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PREFACE 
 

In many places in this thesis I refer to “T cells” without further 

specification. Except where explicitly indicated otherwise, these  

should be assumed to be murine CD4+ and CD8+ αβ TCR T cells. 
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ABSTRACT 
 

Macropinocytosis is a non-selective form of clathrin-independent endocytosis that has been 

conserved by evolution from unicellular amoeboids to mammals. The function of 

macropinocytosis in various cell types, however, is distinct. In amoebae, macropinocytosis 

facilitates feeding. In mammalian cells it has been shown to aid in, among other things, 

regulation of receptor density, directed migration, and antigen presentation. Macropinocytosis is 

implicated in a range of human diseases, including atherosclerosis and transmissable spongiform 

encephalopathies, as well as being a commonly exploited route of viral infection. 

 

We have discovered that primary mouse and human T lymphocytes (T cells) engage in 

constitutive macropinocytosis that is enhanced significantly upon TCR ligation and co-

stimulation. Unlike macropinocytosis in many other cell types, T cell macropinocytosis is also 

Ras-independent. We have shown that macropinocytosis is essential for G1 phase growth in 

activated T cells even under nutrient-replete conditions. Mechanistically, macropinocytosis 

enables rapid T cell growth, at least in part, by delivering free amino acids obtained from the 

extracellular space to the lysosomal compartment. There they promote the activation of the 

mechanistic target of rapamycin complex 1 (mTORC1) by an inside-out signaling mechanism to 

drive G1 phase blastogenesis and subsequent clonal expansion. Supplementation of minimal cell 

culture media with the amino acids leucine, glutamine, arginine and serine is sufficient to sustain 

mTORC1 activation in this period, with leucine and arginine being most important among these. 



 xiv 

This work constitutes the first demonstration of a role for macropinocytosis in the regulation of 

non-cancerous mammalian cell growth. These results suggest that macropinocytosis-mediated 

activation of mTORC1 may be a feature of other highly proliferative cells. Modulation of T cell 

macropinocytosis may be therapeutic in the setting of diseases of public health interest.  
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CHAPTER I: 

FORMS OF ENDOCYTOSIS 

 

1.1 ABSTRACT 
 

Endocytosis is a ubiquitous feature of eukaryotic cells that has been implicated in their 

evolutionary origin. Multiple conserved endocytic modes facilitate a diverse range of cell-

specific responses in metazoans.  The first-discovered of these, clathrin-mediated endocytosis, is 

nearly universal with respect to cell type and constitutes the primary “housekeeping” mode of 

endocytosis in animal cells. Beginning in the 1990s, evidence for a number of endocytic 

pathways that do not require clathrin has accrued. While flux through these pathways may 

constitute only a small proportion of endocytic events, they facilitate critical and highly 

specialized cellular functions. In T lymphocytes, endocytosis regulates, among other things, 

signal transduction, growth, conjugate formation with antigen-presenting cells, trogocytosis of 

receptor complexes, and phagocytosis in TCR γδ T cel
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1.2 INTRODUCTION 
 

Endocytosis, the generation of internal membranes from the plasma membrane (PM) by 

extension (or invagination) and vesicle scission, facilitates a range of diverse cellular processes 

in eukaryotes. In addition to enabling the internalization of extracellular macromolecules, 

endocytosis permits the compartmentalization of chemistry within cells. Co-evolution of 

endocytosis and cellular endosymbiosis—the state of one cell living mutualistically within 

another—may have significantly contributed to the complexity and organization of eukaryotic 

cells.1,2 A great number and variety of cellular functions are regulated, at least in part, by 

endocytosis, including: signal transduction, membrane composition, mitosis, adhesion, lipid 

homeostasis, motility, and cell morphogenesis. Eukaryotes have evolved many distinct forms of 

endocytosis, some of which are universal or nearly so with respect to cell type, such as clathrin-

mediated endocytosis (CME). Other varieties are limited to specific cell types or lineage states 

and adapted for specialized functions, such as those that enable the recycling of synaptic vesicles 

in neurons or the resorption of calcified extracellular matrix by active osteoclasts.3,4 All 

endocytic pathways facilitate sensation of, and mediate interaction with, the extracellular 

environment, making them critical, fundamental components of eukaryotic cells. 

 

Clathrin-Mediated Endocytosis 

Endocytic pathways are often broadly classified by their dependence on the hexamer protein 

clathrin (Figure 1). This is in part due to the historical primacy of the characterization of 

clathrin-mediated endocytosis (CME) in the 1970s but it is also an acknowledgement of its role 
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Figure 1: Endocytic pathways in eukaryotic cells. Historically, pathways 
have been classified by their dependence on the coat protein clathrin and, more 
recently, the GTPase dynamin. Figure from Mayor et al (2019).7 
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as the primary endocytic route for cellular housekeeping functions.5,6 In CME, the geodesic 

assembly of clathrin triskelions on spherical membrane buds promotes the formation of clathrin- 

coated pits (CCPs) 60-120 nm in diameter.8 CCPs progress through a series of well-defined 

morphological intermediates to form clathrin-coated vesicles (CCVs) upon scission from the PM. 

Post-scission, clathrin assemblies disintegrate, uncoating factors such as synaptojanin 1 remove 

accessory and adaptor proteins, and uncoated vesicles deliver their contents to endosomes by 

fusion.9 CCVs themselves can be further classified by the differential recruitment of over 50 

adaptor and accessory proteins, as well as by enrichment of specific lipid and protein cargoes.8  

 

For many years, the term “receptor-mediated endocytosis” was used synonymously with CME. 

However, it is now appreciated that removal of many plasma membrane receptors is 

accomplished by mechanisms that do not require clathrin. Consequently, this usage has been 

discouraged and a more descriptive schema, wherein endocytic pathways are classified by the 

identity of vesicular membrane components and cargoes, has been adopted.  

 

Clathrin-Independent Mechanisms of Endocytosis.  

Some cellular functions, such as responding to high intensity stimuli and directed migration, 

require rapid endocytosis of large patches of membrane or internalization of large boluses of 

fluid. Since these events require membrane fluxes on the millisecond-to-second scale or are 

impeded by the size of CCVs, CME is not sufficient to enable them.10 In recent decades, a 

number of forms of clathrin-independent endocytosis (CIE) have been discovered and 

characterized, some of which license rapid, bulk internalization of membrane or otherwise 

facilitate acute responses. Some evidence suggests that flux through CIE pathways accounts for 
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only a small fraction of endocytic events compared to CME, though this has only been shown in 

immortalized mammalian cells.11 Our present knowledge of CIE is chiefly limited by the lack of 

validated, path-specific molecular determinants and cargoes, as well as the existence of shared 

machinery between pathways—both factors which confound interpretation of experimental 

results. Glycosylation of cell surface proteins and galectin-glycan interactions have also been 

implicated in cargo-specific regulation of some CIE pathways, but these observations have yet to 

be confirmed in primary cells or widely replicated.12 Nevertheless, salient features of each form 

of CIE have been experimentally elucidated. 

 

Building on the classification of Doherty and McMahon13, CIE includes: caveolae-dependent 

endocytosis, clathrin-independent carrier/GPI-AP-enriched early endosomal compartment 

(CLIC/GEEC) pathway endocytosis, flotillin-dependent endocytosis, interleukin-2 receptor beta 

(IL-2Rβ) pathway endocytosis, Arf6-dependent endocytosis, phagocytosis, fast endophilin-

mediated endocytosis (FEME), activity-dependent bulk endocytosis (ADBE), ultra-fast 

endocytosis (UFE), massive endocytosis (MEND), and macropinocytosis. Each of these forms of 

endocytosis, the essential features of which are summarized in Table 1, will be discussed. 
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 Actin-
dependent 

Scale (vesicle 
diameter) 

Canonical 
cargoes 

Cholesterol-
dependent 

Dynamin-
dependent 

Cell type 
first 
described 
in 

Clathrin-
dependent 
endocytosis 

Depends 
on cell 
type14 

35-200 nm15 Tfr16 Yes17 Yes18,19 
A. aegypti 
oocytes20 

Caveolae-
dependent 
endocytosis 

Yes21–23 50-80 nm24 Unclear Yes25 Yes26 
Murine gall 

bladder 
epithelium27 

CLIC/GEEC 
pathway 
endocytosis 

Yes28,29 
Tubulovesicular, 

40 nm width30 
CTxB, CD4431 Yes28 No32 

COS, CHO 
cells33 

Flotillin-
dependent 
endocytosis 

Unclear34 Unclear Unclear Yes35 Unclear HeLa cells36 

IL-2Rβ pathway 
endocytosis Yes37 50-100 nm37,38 IL-2Rβ38 Yes39,40 Yes41 

IARC 301.5, 
YT2C2, 

CIAC cells42 

Arf6-dependent 
endocytosis Yes43 60-200 nm MHC-I, CD5944 Yes44 Unclear CHO cells45 

Phagocytosis Yes46,47 0.5 – 3 μm48–51 
Microbial 
pathogens 

Yes52,53 Yes54 
Ranine 

phagocytes55 

Fast endophilin-
mediated 
endocytosis 
(FEME) 

Yes56 
Tubulo-

vesicular, 100 
nm - μm length 

β1AR56,57 Yes56 Yes56 
BSC1, 

HEK293 
cells56 

Activity-
dependent bulk 
endocytosis 
(ADBE) 

Yes58,59 150 nm VAMP460 Yes61 Yes62 

Murine 
cerebellar 
granule 
cells63 

Ultrafast 
endocytosis 
(UFE) 

Yes64 60-80 nm64,65 Unclear Yes66 Yes64 
Nematode 
neurons67 

Massive 
endocytosis 
(MEND) 

No68,69 <100 nm69 
Phospholemman, 
polypalmitoylated 

proteins70 
Yes71 No68,69 

BHK, 
HEK293 

cells69 

Macropinocytosis Yes72,73 200 nm – 20 μm Non-selective Yes74,75 Unclear 
Murine 
sarcoma 
cells76 

Table 1 – Modes of endocytosis and their salient features. Note that actin-dependency, dynamin-
dependency, and canonical cargoes remain to be clarified for multiple pathways.  
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Caveolae-dependent endocytosis is characterized by a requirement for the integral membrane 

protein caveolin-1 and a small number of adaptor proteins of the cavin family (four in 

mammals), as well as by its sensitivity to glycosphingolipid depletion. 25,77 Caveolae, so named 

for their resemblance to caves, constitute small, flask-shaped membrane bulbs 50-100 nm in 

diameter and are enriched in vascular endothelial cells, epithelial cells, adipocytes, and 

fibroblasts.78,79 Caveolae are relatively stable structures that likely participate in non-endocytic 

cellular processes. Within them, cavin proteins organize scaffolding microdomains that may be 

necessary for modulation of intracellular stress and GPCR signaling.80,81 Despite an initial 

consensus that caveolae remained attached to the PM, it is now known that the GTPase dynamin 

positively regulates their budding and scission and that its GTPase activity is required for this 

function.26,82 The trafficking of caveolar endosomes and delivery of their lumenal contents to 

organelles is poorly understood, in part because of overlap between cargoes sorted into the 

caveolae-dependent pathway and the CLIC-GEEC pathway.31  

 

Many proteins that are lipid-anchored to the outer leaflet of the PM, such as GPI-anchored 

aminopeptidases (GPI-APs), are endocytosed in uncoated, clathrin-independent carriers (CLICs) 

that are derived from the plasma membrane and enriched in large tubulovesicular structures 

called GPI-AP Enriched Early Endosomal Compartments (GEECs).32,33 Endocytosis via the 

CLIC-GEEC pathway accounts for a significant proportion of internalized membrane and fluid-

phase contents and in this respect resembles macropinocytosis. Unlike macropinocytosis, 

however, CLIC-GEEC endocytosis is insensitive to amiloride inhibition.83 
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The CLIC/GEEC pathway is initiated by plasma membrane recruitment of GBF1, a guanine 

nucleotide exchange factor (GEF) for the GTP-binding protein ADP-ribosylation factor 1 

(Arf1).84 Consequent to activation of Arf1 by GBF1, the Rho GTPase activating protein (GAP) 

ARHGAP10/21 is locally recruited and promotes the GTP cycling of the Rho GTPase Cdc42.84 

Cdc42 dynamics at the plasma membrane, in turn, regulate recruitment of downstream effectors 

that direct actin polymerization and promote vesicle formation. IRSp53, an I-BAR protein that 

induces negative membrane curvature and interacts with Cdc42, is also required for optimal 

functioning of CLIC-GEEC endocytosis.29 GEEC formation is also regulated by recruitment of 

GTPase regulator associated with focal adhesion kinase1 (GRAF1), a BAR-domain-containing 

protein capable of sensing and promoting membrane curvature that also negatively regulates 

activated Cdc42 via its Rho-GAP domain.30 While the CLIC/GEEC pathway does not require 

dynamin for endocytosis of its cargoes, dynamin does associate with GEECs post-

internalization.32 

 

Flotillin-dependent endocytosis is an additional, putative form of CIE requiring flotillin (reggie) 

proteins, genes for which are highly conserved among metazoans.85 Flotillins are characterized 

by N-terminal hydrophobic stomatin/prohibitin/flotillin/HflK/C (SPFH) domains shown to 

regulate membrane targeting in adipocytes and C-terminal flotillin domains necessary for 

oligomerization.86–88 Flotillins associate with lipid rafts and generate membrane invaginations 

through mechanisms that are largely undefined.89 The role of dynamin in flotillin-dependent 

endocytosis is unclear, as is the mechanism governing cargo specificity. For these reasons, some 

have argued that flotillins may not characterize a distinct endocytic pathway at all but instead 

function as adaptors in other forms of CIE.90  
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Many cytokine receptors are internalized via a cholesterol-sensitive pathway termed RhoA-

dependent IL-2Rb endocytosis for the receptor that historically first defined it. This form of CIE, 

which is initiated at the base of membrane protrusions, requires activation of the small GTPases 

RhoA and Rac1 as well as signaling through p21-activated kinases (Paks).37,38 Two rounds of 

actin polymerization drive vesicular budding and maturation. The first, which requires binding of 

WASP-family verprolin homologous protein (WAVE) to the cytoplasmic tail of the b subunit, is 

thought to be necessary to drive receptor recruitment and clustering at the base of the invaginated 

membrane. The second round of actin polymerization required for IL-2Rb endocytosis is 

dependent upon the activation of Pak1 and induces the formation of a complex including N-

WASP, cortactin, and ARP2/3 that drives receptor scission to form vesicles 50-100 nm in 

diameter.37,38 Dynamin has been shown to coordinate progressive recruitment of WAVE and N-

WASP in IL-2Rb endocytosis.37 

 

A variety of cell surface proteins are internalized by a mode of endocytosis regulated by the 

small GTPase ADP-ribosylation factor 6 (Arf6). Arf6-mediated endocytosis also plays an 

important role in directed migration by down-regulating cell-cell contacts, licenses abscission 

during cytokinesis, and is essential for cholesterol homeostasis.91 Arf6 GTP-loading and 

activation in tubular endosomes promotes membrane recycling to the PM, where Arf6-GTP 

triggers the generation of actin-rich protrusions.43 Activation of phosphatidylinositol-4-

phosphate 5-kinase downstream of Arf6 recruits additionally needed signaling molecules to sites 

of active cytoskeletal rearrangement.92 While Arf6 activation is not strictly required for 

internalization of cargoes, it is necessary for recycling of endosomes to the PM and hydrolysis to 
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Arf6-GDP is required for proper cargo sorting.83 Soon after internalization, Arf6-GDP associates 

with tubular early endosomes which then fuse with Rab5 positive sorting endosomes.93 

Subsequent trafficking events are regulated by the CME adaptor protein AP-2.94 While dynamin-

2 has been shown to be required for Arf6-activation in CME, its role in Arf6-mediated CIE is 

less clear.95  

 

Phagocytosis is a form of CIE that involves the specific recognition and uptake of particles >500 

nm into membrane-derived vesicles known as phagosomes.96 The posited role of phagocytosis in 

eukaryogenesis implies an evolutionary origin possibly preceding eukaryotes—far earlier than 

the likely emergence of most other forms of endocytosis.97 The contribution of phagocytosis to 

host defense against microbial pathogens is well-appreciated. Many innate immune cells perform 

phagocytosis, including macrophages, dendritic cells, monocytes, neutrophils and eosinophils.98 

Phagocytosis in these cells enables presentation of antigen to lymphocytes and parallel activation 

of adaptive immune responses.98 Heritable defects in phagocytosis (e.g., in macrophages) are 

associated with a predisposition to chronic intracellular bacterial infections, usually by 

mycobacteria.99 

 

Less well-appreciated but equally critical are the roles phagocytosis plays in tissue homeostasis 

and development. In the brain, phagocytosis-competent microglia (as well as possibly astrocytes 

and oligodendrocytes) are required to prune synapses in the course of neural development as well 

as to remove inflammatory cellular debris.100  Many other cell types, including epithelial cells, 

endothelial cells, and fibroblasts, also perform phagocytosis to promote tissue homeostasis under 

inflammatory conditions.96 
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Phagocytic target ligands are recognized by surface receptors that can be broadly classified as 

opsonic and non-opsonic. Opsonic receptors recognize foreign particles indirectly by binding 

host-derived opsonins. They include receptors for antibody Fc regions (Fc!R, Fc"R, Fc#R), 

complement (CR3/4), mannan-binding lectin (CR1), and fibronectin ("5$1).96 Non-opsonic 

receptors include those that recognize pathogen-associated molecular patterns (CD14, Dectin-1), 

as well as those that recognize apoptotic and necrotic cells by, for example, detecting oxidized 

phospholipids (CD36) or phosphatidylserine on the outer leaflet of the plasma membrane (TIM-

1/-4).96 Ligand binding and aggregation of receptors initiates intracellular signaling cascades by 

recruitment and activation of the non-receptor protein tyrosine kinase Syk, the modulation of 

membrane phosphoinositides, and the generation of second messengers.96,101,102 These signals 

recruit activated Rho GTPases to phagocytic cups where they coordinate actin polymerization in 

pseudopodial protrusions that engulf the target particle and promote the assembly of a highly 

complex organelle around it, the phagosome.96 

 

In dendritic cells, early phagosomes can fuse with endoplasmic reticulum or Golgi to acquire 

molecular machinery enabling cross-presentation of acquired antigens on MHC class I, thereby 

promoting their sentinel function.103–105 Similarly, neutrophils and macrophages can cross-

present peptides derived from phagosomes via mechanisms that do not require the proteasome  

or the transporter associated with antigen processsing (TAP).106,107 Alternately, early 

phagosomes can fuse with early and recycling endosomes in a manner regulated by the small 

GTPase Rab5.108 Maturation into intermediate phagosomes is associated with loss of Rab5 and 

acquisition of Rab7, as well as the accumulation of V-ATPase, which promotes acidification of 
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the phagosomal lumen by extrusion of protons from the cytoplasm.96,109 Accumulation of Rab7 

also drives fusion with late endosomes and recruits the effector Rab-interacting lysosomal 

protein (RILP).110,111 RILP brings late phagosomes into contact with microtubules and promotes 

their centripetal movement to lysosomes.110,111 SNARE proteins mediate lysosomal fusion to 

generate highly microbicidal phagolysosomes.112  

 

Fast Endophilin Mediated Endocytosis (FEME) is a form of CIE regulated by the BAR-domain-

containing protein endophilin, which has five paralogs in humans (A1, A2, A3, B1, and B2).57 

FEME is a non-constitutive mode of endocytosis that occurs in response to activation of G-

protein-coupled receptors (GPCRs) and cytokine receptors by their ligands. Activated receptors 

are sorted into pre-existing membrane clusters of endophilin that are rapidly (~5-10 seconds) 

internalized in tubulo-vesicular carriers 100 nm to several microns in length that closely 

resemble CLICs.56  This form of CIE is dynamin-dependent and, like many other forms of 

endocytosis, is regulated by phosphoinositide and kinase signaling.57 Specifically, 

phosphorylation of endophilin by ROCK, Src, LRRK2, and DYRK1A, and of dynamin and 

dynein by Cdk5 and GSK3β, have been shown to negatively regulate FEME.113–116 In addition, 

endophilin has been implicated in both IL-2Rb endocytosis and CME: triple-knockdown of the 

endophilin proteins known to participate in endocytosis (endophilin A1, A2, and A3) by RNA 

interference has been shown to decrease the rate of IL-2Rb internalization and prevent the 

uncoating of CCVs.56,117  

 

Two high-capacity modes of CIE of special importance in neurons are Activity-Dependent Bulk 

Endocytosis (ADBE) and Ultrafast Endocytosis (UFE). Both are dynamin-dependent forms of 
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CIE that, like FEME, are characterized by their rapidity. ADBE has been shown to internalize 

large patches of membrane and aid in the retrieval of synaptic vesicles (SVs) at central nerve 

terminals in response to high neuronal activity.58 Mechanistically, ADBE requires interaction 

between dynamin and syndapin 1, which associates with N-WASP, an effector of actin 

nucleation and polymerization.118 ADBE of SVs also requires cyclin-dependent kinase 5 (Cdk5)-

mediated activation of Dynamin-1.119 UFE occurs in response to more mild stimulation, 50-100 

milliseconds after propagation of an action potential, and enables the recycling of synaptic 

vesicle components, such as SNAREs and synucleins.64,120 Like FEME, endophilin has been 

implicated in regulation of UFE.121 

 

Lastly, Massive ENDocytosis (MEND) is a dynamin-independent form of CIE that does not 

require actin remodeling.69 As the name suggests, MEND enables the internalization of very 

large membrane patches in response to metabolic stress, Ca2+ signaling, and other stimuli, in a 

process driven by membrane phase separation.68,122 In this process, membranes of heterogeneous 

lipid composition can partition into different nanodomains with intrinsic curvature, which 

facilitates endocytosis without actin remodeling. 

 
1.3 ENDOCYTOSIS IN T CELLS 
 

CME and CIE facilitate a range of T cell specific functions, as summarized in Table 2. Chief 

among these are the regulation of plasmalemmal immune receptors, including internalization and 

recycling of T cell antigen receptors (TCRs). Endocytic mechanisms are also critical for stable 

conjugate formation between T cells and APCs. They also enable trogocytic exchange of 

receptor complexes between individual T cells, as well as between T cells and APC.  
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 Described in T cells Function in T cells 

Clathrin-dependent 
endocytosis Yes PM receptor regulation123,124, 

TCR αβ endocytosis125–127 

CLIC/GEEC pathway 
endocytosis Yes TCRζ endocytosis128 

Flotillin-dependent 
endocytosis Yes TCR αβ recycling129, conjugate 

formation with APCs129 

IL-2Rβ pathway endocytosis Yes IL-2R complex endocytosis37,130 

Arf6-dependent endocytosis Yes Conjugate formation with 
APCs131 

Phagocytosis Yes 
Host defense/immune 

surveillance (γδ T cells)132,133, 
trogocytosis (TCR αβ T cells)134 

Macropinocytosis Yes 
Regulation of G1 phase growth 

by bulk acquisition of amino 
acids.135 

Caveolae-dependent 
endocytosis No No 

Fast endophilin-mediated 
endocytosis No N/A 

Activity-dependent bulk 
endocytosis (ADBE) No N/A 

Ultrafast endocytosis (UFE) No N/A 

Massive endocytosis 
(MEND) No N/A 

Table 2 – Evidence of endocytic adaptations in T lymphocytes prior to this investigation. 
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Plasma membrane immune receptor and ligand regulation 

Endocytosis of PM receptors and the trafficking, recycling, and targeted degradation of their 

components are integral to many cellular responses, including those of T cells. Both CME and 

CIE pathways have been shown to regulate localization of immune receptors in both TCR αβ and 

γδ T cells. 

 

The immune checkpoint protein CTLA-4, which negatively regulates TCR αβ T cell activation 

by capturing from APCs and endocytosing in trans the CD28 ligands CD80 and CD86, is 

constitutively internalized by CME.123,124 This occurs in a ligand- and dynamin-independent 

manner and results in both recycling to the cell surface and trafficking to lysosomes for 

degradation. Constitutive CTLA-4 internalization continues even as its surface expression is 

upregulated during T cell activation.124 

 

In thymus-dependent humoral immune responses, transient expression of the transmembrane 

glycoprotein CD40-L on CD4+ TCR αβ T cells provides an essential, contact-dependent, co-

stimulatory signal to cognate B cells. CD4+ T cell CD40-L binding to CD40 on B cells initiates 

an intracellular signaling cascade that promotes the generation of class-switched, high-affinity 

antibodies, as well as the establishment of B cell memory and differentiation into long-lived 

plasma cells. In addition to the transfer of CD40-L from T follicular helper (Tfh) cells to cognate 

B cells via an uncharacterized exocytic mechanism, down-modulation and lysosomal 

degradation of PM CD40-L has also been shown to occur in T cell tumor lines.136 Endocytosis of 
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CD40-L in these cells requires actin polymerization, though its dependence on clathrin and 

dynamin have not been established. 

