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ABSTRACT

This thesis presents a search for new resonances decaying to diphotons in 139 fb−1

of proton-proton collision data produced by the Large Hadron Collider at a center of

mass center of mass (COM) energy of
‘

s = 13 TeV. The search was performed in the

mass distribution of the detected diphotons using well-tested models for the signal

and background line shapes. Functional Decomposition, a new data driven modeling

and bump hunting technique inspired by Fourier analysis, was used minimize the

uncertainties in the procedure. No new diphoton states are found. New improved

95% confidence level upper limits are placed on the production rate of possible new

diphoton states too small to confidently measure with the available data.
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CHAPTER I

Introduction

In 1897 the electron was discovered by J. J. Thompson. Since then an effort of

tens of thousands of scientists around the world has lead to the discovery and study

of an entire world of subatomic particles. In the mid 1970’s the Standard Model of

Particle Physics, a quantum field theory (QFT) which describes the properties and

interactions of these particles, took its current form. Over the decades, the Standard

Model (SM) has stood up to countless experimental tests, and in 2012 the final missing

particle, the Higgs boson, was discovered. However, despite its success in explaining

and making predictions about the subatomic world, we know that the SM cannot be

complete since there are a number of phenomena in nature that it fails to explain,

including quantum gravity, dark matter, and dark energy.

In an effort to explain these phenomena, and others, many new extensions of

the SM have been proposed. Most of these extensions include the existence of new

particles or new interactions between known particles. A traditional way of searching

for new particles is by looking for local excesses, called resonances, in an invariant

mass spectrum of n objects. If a new particle exists and decays to these n objects,

then there would be an excess of events forming a resonance whose invariant mass

corresponds to the mass of the decaying particle.

This thesis presents the search for new resonances in the diphoton invariant mass
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spectrum. It is performed using the Run-2 data collected at the Large Hadron Collider

(LHC) using the ATLAS detector between 2015-2018. This search focuses on narrow

width signals, that is signals whose inherent width is much smaller than the resolution

of the detector. Two techniques for measuring excesses in the invariant mass spectrum

are explored. One technique is performed by fitting the spectrum simultaneously with

ad-hoc functions representing the background and signal shapes. The other technique

is called functional decomposition (FD) and is inspired by Fourier analysis. It uses a

set of orthogonal functions built from integer powers of the exponential function to

model a smoothly falling spectrum. A spectrum is modeled as a linear combination of

orthogonal functions, which allows any probability density function (pdf) on a semi-

infinite interval to be described with arbitrary precision. This ability to describe any

invariant mass spectrum with arbitrary precision gives FD an advantage in reducing

systematic uncertainties associated with the degree to which a model is capable if

capturing the true shape of the underlying pdf. Both delocalized backgrounds and

localized signals can be modeled using FD. The delocalized backgrounds are modeled

using the lower order terms while localized signals are modeled using mostly the

higher order terms.

The remainder of this thesis is organized as follows. Chapter 2 describes the SM

and introduces some of its extensions which are needed to describe the existence of

new particles. Chapter 3 gives details about the LHC and the ATLAS detector.

Chapter 4 describes hows photons are measured by the ATLAS detector. Chapter

5 gives additional details about the production of diphoton events, events which

fake diphoton events, and theoretical predictions for new phenomena in diphoton

production. Chapter 6 gives an overview of mass resonance search techniques and past

results. Chapter 7 describes the simulated samples used in this analysis. Chapter 8

gives details of the analysis event selection, background modeling and signal modeling.

Chapter 9 describes in detail FD and how it is used to make a data driven signal

2



plus background model. Chapter 10 describes the systematic uncertainties in the

analysis. Chapter 11 describes the search for new resonances in the diphoton spectrum

using FD. Finally, Chapter 12 summarizes and draws conclusions from the results of

Chapter 11 and describes future prospects for FD.
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CHAPTER II

The Standard Model of Particle Physics

There are four fundamental forces in nature: the strong force, the electromagnetic

(EM) force, the weak force, and gravity. The strong force is responsible for holding

the nucleus of an atom together. The EM force is responsible for binding electrons to

atoms. The weak force is responsible for the radioactive decays of atoms. Gravity is

responsible for collecting atoms into large celestial bodies. Some properties of these

forces are shown in Table 2.1.

Force Relatative Strength Range Force Carriers
Strong 1 10−15 m Gluons g

Electromagnetic 10−2 ∞ Photons γ
Weak 10−6 10−18 m Heavy gauge bosons W±,Z

Gravitional 10−38 ∞ Gravitons G

Table 2.1: Properties of the four fundamental forces

The SM of particle physics is the mathematical framework which explains three of

the four fundamental forces (excluding gravity) and how they interact with matter. It

describes how fermions, the particles of matter, gauge bosons, force carrying particles,

and a scalar boson, an excitation of the quantum field responsible for giving particles

mass, interact to create the world we live in.

The remainder of this chapter begins by describing the particles of the known

subatomic world and their interactions with each other. Since this thesis presents
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a diphoton search, particular attention is paid to describing the properties and in-

teractions of the photon. Next it gives a brief overview of the limitations of our

current understanding of the subatomic world, and it ends by describing models for

new physics which solve some of these limitations and predict diphoton final states.

2.1 Fermions

Fermions are the matter particles of the Universe. They are spin-1/2 point parti-

cles which are divided into two groups, quarks and leptons. Both quarks and leptons

come in three generations and six flavors which differ by mass, electric charge, and

other quantum numbers. In addition fermions have a property known as chirality

which comes in two values left handed and right handed. When a fermion is ro-

tated in space the phase of its wavefunction will shift, the sign of the phase shift is

determined by the particle’s chirality.

2.1.1 Leptons

There are three electrically neutral and three electrically charged leptons. The

electrically charged leptons are the electron (e−), muon (µ−), tau (τ−) and their

antiparticles. The electron is the lightest of the electrically charged leptons, next is

the muon, and finally the tau. Their generations are numbered according to increasing

mass, that is the electron is in Generation I, the muon is in Generation II, and the

tau is in Generation III. The electrically charged leptons participate in the EM force,

the weak force, and the gravitational force.

The electrically neutral leptons are the electron neutrino (νe), muon neutrino (νµ),

tau neutrino (ντ ) and their antiparticles. Their generations are numbered according

to the generation of their associated charged lepton, that is the electron neutrino is in

Generation I, the muon neutrino in Generation II, and the tau neutrino in Generation

III. Neutrinos participate in the weak force and the gravitational force, however since
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Quark Symbol Mass
up u 2.16+0.49

−0.26 MeV/c2

down d 4.67+0.48
−0.17 MeV/c2

charm c 1.27± 0.02 GeV/c2

strange s 93+11
−5 MeV/c2

top t 172.9± 0.4 GeV/c2

bottom b 4.18+0.03
−0.02 GeV/c2

Table 2.2: Masses of the quarks (Tanabashi, M. et al., 2018).

they are electrically neutral they do not participate in the EM force.

2.1.2 Quarks

Quarks are the only SM particle to participate in all four of the fundamental

forces. They come in six flavors: up (u), charm (c), top (t), down (d), strange

(s), and bottom (b). The up and down quark make up Generation I, the charm

and strange quark make up Generation II, and the top and bottom quark make up

Generation III. The u, c, and t quarks are known as up-type quarks and have electric

charge Q = +2/3. The d, s, and b quarks are known as down-type quarks and have

electric charge Q = −1/3. The masses of the quarks are summarized in Table 2.2.

The quarks carry what is known as color charge, an inherent property of the quark

comparable to electric charge. There are three colors red, green, and blue, and three

anticolors antired, antigreen, and antiblue. They exist in colorless bound states,

known as hadrons. There are two types of hardons, mesons and baryons, illustrated

in Figure 2.1. Mesons typically comprise a quark and antiquark pair while baryons

are typically composed of three quarks or antiquarks∗.

∗ There are exotic mesons of four or five quarks in a bound state known as tetraquarks and pen-
taquarks respectively. There have been recent experimental evidence consistent with the existence
of these particles (Aaij et al., 2015).

6



(a) Proton (p) (b) Pion (π0)

Figure 2.1: Cartoon of a hadrons. (a) Baryons are composed of three quarks or three
antiquarks. Each (anti)quark must carry a different (anti)color to make a colorless
state. (b) Mesons are composed of a quark and antiquark of complimentary color and
anticolor to make a colorless state.

2.2 Bosons

Bosons are particles whose spin is an integer value. There are five bosons in the

SM, the Higgs boson, photon, gluon, and Z and W± bosons. The Higgs boson is an

electrically neutral massive scalar boson, i.e. it is a spin-0 particle. The photon and

gluon are both massless vector bosons, i.e. they are spin-1 particles, while the W±

and Z bosons make up the massive vector bosons. Table 2.3 shows the properties of

the bosons.

Name Symbol Mass (GeV/c2) Spin Full Width (GeV/c2)
Photon γ 0 1 Stable

W Boson W± 80.379± 0.012 1 2.085± 0.042
Z Boson Z 91.1876± 0.0021 1 2.4952± 0.0023

Gluon g 0 1 Bound in hadrons
Higgs h 125.10± 0.14 0 < 0.013

Table 2.3: Properties of the bosons (Tanabashi, M. et al., 2018).

2.2.1 The Photon

The photon is the particle of light and the massless force carrier for the EM force.

It is a spin-1 particle, and since it is massless there is no Sz = 0 spin projection. The

interaction between photons and matter are described by a theory called Quantum
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Electrodynamics (QED). In QED photons couple to fermions which have non-zero

electric charge. The Lagrangian of QED is written

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.1)

Dµ = ∂µ + ieAµ (2.2)

Fµν = ∂µAν − ∂νAµ (2.3)

where γµ are the Dirac matrices, ψ is the field associated with an electrically charged

fermion, ψ̄ = ψ†γ0 is the Dirac adjoint and ψ† is the Hermitian Conjugate of ψ, e is

the coupling constant equal to the electric charge of the particle, m is the mass of the

particle, Aµ is the covariant four potential of the EM field.

2.2.2 The W± and Z Bosons

The W± and Z bosons comprise the massive vector bosons. They are the force

carriers of the weak interaction. Because of their large masses, mW± = 80.379 ±

0.012 GeV/c2 and mZ = 91.1876 ± 0.0021 GeV/c2, the W± and Z bosons have

extremely short lifetimes of approximately 10−25 seconds and the range of the weak

interaction is limited to approximately 10−18 meters (Tanabashi, M. et al., 2018).

Only left handed particles couple to the W± boson. A particle that absorbs or

emits a W± boson will change electrical charge and spin by one unit, as well as

changing its flavor. For example a d quark that emits a W− will be transformed into

a u quark. This leads to nuclear decay since the quarks that make up the nucleus of

the atom may absorb or emit a W± boson, transforming a proton to a neutron or vice

versa. The full decay width the W± boson is Γ = 2.085±0.042 GeV/c2 (Tanabashi, M.

et al., 2018). It decays to either a lepton and antilepton or to a quark and antiquark

of opposing types, that is a up-type and down-type.

The Z boson is its own antiparticle. It couples to both left handed and right
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handed fermions but with different strengths. A particle that absorbs or emits a Z

boson will not change flavors or electrical charge, only spin and momentum. The full

decay width is Γ = 2.4952 ± 0.0023 GeV/c2 (Tanabashi, M. et al., 2018). Since it is

electrically neutral it decays to a fermion and its antiparticle to conserve charge.

2.2.3 The Higgs Boson

The Higgs boson is the only fundamental scalar in the SM. It is a quantum

excitation of the Higgs field, the field responsible for giving mass to the massive vector

bosons and fermions. Discovered in 2012, its mass is mh = 125.10 ± 0.14 GeV/c2,

and has an extremely narrow decay width of Γ < 0.013 GeV/c2 (Tanabashi, M. et al.,

2018). The Higgs couples to all the massive elementary particles of the SM and so has

many decay channels. It can also decay into massless gauge bosons, but requires an

intermediate loop of a virtual quark or massive vector boson, as shown in Figure 2.2.

These decay modes enabled the diphoton channel to be used as one of the discovery
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Figure 2.2: Feynman diagrams of the Higgs boson decaying into massless gauge
bosons.

channels of the Higgs boson.
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2.2.4 The Gluon

Gluons are the particles responsible for holding the nucleus of an atom together.

They couple to particles which carry color charge. The gluons themselves carry one

unit of color and one unit of anticolor, and so are self interacting. However the color

singlet state of a gluon does not exist, that is if one were able to measure the color

of a gluon, a gluon in the color singlet state would have an equal probability of being

red-antired, blue-antiblue, or green-antigreen. Gluons exist in a super position of

eight states described by the color octet. There are many ways of representing these

states but a commonly used list is:

(rb̄+ br̄)/
‘

2 −i(rb̄− br̄)/
‘

2

(rḡ + gr̄)/
‘

2 −i(rḡ − gr̄)/
‘

2

(bḡ + gb̄)/
‘

2 −i(bḡ − gb̄)/
‘

2

(rr̄ − bb̄)/
‘

2 (rr̄ + bb̄+ 2gḡ)/
‘

6

These states are linearly independent and cannot be combined to form the color

singlet state. A visualization of the color octet is shown in Figure 2.3.

2.3 The Standard Model of Particle Physics

The SM is a relativistic QFT that can be written as the product of the symmetry

groups

SU(3)C × SU(2)L × U(1)Y (2.4)

where SU(n) are the Special Unitary groups, and U(n) are the Unitary groups. Each

group represents a symmetry, that is a set of transformations which when applied to

a physical system leaves it unchanged. U(1)Y represents the group of phase rotations
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Figure 2.3: Visualization of the color octet.

on a single complex variable, while SU(2)L and SU(3)C represent the groups of phase

rotations on two and three complex variables respectively.

Each symmetry group is associated with a quantum number, sometimes called

a charge, as well as one or more gauge bosons. The number of gauge bosons will

match the number of generators for a particular group. The U(1)Y group’s charge,

denoted by Y , is called weak hypercharge. Since U(1)Y has one generator it has one

gauge boson called B. One of the SU(2)L group’s charges, denoted by T , is called

weak isospin, and because SU(2)L has three generators it has three gauge bosons

called W a=1,2,3. Note that the subscript L here stands for left since only left handed

fermions obey this symmetery. Color charge is associated with SU(3)C and comes

in six values: red, green, blue, antired, antigreen, and antiblue. Since there are eight

generators for SU(3)C there are eight gauge bosons for this groups called gluons and

are represented by Ga=1,2,...,8.

The EM and weak interactions are unified in a theory developed by Glashow,

Salam, and Weinberg (Glashow , 1959)(Salam and et al , 1964)(Weinberg , 1967). Al-
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though these seem like two very different forces, at high enough energies, above about

246 GeV, they merge into a single force known as the electroweak (EW) force.

2.3.1 The Electroweak Interaction

All fermions participate in the EW interaction, however how they participate is

quite different. All fermions carry the U(1)Y hypercharge Y , but only pairs of left

handed fermions, called doublets, transform under the SU(2)L weak isospin T . Right

handed fermions are electroweak singlets, that is they do not transform under SU(2)L.

The left handed doublets are writtenνe
eL

 ,

νµ
µL

 ,

ντ
τL

 ,

uL
dL

 ,

cL
sL

 ,

tL
bL

 , (2.5)

while the right handed singlets are written

eR, µR, τR, uR, cR, tR, dR, sR, bR. (2.6)

The physical gauge bosons of the EW interaction, γ, W± and Z boson, are written

as combinations of the B and W a=1,2,3 bosons

W+ =
1

‘

2

(
W 1 − iW 2

)
(2.7)

W− =
1

‘

2

(
W 1 + iW 2

)
(2.8)

Z = cos θW ·W 3 − sin θW ·B (2.9)

γ = sin θW ·W 3 + cos θW ·B (2.10)

where θW is known as the Weinberg angle.

Through interactions with the W± boson, the doublets are rotated in SU(2)L

space, and can transform up type elements to down type elements and vice versa.
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These interactions along with the interactions between the γ/Z boson and the fermions

together constitute the EW force. Figure 2.4 shows the Feynman diagrams for EW

interactions.

γ

f

f

(a) γff

W±

ν

l

(b) W±lν

W±

q

q

(c) W±qq

Z

f

f

(d) Zff

γ

W+

W−

(e) γW+W−

Z

W+

W−

(f) ZW+W− Z

Z

W+

W−

(g) ZZW+W−

W+

W−

W+

W−

(h) W+W−W+W− γ

γ

W+

W−

(i) γγW+W− γ

Z

W+

W−

(j) γZW+W−

Figure 2.4: Feynman diagrams for EW interactions

The EW charges of the fermions are shown in Table 2.4.

2.3.2 Spontaneous Electroweak Symmetry Breaking

A viable theory to describe the EW interaction must explain the following exper-

imental facts:
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Generation Electroweak Charge
I II III Y T3 Q

Quarks

uL cL tL 1/3 1/2 2/3
dL sL bL 1/3 -1/2 -1/3
uR cR tR 4/3 0 2/3
dR sR bR -2/3 0 -1/3

Leptons
νeL νµL ντL -1 1/2 0
eL µL τL -1 -1/2 -1
eR µR τR -2 0 -1

Table 2.4: Electroweak charges of the SM fermions.

1. γ couples to left handed fermions and right handed fermions with the same

strength

2. Z couples differently to left handed fermions and right handed fermions

3. W± couples only to left handed fermions

The theory must also be consistent with experimental tests of the relative strengths of

fermion-antifermion-vector couplings and the ratio of the W± and Z masses. These

features are all explained by the sponaneously broken gauge theory known as the

Standard Model of Electroweak Interactions. The gauge symmetry breaking can be

written

SU(2)L × U(1)Y → U(1)EM. (2.11)

This is achieved by introducing the Higgs field, a complex scalar SU(2)L doublet

Φ =
1

‘

2

φ1 + iφ2

φ3 + iφ4

 =

φ+

φ0

 . (2.12)

The Higgs potential can be written

V (Φ,Φ†) = µ2Φ†Φ + λ(Φ†Φ)2 (2.13)
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since the combination Φ†Φ is a gauge singlet. That is, since under gauge transforma-

tions Φ transforms as

SU(2)L : Φ(x)→ Φ′(x) = eiθ
a(x)σa/2Φ(x) (2.14)

Φ†(x)→ Φ†
′
= Φ†e−iθ

a(x)σa/2 (2.15)

U(1)Y : Φ(x)→ Φ′(x) = eiθ(x)Φ(x) (2.16)

Φ†(x)→ Φ†
′
(x) = Φ†e−iθ(x) (2.17)

the product Φ†Φ is constant. In the case that µ2 > 0 there is a local minimum at

Φ =
(

0
0

)
. However, if µ2 < 0 then symmetry is broken and the minimum is located in

the valley |Φ| =
b

−µ2

2λ
. The value of this minimum is called the vacuum expectation

value (VEV). A visualization of the Higgs potential can be seen in Figure 2.5.

(a) (b)

Figure 2.5: Higgs potential with (a) µ2 > 0 and (b) µ2 < 0

Without loss of generality, the VEV of Φ can be chosen to be real and entirely in

the electrical neutral component of the Higgs field:

〈0|Φ|0〉 =
1

‘

2

0

v

 (2.18)

this is because one can always achieve such an arangement by performing an SU(2)L

gauge transformation. The Higgs field has two complex scalar degrees of freedom, so

15



it can be written

Φ(x) =
1

‘

2

 0

v + h(x)

 eiG
a(x)σa/2v (2.19)

and by performing an SU(2)L gauge transformation with θa = −Ga/v, known as the

unitary gauge, it can be written

Φ(x) =
1

‘

2

 0

v + h(x)

 (2.20)

eliminating Ga, the would be Goldstone bosons, completely.

2.3.2.1 Vector Boson Mass

Using Φ to build the kinetic term of the Higgs Lagrangian density gives

LΦ kinetic = DµΦ†DµΦ =
1

2
∂µh∂

µh+
(v + h)2

4

[
g2W+

µ W
−µ +

1

2
(g2 + g′

2
)ZµZ

µ

]
(2.21)

where g and g′ are the coupling constants associated with SU(2)L and U(1)Y re-

spectively. The terms proportional to v2 give the mass for the Z and W± bosons,

while the terms proportional to h and h2 describe the interactions between the Higgs

boson and the massive vector bosons. There is no mass term for photon field Aµ,

demonstrating that the photon remains massless, in agreement with the fact that the

U(1)EM symmetry remains unbroken. The ratio of the W± and Z boson masses can

be written as

mW/mZ = cos θW (2.22)

16



in agreement with experimental data.

2.3.2.2 Fermion Mass

Another gauge invariant term one can build with the Higgs uses a SU(2)L singlet,

its corresponding SU(2)L doublet, and the Higgs field, and can be written

Ld Yukawa = −yd
(
ūL d̄L

)φ+

φ0

 dR + h.c. (2.23)

where yd is a Yukawa coupling, and u and d represent up type (i.e. u, c, t, νe, νµ,

ντ ) and down type (i.e. d, s, b, e, µ, τ) fermions. The SU(2)L doublets,
(
ūL d̄L

)
and the Higgs field, carry weak hypercharge Y = +1/2, while the SU(2)L singlet, dR,

carries weak hypercharge Y = −1, so the term is an U(1)Y singlet. Since the doublets

transform under SU(2)L as

φ+

φ0

→ e−iθ
aσa/2

φ+

φ0

 (2.24)

(
ūL d̄L

)
→
(
ūL d̄L

)
e+iθaσa/2 (2.25)

the term is also an SU(2)L singlet. Going to the unitary gauge the term becomes

LdYukawa = − yd
‘

2
(v + h)(d̄LdR + d̄RdL) (2.26)

= − yd
‘

2
(v + h)d̄d. (2.27)

This procedure works the same with up type fermions (other than neutrinos) as well,

and can be written more generally as

Lf Yukawa = − yf
‘

2
(v + h)f̄f. (2.28)
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Immediately one can read off the fermion mass as

mf =
yfv
‘

2
. (2.29)

Note that there are no right handed neutrinos in the SM, so one cannot build such a

term to obtain neutrino masses.

2.3.2.3 Higgs Mass and Higgs Interactions

Going to the unitary gauge the Higgs potential becomes

V (Φ†,Φ) = −µ
4

4λ
− µ2h2 + λvh3 +

λ

4
h4. (2.30)

The second term is the mass term for the Higgs, and although it can be written

mH =
‘

2λv2, (2.31)

the theory does not predict its mass, since λ is a free parameter. However, from

experiment the mass of the Higgs boson is known to be about 125 GeV.

The third and fourth terms are the Higgs self interaction terms giving both three

and four Higgs vertices. The term proportional to hf̄f from Equation 2.28 describes

how the Higgs interacts with fermions while the terms in Equation 2.21 proportional to

h and h2 describes how the Higgs interacts with the massive gauge bosons. Figure 2.6

shows the Feynman diagrams involving the Higgs boson.

2.3.3 The Strong Interaction

In Quantum Chromodynamics (QCD) quarks carry one unit of the SU(3)C color

charge (antiquarks carry one unit of anticolor) and interact with each other via the

exchange of massless gluons. The gluons themselves carry one unit of color and one
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Z

Z
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h
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h
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h

h

h
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Figure 2.6: Feynman diagrams involving the Higgs boson

unit of anticolor, and so are self interacting. Figure 2.7 shows the Feynman diagrams

of the strong force.

g

q

q

(a) gff

g

g

g

(b) ggg g

g

g

g

(c) gggg

Figure 2.7: Feynman diagrams of QCD

The coupling constant associated with SU(3)C is αs and is related to the four-

momentum transfer Q2 by the relation

αs(Q
2) =

1

b0 ln(Q2/Λ2
QCD)

(2.32)
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where b0 = (11nc − 2nf )/12π, Λ2
QCD is the QCD energy scale, nc is the number of

colors and nf is the number of quark flavors.

For low energies, where Q2 < Λ2
QCD, quarks exist in bound states known as

hadrons. There are two types of hadrons: mesons and baryons. Mesons are com-

posed of a quark, carrying color charge, and antiquark, carrying the corresponding

anticolor charge (e.g. red and antired), so that the meson itself is colorless. Baryons

are comprising a red, green and blue quark (or an antired, antigreen and antiblue an-

tiquark) so that these three quark bound states are also colorless. In fact all hadron

must be colorless. This is due to a phenomonon called color confinement, in which

particles carrying net color charge cannot be isolated.

