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ABSTRACT

The past decade has seen the breakdown of two important trends in the computing
industry: Moore’s law, an observation that the number of transistors in a chip roughly
doubles every eighteen months, and Dennard scaling, that enabled the use of these
transistors within a constant power budget. This has caused a surge in domain-
specific accelerators, i.e. specialized hardware that deliver significantly better energy
efficiency than general-purpose processors, such as CPUs. While the performance
and efficiency of such accelerators are highly desirable, the fast pace of algorithmic
innovation and non-recurring engineering costs have deterred their widespread use,
since they are only programmable across a narrow set of applications. This has
engendered a programmability-efficiency gap across contemporary platforms.

A practical solution that can close this gap is thus lucrative and is likely to en-
gender broad impact in both academic research and the industry. This dissertation
proposes such a solution with a reconfigurable Software-Defined Hardware (SDH) sys-
tem that morphs parts of the hardware on-the-fly to tailor to the requirements of each
application phase. This system is designed to deliver near-accelerator-level efficiency
across a broad set of applications, while retaining CPU-like programmability.

The dissertation first presents a fixed-function solution to accelerate sparse matrix
multiplication, which forms the basis of many applications in graph analytics and sci-
entific computing. The solution consists of a tiled hardware architecture, co-designed
with the outer product algorithm for Sparse Matrix-Matrix multiplication (SpMM),
that uses on-chip memory reconfiguration to accelerate each phase of the algorithm. A
proof-of-concept is then presented in the form of a prototyped 40 nm Complimentary
Metal-Oxide Semiconductor (CMOS) chip that demonstrates energy efficiency and
performance per die area improvements of 12.6x and 17.1x over a high-end CPU,
and serves as a stepping stone towards a full SDH system.

The next piece of the dissertation enhances the proposed hardware with reconfig-
urability of the dataflow and resource sharing modes, in order to extend acceleration
support to a set of common parallelizable workloads. This reconfigurability lends

the system the ability to cater to discrete data access and compute patterns, such as
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workloads with extensive data sharing and reuse, workloads with limited reuse and
streaming access patterns, among others. Moreover, this system incorporates com-
mercial cores and a prototyped software stack for CPU-level programmability. The
proposed system is evaluated on a diverse set of compute-bound and memory-bound
kernels that compose applications in the domains of graph analytics, machine learn-
ing, image and language processing. The evaluation shows average performance and
energy-efficiency gains of 5.0x and 18.4x over the CPU.

The final part of the dissertation proposes a runtime control framework that
uses low-cost monitoring of hardware performance counters to predict the next best
configuration and reconfigure the hardware, upon detecting a change in phase or
nature of data within the application. In comparison to prior work, this contri-
bution targets multicore Coarse-Grained Reconfigurable Arrays (CGRAs), uses low-
overhead decision tree based predictive models, and incorporates reconfiguration cost-
awareness into its policies. Compared to the best-average static (non-reconfiguring)
configuration, the dynamically reconfigurable system achieves a 1.6x improvement
in performance-per-Watt in the Energy-Efficient mode of operation, or the same per-
formance with 23% lower energy in the Power-Performance mode, for SpMM across
a suite of real-world inputs. The proposed reconfiguration mechanism itself outper-
forms the state-of-the-art approach for dynamic runtime control by up to 2.9x in

terms of energy-efficiency.
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CHAPTER I

Introduction

Moore’s observation that the number of transistors on an integrated circuit chip
roughly doubles every eighteen months has continued to hold for more than four
decades [141]. However, this trend has visibly slowed down as we approach transis-
tors sizes consisting of channels that are just a few atoms thick. The inevitable demise
of Moore scaling, coupled with the end of Dennard scaling, a rule that states that
the power density of a chip remains constant as the feature size scales down [60], has
spawned the rise of heterogeneous computing systems. Typical heterogeneous systems
consist of a multi-core CPU paired with a GPU and/or other fixed-function accel-
erators. CGRAs and Field Programmable Gate Arrays (FPGAs) have also gained
traction as programmable hardware solutions, designed for near- Application-Specific
Integrated Circuit (ASIC) performance and rapid hardware prototyping. The primary
distinction between these devices is defined by the trade-offs between the following

competing requirements:

o Performance and Efficiency. The performance of a system is generally
measured either by the time taken to complete an operation (latency) or the
number of useful operations executed in a given time (throughput). Through-
put is commonly reported in FLOPS per second. Efficiency is measured as
the performance delivered per Watt of power consumed by the system (energy

efficiency), or per unit area of the chip (area efficiency).

o Programmability and Flexibility. Programmability of a system is a qual-
itative metric that captures the ease of writing efficient applications on the
system. Flexibility is a measure of how versatile the system is, e.g. how many

different applications can be efficiently executed on the system.

Multiple prior systems have been developed that deliver high performance and effi-

ciency while retaining some programmability, but typically these are built for specific



application domains that expose the hardware to similar compute and data access
patterns. For instance, Google’s TPU [96] and IBM’s RaPiD [205] are efficient hard-
ware engines for Deep Neural Network (DNN) acceleration that can be programmed
to execute a multitude of neural network architectures. The challenge arises when the
goal involves the acceleration of a broad set of application domains, such as scientific
computing, graph analytics, vision and speech processing, etc., that exhibit varying
compute and data characteristics.

This dissertation proposes a system that delivers energy efficiency nearing those
of ASICs for a given application, while retaining full programmability to support a
wide range of applications. Such a system is termed as SDH in this work. The target
applications for this system are those that consist of a sequence of kernels that exhibit
differing characteristics, e.g. a streaming Fast Fourier Transform (FFT) application
followed by SpMV of the output stream with a sparse weight matrix. Clearly, a naive
approach to achieve maximum performance for such multi-kernel applications is to
design a System on-Chip (SoC) that is comprised of multiple accelerators, one for

each underlying kernel. However, there are two drawbacks to this approach.

o First, this system would be tied to a particular algorithm, and thus would be

incompatible with improved algorithms engineered in the future.

« Second, the hardware would be area (and thus cost) inefficient due to under-
utilization while executing dependent kernels, i.e. where the new kernel uses

data produced from the previous kernel.

In contrast, the proposed SDH system accelerates the different kernels in each
application by reconfiguring the same underlying hardware substrate to a configura-
tion tailored to the characteristics of the kernel. The reconfiguration is of the on-chip
memory type, resource sharing mode, and the dataflow, guided by a compile-time
routine for inter-kernel reconfiguration and a runtime framework for intra-kernel re-
configuration. The runtime system snoops low-cost performance counters built into
the SDH hardware in order to detect changes in code phases and/or nature of data
(e.g. sparse or dense). This tight feedback loop between the hardware and runtime
system allows for fast reconfiguration at a tight granularity, such as hundreds or
thousands of executed FLOPS. Furthermore, in order to ensure ease of programming
and flexibility across multiple applications, the proposed system has an integrated
software stack. High-Level Language (HLL) intrinsics at the lowest level are aimed
at expert programmers and library developers who are responsible for writing effi-

cient code to run on the system. The user-facing layer is much more abstracted, with



methods similar to contemporary data science libraries on HLLs, e.g. NumPy and
SciPy libraries used with Python.

The rest of the dissertation is organized as follows. Chapter II explores contempo-
rary architectural paradigms and motivates the need for and utility of an SDH archi-
tecture based on studies concerning implications of kernel characteristics on different
hardware. Chapter III presents the architecture of a sparse matrix multiplication
accelerator called OuterSPACE that uses memory reconfiguration to accelerate an
outer product based algorithm. It then delves into the design of a proof-of-concept of
this architecture in the form of a prototyped 40 nm CMOS chip. Chapter IV presents
details of the Transmuter architecture, which enhances OuterSPACE to support both
memory and dataflow reconfiguration along with full programmability and evaluates
it on a set of diverse kernels. Chapter V describes a runtime control framework called
SparseAdapt that uses offline training to learn the mapping of program behavior
to the best hardware configuration and applies it during execution time to enhance
the performance and/or energy-efficiency of operation of a workload on Transmuter.
Chapter VI summarizes and concludes the dissertation.

This dissertation presents work done as part of a large research program that
involved contributions from colleagues across multiple institutions. For clarity, my

individual contributions are highlighted below.

e OuterSPACE (Chapter IIT). My contributions on the architecture front were
in conceptualizing the hardware design with my collaborators. I developed the
trace-based simulation infrastructure, the CPU implementation of the outer
product algorithm, and the multiply phase implementation for OuterSPACE.
On the chip tape-out front, I led the frontend development from architecture
to Register Transfer Level (RTL). I designed the RTL for the multiply phase
compute substrate and the on-chip memory subsystem, in addition to the top-
level integration, and was responsible for parts of the pre-silicon verification

and chip testing process.

o Transmuter (Chapter IV). I was responsible for devising parts of the hard-
ware architecture, and for developing performance and functional models, in-
cluding a cycle-level simulation model, a trace-driven model (published at IISWC
2020 [156]), and a functional simulator. I was also responsible for mapping and
implementing the algorithms for a significant fraction of the evaluated kernel-

configuration pairs.

« SparseAdapt (Chapter V). I conceptualized the idea and was responsible for



implementing, training and tuning the ML models, as well as for developing the
framework to simulate a dynamically reconfiguring system. I also implemented
the non-standard performance counters and each of the SparseAdapt policies.
Finally, I developed the infrastructure to automate training data collection and

parallel simulation with hardware configuration sampling.



CHAPTER 11

Kernel Characteristics and Reconfigurability

This chapter introduces contemporary computing platforms and discusses the ad-
vantages and drawbacks associated with each design. It then provides findings from
a characterization study of the predominant kernels across a set of real-world applica-
tions spanning the domains of graph analytics, scientific computing, image and text
processing, etc. The chapter concludes with a set of fundamental hardware choices

that motivate the design of a reconfigurable SDH system.

2.1 Contemporary Architectures

Figure 2.1 shows a summary of prior studies that show trade-offs between per-
formance or energy efficiency, and flexibility or programmability, across these archi-
tectural paradigms. CGRAs, FPGAs and Application-Specific Instruction-set Pro-
cessors (ASIPs) lie in the middle of the spectrum with General-Purpose Proces-
sors (GPPs) and ASICs appearing at opposite ends.

CPUs are optimized for serial, latency-critical kernels. They commonly exploit
maximum Instruction-Level Parallelism (ILP) in programs by executing instructions
Out-of-Order (000), reducing control overhead by predicting across branches (branch
prediction) and executing multiple instructions of the same kind (superscalar execu-
tion). Modern CPUs also support Single Instruction, Multiple Data (SIMD) exten-
sions to harness Data-Level Parallelism (DLP) to a relatively small extent. However,
CPUs perform sub-par for massively data-parallel applications.

GPUs, in particular General-Purpose Graphics Processing Units (GPGPUs), are
designed to harness maximize data/thread-level parallelism. However, their effective-
ness remains limited to regular workloads, i.e. data-parallel workloads that exhibit

low thread-divergence [154]. Tuning the GPU in order to accelerate irregular work-
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Figure 2.1: Trade-offs between programmability and efficiency in prominent com-
puter architectures [145] showing the scope of reconfigurable architectures.

loads, such as those that operate on sparse data, remains a hot topic of research
today [150, 28, 49].

Research on ASIC-based hardware accelerators has boomed in recent years [183].
ASICs that are custom-designed for a particular application or algorithm generally
offer superior efficiency that surpasses any other contemporary architecture running

the same application. ASIC designs, however, suffer from a few drawbacks.

« High Non-Recurring Engineering (NRE) Costs. Figure 2.2, taken from
a recent keynote by Olofsson [152], illustrates that while Moore’s law has been
giving us an exponentially increasing transistors within a given die area, the
design and verification costs associated with chip fabrication has also been grow-
ing at an exponential rate. This is an artifact of the complexities (e.g. leakage
and tunneling) that are associated with designing a reliable chip with transistor

sizes on the order of atomic distances.

o Long Time-to-Market. The end-to-end process leading to an ASIC prototype
spans design, tape-out, fabrication, testing, and production. This leads to a
turnaround time of at least a few months [223]. Despite efforts on accelerating
the design flow [47], by the time an ASIC is fabricated and tested, improved
algorithms may appear which would necessitate a new ASIC design [32, 83].

o Applicability to Few Kernels. An ASIC is generally built to accelerate a
single kernel, or at best, a narrow set. Complex real-world problems seldom
consist of just one kernel and thus require multiple ASICs for end-to-end accel-
eration. The main challenge lies in accelerating multi-kernel mixed data based

workloads that exhibit amenability to different architectures.
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Figure 2.2: Scaling of number of transistors in a chip and design/verification costs
between 1980 and 2015. Figure adopted from [152].

FPGAs have been successful for fast prototyping and deployment by eliminat-
ing non-recurring costs through programmable blocks and routing fabric. Moreover,
high-level synthesis tools have reduced the low-level programmability challenges as-
sociated with deploying efficient FPGA-based designs [113, 112, 16]. Despite that,
power and cost overheads prohibit FPGAs from adaptation in scenarios that demand
the acceleration of a diverse set of kernels [171, 30, 169]. Besides, reconfiguration
overheads of FPGAs are in the ms-us range, even for partial reconfiguration [207,
159, 160], thus impeding fast run-time reconfiguration across kernel boundaries.

CGRAs overcome some of the energy and performance inefficiencies of FPGAs
by reconfiguring at a coarser granularity. However, CGRA reconfiguration usually
happens at compile-time, and the few that support run-time reconfiguration only
support compute datapath reconfiguration [120], with overheads ranging from a few
ns to 100s of ns [65, 68, 127]. Furthermore, many CGRAs require customized software
stacks but have inadequate tool support, since they typically involve Domain-Specific
Languages (DSLs) and custom Instruction Set Architectures (ISAs) [211].

While CPUs and GPUs carry significant energy and area overheads compared to
lean ASIC designs, they are the de facto choice for programmers as they provide high
flexibility and abstracted programming semantics such as OpenCL and CUDA [25].
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Figure 2.3: Fraction of execution time of kernels in applications spanning the domains
of ML, signal processing, and graph analytics [217, 137, 97, 50, 131, 119, 51, 132,
42, 29] on a heterogeneous CPU-GPU platform. Some key characteristics, namely
arithmetic intensity, data reuse and divergence, of each kernel are also listed.

2.2 Hardware Support for Disparate Patterns

Many real-world workloads consist of multiple kernels that exhibit differing data
access patterns and computational (arithmetic) intensities. In Figure 2.3, we show
the percentage execution times of key kernels that compose a set of ten workloads in
the domains of ML, graph analytics, and image and video processing. We characterize
the kernels in terms of their arithmetic intensity (measured as the ratio of the amount
of useful compute instructions performed to the amount of data fetched from off-chip
memory), data reuse (amount of computation performed on a given piece of data
that is fetched from off-chip memory), and control divergence (proportional to the
number of divergent paths taken by multiple threads in a unit — threads within a
warp in GPUs, and SIMD lanes in a CPU). The underlying kernels exhibit a wide
—_ths to 100s FLOPS per byte, i.e. FLOPS/B

1000
(Figure 2.1), as well as significant variance in reuse and divergence.

SPM. Cache and SPM are two well-

range of arithmetic intensities, from
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Figure 2.4: Performance comparison between different hardware on simple kernels
exhibiting fundamentally different characteristics.

known and extensively researched types of on-chip memory [109, 17, 206]. To explore
their trade-offs, we performed experiments on a single-core system that employs these

memories. From our experiments in Figure 2.4(a), we observe the following.

o Workloads with low arithmetic intensity (i.e. are memory-intensive) but high

spatial locality (contiguous accesses) perform better on a cache-based system.

» Workloads that are compute-intensive and have high traffic to disjoint memory
locations favor an SPM if those addresses are known a priori. In this case,
an SPM outperforms a cache because the software-managed SPM replacement

policy supersedes any standard cache replacement policy.

Intuition thus dictates that the diverse characteristics of kernels would demand
an equivalent diversity in hardware. We study the implications of some key hardware
choices in the remainder of this section.

Thus, caching is useful for kernels that exhibit high spatial locality and low-to-
moderate FLOPS /byte, whereas SPMs are more efficient when the data is prone to

thrashing but is predictable and has sufficient reuse.

On-Chip Memory Sharing: Private vs. Shared. The performance of shared
versus private on-chip resources is dependent on the size of the working-set and the
degree of working-set overlap across cores, i.e. inter-core data reuse. We note from
our studies in Figure 2.4(b) that:



o When there is significant overlap between the threads’ working sets, sharing
leads to speedups exceeding 10x over privatization. This is owed to memory

access coalescing and deduplication of data in the shared mode.

o When cores work on disjoint data, i.e. chunks of data that are spread across a
large memory address range, there is insignificant difference in performance with

sharing over no-sharing, if the union of the threads’ working sets fit on-chip.

o Regular kernels may exhibit strided accesses that can be hazardous for a shared
multi-banked cache, due to conflicting accesses at the same bank. In this case,

a private configuration delivers better performance.

Dataflow Type: Demand-Driven vs. Spatial. In this work, we refer to demand-
driven dataflow as the dataflow used by GPPs, wherein cores use on-demand loads
and stores to read and write data, and communicate via shared memory. In contrast,
spatial dataflow architectures (e.g. systolic arrays) are data-parallel designs consisting
of multiple Processing Elements (PEs) with direct PE-to-PE channels. Each PE
receives data from its neighbor(s), performs an operation, and passes the result to
its next neighbor(s) [111]. If pipelined correctly, this form of data orchestration
harnesses the largest degree of parallelism. However, it is harder to map and write

efficient software for certain applications on spatial architectures [93].

2.3 Key Takeaways and Path to Solution

The analysis presented in this chapter identifies the on-chip memory type, resource
sharing and dataflow as three key hardware design choices that are each amenable to
a different workload characteristic. This motivates the intuition that an architecture
that reconfigures between these designs can accelerate diverse workloads that exhibit
a spectrum of characteristics.

This dissertation first proposes a fixed-function accelerator called OuterSPACE
that employs on-chip memory type reconfiguration to accelerate an increasingly im-
portant class of irregular workloads, namely sparse matrix multiplication. It then
presents an enhanced version of this architecture called Transmuter that, in addition,
incorporates resource sharing and dataflow reconfiguration along with programmable
cores to accelerate kernels that compose broad application domains, such as the ones
discussed in this chapter. The full SDH system proposal is culminated with the

discussion of a software framework for dynamic reconfiguration.
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CHAPTER III

Accelerating Sparse Matrix Multiplication using

Memory Reconfiguration

Sparse matrices are widely used in graph and data analytics, machine learning,
engineering and scientific applications. This chapter describes and analyzes Out-
erSPACE, an accelerator that uses memory reconfiguration coupled with an outer
product based matrix multiplication algorithm to accelerate applications that in-
volve large sparse matrices. OuterSPACE is a highly-scalable, energy-efficient, re-
configurable design, consisting of massively parallel Single Program, Multiple Data
(SPMD)-style processing units, distributed memories, high-speed crossbars and HBM.

We identify redundant memory accesses to non-zeros as a key bottleneck in tradi-
tional sparse matrix-matrix multiplication algorithms. To ameliorate this, we imple-
ment an outer product based matrix multiplication technique that eliminates redun-
dant accesses by decoupling multiplication from accumulation. We demonstrate that
traditional architectures, due to limitations in their memory hierarchies and ability
to harness parallelism in the algorithm, are unable to take advantage of this reduc-
tion without incurring significant overheads. OuterSPACE is designed to specifically
overcome these challenges.

We simulate the key components of our architecture using gemb on a diverse set
of matrices from the University of Florida’s SuiteSparse collection and the Stanford
Network Analysis Project and show a mean speedup of 7.9x over Intel Math Ker-
nel Library (MKL) on a Xeon CPU, 13.0x against cuSPARSE and 14.0x against
CUSP when run on an NVIDIA K40 GPU, while achieving an average throughput of
2.9 GFLOPS/s within a 24 W power budget in an area of 87 mm?.

We prototyped a scaled-down version of the OuterSPACE with 48 heterogeneous
cores and a reconfigurable memory hierarchy in 40 nm CMOS technology. On-chip

memories are reconfigured as SPMs or caches and interconnected with synthesizable
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coalescing crossbars for efficient memory access in each phase of the algorithm. The
2.0 mmx2.6 mm chip exhibits 12.6x (8.4x) energy efficiency gain, 11.7x (77.6%)
off-chip bandwidth efficiency gain and 17.1x (36.9x) compute density gain against
a high-end CPU (GPU) across a diverse set of synthetic and real-world power-law
graph based sparse matrices.

The work presented in this chapter was published in the form of an architecture
paper at HPCA 2018 [154], a circuits paper at VLSI 2019 [157] and an extended
journal paper at JSSC 2020 [158].

3.1 Introduction

SpMM and SpMV are two key kernels of complex operations in domains such
as graph analytics, machine learning, and scientific computation, as we elaborate in
Section 3.2. The percentage of non-zero elements in the matrices involved can be
very small. For example, the number of active daily Facebook users is currently 1.08
billion and the average number of friends per user is 338 [186]. A graph representing
Facebook users as vertices and “friendships” between users as edges results in an
adjacency matrix of dimension 1.08 billion with a density of just 0.0003%.

Sparse matrix-based computations are becoming an increasingly important prob-
lem. These applications are typically bottlenecked by memory rather than computa-
tion, primarily due to irregular, data-dependent memory accesses in existing matrix
libraries, leading to poor throughput and performance [74, 135].

The demise of Moore’s Law has led to renewed interest in accelerators to im-
prove performance and reduce energy and cost. In order to address these issues for
applications involving sparse matrix computations, we propose a custom accelera-
tor, OuterSPACE, that consists of asynchronous SPMD-style processing units with
dynamically-reconfigurable non-coherent caches and crossbars. OuterSPACE is de-
signed to work with the unconventional outer product based matrix multiplication
approach [26, 201], which involves multiplying the i’ column of the first matrix (A)
with the i row of the second matrix (B), for all i. Each multiplication generates a
partial product matrix and all the generated matrices are then accumulated element-
wise to form the final result. A seemingly obvious drawback of this approach is the
maintenance and storage of these partial product matrices. In the case of sparse ma-
trices, however, this is much less of a concern and other considerations dominate. We
identify contrasting data-sharing patterns in the two distinct, highly parallel compute

phases: multiply and merge. The multiply phase involves data-sharing across parallel
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computation streams, while the merge phase involves strictly independent processing
with little-to-no communication or synchronization between streams. This discrep-
ancy leads to sub-optimal execution of the outer product method on mainstream
architectures, namely GPUs and multi-core/many-core CPUs (Section 3.4.4).

The reconfigurability of OuterSPACE enables us to meet the contrasting com-
putational needs of the outer product method’s two compute phases. Employing
asynchronous SPMD-style processing elements allows for control-divergent code to
operate fully in parallel, as opposed to SIMD architectures, which need to serialize
it at least partially. Software-controlled SPMs, coupled with hardware-controlled
caches, prevent wasted data accesses to the main memory. Further, allowing non-
coherence relieves pressure on the memory system associated with excess broadcasts
and writebacks (which can contribute up to 30-70% of the total write traffic [121]),
providing a fraction of the performance benefits.

While the main focus of our work is the acceleration of sparse matrix-matrix mul-
tiplication, we also present results of sparse matrix-vector multiplication and describe
how element-wise operations can be performed on the OuterSPACE system.

We use a server-class multi-core CPU and GPU as baselines to compare our archi-
tecture against. For sparse matrix multiplication on the CPU, we use state-of-the-art
sparse Basic Linear Algebra Subsystems (BLAS) functions from the Intel MKL. MKL
provides math routines for applications that solve large computational problems and
are extensively parallelized by OpenMP threading while using vector operations pro-
vided by the Advanced Vector eXtensions (AVX) instruction set. For the GPU, we
compare our architecture against the cuSPARSE and CUSP libraries. cuSPARSE
[41] applies row-by-row parallelism and uses a hash table to merge partial products
for each row of the output matrix. CUSP [18, 44| presents fined-grained parallelism
by accessing the input matrices row-by-row and storing the partial result with possi-
ble duplicates into an intermediate coordinate format. The intermediate structure is
then sorted and compressed into the output matrix.

The rest of this chapter is organized as follows. Section 3.2 discusses a wide spec-
trum of applications that utilize sparse matrix operation kernels. Section 3.3 provides
a brief background on sparse matrix multiplication algorithms and storage formats,
in addition to prior work in this area. Section 3.4 discusses our outer product imple-
mentations for sparse matrix-matrix multiplication and evaluates their performance
on the CPU and GPU. Section 3.5.1 provides details of the OuterSPACE architecture
and how the outer product algorithm efficiently maps to it. Section 3.5.2 presents our

experimental setup and Section 3.5.3 presents results and insights drawn from them.
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Section 3.6.1 delves into detailed design of the prototype chip, with the mapping of
the outer product algorithm on it described in Section 3.6.2. Section 3.6.3 contains
the measurement setup used for evaluation and Section 3.6.4 reports the measured
results along with comparison against baseline platforms. Section 3.7 concludes with
a summary of our analyses and key takeaways.

As of this writing, our 40 nm OuterSPACE chip prototype is the first custom
SpMM accelerator that addresses the off-chip memory access bottleneck for real-world

sized matrices, evaluating densities >0.002% and dimensions <120k.

3.2 Motivation

Sparse matrices are ubiquitous in most modern applications that operate on big
data. It is the general consensus that a selection of linear algebra routines optimized
over years of research can be used to accelerate a wide range of graph and scientific
algorithms [57].

SpMM, in particular, is a significant building block of multiple algorithms preva-
lent in graph analytics, such as breadth-first search [71, 72|, matching [172], graph
contraction [27], peer pressure clustering [184], cycle detection [219], Markov clus-
tering [202], and triangle counting [15]. It is also a key kernel in many scientific-
computing applications. For example, fast sparse matrix-matrix multiplication is a
performance bottleneck in the hybrid linear solver applying the Schur complement
method [213] and algebraic multigrid methods [18]. Other computing applications,
such as color intersection searching [98], context-free grammar parsing [164], finite el-
ement simulations based on domain decomposition [79], molecular dynamics [89], and
interior point methods [100] also rely heavily on sparse matrix-matrix multiplication.

SpMV is also predominant across diverse applications, such as PageRank [24],
minimal spanning tree, single-source shortest path and vertex/edge-betweenness cen-
trality calculations. It serves as a dominant compute primitive in ML algorithms such
as support vector machine [147] and ML-based text analytics applications [139)].

While GPUs demonstrate satisfactory compute efficiency on sparse matrix-vector
multiplication and sufficiently dense matrix-matrix multiplication [19], we show that
compute units are significantly underutilized when the density drops below 0.1%,
often achieving fewer than 1 GFLOPS/s, despite a peak theoretical throughput of
over 4 TFLOPS/s [199]. This is further supported by the fact that rankings, such as
the Green Graph 500 list [181], are dominated by CPU-based systems.

For large dense matrices, inner product multiplication, block partitioning and
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tiling techniques are used to take advantage of data locality. However, when the
density of the input matrices is decreased, the run-time is dominated by irregular
memory accesses and index-matching in order to perform the inner product opera-
tions. Moreover, while tiling techniques can reduce redundant reads to main memory
in the short-term, the on-chip storage constraints still necessitate that many data ele-
ments be redundantly fetched multiple times across tiles [94]. The stark inefficiencies
on both the hardware and algorithmic fronts motivate our work to formulate a new

approach for sparse matrix multiplication acceleration.

3.3 Background and Related Work

This section outlines a few fundamental concepts behind matrix-matrix multipli-

cation and storage formats for representation of sparse matrices in memory.

