
Nonequilibrium Dynamics of Strongly Correlated
Systems

by

Joseph Kleinhenz

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics and Scientific Computing)

in The University of Michigan
2021

Doctoral Committee:
Associate Professor Emanuel Gull, Chair
Professor Eitan Geva
Professor Lu Li
Associate Professor Kai Sun
Assistant Professor Liuyan Zhao



�

��

�

�����



Joseph Kleinhenz

jkleinh@umich.edu

ORCID iD: 0000-0003-3670-0431

© Joseph Kleinhenz 2021



To Alissa, who supported me from beginning to end

ii



Acknowledgements

This thesis would not have been possible without all the people who helped and supported
me along the way. I would first like to thank my advisor Dr. Emanuel Gull for guiding me
through my PhD. His expertise, advice and patience were invaluable.

I am also very grateful to all my colleagues in the Gull group who all contributed so
much to making this time intellectually stimulating and enjoyable. At the beginning of
my PhD, Dr. Andrey Antipov welcomed me to the group and taught me more c++ than I
ever knew existed. I am thankful for the help and example of Dr. Qiaoyuan Dong who
blazed the trail in front of me. I could never have completed this journey without the help
of Dr. Igor Krivenko who taught me so many things and patiently reviewed countless pull
requests. Over the course of my time in graduate school, I have benefited immensely from
discussions with Dr. Sergei Iskakov and Dr. Markus Wallerberger who taught me so much
about science. Jia Li was an excellent colleague, conference roommate and friend and I
am thankful for our many discussions from the first year of graduate school until now. I
am grateful to all my fellow graduate students in the Gull group, for their support and
many helpful discussions.

I would also like to thank my wife, Alissa Kleinhenz, for her love and support throughout
this period of our lives. Finally, I would like to thank my parents for instilling and nurturing
my love of science from the very beginning.

iii



Table of Contents

Table of Contents iv

List of Figures vi

List of Tables xiv

List of Algorithms xv

List of Abbreviations xvi

Abstract xvii

Chapter 1: Introduction 1
1.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Keldysh Formalism 4
2.1 The Contour Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3: The Hybridization Expansion 16
3.1 Historical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The Bare Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Semi-analytic Approximations . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 The Inchworm Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 The Hybridization Function . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4: Inchworm Quantum Monte Carlo 52
4.1 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 The Inchworm Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 5: Kondo Voltage Splitting 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iv



5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 6: Kondo Cloud 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 7: Inchworm DMFT 112
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 8: Nonequilibrium Metal–Insulator Transitions 133
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter 9: Conclusions and Outlook 145

Appendices 147

Appendix A: NCA 148

Bibliography 159

v



List of Figures

2.1 Left: Schematic illustration of Keldysh contour. Right: Graphical represen-
tation of an expectation value showing placement of operators along the
contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Left: Schematic illustration of full three branch contour. Right: Graphical
representation of an expectation value showing placement of operators along
the contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Left: Schematic illustration of full three branch contour as a circle. Right:
Graphical representation of an expectation value showing the use of the
cyclic property of the trace to reorder the evolution operators along the
twisted contour beginning at t−. . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Graphical representation of G(t+, t
′
−). . . . . . . . . . . . . . . . . . . . . . 10

2.5 Illustration of Green’s function G(t, t′) on the twisted contour. Each color
shows a Keldysh component of the Green’s function. The colored region
shows physical time domain. . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Causal (left) and contour causal (right) slices of the time domain of two
time contour object. Each color corresponds to a single slice. The circled
number indicates the order of each slice. . . . . . . . . . . . . . . . . . . . 14

3.1 Left: Diagrammatic representation of the bare propagators P
(0)
α . Right:

Diagrammatic representation of the hybridization vertices V̂σ, V̂ †
σ . . . . . . 24

3.2 Diagrammatic representation of a hybridization expansion term with topol-
ogy T = {↑↑} for tip state |0〉 (left) and |↑↓〉 (right). . . . . . . . . . . . . 24

3.3 Diagrammatic representation of the second order hybridization expansion
term with topology T = {↑↓↑↓} for tip state |0〉. . . . . . . . . . . . . . . 25

3.4 Diagrammatic representation of a hybridization expansion term with topol-
ogy T = {↑↑} for tip state |0〉 (left) and |↑↓〉 (right). . . . . . . . . . . . . 29

3.5 Diagrammatic representation of a hybridization expansion term with topol-
ogy T = {↑↑↑↑} for tip state |0〉. . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Diagrammatic representation of a hybridization expansion term with topol-
ogy T = {↑↓↑↓} for tip state |0〉. . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Diagrammatic representation of a hybridization expansion term with topol-
ogy T = {↑↑↑↑↑↑} for tip state |0〉. Label in parenthesis shows the permu-
tation corresponding to each diagram. . . . . . . . . . . . . . . . . . . . . 32

vi



3.8 Illustration of the bare expansion for the propagator expressed using the
compressed diagrammatic language. Thick (thin) lines represent bold (bare)
propagators. The state sequence and spins of the hybridization lines are
left implicit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Diagrammatic representation of a reducible diagram which can be separated
by a single cut (left) and a 1PI diagram (right). . . . . . . . . . . . . . . 34

3.10 Diagrammatic representation of the Dyson equation. The thick (thin) line
represents a bold (bare) propagator. . . . . . . . . . . . . . . . . . . . . . 34

3.11 NCA self-energy diagrams. The propagators are bold. . . . . . . . . . . . 35
3.12 OCA self-energy diagrams. The propagators are bold. . . . . . . . . . . . 36
3.13 High order contribution to the bold propagator included within NCA. . . 37
3.14 Illustration of the inchworm expansion for the bold propagator. The

diagrams in the bottom row are not inchworm proper because they contain
disconnected hybridization lines (marked in red) which are already included
in the bold part of the split propagator. . . . . . . . . . . . . . . . . . . . 39

3.15 Illustration of the hybridization graph G(C,D) for six diagrams. Green
nodes represent hybridization lines ending in the connected region (t, ts)
and are said to be “connected”. Blue nodes represent hybridization lines
which are part of a connected component of G containing a connected node.
Red nodes represent hybridization lines which are not part of a connected
component containing a connected node. The inchworm proper diagrams
are diagrams in which every connected component of G contains at least
one connected node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.16 Inchworm proper diagrams for a configuration with topology T = {↑↑↑↑↑↑}
and one vertex in the connected region. Disconnected hybridization lines
are marked in red. Only one out of the six bare diagrams is inchworm
proper. The propagator lines represent the split propagator P s. . . . . . . 41

3.17 Order 1 and order 2 inchworm proper diagrams contributing to P|0〉(t, t
′) in

the limit where ∆t = t− ts → 0. The propagator lines represent the split
propagator P s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.18 Illustration of the bare expansion for the Green’s function propagator. The
virtual hybridization line is represented by a dashed arc, and fixed in all
diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.19 Illustration of the bold expansion for the Green’s function propagator. The
crossed out diagrams are not G proper because they contain disconnected
hybridization lines (marked in red) which are already included in the bold
propagator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.20 Order 0 diagrams for the Green’s function propagators contributing to the
spin up Green’s function G↑(t, t

′
−). . . . . . . . . . . . . . . . . . . . . . . 47

3.21 Impurity spectral function for the resonant level model in the wide band
limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



4.1 Illustration of the contour causal structure of the bold propagators. A
propagator P (t, t′) (magenta) depends on all propagators with start point
on or after t′ and end point up to ts (blue). . . . . . . . . . . . . . . . . . 61

4.2 Illustration of the diagonal by diagonal calculation of the propagators. The
circled numbers label the diagonals which correspond to sets of inchworm
steps which can be taken in parallel. The propagator is computed only on
the physical time domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Illustration of the causal structure of the Green’s function propagators.
A Green’s function propagator PG(t′+, t

′
−; t|, t

′
−) (red) depends on all bold

propagators P with start points or end points up to the maximum physical
time t′ (we only show the bold propagators that are not obtained by
symmetry). This Green’s function propagator contributes to the right
mixing Green’s function G(t|, t

′
−) = Gd(τ, t′). . . . . . . . . . . . . . . . . 63

4.4 Illustration of the DAG representing the dependency structure of calculation
for a Green’s function element G(t, t′−) in the physical time domain. Arrows
indicate dependencies. The Green’s function depends causally on all propa-
gators with start or end times less than or equal to the maximum physical
time t′. The propagators depend contour causally on all propagators with
a start or end time between t1 and ts = t2 −∆t. . . . . . . . . . . . . . . 64

4.5 Top panel: Time evolution of the impurity occupation N after a voltage
quench using the non-crossing and one-crossing approximations (NCA
and OCA, respectively). Black lines: semi-analytically computed NCA
and OCA solutions. Blue line: NCA solution generated from an inchworm
expansion truncated to order one. Red line: OCA solution from an inchworm
expansion truncated to order 2. Bottom panel: Statistical error estimate of
the quantities shown in the upper panel. . . . . . . . . . . . . . . . . . . . 66

4.6 Top panel: Time evolution of the density on the impurity after a voltage
quench with Γ = 1, U = 10, εd = 0, D = 5, T = 1 and V = 6. Results
obtained from a bare QMC calculation are shown for t ≤ 0.6. The inchworm
results with different orders agree with the bare result for t ≤ 0.6 and
coincide with each other for longer times. Bottom panel: Error estimates.
Data obtained using the bare method shows an exponential increase of
the errors as a function of time, whereas inchworm errors grow slower as a
function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Top panel: The current dynamics after a voltage quench with Γ = 1, U = 4,
εd = −2, D = 5, T = 1 and V = 4. The inchworm results with different
orders converge as max-order increases. Bottom panel: Error estimates
of inchworm data obtained by averaging eight independent calculations.
Errors increase as a function of time but avoid the exponential amplification
seen in bare calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



4.8 Top panel: The imaginary time Green’s function in equilibrium (half-filling)
with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 0. Inchworm
results with different orders all coincide and agree with the bare calculation.
Bottom panel: The error estimate for the inchworm data is approximately
constant in imaginary time. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Top panel: A contour plot of the dynamics of auxilary current spectrum
Aaux(ω, t) after a voltage quench with Γ = 1, U = 4, εd = −2, D = 5, T = 1
and V = 4. The maximum order cut-off for the inchworm calculation is 6.
A formation and a splitting of the Kondo peak are observed as a function
of time. Middle panel: Slices of auxiliary current spectrum at different
times from the top contour plot. A clear splitting of the spectrum is shown.
Bottom panel: Error estimate on the spectral function obtained from eight
independent simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Top panel: The (half-filling) spectrum at t = 2.0 after a voltage quench
with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 4. The spectral
function shows the establishment of a split Kondo peak as the diagram
order is increased. The data for order 6 is identical to the data shown
in Fig. 4.9. Bottom panel: Error estimate for data shown in main panel.
The error remains constant as a function of frequency and increases as the
maximum order is increased. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Top panel: The (half-filling) spectrum at t = 2.0 with no applied voltage
with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 0. Bottom panel:
error estimate for data shown in the main panel. . . . . . . . . . . . . . . 73

4.12 Top panel: Spectral function away from half filling at t = 2.0 after a voltage
quench with Γ = 1, U = 10, εd = −2, D = 5, T = 1 and V = 4. Bottom
panel: error estimate for data shown in the main panel. . . . . . . . . . . 73

5.1 Time evolution of the QD spectral function after a coupling quench and
in the presence of a bias voltage V , at interaction strength U = 8.0Γ and
temperature T = 0.02Γ � TK . The voltages are V = 0.5Γ (upper left),
V = 1.2Γ (upper right), V = 1.8Γ (lower left), and V = 3.5Γ (lower right). 79

5.2 Splitting time tsplit where a single peak splits into two peaks as a function
of V at T = 0.02Γ. Upper panel: inchworm and OCA results at U = 8.0Γ.
Lower panel: OCA results for several U . Insets show the same data on a
log-log scale demonstrating power-law behavior. . . . . . . . . . . . . . . 80

5.3 QD spectral function from the inchworm method at t = tmax = 8.0Γ−1,
corresponding to the steady-state spectrum A(ω) for V ≥ 1.0Γ. T = 0.02Γ
(upper panel) and T = 0.5Γ (lower panel) for the voltages indicated. . . . 82

ix



5.4 Peak-to-peak distance ∆ω between the split Kondo peaks as a function of
bias voltage V , at T = 0.02Γ < TK . Error bars originate from averaging
over finite-time oscillations expected to eventually dissipate. Upper panel:
inchworm and OCA results at U = 8.0Γ with tmax = 8.0Γ−1 compared with
the linear behavior ∆ω = V predicted by various approximate methods.
Lower panel: Deviation of splitting from V within OCA at T = 0.02Γ for
several values U , with tmax = 15.0Γ−1. . . . . . . . . . . . . . . . . . . . . 83

5.5 Time evolution of the QD spectra A(ω, t) of the quantum dot for U =
8Γ, T = 0.5Γ. V = 0.5Γ (upper left), V = 1.5Γ (upper right), V = 2.5Γ
(lower left), V = 3.0Γ (lower right). . . . . . . . . . . . . . . . . . . . . . 86

5.6 Comparison of inchworm (solid) with OCA (dashed) QD spectral functions
at U = 8.0Γ, T = 0.02Γ for voltages indicated. . . . . . . . . . . . . . . . . 87

5.7 Transient spectral functions at two values of the bias voltage V = 1.2Γ and
V = 1.8Γ corresponding to two panels in Fig. 5.1. The bold lines show
spectra at two times when the “unsplit” transient phase is observed. The
dashed line is the steady state solution computed with OCA at the effective
temperature T tr

eff that delivers a good fit to the transient spectra. . . . . . 87
5.8 Bold lines: Steady state spectral functions at two values of the bias voltage

V = 1.2Γ and V = 1.8Γ corresponding to two panels in Fig. 5.1. Dashed
line: fitting curve computed as [A(ω+V /2, T st

eff)+A(ω−V /2, T st
eff)]/2, where

A(ω, T st
eff) is OCA equilibrium spectrum at effective temperature T st

eff. . . . 88

6.1 Schematic illustration of the model. A quantum dot (QD) is coupled to two
non-interacting leads, where each lead is a semi-infinite, one-dimensional
tight-binding chain with nearest neighbor hopping t. On the right lead, the
hopping between sites L and L+ 1 is optionally modified to take the value
t′. The leads are connected to the QD by a hopping λ. The QD has an
on-site local Coulomb interaction U . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Coupling density Γ(ω) for α = 0 (black) and α 6= 0 for two different
cavity lengths L (blue/orange). For α 6= 0 the resonance width is given by
∆L = πvf/L. Inset shows zoom around the Fermi energy illustrating ∆L. 92

6.3 Impurity DOS at interaction strength U = 9Γ as the temperature is lowered
below the Kondo temperature TK . Inset shows zoom of the peak at the
Fermi energy in the β = 50Γ−1 results. Dashed black line shows Lorentzian
fit used to estimate the width γimp ≈ 0.062Γ which gives an estimate of the
Kondo temperature TK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Top: Kondo peak width γimp as a function of the size of the Fabry-Pérot
cavity length L for α = 0.1 and U = {7Γ, 8Γ, 9Γ}. Solid (dashed) lines
show data for L odd (even). Horizontal lines show data in the absence of
the cavity (α = 0). Bottom: Logarithm of peak width γimp normalized by
peak width in the absence of the cavity γ0. . . . . . . . . . . . . . . . . . 98

6.5 Lead LDOS at interaction strength U = 9Γ at sites 3 (top) and 4 (bottom)
as the temperature is lowered below the Kondo temperature. Dashed black
line shows LDOS for non-interacting lead decoupled from impurity. . . . . 100

x



6.6 Difference between lead LDOS above and below TK on four different sites.
Dashed black line shows Lorentzian fit of central peak used to estimate γ(x). 101

6.7 Top: Width of lead LDOS normalized by impurity width for U = {7Γ, 8Γ, 9Γ}.
Bottom: Logarithm of LDOS width as function of rescaled distance. Inset:
Extracted length scale ξ varies inversely with γimp ≈ TK . . . . . . . . . . . 103

6.8 Top: Impurity DOS for applied voltages V = {0.0Γ, 0.2Γ, 0.5Γ, 1.0Γ}.
Bottom: Difference between lead LDOS at βΓ = 1 and βΓ = 50 for each
applied voltage on four different sites. . . . . . . . . . . . . . . . . . . . . 105

6.9 Comparison of the time-dependent retarded QD Green’s function (top)
and QD DOS (bottom) obtained from OCA (blue) and inchworm QMC
(orange/green) at β = 20Γ−1, U = 7Γ, α = 0. The inchworm QMC results
are parameterized by the maximum allowed expansion order (see legend). 110

7.1 Real and imaginary parts of the greater dynamical mean field Green’s
function G>(t) as a function of real time t up to a maximum time of tv = 2.
U/v = 4, T/v = 0.05, equilibrium. Shown is the convergence with DMFT
iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Real and imaginary parts of the greater DMFT Green’s function G>(t),
for times up to tv = 2, with T/v = 0.5, half filling, equilibrium, at on-site
interaction strengths U/v ∈ {2.0, 4.0, 6.0, 8.0}. . . . . . . . . . . . . . . . 120

7.3 Real and imaginary parts of the greater DMFT Green’s function G>(t), for
times up to tv = 2, half filling, equilibrium, for U/v = 4, at temperatures
T/v ∈ {0.5, 0.1, 0.05}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Retarded components of the DMFT Green’s function, bare Green’s function
and self-energy computed for U/v = 8.0 at half-filling and temperature
T/v = 0.5. Gret

rec(t) (dashed orange curve lying on top of the black one) is a
Green’s function reconstructed by iterative substitution of Σret(t) into the
Dyson equation. Data obtained using 2001 interpolation slices. . . . . . . 122

7.5 Retarded component of the imaginary part of the DMFT self-energy for in-
teraction strengths U/v ∈ {2.0, 4.0, 6.0, 8.0} at half-filling and temperature
T/v = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 The converged DMFT spectral function A(ω) obtained by directly per-
forming the Fourier transform on the real time Green’s function with a
cutoff at tmaxv = 2 with T/v = 0.5 and at on-site interaction strengths
U/v ∈ {2.0; 4.0; 6.0; 8.0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Comparison of raw Green’s function data up to tv = 2 (black) and tv = 4
(red) with results from linear prediction of the tv = 2 data (blue) and
tv = 4 data (green) for U/v = 8, T/v = 0.5. For the linear prediction we
use p = 9, tfitv = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.8 Comparison of spectral function obtained from raw Green’s function data
up to tv = 2 (black) and tv = 4 (red) with results from linear prediction
of the tv = 2 data (blue) and tv = 4 data (green) for U/v = 8, T/v = 0.5.
For the linear prediction we use p = 9, tfitv = 1.0. . . . . . . . . . . . . . . 125

xi



7.9 The converged DMFT spectral function A(ω) obtained by extrapolating
the real-time Green’s function from tv = 2.0 to tv = 10.0 using linear
prediction with p = 9, tfitv = 1.0 for temperature T/v = 0.5 at on-site
interaction strengths U/v ∈ {2.0, 4.0, 6.0, 8.0}. . . . . . . . . . . . . . . . 126

7.10 The converged DMFT spectral function A(ω) obtained by extrapolating the
real-time Green’s function from tv = 2.0 to tv = 10.0 using linear prediction
with p = 9, tfitv = 1.0 for U/v = 4 at temperatures T/v ∈ {0.5, 0.1, 0.05}. 126

7.11 Matsubara Green’s function G(τ) computed for the impurity model in equi-
librium with U/v = 4.6 at two temperatures and with different inchworm
order truncations. Results from an equilibrium hybridization expansion
solver (TRIQS/CTHYB[71, 204]) are given as a reference. . . . . . . . . . 128

7.12 The converged DMFT spectral function A(ω) obtained by extrapolating the
real-time Green’s function from t = 2.0 to t = 10.0 using linear prediction
with p = {5, 10}, tfit = {1.0, 2.0} for U = 4 at temperatures T = 0.05. . . 129

7.13 The converged DMFT spectral function A(ω) obtained by extrapolating
the real-time Green’s function from tv = 2.0 to tv = 10.0 using linear
prediction with p = {5, 10}, tfitv = {1.0, 2.0} for U/v = 6 at temperature
T/v = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.14 Retarded components of the DMFT Green’s function, bare Green’s function
and self-energy computed in equilibrium with U/v = 8.0 at T/v = 0.5. The
self-energy curves are obtained by a direct solution of the Dyson equation
in its discretized matrix form. Gret(t) has been measured on 41 time slices,
while a larger number of slices and cubic interpolation have been used
to perform matrix inversions. The four subplots correspond to different
numbers of interpolation points. Gret

rec(t) (orange curve) is a Green’s function
reconstructed by iterative substitution of Σret(t) into the Dyson equation.
Top left: 41 slices. Top right: 101 slices. Bottom left: 1001 slices. Bottom
right: 2001 slices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 A: Spectral weight at ω = 0 as a function of λ for metallic (dashed orange)
and insulating (solid blue) initialization of the DMFT loop. The dashed
black lines show the boundaries of the coexistence region (λc1 = 0.115,
λc2 = 0.145). B: Spectral function for several different λ. C: Spectral
functions of metallic and insulating solutions in the coexistence region. . . 136

8.2 A: Evolution of A(ω = 0, t) for equilibrium metallic and insulating solutions
(dashed green/red) and for switched solutions (solid orange/blue). B:
Switching protocol for λ(t). Dashed black lines show the coexistence region.
C: A(ω, tv = 100) for equilibrium metal (dashed green) and “switched”
metal (solid blue). D: A(ω, tv = 100) for equilibrium insulator (dashed red)
and “switched” insulator (solid orange). . . . . . . . . . . . . . . . . . . . 137

xii



8.3 A: Evolution of A(ω = 0, t) for equilibrium metallic and insulating solutions
(dashed green/red) and for switched solutions (solid orange/blue). B:
Switching protocol for λ(t). Dashed black lines show the coexistence region.
C: A(ω, tv = 100) for equilibrium metal (dashed green) and “switched”
metal (solid blue). D: A(ω, tv = 100) for equilibrium insulator (dashed red)
and “switched” insulator (solid orange). . . . . . . . . . . . . . . . . . . . 139

8.4 Illustration of proposed device for realizing dynamic control of λ(t). The
voltage between the outer metallic plates can be controlled in two ways
depending on the mode of operation of the device. Without the red
connections, the voltage between the plates is modulated by an external
signal (blue circle) and the device is operated as a transistor. Adding the
red connections couples the voltage between the plates to the source-drain
voltage and turns the device into a two terminal memristor. . . . . . . . . 141

8.5 Simulation of the system configured as a two terminal memristive device.
A: Current voltage characteristic of device under sinusoidal driving. The
inset shows the shape and minima of the potential Φ(x, λ) at λ = λc, λc± 1.
B: Use of device as a resistive memory element. . . . . . . . . . . . . . . 142

8.6 Comparison of the retarded Green’s function (A) and spectral function
(B) obtained from OCA (green) and inchworm (blue/orange) at β = 20v−1,
U = 4.0v, λ = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiii



List of Tables

2.1 Keldysh components of the Green’s function. . . . . . . . . . . . . . . . . . 11

3.1 Examples of operator and state sequences for different topologies and tip
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiv



List of Algorithms

3.1 Inchworm proper diagram selector. . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Wang-Landau Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv



List of Abbreviations

DMFT Dynamical Mean Field Theory

DOS Density of States

STM Scanning Tunneling Microscopy

ARPES Angle Resolved Photoemission Spectroscopy

NCA Non-Crossing Approximation

OCA One-Crossing Approximation

2CA Two-Crossing Approximation

SIAM Single-Impurity Anderson Model

QMC Quantum Monte Carlo

MCMC Markov Chain Monte Carlo

CT-QMC Continuous Time Quantum Monte Carlo

CT-HYB Continuous Time Hybridization Expansion

HPX High Performance ParallelX

DAG Directed Acyclic Graph

DFT Density Functional Theory

xvi



Abstract

In this thesis, we describe methods for solving quantum impurity models out of equi-
librium, and consider several applications of these methods. Quantum impurity models
describe systems in which a small subsystem (the impurity) is coupled to a large external
environment (the bath). These models are useful in describing a wide variety of physical
systems, including quantum dots, absorbed adatoms, and molecular junctions. They
are also important for the study of lattice models, such as the Hubbard model, where
they appear as auxiliary problems within the framework of dynamical mean field theory
(DMFT).

Many interesting phenomena in these systems, such as transport through a quantum
dot, or optical pumping of a Mott insulator, occur away from equilibrium. Theoretical
description of these phenomena requires methods that are capable of handling both real
time evolution and strong correlation effects presenting a formidable challenge. In this
thesis, we describe several methods for the solution of non-equilibrium quantum impurity
models which meet this challenge. These methods are based on an expansion in the
coupling between the impurity and the bath known as the hybridization expansion.

Chapter 1 gives an introduction to the problems addressed in this thesis. Chapter 2
provides a brief overview of Keldysh formalism for nonequilibrium problems. Chapter 3
describes the bare hybridization expansion for the Anderson impurity model as well as
its bold extensions. In particular we derive the non-crossing approximation (NCA), the
one-crossing approximation (OCA), the inchworm expansion, and a bold expansion for
the impurity Green’s function. Chapter 4 describes the implementation of a quantum
Monte Carlo algorithm based on the inchworm expansion. The rest of the thesis describes
applications of these algorithms to problems of physical interest.

Chapters 5 and 6 apply the methods previously described to understanding the Kondo
effect in quantum dot systems. The first chapter examines the behavior of the Kondo
effect under an applied voltage bias, a classic non-equilibrium strongly-correlated problem.
The second chapter examines different ways of measuring the cloud of electrons which
screen the impurity spin in the Kondo regime.

xvii



Chapters 7 and 8 apply the same methods to the Hubbard model using the Dynamical
mean-field theory (DMFT) mapping. The first chapter studies the Hubbard model in
equilibrium using the numerically exact inchworm quantum Monte Carlo method. The
second chapter studies the possibility of dynamic switching between the metal and Mott-
insulator states of the Hubbard model using the one-crossing approximation (OCA).

Finally chapter 9 gives some overall conclusions and suggests future directions for the
development of hybridization expansion methods.
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CHAPTER I

Introduction

Condensed matter physics seeks to describe the collective behavior of systems consisting
of large numbers of interacting particles. These include the metals, glasses, insulators,
and fluids which make up the objects of everyday experience, as well as more exotic
systems such as superconductors and Bose-Einstein condensates. Quantum condensed
matter physics applies the principles of quantum mechanics to this challenge. Like so many
developments in physics, quantum condensed matter can be traced back to Einstein, whose
1907 calculation of the low temperature behavior of the specific heat of solids demonstrated
the necessity of quantum mechanics in describing the microscopic underpinnings of regular
materials [1, 2]. In his paper, Einstein postulated that the vibrational modes of atoms in
solids had to be quantized in order to explain their specific heat, just as radiation had had
to be quantized in order to explain the observed black body spectrum. Einstein’s proposal
proved controversial at the time, but his approach was vindicated and the quantized
vibrational modes he postulated—now known as phonons—are a fundamental piece of
modern condensed matter physics.

In the decades after 1907, our understanding of quantum mechanics and its applications
to condensed matter physics rapidly grew and by 1929, Dirac could famously declare

The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore becomes desirable
that approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main features of complex
atomic systems without too much computation.

in his work on the quantum mechanics of many-electron systems [3]. Since then, Dirac’s
desire has been fullfilled by a plethora of “approximate practical methods”. In this thesis,
we will describe several such methods for solving what are known as quantum impurity
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models, although we will drop the qualifier “without too much computation”.
Quantum impurity models describe systems in which a small subsystem (the impurity)

is coupled to a large external environment (the bath). The Hamiltonian for a generic
quantum impurity model can be written as

Ĥ = Ĥloc + Ĥbath + ĤT (1.1)

where Ĥloc is the local Hamiltonian of the impurity, Ĥbath is the bath Hamiltonian, and ĤT

is the tunneling Hamiltonian which describes hopping between the impurity and the bath.
The single impurity Anderson model (SIAM)—one of the simplest impurity models—was
originally introduced in 1961 to describe the physics of dilute alloys containing magnetic
impurities embedded in a non-magnetic host [4]. In 1964, Kondo showed that the scattering
rate of the bath electrons on an impurity with an anti-ferromagnetic coupling would diverge
at low temperatures explaining the decades old puzzle of the resistance minimum observed
in these dilute magnetic alloys [5, 6]. This phenomena, in which the impurity becomes
strongly coupled to the bath at low temperatures, is now known as the Kondo effect and
is a paradigmatic example of strongly correlated physics in which the interactions between
electrons play a key role and an independent particle description is not possible.

Further research into quantum impurity models has been enormously fruitful, yielding
many new theoretical techniques including Wilson’s numerical renormalization group (NRG)
approach [7, 8], as well hybridization expansion techniques [9–11] based on perturbation
theory in ĤT which are the precursors of the methods described in this thesis. Additionally,
although initially introduced in the context of dilute magnetic alloys, quantum impurity
models have been used to describe an huge variety of physical systems such as quantum
dots [12–15], absorbed adatoms [16–19], and molecular junctions [20–22]. They are
also important for the study of lattice models, such as the Hubbard model [23], where
they appear as auxiliary problems within the framework of dynamical mean field theory
(DMFT) [24, 25]. DMFT is able to capture a variety of strongly correlated phenomena
such as Mott metal-insulator transitions [26–28] which are beyond the reach of methods
based on an independent particle approximation such as Kohn-Sham density functional
theory (DFT) [29].

Description of phenomena such as transport through a quantum dot or optical pumping
of a Mott insulator require the solution of quantum impurity models out of equilibrium
[22, 30]. This requires methods that are capable of handling both real time evolution and
strong correlation effects presenting a formidable challenge. In this thesis, we describe
several methods for the solution of non-equilibrium quantum impurity models which meet
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this challenge. Chapter 2 describes the Keldysh formalism for nonequilibrium problems
that we will use throughout this thesis. Chapter 3 describes hybridization expansion
techniques for the Anderson impurity model. Chapter 4 describes implementation of the
inchworm quantum Monte Carlo method. The rest of the thesis describes applications of
these algorithms to problems of physical interest.

Chapters 5 and 6 apply the methods previously described to understanding the Kondo
effect in quantum dot systems. The first chapter examines the behavior of the Kondo
effect under an applied voltage bias, a classic non-equilibrium strongly-correlated problem.
The second chapter examines different ways of measuring the cloud of electrons which
screen the impurity spin in the Kondo regime.

Chapters 7 and 8 apply the same methods to the Hubbard model using the Dynamical
mean-field theory (DMFT) mapping. The first chapter studies the Hubbard model in
equilibrium using a numerically exact QMC method. The second chapter studies the
possibility of dynamic switching between the metal and Mott-insulator states of the
Hubbard model using the one-crossing approximation (OCA).

1.1 Publications

This thesis is based on work from the following publications:

1. A. E. Antipov, Q. Dong, J. Kleinhenz, G. Cohen, and E. Gull, “Currents and Green’s
functions of impurities out of equilibrium: Results from inchworm quantum Monte
Carlo”, Physical Review B 95, 085144 (2017)

2. Q. Dong, I. Krivenko, J. Kleinhenz, A. E. Antipov, G. Cohen, and E. Gull, “Quantum
Monte Carlo solution of the dynamical mean field equations in real time”, Physical
Review B 96, 155126 (2017)

3. I. Krivenko, J. Kleinhenz, G. Cohen, and E. Gull, “Dynamics of Kondo voltage
splitting after a quantum quench”, Physical Review B 100, 201104 (2019)

4. J. Kleinhenz, I. Krivenko, G. Cohen, and E. Gull, “Dynamic control of nonequilibrium
metal-insulator transitions”, Physical Review B 102, 205138 (2020)

5. J. Kleinhenz, I. Krivenko, G. Cohen, and E. Gull, “The Kondo Cloud in a 1D
Nanowire”, (In Preparation)
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CHAPTER II

Keldysh Formalism

In this chapter, we present a brief introduction to the Keldysh formalism that we will
use throughout this thesis. This formalism provides an elegant language for expressing
time dependent expectation values for nonequilibrium problems. Our discussion of this
topic follows the excellent treatment given in [36]. See also [37] which gives a more
computationally oriented description of various aspects of nonequilibrium formalism.

2.1 The Contour Idea

The time-dependent expectation value of an operator Ô(t) for a quantum system is given
by

O(t) = 〈ÔH(t)〉 (2.1)

= Tr
[
ρ̂ ÔH(t)

]
(2.2)

= Tr
[
ρ̂ Û(0, t)Ô(t)Û(t, 0)

]
(2.3)

where ρ̂ =
∑

i wi |φi〉 〈φi| is the initial density matrix, ÔH(t) is the Heisenberg picture
operator, and Û(t, t′) is the time evolution operator. We retain the time argument for
the Schrödinger picture operator Ô(t) in order to keep track of the evolution operators
associated with it, and to allow for the possibility of an explicit time dependence. The
time-evolution operator satisfies the Schrödinger equation

ih̄∂tÛ(t, t′) = Ĥ(t)Û(t, t′) (2.4)

with boundary condition U(t, t) = 1 where Ĥ(t) is the Hamiltonian of the system. Through-
out the rest of this thesis we will set h̄ ≡ 1. Integrating the Schrödinger equation and
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taking into account the boundary condition, we obtain

Û(t, 0) = 1− i

∫ t

0

dt1Ĥ(t1)Û(t1, 0). (2.5)

Note that Û appears on both the left-hand side and right-hand side of the equation. We
can repeatedly substitute this definition of U into the right-hand side to obtain a series

Û(t, 0) = 1− i

∫ t

0

dt1Ĥ(t1)Û(t1, 0) (2.6)

= 1− i

∫ t

0

dt1Ĥ(t1) + (−i)2
∫ t

0

dt1

∫ t1

0

dt2Ĥ(t1)Ĥ(t2)Û(t2, 0) (2.7)

=
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

. . .

