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Abstract 
 

Spinal cord stimulation (SCS) is a neuromodulation technique that applies electrical 

stimulation to the spinal cord to alter neural activity or processing. While SCS has historically 

been used as a last-resort therapy for chronic pain management, novel applications and 

technologies have recently been developed that either increase the efficacy of treatment for chronic 

pain or drive neural activity to produce muscular activity/movement following a paralyzing spinal 

cord injury (SCI). Despite these recent innovations, there remain fundamental questions 

concerning the neural recruitment underlying these efficacious results. This work evaluated the 

neural activity and mechanisms for three SCS applications: both conventional SCS and closed-

loop SCS for pain management, as well as ventral, high frequency spinal cord stimulation (HF-

SCS) for inspiratory muscle activation following a SCI.  

I developed computational models to both predict the neural response to SCS and explore 

factors influencing neural activation. Models consisted of three components: a finite element 

model (FEM) of the spinal cord to predict the potential fields generated by stimulation, biophysical 

neuron models, and algorithms to apply time-dependent extracellular potentials to the neuron 

models and simulate their response.  

While this cutting-edge modeling methodology could be used to predict neural activity 

following stimulation, it was unclear how anatomical and technical factors affected neural 

predictions. To evaluate these factors, I designed an FEM of a T9 thoracic spine with an implanted 

electrode array. Then, I sequentially removed details from the model and quantified the changes 

in neural predictions. I identified several factors with large (>30%) effects on neural thresholds, 



 xi 

including overall electrode impedance (for voltage-controlled stimulation), the electrode position 

relative to the spine, and dura mater conductivity. This work will be invaluable for basic science 

and clinical applications of SCS. 

Next, I developed a canine model to evaluate T2 ventral HF-SCS for inspiratory muscle 

activation after an SCI. This model infrastructure included two neuron populations hypothesized 

to lead to inspiratory behavior: ventrolateral funiculus fibers (VLF) leading to diaphragm 

activation and inspiratory intercostal motoneurons. With this model, I predicted robust VLF and 

T2-T5 motoneuron recruitment within the experimental range of stimulation. I used this model 

framework to optimize several design parameters related to HF-SCS for inspiration. The optimal 

lead design parameters were evaluated via in vivo experiments, which found excellent agreement 

with model predictions. This work expands our mechanistic understanding of this novel therapy, 

improves its implementation, and aids in future translational efforts towards human subjects. 

Finally, I developed a computational model to evaluate closed-loop SCS for chronic pain 

management. This work characterized the neural origins of the evoked compound action potential 

(ECAP), the controlling biomarker of closed-loop stimulation. This modeling work showed that 

ECAP properties depend on activation of a narrow range of axon diameters and quantified how 

anatomical and stimulation factors (e.g., CSF thickness, stimulation configuration, lead position, 

pulse width) influence ECAP morphology, timing, and neural recruitment. These results improve 

our mechanistic understanding of closed-loop stimulation and neural recruitment during SCS. 

In summary, this dissertation work improves the methodology, validation, and applications 

of computational models of SCS. It also has direct applications to the clinical/pre-clinical 

implementation of SCS and may be invaluable for expanding the utility and efficacy of several 
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treatments. The improved mechanistic understandings of neural activation described in this work 

may also aid in the future development of these therapies. 
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Chapter 1: Introduction 
 

Spinal cord stimulation (SCS) is a neurostimulation technique predominantly used for the 

treatment of neuropathic chronic pain that is refractory to conventional medical management [1]. 

Over 50,000 epidural SCS devices are implanted every year, with total annual sales exceeding $1.8 

billion in 2014 [2]–[4]. Despite the widespread clinical use of SCS, its analgesic mechanisms are 

poorly understood, leading to an overall moderate success rate, limited improvements in patient 

quality of life, and poor long-term efficacy [2]. In addition to chronic pain, SCS has also recently 

been evaluated as a treatment for paralysis following spinal cord injury and can drive motor control 

of various muscles below the site of injury [1]. This novel application of SCS has been used to 

generate reaching and grasping motions in the upper limbs, walking in the lower limbs, as well as 

to generate respiratory muscle activation in the inspiratory intercostals and diaphragm [5]–[8]. 

While studies have identified the neural targets of upper and lower limb motor control by SCS, 

there remain many unknowns about SCS for inspiratory motor control [6], [7], [9]–[11]. Overall, 

even though SCS is a prominent treatment with several applications, more research needs to be 

done to understand the neural activation and mechanisms that lead to efficacious treatments. 

1.1 Spinal cord stimulation 

1.1.1 Background 

SCS was first developed in the 1960’s to treat chronic pain and is the most prevalent form 

of clinical neuromodulation [1], [12]. Conventional SCS applies biphasic 50 Hz electric 
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stimulation in the dorsal epidural space of the lower thoracic spinal cord to drive neural activation 

within the dorsal spinal cord (Figure 1.1) [2], [12], [13]. One benefit of SCS stems from the unique 

anatomy and function of the cord, which aggregates sensory information from the periphery, 

processes it, then transmits it towards the brain (or vice versa). In fact, at every vertebral level, the 

dorsal columns carry information from all body regions caudal to that level [12]. Consequently, 

stimulation applied to the cord via a single electrode can lead to neuromodulatory effects, such as 

pain relief, over large areas of the body [14]. 

1.1.2 Spinal cord anatomy 

Traditional SCS targets axons traveling in the dorsal columns (DCs) of the spinal cord, 

which carry proprioceptive and sensory (afferent) information from the periphery to the brain 

(Figure 1.1) [15]. Because stimulation activates proprioceptive and/or mechanoreceptive fibers in 

the DCs, patients experience paresthesia (e.g., tingling, buzzing, pins and needles, pressure). The 

locations of the perceived paresthesias are hypothesized to depend on which dermatomes (Figure 

1.1) are stimulated, and so these paresthesias are commonly used to guide the lead location during 

the implantation procedure and the selection of stimulation parameters [12]. In fact, overlap of 

paresthesia and pain has been shown to be a necessary component to pain relief during 

conventional SCS [12], [16]. At each spinal cord level, the cord has both ventral and dorsal roots 

(DR) which carry neural signals to and from the corresponding dermatome of the body. While 

stimulation of the dorsal columns can relieve pain, activation of the dorsal rootlets is generally 

thought to lead to discomfort or painful sensations [15]. Consequently, a common goal of SCS for 

the treatment of pain is to maximize DC activation and minimize DR activation [15]. However, 

targeting of specific spinal regions can prove challenging due to the highly conductive 

cerebrospinal fluid (CSF) that surrounds the cord. This fluid limits precise targeting of spinal cord 
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structures using epidural contacts, reduces the current flow into the cord to less than 10% of the 

total injected current, and is highly varied across patient populations [15], [17].  

 

 

Figure 1.1: Spinal cord stimulation and spinal cord anatomy.  Images adapted from [2], [18]. A. Spinal cord stimulation for pain 
with implanted array and stimulator. Stimulation targets large Aβ fibers within the DCs, initiating orthodromic and antidromic 
action potentials. These are believed to “close the gate” and prevent projection neuron pain transmission. B. The dermatome layout 
of the dorsal columns of the cord. Dermatome refers to the area of skin innervated by a single spinal nerve. C. The corresponding 
dermatome layout of the skin. 
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1.2 Chronic pain 

1.2.1 Background 

Pain is defined as “an unpleasant sensory and emotional experience associated with, or 

resembling that associated with, actual or potential tissue damage” [19]. To be chronic, pain must 

persist for a minimum of 3-6 months [20]. Pain is a multi-faceted disorder, and in addition to the 

physical pain itself, there are associated economic, social, and psychological problems that 

manifest from the pain that can negatively impact quality of life [21]. A number of studies have 

also shown statistically significant relationships between pain, depression, and suicide [22], [23]. 

The economic impact of pain is tremendous as well, and studies have found that healthcare costs 

for chronic pain can be up to $300 billion per year, with an additional $335 billion per year cost 

from the loss of productivity associated with pain [21].  

While the number of patients and economic impacts of chronic pain are immense, the 

treatment options for patients experiencing chronic pain are limited. The most common treatment 

for chronic pain is pharmaceuticals, including nonsteroidal anti-inflammatory drugs, 

acetaminophen, and opioids [24]. These pharmaceuticals are often inadequate to manage pain, and 

in the case of opioids, are highly addictive and contribute to the ongoing opioid epidemic in the 

United States [24]–[26]. Additional conventional therapies for pain management include physical 

therapy, nerve blocks, lesions, injections, and counseling; however, these treatment options too 

often provide inadequate relief for pain, or have success rates that are unreported in literature [24], 

[27]–[30]. Neuropathic pain (i.e., pain caused by a lesion or disease of the somatosensory nervous 

system) tends to be more severe, more likely to be chronic, and less responsive to conventional 

medical management (CMM) relative to nociceptive pain [19], [31], [32]. A recent study 



 5 

evaluating the efficacy of CMM on a neuropathic pain patient population found that only 9% of 

patients successfully responded to CMM alone [27]. 

SCS is currently approved by the United States Food and Drug Administration for 

neuropathic limb pain that is refractory to CMM [2]. Despite being a last resort treatment for many 

patients, conventional SCS therapy for pain has success rate of around 58% (successful treatment 

is defined as a ≥ 50% overall reduction in pain), leaving a significant portion of patients with few 

remaining treatment options [4]. Importantly, the market for SCS for pain has only continued to 

grow over recent years, and some estimates predict the global market size may grow to over $4.1 

billion by the end of 2026 [33]. 

1.2.2 The gate theory of pain 

The conventional mechanistic understanding of SCS is derived from the gate control theory 

of pain (Figure 1.1A, Figure 1.2) [13]. In this theory, small (S) Aδ and C fibers carry painful 

sensations from the periphery to the spinal cord and synapse onto transmission (T) neurons (also 

called projection neurons) which send the pain signals to the brain. The gate theory hypothesizes 

that SCS antidromically activates large (L) Aβ fibers within the DCs. The resultant action 

potentials travel caudally down the dorsal columns to collateral branch points. From these 

branches, the action potentials travel (now orthodromic) into the dorsal horn and excite inhibitory 

interneurons in the substantia gelatinosa (SG) (Figure 1.1A, Figure 1.2). The excited SG 

inhibitory interneurons then “close the gate” on pain (i.e., inhibit the transmission of the pain 

signals within the spinal cord, preventing them from reaching the brain) (Figure 1.1A) [2], [13]. 

While the original gate theory hypothesized some aspect of “central control” over the gate (Figure 

1.2), there was little known about it at the time, and it was believed that the predominant factor 

was the segmental effect [34], [35]. However, recent evidence suggests that supraspinal 
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mechanisms, such as descending inhibition, may also play a larger role in reducing pain [2], [36]. 

While the gate control theory of pain provides the original foundation for the development of SCS, 

the theory is incomplete and detailed knowledge on how SCS provides pain relief is still lacking 

[1], [4], [37]. For example, the gate control theory of pain cannot explain pain relief persisting 

after terminating stimulation, the long-term reduction in SCS effectiveness, or why SCS tends to 

be less effective for treatment of nociceptive pain conditions [2], [36].  

 

 

Figure 1.2: The gate control theory of pain.  Adapted from [13]. Large (L) and small (S) diameter neurons activate transmission 
(T) cells in the dorsal horn of the spinal cord. This theory postulates that large fiber activation excites (+) an inhibitory cell in the 
substantia gelatinosa (SG) which, in turn, inhibits (-) transmission of painful sensations.  

 

In recent years, several novel stimulation paradigms and techniques have emerged that 

demonstrate increased treatment efficacy. Unlike conventional paresthesia-based SCS, these novel 

stimulation paradigms (i.e., kilohertz-frequency SCS, burst SCS) can produce analgesia without 

concomitant paresthesias [2]. These therapies have been shown to be more efficacious than 
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traditional SCS [38]–[42]. While preliminary evidence suggests alternate mechanisms of pain 

relief other than the traditional gate control theory of pain, nobody has yet been able to definitively 

explain how pain is suppressed by these novel applications and there remain further unanswered 

questions about their mechanisms (including the lack of concomitant paresthesia, role of 

supraspinal processing for these therapies, or that kilohertz-frequency SCS does not necessitate 

pain-paresthesia overlap like conventional SCS) [2], [43]–[45].  

1.2.3 Closed-loop spinal cord stimulation 

Recently, another novel form of SCS implements closed-loop control over stimulation. 

This paradigm actively controls the stimulation amplitude by measuring the evoked compound 

action potentials (ECAP) generated in the spinal cord during stimulation. ECAP recordings 

represent the summation of individual action potentials generated within the spinal cord in 

response to stimulation, and as such are representative of the total neural recruitment active by 

stimulation [2], [46]. A recent double-blind, randomized, controlled trial (the Evoke study) showed 

that significantly greater and more clinically meaningful pain relief was obtained using closed-

loop stimulation over traditional stimulation paradigms [42]. Closed-loop stimulation addresses a 

major limitation of traditional open-loop stimulation: movement of the spinal cord within the 

spinal canal. This movement (up to ~2-3 mm in the lower thoracic cord) is a result of postural 

changes, breathing, movement, or heart rate and can result in overstimulation and/or 

understimulation of the spinal cord. During closed-loop stimulation, stimulation amplitudes are 

continually adjusted to keep the ECAP amplitude (and consequently the total neural recruitment) 

within the pre-defined therapeutic window (Figure 1.3) [2], [41], [47], [48].  
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Figure 1.3: Evoked compound action potential generated during closed-loop spinal cord stimulation.  Adapted from [2]. The ECAP 
signal consists of 3 peaks, the initial positive peak (P1), the initial negative peak (N1), and the second positive peak (P2). The 
stimulation amplitude is adjusted to keep the P2-N1 amplitude within the therapeutic range of treatment. 

 

ECAPs are typically measured using inactive electrodes on the implanted SCS array(s). 

ECAPs have a multiphasic morphology, which is typically separated into three standard peaks, an 

initial positive peak (P1), a secondary negative peak (N1), and a tertiary positive peak (P2) (Figure 

1.3). ECAP amplitudes are most commonly characterized by evaluating the difference between 

the N1 and P2 peak, which ranges between 10 µV and 1.5 mV [48]. There are many factors that 

may influence the shape and amplitude of the ECAP recordings, including the stimulation 

configuration, recording configuration, lead location, electrode geometry, contact size, electrode 

material, stimulation frequency, pulse amplitude, and pulse width, in addition to patient anatomical 

factors, such as the size of the spinal cord and its position within the thecal sac [46], [48]–[50]. 

However, the effects of these factors on neural recruitment and the overall ECAP size, shape, and 

timing, have not been well characterized. 
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1.3 Spinal cord injury 

1.3.1 Background 

A spinal cord injury (SCI) is damage to the spinal cord or surrounding nerves that affects 

the conduction of motor and/or sensory signals [51]. This injury can lead to lasting long-term 

physical challenges and diminishing quality of life [52]. It is estimated that in the United States, 

between 294,000 to 368,000 people are currently living with a SCI, with an average of about 

17,810 new injuries occurring each year [53]. The primary causes of SCI in the United States since 

2015 are vehicular accidents and falls, which together account for over 70% of injuries [53]. 

Severity of the injury is highly dependent on both the extent of damage and location, with high-

level injuries increasing the extent of patient paralysis.  

1.3.2 Ventilation following an SCI 

A spinal cord injury in the upper cervical cord may disrupt the bulbospinal tracts, which 

carry neural signals from the brain to the respiratory muscles [7], [54]. For severe high level 

cervical SCIs (C3-C5), patients may suffer complete paralysis of both the inspiratory and 

expiratory muscles (Figure 1.4) [55]. For these patients, long-term mechanical ventilation may be 

required for survival [7]. In 2019, nearly 20% of patients admitted to a hospital for an SCI required 

the use of a respirator at rehabilitation entry [56]. In a retrospective analysis, the strongest negative 

predictor of survival during the first year following hospital discharge was ventilator dependence, 

with respiratory complications accounting for 31% of deaths [57]. 
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Figure 1.4: The primary respiratory muscles and hypothesized neural connections. Adapted from [58], [59]. A. The primary 
muscles of inspiration and expiration and the locations, as well as the innervation level for humans. B. The diaphragm is innervated 
by the phrenic motoneurons (C3-C6 spinal level). Intercostal motoneurons positioned in the upper thoracic spinal cord (T1-T7) 
predominantly innervate inspiratory (external, parasternal) intercostal muscles [60].  

 

While mechanical ventilation may be a necessity for patients, it is a double-edged sword 

that has many limitations. It is extremely expensive, and patients requiring long-term ventilation 

are ranked highest by Medicare in terms of cost per patient [57]. Ventilation can also induce trauma 

to the airway which can lead to infection, result in limited mobility or speech, or produce high 

levels of noise [7]. Patients on long-term ventilation also have a fear of disconnection of the device 

due to loss of power [7]. 

1.3.3 Diaphragm pacing 

A safe and practical neurostimulation alternative to mechanical ventilation is diaphragm 

pacing [7], [61]. Diaphragm pacing is a technique in which electrodes are placed next to the phrenic 

nerve or within the diaphragm itself. Stimulation of these electrodes leads to diaphragm activation, 

generating inspiration. As compared to mechanical ventilation, diaphragm pacing reduces 

barotrauma, increases speech, and reduces respiratory infection [62]. Additionally, patients with 



 11 

diaphragm pacing have enhanced mobility and less concern about power outages leading to device 

disconnection. Importantly, one study found that over a 20-year period, diaphragm pacing led to 

no significant change in longevity as compared to mechanical ventilation [7], [63]. However, 

diaphragm pacing has several significant limitations, namely inadequate inspired volumes, and 

incomplete diaphragm activation (possibly due to the synchronous activation of motor units in the 

diaphragm, the lack of concurrent intercostal activation, or electrical stimulation recruiting 

motoneurons in the reverse recruitment order compared to natural breathing). 

1.3.4 High-frequency spinal cord stimulation (HF-SCS) for respiration 

In recent years, there have been several novel applications of SCS that have shown promise 

to treat paralysis caused by a paralyzing SCI. These techniques use spinal cord stimulation to 

produce coordinated movement in the absence of supra-spinal inputs [1]. To date, these novel 

approaches have been used for several applications, including stepping/gait control in rats and 

humans, reaching/grasping in non-human primates, cough in canine and humans, and inspiratory 

muscle activation in canines, among others [1], [6], [7], [9], [64]–[67]. For each technique, the 

efficacy of motor activation varies based on the location of the spinal cord stimulator and neural 

targets, the applied stimulus waveform, and the spinal circuitry leading to muscular activation  

(among many other factors) [7], [11], [67]. In order to effectively translate these new therapies 

into viable clinical technologies, it is vital to understand the neural activation and mechanisms 

leading to coordinated muscle activity in response to stimulation [1].  

One novel approach, high-frequency spinal cord stimulation (HF-SCS) for inspiratory 

muscle activation, has the potential to address many of the limitations associated with mechanical 

ventilation or diaphragm pacing in patients with a ventilator-dependent tetraplegics. In several 

recent canine experiments, HF-SCS (300 Hz) was applied at the ventral surface of the T2 spinal 
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cord to produce near maximal inspiratory activity in C2-sectioned dogs [7], [68]–[71]. 

Interestingly, stimulation led to synchronous inspiratory activity in both the diaphragm as well as 

the intercostal muscles [7]. Additionally, HF-SCS produced asynchronous patterns of EMG and 

single motoneuron firing frequencies that were similar to natural breathing [7], [68], [69]. 

However, the exact mechanisms through which SCS produces activation of both the intercostal 

muscles as well as activation of the diaphragm are unknown [7], [11]. 

Due to the upper thoracic (T2) implantation of the stimulating contact, HF-SCS is unlikely 

to directly lead to activation of the phrenic motor neurons (C3-C6) (Figure 1.4). However, 

stimulation may lead to direct activation of the local inspiratory intercostal muscles, which are 

predominantly located in the upper thoracic cord [7], [72]. As for diaphragm activation, it is 

hypothesized that stimulation activates the intercostal-to-phrenic reflex arc as it ascends in the 

ventrolateral funiculus of the spinal cord [7], [73], [74]. While these neurons and pathways have 

been identified as possible targets for stimulation, the extent of activation and optimal stimulation 

configuration to target them remains unknown.  

1.4 Computational modeling 

1.4.1 Background 

Computational models of SCS and other neurostimulation technologies are frequently used 

to provide a well-controlled environment to help answer questions that are difficult to answer 

experimentally. Biophysical models have been used in the analysis of many diverse 

neuromodulation therapies, including deep brain stimulation, transcranial electrical stimulation, 

nerve stimulation, dorsal root ganglia stimulation, and retinal stimulation, among others [75]–[82]. 

Modeling provides many advantages to other experimental and clinical based research techniques, 
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including a highly controlled working environment, the ability to systematically and rapidly 

evaluate a large number of parameters, and the capability to investigate highly invasive techniques 

in full scale human models. Models are also highly repeatable, relatively rapid to implement and 

analyze, and cost-effective [1]. Because of these benefits, models have been important in the 

design process for a large variety of research fields, and have been essential for the development 

of our modern understanding and implementation of SCS [1]. 

1.4.2 History of SCS modeling 

Computational modeling has a long and complex history that has helped advance the 

technical aspects of SCS and improve the mechanistic understanding of the therapy. The first 

models of SCS were developed in the 1980’s by Coburn and Sin to evaluate the diameters of dorsal 

column fibers activated by stimulation [83]–[85]. Computational models of SCS were further 

expanded in the 1990’s by Holsheimer and colleagues, who further validated modeling, explored 

neural targets of stimulation, designed improved stimulation configurations and lead designs, and 

investigated how anatomic variabilities changed model predictions [15], [17], [37], [86]–[89]. In 

recent years, computational modeling has been used to improve several aspects of SCS, including 

lead design, programming procedures, and waveform parameters [90]–[93]. Various studies have 

also attempted to elucidate a more mechanistic understanding of SCS for existing and novel 

stimulation waveforms, locations, and indications [6], [9], [43].  

1.4.3 Computational modeling variability across literature 

The primary goal of this dissertation is to use computational models to evaluate the neural 

activation generated by spinal cord stimulation. To build valid models, it is imperative that they 

include the appropriate anatomical details to accurately predict the electric fields generated during 
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stimulation. However, previous computational models of SCS include various simplifications to 

lessen the computational demand or decrease the time spent developing the model. These 

simplifications, such as representing the vertebral column to be a cylinder, can alter the shape of 

the electric field and affect the predictions of the models [43]. Importantly, these simplifications 

are not uniform across literature, and model designs may vary extensively between studies1 [9], 

[43], [88], [90], [92], [94], [95]. To use computational models to understand SCS, we must first 

understand the effects of these simplifications and quantitatively describe how these changes affect 

neural predictions.  

