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Abstract 

 

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults 

and has a poor prognosis with a median survival of approximately 14 months. Clinical standard 

assessment of therapy response and tumor progression is based upon post-contrast T1-weighted 

(T1W) and fluid-attenuated inversion recovery (FLAIR) T2-weighted (T2W) magnetic 

resonance images (MRI).  However, contrast enhancement observed on the post-contrast T1W 

MRI is affected not only by tumor growth but also effects of radiation, anti-angiogenesis drugs 

and chemotherapy, due to the fact that it represents blood-brain barrier disruption. Another 

problem is that abnormality on T2W FLAIR images is influenced by T2 changes of tumor cells 

as well as edema and necrosis that always co-exist within GBM. Diffusion weighted (DW) 

imaging has been proposed to overcome these limitations. Conventional DW images quantify 

apparent diffusion coefficient (ADC) with b-values between 0 and 1000 s/mm2 using a mono-

exponential decay model. One limitation is that co-existence of edema in clinical GBM elevates 

ADC.  

In diffusion MRI, there are three dimensions of parameter spaces that we could explore in 

research —b value, diffusion time (t) and echo time (TE). Hence, we investigated and developed 

high order diffusion models in these three spaces and evaluated whether they could reveal more 

features of GBM. 
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In the b-value space, we investigated a microstructure model (MSM), in which 

modulation of diffusion gradient with cell size is considered, with high b-value diffusion images 

in the patients with GBM pre-radiation therapy (RT). We found apparent cell size (ARS), 

extracellular diffusion coefficient (Dex) and intracellular fractional volume (Vin) in tumor were 

significantly greater than ones in normal tissue and edema. In addition, we investigated diffusion 

kurtosis imaging (DKI) in GBM pre-RT and mid-RT, and found pre-RT mean kurtosis of the 

tumor could provide a predictive value of overall survival (OS) additional to clinical prognostic 

factors. 

In the TE space, T2-Relaxation-Diffusion correlation experiments can be powerful in 

resolving water compartments with respect to their size and chemical composition, but the 

problem is ill-posed. We simplified the T2-Relaxation-Diffusion correlation to consider the T2 

values and diffusion coefficients in a correlated fashion. We found that there were significant 

differences between fast and slow diffusion coefficients and between associated T2 values in 

tumor, cortex, deep GM, and edema. Multivariate Cox model showed the fractional volume of 

slow component (Vs) mid-RT may add a predictive value to clinical factors. 

In diffusion time space, we applied three different diffusion times using pulsed diffusion 

gradients (PG) and oscillating gradients at frequencies of 30 Hz (OS30) and 50 Hz (OS50) using 

a prototype sequence. Using a random walk with barriers model, we estimated cell diameter, 

unrestricted diffusion coefficient (D0) at a short time limit, bulk diffusion coefficient (Dinf) at a 

long-time limit, cell membrane permeability and effective restriction in the contrast-enhanced 
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tumor. Those parameters provide microstructural information in the GBM and need to be further 

investigated and validated with pathology. 

Previous studies have mainly investigated high order diffusion models in prostate cancer 

and xenograft tumor models, and only a few studies investigated GBM. The current knowledge 

about the relationship between model parameters and physiological/pathological features in 

GBM are still limited. Our research in GBM could lead to better imaging means for GBM 

diagnosis, tumor target definition for radiation therapy, and therapy response assessment. 
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Chapter 1 Introduction 

 

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults 

and has a poor prognosis with a median survival of approximately 14 months despite 

multimodality therapy with surgery, concurrent chemoradiation therapy and adjuvant 

chemotherapy 1,2. Standard clinical assessment of tumor progression or therapy response 3 is 

based primarily on post-contrast T1-weighted and fluid-attenuated inversion recovery (FLAIR) 

T2-weighted magnetic resonance images (MRI). There are some challenges to these 

conventional techniques. The contrast enhancement on the post-contrast T1-weighted MRI is 

affected by tumor growth, but also radiation, anti-angiogenesis drugs and chemotherapy, all of 

which can be attributed to blood-brain barrier disruption. Abnormality on T2 FLAIR images is 

influenced by T2 changes of tumor cells as well as edema that co-exists within GBM or is 

affected by radiation therapy. Limitations of conventional MRI in clinical management of GBM 

have motivated investigations of physiological and metabolic MRI. 

Diffusion weighted (DW) imaging has been proposed to overcome these limitations. DW 

imaging is a technique to measure water molecule mobility in the tissue microscopic 

environment, and is sensitive to cell density and size, cell membrane permeability, and 

extracellular space tortuosity. Apparent diffusion coefficient (ADC) quantified from 

conventional DW images fitted to a mono-exponential function is the commonly reported 
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parameter in literature. The correlation between high cellularity and low ADC in tumor animal 

models and human cancers motivates investigations of roles of ADC in clinical GBM 4-7. 

However, heterogeneous tissue in GBM, especially edema, often results in elevated ADC 

compared to normal white matter (WM)1 and grey matter (GM).  Another problem is that it is 

hard to describe the complex microstructure effects on water diffusion with a single diffusion 

parameter.  

To deal with the deviation of diffusion weighted signals from the mono-exponential 

function, a bi-exponential model with fast and slow diffusion components has been proposed 8. 

In the initial interpretation of the bi-exponential model, fast and slow diffusion coefficients are 

considered from respective extra- and intra-cellular water compartments, but the estimated 

fraction of the intra-cellular water in the tissue from the bi-exponential model cannot be matched 

with that measured by other methods 9. The bi-exponential model fits the diffusion curves better 

than the mono-exponential model.  A study suggests that the fast diffusion coefficient is close to 

the reported human brain diffusion coefficient10. To fit the bi-exponential model, it is necessary 

to acquire diffusion weighted images with more b-values, which increases the acquisition time. 

In addition, the bi-exponential model that fits four parameters is unstable to noise, which makes 

it difficult to generate high quality voxel-by-voxel brain maps.  

In diffusion MRI, there are three dimensions of parameter spaces that could be explored 

—b value, echo time (TE) and diffusion time (t). In the b-value space, other high order diffusion 

models that have been investigated in tumors 11-15. For example, a model, called VERDICT, has 

been proposed to quantify microstructural properties of colorectal cancer cell lines 14. This model 
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considers cell size, vascular volume fraction and due to perfusion, and intracellular and 

extracellular fractional volumes and diffusivities. Due to the complexity of the VERDICT model, 

prior knowledge of intracellular and extracellular diffusion coefficients is used to fit in vivo DW 

images in two xenograft animal models. Another model, called the fractional order calculus 

model (FROC) 15, investigated diffusivity and tissue structure in brain pediatric tumor. This 

model requires b-values up to 4000 s/mm2, and the diffusion coefficient in the model is pre-

determined by fitting a mono-exponential model before fitting the entire model 15. In the TE 

space, only a few studies were investigated 16-21. One model, called multi-exponential proton 

spin-spin relaxation model 18,19, uses multi-echoes sequence to investigate multiple T2 decays in 

tumor and other brain tissue. White matter and gray matter showed three components and two 

components of T2 decay, respectively. Tumor and edema both show bi-exponentiality of 

relaxation time in investigation 19. However, the fast component T2 of tumor was unexpectedly 

high (>700ms). Recent studies suggest that a model correlating T2 and DC together could 

characterize heterogeneous tissue better 16. The capability of the 2D T2-diffusion correlation 

experiment to improve the sensitivity has been demonstrated on different tissue types 17,20,21. This 

technique used an ill-posed equation with infinite solution 22,23, which is difficult to directly 

apply to diffusion curves. In the t space, previous investigators 24-27 have uncovered a time 

dependency of diffusion coefficient (D(t)) in many tissues, including some types of cancer. In 

different lengths of diffusion time, D(t) is sensitive to different microstructures, for example, 

membrane permeability and radius of tumor cells.  
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Patients with malignant gliomas experience frequent clinical complications, but 

glioblastoma remains a difficult cancer to treat, though therapeutic options have been improving. 

Optimal management requires a multidisciplinary approach and knowledge of potential 

complications from both the disease and its treatment 28. T1W and T2W conventional definitions 

may lead to insufficient radiation dose and thereby tumor prognosis. A better definition of tumor 

could lead to a precision treatment, thereby a better outcome. This contribution will provide a 

framework for developing patient-specific models that will optimize tumor target definition for 

treatment planning in GBM patients.  

Many studies have investigated high order diffusion models in different tumors 5,11-

13,15,19,25,29-32. However, there is very limited research in GBM with high order diffusion models, 

especially research that investigated in all three spaces of diffusion MRI. The current knowledge 

about the relationship between models and physiological features in GBM is still limited.  

This work sought to investigate and develop high order diffusion models in the three 

spaces —b value, TE and diffusion time and evaluated whether they could reveal more 

physiological features of GBM. 

Chapter 2 described the work that modified the model of restricted diffusion 11-13,33-35 to 

fit the DW images acquired with a widely available bi-polar pulse diffusion gradient imaging and 

characterize microstructure and diffusion properties of the hypercellular tumor in the patients 

with GBM.  We found that fractional volume of intracellular water (Vin), cell radius (R) and 

extracellular diffusion coefficient (Dex) in the tumor were substantially and significantly different 

from edema and normal tissue.  This chapter also contains comparison with the bi-exponential 
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diffusion model and the ADC model. The bi-exponential diffusion model that does not explicitly 

model the restricted diffusion of intracellular water could not robustly differentiate GBM from 

edema and normal brain tissue.  ADC that ignores intra-voxel heterogeneous diffusion in brain 

tissue and tumor failed to differentiate GBM from edema and normal tissue.   

Chapter 3 investigated the diffusion kurtosis model and characterized non-Gaussian 

diffusion properties in the Gadolinium enhanced gross tumor volume (Gd-GTV) pre-RT and 

mid-RT in the patients with GBM. We found that the mean kurtosis value in the Gd-GTV pre-

RT was significantly prognostic of OS as a high mean kurtosis was associated with inferior 

survival. Also, the diffusion kurtosis added predictive value to clinical factors for survival. In 

addition to glioma grading found by others previously29,32,36, the kurtosis model has promise to 

aid conventional MRI for outcome prognosis. 

Chapter 4 described a work that simplified the T2-Relaxation-Diffusion correlation 16 to 

fit the DW images and characterize diffusion properties of the hypercellular tumor in the patients 

with GBM. In investigation, we found that modeling T2 and DC together helps differentiate 

tumor from edema and normal tissue. Parameters estimated from T2-relaxation-diffusion model, 

such as T2 with the large diffusion coefficient (T2f) and fractional volume of water with the 

small diffusion coefficient (Vs), correlated with PFS and show the potential to predict survival. 

Additionally, in our analysis of Cox proportional hazard model, pre-RT T2f and mid-RT Vs are 

significantly associated with reduced PFS. T2f and Vs may add value to clinical factors and aid 

prognosis.  
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Chapter 5 combined the random walk barrier model 27 (RWBM) and oscillating diffusion 

gradients which provide access to short diffusion times to investigate time-dependent diffusion 

coefficients. The RWBM model yields cell diameter, unrestricted diffusion coefficient (D0) at a 

short time limit, bulk diffusion coefficient (Dinf) at a long-time limit, and membrane permeability 

(𝜅), which cannot be obtained by analyzing DW images with a single diffusion time. This 

chapter also investigated three-distance diffusion model 37 and compared it to the RWBM. 

In the final chapter, implication of these investigations in GBM is discussed. 

Table 1-1 Table of abbreviations appearing in text with corresponding definitions 

Definition Abbreviation 
Apparent diffusion coefficient ADC 

Apparent restriction size of intracellular water ARS 

Bulk diffusion coefficient Dinf 

Cell radius R 

Cerebrospinal fluid CSF 

Diffusion coefficient DC 

Diffusion sensitive signals of intracellular water Sin 

Diffusion sensitive signals of extracellular water Sex 

Diffusion tensor imaging DTI 

Diffusion weighted DW 

Diffusion weighted imaging DWI 

Echo Time TE 

Extent of surgery EOR 

Extracellular diffusion coefficient Dex 

Fluid-attenuated inversion recovery T2-weighted FLAIR T2W 

Fractional anisotropy FA 

Fractional volume of intracellular water Vin 

Fractional volume of water with the small diffusion 

coefficient 

Vs 

Gadolinium enhanced gross tumor volume Gd-GTV 

Gaussian Phase Distribution GPD 

Glioblastoma GBM 

Grey matter GM 
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Intracellular diffusion coefficient Din 

Microstructure model MSM 

Mean squared errors MSE 

Oscillating gradient spin echo OGSE 

Oscillating gradient spin echo at frequency 30Hz OGSE30 

Oscillating gradient spin echo at frequency 50Hz OGSE50 

Overall survival OS 

Permeability ĸ 

Progression free survival PFS 

Pulse gradient spin echo PGSE 

Radiation therapy RT 

Random walk barrier model RWBM 

Signal-to-noise ratio SNR 

Structure length ls 

T1-weighted T1W 

T2 with the large diffusion coefficient T2f 

T2 with the small diffusion coefficient T2s 

Tumor volume TV 

Unrestricted diffusion coefficient D0 

Volumes of interest VOI 

White matter WM 
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Chapter 2 Microstructure Modeling of High b-value Diffusion Weighted Images in 

Glioblastoma 

 

This chapter is substantially equivalent to work that the author has already published in 

TOMOGRAPHY 38. 

2.1 Introduction 

 

High b-value DW images and high-order diffusion models have been explored in clinical 

gliomas to differentiate tumor grade and assess therapy response 8,9,15,32,36,39-42. A few high-order 

diffusion models attempt to quantify microstructures in tumors 14,24,43.  For example, a model, 

called VERDICT, has been proposed to quantify microstructural properties of colorectal cancer 

cell lines 14. This model considers cell size, vascular volume fraction and associated pseudo-

diffusivity, and intracellular and extracellular fractional volumes and diffusivities.  Due to the 

complexity of the VERDICT model, prior knowledge of intracellular and extracellular diffusion 

coefficients is used to fit in vivo DW images in two xenograft animal models.  Another model, 

temporal diffusion spectroscopy, uses oscillating diffusion gradients to probe cellular structures 

that restrict intracellular water diffusion by assuming that intracellular water is restricted in 

impermeable cells44-46.  Compared to VERDICT, this model simplifies representation of the 

extracellular water diffusion by reducing to a single free diffusion term, and fits four free 

parameters, including intracellular and extracellular water diffusivities. 
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Recent studies show that hypercellular tumor volumes that can be detected on the DW 

images with b=3000 mm2/s in GBM have a prognostic value 47,48.  This technique used a widely 

available imaging technique and, as it is easily translatable, a current phase II clinical trial is 

underway that targets this hypercellular tumor volume with intensified radiation doses 49. 

In this study, we modified the model described in Jiang et al 45,46.  and applied to clinical 

diffusion weighted images in patients with GBM.  In our clinic, bi-polar pulse diffusion gradient 

waveforms and a high parallel imaging factor were used to reduce eddy current and geometric 

distortion in the clinical DW images, respectively.  We applied the modified model to the DW 

images with high b-values to investigate whether there were any significant differences in the 

quantified microstructure parameters between the hypercellular tumors and normal tissue and 

edema in these patients. Similar comparisons were made for the conventional ADC and the 

parameters quantified from the bi-exponential model.  This study was the first step to test the 

possibility of the application of the model quantifying microstructure parameters using a widely 

available diffusion technique on the clinical scanner for GBM. 

