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Abstract

Many of the world’s most critical infrastructure systems control the motion of fluids.
Despite their importance, the design, operation, and restoration of these infrastructures
are sometimes carried out suboptimally. One reason for this is the intractability of
optimization problems involving fluids, which are often constrained by partial differential
equations or nonconvex physics. To address these challenges, this dissertation focuses on
developing new mathematical programming and algorithmic techniques for optimization
problems involving difficult nonlinear constraints that model a fluid’s behavior. These
new contributions bring many important problems within the realm of tractability.
The first focus of this dissertation is on surface water systems. Specifically, we intro-
duce the Optimal Flood Mitigation Problem, which optimizes the positioning of struc-
tural measures to protect critical assets with respect to a predefined flood scenario. Two
solution approaches are then developed. The first leverages mathematical programming
but does not tractably scale to realistic scenarios. The second uses a physics-inspired
metaheuristic, which is found to compute good quality solutions for realistic scenarios.
The second focus is on potable water distribution systems. Two foundational problems
are considered. The first is the optimal water network design problem, for which we
derive a novel convex reformulation, then develop an algorithm found to be more effective
than the current state of the art on select instances. The second is the optimal pump
scheduling (or Optimal Water Flow) problem, for which we develop a mathematical
programming relaxation and various algorithmic techniques to improve convergence.
The final focus is on natural gas pipeline systems. Two novel problems are considered.
The first is the Maximal Load Delivery (MLD) problem for gas pipelines, which aims at
finding a feasible steady-state operating point that maximizes load delivery for a severely
damaged gas network. The second is the joint gas-power MLD problem, which couples
damaged gas and power networks at gas-fired generators. In both problems, convex

relaxations of nonconvex dynamical constraints are developed to increase tractability.

xviil



Chapter 1

Introduction

Critical infrastructure, which includes flood control systems, potable water distribu-
tion systems, and bulk energy transport systems, are vital to the physical and eco-
nomic security of modern societies. Despite their importance, the design, operation,
and restoration of these infrastructures are sometimes carried out suboptimally. This
suboptimality may exist for a variety of reasons, including a lack of data to drive the
decision-making process, inaccurate forecasts of infrastructure supply and demand, and
the neglect of tail risks. Another fundamental difficulty, however, resides in the model-
ing of infrastructure systems, even when their behavior can be accurately approximated
using well-established physical relationships. This difficulty is especially apparent for
critical infrastructures that control the motion of fluids, whose dynamics are often cap-
tured by partial differential equations (PDEs) and nonconvex physics. These properties
sometimes render optimization problems in which the physical models are embedded in-
tractable. To address this challenge, this dissertation develops techniques for increasing
the tractability of infrastructure optimization problems for systems that control fluids.

The topic is certainly not new, and the control of large-scale fluid systems has chal-
lenged humankind for millenia. These systems were also the progenitors of civilization.
Even in prehistorical times, humans have required nearby sources of water to survive
and thrive. Around 10,000 years ago saw the beginning of the Neolithic Revolution,
when human culture transitioned from a hunter-gatherer lifestyle to one of agriculture
and settlement [144]. As settled villages began to develop, the control of fluid naturally
followed, with early wastewater drainage systems appearing around 6,500 before Com-
mon Era (BCE) and irrigation systems around 6,000 BCE [48], [127]. These and other



innovations led to the formation of nascent civilizations in the millenia that followed.
Increasing populations in fertile regions over the following years motivated early large-
scale infrastructure development as humans attempted to tame the forces of nature.
Complex urban water supply and sanitation systems began to form in the Indus Valley
around 2,400 BCE, which included underground sewage systems as well as public and
private baths [80]. Early flood myths have been dated around the same time, e.g., the
Great Flood of Gun-Yu, which has physical evidence of having occurred around 1,900
BCE [146]. Narratives of the flood detail the efforts of the early Chinese Xia dynasty
to mitigate the disaster through the contruction of dikes, dams, and canals [32]. These
early examples of water management foreshadowed infrastructure developments to come.
However, infrastructure systems of the present day that control water and other fluids
are not so different from their ancient predecessors. Fundamentally, they channelize or
restrict fluid flow for either delivery or diversion while leveraging the physical forces of
gravity and friction. The advent of interconnected electric power grids in the twentieth
century was perhaps one of the largest paradigm shifts for these systems in millennia.
Readily available energy in the form of electricity allowed for the widespread installa-
tion of water lifting devices (pumps) and the scheduled storage and release of water in
elevated reservoirs. It also motivated the investment in massive infrastructure projects,
including hydroelectric dams and natural gas transmission networks. Finally, to protect
these systems and the growing populations that relied upon them, greater investments
were made to mitigate the negative effects of frequent natural disasters, including floods.
Although humans have made great strides toward curbing the often disorderly nature
of fluids, they have not yet mastered it. Natural disasters like floods, which have plagued
civilization since its inception, continue to pose threats to even the most technologically
advanced societies. Continually increasing and migrating populations require new and
expanded infrastructure systems that are more resilient to change and disruption. The
interconnection and growing interdependencies of these and other systems further ren-
der their optimal management less intuitive and often intractable. These observations
suggest there is much to be learned before full control of these systems can be achieved.
This dissertation suggests that the following millenium will be one in which humanity
becomes capable of fully predicting and controlling the motion of fluids. It serves as
an early effort within an increasingly larger body of literature to interface the ancient

study of fluid dynamics with the more recent but burgeoning fields of mathematical op-



timization and computer science. More specifically, this dissertation develops a variety
of mathematical and computational approaches intended to optimize large-scale infras-
tructure decisions while recognizing the fluid dynamics that constrain them. It studies
three application domains to highlight the importance of developing tailored techniques:
(i) flood mitigation, (ii) potable water distribution, and (iii) natural gas transmission.
At present, optimization tasks involving these domains are challenging for three pri-
mary reasons: (i) the nonconvexity of fluid dynamical constraints, (ii) the combinatorial
nature of decisions and controllable infrastructure elements, and (iii) computational lim-
itations. This dissertation broadly applies two methods to address these challenges. The
first is convex or linear reformulation of the fluid dynamical constraints, which render
the problems more amenable to current optimization technologies. The second is the
restriction of combinatorial and continuous search spaces, which aids in the faster con-
vergence of solution techniques. Both of these approaches will likely remain key for
tractably solving similar fluid-constrained infrastructure problems in the years to come.
The rest of this chapter provides technical foundations for the remainder of this dis-
sertation. To begin, Section 1.1 provides a short introduction to the infrastructure
optimization problems considered herein and the physical models that constrain them.
Specifically, Section 1.1.1 describes models for flood propagation and mitigation; Sec-
tion 1.1.2 describes models for water distribution systems; and Section 1.1.3 describes
models for natural gas transmission systems. Then, Section 1.2 reviews the principles
of mathematical optimization as they pertain to the following chapters. Specifically,
it reviews linear optimization in Section 1.2.1; nonlinear optimization in Section 1.2.2;
mixed-integer linear optimization in Section 1.2.3; and mixed-integer nonlinear opti-

mization in Section 1.2.4. Finally, Section 1.3 briefly outlines the remaining chapters.

1.1. Infrastructure Problems and Fluid Models

This section summarizes the infrastructure optimization problems considered in this
dissertation and the physical models that constrain them. The computational challenges
that arise during the solution of these problems are discussed in Section 1.2. Finally,
although this section provides very brief descriptions of the fluid models we consider, a

more thorough review of the models and their derivations is provided in Chapter 2.



1.1.1. Flood Mitigation Optimization

Chapters 3 and 4 consider optimization problems that aim at minimizing flooding in
predefined critical locations through the placement of structural mitigation measures.
In their most accurate forms, these problems are constrained by the two-dimensional

(2D) shallow water equations, a set of PDEs that model the flow of surface water, i.e.,

oh  (hu)  (hv)

ot = 1.1
ot + ox + ay R(.il?,y,t), ( a)
d(hu) 9 2 1 .y d(huv) OB n2
S+ (hu + g ) + S5 —gh e — g, (11b)

0B n?

d(hv)  O(huv) 0
+ 8_3/ — gm

1
. 2 - 2 —
a1 oz oy (h“ +29h> gh

[v|v, (1.1c)

where h is the water depth, u and v are horizontal velocities, R is a volumetric source
term, g is the acceleration due to gravity, B is the bottom topography (or bathymetric
elevation), and n is the Manning’s roughness coefficient [30]. Even in a simulation

setting, these PDEs are difficult to solve. The optimization problems are of the form

inimize yh,u, 1.2a
B ety )
subject to Constraints (1.1), (1.2b)

where x denotes decision variables not present in Equations (1.1) but implicitly affecting
their solution, and X denotes the set of feasible decisions. Here, X may include practical
constraints, e.g., where mitigation measures may be applied or how measures are linked
to the multiple variables of Constraints (1.1). Nonetheless, Constraints (1.1) present

the greatest computational challenge, as decisions z affect the PDEs’ solution, (h, u,v).

1.1.2. Water Distribution System Optimization

Chapters 5 and 6 consider optimization problems that aim at minimizing the cost of
design or operation of a potable water distribution system. The transport of water in

these systems is physically limited by the “head loss” equations for pipes, which model



energy losses from friction in the steady-state regime. These equations are of the form
Ah=Lrqlq* ", (1.3)

where Ah is the head loss, interpretable as a loss in energy along the pipe, L is the pipe
length, 7 is the pipe resistance, g is the rate of volumetric flow, and « is an exponent
based on engineering approximations. As an example, assuming the water system is
modeled as a directed graph G := (N, A), where NV is the set of nodes (or junctions)

and A is the set of arcs (or pipes), a simplified water system problem is of the form
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where X denotes the set of feasible decisions, neglecting important physical relationships;
n(z,q,h) denotes an arbitrary objective function; h;, i € IV denotes the total hydraulic
head at a node; and d; denotes the (often fixed) flow rate demand at node i € N.
Additionally, the set of arcs incident to node ¢ € N where i is the tail (respectively,
head) of the arc is denoted by d;" := {(i,7) € A} (vespectively, §; := {(j,1) € A}).

In Problem (1.4), Constraints (1.4b) model head loss relationships along pipes and
Constraints (1.4c) model flow conservation at nodes. Although Constraints (1.4c) are
linear, Constraints (1.4b) model nonconvex nonlinear relationships among heads and
flows. Because of this nonconvexity property, as later elaborated upon in Section 1.2,
the head loss relationships represent one of the greatest computational challenges from
an optimization perspective. Another difficulty resides in the discreteness of the feasible

set X'. Addressing these two properties is thus a large focus of Chapters 5 and 6.

1.1.3. Natural Gas System Optimization

Chapters 7 and 8 consider optimization problems that aim at maximizing the delivery
of load in a damaged natural gas transmission system. The modeling of such a system is
highly similar to the modeling of a water distribution system, as in Section 1.1.2. Specif-

ically, the transport of gas in these systems is limited by the “pressure-flow” equations



for gas pipelines, which also model energy losses from friction in the steady-state regime,

similar to the water system engineering Equation (1.3). These are generally of the form

pi —pi = wflfl, (1.5)

where p; and p, are pressures at the inlet and outlet of the pipe, respectively, w is the
mass flow resistance of the pipe, and f is the mass flow rate through the pipe. Assuming
the gas system is a directed graph G := (7, P), where 7 is the set of nodes (or junctions)

and 2 is the set of arcs (or pipes), a simplified gas system problem is of the form

minimize x, f, 1.6a
ninimiz n(z, f,p) (1.6a)
subject to p? —p? = w;;fi; |fw| , V(i,5) € P (1.6b)

S fi=Y fy=d, Vied, (1.6¢)
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where X denotes the (again, discrete) set of feasible decisions, neglecting important
physical relationships; n(x, f,p) denotes an arbitrary objective function; p,, i € J de-
notes the pressure at a junction; and d; denotes the mass flow demand or supply at
1 € 4. Similar to Chapters 5 and 6, Chapters 7 and 8 address the nonconvexity of
Constraints (1.6b) and the discreteness of the set X to yield more tractable problems.

1.2. Principles of Mathematical Optimization

Section 1.1 presented simplified representations of the optimization problems considered
in this dissertation and some relevant physical models that constrain them. There
are two interesting properties that unite these optimization problems. First, the fluid
dynamical constraints are nonlinear and nonconvex. Second, there are often a number
of discrete decision variables that are used to model each problem. In this section, we
thus provide a general background on optimization theory and algorithmic techniques
that can be used to solve combinatorial, nonlinear nonconvex optimization problems. A
hierarchy of these techniques and where they’re applied is illustrated in Figure 1.1.

In general, the subject of optimization is concerned with determining the best solution

to a problem, with respect to predefined criteria, and subject to some set of constraints.
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Figure 1.1: Hierarchy of optimization methods used in this dissertation.

Very broadly, there are two types of solution techniques for solving these problems. The
first are “mathematical programming” methods, which rely on mathematically rigorous
algorithms whose convergence guarantees are typically well-defined for particular prob-
lem classes. Examples are encountered in dynamic programming, linear programming,
and convex programming. We remark that, in mathematical programming, the solution
technique ultimately used depends much on how the optimization problem is formu-
lated. Since there are often many possible formulations for a single optimization task,
deriving a suitable formulation of the problem, which can then be solved via compatible
deterministic methods, is an important step for developing tractable solution techniques.

The second type of solution techniques are “metaheuristic” methods. These algo-
rithms typically provide few or no guarantees on solution quality or, in the case of
many constrained optimization problems, solution feasibility. Examples include evolu-
tionary algorithms, simulated annealing, and other so-called derivative-free techniques
that rely on random perturbations of the decision variables. Although metaheuristics
are capable of providing quality solutions on difficult problems containing tens to hun-
dreds of decision variables, they often suffer on problems of higher dimensionality. As
such, metaheuristics can work well on problems in which (i) a large number of variable
bounds and constraints are satisfied via a “black box” method (e.g., a simulation), (ii)
the remaining number of variables is relatively small, and (iii) remaining constraints are
amenable to being embedded in the objective via functions that penalize infeasibilities.

Because of the lack of solution guarantees associated with metaheuristics, as well as
the many computational advances in mathematical programming that have occurred
over the past few decades, this dissertation focuses primarily on the development of
mathematical programming techniques for the problems that are considered. The ex-

ception is the metaheuristic-inspired algorithm for optimal flood mitigation developed



Figure 1.2: Illustration of a linear program’s feasible region.

in Chapter 4, which is motivated by limitations of the mathematical programming algo-
rithm developed in Chapter 3. Next, we provide a bottom-up overview for various classes

of mathematical programming problems and summarize common solution algorithms.

1.2.1. Linear Optimization

Any linear programming (LP) problem can be written in its canonical form as

minimize clz (1.7a)
subject to Az <b (1.7b)
x>0, (1.7¢)

where ¢ is a vector of fixed cost coefficients, x is a vector of decision variables, A is a
matrix of linear constraint coefficients, and b is a vector of fixed constants. Geometri-
cally, the set of feasible solutions to an LP is represented by a convex polyhedron. An
illustration of such a polyhedron, which is the LP’s feasible set, is depicted in Figure 1.2,
where the variable space is assumed to be of two dimensions. The polyhedron defines
all solutions that satisfy the linear Constraints (1.7b) and bound Constraints (1.7¢).
In mathematical programming, LPs are regarded as “easy” to solve, and modern
algorithms are routinely capable of solving problems containing millions of variables
and constraints. Development of solution techniques for LPs is usually assumed to have

begun with the simplex method of Dantzig in 1947 [43], which traverses vertices of



Figure 1.3: Illustrations of nonlinear program feasible regions.

the LP’s polyhedron. The ellipsoid method, a polynomial-time algorithm that instead
iteratively reduces the size of the solution set, was developed by Khachiyan in 1979 [11].
Finally, interior point methods, which traverse the interior of the polyhedron, began to
increase in efficiency and popularity shortly after the ellipsoid method’s development.
Today, interior point methods are competitive with others when applied to problems of
small size (less than one million variables and constraints) and are without competition
for problems of larger size [63]. Due to the efficiency of LP solvers, LPs often serve as

foundations for formulating or solving more difficult classes of optimization problems.

1.2.2. Nonlinear Optimization

Any nonlinear programming (NLP) problem can be written in its canonical form as

minimize f(z) (1.8a)

ek
subject to g;(x) <0, Vie{l,2,..,m} (1.8b)
hi(r) =0, Vje{l,2,..,0}, (1.8¢)

where I is an open set and g;(v), h;(x) are affine or nonlinear functions. For the
purpose of this dissertation, there are two relevant problem subclasses: convex nonlinear
and nonconvex nonlinear. A convex problem is a variant in which X is a convex set; f(-)
is a convex function; all g;(-) are convex functions; and all h,(-) are affine functions. A
nonconvex problem is one in which any of these functions are nonconvex, or if any h,(-)
is a nonlinear function. Examples of convex and nonconvex feasible sets are illustrated
in Figure 1.3. The left example depicts a convex set and the middle, a nonconvex set.
For many classes of convex optimization problems, several polynomial-time global

solution methods exist, e.g., interior point methods, as discussed in Section 1.2.1. For



nonconvex optimization problems, fewer methods are available and often do not guar-
antee global optimality. Some algorithms, e.g., interior point methods, are capable of
providing locally optimal solutions to nonconvex problems but provide few convergence
guarantees. Other algorithms, e.g., spatial branch and bound (BB), solve a number of
partitioned subproblems and provide solutions within a predefined optimality tolerance.
However, in many practical applications, using accurate convex approximations or tight
convex relazations of nonconvex constraints is often a reliable and efficient approach. An
example of such a relaxation is shown in the last illustration of Figure 1.3. In this disser-
tation, a common theme is using convex approximations and relaxations of nonconvex

physical constraints to render the associated optimization problems more tractable.

1.2.3. Mixed-integer Linear Optimization

Mixed-integer linear programming (MILP) problems can be written as

minimize clx (1.9a)
subject to Az <b (1.9b)
2;>0,Vj€C (1.9¢)
x; €{0,1}, Vj € B, (1.9d)

where € is the index set defining variables that can take on continuous values and 3 is
the index set defining variables that must take on discrete (in this case, binary) values.
An example of a MILP’s feasible region is illustrated in Figure 1.4. Here, the gray
region depicts the set defined by the linear and bound Constraints (1.9b) and (1.9¢).
The points within this gray region depict integer-feasible solutions to the problem.
Generally, MILPs cannot be solved in polynomial time, although several solution
techniques exist. Broadly, there are three types of methods commonly used to solve
MILPs. The first are BB algorithms, which rely on systematically exploring a MILP’s
search space via fixing select binary variables (i.e., branching) and solving continuously-
relaxed subproblems (LPs) that bound the problem’s global solution (i.e., bounding).
The second are cutting plane algorithms, which solve continuous relaxations (LPs) to
computationally derive valid linear inequalities. After a sufficient number of inequalities

have been appended to the problem, solving the resultant continuously-relaxed MILP
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Figure 1.4: Illustration of a mixed-integer linear program’s feasible region.

yields its integer-feasible global optimum. The final type of methods are heuristic algo-
rithms, which aim at determining low-cost but not necessarily globally optimal solutions
to Problem (1.9). In practice, modern commercial MILP solvers, which this dissertation

relies heavily upon, combine all of these techniques to solve challenging problems.

1.2.4. Mixed-integer Nonlinear Optimization

Mixed-integer nonlinear programming (MINLP) problems combine the nonlinear aspects
of Section 1.2.2 and the discrete aspects of Section 1.2.3. A MINLP can be written as

minimize f(z) (1.10a)
el

subject to g;(x) <0, Vie{l,2,...,m} (1.10Db)

hi(x) =0, Vje{1,2,..,6} (1.10¢)

z, € {0,1}, Vk € B. (1.10d)

Similar to the classifications of NLPs in Section 1.2.2, MINLPs can be either mized-
integer convex programming (MICP) problems or mized-integer nonconvexr nonlinear
programming (MINCP) problems depending on the nature of the set X', the convexity of
gi(+), and the linearity of h;(-). Figure 1.5 illustrates examples of three relevant feasible
sets: (i) the feasible set of an MICP, (ii) the feasible set of a MINCP, and (iii) the feasible
set of one possible MILP relazation of (ii). Similar to Figure 1.4, gray represents each

set bounded by functional constraints, and circles depict integer-feasible points.
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Figure 1.5: Illustrations of mixed-integer nonlinear program feasible regions.

Methods that solve MINLPs are often descendents of techniques discussed in Sections
1.2.2 and 1.2.3. For example, to address nonconvex nonlinearities in a MINCP, convex
relaxations can be employed to formulate a more tractable MICP. If the problem is
an MICP, nonlinear BB, in which MICP subproblems are continuously-relaxed convex
programs, can then be used to determine a globally optimal solution. Similarly, valid
inequalities can be derived from solutions to NLP subproblems to develop cutting plane
algorithms. In practice, modern MINLP and MICP solvers often lack the reliability
and efficiency of modern MILP solvers, unless the MINLP is of a specific subclass (e.g.,
mixed-integer quadratic). As such, many techniques rely on successive linear approxi-
mations or relaxations of the MINLP to better leverage more efficient MILP techniques.

All of the problems considered in this dissertation, described at high levels in Section
1.1, are MINCPs and thus of generally high difficulty when compared to other applied
problems. First, the primary sources of nonlinear nonconvexity arise from modeling
the physical dynamics of these infrastructure systems. There are also two sources of
discreteness in these problems that render them mized-integer. The first are system
components that must be controlled via discrete decisions and affect system dynamics
(e.g., the opening or closing of a valve). The second are discrete decisions that pertain
to the optimization objective (e.g., the placement of a flood barrier or the addition of
a network design component). Addressing the nonconvex and discrete aspects of these

problems in order to make them tractable is a large technical focus of this dissertation.

1.3. Dissertation Overview

The remainder of this dissertation details the several optimization applications depicted

in Figure 1.6. However, prior to describing the novel contributions of Chapters 3-8,
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Figure 1.6: Hierarchy of critical infrastructure applications in this dissertation.

we begin with a thorough review of the fluid dynamical models that constrain these
applied problems for the interested reader. That is, in Chapter 2, we describe and
derive all relevant fluid dynamical approximations used in the rest of this dissertation.
These derivations expand upon the very brief model descriptions provided in Section
1.1. Chapter 2 is thus intended to provide physical justification for the infrastructure
models we consider thereafter. For the reader who is only interested in the optimization
aspects of this dissertation, Chapter 2 can be skipped without overall loss of context.
The rest of this dissertation is broadly divided into the three parts depicted in Figure
1.6. The first part comprises Chapters 3 and 4, which describe techniques for solving
the Optimal Flood Mitigation Problem (OFMP), previously outlined in Section 1.1.1.
Chapter 3 introduces and formulates a first version of the OFMP. To solve the problem
using modern MILP technologies, a linear approximation of the flooding dynamics is
developed, and MILP models of the resultant OFMP, with the linearized flood prop-
agation dynamics embedded, are then empirically compared. Although the linearized
flood models are shown to be good approximators of the 2D shallow water equations,
the optimization methodology is found to be incapable of scaling to realistic scenarios.
To address OFMP scalability, a metaheuristic-based optimization approach is devel-
oped in Chapter 4. Three variants of this method are then compared: (i) a direct
approach using only derivative-free optimization, (ii) an augmented approach using
properties of the fluid’s path to restrict the search space, and (iii) a sequential ap-
proach. The latter two techniques are found to be successful, allowing the algorithm

to efficiently compute good solutions to realistic, large-scale OFMPs. Moreover, unlike
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Chapter 3, the algorithm of Chapter 4 (i) solves the 2D shallow water equations, (ii)
uses a continuous representation of the decision space instead of a discrete one, and (iii)
makes soft structural mitigation decisions, including the positions of revegetation sites.
The next part of the dissertation comprises Chapters 5 and 6, which both concern
the optimization of potable water distribution systems. Chapter 5 considers the wa-
ter network design problem, which contains nonconvex head loss functions and discrete
resistance choices with varying costs. Traditionally, to resolve the nonconvexities of
this problem, relaxations of the head loss constraints have been applied to yield a more
tractable MICP. However, design solutions to these relaxed problems may not be fea-
sible with respect to the full nonconvex physics. In this chapter, it is shown that, in
fact, the original MINCP can be reformulated exactly as an MICP. Using this MICP as
a foundation, a global optimization algorithm is developed, leveraging heuristics, outer
approximations, and feasibility cutting planes for infeasible designs. Finally, the algo-
rithm is compared against the previous state of the art in network design over a number
of standard benchmarks, showing large improvements on moderately-sized instances.
Chapter 6 then addresses a separate but similar problem related to the optimal oper-
ation of potable water distribution systems. Unlike Chapter 5, the problem of Chapter
6 does not concern design decisions but instead scheduling decisions for controllable
components in the network (e.g., the activation and deactivation of pumps). The dis-
crete nature of these controls and the temporal evolution of the network complicate the
scheduling problem considerably in several unique ways compared to the design problem.
To address these difficulties, the chapter aims at developing tractable, relaxation-based
solution techniques for the problem. Compared to the literature, it develops new pre-
processing and algorithmic methods to improve upon limitations of the current state of
the art. These new formulations and techniques are then empirically compared across
three small- and moderately-sized water network instances with different structures.
The next part of the dissertation comprises Chapters 7 and 8, which consider natural
gas transmission systems. To address the operational challenges arising from system
disruptions, Chapter 7 considers the task of determining a feasible steady-state operating
point for a damaged gas pipeline network while ensuring the maximal delivery of load.
We formulate the mixed-integer nonconvex MLD problem, which proves difficult to
solve on large-scale networks. To address this challenge, we present an MICP relaxation

of the MLD problem and use it to determine bounds on the transport capacity of
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a gas pipeline system. To demonstrate the effectiveness of the relaxation, the exact
and relaxed formulations are compared across a large number of randomized damage
scenarios on nine natural gas pipeline network models ranging in size from tens to
thousands of junctions. A proof-of-concept application, which assumes network damage
from a set of synthetic earthquakes, is also presented to demonstrate the utility of the
proposed optimization-based capacity evaluation in the context of risk assessment for
natural disasters. For all but the largest network, the relaxation-based method is found
to be suitable for use in evaluating the impacts of multi-contingency network disruptions.
Chapter 8 then provides an important extension of Chapter 7, wherein the interde-
pendencies between gas and power grids are explicitly considered. Although typically
operated independently, coordination of these systems during severe disruptions can al-
low for targeted delivery to lifeline services, including gas delivery for residential heating
and power delivery for critical facilities. To address the challenge of estimating maxi-
mum joint network capacities under such disruptions, we consider the nonconvex joint
gas-power MLD problem. Similar to Chapter 7, to increase its tractability, we present an
MICP relaxation of the joint problem. Then, to demonstrate the relaxation’s effective-
ness in determining bounds on network capacities, exact and relaxed MLD formulations
are compared across various multi-contingency scenarios on nine joint networks ranging
in size from tens to over a thousand nodes. The relaxation-based method is observed to
accurately and efficiently estimate the impacts of severe joint network disruptions
Finally, Chapter 9 concludes the dissertation. Here, we reflect on the commonalities
of Chapters 3-8 and the theoretical and computational challenges encountered therein.
Specifically, we describe the benefits and limitations of approximation- and relaxation-
based optimization techniques for critical infrastructure problems that include fluid
dynamical constraints. We also reflect on the lack of general optimization techniques
that can efficiently handle these constraints. Finally, we describe the possible futures of
both computational fluid dynamics and mathematical programming and how advances

in each could potentially improve upon the work considered in this dissertation.
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Chapter 2

Fluid Dynamics Background

The applications of fluid dynamics are numerous, ranging from the simulation of mi-
crofluidic devices to global-scale climate phenomena. An overview of the fluid models
used in this dissertation is illustrated in Figure 2.1. Fundamentally, almost any ap-
plication involving liquid or gas flow could be modeled from first principles using the
conservation laws of mass and momentum described in Section 2.1. However, for prac-
tical or computational reasons, approximations of these equations must often be used
in their place. For most “simple” (or Newtonian) fluids, the Navier-Stokes equations
serve as an excellent approximation. These equations are derived from first principles
in Section 2.2. In the context of large-scale flooding, even these equations are compu-
tationally prohibitive. As such, the 2D shallow water equations, which are used in the
later flood modeling efforts throughout Chapters 3 and 4, are derived in Section 2.3.
Unlike the 2D shallow water equations, there are several important fluid dynamical
models, which have emerged for either practical or historical reasons, that are not fully
derivable from first principles. One important subset comprises models of steady-state
incompressible flow through a circular pipe. These models are ultimately empirical
approximations of the Navier-Stokes equations under very strict assumptions. To ap-
preciate their lines of derivation, the Euler equations are derived as an approximation
of the Navier-Stokes equations in Section 2.4. The Bernoulli equation is then derived
from the Euler equations in Section 2.5. This equation gives rise to the multiple pipe
flow engineering equations that are subsequently derived. Pipe flow models for water
distribution systems are first discussed in Section 2.6 and provide the physical founda-

tions for Chapters 5 and 6. The pipe flow models for natural gas pipeline systems are
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Figure 2.1: Hierarchy of fluid dynamical models considered in this dissertation.

described in Section 2.7 and provide the physical foundations for Chapters 7 and 8.
The following derivations of conservation laws, the Navier-Stokes equations, and the

shallow water equations are adapted from [44]. Euler and Bernoulli equation derivations

are adapted from [109]. The discussion of pipe flow equations for water is based on [21].

Finally, derivations of pipe flow equations for gas are adapted from [102, Chapter 4].

2.1. Conservation Laws

Consider an arbitrary control volume 2. Mass conservation within €2 is defined by

d

— pdV:—/ (pv) -ndA, (2.1)
dt Jo, 00

where p is the fluid’s density, v = (u,v,w) is the fluid’s velocity, and n is the unit

normal vector of the surface 0€2. Using this relation, applying Gauss’s theorem gives

%/g dV:—/QV-(pV)dV. (2.2)

Then, applying the Leibniz integral rule (and the fact that € is arbitrary) gives

/Q[%—I—V-(pv)] dV:Oz>%+V-(,0V):O. (2.3)
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This is the canonical mass conservation equation for a compressible fluid [44].

Again letting () denote a control volume, conservation of linear momentum requires

4 deV:—/ (pv)v-ndA+/pde+/ TndA, (2.4)
dt Jo, o0 Q o0

where b is the force acting throughout the volume of the fluid and T is the stress tensor
of external contact forces. That is, the second term on the right-hand side denotes body
forces acting on €2, and the last term denotes external forces acting on the surface 0f2.

Applying Gauss’s theorem to the previous linear momentum Equation (2.4) then gives

d
—/pvdV—i—/V~(,ovv)dV—/pde—/V'TdV:O. (2.5)
dt J, o) Q Q

Applying the Leibniz integral rule gives

/Q [%(/)V) +V .- (pvv) —pb—V. T] dV = 0. (2.6)

Again, similar to the mass continuity equation, since €2 is arbitrary, this simplifies to

0
E(pv)%—v‘ (pvv) —pb—V - T =0, (2.7)

which is the canonical momentum conservation equation for a compressible fluid [44].

2.2. The Navier-Stokes Equations

The Navier-Stokes equations are a set of PDEs that accurately describe the motion of
viscous fluids. They are used to model a variety of important phenomena in science and
engineering, including water flow through a pipe and air flow around an obstacle [100],
[106]. To obtain these PDEs from Equations (2.3) and (2.7), various assumptions are
made concerning the fluid, the fluid’s density p, the body forces b, and the stress tensor

T. To begin, we first assume that gravity is the only relevant body force b, i.e.,

pb = pg, (2.8)

18



where g is the gravitational force that acts upon the fluid. We also assume that the fluid

is Newtonian (as is typical of water and air, for example), which implies the relationship

T:=—pI+T, (2.9)

[R3><3

where p is termed the “static-fluid pressure” and T € is the viscous stress tensor.

Finally, we assume that the flow is incompressible. This implies p is constant within a

small element volume dV that moves with the flow velocity. With the given assumptions,

the three-dimensional (3D) Navier-Stokes equations are then traditionally written as
V-v=0, (2.10a)

0 _

gy (pv)+ V- (pvv) =—Vp+pg+ V- T. (2.10Db)

Expanding the previous notation over all four spatiotemporal dimensions gives

ou Ov Ow

5 oyt a0 (2.11a)
2
8((5:) N 8(§Z ) 3(g;w) N 3(/(;@:10) _ 3(%533— p) 8(;;1/ n ‘9(;?, (2.11b)
) _
6(;:) N 8(§;w) N 3(g;} ) 4 3(27:0) _ a;;y n 8<Tygy p) + a;zz, (2.11c)
8(8,0:1) N 8(27;11)) n 3(;;1;10) n 3(21:2) — —pg+ ag;z + 8;22 + 8(7—252_ p). (2.11d)

These PDEs constitute the general Cartesian form of the Navier-Stokes equations.

2.3. The Shallow Water Equations

The 2D shallow water equations are a set of PDEs derived from the Navier-Stokes
equations under the assumption that horizontal length scales are much larger than
the vertical scale. This is a reasonable assumption for modeling large-scale floods,
where water depths are much smaller than typical flood wavelengths [71]. Prior to the

PDESs’ derivation, we introduce h(x,y,t) to denote the total depth of the water column,
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B(x,y) to denote the bathymetric height below the water column, and n(z,y,t) :=
B(z,y) + h(z,y,t) to denote the free surface elevation of the water column. We begin

with four boundary conditions applied at the “bottom” surface, z = B, i.e.,

u(x,y, B,t) =v(z,y, B,t) =0, (2.12a)
OB 0B

- - =0 2.12b

Us + U@y +w , ( )
0B OB

Tg — wa% - Txya—y Ty, = O, (212(3)
OB OB

TS — Tya gy Tyya—y —7,.=0. (2.12d)

Here, Equation (2.12a) is the “no-slip” boundary condition, where adhesive forces be-
tween the fluid and the boundary are assumed to be greater than the cohesive forces of
the fluid at the boundary. Equation (2.12b) is the “no normal flow” condition, which
prohibits fluid from traveling through the boundary. Finally, Equations (2.12¢) and
(2.12d) are the “bottom shear stress” conditions, where 7% and 7% are predetermined.

As with the bottom, at the “free surface” (z = ), we apply three boundary conditions:

p(z,y,m,t) = Py, (2.13a)
on  on  On
o tug v —w= 2.13b
ot oy Ty 00 (2.13b)
on on
- = — —T7,,=0 2.13
Tn+7-:cxam+7-:cyay Tz ) ( C)
T#+Tym@+7 @—TZZO. (2.134d)

O v gy Yy

In this set of conditions, Equation (2.13a) enforces constant atmospheric pressure, p,, at

the fluid’s surface, Equation (2.13b) prohibits relative flow that is normal to the surface,

and Equations (2.13c) and (2.13d) model the horizontal shear stresses at the surface.
Equation (2.11d) represents the Navier-Stokes z-momentum equation. Using the as-

sumptions that the vertical velocity is small and that only the pressure derivative and
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gravitational terms are substantial, the z-momentum equation then reduces to

Op
£ — . 2.14
5, =PI (2.14)
This implies that
n
p=g/ pdz = pg(n—2) +p,. (2.15)

This is the distribution of hydrostatic pressure for a column of water. It follows that

dp  On
ox ~ Poy (2.16a)
dp  On

We have assumed that vertical velocity is small and that the exchange of vertical
momentum is negligible. Furthermore, we know the pressure increase is linear with
depth (making the flows along a column parallel). Thus, we can now “depth-average”
the system of equations to remove a dimension, i.e., integrate everything from z = B to

7. Integrating the Navier-Stokes continuity Equation (2.11a) from z = B to z = n gives

"rou O
/B <% + 8_y> dz + w|ZZ77 — w‘z:B =0. (2.17)

Applying the Leibniz integral rule to Equation (2.17) gives

n n B
i/ udz+2 vdz—<u| @—ul 8—)—
ox Jg 0y Jg z=nQx z=B Qx (2.18)
<v‘ @—U‘ 6—B>+w| —w‘ =0 |
z=n 6y 2=B 6y z=n 2=B )
Additionally, the depth-averaged horizontal velocities, u and v are defined as
1 n n
u:—/ udz = hu:/ udz, (2.19)
h Jg B
1 n n
17:—/ vdz = hﬁz/ vdz. (2.20)
h Jg B
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Finally, applying boundary conditions to the continuity Equation (2.18) gives

oh N d(hu) N d(hv)
ot ox oy

= 0. (2.21)

Next, we simplify the z-momentum Equation (2.11b) for the Navier-Stokes equations.

Assuming that density p is constant and integrating the left-hand side over depth gives

"Tou  Ou?  Ouv Ouw d(hu)  O(hu?)  O(huv)
— = 2.22
/Blat+ax+ay+az]dz o o Ty T 22

where the latter (---) are differential advective terms, often neglected in geophysical

Op __

modeling [55]. Integrating the right-hand side over depth and recalling 32 = pg% gives

0 o [" o ["
B B

T

Note that a similar procedure may also be applied to the y-momentum equation.

Finally, combining the continuity, x-momentum, and y-momentum equations gives

oh  d(ha)  A(hv)

ot ox Oy =0 (2.24a)
d(ha) A(hu?) A(huv)  dn 1. .
ot T o T ey = gyt lmoTht R (2.24b)
O(hv) | d(huv) & O(hv?) o 1.,
=—gngn T [T F,|. 2.24
ot + ox + oy gh&y T p [T” B+ y] ( c)

In the case of 2D flood modeling, which is considered in Chapters 3 and 4, F, and F,
are typically neglected. Note that there are several practical benefits of modeling floods
using the 2D shallow water equations over the full 3D Navier-Stokes equations. Most
importantly, the model requires only two spatial dimensions, providing a substantial
computational advantage. Furthermore, the equations are easily parameterized using
initial conditions that can be derived from readily available data, e.g., the bathymetric

profile B(x,y), surface stress models 7Y (z,y), and local bed friction 757 (z, y).
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2.4. The Euler Equations

The Euler equations are an approximation of the Navier-Stokes equations under the
assumption that the fluid viscosity is negligible (or inviscid). This implies that all

elements of the viscous stress tensor, T, in Equation (2.9) are equal to zero, yielding

V.v=0, (2.25a)

0
5 (pv) + V- (pvv) = =Vp + pg. (2.25b)

Then, assuming the fluid’s density p is constant and spatially uniform yields

V.-v=0, (2.26a)
ov 1
— +V.-(vw)=—-Vp+g. 2.26b
5 V(W)= Vnie (2.26b)
These are the incompressible Euler equations with constant and uniform density. Finally,
assuming that velocity is constant over time, factoring the momentum equation using

the result of the continuity equation, and expanding vector notation then yields

ou Ov Ow
or + a—y + F 0, (2.27a)
ou ou ou 10p

ov ov ov 10w

T L Yy 2P 2.27d
u@x+v3y+waz p Oz 4 (2.27d)

which are the steady-state incompressible Euler equations in three spatial dimensions.

2.5. Bernoulli’s Equation

Bernoulli’s principle in fluid dynamics states that an increase in fluid speed occurs simul-
taneously with a decrease in static pressure or potential energy. To obtain Bernoulli’s

equation, we are interested in integrating Equations (2.27b)-(2.27d) over a streamline,
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i.e., the path that a fluid element will travel within a fixed velocity field. Applying a
number of differential transformations and integrating over the streamline then yields

1 1
p1+ 5PIV1!2 + pgz, = py + §f)|V2|2 + pgzs, (2.28)

where the subscripts 1 and 2 correspond to streamline positions x; and x,. Equation
(2.28) is the traditional form of Bernoulli’s equation without energy losses. In practice,
the friction between the material containing the fluid and the fluid itself contributes to

losses in energy. This gives rise to an empirical extension of the Bernoulli principle,

vil® | p ) <|Vz|2 Pa ) Py Po
Ah:< + L4z | — +=+2 %(—4—2)—(——1-2), 2.29
29 pg 29 pg pg ! og T2} (2%)

which is appropriately termed the “energy equation.” Here, Ah is the loss in total

hydraulic head (or “head”) from friction. When analysis is limited to flow through
a pipe with constant cross-sectional area, the velocities are approximately equal, and
the right-hand side is used instead. However, Equation (2.29) is not predictive unless
all variables on the right-hand side are known a priori. This would require detailed

knowledge of the relationship between the pressures in a pipe at a specific flow rate [21].

2.6. Incompressible Flow of Water Through a Pipe

Engineering design requires a relationship that predicts Ah as a function of the fluid,
velocity, pipe material, and pipe diameter. Engineering efforts to determine such an
empirical relationship appeared to have begun in earnest around 1770 with Antoine

Chézy and culminated in 1845 with Julius Weisbach, who proposed the relationship

fL v?
Ah = ——, 2.30
D 3 (2.30)
where f is the “friction factor,” L is the pipe length, D is the pipe diameter, and v is the
fluid velocity. In 1857, Henry Darcy proposed an accurate method for determining f as a
function of pipe roughness and pipe diameter, which was then continually improved as a
function of the fluid’s Reynolds number over the twentieth century [21]. The combination

of Equation (2.30) and Darcy’s findings on f gave the equation its moniker, the Darcy-
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Weisbach equation. The form of the equation used throughout this dissertation is

_ 8Lfqlq]

where ¢ is the volumetric flow rate (or flow) and Ah is directed based on the sign of q.
For all of its empirical advantages, the Darcy-Weisbach equation did not garner
widespread approval among engineering practitioners until after publication of the Moody
diagram in 1944. This diagrammatic approach allows for the easier selection of f depend-
ing on properties of the fluid and pipe, which aided engineers prior to the Computer Age.
Before this time, and even up until the present day, engineers have used an empirical

approximation to the Darcy-Weisbach equation, termed the Hazen-Williams equation:

B 10.7Lq\q|0'852

Ah = ,1.852 )4.8704 (2‘32)

where 10.7 is a constant in standard units and x is the pipe’s roughness, which depends
on material properties. Note that unlike f in Equation (2.31), x in Equation (2.32) is
instead treated as a fixed constant, which certainly aided in its adoption throughout
the earlier twentieth century. However, this constant approximation also implies greater
limitations: the equation is typically only applicable to water in a turbulent flow regime,
and past studies on its applicability have suggested the equation is limited to cases in
which the pipe diameter is larger than 5 cm and the velocity is less than 3 m/s [101].
In this dissertation, the incompressible head loss Equations (2.31) and (2.32) are both
considered. Since the application in which they’re used typically satisfies the turbulence,
pipe size, and fluid velocity assumptions, i.e., steady-state potable water distribution
system optimization, the Hazen-Williams approximation is considered valid in this con-
text. However, because the assumption of a friction factor f that depends on the fluid’s
Reynolds number entails greater nonlinearity in the Darcy-Weisbach equation, f is often
assumed to be fixed in optimization applications [61], [140]. Using the assumption of a

constant f, when all terms but Ah and ¢ are fixed, both head loss forms reduce to
Ah = Lrq |q|0‘71 . (2.33)

Here, « is the exponent required by Equation (2.31) or (2.32) (i.e., 2 or 1.852, respec-
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tively), and r is the resistance per unit length. The resistance per unit length comprises
all non-length constants in Equations (2.31) and (2.32) and is in units of (m3/s)~®. We

consider this standard, general form of pipe head loss throughout this dissertation.

2.7. Incompressible Flow of Gas Through a Pipe

Consider a 2D variant of Equation (2.29) where the pressure p at a distance x from the
inlet of a pipe changes to a pressure p + dp at a distance x 4+ dz from the inlet of the
pipe. Similarly, let z and the velocity u also change across the differential element dux.

Assuming the fluid density is constant, Bernoulli’s energy equation is then written as

2 2
dh:<u_+£+z>_<(u+du) —|—p+dp+z+dz>. (2.34)
29 ' pg 29 Pg

In a gas pipeline, the head loss due to friction across the element dx is accurately

modeled using a differential form Weisbach’s relationship in Equation (2.30), namely

fu?

dh = = .
D 2g o

(2.35)

Assuming any change in velocity is small, Equation (2.34) can then be rewritten as

_ fou?
dp = oD dz + pgdz. (2.36)

Assuming mass flow continuity along the pipe, i.e., pu = p;uq, it can be deduced that

u= %ul and p = z%pl' Substituting these relationships into Equation (2.36) gives

2

f p
—pdp = Eplplufdgc + p—lplgdz. (2.37)

The thermodynamical equation of state for a gas that relates pressure and density is
p1 = ZRTp,, (2.38)

where Z is the gas compressibility factor, R is the individual gas constant, and T is the
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average temperature. This relationship allows for the rewriting of Equation (2.37) as

A O I
oD"171 ZRT

— pdp = gdz. (2.39)

Letting n denote quantities at standard pressure and temperature, continuity guarantees

P24z

Pt = Pnlin = 5 aya (2.40)

where g,, is the volumetric flow rate at standard conditions. Equation (2.39) reduces to

_ 8ZRTfp?

2
Pav
- pdp - 7T2_D5

2
d
WAT+ 7 pr

gdz, (2.41)

where the pressure in the elevation term is assumed to be the average pressure, p,,.
via R = R,;, /S,

where S is termed the specific gravity of the gas, and where S = p,, /p,;, ,- This implies

_ _Spy
pn_R T

air+n

Next, the gas constant R is related to the gas constant for air, R, air

. Substitution of this relationship for p, within Equation (2.41) then yields

2
PavS
dx+ZR ngz. (2.42)

2
8781
—pdp = I 2 (pn>

™Ry DY\ T,

air

Finally, integrating this equation from z =0, p = p; to x = L, p = p, then yields

2
toig = SLESTE g (22)" ) AS
T’I’l

—p2 = 4
o P2 712}%&11"1)5 o ZRairTgh’ (2 3)

which is a rewriting of the canonical general flow equation for steady-state gas flow [102].

Assuming a horizontal pipe, the elevation term is zero, and Equation (2.43) becomes

2

pi—pi = (2.44)

2R D\ T

n

16LZSTf (pn>2

air
Letting p,, denote the mass flow rate (i.e., p,,q,,), Equation (2.44) can be rewritten as

2 2 __ ]‘6LZRairTf 2

16LZRTf
b1 —P2 = W25D5 My, 3= 2

— pE—p} = = hl (2.45)
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In practice, however, the gas industry uses several approximations of this equation,
primarily based on assumptions of the friction factor f. Omne of the most common
approximations is the Weymouth equation, which is typically only valid in high-pressure

gas transmission networks that operate in the fully-turbulent flow regime. It assumes

\/; =CDYE = f=(CD'SE)™2, (2.46)

where C'is a constant and F is the pipe’s efficiency factor, which typically varies between

0.8 and one, depending on pipe’s roughness. Substitution in Equation (2.45) yields [102]

,  16LZRT

P T gD (247)

Other approximations are based on the Colebrook-White equation, which is an em-
pirical relation that expresses f as a function of the fluid’s Reynolds number and the
pipe’s relative roughness. In the turbulent regime, f can be computed via an explicit

approximation of the Colebrook-White equation for turbulent flow, presented as [148]

f= [210g <¥>}_2, (2.48)

where € is used to denote the absolute roughness of the pipe (in units of length).
No matter the approximation used for f, the general form of the pressure-flow rela-

tionship for modeling losses in high-pressure gas pipelines is conveniently written as

pt —p3 = Lrug, (2.49)
where r is the resistance per unit length of the pipe. Similar to the head loss Equation
(2.33) for water flow through a pipe, the resistance per unit length comprises all non-
length constant terms in Equation (2.45) and is defined a priori in units of m—3s72. We

consider this the standard form of gas pipeline pressure loss throughout this dissertation.
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Chapter 3

Optimization of Structural Flood
Mitigation Strategies Using
Mixed-integer Linear

Approximations

Throughout human history, water-related natural disasters, e.g., the Johnstown Flood of
1889, the Great Mississippi Flood of 1927, and Hurricane Katrina in 2005, have resulted
in tremendous human suffering and economic consequences. While the causes of these
disasters vary (e.g., hurricanes, dam failures, or excessive rainfall), all are characterized
by the phenomenon of flooding, i.e., the undesired flow of water into areas that are
usually not submerged. As a result of the frequent and negative outcomes associated
with floods, societies have historically invested considerable resources into controlling
and preventing their occurrence. Despite these efforts, mitigation decisions can often
be viewed as suboptimal in hindsight. As such, the optimal management of flood risk
continues to be a perennial and ever-evolving topic of great importance [49], [103], [107].

