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ABSTRACT

Business operations often need long-term contracts to manage incentives over time. In this pro-
posal, we discuss three projects in designing long-term contracts in different incentive management
settings. In the first chapter, we study an optimal contract design problem, where a principal hires
an agent to repair a machine when it is down and maintain it when it is up. If the agent exerts effort,
the downtime is shortened, and uptime is prolonged. Effort, however, is costly to the agent and
unobservable to the principal. The principal, therefore, devises a mechanism to always induce the
agent to exert effort while maximizing the principal’s profits. In the second chapter, we consider a
service management setting, where the principal hires an agent to provide services to customers.
Customers request service in one of two ways: either via an online or a traditional, walk-in, channel.
The principal does not observe the walk-ins, nor does she observe whether the agent exerts (costly)
effort that can increase the arrival rate of customers. This leads to a novel so far unexplored double
moral hazard problem. We also present dynamic contracts that maximize the principal’s profit. In
the third chapter, we study the optimal incentive scheme for a long-term Poisson project with both
moral hazard and adverse selection. The project has a flow cost that must be reimbursed by the
principal, but the agent privately observes the cost that he incurs. The principal’s optimal contract is
a menu that contains several items, each of which is prepared for a specific group of agents. The
agents reveal their costs immediately after they pick their preferred contract. We fully characterize
the optimal contracts in the case of two types of agents. When the number of agent types is infinite
and the cost distribution is continuous, we formulate an easy-to-compute upper bound optimization
problem to the original problem. This optimization problem further provides a way for us to design
a menu of contracts. Our numerical study illustrates that the proposed menu of contracts is indeed
optimal with commonly used distributions.
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CHAPTER 1

Introduction

Business operations often need long-term contracts to manage incentives over time. For example,
a firm needs to continuously motivate its sales force or R&D team to work hard. Further, firms
usually outsource maintenance activities to specialized companies in the airline, aerospace, defense,
and mining industries, that often rely on complex, heavy, and critical equipment. However, it may
be hard for firms to observe whether maintenance companies put sufficient resources into providing
the best service, which gives rise to incentive issues. In service management settings, many service
organizations have individual locations that are managed by agents on behalf of the owners. In such
organizations, the owners do not have full visibility into agents’ operations. Thus, the organizations
need to provide incentives for the agent to behave in their best interest. Furthermore, in such
incentive management settings, the firm not only cannot see the agents’ actions but also does not
know their capabilities. In this dissertation, we study three different inventive management problems.
In each of the problems, we help firms design long-term incentive schemes to incentivize the agents
to behave in their best interests. Specifically, we formulate constrained, continuous-time, stochastic
optimal control problems, and derive optimal contracts with simple, intuitive structures.

In Chapter 2, we study an optimal contract design problem in a machine repair and maintenance
setting. Specifically, a principal hires an agent to repair a machine when it is down and maintain
it when it is up and earns a flow revenue when the machine is up. Both the up and down times
follow exponential distributions. If the agent exerts effort, the downtime is shortened, and up-time
is prolonged. The effort, however, is costly to the agent and unobservable to the principal. We
study optimal dynamic contracts that always induce the agent to exert effort while maximizing
the principal’s profits. We formulate the contract design problem as a stochastic optimal control
model with incentive constraints in continuous time over an infinite horizon. Although we consider
the contract space that allows payments and potential contract termination time to take general
forms, the optimal contracts demonstrate simple and intuitive structures, making them easy to
describe and implement in practice. Most of the previous literature on maintenance and repair has
largely ignored the agency issues. The few papers studying maintenance outsourcing contracts only
consider static or repeated single-period settings. We contribute to the literature by considering
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a dynamic principal-agent framework where the agent’s actions are time-dependent. Further, the
agent is responsible for both repair and maintenance in our setting which makes the problem more
complex, and the optimal solution more intricate. We find two intricate and interesting features in
the optimal contract: First, it is possible that the principal rewards the agent with an amount more
than the minimum necessary to incentivize the effort, i.e. the incentive compatibility constraints
are not always binding. Second, to incentivize the agent, the principal may randomly terminate the
agent.

In Chapter 3, we consider a stylized incentive management problem over an infinite time horizon,
where the principal hires an agent to provide services to customers. Customers request service
in one of two ways: either via an online or a traditional walk-in channel. The principal does not
observe the walk-ins, nor does she observe whether the agent exerts (costly) effort that can increase
the arrival rate of customers. This creates an opportunity for the agent (i) to divert cash (that is, to
under-report the number of walk-in customers and pocket respective revenues) and also (ii) to shirk
(that is, not to exert effort), thus, leading to a novel and so-far-unexplored double moral hazard
problem. To address this problem, we formulate a constrained, continuous-time, stochastic optimal
control problem and derive an optimal contract with a simple, intuitive structure that includes a
payment scheme and a potential termination time of the agent. We extend the model to allow the
principal to either (i) monitor the agent or (ii) manipulate the relative attractiveness of the online-
against the walk-in- channel (by allowing the use of dynamic price discounting). Both such tools
help the principal to alleviate the double moral hazard problem. We derive respective optimal
strategies for using those tools that guarantee the highest profits. We show that the worse the agent’s
past performance is, the more the principal should monitor the agent and the more aggressive online
channel price discounting should be. Finally, we demonstrate that sole monitoring of the walk-in
arrivals or the usage of the channel manipulation tool can, sometimes, make the agent better off, as
opposed to the situation when the principal monitors both the walk-in arrivals and effort, which
always makes the agent worse off.

Most of the literature in dynamic moral hazard assumes that both the principal and the agent
know the agent’s capability, while the only asymmetric information is the hidden action that the
agent is taking over time. In practice, however, the principal often does not know the agent’s
capabilities. For example, an employer (principal) may not know whether it is easy or hard for a
sales representative (agent) to increase customers’ arrival rate. In all these settings, the principal
needs to motivate the agent’s effort while not knowing the exact operating cost. In Chapter 4, we
study the optimal incentive scheme for a long-term Poisson project with both moral hazard and
adverse selection. Following standard results in mechanism design, the principal should provide a
menu of contracts, such that an agent with a specific cost chooses a particular contract (including
payments and termination) from this menu. In our setting, the contracts depend on the agent’s past
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performance, and one type of agent should not have an incentive to choose a dynamic contract
for another type. Consequently, the contract design problem is very complicated, and it can no
longer be formulated as a classic dynamic program. We provide a novel solution approach based on
deterministic continuous-time optimal control for this problem. If there are two possible types of
agents with high or low cost, when the high-cost agent is too costly, he is asked to leave the system
to avoid inefficiency. For him to tell the truth, an immediate payment that is equal to what he can
get from mimicking the low-cost agent, namely the information rent, has to be rewarded to him.
When the high-cost agent is less costly, he can possibly be hired. Yet it could be that even being
hired; he would prefer mimicking the low-cost agent. Hence, an immediate payment that makes
up the difference to induce him to tell the truth is still required. If there is a continuum of possible
cost levels, we formulate an easy-to-compute upper bound optimization problem to the original
problem thanks to the deterministic optimal control formulation. This optimization problem further
provides a way for us to design a menu of contracts. Furthermore, we show that if the solution in
the upper bound calculation satisfies a simple condition, then the upper and lower bounds match,
which implies that our contract design is in fact optimal. Our numerical study illustrates that the
condition is often satisfied with commonly used distributions. In this case, the principal designs a
menu with a continuum of different items.

In summary, my research studies dynamic incentive design problems in different complex
settings in operations management. Although we consider general contract spaces, the optimal
contracts demonstrate simple and intuitive structures, making them easy to describe and implement
in practice.
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CHAPTER 2

Optimal Contract for Machine Repair and Maintenance

2.1 Introduction

In this paper, we study a dynamic contract design problem over an infinite horizon, in which a
principal hires an agent to more efficiently operate a production process (“machine”), which changes
between two states: up and down.1 The state of the machine is public information. The “up” state
yields a constant flow of revenue to the principal. The machine is subject to random shocks which
causes it to go “down.” When it is “down,” the machine can be repaired to be “up” again. Without
the agent, the machine stays in the up and down states for exponentially distributed random time
periods with certain baseline rates. The agent has the expertise to improve maintenance and repair
procedures by reducing the instantaneous rate for breaking down, and increasing the instantaneous
rate to recover from the down state, if the agent exerts effort. Exerting effort is costly to the agent,
and the effort cost may be different for repairing or maintaining the machine. Whether and when
the agent puts in effort is the agent’s private information. The principal would like to induce the
agent’s effort, and is able to commit to a long term contract, which involves payments and potential
termination contingent on public information. We allow general forms of payments, including both
instantaneous and flow payments. The principal is allowed to terminate the contract at any time,
including terminating the contract with a probability less than one when the machine changes state.
We also assume that the agent has limited liability. That is, the agent can decide to quit and never
owes money to the principal.2 Both players are risk neutral.

Although there is a wide literature on maintenance and repair, the majority of this literature is
focused on optimal maintenance and repair conducted by a central decision maker, and has largely
ignored the issues caused by agency. In many practical settings, however, maintenance and repair is
conducted by an agent. Maintenance outsourcing is quite common in airline, aerospace, defense

1 The material presented in this chapter is based on the paper [TSD21] co-authored with Peng Sun and Izak Duenyas.
2Limited liability is commonly assumed in contract theory, especially dynamic contract theory. Without it, the

model and analysis becomes easy, or even trivial. For example, the principal could simply sell the entire enterprise to
the agent up front, at a price that equals the efficient social surplus. This allows the principal to exact the entire surplus
and leaves the agent with zero surplus. It is worth noting that in our optimal contract, the IC constraint may not be
binding, which is also driven by limited liability.
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and mining industries, that often rely on complex, heavy and critical equipment [TTMP06]. Instead
of investing in the latest maintenance tools and facilities, and training in-house maintenance teams,
firms outsource maintenance activities to specialized companies [MW12]. It may be hard for firms to
observe whether maintenance companies put sufficient resources into providing best service, which
gives rise to agency issues. Therefore, our paper makes a contribution to the maintenance/repair
literature by tackling agency issues. In particular, we study a dynamic principal-agent framework, in
which we obtain optimal contracts among history dependent ones. Despite the complexity of history
dependent contracts, we demonstrate that the optimal contracts possess very simple structures that
are easy to compute and implement. Further distinguished from the existing service/maintenance
contract literature, we allow the agent to have limited liability and the ability to walk away at any
point in time. Therefore, our contracts need to satisfy participation constraints, which guarantee
that the agent stays before contract termination.

The paper also contributes to the dynamic contract design literature by considering an environ-
ment with two (machine) states. It is standard to formulate dynamic contract design problems as
continuous time stochastic optimal control problems with incentive compatibility constraints, in
which the agent’s “promised utility” (see, for example, [SS87]) constitutes the state space. Our state
space, however, also needs to include the machine state, which yields dynamics that do not appear
to arise in traditional settings without such a multi-state environment. The paper studies all of the
following three possible cases, although the main body of the paper is focused on the third one: (1)
the principal only needs the agent when the machine is down; (2) the principal only needs the agent
when the machine is up; and (3) the principal needs the agent for both types of work.

The classical maintenance literature is focused on optimal scheduling in a centralized context
(see, for example, [PV76], [PL94], [McC65], [BP65], [GGS01]). Several papers consider mainte-
nance outsourcing contracts involving a maintenance agent and a customer. In particular, [MA98]
study a game-theoretic model in which an agent offers several options of contracts to a customer,
including charging a fee for each repair during a given duration of time, or charging a lump sum fee
for repairing the machine whenever it breaks down. The customer decides whether to hire the agent
depending on the proposed contract. [MA99] extends the model to include multiple customers.
[AM00] further allows the agent to choose the number of customers and the number of service chan-
nels besides a pricing strategy. Following this line of work, [TTMP06] develop incentive contracts
to achieve channel coordination. [KCSS10] consider performance-based contracts for recovery
services where the disruptions occur infrequently when the agent is risk-averse. They compare two
types of widely used contracts, one based on sample-average downtime and the other based on
cumulative downtime according to the supplier’s ability to influence the frequency of disruptions.
A clear distinction of our paper is that we consider time-dependent dynamic contracts while the
aforementioned papers either consider static settings or repeated single-period settings. Other papers
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with static or repeated single-period settings include [TTT09], [Wan10], [PI15], [Bak06], [Coh87],
[TPK14]. A common assumption in this literature is that the agent decides on the effort level (or,
equivalently, capacity level) only once, then sticks to this level regardless of further outcomes. In
many settings, an agent is often able to adjust effort choices over time. If a contract ignores such
possibilities, the agent may lose the incentive to stick to the effort level as intended by the designer.
Our model avoids this incentive issue because it is dynamic.

[PZ00] is the first paper to consider a dynamic principal-agent model of maintenance contract
design in a discrete-time setting with a finite time horizon. In each period, if the machine is down,
a risk-averse manager (agent) could choose between high and low effort levels, which further
determine the probabilities that the machine comes back up in the following period. There is no
moral hazard issue when the machine is up. More fundamentally, the agent in their model has
access to borrowing and lending at the same rate, which means that they do not assume limited
liability. Limited liability is a key assumption widely adopted in the dynamic contract literature
(see, for example, [BMRV10], [GT16], [ST18]). Without it, the principal can essentially sell the
entire enterprise to the agent, and therefore align incentives in a rather trivial fashion. The long-term
optimal contract in [PZ00] is history-independent and renegotiation-proof. These nice properties
rely critically on the borrowing and lending interest rates being exactly the same, and the agent’s
utility is additively separable and exponential. Following their optimal contract, in case the machine
performance is bad for a period of time, the agent may have to borrow large amounts against future
income, resulting in a negative total future utility. We, on the other hand, assume limited liability,
which allows the agent to simply walk away (contract termination) instead of bearing a large debt.

The origin of the continuous time dynamic contract literature is often credited to the seminal
paper [San08], which considers a principal hiring an agent to control the drift of a Brownian motion.
Several papers have applied similar techniques in different settings with applications mostly in
corporate finance (see, for example, to name a few [DS06b],[BMPR07],[Fu15]).

Instead of controlling the drift of a Brownian motion, in our model, the agent exerts effort to
change the arrival rates of Poisson processes. Previous literature has studied one-sided problems,
i.e., either decreasing or increasing the arrival rate of a Poisson process. [BMRV10], for example,
considers a firm (principal) hiring a manager (agent) to exert private effort to decrease the arrival
rate of large losses, modeled as a Poisson process, when the two players have different time discount
rates. [Mye15] studies essentially the same model as in [BMRV10], except that the two players
share the same time discount rate. In contrast, [ST18] consider the case of increasing the arrival
rate of a Poisson process by the agent’s private effort. [Var17], [Sha17a], and [GT16] study similar
models with a finite number of arrivals and additional features, such as adverse selection issues or
multiple players.

Because of limited liability, the optimal contract structures are different for decreasing versus
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increasing arrival rates. The common theme between the one-sided cases is that the optimal dynamic
contracts often involve letting the promised utility to take a constant jump upon an arrival, which is
upward for the case of increasing the arrival rate, and downward for decreasing the arrival rate. Our
paper generalizes the previous literature by studying contracts that induce the agent to alternatively
increase and decrease two different arrival rates over time (increase the rate of repair, and decrease
the rate of failure). The combined control problem is more complex, and the optimal solution more
intricate. In particular, the dynamics of the promised utility following our optimal control policy is
not a mere combination of one-sided control policies.

Specifically, whenever the machine is repaired from a down state, the agent needs to be at
least rewarded with an amount (denoted as βd). This amount βd is set to exactly compensate the
agent’s effort to repair when the machine is down, so that the agent is (barely) willing to exert
effort. The reward could take the form of either an increase in promised utility or a direct payment.
Similarly, whenever the machine breaks down from an upstate, the agent needs to be penalized
with an amount (denoted as βu), set to be exactly enough to induce the agent’s effort to maintain
when the machine is up. However, due to limited liability, the principal cannot charge the agent
money. Therefore the penalty βu takes the form of a reduction of promised utility. When the agent’s
promised utility is already lower than βu, we cannot reduce the promised utility by βu anymore
since the agent is protected by limited liability. Instead, in the optimal contract, the principal applies
random termination to incentivize the agent to exert effort when the promised utility is low. The
exact optimal contract structure differ between the cases of βd ≥ βu and βd < βu. In both cases,
the optimal contracts possess interesting structures only if the revenue rate the principal accrues
when the machine is up is high enough.

If βd ≥ βu, the structure of the optimal contract is not quite surprising. The aforementioned
reward and penalties are always set at the minimum levels βd and βu respectively, and random
termination never happens. If βd < βu, however, the optimal contract has a much more complex
and delicate structure, and it has the following two intricate features.

First, it is possible that the principal rewards the agent with an amount more than the minimum
necessary to incentivize the effort, i.e, the incentive compatibility constraints are not always binding.
This is in contrast to previous papers (see, for example [San08], [BMRV10], [ST18]), where the
incentive compatibility constraints are always binding in the optimal contract.

Second, because of limited liability and incentive compatibility, the agent’s continuation utility
cannot be attained below a threshold when the machine is up. To mitigate this possibility, we need to
introduce random termination, where we randomly decide whether to terminate the agent or let the
continuation utility increase back up to the threshold for free. This random termination also appears
in [Mye15], in which the threshold is fixed at βu (using our paper’s notation). In our paper, however,
the threshold is endogenously determined and may be higher than βu. We use a “smooth-pasting”
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technique to derive this threshold. This technique is classical in optimal stopping problem [DP94]
and has been used in optimal contract literature (see, for example, [Zhu13], [CSX20]).

Overall, we consider the aforementioned two features as the most interesting and intricate
results of this paper. In particular, the first one appears new in the literature, while the second one
constitutes a major technical challenge in the analysis. Therefore, Section 2.4.2 contains the most
interesting results, while earlier sections allow readers to gradually ease into them.

Specifically, we introduce the model and derive the incentive compatibility constraints in Section
2.2. In Section 2.3, we derive simple incentive compatible contracts without termination. In Section
2.4.1 and 2.4.2, we characterize the optimal incentive compatible contract under the condition
βd ≥ βu and βd < βu, respectively. Section 2.4.3 summarizes all the results thus far. In certain
settings, it may be better for the principal not to always induce effort from the agent. Therefore,
in Section 2.5, we numerically compare the optimal incentive compatible contracts and two other
alternative contracts that only induce effort for one of the machine states. Formal derivation and
analysis of these alternative contracts are in the e-companion.

2.2 Model

Consider a principal operating a process (e.g. a “machine”) in a continuous time setting. At
any time t, the state of the machine, θt, is either up or down, denoted as u or d, respectively.
The principal receives a revenue at a positive rate R per unit of time when the machine is up.
When the machine is down, the revenue is zero.3 The machine remains in the up state for an
exponentially distributed random time with rate µ̄u > 0 before breaking down. Once down, it
takes an exponentially distributed random time with rate µ

d
> 0 to repair the machine back to state

u. There are many settings in which the above described situation arises. For example, factories
produce products to be sold for revenue when their equipment are working. Similarly, airlines only
generate revenue when their planes are functioning. (Obviously, most airlines have more than one
plane, and factories more than one machine. Our model can be considered as a building block for
multi-machine settings.)

The principal hires an agent to improve the process. Whenever the agent exerts effort (for
example, assigning sufficient personnel to this job), the instantaneous rate of breaking down
from state u is reduced to µu ∈ (0, µ̄u).4 Similarly, at state d, the agent’s effort increases the
instantaneous rate of recovering to µd > µ

d
. Effort is costly to the agent, and not observable to the

principal. Specifically, denote cu and cd to be the effort costs in states u and d, respectively. The

3It is without loss of generality to assume zero revenue rate when the machine is down. In fact, our results hold as
long as the revenue rate is lower when the machine is down.

4We assume two levels of effort for simplicity. The results do not change if the effort level is from an interval, and
the effort cost is linear in effort level.
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corresponding effort cost rate at time t is

c(θt) := cu1θt=u + cd1θt=d. (2.1)

At any point in time t, the public information includes all the time epochs the machines changes
state by time t. Formally, we denote a right-continuous counting process Nt to represent the total
number of public events, i.e., change of machine states, up to time t. Let FN be the filtration
generated by the initial state θ0 and the counting process N = {Nt}. Further denote an FN -
predictable ν = {νt} to represent the agent’s effort process, such that νt ∈ {0, 1} for any time t.
Specifically, νt = 1 and νt = 0 represent that the agent exerts effort and shirks at time t, respectively.
Therefore, at any point in time t with the state of the machine θt and the effort level νt, the arrival
rate of process N is

µ(θt, νt) :=
[
µuνt + µ̄u(1− νt)

]
1θt=u +

[
µdνt + µ

d
(1− νt)

]
1θt=d. (2.2)

We assume that the agent has limited liability, and we mainly focus our attention on contracts
that always induce effort from the agent. (In Section 2.5 and the e-companion, we also consider
contracts that induce effort only in one of the machine states.) Therefore, the principal needs to
reimburse the aforementioned effort costs in real time as flow payments whenever effort is expected.
As a result, the effort cost c(θt) becomes shirking benefit if the agent shirks at time t. This is a
standard treatment in the dynamic contracting literature (see, for example, [BMRV10]).

We further assume that the principal has the commitment power to a long-term contract based
on public information. Overall, a dynamic contract Γ = (L, τ, q) includes a payment process L, a
contract termination time τ , and a stochastic termination process q.

Specifically, denote an FN -adapted process L = {Lt}t≥0 to represent the cumulative payment
from the principal to the agent up to time t. The payment includes an instantaneous one, It,
and a flow with rate `t beyond the background payment c(θt) that reimburses effort, such that
dLt = It + `tdt. Limited liability implies It ≥ 0 and `t ≥ 0.

The contract not only includes payments, but also the possibility of terminating the agent at a
random time τ . We consider two ways of contract termination. First, at any point in time t when the
machine changes state (i.e., dNt = 1), we allow the principal to terminate the contract randomly,
with probability qt ∈ [0, 1], where the probability qt depends on all of the information on machine
state changes until time t, i.e., FNt -measurable. Therefore, the contract contains an FN -adapted
process q = {qt}t≥0 for random contract termination. Second, we also allow the principal to
terminate the agent depending (deterministically) on history FNt without randomization. As will be
clear later in the paper, allowing random termination is crucial to construct optimal contracts for
certain model parameter settings. The principal and the agent are both risk-neutral and discount
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future cash flows at rate r.5

The principal’s expected total discounted profit under a contract Γ and effort process ν is defined
as6

U(Γ, ν, θ0) = E
[∫ τ

0

e−rt(R1θt=udt− dLt − c(θt)dt) + e−rτvτ

∣∣∣∣ θ0

]
, (2.3)

where vτ is the principal’s total discounted future profit after terminating the agent. This value
clearly depends on the state of machine θτ at the termination time τ . It is easy to verify (see Lemma
A.1 in the Appendix) that vτ takes the following values for θτ = u and θτ = d, respectively,

vu :=
R

r
·

r + µ
d

r + µ̄u + µ
d

, and vd :=
R

r
·

µ
d

r + µ̄u + µ
d

. (2.4)

Given contract Γ that always reimburses effort cost before termination, and an effort process
ν, the agent’s expected total discounted utility is the cumulative payments minus the effort cost,
expressed as the following

u(Γ, ν, θ0) = E
{∫ τ

0

e−rt [dLt + (1− νt)c(θt)dt]
∣∣∣∣ θ0

}
. (2.5)

Therefore, given either initial state θ0 = u or θ0 = d, we can define a game between the two
players, in which the principal designs an optimal contract Γ that maximizes utility U(Γ, ν, θ0),
anticipating the agent’s effort process ν that maximizes u(Γ, ν, θ0). Throughout the paper, we focus
on studying contracts that induce the agent to always exert effort (so called “incentive compatible”
contracts).7 In the e-companion Section A.2.1 we provide a sufficient condition on model parameters
such that it is indeed optimal for the principal to only focus on incentive compatible contracts.

Incentive Compatibility

A contract Γ is incentive compatible (IC) if in equilibrium, the agent has the incentive to always
exert effort (to better maintain the machine so that the failure rate from state u drops to µu, and to
faster repair the machine so that it comes back up at rate µd from state d), i.e. ν∗ := {νt = 1}∀t∈[0,τ ].

5We assume equal discount rate between the two players, similar to [Mye15]. This is mostly for simplicity, although
one may also argue that having access to a complete financial market allows the two agents to hedge all risks and
use the risk-free interest rate and risk-neutral probabilities. Interestingly, one of the main findings of [Mye15], the
infinite back-loading issue when the two players share equal time discount, does not arise in our setting. We explain
this phenomenon and the underlying reasons in more detail in Section 2.4. If the two players have different discount
rates, the optimal contract structure appears to be much more intricate. We leave that for future research.

6Note that the expectation here, as well as in (2.5), is taken with respective to the stochastic process generated
from the effort process ν. This explains that in (2.3) we need to specify ν as an argument of the function. For ease of
exposition, we omit the explicit dependence between the expectation and ν in the main text of the paper.

7Allowing shirking complicates the analysis for dynamic contracts substantially. See, for example, [Zhu13] for a
reference of optimal contract design allowing shirking in a Brownian motion framework.
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That is, the contract is incentive compatible if8

u(Γ, ν∗, θ0) ≥ u(Γ, ν, θ0) , ∀FN -predictable effort process ν, θ′ ∈ {u, d}. (IC)

In this paper we focus on the class of incentive compatible contracts that always induce effort.
The contract design problem may be formulated as a stochastic optimal control problem, in

which the state is the agent’s promised utility at time t, defined as,

Wt(Γ, ν) = E
{∫ τ

t

e−r(s−t) [dLs + (1− νs)c(θs)ds]
∣∣∣∣Ft}1{t ≤ τ}. (2.6)

It is clear that W0(Γ, ν) = u(Γ, ν, θ0) for θ0 consistent with F′. It is worth noting that the FN -
adapted process Wt is right-continuous, representing the agent’s continuation utility after observing
a potential arrival at time t and after a potential instantaneous payment It. In comparison, the
principal’s control processes, Lt and qt, are FN -predictable and left-continuous. The principal
schedules payments and stopping time through controlling the agent’s promised utility. Therefore
it is important to introduce process Wt− = lims↑tWs, the left-hand limit of Wt, which is left-
continuous and FN -predictable (assuming W0− = W0). At any time t, Wt− captures the agent’s
continuation utility before knowing about the potential arrival and instantaneous payment at time t.
Similarly, for the right-continuous state process θt, we define left-continuous process θt− = lims↑t θt

to represent the state of the machine right before time t for any t > 0.
The contract also needs to ensure the agent’s participation at any point in time. That is, the agent’s

promised utility needs to be non-negative (also called the individual rationality (IR) condition),
i.e.,9

Wt ≥ 0, ∀t ≥ 0. (IR)

The following lemma provides the evolution of the agent’s promised utility Wt under any
contract Γ, which is often called the promise keeping (PK) condition in the dynamic contract
literature. It also provides an equivalent condition for (IC) in terms of the promised utility Wt.

Lemma 2.1 For any contract Γ, there exists an FN -predictable process Ht such that for t ∈ [0, τ ],

dWt =
{
rWt− − (1− νt)c(θt)− [(1− qt)Ht − qtWt−]µ(θt, νt)− `t

}
dt

+ [(1−Xt)Ht −XtWt−] dNt − It, (PK)

in which Bernoulli random variable Xt takes value 1 with probability qt.

8All the inequalities in this paper are to be understood as almost surely.
9If one only considers (IR) for time 0, the contract design is trivial. The principal can extract the entire surplus of

the first best outcome by offering zero utility to the agent.

11



Furthermore, contract Γ satisfies (IC) if and only if

(1− qt)Ht − qtWt− ≤ −βu, for θt− = u, and

(1− qt)Ht − qtWt− ≥ βd, for θt− = d, (2.7)

for all t ∈ [0, τ ], where

βu :=
cu

µ̄u − µu

and βd :=
cd

µd − µd

. (2.8)

Finally, we need −Ht ≤ Wt− for all t ≥ 0 in order to satisfy (IR).

The (PK) condition is a standard result for the dynamics of the agent’s promised utilities over
time. To facilitate understanding, it is helpful to consider a heuristic derivation based on discrete
time approximation. Consider a small time interval [t, t + δ). Assume that the agent’s promised
utility Wt− evolves continuously to Wt+ over this interval, unless there is a change of machine
state, with probability µ(θt, νt)δ. With a change of state, the agent’s total future utility takes a jump
to either Wt− +Ht with probability 1− qt, or to 0 with probability qt (termination). Also taking
into consideration the shirking benefit (1− νt)c(θt)δ, flow payment `tδ, and time discount rate r
(for simplicity, ignore the instantaneous payment It), the above description of the discrete time
approximation of the promised utility implies the following,

Wt− =(1− νt)c(θt)δ + `tδ + µ(θt, νt)δ [qt · 0 + (1− qt)(Wt− +Ht)] + [1− (µ(θt, νt) + r)δ]Wt+.

As δ approaches 0, replace it with dt, and rearrange terms, we observe that the smooth change
Wt+ −Wt− equals

{
rWt− − (1− νt)c(θt)− `t − [(1− qt)Ht − qtWt−]µ(θt, νt)

}
dt,

which recovers the terms involving dt in (PK). The change of machine state (dNt = 1) results in the
agent’s total future utility changing by either Ht or −Wt− (termination), depending on the outcome
of the random variable Xt. Therefore, the change is [(1−Xt)Ht −XtWt−] dNt. Finally, this total
change can be delivered by a direct instantaneous payment It in addition to the change in the
promised utility dWt. That is, dWt + It = [(1−Xt)Ht −XtWt−] dNt when dNt = 1. Therefore,
we can consider the process Ht as the total change of the agent’s total future utility if the state
changes at time t, which consists of the change in the agent’s continuation utility dWt and the
instantaneous payment It that the agent receives. Rigorously, in the continuous time setting, the
FN -predictable process Ht is left-continuous.

The values βd and βu defined in equation (2.8) reflect the ratios between effort cost and
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improvement in the repair or failure rates, which reveal the intuition behind the (IC) condition. For
an intuitive interpretation of these two important quantities, consider, for example, the up state.
If the principal could charge the agent an amount βu upon the machine breaking down, the agent
is then indifferent between exerting effort or not. This is because over a small time period δ, the
shirking benefit, cuδ, exactly compensates the additional expected charge, βu(µ̄u−µu)δ. Condition
(2.7) states that instead of directly charging the agent, an incentive compatible contract needs to
reduce the agent’s promised utility by at least βu. The term βd has a similar interpretation for the
down state. Following standard IC conditions in [San08] and [BMRV10], one would only obtain
the result that the magnitude of Ht is larger than βd or smaller than −βu. Our (IC) condition in
Lemma 2.1, however, generalizes the standard form due to the consideration of contract termination.
In Section 2.4.2, we show that the probability of random termination, qt, could indeed be positive in
the the optimal contract.

Later in the paper we show that the structure of the optimal contract, including whether and
when the incentive compatibility constraints (2.7) are binding, depends on whether βd ≥ βu or
βd < βu. The intuitive interpretation of these conditions follows the definition of βu and βd. For
example, if the costs of effort are the same in the two machine states (i.e., cd = cu), then βd ≥ βu

means that the agent is able to decrease the break down rate more than increase the recovery rate
(µ̄u − µu ≥ µd − µd

).
Finally, (IR) requires that the agent’s promised utility must be non-negative at all times, including

right after a downward jump of the promised utility. As explained above, (IC) requires that in the up
state a downward jump has to be at least βu. Therefore, when the state θt = u, we can only satisfy
constraint (2.7) when Wt− ≥ βu. When the machine is up and Wt− becomes too low (say, lower
than βu), however, the principal needs to randomize the promised utility to either 0 (termination), or
back to a threshold. This is why we need the randomized termination process qt for the optimal
contract. Interestingly, as we will show in Section 2.4, random termination only occurs if βd < βu.
In fact randomization may even occur when Wt− > βu. If βd ≥ βu, on the other hand, the optimal
contract always guarantees Wt− ≥ βu when the machine is up.

In the next section, we first introduce two simple and stationary incentive compatible contracts,
which help us lay the foundation of the optimal incentive compatible contracts.

2.3 Benchmark contracts

Before introducing the optimal contract, it is worth studying simple incentive compatible
contracts in this section. These contracts are stationary in nature – the contract terms only depend
on the state of the machine and its transitions, and not on time otherwise. This implies that they
never terminate the agent. In fact, if we do not allow contract termination, they are indeed optimal
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incentive compatible contracts. In the next section, however, we show that optimal contracts that
allow termination are based upon, but outperform these simple ones. In particular, it is important to
distinguish between the two cases βd ≥ βu and βd < βu, which are studied separately in the two
subsections, respectively.

2.3.1 βd ≥ βu

The contract is indeed very simple: the principal pays an instantaneous bonus βd − βu when the
machine recovers from state d, followed by a flow payment with rate

`∗1 = µdβd + (r + µu)βu (2.9)

when the machine remains in state u. We denote Γ̄ to represent this contract.
In order to prove that Γ̄ is incentive compatible, it is important to derive the agent’s promised

utility following this contract. In fact, we claim that the promised utility remains a constant for each
machine state. Define w̄u and w̄d as these two promised utilities when the machine’s state is d and
u, respectively,

w̄d =
µdβd
r

, and w̄u = w̄d + βu. (2.10)

It is easy to verify that contract Γ̄ is incentive compatible. In fact, whenever the machine breaks
down, the promised utility changes from w̄u to w̄d, with a downward jump of exactly Ht = −βu.
Upon recovery from state d, the promised utility first takes an upward jump of βu, and then the
agent is given a direct payment of βd − βu resulting in Ht = βd. Therefore, incentive compatibility
constraints (2.7) are always binding, with aforementioned Ht and qt = 0. This further ensures that
the agent always exerts effort. Regarding the promise keeping constraint, for state θt = u, if we set
Wt = w̄u and dLt = `∗1dt, then (PK) becomes dWt = −βudNt. Similarly, for state θt = d, setting
Wt = w̄d, and dLt = (βd − βu)dNt, (PK) becomes dWt = βudNt. Therefore, contract Γ̄ and our
claimed promised utilities (2.10) indeed satisfy both (PK) and (IC) constraints.

Besides the mathematical arguments above, it is in fact intuitive that contract Γ̄ provides the
incentive for the agent to exert effort. When the machine is down, the prospect of an instantaneous
bonus followed by a flow payment provides the incentive for the agent to repair the machine faster.
When the machine is up, the flow payment incentivizes the agent to better maintain and prolong the
period of payment. In particular, the flow payment `∗1 has two components. The first component is
the interest payment rw̄u, so that the agent’s promised utility is kept at w̄u. The second component
is the rent µuβu whenever there is no arrival (machine breaking down).

Furthermore, because contract Γ̄ never terminates the agent, we have the following expressions
for the total discounted societal values (summation of the principal and the agent’s utilities) at states
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u and d, respectively (see Lemma A.1 in the Appendix for the derivations).

v̄d =
µd(R− cu)− (r + µu)cd

r(r + µd + µu)
and v̄u =

(r + µd)(R− cu)− µucd
r(r + µd + µu)

. (2.11)

Consequently, the principal’s utilities under contract Γ̄ for state u and d are, respectively,

U(Γ̄, ν∗,u) = Ūu := v̄u − w̄u and U(Γ̄, ν∗,d) = Ūd := v̄d − w̄d. (2.12)

Although this simple contract Γ̄ is incentive compatible, it is actually not optimal, because it
only uses the “carrot” of payments without the “stick” of termination. At the end of this section,
Proposition 2.7 shows that this simple contract is actually the optimal incentive compatible contract
if the principal is not allowed to terminate the agent. Besides introducing this simple contract to
build intuition, we would like to clarify the simple contract’s connection with the optimal contract.
According to the optimal contract, it is possible that the promised utilities eventually become w̄u

and w̄d for states u and d, respectively. From that point on, the optimal contract becomes identical
to the simple contract Γ̄, and the agent is never terminated. However, following the optimal contract,
it is also possible that the promised utilities never reach w̄u and w̄d before the agent is terminated.

Finally, it is clear that the society is better off with contract Γ̄ compared with not hiring the
agent at all if v̄u and v̄d are at least as high as vu and vd defined in (2.4). In fact, when βd ≥ βu,
one can verify that v̄d ≥ vd readily implies v̄u ≥ vu. Furthermore,

v̄d ≥ vd (2.13)

is equivalent to

R ≥ hd :=
(
r + µ

d
+ µ̄u

) µdcu + (r + µu) cd
µd∆µu + (r + µu) ∆µd

. (2.14)

Intuitively, hiring the agent is beneficial only if the revenue rate R is high enough. In Section
2.4.1, we demonstrate that the structure of the the optimal contracts depends critically on whether
condition (2.13) holds.

2.3.2 βd < βu

The simple contract in this case, denoted as Γ̂, can be described in one sentence: it pays the
agent a flow payment with rate

`∗2 = (r + µu + µd)βu (2.15)

at state u.
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The promised utilities are the following two constants for the two machine states, respectively,

ŵd =
µdβu
r

, and ŵu = ŵd + βu. (2.16)

similar to w̄d and w̄u defined in (2.10). Similar to the analysis for Γ̄, we can verify that contract Γ̂

together with ŵd and ŵu satisfy (PK) and (IC). The expressions for the societal utility still follow
(2.11). The principal’s utilities under contract Γ̂ are, therefore,

U(Γ̂, ν∗,u) = Ûu := v̄u − ŵu and U(Γ̂, ν∗,d) = Ûd := v̄d − ŵd, (2.17)

for machine states u and d, respectively.
The overall feature of Γ̂ for the case of βd < βu is very similar to Γ̄ for the case of βd ≥ βu.

Later in Section 2.4.2.1, we show that the agent’s promised utility has a chance to eventually become
ŵd and ŵu following the optimal contract. After reaching that point, the optimal contract becomes
identical to Γ̂, and the agent is never terminated. At the end of Section 2.4.2, we present Proposition
2.7, which shows that this simple contract is actually the optimal incentive compatible contract if
terminating the agent is not allowed. Similar to `∗1, the flow payment `∗2 can also be decomposed
into two components, the interest payment rŵu, and the rent µuβu. Finally, parallel to the previous
case, when βd < βu, we have

v̄u ≥ vu (2.18)

is equivalent to

R ≥ hu :=
(
r + µ

d
+ µ̄u

) µucd + (r + µd)cu
µu∆µd + (r + µd) ∆µu

, (2.19)

and readily implies v̄d ≥ vd.
Despite these similarities between Γ̄ and Γ̂, it is worth noting an important difference between

them. Under contract Γ̂ of the current case, the incentive compatibility constraint (2.7) is not binding.
In fact, both the downward jump upon breaking down and the upward jump upon recovery are both
βu (i.e.,Ht = βu

(
1θt−=d − 1θt−=u

)
). In particular, when the machine recovers, the upward jump

is higher than what is required in constraint (2.7). Given our claim in the last paragraph, it means
that the incentive compatibility constraint may not be binding in the optimal contract. This may
appear surprising, given that we are not aware of other optimal dynamic contract with non-binding
incentive compatibility constraint in the literature. We will explain why this phenomenon arises in
our setting after introducing the optimal contract in Section 2.4.2.
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2.4 Optimal Contract

In this section, we study and characterize in detail the optimal contracts that induce the agent
to always exert effort before termination. Similar to the previous section, here we first study the
case βd ≥ βu before βd < βu, in Sections 2.4.1 and 2.4.2, respectively. In the end we summarize
main results for different cases in Section 2.4.3. It is worth noting that the more interesting and
intricate results of this paper, including non-binding incentive compatible constraint, are presented
in Section 2.4.2.

2.4.1 The Case βd ≥ βu

The structure of the optimal contract in this case, although new, may not appear surprising
to readers already familiar with the continuous time contracting literature ([BMRV10], [ST18]).
However, this section provides a gentle preparation to the more complex and delicate structure in
the optimal contract for the case βd < βu next.

In Section 2.4.1.1, we first introduce the optimal contract under condition (2.13), which is
equivalent to (2.14). Section 2.4.1.2 further provides the principal’s value functions under the
optimal contract and the proof of optimality. Finally, Section 2.4.1.3 studies what happens when the
condition (2.13) does not hold.

2.4.1.1 Optimal IC contract when v̄d ≥ vd

In this subsection, we develop a contract Γ∗1, and leave the proof of optimality to the next
subsection. The contract keeps track of the agent’s promised utility. Figure 2.1 depicts two sample
trajectories of the agent’s promised utility in the proposed contract where the machine starts at state
θ0 = d.

In Figure 2.1, we have w̄d = 0.74, w̄u = 1.01 and βu = 0.27 < βd = 0.33. The policy starts
from W0 = w∗d = 0.4685. The two dashed horizontal lines represent the level of w̄u and w̄d,
respectively. The upward jump level when the machine is repaired is βd and the downward drop
level when the machine breaks down is βu.

The promised utility starts from an initial promised utility W0 = w∗d ∈ (0, w̄d). While repairing
the machine, this utility keeps decreasing (the exact form to be specified later) until either the
machine is repaired or the utility reaches 0. If the machine has not recovered before the utility Wt

reaches 0, the principal terminates the agent. The dotted curve in Figure 2.1 represents this situation,
where the promised utility decreases to zero at time τ .

On the other hand, if the machine recovers at time twithWt− > 0, the utilityWt takes an upward
jump of level min{βd, w̄u −Wt−} and the agent is paid (Wt− + βd − w̄u)+ instantaneously. See
the solid curve in Figure 2.1, which represents another sample trajectory. In the time interval [0, t1),
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Figure 2.1: Two sample trajectories of promised utility with µu = 6, ∆µu = 3, µd = 5, ∆µd = 2,
cu = 0.8, cd = 1, r = 0.9, R = 7.5.

the promised utility is decreasing over time. At t1, it jumps up by βd because Wt1− < w̄u−βd. The
corresponding instantaneous payment is 0. Then the contract continues with the agent maintaining
the machine in the up state, while the promised utility keeps increasing until either it reaches w̄u,
or the machine breaks down. During (t1, t2), the promised utility is increasing over time. At time
t2, the machine breaks down and the promised utility drops by βu. Again, in (t2, t3), the agent is
repairing the machine with the promised utility decreasing over time. After t3, the machine does not
break down before the promised utility reaches w̄u at time t̂3, at which point the flow payment `∗1
(defined in (2.9)) starts. After time t̂3, the agent’s promised utility jumps back and forth between w̄u

and w̄d. The contract becomes exactly the same as the simple contract Γ̄ introduced in the previous
subsection. In the following, we provide a formal definition of the proposed optimal contract.

Definition 2.1 For a machine starting from state θ ∈ {u,d}, define contract Γ∗1(w) = (L∗, q∗, τ ∗)

as the following, where w ∈ [βu, w̄u] if the initial state is u, and w ∈ [0, w̄d] if the initial state is d.

• The dynamics of the agent’s promised utility Wt follows

dWt =
[
r(Wt− − w̄d)dt+ min{w̄u −Wt−, βd}dNt

]
1θt−=d

+
[
(rWt− + µuβu)1Wt−<w̄udt− βudNt

]
1θt−=u, (DW1)

from the initial promised utility W0 = w.

• The payment to the agent follows dL∗t = `∗11Wt−=w̄u1θt−=udt+(Wt−+βd− w̄u)+
1θt−=ddNt.
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• The random termination probability is q∗t = 0, (i.e. there is no random termination) and the

termination time is τ ∗ = min{t : Wt = 0}.

One can verify that the dynamics of Wt in the proposed optimal contract follows (PK), with
Ht = βd1θt−=d − βu1θt−=u, dLt = dL∗t and qt = q∗t . Also, in the proposed optimal contract, the
incentive compatible constraints (2.7) are binding, and the principal never randomly terminates
the agent. It is only possible to terminate the agent when the machine is down (note that we do
not terminate the agent exactly at the point when the machine goes down but when the promised
utility reaches zero, e.g., after a long enough down period). On the other hand, when the machine is
up, the agent’s promised utility is always greater than βu. This is because if the initial state of the
machine is up, the initial promised utility would be at least βu and keeps going up until the first
break down; after the agent has finished repair once, the promised utility would always jump to a
level above βd ≥ βu to start the up state.

It is worth noting that payment in Definition 2.1 involves both instantaneous payment and flow
payment. And payment only occur when the promised utility is high enough such that the optimal
contract becomes the benchmark Γ̄ defined in Section 2.3.1.

Remark 2.1 We want to emphasize that the principal has three options to provide incentives:

(1) a flow payment `t only in the up state motivates the agent to prolong the up state; (2) an

instantaneous payment It when the state changes from down to up motivates the agent to speed up

the machine recovery; and (3) when the machine has been down for too long, the agent is threatened

with contract termination. In the next subsection, when we study the case of βu > βd, contract

termination may also occur when the machine changes state. In the optimal contract, we usually

do not initiate payments immediately. Instead, the agent’s continuation utility keeps increasing

in the up state, implying that the start of the flow payment is approaching. In the down state, the

continuation utility keeps decreasing, as the threat of termination looms larger. The upward and

downward jumps upon state changes also bring the continuation utility closer to either payment or

termination. Therefore, the continuation utility Wt can be perceived as a proxy to the timing of the

payment and contract termination.

Remark 2.2 The contract Γ∗1(w) is optimal but not unique. When the principal and the agent share

the same discount rate, the principal can delay a payment to a later time with the corresponding

interests. In particular, the principal can spread the instantaneous payment as additional flow

payment when the machine is up. Correspondingly, the principal can increase the upper bound

of the agent’s continuation utility at state u to w̃u := w̄d + βd > w̄u, while increasing the flow

payment from the original `∗ = rw̄u + µuβd to rw̃u + µuβd when the continuation utility reaches

this upper bound. When the continuation utility is below w̄u, the dynamics of the continuation

utility is the same as it in contract Γ∗1(w). When the continuation utility Wt− ∈ (w̄u, w̃u] at state
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u, machine breaking down still brings the continuation utility to w̄d. In this case, the increase

rate of the continuation utility is rWt− + µu(Wt− − w̄d), which is higher than the original rate

rWt− + µuβd. This alternative contract does not involve instantaneous payment, but has the same

performance as Γ∗1(w) starting from the same continuation utility w.10

Remark 2.3 (Implementation) In practice, a principal can implement contract Γ∗1 by stationing a

meter that shows changing Wt (promised utility to the agent) over time. At time t, if the machine is

up, the meter keeps increasing at an ever-increasing speed µuβu + rWt− per period of time (where

µuβu is the rent for keeping the machine running, and rWt− is the interest to the agent), and stops

at w̄u. When the machine is down, the meter keeps decreasing with a speed −rWt− + rw̄d (where

rw̄d is a constant punishment for not having finished repairing, and rWt− is again the interest to

the agent). The agent is terminated when the meter reaches 0. When the machine breaks down, the

meter jumps down βu. When the machine recovers, the meter jumps up by βd, unless the jump is

clipped by w̄u. The agent receives incentive payments of rw̄u + µuβu per unit of time only when the

meter reaches w̄u. In addition, the agent is continuously reimbursed at rate cθ for his effort cost

when the machine’s state is θ ∈ {d,u}. This form of payment can be interpreted as a “base rate”

of pay in addition to the aforementioned incentive pay, which is easy to explain in practice.

2.4.1.2 Value functions and proof of optimality when v̄d ≥ vd

In this section, we first heuristically derive the dynamics of the principal’s utility, as a function of
the agent’s promised utility under the proposed optimal contract Γ∗1 defined in Definition 2.1. Later,
in Proposition 2.2, we prove that our derived value function is the actual optimal value function of
the principal.

Specifically, let Jd(w) and Ju(w) represent the principal’s utility at time t when the agent’s
promised utility is w if the machine’s state is d and u, respectively. Following a standard heuristic
derivation (see Appendix A.1.4.1), we obtain the following system of differential equations. In
particular, for state d and w ∈ [0, w̄d], the differential equation is

(µd + r)Jd(w) = −cd + r(w − w̄d)J ′d(w) + µdJu(min{w + βd, w̄u})− µd(w + βd − w̄u)+.

(2.21)

10Here we present the complete mathematical formulation of the alternative optimal contract. The dynamic of the
continuation utility is

dWt =
[
r(Wt− − w̄d)dt+ βddNt

]
1θt−=d +

{[
(rWt− + µuβu)dt− βudNt

]
1Wt−≤w̄u

+[(rWt− + µu(Wt− − w̄d))1Wt−<w̃udt− (Wt− − w̄d)dNt
]
1Wt−∈(w̄u,w̃u]

}
1θt−=u, (2.20)

and payment dLt = (rw̃u + µuβd)1Wt−=w̃u1θt−=udt.
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For state u, the differential equation for w ∈ [βu, w̄u) is

(µu + r)Ju(w) = R− cu + (rw + µuβu)J ′u(w) + µuJd(w − βu) , (2.22)

with at w = w̄u,

(µu + r)Ju(w̄u) = R− cu + µuJd(w̄u − βu)− `∗1. (2.23)

The boundary conditions are

Ju(0) = vu and Jd(0) = vd, (2.24)

reflecting that the principal receives baseline revenues vd and vu (defined in (2.4)), upon terminating
the agent in states d and u, respectively.

For the interval [0, βu], we simply extend the function Ju(w) to be linear, that is,

Ju(w) = Ju(0) +
Ju(βu)− Ju(0)

βu
w, for w ∈ [0, βu]. (2.25)

As we have demonstrated, the agent’s promised utility never falls into the interior of this interval if
we follow the optimal contract according to Definition 2.1. However, having an extended definition
of Ju(w) for that interval is crucial for the the proof of optimality of the contract in Definition 2.1.
This is because the optimality proof needs to argue that contract Γ∗1 outperforms any other contract,
and a generic contract may bring the promised utility to this interval at state u.

Proposition 2.1 The system of differential equations (2.21)-(2.23) with boundary conditions (2.24)
and (2.25) has a unique solution: the pair of functions Ju(w) on [0, w̄u] and Jd(w) on [0, w̄d], both

of which are strictly concave with J ′u(w) ≥ −1 and J ′d(w) ≥ −1.

Following proposition 2.1, we can define w∗d and w∗u as unique maximizers of Jd(w) and Ju(w)

on [0, w̄d] and [0, w̄u], respectively. Next, we show that functions Jd(w) and Ju(w) are indeed the
value functions of the principal under contract Γ∗1(w), starting from a promised utility w at time 0

with the initial states θ0 = d and θ0 = u, respectively.

Proposition 2.2 For any state θ ∈ {u, d} and promised utilityw ∈ [0, w̄θ], we haveU(Γ∗1(w), ν∗, θ) =

Jθ(w). That is, functions Ju(w) and Jd(w) are equal to the principal’s total discounted utilities of

following contract Γ∗1 when the initial state of the machine is u and d, respectively.

Figure 2.2 provides a numerical example of the principal’s value functions Jd and Ju. To
implement the contract, the principal needs to designate the initial promised utility W0. The initial
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promised utility should be w∗d if the machine starts at state θ0 = d and should be w∗u if the machine
starts at state θ0 = u. Note that due to concavity, if Ju(βu) ≥ Ju(0), then w∗u ≥ βu. Otherwise, the
optimal initial promised utility w∗u = 0, and, in this case, it is better not to hire the agent if the initial
state of the machine is u.

Furthermore, it is worth noting that Jd(w̄d) = Ūd and Ju(w̄u) = Ūu, where Ūd and Ūu, defined
in (2.12), are the principal’s utilities under the simple contract Γ̄ introduced in Section 2.3.1. This
implies that Γ∗1 always (weakly) outperforms Γ̄. The suboptimality of the benchmark contract Γ̄ is
the difference between the peak of the value function Jθ and Ūθ if the system starts from state θ.

Figure 2.2: Principal’s Value functions with µu = 6, ∆µu = 3, µd = 5, ∆µd = 3, cu = 0.8, cd = 1,
r = 0.9, and R = 7.5.

In Figure 2.2, we have w̄d = 0.74, w̄u = 1.01 and βu = 0.27 < βd = 0.33. Ju(w∗u) = 2.388,
vu = 2.031 and Ju(w̄u) = Ūu = 1.012. Jd(w∗d) = 1.746, vd = 1.4 and Jd(w̄d) = Ūd = 0.632.

Finally, to show that the contract Γ∗1 is indeed optimal, in the next proposition, we first demon-
strate that functions Ju and Jd are upper bounds for the principal’s utility under any incentive
compatible contract Γ, if the machine starts at states u and d, respectively.

Proposition 2.3 For any incentive compatible contract Γ and any initial state θ ∈ {u,d}, we have

Jθ
(
u(Γ, ν∗, θ)

)
≥ U(Γ, ν∗, θ), in which we extend the function Jθ(w) = Jθ(w̄θ) − (w − w̄θ) for

w > w̄θ.

Therefore, we know that for any incentive compatible contract Γ and initial state θ,

U(Γ, ν∗, θ) ≤ Jθ (u(Γ, ν∗, θ)) ≤ Jθ(w
∗
θ) = U (Γ∗1(w∗θ), ν

∗, θ) ,

where the first inequality follows from Proposition 2.3, the second inequality follows from the fact
that w∗θ is the maximizer of Jθ, and the third equality follows from Proposition 2.2. This implies the
following main result of this section.
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Theorem 2.1 The optimal incentive contract is Γ∗1(w∗θ) if βd ≥ βu, condition (2.14) is satisfied and

the machine starts from state θ ∈ {u, d}. That is, U
(
Γ∗1(w∗θ), ν

∗, θ
)
≥ U(Γ, ν∗, θ) for any incentive

compatible contract Γ and state θ.

2.4.1.3 v̄d < vd

In this section, we consider the case if (2.13), or equivalently, (2.14), is violated. That is, the
revenue rate R when the machine is up is not very high. Consider the following contract structure.
If the machine starts at state d, the principal does not hire the agent. If the machine starts at state u,
on the other hand, the principal hires the agent only to maintain the machine until it breaks down for
the first time. During the maintenance period, the principal pays a constant flow payment with rate
(r + µu) βu. Furthermore, the agent’s corresponding promised utility is maintained at βu, because

E
[∫ τ∗u

0

e−rt (r + µu) βudt

]
= βu,

where τ ∗u, the time in state u, follows an exponential distribution with rate µu.
Here is a formal definition of the proposed contract.

Definition 2.2 Define contract Γ∗u when the machine starts in state u as the following:

i. In state u, the agent’s promised utility Wt is maintained at βu, which drops to 0 as soon as

the state switches to d. In state d, Wt remains to be 0.

ii. The payment to the agent follows dL∗t = (r + µu) βudt at state u.

iii. Termination occurs when the state switches to d, that is, q∗ = 1 and τ ∗ = min{t : θt = d}.

It can be verified that the corresponding expected societal value starting from state u is

vu := E
[∫ τ∗u

0

e−rt(R− cu)dt+ e−rτ
∗
uvd

]
=
R− cu + µuvd

r + µu

. (2.26)

Intuitively, the aforementioned contract structure is desirable only if it out performs not hiring the
agent at all starting from state u. That is,

vu ≥ vu, or, equivalently, R ≥ gu, (2.27)

in which we define
gu :=

(
r + µ

d
+ µ̄u

)
βu. (2.28)

For βd ≥ βu, it is easy to verify that hd ≥ gu. (In particular, hd = gu if βd = βu.)
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The next result formally states that such a contract is indeed optimal when condition (2.14) is
violated while (2.27) holds, that is,

gu ≤ R < hd. (2.29)

Theorem 2.2 1. Contract Γ∗u is incentive compatible.

2. The principal’s utilities following Contract Γ∗u are

U (Γ∗u, ν
∗,d) = vd and U (Γ∗u, ν

∗,u) = vu − βu.

3. Assume that condition (2.29) holds.

(i) For any incentive compatible contract Γ, we have

vd ≥ U(Γ, ν∗,d),

or, it is better not to hire the agent starting from state d.

(ii) Furthermore, if vu − βu ≥ vu, we have

U (Γ∗u, ν
∗,u) ≥ U(Γ, ν∗,u),

That is, Γ∗u is the optimal incentive compatible contract.

(iii) Finally, if vu − βu < vu, for any incentive compatible contract Γ, we have

vu ≥ U(Γ, ν∗,u),

or, it is better not to hire the agent starting from state u as well.

Contract Γ∗u suggests that the principal hire the agent only if the machine starts in the up state,
and terminate the agent as soon as it breaks down. This is driven by the fact that we do not allow
the agent to shirk so far in the paper.11 If we allow shirking instead, the principal may benefit from
hiring the agent to exert effort only when the machine is up, while allowing the agent to shirk when
the machine is down. In Section A.2.2 of the e-companion, we provide the optimal contracts that
motivate the agent to exert effort only when the machine is up (resp. down), and call it “maintenance
contract” (resp, “repair contract”). It is clear that contract Γ∗u is a particular “maintenance contract.”
Therefore, under condition (2.29), the optimal “maintenance contract” always outperforms the
contract Γ∗u. Generally speaking, the principal may prefer the maintenance contract over a contract
that always induces effort when, for example, when the agent’s cost of effort to repair (cd) is so
expensive that the principal is better off just hiring the agent to conduct maintenance and not repair.

11“Shirk” usually refers to the situation that the agent does not make the required effort. Here, we follow the
convention of [Zhu13] to refer to the situation where the contract instructs the agent not to exert effort.
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The next result further states that if condition (2.27) is violated, it is also better for the principal
to not hire the agent than motivating effort.

Theorem 2.3 If

R < gu, (2.30)

we have vθ ≥ U(Γ, ν∗, θ) for any incentive compatible contract Γ and state θ ∈ {u,d}, where gu
is defined in (2.28).

Theorem 2.3 is intuitive in the sense that when revenue rate R is not large enough compared to the
cost, it is not worthwhile for the principal to pay the cost and payment to induce the agent to work.

2.4.2 The case βd < βu

If βd < βu, the contract Γ∗1 in Definition 2.1 is no longer incentive compatible. To see this,
consider the situation where the promised utility Wt− < βu − βd before the machine recovers. If
the promised utility still jumps up by βd upon the machine recovery at time t, then Wt < βu. At that
point constraint (2.7) cannot be satisfied. That is, the principal cannot incentivize the agent to exert
effort in maintaining the machine. As we will show in the following, the optimal contract needs
to involve random termination when the agent’s promised utility is low. Furthermore, when the
promised utility is high, the optimal contract involves a region where one of the incentive compatible
constraints in (2.7) is not binding. As we have alluded to in Section 2.3.2, this is quite peculiar,
because, as far as we know, IC constraints are always binding in optimal contracts studied in the
continuous time moral hazard literature (see, for example, [San08], [BMRV10], [Sha17a], [ST18]).

The structure of this section mirrors Section 2.4.1. In Sections 2.4.2.1 and 2.4.2.2, we first study
incentive compatible optimal contracts under condition (2.18). Finally, Section 2.4.2.3 studies what
happens when condition (2.18) is violated.

2.4.2.1 Optimal IC contract when v̄u ≥ vu

We first illustrate the structure of the optimal contract using Figure 2.3 before formally defining
the optimal contract. Once again, the contract keeps track of the agent’s promised utility Wt over
time. The dynamics of Wt, however, are more complicated than the optimal contract in Section
2.4.1.1. In particular, if Wt− ∈ (0, w̄d) in state d, the promised utility keeps decreasing until
either the machine is repaired, or the promised utility reaches 0 and the agent is terminated. If
Wt− ∈ [w̄d, ŵd] in state d, on the other hand, the promised utility remains a constant until the
machine is repaired. If, upon recovery to state u, the promised utility is below βu, however, the
incentive compatibility constraint (2.7) implies that the machine cannot stay in state u at the current
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promised utility level. Instead, the principal randomly terminates the contract or resets the promised
utility to be at or above βu.

Figure 2.3 depicts two sample trajectories following the proposed contract starting at state
θ0 = d from an initial promised utility W0 = w∗d ∈ (0, ŵd). First, focus on the solid curve. The
promised utility decreases over time while the agent exerts effort to repair the machine, until time t1,
when the machine recovers. At this point, the promised utility jumps up by βd and the agent starts
maintaining the machine at state u. The promised utility keeps increasing until time t2, when the
machine breaks down. In the time interval (t2, t4), the promised utility behaves the same way as it
does in (0, t2), with the machine recovering at t3. When the machine breaks down again at time t4,
however, the promised utility is already so high that it will still be above w̄d after a downward jump
of βu. Because Wt− ≥ w̄d at state d, the promised utility is kept at this level as a constant, until
the machine recovers at time t5. At this point in time the promised utility takes an upward jump
rWt5−/µd > βd, or, the IC constraint (2.7) at state d is not binding. After time t5, the machine stays
in state u while the promised utility increases to reach ŵu at time t̃5, at which point the contract
follows Γ̂ as defined in Section 2.3.2. Note that following this sample trajectory, the structure of the
optimal contract after time t4 behaves differently from the optimal contract Γ∗1 defined in Section
2.4.1 (because the promised utility remains constant even though the machine is down).

Now we focus on the other sample trajectory in Figure 2.312, the dotted curve. The machine is
in state d during time intervals [0, t̂1) and [t̂2, t̂3), and in state u during [t̂1, t̂2). The promised utility
decreases in state d and increases in state u. Right before the machine recovers for the second time,
at t̂3, the promised utility is below βu − βd. Therefore, even an upward jump of βd cannot raise the
promised utility above βu. In light of the discussion in the beginning of this section, the agent is
terminated with probability q∗

t̂3
= (βu −Wt̂3

)/βu. On the other hand, with probability 1− q∗
t̂3

, the
agent’s promised utility is reset to βu.

The policy starts from w∗d = 1.194. The solid curve represents a sample trajectories which
brings the agent to the point of never terminated. The dotted curve represents another sample
trajectory in which the agent is terminated due to a random draw at a point when the machine
recovers.

It is clear that randomization needs to occur at state u if the promised utility is below the
threshold βu. In fact, the threshold below which the random termination occurs does not have to be
exactly βu. It can be at a more general level of β̂ ≥ βu. In the contract depicted in Figure 2.3, we
have β̂ = βu, but this equality does not necessarily always hold, and we may have β̂ > βu. That
is, as long as the promised utility Wt is below β̂ in state u, the agent is randomly terminated with
probability q∗t = (β̂ −Wt)/β̂. If termination does not happen at the random draw, the promised
utility is reset to β̂.

12we have w̄d = 3, ŵd = 6, ŵu = 7 and βu = 1 > βd = 0.6.
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Figure 2.3: Two sample trajectories of promised utility with model parameters µu = 2,∆µu =
1, µd = 6,∆µd = 2, cu = 1, cd = 1.2, r = 0.8, R = 20.

Formally, we define the following contract, Γ∗
β̂
, and later show that the optimal contract follows

this definition with an appropriately chosen value of β̂ ≥ βu.

Definition 2.3 For any β̂ ∈ [βu, w̄u), define contract Γ∗
β̂
(w) = (L∗, q∗, τ ∗) for w ∈ [0, ŵθ] if the

initial state of the machine is θ ∈ {u,d}.

i. The dynamics of the agent’s promised utility Wt, follows

dWt =

{
r(Wt− − w̄d)1Wt−<w̄d

dt+

{
1Wt−∈(w̄d,ŵd]

rWt−

µd

+ 1Wt−∈(β̂−βd,w̄d]βd

+ 1Wt−<β̂−βd

[
(1−Xt)(β̂ −Wt−)−XtWt−

]}
dNt

}
1θt−=d

+ [(rWt− + µuβu)dt1Wt−<w̄u − βudNt]1θt−=u, (DW2)

from an initial promised utility W0 = w.

ii. The payment to the agent follows dL∗t = `∗21θt−=u1Wt−=ŵudt.

iii. The random termination probability is q∗t = q̂(Wt−)1Wt−+βd<β̂
1θt−=ddNt, in which

q̂(w) =
β̂ − (w + βd)

β̂
, (2.31)
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and the termination time is τ ∗ = min{t : Wt = 0}.

It is worth noting that in contract Γ∗
β̂
(w), constraint (2.7) is not always binding. Specifically,

if Wt− > w̄d, following the definition we have q∗t = 0 and Ht = rWt−/µd > βd. Before we
rigorously prove the optimality of the contract, let us explain the intuition why constraint (2.7) is
not always binding in the optimal contract, in two steps. First, we explain that social efficiency can
be achieved in the optimal contract. Then we explain why achieving efficiency introduces slacks in
the incentive compatible constraint (2.7) when βd < βd.

The principal and agent having the same time discount rate implies that they have the same
total discounted valuation for any payments. Therefore, the societal value function is simply the
principal’s value function plus the agent’s promised utility. Consequently, a contract that maximizes
the principal’s value function must also maximize the societal value function. Under condition
(2.18), contract Γ̂ introduced in Section 2.3.2 achieves social efficiency (maximizes the societal
value functions at promised utility levels w̄u or w̄u). Therefore, social efficiency must also be
achievable at the same promised utility levels under the optimal contract.

If we had to force incentive compatible constraints to be always binding, the upward jump in
the promised utility would be βd, smaller than the downward jump βu. Therefore, no matter where
the promised utility starts from, a downward jump of βu cannot be fully compensated by an upward
jump of βd. As a result, starting from any finite promised utility value, a sample trajectory (however
unlikely) with a sequence of very frequent state switches eventually drives the promised utility
down to 0. The existence of such sample trajectories implies that the agent would be terminated
with positive probability, and, hence, social efficiency would not be achievable. This contradicts the
arguments in the last paragraph that the optimal contract should be able to achieve social efficiency.
Therefore, in the optimal contract we cannot enforce IC constraints to be binding all the time.

2.4.2.2 Value functions and proof of optimality when v̄u ≥ vu

There are some important distinctions in the approach to determine the principal’s value func-
tions, in the case of βd < βu, compared with the one in Section 2.4.1.2. This is because here we
need to specify the threshold β̂ that defines when/if the agent will be randomly terminated.

First, let Jd(w) and Ju(w) represent the principal’s value functions for states u and d, respec-
tively. Following Definition 2.3 and similar heuristic derivation steps as in Appendix A.1.4.1, we
obtain the following system of differential equations. In particular, for state d, equation (2.21) in
Section 2.4.1.2 becomes the following three equations

(µd + r)Jd(w) = µdJu

(
r + µd

r
w

)
− cd, w ∈ [w̄d, ŵd], (2.32)
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−cd + r(w − w̄d)J ′d(w) = (µd + r)Jd(w)− µdJu(w + βd), w ∈ [β̂ − βd, w̄d], and (2.33)

−cd + r(w − w̄d)J ′d(w) = (µd + r)Jd(w)− µd

[
q̂(w)Ju(0) +

(
1− q̂(w)

)
Ju(β̂)

]
, w ∈ [0, β̂ − βd].

