
1.E+00
1.E+02
1.E+04
1.E+06

Th
ro

ug
hp

ut

Re
q.

 la
te

nc
y

CP
U

 u
til

.

Co
nt

ex
t s

w
itc

he
s

IP
C

LL
C

co
de

 M
PK

I

IT
LB

 M
PK

I

M
em

. b
an

dw
id

th
ut

il.

D
iv

er
si

ty
 o

r v
ar

ia
ti

on
 ra

ng
e

ac
ro

ss

µs
er

vi
ce

s
(lo

g
sc

al
e)

System-level parameters Architectural parameters

Figure 4.1: Variation in system-level & architectural traits across microservices: Facebook’s mi-
croservices face extremely diverse bottlenecks.

As a part of this dissertation’s hardware contributions, we1 undertake comprehensive

system-level and architectural characterizations of these microservices on Facebook produc-

tion systems serving live traffic. We find that application functionality disaggregation across

microservices has yielded enormous diversity in system and CPU architectural require-

ments, as shown in Fig. 4.1. For example, caching microservices [171] require intensive

I/O and microsecond-scale response latency and frequent OS context switches can com-

prise 18% of CPU time. In contrast, a Feed [506] microservice computes for seconds per

request with minimal OS interaction. Facebook’s Web [388] microservice exhibits mas-

sive instruction footprints, leading to astonishing instruction cache and I-TLB misses and

branch mispredictions, while other microservices exhibit much smaller instruction footprints.

Some microservices depend heavily on floating-point performance while others have no

floating-point instructions.

Such diversity might suggest a strategy to specialize CPU architectures to suit each

microservice’s distinct needs. Optimizing one or more of such production microservices

to achieve even single-digit percent speedups can yield immense performance-per-watt

1Some of the work in this chapter was performed in collaboration with a researcher at Facebook, Abhishek
Dhanotia, and my Ph.D. advisor, Thomas. F. Wenisch [446]. Therefore, I use the “we” pronoun in this chapter
to acknowledge their involvement in this work. The lightning video of the related ISCA paper [446] is available
at: https://www.youtube.com/watch?v=m_SAiOQwu4w

106

https://www.youtube.com/watch?v=m_SAiOQwu4w

benefits and save millions of dollars [446, 298]. Indeed, we report observations that might

inform future hardware designs. However, hyperscale enterprises have strong economic

incentives to limit hardware platforms’ diversity to (1) maintain fungibility of hardware

resources, (2) preserve procurement advantages that arise from economies of scale, and

(3) limit the overhead of qualifying/testing myriad hardware platforms. As such, there

is an immediate need for strategies that enable a limited set of server CPU architectures

(often called “SKUs,” short for “Stock Keeping Units”) to provide performance and energy

efficiency over microservices with diverse characteristics.

Rather than diversify the hardware portfolio, we motivate the need for “soft SKUs,” a

strategy wherein we exploit coarse-grain (e.g., boot time) OS and hardware configuration

knobs to tune limited hardware SKUs to better support their presently assigned microservice.

Unlike data centers that co-locate services via virtualization, Facebook’s microservices

run on dedicated bare metal servers, allowing us to easily create microservice-specific

soft SKUs [446]. As microservice allocation needs vary, servers can be redeployed to

different soft SKUs through reconfiguration and/or reboot. Our OS and CPUs provide

several specialization knobs; in this study, we focus on seven: (1) core frequency, (2) uncore

frequency, (3) active core count, (4) code vs. data prioritization in the last-level cache ways,

(5) hardware prefetcher configuration, (6) use of transparent huge pages, and (7) use of static

huge pages.

Identifying the best microservice-specific soft-SKU configuration is challenging: the

design space is large, service code evolves quickly, synthetic load tests do not necessarily

capture production behavior, and the effects of tuning a particular knob are often small (a few

percent performance change). To this end, we develop µSKU—a design tool that automates

search within the seven-knob soft-SKU design space using A/B testing in production systems

on live traffic. µSKU automatically varies soft-SKU configuration while collecting numerous

fine-grain performance measurements to obtain sufficient statistical confidence to detect even

small performance improvements. We evaluate a prototype of µSKU and demonstrate that

107

the soft SKUs it designs outperform stock and expert-tuned production server configurations

by up to 7.2% and 4.5% respectively, with no additional hardware requirement. Even such

single-digit performance gains yield immense performance-per-watt benefits, saving millions

of dollars and meaningfully reducing the global carbon footprint [446, 298, 299, 297].

The rest of this chapter is organized as follows: We describe and measure Facebook’s

seven production microservices’ performance traits in Section 4.1. We motivate the need

for Soft SKUs in Section 4.2. We describe µSKU’s design in Section 4.3 and we discuss

the methodology used to evaluate µSKU in Section 4.4. We evaluate µSKU in Section 4.5,

discuss limitations in Section 4.6, and compare against related work in Section 4.7. We also

describe follow-on research in Section 4.9 and long-term impact potential in Section 4.8,

before concluding in Section 4.10.

4.1 Understanding Microservice Performance

We identify software and hardware bottlenecks faced by Facebook’s key production

microservices to see if they share common bottlenecks that might be addressed in future

server CPU architectures. In this section, we (1) describe each microservice, (2) explain our

characterization methodology, (3) discuss system-level characteristics to provide insights

into how each microservice is operated, (4) report on the architectural characteristics

and bottlenecks faced by each microservice, and (5) summarize our characterization’s

most important conclusions. A key theme that emerges throughout this characterization

is diversity; the seven microservices differ markedly in their performance constraints’

time-scale, instruction mix, cache behavior, CPU utilization, bandwidth requirements,

and pipeline bottlenecks. Unfortunately, this diversity calls for sometimes conflicting

optimization choices, motivating our pursuit of “soft SKUs” (Section 4.2) rather than custom

hardware for each microservice.

108

4.1.1 The Production Microservices

We characterize seven microservices in four diverse service domains running on Face-

book’s compute-optimized data center fleet. The workloads with longer work-per-request

(e.g., Feed2, Ads1) might be called “services” by some readers; we use “microservice,”

since none of these systems is entirely stand-alone. We characterize on production systems

serving live traffic. We first detail each microservice’s functionality.

Web. Web implements the HipHop Virtual Machine, a Just-In-Time (JIT) compilation

and runtime system for PHP and Hack [388, 493, 118], to serve web requests originating

from end-users. Web employs request-level parallelism: an incoming request is assigned to

one of a fixed pool of PHP worker threads, which services the request until completion. If

all workers are busy, arriving requests are enqueued. Web makes frequent requests to other

microservices, and the corresponding worker thread blocks waiting on the responses.

Feed1 and Feed2. Feed1 and Feed2 are key microservices in Facebook’s News Feed

service. Feed2 aggregates various leaf microservices’ responses into discrete “stories.”

These stories are then characterized into dense feature vectors by feature extractors and

learned models [506, 414, 142, 248]. The feature vectors are then sent to Feed1, which

calculates and returns a predicted user relevance vector. Stories are then ranked and selected

for display based on the relevance vectors.

Ads1 and Ads2. Ads1 and Ads2 maintain user-specific and ad-specific data, respec-

tively [249]. When Ads1 receives an ad request, it extracts user data from the request and

sends targeting information to Ads2. Ads2 maintains a sorted ad list, which it traverses to

return ads meeting the targeting criteria to Ads1. Ads1 then ranks the returned ads.

Cache1 and Cache2. Cache is a large distributed-memory object caching service (like,

e.g., [171, 474, 223, 88]) that reduces throughput requirements of various backing stores.

Cache1 and Cache2 correspond to two tiers within each geographic region for this service.

Client microservices contact the Cache2 tier. If a request misses in Cache2, it is forwarded

to the Cache1 tier. Cache1 misses are then sent to an underlying database cluster in that

109

Table 4.1: Skylake18, Skylake20, Broadwell16’s key attributes.

CPU features Skylake18 Skylake20 Broadwell16
Microarchitecture Intel Skylake Intel Skylake Intel Broadwell
Number of sockets 1 2 1

Cores/socket 18 20 16
SMT 2 2 2

Cache block size 64 B 64 B 64 B
L1-I$ (per core) 32 KiB 32 KiB 32 KiB
L1-D$ (per core) 32 KiB 32 KiB 32 KiB

Private L2$ (per core) 1 MiB 1 MiB 256 KiB
Shared LLC (per socket) 24.75 MiB 27 MiB 24 MiB

region.

4.1.2 Characterization Approach

We characterize the seven microservices by profiling each in production while serving

real-world user queries. We next describe the characterization methodology.

Hardware platforms. We perform our characterization on 18- and 20-core Intel Sky-

lake processor platforms [212], Skylake18 and Skylake20. Characteristics of each are

summarized in Table 4.1. Web, Feed1, Feed2, Ads1, and Cache2 run on Skylake18. Ads2

and Cache1 are deployed on Skylake20. Both platforms support Intel Resource Director

Technology (RDT) [103]. RDT facilitates tunable Last-Level Cache (LLC) size configura-

tions using Cache Allocation Technology (CAT) [267] and allows prioritizing code vs. data

in the LLC ways using Code Data Prioritization (CDP) [25].

Experimental setup. We measure each microservice in Facebook’s production envi-

ronment’s default deployment—stand-alone with no co-runners on bare metal hardware.

Therefore, there are no cross-service contention or interference effects in our data. We

measure each system at peak load to stress performance bottlenecks and characterize the

system’s maximum throughput capabilities. Facebook’s production microservice codebases

evolve rapidly; we repeat experiments across updates to ensure that results are stable.

We collect most system-level performance data using an internal tool called Operational

110

Data Store (ODS) [168, 397, 123]. ODS enables retrieval, processing, and visualization of

sampling data collected from all machines in the data center. ODS provides functionality

similar to Google-Wide-Profiling [418].

To analyze microservices’ interactions with the underlying hardware, we use myriad

processor performance counters. We collect data with Intel’s EMON [33]—a performance

monitoring and profiling tool that time multiplexes sampling of a vast number of processor-

specific hardware performance counters with minimal error. For each experiment, we use

this tool to collect tens of thousands of hardware performance events. We report 95%

confidence intervals on mean results.

We contrast our measurements with some CloudSuite [221], SPEC CPU2006 [253],

SPEC CPU2017 [331], and Google services [140, 285] where possible. We measured SPEC

CPU2006 performance on Skylake20. We reproduce selected data from published reports

on SPEC CPU2017 [331], CloudSuite [221], and Google’s services [140, 285] measured on

Haswell, Westmere, and Haswell, respectively. These results are not directly comparable

with our measurements as they are measured on different hardware. Nevertheless, they

provide context for the greater bottleneck diversity we observe in Facebook’s microservices

relative to commonly studied benchmark suites.

We present our characterization in two parts. We first discuss system-level characteristics

observed over the entire fleet. We then present performance-counter measurements and their

implications on architectural bottlenecks.

4.1.3 System-Level Characterization

We first present key system-level metrics, such as request latency, achieved throughput,

and path length (instructions per query), to provide insight into how the microservices

behave and how these traits may impact architectural bottlenecks. Throughout, we call

attention to key axes of diversity.

111

Table 4.2: Average request throughput, request latency, & path length across microservices: We
observe great diversity across services.

µservice Throughput (QPS) Request latency Instructions/query
Web O (100) O (ms) O (106)

Feed1 O (1000) O (ms) O (109)
Feed2 O (10) O (s) O (109)
Ads1 O (10) O (ms) O (109)
Ads2 O (100) O (ms) O (109)

Cache1 O (100K) O (µs) O (103)
Cache2 O (100K) O (µs) O (103)

4.1.3.1 Request throughput, request latency, and path length

We report approximate peak-load throughput, average request latency, and path length

(instructions per query) in Table 4.2. The amount of work per query varies by six orders of

magnitude across the microservices, resulting in throughputs ranging from tens of Queries

Per Second (QPS) to 100,000s of QPS with average request latencies ranging from tens of

microseconds to single-digit seconds.

Microservices’ differing time scales imply that per-query overheads that may pose major

bottlenecks for some microservices are negligible for others. For example, microsecond-

scale overheads that arise from accesses to Flash [120], emerging memory technologies like

3D XPoint by Intel and Micron [51, 235, 308], or 40-100 Gb/s Infiniband and Ethernet net-

work interactions [476] can significantly degrade the request latency of microsecond-scale

microservices [180, 145, 368, 369] like Cache1 or Cache2. However, such microsecond-

scale overheads have negligible impact on the request latency of seconds-scale microservices

like Feed2. The request latency diversity motivates our choice to include several microser-

vices in our detailed performance-counter investigation.

4.1.3.2 Request latency breakdown

We next characterize request latency in greater detail to determine the relative contribu-

tion of computation and queuing/stalls on an average request’s end-to-end latency. We report

112

28

10
28

34

Running Queue latency
Scheduler latency IO latency

(a) (b)

90

62

69

95

28

10

38

31

5

72

0 50 100

Ads2
Ads1

Feed2
Feed1

Web

Request latency breakdown (%)

Running (%) Blocked (%)

Figure 4.2: (a) A single request’s latency breakdown for each µservice: Few µservices block for a
long time, (b) Web’s request latency breakdown: Thread over-subscription causes scheduling delays.

the average fraction of time a request is “running” (executing instructions) vs. “blocked”

(stalled, e.g., on I/O) in Fig. 4.2 (a). We omit Cache1 and Cache2 from this measurement

since their queries follow concurrent execution paths and time cannot easily be apportioned

as “running” or “blocked”.

Feed1 and Ads2 are almost entirely compute-bound throughout a request’s life as they

are leaves and do not block on requests to other microservices in the common case. They will

benefit directly from architectural features that enhance instruction throughput. In contrast,

Web, Feed2, and Ads1 emit requests to other microservices and hence their queries spend

considerable time blocked. These can benefit from architectural/OS features that support

greater concurrency [449, 347], fast thread switching, and better I/O performance [450, 447].

We further break down Web’s “blocked” component in Fig. 4.2 (b) into queuing latency

(while a query awaits a worker thread’s availability), scheduler latency (where a worker is

ready but not running), and I/O latency (where a query is blocked on a request to another

microservice). Although Web’s scheduler delays are surprisingly high, these delays are not

due to inefficient system design, and are instead triggered by thread over-subscription. To

improve Web’s throughput, load balancing schemes continue spawning worker threads until

adding another worker begins degrading throughput.

113

0
50

100

Web Feed1 Feed2 Ads1 Ads2 Cache1 Cache2CP
U

ut
il.

 (%
) User Kernel & IO

Figure 4.3: Max. achievable CPU utilization in user- and kernel-mode across µservices: Utilization
can be low to avoid QoS violations.

4.1.3.3 CPU utilization at peak load

The microservices also vary in their CPU utilization profile. Fig. 4.3 shows the CPU

utilization and its user- and kernel-mode breakdown when each microservice is operated at

the maximum load it can sustain without violating Quality of Service (QoS) constraints. We

make two observations: (1) CPU resources are not always fully utilized. (2) Most microser-

vices exhibit a relatively small fraction of kernel/IO wait utilization. Each microservice

faces latency, quality, and reliability constraints, which impose QoS requirements that in

turn impose constraints on how high CPU utilization may rise before a constraint is violated.

Our load balancers modulate load to ensure constraints are met. More specifically, Cache1,

Cache2, Feed1, Feed2, Ads1, and Ads2 under-utilize the CPU due to strict latency con-

straints enforced to maintain user experience. These services might benefit from tail latency

optimizations, which might allow them to operate at higher CPU utilization. Cache1 and

Cache2 exhibit higher kernel-mode utilization due to frequent context switches, which we

inspect next.

4.1.3.4 Context switch penalty

We report the fraction of a CPU-second each microservice spends context switching in

Fig. 4.4. We estimate context switch penalty by first aggregating non-voluntary and voluntary

context switch counts reported by Linux’s time utility. We then estimate upper and lower

context switch penalty bounds using switching latencies reported by prior works [470, 325].

114

0
10
20
30

Web Feed1 Feed2 Ads1 Ads2 Cache1 Cache2Co
nt

ex
t s

w
itc

h
pe

na
lty

 ra
ng

e
(%

)

Figure 4.4: Fraction of a second spent context switching (range): Cache1 & Cache2 can benefit from
context switch optimizations.

Cache1 and Cache2 incur context switches far more frequently than other microservices,

and may spend as much as 18% of CPU time in context switching. Several context switches

are non-voluntary context switches that arise due to a large number of I/O event notifications,

resulting in a high kernel/IO wait utilization (as shown in Fig. 4.3). These frequent context

switches also lead to worse cache locality, as we will show in our architectural characteriza-

tion. Software/hardware optimizations [210, 274, 154, 153, 215, 318, 320, 165, 451] that

reduce context switch latency or counts might considerably improve Cache performance.

(In Chapter V, we use existing hardware mechanisms better to reduce this I/O notification

latency.)

4.1.3.5 Instruction mix

We report Facebook microservices’ instruction mix and contrast with SPEC CPU2006

benchmarks in Fig. 4.5. Instruction mix varies substantially across Facebook’s microser-

vices, especially with respect to store-intensity and the presence/absence of floating-point

operations. The microservices that include ranking models that operate on real-valued

feature vectors, Ads1, Ads2, Feed1, and Feed2, all include floating-point operations, and

Feed1 is dominated by them. These microservices can likely benefit from optimizations for

dense computation, such as SIMD instructions.

Prior work has reported that key-value stores, like Cache1 and Cache2, are typically

memory intensive [171]. However, we note that Cache requires substantial arithmetic and

115

29
15

24

9
18

22
5

19

23
24

17
21

18

19
16
18
17

7

20

0
0

0

0
0

0
0

0

0
0

0
0

0

0
6

12
2

45

0

31
39

30

41
51

44
37

42

31
36

43
38

36

38
38

34
41

4

36

31
34

29

38
28

24
43

26

35
21

30
27

28

27
26

27
27
34

27

8
11

16

12
3

9
15
13

11
18

10
13

18

17
13
10

14
10

17

0 20 40 60 80 100

483.xalancbmk
473.astar

471.omnetpp
464.h264ref

462.libquantum
458.sjeng

456.hmmer
445.gobmk

429.mcf
403.gcc

401.bzip2
400.perlbench

Cache2
Cache1

Ads2
Ads1

Feed2
Feed1

Web
SP

EC
20

06
O

ur
 m

ic
ro

se
rv

ic
es

%

Branch (%) Floating point (%) Arithmetic (%) Load (%) Store (%)

Figure 4.5: Instruction type breakdown across microservices: Instruction mix ratios vary substantially
across microservices.

control flow instructions for parsing requests and marshalling or unmarshalling data; their

load-store intensity does not differ from other services as much as the literature might

suggest.

4.1.4 Architectural Characterization

We next turn to performance-counter-based analysis of the architectural bottlenecks of

Facebook’s microservice suite, and examine opportunities it reveals for future hardware

SKU design.

116

0

1

2

3

4

W
eb

Fe
ed

1
Fe

ed
2

Ad
s1

Ad
s2

Ca
ch

e1
Ca

ch
e2

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sj

en
g

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
Ra

te
-in

t-
av

g
Ra

te
-fp

-a
vg

Sp
ee

d-
in

t-
av

g
Sp

ee
d-

fp
-a

vg
Da

ta
 S

er
vi

ng
M

ap
Re

du
ce

M
ed

ia
 S

tr
ea

m
in

g
SA

T
So

lv
er

W
eb

 F
ro

nt
en

d
W

eb
 S

ea
rc

h
Ad

s
Bi

gt
ab

le
Di

sk
Fl

ig
ht

-s
ea

rc
h

G
m

ai
l

G
m

ai
l-f

e
Vi

de
o

Se
ar

ch
1-

Le
af

 S
ea

rc
h2

-L
ea

f
Se

ar
ch

3-
Le

af
Se

ar
ch

1-
Ro

ot
 S

ea
rc

h2
-R

oo
t

Se
ar

ch
3-

Ro
ot

Our microservices SPEC2006 SPEC2017
[Limaye18]
(Haswell)

CloudSuite
[Ferdman12]
(Westmere)

Google
[Kanev15]
(Haswell)

Google
[Ayers18]
(Haswell)

Pe
r-

co
re

 IP
C

Figure 4.6: Per-core IPC across Facebook’s microservices and prior work (IPC measured on other
platforms): Facebook’s microservices have a high IPC diversity.

4.1.4.1 IPC and stall causes

We report each microservice’s overall Instructions Per Cycle (IPC) in Fig. 4.6. We con-

trast our results with IPCs for commonly studied benchmark suites [331, 221] and published

results for comparable Google services [285, 140]. Prior works’ IPCs are measured on other

platforms as shown in Fig. 4.6; although absolute IPCs may not be directly comparable, it is

nevertheless useful to compare variability and spreads.

None of Facebook’s microservices use more than half of the theoretical execution

bandwidth of a Skylake CPU (theoretical peak IPC of 5.0), and Cache1 uses only 20%.

As such, simultaneous multithreading is effective for these services and is enabled in our

platforms. Relative to alternative benchmarks, Facebook’s microservices exhibit (1) a greater

IPC diversity than Google’s services [285] and (2) a lower IPC than most widely-studied

SPEC CPU2006 benchmarks. Given Facebook production workloads’ larger codebase,

larger working set, and more varied memory access patterns, we do not find this lower

typical IPC surprising. When accounting for Skylake’s enhanced performance over Haswell,

we find the range of IPC values we report to be comparable to the Google services [140].

We provide insight into the root causes of relatively low IPC using the Top-down Micro-

architecture Analysis Method (TMAM) [495] to categorize processor pipelines’ execution

117

32

23
16

22
13
13
12
13

18
17

13
16

14
29

25
13

73
13

48
79

40
5

29
45

71
28

22
27

37
40

37
32

24

15
49

31
20
18

26
35
25
27

29
24

24
13

7
8

12
3

24
13

23
5

13
8

15
36

37
18

17
21

17
36

15

3
6

11
45

5
4

6
4
3

2
2

5
3
27

5
4

1
22

2
28

5
4

20
8

6
7

7
9

13
3

12

29

59
29

36
22

64
58

47
53
53

56
58
58

54
41

75
10

83
6
6

9
86

54
27

7
30

34
48

36
26

43
20

0 20 40 60 80 100

Search1-Leaf

Video
 Search3
Search2
Search1

 Indexing2
Indexing1
Gmail-FE

Gmail
Flight-search

Disk
Bigtable

Ads
483.xalancbmk

473.astar
471.omnetpp

464.h264ref
462.libquantum

458.sjeng
456.hmmer
445.gobmk

429.mcf
403.gcc

401.bzip2
400.perlbench

Cache2
Cache1

Ads2
Ads1

Feed2
Feed1

Web

Go
og

le
[A

ye
rs

'1
8]

(H
as

w
el

l)
Go

og
le

 [K
an

ev
'1

5]
(H

as
w

el
l)

SP
EC

20
06

O
ur

m
ic

ro
se

rv
ic

es

Pipeline slot breakdown (%)

Retiring Front-end Bad speculation Back-end

Figure 4.7: Top-down bottleneck breakdown: Several of Facebook’s microservices face high front-
end stalls.

118

stalls, as reported in Fig. 4.7. TMAM exposes architectural bottlenecks despite the many

latency-masking optimizations of modern out-of-order processors. The methodology reports

bottlenecks in terms of “instruction slots”—the fraction of the peak retirement bandwidth

that is lost due to stalls each cycle. Slots are categorized as: front-end stalls due to instruction

fetch misses, back-end stalls due to pipeline dependencies and load misses, bad speculation

due to recovery from branch mispredictions, and retiring of useful work.

As suggested by the IPC results, Facebook’s microservices retire instructions in only

22%-40% of possible retirement slots. However, the nature of the stalls in Facebook’s

applications varies substantially across microservices and differs markedly from the other

suites. We make several observations.

First, Facebook’s microservices tend to have greater front-end stalls than SPEC work-

loads. In particular, Web, Cache1, and Cache2 lose ∼37% of retirement slots due to

front-end stalls; only Google’s Gmail-FE and search exhibit comparable front-end stalls.

In Web, front-end stalls arise due to its enormous code footprint due to a rich feature set

and the many URL endpoints it implements. In Cache, frequent context switches and OS

activity cause high front-end stalls. As we will show, these microservices could benefit from

larger I-cache and ITLB and other techniques that address instruction misses [177, 278]. In

contrast, microservices like Ads1, Ads2, or Feed1 do not stand to gain much from greater

instruction capacity, leading to conflicting SKU optimization goals.

Second, mispredicted branches make up 3%−13% of wasted slots. Branch mispredic-

tions are more rare in data-crunching microservices like Feed1 and more common when

instruction footprint is large, as in Web, where aliasing in the Branch Target Buffer con-

tributes a large fraction of branch misspeculations. SKU optimization goals diverge, with

some microservices calling for simple branch predictors while others call for higher capacity

and more sophisticated prediction.

Third, back-end stalls, largely due to data cache misses, occupy up to 48% of slots,

implying that several microservices can benefit from memory hierarchy enhancements.

119

0
40
80

120
160

W
eb

Fe
ed

1
Fe

ed
2

Ad
s1

Ad
s2

Ca
ch

e1
Ca

ch
e2

Se
ar

ch
1-

Le
af

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

W
eb

Fe
ed

1
Fe

ed
2

Ad
s1

Ad
s2

Ca
ch

e1
Ca

ch
e2

Se
ar

ch
1-

Le
af

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

Our
microservices

Google
Ayers18
Haswell

SPEC2006 Our
microservices

Google
Ayers18
Haswell

SPEC2006

L1 Cache L2 Cache

M
PK

I

Data Code

Figure 4.8: L1 & L2 code & data MPKI: Facebook’s microservices typically have higher L1 MPKI
than comparison applications.

However, microservices like Web or Feed2, which have fewer back-end stalls, likely gain

more from chip area/power dedicated to additional computation resources rather than cache.

4.1.4.2 Cache misses

We provide greater nuance to our front-end and back-end stall breakdown by measuring

instruction and data misses in the cache hierarchy. We present code and data Misses Per Kilo

Instruction (MPKI) across all cache levels—L1, L2, and LLC in Figs. 4.8 and 4.9, to analyze

the overall effectiveness of each cache level. We also show cache MPKI reported by prior

work [140] for Google search and our measurements of SPEC CPU2006 on Skylake20.

We make the following observations: (1) Our L1 MPKI are drastically higher than

the comparison applications, especially for code, and particularly for Cache1 and Cache2.

(2) LLC data misses are commonly high in all microservices, especially in Feed1, which

traverses large data structures. (3) Web incurs 1.7 LLC instruction MPKI. These misses are

quite computationally expensive, since out-of-order mechanisms do not hide instruction

stalls. It is unusual for applications to incur non-negligible LLC instruction misses at all in

steady state; few such applications are reported in the academic literature.

Prior works [221, 140, 285, 244] typically find current LLC sizes to be sufficient to

encompass server applications’ entire code footprint. In Web, the large code footprint and

120

0
4
8

12

W
eb

Fe
ed

1
Fe

ed
2

Ad
s1

Ad
s2

Ca
ch

e1
Ca

ch
e2

Se
ar

ch
1-

Le
af

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

Our
microservices

Google
Ayers18
Haswell

SPEC2006

LL
C

M
PK

I
Data Code

D=80,
C=0.1

D=24,
C=0

D=26,
C=0

Figure 4.9: LLC code & data MPKI: LLC data MPKI is high across microservices and Web incurs a
high code LLC MPKI.

0
8

16

2 4 6 8 1011 2 4 6 8 1011 2 4 6 8 1011 2 4 6 8 1011 2 4 6 8 1011

Web Feed1 Feed2 Ads1 Ads2

M
PK

I

LLC ways for each microservice

code data

Figure 4.10: LLC code and data MPKI vs. LLC size: Some microservices may benefit from trading
LLC capacity for more cores.

high instruction miss rates arise due to the large code cache, frequent JIT code generation,

and a large and complex control flow graph. Cache1 and Cache2 incur frequent context

switches (see Fig. 4.4) among distinct thread pools executing different code, which leads

to code thrashing in L1 and, to a lesser degree, L2. We conclude many microservices can

benefit from larger I-caches, instruction prefetching, or prioritizing code over data in the

LLC using techniques like Intel’s CDP [25, 393].

121

0
5

10
15
20

W
eb

Fe
ed

1
Fe

ed
2

Ad
s1

Ad
s2

Ca
ch

e1
Ca

ch
e2

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

W
eb

Fe
ed

1
Fe

ed
2

Ad
s1

Ad
s2

Ca
ch

e1
Ca

ch
e2

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

Our microservices SPEC 2006 Our microservices SPEC 2006

iTLB dTLB

TL
B

M
PK

I

Load Store L=66,
S=1

L=47,
S=9

L=22,
S=2

Very low values

Figure 4.11: I-TLB & D-TLB (load & store) MPKI breakdown: Some microservices can benefit
from huge page support.

4.1.4.3 LLC capacity sensitivity

Using CAT [25], we inspect sensitivity to LLC capacity. We vary capacity by enabling

LLC ways two at a time, up to the maximum of 11 ways. We report LLC MPKI broken

down by code and data in Fig. 4.10. We omit Cache as it fails to meet QoS constraints with

reduced LLC capacity. For most microservices, a knee (8 ways) emerges where the LLC is

large enough to capture a primary working set without degrading IPC, and further capacity

increases provide diminishing returns. For some microservices (e.g., Ads2 and Feed1), the

largest working set is too large to be captured. Hence, some services might benefit from

trading LLC capacity for additional cores [345].

4.1.4.4 TLB misses

We report instruction and data TLB MPKI in Fig. 4.11. For the D-TLB, we break

down misses due to loads and stores. The I-TLB miss trends mirror our LLC code miss

observations: Web, Cache1, and Cache2 incur substantial I-TLB misses, while the miss

rates are negligible for the remaining microservices. The drastically higher miss rate in Web

illustrates the impact of its large JIT code cache.

D-TLB miss rates are more variable across microservices. They typically follow the LLC

MPKI trends shown in Fig. 4.9 with the exception of Feed1—despite a relatively high LLC

122

Web

Cache2 Feed1

Feed2

Ads1
Cache1

Ads2

0

100

200

300

400

0 50 100 150

M
em

or
y l

at
en

cy
 (n

s)

Memory bandwidth (GB/s)

Skylake18 stress test latency Skylake20 stress test latency

Figure 4.12: Memory bandwidth vs. latency: Microservices under-utilize memory bandwidth to
avoid latency penalties.

MPKI of 9.3 it incurs a relatively low D-TLB MPKI of 5.8. Feed1’s main data structures are

dense floating-point feature vectors and model weights, leading to good page locality despite

a high LLC MPKI. However, the other microservices might benefit from software (like static

or transparent huge pages) and hardware (e.g., [159, 312, 161, 186, 403, 404, 290]) paging

optimizations.

4.1.4.5 Memory bandwidth utilization

We inspect memory bandwidth utilization and its attendant effects on latency due to

memory system queuing for each microservice in Fig. 4.12. We first characterize the

inherent bandwidth vs. latency trade-off of our two platforms—Skylake18 in the blue

dots and Skylake20 in the yellow crosses—using a memory stress test [56]. These curves

show the characteristic horizontal asymptote at the unloaded memory latency and then

exponential latency growth as memory system load approaches saturation. We then plot

each microservice’s measured average latency and bandwidth, using dots and crosses,

respectively, to indicate the service platform.

Microservices like Web or Feed1 have high memory bandwidth utilization relative

to the platform capability. Nevertheless, Facebook’s microservices cannot push memory

bandwidth utilization above a certain threshold—operating at higher bandwidth causes

123

Table 4.3: Summary of findings and suggestions for future optimizations.

Finding Opportunity
Diversity among microservices (§4.1.3,

§4.1.4) “Soft” SKUs

Some µservices are compute-intensive
(§4.1.3.2) Enhance instruction throughput (e.g., more cores, wider SMT)

Some µservices emit frequent requests
(§4.1.3.2)

Features that support greater concurrency, fast thread switching,
and faster I/O

CPU under-utilization due to QoS
constraints (§4.1.3.3) Mechanisms to reduce tail latency, enabling higher utilization

High context switch penalty (§4.1.3.4) Coalesce I/O, user-space drivers, vDSO, in-line accelerators,
thread pool tuning

Substantial floating-point operations
(§4.1.3.5) Optimizations for dense computation (e.g., SIMD)

Large front-end stalls & code footprint
(§4.1.4.1, §4.1.4.2)

AutoFDO, large I-cache, CDP, prefetchers, ITLB optimizations,
better decode

Branch mispredictions (§4.1.4.1) “Wider” hardware branch predictors, sophisticated prediction
algorithms

Low data LLC capacity utilization
(§4.1.4.1, §4.1.4.2, §4.1.4.3, §4.1.4.5) Trade-off LLC capacity for additional cores

Low memory bandwidth utilization
(§4.1.4.5) Optimizations that trade bandwidth for latency (e.g., prefetching)

exponential memory latency increase, triggering service latency violations. Ads1 and

Ads2 operate at higher latency than the characteristic curve predicts due to memory traffic

burstiness. The curves also reveal why it is necessary to run Cache1 and Ads2 on the

higher-peak-bandwidth Skylake20 platform to keep memory latency low. Nevertheless,

several microservices under-utilize available bandwidth, and hence might benefit from

optimizations that trade bandwidth to improve latency, such as hardware prefetching [218].

We summarize our findings in Table 4.3.

4.2 “Soft” SKU

Our microservices exhibit profound diversity in system-level and architectural traits.

For example, we demonstrated diverse OS and I/O interaction, code/data cache miss ratios,

memory bandwidth utilization, instruction mix ratios, and CPU stall behavior. One way

to address such distinct bottlenecks is to specialize CPU architectures by building custom

hardware server SKUs to suit each service’s needs. However, such hardware SKU diversity

124

Input file

Microservice	

Pla-orm	

Sweep	
 config.	

µSKU

	
 	
 Input	
 file	
 	

	
 	
 parser	

	
 	
 A/B	
 test	

configurator	

Knob
parameters

A/B Tester: production systems serving live traffic

Core	

frequency	

Uncore	

frequency	

Core	
 	

count	

CDP:	

LLC	
 Prefetcher	
 THP	
 SHP	

Knob	
 Ideal	
 config	

Core	
 frequency	
 2.2	
 GHz	

.	

.	

SHP	
 300	

SoL	
 SKU	
 	

generator	

Deployed on

servers

Figure 4.13: µSKU: System design.

is impractical, as it requires testing and qualifying each distinct SKU and careful capacity

planning to provision each to match projected load. Given the uncertainties inherent in

projecting customer demand, investing in diverse hardware SKUs is not effective at scale.

Data center operators aim to maintain hardware resource fungibility to preserve procure-

ment advantages that arise from economies of scale and limit the effort of qualifying myriad

hardware platforms. To preserve fungibility, we seek strategies that enable a few server

SKUs to provide performance and energy efficiency over diverse microservices. To this end,

we propose exploiting coarse-grain (e.g., boot time) parameters to create “soft SKUs”, tuning

limited hardware SKUs to better support their assigned microservice. However, manually

identifying microservice-specific soft-SKUs is impractical since the design space is large,

code evolves quickly, synthetic load tests do not necessarily capture production behavior,

and the effects of tuning a single knob are often small (a few percent performance change).

Hence, we build an automated design tool—µSKU—that searches the configuration design

space to optimize for each microservice.

125

4.3 µSKU: System Design

µSKU is a design tool for quick discovery of performant and efficient “soft” SKUs.

µSKU automatically varies configurable server parameters, or “knobs,” by searching within

a predefined design space via A/B testing. A/B testing is the process of comparing two

identical systems that differ only in a single variable. µSKU conducts A/B tests by comparing

the performance of two identical servers (i.e., same hardware platform, same fleet, and facing

the same load) that differ only in their knob configuration. µSKU collects copious fine-grain

performance measurements while conducting automated A/B tests on production systems

serving live traffic to search for statistically significant performance changes. Our goal is to

ensure that µSKU has a simple design so that it can be applied across microservices and

hardware SKU generations while avoiding operational complexity. Key design challenges

include: (1) identifying performance-efficient soft-SKU configurations in a large design

space, (2) dealing with frequent code changes, (3) capturing behavior in production systems

facing diurnal or transient load fluctuations, and (4) differentiating actual performance

variations from noise through appropriate statistical tests. We discuss how µSKU’s design

meets these challenges.

We develop a µSKU prototype that explores a soft-SKU design space comprising

seven configurable server knobs. µSKU accepts a few input parameters and then invokes

its components—A/B test configurator, A/B tester, and soft SKU generator, as shown in

Fig. 4.13. We describe each component below.

Input file. The user provides an input file with the following three input parameters.

(1) Target Microservice. Several aspects of µSKU’s behavior must be tuned for the

specific target microservice. µSKU reboots the server while performing certain A/B tests

(e.g., core count scaling). Some microservices may not tolerate reboots on live traffic and

hence µSKU disables these knobs in such cases. Furthermore, µSKU disables knobs that

do not apply to a microservice. For example, Statically-allocated Huge Pages (SHPs) are

126

inapplicable to Ads1, since it does not use the APIs to allocate them. Our current µSKU

prototype estimates performance by measuring the Millions of Instructions per Second

(MIPS) rate via EMON [33], which we have confirmed is proportional to several key

microservices’ throughput (e.g., Web and Ads1). However, we anticipate the performance

metric that µSKU measures to determine whether a particular soft SKU has improved

performance to be microservice specific. In particular, MIPS may be insufficient to measure

Cache’s throughput, since Cache’s code is introspective of performance. (It executes

exception handlers when faced with knob configurations that engender QoS violations,

which make instructions-per-query vary with performance.) µSKU can be extended to

perform A/B tests using microservice-specific performance metrics.

(2) Processor platform. The available settings in several µSKU design space dimensions,

such as specific core and uncore frequencies, core counts, and hardware prefetcher options,

are hardware platform specific.