∫ tn−1

0

dtnĤ(t1) . . . Ĥ(tn). (2.8)

Note that the operators here are time ordered, i.e. t ≥ t1 ≥ t2 ≥ . . . ≥ tn. In order to
conveniently express this, we introduce the time-ordering operator T which takes a string
of operators and orders them so that operators at later times occur to the left of operators
at earlier times. T is formally defined by

T
{
Ô1(t1) . . . Ôn(tn)

}
= (±1)N(x) Ôx1(tx1) . . . Ôxn(txn) (2.9)

where x is the permutation which orders the times such that tx1 ≥ tx2 ≥ . . . ≥ txn , N(x)

is the number of transpositions in x, and we take the plus (minus) sign if the operators
{Ôi} are bosonic (fermionic). In the case of two operators, T can be written explicitly as

T
{
Â(t)B̂(t′)

}
= Θ(t− t′)Â(t)B̂(t′)±Θ(t′ − t)B̂(t′)Â(t) (2.10)

where Θ is the Heaviside function. We can now rewrite our previous expression as

Û(t, 0) =
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

. . .

∫ tn−1

0

dtnĤ(t1) . . . Ĥ(tn) (2.11)

= T

{
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

. . .

∫ tn−1

0

dtnĤ(t1) . . . Ĥ(tn)

}
(2.12)

= T

{
∞∑
n=0

(−i)n

n!

∫ t

0

dt1

∫ t

0

. . .

∫ t

0

dtnĤ(t1) . . . Ĥ(tn)

}
(2.13)

= T
{
e−i

∫ t
0 dt̄Ĥ(t̄)

}
(2.14)
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where in the second to last line we have used T to expand the integration bounds and
divided by n! to account for the n! permutations of the time points.

Because Ĥ is Hermitian, Û(t, t′) is unitary and satisfies Û(t, t′)† = Û(t′, t). Therefore
the conjugate equation is given by

Û(0, t) = Û(t, 0)† (2.15)

=
(
T
{
e−i

∫ t
0 dt̄Ĥ(t̄)

})†
(2.16)

= T̄
{
e−i

∫ 0
t dt̄Ĥ(t̄)

}
(2.17)

where we have introduced the anti-time-ordering operator T̄ which takes a string of
operators and orders them so that operators at earlier times occur to the left of operators
at later times. This takes into account the reversal of the operator order induced by the
Hermitian conjugate. Using these results, the time-dependent expectation value of an
operator can be written

O(t) = Tr
[
ρ̂ Û(0, t)Ô(t)Û(t, 0)

]
(2.18)

= Tr
[
ρ̂ T̄

{
e−i

∫ 0
t dt′Ĥ(t′)

}
Ô(t)T

{
e−i

∫ t
0 dt′Ĥ(t′)

}]
. (2.19)

C+

t+

0+

C−

t−0−

O(t) =

Û(t, 0)

Û(0, t)

Ô(t−)

Figure 2.1: Left: Schematic illustration of Keldysh contour. Right: Graphical representa-
tion of an expectation value showing placement of operators along the contour.

We can simplify this expression by introducing a contour C = C+ ∪ C− which is
the union of a “plus” branch C+ = (0+, t+) associated with the forward propagation
U(t, 0), and a “minus” branch C− = (t−, 0−) associated with the backward propagation
U(0, t). We refer to this two branch contour as the Keldysh contour, although the idea
has been introduced independently several times [38, 39]. Figure 2.1 shows an illustration
of this two branch Keldysh contour. Points on the contour are described by a time t

and a Keldysh index ± which specifies which branch they belong to. The contour runs
0+ → t+ → t− → 0− and points are ordered along this path. We write t2 � t1 to indicate
that t2 comes after t1 on the contour. By convention we place the operator Ô(t) at t−.
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We could equally well place it at t+ but the placement on the “minus” branch will later
prove useful.

A function of a contour time z is defined by

F (z) =

F+(z) z ∈ C+

F−(z) z ∈ C−

(2.20)

where F+ is the value taken on C+ and F− is the value taken on C−. It is occasionally
useful to consider functions which take different values on each branch (see for example
[40]). However, in all cases considered here we will use F+ = F− so that functions and
operators do not explicitly depend on the Keldysh branch index. The purpose of the
Keldysh index in an expression such as Ô(t−) is to specify the placement of the operator
on the contour. We define integration on the contour as the sum of integrals along each
branch ∫

C

dz =

∫
C+

dz +

∫
C−

dz =

∫ t+

0+

dz+ +

∫ 0−

t−

dz−. (2.21)

Note, the branches included in the contour integral depend on the integration bounds.
We now introduce the contour ordering operator TC which takes a string of operators

and orders them so that operators occurring later on the contour C occur to the left of
operators occurring earlier. In the case of two operators, TC can be written explicitly as

TC
{
Â(z)B̂(z′)

}
=



T
{
Â(z)B̂(z′)

}
z ∈ C+, z

′ ∈ C+

Â(z)B̂(z′) z ∈ C−, z
′ ∈ C+

±B̂(z′)Â(z) z ∈ C+, z
′ ∈ C−

T̄
{
Â(z)B̂(z′)

}
z ∈ C−, x

′ ∈ C−

(2.22)

so that operators on C+ are time-ordered, operators on C− are anti-time-ordered, and
all operators on C+ preceed operators on C−. We can now write the time-dependent
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expectation value of an operator as

O(t) = Tr
[
ρ̂ Û(0, t)Ô(t)Û(t, 0)

]
(2.23)

= Tr
[
ρ̂ T̄

{
e−i

∫ 0
t dt′Ĥ(t′)

}
Ô(t)T

{
e−i

∫ t
0 dt′Ĥ(t′)

}]
(2.24)

= Tr
[
ρ̂ T̄

{
e
−i

∫
C−

dz′Ĥ(z′)
}
Ô(t)T

{
e
−i

∫
C+

dz′Ĥ(z′)
}]

(2.25)

= Tr
[
ρ̂ TC

{
e−i

∫
C dz′Ĥ(z′)Ô(t)

}]
(2.26)

where in the last line we have used the contour ordering operator TC to combine the
forward and backward propagation into a single exponential.

So far we have considered a general density matrix ρ̂ =
∑

iwi |φi〉 〈φi|. However,
frequently we will be interested in starting our time evolution from the equilibrium density
matrix of Ĥ(t = 0) ≡ Ĥ0 given by ρ̂ = 1

Z
e−βĤ0 where Z = Tr

[
e−βĤ0

]
is the partition

function. This density matrix can be written as an evolution in imaginary time from 0 to
−iβ.

ρ̂ =
1

Z
exp

(
−βĤ0

)
=

1

Z
exp

(
−i
∫ −iβ

0

dzĤ0

)
=

1

Z
Û(−iβ, 0) (2.27)

Motivated by this, we introduce a third branch C| = (0,−iβ) and define a contour
C = C+ ∪ C− ∪ C|. This three branch contour has various names including the L-shaped,
the Kadanoff-Baym-Keldysh, and the Konstantinov–Perel’ contour [41, 42]. In this thesis
we will refer to it as the full or three branch contour.

C+

t+

0+

C−

t−0−

C|

−iβ

0|
O(t) =

Û(t, 0)

Û(0, t)

Ô(t−)

Û(−iβ, 0)

Figure 2.2: Left: Schematic illustration of full three branch contour. Right: Graphical
representation of an expectation value showing placement of operators along the contour.

Figure 2.2 shows an illustration of the full contour. Points on this contour are described
by a time t, which can now be imaginary, and a Keldysh index {+,−, |} which specifies
which branch they belong to. The contour runs 0+ → t+ → t− → 0− → 0| → −iβ and
points are ordered along this path. The definitions of functions, integrals and ordering
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defined on the full contour are straightforward generalizations of the two branch case.
Let C ′ = C+ ∪ C− denote the two branch contour, and C = C ′ ∪ C| denote the full

three branch contour. We can then write the time-dependent expectation value of an
observable with an equilibrium initial state as

O(t) = Tr
[
ρ̂ TC′

{
e−i

∫
C′ dz′Ĥ(z′)Ô(t)

}]
(2.28)

=
1

Z
Tr
[
e−βĤ0 TC′

{
e−i

∫
C′ dz′Ĥ(z′)Ô(t)

}]
(2.29)

=
1

Z
Tr
[
e−i

∫−iβ
0 dz′Ĥ0 TC′

{
e−i

∫
C′ dz′Ĥ(z′)Ô(t)

}]
(2.30)

=
1

Z
Tr
[
e
−i

∫
C|

dz′Ĥ0 TC′

{
e−i

∫
C′ dz′Ĥ(z′)Ô(t)

}]
(2.31)

=
1

Z
Tr
[
TC
{
e−i

∫
C dz′Ĥ(z′)Ô(t)

}]
(2.32)

where in the last line we have used the contour ordering operator TC to combine the
imaginary time evolution with the forward/backward propagation into a single exponential.
This expression for the time-dependent expectation value of an operator in terms of a
contour ordered exponential will be the starting point for our perturbation theory.

Before moving on, it is worth noting that the cyclic property of the trace allows us
to cyclically permute the operators in our expression for the expectation value freely. In
particular, we can cyclically permute the order of the evolution operators associated with
each branch, or equivalently permute the order of the branches. Because of this freedom it

0+

C+

t+
t−

C−

0−
0|

C|

−iβ

O(t) = Tr
[
Û(−iβ, 0)Û(0, t)Ô(t)Û(t, 0)

]
= Tr

[
Û(t, 0)Û(−iβ, 0)Û(0, t)Ô(t)

]
= Ô(t−)

Û(0, t)

C−

Û(−iβ, 0)

C|

Û(t, 0)

C+

Figure 2.3: Left: Schematic illustration of full three branch contour as a circle. Right:
Graphical representation of an expectation value showing the use of the cyclic property of
the trace to reorder the evolution operators along the twisted contour beginning at t−.

is useful to think of the contour as a circle as shown in figure 2.3 (left). In this thesis we
will make extensive use of the twisted contour C̃ which begins at t−. The twisted contour

9



is useful because it makes t− the first point on the contour so that the twisted contour
ordering operator TC̃ will always place Ô(t−) to the far right where it acts on the external
state first. This allows us to avoid having to keep track of the location of Ô(t) on the
contour.

Although these representations of the contour as a circle, or L shape are conceptually
helpful, they are inconvenient when drawing diagrams. Therefore, when representing the
contour we will frequently unfold it and draw it as a single straight line with contour time
increasing to the left so that the order of operators on the contour matches the order in
which they appear in contour ordered expressions as in figure 2.3 (right).

2.2 Green’s Functions

The contour formalism generalizes straightforwardly to correlators of multiple operators.
A particularly important case is the single-particle Green’s function which encodes many
key physical properties, and will be a core object of study in this thesis. The single-particle
Green’s function is defined as the contour ordered expectation value

G(t, t′) = −i 〈TC ĉ(t)ĉ†(t′)〉 = −
i

Z
Tr
[
TC
{
e−i

∫
C dzĤ(z)ĉ(t)ĉ†(t′)

}]
(2.33)

where ĉ (ĉ†) are annihilation (creation) operators, and t and t′ take values on the contour
C. The operators ĉ and ĉ† may also carry some orbital indices, but for now we only
consider the structure of the time domain. Figure 2.4 shows a graphical representation of

iG(t+, t
′
−) =

Û(t′, 0)

ĉ(t)

Û(t, t′)

Û(0, t)

ĉ†(t′)

Û(−iβ, 0)

Figure 2.4: Graphical representation of G(t+, t
′
−).

the Green’s function element G(t+, t
′
−).

On the twisted three branch contour, the Green’s function takes the form of a 3× 3
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block matrix

G(t, t′) =

G−− G−| G−+

G|− G|| G|+

G+− G+| G++

 (2.34)

where the blocks are indexed by the Keldysh indices of t and t′. Each of these blocks is

Block Component Name
G−− GT̄ anti-time-ordered
G|− Gd right-mixing
G+− G< lesser
G−| Ge left-mixing
G|| iGM matsubara
G+| Ge left-mixing
G−+ G> greater
G|+ Gd right-mixing
G++ GT time-ordered

Table 2.1: Keldysh components of the Green’s function.

related to one of the Keldysh components shown in table 2.1 [37]. These components
are related by a number of symmetries. Note G−| = G+| = Ge and G|− = G|+ = Gd

because we can freely move the operator at the maximum physical time between C− and
C+ since all evolution past the maximum physical time cancels. The time-ordered and
anti-time-ordered components are defined in terms of the greater and lesser components by

GT (t, t′) = Θ(t, t′)G>(t, t′) + Θ(t′, t)G<(t, t′) (2.35)

GT̄ (t, t′) = Θ(t′, t)G>(t, t′) + Θ(t, t′)G<(t, t′). (2.36)

The greater and lesser components are anti-hermitian and satisfy

G>(t, t′)∗ = −G>(t′, t) (2.37)

G<(t, t′)∗ = −G<(t′, t). (2.38)
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The right-mixing and left-mixing components are related by

Ge(t, τ)∗ = −ξGd(β − τ, t) (2.39)

where ξ is +1 (−1) for bosons (fermions) and τ = it is the imaginary time. Finally, the
Matsubara component satisfies

GM(τ)∗ = GM(τ) (2.40)

GM(τ, τ ′) = GM(τ − τ ′) (2.41)

GM(τ) = ξGM(τ + β) (2.42)

where we define GM = −iG|| in order to match the usual imaginary time conventions.
Using these symmetries we can specify the full Green’s function by the reduced set of
components {G>, G<, Gd, GM}. These components can be defined by the values of the
Green’s function over the physical time domain

D(C̃) = {(t, t′) | 0| � t′ � tmax
− , t′+ � t � t′−, } (2.43)

where tmax
− is the first point on C− and corresponds to the maximum physical time.

In order to numerically represent two-time objects such as the Green’s function, we
introduce a uniform discretization of real and imaginary time: tn = n∆t, n = 0, . . . , Nt

and τn = n∆τ, n = 0, . . . , Nτ , where ∆t = tmax/Nt, and ∆τ = β/Nτ . Note, the number
real (imaginary) discretization points is Nt + 1 (Nτ + 1). This can be thought of as a
discretization of each branch of the contour, so that the total contour in the three branch
case has 2Nt +Nτ + 3 points. Figure 2.5 displays a representation of a discretized Green’s
function on the three branch twisted contour with Nt = Nτ = 2. The colored region
shows the physical time domain and the Keldysh components necessary to fully specify
the Green’s function. Note we only need half of the ++ and −− blocks because of the
anti-hermitian symmetry of the greater and lesser components.
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G>

GMGd

G<C+

C|

C−

C− C| C+

t

t′

G(t, t′)

Figure 2.5: Illustration of Green’s function G(t, t′) on the twisted contour. Each color
shows a Keldysh component of the Green’s function. The colored region shows physical
time domain.

The Spectral Function

In addition to the components described above, we also define the retarded Green’s function

GR(t, t′) = Θ(t, t′) [G>(t, t′)−G<(t, t′)] . (2.44)

In equilibrium the retarded Green’s function is time shift invariant [GR(t, t′) = GR(t− t′)]
and can be used to define the spectral function

A(ω) = − 1

π
ImGR(ω) = − 1

π
Im
∫

dt eiωtGR(t). (2.45)

Causality of the retarded Green’s function implies that the spectral function is non-negative,
and using the Lehmann representation one can show that the spectral function obeys the
sum rule

∫
dω A(ω) = 1 [43]. In equilibrium, the entire Green’s function is defined by the
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spectral function via

G(t, t′) = −i
∫

dω e−iω(t−t′)A(ω) [ΘC(t, t
′)− f(ω, β)] (2.46)

where f(ω, β) = 1/
(
eβω + 1

)
is the Fermi function and β = 1/T is the inverse temperature

[30]. Physically, the spectral function A(ω) describes the density of single-particle excita-
tions with energy ω, and is often referred to as the density of states (DOS). The spectral
function is an important physical observables and can be experimentally measured using a
variety of techniques such as scanning tunneling microscopy (STM) [22] and angle-resolved
photoemission spectroscopy (ARPES) [44].

Out of equilibrium the definition and meaning of the spectral function become more
complicated (positivity may be violated for example) [45]. In this thesis we make use of
the auxiliary lead formalism [46–48] to define a time-dependent spectral function which
agrees with the equilibrium spectral function in steady state.

Causal and Contour Causal Slices

1
2

3
4

C+

C|

C−

C− C| C+

t

t′

G(t, t′)

1
2
3
4
5
6
7
8
9

C+

C|

C−

C− C| C+

t

t′

P (t, t′)

Figure 2.6: Causal (left) and contour causal (right) slices of the time domain of two time
contour object. Each color corresponds to a single slice. The circled number indicates the
order of each slice.

In addition to the symmetries discussed above, the Green’s function G is also causal.
This means that a Green’s function element G(t, t′) only depends on the time evolution
operator U(t2, t1) for t1, t2 < max(t, t′). One can see this by looking at figure 2.4 and
noticing that all evolution past the maximum physical time of the Green’s function
operators will cancel. When computing the Green’s function and other causal objects it is
advantageous to use this structure. We can do this by computing the Green’s function

14



in a series of slices where each slice extends the maximum physical time of the Green’s
function by one step ∆t. This corresponds to iterating over the time domain D column by
column moving from right to left. The left panel of figure 2.6 shows the causal slices of a
Green’s function.

Another class of objects that we will deal with in this thesis are propagators which
are matrix elements of the time evolution operator U(t, t′). We describe these objects
as “contour causal” because they depend on the time evolution operator U(t2, t1) for
t � t2 � t1 � t′ on the contour. Note that this is more restrictive than simply being
causal. Contour causal objects P (t, t′) depend only on the time evolution between t′ and
t on the contour, whereas causal objects G(t, t′) depend on the time evolution over the
whole contour up to the physical time max(t, t′). When computing contour causal objects
it is also advantageous to use this special structure. We can do this by computing the
propagator in a series of slices where each slice extends the length of the segment (t, t′) by
one step ∆t. This corresponds to iterating over the time domain D diagonal by diagonal.
The right panel of figure 2.6 shows the contour causal slices of a propagator.
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CHAPTER III

The Hybridization Expansion

In this chapter, we review hybridization expansion techniques for the single-impurity
Anderson model (SIAM) out of equilibrium. The hybridization expansion is a perturbation
theory in the tunneling Hamiltonian ĤT around the disconnected limit Ĥ0 ≡ Ĥloc + Ĥbath

where the impurity is decoupled from the bath. We begin by briefly reviewing the historical
development of the hybridization expansion. We then derive the bare expansion on a
general contour [49–52]. Following this, we derive nonequilibrium versions [53] of the
non-crossing approximation (NCA) [9, 10] and one-crossing approximation (OCA) [54]
methods. Finally, we introduce the Inchworm method [31, 55].

3.1 Historical Development

The Anderson model was introduced in 1961 to describe the physics of dilute alloys
containing magnetic impurities embedded in a non-magnetic host [4]. Solution of the
Anderson model was—and continues to be—a major motivation for the development of
hybridization expansion techniques. One of the first applications of the hybridization
expansion was a calculation of the magnetic susceptibility of the Anderson model to
fourth order in HT [56]. This approach was enhanced by the introduction of the non-
crossing approximation (NCA) which was used to resum an infinite class of terms in the
hybridization expansion [9]. The NCA approach was further developed throughout the
1970s and 1980s by a number of authors [9, 10, 57–62]. A particularly notable development
was the introduction of the pseudo-particle representation by Coleman in 1984 [61] which
is often used in the modern literature (see for example [53]). For a detailed review of the
early development of the hybridization expansion see [10].

NCA is a useful technique which has been widely applied, but suffers from some
significant deficiencies, notably a failure to reproduce the Fermi liquid properties of the
Anderson model at low temperatures [63, 64]. Additionally, NCA was typically defined only
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in the strong interaction (U →∞) limit of the Anderson model. In order to address these
deficiencies in NCA, the one-crossing approximation (OCA) [54] and symmetrized finite-U
NCA (SUNCA) [65] were introduced, which resum a larger set of diagrams and more
accurately describes the Anderson model at finite interaction strength U . OCA corrects
the most severe problems of NCA and provides reasonable results for many problems,
particularly at large U [66, 67]. However, OCA is still an approximate method and error
estimation is not straightforward.

The next step in the development of the hybridization expansion came with the introduc-
tion of a continuous-time quantum Monte Carlo (CT-QMC) method based stochastically
summing the hybridization expansion to all orders [11, 68, 69]. This technique, known
as the continuous-time hybridization expansion (CT-HYB), has been very successful in
equilibrium, and several mature implementations are available [70–72]. Because CT-HYB
sums all hybridization diagrams, it is numerically exact asymptotically as the number of
Monte Carlo measurements goes to infinity. We call CT-HYB a “bare” algorithm because
it directly expands around the disconnected limit HT = 0. Later, “bold” methods were
introduced which take the NCA/OCA solutions as a starting point instead [73].

So far, all the techniques we have reviewed have been for equilibrium problems. One of
the first applications of the hybridization expansion to nonequilibrium problems was in [74],
in which the authors introduce a nonequilibrium version of NCA in order to investigate
the timescale associated with building up the Kondo effect. Later, nonequilibrium versions
of NCA, OCA, and the next order extension, the two-crossing approximation (2CA), were
introduced and benchmarked [53]. The authors found that these methods were quite
successful in describing the Mott insulating phase of the Hubbard model on the Bethe
lattice within DMFT, with 2CA achieving almost quantitative agreement with numerically
exact QMC methods.

Around the same time, the CT-HYB method was applied to nonequilibrium problems
on the two branch [49–51] and three branch [52] contour. Unfortunately the nonequilibrium
CT-HYB method was only able to reach very short times due to a severe dynamical sign
problem stemming from the complex exponential terms associated with propagation in
real time. This problem was partially addressed by applying bold methods based on an
expansion around the NCA/OCA solution to the nonequilibrium case [75, 76]. Initially,
these methods were only applicable to single time quantities, e.g. the density, but were
later extended in order to allow calculation of Green’s functions and spectral functions [47,
77].

Although they offered improvements over the bare CT-HYB method, these bold
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methods based on expansion around NCA/OCA did not fully overcome the dynamical
sign problem encountered in nonequilibrium simulations. This spurred the development of
the inchworm method based on a new bold resummation which successfully overcame the
dynamical sign problem [55]. The initial inchworm method was able to compute single time
observables for the Anderson model on the two branch contour. This was later generalized
to computing Green’s functions for the Anderson model on the three branch contour [31].
The inchworm method has also been successfully applied to the spin-boson model [78, 79],
and multi-orbital impurity problems in equilibrium [80].

Several algorithmic improvements to the original inchworm method have been intro-
duced. As we will see, a major cost of the inchworm method is summing over hybridization
configurations, since the number of valid configurations grows factorially with expansion
order. A fast algorithm based on the inclusion-exclusion principle has been developed
which reduces asymptotic scaling of this summation from factorial to exponential [81].
Additionally, an improved time stepping scheme has recently been implemented [82].
Currently, the inchworm method is the most successful numerically exact approach to
the hybridization expansion for nonequilibrium problems. There are also complementary
approaches based on expansion in the interaction U [83–85].

3.2 The Bare Expansion

The local Hamiltonian for the single impurity Anderson model (SIAM) is given by

Ĥloc =
∑
σ

εdd̂
†
σd̂σ + Un̂↑n̂↓ (3.1)

where d̂†σ (d̂σ) creates (annihilates) electrons localized on the impurity with spin σ, n̂σ =

d̂†σd̂σ is the impurity number operator, εd is the single-particle energy, and U is the Coulomb
interaction between electrons on the impurity. The impurity Hilbert space is spanned by
the four states

|0〉 (3.2)

d̂†↑ |0〉 = |↑〉 (3.3)

d̂†↓ |0〉 = |↓〉 (3.4)

d̂†↑d̂
†
↓ |0〉 = |↑↓〉 (3.5)
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which we refer to as to empty, spin up, spin down, and doubly occupied. Throughout this
thesis we will always work within this occupation number basis unless otherwise noted.
The bath Hamiltonian is given by

Ĥbath =
∑
kσ

εkσ ĉ
†
kσ ĉkσ (3.6)

where ĉ†kσ (ĉkσ) creates (annihilates) bath electrons with quasimomentum k and spin σ,
and εkσ describes the bath dispersion. The tunneling Hamiltonian is given by

ĤT =
∑
kσ

(
Vkĉ†kσd̂σ + V

∗
k d̂

†
σ ĉkσ

)
(3.7)

where Vk is the tunneling matrix element describing the coupling between the impurity
and the bath.

Traditionally, the hybridization expansion is developed for the partition function
Z = Tr

[
TC
{
e−i

∫
C dzH(z)

}]
and observables are calculated from partition function configu-

rations [11, 68]. Instead, we will develop an expansion for the bold propagators

Pα(t, t
′) = −iξθC(t′,t)

α Trc
[
〈α|TC̃

{
exp

(
−i
∫ t

t′
dzĤ(z)

)}
|α〉
]

(3.8)

which represent the time evolution between t′ and t on the twisted contour projected onto
a single impurity state |α〉 ∈ {|0〉 , |↑〉 , |↓〉 , |↑↓〉}. The integral should be understood as
an integral along the twisted contour C̃. The ξ factors are given by ξα = 〈α|ξ̂|α〉 where
ξ̂ = (−1)N̂ = (−1)n̂↑+n̂↓ . These factors at first appear somewhat obscure, but we will see
that they account for a sign factor that comes from working on the twisted contour. They
can also be understood from the pseudo-particle perspective where they come from the
fermionic/bosonic statistics of the particles associated with each state |α〉 [53, 61]. Note
the Heaviside function θC(t

′, t), is defined with respect to ordering on C not the twisted
contour C̃, and indicates that we pick up the sign factor ξα when the propagator winds
around 0+ on the twisted contour, e.g. in Pα(t+, t−). We can think of this as coming from
an insertion of the operator ξ̂ at 0+ whenever t � 0+ � t′ on the twisted contour. Note ξ̂

anti-commutes with d̂ and d̂† and commutes with Ĥloc.
The impurity populations, i.e., the diagonal elements of the impurity density matrix

ρα(t), which describe the probability of finding the impurity in state |α〉 can be expressed
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in terms of the propagators

ρα(t) =
1

Z
iξαPα(t+, t−) (3.9)

where the partition function is given by

Z = i
∑
α

ξαPα(t+, t−) (3.10)

which is fixed by the condition that the populations sum to unity. The partition function
is time-independent due to the unitarity of the evolution operator and therefore can be
calculated as Z = i

∑
α ξαPα(0+, 0−). In practical calculations, the deviation of

∑
α ρα(t)

from unity provides a useful check on the numerical error.
To begin, we write the Hamiltonian for the system as Ĥ = Ĥ0 + ĤT where Ĥ0 =

Ĥloc+Ĥbath is the Hamiltonian in the limit where the impurity is disconnected from the bath.
We write the tunneling Hamiltonian as ĤT =

∑
σ V̂σ + V̂ †

σ , and refer to V̂σ =
∑

k Vkĉ
†
kσd̂σ

and its conjugate V̂ †
σ as the annihilation and creation hybridization vertices. Using the

contour formalism, the propagators can be expressed

Pα(t, t
′) = −iξθC(t′,t)

α Trc
[
〈α|TC̃

{
e−i

∫ t
t′ dzĤ(z)

}
|α〉
]

(3.11)

= −iξθC(t′,t)
α Trc

[
〈α|TC̃

{
e−i

∫ t
t′ dzĤ0(z)e−i

∫ t
t′ dzĤT (z)

}
|α〉
]

(3.12)

= −iξθC(t′,t)
α

∑
n

∑
Tn

(−i)2n
∫ t

t′
dz2n

∫ z2n

t′
dz2n−1 . . .

∫ z2

t′
dz1

Trc
[
〈α|TC̃

{
e−i

∫ t
t′ dzĤ0(z)v̂(2n) . . . v̂(1)

}
|α〉
] (3.13)

where v̂(i) are insertions of the vertices, and we sum over all topologies Tn which specify
the identity of each vertex insertion, i.e. its spin σi and whether it is an annihilation
vertex V̂σi

(zi) or a creation vertex V̂ †
σi
(zi). We define the topologies Tn specifically as

the set of vertex insertion orders which return the bath to its original state so that the
trace is non-zero. Because of this, at order n we include 2n vertex insertions, since every
creation vertex must be paired with an annihilation vertex in order to return the bath
to its initial state. The contour times t � z2n � z2n−1 � . . . � z1 � t′ are ordered on the
twisted contour C̃. We refer to |α〉 as the “tip” state since we project onto |α〉 at the tip
of the contour (t−). Because the bath and impurity are completely decoupled in Ĥ0, the
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operators can be separated to obtain

Pα(t, t
′) =

− iξθC(t′,t)
α

∑
n

∑
Tn

(−i)2n
∫

S2n(t,t′)

dz 〈α|TC̃
{
e−i

∫ t
t′ dzĤloc(z)v̂d(2n) . . . v̂d(1)

}
|α〉 (3.14)

×Trc
[
TC̃
{
e−i

∫ t
t′ dzĤbath(z)v̂c(2n) . . . v̂c(1)

}]
where S2n(t, t′) is the 2n dimensional simplex of time ordered points on the twisted contour
t � z2n � z2n−1 � . . . � z1 � t′, and v̂d (v̂c) is the impurity (bath) part of the vertex.

We first turn our attention to evaluation of the local factor 〈α| . . . |α〉. Note, because
the impurity Hamiltonian Ĥloc is interacting, Wick’s theorem does not apply and we must
perform the evaluation directly. To do this, we introduce the local time evolution operator

Ûloc(zi+1, zi) = TC̃
{

exp
(
−i
∫ zi+1

zi

dzĤloc(z)

)}
(3.15)

which represents the evolution of the disconnected impurity. Using this, the local factor
may be written

〈α|TC̃
{
e−i

∫ t
t′ dzĤloc(z)v̂d(2n) . . . v̂d(1)

}
|α〉 (3.16)

= 〈α|Ûloc(2n+ 1, 2n)v̂d(2n) . . . Ûloc(2, 1)v̂d(1)Ûloc(1, 0)|α〉 (3.17)

=
∑

φ1,...,φ2n+1

〈α|Ûloc(2n+ 1, 2n)|φ2n+1〉 〈φ2n+1|v̂d(2n)|φ2n〉 . . . (3.18)

. . . Ûloc(2, 1) |φ2〉 〈φ2| v̂d(1) |φ1〉 〈φ1| Ûloc(1, 0) |α〉

where v̂d(i) can be either an impurity creation or annihilation operator depending on the
topology, Ûloc(n + 1, n) = Ûloc(zn+1, zn), and we have defined z2n+1 ≡ t, z0 ≡ t′. In the
last line, we insert a complete set of states around each vertex.

In order to evaluate this expression, we must evaluate matrix elements of the local
time evolution operator 〈α|Ûloc(zi+1, zi)|β〉. For the Anderson model, this is simplified
because Ĥloc is diagonal in the occupation number basis so we only need to deal with the
diagonal elements. We express the local evolution in terms of the bare atomic propagators
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which are defined analogously to the bold propagators

P (0)
α (t, t′) = −iξθC(t′,t)

α 〈α|Ûloc(t, t
′)|α〉 (3.19)

= −iξθC(t′,t)
α exp

(
−i
∫ t′

t

dzEα(z)

)
(3.20)

where Eα(z) are the eigenvalues of Ĥloc(z) which we refer to as the impurity levels. Note,
on the three branch contour, the propagator picks up a factor proportional to the density
matrix from the integration over the imaginary time branch when it winds around 0+.
However, on the two branch contour this factor must be inserted by hand, so we use the
modified definition

P (0)
α (t, t′) = −i (ξαρα(0))θC(t′,t) exp

(
−i
∫ t′

t

dzEα(z)

)
(3.21)

where ρα(0) is the initial impurity density matrix which we may choose freely. Using the
atomic propagators, the local factor may be written

〈α| . . . |α〉 =
∑

φ1,...,φ2n+1

〈α|Ûloc(2n+ 1, 2n)|φ2n+1〉 〈φ2n+1|v̂d(2n)|φ2n〉 . . . (3.22)

. . . Ûloc(2, 1) |φ2〉 〈φ2| v̂d(1) |φ1〉 〈φ1| Ûloc(1, 0) |α〉

=

(
2n∏
i=1

〈αi|v̂d(i)|αi−1〉

)
︸ ︷︷ ︸

=s1

2n∏
i=0

〈αi|Ûloc(i+ 1, i)|αi〉 (3.23)

= s1(i)
2n+1(−1)k+ξθC(t′,t)

α

2n∏
i=0

P (0)
αi

(zi+1, zi) (3.24)

where {α0, . . . , α2n} is the state sequence implied by the order of vertex insertions defined
by the topology Tn, s1 is the sign factor from acting with the local operators, and k+

counts the number of local operators on the plus branch. The sign factor (−1)k+ξθC(t′,t)
α

can be understood by anti-commuting the ξ̂ operator at 0+ to the left through all impurity
operators on C+ to act on the outer state 〈α|.