(2.34)

For state u, the differential equation is similar to (2.22) for w ∈ [β̂, ŵu]. That is,

−cu + (rw + µuβu)1w<ŵuJ
′
u(w) = (µu + r)Ju(w)−R− µuJd(w − βu) + `∗1w=ŵu , w ∈ [β̂, ŵu]

(2.35)

Due to randomization, we may further extend function Ju(w) to the interval [0, β̂] as a linear
function with a slope a, that is,

Ju(w) = Ju(0) + aw, w ∈ [0, β̂]. (2.36)

The principal receives baseline revenues vd and vu, as defined in (2.4), upon termination in states d
and u, respectively, which implies the following boundary conditions

Ju(0) = vu and Jd(0) = vd. (2.37)

As we described in Section 2.4.2.1, we have β̂ ≥ βu. Before specifying how to obtain the
threshold β̂ next, here we provide some intuition on why the optimal threshold may be higher
than βu. Intuitively, in optimal control problems with a finite number of actions, randomization
between actions allows us to obtain a concave upper envelope of the value function. In our setting,
randomization between contract termination (setting the promised utility w to 0) and resetting the
promised utility to βu allows us to achieve a value function that is linear between 0 and βu. If the
resulting value function is concave, then we can show that the control policy is indeed optimal.
However, if the aforementioned randomization yields a value function such that the left derivative
at βu is smaller than the right derivative at this point, then the resulting value function is not
concave. Whenever a value function is non-concave, it must be sub-optimal. This is because using
randomization we should at least achieve its concave upper envelope. In our setting, this implies
that we can increase the point where we reset the promised utility, from βu to somewhere above
it, until the value function becomes concave. Smooth pasting captures the intuition that the value
function becomes “barely concave.” In this later case, randomization between 0 and βā (instead
of βu) yields a value function that is smooth at βā for state u. In the following, we present the
technical details to find β̂.
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We first present the following result regarding general solutions to the aforementioned differen-
tial equations.

Lemma 2.2 For any a > −1, there exists a unique pair of functions Jaβ̂d and Jaβ̂u , in place of Jd
and Ju, respectively, that satisfy (2.32)-(2.37), in which slope “a” appears in (2.36).

Furthermore, functions Jaβ̂d (w) and Jaβ̂u (w) are twice continuously differentiable, except for

Jaβ̂u (w) at w = β̂.

It is straightforward to show that it is sufficient to focus only on the case a > −1. Intuitively, this is
because the slope a represents how much the the principal’s utility changes as the agent’s promised
utility increases. It can never be less than −1 because otherwise, decreasing the agent’s promised
utility by a direct monetary payment would generate a profit to the principal, which is impossible.

Next, we determine the threshold β̂ for a given slope a. The idea is to set β̂ such that function
Jaβ̂u (w) is differentiable at β̂ if possible, so that we achieve “smooth pasting”13 between (2.35) and
(2.36). For this purpose we define the following function for β̂ ∈ [βu, w̄u),

fa(β̂) :=
(
Jaβ̂u

′
(β̂−)− Jaβ̂u

′
(β̂+)

)
(rβ̂ + µuβu). (2.38)

Function fa is a technical construction, and has good properties for us to study when the function
Jaβ̂u ’s left and right derivatives are the same at β̂. Clearly, we can achieve “smooth pasting” if there
exists a β̂ such that fa(β̂) = 0. The following result guarantees that there exists at most one such β̂.

Lemma 2.3 For any a > −1, function fa(β̂) is increasing in β̂ on [βu, w̄u), and limβ↑w̄u− f(β̂) > 0.

Therefore, the following quantity βa is well defined,

βa :=

βu, fa(βu) ≥ 0,

f−1
a (0), fa(βu) < 0,

(2.39)

in which f−1
a is the invervse function of fa.

Furthermore, as soon as the promised utility reaches ŵu in state u, the contract Γ∗
β̂

becomes

identical to Γ̂, and the agent will no longer be terminated. This implies the following boundary
conditions

J āβād (ŵd) = v̄d − ŵd and J āβāu (ŵu) = v̄u − ŵu , (2.40)

in which v̄d and v̄u are the societal value function when the agent is never terminated, as defined in
(2.11).

13The “smooth pasting” condition requires that the value function is differentiable at β̂. This condition often arises in
optimal stopping problems [DP94] and optimal contract design [Zhu13, CSX20].
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Now we are ready to uniquely determine the value a in equation (2.36) for the value function.

Proposition 2.4 There exists a unique ā > 0 such that

lim
w↑ŵu

J āβāu (w) = J āβāu (ŵu) = v̄u − ŵu and lim
w↑ŵd

J āβād (w) = J āβād (ŵd) = v̄d − ŵd, (2.41)

where threshold βā is defined according to (2.39). Furthermore, functions J āβād (w) and J āβāu (w)

are both strictly concave, and,

lim
w↑ŵu

d

dw
J āβāu (w) = lim

w↑ŵd

d

dw
J āβād (w) = −1.

Similar to Proposition 2.2, the following result shows that J āβād (w) and J āβāu (w) specified in
Proposition 2.4 are indeed the principal’s total discounted utility under contract Γβā(w), as stated in
the next result.

Proposition 2.5 For any state θ ∈ {u,d} and promised utilityw ∈ [0, w̄θ], we haveU(Γ∗βā(w), ν∗, θ) =

J āβāθ (w). That is, values J āβād (w) and J āβāu (w) are equal to the principal’s total discounted utilities

of following contract Γ∗βā from the initial promised utility w when the initial state of the machine is

u and d, respectively.

Figures 2.4 and 2.5 depict the principal’s value functions J āβād (w) and J āβāu (w), similar to Figure
2.2 of Section 2.4.1. In particular, Figure 2.414 depicts a case where the threshold βā = βu, while
Figure 2.515 depicts a case with βā > βu with smooth pasting in play.

Now we are ready to show that the contract Γ∗βā is indeed optimal. The following main result is
parallel to a combination of Proposition 2.3 and Theorem 2.1 of the previous subsection.

Theorem 2.4 For any incentive compatible contract Γ and initial state θ ∈ {u,d}, we have

J āβāθ

(
u
(
Γ, ν∗, θ

))
≥ U(Γ, ν∗, θ), in which we extend the function J āβāθ (w) = J āβāθ (w̄θ)− (w− w̄θ)

for w > w̄θ.

Therefore, denoting w∗θ to represent a maximizer of function J āβāθ , we have U
(
Γ∗βā(w

∗
θ), ν

∗, θ
)
≥

U(Γ, ν∗, θ) for any incentive compatible contract Γ and state θ. That is, the optimal incentive

compatible contract is Γ∗βā(w
∗
θ), if βu > βd, condition (2.19) holds, and the machine starts from

state θ ∈ {u,d}.
14In this case, w̄d = 1.5, ŵd = 1.75 and ŵu = 2.45 and βu = 0.7 > βd = 0.6. Ju(w∗u) = 8.195, vu = 5.602 and

Ju(ŵu) = Ūu = 7.147. Jd(w∗d) = 5.414, vd = 2.546 and Jd(ŵd) = Ūd = 4.819.
15In this case, ŵd = 3.33, ŵu = 4.33 and βu = 1.2 > βd = 0.6. ā = −0.499 and βā = 1.259, w∗d = 0.222.

Ju(w∗u) = 2.066, vu = 2.066 and Ju(ŵu) = Ūu = −4.095. Jd(w∗d) = 0.964, vd = 0.939 and Jd(ŵd) = Ūd =
−3.829.
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Figure 2.4: Principal’s Value functions with µu = 1.5,∆µu = 1, µd = 1.5,∆µd = 1, cu =
0.7, cd = 0.6, r = 0.6, R = 11.

Figure 2.5: Principal’s Value functions with smooth-pasting, where µu = 8,∆µu = 4, µd =
6,∆µd = 5, cu = 4.8, cd = 3, r = 1.2, R = 16.
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It is worth noting that J āβād (ŵd) = Ûd and J āβāu (ŵu) = Ûu where Ûd and Ûu, defined in (2.17),
are the principal’s utility under the simple contract Γ̂ of Section 2.3.2. This also implies that contract
Γ∗
β̂

always (weakly) outperforms Γ̂. The difference between the peak of the value function J āβāθ

and Ûθ demonstrates the suboptimality of the benchmark contract Γ̂ if the machine starts from
state θ. For example, in Figure 2.4, the difference between the optimal contract and the benchmark
contract is captured in the difference between Ju(w∗u) = 8.195 and Ju(ŵu) = Ūu = 7.147,
or Jd(w∗d) = 5.414 and Jd(ŵd) = Ūd = 4.819, when the machine starts from state u and d,
respectively. In Figure 2.5, we have Ju(w∗u) = 2.066 and Ju(ŵu) = Ūu = −4.095; Jd(w∗d) = 0.964

and Jd(ŵd) = Ūd = −3.829. Therefore, in the case of Figure 2.5, the optimal contract is profitable,
while the benchmark contract is not.

Furthermore, as we can see from Figure 2.5, where the threshold βā > βu, the function J āβāu (w)

is monotonically decreasing, or, the maximizer w∗u = 0. That is, if the initial state of the machine is
u, it is better for the principal not to hire the agent than to motivate the agent’s full effort. This is
generally true, as confirmed in the following result.

Proposition 2.6 If βā > βu, then we have the slope ā < 0.

In other words, if it is optimal to hire the agent at the initial state u, then the threshold βā in contract
Γ∗βā must be equal to βu. On the other hand, in Figure 2.5, we have w∗d > 0. Therefore, when
smooth pasting is at work (βā > βu), it is better not to hire the agent if the initial state is u. However,
it may still be beneficial to hire the agent if the initial state is d, although this benefit tends to be
small.

2.4.2.3 v̄u < vu

Now we consider the case that (2.18), or, equivalently, (2.19), is violated. First, similar to (2.26)
in Section 2.4.1.3, we define the following societal value for the case where the agent starts in state
d, exerts effort to repair the machine and is terminated once the machine is repaired,

vd := E
[
−
∫ τ∗d

0

e−rtcddt+ e−rτ
∗
vu

]
=
µdvu − cd
r + µd

. (2.42)

Here τ ∗d represents the time that the machine is in state d, which follows an exponential distribution
with rate µd when the agent exerts effort.

Similar to condition (2.27) in Section 2.4.1.3, we first consider the optimal contract under the
following condition,

vd ≥ vd, or, equivalently, R ≥ gd, (2.43)
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in which we define
gd :=

(
r + µ

d
+ µ̄u

)
βd. (2.44)

And we have gd < (=)hu for βd < (=)βu.
If the machine starts at state u, the principal does not hire the agent. On the other hand, if the

machine starts at state d, then the promised utility starts from an initial value W0 ≤ w̄d and keeps
decreasing according to dWt = r(Wt− − w̄d)dt until termination, when either Wt reaches 0 or the
machine recovers. If the machine recovers at a positive Wt−, then the agent is paid this promised
utility Wt− plus βd, which provides the incentive for the agent to exert effort to repair the machine.
Formally, we have the following definition of a contract.

Definition 2.4 Define contract Γ∗d(w) for w ∈ [0, w̄d] if the machine starts in state d as the

following.

i. In state d, the agent’s promised utility Wt follows

dWt = r(Wt− − w̄d)dt−Wt−dNt , (DWd)

starting from W0 = w. In state u, Wt remains 0.

ii. The payment to the agent follows dL∗t = (Wt− + βd)dNt.

iii. The random termination probability is q∗t = 1{θt=u}, and the termination time is τ ∗ = {t :

Wt = 0}.

According to Definition 2.4, termination may occur when the machine is down for a long enough
period, or at the time it recovers.

The next result formally establishes the optimality of the contract.

Theorem 2.5 1. Contract Γ∗d(w) is incentive compatible.

2. The principal’s value functions under contract Γ∗d(w) are

U (Γ∗d(w), ν∗,u) =vu − w,

U (Γ∗d(w), ν∗,d) =(vd − vd)

(
1− w

w̄d

)1+
µd
r

− w + vd,

3. Assume that condition (2.19) is violated while (2.43) holds, that is

gd ≤ R < hu. (2.45)
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For any incentive compatible contract Γ, we have

U (Γ∗d(w∗), ν∗,d) ≥ U(Γ, ν∗,d) and vu ≥ U(Γ, ν∗,u),

where w∗ is a maximizer of U (Γ∗d(w), ν∗,d) as a function of w.

Contract Γ∗d suggests that the principal hires the agent only if the machine starts in the down
state, and terminates the agent as soon as the machine recovers. This is intuitive because βd < βu

implies that it is cheaper to motivate effort to repair than to maintain. The fact that the agent is
terminated as soon as the machine is up is, again, due to the fact Theorem 2.5 is focused on incentive
compatible contracts. If we allow shirking instead, the principal may benefit from hiring the agent
to exert effort only when the machine is down, while allowing the agent to shirk when the machine
is up. As mentioned in Section 2.4.1.3, we call this class of contract “repair contract,” which also
includes Γ∗d. Therefore, under condition (2.45), the optimal repair contract outperforms the contract
Γ∗d (the repair contract is analyzed in the e-companion).

Despite similarities, Theorem 2.5 is not quite the same as Theorem 2.2 for the previous case.
Most prominently, the value function in (A.85) is non-linear, while in (A.50) it is piece-wise linear.

If the maximizer w∗ = 0, Theorem 2.5 indicates that the principal should not hire the agent at
all. Similar to Theorem 2.3 in Section 2.4.1.3, the following result indicates that the principal is
also better off not hiring the agent if condition (2.43) is violated.

Theorem 2.6 If

R ≤ gd, (2.46)

we have vθ ≥ U(Γ, ν∗, θ) for any incentive compatible contract Γ and state θ ∈ {u,d}, where gd
is defined in (2.44).

2.4.3 A summary

It is helpful to summarize the main results that we obtained throughout this section. For the
case of βd ≥ βu, we have characterized model parameters into three regions that can be easily
characterized by focusing on the revenue rate R, fixing other model parameters.

• R > hd: The incentive compatible constraints in equation (2.7) are always binding, and the
dynamic contract Γ∗1 demonstrates rich structures.

• R ∈ [gu, hd]: The principal may hire the agent and motivate effort only to maintain the
machine.
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• R < gu: No incentive compatible contract (including hiring an agent only to maintain or
repair–analyzed in the e-companion) performs better for the principal than not hiring the
agent at all. Furthermore, as we will demonstrate in the e-companion Section A.2.1, for these
model parameters, not hiring the agent is the best strategy for the principal, even among
contracts that allow shirking.

Similarly, when βd < βu, we also characterize model parameters into three regions of revenue R.

• R > hu: The optimal contract follows Γ∗
β̂
(w), where the incentive compatible constraints in

equation (2.7) may not be always binding and the agent may need to be terminated randomly.

• R ∈ [gd, hu]: The principal may hire the agent and motivate effort only to repair the machine.

• R < gd: Not hiring the agent is the best strategy for the principal.

Finally, if we do not allow contract termination, the following Proposition shows that the simple
contracts Γ̄ and Γ̂ introduced in Section 2.3 are optimal.

Proposition 2.7 For any state θ ∈ {u,d} and incentive compatible contracts Γ such that τ =∞,

we have

• U(Γ̄, ν∗, θ) ≥ U(Γ, ν∗, θ) if βd ≥ βu,

• U(Γ̂, ν∗, θ) ≥ U(Γ, ν∗, θ) if βd < βu.

2.5 Numerical Comparison

So far, we have focused on analyzing optimal contracts that induce full effort from the agent
before termination. However, these contracts are not necessarily optimal if the principal does
not need to always induce full effort from the agent. In the e-companion, we provide sufficient
conditions based on principal’s value functions. One can use these conditions to verify if the optimal
incentive compatible contracts that induce full effort are, in fact, optimal, even if we allow shirking.
When the sufficient conditions are not satisfied, it may be preferable for the principal to hire the
agent just to maintain or just to repair, and to allow the agent to shirk (“maintenance contract” and
“repair contract” formally studied in the e-companion Section A.2.2).

In the following, we numerically compare the performance of the full effort incentive compatible
contracts versus the repair only contract and maintenance only contract. In Figures 2.6, 2.7 and
2.8, 2.9, we vary revenue rate R, while keeping all other parameters the same. For each choice of
model parameters, we calculate the principal’s value for the three contracts and the value without
any agents when the machine starts from state d and u, respectively. As R increases, the principal’s
value under all the three contracts increase.
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Figure 2.6: Principal’s value start at d, under three contracts

Figures 2.6 and 2.716 depict the case of βu > βd. When R ≤ gd, according to Theorem 2.6,
it is not worthwhile to hire the agent when we only consider the full effort incentive compatible
contracts. In the e-companion, Propositions A.4 and A.7 show that even under the maintenance
only contract and repair only contract, the principal should not hire the agent when R ≤ gd (note
that gd < gu in this case). This is consistent with what we see in Figures 2.6 and 2.7, where the
four curves coincide when R < gd. In fact, the region that they are all the same extends to R > gd,
indicating that the optimal initial promised utility w∗d or w∗u is 0 in the optimal contracts, which is
equivalent to not hiring the agent at all. Increasing R further, hiring the agent starts making sense.
First, the repair only contract outperforms the other two. In the e-companion, Theorem A.2 implies
that when R ∈ [gd, hu], the repair only contract always outperforms the full effort contract Γ∗d.
Intuitively, the repair only contract outperforms the maintenance only contract because βu > βd

implies that motivating effort to maintain is more costly than motivating effort to repair. When R
becomes large enough, on the other hand, full effort contract outperforms the other two one-sided
contracts.

Similarly, Figures 2.8 and 2.917 depicts the case βu < βd. The observations and underlying
reasons are parallel to Figures 2.6 and 2.7 and we do not repeat.

It is clear that a very interesting extension of our paper would be one that studies optimal
dynamic contracts that allow the agent to shirk. Unfortunately, this case seems to be very difficult
to analyze, and the optimal contracts may involve complex structures that renders them impractical
even for simple settings. [Zhu13], for example, considers the optimal contract with shirking under
Brownian motion. The evolution of the promised utility involves a sticky Brownian motion that is a

16µu = 2, µ̄u = 4, µd = 3, µ
d

= 1, cu = 2, cd = 1.2, r = 1, R ∈ [0, 20] and βu = 1 > βd = 0.6. Here gd and hu
are defined in (2.44) and (2.19), respectively.

17µu = 1.5, µ̄u = 3.5, µd = 3.5, µ
d

= 1.5, cu = 0.6, cd = 2, r = 1, R ∈ [0, 20] and βu = 0.3 < βd = 1. Here gu
and hd are defined in (2.28) and (2.14), respectively.

37



Figure 2.7: Principal’s value start at u, under three contracts

Figure 2.8: Principal’s value start at d, under three contracts

Figure 2.9: Principal’s value start at u, under three contracts
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mathematical construct with very little practical relevance. Therefore, we consider the pursuit of
optimal contracts that allow shirking outside the scope of this paper, and leave it for future research.

2.6 Conclusion

We study an incentive design problem in continuous time over an infinite horizon. Specifically,
a principal hires an agent to exert effort in order to repair a machine when the machine is down,
and maintain the machine when it is up. The agent can adjust the effort level at any time, which
is not observable to the principal. Our paper contributes to the service/maintenance literature by
studying the optimal dynamic contract. Although we allow a general form of payment and random
termination in the contract design, the structure of the optimal contract is overall simple and intuitive.
In particular, payment over time and potential termination decisions are all based on the evolution
of the agent’s promised utility. Payment only occurs when the promised utility is high enough.
Intuitively, the principal pays the agent a flow when the machine is up, which can be decomposed
into an interest payment to maintain the promised utility, and a rent. In the case that βd > βu,
the principal also needs to use an instantaneous payment upon machine recovery to provide an
appropriate incentive for the agent to repair the machine fast enough.

Our paper also contributes to the dynamic contract literature where an agent exerts effort to
either increase or decrease the arrival rates of Poisson processes. We instead combine both directions
(increase and decrease), which turns out to be a non-trivial generalization. In particular, we find
two new features in the optimal contract, which are new in the dynamic contract literature: (1) The
incentive compatibility constraints are not always binding. (2) When the agent’s promised utility
is low, the optimal contract needs to involve a random termination, if the agent is not terminated
from the random draw, the promised utility is brought back up to a certain threshold. Different
from [Mye15], which also involves random termination, our threshold is not fixed at one level, but
endogenously determined depending on model parameters.

Our general approach applies to other operational settings beyond maintenance/repair. For
example, consider a queuing control system where an agent needs to exert effort in order to increase
either the service rate or the arrival rate (e.g., by marketing efforts). In this case and the number of
customers in the queue could be considered as the state of the system, which is more than the two
states studied in our model. We believe that the techniques and results derived in our paper serve as
a necessary step for solving these more general problems.
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CHAPTER 3

Dynamic Contract Design in the Presence of Double Moral Hazard

3.1 Introduction

We consider a stylized incentive management problem over an infinite time horizon, in which
a principal hires an agent to provide services to customers.1 Customers arrive according to a
Poisson process and request service in one of two ways: either via an online channel, or via a
traditional, walk-in, channel. An online customer makes a reservation for the service through the
firm’s online reservation system and prepays for the service, while a walk-in customer simply shows
up to receive the service and pays the agent upon the service completion. The agent is tasked
with providing the requested service to both types of customers as well as collecting the payments
from the walk-in customers. In addition, the agent can exert costly effort to increase the combined
(across-two-channels) arrival rate of customers. The principal is not able to observe the arrivals
of the walk-in customers, nor does she observe whether the agent exerts effort.2 This creates an
opportunity for the agent (i) to divert cash (that is, to under-report the number of walk-in customers
and pocket respective revenues) and also (ii) to shirk (that is, not to exert costly effort), thus, leading
to a novel and so-far-unexplored double moral hazard problem. We are interested in how, in the
presence of such a double moral hazard problem, a principal can design a dynamic contract that
maximizes her profits.

The situation we have described is ubiquitous in a variety of service and franchise settings. For
instance, many service organizations have individual locations that are managed by agents on behalf
of the owners. In such organizations, the owners do not have full visibility into agents’ operations.
Thus, the agents have the potential ability to deliver services but to not report that the services were
delivered (practically, diverting some of the revenues from the owners to themselves). [KLS18],
[NRST02], and [PSM15] provide an empirical confirmation of the existence of such revenue

1 The material presented in this chapter is based on the paper [TAD20] co-authored with Ekaterina Astashkina and
Izak Duenyas.

2The inability of the principal to observe the arrivals of the walk-in customers, for instance, can be motivated by (i)
the principal being located far away from the agent, or (ii) the principal being busy with managing multiple business
units.
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under-reporting/diversion problem across various service settings. In addition, approximately 15%-
20% of franchise locations are estimated to under-report “sales” by 15% or more (http://www.
audigence.com/franchise.html). A number of forensic accounting firms (Audience,
MDD Forensic Accountants, Tacit, etc.) advertise services that claim to discover and document
how agents have diverted cash. They specifically advertise services that deter under-reporting,

identify fraud schemes, gain visibility into franchise owner practices, develop monitoring tools, thus
confirming the existence of moral hazard problems associated with under-reporting. However, the
cost of hiring an accounting firm and then litigating can be very high.

Make-to-order manufacturing environments are also known to have been exposed to similar
moral hazard issues. As such, according to a classical law case “General Automotive Manufacturing
Co. v. Singer”, a general manager of the shop diverted substantial amount of arriving-at-the-shop
orders to subcontractors of his choice and pocketed respective profits. (General Automotive sued
the manager for breach of contract, – the case was finally decided by the Wisconsin Supreme Court.)
Most organizations, however, do not have the resources to litigate and may prefer to tackle the moral
hazard problems differently, for instance, by setting up appropriate contracts with the agents and/or
adopting mechanisms of monitoring the agents. Despite the fact that this problem is common place,
there is a lack of literature focusing on how, in such situations, a principal can (i) provide incentives
to the agent and (ii) use monitoring mechanisms to address the moral hazard issues and capture the
highest possible profits. This is what we are addressing in this paper.

To induce the desired behavior from the agent, we let the principal employ a carrot-and-stick
approach. The “carrot” is a general form compensation transferred from the principal to the agent:
it is allowed to be anything from an instantaneous one-time payment to a flow payment with a
time-varying rate. The “stick” is the threat of the contract termination that the principal holds over
the agent. Both the compensation and the termination are, at any point in time, contingent on the
information available to the principal: (observable to the principal) past arrival times of the online
customers and (unobservable to the principal and only reported by the agent) past arrival times of the
walk-in customers. To induce the desired agent’s behavior, the principal, thus, designs and commits
to a contract that combines a payment scheme and a potential termination time.3 In the extended
versions of the model, in addition to using payments and termination, we allow the principal to
also (i) monitor the agent or (ii) manipulate the relative attractiveness of the online channel against
the walk-in channel. Such channel manipulation can be done via the dynamic adjustment of the
prices charged for the services reserved online. In the remainder of this section, we describe our
findings, discuss the contributions relative to the existing academic literature, and, finally, conclude
by outlining the structure of the remaining sections of the paper.

3Our model can be easily extended to allow the principal to find a replacement at a fixed cost when terminating the
current agent. The nature of our results remains unchanged.
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Select Findings

We focus on the contracts that induce the agent (i) to truthfully report the arrivals of and the
revenues from the walk-in customers (i.e., to not divert cash) and (ii) to exert effort to increase
the customer arrival rate (i.e., to not shirk). We show that focusing on these types of contracts is
without loss of optimality for the principal. We formulate the dynamic contract design problem as a
continuous-time, stochastic optimal control problem with two incentive compatibility constraints.
The incentive compatibility constraints of the moral hazard problems are not separable, which
makes the combined control problem complex and leads to a rich optimal contract structure. In
particular, depending on the relative severity of the moral hazard problems (that is, depending on
which of the incentive compatibility constraints ends up being binding — the one related to effort or
the one related to truthful reporting), the optimal contract has one of three possible structures.

All three contract structures have the following elements in common: (i) a probationary period

during which the agent works for the principal while being offered a so-called (ii) promised future

utility (see [SS87]), that the principal keeps track of during this period; (iii) a tenure period during
which the agent keeps all the revenues collected from the walk-in customers to himself; and (iv) a
termination threshold on the promised future utility. The agent’s promised future utility serves as
an indicator of the agent’s past performance; during the probationary period, it takes instantaneous
upward jumps on certain customer arrivals but otherwise decreases. In each of the three contracts,
the probationary period is over when the promised future utility reaches either the termination

threshold (which marks an immediate contract termination) or the tenure threshold (which marks
the start of the tenure period, that lasts indefinitely).

The variation in the three contract structures, in turn, is captured by the differences in (i) tenure
thresholds, and (ii) the rules for the evolution of the promised future utility (the rate of its decrease,
and the when-and-how for the upward jumps). As such: (1) under the first of the three optimal
contracts, the principal “rewards” the agent with an upward jump of the promised future utility only
for arrivals that are originally unobservable by the principal (but are reported by the agent under
this contract); (2) under the second contract, the principal “rewards” the agent for any arrival type
but the jumps associated with the arrivals from the observable channel are smaller in magnitude; (3)
finally, under the third contract, the principal “rewards” the agent for both arrival types equally.

In the extended version of the model, in addition to controlling payments and termination, the
principal can also monitor the agent (see Section 3.3.1). We, first, consider the full monitoring setting
where the principal could pay a flow cost to monitor two types of (agent’s) private information:
walk-in customer arrivals and whether the agent exerts effort. We find that the principal will conduct
full monitoring only when the agent’s promised future utility reaches a monitoring threshold. Once
full monitoring is initiated, it continues indefinitely and the agent is never terminated.

We also consider the partial monitoring setting, where the principal could pay a flow cost to
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monitor only one type of private information: the walk-in customer arrivals (see Section 3.3.2). In
contrast to full monitoring, the partial one is rather natural and can be realistically implemented
in service management environments. When devising an optimal contract with partial monitoring

schedule, the principal is trading off the partial monitoring costs against the rents that she has
to pay to the agent to address the incentive compatibility constraint for truthful reporting. The
principal also needs to incentivize the agent to exert effort. We find that the principal will conduct
partial monitoring whenever the agent’s promised future utility drops below a partial monitoring

threshold, which does not necessarily last indefinitely. Under partial monitoring, with poor enough
performance, the agent will get terminated, while, with good enough performance, monitoring stops,
and the agent can possibly achieve tenure. Intuitively, partial monitoring ensures that the agent
will not divert any cash, hence, reducing the likelihood of agent’s termination. Since the agent’s
promised future utility serves as an indicator of the agent’s past performance, our results indicate
that it is optimal for the principal to monitor agents with worse past performance more, while there
is less of a need to monitor the agents with a high enough performance record.

In another extension, the principal is allowed to manipulate the relative attractiveness of the
online channel against the walk-in channel, instigating customers to place orders through the
channels observable to the principle. In our setting, lowering the price for the services reserved
online would lure more customers from the walk-in to the online channel. In Section 3.4, we,
therefore, consider the case where the principal can adjust pricing (by providing a discount) to
induce customers to place orders online. We endogenize the customer’s channel choice, by adding
the customer’s utility into the baseline model. When deciding on the optimal dynamic discounting
strategy, the principal is trading off the revenue loss from the provided discount versus the incentive
payments to the agent. We show that the principal will adjust prices less aggressively when the
agent’s promised future utility is high (that is, when the agent’s past performance has been good). It
is worth noting that applying the dynamic discounting tool to address a moral hazard problem is
unique to our model and novel in the literature.

Finally, in Section 3.5, we study how the agent’s utility changes when the principal uses one of
the additional tools: full monitoring, partial monitoring, and dynamic discounting. Unsurprisingly,
under full monitoring (which, when activated, reveals all the agent’s private information), the agent
is always worse off. However, under partial monitoring, (which, when activated, reveals only one
type of private information) or under dynamic discounting, – this is no longer the case. In fact, under
certain conditions (discussed in the respective section of the paper), imposing partial monitoring or
dynamic discounting can sometimes increase the expected duration of the agent’s employment or,
equivalently, reduces the likelihood of agent’s termination, thus, making the agent better off.
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Literature Review

Our paper contributes to the contract theory literature with moral hazard, where the principal
hires an agent who could take a hidden action that affects the principal’s outcome. In the moral
hazard literature, a common focus area has been situations where the agent may shirk (see, e.g.,
[Mir76], [Höl79], [CL13]) and situations where the agent may divert cash (see, e.g., [Tow79],
[Dia84], [BS90]). One clear difference between our paper and most of the previous literature on
contract theory is that our contract design problem is subject to both moral hazard issues (shirking
and diverting cash).

Among the few papers that do allow for multiple dimensions of moral hazard, [HM91] develop a
multi-task model of moral hazard in which the agent has multiple effort choices that affect multiple
outputs. Following [HM91], [GP00] analyze optimal contracts with joint moral hazard in effort
and risk, and [GK14] analyze optimal contracts where the agent chooses management effort and
effective labor effort. However, these papers only consider static contracts, while we are solving
for optimal long-term contracts where the principal can dynamically change the agent’s incentives
based on the agent’s performance to-date. In our setting, it is easy to show that being able to adjust
incentives dynamically makes a significant difference on the principal’s overall profit level.

Our paper is also related to the theoretical literature on franchising, where a franchising chain
hires store managers to manage stores and potentially faces a moral hazard problem. Most of
these papers focus on the level of private effort exerted by the franchisee, that is, on shirking (see
[Sti74] and [BL95]). The problem of cash diversion is much less explored in this literature stream,
except for a few empirical papers such as [A+00] and [MY12], and a theoretical paper by [PRS11].
[PRS11] build a static model in which a franchising chain has franchised and company-owned units.
The franchised unit manager may misreport the sales and steal the rest of the profit (i.e., divert cash)
but not shirk, while the company-owned unit manager may shirk but cannot divert cash. In contrast
to [PRS11], the “manager” in our model can do both of these simultaneously: shirk and divert cash.
In addition, our paper focuses on dynamic rather than static contracts.

Our paper is also related to the dynamic moral hazard literature which adopts the “promised
utility ” framework. In this literature, there are two streams closely related to our paper. The
first stream considers the contract design problem in which the principal hires an agent to exert
private effort to change the arrival rate of a Poisson process: the agent either increases the arrival
rate of good arrivals (see [GT16], [Sha17b], [ST18]), decreases the arrival rate of bad arrivals
(see [BMRV10], [Mye15], [LSTZ20]), or does both (see [TSD21]). All these papers deal with a
single moral hazard problem, while we address double moral hazard. A distinct feature of our
problem setting is that, whereas, in problems with a single moral hazard, the incentive compatibility
constraint is always binding, in our setting, one of the incentive compatibility constraints might not
be binding, hence, leading to a more complex problem and a richer contract structure.
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The second stream considers the dynamic moral hazard problem caused by “diverting cash”
originating from [DS06b] and [CH06]. [DS06b] consider a firm that hires a manager to run a project,
in which the project generates cash flow with Brownian motion uncertainty, and the manager could
privately divert funds from the project for his own benefit. [CH06] consider a similar problem
in discrete time. Following [DS06b], several papers had used similar solution techniques but
applied their models mostly to the area of corporate finance (see, e.g., [BMPR07], [Fu17], [Mal19]).
Another difference between this literature and our work is that, in our setting, the agent can divert
some of the cash coming from customers who arrive according to a Poisson process, whereas the
finance literature typically assumes that the agent is managing the principal’s cash which is subject
to Brownian motion uncertainty. This results in a contract, that is very different from the contracts
considered in those papers. Finally, our paper considers the agent’s private effort to increase sales,
which is missing from this literature stream.

Our extended model with monitoring is related to the literature that addresses dynamic moral
hazard problems using monitoring tools. [PW16] embed a costly monitoring technology into the
setting introduced by [DS06b]. This costly monitoring technology allows the principal to check
whether the agent diverts cash. [CSX20] design a monitoring schedule when the principal hires an
agent who privately exerts effort to decrease the rate of adverse events; whenever the principal is
monitoring, the agent’s effort is guaranteed. In our model, the agent may exert effort to increase the
arrival rate of customers (generating benefits to the principal) but may also divert cash. Hence, our
paper clearly differs from these papers as we focus on double moral hazard problem (that includes
both effort and cash diversion). In addition, we also consider two types of monitoring tools: the full

monitoring, which deals with both moral hazard problems, and the partial monitoring, which only

deals with the cash diversion problem.
Further, some recent empirical studies have demonstrated that monitoring tools are commonly

used in service management environments and have empirically shown that monitoring tools can
mitigate moral hazard and enable firms to design more efficient contracts. For example, [NRST02],
[PSM15], and [KLS18] consider settings (agents soliciting donations, agents serving customers
at a restaurant, and agents driving minibuses), where the principal monitors agents’ effort and/or
agents’ sales. Specifically, [KLS18] consider the setting, where a firm in Kenya hires mini-bus
drivers who can shirk and also divert cash, which is similar to ours. However, customers in their
setting arrive from only one channel, which is unobservable by the principal. In contrast, we allow
for two customer channels, one observable and one unobservable by the principal. Also, our focus
is on the analytical derivation of optimal dynamic contracts, while these papers are empirical.

The approach of “promised utility” is not the only framework to address the dynamic contract
problem. In operations management field, [PZ00], [ZZ08], and [ZTH19] develop a dynamic
principal-agent framework to delegate operational control of a system that can be modeled as a
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Markov decision process. They assume that the agent is risk-averse and can access efficient banking
with the same rate of borrowing and lending. Therefore, they do not assume limited liability.
Limited liability is a common assumption in the contract literature (see, e.g., [BMRV10], [CL13],
[GT16], [GAKR20]). Without it, the principal can simply sell the business to the agent to resolve
the incentive issues if both the principal and the agent are risk-neutral. Furthermore, none of these
papers consider the double moral hazard problem. The assumption of limited liability for the agent
and the existence of two dimensions of moral hazard result in significant complexity and very
different control structures in the problem that we address.

Finally, our paper is related to recent operations management literature which studies the off-
platform transactions in online marketplaces (see [GZ20] and [HSGT20]). Specifically, they explore
the phenomenon where, after initially connecting on the platform, the customer can transact with
the service provider directly “off-platform”. If we see the platform as a principal and the service
provider as an agent, our model can be applied to deal with the off-platform transaction problem.
Neither of these papers considers a dynamic principal-agent framework. In particular, [GZ20]
conduct an empirical study while [HSGT20] adopt a queueing game-theoretic framework but have
no contract structure. Our paper’s framework, therefore, can also be applied to design contracts in
online marketplaces.

The rest of this paper is organized as follows. We present the baseline model and the corre-
sponding optimal contracts in Section 3.2. In Section 3.3, we extend the baseline model to allow
monitoring. Section 3.4 generalizes the baseline model to allow the principal to manipulate the
relative attractiveness of the two channels. Finally, in Section 3.5, we look at how agent’s utility
changes when the principal adds either the monitoring tool or the dynamic discounting tool.

3.2 Baseline Model

This section is organized as follows. In Section 3.2.1, we introduce the baseline model. In
Section 3.2.2, we present the structure of the optimal contracts and the corresponding value functions.
In Section 3.2.3, we show the optimality of the contracts in the space of contracts with full-effort
and truth-telling (i.e., the contracts that induce the agent to always exert effort and truthfully report
arrivals). In Section 3.2.4, we show that these contracts are also optimal in the expanded contract
space. Finally, we conclude with the numerical examples and comparative statics in Section 3.2.5.

3.2.1 Baseline Model Setup

A principal hires an agent to run her store. Customers arrive at the store from two different
channels. Customers arriving from one of the channels are unobservable by the principal (we call it
an “unobservable channel”). We can think of the unobservable channel as the walk-in channel and
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the observable channel as the online reservation channel. With probability p, a customer arrives to
the unobservable channel and, with probability 1− p, a customer arrives to the observable channel.
We assume that customers from the unobservable channel are charged a fixed fee, Ru, for the
service, while customers from the observable channel are charged Ro (in Section 3.4, we extend the
model to the case, where the fees are decision variables and p is a function of the fees). The agent
pays an effort flow cost c (i.e., cost of exerting effort) to achieve a customer arrival rate of µ (i.e., by
marketing/advertising the services).4

Formally, we denote the agent’s effort process by νt ∈ {0, µ}.5 Let Nu
t and N o

t denote,
respectively, the counting processes of customers from unobservable and observable channels,
arriving to the store prior to time t. With the agent always exerting effort (i.e, νt = µ), Nu

t is a
Poisson random variable with rate pµt, and N o

t is a Poisson random variable with rate (1− p)µt.
Arrival process N o

t is observable to both principal and agent, while only the agent observes the
process Nu

t . The agent reports arrivals {N̂u
t ; t ≥ 0} to the principal. The principal and the agent

have the same discount rate denoted by r.6 We assume that the principal has the power to commit
to a long-term contract, which is a function of the reported arrivals and the public information.
The principal designs the contract γ = (L, τ) which includes payment L and termination time τ .
Formally, the payment could be an instantaneous payment It, or a flow payment with rate `t, such
that dLt = It + `tdt.7 We assume the agent has limited liability. That is, the agent can decide to
quit and never owes money to the principal.8 To guarantee the limited liability constraint, we need
to have It ≥ 0 and `t ≥ 0. We define Γ as the contract space that includes all the contracts (γ ∈ Γ)
that satisfy the limited liability constraint.

By the revelation principle, it is without loss of generality that we can focus on the contract that
induces the agent to truthfully report the arrivals, i.e., N̂u

t = Nu
t .9 Further, in the current section,

we also just focus our analysis on finding the optimal contract when the agent is necessarily forced
to always exert effort. We denote the space of the contracts that induce the agent to truthfully
report and exert effort as ΓIC . Therefore, with the limited liability constraint, the principal needs to
reimburse the agent’s effort cost cdt. Section 3.2.4 confirms that the optimal contract in the space

4Without loss of generality, we assume that the cost of serving a customer that has arrived to the store is zero.
Generalizing it to the case where the agent incurs a positive cost for every customer served does not change our results.

5We can easily generalize it to the case where the agent’s effort process is given by νt ∈ {µ, µ}, where µ ∈ [0, µ),
which does not change the nature of our results.

6It is common to assume that the principal and the agent share the same discount rate (e.g., see [Mye15], [TSD21]).
7Formally, ν is F-predictable, where F = {Ft, t ≥ 0} is the filtration generated by (Nu, No); L is adapted to

F̂ = {F̂t, t ≥ 0}, which is the filtration generated by (N̂u, No); and τ is an F̂−measurable stopping time.
8Limited liability is commonly assumed in contract theory, especially dynamic contract theory. Without it, the

model and analysis become easy, or even trivial. For example, the principal could simply sell the entire enterprise to the
agent upfront, at a price, that equals the efficient social surplus. This allows the principal to exact the entire surplus and
leaves the agent with zero surplus.

9By the revelation principle in [Mye86], any outcome that can be achieved by a general mechanism can also be
achieved by a truth-telling direct mechanism.
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ΓIC is also optimal in a larger contract space Γ.

Agent’s Utility

Given a contract γ ∈ ΓIC , an effort process ν, and a reported arrival process N̂u
t , the agent’s

expected total discounted utility is10

u(γ, ν, N̂u) = E

[∫ τ

0

e−rt
[
Ru(dN

u
t − dN̂u

t ) + dLt + c(1− I[νt = µ])dt
]]
, (3.1)

where the first term represents the income from diverting cash (if the agent fails to report the
customer arrivals from the unobservable channel), second term is the payment that the agent
receives from the principal, and the third term is the monetary benefit from shirking (if the agent
exerts zero effort).11

Principal’s Utility

We assume that the principal is very busy owning multiple stores and needs an agent to run
the store. Therefore, the principal only earns revenues while the agent is employed. Hence, the
principal’s expected total discounted profit under a contract γ ∈ ΓIC , effort process ν, and reported
arrival process N̂u is defined as12

U(γ, ν, N̂u) = E
[∫ τ

0

e−rt
[
RudN̂

u
t +RodN

o
t − dLt − cdt

]]
. (3.2)

If the agent is never terminated and always exerts effort, then the sum of principal’s and agent’s
utilities corresponds to the total utility (as if the principal could operate the store by herself):

V̄ :=
µ(pRu + (1− p)Ro)− c

r
. (3.3)

We define the adjusted effort cost as

β :=
c

µ
. (3.4)

10For the current setting, we do not allow the agent to save. The agent needs to immediately consume cash if he
misreports the arrival and steals the money. Furthermore, following [DS06b], as long as the saving rate is smaller or
equal to the discount rate, it is without loss of generality to assume that saving is not allowed.

11The expectation is taken given the agent’s reporting strategy and effort choices S = {N̂u
t , νt : t ∈ [0, τ ]}.

12For ease of presentation, in our setting, we assume that once the agent is fired, the principal has no one to run the
business. We can easily generalize the model to the case where the principal can fire the agent at any time and incur a
fixed cost to hire a new agent; such generalization does not change our main results.
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The contract design problem is only meaningful when, at least from the societal perspective (when
the objective is the sum of the agent’s and the principal’s utility), inducing effort from the agent is
worthwhile, which formally translates into the below condition:

V̄ ≥ 0⇐⇒ pRu + (1− p)Ro ≥ β.

Let us now formally define the contract space ΓIC . A contract γ is incentive compatible (γ ∈ ΓIC)
if, in equilibrium, the agent has the incentive to always exert effort and truthfully report the arrivals,
i.e., ν∗ := {νt = µ} and N̂u

t = Nu
t , for t ∈ [0, τ ]. That is, the contract is incentive compatible if

u(γ, ν∗, Nu) ≥ u(γ, ν, N̂u), for any effort process ν and any reported arrival process N̂ . (IC)

The contract design problem of the principal is to find a contract γ = (L, τ) ∈ ΓIC that maximizes
her utility U(γ, ν, N̂u) under the incentive compatibility constraint (IC).

In what follows, we characterize the incentive compatible contracts in a recursive manner, so
that the contract design problem can be formulated as a stochastic optimal control problem. Hence,
we introduce the agent’s promised future utility (for brevity, henceforth referred to as a promised

utility) Wt(γ, ν, N̂
u) at time t, following contract γ ∈ ΓIC , effort process ν, and after a history of

reports N̂u
s (0 ≤ s ≤ t), to be the total expected payoff the agent receives if he tells the truth after

time t:
Wt(γ, ν, N̂

u) = E
[∫ τ

t

e−r(s−t) [dLs + c(1− I[νs = µ])ds]

]
.

It is clear thatW0(γ, ν, N̂u) = u(γ, ν,Nu). It is convenient to introduce the notationWt−(γ, ν, N̂u) =

lims↑tWs(γ, ν, N̂
u) to denote the left-hand limit of the process W (γ, ν, N̂u) at t ≥ 0. In the sequel,

we omit Wt and Wt−’s dependence on γ, ν, and N̂u when there is no confusion. We assume that the
agent can decide to quit if future payments do not compensate for effort costs. That is, the promised
utility can never be negative (we refer to it as the individual rationality (IR) condition):

Wt ≥ 0, ∀t ≥ 0. (IR)

In what follows, we characterize the evolution of the agent’s promised utility Wt under a contract
γ ∈ ΓIC , which is also known as the promise keeping (PK) condition in the dynamic contract
literature (see [DS06b], [ST18]).

Lemma 3.1 For any contract γ ∈ ΓIC , there exists a pair of predictable processes, Hu
t and Ho

t ,

such that if the agent follows a truth-telling strategy N̂u
t = Nu

t and effort choice νt for t ∈ [0, τ ],
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his promised utility follows:

dWt = rWt−dt− c(1− I[νt = µ])dt− dLt +Hu
t (dN̂u

t − νtpdt) +Ho
t (dN o

t − νt(1− p)dt).
(PK)

Hu
t and Ho

t capture the instantaneous change of the promised utility Wt upon arrival before a
potential instantaneous payment It at time t. Later, we will show that the processes Hu

t and Ho
t are

the key tools to incentivize the agent to exert effort and report the truth. Therefore, the key of the
contract design problem is to choose Hu

t and Ho
t optimally.

The next lemma shows that, to guarantee truth-telling, we need Hu
t to be greater or equal to the

revenue Ru generated by the unobservable arrival.

Lemma 3.2 Truth-telling is incentive compatible if and only if

Hu
t ≥ Ru, (IC-truthful)

for all t ≤ τ , where Hu
t is defined in Lemma 3.1.

Similarly, Lemma 3.3 shows that, to guarantee that the agent exerts effort, we also need the expected
jump associated with the customer arrivals, pHu

t + (1 − p)Ho
t , to be greater than or equal to the

adjusted effort cost β.

Lemma 3.3 For the agent, full-effort is incentive compatible if and only if

pHu
t + (1− p)Ho

t ≥ β, (IC-effort)

for all t ≤ τ , where Hu
t and Ho

t are defined in Lemma 3.1.

The above two lemmas imply that to provide incentives to the agent, we only need to reward him
at the times when new customers arrive. Further, it follows that the (IC-truthful) and (IC-effort)
conditions are equivalent to the (IC) condition.

3.2.2 Structure of the Optimal Contract & the Corresponding Value Function

Let F (w) denote the principal’s value function. Then the Hamiltonian-Jacobi-Bellman (HJB)
equation is

rF (Wt−) = rWt−F
′(Wt−)− c+ µ[pRu + (1− p)Ro] + max

Hu
t ,H

o
t

µ {p[F (Wt− +Hu
t )− F (Wt−)]

+(1− p)[F (Wt− +Ho
t )− F (Wt−)]− (pHu

t + (1− p)Ho
t )F ′(Wt−)

}
,

(3.5)
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subject to
Hu
t ≥ Ru, pH

u
t + (1− p)Ho

t ≥ β.

We need to appropriately pick Hu
t and Ho

t , so that they satisfy the optimality condition of the above
optimization problem, where F is a concave function in w.13 Hence, the optimization problem can
be easily solved by invoking the Karush-Kuhn-Tucker (KKT) conditions.

As we move further with the analysis, we will show that the optimal contract structure depends
on the relative values of µRu and c. In fact, the parameters of the model give rise to three possibilities:
(1) c ≤ µpRu, (2) µpRu < c < µRu, and (3) c ≥ µRu. Each of these scenarios leads to a distinct
optimal contract structure which we describe next.

Scenario 1.

If c ≤ µpRu, then Hu
t = Ru and Ho

t = 0.
In this case, if (IC-truthful) holds, then c ≤ µpRu implies pHu

t + (1− p)Ho
t ≥ pRu ≥ β, which

means that the (IC-effort) also holds. The condition c ≤ µpRu means that the walk-in customers
are very valuable to the principal (that is, either there is a high proportion of walk-in customers,
captured by large p, or the walk-in-customer revenue Ru is large).

In such a setting, the principal will not waste money rewarding the agent for the customers from
the observable channel (i.e., customers who reserved and paid online), and the agent’s promised
utility will only jump up when a walk-in customer arrival is reported. Note, that there exists an
upper bound on the agent’s promised utility, and, once the agent achieves this upper bound, he is
never terminated. We denote this upper bound as

w̄1 := µpRu/r, (3.6)

and refer to it as a “tenure threshold”. The evolution of the promised utility follows the below:

dWt = {r(Wt− − w̄1)dt+ min{Ru, w̄1 −Wt−}dNu
t } I[Wt− ≥ 0]. (DW1)

Denote the outlined above contract as γ∗1 . We present the formal definition of γ∗1 next.

Definition 3.1 Contract γ∗1(w) = (L∗1, τ
∗
1 ) is generated from a process {Wt}t≥0 following (DW1)

with a given W0− = w ∈ [0, w̄1], such that dL∗1t = (Wt−+Ru− w̄1)+dNu
t and τ ∗1 = min{t : Wt =

0}, in which the reported arrival process N̂u = Nu and dL∗1t are generated from the agent’s effort

process ν∗.

13We will verify the concavity in Lemma 3.4.
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Following (3.5), the corresponding principal’s value function should satisfy

rF (w) = rV̄ + µp[F (w +Ru)− F (w)] + r(w − w̄1)F ′(w), (3.7)

with the boundary condition F (0) = 0, where V̄ is defined in (3.3). In Section 3.2.3, we will prove
that the solution of the differential equation is the principal’s expected total utility under contract
γ∗1 , i.e, F (w) = U(γ∗1(w), ν, Nu).

Scenario 2.

If µpRu < c < µRu, then Hu
t = Ru and Ho

t = β1, where β1 := β−pRu
1−p = c−µpRu

µ(1−p) ∈ [0, Ru).
In this case, Hu

t = Ru is not enough to satisfy the constraint (IC-effort), which guarantees that
the agent is motivated to exert effort. To induce effort, the principal needs to reward the agent for
both types of arrivals. Therefore, the promised utility jumps up when arrivals from the unobservable
channel are reported as well as when customers from the observable channel reserve online (with the
jump for arrivals from the unobservable channel being larger than for arrivals from the observable
channel).14 Again, it is possible for the agent to achieve tenure when his promised utility reaches
the tenure threshold denoted by

w̄2 := c/r. (3.8)

The evolution of the promised utility follows

dWt = {r(Wt− − w̄2)dt+ min{Ru, w̄2 −Wt−}dNu
t + min {β1, w̄2 −Wt−} dN o

t } I[Wt− ≥ 0].

(DW2)

Denote the outlined above contract as γ∗2 . The formal definition of γ∗2 is given next.

Definition 3.2 Contract γ∗2(w) = (L∗2, τ
∗
2 ) is generated from a process {Wt}t≥0 following (DW2)

with a givenW0− = w ∈ [0, w̄2], such that dL∗2t = (Wt− +R− w̄2)+dNu
t + (Wt− + β1 − w̄2)+ dN o

t

and τ ∗2 = min{t : Wt = 0}, in which the counting processes N̂u = Nu and N o as well as dL∗2t are

generated from the agent’s effort process ν∗.

Following (3.5), the corresponding principal’s value function satisfies the following differential

14This follows from the fact that both incentive constraints are binding in this setting, and β < Ru immediately
implies Ho

t < Ru.
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equation

rF (w) = rV̄ + µp[F (w +Ru)− F (w)] + µ(1− p) [F (w + β1)− F (w)]

− rF (w) + r(w − w̄2)F ′(w), (3.9)

with the boundary condition F (0) = 0, where V̄ is defined in (3.3). Similar to contract γ∗1 , we will
prove in Section 3.2.3 that the solution of the differential equation is the principal’s expected total
utility under contract γ∗2 , i.e, F (w) = U(γ∗2(w), ν, Nu).

Scenario 3.

If c ≥ µRu, then Hu
t = β and Ho

t = β.
In this case, condition (IC-truthful) always holds whenever condition (IC-effort) is satisfied,

therefore, the constraint (IC-truthful) can be ignored. The principal lets the promised utility jump
up by the same amount every time an arrival occurs (regardless of the channel of the arrival). The
tenure threshold in this case is given by w̄3 := w̄2 = c/r, and the promised utility follows

dWt = {r(Wt− − w̄3)dt+ min{β, w̄3 −Wt−}dNu
t + min {β, w̄3 −Wt−} dN o

t } I[Wt− ≥ 0].

(DW3)

Denote the outlined above contract as γ∗3 . The formal definition of γ∗3 is given next.

Definition 3.3 Contract γ∗3(w) = (L∗3, τ
∗
3 ) is generated from a process {Wt}t≥0 following (DW3)

with a givenW0− = w ∈ [0, w̄3], such that dL∗3t = (Wt− + β − w̄3)+dNu
t + (Wt− + β − w̄3)+dN o

t

and τ ∗3 = min{t : Wt = 0}, in which the counting processes N̂u = Nu and N o as well as dL∗3t are

generated from the agent’s effort process ν∗.

The corresponding principal’s value function F is a solution to the following differential equation

0 = rV̄ + µ[F (w + β)− F (w)]− rF (w) + r(w − w̄3)F ′(w), (3.10)

with the boundary condition F (0) = 0, where V̄ is defined in (3.3). Similar to γ∗1 and γ∗2 , we will
prove in Section 3.2.3 that the solution of the differential equation is indeed the principal’s expected
total utility under contract γ∗3 , i.e, F (w) = U(γ∗3(w), ν, Nu).15

All three contract structures from above have the following elements in common: (i) a proba-

tionary period during which the agent works for the principal while being offered a (ii) promised
15It is worth noting here that the optimal contract γ∗3 has the same structure as Γ∗ in [ST18]. The same discount

rate case of [ST18] can be thought of a special case of one of our baseline model sub-cases, where the contract design
problem only induces the agent to exert effort to increase the arrival rate of the customers with no truth-telling constraint
and where the arriving customers are homogeneous.
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utility; (iii) a tenure period during which the agent keeps all the revenues collected from the walk-in
customers to himself; and (iv) a termination threshold on the promised utility. During the proba-
tionary period, the agent’s promised future utility takes instantaneous upward jumps on certain
customer arrivals but otherwise decreases. In each of the three contracts, the probationary period
is over when the promised utility reaches either the termination threshold or the tenure threshold.
The variation in the three contract structures, in turn, is captured by the differences in (i) tenure
thresholds, and (ii) the rules for the evolution of the promised utility (the rate of its decrease, and
the when-and-how for the upward jumps).

The contract structures that we have outlined above indicate the important role that the revenue
from the unobservable (walk-in) channel and flow effort cost play in the optimal contract structure,
and which of the incentive constraints end up being binding. When the effort cost is smaller than the
expected revenue from the unobservable channel (c ≤ µpRu), the principal only rewards the agent
for arrivals from the unobservable channel in the optimal contract γ∗1 , and the truth-telling constraint
is the only binding constraint (scenario 1). When the effort cost is moderate (µpRu < c < µRu),
the principal rewards both types of arrivals, and both incentive constraints end up being binding in
the optimal contract γ∗2 (scenario 2). Finally, when the effort cost c is large enough (c ≥ µRu), the
principal just rewards every arrival with the amount of adjusted cost β, and only the effort constraint
is binding (scenario 3).

Furthermore, to implement the contracts, we need to let the starting point of the promised utility
be W0− = w∗, which is the maximizer of the corresponding principal’s value function. Later, we
will verify that the value functions are concave, which implies that the maximizer is unique.

3.2.2.1 Illustrative Examples of Sample Trajectories under Optimal Contract

Figure 3.1 provides an illustration of the sample trajectories of the agent’s promised utility under
the optimal contract for two distinct scenarios.

Panel (a) is an example under the contract γ∗1 . The promised utility starts from an initial point
w0 at time t = 0. As time passes, customers arrive at the store. On the blue trajectory, unobservable
channel arrivals occur at t1, t3, t5, and t6, while observable channel arrivals occur at t2 and t4.
During the probationary period (i.e., for t ∈ [0, t3]), the promised utility keeps decreasing between
the arrivals and jumps up by Ru every time a customer arrival from the unobservable channel is
reported by the agent (the promised utility jumps are depicted by vertical dashed lines at t1 and
t3).16 The promised utility keeps this dynamic until it reaches the tenure threshold w̄1. Once the
agent’s promised utility reaches w̄1, it is kept at this level, and the agent is paid (Wt− +Ru − w̄1)+

16In this example, t3 marks the end of the probationary period and the start of the tenure period for the blue trajectory
scenario. At this moment, the agent’s utility jumps up by the dashed vertical line segment (which is smaller than Ru)
so as to hit exactly the tenure threshold w̄1, while the remaining part of Ru is received by the agent as the first actual
payment (the dotted vertical line segment). The dashed and dotted line segments at t3 together comprise exactly Ru.
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Instantaneous Jump in the Agent’s 
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Instantaneous Cash Payment
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Figure 3.1: Blue and red colored lines illustrate different sample trajectories of the agent’s promised future
utility. For (a) and (b): Ru = 2, Ro = 2, c = 0.8, µ = 2,∆µ = 2, r = 0.5.

for every arrival from the unobservable channel (the payments are depicted by vertical dotted lines
at t3, t5, and t6). Note that, under γ∗1 , the agent is never rewarded for any customer arrival from the
observable channel. Contrary to the blue trajectory scenario, on the red trajectory, the agent fails to
get any arrivals from the unobservable channel before the promised utility reaches zero (captured
by time τ ), and, thus, the agent is terminated.

Panel (b) is an example under the contract γ∗2 . The promised utility starts from an initial point
w0. On the blue trajectory, unobservable channel arrivals occur at t1 and t3, while an observable
channel arrival occurs at t4. On the red trajectory, there are no other arrivals except for a customer
arrival from the observable channel at t2. Similarly to contract γ∗1 , during the probationary period in
contract γ∗2 , the agent’s promised utility (i) keeps decreasing between the arrivals, and (ii) jumps
up by Ru for every customer arrival from the unobservable channel which is reported by the agent
(such promised utility jump is depicted by the vertical dashed line at t1). In contrast to γ∗1 , under
the contract γ∗2 , the arrivals from the observable channel are also rewarded. In particular, during
the probationary period, the promised utility jumps up by β1 for every arrival from the observable
channel (see the vertical dashed line at t2 on the red trajectory). Once the promised utility reaches
the tenure threshold w̄2 (as it is the case for the blue trajectory at t1), the agent’s promised utility is
kept at this level, and the agent is paid (Wt− +Ru − w̄2)+ for every arrival from the unobservable
channel and (Wt− + β1 − w̄2)+ for every arrival from the observable channel (the payments are
depicted by vertical dotted lines at t1, t3, and t4). Note that, on the red trajectory, despite the fact
that the agent receives an arrival, his promised utility still eventually reaches zero at time τ , thus,
the agent is terminated.
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3.2.3 Proof of Contract Optimality

To prove the optimality of the contract presented in Section 3.2.2, we, first, prove the concavity
of the value functions in Lemma 3.4.

Lemma 3.4 If c ≤ µpRu, then equation (3.7) with boundary condition F (0) = 0 has a unique

solution F1(w), which is concave in w, and F ′1(w) ≥ −1. If µpRu < c < µRu, then equation

(3.9) with boundary condition F (0) = 0 has a unique solution F2(w), which is concave in w, and

F ′2(w) ≥ −1. If c ≥ µRu, then equation (3.10) with boundary condition F (0) = 0 has a unique

solution F3(w), which is concave in w, and F ′3(w) ≥ −1.

In what follows, Proposition 3.1 shows that the function Fi(w) is indeed the principal’s utility under
the contract γ∗i , for i = 1, 2, 3.

Proposition 3.1 For any promised utility w ∈ [0, w̄i], we have U(γ∗1(w), ν∗, Nu) = F1(w),

U(γ∗2(w), ν∗, Nu) = F2(w), U(γ∗3(w), ν∗, Nu) = F3(w). That is, when agent’s total discounted

utility is equal to w, a function Fi(w), i ∈ {1, 2, 3} is equal to the principal’s total discounted utility

under the contract γ∗i .

Next, we show that the value functions Fi, i ∈ {1, 2, 3} are upper bounds on the principal’s utility
under any other incentive compatible contract.

Proposition 3.2 For any contract γ ∈ ΓIC and promised utility w ∈ [0, w̄i], if u(γ, ν∗, Nu) = w,

then

F1(u(γ, ν∗, Nu)) ≥ U(γ, ν∗, Nu) if c ≤ µpRu,

F2(u(γ, ν∗, Nu)) ≥ U(γ, ν∗, Nu) if µpRu < c < µRu,

F3(u(γ, ν∗, Nu)) ≥ U(γ, ν∗, Nu) if c ≥ µRu,

where F1(w) = F1(w̄1) − (w − w̄1) for w > w̄1, F2(w) = F2(w̄2) − (w − w̄2) for w > w̄2 and

F3(w) = F3(w̄3)− (w − w̄3) for w > w̄3.

Since functions Fi(w), i = 1, 2, 3 are concave in w and F ′i (w) ≥ −1, the maximizer of the function
Fi(w) is unique and can be denoted as

w∗i = arg max
w≥0

Fi(w). (3.11)

Therefore, we know that for any contract γ ∈ ΓIC ,

U(γ, ν∗, Nu) ≤ Fi(u(γ, ν∗, Nu)) = Fi(w) = U(γ∗i (w), ν∗, Nu) ≤ U(γ∗i (w
∗
i ), ν

∗, Nu) = Fi(w
∗
i ),

(3.12)
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which implies that γ∗i is the optimal incentive contract with full-effort and truth-telling. We
summarize this result in the following Theorem.

Theorem 3.1 γ∗1(w∗1) in definition 3.1 is the optimal contract in the contract space ΓIC if c ≤ µpRu.

γ∗2(w∗2) in definition 3.2 is the optimal contract in the contract space ΓIC if µpRu < c < µRu.

γ∗3(w∗3) in definition 3.3 is the optimal contract in the contract space ΓIC if c ≥ µRu.

So far, we have assumed that the agent has to be incentivized to provide effort to generate arrivals
at all times. In the next section, we consider a broader contract space where the agent could be
allowed to shirk (i.e., not to exert effort), and show that Theorem 3.1 still holds in such expanded
contract space.

3.2.4 Optimality of the Contract in the Expanded Contract Space

In the previous sections, we derived the optimal contract under the assumption that the agent has
to exert effort and truthfully report arrivals at all times. In this section, we show that the contracts
that we derived are still optimal even if we drop the requirement for the contract space to necessarily
include only those contracts that induce full-effort and truth-telling.

Theorem 3.2 γ∗1(w∗1) in definition 3.1 is the optimal contract in the contract space Γ if c ≤ µpRu.

γ∗2(w∗2) in definition 3.2 is the optimal contract in the contract space Γ if µpRu < c < µRu. γ∗3(w∗3)

in definition 3.3 is the optimal contract in the contract space Γ if c ≥ µRu.

The intuition behind the result of Theorem 3.2 is as follows. First, as we mentioned in the beginning
of Section 3.2.1, due to the revelation principle, without loss of generality, we can focus on contracts
that induce the agent to truthfully report the arrivals. Second, it turns out that the principal also
does not lose anything if we only focus on contracts that induce full-effort from the agent. The
reason that always inducing effort is optimal for the principal is that instead of allowing the agent to
shirk, the principal can offer the agent another contract that uses direct payments for every arrival to
induce full-effort, which is Pareto improving. Hence, shirking is inefficient to the system, and direct
payments to the agent (that ensure he does not shirk) can make both principal and agent better off.
For more details, please refer to the proof of Theorem 3.2 in Appendix B.1.2.7.

3.2.5 Numerical Examples & Comparative Statics

In this section, we provide some additional insights into how the principal’s and the agent’s
utilities change with system parameters, such as Ru, Ro, and p, and how the portion of the total
system profit, that is captured by the principal, changes as a function of these parameters.

When p is large, the agent captures most of the revenues generated by the business after he
gets tenure, so hiring an agent may not seem too appealing to the principal at first sight. However,
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the principal chooses W0− = w∗ in such a way that it takes the agent a while to get to the tenure
threshold, and, in the meantime, the principal generates significant revenues. This is because the
actual payments to the agent start only when the agent’s promised utility reaches the tenure threshold
w̄, so the principal still gets to capture all the revenues from the unobservable (walk-in) arrivals
during the probationary period plus all the revenues from the observable arrivals collected over the
entire time horizon. The next lemma shows that both principal and agent’s utilities are increasing in
Ro.

Lemma 3.5 The agent’s utility w∗ and principal’s utility F (w∗) are strictly increasing in Ro.

Let f ∗ :=
F (w∗)

w∗ + F (w∗)
be the fraction of the principal’s utility out of the total system’s utility.

Figure 3.2 shows that f ∗ increases asRo increases. This is an intuitive observation since the increase
of Ro alleviates the moral hazard issue. Similarly, figure 3.3 shows that, when p increases, then f ∗

decreases, while figure 3.4 shows that, when Ru increases, then f ∗ decreases. This is because the
increase of p or Ru only exacerbates the moral hazard issue.

2 3 4 5
0.56

0.58

0.6

0.62

0.64

0.66

Figure 3.2: F (w∗)/ (w∗ + F (w∗)) as a function of Ro. p = 0.7, Ru = 3, µ = ∆µ = 2, r = 0.5.

