
Investigating the Roles of Poly (ADP-Ribose) Polymerase 1 in Cortical Development 

 

by 

 

Megan M. Nelson 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Neuroscience) 

in the University of Michigan 

2021 

Doctoral Committee: 

 

Professor Gabriel Corfas, Chair  

Professor Peter F. Hitchcock  

Associate Professor Shigeki Iwase 

Professor Donna Martin 

Professor Michael Uhler 

 

 

  



 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Megan M. Nelson  

  

mmnels@umich.edu  

  

ORCID iD:  0000-0002-5377-7601 

  

  

  

© Megan M. Nelson 2021 

 

 



 ii 

Dedication 

 

 

This dissertation is dedicated to my parents, who have continuously inspired, guided, and 

supported me through all of my academic endeavors.



 iii 

Acknowledgments 

  

Numerous people have supported me during my graduate career. First, thank you to my 

mentor, Dr. Gabriel Corfas. I am so grateful for his continuous encouragement as he allowed me 

the freedom to explore my interests. I am thankful that he remained patient with the many 

roadblocks I encountered while going out of his way to provide his expertise or resources for aid. 

During my time in his lab, I have grown into a more careful, thoughtful scientist, and I am 

confident his influence has led directly to that growth. I would also like to thank the members of 

the Corfas lab, past and present, who went above and beyond to teach me, help me, and 

encourage me. Their support eased my transition into graduate school and fostered an 

environment where I felt safe to explore my interests and discuss my failures as well as my 

successes. I particularly want to thank my undergraduate students, Mya, Brenna, and Nada, who 

were a delight to interact with and teach. I very much appreciated their dedication and 

willingness to take on any task. They brought joy to the lab, for which I am thankful. 

Thank you to my thesis committee – Dr. Donna Martin, Dr. Peter Hitchcock, Dr. Michael 

Uhler, and Dr. Shigeki Iwase. Their advice, expertise, and guidance shaped the course of this 

dissertation and made me a better scientist. I appreciated their encouragement during my lows 

and their enthusiasm during my highs. I would also like to thank my undergraduate research 

mentor, Dr. Stephanie Gardner. Through working in her lab, I discovered my love for 

neuroscience, which directly led me on the path to pursuing a neuroscience Ph.D. Her support as 

I applied to graduate programs and searched for graduate mentors was invaluable. Thank you to 

the staff of the Neuroscience Graduate Program and the Kresge Hearing Research Institute for 



 iv 

taking care of all of my administrative needs, helping me focus on research. I would also like to 

thank the members of the Kresge family – graduate students, postdocs, and faculty. They were 

always willing to lend a reagent in a pinch and offer their expertise, which I very much 

appreciated. 

Thank you so much to my family – specifically my mom and dad, brothers, and 

grandparents. They were nothing but patient and encouraging during the highs and lows of my 

career, constantly reiterating how proud they were of the person and scientist I had become. My 

parents inspired me to become a scientist and helped all of my dreams to come to fruition. Last 

but not least, thank you to my friends – my constant cheerleaders, the people without which I 

could not have done this. Through my failures and successes, they were there every step of the 

way. Minh, Kim, Ketki, Colleen, Amanda, Kristin, Mihir – thank you for never wavering in your 

support, always lending an ear when I needed a friend, and sticking by my side through 

everything. I could never describe in words how much each of you means to me. 

For everyone mentioned above and countless others, I am exceedingly thankful. 

 

 

 

 

 

 

 



 v 

 

Table of Contents 

 

Dedication ....................................................................................................................................... ii 

Acknowledgments.......................................................................................................................... iii 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................. x 

Abstract ......................................................................................................................................... xii 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Overview ............................................................................................................................... 1 

1.2 Cortical Development ........................................................................................................... 3 

1.2.1 Neurogenesis and Gliogenesis ........................................................................................ 3 

1.2.2 Neuronal Migration ...................................................................................................... 11 

1.2.3 Cajal-Retzius Cells ....................................................................................................... 16 

1.2.4 The Extracellular Matrix .............................................................................................. 25 

1.2.5 Human Cortical Development ...................................................................................... 28 

1.3 NRG1/ErbB4 Signaling ....................................................................................................... 29 

1.3.1 ErbB/EGFR Family of Receptor Tyrosine Kinases ..................................................... 29 

1.3.2 ErbB4 Structure and Signaling ..................................................................................... 30 

1.3.3 Roles in Brain Development ......................................................................................... 31 

1.3.4 Associations with Neurological and Psychiatric Diseases ........................................... 37 

1.4 Poly (ADP-Ribose) Polymerase 1 (PARP1) ....................................................................... 38 

1.4.1 PARP Family of Proteins ............................................................................................. 39 

1.4.2 PARP1 Protein Structure and Catalytic Activity .......................................................... 40 

1.4.3 PARP1 Functions ......................................................................................................... 40 



 vi 

1.4.4 Roles in Brain Development ......................................................................................... 50 

1.4.5 Roles in Neurological and Psychiatric Diseases ........................................................... 51 

1.5 Summary and Dissertation Outline ..................................................................................... 52 

1.6 Figures ................................................................................................................................. 54 

Chapter 2: ErbB4 Interacts with PARP1 to Regulate Astrogenesis ............................................. 57 

2.1 Introduction ......................................................................................................................... 57 

2.2 Materials and Methods ........................................................................................................ 60 

2.2.1 PARP1 KO Mice .......................................................................................................... 60 

2.2.2 Generation of ErbB4-JMa-/- mice ................................................................................. 60 

2.2.3 Cell Culture and Treatments ......................................................................................... 61 

2.2.4 shRNA-mediated PARP1 knockdown.......................................................................... 62 

2.2.5 Luciferase Assay ........................................................................................................... 62 

2.2.6 PARylation Assay......................................................................................................... 63 

2.2.7 RNA Isolation ............................................................................................................... 63 

2.2.8 RT-PCR and RT-qPCR ................................................................................................ 63 

2.2.9 ErbB4 Immunoprecipitation ......................................................................................... 64 

2.3 Results ................................................................................................................................. 65 

2.3.1 NRG1-induced PARylation in mouse NPCs is dependent upon PARP1 and ErbB4 ... 65 

2.3.2 Generation and Validation of the ErbB4-JMa-/- mouse ................................................ 66 

2.3.3 NRG1 repression of GFAP expression following FGF removal depends upon PARP1 

and ErbB4-JMa ...................................................................................................................... 66 

2.3.4 Loss of PARP1 or ErbB4 increases cortical GFAP expression at birth ....................... 68 

2.4 Discussion ........................................................................................................................... 68 

2.5 Author Contributions ........................................................................................................... 70 

2.6 Acknowledgements ............................................................................................................. 71 

2.7 Figures ................................................................................................................................. 72 

Chapter 3: PARP1 Regulates Cajal-Retzius Cell Development and Neural Precursor Cell 

Adhesion ....................................................................................................................................... 79 

3.1 Introduction ......................................................................................................................... 79 

3.2 Materials and Methods ........................................................................................................ 81 

3.2.1 PARP1 KO Mice .......................................................................................................... 81 



 vii 

3.2.2 Cell Culture and Treatments ......................................................................................... 81 

3.2.3 RNA-Sequencing and Analysis .................................................................................... 82 

3.2.4 Immunofluorescence and Quantification ...................................................................... 83 

3.2.5 Cresyl Violet Staining and Brain Volume Quantification ............................................ 84 

3.2.6 EdU Labeling in vivo .................................................................................................... 85 

3.2.7 RNA Isolation and RT-qPCR ....................................................................................... 85 

3.2.8 shRNA-mediated PARP1 Knockdown ......................................................................... 86 

3.2.9 Luciferase Assay ........................................................................................................... 87 

3.2.10 Western Blot ............................................................................................................... 87 

3.2.11 Reelin Conditioned Media .......................................................................................... 88 

3.2.12 Chromatin Immunoprecipitation ................................................................................ 89 

3.2.13 RNA Immunoprecipitation ......................................................................................... 89 

3.2.14 Atomic Force Microscopy (AFM) .............................................................................. 90 

3.2.15 Statistics ...................................................................................................................... 91 

3.3 Results ................................................................................................................................. 91 

3.3.1 PARP1 KO mice have brain development defects ....................................................... 91 

3.3.2 Loss of PARP1 increases the expression levels of genes associated with cell migration 

and adhesion in the E15.5 cortex ........................................................................................... 93 

3.3.3 Loss of PARP1 results in an increased number of Cajal-Retzius cells in the cortex ... 94 

3.3.4 Loss of PARP1 increases levels of genes expressed by CR cells and Reelin protein in 

NPCs ...................................................................................................................................... 94 

3.3.5 PARP1 loss of function increases CR cell abundance in NPC cultures ....................... 96 

3.3.6 PARP1 loss increases NPC adhesiveness to N-cadherin.............................................. 96 

3.4 Discussion ........................................................................................................................... 97 

3.5 Conflict of Interest Statement ........................................................................................... 100 

3.6 Author Contributions Statement ........................................................................................ 100 

3.7 Funding .............................................................................................................................. 100 

3.8 Acknowledgments ............................................................................................................. 100 

3.9 Figures ............................................................................................................................... 102 

3.10 Tables .............................................................................................................................. 115 

Chapter 4: Discussion and Future Directions ............................................................................. 118 

4.1 Summary of Findings ........................................................................................................ 118 



 viii 

4.2 Future Directions ............................................................................................................... 121 

4.2.1 Mechanism of PARP1-ErbB4 Regulation of Astrogenesis ........................................ 121 

4.2.2 Consequences of Precocious Astrogenesis ................................................................. 125 

4.2.3 Potential Mechanisms of PARP1 Regulation of Cajal-Retzius Cell Development .... 126 

4.2.4 Phenotypes Associated with Reelin Function ............................................................ 131 

4.2.5 Phenotypes Associated with Extracellular Matrix Function and Abnormal Neuronal 

Migration ............................................................................................................................. 132 

4.2.6 Final Thoughts and Conclusions ................................................................................ 135 

References ................................................................................................................................... 136 



 ix 

List of Tables 

 

Table 3.1 Sequences of primers used for quantitative RT-PCR. ................................................ 116 

Table 3.2 Sequences of primers used for chromatin immunoprecipitation. ............................... 116 

Table 3.3 PARP1 loss upregulates the expression of genes associated with cell adhesion, axon 

development, dendrite morphogenesis, and cell migration in the E15.5 cortex. ........................ 117 



 x 

List of Figures 

 

Figure 1.1 Overview of neurogenesis and gliogenesis in the rodent brain.. ................................. 54 

Figure 1.2 ErbB4 alternative splicing. .......................................................................................... 55 

Figure 1.3 PARP1 protein structure. ............................................................................................. 55 

Figure 1.4 PARP1 enzymatic function ......................................................................................... 56 

Figure 2.1 PARP1 interacts with E4ICD in a kinase-specific manner ......................................... 73 

Figure 2.2 NRG1 treatment induces PARP1 PARylation in an E4ICD-specific manner ............ 73 

Figure 2.3 PARP1 DNA binding and enzymatic activity are necessary to repress CNTF-induced 

GFAP promoter activity in rat NPCs ............................................................................................ 74 

Figure 2.4 PARP1 and ErbB4 are necessary for NRG1-induced PARylation in mouse NPCs.... 75 

Figure 2.5 ErbB4-JMa-/- mutant mice lack ErbB4-JMa and E4ICD expression. .......................... 76 

Figure 2.6 PARP1 and ErbB4-JMa are necessary for NRG1-induced repression of GFAP 

expression after FGF removal in mouse NPCs ............................................................................. 77 

Figure 2.7 PARP1 or ErbB4 loss increases GFAP expression in the mouse cortex at birth ........ 78 

Figure 3.1 Loss of PARP1 results in reduced brain weight and cortical surface area at birth ... 103 

Figure 3.2 PARP1 KO mice have defects in cortical development ............................................ 105 

Figure 3.3 Expression levels of genes associated with neuronal migration and cell adhesion are 

increased at E15.5 in the cortex of PARP1 KOs ........................................................................ 107 

Figure 3.4 Loss of PARP1 increases the number of Cajal-Retzius cells in the E15.5 and P5 

cortex........................................................................................................................................... 108 

file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726249
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726250
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726251
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726251
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726252
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726253
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726258
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726258
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726259
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726259


 xi 

Figure 3.5 PARP1 loss by KO, shRNA knockdown, or pharmacological inhibition increases 

mRNA levels of genes expressed by Cajal-Retzius cells ........................................................... 109 

Figure 3.6 PARP1 KO NPC cultures overexpress Reelin protein .............................................. 110 

Figure 3.7 Reelin induces Dab1 phosphorylation in NPCs ........................................................ 111 

Figure 3.8 PARP1 loss increases CR cell abundance in NPC cultures ...................................... 112 

Figure 3.9 PARP1 loss of function does not alter the activity of the Reln promoter or the stability 

of the Reln transcript ................................................................................................................... 113 

Figure 3.10 Reelin increases NPC adhesiveness to N-cadherin ................................................. 114 

Figure 3.11 PARP1 loss increases NPC adhesiveness to N-cadherin ........................................ 115 

file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726260
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726260
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726261
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726262
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726263
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726264
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726264
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726265
file:///C:/Users/mmnel/Documents/Michigan/Corfas%20Lab/Dissertation%20writing/Dissertation%2006152021.docx%23_Toc74726266


 xii 

Abstract 

 

Poly (ADP-ribose) polymerase 1 (PARP1) is a ubiquitously expressed enzyme that post-

translationally modifies proteins via poly (ADP-ribosylation) (PARylation). PARP1 serves 

various functions, including DNA damage repair, regulation of cell death pathways, chromatin 

modification, RNA processing, and transcriptional regulation. Accordingly, mutations in Parp1 

or Adprhl2 (encoding the protein ADP-ribosylhydrolase 3, which removes PAR polymers) cause 

intellectual disability, ataxia, episodic psychosis, neurodegeneration, and developmental delay. 

Altered PARP1 expression is also associated with numerous neurodegenerative and 

neuroimmune disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, 

rheumatoid arthritis, major depressive disorder, and epilepsy. Despite ubiquitous expression and 

an apparent connection with brain disorders, PARP1's role in neurodevelopment has not been 

widely studied.  

Our lab has recently uncovered a novel interaction between PARP1 and the receptor 

tyrosine kinase ErbB4, which binds its ligand NRG1 to mediate numerous functions during 

neurodevelopment, including radial migration of excitatory neurons, tangential migration of 

inhibitory neurons, synaptogenesis, and differentiation. Additionally, ErbB4 has multiple splice 

forms that confer different signaling modalities. Specifically, the ErbB4-juxtamembrane (JM)-a 

isoform is cleavable via the enzymes tumor necrosis factor-α (TACE) and presenilin/γ-secretase. 

Upon NRG1 binding and ErbB4-JMa cleavage, the ErbB4 intracellular domain (E4ICD) is 

released, which regulates transcription through direct promoter binding. Previous findings have 
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shown that E4ICD complexes with co-factors to repress gliogenesis during early development. 

Due to PARP1's prominent roles in chromatin modification and transcriptional control, this begs 

the question as to whether PARP1 is likewise regulating glial gene expression via E4ICD. 

The aims of this dissertation are two-fold: 1) investigate the role of PARP1 in regulating 

astrocytic gene expression via E4ICD and 2) further characterize the effect of PARP1 loss on 

brain development. To explore the role of PARP1-E4ICD in the regulation of astrogenesis, I 

utilized mouse primary embryonic neural precursor cell (NPC) cultures and transgenic mice with 

a germline knockout of PARP1, ErbB4, or ErbB4-JMa. I found that NRG1-mediated repression 

of GFAP expression upon FGF removal from NPC cultures was dependent upon the presence of 

PARP1, ErbB4, and ErbB4-JMa. Additionally, I showed that PARP1 KO and ErbB4 KO mice 

overexpress GFAP at birth, indicating the importance of both proteins in vivo. 

To investigate the effect of PARP1 loss on neurodevelopment more broadly, I analyzed 

the brain and cortical size of PARP1 KO mice at birth, finding a reduction in brain weight 

relative to body size, which is associated with a thinner cortex and a reduced cortical surface 

area. Furthermore, I discovered that PARP1 loss alters early-born neuron migration and increases 

the density of deeper-layer neurons. To investigate changes in gene expression associated with 

these findings, I performed RNA-sequencing of the embryonic PARP1 KO cortex. I found that 

PARP1 loss increases the expression of genes involved in neuronal migration and adhesion, 

including Reln, which encodes the glycoprotein Reelin. Accordingly, my findings indicate that 

PARP1 loss increases the abundance of Reelin-expressing cells in the developing (E15.5) and 

adolescent (P5) mouse brain. I further demonstrated that PARP1 loss, inhibition, or acute 

knockdown increases Cajal-Retzius cell abundance in vitro, suggesting PARP1 regulates Cajal-

Retzius cell development via a cell-autonomous mechanism. Finally, atomic force microscopy 
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showed that NPCs isolated from the PARP1 KO cortex adhere more strongly to the cell adhesion 

molecule N-cadherin, likely due to excess Reelin. Overall, these findings demonstrate that 

PARP1 regulates astrogenesis, Cajal-Retzius cell development, and cell adhesion in the 

developing brain. 



 1 

Chapter 1: Introduction 

1.1 Overview 

Cerebral cortex development is a highly ordered and temporally controlled process that 

involves the coordinated expression of countless proteins, including transcription factors, 

extracellular signaling molecules, trophic factors, enzymes, and more (Guillemot, 2005; Florio 

and Huttner, 2014). Misexpression or misregulation of single proteins can severely impair brain 

development to render the organism inviable, or it can result in more subtle effects that increase 

an individual's susceptibility for psychiatric disorders later in life, including schizophrenia (Pablo 

V. Bejman et al., 2011; Huang et al., 2014). Several single nucleotide polymorphisms (SNPs) in 

the genes encoding Neuregulin 1 (NRG1) or its receptor, ErbB4 (ErbB4), have been associated 

with schizophrenia (Munafò et al., 2006; Norton et al., 2006; Nicodemus et al., 2009; Feng et al., 

2017). Their connection to psychiatric disorders is thought to be due to their critical roles in 

regulating inhibitory interneuron migration during development (Flames et al., 2004; Li et al., 

2012). Accordingly, mice lacking ErbB4 or NRG1 have fewer Parvalbumin-expressing 

interneurons in the cortex, disrupting the balance between excitatory pyramidal neurons and 

inhibitory neurons, resulting in excess electrical activity (Fazzari et al., 2010; Neddens and 

Buonanno, 2010). Disrupted excitatory-inhibitory balance has likewise been found in patients 

diagnosed with psychiatric disorders (Selten et al., 2018). 

Additionally, NRG1 signaling through ErbB4 regulates the timing of astrogenesis onset 

in the developing cortex (Sardi et al., 2006). The primary cell types in the brain include neurons 

and glial cells, such as astrocytes and oligodendrocytes. During development, neural precursor 
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cells differentiate first into neurons, then switch to astrocyte and oligodendrocyte differentiation 

during later stages (Sauvageot, 2002; Guillemot, 2005; Jiang and Nardelli, 2016). NRG1 

signaling through ErbB4 represses the onset of astrogenesis at early developmental stages by 

inhibiting the transcription of glial-specific genes, such as glial fibrillary acidic protein (GFAP). 

Data suggests that this occurs by direct binding of the ErbB4 intracellular domain (E4ICD) to the 

promoter region of these genes (Sardi et al., 2006). Intriguingly, E4ICD is generated by full-

length ErbB4 cleavage by presenilin/γ-secretase, a causative factor for Alzheimer's disease when 

disrupted (De Strooper, 2007), indicating Alzheimer's pathology may be associated with altered 

ErbB4 expression and signaling.   

More recent unpublished data collected in the Corfas lab indicates that E4ICD's 

interaction with the GFAP promoter may be mediated through binding to Poly (ADP-Ribose) 

Polymerase 1 (PARP1). PARP1 is a ubiquitously expressed enzyme that binds and post-

translationally modifies proteins and DNA via the addition of ADP-ribose polymers, regulating 

diverse cellular processes, from DNA repair to transcriptional regulation to cell survival (Kraus, 

2008; Krishnakumar and Kraus, 2010b). As ErbB4 lacks a DNA binding domain, this interaction 

between E4ICD and PARP1 suggests that PARP1 may serve as a bridge to bind E4ICD to the 

GFAP promoter, thus inhibiting transcription. Similar to NRG1/ErbB4, PARP1 is implicated in 

the pathogenesis of numerous neurological disorders (Mao and Zhang, 2021). Furthermore, 

mutations in proteins affecting PARylation cause disorders that include symptoms such as 

episodic psychosis, ataxia, intellectual disability, and neurodegeneration (Najmabadi et al., 2011; 

Danhauser et al., 2018; Durmus et al., 2021). Together, these studies indicate that PARP1 may 

have other roles in brain development apart from regulating astrogenesis. A better understanding 

of how PARP1 loss-of-function alters cortical development will ultimately allow scientists to 
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understand its etiology further and develop more targeted therapies for associated neurological 

disorders. 

1.2 Cortical Development 

1.2.1 Neurogenesis and Gliogenesis 

Neurogenesis is the process by which progenitor cells within the embryonic brain 

generate neurons and expand the neocortex during development. In the rodent brain, the earliest 

born neurons arise around embryonic day 10.5 (E10.5), forming the preplate (Angevine and 

Sidman, 1961; Meyer et al., 1998). A few days later, the preplate splits to form the deeper 

subplate and superficial marginal zone. As neurogenesis begins, progenitor cells divide and 

produce immature neurons, which form the cortical plate in a layer between the subplate and 

marginal zone. These neurons eventually mature into excitatory pyramidal neurons that comprise 

the multilayered neocortex in mature animals (Marín-Padilla, 1992; Olson, 2014). On the other 

hand, gliogenesis is the process by which non-neuronal subtypes, or glial cells, are produced in 

the brain. These encompass astrocytes and oligodendrocytes, among others not discussed in this 

dissertation. This section will review mechanisms of proliferation and differentiation of these 

cell types within the cerebral cortex (overview depicted in Figure 1.1).  

1.2.1.1 Timeline and Mechanisms of Proliferation 

Just before the onset of neurogenesis at E10.5, the neuronal pool rapidly increases 

through the symmetric division of highly polarized neuroepithelial cells within the neural tube, 

expanding the cortex laterally and radially. At the onset of neurogenesis around E12.5 – E13.5, 

neuroepithelial cells become radial glial cells. Like neuroepithelial cells, radial glial cells have 

long processes that connect the basal lamina at the pial surface of the brain to the apical 
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ventricular zone, spanning the width of the early cortex (Rakic, 1995; Huttner and Brand, 1997; 

Hartfuss et al., 2001). Radial glial cells divide asymmetrically along the ventricular wall to 

generate two distinct cell types: a new radial glial cell and an intermediate progenitor cell (also 

known as a basal progenitor) or an immature neuron (Hartfuss et al., 2001; Malatesta et al., 2003; 

Noctor et al., 2004). Intermediate progenitor cells (IPCs), in turn, migrate dorsally outside of the 

ventricular zone, where most divide symmetrically to produce two immature neurons (Noctor et 

al., 2004). However, there is evidence that some IPCs undergo a round of symmetric 

proliferative division to increase the progenitor pool before producing neurons (Noctor et al., 

2004). Most neurons are generated in the neocortex through IPCs (Kowalczyk et al., 2009). 

While both symmetric IPC division and asymmetric radial glial cell division are occurring 

throughout neurogenesis (through E17.5), the predominant origin of newborn neurons during 

later stages of cortical development is via symmetric division of IPCs (Noctor et al., 2004; 

Zimmer et al., 2004; Wu et al., 2005). This switch allows the cortex to expand both radially and 

laterally during the later stages of brain development. 

The onset of gliogenesis in the rodent brain begins around E16.5-E17.5 as neurogenesis 

completes (Qian et al., 2000; Sauvageot, 2002; Mallamaci, 2013). The initial glial cells produced 

are astrocytes, which have many critical functions in the cortex, including regulation of synaptic 

function and neural homeostasis, formation and function of the blood-brain barrier, assistance in 

migration of some neural progenitors, and regulation of neuronal dendrite morphology (Abbott, 

2002; Haim and Rowitch, 2017; Vasile et al., 2017). Astrogenesis peaks around P2-3 in the 

rodent then recedes by P7-9 (Qian et al., 2000; Ge et al., 2012). Unlike neurons and other glial 

cell subtypes, astrocytes are generated exclusively in the pallium, otherwise known as the dorsal 

portion of the developing telencephalon. Like neurons, they can arise directly from former radial 



 5 

glial cells or indirectly from IPCs within the subventricular zone (Noctor et al., 2004). 

Mechanisms regulating the neurogenic to gliogenic fate switch of IPCs will be discussed further 

below.  

As astrogenesis declines, oligodendrocytes begin to differentiate from oligodendrocyte 

precursor cells (OPCs), with peak production near P14 in the cortex (Sauvageot, 2002). 

Oligodendrocytes form the myelin sheaths surrounding axons of neurons within the central 

nervous system. These myelin sheaths insulate axons to improve signal transduction while 

providing metabolic support (Kuhn et al., 2019). Unlike astrocytes, oligodendrocytes develop 

from precursors within the subpallium, or ventral telencephalon, as well as the pallium. In 

addition, OPC production occurs in three waves within each brain region: early embryonic stages 

(E11.5-12.5) within the medial ganglionic eminence (MGE), later embryonic stages (E15.5) 

within the lateral ganglionic eminence, and early postnatally within the cortex (Kessaris et al., 

2006). OPCs then migrate dorsally into the forebrain, where they eventually differentiate and 

mature into myelinating oligodendrocytes (Jiang and Nardelli, 2016) 

1.2.1.2 Molecular Regulation of Stem Cell Proliferation and Differentiation 

Cortical development is a highly temporally regulated process influenced by numerous 

transcription factors, morphogens such as Wnt, Fgf, and Shh, and epigenetic modifications (Jiang 

and Nardelli, 2016). Slight disruptions in genes that regulate this process can result in 

microcephaly, macrocephaly, and other neurodevelopmental disorders (Lindy et al., 2018; 

Santos-Cortez et al., 2018). In this section, many of the more critical molecular regulators of 

neurogenesis and astrogenesis will be discussed. 
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1.2.1.2.1 Neurogenesis 

The Notch signaling pathway is a well-established mechanism of stem cell renewal 

within the developing neocortex. Through its effectors Hes1 and Hes5, Notch maintains the 

undifferentiated state of radial glial cells by repressing other transcription factors that promote 

neural differentiation, including Neurogenin 1 (Ngn1), Neurogenin 2 (Ngn2), and Ascl1 (also 

known as Mash1) (Ohtsuka et al., 1999; Gaiano et al., 2000; Nieto et al., 2001; Gaiano and 

Fishell, 2002; Ochiai et al., 2009). The influence of Notch on stemness is demonstrated by 

experiments showing that after an asymmetric radial glial cell division, the daughter cell with 

higher Notch signaling remains a radial glial cell, while the lower Notch-expressing cell 

differentiates into a neuron (Ochiai et al., 2009; Dong et al., 2012). Interestingly, an 

autoinhibitory feedback loop continually oscillates Hes1 expression in radial glial cells 

(Imayoshi et al., 2013). This oscillation is hypothesized to contribute to the preservation of radial 

glial cell pluripotency, as maintained Hes expression at later developmental stages induces 

astrogenesis in radial glial cells. (Imayoshi et al., 2013).  

Wnt signaling through β-catenin is also an essential regulator of neurogenesis. Similar to 

Notch, Wnt has contrasting roles during neurodevelopment depending upon the timing of its 

expression and transcriptional partners.  For example, Wnt-mediated upregulation of Empty 

Spiracles Homeobox 2 (Emx2) expression promotes stem cell proliferation (Muzio et al., 2005), 

while Wnt-mediated upregulation of Paired Box 6 (Pax6), Ngn1/Ngn2, and N-Myc expression 

stimulates neuronal differentiation (Gunhaga et al., 2003; Hirabayashi et al., 2004; Kuwahara et 

al., 2010). Interestingly, the regulation of this switch in Wnt function may be mediated by 

Fibroblast Growth Factor 2 (FGF2) presence (which promotes proliferation) or absence (which 

promotes differentiation) (Israsena et al., 2004). In the chick developing brain, N-Myc represses 
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Notch signaling to promote neuronal differentiation, indicating that Wnt additionally promotes 

neurogenesis through N-Myc-mediated Notch repression (Zinin et al., 2014).  

In addition to Wnt and FGF, another signaling molecule that regulates neurogenesis is 

Sonic Hedgehog (Shh). Both Shh and FGF act in part through the Notch effector Hes1 to 

promote symmetric division and radial glial cell proliferation (Dave et al., 2011; Rash et al., 

2011). At the onset of neurogenesis, Shh decreases, which increases the activity of the Gli3 

repressor and promotes neuronal differentiation (Ruiz i Altaba, 1998; Wang et al., 2011a). 

Similarly, the absence of FGF signaling during development causes radial glial cell 

differentiation into IPCs, beginning the process of neurogenesis (Kang et al., 2009). Taken 

together, these studies display the interactive nature of Notch, Wnt, Shh, and FGF signaling in 

regulation of stem cell proliferation and neurogenesis. 

The transcription factors Pax6, Ngn2, and Ascl1 are some of the primary regulators of 

neurogenesis and cerebral cortex patterning (Nieto et al., 2001; Osumi et al., 2008, 6). Pax6 

promotes neurogenesis by increasing the expression of proneural genes such as Ngn2 and T-box 

Brain Protein 2 (Tbr2) while promoting stem cell proliferation (Warren et al., 1999; Sansom et 

al., 2009). These dual roles of Pax6 are hypothesized to be mediated in part by alternative 

splicing of the Pax6 transcript, which generates proteins that differ in their DNA binding 

subdomains, thus altering their gene targets (Walcher et al., 2013). Ascl1 is an additional bHLH 

transcription factor (along with Hes1) that oscillates its expression in neural progenitor cells 

while sustaining its expression in differentiated neurons (Imayoshi et al., 2013). Thus, loss of 

Ascl1 significantly impairs neurogenesis and causes precocious astrogenesis, while its 

overexpression induces rapid neuronal differentiation (Casarosa et al., 1999; Nieto et al., 2001; 

Nakada et al., 2004; Berninger et al., 2007). Genome-wide characterization of Ascl1 targets 
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further demonstrates that Ascl1 directly regulates genes involved in neuronal differentiation 

(Castro and Guillemot, 2011). Ngn2, in the same family of transcription factors as Ascl1, 

likewise induces neuronal differentiation when overexpressed, while its loss causes defects in 

radial glial cell organization and differentiation (Nieto et al., 2001; Berninger et al., 2007). 

Together, these studies demonstrate the importance of Pax6, Ngn2, and Ascl1 during early 

development to promote neural differentiation. 

1.2.1.2.1.1 Dorsal-Ventral Patterning 

The dorsoventral axis of the telencephalon is primarily regulated by Shh and Wnt 

signaling through mutual repression of opposing transcription factors. Ventral progenitor cells in 

the subpallium generally mature into GABAergic inhibitory interneurons, while dorsal 

progenitors in the pallium predominantly produce glutamatergic excitatory neurons. Shh, which 

is secreted by cells within the ventral cortex, represses the pro-dorsal activity of the Gli3 

repressor, which results in upregulated expression of ventral cell fate-specific genes, including 

Nk2 Homeobox 1 (Nkx2.1) and Gamma Glutamylcysteine Synthetase1 and 2 (Gsh1/2) (Rallu et 

al., 2002). In turn, Nkx2.1 induces LIM Homeobox 6 (Lhx6) expression while Gsh1/2 promotes 

transcription of Ascl1 and Distal-Less Homeobox 1 and 2 (Dlx1/2), which repress the dorsal cell 

fate and promote differentiation into inhibitory neurons (Casarosa et al., 1999; Toresson et al., 

2000; Du et al., 2008; Long et al., 2009; Wang et al., 2009).  

Meanwhile, Wnt secretion in the dorsal telencephalon induces the expression of Pax6 and 

Ngn1 (Gunhaga et al., 2003; Hirabayashi et al., 2004), which along with Ngn2 and Emx1/2 

specify the dorsal neuron fate by repressing the expression of ventral-specific transcription 

factors, including previously discussed Ascl1, Gsh2, and Dlx2 (Stoykova et al., 2000; Yun et al., 

2001, 6; Muzio et al., 2002; Quinn et al., 2007). Therefore, the absence of Pax6 and Emx2 results 
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in the complete lack of a cortex, leaving only ventral progenitor regions (Muzio et al., 2002). 

Other transcription factors involved in dorsal neuron specification include LIM Homeobox 2 

(Lhx2) and Forkhead Box G1 (Foxg1). Similar to Pax6 and Emx2, the absence of either of these 

proteins results in brains with expanded ventral regions (Bulchand et al., 2001; Monuki et al., 

2001; Muzio and Mallamaci, 2005), suggesting a similar mechanism. Through these complex 

opposing pathways, the dorsal telencephalon forms the mature neocortex composed of pyramidal 

neurons, while the ventral telencephalon develops into the basal ganglia and parts of the 

amygdala (Medina and Abellán, 2012). 

1.2.1.2.2 Astrogenesis 

One of the significant effectors regulating astrogenesis is Janus Kinase (JAK)/STAT 

signaling (Bonni et al., 1997), which is initiated through binding of pro-astrocytic cytokines, 

such as Ciliary Neurotrophic Factor (CNTF), Cardiotropin 1 (Ct1), and Leukemia Inhibiting 

Factor (LIF), to receptors gp130 and one of its partners (Davis et al., 1993). Ligand binding 

induces receptor dimerization and receptor-associated JAK autophosphorylation and activation 

(Lutticken et al., 1994). Activated JAK, in turn, phosphorylates its associated receptors, which 

recruit STAT3 to be phosphorylated by JAK (Stahl et al., 1995). Phosphorylation of STAT3 then 

induces its association with the co-factor complex CREB binding protein (CBP)/p300, which 

binds to promoter regions of astrocyte-specific genes, including Glial Fibrillary Acidic Protein 

(GFAP), to promote gene transcription (Bonni et al., 1997; Nakashima et al., 1999). 

Accordingly, STAT3 deletion or repression stimulates neuronal differentiation and prevents 

astrocytic differentiation (Kamakura et al., 2004; Gu et al., 2005; Cao et al., 2006, 2010). 

Additionally, astrogenesis is negatively regulated by transcription factors that promote 

neurogenesis, including Ngn1, Ngn2, Neuronal Differentiation 1 (NeuroD1), and Ascl1, by their 
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repression of glial-specific genes (Tomita et al., 2000; Nakashima et al., 2001, 2; Nieto et al., 

2001; Sun et al., 2001). For example, one mechanistic hypothesis postulates that Ngn1 and 

STAT compete for CBP/p300 binding. Thus, Ngn1 can sequester these co-factors away from 

gene promoter regions when its expression is elevated (Sun et al., 2001). At the same time, Ngn1 

inhibits STAT phosphorylation, preventing it from binding CBP/p300 (Sun et al., 2001). 

Therefore, as Ngn1 expression declines following neurogenesis, STAT is phosphorylated by 

JAK, and STAT instead binds CBP/p300 to promote gliogenesis (Sun et al., 2001). 

As previously discussed, Notch is crucial to repress neurogenesis and promote stem cell 

proliferation during early development stages (Gaiano and Fishell, 2002; Dave et al., 2011; Dong 

et al., 2012). However, in later stages of development, Notch activation induces astrocytic 

differentiation (Chambers et al., 2001; Grandbarbe et al., 2003). This switch from Notch 

promoting stem cell renewal to astrogenesis remains unclear. However, evidence shows that 

sustained rather than oscillating Hes1 expression promotes gliogenesis rather than proliferation 

(Imayoshi et al., 2013). Mechanistically, Notch promotes astrogenesis partially through 

activation of the JAK/STAT3 pathway. The Notch effector Hes1 binds nuclear STAT3, 

facilitating its interaction with JAK (Kamakura et al., 2004). In turn, JAK induces STAT3 

phosphorylation and the initiation of GFAP transcription (Kamakura et al., 2004). In addition to 

its influence on STAT3 activation, Notch epigenetically modifies the GFAP promoter region. 

Studies show that overexpressing the Notch intracellular domain (NICD), cleaved from full-

length Notch after ligand binding, promotes GFAP transcription through its downstream target 

Nuclear Factor 1A (NF1A). NF1A releases DNA Methyltransferase 1 (DNMT1) from the GFAP 

promoter, resulting in promoter demethylation, opening the chromatin, and allowing 

transcription to occur (Namihira et al., 2009). In addition to epigenetically modifying the GFAP 



 11 

promoter, NICD also forms a complex with the transcription factor RBPJk/CSL and directly 

binds the GFAP promoter to promote transcription (Ge et al., 2002).  

Additionally, Neuregulin 1 (NRG1) signaling via its ErbB4 receptor inhibits astrogenesis, 

previously identified by the Corfas lab (Sardi et al., 2006). NRG1 binding to ErbB4 stimulates 

ErbB4 cleavage by TACE and presenilin/γ-secretase, releasing the ErbB4 intracellular domain 

(E4ICD) (Rio et al., 2000; Ni et al., 2001). E4ICD then binds to co-factors Nuclear Receptor Co-

Repressor (N-CoR) and TAK Binding Protein 2 (TAB2), which translocate to the nucleus to 

prevent GFAP transcription through its promoter (Sardi et al., 2006). Accordingly, ErbB4 

knockout mice display precocious astrogenesis (Sardi et al., 2006). Furthermore, it has been 

proposed that NICD and E4ICD/N-CoR/TAB2 interact with the GFAP promoter at the same 

binding site (RBPJ-k/CSL). Therefore, high levels of NRG1 and ErbB4 may prevent Notch-

induced astrogenesis during early stages of brain development (Ge et al., 2002; Hermanson et al., 

2002). When E4ICD levels decrease, the RBPJk/CSL binding site would be freed from N-CoR 

and bound by NICD, promoting glial gene expression. However, the mechanism behind GFAP 

repression by ErbB4 remains unclear and is the focus of Chapter 2 of this dissertation. 

1.2.2 Neuronal Migration  

As newborn excitatory neurons differentiate from radial glial cells and intermediate 

progenitors within the dorsal telencephalon, they migrate in an inside-out fashion within the 

developing neocortex to reach their final destinations (Rakic, 1995). Thus, early-born neurons 

are situated in deeper cortical layers (layers V and VI), and later-born neurons migrate past early-

born neurons to localize to more superficial cortical layers (II/III and IV). Excitatory neurons 

migrate radially through two different mechanisms: glial-independent migration (somal 

translocation) or glial-dependent migration (Nadarajah et al., 2001; Noctor et al., 2004). In 
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addition, GABAergic inhibitory interneurons migrate tangentially from the ventral subpallium to 

the dorsal pallium (Marín, 2013). The mechanisms of migration for excitatory and inhibitory 

neurons are discussed further below. 

1.2.2.1 Glial-independent migration 

During the early stages of brain development, the primary mode of neuron migration is 

glial-independent (Nadarajah and Parnavelas, 2002). To accomplish this, the migrating neuron's 

leading process attaches to the basal lamina at the pial surface of the brain and then retracts, 

which translocates the neuron's soma to its final position within the cortex (Nadarajah et al., 

2001). Thus, this type of migration is also called "somal translocation". This migration technique 

is also utilized at later developmental stages to terminate migration as later-born migrating 

neurons approach the brain's pial surface (Nadarajah et al., 2001). 

1.2.2.2 Glial-dependent migration 

The predominant method of newborn neuron migration within the developing cortex is 

glial-dependent migration, where radial glial cells form a "scaffold" for which neurons can 

migrate. This scaffold is increasingly crucial as the cortex expands radially during the latter 

stages of development when neurons migrate longer distances (Nadarajah et al., 2001). Neurons 

are born in the ventricular and subventricular zones, where they attach to radial glia fibers and 

migrate toward the brain's pial surface (Noctor et al., 2004). Both internal and external cues 

regulate glial-dependent migration. Intrinsic modifications involve modulating cytoskeleton 

elements, including the neuron's growth cone, leading, and trailing processes. In general, leading 

process extension is followed by nuclear translocation, then trailing process retraction (Tsai and 

Gleeson, 2005). Leading process extension is facilitated primarily by actin polymerization, while 

nuclear translocation is managed by interactions between microtubules within the cytoskeleton 



 13 

and motor proteins such as myosin and dynein (Kriegstein and Noctor, 2004; Solecki et al., 

2009; Tsai et al., 2010). Cytoskeletal stabilization during nuclear translocation is aided by 

proteins including Lissencephaly 1 (Lis1) and Doublecortin (DCX) (Bai et al., 2003; Shu et al., 

2004, 1). The mechanisms behind trailing process retraction are not widely studied and remain 

unclear. 

Extrinsic factors controlling migration involve complex interactions between cell 

adhesion molecules, signaling molecules, scaffolding proteins, and neurons (Franco and Müller, 

2011; Cooper, 2013). One of the most essential and well-characterized signaling molecules 

regulating cell migration is Reelin, secreted by Cajal-Retzius cells (Ogawa et al., 1995). Further 

details regarding Reelin signaling will be described in section 1.2.3.3. In addition to Reelin, the 

cell adhesion molecule integrin and its ligand laminin promote adhesion between migrating 

neurons and radial glial cells (Cox and Huttenlocher, 1998). Accordingly, loss of β1 integrin or 

its ligand laminin α2 in mice disrupts radial glial anchorage to the basement membrane and 

slows neuronal migration, resulting in abnormal neocortical lamination (Graus-Porta et al., 2001; 

Loulier et al., 2009). In contrast, the deletion of laminin γ1 completely prevents radial neuron 

migration, suggesting that different laminin isoforms have varying effects on migration (Chen et 

al., 2009). Other cell adhesion molecules involved in regulating cell migration include NCAM, 

L1, and N-cadherin (Schmid and Maness, 2008; Shikanai et al., 2011; Lutz et al., 2017). Further 

discussion of cell adhesion molecules and their interaction with the brain’s extracellular matrix 

and influence on cell migration is addressed in later sections.  

Additionally, signaling by trophic factors such as soluble NRG1 promotes neuronal 

migration by directing migration along radial glial fibers while maintaining and elongating radial 

glia (Anton et al., 1997; Rio et al., 1997). This interaction appears to be mediated in part by brain 
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lipid-binding protein (BLBP), which is vital for radial glial fiber establishment and maintenance 

(Anton et al., 1997). An additional trophic signal that stabilizes leading processes of migrating 

neurons is Semaphorin 3A (Sema3A). This molecule is secreted near the cortical plate, forming a 

gradient (Chen et al., 2008). As ablating Sema3A receptor Neuropilin 1 on migrating neurons or 

overexpressing Sema3A in the ventricular zone disrupts radial migration, this molecule likely 

serves as a chemoattractant for migrating neurons (Chen et al., 2008). Together, intrinsic and 

extrinsic cues guide migrating neurons to their proper positions in the developing cortex. 

1.2.2.3 Tangential Interneuron Migration 

 Unlike excitatory neurons, inhibitory interneurons develop from precursors within the 

ventral telencephalon, specifically within the medial and caudal ganglionic eminences. These 

cells then migrate tangentially to their final locations in the dorsal cortex (Anderson et al., 2002; 

Marín, 2013; Chu and Anderson, 2015). Unlike unipolar migrating excitatory neurons, 

interneurons adopt a branched morphology to their leading processes and move by creating a 

new leading process in the direction of chemoattractants. This process appears to be the primary 

mechanism that drives the directionality of the migrating neuron (Martini et al., 2009). The 

initial movement of interneurons out of the ventral brain region is likely due to chemorepulsive 

rather than attractive cues, as the expression of Slit1 (which binds to its receptor Robo) and 

Ephrin-A5 (which binds to Ephrin receptors) within the ganglionic eminence repel interneurons 

(Zhu et al., 1999; Marillat et al., 2002; Zimmer et al., 2008; Rudolph et al., 2010).  

There are also chemoattractive cues, however, which include the trophic factors Brain-

Derived Neurotrophic Factor (BDNF), Glial-Derived Neurotrophic Factor (GDNF), 

Neurotrophin-4 (NT4), and NRG1 (Polleux et al., 2002; Pozas and Ibáñez, 2005). In vitro 

experiments demonstrate that BDNF, GDNF, and NT4 stimulate interneuron migration (Polleux 
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et al., 2002; Pozas and Ibáñez, 2005). However, the effects of these proteins in vivo remain less 

clear, as mice lacking the receptor for BDNF, TrkB, have unaltered tangential interneuron 

migration (Carmona et al., 2006; Sánchez-Huertas and Rico, 2011). In contrast, NRG1 signaling 

through its receptor ErbB4 has demonstrated effects in vivo, as ErbB4 KO mice have a decreased 

number of MGE-derived interneurons in their dorsal cortex and hippocampus (Flames et al., 

2004; Neddens and Buonanno, 2010). Interestingly, the membrane-bound and soluble isoforms 

of NRG1 are hypothesized to serve as short-range and long-range cues for migrating neurons, 

respectively, creating a gradient for tangentially migrating neurons to follow (Flames et al., 

2004).  

 Once the interneurons migrate from the ventral to dorsal telencephalon, different 

guidance cues direct their migration through the cortex to their final locations. Migratory streams 

of interneurons appear to be restricted to the marginal zone, subventricular zone, and subplate of 

the developing cortex, altogether avoiding the cortical plate where radial neuron migration is 

ongoing (Lavdas et al., 1999; Wichterle et al., 2001). Studies have shown that this is mediated 

through the chemoattractant molecules Netrin and Cxcl12 (Stumm et al., 2003). Cxcl12 is 

expressed in the meninges, in IPCs within the subventricular zone, and at lower levels in the 

subplate (Stumm et al., 2003; Daniel et al., 2005; Tiveron et al., 2006; Li et al., 2008). It signals 

through its G-protein coupled receptors, Cxcr4 and Cxcr7, which are expressed in migrating 

neurons (Stumm et al., 2003; Tiveron et al., 2006; Li et al., 2008). Cxcl12 also regulates the 

tangential-to-radial switch of interneurons during migration, as loss of Cxcl12 promotes the 

invasion of interneurons into the cortical plate as soon as they reach the cortex (López-Bendito et 

al., 2008). This finding indicates that a timely decrease in Cxcl12 expression allows neurons to 

respond to attractive cues within the cortical plate and reach their final destinations. Aligned with 
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their importance are studies showing that loss of Cxcl12, Cxcr4, or Cxcr7 in vivo impairs 

intracortical interneuron migration (Tiveron et al., 2006; Li et al., 2008; Sánchez-Alcañiz et al., 

2011; Wang et al., 2011b). On the other hand, Netrin attracts interneurons migrating specifically 

within the marginal zone migratory stream (Stanco et al., 2009). This combination of attractive 

and repulsive cues facilitates the tangential migration of neurons from their birthplaces in the 

ventral telencephalon to their final locations in the cortex. 

