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Abstract 

Tumors are a complex mixture of cancer cells, non-cancer cells, extracellular matrix, and 

other stimuli. To maximize clinical translation of in vitro models, it is critical to recapitulate the 

high degree of complexity found in vivo. This work presents three novel in vitro high grade 

serous ovarian cancer (HGSOC) models that recapitulate key features of the HGSOC tumor 

microenvironment (TME).  

HGSOC is characterized by high rates of chemoresistance development and recurrence 

due to the presence of cancer stem cells (CSCs) which are inherently chemoresistant and have 

the capacity to repopulate the entire tumor. The non-cancer cells in the TME, such as 

mesenchymal stem cells (MSCs), endothelial cells (ECs), and immune cells help to maintain 

CSCs and influence the classification of HGSOC molecular subtypes, which have variable 

clinical prognoses. However, it is unclear exactly how CSCs and the other TME cells 

collectively promote chemoresistance and poor outcomes.  

To better understand this phenomenon, practical in vitro model systems that more closely 

represent in vivo microenvironments are needed. We hypothesize that development of more 

physiologically relevant in vitro models will contribute novel insights into TME-mediated CSC 

regulation and development of chemoresistance in HGSOC. 

In aim 1 we developed a 3D in vitro serial passaging model to study chemoresistance 

development in the context of CSCs. This model demonstrated increased proliferation, CSC 

marker experssion, tumorigenicity, chemoresistance, and a malignant gene signature in patient-

derived spheroids over the course of long-term passaging. Treatment responses were reflective of 

xv



 xvii 

patient-specific chemoresistance development in vivo. Finally, we used this model to show that 

Metformin treatment can hinder CSC driven development of chemoresistance. This model 

facilitates research of patient-specific chemoresistance development and could serve as a pre-

clinical screening tool. 

In aim 2 we developed a tumoroid culture system that enabled culture of patient-derived 

tumor cells with controlled ratios of MSCs, ECs, and immune cells to study how non-cancer 

cells in the TME drive CSC maintenance and chemoresistance. We found composition-specific 

changes in CSC marker expression, increased tumorigenic potential, and increased 

chemoresistance in tumoroids with evidence of epithelial-to-mesenchymal transition (EMT), 

altered CSC phenotypes, a malignant matrisome signature, and a mesenchymal subtype 

molecular signature. Together, this indicates that the non-cancer cells in the TME contribute to 

the development of advanced, chemoresistant disease.  

In aim 3, we generated tumoroids with 23 different cell compositions to evaluate how 

TME cell composition affects response to therapy. Drug assays revealed that different 

composition tumoroids respond differently to therapy and that the number of monocytes included 

in the culture was associated with the greatest resistance to therapy. Random forest models were 

able to predict drug response with moderate success and showed  that nuanced differences in cell 

composition can influence drug response. We found that the strongest predictor of response to 

therapy was the total quantity of non-cancer cells. Overall, this model demonstrates the potential 

of using the TME composition to predict patient drug response and direct clinical management.  

In conclusion, we demonstrate the utility of complex and realistic, yet practical in vitro 

models to study the influence of the TME and CSCs on chemoresistance and outcomes. Overall, 

the models presented in this work can be used to better understand the role of CSCs and the TME 

xvi



 xviii 

in chemoresistance and clinical outcomes. This could ultimately lead to the development of 

novel therapies, enhanced clinical management, and improved clinical outcomes. 
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Chapter 1: Introduction 

1.1 Introduction to Bioengineered Cancer Models 

Tumors have long been viewed as the accumulation of a mass of aberrant cancer cells. 

However, research has repeatedly shown the dependence of cancer progression on a variety of 

environmental factors, including non-cancerous cells, mechanical stimuli, and the surrounding 

extracellular matrix (ECM), aptly naming it as a ‘cancer-organ’. Although many in vitro and 

computational models currently exist, the complex and interdependent microenvironmental 

regulation of the ‘cancer-organ’ system at the dynamic tissue and molecular scale have not been 

fully addressed. 

Tumorigenesis and cancer formation is a complex multistep process involving genetic, 

epigenetic, and metabolic alterations, and interactions with the microenvironment that transform 

normal cells into malignant ones. As part of this process, oncogenes get activated, and tumor 

suppressor genes get repressed, affecting cell proliferation, apoptosis, pro-tumoral inflammation, 

avoiding immune surveillance and destruction, promoting genomic instability, angiogenesis, and 

metastasis6,7.  

As the tumors progress, new aberrant blood vessels continue to sprout due to activation 

of angiogenic switches in order to sustain proliferating malignant cells. The excessively 

proliferating autonomous neoplastic cells invade the local tissue, following which they 
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intravasate into nearby blood and lymphatic vessels. Through these conduits, the 

disseminated cancer cells transit to distant organs, ultimately homing into specific niches after 

extravasating the blood/lymph vessel lumina. At the secondary sites, they form micro-metastasis, 

which include small nodules of cancer cells, followed by growth of these lesions into 

macroscopic tumors, leading to metastatic colonization6,7. 

Due to diverse interactions involved, cancers are highly heterogeneous organ-like masses.  

Their complex microenvironments not only contain the tumor cells, but also various infiltrating 

endothelial, hematopoietic, stromal, immune and other cell types, ECM components, biophysical 

characteristics and mechanical stimuli 8–10. Interactions within microenvironment also help create 

metabolic changes, such as a hypoxic environment and nutrient fluctuations, which further 

contribute to heterogeneity of cancer cells.  

With this multifaceted network of communication between the native tissue and the 

tumor taken into consideration, cancer is more aptly understood as a complex organ, dependent 

on and working within the various colonized organs. This view of cancer provides a realistic 

perspective which allows us to increase our understanding of the disease, and thus identify 

crucial aspects for facilitating drug screening and development of efficacious, individualized 

cancer therapies.  

Investigative approaches and interpretation of the ‘cancer-organ’ system heavily 

influences research conclusions. For example, the growth of cells on 2-dimensional (2D) 

surfaces versus 3-dimensional (3D) constructs alters a cancer cell’s response to 

chemotherapeutics, thus influencing drug development and perceived effectiveness11. Similarly, 

mechanical stimuli innate to the microenvironment and exacerbated by the growth and 

development of the tumor can alter the stemness of the cancer cells12 along with metastatic 
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tendencies13–15. Meanwhile, cellular interactions between the non-malignant cell populations, 

immune components16,17, and cancer cells influence the advancement of the disease, as well as, 

the response to common treatments18. Additionally, acellular aspects of the microenvironment, 

including soluble signaling and ECM composition and architecture, play a large role in 

phenotypic behavior19,20 and thus the conclusions of experimental outcomes. Each of these 

factors uniquely impacts cellular components within the tumor microenvironment (TME), 

contributing to the complexity of the ‘cancer-organ’ system (Figure 1.1). However, our in depth 

understanding of these factors and their complex interplay is limited by current model systems, 

which fail to corroborate findings and elicit sufficient reproducibility within the field. This 

dissertation focuses on the development of novel bioengineered cancer models to study ovarian 

cancer and its associated chemoresistance and poor outcomes. This work specifically 

concentrates on models to study cancer stem cells and the role of the non-cancer cells in the 

TME within physiological, yet controllable microenvironments. I focus on the cellular 

component of the TME due to the capacity of the cells to directly influence the other factors of 

the TME (soluble signals, ECM, cell phenotypes, etc.)2 The next section will review ovarian 

cancer and some of the key features in the heterogeneous TME. 
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Figure 1.1: Components of the ‘Cancer-Organ’ model.  
To develop an accurate multi-dimensional understanding of the structure, organization, and complex relationships 
in cancers, we need to consider the following factors. Heterogeneous cancer cells reside in a complex tumor 
microenvironment, which consists of mechanical stimuli, non-malignant cell-cancer cell interactions, soluble 
signals, and extracellular matrix (ECM). The dimensionality of cell culture influences cancer cell motility and 
cellular interaction with the surrounding cells and ECM. Mechanical stimuli including shear, compressive, tensile, 
and viscoelastic forces, dynamically influence cancer cells as the tumor grows. Similarly, cellular interactions 
through direct contact with surrounding non-malignant cells and soluble signals alter communication and 
downstream signaling. Interactions between immune cells and cancerous cells are highly complex and can lead to 
immune evasion and support of tumor progression. All of these characteristics play an integral role in tumor 
progression and are critical to forming a complete picture of the ‘cancer-organ’ system. 

 

1.2 Introduction to Ovarian Cancer 

Epithelial ovarian cancer (EOC) is the leading cause of gynecological mortality as well as 

the sixth most common cancer in women21. EOC is a heterogeneous disease that encompasses 

five major histological subtypes: low grade serous, high grade serous, mucinous, endometrioid, 

and clear cell. Each of these subtypes is characterized by unique molecular abnormalities and 

variable prognoses22.  High grade serous (HGSOC) is the most prevalent subtype, making up 

about 70% of all cases and is associated with the worst prognosis22,23. The majority of patients 

are diagnosed with HGSOC in late stages with significant intraperitoneal spread due to lack of 

clear symptoms22,24. Despite high rates of successful first line of therapy, which usually involves 

surgical debulking followed by platinum and taxane combination therapy, about 70-80% of 
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women with HGSOC experience relapse within 5 years23,24. The recurrent tumors tend to be 

more chemoresistant and time to subsequent recurrence progressively decreases as 

chemoresistance increases until ultimately >65 % of patients succumb to the disease within 5 

years21,22.  

HGSOC is characterized by high copy number variations, combined with ~96% of cases 

having TP53 mutations and about 10-22% with BRCA1/2 mutations22,24. Overall about 50% of 

HGSOCs are deficient in homologous recombination repair22. Mutations in NF1, BRCA1, 

BRCA2, RB1, and CDK12 are also frequent 25,26. However, importantly,  there are only a handful 

of genetic mutations common between patients and they are not uniformly expressed across all 

HGSOC which complicates the use of targeted therapies 25,27,28. Further complicating treatment 

of HGSOC is the high degree of cellular heterogeneity within and between tumors. 

1.3 Introduction to Cellular Heterogeneity in Ovarian Cancer 

Primary HGSOC can have highly heterogeneous genomic alterations, which are 

associated with high recurrent risk and poor prognosis 29. Acquisition of genetic mutations over 

the course of disease progression is an example of the clonal evolution model of tumor 

heterogeneity wherein somatic mutations result in a heterogeneous mixture of different 

phenotypes that may respond differently to treatment 30. In addition to genetic heterogeneity, 

cancer cells are also subject to epigenetic variation which influences cell phenotypes and thus 

treatment responses 31–33. Epigenetic changes are heritable modifications to gene expression that 

do not change the DNA, but rather alter accessibility of genes through various mechanisms 

including DNA methylation, histone modifications, and microRNA. These epigenetic changes 

occur more often than genetic mutations and happen early on in tumor progression, highlighting 

their role in developing heterogeneous mixtures of tumor cells and the potential impact of drugs 
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targeting epigenetic dysregulation 33. In ovarian cancer, an important example of epigenetic 

alterations and heterogeneity is the hypermethylation of BRCA1. This results in decreased 

BRCA1 expression which in turn promotes genomic instability in the ovarian cancer cells and 

leads to heterogeneous phenotypes 34. Importantly, epigenetic alterations are also reported to be 

involved in the reprogramming of cancer cells into a rare, but clinically relevant population of 

cancer cells called cancer stem-like cells (CSC)35.  

CSC are a clinically relevant subpopulation that is responsible for tumor initiation, 

metastatic disease, recurrence, and resistance to chemo/radio-therapy 36–40. Like normal stem 

cells, CSC maintain a level of pluripotency, which enables self-renewal and differentiation 

38,41,42. In addition, CSC are highly plastic cells with a heterogeneous population defined by 

different epigenetic and metabolic states which they pass on to their progeny. CSC progeny 

comprise most of the tumor mass and tend to be more responsive to chemotherapy than CSC 42. 

This ultimately leads to the development of a heterogeneous tumor cell population generated 

from distinct CSC from the heterogeneous CSC population 32,39,40,43,44. 

Self-renewing tumorigenic CSC have been identified and isolated in many cancers, 

including, leukemia 45, breast 46, ovarian 47, colon 48,49, prostate 50,51, brain 52–54, pancreatic 55, 

melanoma 56, myeloma 57, and lung 58. Importantly, while some CSC markers are shared between 

different cancer types, some cancers also have unique CSC markers 59. Even among common 

CSC markers, recent work by Dzobo et al. found no consistent pattern of CSC marker expression 

in different cancers when evaluating the expression of CSC markers including ALDH1A1, 

CD44, CD24, EPCAM, ICAM1, CD90, CXCR4, NES, CD133, ABCB1, and ABCG2 in colon, 

pancreatic , lung, and esophageal cancers 60. This cross-cancer heterogeneity in CSC populations 

may indicate that CSC targeting therapies may not share efficacy across cancer types. In ovarian 
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cancer, CSC are identified by an amalgam of biomarkers including, CD133, ALDH, CD44, 

CD24, and CD117, and their presence is an indicator of reduced progression-free survival and 

poor patient outcomes 61–73.  

The resistance of CSC to treatment is attributed to overexpression of ABC transporters, 

enhanced ALDH activity, response to DNA damage, epithelial to mesenchymal transition 

(EMT), and dormancy 74,75. Due to these resistance mechanisms, CSC are capable of surviving 

primary therapies and repopulating the tumor with a heterogeneous population of cancer cells 76. 

In ovarian CSC, it has also been suggested that heterogeneity within the CSC population may 

increase the odds of the development of spontaneous escape variants 77. Anoikis resistance is 

also a key feature of ovarian cancer CSC, which allows them to survive in non-adherent 

conditions like the malignant ascites fluid that accumulates in the peritoneal cavity in many 

ovarian cancer patients 40,76. Despite the known presence of CSCs in ovarian cancer and their 

inherent chemoresistant properties, the exact mechanisms through which chemoresistance is 

developed is unknown. This is due in part to lack of adequate model systems that allow for 

practical evaluation of chemoresistance development in a cancer stem cell context, an issue that 

will be addressed in Chapter 2.  

As described in section 1.1, tumors are not composed merely of cancer cells that cause 

their uncontrolled growth. Rather, they are a heterogeneous mixture of host cells and tumor cells 

that interact dynamically to drive tumor progression 78,79. Specifically, the proportion of 

epithelial, endothelial, lymphocyte, myeloid, and stromal cell components varies significantly 

between tumors 80–82, serving as yet another degree of heterogeneity. The high degree of cellular 

heterogeneity both within and between patients’ tumors can affect drug response and prognosis, 

causing major challenges in the clinical management of many cancers 79,83. In section 1.4 we will 
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review the heterogeneity of cell compositions in various types of HGSOC microenvironments 

(Figure 1.2). 

 

1.4 Non-cancer cell heterogeneity in ovarian cancer 

HGSOC have several unique microenvironments including the primary tumor, the 

malignant ascites, and secondary metastatic sites. Each of these microenvironments is 

accompanied by different cellular and acellular characteristics that affect tumor progression 84.  

While there is overlap between the cells that are present in each microenvironment, their 

relative proportions vary and this can influence the signals received by the tumor cells 84. In 

primary HGSOC tumors, epithelial cells have been shown to make up as much as ~68% of the 

population, while in a metastatic tumors, epithelial cells may only make up as few as 10% 84. 

However, the immune cell composition is known to be highly variable and the stroma makes up 

anywhere from 10% to 60% of the tumor, indicating that a fair degree of heterogeneity exists 

even within the primary tumor 80–82. 

Figure 1.2: Distinct and heterogenous cellular and ECM composition and organization are present in the primary and 
metastatic ovarian cancers. 
(Left) Production of ECM in the primary ovarian tumor gradually dysregulates over time, depositing new proteins normally 
not found in the ovarian germinal epithelium and tunica albuginea. The basement membrane is degraded in the primary 
tumor aiding in dissemination. The primary tumor is infiltrated by tumor associated macrophages, T-cells, carcinoma 
associated fibroblasts and endothelial cells. (Middle) The malignant ascites contains suspended single cells and cellular 
aggregates comprising of cancer cells, cancer stem-like cells (CSC), fibroblasts, mesothelial cells, macrophages and T-cells. 
ECM such as fibronectin, hyaluronan, and collagen type I are found within cellular aggregates, and in and around the 
fluidic ascites. (Right) Secondary omental metastases consist of colonizing cellular spheroids from the ascites. In these sites, 
cancers cells begin to produce new basement membrane, collagens, and hyaluronan. In all three TME, the cell and ECM 
sub-types are indicated with the representative schematic (not drawn to scale). 
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CSC are enriched through dynamic interactions with cells in the surrounding TME, such 

as carcinoma-associated mesenchymal stem cells (CA-MSC), carcinoma-associated fibroblasts 

(CAF), endothelial cells (EC), and macrophages 78,79. These interactions are exemplified by CA-

MSC, which can be recruited to the primary tumor from distant locations in the body through 

soluble signaling or tissue resident mesenchymal stem cells (MSC) in the ovary or from the 

omentum. These MSC can then be converted into CA-MSC by the cancer cells 85–87. Once 

converted, they have been shown to increase the number of CSC, enhance chemo-protection for 

CSC, and lead to tumor growth, either through paracrine signaling or indirectly by differentiation 

into CAF 87–95. Importantly, CA-MSC are distinct from CAF and normal MSC, and can 

differentiate into several other critical components of the tumor stroma including fibroblasts, 

osteocytes, and adipocytes 85,95, further contributing to cellular heterogeneity. Additionally, EC 

in the primary tumor and secondary tumor locations can also support CSC and tumor cells 96,97. 

Not only have EC been shown to induce self-renewal pathways in CSC 98, but they also protect 

them from cisplatin and paclitaxel treatment 99–101. Similar to CSC recruitment of MSC to the 

tumor, CSC can recruit EC to the tumor through secretion of angiogenesis promoting signals, 

like VEGF, SDF-1. This occurs when hypoxia develops as a result of the tumor outgrowing its 

vasculature. Hypoxic microenvironments activate Oct-4, Sox2, Notch, VEGF, and c-MYC 

expression which stabilizes HIF-1! and promotes survival capacity of the CSC 59,78,102,103. EC 

additionally contribute to disease progression through their role in the formation of the unique 

malignant ascites TME 104,105. 

The malignant ascites is the buildup of fluid in the peritoneal cavity that accompanies 

various pathologies, including HGSOC 104. While the exact cellular context of the ascites 

changes with disease progression 106, the predominant cell populations in the ascitic TME 
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include cancer cells 107,108, CAF 107,108, leukocytes 107,108, and mesothelial cells 109. Within the 

cancer cell population, ascites harbor a high proportion of treatment-resistant CSC 108,110,111. 

Cells within the ascites often aggregate, to form tumor spheroids that are highly malignant, 

metastatic, and resistant to chemotherapy 107,112,113. The non-tumor cells in these spheroids 

influence cancer cell phenotype and promote malignant characteristics. Among them, CAF are 

fibroblasts that are reprogrammed into a pro-tumoral phenotype. They promote EMT, tumor cell 

attachment to the mesothelium, and subsequent displacement of mesothelial cells 80,107,112. This 

ultimately allows tumor spheroids to initiate tumor growth at secondary locations. CAF also have 

immunomodulatory functions, can promote angiogenesis, inhibit cancer cell apoptosis, and 

produce and remodel ECM 80,107,114. CAF also have the propensity to promote stemness, 

chemoresistance, and tumor growth 80,87,114.  

Tumor associated macrophages (TAM), another predominant cell type found in the 

malignant ascites as well as the primary tumor, are similar in their ability to drive components of 

disease progression such as angiogenesis, angiostasis, metastasis, and the function of other 

immune cells in the TME 115–117. Like CAF, ovarian cancer cells also reprogram macrophages 

that are recruited to the tumor, into a pro-tumoral phenotype termed alternately activated M2-like 

macrophages 117. These macrophages can contribute to immunosuppression by attracting 

regulatory T cells, inhibiting the anti-tumor response of natural killer (NK) cells and cytotoxic T 

cells, and inhibiting maturation of dendritic cells (DC). They can also promote drug resistance, 

decrease apoptosis, and promote stemness in ovarian cancer cells 117,118. Despite the widespread 

influence that M2-like macrophages have on tumor progression, their prognostic effect depends 

on the proportion of anti-tumoral M1 macrophages, which are also present in the TME. The 

M1:M2 macrophage ratio in patients can vary widely, resulting in different immune responses 
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and altered prognosis. Expectedly, higher M1:M2 ratios are associated with better outcomes for 

the patient 117,119.  

In addition to macrophages, a host of other immune cells can be found in the ovarian 

cancer TME including NK cells, regulatory T cells, DC, CD8+ and CD4+ T cells, B cells, and 

myeloid derived suppressor cells (MDSC). Each of these cell types play a role in the complex 

immune response present in a tumor, with some cells like MDSC, regulatory T cells, and DC, 

serving tumor suppressive functions and others such as CD8+ and CD4+ T cells having 

antitumor effects 82,120,121.  

Within the immune cell category there is remarkable heterogeneity, even at the same 

tumor site within the same patient 83,122–124. The immune cell context of a tumor can change 

throughout tumor progression and can depend on factors like tumor location and treatment status 

83,122,124. For example, a recent study in HGSOC examined immunogenomic changes before and 

after neoadjuvant treatment in paired samples. Astoundingly, the authors observed that in 

treatment-naïve patients some areas of the same tumor could completely exclude immune cells, 

while different areas in the same tumor could be infiltrated 83. Furthermore, they found that 

variation in immune cell genes, particularly those associated with T cells and NK cells, was 

responsible for the highest degree of variation between different treatment-naïve patient samples. 

This suggests the importance of immune heterogeneity in interpatient differences. Thorough 

characterization of these samples revealed that immune exclusion was associated with 

amplification of MYC targets and WNT signaling, which has previously been related to immune 

evasion 83,125. The authors also noted increased NK cell infiltration and oligoclonal T cell 

expansion following treatment with neoadjuvant therapy, demonstrating the plasticity of the 

heterogeneous immune microenvironment when perturbed 83.  
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Another study of immune heterogeneity in HGSOC compared the immune cell 

infiltration in the primary tumor and its surrounding stroma to the infiltration of corresponding 

omental or peritoneal metastases. Interestingly, they found variances in the number of CD45+, 

CD3+, CD8+ and PD-1+ cells between all primary samples and matched metastatic samples. 

Furthermore, immune cell infiltration in the stroma of the omentum was observed to be 

significantly greater than in the primary tumor stroma 122. Post treatment analysis of the same 

patients/samples, revealed that an increased intratumoral CD3+ infiltration in the primary tumor 

was associated with platinum sensitivity indicating that high pre-therapeutic CD3+ infiltration 

could be an indicator that platinum therapy will be effective. Similarly, higher intratumoral 

CD8+ infiltration in peritoneal metastases compared to the primary tumor was also associated 

with platinum sensitivity 122. These results are concordant with previous work indicating the 

CD3+ and CD8+ T cells are prognostic indicators for ovarian cancer 123,126,127. Contrarily, high 

PD-1+ expression in peritoneal metastases is linked to poor response to platinum therapy 122. 

This finding is also logical as PD-1 activation is associated with decreased anti-tumor immunity 

128. Overall, this study highlights the potential utility of immune context characterization in 

predicting treatment responses and disease progression. The immune cell composition in 

HGSOC is indisputably heterogeneous and can influence treatment response and thus needs to be 

taken into account in development of personalized models.  

Aside from the prominent cells found directly in the malignant ascites, mesothelial cells 

and adipocytes can both interact with the tumor at secondary tumor sites in the peritoneal cavity 

and from afar through soluble signaling in the ascites to exert additional influence on disease 

progression 112. Mesothelial cells, for example, can secrete factors like lysophosphatidic acid 

(LPA) to promote tumor cell adhesion, migration, and invasion 129,130. They can also produce 
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factors that inhibit drug induced apoptosis in cancer cells, following stimulation by the ascites 

130,131. Additionally, mesothelial cells are capable of transitioning into CAF via TGF-β signaling 

132 to advance disease progression. Recently, mesothelial cells have even been found to induce 

platinum resistance in peritoneal metastasis through cell-to-cell interactions 133.  

Adipocytes are prominent in the omentum, which is one of the most common sites of 

ovarian cancer metastasis, as well as subcutaneous tissues and the mesenteric membrane. From 

these locations, adipocytes can interact with tumor cells through secretion of adipokines and 

lipokines. Specifically, adipocytes in the omentum can attract cancer cells through IL-8 secretion 

and promote their proliferation through transfer of fatty acids. Importantly, adipocytes have 

recently been shown to confer chemoresistance to cancer cells through activation of the Akt 

pathway in cancer cells and secretion of a chemo-protective lipid, arachidonic acid 134. 

Contrarily, adipocytes may contribute to suppression of ovarian cancer through cross-talk with 

ovarian cancer cells via secreted protein acidic and rich in cysteine (SPARC) 135. These studies 

underscore the fact that the specific phenotype of the adipocytes and cancer cells may determine 

the result of adipocyte-cancer cell interactions. 

As in the primary and ascites TME, ovarian cancer cells that have metastasized to 

secondary locations are subjected to even more diverse cellular microenvironments that can 

further alter the phenotype of cancer cells 136. For example, in the omentum, adipocytes and 

mesothelial cells are in closer proximity to cancer cells, which is different from the TME in the 

ascites, where cancer cells are surrounded by mostly CAF and leukocytes. In the omentum, 

adipocytes are abundant with localized milky spots filled with immune cells, CAF, adipose-

derived MSC, and vascular cells 137–140. 
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When discussing cellular heterogeneity, it is also important to note the role of hypoxia in 

producing heterogeneous cell populations. As tumors develop, they outgrow their vasculature 

which leads to development of hypoxic pockets of cells 141. These pockets of cells develop 

altered metabolism in order to survive the harsh conditions, which influences their proliferation, 

migration, and invasion 40,142. HIF-1!  plays a central role in cellular response to hypoxia and its 

expression is associated with poor outcomes in ovarian cancer 2. In ovarian cancer hypoxia has 

been implicated in CSC enrichment through HIF-1! mediated activation of NF-"b signaling and 

consequent upregulation of SIRT1 102. Not only has hypoxia been shown to enrich for cancer 

stem cell phenotypes in ovarian cancer, but it also promotes CSC chemoresistance via HIF-2! 

mediated upregulation of BCRP, a gene encoding a transporter that can expel drugs 102,143.  

Hypoxic conditions also influence the non-cancer TME cells and how they interact with 

the cancer cells. For example, in hypoxic environments CAF stabilize HIF-1! leading to a 

metabolic switch to aerobic glycolysis and corresponding lactate production. This lactate can 

then be used by cancer cells to promote tumor growth 141,144. Furthermore, CAF are also known 

for pro-tumorigenic ECM remodeling, which may be linked to hypoxia given that fibroblasts 

cultured in hypoxia and associated HIF-1 have been shown to promote fibrosis and elevated 

ECM transcripts when fibroblasts from various organs have been exposed to hypoxic conditions 

141,145. This ultimately can influence the metastatic potential of the cancer cells 141. Intuitively, as 

mentioned above, hypoxia also results in the secretion of angiogenesis promoting factors such as 

VEGF by tumor and stromal cells. This can lead to some new vessels temporarily restoring 

normoxic conditions until rapidly growing tumor cells once again exceed the reach of the new 

vessels. This generates further heterogeneity by creating chronic and acute hypoxic regions and 

development of disorganized vasculature 141.  
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Unsurprisingly, immune cells are not exempt from the effects of hypoxia. Tumor cells in 

hypoxic conditions can recruit macrophages to the tumor through secretion of chemoattractants 

146. Once they arrive, hypoxia has been shown to polarize them into an M2-like phenotype to 

promote tumor progression 146. Interestingly, myeloid-derived suppressor cells (MDSC), which 

are normally thought to be immunosuppressive have been shown to enhance immuno-

suppression in hypoxia and also to obtain an immuno-stimulatory phenotype 141. A final example 

of the role of hypoxia in cellular heterogeneity stems again from the metabolic change in cancer 

cells brought about by HIF-1! stabilization and the switch to glycolytic dominated metabolism 

40,141. This switch ultimately creates competition for nutrients between the hypoxic cancer cells 

and T cells, a battle that T cells are unlikely to win. Without sufficient nutrients, the anti-tumor 

effects of T cells are stymied. T cells in hypoxia may even differentiate into regulatory T cells, 

which contribute to immunosuppression 141. Given this evidence it is clear that as hypoxia 

emerges throughout a tumor, pockets of cells will also emerge with differential, often tumor 

supporting behavior and thereby contributes to cellular heterogeneity. 

Given the effects that each cell type can have on tumor progression and chemoresistance, 

and the wide ranging TME present in ovarian cancer, it would be unreasonable to assume that a 

successful therapy for the primary tumor will be similarly effective in secondary locations such 

as the ascites or the omentum. Consequently, it is critical that these sources of heterogeneity be 

carefully considered when developing precision medicine models. The effects of this potential 

variability between and within patients’ tumors are compounded by the ECM in the TME. The 

various cell types within primary and metastatic tumor sites remodel the ECM in a context-

specific manner, which in and of itself impacts drug response (Table 1.1).  
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Table 1.1: Impact of different cell types on the extracellular matrix. 

Type of Cell Impact on extracellular matrix (ECM)  References 

Cancer stem-like 
cells (CSC) 

Overexpress several collagens, periostin, mucin 1, and tenascin-C (TN-C). 

Highly express decorin, lumican, biglycan, versican, aggrecan.  

Produce high levels of hyaluronic acid. 

147–165,165,166 

  

Cancer-associated 
mesenchymal stem 
cells (CA-MSC) 

Differentiate into CAFs and adipocytes. 

Remodel surrounding collagen matrix. 

Increase collagen production through JAK1 activation. 

93,167–169 

Cancer-associated 
fibroblasts (CAF) 

Remodel ECM to provide ideal stiffness. 

Create actomyosin tracks in ECM for cancer cells to follow. 

Secrete versican and increased amounts of collagens. 

Upregulate COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, 
COL6A1, COL6A3, and collagen support genes, secreted protein acidic and rich in 
Cysteine (SPARC), SERPINH1, and SERPINE1. 

Increased expression of MMP2, MMP11, and TIMP1. 

84,170–173 

Endothelial cells 
(EC) 

Upregulation of lysyl oxidase homolog 2 (LOXL2). 

Secrete SPARC related modular calcium binding 2 (SMOC-2), cysteine rich with EGF like 
domains 2 (CRELD-2), microfibril-associated glycoprotein 2 (MAGP-2), lumican, 
extracellular matrix protein-1 (ECM-1). 

Highly express COL4A1, COL4A2, SERPINH1, and SPARC. 

84,174,175 

Tumor-associated 
macrophages 
(TAM) 

Secrete osteopontin, osteoactivin, collagens, fibronectins, and truncated fibronectin. 

Secrete matrix metalloproteases, cathepsins, lysosomal and a disintegrin and 
metalloproteinase (ADAM) proteases, and the urokinase-type plasminogen activator 
(uPA). 

Secrete TN-C, fibronectins (FN1). 

176–182 

Adipocytes Upregulation of tumor necrosis factor (TNF-α), osteopontin, MMP9, versican, and leptin. 

Secrete and process collagen type VI. 

Secrete endotropin. 

183–186 

Mesothelial cells Secretes collagen type I. 

Secrete fibronectin. 

187,188 

Myeloid derived 
suppressor cells 
(MDSC) 

Secrete MMPs and cathepsins. 

Releases TGF-β to induce LOX production. 

Remodel basement membrane. 

189–191 
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Neutrophils Secrete MMP-9 during angiogenesis. 192,193 

Dendritic cells Release indoleamine 2,3-dioxygenase (IDO) which catalyzes tryptophan and prompts 
tumor angiogenesis and metastasis. 

194 

B cells Generate interleukin 10 (IL-10) and immunoglobulins (IgG) which form antigen-IgG 
complexes to recruit immunosuppressive myeloid cells. 

195 

 

1.5 Precision Medicine 

As a result of the high degree of heterogeneity between and within patient’s tumors, there 

is a clear need for precision medicine in HGSOC wherein therapies are specifically optimized 

based on molecular profile, cancer type, stage, and biomarkers for each patient. This process 

currently involves obtaining the genetic profile of the patient, which is then used to anticipate 

patient specific drug metabolism, response, and toxicities. However, importantly,  there are only 

a handful of genetic mutations common between patients and they are not uniformly expressed 

across all HGSOC which complicates the use of targeted therapies 25,27,28 In addition, the efficacy 

of cancer cell-targeting therapies are often compromised by the non-cancerous components of 

the TME 2,196,197. This includes tumor supporting cells and tumor secreted ECM which form 

complex multifaceted interactions with cancer cells that act to modulate chemoresistance 111,198–

200. Unfortunately, high level cell-cell and cell-ECM interactions are often omitted in 

contemporaneous model systems leading to underrepresented cellular, molecular, and ECM 

heterogeneity and substantially impacting their clinical translation potential 201–203.  

Consequently, a long term goal of precision medicine entails thorough analysis of the 

genetic, molecular, cellular and ECM composition of patient biopsies, performed concomitantly 

with pathologic diagnosis, to guide construction of personalized in vitro models. Generating 3D 

microscale models based on this comprehensive analysis of each patient’s tumor would be 
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followed by high throughput drug screening assays. This process would have numerous 

applications, ranging from personalized drug screening to identification of novel biomarkers. If 

successfully implemented, these applications have the potential to change the landscape of 

precision medicine and decrease mortality rates in many cancers. In this work we present models 

with potential in personalized medicine in a HGSOC context. However,  we postulate that these 

same methods can be extended to different epithelial cancer types with their own unique 

genomic, molecular, and microenvironmental characteristics 31,204,205. Using HGSOC as a model 

disease allows us to highlight specific differences in the TME, which may not be ubiquitous in 

all other epithelial tumors, but serves as a starting point from which pragmatic parallels can be 

drawn to other tumors.  

1.5.1 Current Models of Cellular Heterogeneity 

 Conventional approaches to drug screening include the use of isogenic cell lines in 2D 

culture or propagated as xenografts, genetically engineered mouse models (GEMM), patient-

derived xenografts (PDX), and patient derived organoids (PDOs) 2,206–208. While 2D cell line 

cultures are easy to use and inexpensive, they have long been known to poorly represent in vivo 

conditions, making observed drug responses unreliable 209. Newer 2D models might use cell 

lines derived from patient samples, however generation of a new cell line is prone to low success 

rates and fibroblast contamination. Moreover, the cell lines that are successfully established will 

have persevered through a strong selection pressure in 2D in vitro conditions making them a 

poor representation of the heterogeneous tumor cell population 204.  

