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Abstract 
 

 

Recent advances in genotyping and sequencing technologies have enabled genetic association 

studies to leverage high-quality genotype or sequence data to identify high-impact variants 

accounting for a substantial portion of disease risk. The usage of external controls, whose 

genomes have already been genotyped and are publicly available, could be a cost-effective 

approach to increase the power of association testing. Various challenges in practice, however, 

hinder the use of external sources of controls, among which include differences in sequencing 

platforms, genotype calling procedures, population stratification, etc. Differences in these aspects 

could lead to a systematic batch effect between genetic data in different studies. 

There has been recent effort to integrate external controls while adjusting for possible 

batch effects, such as the integrating External Controls into Association Test (iECAT). The 

original iECAT test, however, cannot adjust for covariates such as age, gender, etc. Hence, based 

on the insight of iECAT, we propose a novel score-based test, iECAT-Score, that allows for 

covariate adjustment and constructs a shrinkage score statistic that is a weighted sum of the score 

statistics using exclusively internal samples and uses both internal and external control samples. 

We show by simulation studies that our method has increased power over the original iECAT 

while controlling for type I error rates. We present the application of our method to the 

association studies of age-related macular degeneration (AMD) utilizing data from the 

International AMD Genomics Consortium (IAMDGC) and Michigan Genomics Initiative (MGI). 

The iECAT-Score test has improved power for testing association between a single 

variant and the disease status, and yet single-variant tests could be underpowered to identify 

causal rare variants. Hence, in the second project, we extend the single-variant iECAT-Score test 

to a region-based test, which assesses the combined genetic effect of rare variants within a gene 

or region. The iECAT-Score region-based test aggregates the single-variant test statistics using a 

weighted linear or quadratic sum, or a linear combination of both. Through simulation studies 
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and the application of our method to the rare-variant association studies of AMD from the 

IAMDGC and UK Biobank data, we show that our proposed iECAT-Score region-based test 

efficiently identifies disease-associated genes while controlling for type I error rates. 

When sequenced data are used in association studies, quality of the genotype calls could 

influence the performance of the testing methods. The quality of genotype calls is subject to 

many factors such as read depth, genotype-calling error rates, quality control (QC) pipelines, 

etc., all of which could result in bias in the estimation of minor allele frequencies (MAFs), 

leading to more profound batch effect between internal and external control samples. As whole 

genome/exome sequencing become the design of choice, to address the associated problems 

using genotyped data, we propose in the third project to integrate the above-mentioned QC 

parameters utilizing sequencing data. Through the incorporation of these factors, we develop a 

framework of integrating external controls that is applicable to both genotyped and sequencing 

data, further honing the statistical methods needed to identify disease-causing variants within the 

human genome. 
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Chapter 1 Introduction 

1.1 Demand for Improved Power in Genetic Association Studies 

Pinpointing genetic variants involved in human disease pathogenesis and trait development has 

long been of interest. A genome-wide association study (GWAS) using case and controls is a 

powerful tool to identify loci that are associated with disease through the comparison between 

the allele frequencies of single-nucleotide polymorphisms (SNPs) between one healthy control 

group and the disease-carrying case group. GWAS have successfully identified tens of thousands 

of SNPs associated with diseases and have prompted subsequent functional analyses regarding 

disease etiology and intervention (Freedman et al., 2011; Gallagher & Chen-Plotkin, 2018). 

Early GWAS discoveries primarily consist of common variants with small effect sizes. 

To uncover more disease associated low-frequency or rare variants explaining the missing 

heritability, one trend of case-control study has been increasing the sample size (Ioannidis, 

Thomas, & Daly, 2009). Genotyping or sequencing a large number of samples for individual 

studies could be expensive. Hence, to improve power in variant discovery via an increased 

number of controls, investigators have gained interest in either using shared common set of 

controls for multiple case phenotypes (The Wellcome Trust Case Control Consortium, 2007), or 

augment control sample size using previously existed study samples (Zhan et al., 2013). 

In one seminal study, investigators performed a joint GWA study to study the association 

between SNPs and seven major diseases using a shared set of controls of ~3,000 samples 

(Wellcome Trust Case Control Consortium, 2007). This pioneering study demonstrated that 

using shared or preexisting controls is an effective approach to have adequate sample size for 

GWAS and allow researchers to focus resources on collecting disease cases. In another 

association study for risks of age-related macular degeneration (AMD) (Zhan et al., 2013), an 

initial analysis on the exome sequence data of 2,335 cases and 789 controls revealed no rare 

coding variants with frequency < 1% that passed experiment-wide significance level. After 

augmenting the controls to 2,268 through ancestry matching within the Exome Sequencing 
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Project (Tennessen et al., 2012), however, the investigators were able to identify two large-effect 

within genes CFH and C3, before verifying their mechanistic impact through functional studies. 

In the above-mentioned studies, investigators underwent careful selection of the 

(augmented) control samples: (1) cases and shared controls were genotyped on the same 

platforms and/or had the same filters applied for read depths and call rates (in the case of 

sequence data); (2) carefully matched the genetic ancestry between external controls and internal 

samples and excluded samples that showed population stratification with the study population. 

These procedures tried to use a bottom-up strategy to include control samples that have shown 

little heterogeneity due to technical batch effect or population stratification, thus reducing the 

likelihood of false discoveries secondary to the heterogeneity. 

For most investigators, however, it is extremely challenging to be able to genotype study 

samples and potential external control samples using the same platforms and pipelines. The 

original sequence data are often not available for researchers to apply the exact same quality 

control filters to select additional controls. Even if the sequence data are available, their large file 

size brings huge computational burden; joint genotyping calling and applying quality control 

filters may not fully adjust for the technical batch effect if samples are sequenced on different 

platforms. In addition, selecting control samples that show little to no population stratification 

with the internal samples might considerably limit the employable controls, diminishing the 

opportunity of achieving improved power from increased sample size. 

Recent advances in genotyping and sequencing technologies have enabled large scale 

genotype data to be publicly available through various consortia and biobanks. Under this trend, 

a more realistic scenario for researchers would be to take advantage of the readily available data 

as external controls to increase the sample size and to assist variant discovery in the study of 

interest. Thus, it would be preferable to adopt a top-down approach to integrate the additional 

controls without having to jointly re-genotype or manually select which samples to include based 

on quality control filters and genetic ancestry. 

Various challenges in practice, however, hinder the use of external sources of controls, 

among which include differences in sequencing platforms, genotype calling procedures, 

population stratification, etc. Differences in these aspects could lead to a systematic batch effect 

between genetic data in different studies. If external controls are integrated without accounting 

for the batch effect, false discoveries are likely to happen because of inflated type I error rates, 



 3 

and thus new analytical methods are required to address the possible technical batch effect and 

population stratification. 

Therefore, in this dissertation, we aim to tackle the following research questions related 

to integrating external controls in case-control studies using genotype or sequence data: 

1. How can we assess the batch effect between samples from different studies using 

genotype data and integrate the external controls to test for association between single 

genetic variants and the phenotype? How do we adjust for covariates such as age, gender, 

and population stratification? 

2. How can we achieve improved power for rare variant association test while integrating 

external control samples? 

3. What are the technical factors that lead to the batch effect between studies? Is it possible 

to use the same testing framework on both genotype and sequence data? Would using 

genotype dosages improve the performance of the association tests in sequence data? 

1.2 Dissertation Chapter Outlines 

We address the above-mentioned open research questions in Chapters 2 to 4. There has been 

recent effort to integrate external controls while adjusting for possible batch effects, such as the 

integrating External Controls into Association Test (iECAT) (Lee, Kim, & Fuchsberger, 2017). 

The original iECAT test, however, cannot adjust for covariates such as age, gender, etc. In 

Chapter 2, we discuss the single-variant iECAT-Score test that tests for association between a 

single genetic variant and the disease status while integrating external controls with covariate 

adjustment. In Chapter 3, we develop the iECAT-Score region-based test, which allows the 

iECAT-Score method to test for association between rare variants within a gene or region. In 

Chapter 4, we investigated the technical factors that affect the minor allele frequency estimation 

using hard called genotypes, and propose a strategy to exploit genotype dosages to complete the 

iECAT-Score framework to be applicable to both genotype and sequence data. We give 

concluding remarks in Chapter 5. In the sections below, we provide brief outlines for each 

Chapter 2 to 4 in this dissertation. 
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1.2.1 Chapter 2: Novel score test to increase power in association test by integrating 

external controls 

Based on the insight of iECAT, we propose a novel score-based test, iECAT-Score, that allows 

for covariate adjustment and constructs a shrinkage score statistic that is a weighted sum of the 

score statistics using exclusively internal samples and uses both internal and external control 

samples. Similar to the original iECAT test, we assess the existence of batch effect at a variant 

by comparing control samples of internal and external sources. If little batch effect exists, we 

incorporate data from external control samples to calculate the score statistic; if substantial batch 

effect exists between internal and external control samples, we exclusively use internal control 

samples to prevent spurious discoveries. We further extend our method by utilizing the joint 

distribution of internal score statistic and iECAT score statistic to calculate an omnibus 

minimum p value. We show by simulation studies that our method has increased power over the 

original iECAT while controlling for type I error rates. We present the application of our method 

to the association studies of age-related macular degeneration (AMD) utilizing data from the 

International AMD Genomics Consortium (IAMDGC) and Michigan Genomics Initiative (MGI). 

1.2.2 Chapter 3: Novel score test to increase power in association test by integrating 

external controls 

The iECAT-Score test has superior performance in testing association between a single variant 

and the disease status, and yet single-variant tests could be underpowered to identify causal rare 

variants. Hence, in the second project, we extend the single-variant iECAT-Score test to region-

based tests, which assess the combined genetic effect of rare variants within a gene or region. 

This method assesses the systematic batch effect between internal and external samples at each 

variant and constructs compound shrinkage score statistics to test for the joint genetic effect 

within a gene or a region, while adjusting for covariates and population stratification. Through 

simulation studies, we demonstrate that the proposed method controls for type I error rates and 

improves power in rare-variant tests. The application of the proposed method to the association 

studies of age-related macular degeneration (AMD) from the International AMD Genomics 

Consortium (IAMDGC) and UK Biobank revealed novel rare-variant associations in gene DXO. 

Through incorporation of external controls, the iECAT methods offer a powerful suite to identify 
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disease-associated genetic variants, further shedding light on future directions to investigate roles 

of rare variants in human diseases.  

1.2.3 Chapter 4: Integrating External Controls into Association Analysis Using Sequencing 

Data 

When sequenced data are used in association studies, quality of the genotype calls could 

influence the performance of the testing methods. The quality of genotype calls is subject to 

many factors such as read depth, genotype-calling error rates, quality control (QC) pipelines, 

etc., all of which could result in bias in the estimation of minor allele frequencies (MAFs), 

leading to more profound batch effect between internal and external control samples. As the 

whole genome/exome sequencing become the design of choice and to address the associated 

problems using genotyped data, we propose in the third project to integrate the above-mentioned 

QC parameters utilizing sequencing data through genotype dosages. Compared to the hard called 

genotype, which is selected as the most likely genotype given read data, the genotype dosage, is 

calculated to be the weighted average of all possible genotypes given their respective posterior 

genotype likelihood and accounts for the uncertainty about the true genotype. Using genotype 

dosages offer consistent minor allele frequency estimation, controls type I error rate, and 

improves power for association discovery especially in rare variants; opting to use genotype 

dosages also preserves more variants available for association test. Through the incorporation of 

these factors, we develop a complete framework of integrating external controls that is applicable 

to both genotyped and sequencing data, further honing the statistical methods needed to identify 

disease-causing variants within the human genome. 
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Chapter 2 Novel Score Test to Increase Power in Association Test 
by Integrating External Controls 

2.1 Introduction 

In case-control studies, large numbers of control samples are often necessary to achieve adequate 

power to identify disease-susceptible genetic variants. Genotyping large control samples, 

however, are expensive. A cost-effective strategy could be utilizing publicly available genotyped 

data and incorporating such external control samples. This approach allows for efficient use of 

existing resources and boosts the power of association testing by increasing the control sample 

size. 

Various challenges in practice, however, hinder the use of external sources of controls, 

among which include differences in sequencing platforms, genotype calling procedures, 

population stratification, etc. Differences in these aspects could lead to a systematic batch effect 

between genotyped data in different studies. If the batch effect is unaccounted for, incorporating 

external sources of data could result in undesired type I error inflation and erroneous discoveries. 

Several developments have been made recently to address the systematic differences between 

genotyped data of internal and external sources. Derkach et al. (Derkach et al., 2014) developed 

a score test that replaces called genotype with expected genotype using probabilities of 

genotypes given sequencing reads, accounting for differential read depths between studies. 

Building on Derkach et al., Chen and Lin (Chen & Lin, 2018) proposed regression calibration 

(RC)-based and maximum-likelihood (ML)-based methods to account for differential sequencing 

errors between cases and controls. The RC method extended Derkach’s method to allow for non-

confounding covariate adjustment; the ML method enables the parameters of interest to be 

identifiable. Hu et al. (Hu, Liao, Johnston, Allen, & Satten, 2016) proposed a likelihood-based 

method that models sequencing reads, which involves first estimating single nucleotide variant 

(SNV) locations using read data and then using a burden test with the bootstrap procedure to 
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assess the significance of the association between an SNV and a trait. Although the 

aforementioned methods control type I error rates in most settings, they all require genotype 

probabilities or sequence reads data to be available. Computing genotype probabilities and 

storing sequence reads data, however, could be challenging and expensive for large scale studies, 

and thus are often unavailable. Hendricks et al. (Hendricks et al., 2018) proposed ProxECAT 

which focuses on integrating external controls to estimate enrichment of rare variants using allele 

counts. This method does not include internal control samples in the analyses, which potentially 

limits the power of the association test. 

 Lee et al. (Lee et al., 2017) proposed a method, integrating External Controls into 

Association Test (iECAT), that uses allele counts from external studies to assess the batch effect 

between internal and external studies. The method examines batch effect by comparing odds 

ratio estimates of alleles using internal control samples and using combined control samples 

from internal and external studies. The degree to which the odds ratios differ indicates the 

amount of batch effect that exists between the two studies. If little batch effect exists from this 

comparison, control samples from the external study are included to increase sample size; 

otherwise, external control samples are not used to avoid type I error inflation. The single variant 

test of iECAT uses an empirical Bayesian-type shrinkage estimator, which is a weighted sum of 

test statistics using exclusively internal samples and using both internal and external control 

samples. This iECAT method can control the type I error rates while improving power for 

association testing. 

 The original iECAT test, however, cannot adjust for covariates such as age, gender, etc. 

Hence, based on the insight of iECAT, we propose a novel score-based test that allows for 

covariate adjustment. Score tests are not only computationally efficient but are more stable than 

the tests using odds ratio estimated from allele counts. Recent improvements of score tests by 

applying the Saddlepoint approximation (SPA) (Dey, Schmidt, Abecasis, & Lee, 2017) and 

Efficient resampling (ER) (Lee, Fuchsberger, Kim, & Scott, 2015) methods also allow for 

controlling type I error in the scenario of case-control imbalance and low minor allele count 

(MAC). We construct a shrinkage score statistic, which is a weighted sum of the score statistics 

using exclusively internal samples and using both internal and external control samples.  Similar 

to the original iECAT test, we assess the existence of batch effect at a variant by comparing 

control samples of internal and external sources. If little batch effect exists, we incorporate data 
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from external control samples to calculate the score statistic; if substantial batch effect exists 

between internal and external control samples, we exclusively use internal control samples to 

prevent spurious discoveries. We further extend our method by utilizing the joint distribution of 

internal score statistic and iECAT score statistic to calculate an omnibus minimum p value. 

Our method controls type I error rates while increasing samples from external studies to 

improve power for association tests. In Section 2.2.1, we present the model for a single variant 

test of genetic effect in case-control studies and propose the iECAT-Score methods that allow for 

covariate adjustment when integrating external control samples in case-control association 

testing. In Section 2.2.2, we present the simulation studies to evaluate the type I error rates and 

power of our proposed methods. In Section 2.2.3, we present the application of our methods to 

the association studies of age-related macular degeneration (AMD) combining data from the 

International AMD Genomics Consortium (IAMDGC) and Michigan Genomics Initiative (MGI). 

In Section 2.3, we present the results from simulation studies and data analyses of the proposed 

methods and compare their performance with the method that does not integrate external control 

samples. 

2.2 Materials and Methods 

2.2.1 Single-variant association test 

The iECAT score test is a shrinkage estimation-based test for the variant effect on a phenotype of 

case or control, combining external control samples. For each variant, the iECAT score test 

analytically assesses the batch effect between internal and external controls and determines the 

weight of external control samples to be combined, which is inversely correlated to the batch 

effect. The test then calculates a p value for association using the weighted sum of internal and 

external samples while adjusting for covariates. 

Single Variant Score Test of Genetic Effect 

We first consider the internal study only with sample size n. For the ith subject, let !! = 0/1 be 

the dichotomous phenotype for control/case, &! = '(!", (!#, . . , (!$+
%
 the covariates, , =

(.", .#, . . , .&)% the genotypes at a variant for n subjects (.! = 0, 1, 2 represent 0, 1, 2 copies of 
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the minor allele). We relate the phenotype 1! to the covariate &!, and the genotype .! using the 

logistic model 

 

 23456[Pr(1! = 1	|&! , .!)] = &!
%= + .!? (2.1) 

 

where the phenotype 1! follow a Bernoulli distribution. In this equation, = is an @ × 1 vector of 

coefficients for @ covariates including an intercept, and ? is the genotype effect at the variant of 

interest. Assessing whether the association exists between the phenotype 1! 	 and the genotype at 

a variant is equivalent to testing B': ? = 0 in Equation (1).  

Let D = {F!} = {Pr(1! = 1	| (!)} under B', and F̂! is the maximum likelihood estimate of 

F!. The score test statistic is	

I = ,%(J − DL) 

Under the null hypothesis of no genetic effect, M(I) = 0 and NOP(I) =

∑ .R!
#F̂!(1 − F̂!)

&
!(" ), where ,S = {.R!} = , − &(&%T&))"&%T, is the covariate-adjusted 

genotype vector, and T = U5O4{F̂!(1 − F̂!)}. Then 

*!
+,-(*) asymptotically follows V"

#
, and a p 

value can be obtained as @ = W(V"
# > *!

+,-(*)). 

Integrating External Control Samples in Score Test 

In addition to the control samples from the study, which we refer to as internal control samples, 

we introduce external control samples to increase the sample size. Let Y"
0 , Y'

0 , Y'
1

 denote the 

sample sizes of internal cases, internal controls, and external controls, respectively. Let 1! =

0/1(5 = 1,2, … , Y"
0 +	Y'

0 +	Y'
1) be the dichotomous phenotype for control/case. When only the 

internal samples are used to test the association between the variant and the phenotype, the score 

statistic is given by I!&2 = ,!&2
% (J!&2 − DL!&2). In this equation, ,!&2 =

[.!&2,", .!&2,#, . . , .!&2,(&"#4	&$# )\
%
 is the vector of genotypes of internal samples; similarly, J!&2 =

[1!&2,", 1!&2,#, . . , 1!&2,(&"#4	&$# )\
%
 is the vector of phenotypes of internal samples, and DL!&2 =

[F̂!&2,", F̂!&2,#, . . , F̂!&2,(&"#4	&$# )\
%
 is the vector of maximum likelihood estimate of D!&2 under the 

null logistic regression model of no genetic effect built using internal samples only. When 

external control samples are included assuming no systematic differences between internal and 
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external studies, a similar score statistic can be constructed by I,66 = ,,66
% (J,66 − DL,66). In this 

equation, ,,66 , J,66 and  DL,66 are vectors of length Y"
0 +	Y'

0 +	Y'
1

, denoting genotypes, 

phenotypes, and expected mean outcome under a null model built of combined internal and 

external samples. 

The systematic differences between internal and external studies, however, are likely to 

exist, in which case distributions of genotypes are different between internal and external control 

samples after adjusting for covariates. To quantify the extent to which the batch effect exists 

between the two studies, we test for a relationship between the genetic variant and whether a 

control sample belongs to the internal or external study while adjusting for covariates.  