2.2 Material and Methods 

 

2.2.1 Microstructure model with bi-polar diffusion gradients 

We assume the DW signal in tissue can be considered as a sum of water signals from 

intracellular and extracellular compartments 45: 

𝑆 = 𝑆0[𝑉𝑖𝑛𝑆𝑖𝑛 + (1 − 𝑉𝑖𝑛)𝑆𝑒𝑥]                                                                                  [2.1] 
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where S0 is the total magnetization from both water compartments, Vin is the fraction volume of 

intracellular water, and Sin and Sex are respective diffusion sensitive signals of intracellular and 

extracellular water.   In previous investigations of restricted intracellular diffusion 14,45,50, a cell 

has been modeled as an impermeable sphere, which completely restricted diffusion of 

intracellular water molecules within the spherical space.  The analytic formulae of the restricted 

diffusion signals have been derived for the conventional mono-polar diffusion pulse gradient 

spin echo (PGSE) and oscillating gradient spin echo sequences using the Gaussian Phase 

Distribution (GPD) approximation 14,45,50 which has been shown to have sufficient accuracy for 

most experimental conditions with PGSE sequences and for sphere and parallel-plane geometry 

assumptions 51.  Therefore, we adopt this formulation to express the restricted diffusion signal of 

the intracellular water as: 

𝑆𝑖𝑛 =
𝛾2

2
∑ 𝐵𝑛𝑛 ∫ 𝑑𝑡1𝑔(𝑡1) ∫ 𝑔(𝑡2) exp(−𝐷𝑖𝑛𝜆𝑛|𝑡1 − 𝑡2|) 𝑑𝑡2

2𝜏

0

2𝜏

0
                             [2.2] 

where γ is the gyromagnetic ratio of proton spin, g(t) is the gradient waveform, Din is the 

intracellular diffusion coefficient, and λn and Bn are structure dependent parameters.  The 

analytical formulae of λn and Bn for the spherical geometry (provided by a previous work 35) 

depend upon the radius (R) of the sphere or cylinder and the nth root of a Bessel function of the 

first kind. We total summed two terms in the equation. The integral in Eq [2.2] depends upon the 

specific gradient waveforms g(t) used in the diffusion pulse sequence.  On the clinical scanner, 

the most used gradient waveform is the conventional mono polar PGSE, and the oscillating 

diffusion gradient wave forms are not typically available. However, large eddy currents 

generated in the mono-polar diffusion PGSE can produce artifacts on DW images.   
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Figure 2-1 Schematic plots of three bi-polar gradient pulse waveforms. a) Symmetric bi-polar diffusion gradients are 

placed before and after the 180o RF pulse. b) Four gradient pulses are placed before, after and between two 180o RF pulses. 

Pulse durations and separations can be tuned to minimize eddy currents for a system. Therefore, all four gradient pulses 

durations (𝛿i) and time intervals between the pulses (𝜟i) can be different. c)A special case of b. All diffusion gradient pulse 

durations are the same, and the gradient pulses are placed symmetrically related to the two 180o pulses. 

To minimize eddy-current caused-artifacts and improve quality of DW images, bi-polar 

diffusion gradient pulse sequences have been introduced on clinical scanners 52. There are a few 

variations in bi-polar diffusion gradient waveforms that have been implemented on the clinical 
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scanners by different vendors.  Three common bi-polar gradient waveforms, g(t), are illustrated 

in Figure 2-1. The first one is introduced by Fordham et. al 53, in which bi-polar gradient pulses 

simply replace the mono-polar gradients before and after the 180o RF pulse.  The second one 

contains four diffusion gradient pulses that are placed before, between and after two 180o RF 

pulses.  The four diffusion gradient pulse durations and time intervals can be tuned to minimize 

eddy current effects on DW images, resulting in asymmetric waveforms (Figure 2-1b).  We 

derived Sin in Eq [2.2] for three bi-polar diffusion gradient waveforms shown in Figure 2-1 and 

provided them in Appendix. 

Finally, the extracellular diffusion signal is formulated as 45: 

𝑆𝑒𝑥 = exp(−𝑏𝐷𝑒𝑥)                                                                                              [2.3] 

where Dex is the extracellular water diffusion, and b is the b-value and depends upon the gradient 

waveform.  For three bi-polar diffusion gradient waveforms, b-values are given in Eq [A3], [A6] 

and [A9] in Appendix.  Note that four free parameters (R, Din, Dex and Vin) can be estimated by 

fitting the microstructure model (MSM) to DW images.  Here, R can be considered to be an 

apparent restriction size (ARS) of intracellular water.  Also, whether Din was sensitive to the 

cost function in fitting was investigated. 

2.2.2 Bi-exponential model 

The bi-exponential diffusion model, considered two free diffusion components, has been 

investigated to differentiate tumor from normal tissue and assess tumor response to therapy 54.  

To compare the parameters estimated by the MSM, we implemented the bi-exponential model: 

𝑆 = 𝑆1 exp(−𝑏𝐷1) + 𝑆2exp(−𝑏𝐷2)                                                                          [2.4]  
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where S1 and S2 are respective amplitudes of apparent diffusion coefficients of D1 and D2. The 

fractional volume of water with the small diffusion coefficient is given by: 

𝑉𝑠 = 𝑆2/(𝑆1 + 𝑆2)                                                                                                       [2.5]  

Again, four free parameters (D1, D2, S1, and S2) are fitted from the bi-exponential model. 

2.2.3 Conventional mono-exponential model 

Conventional ADC is usually fitted to DW images with b=0 and b=1000 s/mm2 by a 

mono-exponential diffusion function as: 

𝑆 = 𝑆0exp(−𝑏𝐴𝐷𝐶)                                                                                                  [2.6] 

2.2.4 Patients 

Thirty patients (median age of 62 years, 19 males and 11 females) with histologically 

diagnosed new glioblastoma were included in this study that has been approved by an 

institutional review board. All patients had MRI scans post-surgery but prior to chemoradiation 

therapy. 

2.2.5 In vivo MR imaging 

All scans were performed on a 3.0-T scanner (Skyra, Siemens Healthineers) using a 20-

channel head coil. Conventional MR images, 2D T2-FLAIR images, and 3D pre- and post-

contrast T1-weighted images using a MPRAGE sequence, were acquired.  DW images were 

acquired by a spin-echo echo-planar pulse sequence with diffusion weighting in 3 orthogonal 

directions and 11 b-values from 0 to 2500 s/mm2 with an incremental step of 250 s/mm2.  A bi-

polar diffusion gradient waveform (shown in Figure 2-1b) was used to reduce eddy currents and 
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improve quality of DW images.  In this sequence, there were two 180o RF pulses and four 

diffusion gradient pulses. The four diffusion gradient pulses had durations of 𝛿1=9.94ms, 

𝛿2=15.14ms, 𝛿3=19.8ms, and 𝛿4=5.28ms.  The times intervals between the first and second, the 

first and third, and the first and fourth gradient pulses were 𝜟1=20.84ms, 𝜟2=36.64ms, and 

𝜟3=67.34ms, respectively.  Other acquisition parameters included the parallel imaging factor of 4 

(GRAPPA) (to reduce echo spacing and hence geometric distortion), TE/TR=93/9300 ms, 

bandwidth of 1040 Hz/pixel, voxel size of approximately 1.3 x 1.3 x 5.2 mm, 30 slices to cover 

the whole brain, one average and total scan time of 4.50 min.   It has been shown that diffusion 

anisotropy is lost or reduced dramatically in T2 FLAIR abnormalities of GBM due to tumor 

infiltration and edema 55.  To test the loss or reduction of anisotropic diffusion in GBM, DW 

images were also acquired in 30 directions with b=1000 s/mm2 and 3 averages.  To determine the 

hypercellular tumor in GBM, a diffusion image volume was acquired at b=3000 s/mm2 and 4 

averages.   

2.2.6 Definition of Volumes of interest 

First, we investigated whether microstructure and diffusion parameters in solid 

components of GBM, estimated by this model, were significantly different from ones in edema 

regions, normal grey matter (GM) and normal WM.  Due to anticipated low SNRs in DW 

images, we performed this test in several volumes of interest (VOI).  Previous studies of GBM 

using advanced imaging have shown that solid tumor components can be beyond the contrast 

enhanced gross tumor volumes 31,47.  Also, the T2 abnormality volume can consist of tumor, 

edema, and a mixture of the two.  However, at high b-values, water signals of edema are 
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attenuated much faster than the hypercellular tumor. Based upon this hypothesis, in previous 

studies, a tumor volume was created by combining automated thresholding on the DW images 

with b=3000 s/mm2, and then viewed and edited by a neuroradiologist with more than ten-year 

clinical experience 47. The initial tumor volume was created using a threshold of the mean 

intensity plus 2 standard deviations calculated from a volume of interest in the normal-appearing 

tissue most contralateral to the T2-abnormality and performed on the DW images with b=3000 

s/mm2.  Also, this tumor volume has shown to be significantly correlated with progression-free 

survival 47 . Therefore, we used this tumor volume (TV) to characterize microstructure and 

diffusion parameters by the MSM in this study.  Note that this TV is different from the contrast 

enhanced tumor volume (Figure 2-2).   

To compare the behavior of this model in edema to solid tumor in GBM, an edema 

volume was created within the T2-abnormality but had at least 1 cm away from both the TV used 

in this study and the contrast enhanced gross tumor volume.  In the cases with tumor recurrence, 

the edema volume was checked and made sure to have no spatial overlap with the recurrent 

tumor volume.  Also, the VOIs of two large WM fiber bundles were drawn: one in the frontal 

lobe and another in the Genu of corpus callosum. To compare to GM, cortex regions in the 

frontal and parietal lobes were segmented using the fuzzy c-means algorithm on diffusion 

weighted images with b=0 (T2-weighted images) and ADC maps. To avoid influence of 

cerebrospinal fluid (CSF), a deep GM structure, the head of caudate nucleus, was carefully 

chosen. As a total, six VOIs were created, see Figure 2-2. 
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Figure 2-2 Illustration of volumes of interest (VOIs) used in the analysis. Brown contours contrast enhanced GTV on 

post-Gd T1W images, and red contours tumor volume on the DW images with b=3000 s/mm2. Magenta, green, cyan, blue and 

yellow contours represent genu, deep GM, (head of caudate nucleus), edema, cortex and frontal WM. 

Before fitting the MSM, we investigated fractional anisotropy (FA) of diffusion in the 

defined hypercellular tumor volume (TV) to determine whether we could fit the MSM using 

mean diffusivities in the TV.  The averaged FA was 0.15±0.05 in the TVs, which is consistent 

with previous reports 55, and 0.41±0.07 in the frontal WM.  Therefore, it is reasonable to fit the 

MSM to the mean diffusion signals in the TV using a sphere assumption and omitting 

anisotropic diffusion.  In the WM, the cylinder shape assumption was used, while the sphere 

shape was used in other tissue types.  

Prior to the VOI creation, post-contrast T1-weighted images were reformatted into the 

axial plane with spatial resolution of 1x1x3 mm. All other images acquired within the same 
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session were reformatted to the post-contrast T1-weighted images using coordinates in the 

DICOM header.   

2.2.7 Computation of Diffusion Models 

Both the MSM and bi-exponential model were implemented using Matlab.  The MSM 

was fitted to the DW images with 11 b-values using a Simplex algorithm in Matlab.  We 

investigated the sensitivity of the objective function to the parameters of R, Din, Vin and Dex. If 

any parameter was not sensitive to the objective function, we would use a fixed value, which 

would reduce the number of the free parameters and improve the stability of fitting.  Simplex was 

initiated randomly in the ranges of the parameters based on prior knowledge of the physiological 

parameters given in Table 2.1.  Fitting was run multiple times, and the results were accepted with 

the minimum mean squared errors (MSE).  Similarly, the bi-exponential model was fitted to the 

same DW images.  ADC maps were calculated from DW images with b=0 and 1000 s/mm2 using 

in-house Functional Image Analysis Tools (imFIAT). 

Table 2-1 Ranges of Initial values of four parameters for microstructure mode fitting 

Tissue type R (μm) Dex (𝜇𝑚2/𝑚𝑠) Vin 

Tumor 5-25 1-3 0-1 

Normal Tissue 0.5-1.5 1-3 0-1 

Edema 0.5-1.5 1-3 0-1 

 

2.2.8 Statistical Analysis 

To evaluate whether the parameters fitted from the MSM can differentiate tumor from 

other tissue types, Student’s t-test was used and a p-value of 0.05 was considered significant.  

Similar analysis was applied to the parameters obtained from the bi-exponential model and ADC. 
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2.3 Result 

 

2.3.1 Parameter characteristics from the MSM 

When investigating sensitivity of the objective function to the parameter variation, we 

found that Din had little sensitivity.  To test the influence of Din variations on other parameters, 

we varied Din from 0.1 to 1.0 μm2/ms.  We found that the fitted R in the TVs had no more than 

1.5% differences, and Dex and Vin did not show significant differences (Figure 2-3).  Therefore, 

we fixed Din at 0.1 μm2/ms and varied other three parameters in fitting the MSM. 

 

Figure 2-3  Changes in R (top left), Dex(top right), Vin(bottom left)  with Din varied from 0.001 to 1 um2/ms. Error bar is 

SD. 
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The MSM was fitted to the DW data well in all VOIs, as example curves from TV, WM, 

GM and edema are shown in Figure 2-4. Note that the DW signal in the TV was attenuated 

slower than normal GM and WM at b-values greater than 1000 s/mm2; while the DW signal in 

edema was attenuated rapidly at low b-values, indicating that a large portion of extracellular 

water has relative free diffusion. 

 

Figure 2-4 Illustration of goodness fit in tumor (top left panel), WM (top right panel), GM (bottom left panel) and 

edema (bottom right panel).  Slide lines: fitted corves; square symbols: data points. 

Characteristics of three fitted parameters in the TV, normal GM, normal WM and edema 

are summarized in Table 2.2 and Figure 2-5.  Three parameters, R, Dex and Vin, in the TV were 

significantly different from normal GM, normal WM and edema.  Specifically, the mean R in the 

tumor was 28.1 (±0.48) μm and significantly greater than those in other tissue types (range: 1.1-
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2.3 μm, p<0.001). In the latter group, edema had a significant greater R than normal GM and 

WM (p<0.001), which could be due to existence of a small amount of tumor cells in the edema 

VOI.   

Table 2-2 Characteristics of Four Parameters Fitted by the Microstructure mode. 

 R (um) 

(mean ± SEM) 

Dex/ um2/ms 

(mean ± SEM) 

Vin 

(mean ± SEM) 
Tumor 28.1±0.48 2.03±0.07 0.42±0.011 

Frontal WM 1.10±0.01 1.15±0.01 0.21±0.004 

Genu 1.13±0.01 1.31±0.02 0.21±0.005 

Deep GM 1.19±0.05 1.19±0.04 0.16±0.004 

Cortex 1.16±0.02 1.62±0.05 0.13±0.002 

Edema 2.32±0.07 1.52±0.05 0.10±0.007 

 

 

Figure 2-5 Bar graphs of estimated parameters of R (top left panel), Dex (top right panel), and Vin (bottom left panel) in 

all tissue types using the microstructure mode. **: 0.001<p < 0.01; ***: p < 0.001. Error bar is SEM. 
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The mean fractional volume of intracellular water, Vin, in the tumor was 0.42 and 

significantly increased compared to all other tissue types (p<0.001).  Among normal tissue and 

edema, as anticipated, Vin had the highest value in the large WM fiber bundles (0.21), the 

intermediate values in the GM regions (0.16-0.13), and the lowest value in the edema (0.10) that 

is consistent with the large amount of extracellular water. Most interestingly, the values of R and 

Vin in the tumor had absolutely no overlap with ones in other tissue types, suggesting potential 

high sensitivity and specificity of R and Vin for differentiating tumor from edema and normal 

tissue.   

The mean Dex in the tumor was 2.03 μm2/ms and significantly greater than those in 

normal tissue and edema (p<0.01), which is contributed possibly from edema, micro-necrosis 

and perfusion mixed in the voxels of GBM.  Normal WM and deep GM had Dex values of 1.15 – 

1.31 μm2/ms, which is consistent with other reports 10.  Edema had Dex of 1.52 μm2/ms, largely 

attributing to the great fractional volume of extracellular water.  Cortex had Dex of 1.62 μm2/ms, 

possibly resulting from partial volume average effects with cerebral spinal fluid (CSF).   