Because the local evolution is diagonal in the occupation number basis, in order for
a topology to have a non-zero contribution, the creation and annihilation operators for
each spin must come in alternating order with the identity of the first operator fixed
by the tip state. Because of this structure, a topology can be specified uniquely by
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a sequence of 2n spins Tn = {σ2n, . . . σ1} together with the tip state |α〉. Using this
language, the requirement that the operator sequence return the bath to its original
state becomes simply that the number of occurrences of each spin is even. At order
n = 1 the valid topologies are {↑↑, ↓↓}. The topology {↑↑} and tip state |0〉 imply an
operator sequence d↑d

†
↑, and state sequence |0〉 � |↑〉 � |0〉. The same topology with

the tip state |↑〉 imply the opposite operator sequence d†↑d↑ since the tip state holds a
spin up electron which must be annihilated first. At order n = 2 the valid topologies
are {↑↑↑↑, ↓↓↑↑, ↓↑↓↑, ↑↓↓↑, ↓↑↑↓, ↑↓↑↓, ↑↑↓↓, ↓↓↓↓}. Table 3.1 shows the operator and

T |α〉 operator sequence state sequence must be
↑↑ |0〉 d↑d

†
↑ |0〉 � |↑〉 � |0〉

↑↑ |↑〉 d†↑d↑ |↑〉 � |0〉 � |↓〉
↑↑ |↓〉 d↑d

†
↑ |↓〉 � |↑↓〉 � |↓〉

↑↑ |↑↓〉 d†↑d↑ |↑↓〉 � |↓〉 � |↑↓〉
↑↑↑↑ |0〉 d↑d

†
↑d↑d

†
↑ |0〉 � |↑〉 � |0〉 � |↑〉 � |0〉

↑↑↑↑ |↑〉 d†↑d↑d
†
↑d↑ |↑〉 � |0〉 � |↑〉 � |0〉 � |↑〉

↑↑↑↑ |↓〉 d↑d
†
↑d↑d

†
↑ |↓〉 � |↑↓〉 � |↓〉 � |↑↓〉 � |↓〉

↑↑↑↑ |↑↓〉 d†↑d↑d
†
↑d↑ |↑↓〉 � |↓〉 � |↑↓〉 � |↓〉 � |↑↓〉

↑↓↑↓ |0〉 d↑d↓d
†
↑d

†
↓ |0〉 � |↑〉 � |↑↓〉 � |↓〉 � |0〉

↑↓↑↓ |↑〉 d†↑d↓d↑d
†
↓ |↑〉 � |0〉 � |↓〉 � |↑↓〉 � |↑〉

↑↓↑↓ |↓〉 d↑d
†
↓d

†
↑d↓ |↓〉 � |↑↓〉 � |↑〉 � |0〉 � |↓〉

↑↓↑↓ |↑↓〉 d†↑d
†
↓d↑d↓ |↑↓〉 � |↓〉 � |0〉 � |↑〉 � |↑↓〉

Table 3.1: Examples of operator and state sequences for different topologies and tip
states.

state sequences implied for each tip state for several topologies.
Calculation of the sign factor s1 requires some care. For topology {↑↑} and tip state

|0〉 we have

s1 = 〈0|d̂↑| ↑〉 〈↑ |d̂†↑|0〉 =
∣∣∣〈0|d̂↑| ↑〉∣∣∣2 = 1 (3.25)

Generalizing from this, we see that for topologies {↑ . . . ↑↓ . . . ↓} there will be no sign
since every creation term comes with a corresponding annihilation term. To see how we
can get a sign factor consider the topology {↑↓↑↓}. For this topology and tip state |0〉 we
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have

s1 = 〈0|d̂↑| ↑〉︸ ︷︷ ︸
=+1

〈↑ |d̂↓| ↑↓〉︸ ︷︷ ︸
=−1

〈↑↓ |d̂†↑| ↓〉︸ ︷︷ ︸
=+1

〈↓ |d̂†↓|0〉︸ ︷︷ ︸
=+1

= −1 (3.26)

where the overall sign arises because the up and down operators cross. Generalizing from
this, we see that s1 is given by the sign of the permutation which permutes the operator
sequence so that all spin up operators are on the left, i.e. by the number of crossings
between operators of different spins.

To keep track of the topologies, it is useful to introduce a diagrammatic language. We
will represent a bare propagator P

(0)
α (t, t′) by two horizontal lines running from right to

left with the upper (lower) line showing the occupation of the spin up (down) level. A
solid (dashed) line indicates an occupied (empty) level. We refer to solid lines as segments
and dashed lines as anti-segments. A vertex insertion is represented by an open (closed)
dot for an annihilation (creation) vertex. The vertex flips the occupation of the level on
which it occurs. Figure 3.1 shows the diagrammatic representation of the bare atomic
propagators and hybridization vertices.

P
(0)
|0〉 =

P
(0)
|↑〉 =

P
(0)
|↓〉 =

P
(0)
|↑↓〉 =

V̂σ =

V̂ †
σ =

Figure 3.1: Left: Diagrammatic representation of the bare propagators P
(0)
α . Right:

Diagrammatic representation of the hybridization vertices V̂σ, V̂ †
σ .

|0〉 |↑〉 |0〉

V̂↑(z2) V̂ †
↑ (z1)

|α〉

t′C̃t

|↑↓〉 |↓〉 |↑↓〉

V̂ †
↑ (z2) V̂↑(z1)

|α〉

t′C̃t

Figure 3.2: Diagrammatic representation of a hybridization expansion term with topology
T = {↑↑} for tip state |0〉 (left) and |↑↓〉 (right).

Using this language we can graphically represent terms in the hybridization expansion.
Figure 3.2 shows the diagrammatic representation of a term with topology T = {↑↑}
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for tip states |0〉 and |↑↓〉. Twisted contour time runs from right to left. For the empty
tip state, the creation vertex precedes the annihilation vertex, while this is reversed for
the doubly occupied state. Figure 3.3 shows the diagrammatic representation of a more
complicated second order term with topology T = {↑↓↑↓} for tip state |0〉. Using this

|0〉 |↑〉 |↑↓〉 |↓〉 |0〉

V̂↑(z4) V̂ †
↑ (z2)V̂↓(z3) V̂ †

↓ (z1)

Figure 3.3: Diagrammatic representation of the second order hybridization expansion
term with topology T = {↑↓↑↓} for tip state |0〉.

diagrammatic language, we can enumerate all terms in the hybridization expansion for
Pα(t, t

′), by drawing all diagrams made up of insertions of the hybridization vertices such
that the diagram begins and ends in state |α〉. For now we don’t associate a concrete
value with each diagram since we still have to evaluate the bath contribution.

We now turn our attention to the evaluation of the bath factor which can be written as

Trc
[
TC̃
{
e−i

∫ t
t′ dzĤbath(z)v̂c(2n) . . . v̂c(1)

}]
(3.27)

= s2
∑
{ki}

∑
{
k′i
}Vk1 . . .VknV∗

k′1
. . .V∗

k′n
(3.28)

Trc
[
TC̃
{
e−i

∫ t
t′ dzĤbath(z)ĉ(n)ĉ†(n′) . . . ĉ(1)ĉ†(1′)

}]
= s1s2

∏
σ

∑
{ki}

∑
{
k′i
}Vk1 . . .Vkmσ

V∗
k′1
. . .V∗

k′mσ
(3.29)

Trc
[
TC̃
{
e−i

∫ t
t′ dzĤbath(z)ĉσ(mσ)ĉ

†
σ(m

′
σ) . . . ĉσ(1)ĉ

†
σ(1

′)
}]

where 2mσ is the number of vertices with spin σ, ĉσ(i) (ĉ†σ(i′)) refers to the ith annihilation
(creation) operator with spin σ, and s1 and s2 are sign factors. Note, we have used that
Ĥbath is diagonal in σ to factorize the expression by spin.

The sign factor s2 is the sign of the permutation which takes the operators from their
time ordered sequence to the alternating sequence ĉĉ† . . . ĉĉ†. Note each bath operator
is tied to an impurity operator, so like the impurity operators they must come in an
alternating sequence of creation/annihilation operators. If σ is occupied in the tip state
|α〉, i.e. if the line corresponding to spin σ begins with a segment, then the operator
sequence is already given by ĉĉ† . . . ĉĉ† and there is no additional sign. However if σ is not
occupied in the tip state, i.e. the line corresponding to spin σ begins with an anti-segment,
then the operator sequence is ĉ†ĉ . . . ĉ†ĉ and we pick up a sign (−1)mσ from permuting it.
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We can express this as

s2 =
∏
σ

(−1)mσ(1−〈α|n̂σ |α〉) =
∏
σ

sσ (3.30)

where n̂σ is the impurity number operator. This gives a convenient expression for s2 in
terms of just the tip state and the order of expansion for each spin.

The sign factor s1 is the sign of the permutation which permutes the operators so
that all the spin up operators occur to the left of the spin down operators so that the
expression can be factorized by spin. Note that this sign factor is exactly the same as the
sign factor s1 which appeared in the local part and these two terms will cancel. This can
be understood by noticing that the vertices v̂ contain two fermion operators and therefore
commute rather than anti-commute under the time ordering. Because of this, the overall
sign of the diagram should not be affected by permuting two vertices. However, because
we separate the bath and impurity operators, we get these sign factors which must cancel
each other out in the final expression. The conclusion of this analysis is that we can ignore
the signs generated by acting with the local operators provided we also ignore the sign
from factorizing the bath operators by spin. However, in a more general setting containing
for example off diagonal hybridizations, these signs cannot be neglected.

The bath is non-interacting so Wick’s theorem can be applied to evaluate the bath
correlators. To facilitate this, we introduce the bath hybridization function

∆σ(z, z
′) = −i

∑
k

|Vk|2 〈TC ĉkσ(z)ĉ†kσ(z
′)〉 (3.31)

which parameterizes the tunneling matrix elements as well as the bath dispersion. Note
that in this definition we use the contour ordering on C, rather than the twisted contour
ordering on C̃. We do this so that ∆σ(z, z

′) follows the usual convention. As we will see,
this choice results in some sign factors that need to be kept track of. By integrating out
the ĉ operators exactly using Wick’s theorem, the bath factor (equation 3.29) may be
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written as

s1s2
∏
σ

∑
{ki}

∑
{
k′i
}Vk1 . . .Vkmσ

V∗
k′1
. . .V∗

k′mσ
(3.32)

Trc
[
TC̃
{
e−i

∫ t
t′ dzĤbath(z)ĉσ(mσ)ĉ

†
σ(m

′
σ) . . . ĉσ(1)ĉ

†
σ(1

′)
}]

= s1s2s3
∏
σ

∑
x∈Smσ

sgn(x)
mσ∏
i=1

∑
ki,k′xi

VkiV∗
k′xi
〈TC ĉσ(i)ĉ†σ(x(i)′)〉

 (3.33)

= s1s2s3(i)
n
∏
σ

∑
x∈Smσ

(
sgn(x)

mσ∏
i=1

∆σ(z
σ
i , z

′σ
x(i))

)
(3.34)

= s1s2s3(i)
n
∏
σ

det∆σ (3.35)

where zσi , z′σj are the times corresponding to the ith annihilation and jth creation operator
on spin σ, ∆σ is an mσ ×mσ matrix with elements ∆ij = ∆σ(z

σ
i , z

′σ
j ), and s3 is a new

sign factor to take into account the fact that we use the regular contour ordering on C in
the definition of the hybridization function but the original correlator was ordered on C̃.
The sign factor s3 can be computed by counting the number of pairs (zi, z′i) which are out
of order on C relative to C̃. Note the difference between the regular and twisted contours
is that the plus branch comes at the beginning of the regular contour but at the end of
the twisted contour. For example z+ � z− on C̃ but z+ ≺ z− on C. From this we can
see that all pairs (zi, z′i) with one time on the plus branch will give a sign. Therefore the
total factor is given by s3 = (−1)k+ where k+ is the number of bath operators on the plus
branch. Note that this sign also emerged in our evaluation of the impurity trace due to
the ξ̂ factors in the bare atomic propagators. In this way, the ξ factors cancel the sign we
get from evaluating on the twisted contour.

Putting these results (equation 3.24 and equation 3.35) together we can express the
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propagator as

Pα(t, t
′) = −iξθC(t′,t)

α Trc
[
〈α|TC̃

{
exp

(
−i
∫ t

t′
dzĤ(z)

)}
|α〉
]

(3.36)

= −iξθC(t′,t)
α

∑
n

∑
Tn

(−i)2n
∫

S2n(t,t′)

dz (3.37)

(
s1(i)

2n+1(−1)k+ξθC(t′,t)
α

2n∏
i=0

P (0)
αi

(zi+1, zi)

)(
s1s2(−1)k+(i)n

∏
σ

det∆σ

)
(3.38)

=
∑
n

∑
Tn

∫
S2n(t,t′)

dz

(
s↑s↓i

n

2n∏
i=0

P (0)
αi

(zi+1, zi)

)
︸ ︷︷ ︸

wloc

(∏
σ

det∆σ

)
︸ ︷︷ ︸

whyb

(3.39)

=
∑
Cα

wloc(Cα)whyb(Cα) (3.40)

where we call Cα = {(t � z2n � . . . � z1 � t′), {σ2n . . . σ1}, |α〉} the configuration, and
sσ = (−1)mσ(1−〈α|n̂σ |α〉) is the only sign factor that we end up retaining. We interpret the
sum over configurations as a sum over all discrete topologies, and an integral over the
continuous variables z. The hybridization determinant can be written

whyb(Cα) =
∏
σ

det∆σ =
∏
σ

∑
x∈Smσ

sgn(x)
mσ∏
i=1

∆σ(z
σ
i , z

′σ
x(i)) (3.41)

=
∑

x↑∈Sm↑

∑
x↓∈Sm↓

∏
σ

(
sgn(xσ)

mσ∏
i=1

∆σ

(
zσi , z

′σ
xσ(i)

))
︸ ︷︷ ︸

w′
hyb

(3.42)

=
∑
D(Cα)

w′
hyb(D) (3.43)

where we call D = {x↑, x↓} the diagram, and sum over the m↑!×m↓! diagrams specifying
all possible matchings between creation and annihilation vertices for each spin. We write
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our final result as

Pα(t, t
′) =

∑
Cα

wloc(Cα, P (0))whyb(Cα,∆)

wloc(Cα, P (0)) = s↑s↓i
n

2n∏
i=0

P (0)
αi

(zi+1, zi), sσ = (−1)mσ(1−〈α|n̂σ |α〉)

whyb(Cα,∆) =
∑
D(Cα)

w′
hyb(D,∆)

w′
hyb(D,∆) =

∏
σ

(
sgn(xσ)

mσ∏
i=1

∆σ

(
zσi , z

′σ
xσ(i)

))
(3.44)

where 2mσ is the number of vertices with spin σ, z2n+1 ≡ t, z0 ≡ t′, and zσi , z′σj refer
to the ith creation jth annihilation vertex on spin σ (note the annihilation vertex V̂σ is
associated with a bath creation operator ĉ†).

With these results we can complete our diagrammatic language. A diagram has two
parts. The first is the local part, consisting of horizontal lines representing the occupation
of each spin, which has been introduced previously. The local factor wloc is given by the
product of the 2n+1 propagators for each intermediate state αi and the sign factor s↑s↓(i)n.
The second is the hybridization part, consisting of arcs running from each annihilation
vertex to the creation vertex specified by the permutations xσ. For each arc we associate
a factor of the hybridization function ∆σ(z

σ
i , z

′σ
x(i)). The hybridization factor is given by

the product of these hybridization functions and the sign of each permutation x↑, x↓.
To get a feel for these diagram rules it is helpful to consider several examples. Figure

|0〉 |↑〉 |0〉

V̂↑(t2) V̂ †
↑ (t1)

|α〉

t′C̃t

C = {(t ≥ t2 ≥ t1 ≥ t′) , (↑↑) , |0〉}
whyb = ∆↑(t1, t2)

wloc = (−1)(i)P
(0)
|0〉 (t, t2)P

(0)
|↑〉 (t2, t1)P

(0)
|0〉 (t1, t

′)

|↑↓〉 |↓〉 |↑↓〉

V̂ †
↑ (t2) V̂↑(t1)

|α〉

t′C̃t

C = {(t ≥ t2 ≥ t1 ≥ t′) , (↑↑) , |↑↓〉}
whyb = ∆↑(t2, t1)

wloc = (i)P
(0)
|↑↓〉(t, t2)P

(0)
|↓〉 (t2, t1)P

(0)
|↑↓〉(t1, t

′)

Figure 3.4: Diagrammatic representation of a hybridization expansion term with topology
T = {↑↑} for tip state |0〉 (left) and |↑↓〉 (right).

3.4 shows two first order hybridization diagrams along with the associated values. Note for
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each configuration there is only one diagram, because at order 1 there is only one possible
matching between vertices. Figure 3.5 shows the diagrams and associated values for a more

|0〉

t

|↑〉

t4

|0〉

t3

|↑〉

t2

|0〉

t1 t′

|0〉

t

|↑〉

t4

|0〉

t3

|↑〉

t2

|0〉

t1 t′

+

C = {(t ≥ t4 ≥ t3 ≥ t2 ≥ t1 ≥ t′) , (↑↑↑↑) , |0〉}
whyb = [∆↑(t1, t2)∆↑(t3, t4)−∆↑(t1, t4)∆↑(t3, t2)] = det∆↑

wloc = (−1)2(i)2P
(0)
|0〉 (t, t4)P

(0)
|↑〉 (t4, t3)P

(0)
|0〉 (t3, t2)P

(0)
|↑〉 (t2, t1)P

(0)
|0〉 (t1, t

′)

Figure 3.5: Diagrammatic representation of a hybridization expansion term with topology
T = {↑↑↑↑} for tip state |0〉.

complicated second order configuration. Note here we have two diagrams corresponding
to the two possible matchings of vertices. The (−1)2 factor in wloc comes because the spin
up line begins with an anti-segment and holds two vertex pairs, or equivalently, because in
the diagram corresponding to the identity permutation both hybridization lines points
from left to right against the time ordering. Figure 3.6 shows the diagram and associated
values for another second order configuration. For this configuration there is again only
one diagram even though we are at second order because there is only one vertex pair for
each spin. We again pick up a (−1)2 prefactor in wloc because both lines begin with an
anti-segment and hold one vertex pair. Note, there is no sign from the action of the local
operators (recall 〈↑ |d̂↓| ↑↓〉 = −1), and also no sign from factorizing the hybridization
term by spin, because these signs exactly cancel each other. Figure 3.7 shows the diagrams
and associated values for a third order configuration. In this case, since all vertices have
the same spin there are 3! = 6 diagrams which contribute.
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|0〉 |↑〉 |↑↓〉 |↓〉 |0〉

t t′t4 t2t3 t1

C = {(t ≥ t4 ≥ t3 ≥ t2 ≥ t1 ≥ t′) , (↑↓↑↓) , |0〉}
whyb = ∆↑(t2, t4)∆↓(t1, t3)

wloc = (−1)2(i)2P
(0)
|0〉 (t, t4)P

(0)
|↑〉 (t4, t3)P

(0)
|↑↓〉(t3, t2)P

(0)
|↓〉 (t2, t1)P

(0)
|0〉 (t1, t

′)

Figure 3.6: Diagrammatic representation of a hybridization expansion term with topology
T = {↑↓↑↓} for tip state |0〉.
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+

(123)

t t6 t5 t4 t3 t2 t1 t′

−

(213)

t t6 t5 t4 t3 t2 t1 t′

+

(312)

t t6 t5 t4 t3 t2 t1 t′

−

(132)

t t6 t5 t4 t3 t2 t1 t′

+

(231)

t t6 t5 t4 t3 t2 t1 t′

−

(321)

t t6 t5 t4 t3 t2 t1 t′

C = {(t ≥ t6 ≥ t5 ≥ t4 ≥ t3 ≥ t2 ≥ t1 ≥ t′) , (↑↑↑↑↑↑) , |0〉}

whyb =

∣∣∣∣∣∣
∆↑(t1, t2) ∆↑(t1, t4) ∆↑(t1, t6)
∆↑(t3, t2) ∆↑(t3, t4) ∆↑(t3, t6)
∆↑(t5, t2) ∆↑(t5, t4) ∆↑(t5, t6)

∣∣∣∣∣∣ = det∆↑

wloc = (−1)3(i)3P
(0)
|0〉 (t, t6)P

(0)
|↑〉 (t6, t5)P

(0)
|0〉 (t5, t4)P

(0)
|↑〉 (t4, t3)P

(0)
|0〉 (t3, t2)P

(0)
|↑〉 (t2, t1)P

(0)
|0〉 (t1, t

′)

Figure 3.7: Diagrammatic representation of a hybridization expansion term with topology
T = {↑↑↑↑↑↑} for tip state |0〉. Label in parenthesis shows the permutation corresponding
to each diagram.
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So far the diagrams we have presented have been in one-to-one correspondence with
single terms in equation 3.44. It is useful to also introduce a compressed diagrammatic
language in which we leave the state sequence and spins of the hybridization lines implicit.
Figure 3.8 shows the bare expansion for the propagator expressed using this compressed

P (0) =

P =

= +

+ + +

+ + + +

+ + +

+ + + +

+ + · · ·

Figure 3.8: Illustration of the bare expansion for the propagator expressed using the
compressed diagrammatic language. Thick (thin) lines represent bold (bare) propagators.
The state sequence and spins of the hybridization lines are left implicit.

language. In order to translate a compressed diagram to a set of full diagrams we must
specify a tip state |α〉 and sum over all possible spin assignments to the hybridization
lines. Although less explicit than the full diagrams, these compressed diagrams show the
crossings between hybridization lines which as we will see are extremely important.

We refer to the expansion shown in figure 3.8 as the “bare” expansion because all local
propagators on the right hand side are bare atomic propagators P

(0)
α , i.e. all lines in the

diagrams are thin. We now turn our attention to “bold” methods in which we use bold
propagators on the right hand side in order to efficiently reach much higher orders.

3.3 Semi-analytic Approximations

Similarly to regular Feynman diagrams in the interaction expansion, diagrams in the
hybridization expansion can also be classified by their degree of reducibility. A one-particle
irreducible (1PI) diagram cannot be separated into two disconnected pieces by cutting
a single propagator line. Figure 3.9 shows a reducible and a 1PI diagram. Note, 1PI
diagrams cannot have external legs, i.e. propagators that extend beyond the times of the
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Reducible 1PI

Figure 3.9: Diagrammatic representation of a reducible diagram which can be separated
by a single cut (left) and a 1PI diagram (right).

hybridization vertices. We define the self-energy for the impurity propagators as the sum
over all 1PI diagrams

Σα =
∑
Cα

wloc(Cα, P (0))
∑

D(Cα)∈1PI

w′
hyb(D,∆). (3.45)

A bold propagator is then given by all possible insertions of the self-energy linked
by bare propagators. Figure 3.10 shows diagrammatically how this leads to the Dyson

P =

= + Σ + Σ Σ + . . .

= + Σ

= P (0) + P (0) � Σ � P

Figure 3.10: Diagrammatic representation of the Dyson equation. The thick (thin) line
represents a bold (bare) propagator.

equation

Pα(t, t
′) = P (0)

α (t, t′) +

∫ t

t′
dt2

∫ t2

t′
dt1P

(0)
α (t, t2)Σα(t2, t1)Pα(t1, t

′) (3.46)

= P (0)
α (t, t′) +

[
P (0)
α � Σα � Pα

]
(t, t′) (3.47)

where � denotes the contour causal convolution

[A � B] (t, t′) =

∫ t

t′
dt̄ A(t, t̄)B(t̄, t′). (3.48)

We call this “contour causal” because the integration runs between t′ and t rather than
over the whole contour. This reflects the structure of the propagators which depend only
on the evolution between t′ and t on the contour and stands in contrast to the “causal”
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structure of objects such as the Green’s function G(t, t′) which depend on the evolution
on the whole contour up to the maximum physical time of their arguments. The contour
causal structure of the propagators can be seen from the bounds of integration in their
definition (see equation 3.8) and is key to designing efficient algorithms as we will see in
chapter 4.

The Dyson equation for the propagators leads us to seek useful approximations to the
self-energy. An important class of such schemes is given by the M -crossing approximations
[53]. These are based on truncation of the skeleton series for the self-energy, in which the
bare propagators are replaced by bold propagators and we only include skeleton diagrams
which contain no internal self-energy insertions. The skeleton diagrams of order M are
the diagrams containing M hybridization line crossings, since hybridization lines with no
crossings are already included in the bold propagators.

The lowest order truncation of the skeleton series for the self-energy gives the non-
crossing approximation (NCA). Figure 3.11 shows the NCA self-energy diagrams. Their

+ΣNCA
|0〉 =

+ΣNCA
|↑〉 =

+ΣNCA
|↓〉 =

+ΣNCA
|↑↓〉 =

Figure 3.11: NCA self-energy diagrams. The propagators are bold.

values are given by

ΣNCA
|0〉 (t, t′) = i

(
−P|↑〉(t, t

′)∆↑(t
′, t)− P|↓〉(t, t

′)∆↓(t
′, t)
)

(3.49)

ΣNCA
|↑〉 (t, t′) = i

(
+P|0〉(t, t

′)∆↑(t, t
′)− P|↑↓〉(t, t

′)∆↓(t
′, t)
)

(3.50)

ΣNCA
|↓〉 (t, t′) = i

(
−P|↑↓〉(t, t

′)∆↑(t
′, t) + P|0〉(t, t

′)∆↓(t, t
′)
)

(3.51)

ΣNCA
|↑↓〉 (t, t′) = i

(
+P|↓〉(t, t

′)∆↑(t, t) + P|↑〉(t, t
′)∆↓(t, t

′)
)

(3.52)
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which follow from the same rules given in equation 3.44, with the bare propagator replaced
by the bold propagator. The next order truncation gives the one-crossing approximation

(OCA). Figure 3.12 shows the OCA self-energy diagrams. Note we do not include

+ΣOCA
|0〉 =

+ΣOCA
|↑〉 =

+ΣOCA
|↓〉 =

+ΣOCA
|↑↓〉 =

Figure 3.12: OCA self-energy diagrams. The propagators are bold.

because although it is 1PI, it is not a skeleton diagram because it contains a self-energy
insertion which is already included in the bold propagator. The values of these diagrams
are given by

ΣOCA
|0〉 (t, t′) = (i)2(−1)2

∫ t

t′
dt2

∫ t2

t′
dt1P|↑〉(t, t2)P|↑↓〉(t2, t1)P|↓〉(t1, t

′)∆↑(t1, t)∆↓(t
′, t2)

+ (i)2(−1)2
∫ t

t′
dt2

∫ t2

t′
dt1P|↓〉(t, t2)P|↑↓〉(t2, t1)P|↑〉(t1, t

′)∆↑(t
′, t2)∆↓(t1, t)

(3.53)
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ΣOCA
|↑〉 (t, t′) = (i)2(−1)

∫ t

t′
dt2

∫ t2

t′
dt1P|0〉(t, t2)P|↓〉(t2, t1)P|↑↓〉(t1, t

′)∆↑(t, t1)∆↓(t
′, t2)

+ (i)2(−1)
∫ t

t′
dt2

∫ t2

t′
dt1P|↑↓〉(t, t2)P|↓〉(t2, t1)P|0〉(t1, t

′)∆↑(t2, t
′)∆↓(t1, t)

(3.54)

ΣOCA
|↓〉 (t, t′) = (i)2(−1)

∫ t

t′
dt2

∫ t2

t′
dt1P|↑↓〉(t, t2)P|↑〉(t2, t1)P|0〉(t1, t

′)∆↑(t1, t)∆↓(t2, t
′)

+ (i)2(−1)
∫ t

t′
dt2

∫ t2

t′
dt1P|0〉(t, t2)P|↑〉(t2, t1)P|↑↓〉(t1, t

′)∆↑(t
′, t2)∆↓(t, t1)

(3.55)

ΣOCA
|↑↓〉 (t, t′) = (i)2

∫ t

t′
dt2

∫ t2

t′
dt1P|↓〉(t, t2)P|0〉(t2, t1)P|↑〉(t1, t

′)∆↑(t, t1)∆↓(t2, t
′)

+ (i)2
∫ t

t′
dt2

∫ t2

t′
dt1P|↑〉(t, t2)P|0〉(t2, t1)P|↓〉(t1, t

′)∆↑(t2, t
′)∆↓(t, t1) (3.56)

where we integrate over the internal vertices, and use the bold propagator P . The total
self-energy within OCA also includes the NCA contribution: Σ = ΣNCA + ΣOCA.

These truncations of the skeleton series for the self-energy give us an equation for the
self-energy Σ [P ] in terms of the bold propagator P . This must be solved simultaneously
with the Dyson equation P = P0 + P0 � Σ � P which relates the bold propagator with
the self-energy. By solving these equations simultaneously we sum an infinite class of
diagrams consisting of all diagrams with M or fewer crossings where M in the order of
truncation of the skeleton series. Figure 3.13 shows an example of a high order diagram

Figure 3.13: High order contribution to the bold propagator included within NCA.

which is included within NCA.
A solution of these equations can be obtained iteratively. We start with an initial

guess for the bold propagator P̃ , typically the bare propagator P (0). Using this guess we
compute our M -crossing approximation to the self-energy Σ[P̃ ]. We then plug this into
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the Dyson equation to obtain a new bold propagator P̃ ′ = P (0) + P (0) � Σ[P̃ ] � P̃ . We
repeat this iteration until P̃ ′ = P̃ indicating that we have reached a self-consistent solution
of the Dyson equation with our chosen self-energy approximation.

These M -crossing approximations, particularly the two lowest order truncations, NCA
and OCA, are extremely useful approximate methods which are not too difficult to
implement and not too computationally expensive. In appendix A we show an example
implementation of the NCA. However, the requirement that we solve a self-consistency is
somewhat inconvenient. In the next section, we will introduce the inchworm expansion
which provides an alternative scheme for summing the same set of diagrams without
solving a self-consistency.

3.4 The Inchworm Expansion

In the bare expansion (figure 3.8), we express the bold propagator P (t, t′) in terms of a sum
over bare diagrams containing the bare propagators {P (0)(t2, t1) | t � t2 � t1 � t′}. The
core idea of the inchworm expansion, is to reduce the number of diagrams we have to sum
over by replacing a subset of these bare propagators by bold propagators. Specifically, we
choose a time t � ts � t′ which we call the splitting time, and replace all bare propagators
which begin and end before the splitting time with bold propagators. The local time
evolution is then given by the split propagator

P s
α(t, t

′; ts) =


Pα(t, t

′) ts � t � t′

P
(0)
α (t, ts)Pα(ts, t

′) t � ts � t′

P
(0)
α (t, t′) t � t′ � ts

(3.57)

=
t ts t′

(3.58)

which describes evolution with the bold propagator up to time ts followed by evolution with
the bare propagator, and has the simple diagrammatic representation shown above. By
rewriting the diagrammatic sum for the bold propagator in terms of the split propagator,
we greatly reduce the number of diagrams which contribute. We call this the inchworm
expansion, and call diagrams which contribute “inchworm proper” diagrams [55]. We
typically choose ts = t−∆t where ∆t is small, and call the process of extending the bold
propagator by computing P (ts +∆t, t′) “inching” or taking an inchworm step. A useful
way to think about inching is as a process of gluing a short bare propagator onto the end
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of a bold propagator in order to extend it.
The inchworm proper diagrams are most easily defined negatively as diagrams which

do not contain disconnected clusters of hybridization lines in the bold region (ts, t
′), since

these are already counted as part of the split propagator. Figure 3.14 shows the inchworm

P (t, t′) =

= + + +

+ + + +

+ + + +

+ · · ·

Figure 3.14: Illustration of the inchworm expansion for the bold propagator. The
diagrams in the bottom row are not inchworm proper because they contain disconnected
hybridization lines (marked in red) which are already included in the bold part of the split
propagator.

expansion for the bold propagator. Diagrams which are not inchworm proper are crossed
out and the disconnected hybridization lines are marked in red.

The inchworm proper diagrams can be defined formally in terms of the hybridization
graph G(C,D) in which each node is a hybridization line, and two nodes are joined by
an edge if their hybridization lines cross. We say a node is “connected” if it represents
a hybridization line which begins or ends in the connected region (t, ts). A diagram is
inchworm proper if all connected components of G contain at least one connected node.
This can be tested by traversing the graph starting from each connected node and checking
that all nodes are visited. Algorithm 3.1 shows a procedure for computing if a diagram
is inchworm proper using depth first traversal of G. Figure 3.15 shows several inchworm
proper and improper diagrams along with their hybridization graphs.

Within the inchworm expansion, the bold propagator is given by the sum over all
inchworm proper diagrams

Pα(t, t
′) =

∑
Cα

wloc(Cα, P s)
∑

D(Cα)∈inch proper

w′
hyb(D,∆) (3.59)

where wloc(Cα, P s) and w′
hyb(D,∆) are defined by the same rules given in equation 3.44

with the local part evaluated using the split propagator P s. Note unlike the bare expansion,
the inchworm expansion requires prior knowledge of the bold propagators between t′ and
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inchworm proper

∆1

∆2 ∆1 ∆2G =

inchworm proper

∆1

∆2
∆3

∆1 ∆2

∆3
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inchworm proper

∆1∆2∆3

∆1 ∆2

∆3

G =

improper

∆1∆2 ∆1 ∆2G =

improper

∆3

∆1

∆2

∆1 ∆2

∆3

G =

inchworm proper

∆1 ∆2 ∆3

∆1 ∆2

∆3

G =

Figure 3.15: Illustration of the hybridization graph G(C,D) for six diagrams. Green
nodes represent hybridization lines ending in the connected region (t, ts) and are said to
be “connected”. Blue nodes represent hybridization lines which are part of a connected
component of G containing a connected node. Red nodes represent hybridization lines
which are not part of a connected component containing a connected node. The inchworm
proper diagrams are diagrams in which every connected component of G contains at least
one connected node.

ts in order to evaluate the split propagator. This generates a contour causal dependency
structure between the bold propagators which we will discuss in chapter 4.