Considering the internal controls and external controls with sample sizes Y'
0
 and Y'

1
, respectively, 

let JS071 = (1R8) = 0/1	(] = 1, 2, … , Y'
0 +	Y'

1) represent a control sample belonging to the 

external/internal study, &8 = '(8", (8#, . . , (8$+
%
 the covariates for the jth subject, and ,071 =

[.", .#, . . , .&$#4&$%\
%
. The genotypes at a variant for Y'

0 + Y'
1

 control samples. To relate 

phenotype 1R8 to the covariate &8, and the genotype .8, we consider the logistic model 

 

23456[Pr'1R8 = 1	^ (8 , .8)] = &8
% 	=_ + .8

% 	?R 

 

If we test the null hypothesis of no batch effect between the internal and external control 

samples, a score test statistic can be constructed as I071 = ,071
% (JS071

% − D_071), where D071 =

(F071,8) = 'Pr'1R8 = 1	^ (8+)	 and  F	_ 071,8 is the maximum likelihood estimate of F071,8. 

When there is no genetic effect on the phenotypes and no batch effect exists, M(I!&2) =

M(I,66) = M(I071) = 0. Under such condition, we assume that (I!&2 , I,66 , I071)%~a9(b, c) with 

covariance matrix c (Supplementary Materials 2.5.1.1). To test the hypothesis of no genetic 

effect using both internal and external control samples, we propose a compound score statistic	

 

 I: = OdI!&2 + (1 − d)I,66 (2.2) 
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where O = (&"#4&$# )(&"#&$#4&"#&$%)
&"#&$# (&"#4&$#4&$%)

 (Supplementary Materials 2.5.1.2) and	d = ;"
"4;"

 with d" =

*#&%!
+,-(*#&%)

.  Under the null hypothesis of no genetic effect, M(I:) = 0 and NOP(I:) can be 

calculated using the delta method. The asymptotic distribution of 

*'!
+,-(*')

 approximately follows 

a V"
#
. Thus, a p value can be approximated by W(V"

# > *'!
+,-(*')

	). 

 When minor allele frequencies (MAFs) of external controls are in between those of 

internal cases and internal controls, it is implied that we could make d = 0, i.e., include all of the 

external control samples without inflating type I error rates, following Lee and others (Lee et al., 

2017). 

Calibrating Single-Variant Test Using Saddlepoint Approximation and Efficient Resampling 

Methods 

The single-variant score test approximates the null distribution by a normal distribution. The 

variance estimates based on such asymptotic tests behave well for common variants and 

balanced case-control studies. When allele frequency is extremely low resulting from low minor 

allele count (MAC), or when the case-control ratio is unbalanced, the underlying distribution of 

test statistics could be discrete or highly skewed. In such cases, the traditional asymptotic-based 

score test performs poorly with conservative or anti-conservative results. 

To account for scenarios of low MAC and unbalanced case-control ratio, we apply a 

recently developed robust approach to iECAT score by properly calibrating the variance 

estimates of score statistics (Zhao et al., 2020). Specifically, we update the variance estimates of 

NOP(I!&2), NOP(I,66) and NOP(I071) in c corresponding to the scores I!&2, I,66 and I071 by 

applying the Saddlepoint approximation (SPA) method (Dey et al., 2017) or Efficient resampling 

(ER) method (Lee et al., 2015). When the score estimates lie far from mean (zero), we apply the 

SPA method to obtain the @e values; when the MAC is low (MAC<10) either in internal samples, 

combined samples, or control samples, we apply the ER method to obtain the @e values. The 

updated variance NOPf 'I(.)+ is then derived from 

*(.)
+,-=>*(.)?

~V#(@e), where I(. ) represents I!&2, I,66 

or I071. A calibrated variance estimate NOPf (I:) of I: is thus obtained by applying the delta 
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method to the updated covariance matrix gS. The p value of the robust iECAT score single-variant 

test is approximated by W(V"
# > *'!

+,-=(*')
	). 

Minimum P-value Based on Combination of I: and I!&2 

When the variance estimate of I: is large, the resulting p value can be larger than that from the 

test of using internal samples only. Hence, we calculate a minimum p value (iECAT-Score minP) 

following Conneely and Boehnke (Conneely & Boehnke, 2007). Specifically, (I: , I!&2) jointly 

follow a multivariate normal distribution. The minimum p value is calculated as the probability 

of observing one or both the p values as small as the smaller one of the two under the null 

hypothesis of no association (Supplementary Materials 2.5.1.3). 

2.2.2 Type I error and power simulations 

We carried out simulation studies under a range of scenarios to evaluate the performance of the 

proposed iECAT score test with regard to type I error rates and power. For both type I error and 

power simulations, we generated binary phenotypes of case/control from the logistic regression 

model:	

23456[Pr(1 = 1	| &, .)] = h' + 0.5(" + 0.5(# + ?. 

where (" was a continuous covariate generated from a standard normal distribution, (# was a 

dichotomous covariate with the probability of 0.5 being 0 or 1, h' was chosen such that the 

disease prevalence was 0.05, . is the genotype at the variant of interest generated from a 

binomial (2, MAF) distribution, and ? is the effect size of the variant. MAF was sampled from 

the MAF distribution in the MGI data. 

To mimic the batch effect between internal and external genetic samples, we assumed 

that 3% of the variants were subject to different MAFs in internal and external control samples. 

For such variants, we set the MAFs of the external controls to be randomly generated from 

jY5k3Pl(0.1 × m, 4 × m), where m is the MAF of corresponding variants in the internal 

samples. 

For both type I error and power simulations, we considered two combinations of case-

control ratios (Y"
0 :	Y'

0 : Y'
1): (1) 5,000: 5,000: 10,000; (2) 6,667: 3,333: 10,000. In type one error 

simulations, ? = 0. We generated 10
9
 datasets to evaluate type I error rates at 5 × 10)@ and 

5 × 10)A level. To save computation time, we generated 10
7
 sets of genotypes and phenotypes, 
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and resampled the disease phenotypes of internal samples 100 times for each set, while keeping 

other data fixed. In power simulations, ? was set to values from a grid of 

log(1.1) , log(1.15) , … , log	(1.5), representing the odds ratio (OR) of 1.1, 1.15, …, 1.5 for the 

causal variant. We generated 100,000 data sets in each setting of effect size and case-control 

ratio to evaluate empirical power at the significance level of 5 × 10)A. 

2.2.3 Real data analysis 

We applied our proposed method to genotype data from the International AMD Genomics 

Consortium (IAMDGC) (Fritsche et al., 2015) downloaded from dbGaP (phs001039.v1.p1). The 

IAMDGC dataset consists of 17,286 cases and 14,373 controls. As external controls, we used 

40,971 samples from Michigan Genomics Initiative (MGI). The MGI samples consist of 

individuals who received surgical procedures at the University of Michigan Health System. A 

broad range of clinical phenotypes was collected from the MGI samples and the individuals were 

genotyped on the Illumina HumanCoreExome v1.12.1 array on >500,000 variants. To compare 

the performance of our proposed iECAT-Score methods with the method of the sole usage of 

internal samples, we performed analyses on the genotype data of 316,822 overlapping variants 

between the AMD and MGI studies. For both studies, the samples used in our analyses are of 

European ancestry. We applied the Fruposa software (Zhang, Dey, & Lee, 2020) with the 1000 

Genomes reference (The 1000 Genomes Project Consortium, 2015) to obtain population 

structure. We assessed the relationship between the origin of control samples and genetic 

variants to examine the existence of batch effect between internal and external controls. We 

tested for association between the disease status of age-related macular degeneration (AMD) and 

single genetic variants that are shared by IAMDGC and MGI data sets, adjusting for age, sex, 

and the first 10 principal components. 

2.3 Results 

2.3.1 Type I error and power simulations 

Empirical type I error rates of the proposed methods are given in Table 2.1 at the significance 

level of 5 × 10)@ and 5 × 10)A. The results show that various versions of the iECAT-Score 
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method controlled type I error at both nominal levels. Type I error rates were well controlled 

when the internal control samples were exclusively used, but they were erroneously inflated 

when the external control samples were combined without considering the batch effects. 

 

 

Table 2.1: Empirical type I error rates of iECAT-Score tests. 

Empirical type I error rates of score tests using internal samples exclusively, using combined samples 
without adjusting for batch effect, and various versions of the iECAT-Score method, under different 
scenarios. Type I error rates were estimated based on 109 simulations. 3% variants are simulated to have 
different minor allele frequencies between internal and external controls. 

Sample size 
(Internal: 
external) 

Internal 
case:control Level alpha Internal only iECAT-

Score 
iECAT-

Score minP 

Combined 
internal and 

external 
samples 

10000:10000 1:1 5x10-5 5.00e-05 3.36e-05 3.91e-05 2.57e-02 
  1x10-6 1.00e-06 7.10e-07 8.00e-07 2.48e-02 
  5x10-8 6.00e-08 3.20e-08 3.80e-08 2.42e-02 

10000:10000 2:1 5x10-5 5.00e-05 3.43e-05 4.15e-05 2.68e-02 
  1x10-6 1.01e-06 8.68e-07 9.62e-07 2.60e-02 
  5x10-8 4.00e-08 8.40e-08 5.80e-08 2.56e-02 

 

 

 We compared the power of iECAT-Score methods and method using internal controls 

exclusively to assess genetic association at empirical alpha levels which provided type I error 

rates 5 × 10)A. The empirical alpha levels were estimated from type I error simulation studies. 

Since the method using all external control samples had severely inflated type I error rates, we 

did not include this method in the power comparison. Figure 2.1 compares powers of different 

methods at changing effect size, represented by the OR of 1.1, 1.15, …, 1.5 on the x-axis. The 

two panels of the figure show such comparison of different combinations of case-control ratios 

(Y"
0 :	Y'

0 : Y'
1): (1) 5,000: 5,000: 10,000; (2) 6,667: 3,333: 10,000. The results show that all 

versions of our proposed iECAT-Score method had improved power over the method that used 

exclusively internal control samples. 
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Figure 2.1: Power plot of the iECAT-Score methods. 

Empirical power comparisons using 10,000 internal samples and 10,000 external control samples, with 
internal case and control ratios 1:1 and 2:1. Lines represent empirical powers at ! = 5 × 10!". The effect 
size of the causal variant was β = log(,--.	01234). 

Case: Control 
  

1:1 2:1 

  
  

 
 

2.3.2 Application to Age-Related Macular Degeneration (AMD) Data 

We applied our iECAT-Score methods to the analysis of AMD from IAMDGC, using samples 

from MGI as external controls. The female samples consist of 41.29%, 43.99%, and 45.90% in 

samples of internal cases, internal controls, and external controls, respectively (Table 2.2). The 

percentages of females did not vary significantly in different case groups. The mean age of cases 

and controls in the IAMDGC dataset were 75.86 years and 70.08 years, respectively, showing 

that samples with AMD tended to be older. Samples of the external controls were on average 

younger than those from IAMDGC, with a mean age of 53.31 years. 
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Table 2.2: Descriptive statistics of study subjects from internal (IAMDGC) and external (MGI) 

studies. 

Shown in the table are the sample sizes, the number (percentage) of female samples, and mean (standard 
deviation of sample age in years in IAMDGC and MGI data. 

Study 

Sample Size 

N 

Female 

N (%) 

Age (yrs) 

Mean (SD) 

 Cases Controls Cases Controls Total Cases Controls Total 
IAMDGC 

(internal) 

 

17286 14373 

7137 

(41.29) 

6322 

(43.99) 

13459 

(42.51) 

75.86 

(8.10) 

70.08 

(9.71) 

73.24 

(9.32) 

MGI 

(external) 

 26598  

12479 

(46.92) 

12479 

(46.92) 

 

53.31 

(15.88) 

53.31 

(15.88) 

Total 40971 40971 

7137 

(41.29) 

18801 

(45.89) 

25938 

(44.52) 

75.86 

(8.10) 

59.19 

(16.15) 

64.14 

(16.15) 

 

 

The QQ plot from testing the relationship between the origin of control samples and 

genetic variants is presented in Figure 2.2(a). A significant deviation from the 45-degree line 

indicates that there exist systematic differences between internal and external control data. We 

tested for association between the disease status of age-related macular degeneration (AMD) and 

single genetic variants, adjusting for age, sex, and the first 10 principal components. The QQ 

plots from the tests integrating external control samples using the iECAT-Score method and 

using internal samples exclusively are shown in Figure 2.2(b) and 2.2(c). We observe the 

similarity between the patterns of the two QQ plots, which are both close to the 45-degree line 

and show that our method of iECAT-Score controlled for type I error rates in this analysis. 

Table 2.3 presents the top variants showing genome-wide significance. Of the 13 

presented variants, 11 variants had smaller p values resulted from the iECAT-Score method than 

using internal samples only, implying that the iECAT-Score method can have a higher power of 

detecting associations. The AMD-associated genes revealed by the iECAT-Score were consistent 

with some well-known associations such as CFH (Maller et al., 2006), C2 (Gold et al., 2006), 

CFI (Fagerness et al., 2008; Helgason et al., 2013; Seddon et al., 2013; Zhan et al., 2013), 

RAD51B (Fritsche et al., 2013; Seddon, Reynolds, Yu, & Rosner, 2014) and C3 (Maller et al., 

2007; Yates, 2007), indicating the validity of our method. In particular, the association locus 

rs3784099 of gene RAD51B was revealed by applying the iECAT-Score method (p value: 4.63e-

08), but did not reach the significance level of 5e-08 (p value: 1.10e-06) with the sole usage of 

internal samples from the IAMDGC dataset used by the GWAS study (Fritsche et al., 2015). 
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Although the AMD GWAS reported association of gene RAD51B at a different locus 

rs61985136, the reported locus is an imputed variant among ~11.8 million imputed variants 

analyzed in the study, and thus not included in our analyses. Most of our index variants found by 

the iECAT-Score method were either identical or in close LD with those found in the GWAS 

study. 

 

Figure 2.2: QQ plots for analysis of age-related macular degeneration (AMD). 

QQ plots for analysis of AMD from the internal study of International AMD Genomics Consortium 
(IAMDGC) and external control study of Michigan Genomics Initiative (MGI). For better visualization, 
the maximum of x and y axes in the plots are set to be 9, corresponding to p values of 1e-09. The GIF 
shows the genomic inflation factor calculated at the median of test statistics.  

 Internal vs external 
controls 

iECAT-Score Internal only 

 

   
GIF 1.19 1.03 1.19 

 (a) (b) (c) 
 

 

We compared p values (in log 10 scale) from analyses using iECAT-Score, iECAT-Score 

minP, and the method using internal samples only (Figure 2.3). Shown in blue color are variants 

that were not significant at the 1e-06 level by solely using internal samples, but showed signals 

of association when the iECAT-Score method was used. Hence, the iECAT-Score method could 

improve power in detecting associations for variants of borderline significance. Interestingly 

there were substantial numbers of variants in which the internal sample-only approach produced 

smaller p values than iECAT-Score. iECAT-Score minP test addressed this issue by leveraging 

the minimum p value between internal sample-only and iECAT-Score p values, so producing 

slightly less significant p value than the internal sample only when it has the smallest p value. 

  



 18 

Table 2.3: Identification of variants showing significance (5e-8 level) based on iECAT-Score. 
Shown are allele frequencies, effect sizes, p values of analyses from exclusive usage of internal samples and using the iECAT-Score method. 

Signal 
Number 

Index variant  Minor allele frequency    p values 
Name dbSNP ID Chr:Pos Major /  

minor 
allele 

Internal External Combined 
Pval.IvE Odds 

Ratio 
  

   Case Control Control Case Control Internal only iECAT-
Score 

iECAT-Score 
minP 

1 CFH rs800292 1:196642233 G/A .138 .238 .232 .138 .234 .253 .525 1.47e-212 5.17e-240 1.03e-239 
2 CFI rs10033900 4:110659067 C/T .509 .476 .486 .509 .483 .079 1.11 1.89e-15 1.69e-16 3.29e-16 
3 C9 rs34882957 5:39331894 G/A .015 .0089 .0096 .015 .0093 .848 1.59 2.31e-11 5.26e-15 9.89e-15 
4 C2/CFB/CKIV2L rs429608 6:31930462 G/A .098 .149 .144 .098 .146 .115 .638 3.60e-77 4.22e-83 9.44e-83 
5 VEGFA rs4711741 6:43828582 T/C .472 .501 .498 .472 .499 .386 .897 2.03e-12 3.84e-14 7.41e-14 
6 ARMS2/HTRA1 rs714816 10:124256345 G/A .419 .336 .340 .419 .339 .795 1.41 9.15e-95 1.33e-121 2.65e-121 
7 B3GALTL rs11147458 13:31823239 A/G .285 .305 .304 .285 .304 .265 0.91 2.59e-09 3.06e-12 5.81e-12 
8 RAD51B rs3784099 14:68749927 G/A .275 .293 .287 .275 .289 .928 .934 1.10e-06 4.63e-08 8.35e-08 
9 LIPC rs415799 15:58690754 G/A .492 .468 .477 .492 .474 .318 1.08 6.07e-11 5.30e-12 1.01e-11 

10 CETP rs247616 16:56989590 C/T .351 .319 .322 .351 .321 .968 1.15 7.79e-17 1.40e-20 2.75e-20 
11 C3 19:6718146 19:6718146 T/G .012 .0040 .0042 .012 .0041 .326 2.89 4.22e-25 5.43e-19 8.44e-25 
12 APOE rs769449 19:45410002 G/A .084 .111 .112 .084 .111 .032 .735 1.68e-20 5.20e-14 3.35e-20 
13 SLC16A8 rs8135665 22:38476276 C/T .215 .195 .202 .215 .200 .073 1.10 1.40e-08 1.30e-08 2.37e-08 

Pval.IvE is the p value from comparing internal and external control samples, using the indicator of the source of control sample as outcome. The odds ratio was calculated as the odds 
of the disease of the minor allele as compared to the major allele, assuming an additive model. 
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Figure 2.3: Comparison of p values (in -log 10 scale) from analyses of age-related macular 
degeneration data using the iECAT-Score methods. 
Panel (a): -log 10 scaled p values using the iECAT-Score method vs. using internal samples only; panel 
(b):  -log 10 scaled p values using the iECAT-Score minP method vs. using internal samples only. 

  
iECAT-Score vs internal only iECAT-Score minP vs internal only 

  
(a) (b) 

 

2.4 Discussion 

Utilizing publicly available sequenced or genotyped data as external controls is a cost-effective 

approach to increase statistical power in case-control studies. In this paper, we proposed the 

score-based test, iECAT-Score, which allows for the integration of external sources of genotyped 

data into association testing while adjusting for systematic batch effects. Compared to the 

original iECAT, our method is not only computationally efficient, but is able to adjust for 

covariates such as age, sex, and population stratification. 

The simulation studies showed that iECAT-Score methods control for type I error rates 

and have improved power for association testing compared to the sole usage of internal control 

samples. Analysis of the AMD from IAMDGC and MGI revealed that iECAT-Score reaches a 

resembling level of type I error control as the method that uses internal samples exclusively. 

With the integration of external controls and adjusting for batch effects, iECAT-Score can 

improve power for association discovery. 
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In our simulation studies, we mimicked the batch effect by setting different MAFs 

between internal and external control samples. An alternative to such a batch effect mechanism 

is assuming different genotyping error rates. In supplementary materials Table S2.1 and Figure 

S2.1, we present additional simulation results by setting certain genotyping error rate in external 

control samples, where each allele could be mis-genotyped as the alternative allele, provided the 

variant is prone to batch effect. Regardless of the mechanisms through which batch effects 

occurred, our method of iECAT-Score controlled for type I error rates. In the simulation studies 

with either batch effect mechanism, we assumed that three percent of variants shared between 

internal and external studies were subject to batch effect. We show in additional simulation 

results in supplementary materials Table S2.2 and Figure S2.2, that when variants subjecting to 

batch effect were increased to 12 percent, the presented iECAT-Score method still efficiently 

controlled type I error rates and increased power. We compared the level of batch effect between 

the above-mentioned simulation settings and real data analyses of the IAMDGC and MGI. We 

calculated the genomic inflation factors from the comparisons between internal controls and 

external controls, in real data, and simulated data when batch effect existed in three and twelve 

percent of variants. The results in supplementary materials Table S2.3 show that the level of 

batch effect observed in real data between IAMDGC and MGI was less than that in the 

simulation studies with twelve percentage of batch-effect-prone variants, and yet iECAT-Score 

still had superior performance in such an extreme scenario.  