3.3 Monitoring

In the previous section, we characterized the contracts that the principal will have to offer to the
agent to ensure that the agent does not divert cash and also exerts effort to attract more customers to
the business. These contracts require the principal to pay rent to the agent, and we characterized
situations where this rent could be fairly significant. One way that the principal could avoid paying
this much rent is by monitoring the agent whenever necessary. Although monitoring in moral hazard
problems has been addressed in other papers (see, e.g., [PW16], [CSX20]), our setting is unique in
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Figure 3.3: F (w∗)/ (w∗ + F (w∗)) as a function of p. Ru = 3, Ro = 3, µ = ∆µ = 2, r = 0.5.
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Figure 3.4: F (w∗)/ (w∗ + F (w∗)) as a function of Ru. p = 0.7, Ro = 3, µ = ∆µ = 2, r = 0.5.
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that the principal could potentially decide either to monitor the agent as a protection against both
moral hazard issues, or potentially just monitor partially to see if the agent is diverting cash.

In particular, in this section, we consider the setting where the principal could pay a flow cost
m to monitor the agent. In our baseline model, the principal is facing two moral hazard problems:
“diverting cash” and “shirking”. Section 3.3.1 considers the case of full monitoring, that is, when
monitoring can reveal both types of private information, which means the principal can monitor
both unobservable arrivals and effort. This type of monitoring could be fairly expensive, requiring
the principal (or someone the principal hires) to be at the place of business and observe the agent, to
guarantee that the agent always exerts effort and reports arrivals truthfully. However, we will show
that the principal does not need to conduct this expensive monitoring all the time and only needs to
conduct it when the agent’s promised utility becomes very low. In fact, when deciding whether to
monitor or not, the principal is trading off the monitoring cost against the payment to incentivize
the agent.

Additionally, Section 3.3.2 considers the case of partial monitoring, where the principal can
only monitor (otherwise unobservable) arrivals. For example, if the agent delivers the services at
the principal’s business unit, the principal could install video monitoring equipment to continuously
observe all arrivals and services delivered to customers, or the principal could install a GPS tracker
on all company-owned equipment required to deliver the service. In fact, recent empirical papers
([KLS18], [NRST02], and [PSM15]) considered settings (agents driving minibuses, agents soliciting
donations, and agents serving customers at a restaurant), where the principal monitors agents’ effort
and/or agents’ sales, and showed that such monitoring can significantly improve productivity and
reduce theft.

3.3.1 Full Monitoring

Throughout this section we focus on the derivation of an optimal contract, when a new costly
option of full monitoring is, now, made available to the principal. In particular, during the time
interval [t, t + δ], the principal could pay a monitoring cost mδ to observe all the arrivals and
agent’s effort choices during this time interval. Let a process {Mt}t≥0 represent the full monitoring
schedule under the contract, where Mt ∈ {0,m} captures the monitoring cost at time t. We expand
the definition of a contract to include the monitoring schedule as follows: γ = (L, τ,M) ∈ Γm.17

The expression for the agent’s utility is not affected by the presence of monitoring, and so is
still captured by the equation (3.1). In contrast, the monitoring option does alter the expression of

17Formally, L and M are adapted to F̂ = {F̂t, t ≥ 0}, the filtration generated by N̂u, No.
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the principal’s utility (which now has an additional term capturing the cost paid for monitoring):

Um(Γ, ν, N̂) = E
[∫ τ

0

e−rt
(
RudN̂

u
t +RodN

o
t − dLt − cdt−Mtdt

)]
. (3.13)

Note that the promise keeping constraint does not undergo any change when full monitoring
is introduced, so the (PK) constraint stays the same. In contrast, the incentive compatibility
constraint that induces truthful reporting and the agent’s effort does require updating to adjust for
the occurrence of full monitoring, and, thus, is described next.

Lemma 3.6 Truth-telling and full-effort are incentive compatible if and only if

Hu
t ≥ Ru, pH

u
t + (1− p)Ho

t ≥ β if Mt = 0, (3.14)

for t ≤ τ , where Hu
t and Ho

t are defined in Lemma 3.1.

Lemma 3.6 is directly adapted from Lemma 3.2. We define the contract space that only includes the
contracts where the agent always exerts effort and reports truthfully as ΓICm . We, first, focus on the
contracts in ΓICm . We, then, prove that the optimal contract in ΓICm is still optimal in a larger contract
space Γm.

We find that, in the optimal contract, the principal only monitors the agent when the agent’s
promised utility reaches the full monitoring threshold equal to 0. While the principal conducts full
monitoring, the agent’s promised utility is kept at zero. In fact, under the optimal contract, once full
monitoring is initiated, it continues indefinitely. Based on definitions 3.1-3.3, we now define such
optimal contract by adding the monitoring schedule m∗t .

Definition 3.4 For i = 1 (2, 3), contract γ∗mi(w) = (L∗i , τ
∗
i ,m

∗
i ) is generated from a process

{Wt}t≥0 following (DW1) ((DW2), (DW3)) with a given w ∈ [0, w̄i], such that L∗i has the same

expression in γ∗i (w), τ ∗i =∞, and M∗
it = mI[Wt− = 0], where the counting process Nu and dL∗it

are generated from the agent’s effort process ν∗.

According to the above definitions, the principal monitors the agent only when the agent’s promised
utility is 0. If monitoring were not available, the principal would have to terminate the agent and
would make zero profits thereafter. Hence, monitoring enables the principal’s utility to become
(µ[pRu + (1 − p)Ro] − c − m)/r instead of zero as soon as the agent’s promised utility hits 0.
So, monitoring is profitable to the principal only if (µ[pRu + (1− p)Ro]− c−m) /r ≥ 0, or
equivalently:

m ≤ µ[pRu + (1− p)Ro]− c. (3.15)
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The next proposition shows that the contracts γ∗m1, γ∗m2, and γ∗m3 are optimal under condition
(3.15). Denote the principal’s value function under contract Γ∗mi(w) by Fmi(w). Then, Fm1

(Fm2, Fm3) is the solution of equation (3.7) (eq. (3.9), eq. (3.10)) with the boundary condition
F (0) = (µ[pRu + (1− p)Ro]− c−m) /r. We further define w∗mi as the maximizer of Fmi(w).

Proposition 3.3 If condition (3.15) holds, then:

• γ∗m1(w∗m1) in definition 3.4 is the optimal contract in Γm if c ≤ µpRu;

• γ∗m2(w∗m2) in definition 3.4 is the optimal contract in Γm if µpRu < c < µRu;

• γ∗m3(w∗m3) in definition 3.4 is the optimal contract in Γm if c ≥ pRu.

Conversely, if condition (3.15) does not hold, then:

• γ∗1(w∗1) in definition 3.1 is the optimal contract in Γm if c ≤ µpRu;

• γ∗2(w∗2) in definition 3.2 is the optimal contract in Γm if µpRu < c < µRu;

• γ∗3(w∗3) in definition 3.3 is the optimal contract in Γm if c ≥ pRu.

In the optimal contract with full monitoring, the principal conducts monitoring to avoid inefficient
termination. When monitoring, the principal can guarantee that the agent will exert effort and report
arrivals truthfully. Hence, the agent’s promised utility does not need to decrease, and termination
never happens in these contracts. Further, the principal monitors the agent if and only if the agent’s
promised utility hits zero. Once the principal initiates full monitoring, she will continue to monitor
the agent and will never terminate the contract.

To show the robustness of our results, we consider two generalizations. First, in Appendix
B.1.3.2, we are able to extend the model to the case where the agent has an outside option, which
guarantees the agent a future utility w ≥ 0. Second, in Appendix B.1.3.3, we generalize the current
setting to the case where the principal could pay a fixed cost k > 0 to fire the current agent and find
a new one.

3.3.2 Partial Monitoring

In this section, we consider the situation where the principal can only monitor the (otherwise
unobservable) customer arrivals but is unable to monitor the agent’s effort. We refer to this setup
as partial monitoring. In particular, during the time interval [t, t + δ], the principal could pay a
monitoring cost mδ to observe all the arrivals during this time interval. Similar to the setting in
Section 3.3.1, the contract is denoted as γ = (L, τ,M) ∈ Γma with the partial monitoring schedule
M = {Mt}t≥0, where Mt ∈ {0,m}.
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The agent’s utility still follows equation (3.1) and the principal’s utility follows equation (3.13).
The promise keeping and full-effort incentive constraints follow (PK) and (IC-effort), respectively.
In contrast, the incentive compatibility constraint that induces truthful reporting does require
updating to adjust for the occurrence of partial monitoring, and is described next.

Lemma 3.7 Truth-telling is incentive compatible if and only if

Hu
t ≥ Ru if Mt = 0, (IC-truthfulm)

for all t ≤ τ , where Hu
t is defined in Lemma 3.1.

Lemma 3.7 is directly adapted from Lemma 3.2. We define the contract space that only includes
contracts where the agent always exerts effort and reports truthfully as ΓICma. That is, for any
γ ∈ ΓICma, the constraints (IC-effort) and (IC-truthfulm) have to be satisfied. In the current section,
we again focus on the optimal contract in ΓICma; and then show that the optimal contract in ΓICma is
still optimal in a larger contract space Γma. In what follows, we derive the optimal contracts which
allow partial monitoring. As before, the parameter space of the problem naturally gives rise to
three distinct scenarios (c ≤ µpRu, µpRu < c < µRu, and µRu ≤ c) with their respective distinct
contract structures, that we characterize next.

3.3.2.1 c ≤ µpRu

In this Section, we first present the Hamilton-Jacobi-Bellman (HJB) equation and the optimal
contract that allows partial monitoring. Next, we prove the optimality of the contract and provide an
illustrative example. Finally, we provide the intuition behind this optimal contract.

Let F (w) denote the principal’s value function. When the principal does not monitor the
agent, then, based on Section 3.2.2, the agent’s promised utility should follow (DW1) and the
principal’s value function follows (3.7). When the principal conducts monitoring, it is optimal to
set Hu

t = Ho
t = β. Hence, the dynamics of the agent’s promised utility becomes (DW3). Then the

principal’s value function satisfies another differential equation:

rF (w) = rV̄ −m+ µ[F (w + β)− F (w)] + r(w − w̄2)F ′(w). (3.16)

Given that the principal is freely deciding whether to monitor the agent, the principal’s value
function follows the Hamilton-Jacobi-Bellman (HJB) equation:

rF (w) = rV̄ + max
{
µp[F (w +Ru)− F (w)] + r(w − w̄1)F ′(w),

−m+ µ[F (w + β)− F (w)] + r(w − w̄2)F ′(w)
}
, (3.17)
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with boundary condition F (0) = 0. The HJB equation implies that the principal would monitor
the agent if and only if the first term of (3.17) is less than or equal to the second term, which is
equivalent to

M(w) := µ[F (w + β)− F (w)]− µp[F (w +Ru)− F (w)] + (w̄1 − w̄2)F ′(w) ≥ m. (3.18)

We can show that if w ≥ w̄1, not monitoring is better than monitoring, i.e, m > M(w). As w
decreases, monitoring potentially becomes more profitable, there are optimal switching points w∗L,
such that m =M(w∗L). For simplicity, we assume a unique switching point.18 We formally define
the optimal contract in definition 3.5.

Definition 3.5 For any w ∈ [0, w̄1], define the contract γ∗m(w) = (L∗m, τ
∗
m,m

∗) as follows:

1. Set W0− = w and L∗0 = (W0− − w̄1)+.

2. For t ≥ 0, let the payment be

dL∗t = (Wt− +Ru − w̄1)+dNu
t I[Wt−≥w∗L]

+
[
(Wt− + β − w̄1)+dNu

t + (Wt− + β − w̄1)+dN o
t

]
I[Wt− < w∗L],

and the dynamics of the promised utility follow

dWt = {r(Wt− − w̄1)dt+ min{Ru, w̄1 −Wt−}dNu
t } I[Wt− ≥ w∗L] (DWm)

+ {r(Wt− − w̄2)dt+ min{β, w̄1 −Wt−}dNu
t + min{β, w̄1 −Wt−}dN o

t } I[Wt− < w∗L],

3. The partial monitoring schedule is M∗
t = mI[Wt− < w∗L].

4. The termination time is τ ∗m = min{t : Wt = 0}.

We further define w∗m as the maximizer of F (w), and the principal starts the agent’s promised
utility at w∗m. Next, we show that γ∗m(w∗m) is the optimal contract among the class of contracts that
allow the agent to shirk or not truthfully report (in the space Γma).

Proposition 3.4 If the switching point w∗L is unique and µpRu ≥ c, then the value function F

defined in (3.17) is concave in w and differentiable and γ∗m(w∗m) in definition 3.5 is the optimal

contract in the contract space Γma.

Illustrative Example
Figure 3.5 depicts the sample trajectories of the agent’s promised utility in the optimal contract γ∗m

18We ran extensive numerical simulations, and in all instances we observed the single switching of the value function.
Further, there is a recently published paper by [Won19], which makes a similar assumption of the unique switching
point of the value function. In this paper, the authors also compare two terms in a HJB equation, however, their setting
is very different from ours.
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Figure 3.5: Blue and red colored lines illustrate two distinct sample trajectories of the agent’s promised
future utility under partial monitoring. Parameters: p = 0.8, Ru = Ro = 2, c = 0.8, µ = ∆µ = 1.2, r = 0.5,
β = 2/3 < pRu, w̄1 = 3.2, w0 = 2.4, wL = 1.42.

with partial monitoring (see Definition 3.5). This is the result of a numerical simulation. The initial
value of the agent’s promised utility (at t = 0) is w0. As time passes, customers arrive at the store.
The times t1, t4, t5, t6, and t9 mark arrivals unobservable to the principal, and the times t2, t3, t7,
and t8 mark arrivals observable to the principal. In contrast to the baseline contracts considered
in Section 3.2, the contract with partial monitoring, γ∗m, has two regimes which result in different
dynamics of the evolution of the promised utility. In particular, when the agent’s promised utility is
equal to or above the monitoring threshold, w ≥ w∗L (regime 1), the principal will not monitor the
agent and the dynamics is exactly the same as in γ∗1 .19 However, when the agent’s promised utility
is below the monitoring threshold, w < w∗L (regime 2), the principal will monitor the agent and let
the promised utility decrease at a lower rate, compared to the regime 1. In regime 2, the principal
will also reward both types of arrivals no matter the type, increasing the promised utility by β with
every arrival. Note that each such jump of the promised utility in regime 2 is strictly smaller than
the jump made under the regime 1 (because c < µpRu < µRu). On the blue trajectory, the agent
manages to get out of the monitoring region and eventually gets tenure. On the red trajectory, once
the agent reaches the monitoring region, he fails to receive any arrivals and is terminated at time τ .

Note that in the case of such partial monitoring, (unlike, in the case of full monitoring, where
the principal can monitor both the arrivals and the effort), the agent is still possibly terminated if he
does not receive sufficient number of customer arrivals once trapped in the monitoring region. This
is because partial monitoring addresses only one of the moral hazard problems – the one caused by
unobservable arrivals. Hence, when the principal conducts partial monitoring, she does not have
to pay the agent to induce truth-telling. As a result, to decide when to monitor, the principal is

19We revert back to the structure of the contract γ∗1 because the parameters satisfy c ≤ µpRu, thus, placing us into
the scenario 1 in Section 3.2.2 .
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trading off the cost of partial monitoring versus the payment to incentivize the agent to tell the truth
about the number of arrivals. However, this payment does not incentivize the agent to exert effort,
and, therefore, the principal still needs to use the threat of termination to incentivize the agent to
exert effort, unlike in the case of full monitoring. Another key difference between partial and full
monitoring is that, under partial monitoring, the agent can potentially get out of the monitoring
region if the promised utility bounces back to a high enough level, whereas under full monitoring,
when both arrivals and effort are monitored, once monitoring starts, it continues indefinitely.

3.3.2.2 µpRu < c < µRu

The analysis and main results in this case are similar to the case in Section 3.3.2.1, thus, we
only discuss the structure of the optimal contract and we leave the formal definition of the optimal
contract and the statement of the optimality result to the Appendix. When the principal does
not conduct partial monitoring, the dynamics of the agent’s promised utility is given by (DW2),
and when the principal monitors the agent, the dynamics of the agent’s promised utility follows
(DW3). Hence, similar to the previous section, the optimal contract has two regimes. There exists a
monitoring threshold w2∗

L , such that: when w ≤ w2∗
L , the principal monitors the agent and rewards

him with β for every arrival; while, when w > w2∗
L , the principal does not monitor the agent and

provides different rewards for different types of arrivals.
Similar to the case discussed in Section 3.3.2.1, the principal still needs to induce agent’s effort

when she conducts partial monitoring. The difference is: in this section, the incentive constraint
to induce effort is always binding regardless of whether the agent is being monitored. As a result,
unlike in the case, where c ≤ µpRu, in this case the agent’s promised utility does not decrease
slower when partial monitoring is utilized, so monitoring does not directly lead to a decrease in
probability of firing the agent. However, the principal can still benefit from partial monitoring in the
following way. In the case without monitoring, the principal has to reward the agent with a bigger
jump in his promised utility for every arrival from the unobservable channel to ensure that the agent
is incentivized to tell the truth about arrivals; however, partial monitoring automatically reveals
arrivals from the unobservable channel, therefore, the principal no longer has to provide an extra
reward for arrivals from the unobservable channel, which can lead to higher profits to the principal.

We have finished deriving the optimal contracts with partial monitoring when µRu > c. If
µRu ≤ c, as we have described in Section 3.2.2, if the principal incentivizes the agent to exert effort,
then this automatically guarantees truth-telling. Thus, the principal can provide the reward of β
for both types of arrivals, and this way the agent will be incentivized to report the truth. Hence,
the optimal contract is still described by γ∗3 (Definition 3.3) even when we allow the principal to
monitor the unobservable arrivals.
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3.4 Dynamic Discounting as an Incentive Mechanism

In the previous section, we considered how the principal could use dynamic monitoring along
with payments to the agent and the threat of termination to incentivize the agent to tell the truth
about the number of arrivals and to exert effort. In this section, we consider how the principal could
achieve the same aims by dynamically adjusting the prices charged to customers arriving from the
observable channel (i.e., the customers who reserve online and, therefore, are directly observable by
the principal).

We consider a situation where the price for the service is fixed at Ru = R but the principal could
decide to provide a discount to customers reserving and paying for the service online by dynamically
adjusting the online channel price to Ro = (1 − dt)R, dt ∈ [0, 1]. The “dynamic discount” is a
unique tool in our setting because customers arrive at the store through two different channels, and
customers arriving through one of the channels are unobservable by the principal. If the principal
provides a discount to customers who choose to arrive via the observable channel, customers will
be more willing to order their service through this channel, which will partially address the moral
hazard problem caused by the cash diversion. Hence, when deciding on the dynamic discounting,
the principal is trading off the revenue loss from the discount against the incentive payments to the
agent to induce truthful reporting.

Recall that, up until this point, we assumed that a customer chooses the unobservable channel
(walk-in) with probability p and chooses the observable channel (online) with probability 1 − p.
Since the principal is dynamically adjusting the price of service through the observable channel,
the probability that a customer chooses the unobservable channel or the observable channel will be
influenced by the prices. Hence, we endogenize the customer channel choice, by adding a separate,
micro-founded, stylized, customer utility consideration to the baseline model. The rest of this
section is organized as follows. We first introduce the customer utility model in Section 3.4.1. Then,
we present the main properties of the optimal contract in Section 3.4.2. Finally, we present the
formal definition of the optimal contract in Section 3.4.3.

3.4.1 Customer Utility

Let U t
iu and U t

io denote a customer i’s utility, that she obtains when choosing to receive the
service via the unobservable channel or the observable channel, respectively:

U t
iu = U −R,U t

io = U − (1− dt)R + εti.

Here, U denotes the reservation utility of the service and εti is the relative utility difference that
the customer i experiences when receiving service via the observable channel compared to the

67



unobservable channel. The cumulative distribution function and probability distribution function
of εti are assumed to be Fε and fε. Further, we assume that the utility that the customer gets if she
leaves without ordering is zero. In this Section, we focus on the case U ≥ R, otherwise no customer
will choose the unobservable channel. Therefore, the probability pu that a customer chooses the
walk-in, unobservable channel is a function of dt:

pu(dt) = P(U t
iu ≥ U t

io, Uiu ≥ 0) = P(εti ≤ (1− dt)R−R,U −R ≥ 0) = Fε(−dtR).

The probability po that an arriving customer chooses the online, observable channel is also a function
of dt:

po(dt) = P(U t
io > U t

iu, Uio ≥ 0) = P(εti ≥ (1− dt)R− U, εti > (1− dt)R−R) = 1− Fε(−dtR).

We need to expand the definition of contracts to include the dynamic discounts, i.e., γ = (L, τ,D) ∈
ΓD.20 The overall expression for the agent’s utility remains the same as equation (3.1), while the
payment L could be affected by the choice of discounts. Similarly, the expression of the principal’s
utility still follows equation (3.2), while Ru = R, Ro = (1 − dt)R and the payment L could be
affected by the choice of discounts.

With the new definition of the probability functions, we update the promise keeping constraint:

dWt = rWt−dt− c(1− I[νt = µ])dt− dLt +Hu
t (dN̂u

t − µpu(dt)dt) +Ho
t (dN o

t − µpo(dt)dt).
(PKd)

Note that the incentive compatibility constraint that induces truthful reporting of arrivals from the
unobservable channel does not change when the discount dt is applied. This is because it requires
that Hu

t ≥ R and the discount only influences the price of purchasing the service through the
observable channel. In contrast, the incentive compatibility constraint that induces full-effort does
require updating to adjust for the new probability functions. Therefore, we provide an updated
version of the incentive compatibility constraint for full-effort which is adapted from Lemma 3.3.

Lemma 3.8 Full-effort is incentive compatible if and only if, for all t ≤ τ ,

pu(dt)H
u
t + po(dt)H

o
t ≥ β. (ICeffortd)

We define the contract space, ΓICD , to include the contracts where the agent reports truthfully and
always exert effort. (Constraints (ICeffortd) and (IC-truthful) need to be always satisfied.) In the
current section, we focus on the contracts in ΓICD . However, in Section (3.4.3), we also show that

20Formally, L and D = {dt}t≥0 are adapted to F̂ = {F̂t, t ≥ 0}, the filtration generated by N̂u, No.
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the optimal contract in contract space ΓICD is also optimal in the larger contract space ΓD.
For analytical simplicity, we make the following standard assumption: εti ∼ U([−a, b]) where

a > 0, b > 0.21 We, now, can derive the following claim on the choice of the discount.

Claim 3.1 d∗t ∈
[
0, d̄
]
, where d̄ = min

( a
R
, 1
)

.

The above claim shows that the optimal discount to the observable channel lies within the following
interval

[
0, d̄
]
. This is because, the upper bound of the interval is the minimal value of the discount

(dt = a
R

) that could place all customers to the observable (online) channel, and, thus, an even bigger
discount would only lead to revenue loss and no appreciable benefit to the principal. As a result of
Claim 3.1, we have

pu(dt) =
−dtR + a

a+ b
, po(dt) =

b+ dtR

a+ b
. (3.19)

3.4.2 Properties of the Optimal Contract

In this section, we first present the main properties (Properties 1-5) of the optimal contracts based
on the Hamiltonian-Jacobi-Bellman (HJB) equation. Then we prove that the contracts following
these properties are indeed optimal.

We define the system’s value function as the sum of the principal’s utility and the agent’s
promised utility: V (w) := F (w) + w. Then, V (w) should satisfy the following HJB equation:

rV (w) = −c+ rwV ′(w) + µ max
Hu,Ho,d

{pu(d) [R + V (w +Hu)− V (w)−HuV
′(w)] (3.20)

+ po(d) [(1− d)R + V (w +Ho)− V (w)−HoV
′(w)]

}
,

subject to

Hu ≥ R; pu(d)Hu + po(d)Ho ≥ β,

where pu(d) and po(d) are defined in (3.19). Hence, given the choice of the discount d and following
the results of Section 3.2, we obtain the optimal values of Hu and Ho in the HJB equation next.

Property 1.

Hu = R,Ho(d) =


0 if µpu(d)R ≥ c,

c− µpu(d)R

µpo(d)
=
β − pu(d)R

po(d)
if µpu(d)R < c ≤ µR.

(3.21)

21We numerically test that the main results in this section do not change when εti follows other distributions (for
example, Normal, Logistic, U-quadratic, and Triangular).
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Next, we derive the upper bound of the agent’s promised utility in the optimal contract. We first
define the upper bound of the system’s value by choosing the value of a discount d:

V̄d = max
d∈[0,d̄]

µ[pu(d)R + po(d)(1− d)R]− c
r

, (3.22)

where pu(d) and po(d) are defined in (3.19). Since the objective function is quadratic in d and,
hence, concave in d, the optimization problem is easy to solve, and the solution is d∗ = 0. Therefore,

V̄d =
µR− c
r

. We further define

w̄ := max

(
µR

r
· a

a+ b
,
µβ

r

)
, (3.23)

which will be shown to be the upper bound of the agent’s promised utility in the optimal contract.
The above confirms that, once the agent reaches the upper bound of the promised utility, discounting
is no longer needed (d∗ = 0). Later, with Property 5, we will further emphasize that the optimal
discount is decreasing in the agent’s promised utility w.

Property 2. V (w) = V̄d for w ≥ w̄, where w̄ follows (3.23).
Property 2 shows that when the agent’s promised utility reaches a certain threshold w̄, the

system’s value function achieves the upper bound V̄d. This implies that the agent gets tenure once
his promised future utility is equal to or above the “tenure threshold” (w ≥ w̄), and discount is zero.

We have determined the values for Hu, Ho, and the upper bound of the agent’s utility in the
optimal contract. The only decision variable left is the discount d. Next, we define

G(d, w) :=pu(d) [R + V (w +R)− V (w)−RV ′(w)] ,

+po(d) [(1− d)R + V (w +Ho(d))− V (w)−Ho(d)V ′(w)] .
(3.24)

Lemma 3.9 G(d, w) is concave in d for any w ≥ 0.

Lemma 3.9 implies that we can choose d using Karush-Kuhn-Tucker (KKT) conditions.
Property 3. The optimal discount d∗(w) follows the optimality condition:

∂G(d, w)

∂d
|d=d∗ − z + y = 0;

zd∗ = 0, z ≥ 0; y
(
d∗ − d̄

)
= 0, y ≥ 0.

When d increases, the net price charged to customer ordering through the observable channel
decreases, and more customers choose the observable channel, which further makes the cash
diversion moral hazard problem less significant. Therefore, the greater the discount d is, the less the
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principal has to pay to the agent to incentivize him to report customer arrivals truthfully. Hence, by
adjusting the dynamic discounts in an optimal manner (d∗), and, hence, changing the distribution of
customers across the two channels, the principal optimally trades-off the revenues collected for the
services against the payments made to the agent.

Furthermore, following Property 2, we learn that d∗ = 0, for w ≥ w̄. Before we look into
the characterization of d∗(w), we first prove a technical result that the system’s value function is
strictly concave in the agent’s promised utility w, which implies that, under the optimal contract,
the principal would not randomize over the agent’s promised utility.22

Property 4. V defined in (3.20) is strictly concave in w on [0, w̄).
Finally, we prove that the optimal discount d∗(w) is decreasing in w (Property 5), that is, as

the agent’s promised utility increases, the principal sets a higher price for ordering through the
observable channel. This means that when the agent’s promised utility increases, principal sees less
of a need to divert customers from the unobservable channel to the observable channel. This echoes
our findings of Section 3.3.2, where the principal can monitor the agent: she will only do so when
the agent’s promised utility is sufficiently low.

Property 5. d∗(w) is decreasing in w.
Based on the Properties 1-5 established above, the system’s value function can be obtained by

solving the following differential equation:

rV (w) = −c+ rwV ′(w) + µ {pu(d∗(w)) [R + V (w +R)− V (w)−RV ′(w)]

+ po(d) [(1− d∗)R + V (w +Ho(d
∗(w)))− V (w)−Ho(d

∗)V ′(w)]
}
,

(3.25)

with the boundary condition V (0) = 0 since the termination threshold equals 0 when the contract is
terminated. The principal’s value function can be expressed as F (w) := V (w)− w. Further, define
w∗d as the maximizer of F (w). We, now, can formally define the optimal contract that the principal
adopts when the channel manipulation (via the observed channel’s price discounting) is allowed.

3.4.3 Optimal Contract under Channel Manipulation

Definition 3.6 For any w ∈ [0, w̄], define a contract γ∗d(w) = (L∗, τ ∗, D∗) as follows:

1. Set W0− = w and L∗0 = (W0− − w̄)+.

2. For t ≥ 0, set d∗t = d∗(Wt−), where function d∗(w) is defined by Property 3. dL∗t =

22If the optimal value function is linear in the promised utility w, the principal implements the optimal contract
by randomizing between two levels of the promised utility. Hence, when the value function is strictly concave,
randomization is not needed.
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(Wt− +R− w̄)+dNu
t + (Wt− +Ho(d

∗
t )− w̄)+dN o

t , such that

dWt = rWt−dt− dL∗t +R(dNu
t − µpu(d∗t )dt) +Ho(d

∗
t )(dN

u
t − µpo(d∗t )dt),

where Ho is defined in (3.21), and functions pu and po are defined in (3.19).

3. The termination time is τ ∗ = min{t : Wt = 0}.

Similar to the previous sections, to implement the contract, the principal keeps track of the agent’s
promised utility while the payment and the termination at time t are contingent on the agent’s
promised utility at time t−. What is new here is that the dynamic discount at time t is also a function
of the agent’s promised utility at time t− (i.e., d∗(Wt−)), and it further affects the dynamics of the
promised utility through dWt.

Finally, in the next theorem, we prove that γ∗d(w
∗
d) is not only the optimal contract in the class

of contracts which induce full-effort and truth-telling ΓICD , but also the optimal contract in the class
of contracts that allow the agent to shirk or not truthfully report ΓD.

Theorem 3.3 γ∗d(w
∗
d) in definition 3.6 is the optimal contract in the contract space ΓD.

3.5 Welfare Analysis

It is clear that the principal is better off when she uses the monitoring or dynamic discounting
tools along with the dynamic contracts levers (payments and termination) to incentivize the agent,
however, how the agent’s utility changes as these tools are used is not as obvious. In this section, we
are interested in how the agent’s utility (w∗) changes when the principal adds the monitoring tool or
the dynamic discounting tool. Recall that the agent’s utility represents the agent’s total utility under
the optimal contract which is chosen by the principal at the beginning of the contract, while the
principal’s utility is a function of the agent’s utility. Further, the system’s utility is the sum of the
agent’s utility and the principal’s utility. First, we look at the case in which the principal uses the
monitoring tool to reveal both types of information (unobservable arrivals and agent’s effort).

Lemma 3.10 w∗mi ≤ w∗i for i = 1, 2, 3.

Lemma 3.10 shows that, unsurprisingly, the agent is always worse off when the principal conducts
full monitoring (that is, when the monitoring can reveal both types of private information). In
the baseline model (i.e., absent of monitoring), the positive utility, w∗i , that the agent receives can
be understood as the information rent since the agent has two types of private information. The
monitoring tool has two effects on the system and the agent: first, it increases the system’s total
utility (i.e. the system’s value function with monitoring is larger than the system’s value function
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without monitoring) by reducing the probability of termination. Furthermore, in the case when
monitoring reveals both types of private information, the contract is never terminated. Recall that
termination hurts the agent as well as the principal, therefore, in the baseline model, the principal
is motivated to start the agent with a baseline utility that is high enough that the agent will not
be terminated with a high enough probability. However, once monitoring is used, the principal
can monitor both truth-telling and effort and can avoid termination, therefore, the second effect of
monitoring is that the principal starts the agent at a lower promised utility. Thus, while monitoring
eliminates the chance that the agent will be terminated, it also causes the agent’s expected utility to
decrease. In fact, in the extreme, trivial case where monitoring cost is zero, the principal would
monitor at all times and the agent’s expected utility would, therefore, go down to zero.

The situation is different, however, if the principal can only conduct partial monitoring (by,
monitoring arrivals). Once again, the monitoring tool increases the system’s total utility (i.e.
the system’s value function with monitoring is larger than the system’s value function without
monitoring) by reducing the probability of termination. Since monitoring makes the contract
more profitable, the principal may have the incentive to increase the agent’s expected duration of
employment in the contract compared with the baseline contract. However, it is still possible that the
agent will be terminated in the contract with monitoring. Hence, the principal may have motivation
to further increase the agent’s starting promised utility to increase the agent’s expected duration of
employment (i.e., to reduce the probability of termination). In the following numerical example, we
show a situation where the agent’s utility increases when the principal conducts partial monitoring
which only reveals unobservable arrivals.

Example 3.1 c = 1.6, µ = 1, p = 0.9, Ru = Ro = R = 2, r = 0.1,m = 0.05, w∗m = 1.2, and

w∗1 = 0.96.

In Example 1, when partial monitoring is added, the agent’s utility increases from 0.96 to 1.2. In this
example, the probability of termination in the baseline contract is 0.82 which is quite large. Hence,
the principal has the motivation to decrease this probability by increasing the agent’s utility. As a
result, the agent’s utility increases and the probability of termination in the contract with monitoring
goes down to 0.75.

However, if we fix other parameters and only change the service fee as follows: Ru = Ro =

R = 5, the agent becomes worse off (w∗m = 5.4 < w∗1 = 9.12) with monitoring compared to the
baseline case. In this case, R is large, and the probability of termination in the baseline contract
decreases to 0.26 which is already small. Hence, the principal does not have the motivation to
further decrease this probability by increasing the agent’s utility. In addition, in the contract with
monitoring, although we reduce the agent’s utility, the termination probability is still only 0.1. The
next lemma confirms our numerical findings: if the service fee R is large enough, the agent will be
worse off when the principal conducts partial monitoring.
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Lemma 3.11 If m = 0, there exists R̂ such that if Ru = Ro > R̂, then w∗m ≤ w∗1.

Our previous analysis indicates that the partial monitoring tool is more likely to hurt the agent
as R increases. We tested this conjecture by conducting a numerical study. In the study, we
took the model parameters as follows: r ∈ {0.5, 1, 1.5, 2}, Ru = Ro = R ∈ {1, 2.5, 4, 5.5, 7},
m ∈ {0.2, 0.4, 0.6, 0.8}, µ ∈ {0.5, 1, 1.5, 2}, c ∈ {0.8, 1.2, 1.6, 2, 2.4}. In the numerical study,
when we fixed other parameters and let R increase, we found that there exists a threshold where the
monitoring tool hurts the agent if and only if R is above that threshold.

Finally, we analyzed the case when the principal uses the dynamic discounting tool. We first
discuss how the dynamic discounting tool may affect the agent’s utility. Similar to the case with
monitoring, the dynamic discounting tool increases the system’s utility by decreasing the probability
of termination. The dynamic discounting tool alleviates the moral hazard problem by guiding
customers from the unobservable channel to the observable channel which makes the promised
utility of the agent decrease slower. Since the dynamic discounting makes the contract more
profitable, the principal may have the incentive to decrease the probability of termination in such
contract compared with the baseline contract. However, it is still possible for the agent to be
terminated in the contract with dynamic discounting. Hence, the principal may have motivation to
further increase the agent’s utility to increase the agent’s expected duration of employment (i.e., to
reduce the probability of termination). In the following numerical example, we show a situation
where the agent’s utility increases when the principal uses the dynamic discounting tool.

Example 3.2 c = 0.9, µ = 1, a = 0.8, b = 0.2, p = 0.8, Ru = Ro = R = 1.6, r = 0.7, U = 2,

w∗d = 0.35, and w∗1 = 0.25.

In Example 2, when the dynamic discounting tool is used, the agent’s utility increases to 0.22 from
0, the latter is the utility when no dynamic discounting is undertaken. In this example, the principal
has the motivation to reduce the probability of termination by increasing the agent’s utility while
also employing dynamic discounting. However, if we fix other parameters in Example 2 and only
change the revenue such that Ru = Ro = R = 3, then dynamic discounting makes the agent worse
off, i.e. w∗d = 1, w∗1 = 1.46. In this case, R is large, the probability of termination in the baseline
contract decreases to 0.54 which is already relatively small. Hence, the principal does not have the
motivation to further decrease this probability by increasing the agent’s utility while using dynamic
discounting.

We conduct a numerical study with the same set of the parameters as we did in the case of
partial monitoring. We find that, as R increases, the dynamic discounting tool is more likely to
hurt the agent. The explanation is similar to the case of partial monitoring: as R increases, the
probability of termination in the baseline contract becomes small, and the principal’s motivation to
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further reduce the probability of termination is weakened, hence, she chooses to reduce the agent’s
utility by discounting more.
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CHAPTER 4

Dynamic Moral Hazard with Adverse Selection

4.1 Introduction

Many business environments involve situations where an agent is supposed to exert effort and
obtain results over time for a principle. For example, a firm’s R&D department (principal) funds
researchers (agent) for extended durations of time, hoping to generate “breakthrough results.”1

Similarly, many companies expect their employees in charge of business development activities
to acquire new target customers. In politics, many firms hire lobbying agencies in the hope of
influencing politicians to pass legislation benefiting the firm. In all these situations, the agent’s
activities are hard to observe, leading to a dynamic moral hazard problem. Furthermore, the agent’s
capabilities to achieve results, reflected in its operating cost, may be only known by the agent,
and not observable to the principal. For example, firms may have a hard time estimating how
much expenditure it will take the researcher team to achieve breakthroughs, or how much lobbying
expenditure it will take a lobbyist to achieve legislative results. An agent may either claim a higher
expenditure than necessary, or, if under-funded, may choose not to exert effort. This therefore gives
rise to a principal-agent problem with both dynamic hazard and adverse selection.

In particular, we consider a risk-neutral setting in which a principal hires an agent to create
positive results (new businesses, research breakthroughs, favorable legislation, etc.). When the
agent exerts effort, positive results arrive according to a Poisson process with a given rate. This
instantaneous arrival rate is a positive constant if and only if the agent exerts costly effort. If the
agent shirks, the arrival rate drops to zero. A distinct feature of our model, compared to previous
literature, is that the agent’s cost rate (of exerting effort) is private information, which represents
heterogeneity in the cost/outcome ratio of agents. Thus, an agent with a lower cost structure is
able to obtain more positive results for the same effort than an agent with a higher cost structure.
However, the principal does not have a priori knowledge of an agent’s cost structure and could be
stuck with either a high cost/incapable agent or an agent that is capable but does not exert the right
effort if the principal does not provide the right incentives.

1 The material presented in this chapter is based on the paper [TZSD21] co-authored with Feifan Zhang, Peng Sun
and Izak Duenyas.
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We formulate the problem as a continuous-time dynamic moral hazard problem with adverse
selection. The continuous-time dynamic moral hazard literature originates from [San08], which
considers a principal hiring an agent to affect the cash flow of a project by controlling the drift of a
Brownian motion. [San08] develops a continuation utility formulation (similar to the “promised
utility” framework in [SS87]) to transform the contract design problem into a dynamic programming
problem in which the agent’s continuation utility is the state variable. This formulation has been
further applied to the Poisson model by [BMRV10]. However, their Poisson arrival is “bad news”
that causes losses to the principal, rather than “good news” that is beneficial to the principal in
our model. Some recent papers also consider “good” Poisson arrivals ([ST18],[GT16],[Sha17a]).
However, the operating cost of the agent in these papers is known by the principal.

Following standard results in mechanism design in [LM09], the principal should provide a menu
of contracts, such that an agent with a specific cost chooses a particular contract from this menu.
Following the revelation principle [Mye81], it is without loss of generality for us to consider direct
mechanisms. In traditional adverse selection models, such mechanisms only involve allocation and
payment decisions that depend on the agent’s type. In our setting, however, after the agent reports
the operating cost, the two players still face a dynamic moral hazard game. That is, payments
and allocation (and contract termination) should also depend on the agent’s dynamic performance,
which is stochastic in nature. Therefore, the principal needs to optimize over menus of dynamic
incentive compatible contracts that motivate agents with different operating costs to continuously
exert effort before contract termination. Furthermore, one type of agent should not have an incentive
to choose a dynamic contract for another type. Consequently, the optimal design problem can no
longer be formulated as a classic dynamic program. In this paper, we contribute by providing a
solution approach based on deterministic continuous time optimal control.

There have been previous attempts on the problem with both dynamic moral hazard and adverse
selection. [Ma91] focuses on renegotiation and actions with long-term effects, whereas we give
the principal full commitment power on contracting, and hence the issue of renegotiation does not
exist. [May20] and [RCW21] both consider dynamic moral hazard problems with adverse selection
where an agent is hired to exert effort to reach a single breakthrough. Hence, their model only
considers a single arrival while we consider an infinite horizon Poisson process. Furthermore, the
adverse selection in their model comes from the information about the arrival (timing of the arrival
or the status of the arrival) but not a characteristic of the agent (capability of the agent in our model).
Similarly, [CCW+18] considers an infinite horizon Poisson model where the adverse selection
also comes from the feature of the arrivals. [CWY13] and [SPZ20] study continuous-time moral
hazard problems in infinite horizon with adverse selection under Brownian and Poisson stochasticity,
respectively. To solve the adverse selection problem, they adopt the methodology of a credible set
regarding the agents’ continuation and temptation values. Rather than resorting to their method,
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which involves stochastic differential equations with variational inequalities, we formulate our
optimization problem with a deterministic optimal control approach. Our formulation enables us to
provide closed-form solutions of optimal menu of contracts with intuitive implementations, such as
probation contract and sign-on-bonus contract. Another distinct feature of our paper from previous
papers is that we can tackle the continuous type problem by taking advantage of our deterministic
optimal control approach, while they only consider the two type problem.

There are recent papers in OR/OM considering both moral hazard and adverse selection.
[CGDJ20] consider a principal who periodically provide a non-monetary reward to agents who have
private information to incentivize the agents to invest effort over the long-run. Our paper differs
from theirs in two aspects. First, the principal’s objective in their model is a long-run average payoff
while the principal maximizes the expected discounted revenue in our model. Second, they focus on
finding near-optimal policies while we focus on characterizing the structure of the optimal contracts.
[ZTH19] considers a delegated search model where the agent’s search effort and the result of the
search process are private information. Hence, the adverse selection in their model comes from
the search result but not the agent’s capability/cost in our paper, and they consider a finite-horizon
setting. Furthermore, none of these papers adopt the continuation utility formulation.

Another related strand of literature combines dynamic moral hazard with learning. Unlike our
private information setting where the principal can elicit truthful information, under their setting
with learning, the uncertainty is unobservable to either party, and hence the contract has to update
the belief of the state and adjust contracts accordingly, such as [Bha12], and [Kwo11]. [HKL16]
considers long-term contracting that involves adverse selection, moral hazard, and learning. Our
model differs from theirs in three aspects. First, our agents are protected by limited liability, which
greatly impacts the contract structure; second, there is no experimentation in our model; third, our
paper is built in the continuous-time setting instead of their discrete-time setting, which facilitates
our deterministic optimal control approach.

In our model, the principal offers the agent a menu of contracts, with each item in the menu
designed specifically for an agent with a particular operating cost. In each contract, the principal
keeps track of the agent’s performance score, which is the continuation utility as in [San08]. The
performance score takes an upward jump once a Poisson arrival occurs and keeps decreasing
between arrivals. There are two absorbing states, a lower threshold of zero at which the contract
terminates, and an upper threshold at which the agent will never be terminated, is rewarded with
a monetary payment for each future arrival. If the agent is of two possible types, with the cost
being high or low, when the high-cost agent is too costly, he is asked to leave the system to avoid
inefficiency. In order to induce truthful revelation of high cost, we should adopt a pay-to-leave

contract: an immediate payment that is equal to what the agent can get from mimicking the low-cost
agent. This immediate payment is the information rent rewarded to the agent. If the high-cost
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agent is less costly, he can possibly be hired. Yet it could be that even though he is hired, the agent
would still prefer to mimic the low-cost agent. Hence, the principal should use a sign-on-bonus

contract which provides the agent an immediate payment to induce truth telling. The contract to the
low-cost agent only reimburses the low operating cost. This implies that the high-cost agent cannot
afford to exert effort, and therefore is unable to generate any arrival by mimicking the low-cost
one. Consequently, the first arrival is the particular evidence that differentiates the low-cost agent
from the high-cost one who attempts to mimic without working. Therefore, the principal gives the
low-cost agent a probation contract, which starts with a probation period for the low-cost agent
to prove his type. We believe our model is especially appropriate in settings like new business
generation, R&D or legislative lobbying where ’arrivals’ are likely to be rare but significant.

If an arrival occurs during the probation period, the identity of the low-cost agent has been
confirmed. Hence, to design the menu of contracts, we can focus on designing the length of the
probation period and the magnitude of the sign-on bonus. This enables us to transform the original
contract design problem into a deterministic optimal control problem. If there is a continuum of
possible cost levels, we formulate an easy-to-compute upper bound optimization problem to the
original problem thanks to the deterministic optimal control formulation. This optimization problem
further provides a way for us to design a menu of contracts. Furthermore, we show that if the
solution in the upper bound calculation satisfies a simple condition, then the upper and lower bounds
match, which implies that our contract design is in fact optimal. Our numerical study illustrates that
the condition is often satisfied with commonly used distributions. In this case, the principal designs
a menu with a continuum of different items, each of which has the form of sign-on-bonus contract

or probation contract.
Our paper is one of the first papers that combine the continuous-time moral hazard problem

and the adverse selection problem. Luckily, we can solve the two-type problem and show that the
optimal contracts take a simple and intuitive structure. Furthermore, ours is the first paper that
can tackle the continuous-type problem. Although the space of dynamic contracts is enormous,
the optimal contracts only take two intuitive and easy-to-implement forms both in two-type and
continuous-type problems.

The rest of the paper is organized as follows. We introduce the model at the beginning of Section
2.2. In Section 4.3, we present three contracts that are candidates for optimal contracts when the
agent type is unknown by the principal. In Section 4.4, we solve the optimal contracts for the
two-type case. In Section 4.5, we consider the contract design problem for the continuous-type case.
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4.2 Model

A principal contracts an agent to increase the arrival rate of a Poisson process over an infinite
time horizon. At any point of time t, the agent can privately choose to either work or shirk.
Whenever working, the agent incurs a constant flow of cost, and generates Poisson arrivals with
an instantaneous rate µ. Shirking costs the agent nothing, and also generates no arrivals. Each
arrival yields a revenue R to the principal, and is observable to both the principal and the agent.
Therefore, we denote νt ∈ {0, µ} to represent the agent’s effort level at time t, such that νt = 0

represents shirking and νt = µ working. Further denote a right-continuous counting process
N = {Nt}t≥0 to represent the total number of arrivals up to time t, which generates a filtration
FN = {FNt }t≥0. Therefore, the instantaneous arrival rate of the counting process at time t is νt,
and the left-continuous effort process ν = {νt}t≥0 is FN -predictable.

The agent’s capability, reflected by his operating cost per unit of time, is uncertain to the
principal a priori. That is, a more capable agent can generate arrivals with a lower operating cost. In
this paper, we use “capability” and “cost” interchangably. We assume that the operating cost is the
agent’s private information, and stays the same throughout the time horizon. The common prior
distribution of the operating cost has a support C. In this paper we consider C to be either a binary
set {g, b}, or a continuous interval. We also refer to the operating cost c ∈ C as the agent’s type. We
assume that the principal needs to cover the operating cost because the agent has limited liability
and is cash constrained, a standard assumption in the dynamic contracting literature. In particular,
at any point in time, in order for the agent to exert effort, the principal needs to reimburse for the
agent’s reported operating cost c. (This situation is pretty common in the contexts such as R&D
and lobbying where the principals have to provide a continuous flow of payments to the agents to
let them operate. It may take the form of retainers in the case of lobbyists or a fixed amount of
repetitive payments in the case of contract R&D.)2

Therefore, if the agent’s type is c but pretends to be of a better (lower-cost) type c′ < c, and
the principal only pays operating cost c′, then this agent is not able to generate any arrivals. If the
agent shirks, a fraction ρ ∈ (0, 1] of the operating cost payment by the principal can be diverted
as a shirking benefit to the agent. For ease of exposition, we assume that ρ = 1, such that all the
operating cost can be converted to the agent’s shirking benefit. Following [GT16], we assume

2 The charging of retainers by lobbyists is common, see for example, https://lobbyit.com/pricing/,
https://arnoldpublicaffairs.com/faq/ and https://lobbying101.wordpress.com/about-lobbyists/how-much-do-they-charge/.
Furthermore, it is common that R&D projects are funded for long durations of time and may not bring any results
at the end. For example, 50% of registered clinical trials are never published in full and at least 50% of published
reports are not sufficiently clear, complete, or accurate for others to interpret, use, or replicate the research correctly, see
https://blogs.bmj.com/bmj/2016/01/14/paul-glasziou-and-iain-chalmers-is-85-of-health-research-really-wasted/ and
https://www.fiercebiotech.com/special-report/2019-s-top-15-clinical-trial-flops-and-a-dishonorable-mention. Other fa-
mous failure examples include VCF developed by FBI ([Wik21]) and South Carolina’s nuclear power plant construction
project. ([Wik21]).
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whenever the agent’s operating cost is c, the principal has to pay the agent at least a flow of c at
any point in time in order for the enterprise to continue operating. That is, whenever the payment
flow from the principal drops below c, the operations stop completely and there will be no more
future arrivals. This further implies that a high-cost agent who mimicks a low cost agent can enjoy
the low operating cost as a shirking benefit until contract termination.3 Because the agent knows
the operating cost in the beginning of the time horizon, following the Revelation Principle, it is
without loss of generality to consider direct mechanisms (see, for example, [Mye86],[PST14]).
In our context, the principal designs a menu of contracts ΓC = {γc}c∈C , such that type c agent
chooses contract γc. Any contract γc = (Lc, τ c) includes an F -predictable payment process Lc, and
a F-random time τ c representing contract termination. When stressing the operating cost c is not
necessary, we also use notation γ = (L, τ) without superscripts to represent a generic contract. As
for the contract termination time τ , if τ =∞, the contract continues throughout the infinite time
horizon.

Specifically, for the payment process L = {Lt}t≥0, at each time epoch t ≥ 0, Lt represents
the cumulative payment from the principal to the agent up to time t. For simplicity of expressions,
in the rest of the paper we consider dLt = `tdt + It, in which `t represents the flow, and It the
instantaneous payment at time t. Limited liability of the agent and the assumption that the agent is
cash constrained imply that payment is from the principal to the agent but not the other way around,
or,

Lt1 ≥ Lt2 , ∀t1 ≤ t2.

Furthermore, before contract termination, the payment needs to cover the operating cost, or,

Lct2 − L
c
t1+ ≥ c(t2 − t1), ∀t ∈ (t1, t2], t2 ≤ τ,

where we use notation Xt+ := lims↓tXt to represent the right limit of any left-continuous process
{Xt}t≥0 at time t. Similarly, we define notation Xt− := lims↑tXt. For simplicity of expressions,
in the rest of the paper we consider dLt = `tdt + It, in which `t represents the flow, and It the
instantaneous payment at time t. Therefore, the aforementioned constraints on payments can be
summarized in the following limited liability (LL) constraint for all contract γc = (Lc, τ c) ∈ ΓC ,

It ≥ 0, `ct ≥ c, ∀t ∈ [0, τ ] and c ∈ C. (LL)

3Shirking and misuse of research funds are surprisingly common in R&D settings, see for example,
https://www.chron.com/news/houston-texas/article/Prof-accused-of-spending-NASA-grants-on-cars-1722521.php,
https://www.nbcnews.com/news/us-news/philadelphia-professor-accused-spending-185-000-grant-funds-strip-clubs-
n1118571, https://www.newsweek.com/fund-meant-vaccine-research-misused-least-145m-unrelated-expenses-almost-
decade-1564954, and https://www.theguardian.com/higher-education-network/2015/mar/27/research-grant-money-
spent.
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Both the principal and the agent discount future costs, and payments with a discount rate r.
Without loss of generality, and for simplicity of expressions, we normalize time unit such that

µ+ r = 1. (4.1)

In order to formally define direct mechanisms, we need to start with expressing the agent’s
utility.

Agent utility

Given a dynamic contract γ = (L, τ) and an effort process ν, the expected discounted utility of
the agent with an operating cost c is

u(γ, ν; c) = Eν
[∫ τ

0

e−rt(dLt − c1νt=µdt)

]
, (4.2)

in which the expectation Eν is taken with respect to probabilities generated from the effort process
ν.

Next, we describe the agent’s cash constraint. The agent’s resource to conduct the project is
provided solely by the principal, and insufficient resources would render the agent unable to exert
effort. Formally, any effort process of a type c agent facing a contract γ = (L, τ) needs to satisfy,

νt = µ, only if `s ≥ c, ∀s ≤ t. (4.3)

Use N (γ, c) to denote the set of all FN -predictable effort processes ν that satisfy condition (4.3)
for a type c agent facing a contract γ. Further use N(γ, c) ⊆ N to denote the set of best-response

effort processes, that is,

u
(
γ, ν; c

)
≥ u(γ, ν ′; c), ∀ν ∈ N(γ, c) and ν ′ ∈ N . (4.4)

We denote FNt -predictable effort process ν0 = {ν0
t }t≥0 to be the always shirking process such

that ν0
t = 0 almost surely for all t before contract termination. Similarly, we denote FNt -predictable

effort process ν̄ = {ν̄t}t≥0 to be the always exerting effort process such that ν̄t = µ almost surely
for all t before contract termination. Define quantities

βc :=
c

µ
, and w̄c =

µβc
r
. (4.5)

A simple contract that induces the agent to always exert effort is to pay the agent a constant βc
for each arrival besides reimbursing the operating cost rate c. That is, we can expression such a
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simple contract as γ̄c = (Lc, τ c) with dLct = βcdNt + cdt and τ c = ∞. One can verify that the
corresponding agent’s utility is

u(γ̄c, ν̄, c) = w̄c.

Although this simple contract is not optimal, the quantities βc and w̄c are useful for describing the
optimal contracts.

Furthermore, the revelation principal implies that we can focus on direct mechanisms. Therefore,
we need the following Truth-Telling (TT) contraint on the menu ΓC , which ensures that an agent
with operating cost c indeed chooses contract γc from the menu.

u(γc, νc; c) ≥ u
(
γc
′
, ν; c

)
, ∀c, c′ ∈ C, νc ∈ N (γc, c), ν ∈ N (γc

′
, c). (TT)

It is standard to consider the agent’s continuation utility (also called promised utility) at time t,
defined as (see, for example,[BMRV10]),

Wt(γ, ν; c) = Eν
[∫ τ

t

e−r(s−t)(dLs − c1νs=µds)

∣∣∣∣FNt ]1t<τ . (4.6)

In this literature it is standard to assume that the principal has the commitment power to a long
term contract, while the agent does not need to commit to staying in the contract. That is, we
need the following Individual Rationality (IR) constraint to guarantee participation before contract
termination,

Wt(γ, ν; c) ≥ 0, ∀t ∈ [0, τ ], c ∈ C. (IR)

The following result depicts the dynamics of the process Wt, and provides an equivalent
condition to the best response effort process.

Lemma 4.1 For any contract γ, effort process ν, and operating cost c, there exists an FN -adaptive

process Ht such that

dWt(γ, ν; c) = {[rWt−(γ, ν; c)− νtHt + c1νt=µ]dt+HtdNt − dLt}10≤t<τ . (PK)

Furthermore, the following defined effort process is a best response to contract γ, or, {νt}t∈[0,τ ] ∈
N(γ, c), in which

νt =

{
µ, if Ht ≥ βc,

0, o.w.
(IC)

Lemma 4.1 implies that the principal can motivate a type c agent to exert effort if and only if
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each arrival yields an upward jump of at least βc in the agent’s promised utility. Later in the paper
we show that in the optimal contract, the incentive compatibility (IC) constraint may not always be
binding. That is, for certain operating cost c and time t, we need Ht > βc, greater than the minimum
amount necessary to induce effort.

Principal utility.

Denote U(γ, ν) to represent the principal’s total expected discounted utility from a contract γ
while the agent’s type is c and uses an effort process ν ∈ N (γ, c). That is,

U(γ, ν) := Eν
[∫ τ

0

e−rt (RdNt − dLt)

]
. (4.7)

Now we define U(ΓC) := E [U(γc, νc)] to represents the principal’s total expected discounted
utility from the menu of contracts ΓC when the agent’s effort process νc ∈ N(γ, c) satisfies (IC).
The principal’s contract design problem is

Z(C) := sup
ΓC

U(ΓC) (4.8)

s.t. (LL), (PK), (IC), (IR), and (TT).

Note that the expectation in the objective function is taken with respect to the operating cost c, while
constraints (LL), (PK), (IC) and (IR) are for all c ∈ C. In contrast, the constraint (TT) is for all pairs
of operating costs c and c′, which implies that the maximization problem (4.8) cannot decouple in c.
Finally, the objective function value Z(C) is the principal’s optimal expected utility.

4.3 Implementable Contracts

In this section, we present all possible contract forms that will appear in an optimal menu of
contracts before rigorously deriving them in the next section. Note that the space of the dynamic
contracts could be enormous. Here we greatly narrow down the possibilities to two structures:
sign-on-bonus contract (including pay-to-leave contract as a special case) and probation contract, all
of which are mathematically tractable and possess managerial interpretations. In later sections, we
will formally show how to derive the optimal contracts and verify that these three contract structures
suffice.
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4.3.1 Sign-on-bonus contract

First, we introduce the so-called sign-on-bonus contract. In particular, we allow the principal to
pay a sign-on-bonus in the beginning.

Definition 4.1 For any initial promised utility w ≥ 0 and sign-on-bonus B ≥ 0, define a sign-on-

bonus contract γcB(w,B) = (Lc, τ cB), which pays the agent dL0 = B + max{w − w̄c, 0} at time 0,

and then generates a promised utility process W c
t according to

dW c
t =

[
r(W c

t− − w̄c)dt+ min
{
w̄c −W c

t−, βc
}

dNt

]
1Wt−≥0 (4.9)

following W c
0 = min{w, w̄c}. Furthermore, the payment process Lct follows

dLct =
[
cdt+ (W c

t− + βc − w̄c)+dNt

]
1Wt−≥0 (4.10)

and the termination time τ cB is according to

τ cB = min{t : W c
t− = 0}. (4.11)

According to contract γcB(w,B), the principal pays the agent a sign-on-bonus B at the beginning if
the initial promosed utility w is below the upper bound w̄c. A special case γcB(0, B) gives the agent
a bonus B without asking the agent to work. Such a pay-to-leave contract may be useful if the
agent’s operating cost c is so high that it is not worth hiring the agent. The initial payment induces
the agent to truthly reveal his type, as will be evident later in the paper.

As long as w ≤ w̄c, the promised utility W c
t starts from W c

0 = w, and its dynamics (4.9) is
consistent with (PK) with Ht = βc. That is, the promised utility takes an upward jump of βc upon
each arrival, and gradually decreases at rate r(w̄c −W c

t−) as long as W c
t− < w̄c. An instantaneous

payment occurs when the promised utility W c
t jumps above w̄c. After that, the promised utility stays

at w̄c and the principal pays the agent βc for each future arrival, in addition to the flow payment
cdt, which reimburses the operating cost. In this case the termination time τ c is infinity. If W c

t does
not reach w̄c but decreases to 0 instead, the contract is terminated. Therefore, contract γcB(w,B)

motivates the agent to always exert effort before contract termination by setting Hc
t = βc at all times

in the (IC) constraint.
The sign-on-bonus generalizes the optimal contract structure for the case without adverse

selection ([ST18]), by adding a sign-on-bonus B and allowing the initial promised utility w to be
higher than w̄c. That is, the optimal contract for the known cost case is another special case of the
sign-on-bonus contract. We call this special case, γcB(w, 0) for some initial value w, a standard

contract. In the next section we show exactly when a sign-on bonus contract structure is optimal,
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and the corresponding optimal w and B values.

4.3.2 Probation contract

The next contract structure is more intricate, and it is important to understand why it may arise.
First, recall that it is necessary for the principal to pay a flow rate of at least c in order to induce
effort from a type c agent. Consider, for simplicity of illustration, an agent whose true operating
cost is c′ can only cheat by mis-reporting type c < c′. Assume that the principal then pays the
agent a flow cost of c with the intention of reimbursing the operating cost. In reality, the agent
cannot afford to exert effort, but rather pretends to work while collecting the payment c over time.
When there is no effort, there is no arrival. In order to mitigate cheating, the principal should not
allow such a no-arrival state to last forever, but rather allow a finite probation period. If there is no
arrival during this probation period, the agent will be terminated at the end of probation. On the
other hand, an arrival during this period would reveal that the agent’s true type is indeed c. In this
case, uncertainty of the agent’s type is resolved, and the principal can follow the contract structure
γcB(w, 0) of Definition 4.1 after the first arrival. In order to ensure effort during probation for an
agent who has truthfully reported his type, the promised utility needs to take an upward jump of at
least βc, and possibly higher, at the first arrival.

We now specify and derive the dynamics of the probation contract. The agent is only paid
dLt = cdt to cover the operating cost during the probation period. A key element of this probation
contract is a threshold z ≥ 0. If the first arrival occurs at time t with W c

t ≥ z, the promised utility
jumps up by exactly βc. If W c

t < z, on the other hand, the promised utility jumps to z + βc upon an
arrival at time t, which means the magnitude of the jump is higher than βc. Therefore, when the
promised utility W c

t is below the threshold z, it evolves according to (PK) with Ht = z + βc −W c
t ,

that is,
dW c

t

dt
= rW c

t − µ(z + βc −W c
t ) = W c

t − µ(z + βc). (4.12)

Consider a probation period with length τ , that is, W c
τ = 0. With this boundary condition, we have

a closed-form solution to (4.12), which is

W c
t = µ(z + βc)

(
1− et−τ

)
. (4.13)

Consequently, if z < w̄c the time it takes for W c
t to decrease from the threshold z to 0 is

τz := ln
µ(z + βc)

r(w̄c − z)
. (4.14)

If τ ≤ τz, then (4.13) fully specifies the dynamics of the promised utility before the first arrival or
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end of probation, and

W c
0 (τ, z) = µ(z + βc)

(
1− e−τ

)
, for τ < τz. (4.15)

If τ > τz, on the other hand, then (4.13) only captures the dynamics from t = τz to t = τ , when
W c
t ≤ z. For the initial period of time from t = 0 to t = τ − τz, the promised utility W c

t > z, and
evolves according to (PK) with Ht = βc, that is,

dW c
t

dt
= rW c

t − µβc = r(W c
t − w̄c).

With boundary condition W c
τ−τz = z, we once again have a closed form solution for t ∈ [0, τ − τz],

W c
t = w̄c − (w̄c − z)er(t+τz−τ). (4.16)

Overall, if τ > τz, at time 0, we have

W c
0 (τ, z) = w̄c − (w̄c − z)e−r(τ−τz), for τ < τz. (4.17)

and, if τ ≤ τz,
If z ≥ w̄c, on the other hand, W c

t evolves according to (4.13) from the very beginning. In this
case the initial promised utility is still (4.15).

The probation period ends if either the first arrival occurs or W c
t becomes zero, whichever

happens first. Therefore, we further define the first arrival time as

τN1 := min{t | dNt = 1}.

With the above set up we present the following definition.

Definition 4.2 For any probation time period τ ≥ 0 and threshold z ≥ 0, we define a probation

contract γcP(τ, z) = (Lc, τ c), which pays dLct = cdt and generates a promised utility process W c
t

that evolves according to the following rules for t ∈ [0, τ) if τN1 > τ .

• If z < w̄c, then W c
t follows (4.16) for t ∈ [0,max{τ − τz, 0}), and (4.13) for t ∈ [max{τ −

τz, 0}, τ ], starting from (4.17) if τ > τz and (4.15) if τ ≤ τz.

• If z ≥ w̄c, then W c
t follows (4.13) for t ∈ [0, τ ], starting from (4.15).

If τN1 ≤ τ , then the aforementioned dynamics lasts until τ c = τN1 . After that point, and the contract

continues with γcB
(

max
{
W c
τN1
, z
}

+ βc, 0
)

by resetting time τN1 to 0.
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In the next section we demonstrate when this contract structure may be optimal, as well as how
to specify the corresponding τ and z values. Here, we use a figure to better illustrate this contract
structure and the associated dynamic.

Figure 4.1: Sample trajectories of agent’s promised utility before the first arrival.

Figure 4.1 gives an illustrative example of contract γcP(τ, z) for the case that τ > τz. The agent’s
promised utility trajectory W c

t starts from W c
0 . Over time, if no arrival has occurred, the agent’s

promised utility drifts down, following the solid curve. If the first arrival occurs before τ , the
promised utility jumps up to the dotted curve min{W c

t + βc, z + βc}. Conceptually, the difference
Hc
t = min{βc, z + βc −W c

t } represents the scale of upward jump in the agent’s promised utility
upon the first arrival. It is fixed and equal to βc before time τ − τz. After τ − τz, however, the
jump Hc

t = z + βc −W c
t > βc, and the (IC) constraint is not binding. After this first arrival, the

contract γcP(τ, z) sets Hc
t to βc. Finally, the dashed curve, which overlaps with the solid curve when

t < τ − τz, characterizes the movement of the promised utility following the dynamic (4.9) of the
regular contract when Hc

t is kept at βc. The figure implies that allowing the upward jump Hc
t to be

higher than βc effectively shrinks the probation period.

4.3.3 Principal and agent utilities

To conclude this section, we present results on the agent’s and principal’s utilities under the
aforementioned contract structures. First, we formally establish the agent’s utility under the sign-on-
bonus contract and the probation contract.
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Proposition 4.1 (i) For any w ≥ 0 and B ≥ 0, we have ν̄ ∈ N(γcB(w,B), c), and

u
(
γcB(w,B), ν̄; c

)
= w +B.

(ii) For any τ ≥ 0 and z ≥ 0, we have ν̄ ∈ N(γcP(τ, z), c), and

u
(
γcP(τ, z), ν̄; c

)
= W c

0 (τ, z),

in which W c
0 (τ, z) follows (4.17) and (4.15).

We will formally show in the next section that after the type c becomes known, it is optimal
for the principal to follow the standard contract γcB(w, 0). In this case, Proposition 4.1 verifies that
the agent’s utility under the standard contract γcB(w, 0) is indeed w; the principal’s value function,
Fc(w), as a function of the promised utility w, is defined by the following differential equation,4

r(w − w̄c)F ′c(w) = (c− µR) + Fc(w)− µFc (w + βc) , ∀w ∈ [0, w̄c], (4.18)

with boundary conditions Fc(0) = 0 and Fc(w) =
µR− c
r

− w for w ≥ w̄c. (4.19)

The following proposition adopts some results from [ST18] into our setting.