3.3.1 Matrix Multiplication
3.3.1.1 The Inner Product Approach

Traditionally, General (dense) Matrix - Matrix multiplication (GeMM) is per-
formed using the inner product approach. This is computed using a series of dot
product operations between rows of the first matrix (A) and columns of the second

matrix (B) and results in elements of the final product (C):
N—
Cij = Zk:ol i X by

Here, N is the number of columns in A (or rows in B), while ¢ and j are the
row and column indices, respectively, of an element in the final matrix. Thus, each
element of the final matrix is computed through a series of Multiply-And-Accumulate
(MAC) operations. This is generally optimized using block partitioning and tiling
techniques [209].

3.3.1.2 The Outer Product Approach

The outer product method [26, 201] multiples two matrices A and B by decom-
posing the operation into outer product multiplications of pairs of columns-of-A and

rows-of-B, as illustrated in Figure 3.1. Mathematically,

C=3"Ci=3" "ab,
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C1 = a1®b1
CZ = a2®b2

.

Cy = ay®by

X

Figure 3.1: Outer product multiplication of matrices A and B. Each column-of-A
and the corresponding row-of-B are multiplied with each other to produce N partial
product matrices, C;. These are then summed together to produce the final result
matrix C.

where a; is the i"* column-of-A, b; is the i"* row-of-B and C; is a partial product ma-
trix. Thus, the computation is divided into two sets: multiply operations to generate
the partial products, followed by merge operations to accumulate the partial products
into the final result. In Section 3.4, we propose an outer product based sparse matrix

multiplication paradigm based on this.

3.3.2 Compressed Storage Formats

An M xN matrix is often represented in the dense format as a 2D array laid out
in the memory as an M xIN contiguous block. For sparse matrices, however, most of
the elements are zeros, and hence, there is little merit in storing such matrices in the
dense format.

The Compressed Sparse Row (CSR) format represents a matrix in a compressed
manner using three arrays. The wals array consists of the non-zero elements of the
matrix in row-major order, the cols array contains the column indices of the elements
in wals, the row-ptrs array contains pointers to the start of each row of the matrix
in the cols and wvals arrays. The dual of the CSR format is the Compressed Sparse
Column (CSC) format, which is comprised of the vals, rows and col-ptrs arrays.

In our implementation, while not being restrictive, we employ a similar storage
scheme, consisting of a contiguous block of row pointers each pointing to contiguous
arrays of column index-value pairs. We henceforth refer to this as the Compressed
Row (CR) format. The complementary format, Compressed Column (CC) format,

consists of column pointers pointing to arrays of row index-value pairs.
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3.3.3 Related Work

With the prevalence of sparse matrix operation kernels in big data applications
and their rising significance in a multitude of areas, there has been abundant work
on accelerating sparse matrix-dense vector/matrix multiplication [81, 135, 2, 20].
However, there has been relatively less work done to accelerate sparse matrix-sparse
vector/matrix multiplication and more on creating software frameworks for exist-
ing state-of-the-art architectures like multi-core and many-core CPUs [193, 179, 7],
GPUs [45, 76, 135, 130] and heterogeneous (CPU-GPU) systems [129, 130, 135]. On
the contrary, our work demonstrates an efficient co-design of outer product based
sparse matrix multiplication with our custom, scalable, reconfigurable architecture,
achieving significant speedups over state-of-the-art CPU and GPU libraries.

There has been some work on enhancing the underlying hardware for sparse
matrix-matrix multiplication. Lin et al. [126] propose an FPGA-based architecture
for sparse matrix-matrix multiplication that uses on-chip dedicated Digital Signal
Processing (DSP) blocks and reconfigurable logic as PEs. However, the design is
significantly limited by scarce on-chip FPGA resources, including the number of PEs
and the size of the on-chip memory. Yavits and Ginosar [216] explore a juxtaposed
Resistive Content-Addressable Memory (CAM) and RAM based sparse matrix-matrix
and sparse matrix-vector accelerator, applying a row-by-row algorithm to efficiently
match the indices of the multiplier and multiplicand and select the ReRAM row,
where the corresponding non-zero element of the sparse multiplicand matrix/vector
is stored. Zhu et al. [222] introduce a 3D-stacked logic-in-memory system by placing
logic layers between Dynamic Random Access Memory (DRAM) dies to accelerate a
3D-DRAM system for sparse data access and build a custom CAM architecture to
speed-up the index-alignment process of column-by-column matrix multiplication by
taking advantage of its parallel matching characteristics. A prior fabricated design
by Anders et al. [11] has demonstrated relatively high-density (>3%) matrix-matrix
multiplication with small dimensions (<256) on a variable-precision systolic array
and does not consider an off-chip memory interface.

However, the aforementioned hardware solutions accelerate SpMM algorithms
with large amount of redundant memory accesses, which we identify to be a key
performance bottleneck in sparse matrix-matrix multiplication. With our custom ar-
chitecture, OuterSPACE, tailored for the outer product algorithm which eliminates
most of these redundant accesses, we achieve significant speedups as well as high en-
ergy efficiency (Section 3.5.3). Moreover, the prior fabricated work does not address

the off-chip memory bottleneck, which is an important source of inefficiency for a

17



memory-bound problem such as SpMM.

There also exists work for accelerating sparse matrix-vector multiplication. Mishra
et al. [139] add blocking to the baseline software and design fine-grained accelerators
that augment each core in sparse matrix-vector multiplication. Nurvitadhi et al. [147]
propose a SpMSpV algorithm using column-based SpMV, row blocking, column skip-
ping, unique value compression (UVC), and bit-level packing of matrix data and a
hardware accelerator for it, composed of a data management unit and PEs. Dorrance
and Markovi¢ [53] propose an embedded SparseBLAS DSP processor that uses intel-
ligent data reordering using a CSC-aware memory controller to accelerate SpMV. In
our work, we address both SpMM and SpMV.

3.4 Outer Product Implementation

This section details the highly parallel outer product algorithm alluded to in
Section 3.3.1.2, which maximizes memory reuse and avoids redundant reads to Non-
Zero Elements (NZEs).

While the inner product approach (i.e. row-of-A x column-of-B) works efficiently
for dense matrices, beyond a certain sparsity threshold, significant time is spent on
matching indices of the two operands to find NZEs with the same row/column indices.
This results in low Number of Non-Zeros (NNZ) per byte fetched from off-chip, lead-
ing to unproductive loads. Limited on-chip storage further forces repetitive fetching
of the same data, worsening the memory bottleneck. The outer product technique

circumvents these problems through:

o Elimination of Index-Matching. Each pair of non-zero elements from column-
of-A and the corresponding row-of-B produce meaningful outputs. This is in
contrast to inner product like algorithms, where the indices need to be matched
before multiplication, leading to inefficient utilization of memory bandwidth to

fetch elements redundantly.

o« Maximized NZE Reuse. All elements in a row-of-B are shared for all ele-
ments in a column-of-A within an outer product. This maximizes the amount of
reuse within a particular outer product calculation to its theoretical maximum,

as we illustrate later in Figure 3.2.

o Minimized Column and Row Loads. As a result of maximized data reuse
within an outer product calculation, we have no available data reuse across

different outer products. Thus, once the computation between a column-of-A
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and the corresponding row-of-B is completed, they are never used again and

can be evicted from local memory.

The number of loads and stores involved in generating one output NZE using the
outer product method is listed in Table 3.1. Each output NZE requires as few as 3
loads and 2 stores from off-chip memory when there are no overlapping elements with
the same indices during merge, which is the case for highly sparse matrices.

In the rest of the section, we present details about the two phases of outer product
multiplication: multiply and merge. Since our algorithm requires that A be in CC
format and B be in CR, we describe in Section 3.4.3 how we convert a matrix into its

complementary format.

3.4.1 Multiply Phase

Figure 3.2 shows an example multiplication of two 4x4 sparse matrices, given
three parallel processing units in the system. For clarity of understanding, the dense
representations of matrices A and B are shown on the top-left of the figure. These
matrices are decomposed into pairs of columns-of-A and rows-of-B. An outer product
operation between each pair generates a full 4x4 compressed matrix and each of the
generated matrices are summed together to produce the final result. In the CR mode
of operation, each processing unit multiplies one non-zero element from a column-
of-A with all the non-zeros in the corresponding row-of-B. The processing units are
greedily scheduled in this example.

In our implementation, we store the intermediate partial products as a set of
linked lists corresponding to each row (pointed to by R;), where each node of the
list contains a contiguous set of values representing a partial row of an outer product
(Figure 3.2). The CC mode of operation is analogous to the CR mode, where we
re-program the processing units to multiply an element of a row-of-B with all the
non-zeros in the corresponding column of A. The row pointers, R; are replaced by

column pointers, C;. This is illustrated in the bottom-right part of Figure 3.2.

3.4.2 Merge Phase

The outer products pointed to by a row/column pointer need to be merged to
form the final result. We assign the processing units to walk through the linked list
pointed to by R;/C; and merge them to form a complete final row/column. In the

event that multiple data values from different outer products correspond to the same
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Table 3.1: Memory access breakdown for the generation of one output NZE in the
outer product approach.

’ Operation H Cost ‘
Loading NZEs from each column of A 1 load per NZE
Loading NZEs from each row of B 1 load per NZE
Storing partial product result of one multiply 1 store per multiply
Loading an element of a partial product matrix || 1 load per NZE
Storing an element of the result matrix 1 store per NZE result
’ Total H 3 loads + 2 stores per result NZE ‘

index, they must be summed together. However, this gets increasingly rare with
sparser matrices.

In Section 3.5.1.4, we elaborate the merging scheme that maps efficiently to the
architecture of OuterSPACE. The hardware can be programmed to produce the re-
sultant matrix in either the CR or the CC format. For brevity, we assume CR mode

operation in the rest of this chapter.

3.4.3 Matrix Format Conversion

When matrices A and B are not available in the CC and CR formats, respectively,
either one or both will have to be converted to the complementary format. This is
a one-time requirement for chained multiplication operations of the type AxBxC..,
since OuterSPACE can output the result in either CR or CC formats. However, com-
putations such as AN can be decomposed into a logarithmic number of operations
(A=A xA, A*=A?xA? and so on), where each operation would consist of conver-
sion followed by actual computation. The requirement of conversion is obviated for
symmetric matrices, since the CR and CC forms are equivalent.

In our evaluations, we assume that both the inputs, A and B, are available in the
CR format, such that A must be converted. We partition the conversion operation into
conversion-load and conversion-merge phases, analogous to the multiply and merge
phases. The processing elements stream through A and store it into the intermediate
data structure (Figure 3.2) in parallel. Conceptually, this is similar to multiplying

Matrix A with an Identity Matrixz of the same dimension:
ICC XACR —)ACC (CC mode)

where, Icc is the Identity Matriz and the subscripts represent the respective storage

formats.
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Figure 3.2: Outer product multiplication of matrices A (in CC) and B (in CR),
illustrated in dense format, using three processing elements, and the layout of the
partial products in memory. Both the CR and the CC modes of operation are shown
here. Note that the third row of B is empty and hence no corresponding outer product
is formed. The blue blocks represent the row/column pointers and the orange + green
blocks are the partial product rows/columns containing index-value pairs.

3.4.4 Performance on Traditional Hardware

Outer product multiplication is a well-established linear algebra routine. Yet, it is
not widely implemented in mainstream hardware, as these designs are not well-suited
for such algorithms. We expose the inefficiencies of this paradigm on traditional
hardware by quantitatively comparing our outer product implementations against
state-of-the art libraries, due to the absence of readily available libraries based on

outer product multiplication.

3.4.4.1 Multi-Core CPU (Intel Xeon)

Figure 3.3 compares the execution times of our CPU implementation of the outer
product algorithm, using the POSIX threads library, against the Intel MKL SpMM
library, on an Intel Xeon processor with 6 threads.

While the execution time of MKL drops exponentially with decreasing matrix

density, the outer product algorithm must overcome two overheads with increasing
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Figure 3.3: Comparison of our outer product implementation against Intel MKL on a
Xeon multi-core CPU. The matrices are uniformly random with increasing dimension
and decreasing density, keeping the number of non-zeros constant at 1 million. Format
conversion and memory allocation times are not considered.

matrix dimension (N): the decreasing number of useful operations performed at each
matrix datum and the increasing number of book-keeping operations due to the grow-
ing size of the data structure in Figure 3.2. Thus, the price of no index-matching and
minimized redundant reads of non-zeros in the outer product technique is paid for by
additional pressure on the memory system, as N NxN partial product matrices are
streamed out during the multiply phase and back in during the merge phase.

This necessitates larger memory bandwidth and more cores to churn through the
data streams than available on our 6-core CPU. It is further exacerbated by the
absence of software-controlled SPMs and the ineffectiveness of CPU caching for the
merge phase, which does not exhibit any data sharing within caches and thus leads to
thrashing. This is substantiated by our studies of cache performance of the matrices
in Figure 3.3, which show mean L2 hit rates of 0.14 and 0.12 during the multiply and
merge phases, respectively. In comparison, MKL SpMM routines are vectorized and
heavily optimized for the multi-core architecture.

Table 3.2 presents data generated using Intel VTune Amplifier for a Core i7 CPU
running the MKL on the same matrices as in Figure 3.3. The under-utilization of
bandwidth (average of 62%) suggests that bandwidth is not the primary bottleneck
for the MKL and increasing it will likely provide only sub-linear speedups.

3.4.4.2 GPU (NVIDIA Tesla)

NVIDIA’s implementations for matrix multiplication provided in their CUSP and
cuSPARSE libraries perform very poorly at density levels below 0.01%. Running
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Table 3.2: Bandwidth utilization of MKL sparse SpMM on an Intel Core i7 running
4 threads. Each matrix has a uniform random distribution of 10 million non-zeros.

Matrix Peak Bandwidth Avg. Bandwidth
Dimension Utilization (%) Utilization (%)
1,048,576 62.5 44.2
2,097,152 67.5 58.4
4,194,304 67.5 62.0
8,388,608 85.0 62.4

synthetic workloads at this level of sparsity achieves fewer than 1 GFLOPS/s. L1
cache hit rate and utilized memory bandwidth drop to under 40% and 10 GB/s,
from 86% and 30 GB/s at 10% density. We compare the performance of our custom
outer product implementation, written in CUDA, against CUSP. Our implementation
makes use of the GPU’s available SPM storage. Figure 3.4 compares the execution
times when run on an NVIDIA K40 GPU.

A comparison of results from Figure 3.3 and Figure 3.4 show that the GPU makes
better use of available processing power and bandwidth than the CPU. The multipli-
cation phase streams and processes the data much faster than the CPU implementa-
tion, scaling roughly linearly with decreasing density.

However, latency is quickly dominated by the merge phase. Despite both phases
achieving similarly high L1 hit rates (>~80%) and low data dependency stalls (<~5%),
the merge phase suffers from a much lower total throughput. This is a result of numer-
ous conditional branches within the code to handle different relative column indices
as they are read in and sorted. Because there is little correlation between adjacent
threads as they process these branches, many threads within a given warp diverge
and must be executed serially. Thus, while the high degree of parallelism available is
attractive, the SIMD nature of the GPU’s processing elements prevent an overall win

of the algorithm over traditional libraries.

3.4.4.3 Many-Core CPU (Intel Xeon Phi)

Our experiments with the CPU outer product code on an Intel Xeon Phi Knights
Corner system show an average slowdown of 14.7x compared to the CPU, for uni-
formly random matrices of dimensions varying from 32K to 524K with the number
of non-zeros fixed at 1 million. We also note that denser matrices incur a signif-
icant amount of memory allocation overhead, which worsens the overall execution
time. Although the outer product approach has high degrees of parallelism, it lacks
an equivalent vectorizability. Moreover, Akbudak and Aykanat show in [7] that the
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Figure 3.4: Comparison of a GPU outer product implementation against CUSP. The
matrices are uniform random with increasing size while density is decreased, keeping
the number of non-zeros constant at 1 million.

memory latency, rather than bandwidth, is the performance bottleneck for the many-
core Xeon Phi system.

Intel MKL’s SpMM function also shows 1.1x to 8.9x increase in execution time
with respect to that on the Xeon CPU with decreasing density. The large caches of
CPUs result in significantly better sparse matrix-matrix multiplication performance
of CPUs as compared to the Xeon Phi, because repeatedly accessed rows in B may
already be available in cache. The throughput-oriented Xeon Phi architecture has
much smaller caches, resulting in many inefficient reloads of data from global memory.
This trend is similar to what is observed in [174] for both the CPU and the Xeon Phi.

To combat the inefficiencies of existing architectures, we design a many-core ar-
chitecture using an SPMD paradigm to exploit the massive parallelism inherent in the
algorithm. We allow simple, dynamic resource allocation using asynchronous tiles and
a non-coherent memory system. The SPMD paradigm allows computation to drift
among the cores when work is imbalanced, leading to better compute utilization than
the Single Instruction, Multiple Threads (SIMT) programming model in GPUs. Fur-
thermore, to address the performance discrepancy between the multiply and merge
phases due to different memory access patterns, we employ a reconfigurable cache
hierarchy to allow data-sharing across multiple cores when needed, and segmenting

storage to isolated units when it is not.
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3.5 The OuterSPACE Architecture

This section of the chapter describes the OuterSPACE architecture and evaluates

it on synthetic and real-world world sparse matrices using the gemb [22] simulator.

3.5.1 Architectural Description

Qualitative analysis and results from the previous section reveal two key reasons

why outer product multiplication does not perform well on conventional hardware:

e Qutside of a particular outer product calculation during the multiply phase,
there is no reuse of elements, as explained in Section 3.4. During this phase,
the corresponding columns-of-A and rows-of-B can be shared across processing
elements, whereas there is no data sharing between the processing units during
the merge phase. Traditional hardware lacks the support to optimize for both

of these phases, while dealing with variable memory allocation.

o While the multiply phase has consistent control flow between adjacent threads,
dynamic execution paths in the merge phase necessitate fine-grained asynchrony
across processing elements to fully utilize the available parallelism. An ideal
architecture will allow for fully decoupled processing without sacrificing the

ability to effectively share data.

To harness the massive parallelism and data reuse through fine-grained control
over what data is fetched from memory, we propose our custom architecture, Out-
erSPACE. Figure 3.5 shows the microarchitecture of the OuterSPACE system. Our
architecture is a system-on-chip consisting of SPMD-style parallel processing elements
arranged as tiles, with two levels of shared, reconfigurable caches, and a set of control
processors for scheduling and coordination, all connected to an HBM. In this work, we
implement simple cache-to-SPM reconfiguration by switching-off tag arrays, although
recent work such as coherent scratchpads [9] and Stash [109] have the potential to
make OuterSPACE more general.

Following is a summary of the key elements of our proposed architecture:

o Processing Element (PE). A custom data-streaming and compute engine
comprised of an ALU with a floating point unit, SPM, a control unit, a work
queue, and an outstanding request queue (PEs are grouped into processing
tiles).
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Figure 3.5: The memory hierarchy (left) and the architectures of the Processing Tile
(center) and the Processing Element (right). The solid dark lines represent 64-bit
bidirectional links.

o Local Control Processor (LCP). A small in-order core that coordinates the

PEs within a tile, streaming instructions for the PEs to execute.

« Central Control Processor (CCP). A power-efficient core that is responsi-

ble for scheduling work and allocating memory for intermediate data structures.

» High-speed crossbars and coalescing caches that can be reconfigured into
Scratch-Pad Memories (SPMs).

« High-Bandwidth Memory (HBM). that stores the input matrices and the

intermediate partial products.

In the following sections, we present a detailed description of each element of the
OuterSPACE system. We model 16 PEs per tile and 16 tiles based on scalability

studies [182] to ensure that crossbar sizes do not bottleneck our architecture.

3.5.1.1 Processing Element

A block diagram of the PE is shown on the right side of Figure 3.5. At the
core of the PE is a floating-point capable ALU for multiplication and summation
of the matrix elements. These elements are streamed-in from the memory hierarchy
(Section 3.5.1.3), orchestrated by the Control Unit, which generates loads and stores
to memory. An outstanding request queue keeps track of the loads and stores that
are in-flight. Lastly, there is a small private SPM and a FIFO work queue for decoded
instructions and bookkeeping data, which are supplied to the PE by the LCP.

3.5.1.2 Processing Tile

A processing tile in our design consists of 16 PEs, an LCP, and a reconfigurable

cache with 16 processor-side read /write ports and 4 memory-side ports. These caches
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internally consist of 16 single-ported cache banks and a controller (not shown) that
interfaces with the LCP to reconfigure the cache into a SPM. As mentioned in
Section 3.4, this is the key structure that reconfigures our system from a shared
memory architecture into a non-shared one. The PEs within a tile communicate with

the lower memory levels through a 4-ported crossbar.

3.5.1.3 Memory Hierarchy

Figure 3.5 shows 16 processing tiles that interface with the main memory through
4 L1 caches. These caches act like victim caches [95] and thus are smaller than their
LO counterparts, in order to minimize undesired eviction of data that is going to be
reused. They cache-in elements that are evicted from the LO caches when some PEs
start drifting away in their execution flow from others within a tile, which occurs
when the PEs are operating on multiple rows simultaneously. The L0 caches also
contain a 16x16 crossbar (not shown).

Our baseline main memory features an HBM 2.0 x64 interface [185], with 16 mem-
ory channels and a total memory bandwidth of 128 GB/s. With a PE clocked at 1.5
GHz, the total bandwidth for all the PEs is 9.2 TB/s (256 PEs x 1.5 giga-operations
per second x 12 B per access for double-precision value and index pair x read +
write channels). We overcome this bandwidth gap with a multi-level cache-crossbar
hierarchy connecting the PEs to the memory. This hierarchy provides extensive reuse
of temporally correlated data within an outer product.

The PEs in our system execute in an SPMD-fashion, often drifting apart from
each other and only synchronizing at the end of the multiply and merge phases, as
outlined in Section 3.4. This contrasts with the GPU, which traditionally employs a
SIMT execution model, where compute units operate in lockstep over a dataset.

This also opens up avenues for various circuit-level techniques to improve energy
efficiency, such as voltage throttling and dynamic bandwidth allocation. Further-
more, the PEs only share read-only data, which allow for the crossbars to be non-
coherent structures without breaking correctness. Incorporating techniques such as
SARC [101], VIPS [102] or DeNovo [37] would help expand OuterSPACE to algo-

rithms demanding coherence, which we defer to a future work.

3.5.1.4 Mapping the Outer Product Algorithm

This section illustrates how the outer product algorithm described in Section 3.4
maps to OuterSPACE.
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Multiply Phase. As mentioned in Section 3.4.1 and illustrated in Figure 3.2, pro-
cessing units (PEs in OuterSPACE) multiply an element of a column-of-A with the
entire corresponding row-of-B. The LO caches retain the rows-of-B until all the PEs
within a tile are finished with this set of multiplication. The PEs store the multiplied
results in contiguous memory chunks, which are part of the linked list corresponding
to a row-pointer (R;), using a write-no-allocate policy to avoid results evicting ele-
ments of B. The memory layout described in Figure 3.2, where chunks of memory in
each node of the list are discontiguous, allows each PE to work independently without
any synchronization. Thus, the only data that the PEs share throughout the multiply

phase is read-only data (values and column-indices within rows-of-B).

Merge Phase. A subset of the PEs within each tile is assigned to merge all the
partial products corresponding to a single row of the resultant final matrix at the
start of the merge phase. The values to be merged are distributed across the partial
products, as indicated by R; in Figure 3.2.

For minimum computational complexity, a parallel merge-sort algorithm would be
optimal for merging rows across partial products in rN log(rN) time, where rN is the
total number of elements in the row. However, this will result in multiple re-fetches
of the same data when the entire row cannot be contained within the upper memory
hierarchy, which will dominate the execution time. Instead, we focus on minimizing
memory traffic. Our algorithm operates as follows (assuming the number of rows to
merge is 7N, each of which contains r N elements, where r and N are the density and

dimension of the matrix, respectively):

1. Fetch the head of each row and sort by column index into a linked list (O(r?N?)

operations)

2. Store the smallest-indexed element from the list into the final location, load
the next element from the corresponding row and sort it into the list (O(rN)

operations)

3. Repeat 2 until all elements of each row have been sorted and shipped to memory

(r?N? iterations)

The overall complexity is O(r3N?). While less efficient algorithmically, number of
elements stored in local memory is only on the order of r/N. A local buffer of the next
elements to sort can help hide the latency of inserting elements into the list under the
latency of grabbing a new element from main memory. Given our target workloads

and system specifications, the time to sort the values is expected to be on the order of
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one-tenth to one-millionth of the time for memory to supply the values, with sparser
matrices having a smaller discrepancy.

Because this phase requires no data sharing across tiles (each set of rows that
is being merged reads independent data), the shared cache can be reconfigured into
private SPMs. This minimizes memory transactions by eliminating conflict cache
misses within a processing tile and saves energy by eliminating tag bank lookups. If a
SPM bank is too small to buffer the entire merge operation of each row, we recursively
merge a subset of the rows into a single row until the number of rows is sufficiently
small.

Figure 3.5 illustrates the reconfigurability of the tiles to handle the different phases

of computation. Specifically:

o A batch of the PEs within a tile are disabled to throttle bandwidth to each PE
and conserve power. Half of the PEs load the row buffers, while the remainder

sort the incoming values and store them to the resultant matrix.

o A subset of the cache banks within a tile are reconfigured as private SPMs for the
PEs (Figure 3.5). The reconfiguration can be achieved simply by power-gating
the tag array of the cache. The address range of each bank is remapped by
software, with assistance from the LCP. Thus, the reconfigured private cache-
SPM structure maximizes Memory-Level Parallelism (MLP), while minimizing
stalls due to computation. This technique has been employed on a smaller scale
in GPUs [148].

3.5.1.5 Memory Management

Precise memory pre-allocation for the intermediate partial products is impossible,
as the sizes of the outer products are dependent on the specific row/column sizes [130].
However, due to the predictable nature of the two phases, we can greatly reduce the
overhead of dynamic memory allocation over general schemes.

For the multiply phase, we statically assign each partial product enough storage
to handle the average case (the average number of non-zero elements can be quickly
calculated from the compressed format before computation begins), as well as a large
spillover stack to be used dynamically for larger products. As a statically assigned PE
(one per row/column pair) begins computation of a given product, it can evaluate
from the row-pointers exactly how much spillover space is needed. The PE sends
a single atomic instruction to increment a global stack pointer by the appropriate

amount, and writes the current value location visible to the other PEs. As long as
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the PEs do not consume the entirety of their static allocation before the atomic load
returns, the latency of memory allocation can be entirely hidden.

In the merge phase, we perform a single memory allocation before computation
by maintaining a set of counters for the size of each row in the multiply phase. Data
is then streamed from two contiguous memory segments for each partial product row:
the static partition from the multiply phase and, if used, a portion of the spillover
space. The data is merged and streamed-out to the separately-allocated merge phase
storage. As matrices get sparser, the amount of space wasted due to merge collisions
in this space becomes negligibly small. We discuss further about allocation overheads
in Section 3.5.3.3.

The memory footprint of the outer product approach can be represented as (a -
N+ B-N?-r++-N3.r?) where o, 8 and ~y are small, implementation-dependent
constants, for uniformly random sparse matrices with dimension N and density r. For
non-uniform matrices, this metric is not easily quantifiable, as the sparsity patterns

of the two matrices heavily influence the number of collisions between non-zeros.