1.5 Summary of dissertation 

In this work, I use computational models to evaluate SCS for pain control and for 

inspiration following SCI. These models evaluate the direct effects of stimulation (i.e., how does 

stimulation directly influence neural activation or recruitment). Therefore, this dissertation focuses 

on identifying the types and properties of spinal neurons activated by stimulation. My work further 

evaluates changes in neural activation thresholds due to variations in the electric field (arising from 

anatomical simplifications, FEM design, electrode design, lead location, stimulation 

waveform/polarity, and stimulation configuration). The work included in this thesis highlights the 

potential for SCS for a variety of clinical treatments while also emphasizing the importance of 

computational models to quantitatively explore hypotheses and explain phenomena that are 

exceedingly difficult to investigate otherwise. 

 
 

1 A comprehensive list comparing model simplifications across literature can be found in Table 1 of Khadka et al., 
2020. [95] 
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Chapter 2 of this dissertation focuses on identifying which anatomic and technical details 

are necessary to evaluate computational models of SCS. In this work, I developed a detailed FEM 

of the lower thoracic spinal cord (dorsal T9 implanted electrode array) and evaluated how model 

predictions change when details were removed. I investigated how activation thresholds change as 

a function of several anatomical variables (e.g., spine geometry, dorsal rootlet anatomy), 

stimulation types (i.e., voltage-controlled vs. current-controlled), electrode impedances, lead 

positions, lead types, and electrical properties of surrounding tissues (e.g., dura conductivity, 

frequency-dependent conductivity). In this chapter, I found several anatomic and modeling factors 

that significantly impact model predictions. These factors should be considered for future clinical 

and modeling work, and they are used in model development for subsequent chapters of this 

dissertation. 

In Chapter 3, I describe a computational model to evaluate neural recruitment during 

ventral high-frequency spinal cord stimulation (HF-SCS) applied at the T2 spinal level in the 

canine spinal cord. Previous experimental work determined that stimulation at this level resulted 

in recruitment of both the diaphragm and the inspiratory intercostals [7], [68], [70], [96]. However, 

the activation thresholds, extent of activation, and optimal electrode configurations (i.e., lead 

separation, contact spacing, and contact length) to activate these neural elements remain unknown. 

My model evaluated two neural targets: ascending fibers in the ventrolateral funiculus of the spinal 

cord and the local intercostal motoneurons. For this work, I determined the extent of activation of 

both neural targets and determined lead designs to maximize their recruitment. These lead designs 

were evaluated via in vivo experiments, and the computational model predictions demonstrated 

excellent agreement with experimental results. 
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In Chapter 4, I present a computational model to evaluate a novel form of closed-loop SCS 

for chronic pain management. While closed-loop SCS has been shown to be more effective than 

conventional open-loop stimulation, there remain open questions on the origins of the recorded 

evoked compound action potential (ECAP) used as a control signal [2], [42]. For this chapter, I 

developed a computational model of closed-loop SCS by simulating the neural response to 

stimulation and then using the neural response to simulate an ECAP recording. I used this model 

to investigate the origins of the ECAP waveform, timing, and amplitude. I evaluated how the 

waveform changes in response to changes in lead position, dorsal CSF thickness, lead 

lateralization, pulse width, and stimulation configuration.  

In summary, there were several main goals and achievements for this work. I evaluated 

variations in model design and identified several design considerations that have impacts on future 

model development. I also developed the first computational model of HF-SCS for inspiratory 

muscle activation and improved the mechanistic understanding and technical implication of this 

therapy. My results will also aid in future translational efforts. Finally, I developed a model to 

simulate closed-loop SCS, which I used to identify the neural origins of the ECAP. I also evaluate 

how this waveform changed with variations in anatomy and stimulation. This work impacts the 

implementation and understanding of closed-loop stimulation can be used to improve validation 

of future computational models. 
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Chapter 2: Anatomical and Technical Factors Affecting the Neural Response to Epidural 
Spinal Cord Stimulation 

 

Part of the material for this chapter has been adapted with modifications from the following 

publication: 

 

1. H. J. Zander et al., “Anatomical and technical factors affecting the neural response to 

epidural spinal cord stimulation”,  J. Neural Eng., vol. 17, no. 3, 2020, doi: 10.1088/1741-

2552/ab8fc4. [97] 

2.1 Abstract 

Objective 

Spinal cord stimulation (SCS) is a common neurostimulation therapy to treat chronic pain. 

Computational models represent a valuable tool to study the potential mechanisms of action of 

SCS and to optimize the design and implementation of SCS technologies. However, it is 

imperative that these computational models include the appropriate level of detail to accurately 

predict the neural response to SCS and to correlate model predictions with clinical outcomes. 

Therefore, the goal of this study was to investigate several anatomic and technical factors that may 

affect model-based predictions of neural activation during thoracic SCS. 
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Approach 

We developed computational models that consisted of detailed finite element models of 

the lower thoracic spinal cord, surrounding tissues, and implanted SCS electrode arrays. We 

positioned multicompartment models of sensory axons within the spinal cord to calculate the 

activation threshold for each sensory axon. We then investigated how activation thresholds 

changed as a function of several anatomical variables (e.g., spine geometry, dorsal rootlet 

anatomy), stimulation type (i.e., voltage-controlled vs. current-controlled), electrode impedance, 

lead position, lead type, and electrical properties of surrounding tissues (e.g., dura conductivity, 

frequency-dependent conductivity). 

Main results 

Several anatomic and modeling factors produced significant percent differences or errors 

in activation thresholds. Rostrocaudal positioning of the cathode with respect to the vertebrae had 

a large effect (up to 32%) on activation thresholds. Variability in electrode impedance produced 

significant changes in activation thresholds for voltage-controlled stimulation (40 to 51%) but had 

little effect on activation thresholds for current-controlled stimulation (less than 13%). Changing 

the dura conductivity also produced significant differences in activation thresholds (up to 60%). 

Significance 

This study demonstrates several anatomic and technical factors that can affect the neural 

response to SCS. These factors should be considered in clinical implementation and in future 

computational modeling studies of thoracic SCS. 
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2.2 Introduction 

Spinal cord stimulation (SCS) is a common neurostimulation therapy that can be used to 

treat a variety of conditions that are refractory to traditional medical management (e.g., chronic 

pain, poor ventilation, spasticity, as well as poor locomotion following spinal cord injury) [5], [8], 

[12], [98]. For chronic pain management, it is estimated that more than 50,000 devices are 

implanted each year with annual sales of more than $1.8 billion in 2014 [3], [4]. However, even 

with the prevalence of this procedure, the mechanisms of action of SCS for pain are still largely 

unknown and only 58% of patients respond to SCS (i.e., ≥ 50% pain reduction) [4]. 

Computational models of SCS and other neurostimulation technologies are frequently used 

to provide a well-controlled environment to help answer questions that are difficult to answer 

experimentally. Computational analysis of SCS typically occurs in two stages: (1) a volume 

conductor model (e.g., finite element model (FEM)) is used to calculate the electric fields 

generated within the spinal cord during SCS, and (2) neuron models (e.g., multicompartment cable 

models) are used to estimate the neural response to stimulation. In the past, multiple groups have 

used computational models to improve several aspects of SCS, including lead design, 

programming procedures and parameters (e.g., pulse width), and electrode design [87], [90]–[92], 

[99], [100]. Several studies have also attempted to elucidate the mechanisms of action of various 

forms of SCS [9], [15], [43]. While these studies have improved our understanding of the 

physiological and technical factors relevant to SCS, many phenomena associated with SCS are 

still unknown [2], [4], [101]. 

To help improve SCS technologies, it is imperative that computational models include the 

appropriate anatomical details to accurately calculate the electric fields and corresponding neural 

response during SCS [94]. Computational models of SCS are subject to several assumptions that 

may limit their ability to characterize the physiological and technical factors relevant to SCS. To 
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lessen the demand of computational resources and model design, numerous anatomic 

simplifications are incorporated into the volume conductor models. For example, while some 

previous studies include detailed three-dimensional (3D) representations of the vertebral column 

and vertebrae, other studies represent the spine with a simplified cylindrical domain around the 

epidural tissue [9], [43], [90], [92], [102]. These models may also exclude certain anatomical 

domains, such as the dura mater, spinal cord root structures, and encapsulation tissue surrounding 

the implanted electrode arrays. Similarly, computational models typically ignore the frequency-

dependent electrical properties of the relevant biological tissues. Across studies, model designs 

may vary extensively [9], [43], [88], [90], [92], [94]. 

Previous computational modeling studies provide a means to qualitatively assess how 

certain model design parameters affect neural recruitment during SCS (e.g., [86], [103], [104]); 

however, only limited quantitative analyses have been performed, especially for thoracic SCS. 

Therefore, the goal of this study was to quantify how model simplifications and designs influence 

neural recruitment. To do this, we developed multiple FEMs containing the spinal cord and its 

surrounding anatomy, as well as an implanted SCS electrode array. Each FEM contained different 

simplifications in the design that could influence neural activation. We then calculated the 

extracellular voltage distributions generated by SCS for either current-controlled (CC) or voltage-

controlled (VC) stimulation. We coupled the corresponding voltage distribution to 

multicompartment models of spinal cord axons and calculated the activation threshold for each 

axon. Finally, we calculated the percent difference or error in activation thresholds between FEMs 

to quantify the effects of specific anatomical factors and/or model simplifications on the neural 

response to SCS. The results of this study suggest that several simplifications can be incorporated 

into model designs without significantly affecting the predicted neural response to SCS. However, 
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our results suggest that some conditions, such as the position of the stimulating electrodes relative 

to the vertebrae or the electrode impedance, may have a large influence on activation thresholds. 

Therefore, this study highlights anatomical factors that should be considered during clinical 

implementation of SCS and future computational modeling studies investigating the physiologic 

and technical factors relevant to thoracic SCS. 

2.3 Methods 

We used computational models to investigate the direct axonal response to SCS. We used 

the following three steps to perform our analysis: (1) We created a FEM to calculate the 

extracellular voltage distribution generated in the spinal cord during SCS, (2) we generated and 

distributed multicompartment sensory axon models within the dorsal roots (DR) and white matter 

of the spinal cord, and (3) we assessed the axonal response to stimulation by applying the voltage 

distributions (step 1) to the axon models (step 2). Initially, our model included many anatomical 

details, such as rootlets, dura, realistic vertebrae, etc. We then introduced common simplifications 

into our model design and evaluated changes in activation thresholds. We used the most detailed 

model (i.e., the ‘base’ model) as the ground truth in our analysis and compared the activation 

thresholds predicted from simplified models to the thresholds predicted by this ‘base’ model. We 

have previously used this approach and a similar model design to evaluate evoked compound 

action potentials generated in the spinal cord during SCS [105]. 
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Figure 2.1: Finite element model (FEM) of spinal cord stimulation (SCS). We developed a FEM of the spinal cord with an 
implanted eight-electrode percutaneous SCS lead, encapsulation, explicit representation of the dorsal rootlets, dura mater, and a 
3D vertebral column including intervertebral discs. A) Axial view and an exploded isometric view of the ‘base’ FEM. B) 
Isopotential tissue voltages generated by 1 V bipolar stimulation. 

2.3.1 Modeling process 

Step 1: Create an FEM and calculate the extracellular voltages generated by SCS: 

We generated a 3D FEM of SCS at the lower thoracic spinal levels. This FEM included 

representations of gray matter, white matter, cerebrospinal fluid (CSF), dura, epidural tissue, bone, 

intervertebral discs, electrode encapsulation layer, and bulk tissue. We defined the gray and white 

matter boundaries of the spinal cord model using cadaveric cross-sections at the T11 spinal cord 

level [106], [107]. At each spinal cord level, we included a dorsal root that was divided into five 

0.25 mm diameter rootlets [108]–[110]. We separated the entry of each rootlet into the spinal cord 

by 3.28 mm in the rostrocaudal direction, resulting in a dorsal root entry zone of 13.1 mm [108]. 

Each rootlet individually ascended 46.5 mm rostrocaudally through the CSF and followed a curved 

trajectory before entering the spinal cord (Figure 2.1A) [107], [111]. We surrounded the spinal 
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cord with a CSF domain that was enclosed by dura mater with a thickness of 0.3 mm [112]. The 

distance between the dorsal surface of the spinal cord and the dura was 3.2 mm [43]. Exterior to 

the dura, we placed an epidural tissue domain that included a percutaneous SCS lead with eight 

annular electrodes. Each electrode had a length of 3 mm and a diameter of 1.3 mm with an edge-

to-edge spacing of 1 mm. We also included a 0.3 mm thick encapsulation layer domain 

surrounding the electrode array [113]. We placed the lead and encapsulation layer domain on the 

dorsal surface of the dura at the anatomical midline of the spinal cord. Previous modeling work 

has demonstrated improved predictions of neural thresholds with an anatomically based vertebral 

column [97]. Therefore, we stacked seven identical and anatomically-accurate T9 vertebrae with 

intervertebral discs to represent the vertebral column surrounding the epidural space [114]–[116]. 

The center-to-center distance between each vertebrae was 22.2 mm, which resulted from an 

endplate thickness of 19.3 mm and an intervertebral disc thickness of 3.86 mm [114], [116]. 

Finally, we included a bulk tissue layer with dimensions representative of an average male body 

[117]–[119] (Figure 2.1A). We discretized our FEM into tetrahedral elements using 3matic 

(Materialise NV, Belgium), defining a region of interest (within 17.5 mm of the SCS lead) with 

higher node densities near the lead and resulted in a finalized mesh containing more than 51 million 

elements. 

To calculate the voltage distributions generated during SCS, we imported our mesh into 

COMSOL (COMSOL Inc., USA). We initially defined electrical conductivities for each tissue 

type using data from the literature (Table 2.1) [43], [92], [113]. We then adjusted the electrical 

conductivity of the encapsulation layer until the FEM produced electrode impedances resembling 

average impedance values measured clinically (i.e., monopolar impedance of 370 Ω) [90]. We 

calculated the extracellular voltage distributions by assigning Dirichlet boundary conditions of a 
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unit stimulus (i.e., 1 V) at the cathode and ground at the anode (i.e., 0 V). We modeled inactive 

contacts as equipotential with zero net current across their surface. We applied an insulating 

boundary condition to the outer boundaries of the FEM. We performed simulations for bipolar 

stimulation with a center-to-center spacing of 8 mm between the anode and cathode. We calculated 

electrostatic FEM solutions with an iterative equation solver using the conjugate gradient method 

(Figure 2.1B). The resulting voltages were interpolated and applied to the axon models presented 

in Step 2. 

 

Table 2.1: Electrical conductivities used in the frequency-independent FEMs 

Tissue 
Conductivity 

(S/m) Reference 
Gray matter 0.230 [120] 
White matter (longitudinal) 0.600 [120] 
White matter (transverse) 0.083 [120] 
Cerebrospinal fluid 1.700 [120] 
Dura mater 0.600 [43] 
Encapsulation layera 0.110  
Extradural tissue 0.250 [92] 
Vertebral bone 0.020 [121] 
Intervertebral disc 0.650 [92] 
General thorax 0.250 [120] 

aAdjusted so that monopolar electrode impedance 
matched clinical values 

 

Step 2: Generate electrical models of axons within the spinal cord and rootlets 

Next, we created multi-compartment models of Aβ somatosensory axons populating the 

white matter and dorsal rootlets of our FEM model. While other methods of axonal modeling, such 

as the activating function (AF) (i.e., second-order spatial derivative of the extracellular voltage 

and predictor of the relative response of the axon transmembrane voltage at stimulus onset) and 

driving force predictors, allow for more rapid predictions, multi-compartment models typically 
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provide more accurate estimates of the neural response to stimulation [122]–[126]. These multi-

compartment models were based on previously-published mammalian motor axons that were 

adapted to have properties of sensory fibers [77]. Each Aβ-fiber was a double-cable model 

consisting of nodes of Ranvier separated by three distinct finite impedance myelin segments: the 

myelin attachment segment (MYSA), paranodal main segment (FLUT), and internode regions 

(STIN) (Figure 2.2A) [127]. The nodes of Ranvier contained active (fast Na+, persistent Na+, fast 

K+, and slow K+) and passive (linear leak conductance, capacitance) membrane properties that 

reproduce action potential characteristics and conduction velocities observed in sensory axons 

[128], [129]. 

Previous studies have traditionally distributed fibers throughout the spinal cord by placing 

them in a grid with an arbitrary number of fibers [43], [90]. In this work, we used histological 

measurements from the superficial dorsal columns in the human spinal cord to define an 

anatomically-realistic distribution of axons that covered a wide range of axon diameters (i.e., 5.7 

– 16.0 µm) found in the human spinal cord [14]. We assumed an average density of 22.92 

fibers/1000 µm2 throughout the spinal cord. Our 3D spinal cord model (step 1) contained white 

matter with a cross-sectional area of 23.62 mm2. Therefore, we estimated that our anatomically-

realistic fiber distribution should contain approximately 541,000 axons. Because the double-cable 

axon model [127] was developed for discrete fiber sizes (i.e., 5.7, 7.3, 8.7, 10.0, 11.5, 12.8, 14.0, 

15.0, 16.0 µm), we calculated the proportion of fibers belonging to each diameter from the fiber-

size distribution histograms [14]. To reduce computational demand, we only included ~1% of each 

fiber diameter population in our model analysis. Due to the sparsity of larger fiber diameters, all 

fibers larger than 11.5 µm were combined into the 11.5 µm fiber population; resulting in 5 fiber-

diameter populations; 5.7, 7.3, 8.7, 10.0, and 11.5 µm with 1145, 717, 274, 89 and 28 fibers, 
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respectively (2253 total fibers). Even with 1% of anatomical sampling, the number of fibers tested 

provided sufficient spatial sampling resolution to calculate activation thresholds throughout the 

spinal cord. We initially placed each fiber-diameter population randomly throughout the white 

matter, and then used Lloyd’s algorithm (Voronoi iterations) to evenly distribute the fibers 

throughout the white matter (Figure 2.2B) [130], [131]. The white matter fibers ran along the 

rostrocaudal axis of the FEM while the DR fibers followed the trajectory defined for each rootlet. 

Where the DR fibers entered the spinal cord, they branched into ascending and descending 

daughter fibers running parallel to the white matter fibers [111]. The parent DR fibers had larger 

diameters relative to the dorsal column daughter fibers to account for the higher peripheral 

conduction velocity relative to spinal cord conduction velocity [132]. Additionally, the diameter 

of the branching node was 1.5 times larger than the parent DR fiber [88]. The DR fiber diameters 

were 7.3, 8.7, 10.0, 12.8, and 14.0 µm with corresponding white matter daughter fiber diameters 

of 5.7, 7.3, 8.7, 10.0, and 11.5 µm, respectively. We performed the neuron simulations with the 

software package, NEURON, within the Python programming environment [133]. 

Step 3: Assess the axonal response to SCS 

In the third step of our model analysis, we assessed the direct axonal response to SCS. We 

estimated the direct axonal response to SCS by applying the extracellular voltages calculated in 

the FEM (step 1) to the axon models (step 2). To model the time-dependent output generated by 

an implantable pulse generator (IPG) during CC or VC stimulation, we included an equivalent 

circuit model of the IPG output (Figure 2.3A) [37]. We then simulated the time-dependent voltage 

output at the electrode tissue interface and scaled our spatial FEM voltage solutions to calculate 

the corresponding spatiotemporal voltage distributions [37]. We interpolated the scaled 

extracellular voltages onto the model axons described above and used a bisection algorithm (error 
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< 1%) to calculate the activation threshold for each axon (Figure 2.2C). For each set of model 

parameters, we calculated the activation thresholds (i.e., the stimulation amplitude needed to 

induce at least two action potentials) for axons located at each position in the spinal cord (Figure 

2.2D). Using these maps, we calculated the percent difference in activation thresholds throughout 

the white matter and the DR fibers for the various FEM comparisons summarized below (see Table 

2.2). These maps show the percent difference or percent error at each position within the spinal 

cord. The final percent difference/error plots represent the mean percent difference/error for all the 

fiber diameter groups tested. 

2.3.2 Anatomical factors and model complexity 

We used this model-based approach to characterize how various anatomical factors and 

model conditions affected the corresponding activation thresholds. We systematically varied 

several parameters (e.g., impedance, cathode position) and simplified the FEM design. We then 

compared predictions from different conditions and/or simplifications to the activation thresholds 

predicted with our original model. For each condition, we calculated the activation thresholds and 

corresponding percent errors or percent differences for bipolar stimulation using both CC and VC 

stimulation. We used the term, percent error, for situations in which simplifications were made to 

the model. We used the term, percent difference, for situations in which different conditions (and 

not simplifications) were considered in the analysis. 
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Figure 2.2: Axon models and response to stimulation. A) We represented sensory fibers using multicompartment cable models of 
myelinated axons. Figure adapted from [127]. B) We generated a range of axon diameters (5.7 – 11.5 µm) within the white matter 
to match the densities found in the superficial dorsal columns in the human spinal cord [14]. To reduce computational demand, we 
only represented 1% of fibers of each diameter. We distributed fibers evenly throughout the white matter using Lloyd’s algorithm 
[130], [131]. C) We determined the axonal response to stimulation by interpolating the SCS-induced extracellular voltages directly 
onto the axon models. We then determined the minimum stimulation amplitude needed to elicit a supra-threshold response. D) 
Thresholds required to elicit an action potential throughout the spinal cord for 11.5 µm fibers in the ‘base’ model. 

 

Electrode impedance 

Due to the foreign body reaction, SCS electrode impedance can vary over time and between 

individual electrodes [103], [134], [135]. These impedance fluctuations can potentially affect the 

corresponding neural response (e.g., higher electrode impedance may require a higher stimulation 

amplitude for activation). Therefore, to investigate the effects of electrode impedance on neural 

activation, we varied the conductivity of the encapsulation layer to mimic low impedance (~270 
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Ω) and high impedance (~470 Ω) conditions that have been observed in clinical monopolar SCS 

impedance measurements (368 ± 98 Ω) [90] (Figure 2.3). 

Electrode position relative to vertebrae 

Previous work has shown that the vertebral lamina structure may affect the amplitude of 

recordings of extradural spinal cord compound action potentials generated during SCS [105], 

[136]. We hypothesized that electrode placement relative to the complex 3D structure of the 

vertebrae could also produce differences in activation thresholds during SCS. Therefore, we 

evaluated activation thresholds when the cathode was placed between two successive laminae 

versus directly ventral to the lamina (Figure 2.4A). Throughout the manuscript, we refer to a 

cathode placement between two laminae as the ‘base’ model. 

We also evaluated the significance of electrode position relative to vertebrae for a 

laminectomy or paddle-style electrode array. The 3-column paddle electrode array had 16 

electrodes with 1.5 mm x 4 mm electrode contacts. For this paddle lead, we calculated the 

activation thresholds for a bipolar stimulation configuration when the cathode was adjacent to a 

lamina versus when the cathode was in between two laminae (Figure 2.5A). 