Modern flood risk management (FRM) is a continuous process of identifying issues,
defining objectives, assessing risks, appraising options, implementation, monitoring, and
review. Within this framework, risk assessment is regarded as a cyclic process that
includes the design and evaluation of alternative management strategies. Such strate-
gies commonly include both “hard” and “soft” structural mitigation measures, e.g., the

construction of dams (hard) and wetland storage (soft) [122]. Measures can also be
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temporary (e.g., sandbags) or permanent (e.g., levees). However, for complex scenarios,
the number of feasible strategies is extremely large and practically difficult to explore.
As such, the manual design and assessment of these strategies, whether conducted in
a real-world or simulation-based setting, can be time-consuming and expensive. This
limitation may result in vastly suboptimal FRM strategies. To aid in the FRM process,
an optimization-based decision support approach for proposing structural mitigation
designs can serve as a useful tool within the overall risk assessment phase of FRM.

To this end, this chapter, which is based on [132], introduces an optimization-based
technique for proposing the placement of hard structural mitigation measures. The
formulation of the problem begins from an intuitive understanding of flood propagation.
Specifically, one of the most influential factors in flooding is the shape of the ground
surface (or topography). As an example, under the influence of gravity, water naturally
flows downhill and around areas of higher topographic elevation. Topography can, of
course, be adjusted through the construction of permanent or temporary structural
measures. This chapter thus proposes the OFMP, a difficult optimization problem that
aims at mitigating a flood by adjusting topographic elevation. Its goal is to select the
positioning of hard structural measures, e.g., sandbags or levees, to protect predefined
locations of critical assets and/or to enable the evacuation of threatened populations.

The OFMP is an inherently difficult optimization problem. Since structural barriers
divert flow, it is critical to accurately model the flood’s propagation, which is well-
captured by hydrodynamic simulations that solve the 2D shallow water equations. As
described in Section 2.3, these PDEs express mass and momentum conservation along
two horizontal dimensions at every point in space and time. In practice, these PDEs
are discretized over space and time, resulting in a set of nonlinear equations of high di-
mensionality. In addition, the OFMP aims at choosing the position of barriers in space,
introducing additional sources of nonconvexity and combinatorial challenges. However,
unlike many control-related optimization problems, the OFMP optimizes only the ini-
tial conditions. Flood propagation is predetermined once initial conditions have been
selected, i.e., there are limited opportunities to modify a flood’s behavior once the to-
pography is adjusted. This observation provides the key intuition for our contribution:
the development of a principled approach for approrimating the response of a flood to
changes in topography that is tractable when using current optimization technology.

The primary novel contributions of this chapter are summarized as follows:
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e The formalization of the OFMP problem, integrating simulation and optimization;

e The derivation of linear lower and upper approximations to 2D flood PDEs;

o The definition of optimization models for the OFMP using these approximations;

o Empirical results that highlight the accuracy and tractability of the approximations

and demonstrate the potential of applying optimization technology in this area.

The derivation of linear approximations to flood propagation is a critical step in bring-
ing the OFMP within the realm of optimization tractability. Our results show that
these approximations can provide reasonable estimates of flood extent and water depth
using the historical Taum Sauk dam failure as an example. The empirical results also
demonstrate the potential of optimization technology on small, contrived case studies.

It is important to emphasize that the literature associated with optimizing the loca-
tions of barriers for flood mitigation is limited. To the best of our knowledge, aside from
the work of this chapter and of Chapter 4, the closest related work is [76]. There, the
authors propose an interdiction model for flood mitigation and develop flood surrogates
from simulation data to serve as proxies for calculating flood responses to mitigation
efforts. However, these surrogates do not define strict relationships with the original
PDEs. In contrast, this chapter develops dynamic approzimations of the lood PDEs.

A number of studies consider simulation-optimization approaches for reservoir oper-
ation, where the PDEs associated with the flood dynamics are treated as a black box.
An extensive literature review of these studies can be found in [27]. The work described
by [38] considers the full PDEs, but their focus is on optimizing normal operations of an
open-channel system. Finally, the problem of optimizing dike heights with uncertainty
in flooding estimates is considered by [19]. However, in their study, the PDEs for flood
propagation are not considered, and probability models for maximum flood depths are

used in place of deterministic physical models. Our work considers deterministic models.

Chapter Overview The rest of this chapter is organized as follows: Section 3.1 dis-
cusses the background of flood modeling; Section 3.2 presents the linear flood relaxations;
Section 3.3 introduces the OFMP and proposes an optimization model exploiting these

relaxations; Section 3.4 gives empirical results; and Section 3.5 concludes the chapter.
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3.1. Background

The Two-dimensional Shallow Water Equations As described in Section 2.3,
the 2D shallow water equations are a system of hyperbolic PDEs increasingly used to
accurately model flooding phenomena. With advances in high-performance computing
over the past two decades, numerical solutions to these equations have recently become
tractable for large-scale simulation problems. They are especially useful in the context
of urban flooding, where one-dimensional models often fail due to increased topographic
complexity. Neglecting select terms of Equations (2.24) while including bottom slope,

bottom friction, and volumetric sources, the 2D shallow water equations are written as

oh  O(hu) 0(hv)

a + ox + ay = R(Ib,y,t),
d(hu) 0 5 1 2) 0(huv) oB 1"
9 - - g2 T 1
5 + e (hu + 2gh + 3y ghagj = (3.1)
oB 1Y

d(hv)  O(huv) 0 5 1 2)_
o + 97 +8y(lw —|—2gh = —gh ,

where h is the water depth, u and v are horizontal velocities, B is the bottom topography
(or bathymetric elevation), g is the acceleration due to gravity, 7¥ and 7Y are horizontal
components of the bottom friction, p is the water density, and R is a volumetric source
term [30]. Although these equations represent the state of the art in flood modeling,
even when discretized, they remain nonlinear and nonconvex, making them difficult to

optimize over. It is thus reasonable to consider more tractable model approximations.

A Hydrostatic Approximation To obtain a more tractable approximation of flood
propagation, we instead consider a simplified fluid model similar to that described by

[91]. In this model, each cell (i,7) exchanges water content with adjacent cells using

7

a set of virtual “pipes.” For each time step, the model associates various information

with each cell and pipe. In particular, h,., denotes the depth of the water in cell

ijt

(4,7) at time index ¢, w,; denotes the water surface elevation, and B,; denotes the

it
topographic elevation. Each cell (7, j) also has four connected pipes, one for each of its
four neighboring cells, denoted by W (est), E(ast), N(orth), and S(outh). Each pipe is
associated with an outgoing volumetric flow rate (hereafter termed “flow”), qut, which

models the transport of water from cell (¢, j) to its neighbor in position k € {W, E, N, S}
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(a) Vertical discretization. (b) Horizontal discretization.

Figure 3.1: Discretization of the pipe flow shallow water equations approximation.
The pipe flow model is discretized using (a) columnar vertical compo-
nents, with h denoting the water depth, B the topographic elevation,
and w the net water surface elevation; and (b) two-dimensional hori-
zontal components, where the behavior of quantities at the center cell
(i,7) is dependent on adjacent cells and the four interfaces of (i, j).

at time index ¢. For example, q% is the flow from (4, j) to (i,j — 1) at time index t.

In the model, the flow of a pipe is accelerated by the hydrostatic pressure difference
between adjacent cells. The water volume V;; of a cell is integrated using the accumu-
lated flow from all connected pipes. This corresponds to a change in the cell’s depth
and water surface elevation. These concepts are illustrated pictorially in Figure 3.1.

For each cell, we first define the estimated flow vector q;;, = (ﬁm, cig-t, qgt, cjgt) using

~ AgAt
ijt = max (O, qu,t_l + A—sAwécj’t_1> , (3.2)

where A is the cross-sectional area of the pipe (assumed to be equal for all pipes), g is
the acceleration due to gravity, As is the length of the virtual pipe (typically the grid
cell spacing, e.g., Az or Ay), At is the modeling time step, and Awfjt is the difference
in water surface elevation between cell (i, ) and its k-neighbor at time index ¢, i.e.,

gt ijt
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In this approximation, the estimated outgoing flow from a cell may exceed the avail-
able water content within that cell. This is not desirable from the perspective of mass
conservation. More importantly, if left uncorrected, this can lead to negative water
depths and numerical instabilities. This can be resolved, however, by scaling the out-
going flow with respect to the water content available within a cell (i, j) at time ¢. To

accomplish this, we introduce a scaling factor K, , for the outgoing flow, defined as

17t
h,. . 1 AxAy
o . 17,t—1
Kijt — (1, ("‘W _|_ ~F + ~N + ~S )At) .
Qijt T Gige T Digje T Dije

The estimated outgoing flow vector q,; is then scaled by K, to produce the actual

(3.4)

(i-e., volume-corrected) outgoing flow vector q;;,. This implies the scaling relationship
Q¢ = Kz'jtqz'jt- (3-5)

The change in water volume is then computed using the accumulation of incoming flow,

q™, and subtraction of outgoing flow, q°**. For cell (4, j), the volumetric change is

AV,

= Qo ah — e At

(3.6)
= (qu—u AR AR qil,j,t — Z qut ) At.
ke{W,E,N,S}

Finally, the water depth in each cell is integrated using a conventional Euler step, i.e.,

hijw = hi; ut 3.7
17t 17,t—1 + Al‘Ay ( )

For completeness, we also apply the naive reflective boundary conditions
hijt =0, it = 0, Elijt =0 (3.8)

along the four boundaries (left, right, top, and bottom) of the spatial domain.
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3.2. Linear Approximations of the Pipe Flow Model

The pipe flow model includes nonlinear terms, even when A, B, g, At, Az, and Ay are
treated as constants. Fortunately, these terms are only used for corrective measures,
i.e., in Equation (3.4). We next present two intuitive approximations to remove these
nonlinearities. For convenience, we refer to them as the “lower” and “upper” approxi-
mations because they underestimate and overestimate the amount of water being sent

from a cell to its neighbors instead of applying the corrective volume scaling factor K.

Lower Approximation The lower approximation is based on the following intuition:
if the estimated outgoing flow from a cell exceeds the available water content within that

cell, the outgoing flow is approximated as zero. That is, when the following is satisfied:
hiji 1 AxAy < (@ + 5, + @, + @5,) At, (3.9)

q,j; is approximated as zero. This bypasses the need for Equations (3.4) and (3.5).
Intuitively, this approximation of q,;, implies that, “when there is not enough water to

be transported” from a cell, the water is held back within that cell, and so q,;; = 0.

Upper Approximation The upper approximation implements another intuitive idea:
if the estimated outgoing flow from a cell exceeds the available water content within that
cell, the model instead assumes there is enough water, and no scaling of the flow occurs.
This again bypasses the need for the volume-corrective Equations (3.4) and (3.5).

It is important to note that, in the case of positive flows calculated as a result of
differing dry topographies (and thus differing water surface elevations), Equations (3.4)
and (3.5) provide an additional correction beside scaling. When the available water
content within a cell is equal to zero, K, is also zero, and the resultant flows q, ;; are thus
zero. Although this correction is achieved automatically by the lower approximation, it is

necessary to impose the constraint q;;; = 0 when h 1 = 01in the upper approximation.

17,t—

3.3. Optimal Flood Mitigation Problem

This section describes two optimization models based on the lower and upper pipe flow

approximations, respectively. Both optimization models aim at protecting a set A of
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assets by minimizing maximum water depths at asset locations over time. To protect the
assets, one or more barriers (e.g., sandbags or levees) can be placed on a cell to increase
its overall topographic elevation. A fixed number of barriers, n, are available for that
purpose. The models are highly similar, differing only in the pipe flow approximations
used. We present them both to give a global view of the lower and upper approximations.

Note that boundary conditions are omitted in the optimization models for simplicity.

Lower Approximation Optimization Model The lower approximation optimiza-
tion model is presented in Model 3.1. The objective function in Line (3.12a) minimizes
temporally maximal water depths over the set A of grid cells containing assets. Con-
straints (3.12b) and (3.12c) limit the number of barriers, n,;,

each cell. Each number must be no greater than M, the maximum allowable number of

that may be placed in

barriers per cell, as specified in Constraints (3.12b). The budget of barriers is limited
by Constraint (3.12d). Constraints (3.12¢) define each water surface elevation as the
sum of topographic elevation (i.e., base elevation and barrier additions, each with height
AB) and water depth. These are applied for every non-boundary cell (X x ¥) and time
step {2,3,...|T|}. For conciseness, the Cartesian product of these sets is denoted by

F =X xYx{2,3,..|T|} (3.10)
Including the direction index set, a similar Cartesian product is denoted by the set
F =X xYx{2,3,...|T|} x{W,E,N,S}. (3.11)

Constraints (3.12f) define estimated outgoing flow values, which must always be greater
than or equal to zero. Constraints (3.12g) and (3.12h) define the outgoing flow values
as prescribed by the lower approximation. Constraints (3.12i) provide convenient def-
initions for q;?t, i.e., the sum of all incoming flow for each grid cell. Finally, the time

integration of each water depth is defined using an Euler step in Constraints (3.12j).

Upper Approximation Optimization Model The upper approximation optimiza-
tion model is presented in Model 3.2. Compared to the lower approximation model, the
only differences are in Constraints (3.13g) and (3.13h), which ensure that outgoing flows

are nonzero only when the water depth within a cell is greater than zero, and in Con-
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Model 3.1 Lower approximation optimization model for the OFMP.

minimize Z I?&X{hijt} (3.12a)
~ €T
(i,5)€A
subject to n,; € [0, M], V(i,j) € X x Y (3.12b)
Znij =n (3.12d)
(4,5) X xY
Wit = (Bij + nijAB> + hijt7 V(i,j,t) e F (3.12e)
- AgAt . ,
qut = max (O, qu’t_l + ?(wij’t_1 — wijt_1)>, V(i,j,t) € F' (3.12f)
ijt = qut if hij,t—leAy > Atzqzkjta \V/<7'7.77t) € F! (312g)
k
iy =0 if hy,  AxAy < AtY G, V(i jt) € F’ (3.12h)
k
g =al 1.+ qzv,[;—&-l,t + gyt qf—l,j,t? v(i,j,t) € F (3.12i)
Q?t -2 Qf‘t . .
hii = hy; A= =R (Gt e F 3.12
1Jt 17,t—1 + AIL’Ay ) (27]7 ) S ( J)

straints (3.13j), which ensure nonnegative depths. That is, if the predicted flow results

in a transfer of water greater than what is contained within a cell, its depth is zero.

3.4. Computational Experiments

This section reports empirical results regarding the proposed flood approximations and
the associated optimization models. First, Section 3.4.1 evaluates the accuracy of the
various pipe flow approximations of the 2D shallow water equations in a simulation
setting. Then, Section 3.4.2 explores the potential of using optimization to determine

optimal flood mitigation strategies, as well as the computational challenges encountered.

3.4.1. Evaluation of the Flood Model Relaxations

This section compares differences among the discussed simulation models, i.e., the 2D

shallow water equations, pipe flow, lower approximation, and upper approximation mod-
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Model 3.2 Upper approximation optimization model for the OFMP.

minimize Z max{h,;, } (3.13a)
(ipea "<

subject to n,; € [0, M], V(i,j) € X x Y (3.13b)
> ng=n (3.13d)

(4,5)eX =Y
Wit = (Bij + nz’jAB> + hijt7 V(i,j,t) e F (3.13e)
- AgAt . ,
qut = max (O, qu,t—l + T(wzj’t—l — wijt_1)>, V(i,j,t) € F' (3.13f)
ijt = qz%t if hij,t—l > 0, V(Z,j, t) € F’ (313g)
qfyy =0 if hy, oy <0, V(i j,t) € F’ (3.13h)
=4l e T G T G VG ET (3.130)
in_ k

hyj; = max (o, - AtquzA:qu) V(i j,t) € F (3.13])

els. The comparison uses the historical Taum Sauk dam failure as an example scenario,
with a thirty meter spatial resolution and a grid containing approximately 38,000 cells.
In the models, a gravitational acceleration constant of 9.80665 m/s? was used, and the
dam failure was modeled as a time-dependent volumetric point source, using a hydro-
graph similar to a United States Geological Survey estimate [117]. In the shallow water
equations model, a Manning’s roughness coefficient of 0.035 was used, and time steps
varied based on a Courant condition. In the remaining models, various constant cross-
sectional pipe areas and time steps were used. Note that, in a simulation context, [91]
does not necessarily recommend using constant cross-sectional pipe areas nor constant
time steps. However, this chapter’s intent is to simplify the models as much as possible.

For flood mitigation, we are primarily concerned with the accuracy of maximum depth
estimates over a simulation’s time extent. Note that this is different from evacuation
settings, where estimates of the flood arrival time at various locations may be critical.
Figure 3.2 compares images of maximum depth results from a 2D shallow water equa-

tions model (SWE) similar to [30], as well as pipe flow (P), lower approximation (L),
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and upper approximation (U) models, which use various pipe areas and time steps.
The top row of Figure 3.2 compares SWE with P, L, and U using a parameterization
calibrated to minimize the root-mean-square error between P and SWE. Here, P and L
appear to be good approximators of SWE, but U overestimates maximum flood depths.
This is because, in U, the large pipe area of 500 m? results in unrestricted large flows and
poor volume conservation. In the second row, the pipe area is substantially decreased,
and the pipe flow and lower approximation models overestimate SWE, although the
approximation of U appears to improve. Finally, in the third row, as At is decreased,
U begins to converge upon P and L. Most model parameterizations provide similar
simulated flood extents when compared to those found in the literature [78], [117].
Finally, Figure 3.3 reports volume conservation error for selected upper approxima-
tion parameterizations. As anticipated, the pipe flow and lower approximation models
conserve volume well, with volume conservation error on the order of machine epsilon.
The upper approximation accumulates error more rapidly, although it displays good
convergence as the time step is decreased, similar to the behavior shown in Figure 3.2.
It is important to note a unique difference between pipe flow simulations and 2D
hydrodynamic simulations based on the shallow water equations. When using a 2D
shallow water model, the Taum Sauk scenario can be fully simulated using a simulation
time extent of three hours. In contrast, the pipe flow and approximated models allow for
faster or slower propagation, depending on the model parameterization. As an example,
the large pipe area used to produce simulation results in the top row of Figure 3.2
results in fast propagation, i.e., the flood is fully propagated in less than an hour. The
smaller pipe areas used in the second and third rows result in slower propagation, i.e.,
a time extent of roughly three hours is required. In general, as the cross-sectional pipe
area decreases, a longer time extent is required for full propagation. Nonetheless, since
flood mitigation is primarily concerned with protecting assets, and thus maximum water

depths, we consider differences in propagation speed acceptable for this application.

3.4.2. The Potential of Optimization

This section examines a number of small case studies to highlight the potential and chal-
lenges in using optimization to determine flood mitigation strategies. More generally,

the section highlights these properties for the integration of simulation and optimization.
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Figure 3.2: Comparison of pipe flow model accuracy on the Taum Sauk dam fail-
ure. Here, maximum depths are shown for ten-hour simulations of the
dam failure using shallow water equations (SWE), pipe flow (P), lower
approximation (L), and upper approximation (U) models.
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Figure 3.3: Volume conservation error for upper pipe flow approximation models.
Ten hour simulations of the Taum Sauk dam break were considered us-
ing various time steps. Error is computed as (Veomputed — Vadded)/Vadded:

Experimental Setting The lower and upper approximation MILP models were im-
plemented using the C++ CPLEX interface and executed on twenty Intel Xeon E5-2660
v3 cores at 2.60 GHz, with 128 GB of memory. Conditional expressions and min/max
functions were reformulated using big-M transformations. In our MILP implementation,

no attempt was made to further strengthen formulations or exploit problem structure.

A Simple Case Study To validate the optimization model, an 8 X 8 scenario was
constructed, with Az and Ay equal to one meter. In this scenario, a topographic
gradient was introduced from the top to the bottom of the domain with elevations
linearly decreasing from 0.7 to zero meters in steps of 0.1 meters. Four cells near the
top of the domain were initialized to contain one meter of water depth. Under the
influence of gravity and in the presence of the topographic gradient, the water was
forced down the spatial domain over time. Three assets to protect were arbitrarily
placed throughout the domain, and individual barrier heights (AB) of 0.5 meters were
employed. A constant time step of 0.1 seconds was used, and eight time steps were
simulated. The optimization problem was varied to understand how solutions changed
using various rules for resource allocation. In particular, the experiments studied limits

on the total number of barriers and limits on the number of allowable barriers per cell.
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Figure 3.4: Optimal flood mitigation results using the lower pipe flow approxi-
mation. Optimal elevation fields and maximum depths are depicted.
The allowable number of barriers per cell is one (first two rows) and
two (bottom two rows), and the total number of barriers ranges from
zero to five. Darker orange and blue colors correspond to larger to-
pographic elevations and maximum depths, respectively. Red circles
correspond to asset grid cells (i,j) € A that are to be protected.

Optimal Asset Protection Figure 3.4 displays optimization results from the lower
optimization models. Observe that, when only one barrier is allowed per cell, the op-
timization model tries to mitigate flooding in the asset regions almost one at a time,
before placing more barriers in interesting places throughout the domain. When two
barriers are allowed per cell, it clearly becomes preferential to protect the topmost asset,
which receives a large amount of water over the duration of the simulation. Figure 3.5
displays optimization results from the upper optimization models. These show similarly
interesting outcomes. In the one barrier per cell case, the optimization decides to protect

the topmost asset less in favor of protecting the bottom assets. When two barriers are
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Figure 3.5: Optimal flood mitigation results using the upper pipe flow approxima-
tion. In this figure, the same setting as Figure 3.4 is assumed.

allowed per cell and enough barriers are available, it is beneficial to protect the topmost
asset as much as possible from the water above it, which reduces the objective value.
It is also interesting to observe the nonincremental behavior of the optimization re-
sults. Allowing more barriers sometimes changes their optimal positioning. For example,
this is the case when moving from three to four barriers in the bottom row. Further-
more, since the barrier placements sometimes differ in both models, it is important to
study how the strategies affect flooding using the other model. These results are shown
in the last two columns of Table 3.1. Column n* gives the optimal solutions, and the last
column describes the objective value obtained when the optimal solution of the upper
optimization model was used in the lower optimization model and vice versa. This col-
umn sometimes shows significant differences in objective values. In practice, solutions

could be evaluated using full 2D shallow water model simulations for various scenarios.
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Model tepu (8) Mnodes Nyar Neon Mpin n* (m) Neom (M)
L:l), 49.65 37,808 2,280 4,410 840 0.111607 0.134935
L}l 83.66 71,528 2,280 4,410 840 0.0878997 0.123499
Lé 91.53 66,485 2,280 4,410 840 0.0837807 0.112588
Lg 82.74 86,964 2,646 4,998 975 0.0739754 0.134935
LZ 134.58 121,477 2,651 5,004 978 0.0484597 0.155655
Lg 80.61 56,586 2,651 5,004 978 0.0248889 0.13016
Uzl,, 55.56 41,487 2,027 3,840 840 0.178971 0.239858
U}l 46.17 25,037 2,027 3,840 840 0.17244 0.234095
Ué 123.50 83,850 2,027 3,840 840 0.166794 0.225759
U§ 77.29 55,398 2,379 4,292 1,018 0.178971 0.197646
Ui 263.72 203,168 2,382 4,297 1,019 0.161937 0.163313
U? 234.85 108,909 2,382 4,297 1,019 0.127602 0.157531

Table 3.1: Solution statistics of lower and upper pipe flow flood mitigation models.

Evolution of the Objective Value Figure 3.6 depicts the value of the objective

function as the number of available barriers increases for cases where the models allow

for one or two barriers per cell. The key takeaway is the importance of using multiple

barriers at a specific location. This appears to bring significant benefits as the number

of barriers is increased. We anticipate similar behavior when the number of allowable

barriers per cell is increased to three or four.

Note also that the lower and upper

approximations behave comparably as the number of maximum barriers is increased

and, as expected, the upper objective value is greater than the lower objective value.
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Figure 3.6: Objectives of lower and upper pipe flow flood mitigation models. Also

compared

are differences among objective values when one barrier is

allowed per cell (L' and U') versus two barriers per cell (L and U?).
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Figure 3.7: Convergence of lower and upper pipe flow flood mitigation models.
Here, “1” and “u” are lower and upper objective bounds for n = 3.

Computational Results

Finally, Table 3.1 tabulates experimental results. The first

column describes the instance in terms of lower (L) or upper (U) approximations. The

superscript represents the maximum number of barriers per cell, and the subscript rep-

resents the total number of barriers. The second column denotes (wall-clock) execution

time, in seconds. The third column shows the number of nodes explored in the search

tree. The fourth, fifth,

and sixth columns describe the number of variables, constraints,
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and binary variables after presolving. Column n* describes the optimal objective value
in meters of flood depth. The last column describes the objective value obtained when
the optimal solution of the upper model is used in the lower model and vice versa.

As mentioned previously, no attempt was made to strengthen formulations or exploit
problem structure. The instances have about 2,000 (mostly binary) variables and 4,000
constraints, and they can typically be solved within a few minutes. In general, CPLEX
is not able to find feasible solutions quickly, which substantially increases computation
times. This is illustrated in Figure 3.7, where CPLEX spends much time improving the

upper bound. Integrating primal heuristics should improve convergence significantly.

3.5. Conclusion

Each year, flood-related disasters cause billions of dollars in damage, loss of life, and
significant human suffering. Structural mitigation measures, such as levees and berms,
are often used to lessen the consequences of these events. The design of these mitiga-
tion efforts, however, is sometimes suboptimal and relies on subject matter expertise, as
computational methods are immature due to the complexity of embedding flood models
in modern optimization technologies. The goal of this chapter was to establish the foun-
dation for a more principled approach to flood mitigation. It introduced the OFMP,
which aims at integrating simulation and optimization by including flood simulation
equations as part of the optimization model. To ensure the tractability of the approach,
the main contribution of the chapter is the development of linear, physics-based approx-
imations of shallow water flood models. Experimental results on the Taum Sauk dam
failure show the potential of the models for predicting flood extent and maximum water
depths. The integration of these approximations within optimization models was tested
on several small cases, demonstrating the potential of optimization in this context.
Future work should focus on addressing the primary computational challenges raised
by the OFMP. Surprisingly, state-of-the-art MILP solvers are not capable of exploiting
the structure of this problem. In particular, they do not recognize that, once barriers are
placed, the solution is predetermined. That is, given a fixed topographic elevation field,
only the deterministic simulation step remains. A combination of constraint program-
ming (for fast propagation of the water depths) and linear programming (for computing

a strong lower bound) may have potential in addressing this challenge for MILP-based
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optimization approaches. It may also be useful to consider if dominance relationships
hold among mitigation solutions, which would reduce the size of the search space.
More generally, exploiting the natural separation between mitigation decisions and
flood propagation appears to be key when scaling to realistic problems. To this end,
Chapter 4 develops an alternative approach to the MILP optimization method developed
in this chapter. Specifically, Chapter 4 combines a fast simulator of the 2D shallow
water equations, a metaheuristic-based optimization technique, and a novel search space
reduction method to efficiently compute high-quality hard and soft structural flood

mitigation strategies for scenarios with realistically-sized spatiotemporal domains.
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Chapter 4

Optimization of Structural Flood
Mitigation Strategies Using
Physics-based Metaheuristics

Chapter 3 explored the use of linear approximations and MILP problem formulations in
the attempt to solve challenging OFMPs. As the empirical results demonstrate, however,
the technique does not scale to large instances for two reasons. First, even linearized
approximations of the shallow water equations require conditional expressions to model
important conservation relationships. Second, MILP solvers struggle to exploit the
natural separation between the fixing of mitigation decisions and the resultant flood
dynamics. These properties suggest that a simulation-based metaheuristic optimization
approach may hold promise when scaling the OFMP to realistically-sized flood scenarios.
That is, although such an approach may not provide optimality guarantees, it may be
able to more readily exploit the clear separation between simulation and optimization.

To this end, this chapter, which is based on [133], explores a more scalable approach
to the problem of designing structural FRM strategies over PDE constraints. Specifi-
cally, it develops a problem discretization amenable to simulation-based derivative-free
optimization. Moreover, the chapter shows that metaheuristics alone are insufficient for
obtaining quality solutions in reasonable time. As a result, it presents several innovative
computational and physics-based techniques to limit the search space and increase con-
vergence to high-quality solutions. The efficiency of the proposed approach is compared

using hypothetical dam break scenarios of varying complexity under multiple mitiga-
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tion budgets. Experimental results show that the proposed algorithm results in a 65%

improvement in solution quality compared to a direct algorithm implementation.

Chapter Overview The rest of this chapter proceeds as follows: Section 4.1 discusses
the background of flood modeling and formalization of the OFMP; Section 4.2 describes
solution methods for a specific OFMP; Section 4.3 compares methods using fictional
dam break scenarios, with both simplistic (Section 4.3.3) and realistic (Section 4.3.4)

topographies, and multiple mitigation budgets; and Section 4.4 concludes the chapter.

4.1. Background and Optimization Model

In this chapter, it is assumed that flood scenarios are modeled using the 2D shallow
water equations. Rewriting Equations (2.24) and (3.1) with volumetric, bed slope, and

Manning-Strickler bed shear stress source terms, these equations are expressed as

Oh  9(hu)  O(hv)
ot ox oy
d(huv) h@B n?

= R(x,y,t), (4.1a)
d(hu) 0

1
9 (hu2 + 22 _ 9B n?
d(hv)  O(huv) 0 ( , 1 2) B OB n2
o + 9 + 3y hv* + 29h = —gh oy ghl/3|v|v, (4.1¢)

where n is the Manning’s roughness coefficient [30]. For greater conciseness, the shallow

water equations can be rewritten in vector form by first introducing the definitions

1
U := (h, hu, hv), F(U) := (hu, hu? + §gh2,huv> ,

1
G(U) = (o, huo, o + 5917 ) . Sp(R) = (R(z,3.1),0,0), (4.2)
0B 0B n? n?
S5(U.B) = (0.gh . —ghG ) S, = (0’ ‘9W|“|“>—9m'“'”) |

where U is the vector of conserved variables; F and G are fluxes in the z- and y-
directions, respectively; and Sp, Sz, and S,, are the volumetric, bed slope, and bed

shear stress source terms, respectively. This allows the 2D shallow water Equations
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(4.1a), (4.1b), and (4.1c) to be rewritten more concisely using vector notation as
U, +F,+G,=Sp+Sp+8S,, (4.3)

where ¢, x, and y indicate partial differentiation with respect to those variables.

In this chapter, we expand upon the simplified OFMP described in Chapter 3 to
construct a more general form. Specifically, the OFMP in this chapter is assumed to be
constrained by the shallow water equations and allows for both elevation additions and
surface roughness modifications to mitigate the flood. Similar to Chapter 3, the OFMP
in this chapter considers a flood scenario (e.g., a dam failure) and a set of 2D regions (or
“assets”) to protect. To minimize flooding at asset locations, the model must produce
optimal topographic elevation and roughness fields using a set of m mitigation measures.
For each measure i € {1,2,...,m}, the functions dz(w;) and 9§, (w;) define continuous
2D fields of height and roughness for a given tuple of field parameters w;. Measures can
first additively modify the elevation field B to return a new field B , defined as

B(B, (wy,wy, ..., w,,)) ::B-l—ZcSB(wi). (4.4)

Similarly, measures can modify the roughness field n to return a new field defined as
n(n, (wy,wy, ..., w,,)) :=n+ {miax {0,,(w(@)(z,y)}: (z,y) € [Rz} : (4.5)
i.e., a field of maximum roughness. For notational ease, hereafter, B refers to Equation
(4.4), n refers to Equation (4.5), and the tuple (wy,ws,...,w,,) is referred to as the

“parametric configuration,” or simply the “configuration.” With these definitions and

shorthand notations, the modified bed slope source term is then defined as

e 0B 0B
Sp (U, B, (wy,ws, ... ,w,,)) = (O, —gh—x, —gh—) . (4.6)

The change in elevation may be a result of permanent structures such as levees or

20



temporary measures such as sandbags. Similarly, the modified bed shear stress is
~ n? n?
S, (U,n, (wy,ws, ..., w,,)) = (O, —gm|u|u, —gm|v|v> . (4.7)

Hereafter, S := Sz (U, B, (wy,wsy, ...,w,,)) and S, = S_ (U, n, (wy,wy,...,w,)) are
used to concisely denote these two source terms that vary with the configuration.
The OFMP is then written in a form that embeds the 2D shallow water equations as

constraints and optimizes the tuple (wq,w,, ..., w,,) (i.e., the configuration) via

minimize N (W1, Way ooy W,y,) = E //mgx h(z,y,t)dzdy (4.8a)
W1, W seeey Wy "

acA

subject to U, +F, +G,=Sp+Sz+8, (4.8D)
dp(w))(z,y) =0, Vi e{1,2,...,m}, for (z,y) U/l (4.8¢)
0, (w;)(x,y) =0, Vie{l,2,...,m}, for (z,y) Uﬂ (4.8d)
(Wi, Wy, oo yw,,) € F. (4.8¢)

Here, A denotes the set of asset regions to be protected and 7 denotes the objective
function. This function is defined in Equation (4.8a) and captures the maximum water
volume over all asset locations and times. Constraint (4.8b) denotes the solution to
the shallow water equations in the presence of the m mitigation measures. Constraints
(4.8¢) prohibit measures from being constructed “underneath” an asset. Similarly, Con-
straints (4.8d) prohibit the roughness at an asset location from being modified. Finally,
Constraint (4.8e) ensures (wy,ws, ... ,w,, ) resides within the set of all feasible parametric
configurations & . That is, & distinguishes valid and invalid mitigation designs.

For simplicity of presentation, this chapter considers only two types of structural
measures, although the approach can easily be generalized to include other soft and hard
measures, both temporary and permanent. The first type is an immovable wall of fixed
length (¢), width (w), and height (b;). Each wall is defined using three continuously-
defined, bounded parameters: latitudinal position of the wall centroid (};), longitudinal

position of the wall centroid (¢,;), and angle of the wall formed with respect to the
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longitudinal axis (6,). In this chapter, the centroid position is bounded by the scenario
domain’s spatial extent, and 6, € [0,7]. The second structural type is a revegetation
project defined by a 2D circular region with center (\;,¢;) and fixed radius r that
increases the area’s Manning’s roughness coefficient based on a fixed field n,;. Under
these assumptions, the OFMP aims at deciding w,; = ()\i, b:,0.,b,

1V Yo

n;) for each measure
i €{1,2,....,m} = M, where b, and n, are decided a priori for each measure. More

specifically, these mitigation properties produce an OFMP of the specialized form

minimize 7 (wy, Wy, ... ,w,,) = E //m?x h(z,y,t)dx dy (4.9a)

W1,Woy..ny W,
acA

subject to U, +F, + G, =Sp + Sp+S, (4.9b)
dg(w;)(z,y) =0, for (z,y) € U/l, Vie M (4.9¢)
8, (w;)(x,y) =0, for (z,y) €| JA, VieM (4.9d)

b, for [(z — ;) cos; — (y — A;) sin 6, S%
)@y =4 Ul@—o,)sind; + (y— ) cos ;| < % vie M

0 otherwise

(4.9¢)
ni(z,y) for (v —¢;)* +(y—N)*<r?
O (w;) (2, y) = Vie M (4.9f)
0 otherwise
A S A S Ay Oy S O S by, 00, <, Vie M. (4.9g)

Using this formulation, 7 is a wall when ?77; > 0 and n; = 0, and 7 is a revegetation project
when b, = 0 and n; > 0. Constraints (4.9c) and (4.9d) emphasize that modifications
cannot be made within asset regions; Constraints (4.9¢) impose the wall height b, within
each rotated rectangle defined using the parameters \;, ¢,, and 6, and a standard
2D rotation matrix; and Constraints (4.9f) impose additions to roughness within each
revegetation circle defined by the center (\;,¢;). Finally, Constraints (4.9g) replace
Constraint (4.8e) of the more general OFMP. Here, A\, and A\, (¢;, and ¢,,;,) are the
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lower and upper latitudinal (longitudinal) boundaries of the flood scenario domain.
Constraints (4.9g) imply a large feasible region, as the spatial extent is typically much
larger than the flood’s extent. To reduce the solution space, the notion of a restricted

region P is thus introduced, where structure centroids must reside in 2. That is,
(N, 0;) € P, Vie{l,2,...,m} (4.9h)

is appended to the problem above, completing the primary model used in this chapter.

4.2. Optimization Algorithm

The OFMP at the end of Section 4.1 is difficult to solve directly. However, with recent
improvements in both numerical discretizations of the shallow water equations (e.g., [30])
and high-performance implementations thereof (e.g., [20], [135]), efficient solutions of
the PDEs described in Constraint (4.9b) are possible. With this intuition, in Algorithm
4.1, a time-limited search-based method is introduced to find a near-optimal solution
(W}, ws, ... ,w},) to the problem defined by Equations (4.9a) through (4.9h).

Algorithm 4.1 SOLVEOFMP: Solves the OFMP of Equations (4.9a) through (4.9h).
function SOLVEOFMP (B, n, A,m, T, .., )

Y max?
P < INITIALIZERESTRICTION(B, n, A, @)
(Wi, wh, ..., ws,) < INITIALIZESOLUTION(m, P), <+ ()
while CrLock < T, do

1:

2

3

4 max

5: (wy,Wa, ... ,w,,) < GENERATESOLUTION(m, P, 2)
6

7

8

9

Solve Ut—l—Fx—l—Gy:SR—i-éB—l—gn
Q< QU {(wy,wy, ... ,w,,)}
if n(w;, wy, ..., w,,) < N(wi,ws,...,w},) then
: (ﬁu’{,wz,...,wjn) — (W, Wy ooy wy,) N
10: P < UPDATERESTRICTION(U, A, P, )
11: end if
12: end while
13 return (B+ Y dp(w)), n+ {max,{6, (@) (@, y)}  (2,y) € B2})
14: end function

Here, B and n denote the initial topographic elevation and Manning’s roughness

coefficient fields; A denotes the set of assets; m denotes the number of mitigation
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measures being configured; 7} .. denotes the maximum clock time; and « is a parameter
used for computing restrictions. The function CLOCK returns the current clock time.
Since a useful definition of P is difficult to compute a priori, P serves as an iterative
approximation of some desired 2. In Line 2, P is initialized; it is later modified in
Line 10 using UPDATERESTRICTION. Both functions are described in Section 4.2.1. In
Line 3, the best solution and the historical solution set 2 are initialized. In Line 5, a
configuration is generated via some history-dependent function GENERATESOLUTION,
described in Section 4.3.1. In Line 6, the shallow water equations are solved. In Line 7,
the historical solution set is updated. In Lines 8 through 11, the best solution and P

are updated. Finally, in Line 13, the best elevation and roughness fields are returned.

4.2.1. Computation of the Restricted Region
Direct Methodology A globally acceptable method for selecting 2 is to assume

P =R? (4.10)
where, of course,

{(z,y) eRZ: Ny <z < Ay, b <Y<} C P, (4.11)

indicating the bounds within Constraints (4.9g) involving A, and ¢, dominate those
imposed by . This method for selecting 7 is hereafter referred to as the direct method.
In practice, this method is used to define the direct implementations of the functions

INITIALIZERESTRICTION and UPDATERESTRICTION, both of which return the set R?.

Pathline Methodology A pathline is the trajectory an individual fluid element fol-

lows over time, beginning at position (zy,y,) and time ¢,. In 2D, a pathline satisfies

() = g + / W@ (), y(#'), )t (4.12a)

y(t) = yo +/ v(x(t"),y(t"),t")dt’, (4.12Db)
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where u and v are velocities in the x- and y-directions. To compute the pathline from
a flood wave to an initially dry point (x,y,), the definition of ¢ . (x, yy) is introduced

as the time at which the depth at (x,y,) exceeds some threshold. More concisely,

twet(xmyO) := min {t S [t()?tf] : h(anymt) 2 6h}7 (413)

where €, is an arbitrarily small depth, taken in this chapter to be one millimeter. Using

this definition, the pathline equations may be temporally integrated in reverse, giving

t

Tt (@0, Yo 1) = g + / Uy (1), Y (1), 1)1 (4.142)
t

wet

t
Yswet (33'0, Yo t) =% + / U(xwet(t,)v Yswet (t/)’ t,>dt/’ (414b)

twet
where it is assumed that ¢ < ¢_,,. The above equations approximate a path to flooding.
In this chapter, a pathtube is defined as a set of pathlines satisfying Equations (4.14a)
and (4.14b). For a region R, the pathtube § encompassing X with a start time of ¢, is

S(U, R) = {(Zyet(T0: Y0: 1) Yuwet (T0, Yo, 1)) € R? 5 (20, 50) € R, T € [to, tyer(To, Yo)] -
(4.15)
This region encompasses approximate paths of least resistance from a flood to R. It is
clear that good locations for structural mitigation measures are likely to reside in §.
A robust selection of P would account for the change in U with respect to a large set

of feasible configurations. In an ideal setting, a good selection for 7 would thus be

?=J U {@yesUa:U+F,+G,=S;+85+8,}. (4.16)
weF aeA

In practice, defining 2 as per Equation (4.16) is nontrivial. First, each a € A may be a
set of infinitely many points. There are also infinitely many moments ¢ in a solution U to
the shallow water equations. Most importantly, the union over all feasible configurations
(W1, Woy ...y w,,) = w € F assumes knowledge of U for any such feasible configuration
(wq, Wy, ... ,w,, ). For these reasons, an iteratively-constructed definition of the pathtube-
like region P is instead proposed, which approximately captures the features of some
unknown larger spatial set 7 that is relevant to the OFMP (e.g., Equation (4.16)).

95



From a numerical perspective, each a € A is actually a polygon whose exterior con-
nects a set of points P,. Solutions to the OFMP are likely to intersect the pathlines
from a flood to each of these points. Also, in practice, numerical solutions to the shallow
water equations are discrete in space and time. Assuming that solutions are obtained

for a set of timestamps T on a rectangular grid G, ¢, is first redefined as
tyet(T0; o) := min{t € T : Pigjort = €nts (4.17)

where (i, jo) is the unique index of the cell in grid G that contains the point (z, y;).
For each point along an asset exterior, a representation of the pathline leading to that
point is desired. To accomplish this, it is assumed that a pathline can be approximated
as a set £ of discrete points. These points can be generated by solving Equations (4.14a)
and (4.14b) using any suitable ordinary differential equation (ODE) technique. Here,
suggestions from [136] (initially described for streamlines, which trace a static field) are
used to compute pathlines according to the function COMPUTEPATHLINE(U, z,y,),
whose arguments are a solution U to the shallow water equations and the z- and y-
positions of a seed point. This algorithm is detailed in the appendix (Algorithm A.1).
The definition of COMPUTEPATHLINE enables the computation of a set of points Q)

approximating the pathtube leading to a set of exterior asset points P, € a € A via

Q(U,P,) = | ] CompUTEPATHLINE(U, 2, yp). (4.18)
(w07yO>EPa

Since pathtubes are curvilinear, typical geometries that envelope @ (e.g., the convex
hull) do not effectively summarize this set. For this reason, the notion of an alpha
shape is introduced, which minimally encompasses points of ) using straight lines. A
discussion on alpha shapes can be found in [56]. In this study, Edelsbrunner’s algorithm
[51], presented in the appendix (Algorithm A.2), is used to compute alpha shapes. The
function ALPHASHAPE(Q), o) computes this shape for a set ) and alpha value a.

The definition of the function ALPHASHAPE finally allows for definition of the func-
tions INITIALIZERESTRICTION and UPDATERESTRICTION for the pathline method.
Both assume restrictions are the unions of alpha shapes approximating the pathtubes
leading to each asset. The functions are described in Algorithms 4.2 and Equation

(4.19), respectively. In Algorithm 4.2, Line 2, the shallow water equations are solved
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Algorithm 4.2 INITIALIZERESTRICTION: Returns the initial restricted positional set.

1: function INITIALIZERESTRICTION(B, n, A, «)

2: Solve U, +F, + G, =Sr+Sp+5,

3: return J, _ , ALPHASHAPE (Q(U, F,),a) \UA
4: end function

without the presence of structural mitigation measures. In Line 3, the union of alpha
shapes for all pathtubes leading to the assets a € A is computed. Asset regions are
then subtracted from this set to ensure measures do not overlap with asset locations.

The function UPDATERESTRICTION using the pathline approach is defined as

UPDATERESTRICTION(U, A, P, o) = P U ( | ) ALpuASHAPE(Q(U,P,), ) | \ [ J 4.
acA
(4.19)

The majority of this function resembles Algorithm 4.2, although the union of the current
set and previous P is computed to encourage exploration of a more representative (i.e.,
spatially expanded) search space. Moreover, as per Algorithm 4.1, this function is only
called as better solutions to the OFMP are obtained. This decreases the potential

burden of computing pathtubes and alpha shapes on each iteration of the algorithm.

4.2.2. Sequential Optimization Algorithm

Due to the nonlinear sensitivity of flooding behavior with respect to mitigation efforts,
predictable and incremental changes to solutions of the OFMP while increasing the
number of mitigation measures, m, are not ensured. This may be undesirable from
a planning perspective. A separate algorithm is thus proposed to induce a sequential
solution to the OFMP, whereby solutions with m = 2 include those of m = 1, solutions
with m = 3 include those of m = 2, and so on. This ensures increasing utility for
configurations of increasing sizes. It also allows policymakers to more clearly understand
the effects of budgetary constraints with respect to the overall structural flood mitigation

efforts. The recursive relationship used to compute sequential solutions is defined as

T
m
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where B, = B, ny = n, and the time for each subproblem is an equal portion of T .
In this chapter, Line 10 is eliminated from Algorithm 4.1 when using the sequential
approach, as the best placement for a single structural mitigation measure is likely to
reside within the initial P computed on Line 2. As a consequence, for each structural

measure positioned using the sequential approach, pathtubes are constructed only once.

4.3. Computational Experiments

4.3.1. Model Relaxation

The approach uses the open source scipy.optimize.differential_evolution (DE)
and RBFOpt software libraries in Python to produce two separate implementations
of GENERATESOLUTION in Algorithm 4.1 [41], [128]. Both only include support for
simple bounds like those indicated in Constraints (4.9g). Thus, these implementations
of GENERATESOLUTION may generate configurations that are infeasible with respect to
Constraints (4.9¢) and (4.9f). To overcome this, the OFMP defined by Equations (4.9a)
through (4.9h) is replaced with the penalty-based relaxed problem formulation

minimize 7 (wy,wsq, ... ,W,,) =Py + Ps + E //mfux h(z,y,t)dxdy (4.21a)

W1 ,Wa sy Wiy

acA
subject to p; = ¢, E min {(z,9) — (A, &) = (2,1) € P} (4.21b)
D2 =G E § //53 )dady + c3 E E // ;)dzdy  (4.21¢)
i=1 acA i=1 acA
U, +F,+G, =S, +S;+8, (4.21d)
|[(x — @) cosb; — (y — A;) sin ;] < %
b, for
op(w;)(z,y) = [(x — ¢;)sin b, + (y — \;) cos0;| < F Vie M
0 otherwise
(4.21e)
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O (wy) (@, y) = {n for (= 4" + (v —A)* <o Vie M (4.21f)

0  otherwise
)\lb < )‘z < )\uba ¢lb < ¢z < ¢ub7 0< 91 <m, Vie M. (421g)

In Equation (4.21a), two penalty terms are included in the objective to capture infeasibil-
ities in Constraints (4.9¢) through (4.9f). The first penalty, p;, is defined in Constraint
(4.21b) and denotes the sum of all minimum distances between each measure’s centroid
and the nearest point of the restricted positional set P. This term is scaled by the
constant ¢;, taken in this study to be equal to one. The second penalty, p,, is defined
in Constraint (4.21c). Here, the first term denotes the net modified elevation volume
over all asset regions, and the second term denotes the net change in roughness over all
asset regions. These terms are scaled by the constants ¢y and cg, respectively. Herein,

both are taken to be (Ar)~2, where Ar is the spatial resolution of the discretization.

4.3.2. Experimental Setting

For simplicity, Sections 4.3.3 through 4.3.4 focus on OFMPs where only wall-type mea-
sures are considered (i.e., b; > 0), while Section 4.3.4 presents an algorithmic proof
of concept where only revegetation-type measures are considered (i.e., n; > 0). For
each experiment, Algorithm 4.1 was limited to one day of wall-clock time. When us-
ing DE, population sizes of 45m (b, > 0) and 30m (n; > 0) were employed; trial
solutions were computed as the best solution plus scaled contributions of two random
candidates; the mutation constant varied randomly within [0.5,1.0); and the recombi-
nation constant was set to 0.9. When using the direct INITIALIZERESTRICTION and
UPDATERESTRICTION methods, Latin hypercube sampling was used to initialize the
population. When using the pathline-based methods, the population was initialized via
random sampling over the initial restricted set (i.e., ) and 6, € [0,7]. When using
RBFOpt, the sampling method was used; most other parameters were left unchanged.

