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Abstract

Cosmology as a field has made rapid progress over the last 30 years, driven in large part by

a massive increase in observational data. Large-scale structure (LSS) surveys have played

a key role in this rise of ‘Precision Cosmology’, having grown from mapping the location of

thousands of galaxies to the hundreds of millions. As statistical errors plummet, however,

progress in the field increasingly hinges on our ability to model and control systematic errors

to an exquisite degree. Here we investigate the impact of systematic errors in LSS surveys

in three different cosmological contexts. These studies progress from quantifying the level of

calibration necessary to accurately perform specific analyses to developing practical methods

to correct for systematics in order to achieve such levels of calibration.

First we present a detailed study of the Integrated Sachs-Wolfe (ISW) effect and how

errors in the large scale photometric calibration of LSS surveys impact estimation of the

ISW signal. The ISW effect is an imprint of dark matter in the Cosmic Microwave Back-

ground and contains important information about dark energy, including possible signatures

for modifications to General Relativity. We quantify the necessary levels of calibration to

produce accurate reconstructions of the ISW map and power spectrum for next-generation

surveys. We provide a roadmap for ISW reconstruction, including the optimization of survey

configuration and an improved estimator to render the analysis more robust to calibration

errors.

Next, we perform a detailed study of the leading methods for removing spatially-dependent

systematic errors in galaxy surveys, such as those induced by interstellar dust, variable atmo-

spheric conditions, and other effects that modulate the observed number of galaxies across

the sky. We recast them into a common statistical framework, elucidating assumptions im-

plicit within each method and characterize their performance on a suite of simulations. We

propose extensions to current methods that are more robust, simpler to implement, and

exhibit greater suppression of systematic errors. We further derive uncertainty estimates for

the galaxy-level corrections, enabling the propagation of errors from the correction methods

into the LSS galaxy catalogs and any subsequent analyses that use them.

The final portion of this thesis focuses on small scale systematic errors in LSS analyses,

xix



such as arise from theoretical uncertainties in the non-linear growth of dark matter, bary-

onic effects, and other astrophysical phenomena. We characterize how errors in modeling

such small scales impact our ability to accurately infer the primordial power spectrum of

curvature fluctuations, which initially seeded structure in the early Universe. We show that

if unaccounted for, current and predicted modeling uncertainties can strongly bias measure-

ments of the “runnings” of the spectral index, key parameters for testing single-field slow-roll

models of inflation, thought to be responsible for the rapid, early expansion of the Universe.

We compare methods designed to mitigate such small-scale systematic errors and demon-

strate that, even with optimistic improvements in small scale modeling, only exotic models

of inflation will be testable via constraints on the runnings from near-future LSS surveys.

These three studies represent important steps for continued progress in the field and

towards ensuring that analyses of large-scale structure are robust and accurate in the era of

Precision Cosmology.
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Chapter 1

Introduction

Almost every culture has a cosmology — a description of the natural order of Universe and

how it came to be. Humans have always sought to understand our place in the cosmos, but

over the last ∼100 years, theoretical and technological developments have transformed this

pursuit into a rigorous science. We have developed a mathematical framework to describe the

dynamics and evolution of the Universe on the largest scales under different physical models,

and the technological tools that enable us to test these models against a growing body of

observational data that extend all the way to the earliest moments of the Big Bang. In the last

30 years in particular, leaps in observational capabilities have ushered in the era of so-called

‘Precision Cosmology’ and a standard cosmological model with sub-percent-level constraints

on the parameters thought to describe the composition and evolution of the Universe. Large-

scale structure (LSS) surveys have a played a key role in the birth of this new paradigm,

having grown from mapping the locations of thousands of galaxies around us to hundreds

of millions, allowing us to precisely test our understanding of how structure grows and how

the Universe evolves over time. This precision comes with formidable challenges, however;

as statistical errors continue to plummet, there is increasing risk that unmodeled, non-

cosmological effects can significantly bias results and masquerade as new physics. Progress in

the field increasingly relies on our ability to detect, characterize, and mitigate the impacts of

such systematic errors in our analyses. In this thesis, we investigate the impact of systematic

errors in LSS surveys in three different cosmological contexts. The results of these studies

will inform and improve our ability to probe the cosmos with the unprecedented volume of

data from upcoming large-scale structure surveys.

In this introduction, we give a brief overview of key facets of modern cosmology, including

our current understanding of the forces governing the dynamics of the Universe as a whole

and the assumptions and observations on which that understanding is based. We provide an

abbreviated history of key events in the Universe’s evolution and some of the mathematical
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framework used to connect observational data to our theoretical models, which will be useful

background for the body of the thesis beginning in Chapter 2. Much of this information can

be found in introductory cosmology texts, e.g. Refs. [29–33].

1.1 The Standard Model

The standard ΛCDM model of cosmology describes an accelerating Universe dominated by

an energy inherent to the vacuum of space itself (parameterized by Λ) and cold dark matter

(“CDM”), a non-relativistic form of matter that does not interact electromagnetically. These

comprise approximately ∼70% and ∼25% of the total energy density in the current Universe,

with only ∼5% making up the so-called “baryonic” matter that is the basis of everything we

know (planets, stars, coffee, etc.)1 We can infer this because of the theoretical groundwork

laid by Einstein and other early cosmologists 100 years ago, enabling us to relate the shape

and time evolution of the Universe to its energetic composition.

In a seminal 1917 paper, Einstein applied his recent general theory of Relativity to

the cosmos at large, relating mass and energy to the dynamics of spacetime itself. Believing

(without evidence) that the Universe should be static, he introduced a cosmological constant

Λ to perfectly counteract the gravitational pull of a matter-filled Universe.[34]

Building on this work, Soviet physicist Alexander Friedmann found exact solutions for

Einstein’s field equations for a Universe that is homogeneous (translationally invariant) and

isotropic (directionally invariant). These assumptions lead to a spacetime metric

ds2 = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dφ2

]
, (1.1)

where k encodes the curvature of space today2, c is the speed of light in a vacuum, and

the expansion or contraction of the universe as a whole is permitted and captured by an

overall scale factor a(t). a(t) then relates proper distances affected by Universal expansion to

comoving distances where this expansion is factored out, and the two are set to be equivalent

at present day (t0) with a(t0) = 1.

Eq. 1.1 is known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, in honor

of its independent derivation by Friedmann’s contemporaries. Much of modern cosmology is

built on the twin assumptions of large-scale homogeneity and isotropy of the Universe, such

1Note the term “baryonic” would normally refer only to matter that is made up of an odd number of
quarks, but cosmologists have a long history of defying norms so pretty much any non-relativistic standard
model particle counts.

2Just like the 2D surface of the earth is (positively) curved, with parallel lines eventually converging, 3D
space can be curved as well, with positive, zero, and negative curvature corresponding to the sign of k.
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that they are collectively termed the cosmological principle. Testing the validity of these

assumptions is still an active area of research (e.g. Ref. [35]).

Friedmann derived the equations governing the time evolution of the scale factor given

General Relativity, which are now referred to as the Friedmann equations:(
ȧ

a

)2

=
8πG

3
ρ(t) +

Λc2

3
− kc2

a(t)2
(1.2)

ä

a
= −4πG

3

(
ρ(t) +

3p

c2

)
+

Λc2

3
(1.3)

where G is a universal gravitational constant, Λ is Einstein’s cosmological constant, and ρ(t)

and p are the mass density3 and pressure of the Universe, both of which serve to decelerate

Universal expansion.

A third Friedman equation known as the continuity equation can be derived from the

first two and relates how the density changes at any given point in time as a function of

density and pressure:

ρ̇ = −3

(
ȧ

a

)(
ρ(t) +

p(t)

c2

)
(1.4)

This relation holds not just for the Universe as a whole, but also for individual and distinct

components that contribute to the total density, such as matter, radiation or dark energy.

These different components effectively act as distinct, perfect fluids and have different equa-

tions of state w relating their pressure to energy density (p = wρc2). Note that while Eq. 1.2

is only impacted by the density of each component, the acceleration given by Eq. 1.3 also

depends on pressure and thus the equations of state.

To understand how different components affect the expansion rate, it is useful to consider

simplified cases with only one component. Using the 0 subscript to denote a quantity eval-

uated at present day, we can write the time evolution of the density of a single-component

Universe with constant equation of state as

ρ(t) = ρ0a
−3(1+w). (1.5)

Non-relativistic matter has essentially no pressure and thus equation of state wmatter ≈ 0,

resulting in ρ(t) = ρM,0/a(t)3, the expected relation of density scaling as the inverse of

volume. Radiation is somewhat less familiar — in addition to the inverse-volume scaling

of the density of photons, the expansion of the Universe also stretches wavelengths of light,

3We will use the terms energy density and mass density somewhat interchangeably, recognizing that they
are related via a simple scaling of c2.
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inducing a so-called redshift, which results in the energy density of radiation dropping as

a−4, with wrad = 1/3.

While Eqs. 1.2 and 1.3 treat the cosmological constant as a separate entity, they can be

reformulated to treat it as another energy component with density ρΛ = Λc2/8πG. This

has no time dependence, implying wΛ = −1 (c.f. Eq. 1.5). This is the sense in which

the cosmological constant is interpreted as a type of “dark energy,” and in this case where

the energy density does not change with a, it can be interpreted as an energy inherent to

the vacuum of space itself.4 So far, the ΛCDM model provides a very good fit to existing

data, but it is possible that dark energy does not correspond to a vacuum energy and is

instead some other phenomenon. A more general parameterization allows the equation of

state to vary (typically denoted simply w), or to even be time dependent such as via the

CPL parameterization [37, 38] w(a) = w0 + wa(1 − a). Allowing either w or w0 and wa to

vary are two commonly-tested alternative models to ΛCDM, in the hopes of learning more

about the nature of dark energy.

We now define several parameters in order to rewrite Eq. 1.2 in a form that contains the

cosmological parameters as they are typically reported. The Hubble parameter characterizes

the relative expansion rate of the scale factor,

H(a) ≡ ȧ

a
, (1.6)

while the critical density of the Universe today is that required to ensure the Universe is flat

(i.e. k = 0):

ρcrit,0 =
3H2

0

8πG
. (1.7)

The energy density is usually reported as

Ωi = ρi,0/ρcrit,0, (1.8)

where i corresponds to matter, radiation, or dark energy. A flat Universe (as observations

suggest ours nearly is) then has ΩTOT ≡ ΩM + Ωr + ΩDE = 1.

Eq. 1.2 can then be written as

H2(a) = H2
0

(
ΩMa

−3 + Ωra
−4 + ΩDEa

−3(1+w) − ΩKa
−2
)
, (1.9)

where we have included the more general parameterization of dark energy with a free equation

4It is worth noting that quantum field theory predicts a vacuum energy, but one that is larger than dark
energy by some 120 orders of magnitude. Physicists have actually puzzled over why we don’t observe such
a strong vacuum energy since the 1980s, before dark energy was even discovered [36].
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of state, and it can be seen that in this Friedman equation, the effect of curvature is as an

effective energy component whose density dilutes as a−2.

This parameterization neatly separates the Hubble parameter today (H0, aka the Hubble

constant) from its time evolution. It also explicitly shows how the different energy densities

evolve with scale factor. A consequence of the different rates of dilution is that a multi-

component Universe will go through different epochs, where the behavior of H(a) is largely

governed by whichever term in Eq. 1.9 is dominant, and when these epochs occur is gov-

erned by the energy densities today. Eq. 1.9 forms the basis of using measurements of the

expansion history to constrain the cosmological parameters.

Using Eqs. 1.6 and 1.9, it is straightforward to solve for the time dependence of the

scale factor in a Universe that is dominated by each component (assuming a flat Universe,

Ωk = 0). Table 1.1 shows this along with other characteristics of single-component epochs.

Dominant Component w ρ(a) a(t) Redshifts Dominant

Radiation 1/3 a−4 t1/2 z ∈ [?, 3500]

Matter 0 a−3 t2/3 z ∈ [3500, 0.33]
Cosmological Constant (Λ) -1 a0 eHt z ∈ [0.33, ?]

Table 1.1: Characteristic behavior of the density and scale factor in a flat Universe
for various epochs where a single component dominated the energy budget.

The scale factor a is neatly related to a quantity that is directly observable: the cosmo-

logical redshift z. As space expands, it stretches the wavelengths of light traveling through it,

shifting them to lower frequency. Thanks to quantum mechanics, the precise and unique pat-

terns of allowed electron energy transitions within atoms allow for absorption and emission

spectra to function as extremely good identifiers of far-off elements even when their absolute

frequencies are shifted. By comparing the observed spectra to corresponding spectra at rest,

the redshift can be very precisely determined: 1 + z = λo/λe, where λo and λe correspond to

the observed and rest-frame emitted wavelengths, respectively. The cosmological redshift of

an object5 is related to the scale factor of the Universe at the time the light was emitted by

1+z = a(t0)/a(te) = 1/a(te). The observability of redshift (and thus the scale factor) makes

it much more useful than time for characterizing “when” events happened; the associated

time t is model dependent. For the very early Universe, it is also common to use thermal

temperature or energy, related to the scale factor as T = E/kB ∝ 1/a, as these are more

relevant quantities for characterizing which particles are in equilibrium with the hot plasma

5While the peculiar velocity of an object also causes a Doppler shift of roughly zpec ≈ vlos/c (ignoring
relativistic corrections), this is quickly dominated by the cosmological redshift for z & 0.01. Nevertheless,
the effect is still important and even contains cosmological information, which is captured in measurements
of so-called Redshift Space Distortions.
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of the early Universe.

