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Abstract 
Precision medicine approaches have promise to improve the prevention and 

treatment of cardiovascular disease, which is the leading cause of death in the United 

States and globally. As the size and number of electronic health record (EHR)-linked 

biobanks with paired genetic information continue to increase globally, so too do the 

opportunities for clinical utility of genetic discoveries. My research focuses on the 

optimal use of rich genetic and phenotypic information from biobanks to translate 

genetic discoveries to clinical applications.  

First, I utilize exome sequencing to identify thoracic aortic dissection patients 

within the Cardiac Health Improvement Project (CHIP) biobank that carry pathogenic 

genetic changes. Patients with monogenic causes of dissection fit a clinical profile of 

onset less than 50 years of age with no history of hypertension, and a family history of 

aortic disease. We conclude that aortic dissection patients in this demographic should 

be prioritized for clinical genetic testing followed by cascade screening of family 

members to guide clinical decision-making such as enhanced surveillance of aortic 

diameter and earlier surgical intervention. 

Second, I illustrate the promises and challenges of family health history in the 

context of genetic research studies, with examples from the Trøndelag Health (HUNT) 

Study and UK Biobank. Individuals who report having a first-degree relative with heart 

disease have a genetic burden of disease risk alleles intermediate between cases and 
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controls. Family history captures shared genetic and environmental factors, and self-

reported family history ascertained in biobank questionnaires is a significant predictor of 

disease. Self-reported family history remains a significant predictor in the context of 

polygenic scores, which quantify the genetic risk for disease. Self-reported family history 

demonstrates some interesting time-varying effects that should be considered. 

Intuitively, young individuals who likely have younger family members report lower rates 

of family history of disease, whereas older individuals who have higher rates of positive 

family history benefit less from preventive interventions. This work motivates biobanks 

to survey for self-reported family history at multiple time points for a variety of complex 

diseases. 

Finally, I examine how polygenic scores improve upon existing risk prediction 

models used in the clinic, such as the Pooled Cohorts Equation, to aid in earlier 

identification and treatment of people at high risk. By examining the HUNT Study and 

the UK Biobank, I systematically compare published polygenic scores for coronary 

artery disease (CAD) with and without conventional risk factors such as cholesterol, 

smoking, and hypertension. When the top performing polygenic score for CAD, a 

metaGRS (Inouye et al, 2018), is added to a model with conventional risk factors, it 

allows re-classification of 3% of individuals to the high-risk category recommended for 

therapeutic intervention. Over 10 years, 10.5% of the group re-classified into the high-

risk category experienced a CAD event. These are patients who would benefit from 

implementing preventive lifestyle and medication changes if polygenic scores were 

added to existing clinical approaches for risk stratification. 
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This dissertation illustrates the use of genetic variation, polygenic scores, and 

self-reported family history in EHR-linked biobanks with deep phenotyping. I establish 

criteria for prioritized genetic screening in thoracic aortic dissection, explore the 

relationship between genetic risk and self-reported family history in complex disease 

association, and benchmark polygenic scores for better and earlier disease 

classification. In total, this research aims to harness extensive genetic data for precision 

medicine approaches that prevent and treat cardiovascular disease. 
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Chapter 1 Introduction 
1.1 Dissertation Outline 

Cardiovascular disease is the leading cause of death in the United States and 

globally1. Global investment in biobanks with genetic data and electronic health records 

(EHRs) has facilitated the identification of hundreds of genetic susceptibility loci for 

cardiovascular diseases and related quantitative traits (e.g., cholesterol). As we 

continue to find genetic variants associated with disease in increasingly large datasets, 

we also attempt to realize the promise of precision medicine by deploying our 

discoveries into clinical practice. In this dissertation, I employ data from several biobank 

designs to further these aims. 

In Chapter 2, I analyze exome sequencing data from the Cardiac Health 

Improvement Project (CHIP), a disease-specific biobank focusing on patients with aortic 

disease. 10.4% of participants with thoracic aortic dissection were found to carry a 

pathogenic mutation in one of eleven known genes, but no pathogenic variants were 

found in healthy controls from Michigan Genomics Initiative (MGI). In Chapter 3, I use 

two population-based, prospective biobanks, the Trøndelag Health (HUNT) Study and 

the United Kingdom Biobank (UKB) to evaluate the use of polygenic scores (PGSs) and 

self-reported family history as predictors of complex disease. In Chapter 4, I perform 

comprehensive benchmarking of cardiovascular trait PGSs from the PGS Catalog in the 
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HUNT Study and UKB. I quantify the performance of PGS in the presence of 

conventional heart disease risk factors such as cholesterol and smoking. 

1.2 Background 
The increased adoption of electronic health records (EHRs) in clinical settings 

has created a rich resource for the genetics research community2. Variation in the 

human phenome, the set of physical characteristics and diseases (phenotypes) 

expressed in humans, is measurable using billing codes, narrative notes, death 

certificates, self-report surveys, and laboratory values from EHRs. As the cost of high 

throughput genotyping and sequencing continues to fall, EHRs coupled with genetic 

data from biobank samples are now available for hundreds of thousands of people. This 

has ushered in the next wave of complex disease genetic studies, of which this 

dissertation is a part. 

Historically, large cohorts of cases and controls were amassed to study only one 

specific phenotype of interest, or a few closely related phenotypes (e.g., coronary artery 

disease [CAD] and blood lipid levels) in a genome-wide association study (GWAS; few 

phenotypes analyzed at many variants). Variants significantly associated with one 

phenotype were then tested for association with additional phenotypes in a phenome-

wide association study (PheWAS) to more fully understand cross-phenotype 

associations. The first PheWAS, analysis of many phenotypes for a few variants, was 

published in 20103 and researchers are continuing to increase the number of 

phenotypes examined. Today, EHR-linked DNA biobanks with large sample sizes 

enable GWAS on millions of variants to be performed for thousands of phenotypes 
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resulting in a phenome-wide GWAS which we refer to as PheGWAS (many phenotypes 

analyzed at many variants). An example PheGWAS is available at University of 

Michigan’s PheWeb4 which hosts genetic association results for 28 million variants 

across 1,403 ICD-based traits (http://pheweb.sph.umich.edu:5003) identified in 400,000 

individuals5 (Figure 1-1) from the United Kingdom Biobank (UKB) study. 

1.3 Established EHR-linked biobanks 
The earliest population-wide biobank is Iceland’s deCODE genetics which started 

in 1996 as a private company with government support6 and is currently owned by 

Amgen. One of the first institution-wide biobanks is Vanderbilt University’s BioVU which 

utilized de-identified leftover blood samples from clinical blood draws7. Biobanks 

typically feature opt-in consent and protections for personal health information (PHI) 

allowing prospective phenotype updates. Since 2007, the National Institutes of Health 

(NIH) has funded the Electronic Medical Records and Genomics (eMERGE) Network 

which links biobanks to EHRs at multiple sites to perform genomic research and 

establish best practices8. Additional academic centers host large studies combining 

EHR-linked biobanks through the hospital system such the University of Michigan’s 

Michigan Genomics Initiative (MGI) and the Mount Sinai BioMe biobank. In recent 

years, private companies in the United States’ health care and insurance industries 

(e.g., Kaiser Permanente9) have begun their own studies building on EHRs of 

customers that consent to research.  

Countries with national health systems are uniquely poised to study genetics at a 

population scale using nationally connected EHRs linked to biobanks. These studies are 
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additionally benefitted by nationalized pharmaceutical and cause of death registries that 

provide useful information for phenotype curation. The Trøndelag Health Study (HUNT), 

a population-based cohort established in 1984, has invited every citizen of a Norwegian 

county aged 20 years or older to participate in extensive questionnaires and provide 

biospecimens10. The HUNT biobank is linked to multiple registries and local hospitals, 

enabling comprehensive phenotyping used in Chapters 3 and 4 of this dissertation. In 

Finland, a private-public partnership called FinnGen was announced in December 2017 

with the goal of linking GWAS data to clinical data for 500,000 participants consented 

for recall appointments to perform more detailed clinical examination of individuals with 

genetic variants of uncertain significance11. The Estonian Genome Center at the 

University of Tartu hosts a population-based biobank with 20% of the Estonian 

population as of 201912 .  

Moving toward even larger sample sizes, the Million Veteran Program (MVP) aims 

to partner with one million U.S. armed services veterans receiving care through the 

Veterans Affairs Healthcare system13. Likewise, NIH’s All of Us cohort (part of the 

federal Precision Medicine Initiative) opened to nationwide enrollment of one million 

participants in early 201814.  The term ‘mega-biobank’ was coined to describe a 

genotype and phenotype linked dataset on >100,000 individuals15. The large sample 

sizes (Table 1-1) that are available in these studies aid in the discovery of genetic 

associations for both rare mutations causing Mendelian disease and common complex 

diseases with causal variants of smaller effect. 
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With 23andMe and AncestryDNA as the two main direct-to-consumer genetic-

testing (DTC-GT) in the United States, these companies have amassed large 

collections of genetic samples paired with research surveys in a novel biobank design. 

Their ability to launch new research surveys by recontacting consumers can generate 

phenotype data for study of many traits. Most recently, this infrastructure was deployed 

for the 23andMe COVID-19 Study. The >7 million research participants in the research 

program received a COVID-19 survey, and new participants were enrolled if willing to 

provide a saliva sample and survey responses16. 

 Because drug mechanisms with genetic evidence in humans are twice as likely 

to successfully move from phase 1 trials to approval17, the pharmaceutical industry is 

also increasingly investing in EHR-linked biobanks. This is evidenced by the DiscovEHR 

cohort, a collaboration between Regeneron Genetics Center and Geisinger Health 

System and the largest existing collection of EHRs linked to sequencing data. In 

November 2017, Geisinger announced its National Precision Health Initiative which is 

an expansion of the MyCode Community Health Initiative which has consented the 

50,726 patients in DiscovEHR. In the summer of 2017, the UKB released genotype and 

phenotype data for 488,377 individuals which is an unprecedented amount of genetic 

data freely available to researchers via an application process18. In 2019, the first 

tranche of exome sequencing data for 50,000 UKB individuals was released19 followed 

by 200,000 exomes in 2020.  Funded by Regeneron Pharmaceuticals and several life 

science companies, all 500,000 UKB participants will be exome sequenced by 2022. 

Many types of additional -omics data that aid in functional understanding of genetic 
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variants may exist in cohorts employing EHRs (e.g., transcriptomics, metabolomics, 

epigenomics). 

1.4 Methods Developments 
1.4.1 Meta-analysis through consortia 

Since the Wellcome Trust Case Control Consortium (WTCCC) published their 

first GWASs in seven common diseases in 200720, trait-specific consortia have 

continued to form. Through consortia, trait-specific cohorts and EHR-linked biobanks 

can pool resources, sample sizes, and expertise. The consortia typically take a meta-

analysis approach, with each cohort responsible for performing and submitting primary 

GWAS analyses with individual level data and a central coordinating group responsible 

for developing the original analysis plan then performing meta-analysis, follow-up 

analyses, and biological interpretation. Statistical software for fixed and random effects 

meta-analysis from summary statistics, such as METAL21 and MR-MEGA22, have 

enabled this approach. 

Today, the largest cardiometabolic trait consortia have surpassed one million in 

sample size. The latest iteration of the Global Lipids Genetic Consortium (GLGC) 

reached a total of 1.65 million participants, including 20% of non-European ancestry 

(Graham et al manuscript under review). The Genetic Investigation of ANthropometric 

Traits (GIANT) consortium has over 300 participating studies with over 3 million 

individuals. DIAbetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) 

has published a meta-analysis of ancestry specific meta-analyses for type 2 diabetes 
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(T2D) including >1M individuals (~175K T2D cases) from five major ethnic backgrounds 

including African, East Asian, European, Hispanic, and South Asian23.  

GWAS allows us to expand the search for rare alleles of large effect which cause 

Mendelian disease (monogenic) and identify variants causing complex disease 

(polygenic)24. The omnigenic model25 suggests that thousands of individual genes 

contribute very small effects on a given phenotype. Therefore, consortia may need an 

impractical number of samples to be well-powered to identify all associations with small 

effect on a given disease. As GWASs grow in sample size, researchers are increasingly 

focused on identification of causal SNPs and the prioritization of putative genes and 

biological mechanisms concurrent to increasing sample sizes through consortium 

growth and iterative rounds of meta-analysis. While increased statistical power identifies 

novel loci, it also helps dissect independent signals at a locus. Furthermore, trans-ethnic 

meta-analysis provides the opportunity to assess the heterogeneity of the genetic 

etiology of disease across populations and to harness multiple ancestries for fine-

mapping. The Global Biobank Meta-analysis Initiative26 is a recent effort to jumpstart 

truly global biobank collaboration, with an initial focus on thirteen diverse pilot traits 

including abdominal aortic aneurysm, heart failure, and stroke, this is a marked 

evolution past the trait-specific consortia model Figure 1-2. 

1.4.2 Avoiding data-driven bias 
Large, longitudinal, population-based studies with EHR-linked biobanks present 

many challenges in areas of data curation and analysis, most of which are areas of 

current methods development. In longitudinal studies, epidemiological survey 
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questionnaires are often revised and updated between biobank enrollments which 

introduces missing data and highlights the importance of thoughtful and consistent 

study design when possible. Longitudinal studies with multiple enrollment periods can 

be prone to batch effects as technology or protocol changes introduce confounders.  

Because of differing enrollment strategies some biobanks contain more complete 

EHRs than others. For example, Geisinger Health System provides comprehensive care 

in a rural area resulting in ‘cradle to grave’ records while academic biobanks may see 

patients only for specialized care resulting in fragmented EHRs but higher rates of more 

serious cases. In contrast, the MGI recruits participants primarily from patients 

undergoing surgery or medical procedures at Michigan Medicine. In this scenario, the 

EHR may not fully capture an individual’s phenome if their primary health care system is 

elsewhere, and they are merely seeking specialist care at Michigan Medicine.  

Selection bias remains a concern even in population-based cohorts, with studies 

like UKB being, on average, younger and healthier (the “healthy volunteer effect”) and 

with more female participants than the British population27. Alternatively, incredibly high 

participation rates in the HUNT study (89.4% of those invited in the first iteration10) 

result in less selection bias than in other cohorts with lower participation rates like 

UKB28. In risk prediction models, estimates of 10-year risk for disease derived from 

general physician records in the general population can be used to recalibrate risk 

estimates to those expected in a UK primary care setting29. The enrichment of healthy 

or young persons may influence the estimated effect size of genetic variants in GWAS. 

Downstream uses of these effect sizes should consider the differences between 
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environmentally stratified cohorts—population-based biobanks (e.g., UKB, HUNT), 

hospital-based cohorts (e.g., MGI), and disease-study cohorts(e.g., WTCCC)30. 

Confounding factors should be accounted for in analyses when possible, for example 

with birth year, sex, and enrollment center as covariates in a linear regression model. 

As study sample sizes continue to increase so does the number of family 

members contained in a given population-based cohort, and statistically accounting for 

this phenomenon has inspired current method development efforts. One approach is to 

analyze only an unrelated subset of samples from a population-based cohort31. 

However, removing related individuals from the analysis may decrease sample size, 

and therefore statistical power, particularly in highly related populations such as the 

HUNT study, in which 81% of the cohort has at least a third degree relative who is also 

in the study. Even in the multi-center UKB, with a substantially smaller fraction of the 

population ascertained, 81,000 (16%) participants are removed when analyzing the 

maximal unrelated (i.e., no relative third degree or closer) subset18. Both relatedness 

and population substructure may be addressed using single variant association testing 

with linear mixed models32. While it is important to perform GWAS in populations of 

diverse ancestries33, population-based biobanks with a mix of ancestries are vulnerable 

to false positive findings from population stratification between cases and controls. 

Currently, most GWAS of binary traits in UKB are performed using only the subset of 

samples confirmed as white British ancestry by self-reported and principal components 

of genetic ancestry in an attempt to avoid spurious findings by using a presumably more 

homogeneous population34. 
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When very few cases for a given phenotype exist in a cohort, an unbalanced 

case–control ratio may inflate type I error in GWAS results35. A novel method for logistic 

mixed model regression, SAIGE, allows for analysis of binary traits with unbalanced 

case–control ratio in large sample sizes while accounting for sample relatedness5. It is 

important to note that removing related individuals from a cohort while preferentially 

retaining cases may ameliorate extreme case–control imbalance for some phenotypes. 

1.4.3 Phenotype curation 
Phenotype curation from EHRs is an ongoing area of research with the eMERGE 

Network largely spearheading initial efforts36. International Classification of Diseases 

(ICD) codes are a main feature of EHRs and are typically used in national hospital 

registries and as health insurance billing codes in medical practice. ICD codes may not 

always indicate a true diagnosis of a disease (e.g., an ICD code may be listed as a 

hypothetical reason for a laboratory test)3. Broad or ambiguous ICD codes may lead to 

a heterogeneous definition of cases, reducing power to identify genetic associations. 

Therefore, false positives or false negatives may arise when only ICD codes are used in 

phenotype definitions. Recent work compared groupings of EHR ICD-based billing 

codes to demonstrate the superiority of manually curated phecodes for defining 

phenotypes from EHRs37,38. Researchers should also consider which subset of a cohort 

to use as healthy controls. For example, patients with Type 1 diabetes would generally 

be considered inappropriate controls for a study of Type 2 diabetes. The phenotype 

definitions of cases and healthy controls are critical for accurate genetic studies, and the 
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optimal approach may depend on both the hypothesis of interest and the specific cohort 

and data at hand. 

1.4.4 Challenges with big data 
The sample sizes of genetic studies pose computational challenges including (i) 

data transfer, (ii) time and memory resources required for analysis and (iii) storage 

space necessary for the terabytes of raw phenotype and genotype data and the 

resulting association results. Therefore, many of the large biobanks and groups 

analyzing biobank-based data have started to use remote or cloud environments for 

data storage and analysis39. Eventually federated systems where users can log-in to a 

central data repository will allow for secure analysis of individual level data, and only 

summary statistics will travel to central analysis sites. This strategy is currently being 

implemented as the All of Us Research Hub from the NIH. NHLBI’s Trans-Omics for 

Precision Medicine (TOPMed) hosts a TOPMed Cloud Analysis Pilot called Encore 

which provides a simple web-based interface to allow investigators to run large-scale 

association analysis without requiring specific technical computing skills40. Encore 

handles splitting up jobs and distributing requests to available computing resources, and 

provides interactive plots and summaries for exploration of association results. 

Another challenge regarding the analysis of large number of samples from a 

biobank is the sample relatedness which can falsely inflate the test statistics, leading to 

increased type I error of the analysis (or false positive results). As described above, this 

can be overcome using linear mixed models, which are usually computationally 

intensive. Even when using a cloud environment for the computation, BOLT-LMM32, 
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SAIGE5, and REGENIE41 are the only existing mixed model association methods 

computationally feasible for analysis of large sample sizes ( N > 20,000). 

As most of the currently available biobank data are genotyped using existing 

genotyping chips or custom chips to capture whole genome variation, imputation of the 

genotype data is suggested to increase the number of markers available for association 

testing. Not only is imputation one of the most computationally intensive components of 

a GWAS analysis pipeline, but the choice of imputation panel greatly affects the quality 

and the number of variants that are well-imputed42,43,44. In the usual case where there is 

no population-specific imputation panel available for the dataset, imputation of variants 

available from emerging resources such as TOPMed40 or the Haplotype Reference 

Consortium45 may be worthwhile. The Michigan Imputation Server46 and Sanger 

Imputation Service47 provide remote computational resources for free genotype 

imputation with up-to-date reference panels. 

Historically GWAS studies have considered a p-value of 5x10-8 as the genome-

wide significance threshold for European-descent GWAS which adjusts for the 

equivalent of 1 million independent tests48,49,50 using traditional Bonferroni correction. As 

the number of variants assayed increases due to imputation with larger reference 

panels, it is an active area of discussion whether a more stringent threshold should now 

be considered. Recent work in UKB data demonstrated the validity of CAD GWAS 

signals meeting a less stringent threshold for genome-wide significance at a false 

discovery rate (FDR) of 5%51. When performing PheGWAS in biobanks with thousands 

of phenotypes, 5x10-8 may be too lenient, and a single-iteration permutation method to 
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provide FDR estimates customized for a given data set and variant frequencies was 

recently proposed (Annis and Pandit et al, manuscript in preparation). As datasets 

continue to increase in size, more research is needed to establish best practices of 

cloud-based computing and appropriate statistical rigor in analyses to avoid false 

positives. 

1.5 Novel approaches for data analysis 
Population-based EHR-linked biobanks usually allow for definition of hundreds to 

thousands of different phenotypes and outcomes which facilitates the use of new 

analysis methods, such as large-scale heritability analyses52. Another type of analysis 

that is highly efficient in datasets with EHRs is the analysis of genetic correlations 

amongst traits53 which can be used to find variants with possible pleiotropic effects. 

Recent work in the Biobank Japan Project identified 313 pleiotropic loci across 53 

quantitative traits54. Both of these methods can be used to prioritize phenotypes for 

more concentrated genetic studies. 

EHR-linked biobanks can also be used to identify and prioritize possible drug 

targets. Because of the large number of individuals in population-based datasets, the 

chance to find individuals with homozygous loss-of-function (LOF) mutations for specific 

genes is much higher which makes the search for human knock-outs feasible. This, 

combined with the availability of wide variety of phenotypes, allows for studies of 

possible side-effects of gene inhibition. As an example, homozygous carriers of PCSK9 

LOF mutations were analyzed against a wide variety of outcomes to find possible 

negative effects of low lifetime PCKS9 levels, similar to that of PCKS9 gene inhibition 
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effect. The study showed that homozygous carriers of PCKS9 LOF mutations had lower 

levels of low-density lipoprotein cholesterol levels and increased risk for Type 2 

diabetes55, spina bifida, osteoporosis and fractures, suggesting that the long-term usage 

of PCSK9 inhibitors may have negative implications56. Recently in the HUNT study, 

multiple phenotypes were used to identify drug targets without evidence for liver related 

side-effects57. This identified protein-altering variants in ZNF529, thus establishing the 

protein as a novel candidate drug target for dyslipidemia and cardiovascular diseases.  

EHRs in combination with other registry-based data (e.g., pharmaceutical, death 

registry or cancer registry data) and epidemiological surveys allow for creation of novel 

phenotypes that can be used in GWAS and PheWAS. Finnish researchers 

demonstrated that a YODA Score, representing Years of Drugs Applied, can be 

calculated from national registries of prescription drug purchase history. The presented 

YODA score combines purchase information for selected drugs studied in FINRISK and 

was found to associate with polygenic risk score for CAD58. The association is mainly 

driven by the CAD related drugs and demonstrates proof of concept. Both YODA and 

another registry-based measure, cumulative months of hospitalization periods, could 

potentially be used to predict mortality. 

For certain traits of interest which are rare or late-onset there may be few cases 

available for study even in large cohorts. To analyze these traits, epidemiological survey 

data can be utilized to identify unaffected first degree relatives of affected individuals 

(e.g., proxy-cases) to perform genome-wide association by proxy59,60. A GWAS on 

family history of Alzheimer’s disease (AD) in 300,000 individuals from the UKB allowed 
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the study of 32,222 cases of maternal AD and 16,613 cases of paternal AD that when 

meta-analyzed with an existing cohort identified six novel loci61. EHRs also provide 

information such as age of onset which allows for a more granular study of cases. For 

example, a recent GWAS stratified by age of onset showed genetic susceptibility to 

major depressive disorder (MDD) is different between early and adult onset MDD62. In 

summary, data-mining of EHR-linked biobanks provides the opportunity for novel 

analysis approaches that build upon discoveries from GWAS and PheWAS analyses. 

1.6 Selected findings for cardiovascular traits 
GWAS and PheWAS in large biobanks have yielded novel genetic findings for a 

wide variety of cardiovascular traits and increased our understanding of the clinical and 

translational value of these genetic discoveries. Recently, about 50,000 individuals with 

whole exome sequence data available from DiscovEHR cohort were screened for 

variants that cause familial hypercholesterolemia (FH). The study group found that 1 in 

256 people carry an FH variant, but only 24% of the carriers had an FH diagnosis, and 

42% of carriers were not currently on statins63. This study demonstrated by large-scale 

sequencing that many FH individuals are not identified through standard clinical 

practice, and a large number of individuals would benefit from additional screening and 

treatment with statins to reduce the risk of heart disease. The same exome sequence 

dataset from DiscovEHR, together with other cohorts, has also been used for study of 

ANGPTL464 (Figure 1-1) in addition to LPL65 inactivating and protein-altering mutations 

and their connection to lipid metabolisms and risk of CAD. In these studies, an 

association between ANGPTL4 inactivating mutations and decreased risk of CAD was 
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observed, whereas the association of LPL disruptive mutations with CAD was in the 

opposite direction. These results highlight ANGPTL4, which also blocks the inhibition of 

LPL, as a possible drug target for future development. 

