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Abstract 

 

Metabolites and lipids are important compounds involved in various cellular processes. 

The comprehensive analysis of all metabolite and lipid species, termed metabolomics and 

lipidomics, respectively, is challenging due to the large size, chemical diversity, and concentration 

range of the metabolome and lipidome. Liquid chromatography coupled with mass spectrometry 

(LC-MS) is a powerful tool for metabolomics and lipidomics due to its sensitivity, selectivity, and 

amenability to a broad range of compounds. The goal of this thesis is to evaluate and demonstrate 

improvements in capillary LC-MS based metabolomics and lipidomics primarily using custom-

built chromatography instrumentation capable of operating at 35 kpsi compared to what is 

currently commercially available.  

Lipid separations were evaluated from plasma extracts using one- and two-dimensional 

liquid chromatography coupled with mass spectrometry. Use of 50 cm columns with 1.7 µm C18 

particles provided up to a 95% increase in peak capacity compared to commercial limitations. We 

evaluated the effect of column and gradient length on the number of lipids detected from plasma 

and found a roughly linear relationship between peak capacity and lipids detected, illustrating the 

benefits of improved separation performance in lipidomic assays. An offline two-dimensional LC-

MS system was developed utilizing HILIC in the first dimension to fractionate lipids from plasma 

based on their class, followed by re-injection on the 50 cm capillary columns. The 2D method 

demonstrated high orthogonality, achieved a peak capacity of approximately 1900 in 600 min, and 

detected roughly double the number of lipids compared to the one-dimensional work.  
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We evaluated the potential for fast yet high efficiency metabolite separations using porous 

C18 particles down to 1.1 µm and pressures up to 35 kpsi. Use of these particle sizes is possible 

with 35 kpsi available and are useful for high throughput metabolomics measurements. Columns 

were evaluated using isocratic and gradient separations of standards and metabolite extracts from 

plasma. Peak capacities of roughly 100 – 400 were achieved in 8 – 40 min with interfacing to MS, 

demonstrating relatively fast and high-resolution separations. We evaluated the effect of different 

LC-MS variables on mass spectral feature detection. Lower flow rates (down to 700 nL/min) and 

larger injection volumes (up to 1 µL) increased the features detected, demonstrating practical 

benefits for metabolomics assays.  

Finally, gradient LC-MS operation up to 50 kpsi is achieved and peak capacities over 1000 

are demonstrated. Gradient kinetic plots were constructed to guide choice of column length, 

particle size, and gradient time. Use of 100 cm capillaries packed with 1.7 µm particles achieved 

a peak capacity of ~1000 in about 4 h. Separations at 50 kpsi are achieved but not feasible for 

routine use with current hardware. Instrument modifications are evaluated and discussed for 

routine, leak-free operation at 50 kpsi.  

The work described in this thesis describes approaches for improving LC-MS based 

metabolomics and lipidomics through improvements in separations primarily at 35 kpsi and using 

1.1 – 1.7 µm particles packed in 20 – 100 cm long columns. This work illustrates practical 

applications of ultrahigh pressures in liquid chromatography and discusses advantages of such 

instrumentation in LC-MS based assays.  
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Chapter 1. Introduction 

 

1.1. Metabolomics and lipidomics 

1.1.1. Motivation for studying lipids and metabolites 

Lipids and metabolites are relatively small molecules (< 2000 Da) involved in a variety of 

functions within living organisms. Lipids and metabolites are often closely related to the observed 

phenotype and are often considered the end product of the flow of information in an organism, 

also known as the central dogma. Studying the dynamics of metabolites and lipids can thus give 

insight into disease states and to help understand physiological mechanisms in systems biology. 

Figure 1-1 shows an illustration of the central dogma, with each sector including the associated 

“omics” technology, and thus forming what is often referred to as the “omics cascade”.  

 

Figure 1-1. Schematic representation of the central dogma – the flow of information through a living organism – and 

their complementary -omics technologies with notable sub-disciplines. Adopted from Arújo et. al.1 
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The comprehensive analysis of metabolites is termed metabolomics. Lipidomics is a sub-

field of metabolomics devoted to the comprehensive study of lipids and is often independent of 

metabolomics due to the complexity of the lipidome and the differences in biological functions 

and physicochemical properties of lipids. Metabolomics and lipidomics analyses can be performed 

in what’s termed targeted or untargeted manners. In a targeted analysis, a set number of compounds 

are studied and quantified.2 Generally, these analyses are hypothesis-driven with expectation of 

the target analytes being up-regulated or down-regulated. The goal of an untargeted analysis is to 

identify and quantify all the metabolites or lipids in the sample of interest; these studies are often 

hypothesis-generating. Metabolomics and lipidomics studies have been applied in many areas, 

including food science, plant biology, biofuels, environmental studies, and biomarker and drug 

discovery for animal and human health.1,3–5 Diseases such as Alzheimer's, Parkinson's, diabetes, 

and chronic kidney disease have all been associated with altered metabolite or lipid profiles.6,7 

1.1.2. Challenges of metabolomics 

One of the biggest challenges in untargeted metabolomics and lipidomics arises from the 

large number of metabolites and lipids present in most biological or environmental samples. In 

humans for example, there are over 40,000 confirmed endogenous metabolites, and thousands 

more arising from external environments and activities.8–10 Moreover, the diverse physicochemical 

properties and large concentration range of metabolites adds more challenges. Thus, no single 

analytical technique has been developed yet that can measure all metabolites in a single analysis.11 

Identification and quantitation are also challenging in metabolomics. Targeted 

metabolomics offers better quantitation than untargeted approaches due to the use of standards and 

internal standards for calibration and to account for sample preparation errors and instrumental 
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drift. Additionally, methods can be modified to optimize resolution and signal intensity of the 

target analytes.  

Untargeted methods, on the other hand, typically involve less method development and 

employ more general instrumental conditions to attempt to analyze as many compounds as 

possible. Identification remains a challenge due to the lack of standards available and the difficulty 

in implementing standards for all the potential compounds being measured. Additionally, unlike 

genomics or proteomics, metabolites are not comprised of smaller repeating units/monomers, and 

thus cannot be sequenced. Identification therefore typically relies on a combination of retention 

time data, accurate mass, tandem mass(es), drift time, chemical shift, and reference (external or 

internal) standards, depending on the analytical method of choice. These data are then imported 

into different databases, such as XCMS, LipidBlast, and the NIST standard reference 

database.10,12–14 

1.1.3. Analytical strategies for metabolomics 

A number of techniques are used in metabolomics. These techniques include spectroscopy, 

separation systems, and mass spectrometry (MS).15,16 Spectroscopic instrumentation such as 

nuclear magnetic resonance (NMR), Raman, and infrared spectroscopy are useful tools for 

identification and quantitation of metabolites. NMR in particular has shown utility in various 

metabolomics studies and provides good information content such as structural identification and 

quantification, has good reproducibility, and is relatively high throughput.17,18 The main 

disadvantage of spectroscopic techniques is the poor sensitivity, with detection limits typically on 

the ~mM to µM levels. In addition, efficient coupling of these instruments to separation systems 

for sample cleanup and preconcentration remains a challenge. 
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MS-based metabolomics typically offers better sensitivity than spectroscopic techniques, 

with detection limits down to picomolar or femtomolar levels being achieved.19–21 A general 

overview of MS-based metabolomics is shown in Figure 1-2. MS-based metabolomics is a 

versatile technique that can be used for targeted analyses, typically employing triple quadrupole 

instrumentation, and untargeted analyses, using full-scan acquisition typically with time-of-flight 

(ToF) or orbital based (Orbitrap or FT-ICR) instruments. Furthermore, different ionization 

techniques such as electron impact, electrospray ionization (ESI), matrix assisted laser 

desorption/ionization, among others, in addition to positive and negative polarities, can be used 

depending on the properties of the analytes of interest. Lastly, MS is easily interfaced with 

separation techniques, which can provide enhanced metabolite and lipid coverage. 

 

Figure 1-2. Typical workflow for MS-based metabolomics. Adapted from Wang et. al.22 
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Separations are an important step in most metabolomic assays as the majority of samples 

are very complex and potentially contain 10s of thousands to 100s of thousands of compounds. 

This complexity challenges the goals in achieving high metabolome coverage in untargeted 

workflows. Separations help by decreasing ionization suppression due to co-eluting species, 

separating isobaric and isomeric analytes, providing cleaner mass spectra for spectral matching 

and interpretation, and providing additional retention time information.23–25 Ionization suppression 

is problematic for MS-based analysis of complex biological matrices such as plasma and can limit 

sensitivity.26 Most separation techniques are amenable for online coupling with MS, allowing for 

relatively high throughput analysis. High efficiency separations are particularly desired for 

untargeted approaches where the goal is to achieve the highest number and confidence of 

identifications. 

Gas chromatography (GC) is a popular technique for metabolite and lipid separations and 

is easily interfaced to MS for detection and identification;27,28 however, the technique comes with 

numerous drawbacks. First, analytes must be volatile to be separated. Derivatization can be done 

to increase the volatility of certain compounds; however, this adds additional sample preparation 

steps, may not be amenable to all compounds, and may increase sample complexity due to 

undesired or incomplete derivatization. GC-MS analysis is also limited to thermally stable 

analytes, as thermally labile analytes may not be detected or have inaccurate quantitation.  

Electrophoretic techniques are useful for separating charged species and can offer high 

separation efficiency, however interfacing to MS has remained a challenge. Additionally, target 

analytes are often limited to charged species and often necessitate derivatization. Nonetheless, 

metabolomics studies have been reported using electrophoretic techniques, most popular being 

capillary zone electrophoresis and micellular electrokinetic chromatography.29–31  
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Supercritical fluid chromatography (SFC) has been used for metabolite and lipid 

separations, with notable advantages including faster separations with minimal loss in performance 

and environmentally friendly mobile phases such as supercritical CO2. SFC has been coupled to 

MS for both metabolomics and lipidomics applications.32–34  

High performance liquid chromatography (HPLC) is perhaps the dominant approach for 

metabolite and lipid separations.22,35,36 HPLC is amenable to most analytes, without the need for 

molecules to be volatile or charged. Furthermore, different modes of HPLC can be used depending 

on the physicochemical properties of the target analytes. The most common modes include 

reversed phase (RP) HPLC, which employs a hydrophobic stationary phase (most often n-

octadecyl (C18)), and hydrophilic interaction HPLC (HILIC), which employs a hydrophilic 

interaction stationary phase (such as diol, amino-based, and amide-based functional groups). 

Additionally, both RP-LC and HILIC use a mixture of water and water-miscible organics (e.g., 

methanol or acetonitrile) as mobile phase, providing easy online coupling to MS most often 

through ESI or nanoESI (nESI) interfaces. 

1.2. Chromatographic theory 

1.2.1. Description of separation performance 

Imperative to improving HPLC separations as a means to expand LC-MS based 

metabolomics is the need to understand what goes on inside the column and factors that influence 

analyte broadening during a separation. As an analyte moves through a chromatographic column, 

a Gaussian distribution, with an associated standard deviation (σ), is formed. This distribution, 

also known as a ‘band’ or ‘zone’, is a measure of the quality of the separation.37 The overall quality 

of a separation, and thus the packing quality of the column, is often described by the height 
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equivalent of a theoretical plate (HETP), or simply termed the plate height, H, which relates the 

square of the band standard deviation, also known as the variance, to the column length (L): 

𝐻 =  
𝜎2

𝐿
 eq. 1-1 

Plate height provides good indication on the separation and packing quality of a given 

column, with values of the reduced plate heights (h, equal to H/dp) less than 2 typically indicating 

a “well-packed” column. Plate height is not a good descriptor for total column performance, 

however, because it normalizes for column length. The efficiency of a column is thus described 

by the total number of theoretical plates (N) that are generated during the separation; N is a 

universal, dimensionless value that can be applied to most separations, not only chromatographic 

separations. Plate height and plate number are related through the column length: 

𝑁 =  
𝐿

𝐻
 eq. 1-2 

That is, longer columns will produce higher plate numbers assuming the packing quality is the 

same. The terminology of plate number and plate height dates to classic distillation procedures, 

where ‘N’ number of equilibrations are carried out successively. Hence, more equilibration events 

(higher N values) equate to a more efficient separation. Through substitution of equation 1 and 2, 

the efficiency of a column can be written in terms of the variance of a zone: 

𝑁 =  
𝐿2

𝜎2 eq. 1-3 

Lastly, the measured resolution between two peaks of interest is another good description 

of separation performance. The resolution of two peaks is described by: 

𝑅𝑠 =
𝑡𝑅,2−𝑡𝑅,1

0.5(𝑊4𝜎,1+𝑊4𝜎,2)
 eq. 1-4 

Resolution can thus be improved by employing longer columns and/or particle sizes to decrease 

W4σ. It can also be improved by employing alternative stationary phase chemistries, mobile phase 
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compositions, changing column temperature, and a number of other variables.38 Indeed, these 

variables should be investigated first in attempt to increase resolution between peaks; however, for 

complex mixture analysis with 100s – 1000s of compounds, resolution between all peaks is simply 

impossible.39 Hence, increasing N is the most effective means at increasing resolution of complex 

mixtures such as those encountered in lipidomic and metabolomic analyses.  

1.2.2. Theory of gradient separations 

Gradient separations, where the mobile phase composition changes throughout the 

separation, are important for decreasing analysis time and expanding the polarity range when many 

different compounds need to be separated in a single run. In metabolomics and lipidomics, the 

samples may contain thousands of different compounds with a wide range of physicochemical 

properties. For example, the logP of the amino acid proline is -2.7, whereas the triacylglycerol 

42:0 is 18.7, over 21 orders of magnitude difference.40,41 

While theoretical plates and plate height are the best assessment of column performance 

for isocratic separations, they do not hold true for gradient separations. A useful best metric for 

assessing column performance under gradient elution conditions is the peak capacity, nc. The peak 

capacity is defined as the total number of peaks that can be separated with unit resolution over the 

course of the separation.42 An approximate estimate for peak capacity and the relationship between 

theoretical plates is shown through equation 1-5: 

𝑛𝑐 =
√𝑁

4
𝑙𝑛(𝑡𝐺

𝑡0
) eq. 1-5 

Where tG is the gradient time and t0 is the dead time. As a result, with the square root relationship, 

doubling the number of plates should result in a ~1.4X increase in peak capacity, assuming other 

gradient parameters such as gradient slope remain constant. Additionally, increasing gradient time 

will increase peak capacity but with diminishing returns through the logarithmic relationship. For 
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reference, commercial HPLC typically achieves peak capacities of ~200 (discussed more in section 

1.3). The peak capacity is empirically calculated through the following equation: 

𝑛𝑐 = 1 +
𝑡𝐺

𝑊4𝜎
 eq. 1-6  

1.2.3. The van Deemter curve 

In the mid 1950s, van Deemter described the effect of the linear velocity of the mobile 

phase, u, on the observed plate height.43 It was found that a minimum in H (Hmin) was found at 

intermittent velocities. This minimum was due to a balance between excessive longitudinal 

diffusion at very slow velocities, and resistance to mass transfer at high linear velocities. The van 

Deemter equation which fit experimental data was derived:  

𝐻 = 𝐴 + 
𝐵

𝑢
+ 𝐶𝑢 eq. 1-7 

Where the A, B, and C terms account for eddy dispersion, longitudinal diffusion, and mass 

transfer, respectively. Other similar equations were expressed by others in the field, with minor 

differences accounting for factors such as velocity-dependent eddy dispersion and mass transfer 

arising from stagnant mobile phase, among others.44–46  Furthermore, “reduced parameters” were 

developed which normalizes the plate height and linear velocity to better compare columns and 

experiments with different particle sizes and diffusion coefficients (Dm). The reduced plate height, 

h, and reduced linear velocity, v, are defined as: 

ℎ =  
𝐻

𝑑𝑝
 eq. 1-8 

𝑣 =  
𝑢𝑑𝑝

𝐷𝑚
 eq. 1-9 

Despite continued refinements and studies on the understanding and description of band 

broadening in chromatographic beds,47 the van Deemter model continues to be used for describing 

the quality of a packed column and the factors that cause nonidealities in the separation. 
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1.2.4. Effect of particle size on plate height 

Over the latter half of the 20th century and continuing today, there has been a steady 

decrease in the size of particles used in HPLC columns.48 Currently, particle diameters (dp) below 

2 µm are primarily used in most HPLC systems. Smaller particles reduce band broadening due to 

eddy dispersion and mass transfer (A and C terms above), described by the first and third term of 

equation 1-10: 

𝐻 =  λ𝑑𝑝 +
2𝛾𝐷

𝑢
+

𝑑𝑝
2𝑢

𝐷
 eq. 1-10 

Equation 1-10 is a simplified expression of the van Deemter equation for describing the 

plate height in a chromatographic column that is empirically found to be approximately correct.49 

The constants λ and γ are parameters relating to the quality and presence of the packing, 

respectively. From equation 4, the impact of particle diameter on plate height is evident. 

Theoretical van Deemter curves are shown in Figure 1-3 for columns packed with 5, 3, and 1 µm 

particles. Decreasing particle diameter leads to both smaller plate heights and faster optimal linear 

velocities (uopt, velocity that produces Hmin) – the ability to achieve both faster and better 

separations. This improvement comes at the expense of much higher inlet pressure. For reference, 

achieving a linear velocity of 1 cm/s on a 10 cm column would require 1800, 5000, and 34000 psi 

when using 5, 3, and 1 µm particles, respectively.  
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Figure 1-3. Theoretical van Deemter curves illustrating the benefit of utilizing smaller particle diameters in UHPLC. 

Smaller plate heights and higher optimal linear velocities are expected when using smaller particles. 

1.2.5. Effect of smaller particles on column permeability 

In the previous sections it was shown that implementing smaller diameter stationary phase 

particles can improve separation efficiency by decreasing band broadening due to eddy diffusion 

and resistance to mass transfer. To maintain a given column length, however, much higher back 

pressure is required to push solvent through a tube packed with such small particles, described 

through equation 1-11: 

𝑢 =  
𝑃𝑑𝑝

2

400𝜂𝐿
 eq. 1-11 

Where η is the mobile phase viscosity and P is the inlet pressure. Therefore, if the pressure 

is not high enough, u becomes very slow, and thus the separation is limited by longitudinal 

diffusion. Additionally, because smaller particles reduce band broadening from mass transfer, the 

optimum mobile phase velocity, uopt, is proportional to dp. Taken together, the optimum pressure 

(e.g., pressure required to reach uopt and hmin) is proportional to the cube of the particle diameter. 

Pressure can thus ultimately be a limiting factor for improvements in separation speed and 

efficiency when using packed columns.49–51 
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1.2.6. Kinetic plots for quantifying effect of pressure on separation performance 

While the van Deemter curve is a good assessment of the quality of the packed column and 

factors leading to increases in plate height, it does not directly consider analysis time nor take into 

account column permeability, and thus does not say much about actual analysis time, total plates 

generated, and pressure limitations. Kinetic plots are helpful in identifying conditions that give a 

desired performance (theoretical plates) based on dp, pressure limit, and analysis time.52,53 Such 

plots therefore can help to understand when higher pressures are beneficial and should be 

implemented. Fig. 1-4A shows a kinetic plot illustrating the optimal particle size given a set 

pressure limit and analysis time.49 For example, with an analysis time of 2 min, approximately 

180,000 plates can be generated with the optimum particle size of 1 μm and 50 kpsi pressure limit. 

If only 10 kpsi pressure is available, the optimal particle size is 1.5 μm and only 80,000 plates are 

generated in the same 2 min analysis time. Particle size is often limited to those that are 

commercially available, and thus the plot in Fig 1-4A is not always practical. Another kinetic plot, 

sometimes called a Poppe plot, displays the plate time (time it takes to obtain 1 plate) versus plates 

and is useful for determining when certain particle size and column lengths are beneficial for 

different desired analysis times given a set pressure limit and particle size. Figure 1-4B shows such 

a plot for two different particle sizes (0.5 μm and 1.7 μm) and instrument pressure limits (12 kpsi 

and 50 kpsi). Going from left to right along a curve, column length increases such that dead time 

and column efficiency are increased. Column dead times are projected as a diagonal line for clarity. 

From this plot, it is clear how higher instrument pressure can lead to faster separations for a given 

plate number or higher plate numbers in a given time. For example, plate numbers for a 30 s dead 

time increase from 35,000 to 88,000 with 0.5 μm particles when 50 kpsi is available compared to 

12 kpsi (green versus blue trace). When 1.7 μm particles are used, a more modest increase from 
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30,000 to 38,000 is achieved from 12 to 50 kpsi and a dead time of 30 s. However, at longer 

analysis times, e.g., 180 s, 1.7 μm particles are beneficial over 0.5 μm when 50 kpsi is available 

(blue vs. black trace). Thus, while higher pressures are almost always beneficial when column 

length or particle size can be varied, the extent of these improvements can vary.54 Careful 

consideration of particle size and column length with the desired analysis time and plate count 

must be done to take advantage of higher pressure. 

 

1.3. Practical uses of ultrahigh pressure liquid chromatography 

1.3.1. Isocratic separations up to 100 kpsi 

Many researchers have reported injection systems able to withstand very high inlet 

pressures, with some reports of over 100 kpsi.51,55,56 These systems are often built around stainless 

steel valves and tubing that are commercially available, for example from High Pressure (HiP) 

equipment company. These injection systems typically employ a static-split flow injection scheme. 

Figure 1-4. Kinetic plots illustrating the effect of operating pressure, particle diameter, column length, and analysis 

time on efficiency in HPLC. (A) For a set dead time of 2 min, the optimum particle diameter decreases and the number 

of theoretical plates achieved increases as instrument pressure increases. (B) “Poppe” style kinetic plot illustrating the 

effect of column length, instrument pressure, and a set particle diameter on time and efficiency. In both graphs, column 

length is varied along each curve, and minima and maxima occur with a balance between longitudinal diffusion and 

resistance to mass transfer. For details on kinetic plot construction see Appendix 2. 
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While these injectors offer very narrow injection bands that are good for column evaluation under 

isocratic conditions, they often require manual manipulation of valves and waste sample. 

Early UHPLC studies heavily relied upon nonporous particles primarily due to their 

availability in small sizes. Separations were performed in fused silica capillaries from diameters 

of 10 – 150 μm to minimize heat generation which would otherwise cause axial and radial 

temperature gradients and significantly impede separation performance.  Nonporous reversed-

phase particles ranging from 1.0 to 1.5 μm were packed at ~60 kpsi in 40 – 50 cm × 30 μm 

capillaries and operated up to 100 kpsi, generating up to 310,000 plates for a small molecule test 

mixture with on-column amperometric detection.55,56 Dead times were a few minutes, much faster 

than what would be possible at commercial pressures. 

1.3.2. Studies on column packing 

In order to realize the expected gains in separation efficiency discussed in section 1.2, 

columns must be well-packed, typically defined as an hmin below 2. While early work with 

nonporous particles laid the groundwork for UHPLC, the applications were limited due to the low 

loading capacity of these particles. With the introduction of sub-2 μm porous particles, differences 

in chromatographic performance were compared to nonporous particles.57,58 Reduced plate heights 

as low as 1.6 were observed for 1.5 μm porous particles in 50 cm × 30 μm i.d. capillaries suggesting 

efficient packing. Higher C-terms were observed with porous particles at high linear velocities due 

to mass transfer contribution from the stagnant mobile phase. Additionally, the larger particle size 

distribution arising from synthesis of the porous particles poses potential limits to efficient column 

preparation.59 Both the slurry solvent type and concentration influence the quality of the packed 

column. Using dispersive slurry solvents at low concentrations, packing is much slower, allowing 

time for smaller particles to travel to the wall, leading to radial heterogeneities that contribute to 
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poor performance.60–62 Increasing slurry concentration and choosing slurry solvents that promote 

particle aggregation results in a more random and homogenous packing process, producing more 

efficient columns. At very high slurry concentrations, however, column performance again 

deteriorates due to the presence of large voids in the bed. Larger and a higher number of voids are 

more prevalent with smaller and smaller particle diameters. Implementation of sonication while 

packing has been investigated to mitigate the presence of packing voids. Meter long capillaries 

packed with a 200 mg/mL slurry of 2.0 μm bridged-ethyl hybrid silica particles (when the optimal 

is ~150 mg/mL without sonication) achieved reduced plate heights as low as 1.05 and 470,000 

plates.63 Further work remains on producing such long columns with even smaller particles (e.g., 

on the ~1 μm scale) as axial heterogeneities and large voids limit the packing efficiency using 

currently employed packing methods.60,64  

1.3.3. Gradient separations at ultrahigh pressures 

Reliable and automated gradient instrumentation capable of withstanding ultrahigh 

pressure is necessary to realize the capabilities suggested by the kinetic plots discussed above. 

Early ultrahigh pressure gradient systems were capable of operating up to 70 kpsi but had notable 

shortcomings, including split-flow, nonlinear gradients, and lack of automation.56,65,66 Further 

improvements in system designs have allowed for automated sample injection and operation up to 

45 kpsi with split-less and linear gradients.67–69 Smaller tees and fittings likely contributed to the 

lower pressure limits. A schematic of a gradient system similar to that reported in Grinias et. al.  is 

shown in Figure 1-5.67 The system uses a commercial LC to load the gradient and inject sample 

on to a storage loop, followed by ultrahigh pressure separation using a second, independent 

pneumatic amplifier pump. This system is fully automated, produces linear gradients, and does not 

require split flow. Similar to most custom-built UHPLC systems, it operates at constant pressure 
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rather than constant flow, which can actually be beneficial as the flow is not limited by the highest 

viscosity in the gradient, thus decreasing analysis time without sacrificing peak capacity.70 This 

system has been implemented and heavily utilized which has contributed to data throughout this 

thesis. 

 

1.4. Dissertation overview 

While highly efficient isocratic separations up to 100 kpsi have been demonstrated, and 

improvements in column packing using sub-2 µm particles have been described previously, the 

applications of these techniques have been sparse. This disparity is likely due to the difficulties in 

implementing reliable and robust gradient systems at such high pressures, synthesizing and 

efficiently packing small porous particles, and maintaining separation performance when using 

capillary systems and coupling with MS. The objective of this thesis is to describe the development 

of high-resolution separations coupled with mass spectrometry for untargeted metabolomic and 

lipidomic assays.  

Figure 1-5. Schematic diagram of an LC-MS system for ultrahigh pressure gradient separations used in this thesis. 

