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Abstract 
 

Methane-oxidizing bacteria, or methanotrophs, can use methane as their sole carbon and 

energy source, and have a wide range of applications including: (1) methane removal from the 

atmosphere, (2) pollutant degradation, and (3) valorization of methane.  Such applications are 

strongly dependent on copper and rare earth elements (REEs) due to their central role in 

regulating the metabolism of methanotrophs.  To fully utilize these intriguing microbes for 

various applications, the genetics and biochemistry of metal uptake systems in methanotrophs 

must thus be identified and characterized.   

To address this general goal, this work first sought to characterize the evolution of 

methanotrophs to glean insights into potential uptake systems of copper and REEs, and to 

develop strategies to optimize their production for industrial and medical applications.  

Bioinformatic analyses suggested that methylotrophs with preexisting copper uptake system(s) 

may have evolved into methanotrophs with the lateral gene transfer of methane monooxygenase, 

the critical enzyme that oxidizes methane to methanol in methanotrophs.  In addition, lateral 

gene transfer events of methanol dehydrogenase (MeDH) with a REE active site (Xox-MeDH) 

were more prevalent than those of MeDH with Ca2+.  This may be attributable to the higher 

catalytic efficiency of the former MeDH, which consequently increased the fitness of 

methanotrophs with multiple copies.   

Second, competition between methanotrophs for copper was investigated to identify 

“cheating” behavior amongst methanotrophs and determine how the collective activity of 

methanotrophs is affected.  Some methanotrophs produce methanobactin (MB), a chalkophore 



 

 xii 

that can strongly bind and deliver copper.  It was found that methanotrophs Methylomicrobium 

album BG8 and Methylocystis sp. strain Rockwell, both non-MB producers, can take up MB, 

while Methylococcus capsulatus Bath cannot.  In addition, Mmb. album BG8 was found to 

produce a novel chalkophore yet to be characterized.  Moreover, Mmb. album BG8 and 

Methylocystis sp. strain Rockwell could also take up methylmercury-MB (MeHg-MB) complex 

and subsequently demethylate MeHg into the less toxic inorganic mercury.  The results of this 

study provide insight into copper competition between methanotrophs and potential applications 

exploiting such interaction, such as MeHg remediation. 

Finally, the mechanism of methanotrophic-mediated MeHg demethylation was 

investigated.  It has been found that MB serves as a delivery mechanism for MeHg into the cell 

of methanotrophs, where Xox-MeDH contributes to demethylating MeHg.  The genes encoding 

for organoarsenical lyase (ArsI), responsible for cleaving the carbon-arsenic bond, and 

lanmodulin (LanM), a periplasmic REE-binding protein, were each knocked out in wildtype 

Methylosinus trichosporium OB3b.  Deletion of arsI did not affect MeHg degradation in the 

Msn. trichosporium OB3b DarsI mutant.  However, the DlanM mutant was unable to degrade 

MeHg under all conditions tested, suggesting lanM to be critical for MeHg degradation.  In 

addition, a spheroplast prepared from Msn. trichosporium OB3b DmbnT mutant exhibited 

decreased MeHg degradation, whereas greater MeHg degradation was observed in the extract 

containing the periplasm and outer membrane debris.  These results suggest that MeHg 

degradation occurs in the periplasm, where both Xox-MeDH and LanM reside. 

The results of this study are anticipated to contribute to our ability to utilize 

methanotrophy for a wide range of applications. 
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Chapter 1 Introduction 
 
1.1. Ecological significance and phylogeny of methanotrophs 

Methanotrophs can use methane as their sole source of carbon and electron and are 

ubiquitous in both natural and engineered environments.  Methanotrophy can be carried out 

using a wide variety of terminal electron acceptors, including dioxygen, nitrate, nitrite, sulfate, as 

well as oxidized metals, and by both bacteria and archaea (Timmers et al., 2017).  This study, 

however, focuses on aerobic methane-oxidizing bacteria and the term methanotroph(y) as used 

here will pertain to only this group. 

Kaserer (1905) and Söhngen (1906) were the first of many researchers to study 

methanotrophs.  Methylomonas methanica (formerly Bacillus methanicus), Pseudomonas 

methanitrificans, Methanomonas methanooxidans, and Methylococcus capsulatus were the first 

methanotrophs to be isolated (Söhngen, 1906; Davis et al., 1964; Brown et al., 1964; Foster & 

Davis, 1966).  Whittenbury et al. (1970b) significantly expanded this list by isolating more than 

100 methanotrophs and classifying them based on their morphology, membrane structure, carbon 

assimilation pathway, and type of resting stage, amongst other characteristics (Whittenbury et al., 

1970a).   

Methanotrophs have been found in many different environments, including but not 

limited to landfill soils, freshwater and marine sediments, forest soils, paddy fields, peat bogs, 

and hot springs (Wise et al., 1999; Lidstrom, 1988; Dianou & Adachi, 1999; Dedysh et al., 1998; 

Tsubota et al., 2005).  Despite found in diverse habitats, methanotrophs have to date only been 

found in the following phyla: Proteobacteria, Verrucomicrobia, and candidate phylum NC10.   
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The majority of identified methanotrophs belong to the Proteobacteria phylum, consisting 

of Gamma- and Alphaproteobacteria methanotrophs (Table 1.1).  Gammaproteobacteria 

methanotrophs consist of the families Methylococcaceae, Methylothermaceae, and 

Crenotrichaceae, each with sixteen, three, and two genera, respectively, at the time this thesis 

was submitted.  Alkaliphilic and/or halophilic methanotrophs belonging to the 

Gammaproteobacteria class that can tolerate pH values up to 11 have been found in soda lakes 

(Khmelenina et al., 1997; Sorokin et al., 2000; Kaluzhnaya et al., 2001).  Some 

Gammaproteobacteria methanotrophs are psychrophilic, especially Methylosphaera hansonii, 

which was isolated from Antarctic meromictic lakes and can grow at temperatures as low as 0 °C 

(Bowman et al., 1997).  Contrariwise, thermophilic methanotrophs of genera Methylococcus, 

Methylocaldum, Methylothermus, and Methylomarinovum with optima varying from 37 – 60 °C 

have been isolated from silage and thermal springs (Foster & Davis, 1966; Eshinimaev et al., 

2004; Tsubota et al., 2005; Hirayama et al., 2014).  Members of the Crenotrichaceae family are 

filamentous methanotrophs that may have a significant role in methane consumption in stratified 

aquatic environments, have yet to be cultured in the lab (Stoecker et al., 2006; Vigliotta et al., 

2007; Oswald et al., 2017).  Alphaproteobacteria methanotrophs include two families, 

Methylocystaceae and Beijerinckiaceae, composed of two and four genera, respectively.  Some 

moderate acidophiles that belong to class Alphaproteobacteria with optimum growth pH around 

5.5 have also been isolated (Dedysh et al., 2002; Dunfield et al., 2003).   

Methanotrophic members of the Verrucomicrobia phylum are characterized by their 

extremely low growth pH optima, varying between 1 – 3.5, and consist of meso- and 

thermophiles (Dunfield et al., 2007; Islam et al., 2008; Pol et al., 2007; van Teeseling et al., 

2014).  Whereas most Proteobacteria methanotrophs use methane as both carbon and electron 
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source, Verrucomicrobia methanotrophs lead an autotrophic lifestyle by utilizing carbon dioxide 

as the carbon source via the Calvin-Benson-Bassham cycle (Khadem et al., 2011; van Teeseling 

et al., 2014).  Verrucomicrobia methanotrophs possess polyhedral structures that resemble 

carboxysomes found in cyanobacteria and other chemoautotrophs (Islam et al., 2008; Op den 

Camp et al., 2009; Khadem et al., 2011).  Carboxysomes harbor ribulose 1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO), a critical enzyme for carbon fixation, and concentrate carbon 

dioxide for efficient carbon fixation.  However, RuBisCO is not densely packed in the 

carboxysome-like structures in Verrucomicrobia methanotrophs and these methanotrophs are 

able to grow in high concentrations of carbon dioxide, which are typical in volcanic regions from 

which these methanotrophs were isolated (Khadem et al., 2011).  In addition, most 

methanotrophs of the Proteobacteria and some of the Verrucomicrobia phyla produce intricate 

intracytoplasmic membrane (ICM) structures that host the particulate methane monooxygenase 

(pMMO) critical for the initial oxidation of methane (Kalyuzhnaya et al., 2019).  Typically, 

Gammaproteobacteria methanotrophs contain stacks or bundles of ICM that are coordinated 

orthogonally with respect to the cytoplasmic membrane, whereas in Alphaproteobacteria 

methanotrophs these ICMs are lined around the periphery of the cell.  An exception to these two 

ICM configurations is that found in Methylocapsa acidiphila B2 of the Beijerinckiaceae family, 

which is stacked to only one side of the cell (Figure 1.1; Dedysh et al., 2002).  The ICM found in 

some species of Verrucomicrobia methanotrophs resembles that in Gammaproteobacteria 

methanotrophs (van Teeseling et al., 2014).  



 

 4 

 
Figure 1.1. Freeze-fractured cells of methanotrophs (A) Methylobacter luteus (formerly M. 

bovis), (B) Methylocapsa acidiphila B2, and (C) Methylosinus trichosporium 19 (Dedysh et al., 
2002).  ICM, intracytoplasmic membrane; PHB, poly-β-hydroxybutyrate.  Scale bar is 0.5 μm. 

 

An anaerobic methane oxidizing bacterium “Candidatus Methylomirabilis oxyfera” of 

the candidate phylum NC10 has also been isolated.  Anaerobic methane oxidation was generally 

believed to be solely carried out by consortia of archaea and bacteria, where archaea perform 

reverse methanogenesis and the resulting electrons are transferred to bacteria that carry out 

sulfate or nitrate reduction before the discovery of “Ca. Methylomirabilis oxyfera” (Caldwell et 

al., 2008).  Ettwig et al. (2008) detected methanotrophic activity in anaerobic enrichment 

cultures apparently coupled to nitrite reduction, suggesting the presence of a hitherto unknown 

strategy of methane oxidation.  Indeed, a significant portion (30 – 80%) of the enrichment 

cultures consisted of bacteria of the candidate phylum NC10 (Wu et al., 2011).  The authors 

identified and sequenced “Ca. Methylomirabilis oxyfera” as a novel anaerobic methane 

oxidizing bacterium (Ettwig et al., 2010).  Interestingly, despite growing under anaerobic 

conditions where nitrite serves as the electron acceptor, “Ca. Methylomirabilis oxyfera”  actually 

performs aerobic methane oxidation via dismutation of nitric oxide into O2 and N2 (Ettwig et al., 

(A) (C) (B) 

ICM 

PHB 
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2010), and the generated dioxygen is then used to drive methane oxidation.  Thus, “Ca. 

Methylomirabilis oxyfera” can be considered an aerobic methanotroph despite not being able to 

tolerate high levels of dioxygen (Ettwig et al., 2009; Wu et al., 2011).  It is important to note, 

however, that “Ca. Methylomirabilis oxyfera” has yet to be purified and its putative nitric oxide 

dismutase still has not been characterized (Ettwig et al., 2010; Versantvoort et al., 2018).  “Ca. 

Methylomirabilis oxyfera” also lacks ICMs that are characteristic to methanotrophs utilizing 

pMMO, most likely due to its low growth rate and high cost of producing ICMs (Wu et al., 

2012).  “Ca. Methylomirabilis oxyfera” can also be distinguished by its unique polygon shape 

and content of a novel fatty acid (Figure 1.2; Wu et al., 2012; Kool et al., 2012).  “Ca. 

Methylomirabilis limnetica” and “Ca. Methylomirabilis lanthanidiphila”, other species of this 

candidate division, have also been sequenced recently (Graf et al., 2018; Versantvoort et al., 

2018). 

 
Figure 1.2. Transmission electron micrographs of chemically fixed and resin-embedded “Ca. 
Methylomirabilis oxyfera” cells (Wu et al., 2011).  (A) Overview showing the star-like cell 

shape caused by dehydration and cell wall collapse.  Longitudinal (B and C) and transverse (D) 
sections show the Gram-negative cell envelope and the presence of a putative S-layer on the top 

of the outer membrane.  om, outer membrane; p, periplasm; cm, cytoplasmic membrane; c, 
cytoplasm; s, putative S-layer. Scale bars, 200 nm. 
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The origin of methanotrophy has been a subject of some debate, but it is believed that 

aerobic methanotrophs derived from methylotrophs (i.e., methanol-utilizing microbes), since a 

critical constraint is the effective handling of the initial product of methane oxidation, i.e. 

methanol (Tamas et al., 2014; Osborne & Haritos, 2018).  Methanol oxidation is critical to 

prevent methanol from accumulating to toxic levels, to allow carbon assimilation from 

downstream products (formaldehyde) and to regenerate reducing equivalents consumed in 

methane oxidation (Im et al., 2011; Farhan Ul Haque et al., 2017; Semrau et al., 2018).  This 

conclusion was supported by phylogenetic study of genes encoding methylotrophy and 

methanotrophy in the Alphaproteobacteria, which indicated that methanotrophic groups are 

nested within a much larger lineage of bacteria sharing vertical inheritance of methylotrophy 

genes (Tamas et al., 2014).  Subsequent bioinformatic interrogation demonstrated that genes 

encoding pMMO (pmoCAB) in most proteobacterial methanotrophs have significantly different 

compositional biases than their host genomes, suggesting that these genes were obtained via 

recent lateral gene transfer (LGT) events (Khadka et al., 2018).  That is, methane oxidation may 

have occurred as the result of LGT of ammonia monooxygenase from nitrifying bacteria to 

methylotrophs (Khadka et al., 2018).  Indeed, it has been reported that when genes encoding 

ammonia monooxygenase are inserted in the methylotroph Methylorubrum extorquens AM1 

(formerly Methylobacterium extorquens AM1), the microbe can subsequently grow on methane 

(Crossman et al., 1997).  It has also been concluded that the soluble MMO (sMMO) was also the 

result of a LGT in at least some Alphaproteobacteria methanotrophs (Tamas et al., 2014).  Given 

that methanotrophy possibly arose via transfer of MMO to methylotrophs and copper has a 

crucial role in regulating pMMO vs sMMO, it may be of interest to bioinformatically examine 

genes involved in methanol oxidation as well as those involved in copper uptake.
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Table 1.1. Classification of genera of aerobic methanotrophs. (modified from Khmelenina et al., 2018a) 

Genus Speciesa C1 assimilation ICM typeb N2 
fixation Trophic niche Reference 

Class Gammaproteobacteria  

Family Methylococcaceae  

Methylobacter 

Mbt. luteus, Mbt. marinus,  
Mbt. psychrophilus,  
Mbt. tundripaludum,  
Mbt. whittenburyi 

RuMPc Stacked No Some psychrophilic Whittenbury et al., 1970a 

Methylocaldum Mcd. marinum, Mcd. szegediense RuMPc/CBBe/Serine Stacked No Thermophilic Bodrossy et al., 1997 

Methylococcus Mcc. capsulatus RuMPc/CBBe/Serine Stacked Yes Thermophilic Foster & Davis, 1966 

Methylogaea Mga. oryzae RuMPc Stacked nifH+f Mesophilic Geymonat et al., 2011 

Methyloglobulus Mgb. morosus RuMPc Stacked Yes Psychrotolerant Deutzmann et al., 2014 

Methylomagnum Mmg. ishizawai RuMPc/CBBe Stacked No Mesophilic Khalifa et al., 2015 

Methylomarinum Mmr. vadi RuMPc Stacked No Halotolerant Hirayama et al., 2013 

Methylomicrobium Mmc. agile, Mmc. album, 
Mmc. lacus 

RuMPc Stacked No Mesophilic Bowman et al., 1995 

Methylomonas 

Mmn. aurantiaca, 
Mmn. fodinarum, 
Mmn. koyamae, Mmn. methanica, 
Mmn. paludis, “Mmn. rubra”, 
Mmn. scandinavica 

RuMPc Stacked Varies Some psychrophilic Davis et al., 1964 

Methyloparacoccus Mpc. murrellii RuMPc Stacked No Mesophilic Hoefman et al., 2014 

Methyloprofundus Mpf. sediment RuMPc Stacked Yes Psychrotolerant Tavormina et al., 2015 

Methylosarcina Msc. fibrate RuMPc Stacked No Mesophilic Wise et al., 2001 

Methylosoma Msm. difficile    Unknown Stacked Yes Mesophilic Rahalkar et al., 2007 

Methylosphaera Msr. hansonii RuMPc NDd Yes Psychrophilic Bowman et al., 1997 

Methyloterricola Mtr. oryzae RuMPc/CBBe Stacked nifH+f Mesophilic Frindte et al., 2017 

Methylotuvimicrobium 
Mtv. alcaliphilum, Mtv. buryatense,  
Mtv. japanense, Mtv. pelagicum, 
Mtv. kenyense 

RuMP Stacked Varies Halotolerant/Alkaliphilic Orata et al., 2018 

Methylovulum Mvl. miyakonense RuMPc Stacked nifH+f Psychrotolerant Iguchi et al., 2011 
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Table 1.1.  Continued 

Genus Speciesa C1 assimilation ICM typeb N2 
fixation Trophic niche Reference 

Family Methylothermaceae  

Methylohalobius Mhl. crimeensis RuMPc Stacked No Halophilic Heyer et al., 2005 

Methylomarinovum Mmv. caldicuralii RuMPc Stacked No Thermophilic/Halotolerant Hirayama et al., 2014 

Methylothermus Mtm. subterraneus RuMPc Stacked No Thermophilic Tsubota et al., 2005 

Family Crenotrichaceae  

Clonotrix Clo. fusca - Stacked - Mesophilic Vigliotta et al., 2007 

Crenothrix Cre. polyspora RuMPc Stacked - Mesophilic Stoecker et al., 2006 

Class Alphaproteobacteria  

Family Methylocystaceae  

Methylocystis 
Mct. echinoides, Mct. heyeri, 
Mct. hirsuta, Mct. parvus, 
Mct. rosea, Mct. bryophila 

Serine Periphery  Yes Some acidophilic Whittenbury et al., 1970a 

Methylosinus 
Msn. sporium, 
Msn. trichosporium Serine Periphery Yes Mesophilic Whittenbury et al., 1970a 

Family Beijerinckiaceae  

Methylocella Mcl. palustris, Mcl. silvestris, 
Mcl. tundrae 

Serine None Yes Acidophilic Dedysh et al., 2000 

Methylocapsa Mcs. acidiphila, Mcs. aurea Serine 
Stacked on 

one side 
only 

Yes Acidophilic Dedysh et al., 2002 

Methyloferula Mfr. stellata CBBe/Serine None Yes Acidophilic Vorobev et al., 2011 

Methyloceanibacter Mon. caenitepidi Serine None Yes Mesophilic Takeuchi et al., 2014 
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Table 1.1.  Continued 

Genus Speciesa C1 assimilation ICM typeb N2 
fixation Trophic niche Reference 

Phylum Verrucomicrobia  

Candidate Family Methylacidiphilaceae  

“Candidatus 
Methylacidimicrobium” 

“Ca. Methylacidimicrobium 
cyclopophantes”,  
“Ca. Methylacidimicrobium 
fagopyrum”,  
“Ca. Methylacidimicrobium 
tartarophylax” 

CBBe 
Stacked/ 

None - Acidophilic van Teeseling et al., 2014 

“Candidatus 
Methylacidiphilum” 

“Ca. Methyloacidiphilum 
fumariolicum”, 
“Ca. Methyloacidiphilum 
Infernorum”, 
“Ca. Methyloacidiphilum 
kamchatkense” 

CBBe None Yes Acidophilic/Thermophilic Dunfield et al., 2007a 

Candidate Phylum NC10  

“Candidatus 
Methylomirabilis” 

“Ca. Methylomirabilis oxyfera”, 
“Ca. Methylomirabilis 
lanthanidiphila”, 
“Ca. Methylomirabilis limnetica” 

CBBe None - Anaerobic Ettwig et al., 2010 

a Validated species 
b ICM: Intracellular membrane 
c RuMP: ribulose monophosphate 
d ND: not determined 
e CBB: Calvin-Benson-Bassham 
f nifH+: nifH detected but no nitrogen fixation activity observed 
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1.2. Metabolism in methanotrophs 

1.2.1. Methane oxidation 

1.2.1.1. Methane monooxygenase 

Methane oxidation is initiated by alternative forms of methane monooxygenase (MMO) – 

particulate MMO (pMMO) or soluble MMO (sMMO) (Figure 1.3).  This initial step requires 

oxygen and two electrons and produces water.  The vast majority of methanotrophs possess 

pMMO, some are able to express both pMMO and sMMO, and a small fraction only express 

sMMO (Table 1.2; Semrau et al., 2018).  Though these two enzymes have identical function, 

they are structurally, biochemically, and evolutionarily very distinct. 

 

 
 

Figure 1.3. General pathway of methane oxidation by aerobic methanotrophs (Semrau et al., 
2018).  Enzymes are noted in red.  pMMO, particulate methane monooxygenase; sMMO, soluble 

methane monooxygenase; Xox-MeDH, Xox-methanol dehydrogenase; Mxa-MeDH, Mxa-
methanol dehydrogenase; Fae, formaldehyde-activating enzyme; H4MPT, 

tetrahydromethanopterin; MtdB, NADP-dependent methylene-H4MPT dehydrogenase; Mch, 
methenyl-H4MPT cyclohydrolase; Fhc, formyltransferase-hydrolase complex; H4F, 

tetrahydrofolate; MtdA, NADP-dependent methylene-H4F–methylene-H4F dehydrogenase; 
FchA, methenyl H4F-cyclohydrolase; FtfL, formate tetrahydrofolate ligase; FaDH, formate 

dehydrogenase; CBB, Calvin-Benson-Bassham; RuMP, ribulose monophosphate. 
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The pMMO is located in the ICM and is part of the copper-containing membrane 

monooxygenase (CuMMO) family along with ammonia monooxygenase and some short-chain 

alkane and alkene monooxygenases (Tavormina et al., 2011; Khadka et al., 2018).  Members of 

the CuMMO family follow the canonical gene order of C-A-B in bacteria, though a sequence-

divergent pMMO (pXMO) has also been found in several methanotrophs with the operon 

organized as pxmABC (Table 1.2; Tavormina et al., 2011).  The importance of pXMO, however, 

is unclear.  Several studies have examined pxmABC expression in situ and in pure cultures 

(Tavormina et al., 2011; Saidi-Mehrabad et al., 2013; Kits et al., 2015b, 2015a), and its 

expression is quite low, suggesting it may have limited importance.  It should be stressed, 

however, that little work has been done to elucidate the function of pXMO, and so its relevance 

is still open to debate. 

Multiple operons encoding for pMMO polypeptides (pmo) are often found in many 

methanotrophs as highly similar sequence copies, indicative of gene duplication, (Tavormina et 

al., 2011; Khmelenina et al., 2018a).  Some of these operons appear to encode for pMMOs with 

different properties (Stolyar et al., 1999; Dunfield et al., 2002).  Stoylar et al. (1999) found two 

complete pmoCAB operons in Mcc. capsulatus Bath with near identical intergenic and coding 

sequences but divergent flanking sequences.  Divergent sequences around the operons led the 

authors to speculate that the two copies could be differentially expressed and thus relevant under 

varying growth conditions such as stress commonly encountered in the organism’s natural 

habitat.  They later found that the two operons are controlled under similar σ70 promoters but 

“copy 2” is expressed predominantly under normal copper concentrations (~5 μM) and 

expression of “copy 1” is comparable to “copy 2” at higher concentrations of copper (~50 μM), 

indicating redundant function yet possibly a different role in the environment (Stolyar et al., 
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2001).  In Methylocystis sp. SC2, there are three complete pmoCAB operons – two operons that 

are different only by a single silent nucleotide (pmoCAB1), and another that has lower identity to 

the other two at both the nucleotide (67.4–70.9%) and derived amino acid (59.3–65.6%) 

sequence levels (pmoCAB2) (Dunfield et al., 2002; Baani & Liesack, 2008).  Baani & Liesack 

(2008) found that both copies of pmoCAB1 are expressed and pMMO1 contributes to methane 

oxidation at high methane concentrations (> 600 ppmv), whereas pmoCAB2 is constitutively 

expressed and is critical for methane oxidation at concentrations less than 600 ppmv.  pMMO2 

has a significantly lower apparent half-saturation constant as compared to pMMO1 (Km(app) = 

0.12 μM vs 9.30 μM), and is even capable of oxidizing atmospheric methane (1.75 ppmv).  

These results indicate that some methanotrophs can survive extended periods of starvation by 

utilizing pMMO2 and can contribute to methane consumption at sites with limited and/or 

fluctuating methane concentrations, e.g. upland soils, natural wetlands, rice paddies.  It is also 

important to note that pMMO2 is found to date only in Alphaproteobacteria methanotrophs, 

possibly providing them with an advantage over other methanotrophs in these specific 

environments (Baani & Liesack, 2008; Tveit et al., 2019).  In the Verrucomicrobia methanotroph 

“Ca. Methylacidiphilum kamchatkense” Kam1, there are three complete copies of pmoCAB that 

have varying degrees of similarity at the nucleotide (56.7–70.3%) and derived amino acid (41.2–

75.7%) sequence levels (Erikstad & Birkeland, 2015).  pmoA expression analysis of the three 

complete pmoCAB operons showed that one copy was the predominant transcript (Erikstad et al., 

2012).  Suboptimal growth conditions did not affect gene expression pattern in this 

methanotroph, whereas changing growth substrate from methane to methanol decreased the 

expression of all pmoA copies examined.  In addition, transcriptomic analysis of “Ca. 

Methylacidiphilum fumariolicum” SolV grown under varying conditions indicated differential 
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expression of two of the three pmoCAB operons (Khadem et al., 2012a).  That is, it was found 

that under “normal” growth conditions, i.e., excess ammonium and oxygen, copy 2 was 

predominantly expressed, whereas under oxygen limitation (<0.03% dissolved oxygen), copy 1 

was predominant and expression of copy 2 decreased 40-fold.   

pMMO is a heterotrimer (a3b3g3) composed of predominantly transmembrane subunits 

PmoA (24 kDa) and PmoC (22 kDa), and a transmembrane subunit with a large periplasmic 

domain, PmoB (42 kDa) (Figure 1.4; Ross & Rosenzweig, 2017).  Despite its clear importance in 

methanotrophy, much is still unknown about pMMO, e.g., the metal cofactors and active sites 

associated with it.  That is, it has been long known that copper is required for the expression and 

activity of pMMO (Stanley et al., 1983).  However, various models have been proposed for the 

composition of the active site of pMMO with one, two or three copper atoms as well as a di-iron 

moiety postulated to be involved. 

 
Figure 1.4. Overall a3b3g3 structure of pMMO in Methylocystis sp. strain M with PmoB, PmoA, 

and PmoC subunits in gray, teal, and wheat, respectively (Sirajuddin & Rosenzweig, 2015) (PDB 
ID 3RGB).  Copper and zinc ions are shown as cyan and gray spheres.   
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Lieberman et al. (2003) initially proposed the presence of a mononuclear copper site and 

copper-containing cluster in the pMMO of Mcc. capsulatus Bath, then incorrectly calculated to 

be a dimer of a2b2g2 (Lieberman & Rosenzweig, 2005b), based on X-ray absorption and electron 

paramagnetic resonance (EPR) spectroscopic analyses.  They later identified a mononuclear 

copper site and di-nuclear copper cluster in the PmoB subunit of Mcc. capsulatus Bath via X-ray 

crystallography (Lieberman & Rosenzweig, 2005a).  The mononuclear copper site was proposed 

to be coordinated with two histidine ligands, His48 and His72 (Lieberman & Rosenzweig, 2005a; 

Wang et al., 2017).  However, His48 is not conserved in other methanotrophs and copper was not 

observed at this site in the crystal structures of PmoB from Methylosinus trichosporium OB3b, 

Methylocystis sp. strain M, or Methylocystis sp. strain Rockwell (Lieberman & Rosenzweig, 

2005a; Wang et al., 2017).  In addition, replacing His48 with asparagine, the residue observed in 

Msn. trichosporium OB3b at this position, in a soluble recombinant PmoB from Mcc. capsulatus 

Bath did not affect its specific activity (Balasubramanian et al., 2010).  Therefore, it was 

concluded that this mononuclear copper site did not serve as the catalytic site for methane 

oxidation.  Lieberman & Rosenzweig (2005a) also proposed a second copper-containing site – a 

di-nuclear copper site.  Here, one copper ion is coordinated by the sidechain δ nitrogen and the 

N-terminal amino nitrogen of His33 and the other copper by His137 and His139.  When His137 and 

His139 were replaced with alanine, the methane oxidation activity was abolished, suggesting that 

these residues were critical for pMMO activity (Balasubramanian et al., 2010).   

Though these residues appeared to be necessary for pMMO activity and are highly 

conserved in pMMO and ammonia monooxygenase (Lieberman & Rosenzweig, 2005a; 

Balasubramanian et al., 2010), they are absent in Verrucomicrobia pMMOs (Liew et al., 2014).  

In addition, the well-known suicide inhibitor, acetylene, binds to PmoA and not PmoB (Prior & 
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Dalton, 1985; Semrau et al., 2018).  These results collectively suggest that methane oxidation 

may not occur at this di-nuclear copper site. 

The di-iron site was originally observed as occupied with a single zinc ion coordinated by 

Asp156, His160, and His173 from PmoC and Glu195 from PmoA, all of which are highly conserved 

(Lieberman & Rosenzweig, 2005a; Wang et al., 2017).  However, as the authors pointed out, this 

zinc occupancy was likely due to an artefact introduced by the zinc in the crystallization buffer 

(Lieberman & Rosenzweig, 2005a; Balasubramanian et al., 2010).  A later study utilizing 

Mössbauer spectroscopy to characterize the iron components of pMMO from Mcc. capsulatus 

Bath indicated that there were components within pMMO that had identical spectral 

characteristics as the di-iron center in sMMO (Martinho et al., 2007).  Moreover, when pMMO 

was prepared with iron, it showed the highest specific activity, much higher than those of other 

preparations (160 nmol∙min-1∙mg pMMO protein-1 vs 0.469 – 130 nmol∙min-1∙mg pMMO protein-

1), suggestive but not conclusive that it is a di-iron site responsible for methane oxidation in 

pMMO (Zahn & DiSpirito, 1996; Takeguchi et al., 1998; Basu et al., 2003; Choi et al., 2003; 

Lieberman et al., 2003; Martinho et al., 2007).  In addition, the 1:1 di-iron center per abg trimer 

ratio and the close agreement between site occupancy and specific activity of purified pMMO 

further supported this model of di-iron center.   

The third and last model involves a putative tri-copper Cu(II)Cu(II)(μ-O)2Cu(III) 

complex site located in the hydrophilic cavity composed of His38, Met42, Asp47, Asp49, and Glu100 

from PmoA and Glu154 from PmoC, residues which are highly conserved (Chan et al., 2004, 

2007; Wang et al., 2017).  The authors proposing this model demonstrated that tri-copper 

complexes can oxidize methane to methanol under biologically relevant conditions using 

peptides derived from Mcc. capsulatus Bath pMMO (Chan et al., 2013). 
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Recently, the research group postulating the di-nuclear copper site model revisited their 

solved structures of PmoB from Mcc. capsulatus Bath and Methylocystis sp. strain M to perform 

quantum refinement via quantum mechanical calculations (Cao et al., 2018).  Their results 

indicate that this site can be reasonably modeled only as a mononuclear copper site.  In addition, 

they now argue that the “zinc” site in PmoC contains copper and is in fact the active site where 

substrate binding and oxidation occur (Ross et al., 2019).  Collectively, given so many different 

models, especially corrections to previous assessments, indicates that there is still less known 

than unknown regarding pMMO structure. 

Much like the active site of pMMO, the electron donor required for pMMO to break a 

stable C-H bond in methane (bond dissociation energy of 104 kcal/mol) is still unclear due to 

difficulties in purifying the enzyme and measuring its activity in vitro (Ross & Rosenzweig, 

2017; Lieven et al., 2018).  Three modes of electron transfer have been previously presented 

(Figure 1.5 and Figure 1.6): 

(1) Redox-arm mode: the electrons collected from methanol oxidation to formaldehyde by 

methanol dehydrogenase (MeDH) is linked to a redox-arm, where electrons are 

transferred to either AA3- or CBD-type terminal oxidase (Cyt AA3 or Cyt CBD) via 

cytochrome c555 and cytochrome c553, contributing to establishing a proton motive 

force and synthesis of ATP (Anthony, 1992; Dawson & Jones, 1981; de la Torre et al., 

2015; DiSpirito et al., 2004a; Larsen & Karlsen, 2016; Lieven et al., 2018).  The 

electrons required for methane oxidation is provided through ubiquinone (Q8H2) and the 

Q8 pool is replenished by reactions downstream of MeDH. 

(2) Direct coupling mode: MeDH directly passes electrons to the pMMO via cytochrome 

c555 (Leak & Dalton, 1983; Culpepper & Rosenzweig, 2014).  This mode is supported 
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by a study where pMMO of Mcc. capsulatus Bath was found as a complex with MeDH 

via cryoelectron microscopy (Myronova et al., 2006). 

(3) Uphill electron transfer: the electrons from cytochrome c553 can be directly transferred 

to the Q8 pool via ubiquinol-cytochrome-c reductase (CYOR-q8) instead of being 

expended for ATP synthesis.  This mode can explain the reduced efficiency of methane 

oxidation observed when only considering the direct coupling mode (Leak & Dalton, 

1986b). 

 

 
Figure 1.5. Respiratory chain in Methylococcus capsulatus Bath (Lieven et al., 2018).  Blue 

dotted arrows indicate possible flow of electrons between respiratory components.   

 

 
Figure 1.6. The three possible modes of electron transfer to pMMO (Lieven et al., 2018). 
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There have been several investigations to clarify the mode of electron transfer to pMMO 

using genome-scale metabolic modeling of various methanotrophs (de la Torre et al., 2015; 

Lieven et al., 2018; Bordel et al., 2019a; Bordel et al., 2019b; Naizabekov & Lee, 2020).  In 

Gammaproteobacteria methanotrophs, the direct coupling mode with reduced efficiency and 

uphill electron transfer mode best explained stoichiometric flux balance models of 

Methylotuvimicrobium buryatense 5GB1 and Methylotuvimicrobium alcaliphilum 20Z (de la 

Torre et al., 2015; Akberdin et al., 2018), both formerly classified as genus Methylomicrobium, 

and also of Mcc. capsulatus Bath (Lieven et al., 2018).  In Alphaproteobacteria methanotrophs 

Methylocystis parvus OBBP (Bordel et al., 2019a), Methylocystis hirsuta CSC1, Methylocystis 

sp. SB2, Methylocystis sp. SC2 (Bordel et al., 2019b), and Msn. trichosporium OB3b 

(Naizabekov & Lee, 2020), the redox-arm mode seem to best fit the respective metabolic 

models.   

Aside from the computational investigations above, it has been experimentally shown 

that pMMO forms a stable complex with MeDH in a Gammaproteobacteria methanotroph Mcc. 

capsulatus Bath, providing evidence for the direct coupling mode (Myronova et al., 2006).  This 

pMMO-MeDH complex may provide an efficient way of methane oxidation in methanotrophs 

growing in copper replete conditions, where the ICM generation and pMMO expression/activity 

are increased. 
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Table 1.2. Presence of select genes in the genomes of methanotrophs.  Number of operons is indicated in parenthesis. 

Strain Family pmoCAB pxmABC mmo 
XYBZDC mxaFJGI xoxFJ mbnABCM MCA2590 + 

mopE/corAB copCD sgaA fdhBA fdsBA lanM 

Class Gammaproteobacteria              

Methylobacter sp. BBA5.1a Methylococcaceae Yes (1) Yes (1) No Yes (1) Yes (2) No No Yes (1) Yes (1) Yes (1) Yes (1) No 

Mbt. marinus A45a Methylococcaceae Yes (1) Yes (1) No Yes (1) Yes (2) No No Yes (1) Yes (1) Yes (1) Yes (1) No 

Mbt. tundripaludum SV96a Methylococcaceae Yes (1) Yes (1) No Yes (1) Yes (1) No No Yes (1) Yes (1) No Yes (1) No 

Mbt. whittenburyi ACM 3310a Methylococcaceae Yes (1) Yes (1) No Yes (1) Yes (2) No No Yes (1) Yes (1) Yes (1) Yes (1) No 

Mcd. szegediense O-12a Methylococcaceae Yes (1) No No Yes (1) Yes (2) No No Yes (1) Yes (1) No Yes (1) No 

Mcc. capsulatus Bath Methylococcaceae Yes (2) No Yes (1) Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No 

Mcc. capsulatus Texasa Methylococcaceae Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No 

Mgb. morosus KoM1a Methylococcaceae Yes (1) Yes (2) No Yes (1) No No No Yes (1) Yes (1) No Yes (1) No 

Mmg. ishizawai 175 Methylococcaceae Yes (2) No Yes (1) Yes (1) Yes (1) No Yes (1) Yes (1) No No Yes (1) No 

Mmc. agile ATCC 35068a Methylococcaceae Yes (1) Yes (1) No Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (1) No 

Mmc. album BG8a Methylococcaceae Yes (1) Yes (1) No Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (1) No 

Mmc. lacus LW14  Methylococcaceae Yes (1) No No Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (1) No 

Mtv. alcaliphilum 20Z Methylococcaceae Yes (1) No No Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) Yes (1) No No 

Mtv. buryatense 5Ga Methylococcaceae Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No 

Mmn. methanica MC09 Methylococcaceae Yes (1) No Yes (1) Yes (1) Yes (1) No No Yes (1) Yes (1) No Yes (1) No 

Methylomonas sp. 11ba Methylococcaceae Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No No Yes (1) Yes (1) No Yes (1) No 

Methylomonas sp. LW13a Methylococcaceae Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) No No Yes (1) Yes (1) No Yes (1) No 

Methylomonas sp. MK1a Methylococcaceae Yes (1) Yes (2) Yes (1) Yes (1) Yes (1) No No Yes (1) Yes (1) No Yes (1) No 

Msc. fibrata AML-C10a Methylococcaceae Yes (1) No No Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (1) No 

Mvl. miyakonense HT12a Methylococcaceae Yes (1) No Yes (1) Yes (1) No No Yes (1) Yes (1) Yes (1) No Yes (1) No 

Mhl. crimeensis 10Kia Methylothermaceae Yes (2) No No Yes (1) No No No Yes (1) Yes (1) No Yes (1) No 
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Table 1.2.  Continued. 

Strain Family pmoCAB pxmABC mmo 
XYBZDC mxaFJGI xoxFJ mbnABCM MCA2590 + 

mopE/corAB copCD sgaA fdhBA fdsBA lanM 

Class Alphaproteobacteria              

Mcs. acidiphila B2a Beijerinckiaceae Yes (1) No No Yes (1) Yes (1) No No Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) 

Mcs.aurea KYGa Beijerinckiaceae Yes (1) No No Yes (1) Yes (1) No No Yes (2) Yes (1) Yes (1) Yes (1) Yes (1) 

Mcl. silvestris BL2 Beijerinckiaceae No No Yes (1) Yes (1) Yes (3) No No Yes (1) Yes (1) No Yes (1) Yes (1) 

Mfr. stellata AR4 Beijerinckiaceae No No Yes (1) Yes (1) Yes (2) No No Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) 

Methylocystis sp. LW5a Methylocystaceae Yes (3) No Yes (1) Yes (1) Yes (1) Yes (2) No Yes (1) Yes (1) Yes (1) Yes (1) Yes (1) 

Mct. parvus OBBPa  Methylocystaceae Yes (2) No No Yes (1) Yes (1) Yes (2) No Yes (1) Yes (1) No Yes (1) Yes (1) 

Methylocystis sp. strain 
Rockwella Methylocystaceae Yes (1) No No Yes (1) Yes (2) No No Yes (2) Yes (1) No Yes (1) Yes (1) 

Mct. rosea SV97a Methylocystaceae Yes (2) Yes (1) No Yes (1) Yes (2) Yes (1) No Yes (2) Yes (1) No Yes (1) Yes (1) 

Methylocystis sp. SB2a Methylocystaceae Yes (1) Yes (1) No Yes (1) Yes (1) Yes (1) No Yes (2) Yes (1) No Yes (1) Yes (1) 

Methylocystis sp. SC2 Methylocystaceae Yes (3) No No Yes (1) Yes (2) Yes (1) No Yes (2) Yes (1) No Yes (1) Yes (1) 

Methylosinus sp. LW3a Methylocystaceae Yes (3) No Yes (1) Yes (1) Yes (1) Yes (2) No Yes (2) Yes (1) Yes (1) Yes (1) Yes (1) 

Methylosinus sp. LW4a Methylocystaceae Yes (3) No Yes (1) Yes (1) Yes (1) Yes (1) No Yes (2) Yes (1) No Yes (1) Yes (1) 

Msn. trichosporium OB3ba Methylocystaceae Yes (2) No Yes (1) Yes (1) Yes (2) Yes (1) No Yes (2) Yes (1) No Yes (1) Yes (1) 

Candidate phylum NC10              
"Ca. Methylomirabilis 

oxyfera" - Yes (1) No No Yes (1) Yes (2) No No Yes (1) Yes (1) Yes (1) Yes (1) No 

Phylum Verrucomicrobia              
"Ca. Methylacidimicrobium 

cyclopophantes" 3Ca "Ca. Methylacidiphilaceae" Yes (1) No No No Yes (1) No No No Yes (1) No Yes (1) No 

"Ca. Methylacidimicrobium" 
sp. LP2A "Ca. Methylacidiphilaceae" Yes (2) No No No Yes (1) No No No Yes (1) No Yes (1) No 

"Ca. Methylacidiphilum 
fumariolicum" SolV "Ca. Methylacidiphilaceae" Yes (3) No No No Yes (1) No No No Yes (1) No Yes (1) No 

"Ca. Methylacidiphilum 
infernorum" V4 "Ca. Methylacidiphilaceae" Yes (3) No No No Yes (1) No No No Yes (1) No Yes (1) No 
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The sMMO is located in the cytoplasm and is a member of the multicomponent soluble 

di-iron monooxygenase family found in diverse bacteria for oxidation of aliphatic and aromatic 

hydrocarbons (Leahy et al., 2003).  sMMO consists of three components – a hydroxylase 

(MMOH), reductase (MMOR), and a regulatory protein (MMOB) (Merkx et al., 2001; Ross & 

Rosenzweig, 2017).  The MMOH is an a2b2g2 homodimer of 251 kDa with a di-iron active site 

where methane oxidation occurs (Figure 1.7; Woodland & Dalton, 1984; Fox et al., 1989; 

Lipscomb, 1994).  MMOR is approximately 40 kDa and consists of three domains – [2Fe-2S] 

ferredoxin domain, FAD-binding domain, and an NADH binding domain, and is responsible for 

transferring electrons from NADH to the active site of MMOH (Lund & Dalton, 1985).  The 

regulator MMOB is a 16 kDa α/β protein that couples MMOH and MMOR (Brazeau et al., 

2001). 