In return for this additional complexity, the inchworm expansion dramatically reduces
the number of diagrams which need to be summed. This can be seen in figure 3.16 which
shows the inchworm proper diagrams for a configuration with topology T = {↑↑↑↑↑↑} and
one vertex in the connected region. Note, only one of the six bare diagrams is inchworm
proper. However, this reduction in the number of diagrams also comes with a cost. Because
we now are summing over only a subset of diagrams, the hybridization factor can no longer
be evaluated in terms of a single determinant. Instead we must explicitly sum over each
permutation, or else employ a more complicated fast summation scheme [81].

Although it is not immediately obvious, the inchworm expansion is related to the
M -crossing methods discussed in the previous section. Specifically, if we truncate the
inchworm expansion to order M , and consider the limit where ∆t = t− ts → 0, then this
scheme will reproduce the M -crossing approximation hierarchy (NCA, OCA, 2CA, etc.)
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+

(123)

t t6 t5 t4 t3 t2 t1 t′ts

−

(213)

t t6 t5 t4 t3 t2 t1 t′ts

+

(312)

t t6 t5 t4 t3 t2 t1 t′ts

−

(132)

t t6 t5 t4 t3 t2 t1 t′ts

+

(231)

t t6 t5 t4 t3 t2 t1 t′ts

−

(321)

t t6 t5 t4 t3 t2 t1 t′ts

C = {(t ≥ t6 ≥ t5 ≥ t4 ≥ t3 ≥ t2 ≥ t1 ≥ t′) , (↑↑↑↑↑↑) , |0〉} , t6 � ts � t5

whyb = ∆↑(t1, t4)∆↑(t5, t2)∆↑(t3, t6)

wloc = (−1)3(i)3P s
|0〉(t, t6)P

s
|↑〉(t6, t5)P

s
|0〉(t5, t4)P

s
|↑〉(t4, t3)P

s
|0〉(t3, t2)P

s
|↑〉(t2, t1)P

s
|0〉(t1, t

′)

Figure 3.16: Inchworm proper diagrams for a configuration with topology T = {↑↑↑↑↑↑}
and one vertex in the connected region. Disconnected hybridization lines are marked in
red. Only one out of the six bare diagrams is inchworm proper. The propagator lines
represent the split propagator P s.

[55]. To see this note that in the ∆t→ 0 limit there can only be one hybridization vertex
in the connected region. In this limit, the sum over inchworm proper diagrams of order
M is exactly a sum over M -crossing diagrams, because all hybridization lines must cross,
either directly or indirectly, with the one line touching the connected region. Figure 3.17
shows the order 1 and order 2 inchworm proper diagrams that contribute in the ∆t→ 0

limit. Note the correspondence with the self-energy diagrams discussed earlier (see figure
3.11, and 3.12). Assuming that the bold propagator up to ts is given by the M -crossing
approximation, taking an inchworm step with expansion order M to extend the propagator
will maintain this property.
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P|0〉(t, t
′) =

tst t

∆t → 0

order 0

+ + order 1

+ + order 2

Figure 3.17: Order 1 and order 2 inchworm proper diagrams contributing to P|0〉(t, t
′) in

the limit where ∆t = t− ts → 0. The propagator lines represent the split propagator P s.
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Algorithm 3.1: Inchworm proper diagram selector.
Input: A list L of pairs of starting and ending times for all hybridization lines

The splitting time ts
Output: A Boolean describing if the diagram is inchworm proper
Function is_inchworm_proper(L, ts)

initialize an empty stack S;
foreach li ∈ L do

if is_connected(li, ts) then
push li to S;
erase li from L;

end
end
while S is not empty do

pop l from top of S;
foreach li ∈ L do

if is_crossing(l, li) then
push li to S;
erase li from L;

end
end

end
return is_empty(L);

end
Function is_connected(l, ts)

/* l is connected if it ends in (t, ts) */
tf , ti ← l;
return tf � ts ;

end
Function is_crossing(li, lj)

a, b ← li ;
c, d ← lj;
return a � c � b � d or c � a � d � b;

end
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3.5 Green’s Functions

So far we have been concerned with calculation of the bold propagators Pα(t, t
′) which give

direct access to single-time impurity observables such as the density, magnetization, and
double occupancy. However, it is also desirable to be able to compute two-time correlators
such as the impurity Green’s function

Gσ(t, t
′) = −i 〈TC d̂σ(t)d̂†σ(t′)〉 (3.60)

which contains additional information about the system. Recall the Green’s function only
needs to be computed over the physical time domain (see figure 2.5) which is defined by
t′+ �C̃ t �C̃ t′−. On this time domain, the Green’s function can be expressed

Gσ(t, t
′) = −i 〈TC d̂σ(t)d̂†σ(t′)〉 (3.61)

= −i(−1)θC(t′,t) 1

Z
Tr
[
TC̃
{
e−i

∫
C̃ dzĤ(z)d̂σ(t)d̂

†
σ(t

′)
}]

(3.62)

=
1

Z

∑
α

ξα

(
−iξα(−1)θC(t′,t) Trc

[
〈α|TC̃

{
e−i

∫
C̃ dzĤ(z)d̂σ(t)d̂

†
σ(t

′)
}
|α〉
])

︸ ︷︷ ︸
PG
α (t′+,t′−;t,t′)

(3.63)

=
1

Z

∑
α∈{|0〉,|σ̄〉}

ξαP
G
α (t′+, t

′
−; t, t

′) (3.64)

where we refer to PG
α as the Green’s function propagator. Unlike the regular propagators,

these Green’s function propagators run over the full contour from t′− to t′+, and contain an
insertion of the impurity creation operator d̂†σ at the tip (t′−), and the impurity annihilation
operator d̂σ at t. The (−1)θC(t′,t) factor comes from the action of the time ordering
operator TC in the definition of the Green’s function. The states |0〉 and |σ̄〉 are the states
that survive the creation operator d̂†σ acting at the tip. We introduce the ξ factors for
convenience to match the definition of the regular propagators as closely as possible.
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Using the contour formalism the Green’s function propagators can be expressed

PG
α (t′+, t

′
−; t, t

′) (3.65)

= −iξα(−1)θC(t′,t) Trc

[
〈α|TC̃

{
e
−i

∫ t′+
t′−

dzĤ(z)
d̂σ(t)d̂

†
σ(t

′)

}
|α〉

]
(3.66)

= −iξα(−1)θC(t′,t)
∑
n

∑
Tn

(−i)2n
∫ t′+

t′−

dz2n

∫ z2n

t′−

dz2n−1 . . .

∫ z2

t′−

dz1

Trc

[
〈α|TC̃

{
e
−i

∫ t′+
t′−

dzĤ0(z)
v̂(2n+ 2) . . . v̂(1)

}
|α〉

] (3.67)

where we associate the Green’s function operators with two special fixed vertices v̂(i) = d̂σ

and v̂(1) = d̂†σ, which unlike the other vertices do not contain a bath part. We mark these
vertices with an asterisk when specifying the topology, e.g. T = {↑∗↑∗} for the order 0
configuration.

Evaluation of the local factor wloc goes through in the same way as before, except that
the state sequence now begins with α0 = d̂†σ |α〉 and contains 2n + 2 states because of
the action of the annihilation operator d̂σ at t. Note, there is an extra sign factor from
pulling the local operators apart from the bath operators since they no longer always
come together, but this cancels with the sign factor from acting with the Green’s function
operators so there is no extra sign in the final expression.

Evaluation of the hybridization factor whyb also goes through in the same way as
before, except that we associate the contraction of the two special vertices with a “virtual”
hybridization line with value i. Diagrams which do not match the two special vertices
are equal to zero. This virtual hybridization line does not come with a factor of the
hybridization function because the special vertices do not contain the bath operators. The
purpose of the i factor is to cancel the extra factor of −i which comes from the extra
propagator. We diagrammatically represent the virtual hybridization line with a dashed
arc. Note the (−1)θ(t′,t) factor is taken care of by the ξ̂ operator at 0+ which gives us
an extra factor of (−1) if the d̂(t) operator occurs on the plus branch (this factor is not
cancelled since the virtual hybridization line does not come with a hybridization function).
Figure 3.18 shows the bare expansion for the Green’s function propagator. Note that the
virtual hybridization line is fixed in all diagrams.

In order to reduce the number of diagrams that need to be summed, we will develop a
bold expansion for the Green’s function propagator by replacing all bare propagators with
bold propagators. We call diagrams which contribute to this bold expansion “G proper”
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PG =

= +
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+ + + +

+ + +

+ + + +

+ + · · ·

Figure 3.18: Illustration of the bare expansion for the Green’s function propagator. The
virtual hybridization line is represented by a dashed arc, and fixed in all diagrams.

diagrams [31]. The G proper diagrams are those diagrams in which every hybridization
line crosses, directly or indirectly, with the virtual hybridization line. Because of this, the
G proper diagrams are sometimes also referred to as “all crossing” diagrams. Diagrams
which are not G proper contain disconnected clusters of hybridization lines which are
already included in the bold propagators.

More formally, we say a diagram is G proper if the hybridization graph G is fully
connected, where the virtual hybridization line is included in G. Figure 3.19 shows the

PG =

= +

+ + +

+ + + +

+ + +

+ + + +

+ + · · ·

Figure 3.19: Illustration of the bold expansion for the Green’s function propagator. The
crossed out diagrams are not G proper because they contain disconnected hybridization
lines (marked in red) which are already included in the bold propagator.
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bold expansion for the Green’s function propagator. Diagrams which are not G proper
are crossed out and the disconnected hybridization lines are marked in red. The Green’s
function propagators are given by the sum over G proper diagrams

PG
α (t′+, t

′
−; t, t

′
+) =

∑
Cα

wloc(Cα, P )
∑

D(Cα)∈G proper

w′
hyb(D,∆) (3.68)

where wloc(Cα, P ) and w′
hyb(D,∆) are defined by the same rules given in equation 3.44

except that the local part is evaluated using the bold propagator, and we use the extra
rules defined above for dealing with the virtual vertices.

PG
|0〉(t

′
+, t

′
−; t, t

′
−) =

t′+ t′−t

C =
{(

t, t′−
)
, (↑∗↑∗) , |0〉

}
whyb = i

wloc = P|0〉(t
′
+, t)P|↑〉(t, t

′
−)

PG
|↓〉(t

′
+, t

′
−; t, t

′
−) =

t′+ t′−t

C =
{(

t, t′−
)
, (↑∗↑∗) , |↓〉

}
whyb = i

wloc = P|↓〉(t
′
+, t)P|↑↓〉(t, t

′
−)

Figure 3.20: Order 0 diagrams for the Green’s function propagators contributing to the
spin up Green’s function G↑(t, t

′
−).

Figure 3.20 shows the order 0 diagrams for the Green’s function propagators contributing
to the spin up Green’s function G↑(t, t

′
−). Note the propagators extend from t′− all the

way around to the corresponding point on the plus branch t′+. We call this an order 0
diagram because we do not count the special fixed vertices in the expansion order. From
the diagram, we see that calculation of the Green’s function propagators can be thought
of as gluing together two bold propagators.

The bold expansion gives us a method for efficiently computing the Green’s function
by taking advantage of the work we have done computing the bold propagators. Note, the
bold expansion requires prior knowledge of the bold propagators over the whole contour
up to the physical time t′. This generates a causal dependency structure between the
Green’s function propagators and the bold propagators which will discuss in chapter 4.

3.6 The Hybridization Function

In order to proceed in applying the hybridization expansion methods we have introduced,
we need a way to specify and compute the hybridization function ∆. Recall that we defined
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the hybridization function by

∆σ(t, t
′) = −i

∑
k

|Vk|2 〈TC ĉkσ(t)ĉ†kσ(t
′)〉 =

∑
k

|Vk|2Gkσ(t, t
′) (3.69)

where Gkσ is the bath Green’s function. Typically we will consider situations where the
bath is in equilibrium, so it is convenient to work in terms of retarded frequency space
Green’s functions. Fourier transforming, we can write

∆R
σ (ω) =

∑
k

|Vk|2Gkσ(ω + iδ) =
∑
k

|Vk|2
1

ω − εk + iδ
(3.70)

where δ is an infinitesimal which shifts the poles below the real axis so that the expression
is analytic in the upper complex plane, i.e. causal/retarded. Using the identity

1

x− y ± iε
= P

(
1

x− y

)
∓ iπδ(x− y) (3.71)

where P denotes the principal value, we define the coupling density

Γσ (ω) = − Im∆R
σ (ω) = π

∑
k

|Vk|2δ(ω − εk) (3.72)

which parameterizes the hopping matrix elements Vk and the bath dispersion εk. Note
that this is almost identical to the definition of the spectral function (see equation 2.45) up
to a factor of 1/π. We will use this coupling density to specify the hybridization function.

In frequency space, the hybridization function can be obtained from the coupling
density by

∆R(ω) =
∑
k

|Vk|2
1

ω − εk + iδ
(3.73)

=
∑
k

∫
dω′δ(ω′ − εk) |Vk|2

1

ω − ω′ + iδ
(3.74)

=

∫
dω′Γ(ω

′)

π

[
1

ω − ω′ + iδ

]
(3.75)

=

∫
dω′Γ(ω

′)

π

[
P

(
1

ω − ω′

)
− iπδ(ω − ω′)

]
(3.76)

= −iΓ(ω) + P

∫
dω′

π

Γ(ω′)

ω − ω′ (3.77)

where we have dropped the spin index for convenience. Note the negative imaginary part
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is given exactly by Γ(ω) as expected. The real-time hybridization function can be written
in terms of the coupling density as

∆(t, t′) = − i

π

∫
dω e−iω(t−t′)Γ(ω) [ΘC(t, t

′)− f(ω, β)] (3.78)

where f(ω, β) = 1/(eβω +1) is the Fermi function, and β = 1/T is the inverse temperature.
Note that this is almost identical to equation 2.46 up to a factor of 1/π. This factor comes
from the missing factor of 1/π in the definition of the coupling density relative to the
spectral function. In practice, we implement equation 2.46 and use Γ(ω)/π as input when
computing the hybridization function.

To understand the meaning of the coupling density, it is helpful to consider the non-
interacting limit (U = 0), where the Anderson model reduces to the resonant level model
which can be solved exactly [22]. In equilibrium, the impurity Green’s function for the
resonant level model is given by G = G(0)+G(0)∆G where G(0) = 1/ (ω − εd) is the Green’s
function for the disconnected impurity. This can be solved to obtain

GR
σ (ω) =

1

ω − εd −∆R
σ (ω)

(3.79)

which shows that the hybridization function acts as a self-energy for the impurity Green’s
function.

Consider a flat coupling density Γσ(ω) = ΓΘ (D − |ω|) where D is the half-bandwidth
and Γ is the coupling strength. For this coupling density, the hybridization function can
be computed analytically as

∆R(ω) = −iΓΘ (D − |ω|) + P

∫ D

−D

dω′

π

Γ

ω − ω′ . (3.80)

For |ω| < D the integral goes through a pole so the principal value is given by

P

∫ D

−D

dω′ 1

ω − ω′ = lim
ε→0

[∫ ω−ε

−D

dω′ 1

ω − ω′ +

∫ D

ω+ε

dω′ 1

ω − ω′

]
(3.81)

= lim
ε→0

[
log
(
ω +D

ε

)
+ log

(
−ε

ω −D

)]
(3.82)

= lim
ε→0

log
(
D + ω

D − ω

)
(3.83)

= log
(
D + ω

D − ω

)
. (3.84)
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Figure 3.21: Impurity spectral function for the resonant level model in the wide band
limit.

Using this, the hybridization function can be expressed

∆R(ω) =
Γ

π
log
(
D + ω

D − ω

)
− iΓ |ω| < D. (3.85)

Taking the wide band limit D � ω, this reduces to ∆R(ω) = −iΓ. The impurity spectral
function for |ω| < D is then given by

A(ω) = − 1

π
ImGR(ω) (3.86)

= − 1

π
Im
{

1

ω − εd + iΓ

}
(3.87)

=
Γ/π

(ω − εd)
2 + Γ2

. (3.88)

which is simply a Lorentzian with width Γ centered at ω = εd (see figure 3.21). Because of
this the parameter Γ is often referred to as the “level broadening”. This is the motivation
for defining the coupling density without a factor of 1/π.
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Multiple baths

In the case of multiple baths, the bath and tunneling Hamiltonians are given by

Ĥbath =
∑
α

∑
kσ

εαkσ ĉ
†
αkσ ĉαkσ (3.89)

ĤT =
∑
α

∑
kσ

(
Vαkĉ†αkσd̂σ + V

∗
αkd̂

†
σ ĉαkσ

)
(3.90)

where α is the bath index and the impurity Hamiltonian is unchanged. We will often
encounter this kind of setup in the context of a quantum dot which is attached to multiple
leads (see chapter 5). In this case, the hybridization function is simply given by a sum
over the hybridization functions for each bath

∆(t, t′) =
∑
α

∆α(t, t
′) (3.91)

where ∆α(t, t
′) can be computed from the coupling density for bath α, Γα(ω). It is

often interesting to consider applying a voltage to each bath. This can be modeled as a
time-dependent shift in the chemical potential µα(t) where we set µα(0) = 0 so that the
equilibrium filling is not changed. The effect of the voltage is to modify the hybridization
function ∆α(t, t

′) by a phase factor e−iφα(t,t′) where

φα(t, t
′) = exp

(∫ t

t′
dt̄µα(t)

)
. (3.92)
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CHAPTER IV

Inchworm Quantum Monte Carlo

In the previous chapter, we derived expressions for the bold propagators and Green’s
functions for the single impurity Anderson model. In this chapter we discuss practical
implementation of numerical methods based on these equations. We will focus on the
inchworm algorithm which is derived from the inchworm expansion for the bold propagator.
We begin by discussing quantum Monte Carlo (QMC) techniques for computing the
high dimensional integrals that we encounter. We then discuss the causal structure of
the inchworm equations and show how the calculations of the propagators and Green’s
functions should be organized and efficiently parallelized. Finally we show some benchmark
results of the inchworm algorithm which demonstrate its ability to overcome the dynamical
sign problem.

4.1 Quantum Monte Carlo

The objects of interest to us, i.e. the propagators and Green’s function propagators, are
written as configuration space integrals

Xα =
∑
Cα

w(Cα) =
∑
Cα

wloc(Cα, P )
∑

D(Cα)∈S

w′
hyb(D,∆) (4.1)

where the configuration Cα consists of 2n time-ordered points z = {z2n, . . . , z1}, a topology
T = {σ2n . . . σ1}, and a tip state |α〉, the diagram D consists of a pair of permutations x↑,
x↓, specifying a matching between the creation and annihilation vertices on each spin, and
S represents some subset of all diagrams depending on the object we are computing. To
compute the object, we must sum over all topologies, and integrate over all time points.

In order to perform these high dimensional configuration space integrals we turn to
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Monte Carlo techniques. To begin, note that the integral of a function f can be expressed

I =

∫
Ω

dx f(x) (4.2)

=

∫
Ω

dx
f(x)

w(x)/Z
(w(x)/Z) (4.3)

= Z

∫
Ω

dx
f(x)

w(x)
(w(x)/Z) (4.4)

= Z 〈f/w〉w (4.5)

where w(x) is an unnormalized probability distribution, Z =
∫
Ω
dx w(x) is the normal-

ization constant, and Ω is a configuration space which may contain both discrete and
continuous variables. Using this we can write a Monte Carlo estimate for the normalized
integral

I

Z
= 〈f/w〉w ≈ QN =

1

N

N∑
i=1

f(xi)

w(xi)
(4.6)

where the points xi are drawn from the distribution w(x)/Z. The variance of this estimate
can be expressed

Var(QN) =
1

N
Var(f/w) = 1

N

[
〈(f/w)2〉w − 〈f/w〉

2
w

]
(4.7)

which shows that asymptotically the error will scale with the number of samples as
δI ∼

√
Var(QN) ∼ N−1/2. Note, the convergence rate is independent of the dimension of

the configuration space Ω. Because of this Monte Carlo methods are very useful for high
dimensional problems where traditional quadrature methods quickly run into the curse
of dimensionality. The error scales with the variance of f/w which implies that we can
decrease the error by sampling from a distribution that approximates f , an idea known as
importance sampling.

In order for w(x) to be interpreted as a probability distribution, it must be non-negative.

53



If w(x) is negative we can still use Monte Carlo methods by taking the absolute value

I

Z
=

∫
Ω
dx f(x)

w(x)
w(x)∫

Ω
dx w(x)

(4.8)

=

∫
Ω
dx f(x)

|w(x)| |w(x)|∫
Ω
dx w(x)

|w(x)| |w(x)|
(4.9)

=
〈f/|w|〉|w|

〈w/|w|〉|w|
(4.10)

where we call the factor in the denominator 〈w/|w|〉|w| the average sign. However, if the
average sign is small, then the relative error will be large and our Monte Carlo estimate
will not be accurate. This is the “sign problem” which is often a major barrier to the
application of Monte Carlo methods. A sign problem can have many different causes.
Lattice systems often have a “fermion sign problem” which emerges from the negative sign
associated with exchanging two fermions. In our case, the sign problem comes from the
oscillatory complex exponential factors associated with propagation in real time. This sign
problem is referred to as the “dynamical sign problem”. Because of the dynamical sign
problem, applying Monte Carlo to the bare hybridization expansion, results in an algorithm
which scales exponentially with the maximum simulation time, making it impracticable.
We will show that by using the inchworm expansion for the bold propagator we can
overcome this sign problem.

Markov Chain Monte Carlo

In order to apply Monte Carlo integration we must be able to generate samples from a
distribution which approximates the integrand. This can be done using Markov chain
Monte Carlo (MCMC) which generates samples from a Markov chain with the desired
equilibrium distribution.

Consider a probability distribution p(x) over a configuration space Ω. A Markov chain
is defined by a transition matrix Wxy which describes the probability to transition from
state x to state y at each step where x, y ∈ Ω. The equilibrium distribution of states in the
Markov chain will follow p(x) provided that the transition matrix satisfies two conditions.
First, that it is ergodic so that every state in Ω is reachable from every other state in a
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finite number of steps. Secondly, that is satisfies the balance condition∑
x∈Ω

p(x)Wxy = p(y). (4.11)

In practice we use the detailed balance condition

p(x)Wxy = p(y)Wyx (4.12)

which implies balance.
The Metropolis-Hastings algorithm gives a simple recipe for satisfying detailed balance

by factorizing the transition probability into a proposal probability and a acceptance
probability Wxy = W proposal

xy W acceptance
xy [86, 87]. The proposal probability can be chosen

freely provided we satisfy ergodicity. The acceptance probability is

W acceptance
xy = min

(
1,

p(y)W proposal
yx

p(x)W proposal
xy

)
(4.13)

which gives a total transition probability satisfying the detailed balance condition. Note
that this only requires computing the ratio p(y)/p(x) which allows us to sample from
unnormalized distributions.

Using this factorization, the Metropolis-Hastings algorithm computes the next state in
the Markov chain in three steps. First we propose a move x→ y sampled from the proposal
distribution W proposal. Secondly, we compute the acceptance ratio Rxy which is the product
of the weight ratio p(y)/p(x) and the proposal ratio W proposal

yx /W proposal
xy . Finally, we accept

the move with probability min(1, Rxy) so moves with R > 1 are unconditionally accepted
and moves with R < 1 are accepted with probability R. If the move is accepted then
the Markov chain transitions to state y otherwise it remains in state x. By following
this procedure, the equilibrium distribution of states in the Markov chain will follow
p(x). However, states in the Markov chain are correlated and we must take a number of
Metropolis steps to get an independent sample.

We apply this algorithm to computing the configuration space integrals for the propa-
gators. We define the configuration distribution by

p(C) = w(C)dz2n . . . dz1 (4.14)

w(C) =
√∑

α

w(Cα)2 (4.15)
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where C is the configuration {(σ2n . . . σ1), (z2n, . . . , z1)} ignoring the tip state, w(Cα) is
the value of the integrand for tip state |α〉, and we call w(C) the configuration weight.
The differential factors in p will all cancel when we compute the acceptance ratios R

and we will only have to deal with weight ratios. Note the weight takes into account the
magnitude of the integrand for all four tip states which allows us to efficiently measure all
four propagators using the same Markov chain.

We define a set of three moves which describe changes to the configuration (C → C ′)
and allow the Markov chain to travel ergodically through the configuration space. The
weight ratios w(C ′)/w(C) for these moves are computed directly and do not make use of
any fast ratio formulas like those commonly used in optimized CT-HYB implementations
[71]. This is because within inchworm we are summing over a subset of diagrams and so
do not have a determinant structure for the hybridization weight and therefore cannot
straightforwardly make use of fast formulas for determinant ratios. Additionally, because
Ĥloc is diagonal in the occupation number basis, the local weight is simply a product of
scalars and it is not worth caching intermediate results.

In our description of the moves we use the term “segment” to refer to a pair of adjacent
vertices with the same spin. This conflicts with our previous definition in which a segment
(anti-segment) was a pair of adjacent vertices in which the impurity creation operator
came first (last). Here we use “segment” to refer to both segments and anti-segments
because from the perspective of the Markov chain there is no need to treat them separately.
The total number of segments in a configuration is given by nseg = nseg

↑ + nseg
↓ where

nseg
σ = max(0, 2mσ − 1), and 2mσ is the number of vertices with spin σ.

The three moves are described below.

• Add Segment. This move takes a configuration and adds a single pair of vertices
to it, e.g. {↑↑} → {↑↑↓↓}. This is done by picking a random spin, picking a random
point on the contour, and finally picking a second random point in the segment
containing the first point. We then insert two vertices on the chosen spin at the pair
of times we have picked. The acceptance ratio for this move is given by

R(C → C ′) = w(C ′)
w(C)

W proposal(C ′ → C)
W proposal(C → C ′)

=
w(C ′)
w(C)

lcontourlsegment

nseg(C ′)
(4.16)

where lcontour is the total length of the contour, lsegment is the length of the segment
containing the proposed segment, and nseg(C ′) is the number of segments in the
proposed configuration.

• Remove Segment. This move takes a configuration and removes a single pair of
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adjacent vertices on the same spin from it, e.g. {↑↑↑↑} → {↑↑}. The segment to
remove is picked uniformly at random from the set of nseg total segments. Note this
is different from picking a spin and then picking a segment uniformly on that spin.
The acceptance ratio for this move is given by

R(C → C ′) = w(C ′)
w(C)

W proposal(C ′ → C)
W proposal(C → C ′)

=
w(C ′)
w(C)

nseg(C)
lcontourlsegment

(4.17)

where now lsegment is the length of the segment containing the segment which we
are proposing to remove and nseg(C) is the number of segments in the current
configuration.

• Remove-Add Segment. This move takes a configuration, removes a segment,
and then adds a new segment, e.g. {↑↑} → {↓↓}. The purpose of this move is
to improve the ergodicity of the Markov chain since it may allow us to directly
propose a configuration that otherwise would require passing through an intermediate
configuration with low weight. The segments that are added and removed are chosen
in the same way as in the corresponding “add segment” and “remove segment” moves.
The acceptance ratio for this move is given by

R(C → C ′) = w(C ′)
w(C)

W proposal(C ′ → C)
W proposal(C → C ′)

=
w(C ′)
w(C)

nseg(C)ladd

nseg(C ′)lremove
(4.18)

where ladd (lremove) is the length of the segment containing the segment which we
are proposing to add (remove).

With these three moves, we can use the Metropolis-Hastings algorithm to sample configu-
rations from the distribution p(C) and accumulate expectation values (see algorithm 4.1).

As we sample configurations we accumulate measurements

ZO ≈ 1

N

N∑
i=1

O(Ci)
w(Ci)

(4.19)

where O(C) is some function of the configuration and Z is an unknown normalization
constant (not the partition function). The core measurement is the propagator itself

ZPα ≈
1

N

N∑
i=1

w(Cαi )
w(Ci)

sm(Ci) (4.20)
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Algorithm 4.1: Metropolis-Hastings Algorithm
Input: Number of metropolis steps between measurements N

Number of measurements M
Output: Normalized propagator
initalize configuration C;
for m = 1 to M do

for n = 1 to N do
C ← metropolis_step(C);

end
foreach measurement O ∈ {P, V0} do

accumulate(O(C));
end

end
Compute normalized propagator P = (ZP ) / (ZV0);
Function metropolis_step(C)

Choose a move m uniformly at random;
Use m to generate a proposal configuration C ′;
Compute the acceptance ratio R(C → C ′);
Generate a uniform random number u ∈ [0, 1];
if R ≥ u then
C ← C ′ ; /* accept the proposed move */

else
C ← C ; /* reject the proposed move */

end
return C

end

where the contour factor sm

sm(C) =
2n∏
i=1

sm(zi), sm(z) =


+1 z ∈ C+

−1 z ∈ C−

−i z ∈ C|

(4.21)

accounts for the integration measure. In order to normalize the propagators we also
measure the hypervolume Vn for each order

ZVn ≈
1

N

N∑
i=1

[order(Ci) = n]

w(Ci)
(4.22)

which corresponds to the volume of the configuration space at order n. Using this we can
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write

Pα =
(ZPα)

(ZVn)
Vn (4.23)

which gives an expression for the normalized bold propagators in terms of the accumulated
values and the hypervolume Vn. At order 0 there is nothing to integrate over, and the
hypervolume is given by V0 = 1 which gives us a simple normalization scheme.

We can also analytically compute the higher order hypervolumes Vn. However, note
that the accumulated estimate ZVn comes from Monte Carlo integration of the constant
function f(C) = 1 using distribution w(C). At higher order it is not clear that this is a
good idea as there may be configurations with very low weight which we do not efficiently
sample, but which contribute equally to the hypervolume. Because of this we will normalize
our results using the order zero hypervolume.

Wang-Landau

In order to normalize by the order 0 hypervolume, the Markov chain must spend a sufficient
number of steps at order 0 to accumulate good enough statistics for the measurement of
ZV0. For the bold propagators this is usually not a problem. However, for the Green’s
function propagators this can become an issue especially on the three branch contour. To
overcome this problem we employ a reweighting

w′(C) = wo(order(C))w(C) (4.24)

where the weight for each configuration is multiplied by a factor wo(n) which depends only
on the order of the configuration.

We use the Wang-Landau algorithm [88–90] to find factors wo(n) so that the order
histogram

h(n) =
N∑
i=1

[order(Ci) = n] (4.25)

is flat, implying an approximately equal number of steps spent at each order. The Wang-
Landau algorithm (see algorithm 4.2) works by multiplicatively modifying a density of
states DOS[n] by a factor f > 1 every time a configuration of order n is sampled, and
reweighting by the inverse of this DOS. Note, the reweighting is done “online” as we
generate samples. This procedure is run until the order histogram becomes flat, at which
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point the histogram is reset and the procedure is repeated with a smaller modification
factor f to more finely tune the reweighting.

Algorithm 4.2: Wang-Landau Algorithm
Input: Initial modification factor f

Histogram flatness tolerance ε
Number of iterations
Maximum number of steps per iteration

Output: Reweighting factors wo

Data: wo, DOS, hist: Arrays with length equal to the maximum expansion order
initialize DOS to all ones;
initialize wo to all ones;
foreach iteration do

clear hist;
while step < maximum steps and hist is not flat do

Take a metropolis step with reweighting wo;
n ← expansion order of current configuration;
hist[n]← hist[n] + 1;
DOS[n]← f · DOS[n];
wo[n]← 1/DOS[n];

end
f ←

√
f ;

end
Function is_flat(hist, ε)

max ←maximum value of hist;
avg ←average value of hist;
return (1− ε)· max < avg;

end

By modifying the DOS multiplicatively the Wang-Landau algorithm can handle very
large reweighting factors. In practice, to avoid overflow we store the logarithm of the density
of states which allows us to write the update as log (DOS)← log (DOS) + log(f). We run
this Wang-Landau calculation as a pre-computation in order to obtain the reweighting
factors wo before running the main Monte Carlo simulation where we accumulate the
measurements.

4.2 The Inchworm Algorithm

Using the QMC algorithm defined above, we can numerically compute the configuration
space integrals for the bold propagator Pα(t, t

′) at a single pair of time points. Now
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we must efficiently assemble these individual calculations in order to compute the bold
propagator over the full physical time domain. For the bare expansion this is trivial since
the only inputs are the bare propagators P (0) and the hybridization function ∆ which are
both known ahead of time (we are not yet considering DMFT). In this case we can simply
compute the propagators over the whole time domain in parallel.