Since gluons themselves carry color charge, when two bound color charged particles

are separated in space the gluon field binding them forms a narrow flux tube between

them and the force between the particles remains constant. As the two particles are

separated, the potential energy increases until it becomes energetically favorable to

create new quark-antiquark pairs rather than extending the tube further. This leads

to a phenomenon known as hadronization in which high energy quarks and gluons

will form conical sprays of particles, known as jets, as they pass through matter.

For high energies, Q2 > Λ2
QCD, the predictions of QCD are computed pertur-

batively, that is using a power-series expansion in the coupling constant αs. This

is because for large Q2 the coupling between quarks and gluons weakens and they

behave almost like free particles. The simplest perturbative model is known as the

leading order (LO) prediction and uses only the first term of the expansion and is

represented by tree level Feynman diagrams, that is diagrams with order O(α2
s). The

next simplest models are the next to leading order (NLO) predicition and the next

to next to leading order (NNLO) predicition. These use the first two and three terms

of the expansion respectively and are represented by Feynman diagrams with O(α3
s)

and O(α4
s) resprectively.
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2.4 Limitations of the Standard Model

Although the SM has been wildly successful at making predictions, the theory

is incomplete. There are a number of phenomena in nature which the SM fails to

explain.

• Baryon Asymmetry - As per current understanding the Big Bang should have

created nearly equal parts matter and antimatter in the early Universe. How-

ever, equal parts matter and antimatter are not observed in nature, in fact

matter is observed almost exclusively. The SM predicts the violation of CP-

symmetry, also known as charge conjugate parity symmetry, requires that the

physics of a particle is unchanged under a combination of C-symmetry † and

P-symmetry ‡, observed in K0 and B0 mesons, but this can only account for a

very small portion of the asymmetry observed.

• Gravity - The SM does not explain the existence of gravity. When one tries

to describe gravity as a QFT it becomes non-renormalizable, so an alternative

theory must explain its origin. It is believed that the gravitational force is

carried by a spin-2 particle called the graviton but as of yet there is no strong

experimental evidence for its existence.

• Dark Matter - Cosmological observations of the arms of spiral galaxies, as well

as other scientific observations, indicate the existence of matter that only in-

teracts with SM particles through the gravitational force or interacts so weakly

that it has not been detected by any known methods. Without dark matter,

calculuations show that many galaxies would not have the gravitional force re-

quired to maintain the structures observed in nature. It makes up about 27% of

† C-symmetry, or charge symmetry, requires that the physics of a paricle remains unchanged if
interchanged with its antiparticle.

‡ P-symmetry, or parity symmetry, requires that the physics of a paricle remains unchanged if its
spatial coordinates are inverted.
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the Universe, while normal matter makes up about 5%. It is called dark matter

since it has yet to be directly detected.

• Dark Energy - Experimental measurements of the expansion of the Universe

suggest the existence of a form of energy known as dark energy which drives

the accelerated expansion of the Universer. Dark energy makes up about 68%

of the Universe and is believed to permeate all of space driving the expansion

of the Universe. It is called dark energy since its fundamental nature is not at

this time well understood.

• Neutrino Mass - The SM does not explain neutrino mass. However, from exper-

imental data it is known that neutrinos oscillate flavors. This is only possible

if the neutrinos are massive. Thus far no direct experimental measurement of

neutrino mass has been made, although measurements of quantities related to

the masses, such as the limit on the sum of neutrinos masses have been made.

• Hierarchy Problem - When comparing the forces two protons impose on each

other in an atomic nucleus, the weak force is 1024 times stronger than gravity.

This large difference is not explained by the SM and is considered unnatural.

This is also called the Fine Tuning Problem since it requires that the parameters

of a fundamental theory be fine tuned.

Although the SM does not explain the existence of these phenomena, there are

extensions of the SM and more general theories which predict the existence of new

particles and phenomena.

2.5 Beyond the Standard Model

This chapter now turns its focus to describing Beyond the Standard Model (BSM)

physics. There are many BSM models, but this thesis will focus on just two models
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which are relevant to a diphoton search. Specifically it describes the Two Higgs

Doublet Model (2HDM), an extended Higgs sector extension of the SM, and the

Randall-Sundrum (RS) graviton, a theory which predicts the existance of extra spatial

dimensions and a spin-2 particle which couples to SM particles. These models predict

new spin-0 and spin-2 particles that allow for diphoton final states. The search

presented in this thesis searches for mass resonances consistent with those predicted

by these new particles.

2.5.1 Extended Higgs Sector

The SM assumes the simplest possible scalar structure, just one SU(2)L doublet.

At tree level, the experimentally measurable parameter ρ, is given by

ρ =
m2
W

cos2 θWm2
Z

, (2.33)

where θW is the Weinberg angle and mZ and mW are the masses of the Z and W±

bosons respectively. This can be rewritten more generally for an SU(2)L × U(1)Y

gauge theory where there are n scalars multiplets φi in terms of weak isospin, Ti,

weak hypercharge, Yi, and the VEV’s neutral component vi, as (Branco et al., 2012)

ρ =

n
ř

i=1

{
Ti(Ti + 1)− Y 2

i

4

}
vi

1
2

n
ř

i=1

Y 2
i vi

(2.34)

From experiment it is known that ρ ≈ 1. Both SU(2)L singlets with Y = 0 and

SU(2)L doublets with Y = ±1 give ρ = 1, but this is not the only scalar structure

which is compatible with this result.

The simplest possible extension to the scalar structure which is consistent with

ρ = 1 is to add a second doublet of SU(2)L. This extension, known as the 2HDM,

provides eight fields, three of which get eaten to give masses to the W± and Z bosons.
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The remaining five fields are physical fields, two CP-even neutral scalars h and H,

one CP-odd neutral pseudoscalar A, and two CP-even charged scalars H±.

There are many variations of 2HDM which can be classified as follows:

• Type I (Fermiophobic): All quarks and charged leptons couple to Φ2 only

• Type II (MSSM§-like): Up type quarks couple to Φ2 while down-type quarks

and charged leptons couple to Φ1

• Type X (Lepton Specific): All quarks couple to Φ2 while all charged lepton

couple to Φ1

• Type Y (Flipped): Up type quarks and charged leptons couple to Φ2 while down

type quarks couple to Φ1

Ignoring Higgs self interactions, there are six free parameters in 2HDM, four are

the Higgs masses, i.e. mh, mH , mA, mH± . The other two free parameters are ratio of

the two VEVs, tan β = vu/vd, and the mixing angle, α, which diagonalizes the mass

matrix of the neutral CP even Higgses. Two interesting special cases occur when

sin(β − α)→ 0 and when cos(β −α)→ 0. In the former case h has exactly the same

couplings as the SM Higgs. In the later case H has exactly the same couplings as

the SM Higgs. 2HDM is not the only way to extend the Higgs sector, it is just the

simplest.

There are numerous other models of an extended Higgs sector which include the

prediction of new particles, many of which are electrically neutral scalars or pseu-

doscalars. Although the photon is massless and therefore does not couple to the

Higgs directly, these electrically neutral scalars and psuedoscalars predicted may al-

low for diphoton final states through fermion and boson loops.

§ Minimal Supersymmetric Standard Model (MSSM) is the simplest supersymmetery (SUSY) the-
ory.
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2.5.2 Extra Dimensions

2.5.2.1 Kaluza-Klein Theories

The first Kaluza–Klein (KK) theory was developed to unify the electromagnetic

and gravitational fields as components of the same higher dimensional field. To

achieve this a procedure called toroidal compactification is performed. An example

of toroidal compactification is achieved by introducing an extra dimension x5 and

periodically identifying it as

x5 ∼ x5 + 2πR. (2.35)

The space obtained by this procedure can be written M4 ⊗ S1 where M4 is four-

dimension Minkowski space and S1 is the circle group. The space can be imagined

as a five dimensional cylinder of radius R. A massless scalar field φ(xµ, x5) in such a

theory would have quantized momentum in the direction of x5, that is

p5 =
n

R
, (2.36)

where n ∈ Z. By expanding the field with a Fourier series φ(xµ, x5) can be written

φ(xµ, x5) =
∞
ÿ

n=−∞
φn(xµ)einx

5/R, (2.37)

and the equation of motion becomes

∂µ∂
µφn(xµ) =

n2

R2
φn(xµ). (2.38)

In this way an infinite tower of four dimensional fields φn with masses m2 = n2/R2

is generated (Gabella, 2006).
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2.5.2.2 Randall-Sundrum Graviton

The Randall-Sundrum (RS) model assumes one extra dimension of space, y, with a

warped spacetime metric bounded by two three-dimensional membranes or 3-branes.

The 3-branes are separated in 5D space by a distance L in the y direction, and

visualized in Figure 2.8. In the RS model SM fields are localized on one 3-brane, the

Figure 2.8: Visualization of 3-branes separated in 5D space.

TeV brane, and gravity on the other, the Planck brane¶. The extra dimension is not

accessible to SM fields, but is to gravity through a massive spin-2 graviton. (Randall

and Sundrum, 1999).

The warped spacetime metric is given by

ds2 = e−2k|y|ηµνdx
µdxν − dy2, (2.39)

where k is a constant related to the curvature of the extra dimension. The warped

spacetime is only warped in the 5th dimension in such a way that the graviton’s

probability function drops exponentially across the 5th dimension, leading to gravity

¶ There are two RS models, RS1 and RS2. Described here is the RS1 model. In the RS2 model
there is no TeV brane, and the SM particles are presumed to be on the Planck brane
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Figure 2.9: Feynman diagrams for the main processes for a graviton decaying to two
photons.

being much weaker on the TeV brane than the Planck brane, offering a solution to

the Hierarchy Problem..

The mass spectrum of the RS graviton created by the KK modes is given by

mn = ke−kLxn, (2.40)

where xn are the roots of the Bessel function of order 1, that is J1(xn) = 0 (Gabella,

2006). Figure 2.9 shows the dominant Feynman diagrams for a graviton decaying to

two photons.

The search presented in this thesis focuses on looking for RS and Extended Higgs

processes which have diphoton final states. More details about the phenomenology

and particular tunings of the models used are given in Section 5.4.
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CHAPTER III

The Experimental Apparatus

This chapter describes the experimental apparatus used to collect the data used

in this thesis. It begins by reviewing the basics of particle accelerators and particle

colliders. From there it moves on to describing the LHC and its experiments, in

particular the ATLAS detector and its calorimetry system.

3.1 Particle Accelerators

A particle accelerator is a machine that propels charged particles by accelerating

them with EM fields. There are both electrostatic accelerators, which use a static

electric field to accelerate particles, and electrodynamic accelerators, which use ei-

ther magnetic induction or oscillating radio frequency to accelerate particles. There

are many applications for particle accelerators including cathode ray tube (CRT)

televisions, radiation therapy, and scattering experiments.

3.1.1 Particle Beams

Typically in accelerators not just one but many particles are accelerated in groups

known as bunches. Each bunch contains many particles, for example at the LHC there

are approximately 1011 particles in a bunch. These bunches can be approximated by

Gaussian distributions with widths σx and σy in the transverse directions and σs in
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the longitudinal direction. Generally, many bunches are accelerated in a continuous

stream producing a particle beam.

3.1.1.1 Beam Emittance

Beam emittance, ε, is a measure of the spread, in position-momentum space, of the

particle coordinates which make up a particle beam. Since measuring the full width

is difficult, in practice the root mean square (RMS) width or the area containing a

certain fraction of the particles in the beam is typically used. A beam with a small

emittance has particles with nearly all the same momentum and are confined to a

small space. A beam with a large emittance has particles spread in position space,

momentum space, or both. It is often convenient to define the normalized emittance

εn = βγε (3.1)

where β is the relativistic speed and γ is the Lorentz factor of the particle. Figure 3.1

shows a visual representation of beam particles in phase space.

Figure 3.1: A two dimensional Normal Distribution representing beam particles in
phase space. The horizontal axis represents position while the vertical axis represents
momentum.
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3.1.1.2 Beta Function

The beta function is a function that describes the transverse size of a particle

beam as a function of s, the position along the beam trajectory. It is defined as

β(s) =
σ2(s)

ε
, (3.2)

where σ(s) is the transverse size of the particle beam and ε is the beam emittance.

Small beta values correspond to a narrow beam while large beta values correspond to

a wide beam, as seen in Figure 3.2. The quantity β∗ is defined as the beta function

at the interaction point. As seen in Figure 3.3, another way to interpret β∗ is as the

Figure 3.2: Cartoon of particle beam relating the lateral width, σx, and the longitu-
dinal width, σs, to β where db is the distance between bunches in the beam.

distance from the interaction point to the closest point of the beam with twice the

width.

Figure 3.3: A cartoon of the beta function at the interaction point.
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3.1.2 Scattering Experiments

The collision that occurs between an incident wave or particle and a target is

known as scattering. A scattering experiment is an experiment in which waves or

particles are scattered off of a target or targets and the outgoing waves or particles

are measured.

The likelihood of a particular process occurring during a collision is represented

by the cross section. The number of scatters Nsc for a particular process is related to

the number of incident particles or waves Ninc and the cross section σ by the relation

Nsc = Nincntarσ, (3.3)

where ntar is the number of targets per unit area.

3.2 Particle Colliders

Particle colliders are scattering experiments designed to accelerate and collide

beams of particles into each other. They improved on fixed target experiments by

increasing the COM energy for the same beam energy. That is, the available energy

in a collider goes like beam energy
‘

s ∼ E while the available energy in a fixed target

experiment goes like the square root of beam energy
‘

s ∼
‘

Em.

There are both linear and circular particle colliders. Linear particle colliders are

easier to build since they do not require the use of steering magnets to bend the

trajectory of a particle, but they cannot reach the same high energies as circular

colliders. Particles in circular colliders can reach much higher energies than linear

colliders, however there is a limitation to the energy that a particle can acquire in a

circular collider. The main limitiation is energy loss synchrotron radiation according
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to

dE

dt
∝ E4

m4R
, (3.4)

where E and m are the particle’s energy and mass respectively, and R is the radius of

curvature. This makes it more difficult to maintain high energies for lighter particles

than it is for heavier particles. For example, a proton is approximately 2000 times

more massive than an electron, so an electron beam loses on the order of 1013 times

more energy per unit time than a proton beam with the same energy and radius of

curvature.

3.2.1 Luminosity

Luminosity is a measure of how much data has been taken in a scattering experi-

ment. The integrated luminosity, L, can be expressed in terms of the instantaneous

luminosty

L =

ż

T

Ldt, (3.5)

where L is the instantaneous luminosity and T is the data taking period. The number

of events, N , produced from a specific process with cross section σ can be written

N = Lσ.

The instantaneous luminosity for two Gaussian beams colliding head on with

width σx and σy containing nb bunches each can be written

L =
fN2

b nb
4πσxσy

, (3.6)

where f is the frequency of revolution and Nb is the number of particles in a bunch.

However it is difficult to collide bunches head on, so in practice there typically is
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some small non-zero crossing angle φ. Figure 3.4 shows a cartoon of colliding particle

beams. This crossing angle reduces the luminosity by effectively reducing the number

Figure 3.4: A cartoon of a particle beams colliding with crossing angle φ, lateral
width σx, and longitudinal width σs.

of particles in a bunch, since not every particle in a bunch will see every particle in

the bunch it is crossing. To correct for this, F , known as the geometric luminosity

reduction factor, can be computed

F =
1

c

1 +
(
σx
σs

tan φ
2

)2
c

1 +
(
σs
σx

tan φ
2

)2
, (3.7)

where σs is the bunch length. For small φ and σs � σx,y, F becomes

F =
1

c

1 +
(
σs
σx

φ
2

)2
. (3.8)

When this correction factor is applied the luminosity becomes

L =
fN2

b nb
4πσxσy

F . (3.9)
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This can be rewritten entirely in terms of parameters of the collider

L =
γfN2

b nb
4πεnβ∗

F (3.10)

where γ is the Lorentz factor, εn is the normalized beam emittance, and β∗ is the

beta function at the interaction point.

3.2.2 Parton Interactions

At high energies collisions do not occur directly between hadrons, but rather

between the quarks and gluons that make them up. In this context these quarks and

gluons are known as partons. Each parton carries just a fraction of the momentum

of its parent particle. How much momentum is carried by a parton is given by its

parton distribution function (PDF) and is dependent on the momentum transfer Q.

An example of a PDF for a proton with Q2 = 10 GeV2 is shown in Figure 5.1.

Figure 3.5: The MSTW2008NLO parton distribution function at Q2 = 102 GeV,
where the horizontal axis is x, the fraction of the hadron’s momentum carried by a
parton, and the y-axis is x times the probability density f(x).
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3.3 The Large Hadron Collider

The LHC is the world’s largest particle accelerator sitting 100 meters underground

in a 3.8 meter wide circular tunnel originally dug for the Large Electron-Positron

Collider (LEP). LEP was the largest lepton collider ever constructed and was designed

to make precision measurements and perform other analyses before constructing the

LHC. It ran from 1989 to 2001 colliding electrons and positrons at COM energies

reaching
‘

s = 209 GeV. Around 2001 LEP was dismantled so that the LHC could

be constructed in its place.

The LHC was designed to collide both protons and heavy ions with a COM en-

ergy on the TeV scale. Along the 27 kilometer circumference sits four experiments:

ATLAS, A Large Ion Collider Exerpiment (ALICE), Compact Muon Solenoid (CMS),

and LHC-beauty (LHCb). Each of the four experiments is specialized to help explore

a different area of physics. ATLAS and CMS are general purpose detectors meant

to make precision measurements of the SM and the Higgs boson, and to search for

new physics. ALICE studies quark-gluon plasma, a state of matter where quarks and

gluons behave almost like free particles. While LHCb is designed to study b quark

physics and make precision measurements of CP violation.

3.3.1 Proton Injection Chain

Before reaching the ring of the LHC, protons are ionized then accelerated by a

series of particle accelerators known as the injection chain. The chain begins with a

small volume of hydrogen gas, approximately 8.28×1012 H2 molecules∗, which will be

the source of the protons. Using an EM field, the electrons are stripped from the gas

molecules separating the electrons and protons. In each step of the chain protons are

accelerated to higher energies. At some steps, the protons are grouped into a finite

∗ This quantity of an ideal gas at atmospheric pressure and room temperature would occupy a cube
with an edge length of approximately 69.1 microns.
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series of bunches separated in space known as a bunch train. At some steps bunch

trains are combined and grouped into larger bunch trains.

In the first step, protons are brought to an energy of 750 keV and grouped into six

bunches by the Radio Frequency Quadrupole (RFQ2). These bunches are then accel-

erated to energies of 50 MeV after being injected into LINear ACcelerator (LINAC2)

and accelerated over a distance of approximately 30 meters. Next they are transferred

to the Proton Synchrotron Booster (PSB), a circular accelerator with a diameter of

50 meters, which increases their energies to 1.4 GeV. From there they are injected

into another circular accelerator with a diameter of 100 meters, the Proton Syn-

chrotron (PSyn), where they obtain energies of 25 GeV and are grouped into 72

bunches. In the final step before being injected into the ring of the LHC, these 72

bunches are injected into the Super Proton Synchrotron (SPS), a circular accelerator

with a diameter of over 1 kilometer. The SPS combines three bunch trains from the

PSyn, each containing 72 bunches, into 216 bunches which are accelerated to energies

of 450 GeV. Twenty six of these larger bunch trains are injected into the LHC and

combined producing two continuous beams of 2,808 proton bunches each. A cartoon

illustrating this chain is shown in Figure 3.6.

3.3.2 Beam Pipes

The LHC collides two particle beams which each sit within a beam pipe which sit

within a shared vacuum. The beams move in opposite directions and cross at four

points around the ring in order to initiate particle collisions at the interaction points

located within the LHC’s four experiments. The pressure in the vacuum vessel is

approximately 10−13 atm, a pressure comparable to that on the Moon’s surface. This

extreme vacuum is produced in order to remove any gas molecules that the beams’

particles could collide with as they travel around the ring.
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Figure 3.6: Cartoon schematic of the LHC’s proton injection chain.

3.3.3 Superconducting Magnet System

The vacuum vessel contains approximately 10,000 liquid helium cooled supercon-

ducting magnets made of copper-clad niobium-titanium used to accelerate and focus

the beams. Of the 10,000 magnets 1,232 are dipole magnets used to accelerate the

protons from 450 GeV to 6.5 TeV as well as maintain those high energies, recal the

charged particles which make up the beam lose energy by radiating photons according

to Equation 3.4. 392 are quadrupole magnets used to focus the beams, while the re-

maining magnets are of higher multipole order and are used to correct imperfections

in the EM field. The magnets are cooled with about 96 tonnes of superfluid helium-4

to keep them at their operating temperature of 1.9 K.

3.3.4 Proton Beam Conditions

The dipole magnets accelerate protons to 99.999999% of the speed of light, reach-

ing energies of 6.5 TeV per proton and angular speeds leading to 11,245 rotations

per second. This acceleration results in a Lorentz factor of γ ≈ 6, 930. In order to
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acheive these high energies—and power its four experiments—the LHC uses roughly

120 MW of electric power from the French grid while running, which is about 20% of

the total energy consumption of Geneva.

Each beam contains nb = 2,808 bunches with each bunch containing Nb = 1.15×

1011 protons. While travelling around the ring, the protons in each bunch are dis-

tributed in space according to a three dimensional Gaussian distribution with its

transverse widths on the order of millimeters and its longitudinal width on the or-

der of tens of centimeters. At the interaction points, however, the beam is focused

with quadrapole magnets until it has a transverse width of about 16 microns. At

the interaction points, the normalized transverse beam emittance is approximately

εn = 3.75 µm rad while the beta function is approximately β∗ = 0.55 m.

The bunches are spaced along the beam pipe so that interactions occur ever 25

nanoseconds, leading to a bunch collision rate of 40 MHz. The beams cross at an

extremely shallow angle of 285 µrad†. Using Equation 3.7, the aforementioned beam

widths, and this crossing angle leads to a geometeric luminosity reduction factor of

approximately 0.84. That is, the luminosity delivered is 84% of that which would be

delivered if the beams were colliding head on.

3.3.4.1 Delivered pp Luminosity

Recall Equation 3.10 for the instantaneous luminosity

L =
γfN2

b nb
4πεnβ∗

F .

Using this equation, and the aforementioned parameters

† The crossing angle is approximately 0.016◦ in more familiar units.
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γ = 6,930 f = 11,245 kHz

Nb = 1.15× 1011 nb = 2,808

εn = 3.75 µm rad β∗ = 0.55 m

F = 0.84

leads to an instantaneous luminosity on the order of L = O (1034) cm−2 s−1

3.4 The ATLAS Detector

ATLAS is a general purpose detector at the LHC whose collaboration comprises

more than 3000 physicists from 38 countries and 174 universities and laboratories. It

has a forward-backward symmetric cylindrical geometry covering nearly 4π in solid

angle. It is designed to reconstruct proton-proton collisions at extremely high ener-

gies, that is on the TeV scale. The detector, shown in Figure 3.7, has a diameter of

25 meters, a length of 44 meters, and weight of approximately 7000 tonnes.

Figure 3.7: The ATLAS detector (Pequenao, 2008).

It uses a right hand coordinate system whose positive x-axis points to the center

of the LHC ring, positive y-axis points upwards, and z-axis points along the beam
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pipe. The azimuthal angle φ is measured from the positive x-axis in the x-y plane,

and the polar angle θ is measured from the positive z-axis in the z-y plane.

A more convenient way of expressing the polar angle is with pseudorapidity

η = − ln

[
tan

(
θ

2

)]
=

1

2
ln

(
|~p|+ pz
|~p| − pz

)
(3.11)

where ~p is the three momentum and pz is the longitudinal momentum of a moving

particle. For very energetic objects the pseudorapidity converges to the rapidity

y =
1

2
ln

(
E + pz
E − pz

)
(3.12)

where E is the energy of the object. The distance ∆R in (η, φ) space is given by

∆R =
a

(∆η)2 + (∆φ)2 (3.13)

where ∆η and ∆φ are the angular separation in η and φ respectively.