Automated gradient loading and sample injection are performed with a commercial UHPLC, in this case a 

NanoAcquity. After, the mobile phase offline of the flow path is frozen by CO2 and the pneumatic amplifier pump 

is initiated, pushing the sample on column followed by the preloaded gradient. 
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In chapter 2, gradient separations using the custom-built 35 kpsi system were performed 

and investigated for the separation and detection of lipids. Capillary columns between 15 – 50 cm 

long were packed with 1.7 µm C18 particles and evaluated for their ability to separate both lipid 

isomers and complex lipid extracts from human plasma. Lipids were detected using mass data of 

eluting peaks. Longer columns packed and operated at 35 kpsi outperformed shorter columns 

packed and run at lower pressures in terms of peak capacity and number of lipids detected. Peak 

capacities up to 410 were achieved, and roughly 480 lipids were detected from human plasma. 

Longer columns operated at shallow gradients also allowed for the best separation of both regional 

and geometrical isomers. 

Chapter 3 extends the lipidomics work by developing a two-dimensional liquid 

chromatography system implementing the 50 cm microcolumns in the second dimension. 

Hydrophilic interaction liquid chromatography was employed in the first dimension to fractionate 

lipids based on their lipid class. Second dimension reversed phase chromatography using the 

custom-built UHPLC system allowed high-resolution separations of individual lipid species within 

each fraction. Effect of resuspension volume, injection volume, and gradient steepness were 

investigated to improve signal intensity and chromatographic resolution. Orthogonality 

measurements were also made to ensure a successful two-dimensional separation. 

In chapter 4, separation of polar metabolites and the potential for capillary LC-MS based 

metabolomics utilizing porous C18 particles down to 1.1 µm diameter were evaluated. Using 

kinetic plots as a guide for choice of column length and particle size, 50 cm long columns with 1.7 

µm particles and 20 cm long columns with 1.1 µm particles were packed, with the latter in theory 

providing equivalent performance in shorter times. Columns were tested by performing isocratic 

and gradient LC-MS analyses of small molecule metabolites and extracts from human plasma. 
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These columns provided peak capacities over 500 in 100 min for a complex plasma extract. To 

generate a given peak capacity, the 1.1 µm particles in 20 cm columns required roughly 75% of 

the time as 1.7 µm particles in 50 cm columns with both at 35 kpsi. The 1.1 µm particle packed 

columns generated a given peak capacity nearly 3 times faster than 1.7 µm particles in 15 cm 

columns at ~10 kpsi. To consider practical benefits for metabolomics, the effect of different LC-

MS variables on mass spectral feature detection was also evaluated. 

Finally, in chapter 5, instrument and column designs were considered for use at 50 kpsi 

and achieving peak capacities over 1000. Gradient kinetic plots were constructed to understand 

the expected peak capacity for different column lengths, particle sizes, and instrument pressure 

limits given a set gradient slope and length. Long columns with 1.7 µm dp (100 cm) and 1.1 µm dp 

(70 cm) were packed and evaluated at 35 – 50 kpsi under gradient lengths up to 8 h for a small 

molecule standard mixture. The 100 cm column with 1.7 µm dp generated peak capacities of 790 

– 1190 in 155 – 480 min. These values are much higher than what can be attained with commercial 

instrumentation and are some of the highest peak capacities per time reported in the literature. 

Improvements in packing protocols for efficiently preparing long columns with 1.1 µm particles 

are needed for fully realizing the benefits of such small particles. Instrument modifications for 

routine use at 50 kpsi are also discussed.  
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Chapter 2. Capillary Liquid Chromatography-Mass Spectrometry at 35 kpsi for the 

Separation of Lipids 

 
Reproduced in part from Sorensen, M. J.; Miller, K. E.; Jorgenson, J. W.; Kennedy, R. T. Journal of 

Chromatography A 2020, 1611, 460575. Copyright Elsevier 2019 

 

2.1. Introduction 

Lipids are important biological molecules with functions that include energy storage, cell 

signaling, and membrane formation.71 A number of diseases such as Alzheimer's, Parkinson's, 

diabetes, and chronic kidney disease have been associated with altered lipid profiles.6,7,72–74 

Improved lipidomics methods are therefore of interest for better understanding of normal and 

pathological states and developing potential therapeutic targets. In this work we describe 

preparations and use of capillary LC columns up to 50 cm long operated at 35 kpsi for improved 

separation and coverage of complex lipid samples. 

As described in the introduction of this thesis, analyzing the lipidome is challenging due to 

the diversity and complexity of the lipidome. Lipids can be divided into eight classes and many 

sub-classes spanning a wide range of physicochemical properties.75 Additionally, they can be 

present in a wide concentration range within a biological system. A number of techniques are 

employed to characterize lipidomes, including spectroscopy, separations, and mass spectrometry 

(MS).76 Direct infusion MS-based methods (e.g., shotgun lipidomics) are particularly powerful and 

popular due to their speed, sensitivity, ability to identify compounds, and mass resolving power.77 

Coupling separation techniques to MS can improve lipidome coverage by reducing ionization 

suppression23 and separating isomeric and isobaric species.24 Chromatographic data can also aid in 

lipid identification based on retention time.12  
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 Although a variety of separation methods have been used for lipids,78–80 high pressure and 

ultrahigh pressure liquid chromatography ((U)HPLC) is perhaps the dominant separation form 

used for lipid separations due to the wide range of lipid species amenable to this approach. A 

number of different HPLC modes have been used for lipid analysis, including reversed phase 

(RP),81 normal phase (NP),82 and hydrophilic interaction liquid chromatography (HILIC).83,84 NP-

LC and HILIC separate lipids primarily by their head group, effectively separating lipid classes. 

RP-LC predominantly separates lipids by hydrophobicity, allowing for separation by chain length, 

number of double bonds, and occasionally by the head group. 

 Studies suggest that separation performance can be a bottleneck for further gains in 

lipidomic coverage. A few reports utilizing long columns (e.g. 30 – 60 cm) operated at ultrahigh 

pressures, as described in the introduction of this thesis, have provided higher peak capacity for 

lipid separations.85–87 Multidimensional separations such as 2D-LC offer even higher peak 

capacities than single dimension separations and have been shown to improve lipidomic coverage, 

likely due to alleviation of ionization suppression due to less co-elution and improved spectral 

quality.88,89 Smaller diameter columns and nanoelectrospray ionization (nESI) emitters with low 

flow rates can also alleviate ionization suppression,90 corroborated with a recent report showing 

increased lipidomic coverage using capillary LC-MS compared to a larger-bore 2.1 mm column.40  

In this chapter, we investigated preparation of columns that could achieve the expected 

benefits of UHPLC operation of operating at 35 kpsi on lipid separations and lipidome coverage. 

The results demonstrate substantial peak capacity improvements for lipid separations at 35 kpsi 

when compared to 15 kpsi for the same stationary phases and mobile phase gradients. Our results 

also show a strong correlation between the chromatographic peak capacity and the number of lipids 

identified from a human plasma extract so that longer columns, which require higher pressure, 
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allowed more lipid identifications. Mass spectra of eluting peaks were cleaner due to less co-

elution compared to lower resolution separations. Additionally, several different lipid isomers 

were investigated; longer columns operated at shallow gradients allowed for the best separation of 

both regional and geometrical isomers. These results demonstrate the benefits of using longer 

columns packed, using appropriate methods and operated at ultrahigh pressure for improving lipid 

separations and lipidome coverage.  

2.2. Materials and methods 

2.2.1. Chemicals and standards 

HPLC grade water, acetone, methanol, and acetonitrile were purchased from VWR 

(Radnor, PA). Potassium chloride, acetic acid, HPLC grade 2-propanol, chloroform, formamide, 

formic acid and ammonium formate were purchased from Sigma Aldrich (St. Louis, MO). 

Potassium silicate (Kasil 2130) was purchased from PQ corporation (Valley Forge, IA). All lipids 

were purchased from Avanti Polar Lipids Inc (Alabaster, AL). A complete list of the lipids used 

in this work and their abbreviations are listed in Table 2-1. Abbreviations for all lipids were 

according to those reported by Liebisch et al.91 A lipid standard mixture was prepared in mobile 

phase B. The mixture contained PC 14:0/16:0, PC 14:0/18:0, PC 16:0/18:0, PC 18:0/18:1, PC 

18:1(9Z)/18:1(9Z), PC 18:1(9E)/18:1(9E), and PC 16:0/2:0, all at a concentration of 5 µM. The 

mixture also contained the Splash Lipidomix Mass Spec Standard (Avanti; Alabaster, AL), diluted 

2:1 in the final mixture. This mixture contains 14 deuterium labeled lipids. 
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Table 2-1. List of lipid standards used in this work and their observed mass spectrometry response. 

Lipid class Abbreviation Lipid species level m/z Adduct 

Phosphatidylcholine PC 15:0-18:1(d7) 753.61 [M+H]+ 

Phosphatidylcholine PC 18:1-18:1 786.60 [M+H]+ 

Phosphatidylcholine PC 16:0-2:0 538.35 [M+H]+ 

Phosphatidylcholine PC 14:0-16:0 706.54 [M+H]+ 

Phosphatidylcholine PC 14:0-18:0 734.56 [M+H]+ 

Phosphatidylcholine PC 16:0-18:0 762.60 [M+H]+ 

Phosphatidylcholine PC 18:0-18:1 788.62 [M+H]+ 

Phosphatidylethanolamine PE 15:0-18:1(d7) 711.57 [M+H]+ 

Phosphatidylglycerol PG 15:0-18:1(d7) 742.68 [M+H]+ 

Lysophosphatidylcholine LPC 18:1(d7) 529.40 [M+H]+ 

Lysophosphatidyl 

ethanolamine 
LPE 18:1(d7) 487.36 [M+H]+ 

Cholesteryl Ester CE 18:1(d7) 675.69 [M+NH4]+ 

Monoacylglycerol MG 18:1(d7) 364.35 [M+NH4]+ 

Diacylglycerol DG 15:0-18:1(d7) 605.59 [M+NH4]+ 

Triacylglycerol TG 15:0-18:1(d7)-15:0 829.79 [M+NH4]+ 

Sphingomyelin SM 18:1(d9) 18:1 738.66 [M+H]+ 

Cholesterol Chol n/a (d7) 376.45 [M-H2O+H]+ 

2.2.2. Human plasma extraction 

Pooled human plasma was provided by the Michigan Regional Comprehensive 

Metabolomics Resource Core. Lipids were extracted using a modification of Bligh and Dyer 

extraction protocol.92 To 50 µL of plasma, 200 µL of 0.15 M KCl in water, 400 µL of methanol, 

200 µL of chloroform, and 1 µL of acetic acid were added to an Eppendorf tube and mixed well. 

An additional 200 µL of water and 200 µL of chloroform were added, vortexed briefly, and 
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centrifuged at 12,100 × g for 5 min at room temperature. The organic layer was carefully collected 

and transferred to a glass HPLC vial, dried under nitrogen gas, and reconstituted in 400 µL of 

mobile phase B. 

2.2.3. Column packing 

Fused-silica capillaries with inner diameters of 100 µm and outer diameter of 360 µm were 

purchased from Polymicro Technologies, Inc. (Phoenix, AZ). Columns were prepared as 

previously described, with slight modifications.55 Column outlet frits were prepared using the Kasil 

method.93 An equal amount of potassium silicate and formamide were applied to a glass microfiber 

filter (Reeve Angel; Clifton, NJ) and the capillary tip was dabbed on the wetted paper to form the 

frit. The particles for all columns were 1.7 µm BEH (130 Angstrom) from Waters Corporation 

(Milford, MA). For the 15 cm columns operated at 15 kpsi, columns were packed at 15 kpsi using 

a 75 mg/mL slurry in acetone. After packing, columns were flushed at 20 kpsi for 1 h, 

depressurized, and an inlet frit was applied using the Kasil method. For the ultra-high performance 

columns, two packing methods were used to compare the effect that sonication has on column 

performance of gradient separations. For the non-sonicated columns, 75 mg/mL slurries containing 

1.7 µm C18 BEH particles from Waters Corporation (Milford, MA) were prepared in acetone as 

this concentration has previously been reported as near optimal when not sonicating to balance 

between particle size segregation and void formation.62 Columns of 25 and 50 cm in length were 

packed by steadily increasing the packing pressure to 30 kpsi in order to maintain packing flow 

rate and limit packing voids.62 After, columns were flushed with 50/50 (v/v) acetonitrile/water at 

40 kpsi for 1 h, and slowly depressurized for another hour before applying an inlet frit using the 

Kasil method. For the 50 cm sonicated columns, a 200 mg/mL slurry containing the same 1.7 µm 

C18 particles was prepared in acetone. The empty column was placed in a sonicator bath as 
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previously described.63 After a couple centimeters of bed was formed, the pressure was 

immediately increased to 30 kpsi. The columns were flushed with 50/50 (v/v) acetonitrile/water at 

50 kpsi for 1 h, depressurized for 1 h, and an inlet frit was applied using the Kasil method. 

2.2.4. Instrument operation 

A constant pressure pump UHPLC system (see Figure 5 in Introduction) was used to 

perform separations at 35 kpsi as previously described.67,87 Mobile phase A was 60/40 (v/v) 

water/acetonitrile with 10 mM ammonium formate and 0.1% (v/v) formic acid. Mobile phase B 

was 85/10/5 (v/v/v) 2-propanol/acetonitrile/water with 10 mM ammonium formate and 0.1% (v/v) 

formic acid. One µL was injected on column using a Waters NanoAcquity UPLC. The column 

oven was set at 60 C. A 50–100% B gradient was used in all separations, with a 100% B hold for 

10 column volumes. Gradients were loaded on to a gradient storage loop using a binary solvent 

manager of the NanoAcquity. Constant pressure separations were performed using a pneumatic 

amplifier pump (DSXHF-903 Haskel pump (Burbank, CA). Column volumes were calculated 

assuming a column porosity of 0.8. The peak capacity was calculated by dividing the elution 

window by the average peak width (4σ) of 12 lipid standards that eluted throughout the separation 

window. Plate heights were measured using the peak width at half maximum. Effluent from the 

column was connected to a Micromass Q-ToF Premier using a stainless-steel union connected to 

fused silica spray needle with a 75 µm inner diameter tapered to 30 µm. The scan rate was set to 

0.3 s with a 0.1 s inter-delay. The MS was operated in full scan, positive ion mode with a mass 

window of 150–1000 m/z. External calibration was performed regularly using sodium formate. 

Source parameters were tuned by directly infusing 5 µM PC 18:1(9Z)/18:1(9Z)). The spray voltage 

was 1.75 kV, the source temperature was 100 °C, and sheath gas was 0.3 bar. 
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2.2.5. Lipid identification 

Lipids were putatively identified at the lipid class level using LipidBlast software.12,94 Mass 

spectra from 1 min elution windows were baseline subtracted and centered. The corresponding m/z 

values that were above 100 counts were input into the software. The mass accuracy was set at 

10 mDa. Following in-silico identification, redundant species and salt adducts that corresponded 

to the same lipid were removed. If multiple lipids were matched for one m/z value (e.g., within 

10 mDa mass units), only one lipid was considered an identification. 

2.3. Results and discussion 

In this work, we investigated the potential benefits of packing and operating capillary 

columns at 35 kpsi on lipid separations and lipidome coverage. We first compared the separation 

performance of a 25 cm and 50 cm column, packed under identical conditions as described in 

Section 2.3, to assess the impact that column length has on gradient separations of complex lipid 

extracts from human plasma. We then compared two 50 cm columns, one that was packed using 

sonication and high slurry concentrations, which was recently shown to improve column 

efficiency, particularly for longer columns,63 and one packed without the use of sonication. Lastly, 

we compared these results with a 15 cm column operated at 15 kpsi, the current limits in 

commercial instrumentation. Altogether, for a given analysis time, longer columns packed with 

high slurry concentration and sonication and operated at 35 kpsi provided higher peak capacities, 

more lipid identifications and cleaner mass spectra from complex mixtures of lipids compared with 

shorter columns. 

2.3.1. Column repeatability 

Before performing detailed comparisons of individual columns under different conditions, 

we investigated the repeatability of the column packing and gradient LC-MS performance for the 
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different column dimensions studied in this chapter. Table 2-2 summarizes the retention time and 

peak capacity variation across three separate columns for each column length. In each condition, 

a gradient slope of 5% change in mobile phase (ΔB)/column volume was programmed and the 

instrument was operated at 15 kpsi for the 15 cm columns and 35 kpsi for the 25 and 50 cm 

columns. The results showed good repeatability in retention time and peak capacity for gradient 

separations of the standard lipid mixture. Retention time variation between columns was 1–3% 

RSD and peak capacity variation was 3–6% RSD. The sonicated columns in this chapter were 

evaluated at UNC Chapel Hill using a dedicated isocratic system with on-column electrochemical 

detection as previously described.63 Reduced plate height curves of hydroquinone as the test 

analyte are displayed in Figure 2-1 and show high repeatability between columns. 

  

Table 2-2. Summary of the performance of three separate columns for each column type evaluated in this work. For 

each column, 1 µL of the standard lipid mixture was injected and separated with a gradient slope of 5% ΔB/column 

volume at either 15 kpsi or 35 kpsi. 

Column 

Retention time 

variability (%RSD) 

(n = 3 columns) 

Average peak 

capacity (n = 3 

columns) 

Peak capacity 

variation 

(%RSD) 

25 cm x 100 µm (35 kpsi) 3% 115 6% 

50 cm x 100 µm (35 kpsi) 3% 180 3% 

15 cm x 100 µm (15 kpsi) 1% 79 6% 

 



 27 

 

Figure 2-1 Reduced van Deemter plots of three 50 cm x 100 µm columns packed with sonication. Plate heights were 

determined using hydroquinone with amperometric detection as previously described.63 

2.3.2. Effect of column length on lipid separations 

In the first evaluation, we compared 25 cm and 50 cm columns that were prepared under 

identical packing conditions. Due to the shorter analysis times possible on the 25 cm column, 

method development was first carried out on this column using a standard lipid mixture to obtain 

a general understanding of lipid separations at 35 kpsi. Separation of the standard lipid mixture on 

the 25 cm column operated at 35 kpsi and 60 C is shown in Figure 2-2A. A 10X column volume 

was used as the gradient volume at 50–100% B, corresponding to a 5% ΔB per column volume. 

This gradient slope has previously provided good separation space and peak capacity for 

peptides.67,95 Previous ultrahigh pressure work has shown that higher pressures in HPLC can alter 

separation selectivity and retention;55,96 however, no significant differences between 15 kpsi and 

35 kpsi operating pressure was seen in regard to retention or selectivity (discussed in more detail 

in Section 3.3). Similar to previous reports for RP-LC of lipids, separation is primarily based on 

the number and length of carbon chains attached to the glycerol backbone. For example, 

monoacylglycerols elute in the first portion of the chromatogram, whereas the more non-polar 

triacylglycerols and cholesteryl esters elute at the end.97 The peak capacity for this 30 min 
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separation was 110 ± 5 (n = 3 injections). Figure 2-2B shows the separation of a lipid plasma 

extract on the 25 cm column with the same conditions as panel A. The peak capacity was 115 ± 7 

(n = 3 injections). Using LipidBlast to analyze the data, 189 ± 29 (n = 3 injections) lipids were 

putatively identified at the lipid class level in full scan mode.12,91 The higher number of lipids 

detected than peak capacity confirms that some lipids co-elute but are resolved by the mass 

spectrometer. 

 

Figure 2-2. Chromatograms of (A) the lipid standard mixture displayed as overlaid extracted chromatograms and (B) 

lipid extract from human plasma displayed as a base peak intensity (BPI) chromatogram on a 25 cm × 100 µm column 

operated at 35 kpsi with a 50–100% B gradient at 60 °C. The gradient slope was 5% ΔB/column volume. Mobile phase 

A consisted of 60/40 ACN/water with 10 mM ammonium formate and 0.1% formic acid and mobile phase B was 

85/10/5 IPA/ACN/water with 10 mM ammonium formate and 0.1% formic acid. See Table 2-1 for lipid abbreviations. 

We sought to assess the impact that doubling the column length with columns packed under 

identical packing conditions has on peak capacity of complex lipid extracts with a variety of 

analysis times operated at 35 kpsi. A plot of the peak capacity as a function of the analysis time 

for the 25 cm and non-sonicated 50 cm columns is shown in blue and green traces, respectively, in 
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Figure 2-3. For the 25 cm column, the gradient slopes ranged from 10% to 0.5% ΔB/column 

volume. For the non-sonicated 50 cm column, the gradient slopes ranged from 5% to 1% 

ΔB/column volume. Again, all separations were performed at 35 kpsi for these two columns. 

Figure 2-4 shows the base peak intensity (BPI) chromatogram of a lipid plasma extract on the 25 

and non-sonicated 50 cm columns with 2 h analysis time and 35 kpsi inlet pressure. The peak 

capacity on the non-sonicated 50 cm column was 265 ± 5 (n = 3 injection), which was only slightly 

higher than the 25 cm column of 237 ± 10 (n = 3 injection). For visual clarity, extracted ion 

chromatograms for three lipids eluting across the separation space are shown in Figure 2-4C to 

illustrate the similar peak widths between the two columns. 

 

 

 

Figure 2-3. Peak capacity plotted as a function of analysis time for lipid separations on the different columns studied 

in this work. Analysis time was varied by changing the amount of mobile phase loaded on the storage loop effectively 

giving a longer, shallower gradient. Peak capacity was calculated by dividing the gradient time by the peak width at 

base of 12 lipid standards eluting throughout the separation window. Other conditions are the same as in Figure 2-2. 
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Figure 2-4. Base peak chromatograms of a lipid extract from human plasma on (A) 50 cm column and (B) 25 cm 

column packed under identical conditions at a constant analysis time of 120 min. The gradient slope was 0.6% 

ΔB/column volume for the 25 cm column and 2% ΔB/column volume for the 50 cm column. For clarity, the y-axis is 

zoomed to 50% height to focus on the peak widths at the base. Other conditions are the same as in Figure 2-2. Extracted 

ion chromatograms for three lipids eluting across the separation space are displayed in panel C showing similar peak 

widths between the 25 and 50 cm non-sonicated columns packed under identical packing conditions. 

The modest improvement in peak capacity with length for columns packed under identical 

packing conditions may be related to packing quality for the longer column. Reduced van Deemter 

plots using phosphatidyl choline (PC) 18:1/18:1 as a test analyte showed worse performance for 

the 50 cm column compared to the 25 cm column (Figure 2-5). It should be noted that these studies 

were done with the same system used for gradient separations, not a dedicated isocratic system 

such as that used in Figure 2-1. Nonetheless, general trends can still be interpreted. The reduced 

plate height minimum (hmin) on the 25 cm column was 1.6, while on the 50 cm column hmin was 

5.2. At 35 kpsi, the reduced plate heights were 4.0 and 6.6 on the 25 cm and 50 cm columns, 
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respectively. One explanation for this worse kinetic performance of the 50 cm column is the 

difficulty to pack longer columns. In particular, axial heterogeneities in the packing bed have been 

attributed to poor chromatographic efficiency for longer columns.60 

 

2.3.3. Effect of column packing procedures on lipid separations 

The above findings indicated that the conditions used for packing the columns used did not 

generate equivalent performance per unit length in the tested columns, i.e., the conditions used 

were not ideal for longer columns. It was recently shown that sonication during column packing 

improves column efficiency, with reduced plate heights of 1.05 being reported for meter-long 

capillary columns.63 Therefore, we compared two 50 cm long columns: one packed without 

sonication and one packed with sonication. Other slight differences between packing methods were 

employed based on previously reported packing methods as described in Section 2.3 of this 

chapter. For simplicity we refer to the two methods as “sonicated” and “not sonicated”. The black 

and green traces in Figure 2-3 show the peak capacity as a function of analysis time for the 

sonicated and not sonicated columns, respectively. It is clear that the sonicated column 

outperformed the non-sonicated column for gradient separations of complex lipid extracts. At short 

Figure 2-5. Reduced van Deemter curve of the 25 cm (blue triangles) and 50 cm (green circles) columns packed 

under identical packing conditions. Plate heights were measured using phosphatidyl choline 18:1/18:1 as a target 

analyte eluted at 90% B. Other conditions are the same as in Figure 2-2. 
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and steep gradients, the improvement is not as drastic. Improvements in peak capacity at longer 

analysis times for longer columns is consistent with gradient elution theory and has previously 

been reported for peptide separations using 50 – 200 cm long columns.67,98,99  

Example base peak chromatograms from the two 50 cm columns shows the improved 

separation for the sonicated column for a 4 h separation (Figure 2-6). The sonicated column 

provides narrower peaks and more baseline resolved peaks than the non-sonicated column. For the 

240 min separation shown in Fig. 4, the peak capacity of the non-sonicated column was 306 ± 8 

(n = 3 injections) and 407 ± 5 (n = 3 injections) for the sonicated column. Extracted ion 

chromatograms of three lipids from the plasma extract eluting across the separation space are 

shown in Fig. 2-6C to help visually see the improvement in peak width and shape between the two 

columns. 
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Figure 2-6. Representative chromatograms of a lipid extract from human plasma on the 50 cm columns studied in this 

work showing the influence of sonication during column packing of longer columns. Panel A is from the sonicated 

column and panel B is from the non-sonicated column. The 240 min gradient corresponded to a 1% ΔB/column 

volume. For clarity, the y-axis is zoomed to 30% height to focus on the peak widths at the base. Other conditions are 

the same as in Figure 2-2. Extracted ion chromatograms for three lipids eluting across the separation space displayed 

in panel C show improved peak width and peak shape for the sonicated column. 

2.3.4. Comparison with commercial pressures 

We also compared the performance of the system described here with what could be 

achieved with pressure limits of current state-of-the-art commercial instrumentation. For this 

study, we packed a 15 cm long column up to 20 kpsi and performed gradient separations at 15 kpsi. 

The separation performance of this column consistently under-performed the higher-pressure 

columns discussed previously. Figure 2-7 shows base peak chromatograms of a lipid extract from 

plasma on the 15 cm column at 15 kpsi and a sonicated 50 cm column at 35 kpsi with a constant 
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gradient slope of 2.5% ΔB/column volume. At these conditions, the peak capacity was 93 ± 2 

(n = 3) for the 15 kpsi case and 265 ± 5 (n = 3) for the 35 kpsi case, albeit at a longer analysis time. 

Extracted ion chromatograms of three lipids from the plasma extract are shown in panel C with 

elution time windows of 8% of the total analysis time.  

 

 

A comparison of the 15 cm and 50 cm columns at a constant analysis time for a lipid extract 

from plasma is shown in Figure 2-8. In general, lipids eluted slightly early for the same gradient 

profile when operated at lower pressures, similar observations for small molecules.55,56 The peak 

Figure 2-7. Base peak chromatograms of a lipid extract from plasma on (A) 15 cm column operated at 15 kpsi and 

(B) 50 cm column operated at 35 kpsi, both with a gradient slope of 2.5% ΔB/column volume. Other conditions are 

the same as in Figure 2-2. Extracted ion chromatograms in panel C for three lipids eluting across the separation space 

show improved peak width and peak shape for the 50 cm sonicated column compared to the 15 cm column. Retention 

windows are 8% of the total analysis time. 
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capacity of the standard lipid mixture as a function of analysis time for the 15 cm column operated 

at 15 kpsi in comparison to the higher pressure columns is shown in Figure 2-3. The peak capacity 

on the 15 cm column plateaued at a maximum of about 200, with no further gain achieved with 

increased analysis time. Longer columns and higher pressures are therefore particularly advantages 

at longer analysis times, offering up to 95% increase in peak capacity for the same analysis time. 