(3) Sweep configuration. µSKU’s A/B tester measures the performance implications

of sweeping server knobs either (1) independently, where individual knobs are scaled

one-by-one and their effects are presumed to be additive when creating a soft SKU, or (2)

exhaustively, where the design space sweep explores the cross product of knob settings. Note

that some microservices receive code updates so frequently (O(hours)) that an exhaustive

µSKU sweep cannot be completed between code pushes. In practice, the gains from µSKU’s

knobs are not strictly additive. Nevertheless, the knobs do not typically co-vary strongly, so

we have had success in tuning knobs independently, as the exhaustive approach requires an

impractically large number of A/B tests.

A/B test configurator. The A/B test configurator sets up the automatic A/B test envi-

ronment by specifying the sweep configuration and knobs to be studied.

A/B tester. The A/B tester is responsible for independently or exhaustively varying

configurable hardware and OS knobs to measure ensuing performance changes. Our µSKU

prototype varies seven knobs (suggested by our earlier characterization), but can be extended

127

easily to support more. It varies (1) core frequency, (2) uncore frequency, (3) core count, (4)

CDP in the LLC ways, (5) prefetchers, (6) Transparent Huge Pages (THP), and (7) SHPs.

The A/B tester sweeps the design space specified by the A/B test configurator. For

each point in the space, the tester suitably sets knobs and then launches a hardware per-

formance counter-based profiling tool [33] to collect performance observations. For each

knob configuration, the A/B tester first discards observations during a warm-up phase that

typically lasts for a few minutes to avoid cold start bias [363]. Next, the A/B tester records

performance counter samples via EMON [33] with sufficient spacing to ensure indepen-

dence. Finally, when the desired 95% statistical confidence is achieved, the A/B tester

outputs mean estimates, which it records in a design space map. It then proceeds to the

next knob configuration. The A/B tester typically achieves 95% confidence estimates with

tens of thousands of performance counter samples (minutes to hours of measurement). If

95% confidence is not reached after collecting ∼ 30,000 observations, µSKU concludes

there is no statistically significant performance difference and proceeds to the next knob

configuration. The final design space map helps identify (with a 95% confidence) the most

performance-efficient knob configurations.

Soft SKU generator. The A/B tester’s design space map is fed to the soft SKU generator,

which selects the most performance-efficient knob configurations. It then applies this

configuration to live servers running the microservice. Once the selected soft SKU is

deployed, µSKU performs further A/B tests by comparing the QPS achieved (via ODS) by

soft-SKU servers against hand-tuned production servers for prolonged durations (including

across code updates and under diurnal load) to validate that the soft SKU offers a stable

advantage.

4.4 Methodology

We discuss the methodology we use to evaluate µSKU.

Microservices. We focus our prototype µSKU evaluation on the Web service on two

128

generations of hardware platforms and on the Ads1 microservice on a single platform.

These two microservices differ drastically in our characterization results while both being

amenable to the use of MIPS rate as a performance metric. Moreover, the surrounding

infrastructure for these services is sufficiently robust to tolerate failures and disruptions we

might cause with the µSKU prototype, allowing us to experiment on production traffic.

Hardware platforms. To evaluate µSKU, we run Web on two hardware platforms—

Broadwell16 and Skylake18, and Ads1 on Skylake18 (see Table 4.1). We evaluate Web

on both Skylake18 and Broadwell16 to analyze the configurable server knobs’ sensitivity

to the underlying hardware platform. Henceforth, we refer to Web running on Skylake18

as Web (Skylake) and Broadwell16 as Web (Broadwell).

Experimental setup. We compare µSKU’s A/B test knob scaling studies against default

production server knob configurations. Some default knob configurations arise from arduous

manual tuning, and therefore differ from stock server configurations. We next describe how

µSKU implements A/B test scaling studies for each configurable knob.

(1) Core frequency. Our servers enable Intel’s Turbo Boost technology [420]. µSKU

scales core frequency from 1.6 GHz to 2.2 GHz (default) by overriding core frequency-

controlling Model-Specific Registers (MSRs).

(2) Uncore frequency. µSKU varies uncore (LLC, memory controller, etc.) frequency

from 1.4 GHz to 1.8 GHz (default) by overriding uncore frequency-controlling MSRs [241].

(3) Core count. µSKU scales core count from 2 physical cores to the platform-specific

maximum (default), by directing the boot loader to incorporate the isolcpus flag [125]

specifying cores on which the OS may not schedule. µSKU then reboots the server to

operate with the new core count.

(4) LLC Code Data Prioritization. µSKU uses Intel RDT [25] to prioritize code vs. data

in the LLC ways. Our servers’ OS kernels have extensions that support Intel RDT via the

Resctrl interface [58]. µSKU leverages these kernel extensions to vary CDP from one

dedicated LLC way for data and the rest for code, to one dedicated way for code and the

129

rest for data. Default production servers share LLC ways between code and data without

CDP prioritization.

(5) Prefetcher. Our servers support four prefetchers [32]: (a) L2 hardware prefetcher that

fetches lines into the L2 cache, (b) L2 adjacent cache line prefetcher that fetches a cache line

in the same 128-byte-aligned region as a requested line, (c) DCU prefetcher that fetches the

next cache line into L1-D cache, and (d) DCU IP prefetcher that uses sequential load history

to determine whether to prefetch additional lines. µSKU considers five configurations: (a)

all prefetchers off, (b) all prefetchers on (default on Web (Skylake) and Ads1), (c) only DCU

prefetcher and DCU IP prefetcher on, (d) only DCU prefetcher on, and (e) only L2 hardware

prefetcher and DCU prefetcher on (default on Web (Broadwell)). µSKU adjusts prefetcher

settings via MSRs.

(6) Transparent Huge Pages (THP): THP is a Linux kernel mechanism that automatically

backs virtual memory allocations with huge pages (2MB or 1GB) when contiguous physical

memory is available and defragments memory in the background to coalesce free space [136].

µSKU considers three THP configurations (a) madvise—THP is enabled only for memory

regions that explicitly request huge pages (default), (b) always ON—THP is enabled for all

pages, and (c) always OFF—THP is not used even if requested. µSKU configures THP by

writing to kernel configuration files.

(7) Statically-allocated Huge Pages (SHP): SHPs are huge pages (2MB or 1GB) reserved

explicitly by the kernel at boot time and must be explicitly requested by an application.

Once reserved, SHP memory can not be repurposed. µSKU varies SHP counts from 0 to

600 in 100-step increments by modifying kernel parameters [228]. µSKU can be extended

to conduct a binary search to identify optimal SHP counts.

Performance metric. µSKU estimates performance in terms of throughput by mea-

suring MIPS rate via EMON [33]. We have verified that MIPS is proportional to Web and

Ads1’s throughput (QPS). We do not measure QPS directly as QPS reported by ODS is not

sufficiently fine-grained. We aim to eventually have µSKU replace tedious manual knob

130

0
5

10
15
20

%
 P

er
f.

ga
in

 o
ve

r 1
.6

 G
Hz

co

re
 fr

eq
.

1.7 1.8 1.9 2 2.1 2.2

0

2

4

6

%
 P

er
f g

ai
n

ov
er

 1.
4

GH
z

un
co

re
 fr

eq

1.5 1.6 1.7 1.8

(a) (b)

Web
(Skylake)

Web
(Broadwell) Ads1Web

(Skylake)
Web

(Broadwell) Ads1

Figure 4.14: Performance trend with (a) core frequency scaling, (b) uncore frequency scaling: The
maximum frequency offers the best performance.

tuning for each microservice. Hence, we evaluate µSKU-generated soft SKUs against (a)

stock off-the-shelf and (b) hand-tuned production server configurations.

4.5 Evaluation

We first present µSKU’s A/B test results for all seven configurable server knobs. We then

compare the throughput of “soft” server SKUs that µSKU discovers against (a) hand-tuned

production and (b) stock server configurations.

4.5.1 Knob Characterization

We present µSKU’s A/B test results for each knob and compare it against the current

production configuration, indicated by thick red bar/point outlines or red axis lines in our

graphs. For each graph, we report mean throughput and 95% confidence intervals under

peak-load production traffic. For the first three knobs, we find that µSKU matches expert

manual tuning decisions. However, for the next four knobs, µSKU identifies configurations

that outperform production settings.

(1) Core frequency. We illustrate µSKU’s core frequency scaling analysis in Fig. 4.14

(a). µSKU varies core frequency from 1.6 GHz to 2.2 GHz. We report relative throughput

(MIPS) gains over cores operating at 1.6 GHz. Our production systems have a fixed CPU

power budget that is shared between the core and uncore (e.g., LLC, memory and QPI

131

controller, etc.) CPU components. The current production configuration enables Turbo

Boost [420] and runs Web (Skylake and Broadwell) at 2.2 GHz and Ads1 at 2.0 GHz (as

indicated by the thick red bar outlines in Fig. 4.14 (a)). Ads1 must operate at slightly lower

frequency because its use of AVX operations consumes part of the CPU power budget.

µSKU (1) identifies whether there is a minimum core frequency knee below which

throughput degrades rapidly and (2) diagnoses if core frequency trends suggest that the

microservice may be uncore bound. Web’s and Ads1’s throughputs increase precipitously

from 1.6 GHz to 1.9 GHz, beyond which µSKU reports continued but diminishing through-

put gains. These microservices are all sensitive to core frequency, hence, operating at the

maximum and enabling Turbo Boost are sensible tuning decisions. µSKU configures soft

SKUs that operate at 2.2 GHz core frequency for Web (Skylake and Broadwell) and 2.0 GHz

for Ads1, matching experts’ tuning.

(2) Uncore frequency. µSKU varies the frequency of uncore CPU power domain

(including LLC, QPI controller, and memory controller), from 1.4 GHz to 1.8 GHz. We

report results normalized to 1.4 GHz uncore frequency (Fig. 4.14 (b)). Our default production

configuration runs both microservices at 1.8 GHz uncore frequency. Uncore frequency

indicates the degree to which applications are sensitive to access latency when memory and

core execution bandwidth are held constant. Both of these microservices are sensitive to

memory latency, though the sensitivity is greater in Ads1. As with core frequency, µSKU

selects soft SKUs that operate at the maximum 1.8 GHz for both microservices, again

matching the default production configuration.

(3) Core count. We present µSKU’s core count scaling results in Fig. 4.15, where

we report throughput gain relative to execution on only two physical cores. The grey line

indicates ideal linear scaling. µSKU scales Web (Skylake) to its maximum core count (18

cores) and Web (Broadwell) to its maximum (16). We exclude Ads1 from Fig. 4.15 since

its load balancing design precludes µSKU from meeting QoS constraints with fewer cores.

µSKU observes that Web’s performance scales almost linearly up to ∼8 physical cores. As

132

0
4
8

12

0 5 10 15 20%
 P

er
f.

ga
in

 o
ve

r
2

co
re

s

Number of physical cores

Ideal Web (Skylake) Web (Broadwell)

Slope = 0.5

0.360.34

Figure 4.15: Performance trend with core count scaling: Web is core-bound.

-12
-8
-4
0
4
8

Web (Skylake) Ads1%
 P

er
f.

ga
in

 o
ve

r
CD

P
of

f

1, 10 2, 9 3, 8 4, 7 5, 6
6, 5 7, 4 8, 3 9, 2 10, 1

-60

-40

-20

0

%
 P

er
f.

ga
in

 o
ve

r
CD

P
of

f
Web (Broadwell)

1, 11 2, 10 3, 9 4, 8 5, 7 6, 6
7, 5 8, 4 9, 3 10, 2 11, 1

(a) (b)

Figure 4.16: Performance trend with CDP scaling: (a) Web (Skylake) & Ads1 benefit due to lower
code MPKI (b) Web (Broadwell) has no gains.

core count increases further, interference in the LLC causes the scaling curve to bend down.

As with frequency, the best soft SKU selected by µSKU operates with all available cores.

(4) Code Data Prioritization (CDP) in LLC ways. In our earlier characterization

(Fig. 4.9), we noted that Web exhibits a surprising number of off-chip code misses. Hence,

µSKU considers prioritizing code vs. data in the LLC ways. We report throughput gains

over the production baseline (where CDP is not used and code and data share LLC ways) for

Web (Skylake) and Ads1 in Fig. 4.16(a) and Web (Broadwell) in Fig. 4.16(b). Skylake18

and Broadwell16 have 11 and 12 LLC ways, respectively. We label each bar with {LLC

ways dedicated to data, LLC ways dedicated to code}.

Here we find that Web (Skylake) achieves up to 4.5% mean throughput gain with 6 LLC

ways dedicated to data and 5 LLC ways dedicated to code, a configuration that degrades

LLC data misses by 0.60 MPKI but improves code misses by 0.30 MPKI. Although this

133

-4
0
4
8

Web (Skylake) Web (Broadwell) Ads1

%
 P

er
f.

ga
in

ov

er
 a

ll
pr

ef
et

ch
 o

ff

DCU & DCU IP on DCU on L2 hardware & DCU on All prefetch on

Figure 4.17: Performance trends with varied prefetcher configurations: Turning off prefetchers can
improve bandwidth utilization in Web (Broadwell).

configuration increases net LLC misses by almost 0.30 MPKI, it still results in a performance

win because the latency of code misses is not hidden and they incur a greater penalty.

Similarly, Ads1 achieves 2.5% mean throughput improvement with 9 LLC ways dedicated

to data and 2 LLC ways dedicated to code, sacrificing 0.20 LLC data MPKI to improve

LLC code MPKI by 0.06. µSKU observes no throughput improvement in Web (Broadwell)

since it saturates memory bandwidth under all CDP configurations. Hence, µSKU can not

trade-off increasing the net LLC MPKI to reduce LLC code misses. µSKU selects soft

server SKUs for Web (Skylake) and Ads1 such that they dedicate {6, 5} and {9, 2} LLC

ways for data and code, respectively, improving over the present-day hand-tuned production

configuration. µSKU does not enable CDP in Web’s (Broadwell) soft SKU.

(5) Prefetcher. We report µSKU’s results for prefetcher tuning in Fig. 4.17. Our

production systems enable (1) all prefetchers on Web (Skylake) and Ads1 and (2) only the L2

hardware prefetcher and DCU prefetcher on Web (Broadwell). On Web (Broadwell), µSKU

reveals a ∼ 3% mean throughput win over the production configuration when all prefetchers

are turned off. Web (Broadwell) is heavily memory bandwidth bound when prefetchers

are turned on, unlike Web (Skylake) and Ads1. Turning off prefetchers reduces memory

bandwidth pressure, enabling overall throughput gains. In contrast, Web (Skylake) and Ads1

are not memory bandwidth bound, and hence do not benefit from turning off prefetchers.

(6) Transparent Huge Pages (THPs). In our earlier characterization (see Fig. 4.11), we

found that Web suffers from significant I-TLB and D-TLB misses. Hence, µSKU explores

134

0
2
4
6

Web (Skylake) Web (Broadwell)

100 200 300 400 500 600

(a) (b)

-2

0

2

4
Always ON Never ON

488

Web
(Skylake)

Web
(Broadwell) Ads1

%
 P

er
f.

ga
in

 o
ve

r “
m

ad
vi

se
”

%
 P

er
f.

ga
in

 o
ve

r n
o

SH
P

Figure 4.18: Performance trends with varied (a) THP: Web (Skylake) benefits from THP ON, (b)
SHP: There is a sweet spot in optimal SHP count.

huge page settings to reduce TLB miss rates. The default THP setting on our production

servers is madvise, where THP is enabled only for memory regions that explicitly request

it. In Fig. 4.18(a), µSKU considers (1) always enabling huge pages (always ON) and (2)

disabling huge pages even when requested (never ON), and compares with the default

(baseline for the graph) madvise configuration.

µSKU identifies a mean 1.87% throughput gain on Web (Skylake) when THP is always

ON, as it significantly reduces TLB misses compared to madvise. However, the always ON

setting does not enhance Ads1 and Web (Broadwell)’s throughput as their TLB miss rates

do not improve. Throughput achieved with the never ON configuration is comparable with

madvise, as few allocations use the madvise hint.

(7) Statically-allocated Huge Pages (SHPs). We report µSKU’s SHP sweep results

in Fig. 4.18(b). µSKU excludes Ads1 from this study as it makes no use of SHPs. Our

production systems reserve 200 SHPs for Web (Skylake) and 488 SHPs for Web (Broadwell).

µSKU shows that reserving 300 SHPs on Web (Skylake) and 400 SHPs on Web (Broadwell)

can outperform our production systems by 1.4% and 1.0% respectively, due to modest TLB

miss reductions.

135

0
3
6
9

Web (Skylake) Web (Broadwell) Ads1%
 P

er
f.

ga
in

w

ith
 µ

SK
U

Stock configurations Hand-tuned configurations

Figure 4.19: Performance gain with µSKU over stock and hand-tuned servers: µSKU outperforms
even hand-tuned production servers.

4.5.2 Soft SKU Performance

µSKU creates microservice-specific soft SKUs by independently analyzing each knob

and then composing their best configurations. In Fig. 4.19, we show the final throughput

gains achieved by µSKU’s soft SKUs as compared to (1) hand-tuned production configu-

rations and (2) stock server configurations (i.e., after a fresh server re-install). The stock

configuration comprises (1) 2.2 GHz and 2.0 GHz core frequency for Web and Ads1 re-

spectively, (2) 1.8 GHz uncore frequency, (3) all cores active, (4) no CDP in LLC, (5) all

prefetchers turned on, (6) always ON for THP, and (7) no SHPs. We listed the hand-tuned

configurations in Sec. 4.5.1.

Since these services operate on hundreds of thousands of machines, achieving even

single-digit percent speedups with µSKU can yield immense aggregate data center cost- and

energy-efficiency benefits by reducing a service’s provisioning requirement. µSKU’s soft

SKUs outperform stock configurations by 6.2% on Web (Skylake), 7.2% on Web (Broadwell),

and 2.5% on Ads1 due to benefits enabled by CDP, prefetchers, THP, and SHP. Interest-

ingly, µSKU also outperforms the hand-tuned production configurations by 4.5% on Web

(Skylake), 3.0% on Web (Broadwell), and 2.5% on Ads1. We confirmed that the MIPS

improvement reported by µSKU’s soft SKUs yields a corresponding QPS improvement over

a prolonged period (spanning several code pushes) by monitoring fleet-wide QPS via ODS.

The statistically significant throughput gains are a substantial win in data centers’ efficiency.

µSKU’s prototype takes 5-10 hours to explore its knob design space and arrive at the

136

final soft-SKU configurations. Even for knob settings where µSKU identifies the same result

as manual tuning by experts, the savings in engineering effort by relying on an automated

system is significant. A key advantage of µSKU is that it can be applied to microservices

that do not have dedicated performance tuning engineers.

4.6 Discussion

We discuss open questions and µSKU prototype limitations.

Future hardware knobs. Our architectural characterization revealed significant di-

versity in architectural bottlenecks across microservices. We discussed opportunities for

microservice-specific hardware modifications and motivated how soft SKUs can be designed

using existing hardware- and OS-based configurable knobs. However, in light of a soft-SKU

strategy, we anticipate that hardware vendors might introduce additional tunable knobs.

µSKU does not currently adjust knobs to address microservice differences in instruction

mix, branch prediction, context switch penalty, and other opportunities revealed in our

characterization.

QoS and perf/watt constraints. Our microservices face stringent latency, throughput,

and power constraints in the form of Service-Level Objectives (SLO). µSKU’s prototype

performs A/B testing in a coarse-grained design space and tunes configurable hardware

and OS knobs to improve throughput. However, µSKU does not consider energy or power

constraints. QoS constraints are only addressed insofar as we discard parts of the µSKU

tuning space that lead to violations.

µSKU can be extended to consider a cluster’s SLOs’ full range. For example, Cache

executes exception handlers when latency targets are violated, which makes MIPS an in-

appropriate metric to quantify Cache performance. With support for other performance

metrics, µSKU can perform A/B tests that discount exception-handling code when mea-

suring throughput. With support to also measure system power/energy, µSKU can be

extended to perform energy- or power-efficiency optimization rather than optimizing only

137

for performance. We leave such support to future work.

Exhaustive design-space sweep. We notice that throughput improvements achieved by

individual knobs are not always additive when µSKU composes them to generate a soft

SKU. This observation implies that knob configurations may have subtle dependencies on

which we might capitalize. An exhaustive characterization that determines a Pareto-optimal

soft SKU might identify global performance maxima that are better than those found by our

independent search. However, performing an exhaustive search is prohibitive; better search

heuristics (e.g., hill climbing [427]) may be required.

µSKU and co-location. Our production microservices run on dedicated hardware

without co-runners. Co-location can raise interesting challenges for future work—scheduler

systems that map service affinities can be designed in a µSKU-aware manner.

4.7 Related Work

Architectural proposals for cloud services. Several works propose architectures suited

to a particular, important cloud service. Ayers et al. [140] characterize Google web search’s

memory hierarchy and propose an L4 eDRAM cache to improve heap accesses. Earlier

work [146] also discusses microarchitecture for Google search. Some works [330, 272, 130]

characterize low-power cores for search engines like Nutch and Bing. Trancoso et al. [468]

analyze the AltaVista search engine’s memory behavior and find it similar to decision support

workloads; Barroso et al. [147] show that L2 caches encompass such workloads’ working

set, leaving memory bandwidth under-utilized. Microsoft’s Catapult accelerates search

ranking via FPGAs [413]. DCBench studies latency-sensitive cloud data analytics [276].

Studying a single service class can restrict the generality of conclusions, as modern data

centers typically execute diverse services with varied behaviors. In contrast, we characterize

diverse production microservices running in the data centers of one of the largest social

medial providers. We show that modern microservices exhibit substantial system-level and

architectural differences, which calls for microservice-specific optimization.

138

Other works [285, 311] propose architectural optimizations for diverse applications.

Kanev et al. [285] profile different Google services and propose architectural optimizations.

Kozyrakis et al. [311] examine Microsoft’s email, search, and analytics applications, focus-

ing on balanced server design. However, these works do not customize SKUs for particular

services.

Academic efforts develop and characterize benchmark suites for cloud services. Most

notably, CloudSuite [221] comprises both latency-sensitive and throughput-oriented scale-

out cloud workloads. Yasin et al. [495] perform a microarchitectural characterization of

several CloudSuite workloads. However, our findings on production services differ from

those of academic cloud benchmark suite studies [221, 495, 505, 229, 350]. For example,

unlike these benchmark suites, our microservices have large L2 and LLC instruction working

sets, high stall times, large front-end pipeline stalls, and lower IPC. While these suites are

vital for experimentation, it is important to compare their characteristics against large-scale

production microservices serving live user traffic.

Hardware tuning. Many works tune individual server knobs, such as selective voltage

boosting [261, 292, 409], exploiting multicore heterogeneity [243, 391, 202], trading mem-

ory latency/bandwidth [176, 139, 478, 484], or reducing front-end stalls [295, 505, 312]. In

contrast, we propose (1) performance-efficient soft SKUs rather than hardware changes, (2)

target diverse microservices, and (3) tune myriad knobs to create customized microservice-

specific soft SKUs. Other works reduce co-scheduled job interference [327, 284, 355, 499,

492, 459] or schedule them in a machine characteristics-aware manner [353, 201, 494, 371].

Such studies can benefit from architectural insights provided here.

4.8 Long-Term Impact Potential

We discuss impact potential in terms of (1) long-term impact in industry and academia

and (2) potential for follow-on research.

Demonstrated improvements in production systems. This work demonstrates perfor-

139

mance improvements on real commodity hardware running production services deployed at

hyperscale. The performance benefits from soft SKUs are significant enough at hyperscale

to save millions of dollars and also meaningfully reduce the global carbon footprint [446, 5].

To quote an anonymous expert reviewer from the International Symposium on Computer

Architecture (ISCA), “It is a rare ISCA paper where I can get excited about a 7.2% im-

provement in some parameter, but when that performance improvement is on real hardware

measured with production workloads, and is deployed at significant scale, it suddenly

becomes very interesting.”

Soft SKUs enable cost-efficient fungible commodity hardware in data centers, while

still reaping significant performance benefits. They reduce procurement, testing, time-to-

market, upgrade, accelerator development, and energy costs. Additionally, µSKU improves

performance engineers’ productivity, reducing labor costs.

Influence in next generation commodity server designs. Our comprehensive system-

level and architectural characterization of real-world production microservices has identified

abundant opportunities for future impactful academic and industry research. Expert review-

ers’ comments include “The workload characterization study is very detailed and offers

many interesting insights into large scale production applications that has a potential to

inspire many avenues of future work” and “This characterization collectively provides an

excellent snapshot into the behavior of very important and widely deployed cloud services,

and can extensively facilitate future research.”

Our characterization results suggest several directions to maintain the performance

improvement rate for general-purpose, commodity servers, triggering a significant shift in

the hardware industry. Specifically, several hardware vendors are actively pursuing hardware

modifications based on our findings2. Moreover, in light of our soft-SKU strategy, hardware

vendors are starting to incorporate additional configurable processor knobs that address

microservice differences in instruction mix, branch prediction, context switch penalty, and

2Fun fact: The hardware engineering VP at Intel set up a call with Intel’s engineers the very next day after
our ISCA paper [446] was made public, to discuss hardware optimization opportunities based on our findings.

140

other opportunities revealed in our characterization. We also proposed new CPU knobs

(e.g., Branch Target Buffer ways) that can be made configurable to create finer-grained soft

SKUs. Several of these proposals, along with our study’s key conclusions have influenced

the design of the upcoming generation of server-class processors [5].

Enabling new architecture trends. In light of recent big architecture trends such as

dark silicon, reliability and yield challenges with large chips, and shrinking technology

nodes, soft SKUs can further improve the performance of a wide range of applications while

still retaining hardware fungibility. For example, dark silicon can result in the creation of

more performance and energy efficient soft SKUs by selectively enabling new processor

knobs.

Benchmarking. There is immense value in validating commonly-used benchmarks with

real-world application behaviors. Our characterization reveals the severity of hyperscale

bottlenecks that are not often captured by open-source benchmarks [221]. Hence, our

characterization drove hardware vendors to consider more representative benchmarks (in

place of traditional ones they used for decades) when evaluating hardware designs3. We

expect our comprehensive analysis to drive continued benchmarking efforts that represent

the severity of overheads in production-grade software.

Industry impact. Our characterization and consequent SoftSKU proposal resulted in

Facebook creating a team of engineers to investigate the fleet-wide impact of enabling further

available processor knobs, such as SIMD width, Intel’s Cache Allocation Technology, and

Intel’s Memory Bandwidth Allocation to achieve additional soft SKU performance benefits

across the global fleet of cost-efficient, fungible commodity hardware [5].

Soft SKUs in diverse hyperscale production environments. Our conversations with

several hyperscale enterprises revealed an interest in employing the SoftSKU strategy in

their production data center environments since their applications also face a great diversity

in system-level and architectural bottlenecks [285]. The µSKU design tool is simple and

3To quote an Intel researcher, “We were driving blind until seminal works like these came along and told us
to refocus our design efforts on more representative applications.”

141

practical, and can be easily deployed at hyperscale in any data center where services run

on dedicated hardware without co-runners (as with the production microservices studied

in this chapter). However, some hyperscale enterprises co-locate microservices; we have

had conversations with them about designing schedulers that map service affinities in a

SoftSKU-aware manner.

Future research potential. Several researchers are already working on hardware and

software optimizations based on bottlenecks identified in our characterization. (1) Re-

searchers at the University of Michigan, University of Pennsylvania, UC Santa Cruz, Texas

A&M, and Intel Labs are pursuing hardware and compiler optimizations to mitigate instruc-

tion misses in front-end microservices (e.g., Web). (2) Researchers at UT Austin, Texas

A&M, and Intel Labs are working on mitigating branch mispredictions through various

machine learning techniques. (3) Researchers at the University of Michigan, Georgia Tech,

Harvard, and Carnegie Mellon University are pursuing hardware modifications to enable

fast I/O. In Section 4.9, we highlight some of our own follow-on research.

Tech forums. Our work has triggered rich conversations amongst computer scien-

tists [87, 5]. For example, our work generated discussions in the Real World Technologies

forum [87] on topics such as new processor knobs, compiler effects, and hardware modifica-

tions.

4.9 Follow-On Research

In follow-on work [298, 299, 297]4, my co-authors and I mitigated the architectural

bottlenecks in the frontend of the processor pipeline (e.g., instruction cache misses and

branch mispredictions) that I found to be significant in microservices (detailed in Section 4.1).

We used profile-guided optimization techniques to inform frontend operations (e.g., I-cache

and BTB prefetching and replacement decisions) to achieve near-ideal frontend performance.

4This follow-on research was performed in collaboration with fellow graduate student Tanvir Ahmed Khan
(who is the lead author) and other contributors [298, 299, 297]. Concepts summarized in Section 4.9 will be
detailed in Khan’s dissertation.

142

Mitigating I-cache misses with profile-guided prefetching [298]. In this work, we

investigated the challenges of effective instruction prefetching in the I-cache. We used

insights derived from our investigation to develop I-SPY, a novel profile-driven prefetching

technique. I-SPY uses dynamic miss profiles to drive an offline analysis of I-cache miss

behavior, which it uses to inform prefetching decisions.

Two key techniques underlie I-SPY’s design: (1) conditional prefetching, which only

prefetches instructions if the program context is known to lead to misses, and (2) prefetch

coalescing, which merges multiple prefetches of non-contiguous cache lines into a single

prefetch instruction. I-SPY exposes these techniques via a family of light-weight hardware

code prefetch instructions. We studied I-SPY in the context of nine data center applications

and showed that it provides an average of 15.5% (up to 45.9%) speedup and 95.9% (up to

98.4%) reduction in instruction cache misses, outperforming the state-of-the-art prefetching

technique proposed by Google [141] by 22.5%. We demonstrated that I-SPY achieves 90.5%

of the performance of an ideal cache with no misses.

Mitigating I-cache misses with profile-guided replacement [299]. We investigated

why existing I-cache miss mitigation mechanisms achieve sub-optimal performance for

data center applications. We found that widely-studied instruction prefetchers fall short due

to wasteful prefetch-induced cache line evictions that are not handled by existing I-cache

replacement policies [124, 269, 270]. Existing replacement policies [124, 269, 270] are

unable to mitigate wasteful evictions as they lack complete knowledge of a data center

application’s complex program behavior.

To make existing replacement policies [124, 269, 270] aware of eviction-inducing

program behaviors, we presented Ripple, a novel software-only technique that profiles

programs and uses program context to inform the underlying I-cache replacement policy

about efficient replacement decisions. Ripple carefully identifies program contexts that

lead to I-cache misses and sparingly injects “cache line eviction” instructions [489] in

suitable program locations at link time. We evaluated Ripple using nine popular data center

143

applications [298] and demonstrated that Ripple enables any I-cache replacement policy to

achieve speedup that is closer to that of an ideal I-cache. Specifically, Ripple achieves an

average performance improvement of 1.6% (up to 2.13%) over prior work [124, 269, 270]

due to a mean 19% (up to 28.6%) I-cache miss reduction.

Mitigating BTB misses with profile-guided prefetching [297]. To overcome frontend

stalls in the processor pipeline, modern server-class processors implement a decoupled

frontend with Fetch Directed Instruction Prefetching (FDIP) [417, 455, 398, 421, 239]. We

characterized the limitations of a decoupled frontend processor with FDIP and found that

FDIP suffers from significant BTB misses. We also found that existing techniques (e.g.,

stream prefetchers [488, 487] and predecoders [296, 313]) are unable to mitigate these

misses, as they rely on an incomplete understanding of a program’s branching behavior.

To address the shortcomings of existing BTB prefetching techniques, we proposed Twig,

a novel profile-guided BTB prefetching mechanism. Twig analyzes a production binary’s

execution profile to identify critical BTB misses and inject BTB prefetch instructions into

code. Additionally, Twig coalesces multiple non-contiguous BTB prefetches to improve

the BTB’s locality. Twig exposes these techniques via a new BTB prefetch instruction.

Since Twig prefetches BTB entries without modifying the underlying BTB organization, it

is easy to adopt in modern processors. We studied Twig’s behavior across nine widely-used

data center applications [298], and demonstrated that it achieves 20.86% (up to 145%)

performance speedup over a baseline 8K-entry BTB, outperforming the state-of-the-art BTB

prefetch mechanism [313] by 19.82% (on average).

Mitigating BTB misses with profile-guided replacement. We found that prior BTB

prefetching techniques [296, 313] offer limited performance gains over FDIP, falling sig-

nificantly short of a perfect BTB. We observed that the optimal Belady’s replacement

policy [152] significantly closes the performance gap, achieving near-ideal BTB perfor-

mance. Hence, there is a need for a better BTB replacement policy to achieve near-ideal

BTB performance.

144

Upon characterizing existing replacement policies [124, 269, 270], we noted that existing

policies do not account for the access pattern bias among different program branches,

inhibiting them from predicting and evicting the branch that is accessed furthest in the

future. We proposed a novel, profile-guided BTB replacement mechanism called HWC,

that accounts for the access pattern bias among different branches to make replacement

decisions. HWC analyzes a production binary’s execution profile to identify branch access

pattern biases to inject BTB replacement instructions into code. We evaluated HWC for

nine modern data center applications [298] and showed that HWC achieves near-ideal BTB

performance.

4.10 Chapter Summary

We summarize our contributions as follows:

• A comprehensive characterization of production microservices’ system-level bot-

tlenecks. We presented a detailed analysis of the system-level bottlenecks experienced

by key production microservices in one of the largest social media platforms today.

• A detailed study of production microservices’ architectural bottlenecks. We pre-

sented a comprehensive characterization of shortcomings in commodity hardware

architectures running hyperscale production microservices, highlighting potential

hardware design optimizations. This characterization has (1) influenced the design of

commercial server-class commodity processors and (2) driven more representative

benchmarking efforts.

• SoftSKU and µSKU: We introduced a design approach and associated tool, Soft-

SKU and µSKU, that automatically tunes important configurable server parameters

to enable existing commodity hardware to efficiently support diverse hyperscale

microservices. Soft SKUs have the potential to maintain commodity processors’

performance improvement rate (despite the decline in hardware performance scaling),

145

and thereby trigger a significant shift in the hardware industry while enabling new

architecture trends.

• A detailed performance study of configurable server parameters tuned by µSKU.

We demonstrated that the SoftSKU approach and associated µSKU design tool signif-

icantly improves the performance efficiency of real-world, production microservices

that service billions of users, saving millions of dollars and meaningfully reducing the

global carbon footprint.

The variety and complexity of microservices in hyperscale data centers has grown

precipitously over the last few years to support a growing user base and an evolving product

portfolio. Despite accelerating microservice diversity, there is a strong requirement to

limit diversity in underlying commodity server hardware to maintain hardware resource

fungibility, preserve procurement economies of scale, and curb qualification/test overheads.

As such, there is an urgent need for strategies that enable limited commodity server CPU

architectures (a.k.a “SKUs”) to provide performance and energy efficiency over diverse

microservices. To this end, we undertook a comprehensive characterization of the top seven

production microservices that run on the compute-optimized hyperscale data center fleet at

Facebook.

Our characterization revealed profound diversity in OS and I/O interaction, cache

misses, memory bandwidth utilization, instruction mix, and CPU stall behavior. Whereas

customizing a CPU SKU for each microservice might be beneficial, it is prohibitively

expensive. Instead, we motivated the need for “soft SKUs”, wherein we exploited coarse-

grain (e.g., boot time) configuration knobs to tune the platform for a particular microservice.

We developed a tool, µSKU, that automates search over a soft-SKU design space using

A/B testing in production systems and demonstrated how it obtains statistically significant

gains (up to 7.2% and 4.5% performance improvement over stock and production servers,

respectively) with no additional hardware requirements.

We also described follow-on work [298, 299, 297] on mitigating the architectural bottle-

146

necks in the frontend of the processor pipeline (e.g., I-cache misses) that we found to be

significant in microservices (detailed in Section 4.1). We developed a series of profile-guided

optimizations that observe dynamic information from various frontend micro-architectural

structures to inform these structures’ decisions during runtime, thereby achieving near-ideal

processor frontend performance.

147

CHAPTER V

Redesigning Commodity Server Architectures for Efficient

Event Notification at Hyperscale

As described in Chapter I, a microservice typically communicates with numerous I/O

devices and queues. For example, a microservice may receive network requests from tens to

hundreds of microservices via the Network Interface Controller alone. In modern systems, a

microservice typically receives work from an I/O queue by either (1) spin-polling for new

events or (2) using interrupts via blocking system calls that yield the CPU if no work is

available.

In Chapter IV, we observed that key microservices (e.g., Facebook’s Cache) face high

I/O notification latency and in Chapter VI, we will demonstrate that I/O notification can

consume 52% of the total CPU cycles executed by Facebook’s key microservices [444].

Hence, we ask the question: why do existing I/O notification paradigms fall short in the

context of hyperscale microservices, resulting in high I/O event notification overheads?

We1 comprehensively characterize widely-used I/O event notification paradigms such as

spin-polling, interrupts, and MWAIT, and examine the overheads they induce. Surprisingly,

we find that the latency of existing notification mechanisms, which used to be insignificant

for monolithic services, can dominate microservice latency. For example, blocking incurs

1Some of the work in this chapter was performed in collaboration with my Ph.D. committee member,
Margo I. Seltzer, and my Ph.D. advisor, Thomas. F. Wenisch [446]. Therefore, I use the “we” pronoun in this
chapter to acknowledge their involvement in this work.

148

microsecond-scale overheads from thread wakeups, context switches, and unexpected

hardware or OS actions, such as a slow transition from a low-power CPU mode. With

microservices’ microsecond-scale service times, the I/O software stack’s latency becomes

comparable to computation time.

Several microservices spin-poll on I/O queues [89] to avoid the I/O stack’s microsecond-

scale overheads. Although spin-polling avoids OS-induced delays [449], a spinning loop

often polls empty queues before finding work in non-empty ones. Since some queues are

inherently more frequently accessed than others, this traffic imbalance causes many queues

to be empty at any given time. Checking empty queues wastes CPU cycles, decreasing peak

throughput and increasing latency. We find that spinning through tens to hundreds of I/O

queues increases tail latency by tens of microseconds. These findings suggest that widely-

used I/O notification paradigms are not latency-efficient when tens (or more) microservices

interact in complex ways. Hence, prior conclusions on I/O event notification paradigms

must be revisited for hyperscale microservices.