 

By contrast, the rapid internalization of IL-2R complexes from the surface of activated TCR in 

αβ T cells has been shown to occur by CIE.130 IL-2Rβ endocytosis was first demonstrated to be 

clathrin-independent in studies employing dominant-negative mutants of the essential clathrin 

coated pit and vesicle component Eps15.130 Endocytosis of IL-2Rβ complexes in these 

experiments occurred normally in the absence of CME, which was confirmed by the loss of 

transferrin uptake. In addition to dynamin, IL-2Rβ internalization requires the cytoplasmic tail of 

the component γc chain, as well as both the catalytic activity and p85 regulatory subunit of 

PI3K.137,138 The constituent subunits of the receptor partition into different compartments soon 

after internalization, with the comparatively stable α chain confined to transferrin-positive 

recycling endosomes (suggesting partial utilization of the CME pathway) whereas the β and γc 

chains are sorted into late endosomes and thereafter targeted to lysosomes for degradation.139 

The proteasome has also been shown to be important, not for the initial phase of IL-2Rβ 

endocytosis but for its continuance and lysosomal targeting of the β and γc subunits.140 The co-

localization of endophilin with IL-2Rβ vesicular cargoes in the human T cell line Kit255, as well 

as the specific diminution of IL-2Rβ internalization in cells depleted of endophilin, implicate 

FEME as a mechanism of IL-2Rβ endocytosis.56 

 

WC1 proteins are transmembrane glycoproteins of the scavenger receptor cysteine-rich family 

that in γδ T cells are thought to function as activation coreceptors through co-ligation with the γδ 

TCR.141 In Jurkat T cells, sustained co-ligation of the TCR and a transmembrane fusion protein, 
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consisting of the CD4 extracellular domain fused to the WC1 transmembrane and cytoplasmic 

domains, enhanced T cell activation, as measured by elevated IL-2 production.141 Like the CD3γ, 

CD3δ, and CD4 intracellular domains, the proximal cytoplasmic tail of WC1 contains an 

[DE]XXXL[LIM] dileucine motif known to promote endocytosis by binding to the adaptor 

protein (AP-2) components of CCPs andCCVs.141 Moreover, mutation of the same motif in the 

aforementioned fusion protein enhances IL-2 production upon co-ligation with the γδ TCR and 

significantly impairs endocytosis of the co-receptor. These findings suggest an important role for 

CME in regulating the co-receptor function of WC1 in γδ T cells.142 

 

Endocytosis of the TCR 

While endocytosis of the TCR in TCR αβ T cells is constitutive, its downmodulation in response 

to ligation by peptide:MHC complexes is an essential event in T cell activation. Non-engaged 

TCRs are constitutively internalized by CME into CCPs in a manner dependent upon 

dynamin.125 In the absence of stimulation these non-engaged receptors are recycled back to the 

cell surface. Selective triggering of the TCR complex, however, has been shown to cause the 

concomitant downregulation of non-engaged TCRs in a manner regulated by protein kinase C θ 

(PKCθ). Phosphorylation of the CD3γ subunit at S126 by PKCθ143 renders a downstream 

dileucine endocytosis motif more accessible to the adapter AP-2, thereby recruiting CME 

machinery.125,143 Interestingly, bystander TCR downmodulation that occurs concomitantly with 

TCR ligation, however, uniquely require protein tyrosine kinase (PTK) activity.125 

 

Endocytosis of engaged TCRs occurs by both CME and CIE.129 Mechanosensory cues appear to 

play a role in dictating which endocytic mode predominates: TCR triggering with soluble anti-
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CD3 antibodies promotes internalization by CME, whereas triggering by anti-CD3 immobilized 

on plastic promotes CIE of engaged TCRs.125 The clathrin-dependent pathway requires dynamin 

and is similarly regulated by a CD3γ dileucine endocytosis motif. Endocytosis and signaling 

from engaged TCRs is tightly coupled, as it is for other signaling components of TCR 

microclusters, such as LAT, ZAP-70, and SLP-76. It has been shown in CD4+ and CD8+ human 

T cell lines that the Src family kinase Lck, a key component of the T cell signalosome, promotes 

CME of the TCR upon receptor engagement and lysosomal degradation.126,144 It does so by 

inducible phosphorylation of tyrosine residues on the clathrin heavy chain (CHC) that interacts 

with the clathrin light chain to regulate triskelion assembly.126 Basal Lck phosphorylation of the 

CHC also plays a role in constitutive endocytosis of the TCR, as unstimulated cells deficient in 

Lck exhibit no TCR internalization.126 Fyn, another Src family kinase that regulates proximal 

TCR signaling, also promotes CME of the TCR, since human T cell lines deficient in CD45, and 

therefore unable to activate Lck or Fyn, exhibit less internalization than those deficient in Lck 

alone.144,145 

 

An adaptor protein critical for the early-stage assembly of CCPs, the FCH domain only 1 

(FCHO1) protein, plays a critical role in CME of engaged TCRs. First identified by whole 

exome sequencing in human patients with combined immunodeficiency, loss-of-function 

mutations in FCHO1 profoundly impair ligand-induced TCR clustering and endocytosis.127,146 

FCHO1 deletion in Jurkat T cells recapitulates this phenotype and can be rescued by expression 

of wild-type FCHO1.127 
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Also in Jurkat T cells, the cytoplasmic protein intersectin 2 has been shown to promote the 

translocation of Cdc42 and its effector Wiskott-Aldrich Syndrome protein (WASP) to CCVs.147 

Intersectin 2 also activates Cdc42 by the action of its Dbl homology (DH)/RhoGEF domain. 

Overexpression of intersectin 2 in these cells substantially increases TCR internalization whereas 

expression of an intersectin 2ΔDH construct markedly reduced it.147 In this way, intersectin 2 

may link the machinery of actin polymerization with that of CME. 

 

The clathrin-independent pathway of TCR endocytosis also requires dynamin but uniquely 

utilizes the R-Ras subfamily GTPase TC21 (R-Ras2). TC21 promotes internalization by a 

mechanism reliant on the small GTPase RhoG, previously implicated in both phagocytosis and 

caveolar endocytosis.134,148,149 However, global TCR down-modulation occurring in response to 

T cell activation is apparently achieved not by increasing the rate of internalization but by 

inhibition of TCR recycling and degradation of ligated complexes in the lysosome and 

proteasome.150 Some evidence suggests that the basal TCR internalization rate is negatively 

regulated by intracellular TCRζ chain length.151  

 

In activated Jurkat T cells, the actin-binding protein HIP-55, is recruited to the immunological 

synapse and has been shown to associate with early endosomes as well as dynamin.152 Its 

expression in this system promotes TCR down-modulation, most likely by interfering with 

receptor recycling.152  

 

Members of the EPS15 Homology Domain-containing (EHD) family of endocytic traffic 

regulators are known to be expressed in murine CD4+ T cells and have been implicated in the 
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regulation of cell surface receptors. CD4+ T cells from T cell-specific knockout EHD1/3/4 mice 

exhibit reduced proliferation and IL-2 secretion in response to antigen stimulation in vitro, as 

well as impaired TCR recycling, and enhanced lysosomal degradation of TCR components.153 

Support for a role for EHD proteins in these processes is indicated by their association with Rab 

effector proteins that regulate endocytic trafficking.153 

 

Membrane-organizing flotillin proteins incorporate into pre-assembled signaling platforms that 

asymmetrically localize to one pole in hematopoietic cells, including T cells.154 Immediately 

upon internalization, engaged TCRs are incorporated into a stable, mobile endocytic network 

defined by flotillins.129 Consistent with the idea that flotillins may function as adaptors for other 

endocytic pathways, as opposed to demarcating a distinct, bona fide form of endocytosis, they 

are not required for internalization of engaged TCRs. Like EHD proteins, flotillins may regulate 

TCR surface expression by promoting endocytic recycling. Flotillins are required for the 

trafficking of downmodulated TCRs to Rab5-positive sorting endosomes, from Rab5- to Rab11a-

positive recycling endosomes, and their recycling to the immunological synapse.129,155 

Additionally, flotillins are required for the formation of stable conjugates with antigen-presenting 

cells and interact with signaling phosphoproteins to facilitate TCR signaling.129 

 

The CLIC-GEEC pathway of CIE has also been implicated in TCR endocytosis in activated 

Jurkat T cells. In this system, CD3 triggering resulted in TCRζ accumulation in tubular 

invaginations of the PM that are shaped by actin polymerization downstream of the Rho GTPase 

Cdc42.128 The BAR domain-containing protein GRAF1 is recruited to these structures, where it 

promotes Cdc42 GTP hydrolysis via its GAP domain. These tubular invaginations mature into 
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endocytic vesicles that show co-localization of the internalized TCR with cholera toxin B 

(CTxB) and CD44, established cargoes of the CLIC-GEEC pathway.128  

 

Arf6-mediated endocytosis in APC conjugate formation 

The formation of stable conjugates between T cells and APCs requires Arf6-mediated 

endocytosis, in addition to flotillins. A number of cargo proteins important for T cell activation, 

such as MHC class I, CD4, and LFA-1, co-localize to Arf6-positive vesicles in Jurkat cells.131 

Expression of a constitutively-active form of Arf6 in these cells inhibits endocytosis of MHC 

class I, and causes other cargoes important for immunological synapse formation, such as CD4 

and LFA-1, to accumulate in enlarged Arf6-positive vacuoles.131 Consequently, conjugate 

formation with APCs is impaired. Both Arf6 and the small GTPase Rab22 have been implicated 

in stable conjugate formation and cell-spreading in Jurkat T cells.131 In these cells, expression of 

a dominant-negative form of Rab22, Rab22S19N, is alone sufficient to impair MHC class I 

endocytosis and conjugate formation.131  

 

Trogocytosis 

Trogocytosis refers to the exchange of intact membrane patches between cells. While not, 

strictly-speaking, a form of endocytosis, in vitro studies have has suggested a mechanism with 

qualitative similarity to that of phagocytosis. An increasing body of evidence suggests not only 

that T cell trogocytosis is a ubiquitous phenomenon in vivo, but that it constitutes an important 

mechanism of intercellular communication and immune modulation.156–159 Trogocytosis has even 

been shown to convey novel functional capabilities from one cell type to another through the 

acquisition of membrane-associated molecules.156,160 
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In Jurkat T cells, TCR-mediated trogocytic uptake of peptide:MHC complexes from antigen-

presenting cells requires the previously described phagocytosis-associated GTPases R-Ras2 

(TC21) and RhoG.134,161 In CD4+ TCR αβ T cells, trogocytic exchange of peptide:MHC 

complexes has been shown to influence T effector cell polarization.158 When stimulated by 

murine fibroblasts and peptide-pulsed bone marrow-derived dendritic cells expressing 

peptide:MHC complexes, trogocytosis-positive CD4+ T cells activated the transcription factor 

GATA-3 and produced IL-4 both in vitro and in vivo, consistent with Th2 polarization.158 The 

mechanism responsible for this polarization remains to be elucidated, though it may relate to the 

strength and duration of TCR stimulation.  

 

Even more remarkably, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) are capable of 

transferring their TCRs via trogocytosis to recipient CTLs of different clonotypic specificity.162 

Acquisition of donor TCRs confers the ability to recognize additional antigen and enables 

expansion of virus-specific clones independent of proliferation.162 

 

Phagocytosis in TCR γδ T cells 

Previously thought to be limited to cells of the myeloid lineage, it is now known that human 

peripheral γδ T cells not only have phagocytic capabilities but can act as “professional” 

phagocytes in that they are capable of presenting processed antigen on MHC class II to TCR αβ 

T cells.132,133 Indeed, TCR γδ T cells can ingest entire bacteria, such as L. monocytogenes and E. 

coli.132,133 Presumably the maturation of phagosomes in these cells resembles and depends on the 
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same machinery as other professional phagocytes (e.g., Rab5/7, RILP, etc.) though very little is 

currently known about this. 

 

1.4 MACROPINOCYTOSIS 
 

Pinocytosis (“cell drinking”) refers to non-specific endocytosis of solute contents dissolved in 

the fluid phase into vesicles of any size.163 Micropinocytosis, the ingestion of fluid-phase 

contents into vesicles <100 nm in diameter, is today an archaic term as it is now known to 

encompass a number of distinct endocytic pathways described previously in this document. All 

forms of fluid-phase endocytosis contribute to the regulation of cellular absorption of water, 

nutrients, and ions from the extracellular environment. For example, dynamin-dependent 

“pinocytosis” in microvilli of epithelial cells aids in the absorption of nutrients in the digestive 

tract.164  

 

Macropinocytosis, however, refers to a distinct, evolutionarily-ancient, and non-selective form of 

endocytosis that generates double membrane-bound vesicles (macropinosomes) ranging in size 

from 200 nm to >5 µm in diameter.165 In perhaps the earliest description of macropinocytosis, by 

Warren Lewis in the early 1930s, plasma membrane ruffling and the centripetal movement of 

ingested fluid contents was observed by light microscopy.76,166 What was likely 

macropinocytosis was also observed early in the 20th century in social amoebae.167 One in 

particular, the soil amoeba Dictyostelium discoideum, has become a primary organism for 

macropinocytosis research since the isolation of anexic laboratory strains in the late 1960s.168–170  
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Macropinosomes are dynamic vesicular organelles that form from stochastically-generated 

plasma membrane ruffles that project from the apical cell surface. Some of these protrusions 

meet and fuse with other, contraposed ones at their distal margins to generate a macropinosome. 

Other ruffles, created by rapid polymerization of branching actin filaments, collapse singularly 

back into the plasma membrane with the same effect: enclosure of a double membrane-bound 

vesicle. Membrane ruffles originating dorsally or peripherally produce concave, somewhat 

heterogenous, cup-like structures that close to form a macropinosome. Alternatively, larger 

circular dorsal ruffles (CDRs) form nested actin ring structures that are thought to generate 

macropinosomes upon centrifugal contraction, much like the “purse-string” mechanism of 

phagosome closure.171  

 

Morphologically, the extension and folding of the plasma membrane form cup-like structures in 

macropinocytosis bears a closer resemblance to phagocytosis than any other form of endocytosis. 

CME, cavaeolae-mediated endocytosis, IL-2Rb endocytosis, and other small-scale forms of 

endocytosis, by contrast, generate vesicles by invagination of and budding from the membrane 

following local concentration of pathway-specific cargoes. 

 

As organelles, macropinosomes are still relatively uncharacterized. They share many features in 

common with the phagolysosomal and endolysosomal systems. In macrophages, 

macropinosomes acquire markers of early endosomes, then late endosomes, before fusing with 

the lysosome.172  

 

Cell-specific adaptations of macropinocytosis 
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Macropinocytosis has never been observed in plants or fungi, presumably because their rigid cell 

walls preclude the ruffling and extension of membrane necessary to generate macropinosomes. It 

does occur, however, in a wide variety of vertebrate cells and has been adapted for cell-specific 

functions including, but not limited to, directed cell migration, morphogenesis, feeding, and 

immune surveillance in antigen-presenting cells.165,173,174 The latter activity, where soluble 

antigens and sometimes whole pathogens are constantly ingested by macropinocytosis and 

processed for presentation by dendritic cells, macrophages, and others, is critical for both innate 

and adaptive immunity. The rate and scale of macropinocytic fluid uptake in macrophages is 

impressive: M-CSF-stimulated macrophages can ingest 25% of their cell volume in 5 minutes.175 

 

Like other endocytic pathways, macropinocytosis regulates composition of the plasma 

membrane, and therefore signaling, through internalization of membrane-embedded molecules 

and the regulated trafficking of endocytic vesicles. The rate and scale of membrane 

internalization during macropinocytosis necessitates a retrieval system that salvages and 

selectively recycles surface proteins before they are lysosomally-degraded, which in 

Dictyostelium is accomplished by the concerted action of the Retromer sorting complex and 

WASP and SCAR homologue (WASH).176 It’s likely this system or a comparable one has been 

conserved in mammals as WASH has a homolog in mammalian cells.  

 

In Dictyostelium and related amoebae, macropinocytosis facilitates feeding and nutrient 

acquisition alongside phagocytosis.177 As will be detailed below, it has been discovered recently 

that mammalian cells can also utilize macropinocytosis for nutrient uptake and its occurrence 
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under both normophysiologic and pathological conditions is of central interest to this 

investigation.  

 

1.5 MACROPINOCYTOSIS AND PATHOPHYSIOLOGY 
 

Macropinocytosis has been implicated in a number of disease states, including atherosclerosis, 

neurodegenerative diseases, viral infection, and cancers. Macropinocytosis of native, oxidized or 

aggregated LDL cholesterol mediates the conversion of monocyte-derived macrophages into 

foam cells, which can accumulate to form plaques and atheromas in the tunica intima of blood 

vessels.178 Macropinocytosis of exogenous PRPSc, the pathological prion protein conformation 

implicated in transmissable spongiform encephalopathies, enables cell-to-cell spreading of 

misfolded prion protein.179 There is also considerable evidence that inclusion bodies (protein 

aggregates) in the brain themselves can stimulate plasma membrane ruffling of neurons, 

triggering their macropinocytic uptake and spread.180–182 Also in the brain, hyperstimulation of 

neuronal macropinocytosis by methamphetamine is associated with impaired lysosomal function 

and neurotoxicity.183 

 

Exploitation by viruses 

Many viruses have evolved to exploit endocytic machinery to facilitate infection and 

macropinocytosis is no exception. In fact, its relative non-selectivity makes it an especially 

vulnerable route of entry for a range of pathogens, including a wide variety of both enveloped 

and non-enveloped, DNA and RNA viruses. Vaccinia virus, respiratory syncytial virus, 

coxsackievirus B, African swine fever virus, herpes simplex virus 1 (HSV-1), echovirus 1, 

human immunodeficiency virus 1 (HIV-1), murine amphotropic retrovirus (A-MLV), influenza 
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A, and adenovirus 3 are among those known to productively infect cells by macropinocytosis.184–

188 Others, such as rubella and adenovirus 2/5, enter cells by other endocytic mechanisms but 

appear to require macropinocytosis to enable cytoplasmic penetration.186 

 

Some viruses that induce or opportunistically exploit macropinocytosis to promote infection, 

such as β-coronaviruses, require trafficking to lysosomes to promote viral egress.189 In HeLa-

mcc1a and Vero E6 cells, these viruses deacidify lysosomes (and thereby inactivate resident 

lysosomal proteases) by an unknown mechanism before inducing lysosomal exocytosis in a 

manner dependent upon the small GTPase Arl8b, a known regulator of lysosomal 

trafficking.189,190   

 

Cancer 

Macropinocytosis and cancer have been linked since the former’s discovery: Lewis’s initial 

description of what we now know as macropinocytosis was in, among other cell types, rat and 

mouse sarcomas. The recent discovery that certain tumor cells can use macropinocytosis to 

scavenge nutrients has stimulated interest in the process in the cancer biology community, with 

the hope that a better understanding of it may inform therapeutic development.  

 

The rapid growth and proliferation of cancer cells requires, among other things, the continuous 

supply of nutrients which are quickly depleted from inhospitable tumor microenvironments. 

Oncogenic mutations in some signaling proteins, such as isoforms of the GTPase Ras, stimulates 

macropinocytosis and enables tumor cells to grow under conditions of nutrient scarcity. 
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Similarly, expression of the oncogenic v-Src protein, a gene found in Rous sarcoma virus, is 

sufficient to stimulate constitutive macropinocytosis in fibroblasts.191 

 

In a landmark paper, Commisso et al. described macropinocytosis of extracellular protein in 

tumor cells driven by oncogenic K-Ras under conditions of amino acid starvation.192 In these 

cells, macropinocytosed extracellular protein is trafficked to lysosomes where it is degraded to 

amino acids that subsequently enter central carbon metabolism. In K-Ras-driven pancreatic 

ductal adenocarcinoma (PDAC) cells that exhibit this behavior when deprived of glutamine, 

macropinocytosis of extracellular protein depends on EGFR-Pak signaling.193 More recently, 

PTEN-deficient prostate cancer cells under conditions of nutrient deficiency (and AMPK 

activation) have been similarly shown to macropinocytose protein and necrotic cell debris, which 

are then degraded to yield amino acids for growth.194  

 

Indeed, the adaptation of macropinocytosis for scavenging and feeding may be a pervasive 

phenomenon in many cancers; in addition to those previously mentioned it has been observed in 

colorectal, lung, ovarian, hepatocellular and bladder urothelial carcinomas, osteosarcoma, glio- 

and medulloblastomas, and other tumor types.195 A study of senescent U2OS (human 

osteosarcoma) and Hs68 (human foreskin fibroblast) cells found that the lymphocyte antigen 6 

complex, locus D (LY6D), an extracellular protein attached to the plasma membrane by a GPI-

anchor, was required for macropinocytic uptake of extracellular protein and growth.196 
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As the breadth of macropinocytosis research expands to include the study of additional cell types 

and tissues there will doubtless be additional roles identified for macropinocytosis in the shaping 

of health and disease. 

 

1.6 MOLECULAR MECHANISM OF MACROPINOCYTOSIS 
 

The formation of macropinocytic cups and their closure to form macropinosomes depends on the 

complex and incompletely understood interaction of phosphoinositides, kinases, GTPases, and 

cytoskeletal proteins, which cooperate over time and space to produce a global increase in actin 

excitability and polymerization at the cell surface. Signaling in macropinocytosis is through 

pathways associated with growth factor receptors, Fc receptors, and chemoattractant receptors 

that converge on activation of class I phosphatidylinositol 3-kinases (PI3K), which link the 

plasma membrane and the cytoskeleton. 

 

The Ras family of small GTPases play a central role in canonical descriptions of 

macropinocytosis. In general, Ras GTPases transduce signals from activated growth factor 

receptors to class I PI3Ks. Anexic strains of Dictyostelium that have evolved the ability to grow 

in liquid media show dramatically elevated rates of macropinocytosis due to a deletion of 

neurofibromin 1 (NF1), a Ras GTPase-activating protein (GAP) that spatially regulates Ras 

inactivation in forming macropinosomes, underlining the importance of Ras signaling in the 

process.197 In fibroblasts, expression or injection of constitutively active (oncogenic) Ras is 

sufficient to cause membrane ruffling and macropinocytosis to occur.198 In macrophages and 

Dictyostelium, active Ras is enriched and spatially coordinated during the formation of 

macropinocytic cups alongside PIP3 and active Rac1.199–201 Also in Dictyostelium, the 
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multidomain protein RCC1, RhoGEF, BAR, and RasGAP-containing protein (RGBARG) 

coordinates macropinocytic cup formation by promoting activation of Rac1 at the protruding 

edge and suppressing Ras activation in the cup interior.202 Also in Dictyostelium, the IQGAP-

related protein IqgC associates with macropinosomes and negatively regulates their size by 

exerting GAP activity toward the Ras isoform RasG.203  

 

Humans have at least three Ras genes (H-, K-, and N-Ras), though transcripts from these genes 

undergo extensive alternative splicing to yield splice variants with distinct structural properties. 

Translated Ras proteins are also extensively post-translationally modified.204 Like other 

GTPases, Ras proteins exhibit switch-like behavior, cycling between two conformations: an 

inactive, GDP-bound state and an active, GTP-bound state in which numerous effector proteins 

(e.g., TIAM1, RAF1, RASSF, etc.) can be bound to regulate signaling through multiple 

pathways.205 Most of the post-translational modifications of Ras proteins, including prenylation, 

carboxyl methylation, and palmitoylation, are confined to the C-terminus.205 The most important 

of these is farnesylation of a C-terminal CAAX sequence, where C is cysteine, A is usually an 

aliphatic amino acid, and X is any amino acid.205 Farnesylation of this motif enables tethering of 

Ras GTPases to the inner leaflet of the plasma membrane where Ras GEFs and GAPs can 

activate or deactivate them by promoting, respectively, GDP dissociation or GTP hydrolysis. 

Restriction to the 2D plane of the inner membrane represents an effective increase in the binding 

constant between these proteins of five orders of magnitude compared to that of the proteins in 

free solution.206  
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Ras can be downregulated from the membrane by K63 ubiquitination, which promotes its 

internalization on endosomes.207 Components of the ESCRT-III complex regulate the fate of 

Ras-laden endosomes, which can be stored, destroyed, or recycled back to the plasma 

membrane.208 

 

Ras plasma membrane localization is critical for its signaling functions. Given that fact and the 

prevalence of Ras mutations in a wide variety of tumors (estimated to be 33%), there has been 

extensive development and investigation of the therapeutic potential of inhibitors of Ras 

farnesylation and membrane recruitment.209 Farnesyl thiosalicylic acid (FTS, salirasib) and 

similar farnesylcysteine mimetics inhibit H-, N-, and K-Ras by competing with Ras for binding 

Ras-escort proteins that mediate membrane association.210,211 

 

Ras may promote PI3K activation in macropinocytosis by multiple mechanisms. Different Ras 

isoforms may activate specific PI3K isoforms with distinct functional capabilities. Class IA 

PI3Ks consist of a p85 regulatory subunit and a p110 catalytic subunit (p110α, p110δ or 

p110γ).212 They also possess an N-terminal Ras-binding domain (RBD) and each of the class IA 

catalytic subunits are also Ras effectors.213 PI3Ks are also activated by ligand-induced 

dimerization and autophosphorylation of receptor tyrosine kinases (RTKs). Phosphotyrosine 

motifs on dimerized receptors recruit the adaptor protein GRB2, which activates the Ras GEF 

son of sevenless 1 (SOS1).214 SOS1 promotes GTP-loading and activation of Ras, which in turn 

activates class IA PI3K catalytic subunits.215 
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Class I PI3Ks converts membranous phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) to 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which accumulates at the base of 

macropinocytic cups and localizes signaling cascades there. The generation of PIP3 in 

macropinocytic cups is a universal hallmark of macropinocytosis that has been noted in a wide 

variety of cell types. Plasma membrane enrichment of PIP3 in turn recruits proteins with PIP3 

binding domains, including PLCγ1, PDK1, Akt (protein kinase B), and GEFs that locally 

activate Rho-family GTPases such as Rac1, RhoG and Cdc42.216 

 

GTP-loading of Rho-family GTPases by their respective GEFs results in the recruitment of 

effector proteins that promote membrane ruffling and coordinate cup formation and closure. 

RhoG and its GEF Trio modulate the size of CDRs via unknown downstream effectors.217 The 

Rac1 effector p21-activated kinase 1 (Pak1) has been shown by itself to promote dramatic actin 

remodeling and generation of lamellipodia in some cell types.218 Additionally, Pak1 and the C-

terminal-binding protein-1/brefeldinA-ADP ribosylated substrate (CtBP1/BARS) have both been 

implicated cup closure. CtBP1/BARS appears to be the direct mediator of cup closure but is 

regulated by phosphorylation on serine 147 by Pak1, which licenses vesicle scission, at least in 

epidermoid carcinoma cell lines performing EGF-stimulated macropinocytosis.219 Recently 

another molecular player involved in cup closure has been identified: Rab5a, which promotes 

sealing and scission of macropinosomes by recruitment of inositol 5-phosphatases that eliminate 

membranous PI(4,5)P2.220 Other critical downstream effectors of Rho GTPases are WASP family 

verprolin homologous (WAVE) proteins, which bind phosphatidylinositol phosphates, stabilize 

lamellipodial extensions, and activate Arp2/3, a nucleator of branched actin filaments.221   
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Hydrolysis of PI(4,5)P2 by PLCγ1 produces the second messengers inositol 1,4,5-trisphosphate 

(IP3) and diacylglycerol (DAG). DAG in turn activates protein kinase C (PKC) which indirectly 

promotes cup closure. In M-CSF-stimulated macrophages, administration of DAG analogs like 

phorbol 12-myristate 13-acetate (PMA) alleviates PI3K dependence and promotes downstream 

Ras and PKC activation. Additional evidence from macrophages suggests that PKCδ is the 

predominant isoform of PKC directing cup closure.222  Other molecules implicated in 

macropinocytic signaling include, Arf6, phospholipase D, and DAG kinase.216,223–225  

 

A great deal of macropinocytosis research has focused on the actin cytoskeleton while there has 

been comparatively little focus on the role intermediate filaments and microtubules play in the 

process. Recently it was shown in HT1080 (fibroscarcoma) cells that Arf6, a GTPase active in 

multiple CIE pathways, cooperates with dynein and the microtubule motor scaffold protein JIP3 

to promote the centripetal movement of macropinosomes on microtubules.224 Similarly, the 

kinase PIKfyve and the calcium channel TRPML1 (mucolipin) associate with and mediate 

shrinkage of macropinosomes as they mature.226 How exactly they do this is poorly understood 

but TRPML1 also regulates interactions between lysosomes and dynein, the retrograde (minus-

end-directed) microtubule motor protein. SEPT2, a member of the septin family of GTP-binding 

proteins, mediates macropinosome maturation and lysosomal fusion in canine epithelial cells 

(MDCKs).227 

 

Macropinocytic signaling in cancers 

Recently an unbiased screen designed to detect changes in the PDAC cell surface protein 

repertoire induced by K-Ras identified a syndecan, syndecan-1, as a critical regulator of 
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macropinocytosis in these cells.228 Syndecans are co-receptors for GPCRs but have also been 

shown to regulate the activity of small Rho-family GTPases, such as Rac1, RhoA, and RhoG, 

which may explain their reported influence on macropinocytosis.228,229 Also in oncogenic Ras-

driven tumor cell lines, Ras activation of protein kinase A (PKA) promotes the translocation of 

the vacuolar-ATPase (V-ATPase) to the plasma membrane.230 In these cells, accumulation of V-

ATPase is required for macropinocytosis because it promotes the cholesterol-dependent 

membrane targeting of Rac1. Wnt signaling has also been shown to promote macropinocytosis in 

cell lines: expression of Wnt3a, the canonical activator of the Wnt signaling pathway, alone 

induces macropinocytic uptake of extracellular protein and its digestion in lysosomes.231  

 

These findings may be restricted tumor cells and only reflect the aberrant behaviors of tumor 

cells. The potential influence of Wnt signaling on macropinocytosis in non-transformed cells in 

particular has been little explored. It remains to be seen whether these studies will inform our 

understanding of normophysiologic macropinocytosis. 

