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ABSTRACT

The dynamical relationship between 3D genome structure, genome function, and

cellular phenotype is referred to as the 4D Nucleome (4DN). 4DN analysis remains dif-

ficult, since multiple data modalities must be integrated and comprehensively studied

in order to obtain new insights. In my dissertation work, I present a computational

toolbox which offers both novel and established methods to integrate and analyze time

series genome structure and function data. I also provide an extension of the 4DN

that captures the contributions of the maternal and paternal genomes. I uncover

differences between the two genomes’ structural and functional features across the

cell cycle, and reveal an allele-specific relationship between local genome structures

and gene expression. In addition, I present a computational framework for analyz-

ing multi-way genomic interactions which allow us to identify transcription clusters

in the human genome. Finally, I introduce a computational method to characterize

the differences between memory and plasma B cells in the adaptive immune system,

which guide us to develop an immune system inspired learning system.
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CHAPTER I

Introduction

1.1 Research overview

The 4D Nucleome (4DN) is defined by the dynamical relationship between 3D

genome structure, genome function, and cellular phenotype. In recent years, 4DN

analysis has gained attention for its ability to uncover cellular regulation principles

and advance the field of cellular reprogramming [40, 111]. 4DN analysis remains diffi-

cult, since multiple data modalities must be integrated and studied comprehensively

in order to obtain new insights. These data are often large and represented in dis-

parate formats. In addition, methods for 4DN analysis remain underdeveloped since

most established analysis techniques focus on a single data type. Successful analy-

sis of the 4DN requires an in depth knowledge of multiple fields, including biology,

mathematics, and computer science.

In this dissertation, I present my contribution towards the advancement of knowl-

edge on the 4DN. This includes the development of 4DN analysis tools and methods,

the introduction of novel data sets, and insights into cell dynamics within the im-

mune system. The remainder of the research overview will outline the methods and

concepts presented in later chapters.

Chapter II, “4DNvestigator: Time Series Genomic Data Analysis Toolbox,” de-

scribes the 4DNvestigator, a toolbox designed for the analysis of 4DN data. The
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4DNvestigator is a MATLAB toolbox that processes time series RNA-seq and Hi-C

data, and applies both novel and established analysis methods to these data. The

4DNvestigator can automatically apply standard methods like differential expres-

sion analysis and topologically associated domain (TAD) identification to time series

data. In addition, the 4DNvestigator includes recently developed analysis techniques,

including a statistical test for comparing Hi-C matrices and a formalized method

to integrate gene expression with genome structure features over time and compare

their dynamics. We provide a publicly available code repository for others to use for

their own research, with pre-written examples to directly recapitulate the analysis

presented in this work. This allows for both experienced researchers and novices to

explore and analyze the 4DN in a mathematically rigorous manner.

Chapter III, “Functional Organization of the Maternal and Paternal Human 4D

Nucleome,” examines the relationship between genome structure and genome func-

tion in the maternal and paternal genomes across the cell cycle. Steady state gene

expression (RNA-seq), nascent gene expression (Bru-seq), and genome structure (Hi-

C) were separated into their maternal and paternal contributions to determine how

the two genomes work together to give rise to cellular phenotype. We investigated

differences between maternal and paternal genome structure and function from cell

cycle sorted B-lymphocytes, and discovered significant relationships between changes

in local genome structure and differentially expressed genes. In addition, we found

that maternal and paternal alleles of many genes have different dynamics through the

cell cycle. In contrast, we also discovered that genes which regulate the cell cycle and

other critical biological pathways have extraordinarily similar gene expression pat-

terns between their alleles. We introduce an extension of the 4DN, which accounts

for the maternal and paternal genomes independently, allowing for more in-depth

analysis of 4DN data.

Chapter IV, “Deciphering Multi-way Interactions in the Human Genome,” de-
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scribes a recently developed genome conformation capture technique, Pore-C, and

methods for its analysis. We introduce a novel dataset for Pore-C in human fibrob-

lasts and use publicly available Pore-C data from B-lymphocytes for our investigation.

We outline how the long range multi-way contacts between genomic loci from Pore-

C can be represented computationally through incidence matrices and hypergraphs.

We also develop methods for analysis of Pore-C data. This includes measurements

of entropy, which can be used to describe the amount of order within a genome and

to compare different cell types or cell states. In addition, we created a pipeline that

integrates Pore-C with other data modalities to identify biologically important ge-

nomic features called transcription factories (transcription clusters). This ongoing

work represents a major advancement for the 4DN, since the incorporation of multi-

way contacts will be crucial to elucidate more complex and elusive genomic structural

features going forward.

Chapter V, “Understanding Memory B Cell Selection,” represents a slight change

in focus from the genome within each cell to the dynamics of cells themselves. Specif-

ically, we examine the dynamics of B cells during the adaptive immune response. We

hypothesize what mathematical objective functions the immune system is optimizing

for during a process called affinity maturation, in which naive B cells are mutated

in order to gain affinity to a foreign antigen. We consider the differences between

optimizing for plasma B cells, which have extremely high affinity and eradicate the

current antigen, and memory B cells, which have a lower affinity but are stored within

the body for repeated attacks from the same (or similar) antigen in the future. We

provide a detailed algorithm that outlines the steps that the immune system performs

during affinity maturation, and offer a simulated immune response to quantitatively

assess our hypotheses.

Together, the methods and experiments within this dissertation represent an ad-

vancement in 4DN data analysis, and insights into cell dynamics within the immune

3



system. This work will guide future research on genome structure and function,

with implications for the studies of genetic diseases, immunology, and personalized

medicine.

1.2 Hi-C and RNA-seq

The human genome contains over 20,000 genes which work together to give rise

to cellular phenotype. Within individual cells, not all genes are active. Depending on

the cell type and cell state, certain genes express while others are transcriptionally

repressed. Over the past two decades, it has been found that different cell types

and cell states can be characterized by their gene expression profiles. For example,

a skin cell has a different set of genes that are turned “on” compared to a neuron,

and a cancerous cell may have genes which are mistakenly over- or under-expressed.

Because gene expression can be used to differentiate cell types and cell states, it can

also serve as a valuable tool for analyzing the differences and identifying the causes

for these types and states.

The most commonly used technique for extracting gene expression is RNA-

sequencing (RNA-seq) [137]. RNA-seq is a high-throughput DNA sequencing method,

which quantifies RNA transcripts after conversion of RNA to cDNA (reverse tran-

scription) [94, 137]. RNA-seq offers many benefits over previous technologies such

as genomic tiling microarrays and cDNA Sanger sequencing. Microarrays offer high

resolution, but rely on previous knowledge of the genome sequence and have high

background noise. Sanger sequencing of cDNA provides accurate reads but is expen-

sive and has low throughput. On the other hand, RNA-seq is able to quantify gene

expression that does not correspond to known genomic sequences, enabling analysis

on unmapped regions of the human genome or on other organisms whose genomes

have yet to be sequenced. Additionally, RNA-seq is a relatively inexpensive, high

throughput, and accurate technique, and is able to detect a wide range of expression
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levels (i.e. extremely low or high expression) [137]. Because of these advantages,

RNA-seq has been critical in studying and discovering the boundaries of genes, splic-

ing isoforms of genes, and novel transcribed regions [137]. RNA-seq has become the

standard for biological experiments since its conception. It has proved to be an in-

valuable tool for understanding gene expression in numerous disease states, cell types,

and biological time (i.e. the cell cycle).

Computationally, RNA-seq data are represented as a vector of expression levels for

all genes. These vectors of gene expression can then be compared between settings to

determine changes in gene expression. Comparisons of expression can be as simple as

subtracting one sample’s expression vector from the other and determining the genes

with the largest differences. Differential expression analysis is another common way

of comparing samples, where differences are determined by finding a ratio, or fold-

change, of the genes between settings [80]. Comparisons of gene expression profiles

in diseased versus healthy cells has been a major focus within the past two decades.

These analyses have to led to countless discoveries of genes related to disease states,

and the development of therapeutic technologies which have the ability to directly

target malfunctioning genes.

The 3D organization of the genome enables approximately three billion nucleotide

base pairs to be contained within a cell’s nucleus. Genome organization and its im-

portance for proper cellular function has been a long standing question, but this field

has made dramatic advances in recent years through the development of chromatin

conformation capture (3C) technology and its related extensions, namely genome-

wide chromatin conformation capture (Hi-C) [42]. To extract Hi-C data, chromatin

is fixed in place and neighboring DNA sequences are crosslinked. The DNA is then

digested, or cut with restriction enzymes, which isolates potentially distant (in terms

of 1D sequence) regions of the genome that are in close 3D proximity. These small

sections of DNA are then ligated, sequenced, and aligned with a reference genome.
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This data provides information on DNA-DNA ‘contacts’ which is stored within a

matrix for analysis [42].

Hi-C data has provided unprecedented levels of information on the structure of

the genome, both in terms of data resolution and throughput [42]. Analysis of data

derived from Hi-C (and its predecessors) has confirmed the existence of euchromatin

and heterochromatin, or loosely packed and tightly packed DNA, as well as chro-

mosome territories which had previously been observed through microscopy (Figure

1.1). In addition, Hi-C has enabled the discovery of finer details of genome organiza-

tion such as topologically associated domains (TADs) and chromatin loops between

enhancers, insulators, and genes genome-wide [42, 74, 107].

Chromatin contacts are represented as matrices computationally, where rows and

columns correspond to genomic loci at a given resolution. Hi-C data are commonly

referred to as contact frequency matrices, as bulk Hi-C data has the largest val-

ues in the indices that represent the most frequent contacts between genomic loci

over a population of cells. Hi-C matrices are characterized by a block-like structure.

These represent areas of the genome which have a preference to interact with one

another. The most significant block structures are formed by euchromatin and het-

erochromatin. Euchromatic regions tend to interact with other euchromatic regions

but not heterochromatic regions (and vice-versa). The more subtle block structures

within euchromatin and heterochromatin correspond to TADs, in which chromatin is

highly self-interacting but is insulated from neighboring chromatin. Similar to RNA-

seq data, Hi-C can be used to differentiate between cell types and identify disease

states. For example, Hi-C has been used to identify chromosomal aberrations, such

as translocations or aneuploidy, which are hallmarks of cancers [114, 115].
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1.3 The 4D Nucleome

Gene expression and the 3D organization of the genome are intrinsically linked

to one another. When unfolded, the human genome is approximately two meters

long, yet it is able to fit within a cell nucleus with a diameter of only six micrometers

[19]. This is only possible due to the incredible organization of the genome, which

consists of a highly complex folding of DNA at multiple scales. DNA is wrapped

around histone octamers and is then further organized into loops, topologically do-

mains, and chromatin compartments [92]. This organization is non-random, and the

functional output of genes is connected to the specific configuration of the genome.

Genome organization and gene expression are not static, but instead are constantly

changing over time due to cell replication, transcriptional bursting, and other factors

like the circadian rhythm (Figure 1.1) [23, 33]. The dynamical relationship of genome

structure, gene expression, and cell phenotype is known as the 4D Nucleome.

Figure 1.1: Imaging and simplified schematic of the cell cycle. Chromosome territories
occupy distinct regions within the interphase nucleus. The maternal and paternal copies of
each chromosome are often far apart.
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The integration of gene expression and genome architecture, RNA-seq and Hi-C

data respectively, offers novel insights into their relationship and how they give rise

to cellular phenotype. This integration remains difficult, as the two data modali-

ties are inherently different. First, RNA-seq offers a measurement of gene expression

which only covers RNA coding regions of the genome. That is, the areas between

transcribed regions do not provide information. Hi-C data can be derived from all

non-repetitive areas of the genome but Hi-C is not able to provide a “gene-scale” con-

tact matrix without being prohibitively expensive. This discrepancy can be mostly

resolved through binning, or grouping of genomic loci into lower resolution subdi-

visions. Second, RNA-seq gives a vector of values (one value per gene) while Hi-C

provides a matrix of contacts between genomic loci. The conflict of data representa-

tion can be addressed through the creation of a correlation matrix of gene expression,

or the reduction of a Hi-C matrix to a vector of values. Multiple methods have been

proposed for the latter, such as principle component analysis (PCA), but these meth-

ods innately lose important spatial information which is critical for more nuanced

analyses.

Other promising methods for the integration of gene expression and genome or-

ganization come from network theory. A network is a simplified representation of a

system, which captures patterns of interactions between its components. One can

consider the genome as a network, where genomic loci (e.g. genes) are the nodes

and contacts between loci are the edges. From this network perspective, both gene

expression and genome architecture can be used to study the genome between cell

states or through time. One can use concepts that are well known in network theory

such as network centrality, clustering coefficients, and entropy to determine changes

in the network architecture and how these changes are related to phenotypical differ-

ences [79]. Genomic networks have been used to study genes essential to the circadian

rhythm and cell cycle, and elucidate structural and functional changes during cellular

8



reprogramming [23, 79].

1.4 Pore-C/Multi-Way Interactions in the Genome

A recent advance in genome sequencing by Oxford Nanopore Technologies led

to the development of Pore-C. Pore-C offers some distinct advantages over Hi-C.

Pore-C data are characterized by their long read lengths and ability to capture long

range interactions between multiple loci at once (multi-way interactions). Since this

technology was only made commercially available recently, few tools or methods have

been created to process and analyze these data.

Pore-C can capture multi-way interactions between genomic loci, since the reads

contain multiple sequences concatenated together. We process these data and con-

struct hypergraphs from the Pore-C reads. Normally, graphs contain edges between

pairs of nodes (which can describe two-way interactions from other forms of data, like

Hi-C), while hypergraphs can contain any number of nodes within a single hyperedge.

This allows us to represent multi-way contacts (3+ loci) from Pore-C data in a more

succinct and efficient manner. To work with Pore-C data computationally, we use

incidence matrices. In incidence matrices, rows represent nodes (loci) and columns

represent hyperedges (multi-way contacts). Pore-C data also include the pair-wise

contacts offered by Hi-C, both by directly capturing pairs of interacting loci and by

decomposing multi-way contacts into all pair-wise combinations of loci.

One application for Pore-C data is for the identification of biologically relevant

interactions between genomic loci. We focus on the identification of features called

transcription clusters (also called transcription factories), where multiple loci come

together for more efficient gene transcription. They are characterized by high con-

centrations of proteins called transcription factors and RNA Polymerase II, which

facilitate gene transcription. We integrate the multi-way contact data from Pore-C

with other data modalities, such as chromatin accessibility (ATAC-seq), RNA Poly-
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merase II binding (ChIP-seq), transcription factor binding motifs, and gene expression

(RNA-seq) to identify these transcription clusters. The identification of transcription

clusters can help explain the relationship between genome structure and gene func-

tion, and offer insights into gene expression regulation which can be leveraged for

therapeutic applications in the future.

1.5 Adaptive Immune System

The immune system is critical in maintaining the health of humans. It identifies

and defends against the great variety of pathogens one encounters in daily life, even

defending against threats not previously encountered and perhaps never to be seen

again. Considering the range and severity of the problems the immune system con-

fronts, its properties are truly amazing, well beyond current technology’s capabilities.

When confronting a threat, the immune system usually does not attempt to create

an entirely new solution. Throughout a person’s life, the immune system deals with

many antigens and uses these experiences to help fight the current threat. The first

line of defense is called the innate immune system. It includes innate immune cells

such as macrophages and dendritic cells, and is able to detect and destroy invaders

that show clear non-self patterns. The innate immune system responds very quickly,

but generically, to threats.

The adaptive immune system is a second line of defense that more specifically

detects and destroys foreign pathogens, and generates antibodies that are critical for

resolving infections. Generating highly specific antibodies is a multistage process that

starts with certain signals from the innate immune system. When those signals (anti-

gens) reach regions of lymphoid tissue, such as lymph nodes, a specialized structure

forms called the germinal center. Within the germinal center, B cells undergo an op-

timization process called affinity maturation, where interactions between B cells and

T cell promote survival of B cells whose receptors bind an antigen very well. These

10



interactions eventually lead to the production of plasma B cells which then secrete a

highly specific antibody against the antigen. Further, this process produces memory

B cells that can quickly be activated if the same antigen, or something similar, reap-

pears in the future. Thus key elements of a successful solution are stored for future

use.
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CHAPTER II

4DNvestigator: Time Series Genomic Data

Analysis Toolbox

This chapter is based on a paper by Stephen Lindsly, Can Chen, Sijia Liu, Scott

Ronquist, Samuel Dilworth, Michael Perlman, and Indika Rajapakse [76].

2.1 Abstract

Data on genome organization and output over time, or the 4D Nucleome (4DN),

require synthesis for meaningful interpretation. Development of tools for the efficient

integration of these data is needed, especially for the time dimension. We present

the “4DNvestigator”, a user-friendly network based toolbox for the analysis of time

series genome-wide genome structure (Hi-C) and gene expression (RNA-seq) data.

Additionally, we provide methods to quantify network entropy, tensor entropy, and

statistically significant changes in time series Hi-C data at different genomic scales.

2.2 Introduction

4D nuclear organization (4D Nucleome, 4DN) is defined by the dynamical in-

teraction between 3D genome structure and function [23, 40, 109]. To analyze the

4DN, genome-wide chromosome conformation capture (Hi-C) and RNA sequencing
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(RNA-seq) are often used to observe genome structure and function, respectively

(Figure 2.1A). The availability and volume of Hi-C and RNA-seq data are expected

to increase as high throughput sequencing costs decline, thus the development of

methods to analyze these data is imperative. The relationship of genome structure

and function has been studied previously [23, 45, 46, 74, 79], yet comprehensive and

accessible tools for 4DN analysis are underdeveloped. The 4DNvestigator is a unified

toolbox that loads time series Hi-C and RNA-seq data, extracts important structural

and functional features (Figure 2.1B), and conducts both established and novel 4DN

data analysis methods. We show that network centrality can be integrated with gene

expression to elucidate structural and functional changes through time, and provide

relevant links to the NCBI and GeneCards databases for biological interpretation of

these changes [122, 140]. Furthermore, we utilize entropy to quantify the uncertainty

of genome structure, and present a simple statistical method for comparing two or

more Hi-C matrices.

Figure 2.1: The 4D Nucleome. (A) Representative time series Hi-C and RNA-seq data
correspond to genome structure and function, respectively. (B) Genome structure and
function are intimately related. The 4DNvestigator integrates and visualizes time series
data to study their dynamical relationship. This figure was taken from Lindsly et al. [76].
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2.3 Materials and Methods

An overview of the 4DNvestigator workflow is depicted in Figure 2.2, and a Getting

Started document is provided to guide the user through the main functionalities of

the 4DNvestigator. The 4DNvestigator takes processed Hi-C and RNA-seq data as

input, along with a metadata file which describes the sample and time point for each

input Hi-C and RNA-seq file (See Supplementary Materials “Data Preparation” in

Lindsly et al. [76]). A number of novel methods for analyzing 4DN data are included

within the 4DNvestigator and are described below.

Figure 2.2: Overview of the 4DNvestigator data processing pipeline. Within this diagram,
4DN refers to the 4DNvestigator. This figure was taken from Lindsly et al. [76].

2.3.1 4DN Feature Analyzer

The “4DN feature analyzer” quantifies and visualizes how much a genomic region

changes in structure and function over time. To analyze both structural and functional

data, we consider the genome as a network. Nodes within this network are genomic
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loci, where a locus can be a gene or a genomic region at a particular resolution

(i.e. 100 kb or 1 Mb bins). Edges in the genomic network are the relationships or

interactions between genomic loci.