  Our data analysis results revealed that it is possible for iECAT-Score to yield a larger p 

value for association at a variant than when only the internal controls are used, such as variant 

19:6718146 near gene C3 and variant 19:45410002 near gene APOE (Table 2.3). This was due 

to the large variance estimate of the iECAT-Score statistic, resulting in an overall weaker signal 

than the test using internal samples. To address such a scenario, one possible strategy is to 

calculate a two-sided minimum p value following Conneely and Boenhke (Conneely & Boehnke, 

2007). This method calculates the probability of observing at least one p value as small as the 

observed smaller p value, while considering a correlation between the two tests. Similar to 

iECAT-Score, the minimum p value method combining iECAT-Score and internal control 

methods controlled for type I error rates and improved power compared with the exclusive use of 

internal samples. 
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In most cases, integrating external controls increases power by increasing the sample 

size. When MAF of external controls is closer to MAF of internal cases than to MAF of internal 

controls, the improvement in power could be weakened from the increase in noise. We 

performed both analytical calculations (Supplementary Materials 2.5.1.4) and simulations to 

compare the power of the different methods when MAF of external control samples varied 

relative to MAFs of internal cases and internal controls (Supplementary Figure S2.3). Both 

versions of the iECAT-Score method achieved the greatest power when MAF of external 

controls was close to MAF of internal controls. When MAF of external controls was close to that 

of internal cases, iECAT-Score showed no improvement in power as a result of added noise and 

lowered power using the combined control samples. The iECAT-Score minP method, on the 

other hand, had comparable or improved power across all values of MAF in external controls, as 

compared to exclusively using internal samples. 

Our method adjusts for population structure by including genetic principal component 

eigenvectors as covariates. Results from additional simulation studies show that when mild to 

moderate level of population stratification existed, our methods, the iECAT-Score minP method 

especially, controlled for type I error rates (Supplementary Figure S2.4a). When samples of 

more extreme population stratification were used, there could be mild inflation in type I errors 

(Supplementary Figure S2.4b). In such scenarios, we could apply ancestry matching (Guan, 

Liang, Boehnke, & Abecasis, 2009; Wang et al., 2014; Zhang et al., 2020) to select external 

control samples. Thus, despite the advantage of our methods, we recommend a careful 

examination of genetic backgrounds in the target populations, and possible ancestry matching 

before making the decision to integrate subjects as external controls, so as to avoid false positive 

discoveries as a result of extreme population stratification. 

In addition to the possible population stratification, it would not be unusual that the 

available external study samples are different from the internal study samples in distributions of 

age, gender, and/or other variables that are not confounded by genetic background. In the 

analyses of the AMD from IAMDGC and MGI, for instance, external control samples in MGI 

tended to be younger than samples in the internal samples. We carried out additional simulation 

studies to assess the performance of iECAT-Score methods, where we assumed internal and 

external samples to have different distributions of covariates, which contributed to the disease 

risk. Our results (Supplementary Table S2.4, Figure S2.5) show that iECAT-Score had similarly 
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controlled type I error rates and increased statistical power, allowing for different distributions of 

between internal and external samples.  

Since we applied the methods of saddlepoint approximation and efficient resampling, our 

method could handle small allele counts (single digit), as long as the following conditions are 

satisfied: (1) total minor allele counts in internal controls and external controls combined are 

greater than zero, i.e. there is no monomorphism in the combined control samples; (2) total 

minor allele counts in internal samples are greater than zero, i.e. there is no monomorphism in 

the internal samples. In simulation studies and real data analysis, we used all the variants that 

satisfied the conditions, and type I error rates were well controlled. When there exists 

monomorphism in internal samples or combined control samples, iECAT-Score methods cannot 

be applied, as it is impossible either to assess association exclusively using internal samples or to 

assess the batch effect between internal controls and external controls. 

There are some scenarios when using external studies could be challenging, even with the 

assistance of iECAT-Score methods. (1) When the case-to-control ratio of internal study is small 

(less than 1:2), the increase of power in association testing by integrating external controls would 

be limited, despite that iECAT-Score controls type I error rates (Supplementary Table S2.5, 

Figure S2.6). (2) When the sample size of the internal controls is small compared to that of 

external study, iECAT-Score methods could result in type I error inflation at a low nominal level 

(Supplementary Table S2.6). Such inflation is due to a lack of confidence while comparing 

internal and external control samples, on which our method is dependent. 

One additional challenge when using external study samples as controls is the potential 

misclassification of disease status. The phenotype of interest may not be recorded in the external 

study, leaving the possibility that some samples used as controls may be in fact cases. We expect 

that misclassification of cases as controls alleviates the overall signal and should not result in 

false positive discoveries. The results of our simulation studies (Supplementary Table S2.7, 

Supplementary Figure S2.7) were in line with this reasoning: with the presence of 

misclassification in external control samples, the iECAT-Score tests controlled type I error rates, 

although the power improvement was slightly reduced compared to when no misclassification 

existed. Nonetheless, we recommend attentive examination of the study samples and the 

prevalence of phenotype of interest before making the decision to integrate subjects as external 

controls. 
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The current version of iECAT-Score methods is constructed to analyze one set of 

external controls. However, there is no technical difficulty to apply our method to more than one 

set of controls. Multiple sources of controls could be treated as a whole and our method could be 

applied. When there exists drastic differentiation among different sources of external controls, it 

is possible that combining them could increase the batch effect between the combined set and 

internal samples. Our method is applicable and performs well with the existence of batch effect. 

However, by introducing additional controls, the added noise could decrease the power of 

association testing, offsetting some improved power from an increased sample size. Hence, 

although there is no technical problem to apply our method to more than one set of external 

controls, we suggest that such a decision can only be made after careful consideration of the 

possible additional batch effect and noise introduced. 

In this article, our iECAT-Score method tests association at a single variant in its 

currently presented format. We will extend the approach to region-based rare variant association 

tests, such as burden (Li & Leal, 2008), SKAT (Wu et al., 2011), and SKAT-O (Lee, Wu, & Lin, 

2012) type tests. The proposed method uses genotype data to assess the existence of batch effect 

between internal and external studies. As pointed out by Derkach (Derkach et al., 2014), 

differential misclassification rates during the genotyping procedure resulted from different read 

depths could lead to batch effect. We will extend our method to utilizing genotype probabilities 

given sequencing reads to further adjust for systematic batch effect when such information is 

available. 

2.5 Supplementary Materials 

2.5.1 Validation of Theoretical Results 

2.5.1.1 Covariance of ("!"#, "$%%, "&'() 

We assume that (%)*+ , %,-- , %./0)1~'2((, )) with covariance matrix ), under the null hypothesis 

of no genetic effect on the phenotype of case or control and no batch effect between internal and 

external controls. We omit the subscript to show the three statistics and their variances. 

Marginally, each statistic takes the form % = +3(, − ./), where  . = {1)} = {Pr(5) = 1	| 9))} 

under :4, and 1̂) is the maximum likelihood estimate of 1). Under the null hypothesis, <(%) = 0 
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and >?@(%) = ∑ BC)51̂)(1 − 1̂))*
)67 ), where +D = {BC)} = + − E(E3FE)89E3F+ is the covariate-

adjusted genotype vector, and F = GH?I{1̂)(1 − 1̂))}. 

 We show the covariance terms of ) by using general subscripts. Let %, and %: be two 

score statistics taking forms %, = Σ)∈<B)(5) − 1̂)) = Σ)∈<BC)(5) − 1̂)) and %: = Σ=∈>B=K5= −

1̂=L = Σ)∈<BC=K5= − 1̂=L, where A and B are sets containing samples H and O, respectively, and  +D is 

the covariate-adjusted genotype vector. Then PQR(%, , %:) = PQR SΣ)∈<BC)(5) − 1̂)), Σ=∈>BC=K5= −

1̂=LT = < USΣ)∈<BC)(5) − 1̂))T S	Σ=∈>BC=K5= − 1̂=LTV − < SΣ)∈<BC)(5) − 1̂))T × < S	Σ=∈>BC=K5= −

1̂=LT = 	< USΣ)∈<BC)(5) − 1̂))T S	Σ=∈>BC=K5= − 1̂=LTV = 	< XUSΣ)∈(<∩>)BC)(5) −

1̂))T SΣ)∈(<\>)BC)(5) − 1̂))TV × US	Σ=∈(<∩>)BC=K5= − 1̂=LT S	Σ=∈(>\<)BC=K5= − 1̂=LTVY =

< USΣ)∈(<∩>)BC)(5) − 1̂))T S	Σ=∈(<∩>)BC=K5= − 1̂=LTV = < USΣ)6=BC)(5) − 1̂))BC=K5= − 1̂=LT +

SΣ)C=BC)(5) − 1̂))BC=K5= − 1̂=LTV = < SΣ)6=BC)(5) − 1̂))BC=K5= − 1̂=LT. Hence,	PQR(%, , %:)[ =

Σ)6=BC)(5) − 1̂))BC=K5= − 1̂=L, H ∈ ], O ∈ ]. 

2.5.1.2 Coefficient ^ in iECAT-Score statistic "D 

Without loss of generality, we derive the coefficient ? in iECAT-Score statistic without 

covariates 9. Let _7. , _4. , _40 denote the sample sizes of internal cases, internal controls, and 

external controls, respectively. Let `7. , `4. , `40 denote the minor allele frequencies (MAFs) of 

internal cases, internal controls, and external controls. The score statistic using internal samples 

only is %)*+ = +)*+3 (,)*+ − ./)*+) = +)*+3 ,)*+ − +)*+3 ./)*+ = 2_7.`7. − S2_7.`7.
*!"

*!"E*#"
+

2	_4.`4.
*!"

*!"E*#"
T 	= 2 *!"*#"

*!"E*#"
(`7. −	`4. ). Similarly,  %,-- can be represented by %,-- =

2 *!"*#"

*!"E*#"E	*#$
(`7. −	`4. ) + 2

*!"*#$

*!"E*#"E	*#$
(`7. −	`40). Hence, we can rewrite %,-- as a function of %)*+ 

as %,-- = 2 *!"*#"

*!"E*#"E	*#$
(`7. −	`4. ) + 2

*!"*#$

*!"E*#"E	*#$
(`7. −		`4. ) + 	2

*!"*#$

*!"E*#"E	*#$
(`4. −	`40) =

	2 *!"*#"

*!"E*#"
(`7. −	`4. ) ×

*!"*#"

*!"E*#"E	*#$
+ 	2 *!"*#$

*!"E*#"E	*#$
(`7. −		`4.) + 	2

*!"*#$

*!"E*#"E	*#$
(`4. −	`40) =

	2 *!"*#"

*!"E*#"
(`7. −	`4. ) ×

(*!"E*#" )(*!"*#"E*!"*#$)
*!"*#" (*!"E*#"E*#$)

+ 	2 *!"*#$

*!"E*#"E	*#$
(`4. −	`40) = ? × %)*+ +

	2 *!"*#$

*!"E*#"E	*#$
(`4. −	`40), where ? = 	 (*!

"E*#" )(*!"*#"E*!"*#$)
*!"*#" (*!"E*#"E*#$)

. Under the null hypothesis of no batch 
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effect between internal and external control samples, `4. =	`40, i.e., %,-- = ? × %)*+. Thus, a 

compound statistic as a weighted sum of %)*+ and %,-- with weight b requires the formation %G =

?b%)*+ + (1 − b)%,--. 

2.5.1.3 Calculation of iECAT-Score minimum p value 

Under the null hypothesis, (%G , %)*+) jointly follow a bivariate normal distribution. The 

covariance is given by PQR(%G , %)*+) = PQR(?b%)*+ + (1 − b)%,-- , %)*+) = 	?b>?@(%)*+) +

(1 − b)PQR(%)*+ , %,--) = (?b + 1 − b)>?@(%)*+), where b = H!
7EH!

 with b7 =
I"%$&

J,K(I"%$)
. We 

estimate the covariance here by treating b as a constant instead of a random variable to simplify 

the calculation. 

 The minimum p value (iECAT-Score minP) is calculated as the probability of observing 

one or both the p values as small as the smaller one of the two under the null hypothesis of no 

association. Specifically, let `(%)*+) and `(%G) denote the p values calculated from using 

internal samples only and using the iECAT-Score method, respectively. Let c)*+ and cG denote 

the standardized z-scores:  c)*+ = Φ87(1 − L(I'())
5

) and cG = Φ87(1 − L(I*)
5
). The minimum p 

value is given by 1 − e@Qf{max(|c)*+| , |cG|) < Φ87(1 − MNOPL(I'()),L(I*)R
5

	}, which can be 

calculated using numerical integration in R. 

2.5.1.4 Power of tests using internal controls only ("!"#) and naively combining controls ("$%%) 

We provide below some numerical guidelines for the test of internal only (%)*+) and the naïve 

strategy of combined control samples (%,--) to show the conditions where having the external 

controls would not provide an increase in power, without considering covariates. 

 Let _7. , _4. , _40 denote the sample sizes of internal cases, internal controls, and external 

controls, respectively. Let `7. , `4. , `40 denote the minor allele frequencies (MAFs) of internal 

cases, internal controls, and external controls. Without considering covariates, we showed in 

Supplementary materials Appendix B that score statistics %)*+ and %,-- can be represented as 

functions of minor allele frequencies of internal cases, internal controls, and external controls: 

%)*+ = 2 *!"*#"

*!"E*#"
(`7. −	`4.), and %,-- = 2 *!"*#"

*!"E*#"E	*#$
(`7. −	`4.) + 2

*!"*#$

*!"E*#"E	*#$
(`7. −		`4.) +

	2 *!"*#$

*!"E*#"E	*#$
(`4. −	`40) = 2 *!

"*#"E*!"*#$

*!"E*#"E	*#$
`7. − 2

*!"*#"

*!"E*#"E	*#$
`4. − 2

*!"*#$

*!"E*#"E	*#$
`40 . 
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 Hence, %)*+~'(1̂)*+ , lm)*+5 ), where 1̂)*+ = 2 *!"*#"

*!"E*#"
(`̂7. −	`̂4. ) and lm)*+5 =

S2 *!"*#"

*!"E*#"
T
5

XLS!
" P78LS!" R
5*!"

+ LS#"P78LS#" R
5*#"

Y. Then %)*+5 /lm)*+5  approximately follows a non-central chi-

squared distribution with non-centrality parameter TU'()
&

VU'()
& . Similarly, %,--~'(1̂,-- , lm,--5 ), where 

1̂,-- = 2 *!
"*#"E*!"*#$

*!"E*#"E	*#$
`̂7. − 2

*!"*#"

*!"E*#"E	*#$
`̂4. − 2

*!"*#$

*!"E*#"E	*#$
`̂40 and lm,--5 = S2 *!

"*#"E*!"*#$

*!"E*#"E	*#$
T
5

× LS!" P78LS!" R
5*!"

+

S2 *!"*#"

*!"E*#"E	*#$
T
5

× LS#"P78LS#"R
5*#"

+ S2 *!"*#$

*!"E*#"E	*#$
T
5

× LS#$P78LS#$R
5*#$

. %,--5 /lm,--5  approximately follows a non-

central chi-squared distribution with non-centrality parameter TU+,,
&

VU+,,
& .  

 Under the null hypothesis of no associations, both standardized squared score statistics, 

%)*+5 /lm)*+5  and %,--5 /lm,--5 , follow the (central) chi-squared distribution with one degree of freedom, 

and hence the critical value at o = 5 × 10W is 29.7168. Using a built-in non-central chi-squared 

CDF function in R, we can calculate power as the probability of observing a standardized 

squared score statistic larger than 29.7168. Since the power monotonically increases as the non-

centrality parameter increases, the power of test that naively combines controls is greater than 

that of the test using exclusively internal samples when TU+,,
&

VU+,,
& >	 TU'()

&

VU'()
& . 

2.5.2 Supplementary Tables and Figures 

Table S2.1: Empirical type I error rates under alternative batch effect mechanism. 
We assumed that 3% of the variants were subject to batch effect in internal and external control samples. 
For such variants, each allele had a 2% chance of being mis-genotyped as the alternative allele. Shown in 
the table are empirical type I error rates of score tests using internal samples exclusively, using combined 
samples without adjusting for batch effect, and various versions of the iECAT-Score method, under 
different scenarios. Type I error rates were estimated based on 109 simulations. 

Sample size 
(Internal: 
external) 

Internal 
case:control 

Level 
alpha 

Internal 
only 

iECAT-
Score 

iECAT-
Score 
minP 

Combined 
internal 

and 
external 
samples 

10000:10000 1:1 5x10-5 5.06e-05 3.58e-05 4.06e-05 2.81e-02 
  1x10-6 1.10e-06 7.74e-07 8.74e-07 1.52e-03 
  5x10-8 7.20e-08 4.40e-08 5.60e-08 9.41e-04 
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Figure S2.1: Empirical power comparisons under alternative batch effect mechanism. 
We assumed that 3% of the variants were subject to different MAFs in internal and external control 
samples. For such variants, each allele had a 2% chance of being mis-genotyped as the alternative allele. 
Shown are empirical powers at ! = 5 × 10!" from simulations using 10,000 internal samples and 10,000 
external control samples, with internal case and control ratio 1:1. The effect size of the causal variant was 
β = log(,--.	01234). 
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Table S2.2: Empirical type I error rates under increased batch effect between internal and 
external samples. 
We assumed that 12% of the variants were subject to different MAFs in internal and external control 
samples. Shown in the table are empirical type I error rates of score tests using internal samples 
exclusively, using combined samples without adjusting for batch effect, and various versions of the 
iECAT-Score method, under different scenarios. Type I error rates were estimated based on 5 × 10" 
simulations. 

Sample size 
(Internal: 
external) 

Internal 
case:control 

Level 
alpha 

Internal 
only 

iECAT-
Score 

iECAT-
Score 
minP 

Combined 
internal 

and 
external 
samples 

10000:10000 1:1 5x10-5 4.96e-05 3.59e-05 3.57e-05 1.04e-01 
  1x10-6 8.58e-07 7.44e-07 6.33e-07 1.00e-01 
  5x10-8 3.44e-08 3.70e-08 1.85e-08 9.80e-02 

10000:10000 2:1 5x10-5 5.04e-05 4.07e-05 3.67e-05 1.07e-01 
  1x10-6 9.82e-07 1.45e-06 1.12e-06 1.04e-01 
  5x10-8 5.33e-08 1.60e-07 1.21e-07 1.02e-01 
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Figure S2.2: Empirical power comparisons under increased batch effect between internal and 
external samples. 
We assumed that 12% of the variants were subject to different MAFs in internal and external control 
samples. Shown are empirical powers at ! = 5 × 10!" from simulations using 10,000 internal samples 
and 10,000 external control samples, with internal case and control ratio 1:1 and 2:1. The effect size of 
the causal variant was β = log(,--.	01234). 
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Table S2.3:  Genomic inflation factors (GIF) from the comparisons between internal controls 
and external controls. 
The GIF shows the genomic inflation factor calculated at the median of test statistics, in real data, and 
simulated data when batch effect existed in three and twelve percent of variants. 

 Real Data Simulation: 3%  
batch effect 

Simulation: 12% 
batch effect 

GIF 1.19 1.12 1.31 
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Figure S2.3: Power comparisons with varying MAFs. 
Powers of the iECAT-Score method, iECAT-Score minP method, the method using exclusively internal 
samples, and method that naively combines internal and external control samples, when MAF of external 
controls varied relative to MAF of internal cases and controls. MAF of internal cases was 0.2; the odds 
ratio of causal allele was 1.2. The sample sizes of internal cases, internal controls and external controls 
were 5000, 5000, 10000, respectively. Nominal level ! = 5 × 10!". Powers of the internal only and 
naïve approaches were based on analytical calculations assuming non-central chi-squared distributions. 
Powers of the iECAT-Score methods were based on 5 × 10# simulations at each value of MAF for 
external controls. 
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Figure S2.4: Quantile-quantile plots of association p values for 500,000 variants from simulation 
studies with population stratification. 
Sample sizes for internal cases, internal controls, and external controls were 5000, 5000, 10000, 
respectively. Samples were assumed to come from Italian and Finnish populations. MAFs for 500,000 
variants were generated following the MAF spectrum of those of Toscani in Italia (TSI) and Finnish in 
Finland (FIN) from The 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015). Genetic 
principal components were calculated using 100,000 simulated genotypes, using the Fruposa software 
(Zhang, Dey, & Lee, 2020). Disease prevalence in TSI and FIN populations was assumed to be 0.05 and 
0.07, respectively. Internal samples were assumed to consist of 50/50 subjects from TSI and FIN 
populations; external control samples consisted of (a) 60/40 and (b) 90/10 TSI and FIN samples, 
respectively. 
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Table S2.4:  Empirical type I error rates when internal and external samples have different 
distributions of covariates that contribute to disease risk. 
We generated binary phenotypes of case/control from the logistic regression model:	64732[Pr(; =
1	| =, ?)] = !$ + 0.5=% + 0.5=&. For internal samples, =% was a continuous covariate generated from 
normal distribution C(0, 1) and =& was a dichotomous covariate with a probability of 0.5 being 1; for 
external samples, =% was a continuous covariate generated from normal distribution C(2, 1)  and =& was 
a dichotomous covariate with a probability of 0.8 being 1. The intercept !$	was chosen such that the 
disease prevalence in internal and external samples was 0.05 and 0.1, respectively. Shown in the table are 
empirical type I error rates of score tests using internal samples exclusively, using combined samples 
without adjusting for batch effect, and various versions of the iECAT-Score method, under different 
scenarios. Type I error rates were estimated based on 5 × 10"simulations. 