For computational considerations, if the configuration proposed by GENERATESO-
LUTION was feasible, the shallow water equations (i.e., Constraint (4.21d)) were solved
using the proposed configuration. Otherwise, a solution containing no structural miti-

gation measures was referenced. That is, S g was replaced with S, and gn was replaced
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with S,,. To solve the PDESs, the open-source surface water modeling software NUFLOOD
[135] was used, where the shallow water equations are discretized according to [83].
Each experiment was conducted on one Intel Xeon E5-2695 v4 CPU containing eigh-
teen cores at 2.1 GHz and 125 GB of RAM. NUFLOOD was compiled in single-precision
mode using the Intel C++ Compiler, version 17.0.1. The remainder of Algorithm 4.1
was implemented in Python 3.6. Compared to the shallow water PDE evaluations,

these other portions of the algorithm were measured to be computationally negligible.

4.3.3. Simplified Circular Dam Break Scenarios

To compare the two positional restriction methodologies described in Section 4.2.1, six
simple OFMP scenarios were constructed. All were intended to have human intuitive
solutions, i.e., optimal placement of structural mitigation measures could be inferred
from a basic understanding of flood propagation. These scenarios are displayed picto-
rially in Figure 4.1. In each scenario, under the influence of gravity, the initial volume
of water (colored with blue) is propagated outward. Without mitigation measures, this
water easily comes into contact with critical assets (colored with red), flooding them.
Each of the six scenarios was modeled using a spatial resolution of one meter and
64 x 64 grid cells. The ground surface was assumed to be frictionless; critical depth
boundary conditions were employed; and a simulation duration of one hundred seconds
was used. When necessary to compute pathlines, intermediate PDE solution data was
reported for every one second of simulation time. In the experiments performed, each
of the corresponding OFMPs was solved with the number of walls, m, ranging from
one to five. Wall widths, lengths, and heights were fixed to 2.5, 8.0, and 1.0 meters,
respectively. Finally, all experiments were performed using a single fixed random seed.
In Figure 4.2, for each optimization experiment, the objective behavior is plotted
against the number of PDE evaluations required to reach that objective. These behav-
iors are compared for the direct differential evolution solver (DE-D) and its pathline-
based counterpart (DE-PL). The DE-PL solver was generally able to find good solutions
faster and improve upon them more rapidly, especially for configurations involving larger
numbers of walls. However, there were some instances where the DE-D solver produced
higher quality solutions than the DE-PL solver, e.g., when optimizing the configuration

of five walls in Scenario 4. These anomalies could be a consequence of the random na-
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Figure 4.1: Pictorial depictions of six simplified flood scenarios. They are ordered
numerically (e.g., one in the upper left). Black represents nonzero
topographic elevation (of height one meter); blue represents nonzero
initial water depth (of height one meter); and red represents assets.

ture of the DE algorithm; they could also be due to the DE algorithm implementation’s
tendency to terminate once the population of candidates has sufficiently stabilized.

In Figure 4.3, the best obtained wall configurations using DE-PL are displayed picto-
rially for all pairs of scenarios and numbers of mitigation measures. Here, as well as in
similar subsequent figures of this chapter, darker blue corresponds to larger maximum
depths; black corresponds to nonzero portions of the initial topographic elevation field;
green corresponds to elevation additions via the placement of walls; and red corresponds
to asset locations. Finally, orange lines represent the exteriors of the final computed
restricted positional sets P in Algorithm 4.1. As observed in this figure, the configu-
rations resemble what might be intuited by a human. When applicable, configurations
are non-overlapping and well-connected. As the number of walls varies, configurations
also show interesting nonincremental behavior. For example, in the first scenario, walls
are initially placed close to the asset. As the number of walls increases, they are placed
farther away to form connections with existing topographic features. However, we note

that such non-sequential behavior may be undesirable from a planning perspective.
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Figure 4.2: Algorithm convergence on the six simplified flood scenarios. Here, the

objective values versus numbers of PDE evaluations are compared for
OFMP Scenarios 1 through 6, respectively, using DE-D and DE-PL to
optimize mitigation configurations of one through five flood walls.
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Figure 4.3: Solution illustrations for the six simplified flood scenarios. The best
obtained elevations and maximum depths are shown for configurations
of one through five walls and reference Scenarios 1 through 6 (verti-
cally). In these illustrations, orange lines represent the exteriors of
the final computed restricted positional sets P used in Algorithm 4.1.
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4.3.4. Dam Break Scenario from Theme C of the 12th
International Benchmark Workshop on Numerical

Analysis of Dams

This section focuses on demonstrating the merits of the sequential optimization algo-
rithm using the dam break defined in Theme C of the 12th International Benchmark
Workshop on Numerical Analysis of Dams (ICOLD 2013) [77]. To simulate this scenario,
the dam break was modeled as a point source with time-dependent discharge. The initial
topographic elevation field (with the dam excluded) was provided by the workshop and
resampled from a resolution of ten to ninety meters to ease computational burden. The
Manning’s roughness coefficient was set to 0.035; critical depth boundary conditions
were employed; a duration of twelve hours was used; and, when necessary to compute
pathlines, PDE solution data was reported every ten minutes of simulation time.

Asset locations and sizes were selected in an attempt to increase the overall difficulty
of the OFMP, with two assets placed near the primary channel of the scenario and
three placed farther away. The experimental setup remained similar to that described
in Section 4.3.3. However, in this case, the number of walls ranged from one to ten, while
wall widths, lengths, and heights were fixed to 250, 1,000, and ten meters, respectively.
To compare differences in OFMP solver performance, each solver was executed using
ten different random seeds for each possible number of walls. In total, the experiments

described in this subsection thus required nearly six hundred days of compute time.

Pathline-based algorithm results

To confirm the effectiveness of the pathline-based solvers, two implementations of Al-
gorithm 4.1 using RBFOpt were benchmarked. In Table 4.1, the objective behavior
of the pathline-based solver (RBFOpt-PL) is compared against its direct counterpart
(RBFOpt-D). The pathline-based solver clearly outperforms RBFOpt-D in nearly all
instances, e.g., it results in smaller minima, means, and standard deviations. The single
exception appears to be for m = 1, where the direct solver produces an equivalent min-
imum to the pathline-based solver. Nonetheless, on average, the pathline-based solver

provides a 45% improvement over the direct solver, with generally larger improvements
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RBFOpt-D RBFOpt-PL Mean
Mean Min Max SD Mean Min Max SD | Imprvmt.
165.93 | 159.63 | 170.25 | 3.36 | 162.81 | 159.63 | 167.59 | 2.61 1.88%
147.96 | 105.34 | 166.60 | 20.14 | 111.02 | 95.98 | 130.88 | 10.74 | 24.96%
144.93 | 111.87 | 164.10 | 15.44 | 89.22 | 77.56 | 93.62 | 5.40 | 38.44%
128.52 | 105.81 | 159.12 | 14.21 | 81.33 | 51.63 | 97.83 | 13.47 | 36.72%
135.94 | 128.25 | 144.42 | 5.03 | 62.38 | 26.40 | 80.40 | 15.67 | 54.11%
122.24 | 98.38 | 140.19 | 14.22 | 59.13 | 41.40 | 71.25 | 9.07 | 51.63%
119.14 | 81.14 | 145.80 | 18.65 | 51.11 | 29.13 | 66.20 | 13.08 | 57.10%
102.08 | 78.65 | 122.69 | 16.22 | 43.28 | 27.82 | 57.35 | 9.40 | 57.60%
107.40 | 81.93 | 127.53 | 15.52 | 42.73 | 19.00 | 53.26 | 11.19 | 60.21%
104.90 | 77.17 | 124.13 | 16.75 | 34.72 | 21.75 | 42.74 | 7.60 | 66.90%

—_
S| ©| ool N o wrf | wo| b | 3

Table 4.1: Comparison of RBFOpt-D and RBFOpt-PL solver solutions. Each en-
try considers objectives over ten seeds, with the number of walls (m)
ranging from one to ten, as in Section 4.3.4. Values are scaled by 1074.

for scenarios with greater numbers of walls. This improvement was computed as

—b
Percentage Improvement = (a_) 100%, (4.22)
a

where a and b represent the mean objective values obtained from the RBFOpt-D and
RBFOpt-PL solvers. The same metric is also used throughout Tables 4.2, 4.3, and 4.4.

A similar comparison is made between DE-D and DE-PL in Table 4.2. Again, the
pathline-based solver (DE-PL) outperforms its direct counterpart (DE-D) in nearly all
metrics, providing an overall mean improvement of 59%. The pathline-based solver also
displays mostly monotonic decreases in the objective as the number of walls increases,
while the objectives associated with the direct solver generally increase as the number of
walls increases. However, note that for small numbers of walls (i.e., one and two), the di-
rect DE solver outperforms its pathline-based counterpart. This could be a consequence
of the more complicated objective penalty in Constraint (4.21b) when P is restricted.
For example, [47] describes various means by which penalty-based derivative-free opti-
mization algorithms can result in suboptimal solutions. Nonetheless, overall, the direct
penalization method considered in this chapter appears to provide good solutions.

It is important to note the differences between the RBFOpt-based and DE-based
solvers benchmarked in Tables 4.1 and 4.2, respectively. In general, DE-PL greatly
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DE-D DE-PL Mean
Mean Min Max SD Mean Min Max SD | Imprvmt.
162.18 | 158.59 | 167.59 | 3.85 | 163.86 | 159.63 | 170.07 | 4.52 | —1.04%
99.49 | 84.87 | 104.24 | 6.29 | 102.61 | 94.24 | 105.39 | 3.19 | —3.13%
66.78 | 39.56 | 119.20 | 27.76 | 50.75 | 33.36 | 65.93 | 14.80 | 24.01%
101.06 | 79.57 | 134.61 | 20.57 | 31.84 | 17.51 | 56.87 | 13.20 | 68.49%
115.43 | 100.56 | 145.39 | 16.04 | 22.74 | 12.82 | 36.39 | 8.04 | 80.30%
124.15 | 101.22 | 145.75 | 15.85 | 24.79 | 7.24 | 60.66 | 14.87 | 80.03%
129.17 | 110.94 | 153.14 | 12.52 | 18.14 | 5.59 | 26.77 | 6.64 | 85.96%
125.51 | 96.68 | 144.92 | 16.47 | 14.02 | 4.03 19.74 | 5.59 | 88.83%
129.23 | 99.39 | 146.58 | 14.02 | 17.83 | 8.56 22.46 | 4.85 | 86.20%
119.09 | 86.16 | 140.87 | 17.91 | 19.68 | 10.43 | 30.38 | 5.61 83.47%
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Table 4.2: Comparison of DE-D and DE-PL solver solutions. This table assumes
the same reporting conventions as Table 4.1. Best objective values over
all seeds and solvers considered in Tables 4.1 through 4.4 are denoted in
bold, while the best mean objective values are denoted with underlines.

outperforms both RBFOpt-based solvers. For example, DE-PL provides a 47% mean
improvement over RBFOpt-PL. These differences could be for multiple reasons. For ex-
ample, there are many more hyperparameters associated with RBFOpt than DE; more
careful tuning may have increased RBFOpt’s convergence. Furthermore, RBFOpt’s
sampling search strategy was used to show the efficacy of the pathline-based approach
when applied to other (possibly non-evolutionary) heuristic search techniques; the RB-
FOpt solver software may indeed perform more favorably using some other strategy.
Figure 4.4 displays the best obtained wall configuration for each possible number
of walls using the DE-PL solver. Structure placement appears highly nonincremental
as the number of walls increases, especially for smaller numbers of walls. Also, when
optimizing for a number of walls greater than eight, solutions generally deteriorate,
indicating the search space becomes prohibitively large. Interestingly, the size of the
restricted set # does not increase substantially as the configuration size grows. Finally,
in Figure 4.5, the best obtained solution for ten walls using DE-D is displayed. This

underscores the difficulty of such a problem when applying a conventional algorithm.
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Figure 4.4: Pathline-based solutions for the realistic dam failure. Here, best ele-
vations and maximum depths when using DE-PL are shown.

Figure 4.5: Direct ten-wall solution for the realistic dam failure.

67



DE-PL DE-D-S Mean
Mean Min Max SD Mean Min Max SD | Imprvmt.
163.86 | 159.63 | 170.07 | 4.52 | 162.18 | 158.59 | 167.59 | 3.85 1.02%
102.61 | 94.24 | 105.39 | 3.19 | 102.38 | 100.97 | 103.68 | 0.87 0.22%
50.75 | 33.36 | 65.93 | 14.80 | 64.98 | 48.97 | 81.93 | 14.71 | —28.06%
31.84 | 17.51 | 56.87 | 13.20 | 41.04 | 26.07 | 58.60 | 14.88 | —28.89%
22.74 | 12.82 | 36.39 | 8.04 | 23.22 | 17.45 | 34.87 | 6.18 | —2.11%
24.79 | 7.24 | 60.66 | 14.87 | 14.94 | 11.56 | 18.39 | 2.26 | 39.76%
18.14 | 5.59 | 26.77 | 6.64 | 11.14 4.10 14.53 | 2.87 | 38.60%
14.02 | 4.03 19.74 | 5.59 | 9.42 6.02 16.64 | 3.30 | 32.81%
17.83 | 8.56 22.46 | 4.85 | 4.72 0.00 9.91 3.74 | 73.52%
19.68 | 10.43 | 30.38 | 5.61 3.07 0.00 9.29 3.10 | 84.38%
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Table 4.3: Comparison of DE-PL and DE-D-S solver solutions. This table assumes
the same reporting conventions as Table 4.2.

Sequential algorithm results

To counteract the degradation of solutions for larger configurations, the sequential ap-
proach presented in Section 4.2.2 was benchmarked in a similar setting. In Table 4.3,
performance of the direct sequential DE solver (DE-D-S) is compared against DE-PL.
Interestingly, DE-D-S performs much better than DE-PL for configurations contain-
ing many walls, providing improvements as large as 84%. This result indicates the
difficulty in optimizing configurations of multiple structural mitigation measures simul-
taneously, which may lead to a worse objective when executing the previous algorithms
with more measures. Note, however, that the sequential approach generally does not
provide improvements over DE-PL for configurations consisting of three, four, and five
walls. These results indicate that sequential optimization is most beneficial when the
number of possible structural measures becomes much larger (e.g., greater than five).
Finally, a comparison between DE-D-S and the sequential DE-PL solver (DE-PL-S)
is made in Table 4.4. On average, DE-PL-S provides a 24% improvement over its direct
counterpart. The sequential DE-PL solver is also capable of finding a solution which
completely mitigates the flood using a smaller structural budget. That is, the direct
sequential solver finds a totally mitigating solution at m = 9, but DE-PL-S accomplishes
this for m = 8. Interestingly, however, for m = 10, DE-D-S finds a totally mitigating

solution, whereas DE-PL-S only finds a nearly mitigating solution. This again may be
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DE-D-S DE-PL-S Mean

Mean Min Max SD Mean Min Max SD | Imprvmt.
162.18 | 158.59 | 167.59 | 3.85 | 163.61 | 159.63 | 167.59 | 4.19 | —0.88%
102.38 | 100.97 | 103.68 | 0.87 | 98.25 | 86.78 | 105.84 | 7.45 4.04%
64.98 | 48.97 | 81.93 | 14.71 | 56.74 | 35.73 | 86.12 | 13.92 | 12.69%
41.04 | 26.07 | 58.60 | 14.88 | 27.18 | 14.55 | 56.37 | 11.81 | 33.77%
2322 | 17.45 | 34.87 | 6.18 | 16.32 | 8.38 | 25.35 | 5.25 | 29.73%
14.94 | 11.56 | 18.39 | 2.26 | 10.63 | 3.92 | 16.96 | 5.29 | 28.82%
11.14 4.10 14.53 | 2.87 | 7.02 0.13 | 15.00 | 5.08 | 36.97%
9.42 6.02 16.64 | 3.30 | 4.53 0.00 9.68 3.81 51.90%
4.72 0.00 9.91 3.74 | 3.36 0.00 7.86 | 3.43 | 28.83%
3.07 0.00 9.29 3.10 | 2.59 0.00 6.30 2.60 15.76%
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Table 4.4: Comparison of DE-D-S and DE-PL-S solver solutions. This table as-
sumes the same reporting conventions as Table 4.2.

a consequence of the relatively small number of experiments performed. Overall, except
for small m (i.e., m = 1), the pathline-based sequential approach appears to be highly
superior to the direct sequential approach. This result indicates that DE-PL-S could
serve as a good general purpose OFMP solver for realistically-sized flood scenarios.
Figure 4.6 displays the ten incremental configurations obtained via DE-PL-S for m =
10 and the random seed that gave the minimum corresponding objective in Table 4.4.
The ultimate solution for m = 10 shows remarkable similarity to the solution obtained
via DE-PL for m = 8, as shown in Figure 4.4. That is, both solutions appear to exploit
the critical depth boundary condition to divert water outside of the domain’s uppermost
boundary. However, the sequential solution appears to place a larger number of walls
in more intuitive locations. Similarly, as displayed by the solution for m = 10 shown in
Figure 4.7, DE-D-S also produces a configuration which diverted flow out of the domain’s
uppermost boundary, although one wall is placed extraordinarily near this boundary.
We remark that such mitigation solutions may not be possible when using the pathline

approach, as pathlines typically do not reside near the domain boundaries.
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Figure 4.6: Pathline-sequential solutions for the realistic dam failure. Best eleva-
tions and maximum depths when using DE-PL-S are shown.

Figure 4.7: Direct-sequential ten-wall solution for the realistic dam failure.
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Summary of algorithm comparisons

Tables 4.1 through 4.4 compare the performance of solvers against one another. Within
these tables, the best objectives over all seeds and solvers are denoted in bold, while the
best mean objectives are underlined. It is first apparent that for m € {1,2}, minimum
objectives are obtained through use of DE-D. Good mean objectives are also obtained
using this solver. This result indicates that direct local search algorithms are capable of
performing well on OFMPs that contain a small number of structural measures. It also
implies that more careful tuning of these solution algorithms may hold great promise.
For m = 3, DE-PL performs most favorably, providing the best overall and best
mean objectives. This implies for a moderate number of structural measures, DE-PL
effectively uses pathlines to restrict the search space. Moreover, if the optimal solution
is nonincremental, it is capable of finding solutions that sequential approaches cannot.
However, for m > 3, DE-PL-S performs most favorably, indicating a combination of

pathline-based and sequential approaches are needed to solve challenging problems.

Proof of concept for soft structural mitigation measures

Sections 4.3.3 through 4.3.4 focus on OFMPs designed to configure the placement of hard
structural mitigation measures (i.e., b; > 0 and n; = 0). However, it is important to
emphasize that the problem formulations and techniques described throughout Sections
4.1, 4.2, and 4.3.1 are not limited to such measures. To exemplify this, a proof of concept
employing only soft structural measures is assessed. In particular, an OFMP taking the
form of Equations (4.21a) through (4.21g) is proposed that optimizes the configuration
of m revegetation projects (i.e., n, > 0 and b, = 0), differing from previous experiments.

Using the ICOLD 2013 scenario, the above problem was constructed for a number of
revegetation projects ranging from one to ten. Each revegetation project was assumed
to have a radius of 250 meters and increased the Manning’s roughness coefficient in
the project region from 0.035 to 0.123. An experimental setting equivalent to that
described in Section 4.3.2 was used. However, in these experiments, only the DE and
DE-PL solvers were compared. Furthermore, only a single random seed was used.

In Figure 4.8, for each experiment, the objective behavior is plotted against the num-
ber of PDE evaluations required to reach that objective value. The DE-PL solver is

generally able to improve upon solutions more rapidly, especially for configurations in-
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Figure 4.8: Revegetation algorithm convergence for the realistic dam failure.
Here, the objective values versus numbers of PDE evaluations are
compared for the OFMP scenario in Section 4.3.4, using DE-D and
DE-PL to optimize positions of one through ten revegetation projects.

volving larger numbers of revegetation projects. These results mimic the behaviors of
Figure 4.2, Table 4.1, and Table 4.2. That is, for smaller numbers of projects, the direct
algorithm is sufficient, but for larger numbers of projects, the pathline-based algorithm
is needed to obtain meaningful mitigation solutions in a reasonable amount of time.
Finally, in Figure 4.9, the configurations using DE-PL are displayed pictorially for
all pairs of scenarios and numbers of projects. The results are highly intuitive upon
greater inspection. First, many of the projects appear to be placed in locations that
interdict the initial flood wave. More interestingly, many are located along the primary
channels of the scenario domain, where larger velocities would occur. This makes sense,
as the bed shear stress source terms in Equations (4.1) are proportional to the square

of velocity. Measures that increase roughness are thus highly beneficial in these regions.

4.4. Conclusion

This chapter addressed the difficult problem of designing structural flood risk manage-
ment strategies for use within the risk assessment process. To this end, an optimization-
based decision support approach was proposed for designing mitigation strategies. A

number of numerical methodologies were developed that generally function through
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Figure 4.9: Pathline-based revegetation solutions for the realistic dam failure.

modifying the bed slope and bed shear stress source terms of the 2D shallow water equa-
tions. However, the methodologies are sufficiently general to modify other source terms
(e.g., adjustment of soil properties that affect S via infiltration) or even supplant the
shallow water equations with a different (perhaps approximation-based) physical model.

To formalize the mitigation task, the OFMP of Chapter 3 was reformulated. To solve

practical problems of this type, a time-limited search-based optimization algorithm was
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developed. Within this algorithm, three approaches to generate solutions were explored:
a direct approach using only derivative-free optimization, an augmented approach using
pathlines to restrict the search space, and a sequential optimization approach. The latter
two were largely successful, depending on the number of mitigation measures defined
in the OFMP. Overall, the non-sequential and sequential pathline-based differential
evolution approaches provided average improvements of 59% and 65% over their direct
counterpart, respectively. Results illustrate the first meaningful solutions to large-scale
optimization problems of this type, vastly improving on the methodology of Chapter 3.
However, unlike Chapter 3, in this chapter, we note that the metaheuristic nature of the
algorithm that was developed ultimately provides no solution bounds nor guarantees.
Future work should seek to increase and prove the applicability of the approach to
realistic flood scenarios. First, it should seek to generalize the approach by benchmark-
ing performance on a greater number of real-world flood scenarios. Second, it should
address the inherent uncertainty in flood scenario parameterizations (e.g., topographic
elevation, dam breach parameterization, bed friction). To this end, a stochastic opti-
mization approach could be developed to ensure solutions are distributionally robust
from a planning perspective. Third, a human behavioral study should be conducted
to compare the utility of the optimization approach presented herein with the typi-
cally manual process used in simulation-based mitigation design. Fourth, algorithmic
enhancements should be made to increase the realism of mitigation designs. For exam-
ple, flood walls used in the numerical experiments were considered overtoppable. This
may not be realistic from a flood risk management perspective. Such realism can be
embedded within the optimization problem in the form of additional penalties (e.g.,
when walls are overtopped, a penalty is introduced) or additional constraints. Finally,
the approach should be extended to solve OFMPs for scenarios that require modeling
at finer spatial resolutions. To accomplish this, a multi-resolution approach could be
developed, where the spatial resolution of a flood scenario is iteratively refined as opti-
mization progresses. Such a contribution would be valuable for realistic scenarios, where

fine resolution details are sometimes necessary to accurately predict flooding behavior.
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Chapter 5

Exact Mixed-integer Convex

Programming Formulation for
Optimization of Potable Water
Distribution Network Design

Chapters 3 and 4 exemplify the challenges encountered when solving practical infras-
tructure optimization problems constrained by the transient dynamics that govern large-
scale systems of fluids. However, as discussed in Chapters 1 and 2, many important in-
frastructures comprise networked systems of fluids that can be well-approximated using
steady-state fluid dynamical models. Although these fluid models are simpler, optimiza-
tion problems involving these systems are still challenging due to (i) discrete decisions
that must be determined in many problem classes; (ii) controllable system components
that must be modeled using discrete variables; and (iii) the nonlinear nonconvexity of
Bernoulli-inspired energy equations. For the remaining technical chapters of this disser-
tation (i.e., Chapters 5 through 8), we forgo the PDE-constrained problems of Chapters
3 and 4 and instead consider problems involving networked fluid systems at steady state.

The first such systems we consider are potable water distribution networks. The
efficient transport of potable water has challenged human civilization for millenia. To
address this challenge, the development of distribution networks has played a vital role
in supplying water to domestic demands since the third millenium BCE [90]. With

the perpetual growth and migration of populations, new water distribution systems
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are continually being developed, and existing systems are similarly being expanded.
Designing and expanding these systems, however, are often highly complex tasks that
involve selecting sizes, locations, and operational statuses of system components while
also considering their physical limitations and minimizing cost [87]. These decisions
are highly combinatorial and, furthermore, constrained by the nonconvex physics that
describe the transport of water through circular pipes subject to frictional losses. These
properties pose considerable challenges for water network planning, even in modernity.

This chapter considers the problem of optimal water network design, where the layout
of the network is known, and the diameter and material of each pipe must be selected
from a discrete set to minimize cost while satisfying fixed demand. The canonical design
problem presented throughout the literature excludes common operational components
(e.g., pumps), and all demand is assumed to be gravity-fed. This chapter focuses on the
development of mathematical programming (nonheuristic) solution techniques for this
problem. However, because of the nonconvexities that appear in the physics of water
systems, naive mathematical programming formulations quickly become intractable. To
address this, the problem is typically relaxed via convexification. Unfortunately, solu-
tions to relaxed problems may be infeasible with respect to the full nonconvex physics.

To address the challenges associated with nonconvex network analysis, [29] introduced
a convex program for determining the feasibility of a fixed network governed by linear
conservation laws and nonlinear loss relationships. This was later revived by [36], who
developed the convex “Content” and “Co-Content” Models for the analysis of pipe net-
works. Later, [137] developed a gradient method for the Content Model, a version of
which is still employed by the de facto standard for water network analysis, EPANET
[116]. These studies have established the importance of convexity in network simulation.

From a network optimization perspective, [110] and others (as reviewed by [87]) have
used Content-like models within simulation-based techniques, whereby candidate solu-
tions generated during optimization are checked for feasibility. However, with respect
to formulating network decision problems, a convex Content-like model has never been
directly embedded within a different network problem. This has likely been for three
reasons: (i) the Content and Co-Content Models are in the space of two different vari-
able sets; (ii) the models do not include engineering bounds on these variables; and (iii)
the models require minimization of a convex objective. In this chapter, we present a

novel convex system for network analysis that eliminates these limitations. This allows
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the system to be convexly embedded within other nonlinear network decision problems.
This chapter explores the potential of this convex network analysis reformulation and
applies it within the context of water network design. Its primary contributions are
o A convex embedding of all constraints and bounds for a gravity-fed pipe network;
o An exact mixed-integer convex formulation of the optimal network design problem,;
» Application of the formulation within a relaxation-based network design algorithm;
« A comparison of this algorithm with the previous state of the art (i.e., [110]);
o New objective bounds for open benchmark instances throughout the literature.
Broadly, these contributions could be generalized to network design and expansion
planning problems for other important network types exhibiting nonlinear relationships

among nodal potentials and flows (e.g., natural gas and oil transmission networks).

Chapter Overview As this chapter builds heavily upon previous techniques devel-
oped over several decades, it is divided into two parts: the first reviews foundational
theoretical and algorithmic work, and the second details our new contributions. As back-
ground, Section 5.1 reviews optimization techniques for water and other similar network
problems, Section 5.2 formulates the water network design problem as a MINCP, and
Section 5.3 summarizes the contributions of [110]: (i) their MICP relaxation, (ii) the
further relaxation that forms a MILP, and (iii) the outline of a MILP-based algorithm.
The remaining sections detail this chapter’s contributions: Section 5.4 derives a convex
description of feasible designs, then reformulates the optimal design problem ezactly as
an MICP; Section 5.5 augments an algorithm similar to [110] with novel outer approxi-
mations based on the new MICP; Section 5.6 compares the new and previous algorithms

using standard instances from the literature; and Section 5.7 concludes the chapter.

5.1. Literature Review

Nonlinear networks refer to a class of networks in which (i) flow is driven by potentials
and (ii) potential loss along an edge is a nonlinear function of flow. Network types
with these properties include potable water, natural gas, and crude oil. Because of
their mathematically similar descriptions, optimization methods developed for any of
these networks are often easily adapted to the others. For over fifty years, a variety

of techniques have been employed to solve optimization problems that involve these
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network types [110]. Comprehensive literature reviews of solution techniques used for
optimal water network operation and design are provided by [88] and [87], respectively,
both of which are dominated by metaheuristic methods. A similar review of solution
techniques for problems involving natural gas networks is provided by [115]. Finally,
[118] review methods for optimizing various aspects of the crude oil supply chain.
Outside of mathematical programming, the predominant approaches used for solv-
ing water network design problems have been heuristic techniques based on simulation
optimization. Indeed, as expressed in [87], “.. research [has| been trapped, to some ex-
tent, in applying new metaheuristic [optimization] methods to relatively simple (from an
engineering perspective) design problems, without understanding the principles behind
algorithm performance.” The same review specifies that 84% of the 124 studies com-
pared use “stochastic” methods (e.g., evolutionary and genetic algorithms), 9% use “de-
terministic” methods (e.g., linear and nonlinear programming), and 7% use hybridized
methods. This observation is further reinforced by [86], who describe the prevalence
of metaheuristic optimization techniques in the water resources literature and the as-
sociated performance inconsistencies inherent with using such techniques. For these
reasons, as well as due to the lack of optimality guarantees associated with metaheuris-
tic techniques, this chapter focuses on mathematical programming (specifically, globally
optimal mixed-integer nonlinear) approaches for solving water network design problems.
A number of recent studies have developed mathematical programming techniques
that have proven to be effective on various nonlinear network problems. In [16], a
relaxation-based method for natural gas network expansion planning is developed. In
[42], a survey of methods used throughout water system optimization is provided, which
includes both approximation- and relaxation-based techniques for optimal water network
operation and design. In [110], a relaxation-based approach for nonlinear network design
is developed, showcasing the efficacy of the method on water network design instances.
Our work considers the algorithm therein to be the state of the art for global nonlinear
network design. As such, the algorithm of [110] serves as a foundation for the one
developed in this chapter, where only the selection of cutting planes (or “cuts”) differs.
In conjunction with recent advances in relaxation-based methods for optimizing over
nonlinear network constraints, similar developments have been made in formulating
cuts that strengthen these relaxations. For example, [72] develop a number of valid

inequalities for nonlinear network design problems and briefly describe their potential
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for water networks. Similarly, [73] extend this work for natural gas networks. In both
cases, valid cuts are derived from the solution of a nonconvex program and several
auxiliary problems. In contrast, the cuts in this chapter are trivially derived from the
novel mixed-integer convex reformulation of the original water network design problem.

The notion of a convex feasibility problem for nonlinear network analysis, originating
with [29], applied by [36], and exploited computationally by [137] and [110], is also
discussed by [45]. Here, a convex reformulation of the optimal natural gas transmission
problem under restrictive assumptions is presented. A number of properties of this
problem are described, including solution uniqueness and physical interpretation. Unlike
this chapter, the problem they consider is not discrete, and their contributions appear
to have gone unused throughout the natural gas optimization literature. Moreover, as
elaborated upon in Section 5.4.1, our convex reformulation for network analysis is more
general than prior studies, as it includes all physical variables, bounds, and no objective.

Finally, during the writing of this chapter, it was brought to our attention that similar
but unpublished independent results appear in [111, Chapter 5|, with the author of
[110] as a collaborator. The thesis begins by recasting a bilevel formulation of the
design problem as a single-level optimization problem. From this single-level problem,
a convex inequality is derived that enables the writing of the design problem exactly as
an MICP. Finally, the thesis proposes an outer approximation of their inequality within
an algorithm similar to that of [110], finding positive results on smaller design instances,

but concluding their method is only marginally better than, or on par with, [110].

5.2. Problem Formulation

5.2.1. Notation for Sets

A water distribution network is represented by a directed graph G := (N, A), where
N is the set of nodes (i.e., junctions and reservoirs) and A is the set of arcs (i.e.,
pipes). Herein, the set of reservoirs (i.e., source nodes with fixed potentials) is denoted
by § C N and the set of junctions by J C N. Junctions are modeled as demand nodes
(where the demand for flow is nonnegative) and, without loss of generality, $ N J = (.
The set of arcs incident to node ¢ € N where 7 is the tail (respectively, head) of the arc
is denoted by ;" := {(i,7) € A} (respectively, 6; := {(j,i) € A}). All arcs incident to
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a source node i € § are assumed to be outgoing, i.e., §; = () and 6; # 0, and arcs with
tails at ¢ € J have heads also at demand nodes. Finally, the design problem of Section

5.2.3 involves selecting from a set of resistances X, := {pl,pQ, ,pma‘} for each a € A.

5.2.2. Physical Feasibility

This section describes the variables and constraints required to model the physics of
gravity-fed water distribution networks given a fized selection of pipe resistances r,,
a € A. In the constraints that follow, q,, a € A, denote variables representing the flow
of water across each arc (expressed as a volumetric flow rate in m3/s). Nodal potentials
are denoted by the variables h;, ¢ € N, where each represents the total hydraulic
head in units of length (m). The total hydraulic head (hereafter referred to as “head”)

assimilates elevation and pressure heads at a node, while the velocity head is neglected.

Flow Bounds When g, is positive (negative), flow on arc a := (i, j) travels from node

i to j (j to ). Flow is often bounded by physical capacity or network analysis. Herein,

<q,<q, VacA. (5.1)

—a

The maximum speed of flow along arc a € A, v,, is often used to estimate the bounds

q = —EEGDZ and q, = %%D?u where D, is the fixed diameter of the pipe a € A.

—a
Head Bounds For each reservoir ¢ € 8, the head is fixed at a constant value A, i.e.,
h; = h$, Vi € 8. (5.2)

For each junction i € 7, a predefined minimum head h, must be satisfied. Upper bounds

on heads can also be provided or implied by network data. For example, we assume

h, < h; < h; = max{hs}, Vi € J. (5.3)
jES
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Conservation of Flow at Demand Nodes Flow must be delivered throughout the

network in order to satisfy fixed demand, d,, at all demand nodes ¢ € 7. That is,

ZQa_ZQa:dia VZEg (54)

a€d; aes;

Head Loss Relationships Flow along an arc is induced by the difference in head
between the two nodes connected by that arc. The relationships that link flow and head

are commonly referred to as the “head loss equations” and are generally of the form

hi —hj = ¢4(4.), Ya:=(i,j) € A, (5.5)

where ¢, : R — R is a strictly increasing function with rotational symmetry about the

origin. The most common head loss relationships include the Darcy-Weisbach equation,

8L T4l
hi o hj = 7T2gD2 ) (56)
and the Hazen-Williams equation (where the constant 10.7 is in standard units),
10.7L 0.852
hy —h; = 18gzqa|qa| (5.7)
i k1852 D1.8704

Here, L, is the pipe length, 7, is the friction factor, g is gravitational acceleration, and
kK, is the roughness, which depends on the pipe material. A more thorough discussion of
the history of these equations is presented in Chapter 2. In Equation (5.6), 7, depends
on g, in a nonlinear manner. However, in the mathematical programming literature, 7,
is often fixed to a constant, which removes the term’s nonlinearity in ¢, [61], [140].

When all terms except h;, h;, and g, are fixed, both head loss equations reduce to
— a—1 e— (7 A
hi - h_] - Laraqa|qa| ) Va := <Z7]> S A. (58)
Here, a denotes the exponent required by Equation (5.6) or (5.7), and r,,, a € A, denotes

the resistance per unit length. The resistance per unit length comprises all non-length

constant terms appearing in Equations (5.6) and (5.7) and is in units of (m3/s)~*.
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For fixed resistances r, the nonconvex formulation for water network feasibility is thus

Physical bounds: Constraints (5.1), (5.2), (5.3)
Flow conservation: Constraints (5.4) (NLP(r))
Head loss relationships: Constraints (5.8).

5.2.3. Optimal Network Design

To formulate the optimal water network design problem, (NLP(7)) is coupled with the
combinatorial problem of selecting one resistance from a predefined set of resistances for
each arc, R, for a € A, while minimizing the overall cost of network design. To model
the disjunction representing discrete resistance choices, each g, is first decomposed into

|R,| binary variables z,, € {0,1} = B and continuous variables q,, € R. This implies

= Gy, Ya €A, (5.9)
PER,
4, %ap < < Gap < ypZapr Zap € B, Va:=(i,j) € A, Vp € R,. (5.10)
Here, z,, = 1 when p € R, is selected as the resistance and is zero otherwise. From
Constraint (5.10), it follows that g, is nonzero only when z,, = 1. Also note that a,, =

—ZUGDgp and q Qyp = Z%DZ are often used as flow bounds as each p € X, is typlcally
derived from a unique pipe diameter D, . Furthermore, since only one resistance may

be selected per pipe indexed by a € A, we include the additional constraints

D 2y =1, Ya€ A (5.11)

peR,

The head loss Constraints (5.8) are then expanded to formulate the constraints

hi—h; =Ly Y Plapltap|®", Va:=(i,j) € A. (5.12)
PER,

Finally, the objective function, n(z), for the optimal design problem is written as

=3 LY CupZap (5.13)

acA  peR,
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where c,,, is the cost per unit length of installing a pipe along a € A with p € &,,.

These modifications allow the optimal water network design problem to be written as

minimize  Objective function: n(x) of Equation (5.13)

subject to Physical bounds: Constraints (5.2), (5.3), (5.10)
Flow conservation: Constraints (5.4) (MINLP)
Resistance selection: Constraints (5.11)

Head loss relationships: Constraints (5.12).

Here, Constraints (5.4) employ the definitions of ¢, described in Equations (5.9). Note
that (MINLP) is mixed-integer nonconvex because of the nonconvex Constraints (5.12).
In many similar network problems, the challenge of nonconvexity is often addressed via
a convex relaxation of the complicating constraints. As one example, [110] addresses
this challenge via convex relaxation followed by linearization of the resulting MICP.
Their method is reviewed in Section 5.3 both for context and because we ultimately
employ a similar algorithm. This chapter, on the other hand, addresses this challenge
via an ezact convex reformulation of (NLP(7)) to describe feasibility, followed by an
exact MICP reformulation of (MINLP). These are further described in Section 5.4.

5.3. Review of a Relaxation-based Algorithm

This section reviews the relaxation-based formulation and global optimization algorithm
of [110] for optimal network design, which are crucial for two reasons: (i) they establish
the context for this chapter’s exact convex reformulations described in Section 5.4, and
(ii) they provide useful algorithmic techniques which are later applied in Section 5.5.
First, their relaxed MICP of the design problem is presented in Section 5.3.1. Then, an
exact MILP reformulation of (MINLP), based on an outer approximation of the MICP,
is presented in Section 5.3.2. Convex programs for determining the feasibility of a design
are presented in Section 5.3.3. Finally, a simple global algorithm, which leverages the

relaxed MILP formulation described in Section 5.3.2, is presented in Section 5.3.4.
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5.3.1. Mixed-integer Convex Relaxation of (MINLP)

This section relaxes the nonconvex head loss constraints of (MINLP) via an outer
convexification to form a relaxed MICP of the original optimal water network design
problem. This is accomplished by partitioning Constraints (5.12) into their symmetric
positive and negative components. To begin, the directed flow variables qg:p > 0 are

introduced, denoting nonnegative flows in the two directions along arc a € A, with

Qo= (0, —dap), Ya €A (5.14)

PER,

replacing Equations (5.9). Next, bound Constraints (5.10) in (MINLP) are rewritten as

0<q;, < Gaipzap, Zp €EB, Ya€ A, Vpe R, (5.15)

where G:p = max{0,q,,} and g,, = max{0, —¢ } replace the bounds of Constraints
9op
(5.10). Nonnegative head difference variables AhF are similarly introduced to denote

head loss in the two possible flow directions. These are related to the h;, + € NV, via

Next, the variables y, € B, a € A, are used to model the direction of flow along each

arc, where, for a := (i, j), y, = 1 implies flow from i to j and y, = 0 from j to 1, i.e.,
0 < qap <TopYar 0< a0y < T, (1= ¥a), Yo €B, Yae A, Vpe R, (5.17a)

0< Ahf < ARy, 0<Ah < AR, (1—y,), y, €B, Ya € A. (5.17b)

—
Here, each bound Ah,, is derived from the lower and upper bounds on A in Constraints
(5.3). Next, the right-hand sides in Equations (5.8) are decomposed into two convex

functions representing head loss in the positive and negative directions. This implies

A =1L,> plek,)", Yae A (5.18)

pER,
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Recalling that qffps are nonzero for only one p € X,, Equations (5.18) are relaxed as
L.p(g5,)" < Ah¥, Va € A, Vp e R,. (5.19)

Note that (0,0) and (ai L.p (Gjp)a> are endpoints of the lines that upper-bound the

ap’ a
Lap(qﬁp)a_o _
- =

convex right-hand terms of Equations (5.18), with the slopes calculated as 20
ap

—1
L.,p (ajp)a . The convex relaxations in Constraints (5.19) are then upper-bounded via

AhE <L, [p (aj;p)a_l qu] , Va € A. (5.20)
PER,

These constraints ultimately give rise to an MICP relazation of (MINLP), namely,

minimize  Objective function: n(z) of Equation (5.13)
subject to Physical bounds: Constraints (5.2), (5.3), (5.15)
Flow conservation: Constraints (5.4)
(MICP-R)
Resistance selection: Constraints (5.11)
Head difference relationships: Constraints (5.16), (5.19), (5.20)

Direction-related inequalities: Constraints (5.17).

Constraints (5.4) employ the definitions of g, described in Equations (5.14). The validity
of this relaxed formulation was proven by [110]. However, note that because (MICP-R)
is a relaxation of (MINLP), network design solutions that are feasible to (MICP-R) may

not be feasible with respect to the original, nonconvex head loss constraints of (MINLP).

5.3.2. Mixed-integer Linear Reformulation of (MINLP)

In [110], (MINLP) is solved via a global, relaxation-based MILP algorithm. The algo-
rithm leverages much of (MICP-R), linear outer approximations of Constraints (5.19),
and linear feasibility cuts for integer solutions (i.e., network designs) Z that are infeasible
to (MINLP). This section restates these cuts, then develops a MILP reformulation of
(MINLP), representing the relevant aspects of the theoretical contributions from [110].
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AhZ

Figure 5.1: Illustration of equal intercept head loss outer approximations. Here,
dashed lines correspond to equal intercept outer approximations and
solid lines are convexified head loss relations for a hypothetical case
where |®,| =3, r, = py, and where zjwa is represented by the point.

Outer Approximation Cutting Planes Since Constraints (5.19) are convex, they
are easily linearized via outer approximation. However, instead of applying traditional
first-order outer approximations for each Constraint (5.19), [110] derives aggregate outer
approximations based on the notion of outer-approximating lines with equal intercepts
for all p € X,. This is illustrated in Figure 5.1 for a hypothetical instance where
|R,| =3 and r, = p,. Note that a standard outer approximation of Constraint (5.19)
for p € &, based on the first-order Taylor expansion of its left-hand side at c](fp, is

(1—a) Lop (G5)" + aL,p (G5,)" " qf, < ARE, (5.21)

Thus, if we fix a point ¢, € [O,QGiT | for some r, € R, and a € A, for the remaining
p € R,, the outer approximations will have the same intercept for Gz, = G5, (7,/ p)t/e.

Recall that variables qcfp become nonzero only when the corresponding resistance p
is active (i.e., z,, = 1). Also note that, since only one flow direction is chosen per arc
in (MICP-R), cuts can be strengthened through multiplication of constants with affine

expressions of y,. Exploiting these properties, aggregating over all r, € R, and (jﬂfra
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allows the rewriting of Constraints (5.19) in the resistance-aggregated form as

N s ae AR} i
Fhvata Y p(@h)" 4, < % Va € A Vr, € R, Vi, € 9,
peER, a
(5.22a)
~_ o no—1l Aha_ - B
Tary (1= a) F @D (Tp)" dap < % Ya € A, Vry € Ry, Vi, €0,
peR, a
(5.22b)

where 7. = (1—-a)r, (@fra)a and OF, = [0,7..]. As in [110], each Constraint
(5.22) is stronger than the set of standard disaggregated cuts that outer-approximate
Constraints (5.19). Also, as shown in Section 5.3.4, algorithmically, Qaira can be replaced

by the finite sets Qaira to linearly approzimate (MICP-R) rather than reproduce it.

Feasibility Cutting Planes Since (MICP-R) is a relaxation of (MINLP), a solution
to (MICP-R) is not guaranteed to be physically feasible. To address this, let X denote
the set of designs represented by binary vectors z satisfying Constraints (5.11) that are

not physically feasible. Then, any infeasible designs will be excluded by the set of cuts

2.2 =) (2.~

acA

<|Al—1,VzeX. (5.23)

Each Constraint (5.23) is a combinatorial “no good” cut, which removes one combination

of resistances (i.e., one network design) from the space of solutions feasible to (MICP-R).

Mixed-integer Linear Reformulation Combining much of (MICP-R) with the cuts
described in this section, the infinite MILP reformulation of (MINLP), which abstractly

87



describes the theoretical contributions of and foundational formulation used by [110], is

minimize  Objective function: n(z) of Equation (5.13)

subject to Physical bounds: Constraints (5.2), (5.3), (5.15)
Flow conservation: Constraints (5.4)
Resistance selection: Constraints (5.11) (MIP-R)
Head difference relationships: Constraints (5.16), (5.20), (5.22)
Direction-related inequalities: Constraints (5.17)

Feasibility cutting planes: Constraints (5.23).

Algorithmically, the sets O, and X of Constraints (5.22) and (5.23) are replaced by
the initially empty finite sets, Qaira and X , and progressively augmented during the
algorithm’s execution. Hereafter, we refer to the relaxation of (MIP-R) as (MIP-RR).
To refine this relaxation, the convex oracle algorithmically used for determining whether

a design is contained in X (i.e., whether a design is feasible) is described in Section 5.3.3.

5.3.3. Convex Method for Determining Design Feasibility

This section reviews the work of [29] and [36], who provide convex programs for deter-
mining the feasibility of a nonlinear network with fixed resistances r. These resistances

correspond to an integer solution Z satisfying Constraints (5.11) via the relationship
To E{PE R, 2y, =1}, Ya € A. (5.24)

Thus, this feasibility-testing method can be used to determine whether Z is contained
in X. Letting g+ denote nonnegative directed flow variables along a € A and using the

definition g, := ¢/ — ¢, the studies propose a convex programming problem similar to

Lo Lyry 1+a )
minimize —aa + +O‘ hi

nim ; o La) (42) 2@; %qa
(P(r))
subject to an — an =d;, VieJ.

acd; acd;

Note that this problem is, at its essence, a rewriting of the Content Model of [36].
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We next summarize that [36] and [110] prove three important properties of (P(r)): (i)
its flow solution ¢ is unique; (ii) the duals of flow conservation constraints correspond to
unique heads h; and (iii) the primal-dual solution (g, iz) satisfies flow conservation and
head loss Constraints (5.4) and (5.8). The ability to find a (§, k) satisfying these physical
equations by solving (P(r)) is appealing because the feasibility of r can be tested by
checking whether (g, h) satisfies Constraints (5.1) and (5.3). In the work of [110], this
method is used to guarantee global convergence of their relaxation-based algorithm.

Note the objective of (P(r)) is convex and all constraints are affine. The linearity
constraint qualification thus implies the existence of a strong dual. For completeness,

this dual is rederived in Appendix B.1 using Lagrangian duality. It is expressed here as

—Q 1 1 1
] 1 + 1+E - 1+E _ (.
maginie g 2 (M) e+ (k)] = 5 b,
D
subject to  Ahj — Ah, = hi —h;, Ya:=(i,j) € A:i €S (D))

Ahf — Ahg = h; —hj, Ya:=(i,j) € A:i € d.

We note that this problem is essentially a rewriting of the Co-Content Model of [36].