As a part of this dissertation’s hardware contributions, we present µNotify, a hardware-

assisted shared-memory event notification paradigm that facilitates performance-efficient

interactions with numerous I/O queues. Unlike interrupts and spin-polling, µNotify achieves

low latency, queue scalability, and service priorities. When µNotify awaits notifications

on an I/O queue, a work item written to the queue by an I/O device triggers a cache line

invalidation coherence message in µNotify’s private cache. µNotify’s key idea is to observe

these cache line invalidations and use them as low-overhead I/O event notification.

µNotify is composed of a programming model front-end and a hardware microarch-

itecture back-end that work in cooperation. µNotify dedicates a single CPU core to manage

events from numerous I/O queues (as is done in prior work [389]). At a high level, it uses L1

cache invalidation information to detect new work item arrivals. First, the front-end loads

a set of well-known I/O queue memory locations (called doorbells) to monitor in its L1

private cache. Each doorbell corresponds to an I/O queue. The back-end uses invalidations

149

to detect when a doorbell is “rung” and sets a suitable bit in a newly-introduced special

hardware register, accessible to the front-end.

Our proposed hardware allows µNotify to identify I/O queues with new work in near-

constant time. The main components of µNotify’s microarchitectural back-end are (1) a

small extension to the cache coherence controller and (2) a special hardware register. The

extended controller tracks write transactions, i.e., invalidations, that indicate new work

arrival. The back-end uses the transaction’s address to index into a bit-readable/writable

new hardware register, i.e., a ready-vector.

The front-end spin-polls on the ready-vector to detect a write. When a ready-vector

bit is set due to work arrival, the front-end atomically reads and resets the ready-vector

to re-arm notification. It uses existing instructions [40] to efficiently identify a “set” bit

that corresponds to the queue with new work. It re-loads the invalidated doorbell to re-arm

monitoring, and selects the next queue to service according to a pre-defined service policy.

The front-end effectively functions as a task scheduler, sorting the order of ready queues to

be serviced.

µNotify achieves queue scalability as the back-end reports which queues to process,

rather than the software interrogating many empty queues. It is also immune to microsecond-

scale I/O stack processing latencies, as it bypasses the OS.

We implement µNotify in a real system and evaluate it using some of the microservices

from the µSuite benchmark suite [448] (detailed in Chapter II). We emulate µNotify’s

back-end by extending the I/O device’s operation to set an appropriate bit in a shared

memory bit-vector. A real system emulation allows comparing µNotify’s performance to

state-of-the-art mechanisms—spin-polling and interrupts. Across our suite of microservices,

we demonstrate that µNotify achieves a peak throughput and tail latency that is (on average)

15.6x and 14.2x respectively better than the state-of-the-art notification paradigms, with an

overhead that is less than 500 ns.

150

5.1 Why do Widely-Used Notification Paradigms Fall Short?

We begin to uncover the challenges that microservices face with event notifications with

a brief description of their key requirements. We then analyze how well widely-used I/O

notification paradigms meet those requirements.

5.1.1 Microservice Requirements

Since web service requests frequently propagate serially through tens to hundreds of

microservices [230], it is critical for each microservice to meet two key requirements.

Achieve microsecond-scale service latency. Each microservice must often achieve

O(10 - 100µs)-scale service latencies to meet end-to-end O(100ms)-scale SLOs. A mi-

croservice must also receive and process work items from many other microservices with

high throughput. At such low latencies and high throughputs, microsecond-scale system

overheads from OS and I/O interactions that are insignificant for monoliths can dominate

microservice performance. For example, the latency to access modern I/O devices such as

emerging storage-class and disaggregated memories [119, 121, 145, 386], 100+ gigabit net-

working devices [163], and high-throughput accelerators [173, 407] is as low as single-digit

microseconds. Hence, it is important to understand how microsecond-scale I/O interactions

affect microservice performance.

Manage numerous I/O queues. Microservices must often manage communication

with numerous I/O devices that each present multiple connections, such as Network Inter-

face Controllers (NICs) [357], Solid State Drives (SSDs) [288, 326], persistent memory

devices [57, 93], and accelerators [179]. For example, a microservice can listen on several

network connections via the NIC when expecting requests from multiple clients. Since a

microservice often interacts with tens to hundreds of microservices [230] and numerous I/O

devices, it must handle a large number of I/O queues. Moreover, when many microservices

are co-located on the machine [467], establishing communication between them is more

151

efficient using shared memory queues than expensive network connections. Such shared

memory queues further increase the number of work queues to monitor. Hence, it is critical

for a microservice to efficiently manage events from tens to hundreds of work queues

corresponding to several clients and I/O devices.

We now characterize the performance efficiency of widely-used I/O event notification

paradigms when faced with events from numerous I/O queues. The two most widely-

used I/O notification paradigms are OS interrupts and spin-polling. Prior work [449] has

shown that the trade-off between these paradigms is intrinsic: polling reduces latency, while

interrupts free a waiting CPU to perform other work. Hence, interrupts can induce higher

latency as they additionally execute OS interrupt handling code, incurring context switches

and thread wakeup delays [154, 339]. Other notification mechanisms include the Intel

x86 MWAIT [343] or ARM WFE [496] instruction variants that halt CPU execution until the

contents of a single memory address or address range change. We revisit these paradigms

and examine their performance and scalability.

5.1.2 Interrupts

In interrupt-driven notification, threads await new work via blocking system calls,

yielding the CPU if no work is available. Threads block on I/O interfaces (e.g., select() or

epoll() system calls) awaiting work. Several real-world microservices such as Facebook’s

Web [444], Redis BLPOP [18], Azure SQL [16], Google Cloud SQL’s Redmine [22, 323],

and MongoDB replication [73] use interrupts for notification. Due to their wide adoption,

interrupt notification has been extensively studied in prior work [213, 433]. We discuss four

widely-used Linux user-level notification APIs that build upon kernel interrupt mechanisms—

select(), poll(), epoll(), and libevent()—in the context of microservices.

Select(). Select allows waiting on events to multiple file descriptors. Before invoking

select, a microservice creates file descriptors and bitmaps by asserting bits mapping

to relevant file descriptors. On its return, select overwrites these bitmaps indicating

152

which descriptors are “ready” with work. The service scans the bitmaps to discover ready

descriptors.

Select faces a high overhead as it overwrites bitmaps—after each event, bitmaps are

created, copied into the kernel, scanned, subsetted, copied out of the kernel, and then

scanned by the service. These costs grow with an increase in the number of monitored

descriptors [452]. A microservice might scan hundreds or thousands of descriptors for every

event, as each descriptor can map to a client; scanning delays further exacerbate service

performance. We conclude that select falls short in satisfying the microservice latency

and scalability requirements.

Poll(). Unlike select, poll’s descriptor bitmap maps only to relevant descriptors and

is not overwritten. But, poll has higher copy overheads than select with a large number

of descriptors [80]. Poll’s work is also proportional to the monitored descriptors rather

than to the number of events.

Epoll(). Unlike select and poll, epoll returns the ready file descriptors (obtained

via epoll_wait()) and minimizes bitmap copy latency. Hence, many real world systems,

including Remote Procedure Call libraries upon which microservices are built [45, 37],

use epoll-driven notification. We also find epoll more scalable than select and poll.

Hence, we next study interrupt notification challenges using epoll.

Experimental setup. To measure epoll’s user-mode notification latency, we develop a

microbenchmark composed of a producer and consumer process. The producer represents

events from many I/O devices or client microservices. The consumer represents a microser-

vice that uses epoll to monitor I/O. We use shared memory queues to model the I/O the

producer sends to the consumer. To mimic events from many I/O queues, the producer picks

a random shared queue from a list of known queues and writes a ns-scale timestamp using

RDTSC [392], generating an event. Upon receiving the event via epoll, the consumer

notes the producer’s “sent” timestamp and the current time to estimate the interrupt latency.

The producer operates in (1) a closed-loop by maintaining a fixed number of outstanding

153

0	

10	

20	

30	

40	

0	
 5	
 10	

N
um

be
r	
 o

f	
 t
hr
ea
d	

w
ak
eu

ps
	
 (t
ho

us
an
ds
)	

Wakeup	
 latency	
 distribu@on	
 (us)	

Low	
 load	
 High	
 load	

(a) (b)

0	

20	

40	

60	

80	

100	

0	
 20	
 40	
 60	
 80	
 100	

La
te
nc
y	

(u
s)
	

Load	
 (%)	

Average	
 latency	
 99%	
 Tail	
 latency	

Figure 5.1: (a) Epoll latency with increasing load: Interrupts face µs-scale context switches & thread
wakeups. (b) Thread wakeups at low & high load: Low-load wakeups are costlier.

work items [501] when measuring throughput and (2) an open-loop mode with Poisson

inter-arrivals [172] when measuring latency. We map each process to a dedicated CPU core

in a single-socket system, hence, RDTSC is synchronized across cores.

Interrupt notification latency. To report the bare-bones user-mode interrupt notification

latency via epoll, we first measure the latency when the producer sends work via a single

shared queue, mimicking events from a single I/O queue. In Fig. 5.1(a), we show the average

and the 99th% tail latency across increasing load, i.e., work items/events sent per second.

We make the following observations. First, we note that the average interrupt notification

latency costs 3−6µs and the tail latency is 6−10µs even at low (<20%) and intermediate

(20% - 60%) load. These single-digit microsecond overheads primarily arise from two

microsecond-scale context switches and consequent user thread wakeup delays.

Such microsecond-scale overheads are often insignificant for O(100ms)-SLO monolithic

services (e.g., Lucene web search [359]). However, microsecond–scale microservices differ

intrinsically: OS context switch and thread wakeup delays can dominate microservice

latency [106]. For example, a single 10µs wakeup implies a 10% latency penalty for a

request to a 100µs SLO microservice (e.g., McRouter [501]). Moreover, since tens to

hundreds of microservices often communicate in series, the interrupt latency can quickly add

up and dominate the end-to-end application latency. It is hence unsurprising that data center

operators find that microservices can spend 52% of their cycles serving interrupts [285, 444].

154

Prior work proposed disabling interrupts to improve performance [210]. In such cases,

for the interrupt handler to be fired, the service must wait for interrupts to be enabled again,

degrading latency further. For example, with Virtual Machines (VMs), a VM-exit must

occur for the hypervisor to serve an interrupt, precipitating overheads from the VM-exit,

backing registers, and flushing TLBs, in addition to the bare-bones interrupt processing

latency we demonstrate in Fig. 5.1(a).

Second, we notice a slightly higher average and tail latency at low load (<20% of

saturation) compared to intermediate load. At low load, the OS might transition to a low-

power mode that delays thread wakeups [261, 449]. In Fig. 5.1(b), we show thread wakeup

delays (reported as latency histograms) gathered via the BPF run queue (scheduler) latency

tool [66]. This data shows that most thread wakeups are slower (3−5µs) at low load than

at higher load (<3µs). As load increases, the OS performance also tends to improve from

better temporal and spatial locality caused by batching effects in the OS stack.

Third, at near-saturation load, interrupt latency spikes due to unbounded queuing delays

(also reported in prior work [449]).

Notification latency with many queues is similar to data in Fig. 5.1. We conclude

that with microservices’ microsecond-scale service times, the I/O stack’s latency becomes

comparable to service latency and must be aggressively optimized.

Libevent. Libevent is a library that offers interrupt API portability across operating

systems. Since libevent uses epoll under the hood, we find its performance comparable

to Fig. 5.1. Hence, in the rest of this chapter, we report epoll performance when comparing

against interrupt notification.

5.1.3 Spin-polling

Many microservices opt to spin-poll [89], solely to avoid context switches, thread

wakeups, and unexpected hardware/OS actions, such as slow transitions to a low-power

mode [148]. For example, real-world services such as Intel’s DPDK Poll Driver [83], Redis

155

replication [89], Redis LPOP [67], DoS attacks/defenses [380, 416, 442], and GCP Health

Checker [97] use spin-polling. Similarly, Software Data Planes (SDP) [238] and kernel-

bypass techniques [154, 274, 289, 329, 402, 408] also rely on spin-polling to deliver high

performance. Since SDPs manage a large number of I/O queues, they are also susceptible to

the problems we find with spin-polling.

Prior works [242, 277] demonstrated that when multiple spinning threads are required

to sustain a high load, microsecond-scale thread contention can cause pathologically poor

performance. Multiple spinning threads also (1) consume more cores, (2) consume more

power, (3) induce faster processor aging, and (4) adversely affect microservices co-running

on Simultaneously Multi-Threaded cores [352, 353]. Hence, several other works [291, 449]

and existing systems [238] advocate using a single spinning thread to pick up I/O work

items.

We find that a single spinning core lacks queue scalability. A spinning core must iterate

through all I/O queues at full-tilt even when there are no work items in any queue. Spinning

through empty queues in search of the next ready work item in a non-empty queue can cause

long traversal delays. Traversal delays are more pronounced when I/O traffic is unbalanced,

i.e., when a subset of queues are empty most of the time. Since the time required to process

a work item is usually short (i.e, a few microseconds [230, 238]), particularly for middle-

tier microservices [449], missing on numerous empty queue heads might take longer than

processing a ready queue.

Throughput. To measure spin-polling’s performance, we first study how a consumer

microservice’s peak throughput changes as a function of the queue count. We use the same

experimental setup described above, but this time, the consumer spin-polls through I/O

queues to find work. We use various I/O traffic patterns: Fully Balanced (FB), where traffic

passes through all the queues (represents all active queues); Proportionally Concentrated

(PC), where traffic passes through 20% of the queues all the time and through the rest

with a 5% probability (represents when some queues become active based on an event);

156

0	

0.5	

1	

1.5	

2	

0	
 200	
 400	
 600	
 800	
 1000	

Pe
ak
	
 th

ro
ug
hp

ut
	
 	

(m
ill
io
ns
	
 o
f	
 e

ve
nt
s	
 /
se
c)
	

Number	
 of	
 queues	

FB	
 PC	
 NC	
 SQ	

(a) (b)

0	

10	

20	

30	

40	

0	
 200	
 400	
 600	
 800	
 1000	

La
te
nc
y	

(u
s)
	

Number	
 of	
 queues	

Average	
 latency	
 99%	
 Tail	
 latency	

Figure 5.2: (a) Peak throughput when spin-polling many queues: Throughput reduces due to empty
queue checks. (b) Latency when polling many queues: Long loop traversals dominate.

Non-proportionally Concentrated (NC), where traffic passes through 100 queues all the time

and through the rest with a probability of 5% (represents a few active queues at a given

time); Single Queue (SQ), where traffic passes through one queue all the time and through

the rest with a probability of 5% (represents a “one hot” queue).

In Fig. 5.2(a), we display the peak saturation throughput achieved with an increasing

number of queues for the four different traffic shapes.

We make four observations. (1) We note a steep throughput decline with SQ traffic.

This decline is caused by wasted spinning on empty queues, i.e., for each work item, the

microservice performs unnecessary additional work by querying each queue head in its

entire loop. (2) Although NC is a variant of SQ, the throughput drop with NC is milder since

the ratio of non-empty to empty queues grows at a smaller rate compared to SQ. (3) With FB

and PC, the ratio of non-empty to empty queues is constant (i.e., zero and four, respectively).

Therefore, the throughput decline is less severe than NC and SQ. Nonetheless, FB and PC

also face non-trivial throughput degradation due to additional queue head checks. (4) FB

achieves a higher peak throughput than PC since the consumer has a higher probability

of finding a non-empty queue in each spin. We conclude that microservice throughput is

adversely affected when traffic is concentrated in a few queues, and the rest are usually

157

empty, which is the common case [160].

Latency. We show how latency is affected by increasing the number of queues in

Fig. 5.2(b). To avoid reporting queuing delays that show up at high load, we offer minimal

load (<10% of saturation) in this test. Hence, the reported latency includes only the time it

takes the spinning core to identify a non-empty queue and pick up a work item. We use the

traffic pattern that achieves the best saturation throughput—FB.

We note that spin-polling indeed achieves low latency, but only with a few (<∼10) I/O

queues. The average and 99th% tail latency grow almost linearly with queue count as the

time taken to interrogate non-empty queues begins to dominate. Tail latency grows with

a higher slope than the median case, illustrating the worst-case scenario of a consumer

having to poll through almost the entire loop before finding work in a ready queue. Average

and tail latencies of tens of microseconds can cause pathologically poor performance in

microsecond-scale microservices [429]. We conclude that spin-polling does not scale well

with an increasing number of I/O queues.

5.1.4 MWAIT

Intel x86 MWAIT and ARM WFE instruction variants halt CPU execution until the

contents of a single memory address or address range change. These instructions are

currently usable only in the kernel code in server-class processors. Whereas MWAIT is more

energy-efficient than spin polling, we find that MWAIT still falls short for the following

reasons.

First, a microservice must be able to monitor all I/O queues simultaneously. MWAIT

allows monitoring only a single queue at any given time. Second, a microservice might often

have to service events based on pre-defined system priorities (e.g., receiving NIC items from

an ads service might be less critical than receiving items from an indexing service). MWAIT

variants do not allow receiving events based on explicit event priorities. Third, MWAIT

cannot be executed in user-mode on current server-class processors (although UMWAIT, a

158

user-mode MWAIT instruction has been announced, it is energy-optimized and is currently

available only in embedded CPUs [113]). Due to the kernel-mode operation, we find MWAIT

latency on par with interrupts’ context switch penalty. Fourth, although user-mode MWAIT is

available on a discontinued line of Intel’s server-class CPUs [55], we find that this MWAIT

variant still incurs a single-digit microsecond latency penalty as it is optimized for energy

rather than performance efficiency [35].

In summary, we find that commonly-used notification mechanisms are not efficient when

O(100) microservices interact in complex ways. Hence, prior conclusions on I/O notification

must be revisited in the context of hyperscale microservices.

5.2 The µNotify Paradigm

Our characterization’s main takeaways are that widely-used notification paradigms (1)

do not scale well when monitoring tens to hundreds of I/O queues and (2) precipitate

expensive OS-induced latencies that dominate microservice latencies. Hence, there is a

critical need to re-design I/O notification for the microservice regime. We propose a novel

performance-efficient I/O notification paradigm called µNotify that achieves both scalability

and low latency. We now describe µNotify’s design goals and introduce its components.

5.2.1 Design Goals

Prior work [193, 389] proposed dedicating a core or a hardware unit [265] to manage

notifications, since fast notifications are critical for modern, low-latency service paradigms

such as microservices and serverless. We adopt this perspective to re-imagine the software

and hardware design of a CPU core dedicated for monitoring, prioritizing, and receiving

I/O. Such a design must achieve three goals.

First, to support microservices efficiently, we require a notification paradigm that by-

passes the OS, since even a single context switch significantly degrades microservice

performance. Our goal is to design a user-mode notification paradigm that achieves both

159

. . .

Microservice

I/O Device

I/O Device

. . .

Event arrives (1a)

“Rings”
doorbell (1b)

Notification
(2a)

Processing cores Notification core

Queue selection (2b)

Dispatch
queue ID

for processing
(3a)

Figure 5.3: High-level system model.

low latency and high throughput.

Second, we require a notification mechanism that does not iterate over empty queues to

find work in ready ones, unlike conventional spin-polling. Our mechanism must be able to

scale well in the presence of a large number of I/O queues.

Third, our design must be able to efficiently prioritize across numerous queues to

determine which ready queue is most important. Distinguishing a high-priority queue

from a low-priority one enables processing work items from latency-critical tasks before

throughput-oriented batch jobs [368, 369].

5.2.2 System Model

We present our design in the context of a microservice system model shown in Fig. 5.3.

A microservice’s dedicated “notification core” waits for events on tens to hundreds of I/O

queues. Each queue typically has a well-known memory location that indicates the arrival of

new work in the queue (e.g., a queue’s tail pointer). We refer to these well-known locations

as doorbells. When a work item enters a queue (1a), the corresponding doorbell is “rung”

(1b). The notification core must identify doorbell triggers (2a) and select the next ready

queue to process based on a pre-defined policy (2b).

Since we dedicate a core for notification, i.e., a “notification core”, received I/O items are

not processed in-place, and are dispatched to another core for processing, i.e., a “processing

160

//	
 LoadM	
 doorbells	
 into	
 L1	

for	
 each	
 queue:	

doorbell_array[queueID]=LoadM(

	
 doorbell)	

while	
 true	
 do:	

	
 if	
 ready-­‐vector	
 ==	
 0	
 do:	

	
 continue	

end	

while	
 true	
 do:	

	
 if	
 ready-­‐vector	
 ==	
 0	
 do:	

	
 continue	

end	

if	
 ready-­‐vector	
 !=	
 0	
 do:	

	
 bit_vec	
 =	
 READ-­‐AND-­‐RESET(

	
 ready-­‐vector)	

	
 ready_queue=CLZ(bit_vec)	

	
 doorbell=doorbell_array[5]	

	
 Dispatch(ready_queue)	
 	

Core running µNotify Core running µNotify

Core running µNotify Core running µNotify

I/O Device I/O Device

I/O Device I/O Device

(a) (b)

(c) (d)

Software

Hardware

Software

Hardware

Software

Hardware

Software

Hardware

Queue ID 5

L1$

Doorbell 5/
Set ID 5 S

Coherence
state

Writes event to queue,
triggering doorbell

L1$

Doorbell 5/
Set ID 5

Coherence
state

GetM signal

L1$

Doorbell 5/
Set ID 5

Invalidation
signal 0

Ready-vector
…

5
1

Ready-vector
…

5
0

0
Ready-vector

…0
5

0
Ready-vector

…0
5

Coherence
controller 0

‘M’ S ‘M’

Queue ID 5

QueueID 5

Queue ID 5

I ‘M’

L1$

Doorbell 5/
Set ID 5 S ‘M’

Figure 5.4: High-level diagram of µNotify’s operations.

core” (3a). The notification core can use a lock-free shared buffer to tell the processing

cores that there is work in a specific I/O queue. The processing cores can spin-poll as they

must wait for events on a single buffer, rather than hundreds of queues. In contrast, the

notification core must monitor hundreds of I/O queues simultaneously, and service them

based on a predefined policy. Hence, the notification core cannot spin-poll as it would be

highly unscalable as demonstrated in Sec. 5.1.

5.2.3 µNotify Overview

To meet these design goals, we propose a novel low-latency notification paradigm

called µNotify that facilitates notification and prioritization across hundreds of I/O queues.

µNotify’s key insight is to observe writes to queues by tracking hardware-generated cache

line invalidation coherence signals triggered by an I/O device ringing its doorbell. Detecting

invalidations serves as low-overhead notification.

161

µNotify’s design is inspired by invalidation-driven mechanisms that manage critical sec-

tion access in multi-threaded programs (e.g., Hardware Transactional Memory (HTM) [240]

or Thread-Level Speculation [356, 481]). However, unlike these mechanisms [240, 356, 481]

that abort execution upon receiving an invalidation, µNotify performs useful work by pick-

ing up a new I/O event. We first provide µNotify’s high-level overview and then detail its

individual components. Throughout, we compare design similarities to existing Intel HTM

TSX extensions [497] to demonstrate our design’s implementation feasibility.

Fig. 5.4 illustrates µNotify’s operation. µNotify is composed of a front-end software

programming model and a back-end hardware notification subsystem, i.e., a core dedicated

for notification. First, the front-end loads the set of queue doorbells to monitor into its L1

(private) cache (5.4(a)) using a new load instruction—LoadM. LoadM loads an address and

sets a “monitor” bit in the corresponding cache line. Hence, a coherence read transaction

(e.g., GetS) is issued to ensure the cache line containing the doorbell has no owner and

writes cannot be performed locally. For example, with a MESI coherence protocol, the

doorbell’s line enters a “shared” state.

LoadM is similar to existing line locking instructions [72] in that it sets a “monitor”

bit in each doorbell’s cache line. A monitor bit behaves like the “locked” bit used in

prior works [356, 174, 170]—a set bit indicates that the line cannot be evicted due to

replacement, but can be invalidated upon an external write, to maintain coherence. With

such invalidations, the “monitor” bit remains set even though the line’s coherence state is

“invalid”. If replacement is necessary, the cache controller will select a line not marked

“monitor”. If no evictable line is found, the core will access lower cache levels/memory.

LoadM also sets the line’s “monitor” bit in the directory to avoid directory-induced evictions.

When work is written to a monitored queue and its doorbell “rung”, it generates a write

transaction (e.g., GetM) to the doorbell’s line (5.4(b)). With an invalidation coherence

protocol [441], µNotify’s local copy of the doorbell’s line must be invalidated. We extend

the back-end coherence controller to atomically record write transactions generated by the

162

I/O device to the monitored doorbells, i.e., invalidation signals, in a special hardware register

we introduce (5.4(c)). This step is similar to Intel’s TSX [497] observing invalidations sent

to monitored lines and recording the invalidation’s reason (e.g., conflicting access, eviction,

etc) in an abort register [206].

The extended controller uses the doorbell’s cache set ID to index into this special bit-

readable/writable hardware register bit-vector, henceforth referred to as “ready-vector” since

it stores information about ready queues. The ready-vector’s width is matched to the L1

private cache’s size, one bit per set. With a doorbell assigned to an L1 set, the ready-vector’s

width corresponds to the number of distinct queues that can be monitored without aliasing.

We discuss aliasing effects in greater detail when describing the back-end’s operation.

µNotify’s front-end spin-polls on the ready-vector’s contents. Since polling has a low

latency when spinning on a single location (see Sec. 5.1), µNotify does not face the scalability

issues with polling numerous queues. After the cache controller sets the corresponding

ready-vector’s bit and invalidates the doorbell’s line in µNotify’s L1, the front-end uses a

proposed atomic READ-AND-RESET instruction to atomically read the ready-vector and reset

it. It then uses existing instructions [40] to identify which bits were set in the ready-vector

(i.e., which queue(s) are ready with new work) in near-constant time (5.4(d)). For each

“set” bit, the front-end re-loads the “monitored” doorbell to re-arm write monitoring. It then

dispatches the ready queue’s ID to a processing core and selects the next ready queue to

dispatch according to a pre-determined service policy. The front-end effectively functions

as a task scheduler at non-trivial loads, sorting the ready queues’ order of service.

5.2.4 µNotify’s Back-end Microarchitecture

The back-end’s operation is orchestrated by two small hardware extensions: an extended

cache coherence controller and a ready-vector.

Extended coherence controller. The extended coherence controller detects work arrival

by recording coherence write transactions, i.e., invalidation signals to monitored L1 doorbell

163

Coherence controller

(a)  Write transaction (e.g., GetM)

(b)	
 Get	
 address’s	
 	

index	
 bits	
 	

(c)	
 Match	
 index	
 bits	

to	
 iden4fy	
 set	
 ID	

(d)	
 	

Ready_vector[setID]	
 =	
 1	

(e)	
 Invalidate	

cache	
 line	

Figure 5.5: High-level cache coherence controller with µNotify.

lines. A coherence transaction that grants exclusive ownership of the monitored doorbell

line to the requester causes the controller to indicate an arrival on the corresponding I/O

queue (e.g., GetM transactions in generic protocols [441]) as shown in Fig. 5.5(a). µNotify

requires I/O devices to provide sufficient control of mapping doorbell addresses so that

the OS can use suitable placement schemes [372] to enforce mapping each doorbell to an

individual L1 set (similar to prior work [205, 328, 337]). The controller can then look up

the write transaction address’s index bits (Fig. 5.5(b)) to identify which cache set it belongs

to, i.e., which queue’s doorbell (Fig. 5.5(c)).

After identifying the doorbell, the controller atomically (1) activates the associated door-

bell’s bit in the ready-vector (Fig. 5.5(d)) and (2) invalidates the corresponding cache entry

(Fig. 5.5(e)). Atomicity between these two operations in real hardware can be established

the same way as with TSX [497], where TSX atomically (1) observes an invalidation, (2)

records the abort’s reason in a register, and (3) invalidates the line.

The front-end adds a new I/O queue via a LoadM. An entry may later be removed by

resetting its line’s monitor bit via another instruction, ResetM. The controller’s extension is

independent of the coherence organization and can record invalidations snooped from the

bus or directory.

Ready-vector. Our proposed ready-vector has a “set” bit for each cache set containing a

doorbell that was written to. The ready-vector’s width is matched to the L1’s size, one bit

per L1 set, determining the number of distinct queues that can be monitored without aliasing.

For example, with a 32KB L1 direct-mapped cache (64B cache line), the ready-vector will

have eight 64-bit words and can track 512 I/O queues. In this case, the ready-vector can

164

itself fit within a single cache line.

µNotify supports two features to improve queue scalability. First, if the CPU supports

an L2 private cache, the ready-vector’s width can be matched to the larger L2’s size (with

inclusive caching) or the combined L1 and L2 sizes (with non-inclusive caching). Second,

µNotify can afford to alias a few doorbells to an L1’s single line (for a direct-mapped

cache) or single set (for a set-associative cache). Even if two doorbells alias to the same

line, we can monitor O(1000) doorbells with a 32KB direct-mapped L1. The front-end

must then check two queues’ status per event, which still has a lower overhead than spin-

polling hundreds of queues (in Sec. 5.1, we show that spin-polling <10 queue heads has no

noticeable performance difference). Since microservices require monitoring only hundreds

of doorbells, aliasing can improve scalability.

The ready-vector also helps continue execution across context switches. A context

switch “disarms” all monitored doorbells, as the L1 may be re-written. After µNotify is

rescheduled, it must re-issue LoadMs to the doorbells to re-arm queue monitoring. A reserved

bit in the ready-vector communicates the context switch. Before descheduling µNotify,

the OS sets this reserved bit to indicate a context switch. When µNotify is re-scheduled,

it checks this reserved bit to see if it must re-load doorbells for monitoring. We save and

restore ready-vector state across context switches so that µNotify can process pending writes

that occurred just before it was descheduled.

5.2.5 µNotify’s Front-end Programming Model

Alg. 1 shows a simplified view of the front-end programming model. During initializa-

tion, the front-end issues a LoadM to each doorbell. Hence, a coherence read transaction

(e.g., GetS) is issued to the “monitored” line to ensure it has no owner and writes cannot

be performed locally (lines 1-5). The front-end then starts checking for ready queues by

spinning on the ready-vector’s contents (lines 6-11). When a ready-vector’s bit is set (lines

12-13), the front-end performs the following operations.

165

Algorithm 1: A simplified view of µNotify’s programming model, assuming strict
queue priorities.
1 // Initialization phase: Load & “monitor” doorbells into the L1 cache.
2 for all queues do
3 doorbell = allocate(doorbell_address_range);
4 doorbell_array[queue_ID] = LoadM(doorbell);

5 end
6 // Monitoring phase: Continuously track “rung” doorbells.
7 while true do
8 // If no event has occurred, continue monitoring.
9 if ready_vector == 0 then

10 continue
11 end
12 else
13 // Control enters here when a doorbell was rung.
14 /* Atomically read and reset ready_vector to re-arm notification, preventing races and

missed writes.*/
15 bit_vector = READ-AND-RESET (ready_vector);
16 while bit_vector != 0 do
17 /* Identify ready queues: Count leading zeroes, i.e., first bit set in bit_vector.*/
18 ready_queue = CLZ (bit_vector);
19 /* Load doorbell into L1; a write between ready_vector reset & doorbell load enters a

known ready queue.*/
20 doorbell = doorbell_array[ready_queue];
21 bit_vector[ready_queue] = 0;
22 // Dispatch ready queue to another core.
23 Process(ready_queue);
24 end
25 end
26 end

Re-arm notification. When a ready-vector bit is “set”, the front-end re-arms notifica-

tions to avoid data races. We propose an atomic READ-AND-RESET instruction to atomically

read the ready-vector (into a local bit-vector) and reset it (lines 14-15).

Find ready queues. The front-end uses an existing instruction to find the indices of the

“set” bits in the bit-vector, i.e., the ready queue IDs. In our implementation, we repeatedly

use the Count Leading Zeroes (CLZ) instruction [40] to count the number of leading zeroes

in the bit-vector and return the first set bit’s position in near-constant time (lines 17-18). We

reset the bit-vector’s corresponding bit each time. CLZ is cheaper than an iterative design

that loops through the bit-vector.

Re-arm monitoring. For each ready queue identified, µNotify re-loads its doorbell to

166

bring it into the L1 in the “shared” state (lines 19-20) to re-arm monitoring invalidations.

It then dispatches the ready queue IDs (i.e., the cache set IDs) to a processing core (lines

22-23) that ensures the corresponding queues are non-empty, to filter spurious activations

from exclusive reads, false sharing [347], or doorbell writes that do not correspond to work

arrivals. If the queue contains work, the processing core drains the queue and processes

each item.

Avoid race. We now discuss how we avoid data race, particularly missed writes and

consequent missed activations. µNotify performs four key operations that must be protected

from race: (1) setting a ready-vector bit, (2) invalidating a line, (3) atomically reading and

resetting the ready-vector, and (4) re-loading the doorbell. The hardware ensures that (1) and

(2) are atomic as described earlier. (1)-(2) and (3) are atomic as the software checks whether

the ready-vector is non-zero before atomically reading its value and resetting it. (3) and (4)

need not be atomic, but have to occur in the described order to maintain the key invariant—a

doorbell line cannot be “shared” when its corresponding ready-vector bit is “set”. Writes

occurring between (3) and (4) to an invalidated doorbell will not generate an invalidation

message or set a ready-vector bit. However, we will still know about these writes as they

belong to the ready queues that µNotify identified (line 18). When the processing core

receives these ready queues, it can process the newly-arrived work as well. Hence, µNotify

ensures that there is no time window for actual work arrivals to be missed.

Handle service priority. The front-end can efficiently implement three common service

policies [367]. With a round-robin policy, the Queue ID (QID) selected in a round must

exhibit the lowest priority in the next round. In each round, µNotify stores the QID it

selected first. For example, in the first round, µNotify would store the Most Significant

Bit (MSB) that was set. In the next round, µNotify first checks QIDs that occur before the

stored QID, stores them (if set) to process later, and then checks the next set QID to give the

highest priority to the bit next to the one that was selected in the previous round.

The weighted round-robin policy generalizes round-robin, allowing a selected queue to

167

be serviced for many consecutive rounds. Giving different weights to queues accommodates

various microservices’ differentiated arrival rates and QoS requirements. µNotify maintains

a “weight” counter for each QID. Every time the queue is serviced, µNotify decrements

its counter. When the counter reaches zero or the QID has not received any items within a

time-out interval, the priority is passed to another QID by reloading its weight counter.

The strict priority policy fixes queue priorities such that QIDs mapped to the ready-

vector’s MSBs are always prioritized over the Least Significant Bits. Using the CLZ instruc-

tion inherently gives the QIDs mapped to the MSBs the highest priority. Priorities can also

be inverted using the Count Trailing Zeros instruction [40]. However, this policy is typically

not used in real applications as it would starve low-priority queues; instead, a weighted

round-robin is often used, differentiating queue priorities while avoiding starvation.

5.3 Evaluation

5.3.1 Experimental Setup

We emulate µNotify’s back-end by having the I/O writers set a bit in a shared memory

bit-vector (representing the ready-vector). This extension allows us to perform a real

system evaluation to compare against existing interrupt and spin-polling paradigms. Since

the software writes to the bit-vector instead of the hardware, our emulation has a higher

overhead than the hardware design. Our implementation will incur additional invalidation

overhead (for the bit-vector write) and hence produce conservative results.

Emulated I/O sources running on dedicated “producer” cores generate traffic with

different shapes and loads. Traffic shapes are the same as those in Sec. 5.1. We offer

load in a closed-loop when measuring peak throughput and in an open-loop with Poisson

inter-arrivals [172] when measuring latency. We validated that the producer is not the

bottleneck.

We run our experiments on an Intel Skylake machine with two sockets, 20 cores/socket,

168

two-way SMT, 32 KiB L1-D$ (per core), 32 KiB L1-I$ (per core), 1 MiB private L2$ (per

core), and 27 MiB shared LLC (per socket), with 64B cache lines; we map doorbells to 8192

available private L2 sets. µNotify runs on a dedicated core. The processing threads spin-poll

a single lock-free work queue looking for µNotify’s requests. We found that the service

policy has minimal impact on performance trends, so we report results for the round-robin

policy, only. We report the average of ten trials.

5.3.2 Microservices

We consider four microservices, three of which are mid-tier microservices from the

µSuite [448] benchmark suite (detailed in Chapter II), LSH, McRouter, and Recommend;

the fourth, Word Stemming, is constructed using the same framework.

Locality Sensitive Hashing (LSH). This microservice uses locality-sensitive hashing

to exponentially reduce a high dimensional search space. Upon receiving a search request

(e.g., image search), the microservice probes an in-memory LSH table to gather potential

nearest neighbor candidates.

McRouter. We use µSuite’s consistent hashing microservice based on Facebook’s

McRouter [69], which is stateless and computes a consistent hash to suitably route KV-store

requests.

Word Stemming. Stemming is a normalization process to reduce words to their root

and is a core query-rewriting service in web search. We develop a stemming microservice

based on Oleander’s design of the Porter stemming algorithm [406, 405]. Word stemming

is stateless; it hard-codes all stemming paths (prefixes, suffixes, etc.) into the program

control-flow.

Recommend. This microservice performs user-based collaborative filtering on a pre-

composed matrix of {user, item, rating} tuples to make rating predictions.

We now evaluate µNotify’s throughput, queue scalability, and latency, comparing it to

two state-of-the-art paradigms—spin-polling and interrupts via epoll.

169

0

0.05

0.1

0.15

0.2

0.25

10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

FB PC NC SQ

Th
ro

ug
hp

ut

(m
ill

io
ns

 o
f e

ve
nt

s/
se

c)

LSH: Number of queues for each traffic policy

uNotify Poll Interrupt

Figure 5.6: Peak throughput achieved by µNotify compared to spin-polling and interrupts across
different queue counts and traffic shapes for LSH: µNotify consistently achieves a higher throughput
compared to state-of-the-art paradigms.