1.2 Redshift and the Expanding Universe

The concept of redshift has served a pivotal role in the development of cosmology. In

an expanding Universe, all objects will appear in general to recede from an observer with

velocity v = H0d, where d is the proper (i.e. instantaneous) distance to the object and

H0 is a constant that characterizes the expansion rate. For small redshifts (z � 1), this

is well-approximated by z ≈ H0d/c, such that the expansion rate H0 can be determined if

one can measure both the redshift and distance to nearby objects in the “Hubble flow” of

cosmological expansion. It was exactly this technique that gave the first evidence for an

expanding Universe.

While Georges Lemâıtre first proposed what is now called “Hubble’s Law” relating dis-

tance to recession velocity for an expanding Universe [39], it is named for Edwin Hubble

who provided the first observational evidence that our Universe was undergoing such expan-

sion. Hubble used Cepheid variable stars as standard candles6 to estimate the distance to

so-called nubulae. He found that such nebulae were far outside the Milky Way, and were in

fact entirely distinct galaxies [41] Using redshifts for the nebulae that had been meticulously

determined by Vesto Slipher in the years prior [42], he found that in addition to being very

far away, all such nebulae were receding, suggesting that the Universe was in fact expanding.

Hubble’s discovery, coupled with the theoretical framework laid out by Einstein, Friedmann,

Lemâıtre and others, led to the serious consideration of a very early Universe that was much

more dense, and began with what has come to be known as the Big Bang.7

1.3 History of the Universe: The Executive Summary

The Big Bang model has firmly established itself since it was first proposed in the 1920s and,

coupled with the theory of Inflation, it forms the basis of the ΛCDM model. The Big Bang

6A standard candle is any object whose absolute luminosity can be determined, such that the difference
from its apparent (observed) luminosity can be used to estimate its distance. In 1908, Henrietta Leavitt
discovered that Cepheid variables pulsate with a period that is related to their absolute luminosity, enabling
Cepheids to be used as standard candles. This same technique for measuring H0 is used today, though now
Cepheid variables make up just a single rung in a cosmic “distance ladder,” used to calibrate distances to
even deeper probes such as Type Ia supernovae (e.g. Ref. [40]).

7An alternative hypothesis that had traction was the so-called Steady State model, in which the Cos-
mological Principle held for all time, and thus the Universe had no beginning or end, and new matter was
continuously created to maintain density in an expanding Universe (see e.g. [43, 44]). The discovery of the
Cosmic Microwave Background in 1964 largely put the Steady State model to rest.
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deftly explains not only the expansion of the Universe, but also the cosmic abundances of the

lightest elements and the existence of the black body Cosmic Microwave Background radia-

tion (CMB) that we see in all directions. ΛCDM fills in the details of what happened after

the Big Bang, explaining the variations in the CMB and evolution of large-scale structure,

while Inflation explains the initial conditions.
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Figure 1.1: Schematic history of the Universe leading up to now (purple star). Dashed lines
indicate transitions between epochs dominated by a single matter-energy component, with labels
and symbols to indicate key events. The approximate times and redshifts of these are given by the
timeline at bottom, which also shows the ranges probed by LSS (red) and CMB (blue) experiments.
The time dependence of the scale factor during each epoch is indicated at top.

Fig. 1.1 shows a timeline of some of the key events in the Universe’s 14 billion year history.

The very earliest moments up to t ∼ 10−12 seconds are still speculative, but it is believed that

the Universe underwent a period of exponential expansion known as inflation, during which

the Universe increased in size by > 25 orders of magnitude. When inflation ceased, the field

responsible decayed and filled the Universe with hot radiation in a process known as reheating,

starting what is typically known as the (hot) Big Bang. As the Universe expanded, it cooled,
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causing particles to fall out of equilibrium with the primordial plasma as their decreasing

interaction rates fell below the expansion rate. Within the first few minutes, atomic nuclei

fused together in a process known as Big Bang Nucleosynthesis (BBN) — detailed calculation

of the reaction rates during this process of expansion and cooling produce remarkably good

predictions of the measured abundances of primordial hydrogen, helium, deuterium and

lithium (see [45] for a review.).

The energy density of matter decayed more slowly than that of radiation, marking a

transition around z ∼ 3500, after which the energy budget became dominated by non-

relativistic matter. Overdense regions of dark matter began to grow appreciably under

gravity and the rate of expansion increased. At z ∼ 1100 (t ∼ 380, 000 yr), photons cooled

enough to decouple from baryons, allowing neutral hydrogen to stably form. Photons free-

streamed until the present in the form of the Cosmic Microwave Background, providing a

detailed snapshot of the Universe at that time. Baryons were then free to fall into the

gravity wells of dark matter and began to form the first stars and galaxies around z ∼ 20

(t ∼ 200 My). Eventually, they produced enough energy to re-ionize the hydrogen-dominated

Universe by z ∼ 8 and continued to aggregate into larger clusters of galaxies, tracing extended

filaments of large-scale structure throughout the Universe. The dark energy epoch began

around z ∼ 0.33, initiating another period of accelerated expansion with the scale factor

going as a(t) ∝ eHt and slowing the growth of structure. We now discuss some of these events

in greater detail and introduce some of the mathematical formalism for characterizing their

impact on cosmological observables, which will be used throughout the rest of this work.

1.4 Inflation and Primordial Perturbations

It is currently thought that the initial density perturbations that eventually grew into the

large scale structure we see today were seeded by quantum fluctuations of a primordial

quantum field at around t ∼ 10−34 seconds. The presence of this field would cause exponential

and superluminal expansion, which separated regions that were previously in causal contact,

smoothing out inhomogeneities, reducing the observed curvature, and diluting any exotic

features that were generated before the time of inflation (such as magnetic monopoles).

All of these solve certain observational problems that were unexplained before the theory

of inflation was proposed, and they place lower limits on how much inflation must have

occurred.

The quantum fluctuations of the supposed “inflaton” field got enlarged to macroscopic

scales, imprinting spatial inhomogeneities of energy density which, once inflation ended,

decayed into the physical fields and particles we see today. This results in the inflationary
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prediction of adiabatic density fluctuations, wherein the different components (e.g. matter

and radiation) have coherent density fluctuations about their respective means. Generically,

we can parameterize fluctuations from the mean for some field i using the overdensity :

δi(r, t) ≡
ρi(r, t)− ρ̄i(t)

ρ̄i(t)
, (1.10)

or its Fourier transform:

δi(k, t) =

∫
d3r

(2π)3/2
δi(r, t)e

ik·r (1.11)

The power spectrum characterizes the amplitude of fluctuations at different wavenumbers

k as

〈δ(k, t)δ∗(k′, t)〉 = (2π)3P (k, t)δ3
D(k − k′), (1.12)

where 〈...〉 is the ensemble average over realizations of the field and δ3
D(k − k′) is the Dirac

delta function (a result of the statistical isotropy and homogeneity of δ). We will make

extensive use of overdensities and power spectra throughout this work.

Most simple inflation models produce primordial curvature fluctuations that are nearly

Gaussian and have a power spectrum8 that is almost scale-independent. It is common to

parameterize the power spectrum of the scalar curvature perturbations as a power law that

is Taylor expanded about a pivot scale k∗:

k3

2π2
Ps(k) = As

(
k

k∗

)(ns−1)+ 1
2
αs ln(k/k∗)+

1
6
βs(ln(k/k∗))2+...

, (1.13)

where As is the scalar amplitude of the fluctuations, ns is the spectral index, and αs =

(dns/d ln k)|k∗ and βs = (d2ns/d(ln k)2)|k∗ are the spectral runnings. The parameters ns, αs

and βs depend on the potential of the inflaton field, V (φ), such that their measurement gives

crucial insight into the form of the field that seeded the primordial density fluctuations.

In the simplest inflationary models where inflation is generated by a single field that is

slowly rolling down its potential V (φ) (rather ingeniously called single-field slow-roll infla-

tion), it can be shown that inflation generally predicts a scalar index slightly less than one:

ns = 1− 6ε+ 2η +O(ε2, η2). (1.14)

ε and η are the slow-roll parameters characterizing the slope and curvature of V (φ) re-

8A Gaussian distribution is fully characterized by its mean and variance and since δ̄ = 0 by definition, if δ
is a Gaussian field it is fully characterized by its power spectrum P (k, t). Even if a field is not fully Gaussian,
as the second moment of the field the power spectrum often carries a substantial amount of information and
is thus a key summary statistic for characterizing the statistics of random fields, as will be evident throughout
this work.
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spectively, with ε � 1 and η � 1 required for inflation. The current constraint of ns =

0.9649± 0.0042 [46] is very much aligned with the inflationary paradigm. Chapter 4 investi-

gates the prospects of near-future measurements to detect αs and βs at the levels predicted

by inflationary models.

A key feature of inflation is that it separates regions that were previously in causal

contact through the superluminal expansion of space. The comoving Hubble radius (c/aH)

defines the scale at which two particles are in causal contact; inflation is characterized by a

shrinking Hubble radius, and it is straightforward to show that this occurs whenever there

is accelerating expansion of space:

d

dt

( c

aH

)
= − c

(aH)2
ä (1.15)

thus

ä > 0 ⇐⇒ d

dt

( c

aH

)
< 0, (1.16)

which from Eq. 1.3 will occur whenever ρ + 3p/c2 < 0, or w < −1/3. Incidentally, with

the dark energy epoch we recently entered another phase of accelerating expansion so the

comoving horizon is shrinking once again!

Curvature perturbations are generated almost equally across all scales (per Eq. 1.13) and

during inflation many of these will expand to the point where their wavelengths are larger

than the Hubble radius, such that their peaks and troughs are out of causal contact. These

perturbations no longer oscillate or change but instead maintain a constant amplitude. The

result is a set of frozen long-wavelength inhomogeneities outside the Hubble radius, which

seed coherent oscillations once they “re-enter the horizon” of the Hubble radius after inflation

ends.

1.5 Structure Growth

Density perturbations with wavelengths smaller than the Hubble radius are governed by the

opposing forces of gravity and radiation pressure in an expanding space, with gravity acting

to grow overdense regions and pressure and expansion working to dilute them. Assuming

General Relativity holds, then for a non-relativistic fluid such as matter (though potentially

embedded in a relativistic background), we can solve for the dynamics where δ � 1 using

standard fluid equations such as the Euler momentum equation (governing motion) and

the continuity equation (ensuring conservation of mass) coupled with the Poisson equation

10



(relating the gravitational potential to its source mass) to get [29]

δ̈k + 2Hδ̇k︸ ︷︷ ︸
Hubble drag

+

 k2c2
s

a2︸︷︷︸
Pressure

− 4πGρM(t)︸ ︷︷ ︸
Gravity

 δk = 0. (1.17)

δk indicates that we are working in Fourier space and cs = (∂p/∂ρ)1/2 =
√
wc is the sound

speed at which pressure fluctuations travel. Considering the case where the Hubble drag from

expansion is negligible (i.e. H = 0), the solutions are straightforward: when the bracketed

term is positive, δk oscillates, whereas if the bracketed term is negative then there exist both

exponentially growing and decaying modes. These correspond to the cases where pressure or

gravity dominate the dynamical evolution, respectively, with the separation between modes

that experience oscillation vs. growth (or decay) characterized by the Jeans length:

λJ ≡
2πa

kJ
= cs

√
π

GρM(t)
(1.18)

The Hubble drag acts as a damping term in each of these regimes.

We can solve this for perturbations of dark matter during different epochs, taking into

account that the time-dependence of H changes (c.f. Table 1.1), and taking advantage of

the fact that cs ≈ 0 for dark matter such that the pressure term is negligible. We find that

dark matter perturbations grew9 as

δk(t) ∝


ln a(t), Radiation Dominated

a(t), Matter Dominated

1. Λ Dominated

(1.19)

In contrast to dark matter modes, baryons were ionized and highly coupled to photons

in a photon-baryon plasma at this time, such that baryonic modes oscillated in what is

known as Baryonic Acoustic Oscillations (BAO) until photon decoupling, at which point

radiation pressure dropped to zero. This halted the oscillation of baryons, imprinting a

clear characteristic scale on the distribution of baryon overdensities corresponding to the

maximum distance the acoustic waves could travel before recombination. This scale can be

observed in the distribution of galaxies today and serves as an extremely useful standard

ruler for measuring the expansion history.

After recombination, baryons fell into the gravitational wells already created by the prior

9There are in general two solutions but we are interested in the growing modes, not the static or decaying
ones.
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growth of dark matter perturbations and continued to grow per Eq. 1.19.10 The distribution

of galaxies (made of baryons) therefore traces the distribution of dark matter, and the

mapping between them is parameterized by the so-called galaxy bias bg(k, z):

δg = bg(k, z)δdm, (1.20)

where bg depends on the specifics of the galaxy sample, but for large scales can be approxi-

mated as independent of k.11

The 3D power spectrum of galaxies12 can then be written in terms of the dark matter

power spectrum as

Pg(k, z) = b2(k, z)Pm(k, z), (1.21)

and the the dark matter power spectrum related to the primordial power spectrum as

Pm(k, z) = 〈δMδ∗M〉 =
4

25

(
kc

aH

)4

T 2(k, z)Ps(k)Tnl(k, z). (1.22)

The measured power spectrum of a galaxy sample can thus be used to constrain the physics

of the very early Universe. T (k, z) is the transfer function that encodes details of how

different modes evolve through the different Universal epochs (as idealized in Eq. 1.19). It

is strongly sensitive to the transition between radiation and matter dominated epochs, and

thus constrains ΩM (Ωr is well measured by the temperature and density of CMB photons),

while also being sensitive to ΩDE which slows the growth of perturbations at later times.13

Tnl(k, z) parameterizes the effects of nonlinear collapse. As overdensities grow to δ & 1,

they decouple from the Universal expansion and begin to grow nonlinearly, violating the

linear assumptions that were used to derive Eq. 1.19. This occurs on small scales (high k

10Indeed this head-start before recombination from cold dark matter is necessary to achieve the level of
structure growth we observe today.