 
Figure 1.7. Structure of MMOH from Methylococcus capsulatus Bath.  a, b, and g subunits are 

shown in gray, magenta, and green, respectively.  (Ross & Rosenzweig, 2017) 
 

Unlike the ambiguous active site and electron donor of pMMO, those of sMMO have 

been extensively validated (Merkx et al., 2001).  In sMMO, NADH serves as the electron donor 

for methane oxidation, where the reducing equivalents are used to split the O-O bond of O2, and 
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subsequently passed to one of the oxygen atoms to form H2O and the other incorporated into 

methane with the remaining oxygen atom to form methanol via homolytic oxygen cleavage 

(Colby & Dalton, 1976; Lipscomb, 1994).  A μ-hydroxo-bridged di-iron center is located in each 

MMOH of the a2b2g2 homodimer, where both oxygen and methane are activated (Rosenzweig et 

al., 1993; DeRose et al., 1993; Leahy et al., 2003).  This di-iron center is coordinated by four 

glutamate residues, two histidine residues, and a water molecule through various stages of the 

catalytic cycle (Rosenzweig et al., 1993; Elango et al., 1997).  In the Gammaproteobacteria 

methanotroph Mcc. capsulatus Bath, the resting state active site (MMOHox) contains two Fe(III) 

ions, of which the first ion is coordinated by Glu114, His147, and a water molecule, and the other 

by Glu209, Glu243, and His246.  In Msn. trichosporium OB3b, an Alphaproteobacteria 

methanotroph, the di-iron center is coordinated similarly with the exception of Asp209 instead of 

Glu209 (Elango et al., 1997).  The iron ions are also bridged by two water molecules and Glu144 to 

form a pseudo-octahedral structure (Rosenzweig et al., 1993, 1995; Ross & Rosenzweig, 2017).  

Interestingly, two conserved His and carboxylate residues, each, in conjunction with nearby 

residues in the “Zn site” of pMMO from the same methanotroph are highly similar to the 

coordinating residues of sMMO and may serve as ligands to accommodate the proposed di-iron 

site-mediated reaction (Martinho et al., 2007). 

MMOR transfers two electrons from NADH to MMOHox di-iron site, where the distance 

between Fe(II)-Fe(II) increases and one of the water molecules is displaced by Glu243 through the 

process carboxylate shift (Figure 1.8) (Rosenzweig et al., 1995).  The resulting MMOHred readily 

reacts with dioxygen to form intermediate O, then the peroxo intermediates P* (Fe(II)) and P 

(peroxo-bridged Fe(III)), and finally the Fe(IV)-Fe(IV) intermediate Q (Lee et al., 1993; Lee & 

Lipscomb, 1999; Banerjee et al., 2013; Lawton & Rosenzweig, 2016).  The intermediate Q then 
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reacts with methane to form the product complex T (Banerjee et al., 2015).  One oxygen atom 

from dioxygen is associated with T, and the other incorporated into the substrate to form 

methanol (Banerjee et al., 2015).  The intermediate P can also be formed via H2O2 activation of 

MMOHox (Andersson et al., 1991; Jiang et al., 1993; Ross & Rosenzweig, 2017). 

 

 

Figure 1.8. The catalytic cycle of sMMO with stable species MMOHox and MMOHred, and 
transient species O, P*, P, Q, and T (Ross & Rosenzweig, 2017).  Iron ions are shown as red-

brown spheres labeled with oxidation state.  Oxygen atoms are shown as red spheres except for 
P*, for which oxygen and di-iron active site binding mode is unknown.  The peroxide shunt, a 
mechanism by which intermediate P is generated from reaction between MMOHox and H2O2 is 

shown. 
 

The MMOH dimer interface produces a “canyon” region with a hydrophilic opening in 

the center of the molecule known as the “pore”, controlled by residues Thr213, Asn214, and Glu240 

(Rosenzweig et al., 1993; Lee et al., 2013; Wang et al., 2015; Ross & Rosenzweig, 2017).  

Separate from the pore, there are also three hydrophobic pockets that have also been found in 

another multicomponent soluble di-iron monooxygenase (Whittington et al., 2001; Sazinsky et 

al., 2004; Sazinsky & Lippard, 2005).  It has been shown that both MMOR and MMOB dock at 
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the canyon of MMOH (MacArthur et al., 2002; Kopp et al., 2003; Chatwood et al., 2004; 

Sazinsky & Lippard, 2006).  In addition, MMOB significantly enhances the reaction by changing 

the conformation of MMOH upon binding in order to moderate oxygen, methane, and proton 

access to the di-iron center (Liu et al., 1995; Lee et al., 2013; Srinivas et al., 2020). 

There are currently two models of substrate access to the active site (Ross & Rosenzweig, 

2017).  In one model, the authors propose that the substrates oxygen and methane travel through 

the hydrophobic cavities that lead to the active site and products exit via this passage, while 

protons, electrons, and water are transported via the pore facilitated by residue Glu240 (Lee et al., 

2013; Wang et al., 2015).  However, the movement through each cavity would follow zero order 

kinetics with respect to substrate, contrary to previous findings demonstrating the reaction 

between intermediate Q and the substrates to have a linear relationship (Lee et al., 1993; Tinberg 

& Lippard, 2010; Ross & Rosenzweig, 2017).  In an alternative model, substrates are thought to 

access the active site via the pore.  Mutation of MMOB residues near the pore significantly 

affects the rate of reaction between intermediate Q and the substrates in a substrate-dependent 

manner, supporting the model of pore entry (Wallar & Lipscomb, 2001; Brazeau & Lipscomb, 

2003; Lee et al., 2013). 

sMMO is encoded by the mmo operon, consisting of structural genes mmoXYZBC, 

encoding for the a, b, g subunits of MMOH, MMOB, and MMOR, respectively, and regulatory 

genes mmoR, mmoG, and mmoD (Figure 1.9) (Stainthorpe et al., 1990; Cardy et al., 1991; Merkx 

et al., 2001; Csáki et al., 2003; Stafford et al., 2003; Semrau et al., 2013).  The order of core 

genes mmoXYBZDC is conserved in the mmo operons identified thus far, with other genes of the 

operon occurring in different orientations with respect to the core genes (Figure 1.9).  In Msn. 

trichosporium OB3b, expression of the mmoXYBZDC is regulated by the s54 and s70 promoters 
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upstream of mmoX and mmoY, respectively (Nielsen et al., 1997).  mmoR and mmoG encode for 

a s54-dependent transcriptional activator and a putative GroEL-like chaperone (Csáki et al., 

2003; Stafford et al., 2003; Scanlan et al., 2009).  It has been shown that activation of the s54 

promoter is dependent on rpoN (encoding for sN), mmoR, and mmoG (Csáki et al., 2003; 

Stafford et al., 2003).   

The mmo operon occur as a single copy and the gene arrangement is conserved in most 

methanotrophs (Table 1.2).  The position of the regulator genes mmoR and mmoG, though, can 

vary (Figure 1.9), and a putative two-component sensor regulator system, mmoS and mmoQ, can 

be found in the mmo gene cluster in Mcc. capsulatus Bath (Csáki et al., 2003; Ukaegbu & 

Rosenzweig, 2009).  It has been suggested that this system senses copper levels and transmit the 

signal to MmoR, though it does not seem critical for expression of sMMO as its knockout had 

little effect (Csáki et al., 2003). 

 



 

 26 

 
Figure 1.9. mmo operon map of various methanotrophs (Iguchi et al., 2010).  Open triangles 

indicate putative promoter sites, and closed triangles indicate the promoter sites that have been 
experimentally validated. 

 

As mentioned earlier, the pMMO and sMMO, despite carrying out the same function, 

have many distinct differences.  Perhaps not surprisingly, these two enzymes have very different 

substrate ranges and kinetics – pMMO has higher affinity for methane, while sMMO has higher 

maximum methane turnover rate (Lee et al., 2006; Semrau et al., 2018).  In addition, sMMO has 

a wider substrate range and has been found to oxidize alkanes up to C8, ethers, cyclic alkanes, 

and aromatic carbons (Colby et al., 1977; Burrows et al., 1984), while pMMO is able to oxidize 

alkanes up to C5, but not aromatic compounds (Burrows et al., 1984).  sMMO was also found to 

degrade chlorinated ethenes at significantly faster rates than pMMO (Oldenhuis et al., 1991; Lee 

et al., 2006).  Therefore, sMMO has received more interest in application to bioremediation of 

various organic pollutants.  However, as mentioned earlier, most methanotrophs express pMMO 

Methylovulum miyakonense HT12
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and those that do have the ability to express sMMO only do so at very low copper concentrations 

(Hanson & Hanson, 1996; Choi et al., 2003).  That is, a “copper switch” controls the expression 

and activity of pMMO and sMMO.  There is also competition between methane and halogenated 

organic pollutants for binding to MMO and these pollutants and their products can have toxic 

effects and lower the efficiency overall (Oldenhuis et al., 1989, 1991; Lontoh et al., 1999; Han et 

al., 1999).  It has been shown that pMMO may be more advantageous in the long term and/or at 

extremely high concentrations of pollutants due to its greater specificity for methane that 

supports growth and viability (Lee et al., 2006; Yoon & Semrau, 2008).  Therefore, it is 

important to understand the target pollutant, site characteristics (i.e. copper availability), and the 

required timeframe of bioremediation processes in order to fully utilize pMMO or sMMO. 
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1.2.1.2. Methanol dehydrogenase 

There are two alternative enzymes that oxidize methanol in the central one-carbon 

metabolism of methanotrophs – a Ca2+-dependent MeDH (Mxa-MeDH) and rare earth element 

(REE)-dependent MeDH (Xox-MeDH) (Pol et al., 2014).  Both MeDHs are localized in the 

periplasm and intra-ICM space and are dependent on pyrroloquinoline quinone cofactor (Fassel 

et al., 1992; Brantner et al., 2002).  These MeDHs belong to the class of eight-bladed β-propeller 

quinoproteins, which include other alcohol and aldehyde dehydrogenases (Anthony & Ghosh, 

1998; Khmelenina et al., 2018a).  Expression of the two MeDHs are regulated by the presence of 

REE, indicative of an “REE switch,” to be discussed in a different section to follow.   

In methanotrophs and non-methanotrophic methylotrophs – the latter being 

microorganisms that utilize reduced one-carbon substrates other than methane – methanol is 

oxidized by MeDH to formaldehyde, which is further oxidized to carbon dioxide or serves as a 

starting substrate for carbon assimilation (Khmelenina et al., 2018a).  Mxa-MeDH was first 

described in a pink facultative methylotroph, Mrr. extorquens AM1 more than 50 years ago 

(Anthony, 1993; Anthony & Zatman, 1964a, 1964b).  Subsequently, the PQQ prosthetic group 

was characterized and the divalent cation required for Mxa-MeDH activity identified as Ca2+ 

(Anthony & Zatman, 1967; Duine et al., 1978; Duine & Frank, 1980; Salisbury et al., 1979; 

Richardson & Anthony, 1992; Adachi et al., 1990).  Mxa-MeDH structures from a number of 

methylotrophs have been solved via X-ray crystallography to reveal the α2β2 tetrameric structure 

consisting of the catalytic α subunit with PQQ (66 kDa) and the small β subunit (8.5 kDa) 

(Figure 1.10) (Xia et al., 1992, 1996, 2003; White et al., 1993; Anthony et al., 1994; Ghosh et al., 

1995; Anthony & Ghosh, 1998; Zheng et al., 2001; Afolabi et al., 2001; Williams et al., 2005; 

Nojiri et al., 2006; Choi et al., 2011).  The two αβ subunits are arranged so that the eight-blade 
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propellers are approximately perpendicular to each other.  The PQQ resides in the funnel-shaped 

internal cavity of the α subunit, between the indole ring of Trp237 and the disulfide bridge 

spanning Cys103-Cys104 (Ghosh et al., 1995).  The single Ca2+ ion present in the active site is 

coordinated by C5 quinone oxygen, one oxygen of C7 carboxylate, and N6 ring atom of the PQQ 

and residues Glu177 and Asn261 (Ghosh et al., 1995).  In addition, the C4 and C5 oxygen atoms of 

PQQ, which are reduced during the catalytic cycle, are associated with Arg331 via hydrogen 

bond, a residue of which the NH2 is hydrogen bonded with the carboxylate of Asp303, the base 

postulated to be required for catalytic mechanism (Anthony & Williams, 2003).  The exact 

function of the small β subunit is still unknown, but it has been speculated that it stabilizes the 

MeDH structure (Ghosh et al., 1995) or facilitates proper Ca2+ coordination (Keltjens et al., 

2014). 

 

Figure 1.10. Structure of Mxa-MeDH from Methylorubrum extorquens (PDB ID 1H4I) (Ghosh 
et al., 1995; Sehnal et al., 2018).  α subunits are shown in orange and green, β subunits in 

magenta and purple (left).  PQQ cofactor and residues coordinating Ca2+ is depicted as a ball and 
stick model and Ca2+ is represented as a green sphere (right). 
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Methanol oxidation by Mxa-MeDH is initiated by abstraction of the proton from the 

alcohol group by the base, most likely Asp303.  (Afolabi et al., 2001).  Then there is a direct 

hydride transfer from the methyl group of methanol to the C5 of PQQ, proposed to be facilitated 

by the Ca2+ ion acting as a Lewis acid to stabilize the electrophilic C5 for attack by the hydride, 

forming PQQH2 and the product formaldehyde (Anthony, 1993, 2004).  Ammonia activation and 

higher pH is required for this rate-limiting step using an artificial electron acceptor in vitro 

(Anthony, 1993; Anthony & Ghosh, 1998; Pol et al., 2014).   

The role of Ca2+ ions has been studied by substituting Ca2+ in the growth medium with 

Sr2+ or reconstituting metal-free Mxa-MeDH with Ca2+, Sr2+, or Ba2+ (Adachi et al., 1990; 

Goodwin et al., 1996; Goodwin & Anthony, 1996).  In these studies, replacing Ca2+ ions with a 

stronger Lewis acid (e.g. Sr2+, Ba2+) resulted in increased activity, but much lower affinity for the 

substrate, most likely due to altered structure to accommodate the different metal ions.   

The reduced PQQH2 then passes the two electrons down the electron transport chain 

consisting of cytochrome cL, then cytochrome cH, both named based on their isoelectric points 

(low vs high), and finally to terminal oxidases that establish the proton motive force and 

contribute to the subsequent ATP synthesis (Anthony, 1992; DiSpirito et al., 2004a; Nojiri et al., 

2006).  In a Gammaproteobacteria methanotroph Mcc. capsulatus Bath, cytochromes c555 and 

c553 pass the electrons to the terminal oxidase of types CBD and AA3. (Larsen & Karlsen, 2016; 

Lieven et al., 2018) (Figure 1.5).   

Xox-MeDH was first noticed as an Mxa-MeDH-like putative PQQ-dependent 

dehydrogenase based on the sequence similarity between the genes (Chistoserdova & Lidstrom, 

1997a; Keltjens et al., 2014).  Its importance, however, was unclear, as an mxa insertion mutant 

of a facultative methylotroph Paracoccus denitrificans rendered the organism incapable of 
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growing on methanol, despite the existence of the genes for Xox-MeDH (van Spanning et al., 

1991).  Further, disruption of the gene encoding for Xox-MeDH did not lead to a clearly 

different phenotype (van Spanning et al., 1991; Chistoserdova & Lidstrom, 1997a).  On the 

contrary, it was shown that an xox-disrupted mutant of Mrr. extorquens AM1 was less 

competitive than the wild-type during colonization in planta (Schmidt et al., 2010).  In addition, 

no significant expression of xox was detected in the lab, though high expression was observed in 

situ (Delmotte et al., 2009; Sowell et al., 2011).  To further complicate matters, some 

methanotrophs and methylotrophs, such as Verrucomicrobia methanotrophs (Pol et al., 2007; 

Hou et al., 2008; Anvar et al., 2014), Methylotenera methylotrophs (Bosch et al., 2009; Lapidus 

et al., 2011), and phototroph Rhodobacter sphaeroides (Mackenzie et al., 2001), were found to 

have Xox-MeDH, but not the canonical Mxa-MeDH (Chistoserdova, 2011; Keltjens et al., 2014).  

Thus, the role of Xox-MeDH remained elusive for quite some time.  This was largely due to the 

requirement of rare earth elements (REE) in place of Ca2+.  REEs are abundant in the 

environment but not commonly added to growth media (Pol et al., 2014).  This is not surprising, 

as REEs have extremely low solubility and thus low bioavailability, and were previously thought 

to have a minimal, if any role in biochemical reactions (Franklin, 2001; Lim & Franklin, 2004; 

Pol et al., 2014). 

Kawai research group originally hypothesized that REEs such as lanthanum and cerium 

may induce Xox-MeDH via an unknown regulatory mechanism based on observations of Xox-

MeDH and its enhanced specific activity in the presence of REEs (Hibi et al., 2011; Fitriyanto et 

al., 2011).  They later found that Xox-MeDH was in fact activated by and contained La3+, and 

that La3+ may facilitate the dimerization to the α2 structure (Nakagawa et al., 2012).  In addition, 
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the growth of an mxa-deficient mutant of methylotroph Mrr. extorquens AM1 was only 

supported by the supplementation of La3+ and not Ca2+. 

Furthermore, it has been suggested that the isolation and identification of acidophilic 

Verrucomicrobia methanotrophs has been delayed due to presence of Xox-MeDH and absence of 

the Ca2+-dependent Mxa-MeDH in this group of methanotrophs (Pol et al., 2014).  Sufficient 

growth of “Ca. Methylacidiphilum fumariolicum” SolV, a Verrucomicrobia methanotroph, was 

only supported when mudpot water from its original habitat was supplemented.  The authors 

found 2 – 3 μM of REEs in these mudpot water samples, and addition of REEs instead of the 

mudpot water to the mineral growth medium could also support growth.  The structure of the 

Xox-MeDH was subsequently solved via X-ray crystallography (Figure 1.11).  Xox-MeDH is an 

α2 homodimer that resembles the large subunit of Mxa-MeDH, also supported by previous 

observations of purified protein via gel electrophoresis and chromatography (Hibi et al., 2011; 

Fitriyanto et al., 2011).  The electron density and distances to coordinating atoms indicated that 

calcium, zinc, magnesium, or copper cannot reside in the metal binding site, but cerium or 

lanthanum ions satisfy the structural constraints of the model.  All of the amino acids that 

coordinate PQQ and the metal ion in Mxa-MeDH were found to be conserved in Xox-MeDH, 

with the exception of an additional residue, Asp301, coordinating the REE ion.  In addition, two 

other residues in Xox-MeDH were different in order to accommodate the larger REE ion – Pro259 

and Ala176, both conserved in Mxa-MeDH, are instead replaced with the smaller threonine and 

glycine, respectively (Pol et al., 2014). 

Xox-MeDH from methanotrophs “Ca. Methylomirabilis oxyfera” of the NC10 candidate 

phylum and Mtv. buryatense 5GB1C of the Gammaproteobacteria class were also characterized 

(Wu et al., 2015; Deng et al., 2018).  It is interesting to note that Xox-MeDH from “Ca. 
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Methylomirabilis oxyfera” was found to form a heterotetrameric enzyme with the small subunit 

of Mxa-MeDH (Wu et al., 2015), and that from Mtv. buryatense 5GB1C was observed as a 

monomer in solution (Deng et al., 2018). 

 
Figure 1.11. X-Ray crystal structure of “Ca. Methyloacidiphilum fumariolicum” SolV Xox-type 
methanol dehydrogenase (Pol et al., 2014).  (a) Dimer structure with PQQ cofactor in blue and 
cerium ion in purple.  (b) Active site of Xox-MeDH with PQQ in blue and cerium in purple, 

water molecule in orange and coordination of cerium ion represented by red dashed lines.  (c) 
Anomalous difference density (green mesh) supporting presence of cerium ion in the active site 

of Xox-MeDH. 
 

As mentioned before, Ca2+ acts as a Lewis acid to facilitate the attack on the electrophilic 

C5 atom of the PQQ by the hydride of the substrate methyl group.  REEs are much stronger 

Lewis acids than Ca2+, and therefore can make the C5 atom more electrophilic.  This can explain 

the higher rates and affinity of Xox-MeDH compared with Mxa-MeDH reported thus far 

(Keltjens et al., 2014), and also the high activity of Xox-MeDH at circumneutral pH, whereas 

Mxa-MeDH require ammonia activation at higher pH (Pol et al., 2014).  Both Mxa- and Xox-

(a)

(b) (c)
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MeDH can oxidize several primary alcohols, but Xox-MeDH can convert methanol directly to 

formate rather than formaldehyde via a four-electron oxidation (Keltjens et al., 2014).  This 

mode of methanol oxidation can explain the lack of complete methanopterin- or folate-dependent 

enzymes required for formaldehyde oxidation in Verrucomicrobia methanotrophs, and also the 

need for these methanotrophs to rely on the Calvin-Benson-Bassham cycle to assimilate carbon 

dioxide (Khadem et al., 2012b; Pol et al., 2014; Keltjens et al., 2014).  There is an exception to 

the direct conversion of methanol to formate via Xox-MeDH, i.e., Xox-MeDH of the facultative 

methylotroph Mrr. extorquens AM1 has been found to oxidize methanol to formaldehyde rather 

than formate, implying species-dependent role of Xox-MeDH that can affect downstream 

oxidation and/or assimilatory pathways in methanotrophs (Semrau et al., 2018; Good et al., 

2019). 
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1.2.1.3. Formaldehyde oxidation 

In methanotrophs, methanol is transformed to formaldehyde or formate via two- or four-

electron oxidation by MeDH.  Formaldehyde produced by the two-electron oxidation of 

methanol is transported into the cytoplasm and can be further oxidized to carbon dioxide for 

additional reducing power or serve as the starting substrate for assimilation into biomass via the 

ribulose monophosphate (RuMP) cycle or serine pathway (Figure 1.3, pg. 10) (Keltjens et al., 

2014).  Oxidation of formaldehyde is particularly important, because formaldehyde not only 

serves as the substrate required for ATP generation but is also a potent toxin that requires careful 

control in vivo (Chistoserdova, 2011).  There are three pathways for formaldehyde oxidation: 

(1) Oxidation via dye-linked formaldehyde dehydrogenase (DL-FalDH). 

(2) Tetrahydrofolate (H4F)- and tetrahydromethanopterin (H4MPT)-dependent oxidation. 

(3) Oxidation via dissimilatory RuMP (dRuMP) cyclic pathway. 

The DL-FalDH has received little attention as a method of formaldehyde oxidation in 

methanotrophs due to its low substrate specificity and activity (Anthony, 1982; Vorholt, 2002; 

Chistoserdova & Lidstrom, 2013).  DL-FalDH purified from Msn. trichosporium OB3b and 

methylotroph Hyphomicrobium X exhibited activity with a wide range of aldehydes including 

straight-chain C1 – C10 aldehydes (Patel et al., 1980; Attwood, 1990).  Moreover, DL-FalDH is 

not inducible by growth on C1 compounds and its activity is unable to account for the 

formaldehyde oxidation rates in methanotrophs (Anthony, 1982; Vorholt, 2002).  A membrane-

bound DL-FalDH containing a PQQ was also purified from the Gammaproteobacteria 

methanotroph Mcc. capsulatus Bath (Zahn et al., 2001).  It has been suggested that this protein is 

in fact a member of a new type of PQQ formaldehyde/quinone reductase based on sequence 
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similarity with sulfide/quinone reductase and wide distribution amongst methanotrophs (Keltjens 

et al., 2014). 

H4F is an important coenzyme that functions as a C1 carrier in various biochemical 

reactions and found in all three domains of life (Maden, 2000).  In methanotrophs, the H4F-

dependent formaldehyde oxidation is initiated by the spontaneous condensation of formaldehyde 

with H4F to form N5,N10-CH2=H4F.  This intermediate is oxidized to N5,N10-CHºH4F+ by NADP-

specific methylene-H4F/H4MPT dehydrogenase (MtdA), and can also serve as a substrate that 

enters the serine cycle for carbon assimilation (Figure 1.12) (Vorholt et al., 1998; Hagemeier et 

al., 2001).  N5,N10-CHºH4F+ is then transformed to N10-CHO-H4F catalyzed by methenyl-H4F 

cyclohydrolase (Fch) through a reversible reaction (Pomper et al., 1999).  Alternatively, these 

two reactions can be catalyzed by bifunctional methylene-H4F dehydrogenase/cyclohydrolase 

(FolD) (Studer et al., 2002).  Finally, the intermediate is transformed to formate and H4F is 

released through a reversible reaction by formyl-H4F synthetase/ligase (Fhs/FtfL) or irreversible 

reaction by formyl-H4F deformylase (PurU) (Nagy et al., 1995).  It is important to note that 

N5,N10-CH2=H4F can be formed via condensation of formate with H4F following the reductive 

direction of the H4F-dependent pathway, and benefits methanotrophs that exploit the serine cycle 

for carbon assimilation (Figure 1.13) (Crowther et al., 2008).  Indeed, the enzymes of this 

pathway are found at high levels during methylotrophic growth in serine cycle methylotrophs 

(Marison & Attwood, 1982; Vorholt, 2002).  Characterization of a methylotroph mutant deficient 

in FtfL also supported a model in which the H4F-dependent pathway provides the substrate for 

the serine cycle from formate via the reductive direction (Marx et al., 2003; Crowther et al., 

2008).  MtdA and Fch are present in all Alpha- and Gammaproteobacteria methanotrophs, but, 

as mentioned before, absent in Verrucomicrobia methanotrophs, which utilize the FolD instead 
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(Khadem et al., 2012b; Khmelenina et al., 2018a).  In addition, “Ca. Methylomirabilis oxyfera” 

has PurU instead of Fhs/FtfL for the final, irreversible release of H4F (Chistoserdova, 2011), 

which would have little consequence on this methanotroph because it fixes carbon via Calvin-

Benson-Bassham cycle rather than serine cycle. 

In addition to the well-known H4F-dependent pathway, the H4MPT-dependent pathway 

was proposed based on genes found in the methylotroph Mrr. extorquens AM1 that closely 

resembled those involved in carbon metabolism from methanogenic and sulfate-reducing archaea 

and subsequent characterization of these gene products (Chistoserdova et al., 1998; Vorholt et 

al., 1998).  The H4MPT-dependent formaldehyde oxidation is initiated by the condensation of 

formaldehyde and the pterin cofactor to form N5,N10-CH2=H4MPT through a spontaneous 

reaction, accelerated by the formaldehyde activation enzyme (Fae) (Figure 1.12) (Vorholt et al., 

2000).  NAD(P)-dependent methylene-H4MPT dehydrogenase (MtdB), a distant homolog of 

MtdA, catalyzes the oxidation of N5,N10-CH2=H4MPT to N5,N10-CHºH4MPT+ (Hagemeier et al., 

2000), which is then transformed to N5-CHO-H4MPT by methenyl-H4MPT cyclohydrolase 

(Mch) (Pomper et al., 1999).  Then, with the help of another C1 carrier methylofuran (Hemmann 

et al., 2016, 2019), the H4MPT is released by the formyltransferase/hydrolase complex (Fhc) and 

formate is produced (Pomper et al., 2002).  It has been proposed that in the methylotroph Mrr. 

extorquens AM1, the H4MPT-dependent pathway is the dominant formaldehyde oxidation 

pathway, whereas the H4F-dependent pathway mainly serves in the reductive direction to 

produce substrates for carbon assimilation via the serine cycle (Crowther et al., 2008), which can 

also be true in serine cycle methanotrophs.  
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Figure 1.12. Formaldehyde oxidation pathways in methanotrophs (slightly modified from C. 
Anthony, 1982; Vorholt, 2002).  C1 is noted in red.  The enzyme responsible for closing the 

dissimilatory RuMP cycle is noted in green.  H4F, tetrahydrofolate; H4MPT, 
tetrahydromethanopterin; MYFR, methylofuran.  Enzymes involved in H4F- and H4MPT-

dependent pathways are described in Table 1.3. 

 

Table 1.3. Enzymes involved in H4F- and H4MPT-dependent formaldehyde oxidation pathways. 
Pathway Enzyme Function Reference 
H4F-dependent FolD bifunctional methylene-H4F 

dehydrogenase/cyclohydrolase 
Studer et al. (2002) 

H4F-dependent / 
H4MPT-dependent 

MtdA NADP-specific methylene-H4F /  
H4MPT dehydrogenase 

Vorholt et al. (1998) 

H4F-dependent Fch methenyl-H4F cyclohydrolase Pomper et al. (1999) 
H4F-dependent Fhs 

(FtfL) 
formyl-H4F synthetase  
(formyl-H4F ligase) 

Marx et al. (2003) 

H4F-dependent / 
H4MPT-dependent 

FDH formate dehydrogenase  

H4F-dependent PurU formyl-H4F deformylase Nagy et al. (1995) 
H4MPT-dependent Fae formaldehyde activating enzyme Vorholt et al. (2000) 
H4MPT-dependent MtdB NAD(P)-dependent methylene-H4MPT 

dehydrogenase 
Hagemeier et al. (2000) 

H4MPT-dependent Mch methenyl-H4MPT cyclohydrolase Pomper et al. (1999) 
H4MPT-dependent Ftr formyltransferase Pomper and Vorholt 

(2001) 
H4MPT-dependent Fhc Ftr/hydrolase complex Pomper et al. (2002) 
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Gammaproteobacteria methanotrophs, which typically use the RuMP pathway to fix 

carbon, can also carry out dRuMP to oxidize formaldehyde (Kalyuzhnaya et al., 2019).  The 

dRuMP cycle involves 6-phosphogluconate dehydrogenase, which releases CO2 and produces 

reducing equivalents as NAD(P)H from the six-carbon intermediate, in addition to the enzymes 

required to fix formaldehyde (Figure 1.12) (Anthony, 1982).  However, the activities of glucose-

6-phosphate and 6-phosphoglucoante dehydrogenases are low in Gammaproteobacteria 

methanotrophs, and thus the significance of dRuMP in these organisms is unclear (Zatman, 

1981; Chistoserdova & Lidstrom, 2013). 

 

1.2.2. Carbon assimilation 

Methanotrophs utilize the RuMP, serine, or CBB cycles to fix carbon largely depending 

on their classification.  That is, methanotrophs belonging to the Gammaproteobacteria class 

mainly fix carbon via RuMP cycle, those of Alphaproteobacteria class the serine cycle, and 

those of the phylum Verrucomicrobia and candidate phylum NC10 the CBB cycle (Figure 1.13).  

The point of entry for carbon assimilation varies for each pathway, where formaldehyde, 

CH2=H4F, and CO2 enters the RuMP, serine, and CBB cycles, respectively.  In the RuMP and 

serine pathways of carbon assimilation, the C1 compound is condensed with multicarbon 

compounds, and the cycles are completed through production of C3 compounds and regeneration 

of the acceptor molecules (Chistoserdova & Lidstrom, 2013). 
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Figure 1.13. A simplified diagram depicting major substrates, intermediates, and methanotrophy 
metabolic modules (modified from Chistoserdova, 2011).  Primary oxidation modules are shown 

in green, formaldehyde-related modules in red, formate dehydrogenase module in yellow, and 
assimilation modules in circle.  Dashed lines represent lack of biochemical knowledge or lack of 

knowledge of significance during methanotrophic growth. 
 

1.2.2.1. Ribulose monophosphate cycle  

Gammaproteobacteria methanotrophs mainly fix carbon via the RuMP cycle, where 

formaldehyde is the entry point.  The RuMP cycle is initiated by formaldehyde fixation via 

condensation with ribulose-5-phosphate by 3-hexulosephosphate synthase (Hps) (Figure 1.14) 

(Kemp, 1972, 1974; Anthony, 1982; Khmelenina et al., 2018a).  The resulting (D‐arabino)‐3‐

hexulose‐6‐phosphate is very unstable and is immediately isomerized to fructose-6-phosphate, 

catalyzed by 6-phospho-3-hexulose isomerase (Phi/Hpi) (Ferenci et al., 1974).  The genes 

encoding for Hps and Phi/Hpi are found in all RuMP methanotrophs, and in some, fused hps-phi 
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genes have been identified (Rozova et al., 2017).  It is interesting to note that hps-phi is not 

found in any nonmethanotrophic methylotrophs.   

In the second part of the cycle, fructose-6-phosphate is eventually cleaved to C3 

molecules via three alternative pathways – the Entner-Doudoroff (ED) pathway, Embden-

Meyerhof-Parnas (EMP) glycolysis, and phosphoketolase pathway (Khmelenina et al., 2018a).  

In the ED pathway, fructose-6-phosphate is transformed to glucose-6-phosphate, 6-

phosphogluconate, then to 2-keto-3-deoxy-6-phosphogluconate (KDPG), which is then cleaved 

to pyruvate and glyceraldehyde-3-phosphate (GAP) by KDPG-aldolase (Anthony, 1982).  In the 

EMP glycolysis pathway, fructose-6-phosphate is phosphorylated to fructose-1,6-biphosphate by 

pyrophosphate-dependent 6-phosphofructokinase (Anthony, 1982), which is subsequently 

cleaved to GAP and dihydroxyacetone phosphate (DHAP).  Here, PPi, a by-product of various 

anabolic reactions, is reutilized instead of ATP, which increases the energy efficiency of carbon 

fixation (Khmelenina et al., 2018b).  In the phosphoketolase (Xfp) pathway, Xfp cleaves 

fructose-6-phosphate to erythrose-4-phosphate and acetyl-phosphate, which is then transformed 

to acetate via reversible acetate kinase (Ack) (Sánchez et al., 2010; Rozova et al., 2015; 

Khmelenina et al., 2018a).  The phosphoketolase pathway increases the efficiency of C2 

production by preserving the C-C bond formed during C1 fixation, as it bypasses the traditional 

glycolytic pathway that inevitably cleaves this C-C bond (Rozova et al., 2015; Khmelenina et al., 

2018a).  Interestingly, xfp and ack are found in nearly all methanotrophs and in many other C1-

utilizing bacteria (Rozova et al., 2015).  In the final part of the RuMP cycle, three molecules of 

ribulose-5-phosphate is regenerated from rearranging two molecules of fructose-6-phosphate and 

one of GAP via reactions similar to those in the CBB cycle (Anthony, 1982).  The RuMP cycle is 
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thermodynamically the most efficient carbon fixation pathway in methanotrophs (Anthony, 

1982; Kalyuzhnaya et al., 2019). 

 

 

 
 
Figure 1.14. Pathways of carbon metabolism in Gammaproteobacteria methanotrophs (modified 
from Khmelenina et al. (2018a)). DHAP, dihydroxyacetone phosphate; ED, Entner-Doudoroff; 

EMP, Embden-Meyerhof-Parnas; KDPG, 2-keto-3-deoxy-6-phosphogluconate; GAP, 
glyceraldehyde- 3-phosphate; pMMO, particulate methane monooxygenase; sMMO, soluble 

methane monooxygenase; TCA, tricarboxylic acid; THF, tetrahydrofolate; H4MPT, 
tetrahydromethanopterin. 
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Initially, the ED pathway was hypothesized to be the major contributor for carbon 

fixation via the RuMP cycle in Gammaproteobacteria methanotrophs due to high activities of 6-

phosphogluconate dehydratase and KDPG-aldolase (Strøm et al., 1974; Kalyuzhnaya et al., 

2013).  However, some Gammaproteobacteria methanotrophs lack genes encoding for the 

complete ED pathway (Khmelenina et al., 2018a).  In Mcc. capsulatus Bath, enzymes involved 

in both ED and EMP pathways were found to be expressed based on proteomics studies (Kao et 

al., 2004).  In addition, 13C-labeling analysis indicated carbon fixation via the EMP pathway in 

the halophilic Gammaproteobacteria methanotroph Mtv. alcaliphilum 20Z grown with methane 

under laboratory conditions (Kalyuzhnaya et al., 2013).  Recently, it has been proposed that the 

ratio between the two pathways depend on the growth substrate and consequent need to balance 

the production and consumption of ATP and NADH (Fu et al., 2019).  That is, when Mtv. 

buryatense 5GB1 was grown with either methane or methanol as the substrate, flux through the 

EMP and ED pathways were increased, respectively.  As mentioned before, electrons are 

provided for pMMO activity via direct coupling with methanol oxidation in this organism (de la 

Torre et al., 2015), and growth on methanol would force the transfer these electrons instead to 

the electron transport chain to produce ATP, resulting in less NADH and ATP produced via 

oxidative phosphorylation from NADH as compared to growth on methane (Fu et al., 2019).  

Whichever pathway is used in the RuMP cycle, the results of the study conducted by Fu et al. 

(2019) suggest that RuMP methanotrophs with complete ED and EMP pathways may tune their 

metabolism to maintain a constant ATP and NADH pool. 
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1.2.2.2. Serine cycle 

Alphaproteobacteria methanotrophs typically fix carbon via the serine cycle (Figure 

1.15), though some methanotrophs of the Beijerinckiaceae family also possess full gene sets for 

the CBB pathway (Table 1.1) (Chen et al., 2010; Chistoserdova & Lidstrom, 2013; Miroshnikov 

et al., 2017).  Carbon dioxide and N5,N10-CH2=H4F, both products of methane oxidation, are the 

substrates for the serine cycle (Large et al., 1962a), the latter is produced either via spontaneous 

condensation of formaldehyde with H4F followed by oxidation, or the reverse/reductive direction 

of formaldehyde oxidation (Crowther et al., 2008). 

 

 

Figure 1.15. Pathways of carbon metabolism in Alphaproteobacteria methanotrophs (modified 
from Khmelenina et al. (2018a)).  EMC, ethylmalonyl-CoA; TCA, tricarboxylic acid; THF, 

tetrahydrofolate; H4MPT, tetrahydromethanopterin. 
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Much of the serine cycle was elucidated by the 1970s by Quayle and colleagues using 

radio-labeled substrates and subsequent evaluation of labeled biomass and intermediates (Large 

et al., 1961, 1962b, 1962a; Large & Quayle, 1963; Salem et al., 1973), and its genetics in the 

1990s by Lidstrom and colleagues (Arps et al., 1993; Chistoserdova & Lidstrom, 1992, 1994c, 

1994a, 1994b, 1997b, 1997a).   

In the serine pathway, glyoxylate, a C2 molecule, is transaminated to glycine, which is 

then condensed with N5,N10-CH2=H4F to produce serine, initiating the serine cycle for C1 

assimilation (Large et al., 1962a; Anthony, 2011).  The amino group of serine is then transferred 

to glyoxylate, forming glycine and hydroxypyruvate (Large & Quayle, 1963; Khmelenina et al., 

2018a).  Hydroxypyruvate is transformed to glycerate, which is subsequently phosphorylated to 

2- or 3-phosphoglycerate (Large & Quayle, 1963; Khmelenina et al., 2018a).  Phosphoglycerate 

is then isomerized to phosphoenolpyruvate, which is then carboxylated to oxaloacetate (Large et 

al., 1962b).  Oxaloacetate is reduced to malate, then transformed to malyl-CoA, which is then 

cleaved into acetyl-CoA and glyoxylate (Salem et al., 1973).  In the serine cycle, this acetyl-CoA 

must be converted to glyoxylate to replenish glyoxylate for continued C1 assimilation, however, 

the mechanism of such reaction has been unclear for about half a century (Anthony, 2011).  It 

was initially hypothesized that the same mechanism used for replenishing intermediates of the 

tricarboxylic acid (TCA) cycle were employed for glyoxylate regeneration in serine cycle 

methanotrophs, i.e. the glyoxylate cycle (Kornberg & Madsen, 1957).  Though a limited number 

of methanotrophs including Methylocella silvestris BL2 do possess and use the critical enzyme 

isocitrate lyase that transforms isocitrate to glyoxylate and succinate in this pathway (Bordel et 

al., 2020; Chen et al., 2010), most obligate methanotrophs do not (Trotsenko & Murrell, 2008).  

The glyoxylate regeneration cycle (GRC) involving 18 intermediates was proposed based on 
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genomic, mutant, and radiolabeled intermediate analyses of the methylotroph Mrr. extorquens 

AM1 (Korotkova et al., 2002a; Anthony, 2011).  Though some of the intermediates were later 

found to be involved in glyoxylate regeneration, most were not involved (Anthony, 2011). 

The ethylmalonyl-CoA (EMC) pathway was first verified in phototrophic purple non-

sulfur bacteria lacking isocitrate lyase with the discovery of three novel enzymes, crotonyl-CoA 

carboxylase/reductase, ethylmalonyl-CoA mutase, and methylsuccinyl-CoA dehydrogenase 

(Meister et al., 2005; Alber et al., 2006; Erb et al., 2007, 2008, 2009).  The EMC pathway in 

serine cycle methanotrophs share intermediates, reactions, and/or enzymes with the serine cycle, 

TCA cycle, polyhydroxybutyrate cycle, fatty acid biosynthesis pathway, and other metabolic 

pathways (Khmelenina et al., 2018a).  In the EMC pathway, two molecules of acetyl-CoA are 

condensed to form acetoacetyl-CoA, which is then reduced to 3-hydroxybutyryl-CoA 

(Korotkova et al., 2002b).  3-Hydroxybutyryl-CoA is transformed to crotonyl-CoA, which is 

then transformed to the C5 molecule EMC via reductive carboxylation by crotonyl-CoA 

carboxylase/reductase (Erb et al., 2007).  EMC is transformed to b-methylmalyl-CoA via 

methylsuccinyl-CoA and mesaconyl-CoA, and is cleaved to produce glyoxylate and propionyl-

CoA (Chistoserdova et al., 2003; Meister et al., 2005; Erb et al., 2008, 2009), thus replenishing 

the glyoxylate and closing the gap in C1 assimilation via the serine cycle.  The fate of propionyl-

CoA determines the overall carbon balance, i.e. 3C1 + 3CO2 = 2C3 vs 3C1 + 4CO2 = 1C3 + 1C4 

(Peyraud et al., 2009; Anthony, 2011).  The EMC pathway was further experimentally confirmed 

through investigating intermediates and their flux via 13C metabolomics of Mrr. extorquens AM1 

(Peyraud et al., 2009).  The results of this study ruled out GRC as a contributor for glyoxylate 

regeneration and closed the serine cycle during methylotrophic growth.  It is also interesting to 

note that some Gammaproteobacteria methanotrophs, e.g. Mcc. capsulatus Bath, have the 
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complete gene set for the serine cycle, but not for the EMC cycle or the glyoxylate cycle 

(Chistoserdova et al., 2005; Kalyuzhnaya et al., 2015b, 2019). 