The experiment is composed of an inner detector, solenoid magnet, toroid magnet,

calorimetry system, and muon spectrometer. The inner layer tracks the path of

moving charged particles. The calorimetery system is designed to measure the energy

a particle loses as it passes through the detector. The muon spectrometer is the

outer most layer and is designed to measure the path of muons. By combining the

information gained from each detector, not only can a particle’s four momentum be

measured, but an identification on the type of particle can be made. Figure 3.8 shows

a cross sectional view of the ATLAS detector and how various particles interact with

it.
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Figure 3.8: The detection of particles by the ATLAS detector.

3.4.1 Inner Detector

The ATLAS Inner Detector (ID) is designed to measure the position and mo-

mentum of charged particles. It comprises four main components: the Insertable

B-Layer (IBL), Pixel Detector, Semi-Conductor Tracker (SCT), and Transition Ra-

diation Tracker (TRT). The ID is surrounded by a 2 T solenoid magnet in a 7 meter

long cylindrical enclosure with radius of 1.15 meters. It is designed to track in the

region −π ≤ φ ≤ π and |η| ≤ 2.5. By measuring the trajectory of a track left by an

electrically charged particle one can determine it’s path and point of origin, known

as a vertex. Since the ID is in a roughly constant magnetic field pointing in the z

direction, the transverse momentum of a particle can be determined by measuring its

curvature in the R–φ plane where R is the distance from the beam pipe. A schematic

of the ID is shown in Figure 3.9.

Figure 3.10 shows the amount of material, in units of radiation length X0, tra-

versed by a particle as it passes through the ID as a function of η. The radiation length

varies for the ID from about 0.5X0 to 2.5X0. As a consequence approximately 40%

of photons will convert to electron-positron pairs before reaching the calorimeters.
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Figure 3.9: Schematic of the ATLAS inner detector (Abdelouahab et al., 2008).

Figure 3.10: The amount of material, in units of radiation length X0, traversed by a
particle as it passes through the ID as a function of η (ATLAS Collaboration, 2011)
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3.4.1.1 Insertable B-Layer

The Insertable B-Layer (IBL) is the inner most layer of the ID. It was installed

during the LHC 2013 shut down to deal with the high radiation and occupancy

due to increasing the instantanenous luminosity. It is cylindrial in shape and sits

concentrically about the beam pipe with an inner radius of 31 mm and an outer

radius of 40 mm. It uses two different silicon sensor technologies with a pixel size of

50 µm × 250 µm and resolution of 8 µm × 40 µm.

3.4.1.2 Pixel Detector

The next inner most layer of the ID is the Pixel Detector (PD/PIXEL). It com-

prises a barrel region and two endcap regions. The barrel is composed of four cylindri-

cal layers concentrically placed about the beam pipe, while the endcaps entail three

disk layers each and sit on either side of the barrel. These layers contain a total of

1744 pixel modules with dimensions 19 mm × 63 mm each. The sensor area of the

pixel modules are made up of 250 µm thick oxygenated n-type silicon wafers and

contain 47,232 pixels. Each pixel has a nominal pixel size of 50 µm × 400 µm and a

spacial resolution of 10 µm × 115 µm. This high precision measurement allows for

the reconstruction of displaced vertices from particles such as b-quarks.

3.4.1.3 Semi-Conductor Tracker

Surrounding the Pixel Detector is the Semi-Conductor Tracker (SCT). Like the

PD it comprises a barrel region and two endcap regions. The barrel is composed of

four cylindrical layers while the endcaps are composed of nine disk layers each. The

barrel layers contain 2,112 semiconductor modules while the endcap layers contain 988

each. Each module consists of four silicon strip sensors at a constant pitch of 80 µm.

The strip sensors are paired in groups of two to form 768 strips each approximately

12 cm in length. The modules are arranged such that a charged particle originating
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from the beam spot will pass through at least four layers of SCT modules providing

a point space resolution of 17 µm × 580 µm.

3.4.1.4 Transition Radiation Tracker

The final layer of the ID is the Transition Radiation Tracker (TRT). It consists

of a barrel region and two endcap regions made of 4 mm diameter polyamide tubes

filled with a mixture of Ar, CO2, and O2 gas. The barrel region contains 50,000

longitudinally arranged tubes of length 144 cm, while the endcaps contain 320,000

radially arranged tubes with length 32 cm. Running down the axis of each tube is

a 31 µm diameter gold plated tungsten wire. The tube wall is held at a voltage of

−1.5 kV while the wire is held at ground. When a charged particle passes through

the TRT the gas inside is ionized and freed electrons drift to the wire. The drift time

is proportional to the Lorentz factor, γ, of the particle and is measured to provide a

spatial hit resolution of 130 µm in the plane perpendicular to the wire.

3.4.2 Calorimeters

Next after the ID covering a full 2π azimuthal angle and |η| < 4.9 is the calorimetry

system. It comprises the Electromagnetic Calorimeter (ECal), designed to measure

the energy of particles that interact via the EM force, and the Hadronic Calorime-

ter (HCal), designed to measure the energy of particles that interact via the strong

force. The calorimeters are known as sampling calorimeters and are composed of al-

ternating layers of passive material and active material. As particles pass through the

calorimeter they interact with the passive material producing lower energy particles.

These lower energy particles also interact with the passive material and produce even

lower energy particles. This process continues with each new particle producing many

lower energy particles until all the energy of the original particle is exhausted. This

cascade of particles is known as a shower, and is illustrated in Figure 3.11. As the
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(a) Electromagnetic Shower (b) Hadronic Shower

Figure 3.11: Cartoon of particle showers.

particles pass through the active material energy is collected via ionization (ECal) or

scintillation (HCal). The energy resolution of calorimeters is given by

σ(E0)

E0

=
a

‘

E0

⊕ b

E0

⊕ c (3.14)

where a is the sampling term used to account for stoichastic uncertainty, b is the

electronic noise term measured in calibration runs, and c is the constant term which

dominates at high energy. Table 3.1 shows the subsections of the calorimeter and

their angular coverage in η.

3.4.2.1 Electromagnetic Calorimeter

The first layer of the calorimeters is the Electromagnetic Calorimeter (ECal). It is

the layer of the detector in which photons are primarily measured. It is cylindrical in

shape with a length of 6.65 m and radius of 2.25 m. It covers the region −π ≤ φ ≤ π

and |η| < 3.2 and is divided into three subsections: the Electromagnetic Barrel

Calormeter (EMB), the Electromagnetic Endcap Calorimeter (EMEC), and the first

section of the LAr Forward Calorimeter (FCal). The EMB covers |η| < 1.475, the

EMEC covers 1.375 < |η| < 3.2, while the FCal covers 3.1 < |η| < 4.9. Liquid

Argon (LAr) is the active material and lead and copper serve as the passive materials.

The EMB is 6.4 m long with an inner diameter of 2.8 m and outer diameter of
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Calorimeter Coverage Granularity (∆η ×∆φ)

ECal
Presampler |η| < 1.54 0.25× 0.1

1.5 < |η| < 1.8 0.025× 0.1
Sampling 1 |η| < 1.4 0.003× 0.1

1.4 < |η| < 1.475 (barrel) 0.025× 0.025
1.375 < |η| < 2.5 (endcap) 0.003 - 0.025× 0.1

2.5 < |η| < 3.2 0.1× 0.1
Sampling 2 |η| < 1.4 0.075× 0.025

1.4 < |η| < 2.5 0.025× 0.025
2.5 < |η| < 3.2 0.1× 0.1

TileCal
Sampling 1-2 |η| < 1.0 (barrel) 0.1× 0.1

0.8 < |η| < 1.7 (extended barrel) 0.1× 0.1
Sampling 3 |η| < 1.0 (barrel) 0.2× 0.1

0.8 < |η| < 1.7 (extended barrel) 0.2× 0.1
HEC

Sampling 1-4 1.5 < |η| < 2.5 0.1× 0.1
2.5 < |η| < 3.2 0.2× 0.2

FCal
Sampling 1 (ECal) 3.1 < |η| < 4.9 ≈ 0.1× 0.1

Sampling 2-3 (HCal) 3.1 < |η| < 4.9 0.2× 0.2

Table 3.1: The coverage and granularity of the calorimeters
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4 m. It is divided into two barrels separated by 4 mm at z = 0. It comprises 2,048

LAr absorbers and lead samplers. The first layer is the presampler (PS), a single thin

layer of argon with no lead absorber meant to correct for energy loss in the ID. The

PS is followed by three sampling layers each with progressively larger granularity.

Figure 3.12 shows the layers of the EMB.

Figure 3.12: The layers of the Electromagnetic Barrel Calorimeter (Aaboud et al.,
2019).

The EMEC comprises two wheels on either side of the EMB. Like the EMB it

uses LAr absorbers and lead samplers. Where the EMB and EMEC meet is a region

of poor resolution known as the crack region. The first section of the FCal, known as

FCal1, uses LAr absorbers with parallel plates of copper samplers.

The energy resolution of the ECal is:

σ(E)

E
=

a
‘

E
⊕ b, (3.15)

where a = O(10%) and b = 0.7%. Over η the ECal depth is approximately constant
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at about 25 radiation lengths.

3.4.2.2 Hadronic Calorimeter

The Hadronic Calorimeter (HCal) surrounds the ECal and sits inside a cylinder

with length of 6.1 m and diameter of 8.5 m. It is divided into three sections: the Tile

Barrel Hadronic Calorimeter (TileCal), the Hadronic Endcap (HEC), and the final

sections of the FCal: FCal2 and FCal3.

The TileCal is divided into the barrel (|η| < 1.0) and the extended barrel (0.8 <

|η| < 1.7) and comprises steel absorbers and polystyrene scintillating tile samplers.

The barrel is 5.8 m long with an inner diameter of 4.56 m and an outer diameter

of 8.5 m and the extended barrel is 2.6 m in length with the same inner and outer

diameters as the barrel. The regions are divided into 64 modules which are composed

of three layers each. After the third layer there are 9,825 photomultiplier tubes

(PMT) which amplify the scintillator signal and convert it into an electrical signal.

Figure 3.13 shows the layers of the TileCal.

Each endcap of the HEC comprises two wheels located directly behind the EMEC.

The wheels were built using 32 wedge shaped modules composed of copper plates to

act as a passive material and LAr to act as an active material. The FCal2 and FCal3

detectors are built using tugnsten as the passive material and LAr as the active

material.

3.4.2.3 Muon Spectrometer

The final layer of the ATLAS detector is the Muon Spectrometer. It comprises four

types of detectors: the Monitored Drift Tubes (MDT), the Resistive Plate Chambers

(RPC), the Thin Gap Chambers (TGC) and the Cathode Strip Chambers (CSC).

These detectors and their relative orientation can be seen in Figure 3.14. The MDTs

are meant to provide precision measurements while the RPC, TGC, and CSC are

48



Figure 3.13: The layers of the Tile Barrel Hadronic Calorimeter (Sotto-Maior Peralva,
2013).

Figure 3.14: The detectors of the Muon Spectrometer (Camarri et al., 1998).
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used for triggering on muons and to complement the MDT measurements.

In the barrel region (|η| < 1.7) there is a combination of MDTs and RPCs arranged

in three concentric rings of approximate radii 5 m, 7.7 m, and 10 m. The MDT

chambers contain aluminum tubes of 30 mm diameter filled with Ar-CO2 gas. Along

the axis of each tube is a 50 µm gold plated tungsten-rhenium wire is held at a

potential of 3 kV while the aluminum wall of the tube is held at ground. As a muon

passes through the tube the gas inside is ionized and creates electrons which drift

towards the wire. From the drift time, that is the time it takes for an electron to

drift to the wire, the muon’s point of closest approach to the wire can be determined.

This provides a spacial resolution of 80 µm and time resolution of less than 1 ns.

The RPCs consist of parallel phenolic-melaminic plastic laminate electrode plates.

The plates are separated by 2 mm insulating spacers and the space is filled with a

C2H2F4 gas mixture. The plates are held at a potential difference of 9.8 kV. Due to

the electric field between the plates, as a muon passes through the plates an electron

avalanche is produced. The avalanche is read as an electrical signal providing a time

resolution of less than 2 ns.

In the endcap regions there is a combination of MDTs, the TGCs, and the CSCs

arranged on eight wheels at a distance of ±7.4 m, ±10.8 m, ±14 m, and ±21.5 m from

z = 0. The first layer is the CSC, which comprises multiwire proportional chambers

whose wires run in the radial direction. The wires are held at a voltage of 1.9 kV and

provide tracking resolution of 60 µm and timing resolution of less than 40 ns. The

next layer is the TGCs which are also multiwire proportional chambers filled with a

mixture of CO2 and n-C5H12 gas. The TGCs have a wire to wire distance of 1.8 mm

and wire to cathode distance of 1.4 mm. The wires are held at a voltage of 2.9 kV

and provide a time resolution of 4 ns. The final layer is MDTs.
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CHAPTER IV

Measurement of photons in the ATLAS Detector

This chapter focuses on how photons are measured with the ATLAS detector. It

beings by reviewing the basics of photon-matter interactions. From there it moves

to describing how photons are reconstructed and identified in the ATLAS detector.

Finally, the chapter ends by describing how the photons are calibrated for use in

analyses.

4.1 Photon-Matter Interaction

As photons pass through the material of the calorimeter they lose energy due

to EM interactions. The intensity of a photon beam as it emerges from a layer of

material of thickness x is given by

I(x) = I0e
−µx (4.1)

where I0 is the intensity of the photon beam entering the material and µ is the

absorption coefficient which is related to the absorption cross section σ by

µ =
σNAρ

A
(4.2)
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where NA is Avogadro’s number, and ρ and A are the density and atomic mass of

the material respectively. The primary mechanisms for energy loss, illustrated in

Figure 4.1, are the photoelectric effect, Compton scattering, and electron positron

pair production. At high energies the cross sections of these three mechanisms are

(a) Photoelectric Effect (b) Compton Scattering (c) Pair Production

Figure 4.1: Cartoons of the main processes responsible for photon losing energy as it
passes through matter.

given by

σpe ≈ 4πr2
eα

4Z5mec
2

Eγ
(4.3)

σC ≈ πr2
eZ
mec

2

Eγ
ln

(
2Eγ
mec2

)
(4.4)

σpp ≈ 4αr2
eZ

2

(
7

9
log

183

Z1/3

)
(4.5)

≈ 7

9

A

X0NA

(4.6)

respectively, where re is the classical electron radius, α is the fine structure constant,

Z is the atomic number of the nucleus with which the photon is interacting within

the material, me is the mass of the electron, c is the speed of light, Eγ is the energy

of the photon, A is the atomic mass, and NA is Avogadro’s number. For energies less

than 100 keV the photoelectric effect dominates as the main source of energy loss

while pair production dominates for energies greater than 10 MeV. The photoelectric

effect is particularly relevant for detecting photons in a high mass resonance search

with ATLAS since all photons considered in the analysis are high energy.
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In ATLAS photons produced at the primary vertex can either reach the ECal un-

converted or convert to an electron positron pair in the ID. At low |η| approximately

20% of photons convert in the ID while at |η| ≈ 2.3 approximately 65% convert in

the ID (Aad et al., 2019).

4.2 Photon Reconstruction

Photon reconstruction and electron reconstruction are closely related. Both pho-

tons and electrons produce EM showers in the ECal, but since photons do not carry

electric charge, they do not interact with the ID and so do not produce tracks. Elec-

trons are identified by an energy deposit in the ECal that is associated with a track.

Photons are most simply identified by an energy deposit in the ECal that is not asso-

ciated with a track. However, this is complicated since a large number of photons in

ATLAS will convert to an electron positron pair while still in the ID. These photons

are known as converted photons and although they do not produce tracks, their decay

products, the electron and positron, do. The tracks point back to a secondary vertex

known as the conversion vertex. Converted photons are identified as energy deposits

in the ECal that are associated with a conversion vertex. This section explains this

process in further detail focusing on photon reconstruction.

4.2.1 Topo-Cluster Reconstruction

Photon reconstruction begins with topo-cluster reconstruction which begins by

forming proto-clusters in the ECal and HCal using a set of noise thresholds in which

the cell initiating the cluster is required to have significance |ζEM
cell | ≥ 4, where

ζEM
cell =

EEM
cell

σEM
noise,cell

, (4.7)
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EEM
cell is the cell energy at the EM scale and σEM

noise,cell is the expected cell noise. The

expected cell noise includes the known electronic noise and an estimate of the pile-up

noise corresponding to the expected average instantaneous luminosity. To suppress

the formation of noise clusters, cells from the presampler and the first ECal layer

are excluded from initiating proto-clusters. Next, each neighbor cell passing the

threshold of |ζEM
cell | ≥ 2 becomes a seed cell in the next iteration, where it collects its

own neighbors in the proto-cluster. In the case that two proto-clusters contain the

same cell with |ζEM
cell | ≥ 2 above the noise cell threshold, the proto-clusters are merged.

A crown of nearest neighbor cells is added to the cluster independent of their energy.

This set of thresholds is commonly known as 4-2-0 topo-cluster reconstruction. A cell

is considered a local maximum when it has EEM
cell > 500 MeV, at least four neighbors,

and when none of the cell neighbors has a larger signal. Proto-clusters with two or

more local maxima are split into separate clusters.

Photon reconstruction begins with the constructions of topo-clusters but only

uses the energy from cells in the ECal, except in the transition region of 1.37 < |η| <

1.63, where the energy measured in the presampler and the scintillator between the

calorimeter cryostats is also added. This is referred to as the EM energy of the cluster,

and the EM fraction fEM is the ratio of the EM energy to the total cluster energy.

Only clusters with EM energy greater than 400 MeV are considered, and are referred

to as EM topo-clusters.

4.2.2 Photon Conversion Reconstruction

Photon conversion vertices use tracks loosely matched to fixed sized clusters as

inputs. Both Si tracks, tracks with silicon hits, and TRT tracks, tracks reconstructed

only in the TRT, are used. Two track conversion vertices are reconstructed from two

opposite-charge tracks forming a vertex consistent with that of a massless particle.

The TRT must determine that the tracks have a high probability of being electron
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tracks in order to be used to increase converted photon purity. Next, the conversion

vertices are matched to the EM topo-clusters by minimizing the angular separation

between the conversion vertex and the EM topo-cluster. If there are multiple con-

version vertices matched to a cluster, double-track conversions with two Si tracks

are preferred over the double-track conversions without at least one TRT track, fol-

lowed by single-track conversions. Within each category, the vertex with the smallest

conversion radius is preferred.

4.2.3 Supercluster Reconstruction

The reconstruction of photon superclusters happens in two stages. In the first

stage, EM topo-clusters are tested for use as seed cluster candidates, which form the

basis of superclusters. In the second stage EM topo-clusters near the seed candidates

are identified as satellite cluster candidates and added to the seed cluster to form the

final superclusters. These satellite clusters are included in an attempt to capture the

energy from bremsstrulung radiation or topo-cluster splitting.

The EM topo-clusters are sorted according to descending ET calculated using the

EM energy, and tested one by one. A cluster must have ET greater than 1.5 GeV to

qualify as a supercluster seed, and cannot be used as a seed cluster if it has already

been added as a satellite cluster to another seed cluster. A cluster is considered a

satellite if it falls within a window of ∆η×∆φ = 0.075×0.125 around the seed cluster

barycenter∗. Photons with conversion vertices made up only of tracks containing

silicon hits have a cluster added as a satellite if its best matched track belongs to the

matched conversion vertex. The seed clusters with their associated satellite clusters

are called superclusters. Figure 4.2 shows a cartoon illustration of the supercluster

reconstruction process.

Finally, the supercluster building algorithm is used to assign calorimeter cells to

∗ Barycenter here refers to the average location in (η, φ) space weighted by the energy distribution
of the seed cluster.
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(a) Add all clusters within 3×5 window
around seed cluster.

(b) Add topo-clusters that have the same
conversion vertex matched as the seed
cluster.

(c) Add topo-clusters with a track match
that is part of the conversion vertex
matched to the seed cluster.

Figure 4.2: A cartoon illustration of the construction of a supercluster.

a given supercluster. In most regions only cells from the presampler and the first

three LAr calorimeter layers are considered. However, in the transition region of

1.4 < |η| < 1.6, the energy measured in the scintillator between the calorimeter

cryostats is also used. The size of each constituent topo-cluster is restricted to a

maximal width of 0.075 or 0.125 in the η direction in the barrel or endcap region,

respectively, this reduces the superclusters’ sensitivity to noise. No restriction is

applied in the φ direction since interactions between the photon and detector material

tend to cause the EM shower to spread in the φ direction.
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4.2.4 Photon Identification

The superclusters are matched to conversion vertices in the same manner as the

EM topo-clusters. The matched or unmatched superclusters are now identified as

photons and/or electrons. To identify an object as a photon, discriminating vari-

ables are constructed using information from the calorimeters about the EM shower.

These variables are divided into three groups: variables involving the first layer of

the ECal, variables involving the second layer of the ECal, and variables involving

the HCal. The following are descriptions of the discriminating variables and their

cartoon representations.

ECal First Layer

• (ws tot) Total lateral shower width,
a

(ΣEi(i− imax)2)/(ΣEi) where i runs over

all cells in a window ∆η ≈ 0.0625 and imax is the index of the highest energy

cell

• (ws 3) Later shower width,
a

(ΣEi(i− imax)2)/(ΣEi), where i runs over all cells

in a window of 3 cells around the highest energy cell

• (fside) Energy fraction outside core of three central cells, within seven cells

• (∆Es) Difference between the energy of the cell associated with the second

maximum, and the energy reconstructed in the cell with the smallest value

found between the first and second maxima

• (Eratio) Ratio of the energy difference between the maximum energy deposit and

the energy deposit in a secondary maximum in the cluster to the sum of these

energies

• (f1) Ratio of the energy measured in the first layer of the electromagnetic

calorimeter to the total energy of the EM cluster
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(a) The quantity fside is measure of how
spread the energy in the first layer of the
ECal. The energy in the light gray area rep-
resents the numerator while the energy in the
dark gray area represents the denominator

(b) The dark gray region represents a mea-
sure of the width of the energy deposited in
either 3×2 strips (ws 3) or 20×2 strips (ws tot)

(c) The transverse energy in the dark gray volume represents the
numerator and the transverse energy in the light gray and dark
gray volumes represents the denominator

(d) The vertical distance between the second local maximum and
the local minimum represent ∆E. The ratio Eratio is a measure of
the vertical distance between the first and second local maxima
relative to their values.

Figure 4.3: Discriminating variables for photon identification involving the first layer
of the ECal
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ECal Second Layer

• (Rη) Ratio of the sum of the energies of the cells contained in a 3× 7 rectangle

in (η, φ) space, measured in cell units, to the sum of the cell energies in a 7× 7

rectangle, both centered around the most energetic cell

• (wη2) Later shower width where
a

(ΣEiη2
i )/(ΣEi)− ((ΣEiηi)/(ΣEi))2, where

Ei is the energy and ηi is the pseudorapidity of cell i and the sum is calculated

within a window of 3× 5 cells

• (Rφ) Ratio of the sum of the energies of the cells contained in a 3×3 rectanglein

η × φ space, measured in cell units, to the sum of the cell energies in a 3 × 7

rectangle, both centered around the most energetic cell

Hadronic Leakage

• (Rhad 1) Ratio of ET in the first layer of the hadronic calorimeter to ET of the

EM cluster (used over the ranges |η| < 0.8 and |η| > 1.37).

• (Rhad) Ratio of ET in the hadronic calorimeter to ET of the EM cluster (used

over range 0.8 < |η| < 1.37).

* * *

Photons and electrons can be identified as either Loose, Medium, or Tight, where

Tight represents the most confidence in the identification, while Loose represents

the least confidence in the identification. A given supercluster can be identified as

both a photon and an electron since they are built independently. In such cases

the procedure outlined in Figure 4.6 is applied. The photon or electron will now go

through a calibration process before being used in analyses.
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(a) The quantity Rφ is a measure of the cen-
tral of the energy deposited in the first layer
of the ECal is in the φ direction. The energy
in the dark gray area represents the numer-
ator while the energy in the light gray plus
dark gray area represent the denominator.

