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Abstract

Multidrug resistant organisms (MDROs) pose a threat to healthcare facilities worldwide

due to global prevalence, limited treatment options, and high mortality rates. This thesis

acts as a proof-of-principle study for using whole-genome sequencing and associated clin-

ical metadata to provide actionable insights into MDRO infection prevention and control

practices. We focus our analysis on carbapenem-resistant Klebsiella pneumoniae (CRKP)

sequence type (ST) 258, an MDRO that is particularly prevalent in long-term acute care

hospitals (LTACHs) in the United States (US). Using a comprehensive set of 417 clinical

CRKP ST258 isolates collected over the course of a year in 21 US LTACHs, we investigate

regional transmission, predictors of infection, and evolution of antibiotic resistance. In ad-

dition, we develop three open-source R packages that implement methods developed and

applied here: regentrans for studying regional pathogen transmission, mikropml for per-

forming machine learning, and prewas for preprocessing data prior to bacterial genome-wide

association studies.

First, we reconstructed regional transmission pathways with genomic data and analyzed

this network in the context of patient transfer data and patient-level clinical data to identify

potential drivers of regional CRKP transmission. We found high regional CRKP burdens

in Los Angeles area LTACHs that were due to a small number of introductions with sub-

sequent proliferation occurring via within-facility transmission and patient transfers among

healthcare facilities.

As only a subset of colonized patients develop clinical infection, we next used machine

xiii



learning to determine whether patient characteristics and CRKP genetic background can

predict infection status. We found that patient and genomic features were predictive of

clinical CRKP infection to similar extents. Genomic predictors of infection included presence

of the ICEKp10 mobile genetic element carrying the yersiniabactin iron acquisition system

and disruption of the O-antigen biosynthetic gene kfoC in a CRKP ST258 sublineage (clade

IIB). Disrupted kfoC was associated with isolation from the respiratory tract, and subsequent

ICEKp10 acquisition was associated with increased virulence. These results highlight the

utility of machine learning to provide insight into patient clinical trajectories and ongoing

within-lineage pathogen adaptation.

Finally, we investigated the evolution of CRKP resistant to the antibiotic colistin, one of

the few remaining treatment options for this MDRO. Two large clusters of resistant strains

in clade IIB accounted for over half of the detected colistin resistance, in stark contrast to

the sporadic resistance events observed in other clades. Moreover, while resistant isolates

from other clades were less fit than susceptible non-revertant isolates, clade IIB resistant

isolates were more fit, underscoring the potential for continued regional spread of clade IIB

colistin resistant strains.

In summary, we identified an emerging CRKP sublineage that has spread across Los

Angeles area LTACHs and appears to have an increased affinity for the respiratory tract,

increased transmissibility, and a decreased fitness cost of colistin resistance. Future work

should continue to monitor this strain as increased prevalence could reduce the efficacy of

colistin as a treatment for CRKP in this region and possibly lead to exportation to other

regions. Additionally, these findings highlight the potential impact of incorporating genomic

epidemiology into regional infection prevention efforts to identify high-transmission facilities

and emerging strains, thereby facilitating the containment of MDROs to the greatest extent

possible.
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Chapter 1

Introduction

1.1 Motivation

Multidrug resistant organisms (MDROs) are a global public health threat due to rampant

spread, high levels of morbidity and mortality, and continued evolution to additional antibi-

otics [1]. Monitoring and surveillance of MDROs requires methods for analysis of transmis-

sion, adaptation to the healthcare environment, and evolution of antibiotic resistance. This

dissertation acts as a proof-of-principle study for how to integrate whole-genome sequences of

clinical isolates with corresponding patient metadata to investigate endemic, yet continually

evolving, public health threats. Specifically, we study transmission, infection, and antibiotic

resistance evolution of the nosocomial pathogen carbapenem resistant Klebsiella pneumo-

niae (CRKP). The bioinformatic framework and corresponding tools developed here can be

applied to investigate the transmission and evolution of other nosocomial pathogens.

1.2 CRKP history and population genomics

K. pneumoniae was first isolated from a patient with pneumonia in the late 1800s [2]. This

Gram-negative rod-shaped bacterium can colonize the gastrointestinal tract and cause pneu-

monia, urinary tract infections, and bacteremia, primarily in immunocompromised individ-
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uals in the healthcare setting [3]. In the past several decades, some K. pneumoniae have

acquired antibiotic resistance elements that make them very difficult to treat. Of particular

concern are CRKP, which are strains that have become resistant to carbapenems [4].

The majority of CRKP in the United States (US) harbor K. pneumoniae carbapenemase

(KPC), which confers resistance to carbapenems [5]. KPC was first discovered in a 1996 K.

pneumoniae isolate [6]. In 2003, outbreaks of CRKP occurred across New York healthcare

facilities, and by 2005 CRKP had spread to several other countries including Israel, Italy,

Colombia, the United Kingdom, and Sweden [7]. CRKP are now present in countries world-

wide [5] and pose a large threat to healthcare facilities both in the US and abroad due to

limited treatment options and mortality rates of up to 40% [8].

KPCs are encoded by the blaKPC gene and are harbored on the transposon Tn4401,

allowing it to associate with many different plasmids and spread across many species [9].

However, the vast majority of KPC positive clinical isolates come from a handful of K.

pneumoniae sequence types (STs), with the majority in the US being ST258 [9]. In addition

to carbapenems, KPC positive ST258 isolates are often resistant to the majority of antibiotics

on the market, leaving few treatment options available [4].

1.3 Methods to study CRKP regional transmission

Due to the limited treatment options for individuals with CRKP, infection prevention is a

particularly important component of reducing prevalence and mortality. To improve infection

prevention efforts, we must better understand where transmission is occurring. Most studies

and intervention measures to date have focused on investigating and reducing transmission

within a single healthcare facility, but increasing evidence suggests that regional transmission

among healthcare facilities is common [10]. Therefore, it is important not only to understand

transmission dynamics within a single facility, but also how and where transmission occurs

2



between facilities.

Efforts to study regional MDRO transmission across healthcare facilities have primarily

used mathematical modeling to probe MDRO spread due to patient transfer between facili-

ties [11, 12]. One strength of these studies is that they are able to investigate the impact of

interventions on MDRO prevalence at different facilities. These studies have found that co-

ordinated regional control efforts lead to a much lower prevalence across regional healthcare

networks when compared to uncoordinated control efforts at individual facilities [13]. Sim-

ulations have also shown that targeted interventions at certain facilities, such as long-term

acute care hospitals (LTACHs), also decrease regional prevalence [14]. This is particularly

important as interventions to reduce transmission cannot practically be implemented at all

facilities in a regional network.

While modeling studies provide important insight into putative transmission dynamics

between regional healthcare facilities and allow us to probe the impact of various interven-

tions, models are by definition simplified versions of reality that make generalized assump-

tions and cannot capture all of the nuances that may influence true MDRO transmission

networks. As such, they do not allow us to investigate in detail actual networks of MDRO

transmission, nor specific transmission events. Epidemiological studies overcome some of

these limitations and are often used to investigate MDRO transmission within a given health-

care facility, and sometimes between healthcare facilities [15]. These studies usually perform

contact tracing to determine what patients and healthcare workers overlapped in the same

location, and thus may have transmitted the organism to one another. While these analy-

ses are very important and can be informative, they are extremely time intensive, and it is

often infeasible to determine the exact transmission pathway due to multiple overlap events

between different patients or healthcare workers, particularly in endemic settings [16].

One way to overcome the limitations of modeling and epidemiological studies is to use

whole-genome sequencing of isolates to gain a more nuanced understanding of the relatedness

3



between different patient isolates [17]. This type of analysis is particularly informative

when combined with additional epidemiological information to investigate transmission. For

instance, a previous study performed a retrospective analysis combining patient transfer data

with whole-genome sequencing to gain a more detailed understanding of regional transmission

during a CRKP outbreak [18]. Integrating genomic and epidemiologic data allowed for a more

detailed understanding of directionality of transmission between facilities and identified an

intermediate facility that was important for regional spread.

While whole-genome sequencing has been effectively applied to studying regional trans-

mission in an outbreak setting, few studies have used this method to study endemic trans-

mission both within and between healthcare facilities. One study investigated methicillin re-

sistant Staphylococcus aureus transmission across the United Kingdom and found that, while

within facility transmission was common, spread between facilities also regularly occurred

[19]. However, non-comprehensive sampling limited their ability to compare prevalence at

different facilities and quantify the extent of transmission between facilities. Furthermore,

they did not incorporate patient clinical data into their transmission analysis, which could

provide additional insight into patient-level drivers of regional spread.

1.4 Methods to study CRKP evolution and adaptation

In addition to investigating transmission, it is also important to understand how nosocomial

pathogens adapt to the healthcare environment to better inform infection prevention and

control practices. ST258 contains two clades (clade I and clade II) with distinct genetic

backgrounds that have evolved independently of one another since around 2001 [20, 21, 22].

Clade I may have evolved from a clade II strain due to a recombination event in the K

antigen capsule polysaccharide biosynthesis gene region. Additionally, clade I ST258 strains

usually harbor a plasmid containing KPC-2, while clade II ST258 strains usually harbor a

4



plasmid carrying KPC-3. Furthermore, continued evolution of ST258 within the healthcare

setting leads to the persistence of some sublineages over time [23]. Adaptations that increase

virulence or cause antibiotic resistance are of particular clinical concern, as they may lead

to adverse patient outcomes [24].

Many studies investigating healthcare pathogen evolution have used experimental meth-

ods to study pathogen adaptation in a more controlled laboratory setting, either in vitro

or in model systems [25, 26, 27]. For instance, recent experimental results from studies in

mice indicate that different global CRKP strains are differentially virulent due to mutations

in, or disruption of, capsule biosynthesis genes [26]. Additionally, experimental evolution of

laboratory or clinical strains can shed light on trajectories of antibiotic resistance evolution

[28, 29]. These experiments provide valuable insights into a strain’s virulence and resistance

potential, and are critical for furthering our understanding of the molecular mechanisms

underlying these phenotypes. However, they do not capture the myriad of potential selective

pressures and interactions present in the healthcare setting that may influence evolutionary

trajectories and strain phenotypes in the natural environment, and do not provide insight

into the transmissibility of these strains among patients.

One way to overcome some of the limitations of laboratory studies is to investigate

pathogen evolution using comparative genomics of global clinical isolate collections. This

method identified genes associated with virulence and antibiotic resistance in global K. pneu-

moniae isolates [30]. Genome-wide association studies have also been extensively used to

identify the genotypic variation underlying resistance to specific antibiotics [31]. A strength

of these methods is that they derive inferences from evolutionary events that truly occurred

in the healthcare setting. However, the majority of these studies to date have used a global

sampling of isolates with little additional clinical metadata, limiting their ability to inves-

tigate the relationship between genomic variants, phenotypes, patient features, and strain

fitness. Furthermore, a global sample of isolates by and large only captures the successful
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end points of evolution. In contrast, capturing both successful and unsuccessful intermedi-

ates may yield information regarding various evolutionary trajectories, which could provide

insight into how to prevent the emergence of new epidemic strains.

1.5 Dataset used in this dissertation

To study the transmission and evolution of CRKP, we use a comprehensive set of clinical

isolates collected over the course of a year (August 2014 to July 2015) during a prospective

observational study in 21 LTACHs across the US. For each clinical isolate, we have Illumina

whole-genome sequencing data (BioProject accession no. PRJNA415194), antimicrobial sus-

ceptibility testing data for several antibiotics, and associated clinical metadata including pa-

tient comorbidities and previous antibiotic exposure. In addition, we have aggregate annual

patient transfer counts between facilities from Centers for Medicare and Medicaid claims

data for 2016. The vast majority (>90%) of isolates in this dataset are ST258; therefore, we

subset most of our analyses in all three chapters to ST258 to gain insight into the nuances of

this specific CRKP sequence type. The whole-genome sequencing data and clinical metadata

were used for all three chapters, the patient transfer data was used for chapter two, and the

antimicrobial susceptibility testing data was used for chapter four. More details about the

data can be found in the corresponding chapters.

1.6 Dissertation outline

This dissertation investigates transmission, infection, and antibiotic resistance evolution in

CRKP ST258. In chapter two I investigate how CRKP spreads within and between LTACHs.

In chapter three I uncover potential genomic drivers of colonization and infection. In chapter

four I identify distinct patterns of colistin resistance evolution and dissemination in different
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genetic backgrounds. For chapters two through four, I also developed a corresponding open

source R package to increase the ease with which other investigators can apply the methods

developed here to their own analyses. In chapter five I discuss bioinformatic, genomic, and

clinical implications of the findings from chapters two through four, and propose future

directions based on these implications.
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Chapter 2

Whole-Genome Sequencing to Identify Drivers of

Carbapenem-Resistant Klebsiella pneumoniae Transmission

Within and Between Regional Long-Term Acute-Care Hospitals

2.1 Preamble

This chapter uses whole-genome sequencing and aggregate patient transfer data to investigate

intra- and inter-facility transmission of CRKP in a regional network of LTACHs. We identify

several regional importation events, detect signatures of inter-facility transmission, and find

that facility prevalence is driven by intra-facility transmission. This transmission analysis

inspired us to create regentrans (https://github.com/Snitkin-Lab-Umich/regentrans), an

R package for studying regional pathogen transmission.

I performed all of the data analysis and generated all off the figures for this chapter. Other

co-authors performed isolate collection, detection of KPC-positive K. pneumoniae, antibiotic

susceptibility testing, whole-genome sequencing, and single nucleotide variant identification.

This work was published in Antimicrobial Agents and Chemotherapy in 2019:

Han JH, Lapp Z, Bushman F, Lautenbach E, Goldstein EJ, Mattei L, Hofstaedter CE,

Kim D, Nachamkin I, Garrigan C, Jain T. Whole-genome sequencing to identify drivers of
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carbapenem-resistant Klebsiella pneumoniae transmission within and between regional long-

term acute-care hospitals. Antimicrobial agents and chemotherapy. 2019 Nov 1;63(11).

I developed, or helped develop, most of the methods implemented in regentrans and wrote

draft functions for each method. regentrans has just been developed and does not yet have

use statics; however, several public health departments involved in the Centers for Disease

Control and Prevention Emerging Infections Program have expressed an interest in using the

package to perform their own analyses. The manuscript corresponding to the regentrans

package will be submitted for publication with the following co-authors:

Sophie Hoffman*, Zena Lapp*, Joyce Wang, and Evan Snitkin.

*Indicates co-first author

2.2 Introduction

Since first being reported in 2001 [6], epidemic lineages of carbapenem-resistant Klebsiella

pneumoniae (CRKP) have rapidly emerged and disseminated across global healthcare sys-

tems [32]. The limited treatment options for patients with CRKP infections has created

an urgent need for more effective strategies to prevent CRKP transmission [33, 34, 35, 36].

Historically, prevention of CRKP and other multi-drug resistant organisms (MDROs) has

been undertaken in a siloed manner, with interventions being applied at the level of individ-

ual healthcare facilities. However, it is increasingly appreciated that healthcare facilities are

highly connected to one another, with patients typically moving between different healthcare

facilities as part of their treatment and recovery [10].

Support for a regional approach to infection prevention comes from the success of coordi-

nated national interventions in controlling high-priority MDROs [37]. While a coordinated

national intervention is not currently logistically feasible in the United States, the infrastruc-

9



ture for regional infection prevention is being advanced, particularly in collaboration with

regional and state public health departments [38, 39, 40]. What is now needed to facilitate

effective regional interventions are strategies to identify facilities with the highest transmis-

sion rates, methods to quantify how transmission at each facility influences colonization and

infection rates across the healthcare network and insights into the clinical and epidemiologic

drivers of both intra- and inter-facility transmission. With this level of understanding of

regional MDRO transmission, targeted interventions can be designed that leverage limited

resources to achieve the maximal possible decrease in regional MDRO prevalence [13]. In

a remarkably short time, whole-genome sequencing (WGS) has fundamentally changed the

resolution at which one can study the spread of bacterial pathogens [41]. Moreover, through

integration of genomic data with epidemiologic meta-data, the processes driving the spread of

these pathogens can be more clearly understood [42]. With respect to healthcare-associated

infections, recent work has shown that by integrating patient transfer data into genomic anal-

yses, the putative sites of transmission and the patient movements driving regional spread

can be identified [18, 43]. Here, we seek to take the next step in the application of genomic

epidemiology to regional infection prevention by integrating comprehensive genomic data,

statewide patient transfer networks and patient-level clinical meta-data to identify drivers

of the regional spread of CRKP.