Cylindrical bone domain 

A common simplification of previous SCS models is to represent the vertebral column as 

a cylindrical domain that does not vary along the rostrocaudal axis [43], [91], [102], [137], [138]. 

Models with this simplified bone domain are unable to consider potential threshold changes due 

to the detailed 3D structure of vertebrae and the relative position of the stimulating electrodes. To 

evaluate the potential consequences of using a cylindrical bone regime, we generated an additional 

FEM with a cylindrical bone using dimensions from a previously-published model [43]. 
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Dorsal root (DR) anatomy 

A majority of SCS modeling studies do not include explicit representations of the dorsal 

roots and/or rootlets within the FEM mesh [43], [90], [92], [103], [111], [136]. These models place 

the DR axons within the CSF until they enter the spinal cord. Because white matter has a lower 

conductivity than CSF (Table 2.1) [120], explicit representation of the DR anatomy within the 

FEM could potentially influence DR fiber activation thresholds and the site of action potential 

initiation. In simplified FEMs, the rapid transition in electrical conductivities at the boundary 

between the CSF and the spinal cord could lead to an overestimation of axon excitability (i.e., 

lower activation thresholds) with action potential initiation occurring at the node of Ranvier closest 

to this discontinuity. Therefore, we calculated activation thresholds with and without explicit 

representations of the DR anatomy within the FEM. We utilized the same finite element mesh in 

both conditions. For the model solutions with and without the DR anatomy, we set the DR rootlet 

domain conductivity to the conductivity of white matter and CSF, respectively (Table 2.1). 

Dura mater 

The spinal cord is enclosed within a thin dural sac that may influence the neural response 

to SCS. The electrical properties of dura mater are largely unknown [139]. Therefore, in 

computational models of SCS the conductivity of the dura has been modified to best match clinical 

impedance measurements. The conductivity values used in computational models typically range 

from 0.02 S/m to 0.6 S/m [10], [43], [90], [93], [111], [138], [140]–[142]. To examine the effect 

of dura conductivity on model-based activation thresholds, we performed simulations for two 

commonly used dura conductivities (i.e., 0.03 and 0.6 S/m) that largely covered this range (Figure 

2.6). We adjusted the conductivity of the encapsulation layer for both models so that the average 
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model impedance matched the average clinical impedances reported in [90] (i.e., encapsulation 

conductivities of 0.29 and 0.11 S/m for dura conductivities of 0.03 and 0.6 S/m, respectively). 

Frequency-dependent electrical tissue properties 

Biological tissues have frequency-dependent electrical properties that can potentially affect 

the extracellular voltages generated within the spinal cord during SCS [121]. However, SCS 

modeling studies typically assume frequency-independent tissue properties that only account for 

the resistive component of the tissue impedance at a single frequency [143], [144]. This 

assumption has been justified by previous studies for traditional SCS frequency ranges [144], 

[145]. However, novel forms of SCS apply stimulation pulses in the kilohertz frequency range, 

which could potentially affect the validity of this assumption. One new form of SCS applies 

stimulation pulses at a rate of 10 kHz [40]. To consider potential frequency-dependent volume 

conduction in this frequency range, we used a Fourier FEM approach to calculate time- and space-

dependent solutions of the voltage distributions generated during 10 kHz SCS [143]. We calculated 

the first 50 frequency components of the Fourier series expansion for a 10 kHz biphasic rectangular 

waveform (30 µs pulse width, 20 µs interphase interval) that matched the waveform applied by 

the clinical 10 kHz SCS system [43], [146]. In our base FEM, we defined the frequency-dependent 

conductivity and permittivity of each tissue, except for the encapsulation, using the Cole-Cole 

equations and data from [147] (Figure 2.7A). We assigned the encapsulation layer domain the 

frequency-independent electrical conductivity from Table 2.1 and a relative permittivity of zero. 

We solved Laplace’s equation at each of the 50 frequencies and scaled each FEM solution by the 

corresponding frequency component of the Fourier series expansion of the stimulation waveform. 

Finally, we used the inverse Fourier transform to calculate the spatiotemporal voltage distribution 

generated during 10 kHz SCS. To consider the effects of frequency-dependent volume conduction 
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on the neural response to 10 kHz SCS, we calculated the activation thresholds for both frequency-

independent and frequency-dependent FEM solutions. For the frequency-independent FEM, we 

assigned electrical conductivities using the Cole-Cole parameters at the lowest solved frequency, 

10 kHz, and assigned a permittivity of zero for each domain [147]. We assessed the neural response 

during 50 ms of 10 kHz stimulation (i.e., 500 pulses). We defined the activation threshold as the 

minimum stimulation amplitude that produced repetitive firing in the axon under consideration 

during the entire stimulation window (Figure 2.7D). 

2.4 Results 

We performed model-based analysis of SCS under a wide range of model conditions to 

investigate how various anatomical and technical factors affected the predicted neural response to 

SCS. For each set of model conditions, we calculated the activation thresholds for each axon and 

the corresponding percent change in activation. In our ‘base’ model, the minimum stimulation 

amplitude that produced continuous action potential firing was 1.5 mA and 1.3 V for CC and VC 

stimulation, respectively (300 µs pulse width, 50 Hz cathodic leading biphasic pulse). Activation 

was lowest at the most superficial aspect of the dorsal columns and occurred in the largest fiber 

size tested (i.e., 11.5 µm fibers). Our model thresholds fell within clinical sensory thresholds [148]. 

Relative to the white matter fibers, the DR fibers had higher minimum stimulation thresholds of 

2.1 mA and 1.8 V for CC and VC SCS, respectively. This trend agreed with previous modeling 

studies [90]. 
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2.4.1 Electrode impedance 

To examine how variability in electrode impedance affected activation thresholds, we 

performed simulations for low- and high-impedance conditions. We altered the encapsulation layer 

conductivity so that the overall monopolar model impedance mimicked the range of clinically-

reported monopolar impedances (i.e., 368 ± 98 Ω) [90]. We used encapsulation layer conductivities 

of 0.25 and 0.07 S/m to produce average monopolar electrode impedances of 270 and 470 Ω for 

the low- and high-impedance model conditions, respectively. 

In the low-impedance model, the minimum white matter fiber activation thresholds were 

1.5 mA and 0.9 V for CC and VC stimulation, respectively. In the high-impedance model, the 

minimum white matter fiber activation thresholds were 1.5 mA and 1.6 V for CC and VC 

stimulation, respectively. For VC stimulation, the high vs. low electrode impedance conditions 

produced large percent differences in activation thresholds of 37.6 – 50.8% (Figure 2.3C, Table 

2.2). The largest difference was in the superficial dorsal columns. However, for CC stimulation, 

the high vs. low impedance conditions only produced small percent differences in activation 

thresholds of -12.9 – 1.0%, with the largest difference at the ventral side of the spinal cord (Figure 

2.3C, Table 2.2). 

We observed a similar trend for activation of the dorsal rootlets. In the low-impedance 

model, the minimum DR fiber activation threshold was 1.5 mA and 1.4 V for CC and VC 

stimulation, respectively. In the high-impedance model, the minimum DR fiber activation 

threshold was 1.5 mA and 2.2 V for CC and VC stimulation, respectively. The high vs. low 

impedance conditions produced mean percent differences in DR fiber activation thresholds of 

44.2% and -5.9% for VC and CC stimulation, respectively (Table 2.2). 
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Figure 2.3: Effect of model impedance on activation thresholds. A) The bipolar circuitry model of an implantable pulse generator 
applying either current-controlled (CC) or voltage-controlled (VC) stimulation [37]. Switches allow the model to reproduce the 
output of the IPG in a time-dependent manner (applying the stimulus pulse and capacitive discharging). B) Computer simulations 
of IFEM for CC stimulation and VFEM for VC stimulation resulting from altered impedance. We varied the conductivity of the 
encapsulation layer to produce the high impedance (RFEM = 855 Ω) or low impedance (RFEM = 429 Ω) waveforms for bipolar 
stimulation. C) Percent difference in activation thresholds between the high impedance model and the low impedance model for 
both CC and VC stimulation. 
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Table 2.2: Range of percent error/difference between the various model conditions 

Model comparison Percent error/difference (%) 
Spinal cord fibers Dorsal rootlet fibers 

Current-
controlled 

Voltage-
controlled 

Current-
controlled 

Voltage-
controlled 

High vs. low impedancea [-12.9, 1.0] [37.6, 50.8] [-8.9, 1.7] [41.5, 51.3] 
Cathode position relative to 
vertebrae (percutaneous)a [-31.5, -10.4] [-29.7, -8.8] - - 

Cathode position relative to 
vertebrae (paddle)a [-10.5, 1.4] [-10.4, 1.3] - - 

Vertebrae vs. cylindrical bone 
domain [-17.9, -7.2] [-16.8, -6.2] [-15.9, -6.9] [-14.4, -5.9] 

Rootlets in the FEM [-1.5, 2.7] [-1.8, 2.9] [-1.8, 1.4] [-1.9, 1.5] 
Dura conductivity [-2.3, 61.3] [-6.8, 57.3] - - 
Frequency-dependent vs. 
Frequency-independent [-3.2, 7.0] - [-4.3,8.2] - 
aPercent difference was used for the calculation as opposed to percent error 

2.4.2 Anatomical considerations 

To examine the potential significance of electrode placement relative to the vertebrae, we 

compared activation thresholds with the cathode placed between two successive laminae versus 

the cathode placed directly ventral to the lamina (Figure 2.4A). With the cathode placed between 

two successive laminae, the minimum activation thresholds were 1.5 mA and 1.3 V for CC and 

VC stimulation, respectively. With the cathode placed ventral to the lamina, the minimum 

activation thresholds were 1.3 mA and 1.2 V for CC and VC stimulation, respectively. For CC 

stimulation, the two electrode placements produced percent differences in activation threshold of 

-31.5 to -10.4%. For VC stimulation, the change in electrode placement produced percent 

differences in activation threshold of -29.6 to -8.8% (Table 2.2; Cathode position relative to 

vertebrae (percutaneous)). The average percent differences were largest in the ventral spinal cord 

for both CC and VC stimulation (Figure 2.4B). 
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Figure 2.4: Effect of electrode position with respect to the bone. A) The ‘base’ model (left), has the cathode positioned in between 
the two adjacent laminae (spinal cord not shown). We also evaluated the model with the cathode positioned directly ventral to a 
lamina (right). B) Percent difference in activation threshold between these two models for CC and VC stimulation. 

 

In addition to the percutaneous lead, we evaluated the predicted thresholds for a paddle 

style electrode array. For the paddle lead, we compared activation thresholds when the cathode 

was placed between two successive laminae relative to when the cathode was placed directly 

ventral to a lamina. For both cathode positions, the minimum activation thresholds were 0.9 mA 

and 1.1 V for CC and VC stimulation, respectively. For the paddle lead, the different lead positions 

produced percent differences in activation thresholds of -10.5 to 1.4% and -10.4 to 1.3% for CC 

and VC stimulation, respectively (Table 2.2; Cathode position relative to vertebrae (paddle)). The 

average percent differences were largest at the ventral aspect of the spinal cord (Figure 2.5C). 

We calculated activation thresholds for a FEM with the percutaneous electrode and a simplified 

uniform cylindrical bone domain that has been used in previous SCS modeling studies [43], [90], 



 37 

[102], [137]. Relative to the base model, this simplified model produced percent errors in 

activation thresholds of -17.9 to -7.2% and -16.8 to -6.2% for CC and VC stimulation, respectively 

(Table 2.2; Vertebrae vs. cylindrical bone domain). 

We examined the significance of explicitly representing the anatomy and electrical 

properties of the dorsal rootlets within the FEM. With regards to the activation of axons within the 

spinal cord, removing the rootlet structures from the FEM only produced percent errors of -1.5 – 

2.7% and -1.8 – 2.9% for CC and VC stimulation, respectively (Table 2.2). Similarly, with regards 

to the activation of DR fibers, removing the anatomical rootlet structures from the FEM, only 

produced percent errors of -1.8 to 1.4% and -1.9 to 1.5% for CC and VC, respectively (Table 2.2; 

Rootlets in the FEM). Furthermore, only minor changes were observed in the location of action 

potential initiation. 

We also examined the significance of the dura conductivity within the FEM. Activation 

thresholds were higher for a dura conductivity of 0.03 S/m relative to the base model with a dura 

conductivity of 0.6 S/m. Minimum thresholds were 2.6 mA and 2.2 V for CC and VC stimulation, 

respectively. The overall percent differences between the models ranged from -2.3 to 61.3% for 

CC stimulation and from -6.7 to 57.4% for VC stimulation (Figure 2.6). The largest difference 

between the models was on the dorsal surface of the spinal cord. 
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Figure 2.5: Effect of electrode position using a paddle electrode with respect to the vertebrae. A) The paddle lead and isopotential 
lines generated by 1 V bipolar stimulation. B) We positioned the lead with the cathode in between the lamina (left) or ventral to 
the lamina (right). C) The average percent difference in activation threshold for CC and VC stimulation. 



 39 

 

Figure 2.6: Effect of dura conductivity.  Percent differences in activation thresholds between models with a dura conductivity of 
0.6 S/m (base model) and 0.03 S/m for both CC and VC stimulation. 

2.4.3 Frequency-dependent electrical tissue properties 

To examine the impact of frequency-dependent tissue properties on neural activation 

during kilohertz-frequency SCS, we used a Fourier FEM approach to calculate the spatiotemporal 

voltage distributions and the corresponding activation thresholds throughout the spinal cord during 

10 kHz SCS [143]. The frequency-dependent solution produced extracellular voltages with 

temporal profiles that contained rounded lead and trailing edges due to tissue capacitance that 

resembled results from a previous modeling study (Figure 2.7B) [144]. During 10 kHz SCS, the 

minimum threshold to produce activation in the frequency-dependent model was 6.1 mA, while 

the frequency-independent model had a minimum threshold of 5.9 mA. The percent errors for all 

fibers ranged from -3.2 to 7.0% (Table 2.2). We observed the largest percent errors near the center 

of the spinal cord and only small percent errors near the superficial borders of the spinal cord 

(Figure 2.7C). Simulations for the dorsal rootlet fibers produced a similar trend. 

The minimum threshold for activation of these fibers was 8.0 mA in the frequency-

dependent model and 7.9 mA in the frequency-independent model. For the dorsal rootlet fibers, 

the percent error between the two models ranged from -4.3 – 8.2% with an average error of 1.5% 

(Table 2.2; Frequency-dependent vs. Frequency-independent). 
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Figure 2.7: The frequency dependent tissue solution using the Fourier FEM approach. A) Conductivity and permittivity values for 
the various tissues were determined using Cole-Cole equations [147]. We assigned the encapsulation domain a permittivity of zero 
and a conductivity of 0.11 S/m. B) Comparison of the extracellular tissue voltages calculated with the frequency-independent and 
frequency-dependent models for 1 cycle of the 10 kHz stimulus. C) Percent errors in activation thresholds calculated with the 
frequency-independent solution relative to the frequency-dependent solution. The gray star near the middle of the spinal cord 
represents the location of the extracellular voltages shown in B. D) Axonal membrane voltage in response to supra-threshold and 
sub-threshold stimulation at a proximal (near the electrode) and a distal (away from the electrode) node of Ranvier. An axon was 
considered activated if it continued to generate action potentials throughout the 50 ms stimulation period. 
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2.5 Discussion 

In this study, we performed computational analysis of SCS under a variety of model 

conditions to examine how several anatomical and technical factors affected predictions of the 

neural response to SCS. We developed volume conductor models of the implanted electrodes, 

spinal cord, and other surrounding tissues. We incorporated various details within these volume 

conductor models, such as realistic spine and spinal cord anatomy, multiple SCS lead types, and 

frequency-dependent electrical tissue properties. For each set of model conditions, we coupled the 

corresponding FEM solutions to multicompartment cable models of sensory axons within the 

dorsal rootlets and spinal cord to predict the activation thresholds. To investigate which anatomical 

factors significantly affected the neural response to SCS, we calculated the percent difference or 

percent error in the activation thresholds predicted for each individual axon. 

2.5.1 Electrode impedance 

To improve neural targeting, SCS arrays typically include a large number of electrodes 

(i.e., 8-32) [2]. Large variations in electrode impedance can be observed across these electrodes 

within the same array and/or across patients [12]. This impedance variability across electrodes can 

affect the extracellular voltages generated within the spinal cord and necessitate frequent 

adjustment of the stimulation parameters to optimize efficacy [103]. Therefore, we used our 

model-based approach to assess the effects of clinically relevant differences in electrode 

impedance on the neural response to SCS. Commercial SCS systems utilize either CC or VC 

stimulation, so we considered both types of stimulation in our analysis (Figure 2.3) [2]. We 

observed a significant difference in activation thresholds predicted between low- and high-

impedance conditions for VC but not for CC stimulation (Figure 2.3C, Table 2.2). For the high-

impedance condition, the encapsulation tissue surrounding the electrodes had a lower conductivity 
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(i.e., 0.07 S/m vs. 0.25 S/m for the low-impedance condition). For VC stimulation, this lower 

encapsulation layer conductivity resulted in a lower average peak AF (i.e., 49.4% decrease for high 

impedance vs. low impedance) with little change in the shape of the AF (data not shown). 

Therefore, for the high-impedance VC conditions, increased activation thresholds were mainly due 

to the larger voltage drop across the encapsulation layer and corresponding lower peak 

extracellular voltages and AF generated along the axons. However, because CC stimulation 

regulates the electrode current, CC stimulation for high and low impedances produced higher and 

lower mean extracellular voltages along the axons, respectively, with little changes in the peak 

voltage differences and the AF (i.e., 0.2% difference in the average peak AF for high-impedance 

vs. low-impedance conditions). Therefore, our modeling results resemble experimental 

observations [149] and support the concept that CC stimulation should significantly reduce the 

consequences of impedance variability observed in clinical SCS. 

2.5.2 Electrode position relative to vertebrae 

The spine has a complex 3D anatomy. Previous theoretical and experimental studies have 

shown that the recording amplitude of compound action potentials evoked during SCS was 

affected by the position of the recording electrodes relative to the 3D spine anatomy [105], [136]. 

Therefore, we used our model-based approach to investigate how electrode position relative to the 

spine affected activation thresholds during SCS. For a percutaneous-style lead, our model results 

suggested that cathode placement ventral to the lamina lowered activation thresholds relative to 

cathode placement between two successive vertebrae (Figure 2.4, Table 2.2). Percutaneous leads 

contain annular electrodes. Therefore, when the cathode was positioned next to a lamina, the low 

conductivity of the bone relative to the other surrounding tissues directed more current towards 

the spinal cord and produced lower activation thresholds. We analyzed the difference between the 
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models using the AF [123], [124]. With the cathode placed directly ventral to the lamina versus 

between two successive laminae, we observed higher extracellular voltages along the axons and 

increases in the peak of the AF (i.e., 10.9% and 8.4% at the dorsal spinal cord and 33.9% and 

30.9% at the ventral spinal cord for CC and VC stimulation, respectively) with only small changes 

to the shape of the AF (data not shown). The consistent increase in the peak AF reflected the lower 

activation thresholds required for all conditions with the cathode placed directly ventral to the 

lamina versus between two laminae. However, the larger percent increases in the peak AF at the 

ventral surface, reflected the larger decreases in activation thresholds observed at the ventral 

surface relative to the dorsal surface of the spinal cord (Figure 2.4B). 

We performed the same analysis for paddle leads that are also widely used in SCS. One 

potential advantage of paddles leads is that the electrodes are only exposed on the ventral aspect 

of the lead body and help focus stimulation towards the spinal cord [150]. This lead design largely 

reduced changes in activation thresholds due to cathode placement especially for axons located in 

the dorsal spinal cord which would likely have the lowest threshold to SCS (Figure 2.5, Table 

2.2). As described above for the percutaneous SCS lead, we observed the largest decreases in 

activation threshold at the ventral surface for both CC and VC stimulation due to differences in 

the peak AF. 

2.5.3 Dura mater 

The dura is a fibrous membrane and the outermost layer of the meninges surrounding the 

CSF and spinal cord. Due to the largely unknown electrical conductivity of the dural membrane 

[139], we evaluated two dura conductivities (i.e., 0.03 S/m and 0.6 S/m) commonly used in 

computational models of SCS. For both models, we adjusted the conductivity of the encapsulation 

layer domain so that average model impedances matched average clinical electrode impedances. 
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The model with the lower dura conductivity (i.e., 0.03 S/m) had significantly higher thresholds 

when compared to the base model (i.e., 0.6 S/m) for both CC and VC stimulation on the dorsal 

surface of the cord. The lower dura conductivity resulted in a large decrease in the peak of the AF 

(i.e., 51.7 and 54.9% for CC and VC, respectively) with only a small change in shape of the AF 

(data not shown). These results demonstrate that the choice of dura conductivity can have a 

significant effect on model-based predictions, even after matching the overall electrode 

impedance. 

These results illustrate a potential limitation in model-based analysis of SCS. The electrical 

properties of tissue local to the stimulating electrodes determine the direction and magnitude of 

the current flow generated during SCS. Therefore, the quantitative results from the FEM are related 

to the conductivity of the dura mater and other local tissues. Because the electrical properties of 

the dura are largely unknown, the assumed conductivity will affect model predictions. 

Computational models of neurostimulation are particularly well suited to describe qualitative 

trends in the neural response to stimulation as a function of specific parameters (e.g., stimulation 

configuration, pulse width). However, due to uncertainty associated with model parameters, such 

as tissue conductivities, model accuracy is limited with regards to absolute thresholds. As SCS 

systems continue to become more sophisticated with increased electrode counts and multiple 

waveform paradigms, it will become more challenging to use traditional clinical programming 

methods to exhaustively search the enormous parameter space to determine the optimal stimulation 

settings. Therefore, accuracy will play a critical role if these computational models are to help 

increase personalization of SCS technologies. In this case, additional experimental work is needed 

to ensure the accuracy of computational models of SCS. 
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2.5.4 Frequency-dependent tissue properties 

Biological tissues have frequency-dependent electrical properties that may affect the 3D 

voltage distributions generated during SCS [147]. To reduce computational demands, these 

frequency-dependent properties are typically ignored in computational modeling studies of SCS 

and other neuromodulation therapies [43], [151]. This assumption has been justified by previous 

studies showing that capacitive effects can largely be ignored for standard neurostimulation pulse 

widths and frequencies [144], [145]. However, novel forms of SCS apply stimulation pulses at 

much higher pulse frequencies, such as 10 kHz, which may affect the validity of this assumption 

[40], [152]. Therefore, we used a Fourier FEM approach to consider the effects of frequency-

dependent volume conduction during 10 kHz SCS [143]. The frequency-dependent conductivities 

and permittivities produced modest changes in the activation thresholds. The frequency-

independent solution only produced errors of -3 to 7% relative to the frequency-dependent solution 

(Figure 2.7C, Table 2.2). The largest percent errors occurred for axons located near the center of 

the dorsal columns due to tissue filtering effects. Percent errors were lower near the periphery of 

the spinal cord due to the largely frequency-independent conductivity and permittivity of CSF 

within the relevant frequency range. This result suggests that, even at pulse frequencies in the 10 

kHz frequency range, tissue capacitance has a small effect on volume conduction during SCS. 