11An exception is if there is primordial non-Gaussianity in the initial fluctuations, which would result in
the appearance of a scale-dependent bias on large scales. This is an active area of research.

12The observed galaxy power spectrum is actually anisotropic when using redshift to characterize the radial
distance, as the peculiar velocities of the galaxies affect the radial distance measure, but not the transverse
distance measure. This results in so-called Redshift Space Distortions (RSD), with two main effects: the
galaxy sample appears stretched along the line of sight (the Fingers-of-God effect) [47], and both over- and
underdensities become slightly amplified along the line of sight (Kaiser) [48]. The former is due to orbital
velocities of galaxies in gravitationally bound structures (and thus more apparent on small scales) whereas
the latter is a result of the tendency for galaxies to fall toward overdense regions. The effects of RSD are
significantly reduced for photometric surveys where galaxy redshift uncertainties dominate over the RSD
signal. In Chapter 4 we forecast constraints with spectroscopic surveys and so include the effects of RSD on
Pg.

13T (k, z) is sometimes separated into a k-dependent piece and a separate z-dependent piece known as the
growth function, in order to more explicitly separate the effects of the matter-radiation transition from the
effects of dark energy.
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modes) first, and extends to larger scales over time. Tnl(k, z) is usually computed using

large-scale N-body simulations to inform emulators (i.e. interpolators) or fitting functions

such as Halofit [6] and HMCode [28]. Improving models of nonlinear evolution is a highly

active area of research, and uncertainties in modeling the nonlinear power spectrum are a

key motivator of the investigations in Chapter 4.

1.6 Large-Scale Structure Surveys

LSS surveys put direct constraints on how the distribution of galaxies and matter changes

with time, and so have proven invaluable for measuring structure growth and generally

testing the theoretical models about the processes that govern the structure, composition,

and evolution of the universe. There are two broad classes of LSS survey: spectroscopic

and photometric, corresponding to the precision with which redshifts can be determined.

The high resolution spectra from spectroscopic surveys like BOSS and DESI require much

more time to observe each galaxy, since there are many more (and finer) wavelength “bins”

in which photons must be collected, and this limits the number of galaxies that can be

targeted for observation. Photometric surveys like SDSS, DES, and LSST instead view large

areas of the sky with a few (typically five or six) filters with wide bandwidths, and thus the

redshift estimates have much larger errors but the sky area and number of observed galaxies

is far greater. Important synergies exist between the two, with overlapping galaxy samples

enabling more precise calibration of the photometric redshift estimates.

The precise 3D information from spectroscopic surveys allows Pg(k, z) to be measured

very accurately. In contrast, galaxies in photometric samples are typically grouped into

redshift bins, with sample redshift distributions used to characterize the radial information

and an angular power spectrum computed for that 2D redshift slice. The 2D projected

overdensity map for redshift bin i can be computed from the 3D overdensity δ(n̂, z) as

δi(n̂) =

∫
dni
dz

δ(n̂, z)b(z)dz (1.23)

where n̂ denotes a direction on the sphere and dni/dz is the distribution of galaxy redshifts

in the bin.

Just as we worked in Fourier space to compute the power spectrum P (k, z) of the 3D

density field, we can expand a projected overdensity field into a weighted sum of spherical
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harmonic basis functions Y`m(n̂):

δi(n̂) =
∞∑
`=0

∑̀
m=−`

ai`mY`m(n̂), (1.24)

where

a`m =

∫
δ(n̂)Y ∗`m(n̂)dΩ, (1.25)

` characterizes the typical wavelength of fluctuations in the basis function Y`m (with ` ∼ π/θ),

and m characterizes the phase. The a`m coefficients can then be used as a harmonic space

representation of the real-space maps, and this comes with certain useful properties such as

a 2D analogue to Eq. 1.12:

〈a`ma∗`′m′〉 = C`δ``′δmm′ , (1.26)

where C` is the angular power spectrum, and δ``′ and δmm′ are Kronecker deltas. In other

words the covariance of the coefficients is diagonal, thanks to statistical isotropy,14 and if

the 2D field is Gaussian then the spectrum of C`’s contain all of the statistical information

about it.

The power spectrum of an observed overdensity field i can be estimated by averaging

over the 2`+ 1 coefficients for each harmonic `:

Ĉi
` =

∑̀
m=−`

|ai`m|2

2`+ 1
, (1.27)

where Ĉ` indicates an estimate using our single Universe as opposed to the true theoretical

quantity that generated it. This can be compared to the theoretical prediction given by

Ci
` =

2

π

∫
dz

∫
dz′
∫
dk

(
dni
dz

)(
dni
dz′

)
k2Pgg(k, z, z

′)j`(kr(z))j`(kr(z
′)) (1.28)

where r(z) is the comoving distance at z and j`(x) is a spherical Bessel function of the first

kind. It is also common to use the two-point correlation function as an alternative statistic

to the observed power spectrum. Both of these “two-point statistics” contain identical

14This only strictly holds when the entire sky is observed — when portions of the sky are masked as is
usually the case, neighboring harmonic modes become coupled. However this effect can be computed and
accounted for, and simply binning in ` can largely mitigate the impact.
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information, and are related as

w(θ) = 〈δ(n̂)δ(n̂′)〉 =
∞∑
`=1

2`+ 1

4π
C`P`(cos θ) (1.29)

where P`(cos θ) are the Legendre polynomials.

We make extensive use of angular power spectra in our work with photometric surveys

in Chapters 2 and 3.

Other probes from LSS surveys include the aforementioned BAO signal (also captured

in the two-point measurements, albeit suboptimally) and cosmic shear measurements. The

latter uses the shapes and orientations of galaxies as a means to measure the foreground

matter distribution via weak gravitational lensing. It’s very cool, but not the focus of this

work (see e.g. Refs. [49, 50]).

1.7 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the relic radiation that was released after

protons and electrons combined to form neutral hydrogen, allowing photons to free-stream.

The radiation is effectively a picture of the Universe at z ≈ 1100. It is remarkably uniform

in all directions, corresponding to a near-perfect black body spectrum with temperature

T = 2.73K, with typical deviations of δT/T ∼ 10−5 across the sky. An enormous amount

of information is encoded in these anisotropies, and yet further information is gleaned from

polarization data.

As effectively a 2D field, the angular power spectrum is the typical summary statistic

for characterizing the temperature (or polarization) anisotropies of the CMB and comparing

them with theoretical predictions. The acoustic peaks observed in the spectrum are a clear

imprint of coherent oscillations of the photon-baryon fluid before recombination, which them-

selves were seeded by the primordial fluctuations. Thus the CMB constrains both the shape

of the primordial spectrum Ps(k) and the cosmological parameters impacting the oscillatory

dynamics. The observed spectra agree remarkably well with the predictions of inflation,

which provides the mechanism by which these oscillations were generated and their phases

synchronized.

The amplitude of the spectrum constrains As, while the tilt is dependent on ns, αs and

βs. Baryonic matter is coupled to the fluid, and so affects the peaks differently than does

dark matter, allowing relative peak heights to constrain each. Furthermore, the location

of the first peak corresponds to the furthest distance sound could have traveled between

inflation and recombination. Comparing this transverse distance measure with the angle at
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which it is observed and the distance to the CMB allows us to put very tight constraints on

the geometry of the Universe, with the most recent observations from the Planck spacecraft

suggesting that it is flat to within ∼1% [51].

Modes at ` . 200 were still outside of the Hubble radius at recombination, such that

they theoretically provide a pristine measurement of the primordial perturbations projected

onto 2D. These large-scale modes get modified however at later times by the presence of

dark energy in what is known as the Integrated Sachs-Wolfe effect. The main focus of

Chapter 2 is how to use LSS surveys to accurately separate the primordial from this late

time contribution.

The CMB has been called the cosmic Rosetta Stone because of its ability to test and

inform our cosmological understanding. Combining it with other probes such as LSS surveys

and Type Ia supernovae allows for dramatically improved constraints. Not only does it serve

as an early-universe complement to late-time observations, providing a large lever arm with

which to constrain our understanding of structure growth and expansion, but the probes

are sensitive to different combinations of parameters, allowing for degeneracies to be broken

when combined (Fig. 1.2).

1.8 Connecting Theory to Data

For reference, a standard parameterization of the six-parameter ΛCDM model is given in

the top section of Table 1.2, with common extended parameters given in the bottom section.

These are typically fixed to the indicated value in ΛCDM, but can be varied in order to test

alternative models.

Using observations from LSS, the CMB and other cosmological probes, we can infer these

parameters and thus test and improve our current models of the Universe. This happens in

two ways:

• sharpening constraints on the parameters of the standard cosmological model, and

• identifying inconsistencies between our observations and the standard model predic-

tions (and potentially identifying an alternative model that rectifies the inconsistency).

If it is the result of new physics, then the latter can herald a paradigm shift where the

contemporary model is superseded. This has happened on numerous occasions. The ΛCDM

paradigm arose from the discovery of dark energy in 1998, when two independent teams

[52, 53] separately measured the Universe’s expansion history with Type Ia supernovae and

discovered that the Universe is in fact accelerating. The discovery garnered a Nobel Prize.

16



D
ar

k 
E

ne
rg

y 
D

en
si
ty

Matter Density

Figure 1.2: 68.3%, 95.4%, and 99.7% credible intervals on the matter and dark energy densities
under a ΛCDM model with curvature allowed. Combining data from Type Ia supernovae, CMB, and
LSS experiments results in much stronger parameter constraints (gray) than any probe individually,
as they are sensitive to different parameter combinations. SNe Ia (blue) show a clear detection of
ΩΛ and an accelerating Universe, BAO constraints from LSS surveys (green) place tight constraints
on Ωm which sources structure growth, and measurements of the CMB (orange) tell us that the
Universe is very close to flat, with ΩTOT ≈ 1. Adapted from Suzuki et al. [24].
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Ωb Baryon density
ΩM Total matter density
H0 Hubble constant (km/s/Mpc)
ns Scalar spectral index
As Scalar power spectrum amplitude
τ Optical depth of Reionization
ΩDE = 1− Ωr − ΩM Dark energy density
Ωk = 0 Curvature energy density
Neff = 3.046 Effective number of relativistic degrees of freedom
w = −1 Dark energy equation of state
wa = 0 Slope of dark energy equation of state
αs = 0 Running of the scalar spectral index
βs = 0 Second running of the scalar spectral index

Table 1.2: Cosmological parameters. Parameters above the line correspond to the
six parameters that define the standard ΛCDM model. Below the line are additional
parameters that are varied when testing extended models, but fixed to the reported
values in ΛCDM.

However, discrepancies can also arise due to systematic errors in the analysis which can

lead researchers astray. The false discovery of B-mode polarization in the CMB by the

BICEP2 collaboration in 2014 — also touted as Nobel prize material — offers a cautionary

tale. After making international headlines, it was discovered that their ‘smoking gun’ of

inflation was in fact a spurious signal due to the failure to adequately account for foreground

dust in the Milky Way.

As the great Carl Sagan noted, extraordinary claims require extraordinary evidence [54].

Our observations are mediated by a wide variety of non-cosmological effects related to astro-

physics, experimental apparatus, and even researcher bias; it is crucial to eliminate sources

of systematic error and ensure that cosmological analyses are robust to a range of unknowns.

Incorporating these effects into our models with appropriate parameterization allows us to

bring them firmly out of the realm of the “unknown unknown” that could result in system-

atic error in the analysis and into the realm of the parameterized unknown. These can then

be included in the model as nuisance parameters, which can either be fixed using external

data, or inferred jointly along with the cosmological parameters of interest.15 This requires

careful study of which effects may have a significant impact on the cosmological analysis in

question.

We now describe the process by which we obtain constraints on the cosmological parame-

15Of course what may be systematic effects treated with nuisance parameters in one analysis may be of
interest in their own right in another analysis (e.g. the impact of Active Galactic Nuclei on small-scale
clustering). One person’s systematic is another person’s signal.
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ters, with a focus on LSS surveys. To constrain the parameters of a model, one must typically

be able to compute the likelihood, P (d|θ), which gives the probability of the observed data

(d) as a function of the model parameters (θ). For a frequentist analysis (e.g. Maximum

Likelihood approaches) this is all one needs, but most cosmological analyses take a Bayesian

approach, in which case one must also specify prior probabilities for the model parameters,

P (θ). The posterior probabilities of the model parameters can then be computed as

P (θ|d) =
P (d|θ)P (θ)

P (d)
, (1.30)

where the evidence (or marginal likelihood) P (d) can often be ignored for inferring parameter

constraints for a given model, but becomes important when comparing the ability of different

models to explain the same data.