Proposition 4.2 If R ≥ βc, the differential equation (4.18) with boundary condition (4.19) has a

unique solution, Fc(w), which is strictly concave on [0, w̄c) and F ′c(w) ≥ −1; furthermore, we have

Fc(w) = U(γcB(w, 0), ν̄). If R < βc, on the other hand, define Fc(w) = −w. Overall, we have

Z({c}) = maxw≥0 Fc(w).

Proposition 4.2 implies that the function Fc(w) is indeed the principal’s value under contract
γcB(w, 0), which is the optimal contract if the cost is known to be c. Furthermore, the maximizer
of function Fc(w) is the agent’s utility under the optimal contract when the cost c is known to the
principal.

In the next section, we conisder the simple case when there are only two types of agents. We
will prove that it is sufficient to only consider the sign-on-bonus and probation contract structures to
construct an optimal menu of contracts, and we will show how to determine the parameters in these
optimal contracts.

4This differential equation is similar to Equation (12) in [ST18]. The main difference is due to differences in model
set-ups. In [ST18] the principal can pay reimburse the effort cost at a later time, while in our setting the principal needs
to reimburse the effort cost immediately.
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4.4 Two-Type Case

It is natural to first consider the simple case when there are only two types C = {g, b} with
g < b. We can completely solve this two-type case, and the insights and results we derived in this
section will also be useful in Section 4.5 when we consider the continuous-type case. The prior
probabilities of types g and b are p and 1− p, respectively. We refer to the agent with the lower cost
g as the good agent, and b as the bad agent. In this section we require the following assumption.

Assumption 4.1
βg ≤ R, or, equivalently, µR ≥ g.

This assumption guarantees that the good agent is efficient, which means that this agent generates
a positive societal value whenever exerting effort. With this assumption, we exclude the trivial case
where both agents are inefficient, because it is obviously dominant for the principal to offer a null
contract with no payment and immediate termination in that trivial case. Note that we have not
made any assumption on the bad agent’s cost b yet. Indeed the bad agent can either be efficient
(βb ≤ R) or inefficient (βb > R), which leads to somewhat different optimal contract structures, as
will be discussed later in this section.

Following the problem set up in the last section, the menu Γ offered by the principal contains
two items, (γg, γb). The objective function of the principal’s contract design problem (4.8) becomes

U
(
Γ{g,b}

)
= pU(γg, νg) + (1− p)U(γb, νb). (4.20)

In the remainder of this section, we demonstrate the construction of the optimal menu of
contracts in steps. First, we construct an optimization problem, which provides an upper bound
for the optimization (4.8), in Subsection 4.4.1. Then, in Subsection 4.4.2, we construct a menu of
contracts based on the optimal solution to the upper bound optimization problem, and show that
this menu of contracts achieves the upper bound, and therefore is indeed the optimal menu. The
first two subsections are focused on technical results constructing the optimal menu of contracts.
Finally, in Subsection 4.4.3 we discuss additional economic insights of our optimal solution.

4.4.1 Upper bound optimization

In this subsection we present a new optimization problem, which provides an upper bound to
the original contract design problem (4.8). In the following result, we use functions Fg and Fb as
defined in (4.18)-(4.19) for c ∈ {g, b}.
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Proposition 4.3 The following optimization problem yields an upper bound to the optimal value of

the contract design problem (4.8). That is, Y ≥ Z({g, b}), where

Y := max
wg ,wb,τ,ξ

p ·G(wg, τ) + (1− p)ξ, (4.21)

s.t. wg ≥ wb ≥ g(1− e−rτ )/r, (4.22)

τ ≥ 0, (4.23)

ξ ≤ Fb(wb), (4.24)

ξ ≤ wg − wb
b− g

(µR− b)+ − wb, (4.25)

in which we define operator (x)+ := max{x, 0}, and function G(w, τ) through the following

optimal control problem, if τ <∞,

G(w, τ) := max
Wt,Ht

∫ τ

0

µe−t[R + Fg(Wt +Ht)]dt− g(1− e−τ ), (4.26)

s.t.
dWt

dt
= rWt− − µHt, for t ∈ [0, τ ]; W0 = w, Wτ = 0,

Ht ≥ βg, ∀t ∈ [0, τ ];

if τ =∞, with a slight abuse of notation, we define

G(w, τ) := max
Wt,Ht

∫ ∞
0

µe−t[R + Fg(Wt +Ht)]dt− g, (4.27)

s.t.
dWt

dt
= rWt− − µHt, for t ≥ 0; W0 = w,

Wt ≥ 0, Ht ≥ βg, ∀t ≥ 0.

It is instructive to explain the terms in the optimization problem (4.21)-(4.25). First, the decision
variables wg and wb represent the utilities of type g and b agent under their respective contracts. The
decision variable τ is the duration of the probation period for the type g agent. And the variable ξ
represents the principal’s expected utility facing a type b agent. The constraint (4.22) states that
the good agent’s utility, wg, needs to be as good as or better than the bad agent’s wb. Furthermore,
the last inequality in (4.22) states that wb needs to be no less than the total discounted expected
operating cost that the agent would receive by pretending to be a good agent. This is because

receiving the operating cost g without working yields a utility
∫ τ

0

ge−rtdt = g(1− e−rτ )/r.

Next, the term G(wg, τ) represents the principal’s expected utility if the agent is the good type
(with a low operating cost g). We explain what G(wg, τ) means in the following remark.
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Remark 4.1 First, G(wg, τ) calculates the principal’s expected utility where the agent always

exerts effort. The reason we can focus on full-effort contract is that any contract in which the agent

shirks can be improved by a direct payment and no shirking. According to the optimal control

problems (4.26) and (4.27), the principal designs a contract with an initial promised utility w and

a (probation) time period τ . The decision variables include the promised utility process Wt, and

the upward jump Ht associated with a potential arrival if t ≤ τ . During this period of time, if an

arrival occurs, with rate µ, then the principal receives a revenue R, and the promised utility jumps

to Wt +Ht, at which point the principal follows the contract that keeps the IC constraint binding,

i.e., γgB(Wt +Ht, 0) and earns a future utility Fg(Wt +Ht), following Lemma 4.2. Recall µ+ r = 1,

which explains the term e−t = e−(µ+r)t. The constraints further captures the (PK), (IC) and (IR)
constraints. Finally, the second term of the objective function in (4.26), g(1− e−τ ), captures the

total discounted operating cost that the principal needs to pay before the first arrival or the end of

the period, whichever comes first. Here, again, we use µ+ r = 1 as the effective discount rate.

Finally, we focus on constraints (4.24) and (4.25). First, constraint (4.24) states that the
principal’s utility ξ is upper bounded by Fb(wb) when offering the type b agent a promised utility
wb, consistent Proposition 4.2. Finally, constraint (4.25) ensures a type g agent does not pretend to
be of type b, which is elaborated in the following remark.

Remark 4.2 Should the type g agent receive the type b contract, the agent is able to exert effort,

and receive the same trajectory of payments as a type b agent. In addition to receiving the wb
reward, the type g agent also collects the extra operating cost b− g for the duration of the contract.

This (discounted) duration can be calculated as the (discounted) societal utility, ξ + wb, divided by

the societal utility rate, µR− b, if µR > b. This implies the following inequality,

wg ≥ wb + (b− g)
ξ + wb
µR− b

, or, equivalently, ξ + wb ≤
wg − wb
b− g

(µR− b). (4.28)

If µR ≤ b, on the other hand, the societal value of hiring the agent is negative, and, therefore,

ξ + wb ≤ 0. Constraint (4.25) captures both cases of µR > b and µR ≤ b.

So far we have provided intuitive interpretations of various components of the optimization
problem (4.21)-(4.25). This optimization plays a central role in our contract design problem. In the
next subsection we convert the non-convex optimization problem (4.21)-(4.25) into an equivalent
convex optimization problem, and obtain a menu of contracts based on its optimal solution. We
further show that the performance of such a menu of contracts indeed achieves the upper bound Y
of Z({g, b}). Therefore, this menu of contracts is optimal. In our construction, each contract in the
menu is either a probation contract or a sign-on-bonus contract defined in the previous section.
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In order to solve the optimization (4.21)-(4.25), we first solve the deterministic optimal control
problem (4.26). The solution approach is based on the Pontryagin minimum principle, as illustrated
in the proof of the following Lemmas, presented in the Appendix.

Lemma 4.2 For any τ ∈ [0,∞), define thresholds

ω̌(τ) :=
1− e−rτ

r
g, and ω̂(τ) :=

1− e−τ

r + µe−τ
g.

(i) If w ∈ [ω̌(τ), ω̂(τ)), then there exists a unique value z(w, τ) ∈ [0, ω̂(τ)) (also call it z for

simplicity) such that

w = w̄g − (w̄g − z)er(τz−τ), (4.29)

where w̄g and τz are defined in (4.5) and (4.14), respectively, with c = g and z = z.

Furthermore, the following Wt and Ht solves the optimization G(w, τ) in (4.26),

Wt =

{
w̄g − (w̄g − z)er(t+τz−τ), for t ∈ [0, τ − τz],

µ(z + βg)(1− et−τ ), for t ∈ [τ − τz, τ ],
(4.30)

and

Ht =

{
βg, for t ∈ [0, τ − τz],

z + βg −Wt, for t ∈ [τ − τz, τ ].
(4.31)

(ii) If w ≥ ω̂(τ), then define

z(w, τ) :=
w

µ(1− e−τ )
− βg. (4.32)

For any t ∈ [0, τ ], the following Ht and Wt solves the optimization G(w, τ) in (4.26),

Wt = µ(z + βg)(1− et−τ ), and Ht = z + βg −Wt. (4.33)

(iii) If w < ω̌(τ), the optimization problem is infeasible, or, by convention, G(w, τ) = −∞.

Similarly, we solve optimization problem (4.27) in the following Lemma.

Lemma 4.3 If τ =∞, then define

z(w, τ) :=
w

µ
− βg, (4.34)
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(i) If w ≥ g

r
, then the following Wt and Ht solves the optimization (4.27),

Wt = w, and Ht =
w

µ
− w. (4.35)

(ii) If w <
g

r
, the optimization problem (4.27) is infeasible, or, by convention, G(w, τ) = −∞.

We define the discounted length of the probation period to be

τ̄ :=
1− e−rτ

r
. (4.36)

Further define function

J(w, τ̄) := G

(
w,− log(1− rτ̄)

r

)
, for τ̄ ∈

[
0,

1

r

]
, w ≥ gτ̄ . (4.37)

Based on Lemma 4.2, we have the following result.

Proposition 4.4 Function J(w, τ̄) is jointly concave in w and τ̄ , and increasing in τ̄ . Furthermore,

we have

Y = max
wg ,wb,τ̄

p · J(wg, τ̄) + (1− p) min

{
Fb(wb),

wg − wb
b− g

(µR− b)+ − wb
}

(4.38)

s.t. wg ≥ wb ≥ g · τ̄ (4.39)

0 ≤ τ̄ ≤ 1

r
. (4.40)

Because the minimum of two concave functions is concave, the objective function in (4.38) is
concave. Therefore, Proposition 4.4 implies that we can convert the non-convex optimization
problem (4.21)-(4.25) into a convex optimization problem with linear constraints, which can be
solved efficiently.

4.4.2 Optimal menu of contracts

Now we define a menu of contracts based on the upper bound optimization problem (4.38)-
(4.40). Let (w∗g , w

∗
b , τ̄
∗) represent an optimal solution of the convex optimization (4.38)-(4.40).

Define
τ ∗ := −1

r
log(1− rτ̄ ∗), and z∗ := z(w∗g , τ

∗), (4.41)

in which the function z(w, τ) is defined according to Lemma 4.2 and 4.3. We can then construct a
probation contract γgP(τ ∗, z∗) of Definition 4.2 for the good agent.

To construct the contract for the bad agent, we first present the following lemma.
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Lemma 4.4 We have w∗b ≤ w̄b. Furthermore, if µR > b, there exists a quantity w ∈ [0, w∗b ] such

that

Fb (w) ≤
(
w∗g − w∗b

)
(µR− b)

b− g
− w. (4.42)

Lemma 4.4 implies that the following threshold is well-defined if µR > b,

wB := max

{
w ∈ [0, w∗b ]

∣∣∣ Fb (w) ≤
(
w∗g − w∗b

)
(µR− b)

b− g
− w

}
, (4.43)

and the principal should give the bad agent a sign-on-bonus contract γbB(wB, w
∗
b −wB) of Definition

4.1.
To summarize, we define the following menu of contracts and show that it is optimal.

Definition 4.3 Given the optimal solution (w∗g , w
∗
b , τ̄
∗) to the convex optimization (4.38)-(4.40),

define a menu of contracts Γ∗{g,b} :=
{
γgP(τ ∗, z∗), γbB(wB, w

∗
b − wB)

}
, in which τ ∗ and z∗ are

defined in (4.41), and wB in (4.43) if µR > b, and wB = 0 otherwise.

Lemma 4.5 There exists b̄ ∈ [g, µR], such that wB = 0 for b ≥ b̄ and wB > 0 for b < b̄.

Lemma 4.5 shows that it is still possible that wB = 0 even for b < µR.
Therefore, the good agent is always given a probation contract. The bad agent’s contract depends

on how high his operating cost is. If b ≥ b̄, or, the operating cost of the bad agent is too high to
be worth hiring, then wB = 0, and γbB(0, w

∗
b ) is a pay-to-leave contract. That is, the bad agent is

paid w∗b upfront payment and is asked to leave. If b < b̄, on the other hand, the bad agent is still
socially efficient, and would be hired by contract γbB(wB, w

∗
b − wB) which allows the bad agent to

work from an initial promised utility wB. Before proving optimality, we first discuss the following
properties of the menu of contracts Γ∗{g,b}.
Property 1:

`gt = g, and `bt = b.

The optimal contracts never over compensate operating costs. That is, before contract termination,
the good agent receives a flow payment g, and the bad agent receives a flow payment b.
Property 2:

ν̄ ∈ N
(
γbB(wB, w

∗
b − wB, 0), g

)
, and N

(
γgP(τ ∗, z∗), b

)
= {ν0},

where ν0 := {ν0
t }t≥0 is the always shirking effort process.

The first part of the property states that a good agent who pretends to be bad would exert full
effort in response to the contact for the bad agent. It is rigorously proved in Lemma C.4 in the
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Table 4.1: Optimal menu of contracts

b ≥ b̄ b < b̄
Good agent Probation contract γgP(τ ∗, z∗) Probation contract γgP(τ ∗, z∗)
Bad agent Pay-to-leave contract γbB(0, w

∗
b ) Sign-on-bonus contract γbB(wB, w

∗
b − wB)

appendix. The second part of the property states that a bad agent who pretends to be good has
to shirk until the end. This is because according to Property 1, the contract for good agent only
compensates the operating cost at rate g, which is too low to cover the bad agent’s effort. As a result,
under the probation contract γgP(τ ∗, z∗) for the good agent, the first arrival would confirm that the
agent’s type is indeed good, resolving the adverse selection issue. This property plays an important
role in showing that Γ∗{g,b} is feasible to the (TT) constraint.
Property 3:

Hg
t = βg, if Nt ≥ 1 and Hb

t = βb, ∀t.

This property indicates that under the menu Γ∗{g,b}, the (IC) constraint is binding in the good agent’s
contract after the first arrival, and in the bad agent’s contract the entire time. As mentioned earlier,
the first arrival under the good agent’s contract resolves adverse selection. Therefore the principal
follows the most efficient contract, by setting the (IC) constraint binding. For the bad agent, on the
other hand, arrivals do not resolve adverse selection because the good agent is able to mimick bad
agent and generate arrivals. Therefore the principal always uses a dynamically efficient contract
(binding (IC)) for the bad agent’s contract, and adjust other paramters in the menu to achieve
optimality.

We present in table 4.1 a summary of the menu of optimal contracts in the two-type case.
Although the good agent’s contract is always probation contract regardless of b, τ ∗ and z∗ are still
functions of b.

Now we are ready to present the main result of this section.

Theorem 4.1 The menu of contracts Γ∗{g,b} satisfies (LL), (PK), (IC), (IR), and (TT) with C =

{g, b}. Furthermore, we have U(Γ∗{g,b}) = Y , in which Y is defined in (4.21)-(4.25). Therefore,

we have U(Γ∗{g,b}) = Z({g, b}), or, the menu of contract Γ∗{g,b} solves the optimal contract design

problem (4.8) with two types.

It is worth reflecting incentives around the optimal menu of contracts Γ∗{g,b}. In the case of b ≥ b̄,
the initial bonus w∗b to the bad agent equals the discounted total operating cost g that the agent can
collect by pretending to be the good agent and shirk until the end of the probation period so that the
bad agent has no incentive to lie about the bad type. It is also worth noting that the (TT) constraint
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for the good agent is not binding. That is, the good agent’s promised utility w∗g under the probation
contract is strictly higher than the bonus w∗b .

If b < b̄, however, the principal may allow the bad agent to work following contract γbB(wB, w
∗
b−

wB), and provides sufficient information rent, w∗b , for the bad agent to tell the truth. In order
to discourage the good agent from pretending to be bad and exerting effort while collecting a
higher operating cost reimbursement, b, the principal needs to lower the bad agent’s contract’s
initial promised utility wB. If this initial promised utility wB is lower than the information rent w∗b ,
however, the principal needs to pay the difference as an initial sign-on-bonus to the bad agent.

4.4.3 Welfare implications of unknown capability

In this section, we present how unknown capability affects the welfare of the principal and the
agent, compared to the situations with known capability. We show that unknown capability always
hurts the principal, but may hurt or benefit the agent, depending on whether or not the bad agent is
efficient.

Denote Ȳ to represent the principal’s expected payoff when cost is observable, and either takes
value g with probability p, or b with probability 1− p. That is,

Ȳ := pZ({g}) + (1− p)Z({b}), (4.44)

in which Z({g}) and Z({b}) are the principal’s optimal utility earned from the good agent and the
bad agent, respectively, following (4.8).5 It is clear that the principal is always better off knowing
the cost of the agent before issuing the contract, or, Y ≤ Ȳ . Intuitively, this conclusion follows
from the basic idea of value of information. In particular, with known cost, the principal does not
need to pay the information rent associated with unknown cost.

Now we consider the agent’s utility in the following two different cases. Define wg∗ and wb∗ to be
the maximizers of functions Fg(w) and Fb(w), respectively. Following Proposition 4.2, we know
that they are the good and bad agents’ utilities when the cost is observable.. First, consider the
situation that the bad agent is not efficient, or, βb ≥ R. In this case, the good agent is worse off and
the bad agent is better off in the unknown cost situation, compared with the known cost one, as
stated in the following result.

Proposition 4.5 If βb ≥ R, we have

w∗g ≤ wg∗, and w∗b ≥ wb∗ = 0, (4.45)

where w∗g and w∗b are from the optimal solution of (4.38)-(4.40).

5In appendix C.3.2, we formally present the result when the agent’s cost is known by the principal.

97



Apparently, the bad agent can earn the information rent if capability is unknown. Such an information
rent does not exist if capability is known. Therefore the bad agent is better off with unknown
capability. The good agent is worse off because with unknown capability, the bad agent could mimic
the good agent, triggering the principal to curtail the good agent’s payoff to save the bad agent’s
information rent.

If the bad agent is efficient, or, βb < R, then either agents can be better or worse off with
unknown capability. We illustrate this with the following two examples.
Example 1. p = 0.4, µ = 0.8, r = 1 − µ = 0.2, R = 20, g = 0.3 and b = 0.5. In this case, we
have

w∗g = 2.76 > wg∗ = 1.16 and w∗b = 1.76 < wb∗ = 1.86.

Furthermore, in this example, τ̄ ∗ = 1/r, which means that the probation period of the good agent’s
contract is infinite. That is, the principal is willing to wait arbitrarily long for the first arrival of the
good agent, i.e. the good agent is never terminated.
Example 2. p = 0.9, µ = 0.8, r = 1− µ = 0.2, R = 3, g = 0.3 and b = 3.7. In this case, we have

w∗g = 0.93 < wg∗ = 0.941 and w∗b = 0.93 > wb∗ = 0 (4.46)

Furthermore, in this example, the bad agent is paid an amount w∗b = 0.93 at time 0 to leave.
The reason that either agent can be better or worse off is because two competing forces influence

agents’ welfare when capability is unknown. First, as explained earlier, the bad agent benefits from
mimicking the good agent, while this behavior hurts the good agent. This force is present no matter
whether the bad agent is efficient. The second force is unique to the efficient bad agent case, where
the good agent can potentially mimic the bad agent. This possibility can benefit the good agent
while hurting the bad agent. Therefore, whether or not an agent is better off depends on which
of the two forces dominates. In fact, in Example 1, the second force dominates the first, while in
Example 2, the first dominates the second.

4.5 Continuous-type case

In this section we generalize the two-type case to a situation where the agent’s operating cost
may take value from an interval C := [c, c̄] with c < c̄, following a commonly known cumulative
distribution function P (c) with probability density function ρ(c). In this section we require the
following assumption.
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Assumption 4.2 ∫ µR

c

ρ(c)dc > 0.

This assumption is similar to the condition µR ≥ g in Assumption 4.1 for the two-type case,
which guarantees that the agent is efficient with a positive probability, which excludes the trivial
case where the agent is inefficient with probability 1. (If the agent is known to be inefficient,
it is obviously a dominant strategy for the principal to immediately terminate the agent with no
payment.) Note that we make no assumption on the worst cost c̄. If c̄ > µR, an agent with cost
c > µR is not efficient, that is, not worth hiring.

In the contract design optimization (4.8) defined in Section 4.2, the objective function becomes

U(ΓC) =

∫ c̄

c

ρ(c)U(γc, νc)dc (4.47)

in which the menu ΓC offered by the principal contains a continuum of contracts γc for c ∈ [c, c̄].
Unlike for the two-type case, it appears hard to characterize the optimal solution for this infinite-
dimensional optimization problem. Therefore, in this section, we focus on good approximations.

In Section 4.5.1, we first construct an optimization formulation similar to Section 4.4.1. However,
this upper bound is hard to solve. Therefore, in Section 4.5.2, we provide a further relaxation
that is easy to compute, using a dynamic programming approach. This upper bound calculation
not only yields an upper bound for the optimal contract design, but also a way for us to design a
menu of contracts. Therefore, in Section 4.5.3, we specify this menu of contracts, and compare its
performance (a lower bound) with the upper bound. Furthermore, we show that if the solution in the
upper bound calculation satisfies a simple condition, then the upper and lower bounds match, which
implies that our contract design is in fact optimal. Numerical test illustrates that the condition is
often satisfied with commonly used distributions.

4.5.1 Upper bound optimization

Similar to Section 4.4.1, we present a new optimization problem, which provides an upper
bound to the contract design problem (4.47). First, we expand the definition of function J in (4.37)
to include the cost variable as the following

J (w, τ̄ , c) := G
(
w,− log(1− rτ̄)

r
, c

)
, for τ̄ ∈

[
0,

1

r

]
, c ∈ [c,min{c̄, µR}], and w ≥ cτ̄ ,

(4.48)
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in which function function G is defined similar to function G in (4.26) and (4.27) as

G(w, τ, c) := max
Wt,Ht

∫ τ

0

µe−t[R + Fc(Wt +Ht)]dt− c(1− e−τ ), (4.49)

s.t.
dWt

dt
= rWt− − µHt, for t ∈ [0, τ ]; W0 = w, Wτ = 0,

Ht ≥ βc, ∀t ∈ [0, τ ].

Therefore, function J (w, τ̄ , c) represents the principal’s optimal utility when offering a type c agent
a probation period with discounted length τ̄ and an initial promised utility level w. The relationship
between the discounted length τ̄ and the real length τ of the probation period is defined in (4.36).
Note that function J is well-defined only for τ̄ ∈ [0, 1/r], c ∈ [c, min{c̄, µR}], and w ≥ cτ̄ , when
the corresponding optimal control problem (4.49) is admissible.

Lemma 4.6 For τ̄ ∈
[
0,

1

r

]
, c ∈ [c,min{c̄, µR}], and w ≥ cτ̄ , we have the following properties

for function J (w, τ̄ , c),

(i) J (w, τ̄ , c) is jointly concave in w and τ̄ ;

(ii) J (w, τ̄ , c) is increasing in τ̄ and J (w, 0, c) = −w;

(iii) J (w, τ̄ , c) + w is non-decreasing in w;

(iv) 0 ≤ J (w, τ̄ , c) + w ≤ µR− c
r

.

Based on the definition of the value function J we are ready to present the following upper
bound optimization problem,

YC := sup
w(·)

∫ min{c̄,µR}

c

ξ
(
c;w(·)

)
ρ(c)dc−

∫ c̄

min{c̄,µR}
w(c)ρ(c)dc (4.50)

s.t. w(c) is non-increasing in c ∈ [c, c̄], (4.51)

in which for any c ∈ [c, c̄] we define,

ξ
(
c;w(·)

)
:= min

{
J
(
w(c), min

{
w(c̄)

c
,

1

r

}
, c

)
, inf
c̃∈[c,c)

[
w(c̃)− w(c)

c− c̃

]
· (µR− c)− w(c)

}
.

(4.52)

Theorem 4.2 For any feasible menu of contracts ΓC that satisfies (LL), (PK), (IC), (IR), and (TT),
we have YC ≥ U(ΓC), where U(ΓC) is defined in (4.47).
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The optimization problem (4.50)-(4.51) is a generalization of one defined in Proposition 4.4
for the two type case. First, the decision variables w(c) in the maximization problem (4.50)-(4.51)
represent the initial promised utility assigned to the type c agent. If the agent is efficient (c ≤ µR),
the function ξ(c,w(·)) represents the principal’s utility facing a type c agent when initial promised
utility function is w, similar to the variable ξ in Proposition 4.3. If the agent is inefficient (c > µR),
on the other hand, the objective function (4.50) implies that the principal’s utility is −w(c), that is,
the agent should be paid off and terminated immediately.

The constraint (4.51) states that the principal needs to offer a higher promised utility to the agent
with a better type (lower cost) than to a worse type (higher cost). This monotonicity constraint partly
mitigates the agent’s incentive to mimic a worse type. The first term of the ξ function in (4.52)
represents that the principal’s utility from type c agent is upper bounded by the function J , the
reason of which follows Remark 4.1. The second term in ξ also helps mitigating such a incentive.
The intuition follows Remark 4.2, with type c and a better type c̃ replacing b and g, respectively.

To understand how to mitigate the agent’s incentive to mimic a better type, we need to look at
the term J inside (4.52). If an agent with a higher cost c̃ mimics the lower cost c and shirks through
the probation period, the total discounted utility would be cτ̄ , in which τ̄ represents the discounted
probation period offered to type c. A constraint cτ̄ ≤ w(c̃), or, equivalently, τ̄ ≤ w(c̃)/c, would
mitigate such an incentive. Monotonicity of w following (4.51) implies that we only need to require
τ̄ ≤ w(c̄)/c. Following Lemma 4.6(ii), the function J (w, τ̄ , c) is increasing in τ̄ . Therefore, in
order to maximize J , it helps to to set τ̄ to the upper bound w(c̄)/c. However, by definition, the
discounted probation period τ̄ cannot be longer than 1/r. This explains the second argument in
function J .

Finally, given constraint (4.51), if µR < c̄, it is clear that the optimal w(c) value for any c > µR

should be a constant, w(c̄).

4.5.2 Computing an upper bound of YC

The optimization problem (4.50)-(4.51) is infinite-dimensional, which is hard to solve. There-
fore, we provide an efficient algorithm to compute an upper bound of YC based on a finite-
dimensional approximation of. In the next subsection, we provide conditions to verify if the
bound is tight.

Towards this goal, we divide the interval [c, min{c̄, µR}] into a finite number of pieces.
In particular, for a positive integer N , define δ := (min{c̄, µR} − c)/N and ci := c + iδ for
i ∈ {0, . . . , N}, such that c0 = c and cN = min{c̄, µR}.
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Proposition 4.6 Define

ŷ(N) := max
w0,...,wN

N∑
i=1

[P (ci)− P (ci−1)] min

{
J
(
wi,min

{
wN
ci
,
1

r

}
, ci

)
,

wi−1 − wi
δ

(µR− ci)− wi
}
− wN

∫ c̄

min{µR,c̄}
ρ(c)dc (4.53)

s.t. wi ≥ wi+1, ∀i ∈ {0, . . . , N − 1}.

We have

YC ≤ lim inf
N→∞

ŷ(N). (4.54)

Therefore, we use wi to approximate w(ci) to obtain a finite-dimensional optimization (4.53).
It is worth noting that the key difference between this upper bound optimization and the original

problem. For a type c = ci and the corresponding w(c) = wi, the term inf
c̃∈[c,c)

[
w(c̃)− w(c)

c− c̃

]
in the

original formulation is replaced with a higher value (wi−1 − wi)/δ, which yields the upper bound.
(In fact, if the optimal w function is concave, then this upper bound is tight. In the next subsection,
we explore this further in the context of contract design.) The benefit of this change is computational
efficiency. In fact, the optimization problem (4.53) can be solved using a dynamic programming
approach.

Given a value wN ≥ 0, define the following deterministic dynamic programming recursion for
any i = {1, . . . , N}, starting from the boundary condition J0(w|wN) = 0 for all w ≥ wN ,

Ji(wi|wN) = max
wi−1∈[wi,∞)

[P (ci)− P (ci−1)] min

{
wi−1 − wi

δ
(µR− ci)− wi,

J
(
wi,min

{
wN
ci
,
1

r

}
, ci

)}
+ Ji−1(wi−1|wN), ∀wi ≥ wN , (4.55)

It is clear that

ŷ(N) = max
wN∈[0,∞)

JN(wN |wN)− wN(P (c̄)− P (cN)), (4.56)

which implies that we can obtain the upper bound approximation ŷ(N) by solving a sequence of
the dynamic programming formulation (4.55) together with a one-dimensional search for the wN
value. Furthermore, we have the following result, which provides the closed-form solution to the
maximization problem in (4.55).

Proposition 4.7 For any given i = 1, . . . , N and wN ≥ 0, function Ji(w|wN) is concave in w. Use
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J′i−1(w|wN) to represent the its left-derivative at w. Further fix a value wi ≥ wN , and define

w̌ := sup
{
w
∣∣ w ≥ wi and J′i−1(w|wN) ≥ 0

}
,

ŵ := inf

{
w

∣∣∣∣ w ≥ wi and J′i−1(w|wN) ≤ −(µR− ci)
P (ci)− P (ci−1)

δ

}
, and

ū :=


J (wi,min {wN/ci, 1/r} , ci) + wi

µR− ci
, if µR− ci > 0

0, if µR− ci = 0.

We have w̌ ≤ ŵ, and the following defined w∗i−1 solves the right-hand-side optimization problem in

(4.55),

w∗i−1 :=


w̌, if wi ≤ w̌ − ūδ,
wi + ūδ, if wi ∈ (w̌ − ūδ, ŵ − ūδ],
ŵ, if wi ∈ (ŵ − ūδ, ŵ],

wi, if wi > ŵ.

Concavity of Ji(w|wN) follows from an induction proof showing that the objective of the maxi-
mization in (4.55) is jointly concave in wi and wi−1. This concavity property is crucial for us to
obtain the closed-form optimal solution u∗.

Finally, we have the following result, which provides an upper bound for the optimal wN .

Proposition 4.8 Define w̄ := min{µR − c, c̄}/r. For any wN ≥ w, we have JN(wN |wN) ≤
JN(w̄|w̄).

Proposition 4.8 implies that we can focus the search for the optimal wN that solves (4.56) in the
interval [0, w̄].

In the following subsection, we construct a menu of contracts based on the optimal sequence of
promised utilities obtained in Proposition 4.7 using the optimal wN value that solves (4.56).

4.5.3 Contract design

Note that the upper bound computation from the last subsection generates a non-increasing
sequence wi of initial promised utilities. Now we construct a menu of contracts based on this
sequence.

From a generic non-negative and non-increasing sequence w := {wi}i=0,...,N , we propose a
menu of contracts. In particular, if the cost c is higher than µR, then the agent is paid wN and
terminated immediately, which corresponds to contract γcB(0, wN , 0) following Definition 4.1. If
c ∈ (ci−1, ci], on the other hand, the agent is given a probation contract γciP (τ, z), where we need to
specify a probation time τ and a threshold z according to Definition 4.2. The following discounted
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probation period length is well-defined for i = 1, . . . , N , according to Lemma 4.6,

τ̄ iw := max

{
τ̄ ∈

[
0,min

{
wN
c̄
,
1

r

}] ∣∣∣∣ J (wi, τ̄ , ci) ≤ min
j∈{0,...,i−1}

wj − wi
(i− j)δ

(µR− ci)− wi
}
.

(4.57)

That is, the discounted probation period τ̄ iw allows the corresponding principal’s utility to mimic
ξ(ci;wi) defined in (4.52).

Based on the definition of the discounted probation period, we can define the actual probation
period length and the threshold as, respectively,

τ iw := −1

r
log(1− rτ̄ iw), and ziw :=

wi
µ(1− e−τ iw)

− βci , (4.58)

in which the calculation of the threshold ziw is consistent with the function z defined in (4.32), with
ci replacing g and wi replacing w.

Lemma 4.7 For any non-negative and non-increasing sequence w := {wi}i=0,...,N , define a menu

of contracts Γ̂w
C := {γcw}c∈C , in which

γcw =

{
γciP (τ iw, z

i
w), if c ∈ (ci−1, ci], ∀i = 1, . . . , N,

γcB(0, wN , 0), if c ∈ (µR, c̄],

and γcw = γc0P (τ 0
w, z

0
w). The menu of contracts Γ̂w

C satisfies (LL), (PK), (IC), (IR), and (TT).

In particular, following (4.56) and Proposition 4.7, we have a sequence of initial promised
utilities w∗N := {w∗i }i=1,...,N that are optimal solutions to the upper bound problem ŷ(N). Lemma
4.7 and Proposition 4.2 imply that

YC ≥ U
(

Γ̂
w∗N
C

)
. (4.59)

The following result provides a condition that one can use to verify when the inequality (4.59)
holds as an equality.

Theorem 4.3 If the sequence w∗N is “convex,” in the sense that 2wi ≤ wi−1 + wi+1 for all

i = 1, . . . , N − 1, we have

ŷ(N) = U
(

Γ̂
w∗N
C

)
.

If w∗N is always convex when N is large enough, then Theorem 1, together with (4.54), implies that
as N approaches infinity, (4.59) holds as an equality, or, the menu of contracts Γ̂

w∗N
C is optimal in

the limit.
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We conduct a numerical study to see the performance of Γ̂
w∗N
C . In the numerical study, we keep

the support of the cost as [c, c̄] where c = 1 and c̄ = 5. Further, we let the density function of the
cost be uniform distribution, symmetric triangular distribution, truncated exponential distribution
(λ = 1), truncated normal distribution (µ = 3, σ = 1) and U-quadratic distribution, respectively.
We take µ = {0.1, 0.2, ..., 0.9}, R = {2, 4, ..., 20}, r = 1− µ and N = 200. For each distribution,
there are 80 cases that µR ≥ c. In each of the cases, we calculate the optimal solution to the upper
bound problem ŷ(N), i.e., w∗N . Numerical result shows that in all of these cases, w∗N is “convex”.
Therefore, the menu of contracts Γ̂

w∗N
C is a good approximation of the optimal solution to the original

contract design problem when N is large.

4.6 Conclusion

We study an optimal incentive design problem in continuous time over an infinite horizon with
both moral hazard and adverse selection. Specifically, the principal hires an agent to exert effort
to increase the arrival rate of a Poisson process where the agent’s efforts are unobservable by the
principal and the agent’s capabilities are unknown by the principal. This type of problem is common
in many businesses, R&D, and political environments.

Although combining dynamic moral hazard and adverse selection is generally hard, we can
completely solve the problem when there are two types of agents. We show that the optimal contracts
take simple and intuitive forms: the low-cost agent always takes the form of a probation contract,
and the high-cost agent takes the form of a sign-on-bonus contract or the form of a pay-to-leave
contract which depend on how high his cost is. All of these forms of contracts are easy to compute
and implement. Furthermore, based on the solution of the two-type problem, we can tackle the
continuous-type problem. In the continuous-type problem, the principal designs a menu of contracts,
each of which has a form of pay-to-leave, sign-on-bonus, or probation contract.

Our model serves as a foundation for dynamic contract design problems with both moral hazard
and adverse selection. First, in our model, the agent’s effort cost is unknown by the principal. It is
also worthwhile to think about the model when the arrival rate is the agent’s private information.
Second, in our model, the agent exerts effort to increase the arrival rate of ’good’ events. We
have learned from the literature that the optimal contract shares a very different structure when the
arrivals are bad to the principal. (See [BMRV10]) Hence, it is worth considering when the agent is
hired to decrease the arrival rate of adverse events, and the agent’s capabilities/costs are unknown
by the principal. Another possible extension is to consider the replacement of agents. Each time the
principal terminates an agent, she can find another agent as the replacement from the agent pool
with uncertain capabilities. We leave these extensions to future studies.
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APPENDIX A

Appendix to Chapter 2

A.1 Proofs of Statements

A.1.1 Summary of Notations

Model parameters

• R: flow revenue rate to the principal when the machine is up.

• µ̄u and µu: base case and low break down rates of the machine, respectively.

• µd and µ
d

: base case and high recovery rates of the machine, respectively.

• cu and cd: cost of effort in maintaining and in repairing the machine, respectively, per unit of time.

• r: principal and agent’s discount rates.

Contracts and utilities

• ν and ν∗: generic and full effort process under the contracts.

• I and `: instantaneous and flow payments, respectively.

• L: payment process dLt = It + `tdt.

• q: a stochastic firing probability at time t.

• τ : termination time.

• Γ: generic contract, Γ = (L, τ, q).

• Γ̄ and Γ̂: simple contract introduced in Section 2.3.1 and 2.3.2, respectively.

• Γ∗1 and Γ∗βā : optimal contracts for the case in Section 2.4.1.1 and 2.4.2.1, respectively.

• u and U : agent’s and principal’s utilities, respectively.

• Wt: agent’s promised utility.
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Derived quantities

• βu and βd : defined in Lemma 2.1.

• vd, vu: defined in (2.4).

• v̄d, v̄u: defined in (2.11).

• w̄u and w̄d: defined in (2.10).

• ŵu and ŵd: defined in (2.16).

• w∗θ , θ ∈ {u,d}: maximizers of function Jθ(w).

Value functions

• Jd, Ju: the principal’s value function of the optimal contract under state d and u, respectively.

• Vd, Vu: the societal value function of the optimal contract under state d and u, respectively.

A.1.2 Proofs in Section 2.2

A.1.2.1 Proof of Lemma 2.1

Since the proof would not depend on θ0, we omit the θ0 of the equations (2.3) and (2.5) throughout
the proof. We first define a 2-variate counting process {Nn

t , N
f
t }t∈[0,τ ], in which dNf

t = XtdNt, and
Nn
t = Nt −Nf

t . If τ <∞, the principal terminates the collaboration with the agent, while the collaboration
continues throughout the infinite time horizon if τ =∞. Also, dNt = dNf

t +dNn
t = XtdNt+(1−Xt)dNt.

For a generic contract Γ and effort process ν, we introduce the agent’s total expected utility conditional
on the information available at time t as the following FNt -adapted random variable,

ut(Γ, ν) = E
[∫ τ

0
e−rs(dLs + (1− νs)c(θs)ds)

∣∣∣∣FNt ] (A.1)

=

∫ t∧τ−

0
e−rs(dLs + (1− νs)c(θs)ds) + e−rtWt(Γ, ν).

Therefore, u0(Γ, ν) = u(Γ, ν).
Process {ut}t≥0 is an FN -martingale. Define processes

Mn,ν
t = Nn

t −
∫ t

0
µ(θs, νs)(1− qs)ds, and (A.2)

Mf,ν
t = Nf

t −
∫ t

0
µ(θs, νs)qsds, (A.3)

which are FN -martingales. Following the Martingale Representation Theorem, see [Bré81], there exists a
FN -predictable processes H(Γ, ν) = {Ht(Γ, ν)}t≥0 such that

ut(Γ, ν) = u0(Γ, ν) +

∫ t∧τ

0
e−rs[Hs(Γ, ν)dMn,ν

s −Ws−dM
f,ν
s ] , ∀t≥0 . (A.4)
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Differentiating (A.1) and (A.4) with respect to t yields

dut = e−rt[Ht(Γ, ν)dMn,ν
t −Wt−dM

f,ν
t ]

= e−rt(dLt + (1− νt)c(θt)dt)− re−rtWt(Γ, ν)dt+ e−rtdWt(Γ, ν),

which implies (PK).
Denote ũt(Γ, ν ′, ν) to be a FNt -measurable random variable, representing the agent’s total payoff

following an effort process ν ′ before time t and ν after t, that is,

ũt(Γ, ν
′, ν) =

∫ t∧τ

0
e−rs(dLs + (1− νs)c(θs))ds) + e−rtWt(Γ, ν).

Therefore,

ũ0(Γ, ν ′, ν) = u0(Γ, ν) = u(Γ, ν) , (A.5)

E
[
ũτ (Γ, ν ′, ν)

∣∣FN0 ] = u(Γ, ν ′) , and (A.6)

E
[
ũt(Γ, ν, ν)| FN0

]
= u(Γ, ν) , ∀t ≥ 0 . (A.7)

For any given sample trajectory {Ns}0≤s≤t and effort processes ν and ν∗.

ũt(Γ, ν, ν
∗) =ut(Γ, ν

∗) +

∫ t∧τ

0
e−rs(1− νs)c(θs)ds

=u0(Γ, ν∗) +

∫ t∧τ

0
e−rs[Hs(Γ, ν

∗)dMn,ν∗
s −Ws−dM

f,ν∗
s ] +

∫ t∧τ

0
e−rs(1− νs)c(θs)ds

=u0(Γ, ν∗) +

∫ t∧τ

0
e−rs[Hs(Γ, ν

∗)dMn,ν
s −Ws−dM

f,ν
s ] +

∫ t∧τ

0
e−rs(1− νs)c(θs)ds

+

∫ t∧τ

0
e−rs[(1− qs)Hs(Γ, ν

∗)− qsWs−](µ(θs, νs)− µ(θs, 1))ds,

where the first equality follows from (A.1), the second equality follows (A.4) and the third equality follows
from (A.2) and (A.3). Consider any two times t′ < t,

E
[
ũt(Γ, ν, ν

∗)| FNt′
]

=u0(Γ, ν∗) +

∫ t′∧τ

0
e−rs[Hs(Γ, ν

∗)dMn,ν
s −Ws−dM

f,ν
s ]

+

∫ t′∧τ

0
e−rs{(1− νs)c(θs) + [(1− qs)Hs(Γ, ν

∗)− qsWs−](µ(θs, νs)− µ(θs, 1))}ds

+E
[∫ t∧τ

t′∧τ
e−rs{(1− νs)c(θs) + [(1− qs)Hs(Γ, ν

∗)− qsWs−](µ(θs, νs)− µ(θs, 1))}
∣∣∣∣FNt′ ]

=ũt′(Γ, ν, ν
∗) + E

[∫ t∧τ

t′∧τ
e−rs(µ̄u − µu)(νs − 1)[−βu − (1− qs)Hs(Γ, ν

∗) + qsWs−]1θs=uds

∣∣∣∣FNt′ ]
+E

[∫ t∧τ

t′∧τ
e−rs(µd − µd)(νs − 1)[−βd + (1− qs)Hs(Γ, ν

∗)− qsWs−]1θs=dds

∣∣∣∣FNt′ ] , (A.8)

where the second equality follows from equation (2.8).
If condition (2.7) holds for all s ≥ 0, then (A.8) implies that E

[
ũt(Γ, ν, ν

∗)| FNt′
]
≤ ũt′(Γ, ν, ν

∗).
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Therefore, {ũt}t≥0 is a super-martingale. Take t′ = 0, we have

u(Γ, ν∗) = ũ0(Γ, ν, ν∗) ≥ E
[
ũτ (Γ, ν, ν∗)| FN0

]
= u(Γ, ν),

in which the first equality follows from (A.5) and the last equality from (A.6), while the inequality follows
from Doob’s Optional Stopping Theorem. Therefore, the agent prefers the effort process ν∗ to any other
effort process ν, which implies that Γ satisfies (IC) if condition (2.7) holds for all s ≥ 0.

If, on the other hand, (1− qs)Hs(Γ, ν
∗)− qsWs− > −βu for s ∈ Ωu ⊂ [0, t] with θs− = u, where Ωu

is a positive measure set, define effort process ν to be such that

νs =

{
1 , (1− qs)Hs(Γ, ν

∗)− qsWs− ≤ −βu
0 , (1− qs)Hs(Γ, ν

∗)− qsWs− > −βu
for s ∈ [0, t] where θs− = u,

and νs = 1 for s > t where θs− = u and νs = 1 for θs− = d ∀s. Therefore, ũt(Γ, ν, ν∗) = ũt(Γ, ν, ν), and

E
[∫ t∧τ

t′∧τ
e−rs(µ̄u − µu)(νs − 1)[−βu − (1− qs)Hs(Γ, ν

∗) + qsWs−]1θs=uds

∣∣∣∣FNt′ ] > 0,

while

E
[∫ t∧τ

t′∧τ
e−rs(µd − µd)(νs − 1)[−βd + (1− qs)Hs(Γ, ν

∗)− qsWs−]1θs=uds

∣∣∣∣FNt′ ] = 0.

Equation (A.8) then implies that E
[
ũt(Γ, ν, ν

∗)| FN0
]
> ũ0(Γ, ν, ν∗), and, therefore,

u(Γ, ν∗) = ũ0(Γ, ν, ν∗) < E
[
ũt(Γ, ν, ν

∗)| FN0
]

= E
[
ũt(Γ, ν, ν)| FN0

]
= u(Γ, ν),

in which the last equality follows from (A.7). The same logic applies if we can consider the situation when
(1−qs)Hs(Γ, ν

∗)−qsWs− < βd for s ∈ Ωd ⊂ [0, t] with θs− = d and a positive measure set Ωd. Therefore,
the agent prefers effort process ν ′ over ν∗, which implies that Γ does not satisfy (IC) if condition (2.7) does
not hold.

A.1.2.2 Lemma A.1 and its proof

Lemma A.1 Define ν := {νt = 0}∀t. For θ0 ∈ {u, d}, we have

E
[∫ ∞

0
e−rtR1θt=udt

∣∣∣∣ θ0, ν

]
= vθ0 . (A.9)

E
[∫ ∞

0
e−rt(R1θt=u − c(θt))dt

∣∣∣∣ θ0, ν
∗
]

= v̄θ0 . (A.10)

where vθ0 and v̄θ0 are defined in equation (2.4) and (2.11), respectively.

Proof. We first calculate (A.10) with θ0 = d which is the societal value when the machine starts with state
d and the agent always exerts effort. We define tk as the time of occurrence of the kth transition of the states,
and t0 = 0. Further define τk := tk − tk−1. Therefore τ2k+1 follows an exponential distribution with rate

109



µu, and τ2k+2 follows an exponential distribution with rate µd where k ∈ N. Then

E
[∫ ∞

0
e−rt(R1θt=u − c(θt, ν∗t ))dt

∣∣∣∣ d, ν∗] =

∞∑
k=0

{
E
[∫ t2k+1

t2k

e−rt(R− cu)dt

]

+E

[∫ t2k+2

t2k+1

e−rt − cddt

]}
=

∞∑
k=0

{
E
[∫ t2k+1

t2k

e−rtdt

]
(R− cu) + E

[∫ t2k+2

t2k+1

e−rtdt

]
· (−cd)

}
, (A.11)

where

E
[∫ t2k+1

t2k

e−rtdt

]
=

E
[
e−rt2k

]
(1− E [e−rτ2k+1 ])

r

=
E
[
e−r

∑2k
i=1 τ2k

]
(1− E [e−rτ2k+1 ])

r

=
αkβk(1− α)

r
,

where α = E [eτ1 ] =
µd

r + µd
and β = E [eτ2 ] =

µu
r + µu

. In the same way, E

[∫ t2k+2

t2k+1

e−rtdt

]
=

αk+1βk(1− β)

r
. Furthermore, the expression of α and β yields

1− α
r

=
1

r + µd
and

1− β
r

=
1

r + µu
.

Following equation (A.11),

E
[∫ ∞

0
e−rt(R1θt=u − c(θt))dt

∣∣∣∣ d, ν∗]
=

∞∑
k=0

{αk+1βk

r + νu
(R− cu) +

αkβk

r + νd
(−cd)

}
=

α

1− αβ
1

r + νu
(R− cu) +

1

1− αβ
1

r + νd
(−cd)

=
µd(R− cu)− (r + µu)cd

r(r + µu + µd)
.

The same logical steps yields (A.10) for the case of θ0 = d, and also (A.9) and (A.10) for the case of θ0 = u.

A.1.3 Optimality Condition

The following lemma states conditions for functions Jd and Ju such that they are upper bounds of the
principal’s utility U(Γ) under any contract Γ. This verification result serves as an optimality condition for
later sections.

Lemma A.2 Suppose Jd(w) : [0,∞)→ R and Ju(w) : [βu,∞)→ R are differentiable, concave, upper-
bounded functions, with J ′d(w) ≥ −1, J ′u(w) ≥ −1, and Jd(0) = vd. Consider any incentive compatible
contract Γ, which yields the agent’s expected utility u(Γ, ν∗) = W0, followed by the promised utility process
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{Wt}t≥0 according to (PK) and satisfy (IC). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u + J ′θt(Wt−)(rWt− − [−qtWt− + (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+ µ(θt, νt)qt[Jθ̂t(0)− Jθt(Wt−)] + µ(θt, νt)(1− qt)[Jθ̂t(Wt− +Ht)− Jθt(Wt−)]− c(θt) .
(A.12)

where θt ∈ {u, d} and θ̂t = 1θt=d · u+ 1θt=u · d, and Ju is extended such that Ju(0) = vu. If the process
{Φt}t≥0 is non-positive almost surely, then we have Jθ(u(Γ, ν∗, θ)) ≥ U(Γ, ν∗, θ).

Proof. We define the following function to represent the value function as a function of time t,

J(t) =

{
Jd(Wt−) if θt− = d ,

Ju(Wt−) if θt− = u .
(A.13)

Following the Itô’s Formula for jump processes (see, for example, Theorem 17.5 in [Bas11]) and (PK), we
obtain

e−rτJ(τ) =e−r0J(0) +

∫ τ

0
[e−rtdJ(t)− re−rtJ(t)dt] = J(0) +

∫ τ

0
e−rt(−R1θt=udt+ c(θt)dt+ dLt)

+

∫ τ

0
e−rtAt, (A.14)

where

At =dJ(t)− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
=J ′(t)[rWt− − µ(θt, νt)(−qtWt− + (1− qt)Ht)− `t]dt− rJ(t)dt

+J(t+)− J(t) +R1θt=udt− c(θt)dt− dLt
=J ′(t)[rWt− − µ(θt, νt)(−qtWt− + (1− qt)Ht)− `t]dt− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
+[Jθt(Wt− − It)− Jθt(Wt−)](1− dNt) + [Jθ̂t(Wt− + [(1−Xt)Ht −XtWt−]− It)− Jθt(Wt−)]dNt

=J ′(t)[rWt− − µ(θt, νt)(−qtWt− + (1− qt)Ht)− `t]dt− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
+[Jθt(Wt− − It)− Jθt(Wt−)](1− dNt) +

[
Jθ̂t(Wt− + [(1−Xt)Ht −XtWt−]− It)

−Jθ̂t(Wt− + [(1−Xt)Ht −XtWt−])
]
dNt +

[
Jθ̂t(Wt− + [(1−Xt)Ht −XtWt−])− Jθt(Wt−)

]
dNt.

Further define

Bt := [Jθ̂t(Wt− +Ht)− Jθt(Wt−)](dNn
t − µ(θt, νt)(1− qt)dt)

+ [Jθ̂t(0)− Jθt(Wt−)](dNf
t − µ(θt, νt)qtdt).
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Because function Jd(w) and Ju(w) are concave, J ′d(w) ≥ −1 and J ′u(w) ≥ −1, we have

At = dJ(t)− rJ(t)dt+R1θt=udt− dLt
≤ J ′(t)[rWt− − µ(θt, νt)(−qtWt− + (1− qt)Ht)]dt− rJ(t)dt+R1θt=udt− dLt − J ′(t)`tdt
−J ′θt(Wt−)It(1− dNt)− J ′θ̂t(Wt− + [(1−Xt)Ht −XtWt−])ItdNt

+
[
Jθ̂t(Wt− + [(1−Xt)Ht −XtWt−])− Jθt(Wt−)

]
dNt − c(θt)dt

≤ J ′(t)[rWt− − µ(θt, νt)(−qtWt− + (1− qt)Ht)]dt− rJ(t)dt+R1θt=udt

+
[
Jθ̂t(Wt− + [(1−Xt)Ht −XtWt−])− Jθt(Wt−)

]
dNt − c(θt)dt

= R1θt=udt+ J ′θt(t)[rWt− − µ(θt, νt)(−qtWt− + (1− qt)Ht)]dt− rJθt(t)dt

+
[
Jθ̂t(Wt− +Ht)− Jθt(Wt−)

]
dNn

t +
[
Jθ̂t(0)− Jθt(Wt−)

]
dNf

t − c(θt)dt
=Bt + Φtdt .

Therefore, if Φt ≤ 0, we must have At ≤ Bt almost surely. Taking the expectation on both sides of (A.14),
we immediately have

Jθ0(u(Γ, ν, θ0)) = J(0) ≥ E
[
e−rτJ(τ) +

∫ τ

0
e−rt(R1θt=udt− c(θt)dt− dLt)

∣∣∣∣ θ0

]
= u(Γ, ν, θ0),

where we use the fact that
∫ τ

0 e
−rtBtdt is a martingale and J(τ) = Jθτ (0) = vτ .

To prove that a contract is optimal among all incentive compatible contracts, we only need to verify if Φt

defined in (A.12) is non-positive.

A.1.4 Proofs and derivations in Section 2.4.1

A.1.4.1 Heuristic derivation of equations (2.21)-(2.23)

If the machine’s current state is d, consider a small time interval [t, t+ δ], during which the principal
reimburses the agent’s effort cost cdδ. With probability µdδ, the machine recovers after this interval and
changes to state u, the principal pays the agent (w + βd − w̄u)+, and, correspondingly, the promised utility
jumps up to min{w + βd, w̄u}. With probability 1− µdδ, on the other hand, the machine stays in d, and the
promised utility evolves to w + r(w − w̄d)δ. Therefore, we have

Jd(w) =− cdδ + e−rδ
{
µdδ

[
− (w + βd − w̄u)+ + Ju(min{w + βd, w̄u})

]
+ (1− µdδ)Jd(w + r(w − w̄d)δ)

}
+ o(δ).

Subtracting Jd(w) and dividing δ on both sides, then letting δ approach 0, we obtain equation (2.21).
Similarly, consider the machine’s current state at u. and a small time interval [t, t+ δ], when the principal

collects revenue Rδ and the agent’s promised utility w ≥ βu. With probability µuδ, the machine breaks
down and changes to state d, and the promised utility drops to w − βu. With probability 1 − µuδ, on the
other hand, the machine stays in u, the promised utility evolves to w + (rw + µuβu)δ if w < w̄u, and the
principal pays the agent `∗δ if w = w̄u while the promised utility stays at w̄u. Therefore,

Ju(w) =(R− cu)δ + e−rδ
{
µuδJd(w − βu) + (1− µuδ)

[
Ju(w + (rw + µuβu)δ1w<w̄u)− `∗1w=w̄u

]}
+o(δ).
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Following similar steps as before, we obtain equations (2.22) and (2.23).

A.1.5 Proof of Proposition 2.1

It is helpful to consider the societal value functions, defined below as the summation of the principal and
the agent’s utilities,

Vd(w) = Jd(w) + w and Vu(w) = Ju(w) + w. (A.15)

Following (2.21)-(2.25), we obtain the following system of differential equations for Vd and Vu,

(µd + r)Vd(w) = µdVu(min{w + βd, w̄u})− cd − r(w̄d − w)V ′d(w) , w ∈ [0, w̄d], (A.16)

(µu + r)Vu(w) = −cu +R+ µuVd(w − βu) + (rw + µuβu)1w<w̄uV
′
u(w) , w ∈ [βu, w̄u], (A.17)

Vu(w) = Vu(0) +
Vu(βu)− Vu(0)

βu
w, (A.18)

Vu(0) = vu and Vd(0) = vd. (A.19)

Furthermore, as soon as the promised utility reaches w̄u at state u, contract Γ∗1 becomes identical to the
simple contract studied in Section 2.3.1. This implies the following boundary conditions

Vd(w̄d) = v̄d and Vu(w̄u) = v̄u, (A.20)

in which v̄d and v̄u are defined in (2.11). Equivalently, we prove that the system of differential equations
(A.16) and (A.17) with boundary conditions (A.18), (A.19) and (A.20) has a unique solution: the pair of
functions Vu(w) on [0, w̄u] and Vd(w) on [0, w̄d], both of which are increasing and strictly concave.

First, we prove that (A.16) and (A.17) with boundary conditions (A.19) and (A.20) has a unique solution:
the pair of functions Vu(w) on [βu, w̄u] and Vd(w) on [0, w̄d]. Next we write the proof for the two cases
βd > βu and βd = βu separately.

βd > βu
Recall that function Vd and Vu satisfies the system of differential equations (A.16) and (A.17).
Case 1. w̄u ≤ βd. Since for w ∈ [0, w̄d], Vu(min{w + βd, w̄u}) = Vu(w̄u) = v̄u, we could rearrange

equation (A.16) as

(µd + r)Vd(w) = µdv̄u − cd − r(w̄d − w)V ′d(w).

The above equation in [0, w̄d) is a linear differential equation with boundary condition. The solution is

Vd(w) = v̄d + b1(w̄d − w)
r+µd
r forw ∈ [0, w̄d], (A.21)

with b1 = (vd − v̄d)w̄
(r+µd)/r
d < 0. (Followed by the condition (2.13). )

Then, (A.21) implies that V ′d(w) = −b1(r + µd)(w̄d − w)µd/r/r > 0, V ′′d (w) = b1(r + µd)µd(w̄d −
w)µd−r/r/r2 < 0 for w ∈ [0, w̄d]. Hence, Vd is increasing and strictly concave in [0, w̄d]. Furthermore, it
can be verified that V ′d(w̄d−) = 0. Next, we show that Vu is also increasing and strictly concave in [βu, w̄u].
Rearranging equation (A.17) in [βu, w̄u] as

(µu + r)Vu(w) = −cu +R+ µu

(
V̄d + b1(w̄d − w + βu)

r+µd
r

)
+ (rw + µuβu)1w<w̄uV

′
u(w). (A.22)

The above equation in [βu, w̄u) is a linear differential equation with boundary condition. It is easy to verify

113



that limw→w̄u− V
′
u(w) = 0 with Vu(w̄u) = v̄u. Equation (A.22) implies that

V ′′u (w) =
µu(V ′u(w)− V ′d(w − βu))

rw + µuβu
forw ∈ [βu, w̄u), (A.23)

and

V ′′′u (w) =
µu(V ′′u (w)− V ′′d (w − βu))− rV ′′u (w)

rw + µuβu
forw ∈ [βu, w̄u). (A.24)

Since V ′d(w̄d) = 0, then equation (A.23) implies that limw→wu− V
′′
u (w) = 0. Furthermore, with V ′d(w −

βu) < 0 for w ∈ [βu, w̄u), we can show that there exists ε > 0 such that V ′′u (w) < 0 and V ′u(w) > 0 for
w ∈ [w̄u − ε, w̄u). Hence, Vu(w) is increasing and strictly concave in [w̄u − ε, w̄u). Assume there exists
w̃ ∈ [βu, w̄u − ε) such that V ′′u (w̃) ≥ 0. There must be ŵ = max{w ∈ [βu, w̄u − ε)|V ′′u (w) = 0}, and

V ′′u (w) < 0, ∀w > ŵ. However, this contradicts V ′′′u (ŵ) =
−µuV ′′d (ŵ − βu)

rw + µuβu
> 0 which is implied by

equation (A.24). Therefore, we must have Vu to be increasing and strictly concave in [βu, w̄u]. Furthermore,
it can be verified that Vu(w) = v̄u for w ∈ [w̄u,∞) and Vd(w) = v̄d for w ∈ [w̄d,∞) solves (A.16) and
(A.17).

Case 2. w̄u > βd. Rearranging (A.16) as

(µd + r)Vd(w) = µdv̄u − cd − r(w̄d − w)V ′d(w), for w ∈ [w̄u − βd,∞) , and (A.25)

(µd + r)Vd(w) = µdVu(w + βd)− cd − r(w̄d − w)V ′d(w), for w ∈ [0, w̄u − βd). (A.26)

We then show the result according to the following steps.

1. Demonstrate the solution of (A.25) as a parametric function V b
d , with parameter b.

2. Show that the solution of (A.26) and (A.17) are a pair of unique and twice continuously differentiable
equations for any b, called as V b

d and V b
u .

3. Show that for b < 0, V b
d and V b

u are concave and increasing.

4. Show that V b
d(0) is increasing in b, which implies that the boundary condition Vd(0) = vd uniquely

determines b, and therefore the solution of the original system of differential equations.

Step 1. The solution to the linear ordinary differential equation (A.25) on [w̄u − βd, w̄d] must have the
following form, for any scalar b.

V b
d(w) = v̄d + b(wd − w)

r+µd
r forw ∈ [w̄u − βd, w̄d], (A.27)

Also define V b
d(w) = v̄d for w ∈ [w̄d,∞], which satisfies (A.25), so that V b

d is continuously differentiable
on [w̄u − βd,∞).

Step 2. Using (A.27) as the boundary condition, we show that the system of differential equations
(A.26) and (A.17) has a unique pair of solutions (called V b

d and V b
u , on (0, w̄d), (βu, w̄u)), which are

continuously differentiable. In fact, the system of differential equations (A.26) and (A.17) are equivalent to a
sequence of initial value problems over the intervals [w̄d − (k + 1)(βd − βu), w̄d − k(βd − βu)] for Vd and
[w̄u − k(βd − βu), w̄u − (k − 1)(βd − βu)) for Vu, k = 1, 2, .... This sequence of initial value problems
satisfy the Cauchy-Lipschitz Theorem and, therefore, bear unique solutions. Also define V b

u(w) = v̄u for
w ∈ [w̄u,∞), which satisfies (A.17), so that V b

u is continuously differentiable on [w̄u,∞). Also, computing
V ′b (w̄u − βd) from (A.27), and comparing it with (A.26), we see that V b

d is continuously differentiable
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at w̄u − βd, and therefore V b
d and V b

u are continuously differentiable [0,∞) and [βu,∞), respectively.
Furthermore, we could derive the expressions for V b′′

d and V b′′
u following (A.26) and (A.17), respectively,

V b′′
u (w) =

µu(V b′
u (w)− V b′

d (w − βu))

rw + µuβu
, and (A.28)

V b′′
d (w) =

µd(V b′
u (w + βd)− V b′

d (w))

r(wd − w)
. (A.29)

Step 3. Next, we argue that for b < 0, V b
d and V b

u are concave and increasing. Equation (A.27) implies
that V b

d is increasing and strictly concave on [w̄u − βd, w̄d], and therefore V d′′
b (w) < 0 in this interval. We

could firstly prove that V b
u is strictly concave and increasing in [w̄u + βu − βd, w̄u) in the same way in Case

1. Next, we want to show that V b
d is strictly concave in [w̄u + βu − 2βd, w̄u − βd).

In the following, we prove two lemmas to establish the result.

Lemma A.3 For any w ≤ w̄u, if V b
u is strictly concave in [w + βu − βd, w̄u) and V b

d is strictly concave in
[w − βd, w̄d), then V b

d is strictly concave in [w + βu − 2βd, w̄d).

Proof. V b
d is strictly concave in [w − βd, w̄d) implies that V b′′

d (w) < 0 in this interval. Assume that there
exists w̃b ∈ [w + βu − 2βd, w − βd) such that V b′′

d (w̃b) ≥ 0, then following step 2, V b
d twice continuously

differentiable implies that there must exist ŵb = max{w ∈ [w + βu − 2βd, w − βd)|V b′′
d (w) = 0}, and

V b′′
d (w) < 0, ∀w > ŵb. Equation (A.29) implies that

V b′
u (ŵb + βd) = V b′

d (ŵb) . (A.30)

Furthermore, since V b
u is strictly concave in [w + βu − βd, w̄u) and ŵb + βd ≥ w + βu, we have

V b′′
u (ŵb + βd) < 0. Then equation (A.28) implies that V b′

u (ŵb + βd) − V b′
d (ŵb + βd − βu) < 0. With

equation (A.30), we have V b′
d (ŵb) < V b′

d (ŵb + βd − βu) which contradicts with V b′′
d (w) < 0, ∀w > ŵb.

Lemma A.4 For w ≤ w̄u + βu − βd, if V b
d is strictly concave in [w − βd, w̄d] and V b

u is strictly concave in
[w, w̄u], then V b

u is strictly concave in [w + βu − βd, w̄u).

The proof of Lemma A.4 follows the same steps as the proof of Lemma A.3.
With Lemmas A.3 and A.4, we prove that if V b

u is strictly concave in [w+βu−βd, w̄u) and V b
d is strictly

concave in [w − βd, w̄d), then V b
u is strictly concave in [w + 2βu − 2βd, w̄u) and V b

d is strictly concave in
[w + βu − 2βd, w̄d). Hence, by induction, we can prove that V b

d is strictly concave and increasing in [0, w̄d)
and V b

u is strictly concave and increasing in [βu, w̄u).
Step 4. Finally, we show that V b

d(0) is strictly increasing in b for b < 0, which allows us to uniquely
determine b that satisfies V b

d(0) = vd. For given b1 < b2 < 0, define Xd(w) := V b1
d (w) − V b2

d (w) and
Xu(w) := V b1

u (w)− V b2
u (w). Equations (A.16) and (A.17) imply that

(µd + r)Xd(w) = µdXu(w + βd)− r(w̄d − w)X ′d(w) , and

(rw + µuβu)1w<w̄uX
′
u(w) = −µuXd(w − βu) + (µu + r)Xu(w).

