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Abstract

Antibiotic resistant pathogens pose a global health threat as resistance continues to evolve

and spread across the globe. One such pathogen, methicillin-resistant Staphylococcus au-

reus (MRSA) causes about 300,000 cases and 10,000 deaths annually in the United States.

MRSA once exclusively caused infections among hospitalized patients with known risk fac-

tors. Around 1999, a new lineage called USA300 emerged to cause infection in otherwise

healthy individuals in the community in the United States. Since then, infection control

efforts have been effective at steadily reducing MRSA rates in the healthcare setting. How-

ever, these reductions are strain-specific and MRSA transmission in the community remains

a problem. Efforts to reduce community MRSA transmission require in-depth knowledge

of how and where MRSA is circulating in the community. In this dissertation, we explored

MRSA adaptation and transmission in the urban community of Chicago and in a large,

inner-city jail in Chicago.

Leveraging a comprehensive collection of clinical MRSA cultures from 2011-2014, we

first applied genomic epidemiology methods to determine the contributions of the commu-

nity and healthcare settings in MRSA USA300 spread. We found a lack of healthcare overlap

among individuals with genetically similar MRSA strains, even among so-called “healthcare-

associated” or “hospital-onset” infections. This finding implicated the community in acqui-

sition of USA300 MRSA and merits further studies to pinpoint areas of the community to

target.

Next we honed in on one sector of the community with increased burden of MRSA: a

xv



large, urban jail. We found significant importation of MRSA into the jail, with 19% of

individuals entering the jail colonized, as compared to the national nasal carriage prevalence

of 1.5%. Moreover, by following individuals longitudinally we found that MRSA was also

acquired within the jail, with ∼8% of intake negative individuals screening positive by 30 days.

Further, genomic analysis of individuals acquiring MRSA infections in jail revealed evidence

of transmission mediated by spatiotemporal overlap in the jail and persistent environmental

contamination, pointing to potential targets to reduce transmission.

Finally, we uncovered an antibiotic resistance-conferring plasmid that was independently

acquired multiple times and was associated with increased transmission both in the jail and

in the community. The prevalence of the plasmid was much higher in jail-onset infections

compared to imported MRSA, suggesting an increased selective pressure in the jail. In the

community, the plasmid was associated with incarceration and drug use, suggesting possible

acquisition in the jail and potentially reflective of an increased selective pressure for the

plasmid in the jail.

In this dissertation, we produced insights into USA300 MRSA epidemiology by applying

genomic epidemiology approaches to identify sites and risk factors for community trans-

mission. In particular, our integration of genomic and epidemiological data improved our

understanding of transmission pathways in the community, in the jail, and the relationship

between the two by identifying a variant selected for in the jail that may be spread to the

larger community. Moreover, our delineation of community transmission networks feeding

into the jail highlights the need to study additional sectors of the community for MRSA

transmission. Finally, we provide an analytical framework for genomic epidemiology in jails,

which has subsequently been useful to study transmission dynamics of COVID-19 in the jail

population.

xvi
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Chapter 1

Introduction

1.1 Motivation

Treatment options for bacterial infections have dwindled due to the emergence of antibiotic

resistance, with the greatest concern being bacteria that have become resistant to mul-

tiple classes of antibiotics and spread across the globe. One such pathogen, methicillin-

resistant Staphylococcus aureus (MRSA), is a common cause of invasive infection worldwide

and deemed a serious threat by the CDC. MRSA was once confined to infecting those with

healthcare exposures (hospital-onset or HO-MRSA), but around 1999 a new strain of MRSA

called USA300 emerged to cause infections in otherwise healthy individuals in the com-

munity (community-onset or CO-MRSA) such as children, incarcerated individuals, and

athletes. Subsequently, this strain of MRSA infiltrated the healthcare setting. Successful

interventions in the healthcare setting have led to a reduction in HO-MRSA. However, CO-

MRSA has not declined to the same extent, in part due to a lack of understanding of the

routes of transmission in the community and where interventions would be most impactful

in reducing CO-MRSA.

As the most common strain of MRSA is USA300, high-resolution typing via whole-genome

sequencing is required to understand routes of spread and to monitor variants circulating and

taking hold in the community. We sought to understand the transmission and adaptation of

1



CO-MRSA in Chicago, IL in one of the largest single-site jails in the United States and in

the broader community by integrating genomic and epidemiological data.

1.2 Overview of MRSA

1.2.1 Origins of MRSA

Staphylococcus aureus is both a component of the normal human flora and a successful

pathogen [2]. Before antibiotics were available, bloodstream infection with S. aureus resulted

in 80% mortality [2]. While antibiotics improved patient outcomes, resistance was observed

shortly after the introduction of antibiotics to clinical practice – first to penicillin and later

to methicillin [3]. Methicillin resistance is thought to have predated methicillin use in the

clinic as a result of widespread penicillin use and the subsequent use of methicillin clinically

provided a selective pressure for these variants [4]. Resistance is conferred through the

acquisition of the mobile genetic element (MGE) SCCmec which occurs in a variety of forms

among different strains of MRSA [5].

1.2.2 Biology and clinical importance of MRSA

MRSA can asymptomatically colonize the host for long periods of time; one study observed

that ∼20% of patients remained colonized 4 years after their documented MRSA colonization

or infection [6]. MRSA colonization occurs in about 1.5% of the general population [7] with

certain populations such as incarcerated individuals, illicit drug users, homeless individuals,

individuals engaging in high-risk sexual behaviors, and those with diabetes, HIV, or on

dialysis having higher rates of colonization [8, 9, 10, 11]. In addition to asymptomatic

colonization, MRSA can cause a number of infections including skin and soft tissue infections,

respiratory, urinary, and bloodstream infections [3]. MRSA colonization is thought to precede

2
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infection and patients are usually infected with their colonizing strain [12].

MRSA causes over 300,000 infections each year and results in over 10,000 deaths in the

United States [13] and is also one of the most prevalent pathogens globally [14]. Across

multiple studies, MRSA bacteremia has higher mortality rates than methicillin-susceptible

Staphylococcus aureus MSSA bacteremia [15, 16]. However, there has been inconclusive

evidence that MRSA is more virulent than MSSA [16]. Rather, increased mortality may

be a result of delay in the microbiologically appropriate treatment or decreased efficacy of

vancomycin for treating MRSA infection compared to drugs to treat MSSA [15]. In wound

infections, however, similar outcomes exist in MRSA and MSSA [17].

Although there is no conclusive evidence that MRSA is generally more virulent than

MSSA, certain MRSA lineages have genetically encoded factors that may increase pathogenic

potential [18]. The CO-MRSA strain USA300 and its progenitor, USA500, are particularly

pathogenic compared to other CC8 MRSA strains in animal models of bacteremia and ab-

scess [19]. The increase in pathogenicity has been attributed to differential virulence gene

expression of core, chromosomally encoded virulence genes regulated by the quorum-sensing

gene agr [19].

Regardless of questionable differences in virulence, MRSA is challenging to treat as there

are less treatment options than MSSA [20]. Moreover, there have been a few cases of devel-

opment of vancomycin resistance in MRSA, leaving even fewer treatment options [21].

1.2.3 Classification of MRSA

MRSA has traditionally been categorized into molecular types using lower resolution methods

than whole-genome sequencing including spa typing [22], pulsed-field gel electrophoresis

(PFGE) [23] and multilocus sequence typing (MLST) [24]. In this dissertation, I refer to

strains as defined by PFGE and MLST. Typing by PFGE is based on the similarity of banding

patterns after restriction enzyme digestion. A national database of strains was created with
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the naming convention USA followed by numbers, including common strains in the United

States such as USA300, USA500, and USA100 [23]. MLST is based on the genetic similarity

of seven housekeeping genes [24]; sequence type (ST) 8 encompasses USA300 and USA500

while ST5 encompasses USA100 [3]. Clonal complexes are classified as similarities among 5

of the 7 housekeeping genes with USA300 categorized as CC8. PFGE is labor intensive and

classification of banding patterns can be subjective; as such, sequencing probes have been

developed to classify strains within CC8 with a PCR assay or in silico sequencing probes

[25]. Within these molecular types, there is large genetic variation on the nucleotide level and

thus whole-genome sequencing is required to determine transmission relationships between

them [25].

1.3 MRSA Epidemiology

1.3.1 From the hospital to the community and back

MRSA was once confined to the hospital setting primarily by the strain USA100, but also by

USA200, USA500, and USA800 [23]. Around 1999, one of the the first outbreaks of MRSA in

a healthy population with no healthcare exposures occurred in a prison [26] with subsequent

reports of MRSA in other correctional facilities [27]. Furthermore, cases were observed in

the pediatric population in healthy children [28] and among the St. Louis Rams football

team [29]. It was later determined that these community cases were caused by a new strain

of MRSA called USA300 by PFGE. Outbreaks continue to happen among children and in

daycare centers, in athletes and athletic facilities, jails and prisons, and military barracks

as these demographics and places are characterized by one or more of the following: poor

hygiene, potential for abrasions, and close person-to-person contact [30, 31]. USA300 is the

dominant strain in the community, causing the majority of all skin and soft tissue infections

presenting to emergency rooms across the United States [32]. But it has also infiltrated the
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healthcare system, having become a common cause of bloodstream infections [33].

In an attempt to predict community or hospital origins of MRSA, MRSA is categorized by

time of onset relative to hospitalization with community-onset (CO-MRSA) defined as MRSA

whose onset is within 72 hours of hospitalization and hospital-onset MRSA (HO-MRSA) after

that threshold. With USA300 now prevalent in both the community and hospital setting,

genotype alone (USA100 vs. USA300) does not distinguish site of acquisition. Further,

there is evidence that often “hospital-onset” MRSA is due to pre-existing colonization from

the community [34]. Thus, higher resolution methods such as whole-genome sequencing are

needed to understand the origins of MRSA. We address this in Chapter 2.

1.3.2 MRSA in urban communities and incarcerated individuals

Certain subpopulations of the community are at higher risk for MRSA colonization and

infection. Risk factors for MRSA include illicit drug use, HIV, high-risk sexual behaviors,

homelessness/alternative housing and incarceration which are factors particularly prevalent

in urban communities [35]. These risk factors are highly associated with each other; for

example, incarcerated populations are enriched in illicit drug users, HIV infected populations

and homlessness which are all also risk factors for MRSA colonization [36, 37].

Incarcerated populations are particularly vulnerable to MRSA colonization, with higher

prevalence of colonization than the average MRSA colonization prevalence in the United

States [38]. In fact, locations of Cook County with higher rates of MRSA colonization

overlap with regions of the community with higher rates of incarceration history [39]. In

addition to high risk populations entering the jail, jails are high risk environments for MRSA

transmission. Some of the first outbreaks of USA300 were reported in jails and prisons, and

outbreaks continue to be a problem.

We and others hypothesize that jails may act as amplifiers for MRSA transmission in the

community because there is an intersection of individuals at high risk for MRSA colonization
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in an environment that is high risk for MRSA transmission [40]. Upon potentially acquiring

MRSA in the jail, many people leave each day and return to their communities, potentially

facilitating spread of new MRSA lineages to that community. Also, there is high recidivism

in this population, leading to multiple opportunities for acquisition or spread of previously

acquired MRSA strains in the jail.

1.4 Genomic epidemiology to study transmission

Genomic epidemiology is an emerging field that combines microbial whole-genome sequencing

and epidemiological data to infer transmission networks. As outbreaks of antibiotic resistant

pathogens are often caused by epidemic lineages, such as USA300 MRSA, higher resolution

methods like whole-genome sequencing are required to discern transmission relationships.

Some of the first genomic epidemiological studies occurred in the healthcare setting to

study outbreaks [41] and have subsequently been used to study inter- and intra-healthcare

facility transmission [42]. While MRSA outbreaks have been studied in the healthcare setting

[43], fewer studies have been conducted in the community. Using genomic epidemiology in

the community poses additional challenges as sample and data collection may be challenging,

particularly in vulnerable populations such as incarcerated individuals.

In MRSA, one community genomic epidemiological study revealed an important role of

households in fueling community MRSA evolution and transmission [44]. A study conducted

in the same population as this dissertation used genomics to assess community transmission

networks entering a large urban jail and revealed a community transmission network of

USA500 MRSA among men who have sex with men (MSM), HIV-positive methamphetamine

users [38]. MRSA transmission in jails has been studied with mathematical modeling [45]

and risk factors for infection onset in jails assessed with epidemiological studies [46, 47], but

to date genomics has not been used to infer MRSA transmission networks within jails. We
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use genomic epidemiology in Chapter 3 to assess the extent and routes of MRSA transmission

in the Cook County Jail.

1.5 Genomic variation leading to emergence and con-

tinued success of USA300

USA300 emerged in the community around 1999 and subsequently has had epidemic success

in the United States for decades. The factors that led to USA300’s emergence and rapid

spread are not fully understood, but acquisition of particular genetic variants including

MGEs have been identified as contributors. For example, it is thought that USA300 has

enhanced survival on human skin, thus promoting transmission [48]. This may be due to

acquisition of the MGE ACME, which is thought to have been acquired by USA300 from

S. epidermidis circa 1981 to 1997, around the beginning of the USA300 epidemic [48]. The

ACME element contains the gene speG, which produces a spermidine acetyltransferase to

neutralize polyamines, a byproduct of arginine metabolism in human tissues [48]. Another

factor that may have contributed to the evolutionary success of USA300 is the acquisition

of fluoroquinolone resistance through chromosomal mutations [49, 50, 51].

In addition to factors that contribute to its broad epidemic success, USA300 may evolve

differently in response to varying selective pressures in diverse environments. USA300 is

both an important community and hospital pathogen, and likely undergoes different selective

pressures in each setting. In fact, recent proteomic studies have shown that USA300 lineages

classified as community-associated versus hospital-associated can be distinguished by their

proteome [52, 53].

Even within different pockets of the community setting, USA300 MRSA are under dif-

fering selective pressures which can lead to different emerging lineages. One example of

this is among MSM; USA300 MRSA carrying a plasmid pUSA03 carrying the genes ermC
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and mupA conferring resistance to clindamycin and mupirocin respectively were found to be

circulating among MSM in Boston and San Francisco [54]. Another example is the varying

selective pressures in jails and prisons, which are high transmission settings for infectious

disease including MRSA and tuberculosis. Recently, it was shown that highly transmissible,

fitness-compensated multidrug-resistant Mycobacterium tuberculosis was being selected for

in prisons in the country of Georgia resulting in spillover to the community [55]. We won-

dered if the jail was imposing differing selective pressures in MRSA that facilitate spread,

and we address this in Chapter 4.

1.6 Datasets

This dissertation provides insight to MRSA transmission and adaptation associated with

increased transmission using two datasets collected in the Cook County Health system in-

cluding the Cook County Jail.