2.3.2 Parameter Characteristics from the Bi-exponential Model 

Characteristics of the three fitted parameters by the bi-exponential model are summarized 

in Table 2.3 and Figure 2-6.  None of the three parameters in the tumor significantly and 

completely differed from the values in all other tissue types.  D1 (the large diffusion coefficient) 

in the tumor was 2.02±0. 07 μm2/ms, was not significantly different from edema (1. 89±0. 06 

μm2/ms), but was significantly greater than normal WM and deep GM (P<0.05).  Cortex had the 

significantly elevated D1 compared to tumor and other normal tissue (P<0.01).  D2 in the tumor 
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was 0. 34±0.01 μm2/ms, was not significantly different from edema (0. 33±0. 04 μm2/ms), deep 

GM and cortex (0.36±0.02 μm2/ms), but was significantly greater than normal WM (0.16-0.21 

μm2/ms, p<0.01).  Vs in the tumor was 0.42, significantly greater than edema (0.29, p<0.05) and 

genu (0.33, p<0.05), and not significantly different from frontal WM and deep GM.  Cortex had 

the highest values in D1, D2 and Vs than tumor and normal WM and GM, possibly due to the 

partial volume average with CSF and suggesting that the bi-exponential model is strongly 

influenced by fluid components.  

Table 2-3 Characteristics of Three Parameters Fitted by the Bi-exponential Model. 

 D1 /μm2/ms 

(mean ± 

SEM) 

D2/ μm2/ms 

(mean ± 

SEM) 

Vs 

(mean ± 

SEM) 

Tumor 2. 02±0. 07 0. 34±0. 01 0. 42±0. 01 

Frontal White 

matter 

1. 44±0. 03 0. 21±0. 02 0. 38±0. 01 

Genu 1. 55±0. 04 0. 16±0. 02 0. 33±0. 02 

Deep Gary 

matter 

1. 73±0. 07 0. 36±0. 02 0. 46±0. 02 

Cortex 2. 78±0. 06 0. 55±0. 01 0. 51±0. 02 

Edema 1. 89±0. 06 0. 33±0. 04 0. 29±0. 04 
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Figure 2-6 Bar graphs of estimated parameters of D1 (top left panel), D2 (top right panel), and Vs (bottom left panel) in 

all tissue types using the bi-exponential diffusion model. *: 0.01<p<0.05; **: 0.001<p < 0.01; ***: p < 0.001. Error bar is 

SEM. 

To test whether combining all three parameters (D1, D2 and Vs) could differentiate tumor 

from all other tissue types, binary multivariate logistic regression was applied to the data. 

Backward rejection with p>0.1 was used to eliminate the parameters in the logistic regression 

models.  In the first model including the three parameters (Table 2.4), D1 was significant (p < 

0.05), but Vs was not significant and D2 was marginally significant. However, D2 had a large 

negative coefficient that could offset the D1 contribution in the model.  In the second model 

where Vs was rejected, D1 was marginally significant, and D2 was not significant.  In the final 

model, D1 was not significant after rejecting D2.   

Table 2-4 Multi-variate Logistic Regression Using the Parameters from the Bi-exponential Model. 
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First 

Model 

D1 D2 Vs 

Coefficient 1215.93 -5009.1 3.55 

P value 0.04 0.06 0.16 

Second 

Model 

D1 D2  

Coefficient 975.2 -2327.3  

P value 0.075 0.19  

Third 

Model 

D1   

Coefficient 428.6   

P value 0.23   

 

2.3.3 Conventional ADC Model 

There were no significant differences of ADC between tumor and any other non-tumor 

tissue types (p>0.05) (Figure 2-7).  In general, ADC in the tumor was greater than WM and deep 

GM but lower than edema and cortex, consistent with other reports (7). 

 

Figure 2-7 Bar graph of apparent diffusion coefficients in all tissue types using the mono-exponential diffusion model. 

Error bar is SEM. 

2.4 Discussion 

 

In this study, we modified the model of 11,12,33-35,45to fit the DW images acquired with a 

widely-available bi-polar pulse diffusion gradient imaging and characterize microstructure and 

diffusion properties of the hypercellular tumor in the patients with GBM.  We found that three 
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parameters (Vin, R and Dex) in the tumor were substantially and significantly different from 

edema and normal tissue.  The bi-exponential diffusion model that does not explicitly model the 

restricted diffusion of intracellular water could not robustly differentiate GBM from edema and 

normal brain tissue.  ADC that ignores intra-voxel heterogeneous diffusion in brain tissue and 

tumor failed to differentiate GBM from edema and normal tissue.  The Microstructure model has 

a great promise to aid in to conventional MRI for GBM diagnosis, image-guide therapy and 

response assessment.  Further validation with histopathology will warrant the role of the 

microstructure mode in the clinical management of GBM.  

In the current study, the fractional volume of intracellular water, Vin, in GBM estimated 

by the microstructure model was found substantially different from edema and normal tissue.  

The Vin in the TV had the largest value, which makes possible to differentiate the GBM from 

surrounding tissue.  Also, GBM has enlarged cell size and nucleus, and increased cell density, 

which can increase Vin measured in image voxels, and has micro-necrosis and edema, which can 

reduce Vin 
56,57.  In the current study, the estimated Vin in GBM by the microstructure model was 

1.75-fold greater than one reported in a previous study that included primary and metastatic 

cancers and used the bi-exponential diffusion model 13. Historically, the bi-exponential diffusion 

model often results in an underestimated Vin, for which several possible causes have been 

discussed 10.  The underestimation in Vin can be caused by the transcytolemmal water exchange 

that is omitted in the model as well as low SNR in DW images 58.  Also, T2 differences between 

intracellular and extracellular water could affect the estimated Vin values, which will be 

discussed further in the last paragraph. Diffusion gradient, b-value range, diffusion model, and 
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subject age all have influence on the estimated Vin 
7.  As expected, the lowest Vin value was 

found in edema, consistent with the notion of a large amount of extracellular water in the region. 

The Vin values in two large WM fiber bundles and GM are between the solid GBM and edema, 

suggesting that the MSM has the potential to differentiate the GBM from surrounding tissue.  In 

this study, we evaluated anisotropic diffusion in the hypercellular tumor volume and found low 

FA (0.15 as a mean value).  Therefore, we did not consider anisotropic diffusion in the MSM.  In 

the future study, anisotropic diffusion could be considered in the microstructure model.  

Our microstructure model yielded the substantial greater R in GBM than in normal GM, 

normal WM, and edema. R could be considered as the apparent restriction size of intracellular 

water and a possible biomarker to differentiate GBM from normal tissue.  The R value should be 

considered as an average value over a distribution.  Previous studies have shown the increased 

radius of tumor cells compared to normal tissue using the microstructure model or VERDICT 

model, and the reasonably correlation between the DW image estimated cellularity and 

histopathologically determined cellularity 14,44. A pathological study in GBM shows that the 

radius of GBM cells can be as large as 20 μm with a mean of 10 μm and a standard deviation of 

11 μm 59.  The size of the apparent restriction space estimated in our model is larger than the 

reported cell size.  Many factors can cause an overestimation in the restriction size of 

intracellular water in GBM.  It is most likely that the highly permeable cell membrane cannot 

restrict intra-cellular water diffusion like a hard boundary. As a result, the soft boundary 

increases the estimated radius so that we could call the estimated radius from our MSM as an 

effective radius.  The low SNR in DW images could further cause an overestimate of R 60.  Due 
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to the diffuse nature of GBM, diffused tumor cells can be found in the edema region 61,62, which 

could be the cause of the slight but significant increase in the apparent restriction size in the 

edema region.  Further studies could be carried out to investigate whether combining R and Vin 

in the image voxels with edema can provide information on the GBM cell infiltration and 

distribution. 

In the current study, the value of Dex in GBM by the microstructure model was found 

significantly greater than those in normal GM, normal WM and edema, which is similar to one 

by the bi-exponential diffusion model (Table 2.3), and also consistent with the values reported by 

Mulkern et al. 10.   Dex in GBM is affected by the large quantity of extracellular water due to co-

existence of edema, and to a small extent by micro-necrosis and perfusion (40).  To reduce the 

number of free parameters in the model, we did not account for the perfusion-cause pseudo 

diffusion in Dex.  However, we have tested the perfusion effect on Dex in the TV VOIs in 30 

patients using the approach in 63. We estimated that the pseudo diffusion coefficient was 

approximately 0.15 μm2/ms, which was 13.5 times smaller than Dex (2.03 μm2/ms) in the tumor 

VOIs.  Thus, in the TV VOIs defined in our study, omitting the perfusion effect did not cause a 

substantial overestimate in Dex.  Note that the TV VOI used in our study is not the contrast 

enhanced tumor volume.  We believe that the high Dex in GBM could be mainly due to edema. 

The relative high values of Dex in cortex and edema are likely due to the partial volume average 

of CSF in the cortex VOI, and the large amount of extracellular water in the edema region, 

respectively.   



 28 

As discussed in Introduction, modeling microstructure and diffusion properties in tumors 

has been attempted by different models 24,43,45,50,60.  In general, these models fit more free 

parameters and require long acquisition times. The signal-to-noise ratio (SNR) of DW images is 

also a limiting factor to produce robust fitted parameters.  Furthermore, there are great time 

restriction, technology availability, and other practical considerations when acquiring diffusion 

weighted images in the patients with GBM on a clinical scanner.  For example, we used a bi-

polar pulse diffusion gradient waveform to reduce eddy-current induced artifacts and a high 

parallel imaging factor to improve geometrics accuracy. With these acquisition limitations, we 

modified and tested the model in reference 11,45 using the widely available technology on a 

clinical scanner in the patients with GBM.   For other bi-polar diffusion gradient waveforms, we 

provided equations of the model in Appendix.   

The MSM demonstrated the prognostic potential and also the opportunity to better 

distinguish GBM from normal tissue and edema. However, the current study has a few 

limitations. First, our sample size is not large, with only 30 patients. This could result in 

overfitting. The MSM needs to be further validated in an independent large cohort of patients in 

future.  Second, the restriction space of intracellular water is modeled as an impermeable sphere, 

which has been used in both VERDICT and temporal diffusion spectroscopy model 14,44,50.  A 

previous simulation work suggests that omitting water exchange at the boundary of the 

restriction space of water diffusion leads to an underestimation of Vin but has little influence on 

the estimation of the space size 60.  Whether omitting the permeability of cell membrane or 

restriction space could lead to an overestimation or underestimation of the size of the restriction 
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space in GBM needs a further investigation.  Anisotropic diffusion was not considered in this 

study, which could be considered in the future work, particularly for the regions with tumor cell 

infiltration.  Nevertheless, the microstructure model using a clinically available diffusion pulse 

sequence leads to a better differentiation between the hypercellular tumor and normal tissue or 

edema than the bi-exponential and mono-exponential models. 
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Chapter 3 Survival Prediction Analysis in Glioblastoma with Diffusion Kurtosis Imaging 

 

This chapter is substantially equivalent to work that was published in Frontiers in 

Oncology64. 

3.1 Introduction 

 

Diffusion tensor imaging (DTI) is an emerging technique to investigate brain tumor. 

Fractional anisotropy (FA) that derived from DTI has been suggested to provide information of 

cell density. A previous study of FA in GBM showed that FA was low in GBM and suggested 

that the directional diffusion has been corrupted in the tumor region 38. However, how to 

differentiate low FA caused by tumor from that affected by edema is a challenge.  

The signal-to-noise ratio of diffusion weighted images acquired on clinical scanners is a 

limiting factor to apply the high-order diffusion models to GBM. Diffusion kurtosis imaging 

(DKI) is an emerging approach to estimate the non-Gaussian water diffusion behavior over high 

b values in tissue. DKI has shown the potential to characterize normal and pathologic tissue 36,65. 

Previous research has suggested that DKI provides better separation of brain tumor grades 29, but 

there are very limited efforts in investigating treatment responses of kurtosis in GBM and its 

prognostic and predictive values for patient survival 66.  

In this study, we hypothesized that high diffusion kurtosis in GBM correlated with 

decreased overall survival (OS). We applied the diffusion kurtosis model to the DW images 

acquired in the patients with GBM before radiation therapy (pre-RT) and during the course of 
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RT (mid-RT). We analyzed the parameter differences in pre-RT, mid-RT and post-RT to 

investigate the bio-physical meaning of the parameters and response to RT. Finally, we tested 

whether any parameter derived from the model is a significant predictor of progression free 

survival (PFS) and OS. 

3.2 Material and Methods 

 

3.2.1. Patients 

Thirty-three patients with histologically confirmed, newly diagnosed GBM were enrolled on 

prospective, institute-review-board approved protocols. All patients signed written informed 

consents. The patients had research MRI scans, including anatomic scans and diffusion weighted 

(DW) images, pre-RT following maximal tumor surgical resection prior to chemo-radiation 

therapy (CRT) and during the 3rd-4th week of CRT (mid-RT). Twenty-one patients had the 

research MRI scans 3-month post-RT.  Ten patients were treated based upon the institution 

protocol of concurrent CRT following chemotherapy with a median dose of 60 Gy (40.05-72 

Gy), and 23 patients were enrolled on a prospective radiation boosting clinical trial and treated to 

75 Gy (NCT02805179) 67. All patients received concurrent temozolomide.   

3.2.2. In Vivo MR Imaging 

All MRI scans were performed on a 3.0-T scanner (Skyra, Siemens Healthineers) using a 

20-channel head coil. Conventional MR images, 2D T2-FLAIR images, and 3D pre- and post-

contrast T1-weighted images using a MPRAGE sequence, were acquired. DW images were 

acquired by a spin-echo echo-planar pulse sequence with diffusion weighting in 3 orthogonal 
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directions and 11 b-values from 0 to 2500 s/mm2 with an incremental step of 250 s/mm2. Other 

acquisition parameters included a parallel imaging factor of 4 (GRAPPA) (to reduce echo 

spacing and hence geometric distortion), TE/TR=93/9300 ms, bandwidth of 1040 Hz/pixel, 

voxel size of approximately 1.3 x 1.3 x 5.2 mm, 30 slices to cover the whole brain, one average 

and total scan time of 4.50 min. All DW images were acquired prior to contrast injection. 

3.2.3. Diffusion Model 

The diffusion kurtosis model analyzes non-Gaussian water diffusivity with equation 68: 

𝑆 = 𝑆0 ∗ 𝑒
(−𝑏∗𝐷+

1

6
(𝑏∗𝐷)2∗𝐾)

                                                                                  (1) 

where S0 is an amplitude of diffusion signals, which is a fixed value for every b-value. D is a 

diffusion coefficient (DC) that is corrected for the observed non‐Gaussian diffusion behavior and 

K represents an apparent diffusional kurtosis. Here, we did not consider an anisotropic diffusion 

kurtosis in GBM due to the low anisotropic diffusion behavior in the contrast-enhanced tumor 

volume. 

3.2.4. Computation of Kurtosis and DC Maps 

Kurtosis and DC maps were generated from DW images with 11 b-values using in-house 

Functional Image Analysis Tools (imFIAT). We first took a logarithm of diffusion signals, and 

then used Simplex algorithm to fit the model. In the computation process, a 2D 3x3 Gaussian 

filter and brain mask were first applied to all phases of diffusion weighted images to reduce noise 

influence on the parameter maps. 
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The gadolinium enhancement gross tumor volumes (Gd-GTV) on post-Gd T1 weighted 

images were delineated by radiation oncologists who treated the patients. Surgical cavities were 

removed from the Gd-GTV. The median of the residual Gd-GTV is 20.97 cm3 (ranges from 2.33 

to 62.50 cm3). In eighteen patients with gross total resection (Table 1), the median of the residual 

Gd-GTV (excluding the surgical cavity) was 14.00 cm3 (ranges from 2.33 to 46.00 cm3).  