Improved performance with higher pressure limits is due to both being able to operate longer 

columns and possibly better packing. A recent study on peptide separations revealed that columns 

packed at 30 kpsi resulted in a 17% increase in peak capacity and a 16% increase in peptide 

identifications compared to those packed at 10 kpsi for 30 cm long columns despite both 

separations being performed with the same commercial UHPLC system at ∼11 kpsi.100 
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Figure 2-8. Base peak chromatograms of a lipid extract from plasma on A) 15 cm column operated at 15 kpsi and B) 

50 cm sonicated column operated at 35 kpsi with a constant analysis time of 130 min. Other conditions are the same 

as Figure 2-2. Panel C shows extracted ion chromatograms for three lipids eluting across the separation space to help 

visualize the improvement in peak width and shape for the longer column operated at higher pressure. 

 

2.3.5. Relationship between peak capacity and lipids detected 

The above experiments illustrate that use of long, well-packed columns provides 

substantial increases in peak capacity for lipid separations. A critical goal of a lipidomic 

experiment is to enable identification or detection of large numbers of lipids. To evaluate the effect 

of using ultra-high pressure on ability to detect or identify discrete lipids in complex samples, we 

used LipidBlast software12 to detect lipids in the samples at the class level,91 e.g., fatty acid tails or 

double bond positioning are not differentiated. (All experiments were performed in positive ion 
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mode only because the only instrument we had available for these experiments was not functional 

in negative ion mode. In principle, use of negative mode would reveal even more identification 

from lipid classes, such as fatty acids, that are better detected that way.) 

The results here show a roughly linear correlation between the chromatographic peak 

capacity and the number of lipids identified, independent of analysis time (Figure 2-9). For 

example, comparing the 15 cm and 50 cm sonicated column, with a constant 130 min analysis time, 

206 ± 18 lipids (n = 2 injections) versus 480 ± 85 (n = 2 injections) lipids were detected, 

respectively. The peak capacities on the 15 cm and the 50 cm sonicated columns for those 

separations were 190 ± 10 (n = 3 injections) and 315 ± 5 (n = 3 injections), respectively (Figure 2-

8). The lower number of detected lipids found with the shorter column may be mostly attributed 

to the lower peak capacity. It is also possible that other factors contributed as well. For example, 

to obtain a 130 min separation on the 15 cm column, a gradient slope of 0.2% ΔB/column volume 

was required. This shallow of a gradient may reduce signal intensity as peaks become broader, 

which could potentially limit the number of lipids detected. 
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Figure 2-9. Detection of lipids from LipidBlast software is plotted as a function of the chromatographic peak capacity 

for various columns and conditions studied in this work. Error bars are mean standard error from duplicate injections 

for each condition. 

 

Representative mass spectra from the beginning, middle, and end portions of the 

chromatogram of a lipid extract from plasma showed much cleaner spectra on a 100 min analysis 

on the sonicated 50 cm column compared to a 30 min analysis on the 15 cm column (Figure 2-10). 

Importantly, cleaner mass spectra can allow easier interpretation of data, leading to more 

identifications.25  
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Figure 2-10. Example mass spectra of eluted lipids from a lipid extract from human plasma on a 15 cm (A, B, C) and 

50 cm column (D, E, F). Averaged mass spectra are from a 0.2 min elution window of the base peak corresponding to 

LPC 18:1 – m/z 522.4 (A and D), PC 36:3 – m/z 784.6 (B and E), and CE 18:2 – m/z 666.6 (C and F). Other LC-MS 

conditions are the same as in Figure 2-2. 

 

The linear relationship between the chromatographic peak capacity and the number of 

lipids identified by mass spectrometry illustrates the importance of high-resolution separations for 

lipidomics. The linear relationship between the chromatographic peak capacity and the number of 

lipids identified by mass spectrometry is in agreement with a previous study on peptide and protein 

separations.101 A primary reason for this effect is likely reduction of ionization suppression. 

Ionization suppression has been well documented for lipids and it is likely that suppression due to 

co-elution is alleviated with higher peak capacity separations, leading to better signal for more 

lipids and therefore more lipid identifications.23 This conclusion is supported by the observation 

that mass spectra from individual retention times were cleaner (Figure 2-10). While finding that 

improved peak capacity with longer improves number of identifications is possibly not surprising, 

there have been few reports of the effect of longer columns for LC-MS based lipidomics to 

demonstrate this effect. Further, several factors may prevent this effect from being realized. When 
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employing long, shallow gradients, signal intensity can diminish due to dilution, potentially 

offsetting the benefits of higher resolution separation for identification. It is also possible that while 

thousands of lipids may be present in a sample, a relatively small number is detectable in which 

case better peak capacity would not improve numbers identified; however, our result shows that 

further gains in peak capacity are likely desirable to further improve lipidome coverage. Also, 

since we used low flow rates, which can also reduce ionization suppression, it is possible that better 

chromatographic resolution would not further increase identification.40 Our results here show that 

higher peak capacity is still beneficial when employing nanoESI. 

The mass spectrometry method employed here does not allow for distinguishing of isomers 

as two or more unique identification. The increase in lipid identifications observed here could 

potentially be an under-estimate because more isomers are resolved. For example, PC 18:1 (Δ9-

cis) and PC18:1 (Δ9-trans) are baseline resolved (see Section 3.6); however, because they have 

the same mass, they are identified as only one unique feature with the current MS conditions and 

software used in this work. Further work can be done using lipid identification software and 

MS/MS capabilities that allow full identification of different isomers to better understand the 

impact that higher resolution separations have in untargeted LC-MS based lipidomics. This was 

recently done for example using online ozonolysis to study the impact of ion mobility separation 

on lipid isomer analysis.102 

2.3.6. Lipid isomer separations 

In the last set of experiments, we evaluated resolution of certain lipid isomer pairs on the 

different columns and pressures studied here. A number of lipid isomers can exist for one lipid 

species, adding complexity to a lipidomics analysis.24 Separation or partial separation of three sets 

of lipid isomers on the 25 cm and sonicated 50 cm column is shown in Figure 2-11. Panel A is PC 
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16:0/2:0 vs PC 2:0/16:0, panel B is PC 14:0/18:0 vs PC 18:0/14:0, and panel C is PC 18:1 (Δ9-cis) 

vs PC 18:1 (Δ9-trans). Panels A and B are examples of regioisomers in which bonding to the sn-1 

and sn-2 positions on the glycerol backbone are switched. The subtle differences between PC 

14:0/18:0 and PC 18:0/14:0 allowed only partial separation, while the larger difference between 

PC 2:0/16:0 and PC 16:0/2:0 allowed baseline resolution on both columns. Resolution increased 

in panels A and C on the 50 cm column. However, for the PC 14:0/18:0 pair, an increase in 

resolution was not seen between the 25 and 50 cm columns. Alternative stationary or mobile 

phases are likely required for separation of this more difficult lipid isomer pair. It is unlikely that 

the PC 2:0/16:0 pair is biologically relevant, however this pair provided insight into the separation 

limits of PC sn-1/sn-2 regioisomers.  Cis/trans isomers have shown relevancy for example when 

monitoring the effect of dietary fat intake.103 Other lipid isomers such as the fatty acid composition 

in the sn-1, 2, and 3 positions in triacylglycerols and diacylglycerols are of biological importance 

and should be investigated in future work.104,105 
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Figure 2-11. Separation of different lipid isomer pairs investigated in this work on a 25 cm (A, B, C) and 50 cm (D, 

E, F) column with both operated at 35 kpsi. A gradient slope of 3.3% ΔB/column volume was employed on each 

column. Other conditions are the same as Figure 2-2. 

2.4. Conclusions 

An ultrahigh-pressure liquid chromatography-mass spectrometry system operable up to 35 

kpsi was evaluated for the separation of lipids from complex extracts from human plasma. Longer 

columns of 25 and 50 cm packed and operated at ultrahigh pressure outperformed 15 cm columns 

operated at 15 kpsi, with peak capacity improvements ranging from 20 – 95% at the same analysis 

time.  Sonication while packing 50 cm columns was necessary to take full advantage of the longer 

column length.  Use of 35 kpsi inlet pressure allowed for reasonable analysis times using 50 cm 

long columns and avoids excessive band broadening due to longitudinal diffusion. A linear 

increase in the number of lipid species detected was observed with an increase in the 

chromatographic peak capacity. Lastly, the resolution of both regional and geometrical isomers 

increased with longer columns and shallow gradients. These results demonstrate the benefits of 
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using longer columns packed and operated at ultrahigh pressure for improving lipid separations 

and lipidome coverage. 
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Chapter 3. Two-Dimensional Liquid Chromatography-Mass Spectrometry for Lipidomics 

Using HILIC x RPLC with Long Capillary Columns in the Second Dimension 

 

3.1. Introduction 

Lipidomics has emerged as an important technique for studying lipids from various 

biological and environmental samples. Applications of lipidomics include areas such as studying 

disease states, understanding physiological processes, pharmaceuticals, and food science.106,107 

While targeted lipidomics can be valuable for studying and quantifying certain lipids for 

hypothesis-driven studies, the limited scope of such studies is often not sufficient for fully 

understanding how lipids are involved within a given system.2 Untargeted lipidomics, with the 

goal of identifying and quantifying all lipids in a sample, can give better insight into how lipids 

are associated within the system of interest and generate hypotheses based on the data generated.108 

Identifying and quantifying all lipids in a sample is challenging however due to the large number, 

wide concentration range, numerous isomers, and broad physicochemical properties of lipids in 

most biological or environmental samples. One analytical technique is not yet sufficient for 

analyzing an entire lipidome. In this work, we developed an offline two-dimensional liquid 

chromatography-mass spectrometry method utilizing hydrophilic interaction liquid 

chromatography followed by ultrahigh pressure capillary reversed phase chromatography coupled 

to mass spectrometry for lipidome analysis in human plasma. 

 A number of techniques have been implemented for untargeted lipidomics, including 

spectroscopy, mass spectrometry, and separations.76  Advantages of LC-MS based lipidomics 
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include good sensitivity, amenability to a wide ranges of lipid classes, and relatively high 

throughput.21,106,109,110 Various approaches have been pursued to increase the lipidome coverage 

in LC-MS based lipidomics. Improved peak capacity of the separation is an important route to 

improving lipidome coverage. Multidimensional separations are a powerful approach for 

increasing peak capacity.111,112 The theoretical peak capacity of a two-dimensional (2D) separation 

for instance is the product of the first dimension (1D) and second dimension (2D) separation peak 

capacities, assuming the two separation mechanisms are orthogonal and the resolution of the first 

dimension is not compromised by the second dimension.112 Multidimensional methods for lipids 

have been developed and demonstrated enhanced lipidome coverage provided by the improved 

separation performance relative to single dimensional analyses.88,113–117   

Transfer of effluent from the first dimension can occur online, where fractions from the 

first dimension are transferred immediately to a rapid second dimension, or offline where fractions 

are collected and independently injected on the second dimension.118,119 Online 2D-LC separations 

typically employ higher resolution 1D separations and have the advantage of being fast; however, 

they come with a number of disadvantages.120 Online 2D-LC typically involves more complicated 

instrumentation, worse detection limits to additional chromatographic dilution and often times 

flow-splitting when coupled to MS, limited 2D analysis time and peak capacity, and solvent 

incompatibility between the two dimensions.121,122 Additionally, for rapid methods the second 

dimension uses high flow rates and results in peak widths less than 1 s, which is too narrow to be 

accurately characterized by current mass spectrometers. These effects can lead to inaccurate peak 

width measurement, mass measurement, reduced sensitivity, and quantification. It also reduces the 

effectiveness of MS/MS methods such as data dependent acquisition where multiple MS scan 

events need to occur within the elution of a given compound. The incompatibility with MS 
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constrains the possible applications of such on-line methods. Despite these drawbacks, various 

online 2D-LC-MS methods have been developed for lipidomics with good separation peak 

capacity and lipidome coverage with analysis times typically 2 – 4 h.114,123–126  

 Offline 2D-LC can overcome some of these challenges. Importantly, because the 

separations are independent, the 2D analysis time is not limited by the 1D peak width or sampling 

frequency. Thus, long gradients can be implemented in the second dimension, achieving high-

resolution separations with peak widths that are compatible with MS, but at the expense of analysis 

time. The 1D separation is typically faster for fractionation. Additionally, effluent from the first 

dimension can be dried down and resuspended in appropriate solvent for the second dimension. 

Finally, small resuspension volumes can preconcentrate fractions and provide enhanced signal 

intensity. Offline 2D-LC-MS approaches have typically provided broader lipidome coverage 

compared to online methods.89,113  

An intermediate approach is stop-flow 2D-LC. These methods do not require fast 2D 

dimension separations, but are still mostly considered online.127 This approach is still limited by 

solvent compatibility and more intricate instrument configuration relative to offline 2D-LC. Stop-

flow 2D-LC is popular for proteomics but has also been reported for lipidomics.115,128 

Capillary LC with nanoESI-MS has also been implemented to increase lipidome coverage 

based on enhanced ionization efficiency and alleviation of ionization suppression associated with 

low flow rates.40,129–131 Additionally, use of such small inner diameter columns reduces sample 

volume which can be beneficial for sample-limited analyses.132–134 Such methods have been 

gaining much interest in the field of proteomics but little work has been reported for 

lipidomics.133,135,136  
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Another approach to improving lipidome coverage has been to use long columns packed 

with sub-2 µm particles and operated at ultrahigh pressures. It is well known that long columns 

packed with small particles can provide much higher theoretical plates; however, this approach 

requires much higher instrument operating pressure and thus is difficult to implement in a practical 

setting.51,137 Recent reports of lipid separations have shown that use of long columns (e.g., 30 – 60 

cm) packed with 1.7 µm C18 particles increased separation peak capacity for lipids, resolved more 

isomers, and detected more lipids in complex mixtures compared to lower resolution 

separations.85–87,138  

The combination of the strategies mentioned above (multidimensional separations, 

capillary LC-MS, and use of long columns) has recently been employed for various proteomic 

workflows in both top-down and bottom-up approaches;69,139–141 however, there has been limited 

use of such technologies in lipidomics or metabolomics.116 Here, we describe an offline two-

dimensional liquid chromatography-mass spectrometry method for untargeted lipidomics. We use 

a microbore bare silica HILIC column in the first dimension to separate lipid classes. Following 

evaporation and resuspension, each fraction was injected onto a 50 cm long x 100 µm bore column 

packed with 1.7 µm C18 particles operated at 35 kpsi interfaced to a quadrupole time-of-flight 

mass spectrometer. Our findings suggest large gains in peak capacity compared to one dimensional 

approaches with enhanced lipid coverage.  

3.2. Materials and methods 

3.2.1. Chemicals and standards 

All solvents and chemicals were purchased from Sigma Aldrich (St. Louis, MO) unless 

otherwise stated. HPLC grade acetonitrile was purchased from Fisher Scientific (Waltham, MA).  

Potassium silicate (Kasil 2130) was purchased from PQ corporation (Valley Forge, IA). Palmitic 
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acid was purchased from Sigma Aldrich. All other lipids were purchased from Avanti Polar Lipids 

Inc (Alabaster, AL).  

3.2.2. Human plasma extraction 

Pooled human plasma was provided by the Michigan Regional Comprehensive 

Metabolomics Resource Core. For lipid extraction, 50 µL of plasma, 200 µL of 0.15 M KCl in 

water, 400 µL of methanol, 200 µL of chloroform, and 1 µL of acetic acid were added to an 

Eppendorf tube and vortexed well. An additional 200 µL of water and 200 µL of chloroform were 

added, vortexed briefly, and centrifuged at 12,100 × g for 5 min at room temperature. The organic 

layer was carefully collected and transferred to a glass HPLC vial, dried under nitrogen gas, and 

reconstituted in 100 µL of 90/10 (v/v) IPA/water for injection on the first dimension HILIC 

column. 

3.2.3. First dimension HILIC-MS 

Lipids were separated by HILIC in the first dimension using a 15 cm x 1 mm, 5 µm 

Spherisorb bare silica column (Waters; Milford, MA). A Waters NanoAcquity UPLC was used 

and coupled with a Micromass QToF Premier (Micromass/Waters; Milford, MA). The method 

was similar to a previously reported method for lipid class separations.113,142 Mobile phase A was 

5 mM ammonium acetate and mobile phase B was acetonitrile. The flow rate was 50 µL/min. A 

gradient elution program was used as follows: initial, 95% B; 40 min, 77% B; 42 min, 95% B; 55 

min, 95% B. The column oven was set to 30 °C. The injection volume was 5 µL. Electrospray 

ionization was used in positive ionization mode at 3.5 kV. The source temperature was 100 °C, 

desolvation temperature 150 °C, cone gas 50 L/h, and desolvation gas 450 L/h. The MS was 

operated in full scan mode from m/z 100 – 1000 with a 1 s scan rate and 0.1 s inter-scan.  
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For fraction collection, effluent from the 1D separation was collected in glass HPLC vials. 

Fractions were typically collected in 1 – 2 min portions, which amounted to 50 – 100 µL of volume. 

Solvent was evaporated with a stream of nitrogen and re-dissolved in reversed phase mobile phase 

(different compositions and volumes depending on fraction type).   

3.2.4. Capillary column packing 

Polyimide-coated, fused silica capillaries with inner diameters of 100 µm and outer 

diameter of 360 µm were purchased from Polymicro Technologies, Inc. (Phoenix, AZ). Columns 

of 50 cm x 100 µm i.d. were packed in-house with 1.7 µm C18 bridged ethyl hybrid particles 

(Waters; Milford, MA) as previously described.87,143 Briefly, column outlet frits were prepared 

using the Kasil method.93 An equal amount of potassium silicate and formamide were applied to a 

glass microfiber filter (Reeve Angel; Clifton, NJ) and the capillary tip was dabbed on the wetted 

paper to form the frit. A 200 mg/mL slurry was prepared in acetone and placed in an ultrahigh 

pressure packing apparatus. The column inlet was then secured and submerged in the slurry, with 

the rest of the column submerged in a sonication bath (Elma Schmidbauer GmbH; Singen, 

Germany). Packing was initiated by application of low pressure (~1000 psi) using a DSHF-300 

pneumatic amplifier pump (Haskel; Burbank, CA). After ~2 cm of the column was packed, the 

pressure was immediately increased to 30 kpsi. Once ~60 cm was packed, the column was slowly 

depressurized. The column was flushed at 50 kpsi for 1 h using a DSXHF-903 pump (Haskel; 

Burbank, CA), slowly depressurized, cut to 50 cm, and an inlet frit was applied using the Kasil 

method.  

3.2.5. Second dimension RPLC-MS 

Reversed phase LC separations were carried out on collected fractions using capillary LC-

MS. Gradient elution was performed using a custom-built UHPLC system operated at a constant 
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pressure of 35 kpsi using 50 cm x 100 µm, 1.7 µm C18 columns similar to previous reports.87,144 

Mobile phase A was 60/40 (v/v) water/acetonitrile with 10 mM ammonium formate and 0.1% (v/v) 

formic acid. Mobile phase B was 85/10/5 (v/v/v) isopropanol/acetonitrile/water with 10 mM 

ammonium formate and 0.1% (v/v) formic acid. For fractions containing only lysophospholipids 

the gradient was 50-70% B over 40 min. For PC and SM fractions, the gradient was 70-100% B 

over 70 min. For all other fractions, the gradient was 60-100% B over 60 min. The column 

temperature was 60 °C. Effluent from the column was transferred to either a Waters/Micromass 

QToF Premier or a Waters Xevo QToF using a stainless-steel union and a 30 µm i.d. spray tip 

(New Objective; Woburn, MA).  For positive ionization mode, the spray voltage was 2 kV, cone 

voltage 30, the sheath gas was 0.5 bar, and the source temperature was 100 °C. For negative 

ionization mode, the spray voltage was 1.3 kV, cone voltage 22, and the sheath gas was 0.8 bar.  

Negative mode was used for fractions 1 and 5. The MS was operated in both full scan and MS/MS 

mode (MSe and data-dependent acquisition). Scan rates were 0.3 s with 0.1 s inter-scan. External 

mass calibration was performed using sodium formate. Leucine enkephalin was used as the lock 

mass compound.  

3.3. Results and discussion 

3.3.1. First dimension HILIC separation 

Previous work has shown that HILIC, which separates lipids primarily by polar headgroup, 

and RPLC were a useful and orthogonal combination for 2D-LC. Therefore, in this work we used 

this combination with HILIC HPLC (15 cm long x 1 mm bore packed with 5 µm bare silica 

particles) for fractionation in the first dimension. A set of 14 lipid standards were used for method 

development. As shown in Figure 3-1A, good separation of various lipid classes is achieved. 

Similar to previous reports, lipid separations utilizing bare silica particles is dominated by the lipid 
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head group, and consequently a majority of lipid classes can be separated.83,113,142 Certain isomers 

such as sn-1/sn-2 isomers of lysoPC and lysoPE are also resolved; however, because they can be 

separated with higher resolution by RP in the second dimension, they were collected in the same 

fraction to minimize total analysis time. A 40-min separation offered good resolution between 

most lipid classes. Shortening the gradient to 20 or 30 min in attempt to increase throughput of the 

1D separation resulted in loss of resolution between sphingomyelin, phosphatidylcholine, and 

lysophosphatidylcholine (Figure 3-2).  

 

Figure 3-1. First dimension HILIC separation of (A) lipid standards and (B) human plasma extract. Conditions: 15 

cm x 1 mm, 5 µm bare silica column; 50 µL/min; 30 °C; 5 µL injection volume; 95-77% B gradient over 40 min; 

mobile phase A was 5 mM ammonium acetate; mobile phase B was acetonitrile. MS was operated in full scan positive 

ion mode. All effluent went to MS during these separations.  
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Following relatively good separation of lipid standards, we applied the HILIC separation 

to a lipid extract from human plasma. Similar resolution and peak shapes compared to the standards 

were achieved for endogenous lipids present in the plasma (Figure 3-1B). Importantly, good 

repeatability of retention times was achieved with subsequent injections of the plasma extract, 

ensuring successful collection of each fraction (Table 3-1). Many lipid species within a lipid class 

co-eluted together because they possess the same head group.  Fraction collection was based on 

the elution profiles of different classes and is summarized in Table 3-2. Other lipid classes not in 

the standard mixture were collected from the plasma extract (Table 3-2).  The complexity of each 

fraction is illustrated in Figure 3-3 where many ions are detected for a given peak during online 

ESI-MS analysis.  

  

Figure 3-2. Effect of gradient steepness on the resolution of PC (blue), SM (gray), and LPC (black) lipid standards 

with HILIC. All method conditions were the same as in Figure 3-1 except that the gradient was over 20 min (A), 30 

min (B), or 40 min (C). 
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Table 3-1. Retention time repeatability of the first dimension HILIC separation for three separation injections of a 

human plasma extract. Retention times of each fraction were based on the apex of each peak displayed in the 

MassLynx browser. 

  
  

Retention Time (min) 

t0 PE PC SM LPC 

Run 1 1.92 13.60 25.20 28.86 31.03 

Run 2 1.71 13.75 25.40 29.12 31.45 

Run 3 1.94 13.90 25.46 29.15 31.41 

Average 1.86 13.75 25.35 29.04 31.30 

Std Dev 0.10 0.12 0.11 0.13 0.19 

%RSD 5.6 0.9 0.4 0.4 0.6 

 

 

Figure 3-3. Example positive ion mode mass spectra of (A) fraction 7 (phosphatidylcholine) and (B) fraction 1 

(acylglycerols, sterol esters, fatty acyls) following first dimension HILIC separation of human plasma with effluent 

diverted to the MS. Other LC-MS conditions are the same as in Figure 3-1. 
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Table 3-2. Timetable of fraction collection and associated lipid classes from first dimension HILIC separation. During 

fraction collection, all effluent was collected in the vial. 

Fraction 
number Lipid class(es) detected Collection time (min) 

1 TG, DG, MG, FA, Chol, CE, 
acylCoA, PIP 1.3 – 3 

2 PG, Cer 3 – 5 
3 PI, HexCer, LPG 5 – 8 
4 PE, PA 13 – 16 
5 LPE 18.5 – 21 
6 PS 21.5 – 23 
7 PC 23 – 26 
8 SM 27 - 29.5 
9 LPC 29.5 – 32.5 

 

A disadvantage of employing bare silica columns is that most neutral and acidic lipids are 

not well separated. Fatty acids and neutral lipids such as acylglycerols and sterols/sterol esters 

elute in the dead time placing a greater burden on the separation of these components by reversed 

phase LC in the second dimension. Phosphatidic acids were retained but gave larger peak widths 

than the other lipid classes investigated (Figure 3-4). Recent work has shown that hydride 

stationary phases can give improved separation of acidic lipids, however this was not investigated 

in this work.84 Nonetheless, phosphatidic acids were still able to be analyzed in this work and 

collected with the phosphatidylethanolamine fraction and detected following 2D RP-LC-MS 

analysis.  
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Figure 3-4. Poor peak shape of phosphatidic acid (gray) on the 1D bare silica column. Phosphatidylethanolamine 

(black), which co-eluted and was collected with phosphatidic acid, demonstrated better peak shape representative of 

most lipids on this column. 

 

3.3.2. Evaluation of 2D injection solvent 

Following fraction collection, solvent was evaporated under nitrogen. Drying was rapid 

(~5 – 10 min), due to the low volume and high amount of acetonitrile in the 1D mobile phase, and 

did not significantly contribute to the overall analysis time. Different compositions of 

reconstitution solvent were considered depending on the fraction type. For example, relatively 

polar fractions such as lysophospholipid fractions (e.g., lysophosphatidylethanolamine and 

lysophosphatidylcholine) could be resuspended in 100% mobile phase A (60/40 water/acetonitrile) 

without significant sample loss from insolubility and provided better peak shape compared to 

resuspension in stronger solvents. This approach was not possible, however, with the t0 fraction 

that contained both fatty acids (1 acyl chain) and triacylglycerols (3 acyl chains). Resuspension of 

the t0 fraction in 100% mobile phase B provided higher signal intensities for late eluting 

compounds; however, this injection solvent led to worse peak shapes for early eluting compounds 

such as fatty acids within this fraction (Figure 3-5). We chose 100% B as resuspension solvent for 

the t0 fraction. It may be possible to overcome this compromise between peak shape for early 

eluting compounds and signal intensity for late eluting compounds by using alternative solvents 
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that provide good resuspension of nonpolar lipids while also providing good peak shape for early 

eluting polar lipids.40 

 

3.3.3. Evaluation of transfer from first to second dimension 

One disadvantage of using an offline approach compared to online 2D-LC is the potential 

for analyte loss when transferring sample between the first and second dimensions. In this case, 

sample loss can arise from unsuccessful collection of the sample peaks, excessive or aggressive 

evaporation when drying the fractions, adsorption on collection vials, and failure to successfully 

resuspend the dried fractions in adequate solvent prior to the second dimension. We evaluated the 

sample recovery between the dimensions by comparing the signal of PC 18:1-18:1 standard 

injected directly onto the capillary column and injected on to the HILIC column, collected, 

Figure 3-5. Effect of resuspension solvent on peak shape and signal intensity for the first fraction analyzed in 

negative mode. (A) 50/50 (v/v) mobile phase A/B was used or (B) 100% mobile phase B was used as resuspension 

buffer. Extracted ion chromatograms illustrate peak fronting for early eluting peaks with the stronger mobile phase 

injection solvent, but signal intensity for late eluting peaks was improved with the stronger mobile phase solvent. 