Sample size 
(Internal: 
external) 

Internal 
case:control 

Level 
alpha 

Internal 
only 

iECAT-
Score 

iECAT-
Score 
minP 

Combined 
internal 

and 
external 
samples 

10000:10000 1:1 5x10-5 4.99e-05 4.88e-05 3.79e-05 2.44e-02 
  1x10-6 9.73e-07 1.03e-06 7.76e-07 2.32e-02 
  5x10-8 3.60e-08 6.80e-08 2.28e-08 2.25e-02 
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Figure S2.5: Empirical power comparisons when internal and external samples have different 
distributions of covariates. 
We generated binary phenotypes of case/control from the logistic regression model:	64732[Pr(; =
1	| =, ?)] = !$ + 0.5=% + 0.5=& + E?. For internal samples, =% was a continuous covariate generated 
from normal distribution C(0, 1) and =& was a dichotomous covariate with a probability of 0.5 being 1; 
for external samples, =% was a continuous covariate generated from normal distribution C(2, 1)  and =& 
was a dichotomous covariate with a probability of 0.8 being 1. ? is the genotype at the variant of interest 
generated from a binomial (2, MAF) distribution, and β is the effect size of the variant. The intercept 
!$	was chosen such that the disease prevalence in internal and external samples was 0.05 and 0.1, 
respectively. We assumed that 3% of the variants were subject to different MAFs in internal and external 
control samples. Shown are empirical powers at ! = 5 × 10!" from simulations using 10,000 internal 
samples and 10,000 external control samples, with internal case and control ratio 1:1. The effect size of 
the causal variant was β = log(,--.	01234). 
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Table S2.5:  Empirical type I error rates with small internal case sample size compared to 
internal controls. 
Shown in the table are empirical type I error rates of score tests using internal samples exclusively, using 
combined control samples without adjusting for batch effect, and various versions of the iECAT-Score 
method, under different scenarios. Type I error rates were estimated based on 10' simulations. 

Sample size 
(Internal: 
external) 

Internal 
case:control 

Level 
alpha 

Internal 
only 

iECAT-
Score 

iECAT-
Score 
minP 

Combined 
internal 

and 
external 
samples 

10000:10000 1:2 4.99e-05 3.42e-05 3.87e-05 2.50e-02 4.99e-05 
  1.01e-06 6.41e-07 7.38e-07 2.39e-02 1.01e-06 
  4.51e-08 4.67e-08 4.34e-08 2.32e-02 4.51e-08 

10000:10000 1:5 4.97e-05 3.67e-05 4.08e-05 2.26e-02 4.97e-05 
  9.87e-07 6.70e-07 7.47e-07 2.10e-02 9.87e-07 
  4.17e-08 3.50e-08 3.34e-08 2.00e-02 4.17e-08 
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Figure S2.6: Empirical power comparisons with small internal case sample size compared to 
internal controls. 
We assumed that 3% of the variants were subject to different MAFs in internal and external control 
samples. Shown are empirical powers at ! = 5 × 10!" from simulations using 10,000 internal samples 
and 10,000 external control samples, with internal case and control ratio 1:2 and 1:5. The effect size of 
the causal variant was β = log(,--.	01234). 
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Table S2.6:  Empirical type I error rates with small internal control sample size. 
Shown in the table are empirical type I error rates of score tests using internal samples exclusively, using 
combined control samples without adjusting for batch effect, and various versions of the iECAT-Score 
method, under different scenarios. Type I error rates were estimated based on 10' simulations. 

Sample size 
(Internal: 
external) 

Internal 
case:control 

Level 
alpha 

Internal 
only 

iECAT-
Score 

iECAT-
Score 
minP 

Combined 
internal 

and 
external 
samples 

1500:10000 2:1 5x10-5 5.03e-05 4.29e-05 4.88e-05 2.46e-02 
  1x10-6 1.04e-06 3.28e-06 2.83e-06 2.34e-02 
  5x10-8 6.00e-08 8.24e-07 6.40e-07 2.27e-02 
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Table S2.7: Empirical type I error rates with misclassification in external control samples. 
Of the external samples, there were 1% of samples that were misclassified as controls. Shown in the table 
are empirical type I error rates of score tests using internal samples exclusively, using combined control 
samples without adjusting for batch effect, and various versions of the iECAT-Score method, under 
different scenarios. Type I error rates were estimated based on 10' simulations. 

Sample size 
(Internal: 
external) 

Internal 
case:control 

Level 
alpha 

Internal 
only 

iECAT-
Score 

iECAT-
Score 
minP 

Combined 
internal 

and 
external 
samples 

10000:10000 1:1 5x10-5 5.01e-05 3.34e-05 4.04e-05 2.58e-02 
  1x10-6 9.96e-07 6.80e-07 8.12e-07 2.50e-02 
  5x10-8 4.20e-08 3.60e-08 4.20e-08 2.44e-02 
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Figure S2.7: Empirical power comparisons when 1% of external control samples were case 
samples. 
The power was estimated with 10,000 internal samples and 10,000 external control samples, with internal 
case and control ratio 1:1. Lines represent empirical powers at ! = 5 × 10!", where dashed lines show 
powers when misclassification of disease status exists in external control samples. The effect size of the 
causal variant was β = log(,--.	01234). 
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Chapter 3 Integrating External Controls in Case-Control Studies 
Improves Power for Rare-Variant Tests 

3.1 Introduction 

Recent advances in genotyping and sequencing technologies have enabled progressively larger 

scale sequencing and genotyping projects to identify disease-associated rare (Cruchaga et al., 

2014). For instance, the Michigan Genomics Initiative has collected genotype data from over 

66,000 unrelated individuals within Michigan Medicine; the UK Biobank has produced genome-

wide genotype data on approximately 500,000 individuals from the United Kingdom and exome 

sequence data on 200,200. This rapid increase in the number of genotyped and sequenced 

individuals provides a unique opportunity to develop methods that can leverage the large-scale 

sequencing and genotyping projects, whose data are publicly available, as additional control 

samples to increase the power of rare-variant association testing in case-control studies. 

When combining controls from external studies, systematic batch effect between 

genotyped data from different studies are likely to exist due to differences in sequencing 

platforms, genotype calling procedures and population stratification. Undesired type I error 

inflation could result from the systematic batch effect if they are left unaddressed. Several recent 

methodologic developments have attempted to address the systematic differences between 

genotyped data of internal and external sources, most of which directly or indirectly use 

sequence read data. Derkach et al. (Derkach et al., 2014) developed a score test that replaces the 

called genotype with an expected genotype. The calculation of expected genotype requires 

known read depths, base-calling error rates of the sequencing platform and prior knowledge on 

allele frequencies. Using expected genotype accounts for several factors that contribute to the 

systematic batch effect between genotyped data from different studies and thus reduces inflation 

in type I error rates, but the calculation of which could be challenging if the posterior genotype 

likelihoods are not provided in the genotype vcf files. In addition, by considering the 
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retrospective setting, this method does not allow for covariate adjustment. Extending Derkach’s 

method, Chen and Lin (Chen & Lin, 2018) proposed regression calibration (RC)-based and 

maximum-likelihood (ML)-based methods to account for differential sequencing errors between 

cases and controls; these methods allow for parameter’s effect size estimation, with the 

assumption that weak confounding from population stratification are the only potential 

confounders. Hu et al. (Hu, Liao, Johnston, Allen, & Satten, 2016) proposed a likelihood-based 

method that directly models sequencing reads using sequence data without calling the genotypes. 

This method first estimates the single nucleotide variant (SNV) locations and then applies a 

burden-type test to assess the significance of the association between an SNV and a trait. 

Hendricks et al. (Hendricks et al., 2018) proposed ProxECAT which uses allele counts from 

genotyped data to estimate enrichment of rare variants in external controls. Although this method 

does not require genotype probabilities or sequence read data to be available, it does not include 

internal control samples in the analyses as a baseline reference and results in consistent inflation 

in Type I error rates. Thus, the author suggests using more conservative significance level, which 

potentially limits the power of the association test. 

 To address the shortcomings of the above methods, we recently proposed a novel score-

based test, the iECAT-Score test, that uses genotype data to integrate external control samples 

into association test. We built upon the original iECAT test developed by Lee et al (Lee et al., 

2017), which assesses the batch effect and includes external control samples using allele counts 

from genotype data, and developed a score test that further allows for covariate adjustment. 

Compared to the iECAT test in its originally presented format, the score tests are more stable, 

computationally efficient, and allow to adjust for covariates and population stratification. 

Through applying recent improvements of score tests including the Saddlepoint approximation 

(SPA) (Dey et al., 2017) and efficient resampling (ER) (Lee et al., 2015) methods, the iECAT-

Score test protects the type I error in the scenario of case-control imbalance and low minor allele 

count (MAC). 

The iECAT-Score test we previously proposed tests association between a single variant 

and the disease status. It controls type I error rates while increasing samples from external 

studies to improve power for association tests. However, in the case of rare-variant association 

test, single-variant tests are often underpowered to identify causal rare variants. Hence, in this 

work, we extend the single-variant iECAT-Score test to burden (B. Li & Leal, 2008), SKAT (Wu 
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et al., 2011) and SKAT-O (Lee, Wu, & Lin, 2012) type tests to test for the combined genetic 

effects in a gene or region. Similar to the burden, SKAT and SKAT-O tests that are used in the 

common case-control studies setting, the iECAT-Score region test aggregates the single-variant 

test statistics using a weighted linear (burden) or quadratic (SKAT) sum, or a linear combination 

of both (SKAT-O). Association between the rare variants in the region and the phenotype is then 

assessed by comparing the compound statistic to a specified distribution under the null of no 

genetic effect. 

We organize this article as follows. We first introduce the model for the rare variant 

association test in case-control studies using burden, SKAT, and SKATO tests, and propose the 

iECAT-Score region tests that allow for integration of external control samples in case-control 

association tests. We then describe the simulation studies to assess the type I error rates and 

power of our proposed methods, as well as their applications to the association studies of age-

related macular degeneration (AMD) combining data from the International AMD Genomics 

Consortium (IAMDGC) (Fritsche et al., 2015) and the UK Biobank (Bycroft et al., 2018). 

Finally, we present the results from simulation studies and data analyses of the proposed 

methods, discuss our findings, and provide guidelines for integrating external control samples in 

case-control studies. 

3.2. Materials and Methods 

3.2.1 iECAT-Score Region-based association test 

The iECAT-Score region-based test is a shrinkage-estimation-based test for aggregated genetic 

effects within a genomic region. At each variant within the region, the iECAT-Score test assesses 

the batch effect between internal and external control samples and constructs a shrinkage 

estimator to access the single-variant genetic effect. The iECAT-Score region-based test then 

groups the single variant test statistics to test for association between the joint effect of variants 

in a region and outcome of disease status, using burden, SKAT, and SKAT-O type methods. 

Region-Based Test for Genetic Effect 

To present the model for a region-based test that tests for the aggregated genetic effect within a 

gene or a region, we first consider a scenario of no external controls. Consider the internal study 
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of sample size n. For subject i, let r) = 0/1 be the dichotomous phenotype for control/case; 

E) = K9)7, 9)5, . . , 9)LL is the covariate vector of length p; +) = (B)7, B)5, . . , B)X) is the vector of 

genotypes consisting genotypes at m variants within a region. Hence, + = (+7, +5, . . , +*)1 is the 

_ × s genotype matrix for the n subjects at m variants. To relate the phenotype 5, the covariates 

E, and the genotype +, we consider the following logistic regression model 

 tQIHu[Pr(5) = 1	| 9) , B))] = E)x + +)y (3.1) 

where the phenotype 5) follows a Bernoulli distribution, x is an ` × 1 vector of coefficients for 

the covariates, and y = (z7, z5, . . , zX)1are the regression coefficients for the m variants in a 

region. We assume that y is a random vector with <Kz=L = 0, >?@Kz=L = {=5b where {= is the 

weight assigned to variant O11, and PQ@@Kz= , zYL = |, O, } ∈ {1,2, . . , s}. To test for the 

association between the phenotypes 5) 	 and the genotypes within the region, we want to test for 

the null hypothesis :4: y = ( in Equation (1). 

Within the region of m variants, the score test statistic at variant O is given by	%= =

∑ B)=(5) − 1̂))*
)67  where 1̂) is the maximum likelihood estimate of 1) with . = {1)} =

{Pr(5) = 1	| 9))} under :4. To test the null hypothesis under the assumption that b = 0, the 

burden- and SKAT-type score test statistics can be constructed as 

�> = K∑ {=%=X
=67 L

5, and �I = ∑ K{=%=L
5X

=67 , 

where {= is the weight assigned to variant O (Wu et al., 2011). The omnibus SKAT-O type test 

takes the form of weighted sum of the burden and SKAT test statistics and can be constructed 

�Z = (1 − |)�> + |�I, 

where | is a parameter between 0 and 1 (Lee et al., 2012). 

Under the null hypothesis of no genetic effect, " approximately follows a multivariate 

Gaussian distribution with mean zero and variance Ä = ÅÇÅ, where Å = {{=} is the diagonal 

weight matrix and Ç is the covariance matrix of (%7, %5, … , %X)′. The covariance matrix of 

(%7, %5, … , %X)′ is given by Ç = Ö7/5ÜÖ7/5, with Ö = GH?I{>?@(%7), >?@(%5), … , >?@(%X)} and 

Ü a s ×s correlation matrix of s variants. The statistic �Z approximately follows mixture of 

chi-square distributions under the null hypothesis, and Davies method  (Davies, 1980) can be 

applied to obtain the p value. As the parameter | is unknown, the SKAT-O test adaptively 

applies the minimum p values over a grid of | to search for a | that maximizes power. 
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iECAT-Score Region-Based Test 

We introduce external control samples to the internal study samples that consist of cases and 

controls. We apply the single-variant iECAT-Score method (Y. Li & Lee, 2021) to each variant 

that integrates external controls to improve the power. Let _7. , _4. , _40 denote the sample sizes of 

internal cases, internal controls, and external controls, respectively. Similar to the notations in 

model (1), we let 5) = 0/1(H = 1,2, … , _7. +	_4. +	_40) be the dichotomous phenotype for 

control/case. 

At variant O within a region, the score statistic that tests for the association between the 

variant O and the phenotype using exclusively internal samples is given by %)*+,= = +)*+,=1 (,)*+ −

./)*+). In this equation, +)*+,= = SB)*+,7,= , B)*+,5,= , . . , B)*+,(*!"E	*#" ),=T
1

 is the vector of genotypes at 

variant O of internal samples; similarly, ,)*+ = S5)*+,7, 5)*+,5, . . , 5)*+,(*!"E	*#" )T
1

 is the vector of 

phenotypes of internal samples, and ./)*+ = S1̂)*+,7, 1̂)*+,5, . . , 1̂)*+,(*!"E	*#" )T
1

 is the vector of 

maximum likelihood estimate of .)*+ under the null logistic regression model of no genetic 

effect built using internal samples only as in model (1). When external control samples are 

included assuming no systematic differences between internal and external studies, we construct 

a score statistic at variant O as %,--,= = +,--,=1 (,,-- − ./,--). In this equation, +,--,= , ,,-- and  ./,-- 

are vectors of length _7. +	_4. +	_40, denoting genotypes at variant O, phenotypes, and expected 

mean outcome under a null model built of combined internal and external samples. 

Using a similar approach to the single variant iECAT-Score method, we quantify the 

level of batch effect between internal and external control samples at each variant within a 

region. Specifically, we test for an association between each genetic variant and whether a 

control sample belongs to the internal or external study, while adjusting for covariates. We 

define a new outcome variable ,D./0 = (5C)) = 0/1	(O = 1, 2, … , _4. +	_40) to represent a control 

sample belonging to the external/internal study, E= = K9=7, 9=5, . . , 9=LL
1 the covariates for jth 

subject, and +./0,= = SB7,= , B5,= , . . , B*#"E*#$,=T
1

be the genotypes at variant O for the _4. + _40 

controls samples. To test for the relationship between the genetic variant and source of control 

samples, we consider the logistic model 
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tQIHu[PrK5C) = 1	á 9) , B),=)] = E)1 	xà + B),=1 	zC 

A score test statistic can be constructed to test the null hypothesis of no batch effect 

between the internal and external controls samples as %./0 = +./0,=1 (,D./01 − .à./0), where ../0 =

(1./0,=) = KPrK5C) = 1	áE)L)	 and  1	à ./0,) is the maximum likelihood estimate of 1./0,). 

Following the single-variant iECAT-Score method, a compound score statistic that tests 

the hypothesis no genetic effect at variant O is given by 

%G,= = ?b=%)*+,= + K1 − b=L%,--,= (2) 

where ? = (*!"E*#" )(*!"*#"E*!"*#$)
*!"*#" (*!"E*#"E*#$)

 adjusts for the different sample sizes used to calculate %)*+,= and 

%,--,= , and	b= =
H!-

7EH!-
 with b7 =

I"%$
&

-
J,K\I"%$-]

 is a variant-specific weight that reflects the level of 

batch effect existed between the internal and external control samples at the variant j. When 

minor allele frequencies (MAFs) of external controls are in between those of internal cases and 

internal controls, and the MAFs are such that TU+,,
&

VU+,,
& >	 TU'()

&

VU'()
&  , we let b= = 0 follwing Li and Lee (Y. 

Li & Lee, 2021). Under the null hypothesis of no genetic effect, <K%G,=L = 0 and >?@(%G-) can 

be calculated using the delta method. Additionally, we update the >?@(%G-) to its robust estimate 

by applying the Saddlepoint approximation (SPA) or Efficient resampling (ER) method, 

allowing for scenarios of unbalanced case-control ratio and low MAC. 

After obtaining the iECAT-Score statistic at each variant within a region, we test the joint 

genetic effect of variants by performing Burden-, SKAT-, and SKAT-O-type tests to the region. 

Consider s variants in a region. Let "D = ({7%G,7, {5%G,5, … , {X%G,X)′, where %= is the single 

variant iECAT-Score statistic at variant O, O = 1, 2, … ,s. Under the null hypothesis of no genetic 

effect, " approximately follows a multivariate Gaussian distribution with mean zero and variance 

Ä = ÅÇÅ, where Å = {{=} is the diagonal weight matrix and Ç is the covariance matrix of 

(%7, %5, … , %X)′. We use {= = ]âu?(äãå= , ?7, ?5) where (?7, ?5) = (1, 25) with äãå= 

estimated based on the combined samples. Such choice of (?7, ?5) upweights rare variants (MAF 

less than 1%) while giving adequate nonzero weights to less common variants (MAF 1%-5%) 

(Wu et al., 2011). The covariance matrix of (%7, %5, … , %X)′ is given by Ç = Ö7/5ÜÖ7/5, where 

Ö = GH?I{>?@(%7), >?@(%5), … , >?@(%X)} and Ü is a s ×s correlation matrix of s variants. 

As we are interested in maintaining the correlation structure between the variants reflected 
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through the internal sample population, we estimate the correlation matrix Ü by the empirical 

correlation between genetic variants within the region using exclusively the internal case and 

control samples. 