Considering GBM is a heterogeneous tumor with edema (possible low cellular density) 

and high cellular components, a mean value of kurtosis or diffusion coefficient averaged over the 

whole volume of Gd-GTV-cavity could wash out the component that could be more aggressive 

and predict outcomes.  Therefore, we attempted to analyze the part of the histogram of kurtosis 

or diffusion coefficient, which is associated with the aggressive tumor.  Since high kurtosis 

values and low diffusion coefficients are associated with tumor aggressiveness, we choose high 

percentiles of kurtosis and low percentiles of DC to test whether they predicted OS.  Therefore, 

mean, 80 percentile and 90 percentile values of kurtosis, and mean, 10 percentile and 20 

percentile values of DC in the Gd-GTV pre-RT and mid-RT were calculated.  

3.2.5. Statistical Analysis 

The primary endpoint of the study was to determine whether the DKI parameters provide 

additional predictive values over clinical variables for OS. OS was defined as the interval from 

the start of RT to death from any cause. Patients were censored at the time of last contact or 

clinical follow-up, whichever occurred last. Patients were generally followed every 8 weeks after 

chemoradiation with clinical exam and MRI. Progression-free survival (PFS) was defined as the 

interval from the start of RT to progression or death, whichever occurred first, and patients were 
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censored at the time of last imaging follow-up. Progression was determined by a 

multidisciplinary tumor board, and worsened enhancement within 3 months of chemoradiation 

was generally managed by repeat imaging to rule out pseudo-progression. Progression was 

defined as worsened enhancement outside of the radiation field, or within the radiation field if 

progression was confirmed pathologically or with serial confirmatory imaging and clinical 

evaluation, or by change in therapy (i.e. initiation of next-line chemotherapy), whichever 

occurred first. 

PFS and OS were calculated using Kaplan-Meier method. To test predictive values of the 

DKI parameters, univariate Cox proportional hazards model first was used to evaluate each of 

the DKI parameters as well as clinical factors for prediction of OS and PFS.  

GBM is a heterogeneous tumor with edema (possible low cellular density) and high 

cellular components. A mean value of kurtosis or diffusion coefficient averaged over the whole 

volume of Gd-GTV-cavity could wash out the component that could be more aggressive and 

predict outcomes.  Therefore, we attempted to analyze the part of the histogram of kurtosis or 

diffusion coefficient, which is associated with the aggressive tumor.  Considering that high 

kurtosis values and low diffusion coefficients are associated with tumor aggressiveness, we 

choose high percentiles of kurtosis and low percentiles of DC to test whether they predicted OS. 

Clinical factors included age (continuous), sex, ECOG performance status (0 vs 1 vs 2), radiation 

dose (continuous), extent of resection (EOR, gross total resection=2, subtotal resection=1, or 

biopsy=0), MGMT methylation status (methylated vs unmethylated), and baseline contrast 

enhanced gross tumor volume (GTV-Gd). Multivariate Cox proportional hazards model was 
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further performed to test whether the DKI parameters could provide additional values to clinical 

factors for prediction of OS and PFS, adjusting age, MGMT methylation status and EOR. The 

changes in the DKI parameters at mid-RT compared to pre-RT were also tested using a paired t 

test. A P-value < 0.05 was considered significant. 

3.3 Results 

 

3.3.1. Patient Characteristics and Outcomes 

Thirty-three patients who had newly diagnosed GBM treated between October 2012 and 

December 2018 and had the diffusion imaging scans pre-RT and mid-RT as described in 2.2 

were included in this analysis. The patient characteristics are provided in Table 1. The median 

age was 61 years old (50-79). Thirteen patients were female. Thirty patients ECOG performance 

status were 0-1. Eighteen patients had total surgical resection, 9 had subtotal resection and 6 had 

biopsy only. Eight of the 31 patients who had MGMT methylation tests were methylated, and 

one of the 32 patients who had IDH tests had the mutated type. 

Table 3-1 Patients characteristics. 

Count N  

Patients 33 

Age    

Median (IQR) 61 (50, 79) 

Gender    

Female 13 (39.4%) 

Male 20 (60.6%) 

ECOG    

0 7 (21.2%) 

1 23 (69.7%) 

2 3 (9.1%) 
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Median Physical Dose    

Institute Protocol 60 (40.05, 72) 

Boosting Protocol 75 (75, 75)  

Extent of Surgery    

Biopsy 6 (18.2%) 

Subtotal resection 9 (27.3%) 

Gross total resection 18 (54.5%) 

MGMT Methylation    

Positive 9 (27.2%) 

Negative 22 (66.7%) 

Unknown 2 (6.1%) 

IDH Status    

Mutant 1 (3%) 

Wild Type 31 (94%) 

Unknown 1 (3%) 

 

The 14 of patients were still alive with a median followup of 17.4 months (9.07-49.4 

months). The median survival was 13.7 months (0.6-37.5 months). The 25 patients were 

progressed with a median progression of 8 months (0.6-25 months), with one patient progressed 

(3 weeks) at mid-RT. Figure 1 shows Kaplan-Meier curves of OS and PFS. 

 

Figure 3-1 Kaplan-Meier curves of OS (left) and PFS (right). 
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3.3.2 Kurtosis and DC values in the Gd-GTV pre-RT, mid-RT and psot-RT 

Kurtosis and DC maps of the 33 patients pre-RT and mid-RT were calculated, and an 

example of kurtosis maps and the diffusion curve in the Gd-GTV is shown in Figure 2. Note that 

the kurtosis values in the Gd-GTV were heterogeneous. We investigated the mean kurtosis 

values in the Gd-GTV as well as the 80 percentile and 90 percentile values pre-RT and mid-RT. 

Similarly, we investigated the mean DC, 10 percentile and 20 percentile values in the Gd-GTV 

pre-RT and mid-RT. All data are summarized in Table 2. 

Figure 3-2 Illustration of a kurtosis map (color-coded, middle) of a patient with GBM. The color bar indicates kurtosis values. 

The post-Gd tumor volume (Gd-GTV, red contour) delineated on T1-weighted images (left) is overlaid on the kurtosis map. An 

example of diffusion weighted signals fitted by the diffusion kurtosis model is shown in the right panel. Blue dots represent 

original diffusion signal data in the Gd-GTV, and red solid line is the fitted curve. Note that the diffusion kurtosis model fits the 

diffusion signals well. 

Table 3-2 Kurtosis and DC values in the Gd-GTV pre-RT, mid-RT and post-RT. 

 Pre-RT Mid-RT Post-RT 

Mean Kurtosis ± SD 0.76 ± 0.10 0.73 ± 0.18 0.65 ± 0.14 

80 percentile Kurtosis ± 

SD 

1.07 ± 0.18 0.98 ± 0.27 1.04 ± 0.67 

90 percentile Kurtosis ± 

SD 

1.18 ± 0.24 1.07 ± 0.31 1.23 ± 1.04 

Mean DC (μm2/ms) ± SD  1.54 ± 0.30 1.67 ± 0.34 1.71 ± 0.43 

10 percentile DC (um2/ms) 

± SD 

0.89 ± 0.13 1.07 ± 0.17 1.81 ± 0.47 

20 percentile DC(um2/ms)  

± SD 

1.02 ± 0.15 1.20 ± 0.20 1.89 ± 0.51 

 

The kurtosis values and DC values in the Gd-GTV at mid-RT were decreased and 

increased significantly (P value<0.005) compared to pre-RT, respectively (Figure 3). The three 



 38 

outlier data points in the kurtosis plot that did not follow the decrease group treads from pre-RT 

to mid-RT were from one patient who had rapid progression after treatment. In the DC plot, five 

outliers deviated from the group trend came from three patients and were due to necrosis, tumor 

infiltrated in the ventricle or adjacent to the surgical cavity. 

 

Figure 3-3 Box and whisker plots shows values of kurtosis differences and DC differences in Gd-GTV pre-RT and mid-

RT (mid-RT values – pre-RT values). Left one is kurtosis differences of mean, 80 percentile and 90 percentile kurtosis values. 

Right one is DC differences of mean, 10 percentile and 20 percentile DC values. 

The post-RT mean kurtosis, 80 percentile and 90 percentile values, and mean DC, 10 

percentile and 20 percentile values in the Gd-GTV of the 21 patients are summarized in Table 2. 

Note that the post-RT mean kurtosis and DC values continued decreasing and increasing from 

the values from mid-RT, respectively. The large variances of kurtosis and DC over the group 

could be due to progression observed in two patients at 3 months post-RT. 

 

3.3.3 Correlation of parameters with OS and PFS 

Univariate Cox model analysis showed that large mean, 80 percentile, and 90 percentile 

kurtosis values in the Gd-GTV pre-RT were significantly associated with reduced OS (respective 

HR=2.10, p=0.03; HR=2.29, p=0.03; and HR=2.30, p=0.03; Table 4), but not the values 
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measured at mid-RT (p value >0.83) and post-RT (p value >0.47). The DC values including the 

mean, 10 percentile and 20 percentile from the Gd-GTV pre-RT, mid-RT and post-RT did not 

show any significant association with OS (p value >0.3). Univariate Cox model analysis of 

clinical prognostic factors and dose for prediction of OS are listed in Table 3. 

We further addressed the question whether kurtosis values in the Gd-GTV added any 

values than clinical prognostic factors, such as EOR, age, MGMT and Gd-GTV, for prediction of 

OS. Due to the similarity that exists among mean, 80 percentile, and 90-percentile kurtosis 

values in the Gd-GTV, we only selected the mean kurtosis in the analysis. After adjusting these 

clinical factors, the mean kurtosis value pre-RT was a significant predictor of OS (HR=3.06, 

p<0.009), see Table 4.  

The mean, 80 percentile and 90 percentile kurtosis values and the DC values in the Gd-

GTV pre-RT and mid-RT were not significant predictors for PFS (p>0.5) using univariate Cox 

model analysis. However, the post-RT values of kurtosis, specifically, the large values of 

kurtosis at the 80 percentile and 90 percentile in the Gd-GTV were associated with reduced PFS 

in the univariate Cox model analysis (p=0.03 and p=0.05, respectively), see Table 5, which could 

be a useful indicator for time of progression. 

Table 3-3 Univariate Cox model analysis of DKI parameters and clinical factors for prediction of OS 

Parameters Hazard ratio (HR) p-value 95% CI 

Mean K pre-RT 2.10 0.03* [1.10, 4.02] 

80 percentile K pre-RT 2.29 0.03* [1.10, 4.71] 

90 percentile K pre-RT 2.30 0.03* [1.07, 4.96] 

Gd-GTV pre-RT 0.74 0.25 [0.44, 1.23] 

Age 1.72 0.14 [0.84, 3.52] 

MGMT 0.45 0.2 [0.14, 1.47] 
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Dose 1.20 0.07 [0.98, 1.46] 

EOR 0.34 0.52 [0.63,2.52] 
*: significant with p <0.05. The continuous data were normalized. 

Table 3-4 Multivariate cox model analysis of clinical factors and MK for prediction of OS 

parameters Hazard ratio (HR) p-value 95% CI 

Age 2.92 0.03* [1.08, 7.94] 

MGMT 0.25 0.09 [0.05, 1.24] 

EOR 0.55 0.21 [0.21, 1.42] 

mean K pre-RT 3.06 0.009* [1.32,7.13] 
*: significant with p <0.05. The continuous variables were normalized. 

Table 3-5 Univariate Cox model analysis of DKI parameters post-RT for prediction of PFS 

Parameters Hazard ratio (HR) p-value 95% CI 

Mean K post-RT 1.85 0.10 [0.88, 3.88] 

80-percentile K post-RT 2.18 0.03* [1.10, 4.30] 

90-percentile K post-RT 1.82 0.05* [1.00, 3.33] 
*: significant with p <0.05. The continuous variables were normalized. 

3.4 Discussion 

 

In this study, we investigated the diffusion kurtosis model and characterized non-

Gaussian diffusion properties in the Gd-GTVs pre-RT and mid-RT in the patients with GBM. 

We found that the mean kurtosis value in the Gd-GTV pre-RT was significantly prognostic of 

OS as a high mean kurtosis was associated with inferior of survival. Also, the diffusion kurtosis 

added a predictive value to the extent of surgery, age and methylation status for survival. The 

post-RT kurtosis values in the Gd-GTV predicted time to progression.  In addition to glioma 

grading 29,32,36, kurtosis model has promise to aid in to conventional MRI for outcome prognosis. 

Further validation with another cohort of patients will warrant the role of the diffusion kurtosis 

model in the clinical management of GBM.  
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Many diffusion models have been investigated in gliomas. An apparent diffusion 

coefficient quantified from conventional DW images with b-values between 0 and 1000 s/mm2 

using a mono-exponential decay is the commonly reported parameter in literature. Previous 

studies have suggested that a low ADC was associated with a decrease in survival for patients 

with gliomas 30,69-72. One limitation of the mono-exponential model is that there are large 

deviations of fitted curves from the diffusion weighted signals with b-values greater than 1500 

s/mm2. Another problem is that with a single diffusion parameter is hard to describe the complex 

microstructure effects on water diffusion. To deal with the deviation of diffusion weighted 

signals from the mono-exponential function, a bi-exponential model with fast and slow diffusion 

components has been proposed 8. In the initial interpretation of the bi-exponential model, fast 

and slow diffusion coefficients are considered from respective extra- and intra-cellular water 

compartments, but the estimated fraction of the intra-cellular water in the tissue from the bi-

exponential model cannot be matched with that measured by other methods 9. The bi-exponential 

model fits the diffusion curves better than the mono-exponential model.  A study suggests that 

the fast diffusion coefficient is close to the reported human brain diffusion coefficient 10. To fit 

the bi-exponential model, it is necessary to take diffusion weighted images with more b-values, 

which increases the acquisition time. In addition, the bi-exponential model that fits four 

parameters is unstable to noise, which makes it difficult to generate high quality voxel-by-voxel 

brain maps.   

In addition to the mono and bi-exponential models, other high order diffusion models that 

have been investigated in clinical gliomas, such as the fractional order calculus model (FROC) 
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and restricted diffusion model (RDM) 15,38. Those high-order diffusion models require diffusion 

weighted images with more b-values and high SNR. The FROC requires b-values up to 4000 

s/mm2, and the diffusion coefficient in the model is pre-determined by fitting a mono-

exponential model before fitting the entire model 15, which may lead to some errors in 

parameters. The RDM is insensitive to intracellular diffusion coefficient and is instable to voxel 

fitting 38, which leads to difficulty in generating parameter maps in the patients with GBM. The 

diffusion kurtosis model improves the goodness of fit, and is more stable than those high-order 

diffusion models 15 38. In addition, the kurtosis model has been investigated in clinical gliomas 29. 

Research suggests that mean kurtosis shows better separation of glioma grades than fractional 

anisotropy and mean diffusivity. Overall, the kurtosis model is convenient to generate voxel 

maps and provides the potential measurement of non-Gaussian diffusion in GBM. 

When considering underlying of tissue morphology and physiology of diffusion 

parameters, low ADC is considered to correlate with high cellularity. However, co-existence of 

edema and high vascularity in a single pixel of the tumor can elevate ADC compared to normal 

white matter and grey matter. To mitigate the influence of perfusion on measured diffusion 

coefficients, a bi-exponential model that quantifies fast and slow DCs has been investigated. The 

fast DC derived from the model is found to be significantly higher in high-grade gliomas than in 

low-grade gliomas 29, which could be due to hyper-vascularization in the high-grade gliomas. 

One limitation of the bi-exponential model is that the fraction of slow DC component has 

discordance with microstructure parameters, e.g., the fraction of intra-cellular water. Some 

investigations suggest that the discordance may result from the restricted cell membrane and cell 
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size 73,74. The RDM considers restricted intracellular diffusion and modulations of diffusion 

gradients into the model 11,38. To obtain accurate estimations of the apparent cell radius and the 

extracellular diffusion coefficient derived from the RDM in the GBM and brain normal tissue 

requires short diffusion times that may be beyond the clinical scanner hardware. The 

heterogeneous tissue could present even more challenges for the model 38. The FROC model 

shows that DC, fractional order and spatial parameter all differentiate high-grade pediatric brain 

tumors from low-grade ones 15. In addition, the fractional order has high predictive values for 

tumor outcomes 15. There are also some limitations of the FROC model. First, the parameters 

derived from the model may not differentiate tumor from normal tissue 15. Another challenge is 

that parameters are not sensitive enough to generate high contrast maps 15.  