1.6.1 Comprehensive MRSA clinical cultures presenting to Cook

County Health from 2011-2014

The first dataset includes all clinical cultures presenting to Cook County Health from 2011-

2014, totalling 1165 cultures from 1101 individuals. It consists mostly of USA300 wound

infections. We performed whole-genome sequencing and antibiotic resistance testing on all

cultures. Metadata includes demographic information, community exposures including hous-

ing status, incarceration and illicit drug use history, binary healthcare exposures including

hospitalization, surgery, dialysis, and outpatient and inpatient visits, and exposure to antibi-

otics in the past 6 months. In addition, we have detailed inpatient and outpatient discharge

data from the Illinois Department of Public Health with monthly resolution exposures to 90

inpatient and 96 outpatient facilities across the state of Illinois.
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1.6.2 MRSA colonization and infection samples among detainees

in the Cook County Jail from 2015-2017

The second data set was collected as part of an epidemiological study in one of the largest

single-site jails in the United States: the Cook County Jail in Chicago, IL. Surveillance

cultures of MRSA in the nose, throat, and groin were collected among males at intake and

after 30 days in jail if the individual remained from January 2016 to December 2017. These

colonization isolates, combined with all infections in the jail during the study period and

preceding year, underwent whole-genome sequencing. Metadata includes results of a survey

of risk factors collected at intake and at day 30 and detailed location data regarding where

the individual stayed each day in the jail.

1.7 Dissertation Outline

In the second chapter, I identify origins of MRSA in healthcare-associated community-onset

MRSA infections presenting to a large, urban healthcare system in Chicago, IL. In the third

chapter, I identify the extent and routes of transmission in a specific section of the commu-

nity: at entrance to and within a large, urban jail. In the fourth chapter, I identify a plasmid

associated with increased transmission in both the jail and larger Chicago community. This

dissertation was a result of team science, and I specify my contributions in the preamble of

Chapters 2-4.
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Chapter 2

Community Origins of Healthcare-Associated USA300 MRSA

Clinical Cultures Revealed with Genomic Epidemiology

2.1 Preamble

In this chapter, we assess the contributions of the community and healthcare settings in

USA300 MRSA transmission in a comprehensive collection of clinical cultures from Cook

County Health across the period of 2011-2014. We use genomic epidemiology to determine

the potential origins of MRSA acquisition in the context of the traditional, epidemiologi-

cal definitions “community-onset”, “hospital-onset” and “healthcare-associated community-

onset” and find these definitions are not a reliable predictor of acquisition. Across all onset

types, there are numerous healthcare exposures, but we find little evidence of healthcare

transmission even with detailed inpatient and outpatient discharge data from the Illinois

Department of Public Health, suggesting an important role of the community in USA300

MRSA acquisition.

I performed the genomic, phylogenetic, and statistical analyses and created the figures

presented in this chapter and drafted this chapter.
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2.2 Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) was once confined to causing infections

to hospitalized patients with known risk factors [56]. In the United States, healthcare-

associated infections were caused predominantly by USA100 MRSA as defined by pulsed-

field gel electrophoresis (PFGE) but also by USA200, USA500, USA600 and USA800 [23].

However, around 1999, a new lineage of MRSA called USA300 emerged to infect otherwise

healthy individuals with no healthcare exposures in the community including jails and prisons

[27, 26], sports teams [29, 57], military barracks [58], and among the pediatric population

[28, 59]. Since its emergence, USA300 became the most common cause of skin and soft

tissue infections presenting to the emergency room [32]but has also infiltrated the hospital

as a common cause of hospital-onset bloodstream infection [33].

In an attempt to predict where MRSA was acquired, MRSA is defined as community-

onset (CO) if an infection occurs within 72 hours of hospitalization and hospital-onset (HO)

if an infection occurred after that threshold. However, as USA300 is now a common cause

of community and healthcare-associated infections, there is a “graying” of what defines

hospital or community MRSA [60]. Adding nuance to these epidemiological definitions to

capture the role of healthcare exposures in CO-MRSA, the CDC Emerging Infections Pro-

gram coined the term healthcare-associated community-onset (HACO) wherein an individual

had a community-onset infection, but had healthcare exposures in the prior year or previous

MRSA [61].

Still, there can be inaccuracies in predicting the site of acquisition by time of infection

onset because MRSA can asymptomatically colonize the host for long periods of time [62] and

colonization is thought to precede infection [12]. Indeed, genomic epidemiology has revealed

that these definitions based on timing of infection onset might inaccurately categorize where

MRSA was acquired [34]. Further, exposure to the healthcare setting does not necessarily
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mean that MRSA was acquired in that setting [63].

The blurred lines defining these categories manifests when observing the strain-specific

trends in MRSA infection prevalence by onset-type from 2005 to 2013; while USA100 MRSA

significantly decreased for all three onset types, among USA300, only HO-MRSA cases de-

clined [64, 65]. It is hypothesized that decline of MRSA cases was due to increased aware-

ness and implementation of infection prevention measures to combat catheter-related infec-

tions and antibiotic resistant pathogens [64]. These strain-specific differences in response

to healthcare interventions could suggest that across all onset categories, USA300 is largely

community-acquired, and thus interventions in the healthcare setting have less of an ef-

fect on USA300 MRSA cases [65]. Clearly, further work is needed at a higher-resolution

than molecular-typing methods (e.g. PFGE) to understand the origins of USA300 MRSA

acquisition.

We sought to understand the interplay of community, healthcare, and hospital exposures

in USA300 MRSA spread and how these exposures align with onset type definitions. We

analyzed a comprehensive collection of MRSA clinical cultures among patients presenting to

Cook County Health from 2011-2014, consisting primarily of wound infections, using genomic

epidemiology and leveraged a detailed database of hospital discharge data throughout the

state of Illinois to directly test the role of the healthcare exposures in MRSA acquisition.

2.3 Results

2.3.1 Study population and clinical cultures

Archived clinical isolates comprising a comprehensive sampling of MRSA infections present-

ing to Cook County Health over the period were collected from 2011 to 2014 (N = 1203 total

samples). The number of clinical MRSA isolates was stable over 2011 to 2013, but declined

in 2014 in part because of heuristic diagnosis of skin infections as MRSA and potentially in
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Figure 2.1: Summary of data
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part to declining MRSA cases (Figure 2.1A). There were 113 cases of repeat infections from

49 individuals, defined by > 30 days between clinical samples; 38 samples from 37 individ-

uals were repeated cultures collected less than 30 days apart. Thus, there were a total of

1165 clinical cultures from 1101 individuals over the 4 year time frame. Limiting to samples

for which genomes pass quality control and restricting to the first isolate from each patient

resulted in a final data set including genomes from 1020 clinical cultures. Overall, wound

infections were the most common (81.2%) followed by blood (7.7%) and respiratory (6.2%).

Demographic information from these 1020 patients is provided in Table 2.1.

2.3.2 Epidemiological factors associated with onset type

We assessed epidemiological factors among those with HO-MRSA and CO-MRSA compared

to those with HACO-MRSA (Table 2.2, Figure 2.2). Compared to HO infections, individuals

with HACO infections are enriched in wound cultures, suggesting that HO infections are more
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Figure 2.2: Epidemiological factors enriched in HACO- compared to CO- and HO- infection
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invasive. Individuals with HACO and HO infections have exposures to the healthcare system,

but individuals with HO infections have more ICU encounters compared to those with HACO

infections, consistent with more severe infection among HO-infected individuals. Individuals

with HACO infections have more inpatient, outpatient, and emergency room visits compared

to those with HO infections. Individuals with HACO and HO infections have similar levels

of community exposures.

By definition, individuals with HACO infections are enriched in healthcare exposures

compared to CO infections. As such, antibiotic use is also enriched in individuals with HACO

infections compared to those with CO infections. Surprisingly, individuals with HACO

infections are enriched with community exposures such as drug use, history of incarceration,

and homelesness compared to those with CO infections. In fact, no individuals with CO

infections have been incarcerated in the past year of MRSA infections and only 11% have

been incarcerated ever compared to 31% and 30% in individuals with HO and HACO infected

individuals respectively (Table 2.2).

2.3.3 Genomic epidemiology across onset type

Most cultures were USA300 (N = 832) followed by isolates closely related to USA100/ST5

(N = 80), USA500 including Clades C and E / early branching USA300 (N = 22) and other

(N = 86). Onset type classifications were 553 CO, 324 HACO, and 143 HO isolates. USA300

was the most common clinical culture across all onset types. However, a higher percentage of

isolates per onset type were USA100 in HO and HACO than in CO, consistent with USA100

as a healthcare-associated pathogen (Figure 2.1B).

Within USA300, the dominant molecular type, we tested if there was intermixing among

CO, HO, and HACO isolates on the USA300 phylogeny, or if different sub-lineages of USA300

preferentially spread in community or hospital settings . Previous work by our group focusing

on bloodstream infections from 2009-2013 indicated that there were no separate sub-lineages
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for CO or HO infections [34]. Expanding our analysis here to a more diverse and comprehen-

sive sampling of clinical isolates supported this previous finding, with onset types showing

no evidence of clustering on the USA300 whole-genome phylogeny (Figure 2.3B). Moreover,

even when focusing on clusters of isolates that were most closely related, and thereby most

closely linked in transmission networks, revealed that most were of mixed onset type. This

suggests that transmission networks of USA300 MRSA in the healthcare and the community

setting are overlapping.

2.3.4 Evidence of potential transmission among infections

We next identified pairs of isolates plausibly involved in direct or indirect transmission by a

SNV threshold of 20. We removed individuals less than 13 years of age because of differing

epidemiology among adults and children. There were 294 pairs of USA300 isolates making

up clusters of size 2-21 (Figure 2.6). It is of note that despite the lack of sampling of

asymptomatically colonized individuals, we still identified a large number of individuals

potentially related by recent direct or indirect transmission using only clinical cultures. The

proportion of CO, HO, and HACO isolates genetically linked to another isolate is similar to

the proportion not genetically linked, with HACOs being slightly enriched in transmission

clusters (p = 0.039) (Figure 2.6.

2.3.5 Healthcare transmission does not drive USA300 MRSA trans-

mission

We next sought to understand what common exposures could be mediating the observed ge-

nomic links. We focused on common healthcare exposures as we had access to high resolution

healthcare exposure data from the Illinois Department of Public Health with 90 inpatient

and 96 outpatient facilities across the state of Illinois from 2013 to 2017. The number of
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Figure 2.3: No distinct sub-lineages causing community and healthcare associated USA300
infections
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Maximum likelihood phylogeny of USA300 isolates generated by IQ-TREE. One sample per
individual. Scale bar individuates substitutions per site. Inner ring indicates onset type.
Outer ring indicates if the isolate is in a cluster or not, and if the cluster is of mixed or pure
onset type.
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genetically linked USA300 pairs where both individuals were diagnosed with MRSA in 2013

or 2014 was 68 out of 294 total pairs. We subsetted our analysis to these genetically linked

pairs to reflect the data available from IDPH.

Individuals related to another isolate by 20 SNVs did not have more inpatient or out-

patient exposures (Figure 2.4A). We next sought to assess if there was indirect or direct

overlap in the healthcare setting among genetically-linked pairs of individuals. Despite high

resolution healthcare exposure data, only 5 of 68 pairs overlapped in an inpatient facility

in the same month and only 8 of 68 pairs overlapped in an outpatient facility in the same

month. All but one of these overlaps occurred in the facility of MRSA diagnosis, which has

the most entries, and thus could be random overlap. Indirect overlap was defined by attend-

ing the same facility before the date of the latest MRSA diagnosis in the pair. 17 of 68 pairs

and 12 of 68 pairs indirectly overlapped in outpatient or inpatient facilities, respectively.

Again, all but 2 indirect overlaps occurred at the facility of MRSA diagnosis, and thus could

indicate overlap by random chance. Taken with the enrichment of community exposures

among HACO and HO infections, this suggests that both HACO and HO infections could

be a result of acquisition of colonization outside the healthcare setting.

2.3.6 Individuals use the healthcare system before and after MRSA

Though we found no evidence of extensive transmission in the healthcare setting, individuals

do have numerous exposures to the healthcare setting before and after MRSA diagnosis across

all onset types (Figure 2.4B) potentially providing opportunities for access to these patients

before and after infection. While the median healthcare exposures among CO-MRSA before

diagnosis was 0, there were 54 of 196 individuals with CO infections who had an inpatient

exposure before or during the month of MRSA diagnosis, indicating that they should be

classified as HACO-MRSA. This high resolution data of the broader healthcare network is

not typically available to clinicians when making onset type designation. Of note, individuals
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within high-risk social networks including those with a history of drug use, incarceration,

and homelessness often have exposures to the healthcare setting, including the ER, prior to

development of infection (Table 2.2).

Figure 2.4: Exposure to the healthcare system before and after MRSA diagnosis
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2.3.7 Individuals with repeat infections tend to be involved in

more transmission

There were many repeat infections among individuals and we sought to determine if this

was indicative of persistent colonization or acquisition of new strains. There are 108 repeat

infections among 47 individuals. Individuals had 2-5 repeat infections during the study

period. Of the 47 individuals, 14 had documentation of MRSA in the past 6 months (29.8%),

indicating the MRSA culture collected in the study period was not their first infection. While

CO-MRSA is the most common infection type in our dataset, HACO-infected individuals

are enriched in repeat infections by definition of prior MRSA infection or colonization in the

past 6 months (Figure 2.5A).
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Figure 2.5: Analysis of repeat infections
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40 of the 47 individuals have multiple genomes available across repeat infections. Of those

40 individuals, 34 (85%) have an infection of the same MLST over time, with 23 having repeat

USA300 infections over time. The majority of individuals with repeat USA300 infections

have an infection of the same strain; only 3 of 24 individuals had at least 1 USA300 repeat

infection that was greater or equal to 20 SNVs from a previous infection (Figure 2.5B).

Individuals had a repeat infection with the same strain of MRSA (within 20 SNVs) up to

849 days apart (Figure 2.5B). This indicates long-term persistent colonization or constant
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exposure to an environmental source. Individuals with repeat infections have 2.6 times higher

odds of being related to another isolate by 20 SNVs than those without repeat infections (p =

0.029) (Figure 2.5C). This suggests a crucial role for individuals with persistent colonization

in transmission networks. Furthermore, individuals with repeat infections tend to have more

healthcare exposures before and after MRSA (Figure 2.5D) suggesting these individuals are

frequent users of the healthcare system. It is possible that they acquired their strain in the

healthcare system, although we have little evidence of this occurring. This higher exposure

to the healthcare system could also suggest underlying comorbidities that result in persistent

colonization and repeat infection.

2.4 Discussion

Infection prevention efforts and antimicrobial stewardship in the healthcare setting have

made significant strides in reducing MRSA infection rates [64], but this progress has mainly

occurred in USA100 MRSA and less so in USA300 MRSA [65]. We aimed to understand

where USA300 MRSA acquisition is occurring and how it relates to commonly-used onset

type definitions. From the lack of healthcare overlap and evidence of persistent colonization

manifesting in repeat infection with the same strain, it is clear that location of onset or

recent healthcare exposure are not sufficient to attribute the hospital as a source of infection

among USA300 MRSA. This calls into question the utility of these epidemiological onset

type definitions in predicting sites of MRSA acquisition.

Consistent with previous work, we showed that there are no separate lineages of USA300

MRSA circulating in the healthcare and community settings [34]. We observed community

exposures among healthcare-associated infections and a lack of healthcare overlap among

transmission pairs indicating that acquisition of USA300 in the community often manifests

as HACO- and HO- infections. This is consistent with the smaller impact of infection control
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to reduce USA300 infection compared to USA100 in the healthcare setting [65].