Equation (A.27) implies that Xd(w) = (b1 − b2)(w̄d − w)
r+µd
r for [w̄u + βu − βd, w̄u), which is strictly

concave and increasing. Following the same logic as in step 3, we can prove that Xd is strictly concave and
increasing on [0, w̄d] and Xu is strictly concave and increasing on [βu, w̄u]. Hence,

V b1
d (0)− V b2

d (0) = Xd(0) < Xd(w̄d) = 0.
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Because V 0
d (0) = v̄d > vd, and limb→−∞ V

b
d(0) < V b

d(w̄u − βd) = −∞, there must exist a unique b∗ < 0
such that V b∗

d (0) = v̄d, and V b∗
d (w) and V b∗

u (w) are strictly concave and increasing on [0, w̄d] and [βu, w̄u],
respectively.

βd = βu
Let βd = βu = β, then equations (A.16) and (A.17) become

(µd + r)Vd(w) = µdVu(w + β)− cd − r(w̄d − w)V ′d(w), for w ∈ [0, w̄d), and (A.31)

(µu + r)Vu(w) = −cu +R+ µuVd(w − β) + (rw + µuβ)1w<w̄uV
′
u(w), for w ∈ [β, w̄u), (A.32)

since w + β ≤ wu for w ∈ [0, w̄d). Let w̌ = w − β in equation (A.32), we have

(µu + r)Vu(w̌ + β) = −cu +R+ µuVd(w̌) + (rw + (r + µu)β)V ′u(w̌ + β), for w̌ ∈ [0, w̄d). (A.33)

Differentiate (A.33) with respect to w̌ on both sides, we obtain

µuV
′
u(w̌ + β) = µuV

′
d(w̌) + (rw + (r + µu)β)V

′′
u (w̌ + β), for w̌ ∈ [0, w̄d). (A.34)

Equations (A.31), (A.33) and (A.34) together imply that

(µu + r)[r(w̄d − w)V ′d(w) + cd + (µd + r)Vd(w)] (A.35)

=µd(−cu +R) + µdµuVd(w) + (rw + (r + µu)β)[r(w̄d − w)V ′′d (w) + µdV
′
d(w)], for w ∈ [0, w̄d) ,

Differentiate (A.35) with respect to w on both sides, we obtain

[µur(w̄d − w)− (rw + (r + µu)β)(µd − r)]V ′′d (w) (A.36)

=(rw + (r + µu)βu)r(w̄d − w)V ′′′d (w), for w ∈ [0, w̄d).

Further, we define:

z(w) :=
[µur(w̄d − w)− (rw + (r + µu)β)(µd − r)]

(rw + (r + µu)βu + cu)r(w̄d − w)
, for w ∈ [0, w̄d) .

Then equation (A.36) is equivalent to

V ′′′d (w)

V ′′d (w)
= z(w) ,

Solving the differential equation, we obtain V ′′d (w) = C0e
∫
z(w). With the boundary condition Vd(0) =

vd < v̄d, we could calculate C0 with C0 < 0. Hence, Vd is strictly concave and increasing in [0, w̄d). In the
same way we used in the step 4 of the case βd > βu, we could establish that Vu is also strictly concave and
increasing in [βu, w̄u).

Second, combining with boundary condition (A.18), we further prove that Vu is increasing and concave
in [0, w̄u]. Following condition (2.13), (2.18) and βd ≥ βu, we have

R ≥ (r + µ̄u + µ
d
)βu. (A.37)

Following (A.17), we have

V ′u(βu+) =
(µu + r)Vu(βu) + cu −R− µuvd

rβu + µuβu
≥ 0,
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which implies that

Vu(βu) ≥ R− cu + µuvd
µu + r

=

[
(r + µu)vu +

∆µuR

r + µ
d

+ µ̄u
− cu

]
/(r + µu) ≥ vu, (A.38)

where the second inequality follows from (A.37). Also, this implies that V ′u(βu−) =
Vu(βu)−vu

βu
≥ 0 and,

(r + µ̄u)βu(V ′u(βu−)− V ′u(βu+)) = (r + µ̄u)(Vu(βu)− vu)− (µu + r)Vu(βu)− cu +R+ µuvd

≥ ∆µuvu − (r + µ̄u)vu − cu +R+ µuvd

≥ R+ µuvd − (r + µu)vu − cu

= R+
[µuµd − (r + µu)(r + µ

d
)]R

r(r + µ̄u + µ
d
)

− cu

=
∆µuR

(r + µ̄u + µ
d
)
− cu ≥ 0, (A.39)

where the first inequality follows from (A.38) and the last inequality follows from (A.37). Finally, (A.39)
implies that V ′u(βu−) ≥ V ′u(βu+).

Furthermore, equations (A.16) and (A.17) imply that

V ′′u (w) =
µu(V ′u(w)− V ′d(w − βu))

rw + µuβu
, for w ∈ [βu, w̄u),

V ′′d (w) =
µd(V ′u(w + βd)− V ′d(w))

r(wd − w)
, for w ∈ [0, w̄u − βd), and

V ′′d (w) =
−V ′d(w)

r(wd − w)
, for w ∈ [w̄u − βd, w̄u).

Then the concavity of Vd and Vu implies that

V ′u(w) < V ′d(w − βu), for w ∈ [βu, w̄u), and (A.40)

V ′u(w + βd) < V ′d(w), for w ∈ [0, w̄d). (A.41)

A.1.5.1 Proof of Proposition 2.2

Following (A.13) and (A.14), we obtain that under contract Γ∗1 in Definition 2.1,

e−rτJ(τ) = J(0) +

∫ τ

0
e−rt(−R1θt=udt+ c(θt)dt+ dLt) +

∫ τ

0
e−rtA∗t , (A.42)

where

117



A∗t = dJ(t)− rJ(t)dt+R1θt=udt− dLt − c(θt)dt
=J ′(t)[rWt− − µ(θt, 1)H∗t − `∗t ]dt− rJ(t)dt+ J(t+)− J(t) +R1θt=udt− c(θt)dt− dL∗t
=
{
J ′u(t)(rWt− + µuβu)1Wt−<w̄u − rJu(Wt−)− cu

}
dt1θt=u

+
{
J ′d(Wt−)r(Wt− − w̄d)dt− rJd(Wt−)− cd

}
dt1θt=d

+[Ju(min{Wt− + βd, w̄u})− Jd(Wt−)]dNt1θt=d

+[Jd(Wt− − βu)− Ju(Wt−)]dNt1θt=u +R1θt=udt− dL∗t
= {R− cu + J ′u(Wt−)(rWt− + µuβu)1Wt−<w̄u − rJu(Wt−)dt+ µu(Jd(Wt− − βu)− Ju(Wt−))

+ (rw̄u + µuβu)1Wt−=w̄u}1θt=udt

+{J ′d(Wt−)r(Wt− − w̄d)− rJd(Wt−)dt+ µd(Ju(min{Wt− + βd, w̄u})− Jd(Wt−))

−µd(Wt− + βd − w̄u)+ − cd}1θt=ddt+ B∗t = B∗t ,

in which the last equality follows from (2.21) and (2.22), and

B∗t = [Ju(min{Wt− + βd, w̄u})− Jd(Wt−)− (Wt− + βd − w̄u)+](dNt − µddt)1θt=d

+ [Jd(Wt− − βu)− Ju(Wt−)](dNt − µudt)1θt=u.

Taking the expectation on both sides of (A.42), we immediately have

Jθ0(w) = J(0) = E
[
e−rτJ(τ) +

∫ τ

0
e−rt(R1θt=udt− c(θt)dt− dL∗t )

∣∣∣∣ θ0

]
= u(Γ∗1(w), ν∗, θ0),

where u(Γ∗1, ν
∗, θ0) = w and we apply the fact that

∫ τ
0 e
−rtB∗t dt is a martingale and J(τ) = Jθτ (0) = vτ .

A.1.5.2 Proof of Proposition 2.3

From Proposition 2.1, we know that Jd(w) and Ju(w) are concave, J ′d(w) ≥ −1, and J ′u(w) ≥ −1.
Recall Lemma A.2, to show that Jd(w) and Ju(w) are upper bounds of principal’s utility under any incentive
compatible contract, we only need to show that Φt ≤ 0 holds almost surely if νt = 1. From (A.12), we have

Φt = Φu
t 1θt=u + Φd

t1θt=d,

where

Φu
t :=R+ J ′u(Wt−)rWt− + µuqt[Wt−J

′
u(Wt−) + Jd(0)− Ju(Wt−)]

+ µu(1− qt)[−HtJ
′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)]− rJu(Wt−)− cu,

and

Φd
t :=J ′d(Wt−)rWt− + µdqt[Wt−J

′
d(Wt−) + Ju(0)− Jd(Wt−)]

+µd(1− qt)[−HtJ
′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)]− rJd(Wt−)− cd.

We have Φt ≤ 0 if Φd
t ≤ 0 and Φu

t ≤ 0. First, we prove that Φu
t ≤ 0 by considering the following
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optimization problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)],

s.t. 0 ≤ qt ≤ 1, −qtWt− + (1− qt)Ht ≤ −βu.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = −βu. (A.43)

by the KKT conditions. Define the following dual variables for the binding constraints

xu = −(J ′u(Wt−)− J ′d(Wt− − βu)) ≥ 0,

in which the inequality follows from (A.40), and

yu = (Wt− − βu)

(
Jd(Wt− − βu)− Jd(0)

Wt− − βu
− J ′d(Wt− − βu)

)
≥ 0,

where the inequality follows from the concavity of Jd and the fact thatWt− ≥ βu for any incentive compatible
contract. One can verify that

[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) + Jd(Wt− +H∗t )− Ju(Wt−)] (A.44)

= −yu − (H∗t +Wt−)xu,

(1− q∗t )(J ′u(Wt−)− J ′d(Wt− +H∗t )) = (q∗t − 1)xu. (A.45)

Therefore, (A.43) implies that

Φu
t ≤ R+ J ′u(Wt−)rWt− + µu[βuJ

′
u(Wt−) + Jd(Wt− − βu)− Ju(Wt−)]− rJu(Wt−)− cu = 0,

where the equality follows from (2.22).
Following similar logic, we prove that Φu

t ≤ 0 by considering the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)],

s.t. 0 ≤ qt ≤ 1, −qtWt− + (1− qt)Ht ≥ βd,Wt− +Ht ≥ βu,

and verify that the optimal solution is

q∗t = 0 and H∗t = βd. (A.46)

by the KKT conditions. Again define the following dual variables for the binding constraints

xd = J ′d(Wt−)− J ′u(Wt− + βd) ≥ 0, and

yd = (Wt− + βd)(
Ju(Wt− + βd)− Ju(0)

Wt− − βd
− J ′u(Wt− + βd)) ≥ 0.
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We can verify that

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−HtJ

′
d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] (A.47)

= −yd + (H∗t +Wt−)xd,

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = (1− q∗t )xd. (A.48)

Therefore, (A.46) implies that

Φu
t ≤ J ′d(Wt−)rWt− + µd[−βdJ ′d(Wt−) + Ju(Wt− + βd)− Jd(Wt−)]− rJd(Wt−)− cd = 0,

where the equality follows from (2.21).

A.1.5.3 Proof of Theorem 2.2

First, it is easy to verify that contract Γ∗u is incentive compatible. Next, we define two functions Jd(w)
and Ju(w) as

Jd(w) = vd − w. (A.49)

and

Ju(w) =

{
vu − w, for w ∈ [βu,∞),
vu + (vu − vu − βu)w/βu, for w ∈ [0, βu).

(A.50)

Under condition (2.29), Jd and Ju are concave, J ′d(w) ≥ −1, and J ′u ≥ −1. Hence, following Lemma
A.2, we have Jd(w) and Ju(w) are upper bounds of the principal’s utility under state d and u, respectively if
Φt ≤ 0, where Φt is defined by (A.12). Furthermore,

Φt = Φu
t 1θt=u + Φd

t 1θt=d,

where

Φu
t = R− rWt− + µu[−qtWt− + (1− qt)Ht]− r(vu −Wt−) + µuqtvd + µu(1− qt)(vd −Wt− −Ht)

− µu(vu −Wt−)− cu = R− cu − rvu + µuvd − µuvu = 0,

where the first equality follows from J ′u(Wt−) = −1 for Wt− ≥ βu,and the third equality follows from
(2.26). Therefore,

Φd
t = −rWt− + µd[−qtWt− + (1− qt)Ht]− r(vd −Wt−) + µdqtvu + µd(1− qt)Ju(Wt− +Ht)

− µd(vd −Wt−)− cd = −cd − (r + µd)vd + µdqtvu + µd(1− qt)Vu(Wt− +Ht)

≤ −cd − (r + µd)vd + µdvu ≤ 0,

where the first inequality follows by taking qt = 0 and Ht = βd, and the second inequality follows from
(2.29).

Next, we can easily verify that the performance of Γ∗u is

U(Γ∗u, ν
∗,d) = Jd(0) = vd
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and

U(Γ∗u, ν
∗,u) = Ju(βu) = vu − βu

Starting from state d, it is optimal to let W0 = 0, hence vd ≥ U(Γ, ν∗,d). Starting from state u, if
vu − βu ≥ vu, it is optimal to let W0 = βu and if vu − βu < vu, it is optimal to let W0 = 0. Hence,
U(Γ∗(βu).ν∗,u) ≥ U(Γ, ν∗,u) if vu − βu ≥ vu and vu ≥ U(Γ, ν∗,u) if vu − βu < vu.

A.1.5.4 Proof of Theorem 2.3

It suffices to show that if (2.30) is satisfied, then the principal’s value functions Ju(w) = vu − w and
Jd(w) = vd − w satisfy the optimality condition Φt ≤ 0 where Φt is defined by (A.12). In fact,

Φt = Φu
t 1θt=u + Φd

t 1θt=d,

where

Φu
t = R− rWt− + µu[−qtWt− + (1− qt)Ht]− r(vu −Wt−) + µuqtvd + µu(1− qt)(vd −Wt− −Ht)

− µu(vu −Wt−)− cu

= R− cu − rvu + µuvd − µuvu = R− cu − (r + µu)
(r + µ

d
)R

r(r + µ
d

+ µ̄u)
+ µu

µ
d
R

r(r + µ
d

+ µ̄u)

=
∆µuR

r + µ
d

+ µ̄u
− cu =

∆µu
r + µ

d
+ µ̄u

(R− (r + µ
d

+ µ̄u)βu) < 0,

and

Φd
t = −rWt− + µd[−qtWt− + (1− qt)Ht]− r(vd −Wt−) + µdqtvu + µd(1− qt)(vu −Wt− −Ht)

− µd(vd −Wt−)− cd

= −cd − rvd + µdvu − µdvd = −cd − (r + µd)
µ
d
R

r(r + µ
d

+ µ̄u)
+ µd

(r + µ
d
)R

r(r + µ
d

+ µ̄u)

=
∆µdR

r + µ
d

+ µ̄u
− cd =

∆µd
r + µ

d
+ µ̄u

(R− (r + µ
d

+ µ̄u)βd) < 0,

where the inequalities follow from (2.30).

A.1.6 Results and Proofs in Section 2.4.2

A.1.6.1 Proof of Lemma 2.2

Using (2.36) and (2.37) as boundary conditions, (2.34) is a linear differential equation with boundary
condition. The solution is

Jaβ̂d (w) = aw +
µdvu − cd
µd + r

+ C1(w̄d − w)
r+µd
r , for w ∈ [0,min{β̂ − βd, w̄d}], (A.51)
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with

C1 = −

[
∆µdR

r+µ
d

+µ̄u
− cd

]
w̄
− r+µd

r
d

r + µd
< 0, (A.52)

in which the inequality follows from (2.18). Therefore, we can solve Jaβ̂u for
[
β̂,min{β̂ − βd, w̄d}+ βu

]
using (2.35), (2.36) and (A.51). By induction, we can solve Jaβ̂d in [0, w̄d] and Jaβ̂u in [0, w̄u]. These are a
sequence of initial value problems satisfying the Cauchy-Lipschitz Theorem, and, therefore, bear unique
solutions. Furthermore, Jaβ̂u is C2

(
[0, w̄u] \ {β̂}

)
and Jaβ̂d is C3

(
[0, w̄d] \ {β̂ − βd}

)
. For w ∈ [w̄u, ŵu],

(2.32) and (2.35) together imply that

(rw + µuβu)1w<ŵuJ
′
u(w) = (µu + r)Ju(w)−R− µuµd

µd + r
Ju

(
r + µd
µd

(w − βu)

)
+

µucd
µd + r

+ `∗1w=ŵu .

(A.53)

If we define w0 := w̄u and wn := (µdwn−1)/(r + µd) + βu for n = 1, 2, 3..., then ŵu = limn→∞wn.
Furthermore, (A.53) is equivalent to a sequence of initial value problems over the intervals [wn, wn+1], n =
1, 2, .... This sequence of initial value problem again satisfy the Cauchy-Lipschitz Theorem and bear unique
solutions. Furthermore, if β̂ < w̄d + βd, then Jaβ̂u is C2 ([0, ŵu) \ {β̂}), Jaβ̂d is C3 ([0, ŵd) \ {β̂− βd, w̄d})
and if β̂ ≥ w̄d + βd, then Jaβ̂u is C2([0, ŵu) \ {β̂, (µdβ̂)/(r + µd) + βu}), Jaβ̂d is C3([0, ŵd) \ {β̂ −
βd, w̄d, β̂ + (µdβu)/(r+ µd)}). Then, we could derive the expressions for Jaβ̂

′′
u , Jaβ̂

′′

d and Jaβ̂
′′′

d following
(2.32), (2.34) and (2.35), respectively,

Jaβ̂
′′

u (w) =
µu

(
Jaβ̂

′
u (w)− Jaβ̂

′

d (w − βu)
)

rw + µuβu
, for w ∈ (β̂, ŵu), (A.54)

Jaβ̂
′′

u (w) =
µu

(
Jaβ̂

′
u (w)− Jaβ̂

′
u

(
r+µd
µd

(w − βu)
))

rw + µuβu
, for w ∈ [w̄u, ŵu), (A.55)

Jaβ̂
′′

d (w) =
µd

(
Jaβ̂

′
u (w + βd)− Jaβ̂

′

d (w)
)

r(w̄d − w)
, for w ∈ [0, w̄d) \ {β̂ − βd}, (A.56)

Jaβ̂
′′

d (w) = Jaβ̂
′′

u

(
w +

rw

µd

)
, for w ∈ (w̄d, ŵd), and (A.57)

Jaβ̂
′′′

d (w) =
µd

(
Jaβ̂

′′
u (w + βd)− Jaβ̂

′′

d (w)
)

+ rJaβ̂
′′

d (w)

r(w̄d − w)
, for w ∈ [0, w̄d) \ {β̂ − βd}. (A.58)
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A.1.6.2 Proof of Lemma 2.3

Following (2.35), we can calculate for β̂ ∈ [βu, w̄u):

Jaβ̂
′

u (β̂+) =
(r + µu)Ju(β̂)− µuJd(β̂ − βu)−R+ cu

rβ̂ + µuβu

=
(r + µu)(vu + aβ̂)− µu

[
a(β̂ − βu) +

µdvu−cd
µd+r + C1(w̄d − β̂ + βu)

r+µd
r

]
−R+ cu

rβ̂ + µuβu

= a+
(r + µu)vu − µu

[
µdvu−cd
µd+r + C1(w̄d − β̂ + βu)

r+µd
r

]
−R+ cu

rβ̂ + µuβu
, (A.59)

where C1 follows (A.52). Furthermore, following equation (2.38) and (A.59), we have for β̂ ∈ [βu, w̄u),

fa(β̂) = −(r + µu)vu + µu

[
µdvu − cd
µd + r

+ C1(w̄d − β + βu)
r+µd
r

]
+R− cu, (A.60)

and fa(β̂) is increasing in [βu, w̄u] because C1 < 0. Therefore,

lim
β̂↑w̄u−

fa(β̂) = −(r + µu)vu + µu

[
µdvu − cd
µd + r

]
+R− cu

=
r∆µu + µu∆µd + µd∆µu

(µd + r)(r + µ
d

+ µ̄u)
R− µucd

µd + r
− cu ≥ 0,

where the last inequality follows from the condition (2.19).

A.1.6.3 Proof of Proposition 2.4

We show the result following three steps.

1. Show that Jaβad is strictly concave in [0, ŵd), and Jaβau is concave in [0, ŵu) and strictly concave in
[βa, ŵu).

2. Show that for any w ≥ 0, derivatives d
dwJ

aβa
u (w) and d

dwJ
aβa
d (w) are increasing in a.

3. There exists unique ā > −1 such that (2.41) is satisfied, and the corresponding functions J āβād (w) and
J āβāu (w) are both concave with derivatives greater than or equal to −1.

Step 1. For any a > −1, if βa = βu, then Jaβau is C2([0, w̄u) \ {βu}) and Jaβad is C3([0, w̄d) \ {βu − βd}).
Otherwise, if βa > βu, then Jaβau is C2([0, ŵu)) and Jaβad is C3([0, w̄d) \ {w̄d}). Following (A.51) and
(A.52), we have Jaβad (w) is strictly concave with Jaβ

′
a

d (w) > a in the interval [0, βa − βd). We claim that
J
aβ′′a
d ((βa − βd)+) < 0. If βa > βu, then this result directly follows by smooth pasting. Otherwise, if
βa = βu, equation (A.56) implies that

J
aβ′′a
d ((βu − βd)+) =

µd

(
J
aβ′a
u (βu+)− Jaβ

′
a

d (βu − βd)
)

r(w̄d − w)
< 0,
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where the inequality follows from a − J
aβ′a
u (βu+) ≥ 0 which is implied by the definition of βa and

J
aβ′a
d (βu − βd) > a. Next, we prove that Jaβau (w) is strictly concave in [βa,min{βa + βu − βd, w̄u}]. First,

following (A.54), we have

J
aβ′′a
u (βa+) =

µu

(
J
aβ′a
u (βa+)− Jaβ

′
a

d (βa − βu)
)

rβa + µuβu
< 0,

where the inequality follows from J
aβ′a
u (βa+) ≤ a and Jaβ

′
a

d (βa − βu) > a. Assume that there exists
w ∈ (βa,min{βa+βu−βd, w̄u}] such that Jaβ

′′
a

u (w) ≥ 0, then Jaβau being twice continuously differentiable
implies that there must exist ŵ = min{w ∈ (βa,min{βa + βu − βd, w̄u}]| Jaβ

′′
a

u (w) = 0}, such that
J
aβ′′a
u (w) < 0 for w < ŵ. Equation (A.54) implies that

J
aβ′a
u (ŵ) = J

aβ′a
d (ŵ − βu).

Since Jaβad is concave in the interval [0,min{βa−βd, w̄d}], equation (A.56) implies that Jaβ
′
a

u (ŵ+βd−βu) <

J
aβ′a
d (ŵ − βu), which further implies that

J
aβ′a
u (ŵ + βd − βu) < J

aβ′a
u (ŵ),

which contradicts with Jaβ
′′
a

u (w) < 0 for w < ŵ. Hence, Jaβau is strictly concave in [βa,min{βa + βu −
βd, w̄u}].

Next we prove two lemmas.

Lemma A.5 For any w ≥ 0, if Jaβad is strictly concave in [0, w + βa − βd] and Jaβau is concave in
[βa, w + βa + βu − βd] for any w ≥ 0, then Jaβad is also strictly concave in [0, w + βa + βu − 2βd].

Proof. Assume that there exists w ∈ [w + βa − βd, w + βa + βu − 2βd] such that Jaβ
′′
a

d (w) ≥ 0,
then the fact that Jaβad is twice continuously differentiable implies that there must exist w̃ = min{w ∈
(w + βa − βd, w + βa + βu − 2βd]|Jaβ

′′
a

d (w̃) = 0}, such that Jaβ
′′
a

d (w) < 0 for w < w̃. Equation (A.58)
implies that

J
aβ′′′a
d (ŵ) =

µdJ
aβ′′a
u (w + βd)

r(w̄d − ŵ)
< 0,

where the inequality follows from Jaβau being concave in [0, w + βa + βu − βd]. This contradicts with
J
aβ′′a
d (w̃) = 0 and Jaβ

′′
a

d (w) < 0 for w < w̃.

Lemma A.6 For any w ≥ 0, if Jaβau is strictly concave in [0, w] and Jaβad is concave in [0, w − βd] for any
w ≥ 0, then Jaβau is also strictly concave in [w,w + βu − βd].

The proof for Lemma A.6 follows the same logic as Lemma A.5, and is omitted here. Equipped with Lemmas
A.5 and A.6, we prove that if Jaβau is strictly concave in [βa, w + βa + βu − βd] and Jaβad is strictly concave
in [0, w + βa − βd], then Jaβau is strictly concave in [βa, w + βa + 2βu − 2βd] and Jaβad is strictly concave
in [0, w + βa + βu − 2βd]. Hence, by induction, Jaβau is strictly concave in [βa, w̄u) and Jaβad is strictly
concave in [0, w̄d).

We have Jaβ
′
a

d (w̄d−) > J
aβ′a
u (w̄u) from (A.54) and Jaβ

′
a

d (w̄d+) = J
aβ′a
u (w̄u) from (2.32). Hence,

J
aβ′a
d (w̄d−) > J

aβ′a
d (w̄d+). Finally, we prove that Jaβ

′′
a

u (w+) < 0 for w ∈ [w̄u, ŵu). If there exists
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w ∈ [w̄u, ŵu) such that Jaβ
′′
a

u (w+) ≥ 0, then there must exist w̌ = min{w ∈ [w̄u, ŵu)|Jaβ
′′
a

u (w+) = 0},
such that Jaβ

′′
a

u (w+) < 0 for w < w̌. Finally, (A.55) implies that

Jaβ̂
′

u (w̌)− Jaβ̂′u

(
r + µd
µd

(w̌ − βu)+

)
= 0,

which contradicts with

Jaβ̂
′

u (w̌) = Jaβ̂
′

u

(
r + µd
µd

(w̌ − βu)+

)
+

∫ w̌

r+µd
µd

(w̌−βu)
Jaβ̂

′′
u (x)dx < Jaβ̂

′
u

(
r + µd
µd

(w̌ − βu)

)
,

where the inequality follows from w̌ > r+µd
µd

(w̌ − βu) and Jaβ
′′
a

u (w+) < 0 for w < w̌. Following (A.57),

J
aβ′′a
d is also strictly concave in [w̄d, ŵd).

Step 2. We show that for any w ≥ 0, dJaβau /dw and dJaβad /dw are increasing in a. To do so, we define

gd(w) :=
dJaβad

da
(w+) and gu(w) :=

dJaβau

da
(w+).

It suffices to prove that gd(w) and gu(w) are well-defined and strictly increasing in w.

• For w ∈ [0, βa), we have gu(w) = w, which is strictly increasing in w. For w ∈ [0, βa − βd],
gd(w) = w which is also strictly increasing in w.

• For w = βa, we have

gu(βa+) = lim
ε↓0

Ja+εβa
u (βa)− Jaβau (βa)

ε
+
J
aβa+ε
u (βa)− Jaβau (βa)

ε
· dβa
da

= lim
ε↓0

Ja+εβa
u (βa)− Jaβau (βa)

ε
= βa = gu(βa−),

where the second equality follows from J
aβa+ε
u (βa) = Jaβau (βa) because βa+ε ≥ βa for any ε ≥ 0.

• For Jaβau (w) on [βa, w̄u] and Jaβad (w) on [βa − βd, w̄d], taking derivatives with respect to a on both
sides of (2.33) and (2.35), we know that gd(w) and gu(w) satisfies the following system of equations:

(µd + r)gd(w) = µdgu(w + βd)− r(w̄d − w)g′d(w) , w ∈ [0, w̄d], and (A.61)

(µu + r)gu(w) = µugd(w − βu) + (rw + µuβu)g′u(w). w ∈ [βa, w̄u] (A.62)

In the following, we prove that gd(w) and gu(w) are also strictly increasing on [βa − βd, w̄d] and
[βa, w̄u], respectively. Following equation (A.62), we have

g′u(βa+) =
(µu + r)gu(βa)− µugd(βa − βu)

rw + µuβu

=
(µu + r)βa − µu [βa − βu]

rw + µuβu

≥ (µu + r)βu
rw + µuβu

> 0,

where the second inequality follows from βa ≥ βu. Then we claim that gu(w) is strictly increasing in
[βa, βa + βu − βd]. If not, then there exists w ∈ (βa, βa + βu − βd] such that g′u(w) ≥ 0. Therefore,
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we must have ŵ = min{w ∈ (βa, βa + βu − βd]|g′u(w) = 0} and g′u(w) > 0 for w < ŵ. Equation
(A.62) implies that

(r + µu)gu(ŵ) = µugd(ŵ − βu).

The fact that gd(w) is increasing in [0, βa−βd] implies that (µd+r)gd(w−βu) < µdgu(ŵ−βu+βd),
which further implies that

(r + µu)gu(ŵ) = µugd(ŵ − βu) < µu
µd

µd + r
gu(ŵ − βu + βd),

which contradicts g′u(w) > 0 for w < ŵ. We establish the final results by proving the next two claims.

Lemma A.7 If gd is strictly increasing in [0, w + βa − βd] and gu is strictly increasing in [0, w +
βa + βu − βd] for any w ≥ 0, then gd is also increasing in [w + βa − βd, w + βa + βu − 2βd].

Proof. If there exists w ∈ (w + βa − βd, w + βa + βu − 2βd] such that g′d(w) ≤ 0, then we must
have w̃ = min{w ∈ (w+βa−βd, w+βa +βu− 2βd]|g′d(w) = 0} such that g′d(w) > 0 for w < w̃.
Differentiating (A.61), we obtain that

g′′d(ŵ) =
µd(g′u(ŵ + βd)− g′d(ŵ))

r(w̄d − w)
> 0,

where the inequality holds because gu is increasing on [0, w+βa+βu−βd]. However, this contradicts
g′d(ŵ) = 0 and g′d(w) > 0 for w < w̃.

Lemma A.8 If gu is strictly concave in [0, w] and gd is concave in [0, w − βd] for any w ≥ 0, then
gu is also strictly concave in [w,w + βu − βd].

The logic of the proof of Lemma A.8 is similar to that of Lemma A.7, and is therefore omitted here.
Following Lemmas A.7 and A.8, we can prove by induction that gu is strictly concave in [βa, w̄u) and
gd is strictly concave in [0, w̄d).

• For Jaβau (w) on [w̄u, ŵu) and Jaβad (w) on [w̄d, ŵd], taking derivatives with respect to a on both sides
of (2.32) and (A.53), we know that gd(w) and gu(w) satisfies the following system of equations,

(µd + r)gd(w) = µdgu

(
w +

rw

µd

)
for w ∈ [w̄d, ŵd], and (A.63)

(µu + r)gu(w) =
µuµd
µd + r

gu

(
r + µd
µd

(w − βu)

)
+ (rw + µuβu)1w<ŵug

′
u(w) for w ∈ [w̄u, ŵu].

(A.64)

Since (A.63) implies that g′d(w) = g′u

(
w + rw

µd

)
for w ∈ [w̄d, ŵd], we just need to show that

g′u(w) > 0 for w ∈ [w̄u, ŵu). We have proved that g′u(w) > 0 for w ∈ [0, w̄u]. If there exists
w ∈ (w̄u, ŵu) such that g′u(w) ≤ 0, then there must be w̌ = min{w ∈ (w̄u, ŵu)|g′u(w) = 0}, such
that g′u(w) > 0 for w > w̌. Then, (A.64) implies that

(µu + r)gu(w̌) =
µuµd
µd + r

gu

(
r + µd
µd

(w̌ − βu)

)
.
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However, this contradicts with

gu(w̌) = gu

(
r + µd
µd

(w̌ − βu)

)
+

∫ w

r+µd
µd

(w̌−βu)
g′u(x)dx > gu

(
r + µd
µd

(w̌ − βu)

)
.

Step 3. Since for any w ≥ 0, derivatives
d

dw
Jaβau (w) and

d

dw
Jaβad (w) are increasing in a, with

boundary condition (2.37), Jaβau (w) and Jaβad (w) are also increasing in a. For a approaching −1, we have
lim
w↑w̄u

Jaβau (w) < vu − ŵu ≤ v̄u − ŵu. For a approaching∞, we have lim
w↑w̄u

Jaβau (w)→∞. Hence, there

exists a unique a > 0, denoted as ā, such that limw↑w̄u J
aβa
u (w) = v̄u − ŵu. Following (2.32), we have

lim
w↑ŵd

Jaβad (w) = v̄d − ŵd.

Then, (2.32) and (A.53) imply that Jaβad (ŵd) = v̄d − ŵd, Jaβau (ŵu) = v̄u − ŵu, lim
w↑w̄u

J
aβ′a
u (w) = −1,

and lim
w↑ŵd

J
aβ′a
d (w) = −1. Hence, (2.41) is satisfied and the corresponding functions J āβāu on [0, ŵu] and

J āβād on [0, ŵd] are strictly concave. Further, the derivatives of Jaβau and Jaβad are greater than or equal to
−1.

Finally, following (A.54), (A.56), (A.57) and the concavity of Jaβad and Jaβau , we have

J
aβ′a
u (w) < J

aβ′a
d (w − βu), for w ∈ (β, ŵu), (A.65)

J
aβ′a
u (w + βd) < J

aβ′a
d (w), for w ∈ [0, w̄d) \ {βā − βd},

J
aβ′a
u (βā+), J

aβ′a
u (βā−) < J

aβ′a
d (βā − βd), and (A.66)

J
aβ′a
d (w) = J

aβ′a
u

(
w +

rw

µd

)
for w ∈ (w̄d, ŵd]. (A.67)

A.1.6.4 Proof of Proposition 2.5

Following definition (A.13) and equation (A.14), we obtain that under contract Γ∗βa in Definition 2.3,

e−rτJ(τ) = J(0) +

∫ τ

0
e−rt(−R1θt=udt+ c(θt)dt+ dLt) +

∫ τ

0
e−rtA∗t , (A.68)
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where

A∗t = dJ(t)− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
= J ′(t)[rWt− − µ(θt, 1)H∗t − `∗t ]dt− rJ(t)dt+ J(t+)− J(t) +R1θt=udt− dL∗t − c(θt)dt
=
{
J ′u(t)(rWt− + µuβu)1Wt−<ŵu − rJu(Wt−)− cu

}
dt1θt=u

+
{
J ′d(Wt−)r(Wt− − w̄d)1Wt−<w̄d

dt− rJd(Wt−)− cd
}
dt1θt=d

+

{[
Ju

(
Wt− +

rWt−
µd

)
− Jd(Wt−)

]
1Wt−≥w̄d

+ [Ju(Wt− + βd)− Jd(Wt−)]1Wt−∈[βa−βd,w̄d)

+[(Ju(βa)− Jd(Wt−))(1−Xt) + (Ju(0)− Jd(Wt−))Xt]1Wt−<βa−βd

}
dNt1θt=d

+ [Jd(Wt− − βu)− Ju(Wt−)]dNt1θt=u +R1θt=udt− dL∗t
={R+ J ′u(Wt−)(rWt + cu + µuβu)1Wt−<w̄u − rJu(Wt−)dt+ µu(Jd(Wt− − βu)− Ju(Wt−))

+(rw̄u + µuβu + cu)1Wt−=w̄u}1θt=u − cudt
+
{
J ′d(Wt−)r(Wt− − w̄d)1Wt−<w̄d

− rJd(Wt−)− cd + [µdq
∗
t (Ju(0)− Jd(Wt−))

+µd(1− q∗t )(Ju(βa)− Jd(Wt−))]1Wt−<βa−βd + µd [Ju (Wt− + βd)− Jd(Wt−)]1Wt−∈[βa−βd,w̄d)

+µd

[
Ju

(
Wt− +

rWt−
µd

)
− Jd(Wt−)

]}
1θt=ddt+ B∗t

= B∗t ,

in which the last equality follows from (2.33), (2.34), (2.35) and

B∗t ={
[
Ju

(
Wt− +

rWt−
µd

)
− Jd(Wt−)

]
1Wt−≥w̄d

(dNt − µddt)

+ [Ju(Wt− + βd)− Jd(Wt−)]1Wt−∈[βa−βd,w̄d)(dNt − µddt)
+ [(Ju(0)− Jd(Wt−))(XtdNt − µdq∗t dt)
+ (Ju(βa)− Jd(Wt−))((1−Xt)dNt − µd(1− q∗t )dt)]1Wt−<βa−βd}1θt=d

+ [Jd(Wt− − βu)− Ju(Wt−)](dNt − µudt)1θt=u.

Taking the expectation on both sides of (A.68), we obtain

Jθ0(w) = J(0) = E
[
e−rτJ(τ) +

∫ τ

0
e−rt(R1θt=udt− c(θt)dt− dL∗t )

]
= u(Γ∗βā(w), ν∗, θ0),

where u(Γ∗βā , ν
∗, θ0) = w, and we apply the fact that

∫ τ

0
e−rtB∗t dt is a martingale and J(τ) = Jθτ (0) = vτ .

A.1.6.5 Proof of Theorem 2.4

From Proposition 2.4, we know that Jd(w) and Ju(w) are concave, J ′d(w) ≥ −1 and J ′u(w) ≥ −1.
Given Lemma A.2, we only need to show Φt ≤ 0 holds almost surely if νt = 1. From (A.12), we have

Φt = Φu
t 1θt=u + Φd

t1θt=d,
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where

Φu
t : = R+ J ′u(Wt−)rWt− + µuqt[Wt−J

′
u(Wt−) + Jd(0)− Ju(Wt−)]

+ µu(1− qt)[−HtJ
′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)]− rJu(Wt−)− cu,

and

Φd
t : = J ′d(Wt)rWt− + µdqt[Wt−J

′
d(Wt−) + Ju(0)− Jd(Wt−)]

+ µd(1− qt)[−HtJ
′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)]− rJd(Wt−)− cd.

We have Φt ≤ 0 if Φd
t ≤ 0 and Φu

t ≤ 0. First, we prove that Φu
t ≤ 0 by considering the following

optimization problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)]

s.t. 0 ≤ qt ≤ 1, −qtWt− + (1− qt)Ht ≤ −βu.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = −βu. (A.69)

using the KKT conditions. Define the following dual variables for the binding constraints

xu = −(J ′u(Wt−)− J ′d(Wt− − βu)) ≥ 0,

in which the inequality follows from (A.71), and

yu = (Wt− − βu)(J ′u(Wt−)− J ′d(Wt− − βu))−Wt−J
′
u(Wt−)− Jd(0) + βuJ

′
u(Wt−) + Jd(Wt− − βu)

= (Wt− − βu)

(
Jd(Wt− − βu)− Jd(0)

Wt− − βu
− J ′d(Wt− − βu)

)
≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) + Jd(Wt− +H∗t )− Ju(Wt−)] (A.70)

= −yu − (H∗t +Wt−)xu,

(1− q∗t )(J ′u(Wt−)− J ′d(Wt− −H∗t )) = (q∗t − 1)xu. (A.71)

Therefore, (A.69) implies that

Φu
t ≤ R+ J ′u(Wt−)rWt− + µu[βuJ

′
u(Wt−) + Jd(Wt− − βu)− Ju(Wt−)]− rJu(Wt−)− cu = 0,

where the equality follows from (2.35).
Following similar logic, we prove that Φd

t ≤ 0 by considering the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)],

s.t. 0 ≤ qt ≤ 1, −qtWt− + (1− qt)Ht ≥ βd, Wt +Ht ≥ βu.
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In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =
rWt−
µd

if Wt− ≥ w̄d, (A.72)

q∗t = 0 and H∗t = βd if Wt− ∈ [βa − βd, w̄d], and (A.73)

q∗t =
βa − βd −Wt−

βa
and H∗t = −Wt− + βa if Wt− < βa − βd, (A.74)

using the KKT conditions.

• If Wt− ≥ w̄d, define the following dual variable for the binding constraint

yd = Ju(Wt− +H∗t )− Ju(0)− (Wt− +H∗t )J ′d(Wt−)

=
(r + µd)Wt−

µd

Ju
(

(r+µd)Wt−
µd

)
− Ju(0)

(r+µd)Wt−
µd

− J ′u
(

(r + µd)Wt−
µd

) ≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] = −yd,

(A.75)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = J ′d(Wt−)− J ′u
(

(r + µd)Wt−
µd

)
= 0, (A.76)

where (A.76) follows from (A.67).

• If Wt− ∈ [βa − βd, w̄d], define the following dual variables for the binding constraints,

xd = J ′d(Wt−)− J ′u(Wt− + βd) ≥ 0,

in which the inequality follows from (A.66), and

yd = (Wt− + βd)(J ′d(Wt−)− J ′u(Wt− + βd))−Wt−J
′
d(Wt−)− Ju(0)− βdJ ′u(Wt−)

+ Ju(Wt− + βd) = (Wt− + βd)

(
Ju(Wt− + βd)− Ju(0)

Wt− + βd
− J ′u(Wt− + βd)

)
≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] (A.77)

=− yd + (Wt− +H∗t )xd,

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = (1− q∗t )xd. (A.78)

• If Wt− < βa − βd and βa = βu, define the following dual variables for the binding constraints

xd = J ′d(Wt−)− Ju(βu)− Ju(0)

βu
= J ′d(Wt−)− a > 0

in which the inequality follows from (A.51), and

α = (1− q∗t )(a− J ′u(βu)) ≥ 0,
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in which the inequality follows from the definition of βa. One can verify

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] (A.79)

= (Wt− +H∗t )xd,

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = (1− q∗t )xd + α. (A.80)

• If Wt− < βa − βd and βa > βu, define the following dual variable for the binding constraint

xd = J ′d(Wt−)− a > 0

in which the inequality follows from (A.51). One can verify

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] (A.81)

= (Wt− +H∗t )xd,

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = (1− q∗t )xd. (A.82)

where (A.82) follows from J ′u(βa) = a.

Therefore, (A.72), (A.73) and (A.74) together imply that

Φd
t ≤ −rJd(Wt−)− cd + µd

[
Ju

(
Wt− +

rWt−
µd

)
− Ju(Wt−)

]
1Wt−≥w̄d

+ [J ′d(Wt−)rWt− + µd[−βdJ ′d(Wt−) + Ju(Wt− + βd)− Jd(Wt−)]]1Wt−∈[βa−βd,w̄d]

+ [J ′d(Wt−)rWt− + µdq
∗
t [Wt−J

′
d(Wt−) + Ju(0)− Jd(Wt−)]

+ µd(1− q∗t )[(βa −Wt−)J ′d(Wt−) + Ju(βa)− Jd(Wt−)]1Wt−<βa−βd = 0,

where the equality follows from (2.32), (2.33) and (2.34).

A.1.6.6 Proof of Proposition 2.6

For any ā ≥ 0, (A.60) implies that fa(βu) ≥ 0. Therefore, the definition of βa implies that βā = βu.
Hence, if βā > βu, then ā < 0 .

A.1.6.7 Proof of Theorem 2.5

First, it is easy to verify that Γ∗d(w) is incentive compatible. Following definition 2.4, we obtain the
following equation for the principal’s value function at state d,

(µd + r)Jd(w) = r(w − w̄d)J ′d(w) + µdvu − µd(w + βd)− cd, w ∈ [0, w̄d] , (A.83)

with boundary condition Jd(0) = vd. By solving this differential equation, we obtain that under state d,

Jd(w) = (vd − vd)

(
1− w

w̄d

)1+
µd
r

− w + vd . (A.84)

For state u, the societal value function is a constant,

Ju(w) = vu − w, (A.85)
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Following similar logic to the one we use in the proof of proposition 2.2, we can show that the principal’s
utilities following contract Γ∗d(w) are Jd(w) and Ju(w) in states d and u, respectively. Under condition
(2.45), Jd and Ju are concave, J ′d(w) ≥ −1, and J ′u ≥ −1. Hence, it suffices to prove that Φt ≤ 0 where Φt

is defined in (A.12). To this end, we let

Φt = Φu
t 1θt=u + Φd

t 1θt=d ,

where

Φu
t = R− rWt− + µu[−qtWt− + (1− qt)Ht]− r(vu −Wt−) + µuqtvd + µu(1− qt)Jd(Wt− +Ht)

− µu(vu −Wt−)− cu = R− cu − (r + µu)vu + µuqtvd + µu(1− qt)Vd(Wt− +Ht)

≤ R− cu − (r + µu)vu + µuvd ≤ 0,

where the first equality follows from taking qt = 0 and vd ≤ Vd(Wt−+Ht) ≤ vd, and the second inequality
from the opposition of (2.18). Therefore,

Φd
t = J ′d(Wt−)(rWt− − µd[−qtWt− + (1− qt)Ht])− rJd(Wt−) + µdqtvu + µd(1− qt)(vu −Wt− −Ht)

−µdJd(Wt−)− cd.

We prove that Φd
t ≤ 0 by considering the following optimization problem,

max
qt,Ht

J ′d(Wt−)[qtWt− − (1− qt)Ht] + qtvu + (1− qt)(vu −Wt− −Ht),

s.t. 0 ≤ qt ≤ 1, qtWt− + (1− qt)Ht ≥ βd,

and verify that its optimal solution is

q∗t = 0 and H∗t = βd , (A.86)

following the KKT conditions. Define the following dual variable for the binding constraint

α = J ′d(Wt−) + 1 ≥ 0 ,

in which the inequality follows from J ′d(Wt−) ≥ −1. One can verify

J ′d(Wt−)(Wt− +H∗t ) +Wt− +H∗t = (Wt− +H∗t )α, and (A.87)

(1− q∗t )(J ′d(Wt−) + 1) = (1− q∗t )α. (A.88)

Therefore, (A.86) implies that

Φd
t ≤ J ′d(Wt−)(rWt− − µdβd)− rJd(Wt−) + µd(vu −Wt− − βd)− µdJd(Wt−)− cd

= J ′d(Wt−)r(Wt− − w̄d)− (r + µd)Jd(Wt−) + µd(vu −Wt− − βd)− cd = 0,

where the second equality follows from (A.83). In summary, we have U(Γ∗d(w), ν∗,d) ≥ U(Γ, ν∗,d) and
vu ≥ U(Γ, ν∗,u).

A.1.6.8 Proof of Theorem 2.6

The proof of this theorem follows the same logic as the proof of Theorem 2.3, and is omitted here.
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A.1.7 Proofs in Section 2.4.3

A.1.7.1 Proof of Proposition 2.7

Case βd ≥ βu: According to Lemma 2.1, under any incentive compatible contract without termination,
the agent’s promised utility satisfies equation (PK) with qt = 0, Ht ≥ βd if θt = d and Ht ≤ −βu if θt = u.
Rearranging equation (PK) and replacing ν with ν∗, qt = 0 and Xt = 0, we obtain that

dWt = {(rWt− − µdHt)dt+HtdNt}1θt=d + {(rWt− − µuHt)dt+HtdNt}1θt=u − dLt.

For any contract that starts at state d and agent’s utilityWt− < w̄d, we have rWt−−µdHt ≤ rWt−−µdβd =
r(Wt−− w̄d) < 0. This implies that before the machine recovers, the utility Wt keeps decreasing. Therefore,
starting from any promised utility below w̄d when the machine’s state is d, there is a positive probability
that the promised utility decreases to 0 before the machine is repaired, which contradicts the requirement of
τ =∞.

Similarly, for any contract that starts at state u and agent’s utilityWt− < w̄u, there is a positive probability
that the agent is terminated. This is because at state u, in order to incentivize the agent, the utility needs to
drop by at least βu when the machine breaks down, which implies that it is possible that the utility at state d
is smaller than w̄u − βu = w̄d.

Furthermore, Propositions 2.2 and 2.3 imply that Jd(w) is decreasing for w > w̄d and Ju(w) is
decreasing for w > w̄u, and are optimal value functions starting from the agent’s initial utility w and with
initial state d and u, respectively. Therefore, the initial w for the required optimal contract should be w̄d and
w̄u with the initial state d and u, respectively. The corresponding optimal contract is the simple contract Γ̄.

Case βd < βu: At state d, the machine should start the promised utility with Wt− ≥ w̄d, and, at state
u, the machine should start the promised utility with Wt− ≥ w̄u.

Furthermore, at state d, the promised utility starts with Wt− ∈ [w̄d, ŵd). If the upward jump −Ht >
rWt−/µd, then (PK) implies that rWt− − µdHt < 0, and the agent is terminated with positive probability.
On the other hand, if Ht ≥ −rWt−/µd, since Wt < ŵd, we have rWt−/µd < βu. If the machine recovers
and then breaks down soon afterwards, then the upward jump of the promised utility is rWt−/µd, while the
downward jump is at least βu. Hence, in a cycle of up and down, the continuation utility can decrease by at
least βu − rWt−/µd. Therefore, after a finite number of such cycles, the promised utility at state d will drop
below w̄d. Again, the agent is then terminated, with a positive probability.

Hence, in order to ensure τ = ∞, the starting promised utility at state d needs to be greater than ŵd,
and at state u greater than ŵu. Furthermore, Propositions 2.4 and 2.5 imply that Jd(w) is decreasing for
w > ŵd and Ju(w) is decreasing for w > ŵu. Therefore, the initial promised utility w for the required
optimal contract should be ŵd and ŵu for initial states d and u, respectively. The corresponding optimal
contract is the simple contract Γ̂.

A.2 E-companion: Optimal One Sided Contracts

The main body of the paper studies the optimal contract when the agent is responsible for both maintaining
and repairing the machine (call it “combined contract”) and these contracts induce full effort from the agent
before termination. Results in Section 2.4 indicate that for a set of given model parameters, it is fairly easy to
obtain optimal incentive compatible contracts and the corresponding value functions. In this e-companion,
we first provide sufficient conditions based on computed corresponding value functions, which can be used to
verify if the optimal incentive compatible contracts that obtain full effort from the agent are, in fact, optimal,
even if we allow shirking.

When the sufficient conditions are not satisfied, it may be preferable for the principal to hire the agent just
to maintain or just to repair, and to allow the agent to shirk. In Section A.2.2 and A.2.3 of this e-companion,
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we consider two one sided contracts where the agent is only responsible for one of the two duties. A
“maintenance contract” only induces the agent to exert effort when the machine is up in order to decrease the
arrival rate of failures. Similarly, a “repair contract” only induces the agent to exert effort when the machine
is down to increase the rate of recovery. Studying these two types of contracts is relevant because as we
showed in Section 2.5, one of these two contracts may outperform the optimal combined contract.

As it turns out, these two contract design problems are not special cases of the model studied in the main
body of the paper. To see this, consider the example of maintenance contracts. In this setting, the machine
recovers with a rate of µ

d
without the agent’s effort. In the optimal combined contract, the agent’s promised

utility is increased by at least βd when the state changes from down to up, in which βd = cd/
(
µd − µd

)
.

In the maintenance contract setting, we cannot simply set cd = 0 and µd = µ
d

, because the corresponding
βd would not be well defined. In fact, the principal does not need to reward the agent when the state changes
from down to up. Consequently, how the promised utility should change in this case is not immediately clear.

A.2.1 Incentive Compatibility where agents are responsible for both maintenance and repair

Following the optimality condition presented in Lemma A.12, we first obtain the following sufficient
condition for optimality of maintaining incentive compatibility in the problem where agents are responsible
for both maintenance and repair. Since the sufficient condition is based on the principal’s value functions, it
is convenient to summarize the definition of value functions under different parameter regions:

• βd ≥ βu, R ≥ hd: Principal’s value function Jd(w) and Ju(w) are defined by (2.21)-(2.25) in Section
2.4.1.2. (hd is defined in (2.14))

• βd ≥ βu, R ∈ [gu, hd): Principal’s value function Jd(w) and Ju(w) are defined by (A.49)-(A.50) in
the proof of theorem 2.2. (gu is defined in (2.28))

• βd ≥ βu, R < gu: Principal’s value function Jd(w) = vd − w and Ju(w) = vu − w.

• βd < βu,R ≥ hu: Principal’s value function Jd(w) and Ju(w) are defined by (2.32)-(2.37) in Section
2.4.2.2 with ā defined in proposition 2.4. (hu is defined in (2.19))

• βd < βu, R ∈ [gd, hu): Principal’s value function Jd(w) and Ju(w) are defined by (A.84)-(A.85) in
the proof of theorem 2.5. (gd is defined in (2.44))

• βd < βu, R < gd: Principal’s value function Jd(w) = vd − w and Ju(w) = vu − w.

Proposition A.1 It is optimal to always induce full effort from the agent before contract termination if
function Jd(w) and Ju(w) summarized above satisfy the following two conditions,

ϕd(w) := rJd(w) + µ
d
Jd(w)− rwJ ′d(w)− µ

d
max
−h≤w

{
−hJ ′d(w) + Ju(w + h)

}
≥ 0, for w ≥ 0,

(A.89)

and

ϕu(w) := rJu(w) + µ̄uJu(w)−R− rwJ ′u(w)− µ̄u max
−h≤w

{
−hJ ′u(w) + Jd(w + h)

}
≥ 0, for w ≥ 0.

(A.90)

It is worth noting that Proposition A.1 is a parallel result to condition (54) in [BMRV10], Proposition 8 in
[DS06b] and Proposition 6 in [Var17]. However, our conditions are more complex than the corresponding
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conditions in the literature, involving solving a single dimensional maximization problem in both (A.89) and
(A.90). This complexity is due to the key difference between our paper and the aforementioned continuous
time dynamic contracting papers: in all the other papers, the agent is only responsible for one task whereas in
ours, the agent is responsible for two tasks. This induces complexity because the principal’s value function
will further depend on the machine’s states u and d.

Specifically, imagine, for the moment, that we replace the term Ju(w − h) in (A.89) by Jd(w − h), so
that there would be only one state. (the down state) It is easy to verify that in this case, concavity of the value
function Jd(w − h) implies that the optimal h in this maximization problem should be 0. (The intuitive
interpretation is that there is no change in the agent’s promised utility associated with arrivals during the
period when the agent is allowed to shirk.) Consequently, the expression ϕd(w) would be greatly simplified
to be a monotone function, which yields a sufficient condition only involving evaluating the value function
at its boundaries. In our case, however, concavity of functions Jd(w) and Ju(w) do not guarantee that the
optimal h takes value 0. (That is, in general contracts allowing shirking, the agent’s promised utility still
needs to include jumps as the machine changes states when the agent shirks.) This exactly explains the reason
why our verification conditions are more complex than those in the aforementioned literature, and highlights
the distinct feature of our set-up with two machine states.

Fortunately, the principal’s value functions Jd(w) and Ju(w) defined in the previous sections are, in fact,
quite easy to compute. Therefore, conditions (A.89) and (A.90) can be easily verified numerically for any
model parameter settings. From Sections 2.4.1 and 2.4.2, we learn that the optimal incentive compatible
contracts take three forms depending on model parameters. Specifically, the three regions can be characterized
by dividing the value of revenue rate R into three intervals, fixing all other model parameters. The following
result indicates that if the value of R belongs to the lowest interval, sufficient conditions (A.89) and (A.90)
are guaranteed to hold. If R is moderate, on the other hand, sufficient conditions (A.89) and (A.90) do not
hold. Therefore, we only need to check conditions (A.89) and (A.90) if revenue R is high enough.

Corollary A.1 (i) If βd ≥ βu and condition (2.30) holds, or, if βd < βu and condition (2.46) holds, then
conditions (A.89) and (A.90) hold.

(ii) If βd ≥ βu and condition (2.29) holds, or, if βd < βu and condition (2.45) holds, then conditions
(A.89) and (A.90) do not hold.

Corollary A.1(i) implies that if R is in the lowest interval, then not hiring the agent is not only the optimal
incentive compatible contract, but also the best strategy among all contracts. In this case the principal’s value
function is a linear function with slope −1, which allows us to easily verify conditions (A.89) and (A.90).
In comparison, Corollary A.1(ii) implies that if R takes moderate values (in the middle interval defined in
(2.29) or (2.45)), the principal may be better off allowing shirking at some point in time before terminating
the contract.

Note that the intervals defined in (2.29) and (2.45) are empty when βu = βd. That is, the middle interval
only occurs if the ratios between effort cost and repair rate and maintenance rate improvement are not
balanced, or, between the two types of efforts (repairing and maintaining) one of them is more favored than
the other. In this case, the optimal incentive compatible contract dictates the principal to hire the agent only if
the machine starts in the favored state, and to terminate the agent as soon as the state changes. If we allow
shirking instead, the principal may benefit from hiring the agent to exert effort when the machine is in the
favored state, while allowing the agent to shirk when the machine is in the other state and wait for the favored
state to come back. This, again, provides us the motivation to study the optimal one-sided contracts.

A.2.2 Optimal Maintenance Contract

In this section, we consider the contract design problem where the agent only has the expertise of
maintenance work which means when the machine is up, he could decrease the rate that machine breaks
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down from µ̄u to µu and when the machine is down, agent does not work and the machine recovers with rate
µ
d

. Correspondingly, we need to change the arrival rate of process N in (2.2) as

µm(θt, νt) = [µuνt + µ̄u(1− νt)]1θt=u + µ
d
1θt=d,

and the effort cost rate (2.1) at t as

cm(θt) = cu1θt=u.

With these new definitions, we need to change the agent’s expected total utility (2.5) by substituting c(θt)
with cm(θt). Without the agent, the principal’s total discounted future profit for states u and d are vu and vd,
respectively where vu and vd are defined in equation (2.4). The principal’s expected total discounted profit
under a contract Γm and effort process ν = {νt}∀t∈[0,τ ] such that νt = 0 when θt = d is still defined as (2.3).
Denote the full effort process as νm := {(νm)t = 1θt=u}∀t∈[0,τ ]. A maintenance contract Γm is incentive
compatible if u(Γm, νm, θ0) ≥ u(Γm, ν, θ0) for any effort process ν = {νt}∀t∈[0,τ ] such that νt = 0 when
θt = d. Furthermore, the following result is parallel to Lemma 2.1.

Lemma A.9 In the maintenance setting, for any contract Γm, there exists Ft-predictable processes Ht such
that for t ∈ [0, τ),

dWt ={rWt− − (1− νt)cm(θt)− [(1− qt)Ht − qtWt−]µm(νt, θt)}dt− dLt + [(1−Xt)Ht −XtWt−]dNt,
(PKm)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, contract Γm is
incentive compatible if and only if

−qtWt− + (1− qt)Ht ≤ −βu for θt− = u, ∀t ∈ [0, τ ]. (A.91)

Finally, we need −Ht ≤Wt− for all t ≥ 0 in order to satisfy (IR).

Similar to the combined contract, constraint (A.91) implies that any incentive compatible maintenance
contract must satisfy the condition Wt− ≥ βu when θt− = u.

Next, we propose a maintenance contract and prove its optimality following similar approaches in
Sections 2.4.1 and 2.4.2. The general idea is that the promised utility increases at rate rWt− + µuβu in state
u, and drops βu whenever the machine breaks down. In state d, the promised utility stays at a constant,
and takes an upward jump of rWt−/µd when the machine recovers, which collects the expected interest
accrued during state d. At the end of an up state, if a downward jump brings the promised utility to below the
following threshold,

wm :=
µ
d

µ
d

+ r
βd,

the upward jump at the end of the down state cannot bring it back to βu anymore. Because the promised
utility has to be higher than βu in state u in order to induce full effort, if the promised utility jumps down to
below wm, then the principal should randomly terminate the agent, or reset it back to wm. Similar to before,
payment starts when the promised utility reaches the upper threshold

w̄m :=
µ
d

+ r

r
βd.

The exact dynamics is represented in the following definition.

Definition A.1 The contract Γ∗m(w) = (L∗, q∗, τ∗) is defined as the following.
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i. The dynamics of the agent’s promised utility Wt follows

dWt =


(rWt− + µuβu)dt− βudNt, θt = u, βu ≤Wt− ≤ w̄m
−XtWt− + (1−Xt) (wm −Wt−) , θt = d, Wt− < wm(
rWt−/µd

)
dNt, θt = d, Wt− ≥ wm

, (DWm)

from an initial promised utility W0 = w.

ii. The payment process follow dL∗t =
(

2µ
d

+ r
)
βu1Wt−=w̄m1θt=udt.

iii. The random termination probability process for Wt− < wm is q∗t = q̂(Wt−), in which

q̂(w) := 1− w/wm,

and the termination time is τ∗ = min{t : Wt = 0}.

Furthermore, the following set of differential equations define the principal’s value functions Jmd and Jmu .

(µ
d

+ r)Jmd (w) = µ
d
Jmu

(
µ
d

+ r

µ
d

w

)
, w ≥ wm, (A.92)

Jmd (w) = q̂(w)Jmd (0) + (1− q̂(w))Jmd (wm) , w < wm, and (A.93)

− cu + (rw + µuβu)1w<w̄mJ
m′
u (w) = (µu + r)Jmu (w) +

(
2µ

d
+ r
)
βu1w=w̄m

−R− µuJmd (w − βu), w ∈ [βu, w̄m] . (A.94)

with boundary conditions

Jmd (0) = vd, Jmd (w̄m − βu) =
µ
d
(R− cu)

r
(
r + µu + µ

d

) − (w̄m − βu), (A.95)

Jmu (0) = vu, Jmu (w̄m) =
(r + µ

d
)(R− cu)

r
(
r + µu + µ

d

) − w̄m. (A.96)

Similar to Proposition 2.1, the next proposition establishes the concavity of the principal’s value functions.

Proposition A.2 The system of differential equations (A.92)-(A.94) with boundary conditions (A.95) and
(A.96) has a unique solution: the pair of functions, Jmu (w) on [0, w̄m], and Jmd (w) on [0, w̄m − βu], both of
which are strictly concave and Jm

′
u (w) ≥ −1, Jm

′
d (w) ≥ −1.

The next result shows that Jmd and Jmu are indeed the principal’s value function if the initial promised utility
is w starting from states d and u, respectively.

Proposition A.3 For promised utility w ∈ [0, w̄m − βu], we have U(Γ∗m(w), νm,d) = Jmd (w). For
promised utility w ∈ [0, w̄m], we have U(Γ∗m(w), νm,u) = Jmu (w).

Furthermore, we can find wm∗d and wm∗u as the maximizers of Jmu and Jmd respectively, and start the promised
utility from them.

Similar to Section 2.4.1 and 2.4.2, we define the societal value functions as the summation of the principal
and the agent’s utilities, V m

d (w) = Jmd (w) + w and V m
u (w) = Jmu (w) + w. Figures A.1 and A.21 provide a

numerical example of societal value functions V m
d and V m

u and the principal’s value functions Jmd and Jmu .

1µu = 5,∆µu = 1, µd = 2,∆µd = 1, cu = 0.1, cd = 1.3, r = 0.5, R = 10.
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Figure A.1: Societal’s Value functions

Figure A.2: Principal’s Value functions
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From Section A.2.1, we know that for the combined contract, the sufficient conditions that guarantee the
optimality of the full effort contract are relatively complicated. For the maintenance contract setting, we can
show that, the following simple condition is necessary and sufficient for the principal to want to hire and
induce full effort from the agent,

R ≥
(
r + µ

d
+ µ̄u

)
βu = gu. (A.97)

The next theorem shows that under condition (A.97), functions Jmd and Jmu are upper bounds for the
principal’s utility under any maintenance contract Γm.

Theorem A.1 Under condition (A.97), for any contract Γm and any initial state θ ∈ {u,d} that satisfies
(A.91), we have Jθ

(
u(Γ∗m, ν, θ)

)
≥ U(Γm, ν, θ), in which we extend the function Jmd (w) = Jmd (w̄m − βu)−

(w − w̄m + βu) for w > w̄m − βu and Jmu (w) = Jmu (w̄m)− (w − w̄m) for w > w̄m.
We have U

(
Γ∗m(wm∗θ ), νm, θ

)
≥ U(Γm, ν, θ) for any contract Γm and state θ. That is, the optimal

contract is Γ∗m(wm∗θ ) and the machine starts from state θ ∈ {u,d}.

It is worth noting that Theorem A.1 shows that contract Γ∗m defined in Definition A.1 is optimal among
any maintenance contract Γm. This result is stronger than Theorem 2.1 and 2.4, which only show that
contracts Γ∗1 and Γ∗

β̂
in Sections 2.4.1.1 and 2.4.2.1 are optimal among incentive compatible contracts.

The next proposition shows that if condition (A.97) is violated, then the principal is better off not hiring
the agent, even if we take contracts that allow shirking into consideration.

Proposition A.4 Assuming condition (A.97) does not hold, that is,

R <
(
r + µ

d
+ µ̄u

)
βu = gu. (A.98)

We have vθ ≥ U(Γm, νm, θ) for any maintenance contract Γm and state θ ∈ {d,u}.

Figure A.3 depicts two sample trajectories of the agent’s promised utility according to Γ∗m(wm∗u ) where
the machine starts at state θ0 = u. In state u, the promised utility increases over time until the machine breaks
down or the promised utility reaches w̄m. According to the solid curve in Figure A.3, the machine changes
states at times t1, t2, t3, t4, and t5. Between [0, t1], the promised utility increases over time while the agent is
maintaining the machine. At time t1, the machine breaks down and the promised utility drops by βu. Once
the machine is in state d, the agent does not need to work, and the promised utility remains a constant, until
the machine recovers at time t2. Whenever the machine recovers at time t, the utility Wt− takes an upward

jump of
rWt−
µ
d

. This upward jump happens at time t2 following the solid curve. After t2, the promised utility

increases again while the agent maintains the machine, until time t̂3 when the promised utility reaches w̄m.
At this point, the flow payment starts. After time t3, the agent’s promised utility is jumping back and forth
between w̄m when the machine is up and w̄m − βu when the machine is down.

Now we focus on the other sample trajectory in Figure A.3, the dotted curve. The machine is in state
u during time intervals [0, t̃1], [t̃2, τ ] and in state d during [t̃1, t̃2]. The promised utility increases in state u
and stays at a constant in state d. Right after the machine breaks down at time τ , the promised utility jumps

to below wm. Consequently, even an upward jump of
rWt−
µ
d

cannot raise the promised utility to above βu.