3.5.1.6 Other Matrix Operations

We evaluate a sparse-matrix sparse-vector multiplication algorithm similar to our
matrix-matrix implementation, with a few simplifications. In particular, the amount
of work assigned to each PE is reduced and no SPM is needed in the merge phase, as
partial products do not need to be sorted.

Element-wise matrix operations follow a similar procedure as the merge phase
of the matrix-matrix multiplication algorithm described in Section 3.4.2. Given N
matrices Ay, As, ..., Ay with the same dimensions, the data can be reorganized
into a data structure similar to the one illustrated in Figure 3.2 and element-wise
operations (+, -, X, /, ==) can be performed on it.

There is close to a one-to-one correspondence between data operations in each of
the typical element-wise matrix routines (addition, subtraction, multiplication, and
comparison) and the merge phase of outer product sparse matrix-matrix multiplica-
tion. Thus, they are expected to have similar complexities and we do not evaluate

them separately in this work.

3.5.2 Experimental Setup

To evaluate the performance of the outer product algorithm on OuterSPACE, we

modeled the key elements, namely, the PEs, the cache-crossbar hierarchy and the

30



Table 3.3: Simulation parameters of OuterSPACE.

Processing 1.5 GHz clock, 64-entry outstanding requests queue, 1 kB SPM

Element Multiply phase: All 16 PEs per tile active
Merge phase: 8 PEs per tile active, rest disabled
Multiply phase: 16 kB, 4-way set-associative, 16-ported, shared, non-
coherent cache with 32 MSHRs and 64 B block size per tile

L0 cache/ o : .

SPM Merge phase: 2 kB, 4-way set-associative, single-ported, private cache
with 8 Miss Status Holding Registers (MSHRs) and 64 B block size +
2 kB SPM per active PE-pair

L1 cache 4 kB, 2-way set-associative, 16-ported, shared, non-coherent with
32 MSHRs and 64 B blocks

Crossbar 16x16 & 4x4 non-coherent, swizzle-switch based

Main Mem- || HBM 2.0 with 16 64-bit pseudo-channels each @ 8000 MB/s with 80-

ory 150 ns average access latency

HBM, using the gem5 simulator [22]. We created two separate models pertaining
to the two phases. We ignored the start-up time since it can be easily hidden by
the latency of a few memory accesses, and scheduling delays. We also assumed that
the PEs are greedily scheduled for the multiply phase. We modeled an outstanding
request queue with 64 entries, for each PE, which is at par with the number of load-
store units in modern GPUs [149] and CPUs [86], in order to hide latencies of memory
accesses. The simulation parameters used are shown in Table 3.3.

We chose our parameters to optimize for performance and power efficiency. For the
merge phase, we enabled only 8 of the 16 PEs per tile and reconfigure a proportional
number of cache banks into private SPMs. We, in fact, observed that enabling a
greater number of PEs results in slight performance degradation due to thrashing in
the L1 cache. The SPM size was chosen to be large enough to hide the load latency
during sort operations.

CACTI 6.5 [143] was used for modeling cache latency, area, and power values. For
power dissipated by the core, we used static and dynamic power consumption values
for an Arm Cortex-A5 with VFPv4 in 32 nm from [182]. We pessimistically used the
same aggressive core model for the PEs in addition to the LCPs and CCP. Dynamic
power consumption was calculated by capturing activity factors of the cache and
cores from simulation. The HBM power was derived from the JEDEC specification
document [185] and [8]. The parameters for modeling the crossbars were obtained
from [182].

We built an instruction trace generator for the PEs and ran the generated traces
through our gem5 model in order to process large matrices. Due to the practical lim-

itations of this approach, we did not model the dynamic memory allocation overhead
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in OuterSPACE, and thus do not consider this overhead across any other platform
in our evaluation. However, in Section 3.5.3.3, we provide an analysis of this over-
head by quantifying the number of dynamic allocation requests using the allocation

approach in Section 3.5.1.5.

3.5.3 Results and Evaluation

We evaluate the OuterSPACE architecture by comparing against state-of-the-art
library packages on commercial systems, namely, Intel MKL (Version 2017 Initial
Release) on the CPU, NVIDIA cuSPARSE (Version 8.0) and CUSP (Version 0.5.1)
on the GPU. The specifications of these hardware are summarized in Table 3.4. We
show the performance of OuterSPACE on two important classes of matrix operations,
sparse matrix-matrix and sparse matrix-vector multiplication.

We report the simulation times obtained from our gemb models for the multiply
and merge models running instruction traces that exclude memory-allocation code.
In order to provide fair basis for comparison against the CPU and the GPU, we dis-
card memory allocation time and only consider the execution time of computation
functions for the MKL, cuSPARSE and CUSP implementations (memory-allocation
and computation are discrete functions for these libraries). While reporting through-
put, we only consider operations associated with multiplication and accumulation in
order to maintain consistency across algorithms and to avoid artificially inflating per-
formance by accounting for additional bookkeeping. We s that the raw GFLOPS/s
reported by our GPU performance counters on the Florida benchmark suite (Sec-
tion 3.5.3.1) are similar to those reported by Liu and Vinter [130], but omit the

results for brevity.

3.5.3.1 Sparse Matrix-Matrix Multiplication

Without loss of generality, we evaluate the performance of sparse matrix-matrix
multiplication on our platform by multiplying a sparse matrix with itself (C = AxA;
A in CR format to begin with, generating C in CR), in order to closely mimic the
multiplication of two matrices of similar sizes/densities. We use two different sets
of matrices, synthetic and real-world, as benchmarks to evaluate OuterSPACE. We
account for format conversion overheads for non-symmetric matrices (Section 3.4.3)
while reporting performance results for OuterSPACE, in order to model the worst-case
scenario.

Synthetic Matrices. In Figure 3.6, we compare the performance-scaling of the
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Table 3.4: Baseline CPU and GPU configurations.

CPU 3.6 GHz Intel Xeon E5-1650V4, 6 cores/12
threads 128 GB RAM, solid state drives

GPU NVIDIA Tesla K40, 2880 CUDA cores @
745 MHz, 12 GB GDDR5 at 288 GB/s

outer product algorithm on OuterSPACE against the CPU and GPU libraries, using
a set of synthetic datasets obtained from the Graph500 R-MAT data generator [144].
The R-MAT parameters were set to their default values (A=0.57, B=C=0.19) used for
Graph500 to generate undirected power-law graphs, which is also employed in recent
work in graph analytics [178] [194]. We present results for medium-sized matrices
corresponding to nEdges equal to 100,000 with nVertices swept between 5,000 and
80,000. In order to illustrate the impact of sparsity pattern on performance, we
also provide comparisons against uniformly random matrices of same dimensions and
densities.

OuterSPACE performs consistently well with respect to other platforms. It out-
performs MKL and CUSP with a greater margin for the R-MATs than for the uni-
formly random matrices, with the execution time changing only slightly across ma-
trix densities. cuSPARSE, on the other hand, performs better with increasing den-
sity. OuterSPACE exhibits slight performance degradation with increasing density
for uniformly random matrices, but gets starker speedups over the GPU for power-law
graphs. This data also substantiates that the outer product algorithm is much less
sensitive to a change in size for a given number of non-zeros than the MKL, which
correlates with our observations on the CPU (Figure 3.3).

Real-World Matrices. The real-world matrices we evaluate are derived from
the University of Florida SuiteSparse Matrix Collection [48] and the Stanford Net-
work Analysis Project (SNAP) [122], containing a wide spectrum of real-world sparse
matrices from diverse domains such as structural engineering, computational fluid dy-
namics, model reduction, social networks, web graphs, citation networks, etc. These
matrices have been widely used for performance evaluation in prior work in this
area [129, 179, 76, 45]. We choose matrices from this collection that have both reg-
ular and irregular structures. Table 3.5 presents a summary of the structure and
properties of these matrices, which have dimensions varying from 4,096 to 3,774,768
and densities ranging between 0.001% and 1.082%.

In Figure 3.7, we present the speedups of OuterSPACE over the MKL, cuSPARSE
and CUSP. OuterSPACE steadily achieves speedups across all the matrices identified

33



BN VKL cuSPARSE [l CUSP EE OuterSPACE

—_
L

Execution Time (s)
o
b= o

0.001
4,986 9,987 19,937 39,888 79,730 4,986 9,987 19,937 39,888 79,730

8.0E-3 2.0E-3 5.0E-4 1.3E-4 3.1E-5 8.0E-3 2.0E-3 5.0E-4 1.3E-4 3.1E-5
R-MAT Matrix Dimension, Uniformly Random

Density
Figure 3.6: Performance-scaling comparison of OuterSPACE with change in matrix
dimension and density. The set of data on the left is for R-MATSs with parameters
(A=0.57, B=C=0.19) for undirected graphs. The set on the right is for uniformly
random matrices of the same size and density as the R-MATs.
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Figure 3.7: Speedups of OuterSPACE over the CPU running Intel MKL and the GPU
running cuSPARSE and CUSP.

in Table 3.5, with an average of 7.9x over the Intel MKL, 13.0x over cuSPARSE and
14.0x over CUSP.

Some of the matrices that show relatively lesser speed-ups over the MKL and
cuSPARSE are filter3D and roadNet-CA. These matrices are regular (i.e. have most
of their non-zeros along their diagonals) and work better with the multiplication
algorithms used by the libraries, because they incur fewer comparisons while multi-
plying two regular matrices. OuterSPACE performs only 3.9x better than MKL for
the m133-b3 matrix due to the uneven distribution of non-zeros along the columns,
which leads to load imbalances during the merge phase and uneven data sharing pat-
terns during the multiply phase. MKL performs particularly bad on email-Enron,
a real-world email dataset with the characteristics of a power-law graph [33], sub-
stantiating the observation made in Section 3.5.3.1. OuterSPACE also achieves the
highest speedups over cuSPARSE for matrices that have a more smeared (irregular)

NZE distribution, such as ca-CondMat, cit-Patents, p2p-Gnutella31 and web-Google
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Table 3.5: Matrices from University of Florida SuiteSparse (SS) [48] and Stanford Net-
work Analysis Project (SNAP) [122] with their plots, dimensions, number of non-zeros
(nnz), average number of non-zeros per row/column (nnz,,) and problem domain.

Dim. Dim.
Matrix Plot nnz Kind Matrix Plot nnz Kind
NNZgy NNZgy
101K w 390K
QCUEGS*' 1.6M Eé\l/[ mario-002 L 2.1M QDéf’D
sphere 16.9 | Problem 54 problem
amazon 401K Co- 260K EM
03?2 3.2M | purchase offshore 4.2M oble
8.0 | network 16.3 | Provem
ca-Cond- 12 83 71; Condensed p2p- 162;{ p2p
Mat matter ||Gnutella-31 network
8.1 2.4
130K | Directed atents \ 241K | Directed
cagel2 2.0M | weighted P mainﬁ \ 561K | weighted
15.6 graph ' 2.3 graph
3.8M Patent oisson 14K Fluid
cit-Patents ; 16.5M| citation p 3Da 353K Dvnamics
4.4 network 26.1 y
[ ]
5 121K Accelerator|| roadNet- 2.0M Road
cop20k-__ A I 26M |7 CA BAM |k
21.7 Sigt 2.8 | OOt
. r— 36.7K| Enron 171K L
oEmaﬂ— 368K email scircuit 959K .Clrlc I:t
nron 10.0 | network 5.6 |STaton
M, 4K ] ) 1M | Directed
facebook ﬂ.ﬁ 176K F::s:diip We}ikﬁzse_ 3.1M | weighted
Tm | 437 W 3.1 graph
106K . e 1 916K
filter3D \ 2.7M Rei‘g‘iiﬁ“ web-Googlel 1 5.1M Gooiegveb
254 | P || s | ETP
% 1 200K | Combi- j 8.3K o .
m133-b3 / | 801K | natorial || wiki-Vote 104K Vzilvi’sfﬁa
| 4.0 problem 12.5
(Table 3.5).

OuterSPACE running the outer product algorithm over this suite of matrices
achieves an average throughput of 2.9 GFLOPS/s, accounting only for useful op-
erations (multiplications and summations). We also observe a memory bandwidth
utilization of 59.5-68.9% for the multiply phase and a slightly lower 46.5-64.8% for
the merge phase. This is due to fewer active PEs and greater use of local memory
during the merge phase. This can be further improved if the matrices are strategically
laid out in memory such that there is fairer access to every memory channel, but this

would require compiler support and is beyond the scope of our work.
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3.5.3.2 Sparse Matrix-Vector Multiplication

In this section, we evaluate the performance of sparse matrix-vector multiplication
on OuterSPACE. Table 3.6 shows the speedups of OuterSPACE over the CPU running
MKL and GPU running cuSPARSE with vector densities ranging from 0.01 to 1.0
(fully dense). The performance of MKL is constant across different vector densities for
a given matrix dimension and density, because MKL’s sparse matrix-vector method
performs the best when the vector is treated as a dense vector regardless of the number
of zeros in the vector. cuSPARSE, however, scales with change in vector density.

Across all matrix sizes, the speedup of OuterSPACE scales linearly with vector
density, with a 10x reduction in density resulting in approximately a 10X gain in
speedup. Such performance scaling is possible because the outer product algorithm
only accesses specific columns in the input matrix that match the indices of the non-
zero elements of the vector. This eliminates all redundant accesses to the matrix that
are present in a conventional inner product algorithm. Thus, the number of memory
accesses to the sparse matrix is directly proportional to the number of non-zeros in
the vector.

We identify two striking differences between the outer product algorithm on Out-
erSPACE and existing matrix-vector multiplication on CPUs and GPUs. First, unlike
conventional algorithms where the performance depends heavily on the dimensions of
the matrix regardless of the density, the performance of the outer product algorithm
scales with the number of non-zero elements in the matrix, while remaining indepen-
dent of the matrix dimension, for uniformly random matrices. Second, the perfor-
mance of the sparse matrix-vector algorithm on OuterSPACE also scales linearly with
the density of the vector, which allows OuterSPACE to outperform traditional algo-
rithms for sparse vectors. Even while working on small, dense vectors, OuterSPACE
achieves within 80% of the MKL’s performance, as reflected in the fourth column of
Table 3.6.

3.5.3.3 Dynamic Memory Allocation

As detailed in Section 3.5.1.5, the latency of dynamic allocation requests by the
PEs can typically be hidden by sending the atomic request to increment the spill-over
pointer before the PE begins multiplication. Increasing the amount of space statically
assigned for partial products lowers the execution time by decreasing the number
of accesses for dynamic allocation, at the expense of wasted storage, illustrating a

performance-storage trade-off.
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Table 3.6: Speedups of OuterSPACE over CPU (MKL) and GPU (cuSPARSE) for
sparse matrix-vector multiplication. The vector density () is varied from 0.01 to 1.0.
The sparse matrices contain uniformly random distribution of one million non-zeros.

Speedup over CPU | Speedup over GPU
. . . r= r= r—= r= r—= r=
Matrix Dimension || o4 | o3 | 10 | 001 | 0.1 1.0
65,536 93.2 8.7 0.8 92.5 | 11.2 3.8
131,072 107.5 9.9 1.0 98.2 11.2 2.8
262,144 152.1 12.6 1.2 126.0 12.5 2.3
524,287 196.3 17.2 1.7 154.4 174 2.2
2 . 2 .
We assume « - = elements are allocated statically, where "% is the amount of

storage needed for and average row and « is a parameter. Our analysis of the total
number of dynamic requests to increment the spill-over pointer, while sweeping (),
shows that the count of these requests drops to less than 10,000 for a > 2 for almost
all the matrices in Table 3.5. m133-b3 is an outlier, with zero dynamic requests, as it
has exactly 4 non-zeros per row, which fits within the statically allocated space even
for a = 1. Our strategy works best for matrices that are more uniformly distributed,
since a suitable value of a can eliminate most of the dynamic allocation requests.
However, this overhead for real-world matrices is largely dependent on the sparsity

patterns of the matrices.

3.5.3.4 Power and Area Analysis

Table 3.7 presents the area and power estimates for OuterSPACE in 32 nm. The
total chip area, excluding the HBM controllers, is calculated to be 87 mm?. The
power consumption of the system is calculated to be 24 W, using the parameters
presented in Section 3.5.2. This yields on average 0.12 GFLOPS/s/W (GFLOPS/J)
for OuterSPACE.

For comparison, the mean measured power consumption of the K40 GPU while
running the workloads was 85 W. With the GPU achieving only 0.067 GFLOPS/s on
an average, this yields 0.8 MFLOPS/J. The OuterSPACE system is, thus, approxi-
mately 150x better than the GPU on the performance/power metric.

3.5.3.5 OuterSPACE Scaling

Our current architecture is still well below current reticle sizes and power limita-
tions. In order to handle matrix sizes larger than a few million, a silicon-interposed
system with 4 HBMs and 4x the PEs on-chip could be realized. This extended con-
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Table 3.7: Power and area estimates for OuterSPACE (Figure 3.5).

’ Component H Area (mm?) H Power (W) H
All PEs, LCPs, CCP 49.14 7.98
All 1O caches/SPMs 34.40 0.82
All L1 caches 3.13 0.06
All crossbars 0.07 0.53
Main memory N/A 14.60

| Total | 86.74 | 23.99 |

figuration would support matrices containing tens to hundreds of millions of non-zero
elements, limited by the capacity of the HBM. In order to process larger matri-
ces, we conceive equipping our architecture with node-to-node serializer-deserializer
(SerDes) channels to allow multiple OuterSPACE nodes connected in a torus topol-
ogy, thus minimizing system latency, and maximizing throughput. Such a system
would be able to process matrices with billions of non-zeros. To scale to problems
involving matrices with trillions of non-zeros, we envision interconnecting many such
16 OuterSPACE-node clusters.

3.6 Chip Prototype

This section of the chapter details the circuit implementation and outer product
mapping on a scaled-down OuterSPACE prototype that was fabricated in 40 nm
CMOS. While the multiply phase compute fabric consist of dedicated state machines
with Floating-Point (FP) multiplication units, the merge phase is computed using
general-purpose Arm Cortex-MO0 [39] and Cortex-M4 [40] cores. The off-chip interface
used is a Front-Side Bus (FSB) that connects the chip to a Dual Data-Rate (DDR)
memory on an external FPGA.

We focus on three key metrics while presenting results from the chip evaluation,
namely number of output NNZs produced per second (throughput), NNZ/s per Watt
(energy efficiency), and NNZ/s per GB/s (bandwidth efficiency).

3.6.1 Circuit Implementation

Our chip consists of two compute substrates, as shown in Figure 3.8. The first,
composed of 32 PEs (4 PEs/tile), computes the multiply phase. Each PE has a 32-bit
FP multiplier and supports out-of-order loads/stores. The second substrate consists

of eight Arm Cortex M0+M4 pairs (1 pair/tile) for the merge phase.

38



PE manager |
/160 nput matrix addr bus _Store addr+ data
96 32 2
160
Y ity o M i iy i %A ‘L"t'" 7
| Tite | [Tile | [ Tile | | Tile | [ Tile | [ Tile | | Tile | [ Tile | WSEFEE
= 2 e < =2 v "< <
—] > < < =< < 64
||| ||:|| T IsT 1 T 11 1 T 1T T T Tel 1 T TeTT JT.TT
32 see 32 “ee 32 \ .o 32 .o
[ Crossbar | [ Crossbar | [ Crossbar | [ Crossbar |s:1
32 32 32 32
35 1 1 1 1
] :
gt L1s L1is |, L1 |« s §F
R -
== 7 ,_r X ,i’ Y ,f 95,{’32{ £ L
A A - A A g 'g
PE mgr load addr \ Arbiter / -

Store request (addr+data)
Mem response (addr+data)

Block diagram of top level

(a) Top-level view of the chip, showing the second cache layer (L1) connecting the tiles to the FSB
controller through crossbars. A central PE manager distributes work to all the PEs.

A
From PE mgr Store to mem ’ Response from LO From PE mgr
S buf ’ P g
160, 32 r- 2 (addr+data) 6al,’ 32 64 (addr+data) 32 160
2 - ’ 3 Y VIR . Ctrl Unit
° 432
o =<
pe MO |:|]- PE | 3
- sl fie e
Prefetch FP32 mult Ctrl
32 32 32 32
mux J \ 32 v s
Rfeas2fy 3 3% M6a | 3% v \_Arbiter / Arbiter
[ Crosshar Ja:a “ ] 22 32
6ahb 5, 4432 } ,ﬂ' } {{ } ,ﬁ' ‘ Data Str bu 2 Ptr Str buf [~
Los/ Lo s/ Los$/ Los$/ \‘ 2
L1 response| SPM SPM SPM SPM \ 32 32
(adredate) |33 0¥ My I \ \_Arbiter ]
- . \ Store to mem
96”732 32 32 32 \ 64 (addredata)
Blofk diagram of g single tile \\ Block diagram of a single PE

(b) Left. View of a tile showing the Arm cores and PEs connected to the first cache layer (LO)
through a crossbar. Two PEs share ports with the cores. The store path bypasses the two cache

layers. Right. View of a PE showing the control unit, FP multiplier, request queue, split store buffers
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Figure 3.8: Top level diagram of the chip, a tile, and a PE. The chip contains a total
of 8 tiles, with each tile consisting of 4 PEs and a pair of Cortex-M0 and M4 cores.

All the compute elements are connected through a reconfigurable network. The
network consists of a fully-synthesizable Swizzle-Switch Network (SSN) crossbar based
on [182], with the original pull-down networks replaced by OR trees (Figure 3.9).
The synthesizable SSN still uses the same priority algorithm, but can also be easily
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ported to different process technologies since it does not require a custom layout. The
crossbars support request coalescing, multicasting (Figure 3.11) and Least-Recently
Granted (LRG) arbitration (Figure 3.10).

3.6.1.1 Compute Substrate

The PEs are custom Finite State Machine-based elements that perform the multi-
ply phase of the outer product algorithm. At the core of the PE is a Control Unit (CU)
that walks through the algorithm state machine. The CU initiates loads of elements
of columns of Matrix A and rows of Matrix B, tracking requests in a request queue.
The request queue is a structure that allows out-of-order loads to the elements of the
input matrices. Load responses satisfy an entry in the queue by associatively search-
ing the address field of each request queue entry. Each PE also houses a single-cycle,
single-precision floating point multiplier that multiplies elements of A and B as soon
as they are available in the request queue. The calculated partial product elements
are stored into a “data” store buffer. This is a simple FIFO queue of (address, data,
valid) tuples. There exists a separate buffer to store pointers, which is associatively-
searchable, unlike the data buffer. Through this split store buffer design, we are able
to reduce the energy consumed by limiting expensive associative searches to fewer reg-
isters. Finally, a debug block is used to relay important messages at programmable
intervals to the off-chip interface, such as state of each PE, number of multiplications
committed, etc.

The general purpose cores, Arm Cortex-M0 and Cortex-M4 cores, handle the
computation in the merge phase. They are both low-power, in-order cores designed
for high energy efficiency. The M4 performs the bulk of the computation including
the floating-point operations. The M0 acts as a programmable prefetcher for loading
data into the SPM independent of the M4’s operation.

The MO and M4 cores communicate through the use of local SPM for shared data,
and hardware mutex locks to streamline synchronization. The mutex locks come in
two types: First-Come, First Serve (FCFS) mutex and sleep mutex. The FCFS mutex
is a simple synchronization lock where the core that acquires the lock first prevents
the other core from acquiring the lock, until the first one releases it. When querying
the lock for acquisition, the cores have the option to stall until the lock is freed. The
sleep mutex is a unidirectional lock with a predetermined owner. Sleep mutex begins
with its lock pre-acquired by its designated core, and the non-designated core stalls
whenever it accesses a locked mutex. During the merge phase, the sleep mutex is used

by the M4 core to prevent MO core from starting the prefetch before M4 has finished
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initiating the metadata.

3.6.1.2 Coalescing Crossbar

The crossbar takes one cycle to arbitrate, based on an LRG scheme, and another
cycle to transmit data. As shown in Figure 3.10, each requester sends its priority bits
to be bitwise OR’d. The corresponding bit of the result vector, based on the index
of the requesters, is sent back to the requesters and the one with a 0 on its granted
bitline wins. Next cycle, the winner clears its priority bits and other requesters set the
priority bit corresponding to the winner to 1, granting them higher priority than the
winner. In any particular cycle, one column will always be zero among all requesters,
since there will always be one with the highest priority. If any channel is not actively
requesting, it will assert all Os instead of its actual priority bits to put it on the
lowest priority possible. For example in Figure 3.11, in Cycle 0, only requesters 1 and
2 request the channel, and therefore only these two assert their priority bits while
0 and 3 assert all zeroes. The result of the bitwise OR would be 1100, and then
each requester checks their corresponding bit, in which case requester 2 wins. Since
requesters 0 and 3 did not request, it ignores the result of the bitwise OR. The winner,
in this case requester 2, then clears its priority bits. Once granted, the requester can
hold on to the channel until it chooses to free the channel. Requests can be coalesced
in the crossbar, shown in Figure 3.11. Since the channel can observe all the requesters
and their requesting addresses, it can simply compare them with the winner’s address
and grant to any matching requesters. Coalescence does not affect the priority status,

since it happens after arbitration.

3.6.1.3 Reconfigurable Cache

The downstream LO crossbar connects to the reconfigurable L0 cache consisting
of four logical Static Random Access Memory (SRAM) banks, each of which consists
of four physical SRAM banks. The LO cache provides second-level coalescing by
comparing the new requests with existing pending requests stored in the MSHRs.
Along with tracking missed requests, the MSHRs also act as a request queue that
takes in the inbound requests, a fill buffer that temporarily holds the returned data
before storing to SRAM and a response queue that sends the read data back to the
PEs. For coalescence, each MSHR entry stores a bit vector of all requesters and adds
additional requesters, should any coalesce in the process. The upstream crossbar then

multi-casts the read data back to the PEs based on the requester bit vector.
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Figure 3.10: LRG scheme. The requesting nodes assert their priority bits, and the
winner is determined based on which requester receives a 0 in the corresponding
response bit. The winner’s priority bits are then cleared.

For the multiply phase, the L0 is a multi-banked set-associative cache, allowing
NZEs of B to be shared. For merge, it is reconfigured into a multi-banked SPM by
disabling the tag array and the Least-Recently Used (LRU) counter and is private to
each M0-M4 pair. Through another set of coalescing crossbars, the L0 cache in each
tile connects to the L1 layer, which interfaces to the FSB.

Only minor modifications were made to the cache controller to enable reconfigu-
ration into SPM mode. In the SPM mode, the tag arrays and the set index bits are
disabled, and the controller addresses directly into each SRAM bank.
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Figure 3.11: Crossbar and cache coalescence. The crossbar coalesces identical requests
by marking the requesters in a bit vector, which is then stored in the cache controller.
While it is in the cache controller, more requests can be coalesced along the way
should there be any requesters asking for the same address.

3.6.2 Outer Product Mapping

The implementation details of the outer product algorithm on our chip are pre-
sented in this section. In the multiply phase, each PE multiplies an element of a
column of the first operand (A) with a row of the second operand (B). For the merge
phase, the chip reconfigures to enable the Arm core substrate and SPM in the LO.
The two cores act as a single unit to stream in the results of multiply, perform merge-
sort, and store the final results to the off-chip DRAM. Our studies reveal that a SPM
leads to better performance than a cache for this phase, due to the irregular nature
of data accesses (Figure 3.16).