The 2015 release of publicly available UKB data led to a wave of genetic 

association studies, and several studies for cardiovascular traits have already been 

performed. The first is an association study of CAD that identified 64 new CAD 

associated loci by combining the new UKB dataset with an existing public dataset from 

CARDIoGRAMplusC4D Consortium66. As an example of iterative meta-analysis within a 

trait-specific consortia, the CARDIoGRAMplusC4D 1 Million Hearts Project builds on the 

CARDIoGRAMplusC4D and is the largest study of CAD yet, with >150,000 cases and 

>900,000 controls and now identifies ≥200 independent signals67. Another example is a 

recent study of atrial fibrillation (AF), where data from the UKB was combined with other 

EHR and GWAS datasets in a meta-analysis that comprised more than one million 

samples including 60,000 cases68. Using this large dataset, the authors were able to 

identify a total of 111 loci associated with AF. The MEGASTROKE consortium 

performed a multi ancestry GWAS in 67,162 cases and 454,450 controls to identify 22 

novel loci, bringing the total of loci associated with stroke to 3269. Due to the 

heterogeneity of the stroke phenotype (e.g., ischemic stroke, hemorrhagic stroke), less 

progress has been made to identify and understand genetic variation associated with 

stroke than with CAD, for instance. With time, some of the genes associated with 

cardiovascular disease traits (e.g., CAD, stroke, atrial fibrillation) may become new drug 

targets. 
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While analysis of large biobanks is often concentrated on disease endpoints, 

quantitative traits are still mainly studied in worldwide consortia combining data from 

smaller datasets with a meta-analysis approach. In the field of cardiometabolic genetics 

there are multiple consortia each with a focus on different trait(s). Examples of such are 

the Genetic Investigation of ANthropometric Traits (GIANT), Global Lipids Genetics 

Consortium (GLGC), Consortia for echocardiographic trait genetics (EchoGen) and 

International Consortium for Blood Pressure (ICBP). The latest publication from the 

ICBP70 was a meta-analysis combining data from a total of 380,000 samples which 

found 6 novel loci associated with blood pressure traits. From EchoGen, the latest 

meta-analysis combined echocardiographic data from up to 30,000 individuals and 

found 10 new loci associated with left ventricular structure, and systolic and diastolic 

function71. The GLGC and GIANT consortia are currently concentrating on rare, low-

frequency variants and coding variation. GIANT identified 14 coding variants associated 

with body mass index (BMI) which had on average 10 times higher effect sizes 

compared to common variants associated with BMI72. Finally, GLGC identified 75 new 

loci associated with blood lipids using an Exome Chip genotyped dataset which also 

allowed for fine-mapping of 131 previously known loci to likely causal coding variants73. 

1.7 Biobanks enabling precision medicine approaches 
The clinical promise of genetic research first came to fruition in the diagnosis and 

management of monogenic diseases. For example, Myriad Genetics launched clinical 

testing for BRCA1/2 mutations in 1996. The American College of Medical Genetics now 

recognizes 59 genes in which incidental findings should be returned to patients due to 
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the impact on clinical care for carriers of pathogenic variants74,75,76 . Carriers of 

monogenic mutations in key genes often have a high risk of disease, for example loss of 

function variants in LDLR  have an OR for coronary artery disease (CAD) of 5.5 (95% CI 

3.4-8.7)63 and gnomAD77 allele frequencies (AFs) ranging from 0.06 to 0.8, and the 

most common mutation in HNF4A causing maturity onset diabetes of the young 

(MODY) has an OR of 30.4 (95% CI 9.79-125)78 and gnomAD AF of 4e-6. In 2009, 

focus on monogenic disease risk was extended to include polygenic disease risk with 

the advent of the polygenic score79,80,81 usually an aggregation of genome-wide genetic 

markers, now frequently known as a polygenic score (PGS). This metric is also known 

as a genetic risk score (GRS), polygenic risk score (PRS), or genome-wide polygenic 

score (GPS), 

1.7.1 Polygenic scores predict complex disease risk 
The PGS builds on results from a genome-wide association scan which 

compares the frequency of each position in the genome between cases and controls, 

and assigns each site of genomic variation an estimate of its impact on disease. 

Biologists have traditionally focused on only the few dozen or hundred markers that 

show the strongest differences between cases and controls, but recently, the added 

value of the millions of genetic variants with small impacts on disease risk was 

realized80.  A PGS is a weighted sum of the effect sizes of genetic variants on a given 

trait as estimated from a GWAS (Equation 1-1).  

Markers for inclusion in the PGS are chosen in various ways depending on the 

study methodology. Originally they were developed using a specified significance 
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threshold while accounting for the effects of linkage disequilibrium (Pruning + 

Thresholding81). Methods such as PRSice82 or metaGRS83 are used to calculate PGSs, 

with some Bayesian methods adjusting the !"!  (e.g., PRS-CS84 and LDpred85 using 

linkage disequilibrium or  LDpred-funct86 using functional annotations). Calculation of 

PGSs began over a decade ago in psychiatric traits81 and coronary heart disease87, 

among others. The end result is a normal distribution of PGSs in a given population with 

individuals at the highest tail of this distribution as candidates for screening and 

intervention. 

Equation 1-1 Polygenic scores  

#$%" ='!"! × $"!
#

!$%
 

Where ) is selected markers, !"!  is the estimate effect size from GWAS, $"! 	is the 
genotype or dosage probability at a given marker for a given individual across + 
individuals in the cohort.  

Given the predominantly polygenic inheritance of common, complex diseases, 

PGSs now allow us to identify those at risk for disease as we would for carriers of a 

Mendelian mutation. UKB participants whose genome-wide PGS for CAD is in the top 

5% have greater than threefold risk for CAD compared to the rest of the population80. 

This is similar to the CAD risk conferred by monogenic mutations, such as those 

causing familial hypercholesterolemia (LDLR, APOB, and PCSK9); yet 20 times as 

many people fall into this high-risk category as carry a monogenic mutation. With this 

many individuals potentially benefitting from learning their cumulative genetic risk, 

observational studies aim to understand how PGSs could impact clinical management 

and outcomes. 
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1.7.2 Clinical utility of PGSs for cardiovascular traits 
With the availability of summary statistics from the aforementioned large GWAS 

studies, researchers have new opportunities to evaluate the clinical utility of PGSs. 

Previous studies have evaluated the addition of a PGS to conventional risk factors 

(smoking, blood pressure, BMI, family history) in UK Biobank83 and Malmö Diet and 

Cancer Study88. Identifying the optimal PGS construction and risk prediction models for 

cardiovascular traits will be an important step for translation to the clinic. Chapters 3 and 

4 of this dissertation contribute to this effort. 

Using the FinnGen biobank, researchers in Finland have used PGS and 

traditional cardiovascular disease (CVD) risk to communicate personalized 10-year 

CVD risk to thousands of Finns in the GeneRISK Study, via the KardioKompassi web 

portal. 42.6% of individuals at CVD high risk took at least one action in response to their 

disease risk (weight loss, smoking cessation, or a doctor’s visit) compared to 33.5% of 

low CVD risk individuals. In a separate study within FinnGen, a CAD PGS was added to 

pooled cohorts equation, the conventional methodology to determine an individual’s 10-

year risk of atherosclerotic cardiovascular disease (ASCVD) in the United States89. For 

early-onset CAD, the PGS identified 13% of the cases missed by clinical risk scores as 

now reaching >7.5% 10-year risk for CHD, the threshold for pharmaceutical 

intervention90. Continued follow-up in this cohort will provide a valuable example for the 

introduction of PGS into clinical care and the potential public health impacts.  

1.7.3 Limitations of PGSs 
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EHR-linked biobanks provide excellent opportunities for calculating, evaluating 

and implementing PGSs. However, some limitations from PGSs must be considered. A 

PGS for height, generated from summary statistics from the GIANT consortium, 

predicted an unreasonably large difference in height between Western and Eastern 

Finns of 3.52 cm compared to the expected 1.6 cm, thus suggesting the accumulation 

of biases in PGS potentially due to uncontrolled population stratification in previous 

studies91. The majority of current biobanks participants are of European-ancestry, and 

the summary statistics from current GWAS have limited portability used in PGS for non-

European populations92. The lack of summary statistics from GWAS in large populations 

of non-European ancestry means systematically biased PGS could exacerbate health 

disparities in already vulnerable populations30 and is a barrier for bringing the power of 

PGS to the clinic. 

1.8 Conclusion 
EHRs allow a shift from purpose-built cohorts centered around a particular 

phenotype to large cohorts where the entire phenome can be studied through 

PheGWAS. Methods development to handle the computational and statistical 

complexities of such large datasets is ongoing, but new data handling and analysis 

methods including mixed models and robust EHR-derived phenotype definitions are 

already being employed. The next wave of genetic analysis in thousands of phenotypes, 

enabled by population-based EHR-linked biobanks, has only just begun. We have 

already seen the importance of vast phenotypic information in large datasets through 

recent studies of putative drug targets such as PCSK9 and ANGPTL4. These studies 
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are, however, just the tip of the iceberg. The high information content of EHR datasets 

allows for innovative new hypotheses and analyses which are poised to become the 

driving force of complex disease genetics. 
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Figure 1-1 PheWAS plot of the lead variant (rs116843064) in ANGPTL4  

In PheGWAS available at University of Michigan’s PheWeb, the variant is associated with coronary atherosclerosis 
(P-value <1.6e−7) in 20,023 cases and 377,103 controls in UKBB. The variant is also associated with other 
phenotypes at phenome-wide significance (P-value < 5e−5) including hypercholesterolemia and ischemic heart 
disease as expected. Notably, this variant is also associated with ankylosing spondylitis—a form of arthritis affecting 
the spine and large joints. While ankylosing spondylitis is seemingly pathologically different than CAD, a link between 
the two has been reported previously94. The constellation of associations across circulatory, metabolic and 
musculoskeletal systems provides evidence for pleiotropy or shared pathways for disease pathogenesis. 
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Figure 1-2 Global Biobank Meta-analysis Initiative map 

Participating biobanks categorized by type with estimated genotyped sizes as of January 2021. Figure courtesy of Wei Zhou. 
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a Main institution responsible for the resource, many other institutions may provide funding or support. 

b Sample size as of January 2018. In situations where up to date sample sizes were difficult to find, sample sizes from recent publications were used. 

c Unique number of participants with some type of data available (52–61). 

d Actual samples available for analysis may be less due to quality control. Number includes both sequencing and genotyping with the type of data described when 
possible.  

Table 1-1 Selected biobanks with linked EHRs and genetic data 

Biobanks with ≥50 000 participants listed in descending order of sample size with available genetic data as of May 2018.	

Cohort Country Institution or companya Cohort 
Sizeb,c  

Samples with 
matched EHR and 

genetic data 
availableb,d 

Access 

UK BioBank (UKBB) 
http://www.ukbiobank.ac.uk UK UK Biobank charity 500,000 488,377 genotyped Application for bona fide 

researcher 
DeCODE Genetics 

https://www.decode.com Iceland Amgen >350,000 >350,000 Contact to collaborate 
Million Veteran Program (MVP) 

https://www.research.va.gov/mvp/ USA Department of Veterans 
Affairs >500,000 >350,000 Contact to collaborate 

BioBank Japan Project 
http://www.pgrn.org/biobank-japan.html Japan Pharmacogenomics 

Research Network 200,000 162,255 genotyped Contact to collaborate 

China Kadoorie Biobank 
http://www.ckbiobank.org/site/ China 

University of Oxford, Chinese 
Academy of Medical 

Sciences 
510,000 >130,000 Application for bona fide 

researcher 
Kaiser Permanente Research Bank 

https://researchbank.kaiserpermanente.o
rg/our-research/for-researchers/ 

USA Kaiser Permanente 270,570 102,998 genotyped Application for bona fide 
researcher 

eMerge Network 
https://emerge.mc.vanderbilt.edu USA NHGRI 105,325 83,717 Application for eMERGE 

affiliate membership 
Danish Biobank Register 

http://www.biobankdenmark.dk Denmark Danish National Biobank 5.7 
million >70,000 Application for bona fide 

researcher 
Nord Trondelag Health Study (HUNT) 

https://www.ntnu.edu/hunt Norway Norwegian University of 
Science and Technology 120,000 69,037 genotyped 
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with PI affiliated with a 

Norwegian research institute 
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http://www.discovehrshare.com USA Geisenger Health System, 
Regeneron Genetics Center 50,000 >50,000 exome 

sequences Contact to collaborate 
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Chapter 2 Clinical Implications of Identifying Pathogenic 
Variants in Individuals with Thoracic Aortic Dissection 

2.1 Abstract 
Thoracic aortic dissection is an emergent life-threatening condition. Routine 

screening for genetic variants causing thoracic aortic dissection is not currently 

performed for patients or family members. We performed whole exome sequencing of 

240 patients with thoracic aortic dissection (n=235) or rupture (n=5) and 258 controls 

matched for age, sex, and ancestry. Blinded to case-control status, we annotated 

variants in 11 genes for pathogenicity. We identified twenty-four pathogenic variants in 6 

genes (COL3A1, FBN1, LOX, PRKG1, SMAD3, and TGFBR2) in 26 individuals, 

representing 10.8% of aortic cases and 0% of controls. Among dissection cases, we 

compared those with pathogenic variants to those without and found that pathogenic 

variant carriers had significantly earlier onset of dissection (41 versus 57 years), higher 

rates of root aneurysm (54% versus 30%), less hypertension (15% versus 57%), lower 

rates of smoking (19% versus 45%), and greater incidence of aortic disease in family 

members. Multivariable logistic regression showed that pathogenic variant carrier status 

was significantly associated with age <50 (odds ratio [OR], 5.5; 95% CI, 1.6–19.7), no 

history of hypertension (OR, 5.6; 95% CI, 1.4–22.3), and family history of aortic disease 

(mother: OR, 5.7; 95% CI, 1.4–22.3, siblings: OR, 5.1; 95% CI, 1.1–23.9, children: OR, 

6.0; 95% CI, 1.4–26.7). Clinical genetic testing of known hereditary thoracic aortic 

dissection genes should be considered in patients with a thoracic aortic dissection, 
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followed by cascade screening of family members, especially in patients with age-of-

onset <50 years, family history of thoracic aortic disease, and no history of 

hypertension. 

2.2 Introduction 
Thoracic aortic dissection is a life-threatening condition, responsible for 15,000 

deaths a year in the United States95,96. Approximately 30% of patients presenting with a 

thoracic aortic aneurysm and dissection have an underlying genetic 

predisposition97, which can be associated with syndromic features, such as Marfan 

syndrome or Loeys-Dietz syndrome, or not associated with syndromic features, as 

with ACTA2, MYLK, and MYH11 mutations98. Variants in many genes, including FBN1, 

SMAD3, and ACTA2, among others, can lead to either syndromic or nonsyndromic 

thoracic aortic aneurysm and dissection98,99,100. Recent advances in the field have 

shown definitive and strong evidence to support the role of pathogenic variants 

in ACTA2, COL3A1, FBN1, MYH11, SMAD3, TGFB2, TGFBR1, TGFBR2, MYLK, LOX, 

and PRKG1 as predisposing to hereditary thoracic aortic disease101. 

These genetic findings play a critical role for the patient and family members, 

helping to guide clinical decision-making to prevent or lessen the likelihood of a 

catastrophic event. Aortic diameter is a central criterion when deciding prophylactic 

surgical intervention and the recommended aortic diameter for surgical intervention 

differs for those with and without an underlying genetic predisposition. The American 

Heart Association/American College of Cardiology guidelines102 recommend that 

patients with genetically mediated aneurysms undergo elective surgical repair at an 
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ascending or aortic root diameter of 4.0 to 5.0 cm, depending on the condition. Whereas 

patients without a known genetic mutation may undergo elective surgical repair when 

the ascending or aortic root diameter is ≥5.5 cm, there are also established risk factors, 

such as an aortic diameter growth rate between >3 and 5 mm/year102,103 that may drive 

early surgical intervention. Recent work shows that different genes predisposing to 

hereditary thoracic aortic dissection have varying presentations and courses.104,105 For 

instance, patients with ACTA2 mutations more often present with acute aortic 

dissections whereas patients with Marfan syndrome often present with skeletal and 

ocular features before thoracic aortic dilation is discovered106.  

Despite the potential clinical impact of genetic findings, clinicians are usually not 

aware that a patient has an underlying pathogenic variant on initial presentation with a 

thoracic aortic dissection. The identification of variants known to predispose to thoracic 

aortic dissection has the potential to improve clinical management and guide treatment 

strategies for patients and family members. The objective of this study was to evaluate 

trends in pathogenic variants carriers with a history of thoracic aortic dissection or 

thoracic aortic rupture as well as to identify which patients and corresponding family 

members may benefit from clinic genetic testing.  

2.3 Methods 
2.3.1 Study Design  

The Cardiovascular Health Improvement Project (CHIP) is a biorepository with a 

historical collection of genotype and phenotype data, family history, DNA, and aortic 

tissue from participants with thoracic aortic disease. Thoracic aortic disease was 
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defined as any pathology of the thoracic aorta, including aneurysm, 

dissection/intramural hematoma, and rupture of the aorta. Between August 2013 and 

December 2015, 1,752 participants were enrolled in the CHIP biorepository, and of 

those, 265 cases had a diagnosis of thoracic aortic dissection including type A or type B 

aortic dissection or thoracic aortic rupture with or without aortic aneurysm. Age-, sex, 

and ancestry-matched controls (n=265) were identified as previously described from the 

Michigan Genomics Initiative (MGI), which is a surgical-based biobank107. In brief, we 

matched thoracic aortic dissection cases from CHIP to MGI controls of the same sex, 

age range (-5, +10) at time of enrollment, and minimum Euclidean distance as 

calculated from the first two principal components of genotype data indicative of genetic 

ancestry. Principal components were obtained by principal component analysis (PCA) in 

PLINK 1.9108 on 58,563 genotyped variants with > 0.05 minor allele frequency. For 83 

CHIP samples without genotypes from a customized Illumina HumanCoreExome v12.1 

bead array, we used self-reported ancestry instead of principal component-based 

ancestry to identify controls with similar genetic ancestry. In the event that insufficient 

DNA was available for the best matched control, we moved sequentially through the top 

10 best matched controls. All study procedures were approved by the Institutional 

Review Board (HUM00052866 and HUM00094409).  

2.3.2 Clinical Characteristics 
The electronic medical record was systematically reviewed for all thoracic aortic 

dissection cases (hereon referred to as cases). Specifically, the electronic medical 

record was used to verify demographics, clinical diagnoses, family history, surgical 
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history, clinical genetic testing results, medications, comorbidities, and systemic 

features. Patients were excluded (n=18) during electronic medical record review if a 

traumatic aortic dissection (n=9, accident or illicit drug use) or abdominal aortic rupture 

(n=9, etiology is typically atherosclerotic in nature) was identified. All cases with a 

clinical diagnosis of Marfan syndrome or a research-level pathogenic variant identified 

in FBN1 were reviewed using the Revised Ghent Nosology109 (Supplementary Table 

2-1,Supplementary Table 2-2). The clinical characteristics were reviewed in conjunction 

with the clinical genetic testing results (when available) and compared to the whole 

exome sequencing results.  

All cases completed a family history questionnaire with a trained research 

assistant at the time of enrollment to CHIP. The family history questionnaire asked 

participants to recall whether any first or second-degree relatives had pathology to the 

thoracic aorta, including aneurysm, dissection/intramural hematoma, or rupture of 

thoracic aorta. For this manuscript, we focused on first-degree relatives, and thoracic 

aortic disease was collapsed into a single categorical variable with “yes” equaling 

positive and “no” equaling negative family history. This process was repeated for each 

first-degree relative (mother, father, siblings, and children).  

Clinical characteristics for the cases (pathogenic carriers versus non-pathogenic 

carriers) are presented as median and inter-quartiles for continuous data and n (%) for 

categorical data. Univariate comparisons were performed using Chi-square with Yates’ 

continuity correction or Fisher’s exact test when any expected cell counts were < 5 for 

categorical data, and Wilcoxon rank sum tests were used for continuous data. We 
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performed multivariable logistic regression to identify associations between risk factors 

and pathogenic variant carriers. 

2.3.3 Whole Exome Sequencing 
DNA samples from whole blood for cases and controls (n=530) were prepared for 

whole exome sequencing as outlined by the Northwest Genomics Center (NWGC, 

University of Washington). 528 samples were approved for sequencing with sufficient 

DNA quality. DNA libraries underwent exome capture using Roche/Nimblegen SeqCap 

EZ v2.0 (~36.5 MB target). NWGC’s sequencing pipeline is a combined suite of Illumina 

software and other industry standard software packages (e.g., Genome Analysis ToolKit 

[GATK], Picard, BWA-MEM, SAMTools, and in-house custom scripts) and consisted of 

base calling, alignment, local realignment, duplicate removal, quality recalibration, data 

merging, variant detection, genotyping and annotation. Variant detection and 

genotyping were performed using the HaplotypeCaller tool from GATK110 and hard 

filtering was performed (GATK v3.4). Exome completion was defined as having > 90% 

of the exome target at > 8X coverage and >80% of the exome target at > 20X coverage. 

A total of 521 samples, 260 cases and 261 controls, and 323,867 variants (single 

nucleotide polymorphisms and insertion/deletions) passed standard quality control and 

were released to researchers. 

2.3.4 Additional sample and variant filtering 
Bi-allelic sites were extracted and lower coverage genotypes with depth (DP) < 5 

were masked out. All samples met the quality control threshold of an individual level call 

rate > 0.9. Poor quality sites with site-level call rate < 0.9 were excluded. Variants 
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significantly deviating from HWE with p-value < 10-6 were also removed. KING111 was 

used to identify five sample pairs as duplicates, and the sample with the lowest call rate 

was excluded, leaving 258 cases and 258 controls. Concordance with Exome+GWAS 

array genotypes was > 0.999 across all minor allele frequencies. The final analysis set 

was comprised of 240 cases and 258 controls and 299,195 variants. We opted to keep 

all cases and controls that passed quality control procedures, rather than reduce the 

sample size by only including complete pairs. 

2.3.5 Annotation of variants with clinical implications  
We focused on the following genes which confer a dominantly inherited risk for 

thoracic aortic dissection and with definitive and strong evidence of association of 

hereditary thoracic aortic aneurysm and dissection: ACTA2, COL3A1, FBN1, MYH11, 

SMAD3, TGFB2, TGFBR1, TGFBR2, MYLK, LOX, and PRKG199,112. A total of 248 

variants in these genes were annotated using dbNSFPv3.5a. and reviewed by a single 

researcher blinded to case or control status of the sample in which the variant was 

identified. Variants were then annotated as pathogenic, variants of unknown 

significance (VUS), or benign. Protein isoforms that are major isoforms expressed in 

smooth muscle cells or used in previous publications were used to predict amino acid 

changes (Supplementary Table 2-3). To define pathogenic variants, we annotated 

variants based on the ACMG-AMP standards and guidelines75. Additionally, established 

rules112 were used to classify rare variants as pathogenic or disease-causing. Rare 

variants were annotated as variants of unknown significance if lacking proof of 

pathogenicity. Variants were considered benign if they are nonsynonymous mutations 
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with MAF ≥ 0.005 in ExAC Non-Finnish Europeans113 or in a nonrelevant isoform, are 

synonymous mutations, or occurred > ±2 bp from intron/exon boundaries. 

2.3.6 Molecular Inversion Probe Sequencing 
Molecular Inversion Probe Sequencing (MIPS) was performed as a technical 

replicate of cases and controls that were whole exome sequenced and found to carry a 

pathogenic variant (Supplementary Table 2-4). This ensures the highest level of 

confidence in the whole exome sequencing variant calls and protects against potential 

sample swaps. MIPS was first performed on DNA from the same extraction used for 

whole exome sequencing. An additional round of MIPS was performed from a second 

DNA isolation to serve as a sample replicate. A custom targeted sequencing panel was 

designed for 116 genes using single molecule molecular inversion probes or 

smMIPS114. Coding exon coordinates were retrieved from the UCSC Genome Browser 

“knownGene” table (build GRCh37/hg19) and padded by 5 bp in each direction to 

include splice sites. Probes were designed and prepared as previously described115. For 

each sample, approximately 9 ng of purified smMIPS probes were combined with 250 

ng genomic DNA. The captured material was amplified by PCR using barcoded primers. 

The resulting PCR products were pooled for one lane of paired-end 150 bp sequencing 

on an Illumina HiSeq 4000 instrument at the University of Michigan Sequencing Core.  

Reads were aligned to the human genome reference (build GRCh37/hg19) using 

bwa mem116 and a custom pipeline (available at https://github.com/kitzmanlab/mimips) 

was used to remove smMIPS probe arm sequences and remove reads with duplicated 

molecular tags. Variant calling of MIPS sequencing results for both single nucleotide 
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variants and insertions/deletions was performed using the GotCloud117 pipeline. An 

iterative filtering process was performed after variant calling to remove variants with a 

depth < 10, then samples with call rates < 0.6, followed by variants with a call rate < 0.8, 

and finally samples with call rates < 0.9.   