0

0.2
0.4
0.6
0.8
1

1.2
1.4

10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

FB PC NC SQ

Th
ro

ug
hp

ut

(m
ill

io
ns

 o
f e

ve
nt

s/
se

c)

McRouter: Number of queues for each traffic policy

uNotify Poll Interrupt

Figure 5.7: Peak throughput achieved by µNotify compared to spin-polling and interrupts across
different queue counts and traffic shapes for McRouter: µNotify consistently achieves a higher
throughput compared to state-of-the-art paradigms.

5.3.3 Peak Throughput

We analyze µNotify’s peak throughput and compare it to existing paradigms when

receiving work from an increasing number of queues. Figs. 5.6, 5.7, 5.8, and 5.9 show

throughput data for all microservices on the same traffic shapes used in Sec. 5.1.

Similar to the results in Sec. 5.1, we observe the most drastic throughput drop when

spin-polling with SQ traffic, as the core needs to poll a larger number of empty queues to

find work in the ready one(s); the drop is milder with NC. With FB and PC, the ratio of

non-empty queues to empty queues is constant, so spin-polling achieves better throughput

with these traffic patterns than with SQ and NC (PC is worse than NC until 500 queues as it

170

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

FB PC NC SQ

Th
ro

ug
hp

ut

(m
ill

io
ns

 o
f e

ve
nt

s/
se

c)

Word Stemming: Number of queues for each traffic policy

uNotify Poll Interrupt

Figure 5.8: Peak throughput achieved by µNotify compared to spin-polling and interrupts across
different queue counts and traffic shapes for Word Stemming: µNotify consistently achieves a higher
throughput compared to state-of-the-art paradigms.

0

0.1

0.2

0.3

0.4

10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

FB PC NC SQ

Th
ro

ug
hp

ut

(m
ill

io
ns

 o
f e

ve
nt

s/
se

c)

Recommend: Number of queues for each traffic policy

uNotify Poll Interrupt

Figure 5.9: Peak throughput achieved by µNotify compared to spin-polling and interrupts across
different queue counts and traffic shapes for Recommend: µNotify consistently achieves a higher
throughput compared to state-of-the-art paradigms.

polls many more empty queues).

Regardless of the traffic pattern, we find that the work done per item continues to

grow with an increasing number of queues (due to additional queue head polls), reducing

throughput. Spin-polling achieves better throughput with FB than PC since FB performs

fewer empty queue checks. Hence, in our successive experiments, we only consider FB

traffic.

We note that interrupts achieve low throughput in general, since they perform more work

to notify the microservice about an item arrival, i.e., they additionally execute large I/O

stacks. However, throughput approximately remains constant across numerous queues, since

171

1	

10	

100	

1000	

0	
 200	
 400	
 600	
 800	
 1000	

La
te
nc
y	

(u
s)
	

Recommend:	
 Number	
 of	
 queues	

Figure 5.10: µNotify’s latency under light traffic with increasing queues (Y-axis is log-scale): µNotify
achieves lower latency.

epoll can notify events received on many queues in a single wakeup/activation. Hence,

spin-polling is less scalable than interrupts as the throughput with spin-polling eventually

becomes much worse than interrupts.

In contrast, µNotify avoids the useless work of interrogating empty queues and does not

execute I/O stacks. It recovers the throughput loss of spin-polling’s empty queue checks

and interrupts’ execution of deep I/O stacks. Particularly, with the SQ and NC traffic, where

spin-polling falls apart with more queues, µNotify maintains peak throughput even with 1000

queues. With various traffic shapes and queue counts, µNotify improves peak throughput

by 15.63x, on average, compared to spin-polling and 2.815x, on average, compared to

interrupts.

5.3.4 Queue Scalability

In Fig. 5.10, we report µNotify’s low-load latency across microservices as a function of

increasing queue count. We offer a light FB traffic load (<10%) to prevent queuing delays.

Note that the Y-axis is a log-scale to capture the order-of-magnitude range in measured

latencies.

We make the following observations. First, with spin-polling, both the average and tail

172

latencies grow linearly as the queue count is increased, since the core has to check more

empty queues. Long poll-loop traversal delays severely degrade the tail latency in particular,

since the iterator code has to traverse almost all queues before it reaches the ready one.

Second, the tail latency with spin-polling is particularly exacerbated when the mi-

croservice has greater request processing time variability (e.g., Word Stemming). Word

Stemming’s tail latency degrades even further due to Head-of-Line (HoL) blocking—–when

the work item at the head of a queue takes longer than average to process, all items behind it

experience long queuing delays, precipitating high tail latency.

Third, interrupts exhibit higher latency than µNotify due to the additional context switch

and IO stack overhead. Nonetheless, interrupt latencies remain unchanged with increasing

queues, outperforming spin-polling at higher queue counts.

Fourth, µNotify avoids the latency of both checking empty queues and executing I/O

stacks. µNotify scales better across increasing queue counts, and the latency is unaffected

with more queues. It retains both average and tail latency below 10 µs even at 1000 queues

(except Word Stemming which has greater processing time variation), while spin-polling

causes a tail latency of more than 100 µs for large queue counts. µNotify improves the tail

latency by 14.2x and 2.72x, on average, compared to spin-polling and interrupts respectively.

5.3.5 Median and Tail Latency

In Fig. 5.11, we show µNotify’s latency across various FB loads, with a hundred queues.

We note that: (1) Spin-polling has lower average latency than interrupts as the probability

of finding a non-empty queue is higher in the average case. In contrast, polling exhibits

higher tail latency due to worst-case traversal delays. (2) Interrupts have a slightly higher

tail latency at low load due to longer thread wakeups, caused by OS scheduler actions and

low-power mode transitions. (3) Interrupts continue to perform worse than µNotify due

to IO stack overheads. Hence, apart from achieving a lower average and tail latency than

both spin-polling and interrupts, µNotify is also able to sustain higher load, i.e., closer to

173

Figure 5.11: µNotify’s latency with increasing load compared to state-of-the-art: µNotify sustains
higher load with low latency.

saturation, while the other techniques face unbounded queuing delays between 70 - 90% of

saturation.

5.3.6 Overheads

µNotify incurs a 150ns-500ns overhead across various loads and queue counts due

to (1) executing the CLZ instruction and (2) a few spurious doorbell checks. Our only

hardware overhead comes from inserting a small logic in the cache controller and a hardware

register whose width maps to the L1’s size. These changes are trivial and do not add much

complexity to our hardware design.

5.4 Discussion

We discuss designs that did not work as expected, lessons learned from the process, and

µNotify’s limitations.

Sub-par designs. To identify coherence invalidations, we initially tried invalidation-

driven techniques that manage critical section access amongst threads (e.g., Hardware

Transactional Memory (HTM) [240] or Thread-Level Speculation [356, 481]). HTM was

174

particularly promising, as it is available in existing CPUs. Our idea was to process received

I/O when a critical section (i.e., queues) was written to, instead of “aborting” like these

works [240, 356].

We designed a core to spin-poll on doorbells within an HTM transaction. When a

doorbell is invalidated, i.e., “rung”, the spinning thread enters an abort handler where we

could process new work. At first blush, it may seem that using available HTM extensions

(e.g., TSX [240]) is an even better approach, but we identified several drawbacks. (1) When

reading events within the abort handler or loading doorbells into the transaction each time,

the service would miss new writes. Capturing these writes by checking the doorbells within

the transaction would still precipitate the worst-case poll-loop latency (e.g., a single “hot”

queue). (2) Existing HTM extensions also do not make the written address visible to the

abort handler.

Another idea was to extend I/O device drivers to set a specific bit in a shared memory bit-

vector for each write. But, sharing a bit-vector amongst multiple drivers (1) does not allow

a service to control a third-party driver’s writes, (2) induces expensive false sharing [347],

and (3) raises security/isolation concerns as devices/micro-servers may not trust each other.

Wimpy cores. Since µNotify’s primary purpose is to just track invalidations and a

special register’s contents, we do not require a full-fledged power-hungry server-class core.

Instead, a data center operator could dedicate a wimpy core in a heterogeneous CPU [346]

to µNotify to optimize energy.

Software Data Plane (SDP). SDPs handle O(1000) queues when interacting with

I/O devices and clients. µNotify can replace SDP’s poll-driven I/O [238] to improve

performance.

5.5 Related Work

Memory monitoring. Several memory monitoring proposals for reliability and secu-

rity [194, 379, 456, 473, 503] are not readily usable for microservices. We consider a

175

general purpose design for a more detailed comparison: ECMon [379] can monitor various

cache events (e.g., invalidation) to different address ranges, specified in entries of an event

descriptor table. This table is a small structure that cannot efficiently support hundreds

to thousands of events from various doorbells. Moreover, these proposals only monitor

memory locations and do not offer solutions to establish priority among ready events.

Several queue-based locking schemes [364, 187, 349, 282] avoid spinning on a single

lock by forming a FIFO queue of the requesting cores. In contrast, µNotify services

numerous I/O queues based on defined policies rather than the FIFO order. Microservices

must often sustain a high request arrival rate; the notification mechanism must be able to

schedule requests at non-trivial loads, prioritizing queues’ service order.

Interrupts. Prior works [231, 211, 316, 490] propose adapting between spin-polling

and interrupts, user-level interrupts [170, 183, 377, 381, 41], and low-overhead interrupt

solutions [257, 434]. In contrast, µNotify is a simple paradigm, achieves significantly lower

latency, and prioritizes queues.

I/O software stacks. Kernel-bypass software stacks enable user processes to directly

communicate with I/O. IX [154], Arrakis [402], ZygOS [408], Andromeda [195], and

Snap [357] are specialized networking data planes with features such as task stealing [408],

task preemption [281], virtualization [195, 402], while ReFlex [304] and PASTE [258] target

storage devices. Demikernel [498] specifies I/O abstractions for a library OS. Systems such

as Snap [357] and Shenango [389] deploy centralized software to orchestrate I/O. µNotify,

as a notification paradigm, can benefit transport software implementations, especially with

SDPs [238] and microkernel systems [357, 389].

5.6 Chapter Summary

We summarize our contributions as follows:

• A comprehensive analysis of state-of-the-art I/O event notification paradigms.

176

We presented a detailed characterization of the state-of-the-art I/O event notification

paradigms used in real systems in the context of modern hyperscale microservices.

This characterization paved the way for redesigning I/O event notification paradigms

for the microservice regime.

• µNotify: We presented a low-overhead, hardware-assisted I/O notification paradigm

that capitalizes on cache coherence messages generated by commodity processors.

µNotify exemplifies how existing hardware mechanisms can intelligently be used to

overcome new overheads (particularly from I/O notification) that are faced in the

hyperscale microservice regime.

• Near-constant time I/O notification. We introduced a small hardware enhancement

that enables µNotify to convey information about ready I/O queues in near-constant

time. Hence, µNotify achieves both low-overhead I/O notification and scalability

across numerous I/O queues.

• A demonstration of µNotify’s efficacy. We presented an evaluation demonstrating

µNotify’s efficacy at improving I/O notification performance for modern microser-

vices.

In Chapter IV, we identified that I/O event notification can critically affect microservice

performance. (We will further detail I/O-induced overheads in Chapter VI). In this chapter,

we first investigated why widely-used I/O event notification paradigms, such as interrupt,

spin-polling, and MWAIT fall short in the microservice regime. We found that existing I/O

notification paradigms suffer from expensive OS-induced overheads and lack scalability

across numerous I/O queues.

To overcome these challenges, we presented a simple solution, µNotify, that achieves

low I/O notification latency, I/O queue scalability, and service priority. µNotify is a

hardware-assisted, shared-memory I/O event notification paradigm that facilitates scal-

able, performance-efficient communication with numerous I/O queues. µNotify’s key idea

177

is to observe cache coherence invalidation messages and use them as low-overhead I/O

notification. We introduced a minor hardware modification (in the form of an extension

to the coherence controller and a special hardware register) that allows µNotify to notify,

prioritize, and service I/O events from many ready I/O queues in near-constant time. Finally,

we demonstrated that µNotify improves microservice peak throughput by 15.63x and tail

latency by 14.2x compared to state-of-the-art I/O notification techniques.

178

CHAPTER VI

Understanding Hardware Customization Opportunities at

Hyperscale

At hyperscale, the microservice deployment model uses standardized RPC interfaces [45]

to invoke several microservices to serve a user’s query. Hence, upon receiving an RPC,

a microservice must often perform operations such as I/O processing, decompression,

deserialization, and decryption, before it can execute its core functionality (e.g., key-value

serving, ML inference).

At global user population scale, important microservices can grow to account for an

enormous installed base of physical hardware. As described in Chapter IV, across Face-

book’s global server fleet, seven key microservices in four diverse service domains run

on hundreds of thousands of servers and occupy a large portion of the compute-optimized

installed base. With the decline of hardware performance scaling [217, 462], successive

server generations running these microservices exhibit diminishing performance returns.

To improve hardware efficiency, several architects today work on developing numer-

ous specialized hardware accelerators for important microservice domains (e.g. Machine

Learning tasks). However, hyperscale enterprises have strong economic incentives to limit

hardware platform diversity to (1) maintain fungibility of hardware resources, (2) preserve

procurement advantages that arise from economies of scale, and (3) limit the overhead of

developing and testing on myriad specialized hardware platforms. Hence, an important

179

question arises: which microservice operations consume the most CPU cycles and are worth

accelerating? Are there common overheads across microservices that we might address

when designing future hardware?

To answer this question, as a part of this dissertation’s hardware contributions, we1

undertake a comprehensive characterization of microservices’ CPU overheads on Facebook

production systems serving live traffic. Very few prior works study how CPU cycles are

spent in data centers. Kanev et al. [285] investigate the “data center tax” across Google’s

server fleet by studying cycles spent in seven types of leaf functions invoked at the end

of a call trace (e.g., memcpy()). However, a leaf function study alone does not holistically

provide insight into whether acceleration might improve a microservice functionality (e.g.,

encryption).

To analyze microservice functionalities, we must comprehensively characterize a mi-

croservice’s entire call stack to measure the CPU cycles spent in each phase of the microser-

vice’s operation after it receives a request. Characterizing microservice functionalities helps

determine (1) whether diverse microservices execute common types of operations (e.g.,

compression, serialization, and encryption) and (2) the overheads such operations induce.

Analyzing both leaf functions and microservice functionalities helps identify important

acceleration opportunities that might inform future software and hardware designs. To this

end, we characterize the CPU cycles spent by Facebook’s production microservices in both

leaf functions and microservice functionalities.

Our comprehensive characterization reveals that application logic disaggregation across

microservices at hyperscale has resulted in significant leaf function and microservice func-

tionality overheads. For example, several microservices spend only a small fraction of their

execution time serving their main application logic (e.g., ML inference), squandering signif-

icant cycles facilitating the main logic via orchestration work that is not core to the main

1Some of the work in this chapter was performed in collaboration with a researcher at Facebook, Abhishek
Dhanotia [444, 445]. Therefore, I use the “we” pronoun in this chapter to acknowledge Dhanotia’s involvement
in this work.

180

0	

20	

40	

60	

80	

100	

Web	
 	
 Feed1	
 Feed2	
 Ads1	
 Ads2	
 Cache1	
 Cache2	

Facebook's	
 produc9on	
 microservices	

Applica9on	
 Logic	
 Orchestra9on	

%
	
 C
yc
le
s	
 s
pe

nt
	
 in
	
 	

m
ic
ro
se
rv
ic
e	

	

fu
nc
9o

na
li9

es
	

Figure 6.1: Breakdown of cycles spent in core application logic vs. orchestration work: Orchestration
overheads can significantly dominate.

application logic (e.g., compression, serialization, and I/O processing), as shown in Fig.6.1.

Accelerating main application logic alone can yield only limited performance gains—an

important ML microservice can speed up by only 49% even if its ML inference takes no

time. Facebook’s Web microservice exhibits surprisingly high overheads from reading and

updating logs. Caching microservices [171] can spend 52% of cycles sending/receiving I/O

to support a high request rate and consequent I/O compression and serialization overheads

dominate. Copying, allocating, and freeing memory can consume 37% of cycles, and kernel

scheduler and network overheads are high with poor IPC scaling. Many microservices face

common orchestration overheads despite great diversity in microservices’ main application

logic.

Driven by our characterization, we report acceleration opportunities that might inform

future software and hardware designs. However, to build specialized hardware accelerators

for key microservice operations, it is important to first identify which type of accelerator

meets microservice requirements and is worth designing and deploying. Introducing hard-

ware acceleration in production requires (1) designing new hardware, (2) testing it, and (3)

carefully planning capacity to provision the hardware to match projected load.

Given the uncertainties inherent in projecting customer demand, deploying diverse cus-

tom hardware is risky at hyperscale as the hardware might under-perform due to performance

181

bounds from the microservice’s software interaction with the hardware (e.g., offload-induced

overheads), resulting in high monetary losses. To make well-informed hardware decisions,

it is crucial to answer the following question early in the design phase of a new hardware

accelerator: how much can the accelerator realistically improve its targeted microservice

overhead? To answer this question, there is a need for simple analytical models that identify

performance bounds early in the hardware design phase to project realistic gains from

accelerating microservice overheads.

We develop an analytical model for hardware acceleration, Accelerometer2, that identifies

performance bounds to project microservice speedup. Whereas a few prior models [127, 188]

estimate speedup from acceleration, they fall short in the context of microservices as they

assume that the CPU waits while the offload operates. However, for many microservice

functionalities, offload may be asynchronous; the processor may continue doing useful

work concurrent with the offload. We extend prior models [127, 188] to capture such

concurrency-induced performance bounds to project microservice speedup from hardware

acceleration.

We demonstrate Accelerometer’s utility using three retrospective case studies conducted

on production systems serving live traffic. First, we analyze an on-chip acceleration strategy—

a specialized hardware instruction for encryption, AES-NI [53]. Second, we study an off-

chip accelerator—an encryption device connected to the host CPU via a PCIe link. In the

final study, we analyze a remote acceleration strategy—a general-purpose CPU that solely

performs ML inference and is connected to the host CPU via a commodity network. In all

three studies, we show that Accelerometer estimates the real microservice speedup with an

error that is less than or equal to 3.7%. Finally, we use Accelerometer to project speedup

for the acceleration recommendations derived from three important common overheads

identified by our characterization—compression, memory copy, and memory allocation.

The rest of this chapter is organized as follows: We describe and characterize the

2Available at https://github.com/akshithasriraman/Accelerometer and https://doi.org/
10.5281/zenodo.3612797

182

https://github.com/akshithasriraman/Accelerometer
https://doi.org/10.5281/zenodo.3612797
https://doi.org/10.5281/zenodo.3612797

production microservices in Section 6.1. We explain the Accelerometer analytical model in

Section 6.2. We validate and apply Accelerometer in Section 6.3 and Section 6.4, compare

against related work in Section 6.5, discuss long-term impact potential in Section 6.6, and

conclude in Section 6.73.

6.1 Understanding Microservice Overheads

We identify how Facebook’s important microservices spend their CPU cycles executing

(1) leaf functions and (2) various microservice functionalities to determine software and

hardware acceleration opportunities. We first characterize leaf functions (e.g., memcpy())

across diverse microservices. Whereas a leaf function study provides insight into common

software building blocks, it does not reveal whether services share common functionalities

that can be accelerated (e.g., compression). Hence, we additionally characterize service

functionalities to identify common overheads that can benefit from acceleration. We also

study Instructions Per Cycle (IPC) scaling for both the leaf and microservice functionality

breakdowns to identify optimizations for overhead categories that scale poorly across CPU

generations. In this section, we (1) describe each microservice, (2) explain our character-

ization approach, (3) characterize leaf functions, (4) report on microservice functionality

breakdowns, and (5) summarize our characterization’s key conclusions.

6.1.1 The Production Microservices

We study seven microservices in four diverse service domains that account for a large

portion of Facebook’s data center fleet. We study the seven Facebook microservices detailed

in Chapter IV [446] (1) Web: a front-end microservice that implements PHP and Hack, (2)

Feed1 and Feed2: News Feed microservices that aggregate, rank, and display stories, (3)

3Fun fact: This chapter is personally a big milestone for me. It is the first work I took from start to finish
without my Ph.D. advisor, Tom Wenisch. I’m grateful to Tom for continuously telling me that I could do it. If
you are a graduate student struggling with imposter syndrome, I recommend that you try to independently see
a project through. Your paper might not get in but, in my humble opinion, that is rather secondary. You grow
to become much more confident about your abilities.

183

Table 6.1: GenA, GenB, and GenC CPU platforms’ attributes.

CPU features GenA GenB GenC
Micro-architecture Intel Haswell Intel Broadwell Intel Skylake

Cores / socket 12 16 18 or 20
SMT 2 2 2

Cache block size 64 B 64 B 64 B
L1-I$ / core 32 KiB 32 KiB 32 KiB
L1-D$ / core 32 KiB 32 KiB 32 KiB

Private L2$ / core 256 KiB 256 KiB 1 MiB
Shared LLC 30 MiB 24 MiB 24.75 or 27 MiB

Ads1 and Ads2: advertisement microservices that compute user-specific and ad-specific

data, and (4) Cache1 and Cache2: large distributed-memory object caching microservices.

We characterize on production systems serving live traffic.

6.1.2 Characterization Approach

We characterize the seven microservices by profiling each in production while serving

real-world user queries. We next describe the characterization methodology.

Hardware platforms. We characterize our microservices on 18- and 20-core Intel

Skylake processors [212] (see Table 6.1). We run Web, Feed1, Feed2, and Ads1 on the

18-core Skylake, and Ads2, Cache1, and Cache2 on the 20-core Skylake. We study IPC

scaling across three CPU generations (Table 6.1).

Experimental setup. We measure each microservice in our production environment’s

default deployment—stand-alone with no co-runners on bare metal hardware. There are no

cross-service contention or interference effects in our data. We study each system at peak

load to stress performance bottlenecks.

We characterize leaf functions by first using Strobelight [104] to measure instructions

and cycles spent in microservices’ key leaf functions. We then feed leaf functions and

their cycle counts to an internal tool that tags each leaf function’s category (e.g., tagging

memcpy() as “memory”); the tool then aggregates cycles spent in each leaf category.

To characterize microservice functionality, we use Strobelight [104] to (1) collect all

184

Table 6.2: Categorization of leaf functions.

Leaf category Examples of leaf functions
Memory Memory copy, allocation, free, compare

Kernel
Task scheduling, interrupt handling, network

communication, memory management
Hashing SHA & other hash algorithms

Synchronization User-space C++ atomics, mutex, spin locks, CAS
ZSTD Compression, decompression
Math Intel’s MKL, AVX
SSL Encryption, decryption

C Libraries C/C++ search algorithms, array & string compute
Miscellaneous Other assorted function types

function call traces of a microservice (e.g., a function call trace can be composed of a

function sequence starting with cloning a thread and ending with a leaf function such as

memcpy()) and (2) measure cycles and instructions spent in each call trace. We feed the

function call traces and their cycle counts to an internal tool that buckets each function call

trace into a microservice functionality category (e.g., I/O, serialization, and compression); it

then aggregates cycles spent in each category. To determine a category’s IPC, we determine

the ratio of aggregated instruction and cycle counts for functions in that category. We

contrast our measurements with some SPEC CPU2006 [253] benchmarks and Google

services [285] where possible.

6.1.3 Leaf Function Characterization

We first present key leaf function breakdowns for our microservices and compare them

with SPEC CPU2006 [253] and Google services [140, 285]. We then characterize a few key

leaf functions in greater detail. Finally, we report IPC scaling measurements for Cache1’s

leaf functions across three CPU generations.

We define each leaf function category in Table 6.2. We report the fraction of overall

cycles spent in each leaf category in Fig. 6.2 (we omit bars that consume <1% of cycles).

We also omit bars for 401.bzip2, 429.mcf, 445.gobmk, 456.hmmer, 458.sjeng, 462.libquan-

tum, 464.h264ref, and 483.xalancbmk SPEC CPU2006 benchmarks since their leaves are

185

3

11

31

6

13

19

26

28

28

20

8

37

1

1

19

44

22

4

11

3

7

2

2

2

2

4

3

4

10

19

5

3

5

2

5

3

2

2

4

2

5

31

13

77

6

10

13

42

17

37

5

31

62

10

10

12

7

18

6

20

97

88

69

94

0	
 20	
 40	
 60	
 80	
 100	

473.astar	

471.omnetpp	

403.gcc	

400.perlbench	

Google	
 [Kanev'15]	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	
 	

SP
EC

	
 C
PU

20
06
	

Go
og
le
	

FB
	
 m

ic
ro
se
rv
ic
es
	

%	
 Cycles	
 spent	
 in	
 leaf	
 funcOon	
 categories	

Memory	
 	
 Kernel	
 Hashing	

SynchronizaOon	
 ZSTD	
 Math	

SSL	
 C	
 Libraries	
 Miscellaneous	

Math	
 +	
 C	
 Lib	
 +	
 Misc.	

Figure 6.2: Breakdown of cycles spent in leaf functions: Memory functions consume a significant
portion of total cycles.

composed of either math functions or C libraries.

We make several observations. First, most microservices spend a significant fraction of

cycles on memory functions (e.g., copy and allocation) and kernel operations. Cache1 and

Cache2 spend more cycles in the kernel as they frequently incur context switches due to

a high service throughput [446]. We further break down the memory and kernel function

categories (Subsections 6.1.3.1 and 6.1.3.2) to identify specific optimizations.

Second, ML microservices such as Ads2 and Feed2 spend only up to 13% of cycles on

mathematical operations that constitute ML inference using Multilayer Perceptrons. We find

186

that these services can also benefit from optimizations to C libraries, which we investigate

further in Subsection 6.1.3.4.

Third, Cache1 and Cache2 spend significant cycles synchronizing frequent communica-

tion between distinct thread pools. Additionally, we find that Cache1 spends 6% of cycles

in leaf encryption functions since it encrypts a high number of Queries Per Second (QPS).

Fourth, Google’s breakdown across their global server fleet [285] is similar to Facebook’s

leaf breakdowns. In contrast, SPEC CPU2006 [253] benchmarks do not capture key leaf

overheads (e.g., memory and kernel) faced by our microservices; their functions primarily

belong to the math, C libraries, and miscellaneous categories.

We conclude that many leaf function overheads are significant and common across

services. We next investigate leaf functions in greater detail to identify acceleration opportu-

nities.

6.1.3.1 Memory

In Fig. 6.3, we characterize cycles spent in various memory leaf functions as a fraction

of total cycles spent in memory functions. The memory functions include memory copy,

free, allocation, move, set, and compare. We compare our microservices with Google’s

services [285] and SPEC CPU2006 [253] benchmarks. Note that only the memory copy and

allocation breakdowns are available for Google’s services [285], and they account for 13%

of total cycles (represented by an asterisk in Fig. 6.3).

We observe that memory copies are by far the greatest consumers of memory cycles.

Google’s services also spend 5% of total fleet cycles on memory copies [285]. Although

403.gcc exhibits high memory overhead, it spends very few cycles in copying memory.

Memory copy optimizations such as (1) reducing copies in network protocol stacks [114],

(2) performing dense memory copies via SIMD [15], (3) moving data in DRAM [428],

(4) minimizing I/O copies using Intel’s I/O Acceleration Technology (IO AT) [54], (5)

processing in memory [122], (6) optimizing memory-based software libraries [383, 411],

187

7

1

9

38

49

44

42

54

38

73

35

19

40

1

6

9

12

32

19

18

15

43

58

53

11

62

62

24

21

13

12

26

10

20

6

5

5

12

87

6

11

5

8

8

12

3

12

3

12

13

2

2

9

5

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

473.astar	

471.omnetpp	

403.gcc	

400.perlbench	

Google	
 [Kanev'15]	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	
 	

SP
EC

	
 C
PU

20
06
	

Go

og
le
	

FB
	
 m

ic
ro
se
rv
ic
es
	

%	
 Cycles	
 spent	
 in	
 key	
 memory	
 leaf	
 funcQons	

Memory-­‐Copy	
 Memory-­‐Free	
 Memory-­‐AllocaQon	

Memory-­‐Move	
 Memory-­‐Set	
 Memory-­‐Compare	

Net	
 =	
 37%	

8%	

20%	

28%	

28%	

26%	

19%	

13%*	

7%	

31%	

11%	

3%	

Figure 6.3: Breakdown of cycles spent in memory leaf functions as a fraction of total cycles: Memory
copy, allocation, & free consume significant cycles.

and (7) building hardware accelerators (e.g., for memory-memory copies [351]) could

minimize copy overheads. To identify optimizations, we also provide greater nuance to

our memory copy characterization by attributing memory copies to various microservice

functionalities.

We find that memory allocation can be a significant overhead despite using fast software

allocation libraries [137]. Google’s services incur a slightly greater allocation overhead. This

observation suggests the need to continue to build software [264, 502, 305, 10, 319, 157,

366] and hardware optimizations [287, 303] for allocations. Of the SPEC CPU2006 [253]

suite, 471.omnetpp spends the most cycles on allocation (∼5%).

Freeing memory incurs a high overhead for several microservices, as the free() func-

188

36

8

13

17

8

9

17

17

46

9

25

7

50

67

45

50

100

93

38

46

0	
 20	
 40	
 60	
 80	
 100	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	

%	
 Cycles	
 a6ributed	
 to	
 mem	
 copy	
 origins	

Secure	
 +	
 Insecure	
 IO	
 IO	
 Pre/Post	
 Processing	

SerializaGon/DeserializaGon	
 ApplicaGon	
 Logic	

Net	
 =	
 13%	

6%	

8%	

15%	

12%	

12%	

11%	

Figure 6.4: Breakdown of service functionalities that invoke memory copies: There is significant
diversity in dominant functionalities that perform copies.

tion does not take a memory block size parameter, performing extra work to determine

the size class to which to return the block [287]. TCMalloc performs a hash lookup to

get the size class. This hash tends to cache poorly, especially in the TLB, leading to

performance losses. Although C++11 ameliorates this problem by allowing compilers to

invoke delete() with a parameter for memory block size, overheads can still arise from

(1) removing pages faulted in when memory was written to and (2) merging neighboring

freed blocks to produce a more valuable large free block [48]. While numerous prior works

focus on optimizing allocations [285, 264, 303], very few recognize that optimizing free()

can result in significant performance wins.

Memory copy origins. In Fig. 6.4, we attribute memory copies to microservice func-

tionalities defined in Table 6.3. We find that memory is primarily copied during (1) I/O

pre- or post-processing, (2) I/O sends and receives, (3) RPC serialization/deserialization,

and (4) application logic execution (e.g., executing key-value stores in Cache). We ob-

serve significant diversity in dominant service functionalities that invoke copies across

microservices. This diversity suggests a strategy to specialize copy optimizations to suit

each microservice’s distinct needs. For example, Web can benefit from reducing copies

in I/O pre- or post-processing [428, 54], whereas Cache2 can gain from fewer copies in

189

32

10

30

47

19

14

11

19

5

20

9

31

13

7

23

16

18

23

10

17

16

12

8

46

7

68

13

16

72

27

100

10

33

0	
 20	
 40	
 60	
 80	
 100	

Google	
 [Kanev'15]	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	
 	

%	
 Cycles	
 spent	
 in	
 kernel	
 leaf	
 funcGons	

Scheduler	
 Event	
 Handling	
 Network	

SynchronizaGon	
 Memory	
 Management	
 Miscellaneous	

Net	
 =	
 7%	

3%	

1%	

11%	

4%	

22%	

44%	

19%	

Figure 6.5: Breakdown of cycles spent in various kernel leaf functions: Kernel scheduler, event
handling, and network overheads can be high.

network protocol stacks [114, 226].

6.1.3.2 Kernel

We depict the cycles spent in kernel leaf functions in Fig. 6.5. We make three obser-

vations: (1) Microservices with a high kernel overhead—Cache1 and Cache2—invoke

scheduler functions frequently. Software/hardware optimizations [210, 274, 154, 153, 215,

318, 320, 165, 451] that reduce scheduler latency (e.g., intelligent thread switching and coa-

lescing I/O) might considerably improve Cache performance. (2) Cache2 spends significant

cycles in I/O and network interactions. Optimized systems [402, 289, 274, 154, 408, 329]

that incorporate kernel-bypass and multi-queue NICs might minimize Cache2’s kernel

overhead. (3) Prior work [285] reports only the kernel scheduler overhead for Google’s

services. They typically mirror overheads seen in Cache1 and Cache2.

190

6

26

41

50

100

10

71

63

59

70

50

5

30

86

22

11

0	
 20	
 40	
 60	
 80	
 100	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	

%	
 Cycles	
 spent	
 in	
 synchroniza=on	
 leaf	
 func=ons	

C++	
 Atomics	
 Mutex	
 Compare-­‐Exchange-­‐Swap	
 Spin	
 Lock	

Net	
 =	
 2%	

1%	

3%	

3%	

5%	

19%	

10%	

Figure 6.6: Breakdown of CPU cycles spent in synchronization functions: Cache frequently uses
spin locks to avoid thread wakeup delays.

6.1.3.3 Synchronization

Microservices such as Cache over-subscribe threads to improve service throughput [446].

Hence, such microservices frequently synchronize various thread pools. We portray these

synchronization overheads in Fig. 6.6. We find that Cache, which exhibits a high synchro-

nization overhead, spends several cycles in spin locks that are typically deemed performance

inefficient [131, 347]. However, Cache implements spin locks since it is a microsecond-scale

microservice [446], and is hence more prone to microsecond-scale performance penalties

that can otherwise arise from thread re-scheduling, wakeups, and context switches [448].

6.1.3.4 C Libraries

We characterize overheads from C libraries in Fig. 6.7. We observe that Feed2, Ads1,

and Ads2 perform several vector operations as they deal with large feature vectors. Web

spends significant cycles parsing and transforming strings to process queries from the

many URL endpoints it implements. Web also performs several hash table look-ups to (1)

maintain query parameters, (2) identify services to contact, and (3) merge responses. We

conclude many microservices can benefit from optimizing vector operations [315], string

computations [236, 436], and hash table look-ups [439, 454].

191

5

3

15

19

8

16

5

5

6

11

3

2

5

18

1

6

6

13

10

15

24

47

32

60

18

16

17

1

6

1

32

53

34

18

16

18

19

53

11

10

6

2

28

7

0	
 20	
 40	
 60	
 80	
 100	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	

%	
 Cycles	
 spent	
 in	
 C	
 library	
 leaf	
 func=ons	

Std	
 algorithms	
 Constructors/Destructors	

Strings	
 Hash	
 tables	

Vectors	
 Trees	

Operator	
 override	
 Miscellaneous	

Net	
 =	
 31%	

5%	

37%	

17%	

42%	

13%	

10%	

Figure 6.7: Breakdown of CPU cycles spent in C libraries: ML services perform several vector
operations while dealing with large feature vectors.

6.1.3.5 IPC scaling

We show Cache1’s per-core IPC scaling for key leaf functions in Fig. 6.8. We report

IPC across three CPU generations to see whether IPC scales as expected.

We make several observations: (1) Each leaf function type uses less than half of the

theoretical execution bandwidth of a GenC CPU (theoretical peak IPC of 4.0). As such,

simultaneous multithreading is effective for these microservices and is enabled in our

CPUs. Given our production microservices’ larger codebase, larger working set, and more

varied memory access patterns, we do not find a lower typical IPC surprising. (2) Kernel

IPC is typically low and also scales poorly. Accelerating the kernel is non-trivial as it is

neither small, nor self-contained, and cannot be easily optimized in hardware. However,

software optimizations that minimize scheduler, I/O, and network overheads can improve

kernel IPC [210, 274, 154, 153]. (3) C libraries’ IPC scales well across CPU generations.

This observation is unsurprising as many hardware vendors primarily rely on open-source

benchmarks [253] that heavily use C libraries (see Fig. 6.2) to make architecture design

192

0	

0.5	

1	

1.5	

2	

Memory	
 Kernel	
 ZSTD	
 SSL	
 C	
 Libraries	

Pe
r-­‐
co
re
	
 IP
C	

Key	
 leaf	
 func@on	
 categories	

GenA	
 GenB	
 GenC	

Figure 6.8: Cache1’s IPC scaling across three CPU generations for key leaf functions: Kernel IPC is
typically low & scales poorly.

Table 6.3: Categorization of microservice functionalities.

Functionality category Examples of service operations
Secure and insecure I/O Encrypted/plain-text I/O sends & receives
I/O pre/post processing Allocations, copies, etc before/after I/O

Compression Compression/decompression logic
Serialization RPC serialization/deserialization

Feature extraction Feature vector creation in ML services
Prediction/ranking ML inference algorithms
Application logic Core business logic (e.g., Cache’s key-value serving)

Logging Creating, reading, updating logs
Thread pool management Creating, deleting, synchronizing threads

decisions. (4) Typically, we see only a small IPC gain from GenB to GenC. This trend

suggests the need to specialize hardware for key leaf functions.

6.1.4 Service Functionality Characterization

We attribute CPU cycles to microservice functionalities in Fig. 6.9 to identify key

microservice overheads (as motivated in Fig. 6.1). We define how we pool various func-

tionalities in Table 6.3. Note that each functionality category typically includes several leaf

function categories. For example, despite ML inference being heavy on math leaf functions,

it can also comprise memory movement and C library leaves.

We make four observations: First, several microservices face significant orchestration

overheads from performing operations that are not core to the application logic, but instead

193

4

52

38

4

7

4

7

21

3

6

17

6

3

15

4

6

8

15

11

5

4

4

4

9

13

10

24

14

28

58

52

33

57

35

31

9

7

6

3

18

4

23

3

6

11

7

5

85

0	
 20	
 40	
 60	
 80	
 100	

Cache2	

Cache1	

Ads2	

Ads1	

Feed2	

Feed1	

Web	
 	

%	
 Cycles	
 spent	
 in	
 various	
 microservice	
 func@onali@es	

Secure	
 +	
 Insecure	
 IO	
 IO	
 Pre/Post	
 Processing	

Compression	
 Serializa@on/Deserializa@on	

Feature	
 Extrac@on	
 Predic@on/Ranking	

Applica@on	
 Logic	
 Logging	

Thread	
 Pool	
 Management	
 Miscellaneous	

Google's	
 services	

[Kanev	
 '15]	

Figure 6.9: Breakdown of CPU cycles spent in various microservice functionalities: Orchestration
overheads are significant & fairly common.

facilitate application logic such as compression, I/O, and logging. For example, the microser-

vices that perform ML inference—Feed1, Feed2, Ads1, and Ads2—spend as few as 33%

of cycles on ML inference, consuming 42% - 67% of cycles in orchestrating inference; (note

that the “application logic” for these microservices includes core non-ML operations such

as merging results). Hence, even if modern inference accelerators [279, 134, 491, 483] were

to offer an infinite inference speedup, the net microservice performance would only improve

by 1.49x - 2.38x. There is hence a great need for architects to accelerate the orchestration

work that facilitates the core application logic.