It is common to assume that the likelihood is Gaussian in the data16, with the form

lnP (d|θ) ∝ (d− dthry(θ))TC−1(d− dthry(θ)), (1.31)

where C is the covariance matrix of the data (estimated analytically or numerically, see e.g.

Ref. [55]) and dthry(θ) is the model-predicted data vector at θ.

The summary statistics used for d vary depending on the analysis and the cosmological

probe but for the standard cosmological analyses using LSS and CMB surveys the approach

is typically to construct a data vector made of multiple two-point statistics. For instance,

the analysis in Chapter 4 uses the auto and cross-power spectra of CMB temperature and

polarization measurements as well as 3D galaxy power spectrum measurements as elements

in the data vector. As noted, the work in Chapters 2 and 3 work primarily with angular

power spectra of LSS surveys of the type used for photometric surveys like DES.

The observed data vector is computed (e.g. via Eq. 1.27) and compared to the theoretical

prediction dthry(θ) over a large range of parameter space θ. Open source Boltzmann codes

like CLASS [5] and CAMB [4] readily compute the evolution of the background and linear

perturbations given a set of cosmological parameters to produce power spectra for dark

matter and the CMB. The effect of nonlinear growth is incorporated using tools like Halofit

[6] or HMCode [28], which can then be mapped to the observed galaxy power spectra given

survey-dependent quantities such as dn/dz and b(k, z) via Eq. 1.28.

Each of these steps includes additional assumptions and uncertainties, which can be

parameterized and included as additional degrees of freedom in θ. For instance, in the

fiducial analyses of Dark Energy Survey (DES), the mean and variance of dn/dz is allowed

16Note that the likelihood is a function of the parameters θ; it is not a probability distribution.
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to vary in each redshift bin (with a Gaussian prior). One of the primary benefits of HMCode

over Halofit is some freedom to capture the uncertain effect of baryons at small scales; DES

instead uses Halofit and removes clustering data at the small scales where the uncertainty

is non-negligible.

While adding nuisance parameters captures additional model uncertainty in the final pos-

teriors of the cosmological parameters, the dimensionality of the model parameter space can

quickly grow unwieldy. The fiducial DES 3x2pt analysis varies 26 parameters, far more than

the ∼6 cosmological parameters that are most of interest (and indeed, only ΩM and σ8 are

actually well measured by DES alone) [21]. With O(1) seconds to compute dthry at a single

point, an exhaustive grid-search of the parameter space is clearly infeasible and so Markov

Chain Monte Carlo (MCMC) or nested sampling methods are the default approach for ob-

taining estimates of the posterior. Even so, producing a single set of posteriors typically takes

days even when massively parallelized and run on high-performance computing clusters.17 It

is therefore crucial to understand which potential systematics must be addressed because of

their ability to significantly impact the analysis. This will become especially important with

the increased computational challenges of and improved statistics of Stage IV LSS surveys

like the Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST).

1.9 Outline of Thesis

The studies in this thesis contribute to the body of literature investigating the impacts and

mitigation of systematic errors in various cosmological analyses. We focus on broad classes

of LSS systematic errors, which capture the effects of a wide range of real-world processes as

they impact the observed galaxy fields and the theoretical matter power spectrum at small

scales.

Chapter 2 presents a study of the Integrated Sachs-Wolfe (ISW) effect and how errors

in the large-scale photometric calibration of LSS surveys impact estimation of the ISW

signal. The ISW effect is an imprint of dark matter in the Cosmic Microwave Background

and contains important information about dark energy, including possible signatures for

modifications to General Relativity. We use a generic formalism to capture spatially-varying

residual systematic errors in the observed galaxy fields and quantify the necessary levels of

calibration to produce accurate reconstructions of the ISW map and power spectrum for

next-generation LSS surveys. We provide a roadmap for ISW reconstruction, including the

17It is for this reason that we make use of the Fisher matrix formalism in Chapter 4, approximating the
posterior surface as Gaussian in the parameters and enabling us to rapidly estimate changes in the posterior
for thousands of different analysis configurations.
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optimization of survey configuration and an improved estimator to render the analysis more

robust to calibration errors.

In Chapter 3, we perform a detailed study of the leading methods for calibrating galaxy

clustering measurements. These assess and remove spatially-dependent systematic errors

such as those induced by interstellar dust, variable atmospheric conditions, and other effects

that modulate the observed number of galaxies across the sky. We recast them into a common

statistical framework, elucidating assumptions implicit within each method and characterize

their performance on a suite of simulations. We propose extensions to current methods

that are more robust, simpler to implement, and exhibit greater suppression of systematic

errors. We further derive uncertainty estimates for the galaxy-level corrections, enabling the

propagation of errors from the correction methods into the LSS galaxy catalogs and any

subsequent analyses that use them.

In Chapter 4 we focus on small scale systematic errors in LSS analyses, such as arise

from theoretical uncertainties in the non-linear growth of dark matter, baryonic effects, and

other astrophysical phenomena. We characterize how errors in modeling such small scales

impact our ability to accurately measure the primordial power spectrum of curvature fluctu-

ations, which initially seeded structure in the early Universe. We show that if unaccounted

for, current and predicted modeling uncertainties can strongly bias measurements of the

“runnings” of the spectral index, key parameters for testing single-field slow-roll models of

inflation, thought to be responsible for the rapid, early expansion of the Universe. We com-

pare methods designed to mitigate such small-scale systematic errors and demonstrate that,

even with optimistic improvements in small scale modeling, only exotic models of inflation

will be testable via constraints on the runnings from near-future LSS surveys.
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Chapter 2

Reconstructing the Integrated

Sachs-Wolfe Map in the Presence of

Systematic Errors

2.1 Introduction

Cosmic microwave background (CMB) photons undergo a frequency shift as they travel to

us from the last scattering surface. On top of the redshift due to the expansion of the

Universe, an additional contribution to the temperature anisotropy is introduced whenever

the universe is not matter dominated—for example, right after recombination when radiation

contributes non-negligibly, or at late times when dark energy becomes important. This so-

called integrated Sachs-Wolfe (ISW) effect is given by [56, 57]

∆T

T̄

∣∣∣∣
ISW

(n̂) =
2

c2

∫ t0

t∗

dt
∂Φ(r, t)

∂t
, (2.1)

where t0 is the present time, t? is that of recombination, c is the speed of light, r is the

position in comoving coordinates, and Φ is the gravitational potential. The late-time ISW

signal (referred to hereafter simply as ‘ISW’) has been statistically detected via measurements

of the cross-correlation of CMB temperature maps with galaxy maps [25, 26, 58–71] and,

more recently, with maps of CMB lensing convergence [25, 26]. These detections serve as an

important consistency test of the standard model of cosmology, and can help constrain the

properties of dark energy.

The ISW can provide additional information beyond its power spectrum if its map can be

reconstructed with sufficient signal-to-noise. Since the total large-angle CMB temperature
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Figure 2.1: Left: Planck CMB map (using the SEVEM algorithm); Right : Reconstructed ISW map
using the Planck CMB map and the CMB lensing potential as tracers. Adapted from Figures 1
and 11 in Ref. [25].

anisotropy is the sum of early- (hereafter ‘primordial’) and late-time contributions,

∆T

T̄

∣∣∣∣ (n̂) =
∆T

T̄

∣∣∣∣
prim

(n̂) +
∆T

T̄

∣∣∣∣
ISW

(n̂), (2.2)

reconstructing the ISW map would allow us to isolate the primordial-only anisotropy. This

can be accomplished using the expected spatial correlation of the ISW signal with the CMB

and with tracers of LSS. Fig. 2.1 shows one example, where the Planck collaboration used

maps of the total CMB and the CMB lensing potential to estimate the ISW contribution

[25].

This separation of the CMB into early- and late-time contributions can also be useful for

a variety of cosmological tests. For example, one could study the temporal origin of the large-

angle CMB anomalies reported in, e.g., Ref [72]. One could also subtract the realization-

specific contaminating ISW contribution to estimation of primordial non-Gaussianity [73],

something that is currently done using theoretical templates for the ISW-lensing bispectrum

[74]. Motivated by these considerations, reconstruction of the ISW map has been the focus

of a number of recent analyses [17, 25, 26, 75–82].

In this chapter we study how ISW map reconstruction is affected by a class of obser-

vational and astrophysical systematic errors which we will refer to broadly as photometric

calibration errors or, for conciseness, calibration errors. These systematics afflict all galaxy

surveys at large angular scales, contributing to the significant excess of power at large scales

found in many recent surveys, including the Sloan Digital Sky Survey (SDSS) [71, 83–89],

MegaZ [90], WISE-AGN and WISE-GAL [25], and NVSS [69, 71, 91, 92]. Calibration errors

are thus already established as one of the most significant systematics impacting large-angle

measurements of galaxy surveys, a fact that has broad implications, such as for measuring
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scale-dependent bias as a signal of primordial non-Gaussianity. As the statistical power of

galaxy surveys continues to grow, the control and understanding of systematics like calibra-

tion errors is becoming even more important.

There is a variety of ways in which modern photometric surveys assess and mitigate

contamination from systematics, many of which rely on cross-correlating galaxy maps with

known systematics templates. This can be used to identify contaminated regions, which are

then masked or excluded from the analysis (as in Ref. [93]). A more nuanced approach is to

use these templates to subtract or marginalize over systematics-induced spatial variations in

the calculation of, for example, the two-point clustering signal [89, 94–99]. In Chapter 3 we

take a detailed look at (and extend) some of these methods.

Ref. [89] took this approach when studying the overall detection significance of the ISW

effect in SDSS data. The authors found results similar to Ref. [71], the authors of which

instead accounted for excess power by adding a low-redshift spike in the source distributions.

Most of these correlation corrections are perturbative, however, and will miss any contam-

ination that is not captured by a perfectly linear relation. Additionally, only recently were

some of the leading methods extended to remove systematics from the maps themselves,

as opposed to simply cleaning the two-point statistics. Suchyta et al. [100] propose an al-

ternative approach, wherein measurement biases are characterized by injecting fake objects

into Dark Energy Survey images. This neatly avoids the reliance on having small levels of

contamination in the input maps, but it still cannot account for certain systematics, such

as dust or flux calibration. Whatever the approach taken, some level of residual calibration

error will remain.

Muir and Huterer [17] (MH16) showed that at levels of calibration control consistent

with current and near-future surveys, residual calibration errors are by far the dominant

systematic for ISW signal reconstruction. This motivates us to study their impact in more

detail. Namely, we would like to study whether the presence of residual calibration errors can

be mitigated by combining information from multiple input maps or through better modeling

of the contributions of systematics to observed galaxy power. We also wish to investigate to

what extent residual calibration errors similarly impact the signal-to-noise ratio of galaxy-

CMB cross-correlation and, in turn, the significance of ISW detection. With this aim, we use

ensembles of simulated maps to characterize the performance of ISW reconstruction based on

surveys like Euclid and SPHEREx, two proposed wide-angle surveys of which the properties

are expected to be good for ISW detection and reconstruction. We also consider the benefits

of including Planck-like simulations of CMB intensity in the reconstruction effort.

We begin in Sec. 2.2 by describing our model for calibration errors, how we reconstruct

the ISW map and evaluate its quality, and which input data sets we use. In Sec. 2.3, we
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Figure 2.2: Effects of calibration errors on galaxy power. The solid curve shows the theoretical
angular power spectrum for the NVSS survey [25, 26]. The colored dashed curves show the the-
oretical spectrum with two representative levels of calibration error. The shaded region is the 1σ
uncertainty from the survey’s sample variance, and the dotted curves indicate the ideal, all-sky
cosmic variance.

compare the performance of ISW reconstruction when using one versus multiple surveys

and investigate the impact different assumptions have on the results. In Sec. 2.4, we relate

map reconstruction to the total signal-to-noise ratio of ISW detection, and we conclude in

Sec. 2.5.

2.2 Methodology

2.2.1 Modeling Calibration Errors

Photometric calibration is a challenge faced by all photometric galaxy surveys. It refers to

the adjustments required to establish a consistent spatial and temporal measurement of flux

of the target objects in different observation bands. A number of different systematics must

be accounted for in calibration, including but not limited to detector sensitivity variation on

the focal plane, variation in observing conditions, the presence of foreground stars (as galaxies

near them are less likely to be detected), and extinction by interstellar dust. Calibration

errors are introduced if these systematics are incompletely or inaccurately accounted for.

Our focus is on how calibration errors affect galaxy number counts. To illustrate this,

imagine that a perfectly uniform screen (of e.g. dust) blocks some light from all galaxies.

This pushes the faintest galaxies below the survey’s flux limit, and leads to observation of
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Figure 2.3: Same as Fig. 2.2, but for the SDSS MphG catalog, following Refs. [25, 26]. In this
case, the sample variance is driven by sky coverage (fsky=0.22) as opposed to number density as
for NVSS.

fewer galaxies in all directions. A pure monopole change such as this increases shot noise

but does not affect the angular clustering signal of galaxies. In contrast, in a more realistic

scenario where the opacity of this “screen” depends on direction, it affects the observed

galaxy clustering signal by adding spurious power and by coupling different multipoles of

the measured power spectrum [101, 102]. The presence of unaccounted-for calibration errors

can thus introduce biases in cosmological parameter estimates from large-scale structure

surveys. These are particularly severe for the ISW effect and other measurements based on

signals that, like calibration errors, enter primarily at large angular scales.