However, the situation is more complicated for the inchworm expansion. Recall that
in the inchworm expansion we compute the bold propagator P (t, t′) by summing the
inchworm proper diagrams which glue together a bare propagator P (0)(t, ts) and a shorter
bold propagator P (ts, t

′) where we call ts the splitting time. Because the diagrams can
contain vertex insertions anywhere between t′ and t, the inchworm expansion requires that
we already know the bold propagator P (t2, t1) for all times ts � t2 � t1 � t′. Figure 4.1

t

ts

t′

C+

C|

C−

C− C| C+P (t, t′)

Figure 4.1: Illustration of the contour causal structure of the bold propagators. A
propagator P (t, t′) (magenta) depends on all propagators with start point on or after t′

and end point up to ts (blue).

shows the set of bold propagators (blue) needed to compute a new bold propagator
(magenta), in this case P (t+, t

′
−). This dependency structure is a consequence of the

propagators being “contour causal”, i.e. only containing vertex insertions that occur
between t′ and t on the contour. Note this is more restrictive than simply being “causal”
like the Green’s functions which can contain vertex insertions that occur at physical times
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less than or equal to the maximum physical time of their arguments.
We choose ts = t−∆t where ∆t is our discretization of the contour so that each step

extends the propagator by ∆t. These steps can be repeated in order to generate longer and
longer propagators from sets of shorter ones. The dependency structure of the propagators

1
2

10

25
26

27

3 – 9

11–24

C+

C|

C−

C− C| C+P (t, t′)

Figure 4.2: Illustration of the diagonal by diagonal calculation of the propagators. The
circled numbers label the diagonals which correspond to sets of inchworm steps which can
be taken in parallel. The propagator is computed only on the physical time domain.

suggests an iterative algorithm in which the bold propagators are computed diagonal by
diagonal as illustrated in Figure 4.2. We call this the inchworm algorithm [31, 55]. Note
we only need to compute the propagators on the physical time domain; all other points are
obtained by symmetry. Also note, on the first diagonal (red) we have ts = t−∆t = t′ so
the entire propagator P (t, t′) is in the connected region (t, ts) and the inchworm expansion
reduces to the bare expansion.

Each diagonal can be computed in parallel since the dependency structure makes these
calculations fully independent. At the beginning of the calculation this leads to a relatively
large amount of parallelism. However, as the calculation proceeds the diagonals become
shorter and shorter until finally we reach the bottom left corner where P (t+max, t

−
max) is the

only element left to compute. This loss of parallelism as the calculation progresses has
serious consequences for efficiency since at the end of the calculation almost all cpu cores
will be idle.

62



To improve the parallel efficiency of the inchworm algorithm we overlap the computation
of the propagators with the computation of the Green’s function propagators. Recall that
the Green’s function propagators PG(t′+, t

′
−; t, t

′
−) wind all the way around the contour

from t′− to t′+. This makes them causal, i.e. dependent on all bold propagators with
physical times less than t′, rather than contour causal. Figure 4.3 shows the set of bold

t

t′−

t′+

t′−

C+

C|

C−

C− C| C+PG(t′+, t
′
−; t|, t

′
−)

Figure 4.3: Illustration of the causal structure of the Green’s function propagators. A
Green’s function propagator PG(t′+, t

′
−; t|, t

′
−) (red) depends on all bold propagators P

with start points or end points up to the maximum physical time t′ (we only show the
bold propagators that are not obtained by symmetry). This Green’s function propagator
contributes to the right mixing Green’s function G(t|, t

′
−) = Gd(τ, t′).

propagators (blue) needed to compute a Green’s function propagator (red). We emphasize
that the blue area represents the regular bold propagators not the Green’s function
propagators; the Green’s function propagators PG do not have any mutual dependencies.
Once we have computed all the propagators up to some maximum physical time t′ we
can begin computing the Green’s function propagators PG(t′+, t

′
−; t, t

′
−) where t′+ � t � t′−

corresponding to a vertical column between the diagonal and anti-diagonal in figure 4.3.
By overlapping these two calculations, we expose significantly more parallelism than is

possible with the bold propagators alone. In particular, we prevent the loss of parallelism
towards the end of the bold propagator calculation, since the number of Green’s function
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G(t, t′−)(
t′+ � t � t′−

) Wang-Landau(G(t, t′−)) {P (t2, t1) | t1 < t′, t2 < t′, t′+ � t2 � t1 � t′−}

Causal

P (t2, t1)(
t′+ � t2 � t1 � t′−

) Wang-Landau(P (t2, t1))
{P (t̃, t̃′) | (t2 −∆t)︸ ︷︷ ︸

ts

� t̃ � t̃′ � t1}

Contour Causal

Figure 4.4: Illustration of the DAG representing the dependency structure of calculation
for a Green’s function element G(t, t′−) in the physical time domain. Arrows indicate
dependencies. The Green’s function depends causally on all propagators with start or
end times less than or equal to the maximum physical time t′. The propagators depend
contour causally on all propagators with a start or end time between t1 and ts = t2 −∆t.

propagators that can be computed increases as more and more bold propagators are
computed. However, the combination of the contour causal dependencies of the bold
propagators and the causal dependencies of the Green’s function propagators is quite
complicated. To efficiently overlap these calculations we make use the High Performance
ParallelX (HPX) framework [91] which provides primitives for task based parallelism.
Using HPX, the problem of computing all propagators and Green’s function propagators
is expressed as a dynamically specified directed acyclic graph (DAG) which describes the
dependency structure of the calculations. Figure 4.4 shows the structure of the dependency
graph for a single Green’s function element. The HPX framework efficiently manages
parallel execution of the DAG distributed over multiple workers.

DMFT

The above analysis was for the case of a simple impurity problem in which the bare
propagators and the hybridization function are both known fully in advance. The situation
is changed in the case of nonequilibrium DMFT [30, 92] where the hybridization function
must be determined self-consistently with the impurity Green’s function. In this case, the
DMFT self-consistency can be dealt with in two ways.

The simplest solution is to place the DMFT self-consistency completely externally to
the impurity solver so that the impurity problem is solved over the whole time domain
before updating the hybridization function. This is how DMFT is done in imaginary
time and how we perform the DMFT self-consistency in chapter 7. However, in real time
this procedure is inefficient because it does not take into account the causal structure
of the DMFT equations. Specifically, the effort to obtain the solution all the way to
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the maximum time is almost entirely wasted during early DMFT iterations where the
hybridization function is only converged out to a short time.

Instead, it is better to take advantage of the causal structure of the DMFT equations.
Concretely, this can be done by solving the DMFT self-consistency causal slice by causal
slice (see the left panel of figure 2.6). However, note that if the solution is propagated
causally, then the propagator calculation is entirely serial, and only the Green’s function
calculation retains some parallelism.

4.3 Results

In order to benchmark the inchworm quantum Monte Carlo method we consider a setup
in which the impurity is coupled to two leads with a voltage applied across the leads. The
leads are described by the Hamiltonian

Ĥα =
∑
kσ

(
εk +

αV (t)

2

)
n̂αkσ (4.26)

where α = ±1 labels the left (+) and right (−) leads, n̂αkσ is the lead number operator, εk
is the lead dispersion, and V (t) is a symmetrically applied voltage. We consider two cases:
the equilibrium case, where none of the parameters are time-dependent and V (t) = 0;
and the case of a symmetric voltage quench V (t) = VΘ(t), with Θ(t) being a Heaviside
step function. In the second case, the system is in equilibrium for t < 0, and for t > 0

the lead levels εk are instantaneously moved to εk ± V
2
, with the sign depending on the

lead index α. We are interested in computing equilibrium and nonequilibrium Green’s
functions, spectral functions, time-dependent and steady state currents and occupations.

The parameters Vα
k and εk are chosen such that the coupling density

Γα (ω) = − Im∆(ω) = π
∑
k

|Vα
k |2δ(ω − εk) (4.27)

describes a flat band centered at zero with a Fermi function like cutoff,

Γα (ω) =
πΓα

(1 + eν(ω−D)) (1 + e−ν(ω+D))
. (4.28)

Note the extra factor of π in the numerator which makes the level broadening for one lead
πΓα rather than Γα as in the traditional convention. We use Γα = Γ = 1; D = 5; ν = 3

(unless specified as ν = 10); U = 4 and U = 10; and temperature T = 1.
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Populations

Recall from the previous chapter that the inchworm expansion at order M +1 is equivalent
to the M -crossing approximation. Fig. 4.5 illustrates agreement within error bars of
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t

10−4
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δN

Figure 4.5: Top panel: Time evolution of the impurity occupation N after a voltage quench
using the non-crossing and one-crossing approximations (NCA and OCA, respectively).
Black lines: semi-analytically computed NCA and OCA solutions. Blue line: NCA solution
generated from an inchworm expansion truncated to order one. Red line: OCA solution
from an inchworm expansion truncated to order 2. Bottom panel: Statistical error estimate
of the quantities shown in the upper panel.

numerical results for the propagators truncated to n = 1 and n = 2 to the NCA and OCA
approximations. Below, it is shown that the size of the inchworm error does not strongly
depend on time. This implies that for ‘crossing’ expansions on the order of the OCA and
above, inchworm Monte Carlo provides an efficient alternative to the direct integration of
the equations of motion.

Continuous-time QMC requires the sampling of diagrams to all orders. In bare
expansions very high order diagrams are easily sampled, because (due to Wick’s theorem)
the sum over all diagrams for a particular configuration of order 2k, of which there are
k!, can be written as the determinant of a k × k matrix and evaluated at polynomial
scaling using linear algebra algorithms.[69] However, in bold and inchworm Monte Carlo
a factorial number of diagrams must be explicitly summed over at each order, and the
cost of enumerating these diagrams quickly becomes prohibitive (evaluating the sum over
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permutations stochastically leads to a sizable increase in the overall sign problem). We
therefore truncate the series at a predetermined maximum order and observe convergence
as that order is increased. This corresponds to observing convergence in the hierarchy
NCA → OCA → 2CA · · · , each of which contains an infinite subseries of all the bare
diagrams which extends to infinite order. In this work, we typically truncate this hierarchy
at order 5–7.
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Figure 4.6: Top panel: Time evolution of the density on the impurity after a voltage
quench with Γ = 1, U = 10, εd = 0, D = 5, T = 1 and V = 6. Results obtained from
a bare QMC calculation are shown for t ≤ 0.6. The inchworm results with different
orders agree with the bare result for t ≤ 0.6 and coincide with each other for longer
times. Bottom panel: Error estimates. Data obtained using the bare method shows an
exponential increase of the errors as a function of time, whereas inchworm errors grow
slower as a function of time.

The top panel of Fig. 4.6 shows results for the time-evolution of the density after a
voltage quench of an impurity with parameters Γ = 1, U = 10, εd = 0, D = 5, T = 1 and
V = 6. Black triangles denote values obtained in a bare QMC simulation, and colored
lines the inchworm results with respective maximum order constraints of order 3, 4, and
5 as labeled in the plot. At short times (t ≤ 0.6 in these units), the inchworm results
agree with the bare calculation within error bars, but for t & 0.3 the bare QMC error bars
are too large to be useful. Inchworm results for orders 4 and 5 coincide within error bars
at long times, indicating that a solution obtained within a three-crossing approximation
calculation would be accurate. The bottom panel of Fig. 4.6 shows statistical error bars
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for the data shown in the top panel. Errors for the bare calculation increase exponentially
as a consequence of the dynamical sign problem. In contrast, the statistical inchworm
error estimate grows slowly, allowing access to significantly longer times. We note that in
order to account for error propagation and non-linear cross-correlations from short-time
propagators to long-time propagators within the inchworm algorithm, the error bars have
been obtained by running multiple (in this case eight) complete independent calculations,
each of which includes a different realization of the statistical noise at all times. The
standard deviation between the different runs provides a useful estimate of the confidence
interval, whereas the standard deviation within each run—which does not account for
error propagation—grossly underestimates the error.

It is remarkable that no exponential growth of the errors is seen, signaling that the
dynamical sign problem has been overcome. However, a gradual, approximately linear
increase of errors with time is visible.
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Figure 4.7: Top panel: The current dynamics after a voltage quench with Γ = 1, U = 4,
εd = −2, D = 5, T = 1 and V = 4. The inchworm results with different orders converge
as max-order increases. Bottom panel: Error estimates of inchworm data obtained by
averaging eight independent calculations. Errors increase as a function of time but avoid
the exponential amplification seen in bare calculations.

Fig. 4.7 shows results for the time dependence of a current passing through the impurity
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after a voltage quench from a thermalized equilibrium state. Parameters are Γ = 1, U = 4,
εd = −2, D = 5, T = 1 and V = 4. In the top panel, we observe that both NCA and
OCA produce qualitatively wrong results for both the transient and long-time response.
In contrast, inchworm results at orders 5–7 are in excellent agreement with each other, and
order 4 is within about a percent from the converged result. Convergence at order 5 is well
within reach of inchworm calculations but far beyond what could be realistically treated
with semi-analytical methods. The bottom panel shows a rough estimate of the statistical
error of the data shown in the top panel, obtained from the standard deviation of eight
independent simulations of this problem. As observed for the densities, the inchworm error
grows sub-exponentially in time and order constraint, indicating that the algorithm is able
to overcome the dynamical sign problem.
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Figure 4.8: Top panel: The imaginary time Green’s function in equilibrium (half-filling)
with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 0. Inchworm results with different
orders all coincide and agree with the bare calculation. Bottom panel: The error estimate
for the inchworm data is approximately constant in imaginary time.

Simulation of diagrams as shown in Fig. 3.19 enable both the simulation of currents
and of two-time Green’s functions. On the full Keldysh contour, a total of nine different
types of Green’s functions exist. One of them, the imaginary time Green’s function, is
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shown in Fig. 4.8. The parameters used are Γ = 1, U = 4 and εd = −2 (such that the
system is at half filling), D = 5, T = 1, and V = 0.

As is visible in the upper panel, orders 4, 5, and 6 agree perfectly within error bars with
the result obtained by a bare reference hybridization expansion calculation. Statistical
error bars, which do not estimate the systematic errors caused by the order truncation, are
shown in the lower panel of Fig. 4.8. These errors are on the order of 10−4. The remaining
components of the Green’s function are similarly obtained by simulating the diagrams of
Fig. 3.19.

Steady state spectral function
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Figure 4.9: Top panel: A contour plot of the dynamics of auxilary current spectrum
Aaux(ω, t) after a voltage quench with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 4.
The maximum order cut-off for the inchworm calculation is 6. A formation and a splitting
of the Kondo peak are observed as a function of time. Middle panel: Slices of auxiliary
current spectrum at different times from the top contour plot. A clear splitting of the
spectrum is shown. Bottom panel: Error estimate on the spectral function obtained from
eight independent simulations.
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Knowledge of Green’s functions and currents makes the calculation of interacting
single-particle spectral functions possible. Ref. [77] introduced a method for computing
steady state spectral functions A(ω) by obtaining steady state currents in two narrow
auxiliary leads coupled at frequency ω. Fig. 4.9 shows the result in the spirit of the
auxiliary lead scheme, but generalized to the full Keldysh contour: initially, at t = 0, no
current is flowing. As the voltage in the main leads, along with the auxiliary lead voltage,
is instantaneously switched on, an auxiliary current starts flowing and relaxes on a time
scale of about 1.5 to 2.

The upper panel shows the time-evolution of this current as a false-color contour plot.
The vertical axis is time, the horizontal axis is frequency and the color represents the
value of the auxiliary spectral function A(ω) obtained from the auxiliary currents. This
quantity is equivalent to the physical spectral function at the long time limit. The middle
panel shows frequency cuts through these data, illustrating a buildup of a more-or-less
featureless spectral function at intermediate times (t = 0.5, t = 1.0), which splits into two
sub-peaks (associated with the onset of Kondo physics[47, 93]) as time is extended towards
time t = 1.5 and 2.0. By time t = 1.5, all features are converged.

In this parameter regime, both the final steady state spectral function and the time-
scale on which results converge are comparable after a quench from an equilibrium thermal
state and after a quench from a decoupled initial state[47, 77], illustrating that in this case
the presence of equilibrium correlations in the initial state did not substantially accelerate
convergence.

The bottom panel shows the statistical errors of these data, obtained by computing
the standard deviation of numerical data from several independent calculations. It is
clearly visible that as t is increased, errors increase. However, the errors do not increase
exponentially, again hinting that the dynamical sign problem has been overcome.

Fig. 4.10 shows the convergence of the data shown at the final time t = 2.0 in Fig. 4.9
as a function of the maximum diagram order sampled. It is evident that high orders & 5

are needed to accurately capture the split peak, hinting that its correct description is
related to strong dot–bath entanglement. It is also evident that deviations remain between
orders 5 and 6, indicating that even higher orders may be necessary to fully capture the
physics.

This is even more pronounced in the equilibrium case, Fig. 4.11, where contributions
coming from long-lived correlations cause both an increase of the statistical errors (bottom
panel) and a substantial difference order-by-order (main panel).

No additional complications arise away from half filling. Fig. 4.12 shows a sample
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Figure 4.10: Top panel: The (half-filling) spectrum at t = 2.0 after a voltage quench
with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 4. The spectral function shows the
establishment of a split Kondo peak as the diagram order is increased. The data for order
6 is identical to the data shown in Fig. 4.9. Bottom panel: Error estimate for data shown
in main panel. The error remains constant as a function of frequency and increases as the
maximum order is increased.

steady state spectral function of a system obtained at time t = 2.0, away from particle-hole
symmetry, after a voltage quench. The result is once again obtained with the auxiliary
current setup, and is converged both in expansion order (orders 5 and 6 were needed)
and time. While general features of the system are visible even within a low-order NCA
approximation, finer details such as the precise location of the peaks or their height and
width clearly require analysis with more precise methods.

4.4 Conclusion

In conclusion, we have demonstrated the inchworm quantum Monte Carlo method for a
simple benchmark calculation. The method is numerically exact when all diagrams to
all orders are considered. It is controlled if a sequence of results truncated to gradually
increasing diagram orders is considered, and in particular generates non-crossing diagrams
when truncated to order one, one-crossing diagrams when truncated to order two, and
two-crossing diagrams when truncated to order three. We showed that for the applications
considered in this chapter, diagrams of order five to seven were sufficient to achieve
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Figure 4.11: Top panel: The (half-filling) spectrum at t = 2.0 with no applied voltage
with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 0. Bottom panel: error estimate for
data shown in the main panel.
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Figure 4.12: Top panel: Spectral function away from half filling at t = 2.0 after a voltage
quench with Γ = 1, U = 10, εd = −2, D = 5, T = 1 and V = 4. Bottom panel: error
estimate for data shown in the main panel.
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convergence.
The method makes the simulation of a wide range of problem setups possible: voltage

and interaction quenches out of initially thermalized states, perturbations with explicit
time-dependence, long-time steady-state setups, and equilibrium problems. It can in
particular be used for obtaining spectral functions in real time, eliminating the need for
the numerically ill-conditioned analytical continuation procedure of imaginary time data.

Inchworm Monte Carlo overcomes the dynamical sign problem in the sense that as t

is increased, the effort for reaching longer times increases sub-exponentially. Unlike in
the case of the forward–backward contour, we did not always observe a plateau of the
error as a function of time, indicating that the scaling is generally worse than quadratic in
time. Several exponential barriers remain in the system: as temperature is lowered, higher
orders proliferate and the number of diagrams needed to be considered increases quickly.
Similarly, a larger impurity size exponentially increases the size of the local Hilbert space
and thereby the cost of simulating the system.

The results shown here illustrate that it is now possible to calculate reliable currents,
Green’s functions, and spectral functions for equilibrium and nonequilibrium impurity
problems with general time dependence, and imply that unbiased impurity solvers, which
form a fundamental component for non-equilibrium dynamical mean field theory, are now
available.
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CHAPTER V

Kondo Voltage Splitting

5.1 Introduction

Interacting quantum many-body systems often exhibit highly entangled states that cannot
be described within an independent particle formalism. The Kondo effect in a quantum
dot [14, 94] coupled to noninteracting leads is the paradigmatic example for such a state,
as the dot electrons hybridize with the leads to form a highly correlated Kondo singlet
state [95]. This state manifests itself as a sharp peak in the local density of states [94, 96].
The establishment of Kondo correlations can be examined in a quantum quench scenario,
where an initially uncorrelated state slowly develops a coherence peak over time [74, 97].

In the presence of a voltage, the Kondo peak is strongly suppressed and splits into two
smaller peaks [77, 93, 98–100]. Previous work has argued that the peak-to-peak distance
is given by the voltage [101–106] and that the split state is significantly less correlated
than the equilibrium state [101]. It is therefore natural to examine the establishment of
splitting after a quench from an initially uncorrelated state, and to expect that this less
correlated state forms on a timescale shorter than that of the equilibrium state.

Despite significant analytical progress [107–113], an accurate investigation of this
scenario requires numerical methods that are able to simulate the real-time evolution after
a quench accurately, for times long enough to reach the steady state. Additionally, a full
account of the continuous lead spectrum is crucial for correct treatment of the nonequi-
librium steady state. The major families of numerical methods include the noncrossing
approximation and its higher-order generalizations [53], wave-function-based methods
[114–119], real-time path integral techniques [120–123], the time-dependent numerical
renormalization group [124–128], hierarchical equations of motion [129–132], the auxiliary
master equation approach [133–137], and a wide variety of quantum Monte Carlo methods
[47, 49–51, 75, 76, 83, 84, 138–146]. Most of these approaches fall short in at least one
of the aforementioned requirements. This situation has changed with the development
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of the numerically exact inchworm quantum Monte Carlo method [31, 55, 78, 79, 81, 82]
that in many cases eliminates the dynamical sign problem and is thereby able to reach the
relevant timescales.

In this chapter, we examine the voltage splitting of the Kondo peak in detail. We focus
on the time-dependent formation of the peak after a quantum quench and on its shape
at long times. We find that while the peak-to-peak distance is roughly proportional to
the voltage, there is a notable deviation from this simple picture. We also find that the
appearance of the split peak is preceded by the formation of a single, unsplit Kondo peak,
and that the splitting occurs at a later time whose scaling with the voltage is consistent
with a power law. Since the splitting timescale is 1–10 ps in mesoscopic quantum dots, the
delayed splitting should be observable in recently developed ultrafast tunneling microscopy
[147, 148] and spectroscopy [21, 149] experiments.

5.2 Model

We describe a correlated quantum dot (QD) attached to two extended metallic leads using
a single impurity Anderson model [4],

Ĥ =ĤD +
∑
α=±1

Ĥα + ĤT , (5.1a)

ĤD =
∑
σ

εdnσ + Un↑n↓, (5.1b)

Ĥα =
∑
kσ

(
εk +

αV

2

)
nαkσ, (5.1c)

ĤT =
∑
αkσ

Vα
k (t)(c

†
αkσdσ + d†σcαkσ). (5.1d)

The quantum dot ĤD is coupled to two noninteracting leads Ĥα by tunneling terms ĤT .
The operators d†σ (dσ) create (annihilate) electrons localized on the quantum dot, while c†αkσ
(cαkσ) create (annihilate) electrons in lead α [α = ±1 labels the left (+) and right (−) lead]
with quasimomentum k and spin σ (↑ or ↓). The respective occupation number operators
are nσ = d†σdσ and nαkσ = c†αkσcαkσ. The dot Hilbert space is spanned by four “atomic
states” |φ〉 = |0〉, | ↑〉, | ↓〉, | ↑↓〉. We consider the symmetric situation εd = −U/2 such
that every energy level of the dot Hamiltonian ĤD is doubly degenerate (E0 = E↑↓ = 0,
E↑ = E↓ = −U/2). Vα

k denotes the tunneling matrix element describing hopping processes
between the dot and the leads. The coupling to the leads is characterized by a coupling
density Γα(ω) = π

∑
k |Vα

k |2δ(ω − εk) that parametrizes the lead dispersion εk and the
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tunneling elements. We consider a wide, flat coupling density with soft edges for both
leads, Γα(ω) = (Γ/2)/[(1 + eν(ω−D))(1 + e−ν(ω+D))] (the soft edges eliminate unphysical
transient oscillations in the dynamics [141]), choosing the inverse cutoff width ν = 10Γ−1

and the half-bandwidth D = 10Γ such that the band edge exceeds all other relevant energy
scales. Γ is used as the energy unit. Experimental values for Γ in semiconductor QDs are
of the order of 1 meV [14, 94]. We consider a setup where the dot is initially empty (in the
pure |0〉 state) and detached from the leads. The leads are suddenly attached at t = 0

(Vα
k (t) = Vθ(t)), and are kept at a constant temperature T with a symmetric bias voltage

V between them. This quench protocol is equivalent to suddenly changing a gate voltage
from a value substantially larger than half the bias voltage to zero at t = 0. At zero bias,
the Kondo temperature for this model is TK '

√
ΓU/2 exp[−πU/(8Γ) + πΓ/(2U)] [95,

150].

5.3 Methods

The numerical methods we use in this Rapid Communication are based on a diagrammatic
expansion in the tunneling Hamiltonian ĤT formulated on the two-branch Keldysh contour
(the imaginary Matsubara branch is not required due to the factorized initial condition).
Our main numerical tool is a massively parallel implementation of the inchworm quantum
Monte Carlo solver [78, 79] based on the High Performance ParalleX framework [91] and the
ALPS libraries [151, 152]. The inchworm solver performs a stochastic summation of the hy-
bridization contributions to the dressed QD propagators pφ(t, t

′) = 〈φ|Trc[ρ̂e−i
∫ t
t′ dt̄Ĥ(t̄)]|φ〉.

The calculations are organized to take advantage of the contour-causal structure of pφ(t, t′)
so that short time propagators are incrementally extended to longer times, significantly
alleviating the dynamical sign problem [31, 79]. After all dressed propagators are computed,
the stochastic summation procedure proposed in [31] is employed to calculate the QD
Green’s function. Because the inchworm method recurrently couples together the output of
many stochastic simulations, the analysis of the Monte Carlo error is not straightforward.
One useful approach is considering deviations from exactly conserved properties like the
total probability of all QD states or the normalization of the steady-state spectral function,
neither of which varies by more than a few percent in our simulations. Using the inchworm
method we obtained numerically exact results for times as long as 8.0Γ−1, but required
significant computational resources to do so. In order to investigate longer times, we also
make use of the computationally less demanding one crossing approximation (OCA) [53,
54] which we validate against numerically exact inchworm results at our smallest considered
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interaction strength U = 8.0Γ where OCA is expected to be the least accurate. We find
that while details of the spectral function are rather sensitive to this approximation (see
section 5.6 for a comparison ), it is accurate to within . 10% for the other observables
considered here.

The main physical quantity of interest to us is the time-dependent QD spectral function.
We use the auxiliary current formalism [46, 47] to write this as

A(ω, t) = lim
η→0
− 2h

eπη
[IfA(ω, t)− IeA(ω, t)], (5.2)

where IfA(ω, t) and IeA(ω, t) are currents through two additional auxiliary leads weakly cou-
pled to the QD at frequency ω by a coupling density ΓA(ω

′) = ηδ(ω′−ω), and with chemical
potentials set such that the leads are full and empty, respectively. A(ω, t) approaches the
conventional spectral function A(ω) = −(1/π)ImGr(ω) at steady state and provides rich
spectral information at all times. It is related to a finite-time Fourier transform, but also
has a direct operational realization [46–48, 77]. We have direct access to the QD Green’s
function Gσ(t, t

′) = −i〈TCdσ(t)d
†
σ(t

′)〉 [31], such that auxiliary currents are calculated
using the Meir-Wingreen formula [153, 154] If(e)A (ω, t) = −2Re

{∫
C dt

′Gσ(t
′, t)∆

f(e)
A (t, t′)

}
.

Here, the hybridization functions ∆
f(e)
A (t, t′) are derived from ΓA(ω) using the procedures

established in Ref. [31].

5.4 Results

In Fig. 5.1, we present the time evolution of the (auxiliary) QD spectral function after
a coupling quench. The time-dependent spectra are shown at four values of the bias
voltage, V = 0.5Γ, 1.2Γ, 1.8Γ, and 3.5Γ. The interaction strength U is 8.0Γ, such that
TK ≈ 0.11Γ [95]. The lead temperature is set to T = 0.02Γ � TK , placing the system
deep in the Kondo regime at zero bias. This temperature was inaccessible in the earlier
bold-line hybridization expansion QMC study [77], where only the edge of the Kondo
regime T & TK was reached at a weaker interaction strength U = 6Γ.

For V . 2.0Γ, we observe the formation of a single peak at the mean chemical potential.
For V & 1.0Γ, this peak first forms, then splits into two secondary peaks near the two lead
chemical potentials. At larger V & 2.0Γ, the initial single-peak state is no longer visible.
Instead, the split peaks appear immediately after the transient charging dynamics visible
at short times.

The overall behavior of the system can be characterized by two quantities: the time
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Figure 5.1: Time evolution of the QD spectral function after a coupling quench and
in the presence of a bias voltage V , at interaction strength U = 8.0Γ and temperature
T = 0.02Γ � TK . The voltages are V = 0.5Γ (upper left), V = 1.2Γ (upper right),
V = 1.8Γ (lower left), and V = 3.5Γ (lower right).
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power-law behavior.

80



tsplit at which the peak splits, and the peak-to-peak separation ∆ω of the resulting split
peaks in steady state. We first show how tsplit evolves as a function of the bias voltage
V at T = 0.02Γ. tsplit is calculated as the first time point where the second derivative
∂2
ωA(ω, t)|ω=0 changes its sign, i.e. where the zero-frequency peak becomes a dip. As seen

in the upper panel of Fig. 5.2, the OCA is qualitatively consistent with inchworm regarding
the functional form of tsplit(V ). A log-log plot (inset) reveals that within the voltage
range shown both results are consistent with power-law behavior, which from the slope
must obey tsplit(V ) ∝ (V /Γ)−1.10. OCA results for a set of larger interaction strengths
(lower panel of Fig. 5.2) provide evidence that this behavior is largely independent of U .
It is worth noting that the transient state manifested by the single peak is significantly
less correlated than the equilibrium Kondo singlet at V = 0. One can indirectly assess
the strength of correlations by fitting the transient spectra with the equilibrium ones
obtained for an effective temperature T tr

eff. Similarly, the steady-state spectra A(ω, V, T )

can be qualitatively fitted with [A(ω + V /2, 0, T st
eff) +A(ω − V /2, 0, T st

eff)]/2 (superposition
of contributions from two Kondo states with different chemical potentials and effective
temperature T st

eff) (see figures 5.7 and 5.8). It turns out that the effective temperature,
serving as a measure of correlations, satisfies T tr

eff � T st
eff & TK � T .

An analysis at T > TK shows that the initial single-peak state is not present for
T > TK . Instead, the voltage-split peaks are formed directly after the initial equilibration
(see Fig. 5.5).

Our results suggest that the time-dependent formation of the spectrum evolves in two
stages. First, on a very fast timescale, a mixed Kondo singlet is formed between the QD
and an effective chemical potential set by those of both leads. Later, on a slower timescale
t = tsplit, this singlet state is destroyed by the current and replaced with a new state that
couples to each of the two leads at a frequency comparable to its chemical potential.

So far, we have focused on the dynamics leading up to the formation of a steady
state. We now shift to a discussion of the frequency-dependent spectral properties of
the steady state itself. Figure 5.3 provides a detailed view of A(ω, tmax), which gives an
estimate of the steady-state spectra for V ≥ 1.0Γ both below (upper panel) and above
(lower panel) the Kondo temperature at U = 8.0Γ. At low temperature (T = 0.02Γ < TK)
and intermediate bias voltage (1.0Γ ≤ V ≤ 2.0Γ) the split Kondo peaks and the Hubbard
bands together form a clearly distinguishable four-peak structure, confirming previous
approximate results that suggested its existence [134, 155] (see also very recent results
where partial splitting is visible in Ref. [156]). An increase in V enhances peak-to-peak
separation ∆ω and suppresses peak height [101]. In contrast, the side bands are largely
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Figure 5.3: QD spectral function from the inchworm method at t = tmax = 8.0Γ−1,
corresponding to the steady-state spectrum A(ω) for V ≥ 1.0Γ. T = 0.02Γ (upper panel)
and T = 0.5Γ (lower panel) for the voltages indicated.
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Figure 5.4: Peak-to-peak distance ∆ω between the split Kondo peaks as a function of
bias voltage V , at T = 0.02Γ < TK . Error bars originate from averaging over finite-time
oscillations expected to eventually dissipate. Upper panel: inchworm and OCA results
at U = 8.0Γ with tmax = 8.0Γ−1 compared with the linear behavior ∆ω = V predicted by
various approximate methods. Lower panel: Deviation of splitting from V within OCA at
T = 0.02Γ for several values U , with tmax = 15.0Γ−1.

insensitive to changes in V in this regime. (The small rapid oscillations seen at V = 0

are remnants of the initial condition that have not fully dissipated.) At high temperature
(T = 0.5Γ > TK), some remnants of the four-peak structure can be seen between V = 2.5Γ

and V = 3.0Γ. However, these features are much less pronounced.
In Fig. 5.4, we present the peak-to-peak distance ∆ω at steady state as a function

of the applied bias voltage V . Parameters match the respective panels in Fig. 5.2. We
estimate the steady-state value from propagation to a finite time. Although the large-scale
features of the spectrum have reached steady state by our maximal propagation time,
there remain small finite-time oscillations that are expected to eventually dissipate. The
error bars in this figure therefore come from averaging ∆ω over the time window in which
splitting is visible. As seen in the upper panel of Fig. 5.4, ∆ω is systematically below the
linear ∆ω = V law predicted by perturbation theory, renormalization group, and flow
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equation studies of the Anderson model [102] and the effective s-d (Kondo) model [101,
103]. We reiterate that the inchworm results presented here are numerically exact, whereas
the various approximate approaches are, e.g., perturbative in U or assume a U →∞ limit
where charge fluctuations on the QD are suppressed. We expect our prediction to be
experimentally verifiable using steady-state multiprobe schemes [46, 48].