2.5.5 Model reductions 

Spine anatomy. To reduce computational demands, SCS models often represent the 

complex 3D structure of the vertebral column with a simplified cylindrical domain or tube [43], 

[90], [102]. We considered the errors in activation thresholds predicted with a simplified bone 

domain relative to our base model with the cathode placed between two laminae in a realistic 3D 

spine anatomy. The simplified spine geometry produced modest errors in the activation thresholds 
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(Table 2.2) and suggests that the 3D spine anatomy may need to be considered for specific 

conditions. 

Dorsal rootlet anatomy. Computational models of SCS typically do not include an explicit 

representation of the anatomy and electrical properties of the dorsal roots or rootlets within the 

finite element mesh [9], [43], [90], [92], [111]. This simplification is equivalent to directly placing 

sections of the multicompartment models of DR fibers within the CSF domain and the more ventral 

aspects within the white matter of the spinal cord. However, in reality, DR fibers project rostrally 

along the spinal cord with several rootlets entering the spinal cord at each level [107]–[109], [153]. 

These rootlets have a different conductivity relative to CSF and their presence may affect the 3D 

voltage distribution generated during SCS. Therefore, this method produces an artificial 

discontinuity in the extracellular conductivity surrounding these model fibers and potential 

inaccuracies in the predicted 3D voltage distributions generated during SCS. Previous modeling 

studies have demonstrated that DR fiber activation typically occurs at the node of Ranvier closest 

to this artificial discontinuity between the CSF and the spinal cord [154]. Therefore, we performed 

model analysis to investigate if the rootlet anatomy affected either the activation thresholds or the 

site of action potential initiation. Within the same finite element mesh, we performed simulations 

with and without explicit representation of the dorsal rootlet anatomy by altering the conductivity 

of the rootlets to match either white matter or CSF. Inclusion of the dorsal rootlets within the FEM 

only produced small errors in the activation thresholds for the DR and spinal cord fibers (Table 

2.2). We also observed only minor differences in the site of action potential initiation in the DR 

fibers (data not shown). These results suggest that the anatomy of the DR fibers can largely be 

ignored in the FEM design. However, it is important to note that our model was designed to study 

SCS at lower thoracic spinal levels and rootlet structure varies at different spinal levels. For 
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example, at the cervical or the lumbar spinal levels, the dorsal roots are much denser and larger, 

which could affect activation thresholds and/or the site of action potential initiation [155], [156]. 

Therefore, it may be important to consider the dorsal rootlet anatomy in computational models at 

other spinal cord levels. 

2.5.6 Limitations 

While the modeling in this work was derived from standard computational practices, there 

were still several potential limitations. One of the main limitations was that no ground truth 

currently exists, so we used our most detailed model as our standard for model comparisons. In 

our spinal cord model, we uniformly positioned the sensory axons throughout the white matter. In 

reality, the spinal cord consists of heterogeneous fiber diameters and densities throughout the 

spinal cord [14]. However, our fiber size densities were based on histological data of the superficial 

dorsal columns which contain the large-diameter myelinated axons that most likely have the lowest 

thresholds to SCS [14], [15]. Another potential limitation of our model is that we separated our 

dorsal rootlets into five unique rootlets that did not combine to form a larger root, as is seen 

anatomically. However, we designed our model to match descriptions of the dorsal root entry zone 

available in the literature [108]–[110], [157] because this zone is the site of activation for rootlets 

close to the stimulating electrodes. Due to its relevance in clinical SCS [16], [158], [159], we 

focused our analyses on a simple bipolar stimulation configuration. It is not clear if the results of 

this study can be extended to monopolar or multipolar stimulation configurations and these 

stimulation configurations should be considered in future studies. It would also be important to 

consider additional physiological effects of SCS. For example, because 10 kHz SCS is typically 

applied at sub-sensory amplitudes, it is unlikely to directly activate dorsal column axons and 

several additional physiological mechanisms have been proposed (e.g., depolarization block, 
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desynchronization, membrane integration, tissue heating) [36], [43], [160]–[164]. Finally, to limit 

the number of parameters and corresponding model iterations required in this study, we did not 

investigate several factors that have been considered in previous computational modeling studies 

that have been shown to affect model-based activation thresholds, such as dorsal CSF thickness, 

dorsoventral position of the stimulating electrode, position of the spinal cord within the dural sac, 

the influence of collateral branching on dorsal column thresholds, and dorsal root threshold with 

respect to electrode location [43], [86]–[88], [93], [99], [111], [137], [140], [165]–[167]. 

2.6 Conclusions 

In this study, we utilized a computational modeling approach to investigate how several 

anatomical and technical factors affected the predicted neural response to thoracic level SCS. Our 

results suggest that anatomical variables, such as the position of the active electrodes relative to 

the spine, can significantly change activation thresholds to SCS. Variability in electrode 

impedance, can significantly affect the stimulation amplitudes required to produce neural 

activation with voltage-controlled, but not current-controlled, stimulation. To simplify 

computational demands, our results also suggest that it is possible to ignore anatomical features, 

such as the dorsal rootlets, without producing significant errors in model predictions. Our results 

also demonstrate that the choice of dura conductivity can have a significant influence on model-

based predictions. Therefore, this study highlights several issues that should be considered during 

clinical implementation of SCS and in future computational modeling studies investigating the 

physiological and technical factors affecting the neural response to SCS. 
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Chapter 3: Model-based Optimization of Spinal Cord Stimulation for Inspiratory Muscle 
Activation 

 
Part of the material for this chapter has been adapted with modifications from the following 

publication: 

 

1. H. J. Zander et al., “Model-based optimization of spinal cord stimulation for inspiratory 

muscle activation”, Neuromodulation: Technology at the Neural Interface (2021). doi: 

10.1111/ner.13415 [168] 

3.1 Abstract 

Objective 

High-frequency spinal cord stimulation (HF-SCS) is a potential method to provide natural 

and effective inspiratory muscle pacing in patients with ventilator-dependent spinal cord injuries. 

Experimental data has demonstrated that HF-SCS elicits physiological activation of the diaphragm 

and inspiratory intercostal muscles via spinal cord pathways. However, the activation thresholds, 

extent of activation, and optimal electrode configurations (i.e., lead separation, contact spacing, 

and contact length) to activate these neural elements remain unknown. Therefore, the goal of this 

study was to use a computational modeling approach to investigate the direct effects of HF-SCS 

on the spinal cord and to optimize electrode design and stimulation parameters. 
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Materials and Methods 

We developed a computer model of HF-SCS that consisted of two main components: 1) 

finite element models of the electric field generated during HF-SCS, and 2) multicompartment 

cable models of axons and motoneurons within the spinal cord. We systematically evaluated the 

neural recruitment during HF-SCS for several unique electrode designs and stimulation 

configurations to optimize activation of these neural elements. We then evaluated our predictions 

by testing two of these lead designs with in vivo canine experiments. 

Results 

Our model results suggested that within physiological stimulation amplitudes, HF-SCS 

activates both axons in the ventrolateral funiculi (VLF) and inspiratory intercostal motoneurons. 

We used our model to predict a lead design to maximize HF-SCS activation of these neural targets. 

We evaluated this lead design via in vivo experiments, and our computational model predictions 

demonstrated excellent agreement with our experimental testing. 

Conclusions 

Our computational modeling and experimental results support the potential advantages of 

a lead design with longer contacts and larger edge-to-edge contact spacing to maximize inspiratory 

muscle activation during HF-SCS at the T2 spinal level. While these results need to be further 

validated in future studies, we believe the results of this study will help improve the efficacy of 

HF-SCS technologies for inspiratory muscle pacing. 
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3.2 Introduction 

Patients with a severe cervical spinal cord injury sustain a devastating injury that often 

results in respiratory failure requiring long-term mechanical ventilation for survival in some 

patients [52], [56]. Of the nearly 13,000 patients admitted for spinal cord injuries in 2019, over 

300 patients still required a mechanical ventilator one-year post spinal cord injury [56].  

An injury to the high cervical spinal cord can sever the bulbospinal pathways, which 

connect the respiratory center in the medulla to both the diaphragm and intercostal motoneuron 

pools, yet segmental neural circuitry and reflexes below the site of injury often remain intact [7], 

[54]. While the neural connections from the brain to these motoneuron pools are lost, the 

motoneuron pools can still be activated and recruited through segmental reflex pathways below 

the level of injury or through the use of electrical stimulation [7], [73], [74]. 

High-frequency (>300 Hz) spinal cord stimulation (HF-SCS) of the upper thoracic spinal 

cord is a novel stimulation technique shown to produce naturalistic inspiratory activity in both the 

inspiratory intercostal muscles and diaphragm of C2-spinalized canines [7], [11], [68]–[70], [96]. 

It’s been hypothesized that this stimulation applied by electrodes in the ventral epidural space 

activates fibers associated with the intercostal-to-phrenic reflex pathway, which facilitates 

diaphragm activation in response to activation in the lower thoracic cord [59], [73], [74], [169]. 

However, it is unknown if the stimulation amplitudes utilized in HF-SCS (i.e., 4-6 mA) would 

produce direct activation of the fibers in this reflex pathway that are located within the ventrolateral 

funiculus (VLF) of the spinal cord [7]. Likewise, it is also unclear to what degree HF-SCS activates 

the inspiratory intercostal muscles by the recruitment of motoneurons near the stimulating 

electrodes. 

Therefore, the goal of this study was to utilize computational models and experimental 

testing to investigate HF-SCS recruitment of two target populations: 1) axons in the VLF 
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associated with the intercostal-to-phrenic reflex pathway, and 2) motoneurons innervating the 

inspiratory intercostal muscles. We evaluated HF-SCS recruitment with various lead designs and 

stimulation configurations. We then tested two of these lead designs via in vivo canine 

experiments. Our theoretical and experimental results suggest that within physiological 

stimulation amplitudes, HF-SCS activates axons in the VLF and inspiratory intercostal 

motoneurons within the T2-T4 spinal cord. Furthermore, our results suggest maximal inspiratory 

activity is produced with monopolar, bipolar, or tripolar stimulation configurations applied with 

wire electrode leads with longer contacts (e.g., 6 mm length) and larger edge-to-edge contact 

spacing (e.g., 12 mm). The results of our study will assist in the development of electrode designs 

to achieve optimal HF-SCS for inspiratory muscle pacing. 

3.3 Methods 

3.3.1 Computational model 

Finite element model. We developed a volume conductor model with dimensions that 

mimicked the canine model in our experimental studies. Our anatomical finite element model 

(FEM) consisted of the spinal cord, cerebrospinal fluid (CSF), dura, epidural space, vertebrae, 

intervertebral discs, and a surrounding bulk tissue (Figure 3.1A). We determined the canine 

geometry of the vertebral column and white and gray matter boundaries from experimental 

measurements and literature [170]–[174]. The spinal cord was ovular, with dimensions of 6.0 x 

7.7 mm [171]. The cord was surrounded by CSF and dura mater with a thickness of 0.3 mm, as 

well as nine identical and anatomically accurate vertebrae with intervertebral discs representing 

the vertebral column [97], [170]–[174]. We then created multiple lead designs that we positioned 
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in the epidural tissue on the ventral side of the spinal cord. To mimic experimental conditions, we 

placed the return electrode in the bulk tissue domain dorsal and lateral to the vertebral column. 

 

 

Figure 3.1: Finite element model (FEM) of high-frequency spinal cord stimulation (HF-SCS). (A) Exploded isometric view of the 
canine-specific FEM. The FEM included explicit representation of the spinal cord, CSF, dura, two four-contact percutaneous HF-
SCS leads, vertebral column, intervertebral discs, and the general thorax. The return electrode was positioned in the back 
musculature between the transverse process and spinal processes (see inset). (B) Contour plot of the voltages generated throughout 
the spinal cord and surrounding anatomy in response to monopolar (1 mA) stimulation applied through two adjacent electrodes. 

 

Based on previous experimental work, each lead configuration consisted of two parallel 

percutaneous wire leads (1.25 mm diameter) with four electrode contacts in the rostrocaudal 
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direction. We evaluated three main geometrical lead parameters: mediolateral spacing between the 

electrode arrays (lead separation), contact length, and contact spacing (edge-to-edge distance 

between adjacent contacts on an individual lead array).  

Following surface generation of the various tissues and electrodes, we discretized our FEM 

into tetrahedral elements using 3-matic (Materialise NV, Belgium) with higher node densities near 

the contacts. We imported our mesh into COMSOL Multiphysics (COMSOL Inc., USA) and 

defined electrical conductivities for each tissue type using data from the literature (Table 3.1). We 

applied a Neumann boundary condition of a unit current stimulus (1 A) to our stimulation 

electrodes, while inactive electrodes were modeled as equipotential with zero net current across 

their surface. We applied a Dirichlet boundary condition of 0 V at the return electrode. We 

calculated electrostatic FEM solutions with an iterative equation solver using the conjugate 

gradient method. For each possible active electrode, we repeated FEM calculations of the voltage 

distribution generated by a unit stimulus applied at that individual electrode. We used 

superposition to calculate the overall voltage distributions generated by bipolar or tripolar 

stimulation. 

 

Table 3.1: Electrical conductivities used in the finite element model. 

Tissue 
Conductivity 

(S/m) Reference 
Gray matter 0.230 [120] 
White matter (longitudinal) 0.600 [120] 
White matter (transverse) 0.083 [120] 
Cerebrospinal fluid 1.700 [120] 
Dura mater 0.600 [43] 
Extradural tissue 0.250 [92] 
Vertebral bone 0.020 [121], [147] 
Intervertebral disc 0.650 [92] 
General thorax 0.250 [120] 
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Neuron models. In this study, we used the software package, NEURON, to evaluate the 

direct effects of HF-SCS on the axonal pathways within the VLF and on local motoneurons [133]. 

To simulate HF-SCS induced activation of ascending fibers that can produce phrenic activation, 

we defined multi-compartment axon models ascending within the ventral half of our canine spinal 

cord (Figure 3.2C). We based these axon models on a previously published double-cable axon 

model with finite myelin impedance (Figure 3.2A) [127]. Based on previous studies, each axon 

had a diameter of 10 µm and a corresponding conduction velocity of 57 m/s [74], [175]. VLF fibers 

were distributed throughout the ventral half of the spinal cord to evaluate thresholds throughout 

the ventral and lateral funiculi (Figure 3.2C). We positioned a total of 156 axons in the ventral 

half of the spinal cord, with 82 fibers in the lateral funiculi. 

Previous work demonstrates that ventral HF-SCS at the T2 spinal level could activate  

upper thoracic inspiratory motoneurons, which predominantly produce inspiratory behavior [7], 

[60]. We therefore modeled intercostal motoneurons throughout the T1-T6 spinal cord (Figure 

3.2E). We adapted our motoneuron models from the work by Greiner et al., which contain a 

multicompartment soma, dendritic tree, axon initial segment, and a myelinated axon (Figure 3.2B) 

[6], [10]. We scaled the soma and axon diameters to match measurements from previous feline 

studies (50.0 µm and 3.6 µm, respectively) [176]. For each motoneuron pool (T1-T6), ten 

motoneuron cell bodies spanned both the spinal segment as well as the caudal half of the rostrally 

adjacent segment [177]–[179]. Each motoneuron axon exited the spinal cord, then moved caudally 

through the CSF and the dura and merged with other axons from the same spinal level, before 

exiting through the intraforaminal space (Figure 3.2E) [180].  

Neural recruitment by HF-SCS. We assessed the direct neural response to HF-SCS by 

applying the extracellular voltages calculated in the FEM to the neuron models. We interpolated 
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the scaled extracellular voltages onto the model axons and neurons described above and used a 

bisection algorithm (error < 1%) to calculate the activation threshold for each axon and neuron. 

We defined the activation threshold as the minimum stimulation amplitude necessary to generate 

one or more action potentials in a particular axon or motoneuron. For each set of model parameters, 

we calculated the activation threshold for each model axon and neuron in response to 200 µs 

rectangular stimulus pulses applied at a rate of 300 Hz. At stimulation amplitudes just above the 

neural threshold, neural activity consisted of a short initial transient period of activity in response 

to the initial stimulus pulses. However, this amplitude of stimulation did not generate sustained 

neuron activation throughout the duration of the pulse train. Slightly higher stimulus amplitudes 

were required to produce sustained activation when compared to activation in response to a single 

stimulus pulse. Therefore, to calculate the sustained activation thresholds for each axon or 

motoneuron, we applied 40 consecutive pulses and only evaluated activation during the last 20 

pulses of the stimulus train. Because our past experimental work has demonstrated that a pulse 

frequency of 300 Hz produces the optimal recruitment of inspiratory muscles, we only considered 

this optimal pulse frequency of 300 Hz in our model analysis [7], [11], [68]–[70], [96]. For each 

lead design, we calculated the activation thresholds for bilateral stimulation using monopolar, 

bipolar, and tripolar stimulation configurations. In all configurations, the stimulation electrode 

(cathode) was the second contact from the top (red electrodes in Figure 3.3A). For bipolar 

stimulation, the anode was positioned as the third contact from the top of each lead (bottom blue 

electrodes in Figure 3.3A) For tripolar stimulation, the anodes were the first and third contacts 

(blue electrodes in Figure 3.3A). 
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Figure 3.2: Multicompartment models of axons and intercostal motoneurons in the upper thoracic spinal cord. (A) We represented 
ascending spinal cord axons using a previously published multicompartment cable model of a myelinated axon [127]. (B) We 
generated motoneuron models that included a multi-tap soma, dendritic arborizations, an initial segment consisting of three 
compartments, and a myelinated axon [10], [181]. (C) We distributed ascending fibers (10 µm diameter) within the white matter 
of the cord throughout the ventral (white circles) and the ventrolateral funiculi (blue circles) to determine the activation thresholds 
of these axons. (D) We positioned the cell body of our motoneuron models within the ventral horn of the gray matter. Axons then 
traveled through the white matter, CSF, dura, and epidural space before entering the bulk tissue surrounding the cord. (E) Positions 
and trajectories of the motoneurons within the spinal cord, and their relationship to two leads with 3 mm long contacts and an edge-
to-edge contact spacing of 3 mm. 

 
Model investigations. We tested three primary variables in our computational models: 

mediolateral lead separation between the two parallel wire leads, electrode contact length, and 
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rostrocaudal edge-to-edge electrode contact spacing (Table 3.2). To examine the effect of each 

variable on the neural recruitment during HF-SCS, we calculated the activation thresholds for VLF 

fibers and motoneurons for each parameter set. 

Mediolateral lead separation. As described above, we examined HF-SCS applied via two 

parallel four-contact electrode arrays. The lead separation was the lateral distance between the 

axial midlines of the two leads. Due to the limited size of the backing to the electrodes, we 

calculated activation thresholds for lead separations of 0.0, 1.0, 1.5, 2.0, and 3.0 mm. 

Contact length. We considered the effects of contact size on the neural recruitment during 

HF-SCS by examining different contact lengths. We calculated the activation thresholds for 

contacts with lengths of 3 and 6 mm. 

Rostrocaudal contact spacing. We also considered the effects of rostrocaudal spacing 

between individual contacts. For contacts with a length of 3 mm, we calculated the activation 

thresholds for edge-to-edge spacings between individual electrodes of 1, 3, and 6 mm. For contacts 

with a length of 6 mm, we calculated the activation thresholds for edge-to-edge spacings of 1, 3, 

6, 9, and 12 mm. 



 59 

Table 3.2: List of parameters for each group of simulations. 

Lead separation (mediolateral) (Figure 3.3) 
 Lead separation 0.0, 1.0, 1.5, 2.0, and 3.0 mm 
 Contact length 6.0 mm 
 Contact spacings 12.0 mm 
 Neural targets VLF axons and motoneurons 
 Stimulation configurations Monopolar, bipolar, and tripolar 

 
Contact length (Figure 3.4) 

 Contact lengths 3.0 and 6.0 mm 
 Contact spacing 3.0 mm 
 Lead separation 2.0 mm 
 Neural targets VLF axons and motoneurons 
 Stimulation configurations Monopolar, bipolar, and tripolar 

 
Contact spacing (edge-to-edge) (Figure 3.5) 

 Contact spacings 3.0 mm contacts: 1.0, 3.0, and 6.0 mm 
6.0 mm contacts: 1.0, 3.0, 6.0, 9.0, and 12.0 mm 

 Contact lengths 3.0 mm and 6.0 mm 
 Lead separation 2.0 mm 
 Neural targets VLF axons and motoneurons 
 Stimulation configurations Monopolar, bipolar, and tripolar 

 
Stimulation configurations (Figure 3.3, Figure 3.4, Figure 3.5) 

 Stimulation configurations Monopolar, bipolar, and tripolar 
 Contact lengths 3.0 mm and 6.0 mm 
 Lead separation 0.0, 1.0, 1.5, 2.0, and 3.0 mm 
 Neural targets VLF axons and motoneurons 
 Contact spacings 3.0 mm contacts: 1.0, 3.0, and 6.0 mm 

6.0 mm contacts: 1.0, 3.0, 6.0, 9.0, and 12.0 mm 
The free parameters are indicated in bold. VLF = ventrolateral funiculus. 

3.3.2 Experimental testing 

Based on the model predictions, we evaluated the efficacy of two lead designs (the first 

design with 3 mm contacts and 3 mm edge-to-edge spacing and the second design with 6 mm 

contacts and 12 mm edge-to-edge spacing) via in vivo canine experiments. Experiments were 

performed in three adult mongrel male dogs weighing 30.0 – 32.7 kg (mean: 31.4 ± 0.8 kg) under 
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the approval of the Institutional Animal Care and Use Committees of Case Western Reserve 

University. Animals were initially anesthetized with pentobarbital sodium (25 mg/kg), given 

intravenously. We provided additional doses (1–2 mg/kg) as needed. It is important to note that in 

our unpublished observations we have found that pentobarbital results in no significant changes in 

inspiratory muscle activation during HF-SCS.  Animals were tracheostomized, intubated with a 

cuffed endotracheal tube (10 mm ID) that was sutured in the trachea in the midcervical region and 

mechanically ventilated. We placed a catheter in the femoral vein to administer fluids and 

supplemental anesthesia. We monitored blood pressure and heart rate (Waveline Pro Multi-

Function Monitor, DRE, Louisville KY) via a femoral arterial catheter. We maintained the body 

temperature at 38 ± 0.5°C with a heating blanket (Harvard Apparatus, Holliston, MA). We 

monitored end-tidal PCO2 at the trachea and oxygen saturation from the earlobe (Waveline Pro 

Multi-Function Monitor). Tidal volume was measured by electrical integration of the flow signal 

from a pneumotachograph (Series 3700, Hans Rudolph, Shawnee, KS). For lead placement, we 

performed a laminectomy at the T4–T5 level and inserted each lead into the ventral epidural space 

at the midline and advanced the leads to the T2 spinal region. To secure the parallel wire leads in 

place, we fixed them to an 8 mm wide polyurethane plastic backing.  