Other conditions: 50 cm x 100 µm, 1.7 µm C18 column; 35 kpsi operating pressure; 60 °C; mobile phase A was 

60/40 water/acetonitrile with 10 mM ammonium formate and 0.1% formic acid; mobile phase B was 85/10/5 

isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1% formic acid. 
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evaporated, resuspended in 2D buffer, and subsequently injected on to the capillary column. Peak 

height was 2705 ± 225 (n = 2 injections) and 3033 ± 435 (n = 3 injections) and peak area was 545 

± 53 and 573 ± 58 for the for the 2D workflow versus direct injection, respectively, suggesting no 

significant sample loss.  While we assume other lipids behaved similarly, trace amounts of the 

most nonpolar lipids such as triacylglycerols and cholesteryl esters were seen in multiple fractions, 

possibly due to solubility issues of TGs and CEs with the 1D mobile phase, and especially 

considering the high concentration of these lipids in plasma (e.g., ~high µM to mM). 

Quantification could be problematic for these lipids as a result, and future work should investigate 

mitigation strategies. 

3.3.4. Evaluation of 2D injection amount 

As discussed in the introduction, one advantage of using offline 2D-LC is that the 2D 

separations are independent of the first dimension. Thus, there is greater freedom regarding the 2D 

gradient time and injection volume that would otherwise be detrimental to the overall separation 

performance in online 2D-LC. We investigated different approaches for injecting larger amounts 

of each fraction on the 2D column. One approach was sample preconcentration. By reconstituting 

the fraction in a smaller volume after solvent evaporation from the first dimension, a more 

concentrated sample can be injected. Figure 3-6A&B illustrates the gain in signal intensity for 

fraction 2 (phosphatidylglycerols and ceramides) with no preconcentration compared to a 2X 

preconcentrated sample (e.g., sample redissolved in 20 µL vs. 10 µL, respectively). Further 

preconcentration was attempted by redissolving in 5 µL; however, this approach was inconsistent 

likely due the difficulty in effectively dissolving the lipids dried in the glass vials. Additionally, 

this small of sample volume limits the number of possible replicates when using 1 – 2 µL injection 

volumes. 



 58 

The second approach to maximizing the amount of lipids injected and detected was by 

simply increasing the injection volume. Although the column volume of the 50 cm x 100 µm 

capillary columns is ~3 µL, the high retention capacity of lipids on C18 columns allowed relatively 

large injection volumes (1 – 2 µL) without detrimental loss in separation performance. Example 

base peak chromatograms for fraction 8 (sphingomyelins) shows a larger number of observed 

peaks and enhanced signal when using a 2 µL injection volume compared to 1 µL (Figure 3-

6C&D). These approaches for increasing the amount of sample injected on the second dimension 

were most beneficial for lower abundant fractions or fractions that do not produce as good of MS 

response.  

 

Figure 3-6. Effect of resuspension volume and injection volume on signal intensity for different fractions. Comparison 

of 20 µL (A) and 10 µL (B) resuspension volumes on signal intensity for fraction 2 (phosphatidylglycerols and 

ceramides). Comparison of 1 µL (C) and 2 µL (D) injection volumes on signal intensity for fraction 9 

(sphingomyelins). 

3.3.5. Evaluation of 2D gradient length and steepness 

A substantial disadvantage of online 2D-LC is that the 2D gradient time is limited by the 

1D sampling time to maintain separation performance, often limiting the 2D separation time to less 
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than ~2 min. In offline 2D-LC, the separations are independent and the 2D gradient time can be 

modified to improve the separation for each fraction. We evaluated the effect of gradient time (e.g., 

gradient length) and gradient slope on resolution and signal intensity of the lipid fractions. Previous 

work has shown that longer gradient times (~2 – 3 h) and shallower gradients improve the 

resolution and the number of lipids identified in untargeted single dimensional LC-MS 

lipidomics.85–87 This observation is likely due to alleviation of ionization suppression caused by 

co-elution and increased resolution of isobaric species. In attempt to limit each 2D separation to 

~1 h to keep total analysis time relatively short, we first compared 2-3 h gradient separations to 

shorter gradients. For a few fractions, a shorter gradient provided better signal intensity due to 

narrower peaks and higher peak heights from less chromatographic dilution (e.g., PG/Cer fraction, 

LPC fraction) compared to a ~2.5 h gradient (Figure 3-7). In some cases, the broader peaks caused 

by such shallow gradients caused a loss in detection for lower abundance isomers (e.g., LPC 18:0 

in the inset of Figure 3-7A&B). For other fractions, however, a steeper gradient caused losses in 

resolution for certain critical pairs, and further method development was needed to resolve. 

Implementing a narrower Δ% B (e.g., 70 – 100% B) more amenable to the target compounds in 

each fraction allowed for shallower gradients to be used in roughly the same amount of time 

compared to wider gradient profiles (e.g., 50 – 100% B). This change provided good separation 

for isomeric and other critical pairs and was most evident in the fractions containing PCs and SMs 

(Figure 3-8).  
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Figure 3-7. Comparison of gradient length for (A and B) fraction 9 (lysophosphatidylcholines) and (C and D) fraction 

2 (phosphatidylglycerols/ceramides). For these fractions, a steeper gradient provided better signal intensities with 

narrower peak widths while still providing good resolution for most peaks. Extracted ion chromatograms show the 

decrease in signal intensity for the longer, shallower gradients, with an isomer of LPC 18:0 approaching the detection 

limit (inset of panel A). 

 

 

Figure 3-8. Effect of gradient steepness on chromatographic resolution for (A and B) fraction 7 (phosphatidylcholines) 

and (C and D) fraction 8 (sphingomyelins). A 50-100% B gradient (A) is compared with an 70-100% B gradient (B).  

Example EICs for m/z 784 and 786 are shown to illustrate the improvement in resolution of different isomers with a 

shallower gradient. A 60-100% B gradient over 50 min (C) is compared with an 70-100% B gradient over 70 min (D). 

EICs for m/z 813 and 811 are shown.  
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3.3.6. Orthogonality measurement 

Employing orthogonal separation mechanisms in a multidimensional separation is crucial 

for obtaining the expected gain in peak capacity.111,112 The idea and necessity of orthogonality in 

2D separations has been studied in the past; consequently, empirical approaches for calculating 

orthogonality have been explored.145–150 These evaluations are critical for accurately measuring 

the peak capacity of a multidimensional separation. In this work, we evaluated the orthogonality 

between the 1D HILIC separation and the 2D RP separations using the ‘bin-containing’ 

method.145,149 In this approach, the separation space is divided into bins, and the fractional 

coverage is calculated by dividing the number of bins containing peaks by the total number of bins 

within the separation space. In this work, a bin was defined as 0.5 min, and a bin was considered 

at each point between the start and end of the gradient. Next, a base peak chromatogram was 

generated for each fraction and the maximum intensity normalized to 100% for each fraction 

(Figure 3-9A). A bin was considered “full” if the signal intensity was above 3% of the baseline. 

Results of this calculation are shown in Figure 3-9B. The coverage was determined to be 41%, 

which is considered highly orthogonal and so the product rule of peak capacity measurement for a 

2D separation is a good approximation.145  A ~40% coverage space is similar to previous 

lipidomics reports using online HILIC and RP-LC.114 The total peak capacity of the 2D separation 

was 1870 with a separation time of approximately 505 min for the 9 fractions plus 40 min for the 

1D separation. The t0 fraction was analyzed twice (once in positive ion mode and once in negative 

ion mode), which made the total analysis time 605 min but did not increase the separation peak 

capacity.  
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Figure 3-9. (A) Two-dimensional waterfall plot of the 9 fractions each displayed as base peak intensity 

chromatograms. (B) “Bin”-based fractional coverage plot used for orthogonality measurement. 

 

3.3.7. Lipid identification 

The previous sections described approaches for increasing the separation peak capacity and 

MS signal intensity of lipids from a human plasma extract. These metrics are important and can 

often improve identification of lipids from a complex matrix such as plasma; however, the total 

number of lipids detected and identified is the most important characteristic of an untargeted 

lipidomics method. We putatively identified or detected lipids from the human plasma extract 

using MS1 data and libraries from Lipid Blast12 and the Metabolomics Workbench.9 

Approximately 1082 lipids were detected in human plasma using the 2D-LC-MS method. Of the 

8 total lipid categories, glycerolipids, glycerophospholipids, fatty acyls, sterols, and sphingolipids 
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were detected. Among these, the most abundant lipid classes and subclasses included 

phosphatidylcholine, sphingomyelin, ceramides, fatty acids, and (mono-/di-/tri-) acylglycerols.  

The number of detected lipids here is roughly double the number of lipids detected in our previous 

work using single dimensional RP-LC-MS;87 this improvement comes at the expense of analysis 

time. Previous work showed a linear increase in lipids detected vs peak capacity and approximate 

linearity with analysis time. The 2D data did not fit this trend, with much less lipids detected per 

peak capacity (Figure 3-10A&B). Further improvements in detection sensitivity or extraction 

protocols may improve the number of lipids detected and better agree with the 1D trend  MS1 

feature counts also showed linear trends with increased peak capacity and analysis time from the 

1D RP work and again much less per peak capacity and time for the 2D analysis (Figure 3-

10C&D). It should be noted that the Metabolomics Workbench database was also used in the 2D 

work where only LipidBlast was used in the 1D work. Similar improvements in lipid identification 

have been observed for multidimensional LC-MS lipidomics methods, likely due to decreased 

ionization suppression from higher peak capacity separations, cleaner mass spectra, and separation 

of isobaric and isomeric species.116,128   
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Figure 3-10. Number of lipids detected using library database matching as a function of chromatographic peak capacity 

(A) and analysis time (B). MS1 feature counts are plotted versus peak capacity (C) and analysis time (D). One 

dimensional RP-LC-MS data are reproduced from a previous report87 and chapter 2 (black circles). A roughly linear 

increase in lipids detected was seen for one-dimensional peak capacities and analysis times and is compared with the 

two-dimensional work reported here (gray diamond). 

The method developed here employed a 5 µL injection volume, requiring 2.5 µL of plasma; 

these small volume injections are advantageous for low input samples where sample collection is 

limited. It should be noted however that the actual volume of plasma used in the extraction was 50 

µL, and using smaller volumes of plasma (e.g., < 5 µL) may require different sample preparation 

techniques as discussed in other reports.130,141 Finally, the use of a microbore column (1 mm i.d.) 

in the first dimension and a capillary column (100 µm i.d.) in the second dimension provided 

relatively low solvent consumption – approximately 2.5 mL in the total 2D-LC method.  

Further improvements in lipidome coverage could be achieved by using smaller inner 

diameter columns with lower flow rates, combining with ion mobility separations, or employing 

even higher resolution separations with smaller particles or longer columns. Additionally, lipidome 
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coverage could be increased with the current instrumentation by selectively adjusting the 2D 

mobile phase composition depending on the fraction type. For example, ammonium fluoride buffer 

provides higher signal intensity for phosphatidylinositol species in negative ionization mode 

compared to ammonium formate or acetate buffers.151 Lastly, additional metrics such as tandem 

mass, intensity, and internal standard data can be used to improve lipid identification confidence. 

3.3.8. Comparisons with previous methods 

Previous online 2D-LC lipidomics studies typically employed analysis times of 2 – 4 h, 

achieving peak capacities up to ~600. Using trapped ion mobility separations as the second 

dimension, a peak capacity of 991 was achieved in 190 min, however lipid identifications were 

less than 2D-LC.114 Offline analysis times were typically > 5 h, with peak capacities estimated at 

~ 500 – 1000.89,113 High-resolution single dimension analyses of lipids have yielded peak 

capacities of 300 – 400 in 2 – 4 h using long (30 – 60 cm) columns.85–87,138 Peak capacities are 

lower than what has been achieved with small molecules or peptides, likely due to the high 

viscosity of isopropanol which results in slower diffusion of lipids and limits particle size and 

column length. Peak capacities up to ~1800 can be achieved for peptides or small molecules with 

long columns and sub-2 µm particles.65,144,152 Recent online 2D-LC work for peptide separations 

has shown peak capacities of 1500 in 30 min and 10,000 in 240 min.153,154 Work shown here 

illustrates the advantages of offline 2D-LC and long microcolumns operated at 35 kpsi for 

relatively high resolving power of lipids compared to previously published work.  

3.4. Conclusions 

An offline, two-dimensional liquid chromatography-mass spectrometry method was 

developed for untargeted lipidomics analysis of human plasma. Hydrophilic interaction liquid 

chromatography using a 1 mm i.d. bare silica column was employed in the first dimension, 
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allowing separation of lipid classes. Second dimension reversed phase separations were performed 

on a custom-built UHPLC system at 35 kpsi using 50 cm x 100 µm i.d. columns packed with 1.7 

µm C18 particles. High-resolution separations were achieved for each fraction, allowing 

separation by chain length and double bond characteristics of lipid species within a given class. 

Effect of resuspension volume, injection volume, and gradient steepness were investigated to 

improve signal intensity and chromatographic resolution. Lipids were detected based on library 

matching; approximately 1100 lipids were detected from a 5 µL injection of a human plasma 

extract. Overall, the method was orthogonal, provided a total peak capacity of about 1900, and 

used less than 3 mL of mobile phase.  
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Chapter 4. Capillary Ultrahigh Pressure Liquid Chromatography-Mass Spectrometry for 

Fast and High-Resolution Metabolomics Separations Using 1.1 µm Particles 

 

Reproduced in part from Sorensen, M. J.; Kennedy, R. T. Journal of Chromatography A 2021, 1635, 

461706. Copyright Elsevier 2020 

 

4.1. Introduction 

Metabolomics utilizes measurements of a large number of metabolites from biological, 

environmental, or industrial sources.11 Metabolomics has been applied in many areas, including 

food science, plant biology, biofuels, environmental studies, and biomarker and drug discovery for 

animal and human health.1,3–5 Metabolites differ from lipids in that most compounds are much 

more polar and their molecular weights typically range from 50 – 400 Da, whereas lipids are 

typically quite nonpolar and range from 300 – 1200 Da. The current state of the art in liquid 

chromatography-mass spectrometry (LC-MS) based metabolomics utilizes 1.7 µm particle 

diameter (dp) stationary phase particles packed into analytical scale columns (e.g., 1 – 2.1 mm 

inner diameter (i.d.)) of 5 to 15 cm length.15,22,35,36 Such columns provide peak capacities of ~100 

– 200 in 5 – 20 min gradients at flow rates amenable to electrospray ionization (ESI) for sensitive 

and information-rich analysis. The complexity and dynamic range of the metabolome however 

still exceeds the current state of the art, where typically thousands of compounds are present in a 

given sample. One single analytical technique is not yet sufficient to analyze an entire 

metabolome.19 In this work, we evaluate use of both smaller dp and longer capillary-scale columns 

for metabolomics. 
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Improvements in separation can often lead to better metabolomics data. For example, 

changing from columns packed with 3.5 µm to 1.7 µm stationary phase particles and utilizing a 

higher pressure system resulted in faster and more sensitive urine metabolomics analysis while 

doubling the separation peak capacity. These improvements provided cleaner mass spectra and 

more confident multivariate metabolic profiling.25 Further work involving reduction of the column 

i.d. from 2.1 to 1 mm allowed for better sensitivity due to lower flow rates while maintaining high 

linear velocities, enabling confident discrimination between two dose groups with less than 5 min 

analysis times per assay.155,156 Increasing pressure limits to ~20 kpsi and utilizing 200 cm long 

microcolumns packed with 3 µm particles, Shen et. al. demonstrated peak capacities around 1500 

and detected 5000 metabolites from cell culture, with an analysis time of 2000 min.65   

In principle, further improvements in separation efficiency or analysis time can be gained 

by employing even smaller (e.g., ~1 µm) stationary phase particles; these theoretical improvements 

were illustrated in Chapter 1. Widespread use of such particles has not been realized due to 

difficulties in synthesizing and efficiently packing small porous particles, the difficulty in 

maintaining separation efficiency while robustly interfacing to MS, and the increased pressure 

demand on instrument hardware.137  Custom-built LC instrumentation capable of higher pressure 

(e.g. > 20 kpsi) has been developed by several research groups suggesting the potential to 

overcome the pressure limitations of working with smaller particles.51 These systems have 

primarily been used with 30 – 200 cm long columns packed with 1.7 – 3 µm particles operated 

with long gradients of 400 – 2000 min. Such conditions yield high efficiency and peak capacity at 

the expense of analysis time. They have also mostly been demonstrated for peptide separations, 

and recently lipids and intact proteins.50,51,65,67,87,157  Only a few reports have used ~1 µm porous 

particle packed columns, with mixed results compared with larger particles.62,67 These applications 
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and demonstrations have again only been used for peptides.67,158,159 Preparation and use of 

nonporous particle packed columns has been relatively successful; however, their relatively low 

loading capacity has limited their use for complex mixture analysis.56,160–162 

Columns packed with micron-sized particles would benefit metabolomics assays where 

many complex samples must be analyzed and throughput is important. In this work, we used a 

custom-built gradient LC-MS system (Figure 1-5) capable of 35 kpsi operating pressure with 1.1 

µm particles packed in to 20 cm long capillaries and 1.7 µm particles packed in to 50 cm long 

capillaries for relatively fast (analysis time 13 – 110 min) and high-resolution (peak capacity 200 

– 500) separations. These experiments used capillary scale columns (75 – 150 µm i.d.) because of 

the ease of packing, compatibility with ultrahigh pressure systems, ease of making longer columns, 

and reduction of heating due to viscous friction.49 Capillary LC columns can also provide better 

MS sensitivity with reduced ion suppression because of lower flow rates,163 utility for sample-

limited analysis, and economical use of mobile and stationary phases.164 Capillary columns are 

routinely used in proteomics but have not yet been widely implemented in metabolomics.165,166 

Benzoyl chloride (BzCl) derivatization was used to improve retention of polar metabolites on 

reversed phase columns, as such labeling strategies have shown to be useful for both targeted and 

untargeted workflows.167–169  Finally, the effect of different LC-MS variables on MS features was 

studied.  

4.2. Materials and methods 

4.2.1. Chemicals and materials 

All chemicals and reagents were purchased from Sigma Aldrich (St. Louis, MO) unless 

specified otherwise. HPLC grade water, acetone, methanol, and acetonitrile were purchased from 

VWR (Radnor, PA). Potassium silicate (Kasil 2130) was purchased from PQ corporation (Valley 
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Forge, IA). 3,4-Dihydroxyphenylacetic acid (DOPAC) was purchased from Acros Organics (Geel, 

Belgium). Particle size characterization was done using a Zeiss LEO 1455VP Scanning Electron 

Microscope (SEM) (Jena, Germany) for imaging and ImageJ software (NIH; Bethesda, MD) for 

dp measurements. Pneumatic amplifier pump (Haskel; Burbank, CA) DSHF-300 was used for 

column packing and DSXHF-903 was used for column flushing and LC operation. 

4.2.2. Standards and benzoyl chloride derivatization 

A standard amino acid test mixture consisting of 10 µM acetylcholine and BzCl labeled 

proline (Pro), valine (Val), tyrosine (Tyr), and tryptophan (Trp) was used for column evaluation. 

Each compound was dissolved in water and combined to make a 100 µM stock solution. For scan 

rate studies, a 26 compound mixture was used and prepared as previously described.170 

Derivatization was carried out by sequential addition of 100 mM sodium carbonate, 2% (v/v) BzCl 

in acetonitrile, and 1% (v/v) sulfuric acid in 20% (v/v) acetonitrile in water in a 2:1:1:1 ratio as 

previously described.167 Selected compounds from the 26 compound mixture, namely Bz-

phenylalanine (Bz-Phe), Bz-Tyr, and Bz-DOPAC were used for monitoring the effect of scan rate.  

The BzCl derivatized amino acid standard mixture was diluted to a final concentration of 10 µM 

using water.  

4.2.3. Human plasma extraction 

Metabolites were extracted from pooled human plasma using a mixture of ice-cold 

methanol/acetone/acetonitrile (v/v/v 1:1:1) as the extraction solvent. To 100 µL of plasma, 400 µL 

of extraction solvent was added, vortexed, and centrifuged at 12,100 x g at 4 °C for 10 min. The 

supernatant was removed to a glass HPLC vial, evaporated with nitrogen, and reconstituted with 

100 µL of 90/10 (v/v) water/acetonitrile. The supernatant was then derivatized in the same manner 

described above. 



 71 

4.2.4. Column packing 

Polyimide-coated fused-silica capillaries with varying inner diameters and outer diameter 

of 360 µm were purchased from Polymicro Technologies, Inc. (Phoenix, AZ). Both the 1.7 µm 

and 1.1 µm particles were bridged ethyl hybrid (BEH) silica with C18 bonding (Waters Co; 

Milford, MA). Column frits were prepared by spotting an equal amount of potassium silicate and 

formamide on a glass microfiber filter paper (Reeve Angel; Clifton, NJ) and dabbing the end of 

the capillary ~ 5 times, and placed in a ~60 °C oven overnight.93 For isocratic separations with MS 

detection, a pre-fritted, embedded spray tip (30 µm i.d.) (New Objective; Woburn, MA) was used 

instead of an outlet frit to limit post column dead volume. For isocratic separations with UV 

detection, a methacrylate-based monolithic frit was prepared upstream of the capillary end to make 

room for a flow cell immediately after the column bed.171 Briefly, a monomer solution of 30/70 

(v/v) glycidyl methacrylate/trimethylolpropane trimethacrylate with 1.5% (w/v) benzoin methyl 

ether was prepared in 30% toluene (v/v) in isooctane. Frits were loaded into the capillary via 

capillary action. Polymerization was achieved by exposure of a region of the capillary with a UV 

lamp (Spectronics; Westbury, NY) for 10 min. Acetone was used as the slurry solvent for all 

columns.50,172 Slurry concentration for each particle size and the application of sonication while 

packing was chosen based on previous studies.60–63 For 15 cm/1.7 µm columns representing 

commercial columns, packing was achieved using a 100 mg/mL slurry with a low-pressure 

packing apparatus at ~1000 psi and subsequently flushed at 15,000 psi in 50/50 (v/v) 

water/acetonitrile. For the 50 cm/1.7 µm columns and 20 cm/1.1 µm columns, slurry 

concentrations of 200 mg/mL and 30 mg/mL, respectively, were used. Low pressure (~1000 psi) 

was applied to form ~2 cm of packed bed, followed by immediate application of 30 kpsi while the 
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column was sonicated. The columns were subsequently flushed at 50 kpsi.63 All columns were 

depressurized for 1 h, cut to the desired length, and an inlet frit was made as described above. 

4.2.5. LC-MS operation 

For isocratic separations, a split-flow injection system was employed as previously 

described with 50/50 (v/v) water/acetonitrile with 10 mM ammonium formate and 0.1 % formic 

acid.55,173 For separations with UV detection, a Linear UVIS 200 (Thermo Scientific; Waltham, 

MA) variable wavelength spectrophotometer was used with a burned slot through the capillary 

post column for the flow cell. Data were sampled at 20 Hz with a 14-bit data acquisition card 

(National Instruments; Austin, TX) and acquired using an in-house LabView (National 

Instruments; Austin, TX) program. For separations with MS detection, a Thermo Finnigan LCQ 

Deca XP Plus (Thermo Fisher Scientific; San Jose, CA) using a nanospray ion source in positive 

ion mode was used for detection. A scheduled MRM method was employed using the following 

transitions: Acetylcholine (146-87), BzCl-Proline (220-174), BzCl-Valine (222-176), BzCl-

Tryptophan (309-263), and BzCl-Tyrosine (390-240). The capillary voltage was 2 kV. Retention 

factors (k’) were calculated using the following equation: 

𝑘′ =  
𝑡𝑅−𝑡0

𝑡0
 eq. 4-1 

For all gradient separations, a modified UHPLC system capable of 35 kpsi operating 

pressure was used in the same manner as the previous chapters (Figure 1-5).67,87 Average flow 

rates at 35 kpsi were 2.5 µL/min and 1.8 µL/min on the 20 cm x 150 µm, 1.1 µm dp and 50 cm x 

100 µm, 1.7 µm dp columns, respectively.  For the 15 cm columns representing commercial limits, 

a Waters NanoAcquity was used directly at 1 µL/min (~10 kpsi). Mobile phase A was water with 

0.1 % formic acid. Mobile phase B was acetonitrile with 0.1% formic acid. All injections were 

performed in partial loop mode on the NanoAcquity. Peak capacity was calculated by dividing the 
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elution window by the average peak width (4σ – calculated by measuring FWHM and multiplying 

by 1.7) of metabolites and lipids eluting throughout the separation window. Column volumes were 

calculated assuming a total column porosity of 0.8. The column oven was 60 °C. The column outlet 

was connected to ~15 cm x 25 µm i.d. of empty capillary using a PicoClear union (New Objective; 

Woburn, MA). Effluent was connected to a Micromass Q-ToF Premier (Waters Co; Milford, MA) 

using a stainless-steel union and a fused silica spray needle with a 75 µm i.d. tapered to 30 µm tip 

(New Objective; Woburn, MA). The capillary voltage was 2.5 kV. The scan rate was set to 0.3 s 

unless otherwise specified and the inter-scan delay was 0.1 s. The MS was operated in full scan, 

positive ion mode with a mass window of 150-1000 m/z.  

4.2.6. Feature detection 

For the gradient separations with Q-TOF detection, mass spectra from 30 s (≤45 min 

analysis times) or 60 s (>45 min analysis times) windows of each chromatogram were extracted, 

baseline subtracted, and centered in Mass Lynx. A feature was defined as any signal with a unique 

m/z and retention time and above the average background signal from each separation. 