2.3 Results

2.3.1 Overview of CRKP isolates from twenty long-term acute

care hospitals

Due to their chronically, critically ill patient population, long-term acute care hospitals

(LTACHs) are increasingly recognized as both major amplifiers and reservoirs of MDROs,
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including CRKP [44, 45]. To better understand the epidemiology of CRKP in LTACHs

across the United States we gathered clinical isolates and meta-data from LTACH patients

in four geographic regions, including a region with a high baseline prevalence of CRKP

[46]. A total of 451 unique CRKP culture episodes across the four geographic regions were

identified during the 12-month study period, with the majority (n=395; 87.6%) from eleven

Los Angeles area LTACHs (Table 2.S1). Demographic and clinical characteristics of patients

with CRKP clinical cultures are shown in Table 2.S2. Patients with CRKP had a high

rate of multiple comorbidities, and indwelling device and broad-spectrum antibiotic use

was common. Antibiotic susceptibility results for CRKP isolates are shown in Table 2.S3.

Nearly all of the isolates (>90%) demonstrated resistance to levofloxacin, ciprofloxacin, and

tobramycin. Resistance rates to colistin or polymyxin B were about 12%.

2.3.2 Phylogeographic analysis demonstrates that CRKP burden

in the Los Angeles area is largely due to endemic spread of

the ST258 epidemic lineage

Inference of CRKP sequence types from WGS data revealed that greater than 90% of LTACH

isolates belonged to the ST258 epidemic lineage (Table S4). To discern how circulating

LTACH strains relate to ST258 clones from other regions, a phylogeographic analysis was

performed using genome-wide variants identified in LTACH isolates as well as previously se-

quenced ST258 genomes with known geographic origins (Table 2.S5). The whole-genome

phylogenetic reconstruction in Figure 2.1 shows that the common ancestor of analyzed

genomes dates back to 2001, which is consistent with the timing of the first clinical ob-

servation of ST258 [47]. In addition, the phylogeny shows that cities in the Northeastern

United States played a prominent role in the early dissemination of this lineage to disparate

geographic areas. Focusing on the Los Angeles area LTACHs where we observe the high-
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est prevalence of CRKP, the reconstruction points to a small number of introductions into

the region as recently as 2012, with subsequent widespread dissemination across regional

healthcare networks.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Location

EUR

LA

SA

US−MA

US−MW

US−NC

US−NE

US−NY

US−S

US−W

Figure 2.1: Phylogeographic reconstruction of ST258 Klebsiella pneumoniae.

A phylogeographic analysis was performed on ST258 isolates from the current study, along
with previously sequenced ST258 genomes that had documented locations and dates of
isolation (See Table 2.S3). The x-axis corresponds to predicted dates of ancestral strains
and the colors of internal branches correspond to the predicted locations of ancestral strains.
Abbreviations: EUR: Europe; LA: Los Angeles; SA: South America; US-MA: Massachusetts;
US-MW: Midwest; US-NC: North Carolina; US-NE: North East; US-NY: New York; US-S:
South; US-W: West.
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2.3.3 Transmission rates between facilities are associated with pa-

tient transfer rates

To study regional transmission in more detail we next focused on Los Angeles LTACHs,

for which we had the largest number of isolates and a comprehensive sampling from eleven

different LTACHs. An LTACH-centric transmission map was constructed using 363 isolates

that represented independent ST258 acquisitions among 328 patients (Figure 2.2A) by first

performing ancestral reconstruction of LTACHs on the whole genome phylogeny. Intra- and

inter-facility transmission frequencies were then extracted from the ancestral reconstruction

as transitions between the same and different facilities, respectively (See Methods and Fig-

ures 2.S1 and 2.S2). Inspection of the map of inter-facility transmissions indicated higher

inter-facility transmission frequencies among geographically proximate facilities, which was

supported by a significant association between geographic proximity and transmission fre-

quency (Figure 2.S3, Mantel test p = 7 x 10-5). We hypothesized that the association

between transmission and geographic proximity was due to patient transfers preferentially

occurring between geographically proximate healthcare facilities [19]. To test this hypothe-

sis, we calculated the direct and indirect flow of patients between each pair of LTACHs using

a California statewide patient transfer network (See Methods). This patient transfer network

captures sequential utilization of different healthcare facilities based on Centers for Medicare

and Medicaid billing data and thereby provides quantitative information on how healthcare

facilities are connected to one another. As patients rarely transfer directly between LTACHs,

the connectivity between pairs of LTACHs was quantified using the maximal patient flow

path, regardless of the number of intervening facilities (See Methods). Comparison between

patient transfer and genomic networks confirmed that patient flow is strongly associated

with inter-facility transmission (Figure 2.S3). Of note, while the length and facility makeup

of the patient-transfer paths connecting LTACHs with and without transmission are similar
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(Figure 2.2B), the magnitude of patient flow is significantly higher for pairs of LTACHs with

predicted genomic transmission linkages (Figure 2.2C). Moreover, the association between ge-

nomically inferred inter-facility transmission and patient flow remains significant even when

there are multiple intermediate healthcare facilities connecting two LTACHs (Figure 2.2C),

indicating that indirect connections mediate regional spread over short time periods.

2.3.4 Facility-level CRKP prevalence is associated with intra-facility

transmission rates

With our genomic analysis revealing frequent transmission of CRKP between facilities, we

next evaluated whether facilities varied with regards to the magnitude of subsequent intra-

facility transmission associated with each importation event. Using the ancestrally recon-

structed whole genome phylogeny (Figure 2.S1), we quantified the fraction of patient isolates

attributed to intra-facility transmission versus importation (i.e., inter-facility transmission)

from another LTACH, revealing extensive variation in the ratio of intra-facility transmission

events per importation event (See Methods and Figure 2.S4). Moreover, those facilities with

the highest intra-facility transmission to importation ratio (”transmission ratio”) had the

highest CRKP prevalence (colonization or infection), suggesting that higher intra-facility

transmission rates drove facility-level variation in CRKP prevalence (Figure 2.3, Spearman

R = 0.75, p = 0.012).

2.3.5 Differences in intra-facility transmission ratios are associ-

ated with clinical characteristics of patients with CRKP

Notably, facility G had a markedly lower ratio of intra-facility transmission per importation

than all other facilities (Figure 2.3 and Figure 2.S5). While it was possible that the reduced

transmission ratio in facility G could have been due to improved adherence to infection pre-

14



A

B C

F
ra

c
ti
o

n
 o

f 
to

ta
l 
fa

c
ili

ty
 p

a
ir
s

0.00

0.05

0.10

0.15

3

Number of intervening facilities

P
a

ti
e

n
t 
fl
o

w
 b

e
tw

e
e

n
 f
a

c
ili

ti
e

s

Transmission

No transmission

Transmission

No Transmission

n
1
=1,  n

2
=0

p = 1

n
1
=31, n

2
=22

p = 0.01

n
1
=20, n

2
=26

p = 0.002

n
1
=4, n

2
=6

p = 0.07

LT
 −

> 
LT

LT
 −

> 
LT

 −
> 

S
T −

> 
LT

LT
 −

> 
S
T −

> 
LT

LT
 −

> 
S
T −

> 
S
T −

> 
LT

LT
 −

> 
S
T −

> 
S
T −

> 
S
T −

> 
LT

LT
 −

> 
S
T −

> 
S
N
F −

> 
S
T −

> 
LT

LT
 −

> 
S
N
F −

> 
S
T −

> 
LT

LT
 −

> 
S
N
F −

> 
S
T −

> 
S
T −

> 
LT

0.0

0.1

0.2

0.3

0.4

0.5

Maximum patient flow path between facility pairs

210

A

B

C

D

E

F

G

H
I

J

K

Figure 2.2: Regional transmission map for carbapenem-resistant K. pneumoniae (CRKP)
among eleven Los Angeles area LTACHs.

(A) Each gray circle represents a single LTACH, with the size of the circle corresponding to
the CRKP colonization/infection rate in that facility. The relative positions of the different
circles on the graph are based on their actual longitude and latitude. Arrows between
different LTACHs indicate that there was at least one predicted transmission between the pair
of facilities, with the thicker lines corresponding to larger numbers of predicted transmissions.
To highlight inter-facility transmissions between facilities with more linkages than expected
by chance, only links between facilities whose isolates cluster on the whole genome phylogeny
more than in randomly permuted phylogenies are shown (P < 0.1; See Methods). (B) Paths
of maximum patient flow between each pair of LTACHs were extracted from the statewide
patient transfer network and categorized into path motifs based on the types of facilities
on the paths (LT – long-term acute care hospital, ST – short-stay hospital, SNF –skilled
nursing facility). The fraction of LTACH pairs (y-axis) whose maximum flow paths were
assigned to each path motif (x-axis) was determined for LTACH pairs with and without
genomic transmission linkages. (C) Patient flow between LTACHs was compared for pairs
of LTACHs with and without genomic transmission linkages. Pairs of LTACHs were binned
into groups based upon the number of intervening facilities on the maximal patient flow
path between those LTACHs (e.g. 0 – direct transfer between LTACHs, 1 – one intervening
facility, etc.). Significance was assessed using a Wilcoxon rank-sum test.
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Figure 2.3: Facility colonization/infection rate associated with ratio of intra-facility trans-
missions per importation.

Each diamond represents one of the eleven Los Angeles area LTACHs, with the x-axis showing
the colonization/infection rate within the LTACH and the y-axis showing the number of intra-
facility transmissions per importation, as inferred from the genomic transmission network
(See Figure 2.S3). The CRKP colonization/infection rate for a facility was calculated as the
total number of colonization/infection episodes divided by the number of beds.

vention measures, we hypothesized that it may also be that the clinical characteristics of

facility G’s CRKP-positive patients make them less likely to transmit to other patients. To

test whether the decreased transmission ratio in facility G could be due to clinical char-

acteristics of CRKP-positive patients, we performed post hoc analyses comparing CRKP

population characteristics between patients from facility G and the three facilities with the

highest transmission ratios (facilities A, D, and F – Table 2.1). Patients with CRKP in the

facilities with high intra-facility transmission ratios compared to those in facility G were of

significantly older age (median 72 years versus 57 years, respectively; p = 0.008); had higher

rates of certain comorbidities including chronic kidney disease and/or requirement for dialy-

sis (43% versus 19%, respectively; p = 0.045), and a diagnosis of malnutrition and/or being

underweight (34% versus 0%, respectively; p = 0.003); and had higher rates of carbapenem

use in the 30 days prior to CRKP isolation (44% versus 13%, respectively; p = 0.02). To

assess whether these differences in patient characteristics applied to patients without CRKP,
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we conducted post hoc analyses of data collected from patients with carbapenem-susceptible

Klebsiella pneumoniae (CSKP) infection at the same four facilities. Comparison of clinical

characteristics of CSKP patients from low and high CRKP transmission facilities revealed

only a difference in their rate of chronic kidney disease, but in the opposite direction as with

CRKP patients (Table 2.S6). This result supported the lower transmission ratio at facility G

being driven in part by clinical characteristics of putative transmitters (e.g., CRKP-positive

patients), and not of the susceptible population (i.e., CSKP patients). Lastly, to determine

whether the association between clinical characteristics of CRKP patients and transmission-

ratio extended to all LTACHs, we compared the clinical characteristics of CRKP and CSKP

patients to the CRKP transmission-ratio using Spearman rank correlations (Figures 2.S6,

2.S7, 2.S8 and 2.S9) and found consistent, although not statistically significant, trends for

age (CRKP: R = 0.53, p = 0.1; CSKP R = 0.24, p = 0.49), chronic kidney disease (CRKP:

R = 0.6, p = 0.056; CSKP R = -0.29, p = 0.38), malnutrition (CRKP: R = 0.58, p = 0.066;

CSKP R = 0.36, p = 0.27) and carbapenem use (CRKP: R = 0.46, p = 0.15; CSKP R =

-0.17, p = 0.61).

2.4 Discussion

We performed WGS on 450 CRKP isolates from patients residing in four regional networks

of LTACHs. Placing these isolates in the context of previously sequenced clinical isolates

from around the world suggested a small number of importation events into each region,

followed by widespread dissemination across regional healthcare networks. Focusing on the

Los Angeles area LTACHs, where CRKP is highly prevalent, we observed that the density

of transmission between LTACHs was associated with the rates of patient flow between

those facilities. However, despite inter-LTACH transmission being common, our analysis

suggests that variation in CRKP prevalence across LTACHs was driven by differences in
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Table 2.1: Clinical characteristics of patients with CRKP from facilities with high
(facilities A, D and F) versus low (facility G) ratios of intra-facility transmissions per
importation.

Variable, n (%)
High intra-facility Low intra-facility

P value
transmission transmission

Demographics
A, D, F G
n = 163 n = 16

Age, median (IQR) 72 (65, 82) 57 (47, 76) 0.008 *
Male sex 93 (57) 5 (31) 0.07
LTACH LOS prior to culture, median (IQR) 26 (7, 53) 25 (10, 32)

0.58

Comorbidities
Congestive heart failure 32 (20) 1 (6) 0.31
Cirrhosis 12 (7) 0 (0) 0.61
Malignancy (solid or liquid) 19 (12) 1 (6) >0.99
Brain injury 36 (22) 2 (13) 0.53
Pulmonary disease 37 (23) 1 (6) 0.2
Acute or chronic respiratory failure 71 (44) 8 (50) 0.79
Severe chronic kidney disease (stage IV or ESRD on dialysis) 70 (43) 3 (19) 0.045*
Ventilator-dependent respiratory failure 54 (33) 2 (12) 0.16
Malnutrition/underweight 56 (34) 0 (0) 0.003*
Stage IV/V decubitus ulcer 40 (25) 2 (13) 0.37

Antibiotic use in prior 30 days, receipt of ≥ 48 hours
Carbapenem 72 (44) 2 (13) 0.02*
Fluoroquinolones 25 (15) 3 (19) 0.72
Aminoglycosides 42 (26) 1 (6) 0.12
Cefepime 33 (20) 3 (19) >0.99
Polymyxin/colistin 25 (15) 0 (0) 0.13
Anti-pseudomonal 104 (64) 8 (50) 0.29
Indwelling devices
Tracheostomy 126 (77) 9 (56) 0.06
Central venous catheter 101 (62) 9 (56) 0.78
Urinary catheter 96 (59) 8 (50) 0.6

Abbreviations: CRKP, carbapenem-resistant K. pneumoniae; IQR, interquartile range;
LTACH, long-term acute care hospital; LOS, length of stay; ESRD, end-stage renal dis-
ease.
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intra-facility transmission rates. Lastly, we found that the facilities with the highest and

lowest predicted rates of intra-facility transmission differed in the clinical characteristics of

their CRKP patients, supporting the hypothesis that characteristics of CRKP patients may

contribute to risk of transmission. In total, these findings demonstrate the capacity for

WGS to reveal where regional transmission of endemic MDROs is occurring, and through

integration with clinical and epidemiologic meta-data to provide insight into the external and

internal forces driving MDRO colonization and infection rates within healthcare facilities.

Consistent with previous studies, we observed that patient transfer rates between health-

care facilities were associated with inter-facility transmission (i.e., importation) [19]. How-

ever, we noted that while the association between inter-facility transmission and patient flow

was robust, it was imperfect, with multiple instances of high transmission rates between fa-

cilities with low patient flow and low transmission rates between facilities with high patient

flow (Figure 2.S3). There are potential technical explanations for these deviations, includ-

ing patients with CRKP traversing healthcare networks differently than patients from the

utilized Centers for Medicare & Medicaid Services claims database as a whole, limitations

in the use of billing data to capture patient movement or unsampled CRKP cases leading

to missed inter-facility transmissions. Given the common practice of using patient transfer

data to model regional transmission of MDROs [11, 48], it will be important to understand

these discrepancies and determine whether patient transfer patterns alone can be used to

model endemic spread. A potential limitation in relying solely on patient transfer patterns

is a lack of consideration of uneven risk for transmission among different patient populations

and healthcare facilities, both of which are suggested by our data in the form of high-risk

patients and high-transmission facilities.