(b) The quantity Rη is a measure of the cen-
tral of the energy deposited in the first layer
of the ECal is in the η direction.The energy
in the dark gray area represents the numer-
ator while the energy in the light gray plus
dark gray area represent the denominator.

(c) The quantity wη2 is a measure of the width of the energy
distribution in the η direction averaged over φ in a 3×5 rectangle.

Figure 4.4: Discriminating variables for photon identification involving the second
layer of the ECal

4.3 Photon Calibration

4.3.1 Energy Scale and Resolution Measurements with Z → ee Decays

Like reconstruction, calibration of photons is closely related to the calibration of

electrons. The calibration begins with simulating and measuring the decay Z → ee.
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(a) The transverse energy in the dark gray
volume represents the numerator and the
transverse energy in the light gray and dark
gray volumes represents the denominator

(b) The transverse energy in the dark gray
volume represents the numerator and the
transverse energy in the light gray and dark
gray volumes represents the denominator

Figure 4.5: Discriminating variables for photon identification involving the HCal.

Figure 4.6: Flowchart showing the logic of the ambiguity resolution for particles
initially reconstructed both as electrons and photons. An innermost hit is a hit in the
functioning pixel nearest to the beam line along the track trajectory, E/p is the ratio
of the supercluster energy to the measured momentum of the matched track, Rconv is
the radial position of the conversion vertex, and RfirstHit is the smallest radial position
of a hit in the track or tracks that make a conversion vertex (Aad et al., 2019).

The data’s energy scale is corrected by dividing by a scale factor, 1 + αi, while the
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energy resolution is corrected with an additive constant, ci

Edata,corr =
Edata

1 + αi
(4.8)(σE

E

)MC,corr

=
(σE
E

)MC

⊕ ci (4.9)

where Edata,corr is the corrected energy scale of the data, Edata is the unocrrected

energy scale of the data, (σE/E)MC,corr is the corrected simulated energy resolution,

(σE/E)MC is the uncorrected simulated energy resolution.

For samples of Z → ee decays with electrons reconstructed at the (i, j) η region,

the effect of the energy scale corrections on the dilepton invariant mass is given in

first order by

mdata,corr
ij =

mdata
ij

1 + αij
(4.10)

αij =
αi + αj

2
(4.11)

while the difference in the simulated mass resolution is given by

(σm
m

)MC,corr

ij
=
(σm
m

)MC

ij
⊕ cij (4.12)

cij =
ci ⊕ cj

2
. (4.13)

To determine the values of αij and cij, the agreement between the invariant mass

distributions in the data and simulations are optimized separately for each (i, j) pair.

This optimization is performed using two separate methods and the difference is taken

as a systematic uncertainty. The first method estimates αij and cij by minimizing the

χ2 of the difference between data and simulation templates. To create the templates

the mass scale in simulation is shifted by αij and an extra resolution contribution

of cij is applied. The second method fits a sum of three Gaussian functions to the
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data and simulated invariant mass distributions in each (i, j) region. The αi and ci

are extracted from the differences of the means and widths of the fitted distributions

between data and simulations.

Figure 4.7 shows the invariant mass distribution for Z → ee candidates for data

and simulation after the energy scale correction has been applied to the data and the

resolution correction to the simulations and the stability of the reconstructed peak

position of the dielectron mass distribution as a function of the average number of

interactions per bunch crossing for the data collected in 2015, 2016, and 2017.

(a) Comparison between data and simulation
of the invariant mass distribution of the two
electrons in the selected Z → ee candidates,
after the calibration and resolution correc-
tions are applied. The total number of events
in the simulation is normalized to the data.
The uncertainty band of the bottom plot rep-
resents the impact of the uncertainties in the
calibration and resolution correction factors.

(b) Relative variation of the peak position
of the reconstructed dielectron mass distribu-
tion is Z → ee events as a function of the av-
erage number of interactions per bunch cross-
ing. The error bars represent the statistical
uncertainties.

Figure 4.7: Summary of the energy scale and resolution calibration with Z → ee
decays (Aad et al., 2019).

4.3.2 Validation of the Photon Energy Scale with Z → ``γ Decays

The energy scale corrections extracted from Z → ee decays, as described in Sec-

tion 4.3.1, are applied to correct the photon energy scale. Using the radiative decays

of the Z boson a data driven validation of the photon energy scale correction is per-

formed. After applying the Z based energy scale corrections, residual energy scale
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factors for photon, ∆α, are derived by comparing the mass distribution of the ``γ

system in data and simulation. The residual scale factors are applied to the photon

energy, and the value of the ∆α that minimizes the χ2 comparison between the data

and the simulation is extracted.

4.3.3 Energy Scale and Resolution Corrections in Low Pile-Up Data

Energy scale factors are derived for a special low pile-up sample collected in 2017

using the method described in Section 4.3.1 for 24 η regions. Another approach con-

sists of measuring the energy scale factors using high pile-up data and extrapolating

the results to the low pile-up conditions. This method is used as validation for the

primary method. The explicit dependence of the energy corrections on 〈µ〉 and dif-

ferences between the clustering thresholds used for the two samples are the two main

effects considered in the extrapolation.
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CHAPTER V

The Two Photon Final State: Standard Model

Prediction and New Physics

This thesis now shifts its focus to the diphoton final state. It begins with a review

of parton interactions and two body decays and 2→ 2 scattering processes. Next, it

describes SM predicitions for events with diphoton final states, that is the background

of the resonance search. Lastly, it describes in detail the predicitions of some BSM

models and results from past searches.

5.0.1 Parton Interactions

At high energies collisions do not occur directly between hadrons, but rather

between the quarks and gluons that make them up. In this context these quarks and

gluons are known as partons. Each parton carries just a fraction of the momentum of

its parent particle. How much momentum is carried by a parton is given by its PDF

and is dependent on the momentum transfer Q. An example of a PDF for a proton

with Q2 = 10 GeV2 is shown in Figure 5.1.
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Figure 5.1: The MSTW2008NLO parton distribution function at Q2 = 102 GeV,
where the horizontal axis is x, the fraction of the hadron’s momentum carried by a
parton, and the y-axis is x times the probability density f(x).

5.1 Two Body Decays

The lifetime of an individual particle cannot be predicted, however the decay

rate, Γ, that is the probability per unit time that a given particle will decay, can be

determined. Consider an ensemble of N →∞ identical particles. The change in the

number of particles after a time dt is given by

dN = −ΓN dt (5.1)

therefore the expected number of particles surviving after time t is given by

N(t) = N(0)e−Γt. (5.2)
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The lifetime, the time in takes for a ensemble to become 1/e of its original size, is

τ =
1

Γ
(5.3)

If there are n decay modes of the inital particle, the total rate is given by

Γtotal =
n

ÿ

i=1

Γi (5.4)

the lifetime by

τ =
1

Γtotal

(5.5)

and the branching ratios by

Bi =
Γi

Γtotal

. (5.6)

The process of a particle with four-momentum pµ = (M, 0, 0, 0) decaying to n

particles with four-momenta ki and masses mi has the differential decay rate

dΓ =
(2π)4

2M
|M|2dΦn (5.7)

where

dΦn = δ4

(
p−

n
ÿ

i=1

ki

)
n

ź

i=1

(
d3ki

(2π)32Ei

)
(5.8)

is the n-body Lorentz invariant phase space.

Consider a particle of mass M decaying to two particles of mass m1 and m2 with

momenta p1 and p2 respectively, as shown in Figure 5.2. In the rest frame of the

initial particle, that is the frame in which the initial particle is at rest, the energies
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Figure 5.2: Cartoon of a particle of mass M and momentum P decaying into two
particles of masses m1 and m2 and momenta p1 and p2. The arrows represent the
direction of the momentum.

and momenta of the outgoing particles are given by

E1 =
M2 +m2

1 −m2
2

2M
(5.9)

E2 =
M2 −m2

1 +m2
2

2M
(5.10)

|p1| = |p2|

=
[(M2 − (m1 +m2)2) (M2 − (m1 −m2)2)]

1/2

2M
(5.11)

The differential decay rate is given by

dΓ =
1

32π2
|M|2 |pi|

M2
dφ d(cos θ) (5.12)

where i = 1, 2. In the case that the outgoing particles are massless the energies and

momenta simplify to

E1 = E2 = |p1| = |p2| =
M

2
(5.13)
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while the differential decay rate becomes

dΓ =
|M|2

64π2M
dφ d(cos θ). (5.14)

5.2 2→ 2 Scattering Processes

A 2 → 2 scattering process, illustrated in Figure 5.3, is a process in which two

incoming particles interact, either elastically or inelastically, leading to two outgoing

particles. The outgoing particles can be the same particles as the incoming particles

Figure 5.3: Cartoon of a 2→ 2 scattering process where the incoming particles have
masses m1 and m2 and momenta p1 and p2 and the outgoing particles have masses m3

and m4 and momenta p1 and p2. The Arrows represent the direct of the momentum.

but with new four momenta, or the incoming particles can be destroyed with two new

outgoing particles produced. Consider the process ϕ1ϕ2 → ϕ3ϕ4 where the particles

ϕi have the momenta pi and energy Ei. The four momenta of the particles are given

by pi = (Ei,pi). The scattering matrix S (Sakurai and Napolitano, 1964) is related
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to the reduced matrix element M by

〈p3p4|S|p1p2〉 = 1− i(2π)4δ4(p1 + p2 − p3 − p4)

× M(p1, p2; p3, p4)

(2E1)1/2(2E2)1/2(2E3)1/2(2E4)1/2
(5.15)

where the state normalization is such that

〈p|q〉 = 2E(2π)3δ3(q − p) (5.16)

where E =
(
m2
q + |p2

q|
)1/2

.

The differential cross section in the COM frame is given by

dσ =
|M|2

64π2E2
cm

|pi|
|pj|

dΩ (5.17)

where i = 1, 2 and j = 3, 4.

5.2.1 Kinematics

At tree level, that is processes whose Feynman diagrams do not include any closed

loops, there are three distinct 2→ 2 scattering categories. Feynman diagrams of the

three categories are shown in Figure 5.4. In s-channel scatters, the two incoming

p2

p1

p4

p3

(a) s-channel p2

p1

p4

p3

(b) t-channel p2

p1

p4

p3

(c) u-channel

Figure 5.4: Feynman diagrams of the s-channel, t-channel, and u-channel scattering.
The solid lines represent the incoming and outgoing particles while the dashed lines
represent the exchanged particles. The particles with four-momenta p1 and p2 are the
incoming particles while the particles with four-momenta p3 and p4 are the outgoing
particles.
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particles annihilate to produce the exchange particle which decays to the outgoing

particles. In t-channel scatters, the incoming particles exchange a particle which leads

to their outgoing four momenta differing from the incoming four momenta, while u-

scatters are the same with the outgoing particles swapped. The Lorentz invariant

Mandelstam variables are defined as follows.

s = (p1 + p2)2 = (p3 + p4)2

= m2
1 + 2E1E2 − 2p1 · p2 +m2

2 (5.18)

t = (p1 − p3)2 = (p2 − p4)2

= m2
1 + 2E1E3 − 2p1 · p3 +m2

3 (5.19)

u = (p1 − p4)2 = (p2 − p3)2

= m2
1 + 2E1E4 − 2p1 · p4 +m2

4 (5.20)

They represent the four-momenta of the exchange particles in each process and satisfy

the following relation.

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (5.21)

Note that since in the COM frame p1 +p2 = (E1 +E2,0) = (Ecm,0), then (p1 +p2)2 =

E2
cm which gives

‘

s = Ecm (5.22)

where Ecm is the COM energy. The energy of the particles in the COM frame is given

by

Ei =
1

2
‘

s
(s+m2

i −m2
j) (5.23)
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where i = 1, 3 and j = 2, 4 or i = 2, 4 and j = 1, 3. In the case where the outgoing

particles are massless,

Ei = |p3| = |p4| =
‘

s

2
(5.24)

where i = 1, 2, 3, 4.

The scattering angle θ in the COM frame, pictured in Figure 5.5, is defined by

p · p′ = |p||p′| cos θ. (5.25)

Figure 5.5: Illustration of scattering angle in a 2→ 2 scattering process in the center
of mass frame.

The angular distribution, assuming a uniform distribution in φ, is given by

dΩ = 2π cos θ (5.26)

dΩ

dt
=

4πs
a

λ(s,m2
1,m22)

a

λ(s,m2
3,m

2
4)

=
π

|p||p′|
(5.27)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the Källén function. The cross
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section can be written in terms of s and t as

dσ

dt
=

1

64πs

1

|p|2
|M|2. (5.28)

5.3 Predicitons for Standard Model Backgrounds

5.3.1 Diphton Pair Production Processes at the LHC

Competing with any signal events, that is events coming from a resonance, is

a background many orders of magnitude larger. The background is composed of

the reducible and irreducible background. The irreducible background is composed

of events with at least two photons in the final state, that is events with the form

x+ x′ → γγ +X where x and x′ are partons and X represent n ∈ N particles.

The two main processes contributing to the irreducible background, shown in

Figure 5.6, are qq̄ → γγ s-channel scattering, known as the Born process, and gg → γγ

box diagram with a fermion intermediate state.

q

q̄

γ

γ

(a) qq̄ → γγ
g γ

g γ

(b) gg → γγ

Figure 5.6: Feynman diagrams for the main processes of diphoton production at the
LHC: (a) The Born diagram, and (b) the box diagram.

Although the qq̄ → γγ process is of order α2
QED and the gg → γγ process is of

order α2
Sα

2
QED, the gluon PDFs are enhanced at the LHC, so the cross section can be

≈ 30% of the qq̄ → γγ process. Processes including radiative and virtual corrections

increase the diphoton production cross section. In the case of the Born process, it

increases the cross section by approximately 30%. Figure 5.7 shows the main qg → jγ

processes with an additional photon coming from initial state radiation (ISR) or final
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state radiation (FSR). The qg → qγγ processes, although of order αSα
2
QED, are also

q

g

γ

q

γ

(a) qg → qγγ

q

g

γ

q

γ

(b) qg → qγγ q

q̄

γ

γ

g

(c) qq → gγγ q

q̄

γ

g

γ

(d) qq → gγγ

Figure 5.7: Feynman diagrams for the main diphoton processes originating from
radiative corrections to jγ and γj events.

enhanced due to the large gluon PDFs at the LHC.

Also contributing to the cross section are events where a fragmentation photon

is produced. These events can come from x + x′ → qγ + X and x + x′ → qq + X

processes where the quarks fragment, a process where a quark hadronizes producing

new particles, into energetic photons and x and x′ are partons. The two main frag-

mentation processes contributing to the diphoton production cross section are shown

if Figure 5.8.

q

g

γ

γ

(a) g

g

γ

γ

(b)

Figure 5.8: Feynman diagrams of diphoton events with (a) one photon coming from
fragmentation and (b) both photons coming from fragmentation.

The reducible background is mostly comprised of jγ, γj and jj events misidentified

as diphoton events. These events contribute non negligibly to the ATLAS diphoton
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mass spectrum. Although the number of misidentified photons constitute just a small

fraction of the jets produced at the LHC, on the order a few percent, the number of

jets produced far exceeds the number of photons produced. There are approximately

two orders of magnitude more jγ and γj events than γγ events and approximately

seven orders of magnitude more jj events than γγ events, so these fakes end up

contributing significantly to the diphoton mass spectrum. Figure 5.9 shows the main

processes that contribute to faked diphoton events.

q

g

γ

q

(a) qg → qγ q

q

g

γ

(b) qq̄ → gγ

q

g

g

q

(c) qg → qg q

q

g

g

(d) qq̄ → gg g

g

g

g

(e) gg → gg

Figure 5.9: Feynman diagrams of the main processes contributing to the reducible
background.

5.4 Predictions for Possible New Processes

5.4.1 Graviton Phenomenology

Although the graviton is predicted to be a massless spin-2 boson, KK theories

predict the existence of graviton massive resonances, as discussed in Section 2.5.2.1.

In KK theories, gravitons appear as a series of separate resonances over a smoothly
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Figure 5.10: Feynman diagrams for the main processes for x + x′ → G → γγ where
x and x′ are partons.

falling mass spectrum. The interaction Lagrangian is given by

Lint = − 1

MPl

Tαβh
(0)
αβ −

1

ΛG

Tαβ
∞
ÿ

n=1

h
(n)
αβ (5.29)

where h
(0)
αβ and h

(n)
αβ are the massless and massive gravitons respectively, MPl is the

Planck scale, Tαβ is the energy-momentum tensor of the matter fields, and ΛG is the

energy scale (Tang , 2012). The total cross section for graviton production at hadron

colliders is given by

σ =

ż

dx1 dx2 fq1(x1, µF )fq2(x2, µF )σ̂(q1q2 → G∗; ŝ) (5.30)

where fqi(x, µF ) is the PDF for a parton with momentum fraction x at the factor-

ization scale µF , σ̂ is the partonic cross section with the initial two partons, q1,q2 =

q,q̄,g, of momentum fraction x1 and x2 respectively, and ŝ = x1x2s. The two main

processes for G→ γγ produced at hadron colliders are shown in Figure 5.10.

Figure 5.11 shows the graviton branching ratios as a function of mass. For large

masses, that is masses on the TeV scale, the branching ratios are nearly constant.

The branching ratios in the high mass limit are shown in Table 5.1. The total decay
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Figure 5.11: Branching ratios for the various decay modes of the graviton as a function
of mass where q = u, d, c, s, b and l = e, µ (Tang , 2012).

Decay Mode Branching Ratio
gg 96/293
qq̄ 90/293

W+W− 26/293
tt̄ 18/293

ZZ 13/293
γγ 12/293

`+`− 12/293
τ+τ− 6/293
νeν̄e 6/293
νµν̄µ 6/293
ντ ν̄τ 6/293
hh 2/293

Table 5.1: Branching ratios for the various decay modes of the graviton in the high
mass limit where q = u, d, c, s, b and ` = e, µ (Tang , 2012).

rate for G→ X and G→ γγ are given by

Γ(G→ X) ' 293M3
G

960πΛ2
G

(5.31)

Γ(G→ γγ) ' M3
G

80πΛ2
G

(5.32)

where X is any final state, MG is the mass of the resonance and ΛG is the energy
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scale (Tang , 2012). The number of events where a graviton is produced and decays

to two photons is therefore given by

Npp→G→γγ = σ(pp→ G)× Br(G→ γγ) ≈ 12

293
σ(pp→ G). (5.33)

Although the the graviton decays to photons only about 4% of the time, the dipho-

ton channel is still an attractive discovery channel for its high resolution and clean

background. The Higgs boson decays to photons approximately 0.23% of the time,

and the diphoton channel was an important discovery channgel.

5.4.1.1 Randall-Sundrum Model

In the Randall-Sundrum (RS) model, discussed in Section 2.5.2.2, the dimension-

less couplings of the graviton states k
/

ĎMPl and masses mn are determined by the scale

ΛG = e−kπLĎMPl ≈ O(TeV) where ĎMPl = MPl/
‘

4π is the reduced Planck Scale, k is

the curvature scale of the extra dimension, and L is the size of the extra dimension.

The natural width is related to k
/

ĎMPl by

Γ(G∗ → X) ∼
(
k
/

ĎMPl

)2
(5.34)

where X is any final state. For k
/

ĎMPl < 0.3, the lightest graviton state is expected

to be fairly narrow, that is the width is at most on the order of the ATLAS detector

resolution.

Results from past searches are shown in Table 5.2. Figure 5.12 shows the limit

plots from the most recent CMS and ATLAS high mass diphoton results.

5.4.2 2HDM Phenomenology

The 2HDM has several variations each with their own couplings and therefore

phenomenology. However, in all models the coupling λ
W/Z
h/H of h(H) to W and Z is the
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Experiment
‘

s (TeV) Luminosity (fb−1) Limit
ATLAS 7 4.9 2.06(1.00) TeV for k

/
ĎMPl = 0.1(0.01)

ATLAS 13 36.7 4.1 TeV for k
/

ĎMPl = 0.1
CMS 7 2.2 2.66(1.41) TeV for k

/
ĎMPl = 0.1(0.01)

CMS 13 35.9 4.1(2.3) TeV for k
/

ĎMPl = 0.1(0.01)
CDF 1.96 5.4/5.7 1.06 TeV for k

/
ĎMPl = 0.1

DØ 1.96 5.4 1.05(0.56) TeV for k
/

ĎMPl = 0.1(0.01)

Table 5.2: Results from past searches of the Randall-Sundrum graviton with k
/

ĎMPl =
0.1. The ATLAS (Aad et al., 2013) (Aaboud et al., 2017)and CMS (Chatrchyan et al.,
2012) (Sirunyan et al., 2018)results are for G∗ → γγ, while the CDF (Aaltonen et al.,
2011) and DØ (Abazov et al., 2010) results are for G∗ → γγ and G∗ → e+e−.

same as the SM, the coupling λ
WW/ZZ
h of h to WW and ZZ is the same as the SM

times sin(α − β), the coupling λ
WW/ZZ
H of H to WW or ZZ is the same as the SM

times cos(α − β), and the coupling of A to vector bosons vanishes. These couplings

are summarized in Table 5.3. Table 5.4 shows ξYX = λYX 2HDM/λ
Y
X SM where λYX Z is the

λ2HDM/λSM

λ
W/Z
h/H 1

λ
WW/ZZ
h sin(α− β)

λ
WW/ZZ
H cos(α− β)

λ
W/Z
A 0

λ
WW/ZZ
A 0

Table 5.3: Summary of the 2HDM particle h, H, and A couplings to vector bosons
relative to the SM Higgs h couplings.

Yukawa coupling of X to Y in the model Z.

Figure 5.13 shows the dominant production modes for the SM and the 2HDM

CP-even Higgs bosons: gluon-gluon fusion (ggF), vector boson fusion (VBF), Hig-

gsstrahlung, and associated Higgs production with tt̄ (ttH). In principle the ggF loop

can be made by any quark, however since the coupling of the SM Higgs to fermions

is proportional to the fermion mass, only the diagrams with top loops contribute

significantly to the cross section.
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(a)

(b)

Figure 5.12: Limits on the cross section for pp → G∗ → γγ from CMS (Sirunyan
et al., 2018) and ATLAS (Aaboud et al., 2017).

In the SM the partonic cross section for ggF is given by

σ̂ggF = m2
hδ(ŝ−m2

h)
GFα

2
S

512
‘

2π

∣∣∣∣∣ÿ
q

Aφ1/2(τq)

∣∣∣∣∣
2

(5.35)

where GF is the Fermi constant, αS is the strong coupling constant, τq = m2
h/(4m

2
q),
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Type I Type II Lepton-Specific Flipped
ξuh cosα/ sin β cosα/ sin β cosα/ sin β cosα/ sin β
ξdh cosα/ sin β − sinα/ cos β cosα/ sin β − sinα/ cos β
ξ`h cosα/ sin β − sinα/ cos β − sinα/ cos β cosα/ sin β
ξuH sinα/ sin β sinα/ sin β sinα/ sin β sinα/ sin β
ξdH sinα/ sin β cosα/ cos β sinα/ sin β cosα/ cos β
ξ`H sinα/ sin β cosα/ cos β cosα/ cos β sinα/ sin β
ξuA cot β cot β cot β cot β
ξuA − cot β tan β − cot β tan β
ξuA − cot β tan β tan β − cos β

Table 5.4: Summary of the 2HDM particles h, H, and A couplings to fermions relative
to the SM Higgs couplings.

g

g

φ

(a) ggF

q

q

q

φ

q

(b) VBF q

q̄

φ

W/Z

(c) Higgsstrahlung g

g

t̄

φ

t

(d) ttH

Figure 5.13: Dominant production modes for the 2HDM CP-even Higgs bosons at
hadron colliders; (a) and (d) are the dominant production modes for the pseudoscalar
Higgs boson at hardron colliders.

and Aφ1/2(τ) = 2[τ + (τ − 1)f(τ)]/τ 2 is the form factor, where

f(τ) = −1

2

1
ż

0

dy

y
log[1− 4τy(1− y)] (5.36)

=


arcsin2(

‘

τ) ⇐ τ ≤ 1,

−1
4

(
log

1+
‘

1−1/τ

1−
‘

1−1/τ
− iπ

)2

⇐ τ > 1.