The SKAT statistic is �I^<1 = ∑ {=5%=5X
=67  and the burden test statistic is �>_K`a* =

K∑ {=%=X
=67 L

5. The weighted average of the SKAT and burden test statistics is �(|) =

(1 − |)�I^<1 + |�>_K`a*. Let çZ = (1 − |)é + |èèb and êZ be its Choleskey decomposition 

matrix such that êZêZb = çZ. Then �(|) asymptotically follows a mixture of chi-square 

distributions, Σ=67X ë=χc5, where (ë7, … , ëX) are the eigenvalues of êdÄêd′. We apply the Davies 

method  (Davies, 1980) to obtain the p value for association between the genetic region and 

phenotype. 

Minimum P-value Based on Combination of %G and %)*+ 

Similar to the single-variant iECAT-Score test, the iECAT-Score method may yield a larger p 

value than exclusively using internal samples only as a result of large variance estimate (Y. Li & 

Lee, 2021). Thus, to improve power, we use the minimum p value calculation procedure 

(Conneely & Boehnke, 2007; Y. Li & Lee, 2021). At variant O, (%G,= , %)*+,=) jointly follow a 

multivariate normal distribution. The p value of  the minimum p value of  %G,= 	and %)*+,=, i.e. 

minP p value, are calculated as the probability of observing one or both the p values as small as 

the smaller one of the two under the null hypothesis of no association (Conneely & Boehnke, 

2007). 

For region-based test, we first obtain the minP p value of (%G,= , %)*+,=)	(O = 1, 2, … ,s) in 

each variant to re-construct the single variant score statistics, i.e., %X)*e,=, and then combine 

them for association analysis. One issue of this approach is that to estimate %X)*e,= 	from minP p 

value, the variance of %X)*e,=  should be specified. To address this, we use the geometric mean of 

the score statistics using internal samples only and using the iECAT-Score method, i.e., 

>?@(%X)*e,=) = ì>?@(%G,=) × >?@(%)*+,=). This choice of the geometric mean does not only 

reflect that >?@(%X)*e,=) is on the same scale as >?@(%G,=) and >?@(%)*+,=), but also takes into 

consideration the correlation among %G,=, %)*+,=, and %X)*e,=. The minP score statistic %X)*e,= is 

then derived by %X)*e,= = >?@K%X)*e,=L × îf_,*+)-a5 (1 − `X)*e). The score statistics and their 
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variances at each variant are then used to calculate the SKAT-, Burden-, and SKATO-type 

statistics for the region. 

3.2.2 Type I error and power simulations 

We conducted simulation studies of various scenarios to evaluate the performance of the 

proposed iECAT score region-based test regarding type I error rates and power. We used the 

coalescent simulator COSI (Schaffner et al., 2005) to generate genotyped data of 3000 bps of 

European ancestry on samples sizes of two combinations of case-control ratios (_7. :	_4. : _40): (1) 

5,000: 5,000: 10,000; (2) 6,667: 3,333: 10,000.  

 For both type I error and power simulations, we generated binary phenotypes of 

case/control from the logistic regression model:	

tQIHu[Pr(5 = 1	| E, +)] = o4 + 0.597 + 0.595 + y+ 

where 97 was a binary covariate following a Bernoulli distribution with probability of 0.5 being 

1, 95 was a continuous covariate following the standard normal distribution, and o4 was chosen 

such that the disease prevalence was 0.01. + consist of variants of 3kb regions randomly selected 

from the 3kb regions generated by the coalescent simulator. 

We assumed that 3% of the variants were subject to different MAFs in internal and 

external control samples to mimic the batch effects between internal and external samples. When 

batch effect existed at a variant, the MAFs of the external controls were randomly generated 

from ï_HñQ@s(0.1 × ó, 4 × ó), where ó was the MAF of corresponding variants in the internal 

samples. 

 In type one error simulations, the genetic effect size z = 0. We generated 5 × 10g 

datasets to evaluate type I error rates at 1.0 × 108h and 2.5 × 108g levels. In power simulations, 

we randomly selected 5%, 10%, 20%, and 50% of variants with MAF < 1% in the 3kb region as 

causal variants. The effect size of causal variants z = P|log74äãå| where P = 0.6, 0.46, 0.35, 

0.27 when 5%, 10%, 20%, 50% of the rare variants were causal. We assumed that either all 

causal SNPs had positive effect (homogeneous effect), or 80% had positive effect and 20% 

negative (heterogeneous effect). We generated 100,000 data sets in each simulation setting and 

case-control ratio to evaluate power at the significance level of 2.5 × 108g. 
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3.2.3 Real data analysis 

We applied our proposed method to genotype data from the International AMD Genomics 

Consortium (IAMDGC) (Fritsche et al., 2015) downloaded from dbGaP (phs001039.v1.p1). The 

IAMDGC dataset consists of 17,286 cases and 14,377 controls. We used 348,465 unrelated 

samples from the UK Biobank as external controls. We used ICD-9 code to select samples from 

UK Biobank who are free from macular degeneration of retina and posterior pole of retina. For 

both studies, the samples used in our analysis are of European ancestry. 

We performed analyses on the genotype data of overlapping variants between the AMD 

and UK Biobank studies to compare the performance of our proposed iECAT-Score method with 

the method that solely uses internal samples. We applied the ANNOVAR software (K. Wang, Li, 

& Hakonarson, 2010) for gene-based annotation, using the hg19 build downloaded from the 

UCSC Genome Browser Annotation Database (Haeussler et al., 2018). We included exonic, 

intronic, splicing, and UTR variants for analyses. 

We applied the Fruposa software (Zhang et al., 2020) with the 1000 Genomes reference 

(The 1000 Genomes Project Consortium, 2015) to obtain population principal component scores. 

We used a logistic regression model to test for the association between the disease status of age-

related macular degeneration (AMD) and single common genetic variants that are shared by 

IAMDGC and UK Biobank data sets, adjusting for age, sex, and first four principal components. 

Then we tested for association between rare variants within genes and the phenotype, 

conditioned on significant (p value <1e-06) common variant within 3kb region of the gene, based 

on single-variant association results using the iECAT-Score minP method. In the region-based 

test, we adjusted for age, sex, and first four principal components. We compared the performance 

of iECAT-Score, iECAT-Score minP, and methods that exclusively use internal samples and that 

naively combines control samples without adjusting for batch effect. 

3.3. Results 

3.3.1 Type I error and power simulations 

We present in Table 3.1 the type I error rates of the proposed methods at the significance level 

of 1e-04 and 2.5e-06, for two settings of case-control ratios (_7. :	_4. : _40): (1) 5,000: 5,000: 
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10,000; (2) 6,667: 3,333: 10,000. For each setting, we present type I error rates of SKAT, 

burden, and SKAT-O type tests using test statistics that are constructed using the following 

methods: (1) exclusively using internal samples; (2) iECAT-Score method; (3) iECAT-Score 

minP method; (4) naively combining external controls without adjusting for batch effect. The 

results show that for all of SKAT, burden, and SKAT-O type tests, both versions of iECAT-

Score methods controlled type I error rates at both significance levels, although iECAT-Score 

methods tended to be more conservative than the method that exclusively uses internal samples. 

If external control samples are naively integrated without adjusting for batch effect, however, 

substantial inflation of type I error rates is observed. 

 

Table 3.1: Type I error rates of iECAT-Score region-based tests. 
Comparison of type I error rates of score tests using internal samples exclusively, various versions of 
iECAT-Score method, and using combined samples without adjusting for batch effect, under different 
scenarios. Type I error rates were estimated based on 5 × 10( simulations. 

Internal cases: 
internal controls: 
external controls 

! level  Internal 
only 

iECAT-
Score 

iECAT-
Score MinP 

All 

5000:5000:10000 

1e-04 
SKAT 9.73e-05 5.27e-05 5.27e-05 9.13e-02 
Burden 9.86e-05 5.85e-05 2.98e-05 2.08e-02 

SKAT-O 1.14e-04 6.80e-05 5.75e-05 8.85e-02 

2.5e-06 
SKAT 3.10e-06 8.61e-07 1.89e-06 7.15e-02 
Burden 2.75e-06 1.55e-06 8.61e-07 1.02e-02 

SKAT-O 2.58e-06 1.89e-06 1.38e-06 6.98e-02 

6667:3333:10000 

1e-04 
SKAT 1.03e-04 4.12e-05 5.75e-05 1.10e-01 
Burden 1.04e-04 4.50e-05 3.78e-05 3.37e-02 

SKAT-O 1.22e-04 4.67e-05 5.57e-05 1.08e-01 

2.5e-06 
SKAT 3.24e-06 1.24e-06 2.62e-06 9.30e-02 
Burden 3.08e-06 9.25e-07 9.25e-07 1.95e-02 

SKAT-O 4.32e-06 1.08e-06 2.31e-06 9.10e-02 
 

 

We compared the power of iECAT-Score, iECAT-Score minP methods and method using 

internal controls exclusively to assess genetic association at alpha level of 2.5e-06, using SKAT, 

burden, and SKAT-O type tests. As the method that naively combines external controls does not 

control for type I error rates, we did not include this method in the power comparison. Figure 3.1 

compares powers of different methods for varying percentage of causal rare variants, when all 

causal SNPs had positive effect (homogeneous effect). Top three panels show powers of such 

comparison when case-control ratios are (_7. :	_4. : _40) =5,000: 5,000: 10,000; bottom three 
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panels show a similar power comparison for case-control ratio of 6,667: 3,333: 10,000. In Figure 

3.2, we show power comparison in a similar manner when 80% of causal variants had positive 

effect and 20% had negative effect (heterogeneous effect). The results show that in all settings, 

both iECAT-Score and iECAT-Score minP methods had improved power over the method that 

used exclusively internal control samples. Under homogeneous causal effect, iECAT-Score 

method had higher power than iECAT-Score minP method when a small percentage (5%) of rare 

variants were causal; iECAT-Score minP method had higher power than iECAT-Score method 

when a large percentage (50%) of rare variants were causal. Under heterogenous causal effect, 

however, such relationship was reversed. 

 

Figure 3.1: Empirical power comparisons of iECAT-Score region-based tests under 
homogeneous genetic effect. 
Empirical power comparisons of iECAT-Score minP, and Internal only methods for varying percentage of 
causal rare variants, when all causal SNPs had positive effect (homogeneous effect). Shown are power 
from simulations using 10,000 internal samples and 10,000 external control samples, with internal case 
and control ratios 1:1 (top panels) and 2:1 (bottom panels). 
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Figure 3.2: Empirical power comparisons of iECAT-Score region-based tests under 
heterogeneous genetic effect. 
Empirical power comparisons of iECAT-Score, iECAT-Score minP, and Internal only methods for 
varying percentage of causal rare variants, 80% of causal variants had positive effect and 20% had 
negative effect (heterogeneous effect). Shown are power from simulations using 10,000 internal samples 
and 10,000 external control samples, with internal case and control ratios 1:1 (top panels) and 2:1 (bottom 
panels). 
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disadvantage by leveraging the minimum p value between internal sample-only and iECAT-

Score p values. In both comparisons, there were significant number of variants that showed 

significance only through the usage of iECAT-Score methods, indicating higher power of 

iECAT-Score methods in detecting associations. 

 

Figure 3.3: Comparison of p values (in -log 10 scale) from analyses of age-related macular 
degeneration data using the iECAT-Score region-based methods. 
Panel (a): -log 10 scaled p values using the iECAT-Score method vs. using internal samples only; panel 
(b):  -log 10 scaled p values using the iECAT-Score minP method vs. using internal samples only.  

iECAT-Score vs internal only iECAT-Score minP vs internal only 

  
(a) (b) 

 
 

3.3.2 Application to Age-Related Macular Degeneration (AMD) Data 

We analyzed the association between genes and age-related macular degeneration from 

IAMDGC, using samples from UK Biobank as external controls. The UK Biobank data include 

markers directly genotyped or imputed by the TOPMed reference panel (Taliun et al., 2021). We 

restricted our analysis to the markers shared by the IAMDGC and UK Biobank samples. All 

samples used in the analyses are of European ancestry. The female samples consist of 41.29%, 

43.99%, and 42.51% in samples of internal cases, internal controls, and external controls, 

respectively (Table 3.2). We observed that samples with AMD tended to be older than the 
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controls, with mean ages 85.86 years and 70.08 years, respectively. Samples of the external 

controls had a mean age of 56.75 years. 

 
Table 3.2: Descriptive statistics of study subjects from internal (IAMDGC) and external (UK 
Biobank) studies. 
Shown in the table are the sample sizes, the number (percentage) of female samples, and mean (standard 
deviation of sample age in years in IAMDGC and MGI data. 

Study Sample Size 
N 

Female 
N (%) 

Age 
Years (SD; min-max) Total 

 Cases Controls Cases Controls Total Cases Controls Total  
IAMDGC 
(internal) 

 
17,286 14,377 7,137 

(41.29) 
6,322 

(43.97) 
13,459 
(42.51) 

75.86 
(8.10; 50-90) 

70.08 
(9.71; 35-90) 

73.24 
(9.32; 35-

90) 
31,663 

UKB 
(external)  334,088  179,984 

(53.87) 
179,984 
(53.87)  56.75 

(8.00; 39-73) 

56.75 
(8.00; 39-

73) 
334,088 

Total 17,286 348,465 7137 
(41.29) 

188,039 
(53.96) 

198,188 
(54.19) 

75.86 
(8.10; 50-90) 

57.30 
(8.50; 35-90) 

58.17 
(9.35: 35-

90) 
365,751 

 
 

A total of 74,676 variants of exonic, intronic, splicing, and UTR regions are present in 

both IAMDGC and UK Biobank data sets and were used in single-variant analyses with the 

iECAT-Score minP single variant test. We then performed region-based tests on 36,389 rare 

variants (MAF < 0.01) consisting of 7,640 genes which include at least two rare variants, 

adjusting for age, sex, and first four principal components, conditioning on top common variant 

(MAF > 0.01) with p value < 1e-06 from the single variant test within a 3kb region of the gene. 

The QQ plots from the tests integrating external control samples using both versions of iECAT-

Score methods and using internal samples exclusively are shown in Figure 3.4. Compared to the 

method that exclusively used internal samples, both iECAT-Score methods controlled type I 

error rates; the patterns of the QQ plots that uses internal samples only and that uses iECAT-

Score method are similar; iECAT-Score minP method, on the other hand, is more conservative 

than the other two methods, which is expected from applying the minimum p value method. 
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Table 3.3. Identification of variants showing significance (6.54e-06 level after Bonferroni 
correction) based on iECAT-Score minP method. 
The iECAT-Score minP jointly tests the rare variants within each gene after conditioning on top common 
variant whose single-variant association p value less than 1e-06, within the 3kb region. Shown are 
conditional p values of analyses from exclusive usage of internal samples and using iECAT-Score minP 
method, total minor allele count (MAC), and top variant and its respective minor allele frequency (MAF) 
from single variant analyses, in different case groups. 

No. Gene Chr Set 
Size Region Test p-value Total MAC Top 

variant Top variant MAF 

    Internal iECAT 
minP 

Internal 
case 

Internal 
control 

External 
control p value Internal 

case 
Internal 
control 

External 
control 

1 C3 19 29 2.16e-25 8.31e-24 576 273 7060 6.68e-24 1.23e-02 4.30e-03 5.25e-03 
2 ASPM 1 15 2.80e-19 1.70e-17 739 868 12642 1.35e-10 6.71e-03 1.22e-02 9.41e-03 
3 PRRC2A 6 32 1.50e-06 4.95e-07 1073 686 14535 1.52e-05 1.38e-02 9.91e-03 7.96e-03 
4 CFHR5 1 9 6.50e-06 5.68e-07 470 331 6682 2.70e-06 9.68e-03 6.40e-03 4.87e-03 
5 F13B 1 4 5.75e-07 1.11e-06 233 295 5261 1.40e-06 6.72e-03 1.03e-02 8.52e-03 
6 DXO 6 9 7.38e-05 3.34e-06 342 209 4444 1.29e-04 2.59e-03 1.30e-03 1.47e-03 
7 CFB 6 17 3.17e-06 3.49e-06 983 689 12934 1.29e-05 1.42e-02 1.04e-02 8.10e-03 

 

 

 Table 3.3 presents the top genes showing significance at 6.54e-06 after Bonferroni 

correction. The iECAT-Score method detected several AMD-associated genes including C3 

(Maller et al., 2007; Yates, 2007), CFHR5 (Narendra, Pauer, & Hagstrom, 2009), F13B (Keenan 

et al., 2015), CFB (Sun, Zhao, & Li, 2012), which are well-known associations for the trait. The 

association of gene DXO was revealed by applying the iECAT-Score method (p value: 3.62e-

06), but did not reach significance level (p value: 5.18e-05) with the sole usage of internal 

samples from the IAMDGC dataset. We show in Figure 3.5 the single variant association p 

values within the top seven genes that showed association in the conditional rare-variant testing 

based on the iECAT-Score minP method. We also present the results from the unconditioned 

association testing results in the Supplementary materials (Figure S2.1 and Table S1). 
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Figure 3.4: QQ plots for analysis of age-related macular degeneration (AMD). 
QQ plots for analysis of AMD from internal study of International AMD Genomics Consortium 
(IAMDGC) and external control study of UK Biobank. For better visualization, the maximum of x and y 
axes in the plots are set to be 9, corresponding to p values of 1e-09.  

   
Internal only iECAT-Score iECAT-Score minP 

   
(a) (b) (c) 

 

3.4. Discussion 

Integrating External Controls into Association Testing (iECAT) is a powerful tool to increase 

power in genetic association test and discovering genetic variants that are predisposed to human 

disease. In this paper, we proposed a region-based iECAT-Score test, which allows for testing 

the joint effect of rare variants within a gene or a region when integrating genotyped data from 

external studies. We extended the original iECAT-Score single variant test to three variant-set 

tests: burden-, SKAT-, and SKATO-type tests. We also took advantage of the minimum p value 

method to further improve the performance of the iECAT-Score test. Our proposed iECAT-

Score variant-set tests are not only able to adjust for covariates and population stratification but 

are computationally efficient when applied to large-scale genome-wide association studies. We 

showed through simulation studies that our proposed methods have controlled type I error rates 

and improved power for association testing compared to the methods that exclusively use 

internal samples. The analysis of the AMD from IAMDGC using UK Biobank exome data as 

external controls revealed associations that were not found by the sole usage of IAMDGC data. 
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Figure 3.5:  P values in -log10 scale of single variants in top seven significant genes from the 
iECAT-Score minP conditioned rare-variant gene-based test. 
The single variant p values are calculated using the iECAT-Score minP method, conditioned on 
significant common variant (p value < 1e-06) within 3kb region of the gene. Shown on the x-axis are the 
positions of each variant within each gene on their respective chromosomes. 
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Our type I error simulation studies showed that the both versions of the iECAT-Score 

variant set tests are conservative as compared to the methods that exclusively use internal 

samples. Such observations are expected as the single-variant iECAT-Score is conservative and 

both SKAT and burden type tests are conservative at low o levels (B. Li & Leal, 2008; Wu et al., 

2011). However, the iECAT-Score tests still improve power for disease association testing. As 

the true proportion of the true causal rare variants varies in a region, either the SKAT-type or the 

burden-type test has higher power, consistent with their performance in the usual region-based 

rare variant tests. The optimal SKAT-O test attains highest power under all possible underlying 

causal effects of rare variants in the region. 

In the data analysis of AMD data from IAMDGC using UK Biobank as external controls, 

we performed region-based tests on rare variants, conditioning on top common variant (MAF > 

0.01) with p values < 1e-06 from the single variant test within a 3kb region of the gene. Although 

it is possible that there exists more than one independent common variants that are associated 

with the phenotypes from disjoint linkage disequilibrium blocks, it is less likely for multiple 

independent common variant associations to occur within a small region of 3kb length. Thus, our 

choice of conditioning on the top common variant within a 3kb region is reasonable and 

efficient. Our data analysis revealed a rare variant association of gene DXO that was not 

identified with the sole usage of the internal. The Decapping Exoribonuclease (DXO) gene is 

suggested as a housekeeping gene whose protein function is yet unknown (Jiao et al., 2017; 

Picard-Jean et al., 2018). However, its association with AMD has been reported through a study 

based on retina eQTL data (Ratnapriya et al., 2019). Although no definitive pathogenic DXO 

mutations have been found, our analyses shed light on further directions to investigate its roles in 

the prognosis of AMD. 