Previous studies have suggested that LTACHs play an important role in regional MDRO

proliferation, acting as sites for uncontrolled transmission and sources of MDRO-colonized

patients who move to other healthcare facilities [49, 50, 51]. Our data support these previ-
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ous observations, with strains from LTACHs spreading via the patient transfer network, and

CRKP transmission occurring within each LTACH. However, despite all LTACHs harboring

critically ill patient populations, we found extensive variation in the amount of intra-facility

transmission per importation across eleven Los Angeles area LTACHs. This result indi-

cates that LTACHs may not all be equivalent with respect to their overall contribution to

regional MDRO prevalence. An important consideration when interpreting these results is

the unmeasured contribution of asymptomatically colonized patients. Given reports that the

relative burden of asymptomatic carriage with CRE may be high [52], it will be important in

future studies to validate these results using combinations of clinical and active surveillance

cultures. However, we hypothesize that our study design and analysis strategy reduce the

impact of not capturing asymptomatic carriers. In particular, previous reports indicate that

frequency of asymptomatically colonized patients is markedly lower in high acuity patients

[53], and our use of aggregate estimates of intra- and inter-facility transmission increases

robustness to missing transmission intermediates, so long as they are not biased towards

particular facilities.

Most infection prevention strategies that target already infected patients (e.g. cohort-

ing of infected patients) assume that all carrier patients pose an equivalent risk of onward

transmission to other patients. The identification of factors associated with increased risk

of transmission may facilitate more targeted infection prevention strategies that allocate re-

sources to the management of high-risk patients. Here, we identify several clinical factors

that are preferentially associated with CRKP patients from high intra-facility transmission

facilities. Three of the clinical characteristics associated with CRKP patients from high

intra-facility transmission facilities - carbapenem use, malnutrition and older age, are associ-

ated with disruption of the gut microbiota [54, 55, 56], supporting overgrowth of colonizing

CRKP in the gut as driving CRKP transmission [57]. If this finding proves generalizable,

it would indicate that an effective anti-transmission therapeutic would only need to reduce
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colonization density in carrier patients, as opposed to completely decolonizing them. While

the relatively small number of patients in our study necessitates that future studies be un-

dertaken to validate these specific clinical findings, the clear clinical interpretation of these

patient factors provides support for the integration of genomic and clinical data as a strategy

to identify drivers of uneven MDRO transmission across regional healthcare facilities.

There are several potential limitations in this study. First, we did not have access to ad-

mission screening rectal cultures for CRKP and therefore were not able to evaluate the contri-

bution of asymptomatic gastrointestinal colonization to intra-facility transmission. While we

believe future analysis should focus on the additional potential contribution of asymptomat-

ically colonized patients to regional transmission in these LTACHs, our ability to reconstruct

inter-facility transmission networks that are consistent with healthcare utilization patterns,

using only clinical specimens, provides support for regional surveillance programs grounded

in comprehensive clinical collections [58]. Second, we did not have access to isolates from

other facilities in the region (e.g., acute care hospitals) that may play a significant role in

CRKP transmission. However, restricting our analysis to LTACHs still allowed us to dis-

cern regional transmission patterns that were consistent with patient flow between facilities,

and suggests that when combined with comprehensive patient transfer networks, WGS of

isolates from a targeted set of high-burden facilities can allow for monitoring the regional

dissemination of MDROs [59].

In conclusion, by integrating WGS with epidemiologic patient and facility data, we were

able to reveal pathways and drivers of CRKP spread within and between regional LTACHs.

The ability to tease apart the relative contributions of inter- and intra-facility transmission

across regional healthcare facilities, and to identify drivers of these processes, is a critical first

step in the development of effective regional interventions to control the spread of MDROs.

We believe that this work exemplifies that the tools and resources now exist to usher in an

era of precision regional infection prevention.
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2.5 Methods

2.5.1 Study setting

A prospective, observational study was performed in LTACHs within the Kindred Healthcare

network from August 1, 2014 to July 25, 2015. A total of 20 LTACHs from four regional

networks were included: 11 LTACHs in the Los Angeles, CA area; 1 LTACH in San Diego,

CA; 6 LTACHs in the Houston, TX area; and 2 LTACHs in the Tampa, FL area. These

LTACHs were selected because all Kindred LTACHs in these regions are serviced by one

central microbiology laboratory (Rancho, CA; Houston, TX; and Tampa, FL), thereby en-

suring complete ascertainment of CRKP cultures. These regions were also selected based on

variation in CRKP prevalence (e.g., LTACHs in the Los Angeles area were specifically in-

cluded given their high prevalence of CRKP [59]. All study LTACHs routinely implemented

contact precautions for patients with CRKP.

The study was reviewed and approved by the Institutional Review Board of the University

of Pennsylvania with a waiver of informed consent.

Detection of KPC-positive K. pneumoniae and antibiotic susceptibility testing

All CRKP isolates during the study period were shipped to the core research laboratory

of the Clinical Microbiology Laboratory at the Hospital of the University of Pennsylvania

(HUP) for further testing. Confirmation that isolates were K. pneumoniae was performed

using PCR for detection of the mdh gene, and through standard biochemical testing [60].

Isolates were subsequently tested for the presence of the blaKPC-1 gene using primers as

previously described [6], and following the HUP Clinical Microbiology Laboratory protocol.

Confirmation of carbapenemase activity was performed using the Rosco Diagnostica Rapid

CARB kit (Rosco Diagnostica A/S, Tasstrup, Denmark).

Results of antibiotic susceptibility testing for all CRKP isolates were obtained from the
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participating regional laboratories, including for colistin/polymyxin B. Because susceptibil-

ity testing for tigecycline was not routinely performed, testing was done at the HUP Clinical

Microbiology Laboratory for all isolates using the Kirby-Bauer diffusion method and follow-

ing routine laboratory protocol. Susceptibility to colistin or polymyxin B and tigecycline was

defined as an MIC of ≤ 2 µg/mL, in accordance with European Committee on Antimicrobial

Susceptibility Testing criteria [61].

Whole-genome sequencing and single nucleotide variant identification

WGS was performed on all study isolates at the PennCHOP Microbiome Center at the

University of Pennsylvania. Genomic DNA was extracted from isolates using the DNeasy

Blood & Tissue kit (Qiagen, Venlo, the Netherlands). Libraries were prepared from 1 ng

extracted DNA using the NexteraXT DNA Sample Preparation Kit (Illumina, Inc., San

Diego, CA). Library concentration was assessed using the Quant-iT PicoGreen dsDNA Assay

Kit (Life Technologies, Waltham, MA) and fragment size was estimated using the Fragment

Analyzer (Advanced Analytical Technologies, Inc., Ankeny, IA). Libraries were pooled in

equal molar quantities and sequenced on the Illumina HiSeq 2500 in Rapid Run mode to

obtain 2x250 bp reads. Resulting fastq files were demultiplexed using DNAbc (https://

github.com/PennChopMicrobiomeProgram/dnabc) with two allowed barcode mismatches.

An average of 1.7 million read pairs were obtained per sample (Table 2.S4). Sequence data

is available under Bioproject #PRJNA415194.

2.5.2 Single nucleotide variant identification

Quality of raw reads was assessed with FastQC [62], and Trimmomatic [63] was used for

trimming adapter sequences and low quality bases. Variants were identified by: 1) mapping

filtered reads to the finished KPNIH1 reference genome (Genbank accession no. CP008827)

using the Burrows–Wheeler short-read aligner (BWA) [64], 2) discarding PCR duplicates
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with Picard [65], and 3) calling variants with SAMtools and bcftools [66]. Variants were

filtered from raw results using GATK’s VariantFiltration (QUAL > 100, MQ > 50, > 10

reads supporting variant, FQ < 0.025) [67]. In addition, a custom Python script was used

to filter out single nucleotide variants that were <5bp in proximity to indels. Lastly, for

phylogenetic analyses, Gubbins was applied to filter out recombinant variants [68].

Phylogeographic analysis of CRKP spread across the United States

Study isolates were compared to publicly available previously sequenced CRKP isolates from

various geographic locations to place regional CRKP populations in a broader context (Table

2.S3). The majority of analyzed CRKP isolates were from acute care hospitals in the United

States (in outbreak and non-outbreak settings) and included only clinical cultures (e.g. no

active surveillance cultures). Phylogeographic analyses were performed in BEASTv2.4.7 [69]

using a GTR DNA substitution model, an uncorrelated lognormal (UCLN) relaxed molecular

clock with a Gamma(0.001,1000) prior on the mean, and a Bayesian skyline population

growth model with five groups. A strict molecular clock was rejected because zero is not

in the 95% HPD of the coefficient of variation when using a UCLN clock model, and a

constant population size was rejected because zero is not in the 95% HPD of the growth

rate when using an exponential population model. Bayesian skyline was selected over the

exponential population model using path sampling with 100 steps of 1 million iterations

each. A Beta(alpha=0.3,1) distribution was used to determine the power posteriors of the

steps. For each phylogeographic analysis, four independent Markov chains were run with

100 million iterations and a burn-in of 10 million. A maximum likelihood (ML) starting tree

generated in RAxML [70] was used to accelerate MCMC chain convergence. Individual and

combined chains were analyzed in Tracer v1.6.0 [71] to confirm convergence and adequate

mixing. Maximum clade credibility (MCC) trees of the combined chains were generated

using TreeAnnotator v2.4.7. These summary trees were used for all subsequent analyses.
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2.5.3 Construction of regional transmission networks using max-

imum likelihood methods

A genomic transmission map was created among the eleven Los Angeles area LTACHs with

the aim of evaluating inter- and intra-facility transmission links. First, a ML tree recon-

struction was performed with IQTREE v1.5.5 [72] on variants identified by alignment to the

KPNIH1 reference genome using ultrafast bootstrap with 1000 replicates (-bb 1000) [73].

ModelFinder [74] limited to ascertainment bias-corrected models (-m MFP-ASC) was used

to identify the best model (TVM+ASC+R4) based on Bayesian Inference Criterion (BIC)

across 10 replicates. Of the trees produced from the best-fitting model (n=2), the tree with

the highest likelihood was used for all subsequent analyses. For subsequent regional trans-

mission analyses, multiple isolates from the same patient while at the same facility were

collapsed if they formed homogeneous phylogenetic sub-clades, and were retained otherwise

as representing independent acquisition events.

Regional transmission networks were constructed by first calculating the relative likeli-

hoods of unobserved ancestral outbreak strains being associated with each facility. Ancestral

reconstruction was performed using the rerooting method for maximum likelihood ancestral

reconstruction, as implemented in phytools [75]. Inter-facility transmissions were extracted

from the ancestrally reconstructed phylogeny if a branch connected two nodes with different

ancestral state assignments. Intra-facility transmissions were tabulated as branches connect-

ing tips to an internal node with the same ancestral state. To account for importation into

facilities, the number of transmissions into a given facility was subtracted from the total

intra-facility transmission count.

Lastly, to quantify the strength of transmission linkages between facilities, while con-

trolling for the total number of isolates associated with the pair of facilities, we devised

a permutation test. In particular, the number of subtrees containing only isolates from a
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given pair of facilities was calculated for the original phylogeny, and then compared to 1000

permuted phylogenies in order to compute an empiric p-value. To maintain the high level

of intra-facility transmission in the actual data, permutation was done at the level of sub-

trees instead of isolates, wherein subtrees containing only isolates from a single facility were

randomly swapped for one another.

2.5.4 Construction of regional transmission networks using BEAST

To validate the results from our maximum likelihood regional transmission network (Figure

2.S1), we performed a parallel analysis in BEAST (Figure 2.S2). The existence of temporal

signal in the data was confirmed by using the ML tree to compare the root-to-tip regression

estimate of the time to the most recent common ancestor (TMRCA) of the isolates using

the true sequence isolation dates to that of randomly permuted isolation dates. A dated

phylogeny of the Los Angeles area LTACH isolates was reconstructed in BEAST2 [69], with

the same variants used in ML tree reconstruction, under a model averaging nucleotide substi-

tution model (bModelTest [76]), an uncorrelated lognormal (UCLN) relaxed molecular clock

[77] with a Gamma distribution prior (shape=0.1, scale=0.01) on the mean, a Bayesian

skyline population model with five groups, and a discrete trait (facility). The number of

invariant As, Cs, Gs, and Ts was included in the XML, and the ML tree was used as the

starting tree to speed up convergence. Six 100,000,000 chain-length runs, confirmed to have

reached convergence using Tracer v1.7.1 [71], were combined after removing 20% burn-in.

A maximum clade credibility (MCC) tree was constructed using TreeAnnotator v2.4.7 and

used for all subsequent analyses. The inter-LTACH transmission network was then extracted

from the ancestrally reconstructed tree as described in the main Methods for the maximum

likelihood reconstruction.
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2.5.5 Analysis of LTACH CRKP rates

Evaluation of CRKP rates for the study LTACHs was performed using the following defini-

tions:

1. Standardized CRKP rate for a specific facility was calculated as the total number

of unique colonization and infection episodes in that facility divided by the number

of facility beds (Table 2.S6). For this calculation, unique colonization and infection

episodes were determined by collapsing multiple isolates from the same patient if they

clustered on the phylogeny. Standardized CRKP rate for a specific facility includes

both intra-facility and inter-facility transmission (defined below).

2. Intra-facility transmission per importation ratio for a specific facility was quantified as

the number of isolates attributed to intra-facility transmission divided by the number

of isolates attributed to importation (i.e., inter-facility transmission), as determined

from post-hoc analysis of the ancestrally reconstructed phylogeny (See Methods above).

Of note, because we only sequenced isolates from LTACHs, intra-facility transmissions

could include transmissions that occurred at surrounding non-LTACH facilities, if mem-

bers of transmission chains from surrounding facilities independently transferred to the

LTACH.

Geographic maps including LTACH locations were created using LTACH addresses and

latitude/longitude using R’s network package, v.1.13.0 [78].

2.5.6 Construction and analysis of California statewide patient

transfer networks

Claims data from the Centers for Medicare & Medicaid Services (CMS) were used to extract

patient transfer networks connecting healthcare facilities in California from January 1, 2016
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to December 31, 2016. CMS claims data captures admissions and discharges from health-

care facilities for all fee-for-service beneficiaries nationally. However, Medicare requires a

qualifying stay in a hospital prior to admission to a skilled nursing facility (SNF) and will

only cover the first 100 days of your SNF visit, thus not all SNF stays are included in the

claims and some SNF discharges will not represent true discharges but a switch to private

coverage. Claims data were used to capture direct (i.e., transfers with no more than one

day between the discharge at facility 1 and admission at facility 2) and indirect transfers

(i.e., readmissions with an intervening stay in the community less than a pre-specified time).

Healthcare facilities included acute care hospitals, SNFs, and LTACHs, including the eleven

Kindred Los Angeles area LTACHs evaluated in the present study.

This patient transfer network was considered a directed weighted graph such that nodes

in the patient transfer network corresponded to healthcare facilities and edges corresponded

to patient transfers from source to destination facility. Raw edge weights across the network

(count of transfers from facility X to facility Y within 365 days) were normalized by dividing

by the total number of outgoing patient transfers at the source facility (i.e., out strength).

This normalization resulted in edge weights that represented the probability of a patient

going to facility Y if he/she was discharged from facility X. The length of the directed

edge from X to Y was defined as the logarithm of the inverse probability. The shortest

path between each pair of LTACHs was determined using these edge lengths and Dijkstra’s

algorithm [79]. All network analyses and visualization were performed in R igraph v1.2.0

[80].

The maximum patient flow between each pair of LTACHs was compared to the inferred

genomic transmission network and the driving distance between facilities using the Mantel

test [81] in the R package vegan v2.5-2 [82]. The number of importations from source to

destination facility was normalized by the total number of importations to the destination

facility. For Figure 2.S3, patient transfer and genomic transmission matrices were made

28



undirected by adding the matrix to its transpose and dividing by two. Driving distance

between facilities was determined using the gmapsdistance R package [83].