In the multiply phase, each PE multiplies a non-zero element of column 7 of A with
all non-zero elements of row 7 of B to produce one Partial Product Matrix (PPM) row.
Each NZE is fetched only once. The PPMs are stored as a set of linked lists of pointers
o “chunks” in the DRAM, as shown in Figure 3.2. The multiply phase computes
multiplications of all combinations of fetched elements, resulting in maximum reuse of

inputs without any index matching, thus circumventing the problem of unproductive
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loads. Since each PE traverses through the non-zero elements of a row in Matrix
B, the memory access during this phase is sequential and predictable. In addition,
multiple PEs operate on the same row for each column element that corresponds to
the row, resulting in high data reuse across the PEs.

In the merge phase, each M4 core is assigned a pointer array of chunks that
correspond to a single row of the result matrix C, as shown in Figure 3.2. When
merging the different chunks, the M4 core needs to ensure that all the elements in
the final row are ordered by their column index. To ensure this ordering, each M4
core maintains a sorting list. The sorting list only needs to be big enough to hold
one element from every chunk that is being merged by this core. This is because
all the chunks are ordered by their column indices when they are produced in the
multiply phase. Once the first element of every chunk is inserted into the sorting list,
the steady state involves writing out the smallest element to DRAM and fetching one
element to be sorted.

The merge phase, as shown in Figure 3.12, is broken down into three steps: ini-

tialization, sorting list construction, and on-demand sorting.

Step 1. Initialization. Each chunk is augmented with metadata that is used to
keep track of the number of elements that have been fetched by the core. During

initialization, the metadata of each chunk assigned to the core is written into SPM.

Step 2. Sorting List Construction. The M4 core begins constructing the sorting
list by inserting the head of every chunk into the list (Step 2a). The list is sorted
again each time an element is pushed into the list, based on the column index. The
core iterates over all of its assigned chunks, and so the list starts with first element of
every chunk. As the M4 core inserts elements from the SPM into the sorting list, the
MO core fetches the next elements of the chunk into the new empty blocks (Step 2b).

Step 3. On-Demand Sorting. The M4 core pops the smallest element of the list
to be placed in the output buffer (Step 3a). The M4 core checks the chunk that this
popped element originated from, fetches the next element in the chunk, and pushes it
into the sorting list (Step 3b). The popped element is compared against the element
that is currently in the output buffer. If the indices of the two elements match, the
values of the two elements are summed. If the indices do not match, the element in
the output buffer is written to memory as the first element of one row in the result
Matrix C. The popped element then becomes the new element in the output buffer,
and the next element is fetched from the chunk of the last popped element. This

process is repeated until all the assigned chunks have been processed. As the M4 core
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Figure 3.12: Breakdown of the three steps of merge phase: initialization, sorting list
construction, and on-demand sorting. The M4 performs sorting on the data that has
been loaded into the SPM by the MO.

consumes data from the SPM, the MO core independently fetches the data of each
chunk onto the emptied blocks (Step 3c).

Unlike the multiply phase where most of the memory accesses are sequential and
there is plenty of data sharing between different PEs, the data accesses of the merge
phase are mostly irregular, with no shared data across the Arm core pairs. Each
core is assigned a disjoint pool of chunks, so that each Arm core pair operates on
independent memory space. The location of each memory load is determined by
the element that was popped from the sorting list. Therefore, the memory access is
highly irregular and difficult to predict. Because the two phases have such drastically
different access patterns, we implemented a reconfigurable architecture that can tune
its memory hierarchy based on the needs of each phase.

In this implementation, we use a linear sorting algorithm, where the element to
be inserted into list is compared one-by-one down the list, until a smaller element is
found. While a priority queue-based sorting algorithm has better scalability as the
length of the sorting list increases, the high overhead of managing the binary tree

favors linear sorting when it is small.

3.6.2.1 Scratchpad Prefetching

While all the core computation of the merge phase is handled by the M4 cores,
each M4 is paired with an MO core (Figure 3.8(b)), which acts as a programmable
prefetcher. The primary purpose of the MO core is to fill the private SPM with the
elements of the PPM rows, so that the M4 core can grab its data from the SPM

instead of the memory.
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The MO starts fetching the head elements of the chunks at the initialization step.
As shown in Figure 3.12, the MO begins fetching data once the metadata of a chunk
has been registered into the SPM. This allows the M4 core to immediately proceed
to the construction of its sorting list, without waiting on the memory. As the M4
core pushes a new element from the SPM into the sorting list, the MO core loads the
next element of the chunk into the evicted space, until all the elements have been
consumed.

Due to the size of the local SPM, there is a limit to the number of chunks that
can be held in the SPM. This also limits the length of the sorting list maintained
by the M4, since the length of the sorting list is equal to the number of individual
chunks being merged. When the total number of chunks assigned to an Arm core pair
exceeds the maximum length of the sorting list (L), the PPM rows are divided into
subgroups of L PPM rows. The merge phase is then performed in multiple passes,
each one generating an intermediate result of L merged chunks. During each pass,
the intermediate results are written out to a temporary space in memory. Once there
is enough capacity to merge the remaining chunks as well as the intermediate results,
the final merge pass produces a single, fully merged row of result matrix C'. These
intermediate passes are expensive because the data needs to be stored in external
memory, and read again during the final merge pass. To minimize the number of
passes, L needs to be as high as possible. However, for the M0’s prefetching to be
effective, each chunk needs to have sufficient number of elements that have been
loaded ahead in the SPM. Therefore, there exists a trade-off between the number of
PPM rows that is tracked during the merge phase, and the number of elements that
can be prefetched into the SPM for each PPM row.

3.6.3 Experimental Setup

We use the BaseJump [4] infrastructure for testing our chip, a schematic and pho-
tograph of which are shown in Figure 3.13. The chip is placed on a RealTrouble board
and connects through an FMC interface to a Zyng-7000 FPGA. The FSB controller
in OuterSPACE connects through asynchronous FIFOs to the client control block,
which is responsible for merging memory /control traffic and sending them to the FSB
interface block. This block communicates with the FPGA via a source-synchronous
DDR interface. The master node decodes and manages the control/memory FSB traf-
fic and streams instructions to the Arm cores on OuterSPACE. The memory traffic
goes through an AXI-adapter that converts the FSB packets to AXI packets, which

then reach the Zynq memory controller. The FPGA Arm core sends out control pack-
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(a) End-to-end testing infrastructure showing the master-client interface.
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(b) Photograph of the test setup showing the RealTrouble board (left) and Zyng-7000 FPGA (right).

Figure 3.13: Schematic of the test setup and photograph of the testbed.

ets to the master node, initiated by user input, and accesses DRAM via the memory

controller.

3.6.4 Measured Results and Evaluation

The performance of our 2.0 mmx2.6 mm accelerator for Sparse Matrix-Matrix
multiplication, with the chip layout shown in Figure 3.14, was evaluated through
matrix squaring on synthetic matrices, as well as power-law graphs that are represen-
tative of real-world sparse matrices [33], [178]. The measured characteristics of the
chip are summarized in Table 3.8.

At the optimal frequency and voltage points, the accelerator achieves an energy

47



B e

\\\\\\\\\\\\\\\mmmm,,,, W
o ? o

i N
N
© N
S
>
S
S
=4
=

3mm

. el <
8771 1\ N

\\\\\\\\\\\\m

7 N
2110110000 VNN

Figure 3.14: Annotated die photo of the fabricated 3.0 mm x 3.0 mm chip with GDS
overlay. There are eight tiles per chip, each tile containing an Arm Cortex-MO0 core,
a Cortex-M4F core, and four PEs.

Table 3.8: Characterization summary of the chip.

Technology 40 nm CMOS

Die Size 3.0 mm x 3.0 mm

Block Size 2.0 mm x 2.6 mm

# Transistors 25,134,927

Total SRAM 112 KB

Data Precision Single-Precision Floating Point

Nominal Frequency 41.7 MHz 0.860 V (Multiply)
(Minimum Energy) 352.0 MHz 0.864 V (Merge)
Maximum Frequency || 950.0 MHz 1.27 V

Nominal Power 66.6 mW (Multiply)
Consumption 226.0 mW (Merge)

efficiency of 6.1-8.4 M NNZ/J and bandwidth efficiency of 6.4-15.5 M NNZ/GB. The
SSN crossbar gives the chip a 24.9% performance gain at 86.3% the energy and 1.3%

more area over a MUX crossbar based design.

3.6.4.1 Frequency and Bandwidth Sweep

Figure 3.15 shows the clock and bandwidth sweeps for a square sparse matrix
of dimension 100,000 and density of 0.0008%. The multiply and the merge phases
were evaluated separately in order to determine the optimal parameters for each

phase. Clock sweeps show that while multiply performance hits a roofline, merge
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Figure 3.15: Clock and bandwidth sweeps for SpMM between matrices with dimension
100,000 and density of 0.0008%. For measurements with increased bandwidth, an on-
chip LFSR is used for the multiply phase and the MO is used for the merge phase.

performance saturates slowly, as merge is more compute-heavy due to the overhead
of maintaining the sorting list. We observe the frequency and voltage level in which
the chip achieves optimal energy efficiency to be at 41.7 MHz and 0.860 V for the
multiply phase, and 352.0 MHz and 0.864 V for the merge phase.

For the bandwidth sweeps, simulation results are appended to measured results to
illustrate the impact of higher bandwidth and more compute units. The performance
of multiply phase continues to increase with higher bandwidth, while the merge phase
reaches saturation early, at less than 1 GB/s. The points at which the throughput
saturates for each of the phases shows that the multiply phase is ~30x more sensitive

to external bandwidth than the merge phase.
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Figure 3.16: Measured merge phase performance with and without scratchpad mem-
ory in the L0 layer. Overall performance benefit of scratchpad is 25.7%.

Based on the frequency and bandwidth scaling of the chip, scaling out our current
chip to 16x the current configuration would meet the CPU’s performance at 9.5x
less bandwidth, 16.7x lower power and 0.08x the area. At this configuration, the
chip will be able to make optimal use of available bandwidth by minimizing off-chip
traffic.

3.6.4.2 Benefits of Reconfigurable Memory

One of the key design choices of the chip is the use of reconfigurable memory
that transitions between cache and SPM based on the demands of the algorithm.
For workloads with well-defined data access and reuse patterns, the SPM improves
performance over the cache by preventing any data that will be reused by the pro-
gram from getting evicted out to memory during intermediate computation, ensuring
each critical data to only be fetched once. Figure 3.16 shows the benefit of using the
SPM during the merge phase at varying matrix densities, but with the matrix dimen-
sion fixed. We observe an average performance benefit of 25.7% across the different

matrices, with higher benefits for denser matrices.

3.6.4.3 Comparison with State-of-the-Art Approaches

Figure 3.17 compares the energy and bandwidth efficiency of the chip executing
sparse matrix-matrix multiplication against the highly-optimized, commercial soft-
ware libraries on a high-end CPU (Intel Core i7) and GPU (Tesla V100). The matrix
dimension, density, and pattern of non-zeros were varied to observe how different
platforms react to each matrix parameter. For matrices with a uniformly-random
distribution of non-zeros, the chip exhibits greater bandwidth efficiency for larger
and denser matrices for both the CPU and GPU. In contrast, the improvement

in energy efficiency over the CPU is more prominent when the matrix is small and
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Figure 3.17: Measured results over different matrices showing energy and bandwidth
efficiency of the proposed chip on uniform random matrices, normalized to a Core i7
CPU and V100 GPU running SpMM packages.
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Figure 3.18: Energy and bandwidth efficiency of the proposed chip on power-law
graphs with matrix dimension of 5,000, normalized to a Core i7 CPU and V100 GPU
running SpMM packages.

sparse, but relatively constant against the GPU at any matrix size or density. This
is because the performance of CPU degrades more prominently as density is lowered
as amount of extraneous computation increases. On the other hand, GPU perfor-

mance is relatively consistent because work is scheduled in large batches, and thus
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Table 3.9: Key metrics and comparison vs. CPU/GPU and prior work.

Platform || COr° i" | Tesla V100 | DSP [53] | ASIC [11]| This
6700K (CUSP) * * work
Feature (MKL)
Kernel SpMM SpMM SpMVit DMM1 SpMM
Max. Matrix Dim. 120,000 120,000 217,918 256 120,000
Sftl; Matrix Den- 11 4999 0.002% 0.003% | 3% 0.002%
Reconfigurability X X X v v
Process (nm) 14 12 40 14 40
Core Count 8 5120 4 16 48
Total ~Core Area || o, o 815.00 0.93 0.02 5.20
(mm*)
Frequency (MHz) 4000 1250 515 800 744"
. N/A
Off-Chip Memory .
Bandwidth (GB/s) 34.10 900.00 3.20-8.53 | (on-chip 0.24
only)

Power (W) 58.84 123.95 0.06 0.04 0.25"
Compute Density
(NNZ/s/mm?) 0.0279 0.0129 9.0183 | N/A 0.4775
[XlOG] * %
Energy  Efficiency
(NNZ/3) D108 0.58+ 0.8711 129.954t | N/A 7.28t
Bandwidth Effi-
ciency (NNZ/GB) || 1.00 0.15 0.98-2.61 | N/A 11.73"
[x106]

*Not directly comparable to this work

t Sparse Matrix-Vector Multiplication ¥ Dense Matrix-Matrix Multiplication

** Area normalized to 40 nm technology ~ ** NNZ/s is used in place of FLOPS/s to count
only the operations that produce meaningful results.

" 744 MHz for bandwidth efficiency. Multiply phase at 41.7 MHz and merge phase at 352
MHz were used for energy efficiency and power. f Only on-chip energy ™ Combines
on-chip and off-chip energy. The GPU cores account for ~75% of the total energy [125]

less sensitive to changes in data.

In the case of power-law graphs, as shown in Figure 3.18, the improvement in
bandwidth efficiency exhibits a slight decrease with increasing NNZ for the GPU.
The power-law graphs were synthetically generated using the Graph500 R-MAT data
generator [144] to emulate the characteristics of real-world graph datasets.

Table 3.9 summarizes the key metrics of this work compared with that of the
CPU, the GPU, a DSP [53], and an ASIC [11]. The DSP is designed specifically for
sparse matrix-vector multiplication, and the ASIC focuses on multiplication between
matrices with relatively higher density (>3%) using only on-chip storage. Therefore,

these two works cannot be directly compared to our work. Our work built the first
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chip that aims at accelerating sparse matrix-matrix multiplication for real-world sized
sparse matrices and addresses the off-chip memory bottleneck. The chip consumes
0.25 W on average when operating at its optimal energy efficiency point of 41.7 MHz
for multiply and 352 MHz for merge. In general, our chip achieves an average energy
efficiency gain of 12.6x against the CPU and 8.4x against the GPU. The compute
density of the chip, which is throughput (NNZ/s) per area, is 17.1x that of the CPU,
and 37.1x that of the GPU. The bandwidth efficiency is a key metric measuring the
number of non-zero elements in the result matrix computed per bandwidth used; it
shows how well the accelerator can make use of the available bandwidth. This work
is able to achieve 11.7x and 77.6x improvements in terms of bandwidth efficiency
compared to the CPU and the GPU, respectively.

3.7 Conclusion

The Intel MKL and NVIDIA CUSP and cuSPARSE libraries are successful state-
of-the-art libraries for sparse linear algebra. However, our experiments and analyses
show that MKL and cuSPARSE work optimally only for regular sparse matrices.
While CUSP is insensitive to the irregularity of sparse matrices, it introduces extra
memory overheads for the intermediate storage [130].

In this chapter, we discussed an outer product based matrix multiplication ap-
proach and evaluated its performance on traditional CPUs and GPUs. We discovered
inefficiencies in these architectures, which lead to sub-optimal performance of the
outer product algorithm, and resolved them by building a new custom reconfigurable
hardware. Our novelty lies in the efficient co-design of the algorithm implementation
and the hardware. We demonstrate OuterSPACE’s efficiency for two key kernels,
sparse matrix-matrix multiplication and sparse matrix-vector multiplication, which
form the building blocks of many major applications.

The reconfigurable memory hierarchy of OuterSPACE, which adapts to the con-
trary data-sharing patterns of the outer product algorithm, aids in reducing the num-
ber of off-chip accesses. This, coupled with the increased flexibility across PEs through
SPMD-style processing (due to lack of synchronization and coherence overheads), en-
ables OuterSPACE to achieve good throughput and high speedups over traditional
hardware. Energy savings are attributed to the bare-bone PE and energy-efficient
swizzle-switch crossbar designs [182].

In essence, our work demonstrated that a massively-parallel architecture consist-

ing of asynchronous worker cores, coupled with memory hierarchies that are tailored
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to retain reusable data, uncovers an enormous potential to accelerate kernels that
are heavily memory-bound. Our simulated 256-core OuterSPACE design achieves
speedups of 7.9x, 13.0x and 14.0x over the MKL, cuSPARSE and CUSP libraries,
respectively. Moreover, our fabricated 40 nm chip is the first custom SpMM ac-
celerator that addresses the off-chip memory access bottleneck for real-world sized
matrices, evaluating densities >0.002% and dimensions <120k. The chip delivers an
energy efficiency of 7.3 M output NNZ/J, which is 12.6x and 8.4x higher than that
achieved by state-of-the-art software libraries on the CPU and GPU, respectively.
The ability to switch from cache to SPM in different phases of the workload resulted
in speedups of up to 27.3%. Lastly, our solution achieves improvements of 11.7x and
77.6x compared to the CPU and GPU, in terms of bandwidth efficiency, which is
the key figure-of-merit for memory-bound workloads such as SpMM.
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CHAPTER IV

Accelerating Mixed-Data Applications using

Memory and Dataflow Reconfiguration

This chapter presents a novel effort to bridge the gap between General-Purpose
Processors (GPPs) and Application-Specific Integrated Circuits (ASICs) with a flex-
ible accelerator called Transmuter. Transmuter adapts to changing kernel character-
istics, such as data reuse and control divergence, through the ability to reconfigure
the on-chip memory type, resource sharing and dataflow at run-time within a short
latency. This is facilitated by a fabric of light-weight cores connected to a network
of reconfigurable caches and crossbars. Transmuter addresses a rapidly growing set
of algorithms exhibiting dynamic data movement patterns, irregularity, and spar-
sity, while delivering GPU-like efficiencies for traditional dense applications. Finally,
in order to support programmability and ease-of-adoption, we prototype a software
stack composed of low-level runtime routines, and a high-level language library called
TransPy, that cater to expert programmers and end-users, respectively.

The evaluations with Transmuter show average throughput (energy-efficiency)
improvements of 5.0x (18.4x) and 4.2x (4.0x) over a high-end CPU and GPU, re-
spectively, across a diverse set of kernels predominant in graph analytics, scientific
computing, and machine learning. Transmuter achieves energy-efficiency gains av-
eraging 3.4x and 2.0x over prior FPGA and CGRA implementations of the same
kernels, while remaining on average within 9.3x of state-of-the-art ASICs.

The work presented in this chapter was published in PACT 2020 [155]. Detailed
evaluation of deep neural network inference and dense linear algebra kernels for a sub-
set of the proposed architecture appeared in ISCAS 2020 [212] and ICASSP 2020 [187],
respectively. Finally, a hardware-software co-reconfigurable framework for SpMV-

based graph analytics on Transmuter appears in DAC 2021 [63].
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4.1 Introduction

Section 2.1 discussed the contemporary architectural paradigms, namely ASICs,
CGRAs, FPGAs and GPPs, and their strengths and weaknesses in terms of the
flexibility-efficiency trade-off that plagues modern computer architecture. In the re-
mainder of this chapter, we describe a novel architecture called Transmuter that builds
on top of OuterSPACE and takes a step toward bridging the flexibility-efficiency gap.

Transmuter, a reconfigurable accelerator that adapts to the nature of the ker-
nel through a flexible fabric of light-weight cores, and reconfigurable memory and
interconnect. Worker cores are grouped into tiles that are each orchestrated by a
control core. All cores support a standard ISA, thus allowing the hardware to be
fully kernel-agnostic. Transmuter overcomes inefficiencies in vector processors such
as GPUs for irregular applications [154] by employing a Multiple Instruction, Multiple
Data (MIMD) / SPMD paradigm. On-chip buffers and SPMs are used for low-cost
scheduling, synchronization, and fast core-to-core data transfers. The cores interface
to an HBM through a two-level hierarchy of reconfigurable caches and crossbars.

Our approach fundamentally differs from existing solutions that employ gate-level
reconfigurability (FPGAs) and core/pipeline-level reconfigurability (most CGRAs);
we reconfigure the on-chip memory type, resource sharing, and dataflow, at a coarser
granularity than contemporary CGRAs, while employing general-purpose cores as the
compute units. Moreover, Transmuter’s reconfigurable hardware enables run-time
reconfiguration within 10s of nanoseconds, faster than existing CGRA and FPGA
solutions (Section 2.1).

We further integrate a prototype software stack to abstract the reconfigurable
Transmuter hardware and support ease-of-adoption. The stack exposes two layers:
(7) a C++ intrinsics layer that compiles directly for the hardware using a Commercial
Off-The Shelf (COTS) compiler, and (i) a drop-in replacement for existing HLL li-
braries in Python, called TransPy, that exposes optimized Transmuter kernel imple-
mentations to an end-user. Libraries are written by experts using the C++ intrinsics
to access reconfigurable hardware elements. These libraries are then packaged and
linked to existing HLL libraries, e.g. NumPy, SciPy, etc.

In summary, this chapter presents the following contributions.

« Proposes a general-purpose, reconfigurable accelerator design com-
posed of a sea of parallel cores interweaved with a flexible cache-crossbar hier-
archy that supports fast run-time reconfiguration of the memory type, resource

sharing and dataflow.
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Table 4.1: Characteristics of Transmuter vs. the architectures in Figure 2.1.

Hardware Program- Compiler Reconfig. Relative
Paradigm mability Support Time Efficiency
ASIC N.A. Custom N.A. Very High
CGRA Partial Custom  O(ps)-O(ns) High
FPGA High COTS O(ms)-O(ps) Medium
ASIP/GPP Very High COTS N.A. Low-Medium
Transmuter | Very High COTS <10 cycles High

o Demonstrates the flexibility of Transmuter by mapping and analyzing
six fundamental compute- and memory-bound kernels, that appear in multiple
HPC and datacenter applications, onto three distinct Transmuter configura-

tions.

o Illustrates the significance of fast reconfiguration by evaluating Trans-
muter on ten end-to-end applications (one in detail) spanning the domains of
ML and graph, signal and image processing, that involve reconfiguration at

kernel boundaries.

o Proposes a prototyped compiler runtime and HLL library called TransPy
that expose the Transmuter hardware to end-users through drop-in replace-
ments for existing HLL libraries. The stack also comprises of C++ intrinsics,

which foster expert programmers to efficiently co-design new algorithms.

o Evaluates the Transmuter hardware against existing platforms with
two proposed variants, namely TransX1 and TransX8, that are each compa-
rable in area to a high-end CPU and GPU.

In summary, Transmuter demonstrates average energy-efficiency gains of 18.4x, 4.0x,
3.4x and 2.0x, over a CPU, GPU, FPGAs and CGRAs respectively, and remains
within 3.0x-32.1x of state-of-the-art ASICs. Table 4.1 presents a qualitative sum-

mary of key differences of Transmuter in comparison to these architectures.

4.2 Motivation

In Section 2.2, we studied the kernels that compose a set of real-world appli-
cations from the domains of ML, graph analytics, and image and video processing.
These underlying kernels show significant diversity in terms of arithmetic intensity,

data reuse, and control divergence. Transmuter is primarily evaluated with these
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kernels, and we briefly introduce them here. General (dense) matrix-matrix multipli-
cation (GeMM) and matrix-vector multiplication (General (dense) Matrix - Vector
multiplication (GeMV)) are regular kernels in ML, data analytics and graphics [62,
67]. Convolution is a critical component in image processing [3] and convolutional
neural networks [110]. Fast Fourier Transform (FFT) is widely used in speech and
image processing for signal transformation [140, 14]. Sparse matrix-matrix multipli-
cation (SpMM) is an important irregular kernel in graph analytics (part of Graph-
BLAS [104]), scientific computation [57, 18, 214], and problems involving big data
with sparse connections [165, 88]. Another common sparse operation is sparse matrix-
vector multiplication (SpMV), which is predominant in graph algorithms such as
PageRank and Breadth-First Search [136], as well as ML-driven text analytics [10].
Takeaways. Figure 2.3 illustrates that real-world applications exhibit diverse
characteristics not only across domains, but also within an application. Thus, tam-
ing both the inter- and intra-application diversity efficiently in a single piece of hard-
ware calls for an architecture capable of tailoring itself to the characteristics of each

composing kernel.

4.3 Related Work

A plethora of prior work has gone into building programmable and reconfigurable
systems in attempts to bridge the flexibility-efficiency gap. A qualitative comparison
of our work over related designs is shown in Table 4.2. Transmuter differentiates by
supporting two different dataflows, reconfiguring faster at a coarser granularity, and

supporting a COTS ISA /compiler.

4.3.1 Reconfigurability

A few prior work reconfigure at the sub-core level [134, 87, 105, 43, 171] and the
network-level [75, 106, 198, 146]. In contrast, Transmuter uses native in-order cores
and the reconfigurability lies in the memory and interconnect. Some recent work
propose reconfiguration at a coarser granularity [124, 6, 171, 43]. PipeRench [73]
builds an efficient reconfigurable fabric and uses a custom compiler to map a large
logic configuration on a small piece of hardware. HRL [68] is an architecture for
near-data processing, which combines coarse- and fine-grained reconfigurable blocks
into a compute fabric. The Raw microprocessor [198] implements a tiled architecture
focusing on developing an efficient, distributed interconnect. Stream Dataflow [146]

and SPU [43] reconfigure at runtime, albeit with non-trivial overheads to initialize
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the Data-Flow Graph (DFG) configuration. Transmuter, on the other hand, relies on
flexible memories and interconnect that enable fast on-the-fly reconfiguration, thus

catering to the nature of the application.

4.3.2 Flexibility

Prior work has also delved into efficient execution across a wide range of appli-
cations. Plasticine [171] is a reconfigurable accelerator for parallel patterns, con-
sisting of a network of Pattern Compute/Memory Units (custom SIMD Functional
Units (FUs)/single-level SPM) that can be reconfigured at compile-time. Stream
Dataflow [146] is a new computing model that efficiently executes algorithms ex-
pressible as DFGs, with inputs/outputs specified as streams. The design comprises a
control core with stream scheduler and engines, interfaced around a custom, pipelined
FU-based CGRA. SPU [43] targets data-dependence using a stream dataflow model
on a reconfigurable fabric composed of decomposable switches and PEs that split
networks into finer sub-networks. The flexibility of Transmuter stems from the use
of general-purpose cores and the reconfigurable memory subsystem that morphs the
dataflow and on-chip memory, thus catering to both inter- and intra-workload diver-

sity.

4.3.3 Programmability

There have been proposals for programmable CGRAs that abstract the low-level
hardware. Some work develop custom programming models, such as Rigel [103] and
MaPU [210]. Others extend an existing ISA to support their architecture, such as
Stitch [196] and LACore [190]. Plasticine [171] uses a custom DSL called Spatial [108].
Ambric [78] is a commercial system composed of asynchronous cores with a software
stack that automatically maps Java code onto the processor-array. Transmuter dis-
tinguishes itself by using a standard ISA supported by a simple library of high-level
language intrinsics and a COTS compiler, thus alleviating the need for ISA extensions
or a DSL.

4.4 High-Level Architecture

The takeaways from the previous section are the fundamental design principles
behind our proposed architecture, Transmuter. Transmuter is a tiled architecture

composed of a massively parallel fabric of simple cores. It has a two-level hierarchy
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Table 4.2: Qualitative comparison with prior work [171, 146, 43, 78, 198|.