In keeping with the picture of calibration errors as a direction-dependent screen, we model

them as a modulation of the true galaxy number counts N(n̂), where n̂ is the direction on

the sky. The observed, modulated counts are [101]

Nobs(n̂) = [1 + c(n̂)]N(n̂), (2.3)

where the field c(n̂) describes the screening effect of calibration errors. While we will gener-

ally refer to this kind of modulation as the result of “calibration errors,” as Eq. (2.3) makes

clear, this formalism can describe any residual effect that modulates a survey’s selection

function.

Though the expression in Eq. (2.3) will necessarily couple different multipoles, at low `,

the impact of calibration errors on the observed galaxy power spectrum is well approximated
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by

Cobs
` ≈ Cgal

` + Ccal
` , (2.4)

neglecting multiplicative terms.

Following MH16, we model the calibration error field c(n̂) as a Gaussian random field with

power spectrum Ccal
` and quantify the level of residual calibration errors using its variance,

σ2
cal ≡ Var(c(n̂)) =

∞∑
`=0

2`+ 1

4π
Ccal
` . (2.5)

While the conversion between σcal and the rms magnitude error depends on the faint-end

slope of the luminosity function of tracers in the survey, they can be related roughly as

(δm)rms ' σcal [101]. Thus a survey with residual calibration errors of σ2
cal = 10−6 has been

calibrated to roughly a milimagnitude.

Motivated by power spectrum estimates for maps of dust extinction corrections and

magnitude limit variations in existing surveys (see Fig. 5 and 6 in Ref. [101]), we choose the

fiducial calibration error power spectrum to be

Ccal
` = αcal exp

[
−(`/wcal)2

]
, (2.6)

with wcal = 10. The normalization constant αcal is varied to achieve the desired σ2
cal. Fig-

ures 2.2 and 2.3 show the impact of calibration errors of this form on the angular power

spectrum of the NVSS and SDSS MphG galaxy surveys, which have been used to recon-

struct the ISW map in previous studies [25, 26, 80]

For our fiducial model, we assume that calibration error maps for different redshift bins

and surveys are uncorrelated with one another. We briefly examine the impact of relaxing

such an assumption in Sec. 2.3.4.

2.2.2 ISW Estimator

Similarly to MH16, we work with the optimal estimator derived by Manzotti et al [80].

It takes as input n maps, which can include any tracers that carry information about the

ISW signal, namely LSS, CMB, or lensing convergence maps. Letting gi`m represent the

spherical components of the ith input map, where i ∈ {1, . . . , n}, the optimal estimator for

the spherical component of the ISW signal is

âISW
`m =

n∑
i=1

Ri
` g

i
`m. (2.7)
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The operator

Ri
` ≡ −N`[D

−1
` ]ISW−i (2.8)

is a reconstruction filter derived from the covariance matrix,

D` =


CISW,ISW
` CISW,1

` · · · CISW,n
`

C1,ISW
` C1,1

` · · · C1,n
`

...
...

. . .
...

Cn,ISW
` Cn,1

` · · · Cn,n
`

 . (2.9)

In this expression, superscript numbers label the input maps and N` ≡ 1/[D−1
` ]ISW−ISW

estimates the variance of the reconstruction at multipole `. When a single input map A, is

used, this expression reduces to a simple Wiener filter,

âISW
`m

single map−→ CISW−A
`

CA−A
`

gA
`m. (2.10)

We demonstrate in Appendix A.1 that Eq. (2.7) is equivalent to the estimator of Manzotti

et al [80], where the CMB temperature map is treated separately from LSS maps, and show

that it reduces to the Linear Covariance Based (LCB) filter first proposed by Barreiro et al

[75].

In constructing this ISW estimator, one must make a choice about how to obtain the

necessary angular power and cross-power spectra in the covariance matrix. The C`’s can

either be extracted from observations (as in Refs. [77, 79]) or computed analytically for an

assumed cosmology (as in Refs. [17, 25, 26, 80, 82]). Analytic calculation is straightforward

but introduces a model dependence which can potentially bias results if, for example, cali-

bration error contributions are not modeled correctly [17]. Measuring C` from observations

produces a model-independent estimator and so can help in the case where the theory spec-

tra are inaccurate, but at the expense of limited precision due to sample variance, especially

at large scales, scales with low power, or for map combinations that have little correlation.1

Hybrid methods can also be used, as in Ref. [78], which accounts for observed excesses in the

autopower of NVSS data by using a smoothed fit to data to get the galaxy map’s autopower,

but analytically computes its cross-correlation with the ISW signal.

We therefore consider two limiting cases of constructing the estimator in order to inves-

tigate how calibration errors impact the ISW reconstruction:

1. a ‘worst’ case estimator filter, R`(C
th
` ), where we use the fiducial theory C`’s in the

1Using the observed spectra also violates an assumption in the maximum likelihood derivation of the
estimator, in which the covariance is assumed to be known (i.e. independent of the measured signal).
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estimator, in which calibration errors’ power contributions are not modeled at all, and

2. a ‘best’ case estimator filter, R`(C
sky
` ), in which calibration error power contributions

are modeled perfectly (i.e. the covariance matrix is known). This case may be approx-

imated by, e.g. a smoothed fit of the observed LSS power.

The theoretical spectra are related simply through the expression

Csky
` = Cth

` + Ccal
` . (2.11)

where Ccal
` is the power spectrum of the calibration error field described in Sec. 2.2.1. We

consider these cases in Secs. 2.3.1 and 2.3.2 respectively.

2.2.3 Quality Statistic

To quantify the accuracy of a given reconstruction, we use the correlation coefficient between

the temperature maps of the true [T ISW(n̂)] and reconstructed [T rec(n̂)] ISW signal,

ρ =

1
Npix

∑Npix

k (T ISW
k − T̄ ISW)(T rec

k − T̄ rec)

σISWσrec

, (2.12)

where T̄X and σ2
X are the mean and variance of map TX(n̂), respectively.2 We do not include

pixel weights in our calculation of ρ, as is done to account for masking effects in Ref. [82].

This is because we work with only full-sky maps, as will be discussed in the next section.

The correlation coefficient can be rewritten in terms of the cross-power between the true

ISW map realization and the input tracers,

ρ =
1

4π

∑
`,i(2`+ 1)Ri

`C̃`
ISW−i

σISWσrec

, (2.13)

where the tilde denotes pseduo-C` measured from a given map realization, and we have used

Eq. (2.7) to write

C̃ISW−rec
` =

∑
i

1

2`+ 1

∑
m

[aISW
`m ]∗Ri

`g
i
`m (2.14)

=
∑
i

Ri
`C̃

ISW−i
` . (2.15)

2We also considered s, which measures the rms error between true and reconstructed ISW maps as a
complementary quality statistic, but found that for the cases studied here, the information it provided was
largely redundant to that given by ρ.
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Because the measured correlation coefficient depends on the specific realization, we assess

reconstruction accuracy for a given set of input map properties as follows. We simulate a

large number of realizations of correlated maps, then apply the ISW estimator to obtain

associated reconstructed ISW maps, and by comparing these with the true ISW maps we

obtain a sample distribution for ρ. Its mean value ρ̄, which in the limit of an infinitely

large ensemble will approach an expectation value 〈ρ〉, provides a statistical measure of

how accurately the estimator can reproduce the true ISW signal. Studying how ρ̄ changes

in response to variations in survey properties and modeling choices therefore allows us to

understand which factors are most important for obtaining an accurate ISW reconstruction.

We can avoid the computational cost of generating many simulation ensembles by noting

that we can obtain a good estimate for the expectation value of ρ if we make the approxi-

mation

〈ρ〉 =

〈
1

4π

∑
`,i(2`+ 1)Ri

`C̃`
ISW−i

σISWσrec

〉
(2.16)

≈
1

4π

∑
`,i(2`+ 1)Ri

`C
ISW−i
`

σ̂ISWσ̂rec

, (2.17)

that is, we replace the pseudo-C`’s with their expectation value across realizations, C̃` → C`.

We will refer to the quantity in Eq. (2.17) as ρ̂, defining

σ̂ISW =

√
1

4π

∑
`

(2`+ 1)CISW
` (2.18)

σ̂rec =

√
1

4π

∑
`,i,j

(2`+ 1)Ri
`R

j
`C

ij
` , (2.19)

to approximate the rms fluctuations in the true and reconstructed ISW maps. Here the

indices i and j label the input tracer maps and the sum over ` runs over the multipoles

` ∈ [2, 95], a range chosen to conservatively to include all scales where the ISW signal is

important.

We have tested the approximation ρ̂ ≈ 〈ρ〉 in Eq. (2.17) extensively and found it works

well when the estimator filter R` is built from analytically computed spectra but can break

down if R` is composed of C̃`’s extracted from map realizations. This behavior is related to

the way in which using measured C`’s makes ρ depend on C̃`, such that ρ̄ = ρ(〈C̃`〉) is no

longer a good approximation of 〈ρ(C̃`)〉. Appendix A.2 discusses this in more detail.
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Figure 2.4: Schematic illustration of the general analysis methodology described in Sec. 2.2. Cor-
related “true” galaxy and ISW maps are simulated for each realization, given a set of cosmological
parameters and LSS survey properties. A realization of a calibration error field modulates the true
galaxy map to produce the observed galaxy field, which is then used to reconstruct the ISW map
using the estimator described in Sec. 2.2.2, and compared to truth.

2.2.4 Simulated Surveys

Fig. 2.4 schematically illustrates our overall methodology, including the generation of corre-

lated ISW, CMB and LSS maps (described here), and the ISW reconstruction and quality

assessment using the tools described in the previous sections.

By working with simulated maps, we are able to study in detail how calibration error

levels and modeling choices affect ISW signal reconstruction.

Since we are concerned only with large scales, we model the ISW signal, total CMB tem-

perature anisotropy, and galaxy number density fluctuations as correlated Gaussian fields.

We use HEALPY [12] to generate map realizations based on input auto- and cross-power spec-

tra which we compute analytically following the standard expressions given e.g. in Ref. [17].

We use the Limber approximation for ` ≥ 20, having verified that this affects ρ at the level of

0.1% or less for the surveys and range of σ2
cal considered here. We compute C` for multipoles

with ` ≤ 95, as this range contains almost all of the ISW signal [103]. Accordingly, our

simulations are sets of HEALPIX maps of resolution NSIDE = (`max + 1)/3 = 32. We refer

31



the reader to Ref. [17] for a more detailed description of the reconstruction pipeline.

Because our goal is to study the impact of calibration errors and not survey geometry, we

assume full-sky coverage in all of our analyses. Ref. [82] found that in overlapping regions of

partial sky LSS surveys, ISW reconstruction quality degrades only slightly compared to the

full-sky case. Therefore, the performance of a given estimator using full-sky maps should be

indicative of its performance using maps with only partial sky coverage.

Our fiducial cosmological model is ΛCDM, with the best-fit cosmological parameter val-

ues from Planck 2015, {Ωch
2,Ωbh

2,Ωνh
2, h, ns} = {0.1188, 0.0223, 0, 0.6774, 0.9667}. Unless

otherwise stated, ISW reconstructions are performed on 2000 map realizations for each anal-

ysis and include multipole information down to `min = 2.

Within this framework, four pieces of information are required to model a LSS survey:

the distribution of its sources along the line of sight n(z), a prescription for how they are

binned in redshift, their linear bias b(z), and their projected number density per steradian

n̄. Below we describe how our choices for these characteristics are based on the properties

of promising future probes of the ISW effect.

Euclid-like LSS Survey

Our fiducial survey is modeled on Euclid, a future LSS survey with large sky coverage and

a deep redshift distribution [104], which is expected to be an excellent probe of the ISW

effect [103, 105]. We assume the redshift distribution used by Martinet et al [106],

dn

dz
=

3

2z3
0

z2 exp
[
−(z/z0)1.5

]
, (2.20)

which has a maximum at zpeak ' 1.21z0. We choose z0 = 0.7 and n̄ = 3.5 × 108, with a

photo-z redshift uncertainty of σ(z) = 0.05(1 + z) which smoothes the edges of redshift bins.

For simplicity, we assume a constant galaxy bias of b(z) = 1. Our results are qualitatively

insensitive to this choice as long as the bias is reasonably well approximated for the input

maps. This is because the bias term cancels in the estimate of the ISW signal, so that

fractional differences between true and modeled bias have little impact on ρ.

Muir and Huterer [17] investigated the impact of numerous systematic errors stemming

from mismodeling the survey properties and underlying cosmology in the ISW estimator,

finding residual calibration errors to be the dominant systematic. We therefore set cosmo-

logical and survey parameters in our models to be equivalent to the simulated truth and

focus on the impact of residual calibration errors. We refer the reader to Ref. [17] for further

details on both fitting for bias and the impact that mismodeling can have on reconstruction.

In Sec. 2.3.1 we investigate the improvement in ISW map reconstruction when the fiducial
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Euclid-like survey is split into six redshift bins with edges at z ∈ {0.01, 0.4, 0.8, 1.2, 1.6, 2, 3.5}
(see inset of Fig. 2.5), as compared to the unbinned case. We subsequently use the six-binned

Euclid survey as our fiducial case.

SPHEREx-like LSS Survey

We model a second survey on the SPHEREx All-Sky Spectral Survey (SPHEREx), a pro-

posed survey that has been optimized to study LSS in the low-redshift universe. One of

its goals is to place stringent limits on primordial non-Gaussianity [107], which will require

rigorous control of calibration errors. Given this, SPHEREx will provide excellent input map

candidates for ISW map reconstruction. Its shallower reach makes it complementary to the

deeper mapping of the LSS provided by Euclid.