(5.37)
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In the massless quark limit the form factor becomes

Aφ1/2 → −[log(4τq)− iπ]2/(2τq). (5.38)

In 2HDM the production cross section for a light CP-even Higgs h via ggF is

the SM cross section times (cosα/ sin β)2. In the decoupling limit, that is when

cos(α−β)→ 0, the light CP-even Higgs h has the same cross section as the SM Higgs.

In this case, the 125 GeV Higgs boson is the light CP-even Higgs thereby leaving the

heavy CP-even Higgs H yet to be discovered. In the limit that sin(α − β) → 0, the

heavy CP-even Higgs H has the same cross section as the SM Higgs. In this case, the

125 GeV Higgs boson is the heavy CP-even Higgs thereby leaving the light CP-even

Higgs h yet to be discovered.

In Type I and Lepton-Specific 2HDM, the production cross section of the light

CP-even Higgs is the SM coupling multiplied by (cosα/ sin β)2 since the top-loop

contribution to the amplitude is multiplied by cosα/ sin β. In Type II and Flipped

2HDM, the top-loop contribution to the amplitude is modified in the same way.

However, if tan β is large then the b quark’s Yukawa coupling becomes large, and ggF

diagrams with bottom-loops contribute non negligibly. The bottom-loop contribution

to the amplitude is multiplied by − tanα tan β. For mh = 100 GeV the cross section

is multiplied by the factor |1 + (5− 8i) tanα tan β/100|2 and scales like m−2
h for other

masses (Branco et al., 2012). By picking the right parameters one can greatly increase

the ggF production cross section of Type I and Lepton-Specific 2HDM.

The cross sections for the heavy CP-even Higgs H are modified similarly. In Type

I and Lepton-Specific 2HDM the cross section is multiplied by (sinα/ sin β)2. In

Type II and Flipped 2HDM the top-loop contribution to the amplitude is multiplied

by (sinα/ sin β)2 and the bottom-loop contribution to the amplitude is multiplied by

the factor cotα tan β.
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The pseudoscalar A has the form factor AA1/2(τ) = 2f(τ)/τ in ggF production.

In addition to this change, the amplitude is multiplied by cot β, which blows up for

small tan β. For mA = 100 GeV the production rate in Type II and Flipped 2HDM

is |1− (3.5− 4i) tan2 β/100|2 times that of Type I an Lepton-Specific (Branco et al.,

2012).

For the light CP-even Higgs h in the VBF or Higgsstrahlung process, the SM cross

section is multiplied by sin2(α − β). For the heavy CP-even Higgs H the SM cross

section is multiplied by cos2(α − β). There are no W+W−A or ZZA vertices so the

pseudoscalar A cannot be produced via VBF or Higgsstrahlung.

For the light CP-even Higgs h in the ttH process, the SM cross section is multiplied

by (cosα/ sin β)2. For the heavy CP-even Higgs H the SM cross section is multiplied

by (sinα/ sin β)2. For the pseudoscalar A the SM cross section is multiplied by cot2 β.

Because of the possibility for enhanced coupling to the b quark in Type II and

Flipped 2HDM, there can be a non-trivial contribution to the production cross section

from associated production with bb̄. For the light CP-even Higgs the cross section of

SM ttH production is multiplied by (sinα/ cos β)2(mb/mt)
2. For the heavy CP-even

Higgs the cross section of SM ttH production is multiplied by (sinα/ sin β)2(mb/mt)
2.

For the pseudoscalar A the cross section of SM ttH production is multiplied by

cot2 β(mb/mt)
2.

The decay rates of h, H, and A are modified similarly and are given by

Γ(Hi → γγ) =
α2

QEDm
3
Hi

256π3v2

(
|M1|2 + |M2|2

)
(5.39)

M1 = 2
ÿ

f

NcQ
2
fC

S
Hiff

v

mf

Aφ1/2(τf )− CHiWW
v

2m2
W

Aφ1(τW )

− CHiH+H−
v

2m2
H±

Aφ0(τ±H ) (5.40)

M2 = 2
ÿ

f

NcQ2
fC

P
Hiff

v

mf

AA1/2(τf ) (5.41)
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where Hi ∈ {h,H,A}, Aφ0 = −τ [1 − τf(τ)], Aφ1 = −[2 + 3τ + 3(2τ − τ 2)f(τ)], and

AA1/2 = 2f(τ)/τ . Figure 5.14 shows the dominant Feynman diagrams for the CP-even

Higgs boson decaying to two photons.
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γ

γ
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Figure 5.14: Feynman diagrams for the main processes of the decay of the CP-even
Higgs bosons of 2HDM; (c), (d), and (e) are the main processes of the decay of the
pseudoscalar Higgs boson of 2HDM.
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CHAPTER VI

The Reseonance Search Technique and Previous

Results

6.1 Bump Hunts

A traditional way of searching for new mass resonances with particle colliders

involves looking for local excesses in a mass spectrum, a technique commonly known

as a bump hunt. Thanks to Lorentz invariance, if the four-momentum p = (E, ~p) of

a particle is known, the mass of the particle, often called the invariant mass, can be

easily calculated

m2 = p2 = E2 − |~p|2 (6.1)

in natural units∗. From energy and momentum conservation the four-vector of a

particle can be determined by adding the four-vectors of its decay products component

by component. This allows for the invariant mass of a particle to be determined from

measuring the energy and momentum of its decay products.

For simplicity, consider the example of a diphoton mass spectrum produced from

the data collected at particle collider. This spectrum is built by taking every event

∗ Natural units are a set of physical units of measurement which are only based on universal physical
constants, e.g. c = ~ = 1
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with at least two photons which meet some predetermined conditions and finding the

invariant mass of the sum of the four-vectors of the two photons with the largest

transverse momenta. It turns out that if nothing interesting is happening in the

event, that is the photons come from a soft interaction or processes other than a

decaying object, then plotting a large number of these events in a histogram results

in a smoothly falling continuum, commonly called the background. Now suppose there

is a particle X of nominal mass m being produced in the collider with cross section

σ and branching fraction Br(X → γγ) = f , that is it decays to diphotons f × 100%

of the time. If the photons are the decay products of this particle, the invariant mass

of the diphoton system mγγ will be equal to the mass of the particle, mγγ = m+ δm,

where δm is deviation from the nominal mass that comes from the inherent width of a

decaying particle. Figure 6.1 shows an illustration of a mass resonance with nominal

mass m and width Γ ≈ 〈δm〉. The number of X particles produced by the collider

Figure 6.1: Illustration of a resonance with mass m and width Γ ≈ 〈δm〉.

NX and number of those which decay to two photons NX→γγ will be given by

NX = Lσ (6.2)

NX→γγ = Lσf (6.3)

where L is the integrated luminosity. This is complicated further since even the
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most sophisticated colliders cannot record every event and since the selection criteria

for which events to record and use in the analysis will almost certainly exclude some

X → γγ events. These shortcomings are captured in a quantity ε known as efficiency,

and is given by

ε =
Nsignal

NX→γγ
(6.4)

where Nsignal is the number of X → γγ recorded and used in the mγγ spectrum.

Combining this with Equation 6.3 gives

Nsignal = Lσfε. (6.5)

Typically the number of events with mγγ near m produced by uninteresting events

will be orders of magnitude larger than Nsignal. This creates a difficulty in being able

to distinguish a local excess due to a mass resonance from a statistical fluctuation

in the mass spectrum. When there is a local excess in the mass spectrum there

are statistical and simulation based techniques for estimating the background in the

region of the resonance. The deviation from the background model is compared to

the expected line shape for new physics. The size of the excess is estimated along

with its uncertainty. Traditional benchmarks in high energy physics for evidence and

discovery of a new mass resonance are 3σ and 5σ respectively. Chapter IX of this

thesis gives the details of how a new data driven technique is used to model the

background and search for mass resonances.

6.2 Backgrounds

A conventional way to model a background is to fit the data itself or a Monte

Carlo (MC) simulation with a smooth curve. Typically this fit is achieved by binning
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the background into a histogram and fitting it with an empirically-derived function.

A common choice for a function is the PowLog-n function, defined by

f(z; {a, d, αi}) = (1− xd)a · x
řn
i=0 αi(log x)i (6.6)

where x = z
/

‘

s and
‘

s is the COM energy of the collider. This function has the

property lim
z→

‘

s
f(z) = 0. This is a desirable property since the highest diphoton mass

possible at a collider is mγγ =
‘

s. In general the function is very robust and flexible;

as more degrees of freedom are needed for a fit, one can simply increase n.

6.3 Signals

Mass resonances are typically modeled using a function that encapsulates the

true line shape of the resonance convolved with the detector resolution. A common

choice for the dector resolution function is known as the double sided crystal ball

(DSCB) (Amidei , 2020) function which consists of a Gaussian core with two power

law tails:

FNWA(mγγ; t, nlow, nhigh, αlow, αlow) =

N ×



e−t
2/2 ⇐ −αlow ≤ t ≤ αhigh

e−α
2
low/2[

αlow
nlow

(
nlow
αlow

−αlow−t
)]nlow ⇐ t < −αlow

e
−α2high/2[

αhigh
nhigh

(
nhigh
αhigh

−αhigh+t

)]nhigh ⇐ t > αhigh

(6.7)

where t = (mγγ − µCB)/σCB, µCB is the peak of the Gaussian core, σCB is the width

of the Gaussian core, N is the normalization parameter, αlow(αhigh) is the position of

the junction between the Gaussian and the power law on the low (high) mass side in

units of t, and nlow(nhigh) is the exponent of the power law. The detector resolution
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is usually found with the use of MC simulations of events at the reconstucted level.

Very narrow signals, that is signals whose width is much smaller than the detector

resolution, are fit with some function, for example the DSCB function, at various

resonance masses mX . The function’s parameters are plotted as a function of mX

and fit with polynomials so that one could interpolate the parameters’ values at

intermediate masses. The detector resolution function for all masses is taken to be

the DCSB! (DCSB!) function with its parameters chosen from these interpolated

mass dependent values.

A common choice to model the true lineshape is with the product of a relativistic

Breit-Wigner (BW) function and mass dependent factors accounting for the parton

luminosity and the matrix elements of the production and decay. This function

describing the lineshapes can be validated by comparing it to MC simulations at the

parton level. It is convolved with the detector resolution function to give the final

signal lineshape. The final signal lineshape can be validated by comparing it to MC

simulations on the reconstruction level.

6.4 Previous ATLAS Results

In 2017 there was a previous ATLAS search for new phenomena in the diphoton

high mass spectrum. The analysis was performed on 36.7 fb−1 data collected at

the ATLAS detector between 2016 and 2017. It included both scalar and graviton

searches. However, since the analysis presented in this thesis only searches for narrow

scalar resonances, the focus of this section will be on the narrow scalar search. The

analysis presented in this thesis can be seen as a modified extension of that analysis.

Similar selection criteria and signal modeling is used in both searches, however the

background modeling techniques differ significantly.
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6.4.1 Event Selection

The data sample used uses a the diphoton trigger HLT g35 loose g25 loose.

Each event must contain at least two photon candidates which satisfy the tight in-

dentification criteria based on the EM shower shapes. The photon candidates must

be central, that is found in the detector region |η| < 2.37 excluding the transition

region 1.37 < |η| < 1.52 between the barrel and the end-cap calorimeters.

Both photon candidates must satisfy isolation requirements using criteria based

on the calorimeter only, or on both the inner tracker and the calorimeter. Two

variables are constructed to ensure these criteria are met. The first is Eiso
T and is

defined as the sum of transverse energy of the topological clusters with positive energy

reconstructed in the calorimeter around each photon candidate in a cone of radius

∆R =
a

(∆η)2 + (∆φ)2 = 0.4. This sum does not include the contribution from the

photon itself and is corrected for the leakage of the photon energy using an event-by-

event energy subtraction based on the jet area method (Cacciari et al., 2008)(Aaboud

et al., 2017). It is required that Eiso
T < 0.022 × ET + Eiso,th

T , where the threshold

Eiso,th
T is either 2.45 GeV (tight calo-isolation selection) or 7 GeV (loose calo-isolation

selection). The second variable is piso
T and is defined as the sum of the transverse

momenta of all tracks with pT > 1 GeV in a cone of sizes ∆R = 0.2 around each

photon candidate, and it is required that piso
T < 0.05× pT GeV

The leading photon is required to have ET > 40 GeV while the subleading photon

is required to have ET > 30 GeV. No relative ET cut is made in this analysis.

6.4.2 Signal Modeling

Signals are modeled by following the procedure outlined in Section 6.3, that is by

convolving the detector resolution with the true lineshape. The detector resolution

is modeled with a DSCB function, given by Equation 6.7, while the true lineshape

is modeled using the product of a BW function and mass dependent factors ac-
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counting for the parton luminosity and the matrix elements of the production and

decay processes. The convolution is performed in RooFit using the RooFFTConvPdf

class (Verkerke and Kirkby , 2003).

6.4.3 Background Modeling

The background is modeled by following the procedure outlined in Section 6.2.

The PowLog-n function, given by Equation 6.6, is chosen to model the background

with the d parameter set to 1/2, and
‘

s = 13 TeV. This functional form is validated

by comparing it to γγ MC simulations with varying pdf sets. Extreme cases of the

γj and jj contributions to the background are modeled by considering the following

functional forms:

f(x; k1, k2) = xk1(1−log x) × xk2 log x (6.8)

f(x; k1, k2, k3, k4) = xk1(1−log x) × xk2 log x ×
(

1− 1

1 + e(x−k3)/k4

)
(6.9)

f(x; k1, k2, k3, k4, k5, k6) = xk1(1−log x) × xk2 log x ×
(

1− 1

1 + e(x−k3)/k4

)
×
(

1− 1

1 + e(x−k5)/k6

)
(6.10)

The combined sample is used to perform spurious signal tests to further validate the

chosen PowLog-n functional form. This builds confidence that the selected functional

form can be used to describe the background regardless of its composition.

6.4.4 Results

To search for a narrow scalar resonance, the data was fit simultaneously with

a PowLog-n function describing the background and the signal shapes described in

Section 6.4.2 for many mass points across the range 180-3000 GeV. At each mass

point a yield, Nsignal, is extracted as well as the local p-value for the background only

hypothesis. Figure 6.2 shows the local p-values found as a function of mass. As no

91



Figure 6.2: Local p-value as a function of resonance mass, mX , from the 2017 ATLAS
narrow width scalar search.

significant excesses were found the focus of the analysis shifted from discovery to

setting the 95% confidence level (CL) upper limits on σfid × Br for a narrow width

scalar. Figure 6.3 shows the limits as a function of mX .

Figure 6.3: The 95% confidence level upper limits on σfid × Br for the narrow width
scalar search.
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CHAPTER VII

Simulated Samples

This chapter describes the simulated samples used in the analysis presented in this

thesis, which includes both MC samples and pseudo-data. These samples are used to

model the shape of mass spectra for signal and background processes and to recon-

struct the efficiency and accpetance of signal processes. To produce the MC samples,

events are first produced at the parton level using MC event generators. Next, they

are passed to Geant4 to simulate the particles passing through the ATLAS detec-

tor and reconsturcted using the same analysis chain used for collision data. Using

Pythia8 with the A14 parameter tune, pileup is included by adding inelastic proton–

proton (pp) collisions. Finally, these samples are generated using mc16a, mc16d, and

mc16e conditions to account for the different pileup and trigger conditions of the

2015-2016, 2017, and 2018 data, respectively (Amidei , 2020). Once the MC samples

are generated, their shapes can be used to produce unbinned pseudo-data, or toy

datasets.

7.1 Background

7.1.1 Monte Carlo Background Samples

Background simulations are produced to assist in both the primary (empirically-

derived function) and secondary (FD) analyses. Although the background modeling
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in FD is data driven, the shape of the simulated background is used to produce

unbinned pseudo-data samples which in turn are used to validate FD as a discovery

tool.

Using the pdf set NNPDF3.0 NNLO, and Sherpa and its default tuning for the

underlying event, background events from the continuum γγ production are gener-

ated. The interference effects with the X → γγ signals are not simulated since they

are estimated to be negligible. The matrix elements are determined in a two part pro-

cess. First, the matrix elements are calculated at NLO in the strong coupling constant

αs for zero or one real emission of an additional parton and at LO for two and three

additional partons. Next, they are merged with the Sherpa parton shower (Schu-

mann and Krauss , 2008) according to the ME+PS@NLO prescription (Höche et al.,

2013).

The background is generated in slices of mγγ in order to provide sufficient statistics

in all mass regions. The mass ranges are exclusive to each slice, that is there is no

overlap, except between the 175-2000 GeV slice and 1400-2000 GeV slice. However,

events with mγγ > 1400 GeV on the parton level are removed from the 175-2000 GeV

slice to prevent double counting. A fast simulation (Aad et al., 2010) is used to

generate these samples in which the full simulation of the calorimeter response is

replaced with a parameterization (ATLAS et al., 2010). Full simulation is used to

produce smaller samples in order to validate the results of the fast simulation.

Generator mγγ range [GeV] Cross section [pb] Nevents

Sherpa+Fastsim 90-175 51.822 50.8M
175-2000 10.999 35.3M
1400-2000 3.992× 10−3 400k
2000-∞ 703× 10−6 400k

Sherpa+Fullsim 175-2000 10.999 14.1M
2000-∞ 703× 10−6 400k

Table 7.1: The generators used, mass range, cross section, and number of events in
the background MC samples.
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7.1.2 Background Pseudo-data

The reweighted MC samples are used to produce unbinned toy datasets with the

expected statistics and shape of 140 fb−1. After the event selection is applied, the MC

samples are fit with a PowLog-1 function, given by Equation 6.6, which is normalized

to unit area, as to produce a pdf. The parameterization of the PowLog-1 fit is shown

in Table 7.2.

Parameter Value
a 8.33
α0 -2.97
α1 1.18× 10−2

Table 7.2: The parameters extracted from the PowLog-1 fit to the Sherpa mγγ

distribution in 10 GeV bins

Inversion sampling is used on the pdf to produced 5000 toys each with exactly

433655 events starting at mγγ = 150 GeV. Figure 7.1 shows one such toy compared

to the PowLog-1 shape. The χ2/dof = 2.22 is thought to be due to the poor statistics

Figure 7.1: One toy dataset’s shape compared to the PowLog-1 pdf and the pull
distribution.

of the tail.

This chapter now turns to the details of the resonance search in this thesis.
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7.2 Scalar

7.2.1 Monte Carlo Samples

The scalar signal models used in this analysis are simulated Higgs-like particles

with various masses in the range mX ∈ [200, 5000] GeV. The particles are required

to decay to two photons, and are simulated using Higgs boson production processes

in pp collisions at
‘

s = 13 TeV.

The scalar samples are divided into two categories: narrow width approximation

(NWA) and large width (LW). In the NWA the resonance has a fixed width of

ΓX = 4.07 MeV, the width of the 125 GeV Higgs boson. The ggF production mode

of the resonance is chosen as the baseline signal process for signal parameterization,

as this is the dominant production mode for a Higgs-like particle. The interference

between the gg → X → γγ process and the continuous QCD diphton production

associated with the gg → γγ process is estimated to be negligible, and therefore is

neglected in the simulation. Additional samples with other production modes are

also considered in the study of the signal shape and efficiency. Several widths are

used for the LW scalars, namely 2%, 6%, and 10% of the resonance mass, mX for the

ggF production process only. These samples are produced with widths in the range

ΓX/mX ∈ [0.02, 0.10]. Table 7.3 shows the various production modes and the MC

generators used for the scalar samples.

7.2.2 Narrow Width Scalar Pseudo-data

The ggF MC samples for the NWA are used to produce toy datasets which are

used in the signal injection studies presented in Section 9.8.1.5. Rather than fitting

the samples with a function, the samples are binned and normalized to unit area so

that the resulting histogram defines the pdf from which to sample. This luminosity

weighted histogram for the mX = 1000 GeV sample is shown in Figure 7.2. The size
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Process Generator Width (Γ/mX)
ggF MG5 aMC@NLO+Pythia8 NWA
ggF Powheg+Pythia8 NWA
VBF Powheg+Pythia8 NWA
WH Pythia8 NWA
ZH Pythia8 NWA
ttH Pythia8 NWA
ggF MG5 aMC@NLO+Pythia8 2%,6%,10%

Table 7.3: The production processes and MC generators used for the scalar samples.
The samples are generated for the masses 200, 400, 800, 1000, 1200, 1600, 2000, 2400,
3000, 4000, and 5000 GeV. The pileup configurations mc16a+d+e are generated for
30,000, 40,000, and 70,000 events respectively, to roughly match the proportions of
the various pileup conditions in the collider data.

Figure 7.2: Luminosity weighted histogram for the mX = 1000 GeV NWA scalar
signal

of these toys are determined by estimating the signal size required to for 1,2,3,4 and

5 σ excesses near the mass of the corresponding signal. For each trial in the signal

injection studies a unique toy signal is produced.

7.3 Graviton

The graviton samples used in this analysis were generated using RS graviton

production processes in pp collisions at
‘

s = 13 TeV, and requires a diphoton final
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state. They are generated using Pythia8with the NNPDF23LO pdf set and the A14

tune. Only the effect of the first KK excitation is considered. These samples are

produces for various coupling values in the range k
/

ĎMPl ∈ [0.01, 0.3] and masses in

the range mX ∈ [500, 7000] GeV. Table 7.4 gives the full list of the graviton samples.

Generator Mass [TeV] k
/

ĎMPl

Pythia8 0.5,1,2,3,4 0.01,0.05,0.1
Pythia8 5,6,7 0.01,0.05,0.1,0.2,0.3

Table 7.4: The MC generators used to produce the graviton samples with their masses
and coupling strengths k

/
ĎMPl. In all cases mc16a,d,and e are used to generate 20k,

30k, and 60k respectively in order to roughly match the proportions of the various
pileup conditions in the collider data.
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CHAPTER VIII

Diphoton Analysis Selection, Background

Modeling, and Signal Modeling

Previously in this thesis diphoton production, photon reconstruction, and photon

calibration were discussed, the focus shifts now to how the calibrated photons were

used in the analysis. This chapter begins by discussing the event selection used in the

analysis presented in this thesis. From there it moves to describing the acceptance

and efficiency of the chosen selectria criteria. The chapter ends with describing how

the signal shapes, now sculpted by the selection, are modeled in the analysis.

8.1 Collision Data and Trigger

The data used in the analysis was recorded with the lowest ET unpreselected

diphoton trigger with the least stringent requirements on photon identification that

operated during the 25 ns 2015-2018 data-taking period. The high level trigger (HLT)

HLT g35 loose g25 loose was used to obtain the 2015-2016 dataset. This trigger is

seeded from a Level-1 (L1) trigger which requires two distinct energy deposits of more

than 15 GeV in the ECal. The HLT requires ET thresholds of 35 GeV and 25 GeV

for the leading and subleading photons and that associated electromagnetic clusters

match the loose shower shape criteria. The HLT g35 medium g25 medium L12EM20VH
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was used to obtain the 2017-2018 dataset. This trigger is seeded from an L1 trigger

requiring two energy deposits of more than 20 GeV. The HLT requires ET thresholds

of 35 GeV and 25 GeV for the leading and subleading photons and that the clusters

match the medium shower shape criteria. The tightened selection during the 2017-

2018 was enforced to compensate for the increase in pile-up which can be seen in

Figure 8.1.

Figure 8.1: Distribution of the number of interactions per bunch crossing, weighted
by luminosity for each of the data taking periods. All data recorded by ATLAS during
stable beams is shown.