Architec- ||PE ComputeD tafl Compiler| Reconfig. On-chip
ture Paradigm atatiow Support | Granularity Memory
Plasticine STIMD Spatial | DSL | 1 ipeline-level, SPM
compile-time
Stream SIMD Stream | ISA extn, | Neworkilevel, | opy i pRO
Dataflow run-time
Network-/ Compute-
SPU SIMD Stream |ISA extn.| Sub-PE-level, enabled
run-time SPM+FIFO
. MIMD/ Demand- Network-level,
Ambric SPMD driven Custom U time SPM+FIFO
MIMD/ Demand- | Modified | Network-level,
RAW SPMD driven COTS run-time Cache
Network-/
Demand- . Reconfig.
T wong | “Spay | driven/ | coms | e | cache/SPM
Spatial v ’| SPM+FIFO
run-time

of crossbars and on-chip memories that allows for fast reconfiguration of the on-
chip memory type (cache/scratchpad/FIFO), resource sharing (shared/private) and
dataflow (demand-driven/spatial). The various modes of operation are listed in Ta-
ble 4.3. The two levels of memory hierarchy, i.e. L1 and L2, supports 8 modes each.
Furthermore, each Transmuter tile can be configured independently, however these
tile-heterogeneous configurations are not evaluated in this work.

In this work, we identify three distinct Transmuter configurations to be well-
suited for the evaluated kernels based on characterization studies on existing platforms

(Section 4.2). These configurations are shown in Figure 4.1 and discussed here.

« Shared Cache (Trans-SC). Trans-SC uses shared caches in the L1 and L2.
The crossbars connect the cores to the L1 memory banks and the tiles to the
L2 banks, respectively. This resembles a manycore system but with a larger
compute-to-cache ratio, and is efficient for regular accesses with high inter-core

reuse.

« Private Scratchpad (Trans-PS). Trans-PS reconfigures the L1 cache banks
into SPMs, while retaining the L2 as cache. The crossbars reconfigure to priva-
tize the L1 (L2) SPMs to their corresponding cores (tiles). This configuration
is suited for workloads with high intra-core but low inter-core reuse of data that
is prone to cache-thrashing. The private L2 banks enable caching of secondary

data, such as spill /fill variables.

« Systolic Array (Trans-SA). Trans-SA employs systolic connections between
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Figure 4.1: High-level Transmuter architecture showing the evaluated configurations,
namely a) Trans-SC (L1: shared cache, L2: shared cache), b) Trans-PS (L1: private
SPM, L2: private cache), and ¢, d) Trans-SA (L1: systolic array, L2: private cache).

Table 4.3: Reconfigurable features at each level in Transmuter. In the “hybrid”
memory mode, banks are split between caches and SPMs.

] Dataflow H On-Chip Memory ‘ Resource Sharing ‘ # Modes ‘
Demand-driven || Cache / SPM / Hybrid Private / Shared 6
Spatial FIFO + SPM 1D / 2D Systolic Sharing 2

the cores within each tile and is suited for highly data parallel applications
where the work is relatively balanced between the cores. Transmuter supports
both 1D and 2D systolic configurations. Note that the L2 is configured as a

cache for the same reason as with Trans-PS.

We omit an exhaustive evaluation of all possible Transmuter configurations, given
the vastness of the design space for algorithm mapping and hardware configuration
choices. In the rest of this thesis, we use the notation of NpxNg Transmuter to

describe a system with N tiles and Ng worker cores per tile.

4.5 Hardware Design

A full Transmuter system is shown in Figure 4.2-a. A Transmuter chip consists
of one or more Transmuter (TM) clusters interfaced to HBM stack(s) in a 2.5D

configuration, similar to modern GPUs [118]. A small host processor sits within
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Figure 4.2: a) High-level overview of a host-Transmuter system. b) Transmuter
architecture showing 4 tiles and 4 L2 R-DCache banks, along with L2 R-XBars,
the synchronization SPM and interface to off-chip memory. Some L2 R-XBar input
connections are omitted for clarity. ¢) View of a single tile, showing 4 GPEs and the
work /status queues interface. Arbiters, instruction paths and ICaches are not shown.
d) Microarchitecture of an R-XBar, with the circled numbers indicating the mode of
operation: (I): ARBITRATE, @: TRANSPARENT, @: ROTATE.

the chip to enable low-latency reconfiguration. It is interfaced to a separate DRAM
module and data transfer is orchestrated through Direct Memory Access (DMA)
controllers (not shown) [66]. The host is responsible for executing serial/latency-

critical kernels, while parallelizable kernels are dispatched to Transmuter.

4.5.1 General-Purpose Processing Element and local control processor

A GPE is a small processor with FP and load/store (LS) units that uses a standard
ISA. Tts small footprint enables Transmuter to incorporate many such GPEs within
standard reticle sizes. The large number of GPEs coupled with MSHRs in the cache
hierarchy allows Transmuter to exploit MLP across the sea of cores. The GPEs
operate in a MIMD/SPMD fashion, and thus have private instruction (I-) caches.

GPEs are grouped into tiles and are coordinated by a small control processor, the
local control processor (LCP). Each LCP has private D- and ICaches that connect
to the HBM interface. The LCP is primarily responsible for distributing work across
GPEs, using either static (e.g. greedy) or dynamic scheduling (e.g. skipping GPEs

with full queues), thus trading-off code complexity for work-balance.

4.5.2 Work and Status Queues

The LCP distributes work to the GPEs through private FIFO work queues. A
GPE similarly publishes its status via private status queues that interface to the LCP
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(Figure 4.2-c). The queues block when there are structural hazards, i.e. if a queue is
empty and a consumer attempts a POP, the consumer is idled until a producer PUSHes
to the queue, thus preventing wasted energy due to busy-waiting. This strategy is

also used for systolic accesses, discussed next.

4.5.3 Reconfigurable Data Cache

Transmuter has two layers of multi-banked memories, called reconfigurable data
caches, i.e. R-DCaches (Figure 4.2 — b, ¢). Each R-DCache bank is a standard cache

module with enhancements to support the following modes of operation:

o« CACHE. Each bank is accessed as a non-blocking, write-back, write-no-allocate
cache with a least-recently used replacement policy. The banks are interleaved
at a set-granularity, and a cacheline physically resides in one bank. Addition-
ally, this mode uses a simple stride prefetcher to boost performance for regular

kernels.

o SPM. The tag array, set-index logic, prefetcher and MSHRs are powered off

and the bank is accessed as a scratchpad.

o« FIFO+SPM. A partition of the bank is configured as SPM, while the remain-
der are accessed as FIFO queues (Figure 4.3 — left), using a set of head/tail
pointers. The queue depth can be reconfigured using memory-mapped reg-
isters. The low-level abstractions for accessing the FIFOs are shown in Fig-
ure 4.3 (right). This mode is used to implement spatial dataflow in Trans-SA
(Figure 4.1).

4.5.4 Reconfigurable Crossbar

A multicasting N X Ngg crossbar creates one-to-one or one-to-many connections
between Ng. source and Ngg destination ports. Transmuter employs SSN-based
crossbars that support multicasting [182, 92]. These and other work [1] have shown
that crossbars designs can scale better, up to radix-64, compared to other on-chip
networks. We augment the crossbar design with a Crosspoint Control Unit (XCU)
that enables reconfiguration by programming the crosspoints. A block diagram of a
reconfigurable crossbar (R-XBar) is shown in Figure 4.2-d. The R-XBars support the

following modes of operation:

« ARBITRATE. Any source port can access any destination port and contended

accesses to the same port get serialized. Arbitration is done in a single cycle
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using a least-recently granted policy [182], while the serialization latency varies

between 0 and (Ng. — 1) cycles. This mode is used in Trans-SC.

« TRANSPARENT. A requester can only access its corresponding resource,
i.e. the crosspoints within the crossbar are set to 0 or 1 (Figure 4.2-d). Thus,
the R-XBar is transparent and incurs no arbitration or serialization delay in this
mode. Trans-PS (in L1 and L2) and Trans-SA (in L2) employ TRANSPARENT
R-XBars.

« ROTATE. The R-XBar cycles through a set of one-to-one port connections
programmed into the crosspoints. This mode also has no crossbar arbitration
cost. Figure 4.4 illustrates how port multiplexing is used to emulate spatial

dataflow in a 1D systolic array configuration (Trans-SA).

There are two L1 R-XBars within a tile (Figure 4.2-¢). The upper R-XBar enables
GPEs to access the L1 R-DCache, and the lower R-XBar amplifies on-chip bandwidth
between the L1 and L2.

4.5.5 Synchronization

Transmuter implements synchronization and enforces happens-before ordering us-
ing two approaches. The first is émplicit, in the form of work/status/R-DCache queue
accesses that block when the queue is empty or full. Second, it also supports explicit
synchronization through a global synchronization SPM for programs that require mu-
texes, condition variables, barriers, and semaphores. For instance, say that GPEs 0
and 1 are to execute a critical section (CS) in a program. With explicit synchro-
nization, the programmer can instantiate a mutex in the synchronization SPM and
protect the CS with it. The same can also be achieved through implicit synchroniza-
tion, with the following sequence of events: (I) both GPEs «+ LCP, @ LCP — GPEO,
@ GPEO executes the CS, @ GPE0 — LCP, © LCP — GPE1, ® GPE1 executes
the CS, ) GPE1 — LCP, where <— denotes POP-from and — is a PUSH-to the work
or status queue.

Compared to traditional hardware coherence, these techniques reduce power through
lower on-chip traffic [103, 154]. The synchronization SPM is interfaced to the LCPs
and GPEs through a low-throughput two-level arbiter tree, as accesses to this SPM

were not bottleneck for any of the evaluated workloads.

64



T_SA_PUSH(N,v) T_SA_POP(N)
,'1_ STR <addry> <v> LDR <addry>
4
7 T_SA_POP(W) ﬁ T_SA_PUSH(E, v)
C LDR <addry> => STR <addrg> <v>
’,
’
L N T_SA_PUSH(W, v) T_SA_POP(E)
ne STR <addry> <v> ﬂ LDR <addrg>

T SA_POP(S) T_SA_PUSH(S)

STR <addrs> <v>
a) Logical R-DCache bank in LDR <addrs> addrs==v

FIFO+SPM mode b) FIFO mode abstraction

mm Low-level SW/

® cre R-XBar R-DCache (FIFO+SPM) mm HW abstraction

Figure 4.3: a) Logical view of an R-DCache bank in FIFO+SPM mode, showing 4
FIFO partitions, one for each 2D direction. b) Loads and stores to special addresses
corresponding to each direction are mapped to POP and PUSH calls, respectively,
into the FIFOs.

4.5.6 Miscellaneous Reconfiguration Support

The GPE LS unit is augmented with logic to route packets to the work/status
queue, synchronization SPM, and the L1 or L2 R-DCache, based on a set of base/bound
registers. Reconfiguration changes the active base/bound registers, without external
memory traffic. LCPs include similar logic but do not have access to the L1 or L2.
Lastly, the system enables power-gating individual blocks, i.e. cores, R-XBars, R-
DCaches, based on reconfiguration messages. This is used to boost energy-efficiency

for memory-bound kernels.

4.5.7 Reconfiguration Overhead

Transmuter can self-reconfigure at run-time (initiated by an LCP) if the target
configuration is known a priori. Reconfiguration can also be initiated by the host
using a command packet with relevant metadata. The programming interface used
to initiate this is discussed in Section 4.6. Each step of the hardware reconfiguration

happens in parallel and is outlined below.

« GPE. Upon receiving the command, GPEs switch the base/bound registers

that their LS units are connected to (Section 4.5.6) in a single cycle.

« R-XBar. ARBITRATE < TRANSPARENT reconfiguration entails a 1-cycle
latency, as it only switches MUXes in the R-XBar (Figure 4.2-d). The ROTATE
mode uses set/unset patterns, which requires a serial transfer of bit vectors from

on-chip registers (e.g. a 64x64 design incurs a 6-cycle latency?).

'Latency (in cycles) = ceil(Niotate patterns X Ndst X 10gy(Nere) / xfer width)

65



I e[eeiee

Odd clk cycle

%220 e reieie i

Even clk cycle

a) Physical 1D systolic array b) Logical 1D systolic array
@cre R-XBar (ROTATE) R-DCache (FIFO+SPM)

Figure 4.4: a) Physical and b) logical views of 1D systolic array connections within
a Transmuter tile. Spatial dataflow is achieved by the R-XBar rotating between the
two port-connection patterns.

« R-DCache. Switching from CACHE to SPM mode involves a 1-cycle toggle
of the scratchpad controller. The FIFO+4SPM mode involves programming the
head and tail pointer for each logical FIFO queue, which are transferred from

control registers (4 cycles for 4 FIFO partitions).

Thus, the net reconfiguration time, accounting for buffering delays, amounts to
~10 cycles, which is faster than FPGAs and many CGRAs (Section 2.1). For host-
initiated reconfiguration, overheads associated with host-to-Transmuter communica-
tion leads to a net reconfiguration time of few 10s of cycles. We limit our discussions
to self-reconfiguration in this work. Since Transmuter does not implement hard-
ware coherence, switching between certain Transmuter configurations entails cache
flushes from L1 to L2, from L2 to HBM, or both. The levels that use the SPM or
FIFO+SPM mode do not need flushing. Furthermore, our write-no-allocate caches
circumvent flushing for streaming workloads that write output data only once. Even
when cache flushes are inevitable, the overhead is small (<1% of execution time) for

the evaluated kernels in Section 4.9.

4.6 Prototype Software Stack

We implement a software stack for Transmuter in order to support good pro-
grammability and ease-of-adoption of our solution. The software stack has several
components: a high-level Python Application Programming Interface (API), and
lower-level C++ APIs for the host, LCPs and GPEs. An outline of the software
stack and a working Transmuter code example are shown in Figure 4.5.

The highest level API, called TransPy, is a drop-in replacement for the well-known
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Transmuter Software Stack 1: import transpy.numpy as np
: : — 0l 2, it i i
TransPy Libraries ,g § //Init J.npu't(: X :;md filter f
- o| 3: x=np.arange(...
o, 4: f=np.arange( e e )
C++ Intrinsics 2‘ 2 §[z=npicorre1ate(f, x, mode="full")
HostAPI LCPAPI GPEAPI
Host Code LCP Code GPE Code | 1: [...]
2: //Iterate over size of array x
3: for(int i=0; i<x N; ++i) {
Transmuter Hardware 4: float x = T_WORKQ POP();
Host |-|_I = = |-|_I = 5: float psum = 0;
LcP JllGPE|. | GPE| 6: #if (GPE_ID != (N TILES-1))
e psum = T SA POP(Dir::East);
1: //Init input x & filter £ 3| 8: #endif
2: float x[x N]={...}; ml 9 psum += x * £; //MAC operation
ol 3¢ float f[f N]={...}; f5| 10: #if (GPE_ID != 0)
'8 4: [...] 11: T_SA_PUSH(Dir::West, psum);
©| 5: for(int i=0; i<f N; ++i) { 12: #else
8 6: //Stream x to all GPEs 13: y[i] = psum;
H|7: T _WORKQ PUSH BCAST(x[i]); 14: #endif
8: } 15: }
9: [...] 16: [...]

Figure 4.5: Transmuter software stack. Application code is written using Python and
invokes library code for the host, LCPs and GPEs. The implementations are written
by experts using our C++ intrinsics library. Also shown is an example of a correla-
tion kernel on Trans-SA (host library code not shown). The end-user writes standard
NumPy code and changes only the import package to transpy.numpy (App:L1).
Upon encountering the library call (App:L5), the host performs data transfers and
starts execution on Transmuter. The LCP broadcasts the vector x to all GPEs
(LCP:L7). Each GPE pops the value (GPE:L4), performs a MAC using its filter
value (f) and east neighbor’s partial sum (GPE:L7), and sends its partial sum west-
ward (GPE:L11). The last GPE stores the result into HBM. The host returns control
to the application after copying back the result y.

high-performance Python library NumPy, i.e. the TransPy API ezactly mirrors that
of NumPy. In the code example in Figure 4.5, note that only one change is needed to
convert the NumPy program to TransPy. The np.correlate function is trapped in
TransPy, dispatched to the Transmuter host layer, and a pre-compiled kernel library
is invoked. We use pybind11 [91] as the abstraction layer between Python and C++-.
TransPy also contains drop-in replacements for SciPy, PyTorch, NetworkX, and other
libraries used in scientific computing, ML, graph analytics, etc.

TransPy invokes kernels that are implemented by library writers and expert pro-
grammers, with the aid of the C++ intrinsics layer. A Transmuter SPMD kernel
implementation consists of three programs, one each for the host, LCP and GPE.
The host code is written in the style of OpenCL [192], handling data transfers to
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and from Transmuter, launching computation, initializing reconfigurable parame-
ters (e.g. R-DCache FIFO depth), and triggering reconfiguration if needed. On
the Transmuter-side, notable API methods include those associated with the queue
interface, for accessing SPMs and FIFOs, triggering cache flushes, and reconfigura-
tion. Synchronization is handled using intrinsics that wrap around POSIX threads
functions [142]. These calls allow for synchronization at different granularities, such
as globally, within tiles, and across LCPs.

Thus, the Transmuter software stack is designed to enable efficient use of the
Transmuter hardware by end-users, without the burden of reconfiguration and other
architectural considerations. At the same time, the C++ layer allows for expert
programmers to write their own implementations, such as sophisticated heterogeneous
implementations that partition the work between the host CPU and Transmuter. As
an alternative to writing hand-tuned kernels for Transmuter, we are actively working
on prototyping a compiler to automatically generate optimized C++-level library
code for Transmuter based on the LIFT data-parallel language [191], the details of

which are left for a future work.

4.7 Kernel Mapping

Transmuter is built using COTS cores that lend the architecture to be kernel-
agnostic. Here, we present our mappings of the fundamental kernels in Section 4.2
on the selected Transmuter configurations. Additional kernels in the domain of linear
algebra have been mapped and evaluated on a preliminary version of Transmuter for
different resource sharing configurations [187, 212].

We note that while executing memory-bound kernels, Transmuter powers-down

resources within a tile to conserve energy.

4.7.1 Dense Matrix Multiplication and Convolution

GeMM. GeMM is a regular kernel that produces O(N?3) FLOPS for O(N?) fetches
and exhibits very high reuse [77]. It also presents contiguous accesses, thus showing
amenability to a shared memory based architecture. Our implementation of GeMM
on Trans-SC uses a common blocking optimization [123]. We similarly implement
GeMM on Trans-PS but with the blocked partial results stored in the private L1
SPMs. Naturally, Trans-PS misses the opportunity for data sharing. For Trans-SA,
the GPEs execute GeMM in a systolic fashion with the rows of A streamed through
the L2 cache, and the columns of B loaded from the L1 SPM.
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GeMV. GeMV is a memory-bound kernel that involves lower FLOPS/B than
GeMM, i.e. O(N?) FLOPS for O(N?) fetches, but still involves contiguous mem-
ory accesses [64]. The Trans-SC and Trans-PS implementations are similar to those
for GeMM, but blocking is not implemented due to lower data reuse. On Trans-SA,
the vector is streamed into each GPE through the L2 cache, while the matrix ele-
ments are fetched from the L1 SPM. Each GPE performs a MAC, and passes the
partial sum and input matrix values to its neighbors. We avoid network deadlock in
our GeMM and GeMV Trans-SA implementations by reconfiguring the FIFO depth
of the L1 R-DCache (Section 4.5.3) to allow for sufficient buffering.

Conv. Conv in 2D produces (2 - F?- N? . IC' - OC)/S FLOPS, for an F'xF filter
convolving with stride S over an N x N image, with I/C input and OC' output channels.
The filter is reused while computing one output channel, and across multiple images.
Input reuse is limited to O(F - OC), for S<F. On Trans-SC, we assign each GPE
to compute the output of multiple rows, to maximize the filter reuse across GPEs.
For Trans-PS and Trans-SA, we statically partition each image into Bx BxIC' sub-
blocks, such that the input block and filter fit in the private L1 SPM. Each block
is then mapped to a GPE for Trans-PS, and to a set of F' adjacent GPEs of a 1D

systolic array for Trans-SA using a row stationary approach similar to [34].

4.7.2 Fast Fourier Transform

FFT. FFT in 1D computes an N-point discrete Fourier transform in log(/N') sequen-
tial stages. Each stage consists of N /2 butterfly operations. FFT applications often
operate on streaming input samples, and thus are amenable to spatial dataflow archi-
tectures [90, 58]. Our Trans-SA mapping is similar to pipelined systolic ASICs; each
stage is assigned to a single GPE, and each GPE immediately pushes its outputs to its
neighbor. The butterflies in each stage are computed greedily. To reduce storage and
increase parallelism, Trans-SA uses run-time twiddle coefficient generation when the
transform size is too large for on-chip memory, e.g. >256 for 2x8, with the trade-off
of making the problem compute-bound. On Trans-SC, the butterfly operations are
distributed evenly among GPEs to compute a stage in parallel. LCPs assign inputs
and collect outputs from GPEs. All cores synchronize after each stage. For Trans-PS,

the same scheduling is used, and partial results are stored in the L1 SPM.
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4.7.3 Sparse Matrix Multiplication

SpMM. SpMM is a memory-bound kernel with low FLOPS that decrease with in-
creasing sparsity, e.g. ~ 2N3r2,. for uniform-random N x N matrices with density ;.
Furthermore, sparse storage formats lead to indirection and thus irregular memory
accesses [117, 154]. We implement SpMM in Trans-SC using a prior outer product
approach [154]. In the multiply phase of the algorithm, the GPEs multiply a column
of A with the corresponding row of B, such that the row elements are reused in the L1
cache. In the merge phase, a GPE merges all the partial products corresponding to
one row of C'. Each GPE maintains a private list of sorted partial results and fills it
with data fetched from off-chip. Trans-PS operates similarly, but with the sorting list
placed in private L1 SPM, given that SPMs are a better fit for operations on disjoint
memory chunks. Lastly, SpMM in Trans-SA is implemented following a recent work
that uses sparse packing [80]. Both the columns of A and rows of B are packed in

memory. The computation is equally split across the tiles.

SpMV. SpMV, similar to SpMM, is bandwidth-bound and produces low FLOPS
(~ 2N?%rpr, for a uniformly random N x N matrix with density ry;, and vector with
density r,). We exploit the low memory traffic in the outer product algorithm for
sparse vectors, mapping it to Trans-SC and Trans-PS. The GPEs and LCPs collabo-
rate to merge the partial product columns in a tree fashion, with LCP 0 writing out
the final elements to the HBM. SpMV on 1D Trans-SA is implemented using inner
product on a packed sparse matrix as described in [80]. The packing algorithm packs
64 rows as a slice and assigns one slice to each 1x4 sub-tile within a tile. Each GPE
loads the input vector elements into SPM, fetches the matrix element and performs
MAC operations, with the partial results being streamed to its neighbor within the
sub-tile.

Finally, for both SpMM and SpMV, we use dynamic scheduling for work distri-
bution to the GPEs (Section 4.5.1), in order to exploit the amenability of sparse
workloads to SPMD architectures [154].

4.8 Experimental Methodology

This section describes the methodology used to derive performance, power and
area estimates for Transmuter. Table 4.4 shows the parameters used for model-
ing Transmuter. We compare Transmuter with a high-end Intel Core i7 CPU and

NVIDIA Tesla V100 GPU running optimized commercial libraries. The baseline spec-
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ifications and libraries are listed in Table 4.5. For fair comparisons, we evaluate two
different Transmuter designs, namely TransX1 and TransX8, that are each com-
parable in area to the CPU and GPU, respectively. TransX1 has a single 64x64
Transmuter cluster and TransX8 employs 8 such clusters. Both designs have one
HBM2 stack/cluster to provide sufficient bandwidth and saturate all GPEs in the

cluster.

4.8.1 Performance Models

We used the gem5 simulator [22, 21] to model the Transmuter hardware. We mod-
eled the timing for GPEs and LCPs after an in-order Arm Cortex-M4F, and cache and
crossbar latencies based on a prior chip prototype that uses SSN crossbars [157, 158].
Data transfer /set-up times are excluded for all platforms. Throughput is reported in
FLOPS/s and only accounts for useful (algorithmic) FLOPS.

The resource requirement for running simulations using this detailed gem5 model
is only tractable for Transmuter systems up to 8 x16. For larger systems, we substitute
the gemb cores with trace replay engines while retaining the gem5 model for the rest of
the system. Offline traces are generated on a native machine and streamed through
these engines. This allows us to simulate systems up to one 64x64 cluster. On
average, across the evaluated kernels, the trace-driven model is pessimistic to 4.5%
of the execution-driven model. For a multi-cluster system, we use analytical models
from gemb-derived bandwidth and throughput scaling data (Section 4.9.2).

We implemented each kernel in C++ and hand-optimized it for each Transmuter
configuration using the intrinsics discussed in Section 4.6. Compilation was done
using an Arm GNU compiler with the -O2 flag. All experiments used single-precision
FP arithmetic.

4.8.2 Power and Area Models

We designed RTL models for Transmuter hardware blocks and synthesized them.
The GPEs and LCPs are modeled as Arm Cortex-M4F cores. For the R-XBar, we
use the SSN design proposed in [182], augmented with an XCU. The R-DCaches are
cache modules enhanced with SPM and FIFO control logic.

The crossbar and core power models are based on RTL synthesis reports and the
Arm Cortex-M4F specification document. The R-XBar power model is calibrated
against the data reported in [182]. For the caches and synchronization SPM, we used

CACTI 7.0 [143] to estimate the dynamic energy and leakage power. We further
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Table 4.4: Microarchitectural parameters of Transmuter gem5 model.

’ Module H Microarchitectural Parameters
1-issue, 4-stage, in-order (MinorCPU) core @ 1.0 GHz, tournament

GPE/LCP branch predictor, FUs: 2 integer (3 cycles), 1 integer multiply (3 cy-
cles), 1 integer divide (9 cycles, non-pipelined), 1 FP (3 cycles), 1 LS (1
cycle)

Work/Status|| 4 B, 4-entry FIFO buffer between each GPE and LCP within a tile,

Queue blocks loads if empty and stores if full
CACHE: 4 kB, 4-way set-associative, 1-ported, non-coherent cache with
8 MSHRs and 64 B block size, stride prefetcher of degree 2, word-

R-DCache granular (L1) / cacheline-granular (L2)

(per bank) SPM: 4 kB, 1-ported, physically-addressed, word-granular
FIFO+SPM: 4 kB, 1-ported, physically-addressed, 32-bit head and tail
pointer registers
Ngre X Ngst non-coherent crossbar with 1-cycle response
ARBITRATE: 1-cycle arbitration latency, 0 to (Ng — 1) serialization

R.-XBar latency depending upon number of conflicts
TRANSPARENT: no arbitration, direct access
ROTATE: switch port config. at programmable intervals
Width: 32 address + 32 (L1) / 128 (L2) data bits

GPE/LCP 4 kB, 4-way set-associative, 1-ported, non-coherent cache with 8 MSHRs

ICache and 64 B block size

Sync. SPM || 4 kB, 1-ported, physically-addressed scratchpad

Main 1 HBM2 stack: 16 64-bit pseudo-channels, each @ 8000 MB/s, 80-150 ns

Memory average access latency

verified our power estimate for SpMM on Transmuter against a prior SpMM ASIC
prototype [157] and obtained a pessimistic deviation of 17% after accounting for the
architectural differences. Finally, the area model uses estimates from synthesized
Transmuter blocks.