SPHEREx will identify galaxies with varying levels of redshift uncertainty, ranging from

σz < 0.003(1 + z) up to σz > 0.1(1 + z). Grouping these into catalogs with different

levels of precision provides collections of galaxies useful for different science goals. The

σz < 0.1(1 + z) catalog with a projected ∼ 300 million galaxies was identified in Ref. [107]

as the best subsample for detecting the primordial non-Gaussianity parameter f loc
NL, whose

signal is highest at the large scales. Our investigations confirm this catalog of SPHEREx

to be the best for ISW detection as well. We therefore fit its projected redshift distribution

given in Ref. [107] to the functional form for dn/dz given in Eq. (2.20). We select z0 = 0.46,

which results in a peak dn/dz of zpeak ' 0.56. We have confirmed that our results are not

strongly sensitive to changes in this redshift distribution, in agreement with the findings of

Ref. [17].

We use a projected number density of n̄ = 6.6 × 107 and consider the case where the

survey is split into six redshift bins. We choose their edges by scaling the Euclid-like survey’s

binned redshift distribution to the SPHEREx median redshift, resulting in redshift bin edges

at z ∈ {0.01, 0.26, 0.53, 0.79, 1.05, 1.31, 2.30}. This still provides sufficient sampling of the

field in each bin to ensure that shot noise is subdominant to the galaxy signal power.

Planck-like CMB Survey

CMB data have frequently been used in conjunction with LSS data for ISW map reconstruc-

tion. Recent examples include Ref. [25], which used NVSS radio data, the Planck lensing

convergence map, and Planck temperature data. That analysis was subsequently extended

to include more LSS tracers in Ref. [26]. However, in both of these cases, residual systemat-

ics limit the usefulness of lensing data to scales of ` ≥ 10 and ` ≥ 8, respectively. Ref. [82]

investigated the usefulness of CMB data for ISW reconstruction using a simulation pipeline
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similar to ours, finding that both CMB temperature and polarization data only modestly

improve reconstruction quality but carry a greater benefit when the LSS tracers themselves

contain less information (due to e.g. noise or other properties of the survey).

It is then natural to ask whether CMB data can help mitigate the impact of calibration

errors in LSS maps. We therefore consider CMB temperature as an additional input map.

To compute the total CMB temperature power spectrum, CTT
` , we compute the primordial-

only contributions using a modified version of CAMB [4] and add them to our calculations

for CISW
` . As the CMB power spectrum is determined within the limits of cosmic variance

at low ` and the ISW signal is already dominated by the primary (that is, non-ISW) CMB

anisotropies, we do not include calibration errors in the generation of CMB temperature

maps. Though CMB polarization and lensing could provide additional information, residual

systematics remain at large scales for each (see Refs. [108] and [109], respectively), so for

simplicity we do not include them in this analysis.

2.3 Results

To characterize the impact of calibration errors in LSS surveys on the ISW map reconstruc-

tion, and the potential to mitigate these impacts, we look at multiple combinations of input

maps with different properties. Specifically, we consider the impact of binning in redshift,

of adding CMB intensity data, and of including additional LSS information from another

survey. For each of these studies, we examine two limiting cases for the estimator. The best

case scenario, which we will reference as R`(C
sky
` ), is when one perfectly models all contribu-

tions to the galaxy power, including residual calibration errors. The worst case, referenced

by R`(C
th
` ), is when the estimator is built out of theoretical spectra with no power from

calibration errors. The power spectra in these two cases are related by Eq. (2.11).

We use the analytical ρ̂ to estimate the mean reconstruction quality across a wide range

of σ2
cal, while performing reconstruction on simulated maps for selected values, to both verify

the accuracy of ρ̂ and to generate error bars for the spread of ρ across simulations.

2.3.1 One Survey: Binning in Redshift

We first consider the Euclid-like survey alone and investigate the impact of binning in redshift

on the quality of reconstructions in the presence of calibration errors. We model calibration

errors in the binned case by adding the calibration field’s power to the autopowerpower

spectrum of each bin i per Eq. (2.4): Ci,i
` → Ci,i

` + Ccal
` . We do not add any power to the
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Figure 2.5: Quality of map reconstruction ρ vs. the calibration error variance σ2
cal for our fiducial,

Euclid-like survey. The colors of the lines indicate how tomographic information is handled, showing
that splitting the survey into six redshift bins (red) improves the reconstruction compared to the
single-bin case (blue). Solid curves indicate cases when the calibration error is included in the ISW

estimator [R`(C
sky
` )], while the dashed curves show the reconstructions in which the effects of the

calibration errors are not included ([R`(C
th
` )] (see Sec. 2.2.2 for details). Points (offset horizontally

for clarity) show the mean (ρ̄) of 2,000 realizations, with error bars indicating the 68% spread
across realizations. The corresponding smooth curves are ρ̂, the analytical estimate of ρ̄ from
Eq. (2.17). The inset illustrates the redshift distribution across bins overlaid with the ISW kernel
in gray (reproduced from Ref. [17]). The vertical, shaded regions show the approximate current
and projected levels of control over residual calibration errors. Calibration errors between redshift
bins are modeled as uncorrelated.

35



10-7 10-6 10-5 10-4 10-3 10-2

σ2
cal

0.0

0.2

0.4

0.6

0.8

1.0

ρ

currentfuture

TT only

R`(C
sky
` )+TT

R`(C
sky
` )

R`(C
th
` )+TT

R`(C
th
` )

Figure 2.6: Reconstruction quality when using binned Euclid-like survey and CMB intensity data
separately and in combination. The purple curve and shaded band show the mean and 68% spread
of ρ from simulations. As in Fig. 2.5, red curves are results when using the binned Euclid-like survey
alone, whereas blue curves are the result of using both the fiducial survey and CMB intensity map.
Like in Fig. 2.5, solid curves are for the case where calibration error power is correctly modeled in
the estimator and dashed curves are for when they are not modeled at all. Neglecting the presence
of calibration errors in a LSS map can actually degrade the quality of the ISW reconstruction
compared to using the CMB temperature alone.
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cross-spectra, though we test the impact of contamination in the cross-spectra in Sec. 2.3.4.3

The results of this study are shown in Fig. 2.5. For reference, we use a vertical shaded

band to mark the level of calibration corresponding to current surveys, defined roughly

as the range bounded by the residual SDSS DR8 limiting magnitude variations [110] and

the SDSS über-calibration [111]. (‘Future’ levels are defined roughly as those between that

required to limit bias on cosmological parameters to below their projected uncertainties and

an intermediate level before bias becomes unacceptable; see Refs. [101] and [17] for details.)

As shown in Fig. 2.5, splitting the survey into six redshift bins results in significant im-

provement in reconstruction at all levels of calibration error. This improvement is comparable

to reducing σ2
cal of the single-bin case by a factor of 10 at ‘current’ levels.

Tomographic information is useful because it allows galaxy counts to be weighted more

optimally, taking advantage of the fact that the ISW effect becomes stronger at lower redshift

as dark energy becomes more dominant and structure growth slows. For instance, considering

the expected ISW reconstruction power from each bin when using optimal weights (i.e. the

squared contribution of each term in Eq. 2.7, using R`(C
sky
` )), we find that with no calibration

error, the first redshift bin contributes 87% as much power as the second bin, with subsequent

bins contributing 58%, 31%, 15% and 10% as much power, respectively. There is additional

benefit to binning when calibration errors are considered. Since the low-redshift bins have

a higher clustering signal than the high-redshift bins, they are less impacted by the same

level of calibration error. Thus, the optimal weighting changes depending on the level of

calibration error. When calibration errors are increased to σ2
cal = 10−4, for example, the

first bin contributes the most power to the reconstruction, with bins 2− 6 only contributing

39%, 12%, 4%, 2%, and 1% as much power. As we will show later, this error-level-dependent

weighting will mean adding information from a shallower survey such as SPHEREx makes

reconstruction more robust against calibration errors.

The importance of accounting for calibration errors in the estimator is apparent in the

difference between the dashed and solid curves, where doing so improves ρ̄ for σ2
cal & 10−6,

with ∆ρ̄ ≈ 0.1−0.2 at current levels of calibration. This improvement is roughly comparable

to the improvement seen from binning in redshift.

Though for clarity we do not include this case in the Figure, we additionally studied

the effect of using the observed, unsmoothed galaxy-galaxy power in the estimator (that is,

C̃`, power spectra extracted from map realizations rather than computed analytically). We

find that in this case ρ̄ converges to the same value as the R`(C
sky
` ) case when calibration

3In reality, the power contribution from calibration errors will also vary somewhat across bins, depending
on the redshift dependence of the faint-end slope of the luminosity function for the tracer population. We
have assumed here for simplicity that the power contribution is independent of redshift.
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errors are very large, but is greatly reduced from ρ̄ found using either R`(C
sky
` ) or R`(C

th
` )

when calibration errors are small (σ2
cal � 10−5). For example, for a single input map in the

limit of no calibration errors, quality reduces from ρ̄ = 0.93 to 0.83 when we switch to using

observed C̃`’s. If we also use the observed (unsmoothed) cross-correlation between the LSS

map and the CMB for the galaxy-ISW term in the estimator, reconstruction quality is further

degraded to ρ̄ = 0.74 in the absence of calibration errors. This is because primary CMB

anisotropies are large compared to ISW contributions, causing the measured galaxy-CMB

correlation to receive relatively large noise contributions from chance correlations between

LSS maps and the primordial CMB.

Given the significant improvement in reconstruction that binning provides, from here

forward we adopt the configuration with six tomographic bins as our fiducial Euclid-like

survey.

2.3.2 Effect of Adding Planck TT Data

We now consider adding information from the Planck-like CMB temperature map described

in Sec. 2.2.4. When used as the only input map, the reconstruction is considerably worse

than that found using the ideal Euclid-like survey (Table 2.1). We include it in our study,

however, because any realistic study attempting to reconstruct the ISW signal will likely in-

clude CMB temperature data. Additionally, the reconstruction quality attainable with CMB

temperature data alone provides a useful baseline against which to compare the performance

of estimators based on LSS maps.

With CMB temperature data alone, we find an average reconstruction quality of ρ̄ = 0.46,

in good agreement with Ref. [82]. To put this into proper context, however, it is important to

note that there is a large scatter around that mean; while the average reconstruction quality

is indicative of performance, any single realization, such as that of our own Universe, can

vary substantially in fidelity. The purple band in Fig. 2.6 shows the extent of this scatter

for ISW reconstruction based on just the CMB map.

When CMB temperature information is combined with that from LSS maps, it signif-

icantly improves reconstruction quality, but only if the true galaxy power spectrum Csky
`

(including calibration error contributions) is used in the estimator, as can been seen by the

behavior of the solid curves on the right-hand side of Fig. 2.6. The blue ρ(σ2
cal) curve de-

scribing the CMB+LSS reconstruction tracks the maximum of the curves corresponding to

reconstructions using the CMB and LSS input maps separately, shown by the purple and

red curves, respectively. This occurs because the estimator down-weights the LSS survey the

more it is affected by calibration errors, converging to the TT -only reconstruction quality in
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the limit of large calibration errors. If one does not model calibration error power contribu-

tions, however, then any improvement from combining multiple input maps is marginal at

best and can in fact result in a worse reconstruction than just using the CMB data alone.

This demonstrates the importance of ensuring that the LSS C`’s used in the ISW estimator

are a good fit to the observed spectra.

2.3.3 Effect of an Additional LSS Survey: SPHEREx-like

We now consider the addition of our fiducial six-bin SPHEREx-like survey described in

Sec. 2.2.4, assuming for simplicity that it has the same level of calibration errors as the

Euclid-like survey. Results are shown in Fig. 2.7.

In the limit of no calibration errors, the SPHEREx-like survey offers little additional

information. In fact, adding both SPHEREx and CMB TT results in negligible improvement

over the Euclid-like only case (∆ρ̄ < 0.003 compared to a spread of σEuc+Spx+TT = 0.019).

However, by comparing the black and blue curves we see that including the SPHEREx-

like survey does make the reconstruction somewhat more robust against calibration errors.

The reason for this is similar to why binning in redshift is helpful: recall that, in the case

of binning, having narrow, low-redshift bins means having some bins with higher galaxy

autopower than the unbinned case, which then have less susceptibility to a given level of

calibration error. Similarly, SPHEREx has a shallower redshift distribution, and thus an

intrinsically higher clustering signal, so that it can actually provide a better reconstruction

than the Euclid-like survey at moderate levels of calibration error. We would expect to see

similarly increased robustness to calibration errors for any tracer with a larger clustering

signal, including tracers with a larger bias.

Finally, just as for Euclid, we find that if calibration errors are not accounted for in the

estimator, then adding LSS data can actually result in a worse reconstruction than that from

using CMB temperature data alone.

2.3.4 Effect of Varying Calibration Error Properties

We now test how sensitive the results in the previous sections are to our assumptions about

calibration errors, showing the results in Fig. 2.8.