5.3.4. Global Optimization Algorithm

This section outlines a simple algorithm for solving (MINLP) to global optimality via
the iterative solution and augmentation of (MIP-RR). Algorithm 5.1 leverages the outer
approximation and feasibility cuts established in Section 5.3.2. In Line 1, the outer
approximation point sets and infeasible design set, 0% and X , are initialized as empty.
In Line 2, the relaxed problem is solved, and the solution components (g, B, Z) are
stored. In Line 3, feasibility of the design Z is determined (e.g., via the method of
Section 5.3.3). If the design is found to be physically infeasible, outer approximations
of head loss constraints are added in Line 4. A feasibility cut that excludes Z is then
added in Line 5. Finally, a solution to the new relaxed problem, with the aforementioned
cuts, is obtained in Line 6. These steps are repeated until a solution z to (MINLP) is
identified. Since Z is discovered via the solution of sequential relazations of (MINLP)
and the cuts do not exclude feasible solutions, the design is guaranteed to be optimal.
In practice, the algorithm developed by [110] is more sophisticated than Algorithm 5.1.

Specifically, it exploits the linearization-based linear programming/nonlinear program-
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Algorithm 5.1 A MILP relaxation-based global optimization algorithm for (MINLP).

1: f)aip<—®, Va e A, Vpejea;j%w.

2: (4, h, %) < Solve (MIP-RR).

3: while Z is infeasible to (MINLP) do

4 0% « 0= U{g), Ya€ A, Vpe R,
- -

6

7

g P Qap
X+ X Uiz}
(q, h, z) < Solve (MIP-RR).
. end while

ming branch and bound (LP/NLP-BB) framework developed by [108]. This permits
more flexibility than Algorithm 5.1 through the use of “callbacks” available in MILP
solvers. First, outer approximations are added in other parts of the search, not just inte-
ger solutions to (MIP-RR), as in Line 4. Moreover, outer approximation points 0% are
more thoughtfully selected. Second, [110] develops heuristics internal to the search that
recover feasible solutions from fractional and integer solutions infeasible to (MINLP).
In this chapter, contributions from [110] are used to devise a new algorithm, which is
described in Section 5.5. The two algorithms primarily differ in the selection of outer
approximation cuts. Prior to developing this algorithm, Section 5.4 describes the novel
contributions that eventually lead to these new cuts, which are derived and applied in

Section 5.5. Note that a thorough algorithmic description is presented in Appendix B.4.

5.4. Convex Reformulations for Analysis and Design

Whereas this chapter has thus far discussed important past contributions in water net-
work analysis and design, the remainder of this chapter describes our new contributions.
For context, Section 5.3.3 summarized a convex system for determining the feasibility
of a nonlinear network with fixed resistances. This method could be exploited within a
bilevel programming formulation for optimal design, whereby resistance selections ob-
tained in the outer level must satisfy constraints on the corresponding solution of (P (7))
(i.e., the inner level). Indeed, such a bilevel method was developed by [149] for the design
of pipe networks. Interestingly, however, no study has fully examined the relationship
between (P(r)) and its (strong) dual (D(r)), which we show leads to exact convex re-

formulations of the original feasibility and design problems. This section describes two
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of our novel contributions, both of which serve as foundations for the remainder of this
chapter. The first subsection derives an ezact convex reformulation of (NLP(r)). The

second subsection extends this to derive an ezxact MICP reformulation of (MINLP).

5.4.1. Convex Reformulation of (NLP(r))

Note that (P(r)) and (D(r)) have three limitations for our purposes: (i) they are either
in the variable space of flows or in the space of heads; (ii) they do not include variable
bounds, which are required for modeling pipe capacities and minimum pressures; and
(iii) they require minimization or maximization of an objective. This makes directly
embedding (P(r)) or (D(r)) within a separate decision problem (e.g., the optimal design
problem) a challenging task. To address this limitation, this section extends Section
5.3.3 to derive an ezact convex reformulation of (NLP(7)) based on the strong duality
conditions between (P(r)) and (D(r)) and the further addition of physical bounds.

Theorem 5.1. Let fp(q) and fr,(h) denote the objective functions of (P(r)) and (D(r)),
respectively, and q, = qf —q, , Ya € A. The following system is equivalent to (NLP(r)):

fr(@) — fp(h) <0
ZQa_ZQa:di7 vzeg

a€d; aed;

AR — AhT = hs — —(i,j)eA:i€S (CP(r))
Ah — Ah; = h—h VYa :( NeA:ied
h, < h; <h;, Vied, 0<q¢f <q:, Ahf >0, Va € A.

Proof. By weak duality, it follows that f5(q) > fp(h) for any feasible solutions to (P (7))
and (D(r)), with equality holding for optimal solutions by strong duality. As a result,
optimality is equivalently imposed by combining constraints of (P(r)) and (D(r)) with
the convez constraint fp(q) — fp(h) < 0. Next, [110] shows that head loss Constraints
(5.8) of (NLP(r)) are equivalent to a portion of the first order optimality conditions for
(P(r)). Moreover, [17, Section 5.5.3] ensures that, since (P(r)) is a convex differentiable
problem with a strong dual, the dual multipliers h appearing in its optimality conditions

are optimal solutions of the dual problem (D(7)). That is, any (g,h) that satisfies
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constraints of (P(r)), (D(r)), and strong duality will satisfy Constraints (5.4) and (5.8).

Finally, appending bound constraints on ¢ and h ensures equivalence to (NLP(r)). O

A physical interpretation of the convex strong duality constraint is discussed in Ap-
pendix B.2. Summarily, the constraint implies the conservation of power (or energy),
with an inequality replacing the traditional equality. Nonetheless, it is known via the
strong duality argument above that any solution to (CP(r)) will indeed satisfy this
constraint with equality, implying that (CP(r)) possesses an empty interior. This is dif-
ferent than (P(r)) and (D(r)), which themselves separately do possess strict interiors.
We remark that conventional nonlinear programming algorithms (e.g., most interior
point methods) will thus typically provide no guarantees for the solution of (CP(r)).

Theoretically and numerically, a strict interior could be achieved by employing the
relaxation fp(q) — fp(h) <€, where € is an arbitrarily small constant. It could also be
achieved by minimizing fp(q)— fp(h) instead of constraining it. However, in the context
of this chapter and the algorithm of Section 5.5, (CP(r)) is never solved in practice, so
we forgo these challenges. Rather, (CP(7)) is used as a theoretical tool to construct the
novel MICP reformulation of the optimal design problem presented in Section 5.4.2.

Finally, we remark that the convex strong duality constraint above, fp(q)—fp(h) < 0,
is similar to the convex valid inequality derived in the unpublished thesis of [111]. There,
a convex constraint is obtained directly from a bilevel formulation of the design problem
and proven to be valid using a strong duality argument. Our result differs in two ways:
(i) we obtain a complete convex rewriting of the network analysis problem in (CP(r)),
and (ii) their convex inequality includes nonlinear terms in the space of head differences,

whereas our convex inequality includes nonlinearities over flows and head differences.

5.4.2. Mixed-integer Convex Reformulation of (MINLP)

To reformulate (MINLP) using (CP(r)), we first introduce continuous flow variables ¢z,

and resistance selection variables z,,,, subject to Constraints (5.15). Next, we introduce

continuous variables AhZ, and derive their bounds from Constraints (5.3), i.e.,

+
apzap7

0 < Ahf, < Ah, Zap EB, Ya€ A, Vpe R,. (5.25)
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The constraints involving head differences in (CP(r)) are next rewritten as

> (Ahf, = Ahg,) =h;—hy, Ya:=(i,j) € A:i€] (5.26a)
PER,
> (Ahf, — Ahg,) =hi—hj, Va:=(i,j) € A:i €. (5.26h)
PER,

Finally, the strong duality constraint in (CP(r)) is expanded over all p € R, as

Z Zp qap 1+a + Qap 1+a Zhs Z a4

1+a

acA pe’]? €S aeé+ (5 27)
+ 7 [Ah+)1+a+(Ah w4+ hd; <0
+ o acApeR, icd

These expansions of (CP(r)) give rise to the ezact MICP reformulation of (MINLP),
where Constraints (5.4) employ the definitions of ¢, in Equations (5.14). Namely,

minimize  Objective function: n(z) of Equation (5.13)
subject to Physical bounds: Constraints (5.3), (5.15), (5.25)
Flow conservation: Constraints (5.4)
(MICP-E)
Resistance selection: Constraints (5.11)
Head difference equalities: Constraints (5.26)

Strong duality: Constraint (5.27).

We note that a similar MICP formulation is derived in the unpublished work of [111].

Theorem 5.2. A Z is feasible for (MICP-E) if and only if it is feasible for (MINLP).

Proof. For any discrete network design solution Z satisfying Constraints (5.11), (MINLP)
reduces to (NLP(r)) and (MICP-E) to (CP(r)), with r given by Equations (5.24). For
any fixed set of resistances r, (NLP(r)) and (CP(r)) are equivalent, as required by
Theorem 5.1. Thus, the sets of all feasible Z for (MINLP) and (MICP-E) are equal. [

As in our discussion of (CP(r)), when the integer variables of (MICP-E) are fixed,
the resulting subproblem has an empty interior. In the classical presentation of many

techniques that are used for solving MICPs, e.g., the generalized Benders decomposition
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of [58], it is assumed that after fixing complicating variables, the resulting subproblem
possesses a nonempty interior. For this reason, we provide no guarantees on the solution
of (MICP-E) obtained via conventional direct MICP methods. Nonetheless, in Appendix
B.3, we provide the convergence profile of one such method on a small instance of
(MICP-E). Although it converges to the known global optimum, its convergence is
slow. This inefficiency further motivates the development of the MILP relaxation-based
algorithm presented in Section 5.5. As such, in practice, the algorithmic side effects of
empty interiors are again avoided throughout the experiments presented in this study.
Constraint (5.27) of (MICP-E) can be viewed as a convex embedding of Constraints
(5.12). Although convexity is desirable, Constraint (5.27) is also highly aggregated.
In this sense, the disaggregated nonconvex Constraints (5.12) of (MINLP) or convex
Constraints (5.19) of (MICP-R) may be more numerically useful. Section 5.5 uses this
observation to construct a relaxation-based global algorithm based on (MICP-E) and
(MICP-R) that outer-approximates both Constraint (5.27) and Constraints (5.19).

5.5. Cutting Planes and Algorithmic Enhancements

As discussed in Section 5.4.2, (MICP-E) is an exact reformulation of the design prob-
lem. However, it was also noted that conventional MICP solvers (e.g., BONMIN [12])
may provide no optimality guarantees on the solution of (MICP-E). Furthermore, as
Appendix B.3 shows, even when direct methods are applied successfully, they converge
slowly, as modern MICP solvers do not efficiently handle nonquadratic nonlinear rela-
tionships (e.g., Constraint (5.27)). On the other hand, modern MILP solvers are highly
efficient but require conscientious linearizations of (MICP-E). This section pursues the
latter technique, following a structure similar to Section 5.3. Specifically, it introduces
novel outer approximation cuts while developing a MILP reformulation and relaxation

of (MICP-E), then summarizes this chapter’s extensions to the algorithm of [110].
Flow Direction-based Inequalities Although (MICP-E) does not require direction

variables ¥,, we nonetheless incorporate y, to strengthen inequalities throughout our

reformulation. Similar to Constraints (5.17), flows and head differences are bounded via
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0< gty <G ar 0<qup <Tp,(1-9,), ¥, €B, Vac A, Vpe R, (5.28a)

—t B _—
0 < Ahl, < Aligyye, 0 < Ahy, < Ahy,(1—4,), Y, €B, Ya € A, Vp € R,. (5.28b)

We also employ valid inequalities to exploit a priori knowledge concerning flow direc-
tionality throughout the network. The inequalities proposed here are similar to those

described by [16] in the context of natural gas network planning. The first are

S y.>1,vies, (5.29)

acé)

which model that at least one pipe must send water away from a source. The next are

Yy + > -y =1, i€d:d; >0, (5.30)

a€d; a€sy

which model that at least one pipe must provide water to each demand node. Finally,

S U= ya=0, i€ (d=0)A (deg] =deg; =1) (5.31a)
acd; aeéj
Z Yo + Z y,=1,i€d:(d;=0)A (deg;IE = 2) A (degzF = 0) (5.31b)
acdy acgsf

model flow directionality at junctions with zero demand and degree two, with the im-

plication that the direction of incoming flow must equal the direction of outgoing flow.
Head Loss Outer Approximation Cutting Planes Although also not required

by (MICP-E), head loss relationships are used to strengthen linearized reformulations.

Similar to Constraints (5.22) in (MIP-R), we express head loss outer approximations as
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- Ah}
T Vet Y p(d)" 1qZ{p§Z T, Va € A, Vr, € Ry, Vi, €90,

peﬁa pe‘%a @

(5.32a)

~__ ~_ a—1 — Ah/gp ~_ —
Tar, (L —y,) + aZp (Gap)  Gap < Z 7R Va€ A Vr, € Ry, Vo, € 9y, -
pe‘%a pEﬂ?a a

(5.32b)

Furthermore, similar to Constraints (5.19), we upper-bound each head difference with
a—1
Aht, <L,p(T:,) a&» Ya€A, VpER,. (5.33)

Strong Duality Cutting Planes A primary contribution of this chapter is the strong
duality Constraint (5.27) of (MICP-E). To linearize it, we use ¢, ARNE > 0 to ap-

proximate sums of nonlinear terms with ¢z, and AhZ, in the original constraint, i.e.,

1 1+« N\ 1Ha
qa 1 + p |:(qu> + (qap) ] I \V/a S -’4 (534&)
peR,
o 1 1 3 N
AR = 5 ST (ARG + (Ahg )R], Va e A, (5.34D)

PER, (\l/ﬁ

This permits a purely linear rewriting of the original strong duality constraint, namely

ZLaqu - th Z Z (qu - q(;p)

+
acA €S aeé;" peR, acA

hNL

i + ) hyd; 0. (5.35)

ed

Observe that the right-hand sides of Equations (5.34) are convex. Similar to the head
loss outer approximations derived in Section 5.3.2, we follow the notion of equal intercept
linear outer approximations to compose cuts similar to Constraints (5.32) for ¢Y" and
ARNE. For ¢NE, let the intercept be determined by the linear approximation to the term
corresponding to r, € X, at point chfra. For each remaining p € &, the same intercept

is achieved by the linear approximation at point ¢z, = Gz, (7,/ p)Y/(F2) - With these
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values in mind, the outer approximations of the convex nonlinear flow terms are then

~ ~ « ~ +
e+ > p(@5) G <O, Ya€ A Vr, € R, Vi, €N (5.36a)

PER,
Cors L=9) + > 9 (Gp)” Gy < O, Ya € A, Vr, € Ry, ¥, € 0N (5.36b)
PER,
NL=+ —+ Fr (L =\ -
where 9,,"* = [0, qara], and (g, = (1+_a —1)r, (qara) is defined for conciseness.

An analogous procedure is followed for AhYL. Similar to Constraints (5.36), assuming

Ahaip have coinciding outer approximation intercepts, the outer approximations are

o AR } )
—E5 Yat D ( —p) Ahl, < ARYY, Va € A, Vr, € R,, VARL,. € AL
‘ p a a

pER,

(5.37a)

o AR ~ B
—&E (1—y,) + Z (\/ ; ”) Ah,, < ARGE, Va € A, Vr, € R,, VA, € FTE

pER,

(5.37Db)

- 1+3
where 5‘[1;5 = [0, Aﬁaira], and £, = (Ahs,,)

Aoy grs 18 similarly defined for conciseness.

Mixed-integer Linear Reformulation With the above variables and constraints, a
MILP reformulation of (MICP-E) may be written in a way similar to (MIP-R), that is,

minimize  Objective function: n(z) of Equation (5.13)

subject to Physical bounds: Constraints (5.3), (5.15), (5.25)
Flow conservation: Constraints (5.4)
Resistance selection: Constraints (5.11)
Head difference relationships: Constraints (5.26), (5.32), (5.33)
Direction-related inequalities: Constraints (5.28)—(5.31)
Strong duality: Constraints (5.35)—(5.37)

(MIP-E)

Feasibility cutting planes: Constraints (5.23).
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Similarly to (MIP-R), algorithmically, the sets O+, ONM= | F(NL+ and X of Constraints
(5.32), (5.36), (5.37), and (5.23) are replaced by the initially empty finite sets O+, ONL+
H NL£and X , respectively. These changes give rise to the finite relaxation (MIP-ER).

Algorithmic Enhancements Our algorithm, which is omitted for brevity but ex-
ploits (MIP-ER), is similar to that of [110] but differs in a few important respects.
Primarily, the algorithm of [110] only applies outer approximations similar to Con-
straints (5.32), which correspond to head loss relationships. Our algorithm extends this
by adding outer approximations of terms appearing in the strong duality Constraint
(5.27). A more detailed comparison of the two algorithms is presented in Appendix B.4.
We finally acknowledge similarity with the unpublished algorithm of [111], which also

extends the algorithm of [110] with outer approximations of their valid inequality.

5.6. Computational Experiments

This section compares the convergence of our new algorithm and an algorithm based
on [110]. Both were implemented in the JULIA programming language using JUMP,
version 0.20 [50], and version 0.1 of WATERMODELS, an open-source JULIA package
for water distribution network optimization [131]. Section 5.6.1 describes the instances,
computational resources, and parameters used in the experiments; Section 5.6.2 com-
pares the efficacy of the two algorithms by examining convergence; and Section 5.6.3

compares their performance on a set of instances obtained by scaling all demands.

5.6.1. Experimental Setup

The numerical experiments consider instances of varying sizes that appear in the water
network design literature and are summarized in Table 5.1 [42], [87]. All use the Hazen-
Williams head loss relationship originally defined by Equation (5.7). The set of diameters
in each problem thus gives a set of resistances, each being proportional to Da_g'8704.
The instances of Table 5.1 are divided into two classes: moderate instances, compris-
ing shamir, blacksburg, hanoi, foss_poly_0, and foss_iron; and large instances,
comprising foss_poly_1, pescara, and modena. Generally, moderate instances are

solvable to optimality with both algorithms given a sufficient amount of time (i.e., sec-
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Network # Nodes | # Arcs | # Resistances | # Binary Vars. | # Designs
shamir 8 8 14 120 1.48 x 10°
blacksburg 32 23 14 369 2.30 x 1026
hanoi 33 34 6 238 2.87 x 10%0
foss_poly_0 38 58 7 464 1.04 x 10%°
foss_iron 38 58 13 812 4.06 x 1054
foss_poly_1 38 58 22 1334 7.25 x 1077
pescara 74 99 13 1386 1.91 x 1010
modena 276 317 13 4438 1.32 x 103°3

Table 5.1: Summary of optimal water network design instances from the literature.
Here, “# Arcs” is the number of arcs with |%,| # 1; “# Resistances” is
|R,| per variable pipe; “# Binary Vars.” is |z| + |y| for MILPs; and “#
Designs” is the number of designs satisfying Constraints (5.11).

onds to hours), while large instances cannot be solved, even given substantial time (i.e.,
days). Each experiment began each algorithm with equivalent data, initial feasible so-
lutions, and outer approximation points. Parameters of the two algorithms were chosen
to coincide with those used by [110] and are further detailed in Appendix B.4 and B.5.

Each experiment was executed on a node containing two Intel Xeon E5-2695 v4 pro-
cessors, each with 18 cores at 2.10 GHz, and 125 GB of memory. Excluding the small
amount of time required by the heuristic procedure of [110] to obtain an initial feasible
solution (seconds), each experiment was provided a wall-clock time of 171,900 seconds
(approximately two days). For solutions of the MILPs, GUROBI 9.0.3 was used with
Cuts=0, which disables all of GUROBI’s internal cutting plane methods. For moderate
instances, Heuristics=0.0 was used, which disables GUROBI’s internal heuristics. For
large instances, MIPFocus=1 was used, which places a focus on finding feasible solutions.

For convex subproblems, e.g., the solution of (P(r)), IPOPT version 3.13 was used
[142]. As per [134], since these problems are small, the linear solver MA57 was employed.
The settings warm_start_init_point="yes" and nlp_scaling method="none" were

also used. Heuristically, these parameters computed solutions to (P(r)) most efficiently.

5.6.2. Comparison of Algorithms on Standard Benchmarks

Figure 5.2 illustrates the lower and upper bound convergence of the two algorithms on a

representative subset of instances (i.e., hanoi, foss_poly_0, foss_iron, and pescara).
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Figure 5.2: Convergence of objective bounds on select water network design in-
stances. Compared are the new algorithm with an algorithm similar
to [110] (Previous). Note the uses of linear and logarithmic z-axes.

Here, both algorithms converge to global optimality on the three moderate instances,
with the new algorithm displaying more favorable performance, i.e., lower and upper
bounds converging more quickly. However, both algorithms can solve hanoi in relatively
short amounts of times, taking just over a minute to reach global optimality in the worst
case. For larger moderate instances (i.e., foss_poly_0 and foss_iron), the differences
in convergence behavior are more dramatic. In the case of foss_poly_ 0, the new
algorithm converges nearly an order of magnitude more quickly. For foss_iron, the
difference is further emphasized, with the new algorithm converging more than an order
of magnitude faster. To highlight this point, throughout the literature, neither of these
two foss instances appear to have been solved to global optimality. Here, both algorithms
solve both problems, but ours does so around an order of magnitude faster. In large cases

(e.g., pescara), the algorithm of [110] converges more quickly. This could be for many
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Previous Algorithm

New Algorithm

Problem Gap (%) | Nodes Expl. | Time (s) | Gap (%) | Nodes Expl. | Time (s)
shamir 0.00 12,098 12.27 0.00 2,567 7.11
hanoi 0.00 32,024 74.21 0.00 24765 35.74

blacksburg 0.00 16,009 14.05 0.00 15,971 29.25
foss_poly_0 0.00 144,226 1,112.78 0.00 63,120 177.08
foss_iron 0.00 1,307,123 | 59,088.98 0.00 282,202 2,923.24
foss_poly_1 4.19 48,320,343 Limit 4.90 21,858,635 Limit
pescara 5.26 5,633,461 Limit 5.29 2,010,998 Limit
modena 33.77 329,614 Limit 41.65 55,592 Limit
Table 5.2: Comparison of water network design algorithm convergence. Specifi-

cally, optimality gaps, nodes explored, and solution times for the new
algorithm and one similar to [110] (Previous) are compared. Here, bold
denotes better (smaller) times, nodes explored, and optimality gaps.

Solutions from the Literature

Solutions from This Study

Problem Lower Bnd. Upper Bnd. Lower Bnd. Upper Bnd.
shamir 419,000 419,000 419,000* 419,000*
hanoi 6,109,620.09™ | 6,109,620.09* | 6,109,620.90* | 6,109,620.90*

blacksburg | 118,251.09' 118,251.09 118,251.09* 118,251.09*
foss_poly 0 | 70,063,161.90" | 70,680,507.90% | 70,.680,507.90" | 70,680,507.90"
foss_iron 177,512.421 178,494.141 178,494.14" 178,494.14"

foss_poly_1 26,240.841 29,202.992 27,269.65 28,462.34
pescara 1,700,517.06" ~ 1,790,000° 1,708,090.52 1,798,252.52
modena 2,206,914.89" | ~ 2,560,000% 2,198,756.06 3,319,652.71

Table 5.3: Comparison of water network design bounds with the literature. Bold
denotes best bounds, asterisks denote proven optimality, and blue de-
notes instances closed for the first time. References from the literature
are labeled according to the numbers [110], ?[18], 3[150], and 4[3].

reasons, the most likely being the more frequent addition of outer approximations in

the new algorithm, creating larger BB linear subproblems. We finally remark that these

numerical findings are additionally supported by the unpublished independent results

of [111], who find favorable performance on small and moderate instances, close the gap

on foss_poly_O and foss_iron, and observe marginal benefits on larger instances.

Table 5.2 provides relevant convergence data for the instances. This table further

supports the trends of Figure 5.2. For moderate instances, the new algorithm explores
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fewer nodes to reach optimality. In most of these cases, this node reduction translates
to smaller execution times, except for the case of blacksburg. For large instances, node
exploration appears important for finding new feasible solutions. Thus, the dramatic
reduction in the number of nodes explored by the new algorithm has a negative impact
on the optimality gap reached by the time limit. Generally, the new algorithm appears
useful for instances where optimality can be proven quickly but tends to suffer on large
instances because of the increased master problem size — a topic of future work.
Table 5.3 compares the results from the water network design literature with the best
results obtained in this chapter, including where our implementation of [110] outper-
formed the new algorithm. Specifically, the best objective lower and upper bounds are
compared. The table depicts many new bounds discovered using the algorithms herein,
especially on outstanding instances. (For the three large cases, our implementation of
the algorithm in [110], not the new algorithm, discovered the bounds shown. The excep-
tion is for our upper bound on pescara, which the new algorithm discovered.) Note that
here, literature solutions are not differentiated between those obtained heuristically and
those obtained via algorithms that can also provide lower bounds (e.g., our algorithm).
We finally remark that the slight change in the optimal solution of hanoi could either

be a typographical error of [110] or a small difference in our definition of resistance.

5.6.3. Comparison of Algorithms on Demand-scaled Instances

This section compares the efficacy of the two algorithms on a set of moderate instances
extending those described in Section 5.6.1. For each junction in each network, the
original demand was scaled by a factor between 0.5 and 1.5 in steps of 0.05, generating
21 instances per network and producing 105 instances in total. For hanoi, instances
with scalings greater than one were discovered to be infeasible, reducing the final set to
95 instances. For each instance, the time required to prove optimality was measured.
Figure 5.3 compares the times required to reach optimality across demand-scaled
versions of foss_poly_ 0 and foss_iron. These instances display the most dramatic
differences between the two algorithms. For the foss_poly_0 network, the new al-
gorithm always outperforms the previous algorithm, occasionally by over an order of
magnitude. For demand scalings in the set {1.2,1.35,1.4,1.45,1.5}, neither algorithm

can solve the design instances within the nearly two day time limit. The comparison of
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Figure 5.3: Comparison of times to reach optimality on two design instances.
Specifically, the times (log scaled) are shown for ten demand-scaled
versions of foss_poly_0 and foss_iron design instances using our new
algorithm (New) with an algorithm similar to [110] (Previous).

solve times in the foss_iron plot implies similar behavior. For all instances except two
(0.5 and 0.95), the new algorithm outperforms the previous algorithm. Moreover, the
new algorithm occasionally outperforms the previous by nearly two orders of magnitude.

Figure 5.4 compares the times to reach optimality across all demand-scaled instances.
The figure excludes the five instances where optimality could not be proven. For in-
stances requiring roughly one hundred seconds or less to reach optimality, the times
required by both algorithms are similar, as shown by their placement around the dashed
identity line. For instances requiring roughly one hundred seconds or more, however, the
new algorithm always outperforms the previous algorithm, often by one or two orders of
magnitude. This supports Section 5.6.2: for challenging problems where optimality can

be proven, our new algorithm outperforms the previous algorithm’s implementation.

5.7. Conclusion

This chapter presented the derivation and algorithmic application of a novel, exact
MICP formulation for the global optimization of potable water distribution network
design. Construction of this problem began with an exact convex reformulation for
network analysis, extending the models of [29], [36], and [110] using nonlinear duality.

Then, using the new MICP formulation as a foundation, the linear relaxation-based
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Figure 5.4: Comparison of times to reach optimality on scaled design instances.
Instances where optimality was not proven by either are excluded.

algorithm of [110] was augmented to use outer approximations derived from the MICP.

To measure its efficacy, our global optimization method was compared against the
previous state of the art on standard network design instances. Then, new moderately-
sized instances were generated by scaling demands throughout the original networks.
The combination of results implies significant speedups in convergence (i.e., one to two
orders of magnitude) can be achieved on moderately-sized instances for which optimality
can be proven within a modest amount of time (i.e., hours). These results imply that
our convex reformulation technique may carry substantial algorithmic benefits.

This chapter provides a number of novel and useful contributions to the field of water
system design and, more broadly, nonlinear network optimization. First and foremost,
the formulation of a purely convex system for determining design feasibility appears to
be the first in the literature. Notably, this system differs from the well-known Content
and Co-Content Models of [36] in three respects: (i) it is in the variable space of flows and
heads; (ii) it includes variable bounds; and (iii) it does not require an objective. These
features allow direct embedding of the system within network decision problems. Second
and perhaps just as importantly, the exact MICP reformulation of the network design
problem establishes a new paradigm for approaching problems of this type. Third, an

algorithm based on the novel features of this MICP is presented and appears capable of
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proving optimality on several challenging instances. In fact, our computational results
close the optimality gap on two outstanding instances (foss_poly_0 and foss_iron).

Future work should focus on extending the optimization approaches developed in
this chapter. First, the convex and mixed-integer convex reformulations appear to be
immediately applicable to other application areas, including natural gas network expan-
sion planning and crude oil network optimization. Such reformulations may have even
greater benefits when considered in these new problem contexts. In Chapter 6, along
with the development of several other new algorithmic techniques, we also explore the

use of a similar convexification approach in the area of water network operation.
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Chapter 6

Mixed-integer Convex Relaxations
for Optimization of Potable Water

Distribution Network Operation

Chapter 5 developed MICP reformulations and relaxations for the optimal design of
gravity-fed water distribution networks. The canonical design problem, however, ne-
glects many important practical aspects of modern water distribution network opera-
tion. The most important missing aspects are (i) the presence of pumps, which ensure
adequate pressures are maintained in a real system; (ii) the presence of tanks, which act
as points of storage for the system; and (iii) temporal evolution of the system, which
results from the presence of tanks as well as variations in demand and electricity price
over a predetermined time horizon. In this chapter, we thus instead consider the task
of optimal pump scheduling, which we term the Optimal Water Flow (OWF) problem.

The most common OWF variants aim at minimizing the cost of a water system’s
energy consumption — an important practical objective. Estimates of energy required for
general water use are variable throughout the literature but typically range from 4% to
16% of total U.S. consumption [62], [121], [138]. For example, one study estimates that
the energy demand of water utilities is 1.0% of U.S. consumption [31]. The oft-quoted
estimate for the consumption of California’s water sector, on the other hand, is 19% [99].
Of the energy required for water use, one third is estimated to be from the pumping and
treatment of water and wastewater [62]. These processes thus comprise large portions

of a water system’s total energy consumption and, due to more stringent environmental
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regulations and increasing energy costs, stand to benefit from more efficient operations.
There are around 52,000 community water systems in the United States alone, defined
as serving twenty-five or more year-round residents. However, nearly 85% of the total
U.S. population is served by only 5% of these systems, while the remaining 95% comprise
small and very small systems that service 3,300 people or fewer. Since they often lack
economies of scale, these smaller utilities pay more per unit of water produced than larger
utilities. Furthermore, in these smaller systems, nearly all of the energy consumed is via
electricity, and 80% is consumed by motors used for pumping operations [40]. Finally,
since these smaller systems often lack smart controls and computational infrastructure,
they tend to rely on local control and ad hoc rules at the expense of system efficiency
[119]. As such, the ability to quickly generate cost-optimal or nearly-optimal short-term
(e.g., one day) pump schedules for small water distribution systems could greatly benefit
the reliability and efficiency of water infrastructure in the United States and beyond.
To address this, this chapter aims at developing tractable, relaxation-based solution
techniques for the OWF problem. The OWF is highly challenging for several reasons,
many of which are separate from the complexities encountered in the network design
problem of Chapter 5. First, similar to the design problem, the OWF is constrained by
the head loss equations for pipes, which act as nonconvex nonlinear constraints. Second,
the addition of pumps introduces new dynamical constraints in the form of quadratic
equations. Third, the addition of pumps and valves requires the use of discrete variables
for modeling the statuses of these components, which introduces new combinatorial
complexity. Finally, the addition of tanks and time-evolving quantities establishes a
temporal dimension to the problem, which increases the problem size considerably.
To alleviate these difficulties, this chapter attempts to address some limitations of
current state-of-the-art OWF methods. The novel contributions of this chapter include
o A tight polyhedral MILP relaxation-based formulation of the OWF problem;
A single-step approximation of the OWF that can be leveraged algorithmically;

An optimization-based bound tightening (OBBT) algorithm using the relaxation;

An optimization-based cut generation (OBCG) algorithm using the relaxation;

New valid inequalities based on the convex inequalities of Chapter 5;

A thorough empirical investigation of the above algorithmic techniques.
These contributions primarily aim at addressing a notable deficiency in the current state

of the art: the slow improvement of OWF dual bounds. Although the development of
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good primal-bounding techniques is not a primary focus of this chapter, the expectation
is that better dual-bounding techniques will also ultimately improve primal bounds, as

physically infeasible OWF solutions will be fathomed from the search more efficiently.

Chapter Overview The remainder of this chapter proceeds as follows: Section 6.1
reviews optimization techniques for optimal water network operation, which extends the
literature review of Chapter 5; Section 6.2 formulates the OWF problem as a MINCP;
Section 6.3 develops MICP and MILP relaxations of the original OWF problem; Section
6.4 derives a valid convex inequality for the OWF problem using techniques similar
to Chapter 5; Section 6.5 develops a number of preprocessing methods to strengthen
relaxation-based formulations; Section 6.6 empirically evaluates our network modeling,

formulation, and algorithmic improvements; and Section 6.7 concludes the chapter.

6.1. Literature Review

Much of the nonlinear network optimization literature was reviewed in Chapter 5, along
with the most relevant literature related to optimal water network design. Here, we
extend this literature review to optimal water network operation, specifically. A thor-
ough and recent review of this topic area is given by [88]. Here, they note that the
majority of studies in this field are related to the control of pumps and valves, similar
to the problem considered in this chapter. Moreover, they recognize that the majority
of studies apply “stochastic” optimization methods (e.g., evolutionary and genetic al-
gorithms), while fewer use “deterministic methods” (i.e., mathematical programming).
Finally, they observe that computational studies typically consider networks with rela-
tively small numbers of nodes, with 80% concerning networks of one hundred nodes or
fewer. In this chapter, we develop deterministic methods for similarly small networks.
As in Chapter 5, we again develop mathematical programming methods for the OWF
problem due to the drawbacks associated with stochastic metaheuristic techniques.
First, metaheuristics provide no guarantess of optimality, whereas relaxation-based
mathematical programming methods provide dual bounds on the true optimal cost of
network operation in the OWF. Second, and perhaps more importantly, many meta-
heuristics (and indeed some deterministic methods) rely on relaxations of important

constraints via penalizing infeasibilities in the objective. This can result in schedules
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of pump activations that are, in reality, physically infeasible. Solutions obtained via
such methods could thus have deleterious effects when implemented in practice (e.g.,
allowance of important pressure violations or lack of sufficient water volume in tanks).
Recently, mathematical programming techniques for optimal water network opera-
tion have seen a resurgence in the literature. For example, [57] consider a variant of the
OWEF similar to the one considered in this chapter. To solve the problem, they develop
a mixed-integer second-order cone programming (SOCP) relaxation and propose a spe-
cialized algorithm for a problem subclass. In [126], a penalty-based SOCP relaxation
is developed. In [14], a mathematical programming heuristic, using a similar relaxation
strategy, is developed. Although these and other similar studies appear to sometimes
rely on the assumption of water networks with a particular structure, they establish the
importance of conver relaxation of nonlinearities that complicate the OWF problem.
A number of even more recent studies have established more general formulations
for the OWF, independent of network structure. Many of these studies benefit from
further MILP relaxations of the previously-described convex relaxations. One example
of such a study is by [141], who develop a piecewise-linear relaxation of complicating
nonlinearities, which is similarly done in this chapter. They also introduce a number of
practical network simplifications and valid inequalities, also used in this chapter, as well
as an algorithm that recovers a valid feasible solution from the relaxation’s solution using
EPANET. Another relevant example is given by [85], who develop a MILP formulation
for a similar water network demand response application and consider a heuristic bound-
tightening procedure using randomized network simulation results as bound proxies.
The study most similar to this chapter, however, is [15]. There, the authors develop a
MILP outer approximation of the OWF, as well as an LP /NLP-BB algorithm that checks
solution feasibility at integer-feasible nodes, similar to the algorithm used for network
design in [110] and Chapter 5. They also develop an OBBT preprocessing routine to
improve the strength of the MILP formulation. Finally, they develop a primal heuristic
that repairs physically infeasible solutions by allowing for continuous-duration pump
activations. As such, heuristic solutions are not necessarily feasible to the full OWF.
Unlike their study, this chapter develops a piecewise MILP relaxation instead of an
outer approximation, which is intended to more accurately approximate nonlinear equa-
tions that constrain pipes and pumps. It also leverages a parallel piecewise relaxation-

based OBBT routine, whereas [15] employs a more computationally challenging MINCP-
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based OBBT routine. Furthermore, this chapter computes and applies novel valid in-
equalities for the OWF, whereas [15] provides no such valid inequalities. Finally, this
chapter does not assume that solutions with continuous-duration pump activations pro-
vide valid primal bounds for the OWF. Thus, neither the heuristic employed by [15] nor
any other heuristic are used in this chapter. Although this implies that OWF primal
bounds may improve more slowly, it does ensure that solutions are feasible with respect

to the discreteness of pump activations, which is a common feature of the OWF.

6.2. Problem Formulation

Operation of a water distribution network involves the use of pumps to increase pressure
and guarantee flow over a given planning horizon. Together, pumps and tanks can be
temporally coordinated to meet variable demand while strategically achieving a desired
objective. As one example, the typical OWF problem aims at minimizing the total
cost of energy consumed by the water network while satisfying physical and operational
constraints. An optimal “pump schedule” leverages the variation in energy price over

the planning horizon. In this section, we formulate the OWF exactly as a MINCP.

6.2.1. Network Modeling
Notation for Sets

We remark that notation in this chapter differs from Chapter 5 to accomodate a larger
variety of network components and the temporal aspects related to scheduling. Here, a
water network is represented by a directed graph G := (N, £), where N is the set of
nodes and £ is the set of node-connecting components (or arcs). Since the OWF problem
considers operational decisions across a fixed time horizon, X = {1,2,..., K} is used
to denote the set of instantaneous points in time that describe the network’s evolution.
The set of time intervals that connect adjacent time points in X is similarly denoted by
X =A1,2,..., K’ := K — 1}. We further define the sets of demands 2D, reservoirs X,
and tanks T as disjoint subsets of the nodes NV in the network, where DURXUT = N.
The set of node-connecting components £ in the network comprises pipes A C £, short
pipes & C £, valves V C £, and pumps P C £. For convenience, the set of node-

connecting components incident to i € N where i is the tail (respectively, head) of the
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component is denoted by 6 := {(4,j) € £} (respectively, 6; := {(j,i) € £}).

Next, we examine each of the components individually, define their corresponding de-
cision variables, and present constraints that each component enforces on water network
operations. Specifically, for each component, we present two types of constraints: (i)

operational limits and (ii) physical constraints. We begin by examining the nodes; V.

Nodes

As in Chapter 5, nodal potentials are denoted by the variables h*, i € N, k € X, where

(3

each variable represents the total hydraulic head in units of length. For each i € NV,

k € X, a minimum head @I;, determined a priori, must first be satisfied. Additionally,

—k
an upper bound h; can often be inferred from network data. This implies the bounds
k k —k .
h; <hi<h;, Vie N, Vk e X. (6.1)

Node-connecting Components

Every node-connecting component (i, j) € £ is associated with a variable, qu, which
denotes the volumetric flow rate across that component. Assuming lower and upper

bounds of ¢* and ij, respectively, these variables must satisfy the capacity constraints
1

¢ <afy < T, Vij) €L VEEX (6.2)

As in Chapter 5, flow can assume both positive and negative values, where a positive
(respectively, negative) value of qu implies flow from node 7 to j (respectively, j to ).
Pipes

As discussed in Chapter 5, in water networks, flow along a pipe is induced by the differ-
ence in head between the two nodes connected by that pipe. The head loss relationships

that associate flow and head are extended over all time intervals to give the constraints

a—1 .. ,
hy —hy = Liraas ey V(0,5 € A, Vee X7 (6.3)

111



As in Chapter 5, « is the exponent required by the Darcy-Weisbach or Hazen-Williams

relationship (i.e., 2 or 1.852, respectively), L,; is the pipe length, and r,; is the pipe

7

resistance per unit length. In this chapter, the resistance is also assumed to be fixed.

Short Pipes

Short pipes are components that model resistance-less transport of flow between two
nodes. This is similar to treating the length of a pipe as negligible. Short pipes thus

ensure the equality of heads at two nodes, ¢ and j, connected by that component, i.e.,
k k . . . /

In this chapter, we assume pipes with small maximum head loss magnitudes (less than

ten centimeters), derived from network data, can instead be categorized as short pipes.

Valves

Valves are used to route the flow of water to certain portions of the network or to
block flow during maintenance of subnetworks. In this chapter, valves are considered
controllable elements that are either open or closed. The status of each valve (i,j) € V
is indicated using a binary variable zfj € {0,1}, where zfj = 1 corresponds to an open

valve and zF. = 0 to a closed valve. These variables limit the flow across each valve as

(%]
g 2k < qf <2k, 2F € 0,1}, V(i,5) €V, Vke X7, (6.5)

Lij 5

Furthermore, when a valve is open, the pressures at the nodes connected by that valve
are equal, similar to a short pipe. When the valve is closed, however, these pressures are

decoupled. This phenomenon is modeled via the following set of disjunctive constraints:
ky (k7 k_ 1k ky (75 gk o /
(1= 2b) (B =By ) < hE—nb < (=2 (B —Bf), ¥, 7) €V, Ve X', (66)

ie., if zfj =1, then hf = h?. Otherwise, if zfj =0, then h¥ and h? are decoupled.
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Pumps

Each pump (i,7) € 2 increases the head from node i to j when active and permits
only unidirectional flow. Here, we consider only fixed-speed pumps, where each pump is
assumed to be either on or off. When the pump is off, there is zero flow along the pump,
and heads at adjacent nodes are decoupled. When the pump is on, there is appreciably
positive flow (greater than or equal to some fixed ¢,;), and the head increase from i to
j is described by a nonlinear function. The variable z . € {0, 1} indicates the status of
each pump, where zij =1if qij > €;; and zz-j =0 if qij < €;;- This implies the bounds

=0 <2k < qf, <2k, V(i) € P, Vh e X (6.7)

1 ij<ij

The variable G’l€ > 0 is introduced for each pump to denote the head gain that results
from that pump. Modeling a pump’s head gain as a quadratic function, when active,
is an established practice that is well-documented in the literature [139]. This chapter

assumes that each head gain is modeled via a strictly concave function of the form
a;j (qij) + bq5; + ezl = Gy, V(i,j) € P, VE e X (6.8)

In these constraints, a,; is negative, and the head gain function is offset by some positive
constant (i.e., ¢;; > O) Note further that qm and cwz” are restricted to zero when zfj
is zero. This ensures that, when a pump is off, the corresponding head gain G is also
zero. To ensure the decoupling of hydraulic heads when a pump is off, the conventional

head loss relationships may instead be rewritten as head gain relationships. That is,

—k
hE— hE 4+ G < (1— 25) max (o, R, — @f) V(i,f) € P, Yk e X (6.92)
—k
hE—hE 4+ G > (1— 25 ) min (o,@f _ hj) V(i f) € P, Yk e X (6.9b)
Note that when z = 1, the pump is on, and the head gain between two nodes is G

In some water networks, pumps with identical properties are installed in parallel. The
symmetry of possible pump activations in these identical groups can add unnecessary

combinatorial complexity. As suggested by [61], the symmetry-breaking constraints are

<k, << zfjm, V(i,j) € Pg, Vk € X', (6.10)

zg 1 17,2 —
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where P, C P is the set of identical pumps linking + € NV and 7 € NV, which are ordered
lexicographically by some arbitrary indices (1,2, ..., n, above). For such a pump group,

this drastically reduces the number of feasible choices for active pumps from 2" to n+1.

Demands

Demands are nodes in the network where water is typically withdrawn. Each demand is
associated with a constant G? that denotes the demanded flow, expressed as a volumetric
flow rate, at demand ¢ € D, time k£ € X’. Note that, without loss of generality,
this chapter allows demands to be negative. A negative demand indicates a point of
injection of water into the water distribution network. For convenience, the variables
¥ € R,i € D, k€X', are introduced to denote the amount of water consumed by each

demand node. (We further remark that, when demand is considered fixed, qf = Gf)

Reservoirs

Reservoirs are nodes in the network where water is supplied. Each reservoir is assumed

to be an infinite source of flow with zero pressure and constant elevation at a point in
. . kTR . .

time (i.e., h; = h; is assumed at every reservoir ¢ € R). Furthermore, the variables

qF >0,i€ R, k€X', denote the outflow of water from each reservoir at time k.

Tanks

Tanks are nodes in the network that serve as means for storing and discharging water
over time. In this chapter, all tanks are assumed to be cylindrical with a fixed diameter
D;, where i € T, which implies a cross-sectional area A; := ZD?. The bottom of each
tank is assumed to be located at or below the minimum elevation of the associated node,
b < Qf, ¢ € T, and the maximum elevation of water in the tank is assumed to be EI;.
The variables ¢¥, i € 7, k € X7, denote the outflow (positive) or inflow (negative)
through each tank. With these variables, the expressions for all tanks’ volumes are first

VE.= A

7 (2

(hE—oF), Vie T, Vke X. (6.11)
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The Euler steps for integrating all tank volumes across intervals are then imposed via
VL = VE — Atkhgk, Vie T, Yk e X', (6.12)
where At* is the length of the time interval that connects times k € X and k+1 € X .

Flow Conservation

Satisfaction of flow conservation throughout the network requires nodal flow balance

constraints to be enforced at every node i € N across all time intervals X’. That is,

Zqﬂ > qfi=qF VieD, VEe X’ (6.13a)
(i,5)€6]

Z —qF, Vie RUT, Vke X' 13b

dfi =D _aly=—af, Vi€ RUT, ke X", (6.13b)

(J4,9)€67  (i,5)ed]

6.2.2. Physical Feasibility

Given the previously-described constraints, the MINCP for feasibility is then defined as

Head and flow bounds: Constraints (6.1), (6.2) (6.14a)
Pipe dynamics: Constraints (6.3) (6.14Db)
Short pipe dynamics: Constraints (6.4) (6.14c)
Valve dynamics: Constraints (6.5), (6.6) (6.14d)
Pump dynamics: Constraints (6.7), (6.8), (6.9), (6.10) (6.14e)
Tank dynamics: Constraints (6.12) (6.14f)
Flow conservation: Constraints (6.13). (6.14g)

The goal of System (6.14) is to determine if water can be routed through the network
while satisfying the operational limits and physical constraints imposed by each compo-
nent of the network. The nonconvexities of System (6.14) arise from two sources: (i) the

discreteness of controllable components and (ii) nonlinear equations, i.e., Constraints
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(6.3) and (6.8). Section 6.3 describes mixed-integer convex relaxations that address (ii).

6.2.3. Optimal Water Flow

Aside from the feasibility requirements described in Sections 6.2.1 and 6.2.2, the notion
of an optimal control schedule (i.e., a solution to the OWF) should often satisfy a number

of other practical criteria. These criteria are discussed in the following paragraphs.

Tank Volume Recovery

One important practical criterion for an OWF solution is that, by the end of the schedul-
ing horizon, the volume of water within each tank will be at least as large as its initial
volume. This ensures that (i) the proposed component schedule (e.g., of pump activa-
tions) can be repeatedly applied to subsequent planning periods with similar demand
profiles and (ii) tank volumes at the end of the planning period are not small enough to

discourage efficient operations in subsequent periods. This implies the constraints
VI<VE VvieT, (6.15)
where, in most of the literature, as well as in this chapter, V! is assumed to be fixed.

Pump Switching Limits

Maintenance accounts for roughly 10% of the net present value lifecycle cost of a pump
[98]. Frequent activation and deactivation (i.e., switching) of a pump generally reduces
the pump’s lifetime and increases its overall maintenance cost. As such, water distri-
bution system operators typically require operational constraints on pump schedules to
limit the number of activations and deactivations of pumps over a given time horizon.
Assuming that each pump in the network must remain on for a minimum time of 7°°,

off for a minimum time of 7°%, and switched on no more than M;; times, the following
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operational pump switching constraints are often imposed in the OWF problem [59]:

o= bt < (i, 5) € P, Yhe X\ {1} (6.16a)
2t <2l V(i j) € P, Yk e K7, VR € t(k) < (k) < t(k)+ 7" (6.16b)
Atk < 20F (i, j) € P, Yk e X\ {1} (6.16¢)
A <1 — 2008 (i, 5) € P, Yh e K, VK € t(k) < t(k) < t(k) + 7T (6.16d)
> <M, V(i j) € P (6.16¢)
keX’

Here, 277" ¥ € {0,1} and zOﬁk € {0,1} are discrete variables indicating whether pump
(i,7) € ? has been switched on or off at time k € X, respectively. Constraints (6.16a)
ensure that each on switching variable is equal to one when a pump becomes active at
some time index k. Constraints (6.16b) ensure that, if a pump has been switched on,
it remains on for at least a duration of 7°". Constraints (6.16¢) ensure that each off
switching variable is equal to one when a pump becomes inactive at some time index k.
Constraints (6.16d) ensure that, if a pump has been switched off, it remains off for at
least a duration of 7°%. Finally, Constraints (6.16e) limit the number of on switches to
respect the maximum number of switches, M, ., over the duration of the pump schedule.