 

Similarities and differences with other CIE pathways 

As nearly all forms of CIE require mobilization of the actin cytoskeleton there is, perhaps 

unsurprisingly, considerable overlap in their signaling and effector requirements. The molecular 

mechanism of macropinocytosis bears the most obvious similarity to that of phagocytosis. The 

study of Fc receptor-mediated phagocytosis has yielded the most insight into phagocytic 

signaling, and it has revealed a similar convergence on PI3K, Rho GTPases and their effectors, 

and PKC.232 Similarly, IL-2Rb endocytosis also depends crucially on PI3K signaling and the 

recruitment of actin-remodeling effectors like Pak1, WAVE, and Arp2/3.233 Apart from 
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macropinocytosis, a significant proportion of fluid-phase uptake in cells occurs by CLIC-GEEC 

endocytosis which, as previously mentioned, depends critically on the Rho GTPase Cdc42.33   

 

Selective inhibition by EIPA and J/B 

Despite this shared signaling and actin-remodeling machinery—which underlines the difficulty 

of selectively targeting CIE pathways—macropinocytosis is uniquely inhibited by amilorides, 

pyrazine derivatives that inhibit plasma membrane Na+/H+ exchangers (NHEs).72,234 These 

channels are antiporters that extrude cytoplasmic protons (H+) in exchange for extracellular Na+. 

The mechanism that connects ion exchange to macropinosome formation is poorly understood 

but involves the regulation of submembranous pH. NHE blockade, and in particular selective 

inhibition of NHE-1 by the amiloride derivative 5-(N-Ethyl-N-isopropyl) amiloride (EIPA), 

promotes submembranous acidification that dramatically impairs the activity of Rac1 and 

Cdc42.235 The current consensus is that this inhibitory influence on actin-remodeling Rho 

GTPases is how amilorides selectively inhibit macropinocytosis.  

 

More recently, a combination of the actin-depolymerization inhibitor jasplakinolide and the 

myosin II inhibitor blebbistatin (J/B) have also been shown to be selective inhibitors of 

macropinocytosis in macrophages.236,237 

 

1.7 SCOPE OF THESIS 
 

The utilization of macropinocytosis for feeding in transformed metazoan cells may be seen as 

something of an atavistic trait—a reversion to the behaviors of unicellular eukaryotes like 

Dictyostelium—but conceivably also dismissed as an aberration of cancer cells. The principle 
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motivation of this research project, which arose in discussions between Joel Swanson, Phil King, 

and myself in 2016, was to investigate the possibility that non-transformed cells with high 

proliferative capacity, namely activated T cells, perform macropinocytosis and, if so, under what 

conditions and for what purpose. 

 

Chapter II describes results from in vitro and in vivo experiments demonstrating the capacity of 

primary murine and human T cells to internalize high molecular weight macropinocytosis probes 

under various conditions, and the enhancement of this uptake upon stimulation. Experiments 

employing scanning electron microscopy and confocal microscopy highlight similarities between 

plasma membrane features in T cells and macropinocytosing macrophages. The temperature 

dependency and sensitivity of probe uptake to abolition by EIPA is also shown by flow 

cytometry and confocal microscopy. 

 

In Chapter III I explore the signaling requirements of T cell macropinocytosis. In addition to 

demonstrating the abolition of probe uptake using established selective inhibitors of 

macropinocytosis (EIPA and the combination of jasplakinolide and blebbistatin), I show that 

inhibition of PI3K, Rac1, or Pak1 also inhibits T cell macropinocytosis, but to a lesser extent. In 

contradistinction to canonical macropinocytosis signaling in other cell types such as 

macrophages, T cell macropinocytosis exhibits Ras-independence, as confirmed by experiments 

testing probe uptake in Rasgrp1 knockout mice and in the presence of a Ras inhibitor. 

 

Chapter IV examines the relationship between macropinocytosis and growth in nascently-

activated T cells under nutrient-replete conditions. After identifying the period following 
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stimulation and activation corresponding to G1 phase, I show how inhibition of 

macropinocytosis during this period is accompanied by a proportional reduction in growth and 

that this relationship is approximately linear.   

 

How macropinocytosis regulates activated T cell growth is the subject of Chapter V. Given that 

macropinocytic cargoes are frequently targeted to lysosomes in other cell types and the observed 

relationship between macropinocytosis and growth, it was reasonable to suspect involvement of 

the mechanistic target of rapamycin complex 1 (mTORC1). I confirmed lysosomal targeting of 

macropinocytosed contents by flow cytometry and confocal microscopy. Next, I examined 

mTORC1 signaling kinetics in stimulated T cells through G1 phase and confirmed its 

continuous, sustained activation. I then show evidence that mTORC1 activation in this period is 

abolished in a dose-dependent manner by inhibition of macropinocytosis and that inactivation is 

consistently more pronounced than that achieved with the selective mTORC1 inhibitor Torin 1. I 

also show that abrogation of mTORC1 signaling by inhibition of macropinocytosis does not 

impair activation-induced ERK (MAPK) and NFκB signaling. Additional experiments show that 

inhibition of lysosomal proteolysis in this context does not impair mTORC1 activation, 

suggesting that macropinocytosis of free amino acids sustains signaling. Lastly, I share results 

demonstrating that minimal medium containing four particular amino acids is sufficient to 

sustain G1 phase mTORC1 activation, and emphasize the special importance of two of them 

(leucine and glutamine). The chapter concludes by discussing a proposed model of mTORC1 

activation in stimulated T cells.  

 

Chapter VI summarizes the thesis and discusses additional findings related to the extent of 
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macropinocytosis in thymocytes and other T cell subsets. I discuss the probability that 

macropinocytosis facilitates growth in other primary mammalian cell types and suggest some 

lines of inquiry to be explored further by future researchers. 
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CHAPTER II: 

MACROPINOCYTOSIS IN T CELLS1 

2.1 ABSTRACT 

 

To test whether T cells engage in macropinocytosis, flow cytometry uptake assays were 

performed using high molecular weight, flurochrome-congjuated macropinocytosis probes. 

Primary CD4+ and CD8+ murine T cells incubated in vitro at 37°C were found to constitutively 

ingest two macropinocytosis probes: 70 kDa fluorescein-dextran (Fdex) and 67 kDa Alexa 488-

bovine serum albumin (BSA). Stimulation with anti-CD3 and anti-CD28 antibodies for 24 

(Fdex) or 20 (BSA) hours prior to probe incubation in the final 8 (Fdex) or 4 (BSA) hours 

resulted in a 3-4 fold increase in probe uptake compared to unstimulated cells. In stimulated 

cells, probe internalization was coincident with an increase in cell size. Uptake was due to a 

temperature-dependent process, occurring at the permissive temperature of 37°C but abrogated 

by incubation at 4°C. Confocal microscopy confirmed temperature-dependent probe uptake into 

putative macropinosomes. Adoptive transfer of OT-II TCR Tg T cells into recipient mice 

followed by immunization with whole ova protein permitted the demonstration of BSA probe 

uptake in vivo. Constitutive and stimulated uptake was also tested and confirmed in vitro in 

primary human cells; CD4+ and CD8+ T cells stimulated with either anti-CD3/CD28 mAbs or the 

 
1 The contents of this chapter were adapted and reproduced from the following publication: Charpentier, J. C. et al. 
Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun 11, 180 (2020). 
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T cell mitogen phytohemagglutinin recapitulated enhanced probe uptake relative to constitutive 

internalization in unstimulated cells. Scanning electron microscopy of murine CD4+ and CD8+ T 

cells resolved morphological features of the plasma membrane consistent with macropinocytosis 

in macrophages—namely macropinocytic cups in various stages of evolution. Confocal 

microscopy of murine CD4+ T cells stimulated for 16 hours with anti-CD3 and anti-CD28 

antibodies, then stained with phalloidin revealed polymerized actin loops directed 1-2 um from 

the cell surface. Most importantly, probe uptake was significantly inhibited by addition of 5-(N-

Ethyl-N-isopropyl) amiloride (EIPA), a selective inhibitor of macropinocytosis that blocks 

plasmalemmal Na+/H+ exchangers (NHEs), prior to probe incubation. EIPA inhibition of probe 

ingestion was confirmed by flow cytometry and confocal microscopy. Similarly, incubation with 

a combination of the actin-depolymerization inhibitor jasplakinolide and the myosin II inhibitor 

blebbistatin (J/B), which together selectively inhibit macropinocytosis in macrophages, also 

blocked probe uptake as assayed by flow cytometry. Both EIPA and J/B inhibited probe uptake 

in a dose-dependent manner but probe internalization was not inhibited by incubation with a 

selective inhibitor of clathrin-mediated endocytosis, PitStop 2. Inhibition by EIPA and J/B was 

also confirmed in primary human cells. Taken together, these findings suggest that both murine 

and human primary CD4+ and CD8+ T cells constitutively perform macropinocytosis and 

upregulate it 3-4 fold upon stimulation and cell activation. 
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2.2 INTRODUCTION 
 

Compared to CME, which uses unique protein machinery to transport pathway-specific cargoes, 

distinct CIE pathways share machinery and can transport identical cargoes, making their study 

considerably more challenging. Macropinocytosis, for example, requires the activity of Rab and 

Rho-family GTPases and their effectors, but so do IL-2Rb endocytosis, phagocytosis, 

CLIC/GEEC endocytosis, and a host of other unrelated cellular processes. As a result, ablation or 

deletion of the genes encoding proteins that cooperate to perform these modes of endocytosis 

nearly always compromises the activity of multiple pathways and/or impairs other critical cell 

functions. In other words, most of the genetic targets that have been evaluated are highly 

pleiotropic.  

 

One way to overcome the difficulty of studying macropinocytosis in isolation is to use high 

molecular weight (>10 kDa) probes. As macropinocytosis is a non-selective mode of endocytosis 

the selectivity of probe uptake occurs by virtue of its size in solution (i.e. by size exclusion from 

alternative routes of entry). While high molecular weight probes cannot be assumed to be 

internalized exclusively by any one mode of endocytosis, it’s reasonable to assume that the 

larger their size, the stronger will be their bias for macropinocytic uptake.  

 

One widely used high molecular weight macropinocytosis probe is 70 kDa fluorescein-dextran 

(70 kDa Fdex). Dextrans are highly soluble, elastic, non-immunogenic polysaccharides of α-

linked D-glucopyranose monomers widely used in research, food, cosmetics, and medicine 

(especially as blood plasma volume expanders).238–241 They are generally recognized as safe 

(GRAS) by the U.S. Food and Drugs Agency (FDA) and their long use in many industries attests 
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to their safety and biocompatibility. Studies in mammalian cells have demonstrated that whereas 

10 kDa dextran is internalized by both CME and macropinocytosis, 70 kDa dextran enters cells 

predominantly through macropinocytosis.242  

 

Another macropinocytosis probe of comparable size is bovine serum albumin (BSA). Its 

unconjugated molecular weight is 66.5 kDa, which the addition of a fluorophore (such as Alexa 

488) increases by <1 kDa. BSA is an endogenous bovine blood protein made in the liver. It is the 

most abundant protein found in plasma and has multiple important functions including 

maintaining plasma colloid oncotic pressure and serving as a carrier for hydrophobic 

molecules.243 The advantage of using fluorophore-conjugated BSA over dextrans in 

macropinocytosis studies is that, as proteins, they are fixable by formaldehyde, which permits 

fluorescence microscopy.  

 

We endeavored to first test the capacity of unstimulated and nascently-stimulated primary 

murine and human CD4+ and CD8+ T cells to macropinocytose 70 kDa Fdex and Alexa-488 

BSA in vitro. We developed a standard uptake assay (detailed in Materials and methods below) 

with a focus on the period 12-24 hours post-stimulation since this corresponds with rapid G1 

phase growth in activated T cells. Macropinocytosis being an energy-dependent process, we 

included negative controls incubated with macropinocytosis probes at 4°C in all experiments. 

Uptake of both 70 kDa Fdex and Alexa 488-BSA probes was measured by multi-parameter flow 

cytometry.  
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Next we planned to assay BSA probe uptake into intracellular vesicles by confocal microscopy. 

To compare findings between murine and human cells, we performed identical uptake assays in 

primary human T cells. To test the capacity of primary murine T cells to macropinocytose the 

BSA probe in vivo, we performed adoptive transfer experiments using OT II (CD4+) Tg TCR T 

cells stimulated with cognate peptide-MHC ligand (OVA).  

 

Unstimulated and CD3/28-stimulated murine T cells were also examined by scanning electron 

microscopy to identify features of the plasma membrane, such as CDRs and cups, consistent with 

macropinocytosis. Additionally, to visualize the distribution of filamentous actin in T cell 

membranes, we used phalloidin, a cyclic F-actin-binding peptide isolated from the fungus 

Amanita phalloides, in confocal microscopy imaging assays.  

 

Lastly, as previously discussed in Chapter 1.6, the best tools currently available for assessing 

macropinocytosis are the selective inhibitors EIPA and J/B. If probe internalization were due to 

macropinocytosis, we would expect it to be significantly inhibited if not abolished by treatment 

with EIPA or J/B. Sensitivity of probe uptake by EIPA and J/B treatment was assessed in both 

murine and human T cells (stimulated by various means) by flow cytometry and confocal 

microscopy.  

 

2.3 MATERIALS AND METHODS 
 

Animals. Wild-type mice were bred in house and were on a mixed 129S6/SvEv X C57BL/6 

genetic background. One exception was recipient mice in in vivo experiments that were on a 

CD45.1 C57BL/6 background (JAX). OTII TCR Tg mice (JAX) were on a C57BL/6 genetic 
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background. Mice ranged in age from 6 weeks to 3 months. Mice of both sexes were used in 

experiments. All experiments performed with mice were in compliance with University of 

Michigan guidelines and were approved by the University Committee on the Use and Care of 

Animals. 

 

T cell macropinocytosis assays. Murine splenocytes from wild-type or pan-T cells, purified 

from splenocytes of wild-type mice by column depletion (Miltenyi Biotec), were resuspended in 

RPMI 1640 medium (Thermo Fisher) supplemented with 10% heat-inactivated FCS (Gibco). 

Splenocytes were seeded into U-bottomed 96-well plates at a density of 1 × 106 cells per well 

and were stimulated or not with anti-CD3 (1μg/ml; eBioscience, clone 145–2C11) and anti-

CD28 (1μg/ml; eBioscience, clone 37.51) mAb for the indicated times. Pan-T cells were seeded 

at a density of 1 × 106 cells per well into the wells of flat-bottomed 96-well plates pre-coated 

with anti-CD3 mAb (10μg/ml) and soluble CD28 mAb (1μg/ml) was added to wells. 70 kDa 

Fdex or Alexa 488-BSA macropinocytosis probes were added to wells at final concentrations of 

1 mg/ml, 0.4 mg/ml, respectively, at the indicated times. Incubation with probes was for the 

indicated times at 37°C or 4°C. Pharmacological inhibitors were added to cultures 15 min prior 

to addition of macropinocytosis probes in a range of concentrations as indicated or at the 

following final concentrations: EIPA (Sigma), 50μM; jasplakinolide (Tocris), 1μM; (S)-(-)-

blebbistatin (Tocris), 75μM; PitStop 2 (Sigma). Cells were harvested, washed, stained with APC-

Cy7-CD4 (BD Pharmingen, clone GK1.5,cat. no. 552051, dilution 1:100) and APC-CD8α (BD 

Pharmingen, clone 53-6.7, cat. no. 553035, dilution 1:100) mAb and analyzed by flow cytometry 

on BD Fortessa or BD FACSCanto instruments (BD Biosciences). Gating strategies are 

illustrated in the Appendix. Percentage macropinocytosis in the presence of inhibitors was 
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calculated as follows: [(MFI in presence of inhibitor at 37°C - MFI in absence of inhibitor at 

4°C)/(MFI in absence of inhibitor at 37°C - MFI in absence of inhibitor at4 °C)] × 100.  

 

To assess human T cell macropinocytosis, human peripheral blood mononuclear cells (PBMC) 

were isolated from buffy coats obtained from the New York Blood Center and resuspended in 

RPMI 1640 with 10% FCS. PBMC were seeded into 96 well U-bottomed plates at a density of 5 

× 105 cells per well and were stimulated or not with anti-CD3 (1μg/ml; Invitrogen, clone OKT3) 

and anti-CD28 (1μg/ml; Invitrogen, clone CD28.2) mAb or PHA (1.5% final; Thermo Fisher) for 

20 h. Cells were incubated with BSA-Alexa 488 at 0.4 mg/ml for the last 8 hours of culture. 

EIPA and J/B were added to cultures 15 min prior to addition of probe at the above 

concentrations. Cells were harvested, stained with APC-Cy7-CD4 (Biolegend, cloneRPA-T4, 

cat. no. 300518, dilution 1:100) or PerCP-Cy5-5-A-CD4 (Biolegend, cloneOKT4, cat. no. 

317428, dilution 1:100) and Alexa 700-CD8α (Biolegend, clone SK1, cat. no. 344724, dilution 

1:100) or BV-605-CD8 (Biolegend, clone RPA-T8,cat. no. 301040, dilution 1:20) mAb and 

analyzed by flow cytometry. The gating strategy is illustrated in the Appendix. 

 

Confocal microscopy. Murine splenic pan-T cells or CD4+ T cells (isolated by column 

depletion) were stimulated with CD3 and CD28 mAb for 12 h as above before incubation in the 

presence or absence of BSA-Alexa 488 (0.4 mg/ml) at 37°C or 4°C in the presence or absence of 

EIPA (50 μM) for a further 4 or 8 h. Cells were harvested, washed, resuspended in PBS and 

sedimented for 1 h on ice at 1 g onto coverslips previously coated with 0.1% poly-L-lysine 

(Sigma). Cells were fixed in situ by addition of an equal volume of 4% paraformaldehyde and 

incubation for 30 min at room temperature. Coverslips were then washed and cells were stained 
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with rat anti-mouse CD4 (R&D Systems, clone GK1.5) or CD8α (R&D Systems, clone 53-6.7), 

mAb overnight at 4°C. The following day, coverslips were washed, blocked with 5% donkey 

serum for 1 h, incubated with Alexa 488- or Alexa 594-labeled donkey anti-rat secondary 

antibody (Thermo Fisher, cat. nos. A-21208 and A-21209, dilution 1:200), and stained with 10 

μg/ml Hoechst 33258 (Thermo Fisher). For imaging of polymerized filamentous actin, cells were 

permeabilized with Triton X-100 and stained with Actistain-488 fluorescent phalloidin (0.1 μM; 

Cytoskeleton, Inc.) prior to the antibody staining steps. Coverslips were mounted in ProLong 

Gold Anti-Fade (Thermo Fisher) and images were captured on a Leica upright SP5 confocal 

microscope (Leica). Data showing the percentage of T cells with indicated numbers of 

macropinosomes are based upon counts of >150 cells. 

 

Scanning electron microscopy. Murine BM-derived macrophages were prepared as 

described.244 After 6 days culture, macrophages were stimulated for 15 minutes with CSF1. 

Murine CD4+ T cells were stimulated for 16 hours with CD3/28 mAb and prepared as indicated 

in confocal microscopy. Macrophages and T cells were fixed for 1 hour at room temperature 

with 2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, containing 6.8% sucrose. After 

rinsing the coverslips in buffer they were next post-fixed for 1 hour at 4°C in 0.1 M cacodylate 

buffer containing 1% osmium tetroxide, incubated for 30 minutes in 1% tannic acid in distilled 

water, and then treated with 1% osmium tetraoxide for 30 minutes at 4°C. Fixed coverslips were 

then dehydrated in an acetone series followed by hexamethyldisalizane. The coverslips were then 

air-dried, coated with gold particles using an ion-coater, and imaged on an Amray 1900 field 

emission scanning electron microscope.  
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Macropinocytosis in vivo. One million TCR Vβ5+CD4+T cells from CD45.2OTII TCR Tg mice 

were injected into the tail veins of CD45.1 wild-type recipients. After 24 hours, recipient mice 

were immunized i.d. in footpads with Ova (0.5 mg/ml) in RIBI adjuvant (Sigma) or with RIBI 

adjuvant alone (25μl per footpad). Twelve hours later, all mice were injected i.d. in footpads with 

BSA-Alexa 647 (5 mg/ml in 25μl of PBS per footpad; Thermo Fisher) and mice were euthanized 

after an additional 8 hours. Draining popliteal lymph nodes were harvested from mice, stained 

with PerCP-Cy5-5-A-CD45.2 (BioLegend, clone 104, cat. no. 109828, dilution1:200), Alexa 

Fluor 700A-CD45.1 (BioLegend, clone A20, cat. no. 110724, dilution1:200), V500-CD4 (BD 

BioSciences, clone RM4-5, cat. no. 560782, dilution 1:400), APC-Cy7- CD8α (Invitrogen, clone 

53-6.7, cat. no. A15386, dilution 1:100), and PE-TCR V-β5 (BD Pharmingen, clone MR9-4, cat. 

no. 553190, dilution 1:200) mAb, and analyzed by flow cytometry to assess BSA-Alexa 647 

uptake by OTII TCR Tg T cells. The gating strategy is illustrated in the Appendix. 

 

2.4 RESULTS 
 

Murine T cell internalization of macropinocytosis probes in vitro 

To determine if murine T cells perform macropinocytosis, we tested the ability of primary, 

splenic pan-T cells to endocytose a widely-used macropinocytosis probe, high molecular weight, 

fluorochrome-labeled dextran (70 kDa fluorescein dextran, Fdex). The large size of this probe 

generally precludes its uptake via other, small-scale forms of endocytosis, such as clathrin-

mediated endocytosis, making it a reliable marker of macropinocytosis. Splenic T cells were 

either stimulated for 24 hours in vitro with monoclonal antibodies (mAbs) against the CD3 

component of the T cell receptor complex and the CD28 co-receptor, or were left unstimulated. 
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For hours 20-24 post-stimulation, cells were incubated with 1 mg/mL 70 kDa Fdex at 37°C or at 

4°C. After 24 hours, the cells were washed and stained with anti-CD4 and anti-CD8 antibodies 

prior to live analysis by flow cytometry.  

 

As Figure 2 shows, both CD4+ and CD8+ murine T cells readily endocytosed the 

macropinocytosis probe at 37°C, as determined by acquisition of cell fluorescence. Probe uptake 

was observed in both unstimulated and stimulated CD4+ (a-b) and CD8+ (c-d) T cells, with the 

extent of probe internalization significantly increased in stimulated cells coincident with an 

increase in cell size as measured by forward scatter area (FSC-A, also called forward angle light 

scatter area). FSC-A is a flow cytometry parameter that approximates cell size (cross-sectional 

area) by measuring incident light scatter in cells with the same refractive index. Uptake of the 

Fdex probe was enhanced by 3-4 fold in stimulated vs. unstimulated cells (e). By contrast, 

stimulated cells chilled to 4°C prior to probe incubation for hours 20-24 did not substantially 

endocytose it (a-d). Lack of probe uptake at 4°C and the non-saturability of uptake over a range 

of Fdex concentrations (unpublished data) demonstrated that fluorescence acquisition was the 

result of an energy-dependent process and not triggered by binding to a cell surface receptor.  
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Figure 2 – Murine T cell uptake of Fdex probe. Murine splenocytes were unstimulated or stimulated with 
CD3/28 mAb for 24 h. 70 kDa Fdex probe was added to cells for the last 4 hours of culture, at the indicated 
temperatures. a-d Representative flow cytometry histogram plots of CD4+ and CD8+ T cell probe uptake 
and contour plots of probe uptake vs. FSC-A. e Mean ± 1 SEM of the ratio of Fdex probe uptake in 
stimulated vs. unstimulated CD4+ and CD8+ T cells at 37°C (a–e), n = 10 independent experiments. ****P 
< 0.0001 by Student’s 1-sample, 2-sided t-test. 
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To visualize putative T cell macropinosomes, we used an alternative macropinocytosis probe of 

comparable size, fluorochrome-labeled bovine serum albumin (66 kDa), which unlike 70 kDa 

Fdex can be fixed for imaging applications. Similar to the previous uptake assay, primary, 

splenic murine pan-T cells were stimulated or not with anti-CD3/28 mAbs for 20 hours in total, 

and incubated with BSA probe for hours 12-20 at either 37°C or 4°C. As Figure 3 illustrates, 

flow cytometry analyses confirmed probe uptake into CD4+ and CD8+ T cells at the permissive 

temperature of 37°C but not at 4°C. We observed an approximately 3-fold enhancement of 

uptake of the BSA probe coincident with an increase in cell size in stimulated cells, consistent 

with results obtained from experiments performed with the Fdex probe (Figure 2). 
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Figure 3 – Murine T cell uptake of BSA probe. Murine splenocytes were unstimulated or stimulated with 
CD3/28 mAb in vitro for 20 h. BSA-Alexa 488 probes were added to cells for the last 8 hours of culture at 
the indicated temperatures. a-d Representative flow cytometry histogram plots of CD4+ and CD8+ T cell 
probe uptake and contour plots of probe uptake vs. FSC-A. e Mean ± 1 SEM of the ratio of BSA probe uptake 
in stimulated vs. unstimulated CD4+ and CD8+ T cells at 37°C (n = 15 and 12 independent experiments for 
CD4+ and CD8+ T cells, respectively). ****P < 0.0001 by Student’s 1-sample, 2-sided t-test. 
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To visualize putative T cell macropinosomes, purified, murine pan-T cells were stimulated for 20 

hours, incubated with BSA probe for hours 12-20 post-stimulation then prepared for confocal 

microscopy as described in Materials and methods. As shown in Figure 4 for a representative 

field of CD4-labeled cells (outlined in red), bright green fluorescence with a wavelength of 490-

525 nm was observed accumulated within distinct vesicles approximately 200 nm to 1 μm in 

diameter, consistent with the size of macropinosomes, at 37°C (a, left) but not in cells chilled to 

4°C (a, right) prior to probe incubation for hours 12-20. The nucleus was stained with Hoechst 

33342 dye (blue). Vesicles were roughly circular, though slightly heterogenous in morphology, 

and predominantly localized to the cell periphery. The number of putative macropinosomes per 

CD4+ or CD8+ T cell at the moment of fixation varied from cell to cell with around 50% of them 

having 5 macropinosomes or fewer, though some cells contained 10 or more (b-c). 
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Figure 4 – Confocal microscopy of BSA probe uptake. a Images show temperature-dependent 
uptake of BSA-Alexa 488 by anti-CD3/28 mAb-stimulated purified murine pan T cells (probe 
incubation from 12 to 20 hours) into structures that resemble macropinosomes. Representative 
images of six repeat experiments are shown. b-c Quantitation of the number of macropinosomes 
per CD8+ T cell (b n = 116 cells each at 37°C and 4°C) and CD4+ T cell (c n = 169 and 196 cells 
at 37 °C and 4 °C, respectively). 
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Murine T cell internalization of macropinocytosis probes in vivo 

To ensure that probe uptake was not artifactual and secondary only to artificial, in vitro TCR 

triggering and co-stimulation with antibodies, we conducted probe uptake assays using T cells 

from TCR transgenic mice. If enhancement of probe internalization was a consequence of bona 

fide TCR signaling and physiological activation, we predicted that stimulation with cognate 

peptide-MHC ligands in vivo would reproduce the elevation in uptake we saw in previous 

experiments using CD3/28 mAbs. T cells from OTII TCR transgenic (Tg) mice are CD4+ and 

specific for ovalbumin (OVA) peptide 323-29 in complex with the I-Ab MHC Class II molecule. 