4.3. Results and discussion 

4.3.1. Benzoyl chloride derivatization for polar metabolites 

Benzoyl chloride (BzCl) derivatization was employed in this work to improve retention of 

polar metabolites on the reversed phase C18 columns used here. The reaction scheme for BzCl 

labeling is shown in Figure 4-1. BzCl and other labeling techniques have been widely utilized in 

both targeted and untargeted LC-MS based metabolomic workflows. The advantages of these 

labeling strategies include not only increased retention in RP-LC, but also increased ionization 
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efficiency, improved stability, and better quantitation due to the use of 13C-labeled reagents 

allowing a near-identical internal standard for every labeled compound.167–169,174,175 

 

Figure 4-1. Benzoyl chloride derivatization reaction scheme. BzCl reacts at room temperature nearly instantaneously 

with compounds possessing primary amines, secondary amines, and phenols. 

4.3.2. Particle size imaging 

The limited reports on use of 1.1 µm porous particles is likely due to their low availability, 

high pressure requirement, and difficulties in packing.51,62,67 We verified particle size and particle 

size distribution (PSD) of these particles using SEM (Figure 4-2A). The mean particle size was 

1.3 µm, slightly larger than the 1.1 µm listing by the manufacturer. Similar discrepancies for 1.7 

µm particles, which often appear as ~ 2 µm by SEM, have been shown.63,86 (For consistency, we 

use the particle size listed by the manufacturer when referencing all particles.) The PSD for the 

1.1 µm particles was 12% (120 particles counted), in good agreement with other porous particles 

indicating well-controlled sizing (Figure 4-2B).176–178  
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Figure 4-2. (A) SEM images of the 1.1 µm porous BEH particles used in this chapter. (B) Particle size distribution of 

the imaged particles (120 particles). Mean particle size was 1.3 µm with 12% PSD. 

4.3.3. Kinetic plots for choice of particle size and column length 

In this work, we investigated the potential of capillary LC-MS using 1.1 and 1.7 µm 

particles and ultrahigh pressure instrumentation for untargeted metabolomics separations. Kinetic 

plots (e.g., Figure 1-4) were used to find column lengths that could yield high efficiency while 

maintaining analysis times typical of metabolomics assays (e.g., ~5 – 30 min).  For this kinetic 

analysis, particles sizes of 1.7 and 1.1 µm were considered due to particle availability and pressure 

limits of either 10 kpsi or 35 kpsi.  Columns are assumed to be equally well-packed, with the 

following reduced van Deemter coefficients: a = 0.4, b = 1.9, c = 0.18.50 As shown in Figure 4-

3A, a 50 cm column with 1.7 µm particles at 35 kpsi should produce ~100,000 plates with a dead 

time just over 100 s. A 20 cm column with 1.1 µm particles should produce the same efficiency in 
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approximately half the time. In contrast, if using current commercial capillary LC systems with 10 

kpsi and 15 cm column length, only ~ 30,000 plates is achieved in a dead time of 50 s.  

 

Figure 4-3. (A) Kinetic plot illustrating theoretical improvements when moving from 1.7 µm to 1.1 µm particles with 

35 or 10 kpsi instrument pressure. The two dots represent the column length that would produce ~100,000 plates with 

each particle size and the set pressure limit of 35 kpsi. Diagonal dashed lines representing column dead times of 100 

s and 1000 s are shown for clarity. EICs for the isocratic separations using (B) a ~40 cm x 75 µm i.d., 1.7 µm dp 

column and (C) ~20 cm x 150 µm i.d., 1.1 µm dp column of the standard amino acid mixture with acetylcholine (Ach) 

as a dead time marker. Faster separation with the 1.1 µm particle packed column shows approximate agreement with 

theoretical expectations. Similar peak shapes and retention factors (k’) for BzCl labeled metabolites were obtained 

with both particle types. Mobile phase was 50/50 (v/v) water/acetonitrile with 10 mM ammonium formate and 0.1% 

formic acid. 
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4.3.4. Isocratic column evaluation using amino acid standards 

Initial chromatographic experiments were directed towards determining if the packing 

conditions and UHPLC system used here resulted in good performance for capillary columns. 

Figure 4-3B & C shows results from isocratic separations of the BzCl labeled standard amino acid 

mixture, along with acetylcholine (Ach) as the dead time marker, for 1.7 µm particles packed into 

~40 cm long x 75 µm i.d. and 1.1 µm particles packed into ~20 cm x 150 µm i.d. columns. (We 

found little difference in column performance with inner diameters of 75 – 150 µm for the isocratic 

conditions studied here, similar to recent studies using the same packing protocol employed 

here).86,87 The shorter length of 40 cm compared to the expected 50 cm from the kinetic plot was 

due to the limited length of the embedded spray tip capillary at the time. The dead time for the 1.1 

µm column was ~50% faster as expected from the kinetic plot, and similar retention factors were 

achieved between the two columns for each amino acid. The 20 cm column with 1.1 µm particles 

generated 80,000 plates and the 50 cm column with 1.7 µm particles generated 85,000 plates, 

measured for Bz-valine (k’ ~ 0.5) Additionally, these results showed that coupling to MS while 

maintaining chromatographic performance is possible, whereas many reports have shown 

deteriorated performance when coupling with MS compared to UV detection.179 Peak shape was, 

however, slightly affected by MS scan rate for these separations due to the slow acquisition speed 

of the MS used, which could marginally affect plate count measurements.180,181 Future work for 

isocratic column evaluation is being done utilizing UV detection and near-on-column detection for 

faster acquisition speeds and limited post-column contribution to band broadening, respectively. 

Experimental data on ~ 40 cm microcolumns with an embedded spray tip with MS detection 

(Figure 4-4A) and with an upstream frit with near-on-column UV detection (Figure 4-4B) shows 

the difference in peak shape and number of sampling points per peak when using these two 
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different approaches. For the UV detection, analytes were ascorbic acid, hydroquinone, resorcinol, 

and catechol in order of elution. For MS detection, analytes were Ach, Bz-Pro, Bz-Val, and Bz-

Trp in order of elution. Although different analytes and columns were used, there is a clear 

distinction between the UV and MS data.  

 

Figure 4-4. Effect of detector type on peak shape and sampling points per peak. In both cases, a ~40 cm column with 

1.7 µm particles was used with either (A) upstream-fritted column with near-on-column UV detection or (B) 

embedded, packed spray tip with MS detection. Other conditions were the same as in Figure 4-3. 

4.3.5. Gradient column evaluation using amino acid standards 

The isocratic analysis confirmed relatively good packing conditions; however, automated 

gradient separations are of interest for metabolomics due to the need to analyze many samples 

and separate a large range of compounds. Figure 4-5A & B shows 35 kpsi gradient separations 

from a 0.2 µL injection of the standard amino acid mixture on a 20 cm x 150 µm i.d., 1.1 µm dp 
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and a 50 cm x 100 µm i.d., 1.7 µm dp column, achieving a peak capacity of 118 ± 5 (n = 3 

injections) and 153 ± 4 (n = 3 injections) in 8 and 15 min, respectively. A gradient of 10X the 

column volume (8% ΔB/column volume) was used in both separations. These separations 

demonstrate that automated gradient formation with a commercial autosampler is possible while 

operating at 35 kpsi and maintaining the good performance of these columns. Importantly, the 

1.1 µm particle packed column (20 cm x 150 µm i.d.) exhibited approximately similar peak 

capacity – 120 versus 150 – in about half the time compared to the 1.7 µm dp column (50 cm x 

100 µm i.d.). Interestingly, mixed results have previously been reported on the performance of 

such small particles (e.g., 0.8 – 1.3 µm) for peptide separations. In some instances, high peak 

capacities were achieved (~100 – 400) in 10 – 40 min. In other cases, longer columns packed 

with larger particles (e.g. 50 – 100 cm with 1.9 µm particles) provided higher peak capacity in 

the same amount of time than the shorter columns with smaller particles.67,158,159 This disparity 

could be due to the difficulty in packing such small particles. Additionally, steeper gradients on 

longer columns could be more beneficial for peptides compared to shallower gradients on shorter 

columns due to the large solvent strength ‘S’ parameter of peptides. 
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Figure 4-5. Gradient separations of (A and B) a 0.2 µL injection of the standard amino acid mixture and (C and D) a 

1 µL injection of a complex plasma extract. Black traces (A and C) are separations on a 20 cm x 150 µm i.d., 1.1 µm 

dp column and blue traces (B and D) are on a 50 cm x 100 µm i.d., 1.7 µm dp column. Other conditions: 20 – 100% B 

gradient with a gradient volume of 10X column volume (8% ΔB/column volume); 35 kpsi operating pressure; 60 °C 

column oven.  Mobile phase A was water with 0.1% formic acid and mobile phase B was acetonitrile with 0.1% formic 

acid. 

Similar to the fast isocratic separations discussed above, the scan speed of the Q-ToF used 

for these gradient separations needs to be considered. According to the user manual, it is 

recommended that the fastest scan rate of Waters Q-ToF Premier is 0.3 s per scan (e.g., ~3 scans 

per second). Slower scan speeds can be used and offer higher signal intensity due to signal 

averaging, however the peak shape from lack of number of scans per peak and quantitation can be 

adversely affected for very narrow peaks.180,181 The effect of 0.3 s and 0.6 s scan rates on peak 

shape and signal intensity was evaluated for a 13 min separation on a 20 cm x 150 µm, 1.1 µm dp 

column at 35 kpsi (Figure 4-6). The signal intensity increased 20 – 39% for metabolite standards 

using 0.6 s scan speed compared to 0.3 s. The peak shape, however, suffered due to the fewer 

number of scans per peak and the 0.3 s scan rate was thus used for all future work. 
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4.3.6. Separations of complex plasma extract 

4.3.6.1. Practical considerations for high efficiency capillary LC-MS metabolomics 

Our studies with metabolite standards suggest agreement with the kinetic plots for both 

isocratic and gradient separations; however, practical constraints including injection volume and 

injection solvent can adversely affect separation performance and therefore negate the potential 

gains for practical metabolomics measurements. We chose to evaluate our columns with an extract 

of human plasma as an example of complex metabolomics samples.5 We used BzCl derivatization 

to improve retention of polar metabolites on reversed phase columns; however, underivatized 

lipids and other metabolites were present and detected as well. Although an injection solvent of 

Figure 4-6. Effect of MS scan rate on peak shape and signal intensity for selected metabolite standards. In A, B, 

and C, a 0.3 s scan rate was used. D, E, and F, a 0.6 s scan rate was used. A 0.1 s inter-scan delay was used for 

both separations. Peak identifications are (A and D) Bz-Phe, (B and E) Bz-Tyr, and (C and F) Bz-DOPAC. Signal 

intensity increased 20 – 38% using a 0.6 s scan rate; however, peak shape was deteriorated due to the limited 

number of scans per peak. 
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100% mobile phase A provided the best peak shape and peak width for the standards (Figure 4-

5A&B), this solvent was not practical with the complex plasma extract as precipitation and loss of 

signal of the more nonpolar metabolites was observed. An injection solvent of ~70/30 H2O/ACN 

provided better signal intensity for late eluting peaks. Moreover, injecting larger volumes (e.g., 0.5 

and 1 µL compared to 0.2 µL for standards) provided better signal for most metabolites and a 

higher number of features detected (see section 3.5). Example base peak intensity (BPI) 

chromatograms of a 1 µL injection of the plasma extract on a 20 cm x 150 µm i.d., 1.1 µm dp and 

50 cm x 100 µm i.d., 1.7 µm dp column using a gradient volume of 10X column volume (8% 

ΔB/column volume) at 35 kpsi show good signal response across the separation space and similar 

peak shapes compared to the standards (Figure 4-5C&D). The changes in solvent and injection 

volume discussed above led to ~30%, ~12%, and ~0% increase in peak width for early, middle, 

and late eluting compounds, respectively, for a 13 min separation on the 20 cm x 150 µm i.d., 1.1 

µm dp column (Figure 4-7). It was thus important to consider peaks from compounds that eluted 

throughout the chromatogram when calculating peak capacity. 
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4.3.6.2. Potential for fast separations using 1.1 µm particles 

We evaluated the peak capacity from separations of the plasma extract at different analysis 

times and injection volumes for 1.7 µm dp columns (15 and 50 cm long x 100 µm i.d.) and the 1.1 

µm dp column (20 cm x 150 µm i.d.) (Figure 4-8). The 15 cm column packed with 1.7 µm particles 

was operated at ~10 kpsi (constant 1 µL/min), representing current state-of-the-art capillary 

UHPLC. The 1.1 µm particle packed column consistently outperformed both the 50 cm and 15 cm 

x 100 µm i.d. columns with 1.7 µm particles in terms of peak capacity per analysis time for the 

conditions studied here. 

Figure 4-7. Influence of injection solvent and injection volume on peak widths and peak intensity for a 13 min 

separation on a 20 cm x 150 µm, 1.1 µm dp column operated at 35 kpsi. Panels A and B show separation of a human 

plasma extract with an injection volume of 1 µL and 0.2 µL, respectively. The y-axis is kept constant to illustrate 

the increase in signal intensity across the separation space. Panel C is a 0.2 µL injection of the amino acid mixture 

dissolved in water. Panels D, E, and F show extracted ion chromatograms of early-, mid-, and late-eluting 

compounds, respectively, illustrating the magnitude in the increase in peak width due to injection solvent and 

volume. Peaks correspond to (D) Bz-Valine (m/z 222), (E) Bz-Tyrosine (m/z 390), and (F) LPC 16:0 (m/z 496). 

Retention times in D, E, and F were adjusted slightly to visually overlap the peaks. 
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Figure 4-8. Peak capacity plotted as a function of analysis time for various columns investigated in this work. Dashed 

lines represent separations from a 0.2 µL injection and solid lines represent a 1 µL injection.  The 20 cm and 50 cm 

columns were operated at 35 kpsi, and the 15 cm column operated at ~10 kpsi (1 µL/min), all with varying gradient 

times. Other conditions are the same as in figure 4-5. 

We further examined the results from Figure 4-8 in two ways: potential for fast separations 

and potential for high-resolution separations. Choosing a relatively short analysis time of 13 min, 

we compared peak capacities of the shorter columns due to their smaller void times amenable for 

fast separations. The 1.1 µm dp column (20 cm x 150 µm i.d.) generated a peak capacity of 153 ± 

3 (n = 2 injections) and 183 ± 9 (n = 3 injections) for a 1 µL and 0.2 µL injection, respectively. 

These values were noticeably higher than the 1.7 µm dp column (15 cm x 100 µm i.d. at 10 kpsi, 

representing commercial limits), which were 59 ± 5 (n = 3 injections) and 73 ± 6 (n = 3 injections) 

for a 1 µL and 0.2 µL injection, respectively. The good peak capacity in short times should be of 

benefit for metabolomics studies that require many samples to be analyzed. Our results for the 

larger particles appear to be reasonable as similar peak capacities, ~60 in 15 min, were recently 

reported with commercial capillary columns (15 cm with 1.7 µm particles) for small molecule 

separations with UV detection and comparable flow rates to those studied here.182 
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Figure 4-9. Comparison of (A) a 20 cm x 150 µm i.d., 1.1 µm dp column at 35 kpsi and (B) a 15 cm x 100 µm i.d., 1.7 

µm dp at 10 kpsi (commercial limitations for capillary LC) for a relatively fast 13 min gradient. BPI chromatograms 

of BzCl labeled plasma extract for a 13 min gradient are shown for a 1 µL injection of a BzCl labeled metabolite 

extract. Representative EICs of an early eluting compound, Bz-valine (m/z 222), and a late eluting compound, 

lysophosphatidylcholine (LPC) 16:0 (m/z 496), are shown for comparison of peak shape and peak widths. The 

resolution (Rs) of LPC 16:0 sn-1 and sn-2 isomers is shown. 

BPI chromatograms of a 1 µL injection for the 13 min gradient separation of the complex 

plasma extract on the 1.1 µm dp (20 cm x 150 µm i.d.) and 1.7 µm dp (15 cm x 100 µm i.d. at 10 

kpsi) columns show the enhanced peak shape and peak capacity of the 1.1 µm column for relatively 

fast separations (Figure 4-9). Extracted ion chromatograms (EICs) of m/z 222 (Bz-valine) and m/z 

496 (lysophosphatidylcholine (LPC) 16:0 (sn-1 and sn-2 isomer)) illustrate the improved peak 

width and resolution of the 1.1 µm dp x 20 cm column (35 kpsi) compared to the 1.7 µm dp x 15 

cm column (10 kpsi). Early eluting peaks such as valine were particularly broad on the 15 cm x 

100 µm i.d., 1.7 µm dp column compared to the 20 cm x 150 µm, 1.1 µm dp column for this 1 µL 
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injection. This disparity could be due to the larger column volume of the 20 cm x 150 µm i.d. (~2.8 

µL) vs. the 15 cm x 100 µm i.d. (~0.94 µL); however, decreasing the injection volume to 0.2 µL 

resulted in little improvement on the 15 cm x 100 µm i.d., 1.7 µm dp column at 13 min (dashed vs. 

solid green lines (square symbols) in Figure 3). We originally chose 150 µm i.d. for the short (20 

cm) 1.1 µm particle packed column to approximately match the column volume of the 50 cm x 

100 µm, 1.7 µm columns. To further investigate the column volume difference and better compare 

with the 15 cm x 100 µm i.d., 1.7 µm dp column, we packed 20 cm x 100 µm i.d. capillaries with 

the 1.1 µm particles (column volume ~1.3 µL) and found only a slight decrease in peak capacity 

by ~18 % for a 0.2 µL injection relative to the 20 cm x 150 µm i.d., 1.1 µm dp column (Figure 4-

9). This change is a marginal decrease in peak capacity compared to the 60% lower peak capacity 

with the 15 cm x 100 µm i.d., 1.7 µm dp column in Figures 4-8 and 4-9. The improvement in peak 

capacity with the smaller particles is therefore likely a combination of increased efficiency, larger 

column volume, higher packing pressure,100 and higher operating pressure, as higher pressure has 

been shown to increase retention of small molecules.55,183 Further studies should be focused on 

individually assessing the impact of these variables on injection volume for metabolite separations.  
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4.3.6.3. Potential for high-resolution separations 

Our second examination of Figure 4-8 investigated the potential for achieving higher peak 

capacity using 1.1 µm particles. As shown in Figure 4-8, for a 1 µL injection, a target peak capacity 

of ~350 can be achieved in 45 min with the 1.1 µm dp column (20 cm x 150 µm i.d.), compared to 

60 min and 120 min for the 1.7 µm dp columns (50 cm and 15 cm/10 kpsi x 100 µm i.d., 

respectively).  BPI chromatograms of these three separations are shown in Figure 4-11, with EICs 

of m/z 496 (LPC 16:0) and m/z 391 displayed to compare peak shape and resolution between the 

three columns. The 1.1 µm particles can thus be used for relatively quick yet high peak capacity 

separations relative to the other columns if 35 kpsi is available.   

Even higher resolution separations are of interest for isomers or isobaric compounds and 

for providing broader metabolome coverage. High-resolution separations of small molecules and 

metabolites have been demonstrated with peak capacities ranging from 1500 – 1800 using long 

(e.g., >100 cm) columns and ~33 h analysis times.65,152 Such long separation times are useful in 

some conditions, but many metabolomics studies require numerous samples and such times can 

Figure 4-10. Influence of column inner diameter on peak widths for early eluting compounds on 20 cm long columns 

packed with 1.1 µm particles. Both columns were operated with the same mobile phase gradient of 8% ΔB/column 

volume and a 0.2 µL injection of a plasma extract. Extracted ion chromatograms for Bz-Pro and Bz-Val are shown in 

panels B and C, respectively, to illustrate the slight efficiency loss with the smaller diameter column. Retention times 

were adjusted slightly in B and C to overlap the peaks. 
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become prohibitive. The potential for high-resolution separations in relatively short analysis times 

is an attractive feature of sub-2 µm columns operated at 35 kpsi. For a 0.2 µL injection, a peak 

capacity of ~400 is achieved with a 40 min separation on the 20 cm x 150 µm i.d., 1.1 µm dp 

column, and a peak capacity of ~550 was achieved on the 50 cm x 100 µm i.d., 1.7 µm dp column 

in 110 min (Figure 4-8). Smaller injection volumes than those studied here could lead to even 

higher peak capacities in the same time; however, MS sensitivity and identification of low level 

metabolites could suffer (discussed more in section 3.5). Furthermore, higher peak capacities or 

shorter analysis times could be attained with moving to even smaller particles and/or longer 

columns with higher instrument pressures. 
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Figure 4-11. Example BPI chromatograms from a 1 µL injection of BzCl labeled plasma extract illustrating the time 

required to achieve a peak capacity of ~350 with the different columns, particle sizes, and pressure limits investigated 

in this work. EICs of m/z 496 (LPC 16:0) and 391 are displayed, with the resolution (Rs) of LPC 16:0 isomers shown. 

4.3.7. Feature detection in human plasma 

The previous sections discussed preparation and use of capillary columns that can provide 

higher separation efficiency and peak capacities than current commercially available particle sizes 

and column lengths in shorter analysis times. Real metabolomics assays however rely on confident 

and in-depth metabolome coverage and annotation. While higher peak capacity separations have 

shown broader metabolome and proteome coverage,25,65,101 a number of LC-MS variables can 

affect MS response and metabolomics metrics. For example, steeper gradients have shown to 

provide higher MS signal due to the narrower peaks compared to shallower gradients.184 
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Furthermore, while higher flow rates have been shown to provide higher peak capacities for the 

same analysis time,95,185 the ionization may suffer and hinder metabolite coverage. We therefore 

evaluated several variables using full-scan (MS1) feature detection as a proxy for the information 

content possible from the metabolomics assay (Figure 4-12).  A feature was defined as any signal 

with a unique m/z and retention time and above the average background signal from each 

separation.  

Increasing the injection volume from 0.2 to 1 µL consistently provided a much higher 

number of features detected from BzCl-labeled plasma extracts across the three column types 

investigated in this work (Figure 4-12A), despite the slight losses in peak capacity that were 

observed with these larger injection volumes (see Figure 4-7 and section 4.3.6). The effect of 

increasing peak capacity by varying the gradient time (e.g., Figure 4-8) on feature detection was 

also investigated (Figure 4-12B). For each column type, a general increase in the number of 

features detected was seen as the peak capacity increased. This trend is likely due to resolution of 

isobaric compounds and alleviation of ionization suppression compared with shorter and lower 

resolution separations.101,186 Higher feature counts at longer analysis times could be over-inflated, 

however, as feature count is often biased compared to high confidence metabolite annotation and 

identification.187 Interestingly, the lowest efficiency column – the 15 cm/1.7 µm at 10 kpsi – 

provided higher feature counts than the longer columns at higher pressure for the same peak 

capacity (albeit at longer analysis times to achieve the same peak capacity). This observation is 

likely due to the lower flow rate on the 15 cm x 100 µm i.d., 1.7 µm dp column at 10 kpsi (1 µL/min 

versus ~1.8 – 2.5 µL/min on the columns run at 35 kpsi). Lower flow rates can provide increased 

ionization efficiency due to smaller initial droplet sizes and easier desolvation; this improvement 

in ionization can lead to less ionization suppression and interference from matrix effects.90,163 To 
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further investigate this hypothesis and attempt to provide similar results with the higher efficiency 

columns, we operated the 20 cm x 150 µm i.d., 1.1 µm dp column at lower flow rates (by operating 

the pneumatic pump at 10 and 15 kpsi) with the same gradient slope of 8% ΔB/column volume 

(Figure 4-12C). Reducing the flow rate down to 700 nL/min resulted in over double the number 

of features detected. Selected EICs of Bz-Trp and Bz-Tyr detected from the plasma extract showed 

higher peak intensities and larger peak areas with the lower flow rate separations (Figure 4-13). 

These data corroborate that lower flow rates indeed give higher MS response and thus more 

features detected for the conditions studied here. 
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Taken together, a higher injection volume combined with lower flow rates provided the 

highest number of features detected for a given analysis time. Increasing separation peak capacity 

through extending the gradient time also increased feature counts; however, this approach 

decreased analysis throughput. Further work involving reduction in column i.d. and flow rate to 

the low nL/min range may further increase metabolite coverage while maintaining the 

Figure 4-12. Effect of different LC-MS variables on MS1 feature detection from BzCl labeled plasma extract. (A) 

Effect of injection volume on feature count and peak capacity for the three columns shown in Figure 4-8. All 

separations used a gradient volume of 10X the column volume (8% ΔB/column volume). (B) Effect of increasing peak 

capacity through longer gradient times on feature count for a 1 µL injection on the same three columns. (C) Effect of 

flow rate (adjusted by changing inlet pressure) on feature count for a 1 µL injection on the 20 cm x 150 µm i.d., 1.1 

µm dp column using a gradient volume of 10X the column volume. Error bars represent standard error from duplicate 

injections. 
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chromatographic advantages of combining smaller particles with higher pressure. Reduction of 

column i.d. and use of nano-flow/capillary LC-MS has been heavily utilized in proteomics studies 

and has provided large increases in proteome coverage, and in some cases has been extended to 

metabolomics.166,188–190 Use of trap columns may be needed to mitigate the gradient delay when 

going to such low flow rates and alleviate band broadening from injecting on such narrow columns. 