Previous research has suggested that the mean kurtosis could serve as the optimal 

parameter for grading glioma in practice 29. Zhang et al. investigated the correlation between 

overall survival (OS) and kurtosis in high grade gliomas, including grade III and grade VI, and 

found that mean kurtosis of glioma was a significant predictor of OS 66.    Hempel et al. also 

assessed whether mean kurtosis was prognostic factor in grade II, grade III and grade IV 

gliomas, and found PFS and OS was significantly better in patients with lower mean kurtosis 75. 

However, different grades of gliomas could have specific features, which may contribute to 

prediction power. In our analysis, we only included grade IV of glioma. 

In this study, we found that a high mean kurtosis values pre-RT was significantly 

correlated with reduced OS. To illustrate the unique contribution of the mean kurtosis, we also 

tested the Gd-GTV for prediction of survival using the cox model. We found that the Gd-GTV 
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volume itself did not predict OS, which suggests that the mean kurtosis provides information 

beyond the enhanced tumor volume. In the Gd-GTV that consists of heterogeneous tumor with 

mixture of high cellular tumor and edema, the kurtosis values vary from high to low. The region 

with high kurtosis values may imply an aggressive component in the tumor, which is supported 

by the observations: 1) a higher grade of gliomas associated with higher mean kurtosis values 

29,36 and 2) high mean kurtosis values in GBM associated with inferior survival.  The decreased 

mean kurtosis and the increased DC in the Gd-GTV of GBM after receiving radiation treatment 

are expected to represent a tumor response to therapy, but not specific enough to predict 

outcomes.  Radiation likely causes cell degeneration and necrosis 76, which may decrease mean 

kurtosis and increase DC to an extent for some GBMs. In contrast, we observed substantially 

increased mean kurtosis and decreased DC at the mid-RT in two patients who had rapid tumor 

growth. Further research could be carried out to investigate pathology associated with mean 

kurtosis changes. 

The DKI model quantifies non-Gaussian water diffusion in heterogeneous tissue and 

demonstrates the potential to predict OS in GBM patients. However, there are some limitations 

in the current study. First, we used 11 b-values up to 2500 s/mm2, which increases acquisition 

time. Also, the model is sensitive to noise. To overcome the noise influence on model fitting, we 

applied a 2D Gaussian filter that blurs images. Second, the mean kurtosis decreased while the 

DC increased in mid treatment, but these changes are not significantly associated with survival. 

This may be affected by radiation treatment or the small patient size. Third, this is a retrospective 

analysis with a small sample size. Fourth, pathology correlated to the imaging finding is lacked 
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in our research. Understanding of the mean kurtosis and DC changes after radiation and 

relationship to tumor changes are limited. The DKI model needs to be further validated in an 

independent large cohort of patients in future. 

The DKI model demonstrates the potential to predict survival in the patients with GBM. 

Further development and histopathological validation of the DKI model will warrant its role in 

clinical management of GBM. 
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Chapter 4 T2-relaxation-diffusion Correlation Analysis in Glioblastoma 

 

The results described in this chapter were previously described by the author in abstracts 

for the 2018 ISMRM and 2020 AAPM annual meetings 77,78. 

4.1 Introduction 

 

Among the high-order diffusion models, there are very limited research attempting to 

investigate the T2 and diffusion coefficient (DC) together in GBM. Most researchers investigate 

T2 and DC separately 9,18,19 . For example, Maier et al 9investigated brain tumor with bi-

exponential diffusion model. This model considers fast and slow diffusion in brain tumor and 

normal tissue, and separated tumor from other brain tissue in two thirds of patients. In 

investigation, fractional volume of slow component (Vs) from the model is much lower than 

experimental result 8 . Another model, called multi-exponential proton spin-spin relaxation 

model 18,19, uses multi-echoes sequence to investigate multiple T2 decays in tumor and other 

brain tissue. In their study, white matter and gray matter showed three components and two 

components T2 decay, separately. Tumor and edema both show bi-exponentiality of relaxation 

time in investigation 19. These results suggested that multi-T2 components exist in normal tissue 

and tumor. However, the long component T2 of tumor was unexpectedly high (>700ms). 

Recent studies suggest that a model correlating T2 and DC together could characterize 

heterogeneous tissue better 17 . The capability of the 2D T2 correlation experiment to improve 
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the sensitivity has been demonstrated on different tissue types 17,20,21 . This technique used an ill-

posed equation with infinite solution 22,23 , which is difficult to directly apply to diffusion curves. 

In this study, we simplified the model described in Bernin et al.16 and applied to two 

series clinical diffusion weighted images with two different TEs in the GBM patients. We 

applied the simplified model to the DW images with high b-values to investigate whether any 

significant differences in the quantified parameters among hypercellular tumors, edema and 

normal tissue. We also tested parameters with time-to-event analysis model to investigate 

whether any parameter is significant predictor of progression free survival (PFS) and overall 

survival (OS). This study was the first step to test the possibility of the application of the model 

correlating T2 and DC using a widely available diffusion technique on the clinical scanner for 

GBM.  

4.2 Material and Methods 

 

4.2.1 Simplified T2-relaxation-diffusion Correlation 

It is an emerging approach to combine multiple contrasts into a single analysis. This 

approach would allow an exploration of the T2-relaxation-diffusion correlation in brain tumors 

to better understand tumor physiology than using diffusion or T2-relaxation MRI alone 16 . We 

assumed diffusion signal can be considered as the sum of slow and fast components: 

𝑆 = 𝑆𝑓0 exp(−𝑏𝐷𝑓) exp (−
𝑇𝐸

𝑇2𝑓
) + 𝑆𝑠0 exp(−𝑏𝐷𝑠) exp (−

𝑇𝐸

𝑇2𝑠
)                           (4.1) 
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where Df and Ds are fast and slow diffusion coefficients, T2f  and T2s are associated respective 

T2 values, Sf0 and Ss0 are the amplitudes of respective fast and slow diffusion components, and b 

is the b-value.  Vs is the fraction of the slow diffusion component and calculated as Ss0/(Sf0+Ss0). 

4.2.2 Patients 

Twenty-four patients (median age of 59.5 years, 11 female) with histologically diagnosed 

GBM were treated with either 60 Gy standard (10 patients) or 75 Gy boosted RT (14 patients) 

and had diffusion weighted (DW) images pre-RT but after tumor resection or biopsy. The 15 

patients had mid-RT scans (week 3) to assess response. The 13 patients had MGMT methylation 

tests and five in those are positive. 

4.2.3 In Vivo MR Imaging 

All scans were performed on a 3.0-T scanner (Skyra, Siemens Healthineers) using a 20-

channel head coil. Conventional MR images, 2D T2-FLAIR images, and 3D pre- and post-

contrast T1-weighted images using a MPRAGE sequence, were acquired.  DW images were 

acquired by a spin-echo echo-planar pulse sequence with diffusion weighting in 3 orthogonal 

directions and 11 b-values from 0 to 2500 s/mm2 with an incremental step of 250 s/mm2.  Other 

acquisition parameters included the parallel imaging factor of 4 (GRAPPA) (to reduce echo 

spacing and hence geometric distortion), TE/TR=93/9300 ms and 113/9300ms, bandwidth of 

1040 Hz/pixel, voxel size of approximately 1.3 x 1.3 x 5.2 mm, 30 slices to cover the whole 

brain, one average and total scan time of 4.50 min.   In addition, DW images with b=3000 s/mm2 

and 4 averages were acquired.  All DW images were acquired prior to contrast injection. 



 49 

4.2.4 Definition of Volume of Interest 

Due to anticipated SNR in DW images, we performed this analysis in volumes of interest 

(VOIs).  The challenges in tumor definition of GBM are several fold. Studies of GBM using 

advanced imaging have shown that solid tumor components can be beyond the contrast enhanced 

gross tumor volumes31,47.  Also, the T2 abnormality volume can consist of tumor, edema, and a 

mixture of the two.  However, at high b-values of diffusion imaging, water signals of edema are 

attenuated much faster than the hyper-cellular tumor. Based upon this hypothesis, in a previous 

study, a tumor volume was created by combining automated thresholding on the DW images with 

b=3000 s/mm2, and then viewed and edited by an attending radiation oncologist who is specialized 

in brain tumor therapy47. The initial tumor volume was created using a threshold of the mean 

intensity plus 2 standard deviations calculated from a VOI in the normal-appearing tissue most 

contralateral to the T2-abnormality and performed on the DW images with b=3000 s/mm2.  Also, 

this tumor volume has shown to be significantly correlated with progression-free survival47.  

Therefore, we used this tumor volume (TV) to characterize T2 and diffusion parameters in this 

study.  Note that this TV is different from the contrast enhanced tumor volume.   

To compare the behavior of this model in edema to solid tumor in GBM, an edema volume 

was created within the T2-abnormality but had at least 1 cm away from both the TV used in this 

study and the contrast enhanced gross tumor volume. In the cases with tumor recurrence, the edema 

volume was checked and made sure to have no spatial overlap with the recurrent tumor volume.  

Also, the VOIs of two large WM fiber bundles were drawn: one in the frontal lobe and another in 

the Genu of corpus callosum. To compare to GM, cortex regions in the frontal and parietal lobes 
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were segmented using the fuzzy c-means algorithm on diffusion weighted images with b=0 (T2-

weighted images) and ADC maps. To avoid influence of cerebrospinal fluid (CSF), a deep GM 

structure, the head of caudate nucleus, was carefully chosen. As a total, six VOIs were created, see 

Figure 4-1. 

 

Figure 4-1. Illustration of volumes of interest (VOIs) used in the analysis. Red contours tumor volume on the DW 

images with b=3000 s/mm2. Magenta, green, cyan, blue and yellow contours represent genu, deep gray matter (head of caudate 

nucleus), edema, cortex and frontal white matter, respectively. 

Prior to the VOI creation, 3D post-contrast T1-weighted images were reformatted into the 

axial plane with spatial resolution of 1x1x3 mm. All other images acquired within the same session 

were reformatted to the post-contrast T1-weighted images using coordinates in the DICOM header.   

4.2.5 Computation of T2-Relaxation-Diffusion-Correlation Model 

T2-relaxation-diffusion-correlation model was implemented using Matlab. The model 

was fitted to the DW images with 22 b-values using a Simplex algorithm in Matlab. We fitted the 

model to six parameters of Df, Ds, T2f, T2s, Sf and Ss.  Simplex was initiated randomly in the 

ranges of the parameters based on prior knowledge of the physiological parameters (Ss: 0-1000, 

Sf: 0-1000, T2s: 0-100 ms, T2f: 0-100 ms, Ds: 0-0.1 μm2ms-1, Df: 0-1 μm2ms-1). Fitting was run 

100 times, and the results were accepted with the minimum mean squared errors (MSE).   
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4.2.6 Statistical Analysis 

To evaluate changes in the parameters in response to radiation doses after three weeks of 

RT, Students’ t test was used and a p-value less than 0.05 was considered significant. Kaplan-

Meier (KM) analysis, univariate and multi-variate Cox proportional hazard model were used to 

test these parameters for prediction of PFS and p-value of 0.05 was considered significant. 

4.3 Results 

 

4.3.1 T2 relaxation diffusion correlation in tissues pre-RT 

We mainly focused on T2s, T2f, Ds, Df and Vs in this investigation. These parameters of 

six tissue types were summarized in Table 4-1. T2 values of WM and GM were close to a 

previous research 79 and only 2 WM tissue showed T2 reverse among all tissue types. Table 4-1 

summarized p-values results of pure tissue parameters compared to tumor’s results. There were 

significant differences between fast and slow diffusion coefficients and between associated T2 

values in tumor, cortex, deep GM, and edema (p<0.001).  For tumors, cortex, deep GM, and 

edema, the fast diffusion coefficients (Df) were associated with elongated T2 values; while for 

WM including frontal WM and genu, the fast diffusion coefficients were associated with short 

T2 values.  The tumor had Df significantly greater than WM and deep GM (p<0.05) but not 

cortex and edema, and T2f significantly greater than all other tissue types (p<0.05) except cortex 

possibly due to the partial volume effect of cerebral spinal fluid (CSF).  For the slow 

compartment, the tumor had significantly greater T2s than all other tissue types.  The Ds in the 

tumor was not significantly different from all other tissue types. Figure 4-2 showed the T2-
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relaxation-diffusion distributions from tumors and normal WM and GM by fitting Eq 4.1. There 

was a tilting line to separate tumor and other tissues, except cortex. This may be due to CSF 

contained in cortex. Additionally, we used multivariate logistic regression to test whether we 

could separate tumor and other tissue types completely. The results were summarized in Table 4-

2. From analysis, we found that T2s, T2f and Vs were significant predictors of tumor (p 

value=0.02, p value=0.005, p value=0.04, respectively). 

In investigation, we also found that T2s of two diffusion components estimated by the 

model are significantly different in tumor, genu, cortex and edema (p=0.03, p<0.01, p<0.001, 

p=0.03).  

Table 4-1 Parameters of different pure tissue types with T2-relaxation-diffusion-correlation model analysis. 

  T2s (ms) T2f (ms) Ds/μm2/ms Df/ μm2/ms Vs 

Tumor Mean ±SEM 148.6±18.2 227.9±24.2 0.31±0.034 2.02±0.20 0.44±0.045 

Frontal WM Mean ±SEM 114.9±4.8 110.1±6.0 0.19±0.020 1.43±0.046 0. 36±0. 033 

 P value No Sig p<0.001 p<0.01 p=0.012 No Sig 

Genu mean ±SEM 103.3±2.9 81.0±5.2 0.15±0.024 1.65±0.073 0. 28±0. 027 

 P value p=0.028 p<0.001 p<0.01 No Sig p=0.011 

Deep GM mean ±SEM 80.3±5.2 100.5±11.3 0.26±0.028 1.59±0.098 0. 44±0. 041 

 P value p<0.01 p<0.01 No Sig No Sig No Sig 

Cortex mean ±SEM 73.3±2.9 256.7±40.7 0.51±0.012 2.40±0.072 0. 44±0. 041 

 P value p<0.01 No Sig p<0.001 No Sig No Sig 

Edema mean ± SEM 104.0±14.4 162.6±19.3 0.36±0.048 1.83±0.10 0.39±0. 053 

 P value No Sig No Sig No Sig No Sig No Sig 
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Note: All p –values are acquired from comparison of tumor parameters to corresponding tissue parameters. No Sig 

represents no significance found. 

 

Figure 4-2 T2-relaxation-diffusion distributions in 6 kinds of tissue types. Horizontal error bars are the SEM of T2-

relaxation time and vertical error bars are the SEM of diffusion coefficients. 

 

Table 4-2 Multi-variate logistic regression of the parameters from the T2-relaxation diffusion correlation model to 

predict tumor 

 T2s T2f Vs 

Coefficient 0.007 0.016 5.56 

P value 0.02 0.005 0.04 
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4.3.2 Estimated parameters of pre-RT and mid-RT in two patient groups 

We investigated pre/mid-RT TV in two patient groups who received different radiation 

doses and summarized results in Table 4-3. In boosted group, T2s at mid-RT increased significantly 

326%±366% (p=0.023) compared to pre-RT. The large increase in T2s of the boosted group may 

suggest that higher doses could cause necrosis and increased fluid content in the tumor. In standard 

group, T2s increased 19%±39%, but not significant. Changes in other parameters of two groups 

were also not significant.  