1.2.3 Cajal-Retzius Cells  

Cajal-Retzius cells are among the earliest-born neurons during cortical development, 

arising between E10.5 and E12.5 in rodents (Meyer et al., 1998). They localize to the brain's 

marginal zone and secrete Reelin, a critical signaling molecule for neuron migration and 

patterning of the cortex (Ogawa et al., 1995; Meyer et al., 1998). Mice with mutations in Reelin 

(known as reeler) have a severe disruption in cortical and cerebellar lamination, indicating the 

singular importance of Cajal-Retzius cells and Reelin signaling in regulating neuronal migration 

(Meier and Hoag, 1962; Hamburgh, 1963; Goffinet et al., 1984). In addition to Reelin, subsets of 

Cajal-Retzius cells express the calcium-binding proteins Calretinin and Calbindin, though the 

expression of these proteins is not restricted to Cajal-Retzius cells within layer I (Meyer et al., 

1998; Bielle et al., 2005). The tumor suppressor protein P73 additionally co-localizes with 

Reelin, and within layer I it is exclusively expressed in Cajal-Retzius cells (Meyer et al., 2002). 

1.2.3.1 Cajal-Retzius Cell Development 

Cajal-Retzius cells arise from progenitors within multiple areas of the developing brain, 

including the septum and ventral pallium, but most progenitors arise from the cortical hem 

(caudomedial region of the neocortex) (Takiguchi-Hayashi et al., 2004; Bielle et al., 2005; 

Griveau et al., 2010; Barber et al., 2015). Cajal-Retzius cells tangentially migrate until they reach 
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their final positions within the marginal zone of the neocortex (Soriano and del Río, 2005; 

Kirischuk et al., 2014). The marginal zone will eventually mature to form Layer I, the uppermost 

cortical layer. Like the tangential migration of inhibitory interneurons, Cajal-Retzius cell 

migration is regulated by Cxcl12 through its receptor Cxcr4, which is expressed in Cajal-Retzius 

cells (Borrell and Marín, 2006). These chemokines are especially critical for the migration of 

cortical hem-derived Cajal-Retzius cells toward the meninges, where Cxcl12 is secreted (Borrell 

and Marín, 2006). However, some Cajal-Retzius cells migrate to the marginal zone in the 

absence of Cxcr4, indicating that this is not the only chemoattractant stimulating progenitor cell 

migration (Borrell and Marín, 2006). Accordingly, recent data demonstrate that extracellular 

Pax6 also regulates the tangential migration of progenitors that originate from the cortical hem 

and septum (Kaddour et al., 2020). Furthermore, other transcription factors that control Cajal-

Retzius cell development are hypothesized to influence progenitor migration. These transcription 

factors are discussed in more detail below. 

Cajal-Retzius cell development and differentiation are regulated by signaling molecules, 

transcription factors, and miRNAs. Transcription factors include negative modulators Pax6, 

Lhx2, Foxg1, Hes1/3/5, and COUP Transcription Factor 1 (CoupTFI) (Stoykova et al., 2003; 

Studer et al., 2005; Imayoshi et al., 2008; Shibata et al., 2008), and positive modulators Emx1/2, 

Tbr1, Lhx5, and Ascl1 (Hevner et al., 2001; Shinozaki et al., 2002; Miquelajáuregui et al., 2010; 

Dixit et al., 2011). Loss of Pax6 disrupts preplate formation and doubles the number of Reelin-

expressing cells in the developing brain's marginal zone. This finding is hypothesized to be 

partially due to the increased migration of Cajal-Retzius progenitor cells (Stoykova et al., 2003; 

Kaddour et al., 2020). Lhx2 and Foxg1 indirectly repress Cajal-Retzius cell differentiation by 

regulating the development of the cortical hem and progenitors that arise there (Roy et al., 2014; 
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Liu et al., 2018). CoupTFI acts more directly, as CoupTFI overexpression downregulates 

multiple Cajal-Retzius cell proteins, including Reelin and Calretinin (Studer et al., 2005). 

Finally, the Notch effectors Hes1/3/5 repress the Cajal-Retzius cell fate by downregulating 

Ngn2, instead promoting a choroid plexus cell fate (Imayoshi et al., 2008). These findings also 

indicate that Ngn2 promotes Cajal-Retzius cell differentiation (Imayoshi et al., 2008).  

As previously discussed, Ascl1 is highly expressed in ventral progenitor neurons and has 

a definable role in specifying the ventral cell fate. However, it is also expressed to a lesser extent 

in dorsal progenitors, promoting Cajal-Retzius cell differentiation. Accordingly, Ascl1 depletion 

slightly but significantly decreases the number of Cajal-Retzius cells at E15.5 (Dixit et al., 2011).  

Lhx5 loss likewise decreases the density of Reelin-expressing cells in the cortex 

(Miquelajáuregui et al., 2010). Emx1/2 double knockout completely prevents Cajal-Retzius cells 

from developing, which may be due to defective tangential migration (Shinozaki et al., 2002). 

Rather than a loss of Cajal-Retzius cells, loss of Tbr1 decreases the expression of Reelin within 

existing Cajal-Retzius cells (Hevner et al., 2001). Interestingly, Tbr1 loss disrupts preplate 

formation similar to the loss of Pax6, indicating that decreased or increased Reelin expression 

has comparable effects on preplate development (Hevner et al., 2001; Stoykova et al., 2003). 

Taken together, these studies show that Cajal-Retzius cell development is a complex process that 

can be disrupted through the altered expression of many different transcription factors.  

Signaling molecules that influence Cajal-Retzius cell development include BDNF and 

Transforming Growth Factor β (TGFβ) (Ringstedt et al., 1998; Siegenthaler and Miller, 2008). 

BDNF expression is detected at low levels during embryonic development, starting as early as 

E13.5, and signals through its receptor TrkB, which is expressed in Cajal-Retzius cells 

(Friedman et al., 1991; Timmusk et al., 1994; Marty et al., 1996; Brunstrom et al., 1997). BDNF 
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treatment in vitro downregulates Reelin expression, while BDNF overexpression in vivo reduces 

Reelin expression within Cajal-Retzius cells and causes Cajal-Retzius cells with abnormal 

morphology to cluster within the marginal zone (Ringstedt et al., 1998). Similarly, BDNF loss 

increases Reelin expression within Cajal-Retzius cells (Ringstedt et al., 1998). In addition, TGFβ 

signals through p21 and Foxo3a to promote the production of Cajal-Retzius cells (Siegenthaler 

and Miller, 2008). Together, these studies demonstrate that extracellular and intracellular cues 

influence the generation of Cajal-Retzius cells. 

A total disruption in miRNA biogenesis through the loss of Dicer increases Cajal-Retzius 

cell abundance, indicating that miRNAs are an essential regulator of Cajal-Retzius cell 

development (McLoughlin et al., 2012). miRNAs are short single-stranded RNAs produced from 

double-stranded RNA folded into a hairpin loop. This hairpin is cleaved from the remaining 

RNA molecule by Drosha and Pasha to form pre-miRNA, then further cleaved by the enzyme 

Dicer to eventually form mature miRNA (O’Brien et al., 2018). miRNAs disrupt mRNAs by 

binding and cleaving them, destabilizing them, or hindering transcription (Huntzinger and 

Izaurralde, 2011; O’Brien et al., 2018). Specifically, miRNA-9 indirectly regulates Cajal-Retzius 

cell development by targeting Foxg1, which, as previously discussed, suppresses Cajal-Retzius 

cell differentiation by regulating cortical hem development (Shibata et al., 2008).  miRNA-200c, 

however, has been demonstrated to directly target Reln mRNA following ischemic stroke (Stary 

Creed M. et al., 2015), and miRNA-128 targets Reln in neuroblastoma cells (Evangelisti et al., 

2009); however, it remains unclear if these miRNAs affect Cajal-Retzius cell development in the 

embryonic brain.  
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1.2.3.2 Cajal-Retzius Cell Apoptosis 

Cajal-Retzius cells are programmed to undergo apoptosis within the first two weeks of 

postnatal life, as Cajal-Retzius cells are not present in the adult brain (del Río et al., 1995). This 

process is not well understood, but evidence shows Cajal-Retzius cell death is mediated partially 

through changes in neuronal activity. In cell culture experiments, inhibition of neuronal activity 

using tetrodotoxin prevents Cajal-Retzius cell death (Blanquie et al., 2017). Similarly, in vitro 

inhibition of glutamate receptors, which mediate excitatory neuronal signaling, has a similar 

effect, while activating glutamate or GABA receptors causes Cajal-Retzius cells to disappear in 

vivo (Blanquie et al., 2017). Cell death through GABA receptors occurs through an NKCC1-

dependent process, whereby blockade of the chloride transporter NKCC1 rescues Cajal-Retzius 

cells from apoptosis (Blanquie et al., 2017). Additionally, hyperpolarization prevents the death of 

septal-derived Cajal-Retzius cells (Riva et al., 2019).  

P73, whose TAp73 and ΔNp73 isoforms promote neuronal survival (Miller, 2016), also 

prevents Cajal-Retzius cell apoptosis. Accordingly, deletion of P73 or ΔNp73 in mice reduces 

Cajal-Retzius cell abundance significantly (Meyer et al., 2004; Tissir et al., 2009). Furthermore, 

programmed cell death of septal-derived Cajal-Retzius cells is regulated via the proapoptotic 

protein Bax (Ledonne et al., 2016). Accordingly, conditional knockout of Bax in ΔNp73-

expressing septal-derived Cajal-Retzius cells significantly increases the abundance of Cajal-

Retzius cells at P24, long after Cajal-Retzius cell death occurs in wild-type mice (Ledonne et al., 

2016). In contrast, conditional knockout of Bax from Wnt3a-expressing cortical hem-derived 

Cajal-Retzius cells does not affect Cajal-Retzius cell survival, indicating normal apoptosis 

(Ledonne et al., 2016). These findings suggest that Cajal-Retzius cell origin dictates its 

mechanism of programmed cell death. Interestingly, no changes in caspase 3 expression have 
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been detected in Cajal-Retzius during apoptosis (Blanquie et al., 2017), nor is hippocampal 

Cajal-Retzius cell degeneration dependent upon caspase 3 activation (Anstötz et al., 2016), 

indicating that Cajal-Retzius cell apoptosis occurs mainly through caspase 3-independent 

mechanisms. 

1.2.3.3 Roles of Reelin Signaling in Brain Development  

Reelin signals predominantly by bindings to its receptors Very Low Density Lipoprotein 

Receptor (VLDLR) and ApoE Receptor Type 2 (ApoER2), stimulating phosphorylation of the 

adapter protein DAB Adapter Protein 1 (Dab1) and resulting in the initiation of corresponding 

intracellular kinase cascades, including Crk/C3G, PI3K/Akt, and Src family kinases, each of 

which has different targets (D’Arcangelo et al., 1999; Hiesberger et al., 1999; Howell et al., 

1999; Lambert de Rouvroit et al., 1999; Bock et al., 2003; Huang et al., 2004). Accordingly, 

mice deficient in VLDLR and ApoER2, Dab1, or Src family kinases have phenotypes similar to 

reeler (Sweet et al., 1996; Sheldon et al., 1997; Trommsdorff et al., 1999; Howell et al., 2000; 

Kuo et al., 2005). Functions of Reelin include regulation of migration, cell adhesion, and 

dendrite development (Niu et al., 2004; Hirota and Nakajima, 2017). Accordingly, changes in 

Reelin expression are associated with numerous psychiatric and neurodevelopmental diseases, 

including schizophrenia, autism, and depression (Ovadia and Shifman, 2011; Ishii et al., 2016). 

Further details regarding each of Reelin's functions in the developing brain will be discussed 

below. 

1.2.3.3.1 Migration 

As previously discussed, newborn neurons migrate independently of radial glia or 

dependent upon radial glia (Nadarajah et al., 2001). Studies have found that Reelin has roles in 

regulating both modes of migration during development. One significant indication that Reelin is 
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required for somal translocation is that preplate splitting is impaired in reeler mice. As 

previously discussed, preplate splitting occurs very early in development, when most neurons 

migrate via somal translocation (Nadarajah et al., 2001). Instead of a clear division between the 

marginal zone and subplate in reeler mice, the subplate and marginal zone cells are mixed and 

disorganized (Sheppard and Pearlman, 1997). During somal translocation, Reelin stabilizes the 

actin cytoskeleton through PI3-Kinase (PI3K)-mediated phosphorylation of N-cofilin after LIM 

Kinase (LIMK) activation (Chai et al., 2009). N-cofilin phosphorylation prevents the protein 

from depolymerizing F-actin, preventing actin's disassembly and stabilizing the neuron's leading 

process (Chai et al., 2009). Additionally, Reelin signaling through Dab1 and Rap1 activates 

integrin α5β1, promoting neuronal processes' binding to fibronectin localized to the marginal 

zone (Sekine et al., 2012). Finally, Reelin stabilizes the leading process of migrating neurons 

through Rap1 regulation of the cell adhesion molecule N-cadherin, similarly promoting the 

attachment of leading processes of migrating neurons (Franco et al., 2011). Taken together, these 

studies suggest that Reelin aids in stabilizing and anchoring leading neuronal processes to the 

marginal zone, which is a crucial step during somal translocation. 

There is also evidence that Reelin regulates aspects of glial-dependent migration prior to 

locomotion onset. Glial-dependent migration is the primary form of neuronal migration from the 

subventricular and intermediate zones of the developing brain (Nadarajah and Parnavelas, 2002), 

and evidence from reeler mice suggests that migration through these areas is altered (Hamburgh, 

1963). Indeed, studies show a low level of Reelin expression within the intermediate zone of the 

brain (Yoshida et al., 2006). It remains unclear, however, how this Reelin pool specifically 

contributes to neuron migration. Changes in neuronal migration may be due to regulation of N-

cadherin's cell surface expression by Rap1 via Reelin (Franco et al., 2011), as N-cadherin is 
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important for glial-dependent neuronal migration (Shikanai et al., 2011; Gärtner et al., 2012). 

Furthermore, overexpression of LIMK or N-cofilin within the brain's intermediate zone partially 

rescues migration defects in reeler mice (Chai et al., 2016), suggesting that Reelin-induced N-

cofilin phosphorylation partially contributes to radial glial-dependent migration in addition to 

somal translocation.  

1.2.3.3.2 Adhesion 

Reelin modulates the function of cell adhesion molecules to promote interactions 

between neurons and Cajal-Retzius cells. For example, Reelin facilitates interactions between 

neurons and Cajal-Retzius cells through Nectins and N-cadherin (Gil-Sanz et al., 2013). Other 

studies have shown that Reelin transiently strengthens adhesive bonds between N-cadherin and 

neurons such that Reelin overexpression causes neuronal clustering (Matsunaga et al., 2017). 

Further studies demonstrated that this effect is dependent upon Dab1 and ApoER2, but not 

VLDLR (Matsunaga et al., 2017; Hirota et al., 2018, 2; Hirota and Nakajima, 2020). This 

functionality may regulate the aggregation of neurons at the primitive cortical zone, which is 

localized at the top of the cortical plate and regulates layer formation in the mature cortex 

(Ajioka and Nakajima, 2005). However, the significance of neuronal clustering within this area 

for normal brain development remains unclear. Reelin also cleaves the cell adhesion molecule 

L1, promoting neurite outgrowth and neuronal migration independently of canonical signaling 

through its receptors or Dab1 (Lutz et al., 2017). Accordingly, L1 loss causes abnormalities in 

neuronal migration partially consistent with reeler mice, including abnormal neuronal orientation 

and misplaced neurons (Lutz et al., 2017). These experiments demonstrate the importance of 

Reelin-regulated adhesion as an additional mechanism by which it controls neuronal migration. 
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1.2.3.3.3 Dendrite morphogenesis 

In addition to regulation of neuronal migration and aggregation, Reelin influences 

dendrite development and morphology. Reelin appears to be particularly important in regulating 

dendrite morphology within the pyramidal neurons of the hippocampus, both during 

development and postnatally (Niu et al., 2004, 2008). Similar to its regulation of migration, this 

process depends upon Dab1 signaling (Niu et al., 2004). Therefore, in the absence of Reelin, 

hippocampal neurons have impaired dendrite development (Stanfield et al., 1979; Niu et al., 

2008), while Reelin haploinsufficiency causes a relatively mild decrease in dendritic spine 

density within the motor prefrontal cortex (Liu et al., 2001). These experiments suggest that 

Reelin also regulates synapse formation and neurotransmission in the adult brain by modulating 

dendrite development and morphology. 

1.2.3.4 Reelin-independent functions of Cajal-Retzius cells 

Reelin is specifically and highly expressed in Cajal-Retzius cells, so it can be challenging 

to identify the specific functions of Cajal-Retzius cells independently of Reelin expression. One 

such study to address this divide utilized a transgenic P73 knockout mouse. As discussed 

previously, P73 is expressed in Cajal-Retzius cells and promotes survival (Tissir et al., 2009). 

Loss of P73, therefore, causes a severe decrease in the abundance of Reelin-expressing Cajal-

Retzius cells yet maintains a low level of Reelin expression within the marginal zone (Meyer et 

al., 2004). Despite the near-total loss of Cajal-Retzius cells, P73 knockout mice have relatively 

minor defects in cortical development (Meyer et al., 2004). Cortical lamination is mostly normal 

despite a reduced cortical thickness, which is more prevalent in the posterior cortex. The preplate 

also split into the marginal zone and subplate at early development stages without defects (Meyer 

et al., 2004). Similarly, ablation of cortical-hem-derived Cajal-Retzius cells does not result in 
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large-scale disruptions in cortical layering despite a near-complete loss of Reelin in the marginal 

zone (Yoshida et al., 2006). These results suggest that 1) Reelin is responsible for a majority of 

the cortical development defects associated with Cajal-Retzius cell loss and 2) low levels of 

Reelin expression or compensation in later-appearing Reelin-expressing interneurons is 

sufficient for relatively normal development. 

In a separate study that wished to differentiate the effects of Reelin on migration 

independently of abnormal preplate formation, researchers pharmacologically ablated Cajal-

Retzius cells at birth (Supèr et al., 2000). They identified that ablation at birth impaired the 

migration of later-born neurons, reduced the number of radial glial cells, and increased astrocyte 

abundance (Supèr et al., 2000). These results suggest that Cajal-Retzius cells protect the radial 

glial cell identity and prevent premature differentiation into astrocytes. They also demonstrate 

that disruption of preplate formation is not solely responsible for neuronal migration deficits 

present with loss of Reelin (Supèr et al., 2000). However, this study does not desegregate Reelin 

signaling from Cajal-Retzius cells, so it is not known how many of these findings are attributed 

to the loss of Reelin signaling. 

1.2.4 The Extracellular Matrix 

The brain's extracellular matrix comprises glycoproteins, such as chondroitin and heparin 

Sulfate proteoglycans, laminins, tenascins, and Reelin (Barros et al., 2011; Franco and Müller, 

2011). This network of extracellular cues is critical for neuronal migration, synapse formation, 

and myelination (Franco and Müller, 2011). Laminins are expressed within the brain's basal 

lamina at the pial surface and within the ventricular zone. They maintain radial glial cell 

orientation and function (Ferent et al., 2020). Heparin and chondroitin sulfate proteoglycans 

include Perlecan, Glypican, Phosphacan, Versican, and Neurocan (Maeda, 2015). Finally, the 
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glycoproteins Tenascin-C, Tenascin-R, and Reelin are critical to extracellular matrix 

composition and function (Barros et al., 2011; Franco and Müller, 2011). 

1.2.4.1 Extracellular Matrix Regulation of Migration  

The major proteins that comprise the basal lamina at the brain's pial surface are the 

laminins, which are crucial to maintaining radial glial cell attachment and survival (Timpl et al., 

1979; Radakovits et al., 2009). Studies demonstrate that removing the basal lamina severely 

disrupts brain lamination, indicating its necessity for proper neuronal migration (Sievers et al., 

1994; Radakovits et al., 2009). Similarly, mutations in or loss of laminins or their integrin 

receptors cause defects in cortical layering (Smyth et al., 1999; Graus-Porta et al., 2001; Halfter 

et al., 2002; Chen et al., 2009). These defects are associated with the detachment of radial glial 

endfeet from the basal lamina (Halfter et al., 2002; Chen et al., 2009). The specific deletion of 

integrin from migrating neurons does not cause severe changes in lamination, suggesting that 

disruptions in migration after integrin loss are most likely due to radial glial cell endfeet 

detachment rather than a direct effect on migrating neurons (Graus-Porta et al., 2001). Laminins 

are also expressed within the brain's ventricular region, promoting neural stem cell expansion 

and differentiation. Similar to loss of integrin within the basal lamina, disruption in integrin 

function within the ventricular zone causes detachment of radial glial cell apical processes 

(Loulier et al., 2009). 

Proteoglycans make up a large portion of the brain's extracellular matrix (Maeda, 2015). 

Similar to laminin and integrin, disruption of specific heparin sulfate proteoglycans or heparin 

sulfate biosynthesis overall result in basal lamina disruptions with microcephaly, altered 

neurogenesis, and minor lamination defects (Inatani et al., 2003; Haubst et al., 2006; Girós et al., 

2007; Jen et al., 2009). In addition, evidence suggests that chondroitin sulfate proteoglycans 
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(CSPGs) regulate aspects of neuronal migration, as depletion of sulfotransferases that generate 

the sulfate groups on CSPGs disrupts the multipolar-to-bipolar transition of migrating neurons 

(Ishii and Maeda, 2008). These findings indicate that sulfate groups on CSPGs may be binding 

sites for trophic factors that guide migrating neurons. Likewise, there is evidence that CSPGs 

located in the striatum regulate tangential interneuron migration through binding to the repulsive 

cue Semaphorin 3A (Sema3A), suggesting that CSPGs bind and retain Sema3A in the striatum to 

repel tangentially migrating neurons away from this area of the brain (Zimmer et al., 2010). In 

addition to Sema3A, CSPGs bind many attractive and repulsive guidance cues, including 

Cxcl12, neurotrophins NT4, NT3, BDNF, and NGF, Slit2, Netrin, and multiple Ephrins 

(Mbemba et al., 2000; Shipp and Hsieh-Wilson, 2007; Rogers et al., 2011; Mizumoto et al., 

2013; Maeda, 2015), suggesting CSPGs may additionally regulate tangential migration through 

binding with these molecules. However, these studies were completed in vitro using biochemical 

assays, so it remains to be seen whether these interactions occur in the developing brain. 

Glycoprotein tenascin family members Tenascin-C (TNC) and Tenascin-R (TNR) are 

highly expressed in the developing cortex (Garcion et al., 2004; Ayachi et al., 2011). TNC is 

predominantly expressed in radial glial cells and is thought to regulate radial glial cell 

differentiation, as TNC-deficient mice have a reduced number of RC2-expressing radial glial 

cells (Garcion et al., 2004). Likewise, a separate study found that TNC knockout mice have an 

increased density of neurons and astrocytes, suggesting enhanced neurogenesis and gliogenesis 

(Irintchev et al., 2005). This study also found that TNC loss causes a reduced density of 

Parvalbumin-expressing interneurons, reduced percentage of oligodendrocytes, and alterations in 

dendritic spine morphology (Irintchev et al., 2005), indicating TNC has a broad range of effects 

on brain development. Despite all of these changes in brain composition, current evidence does 
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not support a role for TNC in modulating neuronal migration. TNR, however, has been 

specifically demonstrated to inhibit the migration of neurons derived from neural progenitor cells 

in vitro (Huang et al., 2009); however, its effects on migration in vivo remain unclear. 

1.2.5 Human Cortical Development 

 Human and primate cortical development differ from rodent development in several 

crucial ways. One of the main distinctions between human and rodent brains is the additional 

gyrification in primates. It has been hypothesized that gyrification evolved to increase the brain's 

surface area and the number of neurons without drastically increasing skull size (Zilles et al., 

2013). Accordingly, human brains have significantly more neurons than rodent brains (Azevedo 

et al., 2009). There are a couple of different ways that the neuronal pool is expanded in humans. 

First, neurogenesis onset is delayed in humans relative to rodents (Rakic, 1995; Kornack and 

Rakic, 1998). As previously discussed, the earliest precursors of radial glial cells,  

neuroepithelial cells, undergo rounds of cell division to expand the cortex during the early stages 

of brain development (Rakic, 1995). In the human brain, delayed neurogenesis allows 

neuroepithelial cells to undergo many more divisions, producing more progenitor and radial glial 

cells than are present in rodents (Rakic, 1995; Kornack and Rakic, 1998).  

Additionally, the neurogenic period is expanded ten-fold in primates, further increasing 

the progenitor pool that produces neurons (Caviness et al., 1995; Rakic, 1995). Moreover, while 

rodent IPCs generally undergo one or zero rounds of symmetric cell division before terminal 

differentiation, human IPCs undergo multiple rounds of division, drastically increasing the 

progenitor pool and the number of neurons that can be produced (Fietz et al., 2010; Hansen et al., 

2010; Betizeau et al., 2013). Finally, the expanded radial size of the human cortex correlates with 

an additional progenitor cell type localized closer to the apical surface of the brain. These cells 
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are known as outer radial glia; their endfeet attach to the pial surface of the brain, while their 

soma lies outside of the ventricular zone in a new layer called the outer subventricular zone 

(Smart et al., 2002; Lukaszewicz et al., 2005; Howard et al., 2006; Fietz et al., 2010; Betizeau et 

al., 2013). These cells make up the vast majority of progenitor cells in the human cortex, with 

four times as many cells as present in the ventricular and inner subventricular zones (Smart et al., 

2002). Thus, although the rodent is a suitable model system to study aspects of brain 

development, human brain development differs in its complexity and scale. 

1.3 NRG1/ErbB4 Signaling 

 As previously discussed, NRG1 signaling through ErbB4 is a crucial regulator of brain 

development. Studies from the Corfas lab and others show that these molecules are critically 

important to regulate astrogenesis, radial neuron migration, interneuron migration, and 

myelination in the developing brain (Rio et al., 1997; Flames et al., 2004; Sardi et al., 2006; 

Neddens and Buonanno, 2010; Makinodan et al., 2012). However, the specifics of ErbB4 

intracellular domain (E4ICD)-mediated regulation of astrogenesis remain to be identified. 

1.3.1 ErbB/EGFR Family of Receptor Tyrosine Kinases 

ErbB4 is a member of the ErbB/EGFR family of receptor tyrosine kinases, which are 

receptors that contain extracellular, transmembrane, and intracellular domains that have intrinsic 

tyrosine kinase activity (Plowman et al., 1993a). Additional family members include 

EGFR/ErbB1, ErbB2, and ErbB3. These receptors bind growth factors such as Neuregulins 

(NRG), Epidermal Growth Factor (EGF), Epiregulin, Amphiregulin, and others. ErbB4 

specifically binds NRG1, NRG2, NRG3, NRG4, and NRG5 as well as β-cellulin (BTC), 

Epiregulin, and Heparin-binding EGF-like Growth Factor (HB-EGF) (Mei and Nave, 2014). 
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Ligand binding stimulates receptor phosphorylation and downstream kinase cascades (Plowman 

et al., 1993a, 1993b).  

Typically, receptor tyrosine kinases dimerize to function. Interestingly, the EGFR family 

of receptors can heterodimerize or homodimerize; however, some homodimers are not 

functionally active (Guy et al., 1994; Tzahar et al., 1996). For example, EGFR and ErbB2 lack a 

ligand-binding domain, whereas ErbB3 lacks a tyrosine phosphorylation domain (Guy et al., 

1994; Tzahar et al., 1996). Therefore, homodimers of these receptors cannot bind ligands or are 

catalytically inactive (Guy et al., 1994). ErbB4, on the other hand, has a ligand-binding domain 

and a phosphorylation site, which means it is the only EGFR family member that can 

homodimerize, bind ligands, and phosphorylate itself (Plowman et al., 1993b, 1993a). 

1.3.2 ErbB4 Structure and Signaling 

ErbB4 has multiple alternative splice forms that vary in the juxtamembrane (JM) domain 

and the intracellular cytoplasmic (CYT) domain, with two primary alternative splice forms for 

each (Figure 1.2). Thus, alternative splicing of ErbB4 predominantly generates four different 

proteins (Mei and Nave, 2014). CYT-1 is produced by the inclusion of exon 26, whereas CYT-2 

is generated upon its exclusion (Sawyer et al., 1998). Furthermore, the PI3K binding domain 

localizes within exon 26, so only ErbB4-CYT-1 can activate PI3K (Sawyer et al., 1998). The two 

primary JM splice forms are JMa and JMb, which either include exon 16 or exon 15, respectively 

(Elenius et al., 1997). There is also some evidence of ErbB4-JMc and JMd isoforms, which 

exclude or include both exons, respectively (Zeng et al., 2009). However, these isoforms are not 

well characterized or studied. Significantly, ErbB4-JMa and ErbB4-JMb differ in their potential 

signaling mechanisms, which are discussed further below (Elenius et al., 1997).  
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1.3.2.1 ErbB4 Canonical Signaling 

As is the case for other receptor tyrosine kinases, ligand binding to ErbB4 causes receptor 

dimerization, tyrosine autophosphorylation of the receptor intracellular domain, and activation of 

intracellular signaling pathways through adapter proteins. These signaling pathways include 

Raf/MEK/ERK, PI3K/Akt/S6K, and activation of Src family kinases, which stimulate 

transcription factors that modulate cell function (Yarden and Sliwkowski, 2001; Mei and Nave, 

2014). Specific functions associated with these signaling pathways are discussed in later 

sections. 

1.3.2.2 ErbB4 Non-Canonical Intracellular Domain Signaling 

In addition to canonical signaling, ErbB4 functions "non-canonically" via ErbB4-JMa. 

Exon 16, only expressed in ErbB4-JMa, contains a cleavage site for tumor necrosis factor α-

converting enzyme (TACE) (Elenius et al., 1997; Rio et al., 2000). As with canonical signaling, 

NRG1 binding to ErbB4-JMa stimulates receptor dimerization and autophosphorylation. 

However, instead of adapter protein stimulation of intracellular kinase cascades, ErbB4 is 

cleaved by TACE within the JM domain (Rio et al., 2000), followed by γ-secretase in the 

transmembrane domain (Lee et al., 2002).  These cleavage events release the soluble ErbB4 

intracellular domain (E4ICD), which translocates to the cell's nucleus to directly influence 

transcription (Lee et al., 2002; Sardi et al., 2006).  

1.3.3 Roles in Brain Development 

NRG1/ErbB4 signaling regulates various aspects of brain development, including 

differentiation, migration, synapse formation, and myelination (Mei and Xiong, 2008; Mei and 

Nave, 2014; Kataria et al., 2019). During development, ErbB4 is expressed in progenitor cells 

within the subventricular zone and the MGE (Rio et al., 1997; Flames et al., 2004; Fox and 
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Kornblum, 2005). In the adult brain, ErbB4 is expressed in inhibitory somatostatin and 

parvalbumin-expressing neurons, where it localizes to the cell’s postsynaptic synapse, binding to 

postsynaptic density protein 95 (PSD-95) (Huang et al., 2000; Vullhorst et al., 2009; Fazzari et 

al., 2010).  

1.3.3.1 Transcriptional Regulation of Gliogenesis 

One of the functions associated with E4ICD nuclear signaling is repression of 

astrogenesis, identified previously by the Corfas lab. Upon NRG1 binding to ErbB4-JMa in 

neural progenitor cells, ErbB4 is phosphorylated and cleaved, releasing E4ICD as described 

above (Elenius et al., 1997). Our lab further demonstrated that E4ICD binds with the adapter 

protein TAB2 and the co-repressor N-CoR and shuttles to the nucleus to repress glial gene 

transcription through direct promoter binding (Sardi et al., 2006). Furthermore, this process is 

dependent upon ErbB4-JMa cleavage and tyrosine phosphorylation. Expression of ErbB4-JMb, 

inhibition of ErbB4-JMa cleavage, or expression of a kinase-dead form of JMa inhibit complex 

formation and promoter binding (Sardi et al., 2006). This function of ErbB4-JMa is hypothesized 

to repress astrogenesis while neurogenesis is ongoing during the early stages of brain 

development. Accordingly, ErbB4 KO mice have increased GFAP and S100b protein expression 

at E17.5, the age of astrogenesis onset in rodents (Sardi et al., 2006).  

1.3.3.2 Neuron Migration 

In addition to regulation of differentiation, NRG1/ErbB4 signaling regulates both radial 

migration of immature excitatory neurons and tangential migration of interneurons from the 

ganglionic eminences to the dorsal telencephalon (Rio et al., 1997; Flames et al., 2004).  
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1.3.3.2.1 Radial Migration 

NRG1 is secreted by neurons and promotes radial glial cell formation and process 

extension (Anton et al., 1997; Schmid et al., 2003). NRG1 also stimulates the migration of 

neurons along radial glia fibers, such that in vitro NRG1 treatment of migrating neurons attached 

to radial glial fibers causes a dose-dependent increase in their migration speed (Anton et al., 

1997). However, NRG1 regulation of radial glia development and neuron migration in the cortex 

is mediated through ErbB2, which is expressed in radial glial cells, rather than ErbB4 (Schmid et 

al., 2003). ErbB4 instead is important in cerebellar development. Like in the developing cortex, 

newborn cerebellar granule neurons migrate along Bergmann glial fibers. Inhibition of ErbB4 in 

cerebellar glial cells impairs migration of NRG1-expressing granule cells in vitro (Rio et al., 

1997). However, despite NRG1’s alleged role in cell migration in vitro, in vivo evidence has 

failed to recapitulate this significance. First, conditional deletion of NRG1 from neuronal 

precursors does not result in apparent changes in cortical lamination (Brinkmann et al., 2008). 

Furthermore, loss of ErbB2, ErbB4, or both ErbB2 and ErbB4 does not cause significant changes 

in cortical or cerebellar structures (Barros et al., 2009). These findings underlie potential 

compensatory mechanisms in vivo, indicating that redundancies in signaling mechanisms that 

regulate migration may make NRG1 dispensable for radial neuron migration. 

1.3.3.2.2 Tangential Migration 

In contrast to radial migration, the role of NRG1/ErbB4 signaling in regulating tangential 

interneuron migration is much more substantiated. Studies show that NRG1 is secreted from 

neurons in the dorsal telencephalon, while ErbB4 is expressed in migrating interneurons (Flames 

et al., 2004). The mechanism of migration, however, has been debated. In one study, researchers 

found through in vitro and in vivo experiments that migrating interneurons are attracted by 
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soluble NRG1 and membrane-bound NRG1. They hypothesize that membrane-bound NRG1 

expressed in lateral ganglionic eminence (LGE) neurons serves as a short-term cue to permit 

migrating neurons to travel from the MGE and through the LGE, while soluble NRG1 that is 

secreted from neurons in the dorsal telencephalon functions as an attractive long-range signal 

(Flames et al., 2004). In contrast, a separate study found that NRG1 acts as a repulsive cue to 

funnel inhibitory neurons through the cortex to their final destinations (Li et al., 2012). In vitro, 

NRG1 repelled neurons derived from the MGE. In vivo, in utero electroporation of NRG1-

expressing plasmids repelled and even blocked migrating interneurons from reaching the dorsal 

telencephalon (Li et al., 2012). In any case, loss of ErbB4 or NRG1 reduces the number of 

inhibitory interneurons present in the adult cortex, indicating a defect in interneuron migration or 

survival (Flames et al., 2004; Neddens and Buonanno, 2010; Li et al., 2012). 

 Interestingly, NRG1 signaling through ErbB4 also promotes the tangential migration of 

the second wave (arising around E16.5) of ErbB4-expressing OPCs that colonize the optic nerve 

(Ortega et al., 2012). NRG1 treatment stimulates OPCs to extend extra and lengthier processes, 

which may be altering their migration. These findings correspond with impaired migration of 

OPCs in ErbB4 KO mice (Ortega et al., 2012). 

1.3.3.3 Synapse Formation 

ErbB4 localizes to the postsynaptic density of neurons at the subcellular level, indicating 

that it may regulate synapse formation or transmission (Huang et al., 2000; Krivosheya et al., 

2008; Fazzari et al., 2010). Indeed, through its interaction with and potential stabilization of 

PSD-95, it contributes to the formation and maturation of excitatory synapses on interneurons 

(Abe et al., 2011; Ting et al., 2011; del Pino et al., 2013). Accordingly, NRG1 increases the 

intensity and frequency of miniature excitatory postsynaptic potentials in brain slices from 
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juvenile mice and interneurons in vitro (Abe et al., 2011; Ting et al., 2011). Furthermore, 

overexpression of ErbB4 increases the intensity of proteins that localize to excitatory axon 

terminals, while loss of ErbB4 reduces miniature excitatory postsynaptic potential frequency and 

the density of glutamatergic axon terminals in inhibitory interneurons (Krivosheya et al., 2008; 

Ting et al., 2011). Together, these experiments demonstrate the necessity of NRG1 signaling 

through ErbB4 in excitatory synapse formation on ErbB4-expressing GABAergic interneurons.  

Evidence suggests that NRG1/ErbB4-mediated regulation of synaptogenesis is mediated 

partially through schizophrenia-associated protein Disrupted in schizophrenia 1 (DISC1) binding 

to ErbB4 in inhibitory neurons. Researchers found that a NRG1-induced increase in 

glutamatergic synapse formation onto inhibitory neurons is blocked by DISC1 loss (Unda et al., 

2016). Furthermore, NRG1 induces DISC1 expression and localization to glutamatergic 

synapses, where it binds to ErbB4 (Unda et al., 2016). In contrast to excitatory-inhibitory neuron 

synapses, NRG1/ErbB4 signaling does not appear to have an essential role in synapses between 

interneurons (Yang et al., 2013).  

1.3.3.4 Axon and Dendrite Development 

NRG1 treatment has been shown to promote neurite outgrowth, dendritic arborization, 

axon elongation, and branching of processes in ErbB4-expressing neurons (Krivosheya et al., 

2008; Fazzari et al., 2010). Accordingly, ErbB4 knockdown in vitro decreases the number of 

primary neurites of inhibitory neurons. This process appears to be mediated through PI3K 

phosphorylation, which is a common mechanism of canonical ErbB4 signaling (Krivosheya et 

al., 2008). In addition to dendritic outgrowth and branching, NRG1 regulates dendritic spine 

formation. Accordingly, double knockout of ErbB2 and ErbB4 decreases dendritic spine density 

in neurons derived from the cortex and hippocampus (Barros et al., 2009), and single knockdown 
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of ErbB4 reduces dendritic spine formation (Li et al., 2007). Likewise, the specific loss of ErbB4 

from parvalbumin-expressing interneurons decreases neuronal dendritic spine density (del Pino 

et al., 2013; Yin et al., 2013).  

1.3.3.5 Central Nervous System Myelination 

One of the final stages of brain development is myelination, whereby oligodendrocytes 

mature and myelinate axons in the central nervous system. NRG1/ErbB4 signaling promotes the 

maturation of OPCs, which may be facilitated through E4ICD nuclear signaling (Lai and Feng, 

2004; Ortega et al., 2012). In the central nervous system, NRG1 regulates myelination during an 

early postnatal critical period (Makinodan et al., 2012). In this previous study out of the Corfas 

lab, mouse social isolation immediately after weaning reduces NRG1 expression and causes 

hypomyelination. These phenotypes are recapitulated in mice that lack ErbB3 within 

oligodendrocytes, indicating that NRG1 may be acting through ErbB3 to facilitate this process 

(Makinodan et al., 2012). In addition, mice with blocked ErbB4 signaling in oligodendrocytes 

have cortical hypomyelination, altered oligodendrocyte morphology, and decreased conduction 

velocity, suggesting that ErbB4 function is critical for normal oligodendrocyte development and 

myelination (Roy et al., 2007). However, other studies of overt loss of NRG1, ErbB3, or ErbB4 

in mice show no impairments in myelination in vivo (Brinkmann et al., 2008; Barros et al., 

2009), while a significant overexpression of NRG1 appears to cause hypermyelination 

(Brinkmann et al., 2008). These studies show that while NRG1 influences myelination, the role 

of NRG1 and ErbB4 in central nervous system myelination is context-dependent and may be 

compensated for after overt loss. 
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1.3.4 Associations with Neurological and Psychiatric Diseases 

Many studies demonstrate that altered NRG1 and ErbB4 expression are associated with 

schizophrenia (Roy and Corfas, 2008). Multiple single nucleotide polymorphisms (SNPs) have 

been found in the NRG1 gene, mostly intronic, within the noncoding regions, and a few exonic 

(Mei and Nave, 2014). Phenotypically, these SNPs are associated with reduced white matter and 

gray matter or increased ventricle volume in schizophrenia patients, possibly indicating that 

NRG1-induced myelination is disrupted (Mata et al., 2010; Barnes et al., 2012; Cannon et al., 

2012). SNPs in the NRG1 gene are associated with either increased or decreased NRG1 

expression, suggesting downregulation or upregulation can contribute to schizophrenia (Mei and 

Nave, 2014). In addition, there are many ErbB4 SNPs associated with schizophrenia, mostly in 

intronic regions of the gene. In general, ErbB4 expression is upregulated in schizophrenia 

patients, predominantly ErbB4-JMa, implicating the potential effect of proteolytic ErbB4 

cleavage in contributing to schizophrenia etiology (Silberberg et al., 2006; Law et al., 2007; 

Joshi et al., 2014; Mei and Nave, 2014; Chung et al., 2016). Furthermore, behavioral studies of 

NRG1 and ErbB4 knockout transgenic mice indicate that they have deficits associated with 

schizophrenia, including hyperactivity and impaired social behavior (Golub et al., 2004; 

O’Tuathaigh et al., 2007). In addition to schizophrenia, SNPs in NRG1 have been identified in 

patients with bipolar disorder, major depressive disorder, and Hirschsprung’s disease, while 

SNPs in ErbB4 have been associated with bipolar disorder (Mei and Nave, 2014).  

Altered expression of NRG1 and ErbB4 have also been found in human studies of  

neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and 

Amyotrophic lateral sclerosis (ALS) (Chaudhury et al., 2003; Woo et al., 2010; Depboylu et al., 

2012; Takahashi et al., 2019; Sun et al., 2020). For example, in Alzheimer’s disease patients, 
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NRG1 and ErbB4 expression co-localize with neuritic plaques and apoptotic hippocampal 

neurons, while NRG1 levels are elevated in the patient’s cerebrospinal fluid (Chaudhury et al., 

2003; Woo et al., 2010; Mouton-Liger et al., 2020). Accordingly, mouse models of Alzheimer’s 

disease show increased ErbB4 expression within the cortex and hippocampus and in neuritic 

plaques (Chaudhury et al., 2003; Woo et al., 2011, 4). Genetically, one study identified a NRG1 

SNP that is associated with psychosis in patients with late-onset Alzheimer’s disease (Go et al., 

2005); however, a more recent study found no association between NRG1 SNPs and 

Alzheimer’s-associated psychosis (Middle et al., 2010), disputing the influence of NRG1 SNPs 

in Alzheimer’s disease. Elevated ErbB4 expression has also been identified in dopaminergic 

midbrain neurons in human patients with Parkinson’s disease. However, unlike in Alzheimer’s 

disease, ErbB4 upregulation is hypothesized to be a protective mechanism (Depboylu et al., 

2012). 

1.4 Poly (ADP-Ribose) Polymerase 1 (PARP1) 

Recently, our lab identified a direct interaction between the intracellular domain of 

ErbB4 (E4ICD) and Poly (ADP-ribose) Polymerase 1 (PARP1). PARP1 is a ubiquitously 

expressed enzyme with various functions within and outside of the nervous system and has the 

capability to directly bind DNA and regulate transcription (Kraus, 2008; Krishnakumar and 

Kraus, 2010b). This suggests that PARP1 may facilitate E4ICD’s interaction with the GFAP 

promoter to repress astrogenesis. Additionally, a PARP1 mutation has been linked to Autosomal 

Recessive Intellectual Disability (ARID) in humans, and PARP1 knockout mice display 

neurological deficits (Najmabadi et al., 2011; Plane et al., 2012; Hong et al., 2019). Together, 

these studies suggest that PARP1 has roles in brain development.  
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1.4.1 PARP Family of Proteins 

PARP1 is the first identified member of a family of 17 PARP proteins, also known as the 

ADP-ribosyl transferase (ART) family (Alkhatib et al., 1987; Cherney et al., 1987; Suzuki et al., 

1987; Amé et al., 2004). These proteins are characterized by a signature “PARP” motif within 

their catalytic domain, which contains an acceptor site for adenosine and a donor site for 

nicotinamide (Amé et al., 2004; Krishnakumar and Kraus, 2010b). PARP1s 1-5 post-

translationally modify proteins via poly-ADP-ribosylation (PARylation), whereas PARPs 6-8, 

10-12, and 14-16 catalyze only mono-ADP-ribosylation (MARylation) reactions. PARP9 and 

PARP13 are missing nicotinamide binding residues within their catalytic domain, rendering them 

likely inactive (Krishnakumar and Kraus, 2010b). The different PARP family members also 

localize to various subcellular components. While PARP1, PARP2, and PARP3 are primarily 

nuclear, other PARPs are also found outside the cell’s nucleus, including within the cytoplasm 

and mitochondria (Krishnakumar and Kraus, 2010b). PARP1 is responsible for 90% of 

PARylation activity in response to DNA damage in cells, with additional events catalyzed by 

PARP2 (Shieh et al., 1998; D’Amours et al., 1999). Therefore, double knockout of PARP1 and 

PARP2 is embryonic lethal, and embryos die at the onset of gastrulation (Ménissier de Murcia et 

al., 2003). However, loss of PARP1 or PARP2 alone is not lethal in mice (Shieh et al., 1998; 

D’Amours et al., 1999; Shall and de Murcia, 2000; Ménissier de Murcia et al., 2003; Beck et al., 

2014). This finding demonstrates the importance of PARP1 and PARP2 in regulating 

PARylation events and the significance of PARylation during early development, as the lack of 

both enzymes renders organisms non-viable. 
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1.4.2 PARP1 Protein Structure and Catalytic Activity 

The PARP1 protein contains a DNA-binding domain which includes a nuclear 

localization sequence, an automodification domain with a BRCT motif to mediate protein-

protein interactions, a WGR motif that may facilitate nucleic acid binding, and a catalytic 

domain, responsible for facilitating PARylation (D’Amours et al., 1999; Amé et al., 2004) 

(Figure 1.3). The DNA binding domain and nuclear localization sequences allow PARP1 to 

localize to the cell’s nucleus and directly bind to DNA to facilitate various functions, including 

chromatin modifications to regulate transcription and DNA repair (Kraus, 2008; Ray Chaudhuri 

and Nussenzweig, 2017). The BRCT motif allows PARP1 to bind to other proteins to PARylate 

them, thus regulating their activity, and the auto-modification domain allows PARP1 to 

PARylate itself (D’Amours et al., 1999).  