Second, several orchestration overheads are common across microservices; accelerating

them can significantly improve our global fleet’s performance. For example, Web, Cache1,

194

and Cache2 spend a significant portion of cycles executing I/O—i.e., sending and receiving

RPCs. Web incurs a high I/O overhead since it implements many URL endpoints and

communicates with a large back-end microservice pool. Cache1 and Cache2 are leaf

microservices that support a high request rate [446]—they frequently invoke RPCs to

communicate with mid-tier microservices. These microservices can benefit from RPC

optimizations such as kernel-bypass and multi-queue NICs [402, 289, 274, 154, 408, 329].

Additionally, Web, Feed1, Feed2, and Cache1 spend several cycles in compression and

serialization (similar to Google’s services [285]); they can benefit from accelerating these

common orchestration overheads [178, 435, 224, 128, 150, 301].

Third, Web spends only 18% of cycles in core web serving logic (parsing and processing

client requests), consuming 23% of cycles in reading and updating logs. It is unusual for

applications to incur such high logging overheads; only few academic studies focus on

optimizing them.

Fourth, Ads1, Feed2, Cache1, and Feed1 incur a high thread pool management over-

head. Intelligent thread scheduling and tuning [242, 412, 457, 485, 273, 302] can help these

services.

We conclude that application logic disaggregation across microservices and the conse-

quent increase in inter-service communication at hyperscale has resulted in significant and

common orchestration overheads in modern data centers.

6.1.4.1 IPC scaling

In Fig. 6.10, we show Cache1’s per-core IPC for key microservice functionalities across

three CPU generations. We find that the I/O IPC remains low across CPU generations. Since

I/O calls primarily invoke kernel functions, the low kernel IPC (see Fig. 6.8) contributes to

the low I/O IPC. Additionally, there is little IPC improvement for key-value store operations.

Since key-value stores are typically memory intensive [171], the low memory IPC (Fig. 6.8)

results in a low key-value store IPC.

195

0	

0.2	

0.4	

0.6	

0.8	

1	

IO	
 IO	
 Pre/Post	

Processing	

Serializa:on	
 Applica:on	

Logic	

Pe
r-­‐
co
re
	
 IP
C	

Key	
 microservice	
 func:onali:es	

GenA	
 GenB	
 GenC	

Figure 6.10: Cache1’s IPC scaling across three CPU generations for key functionality categories: A
low I/O IPC is primarily due to a low kernel IPC.

We summarize our characterization findings in Table 6.4.

6.2 The Accelerometer Model

Overheads identified by our characterization can be accelerated in the hardware via CPU

optimizations (e.g., specialized hardware instructions) [53, 368, 369] or custom accelerator

devices (e.g., ASICs). Investing in hardware acceleration often requires (1) designing new

hardware, (2) testing it, and (3) carefully planning capacity to provision the hardware to

match projected load. Given the uncertainties inherent in projecting customer demand,

investing in diverse custom hardware is risky at scale, as the hardware might not live up to

its expectations due to performance bounds precipitated by offload-induced overheads [127].

Simple analytical models enable better hardware investments by identifying performance

bounds early in the design phase. However, existing models for hardware acceleration [127,

188] fall short in the context of microservices as they are oblivious to offload overheads

induced by microservice threading designs such as synchronous vs. asynchronous offload

to an accelerator. For example, existing models [127, 188] assume that the CPU waits

while the offload operates i.e., offload is synchronous. However, for many functionalities,

offload may be asynchronous; the CPU may continue doing useful work concurrent with

196

Table 6.4: Summary of findings and suggestions for future optimizations.

Finding Acceleration opportunity
Significant orchestration overheads

(§6.1.4)
Software and hardware acceleration for orchestration rather than

just application logic
Several common orchestration

overheads (§6.1.4)
Accelerating common overheads (e.g., compression) can provide

fleet-wide wins
Poor IPC scaling for several functions

(§6.1.3.5, §6.1.4.1)
Optimizations for specific leaf functions and service

functionality categories
Memory copies & allocations are

significant (§6.1.3, §6.1.3.1)
Dense copies via SIMD, copying in DRAM, Intel’s I/O AT,

DMA via accelerators, PIM
Memory frees are computationally

expensive (§6.1.3, §6.1.3.1)
Faster software libraries for freeing memory, hardware support to

remove pages
High kernel overhead and low IPC

(§6.1.3, §6.1.3.5)
Coalesce I/O, user-space drivers, in-line accelerators,

kernel-bypass
Logging overheads can dominate

(§6.1.4) Optimizations to reduce log size or number of log updates

High compression overhead (§6.1.3,
§6.1.4)

Bit-Plane Compression, Buddy compression, dedicated
compression hardware

Cache synchronizes frequently (§6.1.3,
§6.1.3.3)

Better thread pool tuning and scheduling, Intel’s TSX, coalesce
I/O, vDSO

High event notification overhead
(§6.1.3.2)

RDMA-style notification, hardware support for notifications,
spin vs. block hybrids

the offload. Extending prior models [127], we develop Accelerometer to capture this

concurrency and realistically model microservice speedup for various hardware acceleration

strategies (e.g., on-chip vs. off-chip). In this section, we (1) describe the acceleration

strategies Accelerometer models, (2) discuss system abstractions it assumes, (3) define

Accelerometer’s model parameters, (4) detail how it models speedup for various threading

designs, and (5) highlight Accelerometer’s applications.

6.2.1 Acceleration Strategies

Accelerometer models three kinds of hardware acceleration strategies to accelerate an

algorithm or kernel—on-chip, off-chip, and remote.

On-chip. On-chip acceleration optimizes components on the CPU die (e.g., wider

SIMD units [465], Intel’s AES-NI hardware encryption instruction [53], and CPU modifica-

tions [368, 300]). Offload latencies are typically ns-scale.

Off-chip. Off-chip accelerators are typically contacted via PCIe and coherent intercon-

nects [453] (e.g., GPUs, smart NICs, and ASICs). Offload latencies are ∼ µs-scale [382].

197

Table 6.5: Description of the Accelerometer analytical model parameters.

Symbol Parameter description Units
C Total cycles spent by the host to execute all logic in a fixed time unit Cycles
g Size of an offload Bytes
n Number of times the host offloads a kernel of lucrative size in a fixed time unit N/A
o0 Cycles the host spends in setting up the kernel prior to a single offload Cycles
Q Avg. cycles spent in queuing between host and accelerator for a single offload Cycles

L Avg. cycles to move an offload from host to accelerator across the interface,
including cycles the data spends in caches/memory Cycles

o1
Cycles spent in switching threads (due to context switches and cache pollution) for a

single offload Cycles

A Peak speedup of an accelerator N/A
α A constant ≤ 1 N/A
Cb Cycles spent by the host per byte of offload data Cycles

Host cycles

(1 - ⍺)C

Q

Accelerator

L

⍺C/A cycles on accelerator

o0

Example of overheads in one offload

o1 offload

sync.
thread
returns

return for sync.
over-subscription

async.
response
returns

Sync. gain

⍺C

Async. gain

Sync-OS
gain

Interface

Figure 6.11: Example timeline of host & accelerator.

Remote. Remote accelerators are off-platform devices contacted via the network. Ex-

amples include remote ML inference units [248], network switches [426, 336], remote

encryption units [158], and remote GPUs [214]. Offload latencies are typically ms-scale

when using commodity ethernet [415].

6.2.2 System Abstraction

Accelerometer assumes an abstract system with three components (1) host—a general-

purpose CPU, (2) accelerator—custom hardware to accelerate a kernel, and (3) interface—

the communication layer between the host and the accelerator (e.g., a PCIe link). The

interface helps define overheads from dispatching work to an accelerator (e.g., preparing the

kernel for offload, offload latency, and queuing delays). Hence, the interface abstraction can

198

easily help model speedup for diverse acceleration strategies. With these system abstractions,

we build the Accelerometer model such that it abstracts the underlying hardware architecture

using parameters defined below (see Table 6.5).

6.2.3 Parameter Definition

Accelerometer makes a few assumptions to retain model simplicity while still being able

to estimate microservice speedup. Similar to LogCA [127], Accelerometer assumes that (1)

the kernel’s execution time is a function of granularity g—i.e., the data offload size and (2)

the host and accelerator use kernels of the same complexity. It defines C as the total host

cycles spent to execute both kernel and non-kernel logic in a fixed time unit; C is inversely

proportional to the host’s busy frequency for a time unit of one second. It uses Amdahl’s law

to define a constant α ≤ 1, such that the host spends (α ∗C) cycles executing the kernel and

((1−α)∗C) cycles executing the non-kernel logic (as shown in Fig. 6.11). Accelerometer

assumes that data offload is unpipelined (i.e., the accelerator requires the entire block to

start operating); it considers the average latency of such an offload, L. The offload latency

distribution can be found by multiplying the offload latency of a single byte with g for each

offload. When data offload is pipelined, L is independent of g; we do not study pipelined

offloads as our existing systems use unpipelined offloads. The peak achievable accelerator

speedup factor, A, helps define cycles spent in the accelerator such that cycles spent on the

host to execute the kernel is cut down by the acceleration factor, or α∗C
A .

6.2.4 Modeling Diverse Threading Designs

We develop Accelerometer to model the microservice throughput speedup (referred to as

“speedup”) and the microservice per-request latency speedup (referred to as “latency reduc-

tion”) for the three acceleration strategies. Modeling both speedup and latency reduction

helps ensure that acceleration enables a higher throughput (i.e., more QPS) without violating

latency Service Level Objectives (SLOs). To model speedup, Accelerometer identifies

199

Host cycles

(1 - ⍺)C

Q
L

⍺C/A

o0

offload sync.
thread
returns

Interface
Accelerator

CS = CL

Figure 6.12: Modeling SyncCS and CL for one offload.

how many fewer host cycles are needed to execute the kernel when there is acceleration—

spending fewer host cycles on the kernel frees up host cycles to do more work, improving

throughput. It defines speedup as the ratio of total cycles spent by the host when there is no

acceleration, C, to the total cycles spent by the host when the kernel is accelerated, CS, or

C
CS

. To model per-request latency reduction, it identifies the total cycles taken to execute a

request when there is acceleration; spending fewer cycles for a request due to acceleration

reduces per-request latency. It defines latency reduction as the ratio of C to the total cycles

spent on the host and the accelerator, CL, or C
CL

.

Unlike LogCA [127], we find that when data is offloaded to an accelerator, the speedup

C
CS

and latency reduction C
CL

depend on the acceleration strategy as well as the threading

design used to offload (e.g., synchronous vs. asynchronous offload). For example, in a

synchronous offload the host waits for the accelerator’s response before resuming execution

(see Fig. 6.11), putting the accelerator’s operation cycles (α∗C
A) in the critical path of the

host’s execution (i.e., CS), impacting speedup. Conversely, in an asynchronous offload, the

host continues doing useful work concurrent with the accelerator’s operation on the offload,

removing α∗C
A from the critical path of CS. We extend LogCA to model speedup and latency

reduction for both synchronous and asynchronous offload.

Synchronous. When a host thread offloads work to an accelerator synchronously, it

waits in the blocked state for the accelerator’s response. If the microservice runs one thread

per core, the host’s core waits for the accelerator’s response—we refer to this scenario

as Sync. Hence, CS and CL will include cycles spent on the accelerator α∗C
A , as shown

200

in Fig. 6.12. Moreover, the host can consume additional cycles to (1) prepare the kernel

for offload, o0, (2) transfer the kernel to the accelerator, L, and (3) wait in a queue for the

accelerator to become available, Q. Hence, CS and CL can also include these additional

overheads per offload. Considering n offloads occur in a given time unit, Accelerometer

defines Sync speedup C
CS

and latency reduction C
CL

as: C
(1−α)C + αC

A + n(o0 + L + Q)
, where CS

and CL comprise host cycles spent in (1) non-kernel logic, (2) waiting for the accelerator’s

response, and (3) offload-induced overheads across the n offloads. Making this equation

appear similar to Amdahl’s law with offload overheads (i.e., dividing by C),

Sync
C
CS

or
C
CL

=
1

(1−α)+ α

A + n
C(o0 + L + Q)

(6.1)

In eqn. (6.1), (n ∗Q) is the mean queuing delay for n offloads; Q enables projecting

speedup based on accelerator load. Replacing (n∗Q) with ∑
n
i=1(Qi) models the queuing

distribution. Net speedup is >1 when the host spends more cycles when unaccelerated—i.e.,

(α ∗C)> αC
A +n(o0+L+Q). In eqn. (6.1), we consider n kernel offloads that each improve

speedup (or reduce latency). To determine whether a kernel offload improves speedup,

we consider the offload granularity, g, such that the host spends Cb cycles per byte of g.

A single offload improves speedup when the cycles a host would spend in executing all

bytes of a g-size kernel offload is greater than the cycles spent in accelerating the kernel

(i.e., the sum of cycles spent on the accelerator executing the g-size offload and the offload

overheads—o0 +L+Q), or:

Cb ∗ g >
Cb ∗ g

A
+o0 + L + Q (6.2)

Eqn. (6.2) can be extended to model the kernel’s complexity (e.g., sub-linear, linear, or

super-linear) using gβ [127]. For example, β = 1 for a linear complexity kernel.

In reality, several microservices (e.g., Web and Cache) oversubscribe threads to improve

throughput by having more threads than available cores. Oversubscription allows a host

201

Host cycles

(1 - ⍺)C

Q
L

⍺C/A

o0

offload thread
returns

Interface
Accelerator

CS o1 o1 thread runs CL

Figure 6.13: Modeling Sync-OSCS and CL for one offload.

to schedule an available thread to process new work, while the thread that offloaded work

blocks awaiting the accelerator’s response. The host continues to perform useful work

instead of wasting cycles waiting for the accelerator’s response; we refer to this synchronous

thread Over-Subscription as Sync-OS. Hence, the accelerator’s cycles αC
A do not affect

CS, as shown in Fig. 6.13. Instead, CS is affected by the OS-induced overhead to switch

to an available thread, o1. The (L+Q) overhead persists when the host’s device driver

synchronously waits for an offload acknowledgement from an off-chip accelerator before

switching threads. However, (L+Q) = 0 when (1) the device driver does not wait for the

off-chip accelerator’s acknowledgement or (2) the accelerator is remote. Hence, the speedup

is:

Sync-OS
C
CS

=
1

(1−α) + n
C(o0 + L + Q + 2o1)

(6.3)

Speedup is >1 when: (α ∗C)> n(o0+L+Q+2o1). A single offload improves through-

put speedup when the cycles a host would spend in executing that offload is greater than the

offload-induced overhead—o0 +L+Q+2o1, or:

Cb ∗ g > o0 + L + Q+ 2o1 (6.4)

The latency reduction remains the same as eqn. (6.1) (since the accelerated per-request

latency, CL, will include cycles spent on the accelerator), but must now account for o1.

The µs-scale o1 overhead [470, 325] can dominate in µs-scale microservices such as

202

Host cycles

(1 - ⍺)C

Q
L

⍺C/A

o0

offload
Accelerator
response

Interface
Accelerator

CS
CL

Figure 6.14: Modeling AsyncCS and CL for one offload.

Cache [446], making it feasible to incur a throughput gain at the cost of a per-request

latency slowdown. Service operators can use the following latency reduction equation to

ensure that the latency SLO is not violated.

Sync-OS
C
CL

=
1

(1−α)+ α

A + n
C(o0 + L + Q + o1)

(6.5)

Latency is reduced when: (α ∗C)> αC
A +n(o0 +L+Q+o1). A single offload reduces

latency when the cycles a host would spend in executing the offload dominates accelerator

cycles and offload overheads, or: (Cb ∗g)> Cb∗g
A +(o0 +L+Q+o1).

Asynchronous. After a host thread offloads work asynchronously, it continues to process

new work without awaiting the accelerator’s response. When the response arrives, it can be

picked up by (1) the same thread that sent the request or (2) a distinct thread dedicated to

pick up responses [449]. When a distinct thread picks up the response, the speedup equation

is the same as (6.3) with only one thread switching overhead o1. The latency reduction

equation remains the same as (6.5). If the response is picked up by the same thread that sent

the request, o1 = 0 since the OS does not switch threads (see Fig. 6.14); we refer to this

scenario as Async. Hence the speedup is:

Async
C
CS

=
1

(1−α) + n
C(o0 + L + Q)

(6.6)

Speedup is >1 when: (α ∗C)> n(o0+L+Q). A single offload improves speedup when:

203

Cb ∗ g > o0 + L + Q (6.7)

Similarly, Accelerometer does not consider o1 when modeling Async latency reduction:

Async
C
CL

=
1

(1−α) + α

A + n
C(o0 + L + Q)

(6.8)

Latency reduces when: (α ∗C)> αC
A +n(o0 +L+Q). A single offload reduces latency

when: (Cb ∗g)> Cb∗g
A +(o0 +L+Q).

In some asynchronous designs, the host does not require the accelerator’s response

for further processing, eliminating o1 (e.g., when a host sends requests to an encryption

accelerator, which then sends encrypted requests to the next microservice). Hence, the

speedup equation remains the same as eqn. (6.6). Latency reduction depends on whether

acceleration is off-chip or remote since remote accelerator latencies αC
A will not affect a

microservice’s request latency and will instead show up in the overall application’s end-to-

end latency. We define the Async off-chip per-request latency reduction as eqn. (6.8) and

the remote latency reduction as eqn. (6.6).

6.2.5 Accelerometer Use Cases

The Accelerometer model shows that speedup and latency reduction depend on the

acceleration strategy and microservice threading design. We expect Accelerometer to have

the following use cases: (1) Data center operators can project fleet-wide gains from opti-

mizing key service overheads. (2) Architects can make better accelerator design decisions

and estimate realistic gains by being aware of the offload overheads due to microservice

design. Accelerometer can help determine trade-offs between various acceleration strategies

(e.g., on-chip vs. off-chip) for microservice overheads. Indeed, we validate our models in

production and then apply them to project gains for on-chip vs. off-chip recommendations

(see Table 6.4) derived from key overheads identified by our characterization.

204

6.3 Validating the Accelerometer Model

We validate Accelerometer’s utility in production using three retrospective case studies.

With these studies, we validate all three microservice threading scenarios—Sync, Sync-OS,

and Async. Each study covers a distinct acceleration strategy—i.e., on-chip, off-chip, or

remote. For each study, we first describe (1) the experimental setup, (2) how we derive model

parameters, and (3) how we measure speedup on production systems. We then validate

Accelerometer by comparing model-estimated speedup with real microservice speedup. We

do not compare the latency reduction since our existing production infrastructure lacks

necessary support to precisely measure a microservice’s per-request latency.

6.3.1 Validation Methodology

We follow a five step process to validate the Accelerometer model: (1) we identify

offload sizes g that improve speedup, (2) we determine the number of such offloads in

one second, n, and the fraction of cycles they constitute, α , (3) we use the Accelerometer

model to estimate speedup from these n offloads, (4) we compare Accelerometer-estimated

speedup with real production speedup, and (5) we present a functionality breakdown for

both the accelerated and unaccelerated microservices to show how throughput improves.

We assume that we can use software to selectively accelerate only those kernel offloads that

improve speedup (the kernel execution time can be dominated by overheads for very small

offloads [127]).

6.3.2 Experimental Setup

We perform our case studies on Intel Skylake processor platforms (Table 6.1). For

each case study, we first measure the real production speedup using an internal tool called

Operational Data Store (ODS) [168, 397, 123]. We measure speedup via A/B testing. A/B

testing is the process of comparing two identical systems that differ only in a single variable.

205

Table 6.6: Model parameters used to compare Accelerometer-estimated speedup with measured
speedup on production systems.

Case Study C (109 cycles) α n o0
(cycles)

Q
(cycles)

L
(cycles)

o1
(cycles) A Est.

Speedup
Real

Speedup
AES-NI 2.0 0.165844 298,951 10 0 3 NA 6 15.7% 14%

Encryption 2.3 0.19154 101,863 0 0 2530 NA NA 8.6% 7.5%
Inference 2.5 0.52 10 25x106 0 NA 12,500 NA 72.39% 68.69%

We conduct A/B tests by comparing the throughput (in QPS) of two identical servers (i.e.,

same hardware platform, same fleet, and facing the same load) that differ only in terms of

whether they accelerate the kernel.

To determine the Accelerometer-estimated speedup, we assume a linear complexity

kernel, since we cannot easily perform scaling studies on production systems to determine

kernel complexity. We measure model parameters using (1) tools such as Strobelight [104],

bpftrace [20], and bcc-tools [66], (2) roofline estimates from device specification sheets,

and (3) micro-benchmarks that measure execution time on the host and the accelerator. Some

host parameters, once calculated, can be re-used for different kernels on the same system.

For each case study, we measure the unaccelerated host’s busy frequency to calculate C for

one second. To determine whether a specific offload improves speedup (using equations

(6.2), (6.4), (6.7)), we use bpftrace [20] to measure g’s size range and the number of

invocations of each granularity. We compute n by aggregating invocations of those offload

sizes that improve speedup. To determine α , we first use the service functionality breakdown

(see Fig. 6.9) to estimate host cycles spent in the kernel under study. We then use n and these

total host cycles to estimate the fraction of kernel cycles that must be offloaded, (α ∗C). We

assume an unpipelined interface when estimating L.

6.3.3 Case Study 1: AES-NI for Cache1

We study encryption in Cache1 with Intel’s AES-NI [53] instruction—an on-chip

optimization. In this case, Cache1 uses a Sync threading design. We use AES [8] from

the OpenSSL [77] cryptography library to build micro-benchmarks to measure L, o0, and

A. We assume Q = 0, since the same host thread executes the AES-NI instruction. We

206

0	

0.2	

0.4	

0.6	

0.8	

1	

0-­‐4	
 4-­‐8	
 8-­‐16	
 16-­‐32	
 32-­‐64	
 64-­‐128	
 128-­‐256	
 256-­‐512	
 512-­‐1K	
 1K-­‐2K	
 2K-­‐4K	
 >4K	

CD
F	

	

Cache1:	
 Range	
 of	
 bytes	
 encrypted	

Min.	
 AES-­‐NI	
 'g'	
 	

for	
 speedup	
 >	
 1	

Figure 6.15: CDF of bytes encrypted in Cache1: <512B are frequently encrypted.

0	
 20	
 40	
 60	
 80	
 100	

AES-­‐NI	

No	
 AES-­‐NI	

%	
 Cycles	
 spent	
 in	
 Cache1	
 func>onali>es	

Insecure	
 +	
 Secure	
 I/O	
 IO	
 Pre/Post	
 Processing	

Compression	
 Serializa>on/Deserializa>on	

Applica>on	
 Logic	
 Thread	
 Pool	
 Management	

Figure 6.16: Breakdown of cycles spent in Cache1’s functionalities for both the no-AES-NI (unaccel-
erated) & with-AES-NI (accelerated) cases: 12.8% of cycles are freed up with AES-NI.

show the Cumulative Distribution Function (CDF) of Cache1’s encryption granularities

in Fig. 6.15. We use model parameters defined in Table 6.6 in eqn. (6.2) to determine

that a specific offload improves net speedup when g ≥ 1 Byte (B). Prior work [127] also

sees wins with AES-NI for small offload granularities. From Fig. 6.15, we observe that

Cache1’s encryption size is ∼≥ 4 B; hence, all offloads will improve speedup. We confirm

that Cache1 offloads all encryptions in a production system as well.

We then use Table 6.6’s parameters in eqn. (6.1) to estimate a speedup of 15.7%. The

real production speedup is 14% (as determined via A/B testing). Hence, the Accelerometer-

estimated speedup differs from the real speedup by only 1.7%. We compare Cache1’s

functionality breakdown with AES-NI in Fig. 6.16. We observe that AES-NI accelerates the

“secure IO” functionality by 73%, saving 12.8% of Cache1’s cycles.

207

0	
 20	
 40	
 60	
 80	
 100	

Encryp.on	
 acc.	

No	
 acc.	

%	
 Cycles	
 spent	
 in	
 Cache3	
 func.onali.es	

Insecure	
 +	
 Secure	
 I/O	
 IO	
 Pre/Post	
 Processing	

Serializa.on/Deserializa.on	
 Applica.on	
 Logic	

Thread	
 Pool	
 Management	

Figure 6.17: Breakdown of cycles spent in Cache3’s functionalities when encryption is accelerated
vs. not: Secure IO calls are optimized with acceleration.

6.3.4 Case Study 2: Encryption for Cache3

We accelerate encryption in a different microservice, Cache3, that is similar to Cache1

and Cache2; we show Cache3’s functionality breakdown in Fig. 6.17. The encryption

accelerator is off-chip—the host communicates with the accelerator via a PCIe link. The

host offloads the encryption kernel to the accelerator asynchronously, and does not require

the accelerator to respond (Async). However, after offloading a kernel, the host waits for

the accelerator to acknowledge receipt. We use the accelerator’s specification sheets to (1)

estimate L with fair queuing Q and (2) assume o0 = 0.

In this study, we assume that all encryption offloads will improve speedup, since

Cache3’s software infrastructure does not support selectively offloading only those gran-

ularities that yield speedup. We use parameters defined in Table 6.6 in equation (6.6) to

estimate speedup. We observe that the PCIe transfer latency is the dominant overhead. After

A/B testing, we find that the model overestimates the real speedup by 1.1%.

In Fig. 6.17, we compare the functionality breakdown of an unaccelerated Cache3

instance with a Cache3 instance that accelerates encryption. We observe that acceleration

improves the encryption (secure IO) overhead by 35.7%, improving Cache3’s throughput

by 7.5%.

208

0	
 20	
 40	
 60	
 80	
 100	

Inference	
 Acc.	

No	
 Acc.	

%	
 Cycles	
 spent	
 in	
 Ads1	
 func<onali<es	

Secure	
 +	
 Insecure	
 IO	
 Compression	

Serializa<on	
 Feature	
 Extrac<on	

Predic<on/Ranking	
 Applica<on	
 Logic	

Thread	
 Pool	
 Management	

Figure 6.18: Breakdown of cycles spent in Ads1’s functionalities for both the inference unaccelerated
& accelerated cases: All inference cycles are freed up.

6.3.5 Case Study 3: Inference for Ads1

We deploy a remote Skylake CPU to perform Ads1’s ML inference. We note that the

end-to-end service throughput decreases when inference is offloaded to a remote CPU (i.e.,

A = 1). However, we expect the host CPU running Ads1 to incur a speedup, as it no longer

does inference locally and uses asynchronous network APIs to offload inference to the

remote “accelerator”. We validate Accelerometer for remote acceleration using this case

study.

The host picks up the accelerator’s response with a distinct thread (same speedup

as Sync-OS with a single thread switching overhead o1). To estimate o0, we use a micro-

benchmark to measure (1) inference invocation counts and (2) feature vector sizes to estimate

I/O overheads from offloading to a remote server. We use a micro-benchmark to measure

o1 using the BPF run queue (scheduler) latency tool [66]. We assume L+Q = 0 as the

accelerator is remote.

We carefully batch inference operations and offload them to the remote CPU only when

the batch size is large enough to overcome network overheads (as we cannot violate SLO

on a production system). Hence, we assume that all of Ads1’s inference offloads improve

speedup. We use parameters defined in Table 6.6 in equation (6.3) (with a single o1) to

estimate speedup. Since Ads1must invoke many more IO calls to offload inference, it incurs

209

additional IO overheads (o0). Due to these overheads, we estimate speedup as 72.39%. In

reality, remote inference improves Ads1 throughput by 68.69%; our model over-estimates

speedup by 3.7%.

In Fig. 6.18, we illustrate Ads1’s functionality breakdown for both the remote inference

and local inference cases. Although remote inference consumes additional IO cycles, it

completely offloads the inference functionality, freeing up host CPU cycles to perform more

work. Note that Ads1 achieves this throughput improvement at the expense of a per-request

latency degradation since each request faces an additional ∼10 ms network traversal delay;

we ensure that the per-request latency meets SLO constraints. This result shows that Ads1’s

latency can be improved if the remote inference CPU (with A = 1) is replaced with an

inference accelerator with A > 1 to overcome network traversal delays.

6.4 Applying the Accelerometer Model

We apply the Accelerometer model to project speedup for the acceleration recom-

mendations derived from three key common overheads identified by our characterization:

compression, memory copy, and memory allocation (see Table 6.4). We first apply on-chip

(Chen et al. [178]) and off-chip (Simek et al. [435]) compression acceleration with Sync,

Sync-OS, and Async. We then apply on-chip memory copy (AVX [15]) and allocation

acceleration (Kanev et al. [287]); off-chip faces several challenges (e.g., coherence). We

apply on-chip offload only with Sync as we only assume CPU core optimizations. We do

not see gains from remote acceleration.

We show the model parameters for each acceleration recommendation in Table 6.7. We

assume that all on-chip offloads yield gains as we only consider core optimizations with

negligible (o0 +L) overhead. We assume Q = 0 in all cases.

210

Table 6.7: Parameters used to model speedup and latency reduction for a few acceleration recommen-
dations from Table 6.4.

Overhead Acceleration C (109 cycles) α n L
(cycles)

o1
(cycles) A

Compression On-chip:
Sync 2.3 0.15 15,008 0 NA 5

Compression Off-chip:
Sync 2.3 0.15 9,629 2,300 NA 27

Compression Off-chip:
Sync-OS 2.3 0.15 3,986 2,300 5,750 27

Compression Off-chip:
Async 2.3 0.15 9,769 2,300 NA 27

Memory
Copy

On-chip:
Sync 2.3 0.1512 1,473,681 0 NA 4

Memory
Allocation

On-chip:
Sync 2.0 0.055 51,695 0 NA 1.5

0"

0.2"

0.4"

0.6"

0.8"

1"

0"
1)6
4"

64
)12
8"

12
8)2
56
"

25
6)5
12
"

51
2)1
K"

1K
)2K
"

2K
)4K
"

4K
)8K
"

8K
)16
K"

16
K)3
2K
"

>3
2K
"

CD
F"

Range"of"bytes"compressed"

Feed1" Cache1"

Feed1:"on)chip"'g'"to""
break"even"

Feed1:"Off)chip""
Sync"&"Async"

Feed1:"Off)chip""
Sync)OS"

Figure 6.19: CDF of bytes compressed in Feed1 and Cache1: Feed1 often compresses large
granularities.

6.4.1 Compression

In Fig. 6.19, we show the compression granularities’ CDF for services with high compres-

sion overheads—Feed1 and Cache1. Feed1 compresses larger granularities than Cache1;

we focus on Feed1 in this study. Since Feed1 spends 15% of cycles in compression, it can

achieve an ideal speedup of 17.6%, as shown in Fig. 6.20.

On-chip. We apply Table 6.7’s model parameters in eqn. (6.2) to find that an offload

improves speedup when g≥ 1 B; all of Feed1’s compressions will improve speedup. We

then use n = 15,008 in eqn. (6.1) to estimate a speedup of 13.6% as shown in Fig. 6.20,

211

0	

10	

20	

Feed1:	
 Compression	
 Ads1:	
 Memory	
 copy	
 Cache1:	
 Memory	
 alloca8on	

%
	
 S
pe

ed
up

	

Ideal	
 On-­‐chip	
 Off-­‐chip:Sync	
 Off-­‐chip:Sync-­‐OS	
 Off-­‐chip:Async	

NA	
 NA	

Figure 6.20: Accelerometer-estimated speedup for key overheads we identified: Performance bounds
from accelerator offload limit achievable speedup.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 1-­‐64	
 64-­‐128	
 128-­‐256	
 256-­‐512	
 512-­‐1K	
 1K-­‐2K	
 2K-­‐4K	
 >4K	

CD
F	

Range	
 of	
 bytes	
 copied	

Web	
 Feed1	
 Feed2	
 Ads1	
 Ads2	
 Cache1	
 Cache2	

Ads1:	
 On-­‐chip	
 'g'	

to	
 break	
 even	

Figure 6.21: CDF of memory copies across microservices: Most microservices frequently copy small
granularities.

implying a latency reduction of 13.6%.

Off-chip. From Table 6.7 and eqn. (6.2), we find that a Sync offload improves speedup

when g≥ 425 B. We note that 64.2% of compressions are ≥ 425 B (Fig. 6.19). Offloading

these compressions improves speedup (and reduces latency) by 9% (Fig. 6.20). Similarly,

Sync-OS and Async offloads yield speedups of 1.6% and 9.6% respectively, reducing

latency by 1.4% and 9.2%. Even though on-chip yields a higher speedup, there might be

value in off-chip acceleration as it is easier to design than modifying CPUs. For example, off-

chip encryption accelerators can be extended to perform compression to leverage improving

two kernels for the price of one offload.

212

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 1-­‐64	
 64-­‐128	
 128-­‐256	
 256-­‐512	
 512-­‐1K	
 1K-­‐2K	
 2K-­‐4K	
 >4K	

CD
F	

Range	
 of	
 bytes	
 allocated	

Web	
 Feed1	
 Feed2	
 Ads1	
 Ads2	
 Cache1	
 Cache2	

Cache1:	
 On-­‐chip	
 'g'	

to	
 break	
 even	

Figure 6.22: CDF of memory allocations across microservices: Most microservices frequently
allocate small granularities.

6.4.2 Memory Copy

Fig. 6.21 shows memory copy granularities’ CDF across services. We observe that

several services often copy < 512 B (smaller than a 4K page). We apply on-chip accelera-

tion [15] for Ads1 as it incurs the highest copy overhead. We apply Table 6.7’s parameters

in eqn. (6.1) to project a speedup and latency reduction of 12.7% (Fig. 6.20). Hence, an

on-chip copy optimization [15] can yield significant gains.

6.4.3 Memory Allocation

We show the CDF of memory allocations in Fig. 6.22. Most microservices perform

small allocations (typically < 512 B). We analyze the microservice with the highest memory

allocation overhead—Cache1. We find that offloading all of Cache1’s 51,695 memory

allocations to an on-chip accelerator [287], will result in a 1.86% speedup and latency

reduction (Fig. 6.20).

6.5 Related Work

We discuss two categories of related work.

213

Data center overheads. Very few prior works study how cycles are spent in modern

data centers. Kanev et al. [285] investigate the “data center tax” or the performance impact

of seven types of leaf functions across Google’s server fleet. Mars et al. [354, 352, 353]

use key factors that impact available heterogeneity in CPUs to improve warehouse-scale

performance. In contrast, we provide a deep-dive into Facebook’s important microservices

via leaf function, as well as service functionality breakdowns.

Analytical models. Altaf et al. developed the LogCA [127] model to estimate gains

from hardware acceleration. We extend LogCA [127] to support various microservice

threading designs to estimate throughput and latency improvements.

Several works develop analytical models for heterogeneous architectures. Chung et

al. [182] model custom logic, FPGAs, and GPGPUs. Hempstead et al. [251] propose Navigo

to determine accelerator area requirements to maintain performance trends. Nilakantan et

al. [384] estimate communication costs in heterogeneous architectures. Kumar et al. identify

performance-efficient data offload granularities. These models use several parameters to

accurately determine performance improvements. Accelerometer uses a small parameter set

to build simple models for microservice speedup and latency reduction.

Several models are architecture-specific [500, 259, 260, 440, 365, 192]. Song et al. [440]

predict performance and power trade-off in GPUs. Hong et al. model GPU execution

time [259] and power requirements [260]. Daga et al. [192] discuss communication over-

heads in APUs and GPUs. Meswani et al. [365] develop models for high performance

applications. The Accelerometer model abstracts the underlying architecture and can be

used across various accelerator types.

Apart from LogCA [127], Accelerometer’s simplicity is similar to the Roofline model [342].

Extensions to the Roofline model [387, 344] target specific architectures such as mobile

SoCs [255], GPUs [275], vector processing units [423], and FPGAs [191]. While the

Roofline model aims to aid programmability, our models seek to expose performance

bounds from an accelerator’s interface for hyperscale microservices.

214

6.6 Long-Term Impact Potential

This work has been recognized for its long-term impact potential with an IEEE Micro

Top Picks distinction (one of 12 total computer architecture papers to receive this recognition

in 2020) [445]. To quote an anonymous IEEE Micro Top Picks reviewer, “This paper is

clearly solid work that advances the state-of-the-art in multiple directions: more realistic

profiling of data center applications, modeling of different acceleration offloading strategies,

and ideas for potential accelerators. Its immediate impact is a roadmap for accelerator

development and deployment for hyperscalers, but it will also trigger further research in

improving the model and the offloading and communication techniques between host and

multiple accelerators.”

Additionally, this work won the “Best Presentation Award”4 at the International Con-

ference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS) 2020 and has received technical press coverage [12, 90, 5, 11]. We discuss

long-term implications, highlighting the impact this work has already had.

Accelerometer in production. As microservices evolve, Accelerometer’s generality

makes it even more suitable in determining new hardware requirements early in the design

phase. Since we validated Accelerometer in production and made it open-source [4], we

are happy to report that it has been adopted by multiple hyperscale enterprises (e.g., with

developing their encryption and compression accelerators) to make well-informed hardware

decisions [445]. We expect Accelerometer to trigger research in developing more complex

models that account for overheads induced by offloading to specific accelerators (e.g.,

software batching implications on FPGA memory bandwidth vs. latency).