If we acknowledge that the trend evident in Fig. 5.2 may continue to smaller bias
voltages V < 1.0Γ, it is clear that no conclusion about the presence of splitting can be
drawn from the inchworm results at lower voltages because tsplit can exceed tmax. We
employ OCA in order to reach longer times tmax = 15.0Γ−1 and explore a wider parameter
range. The larger tmax in these OCA results extends the accessible voltage range down to
V = 0.5Γ, but at the cost of introducing an approximation. To test the quality of this
approximation, the upper panel of Fig. 5.4 shows numerically exact inchworm data together
with OCA results at tmax = 8.0Γ−1. The agreement in ∆ω/Γ between inchworm and OCA
is on the order of 10% and improves at larger V , with OCA somewhat underestimating
the deviation from linear behavior at smaller V . This observation suggests that electronic
correlations beyond those accounted for by the OCA become less important as the bias
voltage grows. Together with the diminishing height of the split peaks, this supports the
scenario in which the Kondo state is partially destroyed by the current-induced decoherence
[101].

The lower panel of Fig. 5.4 shows OCA results for V −∆ω at several larger values U

where OCA is expected to be increasingly accurate. These OCA calculations show that
V −∆ω becomes smaller with increasing U . This supports the conclusion that deviations
from the linear approximation are due to charge fluctuations at finite U .

5.5 Conclusions

We presented a numerically exact treatment of the transient and steady-state dynamics of
a quantum dot spectral function after a coupling quench with a bias voltage V applied to
the dot, focusing on the Kondo regime.

Our examination of the quench dynamics revealed transient dynamical states in which
the formation of a single Kondo peak at the average chemical potential is followed by a
sudden splitting at a timescale tsplit. tsplit exhibits a robust power-law dependence on the
voltage. In the case of realistic molecular electronic devices Γ ≈ 100 meV. At a voltage
of ∼ 50 meV our predicted timescale approaches tsplit ∼ 10−1 ps, but if the power law
holds at lower voltages, at a voltage of ∼ 5 meV we expect tsplit ∼ 1 ps, which is already
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experimentally accessible. Furthermore, in semiconductor quantum dot experiments Γ is
orders of magnitude smaller, e.g. 0.1− 1.0 meV according to Refs. [14] and [94]. A typical
high-voltage tsplit = 5Γ−1 would then correspond to ∼ 3–30 ps. These predictions concern
the transient dynamics of the time-dependent spectral density. Although measuring it is
still challenging, recent experimental progress [21, 147, 149] may put it within reach. One
possible direction is to extract the time dependent current from DC measurements with
pulse trains as suggested by Ref. [149] in a three-terminal setup.

For voltages significantly exceeding the Kondo temperature, we presented numerically
exact results for steady-state spectral functions exhibiting a well pronounced four-peak
structure. The position and shape of the side bands are unaffected by the bias voltage V ,
while the distance ∆ω between the split Kondo peaks is roughly proportional to V but
systematically falls below the previously proposed ∆ω = V behavior. This effect weakens
at large U , and we therefore surmise that it is related to charge fluctuations that are
energetically forbidden when U becomes very large. These predictions could be verified
using three-terminal steady-state measurements as discussed in Refs. [46] and [48].

Our application of the inchworm method to exploring nonequilibrium Kondo physics
after a quench elucidates the dynamical formation of Kondo splitting, and provides
experimentally relevant predictions thereof. Looking forward, this work points the way
towards answering a variety of long-standing questions, such as whether further splitting
should be expected when a magnetic field is present; how correlations form in the leads; and
how local symmetries affect the Kondo coupling far from equilibrium. Another interesting
direction is application of the inchworm QMC to direct modeling of response to realistic
short pump pulses, as used in pump–probe experiments.

5.6 Appendix

Time evolution of QD spectra above TK

Fig. 5.5 is the above-TK counterpart of Fig. 5.1. It shows the time evolution of the QD
spectra for U = 8.0Γ, T = 0.5Γ and V = 0.5Γ, 1.5Γ, 2.5Γ and 3.0Γ. The V = 2.5Γ and
V = 3.0Γ spectra feature a faint four-peak structure that emerges immediately after the
quench. No single Kondo peak is visible. This observation supports the connection between
the Kondo singlet state below TK in equilibrium and the finite tsplit.
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Figure 5.5: Time evolution of the QD spectra A(ω, t) of the quantum dot for U = 8Γ, T =
0.5Γ. V = 0.5Γ (upper left), V = 1.5Γ (upper right), V = 2.5Γ (lower left), V = 3.0Γ
(lower right).

Comparison of OCA and inchworm spectral functions at t = 8Γ−1

Fig. 5.6 shows a comparison between inchworm results and the OCA approximation. Data
is obtained for the parameters indicated, at a maximum time of t = 8.0Γ−1. It is evident,
especially at low voltages, that the OCA approximation to the spectrum is severe. However,
for the features analyzed in this chapter, i.e. the splitting time and the peak-to-peak
distance of the steady state split peak, OCA and inchworm data is compatible.

Fits of A(ω, t) with equilibrium OCA spectra

We performed a series of OCA calculations in absence of bias and with other Hamiltonian
parameters set to the values used in the main text. A temperature sweep showed that the
spectral function in the initially formed single peak state (T = 0.02Γ) can be reasonably
well approximated with the equilibrium spectrum at an efficient temperature T tr

eff (Fig.
5.7). For both studied voltages where the transient state is observed, we find T tr

eff strongly
exceeding TK = 0.11Γ (T tr

eff ≈ 0.34Γ and 0.53Γ for V = 1.2 and 1.8 respectively).
The double peak spectral structure cannot be described by an equilibrium system
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with an effective temperature. However, it can be roughly approximated by a sum of two
equilibrium systems with an effective temperature and chemical potentials set to ±V /2:
A(ω, V, T ) ≈ [A(ω + V /2, 0, T st

eff) + A(ω − V /2, 0, T st
eff)]/2 (Fig. 5.8). OCA calculations

reveal that the effective temperature necessary to fit the steady state spectra is much lower
than that used to fit the transient state. For both considered voltages T st

eff is comparable
to the Kondo temperature.
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CHAPTER VI

Kondo Cloud

6.1 Introduction

The Kondo effect is characterized by the screening of an impurity spin by a cloud of
conduction electrons to form a singlet state at temperatures below the Kondo temperature
TK [95]. The equilibrium physics of the impurity spin are by now well understood, but
the structure of the Kondo cloud has remained elusive [157].

The Kondo cloud can be defined in a number of ways. Theoretically, the most natural
definition is in terms of the impurity-spin bath-spin correlation function which can be
readily computed using a variety of techniques including NRG [158, 159] and DMRG [160].
Although theoretically convenient, this correlation function is not directly observable. The
Kondo cloud is theoretically observable by its effect on the magnetic susceptibility, but
attempts to observe this via NMR have so far been unsuccessful [161]. There have been
a number of theoretical [162–166] and experimental [18, 19, 167] efforts to characterize
the Kondo cloud via its effect on the bath density of states which can be measured
experimentally by scanning tunneling spectroscopy (STS). These studies have revealed
various signatures of the Kondo cloud, but a complete picture is still missing.

In [168] the authors proposed to study the Kondo cloud by examining the effects
of perturbations to the bath on the impurity. Perturbations of bath electrons inside
the Kondo cloud should have a large effect on the impurity Kondo resonance whereas
perturbations of bath electrons outside the Kondo cloud should have little effect. By
varying the distance at which the perturbation is applied it is possible to map out the
Kondo cloud. This proposal was recently realized experimentally by measuring the effect
of applying electrostatic perturbations to a 1D channel coupled to a quantum dot (QD),
and the extent of the Kondo cloud was successfully measured [169].

In this chapter we study a model proposed to describe this experimental setup. We
characterize the Kondo cloud in this model in two complementary ways. First, we compute
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Figure 6.1: Schematic illustration of the model. A quantum dot (QD) is coupled to two
non-interacting leads, where each lead is a semi-infinite, one-dimensional tight-binding
chain with nearest neighbor hopping t. On the right lead, the hopping between sites L
and L+ 1 is optionally modified to take the value t′. The leads are connected to the QD
by a hopping λ. The QD has an on-site local Coulomb interaction U .

the effect of lead perturbations applied a variable distance L away from the impurity
on the Kondo resonance width which is related to the Kondo temperature. Our results
confirm the general scenario found in [169] in which lead perturbations drive Kondo
temperature fluctuations which decay with L. At large interactions, we find a non-
monotonic dependence of the Kondo resonance width on L which may be observable in
future experiments. Secondly, we compute the lead local density of states (LDOS), observe
features associated with the emergence of the Kondo state, and show that these features
are suppressed by an applied voltage bias. These results provide a detailed picture of the
Kondo cloud in this system which may be observed via future STM experiments.

6.2 Model

We study the model proposed in [169] to describe an experimental setup for observing the
Kondo cloud. The model consists of a single orbital quantum dot (QD) coupled to two
non-interacting, one-dimensional leads (see Fig. 6.1). The Hamiltonian for the model is

H = HQD +Hl +Hr +HT , (6.1)

where HQD is the quantum dot Hamiltonian, Hl (Hr) is the Hamiltonian of the left (right)
lead, and HT is the tunneling Hamiltonian which describes hopping between the QD and
the leads.

The QD Hamiltonian is

HQD =
∑
σ

εdnσ + Un↑n↓, (6.2)

where d†σ (dσ) creates (annihilates) electrons localized on the QD with spin σ, nσ = d†σdσ is
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the QD number operator, εd is the single-particle energy, and U is the Coulomb interaction
between electrons on the QD.

The left lead is modeled as a uniform one-dimensional tight-binding chain with Hamil-
tonian

Hl = −
∑
σ

∞∑
i=1

tc†l,i,σcl,(i+1),σ + h.c., (6.3)

where c†l,i,σ (cl,i,σ) creates (annihilates) electrons on site i of lead l with spin σ, and t is
the nearest-neighbor hopping amplitude. The right lead is the same as the left lead except
that the hopping between sites L and L+ 1 is optionally reduced, partially pinching off
the lead at site L. The Hamiltonian for the right lead is

Hr = −
∑
σ

[∑
i 6=L

tc†r,i,σcr,(i+1),σ

+ t′c†r,L,σcr,(L+1),σ + h.c.
]
,

(6.4)

where c†r,i,σ (cr,i,σ) creates (annihilates) electrons on site i of lead r with spin σ, and t′ is
the modified hopping amplitude between sites L and L+1. We specify the strength of the
modification in terms of the non-dimensional parameter α = 1− (t′/t)2 which describes
a continuum between no modification (α = 0) and completely pinching off the lead at L

(α = 1). The coupling of the QD to the leads is described by the tunneling Hamiltonian

HT =
∑
σ

∑
w=l,r

λw

(
c†w,1,σdσ + h.c.

)
(6.5)

where λw is the hopping amplitude between the QD and lead w.
The leads are at half-filling with Fermi wavevector kf = π/2 and bulk Fermi velocity

vf = 2ta/h̄ where a is the spacing between the sites which we take as our unit of distance.
The dynamics of the leads are described by the non-interacting lead Green’s functions
which can be formally computed by

gw(ω) = (ωI −Hw)
−1 (6.6)

where I is the identity matrix and Hw is the single-particle Hamiltonian for lead w. The
calculation of the lead Green’s functions is detailed in appendix 6.6.

Because the leads are non-interacting, they can be integrated out exactly to obtain a
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hybridization function which describes the effect of the leads on the QD by parameterizing
both the lead band structure and the tunneling Hamiltonian. The hybridization function
is described by the coupling density

Γ(ω) = − Im
∑
w=l,r

λ2
wgw,11(ω), (6.7)

where gw,11 is the local Green’s function of the site on lead w adjacent to the quantum dot
[22]. A procedure for computing gw,11 is given in appendix 6.6. In the uniform (α = 0)
case, the coupling density is semi-circular

Γ(ω) =
∑
w=l,r

λ2
w

2t2


√
4t2 − ω2 |ω| ≤ 2t

0 |ω| > 2t
, (6.8)

with half-bandwidth 2t. In the pinched case (α > 0), the reduced hopping between sites L

and L+ 1 creates a Fabry-Pérot cavity in the right lead with resonance width ∆ = πvf/L.
Changing L switches the cavity between on- and off-resonance (e2ikfL = ±1) and flips Γ(0)
between a minimum and a maximum. Fig. 6.2 shows the coupling density for both the
uniform and pinched cases. The overall hybridization strength is parameterized by the
α = 0 level broadening, Γ = Γ(ω = 0) =

∑
w λ2

w/t which we use as our unit of energy.
An important property of this model is its Kondo temperature TK . At temperatures

below TK , the QD spin is screened by the lead electrons to form a singlet state. The bare
cloud length ξ0 = vf/TK is the theoretically expected spatial extent of the cloud of lead
electrons which make up this singlet state [157].

In [169], the authors provide detailed experimental parameter estimates for this model
which we use as a guide in choosing our parameter values. The level broadening Γ is
estimated to be approximately 0.1 meV, which implies a unit of temperature given by
Γ/kB ≈ 1.16 Kelvin. Following [169], we choose α = 1 − (t′/t)2 = 0.1 for all cases with
modified hopping. Parameter estimates suggest a coupling asymmetry given by λr ≈ 4λl,
although this is experimentally tunable. For simplicity we choose λl = λr = λ so that the
leads are symmetrically coupled to the QD. Note that our choice of energy unit Γ = 1

implies λ =
√

t/2.
Parameter estimates suggest U ≈ 6Γ. In our calculations we consider slightly larger

interactions (U = 7Γ, 8Γ, 9Γ) in order to be in a regime where our impurity solver is more
accurate. Following [169], we consider only the symmetric situation where εd = −U/2

so that each QD energy level is doubly degenerate. The model is also spin-symmetric
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and spin indices on Green’s functions and observables will be omitted. We choose the
lead half-bandwidth D = 2t = 10Γ. This follows the experimental parameter estimates
in making the lead half-bandwidth the largest scale in the problem, while reducing it
from the experimental value (D ≈ 60Γ) for computational convenience. The experimental
Fermi velocity is estimated to be vf ≈ 2.5 × 105 m/s which implies a = h̄vf/(2t) ≈ 150

nm. Note that a should be thought of as a phenomenological parameter rather than the
spacing between physical atoms in the system.

The first quantity of interest is the QD density of states (DOS)

ρimp(ω) = −
1

π
ImGimp(ω), (6.9)

where Gimp(ω) is the frequency dependent, retarded, QD Green’s function. The second
quantity of interest is the site-dependent local density of states (LDOS) of the leads

ρw(ω, i) = −
1

π
ImGw,ii(ω), (6.10)

where Gw,ii(ω) is the frequency dependent, retarded, local Green’s function of site i of
lead w in the presence of the QD. This Green’s function is obtained from the QD Green’s
function using

Gw,ii(ω) = gw,ii(ω) + λ2gw,i1(ω)Gimp(ω)gw,1i(ω), (6.11)

where gw is the non-interacting Green’s function of lead w. A derivation of this result is
given in appendix 6.6.

6.3 Methods

There are a number of methods that can be used to compute the QD Green’s function
Gimp(ω) for this model, notably NRG [7, 8, 168, 169]. We focus on methods based on
diagrammatic expansion in the tunneling Hamiltonian HT formulated on the three branch
Keldysh contour. Using these methods the time-dependent, steady-state, retarded QD
Green’s function

Gimp(t− t′) = −i
〈{

dσ(t), d
†
σ(t

′)
}〉

, (6.12)
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can be computed up to some maximum time tmax. The frequency dependent Green’s
function is then obtained by a Fourier transform

Gimp(ω) =

∫ tmax

0

dt eiωtGimp(t) (6.13)

and all further analysis is performed in the frequency domain.
Inchworm quantum Monte Carlo (QMC) is a numerically exact method based on

expansion in HT [31, 55]. Inchworm QMC is highly computationally demanding, and
it is not yet feasible to reach long enough tmax to resolve fine spectral features without
broadening. Because of this, we make use of the less computationally demanding one
crossing approximation (OCA) which corresponds to a second order truncation of the
inchworm diagram series and is therefore approximate [53, 54]. Although OCA is not
exact, it becomes more accurate as U is increased. We validate our OCA results against
numerically exact inchworm QMC results in the parameter regime where this is feasible
(see appendix 6.6).

6.4 Results

Fig. 6.3 shows the impurity DOS at U = 9Γ for a sequence of inverse temperatures
(β = 1/T ) between βΓ = 1 and βΓ = 50. These results are computed with α = 0, in the
absence of any cavity. As the temperature is decreased below the Kondo temperature TK ,
the impurity spectrum builds up a sharp Kondo peak at the Fermi energy with width
γimp. We obtain the width of the peak by fitting a Lorentzian with offset to the spectrum
around the Fermi energy. The fit function is given by

f(ω) = A
1

ω2 + γ2
imp

+B (6.14)

where A and B are fit parameters and γimp is the estimated width of the Kondo peak.
The inset of Fig. 6.3 shows the impurity spectrum (blue line) around the Fermi energy
together with the fit (dashed black line).

As T → 0, γimp(T ) converges to the Kondo temperature [170, 171]. At βΓ = 50, γimp

is not fully converged to the zero temperature value and therefore overestimates TK . Nev-
ertheless it still provides a useful estimate which tracks changes in the Kondo temperature.
For U = {7Γ, 8Γ, 9Γ} we estimate inverse widths of 1/γimp = {13.3Γ−1, 14.8Γ−1, 16.1Γ−1}
respectively.
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Figure 6.3: Impurity DOS at interaction strength U = 9Γ as the temperature is lowered
below the Kondo temperature TK . Inset shows zoom of the peak at the Fermi energy in
the β = 50Γ−1 results. Dashed black line shows Lorentzian fit used to estimate the width
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Note that this procedure is different from the method for estimating the Kondo
temperature used in [169], which defines TK as the temperature at which the conductance
reaches half of its zero temperature value [15]. Since TK defines a crossover scale rather
than a sharp transition, its exact value is ambiguous. In [171], the authors find that within
the non-crossing approximation (NCA) the TK estimated from the impurity spectrum is
approximately half the TK estimated from the conductance.

Following the approach taken in [169], we consider the effect of lead perturbations
(α = 0.1) a distance L away from the impurity. We study how the perturbations change
the width γimp which we take as a proxy for changes in the Kondo temperature TK .
In the experimental setup L is varied on the order of the Fermi wavelength around
three fixed distances. The experimental parameter estimates of the resonance width give
∆ = πvf/L ≈ {3Γ, 1.2Γ, 0.75Γ} which correspond to L = πvf/∆ ≈ {10a, 26a, 42a}. This
implies a maximum experimental L on the order of twice the bare cloud length estimated
from the theoretical formula ξ0 = vf/TK .

The top panel of Fig. 6.4 shows our results for the Kondo peak width γimp as a
function of L. For scale, vf/γimp = {133a, 148a, 161a} for U = {7Γ, 8Γ, 9Γ} respectively.
Note vf/γimp underestimates the bare cloud length ξ0 = vf/TK since at βΓ = 50 γimp

overestimates TK due to thermal broadening. The width shows a pronounced even-odd
effect which comes from changing the cavity between on- and off-resonance (e2ikfL = ±1).
The bottom panel of Fig. 6.4 shows γimp for odd sites only, normalized by the peak width
in the absence of the cavity. These results agree with the results of [168, 169] in predicting
Kondo temperature oscillations which decay with L. The magnitude of the oscillations is
somewhat smaller, likely due to thermal broadening of the Kondo peak, and our choice
of a symmetric coupling to both leads, instead of having a stronger coupling to the right
lead hosting the cavity as in the experiment.

These results provide a detailed picture of the effect of the lead perturbation. Notably,
the amplitude of the width oscillations is a non-monotonic function of the distance L.
For small L (. 50a) the oscillation amplitude slowly increases with L. For larger L

(. 100a) the oscillation amplitude linearly decays. Interestingly, for L & 100a what
happens depends on the value of U . For U = 7Γ (the case closest to the experimental
value) the oscillation amplitude simply decays and remains very small as L is increased.
However for larger U , the lines for even and odd L cross over and the even-odd effect flips
direction. This crossover should be observables in future experiments. The oscillation
amplitude then flattens off around L ' 150a and begins a slow decay.

A non-monotonic dependence of TK on L was previously seen in [168] using Anderson’s
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Figure 6.4: Top: Kondo peak width γimp as a function of the size of the Fabry-Pérot
cavity length L for α = 0.1 and U = {7Γ, 8Γ, 9Γ}. Solid (dashed) lines show data for L
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Logarithm of peak width γimp normalized by peak width in the absence of the cavity γ0.
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poor man’s scaling technique [172], but not NRG. In that paper, the authors attribute
the monotonic dependence seen in their NRG results to a failure of the logarithmic
discretization to fully resolve the energy scale ∆ introduced by the lead perturbation.
Our results provide further evidence that the expected dependence is non-monotonic and
may not be well captured by the logarithmic discretization employed in traditional NRG
methods. It would be interesting to revisit this problem with newer NRG methods which
allow a more flexible band discretization [173].

Due to the complicated, non-monotonic behavior, it is difficult to extract a numerical
value for the Kondo cloud length from these data. The results clearly reveal that the lead
perturbation has a pronounced effect on the Kondo state which shows an overal decay
with L and reveals something about the Kondo cloud. However the exact interpretation
of this behavior in order to extract a length scale remains difficult especially at large U .
Because of this, it is interesting to consider other experimental modalities that could be
applied to the same system in order to obtain a complementary view of the Kondo cloud.

A promising alternative view is provided by the lead local density of states (LDOS)
which is accessible via STM to future experiments. Fig. 6.5 shows the lead LDOS at
two sites on the right lead as the temperature is lowered below the Kondo temperature
TK . Note, for all following results we have set α = 0 and there is no cavity formed in
the leads. As the Kondo peak emerges at the Fermi energy in the QD DOS below TK ,
a corresponding feature emerges at the Fermi energy in the lead LDOS. For odd sites,
this feature is seen as a dip around the Fermi energy relative to the high temperature
spectrum, whereas for even sites the feature is seen as a peak.

In order to observe how the Kondo cloud manifests itself in the lead LDOS we compare
the non-Kondo LDOS ρNK(ω) which we observe at T = 1Γ � TK to the Kondo LDOS
ρK(ω) which we observe at T = 0.02Γ� TK . Fig. 6.6 shows the difference ρK(ω)−ρNK(ω)

for four different sites. The difference is largest at the Fermi energy, decays rapidly with
ω and becomes oscillatory with increasing distance from the QD. This approach to
characterization of the Kondo cloud has previously been explored in [162, 163].

In [162], the authors propose measuring the extent of the Kondo cloud by examining
the function

F (n) =

∫
dω
[
ρKn (ω)− ρNK

n (ω)
]
Lγ(ω) (6.15)

where Lγ(ω) is a Lorentzian with width given by the width of the Kondo peak on the
impurity. This proposal successfully gives a function which appears to measure the extent
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of the Kondo cloud. However, it has the unfortunate feature of directly inserting the
Kondo temperature (via the impurity DOS width γ) into the measurement of the Kondo
cloud. Ideally, one would like to have a measurement of the Kondo cloud which is as
independent as possible from other measurements in order to be able to check its scaling
properties.

In [163], the authors propose measuring the extent of the Kondo cloud by examining
the function

L(n) =

∫
dω
∣∣ρKn (ω)− ρNK

n (ω)
∣∣ (6.16)

which integrates the absolute difference between the Kondo and the non-Kondo spectra
over the entire bandwidth. This procedure avoids inserting the Kondo temperature into
the measurement. However, it also makes the measurement experimentally impracticable
because the magnitude of the difference becomes very small and highly oscillatory away
from the Fermi energy and so would require extremely high precision measurements over
the entire energy window.

As an alternative to these methods, we propose to measure the Kondo cloud in the
lead LDOS by looking at the width of the peak/dip at the Fermi energy. This avoids
unnecessarily introducing TK into the measurement and the need for extremely high
precision measurements over the whole bandwidth. The black dashed lines in Fig. 6.6
show fits of a Lorentzian to the central peak which we use to extract the width γ(x). From
the figure we see that a Lorentzian provides a good fit of the central peak and that the
peak narrows with distance from the QD.

The top panel of Fig. 6.7 shows the dependence of the LDOS width γ(x) on distance
from the QD for U = {7Γ, 8Γ, 9Γ}. Note this data contains both even and odd sites,
demonstrating that there is no even-odd effect in the width. For small x the data shows
γ(x) slightly increasing. As x increases, γ(x) begins a smooth monotonic decay. It is worth
noting that this behavior appears much simpler than the behavior of TK as a function of
L in the presence of a cavity.

The bottom panel of Fig. 6.7 shows that γ(x) appears to demonstrate universal scaling
behavior. To extract the length scale ξ we fit a function f(x) = c exp

[
− (x/ξ)1/5

]
to γ(x)

over the range 100a ≤ x ≤ 500a for each U . The particular form of this fit function was
empirically determined. In particular, the exponent was initially a free parameter but
was found to take values ≈ 1/5 and was then fixed. The plot shows the curve collapse
generated by plotting log (γ(x̃)/c) against x̃ = (x/ξ)1/5. The robust linear behavior for
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x̃ & 3 shows that this correctly describes the scaling behavior.
In the inset of Fig. 6.7 we plot the extracted length scale ξ against the inverse Kondo

peak width. As expected, this shows linear behavior consistent with the theoretical
relationship ξ0 = vf/TK . Note that the values of ξ are small relative to the expected
length scales of ∼100a. However, this small value should not be taken to imply that there
is no Kondo cloud. The small values of the length scale ξ describing the asymptotic decay
are due to the small exponent of our fit function. The top panel of Fig. 6.7 shows that
the width remains a substantial fraction of the impurity peak width over length scales of
∼100a.

This method offers a view of the Kondo cloud complementary to the view provided
by the lead perturbation method. In particular, the expected functional dependence is
simpler and the process of extracting a length scale more straightforward. However, this
method does require high precision STM measurements. In this model, the peak widths
are on the order of 0.05Γ ≈ 5µeV.

We now consider the effect of a voltage bias V on the Kondo cloud. Because we are
using a real time impurity solver, nonequilibrium scenarios can be simulated in exactly
the same way as equilibrium ones. Fig. 6.8 shows the impurity DOS and lead LDOS
for several applied voltages. On the impurity, the applied voltage suppresses the Kondo
peak and splits it creating two lower peaks at ω ≈ ±V /2 [33]. Near to the impurity at
x = 2a this same phenomena can be observed in the difference between the Kondo and
non-Kondo LDOS (top left of bottom panel). As we move further away from the impurity
the effect of the voltage becomes more complicated as the underlying spectrum becomes
more oscillatory. Nevertheless increasing the voltage consistently suppresses the overall
difference between the Kondo and non-Kondo LDOS at all distances. This provides a
new experimentally accessible window into the mechanism by which an applied voltage
destroys the Kondo effect [101, 174]. This correspondence also provides some evidence for
the relevance of the lead LDOS for Kondo physics on the impurity.

6.5 Conclusions

We have demonstrated how to calculate the Kondo cloud using two different modalities.
Following recent experimental [169] and theoretical [168] work, we first measure the Kondo
cloud by observing the effect of lead perturbations a distance L away from the QD on the
Kondo temperature. Consistent with previous results, we find oscillations in the Kondo
temperature which decay with L. In addition to confirming the general scenario seen in
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[169] we also uncover a more detailed picture of the spatial dependence of the Kondo
temperature oscillations which may be observed in future experiments with greater spatial
resolution. In particular, we show that the even-odd effect which generates the oscillations
may flip for large L resulting in a non-monotonic dependence in the oscillation amplitude.

Having established that we reproduce the key existing experimental observations, we
show how the Kondo cloud might be observed in a complementary way in the same system
via future STM experiments. We identify features in the lead LDOS corresponding to the
onset of Kondo physics. In particular, we show that the width of a peak (dip) in the lead
LDOS at the Fermi energy decays with distance from the QD and that the length scale
of this decay can be used to define a measurement of the Kondo cloud which appears to
displays the correct scaling behavior. We also investigate the effects of an applied voltage
bias and find that the suppression of the Kondo resonance on the impurity by a voltage is
accompanied corresponding changes in the lead LDOS. These effects should be observable
with STM. Measuring the width of the central LDOS peak would require ∼µeV resolution
which is already experimentally possible in some systems [175].

6.6 Appendix

Calculation of Lead Green’s Functions

In this appendix we derive equations for the lead Green’s functions. We proceed in three
steps. First we derive a general form for the Dyson equation. We then apply this result to
derive equations for the non-interacting lead Green’s functions which appear in equation
6.7 and 6.11. Finally, we apply the same techniques to derive equation 6.11 for the local
lead Green’s function in the presence of the QD.

Consider a non-interacting Hamiltonian H = H0 + V where both H0 and V are
single-particle operators. The Green’s function for this system is given by

G(ω) = (ωI −H)−1 = (ωI −H0 − V )−1 (6.17)
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where H, H0, and V are matrices in the single-particle space. From this we can obtain

(ωI −H0 − V )G = I (6.18a)

=⇒
(
I − (ωI −H0)

−1 V
)
G = (ωI −H0)

−1 (6.18b)

=⇒ (I − gV )G = g (6.18c)

=⇒ G = g + gV G (6.18d)

where g(ω) = (ωI −H0)
−1 is the Green’s function for H0. Note that the equation

G = g +GV g can be obtained in the same way.
Using these results, we can derive an equation for the non-interacting lead Green’s

function gw(ω) = (ωI −Hw)
−1. The main difficulty in computing gw is that the leads

are semi-infinite so the matrices are infinite dimensional. To solve this issue, we let V

be the operator describing hopping between site N and N + 1 of the lead. Note that
H0 = Hw − V is then partitioned into two disconnected blocks, A and B, consisting of
the first N sites, and the rest of the semi-infinite chain respectively. Applying 6.18, and
dropping the lead index w, we obtain the equations

gij = g̃ij + g̃iN tgN+1,j (6.19)

gN+1,j = 0 + g̃N+1,N+1tgNj (6.20)

gNj = g̃Nj + g̃NN tgN+1,j (6.21)

where g̃ = (ωI −H0)
−1 is the Green’s function of the lead without V , t is the hopping

amplitude between sites N and N + 1 and we assume i, j ≤ N . Note, in the second
equation the first term is zero because there are no terms in H0 connecting sites on
different sides of the partition. Also note that the Green’s function g̃N+1,N+1 is simply the
surface Green’s function for a uniform semi-infinite chain which we denote G. G can be
computed analytically (see chapter 5 of [22]). Combining the second and third equations
we obtain

gN+1,j = Gtg̃Nj + Gtg̃NN tgN+1,j (6.22)

=⇒ gN+1,j =
tg̃Nj

G−1 − t2g̃NN

. (6.23)
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Combining this with the first equation we obtain

gij = g̃ij + t2
g̃iN g̃Nj

G−1 − t2g̃NN

. (6.24)

Now note that H0 is block diagonal and can therefore be written as H0 = HA
0 ⊕HB

0 . We
write

g̃ = (ωI −H0)
−1 (6.25)

=
(
ωI −HA

0 ⊕HB
0

)−1 (6.26)

=
(
ωI −HA

0

)−1 ⊕
(
ωI −HB

0

)−1
. (6.27)

Since we assumed that i, j ≤ N we have g̃ij =
(
ωI −HA

0

)−1 which is given entirely in
terms of finite dimensional matrices and can be directly computed. Using this procedure
we can compute the non-interacting lead Green’s functions gw(ω) which appear in equation
6.7 for the coupling density and in equation 6.11 for the lead Green’s functions in the
presence of the QD.

The derivation of equation 6.11 proceeds in much the same way, but is complicated by
the fact that the system now contains interactions. In the presence of interactions, the full
Green’s function may be written as

G(ω) = (ωI −H0 − V − Σ)−1 (6.28)

where H = H0 + V is the single-particle Hamiltonian and Σ is the self-energy generated
by the interaction. Following the same steps as above we again obtain G = g + gV G with
the difference that now g(ω) = (ωI −H0 − Σ)−1 contains the self-energy. This amounts
to the observation that one can write the Dyson equation relative to an arbitrary part of
the single-particle Hamiltonian rather than the interaction self-energy.

To derive equation 6.11, let V be the operator describing hopping between the impurity
(at site 0) and lead w. Without loss of generality we take w = r. Note that H0 = H −V is
then partitioned into two disconnected blocks, A and B consisting of the impurity together
with lead l, and lead r respectively. We then obtain the equations

Gii = ĝii + ĝi1λG0i (6.29)

G0i = 0 +G00λĝ1i (6.30)

where G is the full Green’s function in the presence of the QD, ĝ(ω) = (ωI −H0 − Σ)−1,
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and λ is the hopping amplitude between the impurity and lead r. Combining these
equations we obtain

Gii = ĝii + λ2ĝi1G00ĝ1i (6.31)

which reproduces the form of equation 6.11. However ĝ still contains the self-energy Σ

and so requires some additional simplification. In this model the self-energy is local to
the impurity. Therefore Σ is zero in subspace B, which does not contain the impurity,
and can be written Σ = ΣA ⊕ ΣB = ΣA ⊕ 0. Additionally because of our choice of V
the Hamiltonian H0 is partitioned into two disconnected blocks and can be written as
H0 = HA

0 ⊕HB
0 = HA

0 +Hr. We can write

ĝ(ω) = (ωI −H0 − Σ)−1 (6.32)

=
(
ωI −HA

0 ⊕Hr − ΣA ⊕ 0
)−1 (6.33)

=
(
ωI −HA

0 − ΣA
)−1 ⊕ (ωI −Hr)

−1 . (6.34)

This implies that for indices i, j in subspace B (lead r) we have

ĝ(ω)ij =
[
(ωI −Hr)

−1]
ij
= gr,ij(ω). (6.35)

Using this we obtain

Gr,ii(ω) = gr,ii(ω) + λ2gr,i1(ω)Gimp(ω)gr,1i(ω). (6.36)

which reproduces equation 6.11.