 GEMM and PDX on the other hand are labor- and time-intensive, making it challenging 

for them to contribute to humanized drug screening and individualized therapy on a clinical scale 

204,209,210. Furthermore, GEMM are limited in their ability to consistently generate tumors on a 
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reliable timeline as these tumors form with heterogeneous latency periods and growth rates 211. 

PDX formed from heterogeneous populations of patient cells maintain cellular heterogeneity, 

however are susceptible to copy number alterations with passaging and loss of human immune 

cells in the tumor which may result in unrepresentative drug responses compared to the patient 

responses 212. The immunocompromised nature of PDX 211 also prevents evaluation of a 

functioning immune system in drug response. Overall, mouse models have struggled to translate 

into the clinic with only about 5% of the drugs tested in mouse models performing well enough 

in phase III trials, to be licensed for clinical usage 212. However, a promising newer variation of 

mouse model, called ‘humanized mice’ has been developed with human immune cells, allowing 

for evaluation of tumor interactions with the immune system 212. Despite this improvement, the 

technical challenge of developing these models remains, and hinders use as high throughput 

screening systems. Furthermore, these systems also offer less control over the exact cell 

composition in the culture, complicating their use in parsing apart the interactions of each cell 

type in the tumor microenvironment. 

 On the other side of the spectrum, 3D in vitro co-cultures are ideal for high throughput 

drug screening and have played an important role in our evaluation of interactions between two 

or more cell types in the TME. For example, using recently developed 3D co-culture 

heterospheroid of CSCs and CA-MSCs, PDGF and Hedgehog crosstalk was found to be a key 

signaling mechanism, involved in increasing stemness, metastatic potential, and chemoresistance 

in CSCs 213. Similar heterospheroid models were utilized to show that ovarian cancer cells 

reprogram normal ovarian and omental MSCs into pro-tumoral CA-MSCs, presenting evidence 

that ovarian cancer cells catalyze the formation of their own pro-tumoral microenvironment 85. 

Similarly, to dissect the signaling between immune cells and ovarian tumor cells, recent 3D 
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models have featured co-cultures with immune cells 104,214. Ovarian cancer cells form spheroids 

in the ascitic fluid due in part to their interactions with macrophages, and these heterospheroids 

are thought to aid in transcoelomic metastasis 118. Utilizing a hanging drop non-adherent 3D 

suspension model, ovarian CSC and activated macrophages can be brought in close association, 

simulating the physiologic environment of non-adherent malignant ascites. These 3D 

heterospheroids illustrate that pro-tumoral macrophages promote chemoresistant and invasive 

phenotypes in CSC, further leading to CSC enrichment. This model was used in the discovery 

that reciprocal paracrine signaling via WNT/β-catenin between macrophages and ovarian CSC 

promoted pro-tumoral environments including polarization of macrophages into M2-like 

phenotypes, and increased expression of the stem marker ALDH in CSC. This suggested that the 

WNT/β-catenin pathway could be a potentially effective target for new therapeutics to 

specifically eradicate the immuno-modulation of macrophages by CSC that contribute to 

recurrent disease 215. These types of models have been made with tumor cells and endothelial 

cells 216, mesothelial cells 217, and adipocytes 135.  While co-cultures are advantageous in 

examining interactions between two or three cell types, they are still often over simplified by 

omission of key cell types and/or culture in non-physiologic microenvironments. 

 Lying in the middle of the spectrum between in vitro co-culture models and mouse 

models are patient-derived organoids. PDOs have been instrumental in our ability to replicate 

cell-cell interactions with realistic cell compositions in vitro and have had some success in 

predicting drug response 204,209. PDOs are formed from either a single patient cell or a 

heterogeneous population of patient-derived cells grown into organoids that are embedded in 

basement membrane extract with an appropriate growth factor and small molecule cocktail to 

replicate the in vivo TME204.  A panel of ovarian PDO have been successfully created for long 
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term in vitro culture of all subtypes of epithelial ovarian cancers. The panel of organoids was 

generated with cells from primary tumors, metastatic lesions, ascites, and pleural puncture. 

Through in-depth analysis, they demonstrated that tumor organoids maintain histological 

characteristics like nuclear and cellular atypia and expression of tumor biomarkers like p53 and 

pax8, similar to their source samples. This study showed that passaging the organoids did not 

result in any genomic changes compared to the original tumors. The organoids also show 

hallmarks of ovarian cancers, including the significant number of copy number variations, 

recurrent mutations and tumor heterogeneity204. However, a drawback of these organoids is their 

cell composition, as tumor organoids averaged 88 ± 23% of cancer cell content, while the actual 

tumors contained only 49 ± 9% tumor cell content across all samples 204.  HGSOC organoids 

have also been utilized for screening compounds, while maintaining the intra- and inter-patient 

tumor heterogeneity and mutation status, and matching the parental tumors genetically and 

functionally 218–220. Another drawback to conventional organoids is the use of basement 

membrane extract, such as Matrigel, for organoid culture 204. However, with undefined 

constituents, batch to batch variability, and poor biophysical properties, Matrigel does not 

accurately replicate the ovarian tumor stroma 221. Moreover, Matrigel fails to replicate the 

physiology of the primary tumor, as the basement membrane is lost during disease progression. 

Finally, the dynamic interactions between the ECM and the cells in a tumor have a profound 

effect on tumor progression and clinical outcomes, which deems the use of extracts with 

uncontrolled ECM composition problematic 215,222–224. While each of these model systems has 

their advantages, we present a unique tumoroid model system to study the interactions between 

cancer cells and the non-cancer cells in Chapter 3. 

1.5.2 Molecular Subtyping in HGSOC 
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Despite the substantial heterogeneity in HGSOC, most patients receive the same 

treatment, meaning that some patients might respond to treatment while others will not225. In 

order to move towards a more precision medicine oriented approach, large-scale HGSOC 

datasets have been used to stratify ovarian cancer patients into molecular subtypes based on gene 

expression 25,226. This stratification has prognostic and therapeutic relevance 227, however, no 

clinical use has been validated 228. Tothill et al. were the first to define four molecular subtypes 

of high grade and endometriod ovarian cancer. In their work they identified that different 

molecular subtypes responded differently to therapy and were characterized by unique gene 

expression patterns determined with microarray analysis of 285 serous and endometriod tumors 

of the ovary, peritoneum, and fallopian tube.  In particular, they identified an immunoreactive 

subtype that was characterized by higher numbers of intratumoral CD3+ T cells, lower stromal 

conent, and longer term survival. Contrarily, the high stromal response subtype had the worst 

survival, a trend that was mirrored to a lesser degree in the subtype with a high mesenchymal 

signature229. This finding suggests the need for patient stratification based on subtype to 

determine optimal clinical management. In fact a more recent retrospective study evaluated the 

outcomes of anti-angiogenesis inhibitor bevacizumab in each subtype be retrospectively 

classifying the tumors of patients in a clinical trial. This study showed that while overall survival 

benefits were miniscule, the benefit was greater on mesenchymal and proliferative tumors, which 

are typically associated with worse outcomes230.  This serves as direct evidence for the need to 

stratify patients tumor in order to determine treatment course.  

However, these subtypes have yet to be implemented regularly in clinical management 

due in part to lack of consensus about how many subtypes there are, if they have prognostic 

value, and lack of common biomarkers between subtypes defined by different labs231–234. 



 22 

Furthermore,  recent studies by Izar et al. and others have found that certain subtype specific 

markers, such as those for the mesenchymal subtype, are expressed mainly in the stromal 

cells82,235,236, effectively linking stroma and clinical outcomes. Although it remains unclear if 

there are nuanced differences in the stromal composition that have differential implication in 

treatment response and also how the stroma drives poor outcomes. Without this knowledge, the 

benefits of patient-stratification based on stroma composition may be limited. While this 

particular question could be investigated retrospectively using cell type deconvolution methods, 

the full effect of TME cell composition on drug response will likely remain unknown until 

sufficient single cell sequencing datasets have been generated237. Furthermore, the methods 

commonly used to predict a patient’s response to therapy are based largely on expensive imaging 

or bulk-omics datasets with matched clinical annotations. While undeniably valuable, they are 

limited by low sample numbers and are not suitable to predicting response to therapies that have 

not been around long enough to have the required clinically annotated datasets238. The open 

question of whether or not nuanced differences in TME composition affect drug response, and 

the lack of suitable methods to predict drug response for new therapies motivated the 

development of Chapter 4. 

1.5.3 Thesis overview and impact 

In this work, 3D in vitro models to study the role of CSCs and the TME in 

chemoresistance in ovarian cancer were developed to address gaps in the currently available 

models. Chapter 2 specifically focuses on the development of a 3D in vitro serial passaging 

model and its application in studying the emergence of chemoresistance in a cancer stem cell 

context. We hypothesized that this in vitro model system would provide a clinically relevant 

model of the emergence of chemoresistance in ovarian cancer on a relatively short timescale. 
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With this model system we showed that proliferation, stemness, tumorigenicity, and 

chemoresistance were increased with passaging. Based on these results, we were able to derive a 

malignant gene signature for chemoresistance, stemness, and tumorigenicity based on changes in 

gene expression observed with passaging of two patient samples, which could potentially be used 

to identify more malignant disease. We also utilized this system to model patient-specific 

recurrence after treatment further suggesting its potential as a personalized medicine model. 

Additionally, the anti-CSC and chemoresistance effects of Metformin in ovarian cancer patients 

without diabetes within our model system demonstrated its promise in translational applications 

evaluating chemoresistance and drug efficacy on CSC populations. Consequently, our system 

could be used as a pre-clinical screening platform for CSC targeting therapies.  

Furthermore, we developed a mathematical model to predict the emergence of ALDH+ 

CSCs across passages. With further development and validation, this mathematical model could 

potentially be utilized after just two passages in order to predict the emergence of CSCs and, by 

association, chemoresistant phenotypes in a patient-specific manner. If validated, this could 

prove to be a powerful tool to predict the degree of CSC enrichment in patients and inform 

clinical decision making.  

Further research with this model system could provide unique insights into the primary 

drivers of chemoresistance in ovarian (and other) cancers. Particularly, coupling this method 

with -omics technologies could allow for analysis of genetic, epigenetic, protein, and metabolic 

changes that occur as chemoresistance is developing. This type of study could provide a 

comprehensive view of chemoresistance and may indicate novel pathways to study further in 

vitro. Following experimental validation, therapies targeting the key pathways in 

chemoresistance could be developed and validated in our serial passaging model before 
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proceeding through the drug development pipeline. Overall, 3D in vitro serial passaging is a 

reliable and reproducible model of clinically relevant development of chemoresistance with a 

myriad of potential research and translational applications making it a valuable tool for cancer 

research. 

In chapter 3, we focus on the role of the non-cancer TME cells on CSC enrichment and 

chemoresistance. We hypothesized that complex multi-cellular 3D tumoroid culture would result 

in CSC enrichment and corresponding increase in chemoresistance and malignant characteristics. 

With this model, we demonstrate the flexibility of the culture method with tumoroids formed 

with and without Matrigel as well as each of the non-cancer TME cell types. This type of 

experimental flexibility is important in evaluating the role of each cell type in a complex network 

of interactions as it allows for a single experimental variable to be adjusted in each experiment to 

observe how the perturbation affects the system. Unique to our tumoroid model is this 

experimental flexibility combined with a greater degree of cellular complexity than traditional 

co-cultures and less prevalent tri-cultures. 

Using this model we show that tumoroid culture results in altered CSC phenotypes, 

increased tumorigenicity, increased chemoresistance, enhanced EMT phenotypes, and expression 

of a malignant matrisome signature. Since culture with all four cell types results in these 

increased malignant characteristics, and tumoroid culture with different cell compositions is 

possible, the role that each TME cell type plays in the development of not only CSCs, but all of 

these characteristics is within reach. Knowledge of the intricate effects of each cell type on these 

malignant processes and phenotypes can ultimately inform efforts to develop novel therapies and 

improve outcomes.  
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Further development of this model system with matched patient-derived TME cells and 

different combinations of immune cells, for example, could improve the physiological relevance. 

This would provide an opportunity to model patient-specific drug response in the context of 

heterogeneous cellular microenvironments. Additionally, more robust analysis of a panel of CSC 

markers with tumoroids from different patients would enhance our understanding of TME-

mediated CSC maintenance and thereby advance CSC-TME targeting drug development efforts. 

More generally, this model serves as an example for other cancers and diseases, which could 

benefit from more comprehensive, yet highly controlled culture systems. Widespread 

implementation of these types of model systems could inspire the development of new 

treatments across a broad spectrum of fields.  

 In the third aim, the tumoroid culture system is used to evaluate the role of the TME cell 

composition in response to traditional therapies (carboplatin and paclitaxel) as well as novel 

therapies (pacma31, N773, and SC144). We hypothesized that nuanced differences in tumoroid 

cell composition would influence response to different therapies and that these compositions 

could be used to predict drug response using machine learning. We found that, indeed, different 

cell compositions responded differently to therapy, indicating that there may be more nuanced 

cell composition effects that need to be investigated in HGSOC molecular subtyping.  

Furthermore, we generate random forest models to predict therapy response based on TME cell 

composition. We observed that the models have moderate predictive performance, and analysis 

of variable importance suggests that despite differences in response due to different cell 

compositions, the most predictive factor is the overall TME cell quantity. With further 

development with matched patient-derived cells, this model system could be used as a patient-

specific drug screening platform to evaluate the localized response to various therapies based on 
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local cell composition within the tumor, thereby accounting for intratumor cell composition 

heterogeneity.  Moreover, it can be used to better understand how different subtypes and tumor 

cell compositions develop resistance to certain treatments and to identify the most universally 

effective treatments. Finally, this model system provides an opportunity to make pre-clinical 

drug response predictions for new up-and-coming drugs that have yet to accumulate bulk-omics 

datasets with clinical annotations with which predictive models could be made to direct 

treatment.  

 Overall, these aims seek to improve research paradigms of CSC and TME-mediated 

chemoresistance in ovarian cancer through the development of three model systems: 1) a 3D in 

vitro serial passaging model of the development of chemoresistance in a CSC context; 2) a 

complex multi-cellular tumoroid model system to facilitate the study of TME-mediated CSC 

regulation and chemoresistance; and 3) a tumoroid drug screening model to examine the impact 

of the TME on drug response in vitro. 
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Chapter 2 : Engineering In Vitro Models of Chemoresistance Development in Ovarian 

Cancer 

2.1 Introduction 

The first line of chemotherapy (combination of platinum and paclitaxel), although 

successful in ovarian cancer, often leads to recurrent chemoresistant disease 239–242. Cancer stem-

like cells (CSCs) are largely implicated for relapse of ovarian tumors, and the development of 

chemoresistance110,243. Therefore, chemoresistance and CSC- enrichment are recognized as 

major causes of failure for chemotherapy of ovarian tumors. Although advancement in genomic 

profiling has been successfully used to identify subtypes of ovarian cancer244, its application to 

elucidating mechanisms of chemoresistance is still evolving and can be furthered with reliable 

and clinically relevant in vitro models of chemoresistance240,242.  

Several models have been developed to experimentally address and reproduce the 

complexity and heterogeneity of cancer and the pathobiologic mechanisms that underlie the poor 

survival of patients with ovarian cancers 208,240–242,245. Given their relevance to tumor metastasis 

and relapse, models of in situ chemoresistance development are a primary target of study, for 

both fundamental understanding of cancer biology and the development of effective and targeted 

treatments. However, the currently available in vitro models are lacking in the ability to 
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understand the development of chemoresistance in situ. Moreover, the existing studies 

rely only on cell lines in which platinum resistance is derived in vitro, the mechanisms of which 

may have little or no relevance in the clinical setting 242,246. Additionally, these models lack a 

direct study of chemoresistance within a CSC-context, and therefore, in vitro models that 

incorporate CSCs' role in emergence of chemoresistance are critically important for developing 

biomarkers of chemoresistant disease, and for effectively targeting ovarian cancer. Currently 

available models for the study of CSCs rely on reprogramming, identifying side population or 

CSC populations using surface marker expression, selection of cells resistant to chemotherapy, 

modulation of oxygen tension, among others 247–250. While these models derive CSCs with 

moderate success, CSCs are notoriously plastic in in vitro 2D monolayer culture conditions, 

making biological queries cumbersome.  

Therefore, in this chapter we present an engineered 3D ovarian cancer serial passage 

model that addresses the development of chemoresistance and the enhancement of CSC 

populations simultaneously. Previously, in ovarian and other cancers, serial passaging of 

spheroids in vitro and serial transplantation of tumor cells in vivo has been demonstrated to lead 

to increased tumor growth rates, and decreasing time to form tumors with increasing passage 

number 251,252.We combined the power of serial passaging with 3D hanging drop array spheroids 

described by us extensively in previous reports4,253,254, to create a novel engineered serially 

passaged 3D spheroid platform. This model combines the advantage of spheroids grown on a 3D 

platform, as previously described, over conventional 2D culture, with the greater ease of an in 

vitro model compared to an in vivo model 4,253–255. Moreover, compared to in vivo PDX serial 

passaging, our model is low cost, takes less time and can be applied to many more patient 
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derived specimens. Furthermore, in contrast to our model, under the same experimental 

conditions, serial passaging in 2D did not yield the same results.  

Our model allows us to examine changing response to chemotherapy, along with a 

thorough investigation of proliferation, cell surface markers, and tumor initiating ability of 

serially passaged spheroids within a mouse xenograft in a reliably testable format. Using these 

experimental outcomes, we are able to inform our mathematical model describing the evolution 

of the CSC populations over the course of serial passaging ovarian cancer spheroids. By 

coupling our experimental data with a mathematical model, we can gain insights regarding CSC 

enrichment not otherwise possible, generate new hypotheses, and predict the outcome of 

experiments 256,257. Given the correlation of drug resistance with CSC populations shown in our 

data and other reports 4,61, predicting CSC evolution allows us to infer the emergence of 

chemoresistance in a patient-specific manner within our model system. While there are many 

models of CSC population development 257–260, to our knowledge, none have been applied to a 

serial passaging platform to predict enrichment of CSCs. The unique strength of our math model 

is that it is informed by experimental data, including those obtained from patient samples. 

Moreover, the math model can be used to predict more complex environmental conditions that 

include hypoxia, stem cell plasticity, extracellular matrix physical–chemical properties, etc.  

The innovation in our approach stems from the use of a powerful in vitro model to 

simultaneously assess the emergence of chemoresistance with CSC-enrichment, combined with 

gene sequencing queries that demonstrate the predictive and prognostic capability of this in vitro 

platform. Coupled with the mathematical model to predict CSC enrichment, this integrated 

platform has utility in guiding targeted therapies for ovarian cancers, and studying the underlying 

mechanisms of chemoresistant and recurrent disease.  
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2.2 Results and Discussion 

2.2.1 Proliferation increased within the 3D engineered serial passage model. 

The 3D engineered model of stemness and chemoresistance was established by serial 

passaging of non-adherent ovarian cancer spheroids on the hanging drop array. In order to 

evaluate the effect of the model on cell proliferation, the kinetics of cell growth in the 3D 

suspension were evaluated at each passage. At every passage in the model, spheroids were 

initially seeded at 100 cells per spheroid. This consistency was also evaluated by checking cell 

viability on Day 1, and no significant differences were present (Supplemental Figure 1). 

Furthermore, all three patient derived cells and cell lines (OVCAR3, Pt224, Pt412) formed 

spheroids with tight boundaries at every passage by Day 1, just 1 day after initial seeding of the 

cells into the 3D hanging drop array (Figure 2.1). The fold-changes in alamarblue fluorescence 

after 7 days of growth compared to Day 1, increased with serial passaging.  

The alamarblue results indicated a linear increase in proliferation for OVCAR3 spheroids 

as passage number increased (Figure 2.1A,B). At P6, the fold increase in alamarblue 

fluorescence was 12.2 ± 2.3, as compared to the fold-increase at P1 of just 6.5 ± 3.3. Cell counts 

reaffirmed this increase in proliferation, with the number of cells per spheroid increasing two-

fold from P1 to P6 (54 ± 8.4 to 118 ± 7.8, Figure 2.1B). Pt224 ascites cell proliferation also 

increased significantly with increasing serial passage, though to a lesser degree as compared to 

the OVCAR3 spheroids (Figure 2.1D,E). The corresponding values of fold-change in 

proliferation indicate a 6.2 ± 1.7-fold increase at P0, compared to a 7.2 ± 1.2-fold increase at P6. 

Lastly, the Pt412 cell spheroids underwent an increase from 4.4 ± 0.97-fold proliferation at P3, 

to 6.7 ± 1.4-fold at P6, higher than the initial P0 value of 5.7 ± 1.6-fold. However, in Pt412 

spheroids, drop in proliferation was observed in P3 (Figure 2.1G,H). For all three ovarian cancer 
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cell types and patient samples, the fold-change in proliferation at P6 was significantly higher 

than the proliferation at P0. These results demonstrate that the model caused increases in 

proliferation in all 3 ovarian cancer cell types.  

 

Figure 2.1: The 3D engineered serial passage hanging drop array model enhances proliferation in OVCAR3, Pt224, 
and Pt412OV spheroids initiated at 100 cells/drop.  
Fold increase in proliferation of A) OVCAR3, D) Pt224 cells, and G) Pt412 cells over 6 serial passages, based on 
alamarblue fluorescence at Day 7 normalized to Day 1 of each passage. Significant linear increase in proliferation 
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as serial passage number increased was observed (n ≥ 6, with 150–200 spheroids formed for each experiment, 
**P ≪ .01, one-way ANOVA, horizontal line indicates significant differences between serial passages [P0-P6] in 
proliferation). Number of B) OVCAR3, E) Pt224, and H) Pt412 cells/spheroid quantified with trypan blue at Day 7 
of each passage. Significant linear increase in proliferation is observed as spheroids are passaged serially (n ≥ 6, 
with 150–200 spheroids formed for each experiment, **P ≪ .01, one-way ANOVA, horizontal line indicates 
significant differences between serial passages [P0-P6] in proliferation). Representative phase contrast 
micrographs of C) OVCAR3, F) Pt224, and I) Pt412 spheroids at Day 1 and Day 7 at each passage. Scale 
bar = 100 μm. 

 

2.2.2 Cancer stem cell populations were enriched in spheroids within this 3D engineered serial 

passage model. 

In order to further examine the evolution of the CSC populations in our model, we 

quantified the ovarian CSCs expressing ALDH+ and CD133+ in the serially passaged spheroids. 

Given that chemoresistant CSCs prefer to form spheroids in suspension cultures, and can be 

enriched in such cultures, we assessed the effect of this model on the CSC subpopulation. Figure 

2.2 shows the percentage of total cells that are ALDH+ and CD133+ in OVCAR3, Pt224, and 

Pt412 respectively. From P0 to P6 in the OVCAR3 serially passaged spheroids, there was 5.6-

fold increase of ALDH+ cells from P0 to P6 (from 2.28 ± 0.33 to 12.7 ± 2.21 percent), and a 2.5-

fold increase in CD133+ cells (1.58 ± 0.46 to 3.97 ± 0.30 percent; Figure 2.2A). A significant 

increase in ALDH+ and CD133+ cells were observed in the Pt224 cells as well, with nearly a 

5.1-fold increase in ALDH+ cells from P0 to P6 (1.63 ± 0.08 to 8.44 ± 0.26 percent), and a 1.5-

fold increase in CD133+ cells (2.27 ± 0.31 to 3.44 ± 0.5 percent; Figure 2.2B).  

Although the ALDH+ cells in Pt412 spheroids started off relatively high, there was still a 

2.4-fold increase in ALDH+ cells between P0 and P6 (18.7 ± 4.08 to 46.02 ± 5.16 percent; 

Figure 2C). The change in CD133+ population was especially high in Pt412 spheroids, with 

about a 7-fold increase between P0 and P6 (0.71 ± 0.09 to 5.18 ± 0.14 percent). The significant 

increase in ALDH+ and CD133+ cells in OVCAR3, Pt224, Pt412 spheroids serially passaged 

from P0 to P6 indicates that CSCs are enriched within this model. Moreover, serial passaging of 
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the same cells in 2D was erratic, and did not show the same increase in ALDH+ and CD133+ 

populations as we observed within the spheroids.  

 

Figure 2.2: This serial passage model increased populations of ALDH+ and CD133+ cells.  
Percentage of ALDH+ and CD133+ populations in A) OVCAR3, B) Pt224, and C) Pt412 spheroids quantified from 
flow cytometry. Significant linear increase in both ALDH+ and CD133+ populations from P0 - P6 (n ≥ 4, with 150–
200 spheroids formed for each experiment, **P ≪ .01, one-way ANOVA, top horizontal line indicates significant 
differences between serial passages [P0-P6] in ALDH, and the bottom line indicates differences in CD133). 
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2.2.3 Serially passaged spheroids in the 3D engineered model exhibited resistance to cisplatin 

and sensitivity to ALDH inhibitor. 

After confirming that the CSCs were enriched in spheroids from P0 to P6, we 

hypothesized that resistance to cisplatin would also be observed as passage number increased 

within this model, and thus investigated the effectiveness of the model to enhance chemoresis- 

tance. Notably, there was an initial resistance to cisplatin in P0 following the first formation of 

spheroids in OVCAR3 that decreased upon passage to P1 (38% ± 2.23 viability in P0 to 27.3% ± 

2.10 in P1). As hypothesized, when the spheroids were serially passaged from P1 to P6, this 

resistance to cisplatin increased (Figure 2.3). The viability of OVCAR3 spheroids fell to 27.3% ± 

2.09 with cisplatin treatment at P1, and rose to 61.3% ± 2.36 at P6 (Figure 2.3A, C). Pt224 and 

Pt412 cell spheroids reacted in a similar manner as OVCAR3 spheroids, with cell viability 

values at P1 of 27.7% ± 1.23 and 46.9% ± 6 respectively following 50 μM cisplatin treatment, 

and 42.6% ± 3.19 and 69% ± 2.16 at P6 respectively (Figure 2.3, D, F, G, I).  

Given that ALDH percentage increased with serially passaging, the spheroids were 

treated with 50 μM of Compound 673A, an ALDH inhibitor 261. Cell viability in OVCAR3 

spheroids dropped from 85.7% ± 2.6 at P1 to 69.8% ± 2.84 at P6 following treatment with the 

inhibitor (Figure 2.3B, C). An increase in sensitivity to Compound 673A resulted in cell 

viabilities of 98.2% ± 2.17 and 84.8% ± 2.63 at P1 and 63.3% ± 4.1 and 66.8% ± 3 at P6 of 

Pt224 and Pt412, respectively (Figure 2.3, E, F, H, I). These data corroborate increasing levels of 

CSCs in the spheroids as serial passage increased in this model. These data are consistent with 

our previous observations of ALDH inhibitor significantly reducing the viability of various 
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patient derived CSC spheroids 4. Serially passaging spheroids in the hanging drop array caused 

the emergence of resistance to cisplatin and increased sensitivity to the ALDH inhibitor.  

 

Figure 2.3: Resistance to cisplatin and sensitivity to ALDH inhibitor Compound 673 increase within this model. 
 Percent viability of A) OVCAR3, D) Pt224, and G) Pt412 spheroids 3 days following treatment with 50 μM 
Cisplatin. Significant increase in cell viability over serial passage was observed (n ≥ 6, with 150–200 spheroids 
formed for each experiment per treatment group, **P ≪ .01, one-way ANOVA, horizontal line indicates significant 
differences between serial passages (P0-P6) in cell viability after cisplatin treatment). Percent viability 
of B) OVCAR3, E) Pt224, and H) Pt412 spheroids 3 days following treatment with 50 μM of novel ALDH inhibitor 
Compound 673. Significant decrease in cell viability over serial passage was observed (n ≥ 6, with 150–200 
spheroids formed for each experiment per treatment group, **P ≪ .01, one-way ANOVA, horizontal line indicates 
significant differences between serial passages (P0-P6) in cell viability after Compound 673 treatment). 
Representative phase contrast micrographs of C) OVCAR3, F) Pt224, and I) Pt412 spheroids at Day 10, following 3 
days of treatment. Scale bar = 100 μm. 

2.2.4 ALDH expression in viable cells decreased following drug treatment of spheroids. 

Further, we sought to quantify the changes in the CSC population after treatment with cisplatin 

or ALDH inhibitor that occur within this model. Thus, we analyzed the ALDH activity in viable 

cells after these treatments. The percentages of ALDH+ cells in spheroids treated with 50 μM 

Cisplatin or 50 μM Compound 673A decreased compared to the controls. The ALDH+ 
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population increased significantly with increased serial passage number (Figure 2.4). However, 

treatment with cisplatin decreased the levels of ALDH+ cells, with the exception of P0 for 

OVCAR3 and Pt224 spheroids. The greatest fold difference between control and drug treatment 

was clear in P6 spheroids. The decrease in ALDH+ cells was most drastic following treatment 

with the ALDH inhibitor.  
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Figure 2.4: Evaluating CSC marker expression after treatment at P0,P3, and P6. 
Population of ALDH+ cells decreases after treatment with Cisplatin and ALDH inhibitor Compound 673A. Percent 
of ALDH+ cells in A) OVCAR3, B) Pt224, and C) Pt412 spheroids following treatment with 50 μM Cisplatin, 50 μM 
ALDH inhibitor Compound 673, or spheroid serum free medium. Significant difference between control and drug 
treatment in all cases (n ≥ 4, with 150–200 spheroids formed for each experiment per treatment group, **P ≪ .01, 
*P ≪ .05, one-way ANOVA). 

 

 

2.2.5 Spheroids from the serial passage 3D engineered model initiated ovarian tumors in vivo, 

with later passage spheroids exhibiting higher tumorigenicity than early passage spheroids. 
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After confirming that our model enriched the ALDH+ population and increased 

chemoresistance, we observed how tumor growth could be impacted by enrichment in CSCs and 

chemoresistance within this model. This was done by subcutaneously injecting a limiting number 

of spheroids or 2D grown cells (1 million cells) as positive control into the flanks of NSG mice 

(Figure 2.5A,C). Tumorigenicity increased with serial passaging among tumors initiated from 

Pt224 P0, P3, or P6 spheroids. A similar trend was observed in tumors initiated from P6 and P3 

spheroids as compared to P0 spheroids in mice injected with Pt412 derived spheroids (Figure 

2.5B, Supplemental Figure 2). Following injection of 50 Pt224 spheroids, tumor growth from P6 

spheroids was detectable as early as 2 weeks, with complete initiation of tumors from P3 and P6 

spheroids by week 4 following injection. P0 spheroids completely initiated tumors by week 5. 

One million Pt224 cells from 2D culture-initiated tumors by week 4. Tumors from 2D cells 

reached the final tumor volume of 1500 mm3 before the other tumor groups formed from 50 

spheroids (Figure 2.5A). Following injection of 10 Pt224 spheroids, P6 spheroids had 100% 

initiation by week 4, and tumors from P3 spheroids achieved 100% initiation by week 5, with 

tumors from P0 spheroids initiated 100% by week 7 (Supplemental Figure 2). Similarly, after the 

injection of 4 spheroids, those from P6 initiated 100% tumors by week 4, meanwhile the lower 

passage spheroids did not initiate tumors before week 6. Additionally, when just one Pt224 

spheroid was injected, P0 spheroids did not form tumors through 15 weeks of observation, 

though both P6 and P3 spheroids were able to form tumors, with P6 tumors initiating 3 weeks 

prior to P3 spheroids. This differential tumor initiation also corresponded with differential time-

points for reaching final tumor volume, with tumors from P6 spheroids reaching the endpoint 

before P3 spheroids, which reached the endpoint before P0 spheroids. In mice administered with 

10 Pt412 derived spheroids, P0, P3 and P6 passages initiated tumors by week 2, but P6 reached 
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the tumor volume endpoint earlier than the P0 and P3 passages, indicating a higher number of 

tumor initiating stem cells and higher tumorigenicity in P6. These results highlight the relevance 

of the serial passage model in modulating the tumor aggressiveness and accelerating rate of 

tumor formation in later passage spheroids.  

Additionally, we examined the role of later passage spheroids in inducing larger tumor 

load and faster initiation using extreme limiting dilution analysis (ELDA)262 (Figure 2.5D–G, 

Supplemental Table 1). The fitted model displayed vastly different tumorigenicity and CSCs in 

the three groups. Specifically, in case of Pt224, the CSC frequencies in P6 increased to 1 in 0.6, 

from 1 in 28.5 at P3, and from 1 in 62 for P0 spheroids (Figure 2.5D, F). Meanwhile for patient 

metastasis derived Pt412 sample, CSC frequency was estimated as 1 CSC per cell at P6, 1 CSC 

in 45 cells at P3, and 1 CSC in 92 cells at P0, which were significantly higher than CSC 

frequencies in patient ascites Pt224 spheroids. Therefore, Pt 412 demonstrated highly enriched 

cancer stem cell population in P6, as compared to P3 and P0 (Figure 2.5E, G). These findings 

underline the role of serial passaging in enriching and maintaining CSCs263.  
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Figure 2.5: Spheroids from higher serial passage number within this model are more tumorigenic in NSG mice.  
A) For Pt224, tumor volume as a function of time for 50 spheroid/s (n = 6 in each group). Fifty spheroids from P0, 
P3, and P6 all reached the endpoint of 1500 mm3 by week 6, and 1 million 2D grown cells reached endpoint by 
week 4. B) For Pt412, tumor volume as a function of time for 10 spheroids (n = 6 in each group). 10, 100 cell 
spheroids from P0 and P3 reached the endpoint of 1500 mm3 by week 5, while P6 group reached end point by week 
4. C) Macroscopic pictures and photomicrographs of hematoxylin and eosin images of naïve patient tumor and 
xenografts observed in NSG mice with subcutaneous injections of spheroids or 2D grown cells. Scale bar = 50 μm. 
D) Plot for Pt224 of the log fraction of mice bearing no tumors in 4 weeks (Log fraction nonresponding) as a 
function of the number of spheroids injected in NSG mice at that serial passage (Dose). The slope of the line: log-
active cell fraction; dotted lines: 95% confidence interval; down-pointing triangle: cell dose with 0 non-xenografted 
mice. The more vertical the line, the higher the percentage of stem cells in that passage (n = 6, 
****P ≪ .0001). E) Plot for Pt412 of the log fraction of mice bearing no tumors in 4 weeks (Log fraction 
nonresponding) as a function of the number of spheroids injected in NSG mice at that serial passage (Dose). The 
slope of the line: log-active cell fraction; dotted lines: 95% confidence interval; down-pointing triangle: cell dose 
with 0 non-xenografted mice. The more vertical the line, the higher the percentage of stem cells in that passage 
(n = 6, ****P ≪ .0001). F) Inverse of frequency of stem cells as determined by Extreme Limiting Dilution Analysis 
(ELDA) between different passages for Pt224. Lower number indicates higher fraction of cancer stem cells in P6, 
compared to P3 or P0 (n = 6, ****P ≪ .0001). G) Inverse of frequency of stem cells as determined by Extreme 
Limiting Dilution Analysis (ELDA) between different passages for Pt 412. Lower number indicates higher fraction 
of cancer stem cells in P6, compared to P3 or P0 (n = 6, ****P ≪ .0001). 