While we observed no evidence of USA300 healthcare transmission, individuals with

MRSA infection have exposures to the inpatient and outpatient setting before and after

MRSA. Individuals in high-risk social networks such as those with incarceration history,

those who use illicit drugs, and homeless individuals are frequent users of the healthcare

system. MRSA surveillance or education on the risk of MRSA and the need for enhanced

personal hygiene and environmental cleaning could be implemented during a healthcare visit

to attempt to prevent infection.

Further, individuals with repeated infection, suggestive of persistent colonization, are in-

volved in more putative transmission clusters. Targeting these individuals for interventions

could be a potential intervention for reducing MRSA transmission. Importantly, these indi-

viduals use the healthcare system more before and after diagnosis, indicating potential points

of intervention and as such decolonization may be an effective strategy for this population. A

multi-center, randomized control trial conducted by Huang et al showed that decolonization

with CHG and nasal mupirocin at discharge reduced repeated MRSA infections [66].

Our study was limited in that we only collected clinical cultures and not surveillance

cultures. Despite collecting only clinical cultures, we were able to detect many putative

transmission links. The stark lack of healthcare transmission could be due to missing inter-

mediates in the transmission network who are asymptomatically colonized. However, in a

previously published study conducted at the Cook County Jail, we again observed many ge-

netic linkages among infected individuals but were able to detect significant location overlap

explaining transmission [67], suggesting that at least there is less transmission in the health-

care network than in the confined setting of a jail. Further, we only collected healthcare

exposure data at monthly and facility resolution. However, even if higher resolution data

was available, there would be only a few number of pairs to assess at a more granular level.

Varying definitions for HACO exist, some with [61, 68] and some without [64] the inclusion
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of prior MRSA colonization and infection in the definition. In our data, 11.6% (N = 32) of

USA300 isolates classified as HACOs were classified as such solely because of a prior MRSA

infection. Regardless of how HACO is defined, our data suggest that neither a history of

MRSA or healthcare exposure equate to healthcare acquisition.

As we have shown that most USA300 infections seem to be acquired outside of the health-

care setting, further work to understand how transmission is occurring in the community

is warranted, particularly for those with no known risk factors for MRSA. In the past, we

have shown that there are high rates of MRSA at community infectious disease clinics [38]

and among HIV infected individuals, high burden of MRSA at entrance to jails [38], and

high rates of MRSA acquisition within jails [67]. More studies using epidemiological data

and whole-genome sequencing are crucial to understand community reservoirs of MRSA and

routes of transmission and to move the needle on USA300 infections.

2.5 Methods

2.5.1 Study design

We examined existing clinical MRSA isolates from 2011-2014 isolated from patients seeking

care at Cook County Health, the major public healthcare network in Chicago, IL. Com-

prehensive sample collection was conducted during these years. We performed electronic

and manual chart review to ascertain community (e.g., unstable housing, illicit drug use,

incarceration history), demographic information, healthcare exposures, and comorbidities

for included individuals. Outpatient and inpatient visits from discharge data in the state of

Illinois from 2013-2017 were queried by the Illinois Department of Public Health (IDPH).

Isolates were defined as hospital-onset (HO) if MRSA onset was 72 hours after hospital-

ization. Isolates were considered healthcare-associated community-onset (HACO) if onset

was within 72 hours of hospitalization and the individual had prior healthcare exposure in-
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cluding hospitalization, surgery, dialysis, long term care in the past year or MRSA infection

or nares colonization in prior 6 months and community-onset (CO) if they did not have these

exposures.

Repeat infections were defined as having a repeat culture more than 30 days after the

first culture, otherwise these were repeat cultures and were excluded from the analysis. We

defined pediatric as less than 13 years of age.

2.5.2 Statistical tets

We compared epidemiological factors enriched in HACO-infected individuals compared to

HO- and CO- infected individuals using two independent Fisher’s exact tests using the

exact2x2 package in R. Null data was removed and denominators are specified. Infection

type, ethnicity, and race were binarized. We compared time in facilities with a Wilcoxen

rank sum test using the base R function wilcox.test.

2.5.3 Whole genome sequencing

Genomic DNAs extracted from MRSA isolates were prepared for sequencing using a Nex-

tera XT library preparation kit (Illumina, San Diego, CA) or NEBNext Ultra (Illumina,

San Diego, CA) Library Preparation kit according to manufacturer instructions. Sequencing

was performed on an Illumina NextSeq500 or Illumina NovaSeq instrument using a high-

output kit with paired-end 2x75 or 2x150 base reads, respectively. Library preparation and

sequencing were performed at the Microbiome Core and Advanced Sequencing Core, re-

spectively at the University of Michigan. Variant calling pipeline can be found on Github:

https://github.com/Snitkin-Lab-Umich/variant calling pipeline Raw sequence data was de-

posited under Bioproject PRJNA734638. We conducted multilocus sequence typing using

ARIBA [69] and further classified CC8 isolates using in silico sequencing probes provided by
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Bowers et al [25]. The size of the USA300 core genome was 2.58Mb.

2.5.4 Identifying putative transmission links

We classified individuals that are plausibly involved in recent transmission based on a SNV

threshold of 20 to prioritize minimizing false positives [70, 71]. Additionally, most individuals

with repeat USA300 infections had subsequent infections with a strain within 20 SNVs of

the first infection.

2.5.5 Phylogenetic analysis

After generating the whole genome alignment, we then masked sites identified as recombinant

by Gubbins(Croucher et al., 2015) and used this masked whole-genome alignment to build

a maximum likelihood phylogeny with IQ-TREE [72, 73]. Non-USA300 tips were dropped

using the drop.tip function in ape [74]. We overlayed metadata on phylogenetic tree using

ggtree [75], gheatmap, and ggnewscale.

2.5.6 Defining healthcare exposure in the IDPH data

The IDPH data contained monthly level resolution of exposures to inpatient and outpatient

facilities. We defined exposure to a facility in terms of “facility-months” where a stay from

Jan 2013 to Jan 2013 would be recorded as 1 facility-month (typical of an outpatient ex-

posure) and a stay from Jan 2013 to March 2013 would be recorded as 3 facility-months

(more typical of an inpatient exposure). For visualization purposes, we added 1 and log10

transformed the data, such that a log10 value of 0 indicates no healthcare exposures. We

aggregated exposures by before and the month of MRSA and after MRSA; note that with

monthly level resolution, an exposure occurring the month of MRSA could have happened

before or after the MRSA diagnosis or might represent the visit where MRSA was diagnosed.
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The study was approved with waiver of consent by the Cook County Institutional Review

Board.
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2.6 Tables

Table 2.1: Summary of data

Variable Number (Percent)
RACE

African American/Black 612 (60)
White 319 (31.27)

American Indian/Alaska Native 57 (5.59)
Asian 21 (2.06)

Other/UTD (unable to determine) 6 (0.59)
Multiple 3 (0.29)

Native Hawaiian/Pacific Islander 2 (0.2)
ETHNICITY

Non-Hispanic/Latino/Spanish Origin 792 (77.65)
Hispanic/Latino/Spanish Origin 222 (21.76)

Unknown 2 (0.2)
ONSET TYPE

CO 574 (56.27)
HACO 303 (29.71)

HO 143 (14.02)
INFECTION TYPE

Wound 828 (81.18)
Blood 79 (7.75)

Respiratory 63 (6.18)
Fluid 22 (2.16)
Other 16 (1.57)
Urine 12 (1.18)
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Table 2.2: Epidemiological factors associated with onset type

Percent epidemiological factor HACO vs. HO HACO vs. CO
HO HACO CO p OR 95% CI p OR 95% CI

DEMOGRAPHIC
Wound (vs. other) 53% (50/94) 84% (193/231) 91% (469/513) 4.1E-08 4.4 2.6,7.6 0.0022 0.48 0.3,0.77

Black / African American Race (vs. other) 61% (57/94) 64% (147/231) 59% (301/513) 0.62 1.1 0.67,1.9 0.22 1.2 0.89,1.7
Hispanic ethnicity 18% (16/91) 19% (43/231) 25% (127/512) 0.87 1.1 0.57,2.1 0.073 0.69 0.47,1

Pediatric individual (<13 years old) 4.3% (4/94) 4.3% (10/231) 6.2% (32/513) 1 1 0.3,3.6 0.39 0.68 0.31,1.4

COMMUNITY FACTORS
Currently Homeless 11% (10/92) 13% (30/229) 5.1% (26/506) 0.71 1.2 0.56,2.8 0.00044 2.8 1.6,5

Current Illicit Drug User 36% (32/90) 43% (98/227) 32% (150/475) 0.25 1.4 0.82,2.3 0.0031 1.6 1.2,2.3
Current Marijuana User 20% (18/90) 25% (56/227) 19% (89/474) 0.46 1.3 0.72,2.5 0.074 1.4 0.96,2.1

Current Cocaine User 14% (13/90) 17% (39/227) 11% (53/474) 0.62 1.2 0.61,2.5 0.032 1.6 1,2.6
Curren Heroin User 18% (16/90) 21% (48/227) 11% (53/474) 0.54 1.2 0.64,2.4 0.00078 2.1 1.4,3.3

History of Illicit Drug Use 58% (53/91) 60% (137/228) 44% (211/477) 0.8 1.1 0.64,1.8 0.00011 1.9 1.4,2.6
History of Marijuana Use 40% (36/91) 40% (92/228) 29% (138/477) 1 1 0.62,1.7 0.0034 1.7 1.2,2.3

History of Cocaine use 23% (21/91) 31% (71/228) 19% (92/477) 0.17 1.5 0.85,2.7 0.00059 1.9 1.3,2.7
History of Heroin Use 23% (21/91) 28% (63/228) 16% (74/477) 0.48 1.3 0.71,2.3 0.00023 2.1 1.4,3.1

Current Injection Drug User 8.9% (8/90) 8.8% (20/228) 5.1% (24/475) 1 0.99 0.42,2.4 0.067 1.8 0.96,3.4
History of Injection Drug Use 15% (14/91) 13% (30/228) 7.3% (35/477) 0.59 0.83 0.42,1.7 0.017 1.9 1.1,3.2

Illict Drug Use in Past 3 mo 23% (21/90) 26% (60/227) 13% (62/477) 0.67 1.2 0.65,2.2 1.8E-05 2.4 1.6,3.6
Incarceration in past year 19% (18/94) 24% (55/231) 0% (0/513) 0.38 1.3 0.73,2.5 8.1E-31 Inf 44,Inf

History of incarceration 31% (29/94) 30% (70/231) 11% (58/513) 1 0.97 0.57,1.6 1E-09 3.4 2.3,5.1

HEALTHCARE FACTORS
Hospitalization in prior year 49% (46/94) 74% (171/231) 0% (0/513) 2.7E-05 3 1.8,4.9 3.3E-117 Inf 350,Inf

Surgery in prior year 56% (53/94) 46% (107/231) 0% (0/513) 0.11 0.67 0.41,1.1 2E-64 Inf 110,Inf
MRSA infection in past 6 mo 38% (36/94) 28% (64/231) 0% (0/513) 0.065 0.62 0.36,1 3.2E-36 Inf 48,Inf

Outpatient in prior year 44% (41/94) 73% (168/231) 37% (192/513) 1.1E-06 3.4 2.1,5.7 2.3E-19 4.4 3.1,6.3
Inpatient in prior year 50% (47/94) 76% (176/231) 0% (0/513) 6.6E-06 3.2 1.9,5.3 3.5E-122 Inf 390,Inf

Emergency in prior year 36% (34/94) 57% (132/231) 36% (183/513) 9E-04 2.3 1.4,3.9 6.6E-08 2.4 1.7,3.3
ICU in past 2 weeks 18% (17/94) 2.6% (6/231) 0.39% (2/513) 4.5E-06 0.12 0.046,0.32 0.013 6.8 1.3,47

ICU in past year 26% (24/94) 6.1% (14/231) 0.39% (2/513) 3.8E-06 0.19 0.09,0.4 3.7E-06 16 3.9,100
Diabetes 36% (34/94) 37% (85/231) 18% (93/513) 1 1 0.62,1.7 8.8E-08 2.6 1.9,3.7

Hypertension 57% (54/94) 52% (119/231) 29% (148/513) 0.39 0.79 0.48,1.3 3.8E-09 2.6 1.9,3.6
Cancer 19% (18/94) 19% (43/231) 7.8% (40/513) 1 0.97 0.51,1.9 4.3E-05 2.7 1.7,4.4

HIV 4.3% (4/94) 13% (31/231) 6.6% (34/513) 0.017 3.5 1.2,11 0.0032 2.2 1.3,3.7
COPD 12% (11/94) 9.5% (22/231) 4.3% (22/513) 0.55 0.79 0.36,1.8 0.007 2.3 1.2,4.4

Asthma 23% (22/94) 21% (49/231) 14% (71/513) 0.66 0.88 0.49,1.6 0.013 1.7 1.1,2.5
HCV 9.6% (9/94) 11% (25/231) 2.3% (12/513) 0.84 1.1 0.51,2.6 3.7E-06 5.1 2.5,11

Stroke 7.4% (7/94) 3.5% (8/231) 1.2% (6/513) 0.15 0.45 0.16,1.4 0.042 3 1,8.8

ANTIBIOTIC EXPOSURE IN PAST 6 MO
Vancomycin 74% (70/94) 55% (127/231) 16% (84/513) 0.0011 0.42 0.24,0.73 4.8E-26 6.2 4.4,8.9
Levofloxacin 20% (19/94) 15% (34/231) 2.9% (15/513) 0.25 0.68 0.36,1.3 1.8E-08 5.7 3,11
Ciprofloacin 8.5% (8/94) 10% (23/231) 5.3% (27/513) 0.84 1.2 0.49,2.9 0.026 2 1.1,3.6

Trimethoprim-sulfamethoxazole 17% (16/94) 27% (62/231) 13% (65/513) 0.064 1.8 0.97,3.3 4.7E-06 2.5 1.7,3.8
Cefazolin 12% (11/94) 13% (30/231) 0.19% (1/513) 0.85 1.1 0.53,2.4 3.3E-15 76 13,1500

Ceftriaxone 27% (25/94) 15% (35/231) 6% (31/513) 0.019 0.49 0.27,0.9 0.00013 2.8 1.7,4.7
Augmentin 8.5% (8/94) 13% (30/231) 4.7% (24/513) 0.34 1.6 0.71,3.9 0.00011 3 1.7,5.3

Penicillin 2.1% (2/94) 3.5% (8/231) 2.5% (13/513) 0.73 1.6 0.35,11 0.48 1.4 0.55,3.4
Clindamycin 37% (35/94) 48% (110/231) 62% (319/513) 0.11 1.5 0.93,2.5 0.00022 0.55 0.4,0.76

Azithromycin 15% (14/94) 10% (23/231) 6% (31/513) 0.25 0.63 0.3,1.3 0.067 1.7 0.97,3
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2.7 Supplemental Figures

Figure 2.6: Non-pediatric USA300 clusters
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A) Pairwise core SNV distance distribution. Core genome size is 2.5Mb. B) Cluster size
distribution based on SNV threshold of 20 SNVS. C) Percent CO, HACO, and HO isolates
overall and only those that are related to another isolate by 20 SNVs. Slight differences exist
between the number of CO, HO, and HACO in a cluster versus not, with more HACOs and
less COs being related to another isolate by 20 SNVs by a three-way chi-square test (p =
.039).
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Chapter 3

Genomic Epidemiology of MRSA During Incarceration at a

Large, Inner-City Jail

3.1 Preamble

We and others hypothesize that jails may amplify MRSA transmission in the community:

there is a high burden of individuals colonized with MRSA entering the jail from diverse

communities [38], and the jail provides an opportunity for these individuals to interact. With

∼250 individuals entering and exiting the jail everyday and a daily census of 9000-10000,

this could provide an opportunity for individuals to introduce strains that they acquired

in jail back to their communities upon release. This chapter uses genomic epidemiology to

understand the extent and routes of transmission in the Cook County Jail in Chicago, IL

which is one of the largest single-site jails in the country. The following chapter explores the

biological underpinnings of the transmission we observed in the jail.