’L]’

Cost Minimization

The final common criterion for an OWF solution is that the schedule of operations
minimizes the total cost of electrical power consumption over the planning horizon. This
cost arises primarily from the energy requirements of pumps. The power consumption

of pump (7,7) € P at time k € KX’ is most accurately defined via the relationship

pgGas;

() V(i,j) € P, Vk € X'. (6.17)
1J\11j

(q’L]’ Gk ) T

Here, lej is the power consumed, p is the density of water, g is the acceleration due
to gravity, and mj(-) is the pump’s dimensionless efficiency, which is often a nonlinear
function of flow and dictated by a predefined curve provided by the pump manufacturer.
Note that each equation for a pump’s power consumption is thus highly nonlinear. As

such, some optimization studies have resorted to power curves for fixed speed pumps
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that are linear as a function of flow. This results in power functions parameterized as
le;(nyzZ) = )‘zjqu + /Lijz;cja V(Z,j) € ‘SDv Vk € %/7 (618)

where \;; and p;; are constants that define the power consumption of pump (4, j) € 7.

No matter the form of a pump’s power curve, the pump’s energy consumption is
Ef(q),-) == At*Pl(q, ), V(i,j) € P, Yk e X' (6.19)

Letting the (fixed) cost per Joule of energy consumed over time step k € X’ be denoted
by 7¥, the cost of operating each pump (4, j) at each time step k € X is then given by

k(ok . —kpk(.k - /
Ci(as, ) == ™ Ei(q, ), V(i,j) € P, Vk € X7. (6.20)
This implies that the total cost of water network operation is defined by the function

keX (i,5)eP

Combining feasibility, tank recovery, pump switching limits, and minimization of the

total operational cost gives rise to an exact form of the typical OWF problem,

minimize Objective function: f(g,-) of Equation (6.21)

subject to Operational feasibility: Constraints (6.14) (MINLP)

Tank volume recovery: Constraints (6.15)

Pump switching limits: Constraints (6.16).

Similar to System (6.14), this is a challenging MINCP that is difficult to solve directly.

6.3. Convex Relaxation

6.3.1. Mixed-integer Convex Relaxation

As discussed in Section 6.2.2; there are two sources of nonlinear nonconvexity that render
both System (6.14) and (MINLP) extremely difficult to solve directly. Specifically, these
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are Constraints (6.3) and (6.8), which model each pipe’s head loss and each pump’s head
gain, respectively. A number of studies have addressed these challenges via convex outer
approximations of these constraints [15], [85], [141]. Here, we elect to use similar outer
approximations as a starting point to ultimately develop a tighter MILP relaxation.

+

To formulate the relaxations, as in Chapter 5, we introduce the variables qu to denote

nonnegative flows in the two directions along link (7, j) € £. This decomposition implies
qf =q —dk, V(i) e £, Vhe X, (6.22)

Next, the flow bound Constraints (6.2) are decomposed into directed components as
0< gl < ajfji, V(i,j) € £, Vke X', (6.23)

where GZ.J“ = max{O,ﬁfj} and quf = max{0, —¢”* } replace the original flow bounds.
4,
This also requires the discrete variables yfj € {0,1}, (4,7) € £ to model flow direction,

where yfj = 1 implies flow from i to j and yfj = 0 implies flow from j to ¢. That is,

i V(i,7) € £, Yk € X' (6.24a)
< g (1—yk), V(i,j) € £, Ve X, (6.24b)
We further note that the direction-related inequalities in Chapter 5, i.e., Constraints

(5.29)—(5.31), can also be formulated for the current setting. We omit them here for

brevity, although all such inequalities are used in the direction-based formulations herein.

Convexification of Pipe Head Loss Constraints

Asin Chapter 5, the above direction-based modifications allow for a rewriting and convex
relaxation of the pipe head loss Constraints (6.3). To accomplish this, nonnegative head

difference variables Ahfji are first introduced to denote the head loss in the two possible
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Figure 6.1: Example convex relaxations of pipe/pump head loss/gain constraints.

k

flow directions. These losses are related to the original head variables b7, ¢ € N, via

ket k— _ 1k _ 1k \/(; s /
ARES — ARES = hE— hE V(i j) € A, VE € X (6.250)
k+ A » /
0 < ARES < AT gk, V(i j) € A, Yk € X (6.25h)
k— k= k - /
0 < ARES < Ay, (1—yk), V(i,j) € A, Vk € X, (6.25¢)

—k
Here, head difference bounds Ahiji are derived from the bounds on A in Constraints
(6.1). Next, the right-hand sides in Equations (6.3) are decomposed into two convex

functions representing loss in the positive and negative directions. This splitting implies

AREE = Lory; (a5F)", V(i j) € A, V€ K. (6.26)

ij

Since only one direction will be selected per pipe, Equations (6.26) are then relaxed as
Ly (afF) < AREF, V(i,j) € A, Yk e X' (6.27)

As in Chapter 5, the relaxations in Constraints (6.27) are linearly upper-bounded by

a—1
ARE< Lyry (T5) 6bF, V(i,5) € A, Yk e X (6.28)

For illustration, an example feasible region defined by the relaxation Constraints (6.27)

and (6.28) is depicted in Figure 6.1 for a pipe with equal directed flow bounds Z]ff.
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Convexification of Pump Head Gain Constraints

Similar to the convex lower approximations of the head loss Constraints (6.3), concave
upper approzimations of the head gain Constraints (6.8) are easily established. Ob-
serving that Constraints (6.8) describe each ij as a concave function of qu, standard
convex relaxations are achieved via transformations from equations to inequalities, i.e.,
2
k k .
G}y < ay (qij*) + b+ iz, V() € P, VE e X (6.29)
Note that QZ_ =0 for all (7,7) € P, k € X', and that ij = 0 when zf] (and thus qu“)
is equal to zero. Similar to the linear upper-bounding Constraints (6.28) for head loss

convexifications, linear lower bounds for the pump head gain convexifications are

a;; [(fo + Eij)fo + eszm + bij(quJr + eijzfj) + cl-jzfj < ij, V(i,j) € P, Vke X".
(6.30)
For illustration, an example feasible region defined by the pump gain relaxation Con-
straints (6.29) and (6.30) is depicted in Figure 6.1. Note that the size of the feasible

region is highly dependent on the flow bounds present for an active pump, €;; and ij.

Mixed-integer Convex Relaxation for Physical Feasibility

To formulate the standard MICP relaxation of System (6.14), the head and flow bound
Constraints (6.1) and (6.2) are replaced by Constraints (6.1), (6.23), (6.24), and (6.28).
Assuming the definition of ¢J; in Equation (6.22) and replacing the head loss and gain
Constraints (6.3) and (6.8) with Constraints (6.27), (6.28), (6.29), and (6.30), this is

Head and flow bounds: Constraints (6.1), (6.23), (6.24), (6.25) (6.31a)
Pipe dynamics: Constraints (6.27), (6.28) (6.31Db)
Short pipe dynamics: Constraints (6.4) (6.31c)
Valve dynamics: Constraints (6.5), (6.6) (6.31d)
Pump dynamics: Constraints (6.7), (6.9), (6.10), (6.29), (6.30) (6.31e)
Tank dynamics: Constraints (6.12) (6.31f)
Flow conservation: Constraints (6.13). (6.31g)
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Mixed-integer Convex Relaxation for Optimal Water Flow

Combining System (6.31) with the common OWF requirements of Section 6.2.3 gives

minimize Objective function: f(g,-) of Equation (6.21)

subject to Operational feasibility: Constraints (6.31)
(MICP)
Tank volume recovery: Constraints (6.15)

Pump switching limits: Constraints (6.16).

Compared to (MINLP), this is a more tractable problem. In practice, however, (MICP)
is of questionable practical value and still challenging to solve directly. First, note
that a solution to (MICP) may not be feasible to (MINLP). Second, most solvers
capable of solving (MICP), e.g., JUNIPER [82], are not guaranteed to do so efficiently,
primarily due to the fractional exponent (o = 1.852) required to model Hazen-Williams
head loss relationships. This property deprives us of the ability to directly use mixed-
integer quadratic programming (MIQP) techniques. Finally, the strength of the convex
relaxation is ultimately determined by the tightness of pipe and pump flow bounds, as
illustrated in Figure 6.1. These observations of model strength further motivate the

development of a mized-integer piecewise linear relaxation, developed in Section 6.3.2.

6.3.2. Mixed-integer Piecewise Linear Relaxation

To increase the relaxation strength and tractability of (MICP), this section develops a
mixed-integer piecewise linear relaxation of (MINLP) that leverages lower and upper
approximations of nonlinear constraints. Compared to (MICP), the overall relaxation
approach is similar but forms tighter piecewise envelopes of the nonlinear constraints
illustrated in Figure 6.1. Additionally, whereas (MICP) uses nonlinear convex outer
approximations, this section applies polyhedral (i.e., linear) outer approximations of
the nonlinearities. This polyhedral approximation technique further allows for the re-
laxation to be solved using modern MILP solvers (e.g., GUROBI), which are typically

more efficient and numerically reliable than conventional MICP solvers (e.g., JUNIPER).
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Figure 6.2: Example polyhedral relaxations of pipe/pump head loss/gain con-
straints. Dashed lines indicate the direction-decomposed nonlinear
head loss and gain constraint functions, respectively. Filled and clear
circles indicate inner and outer approximation points, respectively.

Linearization of Pipe Head Loss Constraints

To begin, for each pipe and pump, a set of lower approximation breakpoints, iji, and a
set of upper approximation breakpoints, sz , (i,7) € AUP parameterize the relaxation.

As in Chapter 5, the standard outer approximations of Constraints (6.27) are first

N [o% R a—-1 A ,’ji Lo
ry [(qkji) +a (g (qui_q@] < L, V(i) € A, Yk e X', Vil € 2.
ij
(6.32)

Constraints (6.32) are strengthened via multiplying constants with flow directions, i.e.,

Tij [(fi“)ay’-“- +a (fil‘*)a_l (@5l —a) )] —Ahff
] (¥ () (¥ (¥ (%) /LJ - sz ) (6 . 3 3&)
V(i,j) € A, Yk e X', V@l € QiF
_ ARk
() (1 — o Alf.—o‘l".f.—1_lf._l€.]<_”
rij [(q”) A=y +ala@y) (@5 Q- —ay)| < L, (6.33b)
V(i,j) € A, Vk € X', Vi € gfj—.

In addition, piecewise inner (or upper) approximations of these constraints, which

strengthen the upper bounds described in Constraints (6.28), are developed using a
—k+

convex combination approach. Letting 0 < )\fjj; <1,pe{l,2,....19; |}, (i,)) € A,

k € X’ denote the continuous convex combination variables and IEZ:; € {0,1}, p €
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{2, |Q |} denote the binary convex combination variables, the upper bounds are

” < Z (GEEYeARE (i ) € A, VE e X7, (6.34)

ZJ qUP ©Jp’?

The directed flow variables are similarly constrained by the convex combination, i.e.,

@
i = 1 TENE V(i) € A, Yk e X' (6.35)
p:

The activations of directed convex combination variables are of course limited by

|Qz] |

D A =i V) € A, Ve X (6.36a)

p=1

"Q’L] |

Z%p =y, V(i,j) € A, Yk € X’ (6.36D)
7,] |

ZAz]p yz’j? V<Z7.]) € ”47 vk € ‘7(/ (636C)

"Q’L] |

szjp yz‘jv V(Za.]) € *’47 Vk S -7(/- (636d)

Finally, the continuous and binary convex combination variables are related via

N <ol V(i j) € A, Yk e K (6.37a)
et <kt V(i) € A, Ve X (6.37D)
i5,[05 1~ [0

k+ k+
)‘mp = Lijp + :C” p+1»

—k
V(i,j) € A, VE€ X', Vp€{2,3,..,10, | =1} (6.37c)

Compared to Figure 6.1, an illustration of the polyhedral sets that result from relaxing
head loss constraints as per Constraints (6.33)—(6.37) is depicted on the left of Figure 6.2.

The relaxation improves upon the previous upper-bounding technique at the expense
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of a slightly weaker (i.e., linearly lower-approximated) lower bound. Nonetheless, even
given the small number of lower and upper approximation breakpoints (i.e., two and
three, respectively) in this illustration, the reduction in feasible area for each head loss

relaxation implies possible relaxation benefits at the cost of additional binary variables.
Linearization of Pump Head Gain Constraints
Similarly, for pumps, the standard outer approximations of Constraints (6.29) are

~k+
G;'Cj = aij(qij ) + bwqw + CZJZU + (2a”qw +b; ) <qw o qu Z)

(6.38)
V(i,j) € P, Yk e X', V@i € Q

Following the intuition of Constraints (6.34)—(6.37), the piecewise lower bounds are

1k
J

> s (@55)% + byl + e\, < GEL V(i) € P, Vi e X (6.39)

p=1

Nonnegative flow variables are similarly constrained by the convex combination, i.e.,

25|
¢ qupfj;,, V(i,j) € P, Vk € X', (6.40)

The activation of convex combination variables are then limited by pump status, i.e.,

23|
YoM =y V(L)) P, Vhe X (6.41a)
p=1
e
Z%p =2y V(i,)) € P, VR € X", (6.41D)
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Finally, the continuous and binary convex combination variables are related via

A <ty V(i) € P, VEk e X' (6.42a)

k+ < k+ V .. v / 3
)‘w,@gﬂ = Tty i) e, vkeX (6.420)
AEb <o b abt V() € P, VEE XY, Wp e {23,185 [~ 1} (6.42)

An illustration of the polyhedral sets resulting from relaxing head gain constraints as
per Constraints (6.38)—(6.42) is depicted on the right of Figure 6.2. Similar to the
polyhedral head loss relaxations, the lower-bounding technique for head gain is improved

at the expense of a slightly weaker upper bound due to the linear upper approximation.

Mixed-integer Linear Relaxation for Physical Feasibility

Letting Constraints (6.27)—(6.28) be replaced by Constraints (6.33)—(6.37) and Con-
straints (6.29)—(6.30) by Constraints (6.38)—(6.42), System (6.14)’s MILP relaxation is

Head and flow bounds: Constraints (6.1), (6.23), (6.24), (6.25) (6.43a)
Pipe dynamics: Constraints (6.33)—(6.37) (6.43b)
Short pipe dynamics: Constraints (6.4) (6.43c)
Valve dynamics: Constraints (6.5), (6.6) (6.43d)
Pump dynamics: Constraints (6.7), (6.9), (6.10), (6.38)—(6.42) (6.43¢)
Tank dynamics: Constraints (6.12) (6.43f)
Flow conservation: Constraints (6.13). (6.43g)
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Mixed-integer Linear Relaxation for Optimal Water Flow

Combining System (6.43) with the common OWF requirements of Section 6.2.3 gives

minimize  Objective function: f(q,-) of Equation (6.21)

subject to Operational feasibility: Constraints (6.43) (MILP)

Tank volume recovery: Constraints (6.15)

Pump switching limits: Constraints (6.16).

Compared to (MICP), (MILP) is typically both more tractable and more accurate, as
(i) it can be solved efficiently using modern commercial MILP solvers (e.g., GUROBI)
and (ii) depending on the number of breakpoints used, the piecewise approximation

technique provides a controllably accurate relaxation of the nonlinearities in (MINLP).

6.4. Convex Reformulation and Valid Inequality

Section 6.2 introduced the OWF as a MINCP, and Section 6.3 presented convex relax-
ations that generalize some typical features of those encountered in the literature. In
this section, we extend the convex reformulation approach detailed in Chapter 5 in an
attempt to convexify the OWF in a similar manner. First, in Section 6.4.1, we present
convex “Content” and “Co-Content” models for water networks that also include pumps.
Then, in Section 6.4.2, we extend these results to derive valid convex inequalities for
the OWF problem. These inequalities are similar to the “strong duality” constraints of

Chapter 5, although they are not exact models of the complicating physical dynamics.

6.4.1. Instantaneous Physical Feasibility

In the context of network analysis (e.g., the simulation of a network with fixed control
decisions using EPANET), a relaxed version of System (6.14) can be solved via an
explicit sequential method while neglecting flow and head bounds. At the core of such
methods is a technique that solves a strictly convex programming problem and provides
a solution satisfying Constraints (6.3), (6.8), and (6.13). For pipe networks, these convex

“Content” and “Co-Content” model approaches were previously described in Chapter 5.
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Here, we extend the conventional Content Model for pipes from [36] to instead write

L?"z

> Tl )]
(4,5)eA
_ Lij  kr\3 bﬂ ket
minimize Z [ 3 (ai57)° + 2 <qij )y +C”qm (6.44a)
(i,5)€PY

= > R D> @ =) — D> @ -

ieRUT (i.5)€d;™ (g,9)€8%~
subject to Z q]Z — Z qu = qf, VieD (6.44b)
(4,5)€8k~ (3,5) €88+
qF >0, V(i,j) e AUSUVE (6.44c)
¢ >0, ¢ =0, ¥(i,j) € Pt (6.44d)

where V¥ C V and P} C P denote the set of valves and pumps that are active at time
index k € X", respectively (i.e., all inactive components are assumed to be “removed”).
Similarly, 5;’““ and 6%~ include only the active set of components at time step k € X",
Note that there is only one primary difference from conventional formulations of the
Content Model (e.g., [110]). This is the inclusion of the second line of Equation (6.44a),
which models the nonlinear head gain behavior associated with active pumps. We do
remark, however, that similar treatments of head gain appear in the computational
experiments of [36]; the extension of the Content Model to pump networks in [37]; and
the hydraulic analysis study of [95]. All stress the importance of head gain functions that
are strictly concave to ensure solution uniqueness. The relevant summation in Equation
(6.44a) is strictly concave when 2a”qw +b;; < 0 for (i,j) € P}, k € X', making
its negation strictly convex and the overall obJectlve convex. Also note that in many

models, a;; < 0, [b;;] < |a;|, and qff > —b;;/(2a;;) for an active pump, making the

il
i
convexity assumptlon valid. : Nonetheless, for simplicity, we assume only pump curves
where all b;; = 0, which guarantees the strict convexity of each function over q’“+ > 0.
Assuming fixed statuses of pumps and valves, as well as fixed heads at reservoirs and
tanks, the strictly convex Problem (6.44) can thus be employed to solve for the unique set
of flows that correspond to the given network configuration. Given the values of flows, a

linear system can then be solved to obtain the corresponding values of remaining heads.
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Thus, similar to the feasibility checking routine of Chapter 5, a feasibility checking
routine that leverages Problem (6.44) will (i) remove inactive components from the
network model, (ii) solve the corresponding convex program, (iii) solve a linear system
to obtain non-fixed nodal heads, and (iv) check for flow and head bound satisfaction.
For the purpose of this chapter, we next derive a corresponding Co-Content variant
of Problem (6.44) that will be ultimately be used to derive the inequalities in Section
6.4.2. First, pumps can be regarded mathematically as pipes with negative resistances
or as pipes with head losses directed from j to i (instead of 7 to 7). The remainder of the
problem formulation remains functionally equivalent to the Content Model, and short
pipes and active valves furthermore only ensure equality of heads at connecting nodes.
For an even closer mapping, these components could similarly be interpreted as pipes
with negligible resistance, which would contribute nothing to the content objective.
With these observations in mind, extending the Lagrangian dual derivation method

of Appendix B.1, we are interested in finding the maximizers of the Lagrangian terms

a;; b,
- > (f[qﬁ*]nggj[QZ] + gl — [\ )\k]qw>. (6.45)

(i,5)€PY

Note that here, all terms are of the form aw(qm )3+ bw(ng )2+ Cqua — tqZ] , where
f(qij ) = a,; (qw )3 +b”(qw )2 +c”q” is a concave function. There are two possibilities:
if £ > 0, the component is nonincreasing in qu over qur > 0 and thus attains its
maximum at qff = 0. Otherwise, if t < 0, the function is increasing at qi 7 =0, attains

its maximum, then starts decreasing. This maximum is attained at the stationary point

\/62 —4da;;(c;; —t)
= : (6.46)

ZJ

After simplifying, then, the maximum value of the corresponding component is

by, \/b2 —4a;;(c;; — t\/62 —4a;(c;; —t)

(1) =
9:5(1) 12a 12a$] 3a;; 67
2 )
2a..  2a;.
36‘%] a;j ij
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Note that the first, fifth, and sixth terms are constants or linear in ¢. Using this chapter’s

assumption of b;; = 0 and our additional assumptions on a,; and c¢;;, the second term

YK
can be dropped, and the third and fourth terms can comjbine tojcreate a function
proportional to the form (d+w)3/?, where w > 0 is variable and d is a positive constant.
Note that this is a strictly convex function over the domain of interest. This implies the
negated sum of components in Equation (6.45) is strictly concave over Ahg; = —t.

Using the above interpretation and results, our Co-Content Model is written as

LY fanE g an ]

14+ a, 4 L,
maximize He4 Y i (6.48a)
- Z 9i;(—ARG) — Z hid;
(i,5)ePk ieD
: k k— _ pk k ;o k
AhfE >0, V(i,j) € AUSUVY (6.48¢)
ARES =0, AbET >0, V(i,j) € P}, (6.48d)

where £* corresponds to the node-connecting components that are active at time index

k € X’. This forms our version of the Co-Content Model with pumps and valves.

6.4.2. Duality-based Valid Convex Inequalities

Letting the objective of Problem (6.44) be denoted by fk(¢*) and the objective of
Problem (6.48) be denoted by f¥(h¥), the similar conver strong duality constraint
fE(q%) — fE(R*) < 0 can be constructed to model the nonconvex system dynamics at
time step k € X’. There is an important caveat, however: this convexity assumes
that tank heads are fixed, along with the typical assumption that reservoir heads and
demand flows are also fixed. That is, in the context of the OWF, unlike the water
network design problem, the strong duality constraint cannot be embedded to provide
an exact convex reformulation. However, a convex relazation can be formed by using a
standard McCormick relaxation of the complicating nonconvex terms. That is, products
of flows and heads at tanks that appear in f5(g*) and f5(h*), denoted here as gFh¥ for
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brevity, can be relaxed in the strong duality constraint by introducing the constraints

wh > ¢"hk + Bk — kh’? VieT, Yke X' (6.49)
wh > GEhk + n N qkh VieT, Vke X’ (6.49b)
wh < qkhk Ty LqF — qkh VieT, Vke X’ (6.49¢)
wk <GERE+ Bk — PR, Vie T, vk e X, (6.49d)

where w ,i1e€ T, ke X', denotes the relaxed product of head and flow at a tank.
Using the above relaxatlon in the constraints f&(¢*) — f&(h¥) < 0 ultimately yields

L.r. Q;j b;;
>0 T (@ ] = Y [—”<q’~f+>3+ﬂ<q@> + iyl ]
1] 3] 1] L] 1jdig
(i,5)€A I+a (i,5)€P 3 2
k k+ k— k
=D REL Y @ —d) - Y0 (@ - d) >] - vl
iE€R (i,5)€8F (7,9)€8; €T (6.50)
feY 1
4 — e [(AREN) S 4 (AR

+ Zzwgw —ARE) + 3 high <0, VE e K,
( 7.7 6? €D

Note that, in place of using the set ?’f , the original set 7 is used in the summations,
where terms in the second sum are equal to zero when pumps are deactivated in the
OWF, and terms in the second to last sum are similarly zero when pumps are deacti-
vated. (Note that although z'-“-gij(-) is a bilinear product, it can be exactly represented

using a McCormick representation since 2%, is binary. In practice, nonlinearities in Con-

J
straints (6.50) will be algorithmically outer-approximated, which also mitigates this.)

6.5. Strengthening Convex Relaxations

The relaxations of the OWF developed in previous sections depend strongly on the
tightness of variable bounds, especially pipe and pump flow bounds. In the case of
(MILP), the relaxation also depends on the number of breakpoints used to model inner

and outer approximations of the nonlinear constraints. Although outer approximations
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introduce little computational complexity to the formulation, inner approximations are
piecewise-linear and require a number of discrete variables to model accurately. Thus,
the tightness of the relaxation also depends strongly on the piecewise-linear discretiza-
tion of nonlinearities, which has an important tradeoff with computational complexity.

We are interested in developing OWF relaxations that reduce or limit the combina-
torial sizes of piecewise-linear discretizations to maintain problem tractability. In this
section, there are two methods we consider: (i) improvement of variable bounds and
(ii) derivation of linear inequalities that strengthen the relaxation. To this end, Section
6.5.1 first introduces a single-step approximation of the OWF, which can then be used
to efficiently derive time-independent properties of an OWF instance. Section 6.5.2 then
develops an OBBT method that leverages this single-step approximation. Section 6.5.3
extends the intuition of the OBBT method to computationally derive valid inequalities
to the OWF. Finally, Section 6.5.4 modifies network-based (or physics-inspired) valid

inequalities that have been successfully used in a previous relaxation-based OWF study.

6.5.1. Single-step Approximation

To formulate a more tractable approximation of the OWF problem for the purpose of
computing tighter variable bounds and new valid inequalities, the temporal properties
of each network component are first collapsed into a single-step approximated model of
that component. The resultant network approximation can thus serve as a relaxation
of any independent steady-state model that is to be satisfied within the sequence of
time steps k € X”. To begin, the original nodal head variables h¥, i € N, k € X, are
temporally collapsed to form the nodal head variables h;, « € V. These are bounded as

CYiEN, (6.51)
where it is assumed that h, = min{ﬁiC :k € X} and h; = max{ﬁf : k € X'}. That is,

the head at each node in the network is constrained between its temporally extremal

bounds. This notion is also used to bound temporally collapsed flows, ¢,;, (i,]) € £, as
gij < qz'j < ai]w V(Z,j) € ’57 (652)

where it is similarly assumed that ¢ = min{¢* : k € X’} and q;; = max{qu cke X'}
ij ij
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For each pipe, a single head loss relationship is enforced for the component, i.e.,
h; —h; = L;;ri;q:; ‘qml V(i,j) € A. (6.53)
The dynamics for each short pipe are approximated in a similar single-step manner as

For valves, single-step indicator variables z;; € {0,1} are first introduced. These vari-

ables are then used with the extremal flow bounds to constrain each valve’s flow as

gijzij S Qij S qijziﬁ V(’l,j) S V (655)

The heads at the nodes connected by each valve are then limited by the constraints

(1—z;5) (hy = Ty) < hy—hy < (1—2) (hy— b)), V(i,§) € V. (6.56)

For pumps, single-step indicator variables z;; € {0, 1} are also introduced. These vari-

ables are again used with the extremal flow bounds to constrain each pump’s flow as
€% < Qi < Q%550 75 € {0,1}, V(4,5) € P (6.57)
Each pump’s single-step approximated head gain is then modeled via the constraints
aij (Q’L]) + bzqu + ngzw - ng? V( ) SV (658)
The heads at the nodes connected by each pump are then constrained as

hi—h;+G; < ( ) max ) ( ) ep (6.59a)

0,h; — b,
hy—h;+G,; >( )mm(()@ h;), v (6.59b)

To relax the temporal variation in demand, the variables ¢;, i € D, are introduced to

denote the single-step approximated demanded (or injected) flow at each demand point.
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Whereas in the original problem, demands were fixed, demands are now bounded as
min{qiij ke X'} <¢q; < max{qi.€ ke X'}, VieD. (6.60)

Single-step approximation variables ¢;, ¢ € X U T, are also introduced to denote the
outgoing flow from reservoirs and tanks. Since the tank volume integration Constraints
(6.12) are temporal in nature, they are omitted from the single-step approximation. The

remaining constraints are similar to the flow conservation Constraints (6.13), written as

D =) 4 =a Vi€D (6.61a)

(7,1)€d; (i,5)€67

> ai—> a;=—aq, Yie RUT. (6.61b)

(7,1)€d;  (i,5)€d]

Given the previously-described constraints that model each component in the water

network, the so-called single-step approzimation of System (6.14) is then written as

Head and flow bounds: Constraints (6.51), (6.52) (6.62a)
Pipe dynamics: Constraints (6.53) (6.62Db)
Short pipe dynamics: Constraints (6.54) (6.62¢)
Valve dynamics: Constraints (6.55), (6.56) (6.62d)
Pump dynamics: Constraints (6.10), (6.57), (6.58), (6.59) (6.62¢)
Flow conservation: Constraints (6.60), (6.61). (6.62f)

This approximation serves as an easier-to-solve variant of System (6.14), primarily due
to the elimination of challenging temporal aspects related to feasibility. Because this
problem is substantially easier to solve, it can serve as a reliable and efficient means for

discovering relationships that strengthen the formulation or relaxations of (MINLP).
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Algorithm 6.1 Optimization-based bound tightening for water networks.

Input: System (6.62) (or any relaxation thereof) that comprises a feasible set Q
Output: Valid bounds for System (6.14) and (MINLP): h, h, q, G, 2, Z, €

1: repeat
(ﬁf7 Ef’ gf7 af7 §f7 zf? Ef) F h? E’ g? a? g’ E’ €

2:

3: ) + Relaxed feasibility system given Qf , Ef, qf ,Gf 2t ,Ef el
4: for alli € NV do -
5: h; < minimize h; subject to

6: h, + maximize h; subject to

7: end for

8: for all (i,j) € £ do

9: 4, ¢ minimize g;; subject to

10: Q< maximize ¢;; subject to {2

11: end for

12: for all (i,j) € PUV do

13: Z;; ¢ minimize z;; subject to £

14: Z;; < maximize z;; subject to

15: end for

16: for all (i,j) €  do

17: €;; < minimize g;; subject to QU {2;;, = 1}
18: end for

19: until (ﬁf, Ef, gf, af, gf, zf7 Gf) = (ha Ev g: qa 2 z? 6)

6.5.2. Optimization-based Bound Tightening

Note that System (6.62) is a valid relaxation of the constraints that must be satisfied
at each time step k € X’ of System (6.14), independently. Among these steady states,
the tank volume integration Constraints (6.12) and tank recovery Constraints (6.15)
are the only conditions that link them, which are notably excluded from System (6.62).
Because of these properties, one of the clearest benefits that System (6.62) provides
is the capability of being embedded within an efficient OBBT algorithm. The bounds
discovered from this procedure, since valid for the single-step approximation, are thus
also valid for any steady state k € X’ modeled in System (6.14). We remark that a
related OBBT approach has been successfully used by [15] in a similar OWF context.
Algorithm 6.1 presents a simplified variant of the OBBT algorithm used in this study.

Here, Lines 1 and 19 give the algorithm’s iteration and termination conditions, respec-
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tively, i.e., repeat the interior of the algorithm (Lines 2-18) until variable bounds no
longer improve. Line 2 sets the variable bounds for the current iteration of the algo-
rithm. Line 3 constructs a new relaxation, €2, using these variable bounds. Lines 4-7
derive new bounds for heads in the network. Here, Line 5 solves a minimization problem
that yields a lower bound h;, and Line 6 solves a maximization problem that yields an
upper bound h;. In a similar manner, Lines 811 compute new lower and upper bounds
for flow variables in the network and Lines 12-15 compute new bounds for indicator
variables. Finally, Lines 16-18 compute lower bounds for variable pump flows when
the pump is active (i.e., z;; = 1). This conditional bound-tightening allows for further
strengthening of relaxations for each pump’s head gain curve by improving the fixed ;.

In practice, Algorithm 6.1 can be used to derive even tighter bounds depending on the
relaxation ultimately employed to solve the OWF problem. For example, if a direction-
based formulation is used, head loss relaxations can be strengthened by computing

tighter lower flow bounds that are conditional on the flow direction of a pipe, i.e.,

qz; < minimize ¢;; subject to QU {y;; = 1} (6.63a)

g, minimize g;; subject to Q U {y,;; = 0}. (6.63b)

Tighter bounds can also be computed for other variables used in direction-based formu-
lations, e.g., y;; can be tightened in a manner similar to z;; in Lines 12-15 of Algorithm
6.1. The notion that such conditional bounds can be derived via an OBBT framework
inspires our next novel contribution presented in Section 6.5.3, in which valid inequalities

between two variables (binary-binary and binary-continuous) are computed similarly.

6.5.3. Optimization-based Valid Inequalities

Aside from OBBT, System (6.62) also provides an efficient mechanism by which glob-
ally valid inequalities can be derived for its temporal counterpart, System (6.14). The
procedure for computationally deriving these inequalities (i.e., cuts) is similar to the
OBBT Algorithm 6.1. For this reason, we refer to the procedure as OBCG. Cuts de-
rived from the OBCG procedure further strengthen relaxation-based formulations of the
OWF problem, potentially enabling faster improvement of solution lower bounds.

Algorithm 6.2 presents a simplified version of the OBCG algorithm used in this chap-
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ter. Here, Line 1 instantiates the set of binary variables to consider in the cut generation
procedure. Line 2 defines the binary-binary cut generation loop, where all unique, or-
dered pairs of binary variables are considered. Lines 3 and 4 minimize and maximize the
first variable in the pair, respectively, subject to the relaxation constraints and a fixing
of the second variable to zero. On Line 5, if both minimization and maximization yield
optimal objectives of zero, a cut can be derived, which is added to the set of cuts X on
Line 6. Otherwise, if minimization and maximization both yield one, a similar process
is followed on Lines 6-9. On Lines 10-16, the same process is repeated while fixing the
second variable to one instead of zero. This generates the set of all binary-binary cuts.

The second loop begins on Line 18, where variable pairs comprise continuous variables
of flow and head as well as binary variables of controllable component statuses. The
goal of this loop is to derive cuts that improve variable bounds depending on controllable
component statuses. For example, Line 19 minimizes a continuous variable subject to the
relaxation constraints and a fixing of the binary variable to zero. In turn, the optimal
objective provides a potentially tighter lower bound for the continuous variable when
the binary variable is zero. This conditional inequality is added to the set of cuts X on
Line 20. Similar cuts are derived for other bounds and variable fixings on Lines 21-26.

Note that, since the cuts are derived from the single-step approximation, System
(6.62), they can be applied to every time k € X within an OWF formulation. We also
remark that, like the OBBT algorithm described in Section 6.5.2, Algorithm 6.2 can
be used to derive even more cuts depending on the relaxation employed to solve the
OWF problem. These additional cuts present new opportunities to strengthen relaxed
OWF formulations. For example, if a direction-based formulation is used, all direction
variables {y;; : (i,j) € £} can also be included in the set B. Similarly, directed flow

variables {¢;; : (i,7) € £} can be included in the unioned set of continuous variables.

6.5.4. Network-based Valid Inequalities

An interesting intertemporal cut for the OWF is formulated by [141] for networks where
all tank and nodal demands were ultimately served by reservoir-drawn pumps. In some

networks, however, some portions of demand can also be served via gravity-fed distri-
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Algorithm 6.2 Optimization-based cut generation for water networks.

Input: System (6.62) (or any relaxation thereof) that comprises a feasible set
Output: Valid inequalities (or cuts) for System (6.14) and (MINLP), denoted by X
1: B {z;: (i,§) EPUV}H X =
2: for all (zy,x5) € (B x B)\{(z,z):z € B} do

3: Q(l) < minimize z; subject to QU {x, = 0}
4: 7" « maximize x; subject to QU {z, = 0}
5: 1fa: —xl—Othen

6: I%Iu{x1<x2}

7: else if 29 = 75 =1 then

8: XX U{x) +ay>1}

9: end if

10: @% < minimize x; subject to QU {z, =1}
11: T <— maxmnze x, subject to QU {z, =1}
12: if 2] = acl =0 then

13: x<—.TU{£IZ1+1‘2<1}

14: else if z7 = =7, = 1 then

15: i’(—i’u{xlz@}

16: end if

17: end for

18: for all (zy,zy) € ({g;;: (i,4) € L} U{h;:i e N}) x B do
19: 2! < minimize x; subject to QU {z, = 0}
200 X+ X U{d(1—ay) +a,2y <2y}

21: 7Y < maximize x; subject to QU {z, = 0}
22: XX U{x, <TU1 —xy) + 12y}
23: z7 < minimize x; subject to QU {z, = 1}
24: Ef%fu{mx2+x(l—m2)<x1}
25: 3:1 < maximize 2 subject to QU {zy =1}
26: XX U{z, <Tizg+ T (1 —xy)}

27: end for

bution. Thus, more general cuts than those provided by [141] are derived here as

S (Vi —vk) + Z SOAtAE <y Z AtF ¥ Ve X (6.64)

€T =ki€eD 1ER k' =

First, each tank’s volume at the end of the schedule, VZ-K , must be greater than or equal
to V1. This implies that V;! — V¥ k € X, represents the volume of water that must be
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Network | |[N] | |A] | |
Simple FSD | 4 2
AT (M) 22 | 41
Poormond 52 | 43

D] | IR
2 | 1
1
1

19
46

| ol
ool
N wlw| ]

|7
1
2
5

Table 6.1: Summary of optimal water flow networks derived from the literature.

restored to a tank i € T by the end of the time horizon. Thus, }-. . (V;' =V;*) represents
the total volume that must be restored to all tanks by time index K, beginning from k.
Similarly, Zgzk > ien Atk d¥ represents the total volume of water that remains to be
delivered by the end of the time horizon. Since all tank and nodal demands are ultimately
fed by reservoirs, ZZ e Zg:k AtF qf/ represents the total volume contributed by all

reservoirs in the network between time step k£ and K, which completes the inequality.

6.6. Computational Experiments

This section empirically evaluates our formulation and algorithmic contributions to the
OWF problem. All formulations and algorithms were implemented in the JULIA pro-
gramming language using JUMP, version 0.21 [50], and version 0.7 of WATERMODELS,
an open-source JULIA package for water distribution network optimization [131]. First,
Section 6.6.1 describes the common instances, computational resources, and parameters
used in the experiments. Section 6.6.2 empirically measures the effects of OBBT on the
lower bounds of relaxation-based polyhedral OWF formulations. Section 6.6.3 does the
same for the OBCG-generated inequalities using the algorithm of Section 6.5.3, as well
as the volume-inspired inequalities of Section 6.5.4. Section 6.6.4 evaluates the effects of
the content-based inequalities of Section 6.4.2. Section 6.6.5 empirically evaluates the

upper bound tradeoffs of various parameterizations of polyhedral OWF formulations.

6.6.1. Experimental Setup

The numerical experiments consider three small networks of various sizes that appear in
the pump scheduling literature and are summarized in Table 5.1 [15], [87]. All use the
Hazen-Williams head loss relationship for pipes. Although Simple FSD and Poormond

are similar (but not equivalent) to the networks studied in [15], our version of AT (M)
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was modified to ensure feasibility in our writing of the OWF, where pump statuses
are required to be fixed across a time interval. In this case, relaxation feasibility was
ensured by increasing maximum water levels of the two tanks in the system from 71.53
meters to 72.00 meters. Note that all pumps in Simple FSD and AT(M) are identical
and leverage the symmetry-breaking Constraints (6.10), but all pumps in Poormond are
unique. Additionally, eighteen switches per pump (M) are permitted for Simple FSD
and AT (M), while six pump switches are permitted for Poormond. Furthermore, 7°" and
7°f are equal to 3600 and 1800 seconds, respectively, for all OWF instances considered.
Finally, all pump power consumptions are modeled linearly, as done in Equations (6.18).

Each of the three networks have correspondence with fifteen unique OWF instances,
which were also derived from [15] and that study’s corresponding open-source data sets.
Each instance differs in two ways. First, although each instance assumes a twenty-four
hour scheduling period, the patterns of demands and electricity prices are specified in two
hour, one hour, and thirty minute intervals. That is, instances have varying temporal
dimensions, where K’ € {12,24,48}. Second, for one K’ electricity price patterns
differ across five different daily estimates. In summary, the instances study variations
in temporal resolution of the network model as well as variations in electricity pricing.

Each experiment was executed on a node containing two Intel Xeon E5-2695 v4 proces-
sors, each with 18 cores at 2.10 GHz, and 125 GB of memory. All experiments primarily
concerned benchmarking relaxations based on (MILP), although continuous relaxations
of (MICP) were also sometimes used to determine breakpoints in (MILP) parameteriza-
tions. For the solutions of all MILPs, GUROBI 9.1 was used with the NumericFocus=1
parameter, which increases the overall numerical accuracy of the solution algorithm.
For the solution of convex NLPs, IPOPT 3.12 was used with the linear solver MA57, as

per the recommendation of [134], and the tolerance parameter tol=1.0e-11.

6.6.2. Effects of Optimization-based Bound Tightening

This section evaluates the efficacy of the OBBT algorithm of Section 6.5.2 and its effects
on the objective lower bounds of MILP relaxations. In each execution of Algorithm 6.1,
the single-step approximation System (6.43) was used (i.e., as ), with each head loss
and head gain function piecewise-linearly relaxed using ten equally-spaced breakpoints

for both the inner- and outer-approximations of the functions. Trivially parallelizable
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K =12 K =24 K’ =48
Network N A P N A P N A P
Simple FSD | 44% | 30% | 85% | 40% | 33% | 85% | 34% | 37% | 85%
AT (M) 11% 1 63% | 2% | 8% | 73% | 2% | 3% | 81% | 2%
Poormond | 62% | 2% | 13% | 62% | 2% | 13% | 62% | 2% | 13%

Table 6.2: Bound improvements for water network instances using OBBT.

portions of the algorithm were parallelized over 70 threads. Even with the tight (MILP)-
like relaxation, the OBBT procedure completed in under 19 seconds for all Simple FSD
instances, 88 seconds for all AT(M) instances, and 47 seconds for all Poormond instances.

Table 6.2 shows the overall improvement in physical bounds for select component
sets of the problem instances. Here, each network is divided into the three possible
temporal categories, K’ € {12,24,48}. Within each category, the N column lists the
mean overall improvement between the initial and bound-tightened ranges of nodal head
bounds (i.e., Ef — hf) Similarly, the A column corresponds to the overall improvement
in initial and bound-tightened ranges of pipe flow bounds (i.e., ij — gfj). Finally, the P
column corresponds to the improvement in ranges of pump flow bounds (i.e., qu — efj).

For Simple FSD, the effects of OBBT are dramatic: head bounds are improved by
around 40%, pipe flow bounds are improved by over 30%, and pump flow bounds are
improved by 85%. For AT(M), the effects on head and pump flow bounds are less
dramatic, although pipe flow bounds are improved substantially. Finally, for Poormond,
flow bounds are only marginally improved, but head bounds are improved significantly.
We remark that, for the Simple FSD instances, no additional bound information was
provided by the data set from which these instances were derived. On the contrary,
the data set from which AT (M) was derived included initial lower head bounds for three
nodes, and Poormond included initial lower and upper flow bounds for all pipes and all
pumps. This could explain the small improvements for some bounds in the AT (M) and
Poormond instances. It also implies that OBBT may be especially useful for networks
that lack additional bound or capacity data, as illustrated in the results for Simple FSD.

Next, Table 6.3 shows the effects of using tightened bounds when solving relaxed
variants of the OWF. Specifically, the (MILP) relaxation of the OWF was used, where
two and ten flow breakpoints modeled each head loss/head gain inner and outer ap-

proximation. The GUROBI parameter MIPFocus=3, which emphasizes improving the
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K' =12 K' =24 K’ =48

Day | LB LB®' % Diff. | LB LBPY % Diff. | LB LBPT % Diff.

a 1 ]162.2 - - 153.6 155.3  1.1% | 152.3 152.7  0.3%
| 2 | 165.9 - - 158.2 1585  0.2% | 156.6 157.0  0.3%
31 3 [179.6 - - 1714 1720 04% |169.2 1704  0.7%
% 4 | 187.9 - - 179.2 181.3 1.2% | 176.7 177.8 0.6%
w| 5 |159.3 - - 148.2 1485 0.2% | 146.8 147.1  0.2%
1 | 7139 7140 0.0% |704.9 706.8 0.3% |697.7 699.3 0.2%

~| 2 | 7052 7058 0.1% |697.1 700.1 04% |688.0 690.8 0.4%
§ 3 | 7329 7331 0.0% | 7247 7257 0.1% | 7159 7180 0.3%
<| 4 |793.0 7938 0.1% | 7829 7847 02% | 7745 7755 0.1%
5 ]646.3 646.9 0.1% | 6353 637.1 0.3% | 6282 630.0 0.3%

- 1 |106.6 108.3 1.6% 98.8  99.4 0.6% 95.5 973 1.9%
gl 2 |109.8 1099 0.1% |101.6 102.0 0.4% 98.5  99.7 1.2%
g 3 | 1219 1210 -0.7% | 1133 1133 0.0% | 109.1 109.8 0.6%
é 4 | 133.1 1334 02% |123.0 1242 1.0% | 1188 120.7 1.6%
5 |108.8 111.4 2.4% 86.8  87.9 1.3% 82.1  82.8 0.9%

Table 6.3: Objective lower bound improvements for instances using OBBT.

objective lower bound, was also used. In Table 6.3, each problem instance is catego-
rized with respect to its temporal dimension (K”) and its corresponding electricity price
profile (“Day”). The “LB” column corresponds to the best lower bound obtained by
GUROBI within one hour when using naive variable bounds based on provided network
data, while “LBBT” corresponds to the best lower bound when using the OBBT-based

bounds. Finally, “% Diff.” measures the percent difference between the bounds, i.e.,

LB — 1B
% Diff. := (T) 100%, (6.65)

where positive values indicate a relative improvement in lower bound when using OBBT.

For all instances except one (Poormond, K’ = 12, Day 3), OBBT-based variable
bounds result in consistently improved objective lower bounds. For Simple FSD, K’ =
12, the tighter variable bounds allow for proofs of infeasibility for the instances (i.e.,
having no lower bounds), whereas the naively-bounded instances are classified as feasible.
For the remaining Simple FSD instances, lower bound improvements are often less than

1%. For AT(M) instances, the improvements are not as large and always less than 0.5%.
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For Poormond, the benefits are more apparent. Here, lower bounds are often improved

between 1% and 2%, which could be substantial when attempting to prove optimality.

6.6.3. Effects of Valid Linear Inequalities

This section evaluates the efficacy of the valid inequalities generated via the OBCG
method of Section 6.5.3 and the network-based method of Section 6.5.4. As in Section
6.6.2, within the OBCG Algorithm 6.2, the single-step approximation System (6.43) was
used (i.e., as 2), with each head loss and head gain function piecewise-linearly relaxed
using ten equally-spaced breakpoints for both the inner- and outer-approximations of
the functions. The OBCG routines completed in under 38 seconds for all Simple FSD
instances, 1,985 seconds for all AT(M) instances, and 2,188 seconds for all Poormond
instances. Similar to the OBBT algorithm, the OBCG algorithm was parallelized over
70 threads. Although OBCG is more intensive than OBBT, note that these cuts can be
reused as long as network properties remain within their temporally extremal bounds.
We next compare the overall improvement in the objective lower bounds achieved
using the above cuts, similar to the setting of Section 6.6.2. Here, the same parameter-
izations of (MILP) and GUROBI as in Section 6.6.2 were used. In Table 6.4, the best
bounds achieved within one hour are again compared for the various OWF instances,
where “LBBT” corresponds to the best lower bound achieved when using only improved
variable bounds, and “LB®” corresponds to the best lower bound achieved when using
improved variable bounds as well as the cuts described in Sections 6.5.3 and 6.5.4.
Table 6.4 first shows that, for Simple FSD and AT(M), the effects of adding valid
inequalities are often negligible or detrimental. In the case of AT(M), the sometimes
negative effects of adding cuts could be due to the increased size of the master problem,
which might be substantial if a large number of OBCG cuts are computed. However,
for Poormond, the effects of the valid inequalities are generally beneficial and sometimes
dramatic. In most cases, the lower bound improvement is between 1% and 5%, and for
the largest instances (K’ = 48), the improvements are more substantial. These results
indicate that, for difficult instances, valid inequalities can strengthen MILP formulations

significantly, although the effects appear to be mostly dependent on network structure.
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K =12 K =2 K’ =48

Day | LBPT LB % Diff. | LBPT LBY % Diff. | LB®T LB“ % Diff.
al 1 . - - [ 1553 1553 0.0% | 1527 1527 0.0%
ST . - - 1585 1587 0.1% | 157.0 157.0 0.0%
ol 3 . - - 1720 1721 01% | 1704 1704 0.0%
g 4 : - - | 1813 1814 0.1% | 177.8 1778  0.0%
Al 5 - - - 1485 1487 01% | 1471 1471 0.0%

1 [ 7140 7141 0.0% | 7068 707.1 0.0% | 6993 699.7 0.1%
ol 2 | 7058 7056 0.0% |700.1 699.2 -0.1% | 690.8 691.3 0.1%
S| 3 | 7331 7331 0.0% | 7257 7254 0.0% | 7180 TIT.9  0.0%
<| 4 | 7938 7940 0.0% | 7847 7846 0.0% | 7755 7761 0.1%

5 | 6469 646.8 0.0% | 637.1 6372  0.0% | 630.0 630.0 0.0%
S| 1 [1083 1091 0.7% | 994 1038 4.4% | 973 1017 4.5%
g2 | 1099 1123 22% | 1020 106.7 4.6% | 99.7 1050 5.3%
Bl 3 |121.0 1239 24% | 1133 1173 35% | 1098 1152 4.9%
S| 4 | 1334 1355 1.6% | 1242 1206 4.3% | 1207 1278 5.9%

5| 1114 1127 12% | 879 910  35% | 828 869 5.0%

Table 6.4: Objective lower bound improvements using valid inequalities.