2.2.6 Spheroids initiated with ALDH+ had greater proliferation compared to ALDH- cells. 
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Knowing that the serial passage hanging drop array model induced an increase in the 

percentage of ALDH expressing cells at later passages, we quantified the differences in the 

proliferation rates between spheroids initiated with ALDH+ and ALDH- cells. Spheroids 

initiated with ALDH+ cells had greater fold-changes in proliferation than ALDH- cells (Figure 

2.6). Based on alamarblue fluorescence, a significant difference in proliferation was observed 

after a week of growth; with about a 5-fold difference in ALDH+ cells to near a 3-fold difference 

in ALDH- cells (Figure 2.6B). Moreover, there was a significantly higher percentage of cells 

expressing Ki67+ cells in the ALDH+ cells initiated spheroids compared to the ALDH- group 

(Figure 2.6C). This provides evidence that our model may be increasing the ALDH+ population 

over serial passage, and thereby causing the increase in proliferation that was observed.  

 

Figure 2.6: ALDH+ OVCAR3 spheroids have higher proliferation than ALDH- spheroids. 
 A) Representative phase contrast micrographs of ALDH+ and ALDH- OVCAR3 spheroids at Days 1, 4, and 7 
(Scale bar = 100 μm). B) Fold increase in proliferation of ALDH+ and ALDH- OVCAR3 cells, based on alamarblue 
fluorescence at Day 7 normalized to Day 1 of each passage. C) Percent of cells expressing Ki67 higher in ALDH+ 
spheroids, quantified via flow cytometry. (n ≥ 6, with 150–200 spheroids formed for each experiment per treatment 
group, ***P ≪ .001, *P ≪ .05, one-way ANOVA). 
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2.2.7 RNA sequencing reveals stemness, tumorigenic and chemoresistance signatures through 

in vitro passaging. 

Using RNA sequencing, we assessed genome-wide changes to RNA synthesis and 

stability in Pt412 and Pt224 CSC spheroids that underwent early (P0), middle (P3), or late (P6) 

serial passaging in the 3D model. Generation of a PCA plot from our gene-expression data shows 

a clear difference in gene signature between each patient sample (Figure 2.7A). Similarly, we 

observed a definitive trend showing changes in gene signature within each patient sample with 

serial passaging. This trend was also evident in Pt224 and Pt412 heatmaps showing significantly 

up- and down-regulated genes for each patient sample across P0, P3, and P6 spheroids (Figure 

2.7B).  

Of the significantly up-regulated genes for Pt224 (553 genes) and Pt412 (507 genes), a 

total of 142 genes were commonly upregulated in both patient samples. From these 142 genes, 

we identified and binned 9 of the most highly upregulated genes associated with stemness 

(WLS264,265, ALDH1A1 69,266, BMP264,267, RSPO3268,269), tumorigenicity (MAGEB2 270,271, 

BMP264, EFNB2 272, SERPINE2 273–277, HHIP278–280, PTGS2281–284), and chemoresistance 

(WLS264,265,285, ALDH1A1286,287, BMP264, 281,288PTGS2) based on the literature (Figure 2.7C, D). 

The upregulation of these genes between P0 and P6 for both patient samples was subsequently 

confirmed with qRT-PCR. While qRT- PCR confirmed the upregulation of all binned genes, 

ALDH1A1 was among the top two upregulated genes in both patient samples regardless of 

quantification metric (Figure 2.7D, E). Further analysis of 17 transcription factors previously 

associated with ovarian CSCs indicated that FOXA1 and LEF1 are significantly upregulated 

between P0 and P6 spheroids generated from Pt412 cells with the thresholds used in our analysis 

(Figure 2.7F)289.  
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Figure 2.7: Stem-related pathways are enriched in late-passage spheroids.  
A) Principal component analysis demonstrated emerging differences in Pt224 and Pt412 samples as they proceeded 
through serial passages P0, P3 and P6; B) Heatmaps denoting changes in RNA-Seq between P0, P3 and P6 in 
Pt224 and Pt412 samples; C) Gene signature establishing the stemness, tumorigenicity and chemoresistance of 
serially passaged spheroids derived from common upregulated genes between both patient samples; D) Waterfall 
plots generated from RNA-Seq analysis of common upregulated genes in P0 Vs. P6 for Pt224 and Pt412; E) qPCR 
confirmation of genes from P0 Vs. P6 upregulated by RNA-Seq, included in the gene signature; F) Heatmap of 
expression levels of transcription factors commonly implicated in ovarian cancer stem cell maintenance. 
 

2.2.8 Mathematical modeling strongly predicts emergence of cancer stem cell populations, and 

tumorigenicity within serially passaged spheroids. 

To further validate our experimental findings, and enhance the utility of our model as a 

predictive and prognostic tool, we developed a mathematical model describing the emergence of 

ALDH+ populations across 6 passages. In simulating the growth of a spheroid over 7 days for 

the OVCAR3 cell line (Figure 2.8A), as well as Pt224 (Figure 2.8B) and Pt412 cells (Figure 

2.8C), we corroborate our experimental findings of increased proliferation in later passages. 

Spheroids formed from the Pt412 metastatic sample were predicted to exhibit the greatest 
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increase in proliferation (1.19-fold simulated P0- P6 increase vs. 2.1-fold experimental P0-P6 

increase) compared to the OVCAR3 cell line (1.084-fold simulated P0-P6 increase vs. 1.6-fold 

experimental P0-P6 increase) and the Pt224 ascites sample (1.083- fold simulated P0-P6 increase 

vs 1.7-fold experimental P0-P6 increase). As expected, this increase in proliferation 

corresponded with increased ALDH+ percentages, with Pt412 spheroids exhibiting highest 

ALDH+ levels (35.61% simulated vs 46±5.2% experimental) after 6 passages (Figure 2.8G), 

followed by OVCAR3 spheroids (9.78% simulated vs 12.1±2.2% experimental) (Figure 2.8E) 

and lastly Pt224 spheroids (8.65% simulated vs 8.4±0.26%) (Figure 2.8F). These findings 

mirrored our experimental data confirming the ability of our model to reproduce biological 

trends. Interestingly, the model also predicts a plateau in cells per spheroid and ALDH+ cells 

within spheroids of each patient sample, which could not be perceived from our experimental 

data. This is especially evident when the model is used to simulate 20 passages, indicating that 

Pt412 cells per spheroid begins to plateau around passage 9 (9206 cells/spheroid), while the 

increased percentage of ALDH+ cells is predicted to plateau around passage 11 (~38.0%). On 

the other hand, Pt224 and OVCAR3 spheroids are predicted to plateau in cells per spheroid 

around passage 18 (5506 and 7160 cells/spheroid respectively) and in percentage of ALDH+ 

cells around passage 20 (~30.6% and ~28.7% respectively; Figure 8D, H).  
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Figure 2.8: Mathematical modeling of 3D engineered serial passaging.  
Spheroid growth over the course of 7 days for each passage with the A) OVCAR3, B) Pt224, and C) Pt412. Insets 
illustrate increase in cell numbers per spheroid across passages from day 6.5 to 7. Emergence of ALDH+ 
population across 6 passages in the E) OVCAR3, F) Pt224, and G) Pt412. Experimental values are plotted as 
dotted lines with the standard error of the mean at each passage. D) Cells per spheroid and H) ALDH percentage 
simulated over 20 passages for OVCAR3 (blue), Pt224 (red), and Pt412 (green) spheroids. 
 

 

 

2.2.9 Serial passaging ovarian cancer stem cell spheroids to model tumor re-emergence in 

vitro. 



 46 

Modeling tumor reemergence following cisplatin/673A treatment in vitro Following 

cisplatin/673A treatment, live cells from spheroids were sorted using flow cytometry to isolate 

cells that escaped cisplatin/673A treatment. Spheroids were reinitiated with these cells to 

preliminarily model tumor reemergence in vitro (Figure 2.9A). All three patient ascites samples 

reliably formed spheroids, indicative of the ability of residual viable cells to reform a "tumor" 

following cisplatin/673A treatment (Figure 2.9A). Flow analysis indicated that ALDH+ OvCSC 

progeny had reliably repopulated within these spheroids (Figure 2.9B), despite their initial 

depletion after cisplatin/673A treatment. Despite the differential response to therapy, the remnant 

resistant cells demonstrated similar proliferative capacity (Figure 2.9C). At the first repassage, 

the extent of repopulation of ALDH+ progeny did not match the original fraction present in these 

samples, except in Pt152 samples where the ALDH+ cells exceeded those in the original sample 

(5.1% in spheroids reemerged following cisplatin/673A treatment vs. 1.4% in spheroids 

originally initiated from the primary patient sample; Figure 2.9D). These spheroids were serially 

passaged over seven cycles, to demonstrate tumor reemergence over a significant time scale of 7 

weeks in vitro (Figure 2.9E,F). Flow analysis indicated that ALDH+ OvCSC progeny had 

reliably repopulated within these spheroids (Figure 2.9E,F), despite their initial depletion after 

cisplatin/673A treatment. The extent of repopulation of ALDH+, CD133+, and ALDH+/ 

CD133+ progeny approached and even surpassed the original fraction present in the patient 

samples. 
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Figure 2.9: Remnant viable cells cause reemergence of ovarian tumor and CSC populations in cisplatin/673A–
treated OvCSC spheroids. 
A, Phase-contrast micrographs of spheroids generated from viable cells surviving cisplatin/673A treatment. Insets 
show spheroids at day 1 following cell seeding (scale bar, 100 mm). B, Representative flow cytometry plots of 
OvCSC populations in the reemerging spheroids at day 7, following cisplatin/673A treatment. C, Quantification of 
proliferation within spheroids over 7 days, formed from viable cells after cisplatin/673 treatment, indicating robust 
proliferation and recovery following cisplatin/673A therapy. No statistical significance was observed in the 
proliferation rates between patient samples. D, Graphical quantification of OvCSC populations derived from flow 
analysis, indicating the presence of ALDH+ populations, minimal to no recovery of ALDH+/CD133+ or CD133+ 
populations. E, Flow analysis of serially passaged recovered Pt259 OvCSC spheroids indicates an increasing 
expression of ALDH+, CD133+, and CD133+/ALDH+ populations, over seven generations. OvCSC populations 
approach and even seem to surpass original populations. F, Flow analysis of serially passaged recovered Pt152 
OvCSC spheroids demonstrates an increase in ALDH+, CD133+, and CD133+/ALDH+ OvCSC progeny. CD133+ 
progeny do not approach original levels in Pt152 spheroids even after seven generations. 

 

 

2.2.10 Serial passaging to evaluating the effect of Metformin on ovarian CSCs and the 

development of chemoresistance. 
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Prior studies suggest metformin can reduce cancer “stemness” 290–292. We have shown 

that ALDH+CD133+ ovarian cancer cells are enriched for ovarian CSCs64. Thus, a primary 

endpoint of this study was to evaluate ALDH+CD133+ CSCs in the metformin-treated 

specimens and matched non–metformin-treated control patients. For homogeneity, we only 

evaluated samples from 22 patients with stage III/IV high-grade serous cancer. Controls met the 

eligibility criteria set forth for the trial and were consented for tissue collection via an IRB-

approved tumor banking protocol. Selecting from a bank of more than 200 patient samples, 22 

controls were matched to have identical stage, histology, and chemotherapy (including adjuvant 

vs. neoadjuvant). Average age of controls at the time of surgery was similar at 61.1 years (range 

42–76). Among control patients, 75% underwent optimal debulking (15 of 20; debulking status 

unavailable for 2). Flow cytometry revealed metformin-treated patients exhibited an average 2.4-

fold reduction in percentage of ALDH+CD133+ cells compared with non–metformin-treated 

ovarian cancer controls (P < 0.0001, Figure 2.10A).  

To further evaluate the stemness of these tumors, tumor cells from 6 metformin-treated 

patients and 7 controls were grown in hanging-drop suspensions in serum-free media and serially 

passaged. Spheroids were then analyzed for response to cisplatin therapy over time and 

expression of ALDH or CD133. In line with a potential reduction in stemness, metformin-treated 

cells were more sensitive to platinum treatment, unlike controls, and appeared not to develop 

therapeutic resistance with passaging (P < 0.001, Figure 2.10B). Consistent with the initial 

analysis, spheroids from metformin-treated patients initially demonstrated reduced levels of both 

ALDH and CD133 (Figure 2.10C). Furthermore, these levels stayed lower over time and, in the 

case of ALDH, appeared to increase less over time.  
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Figure 2.10: Tumors treated with metformin have decreased cancer stemness. 
(A) Summary of FACS analysis of ALDH+CD133+ CSCs in metformin-treated (n = 22) and matched control 
ovarian cancers (n = 22) demonstrating a 2.4-fold decrease in CSCs in metformin-treated tumors. (B) Cell viability 
of tumor cells from metformin-treated patients (n = 6) or control patients (n = 7) grown in suspension, passaged 
weekly, and treated with cisplatin (5 replicates each). Tumor cells from metformin-treated patients maintain 
platinum sensitivity with serial passage, while control tumor cells increase platinum resistance over time. (C) 
Evaluation of ALDH and CD133 expression in metformin-treated and control tumor cells grown in suspension and 
after serial passages. Metformin-treated samples start at a lower baseline and increase less over time relative to 
controls. Lines in boxes represent averages. The whiskers depict the minimum and maximum values, and the length 
of the box represents the interquartile range. Statistical significance between passages was assessed with 2-sided 
Student’s t tests and comparisons made between metformin and non-metformin samples at each passage, using 1-/2-
way ANOVA and Tukey’s post hoc analysis to determine specific significant differences (P < 0.05). All data are 
expressed as mean ± SEM.  

 

2.2.11 Serial passaging discussion. 

Ovarian CSCs are putative mediators of chemoresistance and recurrent disease, escaping 

conventional chemotherapy and contributing to relapse and tumor progression 293,294. Therefore, 

in this study, we engineered an in vitro model that probes development of chemoresistance 

within a CSC-context. Further, we applied this model system in two clinically relevant scenarios, 

the first using this system to evaluate recurrence and the emergence of chemoresistance with 

patient-derived ovarian CSC spheroids and the second evaluating stemness and therapy response 
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with passaging of spheroids made from metformin treated and untreated patient samples from a 

phase II clinical trial4,5.  

Traditional monolayer models of chemoresistance neither recapitulate 3D cell–cell 

interactions, nor are they comparable to chemoresistance observed in the clinic 242,295. A variety 

of traditional chemoresistance models also do not address the CSC context. Since the CSC 

phenotype is notoriously heterogeneous and unstable in 2D monolayer cultures, serial passages 

in xenografts are performed to study tumor initiating traits and CSC characteristics in serous 

ovarian cancer 65,293,296. Genetically engineered mouse models and patient-derived xenografts, 

although more representative of primary disease, are expensive to establish and perform 

routinely207,297,298. For these reasons, 3D spheroid and organoid models are used for preclinical 

drug screening in vitro to bridge the gap between 2D monolayer cell culture and 

xenografts253,254,299,300. In our current serially passaged spheroid model, we demonstrate the 

combined evolution of chemoresistance along with CSC traits in vitro - mimicking the 

progression of recurrent malignant ovarian carcinoma. We address the challenge that in vitro 

models of recurrence must mimic the complexity and heterogeneity of in vivo tumors and 

provide the longevity needed to capture tumor dormancy following chemotherapy. We observe 

that cells placed in the 3D spheroid culture and taken through serial passaging, enriches for 

CSCs, evidenced by the increasing expression of ALDH through the passages. Our observation 

of 3D enrichment of the CSC marker, ALDH, is corroborated by increased expression of 

ALDH1A1 as per RNA-Seq and qRT-PCR, which also showed increased stemness, 

chemoresistance, and tumorigenicity signatures. This is in line with other reports in various 

cancers including breast cancers, where enrichment of CSC traits are observed in non-adherent 

3D culture systems 301,302. The increasing ALDH expression with increasing serial passage is 
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correlated with increased proliferative rates of ALDH+ cells, compared to ALDH- cells. Similar 

to this phenomenon observed by us, Alvero et al. also reported that serially passaging 

CD44+epithelial ovarian cancer CSCs triggered a “repair/proliferation” signal, where the process 

of proliferation by non-stem CD44- cells derived from a quicker differentiation of CD44+ cells 

was heightened 251. Increasing growth rates for serial passaged xenografts were also reported in 

colorectal tumors, where later generations had higher growth rates compared to earlier 

generations of xenografted tumors252. Moreover, the inconsistent expression of CSC markers in 

2D passaging validates the use of our 3D serial passaging model, which produces more 

consistent and predictable increases in expression of CSC markers with serial passaging. In this 

model, we also report that with increasing ALDH+ populations with serial passage, we observe 

an increasing chemoresistance to conventional platinum-based therapy, and an increased 

sensitization to Compound 673A, an ALDH targeting compound. We have previously reported 

that Compound 673A targets the ALDH positive population in patient derived CSC spheroids, 

and reduces ALDH expression and activity in these spheroids4. The increase in chemoresistance 

to cisplatin is not surprising, given that several reports suggest the strong correlation of the 

presence of ALDH to chemoresistance in clinical cohorts, as well as, in in vitro models and 

patient derived xenografts in ovarian and other cancers 61,62,303,304. Clinically, chemoresistance 

develops despite initial chemosensitivity in ovarian cancer. Excluding the transition from 2D to 

P0 3D spheroids, subsequent 3D passaging from P1 onwards resulting in increasing 

chemoresistance is thereby not surprising and putatively mirrors clinical observations in ovarian 

cancer.  

This was additionally corroborated in our tumor recurrence experiment with patient-

derived ovarian CSC spheroids. In this experiment both the platinum sensitive and platinum 
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resistant patient samples responded to treatment, but CSC populations re-emerged with serial 

passaging. However, both patient samples exceeded their initial percentage of CSCs indicating 

development of chemoresistance. Also of note, the platinum resistant sample recovered and 

surpassed its original CSC quantities faster than the platinum sensitive sample. This is in line 

with time-based clinical definitions of platinum resistant tumors recurring in less than six months 

while platinum sensitive tumors recur longer than 6 months after treatment is stopped5,305. Since 

the platinum sensitive sample eventually exceeded its original CSC marker expression, this 

suggests that even though it remained sensitive to platinum resistance was developing. For this 

reason, it is especially interesting that we found that Metformin treated samples were 1) 

sensitized to platinum therapy, 2) maintained platinum sensitivity with serial passaging, and 3) 

had attenuated enrichment of CSC markers with serial passaging. These findings agree with 

previous reports that Metformin can sensitize tumors to platinum therapy, increase recurrence 

free survival, and overall survival5,291,292,306 and highlight its potential as an anti-cancer therapy. 

Importantly, these findings also demonstrate the ability of our model system to recapitulate 

clinically relevant emergence of chemoresistance. 

Similar to reports by Hu et al. 307 where increased tumor burden was observed when side 

population CSCs were injected into mice, compared to non-side population cells, we observe that 

injection of spheroids from P6 or P3 (which are significantly more enriched in CSCs) 

demonstrate a higher tumor burden when compared to spheroids injected from P0, in line with 

several reports of higher tumor initiating abilities in ALDH+ cells compared to ALDH- cells in 

murine xenograft models 61,62,308. Thus, our model was successfully able to enhance 

tumorigenicity as well. In fact, at late passage (P6) we observed significantly higher estimated 

cancer stem cell frequency as compared to early passage (P0). This increase in the CSC 
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frequency at late passage was also correlated with earlier tumor establishment and greater tumor 

burden. Moreover, in comparison with serial passaging in PDXs, our model demonstrates higher 

efficiency, low cost, low latency, low time commitment, as well as, ability to test numerous 

patient derived tumors for personalized diagnostics and therapeutics.  

When considering the clinical utility of this model, it is important to note that while the 

model in this work is presented over 6 passages, the early passages could be utilized to direct 

initial therapies, with treatment adjustments being made later based on subsequent passages. 

Furthermore, with more clinical validation, our mathematical model could be used to predict 

emergence of CSC phenotypes based only on data from P0 and P1, which could then be used to 

inform treatment strategies on a much shorter time frame than PDX models. The validity of our 

results showing increased stemness, chemoresistance, and tumorigenicity using our model is 

validated by our RNA-sequencing and qRT-PCR results from P0, P3, and P6spheroids. In 

addition to clear changes in gene expression with passaging, we also report a new gene signature 

of upregulated genes binned into stemness (WLS, ALDH1A1, BMP2, RSPO3), tumorigenicity 

(MAGEB2, BMP2, EFNB2, SERPINE2, HHIP, PTGS2), and chemoresistance (WLS, 

ALDA1A1, BMP2, PTGS2) based on current reports in the cancer literature. Interestingly, 

ALDH1A1was among the top two commonly upregulated genes in both patient samples 

regardless of quantification metric. This likely indicates high involvement of ALDH1A1 in stem 

cell enrichment and increased platinum resistance observed with serial passaging. Furthermore, 

this finding helps to explain the increased sensitivity to ALHD inhibitor observed with 

passaging, and lends credence to the use of Compound673A to treat platinum refractory ovarian 

cancer. Our sequencing data also revealed upregulation of two transcription factors, FOXA1and 

LEF1, that had previously been associated with ovarian CSCs 289. Interestingly, these two factors 
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were only found to be significantly upregulated in the Pt412 sample. This difference between 

Pt224 and Pt412 may be due to the different stage and history of each sample (ascites vs 

abdominal metastasis) as well as the greater increase in ALDH+ OvCSCs in Pt412 spheroids 

compared to Pt224 spheroids. As a whole, given the results from our model and previous 

findings in the literature, we believe that the gene signatures presented by serially passaged P6 

spheroids in vitro are extremely representative of a clinically malignant, chemoresistant disease 

portending poor prognosis. It is important to note that while some genes upregulated in our P6 

spheroids, such as BMP2 64,267,309 and SERPINE2 273,278 can be associated with pro- or anti-

malignant features in different cancers, their upregulation in our P6 spheroids implicates them in 

malignant features of ovarian cancer. That said, future studies should further investigate the role 

of these gene signatures in ovarian cancer and development of chemoresistance with more 

patient samples and functional assessments of each gene.  

Concurrent with our in vitro data, the mathematical model demonstrates increased CSC 

proportions and proliferative capacity in a patient-specific manner over six passages, mimicking 

the increased tumorigenicity of CSCs. Our model additionally demonstrates CSC-driven tumor 

development consistent with the CSC hypothesis64,258. While our model mimics increased cells 

per spheroid over 6passages, the simulated fold increase is significantly lower than that 

determined experimentally. This discrepancy can be attributed to the simplicity of the model, 

which will be made increasingly more robust with additional biological considerations, such as 

dedifferentiation310, successive decrease in progenitor proliferation capacity 257,or the stratified 

proliferative, quiescent, and necrotic regions that may form within spheroids311, for example. 

However, over longer term passaging our model predicts a plateau in cells per spheroid which 

could represent the development of quiescent and necrotic regions within a spheroid as it grows 
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larger and the inner cores become deprived of nutrients and oxygen312. While this cannot be 

confirmed with our data, it serves as a solid basis for future experimentation. Interestingly, our 

model also predicts the eventual plateau of CSC populations within spheroids of each sample 

over the course of 20 passages, which could not be discerned from our experimental data within 

the six serial passages. This finding supports reports of negative feedback control on CSC 

populations by non-CSCs when space is limited 313. In the 20-passage simulation, Pt412 

spheroids were shown to reach cell/spheroid and CSC population plateaus much faster than the 

other two samples. This finding perhaps indicates that Pt412 would be quicker to develop ALDH 

conferred chemoresistance and relapse as their corresponding spheroids were simulated to reach 

their putative nutrient and space limitations fastest. Given that Pt412 contains the highest 

proportion of ALDH+ cells, which are generally more proliferative and chemoresistant 261,314,315, 

this observation is plausible. Additionally, this interpretation supports our in vivo evidence 

showing that xenograft tumors generated from Pt412 spheroids reached the tumor size endpoint 

1week faster for P0 and P3 and 2 weeks faster for P6 than tumors generated from Pt224 

spheroids. These findings may be indicative of the need for differential treatment strategies for 

Pt412 and Pt224.While other mathematical models have been developed to describe tumor 

growth dynamics and chemoresistance relative to CSC proportion, none have modeled CSC 

emergence in serial passaging of epithelial ovarian cancer spheroids 256–259,316–318, which can 

provide easily discernable, experimentally derived parameter-values to enhance biological 

relevance of the model.  

Similar to our model, Fornari et al. 257 proposed an experimentally informed system of 

equations to investigate CSC-driven tumorigenesis and analyze tumor growth dynamics based on 

CSC population proportions at passage 1,2, and 3. Analysis of this model was contained within 
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each passage and did not attempt to predict increased CSC populations across passages. Fornari's 

model, as well as others, solely attempt to model population development within a single growth 

iteration and do not attempt to predict emergence of increasing CSC populations across 

iterations257,258,260 limiting their utility in modeling emergence of CSC-related chemoresistance 

upon relapse. Lastly, many other mathematical models of tumor recurrence do not take into 

account the role of cancer stem cells in relapsed tumors and resulting increased 

chemoresistance319–321.Therefore, while simple, our model demonstrates a novel mathematical 

application by which the development of chemoresistance within epithelial ovarian cancer can be 

inferred in a patient-specific manner using only data from P0 and P1. Moreover, our math model 

can be easily adapted to include other experimental parameters that influence CSC evolution, 

including hypoxia, extracellular matrix biophysical properties, stem cell plasticity, and paracrine 

interactions with other cell types in the TME. Through these studies, we report an in vitro 

spheroid model that generates reproducible spheroids and results, takes a relatively short period 

of time to develop, more accurately addresses in situ chemoresistance development, and could be 

further used to examine the development of chemoresistance in the setting of enhanced cancer 

stem cell populations.  

This serial passage hanging drop model also incorporates the study of ovarian CSCs, 

thereby modeling the evolution and emergence of chemoresistance within a micro-tumor with a 

CSC-context. Since chemoresistance is observed in many ovarian cancer patients after first line 

chemotherapy, and we observe increased resistance to conventional chemotherapy in serially 

passaged spheroids, this model is well suited to study the in situ emergence of chemoresistance. 

Using the serial passage spheroid model, widely available -omics approaches can be used to 

analyze changes at genetic, epigenetic, metabolic and secretome levels, and compare them 
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between parental tumors, chemosensitive and subsequent chemoresistant passages. The evolution 

of chemoresistance could be related to molecular mechanisms, and the mechanistic roles 

attributed to key players within the molecular pathways could be further explored in vitro. This 

model has a wide variety of applications in both biomarker discovery, as well as preclinical 

screening from an evolved chemoresistant tumor standpoint. Apart from the obvious advantage 

of being physiologically relevant, the serial passage spheroid model recapitulates the existence of 

CSCs in malignant ascites that aggregate into spheroids to escape anoikis and maintains cellular 

heterogeneity of patient derived ovarian tumors, which can be utilized to study cellular 

interactions and their resultant biology in a systematic manner. Lastly, this model could be used 

as a way to enrich CSCs and chemoresistance within patient derived cells, and ultimately 

examine better treatment options for these patients. 

2.3 Conclusions 

In this work we present a newly engineered 3D ovarian cancer model to discern the 

underpinnings of chemoresistance development and role of ovarian CSCs in this process. We 

demonstrated the capacity of this model system to recapitulate in vivo chemoresistance 

development over long term culture with concordant increase in stemness, chemoresistance, 

tumorigenicity, and expression of a malignant gene signature. Furthermore, we present two 

applications of our model system that highlight its relevance to in vivo development of 

chemoresistance. We first demonstrated the utility of this model in precision medicine 

applications by modeling patient-specific tumor re-emergence with serial passaging of platinum 

sensitive and resistant patient-derived ovarian CSC spheroids after drug treatment. Finally, we 

used our model in a phase II clinical trial to demonstrate the effect of Metformin on CSCs and 

their ability to promote chemoresistance and recurrence, which reflected clinical observations 
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and previous literature. The applications of this system range from investigations into the 

mechanisms behind the development of chemoresistance and the enrichment of CSCs to 

personalized drug screening to inform clinical management or a translational tool to evaluate the 

effectiveness of new CSC or chemoresistance targeting therapies. As a result of its wide-reaching 

applications, this serial passage model has the potential to transform our understanding of CSCs 

and chemoresistance and expedite the development of new treatments. 

2.4 Materials and Methods 

2.4.1 Cell Culture. 

All reagents used in the experiments were purchased from Life Technologies (Carlsbad, 

CA), unless otherwise specified. The high grade serous ovarian adenocarcinoma cell line 

OVCAR3 was obtained from ATCC (Manassas, VA). Patient cells were recovered from primary 

patient ascites and primary or metastatic tumors after informed consent under approved IRB 

protocol, following procedures established previously61. Briefly, primary patient malignant 

ascites infusions were centrifuged to recover a cell pellet, and red blood cells were lysed 

following manufacturer's protocol of a commercial ACK lysis buffer. Cells were obtained from 

primary or metastatic tumors using the tumor cell dissociation kit (Miltenyi Biotech, San Diego, 

CA) following manufacturer's protocols. Following 40 μm filtration to obtain single cell 

suspensions, cells were recovered by centrifugation and resuspended in a serum free medium. 

The patient samples utilized in this report were: tumor (Pt412, stage III, abdominal metastasis of 

high grade serous ovarian cancer) and ascites (Pt224, stage IV, platinum resistant ovarian 

adenocarcinoma).  



 59 

OVCAR3 cells were cultured in 2D in 1640 RPMI supplemented with 10% fetal bovine 

serum and 1.5X antibiotics/antimycotics. Within the 3D hanging drop, OVCAR3 and Pt224 

spheroids were cultured in serum-free medium, composed of 1:1 DMEM:Ham's F- 12, 

supplemented with 1X B27 supplement without vitamin A, 1X MEM Non-Essential Amino 

Acids, 1X insulin-transferrin-selenium, 5 ng/mL Epidermal growth factor (EGF), and 5 ng/mL 

basic fibroblast growth factor (bFGF)4,322. Pt412 spheroids were plated in a serum free medium 

that was the same as above, except for 10 ng/ ml EGF and bFGF. These cells were maintained in 

a humidified 37°C incubator with 5% carbon dioxide.  

2.4.2 Generating spheroids on the hanging drop array. 

Spheroids were formed in hanging drop plates, purchased from XCentric Mold and 

Engineering (Clinton Twp, MI). For initial spheroid formation, cells were counted using a 

hemacytometer and diluted to contain 100 cells per 20 μL, and plated in 20 μL drops, following 

the procedure described previously 4,253,254. Serum free medium (3 μL) was added to the 

spheroids every 2–3 days.  

2.4.3 Serial passaging of ovarian cancer spheroids. 

At their first plating in the hanging drop array, the spheroids were labeled as passage 0 

(P0). At each passage, spheroids were maintained for 7 days on the array. On day 7, spheroids 

were harvested by pipetting out the drop, and disassembled through mechanical disruption 

caused by repeated pipetting of the spheroid in quick succession followed by accutase treatment. 

These single cells were counted and plated on a new hanging drop plate with density of 100 cells 

per 20 μL to generate passage 1 (P1) spheroids. This entire process was repeated 5 more times, to 
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reach a passage number of 6 (P6) by day 42. Phase images of the spheroids were collected using 

live cell microscopy on a calibrated phase contrast microscope (Olympus IX81, Japan equipped 

with ORCA R2 Cooled CCD camera and CellSens software) on days 1, 7, and 10 of spheroid 

growth for each passage. At least 3 representative images were collected for each hanging drop 

plate, and at least 5 serial passage experimental plates were prepared for each sample.  

2.4.4 Drug treatment of serially passaged ovarian cancer spheroids 

On day 7 of every passage, spheroids were treated with one of the following: 50 μM 

Cisplatin, 50 μM Compound 673A (a novel inhibitor that targets ALDH1A1, ALDH1A2, 

ALDH1A3 261), or no drug control (blank serum free medium). Three days after this treatment 

(day 10), phase images of the drug-treated and control spheroids were imaged and harvested for 

counting.  

In order to examine proliferation and viability after drug treatment, alamarblue dye was 

used in a 1:10 dilution within the hanging drops, and fluorescence values were collected at 530 

nm excitation and 590 nm emission within a microplate reader (Synergy HT, BioTek 

Instruments, Winooski, VT). Alamarblue from day 7 was normalized to day 1 for proliferation, 

and viability values from day 10 drug groups were normalized to non-drug treated values from 

day 10. Lastly, 10 spheroids were harvested from each drug treatment group, disassembled via 

mechanical disruption, and counted with trypan blue using a hemacytometer to assess viability 

and proliferation.  

2.4.5 Fluorescence-activated cell sorting (FACS) on serially passaged ovarian cancer 

spheroids. 
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On day 7 of each passage, spheroids were collected and disassembled to single cells for 

FACS analysis according to previously established protocols 4,322. The Aldefluor Kit was 

purchased from StemCell Technologies (Vancouver, BC, Canada), and used to analyze the 

activity of ALDH in viable cells within spheroids. CD133+ cells were detected using an Anti-

CD133 antibody purchased from Miltenyi Biotec (San Diego, CA). Furthermore, spheroids at 

P0, P3, and P6 treated on day 7 with 50 μM Cisplatin, 50 μM Compound 673, or no drug 

treatment, were examined on day 10 using FACS.  

2.4.6 FACS sorting for ALDH+ and ALDH- cells. 

OVCAR3 cells were sorted as ALDH+ and ALDH- cells, as described previously4,322. 