This work was published in Clinical Infectious Diseases in January 2021:

Popovich, Kyle J, Stephanie N Thiede, Chad Zawitz, Alla Aroutcheva, Darjai Payne,

William Janda, Michael Schoeny, Stefan J Green, Evan S Snitkin, and Robert A Weinstein.

“Genomic Epidemiology of MRSA During Incarceration at a Large Inner-City Jail.” Clinical

Infectious Diseases, no. ciaa1937 (January 4, 2021). https://doi.org/10.1093/cid/ciaa1937.

I am a co-first author on this paper with Dr. Popovich. I performed genomic, phylo-
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genetic, and location overlap analyses, created figures and wrote supplemental materials,

assisted with interpretation of results, and assisted with drafting the manuscript.

3.2 Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of clinical infec-

tion in urban communities [56]. Congregate living (homeless shelters, military barracks, and

correctional facilities), close person-to-person contact, sharing personal items, poor hygiene,

environmental contamination, and compromised skin integrity promote MRSA transmission

[76]. Although infection control recommendations address these factors [77], certain com-

munity settings provide special challenges.

Correctional facilities, jails and prisons, are congregate settings where outbreaks of MRSA

have occurred [78, 27, 79]. In contrast to prison, jails have relatively short-term incarcer-

ations while detainees await sentencing, with high turnover and recidivism. These features

could augment MRSA spread. Models suggest that MRSA transmission occurs during in-

carceration; individuals colonized with MRSA are the primary source of transmission; and

following discharge, in the absence of jail interventions to control MRSA, resistance spreads

to the community at large [80]. However, lack of data on MRSA transmission in jails has

hampered establishing these facilities as potential key points of intervention.

A complicating factor in understanding transmission dynamics of MRSA and identifying

targets for interventions is that individuals entering jail may be colonized due to high-risk

community exposures [81, 82, 38], illicit drug use, unstable housing, and type and location

of residence [83, 39, 40, 54, 84]. Such individuals may then be at risk for developing MRSA

infection during incarceration and have the opportunity to intermingle with other individuals,

potentially increasing MRSA spread.

Prior work in urban jails demonstrated that jail-based interventions can significantly
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impact community disease patterns (eg, sexually transmitted diseases) [85, 86, 87, 88]. It

remains unclear if urban jails are nonhospital settings that are a controllable focus of MRSA

and if a jail intervention could have downstream benefit to the community-at-large for re-

ducing MRSA burden. Therefore, the study objectives were to (1) examine the rate of

MRSA acquisition during incarceration at a large urban jail, (2) identify epidemiologic and

jail-based predictors of MRSA acquisition, and (3) characterize the genomic epidemiology of

colonizing and clinical MRSA strains.

3.3 Results

3.3.1 Features of the study population

There were 718 unique individuals (800 incarcerations) enrolled. The prevalence of MRSA

colonization at intake was 19% [10]. Strains brought into the jail by those colonized at

intake were diverse (Supplementary Figures S5 and S6). Among those enrolled, 267 (33%)

incarcerations lasted 30 days or longer. Of those remaining incarcerated at Day 30, 160

individuals accounting for 184 (70%) incarcerations completed the Day 30 study visit. Among

those completing the Day 30 study visit, 82% were African-American and 7% Hispanic. Use

of illicit drugs before incarceration was common among individuals who completed the Day

30 study visit, with 80% reporting use in the past year. Recidivism was high; 91% of

individuals in the study had prior jail incarceration.

3.3.2 MRSA colonization patterns during incarceration

Of the 184 detainees with a completed Day 30 study visit, 41 (22%) were positive and 143

(78%) were negative for MRSA at admission. Of the 143 negative at admission, 131 (91.6%)

remained negative at the Day 30 study visit and 12 (8.4%) acquired MRSA (Supplementary
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Figure 3.1: Whole-genome phylogeny of USA300 MRSA infection and colonization isolates
in the jail

3e−05

Jail−acquired colonization Intake colonization Jail−onset infection Publicly Available

Recombination-masked whole-genome alignment was used to make a maximum likelihood
phylogeny of intake colonization, jail-acquired colonization, and jail-onset infection collected
from individuals in the jail and publicly available genomes [25]. Tree is midpoint rooted. For
samples in the current study, only a single isolate per individual was included, unless genomic
analysis supported multiple isolates from an individual being associated with independent
acquisition events (see Methods). Overall, jail isolates span the full diversity of the USA300
phylogeny, with intermixing of in- take colonization, jail-acquired colonization, and jail-onset
infection isolates. However, in the background of this diversity, clustering of isolates can be
observed, particularly for jail-onset infections. Publicly available isolates span the diversity
of the tree, but do not interrupt clusters of jail samples. Scale bar represents substitutions
per site. One isolate with a long branch was removed for visualization purposes (see full
USA300 tree in Supplementary Figure S8).
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Figure S7). Of the 12 acquisitions, 2 were the same individual who, in sequential incarcer-

ations, separated by 3 months, was negative at intake but colonized at Day 30. For this

individual, the putatively-acquired strains were >1000 SNVs apart, supporting acquisition

of a new strain rather than intermittent carriage. Of the 41 incarcerations positive at ad-

mission, 17 (41%) were no longer colonized, and 24 (59%) remained colonized at the Day 30

study visit (Supplementary Figure S7). One of these 24 detainees acquired a new strain of

MRSA in the nares by the Day 30 visit and maintained throat colonization with the initial

strain.

For the 12 MRSA acquisitions, 9 (75%) individuals were colonized at 1 body site, 2 (17%)

at 2 body sites, and 1 (8%) at 3 body sites. By body site, 2 (17%) individuals had throat

colonization, 7 (58%) nares colonization, and 7 (58%) inguinal colonization. There were no

differences in likelihood of acquisition of colonization by body site.

For the 24 participants who had persistent colonization, 8 (33%) were colonized at 1

body site, 6 (25%) at 2 body sites, and 10 (42%) at 3 body sites. By body site, 18 (75%)

had throat colonization, 16 (67%) nares colonization, and 16 (67%) inguinal colonization.

There were no differences in likelihood of persistent colonization by body site. Individuals

colonized at multiple body sites were usually colonized with the same strain (Supplementary

Figure S2).

3.3.3 Clinical MRSA isolates

There were 142 representative clinical MRSA isolates from male detainees who underwent

whole genome sequencing (WGS); 125 were jail-onset during the study period, 3 were

community- onset during the study period, and 14 were isolated in the year prior. Se-

quenced clinical isolates were mostly from skin/skin structure infections (98.6%) and identi-

fied as USA300 (92%). Of individuals with clinical infections, 66% were African- American,

8.5% Hispanic; mean age was 37 (SD 12) years; 43% reported current illicit drug use; and
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11.3% were living on the street before incarceration.

3.3.4 Epidemiologic predictors of MRSA acquisition during incar-

ceration

Among the 12 individuals who acquired MRSA colonization, 11 were African-American and

none Hispanic. Among exposures before incarceration (Table 1), heroin use was significantly

associated with acquiring MRSA colonization (P = .05). No other types of drug use were

associated with acquisition. While HIV status was not associated with MRSA acquisition,

taking antiretrovirals was negatively associated with MRSA acquisition (P = .08)

Among exposures occurring during incarceration, sharing personal items was significantly

associated with MRSA acquisition (OR 4.92; 95% CI: 1.45, 16.67, P = .01). A variety of

personal items were shared and no one individual item was associated with increased risk of

MRSA acquisition.

3.3.5 Genomic epidemiology of USA300 MRSA intake, clinical,

and acquisition isolates

While USA300 intake, jail-onset clinical, and colonization acquisition isolates were overall

diverse, clusters of closely related strains were identified (Figure 3.1, Supplementary Fig-

ure S8). Examining strains with close genetic neighbors revealed in comparison to intake

isolates, jail-onset USA300 clinical and acquisition colonization isolates were more likely to

have closely related genetic neighbors (Figure 3.2), suggesting the existence of transmission

networks that included both colonized and infected individuals. Significance remained when

adjusting for difference in sample sizes between the potential sources (Supplementary Figure

S9).

Four acquisition isolates were closely related to at least one other isolate (range 1–3) (4
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Figure 3.2: Comparison of genetic diversity of intake colonization MRSA isolates versus
jail-acquired colonization and jail-onset infection
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To evaluate whether jail-acquired USA300 MRSA colonization and jail-onset USA300 MRSA
infections were enriched for recent transmission events, their genetic diversity was compared
to that of intake USA300 MRSA colonization by creating distributions of genetic distances
to closest genetic neighbors (core genome size = 2.54 Mb). Closest-pair sources for intake
USA300 MRSA colonization include other intake isolates (n = 100). Closest-pair sources for
jail-acquired USA300 MRSA colonization (n = 9) and jail-onset USA300 MRSA infections
(n = 113) included all isolate types (n = 239 sources including intake positive colonization,
jail-onset infection, jail-acquired colonization, community-onset infection (n = 3), infections
that occurred in 2015 but were in jail during the study period (n = 14)). Wilcoxon rank-sum
test was used to make pairwise comparisons between the 3 sets— one-sided test for A and
B, two-sided test for C. Comparisons are shown for (A) jail-onset infections versus intake
colonization, (B) jail-acquired colonization versus intake colonization, and (C) jail-acquired
colonization versus jail-onset infections. Histograms are overlapping, not stacked, and colors
are blended in overlapping parts of distributions. Significance remained when controlling for
the differences in number of possible pairs for intake colonization and jail-onset infections
(see Supplementary Methods, Supplementary Figures S9).
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were within 20 SNVs of an intake isolate, 2 to another acquisition isolate, and 1 to a clinical

isolate). We observed that 50.4% of jail-onset infections were within 20 SNVs of another

isolate, with 17% of clinical isolates within 20 SNVs of an intake colonization strain. 95%

of jail- onset clinical MRSA isolates with a genetic neighbor within 20 SNVs were related to

another clinical MRSA strain. 76% of jail-onset clinical MRSA isolates that are within 20

SNVs of an- other isolate are within 20 SNVs of multiple isolates (range 2–8) (Supplementary

Figure S10).

For detainees with USA300 isolates, individuals with longer lengths of stay tended to

have a closer genetic pair (Figure 3A, Supplementary Figure S11). Furthermore, individuals

who developed MRSA infection had longer jail lengths of stay than study participants who

came into the jail MRSA colonized and did not develop infection during that incarceration

(Supplementary Figure S12).

3.3.6 Relationship of jail location to USA300 MRSA colonization

and clinical isolates

Eight buildings housed male detainees, including 4 cell-based and 4 dormitory-style build-

ings. Individuals incarcerated in the jail typically had opportunity for multiple movements,

including between buildings (Supplementary Figure S13), to court, and to social programs

(eg, church, school, drug treatment). Among individuals who acquired USA300 MRSA colo-

nization or had a jail-onset USA300 MRSA infection, those with more closely related genetic

neighbors tended to be in the jail at the same time and to overlap in particular buildings

(Figure 3.3B, Supplementary Figure S14) and for significantly longer than did random pairs

of individuals (Figure 3.3C, Supplementary Figures S15 and S16). Furthermore, 13 of 35

pairs of individuals who overlapped in the same building and whose MRSA isolates were

within 9 SNVs overlapped at the more granular level of living unit, suggesting direct (eg,
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Figure 3.3: Individuals with closely related USA300 MRSA strains are more likely to reside
in common jail locations and have longer length of stay
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(A) Each square indicates the mean length of stay of unique individuals involved in a pair
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sive. For A, B, and C, pairs involve a putative acquisition of USA300 MRSA (jail-acquired
colonization or jail-onset infection) and a source. See distribution of length of stay in Supple-
mentary Figure S11. (B) Each dot indicates the percentage of pairs related by the respective
SNV distance that overlapped in the respective location (y-axis) in an epidemiologically rel-
evant window. Sequential overlap indicates that 2 individuals were both in the same living
unit at some point in their jail stay during an epidemiologically relevant window, but not
necessarily at the same time. See Supplementary Figure 13 for results of permutation test.
(C) Each dot indicates the mean time a pair of individuals related by the respective SNV
distance overlapped in the jail, the same building, or the same living unit in an epidemiolog-
ically relevant window (see Supplementary Methods). See Supplementary Figure 14 to see
the distribution of days overlapped in jail and in a particular building, and Supplementary
Figure 15 for detailed results of permutation test. In panels B and C asterisks indicates
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no intermediaries) transmission (Figure 3.3B). While more distantly related pairs (10–50

SNVs) overlapped in the same building more than random pairs (>50 SNVs), they tended

to have only sequential exposures to the same living units, suggesting potential transmission

with intermediaries or environmental contamination as a source (Figure 3.3B, Supplementary

Figure S14D, E).

Figure 3.4: Overlap in buildings among individuals with closely related MRSA strains
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Colors represent pairs of USA300 isolates (including a putative acquisition of colonization or
infection and a source) genetically related at different SNV thresholds (ie, ≤ 10,≤ 20,≤ 40).
Random (in gray) indicates all pairs of isolates and is shown to provide the baseline location
sharing of pairs of individuals for each building regardless of genetic linkage. The x-axis
indicates the different buildings male detainees could stay, labeled as cell-based (subscript c)
or dorm-based building (subscript d). The y-axis indicates the percent of pairs that overlap
in an epidemiologically relevant window in each building (See Supplementary Methods).
Asterisks indicates significance by permutation test where 1 asterisk indicates significance
at P < .05 and 2 asterisks indicates significance at P < .005 (see Supplementary Methods
and Supplementary Figure S17 for results of permutation test).

While all buildings were sites of overlap among individuals harboring closely related

MRSA strains, certain buildings, including both dorm and cell-based buildings, had signifi-

cantly more overlap than expected by chance (Figure 3.4, Supplementary Figure S17). We

also noted that most genomic clusters of individuals whose isolates are within 20 SNVs (range

2–8 isolates) cannot be explained by overlap in a single building, indicating that transmission
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clusters are not necessarily confined to individual buildings (Supplementary Figure S10).

3.4 Discussion

There is a high burden of MRSA entering Cook County Jail; 19% of males arrive colonized

[10]. Beyond that, we detected presumptive acquisition of MRSA colonization by day 30

of incarceration in an additional 8.4%, with sharing personal items a major risk factor.

Genomic analyses, especially the small SNV differences among acquired and clinical MRSA

isolates, suggests potential spread of incoming as well as of prevalent MRSA strains, with

transmission potentially occurring among detainees housed together.