Therefore, at time t̃3 the agent is terminated with probability q̂(Wt̃3−). On the other hand, with probability
1− q̂(Wt̃3−), the agent’s promised utility is reset to βu (the “*” in the figure) and continues increasing.
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Figure A.3: Two sample trajectories of promised utility with model parameters µu = 5,∆µu =
1, µd = 2,∆µd = 1, cu = 0.1, cd = 1.3, r = 0.5, R = 10. The policy starts from wm∗u = 0.146.
The solid curve represents a sample trajectory which brings the agent to the point of never to be
terminated. The dotted curve represents another sample trajectory in which the agent is terminated
due to a random draw at a point when the machine breaks down.

A.2.3 Optimal Repair Contract

In this section, we consider the contract design problem where the agent only has the expertise to repair.
That is, when the machine is down, the agent is able to decrease the recovery rate from µ

d
to µd with effort.

When the machine is up, on the other hand, the agent does not work and the machine breaks down with rate
µ̄u. Correspondingly, we need to change the the arrival rate of process N in (2.2) as

µr(θt, νt) = µ̄u1θt=u + [µdνt + µ
d
(1− νt)]1θt=d,

and the effort cost rate (2.1) at t as

cr(θt) = cd1θt=d.

With these new definitions, we need to change the agent’s expected total utility (2.5) by substituting c(θt)
with cr(θt). Without the agent, the principal’s total discounted future profit for states u and d are vu and
vd, respectively, where vu and vd are defined in (2.4). The principal’s expected total discounted profit under
a contract Γr and effort process ν = {νt}∀t∈[0,τ ] such that νt = 0 when θt = u is still defined as (2.3).
Denote the full effort process as νr := {(νr)t = 1θt=d}∀t∈[0,τ ]. A contract Γr is incentive compatible if
u(Γr, νr, θ0) ≥ u(Γr, ν, θ) for any effort process ν = {νt}∀t∈[0,τ ] such that νt = 0 when θt = u. Again, the
following result is parallel to Lemma 2.1.

Lemma A.10 In a repair setting, for any contract Γr, there exists Ft-predictable processes Ht such that

dWt ={rWt− − (1− νt)cr(θt)− [(1− qt)Ht − qtWt−]µr(νt, θt)}dt− dLt
+ [(1−Xt)Ht −XtWt−]dNt, t ∈ [0, τ) (PKr)
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in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, contract Γr is
incentive compatible if and only if

−qtWt− + (1− qt)Ht ≥ βd for θt = d, ∀t ∈ [0, τ ]. (A.99)

Finally, we need −Ht ≤Wt− for all t ≥ 0 in order to satisfy (IR).

In the following, we directly propose a repair contract and prove the optimality following the similar
approach in Section 2.4.1 and 2.4.2.

Definition A.2 The contract Γ∗r(w) = (L∗, q∗, τ∗) is defined as

i. The dynamics of the agent’s promised utility Wt, follows

dWt =

[
r(Wt− − w̄d)dt+ min

{
µ̄u

µ̄u + r
w̄d −Wt−, βd

}
dNt

]
1θt=d +

rWt−
µ̄u

dNt1θt=u (DWr)

from an initial promised utility W0 = w.

ii. The payment to the agent follows dL∗t = (Wt− + βd − µ̄u/(µ̄u + r)w̄d)+dNt1θt=d.

iii. The random termination probability q∗t = 0 and the termination time τ∗ = min{t : Wt = 0}.

Furthermore, the principal’s value functions are determined by the following set of differential equations

(µd + r)Jrd(w) = −cd + r(w − w̄d)Jr
′

d (w) + µdJ
r
u

(
min

{
w + βd,

µ̄uw̄d

µ̄u + r

})
− µd

(
w + βd −

µ̄uw̄d

µ̄u + r

)+

,

(A.100)

(µ̄u + r)Jru(w) = R+ µ̄uJ
r
d

(
r + µ̄u
µ̄u

w

)
, (A.101)

with boundary conditions

Jrd(0) = vd, Jrd (w̄d) =
µdR− (r + µ̄u)cd
r (r + µ̄u + µd)

− w̄d, (A.102)

Jru(0) = vu, Jru

(
µ̄u

µ̄u + r
w̄d

)
=

(r + µd)R− µ̄ucd
r(r + µ̄u + µd)

− µ̄uw̄d

µ̄u + r
. (A.103)

Similar to Proposition 2.1, the next Proposition establishes the concavity of the principal’s value functions.

Proposition A.5 The system of differential equations (A.100) and (A.101) with boundary conditions (A.102)

and (A.103) has a unique solution: the pair of functions, Jru(w) on
[
0,
µ̄uw̄d

µ̄u + r

]
, and Jrd(w) on [0, w̄d], both

of which are strictly concave and Jr
′

u (w) ≥ −1, Jr
′

d (w) ≥ −1.

The next result shows that Jrd(w) and Jru(w) are indeed the principal’s value function if the initial
promised utility is w starting from states d and u, respectively.

Proposition A.6 For promised utility w ∈ [0, w̄d], we have U(Γ∗r , νr, θ) = Jrd(w). For promised utility

w ∈
[
0,
µ̄uw̄d

µ̄u + r

]
, we have U(Γ∗r(w), νr, θ) = Jru(w).
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Figure A.4: Societal’s Value functions

Furthermore, we can find wr∗d and wr∗u as the maximizers of Jrd(w) and Jru(w) respectively, and start the
promised utility from them.

Similar to Section 2.4.1 and 2.4.2, we define the societal value functions as the summation of the principal
and the agent’s utilities, V r

d (w) = Jrd(w) + w and V r
u (w) = Jru(w) + w. Figures A.5 and A.42 provide a

numerical example of societal value functions V r
d and V r

u and the principal’s value functions Jrd and Jru.
From Section A.2.1, we know that for the combined contract, the sufficient conditions that guarantee the

optimality of the full effort contract are relatively complicated. For the repair contract setting, we can show
that, the following simple condition is necessary and sufficient for the principal to want to hire and induce
full effort from the agent,

R ≥ (r + µ
d

+ µ̄u)βd = gd (A.104)

The next theorem shows that under condition (A.104), functions Jrd and Jru are upper bounds for the
principal’s utility under any (not necessarily incentive compatible) contract Γr.

Theorem A.2 Under condition (A.104), for any repair contract Γr and any initial state θ ∈ {u,d} that
satisfies (A.99), we have Jθ

(
u(Γ∗r , ν, θ)

)
≥ U(Γr, ν, θ), in which we extend the function Jd(w) = Jd(w̄d)−

(w − w̄d) for w > w̄d and Ju(w) = Ju

(
µ̄uw̄d

µ̄u + r

)
−
(
w − µ̄uw̄d

µ̄u + r

)
for w >

µ̄uw̄d

µ̄u + r
.

We have U
(
Γ∗r(w

r∗
θ ), νr, θ

)
≥ U(Γr, ν, θ) for any repair contract Γr and state θ. That is, the optimal

contract is Γ∗r(w
r∗
θ ) when the machine starts from state θ ∈ {u,d}.

Therefore, Γ∗r is, in fact, the optimal contract among any repair contract Γr. Similar to Proposition A.4,
the next proposition shows that if condition (A.104) is violated, then the principal is better off not hiring the
agent.

Proposition A.7 Assuming condition (A.104) does not hold, that is,

R < (r + µ
d

+ µ̄u)βd = gd. (A.105)

We have vθ ≥ U(Γr, νr, θ) for any repair contract Γr and state θ ∈ {d,u}.
2µu = 5,∆µu = 1, µd = 2,∆µd = 1, cu = 1.3, cd = 0.9, r = 0.8, R = 16.
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Figure A.5: Principal’s Value functions

Figure A.6 depicts two sample trajectories of the agent’s promised utility according to contract Γ∗r(w
r∗
u ),

where the machine starts at state θ0 = u. In state u, the agent does not need to work, and the promised
utility always remains a constant, until the machine breaks down, at time t1 on the solid curve and at t̂1
on the dotted curve. Whenever the machine breaks down, the utility Wt− takes an upward jump of level
r

µ̄u
Wt−, after which the machine is in state d and the agent starts to exert effort. In this state, the promised

utility keeps decreasing until either the machine recovers, as depicted by the solid curve between time t1
and t2, or the promised utility decreases to zero and the contract terminates, as depicted by time τ on the
dotted curve. If the machine recovers at time t with Wt− > 0, the utility takes an upward jump of level

min

{
µ̄u

µ̄u + r
w̄d −Wt−, βd

}
, and the agent is paid

(
Wt− + βd −

µ̄uw̄d

(µ̄u + r)

)+

instantaneously, as what

happens at time t4 or t6 following the solid curve. After the first payment, the promised utility remains
constant µ̄uw̄d/(µ̄u + r) at state u and w̄d at state d.

A.2.4 Proofs

This section collects all the proofs in this e-companion.

A.2.4.1 Proofs in Section A.2.1

To discuss the optimality of the full effort incentive compatible contract under any contracts that even
allow shirking, we need to consider a larger contract space in which the principal does not need to induce full
effort from the agent. First, the principal’s utility is revised to be

U(Γ, ν, θ0) = E
[∫ τ

0
e−rt(R1θt=udt− dLt) + e−rτvτ

∣∣∣∣ θ0

]
, (A.106)

and the agent’s utility is changed to be

u(Γ, ν, θ0) = E
[∫ τ

0
e−rt [dLt − νtc(θt)dt]

∣∣∣∣ θ0

]
. (A.107)

A more general version of Lemma 2.1 is presented in the following:
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Figure A.6: Two sample trajectories of promised utility with model parameters µu = 5,∆µu =
1, µd = 2,∆µd = 1, cu = 1.3, cd = 0.9, r = 0.8, R = 16. The policy starts from wr∗u = 0.4525.
The solid curve represents a sample trajectory which brings the agent to the point of never terminated.
The dotted curve represents another sample trajectory in which the agent is terminated.

Lemma A.11 For any contract Γ, there exists an FN -predictable process Ht such that for t ∈ [0, τ ],

dWt = {rWt− + νtc(θt)− [(1− qt)Ht − qtWt−]µ(θt, νt)− `t}dt+ [(1−Xt)Ht −XtWt−]dNt − It,
(A.108)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, the necessary and
sufficient condition for the effort process ν to maximize agent’s utility (A.107) given Γ is that

νt = 1 if and only if − qtWt− + (1− qt)Ht ≤ −βu, `t ≥ cu, for θt = u, and

− qtWt− + (1− qt)Ht ≥ βd, `t ≥ cd, for θt = d (A.109)

for all t ∈ [0, τ ].

Correspondingly, a more general optimality condition (compared to Lemma A.2) is presented in the following,

Lemma A.12 Suppose Jd(w) : [0,∞) → R and Ju(w) : [0,∞) → R are differentiable, concave, upper-
bounded functions, with J ′d(w) ≥ −1, J ′u(w) ≥ −1, and Jd(0) = vd. Consider any contract Γ, which yields
the agent’s expected utility u(Γ, ν) = W0, followed by the continuation utility process {Wt}t≥0 according to
(PK). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u + J ′θt(Wt−)(rWt− − [−qtWt− + (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+ µ(θt, νt)qt[Jθ̂t(0)− Jθt(Wt−)] + µ(θt, νt)(1− qt)[Jθ̂t(Wt− +Ht)− Jθt(Wt−)]− νtc(θt) .
(A.110)

where θt ∈ {u, d} and θ̂t = 1θt=d · u + 1θt=u · d. Also, νt = 0 if constraints (A.109) are not satisfied at
time t and νt = 1 if constraints (A.109) are satisfied at time t. If the process {Φt}t≥0 is non-positive almost

144



surely, then we have Jθ(u(Γ, ν, θ)) ≥ U(Γ, ν, θ).

Proof of Proposition A.1 We have shown that Jd(w) and Ju(w) summarized at the beginning of Section
A.2.1 are upper bounds of the societal utility of any incentive compatible contracts starting from states d and
u, respectively, under different conditions. Or, equivalently, they satisfy that J ′d(w) ≥ −1, J ′u(w) ≥ −1, and
boundary conditions Jd(0) = vd and Ju(0) = vu, and that Φt defined in (A.12) (or equivalently (A.110)
with νt = 1) is non-positive almost surely. Hence, to prove that they are upper bounds of any contracts,
we need to further verify that if Φt defined in (A.110) is non-positive almost surely when νt = 0. Hence,
following (A.110), the following conditions

rJd(Wt−) ≥ −µ
d
Jd(Wt−) + rWt−J

′
d(Wt−) + µ

d
[qtWt− − (1− qt)Ht]J

′
d(Wt−)

+ µ
d
(qtJu(0) + (1− qt)Ju(Wt− +Ht)),Wt− ≥ 0,

and

rJu(Wt−) ≥ −µ̄uJu(Wt−) + rWt−J
′
u(Wt−) + µ̄u[qtWt− + (1− qt)Ht]J

′
u(Wt−)

+ µ̄u(qtJd(0) + (1− qt)Jd(Wt− −Ht)),Wt ≥ 0,

for any −Ht ≤Wt− and qt ∈ [0, 1] imply that it is optimal to induce effort from the agent before contract
termination. They are further equivalent to

rJd(w) ≥ −µ
d
Jd(w) + rwJ ′d(w) (A.111)

+ µ
d

max
q∈[0,1],−h≤w

{
[qw − (1− q)h]J ′d(w) + (qJu(0) + (1− q)Ju(w + h))

}
, w ≥ 0,

and

rJu(w) ≥ −µ̄uJu(w) + rwJ ′u(w) (A.112)

+ µ̄u max
q∈[0,1],−h≤w

{
[qw − (1− q)h]J ′u(w) + (qJd(0) + (1− q)Jd(w + h))

}
, w ≥ 0,

respectively. In the following, we first consider the optimization problem in (A.111),

max
q∈[0,1],−h≤w

{
[qw − (1− q)h]J ′d(w) + (qJu(0) + (1− q)Ju(w + h))

}
= max
q∈[0,1],−h≤w

{
q[wJ ′d(w) + Ju(0)] + (1− q)[−hJ ′d(w) + Ju(w + h)]

}
= max
q∈[0,1]

{
q[wJ ′d(w) + Ju(0)] + (1− q) max

−h≤w
[−hJ ′d(w) + Ju(w + h)]

}
.

Because max
−h≤w

[−hJ ′d(w) + Ju(w + h)] ≥ [wJ ′d(w) + Ju(0)], we know that the optimal solution to the

above optimization problem should be q∗ = 0. Similarly, the optimal solution in the optimization problem
in (A.112) should also be q∗ = 0. Plugging q∗ = 0 into (A.111) and (A.112) yields (A.89) and (A.90),
respectively.
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Proof of Corollary A.1 If βd ≥ βu and condition (2.30) holds, or, if βd < βu and condition (2.46)
holds, then Jd(w) = vd − w and Ju(w) = vu − w. In these cases, we have

ϕd(w) = (r + µ
d
)(vd − w) + rw − µ

d
[h+ vu − w − h]

= (r + µ
d
)(vd − w) + rw − µ

d
(−w + vu)

= (r + µ
d
)vd − µdvu = 0,

and

ϕu(w) = (r + µ̄u)(vu − w)−R+ rw − µ̄u[h+ vd − w − h]

= (r + µ̄u)(vu − w)−R+ rw − µ̄u(vd − w)

= (r + µ̄u)vu −R− µ̄uvd = 0.

Hence, conditions (A.89) and (A.90) hold in these situations.
If βd ≥ βu and condition (2.29) holds, then Jd(w) and Ju(w) follow (A.49) and (A.50). Then we have

ϕd(w) = (r + µ
d
)(vd − w) + rw − µ

d
max
−h≤w

{
−hJ ′d(w) + Ju(w + h)

}
= (r + µ

d
)(vd − w) + rw − µ

d
(βu − w + vu − βu)

= (r + µ
d
)vd − µdvu

= µ
d
(vu − vu) < 0 ,

where the second equality follows from h∗ = βu − w and the inequality follows from (2.29).
If βd < βu and condition (2.45) holds, then Jd(w) and Ju(w) follow (A.84) and (A.85). Then we have

ϕu(w) = (r + µ̄u)(vu − w)−R+ rw − µ̄u max
h≤w

{
−hJ ′u(w) + Jd(w + h)

}
= (r + µ̄u)(vu − w)−R+ rw − µ̄u(w̄d − w + vd − w̄d)

= (r + µ̄u)vu −R− µ̄uvd
= µ̄u(vd − vd) < 0 ,

where the second equality follows from h∗ = w̄d − w and the inequality follows from (2.45). Hence, in the
above two scenarios, the sufficient conditions (A.89) and (A.90) do not hold.

A.2.4.2 Proofs in Section A.2.2

Proof of Proposition A.2 First, we could rearrange (A.92)-(A.94) as the following

(µ
d

+ r)Jmd (w) = µ
d
Jmu

(
µ
d

+ r

µ
d

w

)
, w ∈ [0, w̄m − βu] . (A.113)
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and

−cu + (rw + µuβu)1w<w̄mJ
m′
u (w) = (µu + r)Jmu (w)−R− µuJmd (w − βu) +

[(
2µ

d
+ r
)
βu

]
1w=w̄m ,

(A.114)

w ∈ [βu, w̄m] ,

Jmu (w) = Jmu (0) +
Jmu (βu)− Jmu (0)

βu
w , w ∈ [0, βu] .

Then, the corresponding differential equations for V m
d (w) and V m

u (w) are

(µ
d

+ r)V m
d (w) = µ

d
V m
u

(
µ
d

+ r

µ
d

w

)
, w ∈ [0, w̄m − βu], (A.115)

(rw + µuβu)1w<w̄mV
m′
u (w) = (µu + r)V m

u (w) + cu −R− µuV m
d (w − βu), w ∈ [βu, w̄m] ,

(A.116)

V m
u (w) = aw + vu, w ∈ [0, βu]. (A.117)

From equation (A.115), we observe that V m′
d (w) = V m′

u

(
µ
d

+ r

µ
d

w

)
and

V m′′
d (w) =

µ
d

+ r

µ
d

V m′′
u

(
µ
d

+ r

µ
d

w

)
. Hence, V m

d is increasing and strictly concave if and only if so is

V m
u . Combining (A.115) and (A.116), we obtain

(rw + µuβu + cu)1w<w̄mV
m′
u (w) = (µu + r)V m

u (w)−
µuµd
µ
d

+ r
V m
u

(
µ
d

+ r

µ
d

(w − βu)

)
− (R− cu) ,

(A.118)

w ∈ [βu, w̄m] .

We then show the result according to the following steps.

1. Show that the solution to (A.118) is unique and twice continuously differentiable except at w = β for
any a > 0. Call it Va.

2. Argue that V m
u is left-continuous at w̄m, which is limw→w̄m− Vu(w) = Vu (w̄m).

3. For any a > 0, show that Va is concave.

4. Show that limw→w̄m− Va(w) is increasing in a for a > 0, which implies that the boundary condition

Va(w̄m) =
(r + µ

d
)(R− cu)

r(r + µu + µ
d
)

uniquely determines a, and therefore the solution to the original

differential equation. Furthermore, limw→w̄m− Vu(w) = Vu (w̄m) implies that limw→w̄m− V
′
u(w) =

0. Hence, the solution Vu is increasing and concave.

Step 1. Define w0 := 0 and wn :=
µ
d

µ
d

+ r
wn−1 + βu for n = 1, 2, 3.... Then, we can verify that

limn→∞wn = w̄m. Applying (A.117) as the boundary condition, we show that differential equation (A.118)
has a unique solution (call it Va(w), on the interval (βu, w̄m)), which is continuously differentiable. In
fact, differential equation (A.118) is equivalent to a sequence of initial value problems over the intervals
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[wn, wn+1), n = 1, 2, .... This sequence of initial value problems satisfy the Cauchy-Lipschitz Theorem and,
therefore, bear unique solutions.

Furthermore, we could derive the expression of V ′′a (w) following (A.118), as

V ′′a (w) =
µu

[
V ′a(w)− V ′a

(
r+µ

d
µ
d

(w − βu)
)]

rw + µuβu
, for w ∈ (βu, w̄m) . (A.119)

Step 2. The sequence of initial value problems in step 1 do not attain w̄m, so we first argue that Vu is
left-continuous at w̄m. According to the contract Γ∗r , if the contract starts with W0 = w̄m− ε with sufficiently
small ε > 0, the probability that Wt eventually reaches w̄m approaches 1 as ε approaches 0. Therefore, we
have limε→0+ Va (w̄m − ε) = Va(w̄m).

Step 3. Next, we show that if a > 0, Va is increasing and concave on [0, w̄m). Equation (A.118) implies
that

V ′a+(βu) = a+
cu − ∆µuR

r+µ
d

+µu

(r + µ̄u)βu
< a,

where the inequality follows from (A.97). Also, equation (A.119) implies that V ′′a+(βu) < 0. Then, we
claim that V ′′a (w) < 0 for w ∈ (βu, w̄m). We proceed the proof by contradiction. Assuming that there exists
w̌ ∈ (βu, w̄m) such that V ′′a (w̌) ≥ 0, because Va is twice continuously differentiable on (βu, w̄m), there
must exist w̃ = max {w ∈ (βu, w̄m)|V ′′a (w) = 0}, and V ′′a (w) < 0, ∀w < w̃. Equation (A.119) implies

that V ′a(w̃) = V ′a

(
r + µ

d

µ
d

(w̃ − βu)

)
. However, this contradicts

V ′a(w̃) = V ′a

(
r + µ

d

µ
d

(w̃ − βu)

)
+

∫ w̃

r+µ
d

µ
d

(w̃−βu)
V ′′a (x)dx < V ′a

(
r + µ

d

µ
d

(w̃ − βu)

)
,

in which the inequality follows from the fact that for any w ∈ (βu, w̄m), we must have w >
r + µ

d

µ
d

(w−βu).

Hence, Va should be concave on the interval [0, w̄m).
Step 4. Finally, we show that lim

w↑w̄m
Va(w) is strictly increasing in a for a > 0, which allows us to

uniquely determine a that satisfies Va (w̄m) =
(r + µ

d
)(R− cu)

r(r + µu + µ
d
)

. For any 0 < a1 < a2, it can be seen

that Va1(w) < Va2(w), V ′a1
(w) < V ′a2

(w), for w ∈ [0, βu) from (A.117). We claim that V ′a1
< V ′a2

for w ∈ (βu, w̄m). Otherwise, because Va1 − Va2 is continuously differentiable, there must exist w′ =
max

{
w
∣∣V ′a1

(w) = V ′a2
(w), w ∈ (βu, w̄m)

}
and V ′a1

(w) < V ′a2
(w) for w < w′. Equation (A.118) implies

that

(r + µu)(Va1(w′)− Va2(w′)) =
µ
d
µu

µ
d

+ r

[
Va1

(
µ
d

+ r

µ
d

(w′ − βu)

)
− Va2

(
µ
d

+ r

µ
d

(w′ − βu)

)]
.
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However, this contradicts

0 > Va1(w′)− Va2(w′)−

[
Va1

(
µ
d

+ r

µ
d

(w′ − βu)

)
− Va2

(
µ
d

+ r

µ
d

(w′ − βu)

)]

=

∫ w′

µ
d

+r

µ
d

(w′−βu)
V ′a1

(x)− V ′a2
(x)dx .

Therefore, we must have V ′a1
(w)− V ′a2

(w) < 0 for w ∈ (βu, w̄m), which implies that Va1(w)− Va2(w) <
0 for w ∈ (0, w̄m). This implies that lim

w↑w̄m
Va(w) is strictly increasing in a for a > 0. Because

lim
a↓0

lim
w↑w̄m

Va(w) ≤ vu and lim
a↑∞

lim
w↑w̄m

Va(w) > lim
a↑∞

Va(βu) =∞, there must exist a unique ā > 0 such that

lim
w↑w̄m

Vā(w) = V̄u. Further, with equation (A.118), we are able to verify that lim
w↑w̄m

V ′u(w) = 0. Hence, the

solution V1 is concave and increasing on [0, w̄m] and strictly concave on (βu, w̄m).

A.2.4.3 Proof of Proposition A.3

Following Itô’s Formula for jump processes (see, for example, Theorem 17.5 in [Bas11]) and (DWm),
we obtain

e−rτJ(τ) =e−r0J(0) +

∫ τ

0
[e−rtdJ(t)− re−rtJ(t)dt] = J(0) +

∫ τ

0
e−rt(−R1θt=udt+ cm(θt)dt+ dLt)

(A.120)

+

∫ τ

0
e−rtAt.

Following definition (A.3) and equation (A.120), we obtain, under contract Γ∗r ,

e−rτJ(τ) = J(0) +

∫ τ

0
e−rt(−R1θt=udt+ cm(θt)dt+ dLt) +

∫ τ

0
e−rtA∗t , (A.121)

where

A∗t =dJ(t)− rJ(t)dt+R1θt=udt− dLt − cm(θt)dt

=
{
J ′u(Wt−)(rWt− + µuβu)1Wt−<w̄m − rJu(Wt−)− cu

}
dt1θt=u − rJd(Wt−)dt1θt=d

+

[
Ju

(
µ
d

+ r

µ
d

Wt−

)
− Jd(Wt−)

]
1Wt−≥wmdNt1θt=d

+
[
Jd(Wt− − βu)− Ju(Wt−)

]
1Wt−−βu≥wmdNt1θt=u +R1θt=udt− dL∗t

+ [(Jd(0)− Ju(Wt−))(1−Xt) + (Jd(wm)− Ju(Wt−))Xt]1Wt−−βu<wm
=
{
R− cu + J ′u(Wt−)(rWt− + µuβu)1Wt−<w̄m − rJu(Wt−) + µu(Jd(Wt− − βu)− Ju(Wt−))

−
[(

2µ
d

+ r
)
βu

]
1Wt−=w̄m

}
1θt=udt

+

{
−rJd(Wt−)dt+ µ

d

[
Ju

(
µ
d

+ r

µ
d

Wt−

)
− Jd(Wt−)

]}
1Wt−≥wm1θt=ddt+ B∗t

=B∗t ,
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in which the last equality follows from (A.113) and (A.114), and

B∗t =

[
Ju

(
µ
d

+ r

µ
d

Wt−

)
− Jd(Wt−)

]
1Wt−≥wm(dNt − µddt)1θt=d

+
{[

(Jd(0)− Ju(Wt−))(XtdNt − µuq̂t(Wt− − βu)dt)

+ (Jd(wm)− Ju(Wt−))((1−Xt)dNt − µu(1− q̂(Wt− − βu))dt)
]
1Wt−−βu<wm

+
[
Jd(Wt− − βu)− Ju(Wt−)

]
(dNt − µudt)1Wt−−βu≥wm

}
1θt=u.

Taking the expectation on both sides of (A.121), we obtain

Jd(w) = J(0) = EΓ(w),ν∗
[
e−rτJ(τ) +

∫ τ

0
e−rt(R1θt=udt− cm(θt)dt− dL∗t )

]
,

where we apply the fact that
∫ τ

0 e
−rtB∗t dt is a martingale.

A.2.4.4 Proof of Theorem A.1

First, we provide a parallel result of Lemma A.11,

Lemma A.13 For any contract Γm, there exists an FN -predictable process Ht such that for t ∈ [0, τ ],

dWt = {rWt− + νtcm(θt)− [(1− qt)Ht − qtWt−]µ(θt, νt)− `t}dt+ [(1−Xt)Ht −XtWt−]dNt − It,
(A.122)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, the necessary and
sufficient condition for the effort process ν to maximize agent’s utility given Γm is that

νt = 1 if and only if − qtWt− + (1− qt)Ht ≤ −βu, `t ≥ cu, for θt = u (A.123)

for all t ∈ [0, τ ].

Correspondingly, a general optimality condition (parallel to Lemma A.12) is presented in the following,

Lemma A.14 Suppose Jd(w) : [0,∞) → R and Ju(w) : [0,∞) → R are differentiable, concave, upper-
bounded functions, with J ′d(w) ≥ −1, J ′u(w) ≥ −1, and Jd(0) = vd. Consider any contract Γ, which yields
the agent’s expected utility u(Γ, ν) = W0, followed by the continuation utility process {Wt}t≥0 according to
(A.122). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u + J ′θt(Wt−)(rWt− − [−qtWt− + (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+ µ(θt, νt)qt[Jθ̂t(0)− Jθt(Wt−)] + µ(θt, νt)(1− qt)[Jθ̂t(Wt− +Ht)− Jθt(Wt−)]− νtcm(θt) .

(A.124)

where θt ∈ {u, d} and θ̂t = 1θt=d · u + 1θt=u · d. Also, νt = 0 if constraints (A.123) are not satisfied at
time t and νt = 1 if constraints (A.123) are satisfied at time t. If the process {Φt}t≥0 is non-positive almost
surely, then we have Jθ(u(Γ, ν, θ)) ≥ U(Γ, ν, θ).

From Proposition A.2, we know that Jmd (w) and Jmu (w) are concave and Jm
′

d (w) ≥ −1, Jm
′

u (w) ≥ −1.
Then to prove Theorem A.1, we only need to show that Φt ≤ 0 holds almost surely. First, if θt = d, then
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νt = 0. Following (A.124), we have

Φt :=J ′d(Wt−)(rWt− + [qtWt− − (1− qt)Ht])− rJd(Wt−)

+ µ
d
qt[Ju(0)− Jd(Wt−)] + µ

d
(1− qt)[Ju(Wt− +Ht)− Jd(Wt−)] . (A.125)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)],

s.t. 0 ≤ qt ≤ 1(yd, zd),Wt− +Ht ≥ βu,−Ht ≤Wt−.

In the following, we verify that its optimal solution is

q∗t = 0, H∗t =
rWt−
µ
d

if Wt− ≥ wm, and (A.126)

q∗t = 1−
Wt−(µ

d
+ r)

βuµd
, H∗t = βu −Wt− if Wt− < wm. (A.127)

by the KKT conditions.

• If Wt− ≥
µ
d
βu

µ
d

+ r
, define the following dual variable for the binding constraint

yd = Wt−J
′
d(Wt−) + Ju(0) +H∗t J

′
d(Wt−)− Ju(Wt− +H∗t )

=
µ
d

+ r

µ
d

Wt−

J ′u
(
µ
d

+ r

µ
d

Wt−

)
−
Ju

(
µ
d

+r

µ
d

Wt−

)
− Ju(0)

µ
d

+r

µ
d

Wt−

 ≥ 0,

where the inequality follows from concavity. One can verify that

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] = −yd,

(A.128)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = 0, (A.129)

where (A.129) follows from J ′d(Wt−)− J ′u

(
µ
d

+ r

µ
d

Wt−

)
= 0.

• If Wt− <
µ
d
βu

µ
d

+ r
, one can verify that

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [H∗t J

′
d(Wt−) + Ju(Wt− −H∗t )− Jd(Wt−)] = 0,

(A.130)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− −H∗t )) = 0, (A.131)

where (A.130) follows from

Ju(0)− Ju(βu) + βuJ
′
d(Wt−) = βu

[
J ′d(Wt−)− Ju(βu)− Ju(0)

βu

]
= 0,
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and (A.131) follows from J ′d(Wt−)− J ′u(βu) = 0.

Therefore, (A.126) and (A.127) implies that in (A.125),

Φt ≤− rJd(Wt−) +

{
J ′d(Wt−)rWt− + µ

d

[
−rWt−

µ
d

J ′d(Wt−) + Ju

(
r + µ

d

µ
d

Wt−

)
− Jd(Wt−)

]}
· 1Wt−≥wm +

{
J ′d(Wt−)rWt− + µ

d
q∗t [Wt−J

′
d(Wt−) + Ju(0)− Jd(Wt−)]

+ µ
d
(1− q∗t )[(Wt− − βu)J ′d(Wt−) + Ju(βu)− Jd(Wt−)]

}
1Wt−<wm = 0.

where the last equality follows from equation (A.113),(A.114) and J ′u(Wt−) = −1 for Wt− ≥ w̄m and
J ′d(Wt−) = −1 for Wt− ≥ w̄m − βu.

If θt = u and νt = 1, then following (A.124), we have

Φt :=R+ J ′u(Wt−)(rWt− + [qtWt− − (1− qt)Ht]µu)− rJu(Wt−)

+ µuqt[Jd(0)− Ju(Wt−)] + µu(1− qt)[Jd(Wt− +Ht)− Ju(Wt−)] . (A.132)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)],

s.t. 0 ≤ qt ≤ 1, −qtWt− + (1− qt)Ht ≤ −βu.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = −βu (A.133)

by the KKT conditions. Define the following dual variables for the binding constraints

xu = −(J ′u(Wt−)− J ′d(Wt− − βu))

= −

(
J ′d

(
µ
d
Wt−

µ
d

+ r

)
− J ′d(Wt− − βu)

)
≥ 0,

where the inequality follows from the concavity of Jd, and

yu = (Wt− − βu)(J ′u(Wt−)− J ′d(Wt− − βu))−Wt−J
′
u(Wt−)− Jd(0) + βuJ

′
u(Wt−) + Jd(Wt− − βu)

= (Wt− − βu)(
Jd(Wt− − βu)− Jd(0)

Wt− − βu
− J ′d(Wt− − βu)) ≥ 0.

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) + Jd(Wt− +H∗t )− Ju(Wt−)] (A.134)

= −yu − (H∗t +Wt−)xu,

(1− q∗t )(J ′u(Wt−)− J ′d(Wt− +H∗t )) = (q∗t − 1)xu. (A.135)

Therefore, (A.133) implies that in (A.132),

Φt ≤ R+ J ′u(Wt−)rWt− + µu[βuJ
′
u(Wt−) + Jd(Wt− − βu)− Ju(Wt−)]− rJu(Wt−)− cu = 0.
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where the equality follows from (A.94).
If θt = u and νt = 0, then following (A.124), we have

Φt :=R+ J ′u(Wt−)(rWt− + µ̄u[qtWt− − (1− qt)Ht])− rJu(Wt−)

+ µ̄uqt[Jd(0)− Ju(Wt−)] + µ̄u(1− qt)[Jd(Wt− +Ht)− Ju(Wt−)] . (A.136)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)],

s.t. 0 ≤ qt ≤ 1(y, z), −Ht ≤Wt−(x).

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = − rWt−
µ
d

+ r
(A.137)

following the KKT conditions. Define the following dual variable for the binding constraint

y = −H∗t J ′u(Wt−) + Jd(Wt− +H∗t )−Wt−J
′
u(Wt−)− Jd(0)

= Jd(
µ
d
Wt−

µ
d

+ r
)− Jd(0)−

µ
d
Wt−

µ
d

+ r
J ′d(

µ
d
Wt−

µ
d

+ r
) ≥ 0,

where the inequality follows from the concavity of Jd. One can verify

[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) + Jd(Wt− +H∗t )− Ju(Wt−)] = −y, (A.138)

(1− q∗t )(J ′u(Wt−)− J ′d(Wt− +H∗t )) = 0, (A.139)

Therefore, (A.137) implies that in (A.136),

Φt ≤R+ J ′u(Wt−)

(
rWt− +

rWt−
µ
d

+ r

)
− rJu(Wt−) + µ̄u

[
Jd(

µ
d
Wt−

µ
d

+ r
)− Ju(Wt−)

]

= R+

(
r +

rµ̄u
µ
d

+ r

)
Wt−J

′
u(Wt−)− (r + µ̄u −

µ̄uµd
µ
d

+ r
)Ju(Wt−)

≤ R+

(
r +

rµ̄u
µ
d

+ r

)(
Wt−

Ju(Wt−)− Ju(0)

Wt−
− Ju(Wt−)

)

= R−

(
r +

rµ̄u
µ
d

+ r

)
vu = 0,

where the second inequality follows from the concavity of Ju and the last equality follows from (2.4).

A.2.4.5 Proof of Proposition A.4

It suffices to show that if (A.97) is not satisfied, then the following principal’s value functions

Ju(w) = vu − w, and Jd(w) = vd − w.
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satisfies the optimality condition Φt ≤ 0, where Φt is defined in (A.124). If θt = d, then νt = 0 and

Φt = −rWt− − µd[qtWt− − (1− qt)Ht]− (r + µ
d
)(vd −Wt−) + µ

d
qtvu

+ µ
d
(1− qt)(vu −Wt− −Ht) = −(r + µ

d
)vd + µ

d
vu = 0,

and when θt = u and νt = 1, then

Φt = R− rWt− − cu − µu[qtWt− − (1− qt)Ht]− r(vu −Wt−) + µuqtvd

+ µu(1− qt)(vd −Wt− −Ht)− µu(vu −Wt−)

= R− cu − rvu + µuvd − µuvu = R− cu − (r + µu)
(r + µ

d
)R

r(r + µ
d

+ µ̄u)
+ µu

µ
d
R

r(r + µ
d

+ µ̄u)

=
∆µuR

r + µ
d

+ µ̄u
− cu =

∆µu
r + µ

d
+ µ̄u

(R− (r + µ
d

+ µ̄u)βu) < 0,

where the inequalities follow from the fact that (A.97) is not satisfied. If θt = u and νt = 0, then

Φt = R− rWt− − µ̄u[qtWt− − (1− qt)Ht]− (r + µ̄u)(vu −Wt−) + µ̄uqtvd

+ µ̄u(1− qt)(vd −Wt− −Ht) = R− (r + µ̄u)vu + µ̄uvd = 0.

A.2.5 Proofs in Section A.2.3

A.2.5.1 Proof of Proposition A.5

First, based on (A.100) and (A.101), we write the differential equations for V r
d and V r

u as the following,

(µd + r)Vd(w) = −cd − r(w̄d − w)V ′d(w) + µdVu

(
min

{
w + βd,

µ̄uw̄d

r + µ̄u

})
, for w ∈ [0, w̄d] ,

(A.140)

(µ̄u + r)Vu(w) = R+ µ̄uVd

(
r + µ̄u
µ̄u

w

)
, for w ∈

[
0,
µ̄uw̄d

r + µ̄u

]
. (A.141)

Combining equations (A.140) and (A.141) yields

r(w̄d − w)V ′d(w) + (r + µd)Vd(w) = −cd + µd

R+ µ̄uVd

(
min

{
µ̄u+r
µ̄u

(w + βd), w̄d

})
r + µ̄u

 . (A.142)

Rearrange equation (A.142) as

(r + µd)Vd(w)− rV ′d(w)(w − w̄d) + cd −
µdR

r + µ̄u
=

µdµ̄u
r + µ̄u

Vd(w̄d), for w ∈
[
µ̄uw̄d

r + µ̄u
− βd,∞

)
,

(A.143)

(r + µd)Vd(w)− rV ′d(w)(w − w̄d) + cd −
µdR

r + µ̄u
=

µdµ̄u
r + µ̄u

Vd

(
µ̄u + r

µ̄u
(w + βd)

)
, for w ∈

(
0,
µ̄uw̄d

r + µ̄u
− βd

)
. (A.144)

We then show the result according to the following steps.
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1. Demonstrate the solution of (A.143) as a parametric function Vb, with parameter b.

2. Show that the solution of (A.144) (which we call Vb) is unique and twice continuously differentiable
for any b.

3. Show that Vb is convex and decreasing for b > 0 and concave and increasing for b < 0.

4. Show that Vb(0) is increasing in b for b < 0, which implies that the boundary condition Vb(0) = vd
uniquely determines b, and therefore the solution of the original differential equation.

Step 1. The solution to the linear ordinary differential equation (A.143) on
[
µ̄uw̄d

r + µ̄u
, w̄d

)
must have the

following form, for any scalar b,

Vb(w) =
µdR− (r + µ̄u)cd
r (r + µ̄u + µd)

+ b(w̄d − w)
r+µd
r , for w ∈

[
µ̄uw̄d

r + µ̄u
− βd, w̄d

)
. (A.145)

Also define Vb(w) =
µdR− (r + µ̄u)cd
r (r + µ̄u + µd)

forw ∈ [w̄d,∞), which satisfies (A.143), so that Vb is continuously

differentiable on
[
µ̄uw̄d

r + µ̄u
− βd,∞

)
.

Step 2. Using (A.145) as the boundary condition, we show that differential equation (A.144) has a

unique solution, (which we call Vb(w)) on
(

0,
µ̄uw̄d

r + µ̄u
− βd

)
, which is continuously differentiable. In

fact, differential equation (A.144) is equivalent to a sequence of initial value problems. This sequence of
initial value problems satisfy the Cauchy-Lipschitz Theorem and, therefore, bear unique solutions. Also,

computing V ′b

(
µ̄uw̄d

r + µ̄u
− βd

)
from (A.145), and comparing it with (A.144), we see that Vb is continuously

differentiable at
µ̄uw̄d

r + µ̄u
− βd, and therefore on [0,∞).

Furthermore, deriving expressions for V ′′b (w) following (A.144) and (A.145), respectively, confirms that
Vb is twice continuously differentiable on [0,∞). In particular, (A.144) implies that

V ′′b (w) =
µd

[
V ′b

(
µ̄u+r
µ̄u

(w + βd)
)
− V ′b (w)

]
r(w̄d − w)

. (A.146)

Step 3. Next, we argue that in order to satisfy the boundary condition Vb(0) = vd, we must have b < 0.
Equivalently, we show that if b > 0, Vb must be convex and decreasing, which violates Vb(0) = vd < Vb(w̄d).

In fact, if b > 0, (A.145) implies that Vb is decreasing and convex on
[
µ̄uw̄d

r + µ̄u
− βd, w̄d

)
, and therefore

V ′′b (w) > 0 in this interval. Then, we show that V ′′b (w) > 0 for w ∈ [0, w̄d). We prove this by contradiction.
If there exists w̌ ∈ [0, w̄−βd), such that V ′′b (w̌) ≤ 0, then Vb being twice continuously differentiable implies

that there must exist w̃ = max

{
w ∈

[
0,
µ̄uw̄d

r + µ̄u
− βd

)∣∣∣∣V ′′b (w) = 0

}
such that V ′′b (w) > 0 for all w > w̃.

Equation (A.146) implies that V ′b

(
µ̄u + r

µ̄u
(w̃ + βd)

)
= V ′b (w̃). However, we this contradicts with

V ′b

(
µ̄u + r

µ̄u
(w̃ + βd)

)
= V ′b (w) +

∫ µ̄u+r
µ̄u

(w̃+βd)

w̃
V ′′b (x)dx > V ′b (w̃) .
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Therefore, we must have V ′′b (w) > 0 and Vb is decreasing on [0, w̄d) if b > 0. If b = 0, Vb(w) is a constant
following (A.144) and (A.145), which also contradicts the boundary condition. Therefore we must have
b < 0.

The same logic implies that for b < 0, Vb must best be increasing and strictly concave on [0, w̄d).
Step 4. Finally, we show that Vb(0) is strictly increasing in b for b < 0, which allows us to uniquely

determine b that satisfies Vb(0) = vd. For any b1 < b2 < 0, it can be verified that Vb1(w) < Vb2(w),

V ′b1(w) > V ′b2(w), for w ∈
[
µ̄uw̄d

r + µ̄u
− βd, w̄d

)
from (A.145). We claim that V ′b1 > V ′b2 for w ∈ [0, w̄].

Otherwise, because Vb1 − Vb2 is continuously differentiable, there must exist

w′ = max

{
w

∣∣∣∣V ′b1(w) = V ′b2(w), w ∈
[
0,
µ̄uw̄d

r + µ̄u
− βd

)}
,

such that V ′b1(w) > V ′b2(w) for w > w′. Equation (A.144) implies that

µdµ̄u
r + µ̄u

[
Vb1

(
µ̄u + r

µ̄u
(w′ + βd)

)
− Vb2

(
µ̄u + r

µ̄u
(w′ + βd)

)]
= (r + µd)(Vb1(w′)− Vb2(w′)).

However, this contradicts

0 > Vb1

(
µ̄u + r

µ̄u
(w′ + βd)

)
− Vb2

(
µ̄u + r

µ̄u
(w′ + βd)

)
= Vb1(w′)− Vb2(w′) +

∫ µ̄u+r
µ̄u

(w′+βd)−w′

0
V ′b1(w′ + x)− V ′b2(w′ + x)dx .

Therefore, we must have V ′b1(w)−V ′b2(w) > 0 forw ∈ [0, w̄d), which further implies that Vb1(w)−Vb2(w) <
0 for w ∈ [0, w̄d). As a result, Vb(0) is strictly increasing in b for b < 0. Because lim

b↑0
Vb(0) ≤ vd and

lim
b↓−∞

Vb(0) > Vb(w̄1 − βd) = −∞ , there must exist a unique b∗ < 0 such that Vb∗(0) = vd. Hence, the

solution Vb∗ is strictly concave and increasing in
[
0,
µ̄uw̄d

r + µ̄u

]
.

A.2.5.2 Proof of Proposition A.6

Following definition (A.2) and equation (A.120), we obtain, under contract Γ∗r ,

e−rτJ(τ) = J(0) +

∫ τ

0
e−rt(−R1θt=udt+ cr(θt)dt+ dLt) +

∫ τ

0
e−rtA∗t , (A.147)

156



where

A∗t =dJ(t)− rJ(t)dt+R1θt=udt− cr(θt)dt− dLt
=− rJu(Wt−)dt1θt=u +

{
J ′d(Wt−)r(Wt− − w̄d)dt− rJ0(Wt−)dt

}
1θt=d +R1θt=udt− dL∗t

+

[
Ju

(
min

{
µ̄uw̄d

µ̄u + r
,Wt− + βd

})
− Jd(Wt−)

]
dNt1θt=u

+

[
Jd

(
µ̄u + r

µ̄u

)
− Ju(Wt−)

]
dNt1θt=u

=

{
R− rJu(Wt) + µ̄u

(
Jd

(
µ̄u + r

µ̄u
Wt−

)
− Ju(Wt−)

)}
1θt=udt

+

{
J ′d(Wt−)r(Wt− − w̄d)− rJd(Wt−)dt+ µd

(
Ju

(
min

{
Wt− + βd,

µ̄uw̄d

µ̄u + r

})
− Jd(Wt−)

)
−µd

(
Wt− + βd −

µ̄uw̄d

µ̄u + r

)+

− cd

}
1θt=ddt+ B∗t

=B∗t ,

in which the last equality follows from (A.100), (A.101) and

B∗t =

[
Ju

(
Wt− + βd −

(
Wt− + βd −

µ̄uw̄d

µ̄u + r

)+
)
− Jd(Wt−)−

(
Wt− + βd −

µ̄uw̄d

µ̄u + r

)+
]

·(dNt − µddt)1θt=d +

[
Jd

(
µ̄u + r

µ̄u
Wt−

)
− Ju(Wt−)

]
(dNt − µ̄udt)1θt=u.

Taking the expectation on both sides of (A.147), we immediately have

Jd(w) = J(0) = EΓ(w),ν∗
[
e−rτJ(τ) +

∫ τ

0
e−rt(R1θt=udt− cr(θt)dt− dL∗t )

]
,

where we apply the fact that
∫ τ

0
e−rtB∗t dt is a martingale.

A.2.5.3 Proof of Theorem A.2

Again, we provide a parallel result of Lemma A.11,

Lemma A.15 For any contract Γr, there exists an FN -predictable process Ht such that for t ∈ [0, τ ],

dWt = {rWt− + νtcr(θt)− [(1− qt)Ht − qtWt−]µ(θt, νt)− `t}dt+ [(1−Xt)Ht −XtWt−]dNt − It,
(A.148)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, the necessary and
sufficient condition for the effort process ν to maximize agent’s utility given Γm is that

νt = 1 if and only if − qtWt− + (1− qt)Ht ≥ βd, `t ≥ cd, for θt = d (A.149)

for all t ∈ [0, τ ].

Correspondingly, a more general optimality condition (parallel to Lemma A.12) is presented in the following,
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Lemma A.16 Suppose Jd(w) : [0,∞) → R and Ju(w) : [0,∞) → R are differentiable, concave, upper-
bounded functions, with J ′d(w) ≥ −1, J ′u(w) ≥ −1, and Jd(0) = vd. Consider any contract Γ, which yields
the agent’s expected utility u(Γ, ν) = W0, followed by the continuation utility process {Wt}t≥0 according to
(A.148). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u + J ′θt(Wt−)(rWt− − [−qtWt− + (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+ µ(θt, νt)qt[Jθ̂t(0)− Jθt(Wt−)] + µ(θt, νt)(1− qt)[Jθ̂t(Wt− +Ht)− Jθt(Wt−)]− νtcr(θt) .
(A.150)

where θt ∈ {u, d} and θ̂t = 1θt=d · u + 1θt=u · d. Also, νt = 0 if constraints (A.149) are not satisfied at
time t and νt = 1 if constraints (A.149) are satisfied at time t. If the process {Φt}t≥0 is non-positive almost
surely, then we have Jθ(u(Γ, ν, θ)) ≥ U(Γ, ν, θ).

From Proposition A.5, we know that Jrd(w) and Jru(w) are concave and Jr
′

d (w) ≥ −1, Jr
′

u (w) ≥ −1. In
order to show Theorem A.2, we only need to show that Φt ≤ 0 holds almost surely. First, if θt = u, then
νt = 0 and following (A.150), we have

Φt :=R+ J ′u(Wt−)(rWt− + µ̄u[qtWt− − (1− qt)Ht])− rJu(Wt−)

+ µ̄uqt[Jd(0)− Ju(Wt−)] + µ̄u(1− qt)[Jd(Wt− +Ht)− Ju(Wt)] . (A.151)

We need to consider the following optimization problem,

max
qt,Ht

qt[WtJ
′
u(Wt−) + Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) + Jd(Wt− +Ht)− Ju(Wt−)],

s.t. 0 ≤ qt ≤ 1,−Ht ≤Wt−.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =
rWt−
µ̄u

, (A.152)

using the KKT conditions. Define the following dual variable for the binding constraint

y = −H∗t J ′u(Wt−) + Jd(Wt− +H∗t )−Wt−J
′
u(Wt−)− Jd(0)

= Jd

(
(r + µ̄u)Wt−

µ̄u

)
− Jd(0)− (r + µ̄u)Wt−

µ̄u
J ′d

(
(r + µ̄u)Wt−

µ̄u

)
≥ 0,

where the inequality follows from the concavity of Jd. One can verify

[Wt−J
′
u(Wt−) + Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) + Jd(Wt− +H∗t )− Ju(Wt−)] = −y, (A.153)

(1− q∗t )(J ′u(Wt−)− J ′d(Wt− +H∗t )) = 0. (A.154)

Therefore, (A.152) implies that in (A.151),

Φt :=R− rJu(Wt) + µ̄u

[
Jd

(
Wt +

rWt

µ̄u

)
− Ju(Wt)

]
= 0 .

where the equality follows from (A.101).
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If θt = d and νt = 1, then following (A.150), we have

Φt :=J ′d(Wt−)(rWt− + µd[qtWt− − (1− qt)Ht])− rJd(Wt−)

+ µdqt[Ju(0)− Jd(Wt−)] + µd(1− qt)[Ju(Wt− +Ht)− Jd(Wt−)] . (A.155)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)],

s.t. 0 ≤ qt ≤ 1,−qtWt− + (1− qt)Ht ≥ βd.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = βd. (A.156)

using the KKT conditions. Define the following dual variables for the binding constraints,

xd = J ′d(Wt−)− J ′u(Wt− + βd) = J ′u

(
µ̄uWt−
r + µ̄u

)
− J ′u(Wt− + βd) ≥ 0.

where the inequality follows from the concavity of Ju, and

yd = (Wt− + βd)(J ′d(Wt−)− J ′u(Wt− + βd))−Wt−J
′
d(Wt−)− Ju(0)− βdJ ′u(Wt−) + Ju(Wt− + βd)

= (Wt− + βd)

(
Ju(Wt− + βd)− Ju(0)

Wt− − βd
− J ′u(Wt− + βd)

)
≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−HtJ

′
d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] (A.157)

= −yd − (H∗t +Wt−)xd,

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = (1− q∗t )xd. (A.158)

Therefore, (A.156) implies that in (A.151),

Φt ≤ J ′d(Wt−)rWt− + µd[−βdJ ′d(Wt−) + Ju(Wt− + βd)− Jd(Wt−)]− rJd(Wt−)− cd = 0,

where the equality follows from (A.100).
If θt = d and νt = 0, then following (A.151), we have

Φt :=J ′d(Wt−)(rWt− + µ
d
[qtWt− − (1− qt)Ht])− rJd(Wt−)

+ µ
d
qt[Ju(0)− Jd(Wt−)] + µ

d
(1− qt)[Ju(Wt− +Ht)− Jd(Wt−)] . (A.159)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) + Ju(Wt− +Ht)− Jd(Wt−)],

s.t. 0 ≤ qt ≤ 1,−Ht ≤Wt−.
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In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = − rWt−
µ̄u + r

. (A.160)

using the KKT conditions. Define the following dual variable for the binding constraint

yd = Wt−J
′
d(Wt−) + Ju(0) +H∗t J

′
d(Wt−)− Ju(Wt− +H∗t )

=
µ̄uWt−
µ̄u + r

J ′u( µ̄uWt−
µ̄u + r

)
−
Ju

(
µ̄uWt−
µ̄u+r

)
− Ju(0)

µ̄uWt−
µ̄u+r

 ≥ 0 .

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) + Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) + Ju(Wt− +H∗t )− Jd(Wt−)] = −yd, (A.161)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt− +H∗t )) = 0, (A.162)

where (A.162) follows from J ′d(Wt−)− J ′u
(
µ̄uWt−
µ̄u + r

)
= 0. Therefore, (A.160) implies that in (A.159),

Φt :=J ′d(Wt−)

(
rWt− +

rµ
d
Wt−

µ̄u + r

)
− rJd(Wt−) + µ

d

[
Ju

(
µ̄uWt−
µ̄u + r

)
− Jd(Wt−)

]
=J ′d(Wt−)

(
rWt− +

rµ
d
Wt−

µ̄u + r

)
− rJd(Wt−) + µ

d

[
R

µ̄u + r
− r

r + µ̄u
Jd(Wt−)

]
=

µ
d
R

µ̄u + r
+
r(µ

d
+ µ̄u + r)

µ̄u + r
(Wt−J

′
d(Wt−)− Jd(Wt−))

≤
µ
d
R

µ̄u + r
+
r(µ

d
+ µ̄u + r)

µ̄u + r

(
Wt−

Jd(Wt−)− vd
Wt−

− Jd(Wt−)

)
=0 .

where the inequality follows from the concavity of Jd(w) and the last equality follows from equation (2.4).

A.2.5.4 Proof of Proposition A.7

It suffices to show that if (A.97) is not satisfied, then the following principal’s value functions,

Ju(w) = vu − w, and Jd(w) = vd − w,

satisfy the optimality condition Φt ≤ 0, where Φt is defined by (A.150). If θt = u, then νt = 0 and

Φt = R− rWt− − µ̄u[qtWt− − (1− qt)Ht]− (r + µ̄u)(vu −Wt−) + µ̄uqtvd

+ µ̄u(1− qt)(vd −Wt− −Ht) = R− (r + µ̄u)vu + µ̄uvd = 0.

When θt = d and νt = 0, then

Φt = −rWt− − µd[qtWt− + (1− qt)Ht]− (r + µ
d
)(vd −Wt−) + µ

d
qtvu

+ µ
d
(1− qt)(vu −Wt− −Ht) = −

(
r + µ

d

)
vd + µ

d
vu = 0.
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When θt = d and νt = 1, then

Φt = −rWt− − cd − µd[qtWt− − (1− qt)Ht]− (r + µd)(vd −Wt−) + µdqtvu

+ µd(1− qt)(vu −Wt− −Ht)

= −cd − (r + µd)vd + µdvu = −cd − (r + µd)
µ
d
R

r(r + µ
d

+ µ̄u)
+ µd

(r + µ
d
)R

r(r + µ
d

+ µ̄u)

=
∆µdR

r + µ
d

+ µ̄u
− cd =

∆µd
r + µ

d
+ µ̄u

(R− (r + µ
d

+ µ̄u)βd) < 0,

where the inequalities follow from the fact that (A.104) is not satisfied.
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APPENDIX B

Appendix to Chapter 3

B.1 Proofs of Statements

B.1.1 Summary Of Notations

Summary of Model Primitives

• Ru and Ro: revenue per each arrival from the unobservable and observable channels, respectively.

• µ: combined arrival rate of customers if the agent works.

• c: cost of effort per unit of time.

• ν and ν∗: generic and full-effort process.

• r: principal and agent’s discount rates.

• m:cost of monitoring per unit of time.

• U :customer’s reservation utility.

• a, b: random shock εti on customer’s utility in the unobservable channel is distributed uniformly on

[−a, b].

• p:fraction of customers from the unobservable channel before Section 3.4.

• pu(.) and po(.): probability functions that customer goes to the unobservable and observable channels,

respectively.

Contracts and Utilities

• I and `: nstantaneous and flow payments, respectively.

• L: payment process dLt = It + `tdt.

• τ : stopping time.
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• M : monitoring schedule.

• D: discount to the observable channel.

• γ: generic contract, γ = (L, τ) in Section 3.2, γ = (L, τ,M) in Section 3.3, γ = (L, τ,D) in Section

3.4.

• γ∗1 , γ∗2 , γ∗3 : optimal contracts in Section 3.2.

• γ∗m andγ2∗
m : optimal contracts in Section 3.3.2.

• Γ∗d: optimal contracts in Section 3.4.

• u and U : agent’s and principal’s utilities, respectively.

• Um: principal’s utility when monitoring is allowed.

• Wt: agent’s promised utility.

Summary of Derived Parameters of the Model

• β: adjusted cost, defined in (3.4).

• V̄ : defined in and (3.3).

• w̄1 and w̄2: defined in (3.6) and (3.8), respectively.

• w̄d and V̄d: defined in (3.23) and (3.22), respectively.

• w∗L: the switching point defined in Section (3.3.2.1).

Value functions

• F : generic principal’s value function.

• V : generic system’s value function.

• F1, F2, F3: optimal principal’s value function in Section 3.2.

• Fm1, Fm2, Fm3: optimal principal’s value function in Section 3.3.1.
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B.1.2 Proofs in Section 3.2

B.1.2.1 Proof of Lemma 3.1

For N̂u = Nu, we define the agent’s expected lifetime utility evaluated at time t conditional on past

information by:

ut(γ, ν, N̂
u) := E

[∫ τ

0
e−rsdLs +

∫ τ

0
e−rs · c(1− I[νs = µ])ds

∣∣∣∣Ft]
=

∫ t

0
e−rs(dLs + c(1− I[νs = µ])ds) + e−rtWt

(B.1)

which by construction is a martingale and, by the martingale representation theorem, there is a pair of

processesHu andHo, such that dut = e−rt(Hu
t (dNu

t −µpdt)+Ho
t (dNo

t −µ(1−p)dt)), where dNu
t −µpdt

and dNo
t − µ(1 − p)dt are also martingales. Differentiating (B.1) with respect to t, we have dut =

e−rt(Hu
t (dNu

t −µpdt)+Ho
t (dNo

t −µ(1−p)dt)) = e−rt(dLt+c(1−I[νt = µ])dt)−re−rtWtdt+e
−rtdWt,

and, thus, we have (PK).

B.1.2.2 Proof of Lemma 3.2

The proof of this lemma is adapted from the proof of Lemma 3 in [DS06a]. If the agent diverts

Ru(dNu
t − dN̂u

t ) at time t when arrival from the unobservable channel comes, he gains immediate income

Ru but loses Hu
t in his future expected payoff. Therefore, the payoff from reporting strategy N̂u gives the

agent the payoff of

W0− + E
[
e−rtRu(dNu

t − dN̂u
t )−

∫ τ

0
e−rtHu

t (dNu
t − dN̂u

t )

]
, (B.2)

where W0− denotes the agent’s payoff under truth-telling. We see that if Hu
t ≥ Ru for all t, then (B.2)

is maximized when the agent chooses dNu
t = dN̂u

t because the agent cannot over-report cash flows. If

Hu
t < Ru on a set of positive measure, then the agent is better off under-reporting the sales (and diverting

cash) on this set instead of always telling the truth. Therefore, truth-telling is incentive compatible if and only

if the constraint (IC-truthful) holds.

B.1.2.3 Proof of Lemma 3.3

Similar to Lemma 3.2, if the agent does not exert effort at time t, he saves the effort cost, c, but loses

µ(pHu
t + (1− p)Ho

t ) on average because the agent loses the opportunity to get an arrival. Hence, the agent

would exert effort if µ(pHu
t + (1 − p)Ho

t ) ≥ c, which is equivalent to pHu
t + (1 − p)Ho

t ≥ β = c/µ. If

pHu
t + (1− p)Ho

t < β on a set of positive measure, then the agent is better off shirking on this set instead

of always exerting effort. Therefore, exerting effort is incentive compatible if and only if the constraint

(IC-effort) holds.
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B.1.2.4 Proof of Lemma 3.4

First, if µpRu ≥ c (pRu ≥ β), the principal’s value function follows the differential equation (3.7),

which implies that the system’s value function, V (w) = F (w) + w, follows

rV (w) = rV̄ + µp[V (w +Ru)− V (w)] + r(w − w̄1)V ′(w). (B.3)

We show the result according to the following steps. 1.Demonstrate the solution of (B.3) over [max{0, w̄1 −
Ru}, w̄1] as a parametric function Vb1 , with parameter b1 ,and show that the solution of (B.3) over [0, w̄1]

is unique and twice continuously differentiable for any b1, also called Vb1 . 2. Show that Vb1 is convex and

decreasing for b1 > 0 and concave (in w) and increasing for b1 < 0. 3. Show that Vb1(0) is increasing in b1
for b1 < 0, which implies that the boundary condition Vb1(0) = 0 uniquely determines b1, and, therefore the

solution of the original differential equation.

Step 1. For w ∈ [max{0, w̄1 − Ru}, w̄1], the differential equation becomes an ordinary differential

equation (ODE) and the solution is

Vb1(w) = V̄ + b1(w̄1 − w)
r+µp
r . (B.4)

Using (B.4) as the boundary condition, we show that the differential equation (B.3) has a unique solution

(also called Vb1(w), on [0,max{0, w̄1 −Ru}), which is continuously differentiable. In fact, the differential

equation (B.3) on [0,max{0, w̄1 − Ru}) is equivalent to a sequence of initial value problems over the

intervals [w̄1 − (k + 1)Ru, w̄1 − kRu), k = 1, 2, .... This sequence of initial value problems satisfies the

Cauchy-Lipschitz Theorem and, therefore, bears unique solutions. Further, computing V ′b1(w̄1 −Ru) from

(B.4), and comparing it with (B.3), we see that Vb1 is continuously differentiable at w̄−Ru, and therefore on

[0, w̄1).

Next, deriving the expressions for V ′′b1(w) by following (B.4) and (B.3), confirms that Vb is twice

continuously differentiable on [0, w̄1].

Step 2. It is obvious that equation (B.4) is strictly concave in w if and only if b1 < 0. Next, we prove

by contradiction that if b1 < 0, then Vb1(w) is strictly concave in w on [0,max{0, w̄1 − Ru}]. If there

exists, ŵ, such that V ′′(ŵ) ≥ 0, then, by continuity, we can define w̃ = sup{w ∈ [0,max{0, w̄1 − Ru)} :

V ′′(w̃) = 0}. Hence, following (B.3), we have V ′′b1(w̃) =
µp(V ′b1

(w̃+Ru)−V ′b1 (w̃))

r(w̄1−w̃) = 0, which contradicts

V ′b1(w̃ +Ru) = V ′b1(w̃) +
∫ Ru
x=0 V

′′
b1

(w̃ + x)dx < V ′(w̃), where the inequality follows from V ′′b1(w) < 0 for

w ∈ [w̃, w̄1). Hence, Vb1 is strictly concave in w on [0, w̄1) if b1 < 0. In case b1 = 0, Vb1 is a constant in

[0, w̄1) following (B.4) and (B.3). Applying the same logic, we can prove that Vb1 is strictly convex in w on

[0, w̄1) if b1 > 0. Hence, to satisfy the boundary condition Vb1(0) = 0, we need to let b1 < 0.

Step 3. Finally, we can show that Vb1 is monotonically increasing in b1. First, for any b1 < b′1, it can be

verified that Vb1(w) < Vb′1(w), V ′b1(w) > V ′b′1
(w) for w ∈ [max{w̄1−Ru, 0}, w̄1) following (B.3). Next, we

can claim that V ′b1 > V ′b′1
, ∀w ∈ [0, w̄1]. Otherwise, there must existw′ = max{w|V ′b1(w)−V ′b′1(w) = 0, w ∈

[0,max{0, w̄1 − Ru})} and V ′b1(w) > V ′b′1
(w)∀w > w′ because Vb1 − Vb′1 is continuously differentiable.

Equation (3.7) implies that µp(Vb1(w′ +Ru)− Vb′1(w′ +Ru)) = (r + µp)(Vb1(w)− Vb′1(w)). However, it
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contradicts with 0 > Vb1(w′+Ru)−Vb′1(w′+Ru) = Vb1(w)−Vb′1(w)+
∫ Ru

0 Vb1(w′+x)−Vb′1(w′+x)dx.

Hence, we must have V ′b1 > V ′b′1
, ∀w ∈ [0, w̄1), and it implies that Vb1 > Vb′1 , ∀w ∈ [0, w̄1). This implies

that Vb1(0) is strictly increasing in b for b < 0. Because V0(0) = [µ(pRu + (1 − p)Ro) − c]/r > 0 and

limb1→∞ Vb1(0)→ −∞, there must exist a unique b∗1 such that Vb∗1(0) = v. Further, Vb∗1 is strictly concave

and increasing in w on [0, w̄1]. Therefore, there exists b∗1, such that Vb∗1(0) = 0. This completes the proof.

The proof of the cases µpRu < c < µRu (pRu < β < Ru) and c > µRu (Ru < β) are similar to the

case when pRu ≥ β, and, hence are omitted here.