Algorithm 1 4DN Feature Analyzer

1: Input: Hi-C matrices A(m) ∈ Rn×n, and RNA-seq vectors r(m) ∈ Rn×1, m = 1, . . . , T

2: Compute degree, eigenvector, betweenness, and closeness centrality of A(m), and define as b
(m)
deg ,

b
(m)
eig , b

(m)
bet , b

(m)
close, respectively, where each b(m) ∈ Rn×1

3: Compute the first principal component (PC1) of A(m)

4: Form the feature matrices X(m) = [b
(m)
deg ,b

(m)
eig ,b

(m)
bet ,b

(m)
close, r

(m)], where X(m) ∈ Rn×5

5: Normalize the columns of X(m)

6: Compute the common low dimensional space Y(m)

7: Visualize the low dimensional projection Y(m) or 4DN phase plane

8: Return: Low dimensional space Y(m) and genes in loci with the largest structure-function

changes

2.3.1.1 Structural Data

Structure in the 4DN feature analyzer is derived from Hi-C data. Hi-C deter-

mines the edge weights in our genomic network through the frequency of contacts

between genomic loci. To analyze genomic networks, we adopt an important con-

cept from network theory called centrality. Network centrality is motivated by the

identification of nodes which are the most “central” or “important” within a network

[96]. The 4DN feature analyzer uses degree, eigenvector, betweenness, and closeness

centrality (step 1 of Algorithm 1), which have been shown to be biologically relevant

[79]. For example, eigenvector centrality can identify structurally defined regions of

active/inactive gene expression, since it encodes clustering information of a network

[79, 97]. Additionally, betweenness centrality measures the importance of nodes in

regard to the flow of information between pairs of nodes. Boundaries between eu-

chromatin and heterochromatin, which often change in reprogramming experiments,

can be identified in a genomic network through betweenness centrality [79].
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2.3.1.2 Functional Data

Function in the 4DN feature analyzer is derived from gene expression through

RNA-seq. Function is defined as the log2 transformation of Transcripts Per Million

(TPM) or Reads Per Kilobase Million (RPKM). For regions containing more than one

gene, the mean expression of all genes within the region is used. The 4DN feature

analyzer can also use other one-dimensional features (e.g. ChIP-seq, DNase-seq). The

interpretation of the results and visualizations would change accordingly.

2.3.1.3 Integration of Data

Hi-C data are naturally represented as a matrix of contacts between genomic loci.

Network centrality measures are one-dimensional vectors that describe important

structural features of the genomic network. We combine network centrality with

RNA-seq expression to form a structure-function “feature” matrix that defines the

state of each genomic region at each time point (Figure 2.3A, step 3 of Algorithm

1). Within this matrix, rows represent genomic loci and columns are the centrality

measures (structure) and gene expression (function) of each locus. The z-score for

each column is computed to normalize the data (step 4 of Algorithm 1).

2.3.1.4 4DN Analysis

The 4DN feature analyzer reduces the dimension of the structure-function feature

matrix for visualization and further analysis (steps 5 and 6 of Algorithm 1). We

include the main linear dimension reduction method, Principal Component Analysis

(PCA), and multiple nonlinear dimension reduction methods: Laplacian Eigenmaps

(LE) [10], t-distributed Stochastic Neighbor Embedding (t-SNE) [134], and Uniform

Manifold Approximation and Projection (UMAP) [85] (Figure 2.3C). These methods

are described in more detail in Supplementary Materials “Dimension Reduction” in

Lindsly et al. [76]. The 4DN feature analyzer can also visualize the dynamics of
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genome structure and function using the 4DN phase plane (step 6 of Algorithm 1) [23,

77]. We designate one axis of the 4DN phase plane as a measure of genome structure

(e.g. eigenvector centrality) and the other as a measure of genome function (gene

expression). Each point on the phase plane represents the structure and function of

a genomic locus at a specific point in time (Figure 2.3B). The 4DN feature analyzer

identifies genomic regions and genes with large changes in structure and function over

time, and provides relevant links to the NCBI and GeneCard databases [122, 140].

2.3.2 Additional 4DNvestigator Tools

2.3.2.1 General Structure and Function Analysis

The 4DNvestigator also includes a suite of previously developed Hi-C and RNA-seq

analysis methods. Euchromatin and heterochromatin compartments can be identi-

fied from Hi-C [25, 74], and regions that change compartments between samples are

automatically identified. Significant changes in gene expression between RNA-seq

samples can be determined through differential expression analysis using established

methods [4].

2.3.2.2 Network Entropy

Entropy measures the amount of uncertainty within a system [34]. We use entropy

to quantify the organization of chromatin structure from Hi-C data, where higher en-

tropy corresponds to less structural organization. Since Hi-C is a multivariate analysis

measurement (each contact coincidence involves two variables, the two genomic loci),

we use multivariate entropy as follows:

Entropy = −
∑
i

λi lnλi, (2.1)

where λi represents the dominant features of the Hi-C contact matrix. In mathe-
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matics, these dominant features are called eigenvalues [123]. Biologically, genomic

regions with high entropy likely correlate with high proportions of euchromatin, as

euchromatin is more structurally permissive than heterochromatin [82, 105]. Further-

more, entropy can be used to quantify stemness, since cells with high pluripotency

are less defined in their chromatin structure [86]. We provide the full algorithm for

network entropy and calculate the entropy of Hi-C data from multiple cell types in

Supplementary Materials “Network Entropy” in Lindsly et al. [76].

2.3.2.3 Tensor Entropy

The notion of transcription factories supports the existence of simultaneous inter-

actions involving three or more genomic loci [33]. This implies that the configuration

of the human genome can be more accurately represented by k-uniform hypergraphs,

a generalization of networks in which each edge can join exactly k nodes (e.g. a

standard network is a 2-uniform hypergraph). We can construct k-uniform hyper-

graphs from Hi-C contact matrices by computing the multi-correlations of genomic

loci. Tensor entropy, an extension of network entropy, measures the uncertainty or

disorganization of uniform hypergraphs [22]. Tensor entropy can be computed from

the same entropy formula (2.1) with generalized singular values λj from tensor the-

ory [22, 36]. We provide the definitions for multi-correlation and generalized singular

values, the algorithm to compute tensor entropy, and an application of tensor entropy

on Hi-C data in Supplementary Materials “Tensor Entropy” in Lindsly et al. [76].

2.3.2.4 Larntz-Perlman Procedure

The 4DNvestigator includes a statistical test, proposed by Larntz and Perlman

(the LP procedure), that compares correlation matrices [67, 71]. The LP procedure

is applied to correlation matrices from Hi-C data, and is able to determine whether

multiple Hi-C samples are significantly different from one another. Suppose that
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C(m) ∈ Rn×n are the sample correlation matrices of Hi-C contacts with corresponding

population correlation matrices P(m) ∈ Rn×n for m = 1, 2, . . . , k. The null hypothesis

is H0 : P(1) = · · · = P(k). First, compute the Fisher z-transformation Z(m) by

Z
(m)
ij =

1

2
ln

1 + C
(m)
ij

1−C
(m)
ij

. (2.2)

Then form the matrices S(m) such that

S
(m)
ij = (n− 3)

k∑
m=1

(Z
(m)
ij − Z̄ij)

2, (2.3)

where, Z̄ij = 1
k

∑k
m=1 Z

(m)
ij . The test statistic is given by T = maxij Sij, and H0

is rejected at level α if T > χ2
k−1,ε(α) where χ2

k−1,ε(α) is the chi-square distribution

with k − 1 degree of freedom, and ε(α) = (1 − α)2/(n(n−1)) is the Šidák correction.

Finally, calculate the p-value at which T > χ2
k−1,ε(α). We note that this p-value

is conservative, and that the the actual p-value may be smaller depending upon

the amount of correlation among the variables. The LP procedure determines the

statistical significance of any differences between multiple Hi-C samples for a genomic

region of interest. We provide benchmark results of the LP procedure with other Hi-C

comparison methods in Supplementary Materials “LP Procedure for Comparing Hi-C

Matrices” in Lindsly et al. [76].
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Figure 2.3: 4DN feature analyzer. (A) 4DN data is input to the 4DN feature analyzer.
Top: Structure data (Hi-C) is described using one dimensional features for compatibility
with function data (RNA-seq). Bottom: Multiple structural features and function data are
integrated into the structure-function feature matrix. (B) The 4DN feature analyzer can
use structure and function data directly to visualize a system’s dynamics using the 4DN
phase plane [23, 77]. Structure defines the x-axis (left: eigenvector centrality, right: PC1)
and function defines the y-axis (left: log2(RPKM), right: log2(TPM)), and points show
structure-function coordinates through time. Left: Maternal and paternal alleles of nine
cell cycle genes through G1, S, and G2/M phases of the cell cycle (adapted from [77]).
Right: Top ten genomic regions (100 kb) with the largest changes in structure and function
during cellular reprogramming [79]. (C) Multiple dimension reduction techniques can be
used to visualize the 4DN feature analyzer’s structure-function feature matrix (from left to
right: LE, UMAP, and t-SNE). Top: 100 kb regions of Chromosome 4 across six time points
during cellular differentiation [147]. Bottom: 100 kb regions of Chromosome 11 across three
time points during cellular reprogramming [79]. (D) Example output of the 4DN feature
analyzer. The output includes genes contained in loci with the largest changes, and links to
their NCBI and GeneCards database entries [122, 140]. This figure was taken from Lindsly
et al. [76].
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2.4 Results

We demonstrate how the 4DN feature analyzer can process time series structure

and function data (Figure 2.3A) with three examples (Figure 2.3B-D).

Example 1: Cellular Proliferation. Hi-C and RNA-seq data from B-lymphocytes

(NA12878) capture the G1, S, and G2/M phases of the cell cycle for the maternal

and paternal genomes [77]. We visualize the structure-function dynamics of the ma-

ternal and paternal alleles for nine cell cycle regulating genes using the 4DN phase

plane (Figure 2.3B, left). We are interested in the importance of these genes within

the genomic network through the cell cycle, so we use eigenvector centrality as the

structural measure. This analysis highlights the coordination between the maternal

and paternal alleles of these genes through the cell cycle.

Example 2: Cellular Differentiation. We constructed a structure-function fea-

ture matrix from time series Hi-C and RNA-seq data obtained from differentiating

human stem cells [147]. These data consist of six time points which include human

embryonic stem cells, mesodermal cells, cardiac mesodermal cells, cardiac progen-

itors, primitive cardiomyocytes, and ventricular cardiomyocytes [147]. We analyze

Chromosome 4 across the six time points in 100 kb resolution by applying three di-

mension reduction techniques to the structure-function feature matrix: LE, UMAP,

and t-SNE (Figure 2.3C, top). There is a better separation of the cell types during

differentiation using UMAP and t-SNE than from LE. The optimal methods for visu-

alization and analysis are data dependent, so the 4DNvestigator offers multiple tools

for the user’s own exploration of their data.

Example 3: Cellular Reprogramming. Time series Hi-C and RNA-seq data

were obtained from an experiment that reprogrammed human dermal fibroblasts to

the skeletal muscle lineage [79]. We analyze samples collected 48 hr prior to, 8 hr

after, and 80 hr after the addition of the transcription factor MYOD1. The ten
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100 kb regions from Chromosome 11 that varied most in structure and function are

visualized using the 4DN phase plane in Figure 2.3B (right). We also construct

a structure-function feature matrix of Chromosome 11 in 100 kb resolution. Simi-

lar to the differentiation data analysis, we use LE, UMAP, and t-SNE to visualize

the structure-function dynamics. These low dimensional projections show the sep-

aration of the three time points corresponding to before, during, and after cellular

reprogramming (Figure 2.3C, bottom). We show an example output of the 4DN fea-

ture analyzer, which highlights genes contained in the genomic loci that have the

largest structure-function changes through time and provides links to the NCBI and

GeneCards database entries for these genes (Figure 2.3D) [122, 140].

2.5 Discussion

The 4DNvestigator provides rigorous and automated analysis of Hi-C and RNA-

seq time series data by drawing on network theory, information theory, and multi-

variate statistics. It also introduces a simple statistical method for comparing Hi-C

matrices, the LP procedure. The LP procedure is distinct from established Hi-C ma-

trix comparison methods, as it takes a statistical approach to test for matrix equality,

and allows for the comparison of many matrices simultaneously. Thus, the 4DNvesti-

gator provides a comprehensive toolbox that can be applied to time series Hi-C and

RNA-seq data simultaneously or independently. These methods are important for

producing rigorous quantitative results in 4DN research.
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CHAPTER III

Functional Organization of the Maternal and

Paternal Human 4D Nucleome

This chapter is based on a paper by Stephen Lindsly, Wenlong Jia, Haiming Chen,

Sijia Liu, Scott Ronquist, Can Chen, Xingzhao Wen, Cooper Stansbury, Gabrielle A.

Dotson, Charles Ryan, Alnawaz Rehemtulla, Gilbert S. Omenn, Max Wicha, Shuai

Cheng Li, Lindsey Muir, and Indika Rajapakse [77] (under review).

3.1 Abstract

Every human somatic cell inherits a maternal and a paternal genome, which work

together to give rise to cellular phenotypes. However, the allele-specific relationship

between gene expression and genome structure through the cell cycle is largely un-

known. By integrating haplotype-resolved genome-wide chromosome conformation

capture, mature and nascent mRNA, and protein binding data, we investigate this

relationship both globally and locally. We introduce the maternal and paternal 4D

Nucleome, enabling detailed analysis of the mechanisms and dynamics of genome

structure and gene function for diploid organisms. Our analyses find significant coor-

dination between allelic expression biases and local genome conformation, and notably

absent expression bias in universally essential cell cycle and glycolysis genes. We pro-
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pose a model in which coordinated biallelic expression reflects prioritized preservation

of essential gene sets.

3.2 Introduction

Biallelic gene expression in diploid genomes inherently protects against poten-

tially harmful mutations. Disrupted biallelic expression of certain genes increases

vulnerability to disease in humans, such as in familial cancer syndromes that have

loss of function in one allele [66]. BRCA1 and BRCA2 are quintessential examples,

for which missense, nonsense, or frameshift mutations affecting function of one allele

significantly increase the risk of breast cancer in women [57, 84]. Imprinted genes are

also associated with multiple disease phenotypes such as Angelman and Prader-Willi

syndromes [18, 146]. Other genes with monoallelic or allele-biased expression (MAE,

ABE) may be associated with disease, but the contribution of allelic bias to disease

phenotypes remains poorly understood.

ABE can occur with single nucleotide variants (SNVs), insertions or deletions

(InDels), and chromatin modifications [28, 69, 107, 112, 128]. Analyses of allelic bias

suggest high variance across tissues and individuals, with estimates ranging from 4%

to 26% of genes in a given setting [72, 112]. In addition, higher order chromatin

conformation and spatial positioning in the nucleus shape gene expression [31, 91,

92, 106]. As the maternal and paternal alleles can be distant in nucleus, their spatial

positions may promote ABE [9, 35].

A major step towards understanding the contribution of allelic bias to disease

is to identify ABE genes, recognizing that important biases may be transient and

challenging to detect. Allele-specific expression and 3D structures are not inherently

accounted for in genomics methods such as RNA-sequencing and genome-wide chro-

mosome conformation capture (Hi-C). These limitations complicate interpretations

of structure-function relationships, and complete phasing of the two genomes remains
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a significant challenge.

To improve understanding of ABE in genomic structure-function relationships, we

developed a novel phasing algorithm for Hi-C data, which we integrate with allele-

specific RNA-seq and Bru-seq data across three phases of the cell cycle in human

B-lymphocytes (Figure 3.1). RNA-seq and Bru-seq data were separated into their

maternal and paternal components through SNVs/InDels [104]. Our algorithm, Hap-

loHiC, uses phased SNVs/InDels to impute Hi-C reads of unknown parental origin.

Publicly available allele-specific protein binding data (ChIP-seq) were also included

to better understand potential regulatory elements involved in allelic bias [26, 112].

In addition to identifying known ABE genes silenced by X-Chromosome inactivation

(XCI) or imprinting, our analyses find novel expression biases between alleles and

cell cycle phases in several hundred genes, many of which had corresponding bias in

allele-specific protein binding. Furthermore, the alleles of ABE genes were signifi-

cantly more likely to differ in local structure compared to randomly selected alleles.

In contrast, we observed a pronounced lack of ABE in crucial biological pathways and

essential genes. Our findings highlight advantages of integrating genomics analyses in

a cell cycle and allele-specific manner and represent an allele-specific extension of the

4D Nucleome (4DN) [23, 40, 76, 109]. This approach will be beneficial to investiga-

tion of human phenotypic traits and their penetrance, genetic diseases, vulnerability

to complex disorders, and tumorigenesis.
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Figure 3.1: Experimental and allelic separation workflow. Cell cycle sorted cells were ex-
tracted for RNA-seq, Bru-seq, and Hi-C (left to right, respectively). RNA-seq and Bru-
seq data were allelicly phased via SNVs/InDels (left). SNV/InDel based imputation and
haplotype phasing of Hi-C data using HaploHiC (right). These data provide quantitative
measures of structure and function of the maternal and paternal genomes through the cell
cycle. This figure was taken from Lindsly et al. [77].
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3.3 Materials and Methods

3.3.1 Cell Culture and Cell Cycle Sorting

Human GM12878 cells were cultivated in RPMI1640 medium supplemented with

10% fetal bovine serum (FBS). Live cells were stained with Hoechst 33342 (Cat

#B2261, Sigma-Aldrich), and then sorted by fluorescence-activated cell sorting

(FACS) to obtain cell fractions at the corresponding cell cycle phases G1, S, and

G2/M (Figure S2 in Lindsly et al. [77]).

3.3.2 RNA-seq and Bru-seq Sequencing

Total RNA was extracted from sorted live cells for both RNA-seq and Bru-seq.

We performed 5’-bromouridine (Bru) incorporation in live cells for 30 minutes, and

the Bru-labeled cells were then stained on ice with Hoechst 33342 for 30 minutes

before sorting at 4°C to isolate G1, S, and G2/M phase cells. The sorted cells were

immediately lysed in TRizol (Cat # 15596026, ThermoFisher) and frozen. To isolate

Bru-labeled RNA, DNAse-treated total RNA was incubated with anti-BrdU antibod-

ies conjugated to magnetic beads [74]. We converted the transcripts from the RNA-seq

and Bru-seq experiments for all samples into cDNA libraries and deep-sequenced at

50-base length on an Illumina HiSeq2500 platform. The RNA-seq and Bru-seq data

each consist of three biological replicates. From our RNA-seq replicates, we obtained

a total of 193.4, 197.2, and 202.0 million raw reads for G1, S, and G2/M, respectively.

From our Bru-seq replicates, we obtained a total of 162.5, 149.9, and 138.0 million

raw reads for G1, S, and G2/M, respectively.

3.3.3 Hi-C Sequencing

For cells used in construction of Hi-C libraries, cells were crosslinked with 1%

formaldehyde, the reaction was neutralized with 0.125 M glycine, then cells were
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stained with Hoechst 33342 and sorted into G1, S, and G2/M fractions. Cross-linked

chromatin was digested with the restriction enzyme MboI for 12 hours. The restric-

tion enzyme fragment ends were tagged with biotin-dATP and ligated in situ. After

ligation, the chromatins were de-cross-linked, and DNA was isolated for fragmenta-

tion. DNA fragments tagged by biotin-dATP, in the size range of 300-500 bp, were

pulled down for sequencing adaptor ligation and polymerase chain reaction (PCR)

products. The PCR products were sequenced on an Illumina HiSeq2500 platform.

Respective to G1, S, and G2/M, we obtained 512.7, 550.3, and 615.2 million raw

Hi-C sequence reads.

3.3.4 RNA-seq and Bru-seq Data Processing

RNA-seq and Bru-seq analysis were performed as previously described [102, 115].

Briefly, Bru-seq used Tophat (v1.3.2) to align reads without de novo splice junction

calling after checking quality with FastQC (version 0.10.1). A custom gene annotation

file was used in which introns are included but preference to overlapping genes is

given on the basis of exon locations and stranding where possible (see [102] for full

details). Similarly for RNA-seq data processing, the raw reads were checked with

FastQC. Tophat (version 2.0.11) and Bowtie (version 2.1.0.0) were used to align the

reads to the reference transcriptome (HG19). Cufflinks (version 2.2.1) was used for

expression quantification, using UCSC hg19.fa and hg19.gtf as the reference genome

and transcriptome, respectively. A locally developed R script using CummeRbund

was used to format the Cufflinks output.