6.6.4. Effects of Valid Nonlinear Convex Inequalities

This section evaluates the efficacy of the valid inequalities derived in Section 6.4.2.
Here, these inequalities were implemented as the linear McCormick Constraints (6.49)
and relaxations of Constraints (6.50), where nonlinear terms involving ¢ and Ah* were
piecewise-linearly inner-outer approximated, as with the head loss and gain nonlineari-
ties of (MILP). We forgo an explicit derivation and statement of these inner and outer
approximations since they bear such strong similarity with the linearizations described
in Chapter 5 and Section 6.3.2. We do, however, remark that the breakpoints used in
these linear relaxations coincided with the flow breakpoints used elsewhere in (MILP).

Similar to previous subsections, Table 6.5 evaluates overall improvements in objective
lower bounds when using linearizations of the new convex inequalities. The same pa-
rameterizations of (MILP) and GUROBI were used as in the lower-bounding experiments
of previous subsections. In Table 6.5, LBC corresponds to the objective lower bounds
achieved when using OBBT and the valid linear inequalities of Section 6.6.3, and LB"P
corresponds to the objective lower bounds achieved when using OBBT, the previous

valid linear inequalities, and linearizations of the new valid convex inequalities.
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K =12 K =2 K’ =48

Day | LB® LBFPP % Diff. | LB® LBFP % Diff. | LB® LBFP % Diff.
al 1 : - - [1553 1553 0.0% [152.7 1527 0.0%
B2 | - - - 1587 1587  0.0% | 157.0 157.0  0.0%
ol 3| - - - 1721 1721 0.0% | 1704 1704 0.0%
g 4 . - - 1814 1814  0.0% |177.8 1778  0.0%
@l 5 | - - - 1487 1487 0.0% | 1471 1471 0.0%

I [ 7141 7181 06% |707.1 7116 0.6% |699.7 7044 0.7%
o 2 | 7056 7084 04% |699.2 7048 0.8% |691.3 6965 0.8%
S| 3 | 7331 7368 05% |7254 7326 1.0% | 7179 7245 0.9%
<| 4 | 7940 7964 03% | 7846 7884 05% |776.1 7819 0.7%

5 | 6468 6512  0.7% | 637.2 6453 1.3% | 630.0 6362 1.0%
| 1 1091 1087 -04% [1038 1058 1.9% |10L7 1042  2.5%
g1 2 | 1123 1132 08% |106.7 1076 0.8% |1050 1064 1.3%
gl 3 1239 1253 11% |117.3 1192 1.6% | 1152 117.8 2.3%
S| 4 | 1355 1361 04% |120.6 1314 14% | 1278 1294 1.3%

5 | 1127 1133 05% | 91.0 924  15% | 869 8.1 1.4%

Table 6.5: Objective lower bound improvements using convex valid inequalities.

Table 6.5 first shows that additional lower bound improvements are often less than
1%. For Simple FSD, no improvements are observed, and for AT (M), improvements less
than 1% are observed. For all except one Poormond instance, lower bounds are improved,
often around 1% or 2%. As with the previous results, greater improvements are generally
seen as the network size and temporal dimension grows, indicating that better bounds

and more valid inequalities can improve objective lower bounds substantially.

6.6.5. Upper-bounding Experiments

Although not the primary focus of this chapter, this section aims at highlighting the
difficulty in obtaining feasible upper bounds for challenging OWF' instances, even with
formulation and model strengthening techniques that provide tighter OWF relaxations.
Specifically, we compare two relaxation-based formulations and measure their efficacy
at determining upper bounds of each relaxed OWF and the original nonconvex OWF.
The first is a (MILP) formulation that uses two and ten equally-spaced inner- and

outer-approximation breakpoints for head loss and gain nonlinearities; assumes variable
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bounds from OBBT; and continuously relaxes all flow direction variables yfj, (i,7) € £,
k € X’. This attempts to mimic some features of the relaxed formulation used by [15].

The second formulation is a (MILP) formulation that uses five inner- and outer-
approximation breakpoints for pipes connected to nodes with total degree no greater
than two, centered around the solution of a continuous relaxation of (MICP); two and
five inner- and outer-approximation breakpoints for pipes connected to nodes with total
degree greater than two; and five and ten inner- and outer-approximation breakpoints
for pumps, again centered around the solution of (MICP)’s continuous relaxation. Ad-
ditionally, the second formulation leverages OBBT-based bounds; OBCG- and network-
based cuts; and the valid inequalities explored in Section 6.6.4. In summary, the second

formulation is a stronger but more expensive relaxation when compared to the first.

Relaxation Upper Bounds Table 6.6 evaluates objective upper bounds obtained
after one hour when solving each of the relaxed formulations discussed above. Here,
uB® corresponds to the first (highly relaxed) formulation, and UB" corresponds to the
second (stronger but more expensive) formulation. For Simple FSD, we note that all
K’ = 24 instances converge in under 4 seconds, and all K’ = 48 instances converge in
under 497 seconds. Likely due to the small size of the network, the first formulation
finds only slightly smaller upper bounds than the second, as indicated by the “% Diff.”
results. The exception is for K = 48, Day 5, where GUROBI reported a small constraint
violation for the second formulation, which enabled the smaller objective upper bound.

For AT(M), no instances are solved within the one hour time limit. For K’ = 12,
the stronger formulation finds smaller upper bounds that are likely nearer to physical
feasibility. The stronger formulation also finds a feasible upper bound for one K’ = 24
instance, whereas the weaker formulation finds no feasible solution. Nonetheless, for the
remainder of the K’ € {24,48} OWF instances, no integer relaxation-feasible solutions
can be found within the one hour time limit. This observation indicates that even integer
feasible solutions to relaxations of the OWF are often very difficult to obtain.

For Poormond, again, no instances are solved to optimality within the one hour time
limit. However, the results here are more intuitive, i.e., upper bounds achieved by the
highly-relaxed problem are smaller than upper bounds from the stronger formulation.
Furthermore, the first formulation produces feasible solutions more often than the sec-

ond, as evidenced by K’ = 48 results. Nonetheless, we remark that the feasible solutions
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K =12 K =24 K’ — 48

Day | UBF  UBP % Diff. | UBR  UBY % Diff. | UB® UBY % Diff.
al 1 i i i 1553 1555 0.1% | 152.7 1529 0.1%
2 2 ] ; ; 1585 159.0 0.3% |157.0 157.0 0.0%
! ; ; ; 172.0 1727  04% | 1704 1705 0.1%
gl 4 ; ; ; 181.3 1815 0.1% | 177.8 177.9 0.1%
2| 5 _ _ _ 1485 149.1 04% | 1471 1470 -0.1%

1 [ 7184 7142 -0.6% - - - - - -

| 2 |7126 7075 -0.7% - - - - - -

§ 3 | 7422 7354 -0.9% - - - - - -

<| 4 |797.1 7928 -0.5% - - - - - -

5 | 654.2 648.6 -0.9% ~ 6476 : _ _ :

S| T [T20 189 L7% [1096 1131 32% | 1097 - _
& 2 | 1140 1172 28% |1114 1147 3.0% | 1121 137.3 22.5%

g 3 |125.3 1320 5.3% |123.0 1305 6.1% |123.0 - ;

S| 4 | 1397 1422 18% |136.1 140.2 3.0% |1362 - ;

5 | 113.3 1149 14% | 953 1121 17.6% | 93.9 - :

Table 6.6: Relaxation upper bound comparisons using different formulations.

from either formulation are not guaranteed to be physically feasible since they relax the
original (MINLP). The most important takeaways, here, are (i) even loose relaxations of
the OWF problem are often difficult to solve to optimality and (ii) solvers often struggle

to find integer solutions that are feasible to the relaxations themselves.

Physically-feasible Upper Bounds This section expands upon the previous re-
sults, this time comparing physically-feasible upper bounds obtained by the relaxations.
Here, a feasibility-checking procedure similar to the one in Chapter 5 was used within
the MILP search. Specifically, at every integer-feasible node of the search tree, the
feasibility-checking routine described in Section 6.4.1 was executed for the correspond-
ing schedule of controllable components. For the solution of each convex subproblem,
IPoPT with the same parameterization as discussed in Section 6.6.1 was used. As in [15]

and [97], when a bound infeasibility is discovered through the extended period analysis
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(via sequential subproblems), the following combinatorial no good cut can be appended:

Kinf
g oo Y (- | =1 (6.66)
he1 (4,4)€PUV:2E;=0 (4,4)€PUV:zE=1

Here, K™ € X is the first time interval at which infeasibility is detected in the extended
period analysis, and Z corresponds to the solution at the current BB node. This cut
implies that at least one component status must change to address the infeasibility. If
the integer solution is instead feasible, the solution to the extended period analysis is
used to compute a true upper bound to (MINLP), which is not necessarily optimal.

In Table 6.7, the best (MINLP)-feasible upper bounds obtained over the search are

represented as UB and ﬁp, respectively. For Simple FSD, all except two solutions are
equivalent. Note that neither solution technique guarantees a globally optimal solution,
as the MILP search terminates once the optimality gap of the relaxation has been
closed. This explains the reason for the smaller upper bounds obtained by the tighter
relaxations for Simple FSD. For AT(M), no physically-feasible solutions are discovered
for any of the problem instances during the search. This could be a consequence of
the rarity in encountering even integer-feasible solutions of the relazation, as discussed
earlier. Finally, for Poormond, the tighter relaxation finds feasible solutions for more
K’ = 12 instances, but for Days 1 and 2, the weaker relaxation finds lower-cost feasible
solutions. This indicates that exploration of integer-feasible relaxation solutions may
be especially important for some OWF instances. Nonetheless, for the remaining larger

Poormond instances, no (MINLP)-feasible solutions are found by either MILP relaxation.

6.7. Conclusion

This chapter explored relaxation-based solution techniques for the OWF problem, which
aims at minimizing the cost of pump energy consumption over a fixed time horizon.
Unlike previous studies, this chapter focused specifically on formulation, preprocessing,
and algorithmic techniques that aim at improving objective lower bounds of OWF in-
stances, which has been identified as a weakness of recent mathematical programming
techniques (e.g., [15], [141]). First, the OWF was formulated as a MINCP, and a stan-
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K =12 K =24 K =148
—~—R —~P —~—R —~P —~—R P

Day | UB UB %Diff. | UB UB %Diff. | UB UB % Diff.
al 1 - - - 155.6 155.6 0.0% | 153.0 1529 -0.1%
© 2 - - - 159.0 159.0 0.0% | 157.0 157.0 0.0%
ol 3 - - - 172.7 1727 0.0% | 170.6 170.6 0.0%
g* 4 - - - 182.2 1815 -0.4% | 178.0 178.0 0.0%
w| 5 - - - 149.1 149.1  0.0% | 147.3 1473  0.0%

1 - - - - - - - - -
~| 2 - - - - - - - - -
E| 3 B} B} B} B} B} B} B} B} B}
=1 i i i i i i _ i _

5 - - - - - - - - -
S| 1 [1188 1165 2.4% - - - - - -
g/ 2 | 1198 1236 3.2% - - - - - -
El 3 - 138.0 - - - - - - -
§ 4 - 1419 - - - - - - -

5 - 1173 - - - - - - §

Table 6.7: Objective upper bound comparisons using different formulations.

dard MICP relaxation was introduced. To better leverage modern MILP solvers, a
piecewise-linear relaxation-based formulation of the OWF was then developed, whose
accuracy and tractability are controlled by the number of breakpoints used to model
nonlinearities. These contributions generalize approaches used in prior OWF literature.
Expanding upon the previous literature, a duality-based convex valid inequality, sim-
ilar to the one derived for water network design in Chapter 5, was described for use in
the OWF problem. Additionally, a number of preprocessing techniques were developed
to increase the tightness of relaxed OWF problem specifications. First, a single-step
approximation of the OWF was formalized, which can be used in efficient preprocessing
techniques. Then, similar to the OBBT method used by [15], a relaxation-based OBBT
method was outlined. Finally, a novel OBCG method and generalizations of prior valid
OWF inequalities were described that aim at further strengthening OWF relaxations.
The above model strengthening procedures were then sequentially evaluated by mea-
suring objective lower bound improvements over small OWF instances. The empirical re-
sults indicate that these techniques are generally effective at increasing the lower bounds

of particularly challenging instances, although the magnitude of these improvements
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varies based on network structure and temporal complexity. Finally, upper-bounding
experiments indicate that finding integer-feasible solutions, even to OWF relaxations,
is a difficult task. Even more difficult is the task of finding (MINLP)-feasible solutions
on large OWF instances. This indicates the need for better OWF heuristic algorithms.
Based on results of the upper-bounding experiments, future work should focus on the
development of heuristic techniques capable of generating feasible solutions to OWF re-
laxations and (MINLP). As mentioned in Section 6.1, many existing techniques rely on
metaheuristics, which allow network infeasibilities, or mathematical programming meth-
ods, which rely on specific assumptions concerning network structure. One promising
general mathematical programming heuristic, however, has been recently proposed by
[13], in which low-cost feasible solutions are obtained by solving a relaxed problem with
preprocessed exact surrogate data that assume particular tank levels. Nonetheless, suc-
cess of the approach appears highly dependent on the selection of tank levels during
preprocessing and variations in OWF demand and price profiles. Another promising
heuristic is used in the LP/NLP-BB method of [15], although it allows for continuous-
duration pump activations, and thus solutions are generally not feasible to (MINLP).
A possible approach for finding good feasible solutions to (MINLP) could be one
that efficiently leverages quickly-solvable partially-continuous relaxations of (MILP).
Sections 6.6.2 and 6.6.3 highlighted the speed at which temporal relaxations of the OWF
can be solved within preprocessing applications. This same intuition could be applied to
a heuristic that continuously relazes binary variables outside a given time window, fizes
locally optimal operational decisions within the time window, and iteratively repeats the
process until a (MINLP)-feasible operational schedule is discovered. Such a technique
would have the benefit of heuristic subproblems that include a small number of binary

variables while maintaining model accuracy in localized time windows of interest.
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Chapter 7

Convex Relaxations of Maximal
Load Delivery for Multi-contingency
Analysis of Natural (Gas

Transmission Networks

Chapters 5 and 6 highlight the importance of convex reformulation and relaxation in
the context of potable water distribution network optimization. However, many other
important critical infrastructure networks are modeled using similar nonlinear noncon-
vex functions that describe energy losses. Natural gas transmission networks are one
such network type crucial to the functioning of modern society. In Chapters 7 and
8, we apply convexification techniques to two novel optimization problems that aim
at maximizing load delivery in a gas network that has undergone a severe disruption.
Compared to Chapters 5 and 6, Chapters 7 and 8 differ in two broad respects. First,
Chapters 5 and 6 developed new techniques for problems that have existed in the water
resources literature for decades, whereas Chapters 7 and 8 leverage existing techniques
to solve mew problems in energy system optimization that are of practical and timely
importance. Second, Chapters 5 and 6 placed an emphasis on finding physically feasi-
ble solutions, whereas Chapters 7 and 8 are concerned with finding relazation solutions.
This is motivated by the desire to bound properties of damaged gas and power networks.

Between 2012 and 2040, global electric power generation capacity is predicted to
increase from 21.6 million gigawatt-hours (GWh) to 36.5 million GWh. Of this, gas-
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Figure 7.1: Illustration of a natural gas network’s response to a severe disruption.
The shaded region indicates the points in the disruption and restora-
tion timeline that are studied in this chapter using an optimization-
based assessment of damaged natural gas network capacities.

fired generation is expected to increase from 22% to 28% [39]. This growing dependence
underscores the increasing sensitivity of power systems to upstream disruptions in gas
pipelines. The most recent example is the February 2021 Texas power crisis, where the
Electric Reliability Council of Texas experienced a loss of nearly 52.3 GW (48.6%) of its
generation capacity. Nearly half of the loss was attributed to a lack of gas-fired power
generation [112]. Other examples include the 2014 polar vortex, where curtailments in
gas delivery resulted in roughly 25% of generation outages throughout the Pennsylvania-
New Jersey-Maryland Interconnection [104]. Aside from such downstream effects on the
power grid, these disruptions further inhibit the transport of fuel for residential heating,
which provides essential temperature control to many individual homes during winter
months. Mitigating the effects of these disruptions is thus critical to the resilience of
gas and power delivery networks. To that end, this chapter examines how to compute
the optimal response to a large-scale multi-contingency gas pipeline network disruption,
whose origin (e.g., a natural hazard or sophisticated attack) is treated agnostically.
The scope of the multi-contingency response measures considered in this chapter is

illustrated at a high level in Figure 7.1. When a severe disruption begins, (i) delivery of
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load decreases as gas network components are damaged and cascading effects begin, and
(ii) cascading effects cease, and a new stable operating point is found. After (ii), some
amount of load can be restored through operational methods until (iii) network repairs
commence. These repairs are conducted in accord with other restoration processes until
(iv) all load can be delivered. Repairs continue until (v) all network components are
again operational. Addressing the complete scope of Figure 7.1 is a substantial and
complex task. In this chapter, we focus on determining optimal steady-state operating
points between events of types (ii) and (iv), i.e., operational restoration decisions that
enable the delivery of a maximal amount of load in the damaged gas pipeline network.
Several commercial tools exist for analyzing the operation of gas pipelines in the
steady-state and transient regimes, including the NEXTGEN pipeline simulation suite
[53], Energy Solutions’ gas management software [52], and ATMOS PIPE [4]. These
tools are designed for capacity planners to simulate the operation of a gas pipeline
network under various physical conditions and flow nominations rather than for resilience
analysis. When one or more components are set to be nonoperational (e.g., to simulate
damage caused by a natural disaster) and must be removed from the network model, this
must typically be done manually in such tools. Therefore, evaluating the impact of many
thousands of multi-component outage scenarios using existing tools is too labor-intensive
to be practical. Furthermore, because some deliveries (demand points) and receipts
(supply points) may need to be adjusted (or omitted) because of component outages, a
new feasible operating solution, including flow allocation and compressor settings, needs
to be quickly obtained for each scenario. It is therefore unclear how existing commercial
tools can be used for probabilistic risk assessment in this setting. This motivates a
mathematical approach that can determine a feasible natural gas pipeline operating
point that maximizes delivery subject to the many multi-contingency considerations.
In this chapter, we formalize this task as the steady-state MLD problem. Informally,
the problem is as follows: given a severely damaged gas pipeline network in which a
number of components have become nonoperational, we seek to maximize the amount
of prioritized load that can be served in the damaged network subject to steady-state
pipeline physical flow, capacity limits, pressure bounds, and other operating require-
ments. The nonlinear physics of gas transport and the discrete nature of operations in
the network (i.e., the opening and closing of valves) render this problem a challenging
MINCP. To address this, we introduce an MICP relaxation of the problem, which is
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found to be a reliable means for determining bounds on the maximum deliverable load.

Recent interest in large-scale gas network planning and control has led to a variety of
optimization-based applications and methods. A summary of studies connected to the
optimization-based evaluation of gas network capacities is provided by [69]. In [125],
detailed steady-state models and approximations of network components for use in opti-
mization applications are presented. In [65], [64], and [70], mixed-integer programming
approaches for optimization problems involving gas transport in the transient regime are
proposed. Finally, [66], [67] describe relaxation methods for similar control problems.

The methodology of this chapter is primarily inspired by the success of approaches
developed for multi-contingency analysis of power transmission networks. A similar
optimization study on damaged power grids was motivated by the analysis of natural
disaster vulnerabilities [34]. In that study, the MLD problem was formulated for alter-
nating current (AC) power networks, and convex relaxations were developed that allow
for the problem’s efficient solution on large-scale instances. Another study introduced
convex relaxations for gas network expansion planning [16]. Similar convex relaxations
for gas pipeline flow have been explored subsequently [28], [145]. These relaxations in-
spire the convex reformulation of the MLLD problem described in this chapter. Extending
these studies, this chapter also presents nonconvex models and convex relaxations for
modeling components that were previously not explicitly considered, e.g., resistors.

A number of studies consider problems similar to the one developed here. In [129]
and [2], the problems of identifying the k critical components of a power transmission
network and gas pipeline network are examined, respectively, whose simultaneous failure
maximizes disruption to the network. Their studies use MLLD problems as inner portions
of broader bilevel interdiction problems. In contrast, we seek to determine an optimal
operating point for a given disruption rather than find the worst-case disruption. In [7],
the joint expansion planning problem for gas and power networks is considered. Their
study, which links power generation to gas delivery, serves as inspiration for Chapter 8.

To solve the gas MLD problem, this chapter provides new contributions, including

o The first formulation of the steady-state MLD problem for gas networks;

A mixed-integer nonconvex quadratic programming (MINQP) MLD reformulation;

A mixed-integer convex quadratic programming (MICQP) MLD relaxation;

« A rigorous benchmarking of the formulations on instances of various sizes;

A proof-of-concept MLD analysis for spatially distributed natural hazards.

154



Chapter Overview The remaining sections of this chapter proceed as follows: Sec-
tion 7.1 formulates the requirements for gas pipeline feasibility as a MINCP; Section 7.2
formulates the MLD problem as a MINCP, then proposes an MICP relaxation; Section
7.3 rigorously benchmarks the nonconvex and convex formulations across several gas
network data sets of various sizes and examines the use of the MLD method for proba-

bilistic risk assessment for natural disasters; and Section 7.4 concludes the chapter.

7.1. Network Modeling

Section 2.7 rigorously derives the pressure-flow relationship for modeling losses in high-
pressure natural gas pipelines. This relationship serves as the basis for modeling gas
pipelines at a steady state. As in Equation (2.49), in this chapter, we assume all
pipes are level. Additionally, while in practice the gas compressibility factor Z depends
significantly on pressure and temperature in the physical regime of high pressure gas
pipeline flow, in this chapter we use an ideal gas equation of state and suppose Z to
be fixed. We further assume that the temperature 7' is constant along each pipe. This
implies that the resistance in Equation (2.49) can be treated as fixed for our application.
Aside from pipes, gas networks include a variety of other components [81], each of which
is modeled using different sets of variables and constraints. The remainder of this section

describes the nonconvex models of components considered when modeling a gas network.

Notation for Sets A natural gas transmission network is represented by a directed
graph G := (4, A), where J is the set of junctions (nodes) and 4 is the set of node-
connecting components (arcs). The set of node-connecting components in the network
includes horizontal pipes, short pipes, resistors, loss resistors, valves, regulators, and
compressors. The set of receipts (producers) is denoted by & and deliveries (consumers)
by D. Receipts and deliveries are attached to existing junctions 7 € J. Furthermore, we
let the subset of receipts attached to ¢ € 7 be denoted by X, and the subset of deliveries
by D,. The sets of horizontal and short pipes in the network are denoted by P C A
and § C A, respectively; the sets of regular and constant loss resistors by 7 C A and
U C A, respectively; the sets of valves and regulating (i.e., control) valves by V C A
and W C A, respectively; and the set of compressors by € C A. Finally, the set of

node-connecting components incident to junction ¢ € J where i is the tail (respectively,
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head) of the arc is denoted by 4, := {(i,7) € A} (respectively, &; := {(j,i) € A}). We
now examine each of the aforementioned components individually, define the decision
variables, and present constraints that each component enforces on the gas network’s
operations. In particular, for each component, we present two types of constraints: (i)

operational limits and (ii) physical constraints. We begin by examining junctions.

Junctions Each junction ¢ € J in the network is associated with a pressure variable,
p;- Operational limits require that this pressure resides between predefined lower and

upper bounds, denoted by p and p,, respectively. This implies the first set of constraints,
0<p <p;<Pp Vied. (7.1)
We note that typically, for a subset of predefined “slack junctions” 7% C 7, p. = p,.

Node-connecting Components Every node-connecting component (i,j) € A is
associated with a decision variable, f;;, which denotes the mass flow rate across that

component. These variables satisfy the component capacity and flow velocity constraints

il.]. < fij < ?ij’ V(ZM]) €A (72)

As in the modeling of water networks, a positive (respectively, negative) value of f;; im-
plies mass flow that is directed from node i to j (respectively, j to ). In the forthcoming
paragraphs, we present the constraints required for modeling the operational limits and

physics of node-connecting components in the network, each of which has a flow f;.

Pipes Pipes transport gas throughout a pipeline network. We suppose that in steady-
state flow, each pipe satisfies the pressure-flow Equation (2.49), which relates the mass
flow rate f;; through the cross-sectional area of the pipe to the pressures p, and p; at

the two end-points of the pipe. With slight changes in notation, these relationships are

p? —pjz = wz‘jfij|fij|> v(i,j) € P, (7.3)

where w;; denotes the overall mass flow resistance of the pipe (including pipe length).

156



Short Pipes Short pipes in gas networks serve a similar purpose to short pipes in

water networks, i.e., they ensure equality of pressures at the two connecting junctions:
p;—p; =0, V(i,j) €S. (7.4)

Resistors Aside from pipe pressure losses, a variety of other phenomena can also
induce pressure loss. Examples include turbulence in shaped components, effects of
measurement devices, curvature of piping, and partially closed valves. Resistors serve
as surrogate modeling tools for representing these other forms of pressure loss. As in

[81], losses across resistors are modeled via the Darcy-Weisbach-inspired equation

p; —pj =7 filfil, V(i,5) €T, (7.5)

Here, the resistance is defined by 7,; = (8k;;)/(7*Dj;p,), where k;; is the resistor’s
unitless drag factor, D,; is the resistor’s diameter, which may be an artificial quantity,

and p, is the average standard density of gas throughout the pipeline network.

Loss Resistors Loss resistors serve as an alternate form of the previous resistors,
where instead of satisfying the Darcy-Weisbach equation, a fixed pressure loss §;; > 0

is incurred across the component [81]. Modeling these pressure losses requires

fij(pi —p;) >0, V(i,j) €U (7.6a)
(i _pj)2 = i2j7 v(i,j) € U. (7.6b)

Constraints (7.6a) ensure that each mass flow is in the direction of the pressure loss, and

Constraints (7.6b) relate each pressure loss magnitude §;; to the difference of pressures.

Valves Gas network valves serve similar purposes to the water network valves of Chap-
ter 6. In practice, valves can also be partially closed to control the gas velocity, but in
these cases, we choose to model the valve as a resistor [81]. Letting z;; € {0,1} denote

the operating status of each valve (i, 5) € V, mass flows are first constrained as

i--zij - fij S ?ijzz'j? Zij € {07 1}7 V(Z7]> € V. (77)

)
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Furthermore, when a valve is open, the pressures at the junctions connected by that

valve are equal. When the valve is closed, these pressures are decoupled. That is,

Regulators Large pipes are usually operated at higher pressures than other portions
of the network. As such, interconnection of large pipes with smaller pipes often requires
the use of pressure regulators (i.e., control valves) to reduce pressure between differently-
sized pipes. Regulators can also be used as an additional means of controlling flow
throughout the network [81]. The operating status of a regulator is given using a binary
variable z;; € {0,1}, where z;; = 1 and z;; = 0 indicate active and inactive statuses,

respectively. The mass flow across each regulator is governed by bounding constraints

[ o2 < [fi; < ?ijzij, z;; €{0,1}, V(i,5) € W, (7.9)

ij

Furthermore, each regulator (i, j) is associated with a multiplicative scaling factor, Qi
that defines the relationship between p; and p; when the regulator is active, i.e., a;;p; =
p;- This factor is constrained by operating limits as Q= 0<aq; <a;=1 Asfor
valves, the pressures at the junctions connected by a regulator are decoupled when the

regulator is inactive. This disjunctive relationship is modeled via the constraints

fijpi —pj) 20, V(i,j) €W (7.10a)
gijpi < Dj + <1 - Zij)gijpia V(l,j) ew (710b)
pj S @yp; + (1 —2;)p;, V(i j) €W. (7.10¢)

Here, Constraints (7.10a) ensure that each mass flow is in the same direction as the
pressure loss, while Constraints (7.10b) and (7.10c) ensure the pressure at node j resides

within the scaled bounds of the upstream pressure, p,;, when the control valve is open.
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Compressors Each compressor (i,7) € € increases the pressure at the downstream
junction j € J by a variable scalar «;; and is assumed to have negligible length. For the
benchmark networks considered in this chapter, bidirectional compressors do not exist,
although each compressor may or may not allow for uncompressed flow in the reverse
direction, i.e., from j to ¢. In this chapter, these distinct behaviors of compressors are
captured by three conditional sets of constraints. The first set of constraints describes

the behavior of compressors where uncompressed reverse flow is prohibited. That is,
Q'jpi < pj < az’jpb V(Z,j) €eC: iij > 07 (711)

where a,; and @, ;, (,4) € €, are minimum and maximum compression ratio bounds.
The second set of constraints describes the behavior of compressors where reverse flow

is allowed and the minimum compression ratio is equal to one. These constraints are
Qijpi < pj < aijpia V(Zaj) €C: iz’j <0 /\Qij =1 (712&)
fij(pi —p;) <0, Y(i,j) € C: L_j <O0ANa; =1 (7.12b)

Here, Constraints (7.12b) ensure that, if f;; < 0 (i.e., when there exists flow in the nega-
tive direction), then p, = P, (i.e., there is no change in pressure across the compressor).

The final set of constraints describes the behavior of compressors where uncompressed
reverse flow is allowed and the minimum compression ratio is not equal to one. In this
case, the behavior of the compressor is modeled disjunctively. To accomplish this, for
each compressor, a binary variable y,; € {0, 1} models the direction of flow through the
compressor, where y,; = 1 implies flow from ¢ to j and y,; = 0 implies flow from j to .

The pressures at the junctions that connect each compressor are then modeled via

yij < {071}7 V<Z7.]) €C: iz’j <0 /\Qij :/é 1
Pi—0; S yiPy V(0 5) €€ f <ONa, #1 (7.13d

Pj =P SYiPy V(ij) €C: f <ONna;#1. (7.13e
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Here, Constraints (7.13b) and (7.13c) ensure that, when a compressor’s flow is positively
directed, the pressure at node j is modeled according to the compression ratio bounds,
Constraints (7.13d) and (7.13e) ensure that, when flow is traveling in

a;; and @;;.

reverse (i.e., when y,; = 0), the pressures on both sides of the compressor are equal.

Receipts, Deliveries, and Mass Conservation Receipts and deliveries are points
in the network that are attached to junctions where gas can be supplied to and with-
drawn from the network, respectively. Each receipt (respectively, delivery) is associated
with a nonnegative constant 3, (respectively, d,) that denotes the fixed mass supply
(respectively, demand) at k € R (respectively, k € D). Mass conservation throughout

the network requires nodal balance constraints to be enforced at every junction, namely

DS fi=) s dy Vied. (7.14)
=5

(i,5)€6F (4,3 keR, keD,

Feasibility Problem Given the previous variables and constraints that model each

component in the gas network, the MINCP for steady-state feasibility is defined here as

Pressure and mass flow bounds: Constraints (7.1), (7.2)

Pipe dynamics: Constraints (7.3)

Short pipe dynamics: Constraints (7.4)

Resistor dynamics: Constraints (7.5)

Loss resistor dynamics: Constraints (7.6) (MINCP-F)
Valve dynamics: Constraints (7.7), (7.8)

Regulator dynamics: Constraints (7.9), (7.10)

Compressor dynamics: Constraints (7.11), (7.12), (7.13)

Conservation of mass flow: Constraints (7.14).

The nonconvexities of the system of equations (MINCP-F) arise from three sources: (i)
the discreteness of controllable components; (ii) bilinear variable products appearing in
flow direction-related inequalities, i.e., Constraints (7.6a), (7.10a), and (7.12b); and (iii)
nonlinear equations, i.e., Constraints (7.3), (7.5), and (7.6b). Section 7.2 describes a
MINQP formulation addressing (ii), followed by a MICQP relaxation addressing (iii).
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7.2. Maximal Load Delivery Formulations

This section formulates the MLD problem, which seeks to determine a feasible operating
point for a damaged gas network that maximizes the delivery of load. To the best
of our knowledge, this is the first time such a problem has been formulated for gas
networks. Three variants of the MLLD are presented in order of successive reformulations
and relaxations that, though they increase problem complexity, decrease nonconvexity
and computational difficulty. First, Section 7.2.1 extends the feasibility constraints of
(MINCP-F) to formulate the initial MLD problem. Section 7.2.2 introduces an ezact
MINQP reformulation of this problem. Finally, to alleviate the challenges associated
with nonlinear nonconvexity, an MICQP relazation is presented in Section 7.2.3.

Aside from formulating the MLD problem, compared to previous studies (e.g., [2], [7],
[16], [28], [145]), this section also (i) presents MIQP reformulations for a broader set of
gas pipeline network components and (ii) introduces convex and MICQP relaxations for

components that were not explicitly considered (e.g., resistors and loss resistors).

7.2.1. Mixed-integer Nonconvex Formulation

A damaged gas network requires the exclusion of components from the model described
in Section 7.1. This set of excluded components comprises both the damaged compo-
nents themselves as well as any connected components. For example, a damaged junction
i € J implies a nonoperational status of all node-connecting components d;”Ud; . To this
end, we use a tilde-based notation to denote the sets of components that are operational
within a damaged gas network, e.g., P C P denotes the set of operational pipes.

The fundamental motivation for formulating the MLD problem is that a damaged gas
network may not be able to satisfy all demands of the original system. This implies a
possible imbalance of the mass conservation Constraints (7.14). To address this, in the
MLD problem, all receipts and deliveries are treated as dispatchable. This implies the

constant supplies and demands, 5,, k € R, and d,, k € D, are variables bounded as

0<s,<5, Vke R, Vied (7.15a)
0<d,<d, Vke D, Vied, (7.15b)

where 5, and d,, denote the original supplies and demands, respectively. Using these
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variable supplies and demands, the mass flow conservation Constraints (7.14) become

D L= fi=D s ) di, Vied. (7.16)

(,5)€8f  (ja)es;  RERi  RED;

Next, parameters 5, > 0, k € 2D, are introduced to denote load restoration priorities.
If no load priorities are available, values of one can be used instead. (Indeed, this
parameterization is used for all of our experiments in Section 7.3.) Maximization of

prioritized load delivered then implies maximization of the linear objective function

n(d) = Z Z Brdy- (7.17)

iei keD;
The MINCP formulation of the MLD problem is then written as

maximize Objective function: 7(d) of Equation (7.17)

subject to Supply and demand bounds: Constraints (7.15)
(MINCP)
Conservation of mass flow: Constraints (7.16)

(MINCP-F) without Constraints (7.14),

where in (MINCP-F), all component sets are assumed to be replaced with their tilde-

denoted (i.e., undamaged) counterparts, indicating the application of a damage scenario.

7.2.2. Mixed-integer Nonconvex Quadratic Reformulation

As described at the end of Section 7.1, one source of nonconvexity in (MINCP) is the
existence of bilinear variable products appearing in flow direction-related inequalities.
To address these nonconvexities, this subsection introduces (i) binary direction variables
y;; € {0,1} for all (i,5) € A and (ii) squared pressure variables m, = p? for all i € f,
which allows for the construction of an exact MINQP reformulation of the original
problem. That is, the new reformulation contains fewer nonlinearities than (MINCP)
but has the same solution set. This new formulation enables global solutions to be found
with modern MINQP solvers (namely, GUROBI). Later, in Section 7.2.3, this directed

formulation is relaxed to form an MICQP relaxation of the original MLD problem.
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Junctions Squared pressures must first reside between predefined bounds, i.e.,
m, < ST, Vied. (7.18)
where , and T, i € J are derived from the original bounds P, and p,, respectively.

Node-connecting Components Using the binary flow direction variables, the mass

flow bounds of all node-connecting components are restricted by the constraints
(1 - yz])i” < fij < yij?ij, yij S {07 1}7 V(’L,j) € A. (719)

Pipes Squared pressure variables and directions allow for the reduction of nonlinear-

ities in the pressure-flow Constraints (7.3) for pipes. These constraints are rewritten as

~

T @_gm{%Li—@Q—@ﬂ,V@pey> (7.20a)
T — T < wy; in» V(i,j) P (7.20b)
T — T > W fih— Yy |w [ il — (T, — 71)] , V(i,j) € P (7.20¢)

This is similar to the reformulation presented by [16]. Here, each Constraint (7.20a)
ensures a pressure decrease from i to j when y,; = 1. Constraint (7.20b) ensures the
pressure-flow equation is satisfied when y,; = 1. Constraint (7.20c) ensures a pressure
decrease from j to i when y,;; = 0. Constraint (7.20d) ensures the pressure-flow equation

is satisfied when y,; = 0. Direction variables bound squared pressure differences via

~

(1 —y)(m, — 7, ) <m V(i,j) € P (7.21a)
@—@g%wfﬂﬁv<)e§ (7.21b)
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Short Pipes Squared pressure variables also allow for rewriting Constraints (7.4) as

~

—m. =0, Y(i,j) € S. (7.22)
As with pipes, direction variables are used to bound squared pressures via

(1—y,)(m, —7,) <m —m;, V(i,j) €S (7.23a)
T — 7 < (T —my), V(i) €S (7.23b)

Resistors For junctions that are connected to a resistor, the squared pressure variables

T, 1€ f, must first be related to variables denoting nonsquared pressures, i.e.,
2 o _ . N‘ . . ~ . . ~
pP—m=0,ied:(3,j)eT)v (i) eT). (7.24)

The potential loss relationships are then written in a manner as for pipes, i.e.,

~

pi =5 2 Tl — (1= i) {Tz’jiij —(p, —13]-)] , Y(i,5) €T (7.25a)
pi —p; < il V(i) € T (7.25Db)
Pj—DP; = Ty 123 — Yij [Tijfjj - (Qj —ﬁi)] , V(i,7) € T (7.25¢)
p;—p; < Tiif3 Vi,5) €T, (7.25d)

Direction variables are also used to bound the original pressure variables via

(1—y)p. —D;) <p;—p; Y(i,5) €T (7.26a)

-1

pi = p; <P —p ), Vi) €T (7.26D)
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Loss Resistors As for resistors, squared pressure variables m;, ¢ € 7, for junctions

connected to a loss resistor, must be related to nonsquared pressure variables via

~

pP—m=0,i€J: (3, ell)v (3.i)el). (7.27)
Note that Constraints (7.6) can be rewritten using absolute values as

§ij = Ipi —pyl, Y(i,]) € u. (7.28)

However, directions y,; allow this disjunctive form to be modeled linearly, i.e.,

(2y;; — &, =pi — by, V(inj) €U (7.29)

Here, the direction of pressure loss coincides with the direction as required by y; .

Valves Pressure Constraints (7.8) are written with squared pressures as

IA

T -

1 T

(1= 27, V(6,5 eV (7.30a)
eV

(L —23;)7;, V(5. 7) (7.30b)

3770

A
-+

-

i

(2

Regulators Pressure Constraints (7.10) are written with squared pressures as

Ty _a?jﬁi <(2- Yis — Zij)ﬁj7 V(i,j) € w (7.31a)
g?jﬂ—i o 7Tj < <2 - yij o Zij>ﬁia V(’L,j) € w (7 31b)
m =y < (L +yi; — 25)7, V(i,j) € W. (7.31d)

Here, when y,; = 1 and z;; = 1 (i.e., the regulating valve is open and the flow direction
is positive), Constraints (7.31a) and (7.31b) ensure that 7; resides between the scaled
value of m;. When y,; = 0 and z;; = 1, Constraints (7.31c) and (7.31d) ensure that
m; = m;, and reverse flow is allowed. Finally, when the valve is closed, z;; = 0 and
Yij € {0,1}, which ensures that the squared pressures 7, and 7; are decoupled.
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Compressors Constraints (7.11), which model compressors where uncompressed re-

verse flow is prohibited, are first rewritten using squared pressure variables as

o?m; < <am;, V(i,j) e : f > 0. (7.32)

=] 7 — (¥ 7

For compressors that allow reverse flow, Constraints (7.12) and (7.13) are written as

m; <@+ (1= y)7, V(i J) €C: f <0 (7.33a)
afm <A (1—y)al 7, V(i j) € C: Lj <0 (7.33b)
= <Y, Y(i,5) €C L;j <0 (7.33¢)
= <y, V(i 5) €C Iij < 0. (7.33d)

Here, when y,; = 1, Constraints (7.33a) and (7.33b) require 7; to reside within the
scaled bounds of 7;. When y,; = 0, Constraints (7.33c) and (7.33d) ensure the equality

of pressures when flow is directed negatively from j to i (i.e., there is no compression).

Direction-related Valid Inequalities The formulations of [16] include inequalities
that relate node-connecting component directions y,; to nodal conditions in the directed
network. These inequalities improve relaxations. Here, we employ constraints that

model flow directionality at junctions with zero supply, zero demand, and degree two:

Zyij_zyijzoa ie%:(é} :1> (7.34a)
(i-)€8;  (ir)E8]
Zyij+zyij:17i€%:(ggt:2)/\(52::0>, (7.34Db)

(i,5)€8;  (i,j)€d]

where % C J denotes the subset of junctions that satisfy the condition Zke 2 Si =
> _— Ei = 0. These valid inequalities imply that, for this particular subset of junctions,

the direction of incoming mass flow must be equal to the direction of outgoing mass flow.
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Reformulation The preceding changes enable (MINCP) to be reformulated as

maximize Objective function: 7(d) of Equation (7.17)

subject to Supply and demand bounds: Constraints (7.15)
Conservation of mass flow: Constraints (7.16)
Pressure bounds: Constraints (7.1), (7.18)
Directed mass flow bounds: Constraints (7.19)
Pipe dynamics: Constraints (7.20), (7.21)
Short pipe dynamics: Constraints (7.22), (7.23) (MINQP)
Resistor dynamics: Constraints (7.24), (7.25), (7.26)
Loss resistor dynamics: Constraints (7.27), (7.29)
Valve dynamics: Constraints (7.7), (7.30)
Regulator dynamics: Constraints (7.9), (7.31)
Compressor dynamics: Constraints (7.32), (7.33)

Direction-related cuts: Constraints (7.34).

7.2.3. Mixed-integer Convex Quadratic Relaxation

There are a number of nonconvex nonlinear constraints in (MINQP) that render it
intractable with increasing network size. Specifically, these are Constraints (7.20b),
(7.20d), (7.24), (7.25b), (7.25d), and (7.27). In this section, we apply convex relaxation
strategies, as done in [16], [145], and [28], to address this. We also extend these studies
by formulating relaxations for components that were not previously considered, e.g.,

resistors and loss resistors, which require constraints involving explicit pressure variables.

Pipes We first apply convex relaxations to the pressure-flow Constraints (7.20) for

pipes. The variables ¢,; for (i, j) € P are introduced to denote the difference in squared
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pressures across each pipe. The convex relaxation constraints are then formulated as

mi—m < by < -y, Vi) €P (7.35a)

by <=1+ (2y,) (7 — ) v(i,j) € P (7.35b)

0 <m0 — T+ (29, — 2)(w, —7,), V(i,j) € P (7.35¢)

2 <y Vi) eP (7.35d)

gzg < w; ?ijfij + (1 —yyy) ( wij?ijiij‘ + wiji?j) , V(i,j) €P (7.35¢)
— 2 L. ~

by < wif Fi+ v ([wif il | +wify) W) € P, (7.351)

Here, Constraints (7.35a) ensure each loss of squared pressures resides between the
corresponding differences. Constraints (7.35b) ensure that when y,; = 0, each loss is
bounded by 7; —7;, and Constraints (7.35¢c) imply that each loss is bounded by 7; — 7,
when y,; = 1. Constraints (7.35d) are relaxations of the pressure-loss equations. Finally,

Constraints (7.35¢) and (7.35f) apply linear upper bounds on each variable £, .

Resistors We next apply convex relaxations to Constraints (7.24), which relate non-

squared and squared pressure variables. These convex relaxations yield the constraints

~

pP<m,ied: (3. eT)v(3.i)eT). (7.36)

Constraints (7.25) are then convexly relaxed as done for Constraints (7.35). That is,

~

p;—p; <{; <p; _pj7 V(i,j) €T (7.37a

v(i,J
g..gpi—ijr(Qyij )( ) 7

)
)
V(i,j) €T (7.37c)
)
)

Tfh <l V(i) €T (7.37d

b < fwfm + (1 —y,;) ( Tz’jTijf. ‘ + Tz‘jii) , V(i,j) €T (7.37e
—2 L~

by <7t i+ v ([t |+ 7F5)  WGid) €T (7.37F)

168



Loss Resistors As we have done for resistors, we next apply convex relaxations to

Constraints (7.27) relating nonsquared and squared pressure variables. We obtain
p?<m,ied: (36,4 ell)v (I el). (7.38)
Relaxation Using the convexification, the MICQP relaxation of (MINQP) is then

maximize Objective function: n(d) of Equation (7.17)

subject to Supply and demand bounds: Constraints (7.15)
Conservation of mass flow: Constraints (7.16)
Pressure bounds: Constraints (7.1), (7.18)
Directed mass flow bounds: Constraints (7.19)
Pipe dynamics: Constraints (7.21), (7.35)
Short pipe dynamics: Constraints (7.22), (7.23) (MICQP)
Resistor dynamics: Constraints (7.26), (7.36), (7.37)
Loss resistor dynamics: Constraints (7.29), (7.38)
Valve dynamics: Constraints (7.7), (7.30)
Regulator dynamics: Constraints (7.9), (7.31)
Compressor dynamics: Constraints (7.32), (7.33)

Direction-related cuts: Constraints (7.34).

In Section 7.3, we present the results of a comprehensive computational study performed
to compare the tractability and application of the exact and relaxed MLD problem for-
mulations, (MINQP) and (MICQP), respectively. These computations display the prac-
tical benefits of employing the relaxation, (MICQP), for decision support applications.

7.3. Computational Experiments

This section experimentally analyzes the applicability and computational performance of
the (MINQP) and (MICQP) MLD formulations presented in Section 7.2. This informs us

of the practical, analytical, and computational tradeoffs associated with using the exact
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and relaxed MLD problem formulations, respectively. To accomplish this, we consider
three different types of damage scenarios: (i) N—1 or single contingency scenarios,
(ii) N—Fk or multi-contingency scenarios, and (iii) earthquake damage scenarios. Each
scenario is intended to simulate common sources of damage to a gas pipeline network.
Although these damage models arise from reasonable assumptions, we do not claim to
quantify the robustness of the specific networks considered. Rather, these models serve
as proofs of concept for studying three aspects of the MLD problem: (i) understanding
the tractability of MLD formulations, (ii) highlighting the qualitative insights given by
an MLD analysis, and (iii) providing guidelines for applications to real-world scenarios.

Both MLD formulations were implemented in the JULIA programming language using
the mathematical modeling layer JUMP, version 0.21 [50], and version 0.8 of GASMOD-
ELS, an open-source JULIA package for steady-state and transient natural gas network
optimization [9]. Section 7.3.1 describes the instances, computational resources, and
parameters used throughout these experiments; Section 7.3.2 compares the efficacy of
MLD formulations on N—1 contingency scenarios for each network; Section 7.3.3 does
the same for randomized N —k multi-contingency scenarios, where k corresponds to 15%
of node-connecting components in each network; and Section 7.3.4 compares the run-
time performance of the formulations over both the N—1 and N—k experiment sets.
Finally, Section 7.3.5 provides a proof-of-concept application of the MLD problem to

hypothetical damage scenarios precipitated by deterministic or stochastic hazards.