We note that this work considers only the chip power on all platforms, for fair
comparisons. We used standard profiling tools for the CPU and GPU, namely nvprof
and RAPL. For the GPU, we estimated the HBM power based on per-access en-
ergy [151] and measured memory bandwidth, and subtracted it out. The power is

scaled for iso-technology comparisons using quadratic scaling.

4.9 Evaluation

We evaluate the Trans-SC, Trans-PS and Trans-SA configurations on the ker-
nels in Section 4.7. We then compare the best-performing Transmuter to the CPU

and GPU, and deep-dive into the evaluation of an application that exercises rapid

72



Table 4.5: Specifications of baseline platforms and libraries evaluated.

‘ Platform H Specifications ‘ Library Name and Version ‘

Intel i7-6700K, 4 cores/8 threads at
4.0-4.2 GHz, 16 GB DDR3 memory @
34.1 GB/s, AVX2, SSE4.2, 122 mm?
(14 nm)

MKL 2018.3.222
(GeMM/GeMV /SpMM/SpMV),
DNNL 1.1.0 (Conv), FFTW 3.0 (FFT)

cuBLAS v10 (GeMM/GeMV), cuDNN
v7.6.5 (Conv), cuFFT v10.0 (FFT),
CUSP v0.5.1 (SpMM), cuSPARSE v8.0
(SpMV)

CPU

NVIDIA Tesla V100, 5120 CUDA cores
GPU || at 1.25 GHz, 16 GB HBM2 memory at
900 GB/s, 815 mm? (12 nm)

reconfiguration. Lastly, we show comparisons with prior platforms and power/area

analysis.

4.9.1 Performance with Different Configurations

Figure 4.6 presents relative comparisons between Trans-SC, Trans-PS and Trans-
SA in terms of performance. This analysis was done on a small 2x8 system to stress
the hardware. The results show that the best performing Transmuter configuration
is kernel-dependent, and in certain cases also input-dependent. Figure 4.7 shows the
cycle breakdowns and the work imbalance across GPEs.

For GeMM, Trans-SC achieves high L1 hit rates (>99%), as efficient blocking leads
to good data reuse. Trans-PS suffers from capacity misses due to lack of sharing, noted
from the large fraction of L2 misses. Further, Trans-SC performs consistently better
than Trans-SA, as it does not incur the overhead of manually fetching data into the
L1 SPM. For GeMYV, Trans-SC and Trans-PS behave the same as GeMM. However,
Trans-SA experiences thrashing (increasing with matrix size) in the private L2. For
Conwv, as with GeMM/GeMV, Trans-SC performs the best due to a regular access
pattern with sufficient filter and input reuse. Across these kernels, stride prefetching
in Trans-SC is sufficient to capture the regular access patterns.

For FFT, Trans-SA achieves significantly higher throughput because it benefits
from the streaming inputs and exploits better data reuse, evidenced by ~10x less
memory bandwidth usage compared to Trans-SC/Trans-PS. Inter-GPE synchroniza-
tion and coherence handling at the end of each stage limit the performance for Trans-
SC/Trans-PS. In addition, the control flow in the non-systolic code is branchy and
contributes to expensive ICache misses. Trans-SA performs better for sizes <512
compared to other sizes, as the twiddle coefficients are loaded from on-chip rather
than being computed.

For SpMM, the multiply phase of outer product is better suited to Trans-SC as
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Figure 4.6: Performance of 2x8 Trans-SC, Trans-PS and Trans-SA configurations
across different inputs for the kernels in Section 4.7. All matrix operations are per-
formed on square matrices without loss of generality. Conv uses 3x3 filters, 2 in-
put/output channels, and a batch size of 2.

the second input matrix rows are shared. The merge phase is amenable to Trans-PS
since the private SPMs overcome the high thrashing that Trans-SC experiences while
merging multiple disjoint lists. Trans-SA dominates for densities >~11%, however
it performs poorly in comparison to outer product for highly-sparse matrices. Al-
though ~50% of the time is spent on compute operations (Figure 4.7), most of these
are wasted on fetched data that are discarded after failed index matches. For SpMV,
performance depends on the input matrix size, dimensions, as well as the vector den-
sity. Notably, Trans-SA benefits through the spatial dataflow for SpMV but not
for SpMM, because the SpMV implementation treats the vector as dense, and thus
can stream-in the vector elements efficiently into the GPE arrays. At sufficiently
high vector sparsities, outer product on Trans-SC/Trans-PS outperforms Trans-SA
by avoiding fetches of zero-elements. For higher densities, they suffer from the over-
head of performing mergesort that involves frequent GPE-LCP synchronization, and
serialization at LCP 0.

Takeaways. Demand-driven dataflow with shared caching outperforms other con-
figurations for GeMM, GeMV and Conv due to sufficient data sharing and reuse.

Streaming kernels such as FF'T and SpMV (with dense vectors) are amenable to spa-
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Figure 4.7: Cycle breakdown for the kernels in Section. 4.7. * (red) indicates the
best-performing configuration. “Other” comprises of stalls due to synchronization
and bank conflicts. ¥: work imbalance across GPEs (¢/u of # FLOPS). Inputs are:
1k (GeMM), 8k (GeMV), 2k (Conv), 16k (FFT), 4096, 0.64% (SpMM), 4k, 2.6%,
dense vector (SpMV).

tial dataflow. SpMM and high-sparsity SpMV show amenability to private scratchpad
or shared cache depending on the input size and sparsity, with the systolic mode out-

performing only for very high densities.

4.9.2 Throughput and Bandwidth Analysis

We investigate here the impact of scaling the number of tiles (N7) and GPEs per
tile (Ng) for an Npx Ng Transmuter. Figure 4.8 illustrates the scaling of Transmuter
for GeMM, GeMV and SpMM. GeMM shows near-linear performance scaling with the
GPE-count. The bandwidth utilization, however, does not follow the same trend as
it is dependent on the data access pattern at the shared 1.2 R-DCache that influences
the L2 hit-rate. GeMV exhibits increased bank conflicts in the L1 shared cache upon
scaling up Ng, e.g. from 32x32 to 32x64. Thus, the performance scaling shows
diminishing returns with increasing N¢, but scales well with increasing Np. SpMM
performance scales well until the bandwidth utilization is close to peak, at which point
bank conflicts at the HBM controllers restrict further gains. SpMV follows the trend
of GeMV, while FFT and Conv, show near-linear scaling with increasing system size
(not shown).

We also discuss some takeaways from our cache bandwidth analysis for the best-
performing Transmuter configuration. GeMM exhibits a high L1 utilization (20.4%)
but low L2 utilization (2.7%), as most of the accesses are filtered by the L1. In
contrast, SpMM and SpMV in Trans-PS and Trans-SA modes, respectively, have
higher L2 utilizations of 68.5-90.5%. The linear algebra kernels show a relatively
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balanced utilization across the banks, with the coefficient of variation ranging from
0-10.1%. In contrast, both FFT and Conv have a skewed utilization, due to the layout
of twiddle coefficients in the SPM banks for FFT, and the small filter size for Conv.

4.9.3 Design Space Exploration

We performed a design space exploration with the mapped kernels to select R-
DCache sizes for Transmuter. Sizes of 4 kB per bank for both L1 and L2 show the
best energy-efficiency for all kernels except SpMV. SpMV in Trans-SA benefits from
a larger L2 private cache that lowers the number of evictions from fetching discrete
packed matrix rows (recall that in Trans-SA, all GPEs in a tile access the same L2
bank). Other kernels achieve slim speedups with larger cache capacities. The dense
kernels already exhibit good hit rates due to blocking and prefetching in Trans-SC.
SpMM is bottlenecked by cold misses due to low reuse. FFT has a 3.0x speedup with
64 kB L1/L2, compared to 4 kB L1/L2, as the number of coefficients stored on-chip
scales with L1 size. But, this is outweighed by a 6.4x increase in power. Other
parameters such as work and status queue depths were chosen to be sufficiently large
such that the GPEs are never idled waiting on the LCP.

4.9.4 Performance with Varying Control Divergence and Data Reuse

In Section 4.2, we characterized some fundamental kernels based on their control
divergence, data reuse and arithmetic intensity. We now build an intuition around
the architectural advantages of Transmuter over a GPU for applications with no-
table contrast in these characteristics. We implement a parallel microbenchmark on
Transmuter and the GPU that allows independent tuning of the divergence and reuse.
Figure 4.9 (left) illustrates this application. The reuse (R) is controlled by the size
of the coefficient array, while divergence (D) scales with the number of bins, since
threads processing each input element apply functions unique to a bin.

While this is a synthetic application, it is representative of real-world algorithms
that perform image compression using quantization. We execute this microbenchmark
with a batch of 1,000 32x32 images on a 4x16 Transmuter design, and compare it
with the GPU running 64 threads (2 warps, inputs in shared memory) to ensure

fairness. Figure. 4.9 (right) presents two key observations:

o The speedup of Transmuter roughly doubles as the number of divergent paths

double. This is because threads executing different basic blocks get serialized
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Figure 4.8: Effect of scaling tiles and GPEs per tile on performance and memory
bandwidth for GeMM (Trans-SC), GeMV (Trans-SC) and SpMM (Trans-PS). Inputs
are: 1k (GeMM), 8k (GeMV), 4096, 0.64% (SpMM).
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Figure 4.9: Left: A synthetic parallel application that launches threads to process
NxN matrices. Each thread (7) reads the input value and bins it into one of D
bins, (77) applies R instances of function f; unique to bin d and writes the result.
Each element of a coefficient array feeds into f;. Thus, the input is reused R times
and the degree of divergence scales with D. Right: Speedup of Transmuter with a
uniform-random matrix (# GPEs = # GPU threads = 64). Transmuter reconfigures
from Trans-PS to Trans-SC beyond R = 4.

in the SIMT model (as they are in the same warp), whereas they can execute
parallel in SPMD.

o Transmuter has the inherent flexibility to reconfigure based on the input size.
In this example, Trans-PS is the best-performing until R = 4. Beyond that,
switching to Trans-SC enables better performance — up to 7.4x over Trans-
PS — as the benefit of sharing the coefficient array elements across the GPEs in

Trans-SC outweighs its higher cache access latency.

Takeaways. The SPMD paradigm in Transmuter naturally lends itself well to ker-

nels exhibiting large control divergence, and its ability to reconfigure dynamically
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allows it to perform well for very low- and high-reuse, and by extension mixed-reuse,

workloads.

4.9.5 Comparison with the CPU and GPU

We now compare the best-performing Transmuter configuration with the CPU
and GPU running optimized commercial libraries (Table 4.5). The throughput and
energy-efficiency gains of Transmuter for each kernel in Section 4.7 are presented in
Figure 4.10. We compare TransX1 to the CPU and TransX8 to the GPU, as discussed
in Section 4.8.

Compute-Bound Kernels (GeMM, Conv, FFT). TransX1 harnesses high
data-level parallelism, and thus achieves performance improvements of 1.2-2.5x over
the CPU, despite clocking at ith the speed of the deeply-pipelined CPU cores. The
true benefit of Transmuter’s simple cores and efficient crossbars appear in the form
of energy-efficiency gains, ranging from 3.6-16.3x, which is owed largely to the high
power consumption of the bulky out-of-order CPU cores. Over the GPU, TransX8 gets
performance gains of 1.3-2.6x and efficiency improvements of 0.8-4.4x with an effi-
cient implementation on Trans-SC for GeMM and Conv. The ~20% energy-efficiency
loss for GeMM is explained by the amenability of GeMM to a SIMT paradigm; al-
though the performance is similar between SIMT and SPMD, SPMD incurs slightly
larger energy costs associated with higher control overhead over SIMT. On FFT,
Transmuter sustains consistent performance scaling using the spatial dataflow of
Trans-SA, with each tile operating on an independent input stream, thus leading to
minimum conflicts. The gap between throughput gain (4.0x) and energy-efficiency
gain (1.3x) over the GPU is explained by the cuFFT algorithm that is more efficient
for batched FFTs.

Memory-Bound Kernels (GeMV, SpMM, SpMV). TransX1 on GeMV
achieves 2.4x better throughput over the CPU, with the CPU becoming severely
DRAM-bound (>98% bandwidth utilization) for input dimensions beyond 1,024. The
14.2x energy-efficiency gain of TransX1 stems from tuning down the number of active
GPEs to curtail bandwidth-starvation, thus saving power.

On SpMM and SpMV, the performance of Transmuter is highly sensitive to the
densities and sizes of the inputs, with improvements ranging from 4.4-110.8x over the
CPU and 5.9-37.7x over the GPU. With SpMM, execution in Trans-PS enables over-
comes the CPU’s limitation of an inflexible cache hierarchy, as well as harnesses high
MLP across the sea of GPEs. While Transmuter is memory-bottlenecked for SpMM,
SpMYV is bounded by the scheduling granularity of packing algorithm deployed on
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Figure 4.10: Throughput (left) and energy-efficiency (right) improvements of Trans-
muter over the CPU and GPU. Data is averaged across the inputs: 256-1k (GeMM),
2k-8k (GeMV), 512-2k (Conv), 4k-16k (FFT), 1k-4k, 0.64% (SpMM), and 2k-4k, 2.6%
(rar), 10.2%-100% (r,) (SpMV). Geometric mean improvements for the compute-
bound and memory-bound kernels are shown separately.

Trans-SA. Despite that, for SpMV, TransX1 outperforms both the CPU as well as
the GPU that has 7.2x greater available bandwidth. In case of the GPU, while there
are sufficient threads to saturate the SMs, the thread divergence in the SIMT model is
the bottleneck. The GPU achieves just 0.6% and 0.002% of its peak performance, re-
spectively for SpMM and SpMV, impaired by memory and synchronization stalls. In
comparison, SPMD on Transmuter reduces synchronization, resulting in 21-42% time
spent on useful computation (Figure 4.7). For SpMM, the outer product implementa-
tion demonstrates ASIC-level performance gains of 5.9-11.6x [154] over the GPU, by
minimizing off-chip traffic and exploiting the asynchronicity between GPEs. As with
GeMYV, disabling bandwidth-starved resources contributes to the energy-efficiency
gains.

Effect of Iso-CPU Bandwidth. TransX1 uses one HBM stack that provides
125 GB/s peak bandwidth, about 3.6x greater than the DDR3 bandwidth to the
CPU. If given the bandwidth of the DDR3 memory, TransX1 still achieves perfor-
mance gains averaging 17.4x and 6.3x for SpMM and SpMV, respectively. For
GeMV, TransX1 remains within a modest 6-8% of the CPU with this low bandwidth.

4.9.6 End-to-End Workload Analysis

We estimate speedups of Transmuter over the CPU and GPU for the end-to-end
workloads in Figure 2.3, and report the results in Table 4.6. File I/O and cross-
platform data transfer (e.g. memcpy from CPU to GPU) times are excluded for all
platforms. Overall, Transmuter achieves speedups averaging 3.1x over the CPU and
3.2x over the GPU.
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Table 4.6: Estimated speedups for the end-to-end workloads in Figures. 2.3.

| Speedup || W1 | W2 ]| W3 | W4| W5[W6| W7| W8 | W9 | W10

TransX1ovs- g 5| 11| 2.2x | 6.2x| L7x| 3.5x | 2.7x | 2.4x | 3.1x | 2.2x
CPU
'é]r;[r}sXé% VSl 35x | 3.8x | 2.1x| 7.2x| 1.6x| 2.8x| 2.3x| 2.5% | 3.0x| 2.8x

Next, we elucidate how rapid reconfiguration enables efficient execution of work-
loads that involve mixed sparse-dense computation in an inner loop. We make a
case study on a representative mixed-data application, namelySinkhorn, that per-
forms iterative computation to determine the similarity between documents [114,
175]. Sinkhorn computation typically involves large, sparse matrices in conjunction
with dense matrices. We implement the algorithm described in [42].The inner loop
has two major kernels: a GeMM operation masked by a sparse weight matrix, i.e.
M-GeMM, and a DMSpM.

The mapping on Transmuter is shown in Figure 4.11. M-GeMM uses a variation
of blocked-GeMM, wherein only rows/columns of the dense matrices that generate
an element with indices corresponding to non-zeros in the weight matrix are fetched
and multiplied. DMSpM uses a simplified outer product algorithm similar to SpMM
(Section 4.7.3) that splits the kernel into DMSpM-Multiply and DMSpM-Merge.

We show the analysis of Sinkhorn on different Transmuter sizes in Figure 4.12. As
observed, M-GeMM and DMSpM-Multiply exhibit the best performance in Trans-SC
configuration, due to good data reuse across GPEs. In contrast, DMSpM-Merge has
optimal performance on Trans-PS, exhibiting a 84.9-98.3% speedup (not shown in
figure) over Trans-SC. Therefore, the optimal Sinkhorn mapping involves two recon-
figurations per iteration: Trans-SC — Trans-PS before the start of DMSpM-Merge,
and Trans-PS — Trans-SC at the end of it, for the next M-GeMM iteration. Recall
from Section 4.5.7 that the reconfiguration time is ~10 cycles, and hence does not
perceptibly impact the performance or energy. Cache flushing (net 0.2% of the total
execution time) is required for M-GeMM but not DMSpM, as DMSpM uses a stream-
ing algorithm. Overall, dynamic reconfiguration results in 47.2% and 96.1% better
performance and energy-delay product (EDP), respectively, over Trans-SC-only for
the 4x16 Transmuter. A heterogeneous solution is also compared against, where
M-GeMM is done on the CPU and DMSpM on the GPU, but this implementation is
bottlenecked by CPU — GPU data transfers. As derived from Figure 4.12, the 4x 16
Transmuter achieves 38.8x and 144.4x lower EDP than the GPU and heterogeneous

solutions, respectively.
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Figure 4.11: Mapping of a multi-kernel, mixed data application, Sinkhorn, on
Transmuter. Computation iterates between M-GeMM and DMSpM, with Trans-SC
> Trans-PS reconfiguration before and after DMSpM-Merge. DMSpM-Merge bene-
fits from the private SPMs in Trans-PS, since each GPE works on multiple disjoint
lists.
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Figure 4.12: Per inner-loop iteration energy (left) and EDP (right) comparing Trans-
SC, Trans-PS and Reconf. (Trans-SC <+ Trans-PS) for Sinkhorn normalized to CPU.
Input matrix dimensions and densities are — query: (8kx1), 1%, data: (8kx1k), 1%,
M: (8kx8k), 99%.

4.9.7 Comparison with Other Platforms

Table 4.7 shows the estimated energy-efficiency improvements of Transmuter over
recent FPGA, CGRA, and ASIC implementations. The efficiencies reported in prior
work are scaled quadratically for iso-technology comparisons with Transmuter. Over-
all, Transmuter achieves average efficiency gains of 3.4x and 2.0x over FPGAs and
CGRAs, respectively, and is within 9.3x (maximum 32.1x) of state-of-the-art ASICs

for the evaluated kernels.

81



Table 4.7: Energy-efficiency improvements (black) and deteriorations (red) of Trans-
muter over prior FPGAs, CGRAs and ASICs.

]PlatformH GeMM \ GeMV \ Conv \ FFT \ SpMM \ SpMV ‘
FPGA 2.7x [69] | 8.1x [115]% | 2.7x [220] 2.2x [69] 3.6x [70] | 3.0x [54]
CGRA 2.2x [171] 3.0x [43] 1.2x [43] 1.0x [99]3 | 1.9x [43] | 2.9x [43]

ASIC  |[(32.1x) [161]|(10.5%) [180] ((17%85)) [[12800? ((1187'.102)) [[16612]] Ei?ig Egg (3.9%) [154]

2Performance/bandwidth used as power is N/A. 3Estimated for floating-point based on [200].

Table 4.8: Power and area of a 64x64 Transmuter cluster in 14 nm.

Power (mW Area

Module Static \ Dynar(nic \) Total (mm?)
GPE Cores 361.3 2380.5 2741.7 28.9
LCP Cores 5.6 22.5 28.1 0.4
Sync. SPM 0.6 0.1 0.6 0.1
All ICaches 2566.6 373.6 2940.1 25.7
LCP DCaches 39.5 0.9 40.4 0.5
L1 R-DCaches 2527.1 204.0 2731.0 30.7
L2 R-DCaches 37.4 18.3 55.7 0.5
L1 R-XBars 1757.8 2149.3 3907.1 30.3
L2 R-XBars 36.9 14.8 51.7 0.8
MUXes/Arbiters 581.9 87.6 669.5 0.7
Memory Ctrls. 47.5 129.0 176.4 5.5

y Total [8.0W][ 54 W [13.3W [ 124.1 mm?

4.9.8 Power and Area

Table 4.8 details the power consumption and area footprint of a 64x64 Trans-
muter cluster in 14 nm. Most of power is consumed by the network and memory, i.e.
L1 R-XBars, R-DCaches and ICaches, while the cores only consume 20.8%. This is
consistent with a growing awareness that the cost of computing has become cheaper
than the cost to move data, even on-chip [82]. GPEs and L1 R-XBars, the most
frequently switched modules, consume 84.2% of the total dynamic power. The esti-
mated power for a single Transmuter cluster is 13.3 W in 14 nm with an area footprint

within 1.7% of the CPU’s area. The estimated worst-case reconfiguration overhead
is 74.9 nJ.
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4.10 Conclusion

This work tackled the important challenge of bridging the flexibility-efficiency gap
with Transmuter. Transmuter consists of simple processors connected to a network of
reconfigurable caches and crossbars. This fabric supports fast reconfiguration of the
memory type, resource sharing and dataflow, thus tailoring Transmuter to the nature
of the workload. We also presented a software stack comprised of drop-in replace-
ments for standard Python libraries. We demonstrated Transmuter’s performance
and efficiency on a suite of fundamental kernels, as well as mixed data-based multi-
kernel applications. Our evaluation showed average energy-efficiency improvements
of 46.8x (9.8x) over the CPU (GPU) for memory-bound kernels and 7.2x (1.6x) for
compute-bound kernels. In comparison to state-of-the-art ASICs that implement the

same kernels, Transmuter achieves average energy-efficiencies within 9.3x.
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CHAPTER V

Runtime Control for Accelerated Sparse Linear

Algebra on Reconfigurable Hardware

Dynamic adaptation is a post-silicon optimization technique that adapts the hard-
ware to workload phases. However, current adaptive approaches are oblivious to im-
plicit phases that arise from operating on irregular data, such as sparse linear algebra
operations. Implicit phases are short-lived and do not exhibit consistent behavior
throughout execution. This calls for a high-accuracy, low overhead runtime mecha-
nism for adaptation at a fine granularity. Moreover, adopting such techniques for re-
configurable manycore hardware, such as coarse-grained reconfigurable architectures
(CGRAs), adds complexity due to synchronization and resource contention.

This chapter describes the proposal of a lightweight machine learning-based adap-
tive framework called SparseAdapt. It enables low-overhead control of configura-
tion parameters to tailor the hardware to both implicit (data-driven) and explicit
(code-driven) phase changes. SparseAdapt is implemented within the runtime of a
recently-proposed CGRA called Transmuter, which has been shown to deliver high
performance for irregular sparse operations. SparseAdapt can adapt configuration
parameters such as resource sharing, cache capacities, prefetcher aggressiveness, and
Dynamic Voltage Frequency Scaling (DVFS). Moreover, it can operate under the
constraints of either (i) high energy-efficiency, i.e. maximal GFLOPS/s/W, or (ii)
high power-performance, i.e. maximal (GFLOPS/s)3/W.

We evaluate SparseAdapt with sparse matrix-matrix and matrix-vector multipli-
cation (SpMM and SpMV) routines across a suite of uniform random, power-law
and real-world matrices. SparseAdapt achieves similar performance on SpMM as the
largest static configuration, with 5.3x better energy-efficiency. Furthermore, on both
performance and efficiency, SparseAdapt is at most within 13% of an Oracle that

adapts the configuration of each phase with global knowledge of the entire program
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execution. Finally, SparseAdapt is able to outperform the state-of-the-art approach
for runtime reconfiguration by up to 2.9x in terms of energy-efficiency.
The work presented in this chapter is accepted to appear at MICRO 2021 [153].

5.1 Introduction

Sparse linear algebra operations are key components of a plethora of modern ap-
plications, from graph analytics to scientific computing and machine learning [27, 71,
172, 24, 184, 219, 202, 15, 18, 213, 218, 215, 203]. Many graph analytics algorithms,
such as breadth-first search, shortest path, etc. can be represented as sparse linear
algebra operations, as encapsulated by the GraphBLAS framework [104]. Two im-
portant kernels belonging to BLAS levels 2 and 3, respectively, are sparse matrix —
sparse matrix multiplication (SpMM) and sparse matrix — sparse vector multiplica-
tion (SpMV). These are highly inefficient on traditional computing platforms such
as CPUs and GPUs, as they are heavily memory-bounded and thus bottlenecked on
data movement rather than compute [154].

Recent work have led to a myriad of proposals on optimizing sparse computa-
tion through fixed-function accelerator designs [221, 188, 13, 189, 154]. While these
demonstrate energy-efficiency improvements of the order of 100 of times over a GPU,
there is an important trade-off in terms of loss of flexibility, i.e. such designs are
only applicable to a few kernels. One class of solutions that propose to close this gap
between flexibility and efficiency are CGRAs [155, 43, 171, 99, 176, 198, 146, 78].
CGRAs incorporate word-granular operations to overcome the energy inefficiency of
FPGAs, while retaining programmability. They allow for hardware reconfiguration
at the granularity of the PE array, network fabric, or the memory subsystem. A key
challenge lies with efficient mapping of sparse kernels onto CGRA hardware. Typi-
cally, the CGRA configuration is determined at compile-time by extracting a DFG
from the application code, mapping it onto the PEs, and rewiring the on-chip memory

and interconnect. There are two drawbacks of compile-time mapping.

» Real-world sparse datasets are seldom uniform, e.g. in graph analytics work-
loads, the input graphs are often clustered and follow power-law distributions [46,
116]. Thus, determining the best configuration requires intimate knowledge of

the input, beyond its shape and NNZs, which is not feasible at compile-time.

o Compile-time optimizations fail if the dataset evolves over time, since no accu-

rate estimations can be made for the distribution of non-zeros even with data
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pre-processing. This is common in the world of social networks, for instance,
where connections between users form and break in real-time, which translates

to dynamic changes in the underlying data structures [38, 59].

In order to tackle these challenges, we propose an adaptive runtime framework,
SparseAdapt, that reconfigures a CGRA to adapt to evolving phases in sparse compu-
tation kernels. SparseAdapt establishes a feedback loop between the software (run-
ning on a host) and the CGRA hardware, that enables fine-grained introspection,
i.e. the hardware exposes performance counters to the runtime software, which pe-
riodically collects this data to determine when and how to reconfigure the hardware,
thus catering to transitions in both implicit (data-driven) and explicit (code-driven)
phase changes. SparseAdapt is oblivious to the underlying program binary, and thus
requires no programmer intervention. We implement SparseAdapt as an extension to
the runtime of the reconfigurable hardware proposed in Chapter IV called Transmuter,
however it is applicable to any CGRA system that exposes similar hooks from the
hardware to the runtime. SparseAdapt is designed to be deployed on both cloud and
edge scenarios, which have drastically different power-performance requirements. As
such, SparseAdapt can operate in one of two optimization modes, an Energy-Efficient
mode that optimizes for giga-FLOPS executed per second per Watt (GFLOPS/s/W),
and a Power-Performance mode that optimizes for (GFLOPS/s)?/W.