Influence on commercial hardware designs. In this work, we took a step back and

answered the Amdahl’s Law question of: which overheads prevail even after offloading a

4Presentation video available at: https://www.youtube.com/watch?v=H1a6FPFKG4A.
Fun fact: ASPLOS 2020 was the first systems/architecture conference that was held virtually during the
COVID-19 pandemic. Attempting to create a live audience during this challenging time, I presented my entire
ASPLOS talk to my dog, Po Gopal. Watch the video to see his adorable reactions to this work!

215

https://www.youtube.com/watch?v=H1a6FPFKG4A

microservice’s main functionality to an accelerator? Our comprehensive study of real-world

microservices (detailed in Section 6.1) definitively indicates the need for a qualitatively

different approach to future accelerator efforts. So far, data center hardware acceleration

efforts have primarily focused on the most costly operations of a few “killer” applications

(e.g., ML inference [279]). However, accelerating orchestration overheads can offer greater

benefits as they are significant and common across microservices.

As web service architectures grow more fragmented and granular (e.g., deeper mi-

croservice pipelines and serverless architectures), it becomes more critical to optimize the

increasingly ubiquitous orchestration overheads. However, accelerating orchestration over-

heads is non-trivial as (1) orchestration libraries are already well-optimized in software and

(2) orchestration function invocations are frequent, involve small data granularity, and are

interspersed between other microservice code. Hence, accelerating orchestration overheads

will require different techniques than those used in throughput-based specialization blocks

with coarse-grained offloads (e.g., video processing).

Although Accelerometer provides the first step in determining required acceleration

strategies, we expect significant academic and industrial interest in rethinking accelerators

for fine-grained orchestration operations. Already, a few hardware vendors have used our

study’s insights to influence hardware customization for orchestration operations [445].

Characterization approach and tool. While it is relatively simple to measure the CPU

cycles spent in leaf functions, it is extremely difficult to categorize every path’s functionality

in a microservice’s entire call stack, as microservices have deep, complex software stacks that

are hard to parse and classify. We developed a methodology to systematically classify each

call trace path: we applied expert insights to identify service functionality classification rules

that we then used to categorize cycles spent in various microservice functionalities [445].

We integrated this characterization tool into Facebook’s fleet-wide performance monitor-

ing infrastructure; it currently assimilates statistics from hundreds of thousands of servers

from around the world to help developers visualize the performance impact of their code

216

changes at hyperscale [445]. With the decline of hardware performance scaling, there

is a greater need for researchers to develop such tools for performance monitoring and

optimization at all levels of the systems stack.

Industry-academia collaborative benchmarking efforts. Many hardware vendors

rely on open-source benchmarks such as SPEC that heavily use C libraries to make architec-

ture decisions [445]. Hence, in our characterization in Section 6.1, we observe that only C

libraries’ IPC scales well across CPU generations, but the other overheads (e.g., memory

movement and encryption) show little to no improvement.

There is immense value in validating commonly-used benchmarks with real-world

application behaviors. Our characterization drove hardware vendors to consider more repre-

sentative benchmarks (in place of traditional ones they used for decades) when evaluating

hardware designs [445]. To quote an Intel researcher, “We were driving blind until seminal

works like these came along and told us to refocus our design efforts on more representative

applications”. This work has resulted in an industry-academia joint collaborative effort 5

to design and open-source scale-out data center benchmarks that represent the hyperscale

behaviors identified in our characterization. We expect our comprehensive study to drive

continued benchmarking efforts that represent the severity of overheads in production-grade

software.

End-to-end thinking in accelerator design. Oftentimes, when designing accelerators,

computer architects tend to miss the end-to-end picture, i.e., overheads that might arise

from other system parts [333]. When trying to adopt these accelerators at hyperscale,

several hyperscale enterprises often find that these accelerators degrade performance due to

overlooked microservice software-induced overheads (e.g., offload-induced overheads due

to microservice threading design) [445].

Accelerometer is a simple, powerful tool to help architects analytically estimate software-

induced overheads that arise from the end-to-end path, projecting realistic gains early in

5Facebook awarded research grants to researchers at Cornell, UT Austin, and MIT, to develop benchmarks
that represent the hyperscale behaviors we identified in Section 6.1 [445].

217

the hardware design phase. To quote an anonymous expert reviewer for the International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS) 2020, “Given the time and cost for a full acceleration effort, good models that

can inform early design choices are extremely valuable. To my knowledge, there is no

alternative model for microservice execution that could serve this purpose.”

Driving future research. Our characterization in Section 6.1 revealed many new signif-

icant overheads. For example, it is unusual for applications to incur such high overheads

from logging and memory frees; very few academic studies focus on optimizing them.

Our rich characterization of overheads will enable industry and academic researchers to

work on mitigating them. Expert ASPLOS reviewers’ comments include, “The data set of

microservice overheads presented in this work and the detailed breakdowns will serve as

excellent motivation for future research in acceleration of infrastructure operations” and

“Comprehensive and extremely insightful study of production microservices”.

6.7 Chapter Summary

We summarize our contributions as follows:

• A comprehensive characterization of microservice leaf function overheads. We

presented a systematic characterization of leaf function overheads experienced by

production microservices at Facebook: one of the largest social media platforms

today.

• A detailed study of microservice functionality breakdowns. We presented de-

tailed microservice functionality breakdowns, identifying orchestration overheads

and providing a systematic understanding of hardware acceleration opportunities

at hyperscale. Both the leaf function and microservice functionality studies have

received recognition in academia and industry, having (1) influenced commercial

hardware design, (2) enabled industry-academia joint benchmarking efforts, and (3)

218

improved the software development process [445].

• Accelerometer: We introduced an analytical model to project realistic microser-

vice speedup early in the hardware design phase for various hardware acceleration

strategies. Accelerometer is an analytical alternative to ad hoc hardware customiza-

tion approaches that helps hyperscale enterprises to make well-informed hardware

investments.

• A detailed demonstration of Accelerometer’s utility in production. We demon-

strated Accelerometer’s utility in Facebook’s production microservices using three

retrospective case studies, showing how Accelerometer projects realistic performance

gains from hardware acceleration.

At global user population scale, important microservices in hyperscale data centers can

grow to account for an enormous installed base of servers. With the decline of hardware

performance scaling (detailed in Chapter I), successive server generations running key

microservices exhibit diminishing performance returns. Hence, it is imperative to understand

how important microservices spend their CPU cycles to determine hardware acceleration

opportunities across the global server fleet. To this end, we undertook a comprehensive

characterization of the top seven microservices that run on the compute-optimized data

center fleet at Facebook.

Our characterization revealed that microservices spend as few as 18% of CPU cycles

executing the main application logic (e.g., performing an ML inference operation); the

remaining cycles are spent in common operations that are not core to the main application

logic (e.g., I/O processing, logging, and compression). Accelerating such common building

blocks can greatly improve data center performance. Whereas developing specialized hard-

ware acceleration for each building block might be beneficial, it becomes risky at hyperscale

if these hardware accelerators do not yield expected gains due to performance bounds pre-

cipitated by a microservice’s software interaction with the hardware (e.g., offload-induced

219

overheads due to microservice software threading design). To identify such performance

bounds early in the hardware design phase, we developed an analytical model for hardware

acceleration, Accelerometer, that projects realistic speedup in microservices. We validated

Accelerometer’s utility in production using three retrospective case studies and demonstrated

that it estimates the real, production speedup with an error that is less than or equal to

≤ 3.7%. We then used Accelerometer to project gains from accelerating important common

building blocks identified in our characterization.

220

CHAPTER VII

Future Work and Conclusions

7.1 Future Directions

My long-term research vision is to radically redesign the entire systems stack for

computing systems that serve billions of users around the world while facing stringent

performance, power, and cost requirements. This dissertation is the first step towards

achieving my vision. There are many exciting avenues of future work that follow from

the research presented in this dissertation, involving interdisciplinary collaborations with

researchers working on algorithms, programming languages, Machine Learning, Human-

Computer Interaction, device technologies, embedded systems, computer networks, software

systems, and computer architecture. Some of these future research ideas are summarized in

this section (broadly sorted from short-term to long-term).

7.1.1 Enabling Cross-Stack Designs for Emerging Web Service Paradigms and Ap-

plication Domains

This dissertation demonstrates the benefit of cross-stack design to enable the modern

web service paradigm of microservices. Apart from microservices, modern web systems are

increasingly being built with new service paradigms such as serverless architectures. Each

new paradigm introduces unique overheads that affect data center efficiency. For example,

unlike microservices, serverless systems introduce additional inefficiencies from container

221

launch and warm-up delays, increased communication, and greater scalability issues. Using

some of the techniques developed in my dissertation, future work has the potential to redesign

improved hardware and software design primitives to support continuously emerging service

paradigms.

Apart from service paradigms, I notice several emerging application domains that are

starting to require hyperscale computation. For example, I anticipate the cloud or edge data

centers to increasingly start processing data from self-driving cars, connected vehicles, and

the Internet of Things (IoT) devices. Efficiently supporting such emerging applications

will require rethinking data center software and hardware design. Similar to the work done

in this dissertation, I envision the need for future research to analyze how such emerging

application classes will begin to use data centers and the overheads they might impose, to

design efficient cross-stack optimizations to support them.

7.1.2 Rethinking Hardware-Software Co-Design for System Overheads that Arise at

Hyperscale

My characterization of real-world production microservices revealed several system

overheads that particularly arise at hyperscale (detailed in Chapters IV and VI). In this

dissertation, I presented techniques to mitigate a few predominant overheads such as I-cache

misses (Chapter IV) and I/O event notification (Chapter V). As immediate future work,

I see myself continuing to systematically analyze the cause of each significant overhead

I identified, to develop efficient solutions to mitigate them. As one example, apart from

improvements to I/O event notification (Chapter V), I envision an end-to-end I/O processing

path that also incorporates hardware-software optimizations to efficiently (1) receive/send a

large number of I/O, (2) operate the CPU when waiting for an I/O and (3) process large I/O

just as well as small I/O transfers.

222

7.1.3 Mitigating the Killer Microsecond Problem in Modern Web Services

As my dissertation has shown, modern servers are equipped with mechanisms to ef-

fectively hide nanosecond-scale stalls (e.g., OoO cores) and millisecond-scale stalls (e.g.,

context switching), but lack efficient support to hide microsecond-scale stalls that can criti-

cally affect modern web service efficiency. To mitigate these microsecond-scale stalls (often

called the “killer microsecond” [368]), I will characterize the impact of various microsecond-

scale accesses (e.g., modern networking, non-volatile memories, and accelerator accesses)

on application latency and resource efficiency.

To hide killer microseconds, I will design an end-to-end solution spanning the systems

stack. First, I will design “microsecond-aware” systems stacks that have reduced lock

contention, fast interrupt handling, efficient spin-polling, and improved job scheduling

(drawing on techniques from Chapters III and V). Second, I will develop techniques that

will keep the CPU busy during a microsecond-scale stall by making the hardware seamlessly

switch hardware threads in a super-wide processor. Third, I will design cross-stack solutions

that prevent the CPU from being idle when there is insufficient Thread Level Parallelism,

by self-navigating fine-grained sleep states at runtime to enable a core to stop consuming

power when a microsecond-scale access is outstanding and shift that power to cores not

blocked on accesses.

7.1.4 Redesigning Software Stacks for Emerging Hardware Accelerators

As systems researchers, we continue to struggle with abstraction primitives, suggesting

that the era of abstraction design innovation is not over. For example, every few years

we invent new isolation and abstraction mechanisms, such as processes, virtual machines,

trusted execution environments, and containers (detailed in Chapter I). I find that we design

these new abstractions more as an afterthought to an emerging application paradigm (e.g.,

developing containers to suit the needs of the microservice and serverless paradigms).

Rather than redefine OS primitives for each service paradigm, I will identify correct

223

primitives that allow software to seamlessly trade-off isolation with the ability to share data

and computational resources. As a starting point, I find that defining such abstractions is

particularly pertinent in the modern-day era of designing specialized hardware accelerators

for an increasing number of application domains. During my internships at hyperscale

companies, I observed that software stack developers spent several months to years devel-

oping custom, hardware-specific software stacks for individual accelerators. Rather than

redefining software abstractions for each hardware accelerator, I am interested in building

OS abstractions for small components (e.g., using program synthesis techniques) that can

then be assembled into custom software stacks for myriad novel hardware accelerators. This

approach allows for software design exploration and innovation, allowing experimenting

with different primitives without building entirely new software stacks.

7.1.5 Designing Systems to Support Emerging Device Technologies

With the decline in hardware performance scaling, recent hardware innovations include a

particular focus on emerging device technologies such as Non-Volatile Memory (NVM) [399,

309, 308], 3D memory blocks [322], and optical computing [268]. Each of these device

technologies’ variants have diverse device properties. As one example, NVM technologies

(e.g., CTT, RRAM, STTRAM, and PCM) exhibit a significant diversity in efficiency metrics

such as endurance, retention, fault-tolerance, storage density, read latency, write latency, and

energy consumption.

As these technologies begin to be introduced in data centers, there is an opportunity to

explore their design space to build software frameworks that map diverse service accesses

to suitable memories (along the vein of the Soft SKU approach detailed in Chapter IV).

For example, RRAM, PCM, and CTT, have Multi-Level Cell (MLC) capabilities, allowing

multiple bits to be packed into a single device to further increase density. However, MLCs

have poor fault-tolerance. Whereas MLCs are not amenable to most applications due to

their poor fault-tolerance, they might particularly benefit Deep Neural Networks (DNNs)

224

since (1) DNNs have large models that must fit in memory, requiring a high storage density

and (2) DNNs might be able to tolerate the errors that MLCs impose [400]. Hence, it is

important to characterize the trade-off between different NVM device properties and use this

characterization to build software frameworks that schedule diverse web service accesses to

suitable device technologies.

In a similar vein as the Accelerometer model described in Chapter VI, I also envision the

need to develop realistic analytical models that estimate the various efficiency implications

of leveraging a particular device technology [401]. Going forward, I will develop general-

ized cross-stack infrastructures to efficiently incorporate emerging device technologies in

hyperscale data centers.

7.1.6 Using Machine Learning to Self-Navigate the Hyperscale Design Space

As the hyperscale software/hardware design space continues to become more complex,

I foresee empirical systems leveraging recent improvements in ML models to manage

design complexity. I am interested in using ML techniques to self-navigate complex soft-

ware/hardware design spaces such as resource allocation, request scheduling, and bottleneck

identification.

7.1.7 Designing Energy-Efficient Data Centers

While this dissertation focuses on improving hyperscale efficiency, there is more work

to be done to particularly improve data center energy efficiency. The end of Dennard

scaling [217, 462] has severely impacted the power consumption of modern hardware

systems. Although the hardware industry has continued to develop new power-centric

process technologies, the fact still remains that power consumption no longer scales with

feature size, resulting in data center systems with increasingly high power envelopes [271].

Today, a growing portion of the data center energy budget is spent on cooling the data center

rather than on computations [334]. Hence, rethinking data center cooling technologies has

225

become a deeply important problem.

I am interested in studying emerging data center cooling technologies such as 2-phase

immersion cooling [271] to radically reimagine futuristic data centers. Since such systems

can ignore thermal boundaries, there is an opportunity to design innovative systems based on

newer notions of power density, thermal runways, or the form factor of boards. For example,

such an energy-efficient system might particularly improve the nature of computations

performed by edge data centers that are heavily power-constrained today.

7.1.8 Making Intersectionality, Equity, and Fairness as First-Order System Design

Metrics

While efficiency and security metrics are certainly critical to gauge web systems, I find

that as system designers, we must start to think about the societal implications of the web

systems we build. I am interested in exploring intersectionality, equity, and fairness as

first-order web system design metrics. For example, I observed that data center operators

selectively supply responses based on the user’s geographical location. If a user is in a

remote location (e.g., a remote island) that has poor internet connection, a web system

might exploit this fact to supply a slower response to the user, thereby improving the latency

headroom in the data center.

This observation made me wonder about the implications of data center operators

discriminating responses sent to users based on their age, gender, or occupation in a Wild

And Crazy Ideas (WACI) session [443] held in association with the International Conference

on Architectural Support for Programming Languages and Operating Systems. To improve

the data center’s latency headroom, such a discriminatory web system might exploit the

notion that an older user might be more patient and willing to wait longer for a web service

response, resulting in systems that actively discriminate against users.

I am interested in systematically characterizing the various web system properties and the

kind of societal implications they might induce, to propose equity and fairness as first-order

226

system design metrics that system designers must consider before deploying a hyperscale

web system. I will also design abstraction frameworks that make system decisions based on

such metrics to ensure “unbiased” computation (e.g., data center scheduling systems that

screen requests based on laws around age or gender).

7.2 Dissertation Conclusions

The world is undergoing a technological revolution where modern web services such

as social media, online messaging, web search, video streaming, and online banking must

support billions of users, requiring data centers that scale to hundreds of thousands of

servers, i.e., hyperscale. While at face value, hyperscale web services seem instantaneously

available at the touch of a button, existing hyperscale systems barely meet performance

requirements despite running on prohibitively expensive and power-hungry data centers.

As hyperscale computation grows to drive increasingly sophisticated applications (e.g.,

virtual reality, self-driving cars, conversational AI, and the Internet of Things), existing

hyperscale systems will face greater efficiency challenges due to these more complex tasks.

This dissertation presented technologies that enable tomorrow’s hyperscale web services by

designing efficient system stacks for hyperscale computation.

Over the past few years, there has been a radical shift in hyperscale computing due to

an unprecedented growth in data, users, and web service functionality. However, modern

hardware systems can no longer support this unprecedented growth in hyperscale trends. It

is widely agreed that the hardware industry has been facing a steady decline in hardware

performance scaling [480]. To enable hyperscale computation requirements despite the

decline in hardware performance scaling, hardware architects must become more aware of

hyperscale software needs and software researchers can no longer expect unlimited hardware

performance scaling. Hence, systems researchers can no longer follow the traditional

approach of building each layer of the systems stack separately. To enable hyperscale

computation, it is extremely critical that systems researchers rethink the synergy between

227

the software and hardware worlds from the ground up. Techniques presented in this

dissertation establish the synergy between the software and hardware worlds to enable

futuristic hyperscale web services. Specifically, this dissertation (1) designed software that

is aware of new hardware constraints and (2) designed commodity and custom hardware to

efficiently support new hyperscale software requirements.

Beyond the software and hardware paradigms considered in this dissertation, challenges

faced by new application domains (e.g., the Internet of Things), service paradigms (e.g.,

serverless computation), and hardware technologies (e.g., Non-Volatile Memory technolo-

gies) could be addressed through an extension of techniques presented in this dissertation.

As one example, NVM technologies (1) exhibit microsecond-scale access latencies [369], (2)

face diversity in device properties [400], and (3) are being incorporated in modern hardware

accelerators [129]. Techniques introduced in this dissertation (µTune and µNotify) could be

used to design cross-stack solutions that enable efficient communication with NVM devices

that face microsecond-scale access latencies. Furthermore, this dissertation’s contributions

could be used to map diverse microservice accesses to suitable NVM devices based on

device technology properties (SoftSKU), while analytically modeling the implications of

such accesses to design more efficient NVM-based hyperscale systems (Accelerometer).

This dissertation makes a number of novel software and hardware contributions that

bridge the software and hardware worlds to enable the hyperscale web services of tomorrow.

Rather than following the traditional approach of building each layer of the systems stack

separately, this dissertation uniquely brings new hardware insights when designing software

stack layers and draws on fundamental software design principles to systematically architect

the hardware layer.

First, this dissertation’s software contributions in terms of a representative, open-source

benchmark suite of modern web services facilitate future research on a prominent application

design paradigm that will increasingly be employed in future hyperscale services. Using this

benchmark suite, this dissertation built on decades of software threading model research,

228

identifying gaps in existing software threading designs that arise as a consequence of the

recent decline in hardware performance scaling. This dissertation presented new software

threading model insights that enabled fundamentally redesigning software threading models

for emerging hyperscale service paradigms.

Second, this dissertation’s hardware contributions systematically architect data center

hardware in a way that is aware of fundamental software design principles to support the

unprecedented growth in hyperscale software trends. By comprehensively characterizing the

commodity and custom hardware design space in light of emerging hyperscale trends, this

dissertation facilitates a holistic approach to future hardware design. This characterization

has influenced the design of commercial hardware architectures, enabled industry-academia

joint benchmarking efforts, and improved the software development process. My character-

ization’s insights enabled techniques that helped maintain the performance improvement

rate for commodity processors, triggering a significant shift in the hardware industry, saving

millions of dollars, and meaningfully reducing the global carbon footprint. Furthermore,

driven by this characterization, this dissertation presented a rigorous, analytical alternative

to ad hoc hardware customization approaches that enabled hyperscale enterprises to make

well-informed hardware decisions.

More broadly, this dissertation’s success in bridging the software and hardware worlds

paves the way for fresh approaches to hyperscale computing throughout the hardware-

software stack. Overall, this dissertation makes the following contributions:

• As a part of this dissertation’s software contributions, Chapter II presented µSuite,

the first open-source benchmark suite of end-to-end modern web services composed

using the emerging microservice application paradigm. By demonstrating how µSuite

can be used to study new hyperscale overheads that particularly arise from threading

interactions with the underlying OS and network stacks, this dissertation facilitates

future research, with µSuite being used by researchers in academia and industry (e.g.,

at MIT, UIUC, UT Austin, Georgia Tech, Cornell, ARM, and Intel) to analyze modern

229

web services.

• Driven by Chapter II’s observations on software threading-induced overheads in the

microservice regime, Chapter III presented a systematic taxonomy of microservice

software threading models, analyzing them to identify new insights in the age-old

research area of software threading. This threading taxonomy and its systematic anal-

ysis enables expert and novice developers alike to guide their microservice threading

designs. Based on this threading analysis, this chapter makes the important and non-

obvious observation that that no single threading model is best across all hyperscale

load conditions, paving the way for an automated approach and associated tool, µTune,

that redesigns threading and concurrency paradigms for hyperscale microservices.

µTune abstracts threading design from microservice code and automatically adapts to

time-varying service load by intelligently tuning threading models and thread pool

sizes during system runtime.

• As a part of this dissertation’s hardware contributions, Chapter IV took a step towards

identifying how we should build commodity data center hardware in the post-Moore

era. Several architects today work on developing specialized hardware accelerators for

key domains (e.g. Machine Learning tasks). Rather than following this prohibitively

expensive approach, this chapter instead took a step back and systematically answered

the following question: can we extract greater performance from cost-efficient com-

modity hardware to maintain server-class processors’ performance improvement rate,

despite the decline in hardware performance scaling? Chapter IV characterized the

shortcomings in commodity hardware running hyperscale microservices, identify-

ing hardware design opportunities that influenced commercial server-class processor

architectures. Driven by this characterization, Chapter IV presented an automated

design approach and tool, Soft SKU, that configures OS and hardware knobs to make

an existing commodity processor more performance efficient for a given real-world,

230

production microservice. Soft SKUs demonstrated how to extract greater performance

from cheap commodity hardware, resulting in hyperscale enterprises prioritizing

this approach’s adoption over the modern-day trend of customizing hardware, and

triggering a shift in the hardware industry. Furthermore, Chapter IV demonstrated

how Soft SKUs achieve significantly greater performance efficiency than stock and

expert-tuned server configurations when running production microservices that serve

billions of users, saving millions of dollars and meaningfully reducing the global

carbon footprint.

• In a similar vein to Chapter IV’s goal of maintaining commodity processors’ perfor-

mance improvement rate, Chapter V demonstrated that to overcome new hyperscale

overheads, existing hardware mechanisms can intelligently be used to redesign com-

modity server architectures with minimal hardware enhancements. In particular, to

mitigate new hyperscale overheads that arise from I/O event notification, this chapter

analyzed the limits of existing I/O notification paradigms and used the analysis’s

insights to present µNotify, the first I/O notification paradigm that achieves scalable,

near-constant time I/O notification. µNotify uses commodity processors’ cache coher-

ence invalidation messages more intelligently and introduces a small enhancement

to the cache coherence controller to reduce I/O notification overheads by extracting

greater performance from commodity server-class hardware.

• While Chapters IV and V focused on extracting greater performance from commodity

server-class hardware, Chapter VI focused on developing and deploying new cus-

tom hardware (particularly in the form of hardware accelerators) in a well-informed

manner. Since designing custom hardware for every microservice is prohibitively

expensive, two important questions arise: (1) Which microservice software operations

consume the most CPU cycles and are worth accelerating? (2) How much can the

accelerator realistically improve its targeted microservice overhead? To answer both

231

questions, this chapter first undertook a comprehensive characterization of hardware

acceleration opportunities at hyperscale that influenced commercial hardware design.

My characterization tool has been integrated into Facebook’s fleet-wide performance

monitoring infrastructure, assimilating statistics from servers globally to help devel-

opers visualize the performance impact of their code changes at hyperscale [445].

Additionally, my characterization has resulted in a joint industry-academia benchmark-

ing effort to develop scale-out applications that represent the hyperscale behaviors I

identified [445]. Driven by this characterization’s insights, this chapter then presented

an analytical model, Accelerometer, that estimates realistic gains from hardware

acceleration early in the hardware design phase. Accelerometer’s generality has re-

sulted in multiple hyperscale enterprises and hardware vendors adopting it to make

well-informed hardware decisions [445].

Overall, the combination of techniques introduced in this dissertation improve the per-

formance, scalability, energy efficiency, and cost of operation of the next generation of

hyperscale computing systems. This work bridges the software and hardware worlds, demon-

strating the importance of that bridge in enabling the hyperscale web services of tomorrow

via efficient solutions that span the systems stack. By realizing efficient web services from

analytical models on paper to system deployment at hyperscale, this dissertation bridges the

gap between hyperscale growth expectations and today’s hardware reality.

232

BIBLIOGRAPHY

233

BIBLIOGRAPHY

[1] A Brief History of Containers. https://d2iq.com/blog/brief-history-
containers.

[2] A Brief History of Microservices. https://www.dataversity.net/a-brief-
history-of-microservices/.

[3] About DPDK. https://www.dpdk.org/about/.

[4] Accelerometer. https://doi.org/10.5281/zenodo.3612796.

[5] Accelerometer & SoftSKU: Improving HW performance for diverse mi-
croservices. https://engineering.fb.com/data-center-engineering/
accelerometer-and-softsku/.

[6] Add reco. to website. www.easyrec.org. [Accessed 4/27/2018].

[7] Adopting microservices at netflix: Lessons for architectural design. https:
//www.nginx.com/blog/microservices-at-netflix-architectural-
best-practices/.

[8] Advanced Encryption Standard (AES). https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.197.pdf.

[9] Aerospike. https://www.aerospike.com/docs/client/java/usage/async/
index.html.

[10] Allocation optimization with different block-sized allocation maps. https://
patents.google.com/patent/US5481702A/en.

[11] Analytical model predicts exactly how much a piece of hardware will speed up
data centers. https://news.engin.umich.edu/2020/04/analytical-model-
predicts-exactly-how-much-a-piece-of-hardware-will-speed-up-
data-centers/.

[12] Analytical model predicts how much a piece of hardware will speed up
data centers. https://techxplore.com/news/2020-04-analytical-piece-
hardware-centers.html.

[13] Apache http server project. https://httpd.apache.org/.

234

https://d2iq.com/blog/brief-history-containers
https://d2iq.com/blog/brief-history-containers
https://www.dataversity.net/a-brief-history-of-microservices/
https://www.dataversity.net/a-brief-history-of-microservices/
https://www.dpdk.org/about/
https://doi.org/10.5281/zenodo.3612796
https://engineering.fb.com/data-center-engineering/accelerometer-and-softsku/
https://engineering.fb.com/data-center-engineering/accelerometer-and-softsku/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.aerospike.com/docs/client/java/usage/async/index.html
https://www.aerospike.com/docs/client/java/usage/async/index.html
https://patents.google.com/patent/US5481702A/en
https://patents.google.com/patent/US5481702A/en
https://news.engin.umich.edu/2020/04/analytical-model-predicts-exactly-how-much-a-piece-of-hardware-will-speed-up-data-centers/
https://news.engin.umich.edu/2020/04/analytical-model-predicts-exactly-how-much-a-piece-of-hardware-will-speed-up-data-centers/
https://news.engin.umich.edu/2020/04/analytical-model-predicts-exactly-how-much-a-piece-of-hardware-will-speed-up-data-centers/
https://techxplore.com/news/2020-04-analytical-piece-hardware-centers.html
https://techxplore.com/news/2020-04-analytical-piece-hardware-centers.html
https://httpd.apache.org/

[14] Average number of search terms for online search queries in the United States as of
August 2017. https://www.statista.com/statistics/269740/number-of-
search-terms-in-internet-research-in-the-us/.

[15] Avx. www.wikipedia.org/wiki/Advanced_Vector_Extensions.

[16] Azure Synchronous I/O antipattern. https://docs.microsoft.com/en-
us/azure/architecture/resiliency/high-availability-azure-
applications.

[17] The biggest thing amazon got right: The platform. https://gigaom.com/2011/
10/12/419-the-biggest-thing-amazon-got-right-the-platform/.

[18] BLPOP key timeout. https://redis.io/commands/blpop.

[19] Bob Jenkins. SpookyHash: a 128-bit noncryptographic hash. http://
burtleburtle.net/bob/hash/spooky.html.

[20] Bpftrace. https://github.com/iovisor/bpftrace.

[21] Building products at soundcloud: Dealing with the monolith. https://
developers.soundcloud.com/blog/building-products-at-soundcloud-
part-1-dealing-with-the-monolith.

[22] Building Scalable and Resilient Web Applications on Google Cloud Platform. https:
//cloud.google.com/solutions/scalable-and-resilient-apps.

[23] Celery: Distributed Task Queue. http://www.celeryproject.org/.

[24] Chasing the bottleneck: True story about fighting thread contention in your
code. https://blogs.mulesoft.com/biz/news/chasing-the-bottleneck-
true-story-about-fighting-thread-contention-in-your-code/.

[25] Code and Data Prioritization - Introduction and Usage Models in the Intel Xeon
Processor E5 v4 Family. https://software.intel.com/en-us/articles/
introduction-to-code-and-data-prioritization-with-usage-models.

[26] Collaborative filtering via matrix decomposition in mlpack. www.ratml.org/pub/
pdf/2015collaborative.pdf. [Accessed 4/27/2018].

[27] Containers. https://a16z.com/2015/01/22/containers/.

[28] Data Age 2025: the datasphere and data-readiness from edge to core.
https://www.i-scoop.eu/big-data-action-value-context/data-age-
2025-datasphere/.

[29] David Riddoch on Bypassing the Kernel and Hypervisor for Network I/O, So-
larflare, OpenOnload. https://www.infoq.com/interviews/riddoch-kernel-
bypass-solarflare/.

235

https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/
https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/
www.wikipedia.org/wiki/Advanced_Vector_Extensions
https://docs.microsoft.com/en-us/azure/architecture/resiliency/high-availability-azure-applications
https://docs.microsoft.com/en-us/azure/architecture/resiliency/high-availability-azure-applications
https://docs.microsoft.com/en-us/azure/architecture/resiliency/high-availability-azure-applications
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://redis.io/commands/blpop
http://burtleburtle.net/bob/hash/spooky.html
http://burtleburtle.net/bob/hash/spooky.html
https://github.com/iovisor/bpftrace
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://cloud.google.com/solutions/scalable-and-resilient-apps
https://cloud.google.com/solutions/scalable-and-resilient-apps
http://www.celeryproject.org/
https://blogs.mulesoft.com/biz/news/chasing-the-bottleneck-true-story-about-fighting-thread-contention-in-your-code/
https://blogs.mulesoft.com/biz/news/chasing-the-bottleneck-true-story-about-fighting-thread-contention-in-your-code/
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
www.ratml.org/pub/pdf/2015collaborative.pdf
www.ratml.org/pub/pdf/2015collaborative.pdf
https://a16z.com/2015/01/22/containers/
https://www.i-scoop.eu/big-data-action-value-context/data-age-2025-datasphere/
https://www.i-scoop.eu/big-data-action-value-context/data-age-2025-datasphere/
https://www.infoq.com/interviews/riddoch-kernel-bypass-solarflare/
https://www.infoq.com/interviews/riddoch-kernel-bypass-solarflare/

[30] Dawn of the data center operating system. https://www.infoworld.com/
article/2906362/dawn-of-the-data-center-operating-system.html.

[31] Digital 2020: 3.8 Billion People Use Social Media. https://wearesocial.com/
blog/2020/01/digital-2020-3-8-billion-people-use-social-media.

[32] Disclosure of H/W prefetcher control on some Intel processors.
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-
on-some-intel-processors.

[33] Emon user’s guide. https://software.intel.com/en-us/download/emon-
user-guide.

[34] Envoy. https://www.envoyproxy.io/.

[35] Explicit os support for hardware threads. http://www.barrelfish.org/
publications/ma-apoenaru-hwthreads.pdf.

[36] Faban. http://faban.org. [Accessed 27-Apr-2018].

[37] Facebook Thrift. https://github.com/facebook/fbthrift.

[38] Fighting spam with haskell. https://code.facebook.com/posts/
745068642270222/fighting-spam-with-haskell/.

[39] Finagle. https://twitter.github.io/finagle/guide/index.html.

[40] Finding first set bit. https://en.wikipedia.org/wiki/Find_first_set.

[41] Flexible notification mechanism for user-level interrupts. https:
//patents.google.com/patent/US8285904.

[42] From a Monolith to Microservices + REST: the Evolution of LinkedIn’s Service Archi-
tecture. https://www.infoq.com/presentations/linkedin-microservices-
urn.

[43] Google Says the SoC is the New Motherboard. https://www.nextplatform.com/
2021/03/22/google-says-the-soc-is-the-new-motherboard/.

[44] Google Search Statistics. http://www.internetlivestats.com/google-
search-statistics/.

[45] gRPC. https://github.com/heathermiller/dist-prog-book/blob/
master/chapter/1/gRPC.md.

[46] Handling 1 Million Requests per Minute with Go. http://marcio.io/2015/07/
handling-1-million-requests-per-minute-with-golang/.

[47] Hapiger. https://github.com/grahamjenson/hapiger. [Accessed 4/27/2018].

236

https://www.infoworld.com/article/2906362/dawn-of-the-data-center-operating-system.html
https://www.infoworld.com/article/2906362/dawn-of-the-data-center-operating-system.html
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://software.intel.com/en-us/download/emon-user-guide
https://software.intel.com/en-us/download/emon-user-guide
https://www.envoyproxy.io/
http://www.barrelfish.org/publications/ma-apoenaru-hwthreads.pdf
http://www.barrelfish.org/publications/ma-apoenaru-hwthreads.pdf
http://faban.org
https://github.com/facebook/fbthrift
https://code.facebook.com/posts/745068642270222/fighting-spam-with-haskell/
https://code.facebook.com/posts/745068642270222/fighting-spam-with-haskell/
https://twitter.github.io/finagle/guide/index.html
https://en.wikipedia.org/wiki/Find_first_set
https://patents.google.com/patent/US8285904
https://patents.google.com/patent/US8285904
https://www.infoq.com/presentations/linkedin-microservices-urn
https://www.infoq.com/presentations/linkedin-microservices-urn
https://www.nextplatform.com/2021/03/22/google-says-the-soc-is-the-new-motherboard/
https://www.nextplatform.com/2021/03/22/google-says-the-soc-is-the-new-motherboard/
http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
https://github.com/grahamjenson/hapiger

[48] Hidden Costs of Memory Allocation. https://randomascii.wordpress.com/
2014/12/10/hidden-costs-of-memory-allocation/.

[49] IBM Archives: IBM Mainframes. https://www.ibm.com/ibm/history/
exhibits/mainframe/mainframe_intro2.html.

[50] Improve Application Performance With SwingWorker in Java SE 6.
http://www.oracle.com/technetwork/articles/javase/swingworker-
137249.html.

[51] Intel and Micron Produce Breakthrough Memory Technology. https:
//newsroom.intel.com/news-releases/intel-and-micron-produce-
breakthrough-memory-technology/.

[52] Intel delays its 10-nanometer ’Cannon Lake’ CPUs yet again. https:
//www.engadget.com/2018-04-27-intel-delays-cannon-lake-chips-
again.html.

[53] Intel dpt with aes-ni & secure key. www.intel.com/content/www/us/en/
architecture-and-technology/advanced-encryption-standard-aes/
data-protection-aes-general-technology.html.

[54] Intel i/o at. www.intel.com/content/www/us/en/wireless-network/accel-
technology.html.

[55] Intel knl. https://ark.intel.com/content/www/us/en/ark/products/
/knightslanding.html.

[56] Intel Memory Latency Checker v3.6. https://software.intel.com/en-us/
articles/intelr-memory-latency-checker.

[57] Intel optane technology, howpublished="http://www.intel.com/optane/".

[58] Intel resource director technology (rdt) in linux. https://01.org/intel-rdt-
linux.

[59] Internet Users and Usage. https://psu.pb.unizin.org/ist110/chapter/1-4-
internet-users-and-usage/.

[60] Introduction to Monolithic Architecture and MicroServices Architec-
ture. https://medium.com/koderlabs/introduction-to-monolithic-
architecture-and-microservices-architecture-b211a5955c63.

[61] Is Data Really the New Oil in the 21st Century? https://
towardsdatascience.com/is-data-really-the-new-oil-in-the-21st-
century-17d014811b88.

[62] John Hennessy and David Patterson Deliver Turing Lecture at ISCA 2018. https:
//www.acm.org/hennessy-patterson-turing-lecture.