B.1.2.5 Proof of Proposition 3.1

If µpRu ≥ c (pRu ≥ β), we need to prove that U(γ∗1(w), ν∗, Nu) = F1(w). Following (DW1), we have

e−rτF1(Wτ ) = e−r0F1(W0−) +

∫ τ

0
[e−rtdF1(Wt−)− re−rtF (Wt−)dt]

= F1(W0−) +

∫ τ

0
e−rt − (RudN

u
t +RodN

o
t − cdt− dL∗1t) +

∫ τ

0
e−rtAt, (B.5)

where

At = dF1(Wt−)− rF1(Wt−)dt+ (RudN
u
t +RodN

o
t − cdt− dL∗1t)

= F ′1(Wt−)(rWt− − µpRu)dt− rF1(Wt−)dt+ F1(Wt)− F1(Wt−)

+ (RudN
u
t +RodN

o
t − cdt− dL∗1t)

= F ′(Wt−)(rWt− − µpRu)dt− rF (Wt−)dt+ F (Wt− +Ru − (Wt− +Ru − w̄1)+)dNu
t

F (Wt−)dNu
t + (RudN

u
t +RodN

o
t − cdt− (Wt− +Ru − w̄1)+dNu

t )

= F ′(Wt−)(rWt− − µpRu)dt− rF (Wt−)dt+ (F (Wt− +Ru)− F (Wt−))dNu
t

+ (RudN
u
t +RodN

o
t − cdt) = Bt,

(B.6)

where the fourth equality follows from F (Wt− + Ru − (Wt− + Ru − w̄1)+) − (Wt− + Ru − w̄1)+ =

F (Wt−+Ru), and the last equality follows from (3.7) and Bt := (Ru +F (Wt−+Hu
t )−F (Wt−))(dNu

t −
µpdt) + (Ro + F (Wt− + Ho

t ) − F (Wt−))(dNo
t − µ(1 − p)dt). Taking the expectation on both sides of

(B.5), and following (B.6), we immediately obtain

F (u(γ∗1(w), ν∗, Nu)) = F (w) = E
[
e−rτF (Wτ ) +

∫ τ

0
e−rt(RudN

u
t +RodN

o
t − cdt− dLt)

]
= U(γ∗1(w), ν∗, Nu)

where we use the fact that
∫ τ

0 e
−rtBt is a martingale and that F (Wτ ) = F (0) = v. For the cases when

µpRu < c < µRu and µRu ≤ c, the proof can be directly adapted from the case when µpRu ≥ c and hence is

omitted here. To conclude, we have U(γ∗1(w), ν∗, Nu) = F1(w) if µpRu ≥ c, U(γ∗2(w), ν∗, Nu) = F2(w)

if µpRu < c < µRu, and U(γ∗3(w), ν∗, Nu) = F3(w) if µRu ≤ c.
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B.1.2.6 Proof of Proposition 3.2

To prove Proposition 3.2, we first present a verification result in Lemma B.1.

Lemma B.1 Let F (w) : [0,∞) → R be differentiable, concave, upper-bounded function, with F ′(w) ≥
−1, and F (0) ≥ 0. Consider any contract γ ∈ ΓIC , such that it (i) yields the agent’s expected utility

u(γ, ν∗, Nu) = W0− = w, followed by the promised utility process {Wt}t≥0 (according to (PK)), and (ii)

satisfies (IC-truthful) and (IC-effort). Define a stochastic process {Φt}t≥0 as

Φt = µpRu + µ(1− p)Ro + F ′(Wt−)[rWt− − µpHu
t − µ(1− p)Ho

t ]− rF (Wt−)

+ (F (Wt− +Hu
t )− F (Wt−))µp+ (F (Wt− +Ho

t )− F (Wt−))µ(1− p)− c. (B.7)

If the process {Φt}t≥0 is non-positive almost surely, then we have F (w) ≥ U(γ, ν∗, Nu).

Proof of Lemma B.1: Following Ito’s Formula for a jump process (see, for example, Theorem 17.5 in

[Bas11]), and considering (PK), we obtain

e−rτF (Wτ ) = e−r0F (W0−) +

∫ τ

0
[e−rtdF (Wt−)− re−rtF (Wt−)dt]

= F (W0−) +

∫ τ

0
e−rt − (RudN

u
t +RodN

o
t − cdt− dLt) +

∫ τ

0
e−rtAt, (B.8)

where

At = dF (Wt−)− rF (Wt−)dt+ (RudN
u
t +RodN

o
t − cdt− dLt)

= F ′(Wt−)(rWt− − µpHu
t − µ(1− p)Ho

t − `t)dt− rF (Wt−)dt+ F (Wt)− F (Wt−)

+ (RudN
u
t +RodN

o
t − cdt− dLt)

= F ′(Wt−)(rWt− − µpHu
t − µ(1− p)Ho

t − `t)dt− rF (Wt−)dt+ F (Wt− − It(1− dNu
t − dNo

t ))

− F (Wt−) + (F (Wt− +Hu
t − ItdNu

t )− F (Wt−))dNu
t + (F (Wt− +Ho

t − ItdNo
t )− F (Wt−))dNo

t

+ (RudN
u
t +RodN

o
t − cdt− dLt).

(B.9)

Then, the concavity of F and F ′ ≥ −1 implies that −`tF ′(Wt−) ≤ `t, F (Wt− − It(1− dNu
t − dNo

t ))−
F (Wt−) ≤ It(1− dNu

t − dNo
t ),

F (Wt− +Hu
t − ItdNu

t )− F (Wt−) = F (Wt− +Hu
t − ItdNu

t )− F (Wt− +Hu
t )

+ F (Wt− +Hu
t )− F (Wt−) ≤ ItdNu

t + F (Wt− +Hu
t )− F (Wt−),
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and F (Wt− +Ho
t − ItdNo

t )− F (Wt−) = ItdN
o
t + F (Wt− +Ho

t )− F (Wt−). Hence, we have

At ≤ F ′(Wt−)(rWt− − µpHu
t − µ(1− p)Ho

t )dt+ `tdt− rF (Wt−)dt+ It(1− dNu
t − dNo

t ) + ItdN
u
t

+ ItdN
o
t + (F (Wt− +Hu

t )− F (Wt−))dNu
t + (F (Wt− +Ho

t )− F (Wt−))dNo
t

+ (RudN
u
t +RodN

o
t − cdt− dLt) = Bt + Φtdt,

(B.10)

where the equality follows from dLt = It + `tdt and Bt := (Ru + F (Wt− + Hu
t ) − F (Wt−))(dNu

t −
µpdt) + (Ro + F (Wt− +Ho

t )− F (Wt−))(dNo
t − µ(1− p)dt). Therefore, if Φt ≤ 0, we must have

At ≤ Bt (B.11)

almost surely. Taking the expectation on both sides of (B.8), we immediately obtain

F (u(γ, ν∗, Nu)) = F (W0−) ≥ E
[
e−rτF (Wτ ) +

∫ τ

0
e−rt(RudN

u
t +RodN

o
t − cdt− dLt)

]
≥ U(γ, ν∗, Nu),

where we use the fact that
∫ τ

0 e
−rtBt is a martingale and F (Wτ ) = F (0) ≥ 0. Therefore, if the process

{Φt}t≥0 is non-positive almost surely, then we have F (u(γ, ν∗, Nu)) ≥ U(γ, ν∗, Nu).

With the extended definition of Fi for w ≥ w̄i, it is clear that F ′i (w) = −1 for w ≥ w̄i, i = 1, 2, 3.

Following Lemma B.1, to prove that the principal’s value function is the upper bound of the principal’s utility

under any other contract, we only need to check if Φt (defined in equation (B.7)) is non-positive at F = F1

(F2, F3) under the condition µpRu ≥ c (µpRu < c < µRu, µRu ≤ c). Here, F1 (F2, F3) is defined in

equation (3.7) ((3.9), (3.10)). To prove this, first, we consider the following optimization problem with a

generic concave function F (w) (with dual variables, xand y denoted after the constraints),

max
Hu
t ,H

o
t

µp(F (Wt− +Hu
t )− F (Wt−)) + µ(1− p)(F (Wt− +Ho

t )− F (Wt−))

− (µpHu
t + µ(1− p)Ho

t )F ′(Wt−),

s.t.Hu
t ≥ Ru;x, pHu

t + (1− p)Ho
t ≥ β; y.

(B.12)

If µpRu ≥ c, then in the following, we verify by Karush-Kuhn-Tucker (KKT) conditions that the optimal

solution is

Hu∗
t = Ru, H

o∗
t = 0. (B.13)

We plug in the following values for the dual variables x and y: x = p(F ′(Wt−)− F ′(Wt− +Ru)), y = 0.

Then, we can easily verify that −pF ′(Wt−) + pF ′(Wt− + Hu∗
t ) + x = 0, −(1 − p)F ′(Wt−) + (1 −

p)F ′(Wt− + Ho∗
t ) = 0, and x ≥ 0, where the inequality follows from the concavity of F . Hence, if

µpRu ≥ c, then the optimal solution of the problem (B.12) is (B.13). Similarly, we can prove that, if
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µpRu < c < µRu , then the optimal solution of (B.12) is

Hu∗
t = Ru, H

o∗
t = (β − pRu)/(1− p) = β1, (B.14)

and, if µRu ≤ c, then the optimal solution of (B.12) is

Hu∗
t = β,Ho∗

t = β. (B.15)

With these optimal solutions and equations, (3.7), (3.9) and (3.10), we could verify that Φt ≤ 0, where Φt is

defined in (B.7). If µpRu ≥ c, then, by plugging F = F1 into (B.7), we get

Φt ≤ µpRu + µ(1− p)Ro + F ′1(Wt−)[rWt− − µpRu]− rF1(Wt−)

+ (F1(Wt− +Ru)− F1(Wt−))µp− c = 0,
(B.16)

where the inequality follows from (B.13), and the last equality follows from equation (3.7). If µpRu < c <

µRu, then, by plugging F = F2 into (B.7), we obtain

Φt ≤ µpRu + µ(1− p)Ro + F ′2(Wt−)[rWt− − µpRu]− rF (Wt−) + (F (Wt− +Ru)− F (Wt−))µp

+ (F (Wt− + β1)− F (Wt−))µ(1− p)− c = 0,

where the inequality follows from (B.14), and the last equality follows from equation (3.9). If µRu ≤ c, then

plugging F = F3 into (B.7), we obtain

Φt ≤ µpRu + µ(1− p)Ro + F ′(Wt−)[rWt− − µβ]− rF (Wt−) + (F (Wt− + β)− F (Wt−))µ− c = 0,

where the inequality follows from (B.15) and the last equality follows from equation (3.10). Hence, by

applying Lemma B.1, we have F1(u(γ, ν∗, Nu)) ≥ U(γ, ν∗, Nu) if µpRu ≥ c, F2(u(γ, ν∗, Nu)) ≥
U(γ, ν∗, Nu) if µpRu < c < µRu and F2(u(γ, ν∗, Nu)) ≥ U(γ, ν∗, Nu) if µRu ≤ c.

B.1.2.7 Proof of Theorem 3.2

As shown by the revelation principle, it is without loss of generality that we can focus on the contract,

where the agent truthfully reports the arrivals. Hence, in the following, we prove that the contract, that we

derived in Section 3.2.2, is still optimal, even where we include contracts that allow the agent to shirk. First,

we shall update the promise keeping, and incentive compatibility constraints, which allow the principal to let

the agent not exert effort. At any time t, if the principal induces the agent to work and truthfully report the

arrivals, then Wt follows (PK) with νt = µ and incentive constraints (IC-truthful) and (IC-effort) should be

satisfied. If the principal only induces the agent to truthfully report and lets the agent not to work, then the

principal does not need to pay cdt, so Wt follows

dWt = rWt−dt− dLt, (B.17)
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and the incentive constraint only includes constraint (IC-truthful), since there are no arrivals when the agent

does not work, constraint (IC-truthful) is directly satisfied. Next, we present the following lemma which is

helpful for proving the optimality of the contract in the contract space Γ.

Lemma B.2 Let F (w) : [0,∞)→ R be differentiable, concave, upper-bounded function, with F ′(w) ≥ −1,

and F (0) ≥ 0. Consider any contract γ ∈ Γ, such that it yields the agent’s expected utility u(γ, ν,Nu) =

W0− = w. Define a stochastic process {Φt}t≥0, such that: (1) if the principal induces the agent to exert

effort and report arrivals truthfully (i.e., constraints (IC-truthful) and (IC-effort) are satisfied) where Wt

follows (PK), then Φt follows equation (B.7); (2) if the principal only induces agent’s truth-telling (i.e.,

constraint (IC-truthful) is satisfied) where Wt follows (B.17), then

Φt = F ′(Wt−)rWt− − rF (Wt−). (B.18)

Furthermore, if the process {Φt}t≥0 is non-positive almost surely, then F (w) ≥ U(γ, ν,Nu).

Proof of Lemma B.2: By applying Ito’s Formula for a jump process (see, for example, Theorem 17.5 of

[Bas11]) and considering (PK) and equation (B.17), we have

e−rτF (Wτ ) = e−r0F (W0−) +

∫ τ

0
[e−rtdF (Wt−)− re−rtF (Wt−)dt]

= F (W0−) +

∫ τ

0
e−rt − (RudN

u
t +RodN

o
t − cdt)I[νt = µ] + dLt

+

∫ τ

0
e−rtAtI[νt = µ] +AtnI[νt = 0],

(B.19)

where At follows equation (B.9) and

Atn = dF (Wt−)− rF (Wt−)dt− dLt
= F ′(Wt−)(rWt− − `t)dt− rF (Wt−)dt+ F (Wt)− F (Wt−)− dLt
= F ′(Wt−)(rWt− − `t)dt− rF (Wt−)dt+ F (Wt− − It)− F (Wt−)− dLt
≤ [F ′(Wt−)rWt− − rF (Wt−)]dt = Φtdt, (B.20)

where the inequality follows from the concavity of F and F ′ ≥ −1, and Φt follows equation (B.18).

Therefore, if Φt ≤ 0, then Atn ≤ 0. Taking the expectation on both sides of (B.19), we immediately obtain

F (w) = F (u(γ, ν,Nu)) ≥ E
[
e−rτF (Wτ ) +

∫ τ

0
e−rt([RudN

u
t +RodN

o
t − cdt]I[νt = µ]− dLt)

]
≥ U(γ, ν,Nu),

where the inequality follows from equation (B.11), Atn ≤ 0,
∫ τ

0 e
−rtBt is a martingale, and F (Wτ ) =

F (0) ≥ 0.
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Next, we will apply Lemma B.2 to prove the optimality of the contracts in the contract space Γ. We,

first, prove that the principal’s value function Fi is an upper bound of the principal’s utility under any other

contract in Γ.

Case 1. Under the condition µpRu ≥ c, the agent is always willing to exert effort since (IC-truthful)

directly implies (IC-effort). Furthermore, we have verified in the proof of Proposition 3.2 that equation (B.7)

is non-positive. Hence, we have for any γ ∈ Γ, U(γ, ν,Nu) ≤ F1(w) if u(γ, ν,Nu) = w and µpRu ≥ c.
Case 2. Under the condition µpRu < c < µRu, first, if the principal induces the agent to exert effort

and report arrivals truthfully (constraints (IC-truthful) and (IC-effort) should be satisfied), then Φt follows

equation (B.7) (at F = F2), and we have verified in the proof of Proposition 3.2 that Φt is non-positive.

Second, if the principal does not induce the agent to exert effort, then Φt follows equation (B.18) (at F = F2),

and we get

Φt ≤ F ′2(Wt−)rWt− − rF2(Wt−) = V ′2(Wt−)rWt− − rV2(Wt−)

= rWt−
[
V ′2(Wt−)− (V2(Wt−)− V2(0))/Wt−

]
≤ 0, (B.21)

where the first equality follows from V2(w) = F2(w) + w and the last inequality follows from the concavity

of V2 and V2(0) = 0. Hence, we have verified that, for any γ ∈ Γ, U(γ, ν,Nu) ≤ F2(w) if u(γ, ν,Nu) = w,

and µpRu < c < µRu.

Case 3. Under the condition µRu ≤ c, first, if the principal induces the agent to exert effort and report

arrivals truthfully (constraints (IC-truthful) and (IC-effort) should be satisfied), then Φt follows equation

(B.7) (with F = F3) and we have verified in the proof of Proposition 3.2 that Φt is non-positive. Second, if

the principal does not induce the agent to exert effort, then Φt follows equation (B.18) (with F = F3), we

can verify that Φt is also non-positive as we have shown in the inequality (B.21). Hence, we have verified

that, for any γ ∈ Γ, U(γ, ν,Nu) ≤ F3(w) if u(γ, ν,Nu) = w and µRu ≤ c.
Finally, similar to inequality (3.12), we have for any contract γ ∈ Γ, i = 1 (2, 3),

U(γ, ν,Nu) ≤ Fi(u(γ, ν,Nu)) = Fi(w) = U(γ∗i (w), ν∗, Nu) = Fi(w
∗
i ) ≤ U(γ∗i (w∗i ), ν

∗, Nu),

under the condition µpRu ≥ c (µpRu < c < µRu, µRu ≤ c), where the last inequality follows from the fact

that w∗1 (w∗2, w∗3) is the maximizer of F1 (F2, F3). Therefore, γ∗1 in definition 3.1 is the optimal contract in

the contract space Γ under the condition µpRu ≥ c; γ∗2 in definition 3.2 is the optimal contract in the contract

space Γ under the condition µpRu < c < µRu; γ∗3 in definition 3.3 is the optimal contract in the contract

space Γ under the condition µRu ≤ c.

B.1.2.8 Proof of Lemma 3.5

First, we consider the case when µpRu ≥ c. We define f2(w) :=
∂F1(w)

∂Ro
. Following equation (3.7),

we have f2(0) = 0, f2(w) = µ(1− p)/r for w ≥ w̄1, and rf2(w) = µ(1− p) + µ[f2(w +Ru)− f2(w)] +

r(w − w̄1)f ′2(w). Hence, for w ∈ [w̄1 − Ru, w̄1], we have f2(w) = µ(1 − p)/r + b(w̄1 − w)(r+µ)/r.
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Following Step 2 of the proof of the Case 1 in equation (3.4), we have if b ≥ 0, then f2(w) is decreasing

and convex, which leads to a contradiction with f2(0) = 0. Hence, we have b < 0 and f2(w) is increasing

and concave in w. Therefore, f2(w) > 0, ∀w and f ′2(w) > 0 for w ∈ [0, w̄1]. Next, f2(w) > 0 implies

that F (w∗) is increasing in Ro. Furthermore, by the Implicit Function Theorem, F ′(w∗) = 0 implies that
∂w∗

∂Ro
= − f

′
2(w∗)

F ′′1 (w∗)
> 0, where the inequality follows from the concavity of F1, and f ′2(w) > 0. The proof

for the case when µpRu < c < µRu and the case when µRu ≤ c is similar to the proof for the case when

µpRu ≥ c, and hence, is omitted here. Therefore, we have shown that the agent’s total utility w∗ and the

principal’s total utility are strictly increasing in Ro.

B.1.3 Proofs For Section 3.3

B.1.3.1 Proof of Proposition 3.3

In this setting, when the principal conducts full monitoring, the agent will exert effort and report arrivals

truthfully. By applying Ito’s Formula, (PK) and equation (B.17) (adapted from the proof of Lemma B.2), we

have the following lemma. It is worth noting that if the principal does not induce the agent’s effort, there are

no arrivals, hence, the agent cannot misreport anything and the principal will not monitor.

Lemma B.3 Suppose F (w) : [0,∞)→ R is differentiable, concave, upper-bounded function, with F ′(w) ≥
−1, and F (0) ≥ 0. Consider any contract γ ∈ Γm, which yields the agent’s expected utility u(γ, ν,Nu) =

W0− = w. Define a stochastic process {Φt}t≥0, such that: (1) if the principal induces the agent to report

arrivals truthfully and exert effort (i.e., incentive constraint (3.14) is satisfied) where Wt follows (PK), then

Φt = µpRu + µ(1− p)Ro + F ′(Wt−)[rWt− − µpHu
t − µ(1− p)Ho

t ]− rF (Wt−)

+ (F (Wt− +Hu
t )− F (Wt−))µp+ (F (Wt− +Ho

t )− F (Wt−))µ(1− p)− c−mt;
(B.22)

(2) if the principal does not induce agent to exert effort whereWt follows (B.17), then Φt follows equation

(B.18). Furthermore, if the process {Φt}t≥0 is non-positive almost surely, then F (w) ≥ U(γ, ν,Nu).

By applying Lemma B.3, we first show that the principal’s value function (Fmi, i = 1, 2, 3) is an upper

bound of the principal’s utility under any other contract in Γm. Next, we conduct the proof for the case when

µpRu ≥ c by considering two cases.

Case 1. If condition (3.15) holds, then, following definition 3.4, the principal’s value function is Fm1

which is the solution of (3.7) with the boundary condition Fm1(0) =
µ[pRu + (1− p)Ro]− c−m

r
≥ 0.

Following case 1 of the proof of Lemma 3.4, we can verify that Fm1, is concave in w and F ′m1(w) ≥ −1. If

the principal induces the agent to exert effort and report arrivals truthfully with mt = 0 (does not conduct

monitoring), then, by plugging F = Fm1 into equation (B.22), we get

Φt ≤ µpRu + µ(1− p)Ro + F ′m1(Wt−)[rWt− − µpRu]− rFm1(Wt−)

+ [Fm1(Wt− +Ru)− Fm1(Wt−)]µp− c = 0,
(B.23)
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where the inequality follows from equation (B.13), and the equality follows from equation (3.7). Before

we proceed, we present an inequality which will be useful in proving Φt ≤ 0: if F is concave in w and

Wt +Hu
t ≥ 0, we have

F (Wt +Hu
t )−Hu

t F
′(Wt) ≤ F (Wt). (B.24)

Next, if the principal induces the agent to exert effort with mt = m (the principal conducts monitoring), then,

by plugging F = Fm1 into (B.22), we get

Φt = µpRu + µ(1− p)Ro − c−m+ F ′m1(Wt−)rWt− − rFm1(Wt−)− µFm1(Wt−)

+ µp[Fm1(Wt− +Hu
t )−Hu

t F
′
m1(Wt−)] + µ(1− p)[Fm1(Wt− +Ho

t )−Ho
t F
′
m1(Wt−)]

≤ µpRu + µ(1− p)Ro − c−m+ F ′m1(Wt−)rWt− − rFm1(Wt−)

= V ′m1(Wt−)rWt− − rVm1(Wt−) ≤ rWt

[
V ′m1(Wt−)− (Vm1(Wt−)− Vm1(0))/Wt−

]
≤ 0,

where the first inequality follows from the inequality (B.24), the second equality follows from Vm1 :=

Fm1(w) + w, and the last inequality follows from the concavity of Vm1. Finally, if the principal does not

induce the agent to exert effort, then, by plugging F = Fm1 into (B.18), (similar to (B.21)), we can obtain

Φt ≤ 0. Hence, following Lemma B.3, we have Fm1(w) ≥ U(γ, ν,Nu). Next, similar to Proposition 3.1,

we can verify that U(γ∗m1(w), ν∗, Nu) = Fm1(w). Hence, we have for any γ ∈ Γm,

U(γ∗m1(w∗m1), ν∗, Nu) = Fm1(w∗m1) ≥ U(γ∗m1(w), ν∗, Nu) = Fm1(w) ≥ U(γ, ν,Nu),

where the first inequality follows from the fact that w∗m1 is the maximizer of Fm1. To conclude, we have

shown that if condition (3.15) and c ≤ µpRu hold, then γ∗m1(w∗m1) in definition 3.4 is the optimal contract in

Γm.

Case 2. If condition (3.15) does not hold, then (µ[pRu + (1− p)Ro]−m− c)/r ≤ 0 ≤ F (0) = V (0)

and we will show that the optimal contract is still γ∗1 (following definition 3.1). Hence, the principal’s value

function is F1 defined in Lemma 3.4. If the principal induces the agent to report arrivals truthfully and exert

effort with mt = 0 (the principal does not conduct monitoring), then Φt ≤ 0 since (B.16) is still valid. Next,

if the principal induces the agent to report arrivals truthfully and exert effort with mt = m (the principal

conducts monitoring), then, by plugging F = F1 into (B.22), we get

Φt ≤ µpRu + µ(1− p)Ro + F ′1(Wt−)rWt− − rF1(Wt−)− c−m

≤ rV1(0) + V ′1(Wt−)rWt− − rV1(Wt−) = rWt−
[
V ′1(Wt−)− (V1(Wt−)− V1(0))/Wt−

]
≤ 0,

where the first inequality follows from the inequality (B.24), the second inequality follows from F1(0) =

V1(0) ≥ 0, and the last inequality follows from the concavity of V1. Finally, if the principal does not

induce the agent to exert effort, then, by plugging F = F1 into (B.18), (similar to (B.21)), we can obtain

Φt ≤ 0. Next, following Proposition 3.1, we have U(γ∗1(w), ν∗, Nu) = F1(w). Therefore, we have

U(γ∗1(w∗1), ν∗, Nu) = F1(w∗1) ≥ U(γ∗1(w), ν∗, Nu) = F1(w) ≥ U(γ, ν,Nu), where the first inequality

follows from the fact that w∗1 is the maximizer of F1. To conclude, we have shown that if condition (3.15)
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does not hold but c ≤ µpRu holds, then γ∗1(w∗1) (in definition3.1) is the optimal contract in the contract space

Γm. For the cases µpRu < c < µRu and µRu ≤ c, the proofs are very similar to the proof for the case

µpRu ≥ c, and, hence, are omitted here.

B.1.3.2 Model with Non-zero Outside Option

Baseline Model with Outside Option Assume that the agent has an outside option which delivers him

a future utility w > 0. Then, the contract design problem will include an additional constraint imposed on

the agent’s promised utility Wt ≥ w, for any t < τ . Further, if the agent’s promised utility reaches the level

w, the principal can freely terminate the agent without paying anything since the agent is willing to leave

the contract and earns his future utility outside. Therefore, the principal has two options: 1. Not to hire the

agent, and both principal and agent have the total utility equal to zero. 2. Hire the agent and set his starting

promised utility as W0− ≥ w. For the second case, we can prove that the structure of the optimal contract

before termination will not change (as defined in γ∗1 , γ∗2 and γ∗3). The proof relies on two changes made to

the optimal contract and the corresponding principal’s value function: (1) The contract is terminated when

the agent’s promised utility reaches w. (2) The boundary condition of the system’s value function has to be

changed from V (0) = 0 to V (w) = w. (The societal value at the time of termination equals to w where the

principal’s future utility is 0 and the agent earns w afterwards. ) With the new definition of the societal value

function V , the parallel results of Lemma 3.4, Proposition 3.1, and Proposition 3.2 are easy to establish and,

hence, are, omitted here.

Monitoring with Outside Option Again, we assume that the agent has an outside option which delivers

him a future utility w. Then, the contract design problem will include an additional constraint imposed on

the agent’s promised utility Wt ≥ w for any t < τ . We have established the optimal contract for the model

where we add the non-zero outside option to the baseline model. Now, in the model with monitoring, the

principal has another action which is to conduct monitoring.

We can show that the principal only monitors the agent when his promised utility reaches w, and the

structure of the optimal policy does not change when w > w. We have shown in the main body of the paper

that, if w = 0, then the principal conducts monitoring only when the agent’s promised utility reaches 0.

Furthermore, the principal will never stop monitoring once she starts and the agent’s promised utility is kept

at 0. However, when w > 0 and when the principal conducts monitoring, the agent’s promised utility follows

dWt− = rWt−dt > 0. Hence, the agent’s promised utility will increase, which is different from the case

when w = 0. When the principal conducts monitoring, the agent’s promised utility will be greater than w in

the next second, then the principal stops monitoring and the agent’s promised utility starts to decrease again.

In fact, the trajectory of the agent’s promised utility is such that the agent’s promised utility is trembling near

the threshold w until an arrival occurs, which jumps up his promised utility. Furthermore, the agent is never

terminated in this contract.

To prove the optimality of this contract, we need to, first, redefine the boundary condition of the

system’s value function. At Wt− = w, the agent’s promised utility follows dWt = rWt−dt. Hence,
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V (Wt−) = [µ(pRu + (1− p)Ro)− c−m]δ+ e−rδV (Wt−+ rWt−δ) where the first term of the right-hand

side of the equation represents the societal value in the current period, and the second term represents the

discounted future value. By letting δ → 0, we have [µ(pRu+(1−p)Ro)−c−m]+rwV ′(w)−rV (w) = 0,

which is equivalent to

V ′(w) = {V (w)− [µ(pRu + (1− p)Ro)− c−m]/r}/w. (B.25)

For w ≥ w, the system’s value equation follows the original differential equations (equation (3.7) under

the condition µpRu ≥ c , equation (3.9) under the condition µpRu < c < µRu, and equation (3.10) under

the condition µRu ≤ c). As long as m > 0, similar to Lemma 3.4, we can prove that there exists (1) a

unique concave function that satisfies equation (3.7) and the boundary condition (B.25) under the condition

µpRu ≥ c; (2) a unique concave function that satisfies equation (3.9) and the boundary condition (B.25)

under the condition µpRu < c < µRu; and (3) a unique concave function that satisfies equation (3.10) and

the boundary condition (B.25) under the condition µRu ≤ c.
Proof: Under the condition µpRu ≥ c, for any V0 ∈ [[µ(pRu + (1− p)Ro)− c−m]/r, V̄ ], following

the proof of Lemma 3.4, we can show that there exists a unique concave function that satisfies equation

(3.7) and the boundary condition V (w) = V0. First, if V0 = V̄ , then we have V ′(w+) = 0 < {V0 −
[µ(pRu + (1− p)Ro)− c−m]/r}/w. Second, if V0 = [µ(pRu + (1− p)Ro)− c−m]/r, then V ′(w+) >

{V0−[µ(pRu+(1−p)Ro)−c−m]/r}/w = 0. Hence, there exists V ∗ ∈ ([µ(pRu+(1−p)Ro)−c−m]/r, V̄ ),

such that the boundary condition (B.25) is satisfied. For µpRu < c < µRu and µRu ≤ c, the proofs are very

similar to this case, and, hence, are omitted here.

We have defined the principal’s value function with monitoring (denoted as Vm(w)). The principal would

conduct monitoring if it brings her a future value greater than or equal to the value without any agent, i.e.

Vm(w) ≥ w. With the definition of Vm, a parallel result to Proposition 3.3 is easy to establish, and, hence,

is omitted here. To conclude, the principal has the following three options: 1. Not to hire the agent, and

both the principal and the agent have total utility of zero. 2. Hire the agent and set his starting promised

utility as W0− ≥ w. The principal will terminate the agent when the agent’s promised utility reaches w.

3. Hire the agent and set his starting promised utility as W0− ≥ w. The principal will monitor the agent

whenever the agent’s promised utility reaches w (For w > w, the optimal contract has the same structure

as γ∗1 if µpRu ≥ c, γ∗2 if µpRu < c < µRu, and γ∗3 if µRu ≤ c). The principal will choose the one which

brings her the highest profit.
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B.1.3.3 Monitoring with Replacement of the Agent

In this subsection, we generalize the current setting to the case where the principal could pay a fixed cost

k > 0 to fire the current agent and find a new agent. Formally, the principal’s utility changes from (3.13) to

Um(Γ, ν, N̂) = E
[∫ τ

0
e−rt

(
RudN̂

u
t +RodN

o
t − dLt − cdt−Mtdt

)
+ e−rτ max(0, Um(Γ, ν, N̂)− k)

]
, (B.26)

where the first term in the expectation remains unchanged and the second term represents the principal’s utility

after terminating the contract with the current agent. To solve this problem, we need to slightly change the

principal’s value function. For the value functions Fi(w), i = 1, 2, 3 defined in Lemma 3.4 and w∗i defined in

(3.11), we let F̂i(w) = Fi(w) if Fi(w∗i )−k < 0. Alternatively, if Fi(w∗i )−k ≥ 0, then we need to change the

boundary condition of the principal’s value function from Fi(0) = 0 to F̂i(0) = max(maxw F̂i(w)− k, 0).

The uniqueness of the value function F̂i(w) is proved in the following lemma.

Lemma B.4 If c ≤ µpRu, then differential equation (3.7) with boundary conditionF (0) = max(maxw F (w)−
k, 0) has a unique solution F̂1(w), which is strictly concave in w, and F ′1(w) ≥ −1. If µpRu < c < µRu,

then differential equation (3.9) with boundary condition F (0) = max(maxw F (w) − k, 0) has a unique

solution F̂2(w), which is strictly concave in w, and F ′2(w) ≥ −1. If c ≥ µRu, then equation (3.10) with

boundary condition F (0) = max(maxw F (w)−k, 0) has a unique solution F̂3(w), which is strictly concave

in w, and F ′3(w) ≥ −1.

Proof of Lemma B.4: The proof of this lemma is similar to the proof of Lemma 3.4. Under the

condition µpRu ≥ c, if the solution to (3.7) satisfies 0 ≥ F1(w∗1) − k, then the result is established and

F̂1(w) = F1(w). The rest of the proof focuses on the case 0 < F1(w∗1)− k, in which the boundary condition

is F̂1(0) = maxw F̂1(w) − k. In the proof of Lemma 3.4, we have established that, for b1 < b′1 < 0,

V ′b1 > V ′b′1
for w ∈ [0, w̄1]. Then F ′b1 > F ′b′1

, for w ∈ [0, w̄1]. Hence,

Fb′1(w∗b′1
)− F b′1(0) =

∫ w∗
b′1

0
F ′b′1

(w)dw <

∫ w∗
b′1

0
F ′b1(w)dw = Fb1(w∗b′1

)− F b1(0),

where w∗b = arg maxw Fb(w) for any b. Further, we have w∗b′1 < w∗b1 and F ′b1(w) > 0, for w ∈ [w∗b′1
, w∗b1 ].

Therefore, Fb′1(w∗b′1
)−F b′1(0) < Fb1(w∗b1)−F b1(0). Hence, Fb1(w∗b1)−F b1(0) decreases in b. Finally, if we

let b1 → −∞, Fb1(w∗b1)− F b1(0)→∞; further, as b1 → 0, Fb1(w∗b1)− F b1(0)→ 0. Therefore, there must

be a unique bk, such that Fbk(w∗bk)− F bk(0) = k, and we can let F̂1(w) = Fbk(w). To conclude, we have

shown that the differential equation (3.7) with boundary condition F (0) = max(maxw F (w)− k, 0) has a

unique solution F̂1(w), which is strictly concave in w, and F ′1(w) ≥ −1. For the cases µpRu < c < µRu

and µRu ≤ c, the proofs are very similar to the case µpRu ≥ c, and, hence, are omitted here.

Suppose that full monitoring, termination, or replacement only happens when the agent’s promised

utility reaches 0, then we only need to focus on the principal’s value when the agent’s promised utility is 0.
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Therefore, full monitoring is profitable to the principal only if

{µ[pRu + (1− p)Ro]− c−m}/r ≥ F̂i(0). (B.27)

Hence, when the agent’s promised utility decreases to 0, the principal would start to monitor the agent if

condition (B.27) holds; the principal would terminate the contract and find a new agent if condition (B.27)

does not hold but Fi(w∗i )− k ≥ 0 holds; the principal would terminate the contract if (B.27) does not hold

but Fi(w∗i ) − k < 0 holds. Therefore, even with the opportunity to replace the agent, the structure of the

optimal contracts with full monitoring remains the same before the agent’s promised utility reaches zero. The

proof of this statement is easily adapted from Proposition 3.3 and is omitted here.

B.1.3.4 Proof of Proposition 3.4

In fact, it is more informative to consider the societal value function V (w) := F (w) +w, which, together

with (3.17), leads to:

rV (w) = max
{
rV̄ + µp[V (w +Ru)− V (w)] + r(w − w̄1)V ′(w),

rV̄ −m+ µ[V (w + β)− V (w)] + r(w − w̄2)V ′(w)
}
. (B.28)

If w = w̄1 and the agent is paid Ru for every reported arrival from the unobservable channel, then the

incentive compatibility constraints are satisfied. Therefore, the agent reports the truth, always exerts effort and

is never terminated, and in this case the societal value is V̄ which equals the upper bound. Hence, V (w) ≥ V̄
if w ≥ w̄1. Obviously, the principal achieves this by not monitoring. Therefore, we have w∗L < w̄1. In the

following, we show the desired result according in three steps: 1. We, first, show that the system’s value

function defined in (B.28) is concave and differentiable in w (which implies that F is also concave and

differentiable). 2. We, then, present a lemma which will be useful to prove that the principal’s value function

is an upper bound on the principal’s utility under any other contract. 3. Finally, we complete the proof of the

optimality of γ∗m by combining steps 1 and 2.

Step 1. We assumed that the solution of (B.28) has a unique switching point at w∗L. Hence, we have

M(w) ≥ m if and only if w ≤ w∗L. Further, the system’s value function V follows the differential equation

(B.3) for w ≥ w∗L and for w ∈ [0, w∗L], V follows the differential equation

rV (w) = rV̄ −m+ µ[V (w + β)− V (w)] + r(w − w̄2)V ′(w). (B.29)

On the one hand, if w∗L = 0, then V follows the differential equation (B.3) for the entire region of w. Hence,

the proof of concavity directly follows from Case 1 in the proof of Lemma 3.4. On the other hand, if w∗L > 0,

we prove that V is also concave and differentiable in w. The structure of (B.28) requires that the solution

V is smoothly pasted at the optimal switching point w∗L. Formally, at w = w∗L, we haveM(w∗L) = m, and

V ′(w∗L−) = V ′(w∗L+).

Since the value function follows the differential equation (B.3) for w ∈ [w∗L, w̄1], following Lemma 3.4,
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V is concave and differentiable in w on [w∗L, w̄1] and V ′(w̄1) = 0. Further, since V ′(w∗L−) = V ′(w∗L+),

we only need to verify that V is also concave and differentiable in w on [0, w∗L). First, at w = w∗L,

following (B.29), we have V ′′(w∗L−) =
µ(V ′(w∗L+β)−V ′(w∗L))

r(w̄2−w) < 0, where the inequality follows from the

concavity of V in (w∗L, w̄1]. Next, we can prove the concavity of V in [0, w∗L) by contradiction. Suppose

that there exists ŵ ∈ [0, w∗L), such that V ′′(ŵ) ≤ 0. By continuity, we can define w̃ = sup{w ∈ [0, w∗L) :

V ′′(w) = 0}. Furthermore, we have V ′′(w) < 0 for w > w̃. At w = w̃, following (B.29), we have

V ′′(w̃) = µ(V ′(w+β)−V ′(w))
r(w̄2−w) = 0,which contradicts V ′(w̃+β) =

∫ β
0 V ′′(w̃+x)dx+V ′(w̃) < V ′(w̃),where

the inequality follows from the fact that V ′′ < 0 on (w̃, w̄1]. Hence, we have V ′′ < 0 for w ∈ [0, w∗L).

The differentiability of V follows from the fact that V ′(w∗L−) = V ′(w∗L+) and that V ′ is well-defined by

the differential equation (B.29) on [0, w∗L). Furthermore, V ′(w̄1) = 0 and the concavity of V implies that

V ′ ≥ 0. Hence, the principal’s value function F is concave, differentiable in w, and F ′(w) ≥ −1.

Step 2. By applying the Ito’s formula and (PK) (adapted from the proof of Lemma B.1), we have the

following Lemma B.5. It is worth noting here that if the principal does not induce agent’s effort, then there is

no arrivals, hence, the agent cannot misreport anything, and, the principal will never monitor.

Lemma B.5 Suppose F (w) : [0,∞)→ R is differentiable, concave, upper-bounded function, with F ′(w) ≥
−1, andF (0) ≥ 0. Consider any γ ∈ Γma, which yields the agent’s expected utility u(γ, ν,Nu) = W0− = w.

Define a stochastic process {Φt}t≥0, such that: (1) if the principal induces the agent to exert effort and report

arrivals truthfully (i.e., constraints (IC-truthfulm) and (IC-effort) are satisfied) where {Wt}t≥0 follows (PK),

then

Φt = µpRu + µ(1− p)Ro + F ′(Wt−)[rWt− − µpHu
t − µ(1− p)Ho

t ]− rF (Wt−)

+ (F (Wt− +Hu
t )− F (Wt−))µp+ (F (Wt− +Ho

t )− F (Wt−))µ(1− p)− c−mt;
(B.30)

(2) if the principal does not induce the agent to exert effort where Wt follows (B.17), then Φt follows equation

(B.18). Furthermore, if the process {Φt}t≥0 is non-positive almost surely, then F (w) ≥ U(Γ, ν,Nu).

Next, we show that the principal’s value function F is an upper bound on the principal’s utility under

any other contract in Γma. Following Lemma B.5, we only need to verify that Φt, defined in (B.30) is

non-positive (with F as the principal’s value function defined in (3.16)). Before we proceed, we present an

inequality which will be useful in proving Φt ≤ 0: if F is concave in w and pHu
t + (1− p)Ho

t ≥ β, we have

F ′(Wt)[−pHu
t − (1−p)Ho

t ] +pF (Wt+Hu
t ) + (1−p)F (Wt+Ho

t ) ≤ −F ′(Wt)β+F (Wt+β). (B.31)

Hence, first, if the principal induces the agent to report arrivals truthfully and exert effort with mt = m (the

principal conducts monitoring and, hence constraint (IC-effort) has to be satisfied), therefore, Φt follows

from equation (B.30), and we obtain

Φt ≤ µpRu + µ(1− p)Ro + F ′(Wt−)[rWt− − µβ]− rF (Wt−)

+ (F (Wt− + β)− F (Wt−))µ− c−m ≤ 0,
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where the first inequality follows from the inequality (B.31) and the last inequality follows from the HJB

equation (3.17). Second, if the principal induces the agent to report arrivals truthfully and exert effort with

mt = 0 (the principal does not conduct monitoring, and, hence, constraints (IC-truthfulm) and (IC-effort)

have to be satisfied), then Φt follows from equation (B.30), and we get

Φt ≤ µpRu + µ(1− p)Ro + F ′(Wt−)[rWt− − µpRu]− rF (Wt−)

+ (F (Wt− +Ru)− F (Wt−))µp− c ≤ 0,

where the first inequality follows from the optimization problem (B.12) (with the optimal solution (B.13)

under the condition µpRu ≥ c), and the last inequality follows from the HJB equation (3.17). Third, if the

principal does not induce the agent to exert effort, then Φt follows (B.18), and (similar to (B.21)) we obtain

Φt ≤ 0. Hence, we have shown that F (w) ≥ U(γ, ν,Nu) for any γ ∈ Γma if µpRu ≥ c.
Step 3. Finally, similar to Proposition 3.1, we can easily verify that U(γ∗m(w), ν∗, Nu) = F (w). There-

fore, we obtain, under the condition µpRu ≥ c, for any γ ∈ Γma, U(γ∗m(w∗m), ν∗, Nu) = F (w∗m) ≥
U(γ∗m(w), ν∗, Nu) = F (w) ≥ U(γ, ν,Nu),where the first inequality follows from the fact that w∗m is the

maximizer of F . To conclude, we have shown that γ∗m(w∗m) is the optimal contract in the contract space Γma

under the condition c ≤ µRu.

B.1.3.5 Partial Monitoring under the Condition µpRu < c < µRu

When the principal conducts partial monitoring, the dynamics of the agent’s promised utility is given

by (DW2) and when the principal monitors the agent, the dynamics of the agent’s promised utility follows

(DW3). Hence, the societal value function should satisfy the HJB equation:

rV (w) = max
{
rV̄ + µp[V (w +Ru)− V (w)] + µ(1− p) [V (w + β1)− V (w)] + r(w − w̄2)V ′(w),

rV̄ −m+ µ[V (w + β)− V (w)] + r(w − w̄2)V ′(w)
}
. (B.32)

with boundary condition V (0) = 0. Hence, the principal would monitor the agent if and only if the second

term of (B.32) greater or equal to the first term which is also equivalent toM2(w) := µ[V (w+β)−pV (w+

Ru)− pV (w)] ≥ m.
If w = w̄2 and the agent is paid Ru for every arrival from the unobservable channel that he reports, and

is paid β1 for every arrival from the observable channel, then the incentive constraints are binding. Hence,

the agent always exerts effort, reports the truth and is never terminated, which results in the societal value

achieving the upper bound V̄ . Therefore, for w ≥ w̄2, we have V (w) ≥ V̄ . In contrast, if the principal

monitors the agent, the highest societal value that can be achieved is V̄ − m

r
. Hence, for w ≥ w̄2, not

monitoring is better than monitoring, i.e.,m >M2(w). Asw decreases, monitoring becomes more profitable,

and there may be optimal switching points w2∗
L , such that m = M2(w2∗

L ). For simplicity, we assume a

unique switching point. Similar to the case in Section (3.3.2.1), in all the numerical examples, we see the

single switching of the value function. Next, we formally define the contract in the following.

179



Definition B.1 For any w ∈ [0, w̄2], define contract γ2∗
m (w) = (L2∗

m , τ
2∗
m ,m

∗
2) as follows:

1. Set W0− = w and L∗0 = (W0− − w̄2)+.

2. For t ≥ 0, let payment be

dL2∗
mt =

{
(Wt− +Ru − w̄2)+dNu

t + (Wt− + β1 − w̄2)+ dNo
t

}
I[Wt− ≥ w2∗

L ]

+ (Wt− + β − w̄2)+ dNtI[Wt− < w2∗
L ],

and the dynamics of promised utility follows

dWt = {r(Wt− − w̄2)dt+ min{Ru, w̄2 −Wt−}dNu
t + min {β1, w̄2 −Wt−} dNo

t } I[Wt− ≥ w2∗
L ]

+ {r(Wt− − w̄2)dt+ min{β, w̄1 −Wt−}dNt} I[Wt− < w2∗
L ].

(B.33)

3. The partial monitoring schedule is M∗t = mI[Wt− < w2∗
L ].

4. The termination time is τ2∗
m = min{t : Wt = 0}.

The following Proposition shows that γ2∗
m is the optimal contract in the class of contracts that allow the

agent to shirk or not truthfully report (in the space Γma). We further define w2∗
m as the maximizer of F (w)

and the principal starts the agent’s promised utility at W0− = w2∗
m .

Proposition B.1 Suppose that the switching point w2∗
L is unique and µpRu < c < µRu, the value function

V defined in (B.32) is concave in w and differentiable and γ2∗
m (w2∗

m ) in definition B.1 is the optimal contract

in the contract space Γma.

The proof of Proposition B.1 is very similar to the proof of Proposition 3.4, and hence is omitted here.

B.1.4 Proofs in Section 3.4

Throughout this section, we assume that the solution to the HJB equation (3.20) exists. Given the

existence, we characterize the optimal incentive compatible contract. A recent contract theory paper, [Mal19],

has the same assumption, they study the optimal contract design of a dynamic capital allocation process

in a firm. Following the main body of the paper, we denoted by F , the principal’s value function, and by

V , the system’s value function, under the optimal contract. Hence, both F and V must be weakly concave,

otherwise, public randomization over two levels of promised utility can improve both the system’s and the

principal’s value. Later, in Section B.1.4.3, we will prove that F and V are strictly concave. Hence, the

principal does not need to use public randomization in the optimal contract.
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B.1.4.1 Proof of Property 2

When w = w̄, we are able to find a contract such that the system’s value function achieves the upper

bound V̄d, which implies that V (w) ≥ V̄d for w ≥ w̄. In that contract, the principal makes direct payments to

the agent: the payment R for every customer from the unobservable channel and max ((a+ b)β − aR/b, 0)

for every customer from the observable channel. Further, since V̄d is the highest value that the system can

achieve, we have V (w) ≤ V̄d for w ≥ w̄. Hence, V (w) = V̄d for w ≥ w̄.

B.1.4.2 Proof of Lemma 3.9

For a given w ≥ 0, we denote g(d) := G(d,w). If pu(d)R ≥ β, then Ho(d) = 0 and

g(d) =pu(d)
[
R+ V (w +R)− V (w)−RV ′(w)

]
+ po(d)(1− d)R

=pu(d)
[
V (w +R)− V (w)−RV ′(w)

]
+R− po(d)dR,

(B.34)

where the first term is linear in d and the last term is quadratic in d. Hence, g(d) is concave in d if pu(d)R ≥ β.

If pu(d)R < β, before we calculate g′′(d), we, first, calculate ∂Ho(d)
∂d and ∂2Ho(d)

∂2d
as follows:

∂Ho(d)

∂d
=
−p′u(d)Rpo(d)− p′o(d)(β − pu(d)R)

po(d)2
=

[−p′u(d)po(d) + p′o(d)pu(d)]R− p′o(d)β

po(d)2

=
p′o(d)(R− β)

po(d)2
, (B.35)

where the last equality follows from p′u(d) + p′o(d) = 0 and pu(d) + po(d) = 1, ∂
2Ho(d)
∂2d

= −2(p′o(d))2(R−β)
po(d)3 .

Hence, we immediately obtain

2p′o(d)
∂Ho(d)

∂d
+ po(d)

∂2Ho(d)

∂2d
= 0 (B.36)

Then, the expressions of g′(d) and g′′(d) are

g′(d) = p′u(d)
[
R+ V (w +R)− V (w)−RV ′(w)

]
+ p′o(d) [(1− d)R+ V (w +Ho(d))− V (w)]

−Ho(d)V ′(w) + po(d)

[
−R+ V ′ (w +Ho(d))

∂Ho(d)

∂d
− ∂Ho(d)

∂d
V ′(w)

]
, (B.37)

and

g′′(d) =

[
2p′o(d)

∂Ho(d)

∂d
+ po(d)

∂2Ho(d)

∂2d

]
[V ′ (w +Ho(d))− V ′(w)]− 2p′o(d)R

+ po(d)V ′′ (w +Ho(d))

(
∂Ho(d)

∂d

)2

= −2p′o(d)R+ po(d)V ′′ (w +Ho(x))

(
∂Ho(d)

∂d

)2

≤ 0,

where the last equality follows from equation (B.36), and the last inequality follows from p′o(d) > 0 and the

concavity of V . Finally, (B.34) and (B.37) imply that g′(d) is continuous at d if pu(d)R = β. To conclude,
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we have shown that g(d) defined in (3.24) is concave in d. Further, Property 3 is a direct result of the

concavity of g(d). Hence, Lemma 3.9 directly implies Property 3 and we have

∂G(d,w)

∂d
= p′u(d)

[
R+ V (w +R)− V (w)−RV ′(w)

]
+ p′o(d) [dR+ V (w +Ho(d))− V (w)

−Ho(d)V ′(w)
]

+ po(d)

[
R+ V ′ (w +Ho(d))

∂Ho(d)

∂d
− ∂Ho(d)

∂d
V ′(w)

]
. (B.38)

B.1.4.3 Proof of Property 4

First, we show that there exists δ > 0, such that, for w ∈ [w̄ − δ, w̄], d∗(w) = 0. Property 2 implies

that d∗(w) = 0 if w ≥ w̄. Hence, at w = w̄, we have V ′(w̄) = 0 and V (w +R) = V (w +Ho(d
∗(w̄))) =

V (w) = V̄ . Furthermore, at w = w̄, g′(0) = p′u(0)R+ p′o(0)R+ po(0)R > 0. Due to the continuity of V ,

there exists δ > 0, such that for w ∈ [w̄ − δ, w̄], we have ∂G(d,w)
∂d |d=0 ≥ 0. Hence, for w ∈ [w̄ − δ, w̄], we

let y = 0 and z = ∂G(d,w)
∂d |d=0 ≥ 0 which implies that d∗(w) = 0 for w ∈ [w̄ − δ, w̄]. Next, we prove that

V (w) is strictly concave in w on [0, w̄).

First, if pu(0)R ≥ β, then Ho(0) = 0. For w ∈ [max{w̄ − δ, w̄ − Ru}, w̄], since d∗(w) = 0, the

equation (3.20) becomes an ordinary differential equation. We can solve it in closed-form, and it immediately

implies that V (w) is strictly concave in w on [max{w̄ − δ, w̄ −Ru}, w̄]. We rewrite the equation (3.20) as

follows:

rV (w) = −c+ rwV ′(w) + µ
{
pu(d∗(w))

[
R+ V (w +R)− V (w)−RV ′(w)

]
+ po(d

∗(w))
[
(1− d∗(w))R+ V (w +Ho(d

∗(w)))− V (w)−Ho(d
∗(w))V ′(w)

] }
.

By taking derivative with respect to w on both sides and putting the term with V ′′(w) on the left-hand side of

the equation, we get

[µpu(d∗(w))Ru + µpo(d
∗(w))Ho(d

∗(w))− rw]V ′′(w) = µ
{
p′u(d∗(w))d∗

′
(w)

+
[
R+ V (w +R)− V (w)−RV ′(w)

]
+ pu(d∗(w))

[
V ′ (w +R)− V ′(w)

]
+p′o(d

∗(w))d∗
′
(w) ·

[
(1− d∗(w))R+ V (w +Ho(d

∗(w)))− V (w)−Ho(d
∗(w))V ′(w)

]
+po(d

∗(w)) ·
[
−d∗′(w)R+ V ′ (w +Ho(d

∗(w))) (1 +H ′o(d
∗(w))d∗

′
(w))− V ′(w)

−H ′o(d∗(w))d∗
′
(w)V ′(w)

]}
,

(B.39)

where the right-hand side of the equation can be simplified as

µ
{
pu(d∗(w))

[
V ′ (w +R)− V ′(w)

]
+ po(d

∗(w))
[
V ′ (w +Ho(d

∗(w))− V ′(w)
]}

+ µg′(d∗(w))d∗
′
(w)

= µ
{
pu(d∗(w))

[
V ′ (w +R)− V ′(w)

]
+ po(d

∗(w))
[
V ′ (w +Ho(d

∗(w))− V ′(w)
]}
,

(B.40)

where the last equality follows from the optimality condition in Property 3. Next, we prove that V (w) is
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strictly concave in w on [0, w̄ − δ) by contradiction. If there exists ŵ, such that V ′′(ŵ) ≥ 0, then we can

define w̃ = max{w : V ′′(w) ≥ 0}. Therefore, V ′′(w̃) = 0 and V ′′(w) < 0 for w ≥ w̃. V ′′(w̃) = 0 implies

that the right-hand side of (B.39) equals to zero. However, V ′′(w) < 0 for w ≥ w̃ implies that at w = w̃,

we have V ′(w̃ +Ru) < V ′(w̃), V ′(w̃ +Ho(d
∗(w̃))) < V ′(w̃), and, hence, the right-hand side of (B.39) is

smaller than zero. This leads to a contradiction. Hence, V (w) is strictly concave in w on [0, w̄).

Then, if pu(0)R < β, the proof is very similar to the case when pu(0)R ≥ β, and, hence, is omitted here.

To conclude, we have shown that V (w) is strictly concave in w on [0, w̄). Further, since F (w) = V (w)− w,

F (w) is also strictly concave in w on [0, w̄). In the following, we present an inequality which is useful for the

proof of Property 5. Since V (w) is strictly concave in w on [0, w̄), we have V ′′(w) < 0 and the right-hand

side of equation (B.39) is smaller than 0 which implies that for w ∈ [0, w̄),

µpu(d∗(w))Ru + µpo(d
∗(w))Ho(d

∗(w))− rw ≥ 0. (B.41)

B.1.5 Proof of Property 5

Property 3 implies that, for the region ofw, such that d∗(w) 6= 0 and d∗(w) 6= d̄, we have
∂G(d,w)

∂d
|d=d∗(w) =

0. By the Implicit Function Theorem, we have ∂d∗(w)
∂w = −∂2G(d,w)

∂2w
/∂

2G(d,w)
∂d∂w . Hence, our goal is to show

that ∂d
∗(w)
∂w ≤ 0. Further, following Lemma 3.9, we have ∂2G(d,w)

∂2d
= g′′(d) ≤ 0, and

∂2G(d,w)

∂w∂d
= p′u(d)[V ′(w +R)− V ′(w)−RV ′′(w)] + p′o(d)[V ′(w +Ho(d))− V ′(w)−Ho(d)V ′′(w)]

+ po(d)[V ′′(w +Ho(d))− V ′′(w)]
∂Ho(d)

∂d
.

(B.42)
Hence, we can prove that ∂d

∗(w)
∂w ≤ 0 if and only if ∂

2G(d,w)
∂w∂d ≤ 0. If pu(d)Ru ≥ β, then Ho(d) = 0. Hence,

following (B.42), we have

∂2G(d,w)

∂w∂d
= p′u(d)[V ′(w +R)− V ′(w)−RV ′′(w)] = p′u(d)R

[
V ′(w +R)− V ′(w)

R
− V ′′(w)

]
.

(B.43)

Following (B.39) and (B.40), we have

V ′′(w) =
µpu(d∗(w)) [V ′ (w +R)− V ′(w)]

µpu(d∗(w))R− rw
. (B.44)

Following (B.43), (B.44), we have ∂2G(d,w)
∂w∂d = p′u(d) [V ′(w +R)− V ′(w)] −rw

µpu(d∗(w))R−rw ≤ 0, where
the inequality follows from the concavity of V , p′u(d) ≤ 0, and equation (B.41). If pu(d)Ru < β, then
Ho(d) = (β − pu(d)R)/po(d). Following (B.39) and (B.40), we have

V ′′(w) =
µpu(d∗(w)) [V ′ (w +R)− V ′(w)] + µpo(d

∗(w)) [V ′ (w +Ho(d))− V ′(w)]

µβ − rw
. (B.45)
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Next, following (B.42), we have

∂2G(d,w)

∂w∂d
= p′u(d)[V ′(w +R)− V ′(w)−RV ′′(w)] + p′o(d)[V ′(w +Ho(d))− V ′(w)−Ho(d)V ′′(w)]

+ po(d)[V ′′(w +Ho(d))− V ′′(w)]p′o(d)(R− β)(po(d))−2

= p′u(d)
{

[V ′(w +R)− V ′(w)−RV ′′(w)]− [V ′(w +Ho(d))− V ′(w)−Ho(d)V ′′(w)]

− [V ′′(w +Ho(d))− V ′′(w)](R− β)(po(d))−1
}

= p′u(d)

{
[V ′(w +R)− V ′(w)]

[
1− µpu(d)Ru

µβ − rw
+
µpu(d)Ho(d)

µβ − rw
+

(R− β)

po(x)

µpu(d)

µβ − rw

]
+ [V ′(w +Ho(d))− V ′(w)]

[
−1− µpo(d)Ru

µβ − rw
+
µpo(d)Ho(d)

µβ − rw
+

(R− β)

po(x)

µpo(d)

µβ − rw

]
− V ′′(w +Ho(d))(Ru − β)(po(d))−1

}
= p′u(d)

{
−[V ′(w +Ru)− V ′(w)]− [V ′(w +Ho(d))− V ′(w)]

}
− p′u(d)V ′′(w +Ho(d))(R− β)(po(d))−1 ≤ 0,

where the first equality follows from equation (B.35), the second equality follows from p′u(d) = −p′o(d),
the third equality follows from equation (B.45), and the last inequality follows from the concavity of V and
p′u(d) ≤ 0. For the region of w, where d∗(w) = 0 or d∗(w) = d̄, ∂d

∗(w)
∂w = 0. To conclude, we have shown

that d∗(w) is decreasing in w.

B.1.5.1 Proof of Theorem 3.3

To prove the optimality of the contract, adapted from Lemma B.2, we first present Lemma B.6 below. It

is worth noting here that if the principal does not induce the agent’s effort, there are no arrivals, hence, the

agent cannot misreport anything and the principal will never monitor.

Lemma B.6 Suppose F (w) : [0,∞)→ R is differentiable, concave, upper-bounded function, with F ′(w) ≥
−1, and F (0) ≥ 0. Consider any contract γ ∈ ΓD, which yields the agent’s expected utility u(Γ, ν,Nu) =

W0− = w. Define a stochastic process {Φt}t≥0, such that: (1) if the principal incentivizes the agent to report

arrivals truthfully and to exert effort (i.e., incentive constraints (ICeffortd) and (IC-truthful) are satisfied)

where Wt follows (PKd), then

Φt = µpu(dt)R+ µpo(dt)(1− dt)R+ F ′(Wt−)[rWt− − µpu(dt)H
u
t − µpo(dt)Ho

t ]− rF (Wt−)

+ [F (Wt− +Hu
t )− F (Wt−)]µpu(dt) + [F (Wt− +Ho

t )− F (Wt−)]µpo(dt)− c;
(B.46)

(2) if the principal does not induce effort where Wt follows (B.17), then Φt follows equation (B.18).

Furthermore, if the process {Φt}t≥0 is non-positive almost surely, then F (w) ≥ U(γ, ν,Nu).

Following the system’s value function V (w) defined in (3.25), define F (w) := V (w)−w. Next, Property

2 implies that V ′(w) = 0 for w ≥ w̄. Furthermore, following Property 4, we have that V (w) is increasing
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and concave in w, hence, we have F ′(w) ≥ −1, and F (w) is concave in w. Hence, applying Lemma B.6, to

show that F (w) ≥ U(Γ, ν,Nu) for any γ ∈ ΓD, we only need to verify that Φt is non-positive. Before we

proceed, we present an inequality which will be helpful in proving Φt ≤ 0: under the constraints (ICeffortd)

and (IC-truthful), if F is concave in w and pu(dt) + po(dt) = 1, then the optimization problem (B.12) (with

the optimal solution (B.13) and (B.14)) implies that

F ′(Wt−)[−pu(dt)H
u
t − po(dt)Ho

t ] + F (Wt− +Hu
t )pu(dt) + F (Wt− +Ho

t )po(dt)

≤F ′(Wt−)[−pu(dt)Ru − po(dt)Ho(dt)] + F (Wt− +Ru)pu(dt) + F (Wt− +Ho(dt))po(dt)
, (B.47)

where Ho(dt) is defined in Property 1 of Section 3.4.2. Hence, first, if the principal induces the agent to

report arrivals truthfully and exert effort (i.e., incentive constraints (ICeffortd) and (IC-truthful) should be

satisfied), then Φt follows (B.46) and we get

Φt ≤ µpu(dt)R+ µpo(dt)(1− dt)R+ F ′(Wt−)[rWt− − µpu(dt)Ru − µpo(dt)Ho(dt)]− rF (Wt−)

+ [F (Wt− +Ru)− F (Wt−)]µpu(dt) + [F (Wt− +Ho(dt))− F (Wt−)]µpo(dt)− c

≤ µpu(d∗t )R+ µpo(d
∗
t )(1− dt)R+ F ′(Wt−)[rWt− − µpu(d∗t )Ru − µpo(d∗t )Ho(d

∗
t )]− rF (Wt−)

+ [F (Wt− +Ru)− F (Wt−)]µpu(d∗t ) + [F (Wt− +Ho(d
∗
t ))− F (Wt−)]µpo(d

∗
t )− c

= µpu(d∗t )R+ µpo(d
∗
t )(1− d∗t )R+ V ′(Wt−)[rWt− − µpu(d∗t )Ru − µpo(d∗t )Ho(d

∗
t )]− rV (Wt−)

+ [V (Wt− +Ru)− V (Wt−)]µpu(d∗t ) + [V (Wt− +Ho(d
∗
t ))− V (Wt−)]µpo(d

∗
t )− c = 0,

where the first inequality follows from the inequality (B.47), the second inequality follows from d∗t =

d∗(Wt−) and Property 3 of Section 3.4.2 (d∗(Wt−) maximizes G(d,Wt−)), the first equality follows from

V (w) = F (w) + w, and the last equality follows from the HJB equation (3.25). Second, if the principal

does not induce the agent to exert effort, then Φt follows (B.18), and (similar to (B.21)) we obtain Φt ≤ 0.

Hence, we have shown that F (w) ≥ U(γ, ν,Nu) for any γ ∈ ΓD. Similar to Proposition 3.1, we can easily

verify that F (w) = U(γ∗d , ν
∗, Nu). Finally, we have for any γ ∈ ΓD, U(γ∗d(w∗d), ν

∗, Nu) = F (w∗d) ≥
U(γ∗d(w), ν∗, Nu) = F (w) ≥ U(γ, ν,Nu), where the first inequality follows from the fact that w∗d the

maximizer of F . To conclude, we have shown that γ∗d(w∗d) is the optimal contract in the contract space ΓD.

B.1.6 Proofs in Section 3.5

B.1.6.1 Proof of Lemma 3.10

We take the case µpRu ≥ c as an example. The optimal contract in the baseline model is γ∗1 while

(1) the optimal contract with monitoring is γ∗m1 if condition (3.15) holds, and (2) the optimal contract with

monitoring is still γ∗1 if condition (3.15) does not hold. Hence, we only need to consider the case when

condition (3.15) holds. Note that the principal’s value function under γ∗1 is F1, following (3.7), with boundary

condition F1(0) = 0, and the principal’s value function under γ∗m1 is Fm1, following (3.7), with boundary

condition Fm1(0) =
µ[pRu + (1− p)Ro]− c−m

r
> 0. Therefore, the only difference is in the boundary

condition.
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Following the proof of Lemma 3.4 (Step 1 and Step 2 of Case 1): if we let Vm1(w) = Fm1(w) + w

and V1(w) = F1(w) + w, we have Vm1(w) > V1(w) and V ′m1(w) < V ′1(w) for any w ∈ [0, w̄1). Since

w∗m1 = arg maxw Fm1(w), we have w∗m1 = w, such that V ′m1(w) = 1 if V ′m1(0) > 1, and w∗m1 = 0 if

V ′m1(0) ≤ 1. Similarly, w∗1 = w, such that V ′1(w) = 1 if V ′1(0) > 1, and w∗1 = 0 if V ′1(0) ≤ 1. Hence,

V ′m1(w) < V ′1(w) for any w ∈ [0, w̄1), and V ′m1(w) = V ′1(w) = 0 for w ≥ w̄1 implies that w∗m ≤ w∗1. The

proofs for cases µpRu < c < µRu and µRu ≤ c are similar to the case when µpRu ≥ c, and, hence, are

omitted here. To conclude, we have shown that if the principal conducts full monitoring (i.e., monitoring

both effort and arrivals), then the agent is always worse off, i.e., w∗mi ≤ w∗i for i = 1, 2, 3.

B.1.6.2 Proof of Lemma 3.11

In this lemma, we consider the case when the principal conducts partial monitoring (i.e., by only

monitoring arrivals). First, we consider a special case where p = 0, when all arrivals are observable to the

principal. Hence, the principal never monitors. Hence, w∗m = w∗1. In what follows, we prove the result for the

case when p > 0. If Ru = Ro = R ≥ β/p (µpRu ≥ c), then the optimal contract in the baseline model is γ∗1
and the optimal contract with monitoring is γ∗m. If m = 0, then the principal always monitors the agent and

w∗L = w̄1 in the contract γ∗m. Hence, the principal’s value function follows the differential equation (3.16),

and V (w) = V̄ for w ≥ w̄2 = µβ/r < w̄1. Therefore, V ′(w̄2) = 0. Since w∗m = arg maxw F (w), we have

w∗m = w such that V ′(w) = 1 if V ′(0) > 1, and w∗m = 0 if V ′(0) ≤ 1. Following the concavity of V , we

have w∗m < µβ/r = c/r.