To determine if endocytosis of fluorochrome-BSA by murine CD4+ T cells increased upon TCR 

stimulation by cognate peptide-MHC ligands, we adoptively transferred OTII TCR Tg T cells 

into wild-type mice, waited 24 hours, immunized the wild-type recipients with OVA protein (or 

not), waited 12 additional hours, injected the Alexa-488-BSA probe into their footpads, and 8 

hours later sacrificed the mice. This method is summarized in Figure 5a. After isolating T cells 

from the draining popliteal lymph nodes, we then measured the uptake of BSA probe in OTII 

TCR Tg T cells by flow cytometry, using antibodies specific for the transgenic TCR to identify 

and examine probe uptake only in these cells. As predicted, OTII TCR Tg T cells readily took up 

the probe, whether stimulated with peptide-MHC or not. As Figure 5b shows, uptake was 

enhanced in stimulated cells and was coincident with an increase in cell size as measured by 

FSC-A. OTII TCR Tg T cells stimulated with cognate peptide-MHC showed an approximately 

3-4-fold increased uptake of BSA compared to unstimulated OTII TCR Tg T cells from non-

immunized mice (Figure 5c). 
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Figure 5 – In vivo uptake of BSA probe. a Method used to assess uptake of BSA-Alexa 647 
by OTII TCR Tg T cells in vivo following immunization with whole OVA protein. b 
Representative flow cytometry contour plot of probe uptake vs. FSC-A. c mean ± 1 SEM of 
median fluorescence intensity (MFI) of Alexa 647 fluorescence of OTII TCR Tg T cells from 
unimmunized and immunized mice (n = 4 mice for each condition) ***P < 0.001 by Student’s 
2-sample, 2-sided t-test. 
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Human T cell internalization of macropinocytosis probes in vitro 

To test whether uptake of macropinocytosis probes was unique to primary murine T cells, 

peripheral blood mononuclear cells (PBMCs) were prepared for uptake assays as described in 

Methods and materials. Primary human CD4+ and CD8+ T cells within the PBMC culture were 

stimulated (or not) with anti-human CD3/28 mAbs for 20 hours, then incubated with Alexa 488-

BSA for hours 12-20 prior to washing, staining with CD4 and CD8 antibodies, and analysis by 

flow cytometry. Representative results from CD4+ T cells are shown in Figure 6a-b and the 

fold-change in stimulated vs. unstimulated uptake for both CD4+ and CD8+ T cells are shown in 

Figure 6c. 
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Figure 6 – Human T cell uptake of BSA probe. Human PBMCs were unstimulated or 
stimulated in vitro with CD3/28 mAb for 20 hours. BSA-Alexa 488 was added to cells for 
the last 8 hours of culture at the indicated temperatures. a-b Representative flow cytometry 
histogram plots of CD4+ T cell probe uptake and contour plots of probe uptake vs. FSC-
A. c Mean ± 1 SEM of the ratio of BSA uptake in stimulated vs. unstimulated CD4+ and 
CD8+ T cells at 37°C (n = 3 independent experiments). *P< 0.05, **P< 0.01, by Student’s 
1-sample, 2-sided t-test. 
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As in experiments employing primary murine T cells, primary human CD4+ and CD8+ T cells 

internalized the BSA macropinocytosis probe in a temperature-dependent manner that was 

significantly enhanced upon stimulation with anti-CD3/28 mAbs. The mean fold-change in 

stimulated vs. unstimulated cell uptake was higher in human T cells compared to murine T cells, 

however these data exhibited considerably higher variance. 

 

These experiments were then repeated with phytohemagglutinin (PHA) substituted for anti-

CD3/28 mAbs to assess the effect of using an alternate mode of in vitro stimulation. 

Phytohemagglutinin is a mitogenic lectin isolated from the red kidney bean which promotes 

polyclonal T cell activation by cross-linking CD2 receptors and inducing cytoplasmic calcium 

influx.245 Results from these experiments are summarized in Figure 7.  
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Figure 7 – BSA probe uptake in human T cells stimulated with PHA. Human PBMC were 
unstimulated or stimulated in vitro with CD3/28 mAb for 20 hours. BSA-Alexa 488 was added 
to cells for the last 8 hours of culture at the indicated temperatures. a Representative flow 
cytometry histogram plots of CD4+ and CD8+ human T cell probe uptake. b Mean ± 1 SEM of 
the ratio of BSA probe uptake in stimulated vs. unstimulated CD4+ and CD8+ T cells at 37°C 
(n = 3 independent experiments). *P < 0.05, **P < 0.01 by Student’s 1-sample, 2-sided t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

Similar to results obtained using anti-CD3/28 mAbs, stimulation of primary human CD4+ and 

CD8+ T cells with PHA internalized the BSA macropinocytosis probe in a temperature-

dependent manner that was significantly enhanced upon stimulation with PHA (Figure 7a-b). 

The mean fold-change in stimulated vs. unstimulated cell uptake was 3-4, consistent with 

previous results (Figure 6c).   

 

To discern features of the plasma membrane during probe internalization, we prepared murine 

CD4+ T cells stimulated in vitro with anti-CD3/28 mAbs for 16 hours, as well as unstimulated, 

naïve T cells, for imaging by scanning electron microscopy (SEM). Figure 8a-b shows 

representative images from this experiment. 
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Figure 8 – Scanning electron and confocal microscopy reveal plasma membrane features consistent 
with macropinocytosis. a, b SEM images of murine CD4+ T cells, unstimulated or stimulated with anti-
CD3/28 mAbs for 16 hours. Macropinocytic cups at different stages of development are indicated (arrows). 
c SEM image of a murine BM macrophage stimulated with CSF1 for 15 minutes. Note similarity of 
macropinocytic cups to those identified in T cells (arrows). d Murine CD4+ T cells, stimulated with CD3/28 
mAb for 16 hours, were fixed and permeabilized, stained with Alexa 488-labeled phalloidin and anti-CD4 
mAb, and analyzed by confocal microscopy. Shown images are 3 μm above the plane of T cell contact with 
the substratum. Note cell surface projected loop of polymerized actin (arrows). 
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SEM images of unstimulated and stimulated murine CD4+ T cells show approximately spherical 

cells, 5-7 um in diameter, with many small, spiky surface projections. Also apparent are large 

plasma membrane protrusions and what appear to be macropinocytic cups in various stages of 

evolution, some with quite apparent concavity (Figure 8a-b, arrows). These protrusions and 

cups are more numerous on stimulated CD4+ T cells compared to unstimulated cells. SEM of 

bone marrow-derived macrophages stimulated with CSF1 for 15 minutes prior to fixation reveals 

highly similar plasma membrane structures, including cups (Figure 8c, arrows). Additionally, 

murine CD4+ T cells stimulated for 16 hours with anti-CD3/28 mAbs were fixed, permeabilized, 

and stained with Hoechst nuclear stain, fluorochrome-conjugated anti-CD4 mAb, and phalloidin, 

a bicyclic heptapeptide that selectively stains filamentous actin (F-actin), prior to visualization 

by confocal microscopy. A representative cross-sectional image slice from these experiments, 

taken 3 um above the plane of T cell contact with the substratum, is shown in Figure 8d. On the 

central cell in the image, a large loop of filamentous actin that is coincident with CD4 staining 

projects from the plasma membrane (denoted by an arrow). 

 

Effect of macropinocytosis inhibitors on probe uptake in murine T cells 

To definitively determine if the uptake of high molecular weight probes we observed in murine 

and human T cells was due to macropinocytosis and not some other bulk form of endocytosis, 

we performed uptake assays in the presence or absence of two highly selective inhibitors of 

macropinocytosis, 5-(N-Ethyl-N-isopropyl) amiloride (EIPA) and the combination of 

jasplakinolide and blebbistatin (J/B). As described in 1.7, EIPA inhibits macropinocytosis by 

blocking the Na+/H+ exchanger NHE-1 and impairing activation of actin-remodeling Rho 



 63 

GTPases. The combination of jasplakinolide and blebbistatin, inhibitors of actin 

depolymerization and myosin II respectively, have also been shown to selectively inhibit 

macropinocytosis. We hypothesized that 37°C probe uptake in stimulated murine T cells would 

be blocked by both of these inhibitors but not by an inhibitor of CME, PitStop 2. Results from 

these experiments are summarized in Figure 9.  
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Figure 9 – Inhibitors of macropinocytosis block T cell uptake of macropinocytosis probes. 
a Murine splenocytes (a, c) or purified pan T cells (b) were stimulated with anti-CD3/28 mAbs 
for 12 hours before incubation with Alexa 488-BSA probe. (a, b) or 70 kDa Fdex (c) at 37°C or 
4°C in the presence or absence of EIPA (a-c), J/B (b, c), and PitStop 2 (b, c) used at 50 μM, 
1/75 μM, and 25 μM respectively for a further 8 h. a Representative flow cytometry plot showing 
the influence of EIPA upon probe uptake by CD8+ T cells. b, c Mean ± 1 SEM of the percentage 
macropinocytosis relative to the positive control, calculated as indicated in Methods and 
Materials. b EIPA, n = 5; J/B, = 4, PitStop 2, n = 3 independent experiments. c EIPA, n = 4; J/B, 
= 6, PitStop 2, n = 3 independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001 by Student’s 1-sample, 2-sided t-test. 
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Figure 9a shows the influence of EIPA on probe uptake at 37°C in stimulated and unstimulated 

murine splenocytes in a representative flow cytometry histogram. CD8+ T cells stimulated at 

37°C with anti-CD3/28 mAb for 12 hours before incubation with Alexa 488-BSA probe for an 

additional 8 hours readily ingested the probe (purple curve). By contrast, incubation with 50 μM 

EIPA for 15 minutes prior to addition of the probe dramatically impaired probe uptake as 

measured 8 hours later (light blue curve), and no probe was internalized by cells removed to 4°C 

during the period of probe incubation (red curve). Figure 9b shows data from repeated 

experiments in purified CD4+ and CD8+ T cells testing the influence of EIPA, J/B, and PitStop 2 

on Alexa-488 BSA probe uptake as measured by flow cytometry in the period 12-20 hours post-

stimulation. Figure 9c shows results from identical experiments in murine splenocytes and 

employing the Fdex probe. Results were broadly similar irrespective of which probe was 

employed or whether purified T cells were cultured in isolation or splenocytes were used. J/B 

exerted the most potent inhibitory effect on BSA and Fdex probe uptake, reliably reducing 

internalization (as measured by fluorescence) by 80-90%. EIPA inhibited slightly less, blocking 

BSA and Fdex probe uptake by 60-80%, with less inhibition in purified T cells (b) than in T cells 

co-cultured with splenocytes (c). By contrast incubation with the CME inhibitor PitStop 2 

actually enhanced macropinocytosis of both probes by 110-120%.  

 

To further support our contention that probe internalization in primary T cells occurs by 

macropinocytosis, we examined the dose-response relationship between macropinocytosis 

inhibitors and observed probe uptake by flow cytometry. Murine splenocytes were stimulated at 

37°C with anti-CD3/28 mAb for 12 hours as before and incubated with EIPA at a range of 

concentrations for an additional 8 hours in the presence of Alexa 488-BSA probe. Figure 10 
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shows the percentage inhibition of macropinocytosis as measured by probe uptake for an 

increasing range of EIPA (a) and J/B (b) concentrations. At the lowest concentrations used, 2 

μM EIPA or 0.04 μM jasplakinolide/3 μM blebbistatin, no significant inhibitory effect was 

observed. Incubation with 10 μM EIPA or 0.2 μM jasplakinolide/15 μM blebbistatin inhibited 

probe internalization significantly, approximately 20-30% and 30% respectively. The highest 

inhibitor concentrations used, 50 μM EIPA and 1/75 μM J/B, produced the most potent 

inhibition of macropinocytosis: >80% for EIPA and >90% for J/B. 
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Figure 10 – Dose-response curves for EIPA and J/B inhibition of BSA probe uptake. 
a, b Murine splenocytes were stimulated with anti-CD3/28 mAbs for 12 hours before 
incubation with BSA-Alexa 488 at 37°C in the presence or absence of EIPA (a) and J/B (b) 
for a further 8 hours at the indicated concentrations. Mean ± 1 SEM of the percentage 
macropinocytosis relative to the positive control, calculated as indicated in Methods. a, b n 
= 3 independent experiments. *P < 0.05, **P<0.01, ***P < 0.001, ****P < 0.0001 by 
Student’s 1-sample, 2-sided t-test. 
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Effect of macropinocytosis inhibitors on probe uptake in human T cells 

We next tested the influence of EIPA and J/B on human T cell ingestion of macropinocytosis 

probes. Human PBMCs were stimulated at 37°C or 4°C with anti-CD3/28 mAbs for 12 hours 

before incubation with Alexa 488-BSA probe for a further 8 hours in the presence or absence of 

EIPA or J/B, used at 50 μM and 1/75 μM respectively, prior to flow cytometry analysis. Figure 

11a shows a representative flow cytometry histogram of probe internalization by human CD8+ T 

cells in the presence and absence of EIPA at the indicated temperatures. At 37°C, CD8+ T cells 

robustly took up the probe 12-20 hours post-stimulation (purple curve) but not at 4°C. Pre-

incubation with 50 μM EIPA 15 minutes prior to the addition of the probe potently inhibited 

uptake, producing a curve (light blue) resembling the negative control. Figure 11b summarizes 

data from repeated experiments identical to that described for Figure 11a. Similar to results 

obtained with primary murine CD4+ and CD8+ T cells, EIPA and J/B potently inhibited human T 

cell macropinocytosis, by approximately 90% and 80% respectively. 
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Figure 11 – EIPA inhibits BSA probe uptake in human cells. Human PBMC were 
stimulated with CD3/28 mAb for 12 hours before incubation with BSA-Alexa 488 at 37°C 
or 4°C in the presence or absence of the indicated inhibitors for a further 8 hours. EIPA and 
J/B were used at 50 μM and 1/75 μM respectively. a Representative flow cytometry plot 
showing the influence of EIPA upon probe uptake by human CD8+ T cells. b Mean ± 1 
SEM of the percentage macropinocytosis relative to the positive control, calculated as 
indicated in Methods and materials. (n = 2 and 4 independent experiments for CD4+ and 
CD8+, respectively, with EIPA and n = 3 independent experiments for J/B. *P < 0.05, **P 
< 0.01, ***P < 0.001, ****P < 0.0001 by Student’s 1-sample, 2-sided t-test. 
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Confocal microscopy showing inhibition of probe uptake by EIPA 

To confirm inhibition of probe uptake in EIPA-treated CD3/28-stimulated CD4+ and CD8+ 

murine T cells, we turned again to confocal microscopy. Purified pan-T cells were stimulated at 

37°C with anti-CD3/28 mAbs for 12 hours then incubated with Alexa 488-BSA probe in the 

presence or absence of 50 μM EIPA. Figure 12a shows representative fields from the same 

experiment. In the absence of the inhibitor (left), fluorescent green probe can be seen 

accumulated in relatively large vesicles within CD8+ T cells (outlined in red). By comparison, 

cells treated with EIPA 12-20 hours post-stimulation (right) show far fewer and smaller probe-

positive vesicles within CD8+ T cells. A manual quantitation of the number of macropinosomes 

per cell, displayed in Figure 12b, reveals a wide variation in stimulated, untreated cells (black 

bars). The majority of stimulated, EIPA-treated CD8+ (Figure 12b, left) and CD4+ (Figure 12b, 

right) T cells, however, show 2 or fewer macropinosomes per cell.    
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Figure 12 – Inhibition of BSA probe uptake by EIPA shown by confocal microscopy. a BSA-Alexa 488 
uptake by CD3/28 mAb-stimulated purified murine T cells (probe incubation from 12 to 20 hours) in the absence 
and presence of EIPA at 37°C. Images are representative of five repeat experiments. b Quantitation of the 
number of macropinosomes per CD8+ and CD4+ T cell in the absence and presence of EIPA (CD8+ n = 156 and 
168 cells, respectively, CD4+ n = 177 and 279 cells respectively). 
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2.6 DISCUSSION 
 

To determine if primary murine and human CD4+/8+ T cells perform macropinocytosis we 

assessed their ability to internalize high molecular weight, fluorophore-conjugated 

macropinocytosis probes by flow cytometry. We found that both unstimulated and CD3/28-

stimulated  CD4+ and CD8+ T cells readily took up both the 70 kDa Fdex (Figure 2) and 67 kDa 

BSA probe (Figure 3) and that probe internalization was enhanced approximately 3-fold in 

stimulated cells (Figure 2e, Figure 3e). Probe uptake at 37°C in stimulated cells was 

accompanied by an increase in cell size as measured by FSC-A, irrespective of the probe used 

(Figure 2b,d, Figure 3b,d). By contrast, no probe internalization occurred in cells incubated at 

4°C during the 12-24 (Fdex) or 12-20 (BSA) hour period post-stimulation (Figure 2a-d, Figure 

3a-d). 

 

BSA probe uptake at 37°C into primary murine CD4+ T cells was confirmed by confocal 

microscopy of CD3/28-stimulated purified pan-T cells (Figure 4a). Imaging also recapitulated 

flow cytometry findings that no probe ingestion occurs at at 4°C, consistent with an energy-

dependent process. A manual quantitation of the number of putative macropinosomes per cell, 

shown in Figure 4b, revealed that the majority of cells incubated at 37°C had 7 or fewer probe-

positive vesicles per cell whereas the majority of cells incubated at 4°C had 0 probe-positive 

vesicles per cell.  

 

Experiments employing adoptively-transferred OTII TCR Tg T cells permitted us to assess the 

ability of CD4+ T cells stimulated with cognate peptide-MHC ligand to internalize 

macropinocytosis probes in vivo. As summarized in Figure 5a, 24 hours after adoptive transfer 
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of OTII TCR Tg T cells, recipient mice were immunized with whole OVA protein, then injected 

with Alexa 647-BSA probe 12 hours later. Lymph nodes were harvested 8 hours after probe 

injection and probe uptake in unstimulated and OVA-stimulated OTII TCR Tg cells was 

assessed by flow cytometry. OVA-stimulated OTII TCR Tg cells readily internalized the BSA 

probe coincident with an increase in cell size as measured by FSC-A (Figure 5b). We noted that 

unstimulated OTII TCR Tg cells also took up probe constitutively in vivo to an extent similar to 

that seen for in vitro experiments. Furthermore, the magnitude of uptake in stimulated vs. 

unstimulated cells in vivo was consistent with that seen for in vitro experiments (Figure 5c). 

These experiments confirmed that T cell uptake of macropinocytosis probes was not just an in 

vitro phenomenon and occurs under conditions of physiological T cell activation.  

 

Primary human T cells, isolated from PBMCs also constitutively internalized the BSA probe at 

37°C and upregulated probe uptake significantly upon stimulation with human anti-CD3/28 

mAbs (Figure 6a-b). By contrast, no significant probe internalization occurred at at 4°C. The 

mean ratio of stimulated to unstimulated probe uptake was noticeably higher in these cells—

approximately 5-6 compared to ~3 for previous experiments with murine cells—though these 

data were considerably more varied (Figure 6c). Similar results were obtained in experiments 

with primary human T cells, again isolated from PBMCs, but stimulated instead with the 

mitogenic lectin PHA (Figure 7). Low-level constitutive uptake was observed at 37°C in 

unstimulated cells, whereas no uptake occurred at at 4°C, while probe internalization was 

significantly enhanced in stimulated cells. The ratio of stimulated to unstimulated internalization 

in these experiments was a bit lower (3.5-4) compared to human T cells stimulated with anti-
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CD3/28 mAbs, and these data were less varied than those as well (Figure 7c, compare Figure 

6c).  

 

SEM of both unstimulated and CD3/28-stimulated primary murine CD4+ T cells revealed 

striking plasma membrane features consistent with macropinocytosis as observed in other cell 

types, such as macrophages. As Figure 8a-b shows, numerous protrusions and large, 

circularizing ruffles were seen projecting from the surface of CD4+ T cells approximately 5-7 μm 

in diameter. Several of these structures displayed apparent concavity and strongly resembled 

macropinocytic cups at various stages of evolution (Figure 8a-b, arrows). While unstimulated 

cells also exhibited these features, they were much less commonly observed, consistent with the 

low-level constitutive macropinocytosis previously observed in these cells by flow cytometry 

and confocal microscopy. These plasma membrane ruffles and cups also bore a strong 

resemblance macropinocytic cups observed in bone marrow-derived macrophages stimulated 

with CSF1 for 15 (Figure 8c, arrows). 

 

Given the actin-dependence of macropinocytosis, we assessed actin polymerization within these 

surface structures by confocal microscopy (Figure 8d). CD3/28-stimulated CD4+ T cells stained 

with fluorescently-tagged phalloidin, a bicyclic heptapeptide that selectively stains F-actin, and 

imaged by confocal microscopy revealed enrichment of polymerized actin in ruffles and loops, 

coincident with plasma membrane CD4 staining, projecting from the cell surface 3 μm above the 

plane of cell adhesion to the substratum.  
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Taken together, our SEM and confocal microscopy studies suggested the existence in T cells of 

large, F-actin-rich plasma membrane structures consistent with CDRs and cups seen in other cell 

types performing macropinocytosis.  

 

Experiments assaying the uptake of high molecular weight probes strongly suggested that both 

unstimulated and stimulated murine and human primary T cells perform macropinocytosis. To 

definitively determine if what we observed was bona fide macropinocytosis, we tested the 

sensitivity of both Fdex and BSA probe uptake to the “gold standard” inhibitors, 50 μM EIPA 

and 1/75 μM J/B. As Figure 9a shows, robust 37°C uptake of the BSA probe at 12-20 hours 

post-stimulation in CD8+ T cells was potently inhibited by addition of EIPA prior to probe 

incubation. By comparison, no probe uptake occurred at 4°C. Similar results were obtained in 

repeated experiments using stimulated, purified CD4+ and CD8+ T cells treated with EIPA or J/B 

during incubation with the BSA probe (Figure 9b). This effect was reproduced in repeated 

experiments using stimulated splenocytes treated with either inhibitor prior to incubation with 

the Fdex probe (Figure 9c). EIPA blocked uptake by 70-80%, inhibiting slightly more 

effectively in experiments employing the Fdex probe for reasons that aren’t clear. J/B was even 

more effective, blocking CD4+ and CD8+ T cell uptake of both probes in by 80-90%.  

 

By comparison, addition of the CME inhibitor PitStop 2 to cultures prior to incubation with 

either the BSA or Fdex probe did not inhibit probe uptake (Figure 9b-c). In fact, a slight 

enhancement of uptake was seen with inhibition of CME, possibly as a consequence of a 

compensatory mechanism that upregulated macropinocytosis in the setting of CME blockade. 
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Inhibition of CME has been shown to induce compensatory CIE in some cell types, so this 

finding is not wholly without precedent.246,247  

 

To more closely examine the effect of treatment with macropinocytosis inhibitors on probe BSA 

uptake in T cells, we performed experiments testing EIPA and J/B over a range of 

concentrations. Figure 10 shows how increasing concentrations of EIPA (a) and J/B (b) 

produced progressive inhibition of T cell macropinocytosis; as inhibitor concentration increases 

by a factor of 5, a typical reverse sigmoid curve is produced. Notably, the effective inhibitory 

dose was the same as that shown to inhibit macropinocytosis in other cell types. This evidence 

further strengthened support for the conclusion that the observed uptake was genuine 

macropinocytosis. 

 

On the basis of these results we predicted that EIPA and J/B would also inhibit BSA probe 

uptake in human cells stimulated in vitro. The representative flow cytometry histogram in Figure 

11a, which shows probe internalization in human, CD3/28-stimulated CD8+ T cells, shows this 

prediction was confirmed. At 12-20 hours post-stimulation, probe was ingested at a high rate in 

37°C cultures, whereas addition of 50 μM EIPA prior to probe incubation at the same 

temperature produced potent inhibition of uptake. This effect was reproducible and comparable 

in magnitude in both CD4+ and CD8+ human T cells when 1/75 μM J/B was substituted for EIPA 

in identical uptake assays (Figure 11b).  

 

Finally, we stimulated purified, murine pan-T cells in vitro with anti-CD3/28 mAbs for 12-20 

hours in the presence or absence of 50 μM EIPA and assayed intracellular probe accumulation by 
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confocal microscopy. The representative fields in Figure 12a illustrate the profound inhibitory 

effect of EIPA treatment. In the absence of inhibitor, Alexa 488-BSA probe was seen within 

mostly peripheral vesicles within CD8+ cells, with some cells harboring >10 vesicles. By 

contrast, the majority of CD8+ cells treated with EIPA prior to probe addition showed few if any 

probe-positive intracellular vesicles. Given that our negative selection procedure for purifying T 

cells prior to the assay yields CD4+ and CD8+ T cells at very high purity, it’s not unreasonable to 

presume that the non-CD8+ cells in these fields are CD4+ T cells, however we cannot be certain 

since an additional marker was not used. It is worth noting, however, that in these cells too there 

is a great accumulation of probe in apparently intracellular vesicles in the absence of inhibitor 

and very few apparent probe-containing vesicles among the unlabeled, EIPA-treated cells. 

Figure 12b, however, displays the results from a manual quantitation of probe positive vesicles 

per cell in each condition for specifically-labeled CD8+ (left) and CD4+ (right) T cells treated and 

untreated with EIPA. These data clearly confirm strong inhibition by EIPA, apparently due to a 

markedly lower rate of macropinosome formation in these cells.  

 

Altogether, the highly reproducible uptake of macropinocytosis probes into vesicles resembling 

macropinosomes, along with its reliable inhibition by EIPA and J/B, led us to conclude that 

primary murine and human T cells perform macropinocytosis that is constitutive in unstimulated 

naïve cells and significantly enhanced in cells nascently-stimulated by various means.  

 

The ubiquity and scale of macropinocytic uptake in primary T cells was an unexpected discovery 

for several reasons. Chief among these was the relative paucity of cytoplasmic volume in naïve 

and nascently-activated T cells; macropinosomes are relatively large vesicles and their 



 78 

generation requires internalization of large patches of membrane. Compared to macrophages, 

which tend to have average diameters 2-3 times as large as T cells, the latter seemed unlikely 

candidates to perform macropinocytosis. Additionally, researchers have been visualizing 

lymphocytes by microscopy for well over a century so it is surprising that this activity had not 

been previously recognized. 