We used a square-wave pulse stimulator (model S88; Grass Technologies, West Warwick, 

RI) equipped with a stimulus isolation unit (PSIU6; Grass Technologies) to provide monopolar, 

bipolar, or tripolar stimulation. We assessed changes in airway pressure generation during ventral 

SCS at the T2 level over a wide range of stimulus amplitudes and frequencies (0.5–6 mA per 

electrode lead, 20 – 1,000 Hz). Stimulus train duration was set at 0.8 s since a plateau in pressure 

generation is generally achieved at this time. Stimulus pulse width was maintained at 0.2 ms. A 

remote ground electrode was positioned in the back musculature. In all trials, SCS was performed 
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after hyperventilation-induced apnea. Following temporary separation from the ventilator, airway 

pressure generation during SCS using a pressure transducer (MP45; Validyne, Northridge, CA) 

connected to the endotracheal tube, during airway occlusion at functional residual capacity was 

measured. All recordings were monitored and stored on a computer using a data acquisition and 

analysis system (Spike 2 with 1401 interface: Cambridge Electronic Design, Cambridge, UK).  

Experimental protocol and data analysis. In separate trials, we experimentally tested two 

lead designs within each animal. We tested one lead design with electrode contacts having a length 

of 3 mm and an edge-to-edge spacing of 3 mm, and a second lead design with electrode contacts 

having a length of 6 mm and edge-to-edge spacing of 12 mm. Using these two lead designs, we 

evaluated the generation of airway pressure and the total volume inhaled in response to stimulation 

using the same three stimulation configurations considered in our computational model analyses: 

monopolar, bipolar, and tripolar configurations. We performed these measurements over a range 

of stimulation amplitudes for both lead designs and all three stimulation configurations. Following 

the convention in the clinical SCS field, we have reported model and experimental stimulation 

amplitudes as the sum of the total cathodic output (e.g., 1 mA applied at the right cathode and 1 

mA applied at the left cathode corresponds to a stimulation amplitude of 2 mA). We applied each 

stimulation amplitude 2-3 times and reported all experimental data as mean ± standard error of the 

mean. We performed statistical analysis using a repeated measures analysis of variance and paired 

t-test. We established statistical significance as a two-sided p-value of < 0.05.  
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3.4 Results 

3.4.1 Computational model predictions 

Mediolateral lead separation. We initially used our computational model to test how the 

distance separating the two parallel HF-SCS lead affected the activation thresholds for the 

ascending VLF fibers. We calculated activation thresholds for lead separations of 0.0, 1.0, 1.5, 2.0, 

and 3.0 mm (Figure 3.3). For monopolar stimulation, the median activation thresholds for the VLF 

fibers were 1.44, 1.42, 1.40, 1.39, and 1.39 mA, respectively. Bipolar thresholds were 1.26, 1.25, 

1.24, 1.23, and 1.20 mA while tripolar thresholds were 1.27, 1.26, 1.25, 1.23, and 1.22 mA. These 

results show a small maximum percentage difference (< 5%) in the activation thresholds for the 

VLF fibers resulting from mediolateral distance between the two leads. Therefore, lead separation 

did not have a significant effect on HF-SCS recruitment of the VLF fibers. We also evaluated the 

effect of lead separation on motoneuron thresholds, but as with the VLF fibers, found limited 

differences in recruitment between the 5 tested lead separations (data not shown). 

Contact length. In our computational model, we evaluated neural recruitment during HF-

SCS as a function of contact length. We calculated the activation thresholds for VLF fibers and 

T2-T5 motoneurons. We evaluated two contact lengths (3 and 6 mm) on VLF and motoneuron 

thresholds with an electrode spacing of 3 mm (Figure 3.4). For axons within the VLF, the 3 mm 

contacts had median activation thresholds of 1.22, 1.26, and 1.36 mA for monopolar, bipolar, and 

tripolar stimulation, respectively (Figure 3.5B). The 6 mm contacts had median thresholds of 1.42, 

1.29, and 1.30 mA, respectively (Figure 3.5B). Therefore, 3 mm contacts activated VLF fibers at 

lower monopolar amplitudes, while the 6 mm contacts provided more efficient recruitment for 

tripolar stimulation. However, these differences were small, and corresponded to a mean 

percentage difference of only 5.7%.  
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Figure 3.3: Effect of mediolateral lead separation on neural recruitment. (A) We performed model analysis for mediolateral lead 
separations of 0.0, 1.0, 1.5, 2.0 and 3.0 mm (contact length of 6 mm, 12 mm contact spacing). (B) We represented activation 
thresholds for axons within the VLF for the five lead separations for monopolar, bipolar, and tripolar stimulation using standard 
box plots. For each box plot, the minimum, 25th percentile, median, 75th percentile, and maximum activation thresholds are 
represented by the bottom whisker, bottom of the box, black horizontal line, top of the box, and top whisker, respectively. 
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For monopolar stimulation, activation thresholds of the T2-T5 motoneurons were similar 

for both contact lengths (mean percentage difference of 14.1%) (Figure 3.4B). For bipolar and 

tripolar stimulation, activation thresholds of T2, T3, and T5 motoneurons were also similar for 

both contact lengths (mean percentage difference of 7.5% and 3.0% for bipolar and tripolar 

stimulation, respectively) (Figure 3.4B). However, for bipolar and tripolar stimulation, 6 mm 

contacts recruited up to 20% more T4 motoneurons for a given stimulation amplitude (Figure 

3.4B). Therefore, relative to the shorter 3 mm contacts, 6 mm contacts not only provided similar 

recruitment of VLF fibers, but the longer contacts could recruit a larger number of motoneurons 

at a given stimulation amplitude. 

 

 

Figure 3.4: Effect of contact length on neural recruitment. (A) Positioning of the motoneuron pools (left) compared to two electrode 
configurations (right) with contact lengths of 3 and 6 mm (3 mm edge-to-edge contact spacing, 2 mm mediolateral lead separation). 
(B) Motoneuron thresholds for both contact lengths for monopolar, bipolar, and tripolar stimulation configurations. 
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Rostrocaudal contact spacing. The edge-to-edge spacing or vertical distance between 

adjacent contacts on a given lead had a significant effect on the activation thresholds for both VLF 

fibers and motoneurons. For axons within the VLF, larger rostrocaudal contact spacing generally 

produced the lowest activation thresholds (Figure 3.5B). For a contact length of 3 mm, tripolar 

stimulation produced median activation thresholds of 2.36 and 1.06 mA for contact spacings of 1 

and 6 mm, respectively. For a contact length of 6 mm, tripolar stimulation produced median 

activation thresholds of 1.71 and 1.23 mA for contact spacings of 1 and 12 mm, respectively. 

Rostrocaudal contact spacing showed similar trends of motoneuron recruitment. As 

expected, monopolar thresholds for recruitment were similar across all the tested contact spacings 

(data not shown). However, bipolar and tripolar stimulation showed increased recruitment for large 

contact spacings (>6 mm) (Figure 3.5C). For tripolar stimulation, we measured complete T2 

motoneuron recruitment at 10.5, 8.0, 7.0, 6.75, and 6.75 mA for contact spacings of 1, 3, 6, 9, and 

12 mm, respectively. Complete recruitment of T4 motoneurons only occurred with contact 

spacings of 9 or 12 mm (10.0 and 6.75 mA, respectively) (Figure 3.5C). Because their axons 

projected close to the cathode (Figure 3.2E), T3 motoneuron recruitment was largely unaffected 

by contact spacing and complete recruitment occurred below 5.5 mA for all contact spacings 

(Figure 3.5C). In general, these results suggest that larger rostrocaudal spacing or edge-to-edge 

distance between adjacent contacts should increase the recruitment of axons within the VLF and 

inspiratory motoneurons. 
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Figure 3.5: Effect of rostrocaudal contact spacing on neural recruitment. (A) Locations of the cell bodies of the various relevant 
motoneuron pools (left) and the various contact spacings tested for the 6 mm contact electrodes (right) (2 mm lead separation). (B) 
Recruitment of VLF fibers. For a contact length of 3 mm, we evaluated edge-to-edge contact spacings of 1, 3, and 6 mm. For a 
contact length of 6 mm, we tested edge-to-edge contact spacings of 1, 3, 6, 9, and 12 mm. Due to their common use in clinical 
devices, we evaluated thresholds for the following stimulation configurations: monopolar, bipolar, and tripolar. Each box plot 
shows the activation threshold for the first axon, 25, 50, 75, and 100% of VLF fibers. (C) Motoneuron recruitment by spinal level 
(T2-T5) as a function of contact spacing. These recruitment curves are for tripolar stimulation with 6 mm contacts and 2 mm 
mediolateral lead separation. 
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Optimal lead design. Based on the model predictions described above, we hypothesized 

that a lead design with long contacts (6 mm) and large rostrocaudal contact spacing (12 mm) would 

lead to optimal recruitment of both VLF fibers and motoneurons (Figure 3.6A). Therefore, we 

performed further computational analyses with this type of lead design along with a second 

suboptimal lead design that had smaller contacts and smaller contact spacings (3 mm contact 

length, 3 mm contact spacing) (Figure 3.6A). 

For recruitment of VLF fibers with monopolar stimulation, the lead design with 3 mm 

contacts produced lower activation thresholds relative to the lead design with 6 mm contacts (mean 

percent difference of -15.1%) (Figure 3.6B). However, the 6 mm lead design produced lower 

activation thresholds for both bipolar and tripolar stimulation (mean percent difference of 1.5% 

and 8.2%, respectively) that were similar to the activation thresholds for monopolar stimulation 

with the 3 mm lead design (Figure 3.6B).  

For motoneuron recruitment with monopolar stimulation, both lead designs produced 

similar activation thresholds (mean percent difference of 11.3%) (top row in Figure 3.6C, D). 

However, for a given stimulation amplitude (e.g., 7.5 mA), the 6 mm lead design recruited a higher 

total percentage of motoneurons relative to the 3 mm lead design for both bipolar (82.5% vs. 37.5% 

of T2-T5 motoneurons) and tripolar (77.5% vs. 37.5% of T2-T5 motoneurons) stimulation (middle 

and bottom rows in Figure 3.6C, D).  

These computational modeling results suggest that monopolar stimulation with either lead 

design should produce similar recruitment of VLF fibers and inspiratory motoneurons. However, 

at a given HF-SCS amplitude, the lead design with 6 mm contacts and 12 mm contact spacing 

should produce improved neural recruitment for bipolar and tripolar stimulation. 
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Figure 3.6: Neural recruitment for theoretically suboptimal and optimal lead designs. (A) The suboptimal lead configuration had 
a contact length of 3 mm and rostrocaudal edge-to-edge contact spacing of 3 mm. The optimal lead design had a contact length of 
6 mm and rostrocaudal edge-to-edge contact spacing of 12 mm. Both lead designs had a mediolateral lead spacing of 2 mm. (B) 
Activation thresholds for axons within the VLF for the two lead designs for monopolar, bipolar, and tripolar stimulation. Boxplots 
represent recruitment of first axon, then 25, 50, 75, and 100% recruitment of VLF fibers. (C) Percentage of motoneurons recruited 
within each spinal cord segment as a function of stimulation amplitude for monopolar (top row), bipolar (middle row), and tripolar 
(bottom row) stimulation for the suboptimal lead design. (D) Same as in (C) except for the optimal lead design. 
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3.4.2 Experimental testing 

Based on the computational model analyses described in the previous section, we 

performed in vivo canine experiments to evaluate the efficacy of the suboptimal (3 mm contacts 

and 3 mm contact spacings) and optimal (6 mm contacts and 12 mm contact spacings) lead designs. 

Mean blood pressure and heart rate remained stable throughout the period of stimulation. The 

mean spontaneous breathing tidal volume was 301±7 ml with an airway pressure of 17.2±0.4 

cmH2O. To evaluate the efficacy of these lead designs in generating inspiratory activity, we 

assessed changes in airway pressure generation and inspired volume over a wide range of stimulus 

amplitudes during ventral HF-SCS at the T2 spinal level. Although we tested a wide range of 

stimulus frequencies, we only reported the results for a pulse frequency of 300 Hz because mean 

airway pressure and inspired volume were always largest at this pulse frequency in support of our 

previous work [7], [11], [68]–[70], [96]. Mean negative airway pressure generation and inspired 

volume over a wide range of HF-SCS amplitudes are presented in Figure 3.7. There were 

progressive increases in the magnitude of airway pressure generation and inspired volume with 

increasing HF-SCS amplitude from 0 to 4 mA. The maximal inspiratory pressures typically 

occurred at HF-SCS amplitudes around 4 mA. Mean maximal negative airway pressures (Paw) 

and inspired volumes are presented in Table 3.3. Mean maximal negative airway pressures (Paw) 

for the suboptimal lead design were 84±6, 64±3, and 58±6 cmH2O for monopolar, bipolar, and 

tripolar stimulation, respectively. Mean maximal inspired volumes for the suboptimal lead design 

were 1239±159, 1182±131, and 1091±103 mL for monopolar, bipolar, and tripolar stimulation, 

respectively. The maximal inspiratory pressures for the optimal lead were 89±6, 80±2, and 82±10 

cmH2O for monopolar, bipolar, and tripolar stimulation, respectively. Mean maximal inspired 
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volumes for the optimal lead design were 1316±138, 1283±73, and 1281±140 mL for monopolar, 

bipolar, and tripolar stimulation, respectively. 

 

 

Figure 3.7: In vivo responses to ventral HF-SCS. Mean changes in (A) airway pressure and (B) inspired volumes as a function of 
stimulation amplitude for monopolar, bipolar, and tripolar stimulation. The gray dashed lines indicate the mean airway pressure 
(17.2 ± 0.4 cmH2O, top) and mean spontaneous breathing tidal volume (301 ± 7 ml, bottom). In the left column, HF-SCS was 
applied via two parallel leads with contact lengths of 3 mm and rostrocaudal contact spacings of 3 mm. In the right plots, HF-SCS 
was applied via two parallel leads with contact lengths of 6 mm and rostrocaudal contact spacings of 12 mm. The reported amplitude 
represents the total current from both electrode arrays (e.g., 12 mA total current equates to 6 mA per cathode). 
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Table 3.3: In vivo maximal inspiratory pressures for the two lead designs. 

 Maximal Negative Paw (cmH2O) Inspired Volume (mL) 
Lead design / Stimulation 
configuration Monopolar Bipolar Tripolar Monopolar Bipolar Tripolar 

3 mm contact, 3 mm 
spacing 84 ± 6 64 ± 3* 58 ± 6* 1239 ± 159 1182 ± 131 1091 ± 103* 

6 mm contact, 12 mm 
spacing 89 ± 6 80 ± 2** 82 ± 10** 1316 ± 138 1283 ± 73 1281 ± 140 

*P < 0.05 compared to monopolar stimulation configuration. **P<0.05 between the two lead 
designs for the given stimulation configuration. 

3.5 Discussion 

This study represents the first computational modeling analysis to assess which neural 

elements are directly activated by upper thoracic HF-SCS to restore inspiration and to optimize 

lead design. Furthermore, we tested our predictions in an animal model of HF-SCS. We believe 

that this approach provides significant insight into the mechanisms in which HF-SCS activates 

inspiratory muscles and provides information to optimize the stimulation parameters and electrode 

design. 

3.5.1 The mechanisms of spinal cord stimulation for inspiration 

The theoretical and experimental findings of this study provide insight into the mechanisms 

of action of ventral HF-SCS to activate the inspiratory muscles. The model-based thresholds for 

axons in the VLF and the upper thoracic motoneurons were within the therapeutic range of canine 

experiments of SCS for inspiration. In a canine model, experimental measures of inspiratory 

pressure in response to 300 Hz stimulation using parallel wire leads (6 mm contacts, 12 mm gaps) 

begin to build at amplitudes as low as 0.5 mA. The maximal inspiratory pressure appears to peak 

at around 4-6 mA of total current [7]. While strong diaphragm recruitment is vital for inspiratory 

pressure generation, concurrent activation with the inspiratory intercostals has previously been 
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shown to result in changes in inspiratory pressures greater than the sum of either individual muscle 

group [182]. Therefore, activation of only one muscle group, such as the diaphragm, results in 

limited inspiratory pressures [72], [182]. Based on our modeling results, stimulation as low as 2 

mA resulted in near complete VLF activation for monopolar, bipolar, or tripolar stimulation with 

a sufficiently large contact spacing (>6 mm) (Figure 3.4B). However, for motoneurons with the 

optimal stimulation configuration (6 mm contact length, 12 mm contact spacing), 2 mA of 

stimulation recruited only 20% of T3 and 30% of T4 motoneurons, with no activation in either T2 

or T5 motoneurons (Figure 3.6D). But at higher stimulation amplitudes, such as 7 mA monopolar 

stimulation, we predicted complete activation of T2 and T3 motoneurons, and recruitment of 60% 

of T4 motoneurons (Figure 3.6D). Bipolar and tripolar stimulation resulted in even stronger 

recruitment of T4 motoneurons, and even showed recruitment of T5 motoneuron (Figure 3.5D, 

Figure 3.6D). The predicted higher motoneuron activation thresholds may partly explain why peak 

inspiratory pressures are measured at 4-6 mA in vivo. The increased and broader recruitment of 

motoneurons at these higher amplitudes could aid diaphragm activation to produce large 

inspiratory pressures. Future studies will be needed to better quantify, validate, and confirm this 

effect.  

3.5.2 Theoretical optimal lead design 

We evaluated how three electrode design parameters affected the activation of VLF fibers 

and motoneurons. These model electrode configurations mimicked the design parameters that we 

evaluated in our in vivo experiments. We initially evaluated the effect of the mediolateral lead 

spacing or separation between the two parallel electrode arrays. Due to the finite size of the 

electrode backing, the maximum allowable separation between the percutaneous leads was 3 mm. 

Our analysis showed a minimum in threshold with a 3 mm separation, although the differences in 
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threshold when compared to the 1.5 mm or 2 mm lateral separations were minor (<3% difference 

in median VLF thresholds) (Figure 3.3). 

Contact length had a small effect on activation thresholds. With regards to axons within 

the VLF, shorter 3 mm contacts could lead to slightly lower thresholds for monopolar stimulation 

relative to longer 6 mm contacts. However, for bipolar and tripolar stimulation, the shorter contacts 

required significantly higher stimulation amplitudes to activate VLF fibers (Figure 3.5B). The 3 

mm and 6 mm contacts produced small differences in motoneuron recruitment, especially for 

monopolar stimulation (Figure 3.4B). However, at a given stimulation amplitude, the short 3 mm 

contacts did recruit a smaller percentage of caudal T4 motoneurons for bipolar and tripolar 

stimulation (Figure 3.4B) that may reduce the efficacy of these shorter contacts in restoring 

inspiration. 

The rostrocaudal edge-to-edge spacing between individual contacts had a large effect on 

stimulation thresholds, particularly for bipolar and tripolar stimulation. Large contact spacings (>6 

mm) resulted in the lowest median activation thresholds for activation of axons within the VLF, 

especially for bipolar and tripolar stimulation (Figure 3.5B). Furthermore, large rostrocaudal 

separation between individual contacts typically recruited the largest number of motoneurons, 

including rostral and caudal motoneurons, for a given stimulation amplitude (Figure 3.5C). We 

obtained the maximum motoneuron recruitment for a lead design with contacts with a length of 6 

mm and an edge-to-edge spacing of 12 mm. 

Stimulation configuration had a large effect on the activation thresholds for both VLF 

fibers and motoneurons. For small rostrocaudal spacing between individual contacts (1-3 mm), 

monopolar stimulation resulted in the lowest activation thresholds for both VLF fibers and 

motoneurons relative to bipolar and tripolar stimulation (Figure 3.5B, Figure 3.6C). However, 
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for large contact spacings (>6 mm), bipolar and tripolar stimulation produced lower activation 

thresholds for VLF fibers (Figure 3.5B, Figure 3.6B) and recruited a larger percentage of more 

caudal motoneurons from the T4 and T5 levels (middle and bottom rows in Figure 3.6C-D).  

Therefore, our computational modeling results suggest that the ideal lead design would 

have longer contacts with larger edge-to-edge spacing between individual contacts. This result is 

not obvious as previous modeling work of spinal cord stimulation for pain demonstrated non-

monotonic relationships between design parameters, such as contact length and contact spacing, 

and neural recruitment as a function of stimulation amplitude [99], [100]. This previous modeling 

work along with our work within the context of HF-SCS for inspiration, demonstrate that an 

optimal electrode size, spacing, and stimulation configuration can be found that produce the three-

dimensional electric fields that optimize neural recruitment. As described above, past experimental 

evidence suggests that concurrent activation of axons within the VLF and upper thoracic 

motoneurons leads to maximum inspiratory pressure [7], [182]. Therefore, a lead design with 

longer contacts and larger rostrocaudal contact spacing theoretically provides the best ability to 

activate VLF fibers and recruit a large number of motoneurons, especially from more caudal spinal 

levels. 

3.5.3 In vivo testing 

We then performed experimental measurements to assess the potential efficacy of our 

theoretical-optimal lead design relative to a suboptimal lead design. Model predictions for these 

two lead designs are shown in Figure 3.6 and the corresponding experimental measurements of 

airway pressure and inspired volumes are shown in Figure 3.7. In general, our in vivo results were 

in excellent agreement with our computational model predictions. 
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For the suboptimal lead design (3 mm contact length, 3 mm contact spacing), our 

computational model predicted that monopolar stimulation would activate the largest percentage 

of both VLF fibers and motoneurons relative to bipolar or tripolar stimulation (Figure 3.6B-C). 

The in vivo results show a similar trend to the model predictions, with peak inspiratory pressures 

of 84 ± 5.8, 64 ± 3.2, 58 ± 5.5 cmH2O, for monopolar, bipolar, and tripolar, respectively (Figure 

3.7, Table 3.3).  

For the theoretical-optimal lead design (6 mm contact length, 12 mm contact spacing), our 

computational model predicted that bipolar stimulation would lead to the lowest thresholds for 

VLF fibers and broad recruitment of both nearby (T2) and more caudal (T3-T5) motoneurons 

(Figure 3.6B, D). However, our in vivo data showed no statistically significant differences in HF-

SCS-induced inspiratory pressures or inspired volumes between monopolar, bipolar, or tripolar 

stimulation with this lead design (Figure 3.7, Table 3.3). A lack of significant differences could 

be due to the small number of animals that we considered in this study. 