 

1.2.2.3. Calvin-Benson-Bassham cycle 

The activity and complete gene set for Calvin-Benson-Bassham (CBB) cycle (Figure 

1.16) was first observed in the Gammaproteobacteria methanotroph Mcc. capsulatus Bath, 

though the main route of carbon assimilation is via the RuMP cycle and autotrophic growth is 

very slow and restricted to solid medium for this organism (Taylor et al., 1981; Baxter et al., 

2002).  The complete gene set for CBB was also found in other Proteobacteria methanotrophs, of 

which some exhibited activity as well (Table 1.1) (Eshinimaev et al., 2004; Chen et al., 2010; 

Dedysh et al., 2002, 2015; Frindte et al., 2017a).  In thermophilic methanotrophs Mcc. 

capsulatus Bath and Methylocaldum szegediense O-12, RuBisCO activity is enhanced with 

temperature increase, suggesting a role of the CBB cycle in thermoadaptation (Eshinimaev et al., 

2004; Khmelenina et al., 2018a).  The exact role of the CBB cycle in Proteobacteria 

methanotrophs is yet to be identified. 

Methanotrophs belonging to the phylum Verrucomicrobia and candidate phylum NC10 

primarily utilize the well-known CBB cycle to assimilate carbon dioxide and use methane as the 

source of energy (Figure 1.13).  These methanotrophs lack key genes of the Serine and RuMP 

pathways for carbon assimilation, and 13CH4 and 13CO2/bicarbonate experiments indicated that 

CO2 is the sole source of carbon (Khadem et al., 2011; Rasigraf et al., 2014).  The 

Verrucomicrobia methanotroph “Ca. Methylacidiphilum fumariolicum” SolV possesses a form 

Ie RuBisCO (Khadem et al., 2011), whereas the RuBisCO found in “Ca. Methylomirabilis 

oxyfera” of the candidate phylum NC10 is of form Ic, distinct from that found in 
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Verrucomicrobia methanotrophs, and is more closely related to Proteobacteria RuBisCOs such as 

those found in methanotrophs of the Beijerinckiaceae family (Rasigraf et al., 2014).  Though 

Verrucomicrobia methanotrophs have carboxysome-like structures, methanotrophs of both phyla 

lack genes encoding for carboxysomes and carbon fixation seem to be cytoplasmic rather than 

carboxysomal (Khadem et al., 2011; Rasigraf et al., 2014).   

 

 
Figure 1.16. Calvin-Benson-Bassham cycle (modified from Sato and Atomi (2010) and 

Crumbley and Gonzalez (2018)).  The corresponding enzymes are: 1: ribulose-1,5-bisphosphate 
carboxylase/oxygenase, 2: phosphoglycerate kinase, 3: glyceraldehyde-3-phosphate 

dehydrogenase, 4: triose phosphate isomerase, 5: fructose- bisphosphate aldolase, 6: fructose-
1,6-bisphosphatase, 7: sedoheptulose bisphosphatase, 8: transketolase, 9: ribose-5-phosphate 

isomerase, 10: ribulose-5-phosphate 3-epimerase and 11: phosphoribulokinase. The directions of 
the arrows represent the direction of the pathway, and do not indicate that the enzyme reactions 

are irreversible. 
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1.3. Metal uptake systems 

1.3.1. Copper uptake systems 

Methanotrophs have several methods of acquiring copper from the environment and any 

single species often is found to have redundant systems (Table 1.2).  For example, all 

methanotrophs excluding the extreme acidophiles of the Verrucomicrobia phylum contain 

copCD (copper resistance), which encode for a periplasmic copper-binding protein and inner 

membrane transporter (Figure 1.17) (Arnesano et al., 2003; Gu et al., 2017b).  Some 

Alphaproteobacteria methanotrophs have mbnABCM (methanobactin), encoding for a 

chalkophore that is excreted, binds copper and is then taken up (Semrau et al., 2013).  Some 

Gammaproteobacteria methanotrophs have mopE (Methylococcus outer membrane protein) and 

an associated cytochrome c peroxidase (Helland et al., 2008; Ve et al., 2012), or close analogs 

corAB (copper-repressible protein) (Berson & Lidstrom, 1997; Johnson et al., 2014), that both 

encode for outer membrane proteins that import extracellular copper.  A passive porin-dependent 

mode of copper uptake has also been proposed based on inhibition studies (Balasubramanian et 

al., 2011). 
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Figure 1.17. Copper uptake strategies found in methanotrophs.  Cop, copper resistance; Cor, 
copper-repressible protein; Mbn, methanobactin; Mop, Methylococcus outer membrane protein. 

 

1.3.1.1. CopCD in methanotrophs 

copC and copD encode for a periplasmic copper-binding protein and inner membrane 

protein, respectively, and are part of the operon copABCD that is responsible for copper 

resistance in various bacteria (Cha & Cooksey, 1993; Koay et al., 2005).  The CopC and CopD 

pair is one of several strategies by which methanotrophs appear to import copper.  There are two 

binding sites in CopC, each for Cu(I) and Cu(II), that varies between organisms (Lawton et al., 

2016).  In methanotrophs, CopC contains one Cu(II) binding site as opposed to two binding sites 

observed in some nonmethanotrophs (Koay et al., 2005; Lawton et al., 2016).  The copper 

binding affinity also varies depending on the coordination of the binding sites.  In a 

Gammaproteobacteria Pseudomonas syringae pathovar tomato, the dissociation constants for the 

Cu(I) and Cu(II) binding sites are 10-13 and 10-15, respectively (Koay et al., 2005), and in 

Pseudomonas fluorescens SBW25, 10-17.2 for the single Cu(II) binding site (Wijekoon et al., 

2015). 
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It has been proposed that copD is directly involved in the copper switch that regulates the 

expression of pMMO and sMMO in copper replete/deplete conditions based on the disrupted 

copD found in a mutant Msn. trichosporium OB3b that constitutively expresses sMMO (Kenney 

et al., 2016b).  However, deletion mutants of Msn. trichosporium OB3b lacking copCD or 

copCD and mbnAN still exhibited the copper switch (Gu et al., 2017b).  Copper uptake by these 

mutants was also comparable to that of the wild-type, indicating redundancy of copper uptake 

systems in this organism (Gu et al., 2017b).  In addition, copCD (ADVE02_v2_10396, 

ADVE02_v2_10395) is mildly upregulated in the presence of copper, indicating that copCD 

most likely has a minor role in the copper switch (Gu et al., 2017b; Gu & Semrau, 2017).  In 

support of this conclusion, the complete copCD pair (MCA0808, MCA0807) in the 

Gammaproteobacteria methanotroph Mcc. capsulatus Bath is not differentially expressed in 

response to copper, though a lone copC (MCA2170) is upregulated in the presence of copper 

(Larsen & Karlsen, 2016).   

 

1.3.1.2. MCA2590/MopE and CorAB in Gammaproteobacteria methanotrophs 

Fjellbirkeland et al. (1997) found five proteins exclusive to the outer membrane fraction 

of a Gammaproteobacteria methanotroph, Mcc. capsulatus Bath – MopA-E (Methylococcus 

outer membrane protein).  The surface-exposed MopE was later found to have a truncated form, 

MopE*, that consists of the C-terminal region of MopE and is excreted to the surrounding 

(Fjellbirkeland et al., 2001).  Both forms of MopE are expressed under low copper-to-biomass 

conditions (Karlsen et al., 2003).  MopE* contains a novel protein fold and mononuclear copper-

binding site, where copper is coordinated by two imidazoles of His132 and His203, oxygen ligand 

of a water molecule, and the N1 atom of the unique kynurenine130 formed via post-translational 
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oxidation of Trp130 (Fjellbirkeland et al., 2001; Helland et al., 2008).  This mononuclear copper-

binding site has copper occupancy of approximately 0.65 and binds Cu(I) with high affinity as 

determined via competition experiments using Bathocuproine (Kd < 10-20 M) (Helland et al., 

2008; Ve et al., 2012).  MopE* can also bind up to two Cu(II) ions at the weaker mononuclear 

binding sites thought to be in the first 24 N-terminal amino acid residues (Kd in micromolar 

range) (Ve et al., 2012).  The only protein identified to be similar to MopE to date is CorA, a 

membrane-bound copper transporter found in another Gammaproteobacteria methanotroph, 

Methylomicrobium album BG8 (Berson & Lidstrom, 1997).  CorA is much smaller than MopE 

or MopE* (28.5 kDa vs 64/45 kDa), and thus shows similarity only to the C-terminal of MopE, 

or the secreted MopE* (Berson & Lidstrom, 1997; Fjellbirkeland et al., 2001).  However, the two 

histidine residues and kynurenine are all conserved in CorA (His64, His114, Kyn62) and the overall 

structure of CorA is similar to that of MopE* (Johnson et al., 2014).  Disruption of corA in Mmc. 

album BG8 resulted in poor growth (Berson & Lidstrom, 1997), and in Mtv. alcaliphilum 20Z, 

lack of growth in methane that was relieved by growth on methanol (Shchukin et al., 2011).  In 

addition, MopE and CorA are copper repressible and bind copper with high affinity (Kd < 10-12 

M – 10-20 M) (Helland et al., 2008; Johnson et al., 2014), all indicative of a crucial role of MopE 

and CorA in copper homeostasis and acquisition. 

Immediately upstream of mopE is an open reading frame (MCA2590) encoding for a 

surface-associated di-heme cytochrome c peroxidase (SACCP), a subfamily of bacterial di-heme 

cytochrome c peroxidase (BCCP) family proteins (Karlsen et al., 2005).  This SACCP is exposed 

to the surface rather than the periplasm and has a much longer amino acid sequence as compared 

to other BCCPs (Karlsen et al., 2005).  A homolog, corB, is found immediately downstream of 

corA in Mmc. album BG8, which encodes for an SACCP that is associated with the outer 
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membrane and exposed to the periplasm (Karlsen et al., 2010).  Both MCA2590 and CorB are 

similar to a tryptophan-modifying, methylamine utilizing protein MauG, another member of the 

BCCP family (Wang et al., 2003; Karlsen et al., 2005), and as such, MCA2590 was speculated to 

convert Trp130 to Kyn130 in MopE and CorA (Helland et al., 2008; Karlsen et al., 2010).  

MCA2590 with mopE and corA with corB comprise operons regulated under a promoter 

upstream of MCA2590/corA, and expression of these genes are upregulated under low copper-

to-biomass conditions (Karlsen et al., 2005, 2010).  So far, the MCA2590/MopE and CorAB 

homologs were only identified in methanotrophs, specifically in some Gammaproteobacteria 

methanotrophs, suggesting a specific strategy used to compete for copper (Table 1.2). 

 

1.3.1.3. Methanobactin in Alphaproteobacteria methanotrophs 

In the 1990s, researchers found evidence of peptide-based extracellular copper-binding 

compounds in some methanotrophs (Zahn & DiSpirito, 1996; DiSpirito et al., 1998; Téllez et al., 

1998), which was later termed methanobactin (MB) (Kim et al., 2004).  MB was first purified 

and crystallized from Msn. trichosporium OB3b (Kim et al., 2004).  This copper-binding 

compound, or chalkophore, was found to be a ribosomally synthesized post-translationally 

modified polypeptide with two oxazolone rings, each with an associated thioamide group that 

collectively serve to bind copper as Cu(II) (Figure 1.18) (Choi et al., 2006; El Ghazouani et al., 

2011).  The copper is coordinated via the N2S2 ligand set with a distorted tetrahedral geometry 

(Kim et al., 2004; Choi et al., 2006).  Upon binding to MB, Cu(II) is reduced to Cu(I), which is 

then bound with a higher affinity, potentially to prevent uncontrolled, toxic redox reactions 

within the cell (El Ghazouani et al., 2011, 2012).  The reductant is as yet unidentified, although it 
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has been speculated that water may serve as the electron source, though it has not been 

experimentally proven (Krentz et al., 2010). 

Later, other MBs were identified and characterized from Methylocystis sp. SB2 (Krentz et 

al., 2010), Methylocystis hirsuta CSC1, Methylocystis strain M, Methylocystis rosea SV97 (El 

Ghazouani et al., 2012), Methylosinus sp. LW4 (Kenney et al., 2016a), and Methylosinus 

sporium NR3K (Baslé et al., 2018), all belonging to the Methylocystaceae family of the 

Alphaproteobacteria class (Figure 1.19).  This led to a classification of MBs based on primary 

and secondary structures into two general groups, i.e., Group I and Group II MBs, represented by 

Msn. trichosporium OB3b and Methylocystis sp. SB2, respectively (Kim et al., 2004; Krentz et 

al., 2010).  Both Group I and II MBs have two heterocyclic rings with associated enethiol groups 

responsible for copper binding, and the C-terminal or B ring is always an oxazolone (DiSpirito et 

al., 2016).  However, there are significant differences between Group I and II MBs as well.  

First, Group I MBs have an N-terminal oxazolone ring, or in one case (for Msn. sporium NR3K), 

a pyrazinedione ring, whereas Group II MBs have an N-terminal imidazolone or pyrazinedione 

ring (Figure 1.19).  Second, Group I MBs form a dicyclic structure after binding copper via the 

internal disulfide bridge, while Group II MBs lack this bridge and form a hairpin shape (Figure 

1.18) (Behling et al., 2008; Baral et al., 2014).  Third, Group II MBs characterized so far are 

sulfonated (Krentz et al., 2010; El Ghazouani et al., 2012; DiSpirito et al., 2016; Semrau & 

DiSpirito, 2019), and such modification appears to enhance copper binding (El Ghazouani et al., 

2012).  Fourth, Group I MBs have to date only been purified/characterized from methanotrophs 

of the Methylosinus genus, while Group II MBs have only been purified/characterized from 

Methylocystis species, though bioinformatic analyses suggest that some methanotrophs have the 

genes to synthesize both forms of MB. 
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Figure 1.18. Structures of Groups I and II methanobactins (MB).  Note that MB from Msn. 
trichosporium OB3b (Group I MB) has a dicyclic structure, while MB from Methylocystis sp. 

SB2 (Group II MB) has a hairpin-like form when copper is bound. 
 

 

 
Figure 1.19. Primary structures of characterized Group I and II methanobactins.  oxa, oxazolone; 

pyr, pyrazinedione; imi, imidazolone. 
 

Methylosinus trichosporium OB3b Methylocystis sp. SB2
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Initially, it was hypothesized that due to the presence of heterocyclic rings in MB, this 

modified polypeptide was created via a non-ribosomal polypeptide synthase much like how 

siderophores are produced (Crosa & Walsh, 2002; Balasubramanian & Rosenzweig, 2008).  

Subsequent acid digestion assays, however, suggested that these rings may in fact be derived 

from a dipeptide sequence, and that one of these amino acids was likely a cysteine (Krentz et al., 

2010), i.e. MB was more likely a ribosomally synthesized post-translationally modified 

polypeptide.  Scanning of the genome of Msn. trichosporium OB3b identified one gene, mbnA, 

that appeared to encode for the polypeptide precursor of mature MB.  This polypeptide included 

both a leader and a core peptide with a potential cleavage site, indicating that the mature product 

was secreted.  Knock-out of mbnA indicated that it did indeed encode for the precursor of MB as 

no production was observed in such a mutant (Semrau et al., 2013). 

mbnA is part of gene cluster that includes many genes with functions either 

experimentally validated or presumed based on bioinformatic comparisons (Figure 1.20 and 

Table 1.4).  For all identified MB gene clusters in methanotrophs, immediately adjacent to mbnA 

are two genes, mbnBC, that appear to encode for proteins required for the formation of the C-

terminal oxazolone ring from an XC dipeptide (Kenney et al., 2018).  In addition, all identified 

MB gene clusters in methanotrophs have mbnM (believed but not proven to be responsible for 

MB secretion) and mbnT (shown to encode a TonB-dependent transporter responsible for MB 

uptake in at least Msn. trichosporium OB3b) (Gu et al., 2016a). 

 



 

 57 

 

Figure 1.20. Identified methanobactin gene clusters from methanotrophs with available genome 
sequences.  Four genes are found in each cluster with consistent synteny, i.e. mbnA (in red, 

encoding for the precursor polypeptide of MB); mbnB and mbnC (in shaded and solid orange, 
involved in ring synthesis); and mbnM (black shaded, believed to be responsible for MB 

secretion).  A gene encoding for a TonB-dependent transporter (in purple; mbnT) responsible for 
MB uptake is also found in each cluster, but location varies.  Other genes are also often found in 
MB gene clusters, but are not consistently co-located, including mbnIR (in shaded and solid blue, 
encoding for an extracytoplasmic sigma factor and membrane sensor protein, respectively) and 

mbnPH (in shaded and solid green, encoding for a putative diheme cytochrome c peroxidase and 
its partner protein).  Group I MB gene clusters frequently, but not consistently include mbnN (in 

white, encoding for an aminotransferase).  All Group II and many Group I MB gene clusters 
include mbnF (in solid brown, encoding for a putative FAD-dependent oxidoreductase).  Several 

but not all Group II MB gene clusters have mbnS (in shaded brown, putatively encoding for a 
sulfotransferase). 

Several other genes are also often found in MB gene clusters, but are not consistently co-

located, including mbnIR (encoding for an extracytoplasmic sigma factor and membrane sensor 

protein, respectively) and mbnPH (encoding for a di-heme cytochrome c peroxidase and its 

partner protein).  It has been suspected that MbnIR play a role in regulating expression of mbn 

genes via interaction with MbnT (Kenney & Rosenzweig, 2013), but experimental data cast 
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doubt on this conclusion (Gu et al., 2016a).  Thus, the role of these two genes in MB production 

is still an open question. Further, it has been speculated that MbnPH may play a role in the 

formation of the heterocyclic rings in MB and/or aid in copper release from MB (Kenney & 

Rosenzweig, 2018) but this has yet to be examined in any detail.  It should also be noted that 

several MB gene clusters lack mbnPH (Figure 1.20), suggesting that these two genes are either 

not critical for MB production/copper release or that homologs elsewhere in the genome of 

various methanotrophs may serve in their place. 

 

Table 1.4. Known or putative role of various genes in methanobactin biosynthesis. 
Gene Known or putative function Reference 
mbnA Precursor polypeptide of methanobactin Semrau et al., 2013 
mbnB Involved in synthesis of C-terminal oxazolone ring Kenney et al., 2018 
mbnC Involved in synthesis of C-terminal oxazolone ring Kenney et al., 2018 
mbnM Putative mechanism of MB secretion?  
mbnP Di-heme cytochrome oxidase; may be involved in ring formation and/or 

copper release? 
 

mbnH Partner protein of mbnP  
mbnI Extracytoplasmic sigma factor, possible role in gene regulation?  
mbnR Membrane sensor protein, possible role in gene regulation?  
mbnT TonB-dependent transporter, required for MB uptake Gu et al., 2016 
mbnF Putative FAD-dependent oxidoreductase, possible role in formation of N-

terminal imidazolone/pyrazinedione ring? 
 

mbnN Aminotransferase, required for formation of N-terminal oxazolone ring Gu et al., 2017 
mbnS Putative sulfotransferase, required for sulfonation of threonine in MB?  

 

For Group I MBs with an N-terminal oxazolone ring (e.g., Msn. trichosporium OB3b), an 

aminotransferase (E.C.2.6.1.x) encoded by mbnN is critical for the formation of this ring (Gu et 

al., 2017a).  Not all MB gene clusters putatively encoding for a Group I MB, however, include 

mbnN, suggesting that methanotrophs with these clusters may not have an N-terminal oxazolone 

ring, e.g., like that found in Msn. sporium NR3K (Figure 1.19).  However, it should be noted that 

the genome of this strain is not available (Baslé et al., 2018).  Alternatively, homologs of mbnN 
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that could serve in its place are found in methanotrophic genomes (data not shown), and it has 

been shown that other aminotransferases can fulfill the function of MbnN (Park et al., 2018).   

All identified Group II MB gene clusters in methanotrophs include mbnF, encoding for a 

putative FAD-dependent oxidoreductase.  It is thus tempting to speculate that mbnF is involved 

in the formation of N-terminal imidazolone/pyrazinedione ring in Group II MBs, but it must be 

noted that no experimental data have been published showing that this is indeed the case.  It has 

been suggested that mbnF is required for the formation of the N-terminal pyrazinedione ring 

from an oxazolone precursor (Kenney & Rosenzweig, 2018), but as mbnN has been shown to be 

necessary for formation of this ring and most Group II MB gene clusters lack mbnN (although 

methanotrophs have aminotransferases encoded elsewhere in their genome; data not shown), 

such a conclusion should be considered at best tentative without more explicit empirical 

evidence.  Finally, many, but not all MB gene clusters presumed to encode for Group II MBs 

also have mbnS, encoding for a putative sulfotransferase believed (but not experimentally 

shown) to sulfonate threonine that is combined with a cysteine to form the C-terminal oxazolone 

ring. 

Some methanotrophs appear to have multiple MB gene clusters encoding for both Group 

I and II MBs, i.e., Mct. parvus OBBP, Methylocystis sp. LW5, Methylosinus sp. LW3, 

Methylosinus sp. R-45379, and Methylosinus sav2.  To date, neither expression of any of these 

genes nor purification of MB from any of these strains has been reported.  As such, it is unknown 

if these methanotrophs produce either or both general forms of MB, and if so, under what 

conditions.  It should also be stressed that mbnIR and mbnPH are not part of several of these 

identified MB gene clusters; rather homologs of these genes are found some distance away.  It is 

thus unclear: (1) what role these genes have in MB production, (2) if the lack of co-localization 
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with mbn genes with clearly identified function affects the ability of these strains to produce MB, 

or (3) if MB made by these strains is used as a chalkophore or if it serves some other purpose as 

MB appears to be a “moon-lighting” protein with multiple functions.   

Finally, it is important to note that to date, core genes for MB biosynthesis (i.e. 

mbnABCM) have only been found in the genomes of Methylosinus and Methylocystis species and 

that not all methanotrophs in these genera have these genes (Table 1.1).  Indeed, mbn genes are 

only found in ~10% of sequenced methanotrophic genomes (Dennison et al., 2018).  Such data 

indicate that MB production is a not a universal trait of methanotrophs.  Rather, other 

methanotrophs appear to rely on alternative copper-uptake systems for copper collection, or even 

‘steal’ MB, suggesting that there may be copper competition between methanotrophs as seen 

between methanotrophs and denitrifying bacteria (Chang et al., 2018).  We also note that the 

presence of mbn genes is not strictly correlated with the ability to express different forms of 

MMO, i.e. some methanotrophs with mbn genes can only express pMMO, while others can 

express both sMMO and pMMO (Table 1.1). 

For those methanotrophs shown to produce MB, it is clear that it plays an important role 

in copper uptake, but it has also been found that methanotrophs have remarkable redundancy in 

their ability to sequester copper.  That is, methanotrophs defective in MB production (i.e., knock 

outs of either mbnA or the MB gene cluster from mbnA through mbnN), were still able to sense 

and collect copper (Semrau et al., 2013; Gu et al., 2017b).  Interestingly, the ability to express 

MB appears to amplify the cells’ response to copper (Semrau et al., 2013).  

Further, a mutant where mbnT, encoding for a TonB-dependent transporter was knocked-

out showed that this mutant, although unable to take up MB, was able to sequester copper by 

some alternative means (Gu et al., 2016a).  If, however, exogenous MB was added to this mutant 
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to ‘soak-up’ all available copper, copper uptake was prevented, indicating that this transporter 

was indeed required for uptake of copper associated with MB.  It may be that methanotrophs that 

express MB utilize it as a high affinity copper uptake system when copper is limiting, but have 

other, lower-affinity systems when it is not.  The identity and nature of these low-affinity 

systems is still elusive.  It has been hypothesized that copCD, encoding for an inner membrane 

and periplasmic copper binding protein respectively, may be involved in copper uptake (Kenney 

et al., 2016b).  Knock-out of these genes, either alone or in conjunction with genes for MB 

biosynthesis, however, does not prevent copper uptake, suggesting that they are either not 

involved in copper uptake, or that there are other, as yet unidentified, copper uptake systems in 

methanotrophs (Gu et al., 2017b).  

 

1.3.2. Rare earth element uptake system 

1.3.2.1. Lanmodulin and related transporters 

Recently, a periplasmic REE-binding protein lanmodulin (LanM), similar to Ca2+-binding 

protein calmodulin (CaM), with high affinity for REE (Kd,app ~ 5 pM) was characterized in Mrr. 

extorquens AM1 .  CaM contains EF hands, which are metal-binding motifs that occur in pairs, 

i.e. two, four or six, and is composed of a helix-loop-helix structural unit (Gifford et al., 2007).  

In CaM, the residues at positions 1, 3, 5, 7, and 9 of the EF loop serve as coordinating groups, as 

well as the bidentate carboxylate ligand of the acidic amino acid in the exiting helix, or position 

12 with respect to the EF loop (Gifford et al., 2007).  In addition, the EF hand pair forms a 

hydrophobic core once bound to Ca2+ and conformation of CaM is changed, contributing to 

increased stability (Figure 1.21).  However, there are three distinct characteristics of the metal-

binding EF hands in LanM compared to canonical EF hands found in CaMs that contribute to 
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enhanced selectivity of REEs over Ca2+: (1) aspartate residue in the ninth position, (2) asparagine 

rarely found in the first position, (3) proline residue in second position, and (4) relatively short 

intermotif sequences spanning 12 or 13 residues between each EF hand (Figure 1.22) (Cotruvo et 

al., 2018).    

 
 

Figure 1.21. The solution structure of Y3+-LanM and Ca2+-CaM (Cook et al., 2019).  (A) Ribbon 
diagrams representing the 12 lowest-energy models of Y3+–LanM.  Y3+ ions are shown as teal 
spheres, and EF-loops are colored gray.  For the sake of clarity, the C-terminal His6 tag is not 

shown.  (B) Ribbon diagrams representing the three deposited models of Ca2+–CaM.  Ca2+ ions 
(green spheres) and coordinating residues (sticks) are shown, and the flexible linker is indicated 

as a dashed line.  CaM’s EF3/EF4 pair is shown in an orientation similar to that of LanM’s 
EF2/EF3 pair in panel A.  (C) Y3+ coordination by the Ln3+-binding sites of EF1–EF3 in LanM.  

Metal-coordinating residues are labeled.  Because of intermediate exchange in the 1H–15N HSQC 
spectrum, Y3+ was not modeled into EF4, although this site was saturated under the NMR 

solution conditions. 
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Figure 1.22. Amino acid sequence alignment of lanmodulin, human calmodulin, and an exported protein of unknown function from 
Methylomarinum vadi IT-4.  In lanmodulin, aligning residues are shown in blue, differing residues in red, unique Pro residues that are 

completely conserved in a box.  In human calmodulin, residues providing side chain Ca2+ ligation are shown in red and residues 
involved in hydrogen-bonding network to a metal-coordinated water molecule are shown in green.  Number in parentheses indicates 

number of residues between EF-hands and LS the leader sequence.

LanM EF hand motif      .... DPDXDXXXDXXE .... DPDXDXXXDXXE .... DPDXDXXXDXXE .... DPDXDXXXDXXE ....

(12)              (13)              (12)
Mrb. extorquens AM1 (LS) .... DPDKDGTIDLKE .... DPDKDGTLDAKE .... DPDNDGTLDKKE .... NPDNDGTIDARE .... 

Mcs. acidiphila B2 (LS) .... DKDHDGTLDLAE .... NKDSDDTLDPKE .... DPDNDGTLSKDE .... DVDNDGTLDAKE ....
Mcs. aurea KYG (LS) .... DKDNDGTLDLAE .... NKDPDDTLDAKE .... DPDDDGTLTKDE .... DANKDGVLTGKE ....

Mcl. silvestris BL2_1 (LS) .... DPDNDGTVSLAE .... DPDKDGTLDAKE (11) DPDKDGTVDAKE .... DPDKDGTLDAAE .... 
Mcl. silvestris BL2_2 (LS) .... DKDADNTLDLAE .... NKDSDDTLDRAE .... DPDKDGTLTKAE .... DVDNDGTLEAKE .... 

Mfr. stellata AR4 (LS) .... DTDKDGTLDLAE .... DKDSEGTVDAKE .... DPDSDKTLTKDE .... DPDSDGTLTAKE .... 

Methylocystis sp. SB2 (LS) .... DTDDDGTVDLKE .... EKDSDGTVDIKE .... DPDNDGTLSKDE .... DPDNDGTLDAKE .... 
Methylocystis sp. SC2 (LS) .... DTDDDGTVDLKE .... EKDADGTVDLKE .... DPDNDGTLSKDE .... DPDNDGTLDAKE .... 

Methylocystis sp. Rockwell (LS) .... DTDNDGTVDLNE .... ETDNDGTIDRKE .... DPDNDGTLTKDE .... DPDNDGTLDEQE .... 
Mct. rosea SV97 (LS) .... DTDDDGTVDLKE .... ETDSDGTVDIKE .... DPDNDGTLSKDE .... DPDNDGTLDAKE ....
Mct. parvus OBBP (LS) .... DTDNDATVDINE .... EKDNDGTLDSKE .... DPDNDGTLDKNE .... DPDNDGTLDDKE .... 

Mct. bryophila S284_1 (LS) .... DTDNDGTLDLDE .... QKDQDDTLDPKE .... DPDNDKTLSKEE .... DTENDGTLDAKE .... 
Mct. bryophila S284_2 (LS) .... DADNDGTLDLDE .... NKDRDDTLDRDE .... DPDKDKTLSKEE .... DIDGDGTLDAKE .... 
Methylocystis sp. LW5 (LS) .... DTDNDGTLDLAE .... EKDNDGTVDRKE .... DPDDDKTLTKEE .... DKDNEGTLDAKE .... 
Methylosinus sp. LW3 (LS) .... DTDNDGTLDLAE .... EKDNDGTVDRKE .... DPDDDKTLTKEE .... DKDNEGTLDAKE .... 
Methylosinus sp. LW4 (LS) .... DTDNDGTLDLAE .... EKDNDGTVDRKE .... DPDDDKTLTKEE .... DKDDEGTLDAKE .... 
Methylosinus sp. PW1 (LS) .... DTDNDGTLDLAE .... EKDNDGTVDRKE .... DPDDDKTLTKEE .... DKDDEGTLDAKE .... 

Msn. trichosporium OB3b (LS) .... DTDNDGTLDLAE .... EKDSDKTLDQKE .... DPDEDGTITKDE .... DKDNEGTLDAKE .... 
* * * *:.: *      : * : *:*  *      ***.* *:   *      : : :*.:   *

(24)              (25)              (25)
Homo sapiens CaM .... DKDGDGTITTKE .... DADGNGTIDFPE .... DKDGNGYISAAE .... DIDGDGOVNYEE ....

(12)              (20)              (16)              (16)              (12)
Mmr. vadi IT-4 (LS) .... DSNNDGQVTEEE .... DSDKNGSVSTEE .... DSDRDGNVSKQE .... DKNQDGVLSEEE .... DKNNDGQISREE .... DANNDKVVSGDE ....

LanM
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LanM undergoes a conformational change from a disordered structure to an ordered one 

in a highly REE-selective manner (Cotruvo et al., 2018; Cook et al., 2019).  Of the different 

coordinating ligands, Asp in the first and ninth positions and Pro in the second position seem to 

contribute to REE binding affinity and REE selectivity, respectively.  That is, EF4, which lacks 

the Asp in the first position, has weaker affinity for REE binding (picomolar vs micromolar), and 

LanM exhibits extremely high selectivity for REE over Ca2+ (~108-fold selectivity), which is 

compromised when Pro2 is substituted with Ala (Cotruvo et al., 2018).  La3+, Ce3+, Pr3+, Nd3+, 

and Sm3+ induce conformational change in LanM at the lowest concentration, suggesting LanM 

may be involved in discriminating between early and late REEs (Cotruvo et al., 2018).  

Interestingly, La3+ through Nd3+ supports growth of mxaF mutant strains of Mrr. extorquens 

AM1 and Msn. trichosporium OB3b, and also causes differential expression of xox and mxa, 

whereas Sm3+, a smaller/later REE does not or does so poorly (Gu et al., 2016b; Vu et al., 2016). 

lanM-like genes were also found in Methylobacterium and Bradyrhizobium genomes 

(Cotruvo et al., 2018), and was found to be upregulated 5-fold by La3+ in Methylobacterium 

aquaticum 22A (Masuda et al., 2018).  The deletion of lanM in Mrr. extorquens PA1 DmxaF 

mutant did not cause adverse effects on growth on methanol in the presence of REE, although 

deletion of the adjacent TonB-dependent outer membrane receptor and ABC transporter led to no 

or diminished growth, respectively (Table 1.5) (Ochsner et al., 2019).  This was again 

demonstrated in Mrr. extorquens AM1, suggesting these uptake systems are crucial for REE-

dependent growth (Roszczenko-Jasińska et al., 2020).  The importance of a TonB-dependent 

outer membrane receptor in REE-dependent growth suggests the existence of an excreted REE 

chelator, a lanthanophore, as many known substrates of the transporter are organic molecules or 

metal ions bound to chelators (Schauer et al., 2008; Ochsner et al., 2019; Daumann, 2019).  
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Moreover, recent studies provide evidence for import of REEs into the cytoplasm, despite their 

crucial role in the periplasm with Xox-MeDH (Mattocks et al., 2019; Roszczenko-Jasińska et al., 

2020).  Mattocks et al. (2019) have demonstrated that early REEs, specifically La3+ – Nd3+, are 

imported into the cytoplasm of Mrr. extorquens AM1 by using a LanM-based fluorescent sensor.  

La3+ uptake was also visualized via transmission electron microscopy in wild-type and mutant 

strains of the same organism, where La3+ was taken up and possibly stored complexed with 

phosphates within the cytoplasm of the wild-type, La3+ was not taken up by mutant lacking 

TonB-dependent transporter, and La3+ was localized in the periplasm of a mutant with disrupted 

ABC transporter (Roszczenko-Jasińska et al., 2020).   

 

Table 1.5. lut (Ln utilization and transport) gene cluster in Methylorubrum extorquens AM1 
(MexAM1_META1) (Roszczenko-Jasińska et al., 2020). 

Accession No. Gene Product 
p1778 lutA ABC transporter-periplasmic binding component 
p1779 lutB Exported protein 
p1781 - Periplasmic protein 
p1782 lutE ABC transporter-ATP binding component 
p1783 lutF ABC transporter-membrane component 
p1784 lutG Exported protein 
p1785 lutH TonB-dependent receptor 
p1786 lanM Lanmodulin 
p1787 lutI Periplasmic protein of unknown function 
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Figure 1.23. Model for REE uptake and utilization in Methylorubrum extorquens (Cotruvo, 
2019).  Unknown/postulated functions (the exact ligand for p1778, functions of p1779 and 
p1781, and LanM-MxcQ interaction) are indicated with parentheses and question marks. 

 

The role of LanM in REE uptake and/or “REE switch” is not entirely clear, as it seems to 

serve as an auxiliary system and is not critical in REE-dependent growth of methylotrophs.  

Rather, the highly REE-selective conformational change of LanM suggests a role in REE 

sensing, potentially as part of a two-component system (Figure 1.23) (Cotruvo, 2019).  In 

addition, as LanM was first identified as a co-eluted fraction with XoxF at a 1:1 ratio, it may be 

involved in the activity of Xox-MeDH (Cotruvo et al., 2018).  However, it is interesting to note 

that not all methanotrophs that have Xox-MeDH also have LanM, though all 

Alphaproteobacteria methanotrophs do possess LanM (Table 1.2).  The REE switch in 

Alphaproteobacteria methanotrophs may involve different components than those of other 
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methanotrophs.  It is thus important to identify these components of the REE uptake and/or 

switch, including the putative lanthanophore. 

 

1.4. Regulation by metals 

1.4.1. Change in gene expression by copper 

As briefly mentioned before, there exists a “copper switch” that regulates the expression 

and activity of pMMO and sMMO.  That is, in methanotrophs that possess genes for both 

pMMO and sMMO, pMMO is expressed at high copper-to-biomass ratios, whereas sMMO is 

highly expressed at low copper-to-biomass ratios (Stanley et al., 1983; Green et al., 1985).  

Semrau et al. (2013) found that Msn. trichosporium OB3b deletion mutant lacking mmoXYBZDC 

(sMMO minus deletion mutant; SMDM (Borodina et al., 2007)) exhibited an inverted copper 

switch as compared to the wild-type, i.e. pMMO was expressed in low copper-to-biomass ratios, 

and expression decreased with increased copper-to-biomass ratios.  Since the function of the 

structural genes mmoXYBZC were clear, it was proposed that MmoD plays a critical role in the 

copper switch.  This was again demonstrated in a Gammaproteobacteria methanotroph, Mtv. 

buryatense 5GB1C, where an mmoD knock-out mutant exhibited lack of sMMO activity in the 

absence of copper (Yan et al., 2016).  In addition to MmoD, MB also amplify the magnitude of 

the copper switch, as DmbnA::GmR mutants exhibited a much weaker switch (Semrau et al., 

2013).  The most recent model of the copper switch includes the mmo regulators MmoG and 

MmoR as well as MbnIR, hypothesized to act as a sensor and sigma factor in regulating mbn 

expression via interaction with MbnT (Figure 1.24) (Kenney & Rosenzweig, 2013; DiSpirito et 

al., 2016).  Here, MbnI is proposed as responsible for inducing expression of the mbn genes.  

MB, MmoR, and MmoG induce expression from the s54 promoter upstream of mmoX, and MbnI 



 

 68 

induces expression from the s70 promoter upstream of mmoY.  In this model, mmoD is 

constitutively expressed with respect to copper, and can repress the pmo operon and induce mbn 

operon in the absence of copper or associate with copper in its presence.  However, the copper 

switch may be more complex than suggested by the model and some MB-producing 

methanotrophs, such as Methylocystis sp. SB2 (Table 1.2, pg. 19), do not possess mmoD.  Thus 

further investigation is required to elucidate the mechanism of the copper switch. 

 

 

Figure 1.24. Model for the regulation of gene expression in mmo, pmo, and mbn gene clusters as 
a function of copper, MB, and MbnI (DiSpirito et al., 2016).  (A) Low copper/biomass ratio; (B) 

high copper/biomass ratio. 
 

 

1.4.2. Change in gene expression by rare earth elements 

As aforementioned, two alternative enzymes exist that degrade methanol in the central C1 

metabolism of methanotrophs and nonmethanotrophic methylotrophs – Mxa-MeDH and Xox-

MeDH.  Both MeDHs are located in the periplasm and dependent on a pyrroloquinoline quinone 

cofactor. Expression of the mxa and xox operons are regulated by the presence of REE, thus 



 

 69 

indicating the presence of an “REE switch” in methylotrophs with both operons, similar to the 

“Cu switch” that regulates the expression of pMMO and sMMO in methanotrophs. 

The redundancy in enzymes involved in carbon metabolism by methanotrophs and 

nonmethanotrophic methylotrophs can be attributed to strategies for survival and competition. 

Either of the two MeDHs can be active depending on metal availability, and also provide a 

competitive advantage to those that express Xox-MeDH against those that express Mxa-MeDH. 

That is, Xox-MeDH exhibits higher catalytic efficiency than Mxa-MeDH due to the REE center 

as opposed to Ca2+ (Pol et al., 2014), resulting in small or no leakage of methanol from 

methanotrophs (Krause et al., 2017a). In addition, nonmethanotrophic methylotrophs were found 

to alter the REE switch in methanotrophs to repress the expression of Xox-MeDH and induce 

that of Mxa-MeDH as a means to cause methanol leakage from the periplasm of methanotrophs 

to the environment (Krause et al., 2017b), showing a critical role of REE switch in microbial 

competition. 

The REE switch also involves other components, some of which are yet to be identified. 

In a nonmethanotrophic methylotroph Mrr. extorquens AM1, expression of the mxa operon is 

regulated by sensor-regulator two-component systems mxcQE and mxbDM, and also an orphan 

response regulator, mxaB (Springer et al., 1997, 1998).  In addition, expression of this operon in 

Mrr. extorquens AM1 is dependent on the presence of xoxF, as deletion of both copies abolished 

the transcription of mxaF (Skovran et al., 2011), a phenomenon again demonstrated in strain 

PA1 (Ochsner et al., 2019).  In a Gammaproteobacteria methanotroph Mtv. buryatense 5BG1C, 

the histidine kinase mxaY upregulates mxaB and mxaF, and downregulates xoxF in the absence 

of REE (Chu et al., 2016).  In addition, a TonB-dependent receptor, LanA, is also required for 

the REE switch and regulates downstream genes in the signaling cascade (Groom et al., 2019).  
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In an Alphaproteobacteria methanotroph Msn. trichosporium OB3b, it was shown that the mxa 

and xox operons are regulated by REE, but Cu can override the REE switch whereby in the 

presence of both Cu and REE, expression of mxaFI is not repressed (Farhan Ul Haque et al., 

2016; Gu et al., 2016b).  Moreover, Xox-MeDH is dominant in the absence of Cu and presence 

of Ce, suggesting Xox-MeDH can replace Mxa-MeDH in sMMO-expressing conditions (Farhan 

Ul Haque et al., 2015a). 