 

In the next chapter we explore the mechanism of T cell macropinocytosis and compare our 

findings to those made in other macropinocytosing cell types. 
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CHAPTER III: 

THE MECHANISM OF T CELL MACROPINOCYTOSIS2 

 

3.1 ABSTRACT 
 

Classical or canonical descriptions of macropinocytosis in most cell types suggest an integral 

role for the small GTPase Ras. Ras activation initiates a signaling cascade through 

phosphatidylinositol 3-kinases (PI3K) that activates Rho-family GTPases capable of site-specific 

remodeling of the actin cytoskeleton. The formation and closure of macropinocytic cups is 

orchestrated by these GTPases in conjunction with their downstream effectors such as WAVE, 

Arp2/3, and Pak1. To investigate the mechanism of T cell macropinocytosis, we tested the effect 

of inhibitors of these signaling molecules on probe uptake in murine T cells. Surprisingly, 

treatment with farnesyl thiosialicylic acid (FTS), which inhibits Ras signaling by displacing H-, 

N-, and K-Ras isoforms from cell membranes, had no effect on probe internalization in murine T 

cells stimulated with anti-CD3/28 mAbs. To further substantiate the apparent Ras-independence 

of stimulated T cell macropinocytosis, we tested the macropinocytic capacity of stimulated T 

cells from mice deficient in RasGRP1, the principle guanine nucleotide exchange factor (GEF) in 

this cell type. Loss of RasGRP1 had no impact on BSA probe uptake. Targeting molecules 

downstream of Ras, by contrast, did impair macropinocytosis: LY294002, EHT 1864, and IPA-3 

each partially inhibited ingestion of the BSA probe. Together these findings suggested that, in 

 
2 The contents of this chapter were adapted and reproduced from the following publication: Charpentier, J. C. et al. 
Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun 11, 180 (2020). 
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contrast to classical macropinocytosis observed in other cell types, T cell macropinocytosis does 

not require Ras signaling, but is partially dependent on PI3K, Rac1, and Pak-1 activities. With 

the exception of LY294002, which had no significant effect, similar results were obtained in 

assays using unstimulated cells. 

 

3.2 INTRODUCTION 
 

To better understand the mechanism of T cell macropinocytosis, and to compare it to classical 

descriptions of macropinocytosis in other cell types, we first investigated its dependence on 

signaling by Ras. As reviewed in Chapter 1.5, numerous lines of evidence implicate Ras 

signaling in recruiting and coordinating the molecular machinery required to promote plasma 

membrane ruffling and macropinocytic cup formation. PMA or M-CSF-induced 

macropinocytosis in macrophages can be inhibited by treatment with farnesyl thiosalicylic acid 

(FTS).201 As previously described, this compound inhibits farnesylation and membrane 

recruitment of H-, N-, and K-Ras isoforms, effectively preventing their activation and signaling.  

 

We hypothesized that if T cell macropinocytosis was similarly Ras-dependent, stimulated T cells 

treated with FTS would exhibit impaired macropinocytosis in probe uptake assays. Given the 

demonstrated importance of Ras signaling in regulating the formation of macropinocytic cups 

and the size of macropinosomes, we expected that T cell macropinocytosis would likewise be 

highly dependent upon it.  

 

The dissection of signaling pathways with the use of pharmacological inhibitors, as opposed to 

genetic methods, is hindered by the widely-recognized problem of drug and binding site 
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promiscuity (polypharmacology).248,249 Another method for investigating the importance of Ras 

signaling to T cell macropinocytosis, one which obviates the necessity of using inhibitors with 

less than optimal selectivity, is to test the uptake of probes in CD4+/CD8+ T cells isolated from 

RAS guanyl releasing protein 1 (Rasgrp1)-deficient mice. Rasgrp1 is the principal Ras GEF 

involved in the activation of Ras in peripheral T cells, especially during TCR-induced Ras 

activation.250 Other Ras GEFs expressed in T cells, such as RAS guanyl releasing protein 1 

(Rasgrp4), son of sevenless homolog 1 (Sos1), and son of sevenless homolog 2 (Sos2) are also 

expressed in T cells and are important for thymocyte development but expendable for TCR 

signaling.250–253 We predicted that T cells isolated from Rasgrp1-null mice would show defects in 

macropinocytosis consequent to impaired Ras activation. 

 

Another way to investigate the signaling requirements for T cell macropinocytosis is to assess 

the impact of inhibiting class I PI3Ks. As previously described, modulation of membrane 

phosphoinositides and the generation of membranous PIP3 by class I PI3Ks are essential events 

in macropinocytic signaling in many cell types. Inhibition of class I PI3Ks in stimulated T cells, 

then, should significantly impair probe internalization by macropinocytosis. As with Ras, 

constitutively active PI3K signaling is associated with a variety of oncological malignancies.254–

256 Consequently a number of PI3K inhibitors of variable selectivity have been developed and 

tested in clinical trials. One of these, LY294002, inhibits class I PI3Ks by competitive binding to 

the catalytic subunit’s ATP-binding site and has been widely used in research studies.257 We 

predicted that inhibition of class I PI3K signaling would also significantly impair T cell 

macropinocytosis.  
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Lastly, given the integral role of Rho GTPases and their effectors in producing the actin 

rearrangements necessary for macropinocytosis, we sought to test the effect of inhibiting Rac1 

and its effector Pak1 in macropinocytosing T cells. GTP-bound Rac1 activates numerous actin-

remodeling effectors, such as cortactin, an Arp2/3 activator and regulator of actomyosin 

contractility, IQGAP1, a scaffolding protein that binds both actin filaments and microtubules, 

and the WAVE regulatory complex, which also promotes Arp2/3-mediated actin 

polymerization.258–260 Pak1 itself also activates or recruits an array of proteins that promote 

dynamic actin rearrangements. Reported Pak1 substrates include LIM kinases, which regulate 

actin-binding cofilin proteins, α/β-PIX, which are Rho GEFs, and filamin A, an actin-binding 

protein which anchors transmembrane proteins to the actin cytoskeleton and builds orthogonal 

networks of actin filaments.261–264  

 

We predicted that inhibition of Rac1 with EHT 1864, a competitive inhibitor of Rac1 guanine 

nucleotide exchange, and inhibition of Pak1 with IPA-3, an isoform selective inhibitor that 

enhances the protein’s autoinhibitory homodimerization, would produce significant but modest 

impairment of T cell macropinocytosis.265,266 

 

3.3 MATERIALS AND METHODS 
 

Animals. Wild-type mice were bred in house and were on a mixed 129S6/SvEv X C57BL/6 

genetic background. Rasgrp1 mutant mice (JAX) were on a C57BL/6 genetic background.  

Mice ranged in age from 6 weeks to 3 months. Mice of both sexes were used in experiments. All 

experiments performed with mice were in compliance with University of Michigan guidelines 

and were approved by the University Committee on the Use and Care of Animals. 
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T cell macropinocytosis assays. Murine splenocytes were isolated from wild-type or Rasgrp1 

mutant mice and prepared as previously described. The following additional pharmacological 

inhibitors were added to cultures 15 min prior to addition of macropinocytosis probes at the 

concentrations indicated or at the following final concentrations: FTS (Sigma), 25 μM; 

LY294002 (Cayman), 50 μM; EHT 1864 (Cayman), 10 μM; IPA-3 (Tocris), 20 μM. 

 

Statistical analysis. P values were calculated using Student’s 1-sample or 2-sample, 2-sided t-

tests as appropriate for normally distributed data. 

 

3.4 RESULTS 
 

To determine if stimulated T cell macropinocytosis is dependent on activation and signaling of 

Ras isoforms, we performed probe uptake assays in the presence of the broad-spectrum Ras 

inhibitor, farnesylthiosalicylic acid (FTS, also known as salirasib). Murine splenocytes were 

stimulated with anti-CD3/28 mAbs for 12 hours and incubated with Alexa-488 BSA probe in the 

presence or absence of macropinocytosis inhibitors (EIPA, J/B), a CME inhibitor (PitStop 2), or 

an inhibitor of H-, N-, and K-Ras membrane recruitment (FTS). Results from these experiments, 

showing macropinocytosis in inhibitor-treated CD4+ and CD8+ T cells as a proportion of probe 

uptake in the absence of inhibitors, are summarized in Figure 13a. EIPA and J/B reliably and 

strongly inhibit T cell macropinocytosis while PitStop 2 moderately enhances it, recapitulating 

previous findings. Inhibition of Ras signaling by FTS, on the other hand, had no discernible 

impact on T cell macropinocytosis. To further dissect the signaling pathways associated with T 

cell macropinocytosis, we next tested the effect of inhibitors of PI3Ks (LY294002), Rac1 (EHT 
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1864), and Pak1 (IPA-3). Murine splenocytes were again stimulated at 37°C or 4°C with anti-

CD3/28 mAbs for 12 hours. Alexa 488-BSA probe uptake in the hours 12-20 post-stimulation 

was then measured in the presence or absence of these inhibitors. Results from these experiments 

are shown in Figure 13b. As expected, inhibition of macropinocytosis-associated signaling and 

effector proteins all moderately impaired T cell macropinocytosis: LY294002 by ~30-40%, EHT 

1864 by ~30%, and IPA-3 by ~40% compared to stimulated cells cultured in the absence of 

inhibitors. 
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Figure 13 – T cell macropinocytosis is Ras independent. Murine splenocytes were stimulated 
with anti-CD3/28 mAbs for 12 hours before incubation with BSA-Alexa 488 at 37°C or 4°C in 
the presence or absence of the indicated inhibitors for a further 8 hours. Mean ± 1 SEM of the 
percentage macropinocytosis relative to the positive control, calculated as indicated in Materials 
and methods. a EIPA, n = 5 for CD4+ and n = 3 for CD8+; J/B, n = 3; Pitstop, n = 4; FTS. b 
LY294002, n = 5, EHT 1864, n = 4; IPA-3, n = 3 independent experiments. 
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To further examine the apparent Ras-independence of T cell macropinocytosis, we conducted 

flow cytometry probe uptake assays using T cells isolated from mice deficient in Rasgrp1. 

Rasgrp1 is the predominant Ras GEF expressed in T cells and deletion mutants largely lack the 

ability to activate Ras in T cells. The ability of unstimulated and anti-CD3/28 mAb-stimulated 

CD4+ and CD8+ T cells from homozygous Rasgrp1 deletion mutants (denoted -/-) and 

haplosufficient mice (+/-) were compared. The latter heterozygotes have one wild-type Rasgrp1 

allele that is sufficient to reproduce the wild-type phenotype. Results from these experiments are 

summarized in Figure 14. Figure 14a shows representative flow cytometry histograms, all from 

the same experiment, displaying probe uptake 12-20 hours post-CD3/28 stimulation in Rasgrp1-

deficient and -sufficient CD4+ and CD8+ T cells at 37°C or 4°C. At 37°C, probe internalization 

was comparable in both Rasgrp1-deficient (light blue curves) and -sufficient (violet curves) 

CD4+ (top panels) and CD8+ (bottom panels) T cells. No significant probe uptake occurred at the 

non-permissive temperature of 4°C (green and orange curves). Figure 14b shows the ratio of 

probe uptake in CD4+ and CD8+ T cells from Raspgrp1-deficient mice to that observed in 

Rasgrp1-sufficient mice. This ratio was nearly 1 for both cell populations, indicating that 

macropinocytosis is not significantly perturbed or impaired in murine T cells lacking an ability to 

activate Ras signaling. 
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Figure 14 – T cell macropinocytosis is not impaired in Rasgrp1-deficient mice. Murine splenocytes from 
Rasgrp1 mutant mice were unstimulated or stimulated with CD3/28 mAb for 12 hours before incubation with 
BSA-Alexa 488 at 37°C or 4°C for a further 8 hours. a Representative flow cytometry histogram plots and 
mean ± SEM of the percentage macropinocytosis relative to the positive control.  
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Given that T cell macropinocytosis is constitutive in naïve, unstimulated CD4+ and CD8+ T cells, 

we repeatedly tested the ability of previously-used inhibitors to block probe ingestion in these 

cells. Unstimulated murine splenocytes were cultured for 12 hours at 37°C before addition of 

inhibitors at the highest concentrations previously used (listed in Methods and materials) for an 

additional 2 hours. Data from these experiments are summarized in Figure 15. EIPA and J/B 

nearly abolished all unstimulated T cell probe uptake, whereas PitStop 2 again had no effect. 

Surprisingly, inhibition of PI3K signaling by LY294002 had no measurable impact on probe 

uptake either. Inhibition of Rac1 and its effector Pak1, by EHT 1864 and IPA-3 respectively, 

moderately impaired probe internalization, with IPA-3 showing a more pronounced inhibition 

than EHT 1864. 
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Figure 15 – Macropinocytosis inhibitors block BSA probe uptake in 
unstimulated cells but LY294002 does not. Unstimulated murine 
splenocytes were incubated for 12 hours at 37°C in the presence of the 
indicated inhibitors for a further 8 hours. Mean ± SEM of the percentage 
macropinocytosis relative to the positive control. n = 3 independent 
experiments for each inhibitor. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001 by Student’s 1-sample, 2-sided t-test. 
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3.5 DISCUSSION 
 

Prior macropinocytosis studies, primarily in amoebae and macrophages, have revealed a great 

deal about the signaling and effector requirements for the generation of plasma membrane 

structures (protrusions, ruffles, cups, etc.) as well as the mechanisms of macropinosome 

generation. Sensitivity to the selective inhibitors EIPA and J/B suggests some of the 

requirements for T cell macropinocytosis by their individual mechanisms of action. As 

previously described, EIPA implicates plasma membrane NHEs, which are required to maintain 

relative alkalinization of the immediate submembranous region so that Rho GTPases function 

optimally. J/B inhibition points to requirements for dynamic actin remodeling and myosin 

contractility. 

 

Beyond these rather obvious clues, we designed experiments to interrogate further the 

mechanism of T cell macropinocytosis using additional inhibitors targeting signaling proteins 

and effectors identified in previous macropinocytosis studies.  

 

As detailed in Chapter 1.6, signaling by Ras GTPases is centrally important in classical 

descriptions of macropinocytosis. We predicted that Ras signaling would play a similar critical 

role in T cell macropinocytosis, however, experiments testing the influence of Ras inhibition by 

FTS (salirasib) showed no significant defects in macropinocytosis in either stimulated (Figure 

13a) or unstimulated (Figure 15) murine CD4+ or CD8+ T cells. This was a surprising result but 

one that could potentially be explained by insufficient inhibition of Ras isoforms by FTS. As 

previously described, FTS inhibits the canonical Ras isoforms (H-, N-, and K-Ras) by 

competitive binding for associated Ras-escort proteins required for membrane association. But 
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other isoforms of Ras, such as R-Ras2 (TC21), are variably prenylated (R-Ras2 is 

geranylgeranylated), capable of activating class I PI3Ks in their active form, and may not depend 

on the same Ras-escort proteins for membrane tethering.267,268 It’s possible that variable 

expression and prenylation of Ras isoforms in T cells could preclude efficient inhibition of Ras 

signaling by FTS alone in these cells. PI3K-activating signals from non-H-, K-, or N- Ras 

isoforms could have compensated for FTS inhibition and perhaps that is why we saw no 

inhibition in FTS-treated cells. 

 

Subsequent experiments examining macropinocytosis in murine CD4+ and CD8+ T cells 

specifically deleted of Rasgrp1, the predominant Ras GEF in T cells, suggested that this was not 

likely the  explanation for the inhibitor’s lack of effect. Complete abrogation of Ras signaling in 

these cells produced no impairment in T cell macropinocytosis (Figure 14). Since neither 

constitutive uptake in unstimulated nor CD3/28-stimulated uptake in Rasgrp1-deleted cells was 

significantly perturbed, we concluded that Ras signaling was not necessary for T cell 

macropinocytosis.  

 

The most likely explanation for the observed Ras-independence is that co-stimulatory signals 

from activated CD28 receptors are sufficient to activate class I PI3Ks, rendering Ras-dependent 

activation unnecessary.269,270 It’s unclear, however, why constitutive macropinocytosis in 

unstimulated, Rasgrp1-deleted cells was not impaired, given that these cells are not performing 

co-stimulatory signaling and cannot activate Ras. One potential explanation comes from the 

observation that Rho family GEFs like Vav1/2 are recruited to the T cell signalasome by the 

adaptor proteins LAT and SLP-76. This would permit Ras and PI3K-independent Rac activation 
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in unstimulated cells in the presence of tonic, low-level recruitment of Vav proteins to 

membranes. Activation-induced enhancement of Vav-targeting and PI3K activation in stimulated 

cells, then, might explain their augmented uptake. This model is consistent with the observed 

lack of inhibitory effect produced by LY294002 in unstimulated CD4+/CD8+ murine T cells 

(Figure 15). 

 

In CD3/28-stimulated murine CD4+ and CD8+ T cells, however, PI3K inhibition by LY294002 

did significantly impair macropinocytosis (Figure 12b), as expected. The magnitude of 

inhibition was modest, approximately 30%, but there was considerable variation between 

experiments.  This may be explained by the non-trivial, documented, off-target effects of 

LY294002, which has been shown to not only bind multiple classes of PI3Ks, but also unrelated 

targets such as protein kinase CK2, mTOR, and glycogen synthase kinase 3β (GSK3β).257 

 

Inhibition of Rac1 by EHT 1864 significantly impaired macropinocytic uptake in both stimulated 

and unstimulated murine CD4+ and CD8+ T cells (Figure 13b, Figure 15). The magnitude of 

inhibition was modest, an approximate 25-30% reduction in both groups. With respect to off-

target effects, EHT 1864 has been shown to inhibit other Rac isoforms in addition to Rac1, such 

as Rac1b, Rac2, and Rac3, as well as its effectors Pak1 and Pak2.265,271 Since these reported 

effects are confined to Rac isoforms and their effectors, though, their influence is less likely to 

seriously confound interpretation. The relatively modest inhibitory effect exerted by EHT 1864 

may be due to the dependence of T cell macropinocytosis on another Rho GTPase that is highly-

expressed in T cells but uninhibited by EHT-1864, Cdc42. It’s also possible that the signal seen 
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in these experiments is due to the combined effect of Rac1 and Pak1 inhibition, but that is 

contradicted by the greater inhibitory effect of IPA-3, the Pak1 inhibitor also tested.  

 

p21-activated kinases (Paks) are effectors of Rho GTPases such as Rac1 and Cdc42. In 3T3 

fibroblasts, Pak1 kinase activity induces actin polymerization and generation of lamellipodia.218 

It has also been shown to regulate macropinocytosis by phosphorylating a specific serine residue 

on CtBP1/BARS, an essential activity for macropinocytic cup closure and scission (as shown in 

A431 epidermoid carcinoma cells performing EGF-induced macropinocytosis).218,219 IPA-3 is a 

sulfhydryl-containing compound that inhibits Pak1 by binding to its N-terminal regulatory 

domain and preventing GTPase docking.272 Treatment of CD3/28-stimulated murine CD4+ and 

CD8+ T cells with IPA-3 inhibited T cell macropinocytosis by approximately 40%. Inhibition 

was slightly less pronounced (~30%) in unstimulated cells. 
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CHAPTER IV: 

T CELL MACROPINOCYTOSIS AND G1 CELL GROWTH3 

 

4.1. ABSTRACT 
 

Activated T cells show substantial increases in cell size between 12-20 hours post-stimulation. 

This period of rapid growth corresponds to the G1 phase of the cell cycle in nascently-activated 

T cells. To determine whether macropinocytosis is required for G1 growth in these cells I added 

macropinocytosis inhibitors to cell cultures immediately prior to this period and examined their 

impacts on cell growth as measured by flow cytometry. The strongest inhibitors of T cell 

macropinocytosis, EIPA and J/B, were also potent inhibitors of G1 phase growth. Addition of 

inhibitors that partially inhibit T cell macropinocytosis also constrained growth but to a lesser 

extent. Importantly for these studies, addition of inhibitors resulted in minimal toxicity. Overall, 

a strong positive correlation was observed between inhibition of macropinocytosis and restriction 

of G1 phase growth. These findings support the hypothesis that macropinocytosis is required for 

the growth of activated T cells even under nutrient replete conditions. 

 
3 The contents of this chapter were adapted and reproduced from the following publication: Charpentier, J. C. et al. 
Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun 11, 180 (2020). 
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4.2 INTRODUCTION 
 

Naïve T cells nascently-activated by antigen stimulation must quickly acquire biosynthetic 

precursors and accumulate biomass sufficient to roughly double in size within 24 hours in order 

to initiate clonal expansion. To do this they must transition from a quiescent metabolic program 

characterized by low nutrient uptake and catabolism sufficient to maintain housekeeping 

activities to one of high nutrient uptake and anabolism. Specifically this requires a shift from 

low-level oxidative phosphorylation and β-oxidation in naïve cells to aerobic glycolysis, 

glutaminolysis, and upregulation of the pentose phosphate pathway in activated T cells. 

 

Like many rapidly proliferating cell types and cancer cells exhibiting the Warburg effect, 

nascently-activated T cells upregulate aerobic glycolysis. How and why this meets the 

bioenergetic demands of activated T cells better than what have been traditionally regarded as 

more efficient alternatives, such as oxidative metabolism, is still unclear. Some evidence 

suggests that when glucose uptake limits cell metabolic rate, oxidative phosphorylation is the 

most efficient means of ATP generation, but at high glucose uptake rates (as in activated T cells) 

cytoplasmic solvent capacity becomes limiting, and aerobic glycolysis generates the greatest 

ATP yield per volume density.273 Furthermore, when glucose is abundant, as in commercial cell 

media (e.g., RPMI 1640 medium contains 11 mM glucose), the rate of ATP production is 

comparable between oxidative phosphorylation and aerobic glycolysis.274 Accordingly, it seems 

unlikely that aerobic glycolysis is favored by activated T cells because it generates ATP more 

quickly, as many have suggested.275 It is interesting to note that a number of glycolytic enzymes, 

such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), have been shown to 

interact with F-actin and localize to lamellipodia.276 It’s possible that wholly apart from any 
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advantage conferred with respect to bioenergetics the promotion of aerobic glycolysis in 

activated T cells also facilitates motility by the formation of a plasma membrane metabolon, as 

has been observed in erythrocytes.277 

 

Activated T cells also increase glucose flux through the parallel pentose phosphate 

pathway.278,279 Entry of glucose-6-phosphate into this pathway yields pentose sugars that 

combine with pyrimidines and purines to form nucleotides needed for proliferation. The pentose 

phosphate pathway also produces reduced nicotinamide adenine dinucleotide phosphate 

(NADPH), a redox cofactor needed for biosynthetic reductions.  

 

Another metabolic pathway upregulated in activated T cells is the mevalonate pathway.280 

Acetyl-CoA condensed by 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) synthase generates 

HMG-CoA. HMG-CoA conversion to mevalonate by HMG-CoA reductase initiates the first step 

in this highly conserved biosynthetic cascade that ultimately generates farnesyl pyrophosphate 

(FPP). FPP is the common substrate for various anabolic reactions that generate ubiquinones, 

sterols, and prenylated proteins. The latter are especially important for the post-translational 

modification of Ras, Rab, and Rho GTPases, which require isoprenylation (farnesylation or 

geranylgeranylation) for membrane association and full activation.280 

 

Activated T cells also upregulate glucose and amino acid transporters. PI3K-Akt signaling, 

enhanced by CD28 co-stimulation, increases both expression and plasma membrane localization 

of the major glucose transporter in T cells, GLUT-1.269,270,279 Also upregulated are Tfr (CD71), 
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and LAT1, a large neutral amino acid transporter consisting of SLC3A2 (CD98) and 

SLC7A5.279,281  

 

As previously mentioned, glutaminolysis, which converts glutamine into TCA cycle 

intermediates, is upregulated in activated T cells. Expression of glutamine transporters, such as 

ASCT2, is also significantly enhanced upon activation.281 In addition, glutamine has been shown 

in Jurkat T cells to promote activated T cell survival by upregulating glutathione and the anti-

apoptotic Bcl-2 protein.282  

 

Downstream of TCR and CD28 co-stimulation, the combinatorial action of the transcription 

factors NFAT, AP-1, and NFκB induces transcription of the cytokine IL-2 and the high affinity 

IL-2 receptor subunit IL-2Rα (CD25).283 Autocrine and paracrine signaling by IL-2 in vitro 

promotes activated T cell survival, growth, and proliferation, though its in vivo functions are 

considerably more complicated.283,284 

 

In addition to acquiring biosynthetic intermediates, reprogramming metabolism, and inducing 

expression of common γ chain cytokine receptors, activated T cells must also enter the cell cycle. 

Naïve T cells maintained in the quiescent G0 state enter interphase, which is further divided into 

G1, S, and G2 phases. M phase and cytokinesis follow. Progression through these phases is 

mediated by cyclin-dependent kinases (CDKs) and their cyclin partners. Within 6-10 hours of 

TCR stimulation, the CDK4/6-cyclin D complex drives the transition of naïve T cells from G0 to 

G1 phase.281 As T cells progress through G1 phase in response to TCR and CD28 stimulation, 

activated Akt and Src kinases promote cyclin E expression.281 Downregulation of CDK4/6-cyclin 
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D and upregulation of CDK2-cyclin E, which promotes S phase entry, follows. In the first cell 

cycle, G1/S phase typically lasts from 10-24 hours post-stimulation.285 G2 phase is comparatively 

brief, occurring 24-26 hours post-stimulation, with mitosis (M phase) beginning at 26 hours post-

stimulation.285 

 

In initial experiments examining uptake of macropinocytosis probes by activated T cells, we 

examined the period from 12-20 or 12-24 hours post-stimulation, which correspond to G1 and 

G1/S phases, respectively, and noted coincident significant increases in cell size. This was seen 

in vitro in murine T cells internalizing the Fdex probe (Figure 2b, d) or BSA probe (Figure 3 b, 

d), in vivo in murine T cells internalizing the BSA probe (Figure 5b), and in human T cells in 

vitro internalizing the BSA probe (Figure 6b). 

 

To investigate the possibility that macropinocytosis was required for G1 phase growth, we tested 

the influence of macropinocytosis inhibitors on probe uptake in this period in flow cytometry 

assays. We predicted that addition of EIPA and J/B to cultures 15 minutes prior to the probe 

incubation period would restrict G1 growth as measured by FSC-A. We further predicted that 

partial inhibitors of macropinocytosis, such as those targeting PI3K, Rac1, and Pak1, would also 

impair G1 growth but likely to a lesser extent. 

 

4.3 MATERIALS AND METHODS 
 

Animals. Wild-type mice were bred in house and were on a mixed 129S6/SvEv X C57BL/6 

genetic background. Mice ranged in age from 6 weeks to 3 months. Mice of both sexes were 

used in experiments. All experiments performed with mice were in compliance with University 
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of Michigan guidelines and were approved by the University Committee on the Use and Care of 

Animals. 

 

T cell macropinocytosis assays. Murine splenocytes were isolated from wild-type mice and 

prepared as previously described. Incubation with probes was for the indicated times at 37°C or 

4°C. In addition to the previously described inhibitors, Torin 1 (Tocris) was added to cultures 15 

min prior to addition of macropinocytosis probes at a final concentration of 500 nM. 