In this article, we proposed the iECAT-Score region-based test that can improve power 

for rare-variant association test. The currently presented format of iECAT-Score tests uses 

genotyped data to assess the batch effect between internal and external samples and test for 

association. Hence, the performance of the iECAT-Score tests depends on the confidence of the 

comparison between the two sets of samples using genotyped data. As the sequencing cost 

continues to drop and large-scale biobanks become available, we ought to be cautious about the 

quality of genotyped data called from the sequencing data. The quality of genotype data is 

subject to many factors such as read depths, genotype-calling error rates, quality control (QC) 
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pipelines, etc., all of which could result in bias in the estimation of minor allele frequencies 

(MAFs) using genotyped data, leading to batch effect between the two sets of control samples. 

We will extend our method to account for these factors using sequence data to better account for 

batch effect between samples from different cohorts. 

Through introducing the iECAT-Score region-based test, we expanded the iECAT 

framework to jointly test for the genetic effects within a gene or a region and improve power for 

rare-variant tests. When applying the iECAT methods, we require that individual level data 

including the genotypes and covariates to be available. This requirement on individual level data 

might pose some challenges when selecting external controls, but as more public biobank data 

become available, we believe that our iECAT methods will be easily applied. The method is 

implemented in the R-package “iECAT” available on the GitHub repository. 

3.5. Supplementary Materials 

3.5.1 Supplementary Tables and Figures 

Table S3.1: Identification of variants showing significance (6.54e-06 level after Bonferroni 
correction) based on iECAT-Score minP method, jointly testing the rare variants within each 
gene. 
Shown are marginal p values of analyses from exclusive usage of internal samples and using iECAT-
Score minP method, total minor allele count (MAC), and top variant and its respective minor allele 
frequency (MAF) from single variant analyses, in different case groups. 

No. Gene Chr Set 
Size Region Test p-value Total MAC Top 

variant Top variant MAF 

    Internal iECAT 
minP 

Internal 
case 

Internal 
control 

External 
control p value Internal 

case 
Internal 
control 

External 
control 

1 C3 19 29 2.28e-25 8.75e-24 576 273 7060 8.82e-24 1.23e-02 4.30e-03 5.25e-03 
2 ASPM 1 15 2.80e-19 1.70e-17 739 868 12642 1.35e-10 6.71e-03 1.22e-02 9.41e-03 
3 PRRC2A 6 32 1.24e-06 4.89e-07 1073 686 14535 1.46e-05 1.38e-02 9.91e-03 7.96e-03 
4 CFHR5 1 9 6.50e-06 5.68e-07 470 331 6682 2.71e-06 9.68e-03 6.40e-03 4.87e-03 
5 F13B 1 4 5.83e-07 1.14e-06 233 295 5261 1.40e-06 6.72e-03 1.03e-02 8.52e-03 
6 CFB 6 17 3.37e-06 3.46e-06 983 689 12934 1.40e-05 1.42e-02 1.04e-02 8.10e-03 
7 DXO 6 9 4.27e-05 6.59e-06 342 209 4444 1.17e-04 2.59e-03 1.30e-03 1.47e-03 
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Figure S3.1: P values in -log10 scale of single variants in top seven significant genes from the 
iECAT-Score minP marginal rare-variant gene-based test. 
The single variant p values are calculated using the iECAT-Score minP method. Shown on the x-axis are 
the positions of each variants within each gene on their respective chromosomes. The single variant 
association p-values for both common (blue) and rare (red) variants within each gene are included. 
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Chapter 4 Integrating External Controls into Association Analysis 
Using Sequencing Data 

4.1 Introduction 

Genome-wide association studies (GWAS) predominantly use array-based genotyping 

techniques that detect single nucleotide polymorphisms (SNPs) in pre-selected sites (Maróti, 

Boldogkői, Tombácz, Snyder, & Kalmár, 2018). Recent advances in whole-genome sequencing 

(WGS) and whole-exome sequencing (WES) technologies have enabled GWAS with a larger 

number of variants, including many more rare variants. Such advances provide the potential for 

greater discovery of disease associated variants that might better explain missing heritability of 

complex traits (Eichler et al., 2010). There are large-scale consortium studies whose WGS/WES 

data are publicly available. For example, the UK Biobank has WES data on approximately 

200,000 individuals from the United Kingdom (Bycroft et al., 2018); the 1000 Genome Project 

Consortium has reported the genomes of 1,092 individuals from 14 populations analyzed through 

both WGS and WES data (1000 Genomes Project Consortium et al., 2012). These databases 

serve as potentially untapped resources of additional control samples to increase the power of 

association test in case-control studies. 

 Despite the potential advantages of publicly available whole-genome/exome sequence 

data for use as external controls, they have predominantly been used for variant discovery before 

researchers develop microarrays to genotype the target populations (Derkach et al., 2014). 

Several factors hinder the use of sequence data in similar ways as the microarray data. The 

common practice of analyzing sequence data involves first aligning the sequence data to 

common reference genome to create BAM files using SAMtools (H. Li et al., 2009) and then 

applying variant calling algorithms using tools such as GATK (DePristo et al., 2011) to obtain 

called genotypes. In whole genome/exome sequencing, samples tend to be sequenced at lower 

depths overall (4-10x for WGS and ~30x for WES) as compared to microarray data. When 
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internal and external samples are sequenced at different depths, samples sequenced at lower read 

depths would be more prone to biased genotype calls. In addition, different genotype calling 

algorithms could further contribute to such bias. If typical quality control procedures are applied 

to remove variants with low read depths and low quality, large number of variants could be 

removed, including valuable causal rare variants. 

 Several recent methodologic developments have attempted to use sequence data from 

publicly available control groups for case-control association tests that allow for differential 

sequencing depths between internal cases and external controls. Derkach (Derkach et al., 2014) 

proposed a score test that replaces the called genotypes with their expected values given read 

data and developed a robust variant estimate to prevent type I error inflation. Derkach considered 

a retrospective setting by treating the true genotype as unknown, but instead built a joint 

likelihood model relating the phenotype and underlying genotype via the observed sequence 

data. As such retrospective setting requires the probability model between variables to be 

specified, it cannot adjust for covariates whose probabilistic function with the genotype is 

unknown. Extending Derkach’s method, Chen and Lin (Chen & Lin, 2018) proposed regression 

calibration (RC)-based and maximum-likelihood (ML)-based methods to adjust for differential 

sequencing errors between internal cases and external controls. These methods allow for 

variant’s effect size estimation, with the assumption that weak confounding from population 

stratification are the only potential confounders. However, similar to Derkach’s method, Chen 

and Lin’s method was based on a retrospective model and thus does not allow for covariate 

adjustment such as age or gender. Hu et al. (Hu, Liao, Johnston, Allen, & Satten, 2016) proposed 

a likelihood-based method that directly models sequencing reads without calling the genotypes. 

This method first estimates the single nucleotide variant (SNV) locations and then applies a 

burden-type test to assess the significance of the association between a SNV and the phenotype. 

This method, however, still does not allow for covariate adjustment, including population 

stratification. 

One major shared drawback of the above-mentioned methods is their lack of ability for 

covariate adjustment. Confounders such as age, gender, population stratification could have 

major impact on the disease risk and thus are essential in assessing the relationship between 

genetic variants and the phenotype. In Chapter 2 and 3, we proposed the iECAT-Score methods, 

which are score-based methods that allow for covariate adjustment in the logistic regression 



 62 

model while integrating external control samples. The iECAT-Score single variant and region-

based tests use genotype data to assess the batch effect between internal and external control 

samples. Hence, the performance of the iECAT-Score tests depends on the confidence of the 

comparison between the two sets of samples using called genotype data. In sequence data, the 

quality of genotype calls is subject to many factors such as read depth, genotype-calling error 

rate, quality control (QC) pipelines, etc., all of which could result in bias in the estimation of 

minor allele frequencies (MAFs), leading to batch effect between the two sets of control samples. 

Although QC filters are often applied to include only genotype variants of “good quality” to use 

in the analysis, such an application does not guarantee that the bias in the estimation of MAFs is 

removed. It appears that in fact, the bias in the estimation of MAFs could be accentuated by 

applying stringent QC filters (Derkach et al., 2014). Thus, different QC pipelines applied 

between internal and external study samples could result in a more profound batch effect. In 

addition, applying QC filters could drastically reduce the number of variants available for 

analyses, especially for low-to-medium coverage sequencing (Nielsen, Korneliussen, 

Albrechtsen, Li, & Wang, 2012; Nielsen, Paul, Albrechtsen, & Song, 2011). 

 Compared to the hard called genotype, which is the most likely genotype given the read 

data, the expected genotype, or genotype “dosage”, is calculated to be the weighted average of 

all possible genotypes given their respective posterior genotype likelihood and accounts for the 

uncertainty about the true genotype (Zheng, Li, Abecasis, & Scheet, 2011). Given sequence read 

data, genotype likelihood could be calculated as a function of read depth and genotype-calling 

error rate. Hence, genotype dosage, which inherently contains information on the uncertainty of 

underlying true genotypes given sequenced read data, offers a potential tool improve the 

performance of iECAT-Score methods when applied to whole genome/exome sequence data. 

 In this chapter, we first simulated the effect of various factors in the genotype calling 

pipeline on the estimation of MAFs (Sections 4.2.1-4.2.2). The major factors of interest included: 

read depth, genotype-calling error rate, and genotype quality score (often used in QC filtering 

procedure). Then we assessed the distributions of these factors in real data, the observed 

inconsistency of MAF estimation using called and expected genotypes (Section 4.2.3), and how 

these observations inspired us to integrate the genotype likelihood in our methods of iECAT-

Score tests (Section 4.2.4). We discussed strategies to replace called genotypes with genotype 

dosages in the iECAT-Score testing framework (Section 4.3.1) and performed simulation studies 
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to compare the performance of the tests using called genotypes and genotype dosages in 

sequence data (Section 4.3.2). Then we applied our proposed methods to sequence data of the 

Myocardial Infarction Genetics Exome Sequencing Consortium (Myocardial Infarction Genetics 

Consortium, 2009) and the UK Biobank (Bycroft et al., 2018) (Section 4.3.3). We present the 

results from simulation studies and read data analysis in Section 4.4. 

4.2 Exploratory Investigation: Variables in Genotype Calling Pipelines 

4.2.1 Read depth, base-calling error rate, and genotype quality score 

In this section, we describe the key steps in the sequencing and genotype calling procedures 

where several parameters have an impact on the final called genotype. For a given locus, the 

sequencer detects the existence of a certain base by reading multiple number of times (read 

depth). Then based on this read data, a posterior probability of the genotype at this locus is 

calculated, implying the relative likelihood of the true genotype being 0/0, 0/1, or 1/1. Finally, a 

called genotype is assigned based on the posterior probability of the genotype. 

 Consider a study of sample size _. We assume a true unobserved genotype B)= for 

individual H at locus O. The joint likelihood model of the phenotype 5) and the sequence data ú)= 

is given by 

Pr S, = (57, … , 5*), 	ù = Kú7= , … , ú*=LT = ∏ K∑ Pr(5)|B)= = I)Pr(B)= = I, 	ú)=)5
i64 L*

)67 . The 

sequence read data ú)= consists of @)= reads, where each read randomly picks up the base of one 

of two alleles at the locus B7 or B5. Hence, given the true genotypes B)=, the likelihood of 

observed reads ú)= is defined as eKú)= = (I7, … , 	IK)áB)= = B7B5L = ∏ ü7
5
e(IY|B7) +

K'-
Y67

7

5
e(IY|B5)†, where e(IY|B-), t = 1, 2, is the probability for a sequencer to detect a base given 

the allele B-. When reading a base at a locus for the }-th time among the @ reads, there is a 

chance that the true base is not being correctly detected with a base-calling error rate: the 

probability of the sequencer not picking up the base given the allele B- is denoted as âY!#; the 

probability of the sequencer picking up the base when the allele is not B- is denoted as âY#!. 

Thus, given a true allele B-, the probability of seeing a base from a sequencer is e(IY|B-) =
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°
âY47, 	IY ≠ B-

1 − âY74, 	IY = B-
. In a VCF file, the locus-level parameter QUAL is the Phred-scaled probably 

of the base-calling error rate. Hence, a value of 10 indicates one in ten chance of base-calling 

error. 

Using the conditional probability described above, a posterior probability of genotype B)= 

given the read data ú)= consisting of @ reads, often referred to as the posterior genotype 

likelihood, is calculated using the Bayes rule eKB)= = I)=áú)=L =
ePj'-Re(k'-|j'-)

e(k'-)
 (Nielsen et al., 

2012). After obtaining the posterior probabilities for all possible genotypes I)= = 0/0, 0/1, 1/1, 

we assign B(7) and B(5) to be the two genotypes with the two highest posterior likelihoods. To 

describe the confidence of the genotype being B(7) over B(5), a log-odds score calculated as the 

log10-scaled ratio of the largest two posterior probabilities by log74
mn	(j(!)|Ka,`	`,+,)
mn	(j(&)|Ka,`	`,+,)

. If this log-

odds score is larger than a filtering threshold R, then the called genotype is assigned to be B(7); if 

this log-odds score is smaller than R, the called genotyped is assigned to be missing due to low 

confidence. In a VCF file, the sample-level parameter PL indicates the Phred-scaled posterior 

likelihood of each genotype; the genotype quality score GQ is the difference between the PL 

scores of the second most likely and the most likely genotypes. Hence, if B� > £, the genotype 

is being called as B(7); if B� < £, the genotyped is assigned to be missing. 

Hence, the called genotypes a discrete function of GQ, taking values of either B(7) the “best 

guess” or missingness. In practice, a quality control filter is usually applied before using called 

genotype data for analyses (Lazaridis et al., 2014). Sometimes a VCF file include fields such as 

read depth, the Phred-scaled posterior likelihood of each genotype and/or the genotype quality 

scores for each sample at each locus. An alternative genotype dosage, or the “expected 

genotype” is calculated by taking the expectation over the posterior distribution of B)= given read 

data ú)=: EKB)=áú)=L = ∑ I ×5
i64 eKB)= = I)=áú)=L. As compared to the called genotype which 

takes discrete values of 0, 1, 2, or NA, the genotype dosage takes continuous values ranging from 

0 to 2. 
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4.2.2 Biased MAF estimation using called genotypes - effects of read depths, base calling 

and genotype quality score 

To investigate whether MAF estimation using called genotypes could be influenced by read 

depths, base calling error rates, and genotype quality score filter, we performed simulation 

studies to assess the ratio between the MAF estimated using called genotypes and the “true” 

genotypes, as well as the ratio between the MAF estimated using expected genotype and the 

“true” genotypes by setting different values of these parameters. Specifically, we focused on rare 

variants, ranging the MAF from 0 to 0.01. The base-calling error rates were set to be 1e-02, 1e-

03, and 1e-04, representing the site-level QUAL score of 20, 30, and 40, respectively. We set R 

to be 0, 1, 2, and 5 as the filter being applied to the GQ score: when the GQ score is below R, the 

genotype is assigned to be missing; when R is equal to 0, there is no missing genotype calls. 

We present in Figure 4.1 the ratio between the MAF estimated using either called 

genotype or genotype dosages and the “true” genotypes when the true MAF ranged from 0 to 

0.01 for different base-calling error rates and read depths, fixing the GQ filter at 20. The MAFs 

calculated from called genotypes tended to underestimate the true genotypes, especially for sites 

of lower read depths and higher base-calling error rates; the bias of MAF estimation using 

genotype dosages, on the other hand, was smaller compared to using called genotypes. Figure 

4.2 shows the ratio of estimated MAF and “true” genotypes using called genotypes and genotype 

dosages, when various filter R was applied on the GQ score during genotype calling. As we used 

more stringent filter to call genotypes, higher read depths were required to achieve reliable 

estimation of MAF using called genotypes. Hence, given sequence data, applying filters on 

genotype quality does not necessarily make MAF estimation closer to the true MAF in called 

genotypes. When read depth was low and in rarer variants, applying a filter on the GQ score 

could further underestimate or overestimate the MAFs using called genotype. 
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Figure 4.1: Ratio of estimated MAF and “true” genotypes using called genotypes and expected genotypes, for different base-calling 
error rates and read depths. 
MAFs were estimated based on 10,000 samples. 
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Figure 4.2: Ratio of estimated MAF and “true” genotypes using called genotypes and expected genotypes, when varying filter R was 
applied on the GQ score when calling genotypes. 
MAFs were estimated based on 10,000 samples. 
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4.2.3 Distributions of genotype calling pipeline parameters and MAFs in real data 

We used sequencing data of the Myocardial Infarction Genetics Exome Sequencing Consortium 

(Myocardial Infarction Genetics Consortium, 2009) downloaded from dbGaP and the GotCloud 

variant calling pipeline (Jun, Wing, Abecasis, & Kang, 2015) to investigate distributions of read 

depths, base calling error rates, and genotype quality score observed in real data. This case-

control study consisted of 2,322 subjects with 1,452 cases of myocardial infarction and 1304 

controls. Exome sequencing was performed on the Illumina HiSeq system. 

 For this investigation, we performed variant calling using GotCloud on sequencing data 

of 537 samples for chromosomes 21 and 22, and annotated variants of exonic regions using the 

ANNOVAR software (K. Wang et al., 2010). A total of 200,383 variants including 8,642 

variants of exonic regions passed the SVM filter (Jun et al., 2015). We first checked the 

distributions of mean read depths at all variants and at variants of exonic regions, Phred-scaled 

base-calling error rates at all variants, and GQ scores at all samples (Figure 4.3). The median of 

the mean read depths was 3.29, showing a large proportion of variants with low average read 

depths across samples (Figure 4.3, panel a), which was expected from whole exome sequencing 

data. The median of the mean read depths in the exonic regions was 100 and the 5% quantile of 

the mean read depths in the exonic regions was 17 (Figure 4.3, panel b). The 5% quantile of 

QUAL scores was 28, i.e., more than 5% of all sites had an estimated base-calling error rate 

greater than 0.001 (Figure 4.3, panel c). The 10% quantile of GQ scores was 22, indicating that 

10% called genotypes would be missing when we set a filter R of 2.2 in genotype calling (Figure 

4.3, panel d). 
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Figure 4.3: Distributions of mean read depths, base-calling error rates, and GQ scores in 

Myocardial Infarction Genetics Exome Sequencing Consortium data. 

Distributions of mean read depths at all variants (a), mean read depths at variants of exonic regions (b), 
Phred-scaled base-calling error rates at variants (c), and GQ scores (d) at samples. In panel (a), the red 
dashed line represent the 50% quantile of mean read depths; in panel (b), the red dashed line represent the 
5% quantile of mean read depths at variants of exonic regions; in panel (c), the red dashed lines represent 
QUAL scores corresponding to base calling error rates of 0.01 (left) and 0.001 (right); in panel (d), the red 
dashed line represent the 10% quantile of GQ scores of all variants and samples. 
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To check the MAF estimation between variants with low mean read depths as compared 

to those with high read depths, we first defined variants with mean read depths between five to 

twenty to be in the low read-depth group (Nielsen et al., 2011), and those with mean read depths 

greater than 40 to be in the high read-depth group. A total of 13,053 and 13,326 variants fell into 

the low read-depth group and high read-group, respectively. Within each group, we calculated 

the ratio of MAFs calculated using called genotypes and expected genotypes (called genotypes 

MAFs divided by expected genotypes MAFs) at each variant and checked the distribution of 

such ratios using histograms (Figure 4.4). Among the variants within the low read-depth group, 

the ratios of MAFs calculated using called genotypes and expected genotypes tended to be more 

scattered less than one; of variants within the high read-depth group, the ratios still tended to be 

less than one, although they were more centered towards one as compared to the low read-depth 

group. These observations indicated that the MAFs tend to be underestimated when called 

genotypes are used; such underestimation could be further accentuated among variants with low 

read depths. 

4.2.4 Implications from the exploratory studies - a proposal for better iECAT-Score 

methods 

Despite the observation that MAFs tend to be underestimated in variants with lower read depths, 

it would not be a good idea to filter out variants or genotype calls with low (mean) read depths or 

low (mean) genotype quality score (which is highly correlated with read depth). As we observed 

from the distributions of mean read depths across variants, most of the variants tend to have low 

mean read depths across samples. Although the mean read depths in the exonic regions tended to 

be higher, there were still a significant proportion of exonic variants whose mean read depths 

were lower than 20x. In fact, in our sample data set, about 6.6% of exonic variants had a mean 

read depth of 20 or lower, and applying a filter on read depths of 20 would significantly reduce 

the number of exonic variants that could be used for analyses. 
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Figure 4.4: Distributions of ratios of MAFs calculated using called genotypes and expected 

genotypes. 