237

https://randomascii.wordpress.com/2014/12/10/hidden-costs-of-memory-allocation/
https://randomascii.wordpress.com/2014/12/10/hidden-costs-of-memory-allocation/
https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro2.html
https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro2.html
http://www.oracle.com/technetwork/articles/javase/swingworker-137249.html
http://www.oracle.com/technetwork/articles/javase/swingworker-137249.html
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://www.engadget.com/2018-04-27-intel-delays-cannon-lake-chips-again.html
https://www.engadget.com/2018-04-27-intel-delays-cannon-lake-chips-again.html
https://www.engadget.com/2018-04-27-intel-delays-cannon-lake-chips-again.html
www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
www.intel.com/content/www/us/en/wireless-network/accel-technology.html
www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://ark.intel.com/content/www/us/en/ark/products//knightslanding.html
https://ark.intel.com/content/www/us/en/ark/products//knightslanding.html
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://www.intel.com/optane/
https://01.org/intel-rdt-linux
https://01.org/intel-rdt-linux
https://psu.pb.unizin.org/ist110/chapter/1-4-internet-users-and-usage/
https://psu.pb.unizin.org/ist110/chapter/1-4-internet-users-and-usage/
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://towardsdatascience.com/is-data-really-the-new-oil-in-the-21st-century-17d014811b88
https://towardsdatascience.com/is-data-really-the-new-oil-in-the-21st-century-17d014811b88
https://towardsdatascience.com/is-data-really-the-new-oil-in-the-21st-century-17d014811b88
https://www.acm.org/hennessy-patterson-turing-lecture
https://www.acm.org/hennessy-patterson-turing-lecture

[63] Key Components of a Software Defined Data Center. https://
www.evolvingsol.com/2018/04/17/components-software-defined-data-
center/.

[64] Latency is everywhere and it costs you sales - how to crush it. http:
//highscalability.com/blog/2009/7/25/latency-iseverywhere-and-
it-costs-you-sales-how-to-crush-it.html.

[65] Let’s look at Dispatch Timeout Handling in WebSphere Application Server for
z/OS. www.ibm.com/developerworks/community/blogs/aimsupport/entry/
dispatch_timeout_handling_in_websphere_application_server_for_zos.

[66] Linux bcc/BPF Run Queue (Scheduler) Latency. http://www.brendangregg.com/
blog/2016-10-08/linux-bcc-runqlat.html.

[67] LPOP key. https://redis.io/commands/lpop.

[68] Mahout. http://mahout.apache.org/. [Accessed 4/27/2018].

[69] Mcrouter. https://github.com/facebook/mcrouter.

[70] Memcached performance. https://github.com/memcached/memcached/wiki/
Performance.

[71] Microsoft Azure Blob Storage. https://azure.microsoft.com/en-us/
services/storage/blobs/.

[72] Mips cache line locking. https://s3-eu-west-1.amazonaws.com/downloads-
mips/documents/MD00904-2B-interAptiv-SUM-02.01.pdf.

[73] mongoDB. https://www.mongodb.com/.

[74] Monolithic application suites have dominated enterprise IT landscapes for the last
20 years. So why have they gone out of fashion? https://www.capgemini.com/
2019/06/monolith-to-microservices-an-integration-journey/.

[75] Myrocks: A space- and write-optimized MySQL database. https:
//code.facebook.com/posts/190251048047090/myrocks-a-space-and-
write-optimized-mysql-database/.

[76] OpenImages: A public dataset for large-scale multi-label and multi-class image
classification. https://github.com/openimages.

[77] OpenSSL & SSL/TLS Toolkit. https://www.openssl.org/.

[78] PerfKit Benchmarker. https://github.com/GoogleCloudPlatform/
PerfKitBenchmarker.

[79] Pokemon go now the biggest mobile game in US history. http:
//www.cnbc.com/2016/07/13/pokemon-go-now-the-biggest-mobile-
game-in-us-history.html.

238

https://www.evolvingsol.com/2018/04/17/components-software-defined-data-center/
https://www.evolvingsol.com/2018/04/17/components-software-defined-data-center/
https://www.evolvingsol.com/2018/04/17/components-software-defined-data-center/
http://highscalability.com/blog/2009/7/25/ latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html
http://highscalability.com/blog/2009/7/25/ latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html
http://highscalability.com/blog/2009/7/25/ latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html
www.ibm.com/developerworks/community/blogs/aimsupport/entry/dispatch_timeout_handling_in_websphere_application_server_for_zos
www.ibm.com/developerworks/community/blogs/aimsupport/entry/dispatch_timeout_handling_in_websphere_application_server_for_zos
http://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html
http://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html
https://redis.io/commands/lpop
http://mahout.apache.org/
https://github.com/facebook/mcrouter
https://github.com/memcached/memcached/wiki/Performance
https://github.com/memcached/memcached/wiki/Performance
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00904-2B-interAptiv-SUM-02.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00904-2B-interAptiv-SUM-02.01.pdf
https://www.mongodb.com/
https://www.capgemini.com/2019/06/monolith-to-microservices-an-integration-journey/
https://www.capgemini.com/2019/06/monolith-to-microservices-an-integration-journey/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://github.com/openimages
https://www.openssl.org/
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
http://www. cnbc.com/2016/07/13/pokemon-go-now-the-biggest-mobile-game-in-us-history.html
http://www. cnbc.com/2016/07/13/pokemon-go-now-the-biggest-mobile-game-in-us-history.html
http://www. cnbc.com/2016/07/13/pokemon-go-now-the-biggest-mobile-game-in-us-history.html

[80] The poll system call. https://www.usenix.org/legacy/events/usenix99/
full_papers/banga/banga_html/node4.html.

[81] The power of the proxy: Request routing memcached. https://dzone.com/
articles/the-power-of-the-proxy-request-routing-memcached. [Ac-
cessed 4/27/2018].

[82] Pred.io. http://predictionio.apache.org/index.html. [Accessed 4/27/2018].

[83] Programmer’s Guide, Release 2.0.0. https://www.intel.com/content/dam/
www/public/us/en/documents/guides/dpdk-programmers-guide.pdf.

[84] Protocol Buffers. https://developers.google.com/protocol-buffers/.

[85] Raccoon. www.npmjs.com/package/raccoon. [Accessed 4/27/2018].

[86] Real-time AI: Microsoft announces preview of Project Brainwave. https://
blogs.microsoft.com/ai/build-2018-project-brainwave/.

[87] Real World Technologies. https://www.realworldtech.com/forum/
\?threadid=185536&curpostid=185536.

[88] Redis. https://redis.io/.

[89] Redis Replication. https://redis.io/topics/replication.

[90] Researchers from Facebook has designed a way to measure ex-
actly how much a hardware accelerator would speed up a datacenter.
https://debuglies.com/2020/04/08/researchers-from-facebook-
has-designed-a-way-to-measure-exactly-how-much-a-hardware-
accelerator-would-speed-up-a-datacenter/.

[91] Resque. https://github.com/defunkt/resque.

[92] RQ. http://python-rq.org/.

[93] Samsung Z-SSD. https://www.samsung.com/semiconductor/ssd/z-ssd/.

[94] Scaling Gilt: from Monolithic Ruby Application to Distributed Scala Micro-Services
Architecture. https://www.infoq.com/presentations/scale-gilt.

[95] Seldon. www.seldon.io/. [Accessed 4/27/2018].

[96] Serverless on AWS. https://aws.amazon.com/serverless/.

[97] Setting Up Internal Load Balancing. https://cloud.google.com/compute/
docs/load-balancing/internal/.

[98] Similar Images graduates from Google Labs. https://
googleblog.blogspot.com/2009/10/similar-images-graduates-from-
google.html.

239

https://www.usenix.org/legacy/events/usenix99/full_papers/banga/banga_html/node4.html
https://www.usenix.org/legacy/events/usenix99/full_papers/banga/banga_html/node4.html
https://dzone.com/articles/the-power-of-the-proxy-request-routing-memcached
https://dzone.com/articles/the-power-of-the-proxy-request-routing-memcached
http://predictionio.apache.org/index.html
https://www.intel.com/content/dam/www/public/us/en/documents/guides/dpdk-programmers-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/dpdk-programmers-guide.pdf
https://developers.google.com/protocol-buffers/
www.npmjs.com/package/raccoon
https://blogs.microsoft.com/ai/build-2018-project-brainwave/
https://blogs.microsoft.com/ai/build-2018-project-brainwave/
https://www.realworldtech.com/forum/\?threadid=185536&curpostid=185536
https://www.realworldtech.com/forum/\?threadid=185536&curpostid=185536
https://redis.io/
https://redis.io/topics/replication
https://debuglies.com/2020/04/08/researchers-from-facebook-has-designed-a-way-to-measure-exactly-how-much-a-hardware-accelerator-would-speed-up-a-datacenter/
https://debuglies.com/2020/04/08/researchers-from-facebook-has-designed-a-way-to-measure-exactly-how-much-a-hardware-accelerator-would-speed-up-a-datacenter/
https://debuglies.com/2020/04/08/researchers-from-facebook-has-designed-a-way-to-measure-exactly-how-much-a-hardware-accelerator-would-speed-up-a-datacenter/
https://github.com/defunkt/resque
http://python-rq.org/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.infoq.com/presentations/scale-gilt
www.seldon.io/
https://aws.amazon.com/serverless/
https://cloud.google.com/compute/docs/load-balancing/internal/
https://cloud.google.com/compute/docs/load-balancing/internal/
https://googleblog.blogspot.com/2009/10/similar-images-graduates-from-google.html
https://googleblog.blogspot.com/2009/10/similar-images-graduates-from-google.html
https://googleblog.blogspot.com/2009/10/similar-images-graduates-from-google.html

[99] Simple object access protocol (SOAP) 1.1. https://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

[100] The evolution of data centers / data center development across the decades.
https://www.yondrgroup.com/yondr-intel/the-evolution-of-cloud-
data-centers-and-beyond/.

[101] The Evolution of Social Media: How Did It Begin, and Where Could It Go Next?
https://online.maryville.edu/blog/evolution-social-media/.

[102] The Top 12 Future Web Development Trends in 2021. https://dev.to/
adhyaswarnali/the-top-12-future-web-development-trends-in-2021-
25k5.

[103] Unlock system performance in dynamic environments. https://
www.intel.com/content/www/us/en/architecture-and-technology/
resource-director-technology.html.

[104] Using tracing at facebook scale. https://tracingsummit.org/w/images/6/6f/
TracingSummit2014-Tracing-at-Facebook-Scale.pdf.

[105] VMWare Timeline. https://www.vmware.com/timeline.html.

[106] What is microservices architecture? https://smartbear.com/learn/api-
design/what-are-microservices/.

[107] What is SOA, or service-oriented architecture? https://www.ibm.com/cloud/
learn/soa.

[108] What’s causing the exponential growth of data? https://insights.nikkoam.com/
articles/2019/12/whats_causing_the_exponential.

[109] What’s causing the exponential growth of data? https://insights.nikkoam.com/
articles/2019/12/whats_causing_the_exponential.

[110] Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Plagiarism&oldid=5139350.

[111] With long history of virtualization behind it, IBM looks to the future.
https://www.networkworld.com/article/2254433/with-long-history-
of-virtualization-behind-it--ibm-looks-to-the-future.html.

[112] Workers inside unit tests. http://python-rq.org/docs/testing/.

[113] x86/umwait: Enable user wait instructions. https://www.intel.com/content/
www/us/en/architecture-and-technology/resource-director-
technology.html.

[114] Zero-copy tcp receive. https://lwn.net/Articles/752188/.

240

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.yondrgroup.com/yondr-intel/the-evolution-of-cloud-data-centers-and-beyond/
https://www.yondrgroup.com/yondr-intel/the-evolution-of-cloud-data-centers-and-beyond/
https://online.maryville.edu/blog/evolution-social-media/
https://dev.to/adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5
https://dev.to/adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5
https://dev.to/adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://tracingsummit.org/w/images/6/6f/TracingSummit2014-Tracing-at-Facebook-Scale.pdf
https://tracingsummit.org/w/images/6/6f/TracingSummit2014-Tracing-at-Facebook-Scale.pdf
https://www.vmware.com/timeline.html
https://smartbear.com/learn/api-design/what-are-microservices/
https://smartbear.com/learn/api-design/what-are-microservices/
https://www.ibm.com/cloud/learn/soa
https://www.ibm.com/cloud/learn/soa
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://www.networkworld.com/article/2254433/with-long-history-of-virtualization-behind-it--ibm-looks-to-the-future.html
https://www.networkworld.com/article/2254433/with-long-history-of-virtualization-behind-it--ibm-looks-to-the-future.html
http://python-rq.org/docs/testing/
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://lwn.net/Articles/752188/

[115] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. Computing
Research Repository, 2016.

[116] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein, Ashutosh Mishra, Craig B.
Agricola, Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J. Starke,
Haren Myneni, and Charlie Wang. Data Compression Accelerator on IBM POWER9
and Z15 Processors. 2020.

[117] Tarek F Abdelzaher and Nina Bhatti. Web server QoS management by adaptive
content delivery. In International Workshop on Quality of Service, 1999.

[118] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski,
Brett Simmers, Edwin Smith, and Owen Yamauchi. The hiphop virtual machine. In
Acm Sigplan Notices, 2014.

[119] Neha Agarwal and Thomas F Wenisch. Thermostat: Application-transparent page
management for two-tiered main memory. In International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2017.

[120] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark S Manasse,
and Rina Panigrahy. Design tradeoffs for SSD performance. In USENIX Annual
Technical Conference, 2008.

[121] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote memory in the age of fast networks. In Symposium on Cloud
Computing, 2017.

[122] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled in-
structions: a low-overhead, locality-aware processing-in-memory architecture. In
International Symposium on Computer Architecture, 2015.

[123] Amitanand S Aiyer, Mikhail Bautin, Guoqiang Jerry Chen, Pritam Damania, Prakash
Khemani, Kannan Muthukkaruppan, Karthik Ranganathan, Nicolas Spiegelberg,
Liyin Tang, and Madhuwanti Vaidya. Storage infrastructure behind Facebook mes-
sages: Using HBase at scale. IEEE Data Eng. Bull., 2012.

[124] Samira Mirbagher Ajorpaz, Elba Garza, Sangam Jindal, and Daniel A Jiménez.
Exploring predictive replacement policies for instruction cache and branch target
buffer. In International Symposium on Computer Architecture, 2018.

241

[125] Hakan Akkan, Michael Lang, and Lorie M Liebrock. Stepping towards noiseless
linux environment. In International workshop on runtime and operating systems for
supercomputers, 2012.

[126] Alexa. Alexa, the web information company. http://www.alexa.com/. [Accessed
27-Apr-2018].

[127] Muhammad Shoaib Bin Altaf and David A. Wood. LogCA: A High-Level Perfor-
mance Model for Hardware Accelerators. In International Symposium on Computer
Architecture, 2017.

[128] Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep net-
works. In Advances in Neural Information Processing Systems, 2017.

[129] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat,
Carmelo Di Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan CP
Farinha, Benjamin Killeen, Christina Cheng, Yassine Jaoudi, and Geoffrey W. Burr.
Equivalent-accuracy accelerated neural-network training using analogue memory.
Nature, 558(7708):60–67, 2018.

[130] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence
Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes. In Symposium on
Operating Systems Principles, 2009.

[131] Thomas E. Anderson. The performance of spin lock alternatives for shared-money
multiprocessors. Parallel and Distributed Systems, 1990.

[132] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. In IEEE Symposium on Foundations of
Computer Science, 2006.

[133] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and Optimal LSH for Angular Distance. In Advances in Neural
Information Processing Systems. 2015.

[134] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin,
R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Strachan, and
Kaushik Roy. PUMA: A programmable ultra-efficient memristor-based accelerator
for machine learning inference. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019.

[135] Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. Impact of Response Latency
on User Behavior in Web Search. In International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2014.

[136] Andrea Arcangeli. Transparent hugepage support. KVM forum, 2010.

[137] Patroklos Argyroudis and Chariton Karamitas. Exploiting the jemalloc memory
allocator: Owning Firefox’s heap. Blackhat USA, 2012.

242

http://www.alexa.com/

[138] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[139] Manu Awasthi. Rethinking Design Metrics for Datacenter DRAM. In International
Symposium on Memory Systems, 2015.

[140] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ranganathan.
Memory Hierarchy for Web Search. In International Symposium on High Perfor-
mance Computer Architecture, 2018.

[141] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. AsmDB: Understanding and Mitigating Front-End
Stalls in Warehouse-Scale Computers. In International Symposium on Computer
Architecture, 2019.

[142] Eytan Bakshy, Solomon Messing, and Lada A Adamic. Exposure to ideologically
diverse news and opinion on Facebook. Science, 2015.

[143] Nikhil Bansal, Kedar Dhamdhere, Jochen Könemann, and Amitabh Sinha. Non-
clairvoyant scheduling for minimizing mean slowdown. Algorithmica, 2004.

[144] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed. A query rewriting
approach for web service composition. IEEE Transactions on Services Computing,
2010.

[145] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack
of the Killer Microseconds. Communications of the ACM, 2017.

[146] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The
google cluster architecture. In IEEE Micro, 2003.

[147] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system
characterization of commercial workloads. In ACM SIGARCH Computer Architecture
News, 1998.

[148] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
Computer, 2007.

[149] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Synthesis lectures on computer
architecture, 4(1):1–108, 2009.

[150] Matěj Bartík, Sven Ubik, and Pavel Kubalik. LZ4 compression algorithm on FPGA.
In Electronics, Circuits, and Systems, 2015.

243

[151] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH forest: self-tuning indexes
for similarity search. In International conference on World Wide Web, 2005.

[152] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems journal, 5(2):78–101, 1966.

[153] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. Dune: Safe User-level Access to Privileged CPU Features. In
USENIX Symposium on Operating Systems Design and Implementation, 2012.

[154] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In USENIX Conference on Operating Systems Design
and Implementation, 2014.

[155] S Berchtold, DA Keim, and HP Kriegel. An index structure for high-dimensional
data. Readings in multimedia computing and networking, 2001.

[156] Stefan Berchtold, Christian Bohm, Hosagrahar V Jagadish, H-P Kriegel, and Jörg
Sander. Independent quantization: An index compression technique for high-
dimensional data spaces. In International Conference on Data Engineering, 2000.

[157] Emery D Berger, Benjamin G Zorn, and Kathryn S McKinley. Reconsidering custom
memory allocation. ACM, 2002.

[158] Tom Berson, Drew Dean, Matt Franklin, Diana Smetters, and Michael Spreitzer.
Cryptography as a network service. In Network and Distributed System Security
Symposium, 2001.

[159] Srikant Bharadwaj, Guilherme Cox, Tushar Krishna, and Abhishek Bhattacharjee.
Scalable Distributed Shared Last-Level TLBs Using Low-Latency Interconnects. In
International Symposium on Microarchitecture, 2018.

[160] L Bharathi, N Sangeetha Priya, BS Sathish, A Ranganayakulu, and S Jagan Mohan
Rao. Burst rate based optimized io queue management for improved performance
in optical burst switching networks. In International Conference on Advanced
Computing & Communication Systems, 2019.

[161] Abhishek Bhattacharjee. Translation-Triggered Prefetching. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
2017.

[162] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In PACT, 2008.

[163] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
The end of slow networks: It’s time for a redesign. arXiv preprint arXiv:1504.01048,
2015.

244

[164] Filip Blagojevic, Dimitrios S Nikolopoulos, Alexandros Stamatakis, Christos D
Antonopoulos, and Matthew Curtis-Maury. Runtime scheduling of dynamic paral-
lelism on accelerator-based multi-core systems. Parallel Computing, 2007.

[165] Christopher James Blythe, Gennaro A Cuomo, Erik A Daughtrey, and Matt R
Hogstrom. Dynamic thread pool tuning techniques. Google Patents, 2007.

[166] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-
dimensional spaces: Index structures for improving the performance of multimedia
databases. ACM Computer Survey, 2001.

[167] Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communica-
tions of the ACM, 2011.

[168] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan,
Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Ar-
avind Menon, and Samuel Rash. Apache Hadoop goes realtime at Facebook. In
International Conference on Management of data, 2011.

[169] Anna Bouch, Nina Bhatti, and Allan Kuchinsky. Quality is in the eye of the beholder:
Meeting users’ requirements for internet quality of service. In ACM Conference on
Human Factors and Computing Systems, 2000.

[170] Anne Bracy, Kshitij Doshi, and Quinn Jacobson. Disintermediated active communi-
cation. IEEE Computer Architecture Letters, 2006.

[171] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C Li, et al. TAO:
Facebook’s Distributed Data Store for the Social Graph. In USENIX Annual Technical
Conference, 2013.

[172] Jianhua Cao, Mikael Andersson, Christian Nyberg, and Maria Kihl. Web server
performance modeling using an m/g/1/k* ps queue. In International Conference on
Telecommunications. IEEE.

[173] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-
ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale acceleration
architecture. In IEEE/ACM International Symposium on Microarchitecture, 2016.

[174] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation
of speculative threads in multiprocessors. ACM SIGARCH Computer Architecture
News, 2006.

[175] Guang-Ho Cha and Chin-Wan Chung. The gc-tree: a high-dimensional index structure
for similarity search in image databases. IEEE transactions on multimedia, 2002.

245

[176] Kevin Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
Understanding Latency Variation in Modern DRAM Chips: Experimental Characteri-
zation, Analysis, and Optimization. In International Conference on Measurement
and Modeling of Computer Science, 2016.

[177] Dehao Chen, David Xinliang Li, and Tipp Moseley. AutoFDO: Automatic feedback-
directed optimization for warehouse-scale applications. In International Symposium
on Code Generation & Optimization, 2016.

[178] Doris Chen and Deshanand Singh. Fractal video compression in OpenCL: An evalua-
tion of CPUs, GPUs, and FPGAs as acceleration platforms. In Design Automation
Conference, 2013.

[179] Derek Chiou. The microsoft catapult project. In International Symposium on Work-
load Characterization, 2017.

[180] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit, Michael Ferdman, and Nima
Honarmand. Taming the Killer Microsecond. In International Symposium on Micro-
architecture, 2018.

[181] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek Chiou,
Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle
Holohan, Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K. Kovvuri, Sitaram
Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon Perez, Amanda
Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja Seera, Sangeetha
Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip Yi Xiao, Dan Zhang,
Ritchie Zhao, and Doug Burger. Serving dnns in real time at datacenter scale with
project brainwave. IEEE Micro, 38(2):8–20, 2018.

[182] Eric Chung, Peter Milder, James Hoe, and Ken Mai. Single-chip heterogeneous
computing: Does the future include custom logic, FPGAs, and GPGPUs? In
International symposium on microarchitecture, 2010.

[183] Jaewoong Chung and Karin Strauss. User-level interrupt mechanism for multi-core
architectures, 2012.

[184] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A Patterson, and Krste
Asanovic. A hardware evaluation of cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness. In ACM SIGARCH Computer
Architecture News, 2013.

[185] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. In ACM Symposium on
Cloud Computing, 2010.

246

[186] Guilherme Cox and Abhishek Bhattacharjee. Efficient Address Translation for
Architectures with Multiple Page Sizes. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2017.

[187] Travis Craig. Building fifo and priority queuing spin locks from atomic swap.
Technical Report, 1993.

[188] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. LogP: Towards a
realistic model of parallel computation. In ACM Sigplan Notices, 1993.

[189] Ryan R. Curtin, James R. Cline, Neil P. Slagle, William B. March, P. Ram, Nishant A.
Mehta, and Alexander G. Gray. MLPACK: A scalable C++ machine learning library.
Journal of Machine Learning Research, 2013.

[190] Matthew Curtis-Maury, James Dzierwa, Christos D Antonopoulos, and Dimitrios S
Nikolopoulos. Online power-performance adaptation of multithreaded programs
using hardware event-based prediction. In Annual International conference on
Supercomputing, 2006.

[191] Bruno Da Silva, An Braeken, Erik H D’Hollander, and Abdellah Touhafi. Performance
modeling for FPGAs: extending the roofline model with high-level synthesis tools.
International Journal of Reconfigurable Computing, 2013.

[192] Mayank Daga, Ashwin M Aji, and Wu-chun Feng. On the efficacy of a fused CPU+
GPU processor (or APU) for parallel computing. In Application Accelerators in
High-Performance Computing, 2011.

[193] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. RPCValet: NI-Driven Tail-
Aware Balancing of us-Scale RPCs. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019.

[194] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible information
flow architecture for software security. ACM SIGARCH Computer Architecture News,
2007.

[195] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta,
Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow, and
James Alexander Docauer. Andromeda: Performance, isolation, and velocity at
scale in cloud network virtualization. In USENIX Symposium on Networked Systems
Design and Implementation, 2018.

[196] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark Horowitz.
CPU DB: Recording Microprocessor History. Communications of the ACM, 2012.

[197] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive Hashing Scheme Based on P-stable Distributions. In Annual Symposium on
Computational Geometry, 2004.

247

[198] Jeffrey Dean and Luiz Andre Barroso. The Tail at Scale. Communications of the
ACM, 2013.

[199] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 2008.

[200] Carlo C Del Mundo, Vincent T Lee, Luis Ceze, and Mark Oskin. NCAM: Near-Data
Processing for Nearest Neighbor Search. In International Symposium on Memory
Systems, 2015.

[201] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2013.

[202] Christina Delimitrou and Christos Kozyrakis. Amdahl’s law for tail latency. Commu-
nications of the ACM, 2018.

[203] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest Bassous,
and Andre R LeBlanc. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 1974.

[204] Hu Ding, Yu Liu, Lingxiao Huang, and Jian Li. K-means clustering with distributed
dimensions. In Proceedings of The 33rd International Conference on Machine
Learning, 2016.

[205] Huping Ding, Yun Liang, and Tulika Mitra. Wcet-centric partial instruction cache
locking. In DAC Design Automation Conference 2012, 2012.

[206] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. Prime+ abort:
A timer-free high-precision l3 cache attack using intel TSX. In USENIX Security
Symposium, 2017.

[207] Namiot Dmitry and Sneps-Sneppe Manfred. On micro-services architecture. Interna-
tional Journal of Open Information Technologies, 2014.

[208] James Donald and Margaret Martonosi. Techniques for Multicore Thermal Manage-
ment: Classification and New Exploration. In International Symposium on Computer
Architecture, 2006.

[209] Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. Modeling
LSH for performance tuning. In ACM conference on Information and knowledge
management, 2008.

[210] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing
Guan. High performance network virtualization with SR-IOV. Journal of Parallel
and Distributed Computing, 2012.

[211] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. Hip: hybrid
interrupt-polling for the network interface. SIGOPS Operating Systems Review, 2001.

248

[212] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha Ra-
hatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside 6th-
generation intel core: new microarchitecture code-named skylake. IEEE Micro,
2017.

[213] Han-cong DUAN, Xian-liang LU, and Jie SONG. Analysis and design of communi-
cation server based on epoll and sped. Computer Applications, 2004.

[214] Jose Duato, Antonio J Pena, Federico Silla, Rafael Mayo, and Enrique S Quintana-
Orti. Performance of CUDA virtualized remote GPUs in high performance clusters.
In Parallel Processing, 2011.

[215] Paul Emmerich, Maximilian Pudelko, Simon Bauer, and Georg Carle. User Space
Network Drivers. In Proceedings of the Applied Networking Research Workshop,
2018.

[216] Deniz Ersoz, Mazin S Yousif, and Chita R Das. Characterizing network traffic in
a cluster-based, multi-tier data center. In International Conference on Distributed
Computing Systems, 2007.

[217] Hadi Esmaeilzadeh, Emily Blem, Renee Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark Silicon & the End of Multicore Scaling. In International
Symposium on Computer Architecture, 2011.

[218] Babak Falsafi and Thomas F Wenisch. A primer on hardware prefetching. Synthesis
Lectures on Computer Architecture, 2014.

[219] Qi Fan and Qingyang Wang. Performance comparison of web servers with different
architectures: a case study using high concurrency workload. In IEEE Workshop on
Hot Topics in Web Systems and Technologies, 2015.

[220] Dror G Feitelson. A survey of scheduling in multiprogrammed parallel systems. IBM
Research Division, 1994.

[221] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads
on Modern Hardware. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2012.

[222] Xiaoli Zhang Fern and Carla E Brodley. Random projection for high dimensional
data clustering: A cluster ensemble approach. In ICML, 2003.

[223] Brad Fitzpatrick. Distributed Caching with Memcached. Linux J., 2004.

[224] Jeremy Fowers, Joo-Young Kim, Doug Burger, and Scott Hauck. A scalable high-
bandwidth architecture for lossless compression on fpgas. In Field-Programmable
Custom Computing Machines, 2015.

249

[225] Eitan Frachtenberg. Reducing query latencies in web search using fine-grained
parallelism. World Wide Web, 2009.

[226] Philip Werner Frey and Gustavo Alonso. Minimizing the Hidden Cost of RDMA. In
Distributed Computing Systems, 2009.

[227] Borivoje Furht and Armando Escalante. Handbook of cloud computing. Springer,
2010.

[228] Aditya Sanjay Gadre, Kaustubh Kabra, Ashwin Vasani, and Keshav Darak. X-xen:
huge page support in xen. In Linux Symposium, 2011.

[229] Yu Gan and Christina Delimitrou. The Architectural Implications of Cloud Microser-
vices. IEEE Computer Architecture Letters, 2018.

[230] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan
Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2019.

[231] GR Gao, HHJ Hum, KB Theobald, Xin-Min Tian, and O Maquelin. Polling watchdog:
Combining polling and interrupts for efficient message handling. In International
Symposium on Computer Architecture, 1996.

[232] Bogdan Georgescu, Ilan Shimshoni, and Peter Meer. Mean shift based clustering
in high dimensions: A texture classification example. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, 2003.

[233] Pawel Gepner and Michal Filip Kowalik. Multi-core processors: New way to achieve
high system performance. In International Symposium on Parallel Computing in
Electrical Engineering, 2006.

[234] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search in High
Dimensions via Hashing. In International Conference on Very Large Data Bases,
1999.

[235] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M
Chen, and Thomas F Wenisch. Persistency for synchronization-free regions. In
Programming Language Design and Implementation, 2018.

[236] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni, and Thomas F
Wenisch. HARE: Hardware accelerator for regular expressions. In International
Symposium on Microarchitecture, 2016.

250

[237] Herman H Goldstine and Adele Goldstine. The Electronic Numerical Integrator
and Computer (ENIAC). Mathematical Tables and Other Aids to Computation,
2(15):97–110, 1946.

[238] Hossein Golestani, Amirhossein Mirhosseini, and Thomas F. Wenisch. Software data
planes: You can’t always spin to win. In Proceedings of the ACM Symposium on
Cloud Computing, 2019.

[239] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A. Jiménez,
Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha, and
Ankit Ghiya. Evolution of the samsung exynos CPU microarchitecture. In Interna-
tional Symposium on Computer Architecture, 2020.

[240] Rachid Guerraoui and Michał Kapałka. Principles of transactional memory. Synthesis
Lectures on Distributed Computing, 2010.

[241] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schuchart,
and Robin Geyer. An energy efficiency feature survey of the intel haswell processor.
In IEEE International Parallel and Distributed Processing Symposium Workshop,
2015.

[242] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo Bianchini, and
Kathryn S. McKinley. Few-to-Many: Incremental Parallelism for Reducing Tail
Latency in Interactive Services. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2015.

[243] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen, Ricardo Bianchini,
and Kathryn S. McKinley. Exploiting Heterogeneity for Tail Latency and Energy
Efficiency. In International Symposium on Microarchitecture, 2017.

[244] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Reac-
tive NUCA: Near-optimal Block Placement and Replication in Distributed Caches.
In International Symposium on Computer Architecture, 2009.

[245] F. Maxwell Harper and Joseph A. Konstan. The Movielens Datasets: History and
Context. ACM Tranactions on Interactive Intelligent Systems, 2015.

[246] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng Li,
Ronald Dreslinski, Trevor Mudge, Jason Mars, and Lingjia Tang. Djinn and Tonic:
DNN as a Service and Its Implications for Future Warehouse Scale Computers. In
International Symposium on Computer Architecture, 2015.

[247] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang, Cheng Liv, Austin Rovinski,
Arjun Khurana, Ron Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and
Jason Mars. Sirius: An Open End-to-End Voice and Vision Personal Assistant and
Its Implications for Future Warehouse Scale Computers. In International Conference
on Architectural Support for Programming Languages and Operating Systems, 2015.

251

[248] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, and Aditya Kalro. Applied Ma-
chine Learning at Facebook: A Datacenter Infrastructure Perspective. In International
Symposium on High Performance Computer Architecture, 2018.

[249] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela. Practical
Lessons from Predicting Clicks on Ads at Facebook. In International Workshop on
Data Mining for Online Advertising, 2014.

[250] Yuxiong He, Wen-Jing Hsu, and Charles E Leiserson. Provably efficient online
nonclairvoyant adaptive scheduling. IEEE Transactions on Parallel and Distributed
Systems, 2008.

[251] Mark Hempstead, Gu-Yeon Wei, and David Brooks. Navigo: An early-stage model
to study power-contrained architectures & specialization. In Workshop on Modeling,
Benchmarking, and Simulations, 2009.

[252] John L Hennessy and David A Patterson. Computer Architecture: A Quantitative
Approach. Elsevier, 2011.

[253] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comp. Arch.
News, 2006.

[254] Eric N Herness, Rob J High, and Jason R McGee. Websphere Application Server: A
foundation for on demand computing. IBM Systems Journal, 2004.

[255] Mark Hill and Vijay Janapa Reddi. Gables: A Roofline Model for Mobile SoCs. In
High Performance Computer Architecture, 2019.

[256] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer,
41(7):33–38, 2008.

[257] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat. Sleepy sloth:
Threads as interrupts as threads. In Real-Time Systems Symposium, 2011.

[258] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. PASTE: A Net-
work Programming Interface for Non-Volatile Main Memory. In USENIX Symposium
on Networked Systems Design and Implementation, 2018.

[259] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In SIGARCH Computer
Architecture News, 2009.

[260] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and performance model.
In SIGARCH Computer Architecture News, 2010.

252

[261] Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meisner, Thomas
Wenisch, Lingjia Tang, Jason Mars, and Ron Dreslinski. Adrenaline: Pinpointing and
Reining in Tail Queries with Quick Voltage Boosting. In International Symposium
on High Performance Computer Architecture, 2015.

[262] James Hu, Irfan Pyarali, and Douglas C Schmidt. Applying the proactor pattern
to high-performance web servers. In International Conference on Parallel and
Distributed Computing and Systems, 1998.

[263] James C. Hu and Douglas C. Schmidt. JAWS: A Framework for High-performance
Web Servers. In In Domain-Specific Application Frameworks: Frameworks Experi-
ence by Industry, 1999.

[264] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song
Jiang, and Zhenlin Wang. LAMA: Optimized Locality-aware Memory Allocation for
Key-value Cache. In USENIXAnnual Technical Conference, 2015.

[265] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos Kozyrakis. Mind
the gap: A case for informed request scheduling at the nic. In ACM Workshop on Hot
Topics in Networks, 2019.

[266] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality. In ACM Symposium on Theory of Computing,
1998.

[267] CAT Intel. Improving Real-Time Performance by Utilizing Cache Allocation Tech-
nology. Intel Corporation, April, 2015.

[268] Jürgen Jahns and Sing H Lee. Optical Computing Hardware: Optical Computing.
Academic press, 2014.

[269] Akanksha Jain and Calvin Lin. Back to the future: leveraging Belady’s algorithm for
improved cache replacement. In International Symposium on Computer Architecture,
2016.

[270] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. High performance
cache replacement using re-reference interval prediction (RRIP). ACM SIGARCH
Computer Architecture News, 2010.

[271] Majid Jalili, Ioannis Manousakis, Íñigo Goiri, Pulkit A. Misra, Ashish Raniwala,
Husam Alissa, Bharath Ramakrishnan, Phillip Tuma, Christian Belady, Marcus
Fontoura, and Ricardo Bianchini. Cost-Efficient Overclocking in Immersion-Cooled
Datacenters. In International Symposium on Computer Architecture, 2021.

[272] Vijay Janapa Reddi, Benjamin C Lee, Trishul Chilimbi, and Kushagra Vaid. Web
search using mobile cores: quantifying and mitigating the price of efficiency. In ACM
SIGARCH Computer Architecture News, 2010.

253

[273] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang, Yuxiong He, Sameh Elnikety,
Alan L. Cox, and Scott Rixner. Predictive Parallelization: Taming Tail Latencies in
Web Search. In International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2014.

[274] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. mTCP: A Highly Scalable User-level TCP
Stack for Multicore Systems. In USENIX Conference on Networked Systems Design
and Implementation, 2014.

[275] Haipeng Jia, Yunquan Zhang, Guoping Long, Jianliang Xu, Shengen Yan, and Yan
Li. GPURoofline: a model for guiding performance optimizations on GPUs. In
European Conference on Parallel Processing, 2012.

[276] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo. Characterizing
data analysis workloads in data centers. In International Symposium on Workload
Characterization, 2013.

[277] F. Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C. Mowry. Decoupling
Contention Management from Scheduling. In Architectural Support for Programming
Languages and Operating Systems, 2010.

[278] Teresa Johnson, Mehdi Amini, and Xinliang David Li. ThinLTO: scalable and
incremental LTO. In IEEE/ACM International Symposium on Code Generation and
Optimization, 2017.

[279] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khai-
tan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-datacenter performance analysis of a tensor processing unit. In International
Symposium on Computer Architecture, 2017.

[280] Changhee Jung, Daeseob Lim, Jaejin Lee, and SangYong Han. Adaptive execution
techniques for SMT multiprocessor architectures. In ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2005.

254

[281] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières,
and Christos Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In USENIX Symposium on Networked Systems Design and Implementation,
2019.

[282] Alain Kägi, Doug Burger, and James R Goodman. Efficient synchronization: Let
them eat qolb. In International symposium on Computer architecture, 1997.

[283] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. Density-connected subspace
clustering for high-dimensional data. In SDM, 2004.

[284] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim. Measuring
interference between live datacenter applications. In International Conference on
High Performance Computing, Networking, Storage and Analysis, 2012.

[285] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
ISCA, 2015.

[286] Svilen Kanev, Kim Hazelwood, Gu-Yeon Wei, and David Brooks. Tradeoffs be-
tween power management and tail latency in warehouse-scale applications. In IEEE
International Symposium on Workload Characterization, 2014.

[287] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. Mallacc: Accelerating
Memory Allocation. In Architectural Support for Programming Languages and
Operating Systems, 2017.

[288] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven design
for cloud infrastructure devops. In International Conference on Cloud Engineering,
2016.