However, our computational model predictions and experimental results did agree when 

comparing the two lead designs. First, our computational model predicted similar monopolar 

thresholds between the two lead designs. This prediction agreed with the experimental 

measurements in which both lead designs produced similar changes in airway pressure and 

inspired volumes (Figure 3.7, Table 3.3). For bipolar and tripolar stimulation, our computational 

model predicted that the optimal lead design would activate a larger number of both VLF fibers 

and motoneurons (Figure 3.6). This prediction agreed with our in vivo data in which we detected 

statistically significant higher peak inspiratory pressures generated during bipolar and tripolar 

stimulation with the optimal lead design relative to the suboptimal lead design (Table 3.3). 

Therefore, our computational modeling and experimental results largely support the potential 
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advantages of a lead design with longer contacts and larger edge-to-edge contact spacing to 

improve inspiratory activity generated during ventral HF-SCS. 

The main neural targets we modeled in this study, the VLF fibers and upper thoracic 

motoneurons, are thought to lead to downstream activation of both the diaphragm and the 

inspiratory intercostal muscles [7], [11], [59], [60], [72]. Our experimental measurements have 

demonstrated that the diaphragm and inspiratory intercostals contribute ~47 and ~53%, 

respectively, of the total inspiratory pressures in response to HF-SCS [70]. This result is different 

than spontaneous breathing in which the inspiratory intercostals are only responsible for ~31% of 

the tidal volume [70]. Our current work highlights that HF-SCS at the T2 level can lead to strong 

recruitment of VLF fibers and activation of motoneurons at the thoracic interspaces with the largest 

inspiratory contributions [60]. 

3.5.4 Study limitations 

Although our data demonstrated a strong agreement between model predictions and 

experimental testing, our study had several potential limitations. One potential limitation was that 

our computational model did not consider the downstream effects of HF-SCS on the neural circuits 

responsible for inspiration. This limitation did not allow our model to capture the significant 

differences in motor output as function of pulse frequency that have been demonstrated in our 

previous work [68]. Higher frequencies (>200 Hz) result in greater inspiratory pressures and 

volumes at lower stimulation amplitudes that is likely a result of summation of excitatory post-

synaptic potentials (EPSPs) in higher-order neurons in the inspiratory pathways [67], [68]. To 

better characterize indirect effects of stimulation additional post-synaptic neural elements are 

required to evaluate how these EPSP’s lead to both phrenic motoneuron activation as well as post-

synaptic inspiratory intercostal activation [67]. While it is known from the literature that these 
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pathways do exist as reflex arcs, the synaptic layout and details of the connections between VLF 

and the phrenic motoneurons remains unknown. More research will be needed to fully describe 

these structures [11], [59], [73], [169]. 

To improve model predictions, these network effects can be incorporated into future model 

analyses following methods utilized in other computational modeling studies of SCS [9], [67], 

[181]. Furthermore, we did not consider additional neural elements, such as afferent fibers and 

interneurons making direct synaptic connections onto the intercostal motoneurons, that could also 

play a role in HF-SCS-induced inspiration [60]. In this initial modeling study, we focused our 

attention on the likely first-order neural targets of ventral HF-SCS. VLF fibers are large, 

myelinated axons positioned only a few millimeters away from the electrode and are therefore 

likely to be recruited during ventral HF-SCS. Likewise, the ventral trajectory of motoneurons also 

make them likely to be activated by stimulation. Incoming afferents and interneurons, in 

comparison, are much more dorsal relative to the VLF or the motoneurons and thus less likely to 

be directly activated by ventral HF-SCS. Furthermore, it is important to recognize that while some 

studies have evaluated the morphology of thoracic spinal interneurons, there are many unknowns 

regarding the connections, morphology, ion channels, and functional role they play in modulating 

respiratory motoneurons [175]. Future studies will be invaluable to provide the information 

necessary to build the next generation of computational models for optimizing ventral HF-SCS to 

restore inspiration. 

With regards to the experimental measurements, it is important to consider secondary 

effects of the stimulation. It is possible that the HF-SCS could produce unwanted side effects, such 

as the activation of limb muscles. While we have observed these effects in past experiments that 

require high stimulation amplitudes, these effects were minimal during HF-SCS at 300 Hz at low 
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stimulus amplitudes. Additionally, as in previous studies, we observed stable heart rates and blood 

pressures in response to HF-SCS [7]. Finally, it could be hypothesized that stimulation may trigger 

activity of brainstem respiratory centers which lead to inspiratory muscle activation. However, our 

previous investigations have demonstrated that brainstem respiratory centers are not involved in 

the observed responses to HF-SCS [71]. 

3.6 Conclusions 

This study represents the first attempt to employ a computational modeling approach to 

investigate the mechanisms of HF-SCS to activate the inspiratory muscles and to optimize lead 

design to best target spinal respiratory neurons. In general, our computational model predictions 

demonstrated excellent agreement with our experimental testing. We evaluated many lead designs 

and stimulation configurations to maximally recruit fibers in the VLF and to directly activate 

motoneurons. Our results suggest that maximal activation can be achieved with longer (e.g., 6 mm) 

contacts and a larger edge-to-edge spacing (e.g., 12 mm) between electrodes. While these results 

need to be further validated in future studies, we believe the results of this study will help improve 

the efficacy of SCS technologies for inspiratory muscle pacing. 
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Chapter 4: Evoked Potentials Recorded from the Spinal Cord During Neurostimulation for 
Pain 

 

Part of the material for this chapter has been adapted with modifications from the following 

publication: 

 

1. C. J. Anaya, H. J. Zander et al., “Evoked Potentials Recorded From the Spinal Cord 

During Neurostimulation for Pain: A Computational Modeling Study”, Neuromodulation., 

vol. 23, no. 1, 2020, doi: 10.1111/ner.12965. [105] 

4.1 Abstract 

Objectives 

Spinal cord stimulation (SCS) for pain is typically implemented in an open-loop manner 

using parameters that remain largely unchanged. To improve the overall efficacy and consistency 

of SCS, one closed-loop approach proposes to use evoked compound action potentials (ECAPs) 

recorded from the SCS lead(s) as a feedback control signal to guide parameter selection. The goal 

of this study was to use a computational modeling approach to investigate the source of these 

ECAP recordings and technical and physiological factors that affect their composition. 
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Methods:  

We developed a computational model that coupled a finite element model of lower thoracic 

SCS with multicompartment models of sensory axons within the spinal cord. We used a 

reciprocity-based approach to calculate SCS-induced ECAPs recorded from the SCS lead. 

Results 

Our model ECAPs contained a triphasic, P1, N1, P2 morphology. The model P2-N1 

amplitudes and conduction velocities agreed with previous experimental data from human 

subjects. Model results suggested that the ECAPs are dominated by the activation of axons with 

diameters 8.7-10.0 µm located in the dorsal aspect of the spinal cord. We also observed changes 

in the ECAP amplitude, timing, and shape due to the electrode location relative to the vertebrae 

and spinal cord, as well as from alternate stimulation configurations and pulse widths.  

Conclusion 

Our modeling results suggest that clinically effective SCS relies on the activation of a large 

number of axons within a narrow fiber diameter range and that several factors affect the 

composition of the ECAP recordings. These results can improve how we interpret and implement 

these recordings in a potential closed-loop approach to SCS. 

4.2 Introduction 

Spinal cord stimulation (SCS) is a common neuromodulation therapy for chronic pain 

conditions (e.g., failed back surgery syndrome) that are often refractory to conventional treatments. 

The goal of conventional SCS is to deliver electrical stimulation to the large-diameter afferent 

axons located within the dorsal columns (DCs) of the spinal cord in an attempt to create analgesia 
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via “gating” mechanisms of pain modulation [13], [183]. However, even after decades of clinical 

use and dramatic technological improvements, SCS has shown only limited success rates 

(approximately 58% of patients receive ≥ 50% reduction in pain) [184]. 

To potentially improve clinical outcomes, a novel closed-loop SCS paradigm has been 

proposed that utilizes evoked compound action potentials (ECAPs) in the spinal cord as a feedback 

control signal for stimulation [2], [47]. This approach uses inactive electrodes in the implanted 

SCS arrays to record ECAPs generated during SCS. These ECAPs reflect the summation of 

individual action potentials generated by an SCS pulse and provide a quantitative measure of 

neural recruitment in the spinal cord. The ECAP amplitude serves as a control signal to 

continuously define stimulation parameters that provide pain relief while minimizing discomfort. 

While the therapeutic potential of this approach was demonstrated in a recent open-label 

uncontrolled clinical study [47], the physiological factors influencing these recordings has not been 

thoroughly investigated. This knowledge gap may limit our ability to use this type of closed-loop 

approach to optimize SCS-induced analgesia.  

Experimental recordings of spinal cord ECAPs in humans report a triphasic morphology – 

an initial positive wave (P1), followed by a sharp negative peak (N1), and ending with a second 

positive wave (P2) – and conduction velocities that vary from 37 to 82 m/s depending on the study 

[185]–[187]. A study by Parker et al. demonstrated that it was possible to record these ECAPs 

during clinical SCS by using the inactive electrodes on the implanted SCS trial lead [46]. The 

authors reported that the ECAP amplitude was correlated with the degree of SCS-induced 

paresthesia coverage over the painful area. The ECAP recordings demonstrated conduction 

velocities in the range of 49-65 m/s, suggesting that SCS activated axons with diameters between 

8.1-10.8 μm [46]. 
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Several factors may affect neural recruitment during SCS and the corresponding spinal 

ECAP. For example, SCS-induced ECAPs recorded in a sheep model showed that the ECAP 

amplitude was attenuated when stimulation and recording was performed on electrodes located 

beneath the vertebral lamina [136]. The spinal cord also moves due to changes in body position 

(e.g., standing, sitting, prone) as well as respiration and heartbeat [188]. This movement alters the 

distance between the spinal cord and the stimulating electrodes and can lead to overstimulation or 

understimulation for a given set of stimulation parameters. A closed-loop SCS system using 

ECAPs as a control signal may improve outcomes by accounting for these potential changes in the 

distance between the spinal cord and the stimulating electrodes. The feasibility of the closed-loop 

approach was demonstrated in a preliminary clinical study in which ≥ 80% of patients experienced 

a ≥ 50% reduction in their pain [42], [47]. However, there is still a lack of understanding behind 

the origin of these ECAPs and the various technical and physiological factors that affect the 

composition of these recordings. Addressing these knowledge gaps could help optimize the clinical 

efficacy of this closed-loop approach in SCS. 

In addition to improving the mechanistic understanding of treatment, it is vital that the 

implementation of closed-loop SCS maximize the signal-to-noise ratio of the recorded ECAP 

signal. Large and variable stimulation artifact are recorded during this closed-loop SCS approach, 

which can obscure the underlying ECAP and cause clinically misleading results [49]. A recent 

study characterized the significant effect of stimulation artifact on recorded ECAPs, and 

subsequently identified several stimulation configurations and pulse widths that reduce the 

stimulus artifact in sheep [49]. These configurations (e.g., bipolar, guarded cathode, and triphasic 

bipolar) and pulse widths (i.e., 120 – 300 µs) have been shown to not only impact stimulus artifact, 

but also affect the timing and amplitude of the ECAP recordings. However, it is unknown how 
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these alternate stimulation configurations and pulse widths affect the underlying neural recruitment 

during stimulation.   

Computational modeling has been used to investigate the physiological and technical 

factors that affect the direct neural response to SCS [9], [15], [43], [90], [92], [102], [189]. The 

aim of this study was to use computational modelling to characterize the composition of ECAP 

recordings during SCS. We developed a computational model that coupled a finite element model 

of lower-thoracic SCS with multicompartment models of sensory axons to calculate ECAP signals 

recorded from the spinal cord during stimulation. We hypothesized that the specific fiber-size 

distribution within the DC of the spinal cord would be responsible for the characteristics of SCS-

induced ECAPs. Additionally, we assessed the potential effects of electrode location and dorsal 

cerebrospinal fluid (CSF) thickness on the amplitude and morphology of SCS-induced ECAP 

recordings. We hypothesized that ECAP amplitude and shape would be affected by electrode 

position relative to the vertebrae, electrode position relative to the spinal midline, and dorsal CSF-

layer thickness. Finally, we simulated various stimulation configurations and pulse widths and 

characterized their effects on the ECAP origin and morphology.  

4.3 Materials and Methods 

We used a computational model of SCS to calculate ECAPs recorded via inactive 

electrodes in the implanted lead. The computational model consisted of two main components: (1) 

a finite element model (FEM) of an SCS lead implanted in the dorsal epidural space of the spinal 

cord, and (2) multicompartment cable models of spinal cord DC axons. We calculated ECAPs 

during SCS using the following procedure: (1) we used the FEM to calculate the extracellular 

voltages generated in the spinal cord and surrounding tissues during SCS; (2) we populated the 



 84 

spinal cord white matter with multicompartment cable models of sensory axons; (3) we assessed 

the direct axonal response to SCS by applying the extracellular voltages to the sensory axon models 

to obtain transmembrane currents in response to stimulation; and (4) we calculated the SCS-

induced ECAP by using a reciprocal FEM solution to determine the voltage generated at each 

recording electrode. 

4.3.1 Finite element model (FEM) of SCS 

First, we developed a three-dimensional FEM of lower thoracic SCS to calculate the 

extracellular voltages generated during stimulation (Figure 4.1A). The model consisted of the gray 

and white matter of the spinal cord and dorsal rootlets, surrounded by CSF, dura mater, as well as 

epidural fat filling the extradural space and a three-dimensional anatomical representation of the 

vertebral column including intervertebral discs [115]. The dimensions of the spinal cord and the 

gray and white matter boundaries were defined by human cadaver samples of the lower thoracic 

spinal cord [106]. We placed five dorsal rootlets with diameters of 0.25 mm at each spinal level 

[108]. Unless specified otherwise, we set the dorsal CSF-layer thickness to 3.2 mm [17] and the 

dura thickness to 300 μm with the dorsal surface flattened for computational simplicity [43], [90]. 

We stacked seven identical and anatomically-accurate T9 vertebrae in the rostrocaudal direction 

to make the vertebral column with intervertebral discs based on a previously-published model 

[115]. We included an explicit representation of an eight-electrode percutaneous lead implanted in 

the epidural tissue. The SCS lead dimensions mimicked the electrodes used in previously-reported 

experimental recordings [46], with 1.3 mm lead diameter, 30 cm lead length, 3 mm contact length, 

and 4 mm edge-to-edge contact spacing. To mimic scar tissue formation around the implanted SCS 

lead, we included a 300 µm-thick encapsulation layer domain surrounding the lead [113]. We 

placed the spinal column inside a general thorax domain mimicking the anatomy observed in 
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healthy humans [117], [119]. We used the 3-Matic Module within the Mimics Innovation Suite 

(Materialise, Belgium) to define and mesh the model geometry. We specified higher mesh 

densities at the electrode array and encapsulation layer as well as within a 64-mm long region of 

interest surrounding the electrodes.  

 

Figure 4.1: Computational model of spinal cord stimulation (SCS). A. Finite element model of the lower thoracic spinal cord with 
surrounding anatomy and an eight-electrode SCS lead implanted in the extradural space. Isometric and axial views of the model 
are shown on the left and middle, respectively. B. Sensory axon model of dorsal column fibers. Figure was adapted from [127].  C. 
Distribution of sensory axons in the spinal cord for each discrete fiber diameter used in the first-generation model. We determined 
the density of each fiber size using previous-published histological data from the human spinal cord [14]. For computational 
simplicity, we populated our model with only a relative percentage of the total physiological densities and scaled the results 
accordingly. 

 

We imported the FEM into the finite element analysis software, COMSOL Multiphysics 

5.3a (COMSOL, INC., USA). We modeled each tissue using purely resistive properties, and we 

assigned electric conductivity values using values available in the literature [43], [92], [113] 
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(Table 4.1). We set the encapsulation layer conductivity to 0.11 S/m [113] so that the average 

model monopolar electrode impedances (359 Ω) matched average clinical values [90]. We used 

the most caudal electrode (C7) as the stimulating electrode. To simulate current-controlled 

monopolar stimulation, we applied a unit current source at the stimulating electrode (i.e., 1A) and 

set the outer-most boundaries of the general thorax domain to ground (i.e., 0V). We modeled the 

SCS lead shaft as a perfect insulator, and we modeled inactive electrodes as equipotential surfaces 

with zero net current across their surface. We solved the Laplace equation to determine the 

resulting voltages at each node in the FEM. 

 

Table 4.1: Electrical conductivities assigned to the spinal cord and surrounding tissues 

Tissue Conductivity 
(S/m) Reference 

White matter (longitudinal) 0.600 [120] 
White matter (transverse) 0.083 [120] 
Gray matter 0.230 [120] 
CSF 1.700 [120] 
Dura mater 0.600 [43] 
Extradural space 0.250 [92] 
Vertebral bone 0.020 [121] 
Intervertebral disc 0.650 [92] 
General thorax 0.250 [120] 
Electrode encapsulation 0.110 [97], [113] 

4.3.2 Multicompartment cable model of SCS 

Second, we developed computer models of sensory axons within the DC of the spinal cord. 

Our multicompartment cable models of DC sensory axons were based on a previously published 

model of a mammalian sensory axon for specific fiber diameters that was parametrized to 

accurately reproduce conduction velocities, action potential shape, and strength-duration 

relationships for sensory axons [77], [127]–[129] (Figure 4.1B). For this study, we considered 

axon diameters of 5.7-16.0 μm with densities based on histological data of the human spinal cord 
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[14]. In the first-generation model, we divided the histological data describing axon number as a 

function of diameter into the discrete axon diameters that were available for the given axon model 

(i.e., 5.7, 7.3, 8.7, 10.0, 11.5, 12.8, 14.0, 15.0, 16.0 μm) [127], [129]. Second, we normalized this 

data to determine the percentage of axons within each specified diameter range. Third, to calculate 

the density of axons for a given diameter, we multiplied the percentage of axons by the total density 

of axons per area (i.e., 22.92 axons/1000 µm2) [14]. Finally, to determine the total number of axons 

for a given diameter, we then multiplied the individual axon density by the cross-sectional area of 

our model white matter (i.e., 23.62 mm2). The spinal cord DC is densely populated by small 

diameter axons and contains fewer, more dispersed large diameter axons [14]. To ease 

computational demand while properly modeling the density of each individual fiber diameter, we 

selectively used a fraction of the true anatomical densities for each fiber diameter: 1% for 

diameters ≤ 11.5 μm, 10% for diameters of 12.7 and 14.0 μm, and 100% for diameters ≥ 15.0 μm 

(Figure 4.1C). When calculating the model ECAP, we scaled the relative signal contribution from 

each fiber size by the appropriate scale factor to achieve 100% of the true anatomical density. We 

distributed each fiber diameter group evenly within the white matter boundaries using Lloyd’s 

algorithm (Figure 4.1C) [130]. We will refer to this model as the “first-generation model” for the 

remained of this text.  

4.3.3 Assessment of the direct axonal response to SCS 

We assessed the direct axonal response to SCS by applying the extracellular voltages 

calculated in our FEM to each compartment of our sensory axon cable models. We performed 

simulations for stimulation amplitudes between 1-10 mA, in 1 mA steps, using a cathodic, 

monophasic stimulus waveform with a frequency of 50 Hz and a pulse width of 210 μs. We 

performed all axon simulations with the software package, NEURON, within the Python 
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programming environment using a supercomputer cluster [133], [190], [191]. We calculated model 

solutions using backward Euler implicit integration with a time step of 0.002 ms. 

4.3.4 Calculation of ECAP recordings  

To simulate ECAP recordings, we used the theorem of reciprocity to calculate the time-

dependent voltages generated at each electrode by the axonal response to SCS [76], [192]–[195]. 

We applied a unit current source (i.e., 1 A) at the individual recording electrode, grounded the 

outer-most boundaries of the general thorax (i.e., 0 V), applied the floating boundary conditions at 

the other electrodes, and solved the Laplace equation to obtain the resulting model tissue voltages. 

We interpolated the resulting voltages onto each axonal compartment, interpreting this voltage as 

the voltage impressed onto the recording electrode by a unit (i.e., 1 A) current source placed at the 

spatial location of each compartment. We calculated the ECAP by superimposing the voltages 

generated at the recording electrode from the scaled transmembrane currents of each independent 

compartment. We repeated this process for each recording electrode and obtained bipolar 

differential recordings using the most rostral electrode (i.e., C0) as a reference signal, subtracting 

it from each recording electrode. To mimic the processing done experimentally, we low-pass 

filtered each signal at 7.5 kHz using a two-pole low-pass Butterworth filter [46].  

4.3.5 Evaluation of model ECAP recordings 

To characterize our model ECAP recordings, we defined a model sensory threshold (ST) 

and discomfort threshold (DT). The ST was defined as the stimulus amplitude that resulted in 

activation of ≥ 10% of the DC fibers in the spinal cord, and the DT was defined as 1.4*ST [9], 

[90], [92], [196]. We defined the ECAP amplitude as the difference between the P2 and N1 peak 

amplitudes, ECAP spread as the full width of the signal at half the N1 peak maximum value 
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(FWHM), and ECAP conduction velocity as the time difference between the N1 peaks recorded 

at adjacent contacts divided by the center-to-center distance between adjacent electrodes (i.e., 7 

mm) [46], [185]–[187], [189]. 

We explored the effects of electrode position relative to the vertebrae, lead lateral shift, 

and dorsal CSF-layer thickness on SCS-induced ECAP recording waveform shape and amplitude. 