In addition, LanM was proposed as a secondary REE sensing mechanism in some 

methylotrophs that possess the gene encoding for this periplasmic protein (Cotruvo, 2019), and 

TonB-ABC transport system near the lanM were identified to be essential for REE-dependent 

growth (Ochsner et al., 2019; Roszczenko-Jasińska et al., 2020).  The homologous TonB-

dependent receptor is downregulated by 2.8-fold (p = 3.6×10−33) in the presence of REE in the 

Alphaproteobacteria methanotroph Msn. trichosporium OB3b (Gu & Semrau, 2017).  What is 

more interesting is that REEs are imported into the cytoplasm where they may be stored, loaded 

onto Xox-MeDH, and/or directly affect the REE switch (Mattocks et al., 2019; Ochsner et al., 

2019; Roszczenko-Jasińska et al., 2020).  It is yet unknown whether insertion of REE into Xox-

MeDH occurs in the cytoplasm or periplasm, but in the Alphaproteobacteria methylotroph Mrr. 

extorquens, REE must be imported into the cytoplasm in order for xoxF to be expressed 

(Roszczenko-Jasińska et al., 2020).  It was also shown that an ABC transporter is crucial for 

REE- and ethanol-dependent growth in Pseudomonas putida KT2440, belonging to class 

Gammaproteobacteria, suggesting that import of REE into the cytoplasm may be a common 

requirement for REE-utilizing PQQ-dependent alcohol dehydrogenases (Wehrmann et al., 2019).  

So far, it seems the REE switch is different between members of the Alpha- and 

Gammaproteobacteria classes, as (1) LanM is only found in Alphaproteobacteria and (2) the 
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TonB-dependent receptor crucial for REE-dependent growth is significantly different between 

representatives of each class.  However, it is also possible that analogous systems exist in both 

classes that function similarly. 

 

1.5. Applications of methanotrophy 

Methanotrophs can be used in various environmental, industrial, and medical 

applications.  As methanotrophs use methane as its sole source of carbon and energy, 

methanotrophy can be stimulated to mitigate CH4 emission and also remove atmospheric CH4 in 

some cases.  Also, as mentioned earlier, MMOs have been found to be nonspecific, and therefore 

can bind and oxidize alkanes up to C8, ethers, cyclic alkanes, aromatic carbons, and halogenated 

carbons (Colby et al., 1977; Burrows et al., 1984; Hanson et al., 1990).  As such, cometabolism 

of organic pollutants with substrate CH4 can achieve bioremediation of contaminated sites.  

Methanotrophy can also be utilized to produce value-added products such as single cell protein 

for animal feed (Bothe et al., 2002), poly-β-hydroxybutyrate (PHB) for bioplastic (Asenjo & 

Suk, 1986), or lipids for biodiesel (Conrado & Gonzalez, 2014; Fei et al., 2014), due to the 

unique physiology and low-cost substrate – CH4.  Some important applications of methanotrophs 

will be discussed in detail below. 

 

1.5.1. Mitigation of greenhouse gas emissions 

Methane is a greenhouse gas (GHG) that is 28 times more effective than carbon dioxide 

at absorbing infrared radiation and its atmospheric concentrations are continuing to rise (IPCC, 

2014).  Methanotrophs can be applied to control methane emission from significant sources such 

as natural landfills and coal mines by stimulating methanotrophic activity (Semrau et al., 2010; 
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US EPA, 2020).  Various engineered systems have been developed and validated to reduce CH4 

emissions.  Examples include ‘biocovers’ and ‘biofilters’ that can be either applied over the 

surface of the landfill, or constructed as a separate unit to pass through CH4 gas streams (Huber-

Humer et al., 2008; Scheutz et al., 2009).  The latter can also be applied to CH4 emitted from 

animal husbandry and coal mine ventilation (Scheutz et al., 2009), all significant sources of CH4 

(US EPA, 2020). 

In addition to mitigating CH4 emission at the source, methanotrophs inhabiting 

unsaturated soil can also act as a significant sink for atmospheric CH4 (Conrad, 2009).  The 

existence of methanotrophs that can utilize atmospheric CH4 was discovered in the 1990s 

(Whalen & Reeburgh, 1990; Yavitt et al., 1990; Bender & Conrad, 1992), and were subsequently 

identified as uncultured clades within the Alpha- and Gammaproteobacteria via radiolabeling 

experiments (Holmes et al., 1999; Roslev & Iversen, 1999; Knief et al., 2003).  These clades 

were termed upland soil clusters α and γ (USCα and USCγ).  Representatives of these clades 

were elusive for years, until recently, a pure culture of a member of the USCα clade, 

Methylocapsa gorgona MG08, was isolated and characterized (Tveit et al., 2019).  Other 

members of this genus, Mcs. acidiphila and Mcs. aurea, were also found to utilize atmospheric 

CH4, expanding our understanding of soil and methanotrophs as an atmospheric CH4 sink. 

Removal of methane at the source or from the atmosphere is important in mitigating 

global GHG emission.  However, nitrous oxide is a GHG that is almost 10 times more potent 

than CH4 (US EPA, 2020), and emission of N2O may be affected by some methanotrophs.  That 

is, MB can prevent other microbes (e.g. denitrifiers) from collecting copper by binding copper 

with high affinity, causing N2O accumulation (Chang et al., 2018).  Nitrous oxide reductase 

(NosZ), responsible for the conversion of N2O to N2 in denitrifiers, requires copper for its 



 

 73 

activity (Brown et al., 2000).  Thus, stimulating methanotrophy to decrease methane emission 

may inadvertently cause a copper-limited environment for denitrifiers inhabiting the same soil 

environment, thereby increasing N2O emission and net GHG emission.  Therefore, understanding 

copper competition between methanotrophs, denitrifiers, and other microbes dependent on 

copper will support future strategies to mitigate GHG emission. 

 

1.5.2. Methylmercury detoxification via demethylation 

Mercury methylation and demethylation in the environment is governed by biotic and 

abiotic processes.  Mercury can be methylated into the more toxic and bioavailable form – 

methylmercury (MeHg) – by some anaerobic microorganisms harboring the key two-gene 

cluster, hgcAB (Figure 1.25; Gilmour et al., 2013; Parks et al., 2013; Smith et al., 2015).  An 

equally important and significant process is the demethylation of MeHg via MerB, the canonical 

organomercurial lyase, of which the gene belongs to the mer operon that confers mercury 

resistance (Figure 1.26; Weiss et al., 1977; Ogawa et al., 1984; Barkay et al., 2003).  Recently, it 

has been shown that methanotrophs may play an important role in mercury speciation as well as 

toxicity mediation in the environment. 
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Figure 1.25. Proposed Hg methylation pathway including potential sources of C1 units entering 

the reductive acetyl-CoA pathway, methyl group transfer from CH3-H4folate (CH3-THF) to 
cob(I)alamin-HgcA, methylation of Hg(II) by HgcA, and reduction to cob(I)alamin-HgcA by 
HgcB (Parks et al., 2013).  In the absence of Hg, the methyl group is transferred to a different 

unknown substrate, which may be a physiologically relevant metabolite. 
 

 
Figure 1.26. Model of a typical Gram-negative mercury resistance (mer) operon (Barkay et al., 

2003).  The symbol • indicates a cysteine residue.  X refers to a generic solvent nucleophile.  
RSH is the low-molecular-mass, cytosolic thiol redox buffer such as glutathione.  Parentheses 

around gene or protein designations indicate proteins/genes that do not occur in all examples of 
the operon. 
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Specifically, it has been found that MBs, in addition to strongly binding copper, can 

strongly bind other metals, including mercury as Hg(II).  Group I and II MBs from Msn. 

trichosporium OB3b and Methylocystis sp. SB2 will both quickly and irreversibly bind Hg(II) 

even in the presence of copper (Vorobev et al., 2013; Baral et al., 2014).  Hg(II) toxicity is 

significantly reduced when bound by MB, suggesting that MB may have a secondary role in 

protecting microbes from toxic effects of Hg(II) (Vorobev et al., 2013).  In addition, MB enables 

methanotrophs to demethylate a much more toxic and bioavailable form of mercury, 

methylmercury (MeHg), despite the fact that methanotrophs that degrade MeHg do not have 

merB encoding for the canonical organomercurial lyase in their genome (Lu et al., 2017).  

Moreover, Msn. trichosporium OB3b can degrade MeHg at environmentally relevant 

concentrations unlike the canonical MerB, i.e. nanomolar vs micromolar concentrations (Lu et 

al., 2017).  Though methanotrophs that do not have the genes encoding MB biosynthesis, such as 

Mcc. capsulatus Bath, cannot degrade MeHg, MB alone is not sufficient for MeHg degradation 

in methanotrophs (Lu et al., 2017).  Therefore, it appears that MB acts as a delivery mechanism 

for methanotrophs to uptake MeHg, wherein it is degraded by an as-yet-unknown mechanism. 

More interestingly, it was recently shown that MB also affects Hg(II) methylation by the 

mercury-methylating bacteria Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens 

PCA (Yin et al., 2020).  Surprisingly, the Group I MB from Msn. trichosporium OB3b seemed to 

decrease the rates of sorption and internalization, but enhance Hg(II) methylation in both of these 

microbes to varying degrees at moderate concentrations.  The Group II MB from Methylocystis 

sp. SB2 did not affect or impede Hg(II) methylation in these microbes, respectively.  This 

difference may be attributable to the different structure of Cu-MB complex and/or varying 

affinity for Hg(II).  Thus, methanotrophs may affect not only the demethylation of MeHg but 
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methylation of Hg(II) and mercury speciation in the natural habitat.  Thus, understanding the 

mechanism of MeHg degradation by methanotrophs will provide insight into interaction with 

mercury and other microbes in the environment and further facilitate remediation solutions for 

mercury-contaminated sites. 

 

1.5.3. Potential applications of methanobactin 

In addition to binding copper and mercury, MBs will also bind and reduce Au(III), and in 

so doing, they have been observed to produce elemental gold nanoparticles of well-defined size 

distributions at room temperature (Choi et al., 2006; Baral et al., 2014).  In particular, very well-

defined spherical gold nanoparticles were formed with MB from Methylocystis sp. SB2, with the 

mean size of 2.0 ± 0.7 nm (Bandow, 2014).  Such a finding is remarkable for typically 

biosynthesis of gold nanoparticles produces a wide range of particle sizes of varying shapes 

(Narayanan & Sakthivel, 2010; Pourali et al., 2017).  Further, bacterial-mediated gold 

nanoparticle synthesis typically involves whole cells where a variety of electron donors are 

available.  Here, with MB, no reductant was added, and so the source of electrons for gold 

reduction is unclear.  This issue is particularly confounding as Au(III) was not found in solution 

until the Au/MB ratio was greater than two, i.e. at least six electrons were transferred per MB to 

Au(III).  As noted above, the source of electrons has not been explicitly identified, but if it is 

water, it appears that MB can repeatedly oxidize it by an as-yet-unknown mechanism, although 

such a possibility implies that metal-MB complexes, particularly an Au-MB complex, may have 

a very high redox potential.  The resting potential of MBs is high, 550–750 mV (El Ghazouani et 

al., 2012), although the redox potential of metal-bound MB has not been determined.  As 

speculated earlier, forcing a metal such as Cu(II) or Au(III) into a non-preferential ligand 
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arrangement may enhance its redox potential (Krentz et al., 2010).  Regardless of the source and 

mechanism of electron transfer, the finding that MB can produce gold nanoparticles indicates 

that this may be an alternative for their production especially as this occurred spontaneously in 

mild conditions at room temperature.  Such a process could be advantageous as gold 

nanoparticles have many applications in medicine and industry, e.g. as an antimicrobial agent, 

fuel cell development, X-ray imaging, cancer treatment and electronics, among others (Daniel & 

Astruc, 2004; Khlebtsov & Dykman, 2010; Elahi et al., 2018). 

Perhaps the most novel and meaningful application of MB, however, is its potential for 

use in treating copper-related diseases.  That is, there are several medical conditions related to 

the misdistribution of copper in the human body, most notably Wilson's disease.  Individuals 

with this congenital disorder are unable to tolerate copper due to mutations in a specific ATPase 

responsible for secretion of excess copper to the bile.  As a result, they are unable to expel 

copper from the liver, leading to copper buildup that causes severe damage.  Left untreated, this 

disease can lead to complete liver failure as well as copper spillover into brain tissue, leading to 

significant neurological problems.  There is no cure for Wilson's disease, and current therapies 

only limit future damage, i.e. they do not repair damage already incurred (Schilsky, 2001; 

Ferenci, 2005; Ala et al., 2007; Roberts, 2011; Schilsky, 2014).  Wilson's disease is also 

considered to be an ‘orphan’ or ‘rare’ disease according to the US Orphan Drug Act of 1983, i.e. 

a disease with a prevalence of <200,000 people in the United States (Wilson's disease only 

affects roughly 1 in 30,000 people worldwide or ~10,000 people in the United States).  As a 

result, development and testing of alternative therapies for Wilson's disease is limited given the 

small market, and the US Federal Drug Administration Office of Orphan Products Development 

actively seeks to promote development of drugs that treat it.  Initial testing in rodent model 
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indicates that MB is well tolerated and is also singularly effective in preventing copper buildup 

(Lichtmannegger et al., 2016; Zischka et al., 2017; Müller et al., 2018).  Further, it can also 

remove pre-existing copper, leading to liver repair (Lichtmannegger et al., 2016).  Such a finding 

is of particular interest as it indicates that MB may enable Wilson's disease patients to avoid 

having to undergo a liver transplant if severe liver damage occurs.  As there are other copper-

related diseases in humans (e.g. Alzheimer's Disease and BRAF-positive cancers; (Cherny et al., 

2001; Gaggelli et al., 2006; Bush, 2008; Squitti, 2012; Brady et al., 2014; Brewer, 2014; Squitti 

et al., 2014; Gamez & Caballero, 2015)), there is the potential that MB may be useful for these 

medical conditions as well, e.g. through reducing availability of copper required for kinase 

activity that drives tumorigenesis in BRAF-positive cancers or limiting development of 

neuronal-damaging plaques in Alzheimer's disease. 

Finally, one of the initial characteristics identified in MB was its antimicrobial properties, 

i.e. it has been found to inhibit a variety of Gram-positive microbes, including vancomycin-

resistant strains of Staphylococcus aureus, Bacillus thuringiensis, Enterococcus fecalus, as well 

as Listeria monoocytogenes (DiSpirito et al., 2004b; Johnson, 2006).  Of these, the effect of 

copper-MB complexes has been most extensively reported against L. monoocytogenes (Johnson, 

2006), with the minimum inhibitory concentration of copper-MB on the order of 1-5 mM for this 

strain, with reductions in population ranging from ~3 to 5 orders of magnitude.  Further studies 

suggest that copper-MB inhibits respiration of L. monoocytogenes through an as-yet-unidentified 

mechanism, but possibilities include insertion of copper-MB complexes into the cytoplasmic 

membrane that reduces membrane integrity and/or the generation of radicals through 

uncontrolled electron transfer. 
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1.6. Research objectives 

As discussed throughout this chapter, methanotrophy is uniquely regulated by metal 

availability, specifically of copper and REEs.  To unravel the relationship between metals and 

methanotrophs and its effect in situ, there are three specific objectives to this work: 

(1) Investigate the significance of copper and REE uptake in the evolution of methanotrophy. 

(2) Characterize copper competition between methanotrophs mediated by chalkophores. 

(3) Investigate how methylmercury is demethylated by methanotrophs. 
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Chapter 2 Materials and Methods 
 
2.1. Materials 

Chemicals were purchased from Sigma-Aldrich, Inc. (St. Louis, MO) or Fisher Scientific 

Company LLC (Fair Lawn, NJ) as analytical grade or higher.  Growth media and chemical 

required for nucleic acid manipulation were purchased as molecular biology grade or higher and 

nuclease free, respectively.  All solutions and growth media were prepared in Milli-Q water 

(>18.2 MW×cm at 25 °C) and sterilized by autoclaving or filtering using 0.22-µm nylon or PVDF 

filters purchased from Foxx Life Sciences (Salem, NH), as appropriate.  Large volumes were 

filtered using a 0.22-µm PES filtration unit purchased from Thermo Fisher Scientific Inc. 

(Waltham, MA).  Enzymes were purchased from New England Biolabs, Inc. (NEB, Ipswich, 

MA), Invitrogen (Carlsbad, CA), and Bio-Rad (Hercules, CA). 

 

2.2. Cultivation, maintenance, and storage of bacterial strains 

2.2.1. Preparation and transformation of chemically competent E. coli cells 

Chemically competent E. coli cells were prepared using CaCl2 (Cohen et al., 1972; 

Mandel & Higa, 1970).  A single colony from a plate of E. coli was transferred to 3 mL of Luria-

Bertani (LB) medium and grown overnight in a shaking incubator at 37 °C, 220 rpm.  1 mL of 

the overnight culture was transferred to 100 mL of fresh LB medium in a 500-mL Erlenmeyer 

flask, then grown for 2-3 h.  The culture was then cooled on ice for 10 min, then centrifuged at 

4,000 ´ g for 10 min at 4 °C and washed with 10 mL of cold 0.1 M CaCl2 solution.  The cell 

pellet was harvested via centrifugation and resuspended in 0.2 mL of 0.1 M CaCl2, then 
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distributed into pre-chilled microcentrifuge tubes in 50-µL aliquots.  For long-term storage in -80 

°C, the final resuspension was performed in 0.2 mL of 0.1 M CaCl2 and 15% glycerol solution. 

 For transformation, cells were removed from -80 °C and thawed on ice and less than 50 

ng of plasmid DNA or ligation mix was added to 50 µL of competent cell suspensions and gently 

mixed by tapping the tube.  The cells were kept on ice for 10 or 30 min, heat shocked at 42 °C 

for 45 or 30 s, then returned to and cooled on ice for 2 or 5 min for E. coli TOP10 and S17-1, 

respectively.  5 V (250 µL) of super optimal broth with catabolite repression (SOC) medium 

warmed to 37 °C was added to the cells, which were incubated at 30 °C, 220 rpm for 1 h.  

Aliquots of various amount were spread on selective LB plates and incubated at 37 °C overnight 

before colony screening. 
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Table 2.1. Bacterial strains and plasmids used in this study. Gmr, gentamicin resistance; Kmr, kanamycin resistance, Spr/Smr, 
streptomycin/spectinomycin resistance. 

Strain or Plasmid Description Reference or Source 
Escherichia coli 

TOP10 F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU 
galK rpsL (StrR) endA1 nupG 

Invitrogen 

S17-1 thi pro hsdR- hsdM+ recA1 RP4 2-Tc::Mu-Km::Tn7 (Simon et al., 1983) 
Methylococcus capsulatus 

Bath Wild-type strain  
Methylocystis sp. 

strain Rockwell Wild-type strain  
SB2 Wild-type strain  

Methylomicrobium album 
BG8 Wild-type strain  
ΔmbnT1 Putative mbnT gene deleted This study 

Methylosinus trichosporium  
OB3b Wild-type strain  
ΔarsI Putative gene encoding for arsenic lyase (arsI) deleted This study 
ΔlanM Putative gene encoding for lanmodulin (lanM) deleted This study 
ΔmbnAN mbnABCMN deleted (Gu et al., 2017a) 
ΔmbnAN + pBE3013 ΔmbnAN carrying pBE3013 This study 
ΔmbnAN + pBE3015 ΔmbnAN carrying pBE3015 This study 

Plasmid 
pK18mobsacB Kmr, RP4-mob, mobilizable cloning vector containing sacB from B. subtilis (Schäfer et al., 1994) 
pKarsI pK18mobsacB carrying 2 ligated arms used to knock out arsI in Msn. trichosporium OB3b This study 
pKlanM pK18mobsacB carrying 2 ligated arms used to knock out lanM in Msn. trichosporium OB3b This study 
pKmbnT1  pK18mobsacB carrying 2 ligated arms used to knock out mbnT1 in Mmc. album BG8 This study 
pKxoxF1 pK18mobsacB carrying 2 ligated arms used to knock out xoxF1 in Msn. trichosporium OB3b This study 
pKxoxF1_2 pK18mobsacB carrying 2 ligated arms used to knock out xoxF1 in Msn. trichosporium OB3b This study 
p34S-Gm Source of Gmr cassette (Dennis & Zylstra, 1998) 
pTJS140 Spr/Smr cloning vector (Smith et al., 2002) 
pBE3013 pTJS140 carrying mbnABCMFS of Methylocystis sp. SB2 with Msn. trichosporium OB3b MB 

promoter and Spr/Smr cassette 
This study 

pBE3015 pTJS140 carrying mbnABCMFS of Methylocystis sp. SB2 with Msn. trichosporium OB3b MB 
promoter and Gmr cassette 

This study 
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2.2.2. Stock solutions 

All antibiotic solutions were sterilized using 0.22-µm filter and added to growth medium 

prior to cultivation.  Antibiotics were added to the following final concentrations: for E. coli 

strains, ampicillin 100 µg×mL-1; kanamycin 25 µg×mL-1; gentamicin 5 µg×mL-1; nalidixic acid 15 

µg×mL-1, and for methanotrophs, kanamycin 10 µg×mL-1; gentamicin 2.5 µg×mL-1; spectinomycin 

20 µg×mL-1 and streptomycin 20 µg×mL-1. 

Methanobactin (MB) stocks were freshly prepared by adding MB from Msn. 

trichosporium OB3b or Methylocystis sp. SB2 (OB3b-MB or SB2-MB) to Milli-Q water to a 

final concentration of 10 mM.  Cu-MB stocks were prepared by adding CuCl2 and either OB3b-

MB or SB2-MB at 1:5 molar ratio and incubating in the dark at 30 °C, 220 rpm for 1 h (Kalidass 

et al., 2015). Cu-triethylenetetramine (TRIEN, a strong abiotic chelator of copper (Bandow et al., 

2011)) stock was prepared by adding CuCl2 and TRIEN at 1:5 molar ratio.  All stock solutions 

were filter-sterilized before use. 

 

2.2.3. Cultivation of methanotrophs 

Initial inocula of Mcc. capsulatus Bath, Methylocystis sp. SB2, Msn. trichosporium 

strains, and Mmc. album strains were grown in 30 mL of nitrate mineral salt (NMS) medium in 

250-mL side-arm Erlenmeyer flasks, shaken at 220 rpm in the dark (Whittenbury et al., 1970b).  

Methylocystis sp. strain Rockwell was grown under the same conditions in ammonium mineral 

salts (AMS) medium (Whittenbury et al., 1970b).  To prevent REE precipitation, Msn. 

trichosporium wildtype and DlanM mutant were grown in modified NMS, where the phosphate 

buffer was substituted with 50 mM PIPES (pH 6.8), and trace element solution contributed 3.569 

mg/L FeSO4·7H2O, 0.4 mg/L ZnSO4·7H2O, 0.02 mg/L MnCl2·7H2O, 0.05 mg/L CoCl2·6H2O, 
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0.01 mg/L NiCl2·6H2O, 0.015 mg/L H3BO3, and 205.87 mg/L trisodium citrate dihydrate to the 

growth medium.  Mcc. capsulatus Bath was grown at 45 °C, and all other methanotrophs at 30 

°C.  CH4 was supplemented at a CH4-to-air ratio of 1:2.  The initial inocula were then washed as 

necessary and used to inoculate (at 1:10 dilution factor) 50 mL of fresh media for experiments.  

Copper, REE, MB, TRIEN, and other stock solutions were supplemented to growth medium as 

required.  When appropriate, cultures at stationary phase were washed and used to inoculate a 

new set of flasks for a second growth cycle.  Methanotrophic growth was non-invasively 

monitored by measuring the optical density at 600 nm (OD600) in sidearm flasks using a Genesys 

20 Visible spectrophotometer (Spectronic Unicam, Waltham, MA).  

 

2.2.4. Isolation of methanotrophs from methylmercury contaminated stream 

Biofilm samples were collected in July 2020 by our collaborators at Oak Ridge National 

Laboratory.  Briefly, these biofilm samples were collected from mercury-contaminated East Fork 

Polar Creek (EFPC) located in Oak Ridge, Tennessee, with an altitude of 255 m and coordinates 

of N 35.990385°, W 84.317983° for strain EFPC1 and N 35.992482°, W 84.315327° for strain 

EFPC2.  Biofilm samples were first inoculated in NMS liquid culture at 30 °C with methane as 

the sole carbon and energy source to enrich for methanotrophs.  After visible growth on methane, 

samples were then streaked on NMS agar plates as described earlier (Gu & Semrau, 2017).  After 

repeated streaking on NMS plates with purity confirmed via microscopy, Sanger sequencing of 

16s rRNA gene and negative growth on nutrient agar plates, a single colony of each strain was 

then grown in NMS liquid medium with methane (Im et al., 2011). 
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2.2.5. Conjugation of methanotrophs and E. coli 

Plasmid DNA was transferred from E. coli S17-1 to methanotrophic strains via 

conjugation following the method modified from Martin and Murrell (1995).  An overnight 

culture of 10 mL of E. coli S17-1 containing the plasmid of interest and a 50-mL culture of 

methanotrophic strain in early exponential phase (OD600 = 0.2-0.3) were separately centrifuged at 

4,300 × g for 10 min, then washed with 25 mL of fresh NMS medium.  Both were resuspended 

in 1 mL NMS medium together, then 50 µL of the resuspension was spotted onto an NMS agar 

plate supplemented with 0.02% (w/v) proteose peptone.  After incubating the plate at 30 °C for 

24-48 h, the 50-µL spots were each harvested and carefully resuspended in 100 µL of fresh 

NMS, then spread on selective NMS plates.  The plates were incubated in the presence of CH4 

and air at 30 °C.  Colonies that appear after 10-20 days were screened for successful conjugation. 

 

2.2.6. Spheroplast preparation 

Spheroplast of Msn. trichosporium OB3b DmbnT mutant (Gu et al., 2016a) was prepared 

to assess the role of periplasmic enzymes and methanobactin in methylmercury demethylation 

using a previously established method (Coppi et al., 2007; Wang et al., 2016), further modified 

for methanotrophs.  A 30-mL culture was harvested via centrifugation at 4,300 × g for 10 min, 

then washed with 5 mL of fresh 3‐(N‐morpholino)propanesulfonic acid (MOPS; pH 7.3) buffer.  

The cell pellet is resuspended in 10 mL MOPS buffer with 350 mM sucrose.  5 mL of the cell 

suspension was centrifuged at 2,000 × g for 10 min, then resuspended in 4 mL of 250 mM Tris-

HCl (pH 7.5) buffer.  0.4 mL of 500 mM EDTA (pH 8.0) was added to the cell suspension.  

Reaction was continued for 1 min, after which 4 mL of 700 mM sucrose was added, followed by 

0.56 mL of lysozyme (134 mg×mL-1).  The cell suspension was homogenized by gentle shaking, 
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then incubated at room temperature overnight.  Then, 8 mL of Milli-Q water was added to the 

cell suspension and centrifuged immediately at 2,000 × g for 10 min to collect spheroplasts.  The 

spheroplasts were washed twice with 10 mL of MOPS buffer with 350 mM sucrose to remove 

residual lysozyme.  Spheroplasts were finally resuspended in 5 mL MOPS buffer with 350 mM 

sucrose before methylmercury demethylation experiments.  Optical microscopy of these 

spheroplasts indicated removal of outer cell membrane and periplasm (rounded compared to 

untreated cells). 

 

2.3. Molecular biological techniques 

2.3.1. Nucleic acid extraction 

DNA and RNA were extracted from methanotrophs using the method modified from 

Griffiths et al. (2000).  For DNA extraction, 50 mL of methanotroph culture in mid- to late 

exponential phase (OD600 = 0.3-0.5) was harvested via centrifugation at 4,300 × g for 10 min.  

The cell pellet was resuspended in 0.75 mL of extraction buffer consisting of 2.5% (w/v) 

hexadecyltrimethylammonium bromide (CTAB), 0.6 M NaCl, and 0.15 M phosphate buffer (pH 

7.6).  The cell pellet was stored at -80 °C until frozen, then thawed at 70 °5.  The freeze-thaw 

cycle was repeated 3 times, after which 5 µL of proteinase K (10 µg/µL) was immediately added 

and mixed thoroughly.  40 µL of 20% SDS was added, then incubated at 70 °C for 2 h with 

inversion every 30 min.  The samples were left to cool for 5 min, then 700 µL of phenol-

chloroform-isoamylic alcohol (25:24:1) was added, followed by mixing by inversion for 10 min.  

The cell debris and impurities were removed via centrifugation at 18,000 × g for 10 min.  The 

upper aqueous phase was then transferred to a clean microcentrifuge tube, to which 700 µL of 

chloroform-isoamyl alcohol (25:24) added.  After mixing by inversion for 5 min, the sample was 
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centrifuged again, and the final washing step was repeated as necessary.  The purified DNA-

containing upper aqueous phase was transferred to another microcentrifuge tube, and 1 V of 

isopropanol and 0.1 V of sodium acetate was added, then left at -20 °C overnight.  The DNA was 

collected via centrifugation at 18,000 × g for 20 min at 4 °C, then washed with 1 mL of 70% 

ethanol.  After completely air drying the DNA pellet, 40 µL of nuclease free water was added, 

and the sample was stored at 4 °C before preparing for Illumina sequencing.  For GridION 

Nanopore sequencing, DNA was extracted from 200 mL of methanotroph cultures at mid- to late 

exponential phase using QIAGEN Genomic-tip 500/G following the manufacturer’s instructions 

(Qiagen, Hilden, Germany). 

RNA was extracted from methanotroph cells grown to mid- or late exponential phase 

(OD600 = 0.3-0.4), harvested from 10-50 mL of cultures.  The cultures were first treated with stop 

solution (5% buffer-equilibrated phenol (pH 7.3) in ethanol) at a 10:1 ratio (culture-to-stop 

solution).  Cells were then collected by centrifugation at 4,300 ´ g for 10 min at 4 °C.  Cell 

pellets were resuspended in 0.75 mL of extraction buffer.  35 μL of 20% SDS, 35 μL of 

laurylsarcosine, and 750 μL of phenol-chloroform-isoamylic alcohol (25:24:1) were then added 

to the cell samples and then lysed via bead beating (Mini-BeadBeater-1; Biospec Products, 

Bartlesville, OK) using 0.5 g of 0.1-mm zirconia silica beads at 4,800 rpm for 1 min.  The 

samples were then centrifuged at 18,000 ´ g for 5 min at 4 °C and the upper aqueous phase 

transferred to a new tube and mixed with 0.75 mL of chloroform-isoamylic alcohol (24:1).  The 

mixtures were centrifuged again, and the total RNA in the upper aqueous phase was precipitated 

in MgCl2, sodium acetate, and isopropanol overnight at -80 °C.  RNA was then collected by 

centrifugation at 18,000 ´ g for 45 min at 4 °C and washed with 75% ethanol.  RNA was then 

treated with RNase-free DNase (Qiagen, Hilden, Germany) until free of DNA, followed by 
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purification using Zymo RNA Clean & Concentrator kit (Zymo Research, Irvine, CA) following 

the manufacturer’s instructions. Removal of DNA was confirmed by the absence of products 

from polymerase chain reaction (PCR) with the universal primers 27F and 1492R targeting 16S 

rRNA using 1-2 μL of RNA template (Table 2.2).  cDNA was synthesized from DNA-free RNA 

samples using Superscript III reverse transcriptase kit (Invitrogen, Carlsbad, CA) following the 

manufacturer’s instructions. 

Concentration of purified DNA and RNA were determined using a NanoDrop ND1000 

(NanoDrop Technologies, Inc., Wilmington, DE).  

Plasmids were maintained in E. coli TOP10, and plasmid extraction was performed using 

QIAprep Spin Miniprep Kit following the manufacturer’s instructions (Qiagen, Hilden, 

Germany).  Extracted plasmids were stored at -20 °C until use. 

 

2.3.2. Polymerase chain reaction 

PCR was performed using C1000 Touch (Bio-Rad, Hercules, CA) or T-48 Personal 

(Biometra) thermocyclers.  PCR reactions were prepared using GoTaq Green Master Mix 

(Promega, Madison, WI) and Phusion High-Fidelity PCR Master Mix (NEB, Ipswich, MA) for 

general and cloning purposes, respectively.  A standard 50-μL PCR reaction consisted of 1× 

master mix and 0.5 μM forward and reverse primers (Integrated DNA Technologies, Inc., 

Coralville, IA).  Temperature cycling conditions were set according to manufacturer’s 

recommendations.  Primer annealing temperatures were estimated using OligoAnalyzer 

(https://www.idtdna.com/calc/analyzer). 

Template for colony PCR was prepared by picking a colony from a fresh plate using 

pipet tips and suspending in 10 μL of nuclease-free water.  5 μL of the suspension was mixed 
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with 5 μL of 0.1 M NaOH solution and heated at 95 °C for 10 min to lyse the cells.  0.3-0.6 μL 

of the cell lysate was used for PCR reaction.  Negative and positive controls were also prepared 

using water and plasmid/genome as templates, respectively.  PCR primers used in this study are 

provided in Table 2.2 and the calibration curves of qPCR primers are provided in the Appendix 

(Figure A.1-3). 

 

2.3.3. Gel electrophoresis and extraction 

DNA fragments were separated in 0.5-1.0% (w/v) agarose gels in 1× Tris-acetate-EDTA 

(TAE) buffer (Invitrogen, Carlsbad, CA), supplemented with ethidium bromide (10 μg×mL-1).  

100-bp or 1-kb DNA ladders (NEB, Ipswich, MA) were included in the gel electrophoresis run 

to estimate the sizes of DNA bands.  The gels were visualized using Gel Logic 100 imaging 

system (Kodak, Rochester, NY).  Specific DNA bands were excised from gels and extracted 

using QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), following the manufacturer’s 

instructions. 

 

2.3.4. Restriction digestion 

Restriction digestion of arms and plasmids was carried out using restriction enzymes 

purchased from NEB (Ipswich, MA) for at least 15 min at 37 °C, following the manufacturer’s 

instructions.  Digested DNA was purified using QIAquick PCR Purification Kit (Qiagen, Hilden, 

Germany), or gel electrophoresis followed by extraction depending on size and number of DNA 

fragments. 
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Table 2.2. Primers for PCR and sequencing. 
Name Organism Gene Sequence (5’-3’)a Reference 

PCR primers 
27F Universal 16S rRNA AGAGTTTGATCMTGGCTCAGb Lane, 1991 

1492R Universal 16S rRNA TACGGYTACCTTGTTACGACTTb Lane, 1991 

M13F Universal plasmid GTAAAACGACGGCCAG Invitrogen 

M13R Universal plasmid CAGGAAACAGCTATGAC Invitrogen 

pmoA-A189 Universal pmoA GGNGACTGGGACTTCTGGb Holmes et al., 1995 

pmoA-mb661 Universal pmoA CCGGMGCAACGTCYTTACCb Costello & Lidstrom, 1999 

mmoX206f Universal mmoX ATCGCBAARGAATAYGCSCGb Hutchens et al., 2003 

mmoxX886r Universal mmoX ACCCANGGCTCGACYTTGAAb Hutchens et al., 2003 

arsI_Af Msn. trichosporium OB3b arsI ATTTTTGAATTCCCTTTGCCGGTGAAGAACAG This study 

arsI_Ar Msn. trichosporium OB3b arsI ATTTTTGGATCCGTTGAAGGGCGAGGCTGG  This study 

arsI_Bf Msn. trichosporium OB3b arsI ATTTTAGGATCCGCTTCATGGGACCCTCTCG  This study 

arsI_Br Msn. trichosporium OB3b arsI ATTTTAAAGCTTAGAACGCACTCAATCACACG This study 

ArsI_F1 Msn. trichosporium OB3b arsI TCGATCACATGCGGCTCTAT This study 

ArsI_R1 Msn. trichosporium OB3b arsI GCTCGCCTATCTGACGGAG This study 

lanM_Af-HindIII Msn. trichosporium OB3b lanM ATTTTTAAGCTTTCATCGATATTCTGGATCTGC This study 

lanM_Ar-BamHI Msn. trichosporium OB3b lanM ATTTTTGGATCCATAGGCAATTCGATCCCATC This study 

lanM_Bf-BamHI Msn. trichosporium OB3b lanM ATTTTTGGATCCGGCGCTTTCCTGTATGATTC This study 

lanM_Br-EcoRI Msn. trichosporium OB3b lanM ATTTTTGAATTCCCATCCGTCAACAGAATAGG This study 

lanM_A_f Msn. trichosporium OB3b lanM TGAAGCCCGACAATGTGATC This study 

lanM_B_r Msn. trichosporium OB3b lanM CTTCCAGACGAGATATTGGG This study 

BG8_mbnT1_Af_HindIII Mmb. album BG8 mbnT ATTTTTAAGCTTCTTTCTGATGATGGGGCTGC This study 

BG8_mbnT1_Ar_BamHI Mmb. album BG8 mbnT GAGCAAGGATCCATCTTCAG This study 

BG8_mbnT1_Bf_BamHI Mmb. album BG8 mbnT ATTTTTGGATCCAAGTTCCTTGCCACCGACTA This study 

BG8_mbnT1_Br_EcoRI Mmb. album BG8 mbnT ATTTTTGAATTCATTGGCTGGCAATGCTTTCA This study 

BG8_mbnT1_F Mmb. album BG8 mbnT TCTATGGACGAATGGAGCCC This study 

BG8_mbnT1_R Mmb. album BG8 mbnT CTCCGGCAAGATCCAATTCG This study 

xoxF1Af Msn. trichosporium OB3b xoxF1 ATTTTTAAGCTTGGTGTTGATGACGTAGCGAA This study 

xoxF1Ar Msn. trichosporium OB3b xoxF1 GCGAGGATCCCTACCGAAGTCGA This study 

xoxF1Bf Msn. trichosporium OB3b xoxF1 ATTTTTGGATCCCTATCAGCACAAGGGCAAGC This study 

xoxF1Br Msn. trichosporium OB3b xoxF1 GTTCTTGACCGAATTCTTCAGCGCCG This study 

F1_Af_2_EcoRI Msn. trichosporium OB3b xoxF1 ATTTTTGAATTCGAAGAGAGATAATGCGGGCC This study 

F1_Ar_2_KpnI Msn. trichosporium OB3b xoxF1 ATTTTTGGTACCCTTCGGGTTCTTCTGGAGCT This study 

F1_Bf_2_KpnI Msn. trichosporium OB3b xoxF1 ATTTTTGGTACCTGTCCAAGAGCAATGAAGGC This study 

F1_Br_2_BamHI Msn. trichosporium OB3b xoxF1 ATTTTTGGATCCTGCGCCAATTTGTTCTCGAA This study 

xoxF1_F1 Msn. trichosporium OB3b xoxF1 TGTCGTCAGGAGGAAAAGCT This study 

xoxF1_R1 Msn. trichosporium OB3b xoxF1 TTCATTGCTCTTGGACAGGC This study 
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Table 2.2. Continued. 
Name Organism Gene Sequence (5’-3’)a Reference 

qPCR primers 
341F Mmb. album BG8 16S rRNA CCTACGGGAGGCAGCAG Kits et al., 2015a 

518R Mmb. album BG8 16S rRNA ATTACCGCGGCTGCTGG Kits et al., 2015a 

QpmoA-FWD-7 Mmb. album BG8 pmoA GTTCAAGCAGTTGTGTGGTATC Kits et al., 2015a 

QpmoA-REV-7 Mmb. album BG8 pmoA GAATTGTGATGGGAACACGAAG Kits et al., 2015a 

qmxaF_BG8_F Mmb. album BG8 mxaF CAGAGGCCAACAAAGAACTG This study 

qmxaF_BG8_R Mmb. album BG8 mxaF CTGCGTCATCTTGCTGAAAT This study 

qcsp3_BG8_F Mmb. album BG8 csp3 TCAATCCATGCAGCCTTGTA This study 

qcsp3_BG8_R Mmb. album BG8 csp3 AGCAGATCATCAGGCGAAAG This study 

qtbrec_BG8_F Mmb. album BG8 mbnT CCGGCATTTCTTATCGTCATACA This study 

qtbrec_BG8_R Mmb. album BG8 mbnT CATTCACATCCAGAACCGACTC This study 

q16S_F2 Mcc. capsulatus Bath 16S rRNA GTCAAGTCATCATGGCCCTT This study 

q16S_R2 Mcc. capsulatus Bath 16S rRNA CTGCAATCCGGACTAAGACC This study 

qmmoXF_MCbath Mcc. capsulatus Bath mmoX GCTCACCACGACCTGTATCT This study 

qmmoXR_MCbath Mcc. capsulatus Bath mmoX GCCTCGAACCACTCCATTTC This study 

qpmoA_F2 Mcc. capsulatus Bath pmoA GGCTGGGGTCTGATCTTCTA This study 

qpmoA_R2 Mcc. capsulatus Bath pmoA GTTGTAACCCTGGATGTCGG This study 

qtbrec_bath_F Mcc. capsulatus Bath mbnT CACCCTTTCCCTTGACACAC This study 

qtbrec_bath_R Mcc. capsulatus Bath mbnT TCTGGTCGACCGAATAGACG This study 

qmopE_F Mcc. capsulatus Bath mopE AATTCACCTGGAACGCCAAG This study 

qmopE_R Mcc. capsulatus Bath mopE GGGAATTGCGGCAGATTGAT This study 

qcsp1_RW_F Methylocystis sp. strain Rockwell csp1 CACCATCATCCGCCGAAATA This study 

qcsp1_RW_R Methylocystis sp. strain Rockwell csp1 GTCGTCCATCGACAACATGC This study 

qmbnT1_RW_F Methylocystis sp. strain Rockwell mbnT1 TTCGAGACTTCGTGAGCAAC This study 

qmbnT1_RW_R Methylocystis sp. strain Rockwell mbnT1 CCGAGAGATCGTGCTGATATTC This study 

qmbnT2_RW_F Methylocystis sp. strain Rockwell mbnT2 TGCTCTACGAGGACGGATTT This study 

qmbnT2_RW_R Methylocystis sp. strain Rockwell mbnT2 AGAGCGTAATTGCCGAAGAG This study 

qmxaF_RW_F2 Methylocystis sp. strain Rockwell mxaF CAGGAATACTGGAAGGTCGAAA This study 

qmxaF_RW_R2 Methylocystis sp. strain Rockwell mxaF CGATCAGCACGACATCCTTA This study 

qpmoA_RW_F Methylocystis sp. strain Rockwell pmoA CTGGAAGGATCGTCGTATGTG This study 

qpmoA_RW_R Methylocystis sp. strain Rockwell pmoA GAACGGAAGACGGAAGTTGA This study 

q16S_RW_F Methylocystis sp. strain Rockwell 16S rRNA GATACGTGCGAGAGCAGAAA This study 

q16S_RW_R Methylocystis sp. strain Rockwell 16S rRNA ATCATCCTCTCAGACCAGCTA This study 
aRestriction site follows 6-nt overhang and is underlined. 
bMixed bases are R(A/G); Y(C/T); M(A/C); K(G/T); S(C/G); W(A/T); H(A/C/T); B(C/G/T); V(A/C/G); D(A/G/T); N(A/C/G/T). 
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2.3.5. Ligation 

Ligation was carried out using T4 DNA ligase purchased from NEB (Ipsqich, MA) in 20-

μL reactions consisting of vector and insert(s) in 1:3 molar ratio for at least 10 min at 25 °C or 

overnight at 16 °C for greater efficiency, following the manufacturer’s instructions. 