2.5.7 Analyses of patient characteristics

Comorbididty and medication data were acquired via automated queries from Kindred’s

electronic medical record system, ProTouch. Comorbidities were ascertained using diagnosis

codes, and medications were ascertained using pharmacy administration data. Descriptive

analyses were performed to summarize information of patients with CRKP, including demo-

graphics, comorbidities, and presence of indwelling devices. Bivariable analyses of CRKP and

CSKP population characteristics between select facilities were performed using the Fisher’s

exact test for categorical variables and the Wilcoxon rank-sum test for continuous variables.

For all calculations, a two-tailed P-value of ¡0.05 was considered significant. All analyses

were performed using STATA v.14.0 (StataCorp, College Station, Texas).

2.6 Supplement

2.6.1 Supplementary tables and figures

For supplementary material visit https://aac.asm.org/content/63/11/e01622-19/figures-only.
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Chapter 3

Patient and Microbial Genomic Factors Associated With

Carbapenem-Resistant Klebsiella pneumoniae Extraintestinal

Colonization and Infection

3.1 Preamble

This chapter explores the relationship between extraintestinal colonization and infection in

clinical CRKP isolates using machine learning. We investigate the predictive power of clini-

cal and genomic features in distinguishing between colonization and infection, and identify a

sublineage of CRKP that appears to have evolved an increased affinity for colonization of the

respiratory tract, followed by increased infectivity due to acquisition of a virulence factor.

This analysis inspired us to create mikropml (https://github.com/SchlossLab/mikropml),

an R package for performing machine learning analyses.

I performed all of the data analysis and generated all off the figures for this chapter. Other

co-authors gathered the clinical data and defined isolates as colonization vs. infection. This

work was published in mSystems in 2021:

Lapp Z, Han JH, Wiens J, Goldstein EJ, Lautenbach E, Snitkin ES. Patient and Microbial

Genomic Factors Associated with Carbapenem-Resistant Klebsiella pneumoniae Extrain-
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testinal Colonization and Infection. Msystems. 2021 Apr 27;6(2).

I developed the grouping aspect of mikropml used in this chapter, wrote the function to

preprocess the data for machine learning, debugged several functions, and wrote checks and

unit tests. As of April 28, 2021 mikropml has 2,044 downloads. The manuscript correspond-

ing to mikropml was submitted for publication with the following co-authors:

Begüm Topçuoğlu*, Zena Lapp*, Kelly Sovacool*, Jenna Wiens, Evan Snitkin, and Patrick

Schloss.

*Indicates co-first author

3.2 Introduction

Infections due to multidrug resistant organisms lead to hundreds of thousands of deaths

worldwide each year [84]. Carbapenem-resistant Enterobacterales (CRE) are a critical-

priority antibiotic resistance threat that has emerged over the past several decades, spread

across the globe, and accumulated resistance to last-line antibiotic agents [5, 85]. In the

United States (U.S.), CRE infections are primarily caused by the sequence type (ST) 258

strain of carbapenem resistant Klebsiella pneumoniae (CRKP), which has become endemic

in regional healthcare networks [85, 32, 36, 86, 46]. In this background of regional endemic-

ity the risk of patient exposure to CRKP is high, as evidenced by alarmingly high rates of

colonization, especially in long-term care settings [46, 45]. However, even among critically

ill patients residing in long-term care facilities, not all colonized patients develop clinical

infections that require antibiotic treatment [46, 52]. Currently, our understanding of the

factors that influence whether a colonized patient develops an infection is incomplete.

In addition to clinical characteristics of patients [87], the genetic background of the

colonizing strain may also influence the risk of infection, as there is extensive intra-species
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variation in antibiotic resistance and virulence determinants harbored by K. pneumoniae

[85]. To date, most studies of virulence determinants have been carried out in model systems

[25] or examined in human populations without considering patient characteristics or clinical

context [26, 30]. One recent study investigated virulence determinants in K. pneumoniae

clinical isolates while controlling for patient characteristics [88]. However, this was a single-

site study with a focus on carbapenem-susceptible K. pneumoniae, thereby not addressing the

impact of genomic variation in antibiotic-resistant lineages that circulate in global healthcare

systems.

Here, we sought to understand the importance of both patient factors and genomic fea-

tures in determining whether a patient is colonized or infected with CRKP ST258. Im-

portantly, we restricted our comparison to patients with extraintestinal CRKP colonization

versus infection. We reasoned that this comparison would reveal the patient and microbial

factors that influence risk for infection when CRKP is present in an extraintestinal site;

eliminating confounding by factors associated with translocation from the gastrointestinal

tract. To gain an unbiased assessment of influential patient an microbial factors in a high-

risk population we leveraged a comprehensive set of all clinical isolates and patient metadata

collected from 21 long-term acute care hospitals (LTACHs) across the U.S. over the course

of a year. Machine learning models rigorously trained and tested on these data revealed

that patient and microbial factors were similarly predictive of CRKP ST258 colonization

versus in infection, indicating that both contribute to infection risk. Moreover, examination

of predictive genomic features revealed genetic variation within the epidemic ST258 lineage

of CRKP that was associated with increased respiratory colonization and higher infection

rates.
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3.3 Results

Of 355 clinical CRKP isolates from 21 LTACHs across the U.S. (15), we classified 149 (42%)

of the isolates as representing extraintestinal infection based on modified National Healthcare

Safety Network (NHSN) criteria [89] (Figure 3.S2, Tables 3.S1-3). The rest of the isolates

were classified as representing extraintestinal colonization. Stratified by anatomic site, we

classified 29/29 (100%) blood isolates as infection, 69/196 (35%) respiratory isolates as infec-

tion, and 51/130 (39%) urinary isolates as infection (Table 3.S3). More than 90% of patient

isolates were from the epidemic CRKP lineage ST258 (Table 3.S1). Patients harboring dif-

ferent sequence types of CRKP showed no significant differences in infection/colonization

status or anatomic site of isolation, and no substantive differences in clinical characteristics

(see supplementary material). Thus, we decided to limit our analysis to ST258 to improve

our ability to discern whether genetic variation within this dominant strain is associated

with infection.

3.3.1 The CRKP epidemic lineage ST258 shows evidence of sub-

lineage variation in virulence and anatomic site of isolation

We next evaluated if there exist sub-lineages of ST258 with altered virulence properties

by looking for clustering of isolates by infection on the whole-genome phylogeny (Figure

1; see supplementary methods) [90]. Infection status was non-randomly distributed on the

phylogeny (p=0.002), supporting our hypothesis that the genetic background of CRKP influ-

ences infection. We performed a similar clustering analysis to look at potential niche-specific

adaptation to certain anatomic sites (Figure 3.1), and found that respiratory (p=0.001) and

urinary (p=0.013) isolates cluster on the phylogeny, but blood isolates do not (p=0.21). This

analysis indicates that, in addition to patient features, intra-strain variation in virulence and

adaptation to the urinary and respiratory tract might influence whether patients develop an
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infection.

Figure 3.1: Infection and anatomic site cluster on the phylogeny.

Maximum likelihood phylogenetic tree of all isolates including infection or colonization clas-
sification for each isolate and anatomic site of isolation. The scale bar to the right of the
phylogeny shows the branch length in substitutions per site. Testing for non-random dis-
tribution of isolates on the phylogeny (see supplementary methods) revealed clustering of
infection, respiratory, and urinary isolates on the phylogeny, respectively.

3.3.2 Both patient and CRKP ST258 genetic characteristics are

weakly predictive of infection, with relative performance be-

ing highly facility-dependent

We next performed machine learning using L2 regularized logistic regression to quantify the

ability of patient and microbial genetic characteristics to predict CRKP ST258 infection

(Figure 3.S1). To prevent over- or under-fitting and control for facility-level biases, we

generated 100 train/test data splits, wherein a given LTACH was only included either in the
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train or test set. Each LTACH occurred a median of 24 times (range 13-32) in the test data

split. In this way, we were able to identify patient and CRKP ST258 strain characteristics

consistently associated with infection or colonization across data splits, and thus across

patient populations in different healthcare facilities.

First, we sought to understand if patient and genomic features were individually predic-

tive of CRKP ST258 infection. To this end, we independently evaluated patient character-

istics as well as three different genomic feature sets for their ability to classify colonization

and infection. The three genomic feature sets were uncurated genomic (including single

nucleotide variants, indels, insertion elements, and accessory genes), uncurated grouped ge-

nomic (variants grouped into genes, akin to a burden test, e.g [91]), and curated genomic

(features identified using Kleborate [92]). Across the 100 different train/test splits, we ob-

served that the average predictive performance was weak, with each of the genomic and

patient feature sets predictive of infection to a similar degree (all 1st quartile area under the

receiver operating characteristic curves [AUROCs] > 0.5; median range=0.55-0.68; Figure

3.2A; AUPRC: Figure 3.S3A). Additionally, no one feature set was consistently the most

predictive (e.g. Figures 3.2B, 3.2C; all comparisons p > 0.30, see supplementary methods

for p-value calculation). Furthermore, for each feature set the AUROCs were distributed

such that the test AUROC ranged from below 0.5 to over 0.7, depending on how the data

were split (i.e., which facilities appear in the train/test sets). This variation in model perfor-

mance across different train/test sets suggests that the association of CRKP ST258 strain

and patient characteristics with infection or colonization varies across facilities.

Integration of patient and CRKP strain features does not improve discriminative

performance of overall or anatomic site-specific models

To determine if the predictive power of patient and genomic features is additive, and if

combining these disparate feature sets improved validation on held-out facilities, we built
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Figure 3.2: Test AUROCs for various classifiers identifying CRKP colonization vs. infection
vary substantially across data splits.

(A) Test AUROCs for 100 L2 regularized logistic regression models different using train/test
splits. All isolates from a given LTACH were included in either the training split or the
testing split for each data split. We built models using five different feature sets, keeping
the same 100 data splits. AUROCs of different feature sets were not significantly different.
In the right two panels, the curated genomic feature set AUROCs are compared to: (B) the
uncurated genomic feature set AUROCs, and (C) the patient feature set AUROCs. Each
point is the resulting pair of AUROCs for models built with the same data split, but the two
respective feature sets. The dotted lines in all 3 panels indicate the AUROC for choosing an
outcome randomly (0.5); anything below the line is worse than random, and anything above
the line is better than random. The solid diagonal line in the right two panels is the line
y=x; points below the line correspond to a higher curated genomic AUROC for that data
split, and points above the line correspond to a higher uncurated genomic AUROC (B), or
patient AUROC (C), respectively. The colors in panels (B) and (C) correspond to the colors
in panel (A); the points in a given colored area indicate that that feature set had the higher
AUROC for that data split. In both cases, one feature set does not consistently outperform
the other (p=0.4; see supplementary methods for p-value calculation). AUROC=area under
the receiver operating characteristic curve.
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models including both patient and curated genomic features. The discriminative performance

of the models based on the combined feature set was not significantly greater than that

of the individual feature sets (Figure 3.2A, all p ≥ 0.20). Thus, despite variation in the

predictive capacity of genomic and patient features across facilities (Figure 3.2C), combining

the two sets did not improve overall performance. Furthermore, we found that there was no

significant difference in model performance between L2 regularized logistic regression, elastic

net, random forest, and support vector machines with a radial basis kernel (Figure 3.S3B,

all p > 0.1). Focusing on anatomic site-specific L2 regularized logistic regression models

revealed similar trends, where classification performances were similar for respiratory and

urinary specific models, and the relative predictive capacity of patient and CRKP ST258

strain features varied across facility subsets (Figure 3.S3C, S3D).

3.3.3 Some patient and genomic features consistently discriminate

colonization and infection

After evaluating the predictive capacity of models, we next sought to identify patient and

CRKP ST258 strain characteristics that are most associated with infection or colonization.

To this end, we identified those patient and genomic features that consistently improved

model performance across the 100 different data splits (see methods). Evaluating the im-

portance of features in this way provides insight into those characteristics that generalize

across different facility subsets. This approach was taken for both overall and anatomic site-

specific models to identify features predictive of different anatomic sites of infection (Figure

3.3, 3.S4).

Several patient features were consistently associated with infection in the overall analysis,

including presence of a gastrostomy tube, presence of a central venous catheter, acute kidney

injury, and severe chronic kidney disease (Figure 3.3), all markers of critically ill patients.

37



Figure 3.3: Features consistently associated with colonization or infection sometimes differ
between the overall, respiratory, and urinary models.

Feature-specific improvement in model performance, measured as the mean difference be-
tween test and permuted AUROC (see methods), of features found to be consistently as-
sociated with colonization or infection in at least one of the following analyses: overall,
respiratory-specific, urinary-specific. We consider features to be associated with infec-
tion/colonization if the AUROC difference was greater than zero in over 75% of the 100
data splits. Each point is surrounded by two quantiles - a solid line for 25% to 75% (the
threshold used to select features) and a dotted line for 5% to 95%. The vertical solid black
line indicates a difference of zero (i.e. the feature provides no improvement to model perfor-
mance). Horizontal dotted lines separate features associated with urinary but not respiratory
isolates (top), both urinary and respiratory (or all) isolates (middle), or respiratory but not
urinary isolates (bottom). Bla=Beta lactamase, res=confers resistance to that antibiotic
class. AUROC=area under the receiver operating characteristic curve.
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Only a small number of genomic features were consistently associated with infection or colo-

nization (Figure 3.3). The genomic features associated with colonization were all antibiotic

resistance determinants. Conversely, all but one of the genomic features positively associated

with infection (3/4) are related to virulence. The ICEKp10 element is positively associated

with infection and carries colibactin and two different types of yersiniabactin, a previously

identified K. pneumoniae virulence determinant [26]. Colibactin is a toxin [85], and yersini-

abactin is an iron scavenging system that has been identified in previous animal and human

studies as being associated with virulence [85, 25]. Additionally, insertion sequence-mediated

disruption of the O-antigen biosynthetic gene kfoC was associated with respiratory infec-

tion (see methods and Figure 3.S5A for insertion sequence identification). The O-antigen of

lipopolysaccharide (LPS) is a known antigenic marker, although association with a specific

anatomic site has not been noted [93].

3.3.4 A sub-lineage of ST258 clade II appears to have sequentially

evolved enhanced adaptation for the respiratory tract and

increased virulence

We noted that kfoC disruption is largely confined to a sub-lineage of ST258 present across

12 LTACHs in California (Figures 3.4, 3.S5). Consistent with this feature being associ-

ated with respiratory infection, the disrupted kfoC lineage is enriched in respiratory isolates

(82/118, 69% of isolates in the disrupted kfoC lineage are respiratory isolates vs. 101/213,

47% in all other isolates; Fisher’s exact p=0.0001), suggesting that this lineage is associated

with increased capacity for respiratory colonization. Furthermore, a subset of isolates in the

disrupted kfoC sub-lineage harbor the ICEKp10 element containing yersiniabactin. Exam-

ination of these genetic events in the context of the whole-genome phylogeny revealed that

disruption of kfoC occurred first, followed by at least two different acquisitions of ICEKp10
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(Figure 3.4). Within the disrupted kfoC lineage, isolates with ICEKp10 are enriched in

infection (31/55, 56% of isolates with ICEKp10 are infection isolates vs. 16/63, 25% of

isolates without ICEKp10, Fisher’s exact p = 0.00065), supporting an increase in virulence

after acquisition of ICEKp10. It is important to note that the observed clinical associations

with ICEKp10 and kfoC disruption do not demonstrate causality, as we cannot rule out the

role of correlated genetic variation.

3.4 Discussion

There have been numerous studies aimed at identifying risk factors for healthcare-associated

infections caused by prominent antibiotic-resistance threats. For the most part, these studies

have found the dominant risk factors to be linked to the magnitude of exposure (e.g. length of

stay or colonization pressure), use of antibiotics, and overall comorbidity [94]. What remains

unclear is if in addition to these clinical features, the genetic variation in circulating resistant

lineages also contributes to patient risk of infection. Here, we addressed this question for

CRKP ST258 in a comprehensively sampled cohort of patients from 21 LTACHs across

the U.S. Overall, we found that, while neither patient nor CRKP ST258 genetic features

have high predictive accuracy on held-out test data, both feature sets were independently

associated with infection, with one or the other being more predictive on different facility

subsets. Moreover, the integration of clinical and genomic data led to the discovery of an

emergent sub-lineage of the epidemic ST258 clone that may have increased adaptation for

the respiratory tract, and is more strongly associated with infection.