In our base model, we placed the lead so that the middle electrode (C3) was centered between 

adjacent vertebral laminae (Figure 4.2A). We then shifted the lead along the rostrocaudal axis by 

11.8 mm to center electrode C3 beneath the vertebral lamina to account for any effects of electrode 

location relative to the vertebrae. Additionally, we characterized the effects of lead lateral 

displacement by shifting the lead 2.0-mm lateral from the spinal cord midline. Lastly, the amount 

of CSF between the dura and the spinal cord varies significantly as a function of spinal level, varies 

between patients, and changes with movement, heartbeat, and respiration [17]. To account for 

these changes, we shifted the spinal cord along the dorsoventral axis to vary the dorsal CSF-layer 

thickness between 2.0, 3.2, and 4.4 mm to observe the effects of CSF-layer thickness on the 

recordings. We calculated each model’s ST and DT and compared each model’s C3-C0 bipolar 

ECAP recording at DT. To avoid potential confounds due to differences in stimulation-induced 

axonal response between models, we also calculated each model ECAP using the same neural 

response generated with the base model conditions (C3 electrode centered between adjacent 

vertebral laminae, the lead placed at the spinal cord midline, and a dorsal CSF-layer thickness of 

3.2 mm). 
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Figure 4.2: Model-based recordings of evoked compound action potentials (ECAP) induced by SCS with the first-generation 
model. A. Sagittal cross section view of the spinal cord, SCS lead, and surrounding vertebral bone and discs. In the traces 
overlapping the spinal cord, we show an example of the transmembrane currents generated in a single axon in response to a 
monophasic stimulus pulse. In the traces on the right, we show the stimulus pulse as well as bipolar recordings of the summated 
response of all axons in our model. The dashed lines represent the time of stimulus onset. B. ECAP recordings at each contact for 
monopolar and bipolar (referenced to C0) configurations. C. A bipolar (C3-C0) model ECAP recording compared to a previously-
reported clinical ECAP recording (see Figure 5B in [46]). The model and clinical ECAP recordings were obtained at stimulation 
amplitudes near the model-based discomfort threshold and the patient comfort threshold, respectively.   
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4.3.6 Continuation of the ECAP modeling – the second-generation model 

In addition to the first-generation computational model described above; we developed a 

second iteration of the model with a few alterations to the original model design. We designed this 

new model to better match the experimental setup used in a previous publication presenting 

preclinical and clinical ECAP recordings during SCS [49]. The main priority of this second model 

was to evaluate how alternate stimulation configurations and pulse widths influence the ECAP 

amplitude, timing, and shape. 

To mimic the acute recording conditions described in [49], we designed the FEM without 

an electrode encapsulation layer and updated the conductivity of the epidural space (0.04 S/m) to 

match previous studies [43], [88], [90], [99], [140]. In the epidural tissue along the anatomical 

midline, we included a new 56.5 cm long percutaneous SCS array with eight electrodes that each 

were 3 mm long with a 4 mm edge-to-edge electrode spacing (model #977D260, Medtronic). The 

novel FEM did not include explicit representations of the dorsal rootlets in the FEM, as previous 

modeling work has shown that their presence has a negligible effect on model predictions [97]. 

While the original first-generation model contained only nine distinct axon diameters 

ranging from 5.7 - 16.0 µm, in the novel model we linearly interpolated the axonal properties for 

all diameters in between the minimum and maximum characterized axon sizes. To distribute axons 

within our model, we divided our axon models into 83 unique fiber diameter groups (one fiber 

diameter group every 0.1 µm between 5.7 and 12.0 µm, and every 0.2 µm between 12.0 and 16.0). 

Using the method previously described, we determined the number of axons for each fiber 

diameter group based on cadaver histological data of the superficial dorsal columns in the human 

spinal cord (Figure 4.3) [14], [97], [130]. To better distribute the fibers throughout the white 

matter of the spinal cord, our fibers were grouped based on the diameter ranges shown in Table 
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4.2. Likewise, to ease computational demand, fibers were populated at reduced densities relative 

to the physiological densities (see Table 4.2). These steps reduced the total number of fibers 

evaluated in our model to 1913 fibers. When we subsequently calculated the model ECAP 

recordings, we scaled the relative signal contribution of each group by these density scaling 

factors. This novel computational model will be referred to as the “second-generation” model 

hereafter in the text, and references both the FEM alterations as well as the fiber distribution 

changes in the new model. 

Table 4.2: Fiber sizes, densities, and number of fibers for the second-generation model. 

Fiber diameter 
range 

Density 
(%) 

Number 
of fibers 

5.7-6.0 0.5 111 
6.0-7.0 0.5 311 
7.0-8.0 1.0 433 
8.0-9.0 1.0 237 
9.0-10.0 2.5 261 
10.0-11.0 5.0 204 
11.0-12.0 10.0 132 
12.0-14.0 10.0 79 
14.0-16.0 100.0 145 

Total - 1913 
 

 

Figure 4.3: The fiber distribution in the second-generation model. We separated axons in this model into 83 unique diameters, 
grouped, and distributed throughout the white matter of the spinal cord. To reduce computational demand, fiber densities were 
reduced by the values shown in Table 4.2. 
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4.3.7 ECAP amplitude and timing – stimulation configuration and pulse width 

With the second-generation model, we evaluated how ECAP morphology changes in 

response to varying stimulation configurations and pulse widths. We simulated monopolar (C7-), 

bipolar (C7-/C6+), wide bipolar (C7-/C5+), guarded cathode (C7+/C6-/C5+), and guarded anode 

(C7-/C6+/C5-) stimulation configurations using biphasic, cathodic leading, charge-balanced 

waveforms with a pulse width of 150 µs. We also applied bipolar (C7-/C6+) stimulation using a 

charge balanced anodic-leading triphasic stimulation waveform with pulse widths of 75, 150, and 

then 75 µs. All stimulation configuration and pulse widths for the new model were evaluated at 

stimulation amplitudes ranging from 1 mA to 10 mA in 1 mA increments and a frequency of 50 

Hz. ECAPs generated by this new model were evaluated with a bipolar recording configuration 

(C0-/C1+). 

We also evaluated the effects of pulse width on ECAP amplitude and timing. Using 

biphasic, cathodic-leading, bipolar (C7-/C6+) stimulation, we applied six pulse widths: 120, 150, 

180, 210, 240, and 300 µs. We predicted the neural response to constant current stimulation (1 – 

10 mA in 1 mA steps), or with constant charge applied (1.2 µC applied per phase). All axon 

simulations for the second-generation model were performed using NEURON in a Python 

programming environment and were computed using a supercomputing cluster at the University 

of Michigan [133].  

4.4 Results 

4.4.1 Model-based ECAP recordings 

In the first-generation model, we calculated model ECAP recordings induced by SCS, with 

a lead placed in the dorsal epidural space at lower thoracic spinal levels. In our model, we estimated 
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a ST of 6 mA (i.e., ≥ 10% of DC fiber activation) [9], [92] and a corresponding DT of 8 mA (i.e., 

1.4*ST) [90], [196] for monopolar stimulation applied at electrode, C7 (frequency = 50 Hz, pulse 

width = 210 μs) (Figure 4.2A). Therefore, we assumed a model-based therapeutic window of 6-8 

mA. The model ECAP exhibited a triphasic shape, starting with a positive P1 peak, followed by a 

sharp negative N1 peak, and ending with a second positive P2 peak for both monopolar and bipolar 

ECAP recordings (Figure 4.2B). The signals recorded on electrodes far from the stimulating 

electrode are smaller in size and more spread out as the signals in each fiber-size group propagate 

at different velocities. A small stimulus artifact precedes the model ECAP recording due to the 

response to the electrical stimulus of the membrane capacitance at the nodes of Ranvier [194]. We 

compared our model ECAP at the DT with a clinical ECAP recording performed on an electrode 

28-mm away from the stimulating electrode [46] (Figure 4.2C). Both the clinical and model 

recordings contain the N1 and P2 peaks of the triphasic spinal ECAP morphology, with a similar 

N1 peak latency, and a P2-N1 amplitude of 200 μV and 216 µV for the clinical and model ECAPs, 

respectively. The clinical ECAP recording contains a large stimulus artifact from the recording 

electrodes being in close proximity to the stimulating electrodes [46]. This large stimulus artifact 

affects the detection of the P1 peak observed in the model ECAP recording for electrodes near the 

stimulating electrode.  

4.4.2 ECAP properties – stimulation amplitude 

In the first-generation model, we calculated ECAPs for stimulus amplitudes over the range 

of 1-10 mA (Figure 4.4A). The P2-N1 amplitude increased linearly over this range of stimulus 

amplitudes (Figure 4.4B). As the stimulus amplitude was increased, the ECAP P2-N1 amplitude 

increased, but the latency of the N1 peak stayed relatively constant. At lower stimulus amplitudes 

(i.e., 3 mA), the ECAP conduction velocity was higher (~78 m/s) (Figure 4.4C). At higher 
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stimulus amplitudes (i.e., ≥ 4 mA), smaller diameter fibers were activated and the ECAP 

conduction velocity decreased to an average value of 53.5 m/s. The FWHM is the width of the N1 

waveform at half its peak value and can provide information about the range of fiber diameters 

captured by the ECAP N1 wave. The FWHM increased linearly at lower stimulation amplitudes 

but plateaued before reaching the therapeutic window (Figure 4.4D), and it shows that the relative 

proportion of fiber diameters recruited and captured in the N1 peak, stays relatively constant with 

any further increase in stimulation amplitude.  

 

 

Figure 4.4: SCS-induced ECAP recordings as a function of stimulus amplitude using the first-generation model. A. Bipolar ECAP 
recordings from electrodes, C3-C0, as function of stimulus amplitude. B. P2-N1 amplitude as a function of stimulus amplitude. C. 
ECAP conduction velocities as a function of stimulus amplitude, measured using the N1 latency difference between neighboring 
electrodes. D. ECAP full width at half max (FWHM) as a function of stimulus amplitude. In B and D, the model-based therapeutic 
range is highlighted by dashed lines at the sensory threshold (ST) and discomfort threshold (DT). 
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4.4.3 ECAP composition – axon size 

In the first-generation model, we measured the percentage of each fiber-diameter group 

recruited at each stimulation amplitude (Figure 4.5A). We observed fiber activation starting at a 

minimum stimulus amplitude of 2 mA, which recruited only fibers > 12.0 µm. Within the model-

based therapeutic window, the largest percentages of activated fibers had diameters of 7.3, 8.7, 

and 10.0 µm. To determine the corresponding relative contribution of each fiber diameter to the 

measured ECAP at each stimulation amplitude, we calculated the individual signal for each fiber 

diameter group alongside the overall model ECAP (Figure 4.5B). We quantified the contribution 

of each fiber diameter group to the total ECAP amplitude by removing each individual group from 

the overall ECAP (Figure 4.5C). For 7.3 µm fibers, the percent difference in ECAP amplitude 

after removing these fibers from the ECAP was -11.0 and -13.1% measured at ST and DT, 

respectively. For 8.7 µm fibers, the percent difference was -35.0 and -39.4% measured at ST and 

DT, respectively. For 10.0 µm fibers, the percent difference was -30.6 and -27.4% measured at ST 

and DT, respectively. For 11.5 µm fibers, the percent difference was -8.3 and -7.2% for ST and 

DT, respectively. For all fibers with diameter ≥ 12.8 µm, the percent difference was -4.5 and -

3.2% for ST and DT, respectively. Only a small number of fibers with a diameter of 5.7 µm were 

recruited within the therapeutic window (i.e., < 2.5%) and removing these fibers only produced a 

percent difference of 0.0 and -0.4% for ST and DT, respectively. These results demonstrate that 

the 8.7 and 10.0 µm fibers had the greatest contributions to the overall ECAP amplitude (i.e., P2-

N1). 
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Figure 4.5: Contribution of fiber size to the overall ECAP waveform in the first-generation model. A. Relative contributions of 
each fiber size to the total number of fibers activated at a given stimulus amplitude. Dashed lines indicate an axis break to 100%. 
The model-based therapeutic range is highlighted by dashed lines at the sensory threshold (ST) and discomfort threshold (DT). B. 
Overall ECAP waveform along with the individual ECAPs generated by each fiber-diameter group at a stimulus amplitude of 8 
mA. C. Percent decrease in P2-N1 amplitude when an individual fiber-diameter group was removed from the ECAP recording at 
the model-based ST and DT. 
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4.4.4 ECAP size and shape – anatomical considerations 

In the first-generation model, we considered three conditions that could potentially affect 

stimulation thresholds and the corresponding ECAP recording during clinical SCS: 1) electrode 

position relative to the vertebrae, 2) lead lateral shift, and 3) thickness of the dorsal CSF-layer 

(Figure 4.6). To test the effects of electrode location relative to the vertebral column on ECAP 

recordings, we shifted the position of the recording electrode, C3, so that it was centered beneath 

the vertebral lamina (Figure 4.6A). When the electrode is centered beneath the vertebral lamina, 

there was a minimal increase in the number of fibers recruited by stimulation. This shift in 

electrode position increased the P2-N1 amplitude but had virtually no effect on the waveform 

morphology (Figure 4.6A). Although a lateral shift in lead location activated fibers at different 

spatial locations within the DC, it produced a minimal difference in the overall number of recruited 

fibers and minimal differences in the corresponding ECAP shape and amplitude (Figure 4.6B). 

Lastly, increasing the thickness of the dorsal CSF-layer increased the stimulus amplitude required 

to reach ST (ST=4, 6, and 9 mA for 2.0, 3.2, and 4.4 mm thickness, respectively). The P2-N1 

amplitude decreased and the increase in distance between the electrode and the spinal cord exerted 

a low-pass filtering effect on the waveform shape, apparent in the P2 peak morphology (Figure 

4.6C). We also compared model ECAP recordings calculated using the same underlying neural 

activity (i.e., neural activation produced in the base model conditions with C3 centered between 

lamina, the lead placed at the spinal cord midline, and a dorsal CSF thickness of 3.2 mm) for each 

set of model conditions with different lead or spinal cord positions. Even with the same underlying 

neural activity, we observed similar effects on ECAP size and shape for each condition (data not 

shown). Therefore, the trends observed under the different model conditions were largely 
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attributed to changes in the lead and/or spinal cord position and not due to corresponding 

differences in neural recruitment. 

 

Figure 4.6: Effect of electrode and spinal cord position on ECAP recordings in the first-generation model. A. To examine the effect 
of electrode position relative to the spine, we considered the ECAP with the recording electrode (C3) centered between two 
vertebral laminae and with the recording electrode centered directly beneath the vertebral lamina (see inset on right). B. To examine 
the effect of a lateral lead placement, we obtained model based ECAP recordings with the lead centered at the spinal cord midline 
and the lead shifted 2 mm lateral (see inset on right). C. To examine the effect of spinal cord position, we moved the spinal cord in 
the anterior-posterior direction and calculated model-based ECAPs for dorsal CSF thicknesses of 2.0, 3.2, and 4.4 mm (see inset 
on right). Plots in the left column show the ECAP recordings at each model determined discomfort threshold, while the plots in the 
right column show the corresponding ECAP amplitude as a function of stimulus amplitude. 
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4.4.5 ECAP amplitude and fiber recruitment – stimulation configuration 

In the second-generation model, we evaluated the ECAP recordings obtained with various 

stimulation configurations. These stimulation configurations included biphasic monopolar (C7-), 

bipolar (C7-/C6+), wide bipolar (C7-/C5+), guarded cathode (C7+/C6-/C5+), and guarded anode 

(C7-/C6+/C5-). We also evaluated triphasic bipolar stimulation (C7-/C6+). ECAP’s generated 

with a stimulation amplitude of 5mA are shown in Figure 4.7. Biphasic monopolar stimulation 

resulted in an ECAP amplitude of 12.6 µV in the new model. Biphasic bipolar, wide bipolar, and 

guarded cathode stimulation resulted in much higher ECAP amplitudes of 22.9, 22.8, and 25.0 µV, 

respectively. Stimulation with the guarded anode and bipolar triphasic resulted in P2-N1 

amplitudes of 15.4 and 10.4 µV, respectively (Table 4.3). For each configuration, we determined 

the overall percentage of recruited axons (Figure 4.7B and Table 4.3). Stimulation with biphasic 

bipolar, wide bipolar, and guarded cathode configurations recruited a larger number of smaller 

diameter (<12 µm) fibers and corresponded to higher overall fiber recruitments for these 

configurations. The trends in the overall fiber recruitment closely resemble the trends in the 

predicted ECAP amplitudes (Figure 4.7C).  

 

Table 4.3: ECAP amplitude for each stimulation configuration in the second-generation model (5 mA stimulation) 

Configuration Monopolar Bipolar Wide 
bipolar 

Guarded 
cathode 

Guarded 
anode 

Bipolar 
(Triphasic) 

Amplitude (µV) 12.6 22.9 22.8 25.0 15.4 10.4 
Overall neuron 
recruitment (%) 
(All diameters) 

0.57 1.18 1.22 1.29 0.58 0.46 
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Figure 4.7: The effects of stimulation configuration on the amplitude and morphology of ECAP recordings using the second-
generation model. A. The effect of stimulation configuration on ECAP morphology for biphasic monopolar, bipolar, wide bipolar, 
guarded cathode, and guarded anode stimulation, as well as for triphasic bipolar stimulation. B. Left: The percentage of fibers from 
each diameter range that was recruited during stimulation with each stimulation configuration. Right: The total percent fiber 
recruitment for the six tested configurations. C. Calculated ECAP amplitude for the various stimulation configurations. 

4.4.6 ECAP timing – pulse width 

In the second-generation model, we evaluated six pulse widths ranging from 120 µs to 300 

µs to determine the effect of pulse width on N1 and P2 timings in the recorded ECAP. We 

compared ECAP recordings for either constant amplitude (5 mA, Table 4.4) or with constant total 

injected charge per pulse (1.2 µC, Table 4.5). The ECAPs that were generated for constant 

amplitude are plotted in Figure 4.8A. In general, both N1 and P2 amplitudes were delayed with 
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increasing pulse width. Constant amplitude stimulation resulted in N1 times of 0.96, 1.04, 1.06, 

1.08, 1.12, and 1.16 ms for pulse widths of 120, 150, 180, 210, 240, and 300 µs, respectively. P2 

timings followed a similar trend, although there was more variation in the P2 timing (1.34, 1.46, 

1.42, 1.66, 1.46, and 1.92 ms, respectively). To identify the cause of this progressive delay in 

ECAP timing, we plotted the time delays between the onset of stimulation and AP generation with 

the charge normalized pulse widths (Figure 4.8C). With increases in pulse width, action potential 

generation became more spread out in time and had a higher mean time to AP initiation (mean ± 

standard deviation time to AP initiation: 126 ± 63, 152 ± 66, 184 ± 90, 202 ± 80, 232 ± 114, 289 

± 153 µs for 120, 150, 180, 210, 240, and 300, respectively). This likely contributed to the slight 

decrease in recorded ECAP amplitudes for long pulse width simulations (Table 4.5). 

Table 4.4: ECAP timing for each pulse width for 5 mA stimulation in the second-generation model. N1 and P2 timings are defined 
as the duration to each peak from the onset of stimulation 

Pulse width (µs) 120 150 180 210 240 300 
N1 time (ms) 0.96 1.04 1.06 1.08 1.12 1.16 
P2 time (ms) 1.34 1.46 1.42 1.66 1.46 1.92 

 

 

 

Figure 4.8: The effect of pulse width on ECAP and AP initiation times in the second-generation model. A. ECAP generation for 
pulse widths of 120, 150, 180, 210, 240, and 300 µs and a stimulation amplitude of 5 mA. B. The corresponding timing of N1 and 
P2 for each tested pulse width. C. Histograms showing the delay in AP initiation from the start of stimulation for each pulse width. 
We applied stimulation using charge normalized pulses to allow for more direct comparisons in the total neural recruitment (see 
Table 4.5) 
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Table 4.5: ECAP timing for each pulse width using charge normalized pulses in the second-generation model. 

Pulse width (µs) 120 150 180 210 240 300 
Stimulation amplitude (mA) 10 8 6.667 5.714 5 4 
Injected charge (µC) 1.20 1.20 1.20 1.20 1.20 1.20 
P2-N1 amplitude (µV) 43.67 41.98 39.38 39.18 37.98 35.61 
N1 time (ms) 1.00 1.04 1.06 1.1 1.12 1.16 
P2 time (ms) 1.32 1.36 1.40 1.44 1.46 1.76 

 

4.5 Discussion 

We developed a computational model of SCS to characterize ECAP signals recorded from 

the spinal cord. We coupled a FEM and multicompartment models of spinal cord axons to calculate 

ECAPs recorded from inactive electrodes. We calculated ECAPs over a range of stimulus 

amplitudes and defined a model-based therapeutic window. We then examined the effects of the 

lead location relative to the spine and spinal cord, stimulation configuration, and pulse width on 

the ECAP size, shape, and neural origin.  

4.5.1 SCS-induced ECAPs and fiber recruitment during clinical SCS 

At the model-based DT, our model ECAPs resembled clinical recordings taken at the 

patient’s comfort limit, i.e., triphasic morphology, similar N1 peak latency, and a similar P2-N1 

amplitude (Figure 4.2C) [46]. Within the therapeutic window, we observed a linear relationship 

between the measured P2-N1 amplitude and stimulus amplitude (Figure 4.4B). This trend was 

also observed experimentally in humans and a sheep model of SCS-induced ECAPs [46], [50], 

[136]. For stimulation amplitudes within the therapeutic window, our model ECAP conduction 

velocities remained relatively constant with a range of 47-59 m/s. This trend was similar to clinical 

observations in which the conduction velocities remained relatively constant irrespective of the 

stimulation amplitude with a range of 49-65 m/s [42], [46]. 
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To examine the range of fiber sizes recruited by clinical SCS, we designed our first-

generation model to include physiological fiber sizes and densities within the spinal cord [14]. We 

then considered the relative contribution of different fiber sizes to the SCS-induced ECAP by 

examining how removing individual fiber-size groups affected the overall ECAP. Removing fiber 

diameters of 8.7 and 10.0 µm from the ECAP produced the largest percent decrease in the 

measured ECAP amplitude (i.e., -35 and -31% at ST, respectively) (Figure 4.5C). This result can 

also help us understand the type of fibers that are recruited in clinically effective SCS. In a previous 

clinical study, Parker et al. demonstrated a correlation between the ECAP amplitude and the degree 

of paresthesia overlap with the painful area [46]. Because conventional SCS may require pain-

paresthesia overlap [2], DC fibers with diameters ≥ 8.7 µm are most likely activated during 

clinically effective stimulation. 

4.5.2 Anatomical considerations in SCS-induced ECAP recordings 

In this study, we used our model to investigate several anatomical factors relevant to SCS 

that might affect the size and/or shape of the ECAP recordings. Our FEM included a realistic 

anatomical representation of the spine, which allowed us to investigate how electrode location 

relative to the vertebrae affects ECAP recordings. Parker et al. observed differences in the P2-N1 

amplitude that were potentially related to electrode location relative to structures of the sheep 

vertebral column [136]. Similarly, we observed an increase in the ECAP amplitude for electrodes 

located beneath the vertebral lamina relative to electrodes located between two adjacent laminae 

(Figure 4.6A). These results were similar when the two model conditions were compared using 

the same underlying neural activity (data not shown). Therefore, our results suggest that electrodes 

may have different recording amplitudes based on their relative position along the vertebral 

column.  
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Lead migration is common in SCS, especially with percutaneous leads [197], and could 

result in changes in the ECAP recordings. Our results showed that a 2-mm lateral shift in lead 

position relative to the spinal cord midline produced no appreciable change in the ECAP amplitude 

and shape (Figure 4.6B). Our model results are similar to spinal potential recordings performed 

in human volunteers, where the position of an intrathecal recoding microelectrode along the 

mediolateral axis did not affect the magnitude and shape of the recorded signal [186]. These results 

suggest that the mediolateral location of the recording electrodes will minimally affect the size and 

shape of the ECAP recording.  