8.2 Event Selection

Photon Identification

As discussed in Section 4.2.4, there are several variables related to the calorimeter

shower shape which are used to classify photon candidates. The loose selection is

based on the shower shape in the second layer of the ECal and the energy deposited

in the HCal. The tight selection uses the same information plus information from the

finely segmented strip layer of the calorimeter. The analysis requires that the leading

and subleading photon both satisfy the tight indentification criteria.
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Identification Name Variables Used in Identification

Loose Rhad1, Rhad, Rη, wη2

Tight Loose + Rφ, ws3, Fside, ∆E, ws1,tot, Eratio

LoosePrime-2 Tight − ws3, Fside

LoosePrime-3 Tight − ws3, Fside, ∆E
LoosePrime-4 Tight − ws3, Fside, ∆E,ws1,tot

LoosePrime-5 Tight − ws3, Fside, ∆E,ws1,tot, Eratio

Table 8.1

Diphoton Vertex

Knowing the precise location of the diphoton production vertex is necessary in order

to make precise measurements of the diphoton invariant mass mγγ and track-based

quantites such as isolation. The location of the vertex is determined using the photon

pointing method. By combining the trajectories of the two photons, measured using

the longitudinal segementation of the calorimeter, the vertex position along the beam

axis is determined. In the case of converted photons with track hits in the silicon

detectors, the conversion vertex is also used (Lenzi and Delgove, 2015). To select

the diphoton production vertex from among all the reconstructed primary vertices, a

Neural Network algorithm is used. The probabilty of choosing a primary vertex within

0.3 mm of the true vertex is expected to occur more than 80% of the time (Lenzi and

Delgove, 2015).

Kinematic Selections

Additional kinematic contrainsts are placed on the diphoton system. The leading

photon is required to have ET/mγγ > 0.3 while the subleading photon is required

to have ET/mγγ > 0.25. Since the analysis only considers mγγ > 150 GeV, these

requirements at minimum restrict the leading photon to have ET > 45 GeV and the

subleading photon to have ET > 37.5 GeV.
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Photon Isolation

The leading and subleading photon are both required to be isolated based on cri-

teria from the calorimeter and the inner detector. This criteria is known as the

FixedCutTight working point. There are two isolation variables considered, Eiso
T and

piso
T . The first variable, Eiso

T , is defined as the sum of the transverse energy of the

topological clusters with positive energy reconstructed in the calorimeter in a cone of

radius ∆R =
a

(∆η)2 + (∆φ)2 = 0.4 around the photon (Lampl et al., 2008). After

corrections are made, such as subtracting the energy of the core as to not count the

energy of the photon itself, it is required that Eiso
T < 0.022ET + 2.45 GeV where

ET is the transverse energy of the photon. The second variable, piso
T , is the scalar

sum of the transverse momenta of all tracks with pT > 1 GeV in a cone of radius

∆R = 0.2 (Lampl et al., 2008) around the photon, and it is required that piso
T < 0.05ET

after similar corrections are made.

Cutflow

Table 8.2 shows the number of data events from the 139 fb−1 sample after each step

in the event selection.

8.3 Background Modeling

The strategy for modeling the invariant mass spectrum is employed by summing

two spectra, one representing the smooth delocalized backgournd and the other any

localized excesses. Each component of the spectra, the background and signal, is

modeled with its own ad hoc function. By adjusting the function parameters the

signal plus background (S+B) best fit is found and a signal yield is extracted.
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Sample Scalar NWA Graviton Data 139 fb−1

efficiency (abs./rel.) efficiency (abs./rel.) event yield
All events (DAOD) 1.000/1.000 1.000/1.000 364.97M

GRL - - 357.42M
Trigger presel. - - 304.26M
Detector DQ - - 304.24M

Primary vertex 1.000/1.000 1.000/1.000 304.24M
2 loose photons 0.767/0.767 0.677/0.677 86.42M
Trigger match 0.727/0.948 0.645/0.953 58.31M

Tight ID 0.677/0.931 0.598/0.927 15.00M
Isolation 0.612/0.904 0.537/0.898 5.93M

mγγ > 150 GeV 0.612/1.000 0.537/1.000 746896
Rel. ET 0.535/0.874 0.419/0.780 433655

Table 8.2: Effect of the event selection on a NWA scalar and a graviton (k
/

ĎMPl =
0.01) MC sample generated for mX = 1 TeV and in the data. For the MC samples,
the efficiency is shown relative to the total event yield after applying event weights
(absolute efficiency) and also relative to the event yield before each selection (relative
efficiency). For data, the absolute yields are shown. The initial yields for data at
derivation level include a trigger preselection that is the OR of a long list of single
photon and diphoton triggers. They also include a duplicate event removal (less than
200 events overall). The “2 loose photons” step includes the kinematic acceptance
cuts. The trigger matching indirectly requires medium ID and loose isolation criteria
for data 2017-2018 and mc16d-mc16e.

8.3.1 Background Decomposition

8.3.1.1 2×2D Sideband Method

The 2×2D sideband method (2x2D) is used to estimate the relative fractions of

the reducible and irreducible backgrounds used in the analysis (Carminati et al.,

2012). Two requirements of the signal selection are loosened, namely, the analysis

level isolation criteria is removed and the photon identification criteria is relaxed.

The observed yield for this sample, Wtot, is given by the sum of the diphoton signal

yield, Wγγ, and the unknown background yields, Wγj, Wjγ, and Wjj, that is

Wtot = Wγγ +Wγj +Wjγ +Wjj. (8.1)
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Events are divided into orthogonal categories based on whether each photon in

each event passes or fails the isolation and the tight identification selection criteria,

giving 2 × 22 = 16 subsamples. One of these subsamples (both photons pass both

criteria) is the signal region used in the analysis, while the other 15 are used as

control regions in the 2x2D method. In each of the subsamples, the yield can be

written as a function of the signal and background yields, Wγγ, Wγj, Wjγ, and Wjj,

the identification and isolation efficiency for prompt photons passing the loosened

criteria, and εID and εiso, identification and isolation fake rates, fID and fiso. For jj

events, the correlations between the isolation distribution, ξisojj, is non-neglible and

is in considered. This system of equations can be inverted to give the observed yield

in each of the 16 subsamples, for example

Nanalysis = WγγεID1εiso1εID2εiso2 (8.2)

+WγjεID1εiso1fID2fiso2

+WjγfID1fiso1εID2εiso2

+Wjjf
′
ID1f

′
iso1f

′
ID2f

′
iso2ξisojj

gives the observed yield in the analysis selection subsample where

• εID1(2) is the efficiency of the analysis isolation criteria for the leading(subleading)

photon and is determined from simulations;

• εiso1(2) is the efficiency of the analysis identification criteria for the leding(subleading)

photon and is determined from simulations;

• fID1(2) is the fake rate of the analysis isolation criteria for the leading(subleading)

photon and is determined directly from fits to the data;

• fiso1(2) is the fake rate of the analysis identification criteria for the leading(subleading)

photon and is determined directly from fits to the data;
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• f ′ID1(2) is the fake rate of the analysis isolation criteria for the leading(subleading)

photon in jj events and is determined directly from fits to the data;

• f ′iso1(2) is the fake rate of the analysis identification criteria for the leading(subleading)

photon in jj and is determined directly from fits to the data.

• ξisojj is the isolation correlation factor between the jets in the jj events and is

determined directly from fits the the data.

The observed yields from the remaining 15 subsamples can be defined similarly.

Figure 8.2: The γγ, γj + jγ, and jj yields determined by the 2×2D sideband method
as a function of the diphoton invariant mass (Amidei , 2020).

8.4 Signal Modeling

This section presents the methodology for signal modeling used in the search pre-

sented in this thesis. There are three lineshapes considered in the search corresonding

to a narrow width scalar, a large width scalar, and a large width graviton. The signals

are built by convolving the detector resolution function, a parameterized DSCB, with

the true lineshape (Amidei , 2020).
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(a) Results with statistical errors (error bars)
and systematic errors associated with the
variation of the loosened identification crite-
ria (rectangles)

(b) Results with statistical error split into
data-taking periods

Figure 8.3: Purity of the data sample in prompt diphotons as obtained by the 2×2D
sideband decomposition method (Amidei , 2020).

8.4.1 Narrow Width Scalar

For the case of a narrow width scalar, the NWA is used. In the NWA for a

resonance of massmX , the true lineshape is modeled as a Dirac delta function centered

around mX . Therefore convolving it with the detector resolution gives back the

detector resolution at mass mX . The detector resolution function is modeled using a

parameterized DSCB function, given by equation 6.7.

The parameters of the DSCB are found empirically using a multistep process.

First, the NWA signal samples, described in Section 7.2.1, are fit with the DSCB

function, as shown in Figure 8.4. Next, these parameters are parameterized as linear

functions of the normalized mass m′X ≡ (mX−100)/100 GeV, as shown in Figure 8.9.

The normalized mass is used rather than mX because it leads to better numerical and

fit stability. Table 8.3 shows the parameterizations of the NWA DSCB as a function

of m′X and where µCB = mx + ∆mx. The parameterized DSCB function is validated

by comparing it to the scalar NWA MC samples and can be seen in Figure 8.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 8.4: Mass spectrum for the NWA as a function of mγγ for various mX . Each
mass distribution represents the detector resolution for the NWA and is fit with the
DSCB function.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.5: The scalar NWA DSCB parameters as a function of mX . Each plot is
fit with a linear function and the intermediate values are interpolated as the straight
line.

8.4.2 Large Width Scalar

For the LW scalar signals, the MC samples are constructed by convolving the

detector resolution function, that is the parameterized DSCB function for the NWA,
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DSCB parameter Parameterization
∆mX 0.238− 0.0672m′X
σCB 1.700 + 0.564m′X
αlow 1.414− 0.00626m′X
αhigh 1.525 + 0.00432m′X
nlow 12.0 (const.)
nlow 25.1 (const.)

Table 8.3: DSCB function parameters found for the NWA scalar samples in terms of
the normalized mass m′X .

with the lineshape describing the LW resonance:

FLW = FNWA(mγγ;mX) ·m7
γγ · Lgg · FBW(mγγ; ΓX) (8.3)

FBW =
(
(m2

γγ −m2
X)2 + (mγγΓX)2

)−1
(8.4)

where FBW is the relativistic BW function with width ΓX and Lgg is the gluon-

gluon luminosity as a function of mγγ. This luminosity is parameterized using the

normalized PowLog-0 function, that is

f(mγγ; d, a, α,N) = N · (1− xd)a · xα (8.5)

where x = mγγ/
‘

s,
‘

s = 13 TeV and d = 1/3 is fixed by choice. The free PowLog-0

parameters were found by fitting the pdf set used to generate the samples at NLO

and are given in Table 8.4. The convolution is implemented in RooFit (Verkerke and

Parameter Value
a 11.6566
α -2.55713
N 2.09254× 10−6

Table 8.4: The PowLog-0 parameters derived from the NNPDF3.0 pdf set for the
parton luminosity, Lgg, for the LW scalar MC samples.

Kirkby , 2003) using the RooFFTConvPdf class, which uses the Fast Fourier Transform

(FFT) (Amidei , 2020). To validate the convolutions, they are compared to some
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 8.6: Validation plots for the scalar NWA lineshape.

representative mass and width combinations of the MC samples chosen in the low,

mid, and high mass regions. These comparisons can be seen in Figure 8.7.
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Figure 8.7: Validation plots for the LW scalar signal convolutions
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8.4.3 Graviton

The lineshape of the graviton is modeled following the same procedure as the scalar

signal. Since the graviton is a spin-2 particle, its decays expected to have a different

angular distribution and therefore different kinematics than a scalar, the detector

resolution function for the graviton is found using a very narrow, k
/

ĎMPl = 0.01,

resonance. Like with the scalar case, the mass distribution for these samples are fit

with a DSCB function, and the DSCB parameters are parameterized as function of

the reduced mass. The DSCB function fits can be seen in 8.8. Figure 8.9 shows

Figure 8.8

the mass dependent fits used for the parameterization of the DSCB parameters. The

detector resolution function is now constructed using a DSCB function parameterized
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(a) (b)

(c) (d)

Figure 8.9: The graviton NWA DSCB parameters as a function of mX . Each plot is
fit with a linear function and the intermediate values are interpolated as the straight
line.

as shown in Table 8.5. The parameterization is validated by comparing the graviton

DSCB parameter Parameterization
∆mX 0.437− 0.951× 10−3m′X
σCB 1.404− 5.649× 10−3m′X
αlow 1.421 + 6.874× 10−5m′X
αhigh 1.553− 1.521× 10−6m′X
nlow 13.0 (const.)
nlow 25.1 (const.)

Table 8.5

NWA MC sample shapes with the parameterized DSCB. These plots can be seen in

Figure 8.10.
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Figure 8.10: Validation plots for the graviton NWA parameterization.

The lineshape of the LW gravitons are given by

FG∗ ∝ m7
γγ(Lgg + αLqq̄) · FBW.grav(mγγ; k

/
ĎMPl) (8.6)

FBW.grav =
{

(mγγ −m2
G∗)2 +

[
mγγ · 1.44(k

/
ĎMPl)

2
]2}−1

(8.7)

where Lgg and Lqq̄ are the gg and qq̄ luminosities repectively, and FBW.grav is the

relativistic BW function for a graviton resonance with coupling k
/

ĎMPl and mass

mG∗ . The convolution is implemented, like in the scalar case, using RooFit and are

validated by comparing the derived lineshapes to the graviton MC samples. These

validation plots can be seeen in Figures 8.11, 8.12, and 8.13.
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Figure 8.11: Validation plots for the graviton parameterization with k = 0.05.
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Figure 8.12: Validation plots for the graviton parameterization with k = 0.10.

Figure 8.13: Validation plots for the graviton parameterization with k = 0.20 and
k = 0.30 and mass mX = 5000 GeV.
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CHAPTER IX

Functional Decomposition

FD is a new data driven modeling technique inspired by Fourier analysis. It uses

a sum of orthogonal functions to represent smoothly falling spectra with or without

local features. Lower order terms in the sum are used to represent the delocalized

background while higher order terms represent localized structures such as resonances

from decaying particles. In this way an S+B model for a spectrum can be built. Once

an S+B model is constructed, deviations from the model are compared to a given

lineshape, and an estimate for the size of the deviation is extracted. FD is particularly

well suited for modeling narrow resonances on a smoothly falling background, making

it an ideal tool to search for new particles in the diphoton channel (Edgar et al., 2018).

9.1 Functional Decomposition Fundamentals

Suppose F is the set of all real-valued functions f(z) defined on [z0,∞) with the

properties

lim
z→∞

f(z) = 0 (9.1)

∞
ż

z0

f(z) dz = M (9.2)
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where z0 is a constant. Now suppose one had a set of orthonormal functions {En}

complete on the interval [z0,∞) with respect to F . That is, any function f ∈ F could

be represented as a linear combination of the functions En. This linear combination

can be written

f(z) = Mf̄(z) (9.3)

f̄(z) =
∞
ÿ

i=0

cnEn(z) (9.4)

where the coefficients cn are determined by averaging En over f̄(z) on [z0,∞)

cn =

∞
ż

z0

f̄(x)En(z) dz (9.5)

=
1

M

∞
ż

z0

f(z)En(z) dz. (9.6)

If f represents a spectrum of M events, then as M →∞ the quantity f̄ approaches

the pdf of the spectrum. Therefore an approximation of the underlying pdf can be

written

f̄(z) ≈
N
ÿ

i=i

cnEn(z) (9.7)

with the Hilbert space decomposition

f̃ = 〈c0 , c1 , . . . , cN 〉 (9.8)

and covariance matrix

Σ̂f̃nm =

∞
ż

0

dz f(z)En(z)Em(z)− f̃nf̃m, (9.9)
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where f̃i is the ith entry of f̃ , i.e. f̃i ≡ ci. The function f(z) can now be written

compactly with Einstein summation as

f(z) = f̃nEn(z) (9.10)

where f̃n = f̃n and the covariance matrix as

Σ̂f̃nm =

∞
ż

0

dz f̃ iEi(z)En(z)Em(z)− f̃nf̃m (9.11)

= Îinmf̃
i − f̃nf̃m (9.12)

where

Îinm =

∞
ż

0

dz Ei(z)En(z)Em(z) (9.13)

acts on f̃ i.

9.2 Orthonormal Exponentials

Since most high energy physics spectra are smoothly falling, the function f(z) =

N exp(−αz) can often be used as a first order approximation for these spectra. Armed

with this knowledge, a set of orthogonalized exponential functions are chosen as a

basis for FD. Beginning with the non-orthogonal parent functions

Fn(z) =
‘

2e−nz (9.14)
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a set of functions orthogonal with respect to the L2 inner product

〈f, g〉 =

∞
ż

0

dz f(z)g(z) (9.15)

is constructed called the orthonormal exponentials. More concisely, a set of functions

is built with the form

En(z) =
n

ÿ

m=1

d̂nmFm(z) (9.16)

where

d̂nm =
‘

n(−1)n+m

(
2m

n+m

)m−1
ź

i=1

m+ i

m− 1

n
ź

i=m+1

i+m

i−m
(9.17)

are constants chosen such that

〈En, Em〉 = δnm. (9.18)

Although there is a closed form, calculating d̂nm directly is prohibitively computa-

tionally expensive so an alternative approach is required. The following recursion re-

lations are computationally efficient compared to calculating d̂nm directly or through

an othogonalization scheme such as Gram-Schmidt.

E0(z) = 0 (9.19)

E1(z) =
‘

2e−z (9.20)

En+1(z) =
1

φ2n+1

(
4e−zEn(z)− 2

φ2
2n

En(z)− φ2n−1En−1(z)

)
(9.21)

φn =

c

1− 1

n2
(9.22)
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These recursion relations are derived by considering the quantity d̂n(m+1)

/
d̂nm. The

increased efficiency comes from the lack of integrals or other complex computations, a

function En+1 is evaluated at z simply by considering the values of En(z) and En−1(z).

The orthonormal exponentials are complete with respect to pdfs on the interval

[0,∞). The completeness can most easily be seen by mapping
‘

2Fn = e−nz on

[0,∞) to the polynomials F ?
n(z) =

‘

2yn on (0, 1] and relying on the completeness of

F ?
n . A proof for the completeness of the orthonormal exponentials can be found in

Appendix A.

9.3 Power-law Transformation

Most physics spectra are not on the interval [0,∞), rather they are on the interval

[x0,∞) where x0 is a constant. To make matters worse, simply shifting x by x0 usually

results in a spectrum which takes many terms to reasonably model. To reduce the

number of terms needed to model a lineshape, a transformation z = T (x; θ̄) is applied

to the input variable x. This transformation must invertibly map [x0,∞) → [0,∞),

be continuous, and render z dimensionless. The power-law transformation

z =

(
x− x0

λ

)α
(9.23)

meets these requirements and introduces three hyperparameters, x0, the lower edge

with dimensions of x, λ, a length scale with the dimensions of x, and α, a dimensionless

power-law exponent. Figure 9.1 shows a plot of the power-law transformation applied

to the function g(z) = g0e
−z where g0 is a constant versus the input variable x. If

g(x) represents a pdf, then holding λ fixed and increasing α→ α + δα decreases the

likelihood of measuring x > λ and increases the likelihood of measuring x < λ. On

the other hand, holding α constant and increasing λ → λ + δλ results in a uniform

scaling which stretches the curve, that is x→ λ
λ+δλ

x.
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Figure 9.1: Plot of the power-law transformation for a fixed λ and several values of
α applied to a decaying exponential.

Intuitively, one can think of the three hyperparameters in the following ways. The

lower edge, x0, shifts x, that is x→ x− x0. Small increases to λ correspond to small

increases in the spread of the distribution. Small changes to α correspond to small

changes on the shape of the distribution, particularly the tail.

9.4 Decomposing a Dataset

A set of M measurements {xi} is transformed to the set
{
zi

∣∣∣zi =
(
xi−x0
λ

)α}
and

represented as a sum of Dirac delta functions

f(z) =
M
ÿ

i=1

δ(z − zi). (9.24)

It is decomposed and written as

f̄(z) = lim
N→∞

N
ÿ

n=0

cnEn(z) (9.25)
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where

cn =
1

M

∞
ż

z0

f(z)En(z) dz (9.26)

=
1

M

∞
ż

z0

M
ÿ

i=1

δ(z − zi)En(z) dz (9.27)

=
1

M

M
ÿ

i=1

En(zi). (9.28)

This is an exact representation of the data and requires an infinite number of terms. A

choice for the size of the basis, typicallyN = 2048, must be chosen to obtain a useable

approximation of the underlying pdf f̄ . Plugging Equation 9.28 into Equation 9.9

gives the covariance matrix

Σ̂nm =
1

M

M
ÿ

i=1

En(zi)Em(zi)− f̃nf̃m. (9.29)

9.5 Constructing a Model

A background only model B(z) can be constructed using the first N ∈ N moments,

that is

B(z) =
N
ÿ

n=0

cnEn(z) (9.30)

or in Hilbert space notation

B̃n =


f̃n ⇐ n < N

0 ⇐ n ≥ N.

(9.31)

Now suppose one wants to include a signal of size Ms = sM and with lineshape

S̃, where M is the total number of events in the spectrum. Since S̃ is a localized
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structure it is described with mostly the higher order moments. However, the lower

order moments, that is S̃n for n < N , are in general non-zero. To prevent double

counting, B̃ is adjusted to account for the first N moments of S̃, that is

B̃n =


f̃n − sS̃n ⇐ n < N

0 ⇐ n ≥ N.

(9.32)

An S+B model can be built by adding the signal, scaled appropriately, to the adjusted

background

Ω̃n = B̃n + sS̃n. (9.33)

This can be generalized to multiple signals S(m) with signal sizes Ms(m)
= s(m)M

Ω̃n = B̃n + s(m)S̃(m)n (9.34)

where B̃n = f̃n − s(m)S̃(m)n, and the raised and lowered (m) imply summation.

9.6 Estimating Signal Parameters

Since FD is primarily a resonance search tool, perhaps the most important part

of it is its signal extraction procedure. The idea is to construct a set of estimators{
ω̃(n)

}
, each corresponding to a signal, such that 〈ω(n), B〉 = 0 and 〈ω(n), S(m)〉 = δnm,

ensuring the overlap between the data and each of the the estimators is the size

of its corresponding signal, that is 〈ω̃(n), f〉 = s(m). There are many choices for

these estimators which satisfy these properties, however they are not equal in their

usefulness. A key difference between these choices is the entropy H = log det(2πeσ)
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of the covariance matrix given by

σ(nm) = ω̃i(n)Σ̂f̃ ijω̃
j
(m). (9.35)

and where the factor 2πe is a normalization convention. The set is optimal if the

entropy of σ is minimized with respect to the set of all possible linear unbiased

estimators ε̃(n)i given by

ε̃(n)i = Σ̂l̃ijS̃
j
(n) (9.36)

where Σ̂l̃jk is the covariance defined from the lower moments, that is

Σ̂l̃jk =
N−1
ÿ

i=0

f̃iÎijk. (9.37)

To minimize the entropy, N2 Langrange multipliers η(ij) are introduced to produce

the objective function

L = log det (2πeσ)− η(nm)
(
ω̃(n)if̃

i
(m) − δnm

)
. (9.38)

The signal parameter s(n) is found by taking the inner product of the estimator, ε̃(n)i,

with the data, that is

η−1
(nm) = 〈ε(n), S(m)〉 = S̃i(n)Σ̂

−1

l̃ij
S̃j(m) (9.39)

s(n) = η
( k)
(n )〈ε(k), f〉. (9.40)

In practice η(n) is found numerically. The full procedure for constructing these esti-

mators can be found in Appendix D. To convert the signal parameters to yields, they

are simply multiplied by the total number of events in the dataset.
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9.7 Optimizing Hyperparameters

Choosing hyperparameters is a major challenge of FD. Hyperparameter choice

greatly effects the number of terms needed to capture the shape of the spectrum as

well as FD’s ability to detect a signal. In principle any hyperparameter choice can

be used to construct a model, however most hyperparameter choices are impractical.

Most choices will require many moments to construct a reasonable background model

leaving fewer moments for measuring signal yields. To help combat this problem an

objective function, L , is introduced consisting of a likelihood term, L, designed to

measure the data’s deviation from the model and a penalty term, P , designed to

measure the background model’s deviation from a prior distribution, p̃. Recall from

Sections 9.5 and 9.3 that the hyperparameters N , x0, λ, and α have been introduced.