Briefly, cells were divided into equal volumes and concentrations across tubes, with at least 

10,000 cells in each tube. Aldefluor assay was performed following the manufacturer's protocols, 

using DEAB as an established negative control, and activated Aldefluor reagent for positive 

staining of ALDH activity. Cells were incubated in the 37C incubator for 30 to 45 minutes, 

recovered by centrifugation, and resuspended in FACS buffer with 300 μmol/L 4′,6-diamidino-2-

phenylindole (DAPI) to assess viability. Cells were processed through a flow cytometer, and 

forward and side scatter were used to isolate single cells, that were viable and DAPI negative. 

Gates were established using DEAB (less than 0.2% false positive), and stained tubes were used 

to sort for cells that represented ALDH+ and ALDH- populations.  

2.4.7 RNA-seq. 

RNA was isolated from uncultured or cultured (P0, P3, or P6) spheroids derived from 

Pt224 and Pt412 using the Qiagen RNeasy Miniprep kit following manufacturer's protocol. RNA 
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quality was verified using the Nanodrop, agarose Gel electrophoresis to test RNA degradation 

and potential contamination, as well as, RNA Integrity using Agilent 2100. After quality control, 

mRNA was enriched using oligo(dT) beads, and cDNA was synthesized by using mRNA 

template and random hexamer primers. cDNA library preparation was performed using a custom 

second-strand synthesis buffer (Illumina), and completed through size selection and PCR 

enrichment followed by quality control. Libraries were sequenced on the HiSeq 4000 (Illumina) 

by Novogene (Sacramento, CA).  

The RNA-seq reads were aligned to the hg19 transcriptome using the pseudo-alignment 

tool Kallisto. The aligned reads were then imported and analyzed for differential expression 

using DESeq2323. The transcript counts were summarized to gene-level counts using ensembl 

GRCh37 build using the biomaRt R package 324. A principle component analysis (PCA) plot of 

the samples was generated after variance-stabilizing transformation of the counts data. For each 

patient, genes differentially expressed between the P0 and P6 passages at a false discovery rate 

(FDR) threshold of 0.1 and absolute log2 fold change threshold of 0.5 were identified. Heatmaps 

of the differentially expressed genes were plotted using the complex Heatmap package 263 in R 

after standardizing (centering and scaling) the expression data. Heatmaps of expression of 22 

transcription factors (TFs) predicted to be activated in ovarian cancer stem cells in the literature 

are plotted to show the time-evolution of the serially passaged patient derived spheroids at P0, 

P3, or P6289.  

2.4.8 Xenografts from serially passaged ovarian cancer spheroids. 

NOD SCID gamma female mice were purchased from Jackson Laboratories (Bar Harbor, 

ME), and injected with ovarian cancer spheroids at a starting age of 8–12 weeks. Injections were 
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prepared by carefully harvesting Pt224 and Pt412 spheroids using a pipette and supporting them 

within Growth-Factor-Reduced Matrigel from Corning (Corning, NY). Mice received 

subcutaneous injections of 1, 10 or 50 Pt224 spheroids generated from 100 cells after 7 days of 

growth, from spheroids at P0, P3, or P6 (n = 6 in each group) and 10 spheroids (100 cells/drop) 

at P0, P3 and P6 generated using Pt412 sample (n = 6 in each group). Tumor size was measured 

once weekly using calipers. Mice were euthanized after tumors reached 1500mm3 in volume, 

when tumors were then dissected, and placed within biopsy cassettes for histology, followed by 

Hematoxylin and Eosin staining.  

2.4.9 Mathematical modeling. 

Our two-compartment mathematical model was based on a simplistic set of differential 

equations proposed by Moliña et al.258 and those proposed by Fornari et al257. All simulations 

were performed in MATLAB version R2017b (Mathworks, Natick, MA, USA). Briefly, two 

equations were formulated; one describing change in the ALDH+ population, and the other 

describing changes in the ALDH- population (Supplemental Figure 3). Changes in the ALDH+ 

population are described by symmetric division, asymmetric division, symmetric differentiation, 

and death rates of ALDH+ cells. Contrarily, ALDH- cells are assumed to be capable of only 

symmetric division and death, and depend on asymmetric division and symmetric differentiation 

of ALDH+ cells. Rate constants with the units of cells per day were derived mainly from 

experimental data and supplemented with the literature. Briefly, the symmetric division rate of 

ALDH+ cells is chosen based on the value that minimizes the collective difference between 

simulated cells per spheroid at the end of P0 and P1 and the observed cells per spheroid at the 

end of P0 and P1 (Supplemental Table 2). The symmetric division rate of ALDH- cells was 
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chosen to maintain an approximate ALDH+:ALDH- proliferation rate calculated from FACS 

data and cell counts at the end of P0 and P1. Cell death rate of ALDH+ and ALDH- cells were 

determined via FACS. The asymmetric division rate was determined from Tomasetti et al. 325, 

while the rate of symmetric differentiation by ALDH+ cells, has been found to be low through 

the observation of single cell divisions of ovarian cancer cell lines and primary samples, and is 

therefore taken to be 0 in this model 64,325.  

First, exponential growth curves were generated for ALDH+ and ALDH- populations 

respectively for the OVCAR3 cell line, and the two patient samples, Pt224 and Pt412 

individually. The curves were based off of the number of each cell phenotype expected at the 

beginning of P1 out of 100 initial cells, determined by flow cytometry. After finding the best fit 

for each exponential curve, the best fit equation was set equal to the expected number of ALDH+ 

or ALDH- cells at the end of P1, determined by cell counts and flow cytometry, and the 

approximate number of generations needed to reach the expected final ALDH+ or ALDH- cell 

number was calculated. Subsequently, the calculated number of generations of ALDH+ and 

ALDH- cells over the course of 7 days was then used to calculate the approximate proliferation 

rate in the exponential growth phase. A ratio of ALDH+ proliferation and ALDH- proliferation 

rate was assumed to reflect the ratio of ALDH+ symmetric division and ALDH- symmetric 

division. This ratio was used to calculate ALDH symmetric division rate given ALDH+ 

symmetric division rate (Supplemental Figure 3). ALDH+ symmetric division rate was chosen to 

minimize the collective difference between simulated and experimental cells per spheroid at the 

end of P0 and P1 (Supplemental Figure 3). Death rates for ALDH+ and ALDH- populations 

were similarly determined by flow cytometry following culture of P0 spheroids, assuming that 

the cells used to form the spheroids began with 100% viability. The asymmetric division rate was 
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determined from Tomasetti et al., whose predicted CSC growth curve with low asymmetric 

division matched that shown by our experimental data325. Finally, the rate of symmetric 

differentiation by ALDH+ cells, which we assume to be CSCs, has been found to be low through 

the observation of single cell divisions of ovarian cancer cell lines and primary samples, and is 

therefore taken to be 0 in this model 64,325 (Supplemental Table 3).  

2.4.10 Isolation of OvCSCs from primary patient ascites. 

Cells were recovered from primary patient ascites following protocols established 

previously61. Briefly, primary patient malignant ascites infusions were centrifuged to recover a 

cell pellet, and red blood cells were lysed following manufacturer's protocol of a commercial 

ACK lysis buffer (Life Technologies). Cells were obtained from xenografted tumors using the 

Tumor Cell Dissociation Kit (Miltenyi Biotec) following the manufacturer's protocols. After a 

40-mm filtration to obtain single-cell suspensions, cells were recovered by centrifugation and 

resuspended in a flow cytometry appropriate buffer (FACS Buffer; PBS supplemented with 2% 

FBS). OvCSCs were isolated on the basis of concurrent elevated ALDH activity and expression 

of CD133, following protocols established previously61. Cells were counted using a 

hemocytometer and adjusted to 1x106 cells/mL. The ALDEFLUOR Assay was carried out as per 

manufacturer's protocol, using diethylaminobenzaldehyde (DEAB) as a negative control for 

ALDH staining. Simultaneously, cells were incubated with activated ALDEFLUOR reagent or 

allophycocyanin (APC)-conjugated CD133 antibody (Miltenyi Biotec) to isolate CD133+ cells 

based on surface antigen expression and ALDH+ cells on the basis on ALDH activity. A 

negative control for CD133- APC staining was established using an isotype-matched APC-

conjugated antibody, to identify background staining. Cells were incubated in staining solutions 

for 30 to 45 minutes at 37C, washed with PBS, and resuspended in FACS buffer with 300 
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mmol/L 40 ,6-diamidino-2-phenylindole (DAPI). Cells were sorted on a flow cytometer, and 

discrete single-cell viable populations were identified. Appropriate gates were set for ALDH and 

CD133- APC using DEAB-stained tubes, and APC-isotype antibody tubes. OvCSCs were 

isolated as the small fraction of cells positive for both ALDH activity and the expression of 

CD133-APC. For this study, OvCSCs were FACS sorted and obtained from three different 

patient samples: Pt259 (stage IV progressive primary peritoneal carcinoma), Pt224 (stage IV, 

platinum-resistant ovarian adenocarcinoma), and Pt152 (stage IIIc, recurrent platinum-resistant 

high-grade ovarian adenocarcinoma). 

2.4.11 Drug treatment on OvCSC spheroids in hanging drop array culture. 

OvCSC spheroids were initiated in 384-well hanging drop arrays using 10 OvCSCs per 

spheroid. Spheroids were allowed to aggregate and form a 3D microtissue over a period of 7 

days, at which point, flow cytometry–defined populations of OvCSC progeny were established. 

For drug treatment, a 10 stock of drug was prepared independently, and 2 mL of drug was added 

to the 20 mL hanging drop containing spheroids to result in a final concentration of 1. Several 

drug-dosing regimens were carried out, including cisplatin (50 mmol/L), the ALDH inhibitor 

compound 673A (50 mmol/L), cisplatin (50 mmol/L) + 673A (50 mmol/L), the JAK1/2 

inhibitor, ruxolitinib (500 nmol/L), and/or cisplatin (50 mmol/L) + ruxolitinib (500 nmol/L). The 

concentrations for drug dosing were arrived at following dose–response curves, where the effect 

of the drug was maximal for the different patient samples, while simultaneously demonstrating 

platinum resistance in OvCSC spheroids. The effect of drug was assayed on spheroids at 72 

hours, using the AlamarBlue assay to determine viability after drug treatment. Control untreated 

spheroids were maintained for the same duration in culture. At least 20 spheroids (technical 

replicates) were assayed per experiment, with 3 to 5 biological replicates. Drug-treated spheroids 
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were imaged using phase-contrast microscopy to observe morphologic differences in spheroids 

exposed to drug compared with control untreated OvCSC spheroids. Flow cytometry was used to 

analyze OvCSC progeny following 72-hour drug treatment to identify whether chemotherapy 

targeted specific populations of OvCSC progeny. Finally, spheroids were either treated with 500 

nmol/L ruxolitinib or left untreated and collected and lysed in RIPA buffer (Invitrogen) with 

complete proteinase inhibitor and phosphatase inhibitor (Roche). Insoluble material was 

removed by centrifugation. Protein concentrations were determined using the Bradford Protein 

Assay Kit (Bio-Rad). Lysates were separated by gel electrophoresis and transferred onto a 

nitrocellulose membrane. Primary antibodies for immunoblotting include anti– phospho-STAT3 

(tyrosine705, #9131, Cell Signaling Technology), anti–total-STAT3 (#9139, Cell Signaling 

Technology), and anti-GAPDH (Thermo Fisher Scientific). Following incubation with the 

appropriate secondary antibody, bands were visualized using the ECL Kit (Thermo Fisher 

Scientific). 

2.4.12 Recovery of drug-treated spheroids to model tumor re-emergence and serial passaging. 

Recovery of drug-treated spheroids to model tumor reemergence and serial passaging 

Following 72 hours of maximal dose drug treatment (cisplatin/ 673A), OvCSC spheroids were 

harvested and suspended in FACS buffer with 300 mmol/L DAPI. Cells were flow sorted based 

on DAPI negativity, therefore isolating cells that remained viable following drug treatment. 

Spheroids were reinitiated in hanging drop array plates with cells suspended in SFM media and 

imaged with phase-contrast microscopy to visualize spheroid formation. To preliminarily model 

tumor reemergence in the most platinums ensitive (Pt259) and most platinum-resistant (Pt152) 

ascites samples, spheroids were collected from these two patient samples, mechanically 

dissociated to generate single-cell suspensions, and re-counted to initiate 100 cells per drop 
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spheroids for the next passage. Spheroids were serially passaged for 7 cycles (P0–P6) over a 

period of 7 weeks. Flow analysis was performed as outlined previously at the end of each cycle 

to characterize OvCSC markers (ALDH and CD133). This allowed us to identify OvCSC 

populations within serially passaged spheroids, while cells from the same population were 

allowed to re-form spheroids, serving as a preliminary model of tumor reemergence in vitro. 

2.4.13 Evaluating the effect of Metformin on ovarian CSCs in vitro. 

CSC studies. Tumor samples were processed into live single-cell suspensions326 and frozen for 

batch analysis. The proportion of ALDH1+CD133+ CSCs was evaluated via flow cytometry as 

previously described 4,253,254. 

 Hanging-drop spheroids. Tumor cell suspensions from 6 neoadjuvant metformin-treated 

patients and 7 control patients were gown as previously described in 5 replicate plates 254. After 7 

days, spheroids were harvested and disaggregated and single cells counted and replated on a new 

hanging-drop plate as drops of 100 cells, to form passage 1. This process was repeated weekly 

for 6 passages. Live-cell phase microscopy images of the spheroids were collected (Olympus 

IX81 and CellSense software) on days 1, 3, and 7 of culture for each passage to monitor spheroid 

formation/proliferation 4,253,254,322. At the time of disaggregation, a portion of cells was used for 

flow cytometry analysis of ALDH and CD133 as above. Seven-day- old spheroids were treated 

with cisplatin at a concentration of 50 μM. The effect of drug treatment was determined at 72 

hours, using the Alamar blue assay as described4,253,254.  

2.4.14 Statistical Analysis. 
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3D in vitro Serial passage model characterization statistics:  All serial passages were repeated 

with at least 5 biological replicates, with n ≥ 10 for each replicate for alamarblue analysis, and 3 

cell counts for trypan blue. Analysis of flow cytometry data was performed on Summit Software 

(Beckman Coulter, Brea, CA). At least 10,000 live cells were analyzed for each experimental 

condition and used to determine percentage of ALDH or CD133 positive cells. For xenografts, 

longitudinal tumor growth was compared between different groups (naïve Pt224 or P0, P3, P6 

spheroids, naïve Pt412 or P0, P3, P6 spheroids) using repeated measures ANOVA techniques 

and/or mixed-effect longitudinal models. Tumor weights were compared between different 

groups and controls using a student's two-sample t-test. Statistical data was analyzed in 

Graphpad Prism 7.0 (www.graphpad.com, San Diego, CA). One-way ANOVA was performed 

where necessary, with secondary post-hoc analysis. All data is presented as mean ± standard 

error of the mean. Significance was considered for P ≤ .05. Asterisks on the figure panels and 

legends indicate statistical significance.  

Patient-derived OvCSC serial passage model of tumor re-emergence  statistics: Statistical 

analysis Flow cytometry data were analyzed using Summit software (Beckman Coulter). 

Percentage of cells determined positive by flow cytometry was expressed after analyzing at least 

10,000 events per experimental condition. Three to five independent flow cytometry analyses 

were performed, to identify an average percentage of OvCSC populations. Statistical analysis 

was performed using GraphPad Prism 5 (GraphPad Software Inc.). All data are expressed as 

mean  SEM and are an average of at least 3 to 8 independent experiments. Drug viability data 

were determined and quantified using the AlamarBlue assay, as outlined previously254,322. 

Briefly, normalized viability was calculated by comparing the AlamarBlue fluorescence of drug-

treated spheroids to control untreated spheroids and expressed as a percentage. Statistical 
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analysis was performed using one- or two-way ANOVAs where appropriate, and levels of 

statistical significance are indicated in the figures. All data are expressed as mean SEM and are 

an average of at least 3 to 8 independent experiments. 

Translational Metformin studies statistics: Spheroid studies were repeated 5 times, with at least 

40 spheroids (tech- nical replicates) interrogated for each analysis at each time point and at least 

6 patient samples. Spheroid proliferation at day 7 was normalized to day 1 for each specimen. 

Normalized viability is expressed as percentage of untreated controls. Statistical significance 

between passages was assessed with 2-sided Student’s t tests and comparisons made between 

metformin and nonmetformin samples at each passage, using 1-/2-way ANOVA and Tukey’s 

post hoc analysis to determine specific significant differences (P < 0.05). Three independent 

flow cytometry analyses were performed to identify an average percentage of ALDH+ or 

CD133+ populations. All data are expressed as mean ± SEM. Statistical analyses were per- 

formed using Prism 7 (GraphPad) and SAS version 9.4.  
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Chapter 3 : 3-Dimensional Patient-Derived Tumoroids to Study the Role of the Tumor 

Microenvironment in Cancer Stem Cell Regulation and Chemoresistance in Ovarian 

Cancer 

3.1 Introduction 

In 2021, 21,410 women are estimated to be diagnosed with ovarian cancer and 13,770 are 

estimated to succumb to the disease in the United States alone. 75% of these patients won’t be 

diagnosed until stage III/IV due to lack of symptoms, at which point the survival rates are 

dismal327–329. Even with the success of standard treatments involving surgery and chemotherapy 

as well as the development of immune, hormone receptor modulator, and combination therapies 

most patients develop chemoresistant, recurrent disease327,330,331. This trend results in the fifth 

highest cancer-related mortality rate in women in the United States332.   

Importantly, these dismal outcomes are not due solely to the uncontrolled proliferation of 

malignant cancer cells. Rather, they are the product of the complex interactions that take place 

between the cancer cells and the non-cancer cells in the tumor microenvironment (TME), as well 

as the acellular factors such as dimensionality, extracellular matrix (ECM), mechanical forces, and 

oxygen availability1,2. Each of these factors can influence cell phenotypes and disease progression, 

making the TME characteristics an important determinant of disease course. The cell composition 

in particular has recently been shown to have clinical implications in the different molecular 

subtype of high-grade serous ovarian cancer (HGSOC).  



 72 

Specifically, in 2008, Tothill et al. identified 4 molecular subtypes that correspond with 

different clinical outcomes229. These subtypes were verified by The Cancer Genome Atlas in 2011, 

and termed “proliferative”, “immunoreactive”, “differentiated”, and “mesenchymal”333. While 

outcomes in the TCGA dataset were not found to be significantly different between the subtypes 

Tothill and others have found that the proliferative and mesenchymal subtypes are associated with 

the worst outcomes while the immunoreactive subtype is associated with the best 

outcomes82,229,230,237. Furthermore, recent advances in single cell sequencing have showed that the 

presence of stromal and immune cells in the tumor heavily influences stratification into different 

molecular subtypes82. In particular, the mesenchymal and immunoreactive subtypes, are 

characterized by high proportions of myofibroblasts and immune cells respectively82.  

As a result, efforts have been made to retroactively examine the role of the stromal cell 

contribution to clinical outcomes associated with bulk sequencing data, however a complete 

understanding of how nuanced differences in stromal and immune cell composition influence 

outcomes is lacking235,237. This lack of understanding has contributed to a lack in clinical 

implementation, highlighting the need to better understand how the cell composition of the TME 

influences outcomes. 

The role of the non-cancer cells in the TME is further complicated by their interactions 

with cancer stem-like cells (CSCs), which have been clearly linked to recurrence, chemoresistance, 

and outcomes in ovarian cancer. CSCs are  a rare population of the chemoresistant cancer cells 

that can survive initial treatment. Their stem-like properties, such as their ability to self-renew, 

repopulate the tumor, and resist apoptosis, serve as the basis of development of a more aggressive, 

metastatic, recurrent disease334. These cells have increased detoxification capacity and 

chemoresistance due to altered drug transporters, and an altered DNA repair mechanism. 
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Additionally, CSC’s can switch bidirectionally between stem and non-stem phenotypes, 

contributing to the heterogeneity of the disease and complexity in treating primary and recurrent 

tumors. 

The non-cancer cells in the TME such as the mesenchymal stem cells (MSCs), 

endothelial cells (ECs), and macrophages (MPs) among others can enriched this CSC 

population118,213,335–340. For example, Mclean et al. demonstrated that cancer associated MSCs 

(CA-MSCs) isolated from a tumor can increase tumorigenesis and stemness through IL-6 and 

LIF mediated STAT3 signaling and BMP signaling338,340. Additionally, related stromal cell 

types, such as adipocytes and fibroblasts have similarly been shown to induce pro-tumorigenic 

properties in ovarian cancer341. Intercellular signaling resulting in CSC enrichment is further 

complicated through involvement of endothelial cells and immune cells. Macrophages in 

particular have also emerged as a driver of stemness and metastasis in ovarian cancer when 

present in their immunosuppressive phenotype 118,342,343.  Comparably, endothelial cells have 

been shown to promote CSC phenotypes in colorectal cancer through secretion of a soluble form 

of Jagged-1 resulting in NOTCH activation 336. Due to the clear role of CSCs in chemoresistance 

and recurrence in ovarian cancer there is a definite need for more targeted treatments. Due to the 

role of the TME cells in CSC maintenance, CSC-TME interactions are a promising avenue for 

the development of targeted treatments, as with molecular subtyping, there is currently a lack of 

understanding of how the non-cancer cells work together in complex multi-cellular 

microenvironments to regulate CSCs and promote chemoresistance. 

Current models used to study the complex multi-cellular interactions in the TME are 

lacking in their ability to provide a clear understanding of the role that each component plays in 

CSC maintenance and ultimately in determining clinical outcomes. While 2D cultures have been 
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shown to translate poorly into clinical environments due to their limited replication of in vivo 

tumor microenvironments, 3D culture represents a significant improvement given their improved 

ability to replicate 3D cell-cell and cell-ECM interactions and nutrient and drug diffusion 

gradients that are found in vivo344,345. 3D suspension cultures are especially ideal for CSC 

research given the resistance of CSCs to anoikis and subsequent enrichment in suspension 

culture3,346. Due to these benefits, co-culture models have been successfully implemented in 3D 

to provide insights into the interactions between CSCs and the other cells in the CSC niche118,213. 

For example, Raghavan et al. cultured ovarian CSCs with MSCs in hanging drop plates to study 

the interactions between CSCs and MSCs. Using this model, they were able to identify the 

PDGF signaling as a mechanistic pathway through which MSCs promote stemness and 

chemoresistance in ovarian cancer213. Raghavan et al. utilized a similar model to demonstrate 

that macrophages promote chemoresistance and invasiveness in ovarian cancer through 

macrophage initiated Wnt signaling with CSCs118.  

While most experiments investigating the molecular subtypes of HGSOC focus on 

analysis of molecular signatures from publicly available sequencing data227,229,232,235,237,333, 

similar co-culture models  have been implemented to study mechanisms behind differential 

HGSOC subtype outcomes347,348. For example, a 2D culture system was used to suggest that the 

exosomes secreted by plasma cells in the tumor microenvironment induce mesenchymal 

phenotypes in ovarian cancer cell lines through the miR-330-3p/junctional adhesion molecule 2 

(JAM2) pathway. Moreover, in this work, the authors used an immune cell composition 

deconvolution algorithm, CIBERSORT, to identify enrichment of plasma cells in the 

mesenchymal subtype of ovarian cancer and increased quantities of M1 macrophages in the 

immunoreactive subtype347. Another model used a 3D co-culture of fibroblasts with tumor cells 
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to examine the capacity of SNAI2 to drive transformation of normal fibroblasts into their tumor 

supporting phenotype, thereby promoting the transcriptional signature of the mesenchymal 

subtype that contributed to desmoplasia348. These co-culture studies provide impetus to 

investigate therapies targeting Wnt and PDGF pathways to target CSCs or miR-330-3p and 

SNAI2 expression to counteract the poor outcomes associated with the c1 mesenchymal subtype. 

However, it remains unknown if the same signaling pathways would be the driving factors 

behind malignancy in more complex cellular microenvironments. 

The drastic changes that can occur in signaling with increased cellular complexity was 

highlighted in work by Regier et al. who compared mono-, co-, and tri-culture of breast cancer 

cell lines in a microfluidic device designed to keep each cell type separate. In this work, they 

found non-linear changes in gene expression in tri-culture compared to co-culture. For example, 

they found that culture of SKBR3 breast cancer cells with HS5 cells led to a 72.4X increase in 

FGF2 expression in the tumor cells while culture with THP1-M2 cells resulted in no increase in 

FGF2 expression in the tumor cells respectively. Despite the fact that THP1-M2 cells alone did 

not increase FGF2 expression in tumor cells, culture of of SKBR3 breast cancer cells with both 

HS5 cells and THP1-M2 cells resulted in a 154X increase in FGF2 gene expression349. This is a 

clear example of the impact that increased cellular heterogeneity can have in the TME. 

Therefore, the lack of cellular complexity in typical co-culture models may attenuate the 

translational value of their results. 

On the other hand, patient-derived organoids (PDOs), ex vivo tumor cultures, and 

patient-derived xenografts (PDXs) are better at maintaining the complex cellular 

microenvironments found in vivo204,350–353.However, these models can be difficult to use to 

evaluate the role of the non-cancer cells in the TME due to gradual loss, or intentional exclusion, 
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of stromal components over time in culture or the invasion of mouse stroma in the case of PDX 

models204 . These models are also susceptible to mouse-specific tumor progression210. 

Furthermore, these complex patient-derived systems do not provide fine control over the cell 

composition, which hinders careful experimental design to evaluate how each individual cell 

type contributes to the complex system of cell interactions to support CSCs and drive 

chemoresistance in ovarian cancer. Although these types of in vivo models allow for evaluation 

of stromal influence on tumor growth in vivo, they are inherently low throughput, technically 

challenging, time consuming, and costly. Therefore, there is a need for a more comprehensive in 

vitro model to study the complex multi-cellular interactions the tumor microenvironment, while 

maintaining fine control over cell composition.  

 In this work, we present a novel 3D in vitro tumoroid model, which improves upon the 

physiological relevance of current in vitro models by incorporating controlled ratios of 

mesenchymal stem cells (MSCs), endothelial cells (ECs), and immune cells (PBMCs) in the 

same 3D culture with patient-derived tumor cells in 384-well hanging drop plates. Through 

incorporation of four cell types we anticipate more comprehensive cell-cell signaling and thus a 

more representative model of interactions with the TME. Based on previous work in our lab and 

others showing that each individual TME cell type can enrich CSC populations118,213,335–337,339,354, 

we hypothesized that tumoroids will enrich CSCs to a greater extent than mono-culture or co-

culture patient-derived spheroids. Accordingly, we expected tumoroids to possess malignant 

characteristics associated with stemness including increased tumorigenicity, and chemoresistance 

compared to mono-culture spheroid controls. Furthermore, we hypothesized that these 

heterotypic tumoroids will reflect realistic molecular signatures associated with HGSOC 

molecular subtypes and clinical outcomes due to the influence of non-cancer cells on molecular 
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subtyping82. To evaluate these hypotheses we evaluate tumoroid stemness, tumor formation 

capacity, and chemoresistance in tumoroids compared to spheroids made with only patient tumor 

cells. Subsequently, we examine molecular differences in tumoroids compared to controls and 

probe the expression of molecular signatures associated with different clinical outcomes.  

We found that tumoroids were amenable to flexible culture conditions, with and without 

an added ECM component, and could be successfully cultured with different cell compositions. 

Using this system, we observed that the effect of TME cells on stemness was not equivalent in 

co-cultures compared to more heterogeneous tumoroids, highlighting the importance of 

incorporating more than one TME cell type in models designed to test CSC enrichment by the 

TME. Additionally, the influence of the TME cells on expression of CSC markers in tumoroids 

was variable, depending on the patient sample, pointing to patient-specific cell-cell signaling 

with the non-cancer cells in the TME. Tumoroids were also able to form tumors faster than 

control spheroids in vivo and contained more proliferative cells enriched in ALDH expression 

after harvesting from xenograft tumors. Moreover, tumoroids were more resistant to treatment 

with traditional and novel targeted therapies.  

These observations were accompanied by evidence of epithelial-to-mesenchymal 

transition and expression of malignant matrisome signatures as well as the c1 mesenchymal 

subtype signature associated with poor clinical outcomes. Together these findings demonstrate 

the ability of heterotypic tumoroids to evaluate the role of the TME cell composition in CSC 

maintenance and physiologically relevant disease states that are associated with chemoresistance 

and poor clinical outcomes. By leveraging the flexibility of this system the impact of key TME 

components on disease progression and clinical outcomes can be elucidated in the context of a 

complex multi-cellular environment. With a better understanding of the interactions within the 
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TME, new targeted therapies can be developed and patient management based on molecular 

subtyping can be improved, ultimately resulting in a better outlook for ovarian cancer patients. 

 

3.2 Results 

3.2.1 Heterogeneous patient-derived tumoroids are amenable to different culture 

compositions. 

Patient-derived tumor cells were successfully cultured with human adipose-derived 

MSCs, human umbilical vein endothelial cells (HUVECs), and peripheral blood mononuclear 

cells (PBMCs) in 384-well hanging drop plates with Matrigel (Figure 3.1A,B, Supplemental 

Figure 4A) and without Matrigel (Figure 3.1A,C). Tumoroids generated without Matrigel were 

cultured for up to 22 days, with culture terminated due to large droplet size and corresponding 

sample instability (Figure 3.1D). As such, remaining experiments were conducted with a day 7 

endpoint at the latest. Following 7 days of culture, tumoroid histology appeared consistent with 

in vivo tumors (Figure 3.1E). To further verify the capacity of our culture system to maintain 

each cell type in culture and visualize cell localization, tumoroids were generated with each cell 

type expressing a different fluorescent protein (Pt4 cells: dtTomato; MSC: GFP; EC: AmCyan; 

U937: mCherry). Visualization of tumoroids using fluorescence confocal microscopy and 

spectral unmixing post-processing revealed that the majority of each tumoroid is made up of 

patient tumor cells, with other cell types dispersed throughout the culture with no particular 

organization. This experiment also confirmed the presence of all four cell types at the end of 7 

days (Figure 3.1F).   

Additionally, expression of markers for each cell type was detected in tumoroids made 

with all 5 patient samples (Supplemental Figure 4B,C), further supporting the presence of all 
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four cell types at the end of the 7 day culture period. Pt6 was the only sample with significant 

differences in expression of CSC markers with significantly greater expression of 

CD133+ALDH+ and CD133+ALDH- compared to all other samples. Pt6 also had significantly 

greater expression of CD73 compared to all other patient samples (Supplemental Figure 4B,C). 

This was later found to be due to baseline high CD73 expression in Pt6 only controls, suggesting 

maintenance of patient specific features in tumoroid cultures (Supplemental Figure 4D). 

However, this also highlighted the potential of tumor cells to express TME cell markers, like 

CD73.  

Due to this potential, we next generated Pt1 tumoroids and control spheroids with GFP+ 

tagged tumor cells in order to separate the marker detection in the patient tumor cells from the 

expression in the added TME cells. This experiment confirmed presence of GFP+CD133+ and 

GFP+ALDH+ tumor cells and GFP-CD73+, GFP-CD31+, and GFP-CD11b+ TME cells (Figure 

3.1G). Finally, viability of tumoroids compared to control spheroids is significantly lower on day 

3, but not day 0 or day 7 (p <0.05) (Supplemental Figure 4E).  
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Figure 3.1: Generation of heterogenous tumoroids. 
A) Primary ovarian tumor cells were combined with endothelial cells, mesenchymal stem cells, and peripheral blood 
mononuclear cells in 384-well hanging drop plates to form heterotypic tumoroids. Phase contrast images of 
tumoroids generated B) with growth factor reduced Matrigel and C) without growth factor reduced matrigel for 
three patient samples. D) Phase contrast images of tumoroids maintained in culture for up to 22 days. Scale bars = 
200 um. E) H&E tumoroid section demonstrating expected hisological features (scale bar = 50 um). F) Tumoroid 
formed from patient-derived cancer cells (dtTomato – red) , mesenchymal stem cells (GFP – green), endothelial 
cells (AmCyan – blue), and U937 monocytes (mCherry – pink) on day 7.  Scale bar = 50 um. G) Percentage of 
CD11b+, CD73+, CD31+, ALDH+, CD133+, and ALDH+CD133+ cells measured via flow cytometry on day 7 for 
tumoroids made with 5 different patient samples (n = 3 for each patient sample). 

 

3.2.2 CSC markers are differentially expressed in tumoroids compared to co-cultures. 

A key feature of our model system is the ability to culture tumoroids with different cell 

compositions to determine the role of each individual cell type in the TME on CSC populations 

in the context of a complex cellular microenvironment. As such we demonstrated successful co-

culture of GFP+ Pt 1 cells with MSCs alone, ECs alone, and PBMCs alone (Figure 3.2A). To 

evaluate differences in expression of CSC markers in different culture types, we performed flow 



 81 

cytometry to analyze expression of GFP+ALDH+ or GFP+CD133+ patient tumor cells from 

control mono-culture spheroids, Pt1 + MSC co-culture, Pt1 + EC co-culture, Pt1 + PBMC co-

culture, and Pt1 tumoroids with all four cell types. Interestingly, Pt1 + EC co-cultures 

significantly increased ALDH expression compared to Pt1 + PBMC co-cultures, but no other 

significant differences between CD133 or ALDH expression were found. When the percentage 

of cells expressing CD133 was added to the percentage of cells expressing high ALDH, a 

significant increase in total stemness was observed in the Pt1 + EC co-cultures compared to all 

other culture types indicating that ECs may be having the largest impact on CSC maintenance in 

this model system. Notably, the tumoroids had lower total expression of CD133 and ALDH than 

the EC only co-culture, despite being plated with an equivalent number of ECs (Figure 3.2B). 

This indicates the importance of including multiple cell types in cultures evaluating the role of 

TME cells on stemness as inclusion of additional cell types attenuated the increase in stemness 

shown in the EC only co-culture.  

Evaluating the percentage of GFP+ cells in each culture type  provided further evidence 

of the presence of TME cells in tumoroid cultures. The expected distribution was observed 

across culture types, with tumoroids having the lowest average percentage of GFP+ cells due to 

the inclusion of all three other cell types. EC and MSC only co-cultures showed similar expected 

decrease in percentage of GFP+ cells (Supplemental Figure 4F). On the other hand, PBMC co-

cultures did not appear to affect the proportion of GFP+ cells to a noticeable degree. This could 

be due to the low level of PBMC proliferation in TM (Supplemental Figure 4G) leading to a 

relatively low expression of leukocyte marker CD11b compared to the markers for the other cell 

types (Figure 3.1G). Using the average GFP+ tumor cell percentage from these GFP+ Pt1 

spheroids and tumoroids, we derived a scaling factor (1.3687) to account for dilution of CSC 
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marker expression in Pt1 tumoroids (due to the presence of the non-cancer cells) that were made 

without GFP tagged tumor cells. 