3.3.5 Separation of Maternal and Paternal RNA-seq and Bru-seq Data

To determine allele-specific transcription and gene expression through Bru-seq and

RNA-seq, all reads were aligned using GSNAP, a SNV aware aligner [68, 144]. HG19

and UCSC gene annotations were used for the reference genome and gene annotation,
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respectively. The gene annotations were used to create the files for mapping to splice

sites (used with –s option). Optional inputs to perform SNV aware alignment were

also included. Specifically, –v was used to include the list of heterozygous SNVs and

–use-sarray=0 was used to prevent bias against non-reference alleles [38].

After alignment, the output SAM files were converted to BAM files, sorted and

indexed using SAMtools [73]. SNV alleles were quantified using bam-readcounter to

count the number of each base that was observed at each of the heterozygous SNV

locations. Allele-specificity of each gene was then assessed by combining all of the

SNVs in each gene. For RNA-seq, only exonic SNVs were used. Bru-seq detects

nascent transcripts containing both exons and introns, so both exonic and intronic

SNVs were used. Maternal and paternal gene expression were calculated by multiply-

ing the genes’ overall read counts by the fraction of the SNV-covering reads that were

maternal and paternal, respectively. We identified 266,899 SNVs from the Bru-seq

data, compared with only 65,676 SNVs from RNA-seq data. However in the Bru-seq

data, many SNVs have low read coverage depth. We required at least 5 SNV-covering

reads for a SNV to be used to separate the maternal and paternal contributions to

gene expression. This criterion found that there were similar numbers of informative

SNVs (19,394 and 19,998) in the RNA-seq and Bru-seq data, respectively. Genes

which did not contain informative SNVs were divided equally into their maternal and

paternal contributions.

3.3.6 Allele-specific Differential Expression

For a gene’s expression to be considered for differential expression analysis, we

require each of the three replicates to have an average of at least 10 SNV-covering

reads mapped to at least one of the alleles in all three cell cycle phases. This threshold

was introduced to reduce the influence of technical noise on our differential expression

results. From the 23,277 Refseq genes interrogated, there were 4,193 genes with at
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least 10 read counts mapped to either the maternal or paternal allele (or both) in the

RNA-seq data. From Bru-seq, there were 5,294 genes using the same criterion. We

refer to these genes as “allele-specific” genes for their respective data sources. We

observed that there were larger variances between samples and lower read counts in

the Bru-seq data set than in RNA-seq. We identified differentially expressed genes

between alleles and between cell cycle phases for both RNA-seq and Bru-seq using a

MATLAB implementation of DESeq [4]. To reduce the possibility of false positives

when determining differential expression, we imposed a minimum FPKM level of 0.1,

a false discovery rate adjusted p-value threshold of 0.05, and a fold change cutoff of

FC > 2 for both RNA-seq and Bru-seq [12].

3.3.7 Separation of Maternal and Paternal Hi-C Data by HaploHiC

Hi-C library construction and Illumina sequencing were performed using estab-

lished methods [107]. In this study, we separate the maternal and paternal genomes’

contributions to the Hi-C contact matrices to analyze their similarities and differ-

ences in genome structure. In order to determine which Hi-C reads come from which

parental origin, we utilize differences in genomic sequence at phased SNVs/InDels. As

these variations are unique to the maternal and paternal genomes, they can be used to

distinguish reads. When attempting to separate the maternal and paternal genomes,

complications arise when there are sections of DNA that are identical. There are

a relatively small number of allele-specific variations, and the resulting segregated

maternal and paternal contact matrices are sparse. In order to combat this problem,

we seek to infer contacts of unknown parental origin.

We propose a novel technique, HaploHiC, for phasing reads of unknown parental

origin using local imputation from known reads. HaploHiC uses a data-derived ratio

based on the following hypothesis: if the maternal and paternal genomes have different

3D structures, we can use the reads with known origin (at SNV/InDel loci) to predict
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the origin of neighboring unknown reads (Figure 3.4A, Supplemental Methods A in

Lindsly et al. [77]) [116]. For example, if we observe that many contacts between two

loci can be directly mapped to the paternal genome but few to the maternal genome,

then unphased contacts between those loci are more likely to be from the paternal

genome as well, and vice versa. This process of imputing Hi-C reads of unknown

origin based on nearby known reads is similar to the methods developed by Tan et

al. [128].

HaploHiC marks paired-end reads as haplotype-known or -unknown depending

on their coverage of heterozygous phased SNVs/InDels. Haplotype-known reads are

directly assigned to their corresponding haplotype, maternal or paternal. HaploHiC

uses a local contacts-based algorithm to impute the haplotype of haplotype-unknown

reads using nearby SNVs/InDels. If the minimum threshold (ten paired-ends) of

haplotype-known reads for local imputation is not reached, HaploHiC randomly as-

signs the haplotype-unknown reads to be maternal or paternal (less than 5% of all

haplotype-unknown reads). Detailed materials and methods for haplotype phasing

and Hi-C construction are provided in Supplemental Methods A in Lindsly et al. [77].

Our validation shows that HaploHiC performs well, with an average accuracy

of 96.9%, 97.2%, and 97.3% for G1, S, and G2, respectively, over 10 trials each

(Table S12 in Lindsly et al. [77]). Each validation trial randomly removed 10% of

the heterozygous phased SNVs/InDels, and calculated imputation accuracy by the

fraction of correctly imputed reads from the haplotype-known Hi-C reads covering

these removed heterozygous mutations (Supplemental Methods A.8 in Lindsly et al.

[77]). Our validation of imputation accuracy is similar to the method presented

in Tan et al. [128]. We also perform multiple simulations for further validation

(Supplemental Methods A.8 in Lindsly et al. [77]). HaploHiC is available through a

GitHub repository.

After haplotype assignment through HaploHiC, Hi-C paired-end reads (PE-reads)
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were distributed to intra-haplotype (P-P and M-M) and inter-haplotype (P-M and

M-P) (Supplemental Methods A.1-A.8 in Lindsly et al. [77]). Juicer was applied on

intra-haplotype PE-reads, and outputs maternal and paternal contact matrices which

were normalized through the Knight-Ruiz method of matrix balancing [50, 65]. Inter-

haplotype contact matrices were generated by HaploHiC (Supplemental Methods A.7

in Lindsly et al. [77]). Intra- and inter-haplotype contacts are shown in Figure 3.4B

and Figure S8 in Lindsly et al. [77]. Both base pair level and fragment level matrices

were constructed. The resolution of base pair level matrices are 1 Mb and 100 kb.

Gene-level contacts were converted from fragment level matrices by HaploHiC.

3.4 Results

3.4.1 Chromosome-Scale Maternal and Paternal Differences

Spatial positioning of genes within the nucleus is known to be associated with

transcriptional status [31, 91, 92, 106]. One might expect that the maternal and

paternal copies of each chromosome would stay close together to ensure that their

respective alleles have equal opportunities for transcription. Imaging of chromosome

territories has shown that this is often not the case (Figure 3.2A, Supplemental Meth-

ods B in Lindsly et al. [77]) [17, 110, 119]. This inspired us to investigate whether

the two genomes operate in a symmetric fashion, or if allele-specific differences ex-

ist between the genomes regarding their respective chromatin organization patterns

(structure) and gene expression profiles (function). We analyzed parentally phased

whole-chromosome Hi-C and RNA-seq data at 1 Mb resolution to identify allele-

specific differences in structure and function, respectively. We subtracted each chro-

mosome’s paternal Hi-C matrix from the maternal matrix and found the Frobenius

norm of the resulting difference matrix. The Frobenius norm is a measure of distance

between matrices, where equivalent maternal and paternal genome structures would
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result in a value of zero. Similarly, we subtracted the phased RNA-seq vectors in log2

scale and found the Frobenius norm of each difference vector. The Frobenius norms

were adjusted for chromosome size and normalized for both Hi-C and RNA-seq.

We found that all chromosomes have allelic differences in both structure (Hi-C,

blue) and function (RNA-seq, red) (Figure 3.2B). Chromosome X had the largest

structural difference, as expected, followed by Chromosomes 9, 21, and 14. Chromo-

some X had the most extreme functional differences as well, followed by Chromosomes

13, 7, and 9. A threshold was assigned at the median Frobenius norm for Hi-C and

RNA-seq (Figure 3.2B green dashed lines). The majority of chromosomes with larger

structural differences than the median in Hi-C also have larger functional differences

than the median in RNA-seq. There is a positive correlation between chromosome

level differences in structure and function, which is statistically significant only when

Chromosome X is included (R = 0.66 and p < 0.05 with Chromosome X; R = 0.30

and p = 0.17 without Chromosome X).

Figure 3.2: Genome imaging and chromosome differences. (A) Nucleus of a primary human
fibroblast imaged using 3D FISH with the maternal and paternal copies of Chromosome
6, 8, and 11 painted red, green, and white, respectively (left). Subsection highlighting the
separation between the maternal and paternal copies of Chromosome 11, now colored red
(right). (B) Normalized chromosome level structural and functional parental differences of
GM12878 cells. Structural differences (∆ Structure, blue) represent the aggregate changes
between maternal and paternal Hi-C over all 1 Mb loci for each chromosome, adjusted for
chromosome size in G1. Functional differences (∆ Function, red) represent the aggregate
changes between maternal and paternal RNA-seq over all 1 Mb loci for each chromosome,
adjusted for chromosome size in G1. Green dashed lines correspond to the median structural
(0.48, chromosome 3) and functional (0.20, chromosome 6) differences, in the top and
bottom respectively, and all chromosomes equal to or greater than the threshold are labeled.
Scatter plot of maternal and paternal differences in structure and function with best-fit line
(R = 0.66 and p < .05). This figure was taken from Lindsly et al. [77].
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3.4.2 Allele-Specific RNA Expression

After confirming allelic differences in RNA expression at the chromosomal scale,

we examined allele-specific expression of individual genes through RNA-seq and Bru-

seq. We hypothesized that the chromosome scale expression differences were not only

caused by known cases of ABE such as XCI and imprinting, but also by widespread

ABE over many genes [41, 56]. Therefore, we evaluated all allele-specific genes (genes

with sufficient reads covering SNVs/InDels) for differential expression across the six

settings: maternal and paternal in G1, S, and G2/M (hereafter, G2). These settings

give rise to seven comparisons which consist of maternal versus paternal within each

of the cell cycle phases (three comparisons), as well as G1 versus S and S versus G2 for

the maternal and paternal genomes, respectively (two comparisons for each genome).

First, we identified genes with ABE and cell cycle-biased expression (CBE) from

RNA-seq. While ABE refers to differential expression between alleles in each cell

cycle phase, CBE refers to significant changes in expression from one cell cycle phase

to another in each allele. From 23,277 RefSeq genes interrogated, there were 4,193

genes with sufficient coverage on SNVs/InDels to reliably determine allele-specific

expression [98]. We performed differential expression analysis for the seven compar-

isons to identify which of the 4,193 genes had ABE or CBE [4]. We identified 615

differentially expressed genes from RNA-seq: 467 ABE genes, 229 CBE genes, and

81 genes with both ABE and CBE (Tables S2, S4 in Lindsly et al. [77]). Both exons

and introns containing informative SNVs/InDels were used for our Bru-seq data, from

which 5,294 genes had sufficient coverage. We identified 505 differentially expressed

genes from Bru-seq: 380 ABE genes, 164 CBE genes, and 39 genes with both ABE

and CBE (Tables S3, S5 in Lindsly et al. [77]). We also identified 130 genes that

had ABE in both RNA-seq and Bru-seq. While this is substantially smaller than

total number of ABE genes for RNA-seq and Bru-seq (467 and 380, respectively), the

number of genes that are allele-specific in both data modalities is also smaller. That
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is, only 285 of the ABE genes from RNA-seq are allele-specific in Bru-seq and 192

of the ABE genes from Bru-seq are allele-specific in RNA-seq. The remaining genes

did not have sufficient expression or SNV coverage to be included in the downstream

analysis. We then separated the differentially expressed genes into their respective

chromosomes to observe their distribution throughout the genome. From RNA-seq

(Bru-seq), we found that autosomes had 3-14% ABE (1-11%) in their allele-specific

genes which is comparable to previous findings [72]. As expected, Chromosome X

had a particularly high percentage of ABE genes at 90% (91%).

We identified 288 genes that have ABE in all three cell cycle phases from RNA-seq

(160 paternally biased, 128 maternally biased) and 173 from Bru-seq (129 paternally

biased, 44 maternally biased). This is the most common differential expression pat-

tern among ABE genes and these genes form the largest clusters in Figure 3.3A.

These clusters include, but are not limited to, XCI, imprinted, and other MAE genes.

Known examples within these clusters are highlighted in the ‘X-Linked’ and ‘Im-

printed’ sections of Figure 3.3B. We also identified hundreds of genes that are not

currently appreciated in literature to have ABE, with examples shown in the ‘Autoso-

mal Genes’ sections of Figure 3.3B for both mature and nascent RNA. Approximately

half of all ABE genes were only differentially expressed in one or two cell cycle phases,

which we refer to as transient allelic biases. These genes form the smaller clusters seen

in Figure 3.3A. Examples of genes with transient allelic biases are also presented in

the ‘Autosomal Genes’ section of Figure 3.3B. Transient expression biases like these

may be due to coordinated expression of the two alleles in only certain cell cycle

phases, though the mechanism behind this behavior is unclear.

Among the ABE genes from RNA-seq analysis, we found 117 MAE genes. In

addition to the requirements for differential expression, we impose the thresholds

of a FC ≥ 10 and for the inactive allele to have < 0.1 Fragments Per Kilobase of

transcript per Million (FPKM), or FC ≥ 50 across all three cell cycle phases. Our
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analysis confirmed MAE for imprinted and XCI genes, with examples shown in Figure

3.3B. Imprinted and XCI genes are silenced via transcriptional regulation, which was

verified by monoallelic nascent RNA expression (Bru-seq). The XIST gene, which is

responsible for XCI, was expressed in the maternal allele reflecting the deactivation

of the maternal Chromosome X. XCI was also observed from Hi-C through large

heterochromatic domains in the maternal Chromosome X, and the absence of these

domains in the paternal Chromosome X (Figure 3.4C). The inactive Chromosome X

in our cells is opposite of what is commonly seen for the GM12878 cell line in literature

(likely due to our specific GM12878 sub-clone), but is consistent between our data

modalities [26, 107, 128]. The MAE genes also include six known imprinted genes, four

expressed from the paternal allele (KCNQ1OT1, SNRPN, SNURF, and PEG10 ) and

two from the maternal allele (NLRP2 and HOXB2 ). Some of the known imprinted

genes that were confirmed in our data are associated with imprinting diseases, such

as Beckwith-Wiedemann syndrome (KCNQ1OT1 and NLRP2 ), Angelman syndrome

(SNRPN and SNURF ), and Prader-Willi syndrome (SNRPN and SNURF ) [1, 20].

These genes and their related diseases offer further support for allele-specific analysis,

as their monoallelic expression could not be detected otherwise.

After observing that approximately half of all ABE genes had transient expression

biases, we hypothesized that alleles may have unique dynamics through the cell cycle.

We then focused our investigation on allele-specific gene expression through the cell

cycle to determine if alleles had CBE, and whether alleles were coordinated in their

cell-cycle dependent expression (Figure S1B in Lindsly et al. [77]). We compared

the expression of each allele between G1 and S as well as between S and G2, which

provides insight into the differences between maternal and paternal alleles’ dynamics

across the cell cycle. In the G1 to S comparison, there are 88 (55) genes in RNA-

seq (Bru-seq) which have similar expression dynamics in both alleles. These genes’

maternal and paternal alleles are similarly upregulated or downregulated from G1 to
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S. In contrast, 87 (97) genes in RNA-seq (Bru-seq) have different expression dynamics

between alleles. That is, only one allele is up or downregulated in the transition from

G1 to S. In the S to G2 comparison, there are 26 (3) genes in RNA-seq (Bru-seq)

that have similar expression dynamics in both alleles and 56 (12) genes with different

expression dynamics between alleles. From these data, we see a coordination of

expression between many, but certainly not all, alleles through the cell cycle.

Figure 3.3: Allele-specific mature and nascent RNA expression. (A) Differentially expressed
genes’ maternal and paternal RNA expression through the cell cycle. Expression heatmaps
are average FPKM values over three replicates after row normalization. Genes are grouped
by their differential expression patterns (Figure S1 in Lindsly et al. [77]). (B) Represen-
tative examples of X-linked, imprinted, and other autosomal genes with allelic bias. Top
shows mature RNA levels (RNA-seq) and bottom shows nascent RNA expression (Bru-
seq) in both (A) and (B). (C) Examples of cell cycle regulatory genes’ mature RNA levels
through the cell cycle. These genes are grouped by their function in relation to the cell cycle
and all exhibit CBE but none have ABE. All example genes in (B) and (C) reflect average
FPKM values over three replicates, and ABE in a particular cell cycle phase is marked with
an orange or purple asterisk for maternal or paternal bias, respectively. G2 includes both
G2 and M phase. This figure was taken from Lindsly et al. [77].
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3.4.3 Biallelic Expression and Cellular Function

We observed from our analysis of CBE that multiple cell cycle regulatory genes

had no instances of ABE (Figure 3.3C). We expanded this set of genes to include all

allele-specific genes contained in the KEGG cell cycle pathway [61]. Again, we found

zero instances of ABE. This may suggest that genes with certain crucial cellular func-

tions, like cell cycle regulation, may have coordinated biallelic expression to ensure

their sufficient presence as a means of robustness. This is supported by previous find-

ings which showed restricted genetic variation of enzymes in the essential glycolytic

pathway [27].

We hypothesized that genes implicated in critical cell cycle processes would be less

likely to have ABEs. We tested additional modules derived from KEGG pathways

containing at least five allele-specific genes, with the circadian rhythm module sup-

plemented by a known core circadian gene set [23]. Examples of modules with varying

proportions of ABE are shown in Table 3.1 (Table S7 in Lindsly et al. [77]), where

“Percent ABE” refers to the proportion of genes with ABE to the total number of

allele-specific genes in that module. We found that there are multiple crucial modules,

including the glycolysis/gluconeogenesis and pentose phosphate pathways, which also

had zero ABE genes. To explore the possibility of a global phenomenon by which

genes essential to cellular fitness are significantly less likely to have biased expression,

we analyzed the frequency of ABE in 1,734 genes experimentally determined to be

essential in human cells [16]. Using the 662 allele-specific genes in this set, we found

that these essential genes were significantly less likely to have ABE than a random

selection of allele-specific genes (5.8% versus 11.1%, p < 0.001, Supplemental Meth-

ods D in Lindsly et al. [77]), consistent with our hypothesis that critical genes are

likely to be expressed by both alleles. In total, we offer a model in which coordinated

biallelic expression reflects prioritized preservation of essential gene sets.
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Table 3.1: Allelic bias in biological modules.

Module Percent ABE

Cell Cycle 0%

Glycolysis/Gluconeogenesis 0%

Pentose Phosphate 0%

BCR Signaling 8%

Circadian Rhythm 9%

p53 Signaling 11%

Wnt Signaling 16%

Hippo Signaling 21%

Whole Genome 11%

Pathways with 0% ABE are highlighted

3.4.4 Allele-Specific Genome Structure

Motivated by our observations of chromosome level structural differences between

the maternal and paternal genomes, we examined the HaploHiC separated data in

more detail to determine where these differences reside. The genome is often cate-

gorized into two compartments: transcriptionally active euchromatin and repressed

heterochromatin. In studies comparing multiple types of cells or cells undergoing dif-

ferentiation, areas of euchromatin and heterochromatin often switch corresponding to

genes that are activated/deactivated for the specific cell type [43]. We explored this

phenomenon in the context of the maternal and paternal Hi-C matrices to determine

if the two genomes had differing chromatin compartments. Chromatin compartments

can be identified from Hi-C data using methods such as principal component analy-

sis or spectral clustering (Supplemental Methods C in Lindsly et al. [77]) [25]. We

applied spectral clustering to every chromosome across all three cell cycle phases at 1

Mb resolution. We found that there were slight changes in chromatin compartments

for all chromosomes, but the vast majority of these changes took place on the borders
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between compartments rather than an entire region switching compartments. These

border differences were not enriched for ABE genes. This implies that, although

the structures may not be identical, the maternal and paternal genomes have similar

overall compartmentalization (aside from Chromosome X).