2.3.7 Statistical analysis for burden of variants in cases and controls 
To test for association between carriers of a given variant class and case/control 

status we used Fisher’s exact test when any expected cell counts were < 5 and Chi-

square test with Yates’ continuity correction otherwise. This was done using the 

statistical programming language R version 3.5.1. We identified first-degree relatives 

using KING2111 and whole exome sequencing variant calls. For the two first-degree 

relative pairs we found in the cases, we retained the first sample acquired (proband) for 

the analysis resulting in 238 cases. A sample carrying at least one of a variant class 

was considered a carrier. We performed burden tests for association with case status 

across the 11 genes for all pathogenic variants (N=24) and VUS (N=86). We first 

excluded carriers of pathogenic variants before testing for association with case status 

for carriers of VUS (Ncases=213, Ncontrols=258). Logistic regression was used to estimate 

the odds ratio. A Bonferroni threshold of 0.003 was used to account for 17 tests, which 

are assumed to be independent. 

2.3.8 Data Visualization 
Annotated Fibrillin 1 protein domains from Pfam 31.0118 and a modified version of 

GenVisR 1.14.1119 were used for data visualization. Variants falling in mutation splice 

sites are not included in this protein-level visualization. 
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2.4 Results 
2.4.1 Comparisons of cases versus controls  

After quality control, we had 240 cases and 258 controls rather than 265 age, 

sex, and ancestry matched pairs remaining. We confirmed that the distribution of age, 

sex, and ethnicity was similar after the attrition of matched cases/controls during quality 

control (Supplementary Figure 2-1, Supplementary Figure 2-2, Supplementary Figure 

2-3). These samples were used to test for association between disease and 

pathogenic/VUS variant carrier status (Supplementary Table 2-5). To ensure these 

comparisons were robust to slightly unbalanced case/control matching, we performed 

logistic regression using age, sex, and carrier status as predictors of case/control status 

to replicate the analysis in Supplementary Table 2-5. The Wald test p-value for effect of 

VUS on case status adjusted for age/sex is 0.06, similar to the Chi-square p-value of 

0.07. For pathogenic variants we had 0 controls as carriers so we used Firth's bias-

reduced penalized-likelihood logistic regression as implemented in the R package 

logistf. The p-value from the profile penalized log likelihood is 1.5x10-8, similar to the 

Chi-square test p-value of 2.8x10-7. We examined all genes in the genome and none 

reached exome-wide significance for single variant tests or gene-based burden tests. 

2.4.2 Annotation of Variants From Research-Level Whole Exome 
Sequencing identifies Pathogenic Variants 
A total of 240 cases with a clinical diagnosis of thoracic aortic dissection (type A 

or type B) or rupture with or without aortic aneurysm and 258 age-, sex-, and ancestry-

matched controls had whole exome sequences available following quality control. For 

the 498 samples passing quality control, 248 variants were annotated blind to the 
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variant carrier’s case or control status. Twenty-four pathogenic variants in 6 genes 

(COL3A1, FBN1, LOX, PRKG1, SMAD3, TGFBR2) were identified, found exclusively in 

26 cases (Table 2-1), representing 10.8% of cases and 0% of controls. Two variants 

were seen each in a pair of first-degree relatives. There is a significant burden of 

pathogenic variants in FBN1 in cases compared with controls (Ncases=18, 

Ncontrols=0; P=2.5×10−5, Supplementary Table 2-5). These variants are predominantly 

found in calcium-binding epidermal growth factor domains of FBN1 (Figure 1-1). We 

examined the proportion of pathogenic variants that were present in commonly used 

databases and found that of the 24, 11 were present in dbSNP120, 8 were listed as 

pathogenic in ClinVar121, and 2 were present in gnomAD113 (Table 2-1). 

2.4.3 Research-Level Whole Exome Sequencing and Implications for 
Precision Health 
For 17 of the 26 pathogenic variant carriers (hereon pathogenic carriers), the 

whole exome sequencing results aligned with the current clinical diagnoses in the 

electronic medical record, including 5 patients (5 of 17) in which clinical genetic testing 

previously identified the same pathogenic variant as in whole exome sequencing (Table 

2-2, Supplementary Table 2-6). Whole exome sequencing results provided validation for 

12 pathogenic carriers with a clinical diagnosis of Marfan syndrome based on the 

Revised Ghent Nosology109. There were no genetic testing results for the above 12 

patients other than the whole exome sequencing results from this study. For the 9 

remaining pathogenic carriers, whole exome sequencing and annotation of pathogenic 

variants added diagnostic precision to the clinical diagnosis (Table 2-2). Specifically, 8 

of these pathogenic carriers (8 of 9) lacked a specific clinical diagnosis, but whole 
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exome sequencing and history of thoracic aortic dissection shifted the clinical diagnosis 

per guidelines to Marfan syndrome109 (FBN1, n=4), vascular Ehlers-Danlos syndrome102 

(COL3A1, n=1), or familial thoracic aortic disease (LOX, PRKG1, and SMAD3, n=3). For 

1 pathogenic carrier (1 of 9), there was an incorrect diagnosis of Marfan syndrome, 

which was amended to Loeys-Dietz syndrome based on a pathogenic variant identified 

in TGFBR2 and history of an acute Type A aortic dissection. In addition, the whole 

exome sequencing results provide a basis for cascade screening for the family 

members of all 26 cases per American Heart Association guidelines102. Cascade 

screening offers targeted genetic testing to biological relatives of anyone found to be a 

carrier of a hereditary condition and is an important precision medicine approach. 

2.4.4 Variants of Unknown Significance 
Eighty-six of the 248 annotated variants in aortopathy genes were annotated as 

VUS. After excluding one of each first-degree relative pair (see Methods) and cases 

with pathogenic variants, 58 of 213 cases (27.2%) and 51 of 258 controls (19.8%) had 

at least 1 VUS identified from whole exome sequencing. A difference in groups was not 

significant (P=0.072; Supplementary Table 2-5). The estimated odds of thoracic 

aneurysm if carrying a VUS is 1.52 (95% CI 0.988-2.33). There is, however, a 

significant association between pathogenic variants and cases (P=2.8×10−7; 

Supplementary Table 2-5). None of the 11 genes demonstrated association between 

carrier status for VUS and thoracic aortic dissection or rupture case/control status 

(Supplementary Table 2-5). 

2.4.5 Clinical Characteristics Between Pathogenic Variant and 
Nonpathogenic Variant Carriers 
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The pathogenic carriers were significantly younger with a median of 41 years 

(age range, 18–61 years) versus 57 years (age range, 17–89 years) of age. Seventy-

seven percent of pathogenic carriers were <50 years old whereas 72% of 

nonpathogenic carriers were >50 years old. Pathogenic carriers also had significantly 

more root aneurysms (54% versus 30%), less hypertension (15% versus 57%), and less 

history of smoking (19% versus 45%) compared with the nonpathogenic carriers. 

Moreover, the pathogenic carriers had a greater incidence of thoracic aortic disease in 

parents, siblings, and children (all P<0.05; Table 2-3). Pathogenic carriers presented 

with more type A than type B dissections although this comparison was not significant 

(69.2% versus 58.9%; P=0.421). One pathogenic carrier had a bicuspid aortic valve 

compared with 17 nonpathogenic variant carriers with biscuspid aortic valves. 

Multivariable logistic regression showed that pathogenic carriers were significantly more 

likely to have dissection age <50 years old, family history of thoracic aortic disease, and 

no history of hypertension (Table 2-4). 

2.4.6 Concordance between research-level whole exome sequencing 
and clinical genetic testing 
20 (20/240) aortic dissection cases had previous clinical genetic testing in their 

medical record. For 13 patients our findings agreed with clinical genetic testing 

(pathogenic=5, no findings=5, VUS=3). The remaining 7 cases had discrepancies 

between the clinical genetic testing and research-level WES and variant annotation. For 

one patient, we identified a VUS in MYH11, which was not one of the 6 genes clinically 

evaluated, and for another patient, clinical genetic testing identified a VUS in 2 genes 
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(CBS, COL5A1) which were not identified in the 11 heritable thoracic aortic aneurysm 

and dissection genes that we annotated. (Supplementary Table 2-6). 

In another patient, functional annotations and the protein domain affected were 

sufficient evidence for classification as VUS in both MYLK and COL3A1 which were 

clinically evaluated in 2016 but considered benign. For 1 patient, clinical genetic testing 

found double heterozygous genotypes for 2 VUS variants in COL5A1 and CBS which 

were not annotated in our research-level genetic testing.  

Three patients were found to have likely pathogenic or possibly causative 

variants by clinical genetic testing which we annotated as VUS. Finally, one patient had 

a 2012 clinical genetic testing result of pathogenic which we annotated as a VUS due to 

lack of evidence for pathogenicity.  

2.4.7 Pathogenic variants in commonly used databases 
As documented in Table 1-1, 17 of the 24 pathogenic variants were present in 

ClinVar as of September 30, 2018, 12 are pathogenic, 8 are listed as pathogenic, 5 as 

likely pathogenic, 1 as conflicting interpretation of pathogenicity, and 3 as VUS. 1 of the 

VUS variants is for a non-aortic phenotype—Wolff-Parkinson-White pattern. 15 of the 24 

variants have an rsID in dbSNP v151 for the hg19 chromosomal position, but only 11 of 

those have reference and alternate alleles corresponding to the variation catalogued in 

our cohort. For example, dbSNP lists rs113935744 as having reference allele T and 

alternate allele A whereas our sample was a carrier for alternate allele C. 

5,344 loss of function and missense variants from the 11 genes of interest were 

obtained from gnomAD v2.1. 930 of those variants are listed in ClinVar with the same 
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reference and alternate alleles as gnomAD. 16 of those are Pathogenic or 

Pathogenic/Likely pathogenic. By summing the allele counts across variants, we 

estimate pathogenic variants in these genes have a background prevalence of 9.396 x 

10-6 (30 occurrences in 3,193,956 alleles). Of the 24 pathogenic variants, only 2 are 

catalogued (rs779512296 and rs761857514) in gnomAD. rs779512296 has an allele 

frequency of 2.891 x10-5 in the gnomAD Latino population and 8.801x10-6 in the non-

Finnish European population. rs761857514 has an allele frequency of 3.267 x10-5 in the 

South Asian population. 

In this effort we used pathogenicity filtering criteria tailored to our phenotype of 

interest. As previously shown, using a typical pathogenicity filter (predicted deleterious 

by at least two of Polyphen2, SIFT, and MutationTaster; 0.5% maximum allele 

frequency across European Americans and African Americans in the Exome Variant 

Server; and 5% maximum allele frequency in 1000G) there is a high background 

prevalence of protein-altering variants in a population122. For example, default filtering 

on GeneVetter identifies 322 of 2,535 (12.7%) 1000 Genomes samples as pathogenic 

variant carriers, which is a higher background prevalence than we might expect for 

TAAD. Using the same filter in our cohort, we identify 48 cases (19.3%) and 22 controls 

(8.5%) as carriers for a pathogenic variant. 

2.5 Discussion 
The current study reports our initial experience with research-level whole exome 

sequencing in patients with thoracic aortic dissection or rupture with or without 

aneurysm. We tested 240 cases and 258 controls for pathogenic variants in 11 genes 
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known to cause aortic dissection101. By whole exome sequencing and validation 

targeted sequencing, we found pathogenic variants in 10.8% of cases and 0% of 

controls. Fifty-eight (27.2%) cases and 51 (19.8%) controls were identified as carriers of 

variants of unknown significance. 

In the general population, the incidence of pathogenic variants in our 11 genes of 

interest is low (1×10−7). Our diagnostic yield of 10.8% parallels the 9.3% in previous 

work, which identified pathogenic variants in the same 11 genes based on research-

level whole exome sequencing of 355 patients with sporadic aortic dissection and early 

onset (≤56 years of age)112. In contrast, the yield of whole exome sequencing in 102 

thoracic aortic aneurysm and dissection patients was much lower, with only 3.9% of 

cases carrying a pathogenic variant in one of the 21 genes of interest123. Similarly, 

Weerakkody et al124 performed targeted genetic analysis of 15 genes in a mixed cohort 

of 967 familial and sporadic thoracic aortic aneurysm or dissection cases and identified 

49 pathogenic or likely pathogenic variants in 47 patients, which represents a diagnostic 

yield of 4.9%. We report a 2-fold increased proportion of pathogenic variant carriers 

(10.8%) in a cohort with a more severe phenotype consisting of only thoracic aortic 

dissection or rupture cases, suggesting the utility of pursuing a clinical genetic diagnosis 

in this patient group specifically. The 89% of dissection cases that do not have a 

pathogenic variant may be because of a pathogenic variant currently annotated as a 

VUS, a pathogenic variant in a gene not yet identified, a high polygenic risk of 

aortopathy, and environmental risk factors. Additional studies of dissection cases may 

help identify novel genes underlying risk in remaining cases. Notably, the incidence of 
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bicuspid aortic valve in nonpathogenic variant carriers (17 of 216) is higher than that of 

the general population similar to other studies125, indicating that bicuspid aortic valve is 

a risk factor for aortic dissection even in the absence of a known pathogenic variant. 

The significant risk factors for a pathogenic variant in patients with thoracic aortic 

dissection or rupture were young age (< 50 years), no history of hypertension, but 

strong family history of thoracic aortic aneurysm, dissection, or rupture (Table 2-4). This 

is in agreement with a recent study in familial and sporadic cases of aneurysm or 

dissection of the thoracic aorta, which demonstrated a significantly increased probability 

of harboring a pathogenic or likely pathogenic variant in cases that were syndromic, 

young (age < 50), or with a known or probable family history124. Patients with 

pathogenic variants in TGFBR1/2 (Loeys-Dietz syndrome), FBN1 (Marfan syndrome), 

and MYH11 have a higher risk of aortic dissection and suffer more complications from 

aortic dissection, including death. Therefore American Heart Association/American 

College of Cardiology guideline recommends early and aggressive prophylactic 

operation to resect the abnormal thoracic aorta in patients with pathogenic 

variants102. Our results support the clinical importance of obtaining clinical genetic 

testing of known hereditary thoracic aortic dissection genes for thoracic aortic dissection 

and rupture patients, especially those with onset before 50 years of age, no history of 

hypertension, and a positive family history of thoracic aortic disease. 

It is important to clarify that other circumstances may exist that would warrant 

similar or different recommendations based on our findings. For instance, if a patient 

had a positive family history of thoracic aortic disease, clinical genetic testing for the 
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patient and family members especially the offspring would be recommended despite the 

patient’s age at the time of dissection (less than or greater than 50 years of age). If a 

patient had a negative family history and was less than 50 years of age, clinical genetic 

testing for the patient would be recommended, but cascade screening for family 

members would only be recommended if a pathogenic variant was identified in the 

patient. Beyond clinical genetic testing, screening with a computed tomography (CT) 

angiogram or magnetic resonance imaging would be recommended to rule out thoracic 

aortic disease among the patient’s family members. If a patient had a negative family 

history and was greater than 50 years of age, clinical genetic testing for the patient or 

family members would not be recommended, although screening with a CT angiogram 

or magnetic resonance imaging would be recommended to rule out thoracic aortic 

disease among the patient’s family members. Routine surveillance should be performed 

for all patients surviving a thoracic aortic dissection. Less frequent surveillance using a 

CT angiogram or magnetic resonance imaging is recommended for family members 

without thoracic aortic disease at initial CT angiogram or magnetic resonance imaging 

since family members may have a higher risk of thoracic aortic dissection compared 

with the normal population. 

We did not find a difference in the percentage of VUS in 11 dissection genes 

among cases compared with controls (P=0.07), although the effect size suggests a 

slightly increased odds of disease given VUS carrier status (OR=1.52 (95% CI 0.988-

2.33). In contrast, a previous study found a significantly increased burden of VUS in 

hereditary thoracic aortic dissection genes in dissection cases less than 56 years of age 
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compared with public controls (P=2×10−8)112. However, several differences in the two 

studies may contribute to the varied results. Whereas the sample size of the previous 

study’s control group was substantially higher, we analyzed cases and controls from the 

same batch and performed all quality control and variant annotation blinded to case or 

control status. Additionally, a focus on younger onset126 dissection cases may identify 

higher rates of VUS that may actually be pathogenic. Although the 2015 American 

College of Medical Genetics guidelines75 state that a variant of uncertain significance 

should not be used in clinical decision-making, we found evidence that VUS from 

clinical genetic testing resulted in the introduction of syndromic labels and diagnoses 

into the electronic medical record. Specifically, a VUS in TGFBR2 was subsequently 

described as a novel change likely causing Loeys-Dietz syndrome. The statistically 

similar rate of VUS in cases and controls demonstrates the need for a greater 

understanding of the high frequency of VUS in controls (15% in Guo et al112 and 20% in 

this study) and careful interpretation of VUS in clinical practice. 

To address the limitation that our sample processing and whole exome 

sequencing was not performed in a Clinical Laboratory Improvement Amendments-

certified laboratory, we verified pathogenic variants using molecular inversion probe 

sequencing. Furthermore, we performed expert-annotation of variant pathogenicity 

blinded to case or control status. This, coupled with the absence of pathogenic variants 

in controls, provides increased confidence in the results. We believe these precautions 

lend additional evidence that the research-level whole exome sequencing results are of 

high enough quality to return findings to patients, which will trigger verification by clinical 
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genetic testing performed in a Clinical Laboratory Improvement Amendments-certified 

laboratory and cascade screening for the same pathogenic variant in family members. 

Electronic medical record review of the cases with a pathogenic variant suggested an 

average of 4 (3.88) first-degree relatives per patient that would now be candidates for 

cascade screening. We are also limited by the (1) retrospective review, (2) possibility of 

incomplete electronic medical records, especially if a patient was seen at an outside 

institution, and (3) potential for limited family history knowledge. 

In conclusion, this work provides evidence that whole exome sequencing and 

annotation can accurately identify pathogenic variants in established genes for 

hereditary thoracic aortic dissection in patients with a thoracic aortic dissection or 

rupture. Moreover, the results highlight meaningful implications for precision health by 

providing clinical guidance on how to manage both patients and family members. We 

recommend clinical genetic testing of hereditary thoracic aortic dissection genes in 

patients who have suffered a thoracic aortic dissection, especially for those with an 

onset before 50 years old, a family history of thoracic aortic disease, and no history of 

hypertension. Clinical genetic testing may help to prevent catastrophic events, such as 

thoracic aortic dissections and death, for family members of pathogenic variant carriers 

who have a high risk but have yet to develop the phenotype. 

2.6 Aortic progression and reintervention in patients with 
pathogenic variants after a thoracic aortic dissection 

Using the exome sequencing and variant annotation from the CHIP biobank we 

were able to evaluate aortic disease progression and surgical reintervention in 

pathogenic variant carriers (n=31) versus benign/normal (n=144)127. Surgeons often 
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wonder how much they should do with the dissected aortic root and arch during the 

initial TAAD repair, and when a total aortic root or total aortic arch replacement should 

be performed to save the patient's life and prevent future reinterventions. Using EHR 

review to collect clinical data, CHIP’s EHR-linked biobank with genetic data allowed for 

interrogation of these questions to perform precision medicine approaches for 

pathogenic variant carriers with TAAD. 

Among patients undergoing open TAAD repair, the pathogenic group had 

significantly more aortic root replacement (71% vs 35%). With a median follow-up time 

of 7.5 years, the incidence rate of aortic root reintervention for native root aneurysm was 

increased 10-fold in the pathogenic group compared with the benign/normal group 

(12%/year vs 1.2%/year, P = .0001) (Figure 2-2). We found more aggressive aortic root 

replacement and similar arch management should be considered at the time of initial 

TAAD repair in pathogenic compared with benign/normal variant carriers. 

Frequently surgeons do not know if TAAD patients have a pathogenic genetic 

variant, nor do they perform genetic testing before an emergent operation; therefore, 

how does this study help surgeons make decisions regarding the aortic root? From our 

previous study128, we found that if patients have a positive family history of thoracic 

aortic disease (aortic aneurysm or dissection), are aged less than 50 years and have no 

history of smoking or hypertension, then they have a high risk of carrying a pathogenic 

genetic variant. This information can be obtained before surgery in most patients with 

aortic dissection. Therefore, we would recommend aggressive aortic root replacement 

at the time of acute TAAD repair in patients meeting this demographic. If the patients 
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already carry a diagnosis of Marfan Syndrome or Loeys-Dietz Syndrome or have 

suspected syndromic disease based on clinical presentation, we strongly recommend 

aggressive aortic root replacement.  

2.7 Disclosure of clinically actionable genetic variants to 
thoracic aortic dissection biobank participants  

We used the exome sequencing research level results as an opportunity to 

develop and evaluate an IRB-approved framework for returning the findings to research 

participants129. Participants received a letter disclosing the identification of a potentially 

disease-causing DNA alteration, but the variant was not stated. Twenty of the 26 

participants (6 were lost to follow up) received the letter and half proceeded with 

enrollment in a survey study. The letter offered clinical genetic counseling (which would 

be documented in their electronic health record) and confirmatory testing in a CLIA 

laboratory as part of that study. The average cost per participant was $605.  

A key aspect of the study included evaluating the impact of recontact and 

disclosure of research genetic results. As seen in Table 2-5, participants reported 

satisfaction with the letter (4.2±0.7) and genetic counseling (4.4±0.4; [out of 5]). The 

psychosocial impact was characterized by low decisional regret (11.5±11.6) and 

distress (16.0±4.2, [out of 100]). These findings suggest that participants were satisfied 

with the process and generally understood the meaning and implications of test results. 

Overall, these findings highlight the tradeoffs involved for investigators considering 

disclosure of research genetic results to participants. 
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2.8 Figures and Tables 

 
Figure 2-1 Distribution of pathogenic variants and variants of unknown significance in fibrillin 1 

Each point is a sample, with controls above the protein diagram and cases below. EGF indicates epidermal growth factor; TB, TGF-beta binding; and VUS, 
variant of unknown significance 
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Figure 2-2  Graphical abstract from Norton et al. 
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† Also present in gnomAD version 2.1 
Table 2-1 Classification of 24 Pathogenic Variants

Chromosome:position Reference Allele 
Alternate 

Allele Mutation type Gene 

HGVS 
protein 

notation ClinVar 9/30/18 
rsID dbSNP 

151 

2:189858169 G A Nonsynonymous COL3A1 p.G378D NA  

3:30732950 G A Stop Gain TGFBR2 p.W521* VUS for non-aortic phenotype  

5:121412592 CCAGA C Frameshift LOX p.Cys244fs NA rs779512296† 

10:53227579 G A Nonsynonymous PRKG1 p.R177Q Pathogenic rs397515330 

15:48707913 T C Nonsynonymous FBN1 p.N2624S VUS  

15:48713849 G C Nonsynonymous FBN1 p.C2535W Pathogenic  

15:48714232 C A Nonsynonymous FBN1 p.C2496F Likely pathogenic  

15:48719947 TGAAGCAGTACCCTTCCC T Frameshift FBN1 p.R2335fs NA  

15:48722967 A G Nonsynonymous FBN1 p.C2258R Pathogenic rs1057520617 

15:48725107 C T Nonsynonymous FBN1 p.C2232Y Pathogenic rs1060501054 

15:48730109 G A Stop Gain FBN1 p.R2057* Pathogenic rs763091520 

15:48744873 C T Nonsynonymous FBN1 p.E1811K 
Conflicting interpretation of 
pathogenicity rs761857514† 

15:48760660 A G Nonsynonymous FBN1 p.C1511R Likely pathogenic rs397515811 

15:48764793 A G Nonsynonymous FBN1 p.C1431R NA  

15:48773870 C CT Frameshift FBN1 p.G1316fs Likely pathogenic  

15:48782066 C A Stop Gain FBN1 p.G1022* NA rs794728171 

15:48786401 C G Nonsynonymous FBN1 p.D910H NA  

15:48802264 G GT Frameshift FBN1 p.Thr564fs Likely pathogenic  

15:48802366 T C Nonsynonymous FBN1 p.D530G VUS  

15:48808561 T C 
Essential Splice 
Site FBN1 . Pathogenic rs397515756 

15:48812913 G A Stop Gain FBN1 p.R364* Pathogenic rs794728165 

15:48888576 C T 
Essential Splice 
Site FBN1 . Likely pathogenic  

15:67457370 TGAA T In frame deletion SMAD3 p.K116del NA  

15:67462935 TA T Frameshift SMAD3 p.Asn218fs Pathogenic rs587776881 
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*  Clinical diagnosis and clinical genetic testing were consistent with the whole exome 
sequencing results 
†  Clinical diagnosis based on the Revised Ghent Nosology without clinical genetic 
testing was consistent with whole exome sequencing results.  
‡  Clinical diagnosis without clinical genetic testing was inconsistent with whole exome 
sequencing results 
§  Clinical diagnosis without clinical genetic testing would be improved by the whole 
exome result.  
 