Thus, in order to combine the benefits of larger injection volumes and high-resolution separations 

for capillary LC-MS based metabolomics, pre-column focusing strategies likely need to be 

implemented.191–193 Future studies should also employ a more rigorous evaluation of metabolite 

annotation and the effect of these variables on high confidence identification rather than 

features.187,194,195 

 

Figure 4-13. Extracted ion chromatograms and corresponding peak areas of Bz-Trp (A) and Bz-Tyr (B) detected in 

the plasma extract on the 20 cm x 150 µm i.d., 1.1 µm dp column operated at 35 kpsi (~2.5 µL/min), 15 kpsi (~1 

µL/min), and 10 kpsi (~700 nL/min). Peak areas increased as the flow rate was lowered. A constant gradient volume 

of 8% ΔB/column volume. 
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4.3.8. System robustness and repeatability 

The repeatability of retention times and peak widths of the analytes are important for 

routine, long term metabolomics assays. We performed column repeatability tests for the 15 cm x 

100 µm i.d., 1.7 µm dp, 20 cm x 150 µm i.d., 1.1 µm dp, and 50 cm x 100 µm i.d., 1.7 µm dp 

columns discussed above. Average RSDs in retention time and peak width for the amino acid 

mixture for all columns were below 4% and 8%, respectively (Table 4-1). Additionally, the long-

term use and repeatability of the 20 cm x 150 µm i.d., 1.1 µm dp column was assessed over a 5 

month period (Table 4-2). No signs of column degradation or clogging were observed, with 

average retention time and peak width RSDs of 6% and 11%, respectively, for the amino acid 

mixture. These deviations are similar to previously reported packed capillary C18 columns.67,87,100  

 

 

 

Ret time (min)  

Average ± SD (n = 3)  
  

Peak width (FWHM, s)  

Average ± SD (n = 3) 
 Column Bz-Pro Bz-Val Bz-Trp Bz-Tyr   Bz-Pro Bz-Val Bz-Trp Bz-Tyr 

20 cm x 150 µm, 

1.1 µm 
3.33 ± 

0.03 
4.03 ± 

0.04 
4.86 ± 

0.05 
6.64 ± 

0.04   
2.8 ± 

0.2 
2.2 ± 0.2 

2.32 ± 

0.06 
2.2 ± 0.2 

15 cm x 100 µm, 

1.7 µm 
3.7 ± 

0.1 
4.6 ± 

0.2 
5.5± 

0.2 
7.55 ± 

0.2   13 ± 1 7.2 ± 0.5 
4.8 ± 

0.3 
5.1 ± 0.5 

50 cm x 100 µm, 

1.7 µm 
7.43 ± 

0.07 
8.93 ± 

0.07 
10.62 ± 

0.06 
14.78 ± 

0.04   
3.9 ± 

0.2 
3.1 ± 0.1 

3.3 ± 

0.2 
3.5 ± 0.2 

 

 

 

 

 

 

Table 4-1. Repeatability of retention times and peak widths for columns in Figure 4-7 evaluated with the standard 

amino acid mixture.  
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4.4. Conclusions 

This study illustrates the feasibility and potential impact of using 1.1 µm particles in 20 cm 

long columns paired with a gradient capillary LC system capable of 35 kpsi for metabolomics 

assays. We have found packing conditions and instrumentation that allow approximate agreement 

with theory for using such columns with ultrahigh pressure instrumentation, while demonstrating 

routine use with practical considerations for metabolomics samples. The 1.1 µm particle packed 

columns enable higher peak capacity at relatively short, and practical, analysis times of 13 min 

compared to columns packed with larger particles as commonly used currently. The columns also 

allowed relatively high peak capacities (e.g., peak capacity 300 – 500) to be reached at a ~30% 

faster time compared to 50 cm x 100 µm i.d., 1.7 µm dp columns, and nearly 3x faster time 

compared with 15 cm x 100 µm i.d., 1.7 µm dp columns at 10 kpsi.  For metabolomics assays, 

interplaying variables such as flow rate, peak capacity, and injection volume can all be manipulated 

to increase the number of features identified in the human plasma extract.  

Table 4-2. Long term repeatability and durability demonstrated for a 20 cm x 150 µm i.d., 1.1 µm dp column 

over a 5 month period. All separations were performed at 35 kpsi at 20 – 100% B with an 8% ΔB/column 

volume. Other conditions are the same as Figure 4-5. 
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Chapter 5. Towards Peak Capacities Over 1000 and Gradient Separations at 50 kpsi 

Introduction 

The desire for comprehensive “omics” analyses continues to drive new developments in 

analytical instrumentation and technologies. Advancements in both liquid chromatography and 

mass spectrometry instrumentation have led to the full proteome analysis of yeast (~4000 proteins) 

in approximately one hour.196 Further improvements including use of two-dimensional capillary 

LC-MS identified over 8,000 proteins from HeLa cells.141  Clearly, advancements in separation 

prior to mass spectrometry have been invaluable towards expansion in the depth of information in 

omics workflows.197 Specifically, separation peak capacity can increase compound coverage and 

identification confidence in untargeted methods.25,65,101,125,157,198  

Advancements in chromatographic column formats have provided higher peak capacities 

than previously possible.199,200 These advancements include the development of highly ordered 

pillar array columns (µPAC), long monolithic columns, small inner diameter open tubular 

columns, and columns packed with very small particles.  Monolithic and pillar array columns have 

the advantages of very high permeability due to the design freedom in domain or pillar size and 

shape.201,202 This low separation impedance offers the possibility to operate long columns 

(assuming a homogenous domain is formed across the entire column) without the need for extreme 

instrument pressure. Using a 3.5 m x 100 µm silica monolith column, a peak capacity of 1600 was 

achieved in a 2400 min separation window for peptide separations.203 Similarly, over one million 

theoretical plates have been achieved using an 8 m long (4 x 2 m columns connected) pillar array 

column with dead times around 4 h.152 Gradient separations of small molecules using this 8 m long 
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coupled column provided peak capacities of 1800 (including the dead time) in approximately 2050 

min. For comparison to other work, when accounting for only the effective separation space, the 

peak capacity was 990 for a 2050 min gradient.  Pillar array columns are perhaps beneficial over 

monolithic columns due to their high reproducibility in column preparation and the low eddy 

dispersion contribution attributable to the highly ordered nature of the stationary phase pillars. A 

disadvantage of µPACs is their relatively high resistance to mass transfer, limiting their 

performance at high linear velocities.  

Open tubular (OT) columns also have the advantage of very low separation impedance and 

thus long columns can be employed. Capillary formats are again used because small inner 

diameters (<10 µm) are needed to decrease analyte diffusion distances.204 Such small column inner 

diameters pose problems such as low sample loadability, low analyte retention, and poor 

repeatability of creating such small inner diameter capillaries.205,206 Column clogging is also more 

likely with such small columns and coupling with mass spectrometry can be challenging due to 

the very low flow rates.207 Despite these drawbacks, recent reports have shown impressive 

separations using open tubular columns. Approximately 700,000 plates were achieved for retained 

compounds on a 250 cm x 5 µm open tubular column with a dead time of 50 min. Recently, 

gradient separations of peptides with peak capacities of 2000 have been achieved in 3 – 5 h using 

75 cm x 2 µm OT column.208 By elevating the column temperature to 70 °C, a peak capacity of 

2720 was achieved in 143 min.209  

Packed columns have also provided large theoretical plate counts and peak capacities using 

long columns packed with small particles. Advantageous of using packed columns include high 

loading capacity of porous particles, wide availability of stationary phase chemistries and pore 

sizes, ease of coupling with MS, and relative (in comparison to microfabrication processes) ease 
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of preparing columns. The disadvantage of packed columns is the increase in operating pressure 

required to push mobile phase through such highly resistant columns.49,51 Moreover, frictional 

heating and the increase in pressure from connection tubing requires capillary column formats to 

be employed, where flow rates are much lower.49,137 Another disadvantage of packed columns is 

the difficulty in efficiently packing columns with such extreme dimensions, and packing 

conditions for one set of parameters is often not sufficient for another set. For example, a recent 

study demonstrated efficient packing (hmin = 1.5) of 1.3 µm particles in to ~34 cm long capillaries 

using a 20 mg/mL slurry packed at 30 kpsi.64 The same conditions were used to pack a 100 cm 

column with the same particles, resulting in an hmin of 3.60   

 High peak capacities have been reported for capillary based ultrahigh pressure separations 

with packed columns. A peak capacity of 1500 was achieved for peptides in a 2000 min gradient 

using a 200 cm x 50 µm column with 3 µm C18 particles operated at 20 kpsi 65. Using the same 

instrument, a peak capacity of 1200 was achieved in 900 min using a 90 cm column with 2 µm 

particles. More recently, peak capacities approaching 900 were achieved for peptides in 720 min 

using a 98 cm x 75 µm column packed with 1.9 µm particles and operated at 30 kpsi.67 Lastly, 

work described in this thesis has demonstrated peak capacities of approximately 400 and 500 in 

40 and 85 min, respectively, for small molecule separations at 35 kpsi.210  

Despite the impressive results described in the previous paragraphs, there is still room to 

grow for improving peak capacities in one-dimensional separations, especially when coupled 

with mass spectrometry. In this chapter, potential for gradient separations using meter long 

columns and operation up to 50 kpsi is evaluated for small molecule separations with coupling to 

mass spectrometry. 
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5.2. Materials and methods 

5.2.1. Chemicals and materials 

All chemicals and reagents were purchased from Sigma Aldrich (St. Louis, MO) unless 

otherwise specified. HPLC grade acetonitrile and sulfuric acid were purchased from Fisher 

Scientific (Fairlawn, NJ). 3,4-Dihydroxyphenylacetic acid (DOPAC) was purchased from Acros 

Organics (Geel, Belgium). Stock solutions of 10 mM proline (Pro), valine (Val), tryptophan 

(Trp), tyrosine (Tyr), norepinephrine (NE), and DOPAC were prepared in water.  A 25 mM 

stock solution of acetylcholine (Ach) was prepared in water. Pro, Val, Trp, and Tyr were 

combined and diluted to 100 µM. DOPAC and NE were diluted to 500 µM. Derivatization was 

completed by sequential addition of 100 mM sodium carbonate, 2% (v/v) benzoyl chloride in 

acetonitrile, and 1% (v/v) sulfuric acid in 20% (v/v) acetonitrile in water in a 2:1:1:1 ratio as 

previously described.167 The mixture was diluted to 10 µM Pro, Trp, and Tyr, 20 µM DOPAC, 

and 50 µM NE.  

5.2.2. Column packing 

Columns were packing using an ultrahigh pressure packing apparatus. Polyimide-coated 

fused-silica capillary with varying inner diameters and outer diameter of 360 µm was purchased 

from Polymicro Technologies (Phoenix, AZ). All particles were bridged ethyl hybrid (BEH) silica 

with C18 bonding (Waters, Co; Milford, MA). Column frits were prepared by spotting an equal 

amount of potassium silicate and formamide on a glass microfiber filter paper (Reeve Angel; 

Clifton, NJ) and dabbing the end of the capillary ~5 times, and placed at 60 °C overnight.93 Acetone 

was used as the slurry solvent for all columns. For columns with 1.7 µm particles, a slurry 

concentration of 200 mg/mL was used. For columns with 1.1 µm particles, a slurry concentration 

of 60 mg/mL was used. Packing was done at 30 kpsi. Low pressure (~1000 psi) was applied to 
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form ~2 cm of packed bed, followed by immediate application of 30 kpsi. Columns were placed 

in a sonication bath prior to packing. The packed columns were flushed at 50 kpsi with 50/50 (v/v) 

water/acetonitrile for 1 h. Columns were then depressurized for 1 h, cut to the desired length, and 

fritted at the inlet as described above.  

5.2.3. LC-MS operation 

Gradient separations were performed at ultrahigh pressures using the custom-built system 

described previously in chapters 2 – 4 and elsewhere.67,87 Mobile phase A was 10 mM ammonium 

formate with 0.1% formic acid. Mobile phase B was acetonitrile. All injections were performed in 

partial loop mode on the NanoAcquity with a 0.2 µL injection volume. A 20-100% B gradient was 

used for all separations. Column volume was calculated assuming a total porosity of 0.8. For the 

100 cm x 100 µm column, the volume was 6.3 µL. For the 70 cm x 100 µm column, the volume 

was 4.4 µL. Peak capacity was determined by measuring the full width at half maximum (FWHM) 

of metabolites eluting throughout the separation space.  The 4σ peak width was calculated by 

multiplying FWHM by 1.7. The peak capacity was then calculated by dividing the separation 

window by the average 4σ peak width. The separation window was determined as the difference 

in elution time between the last eluting peak and the dead time. The end of the separation window 

was indicated by underivatized peaks corresponding to dioctyl phalate (DOP, [M+H]+ 391) or 

didodecyl thiodipropionate (DDTDP, [M+H]+ 515, [M+NH4]
+ 532). The column oven was 60 °C. 

Effluent from the column was connected to either a Waters Xevo or Waters/Micromass Premier 

(Milford, MA) using a stainless-steel union and a fused silica spray needle of 75 µm i.d. tapered 

to 30 µm (New Objective; Woburn, MA). The capillary voltage was 2 – 2.5 kV, which was 

modified based on flow rate from different columns and pressures.  The MS was operated in full 

scan, positive ion mode with a mass window of 100 – 1000 m/z.  



 101 

5.3. Results and discussion 

5.3.1. Column considerations 

To realize the theoretical benefits of operating at such high pressures, columns that take 

advantage of these pressures must be efficiently packed. In other words, operating a 10 cm column 

with 1.7 µm particles at 35 kpsi would not improve separation performance relative to 10 kpsi; 

however, operating a 200 cm column packed with 1.7 µm particles at 50 kpsi would be beneficial 

(Figure 5-1B). These improvements are discussed in the introduction of this thesis and are well 

visualized using kinetic plots.49,52,53 Figure 5-1 shows gradient kinetic plots illustrating peak 

capacity versus analysis time for different column lengths at 35 kpsi with 1.7 µm dp (Figure 5-1A), 

different column lengths and pressure with 1.7 µm dp (Figure 5-1B), and different particle sizes at 

35 kpsi and 50 cm column length (Figure 5-1C). These plots clearly show the benefits of higher 

pressure for increasing peak capacity when column length and particle size is chosen carefully, but 

importantly also show when pushing these limits is not beneficial. Details on construction of these 

plots is described in Appendix 2.  

Before engineering instrumentation to operate at such high pressures, we first evaluated 

whether such long columns can be efficiently packed with small particles that would benefit from 

increased operating pressures. Chapters 2 – 4 of this thesis describe relatively high-resolution 

separations of lipids and metabolites with separation times of typically 2 – 3 h, column lengths of 

20 – 50 cm, and an instrument operating pressure of 35 kpsi. Higher peak capacities are expected 

with both longer columns and longer analysis times while still within this pressure regime. Thus, 

longer columns were first investigated for use while still at 35 kpsi operating pressure.  
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Figure 5-1. Effect of different column and instrument parameters on theoretical peak capacity using packed columns. 

(A) Effect of column length with 35 kpsi operating pressure and 1.7 µm particle size. (B) Effect of column length with 

different operating pressures all with 1.7 µm particle size. (C) Effect of particle size with 35 kpsi operating pressure 

and 50 cm column length. Other conditions: S = 12 (estimated for 300 Da molecule); 20-100% B gradient; column 

temp 60 °C. For further details on calculations see Appendix 2. 

5.3.2. 100 cm x 100 µm, 1.7 µm column 

Previously published work investigated column packing conditions for efficiently 

preparing 100 cm columns packed with 1.7 µm BEH C18 particles.63,211 They found that packing 

at a low slurry concentration (1-20 mg/mL) led to axial heterogeneities and a poorly performing 
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column. Too high of a slurry concentration (180-200 mg/mL) also led to relatively poorly packed 

columns due to a high number of voids within the bed.60–62,64 However, sonicating the column 

while packing at such high slurry concentrations (200 mg/mL) alleviated excessive void formation 

and provided, meter-long columns with efficient isocratic separations.63  

In this work, gradient separations with 100 cm columns packed with 1.7 µm particles were 

performed using columns packed with sonication and high slurry concentrations as previously 

described.63 Figure 5-2 shows example separations of a standard benzoyl chloride derivatized (Bz-

) metabolite mixture at 35 kpsi on a 100 cm x 100 µm, 1.7 µm dp column. Narrow, symmetrical 

peaks were achieved under different gradient lengths. Peak capacities were 990 and 1190 in 4 and 

8 h separation times, respectively. Moreover, retention times were found to be repeatable with 

RSDs for all peaks 3.0% or less (Table 5-1).  
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Figure 5-2. Example overlayed ion chromatograms of a standard BzCl labeled metabolite mixture on a 100 cm x 100 

µm, 1.7 µm column operated at 35 kpsi. Gradient separations were performed with a 20 – 100% B gradient at varying 

gradient lengths. Mobile phase A was 10 mM ammonium formate; mobile phase B was acetonitrile; column 

temperature was 60 °C; injection volume was 0.2 µL. 

 

Table 5-1. Retention time repeatability of BzCl labeled metabolite mixture on a 100 cm x 100 µm column packed 

with 1.7 µm particles and operated at 35 kpsi. 

 

 

 

 

Analyte (m/z) Retention time (min) 
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 St Dev %RSD 

Bz-Pro (220) 23.50 21.81 22.03 21.50 22.15 22.81 22.30 0.67 3.0 
Bz-Val (222) 27.87 26.47 26.61 25.98 26.72 27.49 26.86 0.64 2.4 
Bz-Trp (309) 32.11 30.56 30.69 29.91 30.80 31.68 30.96 0.73 2.4 
Bz-Tyr (390) 41.46 40.32 40.34 39.23 40.36 41.35 40.51 0.75 1.8 

Bz-DOPAC (394) n/a  43.40 44.62 43.40 44.61 45.69 44.34 0.86 2.0 
DOP (391) 66.03 66.77 66.56 64.67 65.72 67.96 66.29 1.01 1.5 
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Peak capacity of the 100 cm, 1.7 µm column operated at 35 kpsi was evaluated under 

different gradient times (Figure 5-3). As theory predicts, peak capacity increases on a logarithmic 

scale as gradient time is extended, eventually reaching a plateau. Gradient times up to ~8 h (480 

min) were evaluated, corresponding to gradient slopes of 16% to 2% ΔB/column volume. For 

comparison, peak capacities are shown for a 50 cm x 100 µm, 1.7 µm dp column at 35 kpsi and a 

15 cm x 100 µm, 1.7 µm dp column at 15 kpsi; most of this data is reproduced from chapter 4 and 

published elsewhere.210 The 100 cm column provided much higher peak capacities than the shorter 

columns, especially at analysis times over 100 min. Importantly, use of 35 kpsi enabled 

implementation of long columns packed with 1.7 µm particles.  

 

Figure 5-3. Comparison of column length and operating pressure on peak capacity. A 20 – 100% B gradient was used 

for all separations at varying gradient lengths. Other conditions were the same as Figure 5-2. 

Although peak capacity has been well established over the years, there is still ambiguity in 

calculating peak capacity regarding the separation window and the average peak width – the two 

measurements needed to determine peak capacity. Although using the effective separation space 

(e.g., the time between the first and last eluting peak) is the most accurate approach, the entire 
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gradient time (e.g., including the dead time or time after the last peak is eluted when the gradient 

program is finishing) is often used which can overinflate peak capacity measurements. 

Additionally, it is common to only measure the peak width of the last eluting peak or a highly 

retained peak rather than the average of peaks eluting across the gradient. This approach may not 

represent the entire separation performance and can also change peak capacity measurements, 

especially if dead volume affects the peak width of early eluting peaks. To understand how these 

differences affect the data here, different peak capacity measurements were made on the same 

separation. Peak capacity for tG, all (entire gradient time and averaging peaks across the 

chromatogram), tG, DOPAC (entire gradient time and only peak width of Bz-DOPAC), and tR, all 

(separation window and averaging peak widths) were considered (Figure 5-4). Not surprising, 

when using the entire gradient time (tG) rather than the effective separation window (tR), a higher 

peak capacity is obtained. Similarly, when only using the peak width of a highly retained peak, in 

this case Bz-DOPAC, rather than average peak widths from the entire separation space, the peak 

capacity is higher. Lastly, using the effective separation space (tR) and averaging peak widths gives 

the lowest and most conservative estimate of peak capacity. Up to a 20% difference in peak 

capacities were obtained when using these three methods. More drastic differences would be 

expected when using longer columns or lower pressures where the dead times are larger. Moving 

forward, a tR, all based peak capacity was used to calculate peak capacity.  
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Figure 5-4. Impact of peak capacity calculation method on experimental peak capacity. Peak capacity was calculated 

based on tG and the peak width of Bz-DOPAC (blue circles), tG and the peak width of peaks throughout the separation 

space (grey diamonds), and tR-based separation space and the peak width of peaks throughout the separation space 

(black squares). 

5.3.3. 100 cm x 100 µm, 1.7 µm column at 50 kpsi 

Given that 100 cm columns packed with 1.7 µm particles provided high peak capacities for 

small molecule separations at 35 kpsi, separations at 50 kpsi were attempted with the same 

instrument (e.g., same valves and fittings). Leak-free operation was possible with the same 

instrument valves and fittings; however, repeatability and lifetime were poor. Nonetheless, a 

couple separations were achieved at 50 kpsi for the 100 cm, 1.7 µm column and are compared with 

separations at 35 kpsi; separations used a gradient slope of 16% and 8% ΔB/column volume 

(Figure 5-5).  Notably, for the same gradient slope, separation time is shorter at 50 kpsi than 35 

kpsi. Additionally, the dead time is shorter as expected, which benefits peak capacity when using 

a tR-based calculation.  
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Figure 5-5. Separations of the standard mixture at 50 kpsi (B and D) and comparison to 35 kpsi (A and C). Separations 

were performed with a gradient slope of 16% (A and B) and 8% (C and D) ΔB/column volume. Dead time peaks are 

also shown for comparison between operating pressures. Other conditions are the same as Figure 5-2. 

The peak capacities obtained at 50 kpsi under the two gradient lengths are plotted in Figure 

5-6. Slight improvements in peak capacity per time were seen compared to separations at 35 kpsi. 

Separation times above 2 h were not able to be performed at 50 kpsi as the instrument hardware 

was not reliable, and so only a couple injections were completed. We also performed separations 

at 17 kpsi and saw further decreases in peak capacity relative to higher operating pressures. It 

should be noted that for a given analysis time at 17 kpsi, gradient slopes were half as steep as 

separations at 35 kpsi to achieve the same analysis time. For example, a 480 min separation at 35 

kpsi employed a 2% ΔB/column volume, while 4% ΔB/column volume was required to generate 

a 480 min separation at 17 kpsi. Although peak capacities were lower at 17 kpsi, they were still 

relatively high, with a peak capacity of 1010 achieved in 8 h. Given the trend in peak capacity vs. 

operating pressure, it is likely that broadening due to longitudinal diffusion is smaller at higher 
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linear velocities (e.g., shift right on the van Deemter curve), improving peak widths and peak 

capacities at higher pressures. Previous reports have also showed that even deep in the C-term 

regime, peak capacities are higher at higher flow rates/linear velocities.95,182,185 

 

Figure 5-6. Effect of operating pressure and gradient length on peak capacity for small molecule standards on a 100 

cm x 100 µm, 1.7 µm dp column. 

5.3.4. 70 cm x 100 µm, 1.1 µm column 

Chapter 4 demonstrated relatively successful use of 1.1 µm particles packed in to 20 cm 

long columns for relatively high peak capacity separations at analysis times under 100 min and 

operated 35 kpsi. Higher resolution is possible with even longer columns with the 1.1 µm particles 

and operated at 35 kpsi and higher. A 70 cm x 100 µm column was packed with 1.1 µm particles 

and evaluated at different gradient lengths similar to the previous section. Peak capacities are 

plotted vs. analysis time for metabolite standards (Figure 5-7). While theory predicts higher plate 

counts on this column, peak capacities were lower than those obtained on the 100 cm column 

packed with 1.7 µm particles, indicating the column was not as well packed. Previous studies have 

shown axial heterogeneities and void formation as causes for poor performance in long columns 
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packed with such small particles. While sonication alleviated these packing voids with 1.7 µm 

particles, it did not appear to help with 1.1 µm particles in 70 cm columns under the conditions 

studied here. Quite different conditions were employed for the 1.1 µm vs. 1.7 µm particles; 

however, a similar approach was taken that seemed to work well for the 1.7 µm particles. 

Specifically, a slurry concentration of ~150 mg/mL was deemed “optimal” for 1.7 µm particles 

without sonication, and 200 mg/mL was “optimal” with sonication.61,63 For ~1.3 µm particles, a 

~20 mg/mL slurry was found to be optimal for ~30 cm column lengths but not for lengths of 100 

cm.64 Thus, for similar ~1.3 µm particles (labeled “1.1 µm”) used here, we purposefully selected 

a high slurry concentration of 60 mg/mL for 70 cm columns. Despite this approach, the column 

did not appear to be as well packed as 1.7 µm particle packed columns. It is possible that different 

slurry concentrations and higher packing pressures could improve packing such small particles in 

to long columns. Given that shorter columns have been successfully packed with 1.3 µm particles, 

increasing the packing pressure may alleviate axial heterogeneities caused by a decrease in packing 

rate when using lower pressures.   
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Figure 5-7. Peak capacity plotted versus analysis time on a 70 cm x 100 µm, 1.1 µm dp column at 35 (blue circles) 

and 45 kpsi (gray diamonds). For reference, peak capacities of the 100 cm, 1.7 µm column are shown (black squares). 

5.3.5. 70 cm x 100 µm, 1.1 µm column at 45 kpsi 

Similar to the 100 cm, 1.7 µm dp column, the 70 cm, 1.1 µm dp column operated at 50 kpsi 

was attempted with the same instrument configuration. Leaks occurred at 50 kpsi, so 45 kpsi was 

used. Gradient separations of metabolite standards were again run at different gradient lengths 

(Figure 5-7). As before, the higher flow rates generated with higher operating pressure provided 

higher peak capacities than lower flow rates. Example chromatograms of the standard mixture on 

the 70 cm x 100 µm, 1.1 µm dp column at 35 and 45 kpsi are shown in Figure 5-8. 



 112 

 

Figure 5-8. Example separations of Bz metabolites on a 70 cm x 100 µm, 1.1 µm dp column at 35 (A & C) and 45 kpsi 

(B & D). Separations were performed with a gradient slope of 12 (A & B) or 6% ΔB/column volume.  

5.3.6. Instrument considerations for routine use at 50 kpsi 

It is clear from the previous sections that routine use of the current design of the custom-

built UHPLC system at 50 kpsi is not feasible. The initial design of the custom-built gradient 

system shown in Figure 1-5 was tested to 45 kpsi;67 however, much of the work was done at 30 

kpsi as it was reported that the fittings often failed above 30 kpsi. Similarly, for most work 

described in the previous chapters of this dissertation, the operating pressure was 35 kpsi. The 

freeze/thaw valve has been tested up to ~ 60 kpsi,212 although differences in solvent composition 

and capillary inner diameter may affect this limit. The HiP valves and tees used here are rated to 

60 kpsi; these fittings are also available up to 150 kpsi but would require different fittings to be 

engineered to connect to capillary connections and capillary columns. Pneumatic amplifier pumps 

can also operate over 100 kpsi. Thus, the primary bottlenecks for routine operation at 50-60 kpsi 

are the microvolume tees that are used to connect capillary – i.e., connection to the pneumatic 
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pump, to the gradient storage loop, to the column, to the NanoAcquity, and to waste. These tees 

are from VICI/Valco and have either 1/32” or 1/16” fittings. In the current and previously 

published designs, fittings with 1/32” threads were used, with the main advantage of low dead 

volume providing linear gradients and minimum extra column band broadening.67 While these tees 

were routinely reliable at 35 kpsi, inconsistent operation and frequent leaking occurred at higher 

pressures. Further tightening these connections with a small vise tool occasionally made a secure 

connection, however the metal threads would at times break inside the tee.  