Figure 3.4: Haplotype phasing of Hi-C data. (A) HaploHiC separates paired-end reads
into groups based on parental origin determined through SNVs/InDels (left, Supplemental
Methods A.3 in Lindsly et al. [77]). Reads are grouped by: (i) reads with one (sEnd-P/M) or
both ends (dEnd-P/M) mapped to a single parent, (ii) reads are inter-haplotype, with ends
mapped to both parents (d/sEnd-I), and (iii) reads with neither end mapped to a specific
parent (dEnd-U) . An example of a paired-end read (dEnd-U) with no SNVs/InDels has its
origin imputed using nearby reads (right, Supplemental Methods A.6 in Lindsly et al. [77]).
A ratio of paternally and maternally mapped reads is found in a dynamically sized flanking
region around the haplotype-unknown read’s location (Supplemental Methods A.4 in Lind-
sly et al. [77]). This ratio then determines the likelihood of the haplotype-unknown read’s
origin. (B) Whole-genome Hi-C of GM12878 cells (top left). Inter- and intra-haplotype
chromatin contacts after phasing Hi-C data using HaploHiC (right). Chromosomes 14 and
15 highlight inter- and intra-chromosome contacts within and between genomes (bottom
left). Visualized in log2 scale 1 Mb resolution in G1. (C) Haplotype phasing illustrates
that the inactive maternal X Chromosome is partitioned into large heterochromatic do-
mains, outlined in dotted black boxes. Visualized in log2 scale 100 kb resolution in G1.
This figure was taken from Lindsly et al. [77].
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We next applied spectral clustering recursively to the Hi-C data at 100 kb resolu-

tion to determine whether there were differences in TADs between the two genomes

throughout the cell cycle [25]. While the current understanding of genomic structure

dictates that TAD boundaries are invariant (between alleles, cell types, etc), it is

also known that “intra-TAD” structures are highly variable [43, 44, 53]. The spec-

tral identification method has an increased ability to discern these subtle structural

changes. We found that TAD boundaries were variable between the maternal and

paternal genomes and across cell cycle phases in all chromosomes. This supports pre-

vious findings of allelic differences in TADs for single cells, and we predict that they

are even more variable across cell types [25, 53]. Differences in TAD boundaries were

observed surrounding MAE genes, ABE genes, and genes with coordinated biallelic

expression (Figure S6 in Lindsly et al. [77]). This indicated that changes in TAD

boundaries were not directly related to allelic expression differences.

Although we did not find a direct relationship between TAD boundary differences

and ABE genes, we observed during this analysis that the local genome structure

around the six imprinted genes had noticeable differences. We then sought to analyze

all genes with ABE or CBE to find out if they had corresponding structural differences

at a local level. We analyzed the local Hi-C matrices for each of the 615 RNA-seq and

505 Bru-seq differentially expressed genes. Using a 300 kb flanking region centered at

the 100 kb bin containing the transcription start site, we isolated a 7x7 matrix (700 kb)

for each differentially expressed gene (Figure 3.5A, B). These matrices represent the

local genomic structure of the differentially expressed genes, and are slightly smaller

than average TAD size (∼1 Mb). We then compared the correlation matrices of the

log2-transformed local Hi-C data and determined whether or not the matrices have

statistically significant differences (p < 0.05) [67, 76]. We applied this comparison

to all genes that were differentially expressed in RNA-seq (Bru-seq) and found that

515 (403) genes had at least one comparison in which both the expression and local
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structure had significantly changed. While changes in local genome structure and

changes in gene expression do not have a one-to-one relationship, we found that

both ABE and CBE genes are more likely to have significant architectural differences

than randomly sampled allele-specific genes (p < 0.01) (Figure S7 and Supplemental

Methods D in Lindsly et al. [77]). This lends further support to the idea that there

is a relationship between allele-specific differences in gene expression and genome

structure.

3.4.5 Allele-Specific Protein Binding

To uncover the mechanisms behind the relationship between allele-specific gene

expression and genome structure, we looked to DNA binding proteins such as RNA

polymerase II (Pol II), CCCTC-binding factor (CTCF), and 35 other transcription

factors. We used publicly available protein binding data from AlleleDB in tandem

with RNA-seq and found 114 genes that have an allelic bias in both gene expression

and binding of at least one such protein [26]. We identified 13 genes which have ABE

and biased binding of Pol II, with bias agreement in 11 cases (85%). That is, the

allelic expression and Pol II binding were biased toward the same allele. For CTCF,

33 of 72 cases have bias agreement (46%), and for all other transcription factors

analyzed, 20 of 29 cases have bias agreement (69%) (Table S6 in Lindsly et al. [77]).

The CTCF binding bias agreement of around 50% is expected, based on previous

studies [112]. This is likely due to CTCF’s role as an insulator, since an allele could

be expressed or suppressed by CTCF’s presence depending on the context. To avoid

potential inconsistencies between our data and the protein data from AlleleDB, we

excluded Chromosome X when testing for ABE and protein binding biases.

We evaluated the relationship between TAD boundary differences between the ma-

ternal and paternal genomes and allele-specific CTCF binding sites. We found multi-

ple instances of biased binding of CTCF and corresponding changes to the boundaries
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of TADs containing ABE genes. Examples of this phenomenon are shown in the cen-

ter of Figure S6A in Lindsly et al. [77], where TAD boundaries from the maternal

(paternal) Hi-C data are closer to a maternally (paternally) biased CTCF binding site

in some cell cycle phases near the ABE genes ANKRD19P, C9orf89, and FAM120A.

Despite observing individual instances of biased CTCF binding corresponding to TAD

boundary differences and ABE genes, there were insufficient data to evaluate this re-

lationship genome-wide. We hypothesize that differences in TAD boundaries would

correspond to allele-biased CTCF binding provided that there were enough data, as

it has been repeatedly shown that TAD boundaries are enriched with CTCF binding

[44, 145].

We analyzed the 11 genes with allelic expression and Pol II binding bias agreement

further to determine if they also had significant changes in local genome structure.

Through local Hi-C comparisons, we found that all 11 of these genes had significant

changes in structure in at least one cell cycle phase. 3D models for six of these

genes are shown in Figure 3.5B, which highlight differences in local genome structure

(Supplemental Methods F in Lindsly et al. [77]) [135]. The genes with bias agreement

and changes in local genome structure include known imprinted genes such as SNURF

and SNRPN, as well as genes with known allele-specific expression (and suggested

imprinting in other cell types) like ZNF331 [11]. Additionally, there are multiple

genes with known associations with diseases or disorders such as BMP8A, CRELD2,

and NBPF3 [64, 103, 143]. These findings suggest that changes in local structure

often coincide with changes in expression due to the increased or decreased ability of

a gene to access the necessary transcriptional machinery within transcription factories

[31, 99]. We visualize this relationship for the gene CRELD2 as an example (Figure

3.5C).
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Figure 3.5: Local chromatin structure and transcription factor binding. (A) Local regions
around differentially expressed genes are tested for significant conformation changes. These
regions are modeled to visualize the conformations around each allele through G1, S, and
G2 (Supplemental Methods E in Lindsly et al. [77]). Example of local chromatin structure
extraction is shown for ZNF331 in G1 phase (center of blue box). Hi-C matrices are shown
in log2 scale 100 kb resolution. (B) 3D models of the local genome structure around 6 ABE
genes with bias agreement of Pol II and significant changes in local genome structure. (C)
Schematic representation of allele-specific Pol II and CTCF binding, with highlighted gene
CRELD2, which had binding biases in both. Table shows extreme binding biases of Pol II
and CTCF on CRELD2 as an example. This figure was taken from Lindsly et al. [77].
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3.4.6 The Maternal and Paternal 4D Nucleome

We define the maternal and paternal 4DN as the integration of allele-specific

genome structure with gene expression data through time, adapted from Chen et al.

[23]. Many complex dynamical systems are investigated using a network perspective,

which offers a simplified representation of a system [96, 125]. Networks capture

patterns of interactions between their components and how those interactions change

over time [23]. We can consider genome structure as a network, since Hi-C data

captures interactions between genomic loci [92, 106]. In network science, the relative

importance of a node in a network is commonly determined using network centrality

[96]. For Hi-C data, we consider genomic loci as nodes and use network centrality to

measure the importance of each locus at each cell cycle phase [76, 79]. We initially

performed a global analysis of the maternal and paternal 4DN by combining RNA-seq

with multiple network centrality measures (Supplemental Methods D in Lindsly et

al. [77]) [76]. We found differences between the maternal and paternal genomes and

across cell cycle phases, but only Chromosome X had clear maternal and paternal

separation (Figures S9, S10 in Lindsly et al. [77]).

In our earlier analysis, we found a significant relationship between ABE and

changes in local genome structure. We also observed that genes in multiple critical

biological modules had coordinated biallelic expression. Motivated by these results,

we performed an integrated analysis of structure and function to determine allele-

specific dynamics of targeted gene sets. We constructed a sub-network for each gene

set (analogous to an in silico 5C matrix), by extracting rows and columns of the Hi-C

matrix containing genes of interest for each cell cycle phase [49]. We used eigenvector

centrality (similar to Google’s PageRank) to quantify structure, and used the average

expression from the three RNA-seq replicates to quantify function, for each allele in

the sub-network [100]. We utilized the concept of a phase plane to plot the maternal

and paternal 4DN (4DN phase plane, adapted from Chen et al.) (Figure 3.6) [23]. We
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designated one axis as a measure of structure and the other as a measure of function.

Coordinates of each point in the 4DN phase plane were determined from normalized

structure data (x-axis, sub-network eigenvector centrality) and function data (y-axis,

FPKM). The 4DN phase plane contains three points for each allele, which represent

G1, S, and G2. We define allelic divergence (AD) as the average Euclidean distance

between the maternal and paternal alleles across all cell cycle phases in the 4DN

phase plane (Supplemental Methods D in Lindsly et al. [77]).

We show four example 4DN phase planes of gene sub-networks with various ADs in

Figure 3.6. Genes which are known to be crucial for cell cycle regulation have a mean

AD of 0.0245 (Figure 3.6B, middle-left). Given that GM12878 is a B-lymphocyte

cell line, we were interested in the AD of genes which are related to B cell receptor

functionality. We found that these genes had a mean AD of 0.0225 (Figure 3.6B,

left). The ADs of cell cycle regulating genes and B cell specific genes are smaller than

the mean AD of randomly selected allele-specific genes (AD = 0.0301 over 10,000

samples). This may be indicative of a robust coordination between the alleles to

maintain proper cellular function and progression through the cell cycle, and therefore

a lack of ABE genes or large structural differences. We show a random set of allele-

specific genes with a mean AD of 0.0249 as an example (Figure 3.6B, middle-right).

MAE genes had a mean AD of 0.1748 (Figure 3.6B, right), significantly higher than

randomly selected allele-specific genes (p < 0.01, Supplemental Methods E in Lindsly

et al. [77]). This approach is useful for quantifying differences between maternal

and paternal genomes throughout the cell cycle, highlighting gene sets with large

structural or expression differences over time. In previous work, we have also shown

that this method may be broadly applicable to time series analysis of different cell

types [76].
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Figure 3.6: 4DN phase planes reveal a wide range of allelic divergences in gene sub-networks.
(A) Workflow to obtain structure and function measures. Simplified phase planes are shown
with linear relationships between changes in structure and function, changes in structure
with no changes in function, and changes in function with no changes in structure. (B)
4DN phase planes of cell cycle genes, genes specific to B cell function, random allele-specific
genes, and MAE genes, highlighting the similarities and differences between their alleles.
Genes such as BUB1B and PIK3AP1 have similar phase planes between alleles, while
RAC1 differs in structure and WRAP73 differs in function. The bottom plot for each
column combines the phase planes of the nine example genes. This figure was taken from
Lindsly et al. [77].

3.5 Discussion

In this study, we present evidence for the intimate relationship among allele-

specific gene expression, genome structure, and protein binding across the cell cy-

cle. We validated our data and methods using known allele-specific properties such

as the monoallelic expression of imprinted and X-linked genes, broad similarities

of chromatin compartments between the maternal and paternal genomes, and large
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heterochromatic domains of Chromosome X [6, 8, 107, 108, 113]. Unique to this

study, we established a coordination of allele-biased expression and changes in local

genome structure, which included hundreds of genes not commonly associated with

allele-biased expression. We observed further evidence of this coordination through

corresponding protein binding biases.

Through our analysis of mature (nascent) RNA, we found 467 (380) genes to be

differentially expressed between the two alleles and 229 (164) genes with differential

expression through the cell cycle. Approximately half of the genes with allele-biased

expression are only differentially expressed in certain cell cycle phases, and over half

of the genes with CBE are only differentially expressed in one allele. Further re-

search is needed to explore why certain genes have coordinated cell cycle dynamics

across both alleles, while other genes have disparate expression in some cell cycle

phases. We predict that these transient allelic biases may be associated with devel-

opmental pathologies and tumorigenesis, similar to imprinted and other MAE genes.

Conversely, we found no allele-biased expression from genes in multiple biological

modules, such as the cell cycle and glycolysis pathways (Table 3.1). We were not able

to establish a statistical significance here due to the limited number of allele-specific

genes in these modules, so we surveyed a set of 662 essential genes and found that

they are significantly less likely to have allele-biased expression [16]. This supports

our hypothesis of highly coordinated biallelic expression in universally essential genes.

We developed a novel phasing algorithm, HaploHiC, which uses Hi-C reads

mapped to phased SNVs/InDels to predict nearby reads of unknown parental ori-

gin. This allowed us to decrease the sparsity of our allele-specific contact matrices

and increase confidence in our analysis of the parental differences in genome structure.

While we found that the overall compartmentalization (euchromatin and heterochro-

matin) of the two genomes was broadly similar, there were many differences in TAD

boundaries and local genome structure between the two genomes and between cell cy-
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cle phases. We focused our search for allele-specific differences in genome structure by

calculating the similarity of local contacts surrounding differentially expressed genes

[67, 76]. We found that differentially expressed genes were significantly more likely

to have corresponding changes in local genome structure than random allele-specific

genes.

We incorporated publicly available allele-specific protein binding data for Pol II

and CTCF to explore the mechanisms behind the gene expression and local genome

structure relationship [112]. In genes that had both allele-biased expression and Pol II

binding biases, we found that 85% of these genes had allelic bias agreement. Addition-

ally, we found that all of the genes with expression and Pol II binding bias agreement

had significant changes in local genome structure. Analysis of the relationships among

allele-specific gene expression, genome structure, and protein binding is currently hin-

dered by the amount of information available and our limited understanding of the

dynamics of cell-specific genome structure and gene expression variability [52]. The

ability to separate maternal and paternal gene expression and protein binding is de-

pendent on the presence of a SNV/InDel within the gene body and nearby protein

binding motifs. As SNVs/InDels are relatively rare in the human genome, the num-

ber of genes available to study is severely limited. Once we are able to separate the

maternal and paternal genomes through advances in experimental techniques, we will

be able to fully study these relationships.

Overall, these data support an intimate allele-specific relationship between genome

structure and function, coupled through allele-specific protein binding. Changes in

genome structure, influenced by the binding of proteins such as CTCF, can affect

the ability of transcription factors and transcription machinery to access DNA. This

results in changes in the rate of transcription of RNA, captured by Bru-seq. The rate

of transcription leads to differential steady state gene expression, captured by RNA-

seq. Integration of these data into a comprehensive computational framework led to

49



the development of a maternal and paternal 4DN, which can be visualized using 4DN

phase planes and quantified using allelic divergence. Allele-specific analysis across

the cell cycle will be imperative to discern the underlying mechanisms behind many

diseases by uncovering potential associations between deleterious mutations and allelic

bias, and may have broad translational impact spanning cancer cell biology, complex

disorders of growth and development, and precision medicine.
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CHAPTER IV

Deciphering Multi-way Interactions in the Human

Genome

This chapter is based on ongoing work by Stephen Lindsly, Can Chen, Sam Dil-

worth, Sivakumar Jeyarajan, Walter Meixner, Anthony Cicalo, Nicholas Beckloff,

Charles Ryan, Gilbert S. Omenn, Amit Surana, Lindsey Muir, and Indika Rajapakse.

4.1 Abstract

The organization of the genome is non-random and has a high degree of order. The

current standard for experimentally capturing the genome’s organization is through

genome wide chromosome conformation capture (Hi-C). A recently developed se-

quencing technology called Pore-C contains the information of Hi-C, but also includes

multi-way interactions which cannot be directly derived from Hi-C. Hi-C is often used

to observe structural features through the aggregation of pair-wise contacts genome-

wide, but these features cannot be captured directly. Multi-way contacts from Pore-C

can be used to unambiguously observe higher order structural features, where in-

stances of nearby multiple genomic loci are captured together as single reads. In

this work, we use Pore-C data in the form of hypergraphs to develop methods for

quantifying entropy of genome structure and to compare the genomes of different cell
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types. In addition, we integrate Pore-C data with multiple data modalities to find

biologically important multi-way interactions.

4.2 Introduction

The intricate folding of the genome allows for approximately two meters of DNA

to fit within a cell nucleus while remaining accessible for transcription. The folding

patterns of the genome, or genome structure, is a rapidly advancing study. With

the advent of experimental techniques based on chromosome conformation capture

(3C), we have uncovered an immense amount of knowledge about how the genome is

organized and how it affects genome function. Many of the advancements in this field

have focused on expanding the amount of interactions between genomic loci that can

be captured. Originally, 3C could only capture an interaction between two genomic

loci. This was later extended to interactions from one locus to all others (4C), many

loci’s interactions with many others (5C), and eventually all loci to all loci (Hi-C) [39,

49, 74, 118]. While extraordinarily useful in their own right, all of these technologies

are only able to capture interactions between pairs of loci.

Recent advances in sequencing technologies has brought forth the ability to cap-

ture multiple loci at once genome-wide. Pore-C reads contain fragments from multiple

interacting loci at once, allowing for new methods of analysis on genome structure.

We extract the multi-way contacts from Pore-C reads to construct hypergraphs. Hy-

pergraphs are an extension of graphs, where hyperedges can contain any number

of nodes while an edge can only contain two nodes. We consider genomic loci as

nodes in our hypergraph, and multi-way contacts as hyperedges. We use incidence

matrices to represent hypergraphs, where rows in the incidence matrices represent

genomic loci and columns contain individual hyperedges. From this representation,

we are able to make quantitative measurements of the genome’s organization through

hypergraph entropy, compare different cell types through hypergraph distance, and
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identify functionally important multi-way contacts in multiple cell types.

Figure 4.1: Flowchart overview of Pore-C analysis.

4.3 Results

To obtain Pore-C reads, DNA is cross-linked to histones, digested by a restriction

enzyme, ligated together, and then sequenced (Figure 4.2A). Once these sequences are

aligned to the genome, we can determine the locations where each fragment originated

and construct a multi-way contact (Figure 4.2B). We use hypergraphs to represent

multi-way contacts, where individual hyperedges contain at least two loci (Figure

4.2C, left). Hypergraphs provide a simple and concise way to depict multi-way con-

tacts, and allow for abstract representations of genome structure. Computationally,

we represent multi-way contacts as incidence matrices (Figure 4.2C, right). Using
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more standard experimental techniques, such as Hi-C, adjacency matrices are often

used to capture the pair-wise genomic contacts. Multi-way contacts are not able to

be represented in this manner, since the rows and columns of adjacency matrices only

account for individual loci. In contrast, incidence matrices allow us to include more

than two loci per contact and provide a clear visualization of multi-way contacts.