 

Table 4-3 Parameters of pre-mid-RT standard and boosted group with T2-relaxation-diffusion correlation model 

analysis 

 T2s (ms) 

(mean ± 

SEM) 

T2f (ms) 

(mean ± 

SEM) 

Ds/ μm2/ms 

(mean ± 

SEM) 

Df/ μm2/ms 

(mean ± SEM) 

Vs 

(mean ± SEM) 

Pre-RT standard 174.1±31.7 266.2±45.7 0.35±0.02 2.15±0.12 0. 43±0.05 

Mid-RT standard 187.8±33.7 145.3±21.2 0.31±0.04 2.00±0.10 0. 32±0. 03 

Pre-RT boosted 105.6±8.4 101.9±6.4 0.24±0.03 1.59±0.07 0. 41±0. 04 

Mid-RT boosted 383.8±92.7 167.7±39.5 0.28±0.03 2.02±0.14 0. 26±0. 13 

 

 Changes of T2s were significantly different between the two groups (p=0.032). Changes 

in Ds, Df and T2f didn’t show significant differences between two groups, but these three in boosted 

group all increased more than in standard group. In this study, we found there were large 

differences between parameters pre-RT in the two groups, especially in two T2 values.  Thus, we 
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investigated Gd-GTV pre-RT to assess whether there were significant differences in these two 

groups additionally. The results are summarized in Table 4-4. We found significant differences 

between the two groups in Gd-GTV volume (p=0.046). The patients who were in the boosted 

group could be selected with smaller tumor volumes or more extent of surgery, but the percentage 

changes in T2s, T2f and DCs between the two groups were unlikely due to the bias of patient 

selection in the clinical trial with radiation boosting. 

Table 4-4  GTV pre-RT volumes of standard and boosted group  

  Volume/mm3 

(mean ± SEM) 

Median 

volume/mm3 

Minimum 

volume/mm3 

Maximum 

volume/mm3 

standard group 35103.1±5577.7 32085.7 20973.0 62501.7 

boosted group 20435.5±3096.4 19722 5718.2 36610.0 

 

4.3.3 Parameters correlate with PFS 

 

Figure 4-3 Kaplan-Meier Curves of PFS.  Two groups were defined by greater (green) or shorter (red) than the mean 

fast T2 value tumor (p=0.05) 
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Long T2f in the pre-RT TV was significantly associated with inferior PFS by Kaplan-Meier 

(KM) analysis (p=0.05), suggesting long T2f could be associated with severe disease. From the 

previous result, T2f of TV showed larger difference with other normal tissue than T2s. This may 

be the reason that T2f showed significant by KM analysis while T2s not. 

In addition to KM analysis, we analyzed the data with Cox proportional hazard model. 

Univariate Cox model analysis showed that Vs at mid-RT in the tumor was significantly associated 

with reduced PFS (HR=3.6, p=0.02; Table 4-5), but not the values measured at pre-RT (p value 

=0.45). In addition to Vs, we classified the other four parameters into two classes by their averages 

and tested these classes with the univariate cox model. We also found that T2f pre-RT was 

significantly associated with reduced PFS (HR=2.83, p=0.05; Table 4-5.), but not T2f mid-RT 

(p=0.41). Univariate Cox model analysis of clinical prognostic factors for prediction of PFS were 

listed in Table 4-5.  

We further addressed the question whether Vs and T2f added any values than clinical 

prognostic factors, such as age, dose and extent of surgery (EOR), for prediction of PFS. After 

adjusting these clinical factors, the Vs mid-RT was a significant predictor of PFS (HR=9.9, p=0.02; 

Table 4-6), and the T2f pre-RT was also a significant predictor of inferior PFS (HR=2.84, p=0.05; 

Table 4-7). 
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Table 4-5 Univariate cox proportional model analysis in Vs mid-RT, T2f pre-RT and clinical factors with PFS 

 Hazard ratio (HR) p-value 95% CI 

Vs mid-RT 3.57 0.02* [1.24, 10.26] 

T2f pre-RT 2.83 0.05* [1.00, 8.09] 

age 1.53 0.21 [0.79, 2.94] 

MGMT 0.14 0.07 [0.02, 1.17] 

EOR 1.43 0.39 [0.63, 3.21] 

 

Table 4-6 Multivariate cox proportional model analysis in Vs mid-RT and clinical factors with PFS. 

 Hazard ratio (HR) p-value 95% CI 

Vs 13.24 0.02* [1.66, 105.43] 

age 3.46 0.11 [0.76, 15.67] 

MGMT 0.16 0.21 [0.01, 2.84] 

EOR 1.87 0.51 [0.29, 11.95] 

 

Table 4-7 Multivariate cox proportional model analysis in T2f pre-RT and clinical factors with PFS. 

 Hazard ratio (HR) p-value 95% CI 

T2f pre-RT 2.84 0.05* [1.00, 8.15] 

age 1.36 0.29 [0.77, 2.42] 

 



 58 

4.4 Discussion 

 

In this study, we simplified the model of Bernin et al. 16 to fit the DW images and 

characterize diffusion properties of the hypercellular tumor in the patients with GBM. In 

investigation, we found that modeling T2 and DC together helps differentiate tumor from edema 

and normal tissue. Parameters estimated from T2-relaxation-diffusion model, such as T2f and Vs, 

correlated with PFS and showed the potential to predict survival. ADC that ignores 

multicomponent of heterogeneous diffusion in brain tissue may fail to differentiate tumor and other 

tissue 4-7,39. The parameters from the T2-relaxation-diffusion model could identify the TV better 

than a single metric. The Vs and T2f may add value to clinical factors and help predict progression 

better. The T2-relaxation-diffusion model has a great promise to aid into conventional MRI for 

GBM diagnosis, image-guide therapy, and response assessment. Further validation with 

histopathology will warrant the role of the model in the clinical management of GBM.  

Many diffusion models have been investigated in gliomas. An apparent diffusion 

coefficient (ADC) quantified from conventional DW images with b-values between 0 and 1000 

s/mm2 using a mono-exponential decay is the commonly reported parameter in literature. Previous 

studies have suggested that a low ADC was associated with a decrease in survival for patients with 

gliomas 30,69-72. One limitation of mono-exponential model is that there are large deviations of 

fitted curves from the diffusion weighted signal when b-values are greater than 1500 s/mm2. 

Another problem is that one parameter is difficult to describe the complex microstructure effects 

on water diffusion. To deal with the deviation of diffusion weighted signals from the mono-
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exponential function, a bi-exponential model with fast and slow diffusion components is propose 

8. In the initial interpretation of the bi-exponential model, fast and slow diffusion coefficients are 

considered from respective extra- and intra-cellular water compartments, but the estimated faction 

of the intra-cellular water in the tissue from the bi-exponential model cannot be matched with the 

other measures 9. Previous research usually measured T2 and DC separately in brain tumor 9,18,19 , 

but T2 and DC are correlated. Different TE will influence DC values in mono- and bi-exponential 

models. TE that is long enough will lead to elimination of intracellular diffusion signal and DC 

values derived from the two models should be the value of extracellular DC. A very short TE will 

lead to detection of intracellular DC component in the two models. Also, Multiple T2 components 

will influence intracellular fraction volume of signal in bi-exponential model, which could be 

explained by that different DCs have different T2 values. Multiple T2 components in human brain 

tissue has been investigated 18,19. Schad et al. implemented multiple echoes to investigate 

multicomponent T2 in brain tumor 19. They demonstrated that two components T2 of tumor, edema 

and CSF were observed, but WM and GM followed mono-exponential T2 decay. Other researchers 

presented different result and demonstrated WM and GM have at least two components of T2 18 . 

They showed WM has three T2 components with a minor component less than 11% (T2 between 

10 and 55ms) and GM has two component T2 close to 100 ms. After ignoring the minor part, it is 

reasonable that the T2-relaxation-diffusion model considers two components of diffusion curves 

and combines T2 and DC together, which help characterize T2 values and DCs better. 

When considering underlying of tissue morphology and physiology of diffusion 

parameters, low ADC is considered to correlate with high cellularity. However, co-existence of 
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edema and high vascularity in a single pixel of the tumor can elevate ADC compared to normal 

white matter and grey matter. To mitigate the influence of perfusion on measured diffusion 

coefficients, a bi-exponential model that quantifies fast and slow DCs has been investigated. The 

fast DC derived from the model is found to be significantly higher in high-grade gliomas than in 

low-grade gliomas 29, which could be due to hyper-vascularization in the high-grade gliomas. 

Multiple T2 components correlated with multiple DCs in a VOI could lead to factorized signal 

amplitude of two components, thus resulting in un-expected low intracellular fraction. Maier et al. 

9 discussed in their research that intracellular fraction of tumor (0.24±0.10) derived from bi-

exponential DC model is much lower than previous experimental result 8.  Our Vs derived from 

the T2-relaxation-diffusion model is 0.43±0.11 (mean ± SD). Though Vs is still lower than 

experimental result, it is much higher than result of Maier et al 9.  

In our current study, T2 values of two diffusion components estimated by the model are 

significantly different in tumor, genu, cortex and edema. GBM is heterogeneous tumor with 

mixture of high cellular tumor, normal tissue and edema, for which diffusion coefficients vary 

from low to high, resulting in inconsistent and often elevated apparent diffusion coefficients 

(ADCs) when using conventional b-value (1000 s/mm2 or lower) 4-7. That two components have 

two different T2 values suggests that using different TEs for ADC measurement in GBM could 

lead to different ADC values. One single metric may not be accurate enough to identify features 

of the tumor.  

T2f, Ds and Df increased in boosted group after radiation therapy but decreased in standard 

group. T2s increased in both groups. Our previous results indicate that tumor tends to have higher 
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T2 values and DCs, but researchers have suggested boosted group has better outcome in other in 

other investigation 49 . There could be multi-factors that contribute to the increase of parameters.  

Tumor tends to have larger T2 values and DCs, but this elevation in mid-RT tumor could also 

result from tissue response after radiation, and we will explain it from several points. Previous 

research has demonstrated that there could be ADC elevation after radiation dose and this increase 

may result from necrosis 76 . Water content in vivo has almost positive correlation with T2 80 , 

which helps explain that elevation of T2 could also result from necrosis. Also, cell permeability 

and tissue inflammation could increase DCs after radiation. In our investigation, Vs in boosted 

group also decreased. Vs is slow diffusion component and may represent the extent that water is 

restricted in tissue. The decrease of Vs may indicate the water is less restricted in tissue, which 

may be due to cell degeneration after radiation. Thus, we think that the elevation of T2 and DC is 

mainly due to response after radiation, and it is very likely to have this increase. Further validation 

could be carried out to investigate whether boosted radiation dose will lead to more necrosis than 

standard dose.  

In our result, larger pre-RT T2f was significantly correlated with lower PFS rate in KM 

analysis and cox proportional hazard model, which imply T2f may have the potential to predict 

PFS.  Our TV was created using a threshold to the T2-abnormality and performed on the DW 

images with b=3000 s/mm2, which exclude the edema-dominated region. From the comparison of 

the pre-defined TV and normal tissues, the solid tumor has larger T2f than any other tissues. This 

could be one reason that why T2f has the potential. Also, we found T2f and Df showed positive 

correlation in investigation, which may indicate Df could be related with progression. Further 
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research could be carried out to investigate whether Df and T2f are both significantly correlated 

with progression in large patient number. 

To further investigate the behavior of the T2-relaxation-diffusion correlation model, we 

tested additional five patients with three distinct TE (TE=70ms, 90ms and 110ms, respectively) 

and fitted the model. Every patient was diagnosed histologically diagnosed GBM. we compared 

the averages of parameters between the three-TE patients and the two-TE scanned patients in TV. 

From the analysis, we didn’t find large differences (< 10% in all five parameters) between the 

three-TE derived parameters with the two-TE derived parameters in the TV.  

The T2-relaxation-diffusion model modeled DC and T2 together and demonstrated the 

potential to predict PSF of GBM patients. However, current study has some limitations. First, we 

used 2 TE and 11 b-values in analysis, which will increase acquisition time in scans. The model 

has six parameters totally, but not very stable with these acquisition data. T2s was estimated larger 

than 600ms sometimes in small VOI with minimum MSE, and parameters need to be selected 

within physiological range manually. Multi-TE acquisition may help stabilize the model and need 

to be further validated in the future. Second, our sample size is not large with only 24 pre-RT and 

15 mid-RT patients. In our investigation, mid-RT T2s was significantly different from pre-RT T2s 

in both groups but was not a significant predictor in cox model. This may result from the small 

sample size. The T2-relaxation-diffusion model needs to be further validated in an independent 

large cohort of patients in future. 
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Chapter 5 Analysis of Diffusion and Microstructure Properties in Brain Tumors Using a 

Random Walk with Barriers Model 

 

The results described in this chapter were previously described by the author in an 

abstract for the 2021 AAPM annual meeting 81. 

5.1 Introduction 

 

High-order diffusion models have been explored in clinical gliomas to differentiate tumor 

grade and assess therapy response 8,9,15,32,36,39-42. Among the high-order diffusion models, a few 

of models attempt to quantify microstructures in tumors from macroscopic diffusion 

imaging14,24,43. Microstructure alterations caused by pathological changes could potentially be 

captured by studying water diffusion. A model, called random walk with barriers model 

(RWBM), considers that water diffusion in microstructural tissue is restricted by cellular 

structure membranes and thereby a measurement (diffusion) time during which water molecules 

travel through cell membranes and structures affects the measured water diffusion coefficient 27. 

The RWBM could analyze these effects on diffusion to reveal microstructural properties from 

macroscopic imaging characteristics within heterogeneous brain tumors. 

 Recent studies 24,25 investigating the RWBM in prostate showed that lumen length and 

membrane permeability agreed with known values from tissue histology and membrane 

biophysics. This study also extended the investigation into prostate cancer and suggested that the 

RWBM may be a powerful biophysical model to provide information on prostate cancer grading. 
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However, there are very limited efforts in investigating microstructures in brain tumors using the 

RWBM. 

In this study, we applied the model described by Novikov et al. 27 to diffusion weighted 

images in the patients with brain metastases and GBM.  A prototype diffusion gradient sequence 

that is able to crate oscillating gradient waveforms was used to achieve short diffusion times in 

acquired diffusion weighted (DW) images. We applied the RWBM to the DW images to 

investigate whether any derived parameter reveal the features of the brain tumors.  Another 

model, called three-distance diffusion model, was also investigated whether this model could 

reveal biophysical characteristics and was compared with the RWBM. The requirements of DW 

image collections to apply these two models on gradient hardware of a clinical scanner were also 

investigated. This study was the first step to test the potential of the application of the models 

quantifying microstructure parameters for brain tumors.  

5.2 Material and Methods 

 

5.2.1 RWBM 

In the RWBM, researchers considered that restrictions to diffusion could be represented 

by extended membranes 27. Novikov et al. 27assumed that extended membranes could introduce 

significant long-range correlations between the cell structure and water diffusion, which is 

different from those due to the short-range disorder. 

In the RWBM, there are three distinct regimes of time-dependent diffusion coefficients separated 

by short and long-time limits 27. 
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In the short-time limit, the time-dependent diffusion coefficient is given by: 

𝐷(𝑡) = 𝐷0 [1 −
𝑆

𝑉𝑑
(
4√𝐷0𝑡

3√𝜋
− 𝜅𝑡)]                                             (5.1)                                                                                                                      

where D0 is an unrestricted diffusion coefficient, S/Vis a surface area to volume ratio of the cell 

or the structure of restricting water diffusion, d is the dimension of the structure of interest, and 𝜅 

is the permeability of the cell or structure membrane. The range of diffusion times (tD) over 

which we could apply the S/V limit (Eq. 1) is that tD ≪ cell size2/(2dD0) [2]. In analysis, we first 

estimated cell size and D0 with two measurements with short diffusion times and calculated 

testimation= cell size2/(2dD0), ignoring the "𝜅𝑡" term in the Eq.1.  Whether the measured data 

satisfied the short time limit was evaluated iteratively. First, the estimated parameter testimation was 

used to test whether a loose threshold was met: √diffusiontime/𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 < 0.5. If the 

diffusion satisfied the threshold, we would estimate cell size, D0 and 𝜅 with three diffusion 

measurements from the Eq. 1 and test whether testimation satisfy the threshold again. The results 

with the "𝜅𝑡" term would be accepted if the threshold were satisfied. 