Ratios of MAFs between called genotypes and genotype dosages (called genotypes MAFs divided by 
expected genotypes MAFs) in low read-depth group (a) and high read-depth group (b). 

Low Read-Depth Group High Read-Depth Group 
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Hence, in the setting of integrating external controls, in addition to the inherent bias in 

MAF estimation using called genotypes, the difference in read depths or quality control filters 

applied between the internal and external studies could lead to more differentiation in the MAF 

estimations based on called genotypes. When internal and external study samples are from the 

same population and we assume no population stratification exists, the minor allele frequencies 

at the same locus are expected to be indistinguishable. If the two samples are sequenced at 

different depths and disparate genotype called pipelines and quality control filters are applied, it 

would be possible to observe divergent MAF estimations using called genotypes from the two 

samples. Such differentiation could lead to more profound batch effect and potentially affect the 

type I error rate and power in association tests.  

Equipped with the implications from the exploratory studies above, we propose to exploit 

genotype dosage in the iECAT-Score methods. Genotype dosages are calculated from the 

posterior genotype likelihood, which is a function of read depths, base-calling error rates; the use 

of genotype dosages eliminates the need for applying a GQ score filter. Genotype dosages also 

result in less bias in MAF estimation, especially in loci of low read depth and possible base-

calling errors. By integrating genotype dosages, we hope to increase the number of variants 

available for analyses, reduce the bias in MAF estimation, obtain a better assessment of batch 

effect between internal and external samples, and thus improve the performance of the iECAT-

Score method. 

4.3 Methods 

4.3.1 Applying the posterior genotype likelihood to iECAT-Score Tests 

We incorporate the posterior genotype likelihood through the genotype dosage to the iECAT-

Score test, which is a score test for the variant effect on the phenotype of case or control, 

combining external control samples. We propose three methods to integrate the genotype dosage 

in place of the called genotypes into the single-variant iECAT-Score statistics, and strategies to 

calculate their respective variance estimates and p values for association. 
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Logistic Regression Models and the iECAT-Score Test 

The single variant score test for genetic effect in a study of sample size n are formulated from the 

logistic regression model 

 !"#$%[Pr(*! = 1	|/! , 1!)] = /!
"4 + 1!6 (4.1) 

where 7! = 0/1 is the dichotomous phenotype for control/case, /! = :;!#, ;!$, . . , ;!%=
"
 are the 

covariates, and > = (1#, 1$, . . , 1&)" are the genotypes at a variant for n subjects (1! = 0, 1, 2 

represent 0, 1, 2 copies of the minor allele). In this equation, 4 is a @ × 1 vector of coefficients 

for @ covariates including an intercept, and 6 is the genotype effect at the variant of interest. 

Assessing whether the association exists between the phenotype *! 	 and the genotype at a variant 

is equivalent to testing B': 6 = 0 in Equation (4.1). To test the association between a single 

variant and the phenotype, we use the score test statistic 

D = >"(E − GH) 

where G = {J!} = {Pr(*! = 1	| ;!)} under B', and Ĵ! is the maximum likelihood estimate of J!. 

Under the null hypothesis of no genetic effect, M(D) = 0 and NOP(D) = ∑ 1R!
$Ĵ!(1 − Ĵ!)

&
!(# ), 

where >S = {1R!} = > − /(/"T/))*/"T> is the covariate-adjusted genotype vector, and T =

U$O#{Ĵ!(1 − Ĵ!)}. Then 
+!

,-.(+) asymptotically follows V#
$
, and a p value can be obtained as @ =

W(V#
$ > +!

,-.(+)). 

 To integrate the external controls while controlling the type I error rates, the iECAT-

Score test statistics takes the form of a weighted sum of the score statistics calculated using 

exclusively internal samples and using the combined samples 

 D1 = OYD!&2 + (1 − Y)D-33 (4.2) 

where  D!&2 = >!&2
" (E!&2 − GH!&2), D-33 = >-33

" (E-33 − GH-33), O =
(&"#4&$# )(&"#&$#4&"#&$%)
&"#&$# (&"#4&$#4&$%)

 to adjust for 

the sample sizes, and Y = 5"
#45"

 with Y# =
+#&%!

,-.(+#&%)
 assesses the batch effect. The asymptotic 

distribution of 
+'!

,-.(+')
 approximately follows a V#

$
. Thus, a p value can be approximated by 

W(V#
$ > +'!

,-.(+')
	). Details on deriving the iECAT-Score statistic and its variance can be found in 

Chapter 2 and Appendices. 
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Genotype Dosage in Place of Called Genotype 

When posterior genotype likelihoods are available, the genotype dosage (expected genotype) can 

be calculated as 16 = ∑ # × Pr	(1 = #|Z)7(',#,$ , where Pr	(1 = #|Z) is the posterior 

probability of the true genotype is # = 0, 1, 2, given read data Z. Consider a generic score test 

statistic D = >"(E − GH). A natural choice to use the genotype dosage in the score test is to 

substitute the called genotype 1 by their genotype dosage 16 given the observed sequence data, 

i.e. D6 = >6
" (E − GH). Variance of D6 is calculated under the logistic regression model 

assumption in Equation (4.1), given by NOP9(D6) = ∑ 16[ !
$
Ĵ!(1 − Ĵ!)

&
!(# ), where >6[ = {1R6!} =

>6 − /(/"T/))#/"T>6 is the covariate-adjusted genotype vector, and T = U$O#{Ĵ!(1 − Ĵ!)}. 

To apply the genotype dosage in the iECAT-Score test, we replace the called genotype with the 

genotype dosage to construct the three score statistics using internal samples exclusively D6,!&2 =

>6,!&2
" (E!&2 − GH!&2), the combined samples D6,-33 = >6,-33

" (E-33 − GH-33), and the combined 

control samples D6,:;< = >6,:;<
" (E:;< − G\:;<). The iECAT-Score test statistic using genotype 

dosage is given by D6,1 = OY6D6,!&2 + (1 − Y6)D6,-33 where Y6 =
5(,"

#45(,"
 with Y6,# =

+(,#&%!

,-.=+(,#&%>
. 

The model-based variance estimates for D6,!&2, D6,-33, and D6,:;< are NOP] 9:D6,!&2=, NOP] 9:D6,-33=, 

and NOP] 9:D6,:;<=. Then a p value for association can be calculated following the iECAT-Score 

testing framework, with the iECAT-Score test statistic D6,1 and its model-based variance 

estimate NOP] 9:D6,1=. 

Derkach (Derkach et al., 2014) constructed a robust variance estimate for the score 

statistics by calculating the empirical variance of genotype dosages. As the genotype dosage is 

calculated as the expected genotype given the read data and the posterior probabilities of true 

genotypes, it is an empirical mean estimate of the true genotype 1, which is unobserved. Hence, 

inspired by Derkach’s method, we propose an alternative approach to estimate the variance of 

the generic score statistic D6 = >6
" (E − GH) and estimate its empirical variance by  NOP] <(D6) =

∑ NOP] :16!= × (*! − Ĵ!)
$&

!(# . This empirical variance estimate is similar to Derkach’s method by 

treating the unobserved genotype as random. The variation of the empirical genotype dosage can 

be decomposed into the variation of the true genotype in the samples, and the additional variation 

introduced in the sequencing and genotype calling procedures due to sequencing errors, read 

depths, and other factors (Supplementary Materials 4.6.1.1). After obtaining the empirical 
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variance estimate for the three score statistics NOP] <:D6,!&2=, NOP] <:D6,-33=, and NOP] <:D6,:;<=, we 

can calculate a p value for association using the iECAT-Score method based on the iECAT-

Score test statistic D6,1 and its empirical variance estimate NOP] <:D6,1=. 

4.3.2 Simulations 

We carried out simulation studies under a range of scenarios to evaluate the performance of the 

proposed iECAT score test regarding type I error rates and power. Under each scenario, we 

implemented tests including the internal-sample-exclusive test, the combined-sample test, and 

the iECAT test, each using the simulated true genotypes, the called genotypes, and the genotype 

dosage with two types of the variance estimates NOP] 9:D6,1=, and NOP] <:D6,1=. 

 For both type I error and power simulations, we first generated binary phenotypes of 

case/control from the true genotype from the logistic regression model: 

!"#$%[Pr(* = 1	| ;, 1)] = ^' + 0.5;# + 0.5;$ + 61 

where ;# was a continuous covariate generated from a standard normal distribution, ;$ was a 

dichotomous covariate with the probability of 0.5 being 0 or 1, ^' was chosen such that the 

disease prevalence was 0.05, 1 is the genotype at the variant of interest generated from a 

binomial (2, MAF) distribution, and 6 is the effect size of the variant. For internal samples, MAF 

was sampled from the MAF distribution in the AMD data; for external control samples, MAF 

was the corresponding minor allele frequency of the same variant in the MGI data. 

 After generating the true genotypes for both internal and external study samples, we 

simulated their sequence reads data at each locus for each sample. For internal samples, we 

simulated read depth from a normal distribution with mean 70 and a standard deviation 60% of 

its mean; for internal samples, we simulated 95% of the read depths from a normal distribution 

with mean 25 and a standard deviation 60% of the mean, and the rest 5% of the read depths from 

a `(6, 3.75).  Such choices of the read depth distributions mimic the read depth distributions in 

we observed in the internal study of MIGen and external study of UKBiobank data. We also 

simulated alternative scenarios of read depths from a normal `(40, 24) distribution for both 

internal and external samples. The base-calling error rate was randomly generated from 

`(10)?, 0.025) and left truncated at 0. Using the simulated sequence read data, we calculated 

the posterior genotype likelihood based on the simple Bayesian genotyper as described in 
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Section 4.2, and obtained called genotypes using GQ filters 0, 2, and 5. We also calculated the 

genotype dosage using the posterior genotype likelihood. 

As the number of samples whose data are available could vary between variants in real 

data, we chose to simulate sample sizes separately for each variant. The internal cases: internal 

controls: external controls sample size ratio is approximately 1,000: 1,000: 5,000 or 10,000, with 

the exact sample sizes generated from the following distributions: Uniform(600, 1400); 

Uniform(600, 1400), and Uniform(4000, 5000) or Uniform(8000, 10000), consistent with 

common scenarios where large external controls are available. In type one error simulations, 6 =

0. We generated 5 × 10@ datasets to evaluate type I error rates at 5 × 10)? and 5 × 10)A level. 

In power simulations, 6 was set to values from a grid of log(1.1) , log(1.15) , … , log	(1.5), 

representing the odds ratio (OR) of 1.1, 1.15, …, 1.5 for the causal variant. We generated 10@ 

data sets in each setting of effect size and case-control ratio to evaluate empirical power at the 

significance level of 10)B. 

4.3.3 Real data analysis 

We applied our proposed methods using genotype dosage to exome sequence data from the 

Myocardial Infarction Genetics Exome Sequencing Consortium (MIGen) (Myocardial Infarction 

Genetics Consortium, 2009) downloaded from dbGaP. We used sraToolkit (Leinonen, Sugawara, 

Shumway, International Nucleotide Sequence Database Collaboration, 2011) and GotCloud 

variant calling pipeline (Jun et al., 2015) with the HapMap (McCarthy et al., 2016) panel to call 

variants. The MIGen dataset consists of 1,216 cases and 1,033 controls of myocardial infarction. 

As external controls, we used 9,210 unrelated samples from the UK Biobank (Bycroft et al., 

2018). We used ICD-9 codes to select individuals from UK Biobank who are free from 

myocardial infarction. We applied the Fruposa software (Zhang et al., 2020) on called genotypes 

with the 1000 Genomes reference (The 1000 Genomes Project Consortium, 2015) to obtain 

genetic principal components. For ancestry matching of internal and external samples, we 

matched samples whose first two principal components fall into the mutual major cluster based 

on the Euclidean distance. 

We first carried out quality control steps remove loci of low quality. Within each locus, 

we removed samples whose read depth was less than five; then we removed loci which failed 

either of the following filters: (1) monomorphic in internal or external samples; (2) sample size 
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of non-missing entries is fewer than 100; (3) the MAFs in internal and external samples differ 

beyond five folds. We performed analyses on the variants that passed the quality control filters to 

compare the performance of our proposed iECAT-Score applied to genotype dosage and called 

genotype. We used a logistic regression model to test for the association between the disease 

status of myocardial infarction and genetic variants that are shared by MIGen and UK Biobank 

data sets, adjusting sex and first ten principal components. We compared the performance of 

iECAT-Score, iECAT-Score minP, and methods that exclusively use internal samples and that 

naively combine control samples without adjusting for batch effect. When using genotype 

dosage, we exploited the three strategies as described in Section 3.1 to obtain the variance 

estimate of the score statistics; when using called genotypes, GQ filters of 0 or 50 were applied 

to obtain genotype calls below which genotype was set to be missing. We also compared the 

performance of our proposed methods using genotype dosage with the method proposed by 

Derkach without covariate adjustment. 

4.4 Results 

4.4.1 Type I error and power simulations 

We present in Table 4.1 the type I error rates of the tests that exclusively use internal samples, 

tests that naively combine control samples, and two versions of the iECAT-Score test at the 

significance level of 1e-04. For each test, we compare the type I error rates using the simulated 

true genotype, called genotypes with varying GQ filters, and genotype dosages with two variance 

estimate strategies. The results show that naively combining controls could result in type I error 

inflation secondary to batch effect, regardless of the type of genetic data used. The iECAT-Score 

methods using called genotypes have improved control of type I error rates; however, they still 

have risk some level of inflation, depending on the GQ filters applied during the genotype calling 

procedures. When applied to genotype dosages, the iECAT-Score methods with either variance 

estimating strategy demonstrate proper for type I error control in all settings.  
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Table 4.1: Type I error rates at 1e-04 level of comparing the following methods: method using 

exclusively internal samples, method that naively combines control samples, and various 

versions of the iECAT-Score method. 

Shown under each method are type I errors using true genotypes, called genotypes with varying GQ 
filters, and expected genotypes using three variance estimate approaches. Values in the cells are ratios of 
their respective type I errors and the type I error using true genotype in the internal samples. The sample 
sizes of internal cases, internal controls, and external controls were 1000, 1000, 5000, respectively. A 
total of 5e06 datasets were generated to estimate the type I error rates at the significance level of 1e-04. 

Mean Read Depth 
(internal cases: 

internal controls: 
external controls: 

Type of 
Genotype 

GQ Filter 
(called 

genotype 
only) 

Internal 
Naïvely 

combining 
controls 

iECAT-
Score 

iECAT-
Score 
minP 

Internal 
vs. 

external 

40: 40: 40 

True / 0.40 0.92 0.42 0.41 1.48 

Called 
0 0.43 11.88 0.41 0.37 33.1 
20 0.42 12.72 0.62 0.52 2.13 
50 0.56 4.54 1.58 1.12 6.16 

Expected !"#!(%")  0.46 12.08 0.56 0.47 1.90 
!"#"(%")  0.42 12.43 0.64 0.54 1.90 

70: 70: 25 

True / 0.43 0.88 0.47 0.41 1.51 

Called 
0 0.44 0.97 0.43 0.38 1.76 
20 0.42 10.85 0.93 0.74 36.7 
50 0.41 177.2 17.01 15.28 370.0 

Expected !"#!(%#)  0.42 1.05 0.51 0.45 1.86 
!"#"(%#)  0.42 1.72 0.74 0.61 2.07 

 

 

 

 We compared the power of the iECAT-Score method, the iECAT-Score minP method, 

and the method that exclusively used internal samples, when applied to simulated true genotypes, 

called genotypes with GQ filters equal to 0, 2, 5, and genotype dosages at the empirical alpha 

level of 1e-04. Figure 4.5 shows the power comparisons for two settings of internal versus 

external read depths (U!: UC): (1) 40: 40 (top row); (2) 70: 25 (bottom row). In each scenario, the 

power of iECAT-Score minP test using genotype dosages reached powers almost as high as if 

the true genotypes were used. When called genotypes were used, the power was either similar to 

or lower than the case using genotype dosages, depending on relative read depths between 

internal and external samples and the GQ filters applied. 
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Figure 4.5: Empirical power comparisons between called genotypes and genotype dosages. 
Empirical power comparison of the iECAT-Score method, the iECAT-Score minP method, and the method that exclusively used internal samples, 
when applied to simulated true genotypes, called genotypes with GQ filters equal to 0, 2, 5, and genotype dosages at the empirical alpha level of 
1e-04. Shown are the power comparisons for two settings of internal versus external read depths ("!: ""): (1) 40: 40 (top row); (2) 70: 25 (bottom 
row). 
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4.4.2 Application to Myocardial Infarction Genetics Exome Sequencing (MIGen) Data 

We analyzed the association between single variants and myocardial infarction from the 

Myocardial Infarction Genetics Exome Sequencing Consortium (MIGen), using samples from 

UK Biobank with exome sequencing data as external controls. We matched samples’ genetic 

ancestry by matching samples whose first two principal components fall into the mutual major 

cluster with the Euclidean distance less or equal to 30 (Figure 4.6). After ancestry matching, the 

MIGen dataset consists of 1,145 cases and 1,025 controls of myocardial infarction; the 

UKBiobank consists of 8,606 controls. The female samples consist of 29.00% and 55.44% in 

internal cases and external controls, respectively; no female controls were present in the internal 

samples (Table 4.2). 

 

Figure 4.6:First two genetic principal component scores of MIGen and UKBiobank study 
samples. 
Shown in the gray circle are samples whose first two principal components fall into the mutual major 
cluster with the Euclidean distance less or equal to 30. 
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Table 4.2: Descriptive statistics of study subjects from internal (MIGen) and external 
(UKBiobank) studies. 
Shown in the table are the sample sizes, the number (percentage) of female samples, and mean (standard 
deviation of sample age in years in MIGen and UKBiobank data. 

Study Sample Size 
N 

Female 
N (%) Total 

 Cases Controls Cases Controls Total  
MIGen 

(internal) 
 

1,145 1,025 332 
(29.0) 

0 
(0) 

332 
(15.3) 2,170 

UKB 
(external)  8,606  4,771 

(55.4) 
4,771 
(55.4) 8,606 

Total 1,145 9,631 332 
(29.0) 

4,771 
(49.5) 

5,103 
(44.3) 10,776 

 
 

A comparison of the variant-specific median read depths for chromosome 22 in the 

internal samples with those in the external samples show that the internal study samples were 

sequenced at higher read depths with median read depths 67 (Figure 4.7); the median read 

depths in the external samples are 23 with some variants being sequenced at very low depths 

(<10). Comparing the estimated minor allele frequencies for corresponding loci between the two 

studies, we observed that the two studies tend to give similar MAF estimates; however, the two 

studies could give differentiating estimates at a large number of loci (Figure 4.7). 

After applying the quality control filters, 79,470 single variants were tested for 

association with myocardial infarction. Figure 4.8 compares the p values from the single variant 

association analyses using the iECAT-Score minP testing methods with genotype dosages and 

called genotypes with varying GQ filters (R = 0, 5). The results show that iECAT-Score with 

genotype dosages control type I error rates. When more stringent GQ filters are applied to obtain 

called genotypes, there are increased level of type I error inflation. We note that the type I error 

inflation using called genotypes is marginal from these analyses, especially when no GQ filters 

are applied (R = 0). We also examined the performance of the iECAT-Score method using 

genotype dosage and using called genotypes in various subsets of the data, stratified by read 

depths, minor allele frequencies, and sample sizes. Specifically, we made the following 

observations from the QQ plots based on the stratified data: (1) when the variant-specific median 

read depths in the external samples are low (ranging from five to 20, Figure 4.9), methods using 

called genotypes could result in inflation in type I error rates; (2) when available external sample 
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size is small (fewer than 500 external control samples, Figure 4.10), the iECAT-Score tests 

using called genotypes tended to be conservative as compared to using genotype dosages; (3) 

among rare variants with minor allele frequencies less than 0.01 (Figure 4.11), the iECAT-Score 

test using genotype dosages could be more powerful than using called genotypes. We further 

compared our methods of iECAT-Score in data analysis with Derkach’s method, which does not 

require internal controls to be available. As Derkach’s method does not adjust for covariates, we 

applied the iECAT-Score method without including the covariates or population principal 

component scores for a fair comparison. Contrary to the iECAT-Score method which controlled 

for type I error, both Derkach’s tests resulted in significant type I error inflation (Figure 4.12). 
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Figure 4.7: Distributions of median read depths and minor allele frequencies (MAFs) in internal and external samples. 
Distributions of variant specific median read depths of Chromosome 22 in internal samples (left panel), external samples (center panel), and minor 

allele frequencies (right panel). In the right panel, shown in red color are variants whose internal and external sample minor allele frequencies are 

within five-fold difference. 
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Figure 4.8: QQ plots for p values from analysis of MIGen and UKBiobank data using the iECAT-Score minP method. 
P values calculated using the iECAT-Score minP methods applied to genotype dosages (left panel) and called genotypes with varying GQ 
filters (R = 0, 5, middle and right panel). 
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Figure 4.9: QQ plots for p values from analysis of MIGen and UKBiobank data using the iECAT-Score minP method in variants of 
low median read depths. 
P values are calculated applied to genotype dosages and called genotypes with varying GQ filters (R = 0, 5). Shown are variants whose variant-

specific median read depths are fewer than 20 in UKBiobank samples. 
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Figure 4.10: QQ plots for p values from analysis of MIGen and UKBiobank data using the iECAT-Score minP method in variants of 
small sample sizes. 
P values are calculated applied to genotype dosages and called genotypes with varying GQ filters (R = 0, 5). Shown are variants whose variant-

specific available UKBiobank sample size is fewer than 500. 
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Figure 4.11: QQ plots for p values from analysis of MIGen and UKBiobank data using the iECAT-Score minP method in rare 
variants. 
P values are calculated applied to genotype dosages and called genotypes with varying GQ filters (R = 0, 5). Shown are variants whose minor 
allele frequencies in UKBiobank samples is less than 0.01. 
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Figure 4.12: QQ plots for p values using Derkach’s method. 
P values are calculated from analysis of MIGen and UKBiobank data using Derkach’s method without using internal controls. 