One strength of our machine learning approach is that we were able to measure the

variation in discriminative performance across 100 train/test iterations that differed in which

facilities were included in train and test sets. We found that performance varied greatly

depending on how facilities were allocated to train and test sets, highlighting how smaller
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Figure 3.4: Select epidemiologic and genomic features visualized on the phylogeny indicate
that a sub-clade of ST258 clade II may exhibit enhanced niche-specific adaptation and vir-
ulence.

ST258 maximum likelihood phylogeny with the tip labels colored by KPC gene. The blue
box indicates the sub-lineage with apparent altered niche-specific adaptation that acquires
an additional virulence locus. The heatmap beside the tree indicates information about the
isolate. From left to right: if it is a respiratory isolate, if it is an infection isolate, if kfoC
is disrupted, and if it contains ICEKp10. Disrupted kfoC was associated with infection in
the overall and respiratory machine learning analyses and ICEKp10 presence was associated
with infection in the overall analysis. Note that the majority of isolates without disrupted
kfoC in that lineage contain a different O locus type (Figure S5A). The scale bar to the top
left of the phylogeny shows the branch length in substitutions per site. ybt=Yersiniabactin;
ybt0 and ybt17 are two ybtSTs defined by Kleborate.
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studies could overestimate or underestimate the discriminative ability of both their model and

individual features. Variation in model performance across facilities could be due to facility-

level heterogeneity leading to differences in the prevalence of predictive patient or genomic

features in the different test sets. For instance, certain facilities may have patient populations

skewed towards individuals with characteristics that are predictive of infection. Alternatively,

certain geographic regions may have CRKP ST258 strains that are more virulent than in

other regions. These differences could lead to a higher predictive power for certain facilities

compared to others. Another possible explanation for variation in model performance is

that the critically-ill nature of LTACH patients may be such that most patients are actually

highly susceptible to infection (i.e. many patients colonized with CRKP may ultimately

develop an infection). However, it is noteworthy that despite these potential challenges in

creating generalizable models, our analysis did yield predictors of infection and colonization

consistent across test sets, and thus across LTACHs.

We built classifiers including all genomic features as well as a curated subset of features

from Kleborate [92], and found that both are similarly predictive of infection. However,

while the uncurated feature set presented challenges with downstream interpretation, our

analyses on the curated genomic features [92] facilitated novel insights into potential evo-

lutionary trajectories of anatomic site-specific adaptation and virulence. For example, we

observed that disruption of the O-antigen biosynthetic gene, kfoC, is associated with isolation

from the respiratory tract. While we cannot determine from our machine learning analy-

sis if disruption of kfoC is directly causal, the biological plausibility of an altered O-antigen

structure mediating evasion of innate immunity and/or other beneficial interactions with the

host makes this a strong candidate for follow-up experiments. Supporting this hypothesis,

a previous study found that absence of O-antigen is associated with decreased virulence,

but not decreased intrapulmonary proliferation, in a murine model [95]. In addition, we

noted that a number of antibiotic resistance determinants were associated with coloniza-
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tion. We hypothesize that this observation could be a consequence of longer duration of

residence being associated with increased exposure to off-target antibiotics [96]. Finally, we

also saw evidence that, after acquiring the virulence factors yersiniabactin and colibactin on

the ICEKp10 element, the disrupted kfoC subclade became more strongly associated with

infection, supporting the idea that circulating ST258 sub-lineages can evolve to become both

hypervirulent and multi-drug resistant [97, 23, 98, 99].

It is important to note that the machine learning method we employed does not correct

for microbial population structure. We chose this method instead of alternative bacterial

genome-wide association methods because our primary interest was in quantifying the over-

all predictive capacity of bacterial genotype in a patient population that was collected in

a comprehensive and unbiased manner (i.e. all clinical isolates from 21 facilities over one

year). While alternative methods controlling for population structure may yield more precise

estimates of the contribution of individual variants, this would obfuscate the realized con-

tribution in our patient population and hinder direct comparison to the predictive capacity

of patient features. However, this then presented the challenge of interpreting our finding

that certain sub-populations of CRKP ST258 may differ in their predilection for causing

infections at different sites. For instance, the kfoC disruption is a lineage defining variant,

and in principle other variants that define this lineage could also be causal. Here, we limited

our analysis to a curated set of variants belonging to pathways known to be associated with

antibiotic resistance and virulence, and found that only kfoC disruption was associated with

increased respiratory infection, thus making it a strong candidate for follow-up in in vitro or

in vivo models [25]. To identify novel loci whose role in human infection may not be appre-

ciated both computational and experimental strategies may be employed to help prioritize

putative causal versus passenger variants. Computationally, investigators may search for ev-

idence of parallelism in genotype/phenotype associations, which would bolster confidence in

causality [100]. Alternatively, high-throughput screens of genetic mutants in relevant model
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systems can help prioritize candidates. Garnering further genomic or experimental support

for the direct role of a specific genetic variant would in turn increase the likelihood that those

genetic markers would be predictive in new strains and patient populations.

Our study also has several important limitations related to the data available. Specifi-

cally, extraintestinal CRKP colonization vs. infection for non-bloodstream isolates may be

difficult to discriminate using surveillance criteria and the clinical data that were available.

However, we based our definitions on established Centers for Disease Control and Preven-

tion criteria with modifications used previously [46]. Encouragingly, we were still able to

identify consistent predictors of infection, even with potential misclassifications. A second

limitation is that our dataset only included one clinical culture for the majority of patients,

meaning that we were unable to investigate clinical or genomic features that may be asso-

ciated with progression from colonization to infection. Furthermore, we do not have CRKP

rectal colonization isolates, and therefore cannot evaluate transition from rectal coloniza-

tion to other body sites. However, we hypothesize that comparing rectal colonization to

infection may be asking a subtly distinct question - namely bacterial genetic factors that

enable translocation from the gut to other body sites. In contrast, we hypothesize that our

study design is ideal to identify bacterial genetic factors associated with infection once at

a given body site. Additionally, we chose to focus our analysis on ST258 due to its dis-

proportionate presence in our dataset, but this makes it possible that our findings may not

generalize to other sequence types. Nevertheless, ST258 is the dominant clone in the U.S.,

and the methods we employed here can be used to study other sequence types and other

pathogens. Furthermore, our focus on the ST258 lineage led to the particularly notable

finding that even within an established endemic multidrug resistant lineage (that emerged

circa 2000 [22]), there is continued evolution that influences the manifestation and outcome

of infection. This highlights the importance of performing strain-specific analyses to identify

continued evolution and adaptation of hospital-associated lineages. We were also limited in

44



the patient data included in our model. It is likely that important differences in underlying

patient conditions were not captured by the coarse clinical variables we included, and we

also did not account for differences in genetic variation in the host [101]. Other limitations

include that our study was restricted to LTACH patients and had non-random geographic

sampling. However, our restriction to LTACHs in endemic geographic regions has the benefit

of focusing on populations at disproportionate risk for CRKP infection [45].

In conclusion, we employed a machine learning approach to quantify our ability to dis-

criminate between CRKP colonization and infection using patient and microbial genomic

features. This approach highlighted the high degree of variation in predictive accuracy

across different facility subsets. Furthermore, despite modest predictive power, we identified

several genomic features consistently associated with infection, indicating that variation in

circulating CRKP strains contributes to infection, even in the context of the critically-ill

patient populations residing in LTACHs. Future work should aim to corroborate our find-

ings with larger cohorts and follow up on strong associations to determine whether they are

indeed risk factors for infection. This could ultimately help identify patients at high risk for

CRKP ST258 infection and devise targeted strategies for infection prevention. Furthermore,

the methods employed here can be used to study ongoing adaptation in other important

MDRO lineages circulating in healthcare facilities.

3.5 Methods

3.5.1 Clinical and genomic data

We used whole-genome sequences of clinical (non-surveillance) CRKP isolates and associ-

ated patient metadata from a prospective observational study performed in 21 LTACHs from

across the U.S. over the course of a year (BioProject accession no. PRJNA415194) [22]. All

isolates were ordered by clinicians as part of clinical care, and clinical practice guidelines
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and policies are standard across sites within the network. We included only the first clinical

bloodstream, respiratory, or urinary isolate from each patient (n=355; Figure 3.S1A), and

subset to only ST258 isolates for the majority of analyses (n=331; Table 3.S1; see supple-

mentary material for reasoning). Patient metadata were obtained from electronic health

records. Core genome variants were identified using a reference genome and accessory genes

were identified using Roary [102]. Details about the clinical data, analysis pipeline [103],

genomic data curation [22, 92, 97, 102, 104, 105, 106, 107], and phylogenetic reconstruction

[66, 68, 72, 73] are provided in the supplementary material. While most clinical data cannot

be shared, the deidentified patient ID, hospital of sample isolation, and isolation site are

included in the Sequence Read Archive metadata for the BioProject.

3.5.2 Outcome definition

Our outcome of interest was colonization vs. clinical infection (Figure 3.S1B). Based on the

U.S. Centers for Disease Control and Prevention’s (CDC) established NHSN surveillance

definitions, we considered all bloodstream isolates as representative of infection, and used

modified definitions as in [46] to classify urinary and respiratory cultures as representative of

infection versus colonization (Table 3.S2) [46, 89]. Any isolate that did not meet the criteria

for infection was classified as colonization. We did not incorporate physician interpretation

in applying the criteria to ensure consistency in applying the definition.

3.5.3 Feature sets

We studied the association between five different feature sets and infection/colonization in

CRKP ST258 (Figure 3.S1C); the feature sets are described below. See supplementary

methods for details on feature set creation and processing. Counts below are for confident

features from the entire dataset prior to subsetting for different analyses.
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1. Patient: Clinical features described in Han et al. (n=50; Table 3.S3) [22].

2. Uncurated genomic: Single nucleotide variants, indels, insertion sequence elements,

and accessory genes (n=2447).

3. Uncurated grouped genomic: Variants grouped into genes (i.e. a burden test, e.g. [91])

and accessory genes (n=3159).

4. Curated genomic: Features identified by Kleborate [92], a tool designed to identify the

presence of various genes and mutations known to be associated with either CRKP

virulence or antibiotic resistance (n=91).

5. Patient & curated genomic: Patient features and curated genomic features (n=141).

3.5.4 Machine learning & model selection

We aimed to classify clinical infection (vs. colonization) using each of the different feature

sets (see above); we built classifiers using the first clinical isolate from each patient for all

isolates, only respiratory isolates, and only urinary isolates. We performed L2 regularized

logistic regression on all feature sets using a modified version of the machine learning pipeline

presented in Topçuoğlu et al. [108] using caret version 6.0-85 [109] in R version 3.6.2 [110]

(Figure 3.S1D1). Furthermore, for the patient and curated genomic feature set we performed

elastic net, random forest, and support vector machine with a radial basis kernel using the

same method but implemented in mikropml version 0.0.2 [111]. We randomly split the data

into 100 unique 80/20 train/test splits, keeping all isolates from each LTACH grouped in

either the training set or the held-out test set to control for facility-level differences among the

isolates (e.g., background of circulating strains within each facility, patient population, and

clinician test ordering frequency). For valid comparison, the train/test splits were identical

across models generated with different feature sets. Hyperparameters were selected via cross-

47



validation on the training set to maximize the average AUROC across cross-validation folds.

See supplementary methods for more details.

3.5.5 Model performance

We measured model performance using the median test area under the receiver operating

characteristic curve (AUROC) and area under the precision recall curve (AUPRC), as well

as the interquartile range, across all 100 train/test splits (Figure 3.S1D2).

3.5.6 Features consistently associated with colonization or infec-

tion

To determine the importance of each feature in predicting colonization vs. infection, we

measured how much each feature influenced model performance by calculating feature im-

portance using a permutation test [108] (Figure 3.S1D3). For each combination of feature

and data split, we randomly permuted the feature and calculated the ‘permuted test AU-

ROC’ using the model generated with the training data. Features with a correlation of 1

were permuted together. Other correlation thresholds were tested and the results were very

similar, so we chose to use a correlation of 1 to improve ease of interpretation. We performed

this permutation test 100 times for each feature/data split pair, and obtained a mean feature

importance for each data split. A mean feature importance above zero indicates that that

feature improved model performance for that data split. We highlight features where the

mean permuted test AUROC was above zero in at least 75% of the data splits. In this way,

the permutation importance method allows us to take into account the variation we observe

across the 100 models, which is not possible with standard parametric statistical tests or

odds ratios.
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3.5.7 Insertion sequence identification

We identified insertion sequences in the kfoC gene by running panISa on reads aligned to a

reference genome [107, 66, 112, 113, 64]. See supplementary methods for more details.

3.5.8 Data analysis & visualization

See supplementary material for details on data analysis and visualization in R version 3.6.2

[110, 114, 115, 116, 117, 118]. All code and data that is not protected health information is

on GitHub (https://github.com/Snitkin-Lab-Umich/ml-crkp-infection-manuscript).

3.6 Supplement

3.6.1 Supplementary methods

Clinical data

The majority of data elements were obtained from the electronic health record (EHR) which

captures all data in the medical record across clinical sites. This EHR-based electronic

database contains all demographic data, laboratory data (including microbiology), medica-

tion data, and radiographic data. ICD diagnostic and procedure codes were used to ascertain

all coded primary and secondary diagnoses and procedures. The same EHR is used at all

sites and is fully integrated into the EHR-based relational database. We chose not to include

inflammatory markers (e.g. white blood cell count, procalcitonin, etc.) as they are highly

non-specific and add little to designate a culture as representing infection vs. colonization,

particularly in patients who typically have numerous comorbidities contributing to their

acute illness.
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Pipeline

We created a snakemake pipeline [103] to perform data pre-processing, machine learning

analysis, and figure generation.

Genomic data

We used Kleborate version 0.3.0 [92] to identify sequence type, capsular types (K locus

[104]) and O locus [105]), virulence factor [97], and antibiotic resistance genes. In ad-

dition, we identified single nucleotide variants (SNVs) and indels by mapping reads to

the KPNIH1 reference genome (BioProject accession number PRJNA73191 [119]; https:

//github.com/Snitkin-Lab-Umich/variant calling pipeline). After variant calling, we iden-

tified the predicted functional impact of variants using SnpEff version 4.3T [106]. We also

identified large insertion sequence (IS) elements using panISa version 0.1.4 with the de-

fault settings [107], and accessory genome genes using Roary version 3.12.0 with the default

settings [102].

Phylogenetic tree reconstruction

We constructed a phylogenetic tree of all ST258 isolates by first creating a whole-genome

alignment by mapping reads to the KPNIH1 reference genome (GenBank accession number

CP008827.1) using bwa mem version 0.7.12 [64]; samtools version 1.9 [66] was used to gener-

ate binary alignment files. We then masked sites identified as recombinant by Gubbins ver-

sion 2.3.2 [68] and used this masked whole-genome alignment to build a maximum likelihood

phylogeny with IQ-TREE version 1.6.12 [72] using a GTR model of nucleotide substitution

and ultra-fast bootstrap with 1000 replicates (-b 1000) [73]. The tree was midpoint-rooted

using the midpoint.root function in phytools version 0.6-99 [75], thus splitting the tree into

ST258 clades I and II [20].
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Phylogenetic clustering test

To determine whether infection isolates cluster on the phylogeny more than expected by

random chance, we performed a permutation test [90]. To identify the true number of isolates

in a pure cluster while controlling for isolate clustering by LTACH, we enumerated isolates

in pure infection or colonization subtrees that also contain isolates from more than one

LTACH. Then we randomized the infection labels across isolates 1000 times and enumerated

the number of isolates in a pure subtree for each randomization. We then compared the

random counts of isolates in a pure cluster to the true number and calculated an empirical

p-value.

Genomic feature set creation

To determine how well machine learning models perform using a targeted vs. untargeted

approach, we performed machine learning with uncurated genomic features as well as curated

genomic features known to be related to virulence. In an attempt to increase power, we

not only performed machine learning on individual uncurated genomic features, but also

using a burden test where genomic variants were grouped into genes and features were

presence/absence of a variant in a gene. This may help capture variation associated with

infection at the gene level that might not be captured at the variant level (e.g. different

samples can have different variants in the same gene that all lead to a similar function).