PARP1 catalyzes PARylation reactions using NAD+ as a substrate to synthesize ADP-

ribose polymers (PAR) on acceptor proteins (D’Amours et al., 1999) (Figure 1.4). PAR groups 

are large negatively charged polymers linked together via glycosidic ribose-ribose bonds in 

linear or branched chains (Chambon et al., 1966; Reeder et al., 1967). The process of PARylation 

is reversible through the enzymatic activity of poly (ADP-ribose) glycohydrolase (PARG) and 

ADP-ribosylhydrolase 3 (ARH3) which remove PAR groups from proteins (Figure 1.4) (Miwa et 

al., 1975; Ono et al., 2006). PARP1 auto-PARylation has been shown to inhibit its DNA binding 

and catalytic activity, which is one mechanism through which PARP1 might self-regulate its 

activity (Cervantes-Laurean et al., 1996; D’Amours et al., 1999; Kauppinen et al., 2005).  

1.4.3 PARP1 Functions 

The various domains that are included within the PARP1 protein confer a wide variety of 

functions. These include the regulation of DNA damage repair and transcription, processing and 
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regulation of mRNAs and miRNAs, control of apoptosis and necrosis, and modulation of 

immune system functionality (Kraus, 2008; Krishnakumar and Kraus, 2010b; Beck et al., 2014; 

Ke et al., 2019). Each of these functions will be discussed further in the sections below. 

1.4.3.1 DNA Damage Repair  

The most widely studied and well-known function of PARP1 is as a facilitator of DNA 

damage repair, including base excision repair, single and double-strand break repair, and 

homologous recombination (Durkacz et al., 1980; Bouchard et al., 2003; Krishnakumar and 

Kraus, 2010b; Beck et al., 2014). PARP1 recognizes DNA single-strand and double-strand 

breaks, activates itself, and PARylates nucleosome proteins H1 and H2B at breakage sites 

(Gilbert de Murcia and Josiane Menissier de Murcia, 1994). These histone modifications cause 

the chromatin to unravel and relax, allowing it to be accessible by DNA repair proteins (Poirier 

et al., 1982; Kraus, 2008; Ray Chaudhuri and Nussenzweig, 2017). PARylation of chromatin 

also serves as a signal for DNA repair proteins to localize to the break site and repair the DNA. 

For example, for PARP1-mediated repair via repair protein XRCC1, PARP1 is necessary for  

XRCC1 to be recruited to the site of damaged DNA, where XRCC1 serves as a scaffold for other 

repair proteins such as DNA ligase 3 (Caldecott et al., 1996, 1; Masson et al., 1998; El-Khamisy 

et al., 2003). During DNA double-strand break repair, ataxia telangiectasia mutated (ATM) 

recruits repair proteins such as p53 and SMC1. ATM is PARylated by PARP1, which stimulates 

its activity (Murcia et al., 2001; Aguilar-Quesada et al., 2007). PARP1 also facilitates 

homologous recombination by recruiting meiotic recombination protein 11 (Mre11) and the 

breast cancer susceptibility protein BRCA1 to the DNA (Haince et al., 2008; Li and Yu, 2013; 

Hu et al., 2014). Mre11 is critical during the end resection process in homologous recombination 
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(Haince et al., 2008), and PARP1 regulation of BRCA1 has been hypothesized to fine-tune the 

homologous recombination process (Hu et al., 2014).  

Given the importance of PARP1 in regulating various aspects of DNA damage repair, 

cells deficient in PARP1 display greater intensities of damage upon treatment with DNA 

damaging agents (Wang et al., 1995; de Murcia et al., 1997; Trucco et al., 1998; Masutani et al., 

1999; Shall and de Murcia, 2000). Accordingly, mice lacking PARP1 are more susceptible to 

DNA damage due to genotoxic insults, exhibit spontaneous carcinogenesis, and age at an 

accelerated rate (Wang et al., 1995; de Murcia et al., 1997; Masutani et al., 1999; Piskunova et 

al., 2008). The process of DNA repair is critical for cancer cell replication; thus, PARP inhibitors 

are widely used in the treatment of various cancers (Dziadkowiec et al., 2016; Pommier et al., 

2016; Rose et al., 2020; Wengner et al., 2020). 

1.4.3.2 Transcriptional Regulation 

PARP1 modulates transcription through several different mechanisms. For example, it 

can directly modify chromatin to facilitate transcription factor binding and gene activation, 

PARylate transcription factors or chromatin modifiers to activate or deactivate them, and bind to 

enhancer regions of the genome (Kraus, 2008).  

1.4.3.2.1 Chromatin Binding 

Given PARP1’s ability to directly modify chromatin at the sites of DNA damage to 

facilitate DNA damage repair, it is unsurprising that chromatin modifications via PARP1 also 

regulate gene transcription (Ray Chaudhuri and Nussenzweig, 2017). Similar to other post-

translational chromatin modifications, such as acetylation or methylation, histone PARylation 

modifies chromatin structure (Kim et al., 2004; Ray Chaudhuri and Nussenzweig, 2017). For 

example, PARylation of linker Histone H1 or PARP1 binding to the nucleosome causes Histone 
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H1’s eviction from the target gene’s promoter, which results in chromatin relaxation, allowing 

for transcription factors to bind to the gene promoter and promote transcription (Poirier et al., 

1982; Huletsky et al., 1989; Kim et al., 2004). This is the mechanism by which PARP1 regulates 

transcription of Doublecortin (Dcx) in neuronal cells, specifically by PARP1 recruitment to its 

promoter via transcription factors PBX and MEIS (Hau et al., 2017). In contrast, PARP1 

represses transcription by binding to nucleosomes and causing chromatin to compact. 

Interestingly, this function of PARP1 only occurs when the protein is unmodified in the absence 

of NAD+ (Kim et al., 2004). PARP1 may also facilitate chromatin compaction through a 

chromatin-binding protein called DEK. PARP1 activation after the addition of NAD+ causes 

PARP1 PARylation of DEK and the removal of PARP1 and DEK from chromatin, allowing 

transcription to occur (Gamble and Fisher, 2007).  

1.4.3.2.2 Regulation of Chromatin Modifying Enzymes 

In addition to directly modifying chromatin, PARP1 can PARylate chromatin-modifying 

proteins, such as enzymes that regulate DNA or histone methylation and acetylation (Kraus, 

2008). The process of methylation and acetylation can either repress or activate transcription 

depending upon the specific nature and site of modification by opening or condensing chromatin 

to allow or prevent transcription factors from accessing promoter regions of genes (Rothbart and 

Strahl, 2014; Tessarz and Kouzarides, 2014; Barnes et al., 2019).  

DNA methyltransferase 1 (DNMT1) is an enzyme that methylates cytosine residues on 

DNA, which prevents transcription. PARP1 binds to the promoter of the Dnmt1 gene to protect it 

from silencing via DNA methylation, thus promoting transcription of the gene when PARP1 is 

activated (Zampieri et al., 2009). PARP1 PARylation of the DNMT1 protein, in contrast, inhibits 

DNMT1’s catalytic activity, thus preventing DNA methylation and promoting transcription 



 44 

(Reale et al., 2005).  PARP1 also interacts with Ten-eleven-translocation 1 (Tet1), which 

catalyzes the formation of hydroxymethyl groups on cytosine residues (Zhang et al., 2010; 

Ciccarone et al., 2015). These are epigenetic modifications associated with transcription factor 

binding sites (Zhang et al., 2010). Through Tet1 PARylation, PARP1 can increase or decrease its 

enzymatic activity and alter downstream functions associated with Tet1 (Ciccarone et al., 2015).  

PARylation of a lysine methyltransferase, Ezh2, inhibits its activity and decreases its 

association with chromatin, preventing its methylation of lysine residues on histone H3 

(H3K27me3), a repressive epigenetic modification (Caruso et al., 2018). Therefore, PARP1 

activation promotes transcription via decreased H3K27me3. PARP1 also regulates H3K27me3 

levels via repression of Ezh2 gene transcription (Martin et al., 2015). In addition to methylases, 

PARP1 interacts with histone-associated lysine demethylases Kdm5b and Kdm4d 

(Krishnakumar and Kraus, 2010a; Le May et al., 2012). Kdm5b is a lysine-specific demethylase 

that regulates methylation levels of lysine four on histone H3 (H3K4me3), which are found at 

sites of active transcription (Tan et al., 2003; Sims and Reinberg, 2006; Christensen et al., 2007). 

PARylation of Kdm5b by PARP1 inhibits its recruitment to gene promoters, preventing it from 

silencing genes, which leads to increased transcription of Kdm5b-dependent genes 

(Krishnakumar and Kraus, 2010a). PARP1 also PARylates Kdm4d, which impairs its 

recruitment to promoters that are responsive to retinoic acid (RA). Loss of Kdm4d retains the 

methylated state of lysine residues on Histone H3 (H3K9me2), which is an epigenetic 

modification that represses transcription (Le May et al., 2012; Ninova et al., 2019). 

Consequently, co-localization of the enzyme that de-PARylates proteins (known as PARG) with 

Kdm4d at RA-responsive gene promoters restores demethylation and allows transcription to 
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occur (Le May et al., 2012). Taken together, these studies indicate that PARP1 inhibition of 

different demethylases can either promote or repress transcription. 

Another histone modification that controls the accessibility of chromatin is acetylation 

(Barnes et al., 2019). PARP1 interacts with the protein deacetylase known as Sirt1, which 

regulates the expression of genes that control cell differentiation, survival, and stress responses 

(Herskovits and Guarente, 2014; Cai et al., 2016). Experimental evidence demonstrates that Sirt1 

and PARP1 have an antagonistic relationship, whereby Sirt1 knockout increases PARP1 activity 

while its activation decreases PARP1 activity (Kolthur-Seetharam et al., 2006; Rajamohan et al., 

2009). This antagonism is hypothesized to be due to their competition for available NAD+ to 

catalyze reactions. Additionally, activated Sirt1 also represses transcription of the Parp1 gene 

through deacetylation to further suppress the activity of PARP1 (Rajamohan et al., 2009).  

1.4.3.2.3 Modification of Transcription Factors  

PARP1 modifies transcription factors that regulate gene expression in many cell types, 

including neurons. One such transcriptional repressor is MeCP2, a methyl binding protein that 

associates with corepressor complexes and directs their binding to methylated sites on DNA, 

compacting chromatin (Cheng and Qiu, 2014). Endogenous MeCP2 protein within the mouse 

brain is PARylated, which prevents it from binding to chromatin and inducing chromatin 

aggregation (Becker et al., 2016). Thus, in the absence of PARP1, MeCP2 binding to 

heterochromatin increases, and chromatin is more prone to aggregate (Becker et al., 2016). 

PARP1 also indirectly influences transcription factor Elk1 activity via Erk2 (Cohen-Armon et 

al., 2007). Erk2 phosphorylation stimulates its binding to and subsequent activation of PARP1. 

Activated PARP1 then increases Erk2-mediated phosphorylation of the transcription factor Elk1, 
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promoting the expression of its target gene, c-fos, an immediate-early gene essential for neuronal 

function (Cohen-Armon et al., 2007).  

PARP1 is also a binding partner of subunits of the transcription factor NF-ƙB, which 

regulates genes that contribute to immune functions in cells. Its interaction with subunits p50, 

p65, and p300 facilitates NF-ƙB-dependent gene expression (Hassa and Hottiger, 1999; Hassa et 

al., 2003). Thus, following immune system activation in PARP1 KO cells, the expression of 

genes that NF-ƙB control, including IL-6, are dysregulated (Hassa et al., 2003; Minotti et al., 

2015). Examples of other transcription factors that PARP1 modifies include STAT3, SRY-Box 

Transcription Factor 2 (Sox2), Hes1, CCAAT Enhancer Binding Protein (C/EBP), and Liver X 

Receptors (LXRs) (Ju et al., 2004; Gao et al., 2009; Shrestha et al., 2016; Luo et al., 2017; Ding 

et al., 2019). Taken together, these studies demonstrate that PARP1 regulates transcription 

factors that alter pathways necessary for cell differentiation, survival, and immune function. 

1.4.3.2.4 Direct Promoter or Enhancer Binding  

Direct PARP1 binding to DNA within putative gene promoter or enhancer regions  

regulates the expression of the chemokine CXCL1 and the transcription factor BCL6 (Amiri et 

al., 2006; Ambrose et al., 2007). Inactive PARP1 binding to DNA upstream of the CXCL1 

promoter inhibits binding of its associated transcription factor, NF-ƙB (Amiri et al., 2006). Upon 

PARP1 activation and auto-PARylation, PARP1 becomes unbound from the promoter, allowing 

transcription of CXCL1 to occur. Therefore, PARP1 loss increases CXCL1 expression, while 

PARP1 inhibition decreases CXCL1 expression (Amiri et al., 2006). Additionally, chromatin 

immunoprecipitation assays demonstrate that PARP1 binds to a DNA sequence within the first 

intron of the BCL6 gene that represses its expression. Therefore, PARP1 knockdown and 

inhibition increase the expression of BCL6 (Ambrose et al., 2007). Interestingly, PARP1 also 
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binds to hairpin structures associated with its own promoter region to decrease its expression. In 

cells lacking PARP1, the PARP1 promoter region is overactive, while the reintroduction of 

PARP1 into these cells downregulates its promoter activity (Soldatenkov et al., 2002). 

1.4.3.3 mRNA Processing and Regulation  

Recent evidence shows that PARP1 can post-transcriptionally modify mRNA expression 

by regulating mRNA stability, alternative splicing, and 3’ polyadenylation (Ke et al., 2019). For 

example, PARP1 loss in mouse fibroblast cells decreases the stability of the IP-10 transcript 

without altering its promoter activity (Galbis-Martínez et al., 2010). Similarly, PARP1 loss or 

inhibition in Drosophila cells decreases the stability of AKAP200 and CAPER (Matveeva et al., 

2019). This effect may be mediated through changes in alternative splicing, as PARP1 

knockdown alters the splicing products of these mRNAs (Matveeva et al., 2019). In addition, a 

study of PARP1 transcriptome-wide binding sites to RNAs showed that it binds primarily to 

mRNAs and within introns. This study also found that loss of PARP1 alters alternative splicing 

of pre-mRNAs for a significant number of genes in human HeLa cells (Melikishvili et al., 2017). 

This finding agrees with a previous study in Drosophila showing that PARP1 localizes to 

intron/exon boundaries, where it possibly recruits splicing factors to pre-mRNAs (Matveeva et 

al., 2016).  

PARP1 also indirectly modulates RNA stability through the RNA-binding protein Human 

Antigen R (HuR) (Ke et al., 2017). HuR is a ubiquitously expressed protein that binds and 

stabilizes various mRNA transcripts.  A recent study showed that PARP1 binding and 

subsequent PARylation of HuR enhance its binding to mRNAs, promoting mRNA stability (Ke 

et al., 2017). This is purportedly the mechanism by which PARP1 regulates the stability of the 

pro-inflammatory cytokine Cxcl2 in primary macrophages isolated from mice (Ke et al., 2017). 
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Interestingly, PARP1 also affects the process of 3’ polyadenylation through modification of 

Poly(A) Polymerase (PAP) (Di Giammartino et al., 2013). PAP is an enzyme that catalyzes the 

synthesis of the poly(A) tail onto the 3’ end of pre-mRNA and is supported by ~80 proteins, 

including PARP1 (Shi et al., 2009). PARP1 binding and PARylation of PAP inhibit its 

polyadenylation activity due to decreased PAP binding to RNA (Di Giammartino et al., 2013). In 

the stressful environment of heat shock, this mechanism is crucial to inhibit polyadenylation and 

repress mature mRNA production (Di Giammartino et al., 2013). 

1.4.3.4 miRNA Regulation 

miRNAs are small RNA molecules that bind to and degrade specific mRNAs (Huntzinger 

and Izaurralde, 2011; O’Brien et al., 2018). PARP1 has been demonstrated to regulate the 

expression of several miRNAs, including miR-204, miR-365, miR-196, miR-203, and miR-98 

(Nozaki et al., 2018; Wang et al., 2019). In exosomes derived from PARP1 KO embryonic stem 

cells, researchers identified 329 miRNAs that were altered by more than 2-fold, either 

upregulated or downregulated (Nozaki et al., 2018). In vascular smooth muscle cells, PARP1 

suppresses the expression of miR-204 via IL-6/STAT3 phosphorylation, which results in 

overexpression of its target gene, Runx2. Further experiments demonstrated that PARP1 loss 

increases Runx2 expression without altering its promoter activity (Wang et al., 2019). 

Additionally, a transcriptome-wide assay for PARP1-RNA binding identified miRNAs bound 

directly by PARP1, though it was only 1% of all bound RNAs (Melikishvili et al., 2017).  

Therefore, miRNA regulation is an additional method by which PARP1 post-transcriptionally 

modifies mRNAs. 
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1.4.3.5 Regulation of Cell Death 

PARP1 can regulate cell death through two different methods. In one mechanism, PARP1 

plays a crucial role in programmed cell death signaling cascades, otherwise known as apoptosis. 

Cells initiate apoptosis by activating suicide proteases, including caspases, calpain, cathepsins, 

and granzymes, that cleave PARP1 and other molecules that are critical for cell survival (Fischer 

et al., 2003). PARP1 cleavage into multiple fragments prevents it from binding and repairing 

DNA, ultimately resulting in cell death (Kaufmann et al., 1993; Soldani et al., 2001). PARP1 

overactivation also causes cell death in a process known as necrosis, which occurs when cells 

have severely damaged DNA (Eguchi et al., 1997). As previously discussed, PARP1 utilizes 

NAD+ to catalyze PARylation reactions. PARP1 overactivation due to severe DNA damage 

overutilizes NAD+, depleting it from cells. Therefore, cells are prevented from using NAD+ to 

produce ATP during glycolysis, ultimately resulting in cell death (Eguchi et al., 1997). In 

addition, excessive PAR production activates the mitochondrial protein Apoptosis Inducing 

Factor (AIF), releasing it from mitochondria, after which it travels to the nucleus to stimulate 

endonucleases that cause apoptosis (Yu et al., 2002). 

1.4.3.6 Immune Functions 

During the immune system’s response to a threat, inflammation is the initial response that 

activates the body’s innate immune response. As previously discussed, PARP1 activates the 

transcription factor NF-ƙB (Hassa and Hottiger, 1999; Hassa et al., 2003), which regulates the 

inflammatory response during immune activation via transcriptional regulation of TNFα, IL-1β, 

IL-2, IL-5, and IL-8, as well as some adhesion molecules (Bhatt and Ghosh, 2014). Accordingly, 

PARP1 promotes inflammatory cytokine expression, including IL-6, IL-1β, and TNFα (Huang et 

al., 2008, 1; Robaszkiewicz et al., 2016). Interestingly, extracellularly released PARs have been 
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shown to stimulate macrophages to induce cytokine and chemokine production, a method by 

which cells may be able to communicate that they have been damaged (Krukenberg et al., 2015). 

Accordingly, loss of PARP1 is protective in disorders that are associated with chronic 

inflammation, such as arthritis, inflammatory bowel disease, asthma, diabetes, ischemia, and 

some neurodegenerative diseases (Eliasson et al., 1997; Jijon et al., 2000, 1; Szabó, 2005; 

Matsuura et al., 2011; García and Conde, 2015; Kam et al., 2018; Sethi et al., 2019; Mao and 

Zhang, 2021). Likewise, overexpressed PARP1 is associated with multiple sclerosis (MS), a 

disease of excessive inflammation (Kauppinen et al., 2005). Accordingly, PARP1 inhibition in a 

mouse model of MS ameliorates symptoms (Farez et al., 2009); however, the genetic deletion of 

PARP1 before the onset of experimental autoimmune encephalomyelitis (EAE) worsens 

symptoms, disputing the potential therapeutic effect of PARP1 inhibition in MS treatment 

(Selvaraj et al., 2009). 

1.4.4 Roles in Brain Development 

Very little is known about the roles of PARP1 in brain development. Multiple studies 

have found that the brains of PARP1 KO mice tend to weigh less than controls at postnatal ages 

(Plane et al., 2012; Hong et al., 2019). Embryonically, PARP1 loss causes enlarged ventricles at 

E14.5 and increased cell death at E16.5 and E18.5 (Hong et al., 2019). PARP1 loss also impairs 

the proliferation of neural stem cells derived from the embryonic cortex, likely through 

regulation of PDGFRα and embryonic stem cell phosphatase (ESP) (also known as PTPRV) 

expression (Hong et al., 2019; Son et al., 2020). Studies have also found increased or decreased 

adult stem cell proliferation in the subventricular zone or hippocampal dentate gyrus in PARP1 

KO mice, respectively (Plane et al., 2012; Hong et al., 2019). Adult stem cells from the 

subventricular zone or embryonic-derived neural progenitor cells are also more prone to 
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differentiate into glial cells, either oligodendrocytes or astrocytes, in the absence of PARP1 

(Plane et al., 2012; Hong et al., 2019). Glial differentiation occurs at the expense of neuronal 

differentiation, as PARP1 KO cells show decreased differentiation into MAP2-expressing 

neurons in both studies (Plane et al., 2012; Hong et al., 2019). Taken together, loss of PARP1 

causes minor defects in brain development, but the few studies examining PARP1’s role fail to 

go into great depth regarding potential embryonic developmental abnormalities. 

1.4.5 Roles in Neurological and Psychiatric Diseases  

PARP1 has been implicated in numerous neurological and psychiatric disorders. These 

include ischemic stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), MS, major 

depressive disorder, glioblastoma, and epilepsy (Mao and Zhang, 2021). In many of these 

disorders, PARP1 is overexpressed or overactive, contributing to associated cellular stress and 

neurodegeneration (Chiarugi, 2005; Kauppinen et al., 2005; Farez et al., 2009; Szebeni et al., 

2016). For example, in PD, a recent study suggests that aggregation of pathological α-Synuclein 

in dopaminergic neurons, a hallmark of PD, is driven by PARP1 PARylation (Kam et al., 2018). 

Furthermore, PAR-driven aggregation increases the toxicity of pathological α-Synuclein and 

subsequent cell death in cell culture experiments. These effects were abrogated in both PARP1 

KO neurons and with inhibition of PARP1 (Kam et al., 2018). Accordingly, PAR levels are 

elevated in the cerebrospinal fluid and substantia nigra of PD patients (Kam et al., 2018). In 

postmortem brain tissue from PD patients, researchers found a dramatic reduction in PARP1 

expression in the nucleus of affected cells in the substantia nigra, dorsal motor nucleus of vagus, 

and frontal and cingulate cortices, suggesting an altered subcellular location of PARP1 in 

diseased cells (Salemi et al., 2021). They also observed a colocalization between PARP1 and α-

Synuclein in the cytoplasm of affected neurons (Salemi et al., 2021).  



 52 

Similarly, PARP1 co-localizes with Tau tangles and Aβ plaques in the brain of AD 

patients, is further activated by Aβ, and promotes the formation of Tau tangles that contribute to 

AD pathogenesis (Abeti et al., 2011; Mao and Zhang, 2021). In mice, PARP1 loss or inhibition 

causes Schizophrenia-associated behaviors, including increased anxiety, decreased social 

interaction, and impaired pre-pulse inhibition, as well as defects in short-term and long-term 

memory (Goldberg et al., 2009; Hong et al., 2019). In human studies, mutations in genes that 

affect PARylation, such as Parp1 or Adprhl2, are associated with increased risk of stroke, 

cognitive dysfunction, ataxia, episodic psychosis, and neurodegeneration (Najmabadi et al., 

2011; Danhauser et al., 2018; Durmus et al., 2021). Taken together, PARP1 loss of function or 

overexpression can negatively impact brain development and function in multiple ways. 

1.5 Summary and Dissertation Outline  

While PARP1 has various functions in different tissues, it is clear that it is implicated in 

brain development and function and that alterations in its protein activity result in brain 

development defects and related disorders. Therefore, further study of its specific roles in the 

developing brain will help scientists understand the etiology of associated neurodevelopmental 

diseases. Consequently, the main aims of my dissertation are to 1) further validate the role of 

PARP1 in NRG1/ErbB4 regulation of astrogenesis and 2) identify other roles for PARP1 in the 

developing brain.  

Chapter 2 will examine the role of PARP1 in the regulation of astrogenesis through 

E4ICD nuclear signaling. This chapter expands upon previous work in the Corfas lab utilizing 

neural precursor cells isolated from rats and establishes methods to investigate this interaction in 

mouse cells. Specifically, I show that NRG1 induces PARylation in mouse NPCs and that 

PARP1 is essential for NRG1 to repress GFAP expression in vitro. Accordingly, loss of PARP1 
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or ErbB4 increases the expression of GFAP in the mouse cortex at birth. Chapter 3 identifies 

changes in gene expression associated with PARP1 loss in the embryonic brain, including the 

glycoprotein Reelin. I further demonstrate that PARP1 regulates Cajal-Retzius cell development, 

cortical morphology, neuronal migration, and adhesion to N-cadherin in vitro. Chapter 4 

summarizes and discusses the findings of the previous two chapters and delineates future 

directions. Overall, these data demonstrate that PARP1 regulates the expression of numerous 

genes in the developing brain and that its loss causes changes in brain morphology that may 

contribute to the etiology of neurodevelopmental or neurodegenerative disorders.
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1.6 Figures 

 

 

Figure 1.1 Overview of neurogenesis and gliogenesis in the rodent brain. Just before the 

onset of neurogenesis, neural epithelial cells (NECs) divide symmetrically to expand their pool 

rapidly. The earliest born neuronal subtypes are Cajal-Retzius cells (born around E10.5), which 

are located in the developing brain’s marginal zone (MZ) and direct neuronal migration. At the 

onset of neurogenesis (around E12.5), NECs become radial glial cells (RGCs), whose cell bodies 

are localized to the ventricular zone (VZ) and have endfeet that extend to the basal and apical 

surfaces of the brain. RGCs divide symmetrically to form two new radial glial cells or 

asymmetrically to form one radial glial cell and one neuron or one radial glial cell and one 

intermediate progenitor cell (IPC). RGCs can also divide into two IPCs, which are located in the 

subventricular zone (SVZ). IPCs, in turn, proliferate to form additional IPCs (in rare cases) or 

two migrating neurons. In early development, neurons migrate independently of radial glial cells 

or dependent upon radial glial cell fibers, which serve as scaffolding. Migration at later stages of 

development when the cortical plate is thicker usually occurs along radial glial cell fibers. 

Neurons that have completed migration form the cortical plate (CP), splitting the MZ from the 

subplate (SP). The brain develops inside-out so that earlier-born neurons migrate to deeper 

cortical layers, while later-born neurons migrate beyond early-born neurons to more superficial 

brain layers. At the end of neurogenesis, around E17.5, IPCs and RGCs differentiate into 

astrocytes, starting the process of gliogenesis, which continues until 7 or 8 days following birth. 
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Figure 1.2 ErbB4 alternative splicing. Alternative splicing of ErbB4 generates different 

isoforms with the inclusion of exon 15 (ErbB4-JMb) or exon 16 (ErbB4-JMa), exon 26 (Cyt-1) 

or lack of exon 26 (Cyt-2). The TACE cleavage site is located within exon 16, while the 

presenilin/γ-secretase cleavage site is within the transmembrane (TM) domain. Only ErbB4-JMa 

can be cleaved by both TACE and γ-secretase to release the ErbB4 intracellular domain. Exon 26 

(therefore ErbB4-Cyt1) includes the PI3K binding site.  TK = tyrosine kinase domain. 

 

 

 

Figure 1.3 PARP1 protein structure. PARP1 contains a DNA-binding domain, 

automodification domain, and catalytic domain. The DNA-binding domain contains three Zinc-

finger binding motifs (Zn1, Zn2, and Zn3) and a nuclear localization sequence (NLS). The 

automodification domain contains the breast-cancer-susceptibility protein carboxy terminus 

(BRCT) and WGR domain. The catalytic domain contains the helical subdomain (HD) and ADP-

ribosyl transferase subdomain (ART). 
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Figure 1.4 PARP1 enzymatic function. PARP1 uses NAD+ as a substrate to add ADP-ribose 

polymers to acceptor proteins, converting NAD+ to Nicotinamide in the process. ADP-ribose 

polymers are removed from proteins by reverse enzymes Poly (ADP-ribose) Glycohydrolase 

(PARG) or ADP-Ribose Glycohydrolase 3 (ARH3).
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Chapter 2: ErbB4 Interacts with PARP1 to Regulate Astrogenesis1 

2.1 Introduction 

ErbB4 is a receptor tyrosine kinase highly expressed in the developing brain, of which 

Neuregulin 1 (NRG1) is a ligand (Fox and Kornblum, 2005). NRG1 binding to ErbB4 induces 

the receptor to dimerize and autophosphorylate within the protein’s intracellular domain, 

activating other kinases to stimulate an intracellular signaling cascade which ultimately regulates 

transcriptional activity in the cell (Plowman et al., 1993b, 1993a). This type of signaling is 

known as canonical ErbB4 signaling. However, an additional splice form of ErbB4, which 

differs in the juxtamembrane (JM) domain of the transcript (known as JMa), can signal directly 

via the protein’s intracellular domain (Elenius et al., 1997; Ni et al., 2001). ErbB4-JMa contains 

a cleavage site for TACE, while ErbB4-JMb does not (Rio et al., 2000). Thus, NRG1 binding 

and ErbB4-JMa autophosphorylation induce cleavage by TACE in the JM domain, allowing a 

secondary cleavage by presenilin-1/γ-secretase within the intramembrane domain (Ni et al., 

2001; Lee et al., 2002). These sequential cleavage events  release ErbB4’s intracellular domain 

(E4ICD), which complexes with TAB2 and N-CoR, and together they travel directly to the cell’s 

nucleus and bind to the promoter of astrocytic genes to repress their transcription (Sardi et al., 

2006). We hypothesize that this complex serves as a “break” on astrogenesis while neurogenesis 

is ongoing at the early stages of neurodevelopment. Therefore, a reduction in ErbB4 expression 

at later stages of neurodevelopment would release this “break” and promote the expression of 

glial-specific genes. 

 
1 Some data and figures presented in this chapter were collected and prepared by previous Corfas lab members Dr. 

Falak Sher, Dr. Pablo Sardi, and Dr. Anna Kane and current lab member Robert Doherty. 
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Unpublished data from the Corfas lab implicates Poly (ADP-Ribose) Polymerase 1 

(PARP1) in this complex as well. PARP1 is an enzyme that post-translationally modifies 

proteins and chromatin via poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. 

These modifications can influence transcription via altering protein activity, promoter 

accessibility, or chromatin compaction (Kraus, 2008). As ErbB4 contains a nuclear localization 

signal but lacks a DNA-binding domain, E4ICD, TAB2, and N-CoR may bind to PARP1, which 

then binds to the gene promoter of astrocytic genes. Indeed, our data indicate that a constitutively 

active form of E4ICD (LexA-E4ICD) interacts with PARP1 as indicated via a yeast 2-hybrid 

assay and a proteomic screening analysis of E4ICD binding partners (Figure 2.1A,B). This 

interaction is specific to active E4ICD, as E4ICD with a mutated kinase domain (kinase-dead) 

does not interact with PARP1 (Figure 2.1C,D). Further co-immunoprecipitation experiments in 

transfected N2A cells and mouse neural progenitor cells (NPCs) or cortical lysates indicate that 

this interaction is specific to ErbB4-JMa, requires ErbB4 cleavage by TACE and presenilin-1/γ-

secretase, and is dependent upon NRG1 stimulation and ErbB4 phosphorylation (Figure 2.1E-H). 

Together, these experiments suggest that NRG1-induced activation of ErbB4 and subsequent 

cleavage by TACE and presenilin-1/γ-secretase preclude its binding to PARP1.  

Corfas lab members next sought to determine if ErbB4-JMa activation and cleavage 

stimulate PARP1 activity, finding that NRG1 induces PARylation in mouse NPCs to a level 

similar to H2O2, a known DNA damaging molecule that stimulates PARP1 (Figure 2.2A). 

Additionally, inhibition of ErbB4 cleavage via treatment with TACE inhibitor TAPI or 

presenilin-1/γ-secretase inhibitor DAPT prevents NRG1 from activating PARP1 in ErbB4-JMa 

transfected N2A cells (Figure 2.2B) or mouse NPCs (Figure 2.2C), suggesting that E4ICD 

mediates PARP1 activation, likely through its binding to PARP1. After confirming the 
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interaction between E4ICD and PARP1, Corfas lab members questioned whether PARP1 was 

necessary for E4ICD/TAB2/N-CoR to repress transcription of the gene glial fibrillary acidic 

protein (GFAP). Indeed, while ciliary neurotrophic factor (CNTF)-induced GFAP promoter 

activity was reduced by NRG1 treatment in NPCs isolated from rat cortex, this effect was 

blocked by co-transfection of PARP1 constructs with mutations in either the DNA-binding 

domain or catalytic domain. Similarly, PARP1 inhibition via 3-ABA blocked NRG1 function, 

indicating both PARP1’s ability to bind DNA and PARylate proteins are critical for NRG1-

mediated GFAP repression (Figure 2.3A,B). Finally, chromatin immunoprecipitation 

experiments show that both PARP1 and ErbB4 bind to the same region of the GFAP promoter 

following treatment with NRG1 (Figure 2.3C). Together with the evidence that NRG1 influences 

GFAP promoter activity, this finding suggests that E4ICD-PARP1 regulates GFAP expression 

by modulating its transcription through the promoter. 

Taken together, these findings suggest that NRG1-induced autophosphorylation of 

ErbB4, cleavage and release of E4ICD, binding to N-CoR and TAB2, translocation to the 

nucleus, and subsequent binding and activation of PARP1 represses transcription of astrocyte-

specific genes, such as GFAP. However, many of these experiments need to be replicated and 

validated in mouse NPCs to take advantage of transgenic mice as negative controls. Furthermore, 

it is unknown if loss of PARP1 causes precocious astrogenesis as previously observed in ErbB4 

KO mice. To validate the role of PARP1 in regulating astrogenesis, I developed a model of 

NRG1-mediated repression of GFAP expression in mouse NPCs. We further demonstrated that 

this repression is dependent upon the presence of PARP1 and ErbB4-JMa. Finally, I found that 

GFAP expression is increased to a similar extent in PARP1 KO and ErbB4 KO cortex of mice at 



 60 

birth, suggesting E4ICD-PARP1-mediated repression of astrogenesis has an essential role in 

vivo. 

2.2 Materials and Methods 

2.2.1 PARP1 KO Mice 

The PARP1 KO mouse line 129S-Parp1tm1Zqw/J64 was obtained from the Jackson 

Laboratory and maintained on a 129S1/SvImJ background. All animals were kept under a 12/12 

hr light/dark cycle and allowed food ad libitum. Animal procedures were reviewed and approved 

by the University of Michigan Institutional Animal Care and Use Committee. Embryonic dating 

was performed with vaginal plugging denoted as embryonic day 0.5 (E0.5).  

2.2.2 Generation of ErbB4-JMa-/- mice 

Two single guide RNAs (sgRNA) were designed to create cut sites in the ErbB4-JMa 

sequence within Exon 16. Repair of the chromosome breaks by non-homologous end joining was 

expected to create mutations in ErbB4 Exon 16 and introduce a premature termination codon 

which could lead to nonsense-mediated decay (NMD) and therefore result in specific loss of 

ErbB4-JMa expression. The sgRNAs were co-injected into fertilized C57BL/6 embryos with the 

CRISPR/Cas9 components and ultramer oligonucleotide bearing the mutations. From more than 

300 injections with both sgRNAs, 39 putative founder mice were created. Genotyping of Exon 

16 by PCR and sequencing identified 20 founder mice with other uninterpretable mutations.  

To generate founders carrying a single mutant allele, 12 potential founders were crossed 

with wild-type C57BL/6 mice, and ErbB4 Exon 16 was sequenced in the progeny, two of which 

had a single base pair deletion creating a premature termination codon within ErbB4 Exon 16. 

Male and female heterozygote offspring from the founders were back-crossed, a step that 
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generated viable homozygote offspring for each line with the expected Mendelian ratio, 

indicating that the mutations do not compromise viability. The mutant allele was named ErbB4-

JMa-, indicative of the mice bearing a premature termination codon, resulting in NMD of ErbB4-

JMa transcript. 

Mouse generation was completed with the aid of the University of Michigan Transgenic 

Animal Core. All animals were kept under a 12/12 hr light/dark cycle and allowed food ad 

libitum. Animal procedures were reviewed and approved by the University of Michigan 

Institutional Animal Care and Use Committee. 

2.2.3 Cell Culture and Treatments 

For primary NPC cell cultures, pregnant females were euthanized via cervical 

dislocation. Telencephalons were dissected from E14.5 embryos in ice-cold phosphate-buffered 

saline (PBS), meninges were removed, and cortices were dissociated into single cells with 

StemPro Accutase (ThermoFisher) for 5 min. NPCs were seeded as neurospheres in T75 flasks at 

500,000 cells/mL and expanded for 2 days in NPC media (DMEM with GlutaMAX, 1% 

penicillin/streptomycin, and 2% B27 without RA) supplemented with epidermal growth factor 

(EGF, 20 ng/mL) and basic fibroblast growth factor (bFGF, 20 ng/mL) in a humidified 5% 

CO2/95% air incubator at 37°C. Half of the media was changed every day, with replenishment of 

EGF and bFGF each day. On day 3, neurospheres were dissociated with Accutase into a single 

cell suspension and plated in NPC media supplemented with bFGF. Plates were pre-prepared by 

incubating in Poly-L-Lysine (Sigma) 30 min or overnight followed by Fibronectin (1 µg/mL, 

Corning) for 2 hrs.  

To inhibit PARP1 enzymatic activity, NPCs were treated with Olaparib (a gift of C. 

Brenner) at the indicated concentrations (10, 30, 50 nM) for 48 hrs starting on day 1 following 
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plating. Half of the media was replenished each day, and cells were re-treated with Olaparib 

every 24 hrs. To measure the effect of NRG1 on GFAP expression, NPCs were cultured as 

adherent cells as previously described. 24 hrs following culturing, bFGF was removed from 

media by replacing with NPC media containing only B27 without RA. Simultaneously, NPCs 

were treated with NRG1 (2 nM). 24 hrs later, NPCs were lysed, and RNA was extracted. 

2.2.4 shRNA-mediated PARP1 knockdown 

Lentiviral packaging plasmids and scramble shRNA or Parp1 shRNA constructs were 

transfected into HEK 293T cells using Lipofectamine 3000 (Invitrogen). Lentiviral supernatants 

were collected and concentrated using Lenti-X Concentrator (Clontech) and titered with 

puromycin selection. Parp1 shRNA plasmid was obtained from Sigma (clone ID 

TRCN0000305949) with the following target sequence: 5’- GGTTCATCTTTGCTTTAATTT-

3’. Lentiviral packaging plasmids and scramble shRNA plasmid were gifts of S. Iwase. To 

knockdown PARP1, NPCs were transduced with Parp1 shRNA expressing lentivirus or 

scramble shRNA lentivirus (at multiplicity of infection 3) for 48 hrs prior to FGF removal and 

NRG1 (2 nM) treatment, following the protocol described above. 

2.2.5 Luciferase Assay 

NPCs were cultured as adherent cells as previously described. 24 hrs following plating, 

NPCs were co-transfected with a construct expressing the rat GFAP promoter upstream of firefly 

luciferase and a construct expressing CMV-renilla (50:1 ratio). 24 hrs later, media was replaced 

with NPC media containing only B27 without RA with simultaneous treatment of NRG1 (2 nM). 

24 hrs later, media was replenished, and NPCs were re-treated with NRG1. 48 hrs following 

initial treatment, luciferase activity was measured using the Dual-Glo Luciferase Kit (Promega), 

following the manufacturer’s protocol. Luciferase intensity was measured using a BioTek plate 
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reader. Final values were obtained by normalizing firefly luciferase to Renilla luciferase. 

Technical replicates were measured in triplicate. 

2.2.6 PARylation Assay 

NPCs were plated onto round glass coverslips as adherent NPCs. The next day following 

plating, NPCs were treated with NRG1 (2 nM) or H2O2 (100 µM) for 5 min. NPCs were then 

fixed in 4% paraformaldehyde (PFA) in PBS for 10 min, then washed 3x in PBS. For fluorescent 

immunostaining, coverslips were blocked in 10% normal donkey serum in 0.2% triton in PBS 

then incubated in mouse anti-PAR primary antibody (Trevigen #4335-MC-100, 1:500 dilution) 

overnight diluted in blocking buffer. The following day, coverslips were washed 3x in 0.2% 

triton in PBS then incubated in Alexa-Fluor donkey anti-mouse 568 secondary antibody 

(Invitrogen, 1:500 dilution). Z-stack images were taken with Leica SP8 confocal microscope at 

63x magnification. 

2.2.7 RNA Isolation  

RNA was isolated from P0 cortex after removal of meninges and ganglionic eminences 

or cultured NPCs using Qiagen RNeasy Kit following the manufacturer’s instructions. RNA 

extraction from tissue was completed with on-column DNase digestion (Qiagen).  

2.2.8 RT-PCR and RT-qPCR 

For RT-qPCR, equal amounts of RNA (1 µg) were reverse transcribed into cDNA using 

an iScript cDNA Synthesis Kit (Bio-Rad) in 20 µL reaction volume following the manufacturer’s 

instructions. cDNA was diluted 5-fold for the PCR reaction. Quantitative PCR was performed 

using an iTaq SYBR Green Supermix (Bio-Rad) with a Bio-Rad CFX96 Thermocycler. Each 

sample was run in duplicate. Each well of the 96-well plate contained 5 µL iTaq SYBR Green 
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Supermix, 2.5 µL diluted cDNA, and 3 pmol of each forward and reverse primer. The cycling 

conditions were as follows:  95°C for 30 s followed by 39 cycles of 95°C for 5 s and 60°C for 30 

s. Normalized Gene Expression (NGE) was calculated using the efficiency of each primer with 

the following formula: [efficiency_target-CT
target/efficiency_reference-CT

ref]. Fold changes in 

mRNA level were then calculated relative to controls for each experiment.  

For non-quantitative RT-PCR, equal amounts of RNA were reverse transcribed into 

cDNA using an iScript cDNA Synthesis kit (Bio-Rad), as previously described. Equal amounts 

of cDNA were amplified with primers spanning the ErbB4 juxtamembrane domain with the 

following PCR cycling conditions: 94° for 3 min, then 30 cycles of 63°C for 30 s, 72°C for 30 s, 

and 94°C for 30 s, followed by 72°C for 20 min. PCR products were run on 2% agarose gels 

stained with Ethidium Bromide. The expected size for ErbB4 JMa is 273 bp, and the expected 

size for ErbB4 JMb is 243 bp. 

Primer sequences are as follows (5’-3’): GFAP F: GCAGGAGTACCAGGATCTACT; 

GFAP R: TGGAGGTTGGAGAAAGTCTGT; GAPDH F: TCACTGCCACCCAGAAGA; 

GAPDH R: GCCAAGCCCTGAGCATAA; PARP1 F: GGCAGCCTGATGTTGAGGT; PARP1 

R: GCGTACTCCGCTAAAAAGTCAC; DCX F: GCCAGGGAGAACAAGGACTTT; DCX R: 

CACCCCACTGCGGATGA; NeuN F: CCAGGCACTGAGGCCAGCACACAGC NeuN R: 

CTCCGTGGGGTCGGAAGGGTGG RPL19 F: ACCTGGATGAGAAGGATGAG; RPL19 R: 

ACCTTCAGGTACAGGCTGTG; ErbB4 JM F: GAAATGTCCAGATGGCCTACAGGG ; 

ErbB4 JM R: CTTTTTGATGCTCTTTCTTCTGAC 

2.2.9 ErbB4 Immunoprecipitation 

For NPCs, two 10 cm dishes of adherent NPCs were treated with TPA (100 ng/mL for 45 

mins) or PBS control. Cells were washed 2x with PBS and lysed in RIPA buffer (Sigma) with 
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protease and phosphatase inhibitors for 15 mins, then centrifuged for 10 mins at 14,000 rpm, and 

supernatant was collected. Cerebellum was lysed directly in RIPA buffer (Sigma) with protease 

and phosphatase inhibitors by homogenization on ice for 15 mins, then centrifuged for 10 mins at 

14,000 rpm, and supernatant was collected. Samples were normalized to 1 µg/µl by BCA assay, 

and 500 µl lysate was incubated overnight at 4°C with 30 µl washed anti-ErbB4-conjugated 

beads (ErbB4 antibody (C-7) agarose conjugated, sc-8050 AC, Santa Cruz). The following day, 

beads were washed 4x in RIPA buffer, and the sample was eluted in 1.5x Laemmli sample buffer 

for 5 mins at 95°C. Western blot from input, IP, and supernatant was carried out with ErbB4 

antibody (HER4/ErbB4 (111B2) Rabbit mAb #4795, Cell Signaling Technology) according to 

standard procedures. 

2.3 Results 

2.3.1 NRG1-induced PARylation in mouse NPCs is dependent upon PARP1 and ErbB4 

PARP1 functions enzymatically by post-translationally modifying proteins via the 

addition of (ADP-Ribose) polymers (PAR). Typically, PARP1 is activated by DNA damage; 

however, there are incidences in which PARP1 is stimulated by other proteins (Cohen-Armon et 

al., 2007; Visochek et al., 2016). Our lab previously observed in WT mouse NPCs that NRG1 

activates PARP1, resulting in increased PARylation. To test if this effect is specific to ErbB4 and 

PARP1, I treated NPCs isolated from WT, PARP1 KO, and ErbB4 KO mice with NRG1 or H2O2 

as a positive control. As observed previously, NRG1 increased cellular PAR levels in WT NPCs, 

but not in ErbB4 KO or PARP1 KO NPCs (Figure 2.4), indicating that both ErbB4 and PARP1 

are required for NRG1-induced PARylation. 
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2.3.2 Generation and Validation of the ErbB4-JMa-/- mouse 

To further investigate the role of the cleavable form of ErbB4, ErbB4-JMa, in vivo, our 

lab developed a transgenic mouse using CRISPR/Cas9 to edit ErbB4 exon 16. This directed 

targeting introduced a mutation that resulted in predicted nonsense-mediated decay of the ErbB4-

JMa transcript while retaining ErbB4-JMb. To test the validity of this prediction, we isolated 

NPCs from WT or ErbB4-JMa-/- embryos and assessed the expression of the ErbB4-JMa and 

JMb transcripts using RT-PCR with primers flanking the juxtamembrane (JM) region. In WT 

NPCs, we detected both JMa and JMb, however in ErbB4-JMa-/- NPCs, we identified only 

ErbB4-JMb (Figure 2.5A), consistent with our expectation of ErbB4-JMa nonsense-mediated 

decay. Furthermore, stimulation of TACE with tissue-type plasminogen activator (TPA) 

treatment causes ErbB4 intracellular domain cleavage, indicated by the accumulation of the 80 

kD E4ICD. As expected, no E4ICD is detectable in ErbB4 KO or ErbB4-JMa-/- NPCs upon TPA 

treatment, indicating no cleavable form of ErbB4 remains in JMa-/- NPCs (Figure 2.5B). Notably, 

full-length ErbB4 is expressed in ErbB4-JMa-/- tissues (Figure 2.5B). Similarly, we confirmed 

the lack of E4ICD in vivo with cerebellar lysates from adult ErbB4-JMa-/- mice (Figure 2.5C,D). 