With adjustment for the TME composition, we found significantly increased CD133-

ALDH+ (p<0.01) and CD133+ALDH+ (p<0.05) expression (Figure 3.2C).  No significant 

differences were observed in the non-scaled version of this GFP- Pt1 CSC data, however the 

mean ALDH+ and CD133+ALDH+ percentages in the tumoroids were greater than the spheroids 

(ALDH+: 27.07 +/- 15.62 vs 20.61 +/- 14.03 and CD133+ALDH+: 0.9121 +/- 0.8113 vs 0.6203 

+/- 0.5406) (Supplemental Figure 5A). Given the presence of the TME cells in tumoroids and 

their absence in spheroids, it follows that in reality the difference in CSC marker expression 

should be greater as reflected by the scaled data in Figure 3.2C.  

Due to the potential biases introduced with scaling, as well as the lack of scaling factors 

for each patient sample, we next evaluated the composition of CSC markers in tumoroids and 

spheroids from 5 different patient samples, considering CD133+ALDH+, CD133+ALDH-, and 

CD133-ALDH+ phenotypes. Breaking the analysis apart based on patient sample suggests 

patient-specific differences in response to the TME cells with Pt1, Pt2, and Pt5 showing a trend 

towards increased CD133-ALDH+ proportions in tumoroids compared to spheroids while Pt4 and 

Pt6 appeared to have a higher proportion of CD133+ALDH+ cells and CD133+ALDH- cells 

respectively (Figure 3.2D). This suggests that tumoroids have the capacity to alter the 

composition of CSC phenotypes, however there may be a patient-specific characteristic that 

affect how tumor cells from different patients response to the presence of the added TME cells. 
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Figure 3.2: Evaluation of stemness in 3D heterotypic hanging drop systems. 
 A) Phase contrast images of Pt1 co-cultures with MSCs, ECs, or PBMCs. B) Expression of CD133, ALDH, or the 
sum of CD133 and ALDH expression in GFP+ patient cells from each culture type. C) ALDH+CD133+, CD133+, 
and ALDH+ population percentages (with tumoroids scaled according to the ratio of GFP+ tumor cells found in 
spheroids compared to tumoroids.) D) Proportion of each CSC phenotype (CD133+/-ALDH+/-) in the CSC 
compartment of each sample split by patient sample. Error bars = SEM, ** p<0.01. Scale bars = 200 um. 

 

 

3.2.3 Machine learning to facilitate investigations of how the TME cell composition influences 

CSC populations. 

Finally, we supplemented our tumoroid system with a random forest model to make 

predictions about the level of CSC marker expression based on cell composition (determined by 

FACS on day 7).  The goal of this model was to further reinforce the relationship between the 

TME cells and stemness with the added benefit of helping to understand the importance of 

various cell-cell relationships in CSC maintenance and by extension how they may be related to 
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clinical outcomes. First, we obtained and processed FACS data from 52 tumoroid FACS 

experiments that measured CD133-ALDH+, CD133+ALDH-, CD133+ALDH+, CD73+, CD31+, 

and CD68+ percentages. After pre-processing and generating new features to obtain a total of 17 

tumor mircroenvironment based parameters, the data was  randomly broken up into a 37 sample 

training set and a 15 sample test set. A random forest classifier was trained to predict ‘high’ 

versus ‘low’ expression of  CD133-ALDH+, CD133+ALDH-, or CD133+ALDH+, based on the 

TME-based parameters (Figure 3.3A). After running a tuning algorithm to identify the optimal 

number of trees and parameters to consider at each node, we found that this model was able to 

predict high versus low expression of CD133-ALDH+ with moderate success in the training and 

test data sets which had AUC values of 0.66 and 0.69 respectively (Figure 3.3B). The model 

trained to predict CD133+ALDH- percentages was similarly effective with training and test AUC 

values of 0.65 and 0.88 (Figure 3.3C). Contrarily, the model trained to predict CD133+ALDH+ 

percentages performed worse with a training AUC value of 0.39 and a test AUC value of 0.73. 

These results suggest that within our tumoroid model system, the TME composition played a 

bigger role in the expression of single CSC markers compared to the double positive CSCs. That 

these models attained moderate predictive performance despite the limited sample size used to 

train each model highlights the potential of using TME cell composition to predict CSC levels. 

 Coupling machine learning models with complex multi-cellular cultures can help to 

reveal critical cellular relationships. Particularly, when there are many different cell types present 

in the culture, it is difficult to ascertain which cells or which combinations of cells are most 

influential in determining the characteristics of the model (in this case CSC marker expression). 

To evaluate which parameters in our models are most important in predicting the level of 

CD133-ALDH+ and CD133+ALDH-, the mean decrease in gini impurity was calculated for the 
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ALDH and CD133 models. This analysis suggested that the proportion of the cells expressing 

CD31, CD73, or CD68 that is made up of CD73+ cells is was the most important parameter in 

predicting ALDH levels (Figure 3.3E) while the ratio of cells expressing CD31 to the cells 

expressing CD73 was the most important parameter in predicting CD133 levels (Figure 3.3F). 

Plotting the relationship between these parameters indicates that when CD73 expression makes 

up high proportions of the total expression of CD31, CD73, and CD68, there is a corresponding 

drop in ALDH expression (Figure 3.3G). The relationship between the ratio of CD31 and CD73 

and the expression level of CD133 is less clear, with most datapoints centered in the middle of 

the plot with the exception of four datapoints with exceptionally low ratios of CD31 to CD73 

(CD73 >> CD31) which also had the highest CD133 expression (Figure 3.3H).  

  To test the effectiveness of this type of model on clinically relevant data, new random 

forest models were trained on all 52 datapoints from our tumoroids resulting in an AUC value of 

0.62 for ALDH prediction (Figure 3.3I) and 0.74 for CD133 prediction (Figure 3.3J). The test set 

for these models was cell compositions derived from single-cell RNA sequencing of 42 HGSOC 

patient samples. The ALDH prediction model performed worse on the test set than the training 

set with an AUC of 0.51, essentially as good as a null predictor. The CD133 prediction model 

also performed worse in the test set compared to the training set with an AUC of 0.63. These 

discrepancies could be due to the fact that the models were trained on protein based data whereas 

the test data was based on mRNA expression, which has been shown to correlate poorly with 

protein level expression125. These findings leave open the possibility of predicting stemness 

based on cell composition in clinically relevant datasets. Overall, despite the moderate 

performance of our machine learning models, we demonstrated the utility in coupling machine 

learning techniques with experimental model systems to facilitate comprehension of multi-
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variate systems and the importance of complex cellular relationships that are difficult to discern 

otherwise.

 

Figure 3.3: Machine learning provides insight into complex cell-cell interactions and their role in CSC 
maintenance. 
A) Model schematic. ROC curves for the FACS training set and test set for B) CD133-ALDH+, C) CD133+ALDH-, 
and D) CD133+ALDH+ prediction models. Heatmap of the mean decrease in gini impurity from the E) CD133-
ALDH+ and F) CD133+ALDH- training sets. G) Scatter plot showing the relationship between the ratio of CD73 
expression to the total CD73 + CD31 + CD68 expression and ALDH percentages. H) Scatter plot showing the 
relationship between the ratio of CD31 to CD73 and CD133 expression. ROC curves for random forest models 
trained on all 52 FACS samples to predict I) CD133-ALDH+ and J) CD133+ALDH- levels. Models in I) and J) 
were tested on compositional data from 42 single cell sequencing HGSOC samples. 

 

 

3.2.4 Tumoroids have elevated tumorigenic potential. 
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Due to the capacity of CSCs to drive tumorigenesis, we next evaluated the tumor 

formation capacity of tumoroids compared to spheroid controls. To accomplish this we collected 

tumoroids and spheroids from hanging drops and injected them into NOD SCID mice 

subcutaneously with Matrigel (Figure 3.4A). To evaluate tumorigenic potential, we observed 

injection sites with palpable tumors at a four week timepoint and found that 4/10 sites spheroid 

injection sites showed tumor growth while at the same time point 6/10 tumoroid injection sites 

showed tumor growth. We used this data to estimate the fraction of true stem cells in the 

tumoroid condition using an extreme limiting dilution analysis (ELDA) tool262 and found a 

greater expected stem cell population in tumoroids compared to spheroids (Supplemental Figure 

6A,B).  Moreover, tumoroid-derived xenografts (TDXs) reached their endpoint volume 

significantly faster compared to spheroid-derived xenografts (SDXs) (Figure 3.4B,C).  Body 

weight measurements did not show a significant difference across the two groups. H&E stains 

from xenograft sections show pleomorphic cells with prominent nuclear atypia (Supplemental 

Figure 6C). 

To further evaluate differences in tumoroid and spheroid xenografts, cells harvested from 

each tumor type were used to form spheroids and cultured for 7 days in hanging drop plates. 

Following 7 days, TDX spheroids had a significantly greater area than SDX spheroids, 

suggesting increased proliferation capacity (Figure 3.4D,E). No significant differences in 

tumoroid cell composition was found following flow cytometry on each spheroid type 

(Supplemental Figure 6D). However, given the larger size of TDX spheroids, the roughly 

equivalent CSC percentages theoretically should translate to a greater number of CSCs per 

spheroid corroborating our ELDA analysis. Moreover, by analyzing the CSC phenotype 

proportions in the CSC compartment of both spheroid types, we find significantly greater 
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proportions of CD133-ALDH+ CSCs in the TDX spheroids compared to the controls further 

agreeing with our ELDA analysis. 

 

Figure 3.4: Generation of xenograft tumors. 
A) Tumoroids and control spheroids were generated in hanging drop plates and injected into NSG mice on day 7. 
Tumors were harvested once they reached their endpoint size, digested, and frozen until later use in xenograft-
derived spheroids. B) Xenograft tumor growth over 7 weeks showing that tumoroids produced tumors that reached 
the endpoint faster than spheroid generated tumors. C) Images of endpoint tumoroid and spheroid-derived tumors. 
D) Phase contrast images of spheroids generated from 200 tumoroid-derived xenograft tumor cells or 200 spheroid-
derived xenograft tumor cells. Scale bar = 200 "m. E) Average area of spheroid versus tumoroid xenograft-derived 
spheroids after 7 days in hanging drop culture. p<0.0001. F) Proportion of each CSC phenotype (CD133+/-ALDH+/-

) in the CSC compartment of spheroid xenograft derived-spheroids versus tumoroid xenograft derived spheroids. 
p<0.05. 

 

3.2.5 Tumoroids promote epithelial-to-mesenchymal transition and changes in CSC 

phenotype. 

To investigate potential mechanisms behind the increased tumorigenic potential and 

changes in stemness observed in our tumoroids compared to spheroids, we performed single cell 

RNA sequencing. Pt7 was used to compare differences in gene expression between 2D cultured 
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patient cells, spheroids made with patient cells, and tumoroids made with Pt7 cells as the tumor 

cell component with MSCs, ECs, and PBMCs (Figure 3.5A). We first observed the presence of 

all expected cell types in our tumoroid cultures, albeit with relatively small myeloid, B cell, 

endothelial, and epithelial clusters (Figure 3.5B). Interestingly, 2D and spheroid cultures had a 

clear epithelial tumor cell composition (represented in orange), which almost completely 

disappeared in Pt7 tumoroids. To investigate the drop in epithelial tumor cells in tumoroids 

compared to 2D and spheroid cultures  Ingenuity Pathway Analysis (IPA) of the patient cells in 

each culture was performed to examine the predicted canonical pathways and upstream 

regulators. We found predicted activation of canonical pathways related to EMT, motility, and 

metastasis in tumoroids compared to spheroids (EMT: Regulation of the Epithelial Mesenchymal 

Transition by Growth Factors Pathway and IL-8 Signaling355; Motility: PAK signaling356; 

Metastasis: Neuregulin Signaling357) (Figure 3.5C). Similarly, 7/9 upstream regulators that were 

predicted to be activated in tumoroids compared to spheroids had direct links to the EMT process 

(MEK358, TGFB1359–362, FOXM1361,363, PPP1R13L364, MAPK1365, CCL5366,367, TCF4368) 

(Supplemental Table 4).  

Consequently, we next investigated the possibility that the epithelial cells in tumoroid 

cultures underwent EMT and were subsequently identified as mesenchymal cells. First, a 

baseline was established for epithelial cancer cells by evaluating the expression of PAX8 and 

EPCAM, two traditional epithelial cancer cell markers in ovarian cancer (Figure 3.5D). Notably, 

spheroid cluster 2 and tumoroid cluster 6, which were previously assigned identified as epithelial 

cancer cells, highly expressed PAX8 and EPCAM, which were not highly expressed in any of 

the more mesenchymal clusters. Next we evaluated expression levels of TP53 with the rational 

that most HGSOC tumors have a TP53 mutation, which could alter its expression and make it 
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easy to identify cancer cells with a mesenchymal phenotype. We found that the spheroid 

epithelial cluster in particular had the lowest average expression of TP53. This makes sense as 

Pt7 was determined to have an H179R TP53 mutation associated with no expression of TP53 

mRNA369. As such, it follows that a previously epithelial mesenchymal cluster would also 

express low levels of TP53 mRNA. Interestingly, tumoroid cluster 4, which was previously 

assigned as a mesenchymal cluster, had the lowest expression of TP53 in the tumoroids (average 

expression of 0.258 compared to the next lowest average TP53 expression of 0.445), indicating 

that it may contain cells that had undergone EMT. 

This suspected EMT cluster also highly expressed two additional epithelial cell markers, 

KRT18 (average expression of 1.670 compared to the cluster with the next highest expression of 

0.878) and KRT19 (2.708 compared to the cluster with the next highest expression of 0.042), 

which were also highly expressed in our established epithelial clusters and not expressed highly 

in the other mesenchymal clusters. This suggested that the suspected EMT cluster maintained 

remnant expression of epithelial markers. Finally, examining the classical EMT transcription 

factors (TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, and ZEB2) showed low expression in the 

epithelial clusters, but high expression of TWIST2, SNAI1, and SNAI2 in the suspected EMT 

cluster. Consequently, tumoroid cluster 4 is henceforth referred to as the ‘EMT cluster’. 

 To examine the overall similarity of the EMT cluster to the epithelial tumor cells 

identified in Pt7 spheroids, scRNA seq datasets from spheroids and tumoroids were integrated to 

align common cell types across each culture type using a methodology first described by Stuart 

et al.370 After alignment, a t-SNE plot showed that the EMT cluster and the epithelial cluster 

remained separate clusters (Figure 3.5E, Supplemental Figure 7A). However, a principle 

component analysis of the aligned dataset showed that the EMT cluster and the epithelial cluster 
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directly overlap due to their high degree of similarity despite differences in expression of 

epithelial and mesenchymal markers (Figure 3.5E). As external validation that the tumor cell 

population becomes more mesenchymal within tumoroids expression of mesenchymal marker 

CD73 was evaluated in GFP+ Pt1 cells from spheroids or tumoroids using flow cytometry. This 

experiment showed significantly greater CD73+ expression in patient-derived tumor cells from 

tumoroid cultures compared to spheroid cultures, reflecting the trend observed in the epithelial 

cluster and the EMT cluster (Supplemental Figure 7B).  

Having identified an EMT cluster, we then examined changes in CSC marker expression 

in the epithelial tumor cells from spheroids compared to the EMT cluster in tumoroids. The 

differences in average expression of each CSC marker in the EMT cluster compared to the 

epithelial cluster showed loss of CD24 and EPCAM expression in the EMT cluster concordant 

with an increase in THY1 expression (Figure 3.5F). Differential expression analysis found these 

differences to be statistically significant (CD24 average log2FC: -2.442, p-adjusted: 1.771E-74; 

EPCAM average log2FC: -2.587, p-adjusted: 6.716E-81; THY1 average log2FC: 1.172, p-

adjusted: 1.777E-18) (Figure 3.5G). While not significant, small increases in average expression 

of ALDH1A3 (+0.348), ALDH2 (+0.494), and ALDH3A2 (+0.227) with a decrease in PROM1 

(CD133; -0.162) was also observed in the EMT cluster compared to the epithelial cluster, though 

average expression of these markers was generally low overall (Supplemental Figure 7C). 

Contrarily, average CD44 expression in both clusters was substantial and appeared to remain 

consistent between the EMT cluster and the epithelial cluster. Increased THY1 expression in 

tumoroid tumor cells was confirmed with qPCR of isolated GFP+ tumoroid tumor cells compared 

to sorted GFP+ cells from spheroid controls. However, in this experiment, CD24 was not 

significantly decreased, in fact it was increased, while CD133, was again decreased. ALDH1A3 
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was also significantly increased, corroborating increased ALDH expression in tumoroids 

compared to spheroids (Supplemental Figure 7D). Several other CSC markers (ALDH1A1, 

ALDH1A2, POU5F1) and EMT markers (CDH2, SNAI1, ZEB1, and VIM) were also slightly 

elevated in GFP tagged tumor cells from tumoroids compared to spheroids. 

 

Figure 3.5: Single Cell RNA Sequencing of patient-derived tumoroids, spheroids, and 2D cultures. 
A) Phase contrast images of pt7 tumoroids and corresponding spheroids.B) t-SNE plots of Pt7 2D cultured cells 
(left), spheroid cultured cells (middle), and tumoroid cultured cells (right). C) Canonical pathways predicted to be 
upregulated in tumoroid cancer cells compared to spheroid cancer cells that are unique to the tumoroid-spheroid 
comparison. D) Heatmap of the average expression of epithelial (PAX8, EPCAM, KRT18, KRT19) and EMT 
(TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2) markers identifying tumoroid c4 as a mesenchymal cluster with 
partial epithelial expression (KRT18, KRT19). E) t-SNE (left) and PCA (right) plots of aligned spheroid and 
tumoroid datasets showing overlap of EMT cluster 6 and epithelial cluster 7 in the PCA plot. F) Heatmap showing 
the difference between the average expression of CSC related genes in the EMT cluster and the epithelial cluster. G) 
Statistically significant differential expression of EPCAM, THY1, and CD24 in the EMT cluster compared to the 
epithelial cluster. 
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3.2.6 Tumoroids are more resistant to chemotherapy compared to control spheroids. 

As CSC marker expression, EMT, and the presence of stromal cells are associated with 

poor clinical outcomes, we next sought to evaluate tumoroid and spheroid viability following 48 

hour treatment with traditional chemotherapies, like carboplatin and paclitaxel, which function 

primarily by causing DNA damage and stabilizing microtubules respectively. Tumoroids and 

control spheroids were also treated with more novel therapies SC144, PACMA31, and N773 for 

targeting ovarian cancer. SC144, is a GP130 inhibitor that prevents IL-6 mediated STAT3 

activation, which is associated with stemness and EMT339,340,371,372. On the other hand, 

PACMA31 (a protein disulphide isomerase inhibitor) and N773 target chemoresistant ovarian 

cancers through downregulation of DNA damage repair pathways which are highly active in 

CSCs373,374.   

To test the efficacy of these treatments, patient-derived tumoroids and spheroids were 

generated from five randomly selected primary patient samples with TM medium and 1:20 ratio 

of growth factor reduced Matrigel to medium and treated with each of the 5 drugs for 48 hours 

starting on day 5. Phase contrast images show disrupted tumoroid and spheroid boundaries 

caused by each drug treatment, with the exception of Pt5 cultures, which show few visible 

effects (Figure 3.6A, Supplemental Figure 8A). Overall, drug treatments elicited a differential 

response between spheroids and tumoroids made with the same patient samples (Figure 3.6B-F). 

For example, 200 #M Carboplatin led to 23.1% viability in Pt5 spheroids and 54.85 % viability 

in tumoroids from the same patient sample (p<0.0001). Similarly, Pt2 spheroids had 15.81% 

viability in response to carboplatin compared to 59.3% viability in the corresponding tumoroids 

(p<0.0001). Following a similar trend, Pt3 spheroids were 23% viable while tumoroids 

maintained a viability of 60.92% in response to 200 #M carboplatin (Figure 3.6B; p<0.0001; two 
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way ANOVA spheroid vs tumoroid in response to 200 #M Carboplatin across all three patient 

samples). Tumoroids from the three patients seem to be less sensitive to a 10 #M dose of 

paclitaxel compared to the spheroids from the same patient (Figure 3.6C). Pacma31, SC144, and 

N773 treatment elicits a similar response in that tumoroids are more resistant than their spheroid 

controls (Figure 3.6D-F). Increased viability in tumoroids across the patient samples points to the 

role of the TME cells in chemoresistance. However, treatment of Pt5 with PACMA31 and Pt3 

with paclitaxel did not elicit significantly different responses between spheroids and tumoroids 

(Figure 3.6C,D). These observations also indicate that tumoroids maintain chemoresistant 

properties inherent to a patient-sample, and that the tumor microenvironment affects response to 

treatment differently for different drugs and patient samples. Given that the majority of our 

functional analyses of tumoroids were performed on tumoroids without GFR Matrigel, increased 

chemoresistance in tumoroids compared to spheroids was confirmed in Pt1 tumoroids made 

without GFR Matrigel (Supplemental Figure 8B). 

We then sought to evaluate the effect of carboplatin, pacma31, and sc-144 on each cell 

type in tumoroid cultures without GFR matrigel via flow cytometry. We observed little to no 

effect of each drug on quantity of viable CD31+, CD73+, or CD68+ cells, often with slight 

increases in expression following drug treatment (Supplemental Figure 8C-E). CD133+ALDH+ 

and CD133+ALDH- populations tended to decrease following treatment, albeit not to a 

statistically significant degree. CD133-ALDH+ populations contrarily appeared to increase 

following treatment with Pacma31 or SC144 with significantly more CD133-ALDH+ cells in 

tumoroids treated with Pacma31 compared to spheroids with the same treatment (p<0.05). On 

the other hand, carboplatin treatment significantly reduced CD133-ALDH+ expression in 

tumoroids, but not spheroids, perhaps owing to its effect on rapidly dividing cells and potential 
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increased proliferation of this population in tumoroids compared to spheroids (Supplemental 

Figure 8C-E). We also found that spheroids and tumoroids had similar viability measured as 

DAPI- cells via flow cytometry in response to carboplatin and SC144 when cultured without 

Matrigel. Contrarily, Pacma31 treatment yielded significantly higher viability in tumoroids after 

drug treatment (Supplemental Figure 8F). These results show the impact of the non-cancer cells 

on drug response and the potential for tumoroids in personalized screening applications. 
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Figure 3.6: Evaluation of chemoresistance in tumoroids compared to spheroids. 
A) Phase contrast images of tumoroids and corresponding spheroid controls after 48 hours incubation with either 
200 uM carboplatin, 10 uM of pacma31, 10 uM of paclitaxcel, 10 uM of N-773, or 10 uM of SC-144. Normalized 
cell viability obtained via MTS assays of pt2,3, and 5 following treatment with B) carboplatin,  C) pacma31, D) 
paclitaxel, E) N-773, and F) SC144. *** = p<0.001; **** = p<0.0001. 

 

3.2.7 Tumoroids express a matrisome signature associated with poor clinical outcomes. 
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To investigate the molecular features that may be causing increased in tumor growth, 

EMT, and chemoresistance in tumoroids, we next evaluated the top differentially expressed 

genes between the EMT cluster and the epithelial cluster. We observed high upregulation of 

ECM related transcripts in the EMT cluster (Table 3.1) and theorized that differences in ECM 

between tumoroids and spheroids may be contributing to more malignant characteristics in 

tumoroids. Moreover, mesenchymal cells were the most abundant non-cancer cell type in our 

tumoroids and were also characterized by high expression of ECM related genes (Table 3.2). 

This idea was further supported by examination of the most highly variable genes in tumoroids 

and spheroids, which included MGP, MMP1, FN1, COL1A1, DCN, COL6A1, and COL6A3 

among others (Supplemental Figure 9A).  

This association with ECM and ECM remodeling prompted analysis of a matrisome gene 

expression signature previously associated with advanced disease states and chemoresistance in 

ovarian and other cancers81. We found increased expression of these matrisome genes in 

tumoroid cultures compared to spheroid and 2D cultures (Figure 3.7A). This finding was 

validated with qRT-PCR comparing the expression of these genes in spheroids and tumoroids 

from four patient samples (Figure 3.7B). While we expected to find elevated expression in 

tumoroids for all patient samples, we observed some heterogeneity between Pt1, Pt2, Pt5, and 

Pt6 with 17/22, 11/22, 19/22, and 10/22 genes respectively elevated compared to spheroid 

controls. 21 out of the 22 genes were more highly expressed in tumoroids compared to spheroids 

in at least one patient sample, with ANXA6 being the lone exception. All four patient sample 

tumoroids had elevated expression of AB13BP, COL11A1, COL15A1, COL1A1, COMP, FBLN2, 

and FN1 suggesting potential patient-independent changes in matrisome. Interestingly, FN1 was 

the most elevated matrisome gene in Pt1, Pt2, and Pt5 while COL1A1 was the most elevated in 
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Pt6 tumoroids. Strikingly, 4 out of the 6 matrisome genes (COL11A1, COMP, FN1, VCAN) most 

closely associated with higher disease malignancy were upregulated in tumoroids from all four 

patient samples (Figure 3.7E). Interestingly, looking at these markers in the EMT cluster in 

tumoroids compared to the epithelial cluster in spheroids, only 9/22 matrisome genes were 

upregulated (FN1, VCAN, COL1A1, FBLN2, ANXA5, CTSB, ACTB, LAMB1, LAMC1) 

suggesting involvement of the other cell types found in tumoroids. Breaking matrisome gene 

expression down by cell type in Pt7 tumoroids confirmed that the mesenchymal cells were the 

primary cells expressing matrisome markers, however the EMT cluster was also a significant 

contributor (Figure 3.7C). Looking closer at the smaller cell populations in tumoroids, 

endothelial cells and myeloid cells also contribute to the matrisome signature (Supplemental 

Figure 10A-C). 

As changes in transcripts don’t necessarily translate to the protein level, we sectioned and 

stained tumoroid or spheroid-derived xenograft tumors for collagen (Sirius red) and non-collagen 

(fast green) proteins (Figure 3.7D). While there was no significant difference in collagen protein 

found between tumoroid and spheroid derived xenograft tumors, tumoroids generated tumors 

with significantly greater non-collagen protein (p<0.001). This corresponded to a significantly 

lower ratio of collagen to non-collagen proteins compared to tumors generated by spheroids 
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(p<0.05; Figure 3.7E). This confirms altered ECM production in tumoroids compared to 

spheroids on the protein level, and within in vivo microenvironments.      

Table 3.1: Top 10 upregulated genes in the tumoroid EMT cluster compared to the spheroid epithelial cluster. 

 

Table 3.2: Top 10 upregulated genes in the tumoroid mesenchymal cells. 
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Figure 3.7: Tumoroids express a malignant matrisome signature associated with advanced disease states. 
A) Heatmap showing increased expression of malignant matrisome signature in tumoroids compared to spheroids 
and 2D culture. B) qPCR showing increased expression of malignant ECM matrisome in tumoroids made from four 
different patient samples compared to their patient-sample only controls. C) Heatmap showing expression of 
malignant matrisome signature in tumoroids split by cell type. D) Spheroid or Tumoroid-derived xenografts stained 
for collagen (Sirius red) or non-collagen (fast green) proteins. E) Quantified area of collagen and non-collagen 
protein in spheroid- versus tumoroid-derived xenografts. 
   

3.2.8 Tumoroids have a molecular signature reflective of the mesenchymal subtype of ovarian 

cancer. 

Finally, due to the known influence of the stromal and immune cells on classification into 

molecular subtypes of ovarian cancer, and the association of the mesenchymal subtype of 

HGSOC with increased ECM deposition, we evaluated expression of the four TCGA molecular 

signatures (“proliferative”, “differentiated”, “immunoreactive”, and “mesenchymal”) in our 

single cell RNA sequencing data. Comparison of spheroids and tumoroids revealed that 
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tumoroids were enriched in the molecular signature of the mesenchymal subtype and appeared to 

have roughly equivalent expression of the differentiated, immunoreactive and proliferative 

molecular signatures compared to spheroids (Figure 3.8A). Notably, with the absence of 

mesenchymal cells Pt7 spheroids solely expressed a C5 proliferative signature. Tumoroids 

appeared to maintain this proliferative signature, but with the addition of a more prevalent 

mesenchymal subtype expression pattern. Evaluating expression of molecular signature by cell 

type indicated that the majority of the mesenchymal signature is derived from the mesenchymal 

cells, as has been found previously in the literature82. Interestingly, the EMT cluster also 

contributed to the mesenchymal signature, potentially linking EMT and the poor outcomes 

associated with the mesenchymal subtype. Contrarily, the cancer cells expressed the majority of 

the proliferative subtype signature, perhaps suggesting that the difference between the 

proliferative subtype and mesenchymal subtype lies primarily in the presence of activated 

mesenchymal cells.   
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Figure 3.8: Tumoroids express the C1 mesenchymal molecular subtype signature. 
A) Heatmap showing expression of genes highly expressed in each molecular subtype of HGSOC (C1: Mesenchymal 
– red; C2: Immunoreactive – blue; C4: Differentiated – orange; C5: Proliferative – green). B) Heatmap showing 
molecular subtype marker expression in Pt7 tumoroids divided by cell type. 

 

3.3 Discussion 

The non-cancer cells in the tumor microenvironment play a critical role in the disease 

course and outcomes of ovarian and other cancers. These cells can interact dynamically with 

ovarian cancer stem cells to maintain stemness, and thereby drive development of 

chemoresistance and recurrence118,213,335,336,338,339,354,375–377. The importance of the non-cancer 

cells in the TME is further reflected by their influence on molecular stratifications associated 
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with differential clinical outcomes. However, despite the clear importance of these cells, there 

remains a lack of flexible systems that can be used to truly understand how each cell type works 

together to maintain CSC phenotypes and poor clinical outcomes. 

2D cell line models often translate poorly to the clinic due to the unrealistic environment 

that is inherent in 2D cultures such as lack of 3D cell-cell contacts and abnormal oxygen and 

nutrient diffusion2,378–380. They are also subject to gradual loss of stemness over time, although it 

can be partially rescued in 3D serum free culture69. Furthermore, cell lines provide a generalized 

and heavily pre-selected population of cells that may not accurately reflect the characteristics of 

each patient’s cancer cells353,381. Moreover, 3D cultures with cell lines or even patient cells are 

limited by lack of cellular heterogeneity, which is required in understanding the complex 

interactions in a tumor. Some 2D and 3D models incorporate one or two additional cell types to 

study these interactions and have provided important insights into CSC regulation and the impact 

of non-cancer cells thus far213,349,382,383. However, the more cell types that are omitted from a 

model, the less comprehensive the interaction network, potentially leading to misinterpretation of 

results or results that won’t translate into the clinic.  

On the other hand, patient-derived organoids, ex vivo tumor cultures, and patient-derived 

xenograft models due a better job of maintaining the complex cellular microenvironment. Even 

so, these cultures are subject to the loss of stromal cells over time or infiltration of mouse stroma 

over time in the case of xenografts204,350,351,384. Patient-derived xenografts are also limited by 

variable engraftment rates and long periods of time needed for tumor growth380. While these 

models have demonstrated good replication of patient response to chemotherapy, they are 

difficult systems to use for the study of multicellular TME interactions due to lack of control 

over the cell composition204,218,350,352,353,380. This complicates the design of experiments to test the 
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effect of a single cell type on complex multicellular interactions in the TME, and ultimately 

limits our ability to effectively develop new treatments that will have a substantial impact on 

clinical outcomes. 

As a result of these challenges, the goal of this work was to bridge the gap between 3D 

co-cultures used to study multicellular TME interactions and the complex cell cultures like 

PDO’s and PDX’s. To accomplish this goal, we developed a tumoroid culture system with 

patient derived tumor cells cultured with controlled ratios of MSCs, ECs, and PBMCs within 

384-well hanging drop plates. This system allowed for high throughput experiments to study the 

effect of TME cells on CSCs and the outcomes associated with different molecular subtypes in 

the context of complex cellular microenvironment while maintaining fine control over the cell 

composition. Our ability to understand the complex interactions in this culture system was 

supplemented with the development of a machine learning model to predict stem cell enrichment 

and evaluate the importance of the relationships between different cell types. 

 In the initial stages of developing our tumoroid culture system, we used a 1:10 ratio of 

growth factor reduced Matrigel to support growth of each cell type, as this is common practice in 

organoid culture204,380. While this technique was successful, we ultimately performed the 

majority of our tumoroid cultures without Matrigel to minimize the potential impact of 

exogenous ECM on cell functions and to facilitate cell recovery from spheroids for downstream 

analyses. After establishing our culture technique, we demonstrated that tumoroids could be 

cultured for up to 22 days in a hanging drop plate, with termination of the experiment due to 

large droplet size leading to droplet instability. This culture period could potentially be extended 

with the use of serial passaging, which is commonly performed to culture PDO’s over long 

periods of time204, however it is unclear if all of the cell types would remain viable through 
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passaging and fine control over cell composition would be lost unless tumoroids were FACS 

sorted with each passage. That said, within a culture period of 7 days, tumoroids were formed 

successfully and highly amenable to downstream analyses.  