The 8% acquisition rate is higher than that reported among individuals in other congre-

gate settings [24] and more in line with rates in intensive care units [25, 26] where MRSA,

at least for some units, may be viewed as endemic. Interestingly, we ob- served that heroin

use before entering the jail was significantly associated with acquisition. It is unclear if in-

dividuals who use heroin tend to congregate with certain populations, are housed in similar

locations, or are characterized by factors or behaviors occurring during incarceration that

were unmeasured. Nevertheless, a unique feature and likely a major challenge of jails is the

exceedingly high incoming MRSA prevalence [10].

While it did not attain statistical significance, we observed that more frequent shower-

ing was negatively associated with acquisition of MRSA colonization. A prior case-control

study in the LA County Jail observed that sharing soap with other inmates and less frequent

showering were 2 factors associated with developing a MRSA infection during incarceration

[89]. Individuals who developed MRSA infection tended to have longer lengths of detention,

which may reflect the longer period of observation but also more opportunities for inter-

actions with others. In the community, recommendations for hygiene and against sharing

personal items remain critical components of education patients receive to prevent MRSA
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[77]. Education regarding sharing of personal items and hygiene is a key, although difficult

to enforce, MRSA control intervention for congregate living settings such as jails.

Using WGS, we observed that clinical USA300 infections occurring during incarceration

have greater genomic similarity to each other in comparison to the diverse intake USA300

colonization strains. This finding suggests that infections could have originated from trans-

mission within the jail. We observed that individuals with genetically similar MRSA strains

were more likely to overlap in jail, suggesting spread among detainees housed in similar lo-

cations. As support for possible transmission, 35 of the 61 pairs within 9 SNVs overlapped

in the same building, with 20 pairs having directly (n = 13) or sequentially overlapped in

the same living units. While pairs separated by moderate SNV thresholds (20–50) still had

significant overlap in a particular building, they often did not directly overlap in a living unit

within that building. However, 10%–16% of pairs at moderate SNV thresholds had sequen-

tial occupancy of the same living unit, suggesting persistent environmental contamination

or exposure to a more persistent MRSA strain in the jail.

Our observation that clusters of genomically-similar infection isolates existed even among

people not sharing the same building or living unit suggests there could be virulent sublin-

eages of MRSA that are more likely to cause infections or certain infections (eg, draining

wounds) are more likely to be involved in MRSA spread. These hypotheses warrant addi-

tional investigation as they could provide possible targets for interventions. The continual

influx of MRSA-colonized individuals into a setting characterized by close person-to-person

contact, com- pounded by reduced opportunities for infection control, shows how challeng-

ing infection control can be in congregate settings. Prior mathematical models of the LA

County Jail MRSA outbreak predicted that MRSA spread becomes more problematic as

there are increased numbers entering the system with MRSA [7]; our results support this

prediction. This model also noted that as more infections occurred during incarceration,

increased spread to the surrounding community could occur [80]. Further understanding
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both the downstream impact in the community of high MRSA burden in the jail as well as

delineating the role recidivism contributes to overall MRSA burden is warranted.

Our study has limitations. First, we performed surveillance for MRSA colonization ac-

quisition at Day 30 and thus may have missed acquisitions at shorter jail stays. Second, we

cannot state definitively whether Day 30 positive swabs are acquisitions or intermittent col-

onization. However, the epidemiologic risk factors (ie, sharing personal items) and genomic

data lend sup- port to these instances being acquisitions. Although given the small number

of acquisitions, though statistically significant, the effects for heroin use and sharing personal

items should be interpreted with due caution. Third, we did not ascertain infection control

behaviors (eg, showering frequency, sharing personal items) among individuals who devel-

oped an MRSA infection and therefore cannot comment on the influence of such behavior

on developing an infection. Fourth, we screened only a small percent of incoming detainees

and likely missed some intake colonization that put detainees at risk for developing endoge-

nous infections and serving as potential sources of MRSA transmission to others. Even with

limited sampling, we observed that 17% of jail-onset clinical USA300 MRSA isolates were

within 20 SNVs of an intake MRSA strain.

Our study demonstrates that not only is there a high level of MRSA colonization at jail

entrance, acquisition of colonization and infection may occur during incarceration. Genomic

analyses support this contention and suggest that spread occurred more frequently in certain

jail locations. Sharing personal items was associated with acquisition of MRSA; an education

campaign aimed at this practice could be a strategy to help curb spread. While our study

examined MRSA, such an education campaign could even be extended to COVID-19, a

pathogen that significantly impacted jails. Future study with more detailed epidemiologic

analysis and environmental sampling within the jail complex might further inform and target

interventions. Finally, the utility of an intervention at intake and/or discharge may be

another focus of research as the jail remains a critical component of MRSA epidemiology in
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urban areas.

Table 3.1: Epidemiological factors associated with acquisition of MRSA colonization

Epidemiologic Factor MRSA Acquisition (n=12)a No MRSA Acquisition (n=131) OR 95% CI P value
Exposures prior to incarceration
Race/Ethnicity
African-American

(reference)
11 (92%) 106 (81%)

Hispanic 0 10 (8%) N/A N/A 0.6
White/Other 1 (8%) 15 (11%) 0.64 0.07, 5.34 1.00
Age, mean years (SD) 39.7 (11.9) 37.6 (11.8) 1.02 0.97, 1.07 0.55
Heroin use in the past year 5 (42%) 21 (16%) 3.67 1.06, 12.68 0.05
Marijuana use in the past year 8 (67%) 89 (69%) 0.9 0.26, 3.16 1.00
Cocaine use in the past year 5 (42%) 48 (37%) 1.21 0.36, 4.01 0.76
Ecstasy or psychedelic use in the past year 1 (8%) 31 (24%) 0.29 0.04, 2.32 0.30
Other narcotics (e.g., codeine, oxycontin) in the past year 2 (17%) 14 (11%) 1.64 0.33, 8.27 0.63
Illicit benzodiazepine use in the past year 1 (8%) 13 (10%) 0.81 0.1, 6.8 1.00
Taking prescription drugs to get high in the past year 1 (8%) 6 (5%) 1.86 0.21, 16.9 0.47
Injection drug use in past year 2 (17%) 13 (10%) 1.82 0.36, 9.2 0.61
Homeless or unstable housing in the past year 7 (58%) 62 (47%) 1.56 0.47, 5.16 0.46
HIV infection 9 (75%) 91 (69%) 1.32 0.34, 5.13 1.00
Taking antiretrovirals 3 (33%) 59 (66%) 0.26 0.06, 1.12 0.08
Taking TMP-SMX 1 (8%) 13 (10%) 0.83 0.1, 6.91 1.00
Men who have sex with men 5 (42%) 34 (26%) 2.04 0.61, 6.85 0.31
ER visit in the past year 7 (58%) 71 (54%) 1.18 0.36, 3.92 0.78
Hospitalized in the past year 6 (50%) 50 (38%) 1.62 0.50, 5.30 0.54
Exposures during incarceration
Participated in drug treatment 4 (33%) 22 (17%) 2.48 0.69, 8.95 0.23
Sharing of personal itemsb 7 (58%) 29 (22%) 4.92 1.45, 16.67 0.01
Any skin infections 1 (8%) 4 (3%) 2.89 0.30, 28.11 0.36
Visit to infirmary 4 (33%) 20 (15%) 2.77 0.76, 10.09 0.12
Number of times showered in the past week, mean (SD) 4.8 (1.8) 6.0 (2.7) 0.81 0.62, 1.07 0.13

a With inclusion of the new strain acquisition event detected with WGS for a person colonized at intake
and remained colonized at DAY 30, all associations remained similar for predicting acquisitions. Heroin use
before incarceration (P = .02) and sharing personal items (P = .02) both remained significant.
b Personal items shared by individuals who acquired MRSA included towel, toothpaste, uniform, and de-
odorant.

3.5 Methods

3.5.1 Study population

The study setting was the Cook County Jail in Chicago, IL, one of the largest single-site

US jails, with roughly 250 incarcerations daily and daily census of 9000–10 000 detainees.

Incarcerated males were enrolled within 72 h of entering jail from January 2016–December

2017. To enroll throughout the year and given the large number of HIV-negative individuals
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entering the jail, we targeted enrollment at 10 HIV-negative males each week. Given our

prior work demonstrating the significant impact MRSA has on HIV-infected individuals and

the possible inter- section with incarceration for amplifying risk [39, 11, 90], we enriched the

study population for HIV-infected individuals by enrolling from the jail HIV clinic (58% of

our enrolled sample was HIV-infected). The estimated prevalence of HIV-infected detainees

at the Cook County Jail is 2%. Individuals were enrolled from the jail HIV clinic within

24–48 h from jail entrance. Males were followed during incarceration and were eligible for a

second study visit at Day 30 if still incarcerated.

3.5.2 Swab collection and processing

Surveillance cultures (anterior nares, throat, and bilateral inguinal) were collected at enroll-

ment and Day 30 (if still incarcerated). Intake and Day 30 results determined colonization

status. Specimens were obtained using the Copan ESwab for MRSA. Nasal swabs were

collected by swabbing both anterior nares; throat swabs by swabbing the posterior phar-

ynx; and inguinal swabs by swabbing a 10 cm2 skin area bilaterally [38]. Sample sites were

chosen to maximize identification of MRSA carriers [76, 11]. Swabs were inoculated into

enrichment broth to increase culture sensitivity [91]. Aliquots of overnight broth cultures

were inoculated on ChromID MRSA (bioMérieux, North Carolina). MRSA was confirmed

by standard biochemical tests; methicillin resistance by cefoxitin disk. Confirmed MRSA

isolates underwent DNA extraction.

3.5.3 Archived clinical MRSA isolates

Existing archived clinical MRSA from male detainees incarcerated during the time of the

study also underwent genomic sequencing. Clinical isolates from detainees who had been in

the jail for > 72 h were considered “jail-onset” infections; those occurring ≤ 72 h into the
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jail stay were considered community-onset. Infections from before the study, in an individual

who remained in jail during the study, also were included to put into context acquisition

MRSA isolates and to better characterize the genomic epidemiology of circulating strains

(See Supplemental Methods).

3.5.4 Whole genome sequencing

Whole genome sequencing (WGS) was performed on MRSA isolates from jail entry and

day 30 study visits and on clinical MRSA isolates from male detainees collected during

the study period (See Supplementary Methods). Details on sequenced strains are avail-

able in Supplementary Table 1 and raw sequence data are available under Bioproject PR-

JNA638400. Intake positive colonization isolates were previously submitted under Bioproject

PRJNA530184. Representative isolates that capture all independent acquisition events were

selected for each person (See Supplementary Methods, Supplementary Figures S1 and S2)

Publicly available USA300 genomes used in Figure 3.1 were downloaded from Bioproject

PRJNA374377 [25] (Supplementary Table 2). Details on variant calling and phylogenetic

analysis are in the Supplementary Methods.

3.5.5 Location overlap analysis

Transmission pairs were defined as involving one individual who acquired colonization or de-

veloped a jail-onset infection and a source. Potential sources were community-onset MRSA

infections, infections that occurred outside the study period in an individual who remained

in jail during the study, those already colonized at intake, other jail-onset MRSA infections,

and other acquired colonization isolates (See Supplemental Methods, Supplementary Figure

S3). Location sharing among genetically related transmission pairs was assessed for only

USA300 isolates. Electronically available jail location data, including building and living
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units, were ascertained for enrolled individuals and those with jail-onset infections. For each

pair within the particular single-nucleotide variant (SNV) window (eg, 0–9, 10–19), overlap

in the jail or in a particular building during an epidemiologically relevant window was calcu-

lated (Supplementary Figure S4). Based on the building in which each pair overlapped, we

determined if the pair shared a living unit at the same or any time during their stay. Statis-

tical significance of overlap at difference SNV thresholds was determined using permutation

tests (See Supplementary Methods).

3.5.6 Risk factors and statistical analysis

A survey to identify predictors of MRSA colonization was ad- ministered to detainees at

enrollment and included questions about drug use, sexual behaviors, housing status, and

incarceration history. A survey about behaviors and activities during incarceration was

administered at Day 30 to identify predictors of MRSA acquisition.

Using intake and Day 30 surveillance cultures, we deter- mined the frequency of persistent

colonization (MRSA positive at intake and Day 30), presumptive acquisition (MRSA negative

at intake and positive at Day 30), loss of colonization (MRSA positive at intake and negative

at Day 30), and absence of colonization (negative at both time points). Results of surveillance

cultures and intake surveys were used for risk factor analysis. SAS software version 9.4 (SAS

Institute, Cary, North Carolina) was used for statistical analysis. Chi-square analysis was

used for categorical variables, with Fisher’s exact test for low-frequency predictors.

The study was approved by the Cook County Health institutional review board (IRB)

which oversees approval for enrollment of jail detainees and the Rush University IRB; ver-

bal consent was obtained. Approval from the Office for Human Research Protections was

obtained to enroll current detainees.
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3.6 Supplementary Data

Supplementary materials and figures are available at Clinical Infectious Diseases online at

https://doi.org/10.1093/cid/ciaa1937.
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Chapter 4

Convergent Evolution of a Resistance-Conferring Plasmid in a

Large, Urban Jail and the Broader Community

4.1 Preamble

Chapter 2 described MRSA epidemiology in the community of Cook County, and Chapter 3

identified transmission dynamics in the Cook County Jail. Chapter 4 explores the interplay of

the jail and the community by uncovering a plasmid that is selected for in the jail, associated

with transmission, and present in the broader community.

I performed the genomic, phylogenetic, and statistical analyses and created the figures

presented in this chapter and drafted this chapter.

4.2 Introduction

Once a primarily healthcare-associated pathogen, MRSA has infiltrated the community to

cause infections in otherwise healthy individuals [31]. Incarcerated individuals are one sector

of the community with a high burden of MRSA colonization and infection. For example, we

recently reported a striking MRSA colonization prevalence of 19% at the time of intake in

the Cook County Jail (Chicago, IL) [38], much higher than the ∼2% carriage prevalence in

the general population across the U.S. [7]. In addition, jails are high transmission settings
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for a variety of infectious diseases including MRSA [67], tuberculosis [55], and COVID-19

[92] as a result of close person-to-person contact.

The high transmission setting may promote selection of variants of pathogens [55]. More-

over, jails may impart different selective pressures than the healthcare setting or the broader

community. As jails are characterized by short lengths of stay and high recidivism, there are

multiple opportunities for acquisition in the jail and spread to the broader community. Thus,

jails are hypothesized to be amplifiers of MRSA transmission in the community. Recently,

it was shown that prisons could select for problematic variants (e.g. variants that are more

transmissible or of increased antibiotic resistance) in Mycobacterium tuberculosis which were

subsequently propagated in the community [55]. Thus, studying pathogen evolution in jails

and prisons is important for infection control efforts in the jail and broader community.

In this study, we sought to identify variants associated with USA300 MRSA transmission

that were selected for in the Cook County Jail, where we previously observed evidence of

MRSA transmission. We then looked for the presence of variants in the broader community

in a comprehensive sample of clinical cultures to compare the strength of selection in the jail

and community and the prevalence of the variants outside of the jail.