Taken together, these experiments verify that ErbB4-JMa and E4ICD are lost in the ErbB4-JMa-

/- mouse brain, indicating that these mice are suitable to assess the effect of E4ICD loss without 

the loss of ErbB4-JMb canonical signaling. 

2.3.3 NRG1 repression of GFAP expression following FGF removal depends upon PARP1 

and ErbB4-JMa 

 Given previous observations of NRG1-mediated repression of GFAP expression after 

induction with CNTF in rat NPCs, we sought to establish a similar model in mouse NPCs. I 

found that removal of bFGF from NPC media drastically increases GFAP expression 24 hrs 
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later. However, concurrent removal of FGF with NRG1 treatment suppresses the increase in 

GFAP expression by about 50% in WT NPCs (Figure 2.6A). To assess the necessity of PARP1 

and ErbB4 for NRG1-mediated repression, I measured GFAP transcript levels after FGF removal 

and NRG1 treatment in ErbB4 KO and PARP1 KO NPCs. Similar to our findings in rat NPCs, I 

found that loss of either PARP1 or ErbB4 abolished NRG1-mediated GFAP repression (Figure 

2.6B). Importantly, this repression was specific to glial genes, as I observed no change in DCX or 

NeuN, which are expressed in immature or mature neurons, respectively. I observed similar 

results with PARP1 knockdown in WT NPCs via a PARP1 shRNA-expressing lentivirus (Figure 

2.6C), further validating the necessity of PARP1.  

To test if NRG1-mediated repression of GFAP is specific to ErbB4-JMa, as our lab had 

found previously in rat NPCs, we removed FGF and treated NPCs isolated from ErbB4-JMa-/- 

mice with NRG1. As previously discussed, NPCs isolated from this mouse express ErbB4-JMb 

normally. As expected, the lack of the cleavable form of ErbB4 abolished the effect of NRG1, 

strongly suggesting that ErbB4 cleavage and its interaction with PARP1 are necessary to repress 

GFAP expression (Figure 2.6B). We verified that NRG1 suppresses GFAP expression after FGF 

removal through the GFAP promoter by transfecting WT NPCs with a GFAP-luciferase 

construct which expresses luciferase downstream of the GFAP promoter. Similar to GFAP 

transcript levels, removal of FGF increases GFAP-luciferase activity while concurrent NRG1 

treatment represses the induction (Figure 2.6D). Furthermore, PARP1 inhibition alone increases 

GFAP expression, suggesting that lack of PARP1’s enzymatic function interrupts GFAP 

repression by NRG1 (Figure 2.6E). Together, these results indicate that PARP1 PARylation is 

critical for NRG1/ErbB4-JMa repression of GFAP expression and that this effect is mediated 

through the GFAP promoter.  



 68 

2.3.4 Loss of PARP1 or ErbB4 increases cortical GFAP expression at birth 

 In mice, astrogenesis begins around E17.5 and continues through several days after birth 

(Sauvageot, 2002). Previous data suggest that ErbB4 KO animals have precocious astrogenesis, 

or increased expression of glial genes in the developing cortex (Sardi et al., 2006). Given the 

interaction between E4ICD and PARP1, this finding suggests that loss of PARP1 also causes 

precocious astrogenesis. To test this hypothesis, we measured GFAP expression in the P0 cortex 

of ErbB4 KO and PARP1 KO mice. Indeed, we observed an upregulation in GFAP expression in 

both transgenic mice (Figure 2.7), suggesting that the inability of NRG1 to repress GFAP 

expression in cells lacking ErbB4 or PARP1 results in overexpression of the transcript in vivo. 

2.4 Discussion 

Here, we identified a novel role for PARP1 in mediating the repression of astrogenesis 

through ErbB4 nuclear signaling. We show that this repression depends on NRG1-induced 

phosphorylation of ErbB4-JMa and PARP1 activation, which represses GFAP expression 

through GFAP promoter activity. We also identified a mechanism for PARP1 activation that is 

not triggered by DNA damage but by NRG1 binding and subsequent phosphorylation of the 

ErbB4 receptor and cleavage of E4ICD. PARP1 activation independently of DNA damage has 

been shown to occur in other instances as well. For example, neuronal stimulation with a high-

frequency electrical signal causes Erk2 phosphorylation, which induces PARP1 binding to Erk2 

and subsequent PARP1 activation. PARP1 then PARylates itself and chromatin at promoters of 

Erk2-associated immediate-early neuronal genes. PARylation of Histone H1 at these promoter 

sites causes the linker histone to dissociate from the complex, allowing transcription to occur 

(Cohen-Armon et al., 2007; Visochek et al., 2016). We propose a similar mechanism, whereby 

stimulation of ErbB4 with NRG1 and subsequent ErbB4 phosphorylation and E4ICD cleavage 
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induces PARP1 binding to E4ICD and promotes PARylation. However, it remains unclear 

whether PARP1 PARylates itself, other proteins in the complex, chromatin at the GFAP 

promoter, or multiple of these. Further studies are needed to elucidate the specifics of PARP1 

activation and its effects on the GFAP promoter.  

In accordance with our findings, previous studies investigating the role of PARP1 in 

differentiation have identified that progenitor cells lacking PARP1 are more prone to 

differentiate into glial cells at the expense of neuronal cells, including GFAP-expressing 

astrocytes and Olig2-expressing oligodendrocytes (Plane et al., 2012; Hong et al., 2019). Hong et 

al. hypothesized that increased glial gene expression in the absence of PARP1 is caused by 

decreased neurogenesis due to reduced expression of Ascl1 and Ngn2, two crucial transcriptional 

regulators of neurogenesis (Hong et al., 2019). Similarly, Plane and colleagues hypothesized that 

PARP1 promotes neurogenesis by regulating Sox2 expression; thus, PARP1 loss disrupts 

neurogenesis and causes progenitor differentiation into glial subtypes (Plane et al., 2012). Here, 

we propose an additional mechanism for glial cell fate repression by PARP1. Specifically, via 

direct repression of GFAP expression through promoter modulation. As ErbB4-JMa expression 

declines at later stages of development (Fox and Kornblum, 2005), repression of GFAP by 

E4ICD and PARP1 would be released, allowing astrogenesis to occur. 

Intriguingly, a previous study found that PARP1 PARylates STAT3, a well-known 

transcription factor promoting astrogenesis (Bonni et al., 1997; Kamakura et al., 2004; Ding et 

al., 2019). They identified that PARP1 PARylation of STAT3 inhibits STAT3 phosphorylation 

and its ability to promote transcription, ultimately repressing the expression of PD-L1 in cancer 

cells (Ding et al., 2019). If this pathway is also active in NPCs, it may be an additional 

mechanism by which activated PARP1 represses GFAP expression during neurogenesis. By 
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suppressing STAT3 activity, STAT3 would be unable to bind to the GFAP promoter and 

promote transcription. However, further studies are needed to examine the interaction between 

PARP1 and STAT3 in neuronal cells. 

The GFAP promoter region has several sites where transcription factors bind to repress or 

promote its expression. Our data indicate that E4ICD and PARP1 bind to the region of the GFAP 

promoter where the Notch intracellular domain (NICD) has been suggested to bind. Similar to 

ErbB4, ligand binding to the Notch receptor induces its cleavage and the release of its 

intracellular domain. NICD then forms a complex with transcriptional activator CSL (also 

known as RBPJk), which directly binds to the GFAP promoter to activate transcription (Ge et al., 

2002).  N-CoR also complexes with CSL/RBPJk; however, binding of this complex to the GFAP 

promoter represses transcription (Hermanson et al., 2002). Given that E4ICD binds N-CoR, these 

findings suggest that N-CoR/CSL may facilitate E4ICD binding to the CSL/RBPJk binding site 

of the GFAP promoter. Therefore, our data indicate that E4ICD-PARP1 binding during 

neurogenesis may prevent NICD/CSL from binding to the promoter and activating GFAP 

transcription. However, future studies will be needed to ascertain whether E4ICD participates in 

reciprocal binding with NICD to regulate astrogenesis. 
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with the ErbB4-JMa-/- mouse line.  
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Figure 2.1 PARP1 interacts with E4ICD in a kinase-specific manner (A) Yeast 2 hybrid 

screen indicates that PARP1 interacts with a wild-type (WT), but not kinase dead (KD) LexA-

E4ICD construct. Blue coloration indicates interaction. Interaction between TAB2 and LexA-

E4ICD included as a positive control. (B) Mass spectometry analysis of proteins that bind LexA-

E4ICD shows large coverage of PARP1 amino acids (highlighted in red). (C) N2A cells 

transfected with WT LexA-E4ICD, but not KD LexA-E4ICD, show an interaction between 

E4ICD and PARP1. PY = phosphotyrosine. (D) PARP1 co-IP shows PARP1 binding to WT 

E4ICD in LexA-E4ICD-transfected N2A cells. (E) Only N2A cells transfected with cleavable 

ErbB4-JMa and treated with NRG1 demonstrate an interaction between ErbB4 and PARP1 via 

ErbB4 co-IP. (F) ErbB4 co-IP in mouse NPCs shows binding to PARP1 following NRG1 

treatment. (G) ErbB4 co-IP in E14.5 cortical lysates demonstrates an interaction between ErbB4 

and PARP1 in wild-type (WT) cortex, but not ErbB4 knockout (KO) cortex. (H) Inhibition of 

TACE with TAPI (100 µM) or presenilin/γ-secretase with DAPT (1 µM) 30 min prior to NRG1 

treatment (2 nM, 40 min.) prevents interaction between ErbB4 and PARP1 in N2A cells 

transfected with ErbB4-JMa. These experiments were performed by Pablo Sardi, Falak Sher, and 

Anna Kane. 

Figure 2.2 NRG1 treatment induces PARP1 PARylation in an E4ICD-specific manner (A) 

NRG1 (2 nM) treatment induces PARylation in a similar time frame as H2O2 (80 µM) in mouse 

NPCs. (B) Inhibition of TACE cleavage with TAPI (100 µM) or presenilin/γ-secretase cleavage 

with DAPT (1 µM) prevents NRG1-induced PARylation in ErbB4-JMa transfected N2A cells. 

TAPI nor DAPT prevent PARylation in H2O2 treated cells. NRG1 does not induce PARylation in 

ErbB4-JMb transfected N2A cells. (C) Western blotting for PARP1 shows increased PARylated 

PARP1 following NRG1 treatment in the absence of inhibitors of ErbB4 cleavage in mouse 

NPCs. These experiments were completed by Pablo Sardi and Falak Sher. 



 74 

 

 

 

 

 

 

 

Figure 2.3 PARP1 DNA binding and enzymatic activity are necessary to repress CNTF-

induced GFAP promoter activity in rat NPCs (A) NRG1 (1 nM) pre-treatment represses 

CNTF (0.3 ng/mL)-induced GFAP promoter activity in rat NPCs transfected with WT PARP1-

expressing plasmids, but fails to repress GFAP promoter activity in rat NPCs transfected with 

PARP1 constructs with mutations in the DNA binding domain (C21G) or catalytic domain 

(E988A). PARP1 cleavage by caspase 3 is not necessary for NRG1-induced repression of GFAP 

as indicated by transfection with a PARP1 constructed with a mutated caspace 3 cleavage site 

(D214A). (B) Inhibition of PARP1 with 3-ABA prevents NRG1 from repressing CNTF-induced 

GFAP promoter activity in rat NPCs. (C) PARP1 and ErbB4 localize to the GFAP promoter, but 

not the Hes1 promoter, following NRG1 stimulation in rat NPCs as indicated by chromatin 

immunoprecipitation. Pre-treatment with DAPT to inhibit presenilin/γ-secretase prevents 

promoter localization. These experiments were completed by Pablo Sardi. 
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Figure 2.4 PARP1 and ErbB4 are necessary for NRG1-induced PARylation in mouse NPCs 

(A) 5 min NRG1 (2 nM) treatment increases PAR in WT but not ErbB4 KO mouse NPCs. 5 min 

H2O2 treatment (100 µM) included as positive control.  (B) PARP1 KO abolishes NRG1 and 

H2O2-induced PARylation in NPCs. Scale bar = 10 µM. n = 2 ErbB4 WT, n = 4 ErbB4 KO, n = 

2 PARP1 WT, n = 2 PARP1 KO (independent embryos). 
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Figure 2.5 ErbB4-JMa-/- mutant mice lack ErbB4-JMa and E4ICD expression (A) NPCs 

isolated from JMa-/- mouse cortex express ErbB4-JMb, but not ErbB4-JMa via RT-PCR with 

primers that span the ErbB4 juxtamembrane domain. (B) Enrichment of ErbB4 with ErbB4 

immunoprecipitation (IP) in mouse NPCs shows increased E4ICD following TACE stimulation 

with TPA treatment (100 ng/mL) for 45 min in WT, but not ErbB4 knockout (KO) or JMa-/- 

NPCs. (C) ErbB4 IP from adult cerebellar lysates shows presence of E4ICD in WT, but not KO 

or JMa-/- mice. (D) Quantification of E4ICD expression in cerebellar lysates in multiple 

replicates (n = 3 of each genotype). ***p < 0.001 by one-way ANOVA with multiple 

comparisons. These experiments were completed by Robert Doherty. 

*** *** 
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Figure 2.6 PARP1 and ErbB4-JMa are necessary for NRG1-induced repression of GFAP 

expression after FGF removal in mouse NPCs (A) Removal of FGF (20 ng/mL) from NPC 

media increases GFAP expression 100-500 fold after 24 hrs, while concurrent NRG1 (2 nM) 

treatment represses this increase in WT mouse NPCs. (B) PARP1 KO, ErbB4 KO, or ErbB4-

JMa loss abolish the ability of NRG1 to repress GFAP expression following FGF removal. 

Repression is specific to glial gene GFAP, as neuronal genes DCX and NeuN are unaffected by 

NRG1 treatment. Gene expression is normalized to reference gene GAPDH. *p < 0.05 by 

Wilcoxon test. (n = 7 WT, n = 7 PARP1 KO, n = 6 ErbB4 KO, and n = 7 JMa-/- independent 

cultures) (C) Knockdown of PARP1 in WT NPCs prior to FGF removal abolishes repression of 

GFAP expression by NRG1. *p < 0.05 by Wilcoxon test. Gene expression is normalized to 

reference gene GAPDH (D) NRG1 represses GFAP-promoter activity induced by FGF removal 

in WT NPCs. *p < 0.05 by Student’s paired t-test (n = 6 cultures). Relative GFAP-luciferase 

values were normalized with CMV-Renilla. (E) PARP1 inhibition with Olaparib at the indicated 

concentrations increases GFAP expression in WT NPCs. Gene expression is normalized to 

reference gene RPL19 (n = 6 independent cultures). *p < 0.05 by repeated measures one-way 

ANOVA. 

  

* 
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Figure 2.7 PARP1 or ErbB4 loss increase GFAP expression in the mouse cortex at birth. P0 

cortex isolated from ErbB4 KO or PARP1 KO mice overexpress GFAP relative to their 

respective WT controls. Gene expression is normalized to RPL19. *p < 0.05, ***p < 0.001 by 

Mann-Whitney test.
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Chapter 3: PARP1 Regulates Cajal-Retzius Cell Development and Neural Precursor Cell 

Adhesion2 

 

3.1 Introduction 

Poly (ADP-ribose) Polymerase 1 (PARP1) is a ubiquitously expressed enzyme that plays 

roles in a variety of key biological processes, including DNA repair, inflammation, transcription, 

and programmed cell death (Kraus, 2008; Krishnakumar and Kraus, 2010b; Jubin et al., 2017). 

PARP1 exerts its functions by protein PARylation, a post-translational modification consisting of 

the covalent attachment of ADP-ribose polymers (PAR) to itself and other proteins using NAD+ 

as a substrate (Krishnakumar and Kraus, 2010b). Extensive evidence implicates PARP1 in a 

number of nervous system diseases, including neurodegenerative disorders (Mao and Zhang, 

2021), ischemic stroke (Endres et al., 1997; Chiarugi, 2005), glioma (Galia et al., 2012; Murnyák 

et al., 2017), epilepsy (Kim et al., 2014), traumatic brain injury (Stoica et al., 2014), and 

psychiatric disorders (Szebeni et al., 2016). Furthermore, pharmacological inhibition of PARP1 

in vivo causes defects in long-term memory (Goldberg et al., 2009), while complete loss of 

PARP1 causes impaired short-term memory formation (Hong et al., 2019). Additionally, adult 

PARP1 KO mice have a reduced brain weight, altered neuronal proliferation within the brain’s 

dentate gyrus (Plane et al., 2012) and subventricular zone (Hong et al., 2019), and display 

 
 
2 This chapter reflects the following manuscript: 

 

Nelson, MN, Hoff, JD, Zeese, ML, Corfas, G. Poly (ADP-Ribose) Polymerase 1 Regulates Cajal-Retzius Cell 

Development and Neural Precursor Cell Adhesion. In revision with Frontiers in Cell and Developmental Biology. 
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schizophrenia-like behaviors, including defects in pre-pulse inhibition, decreased social 

interaction, and increased anxiety-like behaviors (Hong et al., 2019). Accordingly, human studies 

have linked mutations in genes affecting PARylation to episodic psychosis, intellectual 

disability, peripheral neuropathy, ataxia, and increased risk of stroke (Najmabadi et al., 2011; 

Danhauser et al., 2018; Meng et al., 2018; Durmus et al., 2021).  

Despite evidence that PARP1 dysregulation contributes to aberrant brain function and 

related disorders in humans and mice, very few studies have examined the roles of PARP1 in 

brain development.  It has been reported that PARP1 loss in mice causes enlarged ventricles at 

E14.5, increases cortical cell death at E16.5 and E18.5, and impairs the proliferation of neural 

stem cells derived from embryonic telencephalon (Hong et al., 2019). This study also found that 

PARP1  influences neural stem cell differentiation by repressing a glial cell fate in vitro (Hong et 

al., 2019). While it is apparent that loss of PARP1 has detrimental effects on brain development 

and function, little is known about its role in the regulation of neuronal migration and cortical 

patterning. Furthermore, no studies have yet assessed the effect of PARP1 loss on gene 

expression in the embryonic brain.  

Here, we show that PARP1 loss causes alterations in early-born neuron migration, 

decreases cortical thickness, and increases neuronal density in deeper cortical layers at birth. 

These changes are associated with increased Cajal-Retzius (CR) cell abundance and Reln mRNA 

levels in the PARP1 KO embryonic brain and neural progenitor cells (NPCs) derived from the 

embryonic mutant telencephalon. Accordingly, PARP1 KO NPCs show excess adhesion to N-

cadherin, likely through Reelin signaling. Additionally, RNA-sequencing of the PARP1 KO 

E15.5 cortex demonstrates that PARP1 loss increases expression levels of many genes associated 

with neuronal migration and adhesion during embryonic brain development. Taken together, our 
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findings uncover a new role for PARP1 in regulating CR cell development, neuronal migration, 

and cell adhesion.  

 

3.2 Materials and Methods 

3.2.1 PARP1 KO Mice 

The PARP1 KO mouse line 129S-Parp1tm1Zqw/J64 was obtained from the Jackson 

Laboratory and maintained on a 129S1/SvImJ background. All animals were kept under a 12/12 

hr light/dark cycle and allowed food ad libitum. Animal procedures were reviewed and approved 

by the University of Michigan Institutional Animal Care and Use Committee. Embryonic dating 

was performed with vaginal plugging denoted as embryonic day 0.5 (E0.5). Following vaginal 

plugging, females were separated and sacrificed at the indicated time points. 

3.2.2 Cell Culture and Treatments 

For primary NPC cell cultures, pregnant females were euthanized via cervical 

dislocation. Telencephalons were dissected from E14.5 embryos in ice-cold phosphate-buffered 

saline (PBS), meninges were removed, and cortices were dissociated into single cells with 

StemPro Accutase (ThermoFisher) for 5 min. NPCs were seeded as neurospheres in T75 flasks at 

500,000 cells/mL and expanded for 2 days in NPC media (DMEM with GlutaMAX, 1% 

penicillin/streptomycin, and 2% B27 without RA) supplemented with epidermal growth factor 

(EGF, 20 ng/mL) and basic fibroblast growth factor (bFGF, 20 ng/mL) in a humidified 5% 

CO2/95% air incubator at 37°C. Half of the media was changed every day, with replenishment of 

EGF and bFGF each day. On day 3, neurospheres were dissociated with Accutase into a single 

cell suspension and plated in NPC media supplemented with bFGF. Plates were pre-prepared by 
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incubating in Poly-L-Lysine (Sigma) 30 min or overnight followed by Fibronectin (1 µg/mL, 

Corning) for 2 hrs. Experiments on adherent NPCs were performed on day 2 after plating unless 

otherwise indicated.  

To inhibit PARP1 enzymatic activity, NPCs were treated with Olaparib (a gift of C. 

Brenner) at the indicated concentrations (30, 50, or 100 nM) for 48 hrs starting on day 1 

following plating. Half of the media was replenished each day, and cells were re-treated with 

Olaparib every 24 hrs. For Reelin-positive cell quantification, NPCs were plated on coverslips 

and treated with 50 nM Olaparib for 72 hrs. To test Olaparib efficacy, NPCs were pre-treated 

with 30, 50, or 100 nM Olaparib for 1 hr prior to 10 min treatment with 50 µM H2O2. To assess 

RNA stability, NPCs were treated with Actinomycin D (10 µg/mL) for 2 hrs or 4 hrs in the 

presence or absence of Olaparib (100 nM). HEK293T cells were maintained in DMEM with 

GlutaMAX, 1% penicillin/streptomycin, and 10% fetal bovine serum in a humidified 5% 

CO2/95% air incubator at 37°C. 

3.2.3 RNA-Sequencing and Analysis 

Pregnant females were euthanized via cervical dislocation. E15.5 embryos were placed in 

ice-cold PBS, brains were dissected, and the cortical hemispheres were isolated. The meninges 

and ganglionic eminences were removed from the cortex, and the tissue was stored in RNAlater 

(Invitrogen) until RNA extraction. RNA was extracted from wild-type (WT) and PARP1 KO 

dorsal cortex using the Qiagen RNeasy Mini Kit with on-column DNase digestion (Qiagen), then 

analyzed with a BioAnalyzer to measure RNA quality. RNA with RNA integrity numbers (RINs) 

greater than 8 were sequenced (n = 4 of each genotype). Non-strand specific polyA-selected 

cDNA libraries were prepared. Single-end sequencing was then completed with read lengths of 

50 nucleotides using an Illumina HiSeq-4000 Sequencing System. cDNA library preparation and 
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sequencing were carried out by the University of Michigan DNA Sequencing Core. Sequences 

were mapped to the mouse genome (mm9) using HISAT, transcript counts obtained with HTseq-

count, and differential gene expression analysis completed using DESeq2. All analysis was 

carried out with Galaxy (www.usegalaxy.org). The volcano plot was generated with RStudio. P-

values adjusted for multiple comparisons (q-value) < 0.05 indicated genes with statistically 

significant differences. Gene Ontology Analysis of dysregulated genes was performed using the 

Panther Classification system (www.pantherdb.org). Protein interaction analysis was completed 

using Cytoscape software. 

3.2.4 Immunofluorescence and Quantification 

Whole brains were dissected from E15.5 embryos or P0 pups in ice-cold PBS, fixed in 

4% paraformaldehyde (PFA) in 1x PBS for 24 hrs, cryoprotected in 30% sucrose, embedded in 

OCT Compound (Fisher), and snap frozen in isopentane on dry ice. Frozen brains were 

cryosectioned at a thickness of 14 µm onto Superfrost plus slides (Fisher). Sections were blocked 

in 5% Normal Goat Serum (Jackson ImmunoResearch) with 2% Triton in PBS for 1 hr, then 

incubated overnight at 4°C in primary antibody diluted in blocking buffer. The next day, sections 

were washed 3x in 1x PBS, incubated in corresponding Alexa-Fluor secondary antibodies 

(Invitrogen) diluted in blocking buffer (1:500) 1-2 hrs, and coverslipped with Fluoro-Gel II with 

DAPI (Electron Microscopy Services). Confocal z-stack images through the full depth of each 

section with a z-step of 2 µm were taken at a magnification of 20x or 40x with a Leica SP8 

confocal microscope. For each biological replicate, cells from 3 sections and 3 images per 

section were quantified by an individual blind to the genotype and averaged. Cell number and 

area quantification were completed using Fiji software.  

http://www.usegalaxy.org/
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For Reelin NPC immunostaining, NPCs were plated on round glass coverslips. On day 2 

after plating, coverslips were fixed in 4% PFA for 10 min, washed 3x in 1x PBS, then blocked in 

10% Normal Goat Serum (Jackson ImmunoResearch) with 0.2% Triton in PBS for 1 hr. 

Coverslips were then incubated in Reelin primary antibody overnight diluted in blocking buffer. 

Following 3 washes in 0.2% triton in PBS, coverslips were incubated in the corresponding 

Alexa-Fluor secondary antibody diluted in blocking buffer (1:500, Invitrogen) for 1-2 hrs, then 

mounted on slides with Fluoro-Gel II with DAPI (Electron Microscopy Services). For Reelin-

expressing cell quantification in WT and PARP1 KO NPCs, images of whole coverslips were 

taken with a Leica SP8 confocal at 20x magnification with image stitching. For quantification of 

Reelin-expressing cells after PARP1 inhibition with Olaparib (50 µM) or shRNA-mediated 

knockdown, images of whole coverslips were taken with a Nikon TE300 inverted fluorescent 

microscope equipped with Stereoinvestigator (MBF Bioscience), using the slide scan module. 

For each biological replicate, all Reelin-expressing cells from 3 coverslips were quantified and 

averaged. Quantification and mean fluorescence intensity analysis were completed using Fiji. 

The following primary antibodies and concentrations were used in this study: mouse anti-Reelin 

(1:500, clone G10, Millipore #MAB5364), rabbit anti-TBR1 (1:250, Abcam #ab31940), and rat 

anti-CTIP2 (1:500, Abcam #ab18465).  

3.2.5 Cresyl Violet Staining and Brain Volume Quantification 

WT and PARP1 KO littermates were sacrificed at birth, and their brains were dissected 

then fixed in 4% paraformaldehyde for 24 hrs. Brains were cryoprotected in 30% sucrose, 

embedded in OCT, then cryosectioned with a section thickness of 70 µm. Serial sections were 

stained with 0.5% cresyl violet using standard procedures. Slides were digitally scanned with the 

assistance of the University of Michigan In-Vivo Animal Core (IVAC), and surface areas of each 



 85 

brain section were quantified with Fiji. To calculate the brain volume, the surface areas of each 

section were summed together and multiplied by the section thickness. Cortical surface area and 

thickness were quantified with Fiji.  

3.2.6 EdU Labeling in vivo 

Pregnant dams from PARP1 heterozygous crosses were injected intraperitoneally with 

EdU (50 mg/kg) at E13.5 or E15.5. Littermate P0 pups were transcardially perfused at birth with 

PBS followed by 4% PFA, then whole brains were dissected and postfixed in 4% PFA for 24 hrs. 

Brains were then either cryoprotected in 30% sucrose, embedded in OCT, and cryosectioned at a 

thickness of 20 µm or embedded in 4% agarose and sectioned on a vibratome at a thickness of 50 

µm. EdU was visualized using the Click-iT EdU Cell Proliferation Kit (Invitrogen), following 

the manufacturer’s protocol. Nuclei were counterstained with Hoechst 33342 (1:2000, 

Invitrogen). Slides were coverslipped using Aqua Poly/Mount (Polysciences). Confocal z-stack 

images through the full depth each section were taken at 20x magnification with a Leica SP8 

confocal microscope. Each image was separated vertically into 8 bins of equal size and the 

number of EdU positive cells within each bin was counted by an individual blind to the 

genotype. For each biological replicate, 3 sections and 3 images per section were quantified and 

averaged. Quantification was completed using Fiji. 

3.2.7 RNA Isolation and RT-qPCR 

RNA was isolated from the cortex after removal of meninges and ganglionic eminences 

or from cultured NPCs using a Qiagen RNeasy Kit or ThermoFisher PureLink RNA Mini Kit, 

following the manufacturer’s instructions. RNA extraction from tissue was completed with on-

column DNase digestion (Qiagen). Equal amounts of RNA (400 ng -1 µg) were reverse 

transcribed into cDNA using an iScript cDNA Synthesis Kit (Bio-Rad) following manufacturer’s 
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instructions. cDNA was diluted 5-fold for the PCR reaction. Quantitative PCR was performed 

using iTaq SYBR Green Supermix (Bio-Rad) with a Bio-Rad CFX96 Thermocycler. Each 

sample was run in duplicate. Each well of the 96-well plate contained 5 µL iTaq SYBR Green 

Supermix, 2.5 µL diluted cDNA, and 3 pmol of each forward and reverse primer. The cycling 

conditions were as follows:  95°C for 30 s followed by 39 cycles of 95°C for 5 s and 60°C for 30 

s. Normalized Gene Expression (NGE) was calculated using the efficiency of each primer with 

the following formula: [efficiency_target-CT
target/efficiency_reference-CT

ref]. Fold changes in 

mRNA level were then calculated relative to controls for each experiment. All primer sequences 

are in Table 1.   

3.2.8 shRNA-mediated PARP1 Knockdown 

Lentiviral packaging plasmids and scramble shRNA or Parp1 shRNA constructs were 

transfected into HEK 293T cells using Lipofectamine 3000 (Invitrogen). Lentiviral supernatants 

were collected and concentrated using Lenti-X Concentrator (Clontech) and titered with 

puromycin selection. To test the efficacy of PARP1 protein knockdown, NPCs were transduced 

with scramble or Parp1 shRNA-expressing lentivirus at multiplicity of infection (MOI) 2 for 48 

hrs. To assess the effects of PARP1 knockdown on gene expression, NPCs were transduced with 

scramble or Parp1 shRNA-expressing lentivirus at MOI 3 for 48 hrs, then media was replaced 

with fresh NPC media and cells were lysed 24 hrs later. bFGF (20 ng/mL) was supplemented 

every 24 hrs. Parp1 shRNA plasmid was obtained from Sigma (clone ID NM_007415.2-

3021s21c1) with the following sequence: 5’-

CCGGGAGTACATTGTCTACGACATTCTCGAGAATGTCGTAGACAATGTACTCTTTTT

G-3’. Lentiviral packaging plasmids and scramble shRNA plasmid were gifts of S. Iwase. 
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3.2.9 Luciferase Assay 

NPCs were co-transfected with a Reln-promoter luciferase construct that contained 2600 

bp upstream of the Reln transcription start site (Chen et al., 2002) (a gift of D. Grayson) and 

CMV-Renilla at a 50:1 ratio with Lipofectamine 3000. NPCs were treated with either Olaparib 

(100 nM) for 24 hrs or 48 hrs or Valproic Acid (VPA, 1 mM) for 12 hrs or 24 hrs. Luciferase 

activity was measured using a Dual-Luciferase Assay Kit (Promega), following the 

manufacturer’s instructions. Luciferase intensity was measured with a BioTek plate reader. Final 

values were obtained by normalizing firefly luciferase to Renilla luciferase. Technical replicates 

were obtained in triplicate. 

3.2.10 Western Blot 

For Reelin western blots, NPCs were lysed in RIPA buffer (Sigma) containing protease 

and phosphatase inhibitors. Equal amounts of protein were diluted in 4x Laemmli buffer with 

10% β-mercaptoethanol (BME) and run on 4-15% SDS polyacrylamide gels. For western 

blotting of conditioned media, protein concentrations were quantified, and equal amounts of 

protein were diluted in 4x Laemmli buffer with 10% BME and run on 6% SDS polyacrylamide 

gels. Reelin in conditioned media was normalized to GAPDH in corresponding cell lysates. Gels 

were transferred onto PVDF membranes overnight at 4°C (wet transfer at 40 mA). Blots were 

subsequently blocked in Intercept Blocking Buffer (Licor) (for Reelin) or 5% Bovine Serum 

Albumin (BSA) (for GAPDH), incubated in primary antibody for 3 hrs, washed in 0.2% tween in 

PBS, then incubated in HRP-conjugated secondary antibody (Cell Signaling Technology). For 

pDab1 and PARP1 western blot, samples were lysed in RIPA buffer (Sigma) containing protease 

and phosphatase inhibitors. For PAR western blot, PARG inhibitor (1 μM ADP-HPD) was also 

added to RIPA lysis buffer. Equal amounts of protein were diluted in 4x Laemmli buffer with 
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10% BME and run on 7.5% or 8% SDS polyacrylamide gels, then transferred for 1.5 hrs onto 

PVDF membrane with a semi-dry transfer unit. Blots were then blocked in 5% BSA and 

immunoblotted for primary antibody overnight. The next day, blots were washed in 0.2% tween 

in PBS, then incubated in HRP-conjugated secondary antibody (Cell Signaling Technology). All 

blots were exposed with Pierce ECL Chemiluminescent Substrate and imaged on a BioRad 

Chemidoc. 

The following primary antibodies and concentrations were used: mouse anti-Reelin 

(1:2000, Millipore #MAB5364), mouse anti-PAR (1:1000, Trevigen #4335), mouse anti-

GAPDH (1:2000, ThermoFisher #MA5-15738), rabbit anti-PARP1 (1:2000, Cell Signaling 

Technology #9532) and rabbit anti-pDab1 (1:1000, Cell Signaling Technology #3325). For all 

antibodies used, linearity was assessed, and the amount of total protein loaded onto gels was 

within the linear range of the antibody. Band densities were quantified using Image Lab software 

(Bio-Rad) and normalized to internal control GAPDH. 

3.2.11 Reelin Conditioned Media 

HEK 293T cells were transfected with pcDNA3 or Reelin ORF (10 kb)-expressing 

plasmids (D’Arcangelo et al., 1997) (Addgene plasmid #122443) with Lipofectamine 3000 

(Invitrogen). 24 hrs after transfection, media was replaced with serum-free media. 24 hrs later, 

conditioned media was collected and stored at -80°C. For pDab1 induction, NPCs were treated 

with 200 or 400 µL conditioned media for 10 min.  Conditioned media from WT and KO NPCs 

was collected from adherent cultures 48 hrs after plating. For induction of pDab1, protein 

secretion was blocked by pre-treating NPCs with Brefeldin A (BFA, 0.75 µg/mL, Sigma) for 3 

hrs. NPCs were then treated with 2 mL conditioned media from wild-type NPCs (supplemented 

with 0.75 µg/mL BFA) for 20 min. 
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3.2.12 Chromatin Immunoprecipitation 

PARP1 chromatin immunoprecipitation was carried out using a SimpleChIP Plus 

Enzymatic Chromatin IP Kit with magnetic beads (Cell Signaling Technology, #9005), 

following the manufacturer's instructions. 2 µg of each antibody was incubated with magnetic 

beads overnight, and 0.5 µL micrococcal nuclease was used per sample to digest chromatin. The 

following antibodies were used: rabbit anti-PARP1 (Cell Signaling Technology, #9532S), rabbit 

anti-Histone H3 (CST #4620), and normal rabbit IgG (CST #2729). Primer sequences are 

indicated in Table 3.2. 

3.2.13 RNA Immunoprecipitation 

RNA immunoprecipitation was completed as described previously (Dahm et al., 2012) 

with the lysate pre-clearing step. Briefly, NPCs were lysed in passive lysis buffer containing 

protease, phosphatase, and RNAse inhibitors. Pre-swelled Protein A Sepharose beads were 

incubated with 30 µg rabbit anti-PARP1 antibody (CST #9532S) overnight at 4°C. Following 5 

washes in NT2 buffer, beads were resuspended in RNAse inhibitors and 1 mg NPC lysate, 

incubating at room temperature for 2.5 hours. Following 5 washes in NT2 buffer, beads were 

resuspended in RNase-free DNase and incubated at 37°C for 10 min. Beads were then 

resuspended in proteinase K at 55°C for 30 min to release ribonucleoprotein complexes. Beads 

were pelleted, and the supernatant was collected. RNA was then isolated from the supernatant 

via phenol-chloroform extraction, eluting in 11 µL H2O per sample. 10 µL RNA was reverse 

transcribed using the iScript cDNA synthesis kit in a 20 µL reaction volume. Quantitative PCR 

for the Reln transcript was completed in 50 µL reaction volume with 20 µL cDNA, 25 µL iTaq 

SYBR green, 1.5 µL of each forward and reverse primer (10 µM stock), and 2 µL H2O with 
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standard iTaq qPCR cycling parameters for 40 cycles. Primer sequences are indicated in Table 

3.1. Fold enrichment was quantified relative to rabbit IgG control antibody. 

3.2.14 Atomic Force Microscopy (AFM) 

AFM force-distance (F-D) measurements were performed using a TT-AFM (AFM 

Workshop, South Carolina, USA) using contact mode AFM probes of 0.2 N/m nominal stiffness 

(PPP-CONTAuD from Nanosensors).  Probes were functionalized by incubating the tip 

overnight at 4°C in 100 µg/mL N-cadherin.  Immediately prior to measurements, probes were 

rinsed 4x in PBS.  Probe stiffness was determined by the Sader method in air (Sader, 1998).  The 

optical lever sensitivity was determined in fluid for each sample using the thermal noise method 

(Heim et al., 2004; Hutter, 2005). 

Cells were cultured on round glass coverslips.  Approximately 30 min prior to the 

beginning of measurements, a cell-coated coverslip was epoxied to an AFM stub and transferred 

to a fluid AFM imaging chamber with NPC media containing 10 mM HEPES and bFGF (20 

ng/mL) and maintained at 37°C throughout measurements, which were taken within 

approximately 1 hr for each sample.  For conditioned media treatment, cells were treated with 

control or Reelin conditioned media for 30 min prior to the beginning of measurements. For each 

F-D measurement, the probe was engaged with the surface with approximately 9 nN force for 5 s 

before retracting at a rate of 2000 nm/s.  F-D curves were evaluated using a custom Matlab script 

to objectively parse the maximum adhesion force developed, the adhesive force for stepwise 

detachments, and integrated work performed for each trace. These experiments were completed 

in collaboration with the Single Molecule Analysis in Real-Time (SMART) Center at the 

University of Michigan. Statistical outliers were excluded from the datasets (<Q1-

1.5*interquartile range (IQR) or >Q3+1.5*IQR). Statistical significance in average values was 
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assessed via Mann-Whitney analysis and differences in histogram distributions were assessed 

with a Kolmogorov-Smirnov test. 

3.2.15 Statistics 

All statistical analyses were performed using GraphPad Prism version 7.0, except for 

two-way ANOVA analysis of litter size, genotype, and P0 brain weight, which was performed 

using SAS in collaboration with the University of Michigan Center for Cancer Biostatistics. Bars 

for each of the graphs represent mean ± standard error of the mean. Legends for each figure 

contain statistical tests performed, number of biological replicates, and specific significance 

values. 

3.3 Results 

3.3.1 PARP1 KO mice have brain development defects 

Previous studies reported that brain size is reduced in PARP1 KO mice from P11 to 

adulthood (Plane et al., 2012; Hong et al., 2019). We now find that both body and brain weights 

are smaller in PARP1 KO mice at birth (Figure 3.1A,B), but that brain weight is reduced to a 

larger relative extent than the mass of the entire body (Figure 3.1C). While there is an inverse 

correlation between litter size and brain weight in wild-type mice, two-way ANOVA analysis 

showed no significant interaction between genotype and litter size (Figure 3.1D), indicating that 

decreased brain weight in PARP1 KO animals is driven exclusively by genotype. To assess 

whether decreased brain weight is due to a reduction in brain size in a specific area, we collected 

serial coronal sections from WT and PARP1 KO P0 brains, measuring the surface area of each 

section on the rostral-caudal axis. We found that the surface area of PARP1 KO brain sections 

tends to be smaller than their WT littermates at each level along the rostral-caudal axis, 
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indicating that brain size is reduced overall rather than in a specific area (Figure 3.1E). This 

corresponds with a reduction in brain volume in PARP1 KO animals (Figure 3.1F). Finally, we 

found that decreased brain size in PARP1 KO mice is associated with a reduced cortical surface 

area and thickness (Figure 3.1G-I). 

These findings suggest that PARP1 loss alters brain development. One of the key events 

in brain formation is neuronal migration, the process by which newborn neurons reach their final 

destinations in the cortex (Valiente and Marín, 2010). During mouse brain development, 

neurogenesis begins near E11.5 and concludes around E17.5 (Guillemot, 2005). To determine if 

the migration of early-born neurons is affected by the loss of PARP1, we injected EdU at E13.5 

and analyzed the distribution of the labeled cells at birth. PARP1 loss leads to a decreased 

number of early-born neurons in the deepest portion of the cortex (Figure 3.2A,B) without 

altering the total number of EdU-positive cells (Figure 3.2C). In contrast, we found no 

differences in the position of neurons born at E15.5 (data not shown). Similar to previous, we 

observed a reduction in cortical thickness in PARP1 KO animals (Figure 3.2D). To further 

characterize the impact of PARP1 KO on cortical development, we immunostained brains at 

birth for markers of layer V and VI neurons (CTIP2 and TBR1, respectively) (Figure 3.2E). We 

found that PARP1 loss increases neuronal density but decreases the surface area each layer 

occupies, resulting in a normal number of more densely packed cells (Figure 3.2F-H). Together, 

these results suggest that reduced brain weight in PARP1 KO mice reflects altered neuronal 

migration, decreased cortical thickness, and increased cell density. 
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3.3.2 Loss of PARP1 increases the expression levels of genes associated with cell migration 

and adhesion in the E15.5 cortex  

To gain insights into the mechanisms through which loss of PARP1 affects brain 

development, we performed RNA-sequencing of the E15.5 wild-type and KO cortex and 

identified 48 genes whose levels are significantly altered by PARP1 loss-of-function. 

Remarkably, in contrast to reports that PARP1 promotes transcription in neuronal cells (Tapia-

Páez et al., 2008; Hau et al., 2017; Azad et al., 2018), most of the changes in expression in the 

brains of PARP1 KOs reflect increases in mRNA levels (Figure 3.3A). RT-qPCR validated the 

altered expression of Reln, Nav1, Tnc, and Txnip in the embryonic cortex (Figure 3.3B). 

Furthermore, a subset of these genes (Tnc and Reln) continue to be increased to a similar extent 

in the P0 cortex of PARP1 KO mice (data not shown). The genes altered by PARP1 loss encode 

proteins involved in various processes, with a particular enrichment for cell adhesion, axon 

development, dendrite development/morphogenesis, and cell migration (Table 3.3). Similarly, 

molecular interaction network analysis of the differentially expressed genes suggested direct 

interactions among proteins which comprise parts of the brain extracellular matrix (ECM) 

(Figure 3.3C), an important component in the regulation of neuronal migration and lamination 

(Franco and Müller, 2011). These include Laminins (Lamb1, Lama2, and Lamc1), Reelin (Reln), 

Tenascin C (Tnc), Versican (Vcan), and Phosphacan (Ptprz1). These proteins in turn interact 

with Collagen Type XII Alpha 1 Chain (Col12a1) and several cell adhesion molecules (Astn1, 

Nrcam, and Dscaml1). Taken together, these findings suggest that the brain defects in neonatal 

PARP1 KO mice could result from alterations in ECM function.  
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3.3.3 Loss of PARP1 results in an increased number of Cajal-Retzius cells in the cortex  

Reln encodes the glycoprotein Reelin, which is specifically expressed by CR cells within 

the developing brain’s marginal zone (Ogawa et al., 1995). Reelin is critical for cortical layering 

and neuronal migration, and mice lacking Reelin (known as Reeler) have severely malformed 

brains and die prematurely (Meier and Hoag, 1962; Hamburgh, 1963; Goffinet et al., 1984). 

Quantification of Reelin-expressing cells in the E15.5 brain revealed an increased number of CR 

cells along the marginal zone and a reduction in marginal zone area per field in PARP1 KO 

brains, resulting in increased density of CR cells within the marginal zone (Figure 3.4A-D), 

suggesting that PARP1 regulates the abundance of CR cells in the embryonic brain. To test if the 

number of CR cells is increased through the entire process of embryonic neurodevelopment, we 

immunostained P5 brains for Reelin, finding a similar increase in the abundance and density of 

CR cells (Figure 3.4E-H). 

3.3.4 Loss of PARP1 increases levels of genes expressed by CR cells and Reelin protein in 

NPCs 

To interrogate the mechanism by which PARP1 regulates CR cell numbers, we analyzed 

telencephalon-derived NPCs in culture. RT-qPCR demonstrated that neurospheres and adherent 

NPCs from PARP1 KO mice have increased mRNA levels of several genes expressed by CR 

cells, including Reln, the Trp73 isoforms TAp73 and ΔNp73, as well as Car10 and Calb2 

(Yamazaki et al., 2004) (Figure 3.5A, B). Moreover, acute PARP1 knockdown in wild-type 

adherent NPCs using Parp1 shRNA expressing lentivirus (Figure 3.5C) led to a significant 

increase in Reln, Calb2, and Car10, with a trend of increased Trp73 isoforms (Figure 3.5D). 

Furthermore, treatment with the PARP1 inhibitor Olaparib, which blocks PARylation (Figure 

3.5E), had similar effects on the expression of Reln, Car10, and Calb2 in wild-type NPCs 



 95 

(Figure 3.5F). These results indicate that PARP1 PARylation influences the mRNA levels of 

genes expressed by CR cells. 

Reelin is proteolytically cleaved at three sites, resulting in multiple protein fragments 

(Lambert de Rouvroit et al., 1999; Krstic et al., 2012) (Figure 3.6A). CR cells regulate neuronal 

migration in part through secretion of Reelin, which binds to its receptors Apolipoprotein E 

Receptor 2 (ApoER2) and Very Low Density Lipoprotein Receptor (VLDLR) on nearby 

migrating neurons (Hirota and Nakajima, 2017). Full-length Reelin is hypothesized to be the 

most catalytically active, whereas N-terminal (N-t) cleavage (Kohno et al., 2009; Ogino et al., 

2017) and loss of the C-terminal region of Reelin (Nakano et al., 2007; Kohno et al., 2015) 

reduce its catalytic activity. To identify the Reelin fragments expressed in NPC cultures, we 

immunoblotted NPC lysates and conditioned media for Reelin using an N-terminal antibody. 