The clinical efficacy of a given set of SCS parameters can vary with movement of the 

spinal cord that occurs due to postural changes, heartbeat, and respiration [188]. It is estimated that 

the spinal cord can move ~2-3 mm in the anterior-posterior direction at the lower thoracic spinal 

levels and can increase or decrease the distance between the spinal cord and the SCS electrodes. 

Therefore, this movement can lead to overstimulation or understimulation and a corresponding 

change in the ECAP amplitude [46]. To investigate the effects of spinal cord movement on the 

corresponding ECAP, we varied the thickness of the dorsal CSF-layer within our model (Figure 

4.6C). As the dorsal CSF-layer thickness was increased, the model-based ST increased and the 

ECAP amplitude decreased. Additionally, the increase in distance between the spinal cord and 

recording electrode affected the shape of the P2 component, smoothing the morphology of the 

signal. To isolate the effects of electrode-to-cord distance, we also investigated these changes 

while using the same underlying neural activity in our simulations. With an increase in dorsal CSF-

layer thickness and the same underlying neural activity, we observed a similar decrease in ECAP 

amplitude and a low-pass filtering effect that smoothed the morphology of the waveform (data not 

shown). Changes in the electrode-to-cord distance can lead to significant changes in the ECAP 
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amplitude and these trends occur even for the same underlying neural activity. In closed-loop SCS, 

stimulation amplitude is controlled to maintain ECAP amplitude within a specific range in an 

attempt to maintain more consistent levels of activation within the spinal cord [47]. To optimize 

this approach, closed-loop SCS algorithms should consider possible changes in ECAP amplitude 

that may occur solely due to differences in the electrode-to-cord distance.  

4.5.3 Applications of alternate stimulation configurations and pulse widths 

We evaluated the effect of stimulation configuration on neural activation and 

corresponding ECAP morphology. Stimulation with biphasic bipolar, wide bipolar, or guarded 

cathode configurations demonstrated P2-N1 amplitudes that were larger (48 – 137 %) than 

stimulation with either monopolar, guarded anode, or triphasic bipolar configurations (Figure 4.7, 

Table 4.3). These differences in amplitude are largely due to differences in total neural 

recruitment, which closely tracked with predicted ECAP amplitude. Bipolar, wide bipolar, and 

guarded cathode configurations all recruited a large number of axons with fiber diameters <12 µm, 

which resulted in larger P2-N1 amplitudes (Figure 4.5, Figure 4.7). In addition to the number of 

fibers recruited, the timing of action potential generation in individual fibers also affected overall 

ECAP shape. While most stimulation configurations resulted in neural recruitment that was 

consistent in location and in time, both guarded anode and triphasic bipolar configurations 

generated additional clusters of action potentials in response to stimulation (data not shown). These 

additional clusters were generated near the return electrode during the recharge phases of 

stimulation and may contribute to the smaller ECAP amplitudes observed.  

The differences in pulse width also affected ECAP timing, amplitude, and neural 

recruitment. We simulated ECAP recordings for six pulse widths ranging from 120 µs to 300 µs 

with both constant amplitude (5 mA) and charge normalized (1.2 µC) stimulation. As expected, 
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increasing pulse widths activated more axons and led to increased ECAP amplitudes. We found 

that longer pulse widths progressively increased the delay of N1 and P2 (Figure 4.7, Table 4.4). 

This remained consistent even with normalized total injected charge across pulse widths (Table 

4.5). Our modeling work matches recent experimental observations [49].  

To investigate the cause of the increasing ECAP latency, we generated histograms of the 

offsets between the onset of stimulation and the initiation of APs for various pulse widths (Figure 

4.8C). Shorter pulse widths led to not only a shorter mean time to AP initiation, but also to more 

synchrony in AP initiation timing. While the higher amplitude ECAPs of short pulse widths may 

have benefits from a sensing perspective, the shorter delay and higher stimulation amplitude can 

result in increased stimulation artifact, which may obfuscate the recorded ECAP [49]. To better 

identify and evaluate this problem, future research will need to develop computational models to 

simulate the stimulation artifacts generated during closed-loop SCS, which can be highly variable 

and posture dependent [49].  

4.5.4 Study limitations and future work 

In this study, we utilized multicompartment models of sensory axons in the white matter 

of the spinal cord as the electrical source in our ECAP recordings. These sensory axon models 

have previously been shown to accurately model the behavior of sensory axons for discrete fiber 

diameters within the range of diameters used in this study [77], [127], [129]. Since we only used 

discrete fiber sizes in the first-generation model, differences in conduction velocities in the 

propagating action potentials of different fiber-size groups led to differences in the P2 peak 

morphology of our model ECAPs when compared to the clinical ECAP recordings (Figure 4.2C). 

To minimize this effect in the second-generation model, we increased the resolution of the fibers 

sizes into 83 fiber groups ranging from 5.7 to 16 µm. Additional neuron models, such as dorsal 
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horn neurons, were excluded from our analysis. Even though only a small percent of current 

(<10%) is believed to enter the spinal cord during SCS [15], it may be possible to excite dorsal 

horn neurons at high stimulus amplitudes and somatic action potentials from these neurons have 

been hypothesized to produce a late potential in the ECAP following the initial triphasic wave 

[186]. However, in humans, these late potentials were only observed at stimulation amplitudes 

well above a patient’s comfort limit and with significant delay (5-10 ms) [46]. Future work should 

investigate the extent to which activity in the dorsal horn affects recordings beyond the therapeutic 

window, as it might provide insights into the nature of the discomfort caused by overstimulation.  

Currently, no clear relationship has been established between clinical measurements of ST 

or DT and the corresponding degrees of DC neural activation. In this study, we defined a model-

based ST as ≥10% activation of DC fibers and DT as 1.4*ST to compare the trends observed in 

our model ECAPs with previously-published clinical ECAP recordings [46]. These assumptions 

are a potential limitation of our study; however, other recent SCS modeling studies have used a 

similar percentage of DC activation to estimate ST and motor thresholds that produced results that 

matched well with clinical and preclinical measurements [9], [92], [198]. Furthermore, the DT has 

previously been defined as 1.4*ST based on clinical observations and has also been used in 

previous modeling studies as a close approximation for DT in SCS patients [15], [90], [196]. 

In this study, we utilized a canonical model of SCS that incorporated anatomical details 

based on average values in the literature. This canonical model did not account for the inter-patient 

variability in anatomy and SCS lead placement that has been reflected in interpatient variability in 

clinical ECAP recording with regards to both amplitude and shape [17], [46]. However, in this 

study, our goal was to use a canonical model to gain insights into the underlying origin of SCS-

induced ECAPs as well as the various physiological and technical factors that affect these 
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recordings. Future studies should consider sources of inter-patient variability and examine their 

effects on the ECAP recordings. 

One area of interest for future computational models could be the behavior described in 

Chakravarthy et al. [49]. In this work, the authors describe multiphasic ECAPs that include 

additional negative and positive peaks (N2, P3, etc.) that can be recorded in some patients. These 

additional peaks appear to manifest at longer pulse width and have smaller amplitudes than N1 or 

P2 peaks. The authors noted that these additional peaks did not appear in every experiment, but 

they expressed the potential for these peaks to assess ECAP amplitude when earlier features are 

effaced by artifact. In this work, we observed that action potentials could be initiated on the return 

electrode during the recharge phase of stimulation (or during the initial anodic phase of tripolar 

stimulation). In general, longer pulse widths tended to increase the number of neurons firing on 

this recharge phase, and the effect was also dependent on the electrode position with respect to the 

vertebrae. It may be that these secondary action potentials contribute to the multi-phase ECAPs 

previously described in the sheep model. These additional waveforms may also be a result of 

activation of the post-synaptic dorsal column pathway [199]–[201]. Future modeling work will be 

needed to characterize these two theories and identify how they contribute to the observed 

multiphasic effect. Additionally, work will be needed to determine how electrode position and 

geometry influence this activation.  

4.6 Conclusion 

ECAPs during SCS can be used to investigate neural activation and the corresponding 

mechanisms of action of clinical SCS. These ECAPs also have the potential to serve as a control 

signal to optimize SCS parameters during closed-loop SCS on a patient-specific basis. However, 
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to successfully interpret these signals, we must understand their origin. In this study, we used a 

computational model to investigate various technical and physiological factors that affect the 

composition of these ECAP recordings. Our computational modeling results reproduced several 

trends observed in clinical data. Our modeling results suggest that clinically effective SCS relies 

on the activation of a large number of axons within a narrow fiber diameter range (i.e., 8.7-10.0 

µm). Model results also suggest that the ECAP amplitude and shape is affected by electrode 

position relative to the vertebrae as well as the amount of CSF between the recording electrodes 

and the spinal cord. We also characterized changes in ECAP morphology, origin, and timing using 

alternate stimulation configurations and pulse widths that have previously been described to 

minimize stimulation artifact. We found that bipolar, wide bipolar, and guarded cathode 

maximized ECAP amplitudes through increased neural recruitment. Longer pulse widths were 

shown to increase the delay in ECAP peaks due to delays in AP generation for individual fibers 

within the cord, while also requiring smaller stimulation amplitudes. This may be beneficial for 

stimulus artifact reduction. Overall, these findings improve our mechanistic understanding of 

closed-loop stimulation and can be used for more consistent and efficacious stimulation.  
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Chapter 5: Discussion 

5.1 Summary of main findings and implications 

SCS is a neuromodulation therapy with both a long history and a recent period of rapid 

innovation. This growth has led to several novel developments and applications of SCS for the 

treatment of chronic pain and for muscle activation following spinal cord injury (SCI) [1]. While 

these SCS applications have shown efficacious results and some have even earned approval by the 

United States Food and Drug Administration (FDA), there remain considerable mechanistic 

knowledge gaps [2]. This thesis provides detailed computational analysis of the mechanisms and 

neural activation of three SCS applications: SCS for inspiratory muscle activation following SCI 

and both traditional and closed-loop SCS for chronic pain management.  

In Chapter 2 of this work, I investigated the impact of several anatomical and technical 

factors that can influence the neural response to SCS [97]. I compared and quantified neural 

predictions for several common modeling simplifications, as well as developed several new 

techniques for model creation. There were significant changes in model predictions that arose from 

variations in overall model impedance (for voltage-controlled stimulation), dura mater 

conductivity, and representation of the vertebrae within the finite element model. I also evaluated 

simplifications that resulted in minor changes in neural threshold predictions, such as 

representation of the rootlets in the finite element model and overall model impedance (for current 

controlled stimulation). Finally, I determined that frequency dependent conductivities and 

permittivities do not significantly alter model predictions for 10 kHz stimulation.  
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The primary focus of this chapter (Chapter 2) was to identify how changes to the finite 

element model design effect the predicted neural response to SCS. This has both direct 

implications in clinical applications of SCS and may also aid in future SCS modeling development. 

For clinical applications, this work suggested that current-controlled stimulation may reduce the 

effects of electrode impedance variability as compared to voltage-controlled stimulation. These 

results are highly relevant to the clinical implementation of SCS due to the large variations in 

electrode impedance observed across electrodes within an individual array or across patients and 

the continued use of voltage-controlled stimulation in clinical settings [2], [12]. I also identified 

that neural recruitment generated by percutaneous electrodes can change based on the lead position 

relative to the spine. While this variation can be reduced with paddle arrays, it should be considered 

in the future implementation of SCS.  

In addition to improving the clinical implementation, the work in Chapter 2 may directly 

impact future modeling studies. I identified several factors of model design that improve the 

predictions of neural activity (i.e., vertebral position relative to spine, dura conductivity, tissue 

impedance for voltage-controlled stimulation) or that can be excluded from the finite element 

model to decrease model development time (i.e., tissue impedance for current-controlled 

stimulation, frequency dependent tissue properties for 10 kHz stimulation, dorsal rootlets in the 

finite element model). These factors influenced the design of the models in subsequent chapters 

(e.g., the lead position relative to the vertebrae directly led to our model reproducing experimental 

results in Chapter 4, the vertebrae were modeled while the rootlets were not included in the FEM 

in Chapter 3, etc.). We hope the factors described in this chapter may have a similar effect on 

future model development and results. 
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In Chapter 3, I developed a computational model of ventral T2 SCS for inspiratory muscle 

activation in canines [168]. To do this, I evaluated the activation of two neuronal targets that lead 

to inspiratory muscle activation: ascending fibers in the ventrolateral funiculus (VLF) that synapse 

onto the phrenic motoneurons (innervating the diaphragm) and the local intercostal motoneurons 

(innervating the inspiratory intercostals) [7], [58], [60], [96]. With this model, I evaluated 

variations in lead separation, contact length, contact spacing, and stimulation configuration to 

maximize recruitment of the target neural groups. We then evaluated the optimal (6 mm contacts 

with 12 mm gaps) and suboptimal (3 mm contacts with 3 mm gaps) lead configurations via in vivo 

canine experiments. The modeling predictions demonstrated excellent agreement with the 

experimental results.  

Naturally, the modeling performed in Chapter 3 has direct benefit on the implementation 

of HF-SCS for inspiration. Prior to this work, experimental evidence of this therapy was mostly 

empirical, which limited future development of this technique. The lead configuration developed 

can be used in subsequent experimental work to better understand the mechanisms of this novel 

SCS application. In addition to direct experimental impact, the mechanistic identification of likely 

neural targets may lead to improved translational capabilities. A similar therapy, SCS for walking 

following SCI, has utilized the mechanistic understanding from computational models to translate 

the therapy from rats and non-human primates into efficacious human studies [1], [6], [9], [65], 

[67], [202], [203]. We hope that a similar translation occurs with ventral HF-SCS. Historical 

studies provide optimism on the translational capabilities of neuromodulatory techniques from 

canine to effective clinical trials and devices [62], [66], [204]–[206]. Were this translation to occur, 

future modeling work can use the methodology and results presented here to optimize stimulation 

for human subjects, as there are significant variations in the spinal cord anatomy (specifically 
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ventral CSF thickness, spinal cord size, and variations in the respiratory effects of inspiratory 

muscles) that may influence the effectiveness of therapy and lead design [17], [72], [171]–[173].  

In Chapter 4 of this work, I developed a computational model of closed-loop SCS for 

chronic pain management [105]. My model predicted ECAP peaks, amplitudes, and timings that 

were consistent with experimental evidence. I identified the neural origins of the recorded ECAP 

waveform to largely be generated by a relatively narrow fiber range (i.e., 8.7-10.0 µm). I then 

evaluated changes in the ECAP waveform that result from alternate lead and anatomical positions. 

While moving the lead laterally had little effect on ECAP predictions, the rostrocaudal lead 

location with respect to the vertebrae influenced ECAP amplitudes, which was consistent with 

literature [105], [136]. Furthermore, the dorsal thickness of the CSF had a large impact on recorded 

ECAP amplitudes. Finally, I evaluated ECAP signals for alternate stimulation configuration and 

pulse widths that have been previously shown to alter stimulation artifact and ECAP morphologies. 

I found bipolar, wide bipolar, and guarded cathode configurations maximized ECAP amplitudes 

through increased recruitment of small (<12 µm) diameter fibers. Increasing pulse widths also 

generated progressively longer delays in ECAP timing due to the increased time to mean neural 

recruitment.  

This modeling work can be used to improve our understanding and implementation of 

closed-loop SCS. We sought to investigate the neural origins of the ECAP signal as well as how it 

changed in response to a variety of anatomical and technical factors. As an objective measure of 

neural activation, a better understanding of the neural origins of the ECAP may have profound 

clinical implications. Specifically, ECAP measurements could be used to inform about the health 

of the spinal cord and the effects of treatment over time [41]. ECAP waveforms may also be used 

for the diagnoses and treatment of chronic pain and help develop personalized mechanism-based 
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treatments. They might be used to help identify neural dysfunctions, and could help optimize 

dosing of treatments that impact neural activation, like some pain medication (e.g., opioids and 

anticonvulsants) [41]. For these possible outcomes, the origins of the ECAP need to be highly 

characterized and understood. Furthermore, this work also evaluated changes in ECAP 

morphology and origin for several stimulation configurations and pulse widths that reduce the 

effects of stimulation artifact, which has been previously shown to completely mask the ECAP 

signal [49]. These configurations and waveforms allow for better identification of the ECAP 

waveform during treatment, which is vital for the treatment’s success.  

5.2 Future directions 

5.2.1 Model reductions 

One major goal of Chapter 2 was to evaluate how simplifications in model design affect 

the predicted neural response of SCS. This was intended to guide future modeling work and 

directly impacted the models developed in Chapters 3 and 4. This project identified factors that 

affect model results and suggests factors that can be neglected in model design, streamlining 

model development and testing. The improved accuracy and development speed is especially 

important with the recent FDA announcement to integrate virtual testing and computational 

modeling into the medical device regulatory approval process [207]. Furthermore, it is predicted 

that models will see increased future demand due to the effective translational capabilities, 

expanded integration in medical devices, and the increased use as clinical decision support tools 

[1]. Therefore, this present work identifying the necessary details for model development is very 

impactful for future modeling studies. 
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There are two main factors that warrant further analysis: dura mater conductivity and the 

presence of dorsal rootlets in the FEM. My model found that dura mater conductivity 

significantly altered predictions of neural activation. While the dural membrane conductivity 

remains largely unknown, it would be a valuable parameter for future experimental studies to 

evaluate [139]. Additionally, the present work identifies that the presence of dorsal rootlets does 

not significantly alter neural thresholds; however, these results may not extend to alternate spinal 

levels due to variations in root/rootlet density, branching, and diameter [155], [156]. Future 

modeling studies should evaluate the influence of cervical, lumbar, or sacral roots/rootlets in 

FEM predictions using the same methodology described in Chapter 2. 

5.2.2 Ventral HF-SCS for inspiration 

Although the results of Chapter 3 identify two direct neural targets of stimulation and focus 

of their activation, HF-SCS involves a monosynaptic or polysynaptic reflex arc which likely 

contributed to the observed inspiratory response [7], [54], [59], [60], [73], [74], [208]. Future 

iterations of the model could evaluate the effects of indirect neural activation resulting from the 

synaptic structure of the pre-phrenic motoneurons as well as both interneurons and afferent sensory 

neurons that synapse on the inspiratory intercostals [60], [208], [209]. Indirect effects of 

stimulation may be responsible for the frequency dependent effects of stimulation. A recent 

computational model demonstrated that high frequency, low amplitude SCS can result in temporal 

summation of EPSP’s on post-synaptic neurons, leading to increased motor neuron recruitment 

[67]. A similar effect may contribute to the observed inspiratory behavior. Characterizing these 

effects and the synaptic structure will give a more complete understanding of the mechanisms 

leading to inspiratory muscle activation. 
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For future translation of this work, it is vital that the results produced in a canine model 

translate into similar levels of activation in humans. While historical success for translation of 

respiratory therapies give optimism about the success of HF-SCS, future modeling work will need 

to determine the optimal stimulation configuration for humans using the same methodology 

described in Chapter 3 [62], [66], [204]–[206]. This future modeling work will be essential given 

the variations in anatomy between species, including vastly differing ventral CSF thicknesses, 

spinal cord sizes, and variations in the location and respiratory contribution of inspiratory muscles 

across species [17], [60], [72], [171]–[173]. These differences warrant the development of novel 

computational models to optimize the stimulation parameters.  

5.2.3 Closed-loop SCS for pain management 

While the application of closed-loop SCS has demonstrated remarkable success in clinical 

trials, there are still unknowns related to the generation of the ECAP waveform. In particular, 

ECAP morphology occasionally shows additional peaks in the recorded signal [49]. These 

additional peaks may be a result of action potential initiation near the return electrode during the 

recharge phase of stimulation (the return electrode applies cathodic stimulation during the recharge 

phase of stimulation). However, an additional hypothesis suggests that these additional peaks arise 

from activation of the post-synaptic dorsal column pathway [199]–[201]. Evaluation of these two 

hypotheses is ideal for future computational models, and the implementation of them may be based 

on the methods established in Chapter 4.  

Likewise, while the present work explored a limited number of metrics related to ECAP 

generation and morphology, much work remains to fully characterize how ECAPs change in 

response to stimulation frequency, posture, alternate lead designs, anatomical factors (including 

spinal cord size, spinal canal dimensions, CSF volumes, fiber diameters, axon distribution, neural 
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trajectories, ion channel properties, heart rate, respiration, disease state, etc.), and movement [49], 

[50]. It may be ideal to evaluate these factors using a patient-specific approach, which has recently 

demonstrated superior accuracy to traditional canonical approaches [94]. Future work should focus 

on closed-loop neural activation changes with respect to frequency. A recent study evaluating 

frequency effects for closed-loop stimulation found that as the stimulation frequency increased, 

recorded ECAP amplitudes dropped while perceived paresthesia increased [50]. The authors 

hypothesized multiple mechanisms for the decrease in ECAP amplitude, including potassium 

accumulation in the peri-axonal space or electrogenic pump mediated excitability which could lead 

to intermittent blocking of fibers or increases in fiber thresholds [50]. These hypotheses are well 

suited for future computational models, and may give insight into how sensation is encoded in the 

spinal cord [50]. 

One limitation of the closed-loop approach to SCS is the large stimulus artifact that can 

mask the underlying ECAP signal. While the present work identifies alternate stimulation 

configurations and pulse widths that minimize stimulation amplitude, these results could be 

improved if a biophysical model of stimulus artifact were included in the analysis. This artifact 

model might require predictions of the tissue resistance and a circuit model of the electrode tissue 

interface, as was done in a recent study evaluating cortico-cortical evoked potentials [210]. 

Improved artifact modeling could both improve the predictions and analysis of computational 

models of closed-loop SCS, but also could lead to more efficacious clinical outcomes through 

improved artifact removal methods. 

The inherent methodology of closed-loop SCS directly addresses another major limitation 

of current computational modeling techniques: validation. In traditional SCS modeling, validation 

metrics typically include comparing the model electrode impedance to in vivo tissue impedances, 
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or by comparing perception/discomfort thresholds to some percentage of neural activity [1], [90], 

[92], [97]. However, these metrics either have unclear/arbitrary origins or do not directly measure 

neural activity [105]. A unique characteristic of the closed-loop paradigm is that it allows for 

rigorous validation of models using a metric directly resulting from neural activity. The present 

work represents the initial development of this validated model that reproduces experimental 

trends and evaluates the neural origins of the ECAP signal and factors that influence ECAP 

morphology. Future computational studies may use the methodology described in this work to 

develop more rigorous validation metrics to improve the accuracy of computational models. This 

will not only improve the understanding and implementation of closed-loop stimulation; but may 

also lead to improvements in novel forms of SCS, including burst, 10 kHz, and traditional open-

loop stimulation.  
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