 Since MSCs, ECs, and macrophages have each been shown to individually influence 

stemness in a tumor213,337,338,354, we hypothesized that expression of ovarian CSC markers 

CD133 and ALDH would be enriched in tumoroid cultures compared to co-culture and mono-

culture spheroid controls. Interestingly, when patient tumor cells were tagged with GFP 

(allowing us to isolate CSC marker expression in the patient cells) we found the endothelial cell 

co-culture resulted in the greatest sum of cells expressing CD133 or high ALDH compared to 

spheroid controls (p<0.01), co-culture with MSCs (p<0.05), co-culture with PBMCs (p < 0.01), 

and tumoroids with all four cell types (p<0.01). While endothelial cells have been shown to 

enhance stemness previously 335–337, this is particularly intriguing as immune cells and 

mesenchymal stem cells have previously been shown to enhance stemness as well, suggesting 

that incorporation of all four cell types did not have an additive effect on stemness. This could be 

due to the fact that co-culture with MSCs alone did not appear to enhance stemness while co-

culture with PBMC appeared to have a deleterious effect on CD133-ALDH+ expression. Lack of 

CSC enrichment in co-culture with MSCs could be because they were healthy adipose derived 

MSCs at the start of the culture as opposed to CA-MSCs previously transformed by tumor cells 

into a tumor promoting phenotype85,338. That said, single cell sequencing did indicate possible 

transformation of MSCs into CA-MSCs indicated by relatively high expression of BMP2, IL-6, 

LIF, and CXCL8 (IL-8) (Supplemental Figure 11A), which have previously been linked to tumor 

supporting MSCs338,340.  
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 Contrarily, PBMCs could potentially be killing some CSCs in tumoroids and PBMC 

co-cultures, though an experiment comparing MUC16 expression with and without PBMCs in 

hanging drop culture with TM indicated lack of epithelial tumor cell death with PBMC culture 

(Supplemental Figure 11B). Importantly, CD133+ALDH+ CSCs were not measured in these 

experiments, leaving open the possibility of increased CD133+ALDH+ CSC populations in 

tumoroids compared to controls. Perhaps more intriguing is the fact that the tumoroid culture 

seemed to negate the CSC promoting effect of the endothelial cells in the EC co-culture. This 

could be due to differentiation triggering signals from the PBMCs and/or MSCs counteracting 

EC effects on CSCs, or perhaps interactions between ECs and PBMCs / MSCs in a manner that 

prevented the ECs from promoting CSC growth. While more work is required to elucidate the 

reason for this finding, this demonstrates the non-linear relationship between TME cell 

composition and CSC enrichment, highlighting the need for complex heterogeneous cultures to 

study the interactions in the CSC niche.  

However, when Pt1 tumoroid experiments with GFP- tumor cells were compiled, 

tumoroids had a greater average percentage of CD133-ALDH+ cells compared to spheroids. The 

same was true for CD133+ALDH+ percentages. While these differences were not significant,  

given the dilution of tumor cells by TME cells in tumoroids it is likely that this difference is 

greater in reality.  Scaling these tumoroid percentages based on the average percentage of GFP+ 

tumor cells in spheroids compared to tumoroids from our GFP+ experiments yielded significant 

increases in CD133-ALDH+ and CD133+ALDH+ compared to tumoroids. This crude scaling 

method may under or overestimate the true CSC percentages in our tumoroids, however it may 

yield results closer to reality than the unscaled percentages which were diluted by the presence of 

TME cells. 
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To circumvent the potential biases introduced by scaling, we next evaluated potential 

changes in the distribution of CSC phenotypes. Specifically, we examined the percentage of each 

CSC phenotype (CD133+/-ALDH+/-) relative to the total percentage of cells expressing one or 

both CSC markers. This analysis represents differences in CSC composition in tumoroids 

compared to spheroids independent of TME cell dilution. While differences between spheroids 

and tumoroids were not significant, this analysis suggested a patient-specific response to the 

presence of the TME cells, potentially due to patient-specific factors such as differences in 

disease stage, genetic background, and epigenetic signatures between and within patients204,328. 

Differential effects of TME signaling with tumor cells from different patients potentially reflects 

the variable outcomes in clinical trials of therapies targeting established CSC maintenance 

pathways, such as NOTCH, WNT, and HH, indicating the need for more comprehensive 

characterization of patient-tumors prior to treatment385. Since our tumoroid system captures these 

patient-specific differences, it has the potential to serve as a screening platform for drugs 

targeting interactions in the TME. 

Our machine learning model demonstrated the utility of coupling our in vitro tumoroid 

model with in silico techniques to gain insight into variable importance. This is especially 

beneficial for complex models like the tumoroid system as it is difficult to ascertain the complex 

relationships between different parameters otherwise. While the prediction models had only 

moderate performances, they were limited by the small size of the dataset and therefore show 

promise for predicting CSC levels based on the cell composition of the TME, which would be 

indicative of prognosis. The predictive performance of these models would likely improve with 

more datapoints and more rigorous feature selection. That said, even the moderate predictive 

performance still serves as evidence that CSC levels are influenced by the TME composition.  



 108 

 As a result of the relationship between the non-cancer TME cells, CSCs, and prognosis, 

we examined the tumorigenicity of tumoroids compared to spheroids. Our xenograft experiment 

revealed increased tumor forming capacity and a significantly greater fraction of CD133-ALDH+ 

CSCs in TDX spheroids compared to SDX spheroids. TDX spheroids also seemed to be more 

proliferative based on their size after 7 days of hanging drop culture aligning with work from our 

lab and others showing increased proliferative capacity of ALDH+ cells compared to ALDH- 

cells3,386. This also supports our finding of an increased CD133-ALDH+ CSC fractions in TDX 

spheroids compared to SDX. 

On a molecular level, single cell sequencing of tumoroids compared to spheroids and 2D 

cultures from the same patient sample revealed evidence for EMT and altered stemness in 

tumoroids. That tumoroid cultures induced EMT is unsurprising, given the previously reported 

ability of MSCs, ECs, and macrophages to do so through a variety of mechanisms213,387–390. 

Despite the well-documented association of EMT with increased stemness, we found minimal 

changes in expression of most CSC markers in the EMT cluster in tumoroids compared to the 

epithelial cancer cell cluster in spheroids267,391–394. However, we did see small increases in 

average expression of various ALDH isoforms that are detectable with the ALDEFLUOR assay 

(which we used to measure ALDH expression via flow cytometry) potentially corroborating the 

modest increase in CD133-ALDH+ CSC fractions in tumoroids395.  Notably, average expression 

of ALDH1A3, which has been linked to EMT was slightly greater in the EMT cluster in 

tumoroids compared to the epithelial tumor cell cluster396–398. That said, the most significant 

differences in CSC marker expression were the loss of CD24 and EPCAM expression with 

concordant increase in THY1 in the EMT cluster. A relationship between decreased expression of 

CD24 and increased expression of THY1 mediated by $3 integrin was previously shown399 and 
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implicated in suppression of ovarian tumor growth. Contrarily, CD24 expression and THY1 

expression have independently been associated with poor outcomes in ovarian cancer400–402. 

Importantly, CD44 expression remained high in the EMT cluster meaning that there were 

CD44+CD24- cells which have been linked to not only EMT, but also to stemness and poor 

survival in ovarian cancer391,403. While there is still some ambiguity in the role of CD24 and 

THY1 in disease progression in ovarian cancer391,399–401,403–407, our work showing increased 

proliferation, tumor forming capacity, and chemoresistance in tumoroids supports a pro-

tumorigenic role of THY1 and CD44+CD24- cells in ovarian cancer.  

Contrarily, in validating our findings with qPCR of tumor cells sorted from Pt1 

tumoroids, we found increased THY1 and CD24 expression compared to tumor cells from 

spheroids, suggesting that some patient-specific differences in the tumor cells between Pt1 and 

Pt7 may be influencing the effect of the TME cells on CD24 expression. Ultimately, more work 

is needed to fully understand the relationship between these markers and disease progression in 

ovarian cancer, however it stands to reason that the exact role of THY1 and CD24 may be 

dependent on the conditions of the microenvironment and / or the patient sample. Owing to the 

fine control over microenvironment composition, our patient-derived tumoroid model system 

could help elucidate the relationships between each of these markers and the microenvironmental 

conditions that are conducive to their pro- or anti-tumorigenic functions. 

Expectedly, as EMT and chemoresistance are closely linked408, we found that tumoroids 

in our system demonstrated significantly higher chemoresistance against various conventional 

and experimental therapies compared to spheroids alone. This difference was almost ubiquitous 

across the four patients with paclitaxel treatment of Pt3, pacma31 treatment of  Pt5, and N773 

treatment of Pt1 being the lone exceptions, demonstrating that patient-specific responses are 
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present.  Importantly, these differences did not necessarily reflect the inherent chemoresistance 

of each patient sample (for example, Pt5 spheroids were most sensitive to paclitaxel out of the 

three patient samples whereas the Pt5 tumoroids were the least sensitive to paclitaxel out of the 

tumoroids from each patient sample). This intriguing finding indicates that culture of patient-

derived cancer cells with TME cells may be a critical factor in accurately predicting response to 

specific drugs. While this finding needs to be compared against clinical responses before we can 

know if the tumoroid drug responses are more representative of clinical scenarios than patient 

cell only spheroids, at minimum this finding shows that aside from molecular and genetic 

differences within a tumor, different regions may respond differently to treatment based on the 

local cell composition. This is important as intra-tumor heterogeneity is thought to be a critical 

factor in drug resistance409. As our tumoroid system is amenable to culture with different cell 

compositions, it could serve as a promising screening platform wherein drugs could be screened 

for each patient on tumoroids made with an array of different compositions. Then, the optimal 

treatment could be chosen to minimize chances of resistance due to cellular heterogeneity.  

Interestingly, tumoroids were even generally more chemoresistant than spheroids after 

treatment with targeted therapies. For example, they were more resistant to PACMA31 and 

N773, which can downregulate the DNA damage repair systems that are activated in CSCs, in ¾ 

patient samples373,374,410. All four patient samples also demonstrated increased resistance to 

SC144 which inhibits IL-6 / LIF induced STAT3 phosphorylation and consequent increased 

stemness and EMT339,340,371,372,411–413. These results suggest alternative means of chemoresistance 

conferred by the tumoroids. For example, BMP-2, which is more highly expressed by 

mesenchymal cells in tumoroids than IL-6, can promote stemness independent of STAT364,338,394. 
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Examining the most highly differentially expressed genes in the tumoroid EMT cluster 

compared to the spheroid epithelial cluster and the most variable genes in the tumoroids and 

spheroids showed greatly increased expression of ECM proteins in tumoroids. Not only did the 

EMT cluster express significantly more matrix related transcripts compared to the spheroid 

epithelial cluster, but Pt7 tumoroids had a high proportion of mesenchymal cells, which are also 

known to remodel the ECM in tumors171,414,415. This observation suggests a potential ECM 

related chemoresistance mechanism in tumoroids. In fact, the ECM has long been known to 

impact chemoresistance. Specifically,  the top 10 most significantly upregulated genes in the 

tumoroid EMT cluster compared to the spheroid epithelial cluster (tissue inhibitor of 

metalloproteinases 1 (TIMP-1)416, collagen 1A1 (COL1A1)417, collagen 3A1 (COL3A1)161, 

insulin growth factor binding protein 2 (IGFBP2)418, insulin growth factor binding protein 7 

(IGFBP7)419, collagen 2A1 (COL2A1)420, CHI3L1421, DCN422, SPARC423, and MGP424) all have 

associations with chemoresistance.    

The relationship between tumoroids, chemoresistance, and malignant characteristics of 

advanced disease is further linked to the ECM through expression of a 22 gene matrisome 

signature associated with advanced stage disease and poor clinical prognosis was further 

supported by tumoroid expression of a malignant matrisome signature of ovarian cancer (that 

also translates to other cancers)81. In particular, four out of six matrisome genes (COL1A1, 

COL11A1, COMP, FN1) most closely associated with advanced disease score were upregulated 

in our tumoroids compared to spheroids in all four patient samples in our qPCR analysis. 

Importantly however,  even among the four genes upregulated in all four patient samples, there 

was substantial variability, which may contribute to patient-specific differences in drug response. 

Pt5 tumoroids had greater expression of COL1A1, COL11A1, and COMP than Pt2 tumoroids and 
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also had significantly greater viability after treatment with N773 and Paclitaxel. Contrarily, Pt2 

tumoroids had significantly greater resistance to Pacma31 treatment. 

These matrisome genes were most highly expressed in tumoroids by the mesenchymal 

cells as well as the EMT cluster, with COL11A1 being unique to the mesenchymal cells 

(Supplemental Figure 11C). Notably, common transcription factors for the 22 gene matrisome 

signature (including RUNX2, STAT3, SMAD4, WT1, JUN, and TP53) were also most highly 

expressed in the EMT and mesenchymal clusters (Supplemental Figure 11D)81. This finding 

highlights the role of the TME cells, most notably the mesenchymal cells in our model system, in 

matrix remodeling within our tumoroids, which parallels the remodeling identified in omental 

metastases of HGSOC and other cancers. The prominent role of the mesenchymal cells in matrix 

remodeling is also in line with the literature171,414,415,425,426. While the number of myeloid cells 

and endothelial cells in this particular patient tumoroid were low, they also had relatively high 

expression of matrisome genes (Supplemental Figure 11A-C). 

Comparing this 22 gene matrisome signature against the four HGSOC molecular 

subtypes defined by Tothill et al. revealed substantial overlap with the C1 mesenchymal subtype. 

In fact, the C1 subtype was the only subtype that was characterized by increased expression of 

any of the 22 genes81,229. In particular, 7 of the 22 matrisome signature genes (COL11A1, COMP, 

FN1, COL1A1, LAMB1, FBLN2, and LAMA4) were upregulated in the C1 mesenchymal subtype, 

suggesting that this could be a 7 gene signature of poor outcomes in HGSOC. Notably, this 

included the same four matrisome genes upregulated in all four tumoroid qPCR patient samples, 

which were most closely associated with advanced disease81,229.  

Our tumoroids were further linked to clinically relevant chemoresistance through our 

finding that tumoroids expressed a C1 mesenchymal subtype signature compared to spheroids 
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due primarily to the presence of the mesenchymal cells and the EMT cluster. This corresponds 

not only with the worse outcomes associated with the C1 mesenchymal subtype, but also with 

the association of EMT, matrix remodeling, and desmoplasia with poor outcomes229,348,408,414. As 

the molecular subtype of a tumor is closely linked to the presence of stromal cells, and our 

tumoroids are amenable to culture with four or more cell types in many different compositions, it 

follows that our model will be advantageous in studying how the non-cancer cells in the TME 

contribute to different clinical outcomes of the different molecular subtypes. 

 

3.4 Conclusions 

In this chapter we show that the flexibility of our tumoroid system opens the door for in 

depth study of the role of the complex tumor microenvironment in the most critical facets of 

HGSOC. The non-cancer cells in the tumor microenvironment are inextricably linked to clinical 

outcomes through their role supporting cancer stem cells, promoting EMT, tumorigenesis, 

chemoresistance, and ECM remodeling. However, many questions remain surrounding the key 

mechanisms through which the TME contributes to poor outcomes leading to limited success of 

current targeted therapies. Moreover, despite the knowledge that cell composition influences 

molecular subtypes of HGSOC, our lack of comprehensive understanding of how each cell type 

influences outcomes is a barrier to clinical adoption of currently defined subtypes. Our model 

combines the increased cellular complexity of a four cell type culture while maintaining fine 

control over experimental conditions that is lacking in PDO’s and PDX’s in order to address 

these challenges.  

Using this platform, demonstrated flexible culture of patient-derived tumor cells with 

three non-cancer cell types. We show that patient tumor cells cultured with controlled ratios of 
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MSCs, ECs, and PBMCs have patient specific and culture composition specific changes in 

stemness. These cultures also demonstrate increased tumorigenicity, changes in CSC phenotype 

with EMT, and increased chemoresistance along with a physiologically relevant increased 

expression of malignant matrisome genes and the C1 mesenchymal subtype signature.  

With our tumoroid model system we can being to understand the role of each component 

of the TME within the context of a complex multi-cellular microenvironment in a step-wise 

manner. The knowledge gleaned from this model has the potential to inspire new therapies 

targeting the critical components of the TME and facilitate the implementation of HGSOC 

subtyping in clinical management to improve outcomes for ovarian cancer patients around the 

world.  

3.5 Materials and Methods 

3.5.1 Cell Culture and Materials. 

All tissue culture reagents, and media supplements were purchased from Life 

Technologies (Carlsbad, CA) unless specified otherwise. Primary tumor samples were collected 

from patients with informed signed consent under an institutionally approved IRB protocol. 

Peripheral blood mononuclear cells (PBMCs) were purified from buffy coats from healthy 

donors through Ficoll-Paque gradient centrifugation, using Histopaque from Millipore sigma 

(Burlington, MA). Human adipose derived mesenchymal stem cells (haMSCs) were purchased 

from Lonza Walkersville Inc. (Walkersville, MD). Human Dermal Microvascular Endothelial 

Cells, Microvascular Endothelial Cell Growth Medium and Adipose Derived Stem Cell Growth 

Bullet Kit medium were purchased from Lonza Walkersville Inc. (Walkersville, MD). Human 

umbilical vein endothelial cells (HUVECs) were a donation from Dr. Lola Eniola-Adefeso’s lab. 

Human monocyte U937’s were purchased from ATCC. Carboplatin and Paclitaxel were 
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purchased from LKT Laboratories (St Paul, MN) and Apexbio (Houston, TX) respectively.  The 

PDI inhibitor Pacma31 and novel compound N773 and SC144 were a gift from Prof. Nouri 

Neamati’s lab. Antibodies and isotype controls for FACS were bought from Miltenyi Biotech 

(CD31, CD133/2, CD68) (Bergisch Gladbach, Germany) and BD Pharmingen (PE isotype 

control, CD73, CD31) (San Diego, CA). EGF was bought from Peprotech Inc. (Rocky Hill, 

NJ).  MTS reagent was purchased from Abcam (Cambridge, UK). The ALDEFLUOR Assay Kit, 

bFGF, RHO/ROCK pathway inhibitor (Y-27632) were purchased from StemCell Technologies 

(Vancouver BC). Chromium Single Cell 3' Reagent Kit for single cell sequencing was purchased 

from 10X Genomics (Pleasenton, California). ECM Gel from Engelbreth-Holm-Swarm murine 

sarcoma was purchased from Millipore Sigma (Burlington, MA). pUltra-Smurf AmCyan, 

mCherry, GFP, and dtTomato was purchased from Addgene. Perfecta hanging drop plates were 

purchased from Xcentric Molds & Engineering.  

3.5.2 Generation of tumor spheroids and tumoroids in 3D. 

Control mono-culture spheroids were generated in a hanging drop array plate using 

patient-derived, unsorted bulk tumor cells, adapting protocols described previously3. Patient-

derived tumor cells were harvested from culture and concentrated using high-speed 

centrifugation. Cells were resuspended in RPMI 1640 supplemented with 10% fetal bovine 

serum and 1% antibiotics and antimycotics. Cell counts were obtained using a hemacytometer 

and volume of cell suspension needed to obtain the appropriate number of total patient cells for 

the experiment was partitioned into a new microcentrifuge or conical tube. The partitioned cells 

were then centrifuged and resuspended in tumoroid medium (TM) at a density of  60 patient-

derived tumor cells per 20 μL for deposition into hanging drop wells. TM is composed of 5 parts 

2x SFM to one part EBM-2 and 20 μM ROCK inhibitor (Y-27632) (Supplemental Table 5) (2X 
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serum-free growth media [2X SFM; DMEM/F12 supplemented with 10 ng/ml basic fibroblast 

growth factor, 10 ng/ml epidermal growth factor, 1X B27 supplement, 1X insulin-transferrin-

selenium supplement, 1X non-essential amino acids and 1X antibiotics and antimycotics]. For 

tumoroid generation, MSCs were harvested using 0.05% trypsin and resuspended in Adipose-

derived Stem Cell Basal Medium (ADSCBM) and counted. Similarly, ECs were harvested using 

0.25% trypsin and resuspended in EBM-2. PBMCs were thawed from -80 degrees Celsius on the 

day of the experiment, resuspended in 10% RPMI, and counted.  U937 monocytes were cultured 

in RPMI with 10% heat inactivated FBS and 1X antibiotics and antimycotics. Each tumoroid cell 

type was added to a single cell suspension, centrifuged, and resuspended in TM such that a 20 μL 

volume contained 60 heterogeneous tumor cells, 300 ECs, 300 MSCs and 300 PBMCs (or U937s 

for the fluorescent tumoroid experiment) so the ratio of tumor cells to each of the other cell types 

in the tumoroid was at 1:5 at the start of the culture. To maintain homogeneity of experimental 

conditions, media composition was not changed between the tumoroid and spheroid cultures. 

Spheroids and tumoroids were maintained in TM for a period of 7 days and imaged using live 

phase contrast microscopy to follow spheroid and tumoroid formation. Cultures were fed with 2 

μL of fresh TM medium on day 3 and 5. Growth factor reduced ECM gel was used in some 

experiments to form spheroids and tumoroids such that a 20 μL suspension had 2 μL of growth 

factor reduced Matrigel, to provide a heterogeneous base of ECM proteins to facilitate growth. 

3.5.3 Response of spheroids and tumoroids to traditional and novel anti-cancer compounds. 

Patient-derived spheroids and tumoroids were treated with traditional chemotherapeutics 

carboplatin and paclitaxel for 48 h with final concentrations of 200 μM and 10 μM respectively 

within 20 μL droplets. Other novel anticancer compounds Pacma 31, N773, and Sc144 were also 

administered to a final concentration of 10 μM each, within 20 μl drops for 48 h. At the end of 
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48 h, MTS reagent was added to each drop at a 1/10 dilution, and allowed to incubate at 37 °C 

for 2.5 h. At the end of the incubation period, absorbance was read on the spheroids and 

tumoroids at 490 nm, according to manufacturer’s protocols using a BioTek plate reader 

(Winooski, VT). Drug treated conditions were normalized to either untreated spheroids or 

tumoroids, which were used as controls and statistical significance was determined by comparing 

control and treated conditions within and across spheroid and tumoroid aggregates derived from 

the same primary patient sample. Experiments were repeated with 3–5 biological replicates for 

statistical analysis. 

3.5.4 Gene expression via qPCR. 

RNA was extracted from harvested spheroids and tumoroids using the RNeasy extraction 

kit (Qiagen). Extracted RNA was assessed for concentration and purity using a Nanodrop 2000 

(Thermo Fisher Scientific) spectrophotometer. RNA was transcribed to cDNA using the High-

fidelity cDNA Transcription kit (Life Technologies), and qPCR was carried out in the 384 well 

format using the 7900HT platform (Applied Biosystems). Gene expression differences were 

quantified using the 2ΔΔCT method, using GAPDH, 18S, $-actin as the housekeeping controls, 

and reported as fold change compared to a control sample. To compare stemness and EMT 

signatures in patient tumor cells only, flow cytometry was used to collect GFP expressing patient 

tumor cells from spheroids and tumoroids prior to RNA extraction. Controls were patient-

derived tumor cell spheroids. qPCR experiments were run in triplicates, with 2–3 independent 

samples.  

3.5.5 In vivo tumorigenicity of spheroids and tumoroids in NSG mice. 
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NOD SCID gamma female mice were purchased from Taconic Biosciences (Rensselaer, 

NY). Spheroids and tumoroids from patient tumor cells were generated as mentioned earlier and 

injections were prepared by carefully harvesting spheroids or tumoroids using a pipette and 

supporting them within Growth-Factor-Reduced Matrigel from Corning (Corning, NY). The 

injections were administered subcutaneously into the mice. Each injection contained 10 

spheroids or tumoroids. Tumor size was measured once weekly using calipers. Tumors were 

allowed to grow until an end-point of 1500mm^2 was reached for maximum tumor burden, and 

mice were euthanized according to IRB approved protocols. Tumors were dissected, and routine 

paraffin histology and H&E staining was performed to understand any changes in histology as 

well as Sirius Red and Fast Green staining to quantify collagenous and non-collagenous proteins. 

Tumor pieces were frozen and stored at -80 degrees C for future analysis and spheroid 

generation. Slides stained for collagen and non-collagen proteins were analyzed in ImageJ using 

a defined threshold to isolate the red pixels (collagen proteins) and the green pixels (non-

collagen proteins). The area of each color in each picture was quantified. 

Cells isolated from tumoroid-derived xenografts and control spheroid-derived xenografts 

were used to plate spheroids in our hanging drop system at a density of 200 cells per well. After 

7 days, spheroids were harvested and evaluated for expression of ALDH, CD133, 

ALDH+CD133, CD73, CD31, and CD68. Day 7 images of these spheroids were traced manually 

in ImageJ and used to calculate average spheroid area for each culture condition. 

3.5.6 Evaluation of cell phenotypes with flow cytometry. 

Following 7 days of culture in the 384-well hanging drop platform, tumoroids were 

harvested with a 1 mL pipet and either digested with 1-2 mL of Accutase for 10 minutes at 37 

degrees and / or mechanically separated via repeated pipetting. When large cell clusters were 



 119 

visible, cell suspensions were passed through a 70 µm filter. The cell suspensions were then spun 

down and resuspended in ALDEFLUOR Buffer such that the total resuspension volume for each 

experimental group (i.e. control, tumoroid, control drug, tumoroid drug) allowed for 100 µL of 

cell suspension to be allotted per antibody condition. Each group included the following 

conditions: DAPI only control, APC-isotype, DEAB control, CD133-APC + ALDH,  FITC-

isotype + PE-isotype, CD31-FITC, CD73-PE, and CD68-APC or CD11b-APC. To determine the 

viability over time, this protocol was repeated on day 3 and day 7, while on day 0, FACs was 

performed on leftover 2D cells that were used to plate the tumoroids and spheroids for that 

experiment. FACs on drug treated samples was performed as described following 48 hours of 

drug treatment. Each FACs experiment was performed on a CytoFLEX Flow Cytometer 

(Beckman Coulter) or a MoFlo Astrios Cytometer (Beckman Coulter) and analyzed on FlowJo 

as described previously427. Briefly, double positive CSCs were identified as ALDH+ CD133+ 

cells with a quadrant gate set with 0.5% non-specific CD133 signal in the APC-isotype condition 

and 0.15% non-specific ALDH signal in the DEAB control condition. CD31+, CD68+, and 

CD73+ cells were identified as endothelial cells, macrophages, and MSCs respectively based on 

corresponding isotype control gates set with 0.5% non-specific staining. Experiments with GFP+ 

patient tumor cells were stained with ALDERed and ALDEFLUOR Buffer supplemented with 

verapamil in order to distinguish between the GFP signal and the ALDH signal. 

For experiments plated with GFP+ Pt1 tumor cells, the perecentage of GFP+ expressing 

cells in each culture type was evaluated. The mean GFP+ percentage at the end of 7 days for 

spheroids and tumoroids were used to derive the scaling factor for GFP- experiments. 

Specifically, the average percentage of GFP tumor cells in the spheroids was divided by the 
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average percentage of GFP tumor cells in the tumoroids yielding a scaling factor of 1.3687 to 

account for the dilution of CSC percentages in tumoroids. 

3.5.7 Lentiviral transduction to visualize cell localization within tumoroids. 

To visualize localization of each cell type within tumoroids, endothelial cells were 

transduced with AmCyan (1X), MSCs were transduced with GFP (0.5X), U937 monocytes were 

transduced with mCherry (1X), and patient-derived cancer cells were transduced with dtTomato 

(1X). MSCs, ECs, and patient-derived cancer cells were plated in 6-well plates and allowed to 

adhere to the dish overnight. The following day, medium was aspirated and the cells were 

washed with 1X PBS. Viral titer was diluted to the final concentration with the appropriate cell 

medium. Polybrene was added to the cells for incubation overnight. Following incubation, 

medium was aspirated, cells were washed with 1X PBS, and medium was added to allow cells to 

grow prior to plating. U937 monocytes were spun at 800g for 30 minutes at 32 degrees Celsius 

with a concentration of 1x106 cells per mL with polybrene and virus. 

Fluorescent cells were plated with dtTomato Pt4, GFP MSCs, AmCyan HUVECs and 

mCherry U937s and imaged on day 7 with a Nikon A1Si Confocal Microscope. Tumoroids and 

single-color controls were harvested and embedded in a thin layer of agarose for imaging. Single 

color controls were imaged first to establish fluorescence spectra for each color. Then tumoroids 

were imaged and the single-color control spectra were used to deconvolve the fluorescence 

signals into the appropriate colors using spectral deconvolution. A stack of deconvolved images 

was converted into a 3D rendering on the microscope software for visualization. 

3.5.8 Evaluation of single cell gene expression. 
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A fresh patient-derived tumor sample (Pt7) was obtained as a generous donation from 

Dmitriy Zamarin at the Memorial Sloan Kettering Cancer Center and used to generate tumoroids 

and control spheroids as described previously. Tumoroids and control spheroids were collected 

on day 4 of culture for single cell isolation and library preparation. A 2D cultured control was 

included in lieu of a raw uncultured control due to poor viability of the raw uncultured sample. 

3D samples were collected from hanging drop plates using a 1000 uL pipet and deposited into 15 

mL centrifuge tubes and given to the Rogel Cancer Center Single Cell Resource where the 

viability of each sample was evaluated, dead cells were removed with Miltenyi’s dead cell 

removal kit, and single cells were isolated using 10x Genomics single cell isolation platform. 

Sequencing was performed by collaborators at Yale and data was then analyzed in R using a 

Seurat v 3.0  (available on CRAN [https://CRAN.R-project.org/package=Seurat] and GitHub 

[https://github.com/satijalab/Seurat]) pipeline that can be found on https://satijalab.org/seurat/. 

Briefly, cells were filtered to include those with more than 200 features, but less than 

6500 features as well as all cells with less than 25% mitochondrial content. Then the feature 

expression measurements for each cell was normalized  by the total expression, scaled by a 

factor of 10,000, and passed through a log transformation. Subsequently, the data was scaled 

such that the mean expression across all cells is 0 and the variance across all cells is 1. 

Dimensionality of the dataset was determined to be approximately 15 dimensions with elbow 

plots prior to cell clustering. Clusters were generated with a resolution of 0.1-0.2 and plotted in t-

SNE plots. Cluster identities were determined through manual evaluation of the expression of 

known cell type markers in each cluster. To determine the cell type identity of ambiguous cell 

populations, samples were aligned to a publicly available set of ovarian cancer single cell 

sequencing data using the Seurat integration pipeline. Aligned tumoroid cells were assigned cell 
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types based on overlap with the previously published cluster identities from the public dataset 

(Supplemental Figure 12A-C)428.  Differential expression analysis was performed between 

cancer cells from different culture conditions. Finally, differential expression portrayed as log 

fold change along with p-value and adjusted p-value were imported into IPA for core analysis of 

canonical pathway activation and prediction of upstream regulators. 

3.5.9 Predicting the stemness of a sample based on the cellular makeup of the TME. 

52 tumoroids cultures were generated with 60 patient-derived tumor cells, 300 MSCs, 

300 ECs, and 300 PBMCs and evaluated for CD133-ALDH+, CD31+, CD68+, and CD73+ 

expression  on day 7 via flow cytometry. Data was analyzed on FlowJo and recorded in Excel. 

Each percentage was increased by 0.001 % to eliminate zero values while maintaining relative 

relationships between parameters and data points. Additional features were generated by adding 

or dividing different combinations of experimental data (Supplemental Table 6). In Rstudio, the 

median CD133-ALDH+,  CD133+ALDH-,  or CD133+ALDH+ value was obtained and used as the 

threshold determining which samples had ‘high’ versus ‘low’  expression of each CSC 

phenotype. High or low labels were applied to each tumoroid and stored in a ‘response’ column 

appended to the input dataset. Parameter data types were checked, and the ‘response’ column 

was redefined as a factor for use as the prediction variable. CSC marker columns were then 

removed from the dataset. A seed was applied (‘set.seed(123)’) to ensure reproducible outputs. 

The dataset was then split such that 75% of the samples, 37 in this case, were randomly assigned 

to the training set and the remaining 25% (15 samples) were randomly assigned to the test set. A 

tune function (‘tune.randomForest’) was applied to optimize the number of parameters evaluated 

at each node of the decision trees (‘mtry’) and the number of trees to make the model with 

(‘ntrees’). Results were assessed based on out-of-bag error rate.  
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The best random forest settings for mtry and ntrees were then used as the settings for the 

‘randomForest()’ with the training set as the input with which to train the model to predict the 

response variable based on all of the parameters. The test set and the corresponding test response 

variable was included in the function to test the performance of the model. After running the 

model, receiver operating characteristic curves were generated and the area under the curve 

calculated to assess the performance of the models on the training and test sets. Mean decrease in 

gini impurity (calculated in the ‘randomForest() function) was used as a measure of variable 

importance for CD133-ALDH+ and  CD133+ALDH- models, but not for the CD133+ALDH+ 

model due to poor performance on the training set.  

To test the performance of the model in predicting the CSC levels in clinically relevant 

data, single cell sequencing was performed on 42 HGSOC tumors by collaborators. Cell clusters 

were annotated by our collaborator and the percentage of cells expressing ALDH isoforms, 

CD68, NT5E (CD73), PECAM1 (CD31), and PROM1 (CD133) in each cluster was evaluated 

(Supplemental Table 7). Based on the total number of cells in each cluster and the percentage of 

cells expressing a given marker, the number of cells expressing each marker in each patient 

sample could be back-calculated. The number of cells expressing each marker could then be used 

to calculate the percentage of the total cells for a given patient sample that express a marker, 

serving as an approximation of the cell compositions obtained from FACS analysis. The 

expression of the ALDH isoforms was summed to obtain a cumulative value. This processing 

yielded a percentage of ALDH, PROM1, PECAM1, CD68, and NT5E for each patient sample 

which were then used to generate the same features used to train our random forest model. 

Finally, each parameter column was scaled such that the median value was equivalent to the 

median value of the training flow cytometry data. This ensured that the protein level FACS 



 124 

expression data and the scRNA seq expression data were on the same scale. The 42 scRNA seq 

patient sample was then assigned ‘high’ or ‘low’ designations based on the threshold determined 

for the flow cytometry data. The CSC parameters were then removed, the response column was 

appended to the new test set and converted to a factor variable type. All 52 FACS datapoints 

were used as the training set and the new test set replaced the old test set. 
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Chapter 4 : Engineered Tumoroid Models Coupled with Machine Learning to 

Study the Role of the Tumor Microenvironment in Chemoresistance. 

4.1 Introduction 

Most ovarian cancer patients are treated with a standard non-personalized treatment 

regimen of surgical debulking followed by combination treatment with platinum and taxane 

therapy. While this treatment regimen is often initially effective, most patients experience relapse 

with the development of chemoresistance leading to high mortality429,430. Personalized medicine 

is a promising concept to improve patient outcomes by directing clinical management based on 

the specific characteristics of each individual tumor and patient. However, HGSOC has highly 

heterogeneous clinical response and a paucity of prognostic factors with which patients can be 

stratified. The current most informative prognostic factors are disease stage, success of surgical 

debulking, BRCA1/2 germline mutations, and infiltrating lymphocyte scores430. Factors like 

BRCA1/2 mutations can aid in directing clinical management (BRCA1/2 mutations suggest 

increased sensitivity to PARP inhibitor therapies), but ovarian cancer patients are still plagued by 

frequent development of drug resistant disease430. As a result, there is considerable effort to 

define molecular subtypes of HGSOC that can improve prognosis predictions and more 

effectively determine clinical management course to improve outcomes. 
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4.1.1 Molecular Subtyping of HGSOC indicates the role of the tumor microenvironment cell 

composition in clinical outcomes. 