Table 2-2 Comparison Between Clinical Diagnosis and Pathogenic Variants Identified With Whole Exome 
Sequencing 

 

  Clinical Diagnosis 
Matched 

Clinical Diagnosis 
Changed 

Diagnostic 
improvement and 

implications for clinical 
care 

  Number of 
Variants Genes Number of 

Variants Genes Number of 
Variants Genes 

Clinical genetic 
testing 
previously 
performed  

5 
FBN1*, 

SMAD3*, 
PRKG1* 

0 0 0 - 

No prior clinical 
genetic testing 12 FBN1† 1 TGFBR2‡ 8 

FBN1§, 
SMAD3§, 
LOX§, 
COL3A1§ 
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Values are median (IQR) or n (%). 
Correction for multiple statistical tests was not performed. 
Abbreviations: ACE-I=angiotensin converting enzyme inhibitor; ARB=Angiotensin II 
receptor blocker; CLIA: Clinical Laboratory Improvement Amendments; 
HTN=hypertension   
 
Table 2-3 Demographic and Clinical Characteristics at the Time of Dissection 

 

Variables  All Patients 
N= 240 

Non-Pathogenic 
N=214 

Pathogenic  
N=26 P 

Age of onset, years  56 (45, 66) 57 (47, 67) 38 (26, 48) <.001 
Age of dissection, years  56 (45, 67) 57 (47, 67) 41 (29, 50) <.001 
Male  159 (66) 146 (68) 13 (50) 0.102 
Race (% Caucasian)  212 (88) 190 (89) 22 (85) 0.76 
Ethnicity (% non-Hispanic)  224 (93) 198 (93) 26 (100) 0.30 
Thoracic aortic indications     

Root aneurysm 78 (33) 64 (30) 14 (54) 0.025 
Ascending aneurysm  119 (50) 107 (50) 12 (46) 0.87 
Arch aneurysm 59 (25) 55 (26) 4 (15) 0.34 
Descending aneurysm 71 (30) 66 (31) 5 (19) 0.32 
Max aneurysmal diameter, mm  48 (42, 57) 47 (42, 55) 57 (48, 71) 0.03 
Type A aortic dissection  144 (60) 126 (59) 18 (69) 0.42 
Type B aortic dissection  91 (38) 84 (39) 7 (27) 0.31 
Rupture  5 (2.1) 4 (1.9) 1 (3.8) 0.441 

Risk Factors      
HTN  126 (53) 122 (57) 4 (15) <.001 
Dyslipidemia  42 (18) 40 (19) 2 (7.7) 0.27 
Smoking history (former/current)  102 (43) 97 (45) 5 (19) 0.02 
Type 2 diabetes mellitus  6 (2.5) 6 (2.8) 0 (0) 1.00 

Medications      
ACE-I  29 (12) 27 (13) 2 (7.7) 0.75 
Calcium channel blocker 11 (4.6) 11 (5.1) 0 (0) 0.61 
ARB  14 (5.8) 13 (6.1) 1 (3.8) 1.00 
Βeta-Blocker  68 (28) 62 (29) 6 (23) 0.69 
Anti-HTN medications (% yes)  83 (35) 77 (36) 6 (23) 0.28 
Number of HTN medications     0.40 

0  157 (65) 137 (64) 20 (77)  
1 50 (21) 46 (21) 4 (15)  
2 27 (11) 26 (12) 1 (3.8)  
3 6 (2.5) 5 (2.3) 1 (3.8)  

Family history, first-degree relative     
Mother  41 (17) 31 (15) 10 (50) 0.008 
Father   47 (20) 39 (18) 8 (31) 0.22 
Sibling, at least one known  42 (18) 30 (14) 12 (46) <.001 
Child, at least one known  18 (7.5) 10 (5) 8 (31) <.001 

CLIA genetic testing (% yes)  20 (8.0) 15 (7.0) 5 (19.2) 0.05 
Pathogenic variant  5 (2.0) 0 (0) 5 (19.2) <.001 
Likely pathogenic or VUS  8 (3.8) 8 (3.8) 0 (0) 0.604 
No variant identified  7 (3.3) 7 (3.3) 0 (0) 1.0 
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Definitions: Hypertension was defined as no hypertension versus had a diagnosis of 
hypertension. Smoking history was defined as no smoking history versus had a smoking 
history. Family history was defined as aortic disease noted within a first-degree relative. 
 
Table 2-4 Risk factors for cases with a pathogenic variant 

 

Variables  OR 95% Wald Confidence Limits 

 P-value 
 

Lower Upper 

Age  ≤ 50  vs > 50 5.5 1.6 19.7 0.008 

Sex (female vs male) 1.1 0.3 3.8 0.84 

Caucasian  0.7 0.1 3.1 0.60 

Root aneurysm 1.7 0.6 5.2 0.34 

Hypertension  5.6 1.4 22.3 0.015 

Smoking history  2.6 0.7 9.9 0.16 

Family history     

Mother 5.7 1.4 22.3 0.013 

Father 0.3 0.1 1.6 0.17 

Siblings 5.1 1.1 23.9 0.04 

Children 6.0 1.4 26.7 0.017 
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Data Presented as mean (SD) for continuous data, n (%) for categorical data, and range.   
a Indicates the percent answered correctly for the 5 comprehension questions (total 41, out of 50)  
b Measured on a scaled from 0-5 with 5 being very satisfied or strongly agree  
c Measured on a scale from 0-100 with 100 being high psychological distress or high decisional regret  
d Participants were allowed to select more than one answer for Information Sharing.  
Abbreviations: (FACToR) Scale = Feelings About genomiC Testing Result 
Table 2-5 Assessing the impact of recontact and disclosure  (n = 10 participants)

Per-person Comprehension of Resultsa 
(% answered correctly)  

82% (26%) 20%-100% 

Name of participant’s condition   8 (80%) - 
Name of gene associated with condition 9 (90%) - 
Type of inheritance pattern   6 (60%) - 
Inheritance risk to biological siblings  9 (90%) - 
Inheritance risk to children  9 (90%) - 
Letter Satisfaction b    4.2 (0.7) 3.0-5.0 
Information about research pathogenic variant  4.1 (0.8) 3.0-5.0 
Family member implications  4.4 (0.5) 4.0-5.0 
Resources provided 4.1 (0.8) 3.0-5.0 
Letter length  4.2 (0.7) 3.0-5.0 
Readability of letter  4.1 (0.8) 3.0-5.0 
Genetic Counseling Satisfaction b 4.4 (0.4) 3.3-5.0 
Empathy demonstrated    4.7 (0.7) 3.0-5.0 
Facilitated the decision-making process 4.7 (0.5) 4.0-5.0 
Reassured  3.7 (0.8) 2.0-5.0 
Appointment duration  4.0 (0.7) 3.0-5.0 
Concern demonstrated  4.7 (0.5) 4.0-5.0 
Appointment was valuable  4.5 (0.7) 3.0-5.0 
Psychological Response (FACTor Score)   
Psychological Distressc   16.0 (4.2) 7.0-21.0 
Negative Feelings 3.7 ± 3.4 0.0-12.0 
Uncertainty 2.0 ± 1.7 0.0-5.0 
Privacy Concerns 1.7 ± 2.0 0.0-5.0 
Positive Feelings 8.7 ± 3.8 0.0-12.0 
Decisional Satisfaction and Regret   
Regret c     11.5 (11.6) 0.0-25.0 
Information Sharingd   9 (90%) - 
Spouse or partner  4 (40%) - 
Children  4 (40%) - 
Siblings 4 (40%) - 
Physician/Cardiologist 3 (30%) - 
Parents 2 (20%) - 
Other (i.e., relatives, friends, etc.) 3 (30%) - 
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2.10 Supplementary Material 
 
 Non-Pathogenic 

(n=6) 
Pathogenic 

(n=18) 
Family history absent or unknown (n)   

AD + EL  1 
AD + FBN1 mutation 1 4 
EL + FBN1 mutation   
AD + Systemic score ≥ 7   
AD + EL + FBN1 mutation   
AD + EL + Systemic score ≥ 7 1 1 
AD + Systemic score ≥ 7 + FBN1 mutation   

Family history present (n)   
AD 3 10 
EL  1 
Systemic score ≥ 7 1 1 
AD + EL   
AD + Systemic score ≥ 7   
EL + Systemic score ≥ 7   
AD + EL + Systemic score ≥ 7   

Abbreviations: AD=aortic dissection; EL=ectopia lentis 
 

Supplementary Table 2-1 Basis for Diagnosis of Marfan Syndrome 

According to the Revised Ghent Nosology, a positive family history is based on a diagnosis of Marfan Syndrome 
among a first-degree family member. 
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Features Non-Pathogenic 

(n=6) 
Pathogenic 

(n=18) 

Ectopia lentis 1 2 
Systemic score 5 (3, 8) 3 (2, 6) 
Arachnodactyly 5 11 
Pectus carinatum 1 4 
Pectus excavatum 1 3 
Dural ectasia 3 4 
Reduced US/LS + increased arm/height + 
no severe scoliosis 

0 2 

Scoliosis 2 5 
Kyphosis 3 0 
Plain pes planus 0 3 
Skin striae 1 2 
Myopia 2 5 
Mitral valve prolapse 1 5 

Supplementary Table 2-2 Comparison of Phenotypic Features in Patients with and without Pathogenic Variants in 
FBN1 

Values are median (interquartile range) or n (%). Abbreviations: US/LS=upper segment/lower segment ratio. If a 
systemic feature is not listed above, then it did not occur in any of the cases. 

Gene NCBI ID 

ACTA2 NM_001141945.1 
COL3A1 NM_000090.3 
FBN1 NM_000138.4 

LOX NM_002317.5 
MYH11 NM_002474.2 
MYLK NM_053025.3 
PRKG1 NM_001098512.3 
SMAD3 NM_005902.3 
TGFB2 NM_003238.3 
TGFBR1 NM_004612.2 
TGFBR2 NM_003242.5 

Supplementary Table 2-3 mRNA-seq isoforms used to identify the predicted amino acid change.  

Typically, this is a major isoform expressed in smooth muscle cells. For some proteins, previous publication’s isoform 
was chosen. NM indicates manually annotated and reviewed mRNAs 
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Ch
r 

Pos Varian
t type 

Ref Al
t 

Sample 
(NHLBI_ID
) 

Sample 
(GWAS/MIP
S ID) 

WES (GT:AD:DP:GQ:PL) MIPS_v1 Variant 
call (GT:DP:GQ:PL) 

MIPS_v1 
Quality 

MIPS_v2 Variant call 
(GT:DP:GQ:PL for SNPs, 
GT:PL:DP:AD:GQ for indels) 

MIPS_v2 Quality 

15 48707913 SNP T C 16554 58432 0/1:28,17:45:99:488,0,896 0/1:267:99:255,0,255 Failed 
individual 
level call 
rate filter 

0/1:676:99:255,0,255 Pass 

15 48713849 SNP G C 19082 113392 0/1:36,35:71:99:952,0,1142 NA Sample 
not 
sequenced 

0/1:222:255:255,0,255 sample filtered out 
due to high 
missingness in first 
pass, variant filtered 
by SVM filter 

15 48714232 SNP C A 11353 57411 0/1:43,33:76:99:931,0,1329 0/1:1165:99:255,0,25
5 

Pass 0/1:1050:99:255,0,255 Pass 

15 48719947 Indel TGAAGCAGTACCCTTCC
C 

T 17339 57403 0/1:26,12:38:99:427,0,4465 NA Indel 
calling not 
performed 

0/1:1189:.:583,586,20:43177,0,389
32 

Pass 

15 48722967 SNP A G 15731 58466 0/1:8,6:14:99:175,0,237 0/1:1065:99:255,0,25
5 

Pass 0/1:742:99:255,0,255 Pass 

15 48725107 SNP C T 12040 57445 0/1:19,16:35:99:427,0,631 0/1:607:99:255,0,255  Failed 
individual 
level call 
rate filter 

0/1:1564:99:255,0,255 Pass 

15 48730109 SNP G A 11487 57396 0/1:12,7:19:99:216,0,401 0/1:86:99:255,0,255 Pass 0/1:162:99:255,0,255 Pass 

15 48744873 SNP C T 16426 113380 0/1:13,13:26:99:318,0,361 NA Sample 
not 
sequenced 

0/1:242:99:255,0,255 Pass 

15 48760660 SNP A G 17258 113401 0/1:28,35:63:99:975,0,807 NA Sample 
not 
sequenced 

0/1:154:255:255,0,255 sample filtered out in 
second pass due to 
missingness rate, 
variant passes filter 

15 48764793 SNP A G 15339 57412 0/1:22,24:46:99:724,0,693 0/1:3287:99:255,0,25
5 

Pass 0/1:8893:99:255,0,255 Pass 

15 48773870 Indel C C
T 

12144 57419 0/1:24,29:53:99:741,0,561 NA Indel 
calling not 
performed 

0/1:1748:.:836,905,7:24198,0,2146
9 

Pass 

15 48782066 SNP C A 11080 58472 0/1:32,20:52:99:533,0,1034 0/1:881:99:255,0,255  Failed 
individual 
level call 
rate filter 

0/1:2433:99:255,0,255 Pass 

15 48786401 SNP C G 16641 57386 0/1:49,52:101:99:1347,0,13
69 

0/1:104:99:255,0,255 Pass 0/1:218:99:255,0,255 Pass 

15 48802264 Indel G G
T 

11970 57402 0/1:27,38:65:99:1212,0,802 NA Indel 
calling not 
performed 

0/1:2213,0,2047:162:79,83,0:. sample filtered out 
due to high 
missingness in first 
pass 

15 48802366 SNP T C 15837 57597 0/1:12,16:28:99:460,0,355 0/1:372:99:255,0,255 Pass 0/1:240:99:255,0,255 Pass 

15 48808561 SNP T C 13555 113354 0/1:19,16:35:99:525,0,561 NA Sample 
not 
sequenced 

0/1:415:99:255,0,255 Pass 

15 48812913 SNP G A 16930 57832 0/1:27,26:53:99:773,0,755 0/1:427:99:255,0,255 Pass 0/1:753:99:255,0,255 Pass 

15 48888576 SNP C T 17920 57617 0/1:21,16:37:99:480,0,699 NA No 
coverage 
in 
sequencin
g bam file 

0/1:525:99:255,0,255 Pass 
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Supplementary Table 2-4 Confirmation of WES variant calls with Molecular Inversion Probe Sequencing (MIPS).  

Two rounds of MIPS were performed to confirm the pathogenic variant calls in all 26 patients. In round 1, 22 of the 26 samples were sequenced. In round 2, all 
samples were sequenced. 

  

15 67457370 Indel TGAA T 10317 57605 0/1:17,19:36:99:727,0,647 NA Indel 
calling not 
performed 

0/1:180:.:95,85,0:2617,0,3122 Pass 

15 67462935 Indel TA T 16115 58000 0/1:25,41:66:99:1336,0,736 NA Indel 
calling not 
performed 

0/1:89:.:49,39,1:1005,0,1307 Pass 

15 67462935 Indel TA T 13332 58351 0/1:40,27:67:99:810,0,1268 NA Indel 
calling not 
performed 

0/1:39:.:16,23,0:632,0,396 Pass 

2 18985816
9 

SNP G A 15202 57577 0/1:46,36:82:99:1077,0,138
5 

0/1:363:99:255,0,255 Pass 0/1:446:99:255,0,255 Pass 

3 30732950 SNP G A 17845 57458 0/1:16,23:39:99:667,0,499 0/1:234:99:255,0,255 Pass 0/1:621:99:255,0,255 Pass 

10 53227579 SNP G A 19825 57370 0/1:42,47:89:99:1590,0,119
2 

0/1:39:99:255,0,255  Failed 
individual 
level call 
rate filter 

0/1:301:99:255,0,255 Pass 

10 53227579 SNP G A 10712 57607 0/1:91,58:149:99:1689,0,27
06 

0/1:2002:99:255,0,25
5 

Pass 0/1:168:255:255,0,255 sample filtered out in 
second pass due to 
high missingness 

5 12141259
2 

Indel CCAGA C 14301 57653 0/1:44,39:83:99:1506,0,252
5 

NA Indel 
calling not 
performed 

0/1:1650:.:757,879,14:31292,0,253
68 

Pass 
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Supplementary Table 2-5 Association between variants of a given class and case/control status across all 11 genes.  

A sample from each of the two related pairs in the cases was removed while the first ascertained sample was retained. When testing the VUS class of variants, 
only cases without a pathogenic variant were considered 

Variant class (# of 
variants in class)  Cases Controls 

Chi-square test p-
value (Yates’ 

continuity correction) 

Chi-square test 
statistics 

(Yates’ continuity 
correction) 

 n=238 n =258  

pathogenic (24) 
Non-

carrier 213 258 2.79e-7 26.39 
Carrier 25 0 

 n=213 n=258  

VUS (86) 
Non-

carrier 155 207 0.072 
 

3.25 
 Carrier 58 51 
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CLIA Research 
CLIA 
year 

Clinical Genetic Results Classification Variant Classification Gene Rationale for discrepancy 

2015 Heterozygous for the p.R192Q 
pathogenic mutation in the PRKG1 
gene 

Pathogenic 10:53227579 Pathogenic PRKG1 Concordant 

2010 Mutation: FBN1 Exon 22 Nucleotide: 
c.2728G>C Amino Acid:Asp910His 

Pathogenic 15:48786401 Pathogenic FBN1 Concordant 

NA Genetically confirmed MFS Pathogenic 15:48782066 Pathogenic FBN1 Concordant 

2:189856434 VUS COL3A1 Concordant 

NA clinical genetic testing, no variant 
identified  

No findings         

2014 Panel was negative for everything, 
COL3A1 TGFBR1 TGFBR2, ACTA2, 
SMAD3, TGFB2 tested 

No findings 16:15820794 VUS MYH11 Not tested in CLIA panel 

2012 SMAD3 genetic mutation Pathogenic 15:67462935 Pathogenic SMAD3 Concordant 

2012 VUS from TGFBR2 VUS 3:30713866 VUS TGFBR2 Concordant 

2016 No genetic mutations discovered, 22 
gene panel including COL3A1 and 
MYLK 

No findings 3:123337545 VUS MYLK MYLK p.T1814I is absent in the ExAC and 
gnomAD database.  T1814 alteration is not 
reported before so it is unclear whether 
alter this amino acid lead to TAD.  Multiple 
functional prediction programs suggest that 
this variant is damaging.  

2:189863424 VUS COL3A1 In triple helical region but didn't alter critical 
Glycine 

NA 6 gene vascular aneurysm panel and 
fibrillin 1 sequencing were negative  

No findings         

NA SMAD3 mutation related to Loeys-Dietz 
syndrome  

Pathogenic 15:67462935 Pathogenic SMAD3 Concordant 

2017 Patient was negative for panel  No findings         

2014 SMAD 3 likely pathogenic variant  Likely 
pathogenic 

16:15844048 VUS MYH11 MYH11 p.K1256del is not found in the 
ExAC and gnomAD database.  Deletion of 
this amino acid is not reported before so it 
is unclear whether deletion of this amino 
acid lead to TAD.  Couple of single amino 
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acid deletion flanking K1256 are found in 
the gnomAD and ExAC datebases.  In the 
gnomAD v2.1 control database, there are 6 
K1263del alleles and 2K1231del alleles.  

15:67482824 VUS SMAD3 SMAD3 p.V410 is found in the ExAC with 
low MAF (5.53E-04). Some functional 
prediction programs suggest damaging and 
other suggest benign.  

2014  SMAD3 gene mutation in exon 9, 
c.1228G>T, p.Val410Phe 

Likely 
pathogenic 

15:67482824 VUS SMAD3 SMAD3 p.V410 is found in the ExAC with 
low MAF (5.53E-04). Some functional 
prediction programs suggest damaging and 
other suggest benign.  

NA Only was tested for Marfan and was 
found to be negative  

No findings         

2012 Possibly causative SMAD3 mut 
(c.331T>A) 

Possibly 
causative 

15:67457357 VUS SMAD3 No evidence for pathogenicity 

2016 VUS in COL3A1 p. V5291 VUS 2:189860493 VUS COL3A1 Concordant 

2016 Heterozygous for the p.R369C 
pathogenic mutation in the CBS gene. 
Heterozygous for the p.P435A 
(c.1303C>G) VUS in the COL5A1 gene 

VUS 21:44480591 NA CBS Not one of 11 HTAAD genes 

9:137623480 NA COL5A1 Not one of 11 HTAAD genes 

2012 FBNI exon 32 Nucleotide: c. 4057G>A 
Amino: Gly1353Arg 

Likely 
pathogenic 

15:48766755 VUS FBN1 Reported in patients, no evidence for 
pathogenicity. Located in EGF-like 22 
calcium binding domain and is not a critical 
amino acid for the domain. 

2013 TGFBR1 Exon 5 Nuc: c.949C>T AA: 
His317Tyr 

Likely 
pathogenic 

9:101904961 VUS TGFBR1 No evidence for pathogenicity 

2013 No mutations found No findings         

Supplementary Table 2-6 Concordance between research-level and clinical genetic testing. 

20 patients with CLIA-certified genetic testing results allow for comparison of exome sequencing and annotation from research. 
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Supplementary Table 2-7 Gene level association tests 

Association between variants of a given class and case/control status per each of the 11 HTAAD genes. A sample from each of the two related pairs in the cases 
was removed while the first ascertained sample was retained. When testing the VUS class of variants, only cases without a pathogenic variant were considered. 
Accounting for multiple testing using a Bonferroni threshold of 0.003, the only significant association identified is for pathogenic variants in FBN1. 

 

 Pathogenic (N=24) VUS (N=86) 

Gene 
Cases* 
(N=237) 

Controls 
(N=258) 

Fisher 
Exact Test 
p-value 

Odds 
Ratio 
Estimate 

Odds Ratio 
95% 
Confidence 
Interval 

Chi-square 
test p-value 
(Yates' 
continuity 
correction) 

Chi-square 
test statistic 
(Yates' 
continuity 
correction) 

Cases* 
(N=213) 

Controls 
(N=258) 

Fisher 
Exact Test 
p-value 

Odds 
Ratio 
Estimate 

Odds Ratio 
95% 
Confidence 
Interval 

Chi-square 
test p-
value 
(Yates' 
continuity 
correction) 

Chi-square 
test 
statistic 
(Yates' 
continuity 
correction) 

ACTA2 NA NA         1 0 0.452 Inf 0.031, Inf     

COL3A1 1 0 0.48 Inf 0.028, Inf   9 5       0.237 1.4 

FBN1 18 0       2.05e-5 18.14 12 15       1 1.18e-29 

LOX 1 0 0.48 Inf 0.028, Inf   NA NA           

MYH11 NA NA         18 13       0.194 1.69 

MYLK NA NA         5 4 0.738 1.525 0.323, 7.789     

PRKG1 2 0 0.23 Inf 0.204, Inf   3 3 1 1.213 0.161, 9.16     

SMAD3 2 0 0.23 Inf 0.204, Inf   4 0 0.041 Inf 0.805, Inf     

TGFB2 NA NA         5 3 0.477 2.040 0.392, 13.290     

TGFBR1 NA NA         3 3 1 1.214 0.161, 9.16     

TGFBR2 1 0 0.48 Inf 0.028, Inf   7 9       1 7e-31 
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Supplementary Figure 2-1 Age distribution 

Age Distribution Between Cases (n=240) and Controls (n=258). For distribution of age was similar after the attrition of 
matched cases/controls during quality control. 
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Supplementary Figure 2-2 Ethnicity distribution 

Ethnicity Distribution Between Cases (n=240) and Controls (n=258). The distribution of ethnicity was similar after the 
attrition of matched cases/controls during quality control. 
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Supplementary Figure 2-3 Sex Distribution 

Sex Distribution Between Cases (n=240) and Controls (n=258). The  For distribution of sex was similar after the 
attrition of matched cases/controls during quality control. 
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Chapter 3 Utility of family history in the era of genetic risk 
scores 

3.1 Introduction 
Early in the history of medicine it was observed that diseases tend to run in 

families, with children of parents afflicted by diseases generally inheriting the same 

ailment130. As Gregor Mendel’s experiments in pea plants evolved into our 

understanding that DNA is the molecule of inheritance131, the impact of family history on 

human health became more directly obvious. Yet even in the early 2000s, family history 

was still not validated for use as a public health tool in preventative medicine for 

common chronic diseases outside of cancer and heart disease132. Family history is a 

common question on intake forms at physician’s offices and epidemiological 

questionnaires issued as part of biobank enrollment. However, family history is often 

overlooked in clinical practice or an individual’s understanding of his/her own health 

risks. We can take advantage of self-reported family history in EHR-linked biobanks to 

assess the clinical validity of family history in precision medicine approaches. 