 

2.3.6. Molecular cloning 

PCR primers were designed with a restriction site and 6-nt overhang at 5’ end to produce 

DNA fragments for cloning purposes (Table 2.2).  Phusion High-Fidelity polymerase was used 

for PCR, followed by gel purification of PCR product, restriction digestion, PCR or gel 

purification of digested DNA, and ligation with vector.  E. coli TOP10 was transformed with the 

ligation mix for selection and maintenance.  Correct inserts were confirmed via colony PCR and 

sequencing. 

 

2.3.7. Reverse transcription-quantitative PCR (RT-qPCR) 

Expression of select genes in methanotrophs cultured under varying conditions was 

quantified by reverse transcription-quantitative PCR (RT-qPCR).  Primer sets used for qPCR of 

genes of interest are listed in Table 2.2.  Expression of 16s rRNA was used as an internal 

reference.  QIAGEN PCR Cloning Kit (Qiagen, Hilden, Germany) was used to prepare a 

recombinant vector containing the gene of interest.  Either this recombinant vector or PCR 

products with known copy numbers was used to produce calibration curves for each examined 

gene to calculate primer efficiency.  qPCR reactions were performed in 96-well PCR plates in 

20-μL reactions containing 0.8 μL cDNA, 1× iTaq Universal SYBR Green Supermix (Bio-Rad), 

0.5 μM each of forward and reverse primers, and nuclease-free sterile water (Fisher Scientific, 
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Pittsburgh, PA).  CFX Connect Real Time PCR Detection System (Bio-Rad, Hercules, CA) or 

Applied Biosystems 7900HT (Thermo Fisher Scientific Inc., Waltham, MA) was used to run a 

three-step qPCR program consisting of an initial denaturation at 95°C for 3 min and 40 cycles of 

denaturation (95°C for 10 s), annealing (55°C for 10 s) and extension (72°C for 30 s).  Primers 

used in this study were verified for specificity by gel electrophoresis, sequencing, and melting 

curve.  The threshold cycle (CT) values were used to calculate relative gene expression levels 

with 16S rRNA as the internal standard by the comparative threshold amplification cycle 

method, 2-ΔΔCT (Schmittgen & Livak, 2008).  Measurements were performed for at least 

biological duplicates for each condition. 

 

2.3.8. Immunoblot using antibody grown against methanobactin 

MB uptake by methanotrophs was determined via immunoblotting using an antibody 

raised against MB. First, 10 – 20 mL of cultures were harvested by centrifugation at 4,300 ´ g 

for 10 min.  The spent medium was carefully decanted, and the cell pellets washed with 1 V of 

fresh NMS.  The cell pellets were then re-suspended in 1 mL fresh NMS, and spent medium, 

wash, and cell pellet were stored at -20°C until immunoblotting, which was performed by our 

collaborators at Iowa State University. 

 Antibody (10B10) to MB from Msn. trichosporium OB3b was produced in LOU/c rats 

and purified as described earlier (Gu et al., 2016a; Lichtmannegger et al., 2016).  1,4-phenylene 

diisothiocyanate (DITC)-derivatized polyvinylidene difluoride (PVDF) membranes were 

prepared as previously described (Rodrigues et al., 1994), with modifications. 

 The 36 mm2 DITC-derivatized PVDF membranes were first wetted with methanol, then 

washed in 20 mM Tris-HCl, 0.5 M NaCl, pH 8.0 (Tris-buffered saline; TBS) for 5 min.  They 



 

 94 

were then air dried for approximately 5 min.  The membranes were placed on top of Whatman 

No. 1 filter paper, loaded into the Bio-Rad Bio-Dot dot blot cassette, and a vacuum was pulled 

across the membranes.  Cell extracts were diluted to an optical density of 0.13 at 600 nm and 15 

µL of OB3b-MB standards, cell extracts, spent medium and lysozyme standards were then added 

to the wells and the membrane allowed to dry completely inside the cassette (usually 2 h).  The 

membranes were then wetted in 50% methanol and washed twice in TBS for 10 min each time.  

The membrane was blocked at 4°C overnight with a blocking buffer consisting of 1% nonfat dry 

milk in TBS.  The solution was decanted and the membrane washed twice in 0.1% Tween 20 in 

TBS for 10 min each time.  The membrane was then incubated overnight at 4°C in primary 

antibody buffer (500 µL of purified MB-antibody at an optical density of 2.0 at 280 nm in 50 mL 

blocking buffer).  The solution was decanted and the membrane washed twice in TBS for 10 min 

each time.  The membrane was then incubated for 2 h at room temperature in secondary antibody 

buffer (16.5 µL of Goat Anti-Rat IgG Polyclonal Antibody Alkaline Phosphatase (AP) from 

Immunoreagents; Raleigh, NC, USA) in 50 mL of blocking buffer.  The solution was decanted 

and the membrane washed 3 times in TBS for 10 min each time.  The membrane was removed 

from solution and excess liquid drained.  The membrane was then incubated with 1 mL of 

Immun-Star AP Chemiluminescence substrate (Bio-Rad, Hercules, CA) for 5 min with gentle 

agitation.  The membrane was removed and imaged on a ChemiDoc system (Bio-Rad, Hercules, 

CA) using the Chemi protocol in signal accumulation mode.  Densitometric measurements were 

determined using ImageJ (NIH, Bethesda, MD).  Samples and background measurements were 

made using the oval brush option.  Total signal was calculated as (sample mean ´ area of 

sample) – (background mean ´ area of sample). 
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2.4. Construction of mutants in methanotrophs 

2.4.1. Markerless mutagenesis in methanotrophs 

Markerless mutagenesis using the suicide vector pK18mobsacB (Schäfer et al., 1994) was 

utilized to investigate the function of target genes in Mmc. album BG8 and Msn. trichosporium 

OB3b.  pK18mobsacB harboring regions flanking the target gene was introduced into 

methanotrophs, causing homologous recombination with their chromosome.  The suicide vector 

pK18mobsacB contains the broad host range transfer elements required for mobilization from E. 

coli S17-1 to methanotrophs, and also the counterselection gene sacB required for screening 

double homologous recombination.  pK18mobsacB, derived from plasmid pBR322, is only 

maintained in E. coli (Schäfer et al., 1994), and must go through recombination in order to be 

replicated in methanotrophs. 

In Mmc. album BG8, mbnT1 (Metal_1282), the gene encoding for a putative TonB-

dependent transporter with high similarity with mbnT from Msn. trichosporium OB3b, was 

targeted for knockout in order to assess competition for copper with MB-producing 

methanotrophs.  Approximately 1-kb DNA fragments in the 5’ (arm A, amplified using primers 

BG8_mbnT1_Af_HindIII and BG8_mbnT1_Ar_BamHI; Table 2.2) and 3’ (arm B, amplified 

using primers BG8_mbnT1_Bf_BamHI and BG8_mbnT1_Br_EcoRI; Table 2.2) of mbnT1 were 

ligated together using BamHI site and cloned into pK18mobsacB at HindIII and EcoRI sites to 

create pKmbnT1 (Table 2.1, Figure 2.1). 

The constructed plasmid pKmbnT1 was then introduced into Mmc. album BG8 via 

conjugation with E. coli S17-1, and transconjugants were selected for plasmid incorporation into 

the chromosome via single homologous recombination.  Then, selected transconjugants were 

grown in NMS supplemented with 2.5% (m/v) sucrose for counterselection of double 
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homologous recombination events (Figure 2.1).  Colonies on the sucrose NMS plates were 

checked for kanamycin sensitivity and loss of both pK18mobsacB plasmid backbone and intact 

mbnT1 via PCR and sequencing (using primers BG8_mbnT1_F and BG8_mbnT1_R) (Figure 

A.4).  Approximately 1 kb of the 2.3-kb mbnT1 was knocked out in DmbnT1. 

 

 

Figure 2.1. Markerless mutagenesis of Mmc. album BG8 ΔmbnT1 via counterselection. 
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In Msn. trichosporium OB3b, arsI (ADVE02_v2_12724) encoding for an 

organoarsenical lyase was targeted for knockout in order to assess the role of ArsI in 

methylmercury demethylation.  Approximately 0.8-kb and 1-kb DNA fragments upstream (arm 

B, amplified using primers arsI_Bf and arsI_Br; Table 2.2) and downstream (arm A, amplified 

using primers arsI_Af and arsI_Ar; Table 2.2) of arsI were ligated together using BamHI site and 

cloned into pK18mobsacB at HindIII and EcoRI sites to create pKarsI (Table 2.1).  The same 

counterselection and verification methods as Mmc. album BG8 were used here to knock out arsI.  

About 0.4 kb of the 0.5-kb arsI was knocked out in the Msn. trichosporium OB3b DarsI mutant 

(Figure A.5).  

xoxF1 (ADVE02_v2_12117) encoding for the Xox-MeDH in Msn. trichosporium OB3b 

was targeted for knockout to confirm the role of Xox-MeDH in methylmercury degradation.  

Two pairs of arms were used for deletion (Table 2.2).  Arms A and B produced using primers 

xoxF1Af/xoxF1Ar and xoxF1Bf/xoxF1Br were ligated together using BamHI site and cloned 

into pK18mobsacB at HindIII and EcoRI sites to create pKxoxF1.  The arms produced using 

primers F1_Af_2_EcoRI/F1_Ar_2_KpnI and F1_Bf_2_KpnI/F1_Br_2_BamHI were ligated 

together using the KpnI site and cloned into pK18mobsacB at EcoRI and BamHI sites to create 

pKxoxF1_2.  The same counterselection and verification methods as Mmc. album BG8 were 

used to knock out xoxF1.  No successful double homologous recombination was observed after 

multiple rounds of screening. 

lanM (ADVE02_v2_11067) encoding for a periplasmic REE-binding protein in Msn. 

trichosporium OB3b was also targeted for knockout in order to assess the role of LanM in REE 

sensing and/or uptake.  Approximately 1.1-kb DNA fragments upstream (arm A, amplified using 

primers lanM_Af-HindIII and lanM_Ar-BamHI; Table 2.2) and downstream (arm B, amplified 
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using primers lanM_Bf-BamHI and lanM_Br-EcoRI; Table 2.2) of lanM were ligated together 

using BamHI site and cloned into pK18mobsacB at HindIII and EcoRI sites to create pKlanM 

(Table 2.1).  The same counterselection and verification methods as Mmc. album BG8 were used 

here to knock out lanM.  About 0.5 kb was knocked out in the Msn. trichosporium OB3b DlanM 

mutant, including lanM (0.4 kb) (Figure A.6). 

 

2.4.2. Production of modified MBs 

Modified forms of MB were expressed using the Msn. trichosporium OB3b ΔmbnAN 

mutant as a host.  Plasmids pBE3013 and pBE3015 harboring MB biosynthesis genes 

(mbnABCMFS) from Methylocystis sp. SB2 and the promoter found immediately upstream of 

mbnA in Msn. trichosporium OB3b were introduced into ΔmbnAN via conjugation with E. coli 

S17-1.  Transconjugants were screened for resistance against spectinomycin/streptomycin or 

gentamicin, depending on resistance markers on plasmids. 

 

2.5. Metal analysis 

2.5.1. Metal uptake by methanotrophs 

Copper and REE uptake by methanotrophs were determined via inductively coupled 

plasma mass spectrometry (Agilent Technologies, Santa Clara, CA).  10-20 mL of cultures were 

harvested by centrifugation at 4,300 ´ g for 10 min.  The spent medium was carefully decanted, 

and the cell pellets washed with 1 V of fresh NMS or AMS as necessary.  The cell pellets were 

then re-suspended in 1 mL fresh NMS or AMS, and spent medium, wash, and cell pellet were 

stored at -20°C until metal quantification.  To prepare samples, cell pellets were acidified with 1 

mL of 70% HNO3 (vol/vol) for 2 h at 95 °C with mixing by inversion every 30 min.  Fresh NMS 
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or AMS was added to cell samples and 70% nitric acid (vol/vol) to spent medium and wash 

samples to achieve a final concentration of 2% (vol/vol) nitric acid.  Cell densities (as OD600) 

were used to calculate protein concentrations using a previously established correlation (Semrau 

et al., 2013).  Triplicate samples for every condition were analyzed. 

 

2.5.2. Methylmercury demethylation assay 

Methylmercury (MeHg) demethylation by methanotrophs were measured by our 

collaborators at Oak Ridge National Laboratory as described earlier (Lu et al., 2017).  Briefly, 

these assays were conducted in 4-mL amber glass vials (National Scientific, Claremont, CA) by 

mixing washed cells with MeHg in 5 mM MOPS buffer under ambient conditions.  A 10 nM 

MeHg working solution (0.5 mL) was prepared and added to 0.5 mL washed cells to give final 

concentrations of MeHg at 5 nM and cells at 108 cells mL-1 (Lu et al., 2016).  45 µM MB from 

either Msn. trichosporium OB3b or Methylocystis sp. SB2 was also added to determine if the 

presence of MB affected MeHg degradation by Mmc. album BG8 and Methylocystis sp. strain 

Rockwell.  MeHg sorption was monitored by filtering samples (in triplicate) through 0.2-µm 

syringe filters and analyzed for remaining soluble MeHg, or soluble inorganic Hg (IHg), if any 

(Lin et al., 2015; Lu et al., 2016).  The unfiltered samples were used to determine total Hg and 

MeHg, with total sorbed Hg calculated by difference.  For Hg species distribution analyses, three 

additional samples were added with 10 µL of 2,3-dimercapto-1-propanesulfonate(DMPS) to a 

final concentration of 0.1 mM, and then equilibrated for an additional 15 min to wash off cell-

surface-adsorbed MeHg (MeHgad) or IHg, as they form strong complexes with DMPS.  Samples 

were again filtered and analyzed, so that the surface adsorbed and the intra-cellular MeHg or IHg 

uptake could be calculated by the difference (An et al., 2019; Liu et al., 2016). 



 

 100 

2.6. Chalkophore purification and characterization 

The putative Mmc. album BG8 chalkophore was purified following the method by 

Bandow et al (2011).  The spent medium of Mmc. album BG8 grown in the presence of 1 μM 

copper and 5 μM TRIEN was centrifuged at 4,300 ´ g for 10 min.  The supernatant was 

decanted, then filtered through a 0.2-μm PES filter unit (Thermo Scientific, Waltham, MA).  

Meanwhile, a reversed-phase C18 Sep-Pak cartridge (Waters Corp., Milford, MA) was 

sequentially conditioned with 3 mL methanol, 3 mL 60% acetonitrile, 3 mL methanol, and 6 mL 

H2O, then was loaded with the filtered spent medium.  The chalkophore bound to the column 

was washed with 6 mL H2O, then eluted with 60% acetonitrile until the yellow band was 

completely collected.  The eluant was then frozen at -80 °C and lyophilized to concentrate 

chalkophore and remove acetonitrile (FreeZone 6 Freeze Dry System, Labconco, Kansas City, 

MO). 

 Our collaborators at Iowa State University performed large scale production and isolation 

of Mmc. album BG8 chalkophore, as well as UV-visible spectroscopy and mass spectrometry 

analyses.  First, cells were cultured in a 15-L Solida fermenter (Solida Biotechnology, Munich 

Germany) using the culture conditions described above.  For 15N labeled chalkophore, cells were 

cultured in 50% 15N- and 50% 14N- KNO3.  The chalkophore was isolated from the spent media 

and purified as described for methanobactin from Methylocystis sp. SB2, except the chalkophore 

from Mmc. album BG8 eluted from the Targa C18 column in the 65-75% methanol:H2O fraction. 

UV-visible spectroscopy was recorded on a Cary 50 (Agilent Technologies, Santa Clara, 

CA).  Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) was 

performed on a Shimadzu AXIMA Confidence MALDI TOF Mass Spectrometer (Shimadzu 

Corp., Kyoto, Japan) using a mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-
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methoxybenzoic acid (SuperDHB) in a 1:1 matrix to sample mixture.  Electrospray ionization 

(ESI)MS/MS was performed on an Agilent LC using a Thermo Scientific Q Exactive Hybrid 

Quadrupole-Orbitrap Mass Spectrometer with an HCD fragmentation cell and an Agilent 1260 

Infinity Capillary Pump with an Agilent Zorbax SB-C18, 0.5 mm x 150 mm, 5 micron, 

part#5064-8256 using 0.1% formic acid/water and 0.1% formic acid/acetonitrile as buffers A and 

B, respectively.  

 

2.7. Naphthalene assay 

sMMO activity was measured via the assay developed by Brusseau et al. (1990).  1.6 mL 

of culture in exponential phase was incubated with a few crystals of naphthalene for 1 h at 30 °C, 

220 rpm.  Cells were removed via centrifugation at 5,800 ´ g for 10 min.  1.3 mL of the spent 

medium was transferred to a new microcentrifuge tube, then was added with 130 μL of 4.21 mM 

tetrazotized o-dianisidine.  The mixture was immediately transferred to cuvettes for measurement 

of absorbance at 528 nM (ABS528).  The rapid development of pink/purple color indicated 

presence of naphthol and therefore naphthalene oxidation by sMMO. 

 

2.8. Bioinformatic analysis 

2.8.1. Genome sequences 

All genomes used in this study were acquired from NCBI or MicroScope databases 

(NCBI Resource Coordinators et al., 2018; Vallenet et al., 2019).  For the bioinformatic survey 

and identification of lateral gene transfer (LGT) events in methanotrophs, 39 genomes from 

various taxonomic families/phyla were considered – Methylocystaceae (9), Beijerinckiaceae (4), 
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Methylococcaceae (20), Methylothermaceae (1), "Methyloacidiphilaceae" (4), and candidate 

phylum NC10 (1). 

 

2.8.2. Evidence for lateral gene transfer 

Nucleotide bias between specific genes and the rest of the genome to detect possible 

lateral gene transfer was calculated using two different programs – Alien Hunter and CodonW – 

as described earlier (Khadka et al., 2018).  Briefly, these packages determine the Kullback-

Leibler divergence statistic (DKL) for different DNA regions as compared to the overall genome 

using different criteria.  Alien Hunter considers combined 2-mers through 8-mers for both 

specific regions and the genome using a 2500 bp window.  CodonW considers codon bias 

between specific regions and the genome.  For Alien Hunter, complete genomes in FASTA 

format were used as input (Vernikos & Parkhill, 2006).  The DKL values of operons (regions) of 

interest were extracted from the resulting output file to determine whether the operon fell in a 

region of potential LGT.  For CodonW, the coding sequence of each genome was extracted from 

GenBank (.gbk) files using FeatureExtract 1.2L Server (Wernersson, 2005).  The coding 

sequence of DNA regions and genomes were then uploaded to the online tool, CodonW Galaxy 

v1.4.4 (Peden, 1999).  The frequency of all 64 codons was then counted for regions and genomes 

to calculate DKL values.  DNA regions considered here were: pmoCAB (for pMMO); 

mmoXYBZDC (for sMMO) mxaFJGI (for Mxa-MeDH), xoxFJ (for Xox-MeDH), sga (encoding 

serine-glyoxylate aminotransaminase), fdhBA and fdsBA (encoding the tungsten and 

molybdenum dependent forms of formate dehydrogenase, respectively), as well as genes for 

three different identified copper uptake systems in methanotrophs, i.e., (1) mbnABCM (encoding 

methanobactin; (Semrau et al., 2013)), (2) mopE + MCA 2590 (encoding Methylococcus outer 



 

 103 

membrane protein (MopE) and its surface associated cytochrome c peroxidase; (Helland et al., 

2008; Ve et al., 2012) as well as close analogs corAB (Berson & Lidstrom, 1997; Johnson et al., 

2014) and; (3) copCD (encoding a periplasmic copper binding protein and its partner inner 

membrane transport protein; (Arnesano et al., 2003; Gu et al., 2017b)). 

 

2.8.3. Phylogenetic analysis 

The alignments of genes, concatenated genes, and amino acid sequences were 

constructed using T-COFFEE (Notredame et al., 2000).  Bayesian and maximum likelihood 

phylogenies were generated based on these alignments using PhyML 3.1 and BEAST 1.10.4, 

respectively (Guindon et al., 2010; Huelsenbeck, 2001).  The resulting Bayesian and maximum 

likelihood phylogenies were evaluated using 107 generations discarding a burn-in of 25% and 

100 bootstrap replicates, respectively.  The phylogenetic trees and alignments were visualized 

using ggtree 1.14.4 (Yu et al., 2017).  Gene synteny maps were created using ggbio 1.36.0 (Yin 

et al., 2012).  Sequence logos were created using ggseqlogo 0.1 (Wagih, 2017). 

 

2.8.4. Genome assembly 

Genomic DNA was extracted from two strains of methanotrophs isolated from 

methylmercury contaminated stream and sequenced.  Libraries for Illumina sequencing were 

prepared using NEBNext® UltraTM II FS DNA Library Prep Kit (New England Biolabs Inc., 

Ipswich, MA) with 15-min fragmentation and size selected for 275-475bp.  Libraries for 

GridION Nanopore sequencing were prepared using Ligation Sequencing and Native Barcoding 

Expansion Kits (SQK-LSK109 and EXP-NBD104; Oxford Nanopore Technologies, Littlemore, 

UK) following the manufacturers’ protocols.  gDNA was sequenced using separate Nano flow 
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cells and 500 cycle V2 kits on an Illumina MiSeq (Illumina Inc., San Diego, CA) at the 

University of Michigan Advanced Genomics Core (AGC; 

https://brcf.medicine.umich.edu/cores/advanced-genomics/).  Long-read sequencing was 

performed on the GridION X5 platform at the University of Michigan AGC (Oxford Nanopore 

Technologies, Littlemore, UK). 

De novo assemblies of sequenced reads were performed.  Basecalling for the GridION 

Nanopore sequencing reads was performed using Guppy (4.2.3) (Wick et al., 2019).  The read 

quality was assessed using FastQC (0.11.9) (Andrews, 2010) before and after trimming.  The 

short- and long-reads were trimmed using Trimmomatic (0.39) (Bolger et al., 2014) and 

Porechop (0.2.4) (Wick, 2018), respectively, then were then assembled using Unicycler (0.4.9b) 

with no correction (Wick et al., 2017).  Assembly completeness was assessed via Benchmarking 

Universal Single-Copy Orthologs (BUSCO 4.1.4) (Simão et al., 2015), and also visually 

confirmed using Bandage (0.8.1) (Wick et al., 2015).  The final contigs were annotated using 

National Center for Biotechnology Information (NCBI) Prokaryotic Genomes Annotation 

Pipeline (PGAP) (5.1) (Tatusova et al., 2016).  The annotated 16S rRNA sequences were used as 

queries in search of the most similar organisms using the Basic Local Alignment Search Tool 

(BLAST; 2.11.0) (Altschul et al., 1990).  Default parameters were used for all software unless 

otherwise specified. 

 

2.8.5. Metabolic pathway reconstruction based on genome sequence 

The deduced amino acid sequences of two strains of methanotrophs isolated from 

methylmercury contaminated stream were annotated using BlastKOALA (2.2) using the 

prokaryotes KEGG GENES database at the genus level (https://www.kegg.jp/blastkoala/) 
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(Kanehisa et al., 2016).  The resulting list of KEGG GENES was then manually curated and 

mapped against KEGG databases using the Reconstruct Pathway tool of KEGG Mapper (4.3) 

(Kanehisa & Sato, 2020). 

 

2.9. Statistical analysis 

All statistical analysis was performed using Microsoft Excel or R (R Core Team, 2018).  

Data were analyzed using either the Tukey’s honestly significant difference (HSD) test, 

Student’s t-test with Bonferroni correction, or analysis of covariate (ANCOVA) to determine any 

significant differences between conditions.  Potential outliers of biological triplicates were 

determined using the Grubbs’ outlier test.  Growth of methanotrophs was fitted to a logistic 

curve using the R package growthcurver (Sprouffske & Wagner, 2016).  In cases of non-logistic 

growth of methanotrophs, the maximum growth rates were determined via linear fitting. 

When assessing methylmercury (MeHg) removal by methanotrophs, the MeHg removal 

rate constant was determined by nonlinear regression on the basis of exponential decay with 

stabilization over time: ! = ($ + &)(!"# + &, where ! is the amount of residual MeHg (%), ) is 

the rate constant (h-1), * is time (h), & is residual MeHg limit (%), and ($ + &) is the initial residual 

MeHg (%). 
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Chapter 3 Importance of Metal Uptake in the Evolution of Methanotrophs 
 
3.1. Introduction 

All aerobic methanotrophs utilize either a particulate methane monooxygenase (pMMO) 

or soluble MMO (sMMO), or both, to convert methane to methanol (Table 1.2, pg. 19).  It is 

well-known that pMMO requires copper for its activity, and methanotrophs have multiple 

mechanisms for copper collection (1.3.1. Copper uptake systems Metal uptake systems, pg.49) 

(Chi Fru et al., 2011; El Ghazouani et al., 2012; Gu et al., 2016a, 2017b; Helland et al., 2008; 

Kim et al., 2004; Krentz et al., 2010; Semrau et al., 2018; Ve et al., 2012).  Further, for those 

methanotrophs that can express both sMMO and pMMO, sMMO expression is only observed in 

the absence of copper, while pMMO expression increases with increasing copper, i.e., the 

canonical “copper-switch” (Semrau et al., 2013; Stanley et al., 1983).   

Interestingly, the two forms of methanol dehydrogenase (MeDH) found in aerobic 

methanotrophs as well as many methylotrophs, “Mxa-MeDH” and “Xox-MeDH”, are regulated 

via an “REE-switch” (Farhan Ul Haque et al., 2015a; Chu et al., 2016; Vu et al., 2016; Gu & 

Semrau, 2017).  Recently, a novel periplasmic REE-binding protein, lanmodulin (LanM), with 

high specificity and affinity for REEs was characterized in a methylotroph, Mrr. extorquens 

AM1 (Cook et al., 2019; Cotruvo et al., 2018).  It is interesting to note that lanM is found in all 

methanotrophs belonging to the Alphaproteobacteria class, whereas lanM is not found in any 

other methanotroph (Table 1.2, pg.19). 

Several researchers have proposed the possible origin of methanotrophy, but it is 

generally believed that aerobic methanotrophs originated from methylotrophs, which can already 
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effectively handle the initial product of methane oxidation – methanol (Tamas et al., 2014; 

Osborne & Haritos, 2018).  Specifically, methane oxidation is perceived to occur as a result of 

lateral gene transfer (LGT) of the ammonia monooxygenase (AMO) from nitrifying bacteria to 

methylotrophs (Khadka et al., 2018).  Given that methanotrophy possibly arose via transfer of 

MMO to methylotrophs, we chose to bioinformatically examine genes involved in methanol 

oxidation as well as genes involved in copper and REE uptake.  This is particularly relevant as 

methylotrophy is much more wide-spread than methanotrophy, suggesting that some 

methylotrophs lack essential cell machinery to be effectively transformed into methanotrophs 

through LGT of genes encoding MMO.  As an extended focus on copper uptake systems in 

methanotrophs, phylogeny, sequence, and structure of methanobactins (MBs) were closely 

examined.  The occurrence of LanM in methanotrophs and other groups of microbes as well as 

the composition of REE-coordinating EF hands were compared. 
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3.2. Evidence of LGT of methane monooxygenases 

The different software packages used to detect LGT events – Alien Hunter and CodonW 

– gave similar trends for assessed genes (Figure 3.1), but in general greater divergence values 

were found using Alien Hunter than CodonW, likely due to its greater sensitivity as it uses 

variable order motif distributions.  It should be noted that Alien Hunter does not provide 

numerical divergence values below a critical threshold calculated based on these distributions.  

These are reported as “0” in Figure 3.1. 

As previously shown (Khadka et al., 2018), the pmo operon (pmoCAB) appears to be the 

result of a relatively recent LGT event as the nucleotide composition of this operon in most 

aerobic methanotrophs is significantly divergent from the genome composition of the host 

microbe (Figure 3.1; Table 3.1 and Table 3.2).  Bayesian phylogenetic trees based either on 16S 

rRNA gene or concatenated pmoCAB gene sequences (Figure 3.2A and Figure 3.3A, 

respectively), however, were similar.  It should be noted that DKL values were not calculated for 

pxm sequences, nor are they included in the phylogenetic trees, since only a fraction of 

characterized methanotrophs have been found to have these genes in their genomes (Table 1.2, 

pg.19) and their importance or function in methanotrophic physiology is largely unknown. 

Maximum-likelihood phylogenetic trees based on either 16S rRNA or pmoCAB gene sequences 

(Figure 3.2B and Figure 3.3B) exhibited similar profiles as Bayesian trees.   
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Figure 3.1. Nucleotide compositional biases (DKL) of key gene clusters involved in methane 
oxidation (pmoCAB and mmoXYBZDC), methanol oxidation (mxaFJGI and xoxFJ), carbon 
assimilation (sgaA), formate oxidation (fdhBA and fdsBA) and copper uptake (mbnABCM, 
corAB, mopE/MCA2590, and copCD) in methanotrophs compared to their respective host 

genomes.  The box indicates the interquartile range between 25th and 75th percentile, and the 
solid line indicates the 50th percentile.  Outliers determined by the Tukey method are marked by 

dots.  Alien Hunter DKL values calculated to be below threshold are reported as “0”.
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Table 3.1. DKL values of select genes in the genomes of methanotrophs calculated using Alien Hunter.  BT indicates values below 
threshold. 

Strain Family pmoCAB 
mmo 

XYBZDC mxaFJGI xoxFJ mbnABCM 
MCA2590 + 
mopE/corAB 

copCD sgaA fdhBA fdsBA 

Class Gammaproteobacteria            

Methylobacter sp. BBA5.1a Methylococcaceae 0.268  BT 0.228   BT BT BT 0.255 
     0.127       

Mbt. marinus A45a Methylococcaceae BT  BT 0.310   BT BT BT 0.193 
     BT       

Mbt. tundripaludum SV96a Methylococcaceae 0.395  BT 0.162   BT BT  BT 

Mbt. whittenburyi ACM 3310a Methylococcaceae 0.285  BT 0.278   BT BT BT 0.203 
     BT       

Mcd. szegediense O-12a Methylococcaceae 0.186  BT BT   BT BT  0.197 
     BT       

Mcc. capsulatus Bath Methylococcaceae 0.194 0.150 BT BT  BT BT 0.263 BT BT 
  0.157          

Mcc. capsulatus Texasa Methylococcaceae BT 0.123 BT BT  BT BT 0.173 BT BT 

Mgb. morosus KoM1a Methylococcaceae 0.304  BT    BT BT  0.219 

Mmg. ishizawai 175 Methylococcaceae BT BT BT BT  BT BT BT  BT 
  BT          

Mmc. agile ATCC 35068a Methylococcaceae 0.218  BT BT  BT BT BT  BT 

Mmc. album BG8a Methylococcaceae 0.273  BT BT  BT BT BT  BT 

Mmc. lacus LW14  Methylococcaceae 0.284  BT BT  BT BT BT  BT 

Mtv. alcaliphilum 20Z Methylococcaceae 0.414  BT BT  BT BT BT 0.196  

Mtv. buryatense 5Ga Methylococcaceae 0.472 BT BT BT  BT BT BT 0.151 0.364 

Mmn. methanica MC09 Methylococcaceae 0.190 BT BT BT   BT BT  BT 

Methylomonas sp. 11ba Methylococcaceae 0.292 BT BT BT   BT 0.145  BT 

Methylomonas sp. LW13a Methylococcaceae 0.433 BT BT BT   BT BT  BT 

Methylomonas sp. MK1a Methylococcaceae 0.330 BT BT BT   BT BT  BT 

Msc. fibrata AML-C10a Methylococcaceae 0.318  BT BT  BT BT BT  BT 

Mvl. miyakonense HT12a Methylococcaceae 0.297 BT BT   BT BT BT  BT 

Mhl. crimeensis 10Kia Methylothermaceae 0.144  BT    BT BT  BT 
  0.170          
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Table 3.1. Continued. 

Strain Family pmoCAB 
mmo 

XYBZDC 
mxaFJGI xoxFJ mbnABCM 

MCA2590 + 
mopE/corAB 

copCD sgaA fdhBA fdsBA 

Class Alphaproteobacteria            

Mcs. acidiphila B2a Beijerinckiaceae 0.274  0.173 BT   BT BT BT BT 

Mcs. aurea KYGa Beijerinckiaceae 0.210  0.178 BT   BT BT BT BT 
        BT    

Mcl. silvestris BL2 Beijerinckiaceae  0.131 BT BT   BT BT  BT 
     BT       
     0.145       

Mfr. stellata AR4 Beijerinckiaceae  0.217 BT 0.213   BT BT BT BT 
     BT       
     BT       

Methylocystis sp. LW5a Methylocystaceae 0.190 0.212 BT BT 0.174  BT BT BT BT 
  0.151          
  0.154          

Mct. parvus OBBPa  Methylocystaceae BT  BT BT 0.240  BT BT  BT 
  0.199          
Methylocystis sp. strain 

Rockwella Methylocystaceae 0.213  BT BT   BT BT  BT 

     0.324   BT    

Mct. rosea SV97a Methylocystaceae 0.146  BT BT BT  BT BT  BT 
  0.182   0.177   BT    

Methylocystis sp. SB2a Methylocystaceae BT  BT BT BT  0.118 BT  BT 
        BT    

Methylocystis sp. SC2 Methylocystaceae 0.189  BT BT BT  BT BT  BT 
  0.172   BT   BT    
  0.270          

Methylosinus sp. LW3a Methylocystaceae 0.151 0.164 BT BT BT  BT BT BT BT 
  0.230      BT    
  0.154          

Methylosinus sp. LW4a Methylocystaceae 0.161 BT BT BT 0.164  BT BT  BT 
  0.187      BT    
  0.175          

Msn. trichosporium OB3ba Methylocystaceae 0.188 0.184 BT BT 0.199  BT BT  BT 
  0.161   BT   BT    
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Table 3.1. Continued. 

Strain Family pmoCAB mmo 
XYBZDC mxaFJGI xoxFJ mbnABCM MCA2590 + 

mopE/corAB copCD sgaA fdhBA fdsBA 

Candidate phylum NC10            

"Ca. Methylomirabilis oxyfera" - 0.234  BT BT   BT BT BT BT 

     0.219       

Phylum Verrucomicrobia            
"Ca. Methylacidimicrobium 

cyclopophantes" 3Ca "Ca. Methylacidiphilaceae" 0.206   BT   BT BT  BT 

"Ca. Methylacidimicrobium" sp. 
LP2A "Ca. Methylacidiphilaceae" 0.292   BT   BT BT  BT 

  0.292          
"Ca. Methylacidiphilum 

fumariolicum" SolV "Ca. Methylacidiphilaceae" BT   BT   BT BT  BT 

  BT          

  BT          
"Ca. Methylacidiphilum 

infernorum" V4 "Ca. Methylacidiphilaceae" BT   BT   BT BT  BT 

  BT          

  0.467          
acontains assembly gaps 

  



 

 113 

Table 3.2. DKL values of select genes in the genomes of methanotrophs calculated using CodonW. 

Strain Family pmoCAB 
mmo 

XYBZDC mxaFJGI xoxFJ mbnABCM 
MCA2590 + 
mopE/corAB 

copCD sgaA fdhBA fdsBA 

Class Gammaproteobacteria            

Methylobacter sp. BBA5.1a Methylococcaceae 0.582  0.109 0.217   0.091 0.118 0.089 0.158 
     0.198       

Mbt. marinus A45a Methylococcaceae 0.593  0.106 0.217   0.089 0.123 0.087 0.145 
     0.200       

Mbt. tundripaludum SV96a Methylococcaceae 0.451  0.095 0.224   0.091 0.183  0.061 

Mbt. whittenburyi ACM 3310a Methylococcaceae 0.529  0.111 0.217   0.086 0.122 0.092 0.161 
     0.133       

Mcd. szegediense O-12a Methylococcaceae 0.288  0.101 0.111   0.075 0.097  0.052 
     0.126       

Mcc. capsulatus Bath Methylococcaceae 0.194 0.073 0.095 0.140  0.071 0.080 0.094 0.075 0.062 
  0.198          

Mcc. capsulatus Texasa Methylococcaceae 0.193 0.069 0.086 0.143  0.063 0.081 0.104 0.069 0.063 

Mgb. morosus KoM1a Methylococcaceae 0.352  0.088    0.088 0.113  0.058 

Mmg. ishizawai 175 Methylococcaceae 0.235 0.118 0.137 0.167  0.066 0.111 0.113  0.069 
  0.236         0.075 

Mmc. agile ATCC 35068a Methylococcaceae 0.488  0.126 0.142  0.075 0.095 0.180  0.078 

Mmc. album BG8a Methylococcaceae 0.491  0.122 0.143  0.075 0.094 0.179  0.145 

Mmc. lacus LW14  Methylococcaceae 0.572  0.135 0.162  0.053 0.092 0.187  0.063 

Mtv. alcaliphilum 20Z Methylococcaceae 0.462  0.096 0.170  0.069 0.104 0.221 0.084 0.092 

Mtv. buryatense 5Ga Methylococcaceae 0.417 0.050 0.105 0.160  0.063 0.096 0.202 0.080 0.072 

Mmn. methanica MC09 Methylococcaceae 0.522 0.046 0.138 0.189   0.097 0.181  0.087 

Methylomonas sp. 11ba Methylococcaceae 0.486 0.056 0.097 0.240   0.105 0.159  0.072 

Methylomonas sp. LW13a Methylococcaceae 0.473 0.068 0.125 0.221   0.129 0.160  0.044 

Methylomonas sp. MK1a Methylococcaceae 0.489 0.059 0.102 0.214   0.102 0.135  0.115 

Msc. fibrata AML-C10a Methylococcaceae 0.490  0.085 0.132  0.062 0.092 0.163  0.066 

Mvl. miyakonense HT12a Methylococcaceae 0.535 0.056 0.109   0.087 0.092 0.137  0.058 

Mhl. crimeensis 10Kia Methylothermaceae 0.258  0.063    0.088 0.117  0.108 
  0.259          
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Table 3.2. Continued. 

Strain Family pmoCAB 
mmo 

XYBZDC 
mxaFJGI xoxFJ mbnABCM 

MCA2590 + 
mopE/corAB 

copCD sgaA fdhBA fdsBA 

Class Alphaproteobacteria            

Mcs. acidiphila B2a Beijerinckiaceae 0.153  0.088 0.104   0.137 0.112 0.055 0.078 

Mcs. aurea KYGa Beijerinckiaceae 0.140  0.071 0.094   0.145 0.108 0.059 0.071 
        0.074    

Mcl. silvestris BL2 Beijerinckiaceae  0.062 0.091 0.147   0.124 0.122  0.067 
     0.073       
     0.059       

Mfr. stellata AR4 Beijerinckiaceae  0.060 0.074 0.142   0.107 0.146 0.060 0.095 
     0.087       
     0.078       

Methylocystis sp. LW5a Methylocystaceae 0.122 0.088 0.117 0.132 0.082  0.064 0.143 0.041 0.094 
  0.219          
  0.216          

Mct. parvus OBBPa  Methylocystaceae 0.212  0.126 0.122 0.076  0.113 0.197  0.089 
  0.125      0.065    
Methylocystis sp. strain 

Rockwella Methylocystaceae 0.202  0.101 0.144 0.057  0.058 0.153  0.084 

  0.202   0.071   0.141    

Mct. rosea SV97a Methylocystaceae 0.222  0.115 0.160   0.134 0.167  0.105 
     0.115   0.073    

Methylocystis sp. SB2a Methylocystaceae 0.199  0.100 0.144 0.055  0.154 0.155  0.090 
        0.065    

Methylocystis sp. SC2 Methylocystaceae 0.202  0.100 0.073 0.062  0.112 0.145  0.086 
  0.125   0.142   0.057    
  0.203          

Methylosinus sp. LW3a Methylocystaceae 0.221 0.089 0.127 0.119 0.078  0.102 0.147 0.044 0.100 
  0.124      0.066    
  0.221          

Methylosinus sp. LW4a Methylocystaceae 0.216 0.078 0.120 0.135 0.099  0.068 0.175  0.104 
  0.123      0.102    
  0.216          

Msn. trichosporium OB3ba Methylocystaceae 0.181 0.073 0.113 0.145 0.074  0.069 0.178  0.094 
  0.179   0.062       
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Table 3.2. Continued. 

Strain Family pmoCAB mmo 
XYBZDC mxaFJGI xoxFJ mbnABCM MCA2590 + 

mopE/corAB copCD sgaA fdhBA fdsBA 

Candidate phylum NC10            

"Ca. Methylomirabilis oxyfera" - 0.108  0.066 0.086   0.126 0.080 0.053 0.081 

     0.099       

Phylum Verrucomicrobia            
"Ca. Methylacidimicrobium 

cyclopophantes" 3Ca "Ca. Methylacidiphilaceae" 0.149   0.081    0.094  0.058 

"Ca. Methylacidimicrobium" sp. 
LP2A "Ca. Methylacidiphilaceae" 0.140   0.109    0.130  0.059 

  0.136          
"Ca, Methylacidiphilum 

fumariolicum" SolV "Ca. Methylacidiphilaceae" 0.108   0.085    0.116  0.039 

  0.095          

  0.087          
"Ca. Methylacidiphilum 

infernorum" V4 "Ca. Methylacidiphilaceae" 0.126   0.096    0.104  0.064 

  0.101          

  0.238          

            
acontains assembly gaps 
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Figure 3.2. Phylogeny based on 16S rRNA gene.  (A) Bayesian 16S rRNA gene based phylogeny of aerobic methanotrophs.  The tree 
was constructed using the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a 
strict clock with a minimum nucleotide sequence length of 1132.  Node values indicate posterior probabilities based on 10,000,000 

iterations with a burn-in of 25%.  The scale bar represents 0.1 changes per nucleotide position.  (B) Maximum likelihood concatenated 
16S rRNA gene based phylogeny of aerobic methanotrophs.  The tree was constructed using the general time-reversible model with 
four categories in a discrete gamma model of site variability and was midpoint rooted (minimum of 1132 nucleotides).  Node values 

are based on 100 bootstrap replicates.  The scale bar represents 0.1 changes per nucleotide position.  