In 2008, Tothill et al. identified a set of four molecular subtypes of HGSOC 

(mesenchymal, immunoreactive, proliferative, and differentiated), via microarray analysis of 285 

serous and endometriod tumors. They found that the four subtypes had implications in clinical 

outcomes with the C1 (high stromal response) and C5 (mesenchymal, low immune signature) 

subtypes corresponding with the worst outcomes. Contrarily, C2 and C4, which were 

characterized by a high immune signature and a low stromal response respectively were 

associated with more favorable outcomes229. Since then, these subtypes have been validated by 

some studies while other labs have developed unique molecular classifications of HGSOC into 

similar, yet different subtypes234. Despite validation in multiple studies, the original four 

HGSOC subtypes have not been implemented clinically in part because the individual markers in 

the193 gene signature were not statistically significant across all studies430. That said,  a recent 

study demonstrated the promise of using molecular subtyping in HGSOC in their retrospective 

study of of the effectiveness of anti-angiogenic therapy bevacizumab230. In their work, they 

stratified each patient’s tumor into one of the four original molecular subtypes and examined the 

response to bevacizumab. By doing so, they  identified that bevacizumab conferred a greater 

overall benefit in the two subtypes with worst prognosis (mesenchymal and proliferative). 

Overall adoption of bevacizumab therapy has been limited due to its lack of effect on overall 

survival, however by examining the effectiveness of this therapy in each proposed molecular 

subtype of HGSOC, the authors were able to identify a subset of patients that may gain 

additional clinical benefits230. This highlights the potential of personalized patient stratification 

to direct clinical management. Importantly, recent work has also shown that subtype 
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classifications are highly influenced by the presence of  stromal cells in and around the tumor82, 

lending to the idea that the tumor microenvironment composition could potentially be used to 

stratify patient responses. In fact, several studies have begun to evaluate this possibility based on 

stromal gene signatures235 or the immune cell composition inferred from deconvolution of bulk 

sequencing datasets237. Despite the likely role of the tumor microenvironment in directing patient 

responses, this information is of limited value without a better understanding of how the TME 

composition translates to drug response. Additionally, current patient stratification studies tend 

to rely on bulk-omics measurements or expensive imaging techniques to generate features with 

matched clinical response information to make predictions about response to previously studied 

therapies238,431–433. While the value of making predictions with these types of data are obvious, 

there is little benefit in terms of newly developed therapies that have not been around long 

enough to generate the large clinically annotated datasets required to make predictions. A better 

understanding of the role of the nuanced stromal composition in patient drug response to various 

drugs may elevate the clinical value of HGSOC molecular subtyping efforts by providing 

additional context with which to develop new treatments and direct administration of current 

treatments.    

4.1.2 Machine learning models for prediction of drug response and identification of biological 

mechanisms. 

Machine learning models are uniquely suited to study the role of nuanced cell 

compositions in drug response due to their ability to identify meaningful patterns in complex 

multi-dimensional datasets238,434,435. For example, Yu et al. developed a machine learning model 

trained on proteomic profiles of 130 ovarian serous carcinoma patients to predict response to 

platinum therapy using various supervised machine learning algorithms (including random 



 128 

forests, support vector machines, naïve bayes classifiers, and bootstrap aggregating)433. Using 

these models, they were able to show the relevance of proteomic data in predicting a patient’s 

platinum response and propose the key pathways involved in platinum resistance with further 

bioinformatics analysis433. This work provides an example of the value of machine learning in 

identifying and confirming prognostic value of biological parameters. Another study published in 

2021 combined explicit mathematical models with a machine learning framework in order to 

identify candidate combinations of existing therapies. Their algorithm, termed “CellBox”, 

involves non-linear ordinary differential equation (ODE) based models of biological networks of 

99 components to simulate cell behavior in response to perturbation. The connections in their 

biological network are “learned” from a dataset of 89 experiments with pre-and post-perterbation 

measurements. The authors used gradient descent with automatic differentiation (a machine 

learning technique) to infer interaction parameters in their ODE network. Using this model, the 

authors were able to simulate interpretable cell responses to various arbitrary treatment 

combinations (perturbations) and thereby develop new therapeutic hypotheses for testing. Due to 

the interpretability of this model, mechanistic hypotheses could be developed facilitating 

potential implementation or improvement of therapeutic approaches436. This model serves as an 

example of how machine learning can be used to gain biological insights that can shape the 

development of new hypotheses and prompt further experimentation. Together these two 

examples of machine learning techniques in drug response prediction applications highlight the 

value of interpretable machine learning models in clinical and research applications.  

As a result, in this aim we seek to address the current need for improved molecular 

stratification in HGSOC and the unclear role of the tumor microenvironment composition in 

response to treatment with a combination of experimental drug screening of heterogeneous  
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tumoroids and easily interpretable machine learning techniques. We hypothesize that tumoroids 

engineered with different cell compositions will respond differentially to treatment. Furthermore, 

we expect that the cell composition of each tumoroid culture can be used to make accurate 

predictions of drug response and be used to gain insights into key cell-cell relationships in 

chemoresistance. Finally, we predict that cell compositions related to chemoresistance in our 

tumoroid model system will translate to effective molecular stratification of patient drug 

response in publicly available HGSOC datasets. 

4.2 Results and Discussion 

4.2.1 Tumoroids derived from different tumor microenvironment cell compositions respond 

differentially to 5 different chemotherapies. 

In order to test the effects of different TME cells on response to traditional 

chemotherapies (carboplatin, paclitaxel) as well as novel treatments (pacma31, N773, and 

SC144), tumoroids were generated with 23 different cell compositions (Figure 4.1A-C, Table 

4.1) and assayed for viability following 48 hours of treatment. Within each drug treatment, 

significant differences in viability depending on cell composition were numerous (Figure 4.2A-

G). In Figure 4.2G, the most significant differences were clustered in the left half of the heatmap, 

which was made up of the comparisons of compositions 1,2, and 3 (the cancer cell only 

conditions) with the other 20 compositions, supporting the notion of TME cell mediated 

chemoresistance. Paclitaxel, PACMA31, and N773 treatment yielded the most significant 

differences in viability, suggesting that their mechanisms of action are more attenuated by TME 

cells than the mechanisms of carboplatin or SC144. Although, the highest proportion of 

significant differences with carboplatin or SC144 treatment were still in comparison to the 

cancer cell only compositions.  
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Figure 4.1: Heterogeneous tumoroids were cultured with 23 different cell compositions. 
A) Bar graph showing the total cell number in each composition distributed between Ovcar3’s (blue), MSCs (red), 
ECs (green), and U937 monocytes (purple). B) Bar graph showing the percentage of each cell type in each 
composition with Ovcar3’s represented in blue, MSCs in red, ECs in green, and U937 monocytes in purple. C) 
Phase contrast image of tumoroids made with each cell composition showing heterogeneous size and morphology. 
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Figure 4.2: Tumoroids with different cell composition had statistically significant differences in treatment response. 
A) Box and whisker plot of averaged normalized viability for each cell composition across all treatment conditions 
showing overall resistance to treatment. Box and whisker plots showing resistance of each composition to B) 
carboplatin, C) paclitaxel, D) pacma31, E) N773, and F) SC144. G) heatmap of adjusted p-values for comparisons 
between all conditions determined via One-way ANOVA and Tukey’s Post Hoc Analysis. Red indicates most 
significant (p<0.05), grey indicates borderline significance (p=0.05), and blue and white indicate not significant 
(p>0.05). 

Arguably more interesting are the differences in drug response between the compositions 

with different numbers of TME cells, which might indicate composition dependent 

chemoresistance effects and would thus be most useful in determining the effects of nuanced cell 

composition differences. Myriad scattered significant differences can be observed between 

tumoroids with different TME compositions throughout the right most 75% of the heatmap in 

Figure 4.2G. In several instances, a cluster of significant differences can be observed. For 

example, a similar cluster of significant differences exists in both the carboplatin and pacma31 

treatment group. Upon examination, these clusters correspond to the increased chemoresistance 
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of composition 11 (60 Ov3 + 500 U937) compared to compositions 12 – 20 which contain 

cancer cell numbers varying from 0-120 Ov3’s and MSCs and ECs that vary between 200-500, 

and U937s that vary between 100 and 500. That this same cluster of differences exists in both the 

carboplatin treatments and pacma31 treatments suggest that there may be an overlapping 

mechanism of chemoresistance to each drug in the 60 Ov3 + 500 U937 condition. However, the 

presence of the 60 Ov3 + 200 MSC + 200 EC + 500 U937 group in this cluster complicates the 

idea that the high number of U937s is behind the resistance. It is possible that carboplatin and 

PACMA31 are negatively influencing viability through effects on the MSCs and / or ECs, 

thereby causing the conditions with all TME cells to have lower viability compared to conditions 

with only cancer cells and U937s. Alternatively, it is possible that the MSCs and / or ECs are 

interacting with the cancer cells and / or U937s to attenuate the chemoresistant effect observed in 

the Ov3 + U937 co-culture. Exactly what is driving this finding requires further experimentation, 

but poses some interesting questions with potential translational implications. 

  Notably, the top five compositions with the highest average pooled viability after drug 

treatments were compositions 11 (60 Ov3 + 500 U937), 15 (60 Ov3 + 200 MSC + 200 EC + 500 

U937), 5 (60 Ov3 + 60 MSC + 60 EC + 60 U937), 22 (60 Ov3 + 500 MSC + 500 U937), and 23 

(60 Ov3 + 500 MSC + 500 EC + 500 U937) in order of most viable to least (Table 4.2). 

Interestingly, of the top five most resistant compositions on average were 4 out of the 5 

compositions that included 500 U937, again potentially implicating U937s as a key factor in 

chemoresistance in this model. Since compositions that contain high numbers of U937s and 

variable numbers of MSCs and ECs are included in this chemoresistant group of compositions, it 

is possible that previously observed significant differences in viability between the Ov3 + U937 

co-culture were not due solely to drug induced MSC and / or EC death in the more effected 
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compositions. This is surprising as U937s included in each culture were undifferentiated, yet is 

potentially supported by the literature which indicates that chemotherapy can induce the 

differentiation of monocytes into their M2-like tumor supporting phenotype437–440 . While this 

needs further experimental validation to confirm, it suggests an interesting biologically relevant 

possibility.  

The bottom five compositions with the lowest average viability after all drug treatments 

were compositions 19 (120 Ov3 + 400 MSC + 400 EC + 100 U937), 8 (30 Ov3 + 150 MSC + 

150 EC + 150 U937), 2 (60 Ov3), 1 (30 Ov3), and 3 (120 Ov3) in order of most viable to least 

(Table 4.2). Also of note, the three most sensitive compositions on average were the only three 

conditions generated with cancer cells only, suggesting the role of the tumor microenvironment 

cells in conferring chemoresistance as is expected based on the literature117,134,213,441. 

However, the compositions with the greatest resistance and sensitivity to treatment were 

treatment dependent (Table 4.2). Briefly, compositions 11, 21, 22, 5, and 13 were the most 

resistant to carboplatin treatment while compositions 19, 7, 14, 3, and 1 were the most sensitive 

to carboplatin. Composition 13 contained no cancer cells (300 MSC + 300 EC + 300 U937 only) 

which makes sense as one mechanism of carboplatin mediated cell death is through blockage of 

replication machinery and growth arrest, making it particularly effective against rapidly dividing 

cells442,443.  

Contrarily, paclitaxel was least effective against compositions 14, 5, 10, 16, and 15, two 

of which contained 500 ECs, potentially indicating a connection between ECs and resistance to 

paclitaxel (Table 4.3). This is contrary to previous reports of anti-angiogenic and endothelial-

specific effects of paclitaxel444–446. However it is possible that ECs are conferring 

chemoresistance through indirect mechanisms such as the modulation of tumoroid ECM447. 
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Compositions 4,8,2,1, and 3 were the least resistant to paclitaxel, again including the three 

cancer cell only cultures. PACMA31 was least effective against compositions 11, 7, 4, 5, and 15 

which includes two out of the five compositions with 500 U937s and two conditions that started 

with more cancer cells than TME cells. Pacma31 was most effective against composition 18, 8, 

2, 3, and 1. Compositions 19, 8, 2, 3, and 1 were most sensitive to N773 treatment and 

compositions 14, 11, 16, 15, and 22 were most resistant, including again, three conditions with 

500 U937. Finally, SC144 was most effective against compositions 19, 23, 3, 10, and 20 and 

least effective against compositions 15, 1, 2, 12, and 7. Interestingly, among the least effected 

compositions for SC144 were cancer cell only compositions with 30 and 60 Ov3 cells 

respectively. SC144 inhibits gp130 through binding resulting in gp130 phosphorylation and 

deglycosylation and ultimately abrogates STAT3 phosphorylation and subsequent downstream 

gene activation371. Through these mechanisms, SC144 was previously shown to be effective 

against ovarian cancer cell lines in vitro and in vivo371, however in our culture system overall 

response across all conditions was low as indicated by sparse significant differences between 

culture compositions in Figure 4.2G. This low overall response (lowest viability of ~78.63%)  

perhaps suggests the need for increased doses in our system to identify true responses. Further 

supporting the idea that cancer cells cultured alone are not definitively more resistant to SC144, 

composition 3 with 120 cancer cells alone was among the top five most sensitive to SC144 

(Table 4.2).  

It has been reported in the literature that mesenchymal subtypes are more sensitive to 

taxane therapy and more resistant to platinum based therapies448. Mesenchymal subtype 

signatures have also been linked to the presence of mesenchymal cells, as opposed to more 

mesenchymal cancer cell populations82. Therefore, to attempt to draw a clinical parallel with our 
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tumoroid model, we compared the drug response of 7 “mesenchymal” tumoroid compositions 

(compositions 9, 12, 14, 17, 20, 22, and 23) characterized by ≥400 MSCs, to carboplatin 

treatment versus paclitaxel treatment (Figure 4.3A-G). This comparison yielded the opposite 

relationship with carboplatin being more effective in the selected “mesenchymal” tumoroids 

compared to paclitaxel treatment. Although, like SC144, paclitaxel had low overall response 

with the lowest viability composition following treatment being ~78.12% viable, suggesting the 

potential need for higher doses or longer treatments to ensure that treatment effects are not being 

obscured.  

 

Figure 4.3: Comparison of platinum and taxane response among tumoroids with the highest number of MSCs, 
termed “mesenchymal” tumoroids. 
A-G) Average normalized viability of each mesenchymal tumoroid following treatment with carboplatin or 
paclitaxel. H) Average resistance rank of each mesenchymal tumoroid to carboplatin (blue) or paclitaxel (red) 
compared to all other tumoroid compositions. 

 

To combat the relative effectiveness of carboplatin versus paclitaxel dosing, we next 

examined the relative ranking of the “mesenchymal” tumoroids compared to all other 

compositions treated with carboplatin or paclitaxel (Figure 4.3H). We expected that they should 

rank in the most resistant compositions among the carboplatin treatment group and the least 
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resistant compositions among the paclitaxel treatment group. Surprisingly, the average ranking 

of the tumoroids with the most MSC in carboplatin was 12.7 (in the bottom half of all 

compositions, in other words more sensitive to carboplatin) while the average rank of 

mesenchymal tumoroids in response to paclitaxel was 8.6 (in the top half of all compositions or 

more resistant), including the most resistant composition (composition 14). This finding could be 

due to a number of factors including the crude nature with which we defined “mesenchymal” 

tumoroids, as it is possible that some other tumoroid compositions would be clustered into a 

mesenchymal subtype if they were to be sequenced even with lower numbers of MSC at the start 

of the culture. Additionally, it is possible that some tumoroid compositions generated in this 

study are not physiologically relevant and are more or less resistant than would be expected in a 

clinical environment and therefore interfering with the response rank of the designated 

mesenchymal clusters. Furthermore, while mesenchymal subtypes have been attributed to the 

presence of mesenchymal cells, the subtype signature may also be influenced by other cell types 

in the stroma making our crude definition of a “mesenchymal” tumoroids less meaningful. 

Finally, these tumoroids were generated with non-matched cell lines suggesting that their 

response to treatment might not be reflective of responses observed in vivo. Of note, composition 

22 (60 Ov3 + 500 MSC + 500 U937) was the only dubbed “mesenchymal” tumoroid that showed 

the expected trend (third most resistant composition to carboplatin and the thirteenth most 

resistant to paclitaxel), potentially indicating that this composition is the most representative (out 

of the 7 designated mesenchymal tumoroids) of the mesenchymal molecular subtype. It was also 

interesting to see that the composition without cancer cells (composition 13: 300 MSC + 300 EC 

+ 300 U937) also followed the expected mesenchymal subtype trend being the fifth most 

resistant to carboplatin and the fifteenth most resistant to paclitaxel. This suggests that the 
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unexpected effects that we observe are due to differences in the cancer cell response to these 

treatments.   

Table 4.1: Tumoroid Cell Compositions. 

 

Table 4.2: Top 5 Most Resistant and Sensitive Tumoroid Compositions for Each Treatment. 

 

4.2.2 Machine Learning to Predict Drug Response Based on Cell Composition. 
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To evaluate the effectiveness of the tumor microenvironment cell composition in 

predicting treatment response and to glean additional potentially biologically relevant insights 

from our tumoroid MTS assays, random forest models were created to predict tumoroid response 

to each drug based on cell composition. The generated random forests had variable effectiveness 

at predicting response to different drugs. The worst model (predicting SC144 response) had an 

AUC of 0.5883 for the training set and 0.6264 for the test set, still better than a random 

prediction model, which would have an AUC of 0.5 (Figure 4.4E). This particular model 

potentially had the worst performance due to the paucity of statistically significant differences 

between cell compositions (Figure 4.2G) and low overall effect of treatment with 10 uM SC144 

in our model system, potentially obscuring significant differences in response between the 

different compositions (least viable condition was ~78.63% viable after treatment).  

Contrarily, the most effective random forest model had an AUC of 0.6915 for the training 

set and an AUC of 0.6832 on the test set when trained to predict Pacma31 response (Figure 

4.4C). Paclitaxel (training AUC: 0.6825; test AUC: 0.6898; Figure 4.3B) and N773 (training 

AUC: 0.6415; test AUC: 0.6833; Figure 4.4D) predictions were the second and third most 

accurate. The carboplatin model was the second to last most effective with a training AUC of 

0.6089 and a test AUC of 0.6695 (Figure 4.4A). Each model performed better than a random 

predictor and was relatively consistent between the training and test sets indicating lack of 

overfitting. Training set AUCs ranged from 0.5883 to 0.6915, indicating moderate performance, 

however these values are in line with those of previous drug prediction models generated based 

on protein (AUC: ~0.58-0.64 for various machine learning algorithms)433 or molecular features 

(AUC: ~0.56-0.76 for a Deep Neural Network model)449 demonstrating the potential of 

predictions made based solely on cell composition. Interestingly, the three most effective 
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prediction models were predicting response to the three drugs that showed the greatest 

significant difference in viability in cultures with TME cells compared to those without TME 

cells (Figure 4.2G), potentially indicative of a greater role of TME cells in conferring 

chemoresistance to PACMA31, paclitaxel, and N773. From a clinical application perspective, 

this could indicate that those three drugs would be relatively less effective in tumors with high 

stromal content. That said, it could also be indicative of the need for more robust drug responses 

to avoid obscuring potential composition specific differences due to lack of overall drug 

response (as may have been the case with SC144). More robust drug responses obtained with 

higher concentration treatment or longer duration treatment could also reduce overlap in 

response values between compositions, potentially leading to more accurate model predictions. 



 140 

 

 

 

Figure 4.4: Evaluating random forest model performance. 
Random forest models performed better than random predictors at predicting response to each treatment. Receiver 
operating characteristic curves (ROCs) for the training (left) and test (right) set for random forest model generated 
to predict response to A) carboplatin, B) paclitaxel, C) pacma31, D) N773, and E) SC144. 

Finally, we evaluated the importance of each parameter in making predictions for each 

drug. None of the none of the random forest models utilized a single cell type in the top five 

most important parameters, indicating the complex relationships between cell types and how 

they may work together to determine the degree of chemoresistance. The carboplatin model 

placed relatively equivalent importance on most of its parameters, though put the most weight on 

the proportion of the culture made up of U937s. The proportion of the culture made up of ECs 

and MSCs respectively were also in the top 5 most important parameters (Figure 4.5A). The 

paclitaxel response predictor placed the most importance by far on the total number of cells and 
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the total number of TME cells plated at the start of culture (Figure 4.5B). As the total number of 

TME cells is highly influential in the total number of cells, these parameters are heavily 

overlapping. PACMA31 predictions placed the most importance on the ratio of cancer cells to 

TME cells and total cells respectively (Figure 4.5C). N773 places a similar weight on the 

proportion of cancer cells and the total cells. Finally, SC144 placed the greatest importance on 

the cancer cell type (Ov3’s sorted for CSC markers ALDH and CD133 compared to unsorted 

Ov3’s), as one experiment was plated with sorted OvCSCs as opposed to unsorted Ov3’s. The 

SC144 model also placed high importance on the proportion of U937s in the culture (Figure 

4.5E). Figure 4.5F shows a heatmap of the importance value of each parameter for each drug 

response prediction model, revealing a clear pattern of the importance of the proportion of cancer 

cells and TME cells in each tumoroid. The heatmap also reveals moderate importance placed on 

various cell – cell relationships whereas the individual cell type numbers were among the least 

important for all models, highlighting the importance of including complex cellular compositions 

in analysis of drug response. 
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Figure 4.5: Random forest models can provide easily interpretable variable importance measures to facilitate 
interpretation of results. 
Top 5 most influential parameters in predicting drug response to A) carboplatin, B) paclitaxel, C) pacma31, D) 
N773, and E) SC144. F) Heatmap showing the importance measures of all paramters for each drug prediction 
model. 

Breaking down the most important parameters for each model and plotting the important 

parameter versus the treatment response shows the relationship between each variable and the 

treatment response (Figure 4.6A-E). In general, there appears to be an inverse relationship 

between drug response and TME cell total, which is highly correlated with the total cell number 

(more TME cells / total cells results in decreased drug response). For example, PACMA31 

appears to be most effective when the ratio of cancer cells to MSCs + ECs + U937s is high (i.e. 

there are no added TME cells) (Figure 4.6C). This relationship makes sense given the 

chemoprotective effects previously attributed to MSCs, ECs, and macrophages. Interestingly, the 

SC144 prediction model placed the most importance on the type of Ov3 cells used in culture as 
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tumoroids made with sorted Ov3 CSCs were more susceptible to SC144, potentially due to 

SC144’s ability to prevent STAT3 activation which is known to be involved in CSC maintenance 

(Figure 4.6E)308,411,450. Moreover, when examining the second most important parameter in 

predicting response to carboplatin we can see that low ratios of Ov3s to MSCs (a higher 

proportion of MSCs than cancer cells) results in generally greater resistance to carboplatin 

treatment (Figure 4.6F). Despite the fact that the tumoroids with the highest number of MSCs did 

not rank among the most resistant to carboplatin in Figure 4.3, this analysis supports the 

expected trend of increased carboplatin resistance in more mesenchymal tumors. This highlights 

the importance of cell-cell relationships in stratifying durg responses as considering MSCs alone 

did not reflect clinical trends while considering the ratio of cancer cells to MSCs did. Overall, 

these machine learning models demonstrate the potential of predicting therapy response based on 

cell composition and evaluating the importance of each parameters in order to attempt to make 

biological interpretations to drive future experimentation.  Although these models had moderate 

prediction accuracy, they could potentially be improved through the generation of more 

physiologically relevant tumoroids (with matched cancer-associated stromal and immune cells). 

These models could also possibly be improved with higher concentration or longer duration drug 

treatments to obtain more robust drug responses. 
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Figure 4.6: Plotting normalized viability versus the important features for each model reveals potential 
relationships. 
The most important features in predicting response to A) carboplatin, B) paclitaxel, C) PACMA31, D) N773, and E) 
SC144 versus normalized viability. F) Plotting the second most important feature in predicting carboplatin response 
versus normalized viability reveals the expected relationship between presence of mesenchymal cells and resistance 
to carboplatin (higher ratios of MSCs to Ov3’s is associated with greater resistance to carboplatin). 

 

4.3 Conclusions 

Recent work has suggested that the stromal cells can impact molecular subtyping 

classifications and thus may have prognostic significance82,235, however the exact role of 

nuanced differences in stromal composition in drug response is still unclear. Furthermore, 

current treatment drug prediction models rely on bulk-omics measurements or expensive 

imaging techniques, which are often limited in sample size and only exist for previously 

administered therapies238,404,431–433,451,452, limiting their utility in predicting response to novel 

therapies. Here we have developed an in vitro model system wherein tumoroids are generated 
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with different cell compositions and assayed for drug response in a high throughput hanging drop 

plate. Drug response data can then be used to make predictions of drug response based on 

tumoroid cell composition using random forest models. Using this system, we found an amalgam 

of significantly different responses depending on tumoroid composition with the highest 

frequency of significant differences comparing tumoroids to cancer cell only controls. This 

finding supports the current literature showing that the TME cells can confer 

chemoresistance95,138,213,337,453,454, yet may be obscuring the importance of nuanced differences in 

cell composition in drug response.  

Interestingly, we observed that the most resistant populations to each drug tended to 

include high numbers of U937s, suggesting their potential role in chemoresistance within 

tumoroids. We also found that the tumoroids generated with the highest numbers of MSCs did 

not reflect the expected chemoresistance pattern that has been attributed to the mesenchymal 

molecular subtype (increased resistance to platinum therapy and increased sensitivity to taxane 

therapy448), with the exception of the 60 Ov3 + 500 MSC + 500 U937 composition. While more 

experimentation is needed, this suggests that there could be an interaction between the MSCs and 

macrophages within the mesenchymal subtype that is leading to the observed responses. 

However, the mesenchymal subtype is typically characterized as having a low immune 

component, so this could be a model specific effect such as the adipose-derived MSCs  needing 

signals from the U937s in order to shift into a more malignant phenotype. Our machine learning 

models were able to predict response to treatment with moderate accuracy, albeit with AUC’s 

within the range of some existing response prediction models. Evaluation of parameters used to 

make these predictions suggested that the proportion of TME cells to cancer cells was among the 
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most influential factors in predicting response, likely due to the high number of comparisons 

between cultures with and without any non-cancer TME cells.  

Overall this work provides evidence that the cellular composition of the TME has 

potential in predicting therapy response and provides a proof of concept model for engineering 

different composition tumoroids in order to investigate the role that each TME cell type plays in 

resistance to traditional and novel therapies. Future model development with more robust drug 

responses, matched patient-derived tumoroid cultures, and incorporation of additional parameters 

such as tumoroid size, average cluster number, circularity, and matrisome gene expression could 

improve physiological relevance and predictive performance of these models. This work 

ultimately paves the way for understanding the nuanced role of the cell composition in the tumor 

microenvironment in chemoresistance, potentially resulting in development of new therapies and 

more effective clinical management.  

4.4 Materials and Methods 

4.4.1 Cell Culture and Materials. 

Epithelial ovarian cancer cells (OVCAR3: American Type Culture Collection), were 

cultured in RPMI 1640 (Gibco) supplemented with 10% fetal bovine serum (FBS: ) and 1% 

antibiotics and antimycotics. Human adipose-derived mesenchymal stem cells (haMSCs: Lonza 

PT-5006) were cultured in Adipose-derived Stem Cell Basal Medium (Lonza) supplemented 

with 10 % FBS and 1% antibiotics and antimycotics as well as 2 mM L-glutamine (Gibco). 

Human umbilical vein endothelial cells (HUVECs) were a donation from Dr. Eniola-Adefeso 

and were cultured in Endothelial Basal Medium-2 (EBM-2 [AKA EGM-2], Lonza). U937 

monocytes were cultured in 1640 RPMI supplemented with 10% heat inactivated FBS and 1% 

antibiotics and antimycotics. Tumoroid cultures were formed in 384-well hanging drop plates in 
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Tumoroid Medium (TM) (2X SFM:EBM-2 (5:1) + 20 uM ROCK inhibitor). See Supplemental 

Table 5 for detailed composition. 

To plate tumoroids in 384-well hanging drop plates, each cell type is collected from 2D 

culture and resuspended in their respective 2D culture medium for counting on a hemacytometer. 

The cell density of each cell type is calculated and then used to calculate the total volume of that 

cell suspension will be needed to obtain the required number of that cell type per condition. The 

calculated volume of each cell suspension is then added into a single tube per tumoroid 

composition, spun down at 800g and resuspended in the appropriate volume of TM so that every 

well plated on the hanging drop plate will receive 20 uL the desired number of each cell type. 

Tumoroids were imaged on day 3, 5, and 7 using an epifluorescent Olympus microscope 

to obtain phase contrast images (4X). On day 3 tumoroids are supplemented with 2 uL of TM per 

well. On day 5, each tumoroid composition was fed with 2 uL of TM with no drug as a control, 

200 uM carboplatin, 10 uM paclitaxel, 10 uM pacma31, 10 uM N773, and 10 uM SC144. Each 

treatment condition contained 20-40 wells as technical replicates. Plates were incubated for 48 

hours and imaged on day 7. 

To quantify viability, an MTS assay was used. 2 uL of MTS reagent was added to each 

well and plates were incubated at 37 degrees C. Absorbance was then measured in each well at 2 

hour and 4 hour incubation time points. Normalized viability was quantified by averaging all 

control wells and dividing the absorbance in each well by the control average to obtain viability 

measurements for each drug in reference to the viability of the control. Drug assays for each 

tumoroid composition were repeated in at 2-12 separate experiments (most compostions were 2-

4 replicates, but composition 2 and 18 had 12 and 7 replicates each because they served as 

frequent control compositions).  
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4.4.2 Data Processing and Model Generation. 

Normalized MTS viability data was compiled into an excel spreadsheet and coupled with 

the corresponding input cell composition for a given experiment. To avoid ‘zero values’ that 

would lead to “N/As” that need to be excluded or imputed in random forest models, a value of 

0.001 was added to all cell numbers. Features were generated by calculating various 

relationships between the four cell numbers obtained at the inception of the experiment. 

Compiled data was then grouped by drug treatment and saved in different files that were 

then read into Rstudio v1.4.1093 with R version 4.1 for use in model generation. The median 

absorbance value for each drug treatment was calculated and used as a threshold to assign each 

replicate a ‘high’ or ‘low’ response label. After appending the response label to the dataset, it 

was converted into the ‘Factor’ datatype for use as the prediction variable. The normalized 

absorbance values (and any other parameters that were not needed) were then trimmed from the 

dataset. 

The trimmed dataset was then split into a training set (75% of the samples) and a test set 

(25% of the samples). At this point, the seed was set at ‘123’, in order to facilitate repeatable 

runs of the model. First the training set was used to optimize the number of trees for the random 

forest to generate and the number of parameters to consider at each node split. Those optimal 

values were then used as inputs in the ‘randomForest()’ function with the training set as the 

dataset to build the model and the test set in the test set slot. After running the model, the 

variable importance (quantified as mean decrease in gini impurity) was saved, ROC curves were 

generated, and AUC values were calculated to quantify model performance on the training and 

test sets for each drug. 
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Chapter 5 : Conclusions and Future Directions. 

Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they 

are highly organized and interconnected organ systems. Tumor cells reside in complex 

microenvironments in which they are subjected to a variety of physical and chemical stimuli that 

influence cell behavior and ultimately the progression and maintenance of the tumor. As cancer 

bioengineers, it is our responsibility to create physiologic models that enable accurate 

understanding of the multi-dimensional structure, organization, and complex relationships in 

diverse tumor microenvironments. Such models can greatly expedite clinical discovery and 

translation by closely replicating the physiological conditions while maintaining high tunability 

and control of extrinsic factors. Moreover, the development of robust, user-friendly models that 

integrate important stimuli will allow for the in-depth study of tumors and the complex ways in 

which cancer cells interact with their surroundings. This has direct implications for 

individualized therapies and achieving better patient survival.  

The work in this dissertation focused on developing in vitro model systems to study the 

role of the tumor microenvironment and cancer stem cells in the development of 

chemoresistance in ovarian cancer. The development of an in vitro serial passage model to study 

the long-term development of chemoresistance in ovarian cancer, sought to improve upon 

previous models used to study chemoresistance development which involved either cyclic 

treatment of cells in 2D culture or cyclic dosing of xenograft tumors over a time period of 
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months. With our 3D serial passaging system, the emergence of chemoresistance could 

be modeled without cyclic dosing over a period of 7 weeks in a physiologically relevant 

microenvironment with patient cells. We demonstrated the ability of this system to model tumor 

re-emergence following drug treatment, and the clinical relevance through evaluation of 

Metformin’s effects on CSC re-emergence after treatment in a phase II clinical trial. These 

results reflected clinical observations and previous reports and thereby highlighting the clinical 

relevance of our model. Overall this system has applications in personalized medicine and with 

additional validation could be used to screen patient specific drug responses on a consistent 

basis. Furthermore, 3D in vitro serial passaging can be utilized to identify critical molecular 

changes that occur during emergence of chemoresistance and thereby provide novel targets for 

new therapies. Finally, this system can be used as a preclinical model to screen the effectiveness 

of CSC targeting therapies and /or to supplement clinical trials and examine specific effects of 

novel therapies on the emergence of chemoresistance and CSCs. 

Having developed a model to study the emergence of chemoresistance in a CSC context 

in Chapter 2, we next sought to engineer complex multicellular tumoroids with highly controlled 

cell compositions, providing unique advantages to study the role of the tumor microenvironment 

in chemoresistance and overall outcomes from a molecular signature and CSC context. With this 

model system, cellular complexity is enhanced beyond typical mono- or co-cultures thereby 

allowing for evaluation of CSC maintenance and chemoresistance in a more complex and 

physiologically relevant microenvironment. Furthermore, this model provides fine control over 

cell composition that is not easily accomplished in patient-derived organoids or patient-derived 

xenograft cultures. This allows for practical design of experiments where the effect of a single 

variable (i.e. cell type) on the complex signaling networks can be easily isolated. With this model 
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we found patient-specific changes in in CSC phenotype in tumoroids that included MSCs, ECs, 

and PBMCs. Importantly, CSC marker expression was inconsistent between tumoroids with all 

three non-cancer cell types and co-cultures with either MSCs, ECs, or PBMCs. This 

demonstrated the importance of complex multi-cellular models of the TME in CSC research. 