In Chapter 2, our results suggest prioritized genetic testing for thoracic aortic 

dissection patients with an onset before 50 years old, a family history of thoracic aortic 

disease, and no history of hypertension, as they are more likely to carry a pathogenic 

variant in one of 11 known thoracic aortic disease genes. While this was in a Mendelian 

inheritance context, the use of family history in the context of complex diseases such as 
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coronary artery disease may be similarly informative. For example, a positive family 

history of breast cancer indicates a 1.5-fold increased risk133  and for myocardial 

infarction, a 5-fold increased risk134. Family history not only captures the inherited 

genetic variation, but also shared environments and behaviors. For example, using a 

statistical framework based on the liability threshold model135,136, it is estimated that 

32% of the association between parental history and type 2 diabetes is due to shared 

environment between parent-child with the remaining heritability explained by 

genetics137. As part of the environmental component, recent research demonstrated that 

even non-transmitted alleles can affect a child through their impacts on the allele 

carriers (parents or other relatives) through a process called genetic nurture138. 

It is a common misunderstanding that a positive self-reported family history 

captures the gold standard of the inherited component of disease risk, with molecular 

genetic tests thought to represent an incomplete and substantially smaller component of 

genetic risk.  For example, genome-wide association studies (GWAS), even in very 

large sample sizes, only capture a fraction (e.g., 22-55%) of narrow-sense heritability 

due to limitations of the genotyping array density139.  Family history has been shown to 

be partially independent from genetic risk scores (GRSs) in diseases like 

schizophrenia140 and in original studies of heart disease87,141 despite family history 

capturing both genetic and environmental disease risk. More modern genome-wide 

GRSs (e.g., millions of variants as opposed to tens of top loci) are associated with 

incident coronary heart disease independent of family history142. The utility of family 

history can be limited when an individual is i) young and therefore has younger relatives 
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who have not yet developed late-onset disease, ii) has few relatives, or iii) does not 

know family history (e.g., adoptees). Incomplete penetrance of complex disease is 

another consideration for family history as a predictor of disease outcomes.   

Despite the small percent of phenotypic variance explained, GWAS results are 

increasingly used to estimate a GRS for individuals by counting a person’s disease-risk 

alleles and weighing them by their impact on disease risk (Equation 1-1). Biologists 

have traditionally focused on only the few dozen or hundred markers that reach study-

wide significant differences between cases and controls. However, the predictive utility 

of a genome-wide score with millions of genetic variants with small impact on 

phenotypic variance was recently established in common diseases where the genetic 

background is highly polygenic80. Individuals with the highest 5% of genome-wide 

polygenic scores for coronary artery disease (CAD) have greater than threefold risk for 

CAD compared to the rest of the population80. This is similar to the increased CAD risk 

conferred by monogenic mutations, such as those causing familial hypercholesterolemia 

(LDLR, APOB, and PCSK9); yet 20 times as many people fall into this high-risk 

category relative to those who carry a monogenic mutation, suggesting that more 

cardiovascular events could be prevented by screening individuals based on high GRS 

in comparison to those with Mendelian mutations. 

Several risk-prediction models have evaluated the inclusion of self-reported 

family history alongside genetic risk. In simulation studies using Crohn’s disease 

markers, a model incorporated genotype information from first-degree relatives to 

improve disease risk prediction accuracy143. A model for quantifying the risk prediction 



 

 69 

capacity of family history and SNP-based methods found family history is most useful 

for common, highly heritable conditions such as CAD but less useful for less common 

diseases144. Conversely, it was demonstrated that a joint model with family history and 

GRS performs substantially better than GRS alone, especially for rare diseases like 

Crohn’s disease but also in common diseases like CAD145. Another study proposed a 

statistical framework to predict breast cancer risk based on family history and genetic 

profile for better risk stratification than genetics alone146. When family history is used in 

combination with a woman’s GRS for breast cancer, the effect size for family history of 

both early-onset and late-onset breast cancer was attenuated, suggesting the GRS 

shares some component of family history147. A GRS for prostate cancer was added to 

family history to identify twice as many high-risk men148. The use of six conventional risk 

factors for CAD, including family history of heart disease, was shown to improve the 

predictive power of CAD incidence when used in combination with GRS compared to 

prediction based on GRS alone or conventional risk factors alone83. 

Several clinical risk scores (e.g., Reynolds Risk Score149,150, MESA CHD Risk151, 

NORRISK152, QRISK153) which predict an individual’s 10-year risk of coronary events 

use family history, but some do not (e.g., Framingham154). In clinical care, physicians 

may use an informal assessment of accumulating risk factors including family history to 

inform patient care and during shared decision-making conversations. The simplicity of 

family history allows for inexpensive and easy inclusion of predictive information early in 

life, potentially allowing for intervention before extended exposure to elevated lipid 

levels. While presently more expensive and onerous to obtain than a standard lipid 
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panel or family history, GRS is also an exposure present from birth that could be 

ascertained early in life. If our goal is prevention, using GRS for screening early is 

optimal, because individuals falling in the top tail of the GRS distribution typically have 

an earlier onset of disease. In a previous study, individuals in the top 2.5% of the CAD 

GRS distribution were diagnosed with coronary heart disease 4.35 years earlier than 

individuals with average CAD GRS and 13.4 years earlier for T2D and the top 2.5% of 

the T2D GRS distribution90.  

In this new era of genetic risk scores, how do existing clinical risk factors such as 

family history compare to GRS with regards to association with complex disease 

outcomes? Here, we examine this question in two independent data sets and two 

cardiometabolic diseases. We provide evidence that use of both family history and GRS 

will be important for risk prediction in clinical care. 

3.2 Methods 
The Trøndelag Health Study (HUNT) is a population-based health survey 

conducted in Trøndelag county, Norway, since 198410. Individuals were included at 

three different time points during approximately 20 years (HUNT1 [1984-1986], HUNT2 

[1995-1997] and HUNT3 [2006-2008]). Participation in the HUNT Study is based on 

informed consent, and the study has been approved by the Data Inspectorate and the 

Regional Ethics Committee for Medical Research in Norway. Of the greater than 

120,000 participants in the HUNT study, 69,635 individuals of European ancestry have 

been genotyped using Illumina Human CoreExome v1.1 array with 70,000 additional 

custom content beads and imputed to 25M genetic markers using 2,202 whole-genome 
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sequenced samples from HUNT together with Haplotype Reference Consortium 

reference panel47,42. Self-reported family history of disease was obtained from survey 

questionnaires from HUNT 1-3 (Supplementary Table 3-1). Variables across HUNT 

collections were collapsed to create a single indicator variable for first-degree family 

history of myocardial infarction and diabetes (unspecified). The age of participation in 

HUNT 1-3 was recorded with the earliest age being taken if the participant answered 

the question in multiple collections 

The UK Biobank is a population-based cohort collected from multiple sites across 

the United Kingdom18,155. Genotyped and imputed data for 408,577 individuals of white 

British ancestry were used for this analysis. We used a combination of hospital, 

outpatient, and emergency room discharge diagnoses (ICD-9 and ICD-10) along with 

self-reported variables and lab measurements to identify cases and controls for 

common diseases (Supplementary Table 3-2). In UKB, family history across multiple 

family members was obtained from field IDs 20107, 20110, 20111 and collapsed into a 

single indicator variable for first degree family history of heart disease or diabetes. 

Hereafter, when describing the predictors, family history refers to self-reported family 

history from surveys. 

We used previously generated weights for an optimized set of genome-wide 

variants (6.6M for CAD and 6.9M for T2D) to calculate the disease-specific GRS80. 

Briefly, these weights6 were based on genetic effect estimates (beta coefficients) from 

the largest GWAS as of 2017 for both CAD (N=60,801 cases and 123,504 controls) and 

T2D (N=26,676 cases and 132,532 controls). Genetic variants were pruned using 
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LDpred and tuning parameter !, representing the proportion of variants assumed to be 

causal, of 0.001 for CAD and 0.01 for T2D. The weights for CAD and T2D were applied 

to individual-level imputed dosages for each HUNT participant and UKB participant to 

estimate GRSCAD  and GRST2D (Equation 1-1). A limitation of this analysis is the score is 

susceptible to overfitting when evaluated in UKB because the LDpred tuning 

parameters were optimized in UKB phase 1 samples. However, the variant weights 

came from an external GWAS (i.e., not including UKB) and the score performance did 

not vary widely across the tuning parameters in the optimization step, so overfitting 

should be minor. 

We estimated the odds ratios (ORs) for models with GRS and self-reported 

family history as predictors using logistic regression (Equation 3-1) with a binomial link 

function adjusting for covariates including sex, age at biobank enrollment, age at 

biobank enrollment squared, birth year, and first four genetic principal components. In 

analyses where we estimate the odds ratio for predictors, we perform several variable 

transformations. Birthyear is transformed to the age in 2021 so the odds ratio is on the 

scale of risk rather than protection (i.e odds ratio > 1), but is referred to as birthyear to 

avoid confusion with age at biobank enrollment. Although normally distributed, the GRS 

is inverse normalized (using R package RNOMni) as is common to ensure dependent 

variables satisfy the normality assumption156. Age-related covariates are scaled to have 

a mean of 0 and variance of 1. When evaluating model selection for family history and 

GRS we used standard multivariable logistic regression (Equation 3-1). When 

considering risk thresholds using family history and GRS, we used an indicator variable 



 

 73 

based on a percentile threshold for GRS with or without conditioning on family history 

(Equation 3-2). Reported p-values from logistic regression are from Wald tests, and the 

p-values from model comparison with ANOVA are Likelihood Ratio Tests. Statistical 

analyses were conducted using R version 4.0.3 software. 

Equation 3-1 Logistic Regression with continuous GRS 

Pr(%! = 1|)!) = +! 

,-./0(+!) = 1" + 1# × 4(567/,8	ℎ/;0-<8!) + 1$ × =>?! + 1% × )! 

Where )! 	is a vector of covariates. 
 
 

Equation 3-2 Logistic Regression with thresholding of GRS 

Pr(%! = 1|)!) = +! 

,-./0(+!) = 1" + 1# × 4(=>?! > A|567/,8	ℎ/;0-<8!) + 1$ × )! 

Where )! 	is a vector of covariates and A is a percentile threshold (e.g., 99, 98, 95). 
 

3.3 Results 
3.3.1 Disease prevalence across genetic risk score quantiles and 

family history strata 
After stratification based on family history of disease, we calculated the disease 

prevalence within each of 20 quantiles (5% bins or ventiles) of the GRS. Notably, the 

disease prevalence between strata overlaps only in the distribution tails—between the 

top 10% of individuals with no family history of CAD and the bottom 5% of individuals 

with positive family history of CAD (Figure 3-1) and between the top 5% of individuals 

with no family history of T2D and the bottom 5% of individuals with positive family 

history (Figure 3-2) Although stratification before division into ventiles may bias the 
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results to larger differences between positive and negative family history strata, we also 

calculated the disease prevalence within GRS ventiles before stratifying by family 

history and found the results to be largely similar (Supplementary Figure 3-1). In a 

sensitivity analysis across number of quantile divisions, the trend between negative and 

positive family history strata is robust (Supplementary Figure 3-1).  

In HUNT, participants with a GRSCAD in the top 5% of scores with a positive 

family history have a 2.78-fold increased risk of CAD (95% CI 2.41-3.22) compared to 

the rest of the population, while participants with GRSCAD in the top 5% of scores have a 

2.59-fold increased risk without stratification by family history (95% CI 2.34-2.87) (Table 

3-1). Similarly, for T2D, participants with a GRST2D in the top 5% with a positive family 

history have a 3.64-fold increased risk of T2D compared to the rest of the population, 

versus 2.60-fold increased risk without stratification by family history (Table 3-2). This 

trend of larger odds of disease in the high-risk group stratified first by family history and 

then by GRS, holds across thresholds for top scores (Table 3-1,Table 3-2). 

3.3.2 Family history and GRS as predictors of disease 
For CAD, the GRSCAD distributions are significantly different between cases and 

controls (Wilcoxon Rank Sum Test [WRST] p-value=1.4x10-127), and between positive 

and negative self-reported family history (WRST p-value=1.5x10-125, Figure 3-3). 

Likewise, for T2D, the GRST2D distributions are significantly different between cases and 

controls (WRST p-value=3.3x10-173) and between positive and negative self-reported 

family history (WRST p-value=3.4x10-96). The Pearson correlation (also known as point-

biserial correlation when one variably is dichotomous) between GRSCAD and family 
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history is 0.09 and 0.08 for GRST2D. While this correlation is low, using a logistic 

regression model, we observed significant association between family history and 

GRSCAD (p-value=4x10-131, OR=1.22 [1.20,1.24]) and GRST2D (p-value=3x10-8, OR=1.21 

[1.19,1.24]).  

Through variable selection we observed that birth year and age of self-reported 

family history (participation age or biobank enrollment age) history were significant 

predictors. We established the full model to include standardized participation age and 

age squared, standardized age in 2021, sex, family history, inverse normalized GRS, 

and an interaction term between family history and GRS. Using this full model, we 

demonstrate family history and GRSCAD as significant predictors of disease (Table 3-3). 

Family history and GRSCAD have a nominally significant interaction term (p-value=0.02) 

in the full model (Table 3-5). Adding GRSCAD to the base model yields a larger change 

in Nagelkerke’s R2 (0.023) than adding family history to the base model (0.01) (Table 

3-5). 

Having a positive family history puts you at ≥3 times greater odds of having T2D 

(OR=3.01, 95% CI 2.79-3.24, Table 3-4). This is a larger effect than for CAD (OR=1.72, 

95% CI 1.61-1.83, Table 3-3). We see this reflected in the larger increase of 

Nagelkerke’s R2 when adding family history to GRS with T2D compared to CAD (Table 

3-5). One potential explanation is that family history for T2D represents more of a 

shared environmental component to disease risk than family history for CAD.  

3.3.3 Family history is highly correlated to age of enrollment in 
biobank 
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We observed the proportion of people who report having a relative with disease 

increases with the age of the person self-reporting family history (Figure 3-6). The 

Pearson correlation between age of enrollment and family history of myocardial 

infarction (MI) is 0.38 (Figure 3-4) and for family history of diabetes is 0.33 (Figure 3-5). 

The relative effects of family history and GRS in an additive model changed greatly, with 

family history appearing to have an over-exaggerated impact, if either participation age 

or birth year was used separately (Supplementary Figure 3-2).  

This is not surprising for common, complex diseases—as someone ages, their 

relatives also age and become at higher risk of disease. The average age of individuals 

who experienced MI in HUNT is 70.5 years (95% CI 70.3,70.9). A positive or negative 

family history for MI is significantly predicted by enrollment age alone (p-value < 2.2 x 

10-308). Sixteen percent of 19-40 year aged participants report a positive family history of 

myocardial infarction (MI) before the age of 60, versus 52% of participants over 40 

years of age. Nine percent of participants aged 19-40 years report a positive family 

history of diabetes, versus 35% of participants over 40 years of age. The participation 

age of persons reporting no affected first degree relative is significantly less than the 

age of persons reporting positive family history (35.5 versus 50.7 years , WRST 1-sided 

p-value < 2.2 x 10-308, Figure 3-6). In HUNT2, where relationship type of relative 

experiencing a heart attack before the age of 60 is specified in the survey, individuals 

that report a sibling or child with the disease are older than individuals who report 

affected parents (48.7 versus 48.2 years, WRST 1-sided p-value=7.9x10-11).  

3.3.4 Family history is useful for youngest and oldest individuals  
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Using family history and GRS as predictors in an interaction model across 

decades of biobank enrollment ages (e.g., the age an individual participated in the 

questionnaire and self-reported a positive or negative family history), we can determine 

in what decades of life the predictors are most significant. Both predictors are significant 

across the lifespan for CAD (Figure 3-7) and T2D (Figure 3-8). The odds ratio estimated 

for family history of T2D has a U-shaped curve with higher odds of disease indicated by 

family history on both tails of enrollment age (Figure 3-7). Family history of MI has a 

maximum odds ratio estimate only at the young enrollment age bin. We hypothesize the 

high effect of family history between enrollment age of 30-40 years is driven by rare 

variants of large effect which lead to earlier or more severe disease, whereas the higher 

association of family history at older enrollment age may be due to lifespan exposure to 

a shared-family environmental risk factors (e.g., diet, exercise, smoking). The odds ratio 

estimate for GRS decreases across the ages for both CAD and T2D. We hypothesize 

this is because lifestyle factors introduce more variation into the outcome, so the 

contribution of genetics to risk decreased as all other factors increase.  

3.3.5 Replication in UK Biobank  
An increased disease prevalence is also observed in individuals in the top tail of 

the GRS distribution with a positive self-reported family history for both CAD 

(Supplementary Figure 3-3) and T2D (Supplementary Figure 3-4) in the UK Biobank. An 

enrichment of negative family history for heart disease in the younger individuals is also 

observed (Supplementary Figure 3-5). Using the covariates from the model selection 

from HUNT, we observed similar odds ratios for predictors of interest in UKB as in 
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HUNT (Table 3-3, Table 3-4). For association with CAD, family history has an OR of 

2.03 (95% CI 1.98-2.1) and GRSCAD has an OR of 1.41 (95% CI 1.38-1.44) (Table 3-3). 

The family history and GRS interaction term was significant for CAD but not T2D 

(Supplementary Table 3-3). 

3.4 Discussion 
The goal of many scientists and physicians is to improve prevention and 

treatment of common diseases. There is optimism about the promise of GRS to identify 

individuals at-risk of disease prior to development of clinical risk factors157. These 

individuals could be pre-emptively treated or encouraged to make lifestyle modifications 

to reduce risk of disease. In HUNT and UK Biobank we evaluated the association of 

family history and GRS to outcomes in an EHR-linked biobank. We found limitations of 

the variables, particularly with regards to age of biobank enrollment. We believe the 

following considerations have specific opportunities for optimal use of money, 

computing capacity, and recruitment efforts for the standing up of resource-limited 

biobanks. 

3.4.1 Considerations for family history variables in biobank design 
In a longitudinal study such as HUNT, many quality assurance and data 

management decisions are made regarding variables. We found that some family 

history variables were used to correct or update past family history variables. A missing 

answer for ‘No one in my family has diabetes’ in the HUNT2 Questionnaire 2 was 

updated to indicate negative family history if the participant indicated they had family 

members with disease in HUNT3 Baseline Questionnaire 1. This de-coupled the family 
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history from the age of the proband at time of self-report. The HUNT2 Baseline 

Questionnaire 1 asks if parents or sibling have had a heart attack or chest pain, while 

HUNT2 Baseline Questionnaire 2 asks specifically for history of first-degree relative 

having a heart attack before age 60. However, a missing or negative family history 

answer in Questionnaire 1 was updated to positive family history if indicated in 

Questionnaire 2, despite the heterogeneity of the phenotype. While these instances do 

not affect the ultimate collapsed family history variable, it makes it hard to assess the 

non-randomness of the missingness in the data as it relates to age. 

It is important to consider epidemiological questions such as family history as 

measurements at separate time points like lipids. The biobank enrollment age may be a 

poor proxy for the age at which disease onset or diagnosis for the family member 

actually occurs. Unfortunately, the family member’s age of disease diagnosis is 

inconsistently reported in the biobanks of this study and may suffer from recall bias as 

well. If grouping together relative types for a singular family history variable, directly 

defining first-degree relative for the participant (mother, father, sibling) versus second 

degree relative (grandparent, aunt, uncle) will yield specificity. Even more useful, albeit 

time consuming for the participant, is a grid of diseases and relationships to allow for 

higher resolution family history variables. Family history due to an affected sibling likely 

represents more shared environmental risk than family history from an affected parent 

due to similar childhood environments and birth cohort effects (e.g., belonging to the 

same generation). Finally, a binary predictor describing the presence or absence of 

family history is less informative than more specific metrics such as the number or 
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affected relatives relative to total number of relatives, severity of disease, or an estimate 

for the age of disease onset or diagnosis in these relatives. These richer predictive 

features are rarely systematically collected in biobanks.  

After stratifying by self-reported family history of heart disease in UK Biobank, the 

prevalence of CAD is greater in the top 10 ventiles of the positive family history stratum 

than even the top ventile in the negative family history stratum (Supplementary Figure 

3-3). Depending on the research question or clinical application, this could mean the 

prioritization of obtaining genotypes only from those with a family history. We propose 

the use of family history and GRS for targeted screening, risk stratification, and 

intervention. In a scenario where genetic screening is resource prohibitive, genotyping 

high-risk individuals in the stratum of individuals with family history of the disease could 

be more cost-efficient than using GRS to screen in the general population. However, 

this may produce health disparities by deprioritizing persons with unknown family 

history. 

3.4.2 Family history will decrease as disease prevention improves 
As we become better at reducing the prevalence of disease via prevention, rates 

of positive family history will hopefully decrease. This is seen for cases of familial 

hypercholesterolemia, where high-intensity lipid-lowering therapies have dramatically 

decreased the risk of heart attack . As of 2013, 27.8% of the general population in the 

United States reported using statins, and 52.7% of patients with atherosclerotic 

cardiovascular disease (ASCVD) used statins159. Recent research suggests high-

intensity statin usage could prevent 51-71% of premature ASVD events (1.4 million 
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events in the US) when patients age 30-39 are treated for 30 years160. As preventative 

pharmaceutical interventions become more widespread and part of early primary 

prevention strategies, family history will, hopefully, become a less informative predictor 

of disease as fewer relatives who were at risk end up with the disease. While this will be 

a welcome outcome of precision medicine, it does have ramifications for predictors such 

as family history which are a function of disease incidence. Using genetically inferred 

kinship in the subset of HUNT for which we have statin information (HUNT 3, N=14,055) 

26.8% of the 2,595 first-degree relatives of cases take statins compared to 16.8% of 

individuals not related to a case (Chi-square p-value=3.6x10-58). 

3.4.3 Limitations of GRS and self-reported family history 
Although the field appears to be rapidly moving towards clinical implementation 

of GRS, there are limitations. Calibration of GRS is required before clinical 

implementation, with scores for common cancers showing systematic bias between 

estimated and observed risk in the UK Biobank161. The lack of summary statistics from 

GWAS in large populations of non-European ancestry means systematically biased 

GRS could exacerbate health disparities in already vulnerable populations30. Even when 

summary statistics exist, GRSs are sensitive to uncorrected stratification in the original 

GWAS162. Although there is overlap between the information contained in GRSs and 

self-reported family history, we found the information to be largely uncorrelated. This 

suggests that some of the shared-family risk is not captured in current GRS, perhaps 

due to uncaptured rare variation or shared family environment. 
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There are important ethical decisions regarding how and when to return GRS to 

patients. Similar to considerations used for returning pathogenic mutations to patients, 

we should consider how to estimate error rates due to GRS inaccuracy. It’s likely that 

GRSs will need to come from a Clinical Laboratory Improvement Amendments (CLIA) 

certified laboratory before being used widely in clinical care. The return of GRS results 

also increases the demand on genetic counselors to adequately explain polygenic risk 

of complex disease along with primary prevention strategies to a large number of 

individuals. Lastly, knowledge of one’s GRS may not prevent disease, particularly since 

it seems that many individuals will not make any behavioral or clinical changes, or in 

situations where current clinical practice is already working quite well so little 

improvement is likely to be made. In a recent randomized control trial, return of genetic 

risk via a web-based portal did not significantly affect health-behaviors163. This suggests 

that clinical impact of GRS may be enhanced by personalized consultation with medical 

professionals including genetic counselors, which would be difficult to scale to the entire 

population. 

Family history as a variable also has its shortcomings. First-degree family history, 

considered in this study, indicates 50% shared genetic liability for disease, but second-

degree family history reduces the shared genetic liability to 25%. Evaluating the specific 

type of family history included in predictive models will be an important next step. 

Furthermore, the accuracy of self-reported family history is imperfect, with some studies 

indicating specificity ranging from 75-98% for common conditions such as diabetes and 

obesity164. 
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Another possibility is that individuals in the highest risk category (or with a 

positive family history) may be more motivated to make behavioral changes.  

Preliminary evidence suggests that individuals with high GRS may benefit most from 

LDL-lowering by statins165, suggesting that individuals at lower LDL-C but higher GRS 

may benefit from statin therapies but may not meet current criteria for treatment. 

Therefore, prioritization of the screening population for medical or behavioral 

intervention would be important, but prioritization metrics have not yet been determined. 

Current proposals for clinical use of GRS involve estimation of GRS in a given ancestry 

group, and those falling in a high percentile (e.g., top 1-5%) may be offered an 

intervention (e.g., statins, metformin, counseling on health behavior).  

Current AHA guidelines for lipid-lowering (statin, ezetimibe or PCSK9i therapies) 

are multi-faceted with a many-step protocol based on: past CVD events, LDL-C levels, 

10-year CVD risk, diabetes status, age, and coronary artery calcium score89. Family 

history is often considered a risk enhancing factor, but we advocate for formal inclusion 

of family history in future prediction models. Future iterations of GRSs may integrate 

genetic risk for clinical risk factors such as LDL-C measurements or BMI. The addition 

of an easily ascertained metric such as family history suggests we should continue to 

evaluate the use of other biomarker GRSs (as in Sinnott-Armstrong et al166) and clinical 

risk factors to predict disease (as in Inouye et al83), particularly early in life.  