Only the lower edge, x0, is specified. Therefore a function with the form

L = L
(
f̃
∥∥∥Ω̃)+ P

(
B̃
∥∥∥p̃) (9.41)

is minimized with respect to the hyperparameters α, λ, and N . Intuitively the likeli-

hood term picks the best α and λ while the penalty term decides where to truncate

the series. Of course in reality, these two terms are correlated so each contribute to

the choice of all three hyperparameters to some degree.

The log likelihood for a multivariate normal distribution of measuring f̃ given the

underlying pdf Ω̃ with covariance Σ̂Ω̃ is given by

logL = −1

2

{
log
(
|Σ̂Ω̃|

)
+
(
f̃ − Ω̃

)>
Σ̂−1

Ω̃

(
f̃ − Ω̃

)
+ k log(2π)

}
(9.42)

where Ω̃, f̃ ∈ Rk. Since the moments are assumed to be normally distributed about

their means, the likelihood function is chosen to be a modified log likelihood of the
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multivariate normal distribution

L
(
f̃
∥∥∥Ω̃) =

1

2

{
log
(
|Σ̂f̃ |

)
+
(
f̃ − Ω̃

)>
Σ̂−1

f̃

(
f̃ − Ω̃

)}
. (9.43)

Note that the term k log(2π) has been omitted since it is constant for any choice of

α, λ, and N . Note also that the covariance matrix Σ̂Ω̃ has been replaced with Σ̂f̃

since Σ̂Ω̃ ≈ Σ̂f̃ and in practice Σ̂f̃ has been previously calculated.

The Kullback–Leibler (KL) divergence of ã from b̃ for a multivariate normal

distribution with covariances Σ̂ã and Σ̂b̃ is given by

DKL

(
ã
∥∥∥b̃) =

1

2

{
Tr
(
Σ̂−1

b̃
Σ̂ã

)
+
(
b̃− ã

)>
Σ̂−1

b̃

(
b̃− ã

)
− k + log

|Σ̂b̃|
|Σ̂ã|

}
(9.44)

where ã, b̃ ∈ Rk (Kullback and Leibler , 1951) (Soch and Allefeld , 2016). The penalty

term is chosen to be the KL divergence of B̃ from p̃. Without choosing a specific

form, the prior p̃ is taken to be weak, that is Σ̂p̃ is large compared to Σ̂B̃ and has

the equivalent statistical strength j = k = N where N is the number of background

moments in B̃. This choice results in the first two terms of the KL divergence

vanishing, and the log determinant term approaching N log M
N

where M is the number

of events in the dataset (Edgar et al., 2018). Therefore the penalty term can be written

P
(
B̃
∥∥∥p̃) =

N

2
log

(
M

Ne

)
. (9.45)

To optimize the objective function L first a grid search is performed at several

hundred (α, λ) points, and at each grid point L is evaluated for N = 1 , 2 , . . . , Nmax.

Next, a gradient descent algorithm is performed beginning at the global minimum

found in the grid search. The gradient descent is performed in flattened space, that

is at each point (α, λ) the value is taken to be the minimum value with respect to

N (Edgar et al., 2018).
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9.8 Validating Functional Decomposition as a Search Tech-

nique

9.8.1 Signal Injection

This section gives details about the signal injection studies performed for this

analysis. The objective of these studies is to test FD’s ability to find an NWA scalar

signal in the expected mγγ distribution for 140 fb−1 of data. It is performed using

backgrounds with the expected shape and statistics of 140 fb−1 of data and narrow

width scalar signal samples with sizes corresponding to excesses between 0–5σ. Signal

injection studies for gravitons and LW scalars are an ongoing effort and therefore will

not be presented in this thesis.

9.8.1.1 Methodology

Many statistically independent background toys, described in Section 7.1.2, are

each combined with a toy signal of size Ninj generated with the method described in

Section 7.2.2. These combined samples are used as inputs for FD. First the combined

toys are modeled using the procedure outlined in Section 9.5. Next, the number of

signal events, Next, is extracted using the signal estimators described in Section 9.6.

The number of signal events extracted, Next, is compared to the number of signale

events injected, Ninj and is fit with a linear function.

Since the analysis searches for resonances in the range mγγ ∈ [150, 5000] GeV the

toy backgrounds are injected with toy signals whose mass is within that range. At

a given resonance mass, minj, the size of the injected signal, Ninj, is varied such that

they are within the 0–5σ significance range. The values of Ninj are approximated with

To estimate Bres, the PowLog-1 fit parameterization from Table 7.2 is used assuming
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a binning of 10 GeV. The background in each signal region is defined such that

Bres = B × 4σsignalstd

10 GeV
(9.46)

where B is the number of background events per 10 GeV bin. The results are cross

checked with the reweighted Sherpa MC samples and are found to be consistent (et.

al., 2019). Table 9.1 shows the estimated number of signal events rounded to the

nearest integer corresponding to nσ excesses where n ∈ [1, 5].

Ninj(nσ) = nσtoy
stat = n

a

Bres + Sres =
n2 + n

‘

n2 + 4Bres

2
(9.47)

where the substitution Sres = Ninj is made to extract the significance (et. al., 2019).

Table 9.1 shows the number of events rounded to the nearest integer corresponding

to excesses in the range 1-5 for the improved approximation.

mγγ [GeV ] B
[

count
10 GeV

]
σsignal

std [GeV]
Ninj

1σ 2σ 3σ 4σ 5σ
400 1555.7 3.911 50 101 153 206 260
800 66.11 6.760 14 29 45 62 81
1000 21.89 8.235 9 19 30 43 57
1200 8.48 9.645 6 14 22 32 44
1600 1.73 12.46 3 8 14 22 32

Table 9.1

For each mass minj, 10 values of Ninj are injected into the background correspond-

ing nσ excesses where n ∈ [0, 5]. For each combination of minj and Ninj the signals

are injected into 500 background toys, for a total of 5000 statistically independent

samples for each minj. Each of these samples is used as input to FD and an S+B

decomposition is made with mX = minj. The number of signal events, Next, given by

FD is compared to Ninj with the expectation that for each minj-Ninj combination Next

will be normally distributed about minj with a width approximately equal to
‘

Bres.
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Figure 9.2: Hyperparameter landscape of the likelihood for an S+B decomposition of
a background toy injected with a signal toy. Note that the N axis is flattened in the
sense that for each point in α and λ, the N corresponding to the best likelihood at
that point is shown.

Deviations from this expectation are assigned as a bias in the FD methodology (et.

al., 2019).

9.8.1.2 One Pseudo-Experiment with minj = 1000 GeV and Ninj = 40

The process of performing a pseudo-experiment is best understood through an

example. One background toy is injected with a signal toy of mass minj = 1000 GeV

and size Ninj = 40 events, corresponding to a 3.8σ excess. The hyperparameter

landscape, found while minimizing the penalized likelihood function with respect to

α ∈ [0.3, 1.25], λ ∈ [25, 200], and N ∈ {1, 2, . . . , 24} as described in Section 9.7, can

be seen in Figure 9.2. Note that the values shown are the likelihoods found during

a course grid scan. The best point found in this scan is then used as the initial

point in a gradient descent algorithm which gives the final hyperparameter choice.

Figure 9.3 shows the full S+B decomposition compared to the input toys and its pull

distribution. The pull distribution is compared to a standard normal and shows good

agreement with the Kolmogorov-Smirnov (KS) p-value calculated to be 0.929.

The signal size is determined using the signal estimators described in Section 9.6.
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(a)

(b)

Figure 9.3: An S+B decomposition of a toy background plus a 1000 GeV toy signal
with size Ninj =40.

Figure 9.4 shows the DSCB estimator and signal lineshape used to extract Next.

9.8.1.3 Many Pseudo-Experiments with minj = 1000 GeV and Ninj = 40

The process for one pseudo-experiment, described in Section 9.8.1.2, is repeated

500 times, each time using a statistically independent background toy. The Next

distribution for these trials can be seen in Figure 9.5. The distribution is fit with a
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Figure 9.4: The DSCB lineshape and estimator for minj =1000 GeV.

Figure 9.5: The Next distribution from 500 pseudo-experiments corresponding to a
resonance mass minj = 1000 GeV and number of injected events Ninj = 40

Gaussian with mean µ = 41.98±0.41 and width σ = 8.71±0.28. As mentioned earlier,

the deviation of the mean from Ninj is taken to be a bias in FD’s methodology. It is

expressed as a fraction of Ninj, (1−Next

/
Ninj), and is found to be approximately −5%

for this case. The width σ is found to be consistent with the expected uncertainty,

σsignal
std , by comparing its value to that found in Table 9.1.
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9.8.1.4 Many Pseudo-Experiments with minj = 1000 GeV and Various Val-

ues of Ninj

The pseudo-experiment process for minj = 1000 GeV with Ninj = 40, described in

Section 9.8.1.3, is repeated for various values of Ninj, namely 0, 5, 10, 15, 20, 25, 30,

35, 40, and 45 events. These values of Ninj corresponded to local excess in the 0-5σ

range. Table 9.2 shows the means and widths of the various Next distributions found

using a Gaussian fit. Figure 9.6 shows the linearity plot, that is Next vs. Ninj, for

Ninj
Next

µ σ
0 0.54± 0.42 8.85± 0.31
5 4.65± 0.36 7.86± 0.25
10 10.94± 0.37 8.08± 0.29
15 15.97± 0.42 8.76± 0.31
20 20.96± 0.40 8.27± 0.30
25 26.28± 0.45 9.60± 0.38
30 31.01± 0.39 8.49± 0.29
35 36.40± 0.43 8.88± 0.33
40 41.98± 0.41 8.71± 0.28
45 46.93± 0.40 8.64± 0.31

Table 9.2: The mean and standard deviation of the Next distributions for minj =
1000 GeV

minj = 1000 GeV, for minj = 1000 GeV. The plot is fit with a straight line and the

slope is found to be 1.04 ± 0.01 and the y-intercept to be 0.24 ± 0.23, which agrees

with the ideal case of with a slope of one and y-intercept of zero.

9.8.1.5 Many Pseudo-Experiments with Various Values of minj and Ninj

The process described in Section 9.8.1.4 is repeated for several values of minj: 400,

800, 1000, 1200, and 1600 GeV. The linearity plots for each of these values of minj

are summarized in Table 9.3 (et. al., 2019).

Figure 9.7 shows the bias in the Next extraction for all mass hypothesis tested.
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Figure 9.6: Linearity of Next at minj = 1000 GeV

mγγ [GeV] Slope y-Intercept
400 1.02± 0.01 −3.99± 1.32
800 1.02± 0.01 1.16± 0.53
1000 1.04± 0.01 0.24± 0.23
1200 1.02± 0.01 0.07± 0.19
1600 1.01± 0.01 −0.22± 0.10

Table 9.3: Summary of the linearity plots for minj = 400, 800, 1000, 1200, and
1600 GeV

9.8.2 Spurious Signal

This section describes the spurious signal studies used for the analysis presented in

this thesis. Spurious signal (SS), a systematic uncertainty associated with a model’s

inability to capture the true shape of a spectrum, is introduced in section 6.2. The

goal of the SS studies is to quantify the average size of a model’s deviation from the

true lineshape of a spectrum.

Since FD can model any pdf on the interval [x0,∞), the method is quite adaptive

and is expected to capture all the features of the diphoton mass spectrum. The error

from mismodeling the underlying pdf of the diphoton mass spectrum is therefore ex-

pected to be small compared to the statistical uncertainty. The statistical uncertainty,
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Figure 9.7: The bias, (1−Next

/
Ninj), extracted for minj = 400, 800, 1000, 1200 and

1600 GeV

σdata
stat , is expected to go like the square root of the background, that is

σdata
stat ≈

‘

B =

 ÿ

{i|mi∈∆}

wi

1/2

(9.48)

where ∆ is the interval [ms−σs,ms+σs], ms is the signal mass, σs is the signal width,

wi is the weight for event i, and B is the number of events in ∆ (et. al., 2019).
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This thesis presents two approaches for determining the SS. The first approach

uses an Asimov dataset (Amidei , 2020), that is a representative dataset with no

statistical fluctations, to find the SS directly. The second approach uses an ensemble

of toy datasets with the statistics of 140 fb−1 to find the average signal size extracted

by averaging out the impact of statistical fluctations in the spectrum. Like with the

signal injection studies, described in Section 9.8.1.5, the SS for the LW scalar and

graviton signals are a work in progress, and so will not be presented in this thesis.

9.8.2.1 Asimov Study

This study is performed by searching for narrow signals in a sample free from

statistical fluctuations. The parameterized NWA DSCB function, described in Sec-

tion 8.4.1, is used as the signal shape. The background is modeled using a PowLow-n

function, given by Equation 6.6, where d = 1/3 by choice and
‘

s = 13 TeV. The

parameters of the function are found by fitting the MC template described in Sec-

tion 7.1.1. To determine which value of n to use in the PowLog-n function, the MC

template is fit using Equation 6.6 for n ∈ [1, 10] and choosing the fit which produces

the highest χ2 probability. The χ2 probabilities for these fits can be seen in Table 9.4.

The parameterization of the chosen fit, the PowLog-6 function, is shown in Table 9.5.

n χ2 Probability
1 2.45× 10−8

2 7.18× 10−5

3 1.11× 10−3

4 7.85× 10−2

5 1.10× 10−1

6 1.68× 10−1

7 1.41× 10−1

8 1.48× 10−1

9 1.41× 10−1

10 1.31× 10−1

Table 9.4: χ2 probability of the PowLog-n function while varying n
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The PowLog-6 fit to the MC template can be seen in Figure 9.8.

Parameter Value Error
a 8.97 5.6× 10−2

α0 −2.8185 1.23× 10−2

α1 9.6367× 10−3 1.29× 10−3

α2 −2.9597× 10−4 2.3× 10−4

α3 −1.6492× 10−4 5.6× 10−5

α4 −1.1894× 10−4 7.52× 10−6

α5 −2.1581× 10−5 1.84× 10−6

α6 −6.6266× 10−6 3.49× 10−7

Table 9.5: Parameters and their errors of the PowLog-n parameterization with n = 6

Figure 9.8: Background only fit of the Sherpa MC with the PowLog-6 function.

Systematic shape variations on the background are described in the empirically-

derived function version of the search presented in this thesis (Amidei , 2020). In-

cluded in these systematics are shape variations from varying fγγ the γj contribu-

tion, different choices of QCD factorization and renormalization scale, and different

choices of PDF sets to describe the parton content of the proton (et. al., 2019). The

ratio between the nominal and systematically varied templates are summarized in

Figure 9.9.

Although FD in principle can decompose any functional form f with the property

lim
x→∞

f(x) = 0 on the interval [x0,∞), the software developed for FD requires a discrete

set of measurements represented as a sum of Dirac delta functions, similar to a Dirac
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Figure 9.9: Systematic shape variations considered in the asimov spurious signal
study.

Comb. To accomodate this limitation, the parameterized PowLog-6 function is taken

to be a pdf and its distribution is approximated as a sum of Dirac delta functions. This

is achieved by first splitting the mass region [150, 5000] GeV into discrete bins. The

integral of the PowLog-6 function in each bin is calculated and used as a weight for

a Dirac delta function whose central value is that of the bin’s center. Table 9.6 gives

the binning used in this process. Figure 9.10 shows the decomposition of the delta

mγγ range [GeV] Number of bins
150-175 2,000,000
175-2000 1,825,000
2000-5000 40,000

Table 9.6: Binning used to approximate a continuous distribution with a sum of
weighted Dirac delta functions.

function representation using N = 16 background moments. Note that the feature

in the residual pulls in the high mass tail is thought to be due to the relatively low

number of bins used in this region. Although this implies poor agreement on the tail,

the number of events expected in the high mass region is very small, and therefore it
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Figure 9.10: An FD S+B decomposition of the nominal asimov background using 16
moments.

is not expected to impact the results significantly.

Signal yields are extracted across the interval [160, 3500] GeV using the RooFit

framework by floating the normalization on the background and signal shapes to find

the best fit. The nine Asimov curves, that is the nominal and eight systematics,

are each decomposed into an FD S+B model. For each of these decompositions

the number of background moments N is varied from between 10 and 23 moments.

Figure 9.11 shows the extracted number of SS events, |NSS|, using 16 background

moments. The local maxima are fit with a PowLog-2 function to approximate an

envelope which encompasses the maxima. This envelope is taken to be a conservative

estimate on the SS uncertainty for a decomposition with 16 background moments.

Figure 9.12 shows the parameterized SS uncertainties, in number of events, found

using this process for all tested values of N . Figure 9.13 shows the relative spurious

signal, that is the number of spurious signal events |NSS| over the uncertainty δS,

for the case where FD uses N = 16 background moments. Figure 9.14 shows the

parameterized relative spurious signal, |NSS|
/
δS, which contributes to the systematic

uncertainties of the resonance search entering the statistical model as a nuisance
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Figure 9.11: Spurious signal in number of events with N = 16 background moments
for several systematic variations of the simulated background.

Figure 9.12: Parameterized spurious signal in number of events for 10-23 background
moments

parameter.
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Figure 9.13: Relative spurious signal for the nominal case and the eight systematics
with 16 background moments

Figure 9.14: Parameterized relative spurious signal for the nominal case and the eight
systematics for all integer values of N ∈ [10, 23].
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CHAPTER X

Systematic Uncertainites

10.1 Mass Scale and Resolution Uncertainties

The uncertainty in the diphoton mass scale and mass resolution is primarily in-

fluenced by the photon energy scale and energy resolution uncertainties. To quantify

their impact on the diphoton mass scale and mass resolution, first the photon en-

ergy scale and energy resolution of MC signal samples are varied according to the

uncertainties discussed in Section 4.3. Since the photon energy scale and energy res-

olution are each varied up and down there are four new invariant mass distributions

for each of the four variations: photon energy scale varied up, photon energy scale

varied down, photon energy resolution up, photon energy resolution down. Each of

these mass distributions are compared to the nominal distribution and the deviation

is used to determine their contribution to the uncertainty of the mass scale and mass

resolution.

10.1.1 Photon Energy Scale Uncertainty

To quantify the impact of the photon energy scale uncertainty on the diphoton

mass scale, the energies of the photons in the signal MC samples are first system-

atically varied. The ElectronPhotonFourMomentumCorrection package, provided

by the ATLAS e
/
γ Group, provides variations by the using the es2017 R21 v1 cor-
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rection model and the 1N v1 correleation model (ATLAS e
/
γ, 2020a). Figure 10.1

shows the nominal mγγ distribution for the simulated signal with mass mX = 1 TeV

compared to the mγγ distributions obtained by using photons whose energy scale has

been systematically varied up and down.

Figure 10.1: Invariant mass distribution of the mX = 1 TeV simulated signal obtained
with nominal and systematically varied energy scale calibration. The difference in
the mean of the distributions with respect to the nominal are used to estimate the
systematic uncertainty associated to the photon energy scale (Amidei , 2020).

This is repeated for several mass on the interval mX ∈ [200, 4000] GeV. Since

m2
γγ ∝ E1E2, the change in the invariant mass can be estimated to first order as an

overall shift in the distribution. Figure 10.2 shows the difference, and the relative

difference, between the mean value of these distributions and mX as a function of

mX .

The relative difference at a given mX is taken to be the relative uncertainty,

δµ
up/down
CB , of the parameter µCB in the DSCB signal parameterization.Table 10.2

shows the relative uncertainty parameterized as an exponential function.
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Figure 10.2: The mean of the invariant mass distribution as a function of mX for
the NW scalar samples for the nominal and systematically varied photon energy
scales. The lower panel shows the difference between the nominal and shifted mγγ

distributions normalized by mX (Amidei , 2020).

Variation Parameterization
δµup

CB

/
µCB 0.0081− 0.0066 exp(−0.0048mX)

δµdown
CB

/
µCB −0.0081 + 0.0067 exp(−0.0048mX)

Table 10.1: Parameterization of the systematic variation on the µCB parameter of the
NW scalar signal model

10.1.2 Photon Energy Resolution Uncertainty

Recall Equation 3.14

σ(E0)

E0

=
a

‘

E0

⊕ b

E0

⊕ c (3.14)

where E0 is the energy of the photon, σ(E0) is the uncertainty in the energy, a is

the sampling term, b is the noise term, and c is the constant term. Photons in the

energy range considered in this analysis have a negligible noise term, so the equation

is simplified by setting b = 0, and the equation for the relative uncertainty in the
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photon energy resolution becomes

σ(E0)

E0

=
a

‘

E0

⊕ c. (10.1)

To quantify the impact of the photon energy resolution uncertainty on the dipho-

ton mass resolution, first the photon energy resolution of a signal MC sample is

systematically varied. In the resolution up variation both resolution parameters a

and c are systematically varied up, while in the resolution down variation both the

resolution parameters are systematically varied down. Like with the photon energy

scale determination described in Section 10.1.1, the variations are provided by the

ElectronPhotonFourMomentumCorrection package (ATLAS e
/
γ, 2020a) using the

same correction and correlation models. Figure 10.3 show the nominal mγγ dis-

tribution for the simulated signal with mass mX = 1 TeV compared to the mγγ

distributions obtained by using systematically photons.

Figure 10.3: Invariant mass distribution for the simulated NWA signal with mX =
1000 GeV for the nominal and systematicically varied photon energy resolution.

The width of the distributions are approximated by the smallest interval in mγγ

which contains 68% of the distribution. This interval, Q68, is estimated by assuming
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the distributions are roughly Gaussian and taking the difference between the 84th

and the 16th percentile of the distribution. This is repeated several times for various

mX ∈ [200, 4000] GeV. Figure 10.4 shows the Q68 (and the Q68 normalized by the

Q68 of the nominal distribution) as a function of mX .

Figure 10.4: Q68 of the simulated NWA signal with mX = 1000 GeV for the nominal
and systematicically varied photon energy resolution is shown in the upper pannel
with the lower pannel shows the Q68 normalized by the Q68 of the nominal case.

The normalized Q68 for the resolution up and resolution down variations are

parameterized as exponential functions, and taken to be the relative uncertainty,

δσCB

/
σCB, on the parameter σCB. Table 10.2 shows the parameterization for the

resolution up and resolution down variations.

Variation Parameterization
δσup

CB

/
σCB 0.511− 0.512 exp(−0.002mX)

δσdown
CB

/
σCB −0.294 + 0.325 exp(−0.003mX)

Table 10.2: Parameterization of the systematic variation on the µCB parameter of the
NW scalar signal model
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10.2 Signal Yield Uncertainties

The systematic uncertainties on the signal yield are derived from several sources.

Details about these sources of error are given below:

Photon Identification

The photon identification efficiency for the data taking periods used in this analysis

is measured using three data driven methods providing data-to-MC ratios called scale

factors (Petit , 2017). The values are provided by the ATLAS e/γ Group via the

PhotonEfficiencyCorrection tool (ATLAS e
/
γ, 2020b). The uncertainties on these

scale factors are propagated to the analysis by applying the corresponding variation.

Photon Isolation

The systematic uncertainty of the signal yield is obtained by applying a shift to

the calorimeter isolation and a pT dependent shift to the track isolation (De Vivie

De Regie et al., 2017). The shifts on the correction factor, CX , from these two sources

are calculated independently then added in quadrature.