In summary, this work makes the following contributions:

o Identifies the existence of hardware reconfiguration opportunities associated
with phase transitions during execution for sparse algebra routines, both due
to (i) change in code, i.e. explicit phases, and (ii) evolving sparsity patterns in

the dataset, i.e. implicit phases.

o Proposes a framework called SparseAdapt that uses low-cost hardware perfor-
mance monitoring to adapt to phase changes and reconfigure the underlying
hardware configuration. SparseAdapt is integrated with the runtime of the

Transmuter [155] hardware.

e Proposes a predictive model based on an ensemble of decision trees, and a
heuristic-based, reconfiguration cost-aware policy that allows for hardware re-
configuration at fine granularities (~ 500-5k floating-point instructions), while

reducing the frequency of reconfiguration penalties.

o Demonstrates improvements in energy-efficiency and performance metrics on

SpMM and SpMYV routines across a suite of random, power-law and real-world
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matrices, and compares it to various oracle adaptive control mechanisms.

In terms of evaluation, SparseAdapt achieves similar performance as the largest
static configuration with 5.3x better energy-efficiency on SpMM. When compared
to an Oracle scheme that exploits full knowledge of the entire program duration,
SparseAdapt achieves within 13% performance and 5% efficiency in the Power-Performance
optimization mode. Finally, in comparison to a prior adaptive control scheme [56],
SparseAdapt achieves average gains of up to 2.9x and 2.8x in terms of energy-

efficiency and performance, respectively.

5.2 Motivation and Related Work

This section discusses the challenges and opportunities associated with dynamic

reconfiguration, and prior work.

5.2.1 Existence of Implicit and Explicit Phases

Phases arise naturally during the execution of any non-trivial code. The obvi-
ous phase changes occur due to control flow from the program structure. We term
these as explicit phase transitions. Explicit phase changes are relatively simple to
detect, even at compile-time. However, computation involving sparse datasets in-
troduce another type of phase change owing to the irregularity in the data. Such
phase changes may be correlated with instantaneous properties of the data, such as
spatial locality. We define these phase transitions to be implicit. Real-world matrices
have sparsity patterns that vary spatially across the matrix, thus introducing implicit
phase changes during computation. Thus, a clever adaptation framework needs to
incorporate runtime reconfigurability and cater to both implicit and explicit phase
changes.

We illustrate the phenomenon of phase changes through the example of outer
product (OP) based SpMM [154]. OP-SpMM decomposes the computation into two
explicit phases, namely multiply and merge (Figure 5.1 — left). We demonstrate this
on a synthetic matrix generated with dense columns separating eight sparse strips to
motivate our work. Similar structures of alternating dense and sparse row/column
clusters exist in real-world datasets from graphs, optimization and economics prob-
lems, etc. [48]. We simulate this on a tiled manycore architecture (Section 5.3) with
two processing tiles. We report the energy-efficiency (GFLOPS/s/W), instantaneous
clock frequency and L2 cache bank size with a dynamic reconfiguration scheme ver-

sus the best static hardware configuration in Figure 5.1. We first note the presence
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Figure 5.1: Left. Illustration of outer product (OP) SpMM showing implicit phase
changes due to switch from dense to sparse outer products (column x row). Right.
Execution timeline of OP-SpMM on a 128x128, 20% dense matrix and its transpose.
Shown are the gains achieved using a dynamic reconfiguration scheme that adapts
the hardware to these phase transitions.

of the two explicit phases, corresponding to the multiply (ending at ~ 3.5 ms) and
merge phases of OP-SpMM. The dynamic control scheme observes the off-chip band-
width utilization to be ~100% during multiply (Figure 5.1 — bottom), and acts by
applying DVFS to lower the clock speed and balance the compute-to-memory ratio
of the system. This improves the multiply phase energy-efficiency over the baseline
by ~2x.

We further note the presence of implicit phases arising from the computation of
dense columns with corresponding dense rows during the first phase (Figure 5.1 — left).

These implicit phases are adapted to by adjusting the dynamic L2 cache capacity,
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based on observation of a combination of various hardware counters (not shown in
figure). Thus, exploiting both types of phase changes lead to an overall speedup of
22% and energy savings of 1.5x over the static baseline.

In summary, this simple example illustrates the opportunities associated with
dynamic reconfiguration, which we seek to exploit with our proposed framework,

SparseAdapt.

5.2.2 Related Work

A few prior work have explored run-time adaptation for improving the efficiency

of existing hardware architectures.

5.2.2.1 Adaptation for Traditional Hardware

Dubach et al. [56, 55] propose a maximum likelihood estimation (MLE) predictive
model that adapts the sizes of microarchitectural structures in a single-threaded, out-
of-order processor. CHARSTAR [173] uses a multilayer perceptron (MLP) model that
accounts for the clock hierarchy and topology, and proposes a mechanism that jointly
optimizes for both DVFS and clock-aware power gating. Both of these work are
proposed only for single-core systems. Tarsa et al. [197] propose an adaptive CPU
based on Intel SkyLake that uses random forests to dynamically adjust the issue
width of a clustered core. These work explore hardware adaptation for traditional
workloads only have explicit phases. SparseAdapt, on the other hand, is designed
for manycore hardware, and caters to workloads that have both explicit and implicit
phases. Moreover, these prior techniques rely on SimPoint [166] for fast generation of
offline profiling data. However, SimPoint fails when workloads have diverse implicit
phases, arising from unstructured sparsity, throughout program execution. Our work
instead considers end-to-end simulations, as no assumptions can be made about the
nature of the input matrices.

Lukefahr et al. [133] introduce Composite Cores, that uses a linear regression
based reactive online controller to switch execution between big and little pengines in
a heterogeneous system. Flicker [167] is an adaptive multicore architecture designed
to adapt to varying allocated power constraints. SOSA [52] is a resource manager
that targets manycore systems and dynamic workloads using rule-based reinforcement
learning (RL). The heavy weighted RL model require additional acceleration that the
authors demonstrate on an FPGA. Sartor et al. [177] propose an MLP model coupled
with a polymorphic Very Long Instruction Word (VLIW) processor that is trained at
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design-time and predicts at runtime. However, this framework predicts a static con-
figuration for a kernel when the kernel is re-executed, whereas SparseAdapt adapts to
the dynamic phase changes during run-time. Yukta [170] applies the structured sin-
gular value (SSV) control for EDP optimization on a multicore big. LITTLE system.
Imes et al. [85, 84| propose a runtime system called POET that uses control the-
ory and optimization techniques to minimize energy consumption while meeting soft
real-time constraints, demonstrated on both big.LITTLE systems-on-chips (SoCs)
and multicore server-class systems. However, these prior approaches do not explore
configuration parameters associated with CGRAs, and do not explore workloads that

have varying implicit phases.

5.2.2.2 Adaptation for CGRAs

CGRASs have gained traction recently as they promise to achieve near-ASIC per-
formance with post-fabrication adaptation [128]. Earlier work have considered only
compile-time CGRA reconfiguration for simplicity and ease-of-use [171, 5, 68, 36].
More recent work have alluded to the limitations with static adaptation, especially for
irregular workloads like sparse linear algebra. Recent techniques have thus adopted
dynamic scheduling and dataflow techniques to harness parallelism [146, 35, 208|.
However, work on dynamic hardware reconfiguration that caters to both implicit and

explicit phases in the workload has been comparatively lacking.

5.2.2.3 Comparison with ProfileAdapt

The technique proposed in this chapter is closely related to the work by Dubach et
al. [56] (referred to as ProfileAdapt in this work) in terms of the offline training, hard-
ware telemetry and inference methodologies on the predictive model. However, there
are several key differences. ProfileAdapt executes in the following order: detection
of a new phase, execution of the new phase in a profiling configuration (where each
reconfigurable parameter takes its maximum value) for a certain duration, hardware
telemetry, inference on the predictive model, followed by reconfiguration and execu-
tion on the predicted configuration.

Since ProfileAdapt reconfigures at coarse phase boundaries, it cannot adapt to
short-lived implicit phases due to the reconfiguration cost associated with switch-
ing to the profiling configuration. In contrast, our approach removes the need for
a profiling configuration and instead directly feeds back the hardware configuration

parameters as inputs to the predictive model. This enables us to reconfigure at a finer

90



granularity with low-overhead, which is necessary to adapt to the implicit phases in
sparse computation. Additionally the evaluation in [56] relies on an external phase de-
tection mechanism (e.g. SimPoint), whereas we assume that such a mechanism is not
feasible for implicit phases. Our approach considers hardware reconfiguration at fixed

epochs, guided by our predictive model and reconfiguration-cost aware heuristics.

5.3 Hardware Design

We provide background on the Transmuter architecture [155], followed by the
configuration parameters that we explore and implement in this work. We then

discuss the performance counters that we implement and the cost of reconfiguration.

5.3.1 Architectural Background

SparseAdapt is integrated with the runtime of the Transmuter [155] hardware, a
detailed architectural description of which was presented in Chapter IV. This section
delves into the microarchitectural and system-level design changes made to Trans-
muter to support dynamic reconfiguration, in addition to the configuration parame-
ters considered.

In this work, we enhance Transmuter and implement a feedback loop between a
host CPU and the Transmuter device, as shown in Figure 5.2. The host executes
Python code and is responsible for offloading parallelizable kernels to Transmuter
for accelerated execution. The first step associated with kernel dispatch consists of
selecting a version of the code to execute on the target. This algorithmic selection
is dependent on the properties of the input data, and the kernel itself. The next
steps involve allocation of input and output buffers in the HBM, streaming data
out, triggering Transmuter to start, waiting for it to finish while executing runtime
routines, streaming data back in, and de-allocating memory. In this work, we assume
shared physical memory between the host and Transmuter.

During execution, Transmuter sends performance counters to the host at continu-
ous intervals (epochs). Using this information, the host makes a decision about when
and how the architecture should be reconfigured. Actual reconfiguration is handled

by dedicated blocks incorporated in the design.

5.3.2 Configuration Parameters

In this work, we consider seven hardware configuration parameters, namely, L1
R-DCache type, L1 R-DCache capacity, L2 R-DCache capacity, L1 sharing mode,
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Figure 5.2: Simplified illustration of the Transmuter architecture and feedback loop
between the host CPU and Transmuter.

L2 sharing mode, system clock frequency, and prefetcher aggressiveness. The values
considered for these parameters are listed in Table 5.1. While much of prior work
(Section 5.2.2) focuses on reconfiguration of the core microarchitecture, our work
delves into reconfiguration of the interconnect, memory and DVFS.

We next discuss the microarchitectural aspects and overhead of reconfiguring each

selected hardware parameter.

5.3.2.1 Dynamic Voltage-Frequency Scaling (DVFS)

We implement a simple clock divider composed of N flip-flops that enables gen-
eration of clocks with frequencies of f/2, f/4,..., f/2", where f is the frequency of
the system clock. For circuit-level simplicity, we consider global DVFS, i.e. the same
clock feeds into each microarchitectural block, as opposed to per-core or per-block
DVFS. The overheads and switching times can be kept small through the use of
on-chip regulators [107], or dual-voltage rail designs [168, 138] at the expense of a
small area overhead.

In our DVFS model, the target voltage is calculated based on the formula f o
(Vbp — Vin)?/Vpp, where f is the clock frequency, Vpp is the supply voltage, and Vy,
is the threshold voltage. Given a target frequency fiqrqer, the target supply voltage is

calculated based on the following equation:

(Vop—Va)? 9
f o Vbbb o (vDD - V;f) % ‘/target
- ~Vi)2 )
ftarget M VDD (‘/target - ‘/15)2
‘/target
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Table 5.1: Hardware configuration parameters for the evaluated Transmuter design.

‘ Type H Parameter ‘ Values Assumed ‘ Count ‘
L1 R-DCache type? Cache, SPM 2
Categorical L1 sharing mode Shared, private 2
1.2 sharing mode Shared, private 2
L1 R-DCache bank capacity® | 4 kB — 64 kB : 2x 5
Ordinal L2 R-DCache bank capacity | 4 kB — 64 kB : 2x 5
System clock frequency 31.25 MHz — 1 GHz : 2% | 6
Prefetcher aggressiveness 0 (off), 4, 8 3
‘ Total Count H ‘ ‘ 3,600

2QOnly this parameter is configured at compile-time. >Not varied for SPM mode.

‘/target ‘/target Z 13‘/;‘,
1.3V,  otherwise

‘/target =

The nominal supply voltage Vpp, nominal frequency f and the threshold voltage
V; are constants and are derived from empirical measurements. The minimal target
voltage allowed for correct functionality is set to be 30% higher than V;. The target

voltage Vigrger calculated is then used to scale down the total power of the system by

( Vi;Dri)et )2 .

DVES allows for lowered dynamic power consumption, at the cost of some perfor-
mance. However, the performance loss is negligible if the system is memory-bounded,
which depends on the amount of compute resources, external memory bandwidth and,

crucially, the application and its input data.

5.3.2.2 Cache Capacity

We re-implement each R-DCache bank as a set of sub-banks, i.e. each logical
R-DCache bank is composed of a set of physical SRAM and tag arrays. There is
a small combinatorial logic overhead to select between different set-index and tag
bits, depending on the active cache capacity value. A larger cache allows for fewer
misses, at the cost of increased latency and energy per access. Adaptable cache sizing
has been explored in the past and shown to improve energy-efficiency in traditional
architectures [195].

5.3.2.3 Sharing Mode

Transmuter is composed of swizzle-switch network based crossbars [182] that are
augmented with XCUs. The XCU incorporates the ability to reconfigure the L1 and
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L2 memory between a shared and a private configuration, across the GPEs within a
tile for the L1 and across the tiles for the L2.

The choice of sharing mode can have either a positive or negative effect on perfor-
mance. On one hand, the shared R-XBar configuration incurs larger access latency,
due to the overhead of arbitration between different requesters accessing the same
resource(s), but allows for data sharing, which can lead to better hit-rates and im-
proved reuse. On the other hand, the private mode offers a fixed, 1-cycle access
latency, but privatizes the memory resource to the requester. Privatization can re-
duce cache pollution if the system encounters thrashing, but also causes duplication
for shared data.

5.3.2.4 On-Chip Memory Type

We consider reconfiguration between two on-chip memory types, cache and scratch-
pad memory (SPM). SPM consumes lower power than an equivalent cache by power-
gating the tag array and other unused logic. SPM is also faster when there is reuse
across a set of arbitrary (but known) memory locations. It thereby takes advantage
of a tailored replacement policy at the cost of additional instructions to orchestrate
data. In contrast, a cache trades-off the flexibility of SPM by implicitly managing
data, and thus generally outperforms for regular memory accesses or when there is

low reuse.

5.3.2.5 Prefetcher Aggressiveness

The L1 and L2 layers in Transmuter consist of a stride prefetcher based on a
PC-based index table. We incorporate the ability to switch between different degrees
of prefetching, i.e. the number of cachelines to prefetch ahead. The usefulness of
this prefetcher is correlated with the amount of structure in the non-zeros within the
input matrices. For highly unstructured data, turning off the prefetcher can lead to

minimum performance degradation while saving power.

5.3.3 Performance Counters

We implement low-overhead performance counters in the hardware that are reset
after they are queried. These counters are listed in Table 5.2. The telemetry data
is averaged both spatially (across all replicated hardware blocks) and temporally

(normalized to the elapsed cycle count of the epoch) by the runtime. The runtime
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routine performs lightweight pre-processing upon receiving the telemetry data, such
as normalization and feature set augmentation.

The performance counters are hand-picked based on architectural knowledge and
correlation studies, such that we select those that have small cross-correlations and
are oblivious to the code being executed. At the same time, they are designed with
low hardware overhead considerations.  The performance counters for GPE/LCP
cores are available off-the-shelf. The remainder are constructed as simple saturating
counters that poll on existing wires, with the exception of the crossbar contention-to-
access-ratio for which dedicated wiring is used to detect bank contentions. Overall,
we estimate the storage overhead to be < 1 kB for the evaluated 2x8 system, and
~ (42.5-M - N) B for large M x N systems.

Query Mechanism. The performance counters are memory-mapped and accessed
by the host using a PCle-like protocol. The counter data is queried and streamed out
to DRAM, before being loaded by the host. These steps take place in the shadow of

the workload executing on the device.

5.3.4 Cost of Telemetry and Reconfiguration

We estimate the decision-making and communication process to cost on the order
of 50-100 host clock cycles. The greater runtime reconfiguration cost arises from the
overhead to flush caches, as we pessimistically assume that the entire cache hierarchy
is dirty prior to reconfiguration. The prediction problem is further complicated,
because not all configuration changes incur the same cost, as not all configuration
changes require cache flushing, or require local flushes only (i.e. from L1 to L2). As

such, we introduce the following taxonomy of our configuration parameters.

o Coarse-Grained. Hardware parameters that require substantive change in the
code running on the GPE and LCP cores, in addition to cache flushing. Both

the memory type and dataflow configuration changes belong to this category.

e Fine-Grained. Parameters that require at most a cache flush, but do not

impact the code executed on the cores.

o Super Fine-Grained. Parameters that incur a small, fixed reconfiguration
cost and can be reconfigured without impacting the code or even necessitating

a cache flush.

We assume in this work that the L1 memory type parameter is selected by the

compiler and use SparseAdapt to predict for the remaining six parameters (Table 5.1).
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Table 5.2: List of hardware counters in this work.

’ Hardware Block H Performance Counters ‘

Cache/SPM access throughput, i.e. number of
accesses per unit time, cache occupancy, i.e.
R-DCaches fraction of valid tags in the bank, overall miss
rate, number of prefetches issued per cache ac-
cess, current cache capacity.
Contention-to-Access Ratio, i.e. ratio of num-
R-XBars ber of contentions across all output ports to the
number of accesses through the crossbar.
Floating-point instructions per cycle (including
LCP/GPE Cores loads and stores), overall instructions per cycle
(IPC), clock speed.

Read and write memory bandwidth utilization,
Memory Controller || i.e. used bandwidth normalized to available
bandwidth.

This is done to avoid the cost of checkpointing and rollback that would be incurred
while switching between the cache and SPM modes for L1 memory. For fair compar-
isons in our evaluation, we compare against distinct static configurations that each

perform best for the cache and SPM modes, respectively.

5.4 Predictive Model

We illustrate the functionality of the proposed SparseAdapt framework in Fig-
ure 5.3. SparseAdapt partitions the program execution into multiple epochs. An
epoch finishes when the floating-point instructions executed (inclusive of loads and
stores), averaged across spatial hardware instances, exceeds a fixed value. We use
this instead of considering all operations, in order to discount operations that do not
affect program behavior, such as spin-waiting on a lock variable. At the end of each
epoch, a sequence of three operations is performed, namely, (i) hardware telemetry,
(ii) inference using a predictive model, and (iii) reconfiguration of the hardware.

First, a set of performance counter registers in the Transmuter design are polled
and their values are streamed through the off-chip interface to the host processor.
Then, the predictive model is invoked on the host, and it is responsible for predicting
the parameters of the hardware configuration that it deems to be the best for the
next epoch of execution.

In contrast, the state-of-the-art ProfileAdapt, switches to a profiling configuration

before the hardware telemetry is performed. It further assumes that the hardware has
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Figure 5.3: Overview of SparseAdapt illustrating how the predictive model is used to
read performance counter (PC) feedback and predict the best configuration for the
remainder of the program phase.
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Figure 5.4: Timing of SparseAdapt compared to ProfileAdapt [56] considering A.
fixed epochs, and B. epoch size equal to program phase size. SparseAdapt alleviates
the overhead of switching to the profiling configuration.

the ability to dynamically predict phases at runtime. This is a highly non-trivial task,
particularly for real-world datasets in sparse computation, that produce implicit phase
transitions during execution. We thus illustrate two versions of ProfileAdapt [56] in
Figure 5.4. A. represents the worst-case scenario that relies on reconfiguration at
epoch-granularity when phases cannot be determined through other mechanisms. B.
shows the execution timeline assuming phase changes could be known in advance,
which is idealistic given the irregular nature of the sparse workload.

As we will see in the evaluation (Section 5.6.4), our approach is superior to both
A. and B., by virtue of eliminating the back-and-forth switch to the profiling config-
uration. While this may be of limited importance if the program phases are relatively
stable and sufficiently long, it helps achieve significant savings for bursty program be-
havior consisting of unique implicit phases, such as with the SpMM example shown
in the motivation (Figure 5.1). The rest of this section is dedicated to discussion on

the predictive model.
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5.4.1 Model Construction

The predictive model (Figure 5.3) can be formulated as a function f : X -
Y where X is a tuple of selected performance counter values, and Y is the set of
configuration parameter values. Similar to the ProfileAdapt approach, we consider
each configuration dimension Y; V¢ € Y to be conditionally independent given the
values of performance counters X , in order to simplify the model. The predictive
model is thus an ensemble of independent functions f;,7 € M where M is the space
of the configuration parameters (Table 5.1).

We describe the methodology we use to determine the “best” architectural con-
figuration, where “best” refers to the highest GFLOPS/s/W (Energy-Efficient mode)
or (GFLOPS/s)?/W (Power-Performance mode). This is illustrated in Figure 5.5,
assuming three configuration parameters, Yy, Yi---Y,,_1 with m = 3, for ease of

illustration. It involves these steps:

1. Random Sampling. We first sample K unique configurations from the space
of all architectural configurations. Then, given a program phase P and input
dataset D, we execute the code on each of the K configurations. We record the

“best” among these K configurations as Yp prand-

2. Neighbor Evaluation. We next evaluate the configurations in the m-dimensional

hyper-sphere surrounding Yp prena, and record the “best” one as Yp preigh-

3. Dimension Sweep. Finally, starting with }7& Pneigh, We sweep each configura-
tion dimension in isolation and record the “best” points as ¥, ¥f and ¥ (orange
R R Sk

dots in Figure 5.5). We denote the point ?Dyp,sweep = {U$,u5, 95} (starred in
figure) as the best configuration given D and P.

5.4.2 Dataset Construction and Training

Our approach differs from ProfileAdapt [56] in how we construct the training
dataset that is used for training our predictive model. Our key insight is to use the
values of configuration parameter of the last epoch as inputs to the predictive model.
This gives us access to vastly more amount of training data, since for each program
phase P we can construct K examples containing performance counter inputs that
should trigger reconfiguration to the “best” hardware configuration (Figure 5.6). This
approach also helps the model generalize and learn to predict from any configuration
to the best configuration, rather than just from the profiling configuration to the best

configuration.
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Figure 5.5: Simulations to find the “best” configuration are performed in three steps:
random sampling, neighbor evaluation and dimension sweep.

5.4.3 Choice of Predictive Model
We pose the following requirements from an ideal model.

o Accuracy. The model should have high accuracy in predicting the best config-
uration parameters for the next epoch given the current performance counters

of the current epoch.

» Generalizability. The model should generalize and predict for counter values
that it has not been trained with.

e Overhead. The inference overhead should be sufficiently low such that the
time cost of executing telemetry, inference, and reconfiguration < the epoch
size. This is necessary to enable fine-grained reconfiguration, in order to adapt

to short-lived implicit phases.

We experimented with four machine learning models, namely decision trees, ran-
dom forests, linear regression, and logistic regression. We found similar inference
accuracies between decision trees and random forests, whereas the linear and logis-
tic regression models gave us poor accuracies. We thus selected decision trees (with
pruning) as our predictive model, since they adhere to the aforementioned constraints
the best.

5.4.4 Reconfiguration Cost-Aware Prediction

As discussed earlier, some architectural parameters incur a higher reconfigura-

tion cost. While the super fine grained parameters incur relatively lower cost (Sec-
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Figure 5.6: The training dataset uses both the current configuration tuple ?D, p,s and
the performance counters Xp pg, given an input dataset D, program phase P, and
sampled configuration S. The predictive model { fo, f1,- -+ , fin_1} learns the mapping

of {YD,P,Sa XD,P,S} — YD,P,sweep-

tion 5.3.4), frequent reconfiguration for other parameters, such as cache capacity, can
lead to performance degradation even if the prediction is accurate. In order to pre-
vent the model from switching high-cost parameters too frequently, we add a degree

of hysteresis through a set of heuristic-based schemes:

o Conservative. The predictor does not perform reconfiguration for a parameter

that incurs more than a fixed cost.

o Aggressive. A scheme where the predictor always chooses to reconfigure based

on its decision, regardless of the cost.

o Hybrid. For each configuration parameter, the predictor only reconfigures if
the time cost of reconfiguring along that dimensions is within a certain per-
centage of the previous epoch’s elapsed time. We consider this instead of an
absolute threshold on the reconfiguration time, so as to penalize frequent bursts
of reconfiguration within short periods (shorter epoch times), but allow for them
when they occur occasionally (larger epoch times). The percentage threshold

is selected empirically based on our experiments.

5.5 Experimental Setup

This section describes our training data collection and system modeling method-

ologies, followed by descriptions of baselines used for evaluation.
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5.5.1 Data Collection and Model Training

The ideal training dataset should produce a high variability in the program be-
havior in order to stimulate a wide range of performance counter values. For this
purpose we select a set of sparse matrices with a broad range of input working set
sizes, ranging from 1.5 kB to 67 MB. We further vary the external memory band-
width so as to stimulate the system with both memory-bound and compute-bound
scenarios. Overall, we generate ~ 360k training examples (total for two modes of op-
eration) by sweeping the parameters in Table 5.3 and running them on ~ 285 discrete
hardware configurations.

We consider uniform random datasets as our inputs, so that we can safely consider
the entire program phase to have uniform behavior. Each training example is gener-
ated by running a program phase P until the program behavior stabilizes, terminating
it, and sampling the performance counter values. For outer product based SpMM,
there are two program phases, multiply and merge, while for SpMV the multiply and

merge steps happen in tandem.

Predictive Model Training. We train a decision tree classifier for each of our con-
figuration parameters. While a clear advantage of our choice of decision trees as the
predictive model lies in its explainability, decision trees are prone to overfitting [23].
We thus train our decision trees using k-fold cross-validation [12] with k = 3, while
sweeping the hyperparameters of criterion, max_depth, and min_samples_leaf
using Python and Scikit-learn [163].

5.5.2 System Modeling

We used gem5 [22, 21] to model the Transmuter system based on the architectural
specification in [155]. A power estimator is constructed using a combination of
RTL synthesis reports for crossbars, Arm specification document for the cores, and
CACTT [143] for the caches and SPM. The estimates are scaled to 14 nm across the
evaluated systems. We made additional modifications to the simulator and power
estimator to model the microarchitectural changes from Section 5.3.2.

For workload simulation, we do not use SimPoint as we evaluate for matrices
with arbitrary sparsity structures (Section 5.2.2). This limits the maximum sizes of
matrices we can simulate within a reasonable time, since we simulate each input-
kernel combination with different hardware configurations. Due to these constraints,
we consider a relatively small Transmuter system on which we exercise sparse linear

algebra kernels with moderate dataset sizes which are much larger than the on-chip
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Table 5.3: Parameter sweeps to generate training data.

Kernel | Algorithm Matrix Matrix Memory
Name Variant Dimension Density Bandwidth (GB/s)
SpMM || Cache, SPM | 128 — 1k : 2% | 0.2 — 13% : 2% | 0.01 — 100 : 10x
SpMV || Cache, SPM | 256 — 8k : 2% | 0.2 — 13% : 2% | 0.01 — 100 : 10

memory. Specifically, we consider a Transmuter system that has 8 GPEs (8 L1 cache
banks) per tile, and 2 tiles (2 L2 cache banks). We also assume a reduced off-chip
memory bandwidth of 1 GB/s in order to maintain similar compute-to-memory ratio
as the full system in [155].