Multi-way contacts can also be decomposed into pair-wise contacts, similar to Hi-C,

by extracting all combinations of loci (Figure 4.2D).

4.3.1 Decomposing Multi-way Contacts

We conducted Pore-C experiments using adult human dermal fibroblasts and ob-

tained additional publicly available Pore-C data from B lymphocytes [132].) From

these data, we constructed hypergraphs as multiple resolutions (read level, 100 kb,

1 Mb, and 25 Mb). We first analyzed individual chromosomes at 100 kb resolution,

and decomposed the multi-way contacts into their pair-wise counterparts to identify

topologically associated domains (TADs, Materials and Methods). Examples of TADs

from Chromosome 22 for fibroblasts and B lymphocytes can be seen in Figures 4.3

and 4.4, respectively.

54



Figure 4.2: Pore-C experimental and data workflow. (A) The Pore-C experimental protocol,
which captures pairwise and multi-way contacts (Materials and Methods). (B) Represen-
tation of multi-way contacts at different resolutions (top, not to scale). Incidence matrix
visualizations of a representative example from Chromosome 8 in human fibroblasts at each
resolution (bottom). The numbers in the left columns represent the location of each genomic
locus present in a multi-way contact, where values are either the chromosome base-pair po-
sition (read-level) or the bin into which the locus was placed (binning at 100 kb, 1 Mb, or
25 Mb). (C) Hypergraph representation of Pore-C contacts (left) and an incidence matrix
(right) of four sets of multi-way contacts within (yellow-to-yellow) and between (yellow-
to-purple) chromosomes. Contacts correspond to examples from part A. The numbers in
the left column represent a bin in which a locus resides. Each vertical line represents a
multi-way contact, with nodes at participating genomic loci. (D) Multi-way contacts can
be decomposed into pairwise contacts. Decomposed multi-way contacts can be represented
using graphs (left) or incidence matrices (right). Contacts correspond to examples from
parts A and C.
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Figure 4.3: Local organization of the genome. (A) Incidence matrix visualization of a re-
gion in Chromosome 22 from fibroblasts (V1-V4). The numbers in the left column represent
genomic loci in 100 kb resolution, vertical lines represent multi-way contacts, where nodes
indicate the corresponding locus’ participation in this contact. The blue and yellow regions
represent two TADs, T1 and T2. The six contacts, denoted by the labels i-vi, are used as ex-
amples to show intra- and inter-TAD contacts in B, C, and D. (B) Hyperedge and read-level
visualizations of the multi-way contacts i-vi from A. Blue and yellow rectangles (bottom)
indicate which TAD each loci corresponds to. (C) A hypergraph is constructed using the
hyperedges from B (multiway contacts i-vi from A). The hypergraph is decomposed into its
pair-wise contacts in order to be represented as a graph. (D) Contact frequency matrices
were constructed by separating all multi-way contacts within this region of Chromosome 22
into their pairwise combinations. TADs were computed from the pair-wise contacts using
the methods from [25]. Example multi-way contacts i-vi are superimposed onto the contact
frequency matrices. Multi-way contacts in this figure were determined in 100 kb resolution
after noise reduction, originally derived from read-level multi-way contacts (Materials and
Methods).
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Figure 4.4: Local organization of the genome. (A) Incidence matrix visualization of a region
in Chromosome 22 from B lymphocytes. The numbers in the left column represent genomic
loci, vertical lines represent multi-way contacts, where nodes indicate the corresponding
locus’ participation in this contact. The blue and yellow regions represent two TADs, T1
and T2. The six contacts, denoted by the labels i-vi, are used as examples for hypergraph
and genomic folding pattern visualizations. (B) Hypergraph visualization of the multi-way
contacts i-vi from A. Blue and yellow labels indicate which TADs these loci participate
in. (C) Contact frequency matrices were constructed by separating all multi-way contacts
within and between the two TADs into their pairwise combinations. Example multi-way
contacts are superimposed onto contact frequency matrices. All multi-way contacts in this
figure were determined in 100 kb resolution after noise reduction (Materials and Methods).
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4.3.2 Representing Chromosomes as Hypergraphs

To gain a better understanding of genome structure with multi-way contacts,

we constructed hypergraphs for entire chromosomes in 1 Mb resolution. We show

the incidence matrix of Chromosome 22 as an example in Figure 4.5A. In Figure

4.5B, we show Chromosomes 22’s distribution of 1 Mb contacts at multiple orders

(2-way contacts, 3-way contacts, etc). Figure 4.5C highlights the most common intra-

chromosome contacts within Chromosome 22 using multi-way contact “motifs”, which

we use as a simplified way to show hyperedges. Figure 4.5D shows a zoom-in of

a 3-way contact to highlight how a low resolution multi-way contact can contain

many contacts at higher resolutions. Figure 4.5E visualizes the multi-way contacts

contained in Figure 4.5D as a hypergraph.

We also identified multi-way contacts that contain loci from multiple chromo-

somes. These inter-chromosomal multi-way contacts can be seen in 1 Mb resolution

in Figure 4.5F and in 25 Mb resolution for both fibroblasts and B lymphocytes in

Figure 4.6A and 4.6B, respectively. Figure 4.6 gives a summary of the entire genome’s

multi-way contacts, by showing the most common intra- and inter-chromosomal multi-

way contacts across all chromosomes. We highlight examples of multi-way contacts

with loci that are contained within a single chromosome (“intra only”), spread across

unique chromosomes (“inter only”), and a mix of both within and between chromo-

somes (“intra and inter”). Finally, we found the most common inter-chromosomal

multi-way contacts across all chromosomes, which we summarize with five example

chromosomes in Figure 4.7 using multi-way contact motifs.
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Figure 4.5: Patterning of intra- and inter-chromosomal contacts. (A) Incidence matrix
visualization of Chromosome 22 in fibroblasts. The numbers in the left column represent
genomic loci in 1 Mb resolution. Each vertical line represents a multi-way contact, in which
the nodes indicate the corresponding locus’ participation in this contact. (B) Frequencies
of Pore-C contacts in Chromosome 22. Bars are colored according to the order of contact.
Blue, green, orange, and red correspond to 2-way, 3-way, 4-way, and 5-way contacts. (C)
The most common 2-way, 3-way, 4-way, and 5-way intra-chromosome contacts within Chro-
mosome 22 are represented as motifs, color-coded similarly to B. (D) Zoomed in incidence
matrix visualization in 100 kb resolution shows the multi-way contacts between three 1
Mb loci L19 (blue), L21 (yellow), and L22 (red). An example 100 kb resolution multi-way
contact is zoomed to read-level resolution. (E) Hypergraph representation of the 100 kb
multi-way contacts from D. Blue, yellow, and red labels correspond to loci L19, L21, and
L22, respectively. (F) Incidence matrix visualization of the inter-chromosomal multi-way
contacts between Chromosome 20 (orange) and Chromosome 22 (green) in 1 Mb resolu-
tion. Within this figure, all data are derived from one fibroblast sequencing run (V2) and
multi-way contacts were determined after noise reduction at 1 Mb or 100 kb resolution
accordingly (Materials and Methods).
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Figure 4.6: Genome-wide patterning of multi-way contacts. Incidence matrix visualization
of the top 10 most common multi-way contacts per chromosome. Matrices are constructed
at 25 Mb resolution for both fibroblasts (top, V1-V4) and B lymphocytes (bottom). Specif-
ically, 5 intra-chromosomal and 5 inter-chromosomal multi-way contacts were identified
for each chromosome with no repeated contacts. If 5 unique intra-chromosomal multi-
way contacts are not possible in a chromosome, they are supplemented with additional
inter-chromosomal contacts. Vertical lines represent multi-way contacts, nodes indicate
the corresponding locus’ participation in a multi-way contact, and color-coded rows delin-
eate chromosomes. Highlighted boxes indicate example intra-chromosomal contacts (red),
inter-chromosomal contacts (magenta), and combinations of intra- and inter-chromosomal
contacts (blue). Examples for each type of contact are shown in the top right corner. Multi-
way contacts of specific regions are compared between cell types by connecting highlighted
boxes with black dashed lines, emphasizing similarities and differences between fibroblasts
and B lymphocytes. Normalized degree of loci participating in the top 10 most common
multi-way contacts for each chromosome in fibroblast and B-lymphocytes are shown on the
left. Red dashed lines indicate the mean degree for fibroblasts and B lymphocytes (top and
bottom, respectively). Genomic loci that do not participate in the top 10 most common
multi-way contacts for fibroblasts or B lymphocytes were removed from their respective
incidence and degree plots. Multi-way contacts were determined in 25 Mb resolution after
noise reduction (Materials and Methods).
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Figure 4.7: Inter-chromosomal interactions. The most common 2-way, 3-way, 4-way, and 5-
way inter-chromosome combinations for each chromosome are represented using motifs from
fibroblasts (top, V1-V4) and B lymphocytes (bottom). Rows represent the combinations
of 2-way, 3-way, 4-way, and 5-way inter-chromosome interactions, and columns are the
chromosomes. Inter-chromosomal combinations are determined using 25 Mb resolution
multi-way contacts after noise reduction (Materials and Methods) and are normalized by
chromosome length. Here we only consider unique chromosome instances (i.e. multiple loci
in a single chromosome are ignored).
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4.3.3 Transcription Clusters

Genes are transcribed in short sporadic bursts and transcription occurs in local-

ized areas with high concentrations of transcriptional machinery [32, 33, 127]. This

includes transcriptionally engaged polymerase and the accumulation of necessary pro-

teins, called transcription factors. Multiple genomic loci can colocalize at these areas

for more efficient transcription. In fact, it has been shown using fluorescence in

situ hybridization (FISH) that genes frequently colocalize during transcription [99].

Simulations have also provided evidence that genomic loci which are bound by com-

mon transcription factors can self-assemble into clusters, forming structural patterns

commonly observed in Hi-C data [33]. We refer to these instances of highly concen-

trated areas of transcription machinery and genomic loci as transcription clusters.

The colocalization of multiple genomic loci in transcription clusters naturally leads

to multi-way contacts, but these interactions can not be fully captured from the

pair-wise contacts of Hi-C. Multi-way contacts derived from Pore-C reads can detect

interactions between many genomic loci, and are well suited for identifying potential

transcription clusters (Figure 4.8).

Using the initial criteria of chromatin accessibility and RNA Pol II binding, we

identified 16,080 and 16,527 potential transcription clusters from fibroblasts and B

lymphocytes, respectively (Table 4.1, Materials and Methods). The majority of these

clusters involved at least one expressed gene (72.2% in fibroblasts, 90.5% in B lympho-

cytes) and many involved at least two expressed genes (31.2% in fibroblasts, 58.7%

in B lymphocytes). While investigating the colocalization of expressed genes in tran-

scription clusters, we found that over 30% of clusters containing multiple expressed

genes had common transcription factors based on binding motifs (31.0% in fibrob-

lasts, 33.1% in B lymphocytes) and that over half of these common transcription

factors were master regulators (56.6% in fibroblasts, 74.7% in B lymphocytes). Two

example transcription clusters derived from 3-way, 4-way, and 5-way contacts from
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both fibroblasts and B lymphocytes are shown in Figure 4.9. These example clusters

contain at least two genes and have at least one common transcription factor.

We tested the criteria for potential transcription clusters for statistical significance

(Materials and Methods). That is, we tested whether the identified transcription

clusters are more likely to include genes, and if these genes are more likely to share

common transcription factors, than random multi-way contacts in both fibroblasts

and B lymphocytes. We found that the transcription clusters were significantly more

likely to include ≥ 1 gene and ≥ 2 genes than random multi-way contacts (p <

0.01). In addition, transcription clusters containing ≥ 2 genes were significantly

more likely to have common transcription factors and common master regulators

(p < 0.01). After testing all order multi-way transcription clusters, we also tested the

3-way, 4-way, 5-way, and 6-way (or more) cases individually. We found that all cases

were statistically significant (p < 0.01) except for clusters for common transcription

factors or master regulators in the 6-way (or more) case for both fibroblasts and B

lymphocytes. We hypothesize that these cases were not statistically significant due

to the fact that the large number of loci involved in these multi-way contacts will

naturally lead to an increase of overlap with genes. This increases the likelihood

that at least two genes will have common transcription factors or master regulators.

Approximately half of transcription clusters with at least two genes with common

transcription factors also contained at least one enhancer locus (∼51% and ∼44% in

fibroblasts and B lymphocytes, respectively) [54]. This offers even further support

that these multi-way contacts represented real transcription clusters.
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Figure 4.8: Data-driven identification of transcription clusters. (A) A 5 kb region before
and after each locus in a Pore-C read (between red dashed lines) is queried for chromatin
accessibility and RNA Pol II binding (ATAC-seq and ChIP-seq, respectively). Multi-way
contacts between accessible loci that have ≥ 1 instance of Pol II binding are indicative
of potential transcription clusters. Gene expression (RNA-seq, E1 for gene 1 and E2 for
gene 2, respectively) and transcription factor binding sites (TF1 and TF2) are integrated to
determine potential coexpression and coregulation within multi-way contacts with multiple
genes. Transcription factor binding sites are queried ± 5 kb from the gene’s transcription
start site (Materials and Methods). (B) Simplified pipeline for extracting transcription
clusters (Algorithm 3). Genes are colored based on the overlapping Pore-C locus, and the
extended line from each gene represents the 5 kb flanking region used to query transcription
factor binding sites. (C) Schematic representation of a transcription cluster.
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Figure 4.9: Example transcription clusters. Six examples of potential transcription clusters
are shown for fibroblasts (left) and B lymphocytes (right) as multi-way contact motifs.
Black labels indicate genes and chromosomes (bold). Red labels correspond to transcription
factors shared between ≥ 2 genes within a transcription cluster. Blue arrows indicate
a gene’s position on it’s respective chromosome. Multi-way contacts used for fibroblasts
include all experiments (V1-V4). Examples were selected from the set of multi-way contacts
summarized in the “Clusters with Common TFs” column of Table 4.1.
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Order
Multi-way

Contacts

Transcription

Clusters

Clusters with

≥ 1 Gene

Clusters with

≥ 2 Genes

Clusters with

Common TFs

Clusters with

Common MRs

3
379,165 11,261 7,782 2,986 1,191 679

240,477 8,384 7,384 4,157 2,006 1,536

4
181,554 3,254 2,519 1,214 276 153

227,352 4,345 3,972 2,686 822 606

5
98,272 1,021 831 473 63 35

196,423 1,996 1,881 1,434 277 193

6+
142,575 544 477 341 24 13

1,000,231 1,802 1,727 1,419 109 67

Table 4.1: Summary of multi-way contacts. Multi-way contacts from fibroblasts
(gray rows, V1-V4) and B lymphocytes (white rows) are listed after different filtering
criteria. Multi-way contacts are considered to be potential transcription clusters if all
loci within the multi-way contact are accessible and at least one locus has binding from
RNA Pol II. These multi-way contacts are then queried for nearby expressed genes.
If a transcription cluster candidate has at least two expressed genes, we determine
whether the genes have common transcription factors (TFs) through binding motifs.
From the set of transcription clusters with common transcription factors, we calculate
how many clusters are regulated by at least one master regulator (MR).

4.4 Discussion

Through advancements in sequencing technology, we are now able to capture

multi-way contacts within the genome. Multi-way contacts will become increasingly

important within biological studies, as the relationship higher-order chromatin struc-

tures and genome function are intrinsically linked. An incredible amount of knowledge

has already been gained within the last two decades using pair-wise contacts from

prior chromosome conformation capture techniques. We expect that rate of new

discoveries will only accelerate with the addition of unambiguous multi-way contacts.

4.5 Materials and Methods

Cell culture. Human adult dermal fibroblasts were maintained in Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS),

1X Glutamax (Thermo Fisher Scientific cat no. 35050061) and 1X non-essential
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amino acid (Thermo Fisher Scientific cat no. 11140050).

Cross-linking. 2.5 million cells were washed three times in chilled 1X phosphate

buffered saline (PBS) in a 50 mL centrifuge tube, pelleted by centrifugation at 500

x g for 5 min at 4°C between each wash. Cells were resuspended in 10 mL room

temperature 1X PBS 1% formaldehyde (Fisher Scientific cat no. BP531-500) by

gently pipetting with a wide bore tip, then incubated at room temperature for 10

min. To quench the cross-linking reaction 527 µL of 2.5 M glycine was added to

achieve a final concentration of 1% w/v or 125 mM in 10.5 mL. Cells were incubated

for 5 min at room temperature followed by 10 min on ice. The cross-linked cells were

pelleted by centrifugation at 500 x g for 5 min at 4°C.

Restriction enzyme digest. The cell pellet was resuspended in 500 µL of cold

permeabilization buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% IGEPAL CA-

630, 100 µL of protease inhibitor cock-tail Roche cat no. 11836170001) and placed on

ice for 15 min. One tablet of protease inhibitor cocktail was dissolved in 1 ml nuclease

free water and 100 µL from that was added to a 500 µL permeabilization buffer. Cells

were centrifuged at 500 x g for 10 min at 4°C after which the supernatant was aspirated

and replaced with 200 µL of chilled 1.5X New England Biolabs (NEB) cutsmart buffer.

Cells were centrifuged again at 500 x g for 10 min at 4°C, then aspirated and re-

suspended in 300 µL of chilled 1.5X NEB cutsmart buffer. To denature the chromatin,

33.5 µL of 1% w/v sodium dodecyl sulfate (SDS, Invitrogen cat no. 15553-035) was

added to the cell suspension and incubated for exactly 10 min at 65°C with gentle

agitation then placed on ice immediately afterwards. To quench the SDS, 37.5 µL

of 10% v/v Triton X-100 (Sigma Aldrich cat no. T8787-250) was added for a final

concentration of 1%, followed by incubation for 10 min on ice. Permeabilized cells

were then digested with a final concentration of 1 U/µL of NlaIII (NEB-R0125L) and

brought to volume with nuclease-free water to achieve a final 1X digestion reaction

buffer in 450 µL. Cells were then mixed by gentle inversion. Cell suspensions were
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incubated in a thermomixer at 37°C for 18 hours with periodic rotation.

Proximity ligation and reverse cross-linking. NlaIII restriction digestion

was heat inactivated at 65°C for 20 min. Proximity ligation was set up at room

temperature with the addition of the following reagents: 100 µL of 10X T4 DNA

ligase buffer (NEB), 10 µL of 10 mg/mL BSA and 50 µL of T4 Ligase (NEB M0202L)

in a total volume of 1000 µL with nuclease-free water. The ligation was cooled to

16°C and incubated for 6 hours with gentle rotation.

Protein degradation and DNA purification. To reverse cross-link, proximity

ligated sample was treated with 100 µL Proteinase K (NEB P8107S-800U/ml), 100 µL

10% SDS (Invitrogen cat no. 15553-035) and 500 µL 20% v/v Tween-20 (Sigma

Aldrich cat no. P1379) in a total volume of 2000 µL with nuclease-free water. The

mixture was incubated in a thermal block at 56°C for 18 hours. In order to purify

DNA, the sample was transferred to a 15 mL centrifuge tube, rinsing the original tube

with a further 200 µL of nuclease-free water to collect any residual sample, bringing

the total sample volume to 2.2 mL. DNA was then purified from the sample using a

standard phenol chloroform extraction and ethanol precipitation.

Nanopore sequencing. Purified DNA was Solid Phase Reversible Immobiliza-

tion (SPRI) size selected before library preparation with a bead ratio of 0.48X for

fragments > 1.5 kb. The > 1.5 kb products were prepared for sequencing using the

protocol provided by Oxford Nanopore Technologies. In brief, 1 µg of genomic DNA

input was used to generate asequencing library according to the protocol provided for

the SQK-LSK109 kit. (Oxford Nanopore Technologies, Oxford Science Park, UK).