[289] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker, and Amin
Vahdat. Chronos: Predictable low latency for data center applications. In ACM
Symposium on Cloud Computing, 2012.

[290] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
Redundant Memory Mappings for Fast Access to Large Memories. In International
Symposium on Computer Architecture, 2015.

[291] Martin Karsten and Saman Barghi. User-level threading: Have your cake and eat it
too. ACM Measurement and Analysis of Computing Systems, 2020.

[292] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez. Rubik:
Fast analytical power management for latency-critical systems. In International
Symposium on Microarchitecture, 2015.

[293] Harshad Kasture and Daniel Sanchez. Tailbench: A benchmark suite and evaluation
methodology for latency-critical applications. In IISWC, 2016.

255

[294] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture Techniques for
Power-Efficiency. Synthesis Lectures on Computer Architecture, 2008.

[295] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: Unified Instruction
Supply for Scale-out Servers. In International Symposium on Microarchitecture,
2015.

[296] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: unified instruction supply
for scale-out servers. In International Symposium on Microarchitecture, 2015.

[297] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundararajan,
Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam, Heiner
Litz, and Baris Kasikci. Twig: Profile-Guided BTB Prefetching for Data Center
Applications. In IEEE/ACM International Symposium on Microarchitecture, 2021.

[298] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner Litz,
and Baris Kasikci. I-SPY: Context-Driven Conditional Instruction Prefetching with
Coalescing. In IEEE/ACM International Symposium on Microarchitecture, 2020.

[299] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci. Ripple: Profile-Guided Instruction Cache
Replacement for Data Center Applications. In International Symposium on Computer
Architecture, 2021.

[300] Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N. Patt.
Morphcore: An energy-efficient microarchitecture for high performance ilp and high
throughput tlp. In International Symposium on Microarchitecture, 2012.

[301] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. Bit-plane com-
pression: Transforming data for better compression in many-core architectures. In
International Symposium on Computer Architecture, 2016.

[302] Saehoon Kim, Yuxiong He, Seung-won Hwang, Sameh Elnikety, and Seungjin Choi.
Delayed-Dynamic-Selective (DDS) Prediction for Reducing Extreme Tail Latency
in Web Search. In ACM International Conference on Web Search and Data Mining,
2015.

[303] Taewhan Kim and Jungeun Kim. Integration of code scheduling, memory allocation,
and array binding for memory-access optimization. Computer-Aided Design of
Integrated Circuits and Systems, 2006.

[304] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote flash local flash.
ACM SIGARCH Computer Architecture News, 2017.

[305] Kathleen Knobe, Joan D. Lukas, and Guy L. Stelle, Jr. Data Optimization: Allocation
of Arrays to Reduce Communication on SIMD Machines. Journal of Parallel and
Distributed Computing, 1990.

256

[306] Walden Ko, Mark Yankelevsky, Dimitrios S Nikolopoulos, and Constantine D Poly-
chronopoulos. Effective cross-platform, multilevel parallelism via dynamic adaptive
execution. In Parallel and Distributed Processing Symposium, 2001.

[307] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. Practical Guide to Controlled
Experiments on the Web: Listen to Your Customers Not to the Hippo. In International
Conference on Knowledge Discovery and Data Mining, 2007.

[308] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Language-level Persistency. In
International Symposium on Computer Architecture, 2017.

[309] Aasheesh Kolli, Steven Pelley, Ali G. Saidi, Peter M. Chen, and Thomas F. Wenisch.
High-Performance Transactions for Persistent Memories. In International Conference
on Architectural Support for Programming Languages and Operating Systems, 2016.

[310] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 2009.

[311] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid. Server
engineering insights for large-scale online services. IEEE micro, 2010.

[312] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. Blasting Through the Front-End
Bottleneck with Shotgun. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[313] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. Blasting through the front-end
bottleneck with shotgun. International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[314] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approx-
imate nearest neighbor in high dimensional spaces. SIAM Journal on Computing,
2000.

[315] Monica S Lam. A systolic array optimizing compiler. 2012.

[316] Koen Langendoen, John Romein, Raoul Bhoedjang, and Henri Bal. Integrating
polling, interrupts, and thread management. In Symposium on the Frontiers of
Massively Parallel Computing, 1996.

[317] P-A Larson, Jonathan Goldstein, and Jingren Zhou. MTCache: Transparent mid-tier
database caching in SQL server. In International Conference on Data Engineering,
2004.

[318] Maysam Lavasani, Hari Angepat, and Derek Chiou. An FPGA-based in-line acceler-
ator for memcached. IEEE Computer Architecture Letters, 2013.

[319] Doug Lea and Wolfram Gloger. A memory allocator. Unix/mail, 1996.

257

[320] Timothy R Learmont. Fine-grained consistency mechanism for optimistic concur-
rency control using lock groups. Google Patents, 2001.

[321] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark. Thread
Tailor: Dynamically Weaving Threads Together for Efficient, Adaptive Parallel
Applications. In International Symposium on Computer Architecture, 2010.

[322] Sang-Yun Lee and Junil Park. Architecture of 3D memory cell array on 3D IC. In
IEEE International Memory Workshop, 2012.

[323] Andriy Lesyuk. Mastering Redmine. 2013.

[324] Chen Li, Edward Chang, Hector Garcia-Molina, and Gio Wiederhold. Clustering
for approximate similarity search in high-dimensional spaces. IEEE Transactions on
Knowledge and Data Engineering, 2002.

[325] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch. In
Workshop on Experimental computer science, 2007.

[326] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan RK Ports, Irene Zhang, Ricardo Bianchini, Haryadi S Gunawi, and Anirudh
Badam. Leapio: Efficient and portable virtual nvme storage on arm socs. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, 2020.

[327] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of
the Tail: Hardware, OS, and Application-level Sources of Tail Latency. In ACM
Symposium on Cloud Computing, 2014.

[328] Yun Liang and Tulika Mitra. Instruction cache locking using temporal reuse profile.
In Proceedings of the 47th Design Automation Conference, 2010.

[329] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA: A
Holistic Approach to Fast In-memory Key-value Storage. In USENIX Conference on
Networked Systems Design and Implementation, 2014.

[330] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel, Trevor
Mudge, and Steven Reinhardt. Understanding and designing new server architectures
for emerging warehouse-computing environments. In ACM SIGARCH Computer
Architecture News, 2008.

[331] Ankur Limaye and Tosiron Adegbija. A Workload Characterization of the SPEC
CPU2017 Benchmark Suite. In International Symposium on Performance Analysis of
Systems and Software, 2018.

[332] Yibei Ling, Tracy Mullen, and Xiaola Lin. Analysis of Optimal Thread Pool Size.
SIGOPS Operating Systems Review, 2000.

258

[333] Lisa Hsu. The Importance of End-to-End Thinking in System De-
sign. www.sigarch.org/the-importance-of-end-to-end-thinking-in-
system-design, 2020. [Online; accessed 10-August-2021].

[334] Lisa Hsu. The Future of Datacenter Cooling. https://www.sigarch.org/the-
future-of-datacenter-cooling/, 2021. [Online; accessed 10-August-2021].

[335] Dong Liu and Ralph Deters. The Reverse C10K Problem for Server-Side Mashups.
In International Conference on Service-Oriented Computing Workshops, 2008.

[336] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore
Atreya. IncBricks: Toward In-Network Computation with an In-Network Cache. In
Architectural Support for Programming Languages and Operating Systems, 2017.

[337] Tiantian Liu, Minming Li, and Chun Jason Xue. Minimizing wcet for real-time
embedded systems via static instruction cache locking. In IEEE Real-Time and
Embedded Technology and Applications Symposium, 2009.

[338] Ting Liu, Andrew W Moore, Ke Yang, and Alexander G Gray. An investigation of
practical approximate nearest neighbor algorithms. In Advances in neural information
processing systems, 2004.

[339] Patrick Michael LiVecchi. Performance enhancements for threaded servers, 2004.
US Patent 6,823,515.

[340] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. Towards energy proportionality for large-scale latency-critical workloads.
In International Symposium on Computer Architecture, 2014.

[341] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos
Kozyrakis. Heracles: Improving Resource Efficiency at Scale. In International
Symposium on Computer Architecture, 2015.

[342] YJ Lo, S Williams, BV Straalen, TJ Ligocki, MJ Cordery, NJ Wright, MW Hall, and
L Oliker. Roofline: an insightful visual performance model for multicore architectures.
High Performance Computing Systems. Performance Modeling, Benchmarking, and
Simulation, 2015.

[343] Paul N Loewenstein, Mark A Luttrell, and Paul J Jordan. Load-monitor mwait.
Google Patents, 2014.

[344] Unai Lopez-Novoa, Alexander Mendiburu, and Jose Miguel-Alonso. A survey of
performance modeling and simulation techniques for accelerator-based computing.
Parallel and Distributed Systems, 2014.

[345] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocberber,
Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer, and
Babak Falsafi. Scale-out Processors. In International Symposium on Computer
Architecture, 2012.

259

www.sigarch.org/the-importance-of-end-to-end-thinking-in-system-design
www.sigarch.org/the-importance-of-end-to-end-thinking-in-system-design
https://www.sigarch.org/the-future-of-datacenter-cooling/
https://www.sigarch.org/the-future-of-datacenter-cooling/

[346] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M Sleiman, Ronald
Dreslinski, Thomas F Wenisch, and Scott Mahlke. Composite cores: Pushing hetero-
geneity into a core. In International symposium on microarchitecture, 2012.

[347] Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles Pokam, Chris J
Newburn, and Joseph Devietti. LASER: Light, Accurate Sharing dEtection and
Repair. In International Symposium on High Performance Computer Architecture,
2016.

[348] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe
LSH: Efficient Indexing for High-dimensional Similarity Search. In International
Conference on Very Large Data Bases, 2007.

[349] Peter Magnusson, Anders Landin, and Erik Hagersten. Queue locks on cache coherent
multiprocessors. In International Parallel Processing Symposium, 1994.

[350] Hosein Mohammadi Makrani and Houman Homayoun. MeNa: A memory navigator
for modern hardware in a scale-out environment. In International Symposium on
Workload Characterization, 2017.

[351] Howard Mao, Randy H Katz, and Krste Asanović. Hardware acceleration for memory
to memory copies. EECS Department, University of California Berkeley, 2017.

[352] Jason Mars. Rethinking the architecture of warehouse-scale computers. Ph.D.
Dissertation, 2012.

[353] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in homogeneous warehouse-
scale computers. In International Symposium on Computer Architecture, 2013.

[354] Jason Mars, Lingjia Tang, and Robert Hundt. Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity. IEEE Computer Architec-
ture Letters, 2011.

[355] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
Bubble-up: Increasing utilization in modern warehouse scale computers via sensible
co-locations. In International Symposium on Microarchitecture, 2011.

[356] Jose F Martinez and Josep Torrellas. Speculative locks: Concurrent execution of
critical sections in shared-memory multiprocessors. In High Performance Memory
Systems. 2004.

[357] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick,
Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A microkernel approach to host
networking. In ACM Symposium on Operating Systems Principles, 2019.

260

[358] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, 2000.

[359] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action, Second
Edition: Covers Apache Lucene 3.0. 2010.

[360] Cathy McCann, Raj Vaswani, and John Zahorjan. A Dynamic Processor Allocation
Policy for Multiprogrammed Shared-memory Multiprocessors. ACM Transactions
on Computer Systems, 1993.

[361] James McNames. A fast nearest-neighbor algorithm based on a principal axis search
tree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.

[362] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F. Wenisch. Power Management of Online Data-intensive Services. In
International Symposium on Computer Architecture, 2011.

[363] David Meisner, Junjie Wu, and Thomas F. Wenisch. BigHouse: A Simulation
Infrastructure for Data Center Systems. In International Symposium on Performance
Analysis of Systems & Software, 2012.

[364] John M Mellor-Crummey and Michael L Scott. Scalable reader-writer synchroniza-
tion for shared-memory multiprocessors. ACM SIGPLAN Notices, 1991.

[365] Mitesh R Meswani, Laura Carrington, Didem Unat, Allan Snavely, Scott Baden, and
Stephen Poole. Modeling and predicting performance of high performance computing
applications on hardware accelerators. High Performance Computing Applications,
2013.

[366] Maged M. Michael. Scalable Lock-free Dynamic Memory Allocation. In Program-
ming Language Design and Implementation, 2004.

[367] Amirhossein Mirhosseini, Hossein Golestani, and Thomas F. Wenisch. Hyperplane:
A notification accelerator for software data planes. In International Symposium on
Microarchitecture, 2020.

[368] Amirhossein Mirhosseini, Akshitha Sriraman, and Thomas F. Wenisch. Enhancing
Server Efficiency in the Face of Killer Microseconds. In International Symposium on
High Performance Computer Architecture, 2019.

[369] Amirhossein Mirhosseini, Akshitha Sriraman, and Thomas F. Wenisch. Hiding the
Microsecond-Scale Latency of Storage-Class Memories with Duplexity. In Annual
Non-Volative Memories Workshop, 2019.

[370] Seyedamirhossein Mirhosseininiri. Datacenter Architectures for the Microservices
Era. PhD thesis, University of Michigan, 2021.

261

[371] Nikita Mishra, John D Lafferty, and Henry Hoffmann. Esp: A machine learning
approach to predicting application interference. In International Conference on
Autonomic Computing, 2017.

[372] Sparsh Mittal. A survey of techniques for cache locking. Transactions on Design
Automation of Electronic Systems, 2016.

[373] Gordon E Moore. Cramming more components onto integrated circuits. McGraw-Hill
New York, 1965.

[374] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed event-based systems. 2006.

[375] Marius Muja and David G Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2009.

[376] Marius Muja and David G. Lowe. Scalable Nearest Neighbor Algorithms for High
Dimensional Data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2014.

[377] Shubhendu S Mukherjee, Babak Falsafi, Mark D Hill, and David A Wood. Coher-
ent network interfaces for fine-grain communication. ACM SIGARCH Computer
Architecture News, 1996.

[378] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Microservice
Architecture: Aligning Principles, Practices, and Culture. 2016.

[379] Vijay Nagarajan and Rajiv Gupta. Ecmon: exposing cache events for monitoring.
ACM SIGARCH Computer Architecture News, 2009.

[380] Roger M. Needham. Denial of Service. In ACM Conference on Computer and
Communications Security, 1993.

[381] Gilbert Neiger and Rajesh M Sankaran. Delivering interrupts to user-level applica-
tions. Google Patents, 2018.

[382] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W Moore. Understanding PCIe performance for end host
networking. In ACM Special Interest Group on Data Communication, 2018.

[383] Jarek Nieplocha and Jialin Ju. ARMCI: A portable aggregate remote memory copy
interface. Citeseer, 2000.

[384] Siddharth Nilakantan, Steven Battle, and Mark Hempstead. Metrics for early-stage
modeling of many-accelerator architectures. IEEE Computer Architecture Letters,
2012.

[385] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, and Paul Saab. Scaling
Memcache at Facebook. In USENIX Symposium on Networked Systems Design and
Implementation, 2013.

262

[386] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris
Grot. Scale-out numa. ACM SIGPLAN Notices, 2014.

[387] Cedric Nugteren and Henk Corporaal. The boat hull model: enabling performance
prediction for parallel computing prior to code development. In Conference on
Computing Frontiers, 2012.

[388] Guilherme Ottoni. HHVM JIT: A Profile-guided, Region-based Compiler for PHP
and Hack. In Conference on Programming Language Design and Implementation,
2018.

[389] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrish-
nan. Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In USENIX Symposium on Networked Systems Design and Implementa-
tion, 2019.

[390] Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable
Web server. In USENIX Annual Technical Conference, 1999.

[391] Sankaralingam Panneerselvam and Michael Swift. Rinnegan: Efficient Resource Use
in Heterogeneous Architectures. In International Conference on Parallel Architec-
tures and Compilation, 2016.

[392] Gabriele Paoloni. How to benchmark code execution times on intel ia-32 and
ia-64 instruction set architectures. https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-
execution-paper.pdf.

[393] Ioannis Papadakis, Konstantinos Nikas, Vasileios Karakostas, Georgios Goumas, and
Nectarios Koziris. Improving QoS and Utilisation in modern multi-core servers with
Dynamic Cache Partitioning. In Proceedings of the Joined Workshops COSH 2017
and VisorHPC 2017, 2017.

[394] David Pariag, Tim Brecht, Ashif S. Harji, Peter A. Buhr, Amol Shukla, and David R.
Cheriton. Comparing the performance of web server architectures. In European
Conference on Computer Systems, 2007.

[395] Jeff Parkhurst, John Darringer, and Bill Grundmann. From single core to multi-
core: preparing for a new exponential. In IEEE/ACM International Conference on
Computer-aided design, 2006.

[396] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high
dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004.

[397] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 2015.

263

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

[398] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris,
Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tummala,
Jamshed Jalal, Mark Werkheiser, and Anitha Kona. The Arm Neoverse N1 Platform:
Building Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC. IEEE Micro,
40(2):53–62, 2020.

[399] Steven Pelley, Peter M Chen, and Thomas F Wenisch. Memory persistency. In
International Symposium on Computer Architecture, 2014.

[400] Lillian Pentecost, Marco Donato, Brandon Reagen, Udit Gupta, Siming Ma, Gu-Yeon
Wei, and David Brooks. MaxNVM: Maximizing DNN storage density and inference
efficiency with sparse encoding and error mitigation. In International Symposium on
Microarchitecture, 2019.

[401] Lillian Pentecost, Marco Donato, Akshitha Sriraman, Gu-Yeon Wei, and David
Brooks. Analytically Modeling NVM Design Trade-Offs. In Non-Volatile Memories
Workshop (Poster).

[402] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is
the control plane. ACM Transactions on Computer Systems, 2016.

[403] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H Loh. Increasing
TLB reach by exploiting clustering in page translations. In International Symposium
on High Performance Computer Architecture, 2014.

[404] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattacharjee.
Colt: Coalesced large-reach TLBs. In International Symposium on Microarchitecture,
2012.

[405] Martin F Porter. Snowball: A language for stemming algorithms. http://
snowball.tartarus.org/texts/introduction.html.

[406] Martin F Porter. An algorithm for suffix stripping. Program, 1980.

[407] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. Optimus prime: Acceler-
ating data transformation in servers. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020.

[408] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achieving Low
Tail Latency for Microsecond-scale Networked Tasks. In Symposium on Operating
Systems Principles, 2017.

[409] George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and Edouard
Bugnion. Energy Proportionality and Workload Consolidation for Latency-critical
Applications. In ACM Symposium on Cloud Computing, 2015.

264

http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html

[410] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communi-
cations of the ACM, 1990.

[411] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Towards scalable deep
learning via i/o analysis and optimization. In High Performance Computing and
Communications, 2017.

[412] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan. Thread reinforcer:
Dynamically determining number of threads via OS level monitoring. In International
Symposium on Workload Characterization, 2011.

[413] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan
Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim,
Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-scale
datacenter services. In International Symposium on Computer Architecuture, 2014.

[414] Emilee Rader and Rebecca Gray. Understanding user beliefs about algorithmic cura-
tion in the facebook news feed. In ACM conference on human factors in computing
systems, 2015.

[415] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. Planck: Millisecond-scale Monitoring and Control
for Commodity Networks. In ACM Conference on SIGCOMM, 2014.

[416] David R Raymond and Scott F Midkiff. Denial-of-service in wireless sensor networks:
Attacks and defenses. IEEE Pervasive Computing, 2008.

[417] Glenn Reinman, Brad Calder, and Todd Austin. Fetch directed instruction prefetching.
In International Symposium on Microarchitecture, 1999.

[418] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.
Google-wide profiling: A continuous profiling infrastructure for data centers. IEEE
micro, 2010.

[419] Max Roser, Hannah Ritchie, and Esteban Ortiz-Ospina. Internet. https://
ourworldindata.org/internet.

[420] Efraim Rotem. Intel architecture, code name Skylake deep dive: A new architecture
to manage power performance and energy efficiency. In Intel Developer Forum, 2015.

[421] J Rupley. Samsung Exynos M3 Processor. IEEE Hot Chips, 30, 2018.

[422] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, Haruhiko Kojima, et al.
The a-tree: An index structure for high-dimensional spaces using relative approxima-
tion. In VLDB, 2000.

265

https://ourworldindata.org/internet
https://ourworldindata.org/internet

[423] Yoshiei Sato, Ryuichi Nagaoka, Akihiro Musa, Ryusuke Egawa, Hiroyuki Takizawa,
Koki Okabe, and Hiroaki Kobayashi. Performance tuning and analysis of future
vector processors based on the roofline model. In Workshop on MEmory performance:
DEaling with Applications, systems and architecture, 2009.

[424] Doug Schmidt and Paul Stephenson. Experience using design patterns to evolve
communication software across diverse OS platforms. In European Conference on
Object-Oriented Programming, 1995.

[425] Douglas C Schmidt and Chris Cleeland. Applying patterns to develop extensible
ORB middleware. IEEE Communications Magazine, 1999.

[426] David Vincent Schuehler. Techniques for processing TCP/IP flow content in network
switches at gigabit line rates. Semantic Scholar.

[427] Bart Selman and Carla P Gomes. Hill-climbing search. Encyclopedia of Cognitive
Science, 2006.

[428] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry. RowClone: Fast and Energy-efficient in-DRAM Bulk
Data Copy and Initialization. In International Symposium on Microarchitecture,
2013.

[429] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider. In USENIX Annual Technical Conference, 2020.

[430] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with
parameter-sensitive hashing. In IEEE International Conference on Computer Vision,
2003.

[431] Ratnesh K Sharma, Cullen E Bash, Chandrakant D Patel, Richard J Friedrich, and
Jeffrey S Chase. Balance of power: Dynamic thermal management for internet data
centers. IEEE Internet Computing, 2005.

[432] Sourabh Sharma. Mastering Microservices with Java 9: Build domain-driven
microservice-based applications with Spring, Spring Cloud, and Angular. Packt
Publishing Ltd, 2017.

[433] Konstantin Shemyak and Kai Vehmanen. Scalability of tcp servers, handling persistent
connections. In International Conference on Networking, 2007.

[434] Robert T Short, John M Parchem, and David N Cutler. Method and apparatus for
reducing the rate of interrupts by generating a single interrupt for a group of events.
Google Patents, 1998.

266

[435] Vaclav Simek and Ram Rakesh Asn. Gpu acceleration of 2d-dwt image compression
in matlab with cuda. In UKSIM European Symposium on Computer Modeling and
Simulation, 2008.

[436] Evangelia Sitaridi, Orestis Polychroniou, and Kenneth A Ross. SIMD-accelerated
regular expression matching. In International Workshop on Data Management on
New Hardware, 2016.

[437] Magnus Själander, Margaret Martonosi, and Stefanos Kaxiras. Power-Efficient Com-
puter Architectures: Recent Advances. Synthesis Lectures on Computer Architecture,
2014.

[438] Malcolm Slaney and Michael Casey. Locality-sensitive hashing for finding nearest
neighbors. IEEE Signal Processing Magazine, 2008.

[439] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. Fast
hash table lookup using extended bloom filter: an aid to network processing. In ACM
SIGCOMM Computer Comm. Review, 2005.

[440] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. A simplified and
accurate model of power-performance efficiency on emergent GPU architectures. In
International Symposium on Parallel and Distributed Processing, 2013.

[441] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency
and cache coherence. Synthesis lectures on computer architecture, 2011.

[442] Stephen M Specht and Ruby B Lee. Distributed Denial of Service: Taxonomies of
Attacks, Tools, and Countermeasures. In ISCA International Conference on Parallel
and Distributed Computing (and Communications) Systems, 2004.

[443] Akshitha Sriraman. Unfair Data Centers for Fun and Profit. In Wild and Crazy Ideas
(ASPLOS), 2019.

[444] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Understanding Accel-
eration Opportunities for Data Center Overheads at Hyperscale. In International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2020.

[445] Akshitha Sriraman and Abhishek Dhanotia. Understanding Acceleration Opportuni-
ties at Hyperscale. IEEE Micro, 2021.

[446] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. SoftSKU: Optimiz-
ing Server Architectures for Microservice Diversity @Scale. In The International
Symposium on Computer Architecture, 2019.

[447] Akshitha Sriraman, Sihang Liu, Sinan Gunbay, Shan Su, and Thomas F. Wenisch.
Deconstructing the Tail at Scale Effect Across Network Protocols. The Annual
Workshop on Duplicating, Deconstructing, and Debunking, 2016.

267

[448] Akshitha Sriraman and Thomas F. Wenisch. µSuite: A Benchmark Suite for Mi-
croservices. In IEEE International Symposium on Workload Characterization, 2018.

[449] Akshitha Sriraman and Thomas F Wenisch. µTune: Auto-Tuned Threading for OLDI
Microservices. In Proceedings of the 12th USENIX conference on Operating Systems
Design and Implementation, 2018.

[450] Akshitha Sriraman and Thomas F. Wenisch. Performance-Efficient Notification
Paradigms for Disaggregated OLDI Microservices. In Workshop on Resource Disag-
gregation, 2019.

[451] Alexei Starovoitov. BPF in LLVM and kernel. In Linux Plumbers Conference, 2015.

[452] W Richard Stevens and Gary R Wright. TCP/IP illustrated (vol. 2) the implementation.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[453] Jeffrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel. CAPI: A coherent accelera-
tor processor interface. IBM Journal R&D, 2015.

[454] Daniel Stutzbach and Reza Rejaie. Improving lookup performance over a widely-
deployed DHT. In International Conference on Computer Communications, 2006.

[455] David Suggs, Mahesh Subramony, and Dan Bouvier. The AMD “Zen 2” Processor.
IEEE Micro, 40(2):45–52, 2020.

[456] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. ACM Sigplan Notices, 2004.

[457] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven thread-
ing: power-efficient and high-performance execution of multi-threaded workloads
on CMPs. In International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

[458] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[459] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa.
The Impact of Memory Subsystem Resource Sharing on Datacenter Applications. In
Int. Symposium on Computer Architecture, 2011.

[460] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In ACM SIGMOD International Conference on
Management of data, 2009.

[461] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. ACM Transactions on
Database Systems, 2010.

268

[462] Michael B Taylor. Is dark silicon useful? harnessing the four horsemen of the coming
dark silicon apocalypse. In Design Automation Conference, 2012.

[463] Gil Tene. How not to measure latency. In Low Latency Summit, 2013.

[464] Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate nearest neighbor
search on unit hypersphere. In Workshop on Algorithms and Data Structures, 2007.

[465] Xinmin Tian, Hideki Saito, Serguei V Preis, Eric N Garcia, Sergey S Kozhukhov, Matt
Masten, Aleksei G Cherkasov, and Nikolay Panchenko. Practical simd vectorization
techniques for intel® xeon phi coprocessors. In Parallel & Distributed Processing,
2013.

[466] Stefan Tilkov and Steve Vinoski. Node.js: Using JavaScript to build high-performance
network programs. IEEE Internet Computing, 2010.

[467] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. Borg: the next generation. In
European Conference on Computer Systems, 2020.

[468] Pedro Trancoso, J-L Larriba-Pey, Zheng Zhang, and Josep Torrellas. The memory
performance of DSS commercial workloads in shared-memory multiprocessors. In
International Symposium High-Performance Computer Architecture, 1997.

[469] Caroline June Trippel. Concurrency and Security Verification in Heterogeneous
Parallel Systems. PhD thesis, Princeton University, 2019.

[470] Dan Tsafrir. The context-switch overhead inflicted by hardware interrupts (and the
enigma of do-nothing loops). In Workshop on Experimental computer science, 2007.

[471] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-aware Datacenter
TCP (D2TCP). In ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 2012.

[472] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and T. N. Vijaykumar. Time-
trader: Exploiting Latency Tail to Save Datacenter Energy for Online Search. In
International Symposium on Microarchitecture, 2015.

[473] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. Mem-
tracker: Efficient and programmable support for memory access monitoring and
debugging. In International Symposium on High Performance Computer Architec-
ture, 2007.

[474] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabrera III,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, and Jeremy
Hoon. Tao: how facebook serves the social graph. In International Conference on
Management of Data, 2012.

269

[475] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune,
and John Wilkes. Large-scale cluster management at Google with Borg. In European
Conference on Computer Systems, 2015.

[476] Jerome Vienne, Jitong Chen, Md Wasi-Ur-Rahman, Nusrat S Islam, Hari Subramoni,
and Dhabaleswar K Panda. Performance analysis and evaluation of infiniband fdr and
40gige roce on hpc and cloud computing systems. In IEEE 20th Annual Symposium
on High-Performance Interconnects, 2012.

[477] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Salamanca,
Rubby Casallas, and Santiago Gil. Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud. In Computing Colombian
Conference, 2015.

[478] Stavros Volos, Djordje Jevdjic, Babak Falsafi, and Boris Grot. An effective dram
cache architecture for scale-out servers. Technical Report MSR-TR-2016-20, 2016.

[479] J Robert Von Behren, Jeremy Condit, and Eric A Brewer. Why Events Are a Bad
Idea (for High-Concurrency Servers). In Hot Topics in Operating Systems, 2003.

[480] M Mitchell Waldrop. The chips are down for moore’s law. Nature News,
530(7589):144, 2016.

[481] Jin-Yi Wang, Yen-Shiang Shue, TN Vijaykumar, and Saurabh Bagchi. Pesticide: Us-
ing smt to improve performance of pointer-bug detection. In International Conference
on Computer Design, 2006.

[482] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, and Shujie Zhang. Bigdatabench: A big data
benchmark suite from internet services. In HPCA, 2014.

[483] Qingyang Wang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang, and Calton
Pu. A Study of Long-Tail Latency in n-Tier Systems: RPC vs. Asynchronous
Invocations. In International Conference on Distributed Computing Systems, 2017.

[484] Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Ghiasi, Minesh
Patel, Jeremie S Kim, Hasan Hassan, Mohammad Sadrosadati, and Onur Mutlu.
Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration.
In International Symposium on Microarchitecture, 2018.

[485] Zheng Wang and Michael F.P. O’Boyle. Mapping Parallelism to Multi-cores: A
Machine Learning Based Approach. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2009.

[486] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-
conditioned, Scalable Internet Services. In ACM Symposium on Operating Systems
Principles, 2001.

270

[487] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. Temporal streams in commercial server applications. In IEEE
International Symposium on Workload Characterization, 2008.

[488] Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anas-
tassia Ailamaki, and Babak Falsafi. Temporal streaming of shared memory. In
International Symposium on Computer Architecture, 2005.

[489] Wikipedia contributors. Alder lake (microprocessor) — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Alder_Lake_(microprocessor)&oldid=990207738, 2020. [Online; accessed
25-November-2020].

[490] Robert A Williams and Jerry C Kuo. Mechanism for minimizing overhead usage of
a host system by polling for subsequent interrupts after service of a prior interrupt.
Google Patents, 2000.

[491] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, and Sy et al. Choud-
hury. Machine learning at facebook: Understanding inference at the edge. In High
Performance Computer Architecture, 2019.

[492] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding
Long Tails in the Cloud. In NSDI, 2013.

[493] Owen Yamauchi. Hack and HHVM: programming productivity without breaking
things. " O’Reilly Media, Inc.", 2015.

[494] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. Elfen Scheduling: Fine-
Grain Principled Borrowing from Latency-Critical Workloads Using Simultaneous
Multithreading. In USENIX Annual Technical Conference, 2016.

[495] Ahmad Yasin, Yosi Ben-Asher, and Avi Mendelson. Deep-dive analysis of the
data analytics workload in cloudsuite. In International Symposium on Workload
Characterization, 2014.

[496] Joseph Yiu. The definitive guide to the ARM Cortex-M3. Newnes, 2009.

[497] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Rajwar. Performance
evaluation of intel® transactional synchronization extensions for high-performance
computing. In International Conference on High Performance Computing, Network-
ing, Storage and Analysis, 2013.

[498] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and Anirudh Badam.
I’m not dead yet! the role of the operating system in a kernel-bypass era. In
Proceedings of the Workshop on Hot Topics in Operating Systems, 2019.

[499] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. Cpi 2: CPU performance isolation for shared compute clusters. In European
Conference on Computer Systems, 2013.

271

https://en.wikipedia.org/w/index.php?title=Alder_Lake_(microprocessor)&oldid=990207738
https://en.wikipedia.org/w/index.php?title=Alder_Lake_(microprocessor)&oldid=990207738

[500] Yao Zhang and John D Owens. A quantitative perf. analysis model for GPU architec-
tures. In High Perf. Computer Architecture, 2011.

[501] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill: Attributing
the Source of Tail Latency Through Precise Load Testing and Statistical Inference.
In International Symposium on Computer Architecture, 2016.

[502] Qin Zhao, Rodric Rabbah, and Weng-Fai Wong. Dynamic Memory Optimization
Using Pool Allocation and Prefetching. SIGARCH Comput. Archit. News, 2005.

[503] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iwatcher: Efficient
architectural support for software debugging. In Annual International Symposium on
Computer Architecture, 2004.

[504] Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos for latency-critical tasks on
shared multicore systems. ACM SIGARCH Computer Architecture News, 2016.

[505] Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi. Microarch-
itectural Implications of Event-driven Server-side Web Applications. In International
Symposium on Microarchitecture, 2015.

[506] Mark Zuckerberg, Ruchi Sanghvi, Andrew Bosworth, Chris Cox, Aaron Sittig,
Chris Hughes, Katie Geminder, and Dan Corson. Dynamically providing a news
feed about a user of a social network. https://patents.google.com/patent/
US7669123B2/en.

[507] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-cpu
cache compression. In ICDE, 2006.

272

https://patents.google.com/patent/US7669123B2/en
https://patents.google.com/patent/US7669123B2/en

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Motivation
	Web Services Powered by Data Centers are Here, There, and Everywhere
	Radical Shift in Hyperscale Computing
	Decline in Technology Trends that Drive Processor Performance Scaling
	Consequences on the Software and Hardware Research Landscape
	Application layer: The shift towards a granular application architecture
	Software abstraction layers: The shift towards light-weight abstractions
	Hardware layer: The shift towards hardware specialization

	Research Challenges and Goals
	Enabling the Study of Modern Web Services
	Redesigning Software Based on Underlying Data Center Hardware Constraints
	Architecting Commodity Hardware for New Web Service Software Paradigms
	Architecting Custom Hardware for New Web Service Software Paradigms

	Dissertation Contributions
	Dissertation Outline

	A Benchmark Suite for Microservices
	Prior Work
	Suite: Benchmarks Description
	HDSearch
	Router
	Set Algebra
	Recommend.

	Suite: Framework Design
	Methodology
	Results
	Saturation Throughput
	End-to-end Response Latency
	OS and Network Overheads

	Long-Term Impact Potential
	Chapter Summary

	Auto-Tuned Software Threading for Microservices
	Motivation
	The Need for a Threading Model Taxonomy
	The Need for Automatic Load Adaptation
	A Microservice Framework

	A Taxonomy of Threading Models
	Key Dimensions
	Synchronous Models
	Asynchronous Models

	Tune: System Design
	Framework
	Automatic Load Adaptation

	Implementation
	Experimental Setup
	Evaluation
	Threading Model Characterization
	Synchronous vs. Asynchronous
	Synchronous models
	Asynchronous models

	Load Adaptation
	Comparison to the state-of-the-art
	Steady-state adaptation
	Load transients

	Discussion
	Related Work
	Long-Term Impact Potential
	Follow-On Research
	Chapter Summary

	Optimizing Commodity Server Architectures for Microservice Diversity at Hyperscale
	Understanding Microservice Performance
	The Production Microservices
	Characterization Approach
	System-Level Characterization
	Request throughput, request latency, and path length
	Request latency breakdown
	CPU utilization at peak load
	Context switch penalty
	Instruction mix

	Architectural Characterization
	IPC and stall causes
	Cache misses
	LLC capacity sensitivity
	TLB misses
	Memory bandwidth utilization

	``Soft'' SKU
	SKU: System Design
	Methodology
	Evaluation
	Knob Characterization
	Soft SKU Performance

	Discussion
	Related Work
	Long-Term Impact Potential
	Follow-On Research
	Chapter Summary

	Redesigning Commodity Server Architectures for Efficient Event Notification at Hyperscale
	Why do Widely-Used Notification Paradigms Fall Short?
	Microservice Requirements
	Interrupts
	Spin-polling
	MWAIT

	The Notify Paradigm
	Design Goals
	System Model
	Notify Overview
	Notify's Back-end Microarchitecture
	Notify's Front-end Programming Model

	Evaluation
	Experimental Setup
	Microservices
	Peak Throughput
	Queue Scalability
	Median and Tail Latency
	Overheads

	Discussion
	Related Work
	Chapter Summary

	Understanding Hardware Customization Opportunities at Hyperscale
	Understanding Microservice Overheads
	The Production Microservices
	Characterization Approach
	Leaf Function Characterization
	Memory
	Kernel
	Synchronization
	C Libraries
	IPC scaling

	Service Functionality Characterization
	IPC scaling

	The Accelerometer Model
	Acceleration Strategies
	System Abstraction
	Parameter Definition
	Modeling Diverse Threading Designs
	Accelerometer Use Cases

	Validating the Accelerometer Model
	Validation Methodology
	Experimental Setup
	Case Study 1: AES-NI for Cache1
	Case Study 2: Encryption for Cache3
	Case Study 3: Inference for Ads1

	Applying the Accelerometer Model
	Compression
	Memory Copy
	Memory Allocation

	Related Work
	Long-Term Impact Potential
	Chapter Summary

	Future Work and Conclusions
	Future Directions
	Enabling Cross-Stack Designs for Emerging Web Service Paradigms and Application Domains
	Rethinking Hardware-Software Co-Design for System Overheads that Arise at Hyperscale
	Mitigating the Killer Microsecond Problem in Modern Web Services
	Redesigning Software Stacks for Emerging Hardware Accelerators
	Designing Systems to Support Emerging Device Technologies
	Using Machine Learning to Self-Navigate the Hyperscale Design Space
	Designing Energy-Efficient Data Centers
	Making Intersectionality, Equity, and Fairness as First-Order System Design Metrics

	Dissertation Conclusions

	BIBLIOGRAPHY