It was hypothesized that microvolume tees with 1/16” threads would allow for more grip 

strength and provide a better, more reliable connection at pressures around 50 kpsi or higher. A 

potential downside of moving to 1/16” tees is the potential increase in dead volume. While both 

tee geometries have a 150 µm bore within each arm and both are claimed to be “zero dead volume”, 

it is possible that the larger tee cavities have bigger dead volumes. To estimate the dead volume 

of the system and compare the two tees, acetylcholine was injected on to a 100 cm x 100 µm, 1.7 

µm column as a dead time marker. The peak width and number of theoretical plates were measured 

for both tee geometries using a 0.2 µL injection volume and 35 kpsi operating pressure. No 

significant differences were detected in terms of extra column volume, with the 1/16” and 1/32” 

tees obtaining 270 ± 15 (n = 3) and 279 ± 31 (n = 3) plates, respectively (Table 5-2).  

While the larger tees seemed to provide a better fitting and did not break when tightening 

with a vise, there were still issues that prevented robust, routine use. Overtightening often lead to 

clogging of the tees, potentially due to the PEEK ferrule being crushed inside the tee and collapsing 

into the tee through-hole. Moreover, the capillary that butted up inside the tee would break when 

tightened. It is possible that different ferrules and use of a torque wrench would allow better use 

of these bigger fittings.  
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Table 5-2. Comparison in dead volume measured by theoretical plates for an unretained peak between 1/16” and 1/32” 

tees connecting the capillary column to the autosampler and the gradient storage loop. 

Acetylcholine 
 t

R
 (min) FWHM (min) Plates %RSD 

1/32" tee 
Run 1 11.91 1.70 272 

11 Run 2 13.10 1.97 245 
Run 3 12.40 1.63 321 

1/16" tee 
Run 1 12.20 1.77 263 

5.5 Run 2 12.88 1.78 290 
Run 3 13.59 2.00 256 

5.3.7. Comparisons with literature 

As discussed in the introduction, previous reports have demonstrated high peak capacity 

one-dimensional separations using long columns with different particle sizes (for packed beds) or 

domain structures (i.e., monolithic, µPAC). Figure 5-9 plots the peak capacity versus separation 

time from select publications in the past few years that have demonstrated high peak capacity 

compared to what is possible with commercially available pressure limits and column dimensions 

or column formats. Work described in this chapter typically outcompetes previous reports in terms 

of peak capacity per time. For example, a peak capacity of 580 and 1200 was achieved in 80 and 

480 min, respectively, which correlates to 7.25 and 2.5 peaks per minute. In comparison, a peak 

capacity of 1800 was achieved in 2050 min with an 8 meter µPAC (orange circle), which correlates 

to 0.88 peaks per minute. We limited analysis time to below 1000 min, so other reports generated 

higher gross peak capacities at these very long analysis times. Additionally, recent reports utilizing 

open tubular columns greatly outperforms other packed bed and similar column formats in terms 

of both total peak capacity and peak capacity per time.208,209
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Figure 5-9. Peak capacity versus separation time for selected one-dimensional separations using long microcolumns 

with different particle sizes or column structures. All separations were done with either peptides or small molecules 

under reversed phase conditions with water-acetonitrile mobile phases at room temperature up to 70 °C. 

6. Conclusions 

This chapter describes column and instrument parameters that generated peak capacities 

over 1000 in a few hours for small molecule separations while coupled to mass spectrometry. 

Gradient kinetic plots were constructed that guided the choice of column length and particle size 

when using 35 – 50 kpsi operating pressure. Long columns (100 cm) packed with 1.7 µm 

particles outperformed columns packed with 1.1 µm particles (70 cm), suggesting packing 

improvements such as higher packing pressure are needed for micron-sized particles packed in 

long columns. Separations at 50 kpsi were achieved on 100 cm columns packed with 1.7 µm 

columns; however, improvements in instrument design are necessary for routine operation at 

these pressures. Larger microtees using 1/16” fittings were tested for use at 50 kpsi and the dead 

volume of the larger tees were evaluated. No significant difference was observed for plate counts 

of an unretained marker between the smaller and larger tees, indicating similar dead volumes. 
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While leaks were less frequent with the larger tees, clogging and broken capillary due to 

overtightening limited routine use at 50 kpsi. Use of a torque wrench to tighten the fittings more 

precisely could provide routine, leak-free operation at 50 kpsi. 
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Chapter 6. Conclusions and Future Directions 

 

6.1. Conclusions 

This thesis described applications of capillary liquid chromatography-mass spectrometry 

for metabolomics and lipidomics using custom-built instrumentation. A theoretical background on 

advantages of ultrahigh pressures at 35 – 50 kpsi were first introduced that provided guidance on 

different column parameters used in this thesis.  Lipidomics methods were developed using one- 

and two-dimensional liquid chromatography at 35 kpsi coupled online with mass spectrometry. 

Column length, packing procedure, operating pressure, and gradient length were evaluated for 

separation of lipid isomers and complex lipid extracts from human plasma. Implementing a two-

dimensional workflow utilizing HILIC in the first dimension to fractionate lipid classes from 

plasma followed by re-injection on 50 cm long reversed phase columns roughly doubled the peak 

capacity. Selective modification of gradient slope, resuspension volume, and injection volume for 

each fraction provided high orthogonality between the two dimensions with broad lipidome 

coverage. Lipid identification by MS1 data rather than tandem mass information limited the 

conclusions that could be drawn regarding how these columns improved MS/MS identification or 

improved identification confidence. Future widespread use of this technology may be limited by 

the custom-built nature of the instrumentation which generally requires more troubleshooting than 

current commercial instruments. Moreover, difficulty in creating low dead volume capillary 

connections by a routine user relative to wider bore formats and increased susceptibility of 

clogging with capillary LC-MS instrumentation may limit widespread use of this technology. 
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Finally, throughput must be balanced with the desired lipidome coverage, as both the longer 1D 

analysis times took 2 – 4 h and the 2D method was ~8 h. If throughput is of particular importance 

for the user, these methods may not be well suited. 

Separation of metabolites were evaluated using the custom-built LC-MS at 35 – 50 kpsi. 

Use of 1.1 µm particles allowed relatively fast separations without compromising separation 

performance compared to larger particles. MS1 feature count was evaluated from separations of a 

plasma extract for practical metabolomics considerations. Feature count was influenced by 

interplaying variables including peak capacity, flow rate, and injection volume. Peak capacities 

over 1000 were achieved for metabolite standards on meter long columns packed with 1.7 µm 

particles, showing potential for greatly increasing the metabolome coverage in LC-MS based 

metabolomics. Finally, gradient separations at 50 kpsi were accomplished and discussed for 

routine use; these pressures should allow for unprecedented separation performance. Column 

packing procedures for columns to be used at these pressures, such as those with micron-sized 

particles and smaller, need to be investigated. Compared to other approaches for high-resolution 

separations such as using pillar array and monolithic columns, the packed columns and 

instrumentation used here provided higher peak capacities than previously published for analysis 

times under 600 min.  The use of feature counts instead of database matching for identification 

limited the conclusions that could be drawn regarding applicability to metabolomics 

measurements. The large precolumn dead volumes relative to the peak volumes associated with 

capillary LC limit routine use of this technology for very polar metabolites that do not get well 

retained. Faster scanning mass spectrometers will be needed than those used here to keep up with 

the smaller peak widths obtained here relative to commercial columns. 
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Future work is discussed that includes implementing in-depth identification software using 

orthogonal data generated in LC-MS based metabolomics and lipidomics and potential for  hybrid 

searching when using derivatization strategies; ultrahigh pressure separations using ion exchange 

and hydrophilic stationary phases; developing multi-omics methods to simultaneously separate 

and identify metabolites, peptides, and lipids; and investigating sub-micron particles for use in 

ultrahigh pressure separations. 

6.2. Future directions  

6.2.1. Improvements in metabolite and lipid identifications  

In chapters 2-4, methods for efficiently separating metabolites and lipids from complex 

mixtures such as plasma were described using long columns packed with sub-2 µm particles and 

operated at ultrahigh pressures. Lipids for example were detected and preliminarily identified 

primarily using MS1 (or precursor ion) data and in silico libraries.12 While this metric provided 

reasonable comparisons between the different columns investigated and the potential for each 

method to detect a certain number of lipids, the identification confidence was relatively low.213 

Future work should employ in-depth tandem MS data, retention time and equivalent carbon 

number data, and perhaps structural information provided by NMR. Additionally, identification 

software improvements should be studied and implemented to streamline data processing and 

provide user-friendly interfaces. 

 In chapter 4, benzoyl chloride derivatization was utilized to improve retention of polar 

metabolites on reversed phase columns. While this approach has been implemented heavily in 

targeted assays,167,175 there has been limited use in untargeted metabolomics studies. A challenge 

in implementing this approach for untargeted methods is the difficulty in identifying unknowns 

following derivatization. In our work, we simply evaluated MS1 feature count, which is often an 
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overestimate of the number of actual real metabolites and is not a high confidence identification.187 

Hybrid searching is a potential solution to effectively identifying unknowns in an untargeted LC-

MS based method following derivatization.214 Future work should evaluate hybrid search 

strategies for use in assays such as BzCl derivatization. When isotopically labeled 13C6-BzCl is 

used with standard 12C6-BzCl, every peak with multiples of 6 m/z difference (e.g., 6 m/z for singly 

labeled, 12 m/z for doubly labeled, etc.) that elute at the same time should be a positive hit. 

Preliminary work suggests this approach is possible (Figure 6-1). Cerebrospinal fluid was collected 

from the nucleus accumbens in a rat brain using microdialysis at a flow rate of 0.5 µL/min. The 

collected dialysate volume was split in two, with one half derivatized with 12C6-BzCl and the other 

half derivatized with 13C6-BzCl, and then mixed back together (in collaboration with Dr. Youngsoo 

Kim and Brady Anderson). A 5 µL aliquot was injected onto a reversed phase column (15 cm x 

2.1 mm, 1.8 µm HSS T3) coupled to a Q-ToF MS (Agilent 1290 UHPLC; Agilent 6546 Q-ToF) 

operated in full scan, positive ion mode. A total ion chromatogram shows many peaks eluting 

across the separation space (Figure 6-1A). A representative mass spectrum averaged from 9.6 – 

9.8 min shows several feature pairs with the expected characteristic 6 m/z difference (Figure 6-

1B). Evaluation of different hybrid search engines needs to be performed for accurate and facile 

identification of these compounds. 
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Figure 6-1. (A) Total ion chromatogram from a 5 µL injection of dialysate separately derivatized with 12C6 and 13C6-

BzCl then mixed before injection. (B) Mass spectrum from scans at 9.6 – 9.8 min showing peaks with 6 m/z difference, 

indicative of a successful mixture of light/heavy BzCl derivatized compounds. 

6.2.2. Ultrahigh pressure separations using HILIC and ion exchange particles 

The bulk of this thesis described methods for packing and operating long microcolumns 

with sub-2 µm reversed phase (typically C18) particles. While reversed phase LC remains the 

dominant separation form in HPLC, alternative stationary phases can provide better selectivity and 

retention for certain compounds that are difficult to analyze. Hydrophilic interaction liquid 

chromatography (HILIC) and ion exchange chromatography are useful separation modes for 

separating polar and charged species; however, these stationary phases have not been packed in to 
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long columns or operated at pressures above 20 kpsi.51 Recent work has illustrated the benefits of 

higher pressure and smaller particles for ion exchange particles in 10 – 15 cm commercial columns 

using 2.5 µm particles.215  Current work in the lab is focused on procedures for efficiently packing 

long columns (~100 cm) with 1.7 µm BEH Amide particles (Waters) and 1.7 µm anion exchange 

particles (Agilent). Separation of polar compounds are shown in Figure 6-2A using a 50 cm x 75 

µm column packed with the BEH Amide particles. A HILIC-type retention mechanism was 

observed with increasing retention as the percent of acetonitrile in the mobile phase was increased 

(Figure 6-2B). Further work has achieved over 100,000 theoretical plates at optimal linear 

velocities for polar compounds using a 100 cm microcolumn packed with 1.7 µm Amide particles 

(in collaboration with Brady Anderson). These advancements should open new avenues for 

generating in-depth metabolomics data with faster and higher resolution of polar and charged 

species than previously possible. 

 

6.2.3. Multi-omics in a single shot technology using ultrahigh pressure capillary LC-MS 

As discussed in the introductory sections of this thesis, thousands of biomolecules, 

including lipids, metabolites, nucleic acids, and proteins, are involved in cellular processes of 

Figure 6-2. (A) Separation of polar compounds using a 50 cm x 75 µm column BEH Amide packed with 50 mg/mL 

in MeOH run at 25 kpsi at 75% ACN with 10 mM ammonium formate and 0.1% formic acid. MS detection was used 

with an integrated 30 µm spray tip. Abbreviations: Bz-DA, benzoyl-dopamine; Caff, caffeine; Ach, acetylcholine; 

Cyt, cytidine. (B) Retention factor as a function of percent acetonitrile in the mobile phase. This trend illustrates a 

HILIC-type of retention as expected using this stationary phase. 
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living organisms. The desire to understand these processes and the need to develop better drugs or 

understand diseases has led to the proliferation of various omics technologies such as 

metabolomics and proteomics. While these methods have provided valuable insight and discovery 

in systems biology, unresolved gaps remain, particularly when multiple biosynthesis pathways are 

involved for example in the same disease or same drug target. An integrated, multi-omics approach 

should overcome these challenges by providing metabolome, proteome, and lipidome data in a 

single chromatographic analysis. Simultaneous lipidome and proteome measurements have 

recently been successful in a single chromatographic analysis with a binary mobile phase pump 

using a 15 cm x 1 mm i.d. column with 2.1 µm BEH particles.216 Future work will include 

metabolome measurements and use of a capillary based system. Additionally, future work should 

investigate extraction protocols and injection solvents amenable to metabolites, lipids, and 

peptides, as the previous work employed separate extraction protocols and injection from two 

separate vials. These modifications should lead to a more comprehensive analysis with decreased 

sample amounts while expanding the coverage and sensitivity.  Use of 100% aqueous compatible 

particles (e.g., HSS T3 from Waters) will also allow better retention of polar metabolites compared 

to BEH particles. Preliminary work has been done using metabolite, peptide, and lipid standards 

injected from one vial onto a commercial 10 cm x 2.1 mm column with 1.8 µm HSS T3 particles 

(in collaboration with Devin Makey). A gradient of water, acetonitrile, and isopropanol was used 

to separate the compounds. Figure 6-3 shows an example separation of 5 metabolites, 3 lipids, and 

various tryptic peptides from enolase. Peptide signal intensities were low in this case due to the 

poor full-scanning capabilities of the triple quadrupole mass spectrometer used; in contrast, lipids 

and metabolites were detected using set MS/MS transitions. Use of the HSS T3 particles allowed 

starting the mobile phase gradient at 100% aqueous, allowing improved retention of polar 
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metabolites such as acetylcholine compared to columns such as BEH or other particle types that 

require small amounts (~3 – 5%) of organic content.  Future work should investigate use of 

capillary scale columns packed with the HSS T3 particles on the custom-built UHPLC system. 

Coupling these separations with ion mobility spectrometry should also be explored to increase 

separation peak capacity, help separate isomers, and aid in identification. Ion mobility separations 

have the benefit of being fast (on the millisecond timescale), allowing online coupling with 

chromatographic separations. 

 

6.2.4. Separations with sub-micron particles 

In chapter 4, columns packed with 1.1 µm particles were used for fast and efficient 

separations of metabolites. These results were in good agreement with theory that faster 

separations can be achieved without compromising separation performance compared to larger 

particles. Use of even smaller particles below one micron should in theory provide even faster 

separations and in less time. A disadvantage of sub-micron particles is the large increase in 

Figure 6-3. Separation of metabolite, lipid, and peptide standards in one chromatographic run with injection from a 

single vial. Abbreviations: Ch, choline; Ach, acetylcholine; 5-HT, serotonin; ACM: acetaminophen; LPC, 

lysophosphatidylcholine; PC, phosphatidylcholine; TG, triacylglycerol. Five µL was injected on to a 10 cm x 2.1 

mm, 1.8 µm HSS T3 column. 
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pressure requirements. With 35 – 50 kpsi available, column lengths of ~1 – 10 cm are beneficial 

(depending on the desired analysis time or plate count) over larger particle sizes. 

Sub-micron particles are particularly advantageous for protein separations. The diffusion 

of proteins is much slower than that of peptides or small molecules, and so the impact of band 

broadening due to mass transfer is much higher than that of analytes with faster diffusion rates. 

Thus, the smaller diffusion distances afforded by sub-micron particles provides an even larger 

improvements in plate height for proteins. Moreover, excessive band broadening due to 

longitudinal diffusion will occur at much lower linear velocities for proteins relative to small 

molecules, meaning the pressure requirement is not as high for proteins. Theoretical van Deemter 

plots are illustrated for a small molecule with Dm = 8 x 10-6 cm2/s (A) and for a 150 kDa protein 

with Dm = 4.8 x 10-7 cm2/s (B) with 0.5, 1, and 2 µm particles (Figure 6-4). Clearly, plate height 

changes more drastically for proteins compared to small molecules. Additionally, the optimal 

linear velocity is lower for proteins, meaning less pressure is required to achieve this velocity. 

Reports of plate heights below 1 micron for protein separations have been reported using 300 – 

500 nm diameter nonporous colloidal silica particles using commercial UHPLC 

instrumentation.160,217,218 

 

Figure 6-4. Theoretical van Deemter plots using 2, 1, and 0.5 µm fully porous particles with (A) a small molecule 

with Dm = 8 x 10-6 cm2/s and for (B) a 150 kDa protein with Dm = 4.8 x 10-7 cm2/s. 
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 Slip flow has also been observed with sub-micron particles, providing enhanced flow rates 

compared to what is expected given Hagen-Poiseuille (no-slip) flow.219 Slip flow occurs due to 

weak intermolecular interactions between a fluid and the surrounding walls, leading to enhanced 

flow rates of water or other polar solvents through hydrophobic nanoscale channels. Slip flow 

conditions also provide a narrower velocity profile compared to the conventional parabolic laminar 

flow profile, leading to plate heights lower than that expected from chromatographic theory. 

Separations of bovine serum albumin on a 2.1 cm long x 75 µm i.d. column filled with 470 nm 

nonporous colloidal silica particles provided plate heights as low as 15 nm using a pressure of only 

~5000 psi.220 

Most of these previous reports using slip flow with sub-micron particles used nonporous 

silica colloidal crystals.160 Moreover, the separations have only been performed at commercial 

pressures. Future work can should be done to better understand slip flow using sub-micron porous 

particles compared to the nonporous colloidal particles. Theoretical work has shown differences 

between these two particle types in terms of both their flow rate enhancements and plate height 

improvements.221 Work in our lab (in collaboration with Josh Jones) has been performed to 

experimentally study slip flow enhancements using 0.5 µm porous C18 silica particles at pressures 

up to 31 kpsi. Flow rate data was measured for 99% water, 50/50 water/acetonitrile, and 99% 

acetonitrile using a 6 cm x 100 µm capillary column packed with 0.5 µm particles. The fused silica 

capillary was used as is or was first coated with iododecane (C12) to ensure the walls were 

hydrophobic. It is expected that the flow rate of water (normalized for viscosity) is higher than that 

of acetonitrile due to greater immiscibility with the wall, and that the C12-coated column would 

provide higher flow rates for water than the uncoated. Figure 6-5 shows results from this study. In 

both the uncoated and C12-coated capillary columns with 0.5 µm columns, normalized flow rates 
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of water were higher than that of 50/50 water/acetonitrile or 99% acetonitrile, suggesting 

enhancements due to slip flow. Additionally, flow rates were 14 – 38% higher with the C12 coated 

capillary relative to the uncoated capillary, further indicating slip flow as a contributing factor to 

the enhanced flow rate (Figure 6-5B). More characterization needs to be done to fully understand 

the flow rate enhancements including column replicates, different alkyl chain length modifications, 

and different sub-micron particle sizes. Moreover, practical benefits of slip flow such as faster 

separations and lower than expected plate heights need to be investigated and compared with 

previous reports.  

 

Figure 6-5. Normalized flow rate measured at different pressures and mobile phase compositions on a 6 cm x 100 µm 

capillary packed with 0.5 µm porous C18 silica particles. The fused silica capillary was uncoated (A) or coated with 

iododecane (C12).
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Appendices 

 

Appendix 1 – Targeted LC-MS/MS for Determination of Lipids and Neurochemicals with 

Applications to Diabetes, Obesity, Nanodisc Behavior, and in vivo Measurements 

 

The bulk of this thesis described methods that were developed for untargeted metabolomics 

and lipidomics using full-scanning mass spectrometers with the goal of detecting all the 

metabolites or lipids in the samples of interest – typically plasma. As discussed in the introduction 

sections of this thesis, metabolomics is a valuable tool utilized in a wide range of applications 

including studying physiological mechanisms and understanding disease states. Targeted assays, 

where a set number of compounds are detected and quantified, are useful for certain applications 

such as hypothesis-driven studies where the compounds of interest are known beforehand and 

thought to be involved in the pathway or disease of interest in the study. Compared to untargeted 

approaches, targeted metabolomics typically offers better quantitation and can provide lower limits 

of detection due to fine-tuning of different LC and MS parameters for the specific metabolites of 

interest.  

In this appendix, various targeted LC-MS/MS methods are described that were applied for 

different studies including diabetes, obesity, nanodisc formation, and in vivo neurochemical 

measurements. These methods were modified for different matrices including liver, plasma, 

cerebrospinal fluid, and adipose tissue cellular secretions.  In most assays, limits of detection 

(LoDs) were sub-nM, which were often necessary to detect and quantify low-abundance species 
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within these complex matrices. For each application, method details are described, background 

and significance for each assay is briefly overviewed, and key results are summarized.  

 

I. Determination of epinephrine and norepinephrine in plasma and liver 

Reproduced in part from Flak, J.N. et. al., Journal of Clinical Investigation 2020 and Evers, S.S., Kim, K.S. et. al. Molecular 

Metabolism 2020. Specific contributions from Sorensen to this work include development of LC-MS method, sample preparation 

and catecholamine determination, and data analysis. Copyright American Society for Clinical Investigation 2020. Copyright 

Elsevier 2020. 

 

I.I. Background 

Norepinephrine and epinephrine are important neurochemicals of the sympathetic nervous 

system (SNS) associated with various physiological roles including regulation of blood pressure, 

sugar levels, and heart rate. The release of these catecholamines is known as the “fight or flight” 

response and prepares the body for activity following a certain stimulus.222 Determination of 

catecholamines from different biological tissues is difficult due to their relatively low abundance 

(e.g., ~pM – nM levels), necessitating sensitive methods, and the complexity of most tissues, 

necessitating selective techniques. In this work, an LC-MS/MS method was developed for 

selective and sensitive quantification of norepinephrine and epinephrine from mouse and rat liver 

and plasma to better understand the role of catecholamines in glucose regulation. This work was 

in collaboration with Dr. Jonathan Flak and Dr. Simon Evers in the labs of Professors Martin 

Myers and Darleen Sandoval, respectively. Specific contributions of Sorensen to this work include 

development of sample preparation protocols, development and use of LC-MS/MS method, and 

data workup. 

I.II. Key findings 

In this work, norepinephrine and epinephrine were determined from plasma and liver tissue 

of mice and rats. Chromatograms of 20 nM standards with corresponding deuterated internal 

standards are shown in Figure I-1. The first part of the work involved studying a subset of neurons 
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that were found to regulate blood glucose levels independently of insulin. Specifically, 

cholecystokinin receptor B (CCKBR)-expressing neurons in the ventromedial hypothalamic 

nucleus (VMN) were studied. It was found that activation of these VMNCCKBR neurons increased 

blood glucose.223 Norepinephrine and epinephrine levels were monitored following this activation 

in a controlled environment and food deprived environment. Circulating catecholamine levels 

suggested that the SNS may mediate blood glucose control following food deprivation compared 

to the control (Figure I-2).   

 

Appendix: Figure I-1. Chromatogram of benzoyl chloride labeled norepinephrine (NE) and epinephrine (Epi) and their 

deuterated internal standards. Five µL of 20 nM standards were injected on to a reversed phase column and detected 

using multiple reaction monitoring.   
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Appendix: Figure I-2. Circulating levels of norepinephrine (A) and epinephrine (B) in blood following activation of 

VMNCCKBR neurons in CCKBRChR2 mice. Animals were food deprived at the onset of the light cycle Data are 

plotted as box-and-whisker plots that show the spread from minimum to maximum, median, first quartile, and third 

quartile. *P < 0.05. 

 

The second part of the work involved studying the effect of vertical sleeve gastrostomies 

on metabolism and health in rats. Vertical sleeve gastrectomy (VSG) is a procedure which removes 

part of the stomach as a means to help with weight loss. While often successful, VSG can cause 

complications, most notably hypoglycemia. The neuroendocrine response was monitored in VSG 

and sham (e.g., placebo surgery).224 Additionally, the effect of 2-deoxyglucose (2DG), a non-

metabolizable glucose agent that blocks glycolysis and thus imitates hypoglycemia, was studied. 

Epinephrine levels were found to be significantly higher when 2DG was administered after either 

VSG or sham surgery compared to if saline was administered (Figure I-3). This data indicates that 

hypoglycemia counterregulation is normal after VSG, and helps to understand the mechanisms 

underlying the glycemic variability observed after VSG.  
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Appendix: Figure I-3 Circulating levels of norepinephrine (A) and epinephrine (B) in blood following vertical sleeve 

gastrectomy (VSG) or sham surgery and effect of 2-deoxyglucose (2DG) administration. Data are represented as mean 

± SEM (n = 6 Sham-Sal and Sham-2DG; n = 8 VSG-Sal and VSG-2DG). 

 

I.III. Methods 

Unless otherwise specified, all chemicals were purchased from Sigma Aldrich (Saint Louis, 

MO). Limit of detection was determined by the following equation:225 

𝐿𝑜𝐷 = 𝐿𝑜𝐵 + 1.645(𝑆𝐷𝐿1) eq. A-1 

Where SD is standard deviation, L1 is the lowest concentration sample point, and LoB is limit of 

the blank, defined as 𝐿𝑜𝐵 =  𝑚𝑒𝑎𝑛𝑏𝑙𝑎𝑛𝑘 + 1.645(𝑆𝐷𝑏𝑙𝑎𝑛𝑘).  

 For the determination of plasma epinephrine and norepinephrine concentrations, 9 μL of 

plasma was spiked with 1 μL of 12.5 mM ascorbic acid and 1 μL of a mixture containing 1 µM 

d6-epinephrine and d6-norepinephrine as internal standards to normalize for extraction efficiency 

and mass spectrometry ionization efficiency. For plasma samples, proteins were removed by the 

addition of 39 μL of ice-cold acetonitrile, followed by centrifugation for 10 min at 12,100 x g. For 

liver samples, an ice-cold mixture of 80/20 (v/v) acetonitrile/water was used as the extraction 

solvent. Approximately 10 – 15 mg of tissue was weighed in an Eppendorf tube. For each mg of 

tissue, 5 μL of extraction solvent and 0.1 μL of 1 μM internal standard were added, respectively. 