In the Long-time limit, the time-dependent diffusion coefficient behaves as: 

𝐷(𝑡) = 𝐷𝑖𝑛𝑓 + 𝐴 ∗ 𝑡−𝜐, 𝑡 → 𝑖𝑛𝑓                                                 (5.2) 

where Dinf is a bulk diffusion coefficient in the long-time limit, A is the associated strength of the 

structure disorder, and 𝜐 is a dynamical exponent related with underlying structures. When the 

exponent 𝜐 = 1, this model is considered as a hyper-uniform disorder.  The hyper-uniform 

disorder is a 1/t tail if a tissue compartment corresponds to fully restricting cell walls, and it 

could describe diffusion signals from tumors 11,14,43,82,83. When the exponent 𝜐 =
1

2
, this model is 
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considered in an extended disorder. This disorder geometry was approximately described that 

cell membrane is highly permeable. 𝜐 =
1

2
applies if the cell walls are sufficiently permeable. In 

our analysis, we first estimated a long-limit diffusion time threshold (tr=
𝑣2

𝑠2𝑑
/(

1

𝐷𝑖𝑛𝑓
−

1

𝐷0
)). We 

then fitted both hyper-uniform disorder and extended disorder equations to the data and checked 

relations between tr and diffusion time to determine which disorder assumption was satisfied. We 

would consider the hyper-uniform disorder if tr < diffusion time, and the extended disorder if tr > 

diffusion time. 

The equations of the RWBM were fitted to the mean, perpendicular and parallel diffusion 

coefficients that were calculated from DW images with three diffusion times to derive the D0, 

S/V, 𝜅, and Dinf. Cell diameter was estimated by 2d*V/S.  

 

5.2.2 Three-distance diffusion model 

There is another model considers restricted diffusion governed by the interplay of three 

lengths: diffusion length (lD), length of structure (ls) and dephasing length (lg) 
37.  

In the diffusion length (lD), we calculated 𝑙𝐷 = √𝐷0 ∗ 𝑡, where D0 is the unrestricted 

diffusion coefficient. Within the lD regime, diffusion is unrestricted, free diffusion. The length of 

structure (ls) is considered as the cell size of tissue. In the ls regime, the water molecules have 

traveled the cell length a few times before the magnetization dephasing. In the dephasing length 

((lg)= (𝐷0 𝛾𝑔⁄ )1/3 , where 𝛾 is the gyromagnetic constant and g is the diffusion gradient 
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amplitude, water spins that are far away from the cell membrane have completely de-phased, but 

molecules within length lg of the membrane cells were dephasing.  

We simply called this model the three-distance diffusion model. This model allows to 

estimate the structure length ls, which will be compared with the ones estimated by the RWBM. 

In the lD regime, the diffusion signal is formulated as: 

                                                   𝑆 𝑆0⁄ = 𝑒−𝑏∗𝐷0 = 𝑒
−
2

3
(
𝑙𝐷
𝑙𝑔
)
6

                                                    (5.3) 

where S is the amplitude of diffusion signal, S0 is the amplitude of diffusion signal at 0 b-value, 

and D0 is an unrestricted diffusion coefficient. After a logarithm to diffusion signals, the signals 

decay linearly with (
𝑙𝐷

𝑙𝑔
)
6

 . 

In the ls regime, the diffusion signal is formulated as: 

                                                     𝑆 𝑆0⁄ = 𝑒
−

1

60
(
𝑙𝐷
𝑙𝑔
)
2

(
𝑙𝑠
𝑙𝑔
)
4

                                                         (5.4) 

where the logarithmic diffusion signal is decay linearly with (
𝑙𝐷

𝑙𝑔
)
2

(
𝑙𝑠

𝑙𝑔
)
4

. The ls could be 

estimated through Eq. 4 if measured molecule diffusions are in this regime. 

And in the lg regime, the diffusion signal is formulated as: 

                                                     𝑆 𝑆0⁄ = 𝑐
𝑙𝑔

𝑙𝑠
𝑒
−𝑎1(

𝑙𝐷
𝑙𝑔
)
2

                                                          (5.5) 

where c and a1 are geometry related constants. The analytical formulae of c and a1 are provided 

by the previous work 84. Again, the diffusion signals multiplied with 
𝑙𝑔

𝑙𝑠
 decay linearly with 
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(
𝑙𝐷

𝑙𝑔
)
2

after logarithm. The ls could be also estimated through Eq. 5 if most molecules are diffused 

in this regime. 

With the D0 estimated from the RWBM, the equations of the three-distance diffusion 

model were fitted to the mean, perpendicular and parallel diffusion signals at PGSE to derive the 

ls.  

5.2.3 Patients 

Eight patients with brain metastases and two patients with glioblastomas were included in 

this study that has been approved by an institutional review board.  All patients had MRI scans 

post-surgery but prior to chemoradiation therapy.  

5.2.4 In Vivo MR Imaging 

All scans were performed on a 3.0-T scanner (Siemens Healthineers) using a 20-channel 

head coil. Conventional MR images, 2D T2-FLAIR images, and 3D pre-contrast T1-weighted 

images using a MPRAGE sequence, were acquired. DW images were acquired in three different 

diffusion time using a prototype sequence of pulsed gradient spin echo (PGSE) and oscillating 

gradient spin echo (OGSE) at frequency 30Hz (OGSE30) and 50Hz (OGSE50). DW images 

were acquired in 6 diffusion directions with 8 b-values (0 to 2600 s/mm2) for PGSE, 6 b-values 

(0 to 1300 s/mm2) for OGSE30 and 5 b-values (0 to 500 s/mm2) for OGSE50. Other acquisition 

parameters included the parallel imaging factor of 4 (GRAPPA) (to reduce echo spacing and 

hence geometric distortion), TE/TR=102/3300 ms, bandwidth of 1040 Hz/pixel, voxel size of 

approximately 2 x 2 x 7.15 mm, 16 slices to cover the major tumor volumes. 
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5.2.5 Computation of Diffusion Models 

The RWBM were implemented by our software developer using in-house Functional 

Analysis Tools (imFIAT).  The three-distance diffusion model was analyzed in Excel. The 

gadolinium enhancement gross tumor volumes (Gd-GTV) on post-Gd T1 weighted images were 

delineated by radiation oncologists who treated the patients. Surgical cavities were removed 

from the Gd-GTV. The delineated GTV-Gd of each tumor, if > 1 cm^3, was classified to smaller 

volumes using DW image intensities and fuzzy c-means. Also, the volume of interests (VOIs) of 

white matter (WM) fiber bundles was drawn in the frontal lobe. 

The RWBM was applied to three set of DW images (PGSE, OGSE30 and OGSE50) with 

different diffusion times in the GTV-Gd and WM to yield five parameters using average, 

perpendicular and parallel diffusivities: cell diameter, D0, Dinf, and 𝜅.The three-distance diffusion 

model was applied to PGSE images in the GTV-Gd and WM to derive ls in the three 

diffusivities, similar to the RWBM. The ls with the minimum mean squared error (MSE) was 

accepted. 

Previous research 38,55 have suggested that fractional anisotropy (FA) of infiltrated tumor 

largely decreased. Therefore, it is reasonable to omit anisotropic diffusion in brain tumors and 

investigated in the mean diffusion coefficients of three directions. To study how the RWBM 

behaves in the brain tumor, we investigated the perpendicular directions additionally. 

In large WM fiber bundle mainly consisting of axon, the cylinder shape assumption was 

used. We investigated the two models using diffusion coefficients in perpendicular and parallel 

directions to study microstructural properties of axon in parallel and perpendicular directions.  
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5.2.6 Statistical analysis 

To evaluate whether the parameters fitted from the RWBM showed different results in 

the average and perpendicular directions in tumor, Student’s t-test was used and a p-value of 

0.05 was considered significant.  

5.3 Results 

5.3.1 RWBM 

The microstructural parameters in the Gd-GTVs of the 10 patients were calculated using 

average and perpendicular diffusivities using the RWBM and were compared. An example of 

time dependent diffusion coefficients in a metastatic lesion is shown in Figure 1. In this example, 

the short-time limit of RWBM yielded a free diffusion coefficient D0 of 2.5 μm2/ms, and the 

long-time limit resulted in a bulk diffusion coefficient Dinf of 0.52 μm2/ms. Note that diffusion 

coefficients exhibit systematic dependency on diffusion times. Similarly, we investigated the 

WM using the RWBM. All data were summarized in Table 5-1 and Table 5-2.  

 

Figure 5-1 Scatter plot of time-dependent diffusion coefficients from one tumor volume. Blue dots are diffusion 

coefficients calculated from PG, OG30 and OG50; red diamond is D0 calculated from the RWBM at a short-time limit; magenta 

diamond is Dinf calculated from the RWBM at a long-time limit. 
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Table 5-1 Parameters in Gd-GTV derived by the RWBM 

Parameters  Average Results 

(mean ± SD) 

Perpendicular Results 

(mean ± SD) 

D0 (μm2/ms) 2.20±0.70 2.02±0.61 

Cell diameter (μm) 16.5±4.20 18.23±3.90 

𝜅 (μm/ms) 0.053±0.009 0.067±0.011 

Dinf (μm2/ms) 0.60±0.14 0.75±0.18 

 

 

Table 5-2 Parameters in WM derived by the RWBM 

Parameters  Perpendicular Results 

(mean ± SD) 

Parallel Results 

(mean ± SD) 

D0 (μm2/ms) 0.87±0.09 1.87±0.15 

Cell diameter (μm) 12.60±0.86 19.78±1.60 

𝜅 (μm/ms) 0.061±0.011 0.08±0.005 

Dinf (μm2/ms) 0.40±0.04 0.85±0.033 

 

The mean and perpendicular diffusivities in all Gd-GTV clusters of brain tumors satisfied 

the criteria for the short-time limit with two diffusion measurements and the hyper-uniform 

disorder of the long-time limit.  Table 5-1 showed the microstructural parameters in the GTV 

clusters estimated from mean and perpendicular diffusion coefficients to test whether there were 

anisotropic diffusion effects on the parameter estimation in brain tumors.  There were no 
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significant differences between the two, suggesting there was no large enough anisotropic 

diffusion in the GTV-Gd to affect the estimated parameters. Also, in the small number of 

patients, the significant parameter differences between brain metastases and GBM were not seen. 

The cell size estimated by average diffusivities was closed to a previous study 59, which 

suggested that our current diffusion time is short enough to estimate the cell size of brain tumors. 

The perpendicular diffusivities in all WM VOIs satisfied the criteria for the short-time 

limit using first two diffusion time measurements and the hyper-uniform disorder of the long-

time limit. Approximately 20% of WM VOIs satisfied the criteria for the short-time limit using 

three diffusion time measurements and the hyper-uniform disorders in parallel diffusivities, and 

others satisfied the two diffusion data measurement and the hyper-uniform disorders in parallel 

diffusivity.  Table 5-2 showed the microstructures in white matter. The perpendicular and 

parallel diffusivities yielded significantly different D0, κ, and Dinf values (p <0.001), which could 

be related to directional axon and myelin sheets structures and properties. The cell dimensions 

estimated by the perpendicular and parallel diffusivities were related to axon diameter and 

length, respectively.  Note the axon diameter is much larger than expected (~2um), which 

suggest that diffusion time that can be achieved on a clinical scanner is not short enough for such 

estimation.  

5.3.2 Three-distance diffusion model 

We also investigated diffusion data using the three-distance diffusion model. In brain 

metastatic tumors, we investigated in average diffusion coefficients from three directions due to 

low anisotropy diffusion. In glioblastoma, we investigated in perpendicular diffusivities due to 
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residual anisotropy diffusion, which is possibly due to mixed tumor cells with normal tissue. The 

ls values of all tumor clusters were estimated though Eq. 4. We calculated the percentage of 

differences (difference%) between ls and cell size derived from the RWBM and didn’t find 

significant differences between the two.  The average difference% is less than 20%. All results 

are summarized in Table 5-3.  

Table 5-3 ls values in tumor estimated by the three-distance model and compared to ones by the RWBM 

ls in Brain metastases 

(μm) 

Difference%  ls in glioblastoma 

(μm) 

Difference% 

17.16±2.39 19.21±14.43 16.29±3.05 15.72±17.71 

Difference%: percentage difference of estimated cell dimensions between the three-distance model and the RWBM 

 

Additionally, we investigated frontal WM (fWM), right corpus callosum (RCC), and 

splenium using the three-distance diffusion model in two GBM patients. Perpendicular and 

parallel diffusivities were investigated due to the high anisotropy in WM fiber bundle. The 

values of ls were compared with the cell size estimates derived from the RWBM. The ls values 

of fWM and RCC estimated using the perpendicular and parallel diffusivities were close to the 

corresponding estimates from the RWBM, while splenium had larger differences. All results are 

summarized in Table 5-4. 

Table 5-4 ls results and difference% with cell size derived from RWBM in fWM, RCC and splenium 

 ls in perpendicular 

diffusivity (μm) 

Difference% ls in parallel 

diffusivity (μm) 

Difference% 

fWM 11.89±0.10 1.50±0.47 17.19±0.016 4.80±3.04 
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RCC 12.94±0.22 17.86±6.12 21.12±0.28 4.11±2.20 

splenium 11.24±1.09 27.96±24.78 20.40±0.015 36.48±11.41 

Difference%: percentage difference of estimated cell dimensions between the three-distance model and the RWBM 

5.4 Discussion 

 

In this study, we tested the two model of 27 37to fit the DW images with PGSE and two 

OGSE and characterize microstructure and diffusion properties of the brain tumors in the 

patients. In analysis of the RWBM, we found that the four parameters (D0, cell diameter, κ and 

Dinf) in the brain tumors did not show the anisotropic differences in the averaged and 

perpendicular diffusivities, and the estimated tumor diameter is close to what is reported by a 

previous research 59. The ls values estimated from the averaged and perpendicular diffusivities of 

the brain tumors using the three-distance diffusion model were close to the RWBM cell size.  

The four parameters estimated in the WM using the RWBM were substantially and significantly 

different in the perpendicular and parallel diffusivities, but the estimated axon diameter and 

length had substantially differences with literature 85,86, although the values of fWM and RCC 

showed agreement between the two models. The RWBM has a great promise to aid into 

conventional MRI for diagnosis, image-guide therapy and response assessment of brain tumors.  

Further validation with histopathology will warrant the role of the RWBM in the clinical 

management. 

In the current study, the tumor cell size in GBM estimated from the RWBM in the 

averaged diffusivity was 16.5±4.20 μm. A pathological study in GBM shows that the radius of 
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GBM cells can be as large as 20 μm with a mean of 10 μm and a standard deviation of 11 μm 

(ref).  The size of the estimated cell diameter in our model is close to the reported cell size. We 

also estimated the diffusion time to probe the GBM cell size was around 12 ms, which was pretty 

close to our current diffusion time in OGSE30 (13.5 ms). We also measured another diffusion 

signal with lower diffusion time (6.9 ms) and this could be the reason why our estimated cell size 

showed agreement with previous pathological results. 

In the investigation, we also compared the RWBM derived cell size with the ls. In most 

tumor clusters, the percentage of differences between ls and cell size usually are not high (~10%) 

estimated from the averaged and perpendicular diffusivities but were much higher (~30%) in 

some clusters that contained either fluid or high cellularity contents. We believed that this 

discrepancy could be mainly due to that we directly fitted the three-distance diffusion model with 

D0 derived from the RWBM. The D0 from the RWBM was calculated through PGSE and OGSE, 

which could have differences with D0 that we should use in the three-distance diffusion model. 