(A) (B)
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Figure 3.3. Phylogeny based on pmoCAB.  (A) Bayesian pmoCAB based phylogeny of aerobic methanotrophs. The tree was 

constructed using the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a strict 
clock with a minimum nucleotide sequence length of 2085.  Node values indicate posterior probabilities based on 10,000,000 

iterations with a burn-in of 25%.  The scale bar represents 0.1 changes per nucleotide position.  (B) Maximum likelihood concatenated 
pmoCAB based phylogeny of aerobic methanotrophs.  The tree was constructed using the general time-reversible model with four 

categories in a discrete gamma model of site variability and was midpoint rooted (minimum of 2085 nucleotides).  Node values are 
based on 100 bootstrap replicates.  The scale bar represents 0.1 changes per nucleotide position. 

(A) (B)
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Evidence for LGT of the mmo operon (mmoXYBZDC), however, is not as robust as 

observed for pmo genes.  That is, DKL values as predicted using Alien Hunter suggest that these 

genes may have been incorporated into the genomes of the two considered Beijerinckiaceae 

species, as well as some Methylococcaceae and Methylocystaceae species via LGT (Figure 3.1 

and Table 3.1).  Many species in Methylococcaceae, however, had DKL values for mmo genes 

below the detection threshold of Alien Hunter, unlike what was found for pmoCAB in these same 

microorganisms.  DKL values for mmo genes as determined using CodonW were low for most 

methanotrophs, and lower than those for pmoCAB in those strains that can express both forms 

(Table 3.2).  It should be noted that relatively few methanotrophs have been found to possess 

mmo genes, limiting our ability to be as thorough in our analyses as can be done for pmoCAB.  

As a result, construction of a phylogenetic tree based on the concatenated mmoXYBCDZ 

sequence provides limited additional information as to the origin of sMMO in methanotrophy 

(Figure 3.4). 
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Figure 3.4. Phylogeny based on mmoXYBZDC.  (A) Bayesian mmoXYBZDC based phylogeny of 
aerobic methanotrophs.  The tree was constructed using the general time-reversible model with 

invariant sites and four distinct gamma categories (GTR+I+G) under a strict clock with a 
minimum nucleotide sequence length of 4977.  Node values indicate posterior probability based 

on 10,000,000 iterations with a burn-in of 25%.  The scale bar represents 0.1 changes per 
nucleotide position.  (B) Maximum likelihood concatenated mmoXYBZDC based phylogeny of 
aerobic methanotrophs.  The tree was constructed using the general time-reversible model with 

four categories in a discrete gamma model of site variability and was midpoint rooted (minimum 
of 4977 nucleotides).  Node values are based on 100 bootstrap replicates.  The scale bar 

represents 0.1 changes per nucleotide position. 

 

3.3. Evidence of LGT of methanol dehydrogenases 

Earlier evidence suggested that methanotrophs arose via an ancestral methylotroph 

procuring MMO genes via LGT (Khadka et al., 2018; Osborne & Haritos, 2018; Tamas et al., 

2014).  To examine this hypothesis, we calculated the DKL values for operons encoding 

components of the PQQ-dependent Mxa-MeDH and Xox-MeDH.  As shown in Figure 3.1 the 

composition of genes involved in formation/activity of Mxa-MeDH – mxaFJGI – were generally 

indistinguishable from the host genome for most known families of methanotrophs (it should be 

noted that Verrucomicrobia methanotrophs lack these genes).  Relatively high DKL values were 

(A)

(B)
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calculated for this DNA region for members of the Beijerinckiaceae using Alien Hunter, i.e., 

Methylocapsa species (Table 3.1), but these were lower than values calculated for pmoCAB.  A 

Bayesian phylogenetic tree based on the concatenated mxaFJGI sequence (Figure 3.5A) is 

similar to the 16S rRNA phylogenetic analysis (Figure 3.2A), and comparable results were found 

for maximum likelihood phylogenies (Figure 3.2B and Figure 3.5B).  Collectively these data 

indicate that in most cases the genes encoding Mxa-MeDH are more ancestral than the genes 

encoding MMOs, i.e. that they were present in the genomes before the MMO genes were 

obtained via LGT event(s). 

Interestingly, there is evidence that the alternative PQQ-dependent methanol 

dehydrogenase – Xox-MeDH – that contains a rare earth element may have been incorporated 

into methanotrophic genomes via LGT.  First, genes with high levels of duplication are often 

indicative of LGT (Wellner et al., 2007), and multiple operons of xox genes (as well as pmo 

genes) are commonly found in methanotrophs.  mxa genes, however, do not exist in multiple 

operons for any examined methanotroph (Table 1.2, pg. 19).  Second, high DKL values were 

calculated for some copies of xoxFJ in several methanotrophs using both Alien Hunter and 

CodonW, and these were higher than those calculated for mxaFJGI (Figure 3.1, Table 3.1 and 

Table 3.2).  Third, copies of xoxFJ in many different methanotrophs are placed differently in 

Bayesian and maximum likelihood trees based on xoxFJ as compared to 16S rRNA phylogeny, 

e.g., Methylobacter and Methylocystis species, Verrucomicrobia methanotrophs, as well as 

Methyloferula stellata, Methylosinus trichosporium OB3b, and “Ca. Methylomirabilis oxyfera” 

(Figure 3.2 and Figure 3.6).   
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Figure 3.5. Phylogeny based on mxaFJGI.  (A) Bayesian mxaFJGI based phylogeny of aerobic methanotrophs.  The tree was 
constructed using the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a strict 

clock with a minimum nucleotide sequence length of 3144.  Node values indicate posterior probabilities based on 10,000,000 
iterations with a burn-in of 25%.  The scale bar represents 0.1 changes per nucleotide position.  (B) Maximum likelihood concatenated 
mxaFJGI based phylogeny of aerobic methanotrophs.  The tree was constructed using the general time-reversible model with four 
categories in a discrete gamma model of site variability and was midpoint rooted (minimum of 3144 nucleotides).  Node values are 

based on 100 bootstrap replicates.  The scale bar represents 0.1 changes per nucleotide position.  
  

(A) (B)
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Figure 3.6. Phylogeny based on xoxFJ.  (A) Bayesian xoxFJ based phylogeny of aerobic methanotrophs.  The tree was constructed 

using the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a strict clock with a 
minimum nucleotide sequence length of 2604.  Node values indicate posterior probabilities based on 10,000,000 iterations with a 

burn-in of 25%.  The scale bar represents changes per nucleotide position.  Alien Hunter DKL values are provided in parentheses.  BT 
indicates below threshold.  (B) Maximum likelihood concatenated xoxFJ based phylogeny of aerobic methanotrophs.  The tree was 

constructed using the general time-reversible model with four categories in a discrete gamma model of site variability and was 
midpoint rooted (minimum of 2604 nucleotides).  Node values are based on 100 bootstrap replicates.  The scale bar represents 0.1 

changes per nucleotide position. 

(A) (B)
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Despite evidence for LGT of some xox genes, the data suggest that genes encoding Xox-

MeDH in methanotrophic genomes were present before the acquisition of MMO.  First, the DKL 

values for xoxFJ in many species were (as found for mxaFJGI) below the detection threshold of 

Alien Hunter, and CodonW agreed with these results (Table 3.1 and Table 3.2).  Second, 

although divergence is evident when comparing phylogenetic trees based on 16S rRNA and 

xoxFJ, there are also some intriguing similarities.  That is, the phylogenetic grouping of xoxFJ 

for the Methylococcaceae, Methylocystaceae and Beijerinckiaceae at the top of Figure 3.6A is 

similar to that observed in 16S rRNA phylogeny (Figure 3.2A) and almost all (28/30) of these 

xoxFJ sequences had DKL values below the threshold of Alien Hunter (as noted in Figure 3.6A).  

The other groupings at the bottom of Figure 3.6A appear to have been influenced by several 

LGT events, and many of these copies exhibit significant DKL values (based on Alien Hunter).  

Thus, it appears that both forms of MeDH were ancestral, but some genes for Xox-MeDH were 

subsequently laterally transferred across multiple species.   

  



 

 124 

3.4. Evidence of LGT of additional genes involved in carbon oxidation and assimilation 

Previously, phylogenetic analyses focusing on Alphaproteobacteria methanotrophs 

indicated that genes involved in carbon oxidation and assimilation were vertically inherited in 

these microbes (Tamas et al., 2014).  We extended these analyses to examine the compositional 

divergence and phylogenetic relationships of sga (encoding serine-glyoxylate 

aminotransaminase), fdh and fds (encoding the tungsten and molybdenum dependent forms of 

formate dehydrogenase, respectively) for other phylogenetic groups of methanotrophs.  As 

shown in Figure 3.1, Table 3.1, and Table 3.2, little sequence divergence of these genes was 

calculated using either Alien Hunter or CodonW for any family/phylum of methanotrophs.  

Further, phylogenetic trees based on these sequences (Figure 3.7 and Figure 3.9) were similar to 

16S rRNA phylogenetic analysis (Figure 3.2).  Such data indicate that not only were multiple 

forms of MeDH likely vertically inherited, so were other aspects of C1 metabolism, i.e., 

methanotrophs likely arose from methylotrophs. 
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Figure 3.7. Phylogeny based on sgaA.  (A) Bayesian sgaA based phylogeny of aerobic methanotrophs.  The tree was constructed using 

the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a strict clock with a 
minimum nucleotide sequence length of 1005.  Node values indicate posterior probabilities based on 10,000,000 iterations with a 
burn-in of 25%.  The scale bar represents 0.1 changes per nucleotide position.  (B) Maximum likelihood sgaA based phylogeny of 
aerobic methanotrophs.  The tree was constructed using the general time-reversible model with four categories in a discrete gamma 

model of site variability and was midpoint rooted (minimum of 1005 nucleotides).  Node values are based on 100 bootstrap replicates.  
The scale bar represents 0.1 changes per nucleotide position.  

(A) (B)
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Figure 3.8. Bayesian concatenated (A) fdsBA and (B) fdhBA based phylogenies of aerobic methanotrophs.  The trees were constructed 
using the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a strict clock with a 

minimum nucleotide sequence length of 4092.  Node values indicate posterior probabilities based on 10,000,000 iterations with a 
burn-in of 25%.  The scale bars are identical and represent 0.1 changes per nucleotide position. 

  

(A) (B)
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Figure 3.9. Maximum likelihood concatenated (A) fdsBA and (B) fdhBA based phylogenies of aerobic methanotrophs.  The trees were 
constructed using the general time-reversible model with four categories in a discrete gamma model of site variability and was rooted 

at the Verrucomicrobia node or midpoint, respectively (minimum of 4092 nucleotides).  Node values are based on 100 bootstrap 
replicates.  The scale bars are identical and represent 0.1 changes per nucleotide position. 

 

(A) (B)
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3.5. Origin of copper uptake systems in methanotrophs 

The existence of copper uptake systems in methanotrophs was screened by conducting 

BLAST searches for genes encoding the copper-binding peptides MB, MopE, CorA, and CopCD 

(Table 1.2, pg. 19).  Genes encoding for MB (mbnABCM) were observed only in methanotrophs 

from the Methylocystaceae, while MopE and CorA (both with their surface associated 

cytochrome c peroxidases) were found only in methanotrophs affiliated with Methylococcaceae.  

Evidence of CopCD was found in most methanotrophs, with Verrucomicrobia methanotrophs 

being the only exception.  Very little compositional divergence for mopE and its surface 

associated cytochrome c peroxidase were found, nor for corA and its surface associated 

cytochrome c peroxidase (Figure 3.1).  These data suggest these genes did not arise from a recent 

LGT, and were present prior to the acquisition of MMO.  MB genes, however, showed a greater 

range of DKL values, with some methanotrophs having DKL values below the threshold of Alien 

Hunter indicating an LGT being unlikely, while others had values greater than 0.2, suggestive of 

an LGT.  Finally, compositional divergence of copCD indicated that this copper uptake system 

was not the result of an LGT event for most methanotrophs.  For those methanotrophs with 

multiple copies of copCD (of the Methylocystaceae and Beijerinckiaceae families), although 

Alien Hunter typically calculated divergence values below threshold for both copies, CodonW 

indicated that one copy had DKL values two-three times greater than the other.  These data 

suggest that the second copy of copCD in these species may have arisen as a result of LGT, and 

Bayesian and Maximum likelihood phylogenetic trees based on copCD (Figure 3.10) support this 

finding.
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Figure 3.10. Phylogeny based on copCD.  (A) Bayesian copCD based phylogeny of aerobic methanotrophs.  The tree was constructed 
using the general time-reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a strict clock with a 

minimum nucleotide sequence length of 1351.  Node values indicate posterior probabilities based on 10,000,000 iterations with a 
burn-in of 25%.  The scale bar represents changes per nucleotide position.  (B) Maximum likelihood concatenated copCD based 
phylogeny of aerobic methanotrophs.  The tree was constructed using the general time-reversible model with four categories in a 
discrete gamma model of site variability and was midpoint rooted (minimum of 1351 nucleotides).  Node values are based on 100 

bootstrap replicates.  The scale bar represents 0.1 changes per nucleotide position. 

(A) (B)
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3.6. Diversity of methanobactin 

Although much has been learned about MB, there are still many more questions than 

answers.  Thus, great opportunity exists for further research to elucidate the pathway(s) of MB 

biosynthesis as well as the diversity of MB made my methanotrophs.  Indeed, a phylogenetic tree 

based on concatenated mbnABCM sequences (Figure 3.11A; note that methanotrophs with 

structurally characterized MBs are identified with a *) not only support the original division of 

MBs into two general groups, but also suggests these may be further divided into multiple 

subgroups. 

 
Figure 3.11. Phylogeny of mbnABCM and MbnA sequence alignment.  (A) Bayesian mbnABCM-

based phylogeny.  The tree was constructed using the general time-reversible model with 
invariant sites and four distinct gamma categories (GTR + I + G) under a strict clock with a 
minimum nucleotide sequence length of 2715.  Node values indicate posterior probabilities 
based on 10,000,000 iterations with a burn-in of 25%.  The scale bar represents changes per 

nucleotide position.  (B) Predicted amino acid sequence of MbnA from corresponding 
methanotrophs.  Note that MbnA has both a leader sequence (not observed in characterized 

MBs) and a core sequence (found in characterized MBs denoted by *). 
 

Within Group I MBs, based on mbnABCM sequence comparison, there appear to be two 

subpopulations – Group IA and IB.  Group IA MBs include that from Msn. trichosporium OB3b 

and Methylosinus sp. LW4 that have been structurally characterized.  One MB gene cluster in 

Mct. parvus OBBP and that from Methylosinus sp. 3S-1 are also included in this subgroup.  

(A) (B)
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Group IB MBs include several from a number of methanotrophs with multiple gene clusters (i.e., 

various Methylosinus and Methylocystis species), as well as the mbn genes of Msn. sporium 

SM89A.  MB of Msn. sporium SM89A is more distantly related in comparison with the 

relatively tight clustering of the rest of the group and may possibly encode for a different form of 

MB.  It would be worthwhile to determine if these methanotrophs (particularly Msn. sporium 

SM89A) produce MBs, and if so, how structurally similar they are to known MBs.  It is 

important to note that a partial mbnA gene sequence is available for Msn. sporium NR3K (Baslé 

et al., 2018).  When comparing the predicted MbnA sequence of Msn. sporium NR3K to that of 

Msn. sporium SM89A, there is remarkable similarity (only the first amino acid of the core 

peptide is different; LCASCSICGPNC vs MCASCSICGPNC, respectively).  This suggests that 

different Msn. sporium strains may make near-identical MBs. 

On the other hand, there are three general subgroups within the Group II MBs based on 

mbnABCM sequence comparison.  The only identified Group II MBs are from Group IIA, i.e., 

various Methylocystis species that have significant gene synteny, phylogeny and MbnA 

sequences (Figure 1.20, pg. 57 and Figure 3.11).  One can postulate the presence of an additional 

subgroup (Group IIB) but MB has not been purified/characterized from any methanotrophs in 

this group, although it appears that both Methylocystis and Methylosinus species may produce 

MBs of this type.  The possibility that these strains may produce a novel form of MB is 

supported by the fact these mbn gene clusters lack mbnS, putatively encoding for a 

sulfotransferase (Figure 1.20, pg. 57).  It is also interesting to note that those putative Group II 

MB gene clusters lacking mbnS appear to have the C-terminal ring of MB formed from either an 

Alanine-Cysteine or Histidine-Cysteine dipeptide (Figure 3.11B) rather than Threonine-Cysteine 

as found in Group IIA MBs.  The predicted core polypeptide sequence of mbnA from these 
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clusters includes a threonine elsewhere, but apparently these are not sulfonated, possibly because 

they are not involved in ring formation.  MB has not been isolated/characterized from any of 

these methanotrophs, and so it is unknown if these threonines are sulfonated or not, but if so, it 

would seem that a sulfotransferase encoded elsewhere in the genome is responsible.  This 

appears unlikely, however, as no evidence of any gene with significant similarity to mbnS from 

Methylocystis sp. SB2 was found in the genomes of methanotrophs putatively making IIB MBs.  

One should keep in mind, however, that a novel sulfotransferase may be present in these 

genomes as a large fraction of any genome encodes for genes of unknown function. 

Finally, bioinformatic interrogation of available methanotroph genomes suggest that 

Methylocystis bryophila S285 (Group IIC) may make a novel form of MB (Figure 3.11A).  The 

predicted core peptide of this putative MB has significant differences as compared to other MBs 

(Figure 3.11B), e.g., other MBs are predicted to either have two or four cysteines in the core 

peptide (Group II and I MBs, respectively), but MB from Mct. bryophila S285 appears to have 

three.  This methanotroph, isolated from a sphagnum peat bog with a pH of 4.2 (Belova et al., 

2013; Han et al., 2018), may make a modified acid-stable form of MB as other forms of MB are 

easily digested in dilute acid solutions, especially the oxazolone rings of Msn. trichosporium 

OB3b and Methylocystis sp. SB2 MBs.  We hasten to stress this is highly speculative, however, 

and provide these comments in the interest of stimulating further discussion and research into 

MB. 
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3.7. Lanmodulin in methanotrophs 

The occurrence of LanM and LanM-like protein in different microorganisms was 

searched via protein BLAST using three major criteria, (1) contains four EF hands, (2) have 

11~13 residues between each EF hand, and (3) the protein is less than 200 residues long.  A total 

of 266 possible proteins were identified, of which only one was Gammaproteobacteria 

(Moraxellaceae family) and the rest Alphaproteobacteria (Figure 3.12).  Of the 265 

Alphaproteobacteria, 113 were nonmethanotrophic methylotrophs (7 Acetobacteraceae, 1 

Bradyrhizobiaceae, 9 Hyphomicrobiaceae, 94 Methylobacteriaceae, 2 Xanthobacteraceae) and 

28 methanotrophs (10 Beijerinckiaceae, 17 Methylocystaceae, 1 unclassified Rhizobiales).  From 

this list of LanM-like proteins, a more stringent screen was applied, where only those with four 

EF hands with the motif BPDXDXXXDXXE were selected to identify LanMs that are more 

similar to that found in Mrr. extorquens AM1.  36 such proteins were found, and the majority 

occurred in Methylobacteriaceae, followed by Hyphomicrobiaceae family (Figure 3.13).  It is 

interesting to note that both families are nonmethanotrophic methylotrophs, and no 

methanotrophs were found to have this superior LanM. 
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Figure 3.12. Bayesian phylogeny based on LanM and LanM-like proteins.  The tree was 
constructed using the general time-reversible model with invariant sites and four distinct gamma 
categories (GTR+I+G) under a strict clock with a minimum amino acid sequence length of 101.  

Node values indicate posterior probabilities based on 10,000,000 iterations with a burn-in of 
25%.  The scale bar represents 0.2 changes per amino acid position. 
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Figure 3.13. Bayesian LanM based phylogeny.  The tree was constructed using the general time-
reversible model with invariant sites and four distinct gamma categories (GTR+I+G) under a 

strict clock with a minimum amino acid sequence length of 103.  Node values indicate posterior 
probabilities based on 10,000,000 iterations with a burn-in of 25%.  The scale bar represents 0.1 

changes per amino acid position. 
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only found in Alphaproteobacteria and have a relatively low nucleotide compositional bias with 

respect to methanotroph genomes (BT, 0.0301 ~ 0.0486), suggesting vertical inheritance of this 

gene. 

 
 
Moderately conserved LanM (266) 

 
Highly conserved LanM (36) 

 
Methanotroph LanM (28) 

 
Figure 3.14. Sequence logos of EF hands in LanM, number of proteins aligned is provided in 

parentheses. 
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Another important fact to note is the gene synteny found proximate to lanM in 

methanotrophs and nonmethanotrophic methylotrophs.  There are genes encoding for a TonB-

dependent receptor and ABC transporter upstream of lanM in Mrr. extorquens AM1 (Figure 

3.15).  These genes are also found in most Methylocystis species, except the ABC transporter 

genes are found downstream of lanM, and in their place, genes for a two-component regulatory 

system consisting of histidine kinase and LuxR type regulator are found.  Interestingly, the gene 

for TonB-dependent receptor is not found near lanM in Methylosinus species.  It has been shown 

that this TonB-dependent receptor is crucial for REE uptake in Mrr. extorquens PA1 and AM1 

(Ochsner et al., 2019; Roszczenko-Jasińska et al., 2020), so it is likely that the gene is encoded 

elsewhere on the chromosome of Methylosinus species containing lanM.  Upstream of lanM in 

Beijerinckiaceae methanotrophs are genes encoding for components of TonB-dependent 

transporter (i.e., receptor, TonB, and ExbBD), and downstream those encoding for a lone 

histidine kinase and transaldolase.  Genes for ABC transporter are not found near any of the 

lanM here. 
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Figure 3.15. Lanmodulin gene and related regulatory and transporter genes from methanotrophs 
with available genome sequences. 
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methanotrophs with multiple copies of xoxFJ, often one copy had a nucleotide composition 

indistinguishable from the host genome, while a duplicate copy was appreciably different (Figure 

3.1, Table 3.1 and Table 3.2).  At this level of analysis, we cannot state with any certainty why 

one form of MeDH may be more amenable to LGT than another.  One possibility may be that as 

rare earth elements are strong Lewis acids (Lim & Franklin, 2004), MeDH with rare earth 

elements are catalytically superior to calcium-containing MeDH (Keltjens et al., 2014).  As a 

result, competition pressure may promote the acquisition of xox genes via LGT.  Interestingly, it 

has been shown that methanotrophs expressing Xox-MeDH do not excrete methanol, but do 

when expressing Mxa-MeDH (Krause et al., 2017a).  Thus acquisition/expression of Xox-MeDH 

may provide methanotrophs with a competitive growth advantage by limiting the loss of 

methanol. 

In relation to Xox-MeDH and its REE requirement, the gene encoding for lanmodulin 

was only found in microbes belonging to Alphaproteobacteria, with the exception of one of 

Gammaproteobacteria.  Interestingly, this finding indicates that Gammaproteobacteria 

methanotrophs with xoxFJ all lack lanM, suggesting lanM is not crucial for REE uptake/sensing 

or Xox-MeDH activity, or takes on a secondary role.  Indeed, deletion of lanM in Mrr. 

extorquens did not cause adverse effects on growth on methanol (Ochsner et al., 2019; 

Roszczenko-Jasińska et al., 2020).  Thus, the role of lanM in methylotrophy is still unclear.  In 

addition, the lanM found in Alphaproteobacteria methanotrophs contains EF hands lacking 

residues crucial for enhanced selectivity and affinity of LanM, though its REE binding efficiency 

would still likely be better than that of calmodulins (Cotruvo et al., 2018).  Perhaps LanM is a 

periplasmic partner to an extracellular REE-binding molecule, or lanthanophore, to assist REE 

release and/or transport to other parts of the cell.  This is greatly hypothetical, but future 
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investigation will help elucidate the role of LanM in REE uptake and regulation in 

methanotrophs. 

The evidence that some methanotrophs have evolved via LGT of pMMO-encoding genes 

(and possibly sMMO-encoding genes) to methylotrophs raises the intriguing question of why 

aerobic methanotrophs have limited phylogenetic diversity, being largely restricted to the Alpha- 

and Gammaproteobacteria.  That is, aerobic methylotrophs have been found in the Alpha-,  

Beta-, and Gammaproteobacteria as well as in the Actinobacteria, Firmicutes, and in some 

eukaryotes (Kolb, 2009).  Why then are there no identified methanotrophs in these additional 

classes/phyla/domain?  This question cannot be unequivocally answered at this time, but it may 

be that such metabolisms exist in these phylogenetic groups, but have yet to be discovered. 

Alternatively, it may be that the ability of a methylotroph to become a methanotroph 

requires more than LGT of MMO genes.  Specifically, it is well-known that copper strongly 

affects the expression and activity of both sMMO and pMMO (Green et al., 1985; Leak & 

Dalton, 1986b; Prior & Dalton, 1985; Semrau et al., 2010, 2013, 2018), suggesting that 

conversion from a methylotrophic to a methanotrophic lifestyle not only requires incorporation 

of MMO genes, but also the means to sense, collect, and respond to copper.  If this were true, 

one would expect that copper likely played a key role in the physiology of the methanotrophic 

ancestor.  In such a case, genes other than those involved in methane oxidation would be 

expected to be regulated by copper in methanotrophs.  Indeed, it has been shown that varying 

copper not only affects expression of genes encoding polypeptides of sMMO and pMMO in 

Msn. trichosporium OB3b, but also mxaF (encoding the large subunit of Mxa-MeDH) and genes 

involved in cell synthesis and transcriptional regulation (Farhan Ul Haque et al., 2015a, 2017; 

Gu & Semrau, 2017).  Further, copper affects the formation of intracytoplasmic membranes in 
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Mcc. capsulatus Bath (Choi et al., 2003), as well as the expression of genes involved in energy 

metabolism, cell synthesis, transcriptional regulation, and electron transport (Larsen & Karlsen, 

2016). 

If copper uptake were required for the evolution of methanotrophy from methylotrophy, 

it is reasonable then to expect that all known aerobic methanotrophs would have identified 

copper uptake systems.  Methanotrophs have been shown to have multiple mechanisms for 

copper uptake, i.e., MB (found in the Methylocystaceae), MopE/CorA (found in the 

Methylococcaceae) and CopCD (found in the Methylocystaceae, Methylococcaceae, 

Methylothermaceae, Beijerinckiaceae and NC10).  If one assumes that the ability to collect 

copper is a requirement for the evolution of methanotrophy from methylotrophy, then it is 

reasonable to expect that these genes would either be predicted to be part of the ancestral genome 

or have been incorporated into methanotrophic genomes in the same time frame as MMO genes.  

Of these copper uptake systems, copCD was present in all but the Verrucomicrobia 

methanotrophs, and at least one copy of copCD in each methanotroph examined had low 

divergence values.  Genes encoding for MopE/CorA also had low DKL values, suggesting that 

this copper uptake system was present in the genome of the ancestor of Methylococcaceae 

methanotrophs prior to LGT of MMO.  On the other hand, MB appears to be ancestral for some 

methanotrophs of the α-Proteobacteria, and a product of LGT for others.  What is also notable is 

that representative methylotrophs do not have genes for MB, MopE or CorA, although some 

appear to have copCD (Table 3.3).  Collectively the presence of multiple copper uptake systems 

in methanotrophs juxtaposed with the absence of copper-uptake systems in many methylotrophs 

provides circumstantial evidence that the evolution of methanotrophy from methylotrophy not 

only required LGT of MMO genes, but also the means to sequester copper.  
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Table 3.3. Presence of select genes in the genomes of methylotrophs. 

Class or Phylum Strain mbnBC mopE/ 
corA copCD lanM 

Actinobacteria 
Amycolatopsis methanolica 239 
AQUL.1 

No No Yes No 

Alphaproteobacteria Azorhizobium caulinodans ORS 571 
NC_009937.1 

No No No No 

 Bradyrhizobium diazoefficiens USDA 110 

NZ_CP011360.1 
No No Yes Yes 

 
Hyphomicrobium denitrificans 1NES1 
NC_021172.1 

No No No No 

 
Hyphomicrobium nitrativorans NL23 
NC_022997.1 

No No No  

 
Methylobacterium extorquens AM1 
META1.1 

No No No Yes 

 
Methylobacterium nodulans ORS 2060 

NC_011894.1 
No No Yes Yes 

 
Methylopila sp. M107 
NZ_ARWB.1 

No No Yes No 

 
Paracoccus pantotrophus KS1 
QOZU.1 

No No No No 

 
Rhodobacter sphaeroides ATH 2.4.1 
NC_007493.2; NC_007494.2 

No No No No 

 
Sagittula stellata E-37 

NZ_AAYA.1 
No No No No 

 
Xanthomonas campestris pv. campestris ATCC 33913 
NC_003902.1 

No No No No 

Betaproteobacteria Methylibium petroleiphilum PM1 
NC_008825.1 

No No No No 

 
Methylobacillus flagellatus KT 
NC_007947.1 

No No Yes No 

 
Methylobacillus glycogenes JCM 2850 

NZ_BAMT.1 
No No No No 

 
Methylophilus sp. 1a 

NZ_ARFK.1 
No No No No 

 
Methylophilus methylotrophus DSM 46235a 

NZ_ARJW.1 
No No Yes No 

 
Methylotenera mobilis JLW8 
NC_012968.1 

No No No No 

 
Methylotenera versatilis 79 

NZ_ARVX.1 
No No No  

 
Methyloversatilis thermotolerans NVD 3tTa 

M3TT.1 
No No No No 

 
Methyloversatilis universalis FAM5a 

AFHG.2 
No No Yes No 

 
Methylovorus glucosetrophus SIP3-4 
NC_012972.1 

No No Yes No 

 
Methylovorus sp. MP688 

NC_014733.1 
No No No No 

Firmicutes 
Bacillus methanolicus PB1 
AFEU.1 

No No No No 

Gammaproteobacteria Methylophaga aminisulfidivorans MPa 

NZ_AFIG.1 
No No No No 

 
Methylophaga lonarensis MPLa 

NZ_APHR.1 
No No No No 

acontains assembly gaps  
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It should be noted, however, that none of these copper uptake systems was found in 

Verrucomicrobia methanotrophs, although it also appears that MMO genes in these 

methanotrophs were the result of an LGT.  At this time, it is unknown why these methanotrophs 

lack known copper uptake systems, but it may be due to copper availability not being an issue in 

the conditions these microbes grow.  That is, in extremely low pH and metal-rich geothermal 

environments favored by these microbes (Op den Camp et al., 2009), metal availability is high as 

metal solubility increases with increasing H+ concentrations.  Further, at this time, it is unclear 

why Methylocella and Methyloferula species that cannot express pMMO have the CopCD copper 

uptake system as they would appear to have little need for collecting copper for pMMO activity, 

and copper uptake can inhibit sMMO expression.  It has been suggested earlier that these 

methanotrophs likely once had pmo genes, but subsequently lost them (Tamas et al. 2014).  In 

this case, the presence of copCD may be an evolutionary artefact.  In addition, it may be that 

copCD expression is low in these strains, limiting copper uptake.  We stress, however, that such 

statements should be considered speculative as no transcriptomic data have been published for 

these methanotrophs. 

It is likely that aerobic methanotrophs evolved from methylotrophs via LGT of MMO 

genes, and that this has occurred several times independently (Khadka et al. 2018; Osborne and 

Haritos 2018). Here we present evidence that genes involved in carbon oxidation/carbon 

assimilation were present in the genomes of the receptor organisms before these LGT events, 

although additional copies of Xox-MeDH-encoding genes were later acquired by many 

methanotrophs via LGT.  Transformation of an aerobic methylotroph to a methanotroph, 

however, not only required LGT of genes encoding for MMOs, but also the presence of a 

copper-uptake system(s), particularly for mesophilic aerobic methanotrophs. One or more copper 
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uptake systems appear to have been encoded in the genomes of the receptor organisms prior to 

LGT of MMO-encoding genes.  

There has been great interest in engineering methanotrophy in other microbes to valorize 

methane, currently a relatively inexpensive carbon source, into precursors of bioplastics and 

biofuels (Khmelenina et al. 2015; Strong et al. 2016; Strong et al. 2015).  To date only limited 

success has been reported for the heterologous expression of methane monooxygenases in non-

methylotrophs (Jahng et al. 1996; Jahng and Wood 1994; Sun and Wood 1996), with expression 

being difficult to maintain.  It is recommended that future efforts to engineer methanotrophy in 

foreign hosts also consider incorporating a copper-uptake system to ensure sufficient quantities 

of copper are available for optimal expression/activity, particularly of the pMMO.  In such an 

event, net copper uptake must be carefully controlled, however, to ensure that copper does not 

build up to toxic levels i.e., due to copper’s high redox activity and binding to iron-sulfur 

proteins (Semrau et al. 2018). Strategies to regulate copper toxicity could include incorporation 

of copper efflux systems, e.g., cusA, and/or copper storage proteins found in methanotrophs (Gu 

and Semrau 2017; Vita et al. 2016; Vita et al. 2015).  Including such systems could also help 

optimize heterologous expression of sMMO. 
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Chapter 4 Competition for Copper Between Methanotrophs 
 
4.1. Introduction 

Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known 

to have multiple mechanisms for copper uptake.  Some methanotrophs secrete a chalkophore 

called methanobactin (MB) (Kim et al., 2004; DiSpirito et al., 2016; Semrau et al., 2020) that 

binds copper with extremely high affinity (Semrau et al., 2018) while others utilize a surface-

bound protein and a secreted form of it (MopE and MopE*, respectively) (Berson & Lidstrom, 

1997; Fjellbirkeland et al., 2001; Karlsen et al., 2003; Helland et al., 2008; Ve et al., 2012) for 

copper collection.  Finally, some Methylocystaceae methanotrophs lack both MB and the 

MopE/MopE* systems for copper uptake, suggesting that they collect copper by an as yet 

unknown system(s) (Table 1.2).  As different methanotrophs have different means of 

sequestering copper, copper competition may significantly impact methanotrophic community 

composition and activity. 

Given the importance of copper in methanotrophy, this raises several intriguing 

questions.  First, do methanotrophs that express MB have a competitive advantage for copper 

sequestration?  Competition between methanotrophs for copper is likely, with such competition 

affecting overall methanotrophic community composition, and by extension methanotrophic 

activity.  Second, given that MB is secreted into the environment and then taken up after binding 

copper, can copper-MB complexes be “stolen” by other microbes?  Such a phenomenon would 

require non-MB expressing microbes to have the uptake system identified for MB, i.e., MbnT, 

the TonB-dependent transporter required for MB uptake (Gu et al., 2016a; Dassama et al., 2016).  
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Such “theft” would not be unprecedented, as many microbes have been found to act as iron 

“cheaters” where they take up siderophores produced by others to meet their metabolic iron 

requirements (Champomier-Vergès et al., 1996; Guan et al., 2001; Cordero et al., 2012; Butaitė 

et al., 2017).  Further, it has been found that methanotrophs that produce and take up MB are 

able to degrade the potent neurotoxin methylmercury through an as yet uncharacterized 

mechanism (Lu et al., 2017).  If some methanotrophs act as “MB-cheaters”, does such “theft” 

enable these microbes to degrade methylmercury?  Herein we describe experiments delineating 

copper uptake and gene expression in Mmc. album BG8, Methylococcus capsulatus Bath, and 

Methylocystis sp. strain Rockwell under varying conditions to determine: (1) if copper 

requirements of these methanotrophs can be met through “theft” of MB, (2) if such “theft” 

promotes the ability of non-MB producing methanotrophs to degrade methylmercury, and (3) if 

methanotrophs can collect copper via some novel mechanism. 
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4.2. Characterization of putative MbnTs identified in Mmc. album BG8, Methylocystis sp. 

strain Rockwell, and Mcc. capsulatus Bath 

In Mmc. album BG8, one gene encoding for a putative TonB-dependent receptor was 

most similar to both OB3b-MbnT and SB2-MbnT (Metal_1282, or mbnT-BG8).  Similarity was 

much greater, however, to OB3b-MbnT (2´10-145, identity = 36%) than SB2-MbnT (1´10-12, 

identity = 28%) as shown in Table 4.1.  For Methylocystis sp. strain Rockwell, different genes 

were identified to be similar to OB3b-MbnT and SB2-MbnT (Table 4.1).  Specifically, several 

genes encoding for putative TonB-dependent transporters similar to OB3b-MbnT were found in 

the genome of Methylocystis sp. strain Rockwell, of which MSPATv1_230027 (i.e., mbnT1-

Rockwell) exhibited the highest similarity (E value = 1´10-136, identity = 36%).  Given this high 

similarity, expression of mbnT1-Rockwell was monitored under different growth conditions as 

described below.  Two genes encoding for putative TonB-dependent transporters highly similar 

to SB2-MbnT (MSPATv1_550006 and MSPATv1_50173; E value = 0.0 for both) were found in 

the genome of Methylocystis sp. strain Rockwell.  The identity of MSPATv1_550006 to SB2-

MbnT, however, was much higher than that found for MSPATv1_50173, i.e., 65% vs. 42%.  

Expression of MSPATv1_550006 (or mbnT2-Rockwell) was thus measured via RT-qPCR as 

detailed below.  For Mcc. capsulatus Bath, no TonB-dependent transporter was found to have 

significant similarity to either OB3b-MbnT or SB2-MbnT, the closest being MCA1957 to OB3b-

MbnT (E value = 2´10-6, identity = 21%) and MCA2074 to SB2-Mb (E value of 9´10-13, identity 

= 28%).  Nonetheless, expression of MCA1957 in Mcc. capsulatus Bath (hereafter labeled 

mbnT-Bath) was monitored under different growth conditions as described below. 
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Table 4.1. Putative MbnTs and Csps in Mmc. album BG8, Mcc. capsulatus Bath, and 
Methylocystis sp. strain Rockwell as identified by blastp comparison to MbnT and Csp of either 
Msn. trichosporium OB3b or Methylocystis sp. SB2. 

Query Subject Locus Identity 
(%) E value Annotated Function 

Msn. trichosporium 
OB3b MbnT 

(ADVE02_V2_13651) 

Mmc. album 
BG8 

Metal_1282 36 2´10-145 TonB-dependent siderophore receptor 

Metal_2337 27 7´10-68 TonB-dependent siderophore receptor 

Mcc. capsulatus 
Bath MCA1957 21 2´10-6 TonB-dependent receptor 

Methylocystis 
sp. strain 
Rockwell 

MSPATv1_230027 36 1´10-136 Putative TonB-dependent receptor protein 

 MSPATv1_180067 34 1´10-111 Putative TonB-dependent receptor protein 

 MSPATv1_410017 29 7´10-89 Putative TonB-dependent receptor protein 

 MSPATv1_180015 31 1´10-84 Putative TonB-dependent receptor protein 

 MSPATv1_20363 25 2´10-53 TonB-dependent siderophore receptor 

Methylocystis sp. SB2 
MbnT 

(MSB2v1_460017) 

Mmc. album 
BG8 

Metal_1282 28 1´10-12 TonB-dependent siderophore receptor 

Metal_2337 20 1´10-12 TonB-dependent siderophore receptor 

Mcc. capsulatus 
Bath 

MCA2074 25 9´10-13 TonB domain-containing protein 

MCA1957 23 2´10-3 TonB-dependent receptor 

Methylocystis 
sp. strain 
Rockwell 

MSPATv1_550006 65 0.0 Putative TonB-dependent receptor protein 

MSPATv1_50173 42 0.0 TonB-dependent receptor 

 
MSPATv1_180067 25 4´10-11 TonB-dependent siderophore receptor 

 
MSPATv1_20363 21 8´10-11 TonB-dependent siderophore receptor 

 
MSPATv1_10115 23 2´10-9 TonB-dependent receptor 

 Methylocystis 
sp. strain 
Rockwell 

MSPATv1_280020 62 4´10-61 Conserved exported protein of unknown 
function 
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4.3. Growth of Mmc. album BG8 wild-type and DmbnT mutant  

Growth of Mmc. album BG8 wildtype was strongly dependent on the availability of 

copper as described previously (Collins et al., 1991).  That is, growth clearly occurred in the 

presence of 1 µM copper, but was significantly reduced when an inoculum grown in the presence 

of copper was transferred to NMS medium with no added copper (final OD600 of 0.60 ± 0.03 vs. 

0.24 ± 0.10; p = 0.018) (Figure 4.1A and Figure 4.2A).  Growth was abolished when this culture 

was transferred a second time to copper-free medium, indicating that original growth was likely 

due to the transfer of a small amount of copper with the initial inoculum.  Such a result is not 

unexpected as Mmc. album BG8 can only express pMMO that requires copper for its activity.   

 

Figure 4.1. Growth of Mmc. album BG8 in the presence of varying amounts of copper, MBs, and 
TRIEN.  Growth of the (a) wild-type and (b) DmbnT mutant with and without copper and MB.  
Growth of the (c) wild-type and (d) DmbnT mutant with and without copper, TRIEN, and MB.  

Solid lines indicate data fitted to logistic growth curve using growthcurver (Sprouffske & 
Wagner, 2016), and arrows indicate the beginning of second growth cycle. 
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Figure 4.2. Growth rates of the second growth cycle as determined via growthcurver (Sprouffske 
& Wagner, 2016) of Mmc. album BG8 (a) wildtype and (b) DmbnT with or without 1 µM Cu, 5 
µM MB, and 5 µM TRIEN.  Error bar indicates standard error of biological triplicates and letters 

above bars indicate statistically significant difference determined through Student’s t-test with 
Bonferroni correction (p < 0.05).  NG indicates no growth. 

 

 

The addition of either 5 µM OB3b-MB (a Group I MB) or SB2-MB (a Group II MB) in 

the presence of 1 µM copper did not affect growth of Mmc. album BG8 as compared to growth 

in the presence of 1 µM copper only, indicating that neither form of MB inhibited copper uptake 

(Figure 4.1A and Figure 4.2A).  This was confirmed by measuring copper associated with 

biomass at the end of the second growth cycle - no significant difference was found for cultures 

of Mmc. album BG8 grown with copper and either OB3b-MB or SB2-MB (Figure 4.3A).  