 

T cell growth. Murine splenocytes were stimulated with CD3/CD28 mAb as above at 37 °C for 

12 or 20 h in the presence or absence of inhibitors that were added at 12 hours. Cells were 

harvested, washed, stained with APC-Cy7-CD4 and APC-CD8α mAb and analyzed by flow 

cytometry. Median FSC-A of CD4+ and CD8+ T cells was taken as a relative measure of cell 

size. In each experiment, the effect of inhibitors upon T cell growth between 12 and 20 hours 

was calculated as a percentage of T cell growth observed in the absence of inhibitor as follows: 

[(FSC-A in presence of inhibitor at 20 hours - FSC-A in absence of inhibitor at 12 hours)/(FSC-

A in absence of inhibitor at 20 hours - FSC-A in absence of inhibitor at 12 hours)] × 100. 

 

Statistical analysis. P values were calculated using Student’s 1-sample or 2-sample 2-sided t-

tests as appropriate for normally distributed data. 
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4.4 RESULTS 
 

Inhibition of macropinocytosis significantly impairs activated cell growth 

Activated CD4+ and CD8+ murine T cells significantly increase in size, as measured by FSC-A, 

in the period 12-20 hours post-stimulation. Figure 16 shows a representative flow cytometry 

scatter plot comparing the size of unstimulated (top left), 12 hour-stimulated (top right), 20 hour-

stimulated (bottom left), and stimulated CD8+ T cells treated with EIPA during hours 12-20 post-

stimulation (bottom right) with anti-CD3/28 mAbs. On average, CD8+ T cells stimulated for 12 

hours are larger than unstimulated cells, however they exhibit the greatest period of growth 

between hours 12-20 post-stimulation. Selective inhibition of macropinocytosis with EIPA 

largely blocks growth during this period. FSC-A is plotted against side scatter area (SSC-A), a 

measure of cell granularity or complexity. Similar results were obtained for CD4+ T cells. 
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Figure 16 – Activated T cells significantly increase in size 12-20 hours post-
stimulation. Murine splenocytes were unstimulated or stimulated with anti-CD3/28 
mAbs for 12 or 20 hours. Shown are flow cytometry scatter plots of FSC-A versus 
SSC-A for CD8+ T cells from a single experiment (representative of 8 performed with 
EIPA). Similar results were obtained with CD4+ T cells. 
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Building on our observation that inhibition of macropinocytosis blocks increases in cell size 12-

20 hours post-stimulation, we hypothesized that macropinocytosis was required for activated T 

cell growth. If this relationship was specific and direct, we would expect inhibition of 12-20 hour 

growth to closely mirror inhibition of macropinocytosis over a range of concentrations. Figure 

17 shows dose-response curves employing increasing concentrations of EIPA (a) and J/B (b) and 

their impacts on 12-20 hour growth post-stimulation. In both cases, impairment of 12-20 hour 

growth reliably and proportionally reflects the extent of macropinocytosis inhibition in this 

period (compare Figure 13).  
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Figure 17 – G1 phase growth is restricted by inhibitors of macropinocytosis. Murine 
splenocytes were stimulated with CD3/28 mAb for 12 h before incubation with BSA-Alexa 488 
at 37°C or 4°C in the presence or absence of the indicated inhibitors for a further 8 hours. a, b 
Mean ± 1 SEM of the percentage macropinocytosis relative to the positive control, calculated 
as indicated in Methods and materials (n = 3 independent experiments). *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001 by Student’s 1-sample, 2-sided t-test. 
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Partial inhibitors of macropinocytosis moderately block activated cell growth 

To further examine the relationship between T cell macropinocytosis and growth, we tested the 

effect of partial inhibitors of macropinocytosis on growth 12-20 hours post-stimulation with anti-

CD3/28 mAbs. Results from these experiments are shown in Figure 18. In both CD4+ (left) and 

CD8+ (right) T cells, inhibition by EIPA and J/B produced the most pronounced growth defects, 

reducing growth in this period by more than 75%. As expected, inhibitors of CME (PitStop 2) 

and H-, N-, and K-Ras (FTS), neither of which block macropinocytosis, had no significant effect 

on 12-20 hour growth. By contrast, inhibition of PI3K, Rac1, and Pak1 by LY294002, EHT 

1864, and IPA-3, respectively, all moderately blocked 12-20 hour post-stimulation growth by 

approximately 50%. Growth restriction imposed by these partial macropinocytosis inhibitors was 

comparable to that seen by inhibition of the mechanistic target of rapamycin complex 1 

(mTORC1) by Torin 1.  
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Figure 18 – Partial inhibitors of macropinocytosis also impair G1 phase growth. a, b 
Murine splenocytes were stimulated with CD3/28 mAb for 20 hours in the absence or presence 
of the indicated inhibitors that were added to cultures at 12 hours. For each inhibitor, the mean 
percentage ± 1 SEM of CD4+ (a) CD8+ (b) T cell growth between 12 and 20 hours relative to 
growth in the absence of inhibitor in the same experiment is shown (see Methods and materials) 
(a EIPA, n = 8; J/B, n = 6; PitStop, n = 5; LY294002, n = 5; EHT 1864, n = 4; IPA-3, n = 4; 
FTS, n = 4; Torin 1, n = 5 independent experiments. b ). **P < 0.01, ***P < 0.001, ****P < 
0.0001 by Student’s 1-sample, 2-sided t-test. 
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Growth as a function of macropinocytosis in activated T cells 

Previous experiments suggested a direct relationship between inhibition of macropinocytosis and 

restriction of activated T cell growth 12-20 hours post-stimulation. This relationship became 

more apparent when 12-20 hour growth was plotted as a function of the percentage of 

macropinocytosis relative to controls. As Figure 19 shows, CD4+ and CD8+ activated T cell 

growth in the period 12-20 hours post-stimulation is a nearly linear function of macropinocytic 

uptake. Irrespective of the specific inhibitor used and its mechanism of action, inhibition of 

growth was directly proportional to inhibition of macropinocytosis. Under no circumstances was 

inhibition of macropinocytosis not accompanied by a proportional reduction in cell growth in 

this period. 
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Figure 19 – Macropinocytosis inhibitors block G1 phase growth in CD8+ and CD4+ T cells. Graph 
shows mean percentage macropinocytosis (Figure 12a, b) vs. mean percentage growth (Figure 18b) for 
CD8+ T cells (a) and CD4+ T cells (b) for each inhibitor. 
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4.5 DISCUSSION 
 

We began by considering the substantial anabolic burden activated T cells must meet as they 

progress through their first cell cycle post-stimulation. Noting that the period 12-20 hours post-

stimulation, which corresponds to G1 phase, represented the period of greatest growth in our 

uptake assays, we hypothesized a relationship between macropinocytosis and activated T cell 

growth. If this relationship were direct (i.e., cell growth is proportional to macropinocytic uptake 

under nutrient-replete conditions), inhibition of macropinocytosis should produce a 

corresponding reduction in cell growth.  

 

To test this we inhibited macropinocytosis in the 12-20 hour post-stimulation period using a 

range of concentrations of EIPA and J/B, then observed the impact on cell size by measuring 

FSC-A. As expected, progressive inhibition of macropinocytosis using increasing concentrations 

of either EIPA or J/B were correlated with proportional reductions in cell size (Figure 17). The 

strength of this relationship is underlined by comparing Figure 17 to Figure 10, which show the 

same trends using the same concentrations of inhibitors. 

 

Next we reasoned that if selective inhibition of macropinocytosis by EIPA and J/B produced 

proportional reductions in G1 phase cell growth, partial inhibitors of macropinocytosis should do 

the same. If inhibition of macropinocytosis by these inhibitors (LY294002, EHT 1864, and IPA-

3) was not accompanied by a proportional reduction in growth, this would weaken support for 

the idea that there is a direct relationship between macropinocytosis and growth in activated T 

cells. On the other hand, if these inhibitors, which each have independent, unrelated mechanisms 
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of action, all produced reductions in cell growth proportional to the magnitude of their inhibition 

of macropinocytosis, this would be compelling evidence in favor of the hypothesis. 

Figure 18 shows the impact of all tested inhibitors on G1 phase growth in CD4+ (a) and CD8+ T 

(b) cells. We noted that EIPA and J/B produced the most profound impairment (> 60% reduction 

in growth), as expected, whereas partial inhibitors of macropinocytosis produced less severe 

defects (≤ 50% reduction). Importantly, PitStop 2 and FTS, which do not significantly inhibit 

macropinocytosis in T cells, also do not impair growth post-stimulation.  

 

These results confirmed our supposition of a direct relationship between macropinocytic uptake 

12-20 hours post-stimulation and G1 phase growth. This strength of this association became 

undeniable when we plotted 12-20 hour growth as a function of the percentage of 

macropinocytosis observed after treatment with each inhibitor (Figure 19). On the basis of the 

obvious trend uncovered by these experiments we concluded that macropinocytosis directly and 

positively regulates T cell growth during post-stimulation G1 phase growth. 

 

We did note, however, that the apparent compensatory enhancement of macropinocytosis 

reliably seen with CME inhibition by PitStop 2 (see Figure 13a) did not produce a 

corresponding increase in growth beyond that observed in positive controls. The most likely 

explanation for this is that macropinocytosis promotes growth only up to a certain threshold 

growth rate, after which other factors become limiting.  

 

This raises the question of how exactly macropinocytosis contributes to G1 phase growth in 

activated T cells under conditions of nutrient optimality. One obvious explanation is that it 
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enables the bulk acquisition of precursors for biosynthesis, including amino acids and glucose 

obtained from the extracellular space. This requirement for macropinocytosis might be explained 

by a relative paucity of plasma membrane glucose and amino acid transporters in nascently-

activated T cells. It may be the case that during the first cell cycle post-stimulation, T cells rely 

on macropinocytosis for rapid acquisition of nutrients to compensate for the delay in 

transcriptionally and translationally upregulating glucose and amino acid transporters. 

 

Alternatively, macropinocytosis may be required for anabolic signaling functions instead of or in 

addition to provisioning substrates for biosynthesis from the extracellular space. Perhaps the 

most obvious way in which macropinocytosis may regulate cellular growth programs is by 

inducing activation of the mechanistic target of rapamycin complex 1 (mTORC1), a master 

regulator of cell growth and metabolism in eukaryotic cells. We will explore this possibility in 

the next chapter.  
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CHAPTER V: 

T CELL MACROPINOCYTOSIS AND mTORC14 

 

5.1 ABSTRACT 
 

The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that serves as the 

catalytic subunit of the mTOR 1 complex (mTORC1). mTORC1 nucleates a complex signaling 

network that detects and integrates environmental inputs such as growth factors, oxygen, amino 

acids, energetic stress signals, and others to regulate anabolism, catabolism, and growth. We 

hypothesized that in non-transformed primary T cells, macropinocytosis may be necessary for 

G1 phase growth, at least in part, because it delivers protein or free amino acids to the lysosome 

whereby they license mTORC1 activation and growth signaling. After confirming that 

macropinocytosis probes are targeted to lysosomes, we then demonstrated that mTORC1 

signaling is sustained through 12 and 20 hours post-stimulation and abolished by treatment with 

the ATP-competitive mTOR inhibitor Torin 1. Addition of EIPA or J/B at 12 hours post-

stimulation potently inhibited mTORC1 activation but not activation of the transcription factor 

NFkB. Additionally,  inhibition of acute mTORC1 activation by EIPA in stimulated cells did not 

block activation of ERK/mitogen-activated protein kinases (MAPK). mTORC1 activation was 

also blocked by addition of the partial macropinocytosis inhibitors of macropinocytosis. 

Inhibition of lysosomal proteases had no effect on mTORC1 activation, suggesting protein 

 
4 The contents of this chapter were adapted and reproduced from the following publication: Charpentier, J. C. et al. 
Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun 11, 180 (2020). 
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degradation of macropinocytosed cargoes is not required for this event to occur. T cells 

stimulated for 12 hours, washed, and recultured for 2 hours in minimal medium with or without 

particular amino acids identified leucine and arginine as sufficient to sustain macropinocytosis-

dependent mTORC1 activation. These findings suggested that under nutrient-replete conditions, 

macropinocytosis facilitates T cell growth, at least in part, by delivery of free amino acids to the 

lysosome, where they sustain the activation of mTORC1. 
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5.2 INTRODUCTION 
 

mTORC1 is a multi-subunit protein complex that regulates metabolic homeostasis and cellular 

growth (accumulation of biomass) in response to diverse environmental and intracellular signals 

that converge on the lysosome. Aberrant mTORC1 signaling is associated with a range of human 

oncological malignancies and mTORC1 inhibitors are currently approved to treat some 

cancers.286 Additionally, mTORC1 inhibition by rapamycin and other compounds produces 

potent immunosuppression, which has led to the use of these inhibitors in solid organ 

transplantation and autoimmune disease.287  

 

The mTORC1 complex consists of the subunits mTOR, a serine/threonine kinase, mammalian 

lethal with SEC13 protein 8 (mLST8), an adaptor protein of unknown function thought to 

stabilize the active site of mTOR, the Tti1/Tel2 complex, a scaffolding protein important for 

complex assembly, and regulatory-associated protein of mTOR (Raptor), a subunit that 

rheostatically regulates the kinase activity of mTOR in response to growth factors, amino acids, 

energy, and other signals.288,289 mTORC1 is inhibited by two endogenous proteins, DEP domain-

containing mTOR-interacting protein (DEPTOR) and 40kDa Proline-rich Akt substrate 

(PRAS40).290  

 

In the absence of PI3K signaling, the TSC complex, an oligomer consisting of tuberous sclerosis 

complex 1 (TSC1, hamartin), tuberous sclerosis complex 2 (TSC2, tuberin), and Tre2-Bub2-

Cdc16-1 domain family member 7 (TBC1D7), represses mTORC1’s catalytic activity.291,292 

Specifically, Rheb-GTP loading, required for mTORC1 kinase activation, is suppressed by the 

action of TSC2’s GTPase-activating protein (GAP) domain.292 
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While mTORC1 integrates a wide variety of sensory inputs, it is especially sensitive to growth 

factor and amino acid signals. Growth factor binding to cell surface receptors activates a PI3K 

phosphorylation cascade that sequentially activates phosphoinositide-dependent kinase 1 

(PDK1), then the serine/threonine kinase Akt (protein kinase B). Akt in turn phosphorylates and 

inhibits the TSC complex, relieving repression of Rheb GTP-loading. While GEFs for Rheb have 

yet to be discovered it is known that Rheb-GTP activates mTORC1 kinase activity allosterically, 

by interactions with mLST8 and the mTOR catalytic domain, whereas Rheb-GDP dissociates 

from the complex.293,294 Some groups have noted that in vivo activation of cytotoxic T 

lymphocytes (CTLs) still occurs in the presence of pharmacological inhibitors of Akt, suggesting 

that PDK1 may signal to mTORC1 via other kinases in addition to Akt.295 

 

Amino acids signal to mTORC1 through Rag GTPases. Under conditions of amino acid 

starvation or scarcity, mTORC1 is not enriched on the surface of lysosomes and is thought to be 

predominantly cytoplasmic.296 The pentameric GEF Ragulator influences Rag heterodimers to 

mediate mTORC1 translocation to the surface of the lysosome, though how exactly this occurs is 

currently unclear. Historically it was thought to occur by GEF activity toward RagA/B, however 

a recent study as suggested it acts (along with SLC38A9) as an atypical GEF for RagC, inducing 

dissociation of GTP from RagC to promote activation.297 SLC38A9 has also been suggested to 

exert GEF activity toward RagA/B, but a more recent cryo-electron microscopy study has 

reinforced the view that Rag dimer activation depends on modulation of RagC .297,298   
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Guanine nucleotide exchange in Rag GTPases is regulated by a variety of cytoplasmic amino 

acid sensors as well as by proteins resident in the lysosomal membrane. Cytoplasmic sensors 

include Sestrin1/2 and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1). In the 

absence of leucine, Sestrin1/2 inhibit GTPase-activating protein (GAP) activity toward Rags-2 

(GATOR2), a negative regulator of GTPase-activating protein (GAP) activity toward Rags-1 

(GATOR1), a RagA/B GAP.299,300 Upon binding leucine, Sestrin1/2-GATOR2 interaction is 

abolished, leading to inhibition of GATOR1.299,300 Inhibition of GAP activity toward RagA/B 

induces lysosomal mTORC1 translocation where Rheb-GTP directly promotes mTORC1 

activation. Additionally, Sestrin/2 show guanine dissociation inhibitor (GDI) activity for 

RagA/B.301 Similarly, CASTOR1 homodimerizes to inhibit GATOR2 under conditions of 

arginine starvation, an interaction negated by CASTOR1 arginine binding.302 At least one 

aminoacyl-tRNA synthetase also signals to mTORC1 as a moonlighting function: leucyl-tRNA 

synthetase (LARS1) promotes mTORC1 activation via GAP activity toward Rag GTPases and 

signaling through (Vps34)-phospholipase D1 (PLD1) in response to leucine binding.303  

 

Genetic screens have also identified the proton-assisted amino acid transporter (PAT) or SLC36 

family of amino acid transporters as having an especially strong influence on mTORC1 

activation. PATs transport alanine, glycine, and proline by proton-coupled secondary active 

transport, are localized to late endosomes and lysosomes in a variety of cell types, and are 

thought to signal to mTORC1 by a transceptor mechanism.304 It seems highly probable that 

additional mTORC1-regulating amino acid sensors will be discovered. 
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Amino acids within the lysosomal lumen can also signal to activate mTORC1. Lumenal amino 

acids have been shown to interact with the transmembrane V-ATPase, and a neutral amino acid 

transporter, Solute Carrier Family 38 Member 9 (SLC38A9), to influence Ragulator and Rag-

GTP loading.305 The ATPase activity of the V-ATPase has been shown to be necessary to 

communicate amino acid sufficiency signals to mTORC1, though it’s not clear exactly how this 

occurs.296 Also of note is SLC38A9’s function as an intralysosomal cholesterol sensor; increases 

in lysosomal cholesterol are communicated by SLC38A9 to the Ragulator-Rag complex and this 

signal alone appears to be sufficient to promote mTORC1 translocation and activation at the 

lysosome.306 Opposing this, the Niemann-Pick C1 (NPC1) protein binds the mTORC1 

scaffolding complex directly and inhibits it in response to cholesterol depletion.306 

 

Activation of mTORC1 promotes anabolism by directing the synthesis of nucleic acids, proteins, 

and lipids, and blocks catabolism by inhibiting autophagy, lipolysis, and β-oxidation.296,307,308 

mTORC1 kinase activity exerts its effects on cellular growth through its downstream effectors, 

such as ribosomal S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 

(4E-BP). These proteins upregulate translation, splicing, proliferative signaling, and both 

ribosomal and mitochondrial biogenesis through multiple mechanisms.309–311  

 

4E-BPs are translational repressors that in their unphosphorylated state sequester the eukaryotic 

translation initiation factor 4E (eIF4E). Upon 4E-BP phosphorylation by mTORC1, eIF4E binds 

another translation factor, eukaryotic translation initiation factor 4G (eIF4G), on the 5’ end of 

mRNAs to promote cap-dependent translation.312  
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S6K is thought to promote translation by phosphorylating ribosomal S6 protein (rpS6), a protein 

component of the 40S eukaryotic ribosome, however, the exact role of rpS6 phosphorylation in 

promoting translation remains unclear after four decades of research.313 S6K itself also 

influences translation by regulating transcription of ribosomal biogenesis genes.314 rpS6 

phosphorylation enhances the affinity of ribosomes for a particular class of mRNAs responsive 

to mTORC1-mediated nutrient signaling, those containing 5′-terminal oligopyrimidine tract 

structural motifs (‘TOP mRNAs’), thereby promoting their translation.315 In addition to its role in 

promoting translation, rpS6 also regulates glucose homeostasis and cell size.316 mTORC1 

signaling also enhances production of ATP and reducing equivalents by its regulation of 

mitochondrial biogenesis. It also promotes cell cycle progression by upregulating expression of 

cyclin D1 in a 4E-BP-dependent manner.317,318 

 

mTORC1 exists in a double negative feedback loop with AMP activated protein kinase (AMPK),  

a cellular sensor of energy status. AMPK maintains energy homeostasis by regulation of   

the autophagy-initiating unc-51-like kinase 1 (ULK1) and antagonism of mTORC1 signaling.319 

Under conditions of glucose starvation, accumulation of AMP activates AMPK in a manner that 

depends on phosphorylation of the serine–threonine liver kinase B1 (LKB1).320 Phosphorylated, 

activated AMPK then activates ULK1 to promote autophagy.321 AMPK simultaneously inhibits 

mTORC1 signaling during energy stress by phosphorylation of its TSC2 and Raptor subunits.322 

LKB1-induced phosphorylation of TSC2 by AMPK enhances its Rheb-GAP activity, whereas 

phosphorylation of two conserved serine residues on Raptor inhibits mTORC1 activation.322 

Under nutrient-replete conditions, however, mTORC1 phosphorylation of ULK1 disrupts its 

interaction with AMPK, thereby inhibiting autophagy.321  
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mTORC1 in T cells 

mTORC1 signaling in activated T cells integrates immunological, nutrient, and other 

environmental inputs to influence cell cycle progression, metabolic reprogramming, cell fate 

decisions, and effector functions.323,324 Immunological inputs, chiefly cognate antigen 

recognition, co-stimulation of CD28 and OX40, and detection of inflammatory or homeostatic 

cytokines, all converge on the PI3K-Akt-TSC2 signaling axis and the activation of mTORC1.325 

 

mTORC1 is activated in response to TCR ligation and this activity requires Rasgrp1.326 Some 

evidence suggests that the magnitude of TCR signaling-induced activation of mTORC1 is 

directly proportional to the dose of cognate antigen and the duration of T cell-dendritic cell 

contact.327,328 TCR-induced activation of mTORC1 is enhanced by CD28 co-stimulation and 

PI3K signaling. Its importance in T cell activation is highlighted by the phenotype of T cells with 

cell-specific knockout of mTOR or Raptor, which display growth and proliferation defects in 

response to CD3/28 stimulation.329,330 mTORC1, along with PI3K and ERK (MAPK) signaling, 

significantly influences the metabolic reprogramming of nascently-activated T cells from 

oxidative phosphorylation to aerobic glycolysis and glutaminolysis chiefly through enhancing 

translation of the transcription factor c-Myc.331 As previously discussed in Chapter 4.2, this 

metabolic switch is required to enable naïve T cells to become fully activated and to support 

subsequent proliferation to effector cells. In many cell types, mTORC1 activation upregulates 

mRNAs with particular features, such as 5’ terminal oligopyrimidine tracts (5’ TOPs), and 

transcriptomic profiles of different CD4+ T cell populations reveal distinct translational 
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landscapes.315,332 It’s likely that mTORC1 signaling induced by TCR ligation also promotes the 

transition from a naïve cell translational program to an activated one.  

 

mTORC1 also plays a critical role in CD4+ and CD8+ T cell differentiation. Genetic deletion of 

mTOR in the double-positive thymocyte stage profoundly impairs CD4+ T cell differentiation 

and while TCR signaling appears unperturbed, mTOR-deficient T cells proliferate only slowly in 

response to stimulation and activation. Specifically, loss of mTOR signaling constrains CD4+ 

lineage fate to Foxp3+ regulatory T cells (Tregs), even under TH1, TH2, and TH17-polarizing 

conditions.329 Interestingly, deletion of Rheb in T cells does not preclude TH2 differentiation but 

does preclude TH1 and TH17 differentiation under their respective polarizing conditions.333 

Deletion of other mTORC1 components in T cells produces even more puzzling defects: T cell-

specific deletion of the Raptor subunit by generating mice with Raptor floxed alleles expressing 

Cre recombinase under the control of the Lck promoter produced CD4+ T cells capable of 

differentiating into TH1 cells but not TH17 cells.334 Another group used mice with Raptor floxed 

alleles expressing Cre under the control of the CD4 promoter and these mice were incapable of 

TH1 or TH2 differentiation.335 mTOR signaling is also important for CD8+ T cell differentiation: 

pharmacological inhibition of mTORC1 with rapamycin appears to paradoxically enhance CD8+ 

T cell memory formation in the short-term, perhaps by upregulating lipid metabolism, but long-

term blockade is associated with impaired memory cell formation.336  

 

Clearly the relationship between mTORC1 signaling and T cell differentiation is complex and a 

thorough review of the topic is beyond the scope of this thesis. What this complexity underlines, 
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however, is the importance of mTORC1 for matching metabolic programs with developmental 

and differentiation ones. 

 

The lysosome links macropinocytosis and mTORC1 

Given the abundance of evidence from a variety of cell types documenting the trafficking to and 

fusion of mature macropinosomes with lysosomes, as well as the spatial regulation of mTORC1 

by Rag-mediated lysosomal recruitment, we naturally posited that T cell macropinosomes are 

delivered to the lysosome where their cargoes promote growth by activating mTORC1. To 

investigate this we used an alternative BSA probe (DQ Red BSA) that is fluorogenic only when 

cleaved by lysosomal proteases, allowing us to test, using flow cytometry and confocal 

microscopy, the hypothesis that T cell macropinosomes are delivered to lysosomes. 

 

Prior to this investigation little was known about mTORC1 kinetics in the first cell cycle of 

nascently-activated T cells. Considerable evidence has demonstrated the transduction of TCR 

and co-stimulatory signals to mTORC1, including by the CARMA1-Bcl10- MALT1 (CBM) 

signalosome, but it was unknown how long mTORC1 activation was sustained after TCR 

stimulation and co-stimulation.337 

 

To investigate the kinetics of mTORC1 signaling in nascently-activated T cells we used 

phospho-flow cytometry, measuring the abundance of phosphorylated rpS6 as a downstream 

readout of mTORC1 activation. We predicted that mTORC1 signaling would be sustained 

through G1 phase and that its activation is required for the dramatic increases in growth in this 

period.  
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Given that input from multiple environmental sensors and several major signaling pathways all 

influence mTORC1 activation, it was conceivable that impairing the lysosomal delivery of 

macropinocytic cargoes would only modestly influence mTORC1 activation status. If, however, 

our hypothesis was correct—that macropinocytosis exerts such a profound effect on T cell 

growth primarily by influencing Rag-mediated mTORC1 recruitment and activation—then its 

inhibition by EIPA or J/B in the 12-20 hour period post-stimulation would be expected to 

terminate mTORC1 signaling. This is precisely what occurs when CSF1 or PMA-induced 

macropinocytosis in macrophages is inhibited by EIPA or J/B. We also expected that partial 

inhibitors of macropinocytosis would inhibit mTORC1 activation but perhaps to a lesser extent, 

given the less significant impacts these compounds had on 12-20 hour growth in prior 

experiments. 

 

Furthermore, if mTORC1 inhibition occurs secondary to inhibition of macropinocytosis, it is 

important to ensure that this is not due to a general impairment or dysregulation of signaling 

through other T cell activation pathways, such as the MAPK and NFκB signaling pathways. 

Phospho-flow cytometry and Western blotting permits the monitoring of these pathways during 

G1 growth. 