First, the left panel shows what happens when we vary the level of cross-correlation be-

tween the calibration errors of different LSS maps. It is conceivable that residual calibration

errors can be correlated across different bins of a single survey, or even across different sur-

veys, especially if the error has an astronomical origin. To model such correlation, we set the

level of cross-correlation between the calibration errors of maps i and j using a parameter
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Figure 2.7: Comparison of ISW reconstruction quality using the LSS surveys and CMB tempera-
ture individually and in combination, for various levels of calibration error in the Euclid-like and
SPHEREx-like surveys. Colors are the same as those of Fig. 2.6. Both of the LSS surveys are split
into six redshift bins (see Sec. 2.3.1), with calibration errors uncorrelated between bins and surveys.
The dashed curve shows the combined reconstruction if calibration errors are not included in the
estimator. Using LSS surveys to improve the ISW map reconstruction from the CMB temperature
only case requires calibration errors to be controlled to σ2

cal . 10−4.
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R` R`(C
th
` ) R`(C

sky
` )

σ2
cal 0 10−6 10−4 10−6 10−4

TT 0.46 - - - -

Euclid (1 bin) 0.92 0.83 0.19 0.84 0.29

Euclid (6 bin) 0.95 0.91 0.41 0.92 0.57

SPHEREx (6 bin) 0.89 0.88 0.52 0.88 0.62

Euc + Spx + TT 0.96 0.92 0.47 0.93 0.73

Table 2.1: Mean reconstruction quality coefficients ρ̄ of ISW map reconstructions for various com-
binations of input maps and select levels of calibration error. The second column indicates ρ̄
for the case of zero calibration error. The following columns show the reconstruction quality for
two nonzero values of the calibration error variance; here R`(C

th
` ) [R`(C

sky
` )] indicates the case

where calibration errors are unaccounted [accounted] for in the estimator. Note, when σ2
cal = 0,

Cth
` = Csky

` .

rcc, where

Ccal,ij
` = rcc

√
Ccal,ii
` Ccal,jj

` , for i 6= j (2.21)

As we only consider cases where calibration errors in all maps are characterized by the same

Ccal
` , this reduces to

Ccal,ij
` = rccC

cal
` , for i 6= j. (2.22)

We consider the six-bin fiducial Euclid-like survey and find that this kind of correlated

error results in mild degradation of the reconstruction for σ2
cal . 10−4, but otherwise it

has little effect as long as calibration errors are correctly modeled in the estimator [that is,

R`(C
sky
` ) is used].

If calibration errors are not accounted for [R`(C
th
` ) is used], reconstruction suffers con-

siderably, as shown by the dotted curve. We also use a dashed curve [labeled R`(C
XY,th
` )]

for the case where the estimator filter correctly accounts for the autopower contributions

of calibration errors but neglects the cross-power contributions. As seen by comparing the

solid, dashed, and dotted orange curves in Fig. 2.8, reconstruction quality is far more sensi-

tive to accurate modeling of the calibration error contribution to the autopower than to the

cross-power. Thus, fitting the observed autopower for each map but using theoretical cross-

powers, as is done in Ref. [78], should harm the reconstruction relatively little, depending on

the fitting scheme; we find ∆ρ̂ ≈ −0.03 at σ2
cal = 10−4 for rcc = 0.2, far less than the typical

variation over realizations shown in Fig. 2.5.

Additionally, we study the impact of changing the shape of the calibration error power
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Figure 2.8: Top: Effect of cross-correlation between calibration errors in different bins of the

fiducial Euclid-like survey, given by Ccal,ij
` = rcc

√
Ccal,ii
` Ccal,jj

` , for bins i 6= j. Solid curves have

calibration errors accounted for in the estimator [R`(C
sky
` )]. The dashed curve indicates the case

where only the autopower contributions of the calibration errors are accounted for in the estimator
[R`(C

XY,th
` )] and the dotted curve indicates the case where calibration errors are not accounted for

at all [R`(C
th
` )]. Cross-correlation of the errors results in mild degradation of the reconstruction

for σ2
cal . 10−4, but otherwise has little effect as long as the auto-correlation is correctly modeled

in the estimator. Bottom: Dependence of ρ on the shape of Ccal` . Solid curves indicate Ccal` of the
same form as Eq. (2.6) but with width wcal varied. The dashed curve indicates the case where the
error spectrum takes the form Ccal` ∝ (`+ 1)−2. Reconstruction fares worse when calibration error
power contributions are more concentrated at the largest angles, where the ISW kernel is largest.
In all cases, the estimator uses the true observed LSS power spectrum (Csky

` ).
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Figure 2.9: Contribution to squared signal-to-noise ratio per multipole for our fiducial Euclid-like
survey with varying levels of calibration error. Total combined S/N for each level of calibration
error σ2

cal is given in the legend.

spectrum Ccal
` , showing the results in the right panel of Fig. 2.8. We first vary the width

parameter wcal of the calibration error power spectrum Ccal
` given in Eq. (2.6). Results for

different values of wcal are qualitatively similar, though for fixed σ2
cal, the reconstruction is

less sensitive to calibration errors when wcal is larger. The reason for this is that ρ is most

sensitive to contamination at the lowest multipoles, as will be discussed in Sec. 2.4. Using a

power law Ccal
` ∝ (`+ 1)−2 gives results similar to our fiducial Gaussian form with wcal = 10.

2.4 Impact of Calibration Errors on S/N Estimates

Given the extent to which calibration errors degrade the quality of ISW signal reconstruction,

it makes sense to ask whether they also impact the signal-to-noise (S/N) of ISW detection.

Detection of the ISW signal via the cross-correlation between the CMB and LSS maps has

been the subject of considerable study, as it serves as an important consistency test for the

presence of dark energy. The significance of detection varies considerably depending on the

LSS tracer sample and the statistical methods used [112], as well as how systematics in

the LSS data are treated [71, 89, 92]. Ref. [89] used systematics templates to correct the

observed power spectra for SDSS galaxies, finding a S/N loss of ∼ 0.5 if such corrections

are neglected. Ref. [71] introduced a low-redshift spike in the source distributions in order
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to reproduce the observed excess autopower in NVSS and SDSS catalogs and estimate that

such systematics result in an uncertainty of ∆S/N± 0.4. The most recent results come from

the Planck Collaboration, which found ∼ 4σ evidence for the ISW effect, with most of the

signal coming from cross-correlation of the CMB temperature with the NVSS radio catalog

and CMB lensing [26].

The maximum achievable signal-to-noise can be obtained by considering an ideal survey

that perfectly traces the ISW (i.e. Cgg
` = CTg

` = CISW
` ), resulting in a maximum S/N ∼ 6−10

for ΛCDM cosmology [68, 69, 87, 103, 105, 112, 113].

Our goal is to study how calibration errors impact the significance of ISW detection.

There are multiple ways one can quantify detection of the ISW effect, including correlation

detection between LSS and the CMB, template matching to an assumed model, or model

comparison. Each of these methods relies on different assumptions and tests different sta-

tistical questions (see Ref. [112] for a detailed review). Here we adopt the simple correlation

detection statistic which quantifies the expected deviation from a null hypothesis of no cor-

relation between LSS (g) and CMB temperature (T ). In this formalism the S/N for ISW

detection is (
S

N

)2

'
∑
`

(C`
Tg)∗(Ccov

` )−1C`
Tg, (2.23)

where we have assumed the multipoles contribute independently to the S/N. Here C`
Tg is a

vector of the ISW-LSS cross-spectra, and the covariance matrix elements corresponding to

LSS maps i and j can be written as

Ccov,ij
` =

〈
∆CT i

` ∆CTj
`

〉
(2.24)

'
CT i
` C

Tj
` + CTT

` (Cij
` + Ccal,ij

` + δij
1
n̄ij

)

fsky(2`+ 1)
, (2.25)

where the last term in the numerator is due to shot noise and δij is the Kronecker delta.4

Equations (2.23) and (2.25) demonstrate that all cosmological tests using LSS-CMB cross-

correlation are limited in their constraining power due to sample variance and the relatively

large amplitude of the primordial CMB fluctuations. They also make it clear that calibration

errors will reduce the significance of ISW detection.

We assume calibration errors to be uncorrelated between maps, so Ccal,ij
` → δijC

cal,ij
` .

4Strictly speaking, this will result in a slight underestimate of the significance, as technically the null
hypothesis covariance, with CTi` = CTj` = 0 in Eq. (2.25), should be used. However, as the galaxy-ISW
cross-power terms are small compared to the galaxy autopower, we follow the practice in most of the
literature of keeping them in the S/N calculation.
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For a single LSS map, Eq. (2.23) reduces to the form(
S

N

)2

' fsky
∑
`

(2`+ 1)(CTg
` )2

(CTg
` )2 + CTT

` (Cgg
` + Ccal

` + 1/n̄g)
. (2.26)

If there are no calibration errors, we find S/N= 6.6 for our Euclid-like survey, which is

near the maximum5 for this cosmology, S/N= 6.7. As σ2
cal increases from 0 to current levels,

the total S/N reduces to 4.9−5.7, a drop of only ∼ 15%−30%. This can be seen in the S/N

values listed for various σ2
cal in the legend of Fig. 2.9. In contrast, for the same level of error,

average reconstruction quality ρ̂ is reduced by 40%−60%. Clearly, ISW signal reconstruction

is substantially more affected by calibration errors than is ISW detection significance.

The greater robustness of the total S/N to calibration errors is due to the fact that it has

support at higher multipoles. This is most easily illustrated in the single-map case, where

the contribution per multipole to the total signal-to-noise is(
S

N

)2

`

≡ d (S/N)2

d`
= (2`+ 1)

(CTg
` )2

CTT
` Cgg

` + (CTg
` )2

. (2.27)

Figure 2.9 shows how the contribution per multipole responds to different levels of calibration

error.

As σ2
cal increases, the signal-to-noise decreases at lower multipoles, but contributions at

higher multipoles remain unchanged. These higher-multipole contributions are thus still

available to contribute to the overall S/N.

Map reconstruction is more sensitive to the largest scales. For the single-map case, this

can be illustrated analytically as follows. Using the single-map estimator from Eq. (2.10),

5This limit can in principle be increased, e.g., through the method of Ref. [114] in which the observed
LSS map is used to reduce the local variance and which in our case brings the maximum possible S/N to
7.2, or through the inclusion of polarization data as in Ref. [115].
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we can write the estimated reconstruction quality statistic as

ρ̂ =

1
4π

∑
`(2`+ 1)

(
CTg`
Cgg`

)
CTg
`

σISW

√
1

4π

∑
`(2`+ 1)

(
CTg`
Cgg`

)2

Cgg
`

=
1

σISW

√√√√ 1

4π

∑
`

(2`+ 1)
(CTg

` )2

Cgg
`

=
1

σISW

√√√√ 1

4π

∑
`

(
S

N

)2

`

CTT
`

(
1 +

(CTg
` )2

Cgg
` C

TT
`

)

≈ 1

σISW

√√√√ 1

4π

∑
`

(
S

N

)2

`

CTT
` . (2.28)

Here, (S/N)2
` is the quantity given by Eq. (2.27) which, when summed over `, gives

(S/N)2. Thus, we see from Eq. (2.28) that ρ̂ is proportional to a total (S/N) of which

the terms are weighted by CTT
` . Since CTT

` drops sharply as ∼ `−2, the quality of map

reconstruction ρ̂ is more impacted by large-angle calibration errors than the overall S/N is.

This is also a primary cause for the degradation in reconstruction quality seen when σ2
cal was

concentrated at lower multipoles in Sec. 2.3.4.

2.5 Conclusions

Reconstruction of the integrated Sachs-Wolfe signal would allow, for the first time, a clean

separation of the CMB temperature anisotropies into contributions from 300,000 years after

the big bang and those from some ∼10 billion years later. This, in turn, would allow for

a more informed assessment of the origin of the “large-angle CMB anomalies” and a more

complete elimination of ISW contaminants to CMB-based measurements of primordial non-

Gaussianity. Accurate ISW reconstruction requires wide-angle large-scale structure maps

from which the gravitational potential evolution can be inferred, but in practice, these maps

are plagued by photometric calibration errors due to a host of atmospheric, instrumental,

and selection-induced systematics. In our previous work, we found that the realistic levels

of residual calibration error severely degrade the accuracy of the reconstructed ISW map.

In this chapter, we investigated how the effects of residual photometric calibration errors

on the ISW map reconstruction can be mitigated by using tomographic information and by

combining data from multiple surveys. To quantify the amount of residual calibration errors,
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we use their variance σ2
cal, the square root of which is roughly equal to the rms magnitude

fluctuations induced by these systematics.

We find that for a Euclid-like survey with a single redshift bin, to achieve a reconstruction

comparable in quality to that derived from the CMB temperature map alone (with an average

correlation between the true and reconstructed ISW maps of only ρ̄ ≈ 0.46), one must limit

the variance of the calibration error field to σ2
cal . 10−5.

This can be improved significantly if we exploit the tomographic information available

by binning the LSS data in redshift (Fig. 2.5). We also show that if the model spectra in

the estimator differ substantially from those used to generate the input maps e.g. by using

theoretical power spectra that do not account for the observed excess autopower in the LSS

survey from calibration errors, then reconstruction quality is substantially degraded. It is

therefore crucial to verify that the theoretical spectra in the estimator are a good fit to those

observed or to otherwise use smoothed fits.