7.3.1. Experimental Test Data & Setup

The numerical experiments consider networks of various sizes that appear in the litera-
ture of natural gas transmission network modeling or are derivable from open data.
These instances are summarized in Table 7.1. Here, the Belgium-20 network was
derived from the application of [46]; the North American 154-junction network (i.e.,
NA-154) was derived by subject matter experts using public data; and GasLib networks
were obtained directly from [124]. For the GasLib-582 and GasLib-4197 networks, the
nomination_freezing 1 and nomination_mild_0006 delivery and receipt nominations
were used, respectively. Generally, steady-state optimization problems involving most
networks can be solved to optimality given a small amount of time (e.g., seconds to

minutes). The exception is GasLib-4197, which requires hours to solve many instances.
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Network | [J] | [P | S| | |7] ] [ul| [V] | [W]][C]
GasLib-11 11 8 0 0 0 1 0 2
Belgian-20 20 24 0 0 0 0 0 3
GasLib-24 24 19 1 1 0 0 1 3
GasLib-40 40 39 0 0 0 0 0 6
GasLib-134 | 134 | 8 | 45 | O 0 0 1 1
GasLib-135 | 135 | 141 | O 0 0 0 0 |29

NA-154 154 | 140 | O 0 0 0 0 | 12
GasLib-582 | 582 | 278 | 269 | 8 0O [ 26 | 23 | 5
GasLib-4197 | 4197 | 3537 | 343 | 22 | 6 | 426 | 120 | 12

Table 7.1: Summary of natural gas transmission networks derived from open data.

Each optimization computation was provided a wall-clock time of one hour on a node
containing two Intel Xeon E5-2695 v4 processors, each with 18 cores at 2.10 GHz, and
125 GB of memory. For solutions of the MINQP and MICQP formulations, GUROBI 9.0
was used with the parameter MIPGap=0.0. For experiments employing (MINQP), the

setting NonConvex=2 was used, which allows for global optimization of this formulation.

7.3.2. Single Contingency Damage Scenarios

The first damage model considered is the single contingency or N—1 model, where N
corresponds to the original number of network components and N—1 indicates that
an individual component is removed (or damaged). This model can be thought of as
a method for simulating the effects of an unscheduled component outage. Here, it is
assumed that both nodal components (i.e., junctions) and node-connecting components
(e.g., pipes) can comprise an N—1 damage scenario. In our study, this damage model is
intended to demonstrate feasibility of the MLD problem for a broad variety of network
structures and to validate our network modeling assumptions for damaged gas networks.

For each network, the set of all such possible N—1 scenarios was considered, and
the corresponding instances were solved using both the (MINQP) and (MICQP) MLD
formulations. The exception is GasLib-4197, which was limited to 1,040 scenarios be-
cause of computational restrictions. Table 7.2 displays statistics of solver termination
statuses across all scenarios for each network and formulation. For all networks except

GasLib-135, GasLib-582, and GasLib-4197, optimal solutions to all instances are found
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(MINQP) (MICQP)

Network Opt. (%) | Lim. (%) | Inf. (%) | Opt. (%) | Lim. (%) | Inf. (%)
GasLib-11 100.0 0.0 0.0 100.0 0.0 0.0
Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-24 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-134 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 90.2 9.8 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 79.6 204 0.0 100.0 0.0 0.0
GasLib-4197 3.2 90.3 6.5 43.8 56.2 0.0

Table 7.2: Comparison of solver statuses over N—1 scenarios. Here, “Opt.” cor-
responds to instances where optimality is proven, “Lim.” to instances
where the solver time limit has been reached, and “Inf.”’ to instances
that are claimed by the solver (in this case, Gurobi) to be infeasible.

within the prescribed one hour time limit. For GasLib-135, the (MINQP) formulation
is unable to prove global optimality on 98 instances. Notably, GasLib-135 contains the
largest number of compressors compared to other benchmark networks, and these addi-
tional degrees of freedom are the source of computational complexity. For GasLib-582
and GasLib-4197, the large number of (MINQP) instances that cannot be solved to
global optimality is most likely because of the networks’ comparatively large sizes.
Comparing the two formulations shows the benefit of using the relaxation-based
(MICQP) approach, which is capable of solving much larger proportions of challenging
GasLib-135, GasLib-582, and GasLib-4197 instances. This suggests that (MICQP),
when compared to the mixed-integer nonconvex (MINQP), is often a better candi-
date for numerically intensive applications. We also note that, when using the default
GUROBI parameters described in Section 7.3.1, 292 of 1,040 GasLib-4197 instances of
the (MINQP) MLD formulation are claimed to be infeasible. Using the GUROBI param-
eter NumericFocus=3 for this subset of 292 instances, however, decreases this number
to 68. These claimed infeasibilities are likely related to the numerical properties of the
GasLib-4197 data set rather than our MLD formulations. Additional future work to

preprocess data and rescale constraints would be warranted to address these issues.
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(MINQP) (MICQP)

Network Opt. (%) | Lim. (%) | Inf. (%) | Opt. (%) | Lim. (%) | Inf. (%)
GasLib-11 100.0 0.0 0.0 100.0 0.0 0.0
Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-24 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-134 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 99.6 0.4 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 99.9 0.1 0.0 100.0 0.0 0.0
GasLib-4197 92.7 7.3 0.0 99.2 0.8 0.0

Table 7.3: Comparison of solver statuses over N—k scenarios. Here, k& corresponds
to a random selection of 15% of all node-connecting components.

7.3.3. Multi-contingency Damage Scenarios

The second damage model is the multi-contingency or N —k model, where k corresponds
to the number of components that are simultaneously removed from the network. These
scenarios are intended to capture the effects of multimodal network failures. Here, we
consider the removal of only node-connecting components within the generated N—k
scenarios. In each scenario, a uniformly random selection of 15% node-connecting com-
ponents were assumed to be nonoperational. Heuristically, this proportion of compo-
nents seemed to generate challenging scenarios while providing different maximal load
distributions across the networks considered. For each network, one thousand such
scenarios were generated. If solved, the maximal proportional load delivered in each
experiment was then computed as the ratio of the optimal nonprioritized objective in
Equation (7.17) and the load capable of being delivered in the undamaged network.
Table 7.3 displays statistics of solver termination statuses across all damage scenar-
ios for each network and formulation. For all except GasLib-135, GasLib-582, and
GasLib-4197, globally optimal solutions to MLD instances are found within the one
hour time limit. For GasLib-135 and GasLib-582, the (MINQP) formulation is unable
to prove optimality on four instances and one instance, respectively. For GasLib-4197,
a larger proportion cannot be solved. Comparing the two formulations again shows the
benefit of the relaxation-based approach, which solves larger proportions of challenging
instances. We note that one GasLib-4197 (MINQP) instance is claimed to be infeasible
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Figure 7.2: Histograms of gas load delivered over randomized N—k scenarios.
Here, the (MINQP) and (MICQP) formulations are compared, where
k corresponds to 15% of all node-connecting components. Each pair of
histograms summarizes instances solved by both (MINQP) and (MICQP).

using default GUROBI parameters but is also resolved when using NumericFocus=3.
Figure 7.2 displays histograms that compare the proportion of load delivered across
solved damage scenarios for each network while using the two formulations. Most im-
portantly, these histograms display the similarity of the results achieved while using the
relaxation-based formulation. These results also indicate qualitative differences in the
hypothetical robustness of each network. For example, larger networks like GasLib-582
and GasLib-4197 appear highly sensitive to the 15% damage scenarios, where often only
10% to 30% of load can be delivered. The Belgium-20 network appears less vulnerable
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and is often capable of serving between 70% and 100% of the load under severe contin-
gencies. Finally, for some smaller networks (e.g., GasLib-11, GasLib-24, GasLib-134),
many scenarios result in zero or nearly zero deliverable load. This analysis shows the

utility of the MLD problem for understanding characteristics of gas network robustness.

7.3.4. Computational Performance

This section compares the performance of (MINQP) and (MICQP) MLD formulations
using the instances described in Sections 7.3.2 and 7.3.3. The performance profiles
for these instances are shown in Figure 7.3 and are divided into three categories: (S)
networks containing tens of nodes; (M) networks containing hundreds of nodes; and (L)
networks containing thousands of nodes (i.e., GasLib-4197). In all such categories, it is
shown that the (MICQP) formulation is able to solve substantially greater numbers of
problems than (MINQP) in shorter amounts of time. For networks with tens of nodes,
both MLD formulations are capable of solving all instances in less than ten seconds. For
networks with hundreds of nodes, (MICQP) is capable of solving most instances within
ten seconds, while (MINQP) requires hundreds or thousands of seconds. For networks
with thousands of nodes, (MICQP) solves a much greater number of instances within
the alotted one hour time limit, although execution times required for solution are much

longer than for MLD problems that consider networks of tens or hundreds of nodes.

7.3.5. Synthetic Earthquake Damage Scenarios

This subsection provides a proof-of-concept application to demonstrate the use of the
MLD problem in the context of risk assessment for deterministic and uncertain spatial
hazards. In each scenario, damage to a network was assumed to be caused by an
earthquake with a fixed magnitude and epicenter. For an earthquake, the probability of
damage to a pipeline component is commonly represented as a function of peak ground
acceleration (PGA) and peak ground velocity (PGV). These relationships for PGA and
PGV are typically expressed as functions of earthquake magnitude and distance from
seismic rupture. In this chapter, the relationships developed by [24] were used, although
their details are omitted here. At a high level, all earthquakes were assumed to arise

from strike-slip faulting at a depth of one kilometer in a region of firm soil.
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Figure 7.3: Performance profiles comparing the efficiency of (MINQP) and
(MICQP). The instances are described in Sections 7.3.2 and 7.3.3. The
performance profiles are divided into three categories for (S) networks
containing tens of nodes; (M) networks containing hundreds of nodes;
and (L) networks containing thousands of nodes (i.e., GasLib-4197).

Given the PGA and PGV at a component’s point in space, the vulnerability of the
component was then modeled probabilistically using the fragility approach of [84] for
continuous pipelines in the presence of strong ground shaking. Specifically, the proba-
bility of damage was computed as a function of PGV, and node-connecting components
exceeding the damage threshold for the first risk state (“very limited loss”) were as-
sumed to be nonfunctional. Again, for the purpose of brevity, these relationships are
omitted in this chapter. For simplicity, we made three additional assumptions in our

model: (i) only node-connecting components are affected by PGA and PGV; (ii) all
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Figure 7.4: Illustrations of earthquake gas network damage scenario properties.
The first (left) shows the position of an epicenter (red star) for the
Belgium-20 network and its relation to junctions (black triangles). The
second (center) shows the placement of a mean earthquake epicenter
(red star) for the Belgium-20 network and normally distributed epicen-
ters surrounding it (black circles). The last (right) shows a fragility
curve derived from [24] and [84] for a magnitude 8.0 earthquake.

node-connecting components are to be assumed structurally equivalent to “continuous
pipelines,” and (iii) the distance from the epicenter to each node-connecting component
is the minimum distance between the earthquake epicenter and the connecting junctions.

Finally, only the six gas networks Belgium-20, GasLib-40, GasLib-135, NA-154,
GasLib-582, and GasLib-4197 were considered for earthquake damage scenarios, as
the remaining three networks do not contain geolocation data for components. Figure

7.4 depicts three illustrations relevant to parameterizing earthquake damage scenarios.

Deterministic Earthquake, Stochastic Fragility Scenarios The first set of earth-
quake scenarios is intended to demonstrate the applicability of the MLD method when
analyzing network vulnerability to a known (i.e., deterministic) natural hazard. To this
end, one earthquake was considered per network, each described by a fixed magnitude
and epicenter. This type of scenario is illustrated pictorially in the first image of Figure
7.4. The local magnitude of each earthquake was assumed to be 8.0, while each epicenter
was assumed to be the center of a k-means cluster containing the largest number of junc-
tions, where k = 5. Then, using the PGV model of [24] and the probabilistic fragility
approach of [84], one thousand damage scenarios were generated per network, where
in each, the operational status per node-connecting component was determined via a

uniform random sampling and comparison with the probability of damage. An example
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(MINQP) (MICQP)

Network Opt. (%) | Lim. (%) | Inf. (%) | Opt. (%) | Lim. (%) | Inf. (%)
Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 98.3 1.7 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 58.7 41.3 0.0 99.8 0.2 0.0
GasLib-4197 2.9 95.3 1.8 86.0 14.0 0.0

Table 7.4: Comparison of solver statuses over deterministic earthquake scenarios.

fragility curve is depicted in the last image of Figure 7.4, which relates a component’s
distance from the epicenter of a magnitude 8.0 earthquake to the damage probability.
Table 7.4 displays statistics of solver statuses across all damage scenarios for each net-
work and formulation. For all except the GasLib-135, GasLib-582, and GasLib-4197
networks, optimal solutions to instances are found within the one hour time limit. For
GasLib-135, the (MINQP) formulation is unable to prove optimality on 17 instances.
For GasLib-582 and GasLib-4197, a larger proportion of (MINQP) instances cannot
be solved within the time limit. Even for the convex relaxation, two instances can-
not be solved for the GasLib-582 network. Nonetheless, comparing the (MINQP) and
(MICQP) formulations shows the benefit of the relaxation-based approach, which is
capable of solving a larger proportion of instances. We note that 96 of the thousand
GasLib-4197 (MINQP) instances are claimed to be infeasible using default GUROBI
parameters. However, this number is reduced to 18 when using NumericFocus=3.
Figure 7.5 displays boxplots comparing the maximal proportion of load delivered
across solved damage scenarios for each network and formulation. Here, results obtained
using the (MINQP) and (MICQP) formulations of the MLD problem are shown to be
remarkably similar. This demonstrates the utility of the relaxation-based approach,
which provides outcomes comparable to the mixed-integer nonconvex formulation at a
smaller computational cost. The boxplots also show substantial qualitative differences in
the (hypothetical) vulnerability among networks. For example, the GasLib-40 network
is shown to have great variability in maximal load delivered, while GasLib-135, NA-154,
and GasLib-582 are mostly unaffected by the hypothetical hazard. Additionally, some
natural gas networks (e.g., NA-154, GasLib-582) predict relatively small ranges of load
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Figure 7.5: Boxplots of deliverable load over deterministic earthquake scenarios.
That is, the magnitude and epicenter for each network scenario were
assumed to be fixed. Note that each pair of boxplots summarizes only

instances solved by both (MINQP) and (MICQP).

delivered, while others (e.g., Belgium-20) appear to carry relatively greater uncertainty.

The large discrepancies in boxplots for the GasLib-4197 damage scenarios likely orig-
inate from two sources. First, the pair of boxplots is representative of only the subset
of instances solved by both formulations, which is relatively small. Second, however, are
the mathematical differences in nonconvex and relaxed MLD formulations. Notably, the
minima across the solvable instances differ by around twenty percent. This could be a
consequence of the relaxation, which theoretically predicts maximal load values greater
than or equal to the nonconvex formulation. Compared to other networks, these larger
discrepancies in predicted deliverable load could be a manifestation of the component

relaxations, whose physical errors are further aggregated as the network size grows.

Stochastic Earthquake, Stochastic Fragility Scenarios The second set of earth-
quake scenarios is intended to demonstrate the applicability of the MLD method when
analyzing network vulnerability to a stochastic (i.e., uncertain) natural hazard. To
this end, multiple earthquakes were considered per network, where each was randomly

sampled assuming normally distributed magnitudes and epicenters. This situation is
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(MINQP) (MICQP)

Network Opt. (%) | Lim. (%) | Inf. (%) | Opt. (%) | Lim. (%) | Inf. (%)
Belgium-20 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-40 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-135 97.3 2.7 0.0 100.0 0.0 0.0

NA-154 100.0 0.0 0.0 100.0 0.0 0.0
GasLib-582 97.1 2.9 0.0 100.0 0.0 0.0
GasLib-4197 4.4 89.7 5.9 82.8 17.2 0.0

Table 7.5: Comparison of solver statuses over stochastic earthquake scenarios.

illustrated in the second image of Figure 7.4. Here, the mean local magnitude of each
earthquake was assumed to be 8.0 with a standard deviation of 0.25, and each mean
epicenter was again assumed to be the center of a k-means cluster containing the largest
number of junctions, where k = 5, and where a distance-based standard deviation of ten
kilometers was assumed. Using [24] and [84], one thousand random earthquake scenarios
were generated per network, where in each, the status per node-connecting component
was determined via a uniform sampling and comparison with the probability of damage.

Table 7.5 repeats the format of Table 7.4 to display aggregate statistics of solver termi-
nation statuses across all stochastic earthquake scenarios. For most scenarios, globally
optimal solutions to MLD instances are found within the prescribed one hour time limit.
For scenarios based on the GasLib-135, GasLib-582, and GasLib-4197 networks, how-
ever, some instances cannot be solved. As in the deterministic scenario analysis, compar-
ing the (MINQP) and (MICQP) formulations shows the benefit of the relaxation-based
approach. Furthermore, 133 and one GasLib-4197 (MINQP) and (MICQP) instances,
respectively, are claimed to be infeasible using default GUROBI parameters. These num-
bers of instances are reduced to 59 and zero, respectively, when using NumericFocus=3.

Figure 7.6 displays boxplots comparing the proportion of load delivered across all
scenarios. Again, the (MINQP) and (MICQP) formulations provide results that are
qualitatively similar. The boxplots also show similar differences in vulnerability as those
observed in Figure 7.6. However, the greater variation in epicenters and magnitudes

results in greater variation of the effects. That is, the boxplots often have wider ranges.
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Figure 7.6: Boxplots of deliverable load over stochastic earthquake scenarios. That
is, both the magnitude and epicenter for each scenario were assumed to
be normally distributed. Note that each pair of boxplots summarizes
only instances solved by both (MINQP) and (MICQP).

7.4. Conclusion

This chapter introduced the MLD for natural gas transmission networks, which seeks
to determine a feasible operating point for a damaged gas network while ensuring the
maximal delivery of load. This task was presented using three successive mathematical
programming formulations. First, a MINCP was formulated that embeds all physical
and engineering requirements for operational feasibility. Second, the first nonconvex
program was reformulated exactly as a MINQP by introducing new variables. Finally,
convex relaxations were applied to all nonconvex relationships in the former problem
that involve pressures and mass flows, which results in a relaxed MICQP formulation.
To compare the efficacy of the second and third formulations, a rigorous benchmark-
ing study was conducted over a large number of randomized multi-contingency scenarios
on nine networks ranging in size from 11 to 4,197 junctions. First, MLD experiments
based on N—1 (or single contingency) damage scenarios were conducted. Second, N—k
(multi-contingency) damage experiments were performed in order to understand MLD

tractability for multimodal failures. A performance comparison of the (MINQP) and
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(MICQP) formulations was then conducted using results from the N—1 and N—k exper-
iments. Finally, a proof-of-concept application based on network damage from a set of
synthetically generated earthquakes demonstrated the application of the MLD problem
to probabilistic risk assessment for deterministic and stochastic spatial hazards.

These results lead to three key conclusions. First, the relaxed formulation (MICQP)
provides good bounds on the maximal deliverable load obtained from the full mixed-
integer nonconvex formulation, (MINQP). Second, the relaxation-based formulation
is more computationally robust than the mixed-integer nonconvex formulation and can
solve larger proportions of challenging instances in much shorter amounts of time. These
observations suggest (MICQP) could be useful in real-time decision support applications.
Finally, for the largest network (i.e., GasLib-4197), the relaxation-based approach be-
gins to show its limitations. For some challenging scenario types (e.g., N—1), large
numbers of instances cannot be solved because of the relatively larger network size.

There are several potential studies that could extend the approaches developed in
this chapter. First, additional relaxation-based methods could be developed to more
accurately and efficiently solve the MLD problem for gas networks containing thou-
sands of nodes. To facilitate this, another useful contribution could be the development
of new benchmark instances whose sizes range between the sizes of GasLib-582 and
GasLib-4197. Finally, the origin of numerical instabilities associated with the chal-
lenging GasLib-4197 network, and especially the sources of claimed infeasibility by
GUROBI for some (MINQP) instances, should be thoroughly investigated. This could
involve developing new methods for processing network data or normalizing constraints.

The most important extension of this work in the context of energy systems, however,
is the consideration of interdependencies that link power and gas systems. Modeling
these interdependencies is critical for determining the effects of multimodal gas and/or
power network outages on overall deliverable gas and power loads. To address this, the

interdependent gas and power MLD problem is thus thoroughly studied in Chapter 8.
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Chapter 8

Convex Relaxations of Maximal
Load Delivery for Multi-contingency
Analysis of Joint Electric Power and

Natural Gas Transmission Networks

As the use of renewable generation has increased, electric power systems have become
progressively reliant on natural gas power plants as fast ramping sources for meeting
power demands. This dependence has introduced new vulnerabilities to the power grid,
including disruptions to gas transmission networks from natural and man-made disas-
ters. To address the operational challenges arising from these disruptions, Chapter 7
considered the task of determining a feasible steady-state operating point for a dam-
aged gas pipeline network independently while ensuring the maximal delivery of gas load.
However, Chapter 7 did not consider the interdependencies that exist between gas and
power transmission networks, which could ultimately affect both the operational deci-
sions made by gas network operators as well as the available generation capacity of the
interdependent power network. To address this, this chapter proposes the joint gas and
power MLD problem, which allows for a meaningful exploration of the tradeoffs when
maximizing gas versus power delivery in the presence of severe network disruptions.
The contingency response measures considered in this chapter are illustrated in Figure
8.1 and bear similarity to Figure 7.1. Given a severe disruption, (i) gas and/or power

load deliveries decrease as gas and/or power network elements are impaired and effects
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Figure 8.1: Illustration of gas and power network responses to a severe disruption.
The shaded region indicates the points in the disruption and restora-
tion timeline that are studied in this chapter via an optimization-based
assessment of damaged joint gas-power network capacities.

begin to cascade, and (ii) cascading effects subside, and a new stable operating point
is realized. After (ii), load can gradually be restored via operational methods until (iii)
network repairs begin. These restorative actions are performed until (iv) all gas and
power loads can be delivered. Repairs continue until (v) all gas and power network
components are operational. As in Chapter 7, addressing all event types within Figure
8.1 is a substantial task. To make the scope manageable, we focus more narrowly on
finding optimal steady-state operating points between events of types (ii) and (iv), i.e.,
decisions that maximize gas and power load delivery in the surviving gas-power system.

In this chapter, this task is formalized as the steady-state joint MLD problem. Similar
to the independent gas MLD problem of Chapter 7, this problem is informally stated as
follows: given severely damaged gas and power networks in which multiple components
have become nonoperational, maximize the amounts of prioritized gas and active power
loads that can be served simultaneously in the damaged joint network, subject to steady-
state natural gas and AC power network physics. The nonconvex physics and discrete
nature of operations in the joint network (e.g., the opening and closing of valves in the
gas network) render this a challenging MINCP. To increase its tractability, we develop
an MICP relaxation of the MLD problem. As in Chapter 7, the MICP relaxation is
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found to be an effective means for bounding maximum deliverable gas and power loads.

This chapter expands upon previous MLD methods for independent gas (Chapter 7)
and power networks [34], as well as approaches from joint gas-power network modeling,
to formulate and solve the joint gas-power MLD problem. Its contributions include

o The first formulation of the joint gas-power MLD problem,;

o A reliable MICP relaxation of the joint gas-power MLD problem;

o Validation of the MLD MICP relaxation’s accuracy and computational efficiency;

o Proof-of-concept analytical applications of MLD gas-power tradeoffs.

Chapter Overview The remainder of this chapter proceeds as follows: Section 8.1
reviews gas, power, and joint steady-state optimization models that appear in the lit-
erature, then formulates the requirements for AC power and gas pipeline operational
feasibility as a MINCP; Section 8.2 formulates the MLD problem as a MINCP, then
proposes an MICP relaxation; Section 8.3 benchmarks the formulations across multiple
joint gas-power networks of various sizes, then provides proofs of concept for joint multi-

contingency analysis using the MLD method; and Section 8.4 concludes the chapter.

8.1. Network Modeling

The past decade has seen remarkable theoretical and algorithmic advances in the in-
dependent fields of power and natural gas network optimization. A recent survey of
relaxations and approximations used in power system optimization is presented by [94].
The study in power most related to this chapter is by [34], who introduce the AC MLD
problem and propose various relaxations to increase its tractability. The method was
later extended by [129] to identify the k& components that maximize network disruption,
as well as by [130] to identify multi-contingency scenarios that would benefit from more
detailed cascading analyses. The MLD problem was also exploited by [114], who applied
it within a bilevel optimization for balancing wildfire risk and power outages. Finally,
an implementation of the power MLD problem is presented by [113], who provide formu-
lations via the POWERMODELSRESTORATION package. Their implementation serves
as a computational foundation for the power system modeling portion of this chapter.
As with power, the growing utilization of gas networks has led to a variety of opti-

mization studies, and the relevant gas literature was reviewed in Chapter 7. An even
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more recent body of literature has examined the optimal coordination of gas and power
infrastructures. A review of joint gas and power planning is given by [54]. Other stud-
ies have focused on market coordination and energy pricing problems [23], [93]. Many
studies have assumed the networks to be fully coordinated, examining optimal schedul-
ing of generator dispatching and gas compressor operations [151]. Recent studies have
expanded upon these earlier joint “optimal gas-power flow” problems, developing spe-
cialized formulations and algorithms for related applications [75], [92], [143]. A smaller
number of studies have considered joint problems related to restoration, e.g., scheduling
of general large-scale interdependent infrastructures in [1] and last-mile restoration of
joint gas and power systems in [35]. The remaining subsections build upon previous gas

and power studies to develop steady-state requirements for a damaged joint network.

8.1.1. Power Transmission Network Modeling

Notation for Sets A power network is represented by an arbitrarily directed graph
(NV,EUER), where N is the set of buses, & is the set of forward-directed branches (or
lines), and ¥ is the set of branches in their reverse orientation. The set of generators
(producers), loads (consumers), and shunts are denoted by G, £, and H, respectively,
which are attached to buses ¢ € V. We let the subset of these components attached
to i € N be denoted by G,;, £;, and F,. We next define the decision variables and

constraints required to model a damaged AC power network’s steady-state operations.

Power Network Modeling Requirements The MINCP formulation for AC power
network feasibility, as defined for AC MLD analysis, is presented in Model 8.1 and
detailed by [34]. Here, Constraints (8.1a) and (8.1b) model Ohm’s law for lines, where
S,; € C denotes the variable power along each line; Y;; € C and Y5 € C are constants
denoting the line admittance and line charging; V, € C denotes the variable voltage at
bus ¢ € N; and T;; € C denotes constant transformer properties. Constraints (8.1c)
model power balances from Kirchhoff’s current law for each bus, where Sy € C denotes
the variable power supplied by generator k € G; Sff € C denotes the maximum power
that can be delivered at load k € £; and Y}’ denotes the admittance of bus shunt
k € H . Note that z,ff, k € £, allows each load to vary between zero and its predefined

maximum, and z¢, k € H, allows for shedding fixed bus shunts from the network. These
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Model 8.1 Power network modeling requirements

S, = (Y, +Y5) Vil” —Y*VV* V(i,j) €& (8.1a)
2] zJ v] |Tij|2 z) T ’
) V-*V o
S;i= Yy +Y5) |V,I> =Y T V(i,j) € & (8.1b)
ZSQ Zz,‘fsd z:z’,SCYS|V|2 ZS”, Vie N (8.1c)
keg, kel ke, (i,5)€&E;UER
19,1 < Siyy Sy €C, V(i,5) € EUER (8.1d)
05 < Z(VVy) < 91;7 V(i j) € & (8.1¢)
2V < |V <2V, V,€C, VieN (8.1f)
zfﬁfSSfészi, SfeC,Vieg (8.1g)
20 €{0,1}, Vie N, zJ € {0,1}, Vie G (8.1h)
24 €0,1], Vi€ £, 25 €[0,1], Vi€ I (8.1i)

modifications ensure power balance constraints are satisfied in damaged power networks.

Constraints (8.1d)—(8.1i) impose engineering limits and variable bounds. Constraints
(8.1d) bound the apparent power flow on each line, representing thermal limits. Con-
straints (8.1e) ensure that each Voltage phase angle difference is limited by predefined

lower and upper bounds, 9 and 9 respectively. Constraints (8.1f) bound the voltage

ij
magnitude at each bus, where V. ajnd V, denote lower and upper bounds, respectively.
Here, 2z € {0, 1} is a discrete variable that allows each bus to become de-energized when
isolated from load or generation. Similarly, Constraints (8.1g) bound power generation,
where §f and Ef denote lower and upper bounds, respectively, and z¢ € {0,1} allows

each generator to become uncommitted when required by Constraints (8.1a) and (8.1b).

8.1.2. Natural Gas Transmission Network Modeling

Notation for Sets Repeating the notation of Chapter 7 for completeness, a gas
network is modeled using a directed graph (J,.4), where J is the set of nodes (i.e.,
junctions) and A is the set of components that connect two nodes. The sets of receipts

(producers) and deliveries (consumers) are denoted by & and D, respectively. These
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components are considered to be attached to junctions ¢ € J. The subset of receipts
attached to ¢ € J is denoted by R, and the subset of deliveries by 2,. The sets of
horizontal and short pipes are denoted by 7 C A and § C A, respectively; the set
of resistors by 7 C A; the set of valves and pressure-reducing regulators by V C A
and W C A, respectively; and the set of compressors by € C A. Loss resistors are not
considered in this chapter. Additionally, the set of node-connecting components incident
to ¢ € J where i is the tail (respectively, head) of the arc is denoted by ;" := {(7,7) € A}
(respectively, §; := {(j,4) € A}). We next define the decision variables and constraints

required to model a damaged natural gas transmission network’s steady-state operations.

Gas Network Modeling Requirements The MINCP formulation for gas network
feasibility, as defined for MLD analysis, is presented in Model 8.2, which summarizes
details previously presented in Chapter 7. First, Constraints (8.2a) model nodal physics,
L.e., mass flow conservation at junctions ¢ € J. Here, f;; € R denotes the variable mass
flow along each node-connecting component; s, € R, denotes the variable supply at
receipt k € R; and d;, € R, denotes the variable demand (or load) at delivery k € D.
Constraints (8.2b)—(8.2u) model the physics of node-connecting components. Con-
straints (8.2b) model the pressure-flow relationship for steady-state flow in a gas pipeline
for each pipe (i,7) € P. Here, p; € R, denotes the variable pressure at junction ¢ € J,
and w;; € R, denotes the constant mass flow resistance of the pipe. These constraints
are the most frequent sources of nonconvex nonlinearity in modeling the gas system.
Constraints (8.2c) model short pipes in the network, which provide resistance-less
mass transport between two junctions. Constraints (8.2d) model resistors in the network,
which act as surrogate components capable of modeling pressure losses elsewhere from
pipes. Here, pressure loss is modeled according to the Darcy-Weisbach equation, where
7,; € R, is the resistance, which is a function of the resistor’s unitless drag factor and
diameter. Note that like Constraints (8.2b), these constraints are also nonconvex.
Constraints (8.2e)—(8.2g) model valves in the network. Here, the operating status of
each valve (i,7) € V is modeled using a discrete variable z;; € {0,1}, where z;; = 1
indicates an open valve and z;; = 0 indicates a closed valve. Constraints (8.2¢) prohibit
flow across each valve when z;; = 0. Constraints (8.2f) and (8.2g) model, when a valve
is open, that the pressures at connecting junctions are equal. They also model the

decoupling of pressures at junctions connected by the valve when the valve is closed.
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Model 8.2 Gas network modeling requirements

Zfij—zfji=28k—2dk, Vied (8.2a)
)€8;

(¢,5)€6] (7,2 keR; keD,

p; —pjz = w;; fi;| [, V(i,j) €P (8.2b)
p;—p; =0, Y(i,j) €S (8.2¢)
p; —p; = Tiifilfil Y,5) €T (8.2d)
£ < i < fi7ip 75 €401}, V(i,5) €V (8.2e)
p; <pj+(1—2,)p,, V(i,j) €V (8.2f)
p; < pi+ (L—2)p;, V(i,j) €V (8.2g)
szij < fi; g?ijzﬁ, zi; €{0,1}, V(i,j) e W (8.2h)
fij(p; —p;) 20, V(i,j) €W (8.2i)
a;p <pj+ (1= z;)a,p, V(i,j) €W (8.2)
Py < @yp; + (1 —z5)p;, V(i j) €W (8.2k)
Qg S Pj < QD V(i j) € C: Lj >0 (8.21)
;P < pj < 0ypg, V(i j) €C L;j <0Ag;=1 (8.2m)
fij(p; —p;) <0, V(i,j) € C: L,j <0Aq;=1 (8.2n)
vy € {01}, V(i) €€+ [ <O0Aay, +1 (8.20)
p; S ayp;+ (1 —y)p,, V(i) €C: L.j <O0Aq;#1 (82p)
;0 <P+ (L—yy)p, V(i,j) €C: f <0Aa; #1 (82q)
p; — P < Y;b,, V(i j) €C Lj <0Aa; #1 (8.2r)
p;—p; S Yip;, V(i j) €C: Iij <O0ANa;#1 (8.2s)
[ < fy< T, g e (5.20)
0<p <p; <p;, Vie N (8.2u)
0<s, <5, VkeR 0<d, <d,, Vk€ D (8.2v)

Constraints (8.2h)—(8.2k) model regulators (i.e., pressure-reducing valves) in the net-

work. Similar to valves, the status of each regulator is modeled using a discrete variable
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z;; € {0, 1}, where 2;; = 1 and z;; = 0 indicate active and inactive statuses, respectively.

Constraints (8.2h) prohibit mass flow across each regulator when z;; = 0. Constraints
(8.2i) ensure that mass flow across each regulator is in the same direction as the loss in
pressure. Constraints (8.2j) and (8.2k) model the remaining pressure dynamics. Here,

each regulator has a corresponding scaling factor, a,;,. This models the relationship

between junction pressures when the regulator is acti\ie, Le., a;;p; = p;. The factor is
limited by the bounds a;; = 0 < a;; < @;; = 1. Constraints (8.2j) and (8.2k) require
that, when a regulator is active, pressures are defined according to the scaling relation-
ship. Otherwise, pressures at the junctions connected by the regulator are decoupled.
Constraints (8.21)—(8.2s) model compressors in the network. Each compressor (i, j) €
€ models an increase in pressure at junction j € J by a variable scalar a;;. Without
loss of generality, bidirectional compression is not considered, although each compressor
may allow for uncompressed flow in the opposite direction. These different behaviors
of compressors are modeled by employing three different sets of constraints. The first
are Constraints (8.21) for compressors that prohibit reverse flow, where ey and @,; are
minimum and maximum pressure ratios. The second are Constraints (8.2m) and (8.2n)
for compressors where reverse flow s allowed and Q= 1. Note that here, if f;; <0,
then p; = p;. Finally, Constraints (8.20)—(8.2s) model compressors where uncompressed
reverse flow is allowed and Q;; # 1. In this case, the behavior of each compressor
is disjunctive in its flow direction. To model this disjunction, the discrete variables
Y;; € 10,1} are introduced in Constraints (8.20) to model the direction of flow through
each compressor. Here, y;; = 1 indicates mass flow from ¢ to j, and y,;; = 0 indicates
flow from j to i. Constraints (8.2p)—(8.2s) model the pressures and pressure differences
between junctions as per the specified flow direction and compression ratio bounds.
The remaining Constraints (8.2t)—(8.2v) are variable bounds. Constraints (8.2t) are
mass flow bounds, Constraints (8.2u) are pressure bounds, and Constraints (8.2v) are
receipt and delivery bounds. Most importantly, note that Constraints (8.2v) differ from
the typical assumption of fixed supply and demand. These modifications ensure mass

flow conservation constraints will remain satisfied even for damaged gas networks.
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Natural Gas System Electric Power System

3

Figure 8.2: Diagrammatic representation of a small joint gas-power network.
Here, the demand of gas at delivery 2; contributes to the objective
term 7,(-) and power loads £, £, contribute to np(-). Finally, the
linkage between gas and power systems occurs at X'| = (D5, G;).

8.1.3. Interdependency Modeling

As in [7] and [23], gas and power systems are connected via heat rate curve models for

gas-fired power generators. These relate the amount of gas consumed to power, i.e.,

> RIR(SY)? + hIR(SY) + iz =d;, Vi€ Dy (8.3)
i:(1,5)€X

Each constraint links the active power generated at possibly multiple generators with
a single gas delivery. Here, h% 23 are coefficients of the heat rate curve for i € G, and
X is the set of linkages between gas-fired generators in G and their corresponding gas
delivery points in D C 2. Furthermore, h} > 0 for all (i,j) € X, and thus the left-
hand side is always a convex function. However, note that Constraint (8.3) is nonlinear
nonconvex when hl # 0. Finally, the presence of the term h?zf ensures that when
z; = 0, the intercept of the heat rate curve, and thus both active power generation and
gas required, will be zero when a generator is uncommitted from the dispatch scenario.

A diagramatic illustration of the joint network model is illustrated in Figure 8.2. Here,

gas and power systems are linked by the interdependency X', which relates the delivery
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D, to the generator G,. Contributions to gas and power delivery objectives, which are

later described in Section 8.2.1, are depicted by green and red nodes, respectively.

8.1.4. Challenges

Although independent gas and power MLD models were explored in Chapter 7 and
[34], respectively, the joint MLD problem that includes Constraints (8.1)-(8.3) is more
challenging for several reasons. Most importantly, the nonlinear nonconvexities that
appear in Models 8.1 and 8.2 arise primarily from different sources: Model 8.1 includes
many nonlinear equations with bilinear variable products, whereas Model 8.2 includes
more manageable quadratic nonlinear equations. To model them exactly, Model 8.1
must be formulated as a challenging MINCP, but Model 8.2 can be written as a more
tractable MINQP. These formulation differences suggest potentially incompatible nu-
merical methods and solution technologies when solving the joint MLD problem.
Although omitted here for brevity, this work also employed a number of important
preprocessing steps used to ensure the construction of feasible damaged joint networks
that satisfy Constraints (8.1)-(8.3). Finally, Models 8.1 and 8.2 constrain each system
using steady-state physical assumptions. In practice, modeling the transient dynamics
of the gas system could be crucial. However, as will be shown in subsequent sections,
even the steady-state variant considered in this chapter is computationally difficult. This

work is an important step toward building MLD techniques that also consider transients.

8.2. Maximal Load Delivery Formulations

This section derives the joint gas-power MLD formulations used throughout the re-
mainder of this chapter. Section 8.2.1 defines the competing objectives of the joint
MLD problem. Section 8.2.2 poses lexicographic and weighted MLD formulations that
prioritize the gas-power delivery tradeoff in different ways. Section 8.2.3 derives MICP
relaxations of the MLD formulations. Finally, Section 8.2.4 summarizes naming con-

ventions used for these various MLD formulations, which are compared in Section 8.3.
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8.2.1. Objectives of the Maximal Load Delivery Problem

The objective of the MLD problem is to maximize the amount of nongeneration gas and
active power load delivered simultaneously under a multi-contingency scenario. Note
that the maximization of nongeneration gas, specifically, allows the model to decouple
the practical objectives of the gas system (e.g., delivery of fuel for residential heating)
from practical objectives of the power system. However, because the delivery of non-
generation gas load can inhibit the amount of active power generation, and thus active
power delivered, there exists an important tradeoff between these two competing ob-

jectives. For notational ease, we first write the gas and power objective functions as

Ng(d) = (Z 5idi> (Z Bi3i> (8.4a)

icD’ icD’
np(z?) = (Z&Z?!%(S?)I) (Z@\WWH) : (8.4b)
1€l €l

Here, Equation (8.4a) denotes the normalized sum of all prioritized nongeneration gas
demand, where D" := D\ {j : (i,5) € X} (i.e., the set of all nongeneration gas
deliveries), and 8; € R, is a predefined restoration priority for delivery i € 2’. Similarly,
Equation (8.4b) denotes the normalized sum of all prioritized active power loads. Note
that for all of the experiments considered in this study, §; =1 for all : € D" U £.

The tradeoff between nongeneration gas and active power load lends the MLD problem
to the broader category of multi-objective optimization. A survey of multi-objective
optimization methods in engineering is presented by [89] and describes a number of
techniques for specifying preferences among multiple objectives. These include weighted
sum, weighted product, lexicographic, and bounded objective optimization methods. In

Section 8.2.2, we define lexicographic and weighted sum variants of the MLD problem.

8.2.2. Lexicographic and Weighted MLD Formulations

To explore the gas-power tradeoff, we introduce three MLD models that prioritize gas
and power delivery in different ways. The first is a lexicographic formulation that

prioritizes delivery of nongeneration gas load. This situation is representative of common
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contractual requirements for gas grid operators. Here, the MLD problem is written as

maximize np(z9)
subject to na(d) > ng(d*) (MLD-G)
Constraints (8.1)—(8.3),

where 75(d*) is the optimal objective when maximizing gas delivery alone. The second

MLD is a formulation that prioritizes the amount of active power load delivered, i.e.,

maximize nqg(d)
subject to np(29) > np(29) (MLD-P)
Constraints (8.1)—(8.3).

The last is a single-level formulation that weights normalized sums of nongeneration gas

and active power delivery. It considers the direct tradeoffs between objectives, i.e.,

maximize Mg (d) + (1 — N)np(z9)

(MLD-W)
subject to Constraints (8.1)—(8.3),

where 0 < A < 1 is a weighting parameter that shifts prioritization of the objective.
Note that (MLD-G), (MLD-P), and (MLD-W) are MINCPs. The nonconvexities
arise from three sources: (i) discrete operations of controllable components (e.g., 27
for generator commitment); (ii) bilinear products that appear in both gas and power
network physics (e.g., V;V;* in Ohm’s law); and (iii) nonlinear equations used for satisfy-
ing important physical relationships (e.g., pressure-flow relationships for pipes). In the

following, we leverage a number of relaxations to render these problems more tractable.

8.2.3. Relaxation of Products and Nonlinear Equations

Convexification of Power Physics The primary sources of nonconvexity in Model
8.1 are the bilinear products that appear in Constraints (8.1a)-(8.1c) (e.g., V;V}). A
large body of literature has developed relaxations of similar terms, and for a comprehen-
sive review, we refer the reader to the recent survey of [94]. In this chapter, we utilize a

model based on an SOCP relaxation of the AC power flow equations, described by [74]
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and used for AC power MLD analysis in [34]. The primary insight of the SOCP formu-
lation is that variable products (|V;|* and V;V}") can be lifted into a higher-dimensional
and W,
products linear, and the relaxation is ultimately strengthened via the constraints

variable space (W;; respectively). This renders any terms involving these

7

[Wil? < Wi, Wy, (i, j) € €. (8.5)

J3’

Constraint (8.5) is a rotated SOCP constraint, lending the formulation its name.

Convexification of Gas Physics Many nonconvexities in Model 8.2 appear in the
form of nonlinear equations (e.g., Constraints (8.2b)) and bilinear variable products (e.g.,
Constraints (8.2i)). Here, we briefly review the convexification techniques previously
described in Chapter 7. To resolve both sources of nonlinear nonconvexity, direction
variables y;; € {0, 1} are first introduced for each node-connecting component (4, j) € A.
We also introduce variables m; € R, to denote squared pressures p? for ¢ € J. This first

change allows for a partial linearization of the pressure-flow equations for pipelines, i.e.,

Then, variables £;; for (i,j) € P are introduced to model the difference in squared
pressures across each pipe. The introduction of y, 7, and ¢, as well as convexly relaxing

the equality requirements of Constraints (8.6), give rise to the convex relaxation

J
by <m;—m; + <2yij>(ﬁi _Ej)a V(i,j) € P
Uy <y — i+ 2y — 2)(m, —75), V(i,5) € P (8.7¢
w;i [ < iy, V(i 4) € P. (8.7d

mp—m <Ay <mp—my, V(i j) € P (8.7a
(

Note that Constraints (8.7d) comprise the primary physical relaxations. These con-
straints imply that the pressure-flow equations need not be satisfied with equality. Con-
vexification of the remaining nonlinear nonconvex terms in Model 8.2 is accomplished
in a similar manner to the above. However, in this chapter, to avoid repetition, we omit
the derivation of the full MICQP relaxation, which can be found in Chapter 7.
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Convexification of Gas-fired Generation Constraints (8.3) are linear when h} =0

but nonconvex when h}! > 0. In the latter case, Constraints (8.3) are relaxed as

D hIR(SY)? + hIR(SY) + hdz! < dj, Vj € Dg, (8.8)
i:(1,5) €KX’

where X := {(i,j) € X : h} # 0}. However, in our experiments, all h} are zero.

8.2.4. Summary of Formulations

The rest of this chapter compares formulations of (MLD-G), (MLD-P), and (MLD-W):
o (MLD-*): Exact MINCP formulations of power and gas constraints.
o (MLD-*-R): Formulations with SOCP and MICQP power and gas relaxations.
These formulations provide different tradeoffs between MLD model accuracy and com-
putational performance. An empirical evaluation of both allows us to quantify the effects

of the relaxations, as well as to guide our subsequent MLD analytical proofs of concept.

8.3. Computational Experiments

In the following, Section 8.3.1 describes the networks, computational resources, and
parameters used throughout the computational experiments; Section 8.3.2 compares the
efficacy of exact and relaxed MLD formulations on randomized N—k multi-contingency
scenarios; Section 8.3.3 evaluates the runtime performance of formulations over the same
experimental sets; Section 8.3.4 provides a proof-of-concept MLD analysis across the
same experimental sets, illustrating the tradeoffs when lexicographically maximizing gas
and power load delivery; and Section 8.3.5 provides a proof-of-concept Pareto analysis of

gas and power load delivery on a single joint network, considering many prioritizations.

8.3.1. Benchmark Data Sets and Experimental Setup

The computational experiments in this chapter consider gas and power networks of
various sizes that appear in the literature or have been derived by subject matter experts.
These networks are summarized in Table 8.1. The networks in this table are named

according to the number of junctions in the natural gas network (e.g., NG11) and the
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NG135-EP179 | [5], [124] | 135|141 | 0 29 | 179 [ 263 | 12

NG247-EP240 [105] 247 [ 254 | 0 0 | 12 [ 240 [ 448°| 6

Network Refs. AL TIPS LT v (el | IV E K
NG11-EP14 | [o,[124] | 11| 8 | 0 |0 | 1] 0 | 2|14 |20 1
NG25-EP14 | [5], [46],[120] [ 25 |24 | 0 | 0 | 0 | 0 | 6 | 14 | 20 | 2
NG25-EP30 | B, [124] |25 [ 19| 1 | L |0 | 2 |3 |30 |4 [ 1
NG40-EP39 | |5, [124] | 40 [ 39| 0 | 0 | 0| 0 | 6 |39 | 46 | 4
NG146-EP36 7] 146 | 93 0 0 0 42 [ 29| 36 | 121 | 34
NG134-EP162 | [5], [124] | 134| 86 | 45 | 0 | 0 | 1 | 1 | 162|284 5

0 0
0 0
8 | 26

44 | 5 | 588 | 686 | 12

NG603-EP588 | [5], [124] | 603 | 278 | 269

Table 8.1: Summary of benchmark joint gas-power network data set properties.

number of buses in the electric power network (e.g., EP14). The references from which
the gas, power, and/or joint network properties are derived appear in the second column
of this table. The numbers of natural gas and electric power system components of the
joint networks vary substantially and are specified in the second and third delineated
portions of Table 8.1, respectively. Finally, we remark that, for networks referencing [5],
heavily loaded variants of the corresponding electric power network data sets are used.