Further, expression of various genes involved either in copper storage (csp3), carbon oxidation 

(pmoA and mxaF), or putative MB uptake (mbnT-BG8) was not significantly affected by the 

addition of either type of MB (Figure 4.4).  Growth of the Mmc. album BG8 DmbnT mutant was 

comparable to that of wildtype under all conditions tested (Figure 4.1B and Figure 4.2B).  

Copper uptake by Mmc. album BG8 DmbnT was also not affected by the addition of either form 

of MB, nor was expression of various genes involved in methane oxidation or copper storage 

(Figure 4.3B and Figure 4.5).   
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Figure 4.3. Copper associated with the biomass of Mmc. album BG8 (a) wildtype and (b) DmbnT 
mutant at the end of growth with 0 µM Cu, 1 µM Cu, 1 µM Cu and 5 µM OB3b-MB, 1 µM Cu 
and 5 µM SB2-MB, 1 μM Cu and 5 μM TRIEN, 1 μM Cu, 5 μM TRIEN and 5 μM OB3b-MB, 

and 1 μM Cu, 5 μM TRIEN and 5 μM SB2-MB. NG indicates no growth. 
 

 
Figure 4.4. RT-qPCR of (a) mbnT-BG8, (b) pmoA, (c) mxaF, and (d) csp3 in Mmc. album BG8 
wildtype grown with or without 1 µM Cu, 5 µM MB, and/or 5 µM TRIEN.  Error bar indicates 

range of biological duplicate or triplicate samples.  Line over bars indicate no significant 
differences determined by Tukey’s HSD test (p < 0.05).  NG indicates no growth. 
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Figure 4.5. RT-qPCR of (a) pmoA, (b) mxaF, and (c) csp3 of Mmc. album BG8 DmbnT grown 

with or without 1 µM Cu, 5 µM MB, and/or 5 µM TRIEN.  Error bar indicates range of 
biological duplicate or triplicate samples.  Line over bars indicate no significant differences 

determined by Tukey’s HSD test (p < 0.05).  NG indicates no growth. 
 

 

The addition of 5 µM TRIEN in the presence of 1 µM copper significantly inhibited the 

growth of Mmc. album BG8 wildtype as compared to growth in the presence of copper alone 

(Figure 4.1C and Figure 4.2A).  The addition of either form of MB did not improve growth of 

Mmc. album BG8 wildtype in the presence of copper and TRIEN (Figure 4.1C and Figure 4.2A).  

Expression of various genes involved in methane/methanol oxidation (pmoA, mxaF) or copper 

storage (csp3) were not significantly affected in Mmc. album BG8 grown in the presence of 

TRIEN, copper and/or either form of MB (Figure 4.4), nor was copper uptake (Figure 4.3A).  

Growth of Mmc. album BG8 ΔmbnT was reduced in the presence of copper and TRIEN as 
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compared to copper alone, but not significantly so (Figure 4.1D and Figure 4.2B).  Interestingly, 

the addition of OB3b-MB in conjunction with TRIEN did reduce the growth of Mmc. album BG8 

ΔmbnT as compared to the presence of copper alone or copper plus TRIEN (Figure 4.1D and 

Figure 4.2B).  Expression of various genes involved in methane/methanol oxidation (pmoA, 

mxaF) or copper storage (csp3) were not significantly affected in Mmc. album BG8 ΔmbnT 

(Figure 4.5), nor was copper uptake when the mutant was grown in the presence of TRIEN with 

or without either form of MB, although the mutant appeared to collect more copper in the 

presence of SB2-MB vs. OB3b-MB (Figure 4.3B).   
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4.4. Growth of Methylocystis sp. strain Rockwell 

Like Mmc. album BG8, Methylocystis sp. strain Rockwell cannot express sMMO, and so 

requires copper for growth.  As expected, growth of Methylocystis sp. strain Rockwell was 

inhibited in the absence of copper as compared to the presence of 1 µM copper (Figure 4.6A, C).  

Addition of SB2-MB in the presence of copper did not impact the growth of Methylocystis sp. 

strain Rockwell, whereas OB3b-MB significantly reduced its growth (Figure 4.6A, C).  

Expression of various genes involved in carbon assimilation (pmoA, mxaF), copper storage 

(csp1), or putative MB uptake (mbnT1-Rockwell, mbnT2-Rockwell) in Methylocystis sp. strain 

Rockwell was not affected by the addition of either MB (Figure 4.7).  5 µM TRIEN significantly 

inhibited the growth of Methylocystis sp. strain Rockwell in the presence of 1 µM copper, which 

was resolved only in the presence of 5 µM SB2-MB (Figure 4.6B, C).  Copper uptake by 

Methylocystis sp. strain Rockwell was significantly reduced in the presence of OB3b-MB, but 

not in the presence of SB2-MB, regardless if TRIEN was present or not (Figure 4.8).  Expression 

of mbnT1-Rockwell and csp1 of Methylocystis sp. strain Rockwell only marginally increased in 

the presence of copper, TRIEN, and OB3b-MB as compared to that under 1 µM copper (Figure 

4.7) 
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Figure 4.6. Growth of Methylocystis sp. strain Rockwell in the presence of varying amounts of 

copper, MBs, and TRIEN.  Growth with and without copper, TRIEN, and MB.  Solid lines 
indicate data fitted to a logistic growth curve using growthcurver (Sprouffske & Wagner, 2016), 

and arrows indicate the beginning of second growth cycle.  (c) Growth rates of the second 
growth cycle as determined by growthcurver.  Error bar indicates standard error of biological 

triplicates and letters above bars indicate statistically significant difference determined through 
Student’s t-test with Bonferroni correction (p < 0.05). 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

O
D 6

00

Time (d)

A

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12

O
D 6

00

Time (d)

B

1 μM Cu0 μM Cu 1 μM Cu + 5 μM OB3b-MB 1 μM Cu + 5 μM SB2-MB

1 μM Cu + 5 μM TRIEN + 5 μM SB2-MB1 μM Cu + 5 μM TRIEN + 5 μM OB3b-MB1 μM Cu + 5 μM TRIEN

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

No Cu Cu Cu +
OB3b-MB

Cu +
SB2-MB

Cu +
TRIEN

Cu +
TRIEN +

OB3b-MB

Cu +
TRIEN +
SB2-MB

Gr
ow

th
 R

at
e 

(h
r-1

)

C

a aa

c

b

bc c



 

 156 

 

Figure 4.7. RT-qPCR of (a) mbnT1-Rockwell, (b) mbnT2-Rockwell, (c) pmoA, (d) mxaF, and (e) 
csp1 in Methylocystis sp. strain Rockwell grown with or without 1 µM Cu, 5 µM MB, or 5 µM 

TRIEN.  Error bar indicates range of biological duplicate or triplicate samples.  Letters over bars 
indicate no significant differences determined by Tukey’s HSD test (p < 0.05).  LG indicates low 

growth. 
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Figure 4.8. Copper associated with the biomass of Methylocystis sp. strain Rockwell at the end of 
growth with 0 µM Cu, 1 µM Cu, 1 µM Cu and 5 µM OB3b-MB, 1 µM Cu and 5 µM SB2-MB, 1 

μM Cu and 5 μM TRIEN, 1 μM Cu, 5 μM TRIEN and 5 μM OB3b-MB, and 1 μM Cu, 5 μM 
TRIEN and 5 μM SB2-MB.  LG indicates low growth. 
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4.5. Growth of Mcc. capsulatus Bath 

Mcc. capsulatus Bath grows in both the presence and absence of copper as it can express 

both forms of MMO (Figure 4.9).  Growth was faster and more extensive in the presence of 

copper, indicating that, as found earlier (Leak & Dalton, 1986a), Mcc. capsulatus Bath has 

greater carbon conversion efficiency under pMMO-expressing conditions.  Addition of either 

OB3b-MB or SB2-MB in the presence of copper did not affect growth (Figure 4.9).  Copper 

uptake by Mcc. capsulatus Bath was also not affected by the presence of either MB (Figure 

4.10).  Further, expression of various genes by Mcc. capsulatus Bath was not affected by the 

addition of MB including a putative MB uptake system (mbnT-Bath; Figure 4.11). Rather only 

the presence/absence of copper had any significant effect on gene expression, and then only on 

mmoX (encoding for a subunit of the sMMO) and mopE (encoding for a copper uptake protein).  

Activity of sMMO was also not affected by the presence of either MB, i.e., activity via the 

naphthalene assay was only evident in the absence of copper (Figure 4.12). 

 

 
 

Figure 4.9. Growth of Mcc. capsulatus Bath with and without copper and MB.  (a) Solid lines 
indicate data fitted to a logistic growth curve using growthcurver (Sprouffske & Wagner, 2016), 

and arrow indicates the beginning of second growth cycle.  (b) Growth rates of the second 
growth cycle as determined via growthcurver.  Error bar indicates standard error of biological 

triplicates and letters above bars indicate statistically significant difference determined through 
Student’s t-test with Bonferroni correction (p < 0.05). 
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Figure 4.10. Copper associated with the biomass of Mcc. capsulatus Bath at the end of the 

second growth cycle with 0 µM Cu, 1 µM Cu, 1 µM Cu and 5 µM OB3b-MB, and 1 µM Cu and 
5 µM SB2-MB.  Error bar indicates standard deviation of biological triplicate samples.  Lines 
over bars indicate no significant differences determined by Tukey’s HSD test (p < 0.05).  No 

detected (ND) copper associated with biomass is indicated. 
 

 

Figure 4.11. RT-qPCR of (a) mbnT-Bath, (b) mmoX, (c) pmoA, and (d) mopE in Mcc. capsulatus 

Bath grown with or without 1 µM Cu and 5 µM MB.  Error bar indicates range of biological 
duplicate or triplicate samples.  Line over bars indicate no significant differences determined by 

Tukey’s HSD test (p < 0.05). 
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Figure 4.12. Naphthalene assay of Mcc. capsulatus Bath grown in the presence and absence of 1 
µM Cu and 5 µM MB.  Error bar indicates standard deviation of biological triplicate samples.  
Line over bars indicate no significant differences determined by Tukey’s HSD test (p < 0.05). 
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4.6. Localization of MB via immunoblotting in Mmc. album BG8 

To determine if methanotrophs can take up foreign MB, immunoblotting assays were first 

performed.  Monoclonal antibodies were successfully raised to OB3b-MB, but attempts to do so 

for SB2-MB were unsuccessful (data not shown).  Control immunoblots showed successful 

monoclonal antibody hybridization to OB3b-MB, but not to lysozyme or E. coli cell extracts 

(Figure 4.13).  Interestingly, the monoclonal OB3b-MB antibody (10B10) cross-hybridized with 

cell extracts of Mmc. album BG8 grown in the presence of 1 µM copper and absence of OB3b-

MB over two growth cycles, perhaps to a novel chalkophore as described above.  Greater 

hybridization to Mmc. album BG8 cell extract was observed in the presence of 1 µM copper + 5 

µM OB3b-MB than in the absence of OB3b-MB (Figure 4.13) but very little hybridization was 

observed in the spent medium or wash buffer when Mmc. album BG8 was grown in the presence 

of OB3b-MB (Figure 4.13).  These data suggest that Mmc. album BG8 produces some 

compound analogous to OB3b-MB, but this methanotroph also takes up OB3b-MB as evidenced 

by greater hybridization signal in the cell extract and low signal in the spent medium and wash 

buffer when Mmc. album BG8 was grown in the presence of OB3b-MB.  Due to the evidence of 

cross-hybridization of monoclonal OB3b-MB antibodies in Mmc. album BG8 and the inability to 

raise monoclonal antibodies to SB2-MB, these experiments were not replicated in other 

methanotrophs.  
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 A 

 
 B 

 
Figure 4.13. Immunoblot assay for the determination of uptake of OB3b-MB by Mmc. album 

BG8 (a).  10B10 antibody was used as described earlier.  Lysozyme/E. coli cell extracts were 
used as negative controls while purified OB3b-MB suspended in NMS medium with 1 µM 

copper was used as a positive control.  Measured signal intensity of antibody-MB hybridizations 
(b).  Only those hybridizations with detectable signal above background shown.  CE = Cell 

extract; SM = Spent medium; Wash = Cell wash buffer. 
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4.7. Evidence of a novel chalkophore from Mmc. album BG8 

Given the findings that (1) neither form of MB had any measurable effect on Mmc. album 

BG8 wildtype or the ΔmbnT mutant and (2) the monoclonal OB3b-MB antibody cross-

hybridized to cell extracts of Mmc. album BG8, further investigation as to whether Mmc. album 

BG8 can make some copper binding compound akin to MB was pursued.  Earlier efforts 

indicated that Mmc. album BG8 does secrete some sort of chalkophore, but under standard 

growth conditions produces very little of it, making characterization difficult (Choi et al., 2010).  

Mmc. album BG8 was grown in the presence of TRIEN, a strong abiotic chelator of copper, to 

determine if copper limitation could induce production of this putative chalkophore.  Indeed, 

when Mmc. album BG8 was grown in the presence of 1 µM copper + 5 µM TRIEN, growth was 

visibly reduced (Figure 4.1A and Figure 4.2A) and the spent medium became yellow (Figure 

4.14).  Such coloration was not observed when Mmc. album BG8 was grown in the presence of 

copper only, indicating that Mmc. album BG8 secretes some yellowish substance when copper 

availability is reduced through the addition of TRIEN.  It should be noted that when 

methanotrophs such as Msn. trichosporium OB3b actively produce MB, the spent medium also 

appears yellow (Bandow et al., 2011).  The isolated chalkophore from Mmc. album BG8 showed 

a molecular mass of 649.95 (Figure 4.15A) or 653.29 Da (Figure 4.15B) as determined by 

MALDI-TOF or ESI-MS, respectively.  Following the addition of CuCl2, the molecular mass 

shifted to 711.35 (Figure 4.15A) and 713.35 Da (Figure 4.15C) as determined by MALDI-TOF 

or ESI-MS, respectively, suggesting a 2 or 3H+ loss following copper binding (Figure 4.15).  The 

UV-VIS spectrum of the isolated chalkophore did not have the characteristic peaks present in 

MBs (i.e., at ~340 and 394 nm), but did exhibit distinct absorption maxima at 396 nm and 402 

nm with a molar extinction coefficient of 1.6 mM-1cm-1 at 402 nm (Figure 4.14B, C and Figure 
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4.16) with a discrete isobestic point at 340 nm at mole ratios of copper:Mmc. album BG8 

chalkophore between 0 and 0.19 (Figure 4.16A).  These peaks shifted to 404 nm at 

copper:chalkophore ratios between 0.2 and 0.45 (Figure 4.14 and Figure 4.16B) with discrete 

isobestic point at 398 nm and to 390 nm at copper:chalkophore ratios above 0.6 (Figure 4.14 and 

Figure 4.16C). 

 

 
Figure 4.14. (a) Filtered spent medium of Mmc. album BG8 grown in the (1) presence of 1 µM 
copper and (2) 1 µM copper and 5 µM TRIEN, with abiotic controls (3) NMS, (4) NMS, 1 µM 
copper, and 5 µM TRIEN, (5) NMS and 5 µM OB3b-MB, (6) NMS and 5 µM SB2-MB.  (b) 

UV-visible absorption spectra of 535 nmol of the chalkophore isolated from Mmc. album BG8 
and following the addition of copper (as CuCl2) initially in 10 nmol increments (up to 320 nmol) 
and then in 50 nmol increments (for an additional 450 nmol copper, or 770 nmol copper in total).  

(c) Absorbance changes at 402 nm (¡), 396 nm (r), and 390 nm (o) following copper 
addition.  Numbers in panel (a) refer to mole ratio of copper to Mmc. album BG8 chalkphore. 
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Figure 4.15. (a) MALDI-TOF of the chalkophore from Mmc. album BG8 following the addition 
of 0.5 molar addition of CuCl2.  (b) ESI-MS of the chalkophore isolated from Mmc. album BG8.  
(c) ESI-MS of the chalkophore isolated from Mmc. album BG8 following the addition of a molar 

excess of CuCl2. 
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Figure 4.16. UV-visible absorption spectra of 535 nmol of the as isolated chalkophore and 
following the addition of copper (as CuCl2) in copper:chalkophore ratios ranging from (a) 0 to 

0.19, (b) 0.2 to 0.45, and (c) 0.58 to 1.44. 
 

 

No such coloration in the spent medium was observed for Methylocystis sp. strain 

Rockwell under any condition (data not shown).  An effort to identify novel chalkophore(s) in 

Mcc. capsulatus Bath was not attempted as this strain has already been clearly shown to produce 

both membrane-bound and secreted copper-binding polypeptides (i.e., MopE and MopE*, 

respectively) (Fjellbirkeland et al., 2001; Helland et al., 2008; Karlsen et al., 2003; Ve et al., 

2012). 
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4.8. Effect of MB on methylmercury demethylation 

Given the uncertainty of the immunoblot data and evidence that Mmc. album BG8 

produces a competitive chalkophore, to further determine if MB “theft” occurs between 

methanotrophs, demethylation of methylmercury (MeHg) by Mmc. album BG8 wildtype and 

ΔmbnT mutant, Methylocystis sp. strain Rockwell, and Mcc. capsulatus Bath was monitored in 

the absence or presence of OB3b-MB and SB2-MB (Figure 4.17).  These studies were pursued 

as our previous work has shown that only those methanotrophs expressing and taking up MB can 

degrade MeHg (Lu et al., 2017).  That is, MB appears to serve as a device to deliver MeHg 

inside the cell where it is degraded, but not by the well-known organomercurial lyase as these 

microbes lack merB.  Rather, data suggest that MeHg degradation may be carried out by the 

methanol dehydrogenase that all methanotrophs possess (Lu et al., 2017).  If Mmc. album BG8, 

Methylocystis sp. strain Rockwell, and/or Mcc. capsulatus Bath can take up MB, one would 

expect that these methanotrophs would be able to degrade MeHg in the presence of MB but not 

in its absence.  Indeed, relatively little MeHg degradation was observed in Mmc. album BG8 in 

the absence of MB (~10%), but this increased in the presence of both OB3b-MB and SB2-MB 

(32% and 61%, respectively; Figure 4.17).  In the absence of either MB, MeHg degradation was 

observed in Methylocystis sp. strain Rockwell (40%), and the degradation again increased in the 

presence of both OB3b-MB and SB2-MB (57% and 75%, respectively).  Interestingly, under no 

condition was MeHg degradation observed in Mcc. capsulatus Bath, nor was degradation of 

MeHg by the ∆mbnT mutant of Mmc. album BG8 significantly different in the presence or 

absence of either form of MB (Figure 4.17). 
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Figure 4.17. Degradation of MeHg over time by (a) Mmc. album BG8 wild-type, (b) Mmc. album 

BG8 DmbnT, (c) Methylocystis sp. strain Rockwell, and (d) Mcc. capsulatus Bath in MOPS 
buffer (5 mM), fitted to an exponential decay model with stabilization over time (solid line).  The 

total added MeHg, methanobactin (MB), and cell concentrations were 5 nM, 45 µM, and 108 
cells mL-1 at t = 0 h.  Error bars represent standard deviation of at least biological duplicates. 
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4.9. Discussion 

It has been well documented that microorganisms have active “social lives”, i.e., 

microbes have been shown to exhibit a range of behaviors ranging from cooperation, competition 

and cheating (Griffin et al., 2004; West et al., 2006, 2007).  Perhaps the best known example of 

social interactions between microbes is the finding that siderophores often serve as “public 

goods” in microbial communities.  Iron availability commonly limits microbial growth due to the 

insolubility of Fe(III), and many microbes produce a variety of siderophores, or organic 

extracellular ferric iron chelating agents for iron solubilization and collection (Andrews et al., 

2003; Ahmed & Holmström, 2014).  Given that these compounds are secreted, they can be 

considered “public goods” i.e., although they are costly for the individual microorganism to 

make, they can be utilized by other microbes for iron collection, and thus promote the growth of 

the local microbial community (Griffin et al., 2004; West et al., 2006, 2007).  A challenge that 

then arises is that microbes can and do develop “cheating” strategies, i.e., some microorganisms 

with the inability to produce siderophores “steal” them to meet their needs and such cheating 

strategies likely play important roles in the diversification and evolution of natural microbial 

communities (Champomier-Vergès et al., 1996; Guan et al., 2001; Butaitė et al., 2017; Cordero 

et al., 2012).  

Previous studies suggest that methanotrophs do not utilize a “public good” for copper 

collection.  That is, it has been reported that Msn. trichosporium OB3b outcompetes Mmc. album 

BG8 for copper, and as such predominates in mixed cultures (Graham et al., 1993).  Such a 

conclusion, however, appears to be overstated as the Mmc. album BG8 is unequivocally present 

in large numbers in these experiments, suggesting that they have viable mechanism(s) to collect 

copper in the presence of MB-expressing methanotrophs. 
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Interestingly, although Mmc. album BG8 does not have genes encoding the polypeptide 

precursor of MB or enzymes required for conversion of this precursor to mature MB, it does 

express something akin to MB, i.e., it secretes a copper-binding compound, especially under 

copper-limiting conditions created when TRIEN is present, and appears to compete with MBs for 

copper.  In addition, a mutant of Mmc. album BG8 deficient in the putative gene encoding for 

TonB-dependent transporter for MB uptake exhibited a wildtype phenotype, supporting the 

conclusion that the chalkophore expressed by Mmc. album BG8 is effective in competing for 

copper in the presence of MB.  Nonetheless, data indicate that Mmc. album BG8, in addition to 

being able to effectively compete with MB by producing a novel chalkophore, also engages in 

MB “theft”.  That is, although TRIEN affected growth of both Mmc. album BG8 wildtype and 

ΔmbnT mutant, growth of Mmc. album BG8 wildtype was not further affected by the concurrent 

addition of OB3b-MB, but the ΔmbnT mutant was.  It was also observed that MB enhanced 

MeHg demethylation in Mmc. album BG8 wildtype, but not the ∆mbnT mutant, further implying 

that Mmc. album BG8 can indeed “steal” MB through expression of a TonB-dependent 

transporter that sequesters MB.  

We were unable to identify any novel chalkophore produced by Methylocystis sp. strain 

Rockwell, but it does appear to act as a “cheater” by taking up MB - preferentially Group II MB 

- to meet its copper requirements as growth and copper uptake was inhibited in the presence of 

OB3b-MB (a group I MB), but not SB2-MB (a Group II MB).  Such a conclusion is supported 

by the finding that the addition of TRIEN inhibited growth of Methylocystis sp. strain Rockwell, 

but the concurrent addition of SB2-MB relieved such inhibition.  Although we could not directly 

determine SB2-MB uptake via immunoblots as we were unsuccessful in raising monoclonal 
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antibodies to SB2-MB, again, MeHg degradation data indicate that MB can be taken up by 

Methylocystis sp. strain Rockwell.   

Mcc. capsulatus Bath appears to have an effective strategy to compete for copper against 

MB, as evidenced by the consistent growth, copper uptake, and gene expression in the presence 

vs. absence of MB.  It is likely that this is attributable to MopE/MopE* that allows Mcc. 

capsulatus Bath to collect copper in the presence of MB, rather than MB “theft” (Berson & 

Lidstrom, 1997; Fjellbirkeland et al., 2001; Karlsen et al., 2003; Helland et al., 2008; Ve et al., 

2012), as Mcc. capsulatus Bath cannot degrade MeHg under any conditions tested.  Thus, MB 

may serve as a sort of “public good” to some methanotrophs, but is not of benefit to all 

methanotrophs.  Given that methanotrophs use a variety of strategies to collect copper, these 

interactions likely are significant in structuring methanotrophic communities in situ. 

While herein we report methanotrophic interactions based on competition for copper, 

including MB “theft”, interspecies interactions have been documented earlier for methanotrophs, 

e.g., recognition of and response to acyl-homoserine lactone receptor/transcription factors and 

uptake of foreign MB by species that can make MB (i.e., examples of quorum 

sensing/cooperation between methanotrophs).  Such interactions, however were within species of 

the same family, i.e., communication between closely related methanotrophic kin (Farhan Ul 

Haque et al., 2015b; Puri et al., 2019).  Here we show potential social interactions not only 

between members of the same class of methanotrophs (i.e., Alphaproteobacteria), but also 

between members of different classes (i.e., Alpha- vs. Gammaproteobacteria methanotrophs).  

Such findings indicate that methanotrophic interactions can be phylogenetically far-ranging.  It 

may be that the uptake of MB from the environment by non-MB producing methanotrophs not 

only enhances their ability to collect copper, but also gives them an advantage by acting as a MB 
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sink, thereby placing MB-producing methanotrophs at a relative disadvantage.  Such a finding 

lends support to the conclusion that as competition for resources becomes more local, the 

influence of species relatedness for cooperation is reduced, thus decreasing altruism and 

allowing “cheating” to become more pronounced (Griffin et al., 2004; West et al., 2006, 2007).  

That is, as methanotrophs of different phylogenies co-habitate at the oxic-anoxic interface, kin 

recognition/discrimination becomes less effective for these microbes and MB can be more 

readily “stolen”.  These findings raise the intriguing question as what prevents “MB stealers” 

from overwhelming the population?  As suggested for siderophores, it may be that MB 

production and distribution to non-MB producing methanotrophs provides both direct and 

indirect fitness benefits to MB-producers that outweigh the costs of MB synthesis and loss.  The 

magnitude and distribution of such benefits, however, are likely to be highly dependent on 

environmental conditions (e.g., copper availability) and population density as suggested for 

siderophores (West et al., 2006). 

While our data indicate MB “theft” between methanotrophs, it has been shown earlier 

that copper uptake by and activity of denitrifiers is strongly inhibited in the presence of either 

MB or MB-producing methanotrophs (Chang et al., 2018).  That is, MB inhibited uptake of 

copper and activity of nitrous oxide reductase (NosZ, like pMMO has a high copper 

requirement) in a wide range of denitrifiers (Pseudomonas stutzeri DCP-Ps1, Paracoccus 

denitrificans ATCC17741, Shewanella loihica PV-4, and Dechloromonas aromatica RCB) in 

coculture experiments.  As a result, in these situations, methanotrophic production of MB is an 

example of selfish behavior on the part of methanotrophs with the end result of increased nitrous 

oxide production by denitrifying microbes.  As nitrous oxide is a much more potent greenhouse 

gas than methane, such “selfishness” for copper on the part of methanotrophs may have a major 
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impact on net greenhouse gas emissions.  Thus, delineating how methanotrophs contend for 

copper with other methanotrophs as well as with non-methanotrophs – whether through 

cooperation, cheating, or selfishness – will likely provide insights as how best to manipulate 

microbial communities for enhanced methane and nitrous oxide removal from both 

anthropogenic and natural sources.   

Finally, we also found that MB enhanced the ability of Mmc. album BG8 and 

Methylocystis sp. strain Rockwell, but not Mcc. capsulatus Bath or the DmbnT mutant of Mmc. 

album BG8 to degrade MeHg.  The heterologous uptake or “theft” of MB thus enables MB non-

producers to detoxify a highly toxic organic form of mercury, suggesting that methanotrophic-

mediated MeHg detoxification may be more widespread than previously thought in the natural 

environment.  Examining this in more detail will likely be very informative and will serve as key 

inputs for metabolic and reactive transport models that can be used to better predict net MeHg 

production and Hg biogeochemical cycling in the environment.  
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Chapter 5 Mechanism of Methylmercury Demethylation in Methanotrophs 
 
5.1. Introduction 

Methylmercury (MeHg) demethylation in the environment is typically carried out by 

microbes containing MerB, the canonical organomercurial lyase (Schaefer et al., 2004).  MerB 

can cleave the carbon-metal bond within MeHg and produce methane and inorganic mercury, 

thereby decreasing the toxicity of the organic form of mercury (Eq. 1; Barkay et al., 2003).  

MerB has a pH optimum of greater than 9 and is active at micromolar substrate range (Begley et 

al., 1986a, 1986b).  It has been found that methanotrophs are also able to degrade MeHg, not via 

MerB as evidenced by the lack of merB in genomes of methanotrophs capable of MeHg 

degradation, but rather through an as yet unknown process (Lu et al., 2017).  Moreover, in 

contrast to MerB-mediated MeHg demethylation, degradation by methanotrophs occur at 

circumneutral pH and pico- to nanomolar substrate range, which are relevant to actual 

environmental conditions (Barkay & Wagner‐Döbler, 2005; Lu et al., 2017).  Therefore, 

understanding the mechanism of MeHg degradation by methanotrophs may provide a basis for 

promoting bioremediation in MeHg contaminated sites. 

 

 CH!Hg" + H"
		"#$%		#⎯⎯⎯⎯⎯%CH& + Hg'"    (1) 

 

 In a previous study, MeHg demethylation in model methanotrophs Methylosinus 

trichosporium OB3b, Methylocystis sp. SB2, Methylocystis parvus OBBP, and Methylococcus 

capsulatus Bath were investigated (Lu et al., 2017).  It was found that methanobactin (MB) plays 
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a critical role in MeHg degradation, as only the non-MB producers and Msn. trichosporium 

OB3b deficient in MB production were unable to degrade MeHg (Lu et al., 2017).  MB also 

strongly binds Hg(II) and can reduce it to Hg(0) (Vorobev et al., 2013; Baral et al., 2014), though 

it cannot degrade MeHg on its own (Lu et al., 2017).  Collectively, these results suggested that 

MB may act as a mechanism to deliver MeHg into the cell, where degradation occurs.  Lu et al. 

(2017) also investigated several candidates potentially responsible for MeHg demethylation in 

Msn. trichosporium OB3b, starting with methane monooxygenase (MMO).  Msn. trichosporium 

OB3b did not show any difference in MeHg degradation rate when acetylene was used as an 

MMO inhibitor (Prior & Dalton, 1985), ruling out MMO as the enzyme that cleaves the carbon-

metal bond (Figure 5.1; Lu et al., 2017).  The methanol dehydrogenase (MeDH) was also 

considered, where methanol was added as a competitive inhibitor of MeDH.  MeHg was 

completely inhibited when 5 mM of methanol was provided, suggesting that MeDH, in 

conjunction with MB, is critical for MeHg degradation by Msn. trichosporium OB3b (Figure 5.2; 

Lu et al., 2017).  

 
Figure 5.1. Effect of acetylene addition (as an inhibitor of MMOs) on methylmercury (MeHg) 

degradation by washed cells of Msn. trichosporium OB3b (108 cells mL-1) in 5 mM MOPS 
buffer at 30 ºC (Lu et al., 2017).  Cells were grown in the absence of copper ions.  The initial 

added MeHg was 5 nM.  Error bars represent one standard deviation of duplicate samples. 
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Figure 5.2. Effect of methanol addition on methylmercury (MeHg) degradation by washed cells 
of Msn. trichosporium OB3b (108 cells mL-1) in 5 mM MOPS buffer at 30 ºC (adapted from Lu 

et al., 2017).  The initial addition of MeHg was 5 nM.  Error bars represent one standard 
deviation of triplicate samples. 

 

 However, it is important to note there are two forms of MeDH in Msn. trichosporium 

OB3b – the Ca2+-dependent Mxa-MeDH and rare earth element (REE)-dependent Xox-MeDH – 

and one or both of them may be responsible for MeHg degradation.  MeHg degradation by Msn. 

trichosporium OB3b was in fact enhanced in the presence of 25 µM cerium, supporting Xox-

MeDH as the player in this process (Figure 5.3; unpublished data (Semrau et al.)). 

 

 
Figure 5.3. Effect of cerium on methylmercury (MeHg) degradation by washed cells of Msn. 
trichosporium OB3b (108 cells mL-1) in 5 mM MOPS buffer at 30 ºC.  The initial addition of 

MeHg was 5 nM.  Error bar indicates standard deviation of biological triplicate. 
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 Though it has been shown that MB and Xox-MeDH are required for methanotrophic-

mediated MeHg degradation, more work is necessary to delineate the mechanism.  There exists a 

gene that encodes for a putative organoarsenical lyase (arsI; ADVE02_v2_12724) in the genome 

of Msn. trichosporium OB3b that may be involved in the carbon-mercury bond cleavage.  In 

addition, lanmodulin (LanM; ADVE02_v2_11067), a recently discovered periplasmic REE-

binding protein, can also be found in the model methanotroph, and may be involved given the 

importance of Xox-MeDH in the process.  Here we show that arsI in the model methanotroph 

Msn. trichosporium OB3b is not required for MeHg, but lanM is essential.  We further provide 

additional evidence that MeHg degradation takes place in the periplasm of methanotrophs, where 

Xox-MeDH and LanM is located, by using spheroplasts prepared from Msn. trichosporium 

OB3b mbnT::Gmr mutant. 
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5.2. Role of arsI in methylmercury demethylation 

arsI encoding for a putative organoarsenical lyase in Msn. trichosporium OB3b was 

knocked out via markerless mutagenesis.  The mutant was still able to degrade MeHg to levels 

comparable to the wildtype (Figure 5.4), suggesting that arsI has little role if any in degrading 

MeHg. 

 

 
Figure 5.4. MeHg demethylation by Msn. trichosporium OB3b DarsI.  Error bar indicates 

standard deviation of biological triplicate. 
 

 

5.3. Role of lanM in methylmercury demethylation 

In Msn. trichosporium OB3b, there are two complete xox operons (ADVE02_v2_12117-9, 

ADVE02_v2_11799-7) and an orphan xoxF gene (ADVE02_v2_12494).  xoxF1 

(ADVE02_v2_12117) was targeted for markerless mutagenesis to further confirm the role of 

Xox-MeDH in MeHg degradation.  However, Msn. trichosporium OB3b DxoxF1 was not 

obtained (Section 2.4.1. pg. 95), suggesting that the deletion of xoxF1 may be lethal.  Given Msn. 

trichosporium OB3b contains multiple copies of xoxF and a DxoxF1 mutant was not attainable, 

we proceeded to disrupt the potential REE uptake or signaling pathway to limit the activity of 
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Xox-MeDH.  Specifically, lanM encoding for lanmodulin was deleted via markerless 

mutagenesis to produce Msn. trichosporium OB3b DlanM mutant.   

 Growth of the Msn. trichosporium OB3b DlanM mutant was compared to that of the 

wildtype in the presence and absence of copper and various REEs (Figure 5.5 and Figure 5.6).  

The DlanM mutant exhibited significantly higher growth rate than the wildtype in the absence of 

REE.  In addition, the growth rate of the mutant was slightly slower in the presence of both 

copper and neodymium, the heaviest REE included in this study, as compared to that of the 

wildtype (Figure 5.5 and Figure 5.6).  However, growth was variable between batches (data not 

shown), and may be attributable to the phosphate limitation of the modified NMS medium and 

variable inoculum. 

  



 

 180 

 

 
Figure 5.5. Growth of Msn. trichosporium OB3b wildtype and DlanM mutant in the presence and 

absence of copper and various REEs.  Initial linear growth rate as determined by linear 
regression (dashed red line), standard error of growth rate, and R2 value are provided in the 

panel. 
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Figure 5.6. Growth rates of Msn. trichosporium OB3b wildtype and DlanM mutant in the 

presence and absence of copper and various REEs.  Error bar indicates standard error of growth 
rate determined through linear regression.  Line above bars indicate statistically significant 

difference within REE group determined through analysis of covariance (ANCOVA). 
 

 

The copper and REE uptake rates were not affected by the deletion of lanM, as the 

amount of metals associated with the biomass of the wildtype and DlanM mutant was 

comparable (Figure 5.7).  That is, significantly greater amount of copper was found associated 

with the biomass in the presence of copper with no REE, La, and Nd, for both wildtype and 

mutant.  The only significantly different REE uptake rate is observed in the presence of Ce, 

where the wildtype uptakes more Ce in the presence of copper, whereas the DlanM mutant 

acquires comparable amount of Ce in both the absence and presence of copper. 
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Figure 5.7. Metal uptake by Msn. trichosporium OB3b wildtype and DlanM mutant grown in the 

presence and absence of copper and various REEs.  Error bar indicates range of biological 
duplicate or triplicate.  Lines over bars indicate statistically significant difference determined 

through Tukey’s HSD test (p < 0.05). 
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In addition, the deletion of lanM did not affect the copper switch, evidenced by the higher 

expression of mmoX and mbnA at low copper concentration and pmoA at higher copper 

concentration (Figure 5.8).  Expression of xoxF was also unaffected.  These results collectively 

suggest that lanM is not involved in REE uptake or the REE switch in Msn. trichosporium OB3b. 

 
Figure 5.8. Change in gene expression in Msn. trichosporium OB3b wildtype and DlanM mutant 

grown in the presence and absence of copper and various REEs.  Error bar indicates range of 
biological duplicate or triplicate. 
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Finally, the MeHg degradation rates of Msn. trichosporium OB3b wildtype and DlanM 

mutant were assessed.  Msn. trichosporium OB3b wildtype continuously degraded MeHg over 

the course of 5 days to approximately 50% of the original MeHg, whereas the DlanM mutant was 

unable to degrade MeHg regardless of the addition of copper and/or cerium (Figure 5.9). 

 
Figure 5.9. MeHg demethylation by Msn. trichosporium OB3b wildtype and DlanM mutant 

grown in the presence and absence of copper and cerium.  Error bar indicates standard deviation 
of biological triplicate. 
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5.4. Methylmercury demethylation by spheroplasts of Msn. trichosporium OB3b mbnT::Gmr 

In order to further confirm whether one or more of the periplasmic constituents are 

responsible for MeHg degradation, spheroplasts of Msn. trichosporium OB3b mbnT::Gmr were 

prepared via lysozyme and osmotic shock treatments, and then assayed for MeHg degradation.  

The mbnT::Gmr mutant rather than the wildtype was selected for this purpose, as it was expected 

not to degrade MeHg due to deficiency in MB uptake (Gu et al., 2016a; Lu et al., 2017).  

However, since MB, Xox-MeDH, and LanM are required for methanotrophic-mediated MeHg 

degradation, the periplasmic fraction of the mbnT::Gmr mutant, in theory, should be able to 

degrade MeHg.  The formation of spheroplasts was confirmed via microscopy after staining the 

cells with crystal violet.  After 4 h of treatment, spheroplasts were visible as round cells as 

opposed to the rod-shaped whole cells (Figure 5.10). 

 

   
Figure 5.10. Msn. trichosporium OB3b mbnT::Gmr before and after spheroplast formation at t = 
0 h and t = 4 h, respectively, magnified to 400´.  Intact cell and spheroplasts were stained with 

crystal violet and are indicated by white and red arrows, respectively. 
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Msn. trichosporium OB3b mbnT::Gmr was able to degrade approximately 90% of the 

MeHg over 120 h regardless of the copper concentration (Figure 5.11).  However, the 

spheroplast prepared from the same culture could only degrade ~30%, and no significant 

degradation was observed beyond 12 h.  The fraction containing the periplasm and outer-

membrane debris, in fact, exhibited a greater rate of MeHg degradation of approximately 60%-

75% as compared to the spheroplast. 

 

 
Figure 5.11. MeHg degradation by Msn. trichosporium OB3b mbnT::Gmr grown in the absence 

and presence of 1 µM copper.  Whole cell ( ), spheroplast ( ), and periplasm ( ) fractions. 
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5.5. Discussion 

It has been shown that MB serves as a delivery mechanism for MeHg into the cell, and 

that Xox-MeDH has an important role in demethylating the delivered MeHg (Lu et al., 2017).  

Here we provide additional evidence for the mechanism of MeHg demethylation in 

methanotrophs by showing that the periplasm fraction is key in this process.  Msn. trichosporium 

OB3b mbnT::Gmr stripped of its periplasm, where Xox-MeDH and lanmodulin is located, had 

significantly lower rate of MeHg degradation (Figure 5.11).  The amount of MeHg degradation 

by the spheroplasts can be attributed to incomplete spheroplast formation (Figure 5.10) or partial 

reconstitution of the periplasm and outer cell membrane after lysozyme and osmotic shock 

treatments.  Also, surprisingly, whole cells of Msn. trichosporium OB3b mbnT::Gmr was able to 

degrade MeHg despite the disrupted MB uptake system (Gu et al., 2016a).  Nonetheless, it is 

important to note that the amount of MeHg degraded by the periplasm fraction is significantly 

greater than that of the spheroplasts.  This indicates that one or more of the components residing 

in the periplasm, Xox-MeDH and most likely LanM, is important for MeHg degradation. 

There exists another mbnT (ADVE02_v2_10210) on the chromosome of Msn. 

trichosporium OB3b that is highly similar (57.36% identity; E value = 0) to that found in 

Methylocystis sp. SB2 (MSB2v1_460017).  The Msn. trichosporium OB3b mutant with this 

second mbnT deleted could not degrade MeHg, regardless of the absence or presence of MB 

(unpublished data; Peng et al., 2021).  It may be that along with the uptake of MB, a signaling 

cascade mediated by MbnTs is involved in the MeHg degradation process.  That is, it was shown 

that the two mbnTs found in Msn. trichosporium OB3b is critical for the “copper switch”, as 

deletion of both broke the switch.  The results of the spheroplast experiment using this mutant 

may provide further insight into the mechanism of MeHg degradation by methanotrophs. 
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 The REE switch and uptake in Msn. trichosporium OB3b was not affected by the deletion 

of lanM, suggesting that LanM is not involved in these processes.  These results agree with 

previous findings, where lanM mutants constructed in model methylotrophs Methylorubrum 

extorquens AM1 and PA1 did not exhibit any phenotypical difference compared to their 

wildtype counterparts (Ochsner et al., 2019; Roszczenko-Jasińska et al., 2020).  Rather, the 

disruption of the TonB-dependent transporter and/or ABC-transporter associated with lanM 

affected REE uptake and REE-dependent growth on methanol (Ochsner et al., 2019; 

Roszczenko-Jasińska et al., 2020).  However, Msn. trichosporium OB3b DlanM did completely 

lose its ability to degrade MeHg, suggesting that LanM is critical for MeHg degradation.   