 

If delivery of macropinocytic cargoes to the lysosome sustains G1 phase mTORC1 activation, 

it’s important to clarify the activating stimulus contained therein. One possibility is that, like 

oncogenic Ras-driven tumor cells, nascently-activated T cells use macropinocytosis to acquire 

extracellular protein, abundant in serum-supplemented growth media, and digest it in lysosomes 
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to yield amino acids that signal to the Ragulator-Rag complex to promote mTORC1 activation. 

Another possibility is that free amino acids or some other fluid-phase solute obtained by 

macropinocytosis is sufficient to activate mTORC1 and protein digestion is unnecessary. To test 

this we again utilized the DQ Red BSA probe, which functions as a lysosomal reporter, and a 

lysosomotropic agent, NH4Cl, which at the appropriate concentration blocks acidification of the 

lysosome and thereby inhibits lysosomal proteolysis. Because free amino acids were abundant in 

the culture medium in addition to albumin and serum proteins, we predicted that 

macropinocytosis-dependent mTORC1 activation would not be impaired by inhibition of 

lysosomal protein digestion. 

 

5.3 MATERIALS AND METHODS 
 

Animals. Wild-type mice were bred in house and were on a mixed 129S6/SvEv X C57BL/6 

genetic background. Mice ranged in age from 6 weeks to 3 months. Mice of both sexes were 

used in experiments. All experiments performed with mice were in compliance with University 

of Michigan guidelines and were approved by the University Committee on the Use and Care of 

Animals. 

 

T cell macropinocytosis assays. Murine splenocytes or pan-T cells were isolated from wild-type 

mice and prepared as previously described except DQ Red BSA (Thermo Fisher) 

macropinocytosis probe was added to wells at final concentrations of 50μg/ml at the indicated 

times. Incubation with probes was for the indicated times at 37°C or 4°C. Pharmacological 

inhibitors were added to cultures 15 min prior to addition of macropinocytosis probes in a range 

of concentrations as indicated or at the following final concentration: NH4Cl (Sigma), 10 mM. 
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Percentage inhibition of DQ Red BSA fluorescence in the presence of NH4Cl was calculated as 

follows: [(Median fluorescence intensity (MFI) in absence of inhibitor at 37°C − MFI in 

presence of NH4Cl at 37°C)/(MFI in absence of inhibitor at 37°C − MFI in absence of inhibitor 

at 4°C)] × 100. 

 

Confocal microscopy. Murine pan-T cells were isolated and prepared as previously described 

except where noted they were also stained with rat anti-mouse LAMP-1 (eBioscience, clone 

1D4B, cat. no. 14-1071-82, dilution 1:100), or LAMP-2 (Invitrogen, clone M3/84, cat. no. MA5–

17861, dilution 1:100) mAb overnight at 4°C. For experiments testing inhibition of lysosomal 

proteolysis, cells were incubated in the presence or absence of DQ Red BSA (50 μg/ml) at 37°C 

or 4°C in the presence or absence of EIPA (50 μM) for a further 4 or 8 h post-stimulation. 

 

Flow cytometric analysis of mTORC1 and NFκB activation. Murine splenocytes were 

stimulated as above for the indicated times in the presence or absence of inhibitors at 

concentrations indicated above. Cells were harvested, fixed in 4% paraformaldehyde for 20 min 

at room temperature, washed with PBS supplemented with 5% FCS, and permeabilized by drop-

wise addition of ice-cold, 90% methanol with gentle vortexing. Cells were washed and stained 

with APC-Cy7- CD4, APC-CD8α and PE-Cy7-phospho-S6 mAb (Cell Signaling Technology, 

clone D57.2.2E, cat. no. 34411, dilution 1:50) or anti-phospho-NFκB p65 (pS356) (Cell 

Signaling Technology, clone 93H1, cat. no. 3033, dilution 1:100) followed by Alexa488-labeled 

donkey anti-rabbit secondary antibody (Jackson Immunoresearch, cat. no. 711-545-152, dilution 

1:100) and analyzed by flow cytometry. The gating strategy is illustrated in the Appendix. In 

each experiment, the effect of inhibitors upon mTORC1 activation between 12 and 20 hours or 
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NFκB activation between 12 and 14 hours was calculated as a percentage of mTORC1 or NFκB 

activation observed in the absence of inhibitor as follows: [(MFI phospho-S6 or NFκB of 

CD3/28 stimulated T cells in presence of inhibitor - MFI phospho-S6 or NFκB of unstimulated T 

cells in absence of inhibitor)/(MFI phospho-S6 or NFκB of CD3/ 28 stimulated T cells in 

absence of inhibitor - MFI phospho-S6 or NFκB of unstimulated T cells in absence of inhibitor)] 

× 100. 

 

For experiments that determined if AA were sufficient to sustain mTORC1 activation, 

splenocytes were stimulated for 12 h with CD3/28 mAb in RPMI 1640 with 10% FCS as above. 

Cells were then washed extensively in PBS and recultured in wells of 96 well U-bottomed plates 

at 1 × 106 cells per well in RPMI 1640 with 10% FCS, or with modified RPMI 1640 without AA 

(USBiological) to which different combinations of AA (Thermo Fisher or Sigma) had been 

added at the concentrations normally found in RPMI 1640. EIPA and J/B were added to some 

wells at the same concentrations indicated above. After 2 h, cells were harvested and analyzed 

for phospho-S6 by flow cytometry. 

 

Western blotting. Purified splenic CD4+ T cells were stimulated with Mouse T-Activator 

CD3/CD28 Dynabeads (Life Technologies) for the indicated times before cell disruption by 

boiling in reducing SDS-PAGE sample buffer. Activation of mTORC1, ERK MAPK and NFκB 

was determined by Western blotting using anti-phospho-S6 (Cell Signaling Technology, cat. no. 

2211, dilution 1:1000), anti- p44/p42 MAPK (T202/Y204) (Cell Signaling Technology, clone 

E10, cat. no. 9106, dilution 1:1000), or anti-phospho IκBα (S32/36) (Cell Signaling Technology, 

clone 5A5, cat. no. 9246, dilution 1:1000) antibodies, respectively. Blots were stripped and 



 125 

reprobed with antibodies against unphosphorylated MAPK (Cell Signaling Technology, clone 

137F5, cat. no. 137F5, dilution 1:1000), S6 (Cell Signaling Technology, clone 54D2, cat. no. 

2317, dilution 1:1000), or IκBα (Cell Signaling Technology, clone no. 9242, dilution 1:1000). 

 

Statistical analysis. P values were calculated using Student’s 1-sample or 2-sample 2-sided t-

tests as appropriate for normally distributed data. 

 

5.4 RESULTS 
 

Macropinocytic cargoes are targeted to lysosomes 

To determine if macropinosomes are trafficked to lysosomes, we performed uptake assays 

employing DQ Red BSA, a macropinocytosis probe of comparable size and mass to those 

previously used but one that that is fluorogenic only when cleaved by lysosomal proteases. 

Figure 20a-b displays representative flow cytometry histograms showing an increase in DQ Red 

BSA signal in CD3/28-stimulated murine CD4+ (left) and CD8+ (right) T cells between 12 and 

18 hours post-stimulation. DQ Red BSA probe signal increased over the first four hours of probe 

incubation before reaching a steady-state at 16 hours post-stimulation. The mean ratio of DQ 

Red BSA fluorescence and SEM in DQ Red BSA probe signal in stimulated cells at 37°C vs. 

4°C during hours 12-18 post-stimulation is shown in Figure 20c. For both CD4+ and CD8+ T 

cells, this ratio was approximately 3-4. To confirm lysosomal delivery of DQ Red BSA probe, 

we next incubated purified, CD3/28-stimulated, murine pan-T cells and CD4+ T cells with DQ 

Red BSA probe during the period 12-16 hours post-stimulation, then imaged them by confocal 

microscopy per the method described in Methods and materials. Representative images from 

these experiments are shown in Figure 20d. In both purified pan-T cells (left) and CD4+ T cells 
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(right), DQ Red BSA signal was detected (arrows) within lysosomes identified by co-staining for 

LAMP-1 (pan-T cells) or LAMP-2 (CD4+ T cells), confirming macropinosome trafficking to 

lysosomes. 
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Figure 20 – DQ BSA is targeted to lysosomes in stimulated T cells. a-c Murine splenocytes were stimulated CD3/28 
mAb for 12 hours before incubation with DQ Red BSA for the indicated times and at the indicated temperatures. Shown 
are representative flow cytometry histogram plots of DQ Red BSA fluorescence in CD4+ (a) and CD8+ T cells (b) and 
mean ± 1 SEM of the ratio of DQ Red BSA fluorescence in CD4+ and CD8+ T cells at 37°C or 4°C after probe incubation 
between 12 and 16 hours (c) (n = 4 independent experiments). **P < 0.01 by Student’s 1-sample, 2-sided t-test. d Purified 
pan T cells (left) or CD4+ T cells (right) were stimulated with CD3/28 mAb for 12 hours before incubation with DQ Red 
BSA for 4 hours at 37°C. Traffic of DQ Red BSA to lysosomes was assessed by flow cytometry (a-c) and confocal 
microscopy (d). Flow cytometry data are representative of four independent experiments. Arrows in (d) show 
accumulation of DQ Red BSA in LAMP-1-positive or LAMP-2-positive lysosomes as determined by staining with 
respective antibodies. The mean percentage ± 1 SEM of LAMP-1-positive or LAMP-2-positive lysosomes that contained 
DQ Red BSA per cell was calculated at 77.3 ± 3.9 (n = 35 cells) and 84.9 ± 3.8 (n = 23 cells), respectively. 
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Activation of mTORC1 is dependent on macropinocytosis 

Given the observed trafficking of macropinocytic cargoes to lysosomes (Figure 20) and the 

direct relationship between macropinocytosis and growth (Figures 17-19), we predicted that 

macropinocytosis drives growth in activated T cells by promoting activation of mTORC1. To 

test this prediction we first verified that mTORC1 is activated in nascently-activated T cells 

between 12 and 20 hours post-stimulation. To do this we measured fluorescence of 

phosphorylated ribosomal S6 protein (rpS6), a downstream effector of S6 kinase that is 

phosphorylated as a consequence of mTORC1 activation. As displayed in the representative flow 

cytometry histogram in Figure 21, unstimulated CD4+ T cells do not exhibit mTORC1 activation 

(violet curve). In the absence of inhibitors, high levels of phosphorylated rpS6 is detected at 12 

(green curve) and 20 hours (blue curve) post-stimulation, confirming sustained mTORC1 

activation in this period. Addition of the selective mTORC1 inhibitor Torin 1 (500 nM) during 

hours 12-20 post-stimulation, however, abolishes mTORC1 activation as measured by 

phosphorylated rpS6 (red curve).  
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Figure 21 – Torin 1 inhibits ongoing G1 phase mTORC1 
activation. Murine splenocytes were unstimulated or stimulated 
at 37°C with anti-CD3/28 mAbs for different times in the absence 
or presence of inhibitors added at 12 hours. The representative 
flow cytometry histogram shows relative amounts of phospho-S6 
in CD4+ T cells (n = 3 independent experiments).  
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We next sought to test the influence of macropinocytosis inhibitors on mTORC1 activation in 

primary CD4+ and CD8+ T cells. Figure 22 shows representative flow cytometry histograms 

from experiments examining activation in CD4+ T cells. CD4+ T cells stimulated at 37°C by anti-

CD3/28 mAbs recapitulated the robust mTORC1 activation 12 hours (red curve) and 20 hours 

(light blue curve) post-stimulation previously seen. Inhibition of macropinocytosis by addition of 

either 50 μM EIPA (top right) or 1/75 μM J/B (bottom left) at 12 hours post-stimulation, 

however, profoundly inhibits mTORC1 activation – an effect that increases over time but is 

apparent as soon as one hour after incubation with inhibitors. Inhibition of CME by incubation 

with PitStop 2 (bottom right) does not abolish mTORC1 activation but surprisingly enhances it 

by 20 hours post-stimulation. 
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Figure 22 – Activation of mTORC1 is dependent on macropinocytosis in CD4+ T cells. 
Murine splenocytes were unstimulated or stimulated at 37°C with CD3/28 mAb for different 
times in the absence or presence of inhibitors added at 12 hours. Relative amounts of phospho-
S6 in CD4+ T cells were determined by flow cytometry. All panels are from the same 
experiment. The red dashed line in each panel indicates the 12 hour positive control. Data are 
representative of 6 independent experiments performed with EIPA and three independent 
experiments performed with J/B and PitStop 2.  
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Similar results were obtained in experiments examining activation in CD8+ T cells. Figure 23 

summarizes these results in representative flow cytometry histograms. CD8+ T cells stimulated at 

37°C by anti-CD3/28 mAbs also exhibit robust mTORC1 activation 12 hours post-stimulation 

(top left, red curve). As with CD4+ T cells, activation was sustained and enhanced in the period 

from 12 to 20 hours post-stimulation and addition of either 50 μM EIPA (top right) or 1/75 μM 

J/B (bottom left) at hours post-stimulation similarly inhibited mTORC1 activation. Inhibition of 

CME in these cells did not block mTORC1 activation and, as with CD4+ T cells, activation was 

not blocked but CME inhibition 20 hours post-stimulation, but was instead enhanced (bottom 

right).  
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Figure 23 – Activation of mTORC1 is dependent on macropinocytosis in CD8+ T cells. 
Murine splenocytes were unstimulated or stimulated at 37°C with CD3/28 mAb for different 
times in the absence or presence of inhibitors added at 12 hours. Relative amounts of phospho-
S6 in CD4+ T cells were determined by flow cytometry. All panels are from the same 
experiment. The red dashed line in each panel indicates the 12 hour positive control. Data are 
representative of 6 independent experiments performed with EIPA and three independent 
experiments performed with J/B and PitStop 2. 
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In both CD4+ and CD8+ T cells, inhibition of mTORC1 activation in the period 12-20 hours post-

stimulation was directly proportional to the concentration of macropinocytosis inhibitors (EIPA 

and J/B) used. This reproducible dose-response relationship is summarized in Figure 24.  
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Figure 24 – Inhibition of macropinocytosis blocks mTORC1 activation in a dose-dependent 
manner. Murine splenocytes were stimulated at 37°C with CD3/28 mAb for 20 hours in the absence or 
presence of EIPA (a) and J/B (b) that were added to cultures at 12 hours. Mean percentage ± SEM of 
mTORC1 activation at 20 hours (n = 3 independent experiments). *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 by Student’s 1-sample, 2-sided t-test. 
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To examine mTORC1 signaling kinetics in acutely activated cells treated with macropinocytosis 

inhibitors, we performed experiments evaluating levels of phosphorylated rpS6 over time in the 

presence or absence of 50 μM EIPA. As the representative flow cytometry histograms in Figure 

25a illustrate, after one hour of stimulation in the presence of EIPA (orange curves), mTORC1 

activation in CD4+ T cells is already significantly attenuated compared to the positive control 

condition (red curves) and is even lower than the signal measured in unstimulated cells (blue 

curves). By two hours post-stimulation, the phosphorylated rpS6 signal is nearly entirely 

abolished in EIPA-treated cells and remains so through three hours post-activation. Figure 25b 

shows a quantitation of repeated experiments in both CD4+ and CD8+ T cells confirming that 

mTORC1 signaling is immediately abolished by inhibition of macropinocytosis with EIPA. 
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Figure 25 – EIPA inhibits mTORC1 in activated CD4+ and CD8+ T cells. Murine splenocytes were 
stimulated at 37°C with anti-CD3/28 mAbs for the indicated times in the presence or absence of EIPA added 
at culture initiation. Relative amounts of phospho-S6 in CD4+ and CD8+ T cells were determined by flow 
cytometry. a Shown are representative plots and mean ± SEM of the percentage of mTORC1 activation at 
each time point for CD4+ and CD8+ T cells (n = 3 independent experiments). b ****P < 0.0001 by Student’s 
1-sample, 2-sided t-test.  
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We next tested the influence of partial inhibitors of macropinocytosis on mTORC1 activation in 

the period 12-20 hours post-stimulation. CD4+ and CD8+ T cells stimulated for 12 hours were 

incubated with various inhibitors of macropinocytosis for additional 8 hours prior to analysis by 

flow cytometry. As shown in Figure 26, all inhibitors of macropinocytosis, including those with 

only a modest effect, potently inhibited mTORC1 activation, measured as a percentage of 

phosphorylated rpS6 signal detected in uninhibited controls. Nearly all of these inhibitors 

blocked mTORC1 activation as effectively as the selective mTORC1 inhibitor Torin 1 in both 

CD4+ and CD8+ T cells. Incubation with the CME inhibitor PitStop 2, however, had no 

significant effect. 
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Figure 26 – Inhibition of macropinocytosis blocks mTORC1 activation. 
Murine splenocytes were stimulated with CD3/28 mAb at 37°C for 20 hours in 
the absence or presence of the indicated inhibitors that were added to cultures at 
the 12 hour time point. Mean ± SEM of the percentage of mTORC1 activation at 
20 hours relative to the positive control following addition of inhibitors at 12 
hours calculated as indicated in Methods and materials (EIPA, n = 6, all other 
inhibitors, n = 3). **P < 0.01, ***P < 0.001, ****P < 0.0001 by Student’s 1-
sample, 2-sided t-test.  
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Inhibition of macropinocytosis does not impair signaling through other T cell pathways 

To ensure that the observed inhibition of mTORC1 signaling by macropinocytosis inhibitors was 

specific and not the consequence of interference and derangement of the activity of other 

signaling pathways required for T cell activation, we performed flow cytometry assays 

examining the impact of macropinocytosis inhibitors on activation of the transcription factor 

NFκB. Figure 27a and c display representative flow cytometry histograms showing the 

influence of EIPA and J/B, respectively, on phosphorylation of NFκB in CD4+ (left) and CD8+ 

(right) T cells. Cells stimulated with anti-CD3/28 mAbs for 12 hours were incubated an 

additional 2 hours in the presence or absence of 50 μM EIPA (a) or 1/75 μM J/B (c), then stained 

with a phospho-specific antibody to NFκB. Incubation with EIPA in this period did not impair 

NFκB activation and, in the case of CD4+ T cells, significantly enhanced it. This can be seen in 

the quantitation shown in c expressing NFκB activation in the presence of EIPA as a percentage 

of the activation observed in uninhibited controls. The influence of EIPA on activation of NFκB 

in CD8+ T cells was marginal. Similarly, treatment with J/B 12-14 hours post-stimulation did not 

decrease NFκB activation in CD4+ (left) or CD8+ (right) T cells either but instead significantly 

enhanced it in both, as can be seen in c and d. 
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Figure 27 – Inhibition of macropinocytosis does not impair NFκB activation. Murine splenocytes were 
stimulated with anti-CD3/28 mAbs at 37°C for 14 hours in the absence or presence of the indicated inhibitors 
that were added to cultures at 12 hours. EIPA was used at 50 μM and J/B was used at 1/75 μM. Relative 
amounts of phosphorylated NFκB in CD4+ and CD8+ T cells at 14 hours were determined by flow cytometry. 
a, c Representative flow cytometry histograms showing effect of EIPA and J/B upon phosphorylated NFκB. b, 
d Mean ± 1 SEM of the percentage of NFκB activation 14 hours relative to the positive control (see Methods 
and materials). n = 3 independent experiments. *P < 0.05, by Student’s 1-sample, 2-sided t-test.  
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To confirm that inhibition of mTORC1 signaling secondary to inhibition of macropinocytosis is 

specific and does not impede signaling during the acute phase of T cell activation, we stimulated 

purified splenic CD4+ T cells with anti-CD3/28 mAbs at 37°C in the presence and absence of 

EIPA, then analyzed the impact on mTORC, ERK (MAPK) and NFκB signaling in the first two 

hours post-stimulation by Western blot. Results from these experiments are shown in Figure 28.  

 

Figure 28a shows results from two experiments (left, right) measuring the impact of EIPA on 

mTORC1 signaling in nascently-activated CD4+ T cells after 10, 30, 60, and 120 minutes post-

stimulation using a phospho-specific antibody to detect phosphorylated rpS6. The magnitude of 

phospho-specific signals as measured by densitometry were normalized to expression of the 

corresponding non-phosphorylated species (in this case rpS6) as measured following blot 

stripping and re-probing with specific antibodies to the non-phosphorylated species. Below the 

EIPA tracks are calculated ratios of normalized phospho-signals in EIPA-treated to non-treated T 

cells for each time point. These panels corroborate flow cytometry studies demonstrating 

inhibition of mTORC1 activation by EIPA.  

 

Figure 28b shows two similar experiments (left, right) examining the impact of EIPA on ERK 

(MAPK) signaling in nascently activated CD4+ T cells. Addition of EIPA to these cultures did 

not inhibit ERK (MAPK) phosphorylation and in one experiment (left) markedly enhanced it 

within the first hour post-stimulation.  

 

Lastly, Figure 28c shows two experiments (left, right) measuring the influence of EIPA on 

NFκB signaling in nascently-activated CD4+ T cells. Phosphorylation of IκBα, a readout of 
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NFκB activation, was not impaired by addition of EIPA to cultures, but was instead enhanced. 

Taken together, results from experiments summarized in Figure 27 and Figure 28 suggest that 

selective inhibition of activated T cell macropinocytosis significantly impairs mTORC1 

signaling but not other major signaling pathways necessary for full T cell activation.  
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Figure 28 – Macropinocytosis inhibitors block mTORC1 activation but do not impair acute ERK (MAPK) 
or NFκB signaling in activated CD4+ T cells. Purified splenic CD4+ T cells were stimulated with anti-CD3/28 
mAbs at 37°C for the indicated times (in min) in the presence or absence of EIPA added at culture initiation. 
Activation of mTORC1 (a), ERK (MAPK) (b) and NFκB (c) was determined by Western blotting using phospho-
specific-S6, -ERK, and -IκBα antibodies respectively. The magnitude of phospho-signals was normalized to the 
amounts of corresponding non-phosphorylated species following blot stripping and re-probing with specific 
antibodies. Numbers below EIPA tracks represent the ratio of normalized phospho signals of EIPA-treated to 
non-treated T cells at each time point of anti-CD3/28 mAbs stimulation. Shown are repeat experiments for each 
molecular species. 
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NH4Cl inhibits lysosomal digestion of DQ Red BSA probe 

We next sought to understand whether proteolysis of macropinocytic cargoes being delivered to 

lysosomes was necessary to activate mTORC1 during G1 growth in murine T cells. First we used 

flow cytometry to demonstrate that the lysosomotropic agent NH4Cl effectively inhibits 

lysosomal proteases at a concentration of 10 mM. To test this, we stimulated murine splenocytes 

with anti-CD3/28 mAbs for 12 hours at 37°C or 4°C followed by incubation with DQ Red BSA 

probe for an additional 4 hours in the presence or absence of NH4Cl. Figure 29a-b shows 

representative flow cytometry histograms from experiments with stimulated CD4+ (left) and 

CD8+ (right) T cells. At 4°C no probe is internalized but at 37°C it is ingested by 

macropinocytosis, trafficked to lysosomes, and degraded by proteases to generate a strong 

fluorescent signal. Addition of NH4Cl to cultures prior to probe incubation, on the other hand, 

results in a negligible fluorescent signal, confirming inhibition of lysosomal proteases. Figure 

29c displays a quantitation of the nearly complete inhibition of DQ Red BSA fluorescence by 

NH4Cl in CD4+ and CD8+ T cells. 
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Figure 29 – NH4Cl potently inhibits DQ Red BSA fluorescence. Murine splenocytes were stimulated with 
CD3/28 mAb at 37°C for 12 hours followed by incubation with DQ Red BSA for 4 hours at the indicated 
temperatures in the presence or absence of NH4Cl. a, b Representative flow cytometry histograms of DQ Red 
BSA fluorescence in CD4+ (a) and CD8+ (b) T cells. c Mean percentage ± 1 SEM of inhibition of DQ Red BSA 
fluorescence in CD4+ and CD8+ T cells in the presence of NH4Cl calculated as described in Methods and 
materials (n = 3 independent experiments). ***P < 0.001, ****P < 0.0001 by Student’s 1-sample, 2-sided t-
test. 
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Lysosomal proteolysis is not required for macropinocytosis-dependent mTORC1 activation 

To determine if lysosomal proteolysis is required for macropinocytic cargoes to activate 

mTORC1 in stimulated murine CD4+ and CD8+ T cells, we stimulated murine splenocytes at 

37°C with anti-CD3/28 mAbs for 12 hours then incubated them for an additional 8 hours in the 

presence or absence of EIPA or NH4Cl. Figure 30 shows results from these experiments. Figure 

30a-b shows representative flow cytometry histograms displaying phosphorylated rpS6 signals 

from these experiments in CD4+ (left) and CD8+ (right) T cells. Addition of NH4Cl had no 

significant impact on phosphorylated rpS6 levels, suggesting the activity of lysosomal proteases 

is not necessary for macropinocytic cargoes to activate mTORC1 (purple, violet curves). By 

contrast, addition of EIPA in the period 12-20 hours post-stimulation dramatically impaired 

mTORC1 signaling as measured by phosphorylated rpS6 (green curves). Figure 30c shows the 

percentage of mTORC1 activation at 20 hours relative to the no inhibitor positive control 

following addition of NH4Cl at 12 hours. As can be seen, 12-20 hour inhibition of lysosomal 

proteolysis by NH4Cl had no significant impact on mTORC1 activation. 
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Figure 30 – Lysosomal proteolysis is not required for macropinocytosis-dependent mTORC1 activation. 
Murine splenocytes were stimulated with anti-CD3/28 mAbs for 12 hours followed by incubation for 8 hours at 
37°C in the presence or absence of EIPA or NH4Cl. a, b Representative flow cytometry histogram of phospho-
S6 levels in CD4+ (a) and CD8+ (b) T cells. c Mean ± 1 SEM of the percentage of mTORC1 activation at 20 
hours relative to the positive control following addition of NH4Cl at 12 hours calculated as indicated in 
Methods and materials (n = 3 independent experiments). 
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Given that lysosomal protein degradation was not necessary for macropinocytic cargoes to 

activate mTORC1, we hypothesized that they contained free amino acids that are both necessary 

and sufficient to promote mTORC1 activation in CD4+ and CD8+ T cells. To investigate this we 

stimulated murine splenocytes (in complete medium; RPMI plus FCS) with anti-CD3/28 mAbs 

at 37 C for 12 hours, then thoroughly washed them prior to reculturing in minimal RPMI media 

containing 1) all 20 proteinogenic amino acids, 2) the four amino acids leucine, glutamine, 

arginine, and serine (LQRS), and 3) no amino acids. In addition, 50 μM EIPA was added to or 

absented from the cultures and they were allowed to grow for an additional two hours in the 

amino acid-supplemented (or not) minimal media. At 14 hours post-stimulation, phosphorylated 

rbS6 was measured by flow cytometry.  

 

Figure 31a shows representative flow cytometry histograms from one experiment with 

stimulated CD4+ T cells. Reculture for two additional hours in the same complete medium as 

was used for the first 12 hours resulted in sustained mTORC1 activation (top, middle), as 

expected, and this signal was significantly inhibited by EIPA administration in the 12-14 hour 

post-stimulation period. Absenting serum (FCS) from the medium did not impair mTORC1 

signaling in this period either, so long as all amino acids were present (top, right; violet curve). 

mTORC1 signaling in these cells remained sensitive to EIPA treatment (top, right; blue curve). 