Reconfiguration Cost. Following the taxonomy in Section 5.3.4, we model variable
penalty for reconfiguration of each parameter. Changes to the super fine grained
parameters are assigned a fixed cost of 100 cycles. An increase in cache capacity
also incurs this fixed cost, as our cache implementation (described in Section 5.3.2.2)
allows for it.

For reconfiguration of the fine-grained parameters, we pessimistically assume that
all the cache lines are dirty. We thus assign a penalty equal to the time to flush all
the R-DCache banks in a layer to the next level of hierarchy, i.e. L1 to L2 (100—
961k cycles, up to 157 pJ energy), and L2 to main memory (100-122k cycles, up to
22 nJ energy) with 1 GB/s off-chip memory bandwidth. In reality, these overheads
are expected to be lower due to fewer dirty lines, since only the partial products
and bookkeeping data structures incur read-modify-write operations whereas the rest
can be written directly to main memory. The host selects the optimal clock speed
for cache flushing based on the mode of operation, i.e. Energy-Efficient or Power-
Performance, based upon a lookup table that is indexed by the operational mode,
L1 capacity per bank, and L2 capacity per bank. A significant amount of energy
savings is obtained by power-gating the cores, ICaches, work and status queues, and
the synchronization SPM while caches are being flushed.

The coarse-grained parameter decision is assumed to be made at compile-time,

and so does not impact the runtime.

5.5.3 Comparison Points

We consider several comparison points for evaluating the improvements achieved

using SparseAdapt:

« Baseline. A non-reconfiguring Transmuter system that achieves the best av-

erage metric across a broad set of applications (dense and sparse) evaluated
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in [155].

o Best Avg. A non-reconfiguring system that achieves the best average metric
for the SpMM and SpMV kernels on the datasets considered in this work.

e Max Cfg. A non-reconfiguring system that has maximum values for each
ordinal configuration parameter, and that uses shared caches in both the L1
and L2.

o Ideal Static. A non-reconfiguring system (from our sampled space) that

achieves the best average metric for the given sparse algebra routine and dataset.

o Ideal Greedy. A system that dynamically reconfigures during execution of
the routine. It greedily selects the configuration that is optimal for the next
epoch. For each epoch, we choose the sampled configuration state that achieves

the best metric when adjusted for the reconfiguration cost.

o Oracle. A system that dynamically reconfigures assuming full knowledge of
the entire program execution. It selects the sequence of configuration changes
that result in the maximum average metric value. We model this as a dynamic
programming problem and solve it using a modified Dijkstra algorithm to derive

the globally optimal sequence for the sampled configurations.

We note that Ideal Static, Ideal Greedy and Oracle are configurations that cannot
be determined at runtime, and thus are hypothetical systems used for upper-bound

studies in this work. All the static configurations are specified in Table 5.4.

5.5.4 Choice of Dataset and Parameters

We evaluate SparseAdapt on SpMM and SpMV kernels using a variety of input
datasets. Without loss of generality, we perform our evaluation on square matrices,
stored in compressed sparse column (CSC) for Matrix A and compressed sparse row
(CSR) for Matrix B (or as an array of index-value tuples for vector B).

Synthetic Dataset. We generate uniform-random matrices using the SciPy library
and for power-law matrices, we use the R-MAT generator [31] with parameters A =
C = 0.1 and B = 0.4. The properties of these matrices are listed in Table 5.5 (top).

They are selected to show trends across increasing NNZ count with a fixed dimension
(U1 to U3 and P1 to P3).
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Table 5.4: Specifications of baseline Transmuter hardware.
L1 Bank L2 Bank Clock | Pref.
Config Name Size (kB) L1 Mode Size (kB) L2 Mode (MHz) | Age.
Baseline 4 Shared 4 Shared 1000 4
Best Avg (L1: cache) || 4 Private 4 Shared 1000 0
Best Avg (L1: SPM) || 4 Private 32 Private 500 8
Maximum 64 Shared 64 Shared 1000 8

Table 5.5: Properties of matrices used for evaluation: synthetic (top) and real-
world [122, 48] (bottom).

| ID || U1 | U2 | U3 | P1 | P2 | P3 |
Type || Uniform | Uniform | Uniform | Power-Law | Power-Law | Power-Law
Dim. || 8,192 8,192 8,192 8,192 8,192 8,192
NNZ || 25,000 50,000 100,000 | 25,000 50,000 100,000
Matrix Name Matrix Name
ID Matrix Dim., NNZ | Plot || ID Matrix Dim., NNZ | Plot
Application Domain Application Domain
California EX3
RO1 || (9.7K, 16.2K) R09 || (1.8K, 52.7K)
(Directed Graph) (Comp. Fluid Dyn.)
Si2 Oregon-1
R02 || (0.8K, 17.8K) R10 | (11.5K,46.8K)
(Quant. Chemistry) (Undirected Graph)
bayer09 2 as-22july06
R0O3 || (3.1K, 11.8K) - A || R11 || (23.0K, 96.9K)
(Chemical Simulation) |~ (Undirected Graph)
besstk08 crack
R04 || (1.1K, 13.0K) R12 || (10.2K, 60.8K)
(Structural Problem) (2D/3D Problem)
coaterl o kineticBatchReactor 3
RO5 || (1.3K, 19.5K) . || R13 || (5.1K, 53.2K)
(Comp. Fluid Dyn.) N (Optimal Control)
gemat12 nopoly
RO6 || (4.9K, 33.0K) R14 || (10.8K, 70.8K)
(Power Network) (Undirected Graph)
p2p-Gnutella08 soc-sign-bitcoin-otc
RO7 || (6.3K, 20.8K) R15 || (5.9K, 35.6K)
(Directed Graph) (Directed Graph)
spaceStation_ 11 wiki-Vote 11
RO8 || (14K, 19.0K) R16 || (8.3K, 103.7K)
(Optimal Control) (Directed Graph)

Real-World Dataset. We derive real-world matrices for our evaluation from two

popular sparse matrix collections, namely SuiteSparse [48] and Stanford’s SNAP [122].
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These matrices are described in Table 5.5 (bottom).

We evaluate SpMM for matrices RO1-R08, and SpMV using R09-R16. We select
comparatively more modest matrix sizes for SpMM since it is computationally more
expensive to simulate than SpMV. Sizes of this order provided us a balanced trade-off
with the resources required to perform cycle-accurate simulations.

We use a small epoch size of 500 instructions for SpMV to capture implicit phases
at runtime. For the same epoch size, SpMM generates significantly more performance
counter data than SpMV. In order to consume tractable amount of data with the
given resources, we use a larger epoch size of 5k for SpMM. However, we note that
SparseAdapt itself is not limited to any specific workload or epoch size, and the
benefits reported in this section are representative of larger datasets. Finally, unless
otherwise noted, we assign the conservative policy for SpMM and hybrid policy with
40% tolerance for SpMV based on sweep studies on the real-world dataset for each

kernel.

5.6 Evaluation

We evaluated our proposed framework first against the Baseline, Max Cfg and Best
Avg configurations, followed by comparison against multiple oracle control schemes.
We then present insights into our predictive model. This is followed by comparison
against ProfileAdapt [56]. We conclude with studies on the impact of SparseAdapt

policies and the gains achieved across memory bandwidth sweeps.

5.6.1 Comparison with Standard Configurations

We discuss our analysis of improvements over the Baseline, Max Cfg and Best

Avg systems here.

5.6.1.1 Analysis on Synthetic Dataset

We report evaluation of SpMV on our synthetic dataset against a uniform-random
vector of density 50%. We omit our analysis of SpMM on the synthetic dataset, for
brevity.

Power-Performance Mode. Figure 5.7 shows the performance in GFLOPS/s (left)
and energy efficiency in GFLOPS/s/W (middle) of Baseline, Best Avg, Max Cfg and
SparseAdapt. In this mode, SparseAdapt delivers average performance gains of 1.8x

over Baseline. In this mode, the energy efficiency achieved is 3.5x better than Max

105



EEl Max Cfg Best Avg SparseAdapt
Power-Perf. Mode | [ Power-Perf. Mode ) ( Energy-Eff. Mode |

-
1

3 E _C2
X - o2X - © 2X
{D‘% +3.10 (5 o
3 : :
w w
4 N1X- ~N 11X
v n
G 1 £ £
L | e
© s NNy e
P1 P2 P3 U1 U2 U3GM P1 P2 P3 U1 U2 U3SGM P1 P2 P3 U1 U2 U3GM

Figure 5.7 Gains over Baseline for SpMV on synthetic matrices for Power-
Performance (left, middle) and Energy-Efficient (right) modes for L1 as cache.

Cfg, while the average performance remains within 34%. Although SparseAdapt
achieves only 6% better efficiency than Best Avg, it delivers 1.6x better performance.

Energy-Efficient Mode. As can be seen in Figure 5.7 (right), SparseAdapt achieves
an average energy-efficiency gain of 1.5-1.9x over the Baseline. The gains for both
the power-law and uniform random matrices are observed to roughly saturate with
increasing the density, as SparseAdapt follows the Oracle decisions more closely, par-
ticularly for the clock frequency and L2 mode. The Max Cfg configuration is 2.9x
less energy efficient than Baseline despite being faster. In comparison, the Best Avg

achieves 1.1x over the Baseline.

5.6.1.2 Analysis on Real-World Dataset

We present our analysis of SpMM on matrices RO1-R08 in Table 5.5. Each matrix
is multiplied with its transpose, i.e. C = A - AT, where A is the input and C is the

result.

Power-Performance Mode. The gains for this mode are shown in Figure 5.8.
The scope of performance improvements over Baseline is smaller than in the case of
SpMV (for our synthetic dataset), and SparseAdapt achieves similar performance as
Best Avg (within 8% of Max Cfg). However, SparseAdapt delivers this performance
at 1.3x less energy over Best Avg , and is 5.3x more efficient than Max Cfg.

Energy-Efficient Mode. Figure 5.8 (right) shows the efficiency gains with SparseAdapt,
which are significantly higher (1.8x) than Baseline, and is better than Best Avg by
(1.6x).
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Figure 5.8: Improvements over Baseline for SpMM on real-world matrices in Power-
Performance (left, middle) and Energy-Efficient (right) modes for L1 as cache.

Table 5.6: TEPS per Watt gains over Baseline for graph algorithms in Energy-Efficient
mode with L1 as cache.

| | [R09 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | GM |

BFS Max Avg 1.26 | 1.14 | 1.11 | 1.07 | 1.17 | 1.13 | 1.17 | 1.24 | 1.16
SparseAdapt || 1.28 | 1.32 | 1.44 | 1.34 | 1.15 | 1.40 | 1.27 | 1.27 | 1.31
SSSP Max Avg 121 | 1.13 | 1.10 | 1.03 | 1.13 | 1.05 | 1.15 | 1.18 | 1.12
SparseAdapt || 1.21 | 1.43 | 1.45 | 1.27 | 1.17 | 1.31 | 1.29 | 1.21 | 1.29

5.6.1.3 Analysis on Graph Algorithms

We implement two popular graph algorithms: breadth-first search (BFS) and
single-source shortest path (SSSP). Our implementations map vertex programs to
iterative SpMV operations, similar to GraphMat [194]. The end-to-end improvements
in traversed edges per second (TEPS) per Watt are reported in Table 5.6, showing
that SparseAdapt delivers gains of up to 1.5x over Baseline (1.3x over Best Avg).
The largest gains are observed on graphs with highly power-law behavior, for instance,
R10, R11 and R14. In contrast, the scope of improvement over Best Avg is small for
R09, as it consists of local connections only and thus the non-zeros are distributed

roughly uniformly along the diagonal (Table 5.5).
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Figure 5.9: Improvements over Baseline for SpMV on real-world matrices in Power-
Performance mode with L1 as cache.
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Figure 5.10: Improvements over Baseline for SpMV on real-world matrices in Power-
Performance mode with L1 as SPM.

5.6.1.4 Analysis with Cache/Scratchpad L1 Memory

As noted in Section 5.3.4, we assume that the choice of L1 mode (cache or SPM)
is made at compile-time. We thus have two configurations for the two L1 modes,
listed in Table 5.4. The results for Power-Performance mode on SpMV for our real-
world dataset (R09-R16) with L1 as cache and SPM are shown in Figure 5.9 and
Figure 5.10, respectively. The performance gains are larger for L1 SPM (1.9x over
Best Avg) compared to L1 cache (1.3%x over Best Avg). This is 1.2x better than Max
Cfg for cache and 1.2x better than Max Cfg for SPM, while being 4.3x and 6.2x
more energy-efficient for the two L1 modes, respectively. The cache mode benefits
are 1.5x better over Baseline, albeit with 1.2x greater energy, and this is due to the

predictor selecting large L2 cache sizes.

5.6.1.5 Insights from Configuration Choices

We observe that the model applies DVFS based on the bandwidth requirement
of the explicit phase (Section 5.2.1), and selects faster clocks when there is greater

data locality. The L1 size choice is correlated to the cache occupancy, however the
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number of reconfigurations are curbed based on our hybrid policy for fine-grained
knobs (Section 5.4.4). In comparison, the prefetcher aggressiveness and L2 capacity
are reconfigured more often, in response to implicit phases.

The L1 mode choice is highly data-dependent for SpMV’; for SpMM, we observe the
multiply phase to be amenable to shared L1 while merge performs better on private
L1, which are consistent with the description in [154]. When the L1 is configured
as SPM, the model selects larger L2 sizes to accommodate auxiliary data structures
(those not mapped to SPM) and spill variables. Finally, the model shows preference
for larger L1 and L2 capacities for the Power-Performance mode, and for smaller sizes

in the Energy-Efficient mode.

5.6.2 Comparison against Ideal and Oracle

We report our analysis of upper-bound studies to evaluate SparseAdapt and com-
pare it with Ideal Static, Ideal Greedy and Oracle. Figure 5.11 shows the results for
SpMM on real-world dataset R01-R0O8 with L1 as cache.

The gaps between each of these and SparseAdapt convey different insights; Ideal
Static represents the gains achievable if we had an ideal compile-time predictor that
can select the best average configuration. Ideal Greedy represents our SparseAdapt
approach if the predictive model was ideal, and Oracle shows the gains achievable if
the predictor had full knowledge of the future. While the performance gains are com-
parable between Oracle over Ideal Static (Power-Performance mode), we note the high
scope of improvements with dynamic reconfiguration (1.3-1.8x) for GFLOPS/s/W.
Compared to Oracle, SparseAdapt is within 13% performance for Power-Performance
mode, and just 5% efficiency for both the modes. SparseAdapt achieves an energy
efficiency within 3% of Ideal Greedy (Energy-Efficient mode), but interestingly the
gains are 11% and 6% better for performance and efficiency, respectively, in Power-
Performance mode. This is made possible by the policies introduced in Section 5.4.4,
which generate inertia toward frequent reconfiguration changes along costly dimen-
sions. When disabled, i.e. for the Aggressive scheme (not shown), the gains drop to
9% worse than Ideal Greedy for performance and energy efficiency, respectively.

Finally, for SpMV in the Power-Performance mode, SparseAdapt has 1% better
(4% worse) GFLOPS/s and is within 56% (15%) in terms of GFLOPS/s/W compared

to Oracle, for L1 as cache (SPM). We omit detailed analyses due to space constraints.
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Figure 5.11: Comparison against Ideal Static, Ideal Greedy and Oracle for SpMM on
real-world matrices in Power-Performance (left, middle) and Energy-Efficient (right)
modes for L1 as cache. Gains are shown compared to Baseline.

5.6.3 Analysis of Model and Features

We discuss insights from our analysis of hyperparameter exploration and feature

selection for our predictive model.

5.6.3.1 Effect of Model Complexity

As decision trees tend to overfit, it is important to regularize them at training.
We explore this phenomenon by training decision trees with depths ranging from
2 — 26 : 4. We analyze the gains achieved while independently varying the depth of
the tree corresponding to each of the configuration parameters one-at-a-time, while
using the original trees for the remaining. Here, original trees refer to the trees trained
using the methodology in Section 5.5. The improvements over the Baseline in Power-
Performance mode, for the case of SpMV with two matrices, P1 and P3, with a 50%
dense vector, are shown in Figure 5.12. Given that our Power-Performance mode
gives greater importance to performance optimization, GFLOPS/s is more sensitive
to model complexity compared to GFLOPS/s/W. The model for L1 size is relatively
unaffected by the model complexity, and this is due to inherent bias in our training

data. We observe that most of our training phases have their optimal L1 capacity
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Figure 5.12: Effect of complexity of predictive model on the gains with SparseAdapt
in Power-Performance mode for SpMV with L1 as cache.

values at either 4 or 8 kB per bank, which is explained by the diminishing performance

returns and higher power with increasing cache capacity.

5.6.3.2 Feature Importance

Scikit-learn computes feature importance as the total reduction of criterion (i.e.
function to measure the quality of a split in the tree) brought by that feature, also
known as Gini importance. The feature importance values of our performance coun-
ters in determining the decisions of the learned predictive model are shown in Fig-
ure 5.13. The counters are grouped into categories for ease of illustration. Overall,
we observe that counters probing the L1 R-DCache block and the memory controller
are the most important across the models for each configuration parameter. Interest-
ingly, the LCP counters (Instructions Per Cycle (IPC) and FP-IPC) are given more
importance than GPE counters in the trained models for most cases. This can be
attributed to the fact that because LCPs are responsible for scheduling work and
load-balancing, they have a “global” view of the activity within each tile, compared
to any individual GPE core. Overall, this analysis is useful to reason about which
counters are the most critical to have in order to balance prediction accuracy with

hardware requirements.

5.6.4 Comparison with ProfileAdapt Scheme

We compare SparseAdapt with a prior runtime reconfiguration scheme, Pro-

fileAdapt [56]. ProfileAdapt triggers a reconfiguration into a “profiling” configuration
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Figure 5.13: Relative importance of each class of performance counters for each
trained model (z-axis) in Power-Performance (left) and Energy-Efficient (right) modes
with L1 as cache.

at every epoch (naive) or phase boundary (ideal) as illustrated in Figure 5.4, which
can lead to large overheads especially for fine-grained phases. We implement Pro-
fileAdapt by adding the cost to reconfigure to and from the profiling configuration
into our Oracle sequence for each epoch (naive), and for epochs following which there
is a change in configuration (ideal).  Furthermore, it would be unfair to compare
ProfileAdapt and SparseAdapt at the same epoch size, since ProfileAdapt is designed
to work with much larger epoch sizes. We, therefore, perform an epoch size sweep and
select operational points for ProfileAdapt where the metric-of-interest is maximum,
which is 6k FLOPS for the Power-Performance mode and 5k FLOPS for the Power-
Performance mode. This is compared with the selected epoch sizes for SparseAdapt
(Section 5.5.4).

We evaluate the SparseAdapt scheme against ProfileAdapt for SpMV in cache
mode on the real-world dataset. Compared with the naive ProfileAdapt, which
switches to the profiling configuration at each epoch, SparseAdapt achieves signif-
icant improvements of 2.8x and 2.0x in GFLOPS/s and GFLOPS/s/W, respectively
for the Power-Performance mode, and 2.9x gain in GFLOPS/s/W for the Energy-
Efficient mode.

The ideal ProfileAdapt relies on a SimPoint based external phase detection mech-
anism which is unrealistic for workloads with implicit phases. Despite this idealistic
assumption, SparseAdapt with its ability to reconfigure at implicit phases with a low
overhead achieves gains of 1.7x and 1.1x GFLOPS/s/W for the Power-Performance
mode, and 2.4x in GFLOPS/s/W for the Energy-Efficient mode.
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5.6.5 Effect of Parameter Sweeps

Cost-Aware Reconfiguration Policies. In Section 5.4.4, we introduced our con-
servative, aggressive, and hybrid prediction policies for reconfiguration-cost aware
prediction. We evaluate the efficacy of each of these on SpMV execution (epoch
size 500) on representative matrices from the synthetic and real-world datasets, P3
and R12. The results are shown in Figure 5.14 (left). The conservative and hybrid
schemes with small tolerance for reconfiguration penalty overly restrict the system
from reconfiguring across implicit phases during execution, resulting in limited gains.
As the tolerance is increased, the reconfiguration cost starts dominating over the ben-
efit achieved from switching to the new configuration. The ideal tolerance values are
observed to be between 10-40% across most of our inputs, given this epoch size and

kernel.

Memory Bandwidth. SparseAdapt can be deployed without re-training in scenar-
ios where there is sharing of bandwidth across concurrent kernel executions, or if the
device is interfaced to a different type of main memory. We study the impact of these
scenarios by sweeping the external memory bandwidth. Figure 5.14 (right) shows the
energy-efficiency gains with SparseAdapt (in Energy-Efficient mode) for SpMV. The
trend of gains deviates from a smooth curve for smaller bandwidth values, because
the reconfiguration cost increases, thus increasing the impact of discrete parameter
choices. When the system is memory-bounded, as is generally true for sparse compu-
tation, SparseAdapt achieves large energy-efficiency gains of >3x over both Baseline
and Best Avg. It selects smaller cache sizes and slower clock speeds to recover both
static and dynamic energy, with negligible performance impact. Even at the other

end of compute-boundedness, it provides 1.1x gains over Best Avg.

System Size. Figure 5.15 shows our gains over Baseline when scaling (7) the number
of tiles and L2 banks (M), and (7) the number of GPEs and L1 banks per tile (IV),
for an M x N system. We observe mean GFLOPS/s/W gains of 1.7-2.0x across the
four systems, obtained using the predictive model trained for a 2x8 system (no re-
training) and an epoch size of 5k. As the system size grows, the benefits with DVFS
dominate, particularly for the multiply phase of OP-SpMM. These gains demonstrate

the scalability of our framework.
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Figure 5.15: GFLOPS/s/W gains in Energy-Efficient mode for SpMM (R01-R08; L1
as cache) while varying the tile and GPEs per tile counts (fixed 1 GB/s bandwidth).

5.7 Discussion

Adaptation to Different Hardware and Algorithms. This work evaluates the
SparseAdapt framework for sparse linear algebra operations. However, SparseAdapt
is designed for programmable CGRAs (Transmuter in this work) and thus can be ex-
tended to additional kernels beyond SparseBLAS. This would simply require collection
of additional training data using simulations for the new kernels, and re-training the
predictive model. Since our performance counters are workload-agnostic, we expect

no need for additional counters.

Bridging the Gap with Oracle. Ideal Greedy is a fundamental upper bound for
the SparseAdapt approach in the Aggressive mode of operation. However, there is ad-

ditional scope for improvement even between Oracle and Ideal Greedy in Section 5.6.2.
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An extension to SparseAdapt will explore using telemetry data from multiple past
epochs to learn a history-based pattern of program execution, borrowing ideas from

branch prediction and prefetching.

Memory Mode Reconfiguration. We assume that the choice of L1 mode (cache
or SPM) is made at compile-time, since this determines the version of code executed.
This leaves out some scope for optimization when different parts of the program
show amenability to a cache or SPM. Dynamic cache-to-SPM reconfiguration can be
enabled using existing hardware techniques, such as Stash [109], that map sections of
the SPM to global memory.

5.8 Conclusion

This work proposed a dynamic control scheme called SparseAdapt that targets
changes in phase due to evolving properties of the data in irregular workloads (im-
plicit), in addition to those due to change in code (explicit).

This requires fine-grained reconfiguration with low overhead, for which SparseAdapt
uses runtime telemetry of hardware performance counters. SparseAdapt uses an en-
semble of decision trees and a set of reconfiguration cost-aware heuristics to make deci-
sions about configuration parameters of the hardware. We evaluated SparseAdapt on
key SparseBLAS kernels (SpMM and SpMV) in two operational modes, namely Energy-
Efficient and Power-Performance modes, that predict for the best GFLOPS/s/W and
(GFLOPS/s)? /W, respectively. Our analysis on SpMM with real-world datasets show
performance and energy-efficiency improvements of 1.1x and 1.5x over the baseline
static configuration (similar performance as Max Cfg with 5.3x better efficiency) in
Power-Performance mode, and 1.7x better efficiency in Energy-Efficient mode. Fi-
nally, the SparseAdapt technique achieves average gains of 1.7-2.8x in performance
and 1.1-2.0x in energy-efficiency over a state-of-the-art control scheme for runtime

adaptation.
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CHAPTER VI

Conclusion

With transistor size no longer scaling in accordance with Moore’s law, and the
demise of Dennard scaling for constant transistor power density, the challenge is on
hardware and systems researchers to innovate and develop faster and more efficient
processors. While Application-Specific Integrated Circuit (ASIC) based accelera-
tors are the predominant hardware paradigm choice for their superior performance,
the rapid pace of algorithmic development and emergence of new applications has
outpaced the turnaround time for designing new ASICs. General-Purpose Proces-
sors (GPPs), on the other hand, have long remained the de facto choice for program-
mers to implement arbitrary applications. Thus, there exists a programmability-
efficiency gap between highly-efficient but fixed-function ASIC accelerators, and flex-
ible GPP hardware.

This dissertation proposed a direction towards closing this gap with a reconfig-
urable Software-Defined Hardware (SDH) solution. The first two chapters introduced
the trade-off problem in detail with qualitative studies on the state-of-the-art hard-
ware platforms, in addition to motivating the need for a reconfigurable hardware
based solution. The next part of the dissertation explored the use of on-chip mem-
ory reconfiguration and hardware-algorithm co-design to build an accelerator called
OuterSPACE. OuterSPACE is a dedicated accelerator for sparse matrix multiplica-
tion operations, which are a particular class of irregular kernels that appear across
domains such as graph analytics, scientific computing, and so on. Architectural sim-
ulation studies showed speedups of the order of 10x over commercial libraries over a
high end CPU and GPU. The dissertation then delved into the design and character-
ization of a prototyped 40 nm chip that served as an intermediary proof-of-concept
towards a full SDH system. The measurements from the chip show an order of mag-

nitude improvement in energy and bandwidth efficiency over the CPU.

116



The next part of this dissertation proposed a general-purpose accelerator called
Transmuter that additionally incorporates reconfigurability of the on-chip resource
sharing mode and the dataflow. The analysis across a set of common regular and
irregular kernels showed roughly an order of magnitude gain in energy efficiency for
compute-bound workloads, and an average improvement of ~50x for memory-bound
workloads. With static (i.e. compile-time) reconfiguration, the Transmuter hardware
delivers performance-per-Watt that is on average within an order of magnitude of
fixed-function ASICs for the same kernels. The remainder of the chapter described a
High-Level Language (HLL) library called TransPy that expands its usability to end
users, by abstracting away the details of the reconfigurable hardware while exposing
familiar Python-like semantics.

The last piece of work proposed a smart runtime framework called SparseAdapt
that dynamically reconfigures the Transmuter system in response to both implicit
(data-driven) and explicit (code-driven) phase changes during workload execution.
The underlying predictive model uses machine learning to learn the mappings from a
set of hardware performance counter values to the best set of hardware configuration
parameters, and is deployed for dynamic reconfiguration at fine granularities ranging
from hundreds to thousands of executed Floating-point operations (FLOPS) per core
in the system. Cycle-level simulations showed ~2x boost in performance-per-Watt in
the Energy-Efficient operational mode, and equal performance for 3% the energy in
the Power-Performance mode, over the static Transmuter configuration that is best
(on average) for this problem domain. The methodology used in SparseAdapt itself
delivers up to 2.8x and 2.0x gains in performance and energy-efficiency, respectively,

over a state-of-the-art dynamic control scheme.
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