At first glance, family history is an ideal predictive indicator for CAD because it 

can be freely ascertained from patients at a young age before blood lipid measurements 

are regularly taken and before extended exposure to elevated lipid levels leads to 
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atherosclerosis. However, the paucity of familial disease events for young biobank 

participants suggests family history may be a poor predictive tool for early intervention. 

By the time a sibling is old enough to become affected, the benefit of family history as a 

disease predictor is negated as the time frame for preventative interventions in the 

individual of interest is past. A tool that has its greatest predictive effect after the 

average age of disease diagnosis is not ideal, and for many diseases this may prove to 

limit the utility of family history to predict disease. 

In conclusion, we demonstrate that genetic risk score and family history are 

important predictors of CAD and T2D. Additional studies should be performed in traits 

with inheritance driven predominantly by monogenic variants (e.g., BRCA1 and breast 

cancer) and early-onset diseases (e.g., asthma) to determine the generalizability of this 

finding. For CAD specifically, more research is needed to elucidate how family history 

and GRS can be added to existing clinical risk factors to create a second-generation 

Pooled Cohorts Equation that allows for optimal risk stratification and disease 

prevention. Until then, physicians should carefully record family history of relevant 

diseases in the electronic health record, and biobanks should carefully design 

epidemiological surveys for family history variables. We hope this will expedite the 

development of mature risk prediction models, using family history and GRS, to aid in 

effective risk screening for common diseases such as CAD and T2D.  
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3.5 Tables and Figures 
 

Predictor High Risk 
definition 

Reference 
Group 

Odds Ratio 95% CI p-value % of 
sample in 
High Risk 
(N)  

Median 
participati
on age in 
High Risk 

Prevalence 
in High 
Risk 

Prevalence 
in 
Reference 
Group 

Sensitivity Specificity 

GRS Top 20% Remaining 
80% 

2.01 1.89-2.14 2.03x10-108 20%  
(13746) 

41.6 0.14 0.086 0.29 0.81 

Top 10% Remaining 
90% 

2.27 2.10-2.46 1.29x10-94 10% 
(6873) 

41.7 0.16 0.090 0.16 0.91 

Top 5% Remaining 
95% 

2.59 2.34-2.87 4.25x10-75 5% 
(3437) 

41.8 0.18 0.092 0.09 0.95 

Top 1% Remaining 
99% 

3.60 2.92-4.42 1.45x10-33 1% 
(688) 

41.2 0.21 0.095 0.02 0.99 

FH Positive Negative 1.83 1.72-1.95 2.14x10-79 35.6% 
(24446) 

50.7 0.15 0.066 0.56 0.67 

GRS 
conditional 
on Positive 
FH 

Top 20% 
of Positive 
FH 

Remaining 
80% 

2.31 2.13-2.51 1.11x10-90 7.1% 
(4889) 

49.9 0.21 0.088 0.15 0.94 

Top 10% 
of Positive 
FH 

Remaining 
90% 

2.49 2.32-2.77 5.27x10-62 3.6% 
(2445) 

49.3 0.23 0.092 0.08 0.97 

Top 5% of 
Positive 
FH 

Remaining 
95% 

2.78 2.41-3.22 2.49x10-43 1.8% 
(1223) 

49.1 0.24 0.094 0.04 0.99 

Top 1% of 
Positive 
FH 

Remaining 
99% 

3.83 2.84-5.16 9.99x10-19 0.35% 
(245) 

49.4 0.30 0.096 0.011 0.997 

Table 3-1 Clinical impact of high risk stratification for CAD in HUNT. 

An indicator variable was created for the various high risk definitions above. The model controlled for batch, participation age, participation age squared, birth year, 
principal components 1-4 from genetic data, and sex. 
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Predictor High Risk 
definition 

Reference 
Group 

Odds Ratio 95% CI p-value % of 
sample in 
High Risk  

Median 
participatio
n age in 
High Risk 

Prevalence 
in High Risk 

Prevalence 
in 
Reference 
Group 

Sensitivity Specificity 

GRS Top 20% Remaining 
80% 

2.09 1.97-2.24 4.15x10-113 20 40.7 0.123 0.066 0.32 0.81 

Top 10% Remaining 
90% 

2.82 2.11-2.47 7.83x10-93 10 40.8 0.119 0.071 0.18 0.91 

Top 5% Remaining 
95% 

2.35 2.35-2.88 3.02x10-75 5 41.0 0.116 0.073 0.10 0.95 

Top 1% Remaining 
99% 

2.85 2.31-3.52 1.67x10-22 1 40.9 0.109 0.077 0.02 0.99 

FH Positive Negative 3.12 2.91-3.36 2.44x10-212 22.9 52.6 0.159 0.053 0.47 0.79 

GRS 
conditional 
on Positive 
FH 

Top 20% 
of Positive 
FH 

Remaining 
80% 

3.14 2.85-3.46 6.21x10-119 4.6 51.5 0.223 0.071 0.13 0.96 

Top 10% 
of Positive 
FH 

Remaining 
90% 

3.54 3.13-4.02 6.90x10-87 2.3 51.2 0.253 0.074 0.07 0.98 

Top 5% of 
Positive 
FH 

Remaining 
95% 

3.65 3.07-4.32 6.83x10-50 1.1 51.1 0.265 0.075 0.04 0.99 

Top 1% of 
Positive 
FH 

Remaining 
99% 

4.39 3.06-6.31 1.07x10-15 0.23 51.0 0.299 0.077 0.01 0.99 

Table 3-2 Clinical impact of high risk stratification for T2D in HUNT. 

An indicator variable was created for the various high risk definitions above. The model controlled for batch, participation age, participation age squared, birth year, 
principal components 1-4 from genetic data, and sex. 
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 HUNT UKB 
Predictor  OR 95% CI p-value  OR 95% CI p-value  

Standardized Participation 
Age 

10.9 8.5-14.0 2.96x10-76 1.35 1.054-1.74 0.0179 

Standardized Participation 
Age Squared 

0.13 0.11-0.16 1.21x10-86 0.54 0.43-0.67 3.6x10-8 

Standardized 2021-
birthYear 

2.86 2.62-3.10 1.94x10-135 3.02 2.87-3.19 < 2.2 x 10-308 

Male Sex 2.69 2.54-2.85 4.25x10-253 2.87 2.79-2.95 < 2.2 x 10-308 

Positive Family History 1.72 1.61-1.83 3.39x10-60 2.03 1.98-2.1 < 2.2 x 10-308 

Inverse normalized GRS 1.53 1.53-1.60 3.66x10-9 1.41 1.38-1.44 1.29x10-169 

Family History x Inverse 
normalized GRS 

0.94 0.86-0.99 .024 1.03 1.01-1.07 0.0134 

Table 3-3 Full model estimates for CAD 

Adjusted for principal components 1-4 from genetic data and genotyping batch (HUNT)/genotyping array (UKB). 
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 HUNT UKB 

Predictor  OR 95% CI p-value  OR 95% CI p-value  

Standardized Participation 
Age 

2.22 1.76-2.74 2.61x10-13 0.70 0.53-0.93 0.014 

Standardized Participation 
Age Squared 

0.46 0.39-0.56 2.54x10-16 0.86 0.66-1.11 0.235 

Standardized 2021-
birthYear 

2.22 2.06-2.40 1.80x10-97 2.83 2.64-3.03 3.72x10-192 

Male Sex 1.41 1.33-1.50 2.18x10-30 1.96 1.90-203 < 2.2 x 10-308 

Positive Family History 3.01 2.79-3.24 5.58x10-181 3.01 2.90-3.11 < 2.2 x 10-308 

Inverse normalized GRS 1.60 1.54-1.67 9.65x10-115 1.52 1.49-1.56 1.56x10-265 

Family History x Inverse 
normalized GRS 

0.913 0.86-0.97 0.0032 0.99 0.95-1.02 0.42 

Table 3-4 Full model estimates for T2D 

Adjusted for principal components 1-4 from genetic data and genotyping batch (HUNT)/genotyping array (UKB). 
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  CAD T2D 

Model 1 Model 2 LRT p-value D 
Nagelkerke’s 
r2 

LRT p-value D 
Nagelkerke’s 
r2 

Base GRS model 9.22x10-188 0.023 2.55x10-202 0.031 

Base FH model 
 

8.72x10-82 0.010 5.95x19-214 0.033 

GRS model GRS + FH 
(additive) 
model 
 

1.71x10-60 0.007 6.84x10-185 0.028 

FH model GRS + FH 
(additive) 
model 

1.65x10-166 0.021 2.94x10-173 0.026 

GRS + FH 
(additive) 
model 

GRS + FH + 
GRS x FH 
(interaction) 
model 

0.022 0.00014 0.003 0.00029 

Table 3-5 Model comparisons in HUNT 

Comparison of models in HUNT with family history (FH) and genetic risk score (GRS) using ANOVA. The base model 
is sex, birthyear, participant age, and participant age squared, and first four principal components from genetic data. 
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Figure 3-1 CAD prevalence across GRS quantiles, stratified by family history of myocardial infarction in HUNT 

The prevalence of coronary artery disease per genetic risk score ventile in the entire population of HUNT and 
stratified by self-reported family history of myocardial infarction (MI). 
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Figure 3-2 T2D prevalence across GRS quantiles, stratified by family history of diabetes in HUNT 

The prevalence of Type 2 diabetes per genetic risk score ventile in the entire population of HUNT and stratified by 
self-reported family history of diabetes 
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Figure 3-3 Distribution of GRS for CAD in HUNT 

Inverse normalized GRS stratified by a variety of relevant variables. Significant shift is seen only for trait status and 
family history. 
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Figure 3-4 Pearson correlations between model variables for CAD in HUNT.  

Pheno is the phenotype (e.g., CAD). Batch is genotyping batch coded 0,1. FamHx is family history coded 0,1. Sex is 
coded 0= females and 1= males. Enrollment age is the age at which a participant filled out the self-report family 
history variables in a HUNT survey. 
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Figure 3-5 Pearson correlations between model variables for T2D in HUNT. 

Pheno is the phenotype (e.g., Type 2 diabetes). Batch is genotyping batch coded 0,1. FamHx is family history coded 
0,1. Sex is coded 0= females and 1= males. Enrollment age is the age at which a participant filled out the self-report 
family history variables in a HUNT survey. 
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Figure 3-6 Distribution of participation ages for the first-degree family history of myocardial infarction variable.  
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Figure 3-7 Family history and GRS as predictors of CAD across biobank enrollment ages 

Each model is adjusted for principal components 1-4 from genetic data, participation age, participation age squared, birthyear, sex, and genotyping batch. 
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Figure 3-8 Family history and GRS as predictors of T2D across biobank enrollment ages 

Each model is adjusted for principal components 1-4 from genetic data, participation age, participation age squared, birthyear, sex, and genotyping batch. 
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3.7 Supplementary Material 
 Self-reported 

family history 
Control Case Total 

HUNT  
CAD 

Negative 41,361 2,923 44,284 
Positive 20,705 3,741 24,446 
Unknown/NA 827 78 905 

HUNT 
T2D 

Negative 48,886 2,760 51,646 
Positive 12,926 2,445 15,371 
Unknown/NA 2,441 177 2,618 

UKBB CAD Positive 159,012 19,076 178,088 
Negative 153,762 7,602 161,364 
NA 63,143 5,387 68,530 

UKBB T2D Negative 225,772 7,498 233,270 
Positive 57,380 7,907 65,287 
Unknown/NA 87,217 4,790 92,007 

Supplementary Table 3-1 Sample sizes 

The number of cases and controls and self-reported positive/negative family history participants in UKB and HUNT 
for both CAD and T2D. 
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 HUNT UKB 

 CAD T2D CAD T2D 

Case definition Self reported CABG 
or PCI or MI ICD 
code 
(I21,I25.2,410,412) 

Non fasting serum 
glucose > 11.1, 
HbA1C > 6.5 or 
E11, 250.00, 
250.02, 250.10, 
250.12, 250.20, 
250.2, 250.30, 
250.32, 250.40, 
250.42, 250.50, 
250.52, 250.60, 
250.62, 250.70, 
250.72, 250.80, 
250.82, 250.90, 
250.9 

Phecode 411 for 
ischemic heart 
disease  

Phecode 250.2 for 
Type 2 diabetes 

Self-reported 
family history 

HUNT1: Sibling 
with heart attack or 
angina pectoris 
HUNT2: Parents or 
siblings had an MI 
or chest pain AND 
Mother, Father, 
Sister, Brother, 
Child had heart 
attack before age 
60 
HUNT3: Parents, 
siblings or children 
had heart attack 
before age 60 

HUNT1: Siblings 
with diabetes 
HUNT2: Mother, 
father, brother, 
sister, child with 
diabetes  
HUNT3: Parents, 
siblings or children 
with diabetes  

Heart disease of 
mother, father, or 
sibling 

Diabetes of 
mother, father, or 
sibling 

Supplementary Table 3-2 Phenotype definitions for main outcomes and family history variables in HUNT and UKB 
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  CAD T2D 

Model 1 Model 2 LRT p-value D 
Nagelkerke’s 
r2 

LRT p-value D 
Nagelkerke’s 
r2 

Base GRS model < 2.2 x 10-308 0.0234 < 2.2 x 10-308 0.296 

Base FH model 
 

< 2.2 x 10-308 0.0207 < 2.2 x 10-308 0.046 

GRS model GRS + FH 
(additive) 
model 
 

< 2.2 x 10-308 0.0168 < 2.2 x 10-308 0.0378 

FH model GRS + FH 
(additive) 
model 

< 2.2 x 10-308 0.0195 < 2.2 x 10-308 0.0218 

GRS + FH 
(additive) 
model 

GRS + FH + 
GRS x FH 
(interaction) 
model 

0.014 0.00004 0.416 6.2x10-6 

Supplementary Table 3-3 Model comparisons in UKB 
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Supplementary Figure 3-1 Sensitivity analysis for disease prevalence  

Regardless of the number of quantiles (n=4,5,10,20,100) or if quantiles are calculated before (quantile first) or after (stratify first) stratification by family history, 
the trends remain. 
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Supplementary Figure 3-2 Model selection for CAD and T2D 

An indicator variable was used to identify a “high risk” group. Conditional is top X% of distribution with positive family history. Model selection was performed, 
leaving out one covariate at a time. Batch is genotyping batch, participation age is the age family history was self reported, partAgesq is participation age 
squared. All continuous variables were scaled to mean of 0 and variance of 1. GRS was inverse normalized. When birthyear and participation age are not 
included, family history has a higher odds ratio than when these covariates are adjusted for. 
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Supplementary Figure 3-3 CAD prevalence in UK Biobank 
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Supplementary Figure 3-4 T2D prevalence in UK Biobank 
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Supplementary Figure 3-5 Age distribution in UK Biobank. 

With recent enrollment and only one time point, we are using current age to estimate the age of self-reported family 
history of heart disease in UK Biobank. 
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Chapter 4 Comprehensive benchmarking of integrated 
polygenic and conventional risk factor models for 
cardiovascular traits in the Trøndelag Health Study  

4.1 Introduction 
Major improvements in human health and longevity could be seen if individuals at 

high risk of preventable diseases were identified and treated preemptively, particularly 

for cardiovascular disease (CVD) which is the leading cause of death globally1. 

Although the predictive power of a single score representing an individual’s genetic 

predisposition for a disease was first described a decade ago79,81 sufficiently powered 

genome wide association studies (GWAS) and methodological developments have only 

recently created scores with the potential for clinical utility167. These polygenic scores 

(PGS, also called genetic risk scores or genome-wide polygenic scores) are a risk 

predictor present from conception, making them significantly different from conventional 

risk factors like cholesterol, which is commonly measured in middle-aged adults. 

Polygenic scores have the potential to provide earlier identification of high-risk 

individuals and improved risk stratification29 to better identify at-risk individuals for whom 

interventions, such as lipid-lowering therapeutics (e.g., statin, ezetimibe, PCSK9 

inhibitors) or lifestyle modifications may be particularly valuable. 

The most recent American Heart Association (AHA)/American College of 

Cardiology (ACC) guidelines suggest using clinical risk factors and LDL-C levels to 

determine an individual’s 10-year risk of cardiovascular events and subsequently guide 
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preventive, cholesterol-lowering lifestyle changes and medical therapies89. The 

validated 10-year predicted risk of atherosclerotic cardiovascular disease (ASCVD) 

includes risk factors such as diabetes status, age, sex, race, smoking status, and blood 

pressure168. It is generally recommended that individuals with a >7.5% 10-year ASCVD 

risk as estimated by the Pooled Cohorts Equation (PCE)168 are engaged in a shared 

decision-making discussion about initiating cholesterol-lowering therapy, usually a 

statin. The algorithm and threshold differs between countries, with the QRISK3153 and 

NORRISK2152 risk models used in the United Kingdom and Norway respectively. To 

date, no current guidelines consider genetic risk outside of monogenic mutation carriers 

(e.g., LDLR and familial hypercholesterolemia) and family history of heart disease. 

The number needed to treat (NNT) is a common metric for the impact of a 

therapeutic, and the NNT to prevent a cardiac event is relatively large (ranging from 7-

58169). However, statins generally have few adverse effects, so the clinical benefit still 

outweighs potential risks. Myalgia (i.e., muscle pain) is the most common adverse effect 

of statin treatment, at one point estimated from observational studies to affect 15-20% 

of patients. However, some research also suggests the actual incidence of myalgia is 

lower, and overestimates may be the cause of misattribution of unfavorable 

nonpharmacological effects to the statin treatment170. Given this, using PGSs to 

prioritize more individuals with statin-lowering therapies than would be identified by 

clinical risk factors could prevent additional events with low risk of harm. 

However, the predictive power of published PGSs varies171,88,172,83,173,90,80,29, and 

the utility of most PGSs to predict disease over and above conventional risk factors is 
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unclear. This study represents a systematic evaluation of the potential clinical utility of 

polygenic scores for improving current algorithms for selecting individuals at high-risk of 

CVD and prioritize those individuals for interventions such as statin therapy. We 

performed comprehensive benchmarking of cardiovascular trait PGSs from the PGS 

Catalog in HUNT, a population-based, longitudinal cohort which was independent from 

those used to develop and optimize the PGSs.   

4.2 Benchmarking CAD polygenic scores in the HUNT study 
All seven Coronary Artery Disease (CAD) polygenic scores in the PGS Catalog 

as of October 2020 (Supplementary Table 4-1) were significantly associated with CAD, 

of which there were 8,925 cases in HUNT (Figure 4-1). Notably, when we consider 

prevalent (N=1,839) and incident (N=7,086) cases separately, the odds ratio for the 

prevalent cases was greater for all PGSs relative to that for incident cases. The median 

age of CAD diagnosis was 73.5 years for incident cases versus 65.0 years for prevalent 

cases, so this attenuation of the odds ratio in incident cases is likely due to the 

correlation between earlier disease onset and increased genetic predisposition for 

disease. 

To evaluate the predictive performance of PGSs and conventional risk factors we 

used a Cox proportional hazard model with follow-up time as the time scale (see 

Methods) with incident CAD events or CAD-attributed deaths as the end point. HUNT 

subjects had a median follow-up time of 21.0 years (IQR 10.9-21.7, Supplementary 

Table 4-2). Participants with incident CAD events have a higher frequency of risk factors 

such as smoking and diabetes than those without (Table 4-1). Calibration plots were 
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assessed (Supplementary Figure 4-1). The seven polygenic scores for CAD were all 

significantly associated with CAD (Table 4-2), and the hazard ratios (HRs) were slightly 

attenuated when the model included conventional risk factors (clinical factors used in 

the PCE). The LDpred genome-wide polygenic score (GPS) previously published by 

Khera et al. 201880 (PGS Catalog accession: PGS000013) was the most significant (HR 

= 1.37 [1.34,1.40], p-value=1.2x10-146), followed by the metaGRS previously published 

by Inouye et al. 201883 (PGS000018, HR = 1.34 [1.31,1.38], p-value=4.9x10-129). 

Improvement in the model after adding PGS persists when using the 10-year ASCVD 

risk estimated from the PCE as a predictor. However, the PGS appears to provide more 

improvement over the PCE model relative to the model with all risk factors, which 

suggests the PCE does not explain as much of the outcome as the conventional risk 

factors (Table 4-2). Neither metaGRS nor LDpred are strongly correlated with any of the 

conventional risk factors (Supplementary Figure 4-2). We also found no significant 

interaction between 10-year ASCVD risk and each of the PGSs. In a Cox proportional 

hazard model including conventional risk factors, the hazard ratio for the best-

performing polygenic predictor (LDpred) was greater than that of systolic blood pressure 

and high-density lipoprotein (HDL) cholesterol, but less than that of total cholesterol 

(Figure 4-2).  

Harrell’s C-statistic or concordance index, is a goodness of fit metric used to 

evaluate the discriminative capacity of risk models in survival analysis. Using this 

metric, the baseline model including only age and sex and technical covariates 

(genotyping batch, principal components 1-5 from genetic data) had a discriminative 
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capacity of 0.786 (95% CI [0.781,0.790], Figure 4-3). When each PGS was evaluated 

as a predictor together with the baseline model, the C-statistic was highest for the 

model including the LDpred score (0.798 [0.794,0.802]). The top 3 performing PGS; 

metaGRS, LDpred, and LDpred2 published by Mars et al. 202090 (PGS000329); had 

higher C-statistics than any of the conventional risk factors alone, including low-density 

lipoprotein cholesterol (LDL-C) (Supplementary Table 4-4). When all conventional risk 

factors were considered (without any PGS), the C-statistic was 0.805 (0.801-0.810), 

which was higher than the C-statistic for the model with only the 10-year ASCVD risk 

(0.800 [0.796-0.804]). Because the conventional risk factors are also used to calculate 

the 10-year ASCVD, these models should theoretically be comparable. Finally, a model 

integrating all conventional risk factors and the top performing PGS (i.e. LDpred) had 

the highest discriminative capacity with a C-statistic of 0.815 (0.810,0.819).  

The net reclassification index (NRI) and number needed to treat (NNT) are ideal 

metrics of clinical utility in diseases like CAD with a delineated threshold for 

implementing treatment. Previous efforts to quantify the clinical utility of PGSs have 

found a range of NRI values (Supplementary Table 4-6) likely due to differences in 

cohort composition and quality of PGS (e.g., early non-genome wide scores). In the 

Norwegian longitudinal HUNT sample, we found a categorical NRI of 0.02 (95% CI 0.01, 

0.03) after incorporating the top-performing PGS (LDpred) relative to conventional risk 

predictors. We found that 1,903 individuals, or 2.94% of the total sample of the HUNT 

study were reclassified into the high-risk category of individuals who would newly qualify 

for statin therapy using AHA guidelines. Of these individuals, 202 had a CAD event 
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within 10 years (10.6% of the reclassified group) and 431 were observed to have an 

event within study follow-up (22.6% of the reclassified group). When adding the top-

performing PGS to the 10-year risk estimated from the Pooled Cohort Equation (PCE), 

2,332 individuals or 3.6% of the sample is reclassified upwards, and 12.4% of that 

subset had a CAD event within 10 years. Adding in the current top-performing PGS to 

current clinical risk factors appears to have the potential to provide preventive 

interventions to prevent CAD events in the subset of individuals (~3%) who are newly 

reclassified as high risk. Given their new eligibility of statin therapies and estimated 

statin efficacy174, about 40 CAD events would be prevented in these individuals in 10 

years if LDpred were added to conventional risk factors. This may be a conservative 

estimate, since polygenic information may allow for earlier LDL-lowering therapies and 

may prevent more events than starting statins only if clinical risk factors are found to be 

moderately high. 

Upon addition of the LDpred score to conventional risk factors, 2,227 (3.4% of 

the sample) would be re-classified downwards into the lower risk category. This 

downwards classification is ultimately reflected in the NRI. CAD events occur in 6.9% of 

this group within 10 years. Clinicians should consider whether the risks of treatment are 

potentially worth the benefit of preventing heart disease in this group. Until further 

evidence is available through randomized clinical trials, we suggest preventive therapy 

for individuals upweighted after incorporating PGS but not necessarily removing 

preventive therapies for those who meet current recommendations (i.e., don’t remove 

treatment from those reclassified downwards by PGS). 
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4.3 Replication in UK Biobank 
We replicated these analyses in 15,365 incident CAD cases in UK Biobank. 