Analysis of cell lysates demonstrated a significant upregulation in the 430 kDa full-length Reelin 

and the 160 kDa NR2 fragment in PARP1 KO NPCs (Figure 3.6B,C). Similarly, western blotting 

of conditioned media collected from NPCs showed increased immunoreactivity for the full 

length Reelin and the NR6 and NR2 fragments, indicating increased Reelin secretion in PARP1 

KO NPC cultures (Figure 3.6D,E). Importantly, similar to the effects of medium conditioned by 

HEK293T cells transfected with a Reelin expression plasmid (Figure 3.7A,B), NPC conditioned 

medium induced Dab1 tyrosine phosphorylation (Figure 3.7C), a key component of the 

intracellular signaling cascades initiated by Reelin (Hiesberger et al., 1999; Lambert de Rouvroit 

et al., 1999), indicating that NPCs secrete active Reelin. Furthermore, the state of Dab1 

phosphorylation in NPCs was reduced when cells were incubated with Brefeldin A (BFA) to 

block protein secretion (Figure 3.7C), indicating that the Reelin acts in a paracrine or autocrine 

fashion in NPC cultures.  
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3.3.5 PARP1 loss of function increases CR cell abundance in NPC cultures  

To explore if the changes in Reelin levels in tissue culture reflect differences in levels of 

Reelin expression per cell or, alternatively, in the number of Reelin expressing cells, we 

immunostained adherent NPCs for Reelin. Cultures of PARP1 KO NPCs contained a higher 

proportion of Reelin-positive cells without changes in the intensity of Reelin staining per cell 

(Figure 3.8A-C). Similarly, shRNA-mediated PARP1 knockdown and pharmacological PARP1 

inhibition increased the proportion of Reelin-positive cells in wild-type NPC cultures (Figure 

3.8D,E). These results suggest that PARP1 and its enzymatic function are critical for regulating 

CR-like cell abundance in vitro rather than having a direct transcriptional effect on gene 

expression in existing CR cells. This finding is consistent with results from in situ hybridization 

showing that the number of Reln transcripts per CR cell in the E15.5 brain is not altered after 

PARP1 loss (data not shown). Mechanistically, this finding is further supported by the 

observation that the activity of a firefly luciferase Reln promoter reporter construct (Chen et al., 

2002) transfected into wild-type NPCs is not altered by PARP1 inhibition (Figure 3.9A). In 

addition, we observed no alteration in Reln mRNA stability in PARP1 KO NPCs (Figure 3.9B) 

and found no evidence of PARP1 binding to the Reln gene or its mRNA via chromatin or RNA 

immunoprecipitation, respectively (Figure 3.9C or data not shown). Together, these results 

suggest that PARP1 regulates the abundance of Reelin-expressing cells in vivo and in vitro and 

that this function of PARP1 is not mediated by direct transcriptional regulation of the Reln gene. 

3.3.6 PARP1 loss increases NPC adhesiveness to N-cadherin 

To test if the increased levels of Reelin present in media conditioned by PARP1 KO 

NPCs has functional consequences, we focused on cell adhesion since a prior study showed that 

Reelin increases neuronal adhesion to N-cadherin using atomic force microscopy (AFM)  
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(Matsunaga et al., 2017). Using a similar approach (Figure 3.10A), we found that treatment with 

medium conditioned by Reelin-transfected HEK293T cells increases adhesion of N-cadherin in 

wild-type NPCs (Figure 3.10B-D). Furthermore, we found that adhesion to N-cadherin is 

increased in PARP1 KO NPCs (Figure 3.11), suggesting that the increased Reelin levels alter the 

adhesive state of PARP1 KO cells. 

3.4 Discussion 

Our findings uncover a new role for PARP1, i.e., the regulation of CR cell development. 

Loss of PARP1 leads to increases in the number of Reelin-expressing cells in the cortex in vivo 

and cultured NPCs. While relative increases in Reln transcript levels were demonstrated in bulk 

RNA from the brain of PARP1 KOs, we did not detect any effects of PARP1 loss-of-function on 

Reln transcript levels per CR cell in vivo or identify any evidence of PARP1 binding to the Reln 

gene or its mRNA to directly influence Reln transcription in cultured cells. These results suggest 

that PARP1 influences CR cell generation rather than more directly impacting the expression of 

CR cell genes. The mechanism by which this occurs is unclear, but the overabundance of CR 

cells in PARP1 KO brains at E15.5, together with the fact that these cells do not undergo 

programmed cell death until P8 in wild-type mice (del Río et al., 1995), indicate that PARP1 

does not influence the number of CR cells by regulating the time-course of apoptosis. A potential 

mechanism by which PARP1 could regulate CR cell generation is through miRNAs. PARP1 has 

been shown to regulate the expression of many miRNAs (Chacon-Cabrera et al., 2015; Nozaki et 

al., 2018; Wang et al., 2019). Additionally, disruption of miRNA biogenesis through Dicer 

depletion in Nestin-expressing cells causes a similar increase in CR cell abundance and Reln 

expression (McLoughlin et al., 2012). Similar to findings in PARP1 KOs (Hong et al., 2019), 

McLoughlin et al. reported that Dicer depletion reduces cell proliferation and increases apoptosis 
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in the E15.5 cortex. Further studies will be necessary to test the links between PARP1, miRNAs, 

and CR cell generation. 

In contrast to PARP1 KOs, in which we found the number of Reelin-positive cells to be 

increased in the marginal zone, its normal site of expression, previous studies explored the 

effects of ectopic Reelin expression during embryonic development. The Nakajima group tested 

the effects of ectopic Reelin expression in deeper cortical layers using in utero electroporation of 

a Reelin-expressing plasmid into the lateral ventricle of E14.5 embryos (Kubo et al., 2010; 

Matsunaga et al., 2017). In line with our findings that Reelin overexpression is associated with 

increased NPC adhesion, this ectopic Reelin expression induced the formation of aberrant 

neuronal aggregates that appeared to be mediated by N-cadherin-dependent neuronal adhesion. 

In a transgenic mouse line with Nestin-driven Reelin expression, ectopic Reelin expression in 

ventricular and subventricular zone NPCs was shown to increase NPC proliferation, possibly 

through alterations in Notch signaling, and to result in an increased number of TBR1, TBR2, and 

CTIP2-positive neurons (Lakoma et al., 2011). These findings contrast with previous 

observations in PARP1 KOs of decreased NPC proliferation (Hong et al., 2019) and our 

observation of increased TBR1 and CTIP2-positive neuronal density without changes in cell 

number. Taken together, these findings highlight the different consequences that Reelin 

overexpression has on brain development depending upon the timing, location, and nature of its 

overexpression.   

Reelin influences cell migration in part through regulating cell adhesion via integrin 

(Sekine et al., 2012), L1 (Lutz et al., 2017), Nectins (Gil-Sanz et al., 2013), and N-cadherin 

(Franco et al., 2011; Matsunaga et al., 2017). In accordance with this, we found that Reelin 

treatment and PARP1 loss increase NPC adhesiveness to N-cadherin. Loss of PARP1 also 
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increases the expression of other cell adhesion molecules in the embryonic brain, including 

Nrcam, Dscaml1, and Astn1. In line with reports that cell adhesion molecules are critical for 

normal neuronal migration (Valiente and Marín, 2010; Franco et al., 2011; Gärtner et al., 2012; 

Hirota and Nakajima, 2017; Mitsogiannis et al., 2021), the likely increase in cellular adhesion in 

the PARP1 KO cortex is associated with the increased neuronal density and decreased number of 

early-born neurons in the deeper layers of the brain. Interestingly, alterations in Reelin 

expression (Liu et al., 2001; Niu et al., 2008), cellular adhesion complex function (Seong et al., 

2015), and neuronal density (Selemon and Goldman-Rakic, 1999) have all been previously 

associated with changes in dendritic arborization, and our findings indicate that PARP1 loss 

alters the expression of genes that are important for regulating dendritic development and 

morphology. Together, these findings indicate a possible connection between cellular adhesion, 

neuronal density, and dendritic morphology. Further studies will be needed to explore the 

mechanistic links between these findings and PARP1 function. 

PARP1 KO mice display endophenotypes associated with Schizophrenia (Hong et al., 

2019), and mutations in genes affecting PARylation have been linked to intellectual disability 

and episodic psychosis in humans (Najmabadi et al., 2011; Durmus et al., 2021). Likewise, 

defects in neurodevelopment and altered Reelin expression have been associated with 

schizophrenia and other neuropsychiatric disorders (Ayhan et al., 2011; Folsom and Fatemi, 

2013; Muraki and Tanigaki, 2015). These observations raise the possibility that the brain 

development defects and schizophrenia-like behaviors in PARP1 KO mice may be a 

consequence of increased CR cell abundance. Intriguingly, both neuropsychiatric disorders 

(Selemon et al., 1998; Selemon and Goldman-Rakic, 1999; Chana et al., 2003) and reduced 

Reelin expression (Liu et al., 2001) have been associated with increased neuronal density in 
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deeper layers of the cortex, similar to our findings in PARP1 KO mice. Together, these findings 

suggest that the regulation of Reelin expression during embryogenesis is critical for normal 

development, and slight increases or decreases in Reelin levels or patterns of expression might 

impact brain development in ways that lead to neuropsychiatric disorders. 
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Figure 3.1 Loss of PARP1 results in reduced brain weight and cortical surface area at 

birth. (A) Brain weight of wild-type (WT) (n = 28), PARP1 Heterozygous (Het) (n = 22), and 

PARP1 KO mice (n = 39) at birth (P0) shows a reduction in Het and KO mice compared with 

WT controls. ***p = 0.006; ****p < 0.0001 by Student’s unpaired t-test. (B) P0 body weight is 

reduced in KO mice compared to WT and Het animals. *p = 0.0315 by Student’s unpaired t-test. 

(C) The ratio of brain to body weight for each group shows a significant reduction in the relative 

size of KO brains compared to WT. **p = 0.0099 by Student’s unpaired t-test. (D) Litter size is 

inversely correlated with P0 brain weight in mice. WT: R2 = 0.811, p < 0.0001; KO: R2 = 

0.3725, p = 0.0043. p-values indicate the significance of correlation within each genotype. 

Slopes are significantly different (p = 0.0029). Two-way ANOVA analysis indicated no 

significant interaction between litter size and genotype (p = 0.249). (E) Surface area 

measurement from rostral to caudal portions of the PARP1 KO brain indicates a reduced size 

throughout the rostral-caudal brain axis. The section designated as bregma is indicated in the 

inset. Distance from bregma for the remaining sections is estimated. ****p <0.0001 via two-way 

ANOVA. (F) Brain volume is reduced in PARP1 KO mice. (G) Representative image showing 

reduced brain surface area in PARP1 KO mouse. This section corresponds with bregma 1.045 

mm in the adult brain. Scale bar = 1 mm. (H) PARP1 KO reduces cortical surface area and (I) 

cortical thickness. *p <0.05; ****p < 0.0001 by Student’s unpaired t-test. Quantification shown 

represents brain slices corresponding with bregma 1.045 mm in the adult mouse brain. (E-I) n = 

5 WT and 5 KO brains from 4 litters. 
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Figure 3.2 PARP1 KO mice have defects in cortical development. (A) Representative images 

of coronal cortical sections at P0 of mice in which proliferating cells (green) were labeled by 

injecting EdU (IP, 50 mg/kg) to the dam at day 13.5 of pregnancy. Nuclei were labeled with 

Hoechst 33342 (blue). Scale bar = 50 µm. The cortex was subdivided into 8 bins of equal size for 

quantification. (B) PARP1 loss decreases the number of EdU+ cells in the deepest portion of the 

cortex (bin #1) (n = 3 animals per genotype from 2 litters, average of 3 sections in the 

somatosensory cortex region per animal, and 3 images per section).  **p = 0.003 by Student’s 

unpaired t-test. (C) The number of EdU+ cells per field in KO animals does not change. (D) 

Cortical thickness is decreased in KO P0 brains. ***p = 0.005 by Student’s unpaired t-test. (E) 

Representative images from CTIP2+ (red, layer V) and TBR1+ (white, layer VI) cells in the 

cortex of P0 mice. Nuclei were labeled with DAPI (blue). Scale bar = 50 µm. (F) The density of 

CTIP2+ and TBR1+ cells is increased in KO P0 brains. ***p = 0.0002 by Student’s unpaired t-

test. (G) The area of TBR1 and CTIP2-expressing cells per field is decreased in KO P0 brains. 

*p = 0.0498 and **p = 0.0026 by Student’s unpaired t-test. (H) The number of TBR1 and CTIP2 

positive cells per field in P0 brains does not differ between genotypes. (E-H) n = 4 WT and 3 

KO animals from 2 litters, average of 3 sections in the somatosensory cortex region per animal, 

and 3 images per section. 
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Figure 3.3 Expression levels of genes associated with neuronal migration and cell adhesion 

are increased at E15.5 in the cortex of PARP1 KOs. (A) Volcano plot of the differentially 

expressed genes in the PARP1 KO cortex at E15.5 identified by RNA-sequencing (n = 4 

biological replicates per genotype). Genes with significantly altered expression are indicated in 

blue (q-value < 0.05). Upregulated genes comprised 88% (42/48 total) of all genes exhibiting 

significant differential expression in KO embryonic cortex. (B) RT-qPCR validation of a subset 

of differentially expressed genes (n = 6 of each genotype). Levels of target mRNAs were 

normalized to β-actin levels. **p < 0.01; ***p < 0.001; ****p < 0.0001 by Student’s unpaired t-

test. (C) Interactions among proteins encoded by differentially expressed genes were identified 

with Cytoscape software based upon bioinformatic prediction (orange lines), co-localization 

(blue lines), or physical interaction (purple lines). Proteins involved in the extracellular matrix 

(yellow) and cell adhesion (red) are highlighted. All others are colored in black. 
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Figure 3.4 Loss of PARP1 increases the number of Cajal-Retzius cells in the E15.5 and P5 

cortex. (A) Representative images of coronal sections of brain cortex from E15.5 WT and 

PARP1 KO embryos following Reelin immunostaining (red). Nuclei are labeled with DAPI 

(blue). Scale bar = 20 µm. Marginal zone (MZ), cortical plate (CP), subplate (SP), and 

intermediate zone (IZ) are labeled. (B) The number of Reelin-expressing cells along the 

marginal zone is increased, (C) marginal zone surface area is decreased, and (D) Reelin+ cell 

density is increased in the KO E15.5 brain (n = 4 for each genotype from 7 litters, 3 sections per 

animal including rostral, medial, and caudal regions, and 3 images per section). **p < 0.01 by 

Student’s unpaired t-test. (E) Representative images of coronal sections of cortex from P5 WT 

and PARP1 KO embryos showing Reelin immunostaining in red. Nuclei are labeled with DAPI 

(blue). Scale bar = 50 µm. (F) The number of Reelin-expressing cells in layer I is increased, (G) 

surface area of layer I (LI) shows a decreasing trend, and (H) density of Reelin-expressing cells 

in layer I is increased in the P5 KO brain (n = 4 WT and 5 KO from 8 litters, 3 sections per 

animal from rostral, medial, and caudal brain regions, and 3 images per section). *p < 0.05 and 

**p <0.01 by Student’s unpaired t-test. p = 0.15 for P5 LI surface area. 
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Figure 3.5 PARP1 loss by KO, shRNA knockdown, or pharmacological inhibition increases 

mRNA levels of genes expressed by Cajal-Retzius cells. (A,B) Quantitative RT-PCR for genes 

expressed by CR cells in neurospheres (A) and adherent NPCs (B) from WT and KO cultures (n 

= 6 of each genotype) demonstrate increased expression of genes expressed by CR cells. Target 

mRNA levels were normalized to Rpl19. *p < 0.05; **p < 0.01; ***p < 0.001 by Student’s 

unpaired t-test. Relative WT versus KO expression of TAp73 in (A) is p = 0.06 and of ΔNp73 in 

(B) is p = 0.01. (C) Parp1 transcript (left) and protein (right) levels are substantially reduced 

following transduction of wild-type NPCs with Parp1 shRNA expressing lentivirus. Fold change 

in transcript levels was calculated relative to scramble (scr) shRNA control (n = 7). Parp1 

expression was normalized to Gapdh. *p = 0.0156 by Wilcoxon test. (D) mRNA transcripts 

expressed by CR cells are increased after wild-type NPC transduction with Parp1 shRNA-

expressing lentivirus (MOI 3) for 72 hrs. Gene expression was normalized to Gapdh. Fold 

change relative to scramble (scr) shRNA-transduced NPCs is plotted (n = 6); ΔNp73 and TAp73: 

p = 0.06; *p = 0.0313 by Wilcoxon test. (E) PAR western blot of wild-type NPCs after Olaparib 

pre-treatment (at indicated concentrations) for 1 hr followed by 10 min H2O2 treatment (50 µM) 

shows that Olaparib inhibits H2O2-induced PARylation. (F) Olaparib-mediated inhibition of 

PARP1 in wild-type NPCs for 48 hrs increases mRNA levels of genes expressed by CR cells. 

Gene expression was normalized to Rpl19. Fold changes were calculated relative to DMSO 

control treated cells (n = 7-8). Reln (30 nM): p = 0.056; *p < 0.05; **p < 0.01; ***p <0.001 by 

repeated measures one-way ANOVA. 



 110 

 

Figure 3.6 PARP1 KO NPC cultures overexpress Reelin protein. (A) Schematic drawing of 

Reelin depicting its proteolytic cleavage sites (vertical dotted lines) and the site of recognition 

for the N-terminal clone G10 Reelin antibody. This antibody recognizes full-length (FL) Reelin 

as well as the NR6 and NR2 Reelin fragments. (B) Reelin western blot from WT and PARP1 KO 

NPC lysates shows increased Reelin protein in KO NPC cultures. Arrows indicate the FL, NR2, 

and NR6 fragments. (C) Quantification of relative band density of FL Reelin, the NR2 fragment, 

and the NR6 fragment normalized to GAPDH (n = 6). NR6: p = 0.24; *p = 0.026; **p = 0.0087 

by Mann-Whitney test. (D) Western blot for Reelin in conditioned media (CM) and GAPDH in 

cell lysates of WT and KO NPCs. (E) Quantification of band densities of FL Reelin, NR2, and 

NR6 fragments normalized to GAPDH in cell lysates (n = 6 separate cultures) indicate increased 

Reelin present in media conditioned by KO NPC cultures. *p < 0.05; **p < 0.01 by Mann-

Whitney test.  
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Figure 3.7 Reelin induces Dab1 phosphorylation in NPCs. (A) Western blot of medium 

conditioned by HEK293T cells transfected with a Reelin-expressing plasmid or empty vector 

(pcDNA3) and their cell lysates indicates expression and secretion of Reelin. Lysates and 

conditioned medium (CM) were collected 24 hrs after transfection. Arrows indicate full-length 

(FL) Reelin and NR2 and NR6 fragments. (B) WT NPCs treated with 200 µL (+) or 400 µL (++) 

conditioned medium (CM) from Reelin-transfected HEK293T cells for 10 min have increased 

Dab1 phosphorylation (pDab1). (C) 20 min treatment with CM from WT NPC cultures increases 

Dab1 phosphorylation in WT NPCs (n = 4 separate cultures). Pretreatment with Brefeldin A 

(BFA, 0.75 µg/mL) for 3 hrs prior to CM treatment reduces Dab1 phosphorylation in WT NPCs, 

indicating that the state of Dab1 phosphorylation depends on the ability of cells to secrete 

proteins. Addition of BFA to CM after harvesting does not affect pDab1 induction. Relative band 

density was normalized to GAPDH. Fold change was 2.19 with p = 0.023 by one-sample t-test. 
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Figure 3.8 PARP1 loss increases CR cell abundance in NPC cultures. (A) Immunostaining 

for Reelin (red) demonstrates presence of Reelin-expressing cells in WT and PARP1 KO NPC 

cultures.  Nuclei were labeled with DAPI (blue). Scale bar = 20 µm.  (B) Quantification of the 

percentage of Reelin-expressing cells within NPC cultures shows increased proportion of 

Reelin+ cells in KO cultures (n = 6 WT and 5 KO biological replicates and 3 coverslips per 

replicate). **p = 0.0013 by Mann-Whitney test. (C) The mean fluorescence intensity of Reelin 

expression per cell does not differ between genotypes. Each point on graph represents average 

Reelin intensity per cell from 3 biological replicates of each genotype. (D) The percentage of 

Reelin-expressing cells in wild-type NPC cultures increases after shRNA-mediated PARP1 

knockdown for 72 hrs (n = 4 biological replicates per group and 3 coverslips per replicate). *p = 

0.0174 by Student’s paired t-test. (E) The percentage of Reelin-expressing cells in wild-type 

NPC cultures increases with PARP1 inhibition via Olaparib (50 nM) for 72 hrs.  Olaparib was 

re-treated every 24 hrs (n = 4 biological replicates per group and 3 coverslips per replicate). *p = 

0.022 by Student’s paired t-test. 
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Figure 3.9 PARP1 loss of function does not alter the activity of the Reln promoter or the 

stability of the Reln transcript. (A) NPCs transfected with plasmids expressing the putative 

Reln promoter (2600 base pairs prior to the transcription start site) upstream of firefly luciferase 

did not show increased luciferase activity after treatment with Olaparib (Ola, 100 nM) for 24 hrs 

or 48 hrs. Valproic Acid (VPA) is a known positive regulator of the Reln transcript and was used 

as a positive control. *p < 0.05 by One-Way ANOVA. (B) PARP1 KO or PARP1 inhibition with 

Olaparib (100 nM) does not alter the stability of the Reln transcript. RNA polymerase II was 

inhibited by treatment with Actinomycin D (10 µg/mL) for 2 hrs and 4 hrs and transcript levels 

were assessed. Reln was normalized to RPL19 expression, which did not decline over 4 hrs. No 

significant difference was observed between slopes for any of the groups. (C) PARP1 Chromatin 

IP showed no enrichment for portions of the Reln promoter from 2600 base pairs upstream of the 

transcription start site through exon 1 (numbered from 1, most distal to transcription start site, to 

9, within exon 1). Histone H3 ChIP was used as a positive control. Inset western blot shows 

pulldown of PARP1 protein. 
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Figure 3.10 Reelin increases NPC adhesiveness to N-cadherin. (A) Example trace generated 

by AFM from an N-cadherin-coated cantilever in contact with a single cell. From each trace, 

adhesive step size, maximum adhesion, and total work (yellow shading) were calculated. Thirty-

minute treatment of WT NPCs with conditioned media (CM) from Reelin-transfected HEK293T 

cells increases (B) maximum adhesion, (C) adhesive step size, and (D) total work compared to 

CM from pcDNA3-transfected HEK293T cells (control CM) (n = 402 - 536 from 2 biological 

replicates). Distributions are significantly different (p < 0.0001 by Kolmogorov-Smirnov test). 

Inset graphs show average values. ****p < 0.0001 by Mann-Whitney test. 
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Figure 3.11 PARP1 loss increases NPC adhesiveness to N-cadherin. Maximum adhesion (A), 

adhesive step size (B), and total work (C) are higher in NPCs from KOs than from WTs (n = 229 

- 742 from 4 WT and 5 KO biological replicates). Distributions are significantly different (p < 

0.0001 by Kolmogorov-Smirnov test). Inset graphs show average values. ****p < 0.0001 by 

Mann-Whitney test.
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3.10 Tables  

Table 3.1 Sequences of primers used for quantitative RT-PCR. 

Gene  Forward Sequence (5’ - 3’) Reverse Sequence (5’ - 3’) 

Reln GTCGTGTCTTCTGGATCTTCTC CAGCACTCTCTCCTCCTATCT 

Nav1 CCAGCCACCAAGTTAGCAGA CATGGGTGTCGCTGGAAGAT 

Tnc ACCATGCTGAGATAGATGTTCCAAA CTTGACAGCAGAAACACCAATCC 

Txnip GTCAGTGTCCCTGGCTCCAAGA AGCTCATCTCAGAGCTCGTCCG 

ΔNp73 CTACCATGCTTTACGTCGG CTGCCCATCTGGTCCAT 

TAp73 GCACCTACTTTGACCTCCCC GCACTGCTGAGCAAATTGAAC 

Car10 GAGAGCAAGAGCCCAGAACTC CTCACCAGTGGCAGAAATGGC 

Calb2 CGGAGCTGGCGCAGAT CTGCCTGAAGCACAAAAGGAA 

Parp1 GGCAGCCTGATGTTGAGGT GCGTACTCCGCTAAAAAGTCAC 

Gapdh TCACTGCCACCCAGAAGA GCCAAGCCCTGAGCATAA 

Rpl19 ACCTGGATGAGAAGGATGAG ACCTTCAGGTACAGGCTGTG 

β-actin TCCCATTGAACACGGAGTG CCTCGGTGAGAAGAATAGATGT 

 

Table 3.2 Sequences of primers used for chromatin immunoprecipitation. 

Gene Forward Sequence (5’ - 3’) Reverse Sequence (5’ - 3’) 

Reln 1 CACATGTCGGCTACAGCTCA GAGAAAAGGCCAATGTGAGGTC 

Reln 2 TGCAGCTAAACCGAAGCTAATC ACCGGACCACCTACTTTGG 

Reln 3 GTCAGCCTTCGTCTTACTTGG ATCCTAACACCACCACCGGAA 

Reln 4 CCAACAGGCAGTTAGGTCCTT GAGTTTGGGAGAAGGGCGTC 

Reln 5 GCTCTGTTCTCCCGTCTCTG TGAAACCGGCGTTAATGAGC 

Reln 6 CGCGCGCGGGGCACCGTC AGAGACCGACGGGCTGCC 

Reln 7 GGGCGGCGGGCCCCGAGG AGAGACCGACGGGCTGCC 

Reln 8 GGGCTTTAAGAAGGTGCGGAG CGGTGTGCACGCGACG 

Reln 9 GTAACTTCGGGAGCCTCGGT CTCTCTCATCCACTTTCGGAGG 

Actin CAGCCAACTTTACGCCTAGC TTTGGACAAAGACCCAGAGG 
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Table 3.3 PARP1 loss upregulates the expression of genes associated with cell adhesion, axon 

development, dendrite morphogenesis, and cell migration in the E15.5 cortex. 

 

GO Biological Process 

Fold 

Enrichment 

False 

Discovery 

Rate 

cell adhesion (GO:0007155) 7.95 0.00001 

cell morphogenesis involved in differentiation (GO:0000904) 8.51 0.0002 

axon development (GO:0061564) 10.38 0.00072 

regulation of dendrite morphogenesis (GO:0048814) 20.51 0.00293 

neuron projection morphogenesis (GO:0048812) 8.24 0.00302 

plasma membrane bounded cell projection morphogenesis 

(GO:0120039) 8.15 0.00304 

cell projection morphogenesis (GO:0048858) 8.05 0.00322 

axonogenesis (GO:0007409) 9.91 0.00327 

regulation of cell morphogenesis involved in differentiation 

(GO:0010769) 9.74 0.00355 

regulation of dendrite development (GO:0050773) 12.47 0.0206 

establishment of organelle localization (GO:0051656) 8.77 0.0235 

cerebral cortex radially oriented cell migration (GO:0021799) 39.25 0.0276 

axon guidance (GO:0007411) 11.05 0.0336 

neuron projection guidance (GO:0097485) 10.95 0.0343 

glial cell migration (GO:0008347) 34.57 0.0361 

gliogenesis (GO:0042063) 10.25 0.041 
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Chapter 4: Discussion and Future Directions 

 

4.1 Summary of Findings 

The primary aim of this thesis was to identify roles for PARP1 during the process of 

brain development. PARP1 is a ubiquitously expressed protein with many critical functions in 

various cell types and tissues and has previously been linked with brain-associated disorders and 

diseases (Mao and Zhang, 2021). These findings suggest that PARP1 loss of function affects 

brain development; however, this has not been widely studied. Given PARP1’s important role in 

regulating the DNA repair response following DNA damage, inhibitors for PARP1 are widely 

utilized to treat certain cancers (Dziadkowiec et al., 2016; Pommier et al., 2016; Rose et al., 

2020) and have been proposed to treat pediatric cancers (Barton et al., 2009; Valanejad et al., 

2018). Therefore, we must understand the consequences of PARP1 loss of function in the brain, 

especially during developmental stages.  In this thesis, I further validated that PARP1 regulates 

GFAP expression through an interaction with the receptor tyrosine kinase ErbB4 in cultured 

mouse NPCs and the developing mouse brain (Chapter 2), I discovered that PARP1 loss reduces 

cortical thickness, disrupts early-born neuron migration, and increases neuronal density at birth 

(Chapter 3), and I found that PARP1 regulates Cajal-Retzius cell development and neuronal 

adhesion in the developing brain (Chapter 3). Together, these findings highlight the impacts of 

PARP1 loss on brain development, potentially contributing to PARP1-linked brain disorders 

observed in humans and mice. 
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In Chapter 2, I described previously unpublished data that suggests a novel interaction 

between PARP1 and the ErbB4 intracellular domain (E4ICD), which is cleaved from the ErbB4-

JMa isoform of this protein. Previous data indicate that E4ICD binds to the promoter region of 

glial genes to repress their expression during neurogenesis, thereby controlling the timing of 

astrogenesis during brain development (Sardi et al., 2006). These experiments were completed 

mainly with NPCs isolated from rat cortices. However, we wished to assess the role of PARP1 in 

this pathway using NPCs isolated from transgenic mice, so I developed an in vitro assay to test 

the effect of NRG1 on GFAP expression during differentiation in mouse NPCs. Upon FGF 

removal from NPC cultures, GFAP expression increases over 100-fold. However, concurrent 

NRG1 treatment with FGF removal reduces this increase by 50% on average in WT NPCs. 

Repeating this experiment using PARP1 KO NPCs, NRG1 lost the ability to repress GFAP 

expression, indicating that PARP1 is necessary to mediate NRG1-induced repression of GFAP 

expression.  

To assess the specific role of ErbB4-JMa in mice, our lab produced mice using CRISPR-

Cas9 gene editing that lack ErbB4-JMa but retain ErbB4-JMb. This novel mouse allowed us to 

further interrogate the specific roles ErbB4-JMa and E4ICD in vivo and in vitro without utilizing 

toxic pharmacological inhibitors or transfection-mediated overexpression, as had been previously 

completed in WT NPCs. Repeating FGF removal with concurrent NRG1 treatment in NPCs 

isolated from ErbB4-JMa-/- mice, we found that NRG1 did not repress GFAP expression, 

indicating the necessity for the cleavable isoform of ErbB4. Repeating this assay in WT NPCs 

transfected with constructs expressing the GFAP promoter region upstream of firefly luciferase 

indicated that PARP1 and ErbB4 regulate GFAP promoter activity to repress gene expression. 

Finally, we identified overexpressed GFAP in ErbB4 KO and PARP1 KO cortices at birth, 
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suggesting that PARP1-E4ICD regulates astrogenesis in the developing brain in vivo. Further 

studies are needed to identify the specific mechanism of PARP1-E4ICD regulation of the GFAP 

promoter region, which is discussed in section 4.2. 

In Chapter 3, I described altered brain morphology in the developing PARP1 KO mouse. 

Previous studies indicate that postnatal mouse brains that lack PARP1 tend to be smaller than 

their wild-type littermates (Plane et al., 2012; Hong et al., 2019). We found a similar reduction in 

brain size in PARP1 KO mice at birth, suggesting a developmental role for PARP1 in the brain. 

Furthermore, we identified that PARP1 KO brains have altered early-born neuron migration and 

increased neuronal density with a thinner cortex. To identify changes in gene expression caused 

by PARP1 loss that contribute to these alterations, we performed RNA-sequencing of the E15.5 

cortex. We identified an upregulation in genes associated with neuronal migration and adhesion 

in the PARP1 KO mouse brain, including the glycoprotein Reelin. Reelin is expressed in Cajal-

Retzius cells early in development and is critically important for regulating neuronal adhesion 

and migration in the developing brain (Ogawa et al., 1995; Meyer et al., 1998). We found that 

loss of PARP1 increases the abundance of Cajal-Retzius cells in vivo at E15.5 and P5 and in 

NPC cultures in vitro. We also demonstrated that regulation of Cajal-Rezius cell abundance is 

dependent upon PARP1 enzymatic activity. After interrogating the involvement of the Reelin 

promoter, we did not find any indication that PARP1 loss of function affected promoter activity, 

indicating an indirect or non-promoter-associated mechanism. Additionally, we found no 

evidence that PARP1 regulates Reln transcript stability. Further experiments are needed to 

identify the mechanism of regulation, which is discussed in section 4.2 

In Chapter 3, I also showed that NPCs isolated from PARP1 KO embryonic cortex 

secrete excess Reelin. A previous study indicates that Reelin increases neuronal adhesion to cell 
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adhesion molecule N-cadherin (Matsunaga et al., 2017). We repeated this experiment in WT 

NPCs using a similar experimental setup by incubating them with Reelin-containing conditioned 

media for 30 min. As found by Matsunaga and colleagues, NPCs treated with Reelin had an 

increased adhesion to N-cadherin. Since PARP1 KO NPC cultures contain excess Reelin, we 

hypothesized that PARP1 KO NPCs would similarly adhere more strongly to N-cadherin. As 

expected, PARP1 loss and exogenous Reelin increase NPC adhesion to N-cadherin to a similar 

extent. These findings suggest that PARP1 influences NPC adhesion to N-cadherin through 

Reelin. Further experiments are needed to address the potential effects of this role for PARP1 in 

vivo and are discussed below. 

4.2 Future Directions 

The findings described above lead to many interesting questions regarding the interaction 

between PARP1 and ErbB4 and their functions in regulating astrogenesis in the developing 

brain, the mechanism of PARP1 regulation of Cajal-Retzius cell development, and potential 

changes in PARP1 KO brain morphology and function associated with increased Cajal-Retzius 

cell abundance and cell adhesion. Future directions to address these questions are outlined in the 

sections below. 

4.2.1 Mechanism of PARP1-ErbB4 Regulation of Astrogenesis 

Our previously published data suggest that NRG1 stimulation of ErbB4-JMa induces 

phosphorylation, E4ICD cleavage, subsequent E4ICD interaction with N-CoR and TAB2, and 

translocation to the cell’s nucleus (Sardi et al., 2006). Our new data indicate that this protein 

complex binds to and stimulates PARP1, then acts on the GFAP promoter to repress its activity. 

However, it remains unclear whether the complex binds PARP1 in the cytoplasm or nucleus and 

whether PARP1 or ErbB4 is necessary for binding to the GFAP promoter. Additionally, while 
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NRG1 stimulation increases PARylation, it is unclear what molecules in the cell become 

PARylated, whether it is PARP1 itself, other proteins that make up this complex, chromatin, or 

multiple of these. Furthermore, our findings suggest that this complex binds to the same area of 

the GFAP promoter region as NICD, suggesting E4ICD complex occupation prevents NICD 

from binding to promote astrogenesis, yet this hypothesis has not been tested.  

PARP1 is mainly located in the cell’s nucleus, but it is sometimes localized to the 

cytoplasm (Chen et al., 2018; Xu et al., 2019). To determine if PARP1 is binding to E4ICD in 

the cytoplasm or nucleus, I would isolate cytoplasmic and nuclear cellular fractions and repeat 

the ErbB4 and PARP1 co-immunoprecipitation (co-IP) experiments. Since PARP1 is 

predominantly nuclear, I expect that the E4ICD-Tab2-NCoR complex travels to the nucleus, 

where it binds to PARP1. If this is the case, I anticipate only seeing an interaction between 

ErbB4 and PARP1 in nuclear fractions upon stimulation with NRG1. Additionally, our data 

suggest that NRG1 stimulation of ErbB4-JMa and subsequent cleavage of its intracellular 

domain activates PARP1, facilitating PARP1 binding to the GFAP promoter. To confirm the 

necessity of ErbB4-JMa, I would perform chromatin immunoprecipitation (ChIP) in ErbB4-JMa-

/- NPCs after NRG1 stimulation, predicting that the absence of ErbB4-JMa would prevent 

PARP1 from binding to the GFAP promoter. Furthermore, we hypothesize that PARP1 is 

necessary for E4ICD to bind the GFAP promoter. To test this, I would repeat the GFAP ChIP in 

PARP1 KO NPCs. In the absence of PARP1, I expect to see no E4ICD promoter binding upon 

NRG1 stimulation. 

Given that NRG1 induces E4ICD cleavage and PARylation, we expect that PARP1 is 

activated following E4ICD binding to PARP1. To confirm this, I would repeat the PARP1-

ErbB4 co-IP experiments in the presence of a PARP1 inhibitor. If inactive PARP1 can bind 



 123 

E4ICD, it strengthens the notion that E4ICD binding activates PARP1. Additionally, our 

previous experiments suggest that PARP1 activity is necessary to subsequently repress GFAP 

promoter activity. To test if PARP1 enzymatic function is essential for binding to the GFAP 

promoter, I would pharmacologically inhibit PARP1 and repeat the ChIP. I expect that PARP1 

inhibition would prevent it from binding the GFAP promoter after treatment with NRG1, yet it 

remains possible that PARP1-E4ICD can bind the promoter but cannot repress its activity in the 

absence of PARylation. 

We found that NRG1 induces PARylation, yet it remains unclear what molecules are 

becoming PARylated. To test whether PARP1 PARylates the GFAP promoter, I would perform 

a PAR ChIP following NRG1 treatment. Similar to PARP1 ChIP, if PARP1 PARylates the 

region of the GFAP promoter at which this complex binds, I should identify the GFAP promoter 

region in chromatin pulled down with PAR following NRG1 stimulation. Similarly, I would 

determine if other proteins associated with E4ICD and PARP1 are PARylated by performing a 

PAR co-IP and immunoblotting for ErbB4 and PARP1. If any one of the proteins in the complex 

is PARylated, PAR would co-precipitate with both of these proteins. I would also execute the 

reverse IP by pulling down each of these proteins and immunoblotting for PAR. Studies indicate 

PARP1 PARylates itself and chromatin to regulate transcription (Visochek et al., 2016), so I 

expect to identify PARylation of both PARP1 and chromatin at the GFAP promoter.  

Our findings indicate that the E4ICD-PARP1 complex binds to the same region of the 

GFAP promoter as the Notch intracellular domain (NICD), which stimulates GFAP transcription 

via binding to CSL/RBPJk (Ge et al., 2002). N-CoR, which binds E4ICD, also complexes with 

CSL/RBPJk to regulate GFAP transcription; however, N-CoR binding to the GFAP promoter 

represses its transcription (Hermanson et al., 2002). Therefore, we hypothesize that E4ICD/N-
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CoR/TAB2 and PARP1 bind to CSL/RBPJk, which facilitates binding to the GFAP promoter 

during neurogenesis, preventing NICD from binding and promoting gliogenesis. Downregulation 

of ErbB4 expression later in development may allow NICD binding to CSL/RBPJk and GFAP 

activation. To test this hypothesis, I would perform a Notch ChIP for this promoter region after 

ErbB4 knockdown via the expression of a dominant-negative ErbB4 or in ErbB4 KO NPCs. If 

we observe increased NICD binding after ErbB4 knockdown or loss, that would indicate 

reciprocal binding at this site between NICD and E4ICD. To further confirm this interaction, I 

would transfect N2A cells with a GFAP-luciferase promoter construct and assess the effect of 

co-transfection of NICD and LexA-E4ICD, NICD alone, or LexA-E4ICD alone. I expect that 

NICD would stimulate GFAP activity, but that co-transfection of E4ICD would repress this 

stimulation because of competition for the promoter. If these experiments indicated a reciprocal 

occupation of the promoter, I would perform a co-IP to confirm that the ErbB4-PARP1 complex 

binds with CSL/RBPJk to facilitate transcriptional repression.  

STAT3 is well-known for its role in regulating GFAP expression (Bonni et al., 1997). 

Interestingly, a recent study found that PARP1 binds and PARylates STAT3, inhibiting its 

activity in a cancer cell line (Ding et al., 2019). This study indicates that PARP1 may 

additionally inhibit STAT3 function in neural stem cells. To test this, I would perform PARP1 

and PAR co-IPs with STAT3 in NPCs. If I observed PARP1 binding and PARylation of STAT3, 

I would then perform ChIP at the STAT3 binding sites of the GFAP promoter in PARP1 KO 

NPCs. If there is an increase in STAT3 occupation at the promoter following PARP1 loss, that 

would suggest PARP1 has an inhibitory effect on STAT3 function and promoter-binding ability. 

I would next test if the PARP1-STAT3 interaction occurs independently of ErbB4 by performing 

a co-IP between ErbB4 and STAT3. To further confirm the necessity of ErbB4, I would repeat 
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the co-IP between PARP1 and STAT3 in ErbB4 KO NPCs. If PARP1 interacts with STAT3 in 

the absence of ErbB4, that would suggest PARP1 binds and PARylates STAT3 as an 

independent mechanism of astrogenesis repression. 

4.2.2 Consequences of Precocious Astrogenesis 

Our findings show that ErbB4 KO and PARP1 KO cortices express excess GFAP at birth 

relative to their respective WT controls. However, it is unclear whether this corresponds with 

increased GFAP-expressing astrocytes or increased GFAP expression per astrocyte. To test this, 

I would collect P0 brains and perform a fluorescent in situ hybridization for GFAP mRNA, 

quantifying both the relative number of transcripts per cell and the number of GFAP-expressing 

cells. I would next determine if this change corresponded with an increase in GFAP protein 

expression or the number of GFAP-expressing astrocytes via immunohistochemistry.  

Additionally, precocious astrogenesis has previously been associated with decreased 

neurogenesis in other mouse models, as astrocytes are produced at the expense of neurons at the 

end of neurogenesis (Gauthier et al., 2007; Wu et al., 2017). Our findings show that despite a 

thinner cortex, the PARP1 KO brain has no difference in the quantity of earlier-born Tbr1 or 

Ctip2-expressing neurons at birth. However, it remains unclear if there are fewer overall neurons 

or fewer later-born neurons, such as those that express Cux1 or Cux2. Precocious astrogenesis is 

more likely to negatively impact neurons born just before the onset of astrogenesis. Therefore, if 

astrogenesis begins prematurely, IPCs abnormally differentiate into astrocytes instead of Cux1 or 

Cux2-expressing neurons. To test if specific neuronal populations are affected, I would collect 

cortical lysates from PARP1 KO and ErbB4 KO mice at various stages of embryonic 

development – E13.5 through P5, and quantify transcript levels of neuronal genes, such as DCX, 
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NeuN, Cux1, Cux2, etc. using RT-qPCR. If I identified any changes in transcript expression, I 

would look further at their associated proteins in brain slices at different developmental stages. 

4.2.3 Potential Mechanisms of PARP1 Regulation of Cajal-Retzius Cell Development 

One of the major outstanding questions from my findings is through what mechanism 

PARP1 regulates Cajal-Retzius cell development. As described, we observed an increased 

abundance and density of Cajal-Retzius cells at E15.5 and P5 with PARP1 loss. Cajal-Retzius 

cells undergo programmed cell death starting around P8 (del Río et al., 1995); therefore, our 

findings suggest that PARP1 is not responsible for mediating Cajal-Retzius cell apoptosis. We 

also found that PARP1 knockdown or inhibition increases the quantity of Cajal-Retzius-like cells 

in culture. However, we found no indication that PARP1 regulates the activity of the Reln 

promoter or stability of the transcript. Together, these findings suggest that PARP1 regulates 

Cajal-Retzius cell development through a cell-autonomous, Reelin-independent mechanism, 

likely through altered expression or activity of transcription factors or miRNAs associated with 

Cajal-Retzius cell development, differentiation, and migration. 

4.2.3.1 Cajal-Retzius Cell Subpopulations 

To further assess Cajal-Retzius cell development, it will be critical to characterize the 

different populations of Cajal-Retzius cells in the PARP1 KO brain. Cajal-Retzius cell 

progenitors arise from several portions of the developing brain, including the cortical hem, 

pallial septum, and pallial-subpallial boundary (PSB), then tangentially migrate to different areas 

of the cortex on the rostral-caudal and dorsal-ventral axes (Barber and Pierani, 2016). 

Interestingly, Cajal-Retzius cells from each of these origins express different combinations of 

proteins at the progenitor stage and following completion of migration, which makes identifying 

the subpopulations of Cajal-Retzius cells relatively straightforward (Bielle et al., 2005). Dbx1+ 
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progenitors arise from the pallial septum and the PSB and migrate to the rostral-medial cortex 

and the lateral cortex, respectively. In addition, Dbx1+ Cajal-Retzius cell progenitors that arise 

from the septum co-express Emx1 (Bielle et al., 2005). While both neuronal subtypes express 

Reelin, only Dbx1+ cells that arise from the PSB also express Calretinin (Bielle et al., 2005). In 

contrast, Cajal-Retzius cell progenitors derived from the cortical hem do not express Dbx1 and 

migrate to the caudal-medial cortex and hippocampus (Barber and Pierani, 2016) and express 

p73 and Calretinin in addition to Reelin (Barber et al., 2015). In summary, cortical hem-derived 

Cajal-Retzius cells express Reelin, p73, and Calretinin, septal pallium-derived Cajal-Retzius 

cells express p73 and Reelin, and PSB-derived Cajal-Retzius cells express Reelin and Calretinin 

(Takiguchi-Hayashi et al., 2004; Bielle et al., 2005; Barber et al., 2015).  

 To interrogate whether specific populations of Cajal-Retzius cells are altered in the 

PARP1 KO mice, I would immunolabel these different cell populations and quantify the number 

of cells in regions of the developing cortex on the dorsal-ventral and rostral-medial axis. This 

would entail collecting rostral, medial, and caudal sections from the developing brain (around 

E12.5) and quantifying the number of Reelin, p73, and Calretinin-expressing and co-expressing 

cells both medially and laterally within each section. Since we observed increased Reelin-

expressing cells in multiple brain regions on the rostral-caudal axis and increased Calretinin and 

p73 transcript expression in vitro, I do not expect a specific Cajal-Retzius cell population is 

altered. However, if I were to observe changes in one or multiple of the progenitor populations, I 

could then assess migration patterns by injecting the affected brain area(s) at E9.5-E10.5 with 

DiI and evaluating the migration of the labeled cells over time. Suppose migration is unaffected, 

but quantity is increased. In that case, I could instead assess the number of Dbx1 or Emx1-

expressing progenitors from their associated brain region(s) to determine if increased Cajal-
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Retzius cell abundance arises from an increase in the progenitor pool due to altered 

differentiation. If there is an increase in only some subtypes of Cajal-Retzius cells, that would 

also give clues as to potential dysregulated proteins, as some proteins regulating Cajal-Retzius 

cell development affect only subsets of progenitors (Stoykova et al., 2003; Borrell and Marín, 

2006; Kaddour et al., 2020). 