 It is clear that LanM does not affect the REE switch and uptake.  Another possibility that 

was not explored in detail here is that LanM may be involved in discriminating between early 

and late REEs in the cells, as previously suggested (Cotruvo et al., 2018).  That is, lanthanum 

through samarium cause conformational change to LanM upon binding, and also induce 

expression of xoxF1 in Mrr. extorquens (Vu et al., 2016).  However, deletion of lanM did not 

affect uptake of REEs nor expression of MeDH in Msn. trichosporium OB3b, suggesting it does 

not have a regulatory role.  An in vitro assay of Xox-MeDH activity using methanol and MeHg 

as substrates with LanM in the reaction matrix may help understand the exact role of LanM, as 

well as the mechanism of MeHg degradation. 

Considering the importance of the periplasm and the role of Xox-MeDH in MeHg 

degradation, it may be that LanM is responsible for coordinating REEs for Xox-MeDH activity 

at least in Msn. trichosporium OB3b.  However, this mechanism does not explain MeHg 

degradation by Msn. trichosporium OB3b observed in the absence of REEs (Figure 5.3; 

unpublished data), nor the lack of LanM in methanotrophs in classes other than 
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Alphaproteobacteria (Table 1.2) (Kang et al., 2019).  Further investigation is required to 

delineate the underlying mechanism of MeHg degradation by methanotrophs. 
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Chapter 6 Methanotrophs Isolated from Mercury Contaminated Site 
 
6.1. Introduction 

The toxicity of mercury can vary depending on its speciation, where methylation can 

increase bioavailability which consequently increases toxicity (Tchounwou et al., 2012).  

Mercury speciation in the environment is influenced by various biotic and abiotic processes.  Of 

these processes, methylation and demethylation by microorganisms have been extensively 

examined.  That is, the two-gene cluster hgcAB, found in some anaerobic microbes, is 

responsible for mercury methylation (Gilmour et al., 2013; Parks et al., 2013; Smith et al., 2015), 

whereas merB, encoding for the canonical organomercurial lyase, is responsible for 

methylmercury (MeHg) demethylation (Weiss et al., 1977; Ogawa et al., 1984; Barkay et al., 

2003; Schaefer et al., 2004). 

In addition to the microbes harboring hgcAB and merB, methanotrophs have also been 

found to have intriguing interactions with mercury (Lu et al., 2017; Semrau et al., 2010, 2018).  

Specifically, some methanotrophs can produce ribosomally synthesized post-translationally 

modified polypeptide – methanobactin – that not only will bind Hg(II) in the environment to 

reduce its toxicity to the general microbial community, but can also bind the more toxic and 

bioavailable MeHg and deliver it into the periplasm where MeHg is then demethylated (Baral et 

al., 2014; Lu et al., 2017; Vorobev et al., 2013).  However, the novel mechanism by which 

methanotrophs degrade MeHg does not involve the canonical MerB, but instead requires 

methanobactin and the rare earth element-dependent methanol dehydrogenase – Xox-MeDH (Lu 

et al., 2017).  Methanotrophic-mediated MeHg degradation, unlike that facilitated by MerB, 
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occurs under environmentally relevant conditions, i.e., circumneutral pH, nM/pM range of MeHg 

(Lu et al., 2017).  Thus, it appears methanotrophs may play an important role in controlling 

mercury speciation and toxicity in the environment, and characterizing methanotrophs in 

mercury-contaminated sites may provide insight into the significance of methanotrophic-

mediated MeHg degradation and its impact in situ. 

The Department of Energy (DOE) Y-12 National Security Complex in Oak Ridge, 

Tennessee, was built in the 1940s for metal isotope separation as part of the Manhattan Project 

during World War II (Brooks & Southworth, 2011).  Mercury was extensively used in these 

metal separation processes at the Y-12 plant, and approximately 11,000 t of mercury was 

received there over the course of its operation (Brooks & Southworth, 2011), and resulted in the 

release of more than 200 t of mercury with the process water into the nearby watershed in the 

1950s and 1960s (Barnett et al., 1997).  Included in this watershed is the East Fork Poplar Creek 

(EFPC), where numerous efforts were made to assess mercury speciation and distribution (Revis 

et al., 1989; Barnett et al., 1995; Harris et al., 1996; Demers et al., 2018) and to remediate 

mercury contamination (Southworth et al., 2002; Brooks & Southworth, 2011; Peterson et al., 

2018).  The impact of geochemical properties on mercury cycling was also determined in later 

studies (Dong et al., 2010; Brooks et al., 2018), as well as the impact of mercury on microbial 

community in EFPC to identify potential mercury methylators (Vishnivetskaya et al., 2011; 

Mosher et al., 2012; Kim et al., 2021).   

However, much work is still required to explain the role of methanotrophs in mercury 

speciation and toxicity in mercury-contaminated sites such as EFPC.  Therefore, in this study, 

two strains of methanotrophs – Methylomonas sp. strain EFPC1 and Methylococcus sp. strain 

EFPC2 – were isolated from the stream of EFPC, and their genomes were subsequently 
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sequenced.  Further characterization of these methanotrophs may provide insight into the 

mechanism of methanotrophic-mediated MeHg degradation as well as its ecological significance. 

 

6.2. Microscopy of Gram-stained cell 

Cells from pure cultures of Methylomonas sp. strain EFPC1 appeared rod-shaped, as 

summarized earlier for methanotrophs of the Methylomonas genus (Semrau et al., 2010), non-

flagellated, and were Gram-negative (Figure 6.1).  Cells of Methylococcus sp. strain EFPC2 were 

coccoid (Semrau et al., 2010), non-flagellated, and were Gram variable (Figure 6.2), though 

phylogenetically close neighbors Methylococcus geothermalis IM1 (Awala et al., 2020), 

Methyloterricola oryzae 73a (Frindte et al., 2017b), “Candidatus Methylospira mobilis” strain 

Shm1 (Danilova et al., 2016), Methylococcus capsulatus Bath (Foster & Davis, 1966), and 

Methylocaldum marinum S8 (Takeuchi et al., 2014a) all stain Gram-negative. 

 

 

Figure 6.1. Methylomonas sp. strain EFPC1 before and after Gram-staining, magnified to 400´.  
Cells indicated by red arrows. 
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Figure 6.2. Methylococcus sp. strain EFPC2 before and after Gram-staining, magnified to 400´.  
Cells indicated by red arrows. 

 

6.3. Genome assembly and annotation 

The genomes of Methylomonas sp. strain EFPC1 and Methylococcus sp. strain EFPC2 

were 4.99 Mbp and 4.56 Mbp (96% and 95.2% completion), consisting of either 1 chromosome 

+ 1 plasmid (for Methylomonas sp. strain EFPC1; Figure 6.3) or 1 chromosome + 2 plasmids (for 

Methylococcus sp. strain EFPC2; Table 6.1, Figure 6.4 and Figure 6.5).  All chromosomes and 

plasmids were circularized, then rotated according to the starting gene via Unicycler and were 

visually inspected using Bandage.    
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Table 6.1. General features of Methylomonas sp. strain EFPC1 and Methylococcus sp. strain 
EFPC2 genomes. 

Feature Methylomonas sp. strain EFPC1 Methylococcus sp. strain EFPC2 

Complete genome size (bp) 4,993,755 4,558,902 

Number of plasmids 1 2 

Plasmid size (bp) 70,104 89,615 
25,893 

G+C (%) 51.8 61.2 

Total # of coding sequences 4,488 3,891 

# of features on plasmid(s) 163 231 
61 

No. of rRNA genes (16S, 23S, 5S) 9 9 

No. of tRNA genes 47 50 

Methane monooxygenases present pMMO, pXMO, sMMO pMMO 

No. of Illumina reads 
(Accession number) 

2,230,538 
(SRX10121820) 

2,379,682 
(SRX10121822) 

No. of GridION reads 
(Accession number) 

232,890 
(SRX10121821) 

135,052 
(SRX10121823) 

N50 of GridION reads (bp) 51,070 50,620 

GenBank accession numbers CP070494, CP070495 CP070491, CP070492, CP070493 

Closest neighbor based on  
16S rRNA sequence Methylomonas sp. LW13 Methylococcus geothermalis IM1T 

16S rRNA similarity with  
closest neighbor (%) 99.87 96.30 

ANI with closest neighbor (%)a 95.20 72.70 

dDDH with closest neighbor (%)b 64.60 20.00 
a Average nucleotide identity 
b Digital DNA-DNA hybridization 
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Figure 6.3. Map of plasmid in Methylomonas sp. strain EFPC1. 
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Figure 6.4. Map of plasmid 1 in Methylococcus sp. strain EFPC2. 
 



 

 197 

 

Figure 6.5. Map of plasmid 2 in Methylococcus sp. strain EFPC2. 
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6.4. Phylogenetic analysis of 16S rRNA and pmoCAB 

16S rRNA sequences from the genome of Methylomonas sp. strain EFPC1 and 

Methylococcus sp. strain EFPC2 were used as queries for BLAST search to find those that are 

most similar.  The results indicated that Methylomonas sp. strain EFPC1 was phylogenetically 

similar to Methylomonas sp. LW13 (Kalyuzhnaya et al., 2015a) (Table 6.2) and Methylococcus 

sp. strain EFPC2 was most similar to Mcc. geothermalis IM1 (Awala et al., 2020) (Table 6.3).  

Average nucleotide identity values between Methylomonas sp. strain EFPC1 with Methylomonas 

sp. LW13 and Methylococcus sp. strain EFPC2 with Methylococcus sp. IM1T were 

approximately 95% and 73%, respectively (Yoon et al., 2017) (Table 6.1).  Digital DNA-DNA 

hybridization values determined using the Genome Blast Distance Phylogeny algorithm (Meier-

Kolthoff et al., 2013) were less than 70% between both novel isolates and their closest 

phylogenetic relatives (Table 6.1).  These results indicate that Methylococcus sp. strain EFPC2 

may be considered a new species. 

 Phylogeny constructed based on the 16S rRNA gene placed Methylomonas sp. strain 

EFPC1 with other methanotrophs of the Methylomonas genus, and Methylococcus sp. strain 

EFPC2 with those of the Methylococcus genus (Figure 6.6).  Methylomonas sp. strain EFPC1 is 

most likely a variant strain and does not constitute a novel species.  However, despite the fact 

that Methylococcus sp. strain EFPC2 did form a monophyletic group with other Methylococcus 

species, it was least similar to others with high bootstrap value (100%), even more so than the 

recently discovered novel species Mcc. geothermalis IM1 (Awala et al., 2020).  The 16S rRNA 

gene based phylogeny therefore provides additional evidence to support that Methylococcus sp. 

strain EFPC2 is a novel species. 
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Table 6.2. Methanotrophs most similar to Methylomonas sp. strain EFPC1 as determined by 
BLAST search based on 16S rRNA gene sequence. 

Organism Total 
Score E value Identity 

(%) Accession 

Methylomonas sp. LW13 8468 0 99.87 CP033381.1 
Methylomonas denitrificans FJG1 8368 0 99.48 CP014476.1 

Methylomonas sp. Kb3 2713 0 99.53 KM995837.1 
Methylomonas sp. R-45371 2706 0 99.53 FR798957.1 
Methylomonas sp. R-45362 2706 0 99.53 FR798952.1 
Methylomonas methanica 2706 0 99.40 AF150806.1 

Methylomonas sp. R-45375 2702 0 99.46 FR798961.1 
Methylomonas sp. LL1 8102 0 98.44 CP064653.1 

Methylomonas sp. R-45372 2689 0 99.33 FR798958.1 
Methylomonas sp. R-45363 2689 0 99.33 FR798953.1 

 

 

Table 6.3. Methanotrophs most similar to Methylococcus sp. strain EFPC2 as determined by 
BLAST search based on 16S rRNA gene sequence. 

Organism Total 
Score E value Identity 

(%) Accession 

Methylococcus geothermalis IM1 5039 0 96.29 CP046565.1 
Methyloterricola oryzae 73a 2481 0 95.84 MW390553.1 

“Candidatus Methylospira mobilis” strain Shm1 7365 0 95.51 CP044205.1 
Methylococcus capsulatus Bath 4855 0 95.25 AE017282.2 
Methylococcus capsulatus Texas 2324 0 95.01 NR_042183.1 
Methylococcus sp. strain BF19-07 2290 0 94.72 MT509869.1 

Methylococcus capsulatus strain Cla 2246 0 94.86 JN166980.1 
Methylococcus sp. RD4 2242 0 95.27 KU517778.1 

Methylococcus capsulatus strain GDS2_4 2241 0 95.69 MN511721.1 
Methylocaldum marinum S8 4316 0 92.03 AP017928.1 
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Figure 6.6. Bayesian phylogeny based on 16S rRNA gene.  The tree was constructed using the 
general time-reversible model with invariant sites and four distinct gamma categories 

(GTR+I+G) under a strict clock with a minimum nucleotide sequence length of 1277.  Node 
values indicate posterior probabilities based on 10,000,000 iterations with a burn-in of 25%.  The 

scale bar represents 0.05 changes per nucleotide position.  All methanotrophs belong to the 
Methylococcaceae family, except one from the Methylothermaceae family shown in gray. 

 

 

 Phylogeny constructed based on the concatenated pmoCAB sequence was similar to that 

of the 16S rRNA gene (Figure 6.7).  However, there was a clear divergence that resulted in two 

distinct clades, which was not due to the absence of a significant outgroup as evidenced by 

identical structure found in a tree that included methanotrophs of other genera (Figure 3.3, pg. 

117).  Nonetheless, Methylomonas sp. strain EFPC1 formed a clade with other Methylomonas 

species.  Both of the two pmoCAB operons found in Methylococcus sp. strain EFPC2, however, 

0.05

Methylomonas sp. 11b

Methylomagnum ishizawai 175

Methylomicrobium alcaliphilum 20Z

Methylobacter whittenburyi ACM 3310 (1)

Methylobacter whittenburyi ACM 3310 (2)
Methylobacter whittenburyi ACM 3310 (3)

Methylomicrobium agile strain ATCC 35068 (1)

Methylomicrobium agile strain ATCC 35068 (2)

Methylomicrobium buryatense 5G

Methylobacter marinus A45

Methylosarcina fibrata AML-C10

Methylobacter sp. BBA5.1

Methylomicrobium album BG8 (1)
Methylomicrobium album BG8 (2)

Methylococcus capsulatus Bath

Methylovulum miyakonense HT12

Methylococcus geothermalis IM1

Methyloglobulus morosus KoM1

Methylomonas sp. LW13 (1)
Methylomonas sp. LW13 (2)

Methylosarcina lacus LW14 (1)
Methylosarcina lacus LW14 (2)

Methylosarcina lacus LW14 (3)

Methylomonas methanica MC09

Methylomonas sp. MK1

Methylocaldum szegediense O-12

Methylobacter tundripaludum SV96

Methylococcus capsulatus Texas

Methylomonas sp. strain EFPC1

Methylohalobius crimeensis 10Ki

Methylococcus sp. strain EFPC2
100

61

100
100

78

100

100

95

1



 

 201 

formed a paraphyletic group with those from other Methylococcus species, and were more 

closely associated with pmoCAB operons from Methylomagnum ishizawai 175 with high 

bootstrap value (100%).  Considering the fact that the topology of the phylogenetic tree based on 

16S rRNA genes was conserved in the tree based on pmoCAB (Figure 3.2, pg. 116; Figure 3.3, 

pg. 117), the placement of pmoCAB from Methylococcus sp. strain EFPC2 in this tree (Figure 

6.7) may again suggest that this methanotrophs is a novel species, distinct from others of the 

Methylococcus genus. 

 

 

Figure 6.7. Bayesian phylogeny based on concatenated pmoCAB.  The tree was constructed using 
the general time-reversible model with invariant sites and four distinct gamma categories 

(GTR+I+G) under a strict clock with a minimum nucleotide sequence length of 2085.  Node 
values indicate posterior probabilities based on 10,000,000 iterations with a burn-in of 25%.  The 

scale bar represents 0.1 changes per nucleotide position.  All methanotrophs belong to the 
Methylococcaceae family, except one from the Methylothermaceae family shown in gray. 
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6.5. Genes and metabolic pathways 

One copy of each genes encoding for particulate methane monooxygenase (pmoCAB) and 

soluble methane monooxygenase (mmoXYBZDC) were found in Methylomonas sp. strain EFPC1 

for methane oxidation, along with one copy of the divergent form of the particulate methane 

monooxygenase (pxmABC) (Table 6.4).  In Methylococcus sp. strain EFPC2, two copies of 

pmoCAB and an orphan copy of pmoC were found, but no evidence of genes for soluble methane 

monooxygenase was found.  One copy of genes for methanol dehydrogenase (mxaFJGI) was 

found in both strains, but only Methylococcus sp. strain EFPC2 contained all genes for an 

alternative, lanthanide dependent methanol dehydrogenase (xoxFJG).  Both genomes contained 

genes for the tetrahydromethanopterin (fae, mtdA, fhcCDAB, mch, mtdB) and tetrahydrofolate 

(fhs, folD, mtdA, fch) pathways for C1 transfer, NAD-linked formate dehydrogenase 

(fdsABGCD), and the tricarboxylic acid cycle (Table 6.5 and Figure 6.8). 

 For carbon assimilation pathways, both genomes contained the complete ribulose 

monophosphate pathway (Table 6.5 and Figure 6.8).  The serine cycle, however, was incomplete 

in both strains, as well as the CBB cycle.   

Copper uptake and storage systems such as corAB/mopE + cytochrome c peroxidase, 

mbnABCM, and csp, and rare earth element-binding protein, lanM, were not found in either 

strain (Table 6.4).  However, the periplasmic copper uptake system copCD was found in both 

strains.  Putative TonB-dependent transporters similar to the methanobactin uptake protein, 

MbnT, were also identified (Table 6.6 and Table 6.7).  Both isolates had putative MbnTs that 

were more similar to that of Methylosinus trichosporium OB3b than Methylocystis sp. SB2.  In 

addition, merB encoding for the canonical organomercurial lyase was not found in either of the 

strains.   
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Table 6.4. Presence of select genes in Methylomonas sp. strain EFPC1 and Methylococcus sp. 
strain EFPC2. 

Gene(s) Methylomonas sp. strain EFPC1 Methylococcus sp. strain EFPC2 

pmoCAB JWZ98_20700 – 20690 JWZ97_03600 – 03610 
JWZ97_16375 – 16385 

Orphan pmoC 0 JWZ97_06950 

pxmABC JWZ98_21800 – 21790 0 

mmoXYBZDC JWZ98_21560 – 21585 0 

xoxFJG/FGJ 0 JWZ97_15225 – 15235 (xoxFJG) 

xoxFJ JWZ98_17905 – 17910 JWZ97_07535 – 07540 

Orphan xoxF 0 JWZ97_15975 

mxaFJGI JWZ98_12100 – 12085 JWZ97_00520 – 00535 

Formate 
dehydrogenase 

JWZ98_05300 (fdsG) 
JWZ98_05295 (fdsB) 
JWZ98_05290 (fdhA) 
JWZ98_05285 (fdhD) 
JWZ98_05280 (fdsD) 

JWZ97_18590 (fdsD) 
JWZ97_18595 (fdhD) 
JWZ97_18600 (fdsA) 
JWZ97_18605 (fdsB) 
JWZ97_18610 (fdsG) 
JWZ97_13100 (fdnG) 
JWZ97_13145 (fdsA) 
JWZ97_13140 (fdhB) 
JWZ97_13135 (fdhG) 
JWZ97_13110 (fdhE) 

lanM 0 0 

copCD JWZ98_04645-04640 JWZ97_18245-18240 

csp 0 0 

corAB 0 0 
mopE +  

cyt c peroxidase 
0 0 

mbnABCM 0 0 

nifH JWZ98_18495 JWZ97_19265 (plasmid 1) 
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Table 6.5. Carbon metabolism pathways in Methylomonas sp. strain EFPC1 and Methylococcus sp. strain EFPC2. 
Pathway/ 

Gene 
Product Methylomonas sp. strain EFPC1 Methylococcus sp. strain EFPC2 

TCA Cycle Complete Complete 
acn Aconitate hydratase JWZ98_11880 JWZ97_01820, JWZ97_04975 

icd Isocitrate dehydrogenase JWZ98_20755 JWZ97_15995 

odh 2-oxoglutarate dehydrogenase complex JWZ98_13775 – 13780 JWZ97_13365 – 13370 

suc Succinyl-CoA ligase JWZ98_03740 – 03735 JWZ97_01885 – 01890 

sdh Succinate dehydrogenase JWZ98_13275 – 13270 JWZ97_13800 – 13805 

fum Fumarate hydratase JWZ98_00170 JWZ97_07705 

mdh Malate dehydrogenase JWZ98_08210 JWZ97_11655 

- Citrate synthase JWZ98_07720, JWZ98_20850 JWZ97_16950, JWZ97_07185 

RuMP Cycle Complete Complete 
hps 6-Phospho-3-hexuloisomerase (EC 5.3.1.27) JWZ98_20450, JWZ98_20135 JWZ97_14300 

phi - JWZ98_20450 JWZ97_14295 

pfk 6-Phosphofructokinase JWZ98_02830 JWZ97_12490 

fbaA Fructose-1,6P aldolase JWZ98_20430 JWZ97_14700 

tkt Transketolase JWZ98_20130, JWZ98_20445 JWZ97_15635 

tal Transaldolase JWZ98_20435 JWZ97_15630 

rpe Pentose-5-phosphate 3-epimerase JWZ98_15340 JWZ97_14310 

rpiA Ribose 5-phosphate isomerase JWZ98_04845 JWZ97_15710 

Serine Cycle Incomplete Incomplete 
glyA Serine hydroxymethyltransferase JWZ98_08195 JWZ97_02270 

sgaA Serine-glyoxylate aminotransferase JWZ98_13285 JWZ97_01305 

hprA Hydroxypyruvate reductase None JWZ97_01295 

gckA Glycerate 2-kinase JWZ98_08200 None 

eno Enolase JWZ98_05230 JWZ97_11545 

ppcA Phosphoenolpyruvate carboxylase JWZ98_08730 JWZ97_03325 

mdh Malate dehydrogenase JWZ98_08210 JWZ97_11655 

mtk Malate thiokinase None None 

mclA Malyl coenzyme A lyase JWZ98_13280 JWZ97_01880 
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Table 6.5. Continued. 
Pathway/ 

Gene 
Product Methylomonas sp. strain EFPC1 Methylococcus sp. strain EFPC2 

CBB Cycle Incomplete Incomplete 
cbbL Ribulose bisphosphate carboxylase/oxygenase, large subunit None JWZ97_14195 

cbbS Ribulose bisphosphate carboxylase/oxygenase, small subunit None None 

H4MPT Pathway Complete Complete 
fae Formaldehyde-activating enzyme JWZ98_02300, JWZ98_04730, 

JWZ98_12555, JWZ98_13865 
JWZ97_13880, JWZ97_16230 

mtdA NADP-Specific H4MPT dehydrogenase JWZ98_08205 JWZ97_02310 

mtdB NAD(P)-Dependent methylene-H4MPT dehydrogenase JWZ98_15865, JWZ98_15870 JWZ97_16350, JWZ97_16355 

mch Methenyl-H4MPT cyclohydrolase JWZ98_13880 JWZ97_16215 

ftr Formyltransferase JWZ98_18885 JWZ97_17405 

fhc Ftr/hydrolase complex JWZ98_18875 (fhcB) 
JWZ98_18880 (fhcA) 
JWZ98_18885 (fhcD) 
JWZ98_18890 (fhcC) 

JWZ97_17395 (fhcB) 
JWZ97_17400 (fhcA) 
JWZ97_17405 (fhcD) 
JWZ97_17410 (fhcC) 

H4F Pathway Complete Complete 
folD Bifunctional methylene-H4F dehydrogenase/cyclohydrolase None None 

mtdA NADP-Specific H4F dehydrogenase JWZ98_08205 JWZ97_02310 

fhs (ftfL) Formyl-H4F synthetase (formyl-H4F ligase) JWZ98_08805 JWZ97_03895 

purU Formyl-H4F deformylase None None 

fch Formiminotetrahydrofolate cyclodeaminase (EC 4.3.1.4) JWZ98_16990 JWZ97_02315 
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Figure 6.8. Carbon metabolism pathways in Methylomonas sp. strain EFPC1 (green), 
Methylococcus sp. strain EFPC2 (red), or both (blue).  Amino acid sequence data were annotated 

using BlastKOALA, and subsequently mapped against KEGG databases (Kanehisa & Sato, 
2020). 
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Table 6.6. Putative MbnTs in Methylomonas sp. strain EFPC1 identified via blastp. 

Locus Tag Total Score Query Cover (%) E valuea Identity (%) 
Msn. trichosporium OB3b MbnT (ADVE02_v2_13650) 

JWZ98_21415 595 95 0 41.99 
JWZ98_21285 527 95 6.00 ´ 10-177 38.56 
JWZ98_21250 514 99 4.00 ´ 10-172 38.55 
JWZ98_05020 459 99 1.00 ´ 10-150 34.81 
JWZ98_12165 458 99 2.00 ´ 10-150 34.57 
JWZ98_21345 451 95 8.00 ´ 10-148 37.61 
JWZ98_21265 441 95 2.00 ´ 10-143 35.23 
JWZ98_13005 439 99 6.00 ´ 10-143 34.91 
JWZ98_06185 431 95 5.00 ´ 10-140 33.84 
JWZ98_04990 421 94 1.00 ´ 10-135 34.8 
JWZ98_07325 419 95 2.00 ´ 10-135 35.93 
JWZ98_13025 402 95 7.00 ´ 10-129 34.24 
JWZ98_21325 369 95 2.00 ´ 10-116 33.01 
JWZ98_14830 368 95 6.00 ´ 10-116 33.05 
JWZ98_15215 187 81 2.00 ´ 10-50 26.27 
JWZ98_18630 170 92 1.00 ´ 10-44 27.09 
JWZ98_15170 166 84 1.00 ´ 10-43 25.41 
JWZ98_08595 118 43 5.00 ´ 10-16 31.75 
JWZ98_21305 107 64 5.00 ´ 10-10 24.9 

Methylocystis sp. SB2 MbnT (MSB2v1_460017) 
JWZ98_16195 60.5 29 4.00 ´ 10-10 25.86 
JWZ98_16065 106 41 7.00 ´ 10-9 25.35 
JWZ98_21305 100 59 3.00 ´ 10-7 30.46 
JWZ98_04990 50.8 31 3.00 ´ 10-7 25.88 
JWZ98_20820 49.7 51 7.00 ´ 10-7 22.22 
JWZ98_13025 49.7 31 7.00 ´ 10-7 23.95 

a E value threshold of 1 ´ 10-6 
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Table 6.7. Putative MbnTs in Methylococcus sp. strain EFPC1 identified via blastp. 

Locus Tag Total Score Query Cover (%) E valuea Identity (%) 
Msn. trichosporium OB3b MbnT (ADVE02_v2_13650) 

JWZ97_07565 555 94 0 40.63 
JWZ97_15280 463 95 1.00 ´ 10-152 36.78 
JWZ97_10965 459 95 6.00 ´ 10-151 37.79 
JWZ97_12245 457 96 5.00 ´ 10-150 36.78 
JWZ97_15250 442 95 1.00 ´ 10-143 34.29 
JWZ97_15245 403 95 2.00 ´ 10-129 33.37 
JWZ97_12265 181 38 9.00 ´ 10-52 35.28 
JWZ97_17285 179 82 5.00 ´ 10-48 25.65 
JWZ97_17280 173 81 4.00 ´ 10-46 27.07 

Methylocystis sp. SB2 MbnT (MSB2v1_460017) 
JWZ97_17285 71.2 93 2.00 ´ 10-13 20.71 
JWZ97_12220 114 62 6.00 ´ 10-13 31.63 
JWZ97_13575 55.5 35 1.00 ´ 10-8 25.24 

a E value threshold of 1 ´ 10-6 
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Next, genes that may be of interest were identified on the plasmids of Methylomonas sp. 

strain EFPC1 and Methylococcus sp. strain EFPC2.  Partial operons for mercury and chromate 

resistance (merRTP and chrBA) and type IV secretion system for DNA and protein substrate 

exchange (virB) were found on the plasmid of Methylomonas sp. strain EFPC1 (CP070495) 

(Table 6.8 and Figure 6.3) (Barkay et al., 2003; Branco et al., 2008; Christie, 2004).  In addition, 

a complete operon for cobalt/zinc/cadmium efflux pump (czcCBAD) was also found on the same 

plasmid (Rensing et al., 1997).  Genes related to nitrogen fixation (nifHDKENX, nifQ, nifT, nifZ, 

nifBA, nifL, nifVW) were found on the larger of the two plasmids in Methylococcus sp. strain 

EFPC2 (CP070492) (Figure 6.4 and Figure 6.5), as well as those encoding for a putative electron 

transport complex for the nitrogenase (rnfABCDGEH) (Table 6.8) (Jeong & Jouanneau, 2000; 

Koo, 2003; Kumagai et al., 1997; Schmehl et al., 1993). 

 

Table 6.8. Presence of select genes on the plasmids of Methylomonas sp. strain EFPC1 and 
Methylococcus sp. strain EFPC2. 

Predicted Function Gene(s) Locus Tag 

Methylomonas sp. strain EFPC1 plasmid 
Mercury resistance merRTP JWZ98_22875 – 22885 

Chromate resistance chrBA JWZ98_22900 – 22895 

Type IV secretion system virB2-5, 

virB6 
virB8-10 
virB11 

JWZ98_23000 – 23015 

JWZ98_23025 

JWZ98_23045 – 23055 

JWZ98_23065 

Cobalt/Zinc/Cadmium efflux pump czcCBAD JWZ98_22940 – 22925 

Methylococcus sp. strain EFPC2 plasmid 1 
Nitrogen fixation nifHDKENX JWZ97_19265 – 19395 

 nifQ JWZ97_19315 

 nifT JWZ97_19435 

 nifZ JWZ97_19455 

 nifBA JWZ97_19477 – 19476 

 nifL JWZ97_19535 

 nifVW JWZ97_19580 – 19585 

Electron transport complex for nitrogenase rnfABCDGEH JWZ97_19730 – 19745 

JWZ97_19180 – 19185  
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6.6. Discussion 

Two strains of methanotrophs from the Gammaproteobacteria class – Methylomonas sp. 

strain EFPC1 and Methylococcus sp. strain EFPC2 – were isolated from the mercury-

contaminated stream of East Fork Poplar Creek.  Methylomonas sp. strain EFPC1 is rod-shaped 

and Gram-negative, whereas Methylococcus sp. strain EFPC2 is coccoid and Gram-variable, 

which is in line with other methanotrophs of the respective genera.  Of these two, Methylococcus 

sp. strain EFPC2 presents as a novel species based on phylogenetic analysis and comparison with 

other closely related methanotrophs. 

 Both isolates did not contain the core genes for methanobactin, nor genes for other 

copper uptake systems except for copCD.  In case of Methylomonas sp. strain EFPC1, this would 

not pose an issue as it contains the genes for soluble methane monooxygenase and can 

circumvent the copper requirement.  However, Methylococcus sp. strain EFPC2 only has 

pmoCAB encoding for the particulate methane monooxygenase.  Perhaps this methanotroph has a 

strategy to participate in chalkophore piracy in the environment, though this is highly speculative 

at this stage of analysis.  In addition, as current evidence suggests, these methanotrophs would 

not be able to degrade MeHg on their own – i.e., they would have to “steal” non-native MeHg-

methanobactin complexes from the environment into the periplasm.  The presence of putative 

MbnTs that are highly similar to that found in Msn. trichosporium OB3b suggests that both 

strains have the potential to take up methanobactin and could contribute to MeHg degradation.  

Therefore, it will be of interest to investigate the extent of MeHg degradation by these 

methanotrophs. 

 It is also interesting to note that both methanotrophs isolated in this study belongs to the 

Methylococcaceae family.  Reads that mapped to pmoA sequences from representative 
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methanotrophs of the Beijerinckiaceae, Methylococcaceae, and Methylocystaceae families as 

well as the candidate phylum NC10 were found in metagenome sequences obtained from cores 

sampled from EFPC at 0-3 cm and 9-12 cm depths (data not shown) (Kim et al., 2021).  No reads 

mapped to a representative methanotroph belonging to the Verrucomicrobia phylum from cores 

taken from any depth, or to the Beijerinckiaceae at 9-12 cm depth, which may be attributable to 

the acidophilic nature of these methanotrophs (Dedysh et al., 2000; Dunfield et al., 2003, 2007; 

Vorobev et al., 2011).  It was surprising to find the most reads (100 out of 200,408,672 total 

reads) mapped to a methanotroph belonging to the candidate phylum NC10 in the core sampled 

from 9-12 cm, as this methanotroph is an obligate anaerobe.  However, the abundance of 

methanotrophs in these samples were not analyzed, and therefore the significance of these 

findings may be uncertain at this point.  Nonetheless, despite the fact that methanotrophs of 

various phylogenetic groups are present in samples taken from the EFPC, only those in the 

Methylococcaceae family was isolated in this study.   

 Furthermore, it has been shown that 23 phyla, including Proteobacteria, Cyanobacteria, 

Acidobacteria, Verrucomicrobia, and unclassified bacteria, were found in the surface stream 

sediments of EFPC (Vishnivetskaya et al., 2011).  The relative composition of the microbial 

community, as determined by 16S rRNA gene sequencing, was significantly correlated with 

seasonal and geochemical factors, and some members within the Proteobacteria and 

Verrucomicrobia phyla (both of which methanotrophs can be found in) appeared to be positively 

associated with mercury and MeHg (Vishnivetskaya et al., 2011).  Thus, it may be the case that 

composition of methanotrophs at EFPC also vary with season.  Isolation and characterization of 

diverse methanotrophs from mercury-contaminated environment in the future may help elucidate 

the mechanism of methanotrophic-mediated MeHg degradation. 
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Chapter 7 Conclusions and Future Work 
 

The general objective of this study was to understand the relationship between metals and 

methanotrophs and how this interaction affects the environment.  That is, elucidating the effect 

of copper, rare earth elements (REEs), as well as various species of mercury on methanotrophs 

and vice versa will further our comprehension of methanotrophic-mediated metal distribution in 

situ.  The consequence of this interaction is not limited to the methanotrophic community, but 

may also apply to other groups of microorganisms co-habitating the environment. 

First, bioinformatic analyses were conducted to study the evolutionary origin of 

methanotrophs to better understand metal uptake systems in the context of methanotrophy.  

Evolutionary trees were constructed for methanotrophs, and genome compositional analysis was 

conducted to identify foreign or relatively recently acquired genes in methanotrophs.  In this 

study, we found that ancient methylotrophs with a preexisting copper uptake system likely 

evolved into methanotrophs, again providing evidence that copper is a critical component in 

methanotrophy.  In addition, Xox-methanol dehydrogenase (MeDH) was more easily shared via 

lateral gene transfer as compared to Mxa-MeDH, possibly influenced by the superior catalytic 

efficiency of Xox-MeDH providing a competitive advantage.  In relation to REE, a gene 

encoding for a putative lanmodulin (LanM), a periplasmic REE-binding protein, was found in all 

Alphaproteobacteria methanotrophs, but not in any belonging to the Gammaproteobacteria 

class. 

Second, competition between methanotrophs for copper was investigated.  As noted in 

earlier chapters, some but not all methanotrophs produce the copper chelator, methanobactin 
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(MB).  Thus, those that do may be able to predominate in copper-poor environments.  However, 

we have found that many methanotrophs, despite not being able to make MB, have the necessary 

machinery to take it up.  That is, some methanotrophs can and do “steal” MB made by others to 

meet their copper requirements.  In this study, model methanotrophs with and without a gene 

encoding for a putative TonB-dependent transporter for MB (mbnT) were selected and 

investigated for “cheating” behavior by challenging with Group I and Group II MBs from 

Methylosinus trichosporium OB3b and Methylocystis sp. SB2.  Methylococcus capsulatus Bath, 

a Gammaproteobacteria methanotroph, was able to overcome copper limitation imposed by MBs 

using its own copper chelator, MopE/MopE*.  Methylocystis sp. strain Rockwell, belonging to 

the Alphaproteobacteria class, preferentially took up Group II MB, and was inhibited by Group I 

MB.  Methylomicrobium album BG8, another Gammaproteobacteria, was able to take up MB, 

but also had a novel chalkophore that could compete for copper against MBs.  The results of this 

study demonstrated that a phylogenetically long-range MB piracy may occur in the environment, 

and also identified a novel chalkophore yet to be characterized. 

Finally, the mechanism of methylmercury (MeHg) demethylation by methanotrophs was 

investigated by targeting several candidates that may be involved in this process.  An 

organoarsenical lyase (ArsI), responsible for cleaving carbon-arsenic bonds, was found not to be 

involved in the process of MeHg degradation by Msn. trichosporium OB3b.  The role of Xox-

MeDH in MeHg degradation was assessed by generating spheroplasts of Msn. trichosporium 

OB3b DmbnT lacking the periplasm, where Xox-MeDH is located, and monitoring its MeHg 

degradation rates.  As expected, when spheroplasts were incubated with MeHg, the rate of 

demethylation was drastically decreased as compared to whole cells, and the periplasmic fraction 

exhibited higher degradation rates, providing evidence that the periplasmic constituents are 
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important for MeHg degradation.  Moreover, Msn. trichosporium OB3b DlanM mutant 

completely lost its ability to degrade MeHg, indicating that LanM is critical for MeHg 

degradation.  This supports the findings from assessing spheroplasts, as LanM also resides in the 

periplasm.  LanM may be responsible for coordinating REEs for Xox-MeDH activity, but more 

research is necessary to unravel the exact mechanism of MeHg degradation.  As an effort to 

characterize methanotrophs from mercury-contaminated sites, two methanotrophs were isolated 

from mercury-contaminated stream in Oak Ridge Tennessee and subsequently sequenced.  Both 

strains do not contain the canonical organomercurial lyase, MerB, so further characterization will 

provide insight into MeHg degradation by methanotrophs. 

In this study, the significance of copper and REEs in methanotrophy was explored using 

bioinformatic tools, copper competition between methanotrophs was investigated, and important 

players in methanotrophic-mediated MeHg degradation were identified.  However, much is still 

unknown about copper competition in situ as well as the exact mechanism of MeHg degradation 

by methanotrophs.  Therefore, future studies should address the unknowns in order to establish a 

complete understanding of the interaction between metals, methanotrophs, and other groups of 

microbes sharing the habitat. 

It has been shown that methanotrophs have a significant impact on the availability of 

copper, which in turn affects the activities of other groups of microorganisms.  Specifically, it 

has been shown that competition for copper between MB-producing methanotrophs and 

denitrifiers leads to increased nitrous oxide production by denitrifiers.  The copper limitation 

imposed by MB prevents denitrifiers from acquiring copper for the nitrous oxide reductase 

(NosZ), a critical enzyme that converts nitrous oxide to dinitrogen.  Nitrous oxide is a much 

more potent greenhouse gas than methane, so understanding copper availability is essential to 
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minimize greenhouse gas emissions.  Ammonia-oxidizing bacteria also requires copper – in fact, 

the ammonia monooxygenase in these bacteria is homologous to the particulate methane 

monooxygenase (pMMO) in methanotrophs.  Ammonia-oxidizing bacteria have been associated 

with increased nitrous oxide emissions, especially with the application of fertilizers (Soares et 

al., 2016).  Investigating microbial community copper availability and, particularly, copper 

competition between methanotrophs and ammonia-oxidizing bacteria and the resulting 

greenhouse gas flux will provide insight into engineering solutions for mitigating emissions from 

agriculture, a main anthropogenic source of nitrous oxide. 

Similar to the copper competition facilitated by methanotrophs, mercury speciation may 

also be affected by methanotrophs in the environment.  We show here that some non-MB 

producing methanotrophs may act as a “cheater,” whereby they take up foreign MB, possibly 

MeHg-MB complexes, and subsequently degrade the MeHg.  Therefore, we may augment 

methanotrophy in MeHg-contaminated sites in an attempt to reduce the toxicity of mercury by 

converting the more toxic organic form of mercury to inorganic mercury.  Zhou et al. (2020) has 

found that adding copper to paddy soil samples to promote methanotrophy subsequently 

enhanced MeHg degradation, providing preliminary data for exploiting methanotrophy for 

MeHg remediation.  However, there is a possibility that this may inadvertently increase mercury 

methylation by some anaerobes, because Group I MB may also act as a vehicle for delivering 

Hg(II) into these microbes for greater methylation (Yin et al., 2020).  Therefore, it is critical to 

understand the role of methanotrophs in the mercury cycle in situ before designing solutions for 

MeHg degradation. 

An extension to the future works mentioned above could be to conduct a survey of MB in 

environmental samples to determine the prevalence of MB.  This could involve designing 
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universal primers that target MB to enable rapid screening of metabolic potential, or better yet to 

establish a streamlined proteomics protocol to detect MB peptides in high throughput.  Properties 

of the site (e.g. microbial community, metal speciation, greenhouse gas flux) juxtaposed to the 

MB distribution data will provide insight into the environmental significance of methanotrophs 

and MB. 
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Appendix 
 

 
Figure A.1. Calibration curves of the qPCR standards of select genes involved in 

methane/methanol oxidation, copper storage and putative methanobactin uptake in Mmc. album 
BG8. 
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Figure A.2. Calibration curves of the qPCR standards of select genes involved in 

methane/methanol oxidation, copper storage and putative methanobactin uptake in Methylocystis 
sp. strain Rockwell. 
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Figure A.3. Calibration curves of the qPCR standards of select genes involved in 

methane/methanol oxidation, copper storage and putative methanobactin uptake in Mcc. 
capsulatus Bath. 
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Figure A.4. Confirmation of construction of Mmc. album BG8 DmbnT mutant. M, molecular 
weight marker; BL, blank; WT, Mmc. album BG8 wild-type; P, plasmid; S17, E. coli S17-1 

gDNA; DT, Mmc. album BG8 DmbnT. 
 

 

 
Figure A.5. Confirmation of construction of Msn. trichosporium OB3b DarsI mutant.  M, 

molecular weight marker; BL, blank; WT, Msn. trichosporium OB3b wildtype; P, plasmid; S17, 
E. coli S17-1 gDNA; DI, Msn. trichosporium OB3b DarsI. 

 

 

 

Figure A.6. Confirmation of construction of Msn. trichosporium OB3b DlanM mutant.  M, 
molecular weight marker; BL, blank; WT, Msn. trichosporium OB3b wildtype; P, plasmid; S17, 

E. coli S17-1 gDNA; DM, Msn. trichosporium OB3b DlanM. 
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