After the DNA repair, end prep, and adapter ligation steps, SPRI select bead suspen-

sion (Cat No. B23318, Beckman Coulter Life Sciences, Indianapolis, IN, USA) was

used to remove short fragments and free adapters. A bead ratio of 1X was used for

DNA repair and end prep while a bead ratio of 0.4X was used for the adapter ligation

step. Qubit dsDNA assay (ThermoFisher Scientific, Waltham, MA, USA) was used to
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quantify DNA and ∼300-400 ng of DNA library was loaded onto a GridION flow cell

(version R9, Flo-MIN 106D). In total, 4 sequencing runs were conducted generating

a total of 6.25 million reads (referred to as V1-V4).

Sequence processing. Reads which passed Q-score filtering (--min qscore 7,

4.56 million reads) from basecalling on the Oxford Nanopore GridION were used

as input for the Pore-C-Snakemake pipeline (https://github.com/nanoporetech/

Pore-C-Snakemake, commit 6b2f762). The pipeline maps multi-way contacts to a

reference genome and stores the hyperedges data in a variety of formats. The ref-

erence genome used for mapping was GRCh38.p13 (https://www.ncbi.nlm.nih.

gov/assembly/GCF_000001405.39/). The pairs and parquet files output from the

pipeline were converted into MATLAB tables to construct hyperedges and the cooler

files were used to create the pair-wise adjacency matrices (Figures 4.3 and Figure

4.4). The individual tables from the four sequencing runs were assigned a sequencing

run label and then concatenated. The combined tables were used as standard inputs

for all downstream software processes.

Noise Reduction. After obtaining the pairwise read table, we first bin the

chromosome contact positions (in MATLAB, we use the command ceil(chr pos/

resolution)). Next, we create an array containing unique combinations of read

IDs and bin numbers participating in pairwise contacts. This removes experimental

artifacts such as spuriously repeated reads. We then count the number of reads con-

taining each unique pairwise contact between bins. Only those contacts between bins

occurring in at least ε reads were further considered. In other words, if the count of a

unique pairwise contact is less than the threshold ε, we consider it as noise and remove

all instances of that pairwise contact from the pairwise read table. The threshold ε

was determined by finding the 85th percentile of pairwise contact counts. By consid-

ering the frequency of pairwise contacts rather than the frequency of hyperedges, we

can maintain hyperedges with mostly the same constituents (few differences in loci)
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while still eliminating noise. This also maintains the overlapping pairwise contacts

from different read IDs. The 85th percentile threshold was determined empirically,

and can be adjusted by making simple modifications to the provided MATLAB code.

Hypergraphs and Incidence Matrices. The Pore-C technique has inspired us

to consider the human genome as a hypergraph, a generalization of a graph in which its

hyperedges can join any number of nodes [14]. Hypergraphs can capture higher-order

connectivity patterns and represent multidimensional relationships unambiguously

[13, 142]. Therefore, modeling the human genome via hypergraphs can offer new

insights into its organization. In this genomic hypergraph, nodes are genomic loci,

where a locus can be a gene or a genomic region at a particular resolution (i.e. read

level, 100 kb, 1 Mb, or 25 Mb bins). Hyperedges are the relationships or interactions

among multiple genomic loci. Pore-C determines the hyperedges in the genomic

hypergraph through the multi-way contacts among genomic loci. In much of our

analysis, we consider unweighted hypergraphs (i.e. ignore the frequency of contacts)

since most of higher-order contacts are unique in Pore-C data at high resolution. For

low resolution (i.e. 1 Mb and 25 Mb), we consider the weights of edges to find the

most common intra- and inter-chromosomal contacts.

An incidence matrix of the genomic hypergraph is an n×m matrix, where n is the

total number of genomic loci, and m is the total number of unique Pore-C contacts

(including self-contacts, pairwise contacts, and higher-order contacts). For each col-

umn of the incidence matrix, if the genomic locus i involved with the corresponding

Pore-C contact, the ith element of the column is equal to one. If not, it is equal

to zero. Thus, the nonzero elements of a column tell us their associated genomic

loci that are close in space, and the number of nonzero elements gives rise to the

order of the Pore-C contact. The incidence matrix of the genomic hypergraph can be

nicely visualized via PAOHvis [133]. PAOHvis is an online hypergraph visualization

software, in which genomic loci are parallel horizontal bars and Pore-C contacts are

70



vertical lines that connects multiple loci (see Figures 4.2, 4.3, 4.5, and 4.6). Fur-

thermore, incidence matrices play an significant role in the mathematical analysis of

hypergraphs.

Algorithm 2 Hypergraph incidence construction

1: Input: Aligned Pore-C data

2: for each multi-way contact j do

3: if multi-way contact contains locus i then

4: H(i, j) = 1

5: else

6: H(i, j) = 0

7: end if

8: end for

9: Return: Hypergraph incidence matrix H ∈ Rn×m where n is the total number of loci, and m

is the total number of multi-way contacts.

Data-driven identification of transcription clusters. We use Pore-C data

in conjunction with multiple other data sources to identify potential transcription

clusters (Figure 4.8). Each locus in a Pore-C read, or multi-way contact, is queried

for chromatin accessibility and RNA Pol II binding (ATAC-seq and ChIP-seq peaks,

respectively). Multi-way contacts are considered to be potential transcription clusters

if all loci within the multi-way contact are accessible and at least one locus has bind-

ing from RNA Pol II. These multi-way contacts are then queried for nearby expressed

genes. A 5 kb flanking region is added before and after each locus when querying

for chromatin accessibility, RNA Pol II binding, and nearby genes [95]. Gene expres-

sion (RNA-seq) and transcription factor binding sites are integrated to determine

coexpression and coregulation of genes in multi-way contacts. If a transcription clus-

ter candidate has at least two genes present, we determine whether the genes have

common transcription factors through binding motifs. From the set of transcription

clusters with common transcription factors, we calculate how many clusters are reg-

ulated by at least one master regulator, a transcription factor that also regulates its

own gene (Figure 4.8).
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Algorithm 3 Identification of Transcription Clusters

1: Input: Hypergraph incidence matrix H, gene expression R (RNA-seq), RNA Pol II P (ChIP-

seq), chromatin accessibility C (ATAC-seq), transcription factor binding motifs B

2: for each multi-way contact j in H do

3: if all loci are accessible from C and ≥ 1 locus has Pol II binding from P then

4: multi-way contact j from H is added to the set of potential transcription clusters Tp

5: end if

6: end for

7: for each potential transcription cluster k in Tp do

8: if loci contain ≥ 2 expressed genes from R which have ≥ 1 common TFs from B then

9: multi-way contact k from Tp is added to the set of transcription clusters Tc

10: end if

11: if loci contain ≥ 2 expressed genes from R which have ≥ 1 common MRs from B then

12: multi-way contact k from Tp is added to the set of transcription clusters Ts

13: end if

14: end for

15: Return: Potential transcription clusters Tp, transcription clusters Tc, and specialized tran-

scription clusters Ts

Transcription factor binding motifs: Transcription factor binding site mo-

tifs were obtained from “The Human Transcription Factors” database [70]. FIMO

(https://meme-suite.org/meme/tools/fimo) was used to scan for motifs within ± 5kb

of the transcription start sites for protein-coding and microRNA genes. The results

were converted to a 22, 083× 1, 007 MATLAB table, where rows are genes, columns

are transcription factors, and entries are the number of binding sites for a particular

transcription factor and gene. The table was then filtered to only include entries

with three or more binding sites in downstream computations. This threshold was

determined empirically and can be adjusted by simple changes to the MATLAB code.

Public data sources. Pore-C data for B lymphocytes were downloaded from

Ulahannan et al. [132]. ATAC-seq and ChIP-seq data were obtained from ENCODE

to assess chromatin accessibility and RNA Pol II binding, respectively. These data

were compared to read-level Pore-C contacts to determine whether colocalizing loci

belong to accessible regions of chromatin and had RNA Pol II binding for both fibrob-

lasts and B lymphocytes. RNA-seq data were also obtained from ENCODE to ensure

that genes within potential transcription factories were expressed in their respective
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cell types. A summary of these data sources can be found in Table 4.2.

Data Type Cell Line Data Description and Source

Pore-C
Adult Human

Dermal Fibroblasts
Fibroblast Pore-C multi-way contacts generated in this study

Pore-C GM12878 B-lymphocyte Pore-C multi-way contacts obtained from Ulahannan et al. [132]

ATAC-seq IMR-90 Fibroblast chromatin accessibility (ENCFF310UDS)

ATAC-seq GM12878 B-lymphocyte chromatin accessibility data (ENCFF410XEP)

ChIP-seq IMR-90 Fibroblast RNA Polymerase II binding data (ENCFF676DGR)

ChIP-seq GM12878 B-lymphocyte RNA Polymerase II binding data (ENCFF912DZY)

RNA-seq IMR-90 Fibroblast gene expression data averaged over two replicates (ENCFF353SBP, ENCFF496RIW)

RNA-seq GM12878 B-lymphocyte gene expression data averaged over two replicates (ENCFF306TLL, ENCFF418FIT)

Table 4.2: Data sources. Data obtained from ENCODE unless otherwise specified
[29].

Hypergraph Entropy. Network entropy often is used to measure the connec-

tivity and regularity of a network [22, 90, 101]. We use hypergraph entropy to quan-

tify the organization of chromatin structure from Pore-C data, where higher entropy

corresponds to less organized folding patterns (e.g. every genomic locus is highly

connected). There are different definitions of hypergraph entropy [15, 22, 60]. In our

analysis, we exploit the eigenvalues of the hypergraph Laplacian matrix and fit them

into the Shannon entropy formula [15]. In mathematics, eigenvalues can quantita-

tively represent different features of a matrix [124]. Denote the incidence matrix of

the genomic hypergraph by H. The Laplacian matrix then is an n-by-n matrix (n

is the total number of genomic loci in the hypergraph), which can be computed by

L = HH> ∈ Rn×n, where > denotes matrix transpose. Therefore, the hypergraph

entropy is defined by

Hypergraph Entropy = −
n∑
i=1

λi lnλi, (4.1)

where λi are the normalized eigenvalues of L such that
∑n

i=1 λi = 1, and the con-

vention 0 ln 0 = 0 is used. Biologically, genomic regions with high entropy are likely

associated with high proportions of euchromatin, as euchromatin is more structurally

permissive than heterochromatin [81, 105].
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Algorithm 4 Hypergraph entropy [15]

1: Input: Hypergraph incidence matrix H ∈ Rn×m

2: Construct the hypergraph Laplacian matrix L = HH> ∈ Rn×n

3: Compute the eigenvalues λi of L using eigendecomposition

4: Normalize the eigenvalues λ̄j =
λj∑n
i=1 λi

5: Compute the hypergraph entropy

S = −
∑
j

λ̄j ln λ̄j

6: Return: Hypergraph entropy S.

Hypergraph Distance. Comparing graphs is a ubiquitous task in data analysis

and machine learning [48]. There is a rich body of literature for graph distance

with examples such as Hamming distance, Jaccard distance, and other spectral-based

distances [48, 51, 141]. Here we propose a spectral-based hypergraph distance measure

which can be used to quantify global difference between two genomic hypergraphs G1

and G2 from two cell lines. Denote the incidence matrices of two genomic hypergraphs

by H1 ∈ Rn×m1 and H2 ∈ Rn×m2 , respectively. For i = 1, 2, construct the normalized

Lapalacian matrices:

L̃i = I−D
− 1

2
i HiE

−1
i H>i D

− 1
2

i ∈ Rn×n, (4.2)

where I ∈ Rn×n is the identity matrix, Ei ∈ Rmi×mi is a diagonal matrix containing

the orders of hyperedges along its diagonal, and Di ∈ Rn×n is a diagonal matrix

containing the degrees of nodes along its diagonal [148]. The degree of a node is

equal to the number of hyperedges that contain that node. Therefore, the hypergraph

distance between G1 and G2 is defined by

Hypergraph Distance(G1,G2) =
1

n
(
n∑
i=1

|λ1j − λ2j|p)
1
p , (4.3)

where λij is the jth eigenvalue of L̃i for i = 1, 2, and p ≥ 1. In our analysis, we

choose p = 2. The hypergraph distance (4.3) can be used to compare two genomic
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hypergraphs in a global scale since the eigenvalues of the normalized Laplacian are

able to capture global connectivity patterns within the hypergraph.

Algorithm 5 Comparing Hypergraphs

1: Input: Two hypergraph incidence matrices H1 ∈ Rn×m1 and H2 ∈ Rn×m2

2: Construct the normalized hypergraph Laplacian matrices

L̃i = I−D
− 1

2
i HiE

−1
i H>i D

− 1
2

i ∈ Rn×n,

where I ∈ Rn×n is the identity matrix, Ei ∈ Rmi×mi is a diagonal matrix containing the orders

of hyperedges along its diagonal, and Di ∈ Rn×n is a diagonal matrix containing the degrees of

nodes along its diagonal, for i = 1, 2 [148].

3: Compute the hypergraph distance

d =
1

n

(
n∑
i=1

|λ1j − λ2j |p
) 1

p

,

where λij is the jth eigenvalue of L̃i for i = 1, 2, and p ≥ 1.

4: Return: Hypergraph distance d between H1 and H2.

Statistical Significance via Permutation Test. In order to assess the sta-

tistical significance of the transcription cluster candidates we determined using our

criteria (Figure 4.8), we use a permutation test which builds the shape of the null hy-

pothesis (i.e. the random background distribution) by resampling the observed data

over N trials. We randomly select n 3rd, 4th, and 5th order multi-way contacts from

our Pore-C data, where n is based on the number of transcription cluster candidates

we determined for each order using our criteria. For example, we randomly selected

n = 11, 261 multi-way contacts from the set of 3rd order multi-way contacts in fibrob-

lasts (Table 4.1). For each trial, we determine how many of these randomly sampled

“transcription clusters” match our remaining criteria: transcription clusters with ≥ 1

gene, ≥ 2 genes, common TFs, and common MRs. The background distribution

for each of the criteria can then be constructed from these values. The proportion

of values in these background distributions that are greater than their counterparts

from the data-derived transcription cluster candidates yields the p-value. For this

analysis, we chose N = 1, 000 trials. This analysis is based on the assumption that
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transcription clusters will be more likely to contain genes and that those genes are

more likely to have common transcription factors than arbitrary multi-way contacts.

Similarly, we use a permutation test to determine the significance of the measured

distances between two hypergraphs. Suppose that we are comparing two hypergraphs

G1 and G2. We first randomly generate N number of hypergraph {Ri}Ni=1 that are

similar to G1 (“similar” means similar number of node degree and hyperedge size

distribution). The background distribution therefore can be constructed by measuring

the hypergraph distances between G1 and Ri for i = 1, 2, . . . , N . The proportion of

distances that are greater than the distance between G1 and G2 in this background

distribution yields the p-value. For this analysis, we again chose N = 1, 000 trials.
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CHAPTER V

Understanding Memory B Cell Selection

This chapter is based on a paper by Stephen Lindsly, Maya Gupta, Cooper Stans-

bury, and Indika Rajapakse [75] (under review).

5.1 Abstract

The mammalian adaptive immune system has evolved over millions of years to

become an incredibly effective defense against foreign antigens. The adaptive immune

system’s humoral response creates plasma B cells and memory B cells, each with their

own immunological objectives. The affinity maturation process is widely viewed as a

heuristic to solve the global optimization problem of finding B cells with high affinity

to the antigen. However, memory B cells appear to be purposely selected earlier in

the affinity maturation process and have lower affinity. We propose that this memory

B cell selection process may be a heuristic solution to two expected risk optimization

problems: optimizing for affinity to similar antigens in the future despite mutations or

other minor differences, and optimizing to warm start the generation of plasma B cells

in the future. We use simulations to provide evidence for our hypotheses, taking into

account data showing that certain B cell mutations are more likely than others. Our

findings are consistent with memory B cells having high-affinity to mutated antigens,

but do not provide strong evidence that memory B cells will be more useful than

77



selected naive B cells for seeding the secondary germinal centers.

5.2 Introduction

The immune system is an effective threat mitigation system that deploys a number

of learned identification algorithms. While the innate immune system is adept at

identifying foreign invaders, or antigens, it must engage the adaptive immune system

to create a more massive and specific response. A core aspect of the adaptive immune

system’s humoral response is training two types of B cells through a process called

affinity maturation (AM): plasma B cells which generate antibodies to identify the

current antigen, and memory B cells which are used in subsequent immune responses

to identify similar antigens in the future. The AM process is highly unusual, in that

a specific region of DNA within participating B cells is mutated to generate offspring

which are selected to have higher affinity to the antigen in question. The preservation

of DNA sequences is usually of utmost importance in most cells, but the region of

the genome which defines the shape of the B cell receptor must be rapidly modified

for the B cell receptor to have a chance of becoming better at recognizing the antigen

of interest [89]. These mutations are responsible for the B cells’ incredible ability

to recognize practically any antigen that they are presented, making the mammalian

adaptive immune system one of the most effective learned identification systems in

the natural world. In this paper, we consider whether the plasma B cell and memory

B cell generation processes can be interpreted as trying to satisfy specific objectives,

and if so, can we state these objectives precisely?

We borrow standard ideas from machine learning, where it is common to first

specify an ideal mathematical objective to be optimized (such as minimizing the ex-

pected error rate of a learned identification system), then propose heuristic algorithms

that approximately optimize that mathematical objective. Similarly, we hypothesize

that the AM processes act like heuristics that approximately optimize for idealized

78



immunological objectives due to evolutionary pressures. We hypothesize what those

evolutionarily-adaptive immunological objectives might be, then compare how well

different B cells satisfy these objectives when faced with adversarially-mutated anti-

gens via simulations. These findings lead us to propose new hypotheses about the

implicit objectives of the immune system’s training of naive B cells to become memory

B cells.

First in Section 5.3, we review how naive B cells are recruited and trained to

become plasma B cells, and present a hypothesis for the objectives of this training

mathematically. In Section 5.4, we consider the mathematical optimization objectives

of the more enigmatic training process that leads to the generation of memory B

cells. We define plasma B cell training or training plasma B cells as the process of

generating plasma B cells from naive B cells during AM. Similarly, we define memory

B cell training or training memory B cells as the process of generating memory B

cells from naive B cells during AM. We test our hypotheses via simulations in Section

5.5, and conclude with a discussion of open questions in Section 5.6.
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Figure 5.1: High-level illustration of the adaptive immune system. First, an antigen enters
the body, then the innate immune system identifies pieces of the antigen as non-self. (Top:)
The adaptive immune system’s response to the identified antigen. A diverse set of random
naive B cells that have some initial affinity to the antigen flock together and form a germinal
center [89, 129]. These B cells proliferate and mutate when selected by TFH cells for their
affinity to the antigen. B cells with moderate affinity are stored for later use as memory
B cells. High affinity B cells differentiate into plasma B cells, which are the solution to a
particular antigen. (Bottom:) A mutated version of a previously encountered antigen, or an
antigen from a related pathogen, is presented to the adaptive immune system. It responds
by forming germinal centers with both random naive B cells (with some initial affinity to
the antigen) and memory B cells from the first encounter. Memory B cells can also be used
directly by differentiating into plasma B cells. This figure was taken from Lindsly et al.
[75].

5.3 Plasma B cell training

We review the AM process that trains naive B cells to become plasma B cells, then

consider what mathematical criteria the plasma B cell training may have evolved to

optimize.