Some polygenic scores were unable to be tested due to use of UK Biobank samples in 

marker weights or optimization (see Methods). The LDpred score had the largest effect 

(Supplementary Figure 4-3), and largest C-statistic (0.775 [0.770-0.781], Supplementary 

Table 4-5) followed closely by metaGRS. Replication suggests the findings in HUNT—

the genome-wide polygenic score generated by LDpred was most predictive when 

incorporated with clinical risk factors—are generalizable to other European ancestry 

populations, but additional studies are necessary to confirm that LDpred is the optimal 

score for clinical use in other populations with different genetic ancestry or 

environmental risk factors. Notably, metaGRS has a larger categorical NRI than LDpred 

(Table 4-3, Table 4-4). While metaGRS and LDpred both use summary statistics from 

the largest CAD GWAS as of their publication, LDpred employs Bayesian methodology 

for marker selection and shrinkage of weights and includes nearly four times more 

markers than metaGRS. This illustrates the importance of moving from metrics like C-

statistic to more clinically relevant metrics such as NRI when a treatment threshold 

exists as it does for CAD. 

4.4 Benchmarking of additional cardiovascular traits  
We also performed benchmarking in the HUNT Study for additional 

cardiovascular traits with their respective polygenic scores in the PGS Catalog 

(Supplementary Table 4-1). For these traits, there are less clear use cases for stratifying 

patients into a high-risk category eligible for pharmaceutical therapies or other 

interventions. However, we can use continuous NRI to quantify re-classification when 
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PGSs are added to conventional risk factors (Supplementary Figure 4-5). The 

performance of these PGS is limited by trait heritability or heritability explained by 

GWAS (i.e., SNP heritability). The best performing PGS for atrial fibrillation has an NRI 

similar to that of CAD. Both of these scores come from large GWAS with high quality 

phenotype definition. Ischemic stroke is a more heterogenous phenotype which may 

explain the lower NRI for stroke and cardiovascular disease, which is a combination of 

CAD and stroke. 

4.5 Limitations 
Although HUNT is a relatively large, longitudinal cohort, there are some 

limitations of the current study. The estimation of what individuals are lost to follow-up is 

incomplete as we do not have documentation of individuals that left the Trøndelag area 

and are no longer receiving medical care from regional physicians, but we can link to 

death records from national registries. Norwegian pharmaceutical registry records only 

begin in 1994, so we are unable to adequately access statin usage at baseline. 

Therefore, we have not corrected for statin or hypertensive medication usage, which 

may bias lipid and blood pressure measurements. The CAD scores from the PGS 

Catalog are primarily derived in European ancestry individuals and are systematically 

compared here in a European ancestry cohort, but their transferability to non-European 

populations is an area of active research. If the clinical utility in diverse populations is 

less, this may exacerbate health disparities30. The inaccuracy of PGS due to poorly 

imputed dosages, non-ancestry matched weights at key markers, or relatively high rates 

of sample swaps could slightly affect the performance of these scores in additional 
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cohorts. The creation of a CLIA-certified PGS may be necessary to bring risk estimation 

with PGS into clinical settings, but is unlikely to improve risk discrimination. Additional 

studies are necessary to address the role of age and sex, particularly to determine if the 

use of PGS is more clinically useful in a younger decade of life or in a specific sex. 

Finally, the PCE slightly underestimates 10-year risk in HUNT (Supplementary Figure 

4-4), which is not unexpected given previous evidence that the 2013 PCE overestimates 

10-year risk by an average of 20%175 and we expect misestimation in a cohort that 

differs from those in which the PCE was originally derived. 

4.6 Discussion 
Expanding upon the Polygenic Risk Score Reporting Standards (PRS-RS)176 

from the Clinical Genome Resource (ClinGen) Complex Disease Working Group and 

the PGS Catalog, we demonstrate the use of clinically meaningful metrics in addition to 

the standard C-statistic or area under the receiver operating characteristic curve 

(AUROC). When a use case is available (e.g., individuals with >7.5% 10-year risk of 

ASCVD are placed on statin therapies to prevent events) additional metrics such net 

reclassification index (NRI), percentage of events in the reclassified population, 

percentage of events in those people, and the number needed to treat (NNT) are more 

meaningful metrics for benchmarking predictive models and individual predictors such 

as PGS. More research is necessary to identify clinically useful metrics for other 

cardiovascular diseases without such clear-cut clinical thresholds for preventative 

treatment (e.g., ischemic stroke). 
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In conclusion, the addition of polygenic scores to conventional risk factor models 

has demonstrated clinical utility. Although the ‘second generation’ genome-wide scores 

(LDpred, metaGRS, LDpred2) are similar in their performance, the LDpred score 

performs best in HUNT by both C-index and NRI metrics. Within 10 years of follow up in 

the HUNT study, there are 845 CAD cases not identified by conventional risk factors 

and 1,052 not identified by the PCE. The addition of LDpred would move 23.9% and 

27.6%, respectively, of these missing cases into the category that would become 

eligible for treatment. Prevention by better identification of at-risk individuals is 

important, but clinical trials are also needed to determine the advisability of reclassifying 

patients downwards. This study demonstrates the importance of comprehensive 

evaluation of PGSs in longitudinal cohorts in order to ethically and effectively apply 

them to clinical practice. 

4.7 Future work 
The work in this chapter contributes to a pipeline for a future multi-trait polygenic 

score (PGS) benchmarking effort in the Trøndelag Health Study (HUNT) and the 

Michigan Genomics Initiative (MGI). The Polygenic Score Catalog177 aims to record a 

variety of quantitative metrics for score performance in multiple biobanks. This will allow 

users to assess score performance across a variety of study types and ancestries 

before selecting polygenic score weights to use in their own studies. External 

performance metrics such as hazard ratios, odds ratios, area under the receiver 

operator characteristic curve (AUROC), C-index, and Nagelkerke’s R2 should be 

assessed and archived. PGS benchmarking will be performed for traits including BMI, 
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cancer, lipids, depression, and diabetes. Because there is a high degree of relatedness 

within HUNT, it may be useful to use a genetic relationship matrix (GRM) as part of the 

Cox proportional hazards model. A sensitivity analysis should be performed with SAIGE 

survival178.  

At present, PGSs capture common genetic variation associated with diseases or 

traits. Additional work is necessary to optimally model the full allelic spectrum of genetic 

risk. This could be done by a singular score that appropriately weights the polygenic 

variants and monogenic variants together. Previous work used a continuous PGS and 

carrier status for frameshift mutations in PALB2 and CHEK2 in a model for breast 

cancer, and found the PGS to strongly modify breast cancer risk in mutation carriers147. 

Likewise for familial hypercholesterolemia, joint modeling of monogenic variant carriers 

in LDLR, APOB, and PCSK9 with a PGS demonstrated a gradient of risk for disease by 

75 years of age—4.9% for noncarriers with low PGS and 77.9% for carriers with high 

PGS179. Benchmarking the performance of models that account for the full range of 

allele frequencies and inheritance patterns is a logical next step of this study. 

4.8 Methods 
4.8.1 The Trøndelag Health Study 

The Trøndelag Health (HUNT) Study is a population-based health survey 

conducted in the county of Trøndelag, Norway, with recruitment waves in 1984-86 

(HUNT1), 1995-97 (HUNT2), and 2006-08 (HUNT3)10. Participation in the HUNT Study 

requires informed consent, and the study has been approved by the Data Inspectorate 

and the Regional Ethics Committee for Medical Research in Norway. 
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Samples were genotyped using Illumina Human CoreExome v1.1 array with 

70,000 additional custom content beads and imputed to 25M genetic markers using 

2,202 whole-genome sequenced samples from HUNT together with Haplotype 

Reference Consortium reference panel47,42. The cohort was restricted to 69,635 

individuals of European ancestry (as confirmed by genetic principal component 

analysis). We used a combination of hospital, outpatient, and emergency room 

discharge diagnoses (ICD-9 and ICD-10) to identify cases and controls for five disease 

endpoints: Coronary Artery Disease, Ischemic stroke, cardiovascular disease, atrial 

fibrillation, and heart failure (Supplementary Table 4-3). Death registries were used for 

censoring participants or identifying additional patients when cause of death matched 

the end point of interest. Lab measurements exist for participants enrolled in HUNT2 

and/or HUNT3. 

 The conventional risk factors used in this study and relevant for estimating 10-

year risk of atherosclerotic cardiovascular disease (ASCVD) in the US are systolic blood 

pressure (mmHg), high density lipoprotein (mg/dL), total cholesterol (mg/dL), smoking 

status, and diabetes status. When possible, diagnoses and lab measurements from 

HUNT2 were selected, followed by HUNT3 such that the earliest full baseline for all 

variables of interest was used. 66,696 samples with complete baseline information were 

used for analysis. Quantitative variables were inverse normalized prior to model fitting. 

4.8.2 Polygenic scores 
We downloaded weights files from the Polygenic Score Catalog 

(www.pgscatalog.org) for Coronary Artery Disease, Ischemic Stroke, Cardiovascular 
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Disease, and Atrial Fibrillation (Supplementary Table 4-1). We created heart failure 

scores using summary statistics and pruning and thresholding, LDpred2, and PRS-CS. 

Polygenic scores are a weighted sum (Equation 4-1) with weights from GWAS summary 

statistics, sometimes scaled by various Bayesian methodologies, for specific markers 

chosen via optimization methods.  

Equation 4-1 Polygenic Scores 

!"#! =%&'" × )!"
#

"$%
 

Where ! is selected markers, "#!  is the estimate effect size from GWAS, $"! 	is the dosage probability at a given 
marker for a given individual across & individuals in the cohort.  

The majority of markers specified in the marker weights files were genotyped or 

imputed in HUNT (Supplementary Table 4-1). Code to create the scores from weight 

files and genotype data is implemented in custom open-source R and python scripts at 

https://github.com/bnwolford/FHiGR_score.  

4.8.3 Statistical Analysis 
Multivariable logistic regression and Cox proportional hazards regression were 

implemented in R version 3.6.3. The genotyping batch and principal components 1-5 

from genotype data were used with sex and age or birth year as standard covariates 

where appropriate. PGSs or conventional risk factors were inverse normalized and used 

where noted. Survival models were fitted with the survival package and NRI is 

calculated with nricens180. 

4.8.4 UK Biobank Replication  
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UK Biobank (UKB) is a cohort of approximately 500,000 individuals comprising 

members of the UK population aged 37-74 at baseline155. Participants gave informed 

and broad consent for health-related research. In this study we utilized version 3 of the 

UK Biobank genotype data which was imputed to 1000 Genomes, UK10K, and 

Haplotype Reference Consortium panels18,181. After filtering to participants of White 

British ancestry, there were 459,215 participants with imputed genotype data from 

which to compute PGS. 

Incident CAD was defined as the first occurring event of myocardial infarction 

(ICD-10 codes I21-I24, and I25.2) or cardiovascular surgery (percutaneous transluminal 

coronary angioplasty: OPSC-4 codes K49, K50.1, and K75; or coronary artery bypass 

grafting OPSC-4 codes K40-K46). Prevalent CAD was similarly defined, with the 

addition of self-reported events (UKB field #6150 code “heart attack” and #20002 code 

1075, UKB field #20004 code 1070, and UKB field #20004 codes 1095 and 1523). 

Retrospective hospital records included those using ICD-9 coding, for which codes 410-

412 were used to identify previous hospitalization with myocardial infarction. In total 

there were 30,838 CAD events (15,365 incident) with median age of onset of 61.4 years 

(68.0 for incident cases). 

Follow-up in hospital and death records was available up until 30th September 

2020 for events in England and Scotland, and until 6th March 2018 for events in Wales. 

Follow-up was truncated on 1st February 2020 to prevent any potential confounding of 

SARS-CoV-2 exposure on CAD risk. Maximum follow-up was 13.9 years for events in 

England, 12.8 years for Scotland, and 10.8 years for Wales, with median follow-up of 
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10.8, 12.0, and 10.0 years, respectively. Analyses in UKB were stratified by follow-up 

nation to account for differences in available follow-up time. Follow-up nation for each 

participant was determined by location of assessment center at baseline, with 

subsequent movement between UK nations inferred from change in UKB assessment 

center at follow-up assessments or presence of hospital records in different nation 

health care systems. In total 407,115 (88.7%) of participants had hospital record follow-

up data in England, 32,124 (7.0%) for Scotland, and 19,976 (4.4%) for Wales. 

In all analyses, UKB samples were excluded where they contributed to 

development or training of PGS (N=2,507 participants for the metaGRS, N=145,827 for 

the LDpred PGS). The lassosum and LDpred2 PGSs could not be assessed as all UKB 

samples contributed to their PGS development. 

To assess association between PGS and disease outcomes, logistic regression 

were fit for case/controls status on PGS levels adjusting for sex, nation, genotyping 

chip, and 10 genotype PCs. PGS levels were standardized to have mean 0 and 

standard deviation of 1 to obtain comparable odds ratios across PGS indicating odds 

ratio per standard deviation increase in PGS levels. For each PGS, logistic regression 

was fit separately for (1) prevalent cases alone, (2) incident cases alone excluding 

participants with prevalent events, and (3) prevalent and incident cases combined. 

For analyses of incident CAD with conventional risk factors, we further filtered to 

326,139 who (1) had not had any CAD events prior to baseline assessment, (2) were 

not already prescribed any form of lipid lowering medication at time of study enrolment, 
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(3) had systolic blood pressure, total cholesterol, HDL cholesterol measurements, and 

(4) whose smoking status and diabetes status could be determined. 

HDL cholesterol, SBP, and total cholesterol were log transformed and 

standardized prior to model fitting. Cox proportional hazards models with PGS were 

additionally adjusted for 10 genotype PCs and genotyping chip. 

Net Reclassification analysis of 10-year CAD risk was performed using the 

nricens package in 263,280 participants with at least 10 years of follow-up or CAD event 

prior to 10 years. In total there were 9,443 CAD events within the first 10 years of follow-

up. Since all nations had median 10 years follow-up the nation strata term was dropped 

from the Cox models for NRI analysis. 95% confidence intervals were computed via 

1,000 bootstraps. 
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4.9 Tables and Figures 

 

Figure 4-1 PGS association with CAD in the HUNT Study 

All models adjusted for sex, baseline age, birth year, and the first five principal components, all polygenic scores are 
associated with CAD. 

 
Figure 4-2 Hazard ratios of predictors in the best performing full model for CAD in the HUNT Study 

1.00

1.25

1.50

1.75

2.00

GRS27

Meg
a e

t a
l

GRS50

Ta
da

 et
 al

LD
thi

nn
ing

Abra
ha

m et
 al

LD
pre

d

Khe
ra 

et 
al

meta
GRS

Ino
uy

e e
t a

l

las
so

su
m

Ellio
t e

t a
l

LD
pre

d2

Mars
 et

 al

Polygenic Score Method/Publication

O
dd

s 
Ra

tio
 fo

r P
G

S

Cases All cases Incident cases prevalent

PGS association with CAD

Binary Predictors Inverse Normalized
Continuous Predictors

Curr
en

t S
mok

er Sex

Prev
ale

nt 
Diab

ete
s

High
−d

en
sity

 lip
op

rot
ein

Syst
olic

 Bloo
d P

res
su

re

LD
pre

d

To
tal

 Cho
les

ter
ol

Bas
elin

e a
ge

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Predictor

H
az

ar
d 

R
at

io
 o

f P
re

di
ct

or
s 

(9
5%

 C
I)

Predictors
Baseline age

Current Smoker

High−density lipoprotein

LDpred

Prevalent Diabetes

Sex

Systolic Blood Pressure

Total Cholesterol



 

 124 

 
Figure 4-3 Discriminative capacity as measured by Harrell’s C-statistic 
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Characteristic All samples 
(n=66,631) 

Incident CAD 
(n=7,086) 

Non incident CAD 
(n=57,706) 

Age at baseline, years (mean ± SD) 47.85 ±16.58 61.76 ± 12.93 46.19 ± 16.17 
Female, n (%) 35,205 (52.8) 4,369 (38.3) 32,448 (54.5) 
Prevalent Diabetes mellitus, n (%) 1,057 (1.6) 228 (3.2) 829 (1.4) 
Current smoker, n (%) 19,606 (29.4) 2,356 (33.3) 17,225 (28.9) 
Ever taken blood pressure medication, n (%) 8,596 (12.9) 1,969 (27.8) 6,627 (11.1) 
Incident death, n (%) 12,792 (19.18) 3,478 (49.1) 9,276 (15.6) 
Systolic blood pressure, mmHg (mean ± SD) 134.68 ± 20.76 148.4 ± 22.65 133.05 ±19.91 
Total cholesterol, mmol/L (mean ± SD) 5.72 ± 1.24 6.44 ± 1.19 5.63 ± 1.21 
High density lipoprotein (HDL) cholesterol, mmol/L (mean ± SD) 1.37 ± 0.37 1.29 ± 0.37 1.38 ± 0.37 
Body Mass Index (mean ± SD) 26.37 ± 4.19 27.4 ± 4.09 26.25 ± 4.19 
Table 4-1 Baseline characteristics of the HUNT Study  

‘All samples’ includes prevalent cases (n=1,839), but non-incident CAD statistics are after prevalent cases are excluded. 

 
 PGS alone With conventional risk factors With PCE 
Score HR  

(95% CI) 
p-value HR  

(95% CI) 
p-value HR  

(95% CI) 
p-value 

GRS27 (Mega et al, 2015) 1.21 (1.18,1.23) 4.2x10-55 1.19 (1.17,1.22) 1.2x10-48 1.21 (1.18,1.23) 1.0x10-54 

GRS50 (Tada et al, 2015) 1.21 (1.18,1.24) 6.5x10-55 1.19 (1.16,1.22) 1.7x10-47 1.21 (1.18, .23) 8.0x10-55 

LD thinning (Abraham et al, 2016) 1.22 (1.19,1.25) 6.3x19-62 1.19 (1.16,1.22) 2.0x10-47 1.21(1.19,1.24) 1.4x10-58 

LDpred  (Khera et al, 2018) 1.43 (1.39,1.46) 1.7x10-189 1.37 (1.34,1.40) 1.2x10-146 1.42 (1.38,1.45) 1.1x10-180 

metaGRS  (Inouye et al, 2018) 1.39 (1.36,1.42) 5.2x10-161 1.34 (1.31,1.38) 4.9x10-129 1.38 (1.35,1.41) 1.14x10-153 

Lassosum  (Elliot et al, 2020) 1.29 (1.26,1.32) 2.5x10-98 1.26 (1.23,1.29) 6.4x10-81 1.28 (1.25,1.31) 1.9x10-93 

LDpred2 (Mars et al, 2020) 1.36 (1.33,1.39) 1.2x10-144 1.30 (1.27,1.33) 2.9x10-106 1.35 (1.32,1.38) 8.6x10-137 
Table 4-2 Hazard Ratios from Cox proportional hazards modelling 

All models adjusted for sex, baseline age, birth year, and the first five principal components, all polygenic scores are associated with CAD. Conventional risk 
factors include systolic blood pressure, smoking, diabetes, total cholesterol, and HDL cholesterol. 
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  Conventional risk factors + LDpred 

  <7.5% 10-year risk ≥7.5% 10-year risk 

Conventional risk 
factors 

<7.5% 10-year risk 154,719 

(3,434 cases) 

5,639  

(602 cases) 

≥7.5% 10-year risk 5,671 

(352 cases) 

14,419 

(1,842 cases) 
Table 4-3 Reclassifications when LDpred is added to conventional risk factors in UK Biobank 

The categorical NRI associated is 0.04 (0.03,0.05) with NRI in events 0.04 (0.03-0.05) and NRI in non-events 0.0016 (0.0005,0.003). 

  Conventional risk factors + metaGRS 

  <7.5% 10-year risk ≥7.5% 10-year risk 

Conventional risk 
factors 

<7.5% 10-year risk 222,944 

(5,104 cases) 

9,068 

(958 cases) 

≥7.5% 10-year risk 7,769 

(482 cases) 

22,469 

(2,885 cases) 
Table 4-4 Reclassifications when metaGRS is added to conventional risk factors in UK Biobank 

The categorical NRI associated is 0.05 (0.04,0.06) with NRI in events 0.05 (0.04-0.06) and NRI in non-events -0.003 (-0.004,0.002). 



 

 127 

4.10 Acknowledgements and Publication 
This chapter is revised from a manuscript in preparation for submission to an 

academic journal. It was also presented as a platform presentation at the 69th Annual 

Meeting of The American Society of Human Genetics, held virtually, October 2020. I’d 

like to acknowledge my co-authors Scott Ritchie, Ida Surakka, Samuel A. Lambert, 

Sarah E. Graham, Jonas Bille Nielsen, Nadia Sutton, Anne Heidi Skogholt, Maiken 

Elvestad Gabrielsen, Ben Brumpton, Christian Jonasson, Kristian Hveem, Amit V. 

Khera, Gad Abraham, Cristen J. Willer, and Michael Inouye. This research has been 

conducted using the UK Biobank Resource under application numbers 7349 and 24460. 

The HUNT-MI study, which comprises the genetic investigations of the HUNT 

Study, is a collaboration between investigators from the HUNT study and University of 

Michigan Medical School and the University of Michigan School of Public Health.  The 

K.G. Jebsen Center for Genetic Epidemiology is financed by Stiftelsen Kristian Gerhard 

Jebsen; Faculty of Medicine and Health Sciences, NTNU, Norwegian University of 

Science and Technology (NTNU) and Central Norway Regional Health Authority.  

  



 

 128 

 
4.11 Supplementary Material 
 

 
Supplementary Figure 4-1 Calibration plot for LDpred in the HUNT Study  
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Supplementary Figure 4-2 Pearson correlations for predictors and LDpred in HUNT 
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Supplementary Figure 4-3 Hazard ratios from Cox proportional hazards models in UK Biobank 
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Trait Score 
(publication) 

PGS # Notes on methodology N Markers 
in weight 
file 

% Markers 
in HUNT 

Coronary Artery 
Disease (CAD) 

GRS27 
(Mega et al, 2015) 

PGS000010 27 lead SNPs or LD proxies from Schunkert et al, 2010 27 100 

GRS50 
(Tada et al, 2015) 

PGS000011 Addition of 23 additional genome-wide significant SNPs to 
Mega et al 

50 100 

LDpred  
(Khera et al, 2018) 

PGS000013 default LD radius M/3000, rho 0.001, 
CARDIOGRAMplusC4D summary stats from Nikpay et al, 
trained in UKBB 

6,630,150 95.7 

Lassosum  
(Elliot et al, 2020) 

PGS000116 Tested clumping + thresholding and lassosum, 
CARDIOGRAMplusC4D summary stats from Nikpay et al, 
tuned in UKBB prevalent cases and matched controls, info 
score > 0.999, s=0.5,lambda=0.00428 

40,079 99.3 

metaGRS  
(Inouye et al, 2018) 

PGS000018 Weighted average of standardized scores from Metabochip + 
FDR202 from CARDIoGRAMplusC4D + genome wide from 
CARDIoGRAMplusC4D, UKBB randomly split into 
derivation/validation but upweight CAD in derivation 

1,745,180 99.8 

LD thinning 
(Abraham et al, 
2016) 

PGS000012 CARDIoGRAMplusC4D stage 2 weights, LD thinning with r2 
of 0.7 

49,310 98.6 

Ldpred2 
(Mars et al, 2020) 

PGS000329 double default LD radius, rho 0.003, UKBB SAIGE summary 
stats from Zhou et al, trained in FINRISK 

6,412,950   98.9 

Cardiovascular 
Disease (CVD) 

Lassosum  
(Elliot et al) 

PGS000117 Tested clumping + thresholding and lassosum, 
CARDIOGRAMplusC4D summary stats from Nikpay et al, 
tuned in UKBB prevalent cases and matched controls, info 
score > 0.999, s=0.9,lambda=0.00207, 2020 

297,862 99.5 

metaPRS 
(Sun et al, 2021) 

NA CHD + stroke PRS from CARDIoGRAMplusC4D and 
MEGASTROKE 

2,403,427 96.9 

Stroke Clumping + 
Thresholding  
(Rutten-Jacobs et al) 

PGS000038 P < 1×10−5; Independent SNPs were clumped based 
selected using the following thresholds: r2 < 0.05 or 1000 Kb 
apart using plink, summary stats from MEGASTROKE, 2018  

90 98.9 
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metaGRS 
(Abraham et al) 

PGS000039 “ischemic stroke”, UKBB randomly split into 
derivation/validation but upweight stroke in derivation, GWAS 
summary stats without UKBB for 14 stroke-related 
phenotypes, elastic-net logistic regression, 2019 

3,335,583 96.5 

Atrial Fibrillation Original LDpred  
(Khera et al, 2018) 

PGS000016 Default LD radius M/3000, rho 0.003, AFGen summary stats 
from Christophersen et al 

6,730,541 97.8 

New LDpred  
(Mars et al, 2020) 

PGS000331 double default LD radius, rho 0.03, meta-analysis summary 
stats from Nielsen et al, trained in FINRISK 

6,171,733  98.3 

Pruning + 
Thresholding  
(Weng et al, 2017) 

PGS000035 Summary stats from Christopherson et al, varied LD and p–
value thresholds, tested 30 scores in ~120K from UKBB and 
selected score with best AIC, p-value < 1E-5 and r2=0.5, 

1,168 86.9 

Heart failure This study NA PRS-CS , Summary statistics from Shah et al 2020 with 
UKBB 

966,306 99.5 

Supplementary Table 4-1 Cardiovascular trait scores from the PGS Catalog for benchmarking 
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Phenotype Prevalent 
Cases 

Incident 
Cases 

Mean (median) 
Follow-up time 
incident cases only 
(years) 

Mean (median) follow-up 
time full model including 
controls (years) 

Statin usage 1108 16873 11.34 (10.00) 15.23 (16.47)  
Blood pressure medication 2062 27919 10.64 (8.60) 13.79 (11.12)  
Diabetes 1057 4442 9.93 (9.64) 18.37 (20.09)  
Stroke 383 4662 10.38 (10.18) 18.33 (21.08)  
Ischemic Stroke 318 4096 10.39 (10.17) 18.42 (21.09)  
Cardiovascular Disease (CVD) 2162 10267 10.14 (9.93) 17.37 (20.96)  
Coronary Heart Disease (CHD) 1851 7097 10.22 (10.14) 17.90 (21.03)  
Myocardial Infarction (MI) 1230 4916 10.26 (10.11) 18.26 (21.08)  
Atrial Fibrillation (AFib) 167 6380 11.19 (10.96) 18.16 (21.06)  
Angina 2435 5024 8.62 (7.66) 18.09 (21.08)  
Heart Failure (HF) 219 4683 11.25 (11.57) 18.38 (21.08)  
Death NA 12792 11.15 (11.38) 17.17 (20.84)  
Supplementary Table 4-2 Endpoint follow-up time in HUNT 

 
Supplementary Figure 4-4 Calibration of the 10-year ASCVD risk as estimated by the PCE in HUNT 
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Trait ICD9 ICD10 Description/Rationale 

Myocardial 
infarction (MI) 

410 I21-I24 Cardiogram, includes acute ischemic 
heart disease 

Coronary 
Artery Disease 
(CAD) 

410, 414.04, 
411, 412, 
414.0, 
414.8, 414.9 

I21-I24, 
K50.1, 
K50.2, 
K50.4, 
125 
excluding 
I25.0, 
I25.3, 
I25.4 

Intermediate from cardiogram. MI, 
PCTA/CABG/triple bypass, coronary 
bypass surgery, coronary angioplasty, 
chronic ischemic heart disease, controls 
exclude angina. 