Inchworm Benchmark

Fig. 6.9 shows a comparison between results obtained using the one crossing approximation
(OCA) and inchworm QMC truncated at order 3 and 4. Note that the OCA corresponds to
inchworm truncated at order 2 and the exact solution is recovered as the truncation order
is taken to infinity [31, 55]. The comparison is done at the smallest considered interaction
strength U = 7Γ where OCA is expected to be least accurate. The inchworm QMC results
are converged at orders 3 and 4. The parameters tmax = 5Γ−1 and β = 20Γ−1 which
are smaller than those used in main text and are chosen in order to make the inchworm
calculations computationally feasible. The unit of time is given by h̄/Γ ≈ 6.5 ps. The
temperature T = 1/β = 0.05Γ is below the Kondo temperature estimated from the OCA
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peak width, TK ≈ 0.075Γ. The top panel shows the imaginary part of the time-dependent,
retarded QD Green’s function Gimp(t) which is the direct output of the solvers. The
bottom panel shows the DOS obtained via a Fourier transform of Gimp(t). Note that the
DOS is broadened significantly relative to the results in the main text due to the short
maximum simulation time tmax.
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CHAPTER VII

Inchworm DMFT

7.1 Introduction

The direct solution of quantum systems with many interacting degrees of freedom is
believed to be intractable in general, and in order to understand the salient aspects of
these systems, suitable approximations have to be employed. The dynamical mean field
theory[176] is one such approximation. It is based on the realization that if the momentum
dependence of the self-energy can be neglected, as occurs in certain infinite coordination
number limits, the solution of a lattice model can be mapped onto that of an auxiliary
quantum impurity model with self-consistently determined parameters [24, 25]. Note this
self-energy is the usual self-energy with respect to the non-interacting system not the
self-energy for the impurity propagators discussed in the context of M -crossing methods
in chapter 3.

Quantum impurity models are amenable to numerical study, and the last decade
has seen rapid advancement in the development of algorithms for their solution. In
particular, remarkable progress was achieved by the continuous-time quantum Monte
Carlo methods,[68, 177–181] which by now are the standard methods for studying multi-
orbital and cluster impurity problems;[69] as well as in numerical renormalization group;[8]
density matrix renormalization group;[182] and configuration interaction methods.[183,
184]

Modern quantum Monte Carlo methods are numerically exact, in the sense that they
can provide results that converge to the exact answer with an uncertainty proportional to
the square root of the number of stochastic samples taken. However, because these methods
are formulated within an imaginary-time statistical mechanics formalism, real-frequency
data such as spectral functions needs to be extracted from an ill-conditioned analytic
continuation procedure,[185–193] in which these uncertainties are exponentially amplified.
Furthermore, studying systems in general nonequilibrium states or under time-dependent
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driving beyond linear response is not possible.
The desire to understand nonequilibrium transport in correlated impurity models

motivated the development of real-time generalizations of continuous-time quantum Monte
Carlo methods.[49, 140, 141, 145] These early methods require exponentially increasing
computer time as a function of the simulated time due to the dynamical sign problem,
i.e. the sign problem occurring when real-time dynamics is evaluated. The development
of bold-line impurity solver algorithms[47, 73, 75, 77] substantially alleviated this sign
problem and increased the accessible parameter space. A recent development, the inchworm
quantum Monte Carlo method,[55] showed a reduction of the computational scaling from
exponential to quadratic, effectively eliminating the dynamical sign problem altogether.

For dynamical mean field applications[194–197] of the inchworm method, two more
components are necessary: the ability to obtain two-time response functions, and the
extension of the method to an initial thermal ensemble. Both components have recently
been implemented,[31] allowing us to test the method. As a first application, we address
a lattice model for which the dynamical mean field approximation becomes exact: the
Hubbard model on the infinite coordination number Bethe lattice. While we see the main
application of our method in non-equilibrium,[30] we demonstrate its power here for the
equilibrium case, where a large variety of well-developed and competitive methods are
available and the physics is well understood.

The chapter is organized as follows. In Section 7.2, we write down the lattice model,
recapitulate the dynamical mean field theory, introduce our impurity solver, discuss how
self-energies are extracted, and explain how linear prediction can be used to obtain spectral
functions. In Section 7.3 we present our results, including real-time Green’s functions, real-
time self-energies and real-frequency spectral functions with and without linear prediction.
Finally, in Section 7.4, we discuss our conclusions and outlook. The appendix contains
further technical and numerical information.

7.2 Methods

Lattice model and dynamical mean field theory

We study the repulsive Hubbard model in equilibrium on the infinite coordination number
Bethe lattice. The Hamiltonian is given by

Ĥ = −ṽ
∑
〈ij〉

c†iσcjσ + U
∑
i

ni↑ni↓, (7.1)
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where ṽ denotes the hopping matrix element, and σ denotes the spin index. The operators
c†iσ/ciσ create/annihilate electrons with the spin σ on the corresponding site i. U is the
on-site Coulomb repulsion between electrons with opposite spins. We restrict our discussion
to the paramagnetic solution of a half-filled infinite coordination number Bethe lattice.
The hopping matrix element must be properly scaled with the coordination number Z

to remain finite in the limiting case, limZ→∞(ṽ
√
Z) = v.[24] Throughout this chapter

we employ dimensionless units by dividing/multiplying all energy/time scales by the
hopping strength v. The Bethe lattice is characterized by a semi-elliptical noninteracting
density of states D(ε) =

√
4− ε2/(2π). The model’s interacting self-energy Σiσ,jσ′(t, t′),

corresponding to Eq. 7.1, is purely local (i.e. zero for i 6= j), and its local part Σiσ,iσ′(t, t′)

is equal to the self-energy of an auxiliary impurity model. The lattice Green’s function
can easily be obtained from this self-energy.[176]

We simulate the real-time dynamics of the model in equilibrium by means of the
real-time dynamical mean field formulated on the L-shaped Keldysh contour.[92, 198] We
define the impurity Green’s function as the contour-ordered expectation value [30]

Gσ(t, t
′) ≡ −i

〈
TCcσ(t)c†σ(t′)

〉
, (7.2)

where cσ and c†σ denote impurity operators, such that the retarded Green’s function is
given by

Gret
σ (t, t′) = −iθ(t− t′)

〈[
cσ(t), c

†
σ(t

′)
]
+

〉
. (7.3)

Time-translation invariance of the system in equilibrium implies that the two-time
Green’s function only depends on time differences: Gσ(t, t

′) = Gσ(t − t′). The DMFT
self-consistency condition for the Bethe lattice thus reads

∆σ(t− t′) = Gσ(t− t′) (7.4)

for any two times t, t′ on the L-shaped contour.
We solve the dynamical mean field equations iteratively, starting from a metallic,

insulating, or high-temperature guess for the Green’s function. Each DMFT iteration
requires the solution of an impurity problem. We employ the inchworm quantum Monte
Carlo solver (see chapters 3 and 4) to obtain a numerically exact solution of the Green’s
function of this single impurity Anderson model, up to some finite maximal time.
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Real-time self-energies

The local self energy function is of special interest in the DMFT context as it contains
all relevant information about single-particle correlations in the system. Its retarded
component Σret(t− t′) is defined as the solution of the Dyson equation (spin indices are
omitted for clarity)

Gret(t− t′) = Gret
0 (t− t′)+

+

∫∫ tmax

0

dt1dt2G
ret
0 (t− t1)Σ

ret(t1 − t2)G
ret(t2 − t′). (7.5)

Here, Gret
0 (t−t′) is the retarded Green’s function of the noninteracting lattice, Gret(t−t′) is

obtained numerically as a result of a DMFT/inchworm calculation, and tmax is a maximum
simulation time.

Eq. (7.5) is a Volterra integral equation of the first kind with respect to Σret. In a
numerical implementation, Gret

0 (t) and Gret(t) are known on some finite time mesh (for
example, a uniform grid). It is therefore natural to project the integral equation onto the
mesh, and use numerical linear algebra methods to solve the resulting linear system. In
principle, the solution of Eq. (7.5) could be obtained in Fourier space by applying the
convolution theorem. However, this approach is not practical here, as Gret(t) is known only
up to a finite time, and does not generalize to the non-equilibrium case without additional
modifications.

Given a number of time slices Nt, we introduce mesh nodes ti = i∆t with i ∈
{0, 1, . . . , Nt − 1} and ∆t = tmax/(Nt − 1). A discretized version of the Dyson equation
then reads

Gret(ti − tj) = Gret
0 (ti − tj)+

+ (∆t)2
Nt−1∑
k,l=0

Gret
0 (ti − tk)Σ

ret(tk − tl)G
ret(tl − tj)wkl. (7.6)

The quadrature weights wkl define the integration method, and at this point we do not
specify their precise form. Using matrix notation Fij = F (ti − tj) we find

Σret
ij wij =

(Gret
0 )−1

ij − (Gret)−1
ij

(∆t)2
. (7.7)

The numerical matrix inversion used here is stable, as all retarded Green’s functions are
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represented by lower triangular matrices with Gret(0+) = −i on the main diagonal, such
that their condition number is 1. The (∆t)2 in the denominator of (7.7) suggests that this
procedure is similar to numerical calculation of the second derivative. The number of time
slices at which Gret(ti) is known is limited by the computational effort required by the
inchworm QMC algorithm. In order to make the numerical differentiation accurate, we
choose Nt much larger than used in the inchworm simulation and employ a cubic spline
interpolation of Gret between the original nodes.

Only certain choices of quadrature weights give a convergent solution in the small
∆t limit. In his study of the one-dimensional Volterra equations of the first kind, Linz
[199] showed that trapezoidal and rectangular rules are convergent, whereas higher order
quadrature methods in general are not. Using this result as a starting point, we construct
wij as possible direct products wiwj, where wi and wj correspond to the rectangular rule
with the first/last point excluded and to the trapezoidal rule. Most combinations can be
ruled out, as they cause Σret(tmax) to diverge in the small ∆t limit. We found that the
following choice:

wi≥j =



0, i = 0,

0, j = Nt − 1,

0, i = j,

1/2, j = i− 1,

1, otherwise.

(7.8)

yields stable and accurate results. The first two lines in (7.8) show that we choose a
rectangle rule approximation excluding the first slice from the t1-integral and the last
slice from the t2-integral. Values on the first sub-diagonal receive half the weight, because
retarded functions are proportional to θ(t− t′). Finally, w as well as all other matrices
entering the equation must be of Toeplitz form in equilibrium. We therefore also set the
main diagonal of w to zero.

Equations (7.7) and (7.8) allow for extracting all mesh values of the self energy, except
Σret

ii = Σret(0+). This element is known analytically, see section 7.5.

Linear Prediction

Our simulations are performed up to a finite maximum real time tmax determined by the
available computational resources. However, many quantities are best described in the
real-frequency domain, and are therefore expressed as Fourier transforms over the entire
time axis. When Fourier transforming quantities with a hard time cutoff, the transform
can be expressed as a convolution with a sampling kernel proportional to sinc(ω) = sin(ω)

ω
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in the frequency domain, i.e.

Ã(ω) =

∫ ∞

−∞
dω′K(ω, ω′)A(ω′), (7.9)

where Ã(ω) is the result from a Fourier transform with data up to finite times, A(ω) is
the true result and the convolution kernel is given by

K(ω, ω′) =
tmax

2π
sinc

(
(ω − ω′) tmax

2

)
. (7.10)

This convolution introduces broadening and unphysical oscillations into the spectral
function. Linear prediction is a technique to remove these artifacts by using a physically
motivated extrapolation scheme to extend data beyond the maximum simulated time.
Linear prediction has previously been used for this purpose within the framework of
t-DMRG[200–203]. We start with the ansatz that the value of the signal (in this case the
Green’s function) at the n-th real time point is a linear function of its previous p values,
i.e.

x̃n = −
p∑

i=1

aixn−i. (7.11)

It can be shown that this corresponds to fitting the function in time to a superposition
of p complex exponential terms. In the case of a Green’s function dominated by a few
isolated poles, this approximation is justified. For the data presented here, the validity
needs to be assessed by systematically varying p.

In order to use this model for extrapolation, the coefficients ai must be fit to the known
data. This is done over the region (tmax − tfit, tmax) in order to exclude spurious short time
behavior from the fit results. The linear prediction ansatz leads to a matrix equation

Qa = −x, (7.12)

where Qnk = xn−k is an N × p complex matrix with N the number of points in
(tmax − tfit, tmax). Solving this in the least squares sense leads to the normal equations

Ra = −r. (7.13)
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This is written in terms of the autocorrelations of the data,

Rji =
∑
n

x∗
n−jxn−i; rj =

∑
n

x∗
n−jxn. (7.14)

These matrix equations are often unstable and require some form of regularization. Here
we choose the simple regularization, R−1 → (R + εI)−1 and check that the results are not
strongly affected by the regularization parameter.[201] With this scheme, the coefficients
ai are readily obtained and the Green’s function can be extrapolated until it decays to
zero. The procedure yields spectral functions free from unphysical finite time oscillations,
at the cost of some additional systematic uncertainty due to the assumptions imposed by
the linear prediction ansatz. We emphasize that linear prediction is only applied to our
converged data as a post-processing routine, in order to interpret the real-time results
as functions of frequency. The DMFT / inchworm iteration procedure preceding it is
formulated in terms of real, finite times only, and independent of the linear prediction
formalism.
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Figure 7.1: Real and imaginary parts of the greater dynamical mean field Green’s function
G>(t) as a function of real time t up to a maximum time of tv = 2. U/v = 4, T/v = 0.05,
equilibrium. Shown is the convergence with DMFT iteration.
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7.3 Results

Our impurity solver obtains results for G(t, t′) as a function of real times. A typical raw
simulation output is shown in Fig. 7.1, which shows the real (solid lines) and the imaginary
part (dashed lines) of the greater Green’s function up to a maximum time tv = 2 and at a
low temperature of T/v = 0.02. The interaction strength is taken to be U/v = 4, equal to
the full bandwidth of the infinite coordination number Bethe lattice. The error bars of the
measured Green’s function could, in principle, be estimated as standard deviation from a
set of completely independent DMFT/inchworm runs. With our present implementation
this approach has proven too computationally expensive.

The inchworm Monte Carlo method is only exact when two numerical parameters are
controlled. The first of the parameters is the discretization of the imaginary and the real
time branch ∆t, which we chose to be ∆tv = 0.05. Second, the maximum order to which
diagrams in the inchworm expansion are considered. We find, especially in the metallic low
temperature regime, that results converge at an inchworm expansion order of around seven.
As the inchworm order is directly related to the number of crossings considered in an
M -crossing approximation (see chapter 3) this result implies that results from non-crossing
or one-crossing approximations are not valid in this parameter regime. Throughout this
chapter, all the results presented are converged in both ∆t and maximum order.

We observe that the dynamical mean field solution converges in a causal manner, in the
sense that results are converged within one iteration by time tv = 0.3, within two iterations
by time tv = 1.0, and results up to tv = 2 are indistinguishable between iterations 4 and
5, indicating that the self-consistency loop has converged. While this causal convergence
can be used to avoid the usual dynamical mean field iteration scheme and replace it with
a direct solution of the self-consistency equations,[30] this scheme has not been employed
here.

As the model is tuned from metallic to insulating, the shape of the real-time Green’s
functions changes substantially, from slow oscillations at weak coupling to rather rapid,
quickly decaying oscillations at large interaction strength. This is shown in Fig. 7.2, for
interaction strengths U = 2/v, U/v = 4, U/v = 6, and U/v = 8, at a relatively high
temperature of T/v = 0.5.

In contrast, lowering the temperature by a factor of 10, as shown in Fig. 7.3, causes
relatively little change in the Green’s function, with both oscillation frequency and
amplitude staying more-or-less invariant for the time range simulated. Fig. 7.3 shows a
regime in which a quasi-particle peak emerges upon cooling. However, the properties of
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Figure 7.2: Real and imaginary parts of the greater DMFT Green’s function G>(t),
for times up to tv = 2, with T/v = 0.5, half filling, equilibrium, at on-site interaction
strengths U/v ∈ {2.0, 4.0, 6.0, 8.0}.

this peak are not obvious in the data for the greater Green’s function shown here.
Using the procedure described in Sec. 7.2, we can directly extract a real-time self-

energy. Fig. 7.4 shows the imaginary parts of the noninteracting and the interacting
retarded Green’s functions (left vertical axis) along with the imaginary parts of the
computed self-energy (right vertical axis) as a function of time. The orange curve is the
Green’s function reconstructed from replacing the bare Green’s function and the self-energy
into eq. (7.6), showing that the scheme for extracting the real-time self-energy, which
is numerically demanding, has converged. The numerical noise visible in the real-time
self-energy may be used to qualitatively assess the size of the Monte Carlo errors intrinsic to
this simulation. However, we note that in the case of inchworm simulations this approach
typically underestimates the errors, and a more complicated procedure is required if one is
interested in rigorous error estimates.[31, 55]

Fig. 7.5 shows the evolution of the imaginary part of the real-time self-energy with
interaction strength, for the same parameters as shown in Fig. 7.2. The self-energy decays
to zero within the accessible times in the weak coupling limit.

In contrast, the insulating regime shows a self-energy consistent with a constant in
the long-time limit. This behavior is caused by the DMFT mechanism for opening a
gap, which requires a pole at zero frequency (at half-filling) in the self-energy, such that
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Figure 7.3: Real and imaginary parts of the greater DMFT Green’s function G>(t),
for times up to tv = 2, half filling, equilibrium, for U/v = 4, at temperatures T/v ∈
{0.5, 0.1, 0.05}.

ImΣ(ω) = ∆2δ(ω) + ImΣreg(ω), where ∆ denotes the Mott half-gap size and Σreg the
non-divergent part of the self-energy. In the atomic limit, one would expect ∆ ∼ U/2. For
the lattice problem with non-zero hybridization, the gap sizes are smaller.

Interacting spectral functions in real frequency, A(ω) = − 1
π
ImGret(ω), are of principal

interest in dynamical mean field calculations because they allow for direct comparison with
photoemission experiments. Obtaining A(ω) in imaginary-time formulations requires an
ill-conditioned analytical continuation procedure, such as the maximum entropy algorithm.
The real-time formulation avoids this. However, the fact that the real-time Green’s function
is only known up to a finite maximum time implies that spectral functions can only be
resolved with a frequency resolution proportional to the inverse of that maximum time.
Fig. 7.6 shows spectral functions extracted from the data in Fig. 7.2 and corresponding to
the self-energies in Fig. 7.5. It demonstrates the metal-insulator crossover as the on-site
interaction strength increases. Due to the finite frequency resolution, sharp features are
absent and part of the spectral function turns negative, especially in the higher frequency
regions.

The linear prediction method described in Sec. 7.2 is an interpolation routine designed
to replace the sharp cutoff of G(t) at the maximum time tmax with a smoothly decaying
function corresponding to a set of poles in the complex plane. As is evident in Fig. 7.7,
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Figure 7.4: Retarded components of the DMFT Green’s function, bare Green’s function
and self-energy computed for U/v = 8.0 at half-filling and temperature T/v = 0.5. Gret

rec(t)
(dashed orange curve lying on top of the black one) is a Green’s function reconstructed
by iterative substitution of Σret(t) into the Dyson equation. Data obtained using 2001
interpolation slices.

data obtained for times up to tv = 2 and extrapolated up to tv = 4 using linear prediction
approximates well our data directly computed by running the dynamical mean field
algorithm up to tv = 4.

The linear prediction results can then be used to obtain spectral functions that do
not suffer from the ‘ringing’ phenomenon. Fig. 7.8 shows the results of this procedure
in practice: while the straightforward continuation of the data up to time tv = 2 shows
only a coarse frequency resolution and has substantial negative contributions between
frequencies of ω/v = 5 and 10, the corresponding extrapolated data shows a double-peak
feature and is positive. Longer-time data (not based on linear prediction) corroborates
the double-peak structure and the slightly larger gap, and similarly does not exhibit a
negative contribution to the spectral function.

Linear prediction is an extrapolation procedure that needs to be carefully controlled.
Results should not depend on the choice of cutoff time or the number of poles interpolated.
These concerns are addressed in section 7.5.

Using linear prediction, we revisit two aspects of single-site dynamical mean field theory:
the opening of the Mott gap as interaction strength is increased, and the establishment of
a quasiparticle peak as temperature is lowered in the coherent metallic regime.

Fig. 7.9 shows the data of Fig. 7.6 obtained within linear prediction. It is evident that
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Figure 7.5: Retarded component of the imaginary part of the DMFT self-energy for
interaction strengths U/v ∈ {2.0, 4.0, 6.0, 8.0} at half-filling and temperature T/v = 0.5.

the increased frequency resolution leads to additional features in the spectral function.
U/v = 2 is metallic with little change of the band structure due to correlations. U/v = 4

shows ‘bad metallic’ behavior where the spectral function near zero is suppressed due to
the onset of insulating correlations. As the interaction is raised to U/v = 6, a gap opens
and a double-peak feature develops, and by U/v = 8 a clear insulating structure with a
wide Hubbard gap has developed.

As temperature is lowered at U/v = 4, the ‘bad metal’ dip in the spectral function
disappears, and for a temperature of T/v = 0.1, a clear sign of a ‘quasiparticle peak’ has
developed (Fig. 7.10). Further lowering of the temperature makes the quasiparticle peak
more pronounced, while deepening the ‘dip’ between the Hubbard side bands and the
peak.

7.4 Conclusions

We have presented a first application of real-time quantum Monte Carlo methods to
real-time dynamical mean field theory. We showed that it is possible to obtain accurate
Green’s functions and self-energies directly in real-time. We further showed that if one is
interested in frequency-transformed properties, linear prediction methods for extending
the range of the available data to longer times work in practice for Monte Carlo data with
sufficient accuracy.
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Figure 7.6: The converged DMFT spectral function A(ω) obtained by directly performing
the Fourier transform on the real time Green’s function with a cutoff at tmaxv = 2 with
T/v = 0.5 and at on-site interaction strengths U/v ∈ {2.0; 4.0; 6.0; 8.0}.

We expect that in the near future our algorithms will have applications mainly out
of equilibrium, in the study of quenches and driven problems, which the impurity solver
algorithm demonstrated here can simulate at no additional cost. In contrast, reaching
substantially longer times or substantially lower temperatures than the ones demonstrated
here will require additional optimizations and access to supercomputer resources.

To take a long view on the equilibrium problem, it is useful to consider the respective
scaling properties of imaginary-time and real-time algorithms with regard to the desired
accuracy of real frequency quantities. Whereas imaginary-time algorithms are currently
far more efficient, they are limited by the exponential sensitivity to errors in the various
analytical continuation methods. Real-time algorithms are substantially more expensive,
but their accuracy is limited only by the maximum simulated time. In the inchworm
method, extending this time requires a quadratic increase in computational effort. It
is therefore entirely conceivable that in the future—as the field grows to be interested
in larger, more frustrated problems and in higher frequency resolution—the real-time
algorithms will eventually surpass their imaginary-time counterparts in efficiency by the
sheer power of scaling.
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Figure 7.9: The converged DMFT spectral function A(ω) obtained by extrapolating
the real-time Green’s function from tv = 2.0 to tv = 10.0 using linear prediction with
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Figure 7.10: The converged DMFT spectral function A(ω) obtained by extrapolating the
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7.5 Appendix

Convergence with respect to the inchworm truncation order

Fig. 7.11 shows the comparison of the Matsubara Green’s function G(τ) computed by the
inchworm nonequilibrium QMC solver and an equilibrium continuous-time hybridization
expansion solver[68] (we used the solver of the open source TRIQS library[71, 204]). The
data are obtained for an impurity calculation starting with a semielliptic density of states
with a full bandwidth of 4 at U/v = 4.6 and half-filling. The upper panel of Fig. 7.11
demonstrates that at high temperature T/v = 0.2, a maximum order of 5 in the inchworm
order truncation is sufficient. In contrast, as the temperature is lowered to T/v = 0.04

(near the onset of the first order coexistence in the dynamical mean field solution of
this model), convergence of the inchworm calculations to the equilibrium result is only
achieved at orders 5, 6 and 7. The correspondence between inchworm order truncation
and the number of crossings in an N-crossing approximation (such as NCA, OCA, or
the two-crossing approximation) implies that a large number of crossings is essential for
obtaining correct results in the correlated metallic regime.

127



0 1 2 3 4 5
τv

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
G

(τ
)

T/v=0.2, U/v=4.6

2.40 2.45 2.50 2.55 2.60

0.110

0.105

0.100

0.095

CTHYB

Inchworm, order 5

0 5 10 15 20 25
τv

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

G
(τ

)

T/v=0.04, U/v=4.6

12.0 12.2 12.4 12.6 12.8 13.0
0.050

0.045

0.040

0.035

0.030

CTHYB

Inchworm, order 5

Inchworm, order 6

Inchworm, order 7

Figure 7.11: Matsubara Green’s function G(τ) computed for the impurity model in
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Robustness of linear prediction
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Figure 7.12: The converged DMFT spectral function A(ω) obtained by extrapolating the
real-time Green’s function from t = 2.0 to t = 10.0 using linear prediction with p = {5, 10},
tfit = {1.0, 2.0} for U = 4 at temperatures T = 0.05.

Linear prediction, introduced in Sec. 7.2 in the main text, is a method used to
extrapolate data known up to a finite cutoff time to much longer times, such that smooth
spectral functions can be extracted. The method can only succeed if the underlying
data contains enough information to represent the long-time behavior accurately, and is
expected to fail if this is not the case. In practice, two control parameters are available.
First, the number of components (poles) p that is being fitted. Second, the time interval
over which the data is extrapolated.

Fig. 7.7 and Fig. 7.8 in the main text show the behavior of the spectral function and the
real-time Green’s function on the final time. Fig. 7.12 and Fig. 7.13 show the dependence
of the converged DMFT spectral functions on the number of poles p and the maximum
fitting time. Plotted are the converged dynamical mean field spectral functions obtained
by extrapolating the real-time Green’s function from tv = 2 to tv = 10.

Clear differences in the data are visible in the height of the quasi-particle peak, the
height of the four peaks in the insulating regime, and the size of the dip separating
the quasiparticle feature from the Hubbard side bands. The ambiguities become less
pronounced when the time accessed is increased. In any case, the main features, in
particular the existence of a quasiparticle peak in the metal or of a double peak structure
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Figure 7.13: The converged DMFT spectral function A(ω) obtained by extrapolating
the real-time Green’s function from tv = 2.0 to tv = 10.0 using linear prediction with
p = {5, 10}, tfitv = {1.0, 2.0} for U/v = 6 at temperature T/v = 0.5.

above and below the Mott gap are clearly evident in our data.
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Self-energy extraction: technical issues
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Figure 7.14: Retarded components of the DMFT Green’s function, bare Green’s function
and self-energy computed in equilibrium with U/v = 8.0 at T/v = 0.5. The self-energy
curves are obtained by a direct solution of the Dyson equation in its discretized matrix
form. Gret(t) has been measured on 41 time slices, while a larger number of slices and cubic
interpolation have been used to perform matrix inversions. The four subplots correspond
to different numbers of interpolation points. Gret

rec(t) (orange curve) is a Green’s function
reconstructed by iterative substitution of Σret(t) into the Dyson equation. Top left: 41
slices. Top right: 101 slices. Bottom left: 1001 slices. Bottom right: 2001 slices.

Being limited by the complexity of the inchworm algorithm, we have to take a sparse
time grid for the real-time Green’s function Gσ(t) and its retarded counterpart Gret

σ (t).
The grid step ∆tv used throughout this work is equal to 0.05, while tmaxv ∈ {2.0, 4.0}.

The self-energy extraction procedure presented in section 7.2 involves a rectangular
rule discretization of the time integrals, a first order scheme in ∆t. We have found that
effect of the discretization error rapidly grows as we propagate to larger times in Σret

σ (t). It
is therefore crucial to introduce a finer time grid, and interpolate Gret

σ (t)/ Gret
0,σ(t) between

the original nodes before doing matrix inversions. Fig. 7.14 shows self-energy extraction
results for T/v = 0.5, U/v = 8.0, computed with Nt = 41 (the original number of points),
101, 1001 and 2001 interpolation slices. One can clearly see a drastic difference in the
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self-energy curves for Nt = 41 and 2001. On the other hand, there is no visible difference
between Nt = 1001 and 2001, which means the interpolation has converged.

The dashed orange curves are obtained by back-substitution of Σret(t) into a trapezoidal-
rule discretization of the Dyson equation (7.5) (different choice of wij). For Nt = 1001, 2001

they lie on top of the input Green’s function, which also signals convergence.

Short time limit of Σret(t)

Σret(t) =

∫ +∞

−∞

dω

2π
e−iωtΣret(ω). (7.15)

Let us introduce a rescaled frequency z = ωt and consider a short time limit of the
self-energy,

Σret(0+) = lim
t→0+

1

t

∫ +∞

−∞

dz

2π
e−izΣret(z/t). (7.16)

Σret(z/t) is an analytic function in the upper half-plane of z for any positive t. We
now employ a high-frequency expansion of the self-energy in the absence of a Hartree-Fock
term,

Σret(ω) = lim
δ→0+

∞∑
m=1

C(m)

(ω + iδ)m
, (7.17)

Σret(0+) = lim
t→0+

1

t
lim
δ→0+

∞∑
m=1

∫ +∞

−∞

dz

2π
e−iz tmC(m)

(z + iδt)m
(7.18)

It is easy to see that only the m = 1 term contributes in the limit of t→ 0+.

Σret(0+) = lim
t→0+

lim
δ→0+

∫ +∞

−∞

dz

2π
e−iz C(1)

z + iδt

= lim
t→0+

lim
δ→0+

(−ie−δtC(1))

= −iC(1).

(7.19)

For the symmetric single orbital Anderson model C(1) = U2/4 (independent of bath
parameters). For a derivation see, for instance, Ref. [205]. Given this,

Σret(0+) = −iU2/4. (7.20)
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CHAPTER VIII

Nonequilibrium Metal–Insulator Transitions

8.1 Introduction

Strongly correlated materials (SCMs) such as transition metal oxides exhibit remarkable
intrinsic switching properties down to the nanoscale, making them an exciting future alter-
native to semiconductor technology [206]. Hysteretic resistive switching effects driven by
electric fields, currents, Joule heating, or photoexcitation have received much experimental
[207–224] and theoretical [225–231] attention in this context. Applications include both
transistors [232–237] and memristors [238–243]. Additionally, memristive systems based
on SCMs promise to enable neuromorphic devices that mimic the behavior of biological
neurons [244–248]. It is thought that such devices could offer lower power consumption
and comparable—or even faster—switching timescales than traditional semiconductor
electronics [249–251]. At the core of such devices is the physics of Mott metal–insulator
transitions.

Here, we describe and solve a simple model showing that a Mott metal–insulator
transition can be driven by proximity to a metallic region. Furthermore, we propose a
potential nanoscale device for realizing this effect and show that switching between the
two states of the device can in principle be achieved on ∼100ps timescales. The device
may be operated as either a transistor, where the system is switched fully across the phase
transition; or as a memristor, taking advantage of memory effects in the coexistence region.

8.2 Model

We study the repulsive, fully frustrated, single-band Hubbard model on the infinite
coordination number Bethe lattice, each site of which is coupled to a noninteracting
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fermion bath [252–254]. The Hamiltonian describing the Hubbard lattice is given by

Hlattice = −v
∑
〈ij〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (8.1)

where c†iσ(ciσ) creates (annihilates) lattice fermions with spin σ on site i; v is the lattice
hopping matrix element; and U is the on-site Coulomb repulsion. We use the hopping v as
our unit of energy, h̄/v as our unit of time and set h̄ ≡ 1. For example, a bare bandwidth
of 4 eV would set our unit of time to be 0.66 fs. In the infinite coordination number limit
considered here, this model may be solved exactly via the dynamical mean field theory
(DMFT) [24, 25] and is known to exhibit a first order Mott metal–insulator transition as a
function of the interaction strength U [28].

The Hamiltonian describing the baths is given by

Hbath =
∑
i

H
(i)
bath, (8.2a)

H
(i)
bath =

∑
kσ

εkb
†
ikσbikσ,

+
∑
kσ

Vk(t)c
†
iσbikσ + V ∗

k (t)b
†
ikσciσ.

(8.2b)

Here, b†ikσ(bikσ) creates (annihilates) bath fermions coupled to site i with spin σ and
quasimomentum k, and Vk(t) is the tunneling matrix element describing hopping between
the lattice and the baths. The time dependence of the bath hopping is parameterized
by a dimensionless coupling strength λ(t) so that Vk(t) = λ(t)Vk. The baths are held in
equilibrium, with their chemical potential set equal to zero. The effect of the baths is
characterized by a coupling density Γbath(ω) = π

∑
k |Vk|2δ(ω − εk) that parameterizes the

bath dispersion εk and tunneling matrix elements Vk. We choose a flat coupling density
with soft-edges Γbath(ω) = Γ/

[(
1 + eν(ω−D)

) (
1 + e−ν(ω+D)

)]
, with parameters Γ = 1v,

ν = 10v−1 and D = 4v. Time dependent manipulation of the bath coupling has previously
been introduced as a method to induce cooling of the system [255, 256].