For the uncurated grouped genomic analysis, grouped variants included SNVs and indels

identified as moderate or high impact by SnpEff and IS elements in a gene or upstream

of a gene. We also grouped modifier variants identified by SnpEff into intergenic regions.

In addition to core genes, we included accessory genes identified by Roary [102] as binary

categorical features in both of the uncurated feature sets.
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Feature set pre-processing

We used five feature sets to study the association between infection and colonization. We

preprocessed all five datasets by mapping categorical features to binary variables, center-

ing and scaling the continuous features (age and length of stay) to a mean of zero and a

variance of one, and removing features present in only one sample or all but one sample.

Some antibiotic features were antibiotic classes, and thus aggregates of other features (e.g.

aminoglycoside, see Table 3.S3). For the uncurated genomic and uncurated grouped genomic

datasets we collapsed genomic features with an identical pattern across all isolates to reduce

machine learning runtime.

Machine learning rationale

We chose to perform L2 regularized logistic regression because it is easily interpretable, often

performs just as well as more complicated methods when limited training data are available

(18), and has a grouping effect, which means that all associated features are identified even

if they are collinear [120]. L2 regularization is equivalent to including a zero-mean Gaus-

sian prior on the weights. Thus, L2 regularized logistic regression includes implicit feature

selection of sparse data by reducing the majority of feature weights to zero. Furthermore,

this method allows us to maintain correlated features in the model, which aids in our inter-

pretation of results as there may be features that together are important for understanding

differences in infection and virulence. Finally, we found that L2 regularized logistic regres-

sion performs as well as other machine learning models for our dataset (Figure 3.S3), and

that hyperparameter tuning for elastic net leads to a more L2-like model rather than an

L1-like model.
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Machine learning details

The machine learning pipeline sets at least 20% of the samples aside for testing in each

train/test split. We split the training data into train and validate sets by LTACH using the

groupKMultiFolds function from the caret R package (caret version 6.0-85) [109]. Within

each training set, we selected hyperparameters via five-fold cross-validation 100 times, max-

imizing the average cross-validation AUROC.

Comparing model performance between feature sets and methods

To determine whether there was a significant difference in model performance between differ-

ent feature sets and different machine learning methods, we calculated a two-sided empirical

p-value for each identical train/test split using the formula 2 x min(fraction of AUROC

differences ≥ 0, fraction of AUROC differences ≤ 0) [121].

Identification of IS element insertions in certain O2v2 kfoC genes

One of the curated genomic features we identified as associated with infection was what

Kleborate called a missing gene (kfoC ) in the O locus operon of certain O2v2 serotypes.

On the Kleborate website, they indicate that a missing gene could represent a truly missing

gene, or a gene that is split between two different contigs. To further investigate this, we

used blastn version 2.9.0 [112] to search for kfoC genes in each of the samples. Additionally,

we aligned the reads of all genomes to CP031810, a complete K. pneumoniae genome from

PATRIC [113] using bwa mem version 0.7.12 [64], and samtools [66] was used to generate

binary alignment files. Next, we used panISa [107] to identify IS element insertions in kfoC.

Data analysis & visualization

We used Fisher’s exact tests for bivariable analyses with categorical variables, and Wilcoxon

rank-sum tests for bivariable analyses with continuous variables. We performed all data
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analysis and visualization in R version 3.6.2 [110] using the following packages: tidyverse

version 1.3.0 [114], cowplot version 1.0.0 [115], ggtree version 2.0.1 [116, 117], ape version

5.3 [118], and phytools version 0.6-99 [75].

3.6.2 Supplementary results

Patients with different sequence types show no substantive differences in infec-

tion status, anatomic site of isolation, or clinical characteristics

Over 90% of the isolates in our dataset were ST258 (Table 3.S2), the dominant strain in

the U.S. [85]. At the level of sequence type, we found no difference in infection preva-

lence (p=0.44) or anatomic site of isolation (p=0.66), indicating that at this coarse level

there was not evidence of differences in strain virulence or adaptation to a certain anatomic

site. Bivariable comparison of patient factors between patients with different sequence

types revealed only four significant differences (unadjusted p-values < 0.05; previous use

of piperacillin/tazobactam, cefepime, ciprofloxacin, or fluoroquinolones). As we found no

substantive differences in infection, anatomic site of isolation, or patient variables when

comparing different sequence types, we chose to focus all subsequent analyses on ST258, the

dominant sequence type in our dataset. The genetic variation of isolates within ST258 is

much smaller than the genetic variation between sequence types, so limiting our analyses to

ST258 could improve our ability to identify associations of interest within ST258.

3.6.3 Supplementary tables and figures

For supplementary tables and figures visit https://msystems.asm.org/content/6/2/e00177-21/

figures-only.
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Chapter 4

Genomic and Clinical Insights Into the Emergence and Regional

Spread of Colistin-Resistant Klebsiella pneumoniae

4.1 Preamble

This chapter investigates the origins of resistance to the antibiotic colistin in clinical CRKP

isolates. We find that both de novo evolution and onward transmission of resistance are

occurring, and that onward transmission of resistance is particularly rampant in the sub-

lineage identified in Chapter 3. This sublineage is more fit than the other sublineages, and

the fitness cost of colistin resistance in these strains appears to be diminished. The data

preprocessing of variants for this analysis inspired us to create prewas, an R package for

preprocessing data prior to downstream genomic analyses such as genome-wide association

studies (https://github.com/Snitkin-Lab-Umich/prewas).

I performed all of the data analysis and generated all off the figures for this chapter. Other

co-authors performed antibiotic susceptibility testing, variant calling, and phylogenetic tree

reconstruction. This work will be submitted for publication with the following co-authors:

Zena Lapp, Jennifer Han, Divya Choudhary, Stuart Castaneda, Ali Pirani, Ebbing Lauten-

bach, and Evan Snitkin.
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I co-developed the methods for prewas with the other co-first authors. I implemented meth-

ods to find the ancestral allele, generate a binary matrix, and group variants into genes. As

of April 28, 2021 prewas has 3,613 downloads.The manuscript corresponding to prewas was

published in Microbial Genomics in 2020:

Saund K*, Lapp Z*, Thiede SN*, Pirani A, Snitkin ES. Prewas: Data Pre-Processing for

More Informative Bacterial GWAS. Microbial genomics. 2020 May;6(5).

*Indicates co-first author

4.2 Introduction

Multidrug resistant organisms (MDROs) pose a significant threat to public health due to

uncontrolled transmission and dwindling treatment options [1]. Of greatest concern are epi-

demic MDRO lineages that have become adapted to healthcare settings and continually gain

resistance to additional antibiotics that are used to treat them [122, 123]. As resistance evo-

lution continues to outpace our ability to develop new therapies [123], there is a critical need

to improve our understanding of the forces driving the emergence and spread of resistance

so that we can maintain the efficacy of effective antibiotics.

When de novo evolution of antibiotic resistance occurs in an individual, there is often

little to no onward transmission to others due to the fitness cost of resistance in the absence of

antibiotic pressure [124, 17]. However, in some cases this barrier is overcome, as evidenced by

the proliferation of epidemic resistance clones [17, 36]. This may happen when the resistance

variant or gene has an inherently low fitness cost and is thus maintained in the population

even in the absence of antibiotic exposure [125]. Alternatively, the fitness cost of a given

resistance element may depend on the genetic background in which it emerges, leading to

dissemination of these elements only in certain lineages. Indeed, experimental evidence

has shown that the genetic background of a strain interacts with resistance determinants to
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influence the fitness of the resistant strain [126, 127], highlighting the importance of historical

evolutionary events in determining the potential ability of a strain that becomes resistant to

spread. While the preferential spread of resistance elements in specific strains lends support

to the importance of genetic background, in most instances it is unclear what the underlying

epistatic interactions are that lead to these different fitness effects [17]. Deciphering how

the genetic background of a clinical strain influences transmissibility can provide insight into

how fit strain/resistance combinations evolve and disseminate in the healthcare setting.

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an antibiotic resistance threat

of critical priority as it is resistant to the majority of antibiotics on the market and has high

mortality rates [1]. One of the few remaining treatment options for CRKP is the antibiotic

colistin; however, colistin resistance emerges frequently during treatment with this drug

[128, 129]. Despite the accessibility of these resistance variants to CRKP, their spread to

other patients is rare, with most cases even within a single healthcare setting stemming from

parallel evolution [129]. Here, we document the emergence and spread of multiple resistance

variants in CRKP sequence type (ST) 258 across a regional healthcare network. Through

integration of genomic and clinical data, we show how resistance spread was enhanced in

genetic backgrounds that mitigate the fitness cost of resistance which, when combined with

sustained selective pressure, enabled regional dissemination of colistin resistant lineages.

4.3 Results

4.3.1 Most resistant isolates contain variants in known resistance

genes

Antimicrobial susceptibility testing revealed that 118/337 (35%) CRKP ST258 isolates were

resistant to colistin, and that this resistance was present over the course of our yearlong
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study across diverse long-term acute care hospitals (LTACHs; Figure 4.S1). To identify likely

resistance variants, we first searched all isolates for mcr -containing mobile genetic elements

and variants in canonical chromosomal genes known to confer resistance (pmrA, pmrB, phoP,

phoQ, crrA, crrB, and mgrB). As expected due to the timeframe and locations in which the

isolates were collected (July 2014 to August 2015 in the U.S.) [130], we did not find mcr genes

in any of the isolates. However, the majority of colistin resistance we observed (103/118,

87%) could be explained by resistance variants in canonical resistance genes (Figure 4.S2;

Table 4.S1; see methods for details on identification of resistance variants).

As not all resistance in our dataset could be explained by variants in known resistance

genes, we next performed a genome-wide association study (GWAS) on the isolates with

unknown resistance determinants to identify putative non-canonical resistance-conferring

variants. We identified two additional putative resistance genes in this way: qseC and phos-

photransferase system sugar transporter subunit IIB (Figure 4.S2; Table 4.S1). Resistance

variants in these genes account for 6/15 (40%) of the unknown colistin resistance in our

dataset (see methods for resistance variant identification). Notably, qseC, which explained

resistance in 4 isolates, has been shown to confer colistin resistance in an experimental evo-

lution study using clinical isolates [29]. For all subsequent analyses, we defined resistance

genes as the set of canonical and GWAS-identified resistance genes.

4.3.2 Epistatic interactions appear to influence resistance in iso-

lates with more than one variant in resistance genes

Next, we investigated the relationship between the number of variants in resistance genes

and the level of colistin resistance. While the majority of isolates with one variant in a re-

sistance gene were resistant, surprisingly, the majority of isolates with two or more variants

in resistance genes were susceptible (Figure 4.1A). To better understand how the presence
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of multiple variants in resistance genes influenced the extent of resistance, we explored the

relationship between the number of variants in resistance genes and minimum inhibitory

concentration (MIC). We found that resistant isolates with two variants in resistance genes

tend to have higher MICs on average than those with one (Figure 4.1B). Moreover, suscep-

tible isolates with one variant in a resistance gene have a higher MIC on average than those

with none, suggesting that these variants increased the MIC to a level below the standard

resistance cutoff. In contrast to these cases where resistance variants are associated with

increased MIC, susceptible isolates with two or more variants in resistance genes are more

susceptible on average than those with one or fewer. Furthermore, in most cases where

susceptible isolates harbor multiple variants in resistance genes, at least one of the variants

has been previously shown to confer resistance. These findings suggest that, while variants

in resistance genes often increase MIC as expected, there also exist epistatic interactions

among variants in these genes that influence their impact on resistance phenotypes.

4.3.3 Colistin resistance exhibits patterns of de novo evolution,

onward dissemination, and reversion to susceptibility

To better understand the origin and fate of colistin resistance variants, we investigated

the phylogenetic relationship among colistin resistant and susceptible isolates (Figures 4.2,

4.S3). Visualization of resistance on the phylogeny revealed a striking dichotomy between

a clade II sublineage (defined as clade IIB) and the other ST258 sublineages (clades I and

IIA). Clade IIB contains large clusters of colistin-resistant isolates, while the other two

sublineages largely exhibit sporadic parallel evolution of resistance. Therefore, while 28/118

(24%) isolates acquired colistin resistance from putative de novo resistance evolution events,

two clonal expansions in clade IIB across 11 LTACHs in California (10 in the Los Angeles

area and 1 in San Diego; Figure 4.S4) accounted for over half (69/118, 58%) of resistance

59



Figure 4.1: Epistatic interactions appear to influence the extent of colistin resistance in
clinical CRKP isolates.

(A) Most susceptible isolates have no variants in known resistance genes, while most resistant
isolates have at least one variant in a known resistance gene. Many susceptible isolates also
have two variants in known resistance genes, suggesting potential reversion events. The
fractions on the y axis are among all isolates. (B) On average, resistant isolates with two
putative resistance variants have a higher MIC than resistance isolates with one putative
variant, and susceptible isolates with two putative resistance variants have a lower MIC than
susceptible isolates with one putative variant. MIC=minimum inhibitory concentration.
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in this isolate collection. These two clonal expansions were due to a nonsense mutation

in mgrB (Gln30*) and a missense mutation in phoQ (Thr244Asn), respectively. Notably,

these same types of variants occurred in the sporadic colistin resistant isolates (Figure 4.S5),

suggesting that these specific resistance variants were likely not inherently more fit. Within

these clonal expansions, many of the isolates appeared to regain susceptibility to colistin

via the accumulation of additional variants in resistance genes. These putative reversion

mutations usually occurred within the same gene or in a downstream gene of the molecular

pathway to resistance (Figures 4.2, 4.S6), and were sometimes followed by re-acquisition of

resistance through a different mechanism (Figures 4.2, 4.S5).

4.3.4 Resistant strains in clade IIB are more fit than their sus-

ceptible non-revertant counterparts

Next, we were interested in understanding the relative fitness of susceptible, resistant and

revertant isolates in the different sublineages. In particular, we hypothesized that the resis-

tance variants in clade IIB became more widely disseminated due to a decreased associated

fitness cost. To estimate fitness in the context of the healthcare environment we applied an

analytic approach to quantify the epidemic success of isolates in our patient population. In

particular, we took advantage of the comprehensive nature of our sampling and used the

time-scaled haplotypic density (THD) to quantify the extent of relative spread of each geno-

type [131]. Applying the THD metric, we observed significant differences in fitness effects

of resistance variants in clade IIB versus the other clades (Figure 4.3). In clades I and IIA

we observed evidence of a significant fitness cost for resistance variants, as resistant clusters

and susceptible revertants were less fit than susceptible non-revertants from those clades (R

cluster: p = 0.01; S revertant: p = 0.0003). We did not observe a fitness cost for resistant

singletons that did not transmit to others (p = 0.18), which may be because these strains
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Figure 4.2: Distinct resistance evolution patterns exist in different CRKP ST258 sublineages.

Clade IIB exhibits extensive dissemination of resistance variants, as well as several putative
reversion events, while the other clades contain sporadic and less transmitted resistance
variants. Scale bar is in substitutions per site per year. R=resistant; S=susceptible.
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very recently evolved resistance and are thus still closely related to their donor strains. In

contrast, resistance variants in clade IIB were associated with a significant fitness benefit,

with resistant clusters and susceptible revertants from clade IIB being more fit than sus-

ceptible non-revertants from that clade (R cluster: p = 0.03; S revertant: p = 0.02). The

same findings hold when removing isolates from patients who have taken colistin in the past

30 days. Taken together, these findings suggest that resistance variants in isolates from

clade IIB conferred a fitness advantage, which may account for the independent emergence

and spread of two different resistance alleles in this clade. In contrast, the accumulation of

variants in resistance genes in the other clades appears to be associated with a fitness cost,

which is consistent with their limited clonal spread.

Figure 4.3: Colistin resistance does not impart a fitness cost in clade IIB strains.