Tumoroids also possessed malignant characteristics such as increased chemoresistance, increased 

tumorigenic potential, promotion of epithelial-to-mesenchymal transition, a malignant matrisome 

signature, and a mesenchymal subtype signature associated with poor outcomes. Due to the 

modularity of our tumoroid system, each of these phenomena can be evaluated in the presence of 

different cell compositions to discern the role that each cell type plays in driving malignant 

disease with or without contributions to CSC maintenance. Using this model to unravel the 

complex multi-cellular interactions in the TME can lead to the development of improved 

therapies targeting interactions between the cancer and non-cancer cells in the TME. 

Alternatively, this tumoroid platform could serve as a pre-clinical model to evaluate the 

effectiveness of therapies that seek to leverage the cellular interactions in the TME to improve 

outcomes. 

Chapter 4 serves as an additional application of our tumoroid model system, wherein 

tumoroids made with different cell compositions are used to evaluate response to traditional and 

novel therapies. Coupled with machine learning, this system can provide insights into the role of 

more nuanced cell compositions in chemoresistance. With this system we found significant 

differences in drug response between culture compositions, though the addition of TME cells to 

cancer cells conferred resistance to some drugs more than others. We interestingly observed a 

trend wherein cultures with high numbers of U937 monocytes tended to have the greatest 

resistance to therapy. Not directly in contradiction to this is the finding that our machine learning 
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models suggested that the total number of MSCs, ECs, and U937s was the strongest predictor of 

drug response. Using this system, it is possible to engineer tumoroids with a myriad of 

compositions to understand the role of the TME composition on drug response. This knowledge 

could also facilitate implementation of HGSOC subtyping in patient stratification in clinical 

settings. As molecular subtypes are highly influenced by the presence of non-cancer cells in the 

TME, drug screening with tumoroids engineered with different cell compositions could  provide 

insight into which subtypes may respond well to new and existing therapies. Additionally, 

previously undiscovered cell-cell communication networks that are important in drug response 

could be elucidated using this system and ultimately inspire development of new therapies. 

Finally, with rigorous validation and use of more physiologic matched patient sample cells, the 

developed models could eventually be used to predict patient specific therapeutic outcomes. 

Together, these aims represent advances in in vitro model systems to study 

chemoresistance and the complex tumor microenvironment of ovarian cancer. It is immensely 

difficult to recapitulate the dimensionality, the mechanical environment, the cell-cell 

interactions, the soluble signals, and the immune compartment of the TME in a single model that 

is amenable to precise analysis. Each of these factors of the TME is integral in directing tumor 

progression and thus should be considered in the design of experimental models. When many of 

these factors are not considered in a given model, there is an increased risk of producing 

unreliable results. Herein lies one of the main challenges facing cancer research:  the lack of 

physiologically representative in vitro models due to the abundance of variables that exist within 

the complex, 3D, multicellular, organ-like TME. To overcome this limitation, cancer tissue-

engineered models that present a slightly more comprehensive representation of the tumor while 

maintaining reasonable degrees of simplicity need to be developed to ensure that experimental 
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results truly reflect the in vivo system. The work presented in this dissertation has moved the 

field closer to that goal. With further development, each of the models presented in this work has 

the potential to improve our understanding of ovarian cancer physiology, inspire development of 

new therapies, and inform clinical management, ultimately culminating in improved patient 

outcomes. The future directions to achieve this endpoint and specific limitations for each chapter 

are discussed below. 

5.1 Overarching challenges 

Each model presented in this work has its own unique future directions and limitations, 

which will be discussed in the following sections. However, each system shares a similar 

challenge. Namely, despite the need for patient samples in order to produce the most 

physiologically relevant and patient-specific results, tumor samples are often hard to come by 

and when obtained, there often isn’t an abundance of material to work with. While this 

conundrum is still a challenge with our systems, it is important to note that the 384-well hanging 

drop system utilized in each chapter is uniquely suited to maximize throughput with scarce 

patient samples as 3D spheroids and tumoroids can be made with small cell numbers4,213,254.  

Furthermore, advances in single-cell “-omics” technologies are beginning to expand the quantity 

of information that can be obtained from small cell numbers, thereby leaving more of each 

patient sample for other forms of downstream analyses and use within in vitro model systems 

like those presented in this dissertation. Moreover, recent HGSOC organoid culture models have 

demonstrated the ability to expand patient-samples in vitro within 3D cultures while maintaining 

key patient-specific characteristics, albeit with a loss of stromal cells204. By expanding patient-

samples in vitro to build stocks, characterizing them with minimal numbers of single cells, and 

performing drug screening and other assays in high throughput in vitro models like 384-well 
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hanging drop plates will help to maximize the utility of scarce patient samples while also 

enhancing the physiological relevance and predictive capacity of in vitro models, like those 

presented in this work. 

 Each aim in this dissertation stands to benefit from more patient samples and / or the use 

of matched patient-derived cancer cells and non-cancer cells, as discussed in later sections. 

However it is important to note that accumulation of data for these models using patient samples 

may be a long term endeavor as a result of the inherent limitations in quantity of source material. 

Consequently, the proposed pre-clinical predictive models may require periodic updates as more 

patient-samples are obtained and used with our model systems to generate data for model 

development. While patient samples can be obtained from tumor banks, predictive mathematical 

models usually require hundreds to thousands of datapoints to develop models that can make 

reliable and accurate predictions. Availability of such a large quantity of samples to screen in 

vitro is unlikely at any single point in time, however spread over a longer period of time a 

sufficient number of datapoints could be obtained. In the interim, while patient samples are being 

obtained and studied, cell lines and currently available patient-derived samples can be utilized to 

begin experiments and inform initial model development to determine the important features for 

making predictions, as we demonstrated in each of the aims in this dissertation. Furthermore, 

using systems like our 384-well hanging drop platform high throughput assays can be performed, 

with each well serving as a datapoint making it easier to reach the quantities of data typically 

required for robust prediction models.  

Ultimately, using our model systems over time with highly characterized samples could 

result in a robust databank of tumor characteristics associated with favorable and unfavorable 

responses to novel and experimental therapies in addition to well-trained predictive models that 
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could potentially make predictions about drug response without the need to perform additional in 

vitro or in vivo experiments. This long-term goal would prove invaluable in the clinical 

management of ovarian cancer patients and thereby lead to improved outcomes. As society 

transitions further into the era of personalized medicine we predict that similar efforts will be 

enacted across a wide range of malignancies and effectively transform healthcare. More specific 

details regarding the future directions and limitations for each chapter are outlined below. 

5.2 Serial passage future directions. 

In this work, we thoroughly characterized our 3D serial passaging model to study the 

emergence of chemoresistance in ovarian cancer from a CSC context, and demonstrated the 

physiological relevance of the model. We showed that this system has potential as a research 

tool, to study the mechanisms of the emergence of chemoresistance as well as a pre-clinical tool 

that could be used to predict patient responses to treatment and thereby inform clinical 

management. A mechanistic investigation behind the chemoresistance, tumorigenicity, and 

stemness gene signature defined in the characterization of our model system may help to achieve 

these goals. More specifically, this would involve silencing or knockdown of individual genes 

within the malignant gene signature and subsequent characterization of changes in stemness, 

chemoresistance, and tumorigenicity. This process be facilitated with the use of genome wide 

CRISPR screening455, wherein many genes that potentially play key roles in stemness, 

chemoresistance development, and tumorigenicity could be knocked out in patient cancer cells 

prior to passaging. By identifying which gene knockouts prevent increases in stemness and /or 

the development of chemoresistance in our passaging model it would suggest that targeting of 

that gene has potential therapeutic value. Coupling this process with our serial passaging system 
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could greatly expedite the discovery of novel therapeutic targets behind the emergence of 

chemoresistance and poor outcomes in ovarian cancer. 

Importantly, to move towards the goal of pre-clinical drug screening with this model 

system, additional clinical validation will be required. This could be in the form of treating fresh 

patient sample spheroids with the same therapies that the patient receives, sorting for live cells, 

and then performing passaging to evaluate how quickly chemoresistance emerges for each 

patient sample following treatment, similar to the experiment shown in Figure 2.9E,F. If 

spheroids from different patient samples consistently reflect the accurate emergence of 

chemoresistance following treatment, it would lend further credence to the use of this model 

system in pre-clinical screening. Moreover, after successful patient-specific prediction of the 

emergence of chemoresistance drug screening could be performed on re-emerged spheroids to 

identify the most effective treatment for each patient sample after the emergence of 

chemoresistance. With enough validation that the models can predict or mimic patient response 

and their potential to develop chemoresistant disease our model could then be used as a 

preliminary screening tool to inform clinical decision making. This particular application would 

be facilitated with further development of our mathematical model predicting emergence of CSC 

populations, by incorporating more complex physiologically relevant equations that take into 

account phenomena such as the development of hypoxia, tumor cell dedifferentiation, and 

response to drug treatment.  

5.3 Serial passage limitations. 

While the serial passaging model is well established in Chapter 2, as with all model 

systems, there are limitations. One of the drawbacks of our serial passage system is the lack of 

cellular heterogeneity, which might influence behavior of CSCs and how they promote 
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chemoresistance. While our results in Chapter 2 indicate good agreement between drug response 

in passaged patient-derived spheroids and the expected response based on the platinum status or 

metformin status of the sample, it is also well known that the non-cancer cells in the tumor 

microenvironment can influence response to treatment, as we showed in Chapter 3 and 4. That 

said, it remains to be seen if the physiological relevance of our serial passaging model could be 

further improved by  incorporation of non-cancer cells. The cellular complexity of the TME in 

vivo may prove to be a critical component of predicting drug response in our serial passaging 

model and warrants investigation. To successfully incorporate non-cancer cells in this model the 

culture medium may need to be altered to promote survival of the non-cancer cells. For example, 

to successfully culture all four cell types in our tumoroids using a single medium composition in 

Chapter 3, the serum free medium that was used in our serial passaging model was supplemented 

with endothelial cell medium and a ROCK inhibitor, to aide in survival and growth of non-

cancer cells susceptible to anoikis in non-adherent environments.  

Aside from adjusting the media composition, an additional hurdle would be maintaining 

viability of the non-tumor cells throughout the passaging process, which would require cyclic 

spheroid / tumoroid dispersion either with rapid pipetting and / or chemical digestion techniques. 

If viability of the non-cancer cells was identified as an issue, it could potentially be circumvented 

by harvesting cells from spheroids at each passage and allocating a portion of them to start the 

next passage and a portion of them to culture in 3D with non-cancer cells that were not passaged. 

This would help elucidate how interactions with the non-cancer cells change as tumor cells 

acquire a chemoresistant / malignant phenotype. Moreover, evaluating chemoresistance 

development in the context of a more complex multi-cellular microenvironment has the capacity 
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to improve the physiological relevance of drug response and emergence of chemoresistance 

predictions. 

5.4 Tumoroid future directions 

Our tumoroid model system allows for patient-derived cancer cells to be cultured with 

mesenchymal cells, endothelial cells, and immune cells with different compositions. In Chapter 3 

we showed that this system results in differential expression of CSC markers compared to co-

cultures as well as increased malignant properties such as tumor forming capacity, 

chemoresistance, EMT phenotypes, and molecular signatures associated with poor outcomes in 

ovarian cancer. As such, this model system can facilitate the evaluation of the role of the non-

cancer TME cells in patient-specific changes in stemness, EMT, TME-mediated 

chemoresistance, and the key TME pathways underlying outcomes in HGSOC molecular 

subtypes. To improve the ability of our tumoroid model to elucidate clinically relevant 

knowledge and reflect physiological drug responses, there are a number of critical next steps.  

 The primary next step for this model system is to incorporate more specific immune cell 

phenotypes and physiologically representative cell compositions to match various 

microenvironments such as the malignant ascites or omental metastases1. Our current FACS data 

suggests that a small number of PBMCs are present in the culture by the end of the culture period 

(based on low % of CD11b+ cells in Figure 3.1F). In chapter 4, U937 monocytes are used in lieu 

of PBMCs, and there was visible presence of U937s by the end of the 7 day cultures, which was 

also observed with U937s in the 3D rendering of 4-color tumoroids in Figure 3.1G. This suggests 

that perhaps the small number of monocytes in tumoroids made with PBMCs was related to the 

health of the PBMCs, which were thawed on the day of plating. While PBMCs are advantageous 

in that they contain multiple immune cell types, it may be beneficial to use more standardized 
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immune cell lines like U937s, if not using matched patient immune cells. This would allow for 

more fine control over the immune cell composition in tumoroids and may facilitate inclusion of 

a greater proportion of immune cells.  

This is important because while some tumors can have little or no immune infiltration229, 

others have substantial immune components82,428 including the immunoreactive molecular 

subtype of HGSOC, which is associated with favorable outcomes229,237. Some 

microenvironments in particular are also known to have high immune components, such as the 

spheroids found in the malignant ascites82. Therefore, to better replicate these environments and 

understand the role of specific immune cells in determining outcomes it will be important to 

incorporate more pre-differentiated immune cells.  While there is some scRNA sequencing 

evidence that the macrophages in our tumoroid cultures have some M1-like and M2-like 

characteristics (Supplemental Figure 13A)456, pre-differentiating them into these phenotypes will 

be important to be able to examine the effect of specific proportions of each phenotype, which 

has been implicated as a clinically relevant measurement119,453.  

Along the same lines, incorporating other immune cell types such as T cells, NK cells, 

and B cells will also be important as a long term goal with this platform due to the clinical 

implications of the immune cell composition237. This will likely require  altering the culture 

medium (for example by adding IL-2 to facilitate T cell growth and differentiation)457, as our 

single cell sequencing revealed the presence of only macrophages and B cells from the PBMCs. 

Importantly, more robust incorporation of specific immune cell subsets may require matched 

patient-derived cells for each cell type as unmatched immune cells may react to the other cells in 

the culture if the HLA subtype of the immune cells is not compatible with any of the other cell 

types. Use of matched patient-derived samples will also impact physiological relevance of the 
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model as the non-cancer cells interact differently with cancer cells when they are associated with 

a tumor5,95,458.  

With improved incorporation of specific immune cell subsets, tumoroids could then be 

engineered to replicate specific microenvironments, such as the immunoreactive HGSOC 

molecular subtype82,237 or ascites specific models (made up of mainly macrophages, fibroblasts, 

and cancer cells)82. Engineering these specific environments could help elucidate how the roles 

different cell types change in a wide range of different cell contexts.  

Accomplishing this with matched patient-derived cells would require  isolation of each 

cell type from the same tissue sample, which could prove challenging.  To successfully isolate 

each cell type, flow cytometry or magnetic cell sorting of the primary tumor and then expansion 

of each cell type separately would be required to build sufficient cell stocks to perform 

experiments. While difficult, use of our 384-well hanging drop plate-based tumoroid platform, 

which is capable of generating 3D cultures with minimal cell numbers4,213,254 is an advantage as 

fewer cells are needed to perform high throughput experiments. Another technique that may 

prove useful is the in vitro expansion of tumor cells in with long term passaging of HGSOC 

organoids, which has been shown to be successful over 30+ passages with conservation of 

histological and genomic features, albeit with enrichment of the cancer cell component204. With 

these changes, our tumoroid system has the potential to serve as not only a research tool to study 

cell-cell interactions in the complex multi-cellular TME, but also as a pre-clinical screening 

platform that could be used to inform clinical management, if found to replicate patient-specific 

responses. Furthermore, the ability to engineer tumoroids with specific cell compositions allows 

for the recreation of HGSOC molecular subtypes in vitro, which could be used to screen the 
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effectiveness of traditional and novel therapies in each subtype, thereby facilitating clinical 

decision making based on molecular subtyping. 

5.5 Tumoroid limitations 

That said, one of the primary limitations of the model presented in Chapter 3 was the 

paucity of patient samples, which complicated our ability to understand the degree of patient-

specific differences in the response to the presence of non-cancer TME cells. Specifically, it will 

be important to obtain more robust data to determine the degree of patient-specific differences in 

CSC enrichment. Our current FACS data suggests that some patient samples trend towards 

enrichment ALDH+ CSCs in tumoroids while other patients do not. However, these differences 

are not significant and thus will require further experimentation to understand. Our single cell 

sequencing data also supports minor enrichment of ALDH in tumoroids compared to spheroids 

via increased expression of ALDH1A3 (which also happens to be related to EMT and metastasis 

related processes)396,398,459, however the difference is small and not significant. Contrarily, Pt 7 

instead shows high expression of CD24, CD44, and THY1 as CSC markers (depending on the 

culture type), and clear shifts in expression between spheroids and tumoroids. This suggests that 

the TME cells in this culture system may be influencing expression of those CSC markers to a 

stronger degree than ALDH and CD133 (although it is possible that Pt 7 just has low baseline 

expression of ALDH and CD133). Some differences between the FACS data and scRNA seq 

data could be due to patient-specific differences, or differences between protein and gene 

expression data125. However qPCR validation of the single cell sequencing trends suggests that 

similar trends may be occurring in Pt 1 tumoroids (which made up the bulk of our FACS 

samples). That said, it is possible that robust enrichment of CD44+CD24- CSCs is occurring in 
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our tumoroids regardless of patient sample, even though those markers weren’t examined with 

FACS.  

Additional investigation with more patient samples and replicates would help to 

understand to what degree patient specific differences may affect which CSC markers are 

enriched, or if all patient samples will respond to tumoroid culture with increased THY1 and 

CD44+CD24- expression. The results of this investigation could also inform which CSC markers 

we train our mathematical model to predict (although we would have to generate all new training 

data). These experiments could be coupled with more variations in cell composition to begin 

ascertaining the role of each cell type in tumoroid CSC phenotypes as well as critical malignant 

features of ovarian cancer such as EMT, chemoresistance, and molecular subtype signatures. 

In addition, our proposed machine learning model would be improved with evaluation of 

a variety of different machine learning algorithms, such as support vector machines, which are 

typically better at dealing with lower sample sizes435. Moreover, inclusion of additional clinically 

relevant features, such as molecular subtype signatures, copy number variations, and epigenetic 

signatures, and mutation status could improve the performance of the model and help to identify 

the parameters that most influence degree or type of CSC enrichment. The primary challenge 

associated with inclusion of these parameters is availability of sufficient quantity of patient 

sample to not only harvest each cell type to use in tumoroids, but also to sequence and identify 

copy number variations and mutation status for example. However, this may be possible with 

recent improvements in single-cell -omics techniques combined with the aforementioned long 

term passaging of HGSOC organoids, which can be used to expand patient samples in vitro over 

long periods of time while maintaining genomic features of the original tumor sample204,428,460–

462.   
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5.6 Predicting chemoresistance based on cell composition future directions 

In Chapter 4, we demonstrated the potential of the tumor microenvironment cell 

composition in predicting drug response of traditional and novel therapies. However, several 

primary next steps are needed to improve the performance and predictive capability of the 

platform. Specifically, this model system could be improved with screening of additional cell 

compositions to provide more information from which the algorithm can learn from. The current 

training data consists of 23 different cell compositions, however that translates to fewer unique 

values for certain features. For example, the ratio of OVCAR3’s to MSCs only had 10 unique 

values as there was overlap between different compositions (i.e. compositions 17, 20, 22, and 23 

all contained 60 ovcar3’s and 500 MSCs). In reality, the ratio of cancer cells to MSCs would 

likely be a continuous variable with more than 10 discrete possibilities. With more variation 

between cell compositions, more unique feature values will be available to learn from while also 

better representing the range of possible ratios that could be found in vivo. While the 

compositions presented in Chapter 4 were loosely based on physiologically relevant cell 

compositions (such as a mesenchymal tumor containing a high proportion of mesenchymal cells 

and an immunoreactive tumor containing a high proportion of immune cells), additional added 

compositions should reflect more specific cell compositions identified from patient tumors with 

single cell sequencing data as these compositions are likely to provide the most physiologically 

relevant information and because it will be important to be able to make predictions based on 

more realistic cell compositions82,428.  

Similar to our general tumoroid model established in Chapter 3, performing these 

screening assays with tumoroids made with matched patient derived cells and pre-differentiated 

immune cells from many different patients could greatly improve the biological relevance of the 
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predictions. Including patient samples in training our prediction models will also be important to 

help reveal how patient-specific responses to therapy may be influenced by the presence or 

absence of non-cancer cells.  

Subsequently, it will be important to draw clinical associations with this predictive 

model, to assess its potential in clinical scenarios. Aside from comparing tumoroid drug 

responses to those in other experimental models (like xenografts or ex vivo tumor cultures) this 

could be done by downloading publicly available single-cell sequencing datasets or using a cell 

type deconvolution algorithm (such as CIBERSORT)463 on bulk sequencing datasets if single 

cell data is not available to estimate the cell composition. These patient samples could then be 

used as a test set for our model to see if the carboplatin and / or paclitaxel response predicted by 

the models matches the clinical outcomes linked to each patient. Alternatively, if our models 

predict a relationship between a certain cell composition and carboplatin resistance, a gene 

signature could be assigned to reflect that cell composition and used to predict response in the 

publicly available datasets. Overall, these steps serve to improve the predictive capability and 

physiological relevance of our machine learning models and to validate them in clinically 

relevant datasets. 

5.7 Predicting chemoresistance based on cell composition limitations. 

One of the main limitations of the drug response prediction models presented in Chapter 

4 is low baseline drug effectiveness. Specifically, in the case of paclitaxel and SC144, the most 

effected composition had greater than 70% viability. This low response in the most sensitive 

composition suggests that differences in response between other less responsive compositions 

may be obscured as few of them experience significant death. This could easily be remedied with 

longer treatment times (i.e. 72 hours instead of 48 hours), or by re-establishing IC50 values for 
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this culture system. With more robust drug responses across all conditions, we may see more 

significant differences in response across compositions, and that in turn could improve model 

performance. Oddly, our paclitaxel prediction model was still the second best performing model, 

potentially due to the relatively high impact that it had on the cancer cell only conditions 

compared to the compositions with other TME cells. SC144 on the other hand had little to no 

effect on viability of cancer cells alone as well as cultures with TME cells, and resulted in the 

worst prediction model. 

To better understand the effects of nuanced differences in cell composition, it would also 

be beneficial to develop the models without the cancer cell only controls as they tend to be the 

most sensitive to therapy which automatically makes the models place high importance on total 

number of TME cells (since ~1/4 of the comparisons end up being between the cancer cell only 

conditions and the conditions with TME cells). This could decrease model performance, but it 

could also provide more valuable information about the chemoresistance associated with TME 

cell compositions.  

Another limitation of our predictive models was the high degree of correlation between 

our features and the lack of feature selection. In our models many features are correlated as most 

are generated from a core set of four input variables (the number of OVCAR3s, MSCs, 

HUVECs, and U937s). For example, the number of MSCs alone will inevitably be highly 

correlated to the ratio of OVCAR3s to MSCs. When features are correlated, it has been shown 

that their importance can be diluted, thereby potentially obscuring relevant parameters in 

importance analysis464. This limitation is compounded by the lack of feature selection in our 

models. Feature selection is the process whereby the number of features used to train a model is 

minimized to only the most relevant features. This process can reduce computational complexity 
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(and time) and improve classification accuracy465. To address these limitations and improve 

model performance, a recursive feature selection algorithm could be used, which has been 

proposed to minimize prediction error in the presence of correlated features and reduce the effect 

of correlation on variable importance while selecting relevant variables for model building464. 

That said, other features that could be of potential interest could also be added prior to 

feature selection. Some potentially important features to add include average tumoroid area, 

number of independent spheres per image, and average circularity. Additional likely relevant 

features that would be limited by sample availability or depth of patient sample characterization 

include copy number variation, epigenetic, and genetic signatures.  With more relevant features 

and less irrelevant features, these models might produce higher quality biological insights and 

improved predictive performance. 

Finally, predictive performance may also benefit from evaluation of additional machine 

learning algorithms, such as deep neural networks, support vector machines, and gradient boost 

models or even multiple runs of the same model to evaluate average performance238,433. 

Oftentimes, in development of a predictive model multiple algorithms are tested in order to 

choose the one with the highest performance. In addition, each model can be generated multiple 

times in order to ensure robustness and to enable statistical comparisons between average model 

performances and variable importance measures433,464. In this case, only evaluated random forest 

models because they are easily interpretable and have straight forward measures of variable 

importance, although different algorithms could have better predictive performance and thus 

their parameter importance values may be more meaningful.  
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5.8 Overarching conclusion 

Each of these models seeks to recapitulate the complex 

3D multi-cellular tumor microenvironment while maintaining 

sufficient experimental control to gain meaningful biological 

insights. While each model system has its own limitations, 

they all have the potential to inspire new treatments 

predicated on the novel biological insights that they reveal. 

Incorporating patient-derived samples in each model also 

serves to move the field further into the era of personalized 

medicine. Based on the promise of the models presented in 

this work and advances in ‘-omics’ technology, we envision 

a future wherein each patient’s tumor will be harvested and 

thoroughly characterized on the gene and protein level, and 

used in pre-clinical screening models such as those presented 

in this work (Figure 5.1)1. With further development and 

validation, our models have the potential to predict a wide 

variety of critical clinical outcomes such as development of 

chemoresistance, tumor re-emergence, optimal treatment 

strategies for primary and metastatic tumors from different 

molecular subtypes. Moreover, effective strategies to treat minimal residual disease and 

malignant cells within specific microenvironments such as the malignant ascites could be 

Figure 5.1: Proposed clinical workflow for 
patient-derived tumor-specific 3D models 
which can predict therapy response and 
identify the most effective yet non-toxic 
therapies or combinations, leading to 
sustained and durable responses. 
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determined. Realization of each of these applications would culminate in truly personalized care 

and improved outcomes for ovarian cancer patients around the world.   
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Appendix 

Appendix A: Supplemental Tables 

Supplemental Table 1: ELDA analysis of stemness across passaging. 
3D serial passaging increases CSC fraction. Range and estimate of CSC frequency as determined by Extreme 
Limiting Dilution Analysis (ELDA) between early and later passages of spheroid initiated xenografts. The p value 
for the overall differences in stem cell frequencies between any of the groups is 2.6 X 10-10 for Pt224. The p value 
for the overall differences in stem cell frequencies between any of the groups is 0.00733 for Pt412. 
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Supplemental Table 2: K1 values for the mathematical model.  
K1 values (ALDH+ symmetric division rate) chosen to minimize the absolute difference between simulated and 
experimentally measured cells per spheroid for P0 and P1 spheroids. 
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Supplemental Table 3: Final parameter choices for the mathematical model.  
Final parameter choices for serial passaging simulation of Ovcar3, Pt224, and Pt412 spheroids. Parameter choices 
were based on a mixture of experimental data and the literature. 
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Supplemental Table 4: Full list of predicted upstream regulators in tumoroids vs. spheroids. 

 
Supplemental Table 5: Tumoroid Medium Composition (TM) 
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Supplemental Table 6: Random forest parameters. 

 
Supplemental Table 7: Genes analyzed in each cluster of 42 HGSOC scRNA Seq datasets for random forest 
validation. 
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Appendix B:  Supplemental Figures 

 
Supplemental Figure 1: Viability measurements at Day 1 of spheroid formation.  
Viability was quantified using alamarblue fluorescence at Day 1 of spheroid formation from the OVCAR3 cell line, 
Pt224 or Pt412 primary samples. Quantification of viability at Day 1 from all passages (P0-P6) indicates no 
significant differences in viability at the initiation of spheroid formation with 100 cells/drop in each passage.  
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Supplemental Figure 2: Tumorigenicity of Pt224 spheroids after passaging.  
(A-G) Pt224 Spheroids from higher serial passage number within this model are more tumorigenic in NSG mice. 
Tumor volume as a function of time for A) 10 spheroids, B) 4 spheroids, and C) 1 spheroid (n=6 in each group). 50 
spheroids from P0, P3, and P6 all reached the endpoint of 1500 mm3 by week 6, and 1 million 2D grown cells 
reached endpoint by week 4. 10 P0 spheroids all reached endpoint by week 9, P3 by week 7, and P6 by week 5. 1 P0 
spheroid never developed, meanwhile, 1 injected spheroid reached endpoint by week 8 for P3, and week 5 for P6. 
Percentage of mice initiating tumors after subcutaneous injection of D) 50, E) 10, F) 4, and G) 1 spheroid/s (n=6 in 
each group). 50 P0 spheroids initiated tumors by weeks 4 and 5, P3 by week 4, and P6 by weeks 2, 3, and 4. 10 P0 
spheroids initiated tumors by weeks 5, 6, and 7, P3 by week 5, and P6 by weeks 3, and 4. 1 spheroid from P0 never 
initiated a tumor, even after 15 weeks. Half of the P3 spheroids formed tumors, initiating in weeks 6 and 8. All of P6 
spheroids formed tumors, initiating by weeks 5, 6, and 7. H) Pt412 Macroscopic pictures and photomicrographs of 
hematoxylin and eosin images of xenografts observed in NSG mice with subcutaneous injections of 10 spheroids 
from P0, P3 and P6. Scale bar=100µm. 
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Supplemental Figure 3: Serial passaging mathematical modeling workflow. 
Flow cytometry and cell count data from P0 and P1 were used to inform our simple ODE system. ALDH+ and 
ALDH- death rates were determined via flow cytometry following 7 days of 3D culture. Symmetric differentiation 
rate is derived from the Choi et al. and Tomasetti et al., while asymmetric division rate is inferred from Tomasetti et 
al. and unpublished data of single ovarian CSC divisions within a microfluidic device. Cell counts and flow 
cytometry data are used to approximate the number of ALDH+ and ALDH- generations produced over 7 days and 
used to constrain the ratio of symmetric ALDH+ division and symmetric ALDH- division based on the assumption of 
an exponential growth phase. ALDH+ symmetric division rate is chosen to minimize the collective difference 
between simulated cell numbers per spheroid after P0 and P1 and the experimentally derived cell numbers per 
spheroid. 
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Supplemental Figure 4: Characterization of heterogeneous tumoroid cultures and culture medium.  
A) Phase contrast images of additional pt-derived tumoroids. B) Expression of CSC and TME markers for 5 patient 
samples determined with FACS. C) FACS expression of CD133+ALDH+, CD133+ALDH-, and CD73 displayed in 
individual graphs showing significant differences between Pt6 and the other patient samples. D) FACS expression of 
CSCs and TME markers for patient 6 sample cultured in 2D. E) Viability in tumoroids (purple) vs spheroids over 
time, measured by MTS. F) GFP expression in spheroids, co-cultures, and tumoroids generated with GFP tagged 
patient cells. G) Proliferation of patient cells, MSCs, ECs, or PBMCs cultured in 2D on day 1 and day 4. 
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Supplemental Figure 5: Unscaled FACS quantification of Pt1 stemness in tumoroids and spheroids.  
A) Unscaled comparison of GFP- Pt1 spheroid and tumoroid CSC markers.  

  



 180 

 
Supplemental Figure 6: Evaluation of histological features and stemnss in tumoroid versus spheroid-derived 
xenografts. 
A) Bar graph indicating 1/estimated stem cell frequency in tumoroids versus spheroids. B) ELDA plot showing 95% 
confidence intervals of the log fraction non-responding versus the number of spheroids or tumoroids injected into 
mice. C) H&E sections from a spheroid-derived xenograft (top) and a tumoroid-derived xenograft (bottom). D) 
FACS analysis of CSC and TME markers in spheroids made from spheroid or tumoroid xenograft cells. 
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Supplemental Figure 7: Single cell RNA sequencing reveals an EMT signature and altered CSC phenotypes. 
A) t-SNE of aligned spheroid and tumoroid Pt7 single cell RNA sequencing clusters showing the culture origin of 
each cell (left) and the alignted clusters (right). B) Expression of CD73 measured with FACS in patient cells from 
spheroids versus MSC-co-culture and tumoroids. NT5E (CD73 gene) expression in the spheroid epithelial cluster 
(c2) compared to the tumoroid EMT cluster (c4) for comparison with FACS data. C) Heatmap of the average 
expression of a panel of CSC markers. D) qPCR of EMT and CSC markers in sorted GFP+ patient tumor cells from 
tumoroid culture compared to spheroid culture. 
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Supplemental Figure 8: Tumoroid response to drug treatment. 
A) Phase contrast images of drug response in an additional patient sample. B) MTS viability of tumoroids versus 
spheroids made without GFR Matrigel. C-E) FACS expression of CSC and TME markers following 48 hour drug 
treatment with 200 uM carboplatin, 10 uM pacma31, or 10 uM SC144. F) FACS viability after drug treatment. 
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Supplemental Figure 9: Tumoroid and spheroid variable features plot. 
A) Scatter plot of the top 25 most variable features in tumoroids and spheroids. 

  



 184 

 
Supplemental Figure 10: Clinically relevant gene expression in the small tumoroid cell populations.  
A) Re-clustered t-SNE plot of the endothelial, myeloid, B cell, and epithelial cancer cell clusters from Pt7 tumoroids. 
B) Dotplot showing expression of cell type specific genes to identify cell types for each cluster. C) Heatmap showing 
the expression of malignant matrisome genes by the small cell populations in tumoroids. D) Heatmap showing the 
expression of HGSOC molecular subtype signatures by the small cell populations in tumoroids. 
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Supplemental Figure 11: scRNA sequencing investigation of tumoroid marker expression and epithelial cell 
populations in PBMC cultures investigation.. 
A) Violin plots showing expression of CA-MSC signaling molecules showing high expression in the mesenchymal 
tumoroid clusters and the EMT cluster. B) FACS obtained MUC16 expression in GFP+ patient tumor cells after 
culture with different cell combinations. C) Violin plots showing high expression of 4 malignant matrisome genes 
(most associated with poor outcomes) in mesenchymal tumoroid clusters and EMT tumoroid cluster. D) Violin plots 
showing high expression of common transcription factors for all 22 malignant matrisome markers. 
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Supplemental Figure 12: Identifying cell type identities with ovarian cancer Blueprint data. 
A) t-SNE plots of 5 HGSOC scRNA seq samples grouped by cluster (left), patient-sample (middle), and cell type 
(right). B) Dotplot verifying the cell type identities assigned to each cluster. C) Aligned blueprint data with Pt7 
tumoroids showing overlap of cancer cells from the blueprint with the largest ambiguous grey population from Pt7 
tumoroids. 
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Supplemental Figure 13: Tumoroid cluster 7 (macrophages) express M1 and M2-like markers. 
Single cell RNA sequencing expression levels of M2-like macrophage markers (MRC1, CD163, IL10), and M1-like 
macrophage marker (CD86) as well as macrophage marker CD68 in the macrophage cluster (cluster 7) within pt7 
tumoroids. 
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