5.3.1 Affinity Maturation Of Plasma B Cells

AM begins by recruiting naive B cells with some initial affinity to the antigen to

secondary lymphoid organs. These naive B cells, along with T follicular helper (TFH)
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cells and follicular dendritic cells, concentrate into temporary structures known as

germinal centers (Fig. 5.1A) [89, 129]. Germinal centers (GCs) ensure that these

cells are in close proximity, thus facilitating rapid mutation and evaluation of B

cells receptor sequences. During AM, B cells are evaluated by TFH cells for their

affinity to the antigen through the length of interaction between them, based on

antigen presentation by B cells [87]. If the initial affinity of a B cell is high, it

receives a chemical signal from the TFH cell to move to a separate area of the GC and

proliferate. While the B cell is proliferating, a specific section of the genome called the

hypervariable region is exposed to an enzyme, activation-induced cytidine deaminase

(AID) [7, 93]. AID is able to deaminate cytosine creating uracil, a nucleotide that is

not normally found in DNA. The operation that repairs these changes is error-prone,

leading to mutations in the DNA sequence [83].

The process of deamination and mutations during repair is referred to as somatic

hypermutation (SHM). After proliferating, the B cells return to the area of the GC

containing TFH cells and are reevaluated for their affinity towards the antigen. This

iterative process of proliferation, mutation, and affinity evaluation continues until

the B cells have a sufficiently high affinity to the antigen. At this point, the B cells

differentiate into plasma B cells and begin to produce antibodies which allow for the

immune system to eradicate the antigen.

5.3.2 Affinity Maturation As An Algorithm

We model AM in Algorithm 6, which we use to simulate AM in our experiments.

We simplify a few known or uncertain issues about AM, detailed in Subsection 5.3.3.

Each naive B cell receptor sequence is generated randomly by a combinatorial mix

of its V, D, J, and C gene segments, as well as through junctional diversity between

these segments [120]. Naive B cells span at least 100 million possibilities [120]. The

naive B cells recruited to a germinal center are cells that already have some promis-
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ing affinity s to the antigen a. SHM then mutates nucleotides in the DNA sequence

region roughly 1,500 base pairs (bp) long that defines the B cell receptor structure.

Mutations in the hypervariable region are on the scale of 106 times more likely than

mutations outside of this region [83]. Mutations can be swaps, insertions, and dele-

tions in a categorical space modeled as {A, T, C,G, ∅}1500, where ∅ connotes a deletion.

It should be noted that, although the combinatorial space of possible mutations is

large, many specific mutations immediately lead to apoptosis. AM optimization is

parallelized and distributed over G germinal centers, which algorithmically can be

thought of as G different parallel processors. We model the different germinal centers

as working independently, though there may be biochemical signaling between them.

In practice, an organism trains for multiple independent antigens simultaneously, but

for simplicity, we consider one antigen at a time.

5.3.3 Known Simplifications Of Algorithm 6

We note that Algorithm 6 simplifies a few known characteristics of AM. We believe

these simplifications are minor and that they do not affect the major conclusions of

this work.

We model the algorithm as T discrete iterations, but in practice, AM is continuous

process that is partly time-limited because of antigen decay and external pressures.

However, to our knowledge, there is not an exact limit to the number of divisions that

can occur or an exact timeline that must be met during AM. Furthermore, there is a

chance that the immune system does not find a solution fast enough, causing the host

to die. While we recognize that this occurs in the natural system, it is not the focus

of our simulation. Therefore, we use a fixed number of iterations as an approximation

of the time limits the real immune system faces. In addition, we identify the highest

affinity B cells at the end of our simulation as plasma B cells for simplicity, but plasma

B cells are not selected simultaneously at the end of AM.
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Before SHM begins, the initial B cell population may have undergone undirected

proliferation, which means the initial random sample may be better modeled as ran-

dom clusters of B cells. Algorithm 6 allows the germinal centers to grow without

bounds, though the die-off rate d will tend to limit the population size in the ger-

minal centers. In practice, the size of germinal centers is also bounded by physical

volume constraints and biochemical resource constraints. We use a constant die-off

rate d, but there is some evidence die-off probability decreases as affinity increases

[5]. We include a simplified version of this behavior by biasing the death probabilities

of B cells in the germinal center towards lower affinity cells.

TFH cells measure nearby B cells for their affinity, so there is only some probability

that a specific B cell will have its affinity measured, and that probability a B cell’s

affinity gets measured is thought to be a function of spatial organization (which is

indirectly affected by affinity) and direct affinity. The affinity and spatial proximity

of a particular B cell influences its likelihood to be selected and induced to proliferate.

We do not consider the spatial organization between TFH cells and B cells explicitly.

As affinity of a B cell increases, so does the likelihood that the TFH cell will send a

proliferation signal. Similar to the increased likelihood of death for a low affinity B

cell, we bias the selection of B cells for proliferation towards higher affinity B cells.

In addition, the strength of the proliferation signal is generally proportional to the

affinity of the B cell, such that a high affinity B cell is more likely to proliferate many

times before returning for another iteration of affinity evaluation [37, 87].

Algorithm 6 may oversimplify AM in other ways as well that we are not aware of,

or that are not yet known.
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Algorithm 6 Affinity Maturation Algorithm for Training Plasma and Memory B Cells

Require: an antigen a ∈ A
Require: an affinity score s(b, a)→ R for B cell b ∈ B and antigen a ∈ A
Require: a low affinity threshold ε to enter a germinal center

Require: a high affinity threshold τ >> ε to become a plasma B cell

Require: a die-off rate d ∈ [0, 1] for germinal center B cells

Require: probability p that a B cell is measured by a TFH cell

Require: probability function q(t, s) of producing a memory B cell on iteration t given affinity score

s that is monotonically increasing in s, and might be monotonically decreasing or unimodal in t

Require: probability function r(s) of a proliferation signal from a TFH cell after affinity measure-

ment

Require: a Bernoulli random number generator Bernoulli(p) that outputs 1 with probability p

and 0 otherwise

1: initialize the set of plasma B cells B∗ = ∅ and the set of memory B cells V ∗ = ∅
2: for g = 1, . . . , G germinal centers do

3: sample an initial set of Jg naive B cells B0
g such that s(b, a) > ε for all b ∈ B0

g

4: for t = 1, . . . , T iterations do

5: for b ∈ Btg do

6: if Bernoulli(p) == 1 then

7: the B cell b is observed by some nearby TFH cell which measures s(b, a)

8: if s(b, a) ≥ τ then

9: insert b into the set of plasma B cells B∗ such that b ∈ B∗
10: break

11: end if

12: if Bernoulli(q(t, s(b, a))) == 1 then

13: insert b into the set of memory B cells V ∗ such that b ∈ V ∗
14: break

15: end if

16: if Bernoulli(r(s(b, a))) == 1 then

17: proliferate: B cell b sent to divide and mutate some number of times, and its

mutated copies are added to the set Bt+1
g

18: break

19: end if

20: if Bernoulli(d) then

21: b dies

22: break

23: end if

24: end if

25: b is added to the set Bt+1
g

26: end for

27: end for

28: end for

29: return the set of plasma cells B∗ and the set of memory B cells V ∗

84



5.3.4 Plasma B Cells Are Created To Optimize Antigen Affinity Given

Limited Time

AM is a process that has long been framed as the immune system acting as a

global optimization algorithm trying to find a B cell that best identifies a given

antigen through SHM [131]. That is, AM acts as if it were a heuristic to solve,

arg max
b∈B

s(b, a) (5.1)

where a is a given antigen, b is a B cell from the set B of all possible B cells, and

s is the affinity function that models the quality of the lock-and-key physical and

biochemical interaction of b and a. Note that B is a very large categorical space

defined by the variable-length DNA sequence that encodes the B cell receptor.

However, the objective (5.1) does not recognize the fact that a plasma B cell does

not need to be a perfect match to the antigen. In fact, there appears to be a sufficient

affinity τ such that once an affinity of τ is reached, the B cell is induced to differentiate

into a plasma B cell. Further, the immune system is under time pressure to produce

such sufficiently high-affinity plasma B cells as fast as possible.

Therefore, we propose that a more realistic model of what the plasma B cell

generation process is optimizing should also depend on the sufficient affinity τ > 0,

and the given set B0 of initial naive B cells in the germinal center. To capture the time

pressure, we model probabilistic mutations to B cells in the germinal center at each

discrete time iteration. Given a naive B cell b ∈ B0, let M(b) ∈ B be a new random B

cell produced by a single random mutation of b. Let MK(b) = M(M(. . . (M(b)) . . .))

denote the random B cell generated after K random mutations of b, so that the

random B cell MK(b) can be any of the B cells reachable by K mutations M of the

initial B cell b, with the corresponding probabilities dependent on the sum of the

likelihood of the different mutations paths that could produce MK(b) starting from

85



b.

Then we hypothesize the plasma B cell selection process is a heuristic evolved

to minimize the number of mutations K ∈ N needed so that on average K random

mutations will produce at least one B cell in the germinal center with sufficient affinity

τ to the antigen:

minK such that

(
EMK

[
max
b∈B0

s(MK(b), A)

])
≥ τ, (5.2)

where E[·] is the standard expectation operator (average) with respect to the ran-

dom variable’s possible outcomes weighted by their probabilities. This objective is

consistent with our Algorithm 6.

Clearly, the immune system is not a sentient entity that explicitly formulates

the criteria (5.2) and subsequently identifies a heuristic to optimize it. Rather, our

hypothesis is that evolutionary pressures have selected for a plasma B cell generation

process that better optimizes (5.2).

5.4 Memory B Cell Training

Similar to plasma B cells, memory B cells are created within the germinal center,

but there are key differences in the generation of these two cell types to achieve their

respective objectives [87, 126, 138]. We first review how memory B cells are created,

and then consider what criteria they are optimized for, analogous to our criteria (5.2)

for plasma B cells.

5.4.1 Background On Memory B Cells

While the name memory B cell may invoke the idea that a memory B cell is

long-term copy of a plasma B cell, the truth is more complicated. Memory B cells do

not undergo the entire AM process like plasma B cells do. In fact, memory B cells
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are characterized by their relatively low affinity compared to plasma B cells, and low

SHM load (number of mutations gathered from SHM) [126]. This implies that while

memory B cells have initially high affinity to an antigen relative to the naive B cell

repertoire, they do not undergo AM to the extent of plasma B cells, and on average

have lower affinity to the current antigen than plasma B cells.

The gene BACH2 plays an important role in the development of memory B cells

within the germinal center, and in their eventual differentiation [117, 126]. BACH2

has been found to be inversely correlated with the help a B cell receives from TFH

cells, and the resulting weak interactions with TFH cells allow for BACH2 expression

to remain high. Critically, the relationship between BACH2 expression and TFH cells

allows for some help from TFH cells in order for cell survival within the germinal

center, but prevents the B cell precursor from entering the area where it would prolif-

erate and mutate via SHM. This leads to three subsets of B cells within the germinal

center: (1) high affinity B cells which are selected for by TFH cells to proliferate and

mutate via SHM, and eventually lead to plasma B cell differentiation, (2) moderate

affinity B cells (low compared to plasma B cell precursors, high compared to the av-

erage naive B cell) whose selection by TFH cells is tempered by BACH2, leading to

memory B cells, and (3) low affinity B cells which receive little or no help from TFH

cells leading to apoptosis [88, 130].

Memory B cells are similar to naive B cells in terms of their transcriptional profiles,

which enables them to circulate freely within the organism and to monitor for future

instances of antigens. Despite these similarities, they exhibit over-expression of anti-

apoptotic genes which allows for the memory B cell to live for extraordinarily long

periods of time and therefore the ability to recognize antigens in the future [126].
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5.4.2 What Are Memory B Cells Optimized To Do?

If the immune system’s objective were rote memorization of the highest affinity B

cell receptors to the current antigen a, we might expect the memory B cell receptor

repertoire to be nearly identical to the plasma B cells receptor repertoire, but they

are not. One might alternatively expect AM to take advantage of the luxury of time

it has before it needs the memory B cells to mutate more so that the memory B cells

could have even higher affinity s(b, a) to the antigen than the plasma B cells, further

optimizing (5.1). That also does not appear to be the case. While both those options

should be biologically feasible, the immune system does something radically different

to create memory B cells: it selects memory B cells earlier in AM than plasma B

cells, and thus the memory B cells on average have lower affinity s(b, a) than plasma

B cells.

To explain why the memory B cells are so poorly-fit to the current antigen a,

we propose two hypotheses for the objective function that memory B cells may be

heuristically trying to optimize. Our two hypotheses follow from the dual role of

memory B cells [47, 138]. First, when future incarnations of the antigen a attack, the

memory B cells are used as-is to differentiate into plasma B cells and eradicate the

mutated antigen. Second, memory B cells are used to warm start AM’s secondary

training of plasma B cells. In fact, recent evidence shows that a large portion of the

plasma B cells in the secondary response are memory B cells from the first response,

and some memory B cells are also used to seed the new germinal centers to optimize

secondary response plasma B cells [88].

5.4.3 Training For Affinity To A Mutated Antigen

We propose that the key issue for memory B cells is that the future instance of the

antigen they must mitigate is almost certainly a mutation ã of the original antigen a.

At the time the memory B cells are created, the future mutated antigen ã is unknown,
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but we can characterize it as a randomly mutated antigen Ã. In this paper, we use the

standard probability notation that a capital letter denotes a random variable, and its

corresponding lower-case letter denotes the realization of that random variable. For

example, if you roll a six-sided die, the random value X ∈ {1, 2, . . . , 6} refers to the

die roll before you look at it because at that point you only know the probability of its

six values, but once you see the die roll, it is a deterministic value x ∈ {1, 2, . . . , 6}.

Let Ã be a random antigen drawn from some conditional probability distribution

PÃ|a that depends on the current antigen a, and models the probability of possible

future mutations to a and the probability that such a mutation is presented to the host

organism within the lifespan of memory B cells selected during the immune response

to a. If only a single memory B cell were required for a secondary response, a logical

generalization of (5.1) would be to select a memory B cell that will, on average, have

high affinity to the random mutated antigen Ã.

arg max
b∈B

EÃ

[
s(b, Ã)

]
. (5.3)

If all mutations of the antigen a are equally likely, then the solution to (5.3) might be

the same as (5.1). But if there is substantive asymmetry in the probability of different

antigen mutations, then the solution to (5.3) will be different than the solution to

(5.1). This is the same principle as in the famous Wayne Gretzky quote about hockey,

I skate to where the puck is going to be, not where it has been.

However, the situation is more complex, because in each germinal center AM

actually produces a set of N memory B cells. We hypothesize that AM is evolved to

try to produce a diverse set of N memory B cells that maximizes the expected affinity

between the best-fit of the N memory B cells and the random mutated antigen Ã:

arg max
{bn∈B},
n=1,...,N

EÃ

[
max

n=1,...N

[
s(bn, Ã)

] ]
. (5.4)
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Fig. 5.2 illustrates the criterion in (5.4), showing that diversity in the memory

B cells helps cover the space of probable mutations of the original antigen a. The

criterion (5.4) rewards a larger number N of memory B cells, but there is downward

pressure on N due to the physical resources needed to store and maintain those cells,

and time pressure before the antigen decays away.

5.4.4 Optimizing For Warm Starting Training For A Mutated Antigen

A second role of memory B cells is to warm start future AM processes for ã. We

argue that this role calls for a different criteria as to what makes for a good set of

memory B cells. Specifically, analogous to (5.2), we hypothesize that the set of N

memory B cells {bn ∈ B} should be chosen to minimize the number K of mutations

in the secondary response needed to produce a set of N randomly mutated B cells

{MK(bn)} such that one of them is expected to become a secondary response plasma

B cell, that is, that it meets the affinity threshold τ with respect to the randomly

mutated antigen Ã:

arg min
{bn∈B},
n=1,...,N

(
K such that

(
EÃ

[
EMK

[
max

n=1,...,N
s(MK(bn), Ã)

]])
≥ τ

)
. (5.5)

We do not mean to suggest that the memory B cells directly optimize (5.5),

but rather that evolutionary pressures might have preferred memory B cell selection

processes that better optimize (5.5).

Goal (5.4) and goal (5.5) will likely have different optimal solutions depending on

the probability of different mutations of the antigen and the B cells, though the same

heuristic memory B cell selection process might do pretty well at both objectives. It

is not yet known how important memory B cells are to the secondary response plasma

B cell training in germinal centers, yet some evidence shows that secondary response

germinal centers are comprised of more naive B cells than one might expect [88].
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Figure 5.2: Memory B cell coverage of the antigen mutation space. Given an antigen a, we
expect to see a mutated version ã in the future. Suppose we cannot predict which mutations
are more likely, so the probability distribution of the future mutated antigen ã is symmetric
in the mutation space, shown here as yellow rings of decreasing probability from the original
antigen a. (A) If you only get to choose one memory cell, and the antigen is equally likely to
mutate randomly in any way, it is optimal to be a copy of a very good plasma cell, marked
by b. The blue circle shows the likely mutations of b after its K mutations in a secondary
germinal center. (B) If you get to keep a set of N memory cells, spreading the memory B
cells out will lead to a higher affinity to more of the possible antigen mutations, rather than
keeping N copies of the plasma B cells. This figure was taken from Lindsly et al. [75].

5.4.5 Why Are Memory B Cells Not Copies Of Plasma B Cells?

Both (5.4) and (5.5) appear to require knowledge of the probability distribution

PÃ of different mutations the antigen may undergo, and the conditional probability

distribution PM |b of different mutations of a B cell. However, we note that for many

simple choices of PÃ and PM |b, the exact distributions would not matter: the immune

system could cheaply achieve a good approximate solution to (5.4) and (5.5) by simply

making the memory B cells copies of the plasma B cells; there does not appear to

be any biochemical restriction preventing exact replication. However, the memory

B cells do in fact appear to be selected for differently than the plasma B cells. We

present two hypotheses as to why.

Our first hypothesis was already introduced in Section 5.4.3 and Fig. 5.2: because

the immune system gets to select a set of memory B cells in (5.4), it pays to have more

diversity in the memory B cells than one gets by copying the plasma B cells. Plasma

B cells tend to be less diverse because they are trained to optimize (5.1), which even
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with multiple local minima in the shape of s(b, a), will limit their diversity. Memory

B cells are more diverse than plasma B cells because they are selected earlier in the

maturation process. We believe this diversity is important to optimize affinity to the

mutated antigen as per (5.5) because the true affinity function s is a highly nonlinear

function of the amino acid sequences of a B cell b and antigen a that arise from

complex biochemical properties and physical lock-and-key structures [2, 21, 63].

Our second hypothesis is that the warm start objective (5.5) for the secondary

germinal centers is not well-optimized by a copy of the plasma B cell set because there

is evidence that the probabilities PM |b of the random mutations of the B cells in SHM

are asymmetric: certain mutations of B cells are much more likely than others. That

makes some B cells a more flexible starting point for warm-starting than the original

plasma B cells, which may have trouble mutating to match the new antigen. Evidence

for asymmetric PM |b is that many researchers have noted AID preferential targeting

of specific motifs [24, 62, 83, 121]. As mutations would, by definition, change the

specific sequence that AID targets, it is reasonable to infer that the first mutation of

this location is easier than future ones. Once the sequence is changed, AID is less

likely to target this location. Overall, the preferential targeting of AID would make

it harder for this region to mutate further or reverse back to the original sequence.

This asymmetry in the probability of moving around the space of all B cells

via mutations during AM creates a disconnect between the plasma B cell objective

(5.1) and the objective of being a good warm start solution to future plasma B cell

training as per (5.5). Specifically, a plasma B cell might have made many difficult-to-

reverse mutations to optimize (5.1) for the current antigen a. In contrast, the chosen

memory B cells appear to be under-optimized for fitting the current antigen a, but

we hypothesize they can more easily mutate in a secondary response AM to better

fit the random future antigen Ã. Overall, we note that how well the objectives (5.1),

(5.4) and (5.5) align depends on the symmetry of PÃ, PM |b, and the nonlinearity of s.
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5.5 Simulations

We use the AM algorithm (Algorithm 6) to model how plasma B cells and memory

B cells are trained, and show through two simulations that the simulated memory B

cells are better than the simulated plasma B cells at optimizing our hypothesized ob-

jectives (5.4) and (5.5), thus providing evidence that these objectives are biologically

reasonable. We first demonstrate the mechanics of affinity maturation in simulated

primary immune responses, then compare different potential initial conditions for

simulated secondary immune responses.