In clade IIB, resistant clusters are more fit than corresponding susceptible non-revertants. On
the other hand, resistant clusters in other clades are less fit than susceptible non-revertants
in those clades. R=resistant; S=susceptible; THD=time-scaled haplotypic density.
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4.3.5 Isolates with putative de novo resistance, dissemination,

and reversion are each associated with exposure to colistin

in the past 30 days

Lastly, we sought to gain insight into how the use of colistin in the study facilities impacted

the emergence and dissemination of resistance variants. To do this, we investigated the

relationship between different colistin resistance groups and the patient having taken colistin

in the past 30 days. As expected based on previous studies [129], prior exposure to colistin

was positively associated with putative de novo resistance evolution within patients (Figure

4.4). However, we unexpectedly found that prior exposure was also associated with both

resistant clusters and susceptible revertants. This suggests that colistin use may contribute

to the fitness benefit of resistant clusters and susceptible revertents observed in clade IIB in

the THD analysis.

4.4 Discussion

The means by which colistin resistance evolves and disseminates in the healthcare setting

has important implications for antibiotic stewardship and infection control. Here, we used

genomic and clinical data to track the origin and fate of colistin resistance variants across

a comprehensive regional sample of clinical CRKP ST258 isolates. Our analysis identified a

sublineage whose genetic background appears to decrease the fitness cost of resistance, thus

allowing colistin-resistant strains to spread among regional healthcare facilities.

Examination of colistin resistance variants within the comprehensive and longitudinal

context of circulating CRKP strains allowed for inferences into their functional impact and

clinical significance. We discovered that having multiple variants in known resistance genes

appears to increase resistance in resistant isolates, but decrease resistance in susceptible
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Figure 4.4: Susceptible non-revertants are disenriched in previous exposure to colistin com-
pared to all other groups.

(A) The fraction of patients that had prior exposure to colistin was lower in susceptible non-
revertants compared to all other groups. (B) The odds ratio of previous colistin exposure
is higher for patients with resistant singletons, resistant clusters, and susceptible revertants
when compared to susceptible non-revertants. The 95% confidence intervals of Fisher’s
exact odds ratios (error bars on the plot) were above one for all comparisons. R=resistant;
S=susceptible.
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isolates. Additionally, we identified several instances where a known resistance variant was

present in susceptible isolates, likely due to a suppressor variant in either the same resis-

tance gene or another resistance gene. This finding has two important implications. First,

the presence of a colistin resistance variant cannot necessarily be equated with in vitro phe-

notypic resistance. Clinically, this suggests that testing for resistance variants may not be a

substitute for testing for phenotypic resistance. In fact, while we did observe re-emergence

of resistance in the genetic background of susceptible revertants, revertants may in general

have more difficulty becoming resistant once more, which may lend credence to treating

these patients with colistin [132]. Second, known resistance variants occurring in both resis-

tant and susceptible isolates complicates the computational identification of novel resistance

determinants using GWAS. Possible solutions include increasing sample size or removing

isolates with known resistance variants.

Of particular genomic and clinical interest are two independent instances of emergence

and spread of colistin resistance variants in clade IIB, in stark contrast to the sporadic

emergence of resistance variants in the other clades. Notably, the types of resistance variants

present in clade IIB also occurred in other clades, suggesting that the nature of the variant

itself is not what allowed the clade IIB variants to spread. Instead, our analysis of fitness

using THD suggests that these colistin resistance variants were able to spread in this clade

because the genetic background of the clade reduced the fitness cost of the variants. Colistin

is a cationic polypeptide that binds to the lipid A portion of lipopolysaccharide (LPS) and

displaces divalent cations, thus disrupting the bacterial outer membrane and ultimately

leading to cell death [128]. CRKP becomes resistant to colistin by adding a moiety to lipid

A that increases its charge, thus decreasing colistin’s ability to bind LPS [128]. However,

these moieties may produce a fitness cost due to the changes they likely impart on the

structure of the outer membrane. We previously showed that a defining feature of clade

IIB is that the majority of isolates contain a disruption in the LPS O locus gene kfoC
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[133], a putative glycosyltransferase. Thus, it is possible that inactivation of kfoC facilitates

the spread of colistin resistance by altering the outer membrane in a way that reduces the

fitness cost of resistance-conferring LPS modifications. This possibility has important clinical

implications, as colistin resistance due to this lineage may become more prevalent over time,

thus decreasing the number of patients who can be successfully treated with colistin.

Consistent with exposure to colistin driving the emergence of colistin resistance within

patients, we identified a positive relationship between colistin use in the past 30 days and de

novo resistance evolution. However, we also found a relationship between previous colistin

use and resistant clusters, which may be due to the continued selective pressure to maintain

resistance if colistin is being administered. Thus, although our findings support a reduced

fitness cost of colistin for clade IIB strains, the prevalence of colistin resistance may partially

be driven by colistin use in these facilities. Surprisingly, we also identified an association

between previous colistin use and susceptible revertants. Because of this finding, we hy-

pothesize that there may be a discrepancy between the in vitro MICs and clinical colistin

resistance in the context of the patient [134]. If this is the case, then these additional variants

may in fact be compensatory variants that reduce the fitness cost of resistance, or variants

that alter the strain’s interactions with the surrounding microbial community in such a way

that confers resistance [135]. These findings about the relationship between previous colistin

use and different resistance types highlight the power of using genomic context to investigate

selective pressures imposed on these various groups in the clinic.

One strength of our study is that we have comprehensive sampling of clinical CRKP iso-

lates from LTACHs over the course of a year. This not only allowed us to capture putative

transmission events of colistin resistance, but also allowed us to estimate the fitness of differ-

ent ST258 sublineages. Additionally, whole-genome sequencing of study isolates permitted

us to interrogate not only variants in known resistance genes, but also investigate putative

resistance-conferring variants in other genes using GWAS. Furthermore, our access to clini-
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cal information about previous colistin use allowed us to identify a relationship between this

clinical variable and different types of colistin susceptible and resistant isolates, providing us

with insight into the selective pressures of colistin resistance evolution and spread in patients.

Our study also has several limitations. First, we do not have rectal surveillance cultures,

which limits our ability to fully capture the population of colistin resistant and suscepti-

ble CRKP in the LTACHs studied. While this could bias our clinical collection if certain

strains are more likely to be present and cultured at extraintestinal sites, our findings are

still relevant in that they capture rampant transmission of strains that colonize and infect

these sites. Also, we cannot be certain that our classification of isolates into different cat-

egories of colistin susceptibility and resistance is entirely accurate. For instance, putative

de novo evolution of resistance in resistant singletons may not have occurred in the patient

we sampled. However, our comprehensive sampling of clinical isolates from the facilities in

the study provides some confidence that resistance in resistant singleton isolates did in fact

evolve in that patient. Another limitation of our study is that we do not have information

about colistin exposure prior to 30 days from the isolate collection date, and we do not have

information about the dose or duration of colistin use. Even with this limitation, we were

able to identify significant associations between colistin use and different colistin susceptible

and resistant groups.

In conclusion, we observed distinct dynamics of colistin resistance evolution in different

CRKP ST258 sublineages that appear to be due to differences in the fitness cost of colistin

resistance dependent on the genetic background of the strain. In particular, we identified

an emerging ST258 sublineage that is more fit and more amenable to maintaining colistin

resistance than other ST258 strains. This is of particular concern due to the already limited

treatment options for CRKP, and therefore merits further surveillance to determine the

extent of spread. Furthermore, our findings highlight the importance of surveillance and

monitoring of MDROs for continued evolution and adaptation to the healthcare environment,
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and our method provides a framework for using genomics to study these complex evolutionary

dynamics in clinical isolates.

4.5 Methods

4.5.1 Study isolates and metadata

We used whole-genome sequences of clinical CRKP isolates from a prospective longitudinal

study in 21 U.S. LTACHs over the course of a year (BioProject accession no. PRJNA415194)

[22]. Isolates and metadata were collected, and isolates were sequenced, as described in Han

et al. [22]. Previous patient use of colistin in the past 30 days was extracted from the

electronic health record.

4.5.2 Antibiotic susceptibility testing

To measure colistin resistance, we performed broth microdilution experiments to calculate

the minimum inhibitory concentration (MIC) of each isolate to colistin using a customized

Sensititre plate (MICs tested in µg/mL: 2n where n goes from −2 to 6). To discretize colistin

resistance, we use a cutoff of ≤2 as susceptible, and ≥4 as resistant, as per the Clinical &

Laboratory Standards Institute guidelines. [136].

4.5.3 Isolate selection

Multi-locus sequence types were called using ARIBA [137]. Over 90% of CRKP isolates

collected over the course of the study belonged to ST258; therefore, we focus all of our

analyses on this sequence type. We ordered the isolates by resistance status followed by

collection date. For all analyses except GWAS, only the first patient ST258 isolate from this

ordered list was used, thus prioritizing resistant isolates over susceptible isolates. Sample
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sizes were too small to glean insights into within-host resistance evolution.

4.5.4 Single nucleotide variant calling, indel calling, and phyloge-

netic tree reconstruction

Variant calling was performed with a customized variant calling pipeline (https://github.

com/Snitkin-Lab-Umich/variant calling pipeline) as follows. The quality of sequencing reads

was assessed with FastQC v0.11.9 [62], and Trimmomatic v0.39 [63] was used for trimming

adapter sequences and low-quality bases. Single nucleotide variants (SNVs) were identified

by (i) mapping filtered reads to the ST258 KPNIH1 reference genome (BioProject accession

no. PRJNA73191) using the Burrows-Wheeler short-read aligner (bwa v0.7.17) [64], (ii)

discarding polymerase chain reaction duplicates with Picard v2.24.1 [65], and (iii) calling

variants with SAMtools and bcftools v1.9 [66]. Variants were filtered from raw results using

VariantFiltration from GATK v4.1.9.0 [67] (QUAL > 100; MQ > 50; ≥ 10 reads supporting

variant; and FQ < 0.025). Indels were called using the GATK HaplotypeCaller [138] with

the following filters: root mean square quality (MQ) > 50.0, GATK QualbyDepth (QD) >

2.0, read depth (DP) > 9.0, and allele frequency (AF) > 0.9. In addition, a custom Python

script was used to filter out (mask) variants in the whole-genome alignment that were: (i)

SNVs < 5 base pairs (bp) in proximity to indels, (ii) in a recombinant region identified by

Gubbins v2.3.4 [68], in a phage region identified by the Phaster web tool [139] or (iii) they

resided in tandem repeats of length greater than 20bp as determined using the exact-tandem

program in MUMmer v3.23 [140]. This whole-genome masked variant alignment was used to

reconstruct a maximum likelihood phylogeny with IQ-TREE v1.6.12 [72] using the general

time reversible model GTR+G and ultrafast bootstrap with 1000 replicates (-bb 1000) [73].

70

https://github.com/Snitkin-Lab-Umich/variant_calling_pipeline
https://github.com/Snitkin-Lab-Umich/variant_calling_pipeline


4.5.5 Insertion calling

Large insertions relative to the reference genome were called using panISa v0.1.4 [107].

4.5.6 Variant preprocessing

We preprocessed variants to include multiallelic sites and used the major allele method for

variant binarization, as described in Saund et al. [91]. SnpEff was used to predict the

functional impact of SNVs and indels (high, moderate, low, or modifier) [106]. Additionally,

we considered all insertions in or upstream of genes as high impact, and those downstream

of genes as moderate impact. Low impact variants were excluded from downstream analyses

as they likely do not confer resistance and may induce noise into the analysis.

4.5.7 Identification of putative resistance genes

Known resistance genes

We consider the following genes known (canonical) resistance genes: mgrB, phoP, phoQ,

crrA, crrB, pmrA, and pmrB [141]. We group variants in known resistance genes into the

following categories, in order of decreasing confidence:

1. Known: experimentally confirmed resistance variants, including loss-of-function vari-

ants in mgrB [141, 142, 143, 144].

2. Known site: the variant occurs at a site where there is an experimentally confirmed

resistance variant, but that specific amino acid change has not been experimentally

confirmed [145, 146, 147, 148].

3. Putative: nonsynonymous or disruptive variants in known resistance genes where >60%

of the variants are present in resistant isolates.

We define the set of all of these as resistance variants.
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Genome-wide association study

We performed a burden test using treeWAS v1.0 [149], a convergence-based GWAS method,

as our sample size is relatively small and resistance is a very convergent phenotype. A burden

test increases power to detect resistance genes, and convergence-based methods control for

the structure of the phylogeny more than mixed model methods. For GWAS, we included

only isolates with no mutations in known resistance genes as we were most interested in

identifying novel resistance genes, and because the entire dataset contained a number of

susceptible isolates with known resistance variants that would have confounded the analysis.

We used pyseer v1.3.6 [150] to calculate the number of unique patterns and determine a

p-value cutoff (p < 9.47e-5). Putative resistance genes were considered ones that were

identified as significant by treeWAS, had more than one convergence event on the phylogeny,

and >60% of all the variants in the gene were found in resistant isolates (including isolates

with variants in canonical resistance genes). Variants within these genes were considered

putative resistance variants using the same definition as for known resistance genes. Using

these requirements, we included four putative resistance variants from two putative resistance

genes based on the GWAS results.

4.5.8 Identification of putative suppressor variants

We define putative suppressor variants as those in resistance genes where >60% of isolates

with the variant are susceptible and contain a resistance variant.

4.5.9 Determination of isolate resistance group

We assigned each isolate into one of four categories (Figure 4.S3). Clusters were identified

using the get clusters function in regentrans (https://github.com/Snitkin-Lab-Umich/

regentrans). The four categories are:
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1. Resistant singletons: resistant isolates that do not cluster on the phylogeny, or that

cluster but contain distinct resistance variants.

2. Resistant clusters: resistant isolates that cluster on the phylogeny and contain the same

resistance variant. Additionally, if a cluster on the phylogeny has unknown resistance

variants, we also defined it as a resistant cluster.

3. Susceptible revertants: susceptible isolates that contain a putative resistance-conferring

variant.

4. Susceptible non-revertants: susceptible isolates that do not contain a putative resistance-

conferring variant.

4.5.10 Calculation of time-scaled haplotypic density

We calculated time-scaled haplotypic density (THD) for each isolate with the R package thd

v1.0.1 [131] using the KPNIH1 reference genome length (5,394,056 base pairs), a mutation

rate of 1.03e-6 [21], the time scale parameter, and a timescale of one year. Pairwise single

nucleotide variant distances were calculated with the dist.dna function in ape v5.4.1 [118]

(model = ′N′, pairwise.deletion = TRUE). Significant differences between THD of different

isolates were determined using Wilcox tests.

4.5.11 Calculation of previous colistin use odds ratios

We calculated Fisher’s exact odds ratios and 95% confidence intervals using the R package

exact2x2 v1.6.5 [151].
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4.5.12 Data visualization

We performed all data visualization in R v4.0.2 [110] using the following packages: tidyverse

v1.3.0 [114], ggtree v2.2.4 [116, 117], pheatmap v1.0.12 [152], ggplotify v0.0.5 [153], and

cowplot v1.1.0 [115].

4.6 Supplement

4.6.1 Figures

Figure 4.S1: Colistin resistance occurred across time and geography.

R=resistant, S=susceptible.
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Figure 4.S2: The majority of colistin resistance can be explained by variants in known
resistance genes.
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Figure 4.S3: Toy example of how resistance groups are defined.

Note that susceptible revertants are defined by the presence of a resistance variant, rather
than a putative suppressor variant. See methods for more details. Heatmap columns are
each a different variant found in a resistance gene. R=resistant, S=susceptible.
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Figure 4.S4: The two clonally expanded resistance variants occur across multiple LTACHs
in California.

10/11 LTACHs in the Los Angeles area have the variant, as well as one LTACH in the San
Diego area.

77



Figure 4.S5: Putative resistance and suppressor variants in canonical and non-canonical
resistance genes.

Columns are variants and rows are isolates. All variants except the last panel are from
canonical resistance genes. R=resistant, S=susceptible.
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Figure 4.S6: Schematic of the molecular pathway of canonical colistin resistance genes.

4.6.2 Table

Table 4.S1: Resistance variants.