4.2.3.2 Proteins Associated with PARP1 and Cajal-Retzius Cell Development 

 As described in section 1.2.3.1, many proteins influence the development or migration of 

Cajal-Retzius cells. Interestingly, some of these proteins are also linked to PARP1. This includes 

the transcription factor Ascl1 (also known as Mash1), which PARP1 represses in rat neural stem 

cells in a complex containing Hes1. PARP1 knockdown, therefore, de-represses Ascl1, 

increasing its expression (Ju et al., 2004). A mouse model of Ascl1 loss indicates that Ascl1 

promotes Cajal-Retzius cell development, specifically cells expressing Reelin and p73, 

suggesting that Ascl1 regulates cortical hem and septal-derived progenitors (Dixit et al., 2011). 

Therefore, overexpression of Ascl1 may increase Cajal-Retzius cell abundance, similar to our 

observation in PARP1 KO mice. However, it remains to be seen if Ascl1 is overexpressed in 

PARP1 KO developing cortex or NPCs. If I found Ascl1 to be overexpressed, that would 

indicate that PARP1 may indirectly affect Cajal-Retzius cell development through Ascl1. 

PARP1 also regulates Pax6 expression during neuroectoderm specification early in 

neurodevelopment. Specifically, FGF activation of ERK1/2 causes PARP1 activation, which 

then binds to the Pax6 promoter to promote neuroectoderm specification and neural 

differentiation. Accordingly, inhibition of PARP1 suppresses Pax6 expression (Yoo et al., 2011). 

Among other functions, Pax6 has previously been shown to negatively regulate Cajal-Retzius 

cell development in a non-cell-autonomous mechanism, potentially influencing cell migration 
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via extracellular Pax6 (Stoykova et al., 2003; Kaddour et al., 2020). In the Pax6 knockout mouse 

brain, predominantly Reelin and Calretinin-expressing Cajal-Rezius cells are increased in 

abundance, indicating Pax6 loss causes an increase in cells that arise from the cortical hem or 

PSB (Stoykova et al., 2003); however, extracellular Pax6 was shown to alter the migration of 

cortical hem and septal-derived progenitors, though PSB-derived progenitor migration was not 

tested (Kaddour et al., 2020). These studies indicate that Pax6 may be a master regulator of 

Cajal-Retzius cell development and migration. Therefore, PARP1 loss or inhibition may 

decrease Pax6 expression at very early stages of development, leading to excess Cajal-Retzius 

cells through changes in progenitor cell differentiation or migration. To test this, I would 

measure Pax6 mRNA and protein expression in PARP1 KO brains at multiple time points during 

early development, as changes in its expression profile may contribute to our observations. 

The chemokine Cxcl12, signaling through its G-protein coupled receptor Cxcr4, regulates 

the migration of cortical hem-derived Cajal-Retzius progenitor cells (Borrell and Marín, 2006). 

Cxcl12 is secreted from cells located in the meninges and is chemoattractive for Cajal-Retzius 

progenitor cells that express Cxcr4. Therefore, loss of Cxcr4 disrupts Cajal-Retzius cell 

tangential migration and results in ectopic clusters of cells in deeper portions of the cortex 

(Borrell and Marín, 2006). PARP1 negatively regulates Cxcl12 transcription by binding to the 

gene promoter, first identified in pancreatic beta cells (Marković et al., 2013). Further 

experiments showed that loss of PARP1 from mouse embryonic fibroblasts decreases the 

methylation state of the Cxcl12 promoter, likely due to increased expression of Tet1, a DNA de-

methylase (Tolić et al., 2019).  DNA methylation represses transcription; therefore, PARP1-

mediated repression of Tet1 expression increases the methylation state of the Cxcl12 promoter, 

repressing transcription of the gene. These studies present the intriguing possibility that loss of 
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PARP1 increases Cxcl12 expression and secretion from the marginal zone, increasing the 

migration of Cajal-Retzius cell progenitors toward the meninges. To test this, I would measure 

the mRNA and protein of Cxcl12 between E10.5-E12.5 in the developing brain and cultured 

NPCs. Cortical hem-derived progenitors express p73 and Calretinin in addition to Reelin (Barber 

et al., 2015), so if this population of cells is increased in the PARP1 KO brain and Cxcl12 is 

overexpressed, PARP1 may be regulating Cajal-Retzius cell abundance through Cxcl12. 

Cajal-Retzius cell development is also regulated through miRNAs, small RNAs that bind 

to target mRNAs, cleave them, destabilize them, or prevent transcription (Huntzinger and 

Izaurralde, 2011; O’Brien et al., 2018). A total disruption of miRNA biogenesis through 

knockout of Dicer, which cleaves immature miRNAs into mature miRNAs, increases Cajal-

Retzius cell abundance, indicating a critical role for miRNAs in their development (McLoughlin 

et al., 2012). Specifically, miRNA-9 affects Foxg1 expression, a transcription factor that 

regulates cortical hem development, which is a vital source of Cajal-Retzius cell progenitors 

(Shibata et al., 2008; Liu et al., 2018). Additionally, miRNA-128 and miRNA-200c specifically 

target Reln, which may affect Cajal-Retzius cell development and function, although this has yet 

to be tested (Evangelisti et al., 2009; Stary Creed M. et al., 2015). PARP1 regulates the 

expression of miRNAs, presenting an additional possibility by which it modulates Cajal-Retzius 

cell abundance (Nozaki et al., 2018). I would test this hypothesis by measuring the expression of 

miRNAs known to influence Cajal-Retzius cell development or Reln expression, such as 

miRNA-9, miRNA-128, or miRNA-200c, in the PARP1 KO cortex. I would also perform RNA-

sequencing to identify altered miRNA expression in the developing PARP1 KO cortex, 

comparing the profile of altered miRNAs in the PARP1 KO brain to altered miRNAs after Dicer 
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loss. Any overlapping miRNAs could indicate candidate miRNAs that influence Cajal-Retzius 

cell development due to PARP1 loss.  

4.2.4 Phenotypes Associated with Reelin Function 

In addition to regulation of neuronal migration and adhesion, Reelin is well-known for its 

role in regulating preplate splitting and cortical plate formation very early during 

neurodevelopment, around E12.5. Without Reelin to anchor migrating neurons to the marginal 

zone during somal translocation, the preplate fails to form correctly (Magdaleno et al., 2002). We 

observed changes in early-born neuron migration, so there may be alterations in cortical plate 

formation in the PARP1 KO embryonic brain. To test this, I would immunostain E14.5-E15.5 

PARP1 KO brains for MAP2 and CSPGs, which label the subplate and marginal zone. In a wild-

type brain, there is a lack of labeling in the cortical plate between the subplate and marginal 

zone, indicating proper splitting of the preplate. In reeler mice, MAP2 and CSPG staining is 

diffuse and spread throughout the cortex, indicating the presence of an abnormal “superplate” 

(Sheppard and Pearlman, 1997; Magdaleno et al., 2002). If early-born neuron migration in 

PARP1 KO mice is altered due to abnormal preplate splitting, I would expect to see changes in 

the distribution or abundance of subplate and marginal zone cells.  

Reelin also regulates dendrite development and dendritic spine density (Stanfield et al., 

1979; Liu et al., 2001; Niu et al., 2004, 2008). This function is intriguing because we found that 

PARP1 KO results in increased neuronal density, similar to that observed in reeler heterozygous 

mice (Liu et al., 2001). Increased neuronal density has also been associated with decreased 

dendritic arborization in schizophrenic patients (Selemon and Goldman-Rakic, 1999). 

Additionally, schizophrenic-like behaviors have been observed in PARP1 KO mice (Hong et al., 

2019). These findings suggest that dendritic morphology or dendritic spine density is abnormal 
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in the PARP1 KO cortex. To test this, I would assess dendritic morphology and quantify 

dendritic spines of neurons in the developing and adult cortex and hippocampus of PARP1 KO 

mice utilizing Golgi staining and 3D reconstruction of individual neurons. This experiment could 

be completed in parallel in vitro in neuron cultures derived from WT and PARP1 KO cortex 

and/or hippocampus. Interestingly, Reelin overexpression in the adult mouse brain causes an 

opposite phenotype as Reelin haploinsufficiency, causing enlarged dendritic spines and increased 

numbers of synapses per dendritic spine (Pujadas et al., 2010); however, it remains unclear how 

Reelin overexpression may affect dendritic spine density in the developing brain. 

4.2.5 Phenotypes Associated with Extracellular Matrix Function and Abnormal Neuronal 

Migration 

Loss of PARP1 causes changes in gene expression of corresponding proteins that make 

up the extracellular matrix, including scaffolding proteins, CSPGs, signaling molecules, and cell 

adhesion molecules. These changes in gene expression are associated with the altered migration 

of early-born neurons in the PARP1 KO cortex. The extracellular matrix regulates many aspects 

of cortical morphology and neuronal migration, including radial glial cell organization and 

neuronal process orientation (Barros et al., 2011). Alterations in radial glia cause many 

phenotypes, including misorientation of migrating neuron apical and basal processes, disruptions 

in endfeet formation, microcephaly, defective proliferation, and premature differentiation (Ferent 

et al., 2020). To further assess the organization of radial glial cells in the embryonic PARP1 KO 

cortex, I would immunostain E13.5 cortex for RC2 and GFAP, which are commonly expressed 

in radial glial cells at this stage of development, and co-label with BLBP, which is expressed in 

the endfeet of radial glial cells (Haubst et al., 2006). The resulting stain would allow me to 

determine if radial glial cell orientation and endfeet attachment are affected. With altered Reelin 
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and laminin expression, attachment of radial glial endfeet to the basement membrane at the pial 

surface of the PARP1 KO brain may be disrupted, especially early in development when 

neuronal migration is altered.  

Adhesion molecules are also critical components of the extracellular matrix. We found 

that PARP1 loss increases the adhesion of NPCs to N-cadherin in vitro, and the expression of 

several adhesion molecules is upregulated in the developing PARP1 KO cortex. Together, these 

findings suggest altered neuronal adhesion in vivo. N-cadherin overexpression has been 

previously shown to reduce the distance between a migrating cell and radial glial fiber and 

reduce neuronal migration into the cortical plate (Shikanai et al., 2011). To test whether neurons 

are more adhesive to radial glial fibers in the PARP1 KO brain, I would electroporate E13.5 

embryos with a GFP-expressing construct into the lateral ventricle, collect embryos the 

following day, and co-label for a radial glial cell marker, such as Nestin or RC2. Then, I would 

quantify the distance between the RC2-labeled radial glial fiber and the GFP-transfected 

migrating neuron, with shorter distances indicating increased adhesion. If I found changes in 

adhesion in vivo, I would test if N-cadherin is mediating this interaction by electroporating 

embryos with a dominant-negative N-cadherin-GFP construct and repeat the experiment in WT 

and KO embryos. If N-cadherin knockdown restored the distance between the neuron and radial 

glial cell fiber back to baseline, that would suggest N-cadherin is mediating increased adhesion 

in vivo. If I saw no difference, I would repeat this experiment with knockdown of adhesion 

molecules Dscaml1 or Nrcam, which are overexpressed in the PARP1 KO cortex. 

If I observe changes in adhesion in vivo, that may suggest downstream changes in the 

orientation of neuronal processes. N-cadherin is essential for orienting the leading process of 

migrating neurons radially; thus, neurons that express a mutated dominant-negative N-cadherin 
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protein have processes that tend to be more horizontally oriented than vertical (Gärtner et al., 

2012). To test the orientation of migrating neurons in PARP1 KO mice, I would perform a 

similar experiment as previously described, electroporating a construct expressing GFP into the 

lateral ventricle of WT and KO embryos at E13.5. GFP would be expressed in ventricular 

neurons and their processes, allowing me to assess their respective positioning with regards to 

the ventricular wall. If migration is disrupted due to misorientation of neuronal processes, I 

should observe an increased proportion of neuronal processes that lack a vertical orientation in 

the PARP1 KO cortex. 

Given that we observed changes in neuronal migration in vivo, I would assess the 

migration rate of PARP1 KO NPCs or premature neurons in vitro. Our data suggest that 

migrating neurons in the PARP1 KO brain tend to mislocalize to more superficial brain areas in 

vivo, which may indicate an increased migration rate. I would test migration in vitro using a 

scratch assay, whereby a scratch in the cell monolayer removes neurons from a specific area. I 

would then image the scratch area over many hours and quantify the time it takes for neurons to 

repopulate the area. If PARP1 KO causes increased migration rate cell-autonomously, I would 

expect to see PARP11 KO neurons move into the scratch area at an earlier time point than WT 

neurons. This finding would suggest that migration rate is regulated by molecules secreted from 

or present within the neurons, which then act upon other nearby neurons. However, if migration 

rate is controlled by factors present in vivo, or non-cell autonomously, I may not observe changes 

in cell migration in vitro. Therefore, I could utilize ex vivo time-lapse imaging of migrating 

neurons. With this method, GFP-expressing vectors are electroporated into the lateral ventricle of 

embryonic brains, where it is taken up by dividing neurons. Migrating neurons expressing GFP 



 135 

can then be live imaged in brain slice cultures via time-lapse imaging to assess the dynamics of 

migrating cells more carefully.  

4.2.6 Final Thoughts and Conclusions 

Taken together, the data presented in this dissertation show that PARP1 has a more 

significant and complex role in neurodevelopment than previously known. Specifically, I have 

demonstrated that PARP1 regulates cortical thickness, Cajal-Retzius cell development, neuronal 

adhesion, and gliogenesis. Although the effects of PARP1 loss are relatively minor in scale, the 

accumulation of multiple of these defects may be contributing to PARP1-associated neurological 

disorders. Additionally, inhibition of PARP1 is currently utilized to treat cancers and has been 

proposed to treat conditions associated with PARP1 overexpression (Dziadkowiec et al., 2016; 

Pommier et al., 2016; Rose et al., 2020; Mao and Zhang, 2021). Our findings, however, show 

that PARP1 loss of function during neurodevelopment negatively impacts brain formation, 

perhaps indicating that PARP1 inhibition should be used sparingly to treat pediatric cancer 

patients. Future experiments outlined in this dissertation to elucidate the specific mechanisms 

behind PARP1 regulation of Cajal-Retzius cell development and astrogenesis will increase our 

understanding of PARP1’s roles in brain development and further expand our knowledge of 

PARP1’s diversity of functions in the brain.



 136 

References 

 

Abbott, N. J. (2002). Astrocyte–endothelial interactions and blood–brain barrier permeability. J 

Anat 200, 629–638. doi:10.1046/j.1469-7580.2002.00064.x. 

Abe, Y., Namba, H., Kato, T., Iwakura, Y., and Nawa, H. (2011). Neuregulin-1 Signals from the 

Periphery Regulate AMPA Receptor Sensitivity and Expression in GABAergic 

Interneurons in Developing Neocortex. J Neurosci 31, 5699–5709. 

doi:10.1523/JNEUROSCI.3477-10.2011. 

Abeti, R., Abramov, A. Y., and Duchen, M. R. (2011). β-amyloid activates PARP causing 

astrocytic metabolic failure and neuronal death. Brain 134, 1658–1672. 

doi:10.1093/brain/awr104. 

Aguilar-Quesada, R., Muñoz-Gámez, J. A., Martín-Oliva, D., Peralta, A., Valenzuela, M. T., 

Matínez-Romero, R., et al. (2007). Interaction between ATM and PARP-1 in response to 

DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC 

Molecular Biology 8, 29. doi:10.1186/1471-2199-8-29. 

Ajioka, I., and Nakajima, K. (2005). Birth-date-dependent segregation of the mouse cerebral 

cortical neurons in reaggregation cultures. European Journal of Neuroscience 22, 331–

342. doi:10.1111/j.1460-9568.2005.04214.x. 

Alkhatib, H. M., Chen, D. F., Cherney, B., Bhatia, K., Notario, V., Giri, C., et al. (1987). 

Cloning and expression of cDNA for human poly(ADP-ribose) polymerase. Proc Natl 

Acad Sci U S A 84, 1224–1228. 

Ambrose, H. E., Papadopoulou, V., Beswick, R. W., and Wagner, S. D. (2007). Poly-(ADP-

ribose) polymerase-1 (Parp-1) binds in a sequence-specific manner at the Bcl-6 locus and 

contributes to the regulation of Bcl-6 transcription. Oncogene 26, 6244–6252. 

doi:10.1038/sj.onc.1210434. 

Amé, J.-C., Spenlehauer, C., and de Murcia, G. (2004). The PARP superfamily: Review articles. 

Bioessays 26, 882–893. doi:10.1002/bies.20085. 

Amiri, K., Ha, H., Smulson, M., and Richmond, A. (2006). Differential regulation of CXC ligand 

1 transcription in melanoma cell lines by poly(ADP-ribose) polymerase-1. Oncogene 25, 

7714–7722. doi:10.1038/sj.onc.1209751. 

Anderson, S. A., Kaznowski, C. E., Horn, C., Rubenstein, J. L. R., and McConnell, S. K. (2002). 

Distinct Origins of Neocortical Projection Neurons and Interneurons In Vivo. Cerebral 

Cortex 12, 702–709. doi:10.1093/cercor/12.7.702. 



 137 

Angevine, J. B., and Sidman, R. L. (1961). Autoradiographic Study of Cell Migration during 

Histogenesis of Cerebral Cortex in the Mouse. Nature 192, 766–768. 

doi:10.1038/192766b0. 

Anstötz, M., Huang, H., Marchionni, I., Haumann, I., Maccaferri, G., and Lübke, J. H. R. (2016). 

Developmental Profile, Morphology, and Synaptic Connectivity of Cajal–Retzius Cells in 

the Postnatal Mouse Hippocampus. Cereb Cortex 26, 855–872. 

doi:10.1093/cercor/bhv271. 

Anton, E. S., Marchionni, M. A., Lee, K. F., and Rakic, P. (1997). Role of GGF/neuregulin 

signaling in interactions between migrating neurons and radial glia in the developing 

cerebral cortex. Development 124, 3501–3510. 

Ayachi, I. E., Fernandez, C., Baeza, N., Paula, A. M. D., Pesheva, P., and Figarella-Branger, D. 

(2011). Spatiotemporal distribution of tenascin-R in the developing human cerebral 

cortex parallels neuronal migration. Journal of Comparative Neurology 519, 2379–2389. 

doi:10.1002/cne.22632. 

Ayhan, Y., Abazyan, B., Nomura, J., Kim, R., Ladenheim, B., Krasnova, I. N., et al. (2011). 

Differential effects of prenatal and postnatal expressions of mutant human DISC1 on 

neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin 

of major psychiatric disorders. Molecular Psychiatry 16, 293–306. 

doi:10.1038/mp.2009.144. 

Azad, G. K., Ito, K., Sailaja, B. S., Biran, A., Nissim-Rafinia, M., Yamada, Y., et al. (2018). 

PARP1-dependent eviction of the linker histone H1 mediates immediate early gene 

expression during neuronal activation. Journal of Cell Biology 217, 473–481. 

doi:10.1083/jcb.201703141. 

Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L., Leite, R. 

E. P., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the human 

brain an isometrically scaled-up primate brain. Journal of Comparative Neurology 513, 

532–541. doi:10.1002/cne.21974. 

Bai, J., Ramos, R. L., Ackman, J. B., Thomas, A. M., Lee, R. V., and LoTurco, J. J. (2003). 

RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 

6, 1277–1283. doi:10.1038/nn1153. 

Barber, M., Arai, Y., Morishita, Y., Vigier, L., Causeret, F., Borello, U., et al. (2015). Migration 

Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of 

Higher-Order Cortical Areas. Current Biology 25, 2466–2478. 

doi:10.1016/j.cub.2015.08.028. 

Barber, M., and Pierani, A. (2016). Tangential migration of glutamatergic neurons and cortical 

patterning during development: Lessons from Cajal-Retzius cells. Developmental 

Neurobiology 76, 847–881. doi:10.1002/dneu.22363. 



 138 

Barnes, A., Isohanni, M., Barnett, J. H., Pietiläinen, O., Veijola, J., Miettunen, J., et al. (2012). 

Neuregulin-1 genotype is associated with structural differences in the normal human 

brain. NeuroImage 59, 2057–2061. doi:10.1016/j.neuroimage.2011.10.007. 

Barnes, C. E., English, D. M., and Cowley, S. M. (2019). Acetylation & Co: an expanding 

repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 

63, 97–107. doi:10.1042/EBC20180061. 

Barros, C. S., Calabrese, B., Chamero, P., Roberts, A. J., Korzus, E., Lloyd, K., et al. (2009). 

Impaired maturation of dendritic spines without disorganization of cortical cell layers in 

mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U 

S A 106, 4507–4512. doi:10.1073/pnas.0900355106. 

Barros, C. S., Franco, S. J., and Muller, U. (2011). Extracellular Matrix: Functions in the 

Nervous System. Cold Spring Harbor Perspectives in Biology 3, a005108–a005108. 

doi:10.1101/cshperspect.a005108. 

Barton, V. N., Donson, A. M., Kleinschmidt-DeMasters, B. K., Gore, L., Liu, A. K., and 

Foreman, N. K. (2009). PARP1 expression in pediatric central nervous system tumors. 

Pediatric Blood & Cancer 53, 1227–1230. doi:10.1002/pbc.22141. 

Beck, C., Robert, I., Reina-San-Martin, B., Schreiber, V., and Dantzer, F. (2014). Poly(ADP-

ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3. 

Experimental Cell Research 329, 18–25. doi:10.1016/j.yexcr.2014.07.003. 

Becker, A., Zhang, P., Allmann, L., Meilinger, D., Bertulat, B., Eck, D., et al. (2016). Poly(ADP-

ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure. 

J. Biol. Chem. 291, 4873–4881. doi:10.1074/jbc.M115.698357. 

Berninger, B., Guillemot, F., and Götz, M. (2007). Directing neurotransmitter identity of 

neurones derived from expanded adult neural stem cells. European Journal of 

Neuroscience 25, 2581–2590. doi:10.1111/j.1460-9568.2007.05509.x. 

Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemin-Ménard, A., et al. (2013). 

Precursor Diversity and Complexity of Lineage Relationships in the Outer Subventricular 

Zone of the Primate. Neuron 80, 442–457. doi:10.1016/j.neuron.2013.09.032. 

Bhatt, D., and Ghosh, S. (2014). Regulation of the NF-κB-Mediated Transcription of 

Inflammatory Genes. Front. Immunol. 5. doi:10.3389/fimmu.2014.00071. 

Bielle, F., Griveau, A., Narboux-Nême, N., Vigneau, S., Sigrist, M., Arber, S., et al. (2005). 

Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature 

Neuroscience 8, 1002–1012. doi:10.1038/nn1511. 

Blanquie, O., Liebmann, L., Hübner, C. A., Luhmann, H. J., and Sinning, A. (2017). NKCC1-

Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal–

Retzius Cells. Cereb Cortex 27, 1644–1659. doi:10.1093/cercor/bhw004. 



 139 

Bock, H. H., Jossin, Y., Liu, P., Förster, E., May, P., Goffinet, A. M., et al. (2003). 

Phosphatidylinositol 3-Kinase Interacts with the Adaptor Protein Dab1 in Response to 

Reelin Signaling and Is Required for Normal Cortical Lamination*. Journal of Biological 

Chemistry 278, 38772–38779. doi:10.1074/jbc.M306416200. 

Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D. A., Rozovsky, I., et al. (1997). 

Regulation of Gliogenesis in the Central Nervous System by the JAK-STAT Signaling 

Pathway. Science 278, 477–483. doi:10.1126/science.278.5337.477. 

Borrell, V., and Marín, O. (2006). Meninges control tangential migration of hem-derived Cajal-

Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 9, 1284–1293. 

doi:10.1038/nn1764. 

Bouchard, V. J., Rouleau, M., and Poirier, G. G. (2003). PARP-1, a determinant of cell survival 

in response to DNA damage. Experimental Hematology 31, 446–454. 

doi:10.1016/S0301-472X(03)00083-3. 

Brinkmann, B. G., Agarwal, A., Sereda, M. W., Garratt, A. N., Müller, T., Wende, H., et al. 

(2008). Neuregulin-1/ErbB signaling serves distinct functions in myelination of the 

peripheral and central nervous system. Neuron 59, 581–595. 

doi:10.1016/j.neuron.2008.06.028. 

Brunstrom, J. E., Gray-Swain, M. R., Osborne, P. A., and Pearlman, A. L. (1997). Neuronal 

Heterotopias in the Developing Cerebral Cortex Produced by Neurotrophin-4. Neuron 18, 

505–517. doi:10.1016/S0896-6273(00)81250-7. 

Bulchand, S., Grove, E. A., Porter, F. D., and Tole, S. (2001). LIM-homeodomain gene Lhx2 

regulates the formation of the cortical hem. Mechanisms of Development 100, 165–175. 

doi:10.1016/S0925-4773(00)00515-3. 

Cai, Y., Xu, L., Xu, H., and Fan, X. (2016). SIRT1 and Neural Cell Fate Determination. Mol 

Neurobiol 53, 2815–2825. doi:10.1007/s12035-015-9158-6. 

Caldecott, K. W., Aoufouchi, S., Johnson, P., and Shall, S. (1996). XRCC1 polypeptide interacts 

with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase 

III is a novel molecular “nick-sensor” in vitro. Nucleic Acids Res 24, 4387–4394. 

Cannon, D. M., Walshe, M., Dempster, E., Collier, D. A., Marshall, N., Bramon, E., et al. 

(2012). The association of white matter volume in psychotic disorders with genotypic 

variation in NRG1, MOG and CNP: a voxel-based analysis in affected individuals and 

their unaffected relatives. Transl Psychiatry 2, e167. doi:10.1038/tp.2012.82. 

Cao, F., Hata, R., Zhu, P., Ma, Y.-J., Tanaka, J., Hanakawa, Y., et al. (2006). Overexpression of 

SOCS3 inhibits astrogliogenesis and promotes maintenance of neural stem cells. J 

Neurochem 98, 459–470. doi:10.1111/j.1471-4159.2006.03890.x. 



 140 

Cao, F., Hata, R., Zhu, P., Nakashiro, K., and Sakanaka, M. (2010). Conditional deletion of Stat3 

promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem 

Biophys Res Commun 394, 843–847. doi:10.1016/j.bbrc.2010.03.092. 

Carmona, M. A., Pozas, E., Martínez, A., Espinosa-Parrilla, J. F., Soriano, E., and Aguado, F. 

(2006). Age-dependent Spontaneous Hyperexcitability and Impairment of GABAergic 

Function in the Hippocampus of Mice Lacking trkB. Cerebral Cortex 16, 47–63. 

doi:10.1093/cercor/bhi083. 

Caruso, L. B., Martin, K. A., Lauretti, E., Hulse, M., Siciliano, M., Lupey-Green, L. N., et al. 

(2018). Poly(ADP-ribose) Polymerase 1, PARP1, modifies EZH2 and inhibits EZH2 

histone methyltransferase activity after DNA damage. Oncotarget 9. 

doi:10.18632/oncotarget.24291. 

Casarosa, S., Fode, C., and Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral 

telencephalon. Development 126, 525–534. doi:10.1242/dev.126.3.525. 

Castro, D. S., and Guillemot, F. (2011). Old and new functions of proneural factors revealed by 

the genome-wide characterization of their transcriptional targets. Cell Cycle 10, 4026–

4031. doi:10.4161/cc.10.23.18578. 

Caviness, V. S., Takahashi, T., and Nowakowski, R. S. (1995). Numbers, time and neocortical 

neuronogenesis: a general developmental and evolutionary model. Trends in 

Neurosciences 18, 379–383. doi:10.1016/0166-2236(95)93933-O. 

Cervantes-Laurean, D., Jacobson, E. L., and Jacobson, M. K. (1996). Glycation and 

Glycoxidation of Histones by ADP-ribose. Journal of Biological Chemistry 271, 10461–

10469. doi:10.1074/jbc.271.18.10461. 

Chacon-Cabrera, A., Fermoselle, C., Salmela, I., Yelamos, J., and Barreiro, E. (2015). 

MicroRNA expression and protein acetylation pattern in respiratory and limb muscles of 

Parp-1−/− and Parp-2−/− mice with lung cancer cachexia. Biochimica et Biophysica Acta 

(BBA) - General Subjects 1850, 2530–2543. doi:10.1016/j.bbagen.2015.09.020. 

Chai, X., Förster, E., Zhao, S., Bock, H. H., and Frotscher, M. (2009). Reelin Stabilizes the Actin 

Cytoskeleton of Neuronal Processes by Inducing n-Cofilin Phosphorylation at Serine3. J 

Neurosci 29, 288–299. doi:10.1523/JNEUROSCI.2934-08.2009. 

Chai, X., Zhao, S., Fan, L., Zhang, W., Lu, X., Shao, H., et al. (2016). Reelin and cofilin 

cooperate during the migration of cortical neurons: a quantitative morphological analysis. 

Development 143, 1029–1040. doi:10.1242/dev.134163. 

Chambers, C. B., Peng, Y., Nguyen, H., Gaiano, N., Fishell, G., and Nye, J. S. (2001). 

Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain 

precursors. Development 128, 689–702. doi:10.1242/dev.128.5.689. 

Chambon, P., Weill, J. D., Doly, J., Strosser, M. T., and Mandel, P. (1966). On the formation of 

a novel adenylic compound by enzymatic extracts of liver nuclei. Biochemical and 



 141 

Biophysical Research Communications 25, 638–643. doi:10.1016/0006-291X(66)90502-

X. 

Chana, G., Landau, S., Beasley, C., Everall, I. P., and Cotter, D. (2003). Two-dimensional 

assessment of cytoarchitecture in the anterior cingulate cortex in major depressive 

disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size 

and increased neuronal density. Biological Psychiatry 53, 1086–1098. 

doi:10.1016/S0006-3223(03)00114-8. 

Chaudhury, A. R., Gerecke, K. M., Wyss, J. M., Morgan, D. G., Gordon, M. N., and Carroll, S. 

L. (2003). Neuregulin-1 and ErbB4 Immunoreactivity Is Associated with Neuritic 

Plaques in Alzheimer Disease Brain and in a Transgenic Model of Alzheimer Disease. 

Journal of Neuropathology & Experimental Neurology 62, 42–54. 

doi:10.1093/jnen/62.1.42. 

Chen, G., Sima, J., Jin, M., Wang, K., Xue, X., Zheng, W., et al. (2008). Semaphorin-3A guides 

radial migration of cortical neurons during development. Nat Neurosci 11, 36–44. 

doi:10.1038/nn2018. 

Chen, Y., Chen, S., Liang, H., Yang, H., Liu, L., Zhou, K., et al. (2018). Bcl-2 protects TK6 cells 

against hydroquinone-induced apoptosis through PARP-1 cytoplasm translocation and 

stabilizing mitochondrial membrane potential. Environmental and Molecular 

Mutagenesis 59, 49–59. doi:10.1002/em.22126. 

Chen, Y., Sharma, R. P., Costa, R. H., Costa, E., and Grayson, D. R. (2002). On the epigenetic 

regulation of the human reelin promoter. Nucleic Acids Res 30, 2930–2939. 

Chen, Z.-L., Haegeli, V., Yu, H., and Strickland, S. (2009). Cortical deficiency of laminin γ1 

impairs the AKT/GSK-3β signaling pathway and leads to defects in neurite outgrowth 

and neuronal migration. Dev Biol 327, 158–168. doi:10.1016/j.ydbio.2008.12.006. 

Cheng, T.-L., and Qiu, Z. (2014). MeCP2: multifaceted roles in gene regulation and neural 

development. Neurosci Bull 30, 601–609. doi:10.1007/s12264-014-1452-6. 

Cherney, B. W., McBride, O. W., Chen, D. F., Alkhatib, H., Bhatia, K., Hensley, P., et al. 

(1987). cDNA sequence, protein structure, and chromosomal location of the human gene 

for poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A 84, 8370–8374. 

Chiarugi, A. (2005). Poly(ADP-ribosyl)ation and stroke. Pharmacological Research 52, 15–24. 

doi:10.1016/j.phrs.2005.02.018. 

Christensen, J., Agger, K., Cloos, P. A. C., Pasini, D., Rose, S., Sennels, L., et al. (2007). RBP2 

Belongs to a Family of Demethylases, Specific for Tri-and Dimethylated Lysine 4 on 

Histone 3. Cell 128, 1063–1076. doi:10.1016/j.cell.2007.02.003. 

Chu, J., and Anderson, S. A. (2015). Development of Cortical Interneurons. 

Neuropsychopharmacol 40, 16–23. doi:10.1038/npp.2014.171. 



 142 

Chung, D. W., Volk, D. W., Arion, D., Zhang, Y., Sampson, A. R., and Lewis, D. A. (2016). 

Dysregulated ErbB4 Splicing in Schizophrenia: Selective Effects on Parvalbumin 

Expression. Am J Psychiatry 173, 60–68. doi:10.1176/appi.ajp.2015.15020150. 

Ciccarone, F., Valentini, E., Zampieri, M., and Caiafa, P. (2015). 5mC-hydroxylase activity is 

influenced by the PARylation of TET1 enzyme. Oncotarget 6. 

doi:10.18632/oncotarget.4476. 

Cohen-Armon, M., Visochek, L., Rozensal, D., Kalal, A., Geistrikh, I., Klein, R., et al. (2007). 

DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: 

A Link to Histone Acetylation. Molecular Cell 25, 297–308. 

doi:10.1016/j.molcel.2006.12.012. 

Cooper, J. A. (2013). Mechanisms of cell migration in the nervous system. Journal of Cell 

Biology 202, 725–734. doi:10.1083/jcb.201305021. 

Cox, E. A., and Huttenlocher, A. (1998). Regulation of integrin-mediated adhesion during cell 

migration. Microscopy Research and Technique 43, 412–419. 

doi:https://doi.org/10.1002/(SICI)1097-0029(19981201)43:5<412::AID-

JEMT7>3.0.CO;2-F. 

Dahm, G. M., Gubin, M. M., Magee, J. D., Techasintana, P., Calaluce, R., and Atasoy, U. 

(2012). Method for the Isolation and Identification of mRNAs, microRNAs and Protein 

Components of Ribonucleoprotein Complexes from Cell Extracts using RIP-Chip. J Vis 

Exp. doi:10.3791/3851. 

D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. (1999). Poly(ADP-ribosyl)ation 

reactions in the regulation of nuclear functions. Biochem J 342, 249–268. 

Danhauser, K., Alhaddad, B., Makowski, C., Piekutowska-Abramczuk, D., Syrbe, S., Gomez-

Ospina, N., et al. (2018). Bi-allelic ADPRHL2 Mutations Cause Neurodegeneration with 

Developmental Delay, Ataxia, and Axonal Neuropathy. The American Journal of Human 

Genetics 103, 817–825. doi:10.1016/j.ajhg.2018.10.005. 

Daniel, D., Rossel, M., Seki, T., and König, N. (2005). Stromal cell-derived factor-1 (SDF-1) 

expression in embryonic mouse cerebral cortex starts in the intermediate zone close to the 

pallial–subpallial boundary and extends progressively towards the cortical hem. Gene 

Expression Patterns 5, 317–322. doi:10.1016/j.modgep.2004.10.007. 

D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). 

Reelin Is a Ligand for Lipoprotein Receptors. Neuron 24, 471–479. doi:10.1016/S0896-

6273(00)80860-0. 

D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). 

Reelin Is a Secreted Glycoprotein Recognized by the CR-50 Monoclonal Antibody. J. 

Neurosci. 17, 23–31. doi:10.1523/JNEUROSCI.17-01-00023.1997. 



 143 

Dave, R. K., Ellis, T., Toumpas, M. C., Robson, J. P., Julian, E., Adolphe, C., et al. (2011). Sonic 

Hedgehog and Notch Signaling Can Cooperate to Regulate Neurogenic Divisions of 

Neocortical Progenitors. PLoS One 6. doi:10.1371/journal.pone.0014680. 

Davis, S., Aldrich, T. H., Stahl, N., Pan, L., Taga, T., Kishimoto, T., et al. (1993). LIFR beta and 

gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 

260, 1805–1808. doi:10.1126/science.8390097. 

de Murcia, J. M., Niedergang, C., Trucco, C., Ricoul, M., Dutrillaux, B., Mark, M., et al. (1997). 

Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice 

and in cells. PNAS 94, 7303–7307. 

De Strooper, B. (2007). Loss-of-function presenilin mutations in Alzheimer disease. Talking 

Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8, 141–146. 

doi:10.1038/sj.embor.7400897. 

del Río, J. A., Martinez, A., Fonseca, M., Auladell, C., and Soriano, E. (1995). Glutamate-like 

Immunoreactivity and Fate of Cajal-Retzius Cells in the Murine Cortex as Identified with 

Calretinin Antibody. Cerebral Cortex 5, 13–21. doi:10.1093/cercor/5.1.13. 

del Pino, I., García-Frigola, C., Dehorter, N., Brotons-Mas, J. R., Alvarez-Salvado, E., 

Martínez de Lagrán, M., et al. (2013). Erbb4 Deletion from Fast-Spiking Interneurons 

Causes Schizophrenia-like Phenotypes. Neuron 79, 1152–1168. 

doi:10.1016/j.neuron.2013.07.010. 

Depboylu, C., Höllerhage, M., Schnurrbusch, S., Brundin, P., Oertel, W. H., Schrattenholz, A., et 

al. (2012). Neuregulin-1 receptor tyrosine kinase ErbB4 is upregulated in midbrain 

dopaminergic neurons in Parkinson disease. Neuroscience Letters 531, 209–214. 

doi:10.1016/j.neulet.2012.10.050. 

Di Giammartino, D. C., Shi, Y., and Manley, J. L. (2013). PARP1 REPRESSES PAP AND 

INHIBITS POLYADENYLATION DURING HEAT SHOCK. Mol Cell 49, 7–17. 

doi:10.1016/j.molcel.2012.11.005. 

Ding, L., Chen, X., Xu, X., Qian, Y., Liang, G., Yao, F., et al. (2019). PARP1 Suppresses the 

Transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res 7, 

136–149. doi:10.1158/2326-6066.CIR-18-0071. 

Dixit, R., Zimmer, C., Waclaw, R. R., Mattar, P., Shaker, T., Kovach, C., et al. (2011). Ascl1 

Participates in Cajal–Retzius Cell Development in the Neocortex. Cerebral Cortex 21, 

2599–2611. doi:10.1093/cercor/bhr046. 

Dong, Z., Yang, N., Yeo, S.-Y., Chitnis, A., and Guo, S. (2012). Intra-lineage Directional Notch 

Signaling Regulates Self-renewal and Differentiation of Asymmetrically Dividing Radial 

Glia. Neuron 74, 65–78. doi:10.1016/j.neuron.2012.01.031. 

Du, T., Xu, Q., Ocbina, P. J., and Anderson, S. A. (2008). NKX2.1 specifies cortical interneuron 

fate by activating Lhx6. Development 135, 1559–1567. doi:10.1242/dev.015123. 



 144 

Durkacz, B. W., Omidiji, O., Gray, D. A., and Shall, S. (1980). (ADP-ribose) n participates in 

DNA excision repair. Nature 283, 593–596. doi:10.1038/283593a0. 

Durmus, H., Mertoğlu, E., Sticht, H., Ceylaner, S., Kulaksızoğlu, I. B., Hashemolhosseini, S., et 

al. (2021). Episodic psychosis, ataxia, motor neuropathy with pyramidal signs (PAMP 

syndrome) caused by a novel mutation in ADPRHL2 (AHR3). Neurol Sci. 

doi:10.1007/s10072-021-05100-w. 

Dziadkowiec, K. N., Gąsiorowska, E., Nowak-Markwitz, E., and Jankowska, A. (2016). PARP 

inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. pm 4, 215–

219. doi:10.5114/pm.2016.65667. 

Eguchi, Y., Shimizu, S., and Tsujimoto, Y. (1997). Intracellular ATP Levels Determine Cell 

Death Fate by Apoptosis or Necrosis. Cancer Res 57, 1835–1840. 

Elenius, K., Corfas, G., Paul, S., Choi, C. J., Rio, C., Plowman, G. D., et al. (1997). A Novel 

Juxtamembrane Domain Isoform of HER4/ErbB4: ISOFORM-SPECIFIC TISSUE 

DISTRIBUTION AND DIFFERENTIAL PROCESSING IN RESPONSE TO 

PHORBOL ESTER*. Journal of Biological Chemistry 272, 26761–26768. 

doi:10.1074/jbc.272.42.26761. 

Eliasson, M. J. L., Sampei, K., Mandir, A. S., Hurn, P. D., Traystman, R. J., Bao, J., et al. (1997). 

Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral 

ischemia. Nat Med 3, 1089–1095. doi:10.1038/nm1097-1089. 

El-Khamisy, S. F., Masutani, M., Suzuki, H., and Caldecott, K. W. (2003). A requirement for 

PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA 

damage. Nucleic Acids Res 31, 5526–5533. doi:10.1093/nar/gkg761. 

Endres, M., Wang, Z.-Q., Namura, S., Waeber, C., and Moskowitz, M. A. (1997). Ischemic 

Brain Injury is Mediated by the Activation of Poly(ADP-Ribose)Polymerase. J Cereb 

Blood Flow Metab 17, 1143–1151. doi:10.1097/00004647-199711000-00002. 

Evangelisti, C., Florian, M. C., Massimi, I., Dominici, C., Giannini, G., Galardi, S., et al. (2009). 

MiR‐128 up‐regulation inhibits Reelin and DCX expression and reduces neuroblastoma 

cell motility and invasiveness. FASEB j. 23, 4276–4287. doi:10.1096/fj.09-134965. 

Farez, M. F., Quintana, F. J., Gandhi, R., Izquierdo, G., Lucas, M., and Weiner, H. L. (2009). 

Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system 

neuroinflammation in progressive EAE. Nat Immunol 10, 958–964. doi:10.1038/ni.1775. 

Fazzari, P., Paternain, A. V., Valiente, M., Pla, R., Luján, R., Lloyd, K., et al. (2010). Control of 

cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464, 1376–

1380. doi:10.1038/nature08928. 

Feng, Y., Cheng, D., Zhang, C., Li, Y., Zhang, Z., Wang, J., et al. (2017). Association between 

ErbB4 single nucleotide polymorphisms and susceptibility to schizophrenia. Medicine 

(Baltimore) 96. doi:10.1097/MD.0000000000005920. 



 145 

Ferent, J., Zaidi, D., and Francis, F. (2020). Extracellular Control of Radial Glia Proliferation 

and Scaffolding During Cortical Development and Pathology. Front. Cell Dev. Biol. 8. 

doi:10.3389/fcell.2020.578341. 

Fietz, S. A., Kelava, I., Vogt, J., Wilsch-Bräuninger, M., Stenzel, D., Fish, J. L., et al. (2010). 

OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by 

integrin signaling. Nat Neurosci 13, 690–699. doi:10.1038/nn.2553. 

Fischer, U., Jänicke, R. U., and Schulze-Osthoff, K. (2003). Many cuts to ruin: a comprehensive 

update of caspase substrates. Cell Death Differ 10, 76–100. doi:10.1038/sj.cdd.4401160. 

Flames, N., Long, J. E., Garratt, A. N., Fischer, T. M., Gassmann, M., Birchmeier, C., et al. 

(2004). Short- and Long-Range Attraction of Cortical GABAergic Interneurons by 

Neuregulin-1. Neuron 44, 251–261. doi:10.1016/j.neuron.2004.09.028. 

Florio, M., and Huttner, W. B. (2014). Neural progenitors, neurogenesis and the evolution of the 

neocortex. Development 141, 2182–2194. doi:10.1242/dev.090571. 

Folsom, T. D., and Fatemi, S. H. (2013). The involvement of Reelin in neurodevelopmental 

disorders. Neuropharmacology 68, 122–135. doi:10.1016/j.neuropharm.2012.08.015. 

Fox, I. J., and Kornblum, H. I. (2005). Developmental profile of ErbB receptors in murine 

central nervous system: Implications for functional interactions. J. Neurosci. Res. 79, 

584–597. doi:10.1002/jnr.20381. 

Franco, S. J., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S. R., and Müller, U. (2011). 

Reelin Regulates Cadherin Function via Dab1/Rap1 to Control Neuronal Migration and 

Lamination in the Neocortex. Neuron 69, 482–497. doi:10.1016/j.neuron.2011.01.003. 

Franco, S. J., and Müller, U. (2011). ECM Functions During Neuronal Migration and Lamination 

in the Mammalian Central Nervous System. Dev Neurobiol 71, 889–900. 

doi:10.1002/dneu.20946. 

Friedman, W. J., Olson, L., and Persson, H. (1991). Cells that Express Brain-Derived 

Neurotrophic Factor mRNA in the Developing Postnatal Rat Brain. European Journal of 

Neuroscience 3, 688–697. doi:10.1111/j.1460-9568.1991.tb00854.x. 

Gaiano, N., and Fishell, G. (2002). The Role of Notch in Promoting Glial and Neural Stem Cell 

Fates. Annu. Rev. Neurosci. 25, 471–490. doi:10.1146/annurev.neuro.25.030702.130823. 

Gaiano, N., Nye, J. S., and Fishell, G. (2000). Radial Glial Identity Is Promoted by Notch1 

Signaling in the Murine Forebrain. Neuron 26, 395–404. doi:10.1016/S0896-

6273(00)81172-1. 

Galbis-Martínez, M., Saenz, L., Ramírez, P., Parrilla, P., and Yélamos, J. (2010). Poly(ADP-

ribose) polymerase-1 modulates interferon-γ-inducible protein (IP)-10 expression in 

murine embryonic fibroblasts by stabilizing IP-10 mRNA. Molecular Immunology 47, 

1492–1499. doi:10.1016/j.molimm.2010.01.022. 



 146 

Galia, A., Calogero, A. E., Condorelli, R. A., Fraggetta, F., La Corte, C., Ridolfo, F., et al. 

(2012). PARP-1 protein expression in glioblastoma multiforme. Eur J Histochem 56. 

doi:10.4081/ejh.2012.e9. 

Gamble, M. J., and Fisher, R. P. (2007). SET and PARP1 remove DEK from chromatin to permit 

access by the transcription machinery. Nature Structural & Molecular Biology 14, 548–

555. doi:10.1038/nsmb1248. 

Gao, F., Kwon, S. W., Zhao, Y., and Jin, Y. (2009). PARP1 Poly(ADP-ribosyl)ates Sox2 to 

Control Sox2 Protein Levels and FGF4 Expression during Embryonic Stem Cell 

Differentiation. J. Biol. Chem. 284, 22263–22273. doi:10.1074/jbc.M109.033118. 