These simulations do not account for all of the real-world issues at play, such as

that a viral mutation must not harm the virus’s functionality, and the issues described

in 5.3.3. Despite these limitations, we argue these simulations capture many of the

key issues needed to illustrate that our hypothesized objectives are consistent with the

difference in plasma and memory B cell training. Complete code for our simulations

will be made available upon request.

5.5.1 Simulation Set-up

Our simulations follow Algorithm 6 for the AM process. We initialize a naive B

cell repertoire (10,000 cells) with B cell receptors that are represented by a random

sequence of 10-50 amino acids, where each amino acid is drawn uniformly over the

space of 61 non-stop codons (creating a non-uniform distribution over the amino

acids). We simulate the antigens as sequences derived from known antigenic sequences

of chicken ovalbumin, bovine milk, and wheat [59, 78]. Each antigenic sequence is

17 amino acids long for consistency. We simulate the affinity metric s between a

B cell and the antigen using the standard localalign MATLAB function, which

finds the optimal alignment between two sequences using the BLOSUM50 matrix and

returns a score reflecting how similar two sequences are in this alignment [58]. We

use this score as a measure of affinity between the B cell receptor and the antigen
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for simplicity, but note that it is only a rough approximation of the more complex

structural compatibility between a B cell receptor and an antigen.

Mutations of the B cell during AM are modeled in the codon space, where codons

of the B cell receptor are replaced with one of the 61 codon possibilities. While SHM

mutates B cells on a single nucleotide level, working in the codon space prevents the

added complication of filtering out nonsensical B cell receptor sequences. In addition

to the replacement of codons, codons in B cell receptor sequences can be inserted or

deleted. Insertions and deletions are less likely to occur than swapping for another

codon, based on rates of each type of mutation observed in humans [28, 55, 149]. The

codons defining each B cell receptor are chosen to mutate at random, but we simulate

codons that contain C cytosines to be C + 1 times more likely to be mutated than

codons without cytosine, reflecting biological biases to nucleotide sequence motifs [24,

62, 83, 121]. We also impose a transition bias between codons, making some swaps

more likely than others based on a mutability matrix derived from the BLOSUM50

matrix [58, 136].

For our initial simulation of a primary adaptive immune response to an antigen

(primary response), we randomly select 50 naive B cells from the B cell repertoire

from the top 1,000 of the 10,000 naive B cell repertoire in terms of affinity to said

antigen. This reflects the recruitment of naive B cells with some partial affinity by

TFH cells to germinal centers [87, 129]. These 50 ‘founder’ B cells are then duplicated

20 times to form a germinal center population of 1,000 cells, reflecting the growth

period of germinal center formation [3]. For each iteration of the simulation, 50

B cells are selected for proliferation and 50 B cells are selected for removal. Higher

affinity B cells have a higher selection probability for proliferation, while lower affinity

B cells have a higher selection probability for removal. The B cells selected for

proliferation are duplicated and mutated, replacing all B cells selected during this

iteration. This process imitates apoptosis of low affinity B cells from lack of TFH
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cell help and proliferation of B cells with high affinity after being selected by TFH

cells. These mutations have the possibility to increase, decrease, or have no effect on

the affinity of the B cell receptors. We also impose constraints on which mutations

can occur on a particular iteration, simulating a negative selection process due to

damaging or potentially dangerous mutations. This entire process repeats over 100

iterations.

As a basis for both Simulations 1 and 2, we extract 50 cells during the first half

of our primary response simulation as the simulated memory B cells. The cells are

randomly chosen from the top 25th percentile of germinal center B cells. Another 50

cells are selected at the very end of the primary response to represent plasma B cells,

where these cells exhibit the highest 50 affinity scores to the antigen. This reflects a

slight deviation from Algorithm 6, as we do not know the threshold τ a priori. We

establish τ for the secondary response based on the affinity of the plasma cells chosen

at the end of the primary response. As expected, the simulated memory B cells have

overall lower affinity to the antigen compared to the plasma B cells, but higher than

the initial set of naive B cells.

Our simulated mutations of the antigen for the secondary response are derived

from a uniform random swap of any of the codons for any other (including possibly

itself, i.e. a no-op), which creates a non-uniform distribution over the amino acids

as some amino acids are coded for by multiple codons. Mutations of the antigen can

also include insertions or deletions of codons, with equal probability to any codon.

5.5.2 Simulation 1: Affinity To A Mutated Antigen

A secondary infection could involve an antigen that has been mutated or an antigen

that is similar from a related pathogen. We simulate the changes in the antigen

from the primary to secondary infection by causing adversarial mutations to our

antigenic sequence. First, we generate 1,000 uniformly random mutations of antigen
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a’s sequence. The random mutations may be a swap of any amino acid to any other,

an insertion of any amino acid, or a deletion of an amino acid. Of those candidate

mutations, we keep the one that has the lowest average affinity (worst case) to the set

of 50 plasma B cells from the primary response, to reflect that a potentially dangerous

secondary infection would likely be from a more challenging mutation. We repeat this

random process a total of K times to produce an antigen with K mutations. We take

that adversarial antigen ã to be the worst case realization of PÃ from the candidate

mutations.

Figure 5.3: Potential initial conditions for a secondary adaptive immune response. Simula-
tion results averaged over 100 independent runs of the primary response for three antigens
(from left to right: chicken ovalbumin, bovine milk, and wheat). Plots show average affinity
of naive, plasma, and memory B cells to adversarially mutated antigens with K = 1, . . . , 10
mutations. Ranges of mutations where plasma, memory, and naive B cells are optimal are
shaded blue, orange, and yellow respectively. This figure was taken from Lindsly et al. [75].

We then test the different B cell populations by the hypothesized goal of (5.4).

Fig. 5.3 shows the average affinity between increasingly mutated antigens (chicken

ovalbumin, bovine milk, and wheat) with mutations K = 1, . . . , 10 for different cell

populations at the end of the primary response, averaged over 100 independent runs

[59, 78]. Fig. 5.3 shows that our simulated plasma B cells are the best choice to

maximize (5.4) for a small number of adversarial mutations, our simulated memory B

cells are the best choice between ∼2-6 mutations, and naive B cells are best after many

mutations (7+). Our simulations are too simplified for the specific transition points

to be meaningful, but we argue they do provide strong evidence that the plasma B
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cells are likely not optimal for identifying substantially-mutated antigens. This may

further suggest that there is some region in mutation space where memory B cells are

more useful than plasma B cells or naive B cells as an initial condition for a secondary

response.

We hypothesize that the fact that plasma B cells do not always have the highest

affinity to mutated antigens is driven by the greater diversity of the memory B cells

and naive B cells. While the mutations occur in DNA space, the relevant diversity is

in the resulting nonlinear physical and biochemical space that defines the affinity to

the antigen. Approximately measuring the B cell diversity in each population using

the pairwise BLOSUM similarities in each set shows substantial diversity differences,

with the plasma B cells having average within-set BLOSUM similarity of ∼46, the

memory B cells having much lower average within-set BLOSUM similarity of ∼27,

and the naive B cells having even lower within-set BLOSUM similarity of ∼9 (from

a representative primary response).
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Figure 5.4: Example performance of different populations as initial conditions for secondary
responses. We chose one representative run of the primary response simulation to the bovine
milk antigen [78]. Each line represents one of the 10 secondary response simulations as a
function of SHM iterations when initialized by a set of 50 plasma, memory, or naive B cells
(as marked), for K = 1, . . . , 10 sequential adversarial mutations. The y-axis marks the
average affinity of the top 50 (out of 1,000) highest affinity B cells during the secondary
response to the mutated antigen, representing the new potential plasma B cells from the
secondary response. Dashed horizontal line reflects the average affinity, τ , of the plasma
cells from the primary response. For this run of the simulation, the plasma B cells had
difficulty achieving high affinity to the mutated antigens after three adversarial mutations.
The memory B cells were the most useful seeds for the three-mutation case. Once the
antigen was mutated four times, only the naive B cells were sometimes able to achieve the
affinity threshold before 100 iterations of SHM. Surprisingly, the average affinities plotted
grew fairly linearly and at roughly the same rate for most of the lines, suggesting fairly
constant progress, and that none of the populations became stuck, but rather just started
from a worse initial affinity. This figure was taken from Lindsly et al. [75].

5.5.3 Simulation 2: Mutations Needed For Secondary Response Plasma

B Cell Training

In this simulation, we compare how well the three types of B cells perform as seeds

for the secondary response germinal center. We mimic a secondary response training

of a new set of plasma B cell’s optimized for high affinity to a mutated antigen

ã (described in Simulation 1). We initialize the secondary response plasma B cell

98



optimization with one of three choices: (i) the N = 50 plasma B cells generated in the

primary response for the original antigen a, (ii) the N = 50 memory B cells generated

in the primary response for the original antigen a, or (iii) N = 50 naive B cells. We

populate the germinal center in an identical way to the primary response, using the

three sets of 50 B cells as our new founder cells. As in the primary response, the

naive B cells are random, but chosen to have some initial affinity to the now-mutated

antigen to simulate recruitment to the germinal center. Each of these three secondary

response germinal centers undergo AM in an identical fashion to the primary response.

Fig. 5.4 are representative examples of multiple secondary response simulations,

given the same primary response and the same K = 1, . . . , 10 mutations on the

bovine milk antigen [78]. Specifically, it shows the average affinity of the 0.05%

highest affinity cells over 100 iterations in secondary responses. Fig. 5.4 highlights

that for just one or two antigen mutations, plasma B cells tend have the highest

initial affinity to the mutated antigen. For three or more adversarial mutations, naive

and memory B cells are better initial conditions for the secondary response than the

primary response plasma B cells, and reach an affinity of τ in fewer iterations (Figs.

5.4 and 5.5). Fig. 5.4 also conveys how the recruited secondary response naive B cells

tend to have higher initial affinity to the mutated antigen than either the primary

response plasma B cell or memory B cells once the antigen has been sufficiently

mutated. This was expected, but we were surprised at how few mutations it took for

the naive B cells to have the highest affinity at the first iteration of the secondary

response. That is, for relatively few codon mutations in the new antigen, we find

empirical evidence that seeding a secondary response with primarily B cells from the

naive repertoire is an advantageous strategy. We were not able to simulate a region

in mutation space where the memory B cells from the primary response consistently

had the highest affinity at the first iteration of the secondary response, likely due to

considerable variation between simulated secondary responses.
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Similarly, Fig. 5.5 shows the average number of iterations for plasma, memory,

and naive B cells to reach τ over all secondary response simulations for all three

antigens. The iteration number, where the threshold τ is reached, is averaged over

all secondary response simulations for 50 independent simulations of the primary

response for each antigen. Again, our simulations did not show a region of mutation

space where memory B cells were consistently the best warm start conditions. We

found this to persist across a number of refinements of our simulation, suggesting

this finding might not be an artifact of too coarse a simulation. We hypothesize

that this is due to the selection of naive B cells for the secondary germinal center

being biased to have some initial affinity to the mutated antigen (as described in

the primary response simulation). That is, naive B cells in Fig. 5.4 are selected

for initial affinity to ã, while memory and plasma B cells derived from naive B cells

selected for having some initial affinity to the original antigen a (Fig. 5.3). We

initially suspected that our affinity bias for the selection of naive cells was too strong,

but both naive and memory B cells are recruited simultaneously in real secondary

germinal centers in order to have the best chance of creating new plasma B cells. In

fact, recent experimental evidence suggests that secondary response germinal centers

are comprised of more naive B cells than previously thought [88]. It is also possible

that there is an antigen mutation regime for which the memory B cells are indeed

more effective than naive B cells for warm starting, but that our simulations were not

realistic enough to capture it.

We note that the secondary response simulations often take more than 100 itera-

tions to reach the affinity threshold τ from their corresponding primary simulation.

When calculating the average number of iterations to reach τ in Fig. 5.5, we set

these cases to the maximum iteration number of 100. We hypothesize that this phe-

nomenon occurs because the adversarial mutations of ã may create a more difficult

problem for the simulated germinal center to solve.
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Figure 5.5: Convergence rate for potential initial conditions across all secondary responses.
Time of convergence to τ for plasma, memory, and naive B cells during simulated sec-
ondary germinal centers’ warm starts for K = 1, . . . , 10 mutations averaged over 50 in-
dependent runs of the entire simulation, where each of the primary response simulations
had 10 corresponding secondary response simulations. Lower values indicate a faster time
to convergence, showing that the plasma B cells are the best warm starts for one or two
of the simulated adversarial mutations (dependent on the antigen). Naive B cells are the
best warm starts for almost all cases with three or more simulated adversarial mutations.
Antigens 1, 2, and 3 correspond to chicken ovalbumin, bovine milk, and wheat, respectively
[59, 78]. This figure was taken from Lindsly et al. [75].

5.6 Conclusions and Open Questions

We hypothesized that the dual role of memory B cells can be captured by two

objectives (5.4) and (5.5), and that these objectives would not be as well-optimized by

copying plasma B cells that are trained for (5.1), due to their over-fitting the original

antigen. Our simulations, while limited, provide strong evidence that plasma B cells

would not optimize (5.4) or (5.5) once the antigen underwent sufficient adversarial

mutations. We believe this suboptimality of plasma B cells against mutated antigens

provides a role for the different selection mechanism used for memory B cells.

Our simulations show a limited range of antigen mutations over which our sim-

ulated memory B cells may be optimal; for substantial mutations, we show random

naive B cells can work even better. These findings are consistent with our knowl-
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edge of the adaptive immune system. Plasma B cells are a one-time solution and are

highly overfit to the current antigen of interest. Memory B cells provide a more ap-

proximate solution to the current antigen, which is kept within the body to recognize

future antigens with similar characteristics. If a future antigen is so different from

what has been previously encountered by the immune system that no memory B cells

are able to identify it, a new solution is formed from scratch using naive B cells.

Memory B cells play two roles, both differentiating into plasma B cells and re-

initiating germinal centers, but these roles may be played by distinct subpopulations

[47, 138]. These distinct subpopulations of memory B cells might have resulted from

distinct AM processes, or changes in the AM process over the AM time span that we

have not explicitly modeled in our Algorithm 6 [139]. Thus our two memory B cell

objectives in (5.4) and (5.5) may apply to independent memory B cell populations.

Here we investigated a simplified model, where memory B cells were considered a

unified group. However, we were not able to show via simulations a regime in which

the memory B cells were clearly better than secondary naive B cells for re-initiating

the secondary germinal response. Our results suggest this re-initialization task might

be a weaker or rarer role of the memory B cells. These results align with recent

experimental evidence that similarly noted memory B cells were less prevalent in

secondary germinal centers than previously assumed [88]. However, even if memory

B cells are not always needed for the secondary response, it might be that in some

cases they are very important for warm starting, which might still exert evolutionary

pressure on their selection process.

The evolutionary pressures on memory B cell selection in nature are not known,

but may be elucidated through the integration of computational simulations and

biological experiments. Actively monitoring the affinity of B cells during affinity

maturation, as well as detecting when and why GC B cells become memory B cells,

may assist with the development of more accurate and complex models in the future.
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CHAPTER VI

Concluding Remarks

The study of genomics has made extraordinary advancements in recent decades,

and will be a major focus for the foreseeable future. The human genome was only

mapped within the last 20 years, yet we have made great strides towards under-

standing how it operates [30]. New technologies, such as RNA-seq, Hi-C, ChIP-seq,

ATAC-seq, and Pore-C have allowed us to study the genome with unprecedented lev-

els of detail and gain access to massive quantities of data. These data have given us

a better understanding of how the genome operates normally, and we have begun to

learn how small mutations in the genome are associated with certain diseases. These

findings have helped us predict individual’s predispositions for disease and how cer-

tain medications will behave on an individual basis. In addition, the recent discovery

of gene editing through CRISPR-Cas9 will allow us to manipulate the genome for

therapeutic treatments. Using all of this information as a foundation, the next goal

in genomic research is to understand the dynamical relationship of genome structure

and function and how it affects cell phenotype. Research of the 4D Nucleome will be

crucial in this pursuit.

One of the major challenges of studying the 4DN is the integration and analysis of

different data types. In Chapter II, we introduce the 4DNvestigator MATLAB tool-

box. The 4DNvestigator allows for both novice and experienced users to process and
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analyze data in a simple yet mathematically rigorous manner. We provide functions

which are able to do standard gene expression and genome structure analysis for time

series data. In addition, we offer methods to integrate Hi-C with multiple data modal-

ities, find statistically significant changes between Hi-C data from different settings,

and visualize low-dimensional representations of these data. We provide multiple

examples of how the 4DNvestigator can be applied to different scenarios, including

data from cellular proliferation, differentiation, and reprogramming experiments. The

4DNvestigator allows for 4DN data to be quickly explored and characterized, with-

out the need for an in-depth understanding of the data types’ disparate formats and

computational nuances.

Research on the 4DN has been gaining traction in recent years, but many studies

ignore the fact that cells contain a copy of both the maternal and paternal genomes.

Chapter III describes an extension of 4DN analysis which separates the two genomes.

This analysis uses many of the features included in the 4DNvestigator, such as TAD

identification, differential expression of genes, and the integration of genome struc-

ture and function through time. Specifically, this work applies these techniques to

genome structure and gene expression data that has been separated into the ma-

ternal and paternal components across the cell cycle. We identified hundreds of

genes which were differentially expressed between their maternal and paternal alleles

through RNA-seq, and that these genes had significant changes in their local genome

structures through Hi-C. We also integrated publicly available protein binding data

which provided further evidence that the maternal and paternal genomes can have

distinct properties, outside of the known cases like X-Chromosome inactivation and

imprinting. These findings represent a significant step towards comprehensive genome

analysis. Further research with allele-specific data will be crucial for understanding

the complex relationship between genome structure and function, and its impact on

cellular phenotypes. Extensions to this work will become increasingly important as
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the development of personalized medicine and therapies rises in popularity.

Hi-C data are the current standard for analyzing genome structure. With the

development of new technologies, such as Pore-C, we are now able to extend the

pair-wise contacts of Hi-C to multi-way contacts. Multi-way contacts offer a unique

advantage, as we can now observe long range interactions of multiple loci at once.

From this, we can gain a more detailed understanding of the higher order structural

features of the genome. In Chapter IV, we introduce methods to process and analyze

multi-way contacts from Pore-C. We offer algorithms to construct hypergraphs in the

form of incidence matrices, calculate entropy of those hypergraphs, and compare hy-

pergraphs to one another. In addition, we provide a pipeline to identify transcription

clusters using the multi-way contacts of Pore-C in conjunction with other data modal-

ities. These techniques will be increasingly useful as the study of genomics progresses,

since multi-way contacts can better inform us of how genes are regulated. This in-

formation can then be used to influence gene expression, and could have applications

for clinical therapies.

Finally in Chapter V, we deviate from studying the internal details of the genome

and instead focus on cellular dynamics within the immune system. We mathemati-

cally characterize the objectives that the adaptive immune system is optimizing for,

and provide simulated results to distinguish the objectives of memory and plasma B

cells. While the affinity maturation algorithm and simulations we define are vastly

simplified compared to the real mammalian immune system, we believe that they are

able to offer valuable insights into how the adaptive immune system operates. Ad-

ditional data derived from experiments on the adaptive immune system paired with

increasingly detailed simulations may help us engineer better ways to fight novel in-

fections and improve our treatments for a multitude of diseases, such as autoimmunity

or cancers.
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APPENDIX A

Supplemental Materials

All supplemental methods, figures, and tables for Chapter II and Chapter III can

be found in Lindsly et al. [76] and Lindsly et al. [77], respectively.
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