Next, we show that when R is sufficiently large, then w∗1 ≥ c/r. The principal’s value function F1

follows (3.7) with boundary condition F (0) = 0. Hence, the societal value function V1(w) = F1(w) + w

solves the following:

rV1(w) = rV̄ + µp[V1(w +R)− V1(w)] + r(w − w̄1)V ′1(w). (B.48)

For any R̂ > Ř > β/p, let V̌1(w) and V̂1(w) denote the solutions of the system’s value function for the

cases when R = Ř and R = R̂, respectively. Following (B.48), we have V̂1(w) =
µR̂− c
µŘ− c

V̌1

(
wŘ

R̂

)
.

Hence, V̂ ′1(w) =
µ− c/R̂
µ− c/Ř

V̌ ′1

(
wŘ

R̂

)
, and V̂ ′1(w) increases in R̂, given w and Ř fixed. Since V1 is strictly

concave in w on [0, w̄1), we have V̌ ′1(0) >
V̌1(w̄1)− V̌1(0)

w̄1 − 0
=
V̄ − 0

w̄1
=
µŘ− c
µpŘ

, where the inequality

follows from the concavity of V̂ . Hence, we obtain limR̂→∞ V̂
′

1(c/r) = limR̂→∞
µ− c/R̂
µ− c/Ř

V̌ ′1

(
wŘ

R̂

)
=

µ

µ− c/Ř
V̌ ′1 (0) >

µ

µ− c/Ř
µŘ− c
µpŘ

= 1/p ≥ 1. Therefore, there exist R̂, such that, for any R ≥ R̂, we

have V̂ ′1(c/r) ≥ 1. Since w∗1 = w, where V̂ ′(w) = 1 if V̂ ′1(0) > 1, and w∗1 = 0 if V̂ ′1(0) ≤ 1, we have

w∗1 ≥ c/r. Finally, we obtain w∗1 ≥ c/r > w∗m. To conclude, we have shown that if m = 0, there exists R̂,

such that, if Ru = Ro > R̂, then w∗m ≤ w∗1.
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APPENDIX C

Appendix to Chapter 4

C.1 Proofs of Statements

C.2 Proof in Section 2

C.2.1 Proof of Lemma 4.1

To characterize how the agent’s continuation utility evolves over time, it is useful to consider her lifetime
expected utility, evaluated conditionally upon the information available at time t

ut(γ, ν; c) = Eν
[∫ τ

0
e−rs (dLs − c1νs=µds)

∣∣∣∣FNt ]
=

∫ t∧τ−

0
e−rs(dLs − c1νs=µds) + e−rtWt(γ, ν; c) (C.1)

Since ut(γ, ν; c) is the expectation of a given random variable conditional onFNt , the process u(γ, ν; c) =
{ut(γ, ν; c)}t≥0 is an martingale under the probability measure Pν . Relying on this martingale property, we
now offer an alternative representation of u(γ, ν; c). Consider the process Mν = {Mν

t }t=≥0 defined by

Mν
t = Nt −

∫ t

0
νsds (C.2)

for all t ≥ 0. The martingale representation theorem for point processes implies that the martingale u(γ, ν; c)
satisfies

ut(γ, ν; c) = u0(γ, ν; c) +

∫ t∧τ

0
e−rsHs(γ, ν; c)dMν

s (C.3)

for all t ≥ 0, Pν-almost surely, for some FN -predictable process H(γ, ν; c) = {Ht(γ, ν; c)}t≥0. Then, (C.1)
and (C.3) imply (PK). Next, we show that {νt}t∈[0,τ ] defined in (IC) is a best response to contract γ.

Let u′t denote the agent’s lifetime expected payoff, given the information available at date t, when he acts
according to ν ′ = {ν ′t}t≥0 until date t and then reverts to ν = {νt}t≥0:

u′t =

∫ t∧τ−

0
e−rs

(
dLs − 1ν′s=µ · cds

)
+ e−rtWt(γ, ν; c) (C.4)

Following [San08] (Proposition 2), the proof now proceeds as follows. First, we show that if u′ = {u′t}t≥0
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is an FN -submartingale under Pν that is not a martingale, then ν is suboptimal for the agent. Indeed, in that
case there exists some t > 0 such that

u0−(γ, ν; c) = u′0− < Eν
′
[u′t] (C.5)

where u0−(γ, ν; c) and u′0− correspond to unconditional expected payoffs at date 0. By (C.4), the agent is
then strictly better off acting according to ν ′ until date t and then reverting to ν. The claim follows. Next, we
show that if u′ is a FN -supermartingale under Pν′ , then ν is at least as good as ν ′ for the agent. From (C.1)
and (C.4),

u′t = ut(γ, ν; c) +

∫ t∧τ

0
e−rs(1ν′s=0 − 1νs=0)cds (C.6)

for all t ≥ 0. Hence, since ut(γ, ν; c) is right-continuous with left-hand limits, so is u′. Moreover, since u′ is
non-negative, it has a last element. Hence, by the optional sampling theorem ([DM11], Chapter VI, Theorem
10)),

u′0 ≥ Eν
′
[u′τ ] = u0(γ, ν ′; c) (C.7)

where again u0−(γ, ν ′) is an unconditional expected payoff at date 0. Since u′0 = u0(γ, ν) by (C.4), the
claim follows. Now, for each t ≥ 0,

u′t = ut(γ, ν; c) +

∫ t∧τ

0
e−rs(1ν′s=0 − 1νs=0)cds

= u0(γ, ν; c) +

∫ t∧τ

0
e−rsHs(γ, ν; c)dMν

s +

∫ t∧τ

0
e−rs(1ν′=0 − 1ν=0)cds

= u0(γ, ν; c) +

∫ t∧τ

0
e−rsHs(γ, ν; c)dMν′

s +

∫ t∧τ

0
e−rsHs(γ, ν; c)(ν ′s − νs)ds

+

∫ t∧τ

0
e−rs(1ν′s=0 − 1νs=0)cds

= u0(γ, ν; c) +

∫ t∧τ

0
e−rsHs(γ, ν; c)dMν′

s +

∫ t∧τ

0
e−rsµ(1ν′s=0 − 1νs=0)

[
c

µ
−Hs(γ, ν; c)

]
ds

(C.8)

Since H(γ, ν; c) is FN -predictable and Mν′ is an FN -martingale under P ν
′
, the drift of u′ has the same

sign as

(1ν′s=0 − 1νs=0)

[
c

µ
−Hs(γ, ν; c)

]
for all t ∈ [0, τ). If (IC) holds, then this drift remains non-positive for all t ∈ [0, τ) and all choices of ν ′.
This implies that for any effort process ν ′, u′ is an FN -supermartingale under P ν

′
and, thus, that ν is at least

as good as ν ′ for the agent. If (IC) does not hold for the effort process ν, then choose ν ′ such that for each
t ∈ [0, τ), ν ′t = µ if Ht ≥ βc and ν ′t = 0 if Ht < βc. The drift of u′ is then everywhere non-negative and
strictly positive over a set of P ν

′
-strictly positive measure. As a result of this, u′ is an FN -submartingale

under P ν
′

that is not a martingale and, thus, ν is suboptimal for the agent. This concludes the proof.
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C.3 Proofs in Section 4.3

C.3.1 Proof of Proposition 4.1

(i) Following contract γcB(w,B, 0), since the promised utility process W c
t follows (4.9) and the payment

process follows (4.10), then Hc
t = βc. Hence, ν̄ ∈ N(γcB(w,B), c). Meanwhile,

u
(
γcB(w,B), ν̄; c

)
= Eν̄

[∫ τ

0−
e−rs(dLs − c1ν̄s=µds)

∣∣∣∣FNt ]
= B + Eν

[∫ τ

0+

e−rs(dLs − c1ν̄s=µds)

∣∣∣∣FNt ] = B + w (C.9)

where the third equality follows from the definition of γcB(w,B, 0).

(ii) By definition 4.2, we have that the promised utility of γcP(τ, z) follows (PK), whereHc
t = max{βc, z+

βc −W c
t }1t≤τN1 + βc1t>τN1

, dLct = cdt + (W c
t + Hc

t − w̄c)+dNt, and τ c = min{t : W c
t = 0}.

Hence, following (IC), we have ν̄ ∈ N(γcP(τ, z), c). Further, by definition of Wt, we have

u
(
γcP(τ, z), ν̄; c

)
= W c

0 .

in which W c
0 follows (4.17) if z < w̄c and τ > τz , and (4.15) otherwise.

C.3.2 Proof of Proposition 4.2

The goal of this proposition is to solve the case Z({c}). This benchmark case differs from (4.8) with
the omission of the (TT) constraint, and contributes to an important building block to our general adverse
selection problem. This benchmark setting is very similar, although not identical, to the model in [ST18].
In their setting the principal does not have to reimburse the operating cost rate c in real time. That is, the
constrain (LL) reduces to Lct monotonically non-decreasing in time t. In the following, we show the claims.

If R ≥ βc, the differential equation (4.18) with boundary condition (4.19) has a unique solution,
Fc(w), which is strictly concave on [0, w̄c) and F ′c(w) ≥ −1. The proof of this technical result can be
directly adapted from the proof of Lemma 3 in [ST18], hence, is omitted here. Furthermore, the proof of
Fc(w) = U(γcB(w, 0), ν̄) can be directly adapted from the proof of Proposition 1 in [ST18] and, hence, is
omitted here.

Next, we show that it is optimal for the principal to always induce effort from the agent before contract
termination.

Lemma C.1 For any contract γc, define a probation period

τ0(γc) := inf{t : Wt(γ
c, ν0; c) = 0}. (C.10)

Then, for any effort process νc ∈ N(γc, c) that satisfies (IC), there exists a contract γ̂c such that ν̄ ∈ N(γ̂c, c),
u(γc, νc; c) = u(γ̂c, ν̄; c), τ0(γc) = τ0(γ̂c) and

U(γ̂c, ν̄) ≥ U(γc, νc),

as long as R ≥ βc.

Proof. Consider the contract γc = {Lc, τ c} and the best response effort process νc ∈ N(γc, c) such that
Ht < βc for t ∈ T ⊂ [′, τ c]. Define γ̂c = {L̂c, τ c} such that Ĥc

t = Hc
t , ˆ̀c

t = `ct and Îct = Ict except
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Ĥc
t = βc, Îct = βcdNt for t ∈ T . Following (PK), we know that Wt(γ

c, ν; c) = Wt(γ̂
c, ν̄; c) for t ∈ [0, τ c].

Hence, τ̄(γ̂c) = τ̄(γc). Furthermore,

U(γ̂c, ν̄)− U(γc, νc) = Eν̄
[∫

t∈T
e−rt(R− βc)dNt

]
≥ 0,

in which the inequality follows from R ≥ βc.
The quantity τ0(γc) represents the time when contract γc terminates if there is no arrival. Proposition

C.1 implies that it is without loss of generality to focus on the contracts that induce full effort from the agent.
It is worth noting here that [ST18] claimed optimality of full effort contracts in their equal time discount case
without providing a proof. Next, we show that Z({c}) = maxw≥0 Fc(w).

Following Proposition C.1, we know that it is without loss of generality to focus on contracts that induce
full effort from the agent. IfR ≥ βc, then the rest of proof can be easily adapted from the proof of Proposition
2 in [ST18].

If R < βc, then for any γc that satisfies (LL), (PK), and (IR), and νc ∈ N(γc, c),

U(γc, νc) + w = U(γc, νc) + u(γc, νc; c) = Eν
c

[∫ τ

0
e−rt(RdNt − c1νct=µdt)

]
= Eν

c

[∫ τ

0
e−rt(Rµ1νct=µdt− c1νct=µdt)

]
= µ(R− βc)Eν

c

[∫ τ

0
e−rt1νct=µdt

]
≤ 0,

which verifies Z({c}) = 0. This completes the proof.
Finally, Proposition 4.2 implies that for any contract γc that satisfies (LL), (PK), and (IR), νc ∈ N(γc, c),

and u(γc, νc; c) = w, we have

U(γc, νc) ≤ Fc(w) (C.11)

C.4 Proofs in Section 4.2

C.4.1 Proof of Proposition 4.1

(i) Following contract γcB(w,B), since the promised utility process W c
t follows (4.9) and the payment

process follows (4.10), then Hc
t = βc. Hence, ν̄ ∈ N(γcB(w,B), c). Meanwhile,

u
(
γcB(w,B), ν̄; c

)
= Eν̄

[∫ τ

0−
e−rs(dLs − c1ν̄s=µds)

∣∣∣∣FNt ]
= B + Eν

[∫ τ

0+

e−rs(dLs − c1ν̄s=µds)

∣∣∣∣FNt ] = B + w (C.12)

where the third equality follows from the definition of γcB(w,B, 0).

(ii) By definition 4.2, we have that the promised utility of γcP(τ, z) follows (PK), whereHc
t = max{βc, z+

βc −W c
t }1t≤τN1 + βc1t>τN1

, dLct = cdt + (W c
t + Hc

t − w̄c)+dNt, and τ c = min{t : W c
t = 0}.

Hence, following (IC), we have ν̄ ∈ N(γcP(τ, z), c). Further, by definition of Wt, we have

u
(
γcP(τ, z), ν̄; c

)
= W c

0 .

in which W c
0 follows (4.17) if z < w̄c and τ > τz , and (4.15) otherwise.
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C.5 Proof in Section 4

C.5.1 Useful Definitions and Results

Working Duration:

T̄ (γ, ν) := Eν
[∫ τ

0
e−rt1νt=µdt

]
, (C.13)

which measures the agent’s expected working time under contract γ when the agent chooses the effort process
ν.

Societal Value:

S(γ, ν; c) = Eν
[∫ τ

0
e−rt(RdNt − c1νt=µdt)

]
, (C.14)

which measures the expected total value net of cost produced with effort ν when the agent’s cost is c.

Lemma C.2 The societal value produced is fractional to the working duration, i.e., S(γ, ν; c) = (µR −
c)T̄ (γ, ν).

Proof:

S(γ, ν; c) = Eν
[∫ τ

0
e−rt(RdNt − c1νt=µdt)

]
= Eν

[∫ τ

0
e−rt(Rµ1νt=µdt− c1νt=µdt)

]
= (µR− c)T̄ (γ, ν).

Hence, for each moment the agent exerts effort, he produces an expected revenue of µR with a cost c.

C.5.2 Proof of Proposition 4.3

For any contract pair (γg, γb), denote wg := u(γg, νg; g), wb := u(γb, νb; b) and τ := τ0(γg) where
τ̄(.) is defined in (C.10). In the following, we establish the proof in two steps.

Step 1: Constraint is more relaxed: We prove that the constraint of Z({g, b}) implies the constraint of
Y . First, (TT) implies that

wg ≥ max
ν

u(γb, ν; g) ≥ u(γb, νb; g) = wb + (b− g)T̄ (γb, νb) ≥ wb, (C.15)

where νb ∈ N(γb, b) and T̄ is defined in (C.13).

wb ≥ max
ν

u(γg, ν; b) ≥ u(γg, ν0; b) = g

∫ τ

0
e−rtdt = g/r · (1− e−rτ ). (C.16)

Hence, constraint (TT) implies constraint (4.22).
Step 2: Objective is higher We prove that the objective of Y is greater or equal to the objective of

Z({g, b}).
Step 2.1: If R > βb, then following (C.15), we have

wg ≥ wb + (b− g)T̄ (γb, νb) = wb +
(b− g)S(γb, νb; b)

µR− b
= wb +

(b− g)(U(γb, νb) + wb)

µR− b
(C.17)
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where the first equality follows from Lemma C.2 and the last equality follows from S(γb, νb; b) = U(γb, νb)+
u(γb, νb; b). Rearrange (C.17), we have

U(γb, νb) ≤ (wg − wb)(µR− b)
b− g

− wb, if R > βb. (C.18)

Further, following C.11, we have

U(γb, νb) ≤ Fb(wb). (C.19)

On the other hand, if R ≤ βb, then

U(γb, νb) ≤ Fb(wb) = −wb, if R ≤ βb (C.20)

Hence, following (C.18) - (C.20), we have

U(γb, νb) ≤ min

{
(wg − wb)
b− g

max{µR− b, 0} − wb, Fb(wb)
}
, (C.21)

which corresponds to constraints (4.24) and (4.25).
Step 2.2: Next, following Proposition C.1, there exists γ̂g = (L̂, τ̂) such that ν̄ ∈ N(γ̂g, g), u(γ̂g, ν̄; g) =

wg and τ̄(γ̂g) = τ . Denote Ŵt as the agent’s continuation utility under contract γ̂g and τ g1 as the time of the
first arrival. Then, following Lemma 4.1, we have

dŴt = [rŴt − µĤt + g]dt− dL̂t, Ĥt ≥ βg, for t < min{τ g1 , τ}. (C.22)

Furthermore, denote Îτg1 as the payment upon the first arrival. Thus,

U(γ̂g, ν̄) = Eν̄
[∫ τ

0
e−rt(RdNt − dL̂t)

]
≤ Eτg1

[
e−rτ

g
1

(
R− Iτg1 + Uτg1 (γ̂g, ν̄)

)
1τg1<τ

−
∫ min{τg1 ,τ}

0
e−rtgdt

]

=

∫ τ

0

[
e−rτ

g
1

(
R− Iτg1 + Uτg1 (γ̂g, ν̄)

)
−
∫ τg1

0
e−rtgdt

]
µe−µτ

g
1 dτ g1

−
∫ ∞
τ

∫ τ

0
e−rtgdt · µe−µτ

g
1 dτ g1

=

[∫ τ

0
µe−t(R− It + Ut(γ̂

g, ν̄))dt−
∫ τ

0
ge−tdt

]
(C.23)

where the first inequality follows from that dL̂t ≥ 0 and ˆ̀
t ≥ g for t < τ and the inequality is binding if and

only if dL̂t = gdt. Finally, following Proposition 4.2 (since Wt is the state variable of the optimal control
problem, we can easily generalize (C.11) to it at time t), we have

−It + Ut(γ̂
g, ν̄) ≤ −It + Fg(Ŵt− + Ĥt − It) ≤ Fg(Ŵt− + Ĥt), (C.24)

where the first inequality follows from that the agent’s continuation utility Ŵt = Ŵt− + Ht − It and the

192



second inequality follows from F ′g ≥ −1. Therefore, (C.22) - (C.24) imply that

U(γ̂g, ν̄) ≤ G(wg, τ) (C.25)

which further implies that

U(γg, νg) ≤ U(γ̂g, ν̄) ≤ G(wg, τ). (C.26)

To conclude, compared with the optimization problem Z({g, b}), Y has more relaxed constraint and higher
objective. Hence, Z({g, b}) ≤ Y .

C.5.3 Proof of Lemma 4.2

First, we verify (iii). If Ht = βg, ∀t ∈ [0, τ ], then W0 = w̌(τ). Further since Ht ≥ βg, ∀t ∈ [0, τ ], we
have W0 ≥ w̌(τ). Hence, if w < w̌(τ), then the optimization problem (4.26) is infeasible, or, by convention,
G(w, τ) = −∞.

Next we verify (i) and (ii) by solving the optimiation problem (4.26). Since g(1− e−τ ) is fixed when τ
is given, we only need to maximize the integral

∫ τ
0 µe

−t[R + Fg(Wt +Ht)]dt. To solve the optimization
problem, we can write down the Hamiltonian:

H = e−t{µ[R+ Fg(Wt +Ht)]}+ λ(t)(rWt − µHt) + η(t)(Ht − βg). (C.27)

The optimality conditions are

∂H
∂H

= µe−tF ′g(Wt +Ht)− λ(t)µ+ η(t) = 0, (C.28)

η(t)(Ht − βg) = 0; η(t) ≥ 0, (C.29)
∂H
∂W

= µe−tF ′g(Wt +Ht) + λ(t)r = −λ′(t). (C.30)

Since the objective of the optimal control problem is jointly concave in (Wt, Ht), it is sufficient to verify
the above optimality conditions.

Next, we verify (ii). If W0 = w ≥ ŵ(τ), then Wt + Ht = z + βg,∀t ∈ [0, τ ], where z + βg =
w/(µ(1− e−τ )). We can easily verify the optimality conditions (C.28) - (C.30) by letting

λ(t) = F ′g(z + βg)e
−t and η(t) = 0.

Furthermore, we can verify that

Wt = µ(z + βg)− µ(z + βg)e
t−τ ,

Ht = z + βg −Wt ≥ z + βg −W0 ≥ w
(

1

µ(1− e−τ )
− 1

)
≥ βg.

where the last inequality follows from w = W0 ≥ ŵ(τ).
Finally, we verify (i). If w = W0 ∈ [w̌(τ), ŵ(τ)), we firstly prove that there exists a unique z ∈

[0, g(1− e−τ )/(r + µe−τ )) such that

w̄g − (w̄g − z)er(τz−τ) = w.
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Define

h(z) := w̄g − (w̄g − z)er(τz−τ),

then we can easily obtain that

h(0) = w̄g − w̄g · e−rτ = g/r · (1− e−rτ ),

where the first equality follows from τ0 = 0 and

lim
z→g(1−e−τ )/(r+µe−τ )

h(z) = w̄g − (w̄g − z) = g(1− e−τ )/(r + µe−τ ),

where the first equality follows from that limz→g(1−e−τ )/(r+µe−τ ) τz = τ . Furthermore, we have

h′(z) = e−rτerτz
(

1 + (z − w̄g)r ·
∂τz
∂z1

)
= er(τz−τ)

(
1 + (z − w̄g)

r(w̄g + βg)

(z1 + βg)(w̄g − z1)

)
= er(τz−τ)

(
1− r(w̄g + βg)

z + βg

)
= er(τz−τ) z

z + βg
> 0.

Since w ∈ [h(0), limz→g(1−e−τ )/(r+µe−τ ))h(z)) and h is continuous, we have that there exists a unique
z ∈ [0, g(1 − e−τ )/(r + µe−τ )) such that w = h(z), denoted by z. It is easy to verify that τz < τ since
z < g(1− e−τ )/(r + µe−τ ). Hence, if we let Ht follows (4.31), then Wt follows (4.30).

We can easily verify the optimality conditions (C.28) - (C.30) by letting

λ(t) =

{ [∫ τ−τz
t µe−µξF ′g(Wξ + β)dξ + F ′g(z + βg)e

−µ(τ−τz)
]
e−rt, t ∈ [0, τ − τz],

F ′g(z + βg)e
−t, t ∈ [τ − τz, τ ],

(C.31)

and

η(t) =

{
µe−rtγ(t), t ∈ [0, τ − τz],

0, t ∈ [τ − τz, τ ],
(C.32)

where

γ(t) :=

[∫ τ−τz

t
µe−µξF ′g(Wξ + βg)dξ + F ′g(z + βg)e

−µs − e−µtF ′g(Wt + βg)

]
≥ 0,

and γ(t) follows from that γ(t) is decreasing in t and γ(τ − τz) = 0. Furthermore, we have

Ht = β, t ∈ [0, τ − τz],

Ht = z + βg −Wt ≥ z + βg −Wτ−τz = β, t ∈ [τ − τz, τ ].

C.5.4 Proof of Lemma 4.3

Similar to the proof of Lemma 4.2, since the objective of the optimal control problem is jointly concave
in (Wt, Ht), it is sufficient to verify the optimality conditions (C.28) - (C.30). We can verify (C.28) - (C.30)
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by simply letting

λ(t) = F ′g

(
w

µ

)
e−t, η(t) = 0,

and

Wt = w > 0, Ht =
w

µ
− w ≥ r

µ
· g
r

= βg.

C.5.5 Proof of Proposition 4.4

First, we look at the function when τ̄ ∈ [0, 1/r). If w ≥ ŵ(τ), according to the optimal solution in
(4.33), we have

G(w, τ) =

∫ τ

0
µe−tFg(y

∗)dt+

∫ τ

0
(µR− c)e−tdt, (C.33)

where y∗ = z + βg =
w

µ(1− e−τ )
. Hence,

∂G(w, τ)

∂τ
= µe−τFg(y

∗) +

∫ T

0
µe−tF ′g(y

∗)
∂y∗

∂τ
dt+ (µR− g)e−τ

= µe−τFg(y
∗) + (µR− g)e−τ + F ′g(y

∗)
−we−τ

µ(1− e−τ )2

∫ T

0
µe−tdt

= µe−τ (Fg(y
∗)− y∗F ′g(y∗)) + (µR− c)e−τ

= µe−τy∗
(
Fg(y

∗)− Fg(0)

y∗
− F ′g(y∗)

)
+ (µR− c)e−τ > 0. (C.34)

where the inequality follows from the concavity of F . As a result, we have

∂J(w, τ̄)

∂τ̄
=
∂τ

∂τ̄

∂G(w, τ)

∂τ
> 0, (C.35)

where the inequality follows from (C.34) and ∂τ
∂τ̄ > 0, and

∂J(w, τ̄)

∂w
= F ′g(y

∗). (C.36)

Hence, J is increasing in τ̄ when w ≥ ŵ(τ). Next, we verify the concavity of J . Following (C.35) and
(C.36), we have that the Hessian matrix of J is ∂

2J(w, τ̄)

∂2w

∂2J(w, τ̄)

∂w∂τ̄
∂2J(w, T̄ )

∂w∂T̄

∂2J(w, T̄ )

∂2T̄

 , (C.37)

where

∂2J(w, τ̄)

∂2w
=

F ′′g (y∗)

µ(1− e−τ )
< 0, (C.38)
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where the inequality follows from the concavity of Fg,

∂2J(w, τ̄)

∂w∂τ̄
=
∂y∗

∂τ̄
F ′′g (y∗) =

∂y∗

∂τ

∂τ

∂τ̄
F ′′g (y∗) > 0, (C.39)

where the inequality follows from ∂y∗

∂τ < 0, ∂τ∂τ̄ > 0, and the concavity of Fg, and

∂2J(w, τ̄)

∂2τ̄
= −µ(1− rτ̄)

µ
r · y∗ · F ′′g (y∗) · ∂y

∗

∂τ̄
− µ2(1− rτ̄)

µ−r
r [F (y∗)− y∗F ′g(y∗)]

− (µR− g)µ(1− rτ̄)
µ−r
r < 0. (C.40)

where the inequality follows from ∂y∗

∂τ̄ < 0 and Fg(y∗)−y∗F ′g(y∗) = y∗[(Fg(y
∗)−Fg(0))/y∗−F ′g(y∗)] ≥ 0

(implied by the concavity of Fg).
Further, with (C.38) - (C.40), we can show that the Hessian matrix of J is negative definite which implies

that J is jointly concave when w ≥ ŵ(τ).
Second, we look at the function if w ∈ [w̌(τ), ŵ(τ)). According to (4.30) and (4.31), we have

Wτ1 = z = µ(z + βg)(1− eτ1−τ ) = w̄g + (w − w̄g)erτ1 ,

by denoting τ1(w, τ) := τ − τz and simplifying τ1(w, τ) with τ1. Further, we denote y∗1 = z + βg. Hence,

y∗1 =
g

µ(r + µeτ1−τ )
,

and τ1(w, τ) is the solution of

g

r + µeτ1−τ
(1− eτ1−τ ) = w̄g + (w − w̄g)erτ1 , (C.41)

where we again simplify τ1(w, τ) with τ1. Therefore,

G(w, τ) =

∫ τ1(w,τ)

0
µe−tFg

(
w̄g + (w − w̄g)ert + βg

)
dt+

∫ τ

τ1(w,τ)
µe−tFg(y

∗
1)dt+

∫ τ

0
(µR− g)e−tdt.

(C.42)

Then,

∂G(w, τ)

∂τ
=
[
µe−τ1Fg (w̄g + (w − w̄g)erτ1 + βg)− µe−τ1Fg(y∗1)

] ∂τ1(w, τ)

∂τ

+

∫ τ

τ1(w,τ)
µe−tF ′(y∗1)

∂y∗1
∂τ

dt+ µe−τFg(y
∗
1)

=

∫ τ

τ1(w,τ)
µe−tdt · F ′g(y∗1)

−gµeτ1(w,τ)−τ · (∂τ1(w,τ)
∂τ − 1)

µ(r + µeτ1(w,τ)−τ )2
+ µe−τFg(y

∗
1) + (µR− g)e−τ ,

(C.43)

Since (C.41) implies that

∂τ1(w, τ)

∂τ
− 1 =

r + µeτ1−τ

µ(1− eτ1−τ )
, (C.44)
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we have

∂G(w, τ)

∂τ
= µe−τ (Fg(y

∗
1)− y∗1F ′g(y∗1)) + (µR− g)e−τ > 0, (C.45)

where the inequality follows from Fg(y
∗
1) − y∗1F ′g(y∗1) = y∗1[(Fg(y

∗
1) − Fg(0))/y∗1 − F ′g(y∗1)] ≥ 0. As a

result, we have

∂J(w, τ̄)

∂τ̄
=
∂τ

∂τ̄

∂G(w, τ)

∂τ
> 0, (C.46)

where the inequality follows from (C.45) and ∂τ
∂τ̄ > 0, and

∂J(w, τ̄)

∂w
= µ

∫ τ1

0
e−µtF ′g(w̄g + (w − w̄g)ert + βg)dt+ F ′g(y

∗
1) · e−µτ1 . (C.47)

Hence, J is increasing in τ̄ when w ∈ [w̌(τ), ŵ(τ)). Next, we verify the concavity of J . Following (C.46)
and (C.47), we have that the Hessian matrix of J is∂

2J(w, T̄ )

∂2w

∂2J(w, T̄ )

∂w∂T̄
∂2J(w, T̄ )

∂w∂T̄

∂2J(w, T̄ )

∂2T̄

 , (C.48)

where

∂2J(w, τ̄)

∂2w
= µ

∫ τ1

0
e−µtF ′′(w̄g + (w − w̄g)ert + βg)e

rtdt+ F ′′(y∗1) · e−µτ1 · ∂y
∗
1

∂w
, (C.49)

and

∂2J(w, τ̄)

∂2τ̄
= −µ(1− rτ̄)

µ
r · y∗1 · F ′′g (y∗1) · ∂y

∗
1

∂τ̄
− µ2(1− rτ̄)

µ−r
r · [Fg(y∗1)− y∗1F ′g(y∗1)]

− (µR− g) · µ · (1− rτ̄)
µ−r
r < 0, (C.50)

where the inequality follows from ∂y∗

∂τ̄ < 0 and Fg(y∗)−y∗F ′g(y∗) = y∗[(Fg(y
∗)−Fg(0))/y∗−F ′g(y∗)] ≥ 0

(implied by the concavity of Fg), and

∂2J(w, τ̄)

∂w∂τ̄
= −µ · ∂τ

∂τ̄
· e−τ · y∗1 · F ′′(y∗1) · ∂y

∗
1

∂w
. (C.51)

Further, the concavity of Fg and

∂y∗1
∂w

=
∂y∗1
∂τ1
· ∂τ1

∂w
= −erτ1 (r + µe−(τ−τ1))2

ge−(τ−τ1)µ(1− e−(τ−τ1))
· ∂y

∗
1

∂τ1
> 0.

implies that

∂2J(w, τ̄)

∂2w
< 0,

∂2J(w, τ̄)

∂w∂τ̄
> 0. (C.52)

Furthermore, following (C.49)-(C.51) we can show that the Hessian matrix of J is negative definite which
implies that J is jointly concave when w ∈ [w̌(τ), ŵ(τ)). And following (C.33) and (C.42), we can show

197



that G(w, τ) is continuously differentiable when w = ŵ(τ).
Finally, we show that limτ̄→1/r J(w, τ̄) = J(w, 1/r).

lim
τ̄→1/r

J(w, τ̄) = lim
τ→∞

G

(
w,− log(1− rτ̄)

r

)
(C.53)

Since limτ→∞ ŵ(τ) = g/r, if w < g/r, we have limτ̄→1/r J(w, τ̄) = −∞ = J(w, τ̄). If w ≥ g/r, then
since

lim
τ→∞

z(w, τ) = lim
τ→∞

w

µ(1− e−τ )
− βg =

w

µ
− βg

and

lim
τ→∞

Wt = lim
τ→∞

µ(z + βg)(1− et−τ ) = w; lim
τ→∞

Ht = lim
τ→∞

z + βg −Wt = w/µ− w

Hence, following (4.35), we have limτ̄→∞ J(w, τ̄) = J(w, 1/r) if w ≥ g/r. This concludes the proof.

C.5.6 Proof of Lemma 4.4

First, it is clear that at optimality, either (4.24) or (4.25) holds as equality. Otherwise we can increase ξ∗

to improve the objective value without violating any constraint, which contradicts optimality.
If (4.24) is binding at optimality, (4.42) holds with w = w∗b , following (4.25). If (4.25) is binding, on

the other hand, (4.24) implies Fb (w∗b ) + w∗b ≥ ξ∗ ≥ 0. Furthermore, (4.19) implies Fb(0) + 0 = 0. Finally,
Fb(w) + w is increasing following Lemma 4.2. Therefore, there exists a w ∈ [0, w∗b ] such that (4.42) holds
as an equality.

C.5.7 Proof of Lemma 4.5

Define

Vb(w) := Fb(w) + w. (C.54)

First, we present a technical lemma.

Lemma C.3 For any k ≥ 0, we have

Vb1(k · b1)

µR− b1
=
Vb2(k · b2)

µR− b2
, ∀b1, b2 < µR, (C.55)

where Vb is defined in (C.54).

Proof. Following Proposition 4.2, we have

Vb(w) = Fb(w) + w = U(γbB(w, 0), ν̄) + w

= S(γbB(w, 0), ν̄; b) = (µR− b)T̄ (γbB(w, 0), ν̄)

= (µR− b)E

[∫ τbB

0
e−rtdt

]
, (C.56)
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where the fourth equality follows from Lemma 9, and the fifth equality follows from (C.13). Following (4.9)
and (4.11), we have for any b,

dW b
t = [r(W b

t− − b) + min{b/r −W b
t−, b/µ}dNt]1W b

t−≥0, τ
b
B = min{t : W b

t− = 0}.

Define process wt := W b
t /b, then we have

dwt = [r(wt − 1) + min{1/r − wt−, 1/µ}dNt]1wt−≥0, τ
b
B = min{t : wt− = 0},

Hence, for any b1, b2, τ b1B and τ b2B follows the same distribution if W b1
0 /b1 = W b2

0 /b2. Therefore,

Vb1(k · b1)

µR− b1
= E

[∫ τ
b1
B

0
e−rtdt

]
= E

[∫ τ
b2
B

0
e−rtdt

]
=
Vb2(k · b2)

µR− b2
,

which verifies (C.55).
Lemma C.3 implies that for any w > 0 and b1 < b2, we have

Vb1(w) = Vb2

(
w
b2
b1

)
µR− b1
µR− b2

> Vb2 (w)
µR− b1
µR− b2

> Vb2(w) (C.57)

Next, we prove the desired results. For any given b, we denote the solution of optimization problem
(4.38)-(4.40) as (w∗g(b), w

∗
b (b), τ̄

∗(b)) and wB defined in (4.43) as wB(b). If there exists b̌ ∈ [b, µR] such
that wB(b̌) = 0, then we prove by contradcition that for any b̂ > b̌, we have wB(b̂) = 0. It implies that there
exists b̄ ∈ [g, µR] such that wB = 0 if and only if wB > 0.

If wB(b̂) > 0, following (4.43), we have µR > b and w∗g(b̂) > w∗b (b̂). Following (4.39) and (4.40),
(w∗g(b̂), w

∗
b (b̂), τ̄

∗(b̂)) and (w∗g(b̌), w
∗
b (b̌), τ̄

∗(b̌)) are feasible for both b = b̂ and b = b̌. Therefore,

p · J(w∗g(b̂), τ̄
∗(b̂)) + (1− p) min

{
Fb̂(w

∗
b (b̂)),

w∗g(b̂)− w∗b (b̂)
b̂− g

− w∗b (b̂)

}
> p · J(w∗g(b̌), τ̄

∗(b̌))

+(1− p)w∗b (b̌) ≥ p · J(w∗g(b̂), τ̄
∗(b̂)) + (1− p) min

{
Fb̌(w

∗
b (b̂)),

w∗g(b̂)− w∗b (b̂)
b̌− g

− w∗b (b̂)

}

which implies that

min

{
Fb̂(w

∗
b (b̂)),

w∗g(b̂)− w∗b (b̂)
b̂− g

− w∗b (b̂)

}
> min

{
Fb̌(w

∗
b (b̂)),

w∗g(b̂)− w∗b (b̂)
b̌− g

− w∗b (b̂)

}

which is equivalent to

min

{
Vb̂(w

∗
b (b̂)),

w∗g(b̂)− w∗b (b̂)
b̂− g

}
≥ min

{
Vb̌(w

∗
b (b̂)),

w∗g(b̂)− w∗b (b̂)
b̌− g

}

which contradicts with

Vb̂(w
∗
b (b̂)) < Vb̌(w

∗
b (b̂)), and,

w∗g(b̂)− w∗b (b̂)
b̂− g

<
w∗g(b̂)− w∗b (b̂)

b̌− g
.

where the first inequality follows from (C.57).

199



C.5.8 Proof of Theorem 4.1

Following proposition 4.1, (γgP(τ∗, z∗), γbB(wB, w
∗
b −wB)) satisfy constraints (LL), (PK), (IC), and (IR).

In the following, we verify (TT).

u(γbB(wB, w
∗
b − wB, 0), ν̄; b) = w∗b ≥ g/r · (1− e−rτ

∗
) = u(γgP(τ∗, z∗), ν0; b) = max

ν∈N
u(γgP(τ∗, z∗), ν; b),

where the first equality follows from Proposition 4.1, the first inequality follows from constraint (4.22), and
the last inequality follows from {ν0} = N(γgP(τ∗, z∗), b). If µR ≤ b,

u(γgP(τ∗, z∗), ν̄; g) = w∗g ≥ w∗b = max
ν∈N

u(γbB(0, w
∗
b , 0), ν; g),

where the first equality follows from proposition 4.1 and the first inequality follows from constraint (4.22).
On the other hand, if µR > b,

u(γgP(τ∗, z∗), ν̄; g) = w∗g ≥ w∗b + (b− g)
ξ∗

(µR− b)
= w∗b + (b− g)

Vb(wB)

(µR− b)
= w∗b + (b− g)T̄ (γbB(wB, w

∗
b − wB), ν̄)

= u(γbB(wB, w
∗
b − wB), ν̄; g) = max

ν∈N
u(γbB(wB, w

∗
b − wB), ν; g),

where the first equality follows from proposition 4.1, the first inequality follows from constraint (4.25), the
last equality follows from the following lemma.

Lemma C.4 For any γb that ν̄ ∈ N(γb, b), we have ν̄ ∈ N(γb, g).

Define bad agent’s lifetime expected utility, evaluated conditionally upon the information available at time t
under contract γb and effort process ν̄ as ubt , then

ubt = Eν̄
[∫ τb

0
e−rs(dLbs − bds)

∣∣∣∣∣FNt
]

= ub0 +

∫ t

0
Hb
sdM

ν̄
s ,

where M ν̄
t = Nt − µt and Hb

s ≥ βb for any s. Define good agent’s lifetime expected utility, evaluated
conditionally upon the information available at time t under contract γb and effort process ν̄ as ugt , then

ugt = Eν̄
[∫ τb

0
e−rs(dLbs + (b− g)ds)

∣∣∣∣∣FNt
]

= ubt + Eν̄
[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt
]

= ub0 +

∫ t

0
Hb
sdM

ν̄
s + Eν̄

[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt
]
.
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Next, we denote ug
′

t as good agent’s lifetime expected payoff, given the information available at time t, when
he acts according to ν ′ = {ν ′t}t≥0 until time t and then reverts to ν̄, then

ug
′

t = ugt +

∫ t∧τ−

0
e−rs(1− 1ν′s=µ)gds

= ub0 +

∫ t∧τ−

0
Hb
sdM

ν̄
s + Eν̄

[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧τ−

0
e−rs(1− 1ν′s=µ)gds

= ub0 +

∫ t∧τb−

0
Hb
sdM

ν′
s + Eν̄

[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧τb−

0
e−rsµ(1− 1ν′s=µ)(βg −Hb

s)ds,

Then, for any t′ > t,

Eν
′
[ug
′

t′ |F
N
t ] = Eν

′

[
ub0 +

∫ t′∧τb−

0
Hb
sdM

ν′
s + Eν̄

[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt′
]

+

∫ t′∧τb−

0
e−rsµ(1− 1ν′s=µ)(βg −Hb

s)ds

∣∣∣∣∣FNt
]

= ub0 +

∫ t∧τb−

0
Hb
sdM

ν′
s + Eν̄

[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt
]

+ Eν
′

[∫ t′∧τb−

0
e−rsµ(1− 1ν′s=µ)(βg −Hb

s)ds

∣∣∣∣∣FNt
]

≤ ub0 +

∫ t∧τb−

0
Hb
sdM

ν′
s + Eν̄

[∫ τb

0
e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧τb−

0
e−rsµ(1− 1ν′s=µ)(βg −Hb

s)ds = ug
′

t ,

where the second equality follows from law of iterated expectation and the first inequality follows from that
µ(1− 1ν′s=µ)(βg −Hb

s) ≤ 0, ∀t. Hence, ug
′

t is FN -supermartingale under P ν
′
. Therefore, by the optional

sampling theorem ([DM11], Chapter VI, Theorem 10),

u(γb, ν̄; g) = ug
′

0 ≥ Eν
′
[ug
′
τ ] = u(γb, ν ′; g).

which implies that ν̄ is at least as good as ν ′ for the agent.

C.5.9 Proof of Proposition 4.5

Following Proposition 4.2, we have if βb ≥ R, then U(γb, νb) ≤ −w which implies that wb∗ = 0. As a
result, w∗b ≥ wb∗ = 0.

If βb ≥ R, then in the optimization problem (4.4), ξ ≤ 0. Hence, the optimization problem (4.4) becomes

max
wg ,wb,τ̄

p · J(wg, τ̄)− (1− p)wb

wg ≥ wb ≥ g · τ̄ ,
τ̄ ≥ 0, τ̄ ≤ 1/r.
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Since the objective function is decreasing in wb, we can let wb = g · τ̄ . Hence, optimization problem (4.4)
becomes

max
wg ,τ̄

p · J(wg, τ̄)− (1− p)g · τ̄

wg ≥ g · τ̄ ,
τ̄ ≥ 0, τ̄ ≤ 1/r.

We firstly consider the following optimization problem (corresponding dual variable defined after each
constraint):

max
wg ,τ̄

p · J(wg, τ̄)− (1− p)g · τ̄ (C.58)

τ̄ ≥ 0; η1,

wg ≥ g · τ̄ ; η2,

wg ≤ w̄g = g/r; η3.

The Lagrangian of the above optimization problem is given as

L = pJ(wg, τ̄)− (1− p)gτ̄ + η1τ̄ + η2(wg − gτ̄) + η3(w̄g − wg)

Optimality condition requires

η1 ≥ 0, η1τ̄ = 0,

η2 ≥ 0, η2(wg − gτ̄) = 0,

η3 ≥ 0, η3(w̄g − wg) = 0,

∂L
wg

= pJ1 + η2 − η3 = 0,

∂L
∂τ̄

= pJ2 − (1− p)g + η1 − η2g = 0.

If η3 > 0, then wg = w̄g. Hence, J1 = F ′g(y
∗) = −1 (following (C.36)). Hence, η3 = −η2 − pJ1 < 0

which leads to a contradiction. Hence, η3 = 0. We further consider the following two cases:

1. If η2 > 0, then w = gτ̄ . Hence, η2 = −pJ1(w,w/g) > 0 and η1 = −pJ1(w,w/g)g−pJ2(w,w/g)+
(1 − p)g = −pgF ′g(w) + (1 − p)g ≥ 0. Hence, in this case, the optimal solution will be either
w∗g = τ̄∗ = 0 or w∗g = w∗∗ and τ̄∗ = w∗∗/g where F ′g(w

∗∗) = (1− p)/p. In both cases, w∗g < wg∗

2. If η2 = 0, then we need to find w∗g , τ̄
∗ such that

η2 = −pJ1(w∗g , τ̄
∗) = 0,

η1 = (1− p)g − pJ2,

η1τ̄ = 0.

Since J1(w∗g , τ̄
∗) = 0, we have τ̄∗ > 0 and η1 = 0. (If η1 > 0 and τ̄∗ = 0, then J1(w∗g , 0) = −1)

Hence, we require J1(w∗g , τ̄
∗) = 0 and J2(w∗g , τ̄

∗) = (1− p)g/p.

Finally, we show that w∗g < wg∗ . If wg∗ > 0, then wg∗ = {w : F ′g(w) = 0}. For any w ≥ wg∗ ,
F ′g(w) = J1(w,w/g) + 1/g · J2(w,w/g) ≤ 0. Further, since J2(w,w/g) > 0 (following (C.46)),
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we have J1(w,w/g) < 0. Furthermore, since J12 > 0 (following (C.52)), we have J1(w, τ̄) <
J1(w,w/g) < 0 for any w ≥ w∗g and τ̄ ≤ w/g. In this case, w∗g < wg∗ .

On the other hand, if wg∗ = 0, then F ′g(0) ≤ 0 which further implies that F ′g(w) = J1(w,w/g) +
1/g · J2(w,w/g) ≤ 0 for any w ≥ 0. Again, since J2(w,w/g) > 0(following (C.46)), we have
J1(w,w/g) < 0. Furthermore, since J12 > 0 (following (C.52)), we have J1(w, τ̄) < J1(w,w/g) <
0 for any w ≥ 0 and τ̄ ≤ w/g. In this case, (w∗g , τ̄

∗) does not exist.

Hence, w∗g ≤ w
g
∗ .

Since w ≤ wg∗ < w̄g in the optimization problem (C.58), the constraint w ≤ w̄g is redundant. Hence, in the
optimization problem (4.4), we have if βb ≥ R, w∗g ≤ w

g
∗ . This concludes the proof.

C.6 Proofs in Section 5

C.6.1 Proof of Lemma 4.6

(i) Following Proposition 4.4, J (w, τ̄ , c) is jointly concave in (w, τ̄).
(ii) Following Proposition 4.4, J (w, τ̄ , c) is is increasing in τ̄ . If τ̄ = 0, then τ = − log(1− rτ̄)/r = 0.

Hence, ŵ(0) = 0. Hence, for any w ≥ 0, following (C.33), we have

J (w, 0, c) = lim
τ→0

∫ τ

0
µe−tFg

(
w

µ(1− e−τ )

)
dt = lim

τ→0

∫ τ

0
µe−t

[
µR− c
r

− w

µ(1− e−τ )

]
dt

= lim
τ→0
−µ(1− e−τ )

w

µ(1− e−τ )
= −w.

(iii) It is equivalent to show that J ′1(w, τ̄ , c) = J ′1(w, τ̄) ≥ −1. First, J is concave in w. Hence, we only

need to show J ′1(w, τ̄) ≥ −1 when w is large enough. Denote τ :=
log(1− rτ̄)

r
. Following (C.36), we

have, for w ≥ ŵ (τ), J ′1(w, τ̄) = F ′c

(
w

µ(1− e−τ )

)
≥ −1.

(iv) Following (ii) and (iii), we have

J (w, τ̄ , c) + w ≥ J (w, 0, c) + w = 0.

Again, following (ii) and definition of J , we have

J (w, τ̄ , c) + w ≤ J
(
w,
w

c
, c
)

+ w = U(γcP(τ, 0), ν̄) = U(γ̂c, ν̄) + w = Fc(w) + w = Vc(w) ≤ µR− c
r

,

where τ :=
log(1− rτ̄)

r
and τ̄ =

w

c
, the last inequality follows from 4.2.

C.6.2 Proof of Theorem 4.2

For any contract menu ΓC , C = [c, c̄], denote w(c) := u(γc, νc; c), and τ(c) := τ0(γc) for any c ∈ [c, c̄]
where τ0(.) is defined in (C.10).

Step 1: Constraint is more relaxed: We prove that the constraint of Z(C) implies the constraint of YC .
First, (TT) implies that for any c1 < c2 ∈ C,

w(c1) ≥ max
ν

u(γc2 , ν; c1) ≥ u(γc2 , νc2 ; c1) = w(c2) + (c2 − c1)T̄ (γc2 , νc2) ≥ w(c2), (C.59)
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where νc2 ∈ N(γc2 , c2) and T̄ is defined in (C.13). Hence, (TT) implies that w(c) should be non-increasing.
Furthermore, for any c < c̄, we have

w(c̄) ≥ max
ν

u(γc, ν; c̄) ≥ u(γc, ν0; c̄) = c

∫ τ

0
e−rtdt = c/r · (1− e−rτ ). (C.60)

Step 2: Objective is higher We prove that the objective of YC is greater or equal to the objective of
Z(C).

If R > βc, then for any c̃ < c, following (C.59), we have

w(c̃) ≥ w(c) + (c− c̃)T̄ (γc, νc) = w(c) +
(c− c̃)S(γc, νc; c)

µR− c
= w(c̃) +

(c− c̃)(U(γc, νc) + wc)

µR− c
,

(C.61)

where the first equality follows from Lemma C.2 and the last equality follows from S(γc, νc; c) = U(γc, νc)+
u(γc, νc; c). Rearrange (C.61), we have, for any c̃ < c,

U(γc, νc) ≤ (w(c̃)− w(c))(µR− c)
c− c̃

− w(c), if R > βc. (C.62)

Hence, for any c < µR, we have

U(γc, νc) ≤ inf
c̃<c

[
w(c̃)− w(c)

c− c̃

]
(µR− c)− w(c). (C.63)

On the other hand, if R ≤ βc (c ≥ µR), then

U(γc, νc) ≤ Fc(w(c)) = −w(c), if R ≤ βc. (C.64)

Finally, following Step 2.2 of the proof of Proposition 4.3 and definition of J , we have for any c < µR,

U(γc, νc) ≤ J (w(c), τ(c), c) ≤ J
(
w(c),min

{
w(c̄)

c
,
1

r

}
, c

)
, (C.65)

where the second inequality follows from that the function J (w, τ̄ , c) is increasing in τ̄ (Lemma 4.6(ii)) and
(C.61). Therefore, (C.63) and (C.65) imply that for any c < µR,

U(γc, νc) ≤ ξ
(
c;w(·)

)
. (C.66)

With (C.64), we established that the objective of YC is higher than the objective of Z(C). To conclude,
compared with the optimization problem Z(C), YC has more relaxed constraint and higher objective. Hence,
Z(C) ≤ YC .
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C.6.3 Proof of Proposition 4.6

Define

y(N,w(.)) :=
N∑
i=1

[P (ci)− P (ci−1)] min

{
J
(
w(ci),min

{
w(c̄)

ci
,
1

r

}
, ci

)
(C.67)

, inf
c̃<ci

[
w(c̃)− w(ci)

δ

]
(µR− ci)− w(ci)

}
− w(cN )

∫ c̄

min{µR,c̄}
ρ(c)dc, (C.68)

Following (4.50), we have

Yc = sup
w(.)

lim
N→∞

y(N,w(.)),

s.t w(c) is non-increasing in c. (C.69)

As a result, we have for any ε > 0, there exists non-increasing w̃(c) such that

Yc ≤ lim
N→∞

y(N, w̃(.)) + ε,

Since for any N ,
y(N, w̃(.)) ≤ ŷ(N),

we have
lim
N→∞

y(N, w̃(.)) = lim inf
N→∞

y(N, w̃(.)) ≤ lim inf
N→∞

ŷ(N).

Hence, for any ε > 0, we have

Yc ≤ lim inf
N→∞

ŷ(N) + ε,

which finally implies (4.54).

C.6.4 Proof of Proposition 4.7

First, we show that Ji(w|wN ) is concave in w by induction. J0(w|wN ) = 0 is clearly concave in w.
Next, if Ji−1(w|wN ) is concave in w, we verify that Ji(w|wN ) is also concave in w.

Denote

f(wi−1, wi) := [P (ci)− P (ci−1)] min

{
wi−1 − wi

δ
(µR− ci)− wi, J

(
wi,min

{
wN
ci
,
1

r

}
, ci

)}
+ Ji−1(wi−1|wN ).

Since
wi−1 − wi

δ
(µR − ci)− wi is linear in (wi−1, wi) and J

(
wi,min

{
wN
ci
,
1

r

}
, ci

)
is concave in wi

(follows Lemma 4.6), then G(wi−1, wi) is jointly concave in (wi−1, wi). Hence, Ji(wi|wN ) is concave in
wi.

Since Ji−1(wi−1|wN ) is concave in wi−1, w̌ and ŵ are well-defined and w̌ ≤ ŵ. Next, we verify the
optiaml solution in the following 3 cases. Further, following Lemma 4.6 (iii) and ci < µR, we have

Case 1. If wi ≤ w̌ − ūδ, then we verify that w∗i−1 = w̌. If wi−1 ≥ w̌, then wi−1 ≥ w̌ ≥ wi + ūδ.
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Hence

f(wi−1, wi) = [P (ci)− P (ci−1)]J
(
wi,min

{
wN
ci
,
1

r

}
, ci

)
+ Ji−1(wi−1|wN ),

and

f ′1(wi−1, wi) = J′i−1(wi−1|wN ) ≤ 0,

for wi−1 ≥ w̌, where the last inequality follows from the definition of w̌. If wi−1 < w̌, then

f ′1(wi−1, wi) =

{
[P (ci)−P (ci−1)](µR−ci)

δ + J′i−1(wi−1|wN ) > 0, if wi−1 ≤ wi + ūδ,
J′i−1(wi−1|wN ) ≥ 0, if wi ∈ (wi + ūδ, w̌],

where the second inequality follows from the definition of w̌. Hence, f(wi−1, wi) is increasing in wi−1 if
wi−1 < w̌ and decreasing in wi−1 if wi−1 ≥ w̌which imply that w∗i−1 = w̌.

Case 2. If wi ∈ (w̌ − ūδ, ŵ − ūδ], then we verify that w∗i−1 = wi + ūδ. For wi−1 < wi + ūδ,

f ′1(wi−1, wi) =
[P (ci)− P (ci−1)](µR− ci)

δ
+ J′i−1(wi−1|wN ) ≥ 0,

where the inequality follows from wi−1 < wi + ūδ ≤ ŵ. Further, for wi−1 > w̌ + ūδ,

f ′1(wi−1, wi) = J′i−1(wi−1|wN ) < 0,

where the inequality follows from wi−1 > wi + ūδ > w̌.
Case 3. If wi ∈ (ŵ − ūδ, ŵ], then we verify that w∗i−1 = ŵ. For wi−1 < ŵ < wi + ūδ, we have

f ′1(wi−1, wi) =
[P (ci)− P (ci−1)](µR− ci)

δ
+ J′i−1(wi−1|wN ) ≥ 0,

where the inequality follows from wi−1 < ŵ. And for wi−1 > ŵ, then

f ′1(wi−1, wi) =

{
[P (ci)−P (ci−1)](µR−ci)

δ + J′i−1(wi−1|wN ) ≤ 0, if wi−1 ∈ (ŵ, wi + ūδ],
J′i−1(wi−1|wN ) ≤ 0, if wi−1 > wi + ūδ,

(C.70)

where the first inequality follows from wi−1 > ŵ. Hence, f(wi−1, wi) is increasing in wi−1 if wi−1 < ŵ
and decreasing in wi−1 if wi−1 ≥ ŵ which imply that w∗i−1 = ŵ.

Case 4. If wi > ŵ, we verify that w∗i−1 = wi. Folloing (C.70), we have f(wi−1, wi) is decreasing in
wi−1 for wi−1 ≥ wi. Hence, w∗i−1 = wi.
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C.6.5 Proof of Proposition 4.8

First, if wN ≥
µR− c
r

, then

JN (wN |wN ) =

N∑
i=1

[P (ci)− P (ci−1)] min

{
wi−1 − wi

δ
(µR− ci)− wi, J

(
wi,min

{
wN
ci
,
1

r

}
, ci

)}

≤
N∑
i=1

[P (ci)− P (ci−1)]J
(
wi,min

{
wN
ci
,
1

r

}
, ci

)

≤
N∑
i=1

[P (ci)− P (ci−1)]

[
µR− ci

r
− wi

]
≤ 0 ≤ JN (0|0),

where the last inequality follows from wi ≥ wN ≥
µR− c
r

.

On the other hand, for any wN > c̄/r, then denote the corresponding optimal solution as {w∗i }i=0,...,N .
Since wN > c̄/r, we have w∗i > c̄/r ≥ ci/r for i = 0, ..., N . Hence, min{wN/ci, 1/r} = 1/r for
i = 1, ..., N .

Following (C.36), we have

∂J (w, 1/r, c)

∂w
= −1, (C.71)

if w ≥ ŵ(∞) = c/r and w ≥ µc/r. Hence,

J (w, 1/r, ci) ≤ J (c̄/r, 1/r, c), (C.72)

for any i ∈ {0, ..., N} and w > c̄/r. Define {w̃i}i=0,...,N as

w̃i = w∗i − (w∗N − c̄/r).

Hence, if wN ≥ c̄/r,

JN (wN |wN ) =

N∑
i=1

[P (ci)− P (ci−1)] min

{
w∗i−1 − w∗i

δ
(µR− ci)− w∗i , J

(
w∗i ,min

{
w∗N
ci
,
1

r

}
, ci

)}

≤
N∑
i=1

[P (ci)− P (ci−1)] min

{
w̃i−1 − w̃i

δ
(µR− ci)− w̃i, J

(
w̃i,min

{
w̃N
ci
,
1

r

}
, ci

)}

≤
N∑
i=1

[P (ci)− P (ci−1)]

[
µR− ci

r
− wi

]
≤ 0 ≤ JN (0|0) ≤ JN (c̄/r|c̄/r),

where the first inequality follows from (C.72). Therefore,

JN (wN |wN ) ≤ JN (w̄|w̄).

C.6.6 Proof of Lemma 4.7

Since c ≤ ci, γciP (τ iw, z
i
w) satisfies (LL) for c ∈ (ci−1, ci]. Then, following the defition of γciP (τ iw, z

i
w) and

γcB, the menu of contracts Γ̂w
C satisfies (LL), (PK), (IC) and (IR). Hence, what is left is to verify (TT).
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First, we present a technical lemma to show that for any c ≤ ci, ν̄ is type c agent’s best response if he
takes contract γciP (τ iw, z

i
w).

Lemma C.5 For any c ≤ ci, we have ν̄ ∈ N(γciP (τ iw, z
i
w), c).

The proof of this lemma is the same as the proof of Lemma C.4, which is omitted here. Next, we verify (TT)
for type ci, i = 0, ..., N . Given any cj such that c ≤ ci < cj ≤ cN . We have

max
ν

u
(
γ
cj
P (τ jw, z

j
w), ν; ci

)
= u

(
γ
cj
P (τ jw, z

j
w), ν̄; ci

)
= u

(
γ
cj
P (τ jw, z

j
w), ν̄; cj

)
+ (cj − ci)τ̄(γ

cj
P (τ jw, z

j
w), ν̄)

= u
(
γ
cj
P (τ jw, z

j
w), ν̄; cj

)
+ (cj − ci)τ̄ iw ≤ wj + wi − wj = u

(
γciP (τ iw, z

i
w), ν̄; ci

)
, (C.73)

where the first equality follows from Lemma C.5, the second equality follows from (C.13), the third equality
follows from Lemma C.2, and the first inequality follows from the definition of τ̄ jw in (4.57). On the other
hand, given any type cj such that c ≤ cj < ci ≤ cN ,

max
ν

u
(
γ
cj
P (τ jw, z

j
w), ν; ci

)
= u

(
γ
cj
P (τ jw, z

j
w), ν0; ci

)
= cj τ̄

j
w ≤ cj min

{
wN
cj
,
1

r

}
≤ wN ≤ wi

= u
(
γciP (τ iw, z

i
w), ν̄; ci

)
, (C.74)

where the first inequality follows from the definition of τ̄ jw in (4.57), and the third inequality follows from
that w is non-increasing. Furthermore,

max
ν

u (γcB(0, wN , 0), ν; ci) = wN ≤ wi = u
(
γciP (τ iw, z

i
w), ν̄; ci

)
, (C.75)

where the inequality follows from that w is non-increasing. Hence, (C.73)-(C.75) imply that type ci would
not mimic any other type.

Before we consider a general type c ∈ (ci−1, ci], we present a technical lemma.

Lemma C.6 For any k0 ≥ τ̄ ≥ 0,

V(k0c1, τ̄ ; c1)

µR− c1
=
V(k0c2, τ̄ ; c2)

µR− c2
; ∀c1, c2 < µR. (C.76)

Proof: Let τ := − log(1− rτ̄)/r. First, k0c1 ≥ ŵc1(τ) is equivalent to k0c2 ≥ ŵc2(τ). Further,

zc1(k0c1, τ)

zc2(k0c2, τ)
=
c1

c2
.

Similarly, k0c1 ∈ [w̌c1(τ), ŵc1(τ)) is equivalent to k0c2 ∈ [w̌c2(τ), ŵc2(τ)). Further, τz(c1) = τz(c2) and

zc1(k0c1, τ)

zc2(k0c2, τ)
=
c1

c2
.

Hence, for any agent c with w = k0c, τ̄ , and let τP (w, τ̄ ; c) be the stochastic stopping time that an agent
with cost c and initial promised utility k0c and probation length τ̄ is terminated, when exerting full effort in a
probation contract. This implies that τP (w, τ̄ ; c) are identically distributed for any c. Therefore,

V(k0c, τ̄ ; c)

µR− c
; ∀c < µR,

is a constant.
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Now consider an agent with type c ∈ (ci−1.ci], given cj > ci, then

max
ν

u
(
γ
cj
P (τ jw, z

j
w), ν; c

)
= u

(
γ
cj
P (τ jw, z

j
w), ν̄; c

)
= u

(
γ
cj
P (τ jw, z

j
w), ν̄; cj

)
+ (cj − c)τ̄ jw

= wj + (cj − c)τ̄ jw ≤ wj + wi − wj + (ci − c)τ̄ jw

= wi + (ci − c) min

{
V (wj ,min{wN/cj , 1/r}, cj)

µR− cj
, inf
ck:k<j,k∈1:N

[
wk − wj
cj − ck

]}
= wi + (ci − c) min

{
V(wj · ci/cj ,min{wN/cj , 1/r}, ci)

µR− ci
, inf
ck:k<i,k∈1:N

[
wk − wi
ci − ck

]}
≤ wi + (ci − c) min

{
V(wi,min{wN/ci, 1/r}, ci)

µR− ci
, inf
ck:k<i,k∈1:N

[
wk − wi
ci − ck

]}
= wi + (ci − c)τ̄ iw = u

(
γciP (τ iw, z

i
w), ν̄; c

)
≤ max

ν
u
(
γciP (τ iw, z

i
w), ν; c

)
, (C.77)

where the first equality follows from Lemma C.5, the second equality follows from (C.13), the third equality
follows from Lemma C.2, the first inequality and the forth equality follows from the definition of τ̄ jw in (4.57),
the fifth equality follows from Lemma C.6, the second inequality follows from that V is increasing in w and
τ̄ , and the sixth equality follows from (C.13). Meanwhile, given cj < ci,

max
ν

u
(
γ
cj
P (τ jw, z

j
w), ν; c

)
= u

(
γ
cj
P (τ jw, z

j
w), ν0; c

)
= cj τ̄

j
w ≤ cj min

{
wN
cj
,
1

r

}
≤ wN ≤ wi ≤ wi + (ci − c)τ̄ iw = u

(
γciP (τ iw, z

i
w), ν̄; c

)
, (C.78)

where the first inequality follows from the definition of τ̄ jw in (4.57), and the third inequality follows from
that w is non-increasing. Furthermore,

max
ν

u (γcB(0, wN , 0), ν; c) = wN ≤ wi = u
(
γciP (τ iw, z

i
w), ν̄; c

)
, (C.79)

where inequality follows from that w is non-increasing. Hence, (C.77)-(C.79) imply that c ∈ [c, cN ] would
not mimic any other type. Finally, for any type c ∈ [min{µR, c̄}, c̄] and j ∈ {1, ..., N},

max
ν

u
(
γ
cj
P (τ jw, z

j
w), ν; c

)
= u

(
γ
cj
P (τ jw, z

j
w), ν0; c

)
= cj τ̄

j
w (C.80)

≤ cj min

{
1

r
,
wN
cj

}
≤ wN = u (γcB(0, wN , 0), ν; c) ,

which implies that type c ∈ [min{µR, c̄}, c̄] does not mimic any other type. This concludes the proof.

C.6.7 Proof of Theorem 4.3

If 2w∗i ≤ w∗i−1 + w∗i+1, then w∗i − w∗i+1 ≤ w∗i−1 − w∗i . Hence, for any j < i,

w∗j − w∗i
i− j

=

∑i
k=j+1(w∗k−1 − w∗k)

i− j
≥

(i− j)(w∗i−1 − w∗i )
i− j

= w∗i−1 − w∗i . (C.81)
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Therefore,

U
(

Γ̂
w∗N
C

)
=

∫ c̄

c
U(γcw∗N

, νc)ρ(c)dc

=
N∑
i=1

∫ ci

ci−1

U(γciP (τ iw, z
i
w), νc)ρ(c)dc+

∫ c̄

µR
U(γcB(0, wN , 0), νc)ρ(c)dc

=

N∑
i=1

∫ ci

ci−1

U(γciP (τ iw, z
i
w), ν̄)ρ(c)dc− wN

∫ c̄

µR
ρ(c)dc

=
N∑
i=1

(P (ci)− P (ci−1))J (w∗〉 , τ̄
〉
w∗N

, c〉)−wN (P(c̄)− P(cN ))

=
N∑
i=1

(P (ci)− P (ci−1)) min

{
J
(
w∗i ,min

{
w∗N
ci
,
1

r

}
, ci

)
,

min
j∈{0,...,i−1}

wj − wi
(i− j)δ

(µR− ci)− wi

}
− w∗N (P (c̄)− P (cN ))

=
N∑
i=1

(P (ci)− P (ci−1)) min

{
J
(
w∗i ,min

{
w∗N
ci
,
1

r

}
, ci

)

,
wi−1 − wi

δ
(µR− ci)− wi

}
− w∗N (P (c̄)− P (cN )) = ŷ(N),

where the third equality follows from Lemma C.5, the fifth equality follows from the definition of τ̄ jw in (4.57)
and sixth equality follows from (C.81).
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