García, S., and Conde, C. (2015). The Role of Poly(ADP-ribose) Polymerase-1 in Rheumatoid 

Arthritis. Mediators Inflamm 2015. doi:10.1155/2015/837250. 

Garcion, E., Halilagic, A., Faissner, A., and ffrench-Constant, C. (2004). Generation of an 

environmental niche for neural stem cell development by the extracellular matrix 

molecule tenascin C. Development 131, 3423–3432. doi:10.1242/dev.01202. 

Gärtner, A., Fornasiero, E. F., Munck, S., Vennekens, K., Seuntjens, E., Huttner, W. B., et al. 

(2012). N-cadherin specifies first asymmetry in developing neurons. EMBO J 31, 1893–

1903. doi:10.1038/emboj.2012.41. 

Gauthier, A. S., Furstoss, O., Araki, T., Chan, R., Neel, B. G., Kaplan, D. R., et al. (2007). 

Control of CNS Cell Fate Decisions by SHP-2 and its Dysregulation in Noonan 

Syndrome. Neuron 54, 245–262. doi:10.1016/j.neuron.2007.03.027. 

Ge, W., Martinowich, K., Wu, X., He, F., Miyamoto, A., Fan, G., et al. (2002). Notch signaling 

promotes astrogliogenesis via direct CSL-mediated glial gene activation. Journal of 

Neuroscience Research 69, 848–860. doi:10.1002/jnr.10364. 

Ge, W.-P., Miyawaki, A., Gage, F. H., Jan, Y. N., and Jan, L. Y. (2012). Local generation of glia 

is a major astrocyte source in postnatal cortex. Nature 484, 376–380. 

doi:10.1038/nature10959. 

Gilbert de Murcia and Josiane Menissier de Murcia (1994). Poly(ADP-ribose) polymerase: a 

molecular nick-sensor. Trends in Biochemical Sciences 19, 172–176. doi:10.1016/0968-

0004(94)90280-1. 

Gil-Sanz, C., Franco, S. J., Martinez-Garay, I., Espinosa, A., Harkins-Perry, S., and Müller, U. 

(2013). Cajal-Retzius Cells Instruct Neuronal Migration by Coincidence Signaling 

between Secreted and Contact-Dependent Guidance Cues. Neuron 79, 461–477. 

doi:10.1016/j.neuron.2013.06.040. 

Girós, A., Morante, J., Gil-Sanz, C., Fairén, A., and Costell, M. (2007). Perlecan controls 

neurogenesis in the developing telencephalon. BMC Dev Biol 7, 29. doi:10.1186/1471-

213X-7-29. 



 147 

Go, R. C. P., Perry, R. T., Wiener, H., Bassett, S. S., Blacker, D., Devlin, B., et al. (2005). 

Neuregulin-1 polymorphism in late onset Alzheimer’s disease families with psychoses. 

American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 139B, 28–32. 

doi:https://doi.org/10.1002/ajmg.b.30219. 

Goffinet, A. M., So, K.-F., Yamamoto, M., Edwards, M., and Caviness, V. S. (1984). 

Architectonic and hodological organization of the cerebellum in reeler mutant mice. 

Developmental Brain Research 16, 263–276. doi:10.1016/0165-3806(84)90031-2. 

Goldberg, S., Visochek, L., Giladi, E., Gozes, I., and Cohen-Armon, M. (2009). PolyADP-

ribosylation is required for long-term memory formation in mammals. Journal of 

Neurochemistry 111, 72–79. doi:10.1111/j.1471-4159.2009.06296.x. 

Golub, M. S., Germann, S. L., and Lloyd, K. C. K. (2004). Behavioral characteristics of a 

nervous system-specific erbB4 knock-out mouse. Behavioural Brain Research 153, 159–

170. doi:10.1016/j.bbr.2003.11.010. 

Grandbarbe, L., Bouissac, J., Rand, M., Hrabé de Angelis, M., Artavanis-Tsakonas, S., and 

Mohier, E. (2003). Delta-Notch signaling controls the generation of neurons/glia from 

neural stem cells in a stepwise process. Development 130, 1391–1402. 

doi:10.1242/dev.00374. 

Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., et al. 

(2001). β1-Class Integrins Regulate the Development of Laminae and Folia in the 

Cerebral and Cerebellar Cortex. Neuron 31, 367–379. doi:10.1016/S0896-

6273(01)00374-9. 

Griveau, A., Borello, U., Causeret, F., Tissir, F., Boggetto, N., Karaz, S., et al. (2010). A Novel 

Role for Dbx1-Derived Cajal-Retzius Cells in Early Regionalization of the Cerebral 

Cortical Neuroepithelium. PLOS Biology 8, e1000440. 

doi:10.1371/journal.pbio.1000440. 

Gu, F., Hata, R., Ma, Y.-J., Tanaka, J., Mitsuda, N., Kumon, Y., et al. (2005). Suppression of 

Stat3 promotes neurogenesis in cultured neural stem cells. Journal of Neuroscience 

Research 81, 163–171. doi:10.1002/jnr.20561. 

Guillemot, F. (2005). Cellular and molecular control of neurogenesis in the mammalian 

telencephalon. Current Opinion in Cell Biology 17, 639–647. 

doi:10.1016/j.ceb.2005.09.006. 

Gunhaga, L., Marklund, M., Sjödal, M., Hsieh, J.-C., Jessell, T. M., and Edlund, T. (2003). 

Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. Nat 

Neurosci 6, 701–707. doi:10.1038/nn1068. 

Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A., and Carraway, K. L. (1994). Insect cell-

expressed p180erbB3 possesses an impaired tyrosine kinase activity. PNAS 91, 8132–

8136. 



 148 

Haim, L. B., and Rowitch, D. H. (2017). Functional diversity of astrocytes in neural circuit 

regulation. Nat Rev Neurosci 18, 31–41. doi:10.1038/nrn.2016.159. 

Haince, J.-F., McDonald, D., Rodrigue, A., Déry, U., Masson, J.-Y., Hendzel, M. J., et al. 

(2008). PARP1-dependent Kinetics of Recruitment of MRE11 and NBS1 Proteins to 

Multiple DNA Damage Sites*. Journal of Biological Chemistry 283, 1197–1208. 

doi:10.1074/jbc.M706734200. 

Halfter, W., Dong, S., Yip, Y.-P., Willem, M., and Mayer, U. (2002). A Critical Function of the 

Pial Basement Membrane in Cortical Histogenesis. J Neurosci 22, 6029–6040. 

doi:10.1523/JNEUROSCI.22-14-06029.2002. 

Hamburgh, M. (1963). Analysis of the postnatal developmental effects of “reeler,” a neurological 

mutation in mice. A study in developmental genetics. Developmental Biology 8, 165–

185. doi:10.1016/0012-1606(63)90040-X. 

Hansen, D. V., Lui, J. H., Parker, P. R. L., and Kriegstein, A. R. (2010). Neurogenic radial glia 

in the outer subventricular zone of human neocortex. Nature 464, 554–561. 

doi:10.1038/nature08845. 

Hartfuss, E., Galli, R., Heins, N., and Götz, M. (2001). Characterization of CNS Precursor 

Subtypes and Radial Glia. Developmental Biology 229, 15–30. 

doi:10.1006/dbio.2000.9962. 

Hassa, P. O., Buerki, C., Lombardi, C., Imhof, R., and Hottiger, M. O. (2003). Transcriptional 

Coactivation of Nuclear Factor-κB-dependent Gene Expression by p300 Is Regulated by 

Poly(ADP)-ribose Polymerase-1*. Journal of Biological Chemistry 278, 45145–45153. 

doi:10.1074/jbc.M307957200. 

Hassa, P. O., and Hottiger, M. O. (1999). A Role of Poly (ADP-Ribose) Polymerase in NF- B 

Transcriptional Activation. 380, 953–959. doi:10.1515/BC.1999.118. 

Hau, A.-C., Grebbin, B. M., Agoston, Z., Anders-Maurer, M., Müller, T., Groß, A., et al. (2017). 

MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1. 

Journal of Cell Biology 216, 2715–2729. doi:10.1083/jcb.201701154. 

Haubst, N., Georges-Labouesse, E., De Arcangelis, A., Mayer, U., and Götz, M. (2006). 

Basement membrane attachment is dispensable for radial glial cell fate and for 

proliferation, but affects positioning of neuronal subtypes. Development 133, 3245–3254. 

doi:10.1242/dev.02486. 

Heim, L.-O., Kappl, M., and Butt, H.-J. (2004). Tilt of Atomic Force Microscope Cantilevers:  

Effect on Spring Constant and Adhesion Measurements. Langmuir 20, 2760–2764. 

doi:10.1021/la036128m. 

Hermanson, O., Jepsen, K., and Rosenfeld, M. G. (2002). N-CoR controls differentiation of 

neural stem cells into astrocytes. Nature 419, 934–939. doi:10.1038/nature01156. 



 149 

Herskovits, A. Z., and Guarente, L. (2014). SIRT1 in neurodevelopment and brain senescence. 

Neuron 81, 471–483. doi:10.1016/j.neuron.2014.01.028. 

Hevner, R. F., Shi, L., Justice, N., Hsueh, Y.-P., Sheng, M., Smiga, S., et al. (2001). Tbr1 

Regulates Differentiation of the Preplate and Layer 6. Neuron 29, 353–366. 

doi:10.1016/S0896-6273(01)00211-2. 

Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., et 

al. (1999). Direct Binding of Reelin to VLDL Receptor and ApoE Receptor 2 Induces 

Tyrosine Phosphorylation of Disabled-1 and Modulates Tau Phosphorylation. Neuron 24, 

481–489. doi:10.1016/S0896-6273(00)80861-2. 

Hirabayashi, Y., Itoh, Y., Tabata, H., Nakajima, K., Akiyama, T., Masuyama, N., et al. (2004). 

The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor 

cells. Development 131, 2791–2801. doi:10.1242/dev.01165. 

Hirota, Y., Kubo, K., Fujino, T., Yamamoto, T. T., and Nakajima, K. (2018). ApoER2 Controls 

Not Only Neuronal Migration in the Intermediate Zone But Also Termination of 

Migration in the Developing Cerebral Cortex. Cerebral Cortex 28, 223–235. 

doi:10.1093/cercor/bhw369. 

Hirota, Y., and Nakajima, K. (2017). Control of Neuronal Migration and Aggregation by Reelin 

Signaling in the Developing Cerebral Cortex. Front. Cell Dev. Biol. 5, 40. 

doi:10.3389/fcell.2017.00040. 

Hirota, Y., and Nakajima, K. (2020). VLDLR is not essential for reelin-induced neuronal 

aggregation but suppresses neuronal invasion into the marginal zone. Development 147. 

doi:10.1242/dev.189936. 

Hong, S., Yi, J. H., Lee, S., Park, C.-H., Ryu, J. H., Shin, K. S., et al. (2019). Defective 

neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis 

10, 943. doi:10.1038/s41419-019-2174-0. 

Howard, B., Chen, Y., and Zecevic, N. (2006). Cortical progenitor cells in the developing human 

telencephalon. Glia 53, 57–66. doi:10.1002/glia.20259. 

Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999). Reelin-induced tryosine 

phosphorylation of Disabled 1 during neuronal positioning. Genes Dev 13, 643–648. 

Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y., and Cooper, J. A. (2000). Dab1 

tyrosine phosphorylation sites relay positional signals during mouse brain development. 

Current Biology 10, 877–885. doi:10.1016/S0960-9822(00)00608-4. 

Hu, Y., Petit, S. A., Ficarro, S. B., Toomire, K. J., Xie, A., Lim, E., et al. (2014). PARP1-Driven 

Poly-ADP-Ribosylation Regulates BRCA1 Function in Homologous Recombination–

Mediated DNA Repair. Cancer Discov 4, 1430–1447. 



 150 

Huang, D., Yang, C., Yao, L., Wang, Y., Liao, Y., and Huang, K. (2008). Activation and 

Overexpression of PARP-1 in Circulating Mononuclear Cells Promote TNF-α and IL-6 

Expression in Patients with Unstable Angina. Archives of Medical Research 39, 775–784. 

doi:10.1016/j.arcmed.2008.09.003. 

Huang, W., Zhang, L., Niu, R., and Liao, H. (2009). Tenascin-R distinct domains modulate 

migration of neural stem/progenitor cells in vitro. In Vitro Cell.Dev.Biol.-Animal 45, 10–

14. doi:10.1007/s11626-008-9145-6. 

Huang, Y., Magdaleno, S., Hopkins, R., Slaughter, C., Curran, T., and Keshvara, L. (2004). 

Tyrosine phosphorylated Disabled 1 recruits Crk family adapter proteins. Biochemical 

and Biophysical Research Communications 318, 204–212. 

doi:10.1016/j.bbrc.2004.04.023. 

Huang, Y., Yu, S., Wu, Z., and Tang, B. (2014). Genetics of hereditary neurological disorders in 

children. Transl Pediatr 3, 108–119. doi:10.3978/j.issn.2224-4336.2014.03.04. 

Huang, Y. Z., Won, S., Ali, D. W., Wang, Q., Tanowitz, M., Du, Q. S., et al. (2000). Regulation 

of Neuregulin Signaling by PSD-95 Interacting with ErbB4 at CNS Synapses. Neuron 26, 

443–455. doi:10.1016/S0896-6273(00)81176-9. 

Huletsky, A., de Murcia, G., Muller, S., Hengartner, M., Ménard, L., Lamarre, D., et al. (1989). 

The Effect of poly(ADP-ribosyl)ation on Native and H1-depleted Chromatin. Journal of 

Biological Chemistry 264, 8878–8886. doi:10.1016/S0021-9258(18)81875-0. 

Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of 

translational repression and mRNA decay. Nat Rev Genet 12, 99–110. 

doi:10.1038/nrg2936. 

Hutter, J. L. (2005). Comment on Tilt of Atomic Force Microscope Cantilevers:  Effect on 

Spring Constant and Adhesion Measurements. Langmuir 21, 2630–2632. 

doi:10.1021/la047670t. 

Huttner, W. B., and Brand, M. (1997). Asymmetric division and polarity of neuroepithelial cells. 

Current Opinion in Neurobiology 7, 29–39. doi:10.1016/S0959-4388(97)80117-1. 

Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., et al. (2013). 

Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural 

Progenitors. Science 342, 1203–1208. doi:10.1126/science.1242366. 

Imayoshi, I., Shimogori, T., Ohtsuka, T., and Kageyama, R. (2008). Hes genes and neurogenin 

regulate non-neural versus neural fate specification in the dorsal telencephalic midline. 

Development 135, 2531–2541. doi:10.1242/dev.021535. 

Inatani, M., Irie, F., Plump, A. S., Tessier-Lavigne, M., and Yamaguchi, Y. (2003). Mammalian 

Brain Morphogenesis and Midline Axon Guidance Require Heparan Sulfate. Science 302, 

1044–1046. doi:10.1126/science.1090497. 



 151 

Irintchev, A., Rollenhagen, A., Troncoso, E., Kiss, J. Z., and Schachner, M. (2005). Structural 

and Functional Aberrations in the Cerebral Cortex of Tenascin-C Deficient Mice. 

Cerebral Cortex 15, 950–962. doi:10.1093/cercor/bhh195. 

Ishii, K., Kubo, K., and Nakajima, K. (2016). Reelin and Neuropsychiatric Disorders. Front. 

Cell. Neurosci. 10. doi:10.3389/fncel.2016.00229. 

Ishii, M., and Maeda, N. (2008). Oversulfated Chondroitin Sulfate Plays Critical Roles in the 

Neuronal Migration in the Cerebral Cortex*. Journal of Biological Chemistry 283, 

32610–32620. doi:10.1074/jbc.M806331200. 

Israsena, N., Hu, M., Fu, W., Kan, L., and Kessler, J. A. (2004). The presence of FGF2 signaling 

determines whether β-catenin exerts effects on proliferation or neuronal differentiation of 

neural stem cells. Developmental Biology 268, 220–231. 

doi:10.1016/j.ydbio.2003.12.024. 

Jen, Y.-H. L., Musacchio, M., and Lander, A. D. (2009). Glypican-1 controls brain size through 

regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev 4, 33. 

doi:10.1186/1749-8104-4-33. 

Jiang, X., and Nardelli, J. (2016). Cellular and molecular introduction to brain development. 

Neurobiology of Disease 92, 3–17. doi:10.1016/j.nbd.2015.07.007. 

Jijon, H. B., Churchill, T., Malfair, D., Wessler, A., Jewell, L. D., Parsons, H. G., et al. (2000). 

Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of 

chronic colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology 

279, G641–G651. doi:10.1152/ajpgi.2000.279.3.G641. 

Joshi, D., Fullerton, J. M., and Weickert, C. S. (2014). Elevated ErbB4 mRNA is related to 

interneuron deficit in prefrontal cortex in schizophrenia. Journal of Psychiatric Research 

53, 125–132. doi:10.1016/j.jpsychires.2014.02.014. 

Ju, B.-G., Solum, D., Song, E. J., Lee, K.-J., Rose, D. W., Glass, C. K., et al. (2004). Activating 

the PARP-1 Sensor Component of the Groucho/ TLE1 Corepressor Complex Mediates a 

CaMKinase II␦-Dependent Neurogenic Gene Activation Pathway. 15. 

Jubin, T., Kadam, A., Gani, A. R., Singh, M., Dwivedi, M., and Begum, R. (2017). Poly ADP-

ribose polymerase-1: Beyond transcription and towards differentiation. Seminars in Cell 

& Developmental Biology 63, 167–179. doi:10.1016/j.semcdb.2016.07.027. 

Kaddour, H., Coppola, E., Di Nardo, A. A., Le Poupon, C., Mailly, P., Wizenmann, A., et al. 

(2020). Extracellular Pax6 Regulates Tangential Cajal–Retzius Cell Migration in the 

Developing Mouse Neocortex. Cerebral Cortex 30, 465–475. doi:10.1093/cercor/bhz098. 

Kam, T.-I., Mao, X., Park, H., Chou, S.-C., Karuppagounder, S. S., Umanah, G. E., et al. (2018). 

Poly (ADP-ribose) Drives Pathologic α-Synuclein Neurodegeneration in Parkinson’s 

Disease. Science 362. doi:10.1126/science.aat8407. 



 152 

Kamakura, S., Oishi, K., Yoshimatsu, T., Nakafuku, M., Masuyama, N., and Gotoh, Y. (2004). 

Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nat 

Cell Biol 6, 547–554. doi:10.1038/ncb1138. 

Kang, W., Wong, L. C., Shi, S.-H., and Hébert, J. M. (2009). The Transition from Radial Glial to 

Intermediate Progenitor Cell Is Inhibited by FGF Signaling during Corticogenesis. J 

Neurosci 29, 14571–14580. doi:10.1523/JNEUROSCI.3844-09.2009. 

Kataria, H., Alizadeh, A., and Karimi-Abdolrezaee, S. (2019). Neuregulin-1/ErbB network: An 

emerging modulator of nervous system injury and repair. Progress in Neurobiology 180, 

101643. doi:10.1016/j.pneurobio.2019.101643. 

Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G. (1993). 

Specific Proteolytic Cleavage of Poly(ADP-ribose) Polymerase: An Early Marker of 

Chemotherapy-induced Apoptosis. Cancer Res 53, 3976–3985. 

Kauppinen, T. M., Suh, S. W., Genain, C. P., and Swanson, R. A. (2005). Poly(ADP-ribose) 

polymerase-1 activation in a primate model of multiple sclerosis. Journal of 

Neuroscience Research 81, 190–198. doi:https://doi.org/10.1002/jnr.20525. 

Ke, Y., Han, Y., Guo, X., Wen, J., Wang, K., Jiang, X., et al. (2017). PARP1 promotes gene 

expression at the post-transcriptional level by modulating the RNA-binding protein HuR. 

Nat Commun 8, 14632. doi:10.1038/ncomms14632. 

Ke, Y., Zhang, J., Lv, X., Zeng, X., and Ba, X. (2019). Novel insights into PARPs in gene 

expression: regulation of RNA metabolism. Cell. Mol. Life Sci. 76, 3283–3299. 

doi:10.1007/s00018-019-03120-6. 

Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., and Richardson, W. D. (2006). 

Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an 

embryonic lineage. Nat Neurosci 9, 173–179. doi:10.1038/nn1620. 

Kim, J.-E., Kim, Y.-J., Kim, J. Y., and Kang, T.-C. (2014). PARP1 activation/expression 

modulates regional-specific neuronal and glial responses to seizure in a hemodynamic-

independent manner. Cell Death Dis 5, e1362. doi:10.1038/cddis.2014.331. 

Kim, M. Y., Mauro, S., Gévry, N., Lis, J. T., and Kraus, W. L. (2004). NAD+-Dependent 

Modulation of Chromatin Structure and Transcription by Nucleosome Binding Properties 

of PARP-1. Cell 119, 803–814. doi:10.1016/j.cell.2004.11.002. 

Kirischuk, S., Luhmann, H. J., and Kilb, W. (2014). Cajal–Retzius cells: Update on structural 

and functional properties of these mystic neurons that bridged the 20th century. 

Neuroscience 275, 33–46. doi:10.1016/j.neuroscience.2014.06.009. 

Kohno, S., Kohno, T., Nakano, Y., Suzuki, K., Ishii, M., Tagami, H., et al. (2009). Mechanism 

and significance of specific proteolytic cleavage of Reelin. Biochemical and Biophysical 

Research Communications 380, 93–97. doi:10.1016/j.bbrc.2009.01.039. 



 153 

Kohno, T., Honda, T., Kubo, K., Nakano, Y., Tsuchiya, A., Murakami, T., et al. (2015). 

Importance of Reelin C-Terminal Region in the Development and Maintenance of the 

Postnatal Cerebral Cortex and Its Regulation by Specific Proteolysis. J. Neurosci. 35, 

4776–4787. doi:10.1523/JNEUROSCI.4119-14.2015. 

Kolthur-Seetharam, U., Dantzer, F., McBurney, M. W., Murcia1, G. de, and Sassone-Corsi, P. 

(2006). Control of AIF-mediated Cell Death by the Functional Interplay of SIRT1 and 

PARP-1 in Response to DNA Damage. Cell Cycle 5, 873–877. doi:10.4161/cc.5.8.2690. 

Kornack, D. R., and Rakic, P. (1998). Changes in cell-cycle kinetics during the development and 

evolution of primate neocortex. PNAS 95, 1242–1246. 

Kowalczyk, T., Pontious, A., Englund, C., Daza, R. A. M., Bedogni, F., Hodge, R., et al. (2009). 

Intermediate Neuronal Progenitors (Basal Progenitors) Produce Pyramidal–Projection 

Neurons for All Layers of Cerebral Cortex. Cereb Cortex 19, 2439–2450. 

doi:10.1093/cercor/bhn260. 

Kraus, W. L. (2008). Transcriptional control by PARP-1: chromatin modulation, enhancer-

binding, coregulation, and insulation. Current Opinion in Cell Biology 20, 294–302. 

doi:10.1016/j.ceb.2008.03.006. 

Kriegstein, A. R., and Noctor, S. C. (2004). Patterns of neuronal migration in the embryonic 

cortex. Trends in Neurosciences 27, 392–399. doi:10.1016/j.tins.2004.05.001. 

Krishnakumar, R., and Kraus, W. L. (2010a). PARP-1 Regulates Chromatin Structure and 

Transcription through a KDM5B-Dependent Pathway. Molecular Cell 39, 736–749. 

doi:10.1016/j.molcel.2010.08.014. 

Krishnakumar, R., and Kraus, W. L. (2010b). The PARP Side of the Nucleus: Molecular 

Actions, Physiological Outcomes, and Clinical Targets. Mol Cell 39, 8–24. 

doi:10.1016/j.molcel.2010.06.017. 

Krivosheya, D., Tapia, L., Levinson, J. N., Huang, K., Kang, Y., Hines, R., et al. (2008). ErbB4-

Neuregulin Signaling Modulates Synapse Development and Dendritic Arborization 

through Distinct Mechanisms*. J Biol Chem 283, 32944–32956. 

doi:10.1074/jbc.M800073200. 

Krstic, D., Rodriguez, M., and Knuesel, I. (2012). Regulated Proteolytic Processing of Reelin 

through Interplay of Tissue Plasminogen Activator (tPA), ADAMTS-4, ADAMTS-5, and 

Their Modulators. PLoS One 7. doi:10.1371/journal.pone.0047793. 

Krukenberg, K. A., Kim, S., Tan, E. S., Maliga, Z., and Mitchison, T. J. (2015). Extracellular 

poly(ADP-ribose) is a pro-inflammatory signal for macrophages. Chem Biol 22, 446–

452. doi:10.1016/j.chembiol.2015.03.007. 

Kubo, K., Honda, T., Tomita, K., Sekine, K., Ishii, K., Uto, A., et al. (2010). Ectopic Reelin 

Induces Neuronal Aggregation with a Normal Birthdate-Dependent “Inside-Out” 



 154 

Alignment in the Developing Neocortex. J Neurosci 30, 10953–10966. 

doi:10.1523/JNEUROSCI.0486-10.2010. 

Kuhn, S., Gritti, L., Crooks, D., and Dombrowski, Y. (2019). Oligodendrocytes in Development, 

Myelin Generation and Beyond. Cells 8. doi:10.3390/cells8111424. 

Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src 

Causes a Reeler-Like Phenotype. J Neurosci 25, 8578–8586. 

doi:10.1523/JNEUROSCI.1656-05.2005. 

Kuwahara, A., Hirabayashi, Y., Knoepfler, P. S., Taketo, M. M., Sakai, J., Kodama, T., et al. 

(2010). Wnt signaling and its downstream target N-myc regulate basal progenitors in the 

developing neocortex. Development 137, 1035–1044. doi:10.1242/dev.046417. 

Lai, C., and Feng, L. (2004). Implication of γ-secretase in neuregulin-induced maturation of 

oligodendrocytes. Biochemical and Biophysical Research Communications 314, 535–

542. doi:10.1016/j.bbrc.2003.12.131. 

Lakoma, J., Garcia-Alonso, L., and Luque, J. M. (2011). Reelin sets the pace of neocortical 

neurogenesis. Development 138, 5223–5234. doi:10.1242/dev.063776. 

Lambert de Rouvroit, C., de Bergeyck, V., Cortvrindt, C., Bar, I., Eeckhout, Y., and Goffinet, A. 

M. (1999). Reelin, the Extracellular Matrix Protein Deficient in Reeler Mutant Mice, Is 

Processed by a Metalloproteinase. Experimental Neurology 156, 214–217. 

doi:10.1006/exnr.1998.7007. 

Lavdas, A. A., Grigoriou, M., Pachnis, V., and Parnavelas, J. G. (1999). The Medial Ganglionic 

Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral 

Cortex. J Neurosci 19, 7881–7888. doi:10.1523/JNEUROSCI.19-18-07881.1999. 

Law, A. J., Kleinman, J. E., Weinberger, D. R., and Weickert, C. S. (2007). Disease-associated 

intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression 

in the brain in schizophrenia. Human Molecular Genetics 16, 129–141. 

doi:10.1093/hmg/ddl449. 

Ledonne, F., Orduz, D., Mercier, J., Vigier, L., Grove, E. A., Tissir, F., et al. (2016). Targeted 

Inactivation of Bax Reveals a Subtype-Specific Mechanism of Cajal-Retzius Neuron 

Death in the Postnatal Cerebral Cortex. Cell Reports 17, 3133–3141. 

doi:10.1016/j.celrep.2016.11.074. 

Lee, H.-J., Jung, K.-M., Huang, Y. Z., Bennett, L. B., Lee, J. S., Mei, L., et al. (2002). 

Presenilin-dependent γ-Secretase-like Intramembrane Cleavage of ErbB4*. Journal of 

Biological Chemistry 277, 6318–6323. doi:10.1074/jbc.M110371200. 

Le May, N., Iltis, I., Amé, J.-C., Zhovmer, A., Biard, D., Egly, J.-M., et al. (2012). Poly (ADP-

Ribose) Glycohydrolase Regulates Retinoic Acid Receptor-Mediated Gene Expression. 

Molecular Cell 48, 785–798. doi:10.1016/j.molcel.2012.09.021. 



 155 

Li, B., Woo, R.-S., Mei, L., and Malinow, R. (2007). ErbB4, a receptor of the schizophrenia-

linked protein neuregulin-1, controls glutamatergic synapse maturation and plasticity. 

Neuron 54, 583–597. doi:10.1016/j.neuron.2007.03.028. 

Li, G., Adesnik, H., Li, J., Long, J., Nicoll, R. A., Rubenstein, J. L. R., et al. (2008). Regional 

Distribution of Cortical Interneurons and Development of Inhibitory Tone Are Regulated 

by Cxcl12/Cxcr4 Signaling. J Neurosci 28, 1085–1098. doi:10.1523/JNEUROSCI.4602-

07.2008. 

Li, H., Chou, S.-J., Hamasaki, T., Perez-Garcia, C. G., and O’Leary, D. D. (2012). Neuregulin 

repellent signaling via ErbB4 restricts GABAergic interneurons to migratory paths from 

ganglionic eminence to cortical destinations. Neural Dev 7, 10. doi:10.1186/1749-8104-

7-10. 

Li, M., and Yu, X. (2013). Function of BRCA1 in the DNA Damage Response Is Mediated by 

ADP-Ribosylation. Cancer Cell 23, 693–704. doi:10.1016/j.ccr.2013.03.025. 

Lindy, A. S., Stosser, M. B., Butler, E., Downtain-Pickersgill, C., Shanmugham, A., Retterer, K., 

et al. (2018). Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with 

epilepsy and neurodevelopmental disorders. Epilepsia 59, 1062–1071. 

doi:10.1111/epi.14074. 

Liu, B., Xiao, H., and Zhao, C. (2018). Forced Expression of Foxg1 in the Cortical Hem Leads to 

the Transformation of Cajal-Retzius Cells into Dentate Granule Neurons. J Dev Biol 6. 

doi:10.3390/jdb6030016. 

Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., et al. (2001). Down-

regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin 

haploinsufficient heterozygous reeler mouse. PNAS 98, 3477–3482. 

doi:10.1073/pnas.051614698. 

Long, J. E., Cobos, I., Potter, G. B., and Rubenstein, J. L. R. (2009). Dlx1&2 and Mash1 

Transcription Factors Control MGE and CGE Patterning and Differentiation through 

Parallel and Overlapping Pathways. Cereb Cortex 19, i96–i106. 

doi:10.1093/cercor/bhp045. 

López-Bendito, G., Sánchez-Alcañiz, J. A., Pla, R., Borrell, V., Picó, E., Valdeolmillos, M., et al. 

(2008). Chemokine Signaling Controls Intracortical Migration and Final Distribution of 

GABAergic Interneurons. J. Neurosci. 28, 1613–1624. 

Loulier, K., Lathia, J. D., Marthiens, V., Relucio, J., Mughal, M. R., Tang, S.-C., et al. (2009). 

β1 Integrin Maintains Integrity of the Embryonic Neocortical Stem Cell Niche. PLoS Biol 

7. doi:10.1371/journal.pbio.1000176. 

Lukaszewicz, A., Savatier, P., Cortay, V., Giroud, P., Huissoud, C., Berland, M., et al. (2005). 

G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the 

Primate Cortex. Neuron 47, 353–364. doi:10.1016/j.neuron.2005.06.032. 



 156 

Luo, X., Ryu, K. W., Kim, D.-S., Nandu, T., Medina, C. J., Gupte, R., et al. (2017). PARP-1 

Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and 

Modulating Its Transcriptional Activity. Molecular Cell 65, 260–271. 

doi:10.1016/j.molcel.2016.11.015. 

Lutticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, C., Ziemiecki, A., et al. 

(1994). Association of transcription factor APRF and protein kinase Jak1 with the 

interleukin-6 signal transducer gp130. Science 263, 89–92. doi:10.1126/science.8272872. 

Lutz, D., Sharaf, A., Drexler, D., Kataria, H., Wolters-Eisfeld, G., Brunne, B., et al. (2017). 

Proteolytic cleavage of transmembrane cell adhesion molecule L1 by extracellular matrix 

molecule Reelin is important for mouse brain development. Scientific Reports 7, 15268. 

doi:10.1038/s41598-017-15311-x. 

Maeda, N. (2015). Proteoglycans and neuronal migration in the cerebral cortex during 

development and disease. Front. Neurosci. 9. doi:10.3389/fnins.2015.00098. 

Magdaleno, S., Keshvara, L., and Curran, T. (2002). Rescue of Ataxia and Preplate Splitting by 

Ectopic Expression of Reelin in reeler Mice. Neuron 33, 573–586. doi:10.1016/S0896-

6273(02)00582-2. 

Makinodan, M., Rosen, K. M., Ito, S., and Corfas, G. (2012). A Critical Period for Social 

Experience–Dependent Oligodendrocyte Maturation and Myelination. Science 337, 

1357–1360. doi:10.1126/science.1220845. 

Malatesta, P., Hack, M. A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., et al. 

(2003). Neuronal or Glial Progeny: Regional Differences in Radial Glia Fate. Neuron 37, 

751–764. doi:10.1016/S0896-6273(03)00116-8. 

Mallamaci, A. (2013). Developmental control of cortico-cerebral astrogenesis. Int. J. Dev. Biol. 

57, 689–706. doi:10.1387/ijdb.130148am. 

Mao, K., and Zhang, G. (2021). The role of PARP1 in neurodegenerative diseases and aging. The 

FEBS Journal n/a. doi:https://doi.org/10.1111/febs.15716. 

Marillat, V., Cases, O., Nguyenf-Ba-Charvet, K. T., Tessier-Lavigne, M., Sotelo, C., and 

Chédotal, A. (2002). Spatiotemporal expression patterns of slit and robo genes in the rat 

brain. Journal of Comparative Neurology 442, 130–155. doi:10.1002/cne.10068. 

Marín, O. (2013). Cellular and molecular mechanisms controlling the migration of neocortical 

interneurons. Eur J Neurosci 38, 2019–2029. doi:10.1111/ejn.12225. 

Marín-Padilla, M. (1992). Ontogenesis of the pyramidal cell of the mammalian neocortex and 

developmental cytoarchitectonics: A unifying theory. Journal of Comparative Neurology 

321, 223–240. doi:10.1002/cne.903210205. 

Marković, J., Grdović, N., Dinić, S., Karan-Djurašević, T., Uskoković, A., Arambašić, J., et al. 

(2013). PARP-1 and YY1 Are Important Novel Regulators of CXCL12 Gene 



 157 

Transcription in Rat Pancreatic Beta Cells. PLoS One 8, e59679. 

doi:10.1371/journal.pone.0059679. 

Martin, K. A., Cesaroni, M., Denny, M. F., Lupey, L. N., and Tempera, I. (2015). Global 

Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene 

Expression through EZH2. Mol Cell Biol 35, 3934–3944. doi:10.1128/MCB.00635-15. 

Martini, F. J., Valiente, M., López Bendito, G., Szabó, G., Moya, F., Valdeolmillos, M., et al. 

(2009). Biased selection of leading process branches mediates chemotaxis during 

tangential neuronal migration. Development 136, 41–50. doi:10.1242/dev.025502. 

Marty, S., Carroll, P., Cellerino, A., Castren, E., Staiger, V., Thoenen, H., et al. (1996). Brain-

derived neurotrophic factor promotes the differentiation of various hippocampal 

nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J 

Neurosci 16, 675–687. doi:10.1523/JNEUROSCI.16-02-00675.1996. 

Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia, J., and de Murcia, 

G. (1998). XRCC1 Is Specifically Associated with Poly(ADP-Ribose) Polymerase and 

Negatively Regulates Its Activity following DNA Damage. Mol Cell Biol 18, 3563–3571. 

Masutani, M., Nozaki, T., Nishiyama, E., Shimokawa, T., Tachi, Y., Suzuki, H., et al. (1999). 

Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption 

study in mice. Mol Cell Biochem 193, 149–152. 

Mata, I., Perez-Iglesias, R., Roiz-Santiañez, R., Tordesillas-Gutierrez, D., Gonzalez-Mandly, A., 

Berja, A., et al. (2010). Additive effect of NRG1 and DISC1 genes on lateral ventricle 

enlargement in first episode schizophrenia. NeuroImage 53, 1016–1022. 

doi:10.1016/j.neuroimage.2009.11.010. 

Matsunaga, Y., Noda, M., Murakawa, H., Hayashi, K., Nagasaka, A., Inoue, S., et al. (2017). 

Reelin transiently promotes N-cadherin–dependent neuronal adhesion during mouse 

cortical development. PNAS 114, 2048–2053. doi:10.1073/pnas.1615215114. 

Matsuura, S., Egi, Y., Yuki, S., Horikawa, T., Satoh, H., and Akira, T. (2011). MP-124, a novel 

poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor, ameliorates ischemic brain damage 

in a non-human primate model. Brain Research 1410, 122–131. 

doi:10.1016/j.brainres.2011.05.069. 

Matveeva, E. A., Mathbout, L. F., and Fondufe-Mittendorf, Y. N. (2019). PARP1 is a versatile 

factor in the regulation of mRNA stability and decay. Sci Rep 9, 3722. 

doi:10.1038/s41598-019-39969-7. 

Matveeva, E., Maiorano, J., Zhang, Q., Eteleeb, A. M., Convertini, P., Chen, J., et al. (2016). 

Involvement of PARP1 in the regulation of alternative splicing. Cell Discov 2, 15046. 

doi:10.1038/celldisc.2015.46. 



 158 

Mbemba, E., Gluckman, J. C., and Gattegno, L. (2000). Glycan and glycosaminoglycan binding 

properties of stromal cell-derived factor (SDF)-1α. Glycobiology 10, 21–29. 

doi:10.1093/glycob/10.1.21. 

McLoughlin, H. S., Fineberg, S. K., Ghosh, L. L., Tecedor, L., and Davidson, B. L. (2012). 

Dicer is required for proliferation, viability, migration and differentiation in 

corticoneurogenesis. Neuroscience 223, 285–295. 

doi:10.1016/j.neuroscience.2012.08.009. 

Medina, L., and Abellán, A. (2012). “Chapter 7 - Subpallial Structures,” in The Mouse Nervous 

System, eds. C. Watson, G. Paxinos, and L. Puelles (San Diego: Academic Press), 173–

220. doi:10.1016/B978-0-12-369497-3.10007-X. 

Mei, L., and Nave, K.-A. (2014). Neuregulin-ERBB Signaling in the Nervous System and 

Neuropsychiatric Diseases. Neuron 83, 27–49. doi:10.1016/j.neuron.2014.06.007. 

Mei, L., and Xiong, W.-C. (2008). Neuregulin 1 in neural development, synaptic plasticity and 

schizophrenia. Nat Rev Neurosci 9, 437–452. doi:10.1038/nrn2392. 

Meier, H., and Hoag, W. G. (1962). The Neuropathology of “Reeler”, a Neuro-Muscular 

Mutation in Mice*†. Journal of Neuropathology & Experimental Neurology 21, 649–

654. doi:10.1097/00005072-196210000-00011. 

Melikishvili, M., Chariker, J. H., Rouchka, E. C., and Fondufe-Mittendorf, Y. N. (2017). 

Transcriptome-wide identification of the RNA-binding landscape of the chromatin-

associated protein PARP1 reveals functions in RNA biogenesis. Cell Discov 3, 17043. 

doi:10.1038/celldisc.2017.43. 

Meng, D., He, W., Huang, P., Liu, D., Zhong, L., Yu, R., et al. (2018). Polymorphism of PARP-

1 indicates an increased risk and a worse initial severity of ischemic stroke. Personalized 

Medicine 15, 355–360. doi:10.2217/pme-2018-0007. 

Ménissier de Murcia, J., Ricoul, M., Tartier, L., Niedergang, C., Huber, A., Dantzer, F., et al. 

(2003). Functional interaction between PARP-1 and PARP-2 in chromosome stability 

and embryonic development in mouse. The EMBO Journal 22, 2255–2263. 

doi:10.1093/emboj/cdg206. 

Meyer, G., Perez-Garcia, C. G., Abraham, H., and Caput, D. (2002). Expression of p73 and 

Reelin in the Developing Human Cortex. J Neurosci 22, 4973–4986. 

doi:10.1523/JNEUROSCI.22-12-04973.2002. 

Meyer, G., Socorro, A. C., Garcia, C. G. P., Millan, L. M., Walker, N., and Caput, D. (2004). 

Developmental Roles of p73 in Cajal-Retzius Cells and Cortical Patterning. J Neurosci 

24, 9878–9887. doi:10.1523/JNEUROSCI.3060-04.2004. 

Meyer, G., Soria, J. M., Martínez-Galán, J. R., Martín-Clemente, B., and Fairén, A. (1998). 

Different origins and developmental histories of transient neurons in the marginal zone of 



 159 

the fetal and neonatal rat cortex. Journal of Comparative Neurology 397, 493–518. 

doi:10.1002/(SICI)1096-9861(19980810)397:4<493::AID-CNE4>3.0.CO;2-X. 

Middle, F., Pritchard, A. L., Handoko, H., Haque, S., Holder, R., Bentham, P., et al. (2010). No 

Association Between Neuregulin 1 and Psychotic Symptoms in Alzheimer’s Disease 

Patients. Journal of Alzheimer’s Disease 20, 561–567. doi:10.3233/JAD-2010-1405. 

Miller, W. B. J., Gregory S. Walsh, Freda D. (2016). Neuronal Survival and p73/p63/p53: A 

Family Affair - W. Bradley Jacobs, Gregory S. Walsh, Freda D. Miller, 2004. The 

Neuroscientist. Available at: 

http://journals.sagepub.com/doi/10.1177/1073858404263456?url_ver=Z39.88-

2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed [Accessed March 

4, 2021]. 

Minotti, R., Andersson, A., and Hottiger, M. O. (2015). ARTD1 suppresses interleukin 6 

expression by repressing MLL1-dependent histone H3 trimethylation. Mol. Cell. Biol., 

MCB.00196-15. doi:10.1128/MCB.00196-15. 

Miquelajáuregui, A., Varela-Echavarría, A., Ceci, M. L., García-Moreno, F., Ricaño, I., Hoang, 

K., et al. (2010). LIM-Homeobox Gene Lhx5 Is Required for Normal Development of 

Cajal–Retzius Cells. J. Neurosci. 30, 10551–10562. doi:10.1523/JNEUROSCI.5563-

09.2010. 

Mitsogiannis, M. D., Pancho, A., Aerts, T., Sachse, S. M., Vanlaer, R., Noterdaeme, L., et al. 

(2021). Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic 

Forebrain Development and Neuronal Migration. Front Cell Dev Biol 8. 

doi:10.3389/fcell.2020.624181. 

Miwa, M., Nakatsugawa, K., Hara, K., matsushima, T., and Sugimura, T. (1975). Degradation of 

poly(adenosine diphosphate ribose) by homogenates of various normal tissues and tumors 

of rats. Archives of Biochemistry and Biophysics 167, 54–60. doi:10.1016/0003-

9861(75)90440-3. 

Mizumoto, S., Fongmoon, D., and Sugahara, K. (2013). Interaction of chondroitin sulfate and 

dermatan sulfate from various biological sources with heparin-binding growth factors and 

cytokines. Glycoconj J 30, 619–632. doi:10.1007/s10719-012-9463-5. 

Monuki, E. S., Porter, F. D., and Walsh, C. A. (2001). Patterning of the Dorsal Telencephalon 

and Cerebral Cortex by a Roof Plate-Lhx2 Pathway. Neuron 32, 591–604. 

doi:10.1016/S0896-6273(01)00504-9. 

Mouton-Liger, F., Dumurgier, J., Cognat, E., Hourregue, C., Zetterberg, H., Vanderstichele, H., 

et al. (2020). CSF levels of the BACE1 substrate NRG1 correlate with cognition in 

Alzheimer’s disease. Alzheimers Res Ther 12. doi:10.1186/s13195-020-00655-w. 

Munafò, M. R., Thiselton, D. L., Clark, T. G., and Flint, J. (2006). Association of the NRG1 

gene and schizophrenia: a meta-analysis. Mol Psychiatry 11, 539–546. 

doi:10.1038/sj.mp.4001817. 



 160 

Muraki, K., and Tanigaki, K. (2015). Neuronal migration abnormalities and its possible 

implications for schizophrenia. Front. Neurosci. 9. doi:10.3389/fnins.2015.00074. 

Murcia, J. M., Mark, M., Wendling, O., Wynshaw-Boris, A., and de Murcia, G. (2001). Early 

Embryonic Lethality in PARP-1 Atm Double-Mutant Mice Suggests a Functional 

Synergy in Cell Proliferation during Development. Mol Cell Biol 21, 1828–1832. 

doi:10.1128/MCB.21.5.1828-1832.2001. 

Murnyák, B., Kouhsari, M. C., Hershkovitch, R., Kálmán, B., Marko-Varga, G., Klekner, Á., et 

al. (2017). PARP1 expression and its correlation with survival is tumour molecular 

subtype dependent in glioblastoma. Oncotarget 8, 46348–46362. 

doi:10.18632/oncotarget.18013. 

Muzio, L., Di Benedetto, B., Stoykova, A., Boncinelli, E., Gruss, P., and Mallamaci, A. (2002). 

Conversion of cerebral cortex into basal ganglia in Emx2 −/− Pax6 Sey/Sey double-

mutant mice. Nat Neurosci 5, 737–745. doi:10.1038/nn892. 

Muzio, L., and Mallamaci, A. (2005). Foxg1 Confines Cajal-Retzius Neuronogenesis and 

Hippocampal Morphogenesis to the Dorsomedial Pallium. J. Neurosci. 25, 4435–4441. 

Muzio, L., Soria, J. M., Pannese, M., Piccolo, S., and Mallamaci, A. (2005). A Mutually 

Stimulating Loop Involving Emx2 and Canonical Wnt Signalling Specifically Promotes 

Expansion of Occipital Cortex and Hippocampus. Cerebral Cortex 15, 2021–2028. 

doi:10.1093/cercor/bhi077. 

Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. L., and Pearlman, A. L. (2001). 

Two modes of radial migration in early development of the cerebral cortex. Nature 

Neuroscience 4, 143–150. doi:10.1038/83967. 

Nadarajah, B., and Parnavelas, J. G. (2002). Modes of neuronal migration in the developing 

cerebral cortex. Nat Rev Neurosci 3, 423–432. doi:10.1038/nrn845. 

Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S. S., Chen, W., et al. (2011). 

Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 

57–63. doi:10.1038/nature10423. 

Nakada, Y., Hunsaker, T. L., Henke, R. M., and Johnson, J. E. (2004). Distinct domains within 

Mash1 and Math1 are required for function in neuronal differentiation versus neuronal 

cell-type specification. Development 131, 1319–1330. doi:10.1242/dev.01008. 