Photon Trigger

The trigger efficiency is measured with data for single-photon triggers and is found

to be well modeled in the MC simulation. For the diphoton triggers used in the anal-

ysis, a bootstrap method is used to estimate the efficiency, resulting in an efficiency

for the full dataset of about 98% for the 125 GeV Higgs boson, with an associated

uncertainty from this estimation of about 0.5%. This estimation is taken to be the

systematic uncertainty assigned to the photon trigger. As the efficiency is expected to

be even higher for larger diphoton mass signals, and given the good modeling of the

trigger efficiency by the MC simulation, this assumption can be considered sufficiently

conservative. (Amidei , 2020)
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Pile-up Reweighting

A variation in the pile-up reweighting of the simulation is performed to cover the

difference between the predicted and measured inelastic pp cross-section in the fiducial

volume of the detector. This variation is performed by shifting the µ distribution

derived from the data by ±3% before reweighting the MC sample. The uncertainty

associated with this reweighting affects the signal yield by up to 2% and the effect on

the signal shape is found to negligible. (Amidei , 2020)

Physics Bias

The current analysis makes no assumption on the possible production modes of the

hypothetical scalar. As the ggF, VBF, top-associated, and vector boson associated

production modes have significantly different kinematics that lead to a significant

change in the correction factor, a systematic uncertainty is assigned to account for

the “physics bias” introduced by the assumed kinematics of the signal model. This

uncertainty is taken from the envelope of the difference in the correction factor esti-

mated from the different production modes. In practice, only the difference between

the ggF, VBF and top-associated production modes is considered as the differences

between the vector-boson associated production mode and ggF production mode are

negligible. (Amidei , 2020)

Photon Energy Scale/Resolution

Apart from the impact on the signal model, the photon energy scale and reso-

lution uncertainties may impact the determination of the signal yield through the

correction factor. The energy scale and resolution relate to the migrations in and

out of the fiducial volume. Such effects are insignificant in this analysis, so the cor-

rection factor is hardly affected by this source of uncertainty. Figure 10.5 shows the

systematic uncertainty assigned on the correction factor to account for the physics

bias introduced by the assumed signal model.
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Figure 10.5: Effect of different signal kinematics associated with the assumed pro-
duction mode on the correction factor. The difference observed between the ggF and
ttX and VBF production modes is used to define an envelope to serve as system-
atic uncertainty associated with the assumption of the production mode, shown as a
function of mX with the dashed black lines in the ratio panel.
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CHAPTER XI

Seach for New Phenomena with Diphoton Final

States

Due to numerical challenges in implementing FD as the search method and pres-

sure to complete the analysis from an internally imposed deadline, the analysis was

completed with a standard method which was able to move forward quickly to meet

the deadline. Although not used as the search method, FD was still instrumental in

the analysis. FD was used for smoothing background templates used to determine

the uncertainties on the spurius signal. The idea being that since FD can model any

curve on semi-infinite interval with a finite area underneath, simulated background

templates are replaced with an FD background only model of the template. The as-

sumption is that the true shape of the template’s pdf is sufficiently represented while

eliminating any statistical fluctuations from the simulation, giving a more accurate

representation of the PowLog-n’s ability to capture the shape of the underlying pdf.

This chapter describes the spin-0 and spin-2 high mass diphoton resonance search

procedure and results. The spin-0 search explores the volume 400 GeV ≤ mX ≤

2800 GeV and 0 ≤ ΓX/mX ≤ 0.1 while the spin-2 search explores the volume

500 GeV ≤ mX ≤ 5000 GeV and 0.01 ≤ k
/

ĎMPl ≤ 0.1. In both cases, the diphoton
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mass spectrum is modeled with

Ω(z;m) = f(z; {a, d, αi}) +N · FX/G∗(z;m) (11.1)

where FX/G∗ is a DSCB and represents the signal shape, Equation 6.7, f is a PowLog-n

function and represents the background, Equation 6.6, m is the mass of the hypoth-

esized resonance, and N is the number of signal events.

This chapter continues by describing how the likelihood of a given fit is determined

accounting for each systematic uncertainty effecting the observed number of events.

Next, it describes how the local p-value, local significance, and global significance of

the background only hypothesis, as well as the upper 95% CL on the scalar (graviton)

fiducial production cross section times the branching ratio Br(X(G∗) → γγ) are

computed in this analysis. Finally, it discusses the results and presents the upper

95% CL as a function of mX and ΓX/mX

(
k
/

ĎMPl

)
for the spin-0 (spin-2) search.

11.1 Statistical Procedure

11.1.1 Background Only Fit of the Diphoton Mass Spectrum

The background is fit with a PowLog-1 function, given by Equation 6.6

f(z; {a, d, αi}) = (1− xd)a · x
řn
i=0 αi(log x)i (6.6)

with n = 1 and d = 1/3 leading to

f(z; {a, α0, α1}) = (1− x1/3)a · xα0+α1·log x. (11.2)

Table 11.1 gives the parameters of the PowLog-1 function for the background only

hypothesis.
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Fit Parameter Value
a 10.468± 0.156
α0 −1.8375± 0.0675
α1 0.1378± 0.0087

Table 11.1: Parameters for the PowLog-1 function fit to the diphoton invariant mass
spectrum (Amidei , 2020).

The background only fit plotted with the data is shown in Figure 11.1. Excluding

bins with fewer than ten entries (mγγ > 1.4 TeV) since they tend to bias the estima-

tion, the reduced χ2 for the background only fit is χ2/Ndof = 37.2/54, corresponding

to a p-value of p(χ2) = 0.96.

11.1.2 Accounting for Systematic Uncertainties

Each uncertainty is accounted for in the S+B fits by using nuisance parameters

contrained by Gaussian penalty terms in the likelihood function

F (mγγ;σ,mX , αX , Nb,a,θ) = fX (mγγ;xX (mX , αX) , θσ) ·NX (σ;mX ,θNX , θSS)

+ fb (mγγ;a) ·Nb (11.3)

where fX and fb are the pdfs for a given signal X and background b respectively,

NX and Nb are the corresponding yields, σ is the fiducial cross section times the

branching ratio of the hypothetical resonance, a are background shape parameters,

xX are the DSCB parameters, θSS is the spurious signal systematic, and θNX is the

set of nuisance parameters for the systematic uncertainties impacting NX which are

listed below:

• θlumi is the uncertainty on the intergrated luminosity of the data sample;

• θeff,X is the systematic uncertainty on the photon identification on the resonance;

• θiso,X is the systematic uncertainty on the photon isolation on the resonance;
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Figure 11.1: The diphoton invariant mass spectrum plotted with the background only
fit along with three NWA signals at 400 GeV, 1000 GeV, and 2000 GeV.
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• θSS is the spurious signal systematic;

• θES is the photon energy scale systematics;

• θER is the photon energy resolution systematics;

• θCX is the production mode uncertainty on the CX factor.

The quantity Nb is a free parameter in the fit, while NX is parameterized as

NX (σ,mX ,θNX , θSS) = σ · L · CX (mX) ·
dimθNX

ź

k

Kk (θk) + δSS · θSS (11.4)

where L is the integrated luminosity of the sample, CX(mX) is the correction factor

at the mass mX , δSS = |NSS| and θSS are the values of the Spurious signal (SS) (see

Section 9.8.2.1) and its associated nuisance parameter, the index k runs over the set

of systematic uncertainties impacting NX , and where Kk is a function characterizing

the effect on the kth normalization systematic given by

Kk(θk) = [rk(mX)]θk (11.5)

with

rk(mX) =


N+k(mX)

NX(mX)
⇐ θk > 0

NX(mX)
N−k(mX)

⇐ θk < 0

(11.6)

where NX(mX) is the number of nominal signal events in the mX simulated sample,

and N±k is the number of signal events for the kth up (down) systematic. This

normalization ensures that θk = ±1 corresponds to the ±1σ variations used to define

the uncertainties. To avoid numerical problems at θk = 0 the expression for rk used

in the computation is interpolated smoothly between the cases θk > 0 and θk < 0

using the RooStats::HistFactory::FlexibleInterpVar class, with modifications
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to allow mass-dependent values for the uncertainties.

L (σ,mX , αX , Nb,a,θ) = e−(NX+Nb)

[
n

ź

i=1

F
(
mγγi;σ,mX , αX , Nb,a,θ

)]

×
dimθ
ź

k=1

exp

(
−1

2
(θk − θaux

k )2

)
(11.7)

11.1.3 The Look-Elsewhere Effect

In the scalar (graviton) analysis, a search is performed for a resonance of unknown

mass m and width Γ (coupling k
/

ĎMPl), and signal size µ on a smoothly falling back-

ground distribution with nuisance parameters ν̂. A test statistic, q0, is constructed

by comparing the likelihood of the background only hypothesis to the likelihood of

the S+B hypothesis

q0(m,Γ) = −2 log
L (0,m,Γ, ν̂ ′)

L (µ̂,m,Γ, ν̂)
(11.8)

where Γ represents the scalar width or graviton coupling k
/

ĎMPl, ν̂
′ are the parameters

for the best fit background only model and µ̂ and ν̂ are the parameters for the best

fit signal plus background model for a specified mass m and width Γ.

In the asymptotic limit, the q0 test statistic has a distribution that is defined

by χ2(Ndof = 1). The significance in this case is Z =
‘

q0 and the probability is

p0 = 1−Φ(
‘

q0) where Φ is the cumulative distribution function (cdf) (Cowan et al.,

2011).

The test statistic q0(m,Γ) is computed at each mass point for a given width,

Γ, in the search and used to compute the local significance Z local
0 . The quantity

qZmax is selected by locating the maximium Z local
0 value, Z local

0,max, and identified as its

corresponding q0 value.

Since both width and mass are being varied in the search, there are two addi-
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tional degrees of freedom which provide a larger parameter space to be explored thus

increasing the possibility of containing a deeper fit minimum. This effect results in

larger Z local
0 values than the corresponding p0 probability would suggest and is known

as the look-elsewhere effect.

11.1.4 Global Significance with Psuedo Experiments

Using fits to background only pseudo experiment ensembles, the global signifi-

cance, Zglobal
0 , is computed as a function of Z local

0 . The procedure begins with gener-

ating 1,000 pseudo experiments whose inital parameters are taken from the PowLog-1

function described in Section 7.1.2. The global observables of the function are ran-

domly varied according to a Gaussian pdf with a mean value equal to the profiled

value of the corresponding nuisance parameter. Values of the experimental observ-

ables (N and mγγ) are generated randomly from the background only pdf and the

Poisson distribution.

Next, the maximum local significance in the search volume is computed. As it

would be computationally expensive to determine Z local
0 for each mass point and

width combination in the analysis, a smaller subset of points are randomly selected

from each psuedo experiment and the minimum log likelihood computed within that

subset is taken to be Z local
0,max for the corresponding pseudo experiment. To determine

the size of the subsets used, the median significance and standard deviation of the

significance of the toys are plotted against the size of the subsets. These plots are

shown in Figure 11.2 for both the spin-0 and spin-2 searches and show that after the

size of the subsets reaches about 50, that these distributions appear to be asymptotic.

Therefore 50 is taken to be an adequately large subset size which is still significantly

smaller than 1201 × 21 (1151 × 19), the number of mass points × number of width

points, of the entire scalar (graviton) search volume, reducing the computational cost

of the optimization by approximately 99.80% (99.77%).
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(a) (b)

(c) (d)

Figure 11.2: The median and standard deviation of the local significance Z local
0 as a

function of subset sizes for the (a,b) spin-0, and the (c,d) spin-2 analyses (Amidei ,
2020).

The global significance corresponding to a given Z local,observed
0 = rZ is given by

Zglobal, observed
0 =

∞
ż

rZ

H(Z local
0 ) dZ local

0 (11.9)

where H represents the Z local
0 distribution. The Z local

0 distribution for the scalar and

graviton analyses are shown in Figure 11.3 for 1,000 pseudo experiments and a subset

size of 50. These empirically derived distributions are used as H for the determination

of the global significance. Errors for the global significance are given by the Binomial
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(a)

(b)

Figure 11.3: The local significance Z local
0 distributions for 1,000 pseudo datasets for

the (a) spin-0 and (b) spin-2 analyses (Amidei , 2020).

distribution based on the number of pseudo experiments and the local observed p-

value, plocal,observed
0 .
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11.1.5 Confidence Limits

The probability of observing d events given an expected measurement of s + b

signal plus background events is given by the Poisson distribution

P (d; s, b) =
(s+ b)d

d!
e−(s+b). (11.10)

A test statistic X can be constructed which discriminates signal-like outcomes

from background-like outcomes. An optimal choice for the statistic is given by

X =
n

ź

i=1

Xi (11.11)

where i indexes the mass hypothesis and

Xi =
P (d = di; s = si, b = bi)

P (d = di; s = 0, b = bi)
(11.12)

=
(si + bi)

di

bdii
e−si (11.13)

is the ratio of the S+B and background only Poisson distribution for the ith mass

hypothesis, si is the estimated signal, bi is the estimated background, di is the number

of observed candidates.

The confidence level for excluding the S+B hypothesis with test statistic Xobserved

is

CLs+b (Xobserved) = Ps+b (X ≤ Xobserved) (11.14)

with

Ps+b (X ≤ Xobserved) =
ÿ

rdi∈∆

e−(si+bi) (si + bi)
rdi

rdi!
(11.15)
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where ∆ =
{

rdi

∣∣∣Xi ≤ Xobserved

}
is the set of all possible outcomes, rdi, where the test

statistic is smaller than that of the observed outcome. The confidence level for the

background alone is given by

CLb = Pb (X ≤ Xobserved) (11.16)

where the probabilities assume there is no signal present. The Modified Frequentist

confidence level CLs is given by

CLs = CLs+b
/

CLb. (11.17)

However, in practice evaluating Equation 11.17 is cumbersome, being on the order

ofO (nm) where n is the number of channels and m is the number of possible outcomes

in that channel. As a result, the upper limit on the expected and observed confidence

levels are computed based on the asymptotic formulas to determine the cross section

value corresponding to the 95% CL exclusion (Cowan et al., 2011).

11.2 Results

Tables 11.2 and 11.3 summarize the systematic uncertainties associated with this

analysis which are discussed in Chapter 10.
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Source Uncertainty

Signal Yield
Luminosity (2015–2018) ±1.7%
Trigger ±0.5%
Photon Identification ±0.5%
Isolation Efficiency ±1.5%
Pile-up Reweighting 1± 0.03 exp (−2mX [TeV]) %

⇒ ±(0.2–2.0)%
Scalar Production (1± 0.03)± 0.08 exp (−3.35mX [TeV]) %

⇒ ±(3.0–7.0)%
Photon Energy Scale negligible
Photon Energy Resolution negligible

Signal Modeling

Photon Energy Resolution +14%
−9.3% (at mX = 200 GeV)
+51%
−29% (at mX = 2000 GeV)

Photon Energy Scale ±0.5%–± 0.6%
Pile-up Reweighting negligible

Table 11.2: A summary of the systematic uncertainties associated with the signal
yield and signal modeling which effect the observed number of events.

Source Uncertainty

Background

Spurious Signal (spin-0)

NWA 144 events (at mG∗ = 160 GeV)
0.04 events (at mG∗ = 2800 GeV)

ΓX/mG∗ = 2% 107 events (at mG∗ = 400 GeV)
0.14 events (at mG∗ = 2800 GeV)

ΓX/mG∗ = 6% 223 events (at mG∗ = 400 GeV)
0.38 events (at mG∗ = 2800 GeV)

ΓX/mG∗ = 10% 437 events (at mG∗ = 400 GeV)
0.50 events (at mG∗ = 2800 GeV)

Spurious Signal (spin-2)

k
/

ĎMPl = 0.01 4.71 events (at mG∗ = 500 GeV)
0.04 events (at mG∗ = 2800 GeV)

k
/

ĎMPl = 0.05 19.0 events (at mG∗ = 500 GeV)
0.09 events (at mG∗ = 2800 GeV)

k
/

ĎMPl = 0.10 31.2 events (at mG∗ = 500 GeV)
0.20 events (at mG∗ = 2800 GeV)

Table 11.3: A summary of the systematic uncertainties associated with the back-
ground modeling which effect the observed number of events.
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11.2.1 Scalar Results

Based on the procedure outline in Section 11.1, the 95% CL on the parameter

σfid times the branching ratio BR is computed every 2 GeV on the interval mγγ ∈

[400, 2800] GeV and steps of 0.5% on the interval ΓX/mX ∈ [0, 10]%. Figure 11.4

shows the local p-value as a function of mX for various signal widths.

(a) (b)

(c) (d)

Figure 11.4: The local p-value as a function of mX for the scalar search for various
widths: (a) NWA, (b) ΓX/mX = 2%, (c) ΓX/mX = 6%, (d) ΓX/mX = 10%.

Figure 11.5 shows a two-dimensional plot of local significance as a function of

width ΓX/mX and mass mX . The most signficant excess was observed for the

mX = 684 GeV mass hypothesis for the NWA model, corresponding to a 3.29σ

local significance and a (1.30± 0.06)σ global significance.
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Figure 11.5: The local significance Z local
0 as a function of width ΓX/mX and invariant

mass mX .

Figure 11.6 shows several plots of the 95% CL on the parameter σfid times the

branching ratio BR as a function of mX for and several widths ΓX/mX , while the

expected and observed limits as a function of width and invariant mass are shown in

Figure 11.7.
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(a) (b)

(c) (d)

Figure 11.6: Expected and observed limit on the fiducial production cross section
times branching ratio, σfid ×BR, as a function of the resonance mass mX for various
widths: (a) NWA, (b) ΓX/mX = 2%, (c) ΓX/mX = 6%, (d) ΓX/mX = 10%.
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(a)

(b)

Figure 11.7: Expected and observed limit on the fiducial production cross section
times branching ratio, σfid × BR, as a function of the resonance mass mX and width
ΓX/mX .
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11.2.2 Graviton Results

Based on the procedure outline in Section 11.1, the 95% CL on the parameter σfid

is computed every 2 GeV on the interval mγγ ∈ [500, 5000] GeV and steps of 0.005

on the interval k
/

ĎMPl ∈ [0.01, 0.1]. Figure 11.8 shows the local p-value as a function

of mX = mG for various couplings k
/

ĎMPl.

(a) (b)

(c)

Figure 11.8: The local p-value as a function of mG for the graviton search for various
couplings: (a)k

/
ĎMPl = 0.01, (b) k

/
ĎMPl = 0.05, (c) k

/
ĎMPl = 0.10.

Figure 11.9 shows a two-dimensional plot of local significance as a function of

width ΓX/mG and mass mG. The most signficant excess was observed for the mG =

684 GeV mass hypothesis and coupling k
/

ĎMPl =0.01, corresponding to a 3.29σ local

significance and a (1.36± 0.06)σ glocal significance.
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Figure 11.9: The local significance Z local
0 as a function of coupling k

/
ĎMPl and invariant

mass mG.

Figure 11.10 shows several plots of the 95% CL on the parameter σfid times the

branching ratio BR as a function of mG for and several couplings k
/

ĎMPl, while the

expected and observed limits as a function of coupling and invariant mass are shown

in Figure 11.11.
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(a) (b)

(c)

Figure 11.10: Expected and observed limit on the fiducial production cross section
times branching ration σfid × BR as a function of the resonance mass mG for various
couplings: (a) k

/
ĎMPl = 0.01, (b) k

/
ĎMPl = 0.05, (c) k

/
ĎMPl = 0.10.
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(a)

(b)

Figure 11.11: Expected and observed limit on the fiducial production cross section
times branching ration σfid×BR as a function of the resonance mass mG and coupling
k
/

ĎMPl.
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11.2.3 Summary of Observed Upper Limits

Table 11.4 summarizes the results of this analysis, showing the upper limit on the

fiducial cross section times branching ratio for both the scalar and graviton search

for various widths and couplings.

Width/Coupling σfid × Br (X/G∗ → γγ)

Spin-0
mX = 400 GeV mX = 2800 GeV

NWA 1.1 fb 0.03 fb
ΓX/mX = 2% 2.5 fb 0.03 fb
ΓX/mX = 6% 4.4 fb 0.03 fb
ΓX/mX = 10% 8.3 fb 0.04 fb

Spin-2
mG∗ = 500 GeV mG∗ = 5000 GeV

k
/

ĎMPl = 0.01 1.9 fb 0.04 fb
k
/

ĎMPl = 0.05 2.3 fb 0.04 fb
k
/

ĎMPl = 0.10 3.2 fb 0.04 fb

Table 11.4: Summary of the limit on the fiducial cross section times branching ratio.
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CHAPTER XII

Conclusion

The analysis presented in this thesis comprises two high mass diphoton final state

resonance searches. The searches are conducting using the 139 fb−1 of Run 2 data

collected with the ATLAS experiment at the LHC from 2015–2018. The spin-0 search

is optimized for Higgs-like scalars with masses above 200 GeV, while the spin-2 search

is optimized for resonances predicted by the Randall-Sundrum (RS) graviton model

with masses above 500 GeV.

As no globally significant excess was observed, the data collected are consistent

with the background expectation of the Standard Model (SM). The observed 95% CL

upper limit on the fiducial cross section times branching ratio for the scalar narrow

width approximation (NWA) ranges from about 12.5 fb at 160 GeV to 0.03 fb at

2800 GeV, while the observed 95% CL upper limit for the graviton with coupling

k
/

ĎMPl =0.1 ranges from about 3.2 fb at 500 GeV to 0.04 fb at 5000 GeV. The RS1

graviton with k
/

ĎMPl = 0.1 is excluded for masses below 4500 GeV, with k
/

ĎMPl =0.05

is excluded for masses below 4200 GeV, and with k
/

ĎMPl =0.01 is excluded for masses

below 2200 GeV.
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APPENDIX A

Completeness of the Exponentials

Let f(z) be a real valued function defined on the interval [0,∞) with the property

lim
x→∞

f(z) = 0 (A.1)

and let z = T (y) be the transformation z = − log y. T (y) bijectively maps the

exponentials
‘

2Fn(z) = e−nz on [0,∞) to the polynomials F ?
n(z) on (0, 1]

F ?
n(y) =

‘

2yn (A.2)

and maps the inner product

〈f ?, g?〉 =

∞
ż

0

dy

y
f ?(y)g?(y). (A.3)

By the completeness of the polynomials, f ?(y) = f(− log y) can be represented

f ?(y) =
∞
ÿ

n=0

a?ny
n. (A.4)

However, since lim
y→0

f ?(y) = 0 the constant term a0 must vanish. Therefore f(z) can
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be written

f(z) =
∞
ÿ

n=1

anFn(z) (A.5)

where an = a?n/
‘

2 (Edgar et al., 2018).
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APPENDIX B

General Hyperparameter Transformation Matrix

f(x) = f̃ ? nEn(z?) (B.1)

f̃n = M̂nmf̃
?m (B.2)

M̂nm =

∞
ż

0

dz E ′n(z)Ei(z)
dz

dβ
(B.3)

M̂ = exp
[
T̂
]

(B.4)

T̂ =

∞
ż

0

dz E ′n(z)Em(z)
dz

dβ
(B.5)
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APPENDIX C

Hyperparameter Transformation Matrix for the

Power-Law Transformation

z =

(
x− x0

λ

)α
(C.1)

α = α(β) λ = λ(β)

dz

dβ
=

1

α

dα

dβ
z log z − α

λ

dλ

dβ
z (C.2)

1

α

dα

dβ
= c (C.3)

−α
λ

dλ

dβ
= s (C.4)

α = α?eβc
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d

dβ
log λ = − s

α?
e−βc (C.5)

log λ+ C =
s

α?c
e−βc (C.6)

log
λ

λ?
=

s

α?c

(
e−βc − 1

)
(C.7)

c = log
α

α?
(C.8)

s = − αc

ec − 1
log

λ

λ?
(C.9)

T̂ nm =

∞
ż

0

dz E ′n(z)Em(z) (cz log z + sz) (C.10)

= −
∞
ÿ

i=1

∞
ÿ

j=1

dnidmji

∞
ż

0

dz e−(i+j)z (cz log z + sz) (C.11)

∞
ż

0

dz e−nzz =
1

n2
(C.12)

∞
ż

0

dz e−nzz log z =
1− γ − log n

n2
(C.13)
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APPENDIX D

Optimal Signal Estimators

F (z) = c(m)f(m)(z) (D.1)

〈ω(n), f(m)〉 = δnm (D.2)

σ(nm) =

∞
ż

0

dz F (z)ω(n)(z)ω(m)(z)−

∞ż
0

dz F (z)ωn)(z)

∞ż
0

dz F (z)ω(m)

 (D.3)

= ω̃i(n)Σ̂ijω̃
j
(m) (D.4)

L = log det(2πeσ(nm))− η(nm)
(
ω̃(n)if̃

i
(m) − δnm

)
(D.5)
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