4.3 Results

4.3.1 Transmission among MRSA infections in the Cook County

Jail

We previously conducted a genomic epidemiology analysis of USA300 MRSA transmission

in the Cook County Jail [67]. Comparing genetic linkages among individuals entering the

jail versus those acquiring colonization or infection in the jail revealed that jail-onset MRSA

infections had closer genetic neighbors than MRSA imported into the jail from the community
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Figure 4.1: Phylogenetic tree of USA300 MRSA in Cook County Jail
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Maximum likelihood phylogeny of jail USA300 samples created with IQTREE. Scale bar
indicates substitutions per site. Tips designate sample type. Inner ring indicates the presence
(red) or absence (gray) of the ermC -carrying plasmid. Outer ring indicates if the isolate is
genetically related to any other isolate within 20 SNVs (black).
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[67]. Moreover, examination of genetic linkages among jail-onset infections revealed that they

form large clusters of individuals who harbored closely related strains and had spatiotemporal

overlaps in the jail. In total, 157 USA300 jail-onset MRSA infections formed 25 clusters

ranging in size from 2 to 10. These transmission clusters spanned the full diversity of USA300

(Figure 4.1). Moreover, 54.1% of jail-onset infections were genetically linked to another jail-

onset infection indicating evidence of transmission among individuals with wound infections

in the jail.

4.3.2 ermC -carrying plasmid associated with transmission in Cook

County Jail from 2015-2017

A striking feature of jail-onset transmission linkages is their formation of large clusters,

spread across the USA300 phylogeny. While there could be epidemiological explanations for

this observation (e.g. super-spreader events or individuals), we wondered whether there were

also microbial genetic contributors to the apparent elevated spread of certain sublineages.

In particular, we wondered if there were shared, convergently evolved genetic underpinnings

that promoted transmission. We focused on the accessory genome, as the gain and loss

of genes and mobile genetic elements allows for rapid evolution [93]. We ran panaroo to

determine accessory genes present in each genome and identified genes that may be traveling

together on the same mobile genetic element by grouping genes with 95% concordance of

presence-absence pattern across all isolates. This resulted in 37 gene clusters of size 2 to 211

(median size of 4) and 92 singletons.

We next assessed the association of genes and gene clusters with transmission, defined

as being related to another isolate within 20 single nucleotide variants (SNVs). There were

6 genes found to be significantly associated with transmission after multiple test correction,

with most being part of a gene cluster (Supplemental Table 4.2, Figure 4.2A). By several or-
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Figure 4.2: Association between pangenome and transmission in the Cook County Jail from
2015-2017
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ders of magnitude, the most significant hits were ermCand a gene annotated as a replication

and maintenance protein, which were the only 2 members of the inferred gene cluster. Com-

parison to sequence databases revealed that these genes are part of a small, 2.4 kb plasmid

that confers resistance to macrolides and lincosamides and has been previously observed in

USA300 MRSA [94, 95]. Acquisition of the ermC -carrying plasmid occurred across diverse

genetic backgrounds, indicating that this plasmid was acquired multiple times by isolates of

differing genetic backgrounds (Figure 4.1).

Not only is the ermC -carrying plasmid associated with being genetically linked to an-

other isolate, individuals harboring MRSA with the ermC -carrying plasmid were part of

significantly larger transmission clusters (Figure 4.2B,C) further implicating the role of the

plasmid in proliferation within the jail. Indeed, the prevalence of isolates carrying this plas-

mid was higher among jail-onset infections than among isolates present at intake to the jail

(57.3% vs. 14.3% respectively, Figure 4.3). This suggests that there were multiple impor-

tations into the jail, and that isolates containing this plasmid preferentially spread within

the jail compared to isolates that do not. Despite the lower prevalence in the community,

intake positive isolates with the ermC -carrying plasmid were still more often involved in

transmission in the community, though not significantly so, potentially reflective of the role

of the plasmid in transmission in the broader community (Figure 4.3).

4.3.3 ermC -carrying plasmid present in the larger community

To further explore the role of the ermC -carrying plasmid in community transmission, we con-

ducted similar analyses in a comprehensive collection of clinical cultures from Cook County

from 2011-2014. This dataset was collected in the years prior to the start of the jail dataset in

2015, therefore we could not directly assess the downstream effect of the jail on the commu-

nity. The prevalence of this plasmid among the comprehensive clinical cultures was similar

to the prevalence among MRSA colonization at intake to the jail (Figure 4.3).
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Figure 4.3: Prevalence of ermC -carrying plasmid among datasets
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We found that the same plasmid circulating in the jail was also most significantly asso-

ciated with transmission (i.e. genetic linkage to another isolate by 20 SNVs) in the compre-

hensive clinical cultures from Cook County Health (Figure 4.4A, Supplemental Table 4.3).

Again, this was a result of multiple acquisitions of the plasmid among isolates spanning the

diversity of the USA300 tree (Supplemental Figure 4.7). Consistent with our findings in the

jail, larger transmission clusters tend to contain isolates with the ermC -carrying plasmid

(Figure 4.4B, C). Furthermore, the presence of the ermC -carrying plasmid is increasing over

time, further supporting amplification in the larger community (Figure 4.5A) .

More genes were significantly associated with transmission in the clinical dataset than

in the jail dataset (Figure 4.2A, 4.4A); these hits require further exploration (Supplemental

Table 4.3). However, only one gene other than the ermC -carrying plasmid, annotated to

contain a Staphylococcal superantigen-like OB-fold domain, is significant in both datasets

but is low in prevalence in the jail (6.9%).
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Figure 4.4: Association between ermCand transmission in comprehensive clinical cultures
from 2011-2014 presenting to Cook County Health
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A) Results of Fisher’s exact tests for association between gene content and involvement in
transmission cluster. Line indicates Bonferonni adjusted p value threshold. Colors indicate
gene cluster, with gray indicating gene singletons. B) Network diagram of MRSA trans-
mission clusters. Edges indicate that nodes are related within 20 SNVs. Nodes colored by
presence or absence of the ermC -carrying plasmid. Shape indicates incarceration in the past
year. C) Distribution of cluster size for clusters containing at least one isolate with the
ermC -carrying plasmid and clusters with no isolates carrying the plasmid. D) Plot indicat-
ing the percent of clusters with at least 1 incarcerated individual among clusters where at
least one isolate carries the ermCplasmid versus not.

56



4.3.4 ermC -carrying plasmid confers constitutive resistance to

clindamycin

The ermC -carrying plasmid has been reported to confer resistance to macrolides and can

confer constitutive or inducible resistance to the lincosamide clindamycin [94]. Constitutive

resistance to clindamycin occurs through modifications in ermCor the leader peptide [94].

In the comprehensive dataset of clinical cultures among isolates carrying ermC, 110 had con-

stitutive resistance to clindamycin, while 23 had inducible resistance. Among jail infections

with resistance data that carried ermC, 56 had constitutive resistance to clindamycin, while

5 had inducible resistance.

We confirmed that the ermC -carrying plasmid was the most associated with clindamycin

resistance using pyseer (Supplemental Figure 4.8), and phenotypically we observe constitu-

tive resistance. However, we have not identified a SNV or indel associated with constitutive

resistance in these particular plasmids. Future directions will look for large insertions that

may confer constitutive resistance.

4.3.5 Epidemiological associations with ermC -carrying plasmid

Next we assessed if there were epidemiological characteristics of individuals harboring MRSA

with the ermC -carrying plasmid in the comprehensive clinical dataset. Incarceration in the

past year of admit date is associated with the presence of the ermC -carrying plasmid in

the clinical dataset, suggesting it is possible that some strains were acquired in the jail and

spread in the community. Indeed, we do see that clusters that contain at least 1 individual

with ermChave a higher percentage of incarceration (Figure 4.4D, p = 0.10 OR = 2.60).

Current use of cocaine is also significantly associated with carrying the ermCplasmid. Co-

caine use is associated with incarceration in the prior year (OR = 2.5, p = 0.0048) and thus

the association with the plasmid could be either a proxy for incarceration or reflective of
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Table 4.1: Epidemiological associations with harboring the ermC -carrying plasmid among
the comprehensive sampling of clinical cultures from 2011-2014

Percent Epi Factor
Among Those with ermC

Percent Epi Factor
Among Those without ermC

p OR 95% CI

Trimethoprim-Sulfamethoxazole exposure in past 6 mo 25% (33/131) 13% (88/653) 0.0013 2.2 1.4,3.4
Vancomycin exposure in past 6 mo 43% (56/131) 29% (192/653) 0.0038 1.8 1.2,2.7
MRSA in past 6 mo 18% (23/131) 9% (59/653) 0.0071 2.1 1.2,3.6
Current cocaine user 21% (25/117) 12% (77/620) 0.013 1.9 1.2,3.2
Incarcerated in prior year 15% (19/131) 7.5% (49/653) 0.016 2.1 1.2,3.7
Pediatric patient (<13 years of age) 1.5% (2/131) 6.1% (40/653) 0.032 0.24 0.04,0.89
Cocaine use ever 31% (37/119) 22% (138/623) 0.045 1.6 1,2.5
Inpatient in prior year 31% (40/131) 24% (154/653) 0.097 1.4 0.93,2.2
Currently homeless 12% (15/129) 7% (45/644) 0.1 1.7 0.92,3.3
Wound infection (vs. other) 90% (118/131) 85% (552/653) 0.1 1.7 0.91,3.1
Current illicit drug user 42% (50/118) 35% (215/620) 0.12 1.4 0.92,2.1
Asthma 21% (28/131) 16% (103/653) 0.12 1.5 0.91,2.3
Clindamycin exposure in past 6 mo 62% (81/131) 54% (354/653) 0.12 1.4 0.92,2
History of illicit drug use 57% (68/119) 49% (307/623) 0.13 1.4 0.92,2
History of injection drug use 14% (17/119) 9.3% (58/623) 0.13 1.6 0.88,2.9
Ceftriaxone exposure in past 6 mo 6.9% (9/131) 11% (74/653) 0.16 0.58 0.28,1.2
Azithromycin exposure in past 6 mo 11% (15/131) 7.7% (50/653) 0.16 1.6 0.83,2.9
HIV 11% (15/131) 7.8% (51/653) 0.17 1.5 0.81,2.8
COPD 9.9% (13/131) 6.4% (42/653) 0.19 1.6 0.83,3.2
Illicit drug use in past 3 mo 23% (27/118) 18% (110/622) 0.2 1.4 0.85,2.3
Ciprofloxacin exposure in past 6 mo 8.4% (11/131) 5.7% (37/653) 0.23 1.5 0.75,3.1
Hospitalization in prior year 28% (37/131) 24% (154/653) 0.27 1.3 0.83,2
Hypertension 41% (54/131) 36% (234/653) 0.27 1.3 0.85,1.9
Levofloxacin exposure in past 6 mo 9.9% (13/131) 7% (46/653) 0.28 1.5 0.76,2.8
Current marijuana use 24% (28/117) 20% (124/620) 0.32 1.3 0.79,2
History of heroin use 24% (28/119) 19% (120/623) 0.32 1.3 0.81,2.1
Emergency room in prior year 44% (57/131) 39% (253/653) 0.33 1.2 0.83,1.8
History of incarceration 21% (28/131) 18% (119/653) 0.39 1.2 0.76,1.9
HCV 6.9% (9/131) 5.1% (33/653) 0.4 1.4 0.64,3
Current injection drug user 8.5% (10/117) 6.4% (40/622) 0.42 1.4 0.62,2.9
Diabetes 27% (35/131) 23% (152/653) 0.43 1.2 0.78,1.8
Current heroin user 17% (20/117) 15% (91/620) 0.48 1.2 0.69,2
History of marijuana use 36% (43/119) 33% (204/623) 0.52 1.2 0.77,1.8
Penicillin exposure in past 6 mo 1.5% (2/131) 2.8% (18/653) 0.55 0.55 0.09,2.2
Cefazolin exposure in past 6 mo 3.8% (5/131) 5.1% (33/653) 0.66 0.75 0.27,2
Black / African-American race (vs. other) 63% (82/131) 60% (394/653) 0.7 1.1 0.74,1.6
Cirrhosis 0.76% (1/131) 1.8% (12/653) 0.71 0.41 0.019,2.6
Outpatient in prior year 47% (62/131) 46% (299/653) 0.77 1.1 0.72,1.6
Cancer 11% (14/131) 12% (78/653) 0.77 0.88 0.46,1.6
ICU encounter in past 2 weeks 2.3% (3/131) 3.1% (20/653) 0.78 0.74 0.18,2.5
Surgery in prior year 17% (22/131) 18% (115/653) 0.9 0.94 0.56,1.6
Hispanic 21% (27/129) 22% (142/651) 0.91 0.95 0.59,1.5
ICU encounter 2 weeks after MRSA 1.5% (2/131) 1.5% (10/653) 1 1 0.15,4.3
Stroke 2.3% (3/131) 2.1% (14/653) 1 1.1 0.26,3.6
Augmentin exposure in past 6 months 6.1% (8/131) 6.4% (42/653) 1 0.95 0.4,2
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Figure 4.5: Increasing prevalence and evidence of acquisition of ermC -carrying plasmid
among repeat infections

0

5

10

15

20

25

2011 2012 2013 2014
Year

P
er

ce
nt

 e
rm

C
 a

m
on

g 
U

S
A

30
0 

cl
in

ic
al

 c
ul

tu
re

s

38
4
4
0
4

12
103

9
5
1
3
6
2
4

10
121
139

1
1
0
1

103
1
3
1

10
6
1
4

2011 2012 2013 2014
Collect Date

P
er

so
n

MLST

30

8

8*

NULL

A) Barplot shows the increasing prevalence of ermC from 2011 to 2014 among comprehensive
clinical cultures. B) Evidence of ermCgained over time among individuals with repeat
infections. Each y axis tick indicates a person with at least 1 repeat USA300 infection.
Triangles indicate presence of ermC. Color indicates MLST. Numbers along y axis indicate
max number of SNVs between USA300 infections; note this excludes any other MLST (i.e.
the pink ST30 isolate is not included in the distance calculation).

either a selective pressure or circulation in certain social networks. The pediatric popula-

tion is negatively associated with carrying the ermCplasmid, suggesting circulation in adult

populations as reflected in the association with incarceration and cocaine use.

Individuals could have repeat infections in the dataset, but we included individuals just

once, selecting their first USA300 infection. Prior MRSA infection or colonization in the

past 6 months and two antibiotics commonly used to treat MRSA (i.e. trimethoprim-

sulfamethoxazole and vancomycin ) were associated with ermC (Table 1). This could in-

dicate that acquisition of the plasmid was recent wherein the first infection did not contain

the plasmid but was present in the second infection. To test this directly, we identified

individuals with at least one repeat USA300 infection, and saw evidence of ermCacquisition
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in later infections of the same strain within 20 SNVs among 4 individuals (Figure 4.5B).

Naturally, we hypothesized that acquisition of the ermC -carrying plasmid was selected

for by clindamycin or macrolide exposure. Interestingly, clindamycin and macrolide exposure

in the past 6 months are not associated with presence of ermC (Table 4.2). However, 60%

of individuals have been prescribed clindamycin in the past 6 months (Figure 4.6) which

could explain the lack of association given that clindamycin is a ubiquitous exposure in the

dataset. Further, we wondered if clindamycin exposure was particularly prevalent in the jail,

given the increased selection for the plasmid in the jail. We did not have data on clindamycin

use in the jail study period of 2015-2017. However, we assessed clindamycin use in the past

6 months and incarceration in the past year in the comprehensive clinical dataset collected

from 2011-2014 and found no significant association (OR = 1.09, p = 0.80).