Nakano, Y., Kohno, T., Hibi, T., Kohno, S., Baba, A., Mikoshiba, K., et al. (2007). The 

Extremely Conserved C-terminal Region of Reelin Is Not Necessary for Secretion but Is 

Required for Efficient Activation of Downstream Signaling*. Journal of Biological 

Chemistry 282, 20544–20552. doi:10.1074/jbc.M702300200. 

Nakashima, K., Takizawa, T., Ochiai, W., Yanagisawa, M., Hisatsune, T., Nakafuku, M., et al. 

(2001). BMP2-mediated alteration in the developmental pathway of fetal  mouse brain 



 161 

cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci U S A 98, 5868–5873. 

doi:10.1073/pnas.101109698. 

Nakashima, K., Yanagisawa, M., Arakawa, H., Kimura, N., Hisatsune, T., Kawabata, M., et al. 

(1999). Synergistic Signaling in Fetal Brain by STAT3-Smad1 Complex Bridged by 

p300. Science 284, 479–482. doi:10.1126/science.284.5413.479. 

Namihira, M., Kohyama, J., Semi, K., Sanosaka, T., Deneen, B., Taga, T., et al. (2009). 

Committed Neuronal Precursors Confer Astrocytic Potential on Residual Neural 

Precursor Cells. Developmental Cell 16, 245–255. doi:10.1016/j.devcel.2008.12.014. 

Neddens, J., and Buonanno, A. (2010). Selective populations of hippocampal interneurons 

express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. 

Hippocampus 20, 724–744. doi:https://doi.org/10.1002/hipo.20675. 

Ni, C.-Y., Murphy, M. P., Golde, T. E., and Carpenter, G. (2001). γ-Secretase Cleavage and 

Nuclear Localization of ErbB-4 Receptor Tyrosine Kinase. Science 294, 2179–2181. 

doi:10.1126/science.1065412. 

Nicodemus, K. K., Law, A. J., Luna, A., Vakkalanka, R., Straub, R. E., Kleinman, J. E., et al. 

(2009). A 5′ Promoter Region SNP in NRG1 is Associated with Schizophrenia Risk and 

Type III Isoform Expression. Mol Psychiatry 14, 741–743. doi:10.1038/mp.2008.150. 

Nieto, M., Schuurmans, C., Britz, O., and Guillemot, F. (2001). Neural bHLH Genes Control the 

Neuronal versus Glial Fate Decision in Cortical Progenitors. Neuron 29, 401–413. 

doi:10.1016/S0896-6273(01)00214-8. 

Ninova, M., Fejes Tóth, K., and Aravin, A. A. (2019). The control of gene expression and cell 

identity by H3K9 trimethylation. Development 146. doi:10.1242/dev.181180. 

Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M., and D’Arcangelo, G. (2004). Reelin 

Promotes Hippocampal Dendrite Development through the VLDLR/ApoER2-Dab1 

Pathway. Neuron 41, 71–84. doi:10.1016/S0896-6273(03)00819-5. 

Niu, S., Yabut, O., and D’Arcangelo, G. (2008). The Reelin Signaling Pathway Promotes 

Dendritic Spine Development in Hippocampal Neurons. J. Neurosci. 28, 10339–10348. 

doi:10.1523/JNEUROSCI.1917-08.2008. 

Noctor, S. C., Martínez-Cerdeño, V., Ivic, L., and Kriegstein, A. R. (2004). Cortical neurons 

arise in symmetric and asymmetric division zones and migrate through specific phases. 

Nat Neurosci 7, 136–144. doi:10.1038/nn1172. 

Norton, N., Moskvina, V., Morris, D. W., Bray, N. J., Zammit, S., Williams, N. M., et al. (2006). 

Evidence that interaction between neuregulin 1 and its receptor erbB4 increases 

susceptibility to schizophrenia. American Journal of Medical Genetics Part B: 

Neuropsychiatric Genetics 141B, 96–101. doi:10.1002/ajmg.b.30236. 



 162 

Nozaki, T., Sasaki, Y., Fukuda, I., Isumi, M., Nakamoto, K., Onodera, T., et al. (2018). Next-

generation sequencing-based miRNA expression analysis in Parp1-deficient embryonic 

stem cell-derived exosomes. Biochemical and Biophysical Research Communications 

499, 410–415. doi:10.1016/j.bbrc.2018.03.073. 

O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of MicroRNA Biogenesis, 

Mechanisms of Actions, and Circulation. Front. Endocrinol. 9. 

doi:10.3389/fendo.2018.00402. 

Ochiai, W., Nakatani, S., Takahara, T., Kainuma, M., Masaoka, M., Minobe, S., et al. (2009). 

Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-

generated neocortical daughter cells. Molecular and Cellular Neuroscience 40, 225–233. 

doi:10.1016/j.mcn.2008.10.007. 

Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., et al. (1995). The 

reeler Gene-Associated Antigen on CajaI-Retzius Neurons Is a Crucial Molecule for 

Laminar Organization of Cortical Neurons. 14. 

Ogino, H., Hisanaga, A., Kohno, T., Kondo, Y., Okumura, K., Kamei, T., et al. (2017). Secreted 

Metalloproteinase ADAMTS-3 Inactivates Reelin. J Neurosci 37, 3181–3191. 

doi:10.1523/JNEUROSCI.3632-16.2017. 

Ohtsuka, T., Ishibashi, M., Gradwohl, G., Nakanishi, S., Guillemot, F., and Kageyama, R. 

(1999). Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO 

J 18, 2196–2207. doi:10.1093/emboj/18.8.2196. 

Olson, E. C. (2014). Analysis of Preplate Splitting and Early Cortical Development Illuminates 

the Biology of Neurological Disease. Front Pediatr 2. doi:10.3389/fped.2014.00121. 

Ono, T., Kasamatsu, A., Oka, S., and Moss, J. (2006). The 39-kDa poly(ADP-ribose) 

glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of 

acetyl-histone deacetylases. Proc Natl Acad Sci U S A 103, 16687–16691. 

doi:10.1073/pnas.0607911103. 

Ortega, M. C., Bribián, A., Peregrín, S., Gil, M. T., Marín, O., and de Castro, F. (2012). 

Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells 

during development. Experimental Neurology 235, 610–620. 

doi:10.1016/j.expneurol.2012.03.015. 

Osumi, N., Shinohara, H., Numayama-Tsuruta, K., and Maekawa, M. (2008). Concise Review: 

Pax6 Transcription Factor Contributes to both Embryonic and Adult Neurogenesis as a 

Multifunctional Regulator. STEM CELLS 26, 1663–1672. doi:10.1634/stemcells.2007-

0884. 

O’Tuathaigh, C. M. P., Babovic, D., O’Sullivan, G. J., Clifford, J. J., Tighe, O., Croke, D. T., et 

al. (2007). Phenotypic characterization of spatial cognition and social behavior in mice 

with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience 147, 18–27. 

doi:10.1016/j.neuroscience.2007.03.051. 



 163 

Ovadia, G., and Shifman, S. (2011). The Genetic Variation of RELN Expression in 

Schizophrenia and Bipolar Disorder. PLoS One 6. doi:10.1371/journal.pone.0019955. 

Pablo V. Bejman, Alan R. Sanders, and Kenneth S. Kendler (2011). Genetics of Schizophrenia: 

New Findings and Challenges. Annual Review of Genomics and Human Genetics 12, 

121–144. doi:10.1146/annurev-genom-082410-101459. 

Piskunova, T. S., Yurova, M. N., Ovsyannikov, A. I., Semenchenko, A. V., Zabezhinski, M. A., 

Popovich, I. G., et al. (2008). Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) 

Accelerates Aging and Spontaneous Carcinogenesis in Mice. Current Gerontology and 

Geriatrics Research 2008, 1–11. doi:10.1155/2008/754190. 

Plane, J. M., Grossenbacher, S. K., and Deng, W. (2012). PARP-1 deletion promotes 

subventricular zone neural stem cells toward a glial fate. J. Neurosci. Res. 90, 1489–

1506. doi:10.1002/jnr.23040. 

Plowman, G. D., Culouscou, J. M., Whitney, G. S., Green, J. M., Carlton, G. W., Foy, L., et al. 

(1993a). Ligand-specific activation of HER4/p180erbB4, a fourth member of the 

epidermal growth factor receptor family. Proc Natl Acad Sci U S A 90, 1746–1750. 

Plowman, G. D., Green, J. M., Culouscou, J. M., Carlton, G. W., Rothwell, V. M., and Buckley, 

S. (1993b). Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 

366, 473–475. doi:10.1038/366473a0. 

Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C., and Mandel, P. (1982). 

Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. 

Proc Natl Acad Sci U S A 79, 3423–3427. 

Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T., and Ghosh, A. (2002). Control of 

cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 

129, 3147–3160. 

Pommier, Y., OConnor, M. J., and de Bono, J. (2016). Laying a trap to kill cancer cells: PARP 

inhibitors and their mechanisms of action. Science Translational Medicine 8, 362ps17-

362ps17. doi:10.1126/scitranslmed.aaf9246. 

Pozas, E., and Ibáñez, C. F. (2005). GDNF and GFRα1 Promote Differentiation and Tangential 

Migration of Cortical GABAergic Neurons. Neuron 45, 701–713. 

doi:10.1016/j.neuron.2005.01.043. 

Pujadas, L., Gruart, A., Bosch, C., Delgado, L., Teixeira, C. M., Rossi, D., et al. (2010). Reelin 

Regulates Postnatal Neurogenesis and Enhances Spine Hypertrophy and Long-Term 

Potentiation. Journal of Neuroscience 30, 4636–4649. doi:10.1523/JNEUROSCI.5284-

09.2010. 

Qian, X., Shen, Q., Goderie, S. K., He, W., Capela, A., Davis, A. A., et al. (2000). Timing of 

CNS Cell Generation: A Programmed Sequence of Neuron and Glial Cell Production 



 164 

from Isolated Murine Cortical Stem Cells. Neuron 28, 69–80. doi:10.1016/S0896-

6273(00)00086-6. 

Quinn, J. C., Molinek, M., Martynoga, B. S., Zaki, P. A., Faedo, A., Bulfone, A., et al. (2007). 

Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and 

specifies cortical cell identity by a cell autonomous mechanism. Dev Biol 302, 50–65. 

doi:10.1016/j.ydbio.2006.08.035. 

Radakovits, R., Barros, C. S., Belvindrah, R., Patton, B., and Müller, U. (2009). Regulation of 

Radial Glial Survival by Signals from the Meninges. J Neurosci 29, 7694–7705. 

doi:10.1523/JNEUROSCI.5537-08.2009. 

Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., et al. 

(2009). SIRT1 Promotes Cell Survival under Stress by Deacetylation-Dependent 

Deactivation of Poly(ADP-Ribose) Polymerase 1. Mol Cell Biol 29, 4116–4129. 

doi:10.1128/MCB.00121-09. 

Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical 

expansion during evolution. Trends Neurosci 18, 383–388. doi:10.1016/0166-

2236(95)93934-p. 

Rallu, M., Machold, R., Gaiano, N., Corbin, J. G., McMahon, A. P., and Fishell, G. (2002). 

Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 

and Hedgehog signaling. Development 129, 4963–4974. doi:10.1242/dev.129.21.4963. 

Rash, B. G., Lim, H. D., Breunig, J. J., and Vaccarino, F. M. (2011). FGF Signaling Expands 

Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis. J 

Neurosci 31, 15604–15617. doi:10.1523/JNEUROSCI.4439-11.2011. 

Ray Chaudhuri, A., and Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA 

repair and chromatin remodelling. Nature Reviews Molecular Cell Biology 18, 610–621. 

doi:10.1038/nrm.2017.53. 

Reale, A., Matteis, G. D., Galleazzi, G., Zampieri, M., and Caiafa, P. (2005). Modulation of 

DNMT1 activity by ADP-ribose polymers. Oncogene 24, 13–19. 

doi:10.1038/sj.onc.1208005. 

Reeder, R. H., Ueda, K., Honjo, T., Nishizuka, Y., and Hayaishi, O. (1967). Studies on the 

Polymer of Adenosine Diphosphate Ribose. Journal of Biological Chemistry 242, 3172–

3179. doi:10.1016/S0021-9258(18)95948-X. 

Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., et al. (1998). 

BDNF Regulates Reelin Expression and Cajal-Retzius Cell Development in the Cerebral 

Cortex. Neuron 21, 305–315. doi:10.1016/S0896-6273(00)80540-1. 

Rio, C., Buxbaum, J. D., Peschon, J. J., and Corfas, G. (2000). Tumor Necrosis Factor-α-

converting Enzyme Is Required for Cleavage of erbB4/HER4*. Journal of Biological 

Chemistry 275, 10379–10387. doi:10.1074/jbc.275.14.10379. 



 165 

Rio, C., Rieff, H. I., Qi, P., and Corfas, G. (1997). Neuregulin and erbB Receptors Play a Critical 

Role in Neuronal Migration. Neuron 19, 39–50. doi:10.1016/S0896-6273(00)80346-3. 

Riva, M., Genescu, I., Habermacher, C., Orduz, D., Ledonne, F., Rijli, F. M., et al. (2019). 

Activity-dependent death of transient Cajal-Retzius neurons is required for functional 

cortical wiring. eLife 8, e50503. doi:10.7554/eLife.50503. 

Robaszkiewicz, A., Qu, C., Wisnik, E., Ploszaj, T., Mirsaidi, A., Kunze, F. A., et al. (2016). 

ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-

dependent transcription of IL-1β. Sci Rep 6. doi:10.1038/srep21131. 

Rogers, C. J., Clark, P. M., Tully, S. E., Abrol, R., Garcia, K. C., Goddard, W. A., et al. (2011). 

Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate 

microarray and computational approaches. Proc Natl Acad Sci U S A 108, 9747–9752. 

doi:10.1073/pnas.1102962108. 

Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J., and Bolderson, E. (2020). PARP 

Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front. Cell 

Dev. Biol. 8. doi:10.3389/fcell.2020.564601. 

Rothbart, S. B., and Strahl, B. D. (2014). Interpreting thelanguage of histone and DNA 

modifications. Biochim Biophys Acta 1839, 627–643. doi:10.1016/j.bbagrm.2014.03.001. 

Roy, A., Gonzalez-Gomez, M., Pierani, A., Meyer, G., and Tole, S. (2014). Lhx2 Regulates the 

Development of the Forebrain Hem System. Cereb Cortex 24, 1361–1372. 

doi:10.1093/cercor/bhs421. 

Roy, C., and Corfas, G. (2008). “Neuregulin-erbB Signaling and the Pathogenesis of 

Schizophrenia,” in Cortical Deficits In Schizophrenia, ed. P. O’Donnell (Boston, MA: 

Springer US), 73–96. doi:10.1007/978-0-387-74351-6_4. 

Roy, K., Murtie, J. C., El-Khodor, B. F., Edgar, N., Sardi, S. P., Hooks, B. M., et al. (2007). Loss 

of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a 

potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci U S A 104, 

8131–8136. doi:10.1073/pnas.0702157104. 

Rudolph, J., Zimmer, G., Steinecke, A., Barchmann, S., and Bolz, J. (2010). Ephrins guide 

migrating cortical interneurons in the basal telencephalon. Cell Adh Migr 4, 400–408. 

doi:10.4161/cam.4.3.11640. 

Ruiz i Altaba, A. (1998). Combinatorial Gli gene function in floor plate and neuronal inductions 

by Sonic hedgehog. Development 125, 2203–2212. doi:10.1242/dev.125.12.2203. 

Sader, J. E. (1998). Frequency response of cantilever beams immersed in viscous fluids with 

applications to the atomic force microscope. Journal of Applied Physics 84, 64–76. 

doi:10.1063/1.368002. 



 166 

Salemi, M., Mazzetti, S., De Leonardis, M., Giampietro, F., Medici, V., Poloni, T. E., et al. 

(2021). Poly (ADP-ribose) polymerase 1 and Parkinson’s disease: A study in post-

mortem human brain. Neurochemistry International 144, 104978. 

doi:10.1016/j.neuint.2021.104978. 

Sánchez-Alcañiz, J. A., Haege, S., Mueller, W., Pla, R., Mackay, F., Schulz, S., et al. (2011). 

Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness. Neuron 

69, 77–90. doi:10.1016/j.neuron.2010.12.006. 

Sánchez-Huertas, C., and Rico, B. (2011). CREB-Dependent Regulation of GAD65 

Transcription by BDNF/TrkB in Cortical Interneurons. Cerebral Cortex 21, 777–788. 

doi:10.1093/cercor/bhq150. 

Sansom, S. N., Griffiths, D. S., Faedo, A., Kleinjan, D.-J., Ruan, Y., Smith, J., et al. (2009). The 

Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between 

Neural Stem Cell Self-Renewal and Neurogenesis. PLoS Genet 5. 

doi:10.1371/journal.pgen.1000511. 

Santos-Cortez, R. L. P., Khan, V., Sher Khan, F. S., Mughal, Z.-N., Chakchouk, I., Lee, K., et al. 

(2018). Novel candidate genes and variants underlying autosomal recessive 

neurodevelopmental disorders with intellectual disability. Hum Genet 137, 735–752. 

doi:10.1007/s00439-018-1928-6. 

Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A., and Corfas, G. (2006). Presenilin-Dependent 

ErbB4 Nuclear Signaling Regulates the Timing of Astrogenesis in the Developing Brain. 

Cell 127, 185–197. doi:10.1016/j.cell.2006.07.037. 

Sauvageot, C. (2002). Molecular mechanisms controlling cortical gliogenesis. Current Opinion 

in Neurobiology 12, 244–249. doi:10.1016/S0959-4388(02)00322-7. 

Sawyer, C., Hiles, I., Page, M., Crompton, M., and Dean, C. (1998). Two erbB-4 transcripts are 

expressed in normal breast and in most breast cancers. Oncogene 17, 919–924. 

doi:10.1038/sj.onc.1202015. 

Schmid, R. S., and Maness, P. F. (2008). L1 and NCAM ADHESION MOLECULES AS 

SIGNALING CO-RECEPTORS IN NEURONAL MIGRATION AND PROCESS 

OUTGROWTH. Curr Opin Neurobiol 18, 245–250. doi:10.1016/j.conb.2008.07.015. 

Schmid, R. S., McGrath, B., Berechid, B. E., Boyles, B., Marchionni, M., Šestan, N., et al. 

(2003). Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and 

their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci U S A 100, 

4251–4256. doi:10.1073/pnas.0630496100. 

Sekine, K., Kawauchi, T., Kubo, K., Honda, T., Herz, J., Hattori, M., et al. (2012). Reelin 

Controls Neuronal Positioning by Promoting Cell-Matrix Adhesion via Inside-Out 

Activation of Integrin α5β1. Neuron 76, 353–369. doi:10.1016/j.neuron.2012.07.020. 



 167 

Selemon, L. D., and Goldman-Rakic, P. S. (1999). The reduced neuropil hypothesis: a circuit 

based model of schizophrenia. Biological Psychiatry 45, 17–25. doi:10.1016/S0006-

3223(98)00281-9. 

Selemon, L. D., Rajkowska, G., and Goldman‐Rakic, P. S. (1998). Elevated neuronal density in 

prefrontal area 46 in brains from schizophrenic patients: Application of a three-

dimensional, stereologic counting method. Journal of Comparative Neurology 392, 402–

412. doi:https://doi.org/10.1002/(SICI)1096-9861(19980316)392:3<402::AID-

CNE9>3.0.CO;2-5. 

Selten, M., van Bokhoven, H., and Nadif Kasri, N. (2018). Inhibitory control of the 

excitatory/inhibitory balance in psychiatric disorders. F1000Res 7. 

doi:10.12688/f1000research.12155.1. 

Selvaraj, V., Soundarapandian, M. M., Chechneva, O., Williams, A. J., Sidorov, M. K., Soulika, 

A. M., et al. (2009). PARP-1 Deficiency Increases the Severity of Disease in a Mouse 

Model of Multiple Sclerosis. J Biol Chem 284, 26070–26084. 

doi:10.1074/jbc.M109.013474. 

Seong, E., Yuan, L., and Arikkath, J. (2015). Cadherins and catenins in dendrite and synapse 

morphogenesis. Cell Adh Migr 9, 202–213. doi:10.4161/19336918.2014.994919. 

Sethi, G. S., Sharma, S., and Naura, A. S. (2019). PARP inhibition by olaparib alleviates chronic 

asthma-associated remodeling features via modulating inflammasome signaling in mice. 

IUBMB Life 71, 1003–1013. doi:10.1002/iub.2048. 

Shall, S., and de Murcia, G. (2000). Poly(ADP-ribose) polymerase-1: what have we learned from 

the deficient mouse model? Mutation Research/DNA Repair 460, 1–15. 

doi:10.1016/S0921-8777(00)00016-1. 

Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., et al. 

(1997). Scrambler and yotari disrupt the disabled gene and produce a reeler -like 

phenotype in mice. Nature 389, 730–733. doi:10.1038/39601. 

Sheppard, A. M., and Pearlman, A. L. (1997). Abnormal reorganization of preplate neurons and 

their associated extracellular matrix: An early manifestation of altered neocortical 

development in the reeler mutant mouse. Journal of Comparative Neurology 378, 173–

179. doi:10.1002/(SICI)1096-9861(19970210)378:2<173::AID-CNE2>3.0.CO;2-0. 

Shi, Y., Di Giammartino, D. C., Taylor, D., Sarkeshik, A., Rice, W. J., Yates, J. R., et al. (2009). 

Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33, 

365–376. doi:10.1016/j.molcel.2008.12.028. 

Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., and Aizawa, S. (2008). MicroRNA-9 

Modulates Cajal–Retzius Cell Differentiation by Suppressing Foxg1 Expression in 

Mouse Medial Pallium. J. Neurosci. 28, 10415–10421. doi:10.1523/JNEUROSCI.3219-

08.2008. 



 168 

Shieh, W. M., Amé, J.-C., Wilson, M. V., Wang, Z.-Q., Koh, D. W., Jacobson, M. K., et al. 

(1998). Poly(ADP-ribose) Polymerase Null Mouse Cells Synthesize ADP-ribose 

Polymers*. Journal of Biological Chemistry 273, 30069–30072. 

doi:10.1074/jbc.273.46.30069. 

Shikanai, M., Nakajima, K., and Kawauchi, T. (2011). N-Cadherin regulates radial glial fiber-

dependent migration of cortical locomoting neurons. Communicative & Integrative 

Biology 4, 326–330. doi:10.4161/cib.4.3.14886. 

Shinozaki, K., Miyagi, T., Yoshida, M., Miyata, T., Ogawa, M., Aizawa, S., et al. (2002). 

Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential 

cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. 

Development 129, 3479–3492. doi:10.1242/dev.129.14.3479. 

Shipp, E. L., and Hsieh-Wilson, L. C. (2007). Profiling the Sulfation Specificities of 

Glycosaminoglycan Interactions with Growth Factors and Chemotactic Proteins Using 

Microarrays. Chemistry & Biology 14, 195–208. doi:10.1016/j.chembiol.2006.12.009. 

Shrestha, E., Hussein, M. A., Savas, J. N., Ouimet, M., Barrett, T. J., Leone, S., et al. (2016). 

Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 

Expression and Cholesterol Efflux in Macrophages. J. Biol. Chem. 291, 11172–11184. 

doi:10.1074/jbc.M116.726729. 

Shu, T., Ayala, R., Nguyen, M.-D., Xie, Z., Gleeson, J. G., and Tsai, L.-H. (2004). Ndel1 

Operates in a Common Pathway with LIS1 and Cytoplasmic Dynein to Regulate Cortical 

Neuronal Positioning. Neuron 44, 263–277. doi:10.1016/j.neuron.2004.09.030. 

Siegenthaler, J. A., and Miller, M. W. (2008). GENERATION OF CAJAL-RETZIUS 

NEURONS IN MOUSE FOREBRAIN IS REGULATED BY TRANSFORMING 

GROWTH FACTOR β-FOX SIGNALING PATHWAYS. Dev Biol 313, 35–46. 

doi:10.1016/j.ydbio.2007.09.036. 

Sievers, J., Pehlemann, F. W., Gude, S., and Berry, M. (1994). A time course study of the 

alterations in the development of the hamster cerebellar cortex after destruction of the 

overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol 23, 

117–134. doi:10.1007/BF01183866. 

Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., and Navon, R. (2006). The involvement of 

ErbB4 with schizophrenia: Association and expression studies. American Journal of 

Medical Genetics Part B: Neuropsychiatric Genetics 141B, 142–148. 

doi:10.1002/ajmg.b.30275. 

Sims, R. J., and Reinberg, D. (2006). Histone H3 Lys 4 methylation: caught in a bind? Genes 

Dev. 20, 2779–2786. doi:10.1101/gad.1468206. 

Smart, I. H. M., Dehay, C., Giroud, P., Berland, M., and Kennedy, H. (2002). Unique 

Morphological Features of the Proliferative Zones and Postmitotic Compartments of the 



 169 

Neural Epithelium Giving Rise to Striate and Extrastriate Cortex in the Monkey. 

Cerebral Cortex 12, 37–53. doi:10.1093/cercor/12.1.37. 

Smyth, N., Vatansever, H. S., Murray, P., Meyer, M., Frie, C., Paulsson, M., et al. (1999). 

Absence of Basement Membranes after Targeting the LAMC1 Gene Results in 

Embryonic Lethality Due to Failure of Endoderm Differentiation. J Cell Biol 144, 151–

160. 

Soldani, C., Lazzè, M. C., Bottone, M. G., Tognon, G., Biggiogera, M., Pellicciari, C. E., et al. 

(2001). Poly(ADP-ribose) Polymerase Cleavage during Apoptosis: When and Where? 

Experimental Cell Research 269, 193–201. doi:10.1006/excr.2001.5293. 

Soldatenkov, V. A., Chasovskikh, S., Potaman, V. N., Trofimova, I., Smulson, M. E., and 

Dritschilo, A. (2002). Transcriptional Repression by Binding of Poly(ADP-ribose) 

Polymerase to Promoter Sequences*. Journal of Biological Chemistry 277, 665–670. 

doi:10.1074/jbc.M108551200. 

Solecki, D. J., Trivedi, N., Govek, E.-E., Kerekes, R. A., Gleason, S. S., and Hatten, M. E. 

(2009). Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the 

Centrosome and Soma During CNS Glial-Guided Neuronal Migration. Neuron 63, 63–

80. doi:10.1016/j.neuron.2009.05.028. 

Son, D. I., Hong, S., Shin, K. S., and Kang, S. J. (2020). PARP-1 regulates mouse embryonic 

neural stem cell proliferation by regulating PDGFRα expression. Biochemical and 

Biophysical Research Communications 526, 986–992. doi:10.1016/j.bbrc.2020.03.166. 

Soriano, E., and del Río, J. A. (2005). The Cells of Cajal-Retzius: Still a Mystery One Century 

After. Neuron 46, 389–394. doi:10.1016/j.neuron.2005.04.019. 

Stahl, N., Farruggella, T. J., Boulton, T. G., Zhong, Z., Darnell, J. E., and Yancopoulos, G. D. 

(1995). Choice of STATs and other substrates specified by modular tyrosine-based motifs 

in cytokine receptors. Science 267, 1349–1353. doi:10.1126/science.7871433. 

Stanco, A., Szekeres, C., Patel, N., Rao, S., Campbell, K., Kreidberg, J. A., et al. (2009). Netrin-

1–α3β1 integrin interactions regulate the migration of interneurons through the cortical 

marginal zone. Proc Natl Acad Sci U S A 106, 7595–7600. 

doi:10.1073/pnas.0811343106. 

Stanfield, B. B., Caviness, V. S., and Cowan, W. M. (1979). The organization of certain afferents 

to the hippocampus and dentate gyrus in normal and reeler mice. Journal of Comparative 

Neurology 185, 461–483. doi:https://doi.org/10.1002/cne.901850304. 

Stary Creed M., Xu Lijun, Sun Xiaoyun, Ouyang Yi-Bing, White Robin E., Leong Jason, et al. 

(2015). MicroRNA-200c Contributes to Injury From Transient Focal Cerebral Ischemia 

by Targeting Reelin. Stroke 46, 551–556. doi:10.1161/STROKEAHA.114.007041. 

Stoica, B. A., Loane, D. J., Zhao, Z., Kabadi, S. V., Hanscom, M., Byrnes, K. R., et al. (2014). 

PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological 



 170 

Deficits after Traumatic Brain Injury. J Neurotrauma 31, 758–772. 

doi:10.1089/neu.2013.3194. 

Stoykova, A., Hatano, O., Gruss, P., and Götz, M. (2003). Increase in Reelin-positive Cells in the 

Marginal Zone of Pax6 Mutant Mouse Cortex. Cerebral Cortex 13, 560–571. 

doi:10.1093/cercor/13.6.560. 

Stoykova, A., Treichel, D., Hallonet, M., and Gruss, P. (2000). Pax6 Modulates the Dorsoventral 

Patterning of the Mammalian Telencephalon. J. Neurosci. 20, 8042–8050. 

Studer, M., Filosa, A., and Rubenstein, J. L. R. (2005). The nuclear receptor COUP-TFI 

represses differentiation of Cajal-Retzius cells. Brain Research Bulletin 66, 394–401. 

doi:10.1016/j.brainresbull.2004.11.027. 

Stumm, R. K., Zhou, C., Ara, T., Lazarini, F., Dubois-Dalcq, M., Nagasawa, T., et al. (2003). 

CXCR4 Regulates Interneuron Migration in the Developing Neocortex. J. Neurosci. 23, 

5123–5130. doi:10.1523/JNEUROSCI.23-12-05123.2003. 

Sun, L., Cheng, B., Zhou, Y., Fan, Y., Li, W., Qiu, Q., et al. (2020). ErbB4 Mutation that 

Decreased NRG1-ErbB4 Signaling Involved in the Pathogenesis of Amyotrophic Lateral 

Sclerosis/Frontotemporal Dementia. Journal of Alzheimer’s Disease 74, 535–544. 

doi:10.3233/JAD-191230. 

Sun, Y., Nadal-Vicens, M., Misono, S., Lin, M. Z., Zubiaga, A., Hua, X., et al. (2001). 

Neurogenin Promotes Neurogenesis and Inhibits Glial Differentiation by Independent 

Mechanisms. Cell 104, 365–376. doi:10.1016/S0092-8674(01)00224-0. 

Supèr, H., Del Río, J. A., Martínez, A., Pérez-Sust, P., and Soriano, E. (2000). Disruption of 

Neuronal Migration and Radial Glia in the Developing Cerebral Cortex Following 

Ablation of Cajal–Retzius Cells. Cerebral Cortex 10, 602–613. 

doi:10.1093/cercor/10.6.602. 

Suzuki, H., Uchida, K., Shima, H., Sato, T., Okamoto, T., Teruyuki Kimura, et al. (1987). 

Molecular cloning of cDNA for human poly(ADP-ribose) polymerase and expression of 

its gene during HL-60 cell differentiation. Biochemical and Biophysical Research 

Communications 146, 403–409. doi:10.1016/0006-291X(87)90543-2. 

Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1996). 

Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal 

migration. Mammalian Genome 7, 798. doi:10.1007/s003359900240. 

Szabó, C. (2005). Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of 

diabetes mellitus and its complications. Pharmacological Research 52, 60–71. 

doi:10.1016/j.phrs.2005.02.015. 

Szebeni, A., Szebeni, K., DiPeri, T. P., Johnson, L. A., Stockmeier, C. A., Crawford, J. D., et al. 

(2016). Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White 



 171 

Matter in Major Depressive Disorder. Int J Neuropsychopharmacol 20, 363–373. 

doi:10.1093/ijnp/pyw114. 

Takahashi, Y., Uchino, A., Shioya, A., Sano, T., Matsumoto, C., Numata‐Uematsu, Y., et al. 

(2019). Altered immunoreactivity of ErbB4, a causative gene product for ALS19, in the 

spinal cord of patients with sporadic ALS. Neuropathology 39, 268–278. 

doi:10.1111/neup.12558. 

Takiguchi-Hayashi, K., Sekiguchi, M., Ashigaki, S., Takamatsu, M., Hasegawa, H., Suzuki-

Migishima, R., et al. (2004). Generation of Reelin-Positive Marginal Zone Cells from the 

Caudomedial Wall of Telencephalic Vesicles. J. Neurosci. 24, 2286–2295. 

doi:10.1523/JNEUROSCI.4671-03.2004. 

Tan, K., Shaw, A. L., Madsen, B., Jensen, K., Taylor-Papadimitriou, J., and Freemont, P. S. 

(2003). Human PLU-1 Has Transcriptional Repression Properties and Interacts with the 

Developmental Transcription Factors BF-1 and PAX9*. Journal of Biological Chemistry 

278, 20507–20513. doi:10.1074/jbc.M301994200. 

Tapia-Páez, I., Tammimies, K., Massinen, S., Roy, A. L., and Kere, J. (2008). The complex of 

TFII‐I, PARP1, and SFPQ proteins regulates the DYX1C1 gene implicated in neuronal 

migration and dyslexia. FASEB j. 22, 3001–3009. doi:10.1096/fj.07-104455. 

Tessarz, P., and Kouzarides, T. (2014). Histone core modifications regulating nucleosome 

structure and dynamics. Nat Rev Mol Cell Biol 15, 703–708. doi:10.1038/nrm3890. 

Timmusk, T., Belluardo, N., Persson, H., and Metsis, M. (1994). Developmental regulation of 

brain-derived neurotrophic factor messenger RNAs transcribed from different promoters 

in the rat brain. Neuroscience 60, 287–291. doi:10.1016/0306-4522(94)90242-9. 

Timpl, R., Rohde, H., Rennard, S. I., Foidart, J. M., and Martin, G. R. (1979). Laminin–a 

glycoprotein from basement membranes. Journal of Biological Chemistry 254, 9933–

9937. doi:10.1016/S0021-9258(19)83607-4. 

Ting, A. K., Chen, Y., Wen, L., Yin, D.-M., Shen, C., Tao, Y., et al. (2011). Neuregulin 1 

Promotes Excitatory Synapse Development and Function in GABAergic Interneurons. J 

Neurosci 31, 15–25. doi:10.1523/JNEUROSCI.2538-10.2011. 

Tissir, F., Ravni, A., Achouri, Y., Riethmacher, D., Meyer, G., and Goffinet, A. M. (2009). 

DeltaNp73 regulates neuronal survival in vivo. PNAS 106, 16871–16876. 

doi:10.1073/pnas.0903191106. 

Tiveron, M.-C., Rossel, M., Moepps, B., Zhang, Y. L., Seidenfaden, R., Favor, J., et al. (2006). 

Molecular Interaction between Projection Neuron Precursors and Invading Interneurons 

via Stromal-Derived Factor 1 (CXCL12)/CXCR4 Signaling in the Cortical 

Subventricular Zone/Intermediate Zone. J Neurosci 26, 13273–13278. 

doi:10.1523/JNEUROSCI.4162-06.2006. 



 172 

Tolić, A., Grdović, N., Dinić, S., Rajić, J., Đorđević, M., Sinadinović, M., et al. (2019). Absence 

of PARP‐1 affects Cxcl12 expression by increasing DNA demethylation. J Cell Mol Med 

23, 2610–2618. doi:10.1111/jcmm.14154. 

Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F., and Kageyama, R. (2000). Mammalian 

achaete–scute and atonal homologs regulate neuronal versus glial fate determination in 

the central nervous system. EMBO J 19, 5460–5472. doi:10.1093/emboj/19.20.5460. 

Toresson, H., Potter, S. S., and Campbell, K. (2000). Genetic control of dorsal-ventral identity in 

the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371. 

doi:10.1242/dev.127.20.4361. 

Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., et al. 

(1999). Reeler/Disabled-like Disruption of Neuronal Migration in Knockout Mice 

Lacking the VLDL Receptor and ApoE Receptor 2. Cell 97, 689–701. 

doi:10.1016/S0092-8674(00)80782-5. 

Trucco, C., Oliver, F. J., de Murcia, G., and Ménissier-de Murcia, J. (1998). DNA repair defect 

in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26, 2644–2649. 

Tsai, J.-W., Lian, W.-N., Kemal, S., Kriegstein, A. R., and Vallee, R. B. (2010). Kinesin 3 and 

cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat 

Neurosci 13, 1463–1471. doi:10.1038/nn.2665. 

Tsai, L.-H., and Gleeson, J. G. (2005). Nucleokinesis in Neuronal Migration. Neuron 46, 383–

388. doi:10.1016/j.neuron.2005.04.013. 

Tzahar, E., Waterman, H., Chen, X., Levkowitz, G., Karunagaran, D., Lavi, S., et al. (1996). A 

hierarchical network of interreceptor interactions determines signal transduction by Neu 

differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16, 5276–

5287. 

Unda, B. K., Kwan, V., and Singh, K. K. (2016). Neuregulin-1 Regulates Cortical Inhibitory 

Neuron Dendrite and Synapse Growth through DISC1. Neural Plast 2016. 

doi:10.1155/2016/7694385. 

Valanejad, L., Cast, A., Wright, M., Bissig, K.-D., Karns, R., Weirauch, M. T., et al. (2018). 

PARP1 activation increases expression of modified tumor suppressors and pathways 

underlying development of aggressive hepatoblastoma. Commun Biol 1. 

doi:10.1038/s42003-018-0077-8. 

Valiente, M., and Marín, O. (2010). Neuronal migration mechanisms in development and 

disease. Current Opinion in Neurobiology 20, 68–78. doi:10.1016/j.conb.2009.12.003. 

Vasile, F., Dossi, E., and Rouach, N. (2017). Human astrocytes: structure and functions in the 

healthy brain. Brain Struct Funct 222, 2017–2029. doi:10.1007/s00429-017-1383-5. 



 173 

Visochek, L., Grigoryan, G., Kalal, A., Milshtein-Parush, H., Gazit, N., Slutsky, I., et al. (2016). 

A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 6, 24950. 

doi:10.1038/srep24950. 

Vullhorst, D., Neddens, J., Karavanova, I., Tricoire, L., Petralia, R. S., McBain, C. J., et al. 

(2009). Selective Expression of ErbB4 in Interneurons, But Not Pyramidal Cells, of the 

Rodent Hippocampus. J Neurosci 29, 12255–12264. doi:10.1523/JNEUROSCI.2454-

09.2009. 

Walcher, T., Xie, Q., Sun, J., Irmler, M., Beckers, J., Öztürk, T., et al. (2013). Functional 

dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating 

neurogenesis and proliferation. Development 140, 1123–1136. doi:10.1242/dev.082875. 

Wang, B., Waclaw, R. R., Allen, Z. J., Guillemot, F., and Campbell, K. (2009). Ascl1 is a 

required downstream effector of Gsx gene function in the embryonic mouse 

telencephalon. Neural Development 4, 5. doi:10.1186/1749-8104-4-5. 

Wang, C., Xu, W., An, J., Liang, M., Li, Y., Zhang, F., et al. (2019). Poly(ADP-ribose) 

polymerase 1 accelerates vascular calcification by upregulating Runx2. Nat Commun 10. 

doi:10.1038/s41467-019-09174-1. 

Wang, H., Ge, G., Uchida, Y., Luu, B., and Ahn, S. (2011a). Gli3 Is Required for Maintenance 

and Fate Specification of Cortical Progenitors. J Neurosci 31, 6440–6448. 

doi:10.1523/JNEUROSCI.4892-10.2011. 

Wang, Y., Li, G., Stanco, A., Long, J. E., Crawford, D., Potter, G. B., et al. (2011b). CXCR4 and 

CXCR7 Have Distinct Functions in Regulating Interneuron Migration. Neuron 69, 61–

76. doi:10.1016/j.neuron.2010.12.005. 

Wang, Z. Q., Auer, B., Stingl, L., Berghammer, H., Haidacher, D., Schweiger, M., et al. (1995). 

Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible 

to skin disease. Genes Dev. 9, 509–520. doi:10.1101/gad.9.5.509. 

Warren, N., Caric, D., Pratt, T., Clausen, J. A., Asavaritikrai, P., Mason, J. O., et al. (1999). The 

Transcription Factor, Pax6, is Required for Cell Proliferation and Differentiation in the 

Developing Cerebral Cortex. Cerebral Cortex 9, 627–635. doi:10.1093/cercor/9.6.627. 

Wengner, A. M., Scholz, A., and Haendler, B. (2020). Targeting DNA Damage Response in 

Prostate and Breast Cancer. Int J Mol Sci 21. doi:10.3390/ijms21218273. 

Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G., and Alvarez-Buylla, A. (2001). In utero fate 

mapping reveals distinct migratory pathways and fates of neurons born in the mammalian 

basal forebrain. Development 128, 3759–3771. doi:10.1242/dev.128.19.3759. 

Woo, R.-S., Lee, J.-H., Yu, H.-N., Song, D.-Y., and Baik, T.-K. (2010). Expression of ErbB4 in 

the apoptotic neurons of Alzheimer’s disease brain. Anat Cell Biol 43, 332–339. 

doi:10.5115/acb.2010.43.4.332. 



 174 

Woo, R.-S., Lee, J.-H., Yu, H.-N., Song, D.-Y., and Baik, T.-K. (2011). Expression of ErbB4 in 

the neurons of Alzheimer’s disease brain and APP/PS1 mice, a model of Alzheimer’s 

disease. Anat Cell Biol 44, 116–127. doi:10.5115/acb.2011.44.2.116. 

Wu, S.-X., Goebbels, S., Nakamura, K., Nakamura, K., Kometani, K., Minato, N., et al. (2005). 

Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in 

the subventricular zone. PNAS 102, 17172–17177. 

Wu, Z.-Q., Li, D., Huang, Y., Chen, X.-P., Huang, W., Liu, C.-F., et al. (2017). Caspr Controls 

the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the 

Developing Mouse Cerebral Cortex. Cerebral Cortex 27, 1369–1385. 

doi:10.1093/cercor/bhv318. 

Xu, F., Sun, Y., Yang, S.-Z., Zhou, T., Jhala, N., McDonald, J., et al. (2019). Cytoplasmic 

PARP-1 promotes pancreatic cancer tumorigenesis and resistance. International Journal 

of Cancer 145, 474–483. doi:10.1002/ijc.32108. 

Yamazaki, H., Sekiguchi, M., Takamatsu, M., Tanabe, Y., and Nakanishi, S. (2004). Distinct 

ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes 

during neocorticogenesis. Proc Natl Acad Sci U S A 101, 14509–14514. 

doi:10.1073/pnas.0406295101. 

Yang, J.-M., Zhang, J., Chen, X.-J., Geng, H.-Y., Ye, M., Spitzer, N. C., et al. (2013). 

Development of GABA circuitry of fast-spiking basket interneurons in the medial 

prefrontal cortex of erbb4-mutant mice. J Neurosci 33, 19724–19733. 

doi:10.1523/JNEUROSCI.1584-13.2013. 

Yarden, Y., and Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nat Rev 

Mol Cell Biol 2, 127–137. doi:10.1038/35052073. 

Yin, D.-M., Sun, X.-D., Bean, J. C., Lin, T. W., Sathyamurthy, A., Xiong, W.-C., et al. (2013). 

Regulation of Spine Formation by ErbB4 in PV-Positive Interneurons. J. Neurosci. 33, 

19295–19303. 

Yoo, Y. D., Huang, C. T., Zhang, X., Lavaute, T. M., and Zhang, S.-C. (2011). Fibroblast 

Growth Factor Regulates Human Neuroectoderm Specification Through ERK1/2-PARP-

1 Pathway. STEM CELLS 29, 1975–1982. doi:10.1002/stem.758. 

Yoshida, M., Assimacopoulos, S., Jones, K. R., and Grove, E. A. (2006). Massive loss of Cajal-

Retzius cells does not disrupt neocortical layer order. Development 133, 537–545. 

doi:10.1242/dev.02209. 

Yu, S.-W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., et al. (2002). 

Mediation of Poly(ADP-Ribose) Polymerase-1-Dependent Cell Death by Apoptosis-

Inducing Factor. Science 297, 259–263. 



 175 

Yun, K., Potter, S., and Rubenstein, J. L. (2001). Gsh2 and Pax6 play complementary roles in 

dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205. 

doi:10.1242/dev.128.2.193. 

Zampieri, M., Passananti, C., Calabrese, R., Perilli, M., Corbi, N., De Cave, F., et al. (2009). 

Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its 

Enzymatic Activity. PLoS ONE 4, e4717. doi:10.1371/journal.pone.0004717. 

Zeng, N., Liu, L., McCabe, M. G., Jones, D. T. W., Ichimura, K., and Collins, V. P. (2009). 

Real-time quantitative PCR analysis with FRET probes reveals differential expression of 

the four ERBB4 juxtamembrane-region variants between medulloblastoma and pilocytic 

astrocytoma. Neuropathol Appl Neurobiol 35, 353–366. doi:10.1111/j.1365-

2990.2008.01001.x. 

Zhang, H., Zhang, X., Clark, E., Mulcahey, M., Huang, S., and Shi, Y. G. (2010). TET1 is a 

DNA-binding protein that modulates DNA methylation and gene transcription via 

hydroxylation of 5-methylcytosine. Cell Res 20, 1390–1393. doi:10.1038/cr.2010.156. 

Zhu, Y., Li, H., Zhou, L., Wu, J. Y., and Rao, Y. (1999). Cellular and Molecular Guidance of 

GABAergic Neuronal Migration from an Extracortical Origin to the Neocortex. Neuron 

23, 473–485. doi:10.1016/S0896-6273(00)80801-6. 

Zilles, K., Palomero-Gallagher, N., and Amunts, K. (2013). Development of cortical folding 

during evolution and ontogeny. Trends in Neurosciences 36, 275–284. 

doi:10.1016/j.tins.2013.01.006. 

Zimmer, C., Tiveron, M.-C., Bodmer, R., and Cremer, H. (2004). Dynamics of Cux2 Expression 

Suggests that an Early Pool of SVZ Precursors is Fated to Become Upper Cortical Layer 

Neurons. Cerebral Cortex 14, 1408–1420. doi:10.1093/cercor/bhh102. 

Zimmer, G., Garcez, P., Rudolph, J., Niehage, R., Weth, F., Lent, R., et al. (2008). Ephrin-A5 

acts as a repulsive cue for migrating cortical interneurons. European Journal of 

Neuroscience 28, 62–73. doi:10.1111/j.1460-9568.2008.06320.x. 

Zimmer, G., Schanuel, S. M., Bürger, S., Weth, F., Steinecke, A., Bolz, J., et al. (2010). 

Chondroitin Sulfate Acts in Concert with Semaphorin 3A to Guide Tangential Migration 

of Cortical Interneurons in the Ventral Telencephalon. Cerebral Cortex 20, 2411–2422. 

doi:10.1093/cercor/bhp309. 

Zinin, N., Adameyko, I., Wilhelm, M., Fritz, N., Uhlén, P., Ernfors, P., et al. (2014). MYC 

proteins promote neuronal differentiation by controlling the mode of progenitor cell 

division. EMBO Rep 15, 383–391. doi:10.1002/embr.201337424. 

 

 