8.3 Methods

An exact solution of the model on the infinite coordination number Bethe lattice is given by
the nonequilibrium DMFT mapping [30]. DMFT maps the lattice model to an Anderson
impurity model with a self-consistently determined hybridization function ∆σ(t, t

′) given
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by

∆σ(t, t
′) = v2Gσ(t, t

′)

+ λ(t)∆bath(t, t
′)λ(t′),

(8.3)

where Gσ(t, t
′) is the impurity Green’s function; ∆bath(t, t

′) is the hybridization between
the lattice and bath; and λ(t) is the time-dependent coupling strength. The equations
are solved by starting with an initial guess for ∆σ(t, t

′), evaluating the impurity Green’s
function, and iterating until a self-consistent solution is found. In the coexistence region,
the insulating and metallic solutions are found by choosing an initial guess with or
without a gap respectively, otherwise the initial guess has no effect on the solution once
the self-consistency has converged. These equations are formulated on the three-branch
Keldysh–Matsubara contour. Because our contour includes a Matsubara branch, the initial
state of the system is always a solution of the equilibrium DMFT equations.

For the solution of the impurity model we use the one crossing approximation (OCA)
[53, 54, 257]. In equilibrium the OCA is known to capture the qualitative physics of
the Mott transition with reasonable accuracy [67]. We further validate our OCA results
against numerically exact inchworm QMC[31, 32, 55] data in the parameter regime where
this is feasible (see section 8.6).

The main physical quantity of interest is the time-dependent spectral function A(ω, t)

which may be defined in a number of different ways out of equilibrium. Here, we use the
auxiliary lead formalism [46–48] to express the time-dependent spectral function as

A(ω, t) = lim
η→0
− 2h

eπη
[IfA(ω, t)− IeA(ω, t)], (8.4)

where IfA(ω, t) and IeA(ω, t) are currents through two auxiliary leads with coupling density
ΓA(ω

′) = ηδ(ω′−ω), and with chemical potentials set such that the leads are full and empty
respectively. These auxiliary currents are calculated using the Meir–Wingreen formula
[153] applied to the local Green’s function Gσ(t, t

′) computed by the impurity solver. This
definition matches the conventional equilibrium spectral function A(ω) = (−1/π) ImGr(ω)

in steady state, provides frequency rich spectral information at all times, and has an
operational realization.

Using this formalism we compute A(ω = 0, t) which in steady state gives the density of
states at the Fermi energy and allows us to determine whether the system is in a metallic
or insulating state. Outside of the steady state regime the auxiliary current spectral
function inevitably mixes together the dynamics of the system with the dynamics of the
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auxiliary leads themselves. This mixing is unavoidable and is an expression of the fact that
one cannot give an instantaneous value to a frequency dependent quantity that strictly
speaking requires integration over all times. Nevertheless, the auxiliary current spectrum is
useful in understanding the non-equilibrium dynamics of the system since as it approaches
a quasi-steady state it becomes conventionally interpretable.

8.4 Results
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Figure 8.1: A: Spectral weight at ω = 0 as a function of λ for metallic (dashed orange)
and insulating (solid blue) initialization of the DMFT loop. The dashed black lines show
the boundaries of the coexistence region (λc1 = 0.115, λc2 = 0.145). B: Spectral function
for several different λ. C: Spectral functions of metallic and insulating solutions in the
coexistence region.

Fig. 8.1 shows the equilibrium spectral function of the system as a function of the
time-independent bath coupling λ. The interaction strength U is set to 4.9v and the
inverse temperature β is set to 50v−1. The inverse temperature of the fermion baths is
held constant at this β throughout the simulation and their chemical potential is set equal
to zero. These parameters are chosen so as to generate a sizable coexistence region, and
are used throughout the rest of this chapter. The maximum simulation time tmax is set to
50.0v−1, which is long enough to resolve sharp features in the spectrum. Fig. 8.1A shows
that A(ω = 0) increases by several orders of magnitude as λ is varied from 0.0 to 0.25,
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for both metallic (dashed orange) and insulating (blue) initializations of the DMFT loop.
The system goes through a first order phase transition from an insulating state at small λ
to a metallic state at large λ. The area between the vertical dashed black lines denotes
the coexistence region, where both metallic and insulating solutions are stable, as seen
from the gap between the curves representing the two initializations. Fig. 8.1B shows
the full spectral function for several different values of the bath coupling λ. When the
coupling λ becomes large enough, metallicity is induced and a sharp quasiparticle peak
forms at ω = 0. Finally, Fig. 8.1C shows the full spectral function for the metallic and
insulating solutions within the coexistence region. The two phases remain distinguishable
by the presence of a sharp quasiparticle peak in the metal. This phase transition may be
interpreted as arising from the bath coupling λ inducing a smaller effective U value and
moving the system across the traditional interaction driven transition.
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Figure 8.2: A: Evolution of A(ω = 0, t) for equilibrium metallic and insulating solutions
(dashed green/red) and for switched solutions (solid orange/blue). B: Switching protocol
for λ(t). Dashed black lines show the coexistence region. C: A(ω, tv = 100) for equilibrium
metal (dashed green) and “switched” metal (solid blue). D: A(ω, tv = 100) for equilibrium
insulator (dashed red) and “switched” insulator (solid orange).
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With the equilibrium phase diagram established, we now consider two switching
protocols, implemented by time dependent bath couplings λ(t), which flip the system
between the metallic and insulating phases. In the first switching protocol, the system
begins in equilibrium on one side of the phase transition. At time t0, the bath coupling λ

is rapidly quenched to a value on the opposite side. This switching protocol is described
by

λ(t) = (1− f(t))λ0 + f(t)λ1,

f(t) =
1

1 + e−ξ(t−t0)
,

(8.5)

where ξ sets the switching rate; t0 sets the time when the switch is applied; and λ0 (λ1)
sets the initial (final) bath coupling. Fig. 8.2 shows the effect of this protocol on the
system for four pairs of (λ0, λ1): (λM , λM) (equilibrium metal), (λI , λI) (equilibrium
insulator), (λM , λI) (“switched” insulator), and (λI , λM) (“switched” metal). We take
ξ = 10v, t0v = 5, tmaxv = 100, λI = 0.08, and λM = 0.18. In Fig. 8.2A we plot the
time evolution of A(ω = 0). Note that even in the equilibrium cases (M , I) A(ω = 0)

shows some time-dependence due to the auxiliary lead formalism which we use to compute
the spectral function. In the metal to insulator (M → I) transition, the switch rapidly
destroys the metal (A(ω = 0) is suppressed). In the insulator to metal (I →M) transition,
the system gradually builds up spectral weight at ω = 0 after the switch to form a
metal. It is interesting to note that the formation of the metal proceeds much slower
than the destruction of the insulator. A slowdown in the formation of a quasi-particle
peak after a quench from the atomic limit near the Mott transition has previously been
observed [258]. However, with the λ quench considered here the previously observed
electronic bottleneck appears to be mostly overcome and the slowdown does not prevent
the formation of a quasi-particle peak with a comparable weight to the equilibrium metal
within the simulation timescale. Figs. 8.2C and 8.2D show the full spectral function at
tmax for all four realizations of the protocol. The full spectra of the “switched” solutions
closely resemble the corresponding equilibrium solutions, demonstrating that the protocol
can switch the system between metallic and insulating states. Additionally, the width of
the quasi-particle peak for the equilibrium metal and “switched” metal are comparable
suggesting the absence of significant heating effects.

We now consider a second switching protocol in which the system begins in equilibrium
in the center of the coexistence region, in either the metallic or insulating phase. At time
t0 the bath coupling is rapidly quenched to momentarily place the system outside of the
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Figure 8.3: A: Evolution of A(ω = 0, t) for equilibrium metallic and insulating solutions
(dashed green/red) and for switched solutions (solid orange/blue). B: Switching protocol
for λ(t). Dashed black lines show the coexistence region. C: A(ω, tv = 100) for equilibrium
metal (dashed green) and “switched” metal (solid blue). D: A(ω, tv = 100) for equilibrium
insulator (dashed red) and “switched” insulator (solid orange).

coexistence region on either side of the transition; then, at time t1, the bath coupling
reverts to its initial (coexistence) value. The second switching protocol is described by

λ(t) = (1− f(t))λ0 + f(t)λ1,

f(t) =
1

(1 + eξ(t−t1)) (1 + e−ξ(t−t0))
,

(8.6)

where ξ sets the switching rate; t0 and t1 bound the switching interval; and λ0 and λ1 set
the initial/final and intermediate values of the bath coupling, respectively. Fig. 8.3 shows
the results of this switching protocol on the system for three pairs of (λ0, λ1): (λc, λc),
(λc, λc+∆λ) and (λc, λc−∆λ), where λc = (λc1 +λc2)/2 is in the center of the coexistence
region, and ∆λ = 0.1 is large enough to move the system outside of the coexistence
region in either direction. The other parameters are given by ξ = 10v, t0v = 5, t1v = 55,
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and tmaxv = 100. For the equilibrium case we show both the metallic and insulating
solutions. Fig. 8.3A shows the time evolution of the spectral function at the Fermi energy.
In the (M → I) transition, A(ω = 0) is quickly destroyed during the switch, and does
not return when the bath coupling reverts to the coexistence region. In the insulator to
metal (I →M) transition, A(ω = 0) builds up to almost its equilibrium value during the
switching period. Afterwards, the spectral weight drops somewhat, but then recovers and
appears to stabilize. Panels C and D of Fig. 8.3 show the long-time spectral function
A(ω, tmax) for each of the four time evolutions. Again, the full spectra of the “switched”
solutions closely match the corresponding equilibrium solutions, demonstrating that the
second protocol can switch the system between metallic and insulating states within the
coexistence region.

We note that for both protocols the overall switching time, i.e. the crossover time
between the two phases, assuming a band width of several eV for the SCM, is on the order
of ∼100ps. It is important to realize that this prediction describes only the timescale
needed for the electronic transitions to occur, and our minimal model does not consider any
other constraints that may appear in experiments. One should also note that this timescale
is dominated by the slower transitions to the metallic state, whereas the transitions to the
insulating state are substantially faster.

Having demonstrated the ability to dynamically control the phase of our model system
through λ(t), we shift our attention to potential experimental realizations of this effect.
Fig. 8.4 shows an illustration of a proposed device for achieving dynamic control of λ(t). The
core of our device consists of a SCM separated from a metal by a nanoscale, compressible,
and weakly insulating region possibly composed of several polymer nanolayers. Electronic
transport across this region should be dominated by quantum tunneling effects. This core
is electrically isolated by two insulating regions and sandwiched between the plates of a
capacitor (outer metallic plates). Charging the capacitor generates a force which squeezes
the compressible insulator and reduces the separation L between the metal and SCM. Since
the tunneling rate λ ∼ e−L/ζ depends exponentially on the separation, we expect that (at
the nanoscale) large variations in λ can be achieved on fast timescales without the need for
very large voltages or compression ratios. This device may be operated in two modes. In
the first mode, the gate voltage across the capacitor is externally manipulated (blue signal
generator in Fig. 8.4) to control the source-drain current via the SCM metal–insulator
transition, making the device a transistor. In the second mode, the gate voltage across
the capacitor is coupled to the source–drain voltage (red connections in Fig. 8.4), making
the device a two terminal memristor.

140



Rgate

Metal
Insulator

Strongly Correlated Material
Compressible Insulator

Metal
Insulator

Metal

l L

Source Drain

Figure 8.4: Illustration of proposed device for realizing dynamic control of λ(t). The
voltage between the outer metallic plates can be controlled in two ways depending on
the mode of operation of the device. Without the red connections, the voltage between
the plates is modulated by an external signal (blue circle) and the device is operated as
a transistor. Adding the red connections couples the voltage between the plates to the
source-drain voltage and turns the device into a two terminal memristor.

Due to computational cost, we are only able to fully simulate one switching event.
In order to further investigate and characterize the dynamics of the proposed device we
consider a simple phenomenological Ginzburg–Landau model of the Mott metal–insulator
transition [259–262]. In this framework, we assume that the state of the system around
the phase transition is governed by a potential

Φ(x, λ) = − (λ− λc)x−
1

2
x2 +

1

4
x4, (8.7)

where λc = (λc1 + λc2) /2 is at the center of the coexistence region. We take the order
parameter x to be related to the resistivity of the SCM by RSCM = R0e

−αx. At λ = λc this
potential has two stable minima at x = ±1 corresponding to metallic/insulating states
with a resistivity ratio of exp (−2α). The minimal equation of motion for x is given by
∂tx(t) = −(1/τ)∂xΦ (x, λ (t)) which describes exponential relaxation to equilibrium with
timescale τ .

We now apply this formalism to study the expected characteristics of our proposed
device when configured as a memristor. In the memristor setup, the gate voltage across
the capacitor is set by the source–drain voltage V (t). We assume that the compression of
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Figure 8.5: Simulation of the system configured as a two terminal memristive device.
A: Current voltage characteristic of device under sinusoidal driving. The inset shows the
shape and minima of the potential Φ(x, λ) at λ = λc, λc± 1. B: Use of device as a resistive
memory element.

the insulator is linear in the applied force so that, to leading order, the tunneling rate is
given by λ(t) = γV 2(t) + δ. Note that since λ couples to the voltage squared, the device
must be operated around a finite bias in order to have bidirectional control over λ. For
the device parameters we set λc = 1, γ = 1, and δ = 0 so that at V = 1 the system is in
the center of the coexistence region. Additionally, we set Rgate = 10, R0 = 1, and α = 1

so that the resistivity ratio between the insulating and conducting states is exp(2) ≈ 7.4.
Finally, we use τ = 1 as our time unit.

Fig. 8.5A shows the current–voltage characteristics (IV) of the device when driven by
a sinusoidal voltage V (t) = 1 + 1

2
sin
(
t
4

)
, where we assume that the current through the

device is given by Ohm’s law. The IV forms a hysteresis loop due to the memory effect of
the order parameter x. In the upper part of the loop, we have x ≈ 1; the SCM is in the
metallic state; and the current is high. In the lower part of the loop, we have x ≈ −1; the
SCM is in the insulating state; and the current is low. Note that the hysteresis loop is not
“pinched” (i.e. does not pass through the origin) as expected for ideal memristors [263]
because we are operating around a finite voltage bias.

Fig. 8.5B demonstrates usage of the device as a resistive memory element. The device
is operated around a finite voltage bias V0 = 1 so that the SCM is in the center of the
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coexistence region and both high and low resistivity states are stable. The binary state
of the device is encoded in the order parameter x ≈ ±1. Here the device is driven by a
sequence of different pulses. The SET pulse is a long low amplitude square pulse which
moves the system from the x = −1 to the x = 1 state. The READ pulse is a short high
amplitude square pulse which causes the current to spike above a threshold (black dashed
line) if the SCM is in the low resistivity (x = 1) state. The RESET pulse is a long low
amplitude square pulse with opposite polarity to the SET pulse which moves the system
from the x = 1 to the x = −1 state. Combinations of these pulses allow operation of the
device as a two terminal, resistive memory element.

8.5 Conclusions

We have demonstrated that the repulsive, fully frustrated, single-band Hubbard model
on the infinite coordination number Bethe lattice undergoes a first order metal–insulator
transition as a function of a coupling to a set of free fermion baths. By time-dependent
manipulation of this coupling we are able to dynamically switch the system between
its metallic and insulating states both outside and inside the coexistence region. We
propose that this effect may be realized in a nanoscale device based on manipulation of
the proximity between a metal and a SCM. Analysis of a simple model of such a device
shows that it could be operated as a resistive memory element. These results suggest a
variety of directions for future work.

From a theoretical perspective, replacing the OCA impurity solver with a numerically
exact method [31, 32, 55, 83, 84, 156, 264] would allow us to obtain a better quantitative
understanding of the timescales involved in the switching process. It would also be of
interest to investigate this type of bath-driven switching in finite dimensional models
with more realistic baths and for other metal–insulator transitions, such as the transition
between an anti-ferromagnetic insulator and paramagnetic metal seen in VO2. Additionally,
it would be interesting to investigate the effect of including spatial inhomogeneities [265]
and transport in our microscopic model.

Experimentally, we expect that a variety of ways to harness this novel switching
mechanism in nanoelectronic devices and nanoscale layered materials will emerge. Progress
in this direction will rely on finding a compressible insulator with appropriate specifications,
and on fabrication techniques. While our results suggest that the fundamental limit on
switching and readout time could theoretically be on the order of femtoseconds, it remains
to be seen whether other limitations and engineering considerations might dominate
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in practical setups. Nevertheless, the promise of being able to fabricate an efficient
single-crystal memristor is certain to make the experimental challenges worth facing.

8.6 Appendix

Inchworm Comparison

0 1 2 3 4
tv

−1.0

−0.5

0.0

Im
G
R

(t
)

A

inch (order 4)

inch (order 3)

OCA

−6 −3 0 3 6

ω/v

0.0

0.2

A
(ω
,t
v

=
4
) β = 20v−1

U = 4v

λ = 0.25

B

Figure 8.6: Comparison of the retarded Green’s function (A) and spectral function
(B) obtained from OCA (green) and inchworm (blue/orange) at β = 20v−1, U = 4.0v,
λ = 0.25.

Fig. 8.6 shows a comparison between results obtained using the one crossing approx-
imation (OCA) and the inchworm QMC method. The parameters are chosen in order
to make the inchworm calculations computationally feasible. The inchworm results are
fully converged with order and numerically exact. The OCA somewhat underestimates
the height of the quasi-particle peak but otherwise captures the spectrum well. These
results support the reliability of OCA in capturing the real-time dynamics of the system.
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CHAPTER IX

Conclusions and Outlook

In this thesis, we described several methods for the solution of the Anderson impurity
model out of equilibrium, most notably the inchworm algorithm which is numerically exact
and succesfully overcomes the dynamical sign problem. We then applied these methods to
study systems of physical interest including a voltage biased quantum dot in the Kondo
regime, and a Mott metal-insulator transition in the Hubbard model via DMFT. There
are a number of possible future directions building on this work.

It would be very interesting to extend the inchworm algorithm to the multi-orbital
case which would open up a huge range of possible applications. This has already been
done in equilibrium [80] where the inchworm algorithm was used to overcome the sign
problem which appears in imaginary time for certain multi-orbital models. The extension
of this to nonequilibrium is theoretically straightforward but the implementation may be
technically challenging.

It would be highly desirable to develop algorithmic improvements to decrease the cost
of the inchworm algorithm. Although the current inchworm algorithm overcomes the
exponential scaling of the bare expansion, it is still quite expensive and reaching very
long times is difficult. This is problematic because interesting physics often occurs at
relatively long timescales, see e.g. the metal-insulator transition described in chapter 8
which requires access to a timescale on the order of 100 times the inverse hopping which is
currently prohibitively expensive for inchworm. One approach to this problem is simply
raw optimization of the existing algorithm. For example, it should be possible to cache
the sub-determinants used in the fast algorithm for the hybridization weight [81] which
could allow the weight ratios for moves to be computed more efficiently. Along the same
lines, it should be possible to cache subsets of the impurity trace as is done in optimized
versions of the bare CT-HYB algorithm [71]. These kinds of optimizations are probably
necessary for implementing a performant multi-orbital version of the existing algorithm.

Another avenue for improving the performance of the algorithm lies in improvements
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to the integration method. Because inchworm is a bold technique, it is often unnecessary
to go to extremely high orders, and at low order other integration techniques may be much
more efficient than Markov Chain Monte Carlo (MCMC). A clue pointing in this direction
is the fact that an OCA solver based on direct quadrature is orders of magnitude faster
than the equivalent order 2 calculation with the inchworm algorithm based on MCMC.
Clearly at some expansion order there will be a crossover where the curse of dimensionality
makes quadrature impracticable but currently it is unclear what this expansion order
actually is. Computing the low order contributions directly and only using Monte Carlo for
the high order contributions would likely be advantageous. Another possible modification
along these lines would be to use Quasi-Monte Carlo integration which was recently applied
in the context of the interaction expansion for nonequilibrium quantum impurity models
[85].

In addition to algorithmic improvements, it is also interesting to consider possible
modifications to the expansion itself which might give it better characteristics. For example,
in the interaction expansion approach to nonequilibrium impurity models, the dynamical
sign problem has been overcome by explicitly summing over all Keldysh indices for the
vertex insertions [83, 84]. It would be interesting to apply this same idea to the bare
hybridization expansion and compare it with the inchworm approach. This idea could also
be applied to the bold expansion for the Green’s function.

It would also be interesting to explore a numerically exact summation of the entire
skeleton series for the propagator self-energy. As we have seen, the inchworm expansion
truncated at order M + 1 sums the same diagrams as the M -crossing approximation. By
summing the skeleton series for the self-energy one would trade an expansion order for a
self-consistency which could be advantageous.

By some combination of the suggestions given above, and techniques still waiting to be
discovered, the next generation of solvers will enable further exploration of the fascinating
field of non-equilibrium strongly correlated systems.
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APPENDIX A

NCA

In this appendix, we provided a simple annotated implementations of NCA. The algorithm
is implemented in the julia language [266] using the Keldysh.jl package which provides
primitives for representing nonequilibrium Green’s functions. The code can be executed
sequentially in a script or jupyter notebook. A version of this example is also available as
part of the Keldysh.jl package.

First we install the necessary dependencies.

using Pkg
Pkg.activate(".")
Pkg.add(url="https://github.com/kleinhenz/Keldysh.jl", rev="v0.6.1")
Pkg.add(["PyPlot", "QuadGK"])
using LinearAlgebra, Printf
using PyPlot, QuadGK, Keldysh

We define a structure for representing the impurity Hilbert space. We represent the state
of impurity as an unsigned integer between 0 and 3 with the values of first two bits
representing the occupations of each spin.

# type representing state of anderson impurity
# occupation of up/down stored in first two bits
struct FockState

state::UInt8
function FockState(s)

@assert s < 4
new(s)

end
end
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We define functions for conveniently accessing and modifying the impurity state. Because
we don’t have to keep track of the sign from acting on the state these are implemented
with simple bit twidles.

@enum SpinEnum spin_up = UInt8(1) spin_down=UInt8(2)
Base.to_index(A, sp::SpinEnum) = Int(sp)
flip(sp::SpinEnum) = sp == spin_up ? spin_down : spin_up

# check whether ith spin is occupied
function Base.getindex(st::FockState, sp::SpinEnum)
return (st.state & 1 << (UInt8(sp)-1)) > 0

end

# flip occupation of spin sp
function flip(st::FockState, sp::SpinEnum)
return FockState(xor(st.state, 1 << (UInt8(sp)-1)))

end

# convert internal state to index
# add 1 because julia uses one based indexing
function Base.to_index(st::FockState)
return Int(st.state + 1)

end

We define a function to compute a nonequilibrium Green’s function from a density of
states. This function implements equation 2.46. The integrand is rearranged so that all
exponentials have negative real argument in order to avoid overflow. This function is
included in Keldysh.jl, but written out here for completeness.

function dos2gf(dos, D, β, t1::BranchPoint, t2::BranchPoint)
θ = heaviside(t1, t2)
Δt = t1.val - t2.val
f = ω -> (ω > 0.0 ?

exp(-im * ω * (Δt - im * (1 - θ) * β)) / (exp(-β * ω) + 1)
: exp(-im * ω * (Δt + im * θ * β)) / (exp(β * ω) + 1))

integral, err = quadgk(ω -> f(ω) * dos(ω), -D, D)
return -im * (2 * θ - 1) * integral

end
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Using this we can compute and vizualize the hybridization function for a flat band coupling
density. Note we include a factor of 1/π in the definition of the coupling density because
dos2gf implements equation 2.46 rather than equation 3.78.

function dos2gf_example()
# first define a contour
tmax, β = 5.0, 10.0
c = twist(FullContour(; tmax, β))

# now define a grid which represents a discretization of the contour
nt, ntau = 101, 201
grid = FullTimeGrid(c, nt, ntau)

# construct a flat band coupling density Γ(ω)
# Note we include a factor of 1/π since this is NOT included in dos2gf
Γ, D, ν, μ = 1.0, 5.0, 10.0, 0.0
dos = DOS(-Inf, Inf, ω -> (Γ/π)*fermi(ν*(ω-μ-D))*fermi(-ν*(ω-μ+D)))

# compute the hybridization function from the coupling density
# equivalent to Δ = FullTimeGF(dos, grid)
Δ = FullTimeGF(grid, 1, fermionic, true) do t1, t2

dos2gf(dos, D, β, t1.bpoint, t2.bpoint)
end

# plot components
fig, axes = plt.subplots(nrows=2, ncols=2)
make_plot = (ax, xlabel, ylabel, t, f...) -> begin

map(fi -> ax.plot(t, fi), f)
ax.set_xlabel(xlabel); ax.set_ylabel(ylabel)

end

ω = range(-10.0, 10.0, length=1001)
t = realtimes(grid)
τ = imagtimes(grid)

# extract components
Δret = Δ[:retarded]
ΔM = Δ[:matsubara]
Δles = Δ[:lesser]

make_plot(axes[1],L"ω",L"Γ(ω)/π",ω,dos.(ω))
make_plot(axes[2],L"τ",L"Δ^M(τ)",τ,ΔM)
make_plot(axes[3],L"t",L"Δ^<(t, 0)",t,real(Δles[:,1]),imag(Δles[:,1]))
make_plot(axes[4],L"t",L"Δ^R(t, 0)",t,real(Δret[:,1]),imag(Δret[:,1]))
fig.tight_layout()
fig.savefig("keldysh_components.pdf")

end
dos2gf_example()
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This code produces the following output where the real (imaginary) part is solid blue
(dashed oranged). Note the retarded Green’s function has zero real part because the
density of states is symmetric.
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We define functions to compute the bare propagators. These function implement equations
3.20 and 3.21. Note, on the two branch Keldysh contour we must provide the initial
impurity density matrix. The grids are assumed to be defined on the twisted contour. The
propagators P (0)

α (t1, t2) are only needed for t1 � t2 on the twisted contour. The propagators
are stored as an array of four GenericTimeGF objects representing the propagator for each
state |α〉. This puts the state index on the “outside”. In the multi-orbital case it would
likely be more convenient to put the orbital indices on the inside as is done in [37].

function make_bare_prop(grid::KeldyshTimeGrid, ρ, ϵ, U)
E = [0.0, ϵ, ϵ, 2*ϵ + U]
ξ = [1.0, -1.0, -1.0, 1.0]
P = map(1:4) do s

GenericTimeGF(grid, 1, true) do t1, t2
t1.cidx < t2.cidx && return 0.0
ϕ = integrate(t -> E[s], grid, t1, t2)
return (heaviside(t1.bpoint, t2.bpoint) ? -im*exp(-im*ϕ)

: -im*ξ[s]*ρ[s]*exp(-im*ϕ))
end

end
return P

end

function make_bare_prop(grid::FullTimeGrid, ϵ, U)
E = [0.0, ϵ, ϵ, 2*ϵ + U]
ξ = [1.0, -1.0, -1.0, 1.0]
P = map(1:4) do s

GenericTimeGF(grid, 1, true) do t1, t2
t1.cidx < t2.cidx && return 0.0
ϕ = integrate(t -> E[s], grid, t1, t2)
return (heaviside(t1.bpoint, t2.bpoint) ? -im * exp(-im * ϕ)

: -im * ξ[s] * exp(-im * ϕ))
end

end
return P

end
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We define structures for holding the parameters and data.

struct NCAParams
dyson_rtol::Float64
dyson_atol::Float64
dyson_max_iter::Int
max_order::Int
function NCAParams(dyson_rtol, dyson_atol, dyson_max_iter, max_order)

@assert 1 <= max_order <= 2
new(dyson_rtol, dyson_atol, dyson_max_iter, max_order)

end
end

function NCAParams(; dyson_rtol = 1e-6,
dyson_atol = 1e-10,
dyson_max_iter = 100,
max_order = 1)

return NCAParams(dyson_rtol, dyson_atol, dyson_max_iter, max_order)
end

struct NCAData{T <: AbstractTimeGF, U <: AbstractTimeGrid}
P0::Array{T,1} # bare propagator
Δ::Array{T, 1} # hybridization function
P::Array{T,1} # dressed propagator
Σ::Array{T,1} # self-energy
ΣxP::Array{T,1} # self-energy convolved with propagator
grid::U # time grid
states::NTuple{4, FockState}
spins::Tuple{SpinEnum, SpinEnum}

end

function NCAData(P0, Δ)
states = ntuple(i -> FockState(i-1), 4)
spins = instances(SpinEnum)
statesize = length(states)
indexsize = length(spins)
@assert length(P0) == statesize
@assert length(Δ) == indexsize
grid = first(P0).grid
X = P0[1]
P = [zero(X) for _ in 1:statesize]
Σ = [zero(X) for _ in 1:statesize]
ΣxP = [zero(X) for _ in 1:statesize]
G = [zero(X) for _ in 1:indexsize]
NCAData(P0, Δ, P, Σ, ΣxP, grid, states, spins)

end
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We define a function to compute the NCA approximation to the self-energy. This imple-
ments equations 3.49-3.52 for a single state and pair of times points.

function Σnca(data::NCAData,
t1::TimeGridPoint,
t2::TimeGridPoint,
st_sigma::FockState)

sum(data.spins) do sp
st_prop = flip(st_sigma, sp)
hyb = st_sigma[sp] ? data.Δ[sp][t1, t2] : -data.Δ[sp][t2, t1, false]
loc = im * data.P[st_prop][t1, t2]
return loc * hyb

end
end

154



We define a function to solve the Dyson equation. This implements equation 3.46 for a
pair of times points. Because this equation is solved contour causally, the first iteration is
usually quite close to the solution so nothing more sophisticated than forward iteration is
necessary. It would be interesting to see if a more advanced scheme, such as Anderson
mixing [267], or Broyden’s method [268], could be beneficial.

function dyson!(data::NCAData,
t1::TimeGridPoint,
t2::TimeGridPoint,
params::NCAParams)

@assert t1.cidx >= t2.cidx
rtol = params.dyson_rtol
atol = params.dyson_atol

p_t1t2_cur = zeros(ComplexF64, length(data.states))
p_t1t2_next = zeros(ComplexF64, length(data.states))

for st in data.states
p_t1t2_cur[st] = data.P0[st][t1,t2]
data.P[st][t1,t2] = data.P0[st][t1,t2] # initial guess

end

↻ = (A, B) -> integrate(t -> @inbounds(A[t1,t]*B[t,t2]),data.grid,t1,t2)

done = false
iter = 1
diff = 0.0
while iter <= params.dyson_max_iter && !done

for st in data.states
p_t1t2_next[st] = 0.0
data.Σ[st][t1, t2] = Σnca(data, t1, t2, st)

# p = p₀ + p₀ ↻ Σ ↻ p
data.ΣxP[st][t1, t2] = data.Σ[st] ↻ data.P[st]
p_t1t2_next[st] += data.P0[st] ↻ data.ΣxP[st]
p_t1t2_next[st] += data.P0[st][t1, t2]

end

diff = norm(p_t1t2_cur - p_t1t2_next)
done = diff < max(atol, rtol*norm(p_t1t2_cur))
for st in data.states

data.P[st][t1,t2] = p_t1t2_next[st]
end
p_t1t2_cur .= p_t1t2_next
iter += 1

end
end
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We define a function to solve the Dyson equation over the whole time domain diagonal
by diagonal. For simplicity we do not take advantage of the time symmetries of the
propagators here.

function nca!(data::NCAData, params::NCAParams)
N = length(data.grid)
for d in 0:(N-1) # solve diagonal by diagonal

for j in 1:(N-d)
i = j + d
t1 = data.grid[i]
t2 = data.grid[j]
dyson!(data, t1, t2, params)

end
end
return data

end

We define a function to extract the populations, i.e. the diagonal elements of the impurity
density matrix from the bold propagators. This implements equation 3.9.

function populations(P)
nstates = length(P)
ξ = [1.0, -1.0, -1.0, 1.0]
P_lsr_diag = reduce(hcat,

(1.0im * ξ[s] * diag(P[s][:lesser]) for s in 1:nstates))
Zt = sum(P_lsr_diag, dims=2)
ρt = P_lsr_diag ./ Zt
return ρt, Zt

end
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Using this machinery we can compute and vizualize the populations. Here we compute
the populations for the Anderson impurity model coupled to a flat band hybridization
with Γ = 1, D = 10, εd = −4, and U = 8 starting from an initially empty state.

function run_nca()
# first we define a contour and a time grid
tmax, β = 5.0, 10.0
c = twist(KeldyshContour(; tmax))
grid = KeldyshTimeGrid(c, 101)
t = realtimes(grid)

# define bare propagator parameters
ρ = [1.0, 0.0, 0.0, 0.0]
ϵ = -4.0
U = 8.0
P0 = make_bare_prop(grid, ρ, ϵ, U)

# use Keldysh.jl convenience functions to compute Δ
dos = flat_dos(;D=10.0, ν=10.0)
Δ = [GenericTimeGF(dos, β, grid) for s in 1:2]

nca_params = NCAParams(max_order = 1)
nca_data = NCAData(P0, Δ)
nca!(nca_data, nca_params)

ρt, Zt = populations(nca_data.P)

fig, axes = plt.subplots(figsize=(6,3), ncols=4, sharey=true)
for s in 1:4

axes[s].plot(t, real(ρt[:,s]))
axes[s].set_xlabel("t")
axes[s].set_xticks([0, 2.5])

end
fig.subplots_adjust(wspace=0.0)
axes[4].set_xticks([0, 2.5, 5.0])
axes[1].set_ylabel(L"ρ_α(t)")
fig.savefig("nca_pop.pdf", bbox_inches="tight")

end
run_nca()
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This code produces the following output where each panel shows the population for state
|α〉 ∈ {|0〉 , |↑〉 , |↓〉 , |↑↓〉}. Note, initially the population on the empty state is 1, which
reflects our chosen initial condition. The system quickly relaxes to a spin-symmetric,
and particle-hole symmetric state. The particle-hole symmetry arises because we chose
U = −2εd so the empty and doubly occupied state have the same energy.
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