With the assumption of D0=3 μm2/ms, the diffusion gradient that is required to explore a 20-μm 

cell diameter using the three-distance diffusion model was estimated as 1.7*10-7 T/μm, which is 

below the maximum gradient can be achieved on our clinical scanner (4.3*10-6 T/ μm). This may 

explain why the ls values of tumor are close to the RWBM derived cell size.  The cell size could 

be estimated using both models with the diffusion data acquired on our clinical scanner except 

that the RWBM requires a sequence to achieve short diffusion times, e, g., an oscillating 

diffusion gradient sequence. 
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The RWBM derived WM cell dimension using the parallel diffusivity is 19.78±1.60 μm, 

which could be the averaged axon myelinated segment length plus other cell structures. but 

previous research suggested that the axon length should be over 100 μm 85,86, which is 

substantially larger than our results. It is most likely that the diffusion times that are not long 

enough cause the underestimation of the axon length. The theoretical diffusion time for 

estimating the axon length could be as long as 400ms with an assumption of D0=3.0 μm2/ms, 

which is 10-fold of our current diffusion time. We could not prolong the current TE to 

accommodate the long diffusion time requirement, because a long TE (> 200 ms) would result in 

substantial T2 loss in WM. The WM cell diameter estimated form perpendicular diffusivity is 

12.60±0.86 μm, which substantially larger than we expected (~2 μm).  This overestimation 

implies that the diffusion time that can be achieved on a clinical scanner is not short enough for 

such estimation. With D0=3.0 μm2/ms, the theoretical diffusion time to estimate the axon 

diameter should less than 0.3 ms, which is far beyond the OGSE that we could apply in the 

scanner currently.  

The three-distance diffusion model may not provide accurate estimations for axon 

dimensions from perpendicular and parallel diffusivities in our current investigation, either. The 

estimated ls is substantially larger using perpendicular diffusivities, but smaller using parallel 

diffusivities. To probe the very small axon diameter, a high diffusion gradient with 

approximately 1*10-5 T/μm should be applied, which is beyond the maximum gradient (4.3*10-6 

T/μm) in our current clinical scanner.  An estimated low diffusion gradient (6*10-9 T/μm) that 

needs to be accompanied by a very long TE (> 200 ms) should be applied if we use this model to 
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estimate axon length. This very long TE would result in T2 loss of WM, which is not fitted in 

brain scanning. Another problem is that we estimated the diameter directly with D0 derived from 

the RWBM, which may not be the D0 that we should use to calculate lD. 

The RWBM demonstrated the prognostic potential and the opportunity to reveal features 

in brain tumors. However, the current study has a few limitations. First, our sample size is not 

large, with only 10 patients. The small number of patients causes a potential bias. The RWBM 

needs to be further validated in an independent large cohort of patients in future.  Second, we 

satisfy the minimum requirements of fitting the RWBM with only two OGSE. Further 

investigation with multiple OGSE will help us to understand the behavior of the RWBM. Third, 

OGSE is a prototype sequence, which is not used in clinical scan. This sequence requires 

additional settings. Nevertheless, the RWBM yields parameters beyond analyzing DW images 

with a single diffusion time and has potential to reveal microstructure of brain tumors with 

further investigation. 
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Chapter 6 Conclusion, Summary, and Implication 

 

This work investigated three dimensions of the parameter space for high-order diffusion 

models of DWI: b-value, TE, and diffusion time. Using different combinations of the three 

dimensions, we investigated a total of four high-order diffusion models, which revealed 

important pathological and derived computational features in GBM. The implications of these 

models will be discussed in the following aspects: minimal hardware requirements, diffusion 

data requirements for parameter fitting, stability of the models, ability to reveal features in GBM, 

and clinical utility of the derived parameters. 

Chapter 2 described the work that modeled the diffusion effects using a microstructure 

model including intracellular and extracellular components. In this chapter, the microstructure 

model was modulated with a bipolar pulse diffusion gradient imaging modality and applied to 

characterize microstructure and diffusion properties of hyper-cellular tumors in patients with 

GBM. The microstructure model was able to differentiate GBM and normal tissue and has great 

potential to supplement conventional MRI in GBM diagnosis. Our microstructure model could 

be performed with a PGSE that is widely available on clinical scanners. We fitted the 

microstructure model with diffusion data from 11 subjects using high b-values up to 2500 s/mm2. 

The b-values were chosen according to the availability on clinical MRI machines. However, we 

found that the microstructure model does not guarantee stability in voxel fitting. The model is 

complex and non-convex (Eq. A5), which may have contributed to the instability, although only 

having four parameters were used in the model. Additional contributors to the instability may 
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include low SNR in the high b-value DWI since we have applied four b-values that are greater 

than 1500 s/mm2. The modeled microstructure yielded a radius that we could compare to an 

existing pathological research 59 in GBM, but our estimated cell diameter is substantially larger 

than the reported cell sizes.  The larger computed radius may be caused our choice of modeling 

the cell boundaries to be impermeable to water, which may have artificially increased cell sizes 

due to restricted water diffusion across cell membranes. Additionally, the low SNR in DW 

images could further cause an overestimate of R. The estimated cell diameter may help 

physicians to diagnose GBM better together with the estimated Dex and Vin. 

Chapter 3 investigated the non-Gaussian water diffusion behavior in GBM.  In Chapter 3, 

we studied the diffusion kurtosis model and characterized non-Gaussian diffusion properties in 

the Gd-GTVs pre-RT and mid-RT in patients with GBM. In our analysis, the DKI could be 

performed by PGSE with b-values less than 11, while higher b-values would influence kurtosis. 

Kurtosis calculated from higher b-values decreased by less than 10% compared with kurtosis 

calculated from lower b-values. To compensate the low SNR in the DWI, we first applied a 

Gaussian filter to the brain images and then generated voxel-wised parameter maps with DKI. 

The kurtosis from the DKI showed agreement with previous research in glioma grading 29,32,36, 

and high value of kurtosis is correlated with inferior survival. However, there are two problems 

of the DKI. Direct correlations between kurtosis and pathological features in GBM is difficult to 

find, and clear edges of tumor regions could not be seen on a kurtosis map (see Figure 3-2). 

Nonetheless, higher mean kurtosis values are found to correlate with inferior patient survival 
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rates. The kurtosis map may provide physicians with more information in tumor progression to 

adjust the aggressiveness in radiation therapy. 

Chapter 4 explored a simplified T2-relaxation-diffusion correlation that combined TE 

space and b-value space together. In this study, we simplified the model of Bernin et al. 16 to fit 

the DW images and characterize diffusion properties of the hyper-cellular tumor in the patients 

with GBM. The simplified T2-relaxation-diffusion correlation showed that different DC values 

can have different T2 values.  We have discussed the details in Chapter 4 how different TEs will 

influence DC values in mono- and bi-exponential models. Parameters estimated from T2-

relaxation-diffusion model have the potential to identify GBM and some parameters, such as T2f 

and Vs, correlated with PFS and show potentials to predict survival. The T2-relaxation diffusion 

correlation could be performed with PGSE, but diffusion data with multiple TEs were required, 

requiring more data collection. To fit the six optimal parameters in our T2-relaxation-diffusion 

model, we applied diffusion data from 11 subjects at two TEs. Two sets of DWI required more 

scanning time. For the T2-relaxation-diffusion model, we could only perform analysis in VOI. 

Fitting in voxels was made difficult by low SNR in the DWI. Suboptimal image registration 

results between the two TEs could lead to non-realistic results. Non-realistic results could also be 

seen in VOIs close to edges, cavity, and CSF. The estimated T2 of GBM was close to a previous 

study investigating T2 in grade III glioma 87, but studies in GBM are very limited. The T2 and Vs 

may aid into the diagnosis and prognosis of GBM.  

Chapter 5 investigated the RWBM in the dimension of diffusion time. In this study, we 

tested the model of Novikov et al.  27 to fit the DW images with PGSE and two OGSE and 
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characterize microstructure and diffusion properties of the brain tumors in patients. In analysis of 

the RWBM, we found that the estimated tumor diameter is close to a previous study 59, but the 

estimated axon diameter and length were substantially different from reported values in literature 

85,86.  The RWBM is promising in revealing GBM pathological features, but this modality 

requires high gradient performance, which is not common on clinical scanners. OGSE is a 

prototype diffusion sequence that is usually restricted to research settings. To perform the 

RWBM, a minimum of two OGSE and one PGSE sequences need to be applied in scanning, 

which increased total scanning time. In our study, we collected 19 diffusion data from all 10 

patients to fit the RWBM. The RWBM with 4 parameters was stable in the fitting process. After 

applying a Gaussian filter to the brain images, parameter maps were almost universally stable 

except some edge voxels. The estimated cell diameter of the tumor cells from the RWBM was 

close to a published work 59, but our model was not able to estimate the length and diameter of 

axons due to hardware restrictions. A high-frequency OGSE that is beyond the capability of our 

scanner should be applied if the axon diameter (~ 2 µm) needs to be estimated, and a very long 

TE that exceeds WM T2 needs to be applied if we investigate the length of an axon (over 100 

µm). However, our accurate estimations of the tumor cell diameter could aid diagnosis and 

prognosis for GBM, and the estimated membrane permeability could also help physicians with 

further pathological validation. Overall, the RWBM is more promising than the other three 

models to help identify physiological features of GBM. 

From the discussion above, all the four models revealed some features of GBM with 

potential diagnostic value that were not reported by conventional MRI. Among the four models, 
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RWBM could directly reveal several pathological features of GBM and showed a stable fit in 

voxels. The RWBM could be a promising model with additional investigation. Further study 

could include optimization that minimizing the b-values used in scan and optimize the frequency 

of OGSE to decrease the scanning time. 

In summary, this work investigated four high-order diffusion models in all three 

dimensions of the parameter space that could be explored in diffusion MRI.  These high-order 

diffusion models possess potential value for GBM that may be beneficial for diagnosis and 

prognosis for GBM in clinics, while the derived parameters could provide insight to plans for 

radiation therapy. 
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Appendix  

The Equations of Sin for Three Bi-polar Diffusion Gradient Waveforms 

 

In the first diffusion gradient waveform shown in Figure 2-1 and initially proposed by 

Fordham et.al 53, symmetric bi-polar diffusion gradients are placed before and after the 180o RF 

pulse.  The gradient function can be expressed as: 

𝑔(𝑡) = {

𝑔, 0 < 𝑥 < 𝛿
−𝑔, 𝛿 < 𝑥 < 2𝛿
𝑔, 𝛥 < 𝑥 < 𝛥 + 𝛿

−𝑔, 𝛥 + 𝛿 < 𝑥 < 𝛥 + 2𝛿

        [A1] 

where g and 𝛿 are the magnitude and duration of diffusion gradient pulses, respectively, and 𝛥 is 

the time interval between the gradient pulses before and after the 180o RF pulse.  Note that the 

diffusion gradient pulse duration is the same for all positive and negative polar gradient pulses.  

This gradient waveform yields Sin in Eq 2.2 as: 

𝑆𝑖𝑛 = 𝑒𝑥𝑝((
𝛾𝑔

𝐷𝑖𝑛
)
2
∑

𝐵𝑛

𝜆𝑛
2

𝑛
𝑖=1 {−12 + 8𝐷𝑖𝑛𝜆𝑛𝛿 + 16𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛𝛿) − 4𝑒𝑥𝑝(−2𝐷𝑖𝑛𝜆𝑛𝛿) −

12𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛∆) + 16𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛∆)𝑐𝑜𝑠ℎ(𝐷𝑖𝑛𝜆𝑛𝛿) − 4𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛∆)𝑐𝑜𝑠ℎ(2𝐷𝑖𝑛𝜆𝑛𝛿)}) 

            [A2] 

 

where 𝜆𝑛and 𝐵𝑛 are the geometric factors related to the shape of cells 45, 𝐷𝑖𝑛 is the intracellular 

diffusion coefficient, 𝛾 is the gyromagnetic ratio.  The b-value of the diffusion pulse sequence is 

given by 

𝑏 =
4

3
(𝛾𝑔)2𝛿3          [A3] 
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In the second diffusion gradient waveform in Figure 2-1, four gradient pulses are placed 

before, after and between two 180o RF pulses. Pulse durations and separations can be tuned to 

minimize eddy currents for a system.  Therefore, all four gradient pulse durations (δi) and time 

intervals between the pulses (Δi) can be different.  A general waveform g(t) is described as: 

𝑔(𝑡) = {

𝑔, 0 < 𝑥 < 𝛿1
𝑔, 𝛥1 < 𝑥 < 𝛥1 + 𝛿2

−𝑔, 𝛥2 < 𝑥 < 𝛥2 + 𝛿3
−𝑔, 𝛥3 < 𝑥 < 𝛥3 + 𝛿4

     

and 𝛿1 + 𝛿2 = 𝛿3 + 𝛿4        [A4]  

where 𝛿𝑖 is the ith gradient pulse duration, and ∆𝑖 is the time interval between the first and i-1 pulse 

gradients (see Figure 2-1).  This bi-polar diffusion gradient waveform results in Sin as: 

𝑆𝑖𝑛=exp((
𝛾𝑔

𝐷𝑖𝑛
)
2
∑

𝐵𝑛

𝜆𝑛
2

𝑛
𝑖=1 {−8 + 2𝐷𝑖𝑛𝜆𝑛 ∑ 𝛿𝑖

4
𝑖=1 + 2∑ exp(−D𝑖𝑛λnδi)

4
i=1 +

2(1 − exp(D𝑖𝑛λnδ1))[−exp(−D𝑖𝑛λnΔ1)(1-exp(−D𝑖𝑛λnδ2)) +exp(−D𝑖𝑛λnΔ2)(1-

exp(−D𝑖𝑛λnδ3))+exp(−D𝑖𝑛λnΔ3)(1-exp(−D𝑖𝑛λnδ4))] + 2(1 −

exp(D𝑖𝑛λnδ2))[exp(−D𝑖𝑛λn(Δ2 − Δ1))(1-exp( − D𝑖𝑛λnδ3))+exp(−D𝑖𝑛λn(Δ3 − Δ1))(1-exp( −

D𝑖𝑛λnδ4))] +2(1 − exp(D𝑖𝑛λnδ3)) exp(−D𝑖𝑛λn(Δ3 − Δ2))(cosh(D𝑖𝑛λnδ4)-1)})  [A5] 

            The corresponding b-value is given by: 

𝑏 = (𝛾𝑔)2[
2

3
(𝛿1 + 𝛿2)

3 + 𝛿1
2𝜏1 + (𝛿1 + 𝛿2)

2𝜏2 + 𝛿4
2𝜏3]      [A6] 

where 𝜏1 = ∆1 − 𝛿1, 𝜏2 = ∆2 − ∆1 − 𝛿2, and 𝜏3 = ∆3 − ∆2 − 𝛿3. 

In a special case of the second waveform, g(t) is described as: 
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𝑔(𝑡) = {

𝑔, 0 < 𝑥 < 𝛿
𝑔, ∆< 𝑥 < ∆ + 𝛿

−𝑔, 2∆< 𝑥 < 2∆ + 𝛿
−𝑔, 3∆< 𝑥 < 3∆ + 𝛿

       [A7] 

in which all diffusion gradient pulse durations are the same, and the gradient pulses are 

placed symmetrically related to the two 180o RF pulses.  Sin is given as: 

  𝑆𝑖𝑛=𝑒𝑥𝑝((
𝛾𝑔

𝐷𝑖𝑛
)
2
∑

𝐵𝑛

𝜆𝑛
2

𝑛
𝑖=1 {−8 + 8𝐷𝑖𝑛𝜆𝑛𝛿 + 8𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛𝛿) + 2(1 −

𝑒𝑥𝑝(𝐷𝑖𝑛𝜆𝑛𝛿))𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛∆)[(1 − 𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛𝛿))(2𝑒𝑥𝑝(−𝐷𝑖𝑛𝜆𝑛∆) + 𝑒𝑥𝑝(−2𝐷𝑖𝑛𝜆𝑛∆)) +

𝑐𝑜𝑠ℎ(𝐷𝑖𝑛𝜆𝑛𝛿) − 1]})          [A8] 

The b-value is given by: 

𝑏 = (𝛾𝑔)26𝛿2[∆ −
1

9
𝛿]          [A9] 
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