Joint gas-power network properties are summarized in the last column of Table 8.1.
Here, NG25-EP14 uses the linking and heat rate properties of the joint network instance
developed by [120], and NG146-EP36 uses the properties of the instance developed by
[7]. Linkages within the NG247-EP240 network were derived from open data, and heat
rate curves were estimated in a manner similar to [7]. The remaining networks combine
instances from GASLIB and PGLIB-OPF to create new joint networks of various sizes.
The purpose of these new instances is twofold: (i) to explore the tractability of joint MLD
instances as network sizes grow and (ii) to explore the tradeoffs involved in maximizing
gas versus power delivery. In these new instances, the number of gas-fired generators,
| K|, was estimated to be near min{0.25|2/,0.4|G|}, i.e., &~ 25% of all gas deliveries or
~ 40% of all generators. After determining the total number of gas-fired generators, the
largest-capacity generators in each power network were then assumed to be linked to
the smallest-withdrawal delivery points in the gas network. The heat rate at each gas-
fired generator was then assumed to be equal to the proportion between the maximum

withdrawal at the delivery point and the maximum power at the generator. Note that
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these networks thus use synthetically generated linkages between GASLIB and PGLIB-
OPF instances, and these linkages are not necessarily reflective of real-world data sets.
They are, however, instances where gas and power interdependencies are consequential,
which in turn allows for a meaningful computational exploration of the MLD method.
All MLD formulations were implemented in the JULIA programming language using
the mathematical modeling layer JUMP, version 0.21 [50]; version 0.9 of GASMODELS, a
package for steady-state and transient natural gas network optimization [9]; version 0.18
of POWERMODELS, a package for steady-state power network optimization [33]; and
version 0.4 of GASPOWERMODELS, a package for joint steady-state gas-power network
optimization [8]. Furthermore, for the exact nonconvex representation of Model 8.1
in (MLD-*), the polar form of the AC power flow equations, introduced by [25] and
implemented by [33], was used. Similarly, for the exact representation of Model 8.2, the
MINQP formulation of Chapter 7, which is implemented in GASMODELS, was used.
Each optimization experiment was prescribed a wall-clock time limit of one hour
on a node containing two Intel Xeon E5-2695 v4 processors, each with 18 cores at
2.10 GHz, and 125 GB of memory. For solutions of (MLD-W), version 0.7 of the
open source JUNIPER MINCP solver was used [82]. Within JUNIPER, IPOPT 3.12 was
leveraged as the NLP solver, using a feasibility tolerance of 1076 and the underlying
linear system solver MA57, as recommended by [134] for nonlinear network problems.
Note that JUNIPER does not provide global optimality guarantees for (MLD-W), and
feasible solutions obtained from the solver serve only as lower bounds on the true amount
of maximum deliverable load. For solutions of (MLD-*-R), GUROBI 9.1 was used with its
default parameterization. Here, since (MLD-*-R) is an MICP, globally optimal solutions
are obtained via GUROBIL. However, since (MLD-*-R) is an MLD problem relazation, a

globally optimal solution corresponds only to an upper bound on (MLD-*)’s objective.

8.3.2. Multi-contingency Damage Scenarios

This section examines the robustness and accuracy of the exact and relaxed weighted
MLD formulations, (MLD-W) and (MLD-W-R), respectively, with A = 0.5. Specifi-
cally, it studies these properties on large sets of randomized multi-contingency or N—Fk
scenarios, where k indicates the number of components simultaneously removed from the

joint gas-power network. These scenarios are intended to capture the effects of severe
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(MLD-W) % Cases | (MLD-W-R) % Cases
Network Conv. | Lim. Inf. Conv. | Lim. | Inf.
NG11-EP14 | 100.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00
NG25-EP14 99.90 | 0.00 | 0.10 | 100.00 | 0.00 | 0.00
NG25-EP30 98.80 | 0.10 | 1.10 | 99.70 | 0.00 | 0.30
NG40-EP39 99.00 | 0.50 | 0.50 | 100.00 | 0.00 | 0.00
NG146-EP36 1.00 | 83.70 | 15.30 | 100.00 | 0.00 | 0.00
NG134-EP162 | 26.70 | 25.70 | 47.60 | 100.00 | 0.00 | 0.00
NG135-EP179 | 0.10 | 95.20 | 4.70 | 100.00 | 0.00 | 0.00
NG247-EP240 | 0.00 | 97.90 | 2.10 | 100.00 | 0.00 | 0.00
NG603-EP588 | 0.00 | 70.30 | 29.70 | 100.00 | 0.00 | 0.00

Table 8.2: Comparison of solver statuses over weighted random N—Fk scenarios.

multimodal network outages across joint systems. In each scenario, a random selection
of 15% node-connecting components were assumed to be damaged (i.e., k ~ 0.15N).
Through a parameter sensitivity study, we observed that this proportion of outages ap-
peared to generate challenging MLD scenarios while providing interesting gas and power
delivery tradeoffs. For each network, one thousand such scenarios were generated.
Table 8.2 compares statistics of solver termination statuses across all N—k scenarios
for each network and formulation. Here, “Conv.” corresponds to the percentage of
cases where the solver converged, “Lim.” to cases where the solver time or other solver
limit was reached, and “Inf” to cases that were classified as infeasible by the solver.
Although both formulations are typically capable of converging on cases containing tens
of nodes, for larger networks, (MLD-W-R) clearly outperforms (MLD-W), solving nearly
all N—Fk instances. The results are especially dramatic for the three largest networks,
where only one of three thousand (MLD-W) cases converges but all (MLD-W-R) cases
converge. Note that three (MLD-W-R) cases are classified as infeasible due to numerical
difficulties, but many more (MLD-W) cases are classified as infeasible due to the MINCP
formulation and solver’s greater tendencies to converge to locally infeasible points.
Whereas Table 8.2 measures the numerical reliability of exact and relaxed MLD for-
mulations, Table 8.3 compares the solution quality of relaxed formulations with feasible
lower bounds obtained from (MLD-W). Here, “# Compared” corresponds to the num-
ber of cases used in each comparison, “Mean Obj.” is the mean objective value obtained

by (MLD-W) over all compared instances, “Mean” is the mean relative gap between
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(MLD-W) Solutions (MLD-W-R) Gap (%)
Network # Compared | Mean Objective | Mean Median
NG11-EP14 1000 0.61 0.61 0.03
NG25-EP14 999 0.68 1.45 0.17
NG25-EP30 983 0.45 27.22 0.09
NG40-EP39 990 0.65 0.45 0.01
NG146-EP36 10 0.75 4.00 1.01
NG134-EP162 267 0.53 52.63 1.35
NG135-EP179 1 0.59 0.33 0.33
NG247-EP240 0 - - -
NG603-EP588 0 - - -

Table 8.3: Comparison of solution quality of exact and relaxed MLD formulations.

(MLD-W) and (MLD-W-R) objective values, and “Median” is the median relative gap

between objective values. In each such measurement, the relative gap is computed as
: _ (0=
Relative Gap := | —— | 100%, (8.9)
Ui

where 7 is the objective value of (MLD-W-R) and 7 is the objective value of (MLD-W).
We note that, for NG25-EP30, five instances were excluded in the comparison: the three
infeasible (MLD-W-R) instances and two instances that implied a negative relative gap.
Proceeding with the analysis, the mean objective values for all sets of feasible solutions
indicate that between around 50% and 75% of gas and power loads are being delivered
across all multi-contingency scenarios. Second, the mean relative gap between feasible
solutions obtained by (MLD-W) and the upper bounds obtained by (MLD-W-R) are
sometimes large, with the largest being 52.63% across all NG134-EP162 scenarios.
These extreme gaps have only two sources from which they can arise. First, a feasible
solution obtained by JUNIPER for an (MLD-W) instance is not guaranteed to be near
the globally optimal solution. That is, the globally optimal (MLD-W) objective value
is potentially much larger than what JUNIPER reports at solver termination. Second,
since (MLD-W-R) is a relaxation, it upper-bounds the globally optimal objective value
of (MLD-W). The median column in Table 8.3 reports measures of centrality without
the outliers that are likely arising from the first source of discrepancy (i.e., median

relative gaps). Through these measurements, (MLD-W-R) is observed to often provide
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reliable and tight bounds on the optimal objective of (MLD-W), with relative gaps most
often ranging from nearly zero to less than 1.35%. This indicates that the relaxation is

capable of providing good upper bounds on maximum capacities of damaged networks.

8.3.3. Computational Performance

This section compares the performance of (MLD-W) and (MLD-W-R) using the in-
stances described in Section 8.3.2. The performance profiles for these cases are depicted
in Figure 8.3 and divided into three categories: (S) networks containing tens of nodes;
(M) networks containing hundreds of nodes; and (L) networks containing more than
a thousand nodes (i.e., NG603-EP588). In all such categories, it is shown that the
(MLD-W-R) formulation is able to solve substantially more problems than (MLD-W)
in significantly shorter amounts of time. For joint networks with tens of nodes, both for-
mulations are able to solve many instances within the one hour time limit. For networks
with hundreds of nodes, (MLD-W-R) is capable of solving most instances within ten sec-
onds, while (MLD-W) requires hundreds or thousands of seconds to solve only a small
proportion. For networks with thousands of nodes, (MLD-W-R) solves all instances
within ten seconds, whereas (MLD-W) does not solve any. The efficiency of (MLD-W-
R) compared to (MLD-W) highlights its applicability to (i) real-time multi-contingency

analysis and (ii) analyses that require distributions of many multi-contingency scenarios.

8.3.4. Proof-of-concept Maximum Load Delivery Analysis

Whereas Sections 8.3.2 and 8.3.3 study the computational and accuracy tradeoffs be-
tween (MLD-W) and (MLD-W-R), this section provides a proof-of-concept MLD analy-
sis using the (MLD-G-R) and (MLD-P-R) formulations on the same set of N—k damage
scenarios. Figures 8.4 and 8.5 display nine histograms each that evaluate the propor-
tions of gas and power loads delivered across solved damage scenarios for the nine joint
networks while using the two problem specifications. Here, green bars correspond to
histogram frequencies obtained from analyzing results of (MLD-G-R) solutions (i.e., gas
prioritization) and red bars correspond to (MLD-P-R) solutions (i.e., power prioritiza-
tion). Brown, overlapping bars correspond to frequencies that appear in both (MLD-
P-R) and (MLD-G-R) histograms. These results indicate qualitative differences in the

hypothetical robustness of each joint network. They also display the extremal tradeoffs
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Figure 8.3: Performance profiles of exact and relaxed gas-power MLD formula-
tions. Specifically, the performance profiles measure the solve times
of the N—k instances described in Section 8.3.2. Here, the performance
profiles are partitioned into three categories for (S) networks contain-
ing tens of nodes; (M) networks containing hundreds of nodes; and (L)
networks containing more than a thousand nodes (i.e., NG603-EP588).

between prioritizing gas versus power delivery in the presence of extreme outages. Fi-

nally, they indicate the sensitivity of each gas or power network to the interdependencies

that link them. These histograms serve as proofs of concept for real-world analyses.

Figure 8.4 displays histograms of maximum gas load delivered in the presence of

severe N—Fk outages. First, note that these histograms display a variety of load dis-

tributions across the cases and networks considered. Some networks, e.g., NG25-EP30,
NG247-EP240, and NG603-EP588 suggest gas grids that are highly sensitive to the out-
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Figure 8.4: Histograms of gas load delivered over random N—Fk scenarios. The z-
axis indicates the proportion of load delivered, and the y-axis indicates
the proportion of solved cases that deliver load within an interval.
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Figure 8.5: Histograms of power load delivered over random N—Fk scenarios. Note
that these histograms assume the same settings as Figure 8.4.
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ages considered, with large proportions of damaged networks often incapable of deliv-
ering more than 50% of gas load. Other networks, e.g., NG40-EP39, NG146-EP36, and
NG135-EP179 show less severe but still substantial sensitivities to outages. The remain-
ing networks display gas network sensitivities somewhere between these two extremes.

The overlapping histograms also display the tradeoffs encountered when prioritizing
gas versus power delivery. For the three joint networks NG25-EP14, NG134-EP162, and
NG603-EP588 shown in Figure 8.4, gas and power interdependencies appear mostly in-
consequential, and prioritizing either gas or power barely affects the maximum capacity
of the gas network. This is likely a result of excess generation capacity in the correspond-
ing power networks. Other networks, e.g., NG40-EP39, NG146-EP36, and NG135-EP179
show more interesting tradeoffs, where prioritizing either gas or power results in sub-
stantial changes in the overall maximum load distributions. The remaining networks
show less interesting tradeoffs, although NG11-EP14 displays large tradeoffs, likely due
to the drastic effects that even minor outages can have on the relatively small network.

Figure 8.5 displays histograms of maximum active power delivered in the presence
of the N—Fk outages. First, the four networks NG25-EP30, NG134-EP162, NG247-EP240,
and NG603-EP588 appear robust to outages in the joint network and are often capa-
ble of delivering more than 75% of the original power load. The remaining networks
see a greater variety in their maximum load distributions. Whereas some networks,
e.g., NG25-EP30, NG134-EP162, and NG603-EP588, appear less reliant on gas-fired power
generators, the remaining networks exhibit more drastic changes when prioritizing gas
versus power delivery. The most extreme example appears to be NG146-EP36, which is
often capable of delivering a large amount of power across all N—k cases when power is
prioritized but also often loses more than 25% capacity when gas delivery is prioritized.

We finally remark that, to solve (MLD-G-R) and (MLD-P-R), inner- and outer-level
problems of the lexicographic maximization are solved sequentially. For example, to
solve (MLD-G-R), (i) the inner level problem maximizing ns(d) is solved, yielding a
solution d*, then (ii) np(2?) is maximized, subject to Constraints (8.1)-(8.3) and n(d) >
N (d*) —e. The latter ensures that nongeneration gas load delivered in the outer level is
at least that of the inner level, minus some feasibility tolerance €, taken in this study to
be 1077, A similar algorithm is used for (MLD-P-R). We note that the general algorithm
is not as numerically reliable as (MLD-W-R) and does not solve 469 of the 18,000 N—k

cases considered in this subsection. In future work, this could be alleviated with a larger
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Figure 8.6: Pareto front of power versus gas load over random N—Fk scenarios.

e or via direct use of lexicographic features available in some solvers (e.g., GUROBI).

8.3.5. Proof-of-concept Pareto Analysis

Together, (MLD-G-R), (MLD-P-R), and (MLD-W-R) allow for a variety of prioriti-
zations of gas versus power load. As such, they serve as powerful modeling tools for
exploring the wide range of possible MLD solutions based on the relative importance of
gas versus power delivery. This can provide gas and power grid managers with best-case
capacity estimates depending on the type of coordination between the two systems. In
turn, this enables a better understanding of the extremely complex yet practically impor-
tant tradeoffs encountered during the operation of a damaged joint network. Whereas
Sections 8.3.2 through 8.3.4 focused on analyzing performance and qualitative aspects of
MLD analyses across a large number of joint networks, this section focuses on providing
a proof-of-concept Pareto analysis on a single joint gas-power network, NG146-EP36.
Figure 8.6 shows a linearly-interpolated approximation of the Pareto front for mean
active power versus gas delivery across the same set of N—Fk scenarios considered in

previous sections. Here, the upper-left and lower-right endpoints correspond to means
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obtained from the (MLD-P-R) and (MLD-G-R) problem formulations, respectively. In-
terior points correspond to means obtained from (MLD-W-R), where the tradeoff pa-
rameter A\ was varied to determine interesting and distinct points on the Pareto front.
First, note that when prioritizing power delivery, on average, 96% of active power
is delivered but less than 45% of nongeneration gas is delivered. When gas delivery
is prioritized, 88% of power is delivered, while 50% of gas is delivered. Between these
two extremes, the amount of gas and power increases and decreases, respectively, with
increases in A. For A 5 0.5, active power decreases more slowly as a function of A,
and for A £ 0.5, the rate of decrease appears larger. In this case, A ~ 0.5 happens to
represent a value where (MLD-W-R) begins to prefer maximization of gas delivery over
power delivery. In practice, a point near this value of A could be one which maximizes

simultaneous delivery of the two quantities while having practically equal prioritizations.

8.4. Conclusion

Recent increases in gas-fired power generation have amplified interdependencies between
natural gas and power transmission systems. These interdependencies have engendered
greater vulnerabilities to gas and power grids, where natural or man-made disruptions
can require the curtailment of load in one or both systems. To address the challenge of
estimating maximum joint network capacities under disruptions, this chapter considered
the task of determining feasible steady-state operating points for severely damaged joint
networks while ensuring the maximal delivery of gas and power loads simultaneously.
Mathematically, this task was represented as the nonconvex joint MLD problem.
Three variants of the MLD problem were formulated: one that prioritizes gas delivery,
one that prioritizes power delivery, and one that assumes a linear tradeoftf between the
two objectives. To increase the tractability of these problems, an MICP relaxation of the
joint network’s physical constraints was proposed. To demonstrate the relaxation’s ef-
fectiveness, exact and relaxed MLD formulations were computationally compared across
a variety of N—k scenarios. The MICP relaxation was found to be a fast and reliable
means for determining bounds on maximum capacities of damaged joint networks.
Two proofs of concept were then provided to showcase the analytical power of the
relaxed MLD problems. The first presented comparisons between prioritizing gas versus

power delivery in an MLD analysis. These examples showcased the sometimes substan-
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tial tradeoffs that should be considered when planning for extreme outage scenarios.
The second proof of concept provided a Pareto front approximation of gas versus power
delivery across N—Fk scenarios using a single joint network. These proofs of concept
highlight that the accuracy and efficiency of the relaxation-based MLD method makes
it a potentially valuable tool for complex real-world decision support applications.
Future work should focus on extending the MLD approaches developed in this chap-
ter. First, additional gas and power relaxations should be considered to more accurately
and efficiently scale to joint networks containing many thousands of nodes. Preprocess-
ing routines, such as OBBT, may also aid in improving existing relaxations. Second,
the current problem assumes the full coordination between gas and power systems when
deciding operations that maximize load delivery. The modeling of bidding mechanisms
that drive both systems in practice could provide more accurate joint capacity esti-
mates. Finally, capturing transient dynamics in gas networks is sometimes crucial for
understanding the effects of network disruptions, which may only be realized long after
the disruption occurs due to the relatively slow speed of gas transport. Future work

should consider these transient effects when modeling load delivery in the gas network.
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Chapter 9

Summary and Outlook

This dissertation considered the design, operation, and restoration of critical infrastruc-
tures that control systems of fluids. Although these tasks have interested civilization
for millenia, even today, they are often carried out suboptimally for a variety of reasons.
One of these reasons is the intractability of optimization problems that involve fluids,
which are sometimes constrained by PDEs, nonlinear equations, and discrete decisions.
To address these challenges, this dissertation focused on developing new algorithmic
techniques for select infrastructure optimization problems. In many cases, application
of these techniques brings such optimization problems within the realm of tractability.
This suggests there is much potential for modern optimization approaches to assist in
real-world decision-making contexts for infrastructures that control systems of fluids.
The first application involved the optimization of structural flood mitigation strate-
gies. In Chapter 3, the OFMP was introduced, and various linearized approximations
of the 2D shallow water equations were developed. These physical approximations were
then embedded in a MILP representation of the OFMP. Although the approach was
successfully applied to small, contrived problems, it could not reliably scale to large
instances due to the computational complexity of the resultant MILP. This lack of
scalability motivated the development of a metaheuristic-based OFMP optimization ap-
proach in Chapter 4. Since metaheuristics alone were not sufficient for finding quality
solutions to large-scale OFMPs, novel search space reduction and sequential optimiza-
tion techniques were designed to increase convergence. These chapters suggest that
naive mathematical programming approaches to problems constrained by transient dy-

namics can be unsuccessful due to the complexity associated with the added temporal
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dimension. In these cases, heuristics are important for finding quality initial solutions.
Chapters 5 and 6 considered the development of new approaches to popular problems
in water distribution network optimization. Chapter 5 studied the water network de-
sign problem, which involves nonconvex equations that model energy losses along pipes
and discrete variables that model design decisions. To alleviate the difficulties associ-
ated with nonlinear nonconvexity, an exact MICP reformulation of the design problem
was derived using energy- and duality-based arguments. Using the new formulation
as a foundation for a MILP-based algorithm, convergence benefits were observed on
moderately-sized design instances. Chapter 6 then studied the related OWF problem,
which aims at determining a cost-optimal schedule of discrete pump activations. Com-
pared to the design problem, the OWF is complicated by important temporal dynamics
and discrete decisions associated with controllable network elements. A number of new
preprocessing, formulation, and algorithmic techniques were developed to improve con-
vergence. However, we observed that (i) finding quality feasible OWF solutions is very
difficult and (ii) lower bounds improve slowly, indicating (as in Chapter 3) that temporal
dynamics can complicate mathematical programming formulations substantially.
Finally, Chapters 7 and 8 considered infrastructure restoration problems related to
the maximal delivery of load in damaged natural gas and joint gas-power networks,
respectively. These chapters aimed at applying recent convex relaxation techniques from
natural gas and power system optimization to the practical and timely MLD problem.
Unlike Chapters 3—6, Chapters 7 and 8 focused on the application of relaxation-based
mathematical programming techniques in realistic large-scale problem settings and less
on the development of novel formulation and algorithmic approaches. In both chapters,
we observed that relaxation-based methods are the only viable candidates for bounding
network properties within the timescales required by decision support applications. This
suggests that mathematical programming is especially attractive when the desire is to
bound best- or worst-case estimates of infrastructure properties in a real-time setting.
Despite the disparate applications considered in Chapters 3-8, there are a number of
properties that unite them. First, all optimization problems are ultimately constrained
by nonconvex equations that model the physical behavior of each system. Second, most
problems include discrete elements that model either operational decisions or physical
disjunctions. These properties render the optimization problems as difficult MINCPs

that are not easily solved using direct methods. As exemplified in this dissertation, due
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to the lack of efficient direct methods, tailored approaches must be developed based on
properties that are specific either to the problem structure or the physical dynamics.
For example, Chapters 3 and 4 highlighted the need to decouple decisions and physical
simulation. Chapters 5 and 6 underscored the importance of specialized formulations,
relaxations, valid inequalities, and feasibility-checking routines. Finally, Chapters 7 and
8 emphasized that in some applications, modern relaxation approaches are sufficient,
although they still require much specialized effort to achieve a robust implementation.
With these observations in mind, in the following sections, we describe our outlook on
future solution methods for infrastructure optimization problems involving fluid dynam-
ical constraints. First, in Section 9.1, we discuss the role that physical approximations
and relaxations have played in our work and how these could be improved for opti-
mization applications in the future. Then, in Section 9.2, we discuss the importance of
deriving problem-specific valid inequalities and how such inequalities could be automat-
ically derived in the future. Finally, noting that directly embedding physical constraints
in optimization problems can substantially increase computational complexity, in Sec-
tion 9.3, we discuss the possibility of developing specialized (i.e., non-solver-based) opti-
mization algorithms that combine fast physical simulation and analysis with traditional

paradigms from mathematical programming to ensure both feasibility and optimality.

9.1. Reliable Approximations and Relaxations

The use of physical approximations and relaxations proved to be an important theme of
this dissertation. Chapter 3 developed linear approximations of flood dynamics; Chap-
ters 5 and 6 stressed the importance of tight MILP relaxations; and Chapters 7 and
8 leveraged nonlinear convex relaxations. The notion of convexifying difficult physical
constraints appears to be key for developing tractable optimization formulations. How-
ever, we contend that the application of these techniques is still in its infancy. Several
improvements can likely be made to increase tractability without losses in accuracy.
Chapters 5 and 6 stressed that relaxations often lead to infeasible solutions for general
problem structures. Chapters 7 and 8 illustrated how relaxations are useful for bounding
important physical properties. In summary, the required accuracy of a relaxation often
depends strongly on the problem context. In a practical sense, it is thus important

to understand when relaxation solutions suffice to guide real-world decisions. It is also
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important to understand where accuracy is required in a relaxed model to maintain near-
feasibility. For example, if the head at a water network node is directly influenced by
the head at a connected node, accurately modeling loss relationships for other adjacent
pipes may be unnecessary. Using domain-based preprocessing to identify where modeling
accuracy is important in a relaxation will likely be key for increasing problem tractability.

A separate but related research direction resides in the derivation of reduced-order
model approximations. Recent efforts in machine learning have enabled the development
of fast surrogate methods for flood prediction [96], leak detection in water systems [60],
and forecasting demands in natural gas systems [10]. Other work has focused on devel-
oping similar techniques to estimate solutions to large-scale infrastructure optimization
problems, e.g., the AC optimal power flow problem [68], [147]. Finally, projection-
based reduced-order modeling methods, e.g., proper orthogonal decomposition [26] and
dynamic mode decomposition [123], could be used to derive quality lower-order approx-
imations of system dynamics. Embedding lower-order models as infrastructure problem

constraints is a potentially promising avenue for increasing problem tractability.

9.2. Determining Problem-specific Valid Inequalities

A separate but key component of developing tighter model relaxations is the derivation
and application of valid inequalities (i.e., cuts) that strengthen model formulations.
The utility of valid inequalities was emphasized in Chapters 5 and 6 and, to a lesser
extent, Chapters 7 and 8. Other valid inequalities have shown promise for gas network
optimization [73], and general cutting plane algorithms have been successfully applied to
more difficult infrastructure optimization problems (e.g., [22]). Successful cutting plane
techniques often rely on the problem’s structure or some set of physical assumptions.
Ideally, automated methods that derive valid inequalities from model relaxations or
physical surrogates should be developed. For example, the OBCG technique of Chapter
6 was used to automatically and efficiently derive large numbers of cuts for the OWF
problem. An interesting opportunity could thus reside in general methods that inspect
optimization formulation and fluid dynamical structures to determine tighter variable
bounds and nonintuitive cuts. However, as emphasized in many portions of the disser-
tation, creative tailored cuts based on network structure or physical intuition can also

be highly beneficial. Novel intertemporal cuts, especially, could prove to be very useful
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for increasing the tractability of the problems discussed in Chapters 3, 4, and 6.

9.3. Improving Convergence via Tailored Algorithms

Finally, in every application except Chapter 4, solution methods depended heavily on
the use of existing mathematical programming software libraries (e.g., GUROBI and
IpOPT). Indeed, the process of (i) creating a suitable problem formulation, (ii) solving
the problem using an existing software library, and (iii) appending relevant cuts in situ
appears to be the current state of the art for solving difficult infrastructure optimization
problems. However, although these implementations can be expedient, it is questionable
if this current state of practice is truly the most efficient method for solving MINCPs
constrained by specific physical relationships. Tailored solution methods that employ
the same BB and cutting plane techniques for integer decisions while also leveraging fast
oracles for (often unique) solutions that satisfy physical constraints may hold promise.

Examples of this potential can vaguely be seen in the fast shallow water equation sim-
ulator used in Chapter 4 and the fast convex oracles for network analysis in Chapters
5 and 6. In a MINCP context, these oracles could potentially act as exact surrogates
for discerning constraint satisfaction within custom optimization algorithms that bypass
the need for relaxations. Furthermore, the algorithms used to solve oracle subproblems
could also be specialized to exploit problem structure and high-performance computing.
One example of this paradigm is provided by [79], who develop a specialized structure-
exploiting interior point method and parallel, distributed framework for solving the
security constrained optimal power flow problem. Here, they observe orders of magni-
tude speedups over conventional serial solution techniques. Although this philosophy

implies greater implementation effort, computational benefits could be manyfold.
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Appendix A

Appendix to Chapter 3

A.1. ComputePathline(U, z, y,)

In Algorithm A.1, Line 2, the pathline and current pathline segment lengths, L and ¢,
are initialized to zero, and the pathline-describing point set £ is initialized. In Line
3, the integration loop is defined. Integration halts once the total pathline length is

greater than some predefined threshold, L or the time falls outside the interval

max>
of interest, [ty,tyet], Where t,. is calculated as per Equation (4.17). In Line 4, the
discrete solution indices are obtained. Here, GETINDEX(z,y) is a function that maps
the spatial coordinates (x,y) to the corresponding spatial index on the rectangular
solution grid G, (7, 7). Similarly, the time index k is obtained by computing the index
of the ordered timestamp set T corresponding to the least absolute difference with the
current integration time ¢. In Lines 5 through 7, the loop is terminated if the current
speed or water depth is smaller than some arbitrarily small positive constant value €,,.

In Line 8, the time step is computed to (approximately) ensure the integrated distance
will not be greater than one third the length of a grid cell. In Line 9, the first step of
second-order Runge-Kutta integration is performed. In Lines 10 through 12, the loop
is terminated if the point suggested by the previous integration step falls outside the
flood scenario’s spatial domain, denoted as D(U). In Line 13, the discrete indices of
the proposed solution are obtained. In Lines 14 through 16, the loop is terminated
if the depth at the proposed index is too small. In Line 17, the second Runge-Kutta
integration step is performed. In Lines 19 through 21, the loop is terminated if the

integrated point falls outside D(U), if the change was small, or if the change was very

213



Algorithm A.1 COMPUTEPATHLINE: Approximates a pathline emanating to a point.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

function COMPUTEPATHLINE(U, 2, y,)
L« 07 RS 07 T < Zo, Y < Yo L4 twet(x07y0)7 L+ {('ranO)}
while L < L

max and ¢ € [t()?twet(xO? yO)] do
(i,7) « GETINDEX(z,y), k < argmin{r € T(U) : |t — 7|}

if | /uiy, +oi, <€, or by <e, then
break
end if
At + —% min (%, |vA—y‘>
ijk ijk

T, T+ u ALy, <y + AL T =1+ At
if (z,,y,) ¢ D(U) then
break
end if
(i,,7,) + GETINDEX(z,,v,), k, + argmin{r € T(U) : |t, — 7|}
it h; ; . <e,, then
break
end if
T, x+ 5At (uijk + uzjk) , Yp Y+ 5AL (uijk + uljk>
As  /(z,, —2)* + (y,, — y)?
if (z,,,v,,) € D(U) or As <¢,, or As > 2a then
break
end if
L+ L+ As, £+ 0+ As
T2, Yy, L1,
if ¢ > 1(Az + Ay) then
00, L+ LU{(x,,y,)}
end if

end while
return £

29: end function

large (where « is some predefined fixed distance). In Line 22, the total pathline and

temporary segment lengths are updated using the most recent integration distance. In

Line 23, the relevant variables are integrated. In Lines 24 through 26, the temporary

segment length is reset to zero and the pathline approximation is updated if the total

segment length is greater than or equal to the mean grid cell spacing, %(Aa: + Ay).
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A.2. AlphaShape(Q, a)

In Algorithm A.2, DELAUNAY(Q, «) is a function that computes the Delaunay trian-
gulation for a set @ of discrete points. A Delaunay triangulation is a set of triangles
such that no point in @) is contained within the circumscribed circle of any triangle. A

number of algorithms exist to compute this triangulation. Herein, that of [6] is used.

Algorithm A.2 ALPHASHAPE: Computes an alpha shape from a set of points Q.

1: function ALPHASHAPE(Q, @)

2 D <+ DELAUNAY(Q), B <« ()

3 for A € D do

4: (a,b,c) < GETVERTICES(A)

5: dy < lla=b[, dy o —c|, d. < [lc—d]
6 s+ i(d, +dy,+d,)

7 A<—\/S<S_da)<8_db>(s_dc)
8 if A =0 then

9: continue

10: else if % < « then

11: B+ BUA

12: end if

13: end for

14: return B

15: end function

In Line 2 of Algorithm A.2, the set of Delaunay triangles 2 is computed for the point
set (), and the set B comprising the triangular regions of the alpha shape is initialized
as the empty set. In Line 4, the function GETVERTICES(A) is used to obtain the vertex
positions of the triangle A. In Line 5, the Euclidean edge distances are computed for the
triangle A. In Line 6, the semiperimeter s of the triangle A is computed. In Line 7, the
area of the triangle A is computed via Heron’s formula. In Line 11, if the circumscribed
radius of the triangle is less than the constant «, the triangle is unioned with the set B
describing the alpha shape. In Chapter 4, « is always taken to be 5(Ax 4+ Ay)/2, where

Ax and Ay are the spacings used to discretize the z- and y- dimensions, respectively.
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Appendix B

Appendix to Chapter 5

B.1. Derivation of (P(r))’s Dual

A straightforward method to derive the dual of (P(r)) is via Lagrangian duality, i.e.,

£ Jh) = h B.1
max min £(g*,¢”, h) = maxg(h), (B.1)
where £ is the Lagrangian of (P(r)) with dual variables h (corresponding to flow conser-
vation constraints), and g(h) is the Lagrangian dual function (to later be maximized).

Following the notation of (P(r)), described in Section 5.3.3, its Lagrangian is written as

L,r, o s
L(g",q,h): Zh E [H——a(q‘DH _(hi_hj>q:{:|

ed

=(1,j)eAHES
+Z [ )1+ (RS — b )q_] + Z [ﬂ(qﬂ”a —(h; — h-)qﬂ
a T+ale i~ hila | (B2)
a:=(1,j)EA: zeS a:=(1,j)€Aeg
+Z[ 1+°‘+(h—h)qa}.
=(i,7)€A: zeﬂ

Observe that Equation (B.2) is highly separable in ¢f. As such, minimization over
gt in Equation (B.1) is straightforward. To derive g(h), it suffices to minimize each
component of the second through fifth sums over their corresponding g+ while imposing

nonnegativity on ¢=. Note that all terms are of the form - (qa ) e +tqE, where b > 0
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and the sign of ¢ is unknown. There are two possibilities: if ¢ > 0, the component is
nondecreasing in ¢ over ¢& > 0, which implies its minimum is attained at g& = 0.
Otherwise, if ¢ < 0, the function is decreasing at ¢; = 0, attains its minimum, then
starts increasing. This minimum is attained at the stationary point ¢ = § —%. In this

case, after simplification, the minimum value of the corresponding component is thus

(ira?) <_£>Ha ~ . <_%a- (B.3)

Next, note that the second and third, as well as the fourth and fifth terms of the

sums in Equation (B.2) can be paired such that the b coefficients of each term are the

same, while the t coefficients are opposite. That is, one term (with nonnegative t) has
a minimum at zero, while the other has a minimum equal to the right-hand side of

Equation (B.3). Since the sign of ¢ is unknown, |t| is thus used instead to write g(h) as

E : a |h—hyltte E : |y — byl e
_E hid; — : (B.4)
I+a /L., I+a ¢ L r

€7 a—(i,j)eicS = (i,j)eAsied

Rewriting the absolute value terms, the dual problem becomes equivalent to (D(r)).

B.2. Physical Interpretation of Strong Duality

Four sums appear in the objectives of (P(r)) and (D(r)). Each of these sums can be
thought of as having a unique physical connotation. This implies some overall physical

meaning of the strong duality constraint. To begin, let this constraint be expanded as

fe(q) — fp(h) = f1(q) — fa(q) + f3(AR) + f4(h) <O0. (B.5)

Consider the first summation,

filg) = 37 el [(ghy e+ (gt (B.6)

aeﬂl+a

The terms involved are similar to those appearing in the head loss relationships, where

L,r,(¢5)® (conventionally in units of length) can be interpreted as the energy per unit
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weight of fluid lost to friction between the moving water and the interior wall of the
pipe. Thus, up to a multiplicative constant, L,7,(q )¢ can be interpreted as the rate
of heat transference (i.e., power) between the volume of water and the interior wall of
the pipe. This sum can then be interpreted as all power losses from friction of the pipe.

Next, consider the second sum appearing in the primal problem, (P(r)). That is,

Fa) = B ) 4o (B.7)

€S acs;

Here, each head hj is static and can be viewed as the amount of energy per unit weight of
water available for extraction from the reservoir. Thus, its product with the reservoir’s
(outgoing) flow can be interpreted, again up to a multiplicative constant, as the power
generated by the reservoir. The sum of all contributions in Equation (B.7) is thus
proportional to the power supplied to the network in terms of elevated reservoir flow.

Next, consider the first sum appearing in the objective function of (D(r)). That is,

1 1 1
f5(Ah) = 5 _(: - ; T (AR S + (Ahg =] (B.8)

Here, each Ah denotes the difference in energy per unit weight between adjacent nodes.
Each term thus represents, up to a multiplicative constant, the power loss along the pipe
in the form of a head differential (i.e., not losses to heat from friction). The sum denotes
the total loss in usable power across the network, represented in terms of head differences.

Finally, consider the second sum appearing in the objective function of (D(r)), i.e.,

fa(h) = Z hid. (B.9)

ed

Here, each demand is fixed, while the energy per unit weight h; at each junction can
vary. Using an argument similar to that of Equation (B.7), this sum thus denotes, up
to a constant, the power demanded across all junctions, in terms of their low demands.

Combining interpretations, the strong duality constraint can be thought of as encoding
(frictional loss) 4 (realized loss) + (demand) < (generation), (B.10)

which implies the conservation of power, with an inequality replacing the usual equality.
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B.3. Application of an MICP Solver to (MICP-E)

As discussed in Section 5.4.2, (MICP-E) is a valid reformulation of the design prob-
lem, but for the reason of efficiency, we do not recommend this problem be solved di-
rectly. As [110] discovered in the development of their design algorithm, a MILP outer
approximation-based approach seems to be the most efficient technique for solving prob-
lems of this type. For this reason, the inner problem of the algorithm we ultimately
propose is a MILP relazation of (MICP-E). Furthermore, for checking the feasibility of
solutions, we use (P(r)) (not (CP(r))), similar to [110]. Thus, in practice, our study
never suffers from the loss of guarantees associated with empty interior subproblems.
That being said, anecdotally, we have found no numerical implications of the empty
interior property when applying direct solvers to (CP(r)) and (MICP-E). To show this,
we provide a numerical example, which solves the (MICP-E) formulation of the small
shamir instance directly. The convergence profile of this example is shown in Figure
B.1. The example solves this instance using the MICP solver JUNIPER [82]. Within
JUNIPER, IPOPT version 3.13 is employed as the underlying NLP solver. First and
foremost, the solver converges to the known optimal objective value of 419,000. Second,
we note that optimality is proven after over seven hours, supporting our claims that (i)
the direct solution of (MICP-E) is challenging and (ii) a MILP relaxation is beneficial.
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Figure B.1: Direct solution of (MICP-E) on the shamir instance using Juniper.
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We have not examined the scaling of direct methods on instances larger than shamir
due to the extremely large solve times that would be required. We thus cannot con-
clusively state that direct solution of (MICP-E) on larger instances will perform in a
numerically stable manner. We expect that either (i) direct methods work “out of the

box,” as JUNIPER does for shamir, or (ii) an epsilon-relaxed reformulation is required.

B.4. Modified Global Optimization Algorithm

Algorithm B.1 LP/NLP-BB algorithm for solving (MINLP)/(MICP-E).
r* < InitialSoln (Algorithm 4 of [110]); n* <> _, L X0

acarfl
: (q, h,Ah, 2, y) < Solve (MICP-E) with 0 < z < 1 using an NLP solver.
TR < argmat,ep. {Lap(cjgp)o‘} ,Vae A; O« {q3,. }, Va€ A.
rE < argmaz,eq, {p(@5,)T}, Va € A; ONL® {dor }, Va € A

1:

2

3

4 o

B: i 4 argmar,cg {%W(A?z(fp)'wi} , Ya € A, ?(DF — {Aﬁﬁr} Va e A.
6: Add > _ L, Zpe,/&,a CapZap = Danen La Zpe,/‘,u CapZap 10 (MIP-E).

7: while A(MIPA’—ER) termination criteria is not satisfied do

8 (G, h, Ah, z,y) < Solve the current nodal linear subproblem of (MIP-ER).
9 N2 genLaper, CapZap:

10: if z,, €B, Ya€ A, Vp € X, then

11: T, €E{PE R, 2., =1}, Va € A

12: (G, h) < Solve (P(r)).

13: if g<§<gand h <h<h then

14: R SRR ) DI IR

15: 0« 0% U{+q,},Ya € A:+q, > 0.

16: ONL= « ONL= U {44, }, Va € A+ £, > 0.

17: f[lj,Li < f[;j,Li U{+Ah,}, Ya € A:+Ah, > 0.

18: else B

19: X+ X U{z} (i.e., add a feasibility cut that removes Z2).
20: (repaired, r) <— Repair(r,n,n*) (Algorithm 3 of [110]).
21: if repaired then

22: et Y LaCars -

23; (4, h) « Solve (P(r)).

24: Q% < 95 U{£q,}, Va€ A:£q, > 0.
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... Continuation of Algorithm B.1.

25 ONL=  ONL= U {44, }, Va € A+ £, > 0.

26: NV TNV U {£AR,}, Ya € A £AR, > 0.
27: end if '

28: end if

29: else if (node index) mod J = 0 then

30: NodeCutsNew (7, 7, m, (q, h,Ah, 2, y), True).

31: raeargmin{éapzﬁ :pejea}, Va € A.

32: (repaired, ) < Repair(r,iter™ ™, n*) (Algorithm 3 of [110]).
33: if repaired then

34: R ) DI J R

35: end if

36: else o

37: NodeCutsNew (7,7, m, (¢, h, Ah, Z,y), False).

38: end if

39: n < 1.

40: end while

Algorithm B.1 modifies the algorithm of [110] to define the global optimization al-
gorithm of Chapter 5. Portions that substantially modify the original algorithm are
denoted by blue colored font. The algorithm begins in Line 1 by heuristically generat-
ing a feasible solution via Algorithm 4 of [110] and storing the corresponding resistances
r* and initial objective n*. It also initializes the set of encountered infeasible designs x
to the empty set. Line 2 solves the root relaxation of (MICP-E) via a nonlinear pro-
gramming algorithm (e.g., IPOPT of [142]). Lines 3 through 5 use the root relaxation’s
solution to generate initial linear outer approximations. In each cut, outer approxima-
tion points are chosen to coincide with maximal values of the corresponding nonlinear
terms. Finally, since the root relaxation of (MICP-E) provides a lower bound on the
optimal objective, Line 6 imposes this bound explicitly on the objective of (MIP-ER).

Line 7 begins the search of a MILP solver, where termination criteria comprises a
minimal optimality gap or a time limit. Line 8 obtains the relaxation solution for
the current node in the search tree. Line 9 computes the objective corresponding to
this solution. Line 10 checks if the current BB node’s resistance choice solution is
integer. If so, Line 11 obtains the corresponding active resistance parameters. Using

these resistances, Line 12 solves (P (7)) to obtain its primal and dual solutions, ¢ and h,
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respectively. This solution is then compared against variable bounds in Line 13.

If bounds are satisfied, Z is feasible for (MICP-E), and in Line 14, the incumbent is
updated. If the solution is physically feasible, Lines 15 through 17 add outer approxima-
tions using the corresponding solution of (P(r)). Otherwise, if the design is not feasible,
Line 19 adds a traditional combinatorial no-good feasibility cut. In Line 20, Algorithm
3 of [110] is called in the attempt to heuristically recover a new feasible incumbent solu-
tion by “repairing” infeasibilities of the design Z, where n denotes the (fixed) maximum
number of repair iterations to be used by the procedure. If the solution was repaired,
as indicated in Line 21, then a new incumbent was found, which is updated in Line 22.
Using the resistances from this design, Line 23 solves (P(r)) to obtain the exact physical
solution of the network. Then, in Lines 24 through 26, additional outer approximations
are appended to (MIP-ER) based on the physical solution corresponding to the design.

If the design solution is not integral, Line 29 serves as a possible entry point for
adding outer approximations to (MIP-ER) and heuristically discovering new solutions.
In this case, if the integer index of the BB node is divisible by some integer J, these
routines are called. In Line 30, Algorithm B.2 is called, which adds outer approximations
based on the relaxation solution at the current BB node. This algorithm is described
in Appendix B.5. Then, in Line 31, a heuristic resistance solution is prepared, which
selects from active resistances in the current relaxation solution. The repair algorithm is
then invoked on this (inexpensive but presumably infeasible) network design in Lines 32
through 34. For greater detail, this heuristic procedure is developed and elaborated upon
by [110]. Otherwise, if both the design solution is fractional and the above heuristic is
not activated, Algorithm B.2 is called on Line 37, which conditionally refines (MIP-ER)’s
outer approximations using the solution of the relaxation at the current BB node.

Finally, on Line 39, the objective at the current BB node, 7, is stored as 7 for use
within algorithmic methods of the next node. Specifically, both the current objective 7)
and previous objective 7] are used in a conditional step of Algorithm B.2 to determine
whether new outer approximations should be added to the master problem, (MIP-ER).

Algorithm B.1 is similar to the algorithm of [110] but differs in a few important
respects. First, in Lines 3 through 5, initial outer approximations are based on the
root relaxation of (MICP-E), whereas the algorithm of [110] uses the root relaxation of
(MICP-R). Second, the algorithm of [110] only applies outer approximations similar to

Constraints (5.22), which correspond to head loss relaxations. Algorithm B.1 extends
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this by adding outer approximations of terms appearing in the strong duality Constraint
(5.27). Lastly, Line 30 ensures outer approximations will occasionally be added to
(MIP-ER). The conditions in [110] (and their NodeCuts) are more restrictive.

In Chapter 5, implementations of the new and previous algorithms required some
modifications, as necessitated by feature limitations of JUMP. First, the depth of a
node in the BB tree (m in Algorithm B.1) is used as a parameter in both algorithms but
is not easily accessible via JUMP. Thus, the number of unity-valued components of z at
a node in the BB tree is used instead. Additionally, a number of modifications are made
to the algorithm of [110] to ensure fairer comparison with Algorithm B.1. The most
substantial of these are as follows: (i) initial outer approximation points are taken from
the root relaxation of (MICP-E); and (ii) similar to Lines 29 through 35 in Algorithm
B.1, the heuristic and NodeCuts methods are called every J nodes. Aside from these

small modifications, the algorithm of [110] is nearly reproduced in its entirety.

B.5. Modified NodeCuts Algorithm

Algorithm B.2 modifies the NodeCuts algorithm of [110] to define Chapter 5’s imple-
mentation. Portions that substantially modify the original are denoted by blue font.
The method requires five parameters: 7), the objective value of the previous BB node’s
relaxation solution; 7), the objective value at the current node; m, the depth of the
current node; (¢, h,Ah, 2, ), the relaxation solution at the current node; and Force, a
Boolean variable describing whether or not to force the addition of cuts. Line 1 begins
by checking three conditions. First, a random number uniformly generated between
zero and one is compared against the term [,,27", where 3, is a positive parame-
ter. This encourages cuts to be added near the top of the search tree. The second

- > g

n oa’

condition, computes the relative change in the objective value between
successive nodes and compares it with the positive constant K_,. This encourages cuts
to be added only when the solution has significantly changed. Finally, Force allows the
algorithm to override the previous conditions, as used in Line 30 of Algorithm B.1.

If conditions have been satisfied, the algorithm proceeds in Line 2 by looping over
all arcs. In Line 3, if the relaxed flow solution along an arc is overall positive, cuts for
positive flow are potentially added in Lines 5, 7, and 9. The reference resistances for

each of these cuts, r,, are independently computed in Lines 4, 6, and 8, where each
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Algorithm B.2 NodeCutsNew (7

1, (q,h Ah Z,%), Force)
12 if [(rand ([0,1]) < B,,27™) A (\f? i

)] V Force = True then

2: for a € A do
3: if y, > 0.5 then
4: Tq € ATgMaTpc g {Lap((jgp)o‘}
e ~ ~ ~
5: if L, (5,)" — Ahi,, | > € then 07, « OF, U{g;,, } end if
6: ry < argmaz,eq {p(q,) "}
/. 1+«
7 if % — @ > € then Q\]L+ — QNL+ U {dqs, } end if
8: To < Qrgmaz,c { (\}E(Aisz)l*f}
. (Aha,a)l‘% 7 NL NL NL T .
9: if iy T Ahg | > € then J(,"" « H ;" U{Ahg, } end if
10: else
11: Tq ¢ ATgMATpc . {L.p(G)}
(0% ~
12: if \L,r, (Gor,) — Ahyg, ar. U{ds,, } end if
13: Ty < Argmaz,c {p((];p)H”}
> 1+ _
14: if % — QSIL’ > € then O~ « Qa, U{4,,, } end if
15: Tq ¢ Qrgmaz,cq. { (Ahap) }
. Ahg, )tE > .
16: if | 1::) ’)\ﬁ — ARNE| > € then }[Sf} — }[EI,L U {Ahm } end if
17: end if
18: end for
19: end if

corresponds to the maximum nonlinear term given the current relaxation solution. The
conditionals on Lines 5, 7, and 9 imply these cuts will only be added if the relaxation
solution deviates substantially (greater than a violation of some small constant, €) com-
pared to the solution of a corresponding nonlinear formulation. This limits the number
of cuts being added by ensuring that only constraints with significant violations will be
linearized. In Lines 11 through 16, the process is analogously completed for arcs where
flow along that arc is overall negative. Parameters of Algorithms B.1 and B.2 coincided
with those used by [110], namely, 8,, = 5, J = 500, K,, = 1073, n = 50, and ¢ = 107°.
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