Figure 4.6: Antibiotic exposure in the past 6 months
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4.4 Discussion

We identified a plasmid associated with transmission that confers constitutive resistance to

clindamycin which has independently evolved multiple times in diverse genetic backgrounds

and spread in both the Cook County Jail and larger community. Prevalence is much higher

in the jail than in the broader community suggesting a stronger selective pressure in the

jail. However, increasing prevalence in the community indicates a fitness advantage in the

community.

Around this time, prevalence of clindamycin resistance in MRSA in the United States was

reported to be on the order of 10%, but prevalence varies greatly by population and geography

[96, 97, 98]. In the jail, we see prevalence of clindamycin resistance of over 50%. Further,

there are many strains in the jail that are resistant to clindamycin and fluoroquinolones, a

pattern atypical of USA300 [99], suggesting different selective pressures in the jail than the

broader community. Prevalence of clindamycin resistance in the broader community prior

to the jail study time period were on par with reports, but the association of transmission

with presence of the ermC -carrying plasmid is novel.

The selective pressure for this phenomenon is unclear, as we do not observe a significant

association between clindamycin or macrolide use and the presence of this plasmid. Previous

studies revealed a plasmid pUSA03 which carries ermCand mupA has emerged in the MSM

community in Boston and San Francisco [54]. Here too clindamycin and mupirocin use

was not a necessary condition for the spread of this clone of USA300, as these drugs were

not frequently used in one clinic where they observed this phenomenon [54]. Despite the

lack of association, clindamycin was the most frequently prescribed antibiotic in the MRSA

infected population presenting to Cook County Health. The ubiquitous selective pressure

of clindamycin is constituent with the high prevalence of constitutive resistance. We are

lacking data on clindamycin use in the Cook County Jail, but incarceration in the past year

61



was not associated with clindamycin exposure in the past 6 months in the comprehensive

clinical dataset. Although the selective pressure for the ermC -carrying plasmid is unknown,

it does seem to be higher in the jail than in the community.

In addition to antibiotics, there may be other selective pressures that favor isolates har-

boring the ermCplasmid. One intriguing selective agent is the additive triclosan, which is

found in many consumer products including personal hygiene products (e.g. toothpaste, de-

odorant, mouthwash, soup), textiles, and plastics for its antibacterial properties [100, 101].

Studies have shown that triclosan in the environment is associated with higher levels of erm

genes in the environment [102] and that triclosan may promote antibiotic resistance and

tolerance [103, 104]. Further, triclosan has been shown to promote nasal colonization of S.

aureus [105]. Among a representative sample of the U.S. population via the National Health

and Nutrition Examination Survey, triclosan was found in the urine of 75% of individuals

in the study, with more than 10% of the individuals having concentrations greater than the

MIC for S. aureus [100, 104]. While triclosan exposure is ubiquitous, it is unclear if this

selective pressure is present or stronger than average in the jail.

One important and unanswered question is the impact of jails on propagating the com-

munity MRSA epidemic. In this study, our clinical samples (2011-2014) were collected prior

to the jail samples (2015-2017), limiting our ability to directly study the impact of the jail

on the downstream community. Sequencing the archived clinical isolates from Cook County

Health in 2015 and beyond and observing the intersection between isolates in the jail and

the broader community could help quantify the contributions of the jail to the burden of

MRSA in the downstream community. With the data we have, we do observe a significant

association between presence of the ermC -carrying plasmid and previous incarceration. Fur-

ther work is needed to understand the interplay between the jail and the community in the

spread of the plasmid.
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4.5 Methods

4.5.1 Data - USA300 MRSA whole-genome sequences in the Cook

County Jail and Cook County Health

Metadata and MRSA sequences were previously described in Chapters 2 and 3. Briefly, all

clinical cultures presenting to Cook County Health from 2011-2014 were sequenced (Chapter

2). We subsetted the dataset to USA300 MRSA, the dominant molecular type. MRSA

surveillance colonization samples collected as part of prospective epidemiology study and all

infection samples at the Cook County Jail were sequenced from 2015-2017 (Chapter 3).

4.5.2 Assessing association of transmission with pangenome

We used panaroo to identify the accessory genome of each sample [106]. Clusters of genes

as a proxy for genes potentially carried on the same mobile genetic element were defined by

concordance of presence-absence pattern across samples by 95%. Genes were annotated with

eggNOG [107]. Isolates related by transmission were defined with a SNV threshold of 20 to

minimize false positive linkages [71, 70]. A Fisher’s exact test was conducted to assess the

association between transmission and gene using the R package exact2x2. The relationship

between odds ratio (OR) and p value was plotted and colored by gene cluster. Significance

was assessed with a Bonferonni-adjusted p value where the number of tests was the number

of clusters plus the number of singleton genes.

4.5.3 Genetic determinants of clindamycin resistance

ermC can confer constitutive or inducible resistance to clindamycin. In a clinical setting,

constitutive resistance is observed phenotypically as resistance to clindamycin in the absence

of an inducer (i.e. erythromycin). The potential for inducible resistance to clindamycin
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through carriage of an unmodified erm gene would be investigated if there was resistance to

erythromycin but susceptibility to clindamycin [108]. We used pyseer [109] to confirm that

the ermC -carrying plasmid was the sole determinant of clindamycin resistance.

4.5.4 Identifying and comparing plasmid between datasets

We assembled the genomes with an internal pipeline available at https://github.com/alipirani88/

assemblage. We then used blastn [110] to compare the assembly against the plasmid (with in-

ducible ermC ) pUSA05-1-SUR4 (NCBI reference NZ CP014374.1) [94]. We also used blastn

to confirm the identity of the 2 highly significant gene hits present in both datasets.

4.5.5 Epidemiological associations with ermC -carrying plasmid

We assessed the association between binary epidemiological factors and presence of the

ermC -carrying plasmid with a Fisher’s exact testing using the R package exact2x2.

4.6 Supplemental Tables

Table 4.2: Pangenome genes that pass the Bonferonni correction for jail dataset

gene cluster labels pvals OR CI log10p eggNOG identifier Preferred name eggNOG description prevalence
group 2305 26 replication & maintenance protein 3.1E-15 7.1 4.2,12 15 NA NA NA 36%
ermC 26 ermC 2.2E-14 6.6 4,11 14 NA NA NA 36%
group 467 NA 1.1E-05 2.8 1.7,4.4 5 1280.SAXN108 2730 Protein of unknown function (DUF1433) 52%
group 398 36 7.3E-05 8.5 2.5,34 4.1 1280.SAXN108 0481 Staphylococcal superantigen-like OB-fold domain 6.9%
group 497 35 0.00017 0 0,0.3 3.8 525378.HMPREF0793 1693 blaR Regulatory protein BlaR1 4.4%
patA 2∼∼∼patA 3 10 0.00024 2.7 1.5,4.7 3.6 NA NA NA 73%
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Table 4.3: Pangenome genes that pass the Bonferonni correction for comprehensive clinical
culture dataset

gene cluster labels pvals OR CI log10p eggNOG identifier Preferrenname eggNOG description prevalence
group 3371 11 replication & maintenance protein 6.4E-16 4.7 3.2,6.9 15 NA NA NA 19%
ermC∼∼∼\rmC 11 \ermC 1.4E-13 4.5 3,6.7 13 NA NA NA 17%
group 1270 NA 3E-07 2.4 1.7,3.3 6.5 1280.SAXN108 1829 33%
lytN 3∼∼∼lytN 4∼∼∼lss∼∼∼lytN 2 NA 5.4E-07 3.3 2.1,5.4 6.3 NA NA NA 11%
group 976 NA 6.4E-07 2.6 1.8,3.8 6.2 525378.HMPREF0793 0195 tcmP Leucine carboxyl methyltransferase 21%
group 995 NA 1.2E-06 2.3 1.6,3.2 5.9 1280.SAXN108 0496 multivesicular body membrane disassembly 34%
group 425 NA 6.1E-06 2.8 1.8,4.4 5.2 1280.SAXN108 1511 this gene contains a nucleotide ambiguity which may be the result of a sequencing error 12%
group 695 NA 7.1E-06 2.2 1.6,3.1 5.1 1280.SAXN108 0973 Major facilitator Superfamily 28%
group 1128 6 1.4E-05 2.1 1.5,2.9 4.9 1220551.SCHR 11194 penP beta-lactamase 41%
group 599 17 1.4E-05 3.6 2,6.3 4.9 1280.SAXN108 1250 femA protein involved in methicillin resistance 6.8%
group 1442 NA 1.7E-05 3.1 1.9,5.2 4.8 1280.SAXN108 2114 fhuD Periplasmic binding protein 8.5%
group 613 6 2.1E-05 2 1.5,2.8 4.7 1280.SAXN108 0734 AraC family transcriptional regulator 40%
group 339 8 2.2E-05 2.1 1.5,3 4.7 1280.SAXN108 1837 Nacht domain 27%
group 840 8 2.2E-05 2.1 1.5,3 4.7 71366.O80066 9CAUD cytolysis in other organism 27%
group 242 8 2.2E-05 2.1 1.5,3 4.7 1280.SAXN108 0656 Protein of unknown function (DUF443) 27%
group 1130 17 2.2E-05 3.7 2.1,7 4.7 904314.SEVCU012 1101 penP beta-lactamase 6.1%
group 1363 17 1.8E-05 Inf 5.1,Inf 4.7 176280.SE 0037 Recombinase zinc beta ribbon domain 1%
group 1358 NA 2.6E-05 2.1 1.5,2.9 4.6 NA NA NA 32%
atl 4∼∼∼atl 3∼∼∼atl 2∼∼∼atl 1 6 3.1E-05 2 1.5,2.8 4.5 NA NA NA 41%
group 986 NA 3.1E-05 2.1 1.5,3.1 4.5 186152.Q8SDS6 9CAUD Phage integrase family 25%
group 1320 17 3.3E-05 4.4 2.2,9 4.5 NA NA NA 4.3%
group 273 12 3E-05 2.8 1.7,4.6 4.5 1280.SAXN108 1513 Pfam PF07901 9.8%
group 1074 7 3.9E-05 2 1.4,2.8 4.4 1280.SAXN108 0656 Protein of unknown function (DUF443) 35%
group 651 7 5.3E-05 2 1.4,2.8 4.3 1140002.I570 02054 35%
group 1325 17 5.8E-05 4.6 2.1,9.9 4.2 NA NA NA 3.8%
group 1140 7 7.5E-05 2 1.4,2.8 4.1 176279.SERP2453 Belongs to the staphylococcal tandem lipoprotein family 35%
group 1561 17 8.3E-05 3.8 1.9,7.5 4.1 NA NA NA 4.8%
group 1721 17 8.8E-05 3.4 1.8,6.5 4.1 1280.SAXN108 1856 cell killing 5.9%
yqbO 1 ∼∼∼ yqbO 2 ∼∼∼∼∼∼ yqbO ∼∼∼ yqbO 3 7 0.00012 1.9 1.4,2.7 3.9 NA NA NA 35%
group 921 7 0.00012 1.9 1.4,2.7 3.9 1280.SAXN108 2736 helicase 35%
group 1045 12 0.00012 2.4 1.5,3.7 3.9 NA NA NA 13%
group 1641 12 0.00012 2.4 1.5,3.7 3.9 NA NA NA 13%
group 1307 7 0.00017 1.9 1.3,2.6 3.8 NA NA NA 36%
group 1339 7 0.00017 1.9 1.3,2.6 3.8 NA NA NA 35%
group 1181 7 0.00017 1.9 1.3,2.6 3.8 435838.HMPREF0786 01635 Domain of unknown function (DUF927) 36%
group 1004 7 0.00017 1.9 1.3,2.6 3.8 129009.Q9MBT7 9CAUD 35%
group 1360 7 0.00017 1.9 1.3,2.6 3.8 NA NA NA 35%
group 1319 7 0.00017 1.9 1.3,2.6 3.8 1280.SAXN108 2879 yhgC enzyme involved in biosynthesis of extracellular polysaccharides 35%
group 589 7 0.00016 1.9 1.3,2.6 3.8 1177179.A11A3 17040 reverse transcriptase 35%
group 400 14 0.00015 2.1 1.4,3 3.8 1280.SAXN108 0481 Staphylococcal superantigen-like OB-fold domain 22%
xis 12 0.00016 2.4 1.5,3.8 3.8 106284.Q9G032 9CAUD 12%
group 1354 7 0.00024 1.9 1.3,2.6 3.6 1280.SAXN108 0652 LXG domain of WXG superfamily 35%
group 1213 7 0.00024 1.9 1.3,2.6 3.6 1139219.I569 00564 Psort location CytoplasmicMembrane, score 35%
xerC 4∼∼∼xerC 2∼∼∼intQ NA 0.00025 1.9 1.3,2.6 3.6 NA NA NA 30%
group 482 17 0.00023 2.8 1.6,4.8 3.6 525378.HMPREF0793 1527 Domain of unknown function (DUF5079) 7.9%
group 1208 NA 0.00029 2.2 1.5,3.4 3.5 1167632.AJTR01000009 gene931 binR Resolvase, N terminal domain 15%
group 282 NA 3E-04 2.5 1.5,4.1 3.5 1280.SAXN108 1507 Pfam PF07901 9.8%
repD∼∼∼repE 2∼∼∼repN∼∼∼repN 2 17 0.00034 4.7 2,12 3.5 NA NA NA 2.9%
group 1291 NA 0.00041 0.38 0.22,0.64 3.4 1280.SAXN108 1936 DNA packaging 92%
group 1421 17 0.00041 7.5 2.2,26 3.4 1280.SAXN108 1450 ypgR virulence factor 1.8%
group 1324 15 0.00047 2.4 1.5,3.8 3.3 NA NA NA 10%
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4.7 Supplemental Figures

Figure 4.7: Combined phylogeny of clinical and jail USA300 MRSA cultures
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Figure 4.8: Pyseer results assessing association between clindamycin resistance and the
pangenome in the clinical data
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Chapter 5

Discussion

5.1 Major dissertation contributions

This dissertation produced insights into USA300 MRSA epidemiology and adaptation while

demonstrating the utility of genomic epidemiology in both the healthcare and community

settings. In Chapter 2, we described the genomic epidemiology of USA300 MRSA in Cook

County, which contains the city of Chicago, from 2011-2014. We found little evidence of

healthcare overlap among individuals with genetically-linked MRSA, even among so-called

healthcare-associated or hospital-onset infections, thus calling into question the utility of

these oft-used epidemiological definitions. In Chapter 3, we focused on one section of the

community with a higher risk of MRSA colonization and infection: incarcerated individuals.