In splenocytes re-cultured for two additional hours in serum-free minimal medium containing no 

amino acids, mTORC1 signaling fell dramatically compared to hour 12 levels (bottom, right; 

violet curve). Reculture for hours 12-14 post-stimulation in serum-free minimal medium 

containing only LQRS at the same concentrations they appear in commercial RPMI media, was 
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sufficient to sustain mTORC1 activation (bottom, left; violet curve). This signal was also 

inhibited by treatment with EIPA (bottom, left; blue curve).  

 

Parallel experiments showed that mTORC1 activation in these minimal, amino acid-containing 

media was also sensitive to inhibition by J/B. Figure 31b shows data from many experiments 

showing the ability of 20 amino acid- and LQRS-supplemented media preparations to 

significantly sustain mTORC1 activation in stimulated CD4+ T cells, as well as the inhibitory 

effect of macropinocytosis inhibitors on it. 
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Figure 31 – Macropinocytosis delivers to CD4+ T cells free amino acids necessary for the sustained 
activation of mTORC1. Murine splenocytes were stimulated at 37°C with anti-CD3/28 mAbs in complete 
medium (RPMI plus FCS) for 12 hours, washed, and recultured in the indicated media for 2 hours in the presence 
or absence of EIPA. a Representative flow cytometry histograms show phosphorylated rpS6 levels in CD4+ T 
cells. All panels are from the same experiment. The mid-blue-dashed line indicates all amino acids in the absence 
of EIPA. b Mean ± 1 SEM of the fold increase in mTORC1 activation in CD4+ T cells at 14 hours relative to the 
0 amino acid control in the absence of inhibitors (n = 8 and 7 independent experiments for 20 amino acids and 
LQRS, respectively, in the absence of inhibitors; n = 4 for 20 amino acids and n = 3 independent experiments for 
LQRS and 0 amino acids in the presence of inhibitors). **P < 0.01 by Student’s 1-sample, 2-sided t-test. 
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Similar results were obtained with CD8+ T cells stimulated for 12 hours with anti-CD3/28 mAbs 

in complete medium, then cultured in the same serum-free minimal media containing custom 

amino acid formulations. As Figure 32a shows, reculture for hours 12-14 in minimal medium 

with all 20 amino acids sustains mTORC1 activation as measured by phosphorylated rpS6 (left, 

violet curve) and this signal was inhibited by EIPA treatment (left, blue curve). The mTORC1 

signal could not be maintained by reculture for two hours in minimal medium containing no 

amino acids (right, violet curve), and was as low as that seen in EIPA-treated cells (right, blue 

curve). Reculture in medium containing only LQRS did significantly sustain mTORC1 activation 

(middle, violet curve), an effect that was inhibited by EIPA (middle, blue curve). Figure 32b 

shows data from many experiments demonstrating the ability of 20 amino acid- and LQRS-

supplemented media preparations to significantly activate mTORC1 in stimulated CD8+ T cells 

relative to zero amino acid negative controls. The reproducible inhibitory effect of EIPA and J/B 

is also shown. 
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Figure 32 – Macropinocytosis delivers to CD8+ T cells free amino acids necessary for the sustained 
activation of mTORC1. Murine splenocytes were stimulated at 37°C with CD3/28 mAb in complete medium 
(RPMI plus FCS) for 12 hours, washed, and recultured in the indicated media for 2 hours in the presence or 
absence of EIPA. a Representative flow cytometry histograms show phosphorylated rpS6 levels in CD8+ T cells. 
All panels are from the same experiment. The mid-blue-dashed line indicates all amino acids in the absence of 
EIPA. b Mean ± 1 SEM of the fold increase in mTORC1 activation in CD8+ T cells at 14 hours relative to the 0 
amino acid control in the absence of inhibitors (n = 8 and 7 independent experiments for 20 amino acids and 
LQRS, respectively, in the absence of inhibitors; n = 4 for 20 amino acids and n = 3 independent experiments for 
LQRS and 0 amino acids in the presence of inhibitors). **P < 0.01 by Student’s 1-sample, 2-sided t-test. 
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mTORC1 activation is most sensitive to leucine and arginine detection 

Experimental results suggested that, in stimulated CD4+/CD8+ T cells, macropinocytosis delivers 

the amino acids L, Q, R, and S to lysosomes. There they signal in an inside-out fashion to the 

Ragulator-Rag complex to promote the activation of mTORC1. To better understand if mTORC1 

activation was dependent on and sensitive to particular amino acids we conducted similar 12-14 

hour post-stimulation reculture experiments using minimal media preparations and custom amino 

acid formulations. Each formulation contained all 20 amino acids except one, to test the 

sensitivity of mTORC1 to its absence. Murine splenocytes were stimulated for 12 hours at 37°C 

with anti-CD3/28 mAbs, washed thoroughly, and recultured for an additional two hours in the 

serum-free minimal media preparations indicated in Figure 33a. In these cultures, absenting 

serine (S) and glutamine (Q) did not significantly impair mTORC1 activation. By contrast, 

mTORC1 activation was substantially impaired in cells recultured in minimal media lacking 

arginine (R) or leucine (L). Results from multiple experiments demonstrated this finding was 

reproducible in CD4+ and CD8+ T cells, and these data are summarized in Figure 33b. Taken 

together, these experiments suggested that G1 phase mTORC1 activation in stimulated T cells is 

most sensitive to arginine (R) and leucine (L) amino acid inputs. 
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Figure 33 – Leucine or arginine are sufficient to sustain mTORC1 signaling in activated T cells. a, b 
Murine splenocytes were stimulated at 37°C with anti-CD3/28 mAbs in complete medium (RPMI plus FCS) for 
12 hours, washed, and recultured in the indicated media for two additional hours. a Representative flow 
cytometry histograms show phosphorylated rpS6 levels in CD4+ and CD8+ T cells. All panels are from the same 
experiment. The mid-blue-dashed line indicates all amino acids. The light blue histogram indicates negative 
control unstimulated T cells at 12 hours. b Mean ± 1 SEM of the percentage mTORC1 activation in CD4+ and 
CD8+ T cells at 14 hours relative to the all 20 amino acids control (n = 3 independent experiments). *P < 0.05, 
**P < 0.01, ***P < 0.001 by Student’s 1-sample, 2-sided t-test.  
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A model of mTORC1 activation in nascently-activated T cells  

Figure 34 shows a model of mTORC1 activation in nascently-activated T cells. Multiple signals 

are required for full activation of mTORC1. One set of signals, from immunological inputs such 

as the TCR, co-stimulatory receptors, and cytokine receptors, converge on activation of the 

PI3K-Akt-TSC2 pathway to promote Rheb-GTP-loading. Another is the set of amino acid 

sensors converging on the Ragulator-Rag complex to promote translocation of mTORC1 to the 

lysosome and Rag heterodimer guanine nucleotide exchange. Macropinosomes are critical 

components of the amino acid sensing machinery in activated T cells, reporting on amino acid 

sufficiency in the extracellular space and sustaining the activation of mTORC1.  
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Figure 34 – Model of mTORC1 activation in stimulated T cells. Macropinocytosis delivers free amino 
acids from the extracellular space to lysosomes in T cells where they modulate the activity of the Ragulator 
complex, resulting in recruitment of mTORC1 to the lysosomal membrane. PI3K signals emanating from 
cell surface receptors lead to activation of the Rheb small GTPase on lysosomes, which, in turn, activates 
localized mTORC1. mTORC1 phosphorylates, among other targets, p70 S6 kinase and 4E-BP, which 
promotes anabolic processes and T cell growth. Amino acid transporters in T cells permit entry of amino 
acids into the cytosol where they are detected by cytosolic amino acid sensors that provide additional 
necessary signals for mTORC1 activation. Figure illustration by Shaun Donnelly. 
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5.5 DISCUSSION 
 

As with many other eukaryotic cell types, T cell macropinosomes are delivered to lysosomes. As 

Figure 21 shows, lysosomal DQ Red BSA fluorescence increased in both stimulated CD4+ (a) 

and CD8+ T (b) cells in the period 12-16 hours post-stimulation until reaching a steady state at 

16 hours. At 16 hours post-stimulation the rate of probe delivery to and degradation within 

lysosomes appears to have equalized. Confocal microscopy of purified pan-T cells and CD4+ T 

cells (d) confirmed delivery of probe to perinuclear organelles delimited by the lysosomal 

markers LAMP-1 and LAMP-2.  

 

Phospho-flow cytometry monitoring phosphorylated rpS6 showed that mTORC1 is activated in 

CD4+ and CD8+ T cells at 12 hours post-stimulation and that activation is sustained through 20 

hours post-stimulation (Figures 21-23). Crucially, mTORC1 activation was inhibited by addition 

of macropinocytosis inhibitors at 12 hours post-stimulation (Figures 22-23). mTORC1 inhibition 

by EIPA and J/B was profound, producing dramatic reductions in phosphorylated rpS6 within 1 

hour and increasing in effect through 20 hours post-stimulation. Testing a range of EIPA and J/B 

concentrations for their impact on mTORC1 activation in this interval revealed a strong dose-

response relationship where increasing concentration of inhibitor(s) produced corresponding 

reductions in mTORC1 activation (Figure 24). This trend closely resembled those seen when the 

same range of inhibitor concentrations were tested for their impacts on probe internalization 

(Figure 10) and 12-20 hour growth in stimulated cells (Figure 17).  

 

As expected, mTORC1 signaling is strongly activated in the setting of acute stimulation. Levels 

of phosphorylated rpS6 are elevated in CD4+ and CD8+ T cells within one hour of stimulation 
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with anti-CD3/28 mAbs, increase over two hours, and remain high 4 hours post-stimulation 

(Figure 25a). Addition of EIPA 15 minutes prior to stimulation, however, profoundly impairs 

mTORC1 activation one hour later and by two hours post-stimulation the activation signal in 

EIPA-treated cells is essentially abolished (Figure 25a-b). We noted that inhibition of 

macropinocytosis blocks mTORC1 activation even more profoundly than the low level of 

activation seen in unstimulated, quiescent cells. It’s possible that the marginal mTORC1 

activation seen in unstimulated cells is related to their low-level, constitutive macropinocytosis, 

though this is not a possibility we investigated further.  

 

Consistent with the observed effect of EIPA on mTORC1 activation, partial inhibitors of 

macropinocytosis also profoundly inhibited mTORC1 activation in CD3/28-stimulated CD4+ and 

CD8+ T cells (Figure 26), most as effectively as the selective inhibitor of mTOR Torin 1. At first 

glance this result may seem surprising. After all, inhibition of PI3K, Rac1, and Pak1 produced 

only modest reductions in macropinocytosis and G1 phase growth impairment. However 

mTORC1 is directly regulated by PI3K-Akt signaling, so inhibition by LY294002 is expected 

independently of its influence on macropinocytosis. Off-target inhibitor effects may also 

contribute: LY294002 is thought to bind and modulate the activity of mTORC1 directly.257 It has 

also been shown in HeLa cells that mTORC1 lysosomal translocation is directly regulated by 

Rac1, independently of PI3K.338 Consequently it’s possible that EHT 1864 interferes with 

mTORC1 signaling independently of its influence on macropinocytosis.  

 

Inhibition of macropinocytosis by EIPA or J/B did not inhibit NFκB signaling 20 minutes 

(Figure 28c) or 12-14 hours (Figure 27) post-stimulation. Phosphorylation of NFκB and IκBα 
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was actually significantly enhanced, especially in CD4+ T cells and with J/B treatment. 

Mechanosensitive mechanisms of transcriptional control are well documented in the literature 

and disruption of cytoskeletal dynamics has been shown to enhance NFκB activation in 

mammalian cell types, including myelomonocytic and epithelial cells.339,340 This may explain the 

enhancement seen with EIPA and J/B in these experiments.  

 

Importantly, phosphorylation of ERK in the first two hours post-stimulation was also not 

inhibited by EIPA (Figure 28b). Significant enhancement was seen in some experiments but this 

effect was not reproducible. Signaling by other MAP kinases, such as p38 and JNK, is also 

important in T cell activation, but these were not examined.341 

 

Acute mTORC1 activation, however was blocked by EIPA, as expected (Figure 28a). Together 

with results from flow cytometry experiments, these data suggest that inhibition of 

macropinocytosis by EIPA or J/B blocks mTORC1 activation without inhibiting acute NFκB or 

ERK signaling, or G1 phase NFκB signaling. 

 

To determine if macropinocytosis is required to deliver protein or amino acids to the lysosome in 

order to activate mTORC1, we first showed that DQ Red BSA fluorescence could be abolished 

by alkalinization of the lysosome with NH4Cl (Figure 29). After demonstrating inhibition of 

lysosomal proteases, we then showed that their activity was not required for mTORC1 activation 

(Figure 30).  

We wanted to better understand the requirements for macropinocytosis-mediated mTORC1 

activation, so we sought to identify the components in growth media essential for it. All of the 
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experiments thus far were conducted using RPMI 1640 medium supplemented with FCS. RPMI 

1640 contains an abundance of amino acids, glucose, vitamins, and inorganic salts at 

concentrations that may not accurately reflect the typical in vivo nutrient milieu of cells and 

which may be responsible for macropinocytosis-mediated mTORC1 activation. Compared to 

animal plasma, RPMI 1640 contains an extremely high concentration of glucose (11 mM),  

comparatively low levels of certain electrolytes (calcium, sulfate, and magnesium), and high 

levels of others (phosphate).342 Serum is even more heterogenous: the cell-free fraction of blood 

left after coagulation contains thousands of proteins (including enzymes), lipids (including 

hormones), carbohydrates and undefined components.  

 

We stimulated CD4+ and CD8+ T cells for 12 hours than recultured them for two additional 

hours in custom, serum-free minimal media preparations after extensive washing. These media 

were supplemented with various combinations of (or no) amino acids to test whether 

macropinocytosed amino acids alone or in combination were sufficient to activate mTORC1.   

 

As Figure 31 and Figure 32 show for CD4+ and CD8+ T cells respectively, reculture in minimal 

medium with all 20 amino acids was sufficient to sustain mTORC1 activation in the 12-14 hour 

period post-stimulation, whereas medium containing no amino acids was not. We next tested the 

combination of L, Q, R, and S, all amino acids previously linked to mTORC1 activation in prior 

studies, and found these alone were sufficient to sustain activation in this period. Most 

importantly, pre-treatment with EIPA or J/B blocked activation in every case, demonstrating that 

these mTORC1-activating amino acids were acquired by macropinocytosis. We then asked 

which of these amino acids (L, Q, R, and S) is most important for mTORC1 activation 12-14 
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hours post-stimulation. We tested this by preparing minimal media containing all 20 amino acids 

except L, Q, R, or S, then measuring the impact on mTORC1 activation. As Figure 33 shows, 

loss of either Q (arginine) or L (leucine) caused the greatest impairment in the ability to sustain 

mTORC1 activation. Serine deficiency also significantly impaired mTORC1 activation in 

stimulated CD8+ T cells. This suggests mTORC1 is most sensitive to levels of these amino acids 

in nascently-activated T cells.  

 

Leucine is an essential amino acid and also the most common proteinogenic one. An increasing 

body of evidence attests to an additional role for leucine in regulating protein metabolism.343,344 

mTORC1 is especially sensitive to leucine activation, and the attenuation of activation seen 

when leucine is absented from the serum-free minimal medium is consistent with this (Figure 

33). As reviewed in the introduction to this chapter, Sestrin2 binding of leucine indirectly 

promotes Rheb-GTP-loading, licensing one arm of mTORC1 activation. Importantly, leucine is 

transported into the cell by LAT1, a branched-chain amino acid transporter negligibly expressed 

in naïve T cells but induced and substantially upregulated in response to T cell activation.345,346 

It’s possible that mTORC1 activation in stimulated T cells requires the macropinocytic uptake of 

leucine because low-level LAT1 expression at this time—and therefore LAT1-mediated leucine 

uptake—is insufficient to sustain activation at necessary levels. 

 

Arginine is a conditionally-essential amino acid that also regulates metabolism but in ways that 

are less understood. Deficiency of arginine can selectively alter expression of metabolic genes 

and elevated concentrations have been shown to promote oxidative phosphorylation over 

glycolysis in activated T cells.347 Arginine deficiency also promotes cell cycle arrest in T cells, 
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and its depletion in tumor microenvironments by arginase-expressing myeloid-derived 

suppressor cells (MDSCs) promotes T cell anergy.348 Arginine activates mTORC1 by multiple 

mechanisms: by dedicated cytoplasmic sensors (CASTOR proteins), by inhibition of TSC 

complex translocation to the lysosome, and by the intralysosomal SLC38A9 transporter.302,349,350  

 

Serine is a non-essential amino acid that plays an important role in regulating methyl group 

transfer reactions (such as generation of S-adenosylmethionine) by donating one-carbon units to 

tetrahydrofolate.351 Serine has been shown to activate rapamycin-resistant mTORC1 signaling in 

HCT116 colorectal cancer cells in a manner that depends on the expression of amino acid 

transporter PAT4 (SLC36A4), but it is not typically thought of as a major mTORC1 activator.352 

Some have posited a role for it as a “priming” amino acid that sensitizes mTORC1 to 

“activating” amino acids like leucine.353  

 

Glutamine has a well-appreciated role in activating mTORC1 and is capable of doing so 

independently of the Rag GTPases, by a mechanism requiring phospholipase D.354 It is thought 

to be mostly transported into cells by SLC38-family transporters, which are also upregulated in 

response to T cell activation, however this appears to occur rapidly by relocation of intracellular 

vesicles to the plasma membrane.355 Rapid surface expression of these transporters may explain 

why glutamine acquisition by macropinocytosis is not as critical for mTORC1 activation as it is 

for other amino acids. 

 

Our identification of these amino acids as necessary for sustained mTORC1 activation allowed 

us to develop a model for how macropinocytosis regulates the growth of activated T cells 
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(Figure 34). Activation of mTORC1 is sustained at high levels through the first cell cycle post-

stimulation by constant macropinocytosis-mediated delivery of amino acids to the lysosome, by 

cytoplasmic amino acid sensing, and by TCR and co-stimulatory signals converging on PI3K.  
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CHAPTER VI: 

CONCLUSION 

 

In recent decades it has come to be appreciated that endocytic mechanisms underly diverse, 

specialized functions in eukaryotic cells—and metazoan cells in particular. Macropinocytosis has 

been adapted for various cell-specific functions in animals but prior to this investigation had only 

been shown to facilitate feeding in Ras-transformed tumor cells starved of amino acids.  

 

This thesis reports the discovery that primary murine and human TCR αβ T cells perform 

macropinocytosis constitutively under nutrient-replete conditions and upregulate this behavior 3-

4 fold in response to TCR triggering and co-stimulation. In activated T cells, bulk, non-selective 

uptake of fluid phase contents from the extracellular space provisions free amino acids (and in 

particular the amino acids leucine and arginine) to the lysosomal lumen where they provide a 

necessary signal to activate mTORC1. In this way, macropinocytosis sustains mTORC1  

activation through the G1 phase of the cell cycle, which is required for metabolic reprogramming 

and the rapid growth needed to drive clonal expansion.   

 

Our work suggests that macropinocytosis may well be a more common process in highly 

proliferative eukaryotic cells than is currently appreciated and its role in licensing mTORC1 



 166 

activation by communicating amino acid sufficiency signals may not be limited to nascently-

activated T cells.   

 

Preliminary studies examining macropinocytosis in differentiating thymocytes show that these 

cells macropinocytose at increasing rates as they progress to the intermediate single positive 

(ISP) stage, then dramatically downregulate macropinocytosis at the double-positive (DP) stage 

(unpublished data). After positive selection, the rate of constitutive macropinocytosis increases 

through successive stages of thymocyte development until it reaches the level shown previously 

in peripheral naïve T cells. These same studies suggest that memory T cells also perform 

macropinocytosis but at different rates relative to one another: effector memory T cells (TEM) 

exhibit reduced macropinocytosis compared to central memory T cells (TCM), which 

macropinocytose at about the same level as naïve T cells. Future research will clarify the role of 

macropinocytosis in these cells, which may or may not relate to growth regulation and mTORC1 

signaling. 

 

It’s interesting to speculate on the reasons why TCR-stimulated macropinocytosis is required for 

optimal activation of naïve CD4+ and CD8+ T cells. After all, most of the forms of endocytosis 

previously described are capable of transporting amino acids and a wide variety of amino acid 

transporters are expressed in these cells. Transport through other endocytic pathways does not 

necessarily result in lysosomal delivery of cargoes as macropinocytosis does, or at least not as 

efficiently. Some pathways clearly are competent for this purpose, though: the IL-2Rβ pathway 

has been shown to deliver IL-2 to primary T cell lysosomes, albeit with a required stopover at the 

proteasome beforehand.140 
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A more likely explanation is that while naïve T cells express abundant plasma membrane amino 

acid transporters, their flux capacity is insufficient to meet the exceptionally high demand for 

amino acids during T cell activation. Activation requires and drives dramatic increases in amino 

acid and glucose uptake but while TCR signaling and co-stimulation substantially upregulates 

the glucose transporter GLUT1 and amino acid transporters like LAT1, SNAT-1/2, and ASCT2, 

their expression is secondary to induction of transcription factors like HIF1α and Myc.356–358 

Consequently, the expression of these transporters is delayed. Perhaps macropinocytosis enables 

T cells to more rapidly or efficiently activate mTORC1 than the transcription, translation, and 

membrane-targeting of activation-induced transporters will permit. In support of this, naïve 

human T cells express nearly indetectable levels of LAT1 protein.359  

 

Alternatively, it’s possible that cytoplasmic amino acid pools are sufficient but intralysosomal 

signaling is also required. Lysosomal import of cytoplasmic amino acids may require an adaptor 

that is not abundantly expressed in naïve or nascently-activated T cells, making them reliant on 

macropinocytic amino acid uptake to transduce that signal. This is the function of the adaptor 

LAPTM4b, which recruits LAT1 to the lysosomal compartment and is required for mTORC1 

activation in HeLa cells.360 It would be valuable to assay LAPTM4b expression and co-

localization, if any, with LAT1 in activated T cells.  

 

A last (and not mutually exclusive) possibility is that maximal mTORC1 activation in these cells 

requires not only an intralysosomal amino acid sufficiency signal but also a second signal 

conveyed by cytoplasmic amino acid sensors—Sestrin2 and CASTOR1 for example. In this way, 
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mTORC1 may function like a logical AND gate sensitive to both intracellular and extracellular 

amino acid availability where a concentration gradient exists between lysosomal and cytoplasmic 

amino acid pools. If this were the case, maximal mTORC1 activation would not occur if 

macropinocytosis were inhibited, even if cytoplasmic sufficiency signals were present. Note that 

this is consistent with our experimental results (see Figures 22-26, 30-32).  

 

It’s also interesting to speculate on the reason for constitutive macropinocytosis in peripheral 

naïve T cells. One possibility is that it may serve to “arm” the lysosome with mTORC1-

activating amino acids in the absence of TCR ligation. This may facilitate a more rapid response 

when TCR and co-stimulatory signals are received. Alternatively (or additionally), constitutive 

uptake and lysosomal amino acid delivery in these cells could be required to maintain low-level, 

tonic mTORC1 activation in these cells. 

 

Another question that remains to be addressed is why pharmacological inhibition of 

macropinocytosis produces greater growth impairment than inhibition of mTORC1 with Torin 1 

(Figure 18). This may be explained by a dual use for amino acids acquired by macropinocytosis:  

sustaining mTORC1 activation but also supplying substrates for biosynthesis. Indeed, it would 

have been useful to conduct 13C metabolic flux analysis to trace the likely incorporation of amino 

acids obtained by macropinocytosis into central metabolism. 

 

The role of mTORC1 signaling in regulating the utilization of extracellular nutrients, anabolism, 

and cell survival also appears to depend on environmental context. A study by Palm, et al. (2015) 

demonstrated that, in contrast to cells grown in amino acid-replete conditions, mTORC1 
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activation actually suppresses (and inhibition promotes) lysosomal catabolism of endocytosed 

protein and proliferation of amino acid-starved mouse embryonic fibroblasts (MEFs) in vitro.361 

Similar results were obtained in experiments using hypoxic, pancreatic cancer cells bearing 

oncogenic Ras mutations in vivo.361 These data suggest that anabolic mTORC1 signaling is 

conditional and coupled to extracellular availability of free amino acids, and contrast with the 

findings of our studies conducted under amino acid-replete conditions. 

 

The search for macropinocytosis-specific genes continues, though it is hindered by the 

pleiotropic nature of the actin interactome. While it is likely that most of the proteins that 

cooperate to generate macropinosomes are involved in many other cellular processes, it's 

possible that unique macropinocytosis genes will eventually be identified. It’s also likely that 

additional selective pharmacological inhibitors of macropinocytosis will be developed, and that 

we will gain further insight into the mechanisms of action of the selective inhibitors we have, 

making finer dissection and understanding of macropinocytosis-related signaling pathways 

possible. The discovery that oncogenic Ras-driven tumor cells catabolize extracellular protein 

obtained by macropinocytosis to sustain their growth and survival does raise the consideration of 

inhibiting macropinocytosis as a therapeutic strategy for targeting these tumors. Our findings, 

however, strongly suggest that successful intratumoral targeting would also likely impair 

macropinocytosis in tumor-infiltrating lymphocytes (TILs), which may be needed to sustain their 

growth and generate effector (i.e. anti-tumor) responses. 

 

By the same token, inhibition of macropinocytosis may constitute an effective strategy for 

curtailing aberrant T cell reactivity in vivo in the setting or allergic hypersensitivity or 
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autoimmune diseases. Oral amiloride is generally well-tolerated as a diuretic, suggesting its 

derivative EIPA might exhibit favorable pharmacodynamic and pharmacokinetic properties and 

warrant preclinical study as a therapeutic candidate for this purpose. Other novel, putative 

macropinocytosis inhibitors identified through screens, such as imipramine and vinblastine, may 

also be suitable for this repurposing, though we did not find them to be effective inhibitors of T 

cell macropinocytosis in preliminary studies.362 

 

The central outstanding question to be answered by future investigators of macropinocytosis is 

how pervasive of a phenomenon it is: which cells perform it constitutively or conditionally, and 

how commonly does it occur in vivo? Is macropinocytosis a common behavior of most highly 

proliferative metazoan cells under nutrient-replete conditions? If so, does it function in these 

cells to sustain mTORC1 activation, as it does in stimulated T cells and macrophages, or does it 

serve other purposes? These and related questions we leave to future investigations. 
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APPENDIX

 

 
Figure 35 – Flow cytometry gating strategies. Gating strategies used to determine: a T cell uptake of 
macropinocytosis probes in murine splenocyte cultures; b Phosphorylated rpS6 or phosphorylated  NFκB 
staining of fixed and permeabilized T cells in murine splenocyte cultures; c T cell uptake of 
macropinocytosis probes in human PBMC cultures; d OTII TCR Tg T cell uptake of macropinocytosis 
probes in vivo. 
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