Derkach’s method without using internal controls 
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 We present in Table 4.3 the top four variants using the iECAT-Score method applied to 

genotype dosages, among which two variants within genes RBPJ and MUC2 reached or were 

close to the genome-wide significance level of 5e-08. On the contrary, no SNPs reached the 

genome-wide significance level of 5e-08 using either the iECAT-Score with called genotypes or 

tests that exclusively used internal samples. We note that none of the presented top variants have 

comparable p values when internal samples were exclusively used or if called genotypes were 

used in the iECAT-Score tests. However, the genes linked to the top variants have been reported 

to be associated with myocardial infarction or cardiac functions, indicating their biologic 

plausibility. Specifically, RBPJ (recombination signal binding protein for immunoglobulin kappa 

J region) is a high-level modulator of cardiomyocytes in myocardial angiogenesis (He et al., 

2018; Scimia et al., 2019); the expression of secretory mucins MUC2 is associated with 

important clinicopathological characteristics in patients with cardiac myxoma (P.-H. Chu, Jung, 

Yeh, Lin, & Chu, 2005); the epigenetic dysregulation of clustered PCDHs has been observed in 

Williams-Beuren syndrome (WBS), which is characterized by cardiovascular abnormalities and 

other impairments (Gurda, Handschuh, Kotkowiak, & Jakubowski, 2015); SNRPB2 

(ribonucleoprotein B) is a splicing-related gene that may have a global activating or inhibiting 

effect on genes whose expression is related to left ventricular hypertrophy (LVH), which is 

associated with hypertension and is a cardiovascular risk factor (Cerutti et al., 2006). 

4.5 Discussion 

Using publicly available sequenced data as external controls is a cost-effective approach to 

increase statistical power in case-control studies. However, using called genotypes generated 

from sequence data could result in inflation in type I error rates in methods that integrates 

external controls, including our own iECAT-Score method. In this chapter, we explored the 

effects of various factors in the sequencing and genotype calling process that could result in 

biased minor allele frequency estimation. Based on our findings, we proposed to replace the 

called genotypes with genotype dosages in the iECAT-Score methods to better adjust for the 

batch effect between internal and external samples. Compared to the iECAT-Score methods that 

use called genotypes, the iECAT-Score coupled with genotype controls for type I error rates 

improves power to detect rare variant associations. 
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Table 4.3: Top four variants from analysis of association with myocardial infarction based on iECAT-Score minP method using 
genotype dosages. 
Shown are allele frequencies estimated using called and expected genotypes, minor allele frequencies in European population of corresponding 
variants in the dbSNP database, median read depths in internal and external samples, p values of analyses from exclusive usage of internal samples 
with genotype dosage and using the iECAT-Score method with genotype dosage and called genotype. 

Signal 
Number 

Index variant  
Minor allele frequency  

(called genotype,  
genotype dosage) 

 
   p values 

Name dbSNP ID Chr:Pos 
Major 

/  
minor 
allele 

Internal External Combined  Median 
Read 
Depth 

(internal, 
external) 

  

   Case Control Control Control All 

dbSNP 
EUR 
MAF 

iECAT-
Score 
minP 

(genotype 
dosage) 

Internal 
(genotype 
dosage) 

iECAT-
Score 
minP 

(called 
genotype) 

1 RBPJ rs3113014 4:26406256 T/C 8.22e-04 
8.22e-04 

3.87e-03 
3.87e-03 

2.99e-03 
5.05e-03 

3.08e-03 
4.92e-03 

2.84e-03 
4.49e-03 

7.00e-03 61 
12 2.27e-16 1.26e-01 1.00e-01 

2 MUC2 rs9735156 11:1099733 T/C 1.64e-03 
2.09e-03 

3.87e-03 
4.90e-03 

9.23e-04 
4.50e-03 

1.24e-03 
4.54e-03 

1.28e-03 
4.27e-03 

1.45e-03 92 
17 5.08e-08 1.72e-01 1.76e-01 

3 PCDHB7 rs116101007 5:141174295 T/C 1.52e-02 
1.52e-02 

5.81e-03 
5.81e-03 

5.05e-03 
5.65e-03 

5.13e-03 
5.66e-03 

6.20e-03 
6.68e-03 

4.45e-03 221 
123 1.06e-07 8.38e-03 8.69e-04 

4 SNRPB2 rs141440350 20:16732309 A/G 1.64e-03 
1.64e-03 

4.85e-03 
4.85e-03 

1.64e-03 
3.75e-03 

1.90e-03 
3.84e-03 

1.87e-03 
3.61e-03 

2.35e-03 50 
12 1.78e-06 1.26e-01 1.93e-01 
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The simulation studies showed that iECAT-Score methods using genotype dosages better 

control for type I error rates and have improved empirical power in the case of low read depths 

compared to using called genotypes. Analysis of the myocardial infarction from the Myocardial 

Infarction Genetics Exome Sequencing Consortium and UK Biobank data revealed that iECAT-

Score can improve power for association discovery for variants with low minor allele 

frequencies. 

The quantile-quantile plots from real data analysis showed increased level of inflation 

when more stringent filters were applied to the genotype quality scores to obtain called 

genotypes; however, such inflation was less profound as compared to what we observed from the 

simulation studies. In simulation studies, we aimed to examine the effect of sample sizes, read 

depths, and genotype quality filters on the performance of our iECAT-Score method. Although 

we attempted to mimic the distributions of various parameters in the simulation studies as in the 

real data, the real data tend to contain a mixture of scenarios that are challenging to fully imitate 

via simulations. We examined the performance of the iECAT-Score method using genotype 

dosage and using called genotypes in various subsets of the data, stratified by read depths, minor 

allele frequencies, and sample sizes (Figures 4.9, Figure 4.10, Figure 4.11). The stratified QQ 

plots revealed that the trend of inflation or deflation, which might be present in certain strata of 

the data, became less obvious when the strata are collapsed. 

 In our first project (Y. Li & Lee, 2021) where we proposed the single-variant iECAT-

Score test using called genotypes, we noticed via simulation studies, that when the number of 

internal or external control samples is limited, our method could deliver conservative or anti-

conservative performance. As the iECAT-Score method assesses the existence of batch effect via 

a control vs. control comparison, it would not be unusual that having abundant control samples, 

or the lack thereof, could affect the performance of the iECAT-Score tests. Our stratified QQ 

plots showed that, on the contrary, using genotype dosages could rescue the deflation of the 

iECAT-Score test among variants where the external control sample size was limited. Hence, 

genotype dosages could offer more reliable assessment of the batch effect between internal and 

external controls and potentially improve the power for association test when there are fewer 

control samples available. 
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 The top hit variants from the iECAT-Score test using genotype dosages indicated a few 

association signals with myocardial infarction. These variants have been discussed in multiple 

references to be involved in important pathways of the cardiac related diseases; however, they 

did not show significance if the traditional called genotypes were used, or if the internal samples 

were exclusively used. One common feature of these top significance variants is that their minor 

alleles are present in low frequencies in the population (< 1%). In fact, the stratified QQ plots 

focusing on the rare variants (MAFs < 1%) also revealed that the iECAT-Score test using 

genotype dosage could offer improved power in discovering association signals when the minor 

allele frequency is low in the population. The results of additional simulation studies focusing on 

rare variants (Supplementary Figure S4.1) were consistent with our observations in real data. 

 Both the internal study of Myocardial Infarction Genetics Exome Sequencing Consortium 

and the external study of the UK Biobank consist of British samples. Surprisingly, when we 

compared the minor allele frequencies at same variants between the two study samples, we 

observed a decent number of variants whose minor allele frequencies differ significantly between 

the two sets of data (Figure 4.7, right panel). While the internal samples are sequenced at higher 

read depth overall, we do not believe that the differences in their estimated minor allele 

frequencies were a mere result of differences in the read depths. Using the MAFs in the 

European samples in the dbSNP database as reference, either internal or external samples could 

have MAF closer to the reference MAF (Table 4.3). Such observation indicates that the 

differential MAFs between different study samples are intrinsic properties of specific 

populations and thus are a result of underlying biology (e.g., unaccounted for genetic drift in the 

sampled populations) in addition to the technical factors (sequencing platforms, genotype calling 

pipelines etc.). Hence, it is necessary to include internal control samples from the same 

population of interest (i.e., the internal controls), as they serve as reference samples to be 

compared with the external control samples, informing us important biological differentiations as 

well as technical batch effect when integrating external study samples. Based on our simulations 

and data analyses from the previous chapters, a minimum of several hundred internal controls 

provides a reasonable starting point as reference. 

We compared our methods of iECAT-Score in data analysis with Derkach’s method that 

does not require internal controls to be available. Derkach constructed a robust variance estimate 

for the score statistics calculated from genotype dosages to avoid false discoveries, and yet we 
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still observed significant type I error inflation (Figure 4.12). Such inflation is likely the result of 

not having internal controls samples as reference and instead relying on the average read depths 

in internal cases and external controls to decide on whether the robust variance estimate is 

deployed. However, as we discovered in our data, the differences in MAFs between two study 

samples could be attributed to both disparate read depths and intrinsic biological differences. 

Therefore, we believe that it is crucial to rely on the internal controls versus external controls 

comparison to examine the level of batch effect before integrating external controls, to better 

avoid false discoveries secondary to batch effect. 

In summary, we extended the iECAT framework to be applicable to both whole 

genome/exome sequence data. As the sequencing cost continues to drop and large-scale biobanks 

become available, publicly available sequence data provide valuable resources to augment 

control sample size to assist association discoveries in case-control studies. When analyzing 

sequence data of moderate read depth, we recommend applying genotype dosages instead of 

using called genotypes with quality control filters. Using genotype dosages offer consistent MAF 

estimation, controls type I error rate, and improves power for association discovery especially in 

rare variants; opting to use genotype dosages also preserves more variants available for 

association testing. Our proposed method is extremely accessible, as it does not require SRA or 

BAM files to be available, instead only requiring posterior genotype likelihood, which is often 

provided in the VCF files through Phred-scaled genotype likelihood. Through the incorporation 

of the strategy to use genotype dosages, we develop a complete framework of integrating 

external controls that is applicable to both genotyped and sequencing data, further honing the 

statistical methods needed to identify disease-causing variants within the human genome. 

4.6 Supplementary Materials 

4.6.1 Validation of Theoretical Results 

4.6.1.1 Empirical variance !"#$ !%&",$' 

The genotype dosage ((*%) = ∑ . × 0#$(.|*%)&'(,),*  is an estimator of the unobserved true 

genotype 2%. We assume that 3(((*%)|2%) = 2%; marginally we assume 3(2%) = 4% = 4 and 

!"#(2%) = 5%
* = 5* for all 6. 
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Let & = 7+(8 − :;) be a generic score test statistic. Replacing the true genotype 7 with 

genotype dosage ((<), the score of interest is &" = 7"
+ (8 − :;) = ∑ 3(2%|*%)(=% − 4̂%)% =

∑ ((*%)(=% − 4̂% %). To estimate the variance of &", we want to estimate the variance of the 

estimator ((*%), i.e., !"#$ %((*%)'. 

Consider 

!"#%((*%)' = !"#(3[((*%)|2%]) + 3%!"#(((*%)|2%)'

= !"#(2%) + 3%!"#(((*%)|2%)' 
(4.1) 

 

where !"#(3[((*%)|2%]) = !"#(2%) = 5*. An estimator of variance of ((*%) would be 

!"#$ %((*%)' = 5*$ + !"#$ %(((*%)|2%)' (4.2) 

Some algebra: 

3%((*%)' = 3(3(((*%)|2%) = 3(2%) = 4 

3%(*(*%)' = 3B3%(*(*%|2%)'C = 3{!"#(((*%)|2%) + [3(((*%)|2%)]*	}

= 3{!"#(((*%)|2%) + 2%
*} = 3{!"#(((*%)|2%)} + 4* + 5* 

3%((*)GGGGGGG*' = 3 HI
1
K
L((*%)
%

M

*

N =
1
K*
O3 PL(*(*%)

%
+L((*%)((*%,)

%-%,
QR

=
1
K*
OL(3[!"#(((*%)|2%)] + 4* + 5*)
%

+ K(K − 1)4*R

=
1
K*
OL3[!"#(((*%)|2%)]
%

+ K*4* + K5*R 
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3 PL%((*%) − ((*)GGGGGGG'
*

%
Q = 3 PL(*(*%)

%
− K((*)GGGGGGG*Q =L3%(*(*%)'

%
− K × 3%((*)GGGGGGG*'

= OLS3B!"#%((*%|2%)'C + 4* + 5*T
%

R

−
1
K
OL3[!"#(((*%)|2%)]

%
+ K*4* + K5*R

=
K − 1
K

L3[!"#(((*%)|2%)]
%

+ (K − 1)5* ⟹ 3 O
1

K − 1
L%((*%) − ((*)GGGGGGG'

*

%
R

=
1
K
L3[!"#(((*%)|2%)]
%

+ 5* 

Hence, an unbiased estimator of 5* is given by 

5*$ =
1

K − 1
L%((*%) − ((*)GGGGGGG'

*

%
−
1
K
L!"#$ (((*%)|2%)
%

 (4.3) 

Substituting 5*$  into Equation (4.3), we have 

!"#$ %((*%)' =
1

K − 1
L%((*%) − ((*)GGGGGGG'

*

%
−
1
K
L!"#$ (((*%)|2%)
%

+ !"#$ %(((*%)|2%)' 

(4.4) 

where !"#$ (((*%)|2%) can be estimated using the posterior likelihood, as ((*%)|2% is a 

multinomial variable with probabilities approximated by the posterior genotype probabilities. 

Finally, the empirical variance estimator for &" = 7"
+ (8 − :;) = ∑ ((*%)(=% − 4̂% %) is 

given by 

!"#(&") =L!"#$ %((*%)' × (= − 4̂)*

%
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4.6.2 Supplementary Tables and Figures 
Figure S4.1: Power comparison for rare causal variants (MAF < 0.01) of the iECAT-Score minP 
method and the method that exclusively used internal samples. 
Shown are power comparisons when the methods are applied to simulated true genotypes, called 
genotypes with GQ filters equal to 0, and genotype dosages at the alpha level of 1e-04. Read depths 
indicates the simulated mean read depths of variants in internal and external samples, respectively. 
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Chapter 5 Conclusion 
 

 

In this dissertation, we proposed single variant and region-based score tests that allow for the 

integration of external controls for improved power in association tests. In Chapter 2, we 

developed a single-variant score test, iECAT-Score, based on the insight of the original iECAT 

test, that allows for covariate adjustment and constructs a shrinkage score statistic that is a 

weighted sum of the score statistics using exclusively internal samples and uses both internal and 

external control samples. Extending the iECAT-Score test, we constructed a region-based test in 

Chapter 3 to achieve improve power for rare-variant association test. In Chapter 4, we 

investigated the effect of multiple parameters during the sequencing and genotype calling 

process on the estimated minor allele frequencies; we suggested replacing called genotypes with 

genotype dosages when applying iECAT-Score tests to sequence data to reduce bias in minor 

allele frequency estimation and obtain improved power for detecting rare variants associations. 

In all three chapters, we showed via simulation studies and data analyses that our proposed 

methods control for type I error rates and have improved power to detect disease associated 

variants and genes. 

 The iECAT-Score tests are powerful tools for investigators to take advantage of the 

publicly available consortium genotype and sequence data to assist the association studies for the 

phenotype and population of interest. We should note that, our methods offer an alternative 

strategy to combine separate studies to achieve higher power as compared to meta-analysis. 

Meta-analysis uses summary statistics to combine results of individual studies to increase 

statistical power and precision in estimating genetic effects. There exist methods of meta-

analysis to assess inter-study heterogeneity and identify sources of heterogeneity. Contrary to 

meta-analysis, the iECAT-Score methods focus on improving the power for the study of interest 

through integrating existing resources as additional controls. Meta-analysis combines effect sizes 

or p values from independent studies, each consisting of cases and controls, whereas the iECAT 
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methods combines individual level data using the internal/primary case and control samples, and 

external controls. Hence, meta-analysis and iECAT provide different approaches to achieve 

improved power to detect disease-susceptible genes under distinct study settings. A direct 

comparison of the power between the two methods is outside the scope of this dissertation. 

 Our methods illuminate several major challenges that arise in the effort to combine study 

samples as large-scale consortia and biobanks become widely available to the public. 

Heterogeneity between studies including technical batch effect and population stratification 

could cause spurious discoveries if left unaccounted for. Our methods rely on the comparison 

between internal and external controls to assess the level of heterogeneity between the two 

studies and decides on a weight of external samples to be included. Such comparison detects 

heterogeneity such as differential distributions of allele frequencies, covariates, technical batch 

effect, and population stratification. Thus, the performance the iECAT testing suite depends on 

the quality and sample size of both internal and external data. Several other recently developed 

methods allow for exploiting external controls without requiring internal controls to be available. 

These methods use sequence data to adjust for the technical batch effect, but are not able to 

adjust for covariates such as age, gender. Thus, new methods that are able to adjust for covariates 

and heterogeneity of various sources without requirement on the control sample size (both 

internal and external) would be beneficial, as some studies primarily focus on 

genotyping/sequencing disease cases. 

 The current set up of the iECAT framework involves the internal study of cases and 

controls and one source of external controls. One area of future work involves extending our 

methods to allow for multiple sources of external controls. As iECAT uses a logistic regression 

model to assess the level of batch effect between the two sets of controls, it would be important 

to extend the method to account for the batch effect between internal samples and external 

samples, as well as the heterogeneity among the external samples. One possible strategy could be 

using propensity score matching to select subsets of external control samples and apply the 

iECAT testing methods. An alternative proposal would be to pool the external control samples, 

calculate propensity scores using internal and external controls, form bucketing case and control 

groups based on propensity scores, apply the iECAT methods within each bucket, and aggregate 

the results from the disjoint buckets with appropriate weights. Another extension that would 

worth pursuing involves taking account of related samples. As the sample size of large biobanks 
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continue to grow, it would not be unusual that related individuals exist in the same study. Thus, it 

would be beneficial for our methods to address relatedness when using such data. Mixed model 

association tests such as GMMAT (H. Chen et al., 2016), SMMAT (H. Chen et al., 2019), 

SAIGE (Zhou et al., 2018), and SAIGE-GENE (Zhou et al., 2020) provide helpful starting point 

for this extension. 

 In summary, in this dissertation we developed a powerful testing suite for integrating 

external controls into genetic association tests that are applicable to both genotyped and 

sequencing data. Our iECAT methods address some important challenges that arise as 

researchers leverage the existing genetic consortia and biobank resources that are widely 

available today. Through further research and validation, we hope that more methodological 

improvements will help us expand the toolkit for genetic association studies and the discovery of 

disease susceptible genes within the human genome.
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