Gene Variant type Impact Site type Variant Isolate count

mgrB SNV high known Trp47* 1
mgrB SNV high known Lys43* 1
mgrB SNV high known Gln30* 41
mgrB SNV high known Gln22* 1
mgrB SNV high known Lys3* 6
mgrB Indel high known Ile12fs 6
mgrB Indel high known Leu8fs 2
mgrB Insertion high known NA 1
mgrB Insertion high known NA 1
mgrB Insertion high known NA 1
mgrB Insertion high known NA 2
mgrB Insertion high known NA 1
pmrB SNV moderate known Leu82Arg 1
crrB SNV moderate known Gln10Leu 1
crrB SNV moderate known Leu94Met 16
crrB SNV moderate known Pro151Ser 2
crrB SNV moderate known Pro151Ser 1
crrB SNV moderate known Gly183Val 1
mgrB SNV moderate known site Asp31Asn 1
phoQ SNV moderate known site Thr244Asn 85
pmrB SNV moderate known site Pro158Gln 1
pmrA SNV moderate known site Gly53Ser 1
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mgrB SNV moderate putative r Ile41Asn 1
mgrB SNV moderate putative r Asn25Thr 1
mgrB SNV modifier putative r 3
mgrB SNV modifier putative r 3
mgrB SNV modifier putative r 1
mgrB SNV modifier putative r 9
phoP SNV moderate putative r Gly53Val 1
phoQ SNV moderate putative r Leu308Gln 1
phoQ SNV moderate putative r Leu257Gln 4
phoQ SNV moderate putative r Thr248Pro 1
phoQ SNV moderate putative r Leu105Gln 2
phoQ SNV moderate putative r Leu62Pro 2
pmrB SNV moderate putative r Leu262Pro 1
pmrB SNV moderate putative r Ser203Pro 1
crrB SNV moderate putative r Ala200Pro 1
crrB Insertion high putative r NA 1
mgrB SNV moderate putative revert Thr21Pro 1
phoP SNV moderate putative revert Gln202Pro 3
phoP SNV moderate putative revert Thr189Pro 1
phoP SNV moderate putative revert His188Gln 1
phoP SNV moderate putative revert His188Arg 1
phoP SNV moderate putative revert Arg185Leu 3
phoP SNV moderate putative revert Arg111His 11
phoP SNV moderate putative revert Val18Ala 4
phoP Indel high putative revert Thr189fs 1
phoP Indel high putative revert His188fs 1
phoQ SNV moderate putative revert Gln481Leu 1
phoQ SNV moderate putative revert Ala451Thr 1
phoQ SNV moderate putative revert Gly443Ser 1
phoQ SNV moderate putative revert Arg433Leu 13
phoQ SNV moderate putative revert Asp417Val 2
phoQ SNV moderate putative revert Leu322Met 1
phoQ SNV moderate putative revert Glu123Lys 2
phoQ SNV moderate putative revert Ala36Thr 1
phoQ Indel high putative revert Leu344fs 1
phoQ Indel moderate putative revert Thr248 Leu254del 1
crrB Indel high putative revert Ser338fs 16
mgrB SNV moderate other Phe44Cys 1
mgrB SNV moderate other Leu24Pro 3
mgrB SNV moderate other Leu19Gln 1
phoP SNV moderate other Ala80Gly 3
phoQ SNV moderate other Ile462Ser 1
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phoQ SNV moderate other Leu365His 8
phoQ SNV moderate other Pro343Leu 3
phoQ SNV moderate other Thr332Pro 9
phoQ SNV moderate other Arg50Leu 7
phoQ SNV moderate other Gly33Ser 3
phoQ Insertion high other NA 1
pmrB SNV moderate other Pro95Gln 3
pmrB Insertion high other NA 1
PTS sugar transporter SNV moderate gwas r Ser72Ile 1
PTS sugar transporter Insertion high gwas r NA 1
qseC SNV moderate gwas r Val180Ala 9
qseC Indel moderate gwas r Arg12 Leu13del 1

Abbreviations: SNV, single nucleotide variant; PTS; phosphotransferase system; known,
known resistance variant; known r, known site, known resistance variant site; putative r,
putative resistance variant in a known resistance gene; putative revert, putative suppressor
variant; gwas r, putative resistance variant from GWAS.
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Chapter 5

Discussion

5.1 Major dissertation contributions

This dissertation integrates genomic and clinical data to gain insight into transmission and

adaptation of CRKP in the healthcare environment and provides a framework and corre-

sponding tools for applying the methods developed here to other MDROs. The following

sections summarize the methods, insights, and bioinformatic tools that this dissertation

contributes.

5.1.1 Regional pathogen transmission

Methods

In chapter two, whole-genome sequencing facilitated the investigation of endemic CRKP

ST258 transmission within and between regional healthcare facilities. First, we demonstrate

the utility of using public whole-genome sequences to investigate the extent of importation

into a region. Additionally, our comprehensive sampling of clinical isolates allowed us to

estimate the magnitude of within- and between-facility transmission and compare the extent

of between-facility transmission to patient transfer events. Finally, we combined the results

of our transmission analysis with patient factors to interrogate potential drivers of CRKP
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transmission within healthcare facilities.

Results and implications

We found that, while transmission between facilities is common, within-facility transmission

drives prevalence of CRKP at a given facility. Furthermore, we identified certain patient

factors that may influence the extent of within-facility transmission. These findings have

several implications for public health efforts to reduce CRKP spread in this healthcare net-

work. First, since within-facility transmission drives prevalence, focusing infection control

efforts on reducing intra-facility transmission at high-transmission facilities might reduce

CRKP prevalence more than coordinated efforts between facilities in this region. Second, fu-

ture epidemiological studies can investigate the potential patient risk factors associated with

transmission identified here [154]. Moreover, while these findings about how CRKP spreads

among LTACHs in the Los Angeles area may not be generalizable to other MDROs, regions,

or healthcare settings, the methods applied here can be used to investigate transmission in

other scenarios.

5.1.2 Pathogen evolution and adaptation

Methods

In chapters three and four, genomic analysis provided insight into the continued evolution

and adaptation of CRKP ST258 to the healthcare setting. In chapter three, we demon-

strate the utility of using machine learning to identify pathogen sublineages related to a

certain clinical factor. In chapter four, we integrate phenotypic, phylogenetic, genomic, and

clinical features to gain insight into antibiotic resistance evolution and further probe the

evolutionary dynamics of different ST258 subclades. Furthermore, our comprehensive sam-

pling enabled us to compare fitness differences between resistant and susceptible isolates in
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different sublineages, and corresponding clinical metadata allowed us to gain insight into

additional potential selective pressures related to antibiotic resistance evolution.

Results and implications

We identified an ST258 subclade (clade IIB) present in California LTACHs that appears to

have adapted to the respiratory tract and subsequently evolved increased virulence. Con-

cerningly, clade IIB includes large colistin resistant sublineages that have arisen from clonal

dissemination of resistance, in stark contrast to the sporadic resistance we observe in other

sublineages. Moreover, these clusters of resistant strains seem to be more transmissible than

susceptible non-revertant strains in the subclade, unlike the colistin resistant strains in other

subclades. This finding has important public health implications. First, this emergent and

possibly more virulent sublineage may continue to spread across facilities in the region and

could possibly be exported out of the region. This is particularly concerning as colistin resis-

tance appears to impart less of a fitness cost in clade IIB strains, indicating that this strain

may continue to spread and gain a foothold in the region, after which this antibiotic may

no longer be a viable treatment option for the many patients with these strains. Second,

our identification of an emerging and potentially more transmissible and virulent sublineage

highlights the importance of continued monitoring and surveillance of MDROs using inte-

grated methods such as whole-genome sequencing combined with patient and phenotypic

metadata to identify emerging strains.

5.1.3 Bioinformatic contributions

This dissertation led to the development of three open-source R packages. The regentrans

package implements methods to study within- and between-facility transmission in a regional

network of healthcare facilities and includes several of the methods used in chapter two. The

mikropml package implements the robust machine learning framework used in chapter three
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to make it more accessible for others to use in their own research. The prewas package

implements the method used in chapter four to preprocess bacterial genomic variants from

whole-genome sequencing for downstream analysis. These packages will allow other investi-

gators to apply the methods developed and used here to their own work.

5.2 Future work

The comprehensive dataset used in this dissertation allowed us to investigate many questions

related to CRKP regional transmission and evolution. Future work should aim to build upon

these analyses with additional studies that overcome some of the limitations of the dataset

used here. Limitations of this dataset include that we do not have rectal surveillance cultures,

multiple isolates per patient, longitudinal sampling of patients, or samples from other regional

healthcare facilities. While we were able to glean many insights into CRKP transmission

and adaptation solely using a dataset from LTACHs that includes a single clinical isolate

from each patient included in the study, this additional data would allow us to gain an even

more nuanced understanding of transmission and adaptation within and among patients and

healthcare facilities. The following sections describe future work that could be performed

using this extended dataset, and potential insights gleaned from this work.

5.2.1 Surveillance culturing paired with clinical samples

The vast majority of patients colonized with CRKP remain undetected when using clinical

cultures alone [155, 156, 157]. Performing rectal surveillance culturing of patients in addi-

tion to collecting clinical cultures would allow us to investigate the hidden portion of the

colonization iceberg that is not captured by clinical cultures, as well as differences between

gastrointestinal and extraintestinal isolates.
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Transmission

Collecting surveillance cultures in addition to clinical cultures would allow us to investigate

the full CRKP transmission network. We could probe the connections between patients with

gastrointestinal and extraintestinal colonization (or infection), and compare inferences made

between transmission networks generated with clinical cultures alone to those generated

with surveillance cultures. If most transmission events occur between patients with clinical

cultures, infection control efforts could focus on those patients rather than patients that

are only gastrointestinally colonized. However, if transmission between these two groups of

patients patients is common, surveillance culturing could provide important information for

reducing CRKP transmission.

Evolution and adaptation

Rectal surveillance culturing would also allow us to compare differences in CRKP isolates

from gastrointestinal and extraintestinal colonization. One question of particular interest is

whether clade IIB is enriched in extraintestinal colonization compared to the other clades,

which could indicate that strains from this clade are more likely to migrate from the gas-

trointestinal tract to the respiratory tract, and thus may be more likely to cause infections.

Furthermore, surveillance culturing could provide insight into the extent of undetected col-

istin resistance in CRKP, which may have implications for when and how to use colistin

in the clinic. More generally, consistent surveillance culturing paired with clinical cultures

allows for the early identification of more fit sublineages, potentially yielding insight into

how they arise, and providing the opportunity to attempt to curtail their spread.
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5.2.2 Multiple isolates per patient and longitudinal sampling of

patients

Patients can be multiply colonized with different CRKP strains or sequence types at the

same or multiple body sites, and patients can be colonized for extended periods of time,

leading to variation between strains from the same patient due to within-host evolution

[158]. Additionally, CRKP colonization is a risk factor for future infection [159]. Collection

of multiple isolates per patient at multiple points in time would allow us to investigate

transmission and within-host evolution in more detail.

Transmission

Including only a single isolate from each patient when investigating transmission limits the

resolution of the transmission network if many patients are co-colonized with multiple strains,

either at a single time point or longitudinally. Therefore, having multiple and longitudinal

isolates per patient would allow for a higher resolution analysis of patient-to-patient trans-

mission. Paired with surveillance cultures, this data would allow us to investigate how

incorporating within-host diversity into transmission analyses yields additional insight into

pathways of transmission both within and between healthcare facilities.

Evolution and adaptation

Longitudinal sampling of patients would also allow us to capture within-host evolution. Using

surveillance cultures plus clinical isolates at one or multiple body sites for each patient, we

could investigate genomic and clinical features related to the transition of pathogens from the

gastrointestinal tract to other body sites, and subsequent evolution at those body sites. This

may provide insight into the biological basis of translocation, and predictors of this event.

Of specific interest is the trajectory by which patients become colonized with clade IIB
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isolates in the respiratory tract to further probe the basis of this association. Longitudinal

samples would also allow us to capture within-host evolution of virulence and antibiotic

resistance, providing more direct evidence of genomic and clinical features associated with

these phenotypes. These investigations paired with experimental follow-up studies would

provide valuable insight into pathogen within-host evolution related to adaptation in the

healthcare environment.

5.2.3 Samples from other regional healthcare facilities

There is substantial evidence that LTACHs are hotspots of CRKP transmission [45], and

that interventions in these facilities reduce overall CRKP prevalence across the healthcare

network [49]. For this reason, our analysis focused on transmission and evolution in LTACHs.

However, acquisition of CRKP samples from other facilities in the healthcare network would

allow for a more nuanced understanding of inter-facility transmission dynamics. While we

have strong evidence that patient transfer often drives inter-facility transmission, direct

transfers between LTACHs are rare. In chapter two, we identified paths of maximum patient

flow between LTACHs that usually included at least one intermediate facility, and these paths

correlated well with the extent of transmission between LTACHs. It would be interesting to

determine whether these identified paths of maximum patient flow are the true transmission

paths, and whether there are features of the intermediate facilities, or patients at these

facilities, that drive between-facility transmission. These insights could provide valuable

information for regional infection prevention by highlighting facilities or facility-level factors

that amplify or reduce inter-facility transmission.
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5.2.4 Bioinformatic tools

In this dissertation, we took the approach of developing methods to answer specific questions

of interest, and subsequently creating open-source tools for these methods. This allowed us

to find gaps in the field and build tools to fill those gaps. The future work described above

should continue to follow this framework of developing user-friendly open source methods and

tools for genomic epidemiology. Additionally, these tools must be maintained and potentially

even expanded so that they remain useful to users over time.

5.3 Moving towards real-time genomic epidemiology

While this dissertation acts as a proof-of-principle study for investigating pathogen trans-

mission and adaptation in the healthcare environment, the ultimate goal is to integrate the

methods developed, and insights gained, here and elsewhere into real-time genomic epidemi-

ology in the public health system. This requires a coordinated surveillance and response

framework, increased bioinformatic analysis capacity at public health institutions, and clear

communication of findings between researchers, healthcare workers, and the public.

5.3.1 Building a coordinated surveillance and response framework

As we move from retrospective to real-time analyses, we will need a coordinated surveil-

lance and response framework for practical, yet informative and timely, sample collection,

sequencing, and analysis. This process could be facilitated by a unified healthcare system

that allows for streamlined access to patient clinical data and clinical cultures across regions.

Importantly, this pipeline must include collaboration and communication between clinicians,

epidemiologists, bioinformaticians, microbiologists, and public officials, as well as clear and

timely communication among experts and the community. Lessons learned from this disser-

tation that may be incorporated into this pipeline include the use of clinical cultures from
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LTACHs to investigate regional MDRO transmission, and the utility of clinical cultures for

identifying emerging clones and studying the dynamics of antibiotic resistance evolution.

5.3.2 Increasing bioinformatic analysis capacity at public health

institutions

In this dissertation we developed R packages that, paired with other pre-existing tools, can

be used by those with relatively little coding experience to study pathogen transmission and

adaptation. This is a very small contribution towards the ultimate development and imple-

mentation of tools that people with little to no programming expertise can use to analyze

data. Empowering individuals at local and regional healthcare institutions to perform pre-

liminary analysis of data collected from surveillance systems is key to establishing the ability

to perform local surveillance nationwide. However, collaborations and communication with

bioinformaticians and researchers with more area-specific expertise is also necessary to follow

up on findings that may require more complex analysis, as well as stay up to date on cutting

edge methods and findings. These insights should then be incorporated into public health

standards and policy. The importance of collaborations between public health and research

organizations highlights the interdisciplinary nature of this work, and the importance of clear

communication between these different individuals and entities.

5.4 Conclusion

The work in this dissertation was motivated by the goal of reducing nosocomial transmission,

morbidity, and mortality. Here, we focus on CRKP due to global prevalence, limited treat-

ment options, and high mortality rates. We develop and apply methods to study regional

transmission of endemic MDROs using whole-genome sequencing data and demonstrate that

these tools can provide actionable insights into where transmission is occurring. We also il-
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lustrate the utility of using machine learning for investigating patient outcomes, identify

different patterns of antibiotic resistance evolution in different genomic backgrounds, and

highlight the importance of continual high-resolution monitoring of MDROs for novel po-

tentially high-risk strains. These contributions represent a step in the direction toward our

long-term goal of real-time genomic epidemiology that integrates whole-genome sequenc-

ing, clinical metadata, and phenotypic data to monitor and control endemic and emerging

pathogens.
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