We observed a high burden of MRSA at intake to the jail, followed by evidence of transmission

mediated by location sharing and environmental contamination. Finally, in Chapter 4, we

identified a biological underpinning of transmission in the Cook County Jail: acquisition of

a 2.4kb plasmid carrying the antibiotic resistance determinant ermC. We found that this

plasmid was also circulating in the broader community but was lower in prevalence than in

the jail, suggesting that there may be differing or stronger selective pressures for strains with

the plasmid in the jail. In each chapter, the integration of genomics and epidemiology was

crucial to our understanding of MRSA adaptation and spread.
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5.1.1 Contributions to our understanding of USA300 MRSA epi-

demiology

In Chapter 2, we present a genomic epidemiological study of all MRSA clinical cultures

presenting to Cook County Health over a 4-year period with detailed healthcare exposures

of all patients across the state of Illinois. This work provided a comprehensive profile of

MRSA epidemiology in the urban community of Chicago in recent years and allowed us to

pinpoint or rule out focal points of USA300 MRSA spread.

Infection control in the healthcare setting had been successful at reducing MRSA infection

incidence in the past decade, but the lack of similar decline in the community should shift

focus outside of the healthcare setting [64, 65]. Indeed, we observe a lack of healthcare overlap

among isolates involved in potential recent transmission on the statewide facility level, even

among so-called “hospital-onset” and “healthcare-associated” USA300 infections (Chapter

2). We question the ability of these definitions in predicting sites of MRSA acquisition

and hypothesize that infections that occur after the 72-hour threshold may likely be due

to pre-existing colonization from the community. We suggest that continued use of these

epidemiological definitions should not detract our focus away from pinpointing important

hubs of transmission in the community and designing novel community interventions.

Moreover, this dissertation demonstrates the utility of genomics to add clarity to epi-

demiological studies. For example, individuals had numerous exposures to the healthcare

setting before and after their MRSA diagnosis, which alone could implicate the healthcare

setting as a source of acquisition and further spread. However, identifying putative trans-

mission by way of genomics allowed us to determine that there was little direct or indirect

overlap among individuals in the healthcare setting, suggesting that they acquired MRSA

in the community.
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5.1.2 Jails as amplifiers of MRSA transmission in the community

In Chapter 3, we zoomed in on one section of the community with a higher burden of

MRSA – jails. Jails and prisons were one of the first places USA300 MRSA outbreaks in

the community were observed. Jails are characterized by short stays whereas prisons have

a more stable, long-term population of inmates. Thus, it has been speculated that smaller

populations and shorter stays in jails compared to prisons may result in less transmission

opportunity in jails [78]. However, in Chapter 3, we showed that within 30 days there was

an ∼8% acquisition rate of MRSA colonization. Moreover, we used genomics to uncover

the existence of transmission among jail-onset infections mediated by location sharing and

environmental contamination. This rate of transmission is a function of the high burden of

MRSA colonization at intake to the jail: 19% compared to the national average of 1.5% [7].

As jails have a high rate of turnover back into the community, interventions in the jails

may help reduce communicable diseases to the community at large. This has been demon-

strated in syphilis, where jail-based interventions for syphilis have resulted in reduced rates

of syphilis in the surrounding community [111]. Efforts to control MRSA spread in jails have

been successful and include a combination of skin lesion screening, standardized antimicro-

bial therapy, wound care, and enhanced hygiene including hand hygiene and chlorhexidine

body wash [112]. Our results suggest that enhanced environmental cleaning particularly in

locations where individuals who have long stays have resided, further investigation of cer-

tain buildings, and enhanced hygiene or decolonization of those at entry could be effective

interventions for MRSA. Further work is needed to assess the impact of these interventions

on the downstream community burden of MRSA, paying attention to both the burden of

MRSA colonization and infection. One way to assess this specifically could be to monitor

changes in the community of strains that are particularly prevalent in the jail, such as the

presence of the plasmid we observed in Chapter 4.

The jail also may be a good place to surveil for strains that may emerge to cause success
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in the community. In Chapter 4, we show evidence of multiple acquisitions of a plasmid and

subsequent spread in the jail, with ∼80% of infected individuals involved in transmission pairs

carrying the plasmid (compared to ∼30% not involved in transmission). We see this plasmid

in the community, increasing in prevalence in time, and associated with incarceration; further

work is needed to assess the role of the jail in the introduction of new strains in the broader

community. Another study has shown that prisons select for multidrug resistant variants

in Mycobacterium tuberculosis that lack the typical fitness costs associated with increased

resistance, and these strains overflow into the community [55]. Thus it is important to

monitor emerging variants in correctional facilities and prevent their further spread in the

community.

5.1.3 A framework for genomic epidemiology in jails

Genomic epidemiology is a relatively new field that was pioneered in the healthcare setting to

retrospectively detect outbreaks [41]. There are far fewer genomic epidemiological studies in

the community and even fewer in jails/prisons in part because of challenges of data collection.

Our collaborators were able to overcome these challenges to collect bacterial samples and

detailed metadata in the Cook County Jail. Insights into the data collection process that we

gleaned from the post-collection analysis are provided below.

Considerations for collection and sequencing of microbial isolates

Considerations for sample collection include culture type (e.g. surveillance versus clinical

cultures), body site of collection, and number of samples to collect. As MRSA and other

bacterial pathogens can both colonize and infect, and both states play a role in transmis-

sion, collecting both colonization and clinical infections will maximize transmission linkage

detection. However, we found that if transmission is common enough, many transmission

links can be detected with just clinical cultures.
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Furthermore, in Chapter 3, we collected colonization samples from the nose, throat, and

groin. As MRSA colonization is often extra-nasal, without collecting samples from multiple

body sites we may have missed numerous transmission links. A meta-analysis of studies

conducting extra-nasal and nasal screening for MRSA at hospital or ICU encounters found

that extra-nasal screening identified one-third more MRSA cases than nasal screening alone

[113]. Moreover, collection of multiple isolates per person can serve as a quality control for

the sequencing process, as we found that most individuals are colonized with the same strain

across body site [67]. Although most strains across body sites are concordant, collecting from

multiple body sites can contribute to capturing the diversity of MRSA colonizing the host

[62]. Another consideration for capturing the diversity of MRSA in the host the number of

colonies to sequence per body site. In all studies presented in this dissertation, we sequenced

one bacterial colony per body site. Collecting one colony per site will limit capturing the full

diversity present on an individual and may effect reconstruction of transmission networks

[114]. However, collecting from multiple body sites mitigates this concern. Further, we

were able to detect numerous transmission events with epidemiological support using the

single colony approach [67]. With limited funding, there is a trade-off between density of

sampling of a single individual and the number of people in your study. For the purposes of

constructing transmission networks, we prioritized the latter.

Considerations for metadata collection

We collected metadata about factors related to behaviors in the broader community (e.g.

drug use, zipcode) and in the jail itself (e.g. sharing personal items, using the gym). Because

of this, we were able to identify both community transmission networks [38] and factors

associated with transmission within the jail (Chapter 3). Collection of granular location

data is also important. In the healthcare setting, multiple levels of location can be collected

such as facility, floor, ward, and room [115]. Here, we also collected multiple levels of the
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jail which included building and living unit (e.g. cell or dorm room). The most granular

level data (i.e. living unit) gave us confidence that we detected direct transmission among

closely related genetic pairs and that there may be a role of environmental contamination if

two individuals with closely related MRSA lived in the same room separated by time. The

least granular data (i.e. building) allowed us to identify where MRSA transmission was most

common and that both cell and dorm-based buildings had high levels of transmission.

While preparing this dissertation, SARS-CoV-2 emerged to cause a global pandemic.

Jails, including the Cook County Jail, were particularly affected [92]. The sample collection

infrastructure, collaborative relationships, and analytic framework described in this disserta-

tion afforded a quick turnover time to assess SARS-CoV-2 transmission in the Cook County

and broader community (unpublished data).

5.1.4 The importance of antimicrobial stewardship

In Chapter 4, we identified an association between involvement in a transmission pair and

harboring MRSA with a plasmid that carries the gene ermC which confers resistance to the

macrolide and lincosamide classes of antibiotics. This association was stronger in the jail

setting, but also present in a comprehensive sampling of clinical cultures. We speculate that

the association of the plasmid with transmission is a result of either or a combination of 1) an

increased fitness under antimicrobial pressures or 2) fitness advantages gained from a change

in the cellular proteome as a result of methylation of the ribosomal RNA by ErmC [116].

The latter could be tested in vitro with RNA sequencing experiments comparing strains with

and without the plasmid under differing conditions including rich and minimal media and

under antibiotic stress.

Regarding the first hypothesis, in the clinical setting, macrolide and lincosamide exposure

in the past 6 months were not significantly associated with harboring the ermC -carrying

plasmid; however, over 50% of individuals in the study had taken the macrolide clindamycin
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in the past 6 months suggesting a plausible role for clindamycin use in the success of the

strains harboring the plasmid. Another antimicrobial pressure could be from the additive

triclosan, a chemical added to many consumer products including soaps, deodorant, plastics,

and textiles for its antibacterial properties [100, 101]. A study of athletic and educational

facilities revealed a correlation between erm genes and the concentration of triclosan [102].

Further, triclosan has been shown to promote nasal colonization of S. aureus. Triclosan is

common in many products and as a result, one study of the general U.S. population found

triclosan in about 75% of people in the study [100]. We wonder if the increased prevalence of

strains harboring the plasmid could be a result of differing levels of triclosan exposure such

as hygiene or cleaning products provided in the jail.

The potential for selection of a transmissible variant by antibiotic or antmicrobial prod-

ucts highlights the importance of antimicrobial stewardship in healthcare settings and be-

yond. Antimicrobial stewardship efforts in hospital setting have largely been focused on

antibiotics [117]. Reducing transmission through environmental cleaning is one strategy

to reduce the need for antibiotics to treat infections. However, these results highlight the

potential to consider the regulation of products containing antimicrobial additives such as

triclosan. Further, this work highlights the importance of genomic surveillance of strains in

real-time to inform if changes in antimicrobial practices are warranted.

5.2 The future of genomic epidemiology

This dissertation demonstrates how genomics can be used retrospectively to assess transmis-

sion and variant emergence. The future beholds use of real-time use of genomics in a clinical

setting, in remote locations, and hopefully in community settings such as jails. The analyt-

ical framework presented lays a piece of the foundation for this future. Reviewed below are

the new methodologies, technologies, and insights from related research that will move us
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toward routine use of genomics in clinical and infection control decision-making.

5.2.1 Moving away from SNV thresholds?

One challenge in genomic epidemiology is the accurate identification of transmission pairs.

Currently, a common approach to infer transmission is to use a single SNV threshold. SNV

thresholds vary by organism and depend on the evolutionary rate, though no pan-organism

algorithm exists to calculate SNV thresholds. Use of a single SNV threshold can result

in identification of false positive or false negative transmission links. In MRSA, a SNV

threshold of 40 has been historically used as it was the maximum within-diversity observed

in an individual and therefore the full diversity that could be transmitted. Interestingly,

studies have taken different approaches to determine the optimum SNV threshold for MRSA

and independently settled on a similar number [71, 70]. We addressed the challenges of

a single SNV threshold by conducting a sensitivity analysis over multiple SNV thresholds

(Chapter 3).

Recent efforts have proposed phylogenetic-based approaches as alternatives to SNV thresh-

olds. So far, these approaches require either comprehensive sampling of a facility [115] or

collecting multiple samples per individual [71]. Both approaches can be difficult logistically

in the study design and expensive to put into practice. However, one study showed that

when MRSA was routinely surveyed, multiple samples were not needed to detect transmis-

sion in an outbreak setting [118]. More work is needed to critically assess how much more

information a SNV threshold-independent approach can add to epidemiological studies while

considering the feasibility in a real-time setting.
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5.2.2 Real-time outbreak detection

Genomic epidemiology has been used retroactively to investigate many outbreaks in the

healthcare setting [42]. The ever decreasing price of whole-genome sequencing could make

surveillance and real-time detection of outbreaks a possibility. However, obstacles for routine

use of real-time use of sequencing technology include a need for expensive equipment and

training of personnel for library preparation and processing, interpreting, and storage of

sequencing data [119, 120]. Incremental progress has been made on both fronts through the

development of portable, affordable sequencing technology and development of bioinformatics

protocols and proof-of-concept studies for use in a clinical setting.

Technological advances like the MinION from Oxford Nanopore Technologies has pro-

vided portable DNA sequencing devices that can be easily transported to the field with

rapid sequencing and downstream analysis [119, 121]. This technology has been deployed in

remote settings in response to the Ebola [122] and Zika [123] outbreaks. Still, limitations

exist in cost of flow cell, the need for PCR amplification before sequencing, and error rates

of variant calls if not sequenced deeply enough [121].

From a logistical standpoint, at present, trained bioinformatics personnel will be needed

for implementation of genomics in a clinical lab. Studies have aimed to develop protocols

and automate sequencing processing pipelines. For example, in a clinical setting, a protocol

was developed and benchmarked against a previously investigated outbreak of MRSA using

Oxford Nanopore Technologies and subsequently used to identify two S. aureus outbreaks in

less than 31 hours [119]. Another study implemented a fully-automated bioinformatics tool

in a clinical microbiology lab to predict antibiotic resistance from the genome [124]. Still,

more work to automate and standardize bioinformatics pipelines across clinical labs and to

train personnel will be needed to make real-time genomics a reality on a global scale.

This dissertation demonstrates that MRSA surveillance and interventions to reduce

MRSA transmission in real-time would be useful, and genomics would be required over
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molecular type methods to detect an outbreak as most strains entering the jail were USA300.

Proof-of-concept studies and protocols should be developed for community settings, such as

jails.

5.2.3 Precision treatment of infection from bacterial genomes

As the price of whole-genome sequencing declines and more becomes known about the ge-

netic determinants of resistance and virulence, sequencing has the potential to move into

routine clinical practice as an alternative to phenotypic antibiotic susceptibility testing and

to provide precision treatment to patients. Already, genomics has been used clinically to

determine resistance profiles in Mycobacterium tuberculosis, and it has been shown to be a

more affordable and time-efficient alternative to susceptibility testing in this slow-growing

bacteria [125, 126]. Much work has been done in MRSA to predict genetic determinants of

resistance from the genome [127, 128]. However, even with databases of known resistance

elements, another barrier is the informatics expertise in clinical labs to process sequencing

data. Here too though, automated bioinformatics pipelines to test antibiotic resistance in

MRSA have been tested in the clinical setting with both logistical success and concordance

with susceptibility testing [124].

A more forward-thinking application of whole-genome sequencing is the use of genomics

in optimizing treatment strategies. Work has been done in MRSA to try to predict virulence

(e.g. toxicity) from the genome [129]. In theory, patients with more virulent lineages could

be quarantined to prevent transmission, monitored more closely for complications, or treated

with anti-virulence drugs in a future where those exist [129].

77



5.3 Conclusion

While MRSA has declined in the past decade, further reduction in cases will require community-

based interventions. Indeed, we identified a lack of healthcare transmission among USA300

MRSA (Chapter 2). We identified potential points of intervention to reduce transmission

in the jail (Chapter 3) and identified the existence of potential selective pressure enhancing

transmission in the jail (Chapter 4). Further work will be needed to determine the extent that

the jail amplifies community MRSA transmission and how jail-based interventions impact

the burden of MRSA in the community. Moreover, additional community-based genomic

epidemiological studies are needed to identify other hubs of MRSA transmission. Finally,

this work provided an analytical framework for future genomic epidemiology studies, and

has already been useful in studying the COVID-19 pandemic in the backdrop of the Cook

County Jail.
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