Atrial 
Fibrillation 
(AFib) 

427.3 I48 As in Nielsen et al, 2018 

Stroke (S) 431,434,436 I60 I61, 
I63, I64 

Any stroke, https://biobank.ndph.ox.ac.uk/ 
showcase/showcase/docs/ 
alg_outcome_stroke.pdf 

Ischemic stroke 
(IS) 

434-434.9, 
436 

I63-I63.9, 
I64 

Ischemic only, 
https://biobank.ndph.ox.ac.uk/ 
showcase/showcase/docs/ 
alg_outcome_stroke.pdf 

Heart Failure 
(HF) 

428-428.99 I50 Phecode 

Cardiovascular 
disease (CVD) 

  CAD+stroke from above 

Supplementary Table 4-3 End point definitions in HUNT 

Some of the ICD9 and 10 codes that should be used for these definitions were unavailable in the data freeze, 
commonly used procedure codes were unavailable. 
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C-statistic 95% CI Lower 
bound 

95% CI Upper 
bound 

Model 

0.786 0.781 0.79 Baseline 
0.789 0.785 0.794 Baseline+GRS27 
0.8 0.796 0.804 Baseline+PCE 
0.805 0.801 0.81 Baseline+All Conventional Risk Factors 
0.792 0.788 0.797 Baseline+HDL 
0.791 0.786 0.795 Baseline+TC 
0.788 0.784 0.793 Baseline+SBP 
0.791 0.786 0.795 Baseline+smoke 
0.787 0.783 0.792 Baseline+diabetes 
0.789 0.785 0.794 Baseline+GRS50 
0.793 0.788 0.797 Baseline+lassosum 
0.795 0.791 0.799 Baseline+LDpred2 
0.798 0.794 0.802 Baseline+LDpred 
0.81 0.805 0.814 Baseline+PCE+LDpred 
0.815 0.81 0.819 Baseline+All Conventional Risk Factors + PGS 
0.79 0.786 0.795 Baseline+LDthinning 
0.796 0.792 0.801 Baseline+metaGRS 

Supplementary Table 4-4 Harrell’s C-statistic in the HUNT Study  

Baseline model is baseline age, birth year, batch, first 5 principal componetns from genetic data, and sex 

 
Supplementary Figure 4-5 Continuous NRI Estimate for additional cardiovascular traits in the HUNT Study 
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model C.index SE L95 U95 
Proportionalit
y chisq 

Proportio
nality df 

Proportionali
ty Pvalue Samples Cases 

age 0.646 0.003 0.641 0.652 35.208 1 2.96E-09 326139 9443 
age + nation 0.646 0.003 0.641 0.652 39.634 3 1.27E-08 326139 9443 
age + sex 0.711 0.002 0.706 0.716 90.005 2 2.85E-20 326139 9443 
age + nation + sex 0.711 0.002 0.706 0.716 94.404 4 1.53E-19 326139 9443 
age + nation + sex + diabetes 0.713 0.002 0.708 0.718 93.363 5 1.32E-18 326139 9443 
age + nation + sex + total_cholesterol 0.719 0.002 0.715 0.724 121.478 5 1.53E-24 326139 9443 
age + nation + sex + sbp 0.721 0.002 0.716 0.726 100.414 5 4.32E-20 326139 9443 
age + nation + sex + smoking 0.722 0.002 0.717 0.727 104.472 5 6.02E-21 326139 9443 
age + nation + sex + 
CHD27_Mega2015_PGS000010 0.723 0.002 0.719 0.728 105.836 16 2.76E-15 326139 9443 
age + nation + sex + hdl_cholesterol 0.724 0.002 0.719 0.728 96.791 5 2.51E-19 326139 9443 
age + nation + sex + 
CHD50_Tada2015_PGS000011 0.725 0.002 0.720 0.730 107.340 16 1.43E-15 326139 9443 
age + nation + sex + 
CHD_49K_metabochip_PGS000012 0.726 0.002 0.721 0.731 108.447 16 8.84E-16 326139 9443 
age + nation + sex + 
CAD_metaGRS_PGS000018 0.741 0.002 0.736 0.746 110.067 16 4.35E-16 324888 9429 
age + nation + sex + 
Khera_CAD_PGS000013 0.743 0.003 0.737 0.748 80.483 15 5.70E-11 223352 6230 
conventional risk factors 0.755 0.002 0.750 0.759 146.820 7 1.89E-28 326139 9443 
conventional risk factors + nation 0.755 0.002 0.750 0.759 150.809 9 6.00E-28 326139 9443 
conventional risk factors + nation + 
CHD27_Mega2015_PGS000010 0.763 0.002 0.758 0.767 161.271 21 1.24E-23 326139 9443 
conventional risk factors + nation + 
CHD_49K_metabochip_PGS000012 0.764 0.002 0.759 0.768 163.529 21 4.55E-24 326139 9443 
conventional risk factors + nation + 
CHD50_Tada2015_PGS000011 0.764 0.002 0.760 0.768 162.087 21 8.61E-24 326139 9443 
conventional risk factors + nation + 
CAD_metaGRS_PGS000018 0.774 0.002 0.769 0.778 162.864 21 6.11E-24 324888 9429 
conventional risk factors + nation + 
Khera_CAD_PGS000013 0.775 0.003 0.770 0.781 109.360 20 2.57E-14 223352 6230 

Supplementary Table 4-5 Harrell’s C-statistic in UK Biobank 
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Study Group # of samples Continuous NRI Categorical NRI  

(7.5% risk threshold) 

Elliot et al, JAMA 2020 
Lassosum in UKBiobank 

Events 6272 0.154 (0.130, 0.179) 0.044 (0.035,0.053) 

Non-events 346,388 0.158 (0.155, 0.161) -0.004 (-0.005, -0.004) 

All 352,600 0.312 (0.287, 0.337) 0.040 (0.021, 0.049) 

Mosley et al, JAMA 2020 
LDpred in ARIC 

Events 496 
  

Non-events 3,672 
  

All 4,168 
 

0.018 (-0.012, 0.036) 

Mosley et al, JAMA 2020 
LDpred in MESA 

Events 167   

Non-events 1,934   

All 2,101  0.001 (-0.038,0.076) 

Mars et al, Nature Medicine 
2020 
LDpred2 in FINRISK 

Events 1,209 
 

0.009 (-0.002, 0.02) 

Non-events 18,956 
 

0.002 (-0.001, 0.05) 

All 20,165 
 

0.011 (-0.001,0.022) 

Hindy et al, ATVB, 2020 
LDpred in Malmö Diet and 
Cancer Study 

Events 815  0.173 (0.088, 0.199) 

Non-events 4,870  -0.009 (-0.018, -0.002) 

All   0.165 (0.076, 0.182) 

Hindy et al, ATVB, 2020 
LDpred in UKBiobank 

Events 7,708  0.091 (0.077, 0.105) 

Non-events 317,295  -0.006 (-0.007, -0.006) 

All 325,003  0.085 (0.071,0.098) 

Riveros-McKay, Circ Gen & 
Prec Med, 2021 
Novel PRS in UK Biobank 

Events   .0605 (0.491-0.719) 

Non-events   -0.0017 (-0.0034,0) 

All 186,451  0.0588 (0.0473, 0.0704) 

Sun et al, PLOS Med, 2021ª 
metaPRS in UK Biobank 

Events 3,333 0.146 (0.108,0.184)  

Non-events 306,654 (0.175,0.171,0.719)  

All    
Supplementary Table 4-6 Net Reclassification Index from previous studies 

Coronary heart disease net reclassification index (NRI) for Pooled Cohorts Equation versus Pooled Cohorts Equation 
with polygenic score.  

ª Comparison made between conventional risk factors alone and with polygenic score 
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Chapter 5 Discussion 
 
5.1 Summary of main findings 

The results presented in this dissertation demonstrate the utility of electronic 

health record (EHR)-linked biobanks for genetic discovery and precision medicine. In 

Chapter 2, exome sequencing and variant annotation in thoracic aortic dissection cases 

and matched controls identified 24 pathogenic variants across 26 patients with a 

diagnostic yield of 10.4%128. The pathogenic variant carriers were more likely to be 

young, without hypertension, and with a positive family history of disease than benign 

variant carriers. We suggest that patients in this demographic are prioritized for clinical 

genetic testing and their family members should be informed for cascade screening. 

Patients with thoracic aortic aneurysms and known genetic mutations should receive 

enhanced surveillance and earlier surgical intervention, so these are actionable findings 

with direct implications for clinical care. 

In Chapter 3, I examined the association of self-reported family history and 

polygenic scores (PGSs) with cardiometabolic phenotypes—coronary artery disease 

(CAD) and type 2 diabetes (T2D). We were surprised to find that a positive family 

history of disease was closely correlated with a patient’s age at the time of reporting 

family history. Due to increased incidence of positive family history during the lifespan 

(e.g., as parents and siblings become older and have more time to develop disease), 

the age of biobank enrollment, and therefore age at self-reported family history, 
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influences the effect of family history on disease. However, this research suggests 

family history is an informative predictor for later-onset diseases. Family history and 

genetic risk are significantly associated with CAD and T2D and should be further 

evaluated with risk prediction models for use in a second-generation Pooled Cohorts 

Equation. 

In Chapter 4, I performed systematic benchmarking of coronary artery disease 

polygenic scores from the PGS Catalog. Using the HUNT Study as an external cohort 

with extensive follow-up, we evaluated the prediction performance of these scores in the 

context of conventional risk factors. We found the “second generation” genome-wide 

polygenic scores performed similarly, with metaGRS having the highest C-index. We 

found a low to moderate net reclassification index when evaluating how addition of this 

score to conventional risk factors would aid in better identification of high-risk patients 

eligible for statin therapy. 

5.2 Emerging themes 
5.2.1 Using family history for genetic discovery and precision 

medicine  
Family history of disease played an important role throughout this dissertation. In 

Chapter 2, we found that family history of aortic disease, absence of hypertension, and 

an age less than 50 are key demographics for pathogenic variant carriers for thoracic 

aortic dissection. Based on this finding, we suggest that individuals with thoracic aortic 

dissection seek CLIA-certified genetic testing to identify a molecular cause for their 

disease. Electronic health record review of the cases with a pathogenic variant 

suggested an average of 4 (3.88) first-degree relatives per patient that would now be 
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candidates for cascade screening per American Heart Association guidelines102. 

Identification of pathogenic variants is actionable because enhanced surveillance and 

modified surgical interventions are indicated in carriers. This sequencing and annotation 

enabled two precision medicine advances. First, we suggest aggressive aortic root 

replacement for patients meeting the demographic for pathogenic variant carriers 

described above, or with an existing syndromic diagnosis (e.g., Marfan Syndrome)127. 

Second, we were able to return research results to 20 study participants rather than 

reporting diagnostic yield and potential impact as purely an academic exercise129.  

In Chapter 3, we evaluated family history in the context of polygenic scores 

(PGSs) as a predictor of complex disease. We observed markedly different disease 

prevalence when stratifying by family history, even for individuals with low polygenic 

risk. We demonstrated that both genetic risk scores and family history were significant 

predictors for CAD and T2D, and their interaction effect was nominally significant also. 

However, we noticed self-reported family history is dependent on the age of the 

individual reporting it, and therefore may not be useful for early disease prediction. 

Additional research is needed to understand for what diseases and time points family 

history can improve prediction algorithms and enhance precision medicine. 

Family history can also be leveraged for genetic discovery. In 1993, an 

association between a polymorphism in the insulin gene and Type 1 diabetes was 

discovered using the transmission test for linkage disequilibrium (TDT)—a family-based 

association test182. The kin-cohort method, developed in 1998, uses self-reported family 

history of mutation carriers and non-carriers to estimate penetrance for BRCA1 and 
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BRCA2 mutations183. As genetics transitioned to case-control studies, modelling 

approaches attempted to combine the kin-cohort analysis of disease history in relatives 

with case-control analysis in genotype data of probands184. The MQLS test capitalized on 

the known phenotypes for relatives with missing genotype data at a marker of interest to 

increase statistical power for discovery185. Building on this, a family history-based 

approach for identifying genetic associations with cancer used family history of the 

genotyped proband as the outcome186. With population-based biobanks like the UK 

Biobank, genome wide association by proxy (GWAX) was published as a framework for 

studying complex traits in the absence or near absence of cases in a cohort60. Here, 

unaffected first-degree relatives of affected individuals, called proxy-cases, are used 

instead of cases in case-control association tests. Separately this method was used to 

study longevity59 using parental age at death. Recently, a liability threshold based 

model, conditional on case-control status and family history, was used to estimate a 

posterior mean genetic liability which can be used as a quantitative trait for association 

testing187. Continued implementation of self-reported family history for a wide array of 

diseases may aid in discovery of genetic associations with low prevalence disease in a 

biobank setting. 

5.2.2 Established utility of polygenic scores  
Evaluating family history and polygenic scores in population-based biobanks 

(Chapters 3 and 4) is different than deploying models in the clinic. Randomized clinical 

trials (RCT) are necessary to establish transferability to clinical practice. An RCT in 203 

participants at intermediate risk of coronary heart disease, but not receiving statin 
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treatment, was performed with a ‘first generation’ genetic risk score of 11 susceptibility 

variants in 2016188. Although this is a fairly limited sample size, they found risk 

estimates that incorporated genetic risk with conventional risk factors led to lower LDL-

C levels than conventional risk alone. More RCT’s with genome-wide polygenic scores, 

such as those from Chapter 4, and with additional outcomes and in diverse populations 

are needed. Importantly, the process for generating GRS at the quality of CLIA-certified 

genetic testing, disclosing polygenic disease risk, and outlining actionable steps is still 

to be determined. 

 The framework for returning research-level pathogenic variants is still fairly new. 

This was described for pathogenic variants for thoracic aortic dissection in Chapter 2 

and recently for arrhythmogenic cardiomyopathy through Geisinger’s MyCode Genomic 

Screening and Counseling program189. This framework should inform return of research 

level GRSs with obvious actionable potential (e.g., reclassification into high-risk 

category and initiation of statin treatment as described in Chapter 4). Finally, a myriad of 

ethical, legal, and social implications (ELSI) must be carefully considered as we bring 

risk estimates informed by polygenic genetic scores into the clinic190. 

In this vein, a new European Union study, the INTERnational consortium for 

integratiVE geNomics prEdiction (INTERVENE) aims to develop and test next 

generation tools for disease prevention, diagnosis, and personalized treatment191. A 

major focus is to create clinically validated next generation predictive genetic scores for 

complex and rare disease. Using harmonized data from international biobanks, 
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integrative genetic scores that are generalizable will be created and tested for direct 

clinical impact for cardiometabolic disease and breast cancer. 

5.2.3 The power of global biobanks 
This dissertation utilizes EHR-linked biobanks from the United States, United 

Kingdom, and Norway. Using international data allows for inference to be made about 

the generalizability of one’s findings by using another country’s population as a 

replication cohort. The International Common Disease Alliance (ICDA) is a recently 

launched scientific forum to identify common barriers and facilitate international 

collaborations to tackle these challenges26. The ICDA organization committee published 

a framework for moving from Maps to Mechanisms to Medicine in the next phase of 

human genetics research. Several recommendations pertain to developing the power of 

global biobanks including: i) increased diversity, ii) increased size and utility (e.g., 

enabling participant re-contact), and iii) federated genetic analysis. 

This federated genetic analysis effort is the Global Biobank Meta-Analysis 

Initiative, which aims to harness the power of global biobanks for genetic discovery 

through genome wide association studies. With 20 biobanks participating so far, and 14 

diseases of interest in the flagship project (with a focus on understudied diseases), this 

effort is on its way to creating a comprehensive resource of genetic variants that is 

inclusive of global genetic diversity. Notably, the use of ‘leave one cohort out’ GWAS 

summary statistics allows for polygenic score estimation and evaluation in all 

contributing cohorts. Collaboration between biobanks will allow for increased statistical 

power for novel genetic discoveries and fine-mapping. 
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The COVID-19 pandemic presented an opportunity for global biobanks to rapidly 

mobilize and set up a federated genetic analysis effort to understand genetic 

susceptibility to COVID-19 infection and severity. Supported by ICDA, the COVID-19 

Host Genetics Initiative was launched in March 2020192. As cases were treated in 

hospitals, EHR-linked biobanks were able to identify cases in already genotyped 

samples. Purpose-built COVID-19 cohorts with new genotyping and sequencing of 

cases also contributed, and direct to consumer testing companies 23andMe and 

AncestryDNA contributed via survey-ascertained cases from their customer base. 

Working groups created phenotype definitions for studying infection and severity, and 

individual cohorts provided GWAS summary statistics to a centralized location. Through 

iterative meta-analysis over the past year, the consortium has thus far identified 15 

genome-wide significant loci associated with COVID-19193. Using these results, in silico 

downstream analysis such as PheWAS, Mendelian Randomization, and Transcriptome 

Wide Association Study (TWAS)194 were performed by working groups to move from 

maps to mechanisms. As the largest GWAS performed, the study illustrates the benefits 

of international collaboration, open data access, and resource sharing across biobanks. 

5.3 Implications and future directions  
Since cardiovascular diseases are the number one cause of death globally and in 

the United States1, this dissertation builds on a large body of literature thanks to the 

investments made by the National Heart Lung and Blood Institute and American Heart 

Association among other funding bodies. For example, some of the largest genome 

wide association studies in the world are for lipid related traits (Global Lipids Genetics 
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Consortium) and cardiovascular diseases (CARDIOGRAMplusC4D Million Hearts 

Project). This means the existence of high-quality estimates for genetic variant effect 

sizes used for building polygenic scores, well-documented clinical risk algorithms (e.g., 

Pooled Cohorts Equation), and sequencing data for better understanding the role of rare 

genetic variation. Complex diseases with lower prevalence or lower mortality are not as 

well studied, and therefore less poised for transition from bench to beside. Therefore, 

the generalizability of the findings herein to less prevalent or rarer diseases remains to 

be seen. 

Over time, longitudinal data analysis in these large biobanks will become 

increasingly useful for disease prediction. Currently, the HUNT study has a median 

follow-up time for CAD events of 21 years, the Malmö Diet and Cancer Study of 21.3 

years , and the UK Biobank of 10.8 years. Accumulation of primary events and incident 

cases over the next decade will provide additional statistical power for model 

optimization as in Chapter 4. Presently, phenome-wide analysis (>1000 phenotypes) is 

only feasible through the use of international classification of diseases (ICD) codes 

grouped into phecodes37. For gold standard phenotyping, which creates the most high-

quality phenotype assignment, time intensive chart review is required and refined by 

clinicians. Methods developed for phenotyping could bring programmatic phenome 

curation closer to the gold standard, resource-intensive phenotyping, thereby improving 

the quality of data and expanding the questions we are able to ask in longitudinal 

biobanks. Algorithms for 51 diseases, biomarkers, etc. were made available on the 

CALIBER portal after a rule-based phenotyping framework was applied to primary care 
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EHRs in the UK and validated195. A custom tool, PHESANT, uses a rule-based 

algorithm for automated phenome scans in the UK Biobank196. Natural language 

processing (NLP) methods will expand the ascertainable phenome in these biobanks197. 

Finally, better harmonization of clinical data will allow for cross-biobank research198.  

Self-reported family history variables in biobanks provide opportunities for new 

research methodologies. In settings with IRB approval for recontact, individuals with 

family history of rare diseases, many affected relatives, or early-onset acute conditions 

(e.g., myocardial infarction at a young age) could be brought in for deep phenotyping 

paired with sequencing. Particularly if NLP methodologies allow for identification of 

more high resolution or niche family history information than is currently ascertained 

from questionnaires such as the UK Biobank. Similar to linkage studies where the family 

of a proband with a unique biomarker profile is interrogated199, one could imagine 

extreme family history as a means of screening for probands. Induced pluripotent stem 

cells from persons with interesting family history profiles could be used as a genetic 

background characteristic of polygenic disease for mechanistic studies.   

While this research contributes to efforts to bring genetic discoveries to the clinic 

(i.e., bench to bedside), its transferability to populations most vulnerable to health 

disparities is limited. Other than the 12% of diverse background participants in the 

thoracic aortic dissection study in Chapter 2, this dissertation uses samples only of 

European ancestries as identified through genetic inference. As a field we must move 

from exclusion of diverse ancestry samples (e.g., using white British subset of UK 

Biobank only) in an effort to reduce confounding factors or population stratification. Our 
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new goal should be thoughtful differentiation and inclusion of diverse ancestries during 

analysis. This effort may require development of new methods and will become easier 

as global biobanks with larger sample sizes of diverse ancestries are established. 

EHR-linked biobanks will continue to serve as a discovery platform as we 

interrogate disease mechanisms and assign function to genomic elements. Recently, 

results from a zebrafish genetic screen showing ric1 to be associated with skeletal 

biology were followed up through gene-based phenome-wide association study 

(PheWAS)200. Using imputed gene expression values from genotypes201, it was 

observed that expression of RIC1 is associated with musculoskeletal and dental 

conditions in Vanderbilt University’s BioVU biobank. A guided clinical re-evaluation of a 

pediatric cohort with mutations in RIC1 showed patient symptoms to match the human 

phenome predicted by PheWAS, and a new Mendelian syndrome, CATIFA, was 

ultimately defined200. Genetic information is not required on all biobank participants for 

their phenomes to yield discoveries. Analysis of EHRs in 2.6 million subjects, most 

without genetic data, allowed identification of significant comorbidity with vascular and 

eye traits202. Using the concept of polygenic risk scores, Phenome Risk Scores (PheRS) 

allow for identification of Mendelian disease patterns using the EHR-derived 

phenome203,204. 

5.4 Concluding remarks  
The combination of electronic health records (EHRs) with genetic data has 

ushered in the next wave of complex disease genetics93. Population-based biobanks 

and other large cohorts provide sufficient sample sizes to identify novel genetic 
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associations across the hundreds to thousands of phenotypes gleaned from EHRs. 

Biobanks provide a platform for identifying associations between polygenic disease risk 

and additional traits and biomarkers. As more researchers employ innovative 

hypotheses and analysis approaches to study EHR-linked biobanks, I anticipate a richer 

understanding of the genetic etiology of complex diseases leading to concomitant 

utilization of genetic predictors of disease in clinical settings and precision medicine. 

Indeed, one of the National Human Genome Research Institute’s ‘Bold predictions for 

human genomics by 2030’ states : 

“The regular use of genomic information will have transitioned from 
boutique to mainstream in all clinical settings, making genomic testing 

as routine as complete blood counts.” 
 

As this bold prediction indicates, the decades-long investment in biobanks will 

improve public health in numerous ways. It is my hope that the research described in 

this dissertation is a small part of that effort. 
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