The tissue and solvent were vortexed and homogenized using a pestle grinder. A 20 μL aliquot of 
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the supernatant was removed and benzoylated by sequential addition of 10 μL of 100 mM sodium 

carbonate, 10 μL of benzoyl chloride (2% (v/v) in acetonitrile) and 10 μL of sulfuric acid (1% 

(v/v) in 20% (v/v) acetonitrile in water) as previously described.167 Standard solutions of 

epinephrine and norepinephrine were prepared in aCSF, which is similar in salt composition to 

plasma without protein, to create a calibration range of 0.1–50 nM. Standards were spiked with 

the internal standard, diluted with acetonitrile and derivatized as described above. Calibration 

curves were prepared based on the peak area ratio of the standard to the internal standard by linear 

regression. All samples and standards were analyzed in triplicate using a Phenomenex Kinetex 

C18 chromatography column (100 x 2.1 mm, 1.7 μm, 100Å) on a Vanquish ultrahigh-pressure 

liquid chromatograph (Thermo Fisher Scientific, Gemering, Germany) interfaced to a TSQ 

Quantum Ultra triple quadrupole mass spectrometer (Thermo Fisher Scientific, San Jose, CA). 

Mobile phase A was 10 mM ammonium formate with 0.15% (v/v) formic acid in water. Mobile 

phase B was acetonitrile. The gradient used was as follows: initial, 5% B; 0.01 min, 19% B; 0.68 

min, 26% B, 1.05 min, 75% B; 1.8 min, 100% B; 2.8 min, 100% B; 4 min, 5% B; 5.0 min, 5% B 

at 600 μL/min. Benzoylated norepinephrine eluted at 1.77 min and benzoylated epinephrine eluted 

at 1.81 min. The sample injection volume was 5 μL. The autosampler was kept at ambient 

temperature, and the column was held at 30 °C in still air mode. Electrospray ionization was used 

in positive mode at 4 kV. The capillary temperature was 400 °C, the vaporizer temperature was 

350 °C, the sheath gas was 10, and the auxiliary gas was 5. Ions were detected in tandem mass 

spectrometry (MS/MS) mode. For epinephrine and d6-epinephrine, the precursor ions were m/z 

478 and 484, respectively, with the tube lens set to 93 and collision energy of 26. For 

norepinephrine and d6-norepinephrine, the precursor ions were m/z 464 and 470, respectively, 

with a tube lens value of 81 and a collision energy of 19. The product ion was m/z 105 for all 
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analytes. Automated peak integration was performed using XCalibur 3.0 MS software. All peaks 

were visually inspected to ensure proper integration. 
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II. Determination of acetylcholine from adipose tissue cell secretions 

Reproduced in part from Knights, A.J., Jun, H. et. al. (under review). Specific contributions from Sorensen to this 

work include development of LC-MS method, sample preparation and acetylcholine analysis, and data analysis. 

 

II.I. Background 

 

Acetylcholine is a small, organic compound that functions as a neurotransmitter in many 

animals as part of the cholinergic system.226 Acetylcholine is involved in important roles such as 

muscle contractions, heart rate regulation, and bodily secretions. Specific to this work was the 

interest in the role of acetylcholine secretion to drive adaptive thermogenesis. Thermogenesis is 

the process of heat production in organisms and is primarily activated through sympathetic 

innervation of adipose tissue (e.g., fat cells). While adipose tissue has long been known to be a 

source of energy storage, it is now known to actively function in response to environmental and 

endogenous events to regulate metabolism and energy expenditure.227 There is still much to be 

learned, however, about the signaling pathways involved in activating energy expenditure and 

mediating homeostasis. In this work, a population of cholinergic adipose macrophages that secrete 

acetylcholine to drive adaptive thermogenesis were identified in the stromal vascular fraction 

(SVF) of inguinal white adipose tissue (IWAT). Major findings of this work, specifically related 

to the separation and quantitation of acetylcholine using LC-MS and the monitoring of 

acetylcholine secretion from adipose tissue, will be discussed here. This work is in collaboration 

with Dr. Heejin Jun and Dr. Alexander Knights in Professor Jun Wu’s lab. Specific contributions 

of Sorensen to this work include development of sample preparation protocols, development and 

use of LC-MS/MS method, and data workup. 

II.II. Key findings 

Because acetylcholine is a polar, positively charged compound, it typically has poor 

retention on reversed phase chromatography columns. While there have been reports of 
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acetylcholine analysis using cation exchange chromatography with mass spectrometry,228 the high 

concentrations of salt in the mobile phase makes this approach challenging. We developed a RP-

LC method using a shallow gradient that allowed slight retention of acetylcholine and baseline 

separation from iso-acetylcholine, an isomer with the same MS/MS transition as acetylcholine. 

Extracted ion chromatograms are shown in Figure II-1A and B for acetylcholine determined in 

selected samples. The method was applied to the monitoring of acetylcholine from adipose cell 

secretions, and similar retention times and peak shapes were observed for samples compared to 

standards. 

It was recently shown that hematopoietic cells within subcutaneous fat express choline 

acetyltransferase (ChAT) and serve as a local source of acetylcholine.229  Hematopoietic-specific 

deletion of Chat in Chatfl/fl;Vav-iCre mice resulted in significantly reduced levels of acetylcholine 

secretion by IWAT SVF cells (Figure II-1C and D). Furthermore, acute cold exposure (e.g., 

exposing mice to a 4 °C environment for 4 h) caused an increase in acetylcholine secretion from 

Chatfl/fl IWAT SVF cells. Acetylcholine levels showed no significant difference from cold 

exposure relative to a room temperature environment for Chatfl/fl;LysM-Cre mice, which do not 

have acetylcholine-synthesizing macrophages. This data and other data from the paper (conducted 

by the first authors and not included in this appendix) suggest that cholinergic adipose 

macrophages respond to environmental stimuli and may be important for regulating thermogenic 

function in subcutaneous fat. Utilizing the cells investigated in this work and the molecular 

mechanisms that facilitate their function to activate energy expenditure may offer new 

opportunities for therapeutic developments in disorders such as obesity and diabetes.  
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Appendix: Figure II-1. Extracted ion chromatograms from adipose cell secretion (A & B). The first peak is an isomer, 

iso-acetylcholine. The yellow trace is the internal standard, d4Ach. Acetylcholine levels for Chatfl/fl versus 

Chatfl/fl;Vav-iCre mice (C) and for Chatfl/fl versus Chatfl/fl;LysM-Cre following a cold environment (CE, 4 °C for 

4 h) or room temperature. ***P < 0.001; n.s. = not significant. 

II.III. Methods 

Standard solutions of acetylcholine were prepared in 250 µM ascorbic acid in water to create 

a calibration range of 0.25–125 nM. Calibration curves were prepared based on the peak area ratio 

of the standard to the internal standard by linear regression. A deuterium labeled internal standard 

(d4Ach (C/D/N isotopes, Pointe-Claire, Canada)) was added to samples and standards, diluted 1:3 

(v/v) in water, and centrifuged for 10 min at 12,100 x g. The supernatant was transferred to an 

HPLC vial and analyzed as described below. All samples and standards were analyzed in triplicate 

using a Phenomenex Kinetex C18 chromatography column (100 x 2.1 mm, 1.7 μm, 100Å) on a 



 138 

Vanquish ultrahigh-pressure liquid chromatograph (Thermo Fisher Scientific, Gemering, 

Germany) interfaced to a TSQ Quantum Ultra triple quadrupole mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA). Mobile phase A was 10 mM ammonium formate with 0.15% (v/v) 

formic acid in water. Mobile phase B was acetonitrile. The gradient used was as follows: initial, 

5% B; 0.60 min, 8% B; 0.68 min, 26% B, 1.05 min, 75% B; 1.8 min, 100% B; 2.2 min, 100% B; 

2.2 min, 5% B; 3.0 min, 5% B at 600 μL/min. The sample injection volume was 5 μL. The 

autosampler was kept at ambient temperature, and the column was held at 30 °C in still air mode. 

Electrospray ionization was used in positive mode at 4 kV. The capillary temperature was 400 °C, 

the vaporizer temperature was 350 °C, the sheath gas was 10, and the auxiliary gas was 5. Ach 

ions were detected in MS/MS mode with the following transitions: (Ach) product: 87, precursor: 

146; (d4-Ach) product: 91, precursor: 150. Tube lens and collision energy was 53 and 13, 

respectively. Automated peak integration was performed using XCalibur 3.0 MS software. All 

peaks were visually inspected to ensure proper integration. 
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III. Determination of neurochemicals from cerebrospinal fluid 

III.I. Background 

Measuring the concentration dynamics of neurochemicals in the brain in vivo is important 

for understanding brain function and remains a significant challenge.  Studies of brain function 

can help in understanding and for potential treatment of mental and neurological diseases such as 

Alzheimer’s, Parkinson’s, depression, and addiction.230 Challenges associated with in vivo 

neurochemical monitoring include the multitude of potential neurotransmitters and 

neurochemicals involved, the small size of neurons and neuronal networks, and the high speed of 

neuronal firing and neuronal fluctuations in response to various stimuli. A powerful approach for 

overcoming some of these challenges is the use of microfabricated push-pull sampling probes 

coupled to mass spectrometry.231 The microfabricated probes are small (20 μm x 60 μm sampling 

area), providing 1000-fold smaller sampling areas compared to conventional sampling 

probes.231,232 Use of MS and MS/MS allows for monitoring multiple analytes at once. Finally, use 

of oil to segment the flow following sampling allows for improved temporal resolution by limiting 

dispersion prior to analysis. In this work, an LC-MS/MS method was developed and used to 

evaluate various designs of microfabricated push-pull probes. These probes were tested in vitro 

(stirred vial of analytes in aCSF) and in vivo (mice and rats). This work is in collaboration with 

Thomas White in Professor Robert Kennedy’s lab. Specific contributions of Sorensen to this work 

include development of sample preparation protocols, development and use of LC-MS/MS 

method, and data workup. 

III.II. Key findings 

A set of 26 neurotransmitters and other neurochemicals were determined and quantified 

using benzoyl chloride (BzCl) derivatization and reversed phase LC-MS/MS. Each analyte was 
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monitored via multiple reaction monitoring (MRM). Every analyte also had an isotopically labeled 

13C6-Bz internal standard which eluted at the same time as the standard analyte. Acetylcholine and 

choline do not get labeled and thus the internal standards were deuterated rather than 13C6Bz-

labeled.  Figure III-1 shows an overlayed extracted ion chromatogram of 25 of the 26 targeted 

compounds detected from in vivo implantation of a probe in a rat’s brain. For this experiment, ~1 

μL of sample was collected with a recessed probe from rat striatum following anesthetization with 

4% isoflurane. Sampling was done using a push and pull flow rate of 50 nL/min. 

 

 

Appendix: Figure III-1. Overlayed ion chromatogram of 25 neurochemicals detected from an in vivo push-pull 

experiment. All compounds are BzCl labeled except choline and acetylcholine. All compounds were detected using 

multiple reaction monitoring. 

 

The developed LC-MS/MS method allowed for evaluation of different microfabricated 

push-pull probes. Previous work demonstrated use of a flat-tip based geometry;232 however, low 

recovery and clogging were common issues with this geometry for the conditions studied. Various 
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probe designs were tested including recessed, slanted, and v-shaped geometries in attempt to 

increase recovery and robustness. The effect of push and pull flow rates on analyte recovery in 

vitro were also studied. An example subset of data for in vitro studies is shown in Figure III-2. A 

clear trend is shown that with a higher push flow rate, a lower recovery is observed. Additionally, 

much higher recoveries were obtained for flat-tipped probes compared to the recessed probes. For 

dopamine, serotonin, and epinephrine, recoveries were 14 – 18% versus 0.4 – 1.9%, respectively.   

 

Appendix: Figure III-2. Effect of push flow rate on analyte recovery from an in vitro stirred vial experiment using two 

different probe designs. Pull flow was at 100 nL/min for all experiments. “Vial” refers to the sample taken directly 

from the stirred vail. Data plotted as mean ± SEM (n = 2). 5HT: serotonin; DA: dopamine; Epi: epinephrine.
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Appendix: Table III-1. Method details for the targeted LC-MS/MS determination of 26 neurochemicals and their 

internal standards using benzoyl chloride derivatization. LoD was calculated according to equation A-1. 

Analyte 
Precursor 

(m/z) 

Product 

(m/z) 

Collision Energy 

(V) 
Fragmentor (V) 

Retention 

time (min) 
LoD (nM) 

Ch 104 60 20 120 0.38 8.14 

Ach 146 87 10 120 0.43 3.95 

Bz-3MT 376 105 25 120 1.80 0.06 

Bz-5HIAA 313 146 25 120 1.65 2.12 

Bz-5HT 385 264 25 140 1.80 0.24 

Bz-5HTP 429 279 25 140 1.70 1.02 

Bz-Ado 372 136 30 120 1.40 1.19 

Bz-Asp 238 105 10 120 0.85 7.17 

Bz-DA 466 105 22 140 1.90 0.03 

Bz-DOPA 510 105 30 130 1.80 0.13 

Bz-DOPAC 394 105 20 120 1.80 0.67 

Bz-Epi 496 105 30 130 1.85 0.64 

Bz-GABA 208 105 15 120 1.15 0.87 

Bz-Glc 307 185 20 130 0.90 40 

Bz-Gln 251 105 20 120 0.80 29 

Bz-Glu 252 105 20 120 0.90 13 

Bz-Gly 180 105 10 120 0.90 30 

Bz-GSH 180 105 25 120 1.50 0.39 

Bz-Hist 216 105 20 120 0.80 0.53 

Bz-HVA 304 105 15 120 1.70 0.85 

Bz-NE 482 105 30 130 1.80 0.01 

Bz-NM 374 105 20 140 1.70 0.08 

Bz-Phe 270 120 10 120 1.60 2.35 

Bz-Ser 210 105 20 120 0.85 668 

Bz-Tau 230 105 15 120 0.78 0.30 

Bz-Tyr 390 105 30 140 1.70 14 

d4Ch 108 60 20 120 0.38  

d4Ach 150 91 10 120 0.43  

13C6Bz-3MT 388 111 25 120 1.80  

13C6Bz-5HIAA 319 146 25 120 1.65  

13C6Bz-5HT 397 270 25 140 1.80  
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13C6Bz-5HTP 441 285 25 140 1.70  

13C6Bz-Ado 378 136 30 120 1.40  

13C6Bz-Asp 244 111 10 120 0.85  

13C6Bz-DA 484 111 22 140 1.90  

13C6Bz-DOPA 528 111 30 130 1.80  

13C6Bz-DOPAC 406 111 20 120 1.80  

13C6Bz-Epi 514 111 30 130 1.85  

13C6Bz-GABA 214 111 15 120 1.15  

13C6Bz-Glc 313 185 20 130 0.90  

13C6Bz-Gln 257 111 20 120 0.80  

13C6Bz-Glu 258 111 20 120 0.90  

13C6Bz-Gly 186 111 10 120 0.90  

13C6Bz-GSH 528 111 25 120 1.50  

13C6Bz-Hist 222 111 20 120 0.80  

13C6Bz-HVA 310 111 15 120 1.70  

13C6Bz-NE 500 111 30 130 1.80  

13C6Bz-NM 386 111 20 140 1.70  

13C6Bz-Phe 276 120 10 120 1.60  

13C6Bz-Ser 216 111 20 120 0.85  

13C6Bz-Tau 236 111 15 120 0.78  

13C6Bz-Tyr 402 111 30 140 1.70  

 

III.III. Methods 

A method was developed for determination and quantitation of 26 neurochemicals from rat 

and mouse brain. Specifically, cerebrospinal fluid is collected from a microfabricated push-pull 

probe implanted inside the brain of the mouse or rat. Artificial cerebrospinal fluid (aCSF) was 

composed of 145 mM NaCl, 2.68 mM KCl, 1.4 mM CaCl2, 1.0 mM MgSO4, 1.55 mM Na2HPO4, 

and 0.45 mM NaH2PO4 adjusted to pH of 7.4 with 0.1 M NaOH. Stock solutions of 26 compounds 

were prepared similar to previously reported methods.170,233 Calibration curves were prepared in 

aCSF with 250 μM ascorbic acid at various concentration ranges for each compound depending 

on the expected endogenous concentration for the given analyte. Push-pull perfusate (either in 
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vitro or in vivo) volume was typically around 1.5 μL and was collected in a PCR tube. A 1:1 

dilution was done to increase the total volume for derivatization. Derivatization was employed by 

sequential addition of 100 mM sodium carbonate, benzoyl chloride (2% (v/v) in acetonitrile), and 

an internal standard solution containing 13C-labeled compounds in 20% (v/v) acetonitrile in water 

with 1% (v/v) sulfuric acid in a 2:1 (v/v) ratio of perfusate:reagent. Standard solutions of were 

prepared in ACSF to create a calibration range. Calibration curves were prepared based on the 

peak area ratio of the standard to the internal standard by linear regression. All samples and 

standards were analyzed in triplicate using a Phenomenex Kinetex C18 chromatography column 

(100 x 2.1 mm, 1.7 μm, 100Å) on an Agilent 1290 ultrahigh-pressure liquid chromatograph 

interfaced to an Agilent 6410 triple quadrupole mass spectrometer. Mobile phase A was 10 mM 

ammonium formate with 0.15% (v/v) formic acid in water. Mobile phase B was acetonitrile. The 

gradient used was as follows: initial, 5% B; 0.01 min, 19% B; 0.68 min, 26% B, 1.05 min, 75% B; 

1.8 min, 100% B; 2.8 min, 100% B; 4 min, 5% B; 5.0 min, 5% B at 600 μL/min. The sample 

injection volume was 5 μL. The autosampler was kept at ambient temperature, and the column was 

held at 30 °C. Electrospray ionization was used in positive mode at 3 kV. The gas temperature was 

350 °C, gas flow was 11 L/min, and the nebulizer was at 55 psi.  Ions were detected in tandem 

mass spectrometry (MS/MS) mode. Automated peak integration was performed using Mass 

Hunter software. All peaks were visually inspected to ensure proper integration.
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IV. Determination of lipid levels in nanodisc environments 

IV.I. Background 

Lipid nanodiscs are disc-like lipid bilayers of 8 – 16 nm in diameter.234 Similar to cellular 

membranes in living organisms, nanodiscs are typically composed of phospholipids and form in 

aqueous solutions with the polar head group on the perimeter and the hydrophobic tails interacting 

together in the middle. Nanodiscs are stabilized by amphipathic proteins, termed scaffold proteins, 

that encompass the hydrophobic tails and help to solubilize the nanodisc complex in aqueous 

solutions.235  

Nanodiscs are valuable for studying membrane proteins and act as a surrogate cellular 

membrane. Membrane proteins are involved in numerous cellular functions, including cellular 

communication, energy transformations, and molecular transport in to and out of the cell or cellular 

organelles. Because of these critical roles, membrane proteins are the target of many therapeutics; 

however, membrane proteins are difficult to work with on their own due to their often amphipathic 

and/or hydrophobic nature and their altered or loss of function outside of the phospholipid bilayer. 

Nanodiscs are thus important for providing a surrogate native environment for studying membrane 

proteins. Despite their widespread use, there have not been many studies on the formation of 

nanodiscs with different phospholipid classes. In this work, a targeted LC-MS/MS method was 

developed to quantify different lipid species to better understand their incorporation in nanodiscs 

and how different ratios of lipids affects nanodisc formation and potentially membrane protein 

stability or function. This work is in collaboration with Marina Sarcinella in Professor Ryan 

Bailey’s lab. Specific contributions of Sorensen to this work include development of sample 

preparation protocols, LC-MS/MS method, and data workup. 

IV.II. Key findings 
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An example chromatogram of the 6 investigated lipids and the internal standard is shown 

in Figure IV-1. These lipids are commonly used in nanodisc studies.234,235 Relatively good peak 

shape and resolution was seen for the lipids investigated. SM and PS co-eluted, and POPC, PE, 

and the internal standard (DOPC) co-eluted. Co-elution of these phospholipids is not surprising as 

all but DMPC had the same equivalent carbon number of 32, which is the dominant contribution 

of retention and selectivity in RPLC of lipids.85 Figures of merit for the developed LC-MS method 

is shown in table IV-1. The linearity of all calibration curves was above 0.999 except for CL, which 

was 0.985. The linearity of CL could likely be improved by using an internal standard that is closer 

in structure to CL rather than the phospholipid used here. Additionally, only the precursor of CL 

was used; monitoring a product ion could improve linearity and improve the limit of detection.  

 

Appendix: Figure IV-1. Overlaid extracted ion chromatogram of the 6 lipids investigated here and the internal 

standard. A 5 μL injection volume was used and each lipid standard was 400 nM. The internal standard was 250 nM.  

Appendix: Table IV-1. Figures of merit for determination of lipids from nanodisc environments.  

Analyte 
Limit of 

Detection (nM) 
R2 

Calibration 

range (nM) 
Precursor (m/z) Product (m/z) 

Collision 

energy (V) 

Tube lens 

(V) 

POPC 0.78 0.9995 1 - 1000 760.6 184 31 133 

CL 2.7 0.9847 1 - 1000 603.6 603.6 0 130 
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PE 0.38 0.9997 1 - 1000 718.6 577 17 127 

PS 0.70 0.9994 1 - 1000 762.6 577 16 133 

SM 0.20 0.9993 1 - 1000 703.5 184 27 122 

DMPC 0.39 0.9995 1 - 1000 678.6 184 28 130 

DOPC (IS) n/a n/a 250 786.6 184 27 135 

 

IV.III. Methods 

All lipid standards were purchased from Avanti (Alabaster, AL). For extraction of lipids 

from different nanodisc environments, water, methanol, and chloroform were mixed well in a 4:8:4 

(v/v/v) ratio relative to the nanodisc sample volume (e.g., 50 μL sample, 200 μL water and 

chloroform, 400 μL methanol). Next, water and chloroform were added in a 4:4 (v/v) ratio relative 

to the original nanodisc solution.  Samples were vortexed briefly and centrifuged at 12,100 x g for 

5 min at room temperature. The bottom organic layer was collected, evaporated with nitrogen, and 

resuspended in mobile phase B with internal standard.  

Stock solutions of each compound were prepared in the mM range in chloroform. A 

mixture containing PC 14:0-14:0 (“DMPC”), PC 16:0-18:1 (“POPC”), PE 16:0-18:1 (“PE”), SM 

d18-1 16:0 (“SM”), PS 16:0-18:1 (“PS”), and cardiolipin 18:1 (“CL”) were prepared each at 2 μM 

in mobile phase B. A calibration curve ranging from 1 to 1000 nM was prepared in mobile phase 

B. PC 18:1-18:1 (“DOPC”) was used as an internal standard at a concentration of 250 nM. All 

samples and standards were analyzed using a Phenomenex Kinetex C18 chromatography column 

(100 x 2.1 mm, 1.7 μm, 100Å) on a Vanquish ultrahigh-pressure liquid chromatograph (Thermo 

Fisher Scientific; Gemering, Germany) interfaced to a TSQ Quantum Ultra triple quadrupole mass 

spectrometer (Thermo Fisher Scientific; San Jose, CA). Mobile phase A was 60/40 (v/v) 

water/acetonitrile with 10 mM ammonium formate and 0.1% (v/v) formic acid. Mobile phase B 

was 85/10/5 (v/v/v) isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1% (v/v) 
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formic acid. The gradient used was as follows: initial, 70% B; 4 min, 100% B; 5.5 min, 100% B, 

5.8 min, 70% B; 7 min, 70% B at 400 μL/min. The sample injection volume was 5 μL. The 

autosampler was 30 °C, and the column was held at 60 °C in still air mode. Electrospray ionization 

was used in positive mode at 4 kV. The capillary temperature was 400 °C, the vaporizer 

temperature was 377 °C, the sheath gas was 60, and the auxiliary gas was 35. Ions were detected 

in MS/MS mode with the transitions listed in Table IV-1. Automated peak integration was 

performed using XCalibur 3.0 MS software. All peaks were visually inspected to ensure proper 

integration.  
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Appendix  2 – Calculations for Construction of Kinetic Plots 

Kinetic plots are useful for understanding how different column and instrument parameters 

will affect the expected separation performance (theoretical plates or peak capacity). Below is a 

detailed description of the theory used to construct such plots used throughout this thesis.  

First, columns were assumed to be equally well-packed. The plate height (H) was 

determined using equation A2-1, which is an approximate form of the van Deemter equation that 

is empirically found to be approximately accurate for packed capillary columns:49  

𝐻 =  𝑑𝑝 +
2𝐷𝑚

𝑢
+

𝑑𝑝
2𝑢

5𝐷𝑚
 eq. A2-1 

Where dp is the particle diameter, Dm is the diffusion coefficient of the analyte in the mobile phase, 

and u is the mobile phase linear velocity. The mobile phase linear velocity was approximated by 

the following equation:236 

𝑢 =  
𝑃𝑑𝑝

2𝜀2

180𝜂𝐿(1−𝜀2)
 eq. A2-2 

Where ε is the column porosity and is 0.4 for randomly packed spheres of uniform size, L is column 

length, and η is the mobile phase viscosity. The mobile phase viscosity was calculated using the 

following equation: 

𝜂 = exp (𝜑 (−3.476 +
726

𝑇
) + (1 − 𝜑)(−1.762 +

929

𝑇
) eq. A2-3 

Where T is temperature and φ is the percent acetonitrile in the mobile phase.  

Theoretical plates were calculated by substituting equations A2-3 and A2-2 into A2-1, inputting 

the desired column length, and solving for N: 

𝑁 =  
𝐿

𝐻
 eq. A2-4 

Depending on the type of kinetic plot, variables that can be changed include column length, particle 

size, column porosity, pressure, and viscosity.  
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For peak capacity (nc) estimates, the following equation was used:99,203 

𝑛𝑐 = 1 + (
√𝑁

4
)(

𝑆∆𝑐

𝑆∆𝑐
𝑡0
𝑡𝐺

+1
) eq. A2-5 

Where S is the solvent strength parameter from linear solvent strength theory,237,238 Δc is the 

mobile phase gradient slope from the beginning to the end of the gradient, t0 is the column dead 

time, and tG is the gradient time. The value of S was estimated using the following equation:239 

ln 𝑆 = 0.6915 ln(𝑀𝑊) − 1.49 eq. A2-6 

Where MW is the molecular weight of the analyte.  For calculations in chapter 5, Δc was 0.8, Dm 

was 1.2 x 10-5 cm2/sec, T was 60 °C, φ was 0.2, and S was 12, which was estimated using equation 

A2-6 using a molecular weight of 300 Da. For isocratic kinetic plots, Dm was 8.0 x 10-6 cm2/sec.  
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