We next consider how using multiple input maps, probing different tracers and red-

shift ranges, improves ISW signal reconstruction. We find that as long as the excess power

contributed by calibration errors is adequately modeled in the estimator, the resulting recon-

struction is always better than that from either of the input maps individually. If the excess

power from calibration errors is not modeled, however, adding a map can actually degrade

reconstruction (Fig. 2.6). The CMB temperature map adds information to the reconstruc-

tion at all levels of calibration error, but is especially valuable if the LSS maps are subject

to calibration errors with σ2
cal & 10−5. Using a six-bin SPHEREx-like survey provides quali-

tatively similar results to the Euclid-like one, but because it is shallower, the reconstruction

is less accurate in the limit of no calibration errors (ρSpx = 0.89±0.04 vs. ρEuc = 0.95±0.02,

where errors indicate the 68% spread across realizations). However SPHEREx’s shallower

depth and therefore intrinsically higher clustering signal becomes an asset in the presence

of calibration errors, making the survey more robust against calibration errors and leading

to a better reconstruction for σ2
cal & 6 × 10−6. (Similarly, we would expect the increased

clustering of tracers with larger bias to help mitigate the effects of calibration error as well.)

Therefore, a combination of a shallower and a deeper LSS survey provides complementarity

useful for separation of calibration errors from the ISW signal and necessary for a good ISW

map reconstruction in the presence of such errors.

Using all three simulated surveys as input—Euclid, SPHEREx, and CMB temperature—

significantly improves reconstruction compared to using a single survey with current levels of

residual calibration errors, or CMB temperature data alone. We find that if the calibration

errors can be controlled to the level of σ2
cal . 10−6 (σ2

cal . 10−5), then the combination of

Euclid, SPHEREx, and CMB temperature maps can produce the ISW map reconstruction
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to an excellent accuracy of ρ = 0.93 ± 0.03 (ρ = 0.87 ± 0.05). This is roughly the same

level of calibration control required for future LSS surveys to avoid biasing measurements

of cosmological parameters like the non-Gaussianity parameter fNL and the dark energy

equation of state. Thus, high-quality ISW reconstructions will, in a sense, “come for free”

with the developments needed for cosmology constraints with next-generation surveys.

We additionally test the robustness of our results against changes to the properties of

the calibration error field, looking at cross-correlations between calibration errors in different

maps as well as the shape of their spectrum. We found that cross-correlation between the

calibration errors of different tracer maps degrades the reconstruction most for 10−6 . σ2
cal .

10−4, but that this effect is relatively minor, provided the auto-correlation contribution is

accounted for in the estimator (Fig. 2.8, left).

We also find that, compared to map reconstruction accuracy, the overall significance of

ISW detection is less strongly affected by calibration errors. This is because its signal is

distributed more broadly in multipole space than that of the map reconstruction quality

statistic. To clarify this, we analytically relate ρ̂ to the commonly used ISW detection S/N

statistic in the case of a single input LSS map and show that ρ̂ is weighted by an additional

factor of CTT
` , demonstrating map reconstruction’s greater sensitivity to the largest scales

[Eq. (2.28)].

As an extension to this work, one could study how the inclusion of CMB lensing and

polarization data can improve ISW map reconstruction, provided the systematics present in

those data sets could be sufficiently accurately modeled. The results of [82] indicate that the

use of lensing as input can contribute significantly to reconstruction quality, but they also

show that current noise levels limit its effectiveness. Notably, the residual lensing systematics

at ` ≤ 8 present a challenge, as this is where the ISW signal is strongest, and we expect

these systematics to affect reconstruction with CMB lensing and polarization in a manner

broadly similar to unaccounted for calibration errors in LSS maps at those scales.

Further work could also be performed to concretely explore how to best approximate

the ‘best case’ reconstruction scenario, wherein calibration errors are fully accounted for, by

using real input data. Here we have only characterized the limiting cases where the residual

calibration error contribution to the LSS power is fully known or fully unknown, and have

not addressed intermediate cases where they are partially accounted for.

Finally, we have only worked in the full-sky case whereas real data will necessarily have

only partial sky coverage. Others have already shown that incomplete sky coverage only

very minorly degrades reconstruction quality for areas covered by the input data sets [82],

and we do not expect this to change in the presence of calibration errors. Nevertheless, a

full analysis that attempts to make predictions for real surveys should take the actual sky
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coverage and survey-specific systematics into account.

Even with these considerations, it is clear that accounting for the presence of residual

calibration errors in LSS surveys is a critical step for any reconstruction of the ISW map, as

their presence and treatment impact both the survey characteristics and set of input maps

that produce the optimal reconstruction.
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Chapter 3

Mitigating Contamination in LSS

Surveys: A Comparison of Methods

3.1 Introduction

Over the past 40 years, cosmological surveys have produced increasingly detailed maps of the

large-scale structure (LSS) in the Universe [116–124]. These observations have proven crucial

for testing our understanding of gravity and cosmological structure formation, and helped to

constrain cosmological parameters to the percent level [e.g. 124–126]. Recent observations

from DES have for the first time imposed strong constraints on dark energy using an LSS

survey alone, independently of the cosmic microwave background [127]. Upcoming ground-

based missions like DESI [128], and the Rubin Observatory’s LSST [129], along with space-

based missions like SPHEREx [130], Euclid [131], and RST (formerly WFIRST) [132] will

truly herald the age of precision cosmology, mapping up to ∼20 billion galaxies across the

sky and bringing unprecedented precision to measurements of the dark energy equation of

state and modified gravity. Such statistical precision makes the control of systematic errors

in these datasets of paramount importance to avoid biasing cosmological analyses.

Cosmological information is extracted from LSS observations in multiple ways. The most

common approach is to calculate the two-point correlation function or its Fourier counterpart,

the power spectrum, to characterize the spatial distribution of galaxies (galaxy clustering)

or their shapes (weak lensing). To date, these have been used in cosmological analyses to

great success [133–152].

The two-point function contains all available information when the field it characterizes

is Gaussian, but nonlinear gravitational collapse induces non-Gaussianity at late times and

small scales. Therefore there is considerable cosmological information that is inaccessible to
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the two-point function. This has led to growing interest in using complementary statistical

representations of LSS observations, such as higher order N-point functions [153, 154, 154,

155, 155–162], statistics of peaks [163–165] and voids [166–172], density-split statistics [173],

the log power spectrum [174], marked power spectra [175–178], Minkowski functionals [179–

184], wavelet transforms [185, 186] and more. These methods rely on the accurate mapping

of the underlying cosmological fields from which they are derived, so there is increasing

need for tools to mitigate systematic contamination at the levels of both the map and the

two-point functions.

Here, we consider the very general class of systematics that describes an arbitrary spatial

modulation of the observed field. Such generic sources of error are one of the most serious

contaminants in our quest to probe cosmology with future surveys. For definiteness we focus

on the case of galaxy clustering, where the systematic error corresponds to a modulation

of the galaxy selection function in redshift or across the observing footprint, similar to that

discussed in Chapter 2. However, the methods we test and develop in this chapter

are general enough to apply to any real or complex field for which there exist

maps of potential contaminants (e.g. shear or Sunyaev-Zeldovich-effect fields).

Spatially-varying systematics in LSS maps may be caused by an large variety of physical

effects. These include observing conditions and dust extinction (both of which effectively

create a position-dependent “screen,” obscuring background galaxies), bright objects and

star-galaxy separation (which can eclipse, change the shape, or be confused for galaxies close

to them on the sky), and variations in sensitivity of the detector (which include potentially

time- and position-dependent variations in the focal plane), or imaging pipeline. In all of

these cases, failure to fully account for variability in the selection function will result in

residual artifacts — calibration errors — in the final data product and potentially bias

results [16, 101, 102]. The presence of calibration errors is evidenced by a number of surveys

[83, 85–88, 187–190] which have shown a significant excess of power at large scales where

calibration errors are thought to be most prevalent. Recent observations (e.g. from the Dark

Energy Survey [191]) demonstrate however that such contamination is by no means limited

to large scales alone. In addition to adding power, calibration errors induce a multiplicative

effect, coupling different scales and thus affecting all scales in the survey, including those

smaller than the typical size of the calibration systematic itself [101, 102]. Much recent work

[83, 88, 94–96, 98, 100, 110, 190, 192–203] has focused on mitigating these systematics in

order to probe the underlying cosmology.

The simplest strategy to ameliorate the effects of calibration errors is to simply mask

scales or data points suspected having large levels of contamination. More sophisticated

strategies include using maps of suspected contaminants — so-called ‘templates’ — to cor-
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rect the observations. An alternative and complementary approach is to forward-model

many possible realizations of the cosmic initial conditions [e.g. 204–211]. One then evolves

these initial conditions in time (while adding realizations of nonlinearities, bias, and obser-

vational/instrument systematics), and performs joint inference of cosmology, the initial con-

ditions and late-time “true” fields, given observations. Another forward-modeling approach

involves the injection of false images into observations in order to sample the selection func-

tion [100, 202]. While such forward approaches are powerful and very general, they also

require extensive computational resources and are complicated to implement. In contrast,

using templates to clean contaminated observations and directly infer the underlying fields

is straightforward to implement and can be readily incorporated into ongoing or completed

analyses. They have been the dominant approach in the community thus far, and so these

are the methods we focus on here. Fig. 3.1 shows real-world results of the template-based

correction scheme used in the just-released Year 3 analysis from the Dark Energy Survey.

The left panel shows how the raw observed two-point correlation function of the redMaGiC

catalog is artificially high (red), and is reduced significantly after template-based corrections

are applied (green) (see Ref. [23] for details). The right panel shows sky maps with the

characteristic DES footprint of some of the survey and sky properties used as templates in

the correction scheme.
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Figure 3.1: Left: The two-point correlation function of DES Y3 redMaGiC galaxies with 0.8 <
z ≤ 0.9. The uncorrected sample (red) shows significantly higher galaxy clustering than after
the template-based corrections are applied (green), demonstrating the importance of cleaning in
modern-day LSS analyses. The black line shows the best-fit ΛCDM theory curve from the fiducial
3×2-pt analysis (which includes weak lensing data) and is in much better agreement after correction.
Adapted from Ref. [23]. Right: Real world sky maps of several observational quantities used as
templates for the correction scheme in the DES Y3 analysis.

In this work we revisit and extend state-of-the-art LSS systematics-cleaning strategies.
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We interpret them through a regression framework to highlight commonalities and differences

of the methods, as well as some tacit assumptions. In doing so, we show that the common

pseudo-C` Mode Projection method is equivalent to linear regression. We use this framework

to propose straightforward extensions that leverage the extensive body of literature and tools

that have been developed for regression analyses. We rigorously test the performance of

several existing methods, plus new ones that we propose, on a common set of simulated

observations from current and future surveys.

×
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Clean,"

Compare

"-.* Clean

Contaminating
Templates

Figure 3.2: Analysis procedure for a single map. A set of templates is generated (dashed box) along
with a true overdensity map δtrue. A subset of the templates (orange box) contaminate the true
overdensity map to generate the observed overdensity field δobs. We generate an estimated signal
map δ̂ using one of the cleaning methods, and compare it to the truth, either at a map-level or
power-spectrum-level. This is repeated for many realizations of the signal map and the performance
of each cleaning method is assessed.

We study performance using an ensemble of simulated galaxy overdensity maps, such

that we can assess both the accuracy and precision of each method. We provide a library

of templates and a contaminated overdensity map as input to each cleaning method, which

then produces an estimate of the true overdensity map and power spectrum that we assess

for accuracy. We repeat the process over a large number of sky realizations and for various

configurations of templates to asses the precision and robustness of each method. A schematic

outline of this process is shown in Fig. 3.2.

The chapter is organized as follows. In Sec. 3.2 we describe in detail our general model

for contamination, which encompasses a wide range of systematics due to foregrounds or
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instrument calibration errors. In Sec. 3.3 we describe several existing methods for systematics

mitigation; in Sec. 3.4 we reinterpret the methods through a common framework to facilitate

comparison, and in Sec. 3.5 we use this to map several aspects onto well-known techniques

in statistics and propose two new mitigation methods. In Sec. 3.6 we describe the fiducial

synthetic surveys on which we test the efficacy of the methods that we study. Sec. 3.7 shows

the results of these performance comparisons, while Sec. 3.9 has our conclusions. Several

Appendices show important but more technical and detailed aspects of the investigation.

3.2 Contamination Model

We first introduce the model for contamination of the observed LSS fields. It is very general,

encompassing most known sources of real-world contamination. We can model the observed

number density map as a combination of the true galaxy number density map (Ntrue(n̂))

modulated by a direction-dependent screen (1 + fsys(n̂)), plus an additive contamination

term Nadd(n̂):

Nobs(n̂) = (1 + fsys(n̂))Ntrue(n̂) +Nadd(n̂). (3.1)

We will primarily address multiplicative contamination as this characterizes most known LSS

contaminants; one exception is a contaminating population of objects such as stars, which

we discuss briefly in Sec. 3.4.2. Therefore, we take Nadd(n̂) → 0 for simplicity and focus

on the first term fsys(n̂), which fully characterizes the systematic modulation of the true

field such that pixels with fsys(n̂) = 0 are free of contamination. Using N = N̄(1 + δ) and

defining the ratio of true to observed mean number density as γ = N̄true/N̄obs, the observed

overdensity can be written as

δobs(n̂) = γ(δ(n̂) + 1)(fsys(n̂) + 1)− 1. (3.2)

Here γ enforces the constraint that 〈δobs〉pix = 0 across the survey footprint, even though

this is not necessarily true for the true overdensity field δ. This is due to the fact that we

can only access the observed mean number density N̄obs, which differs from the true mean

both because of systematic contamination and because of sample variance from a limited

survey footprint (see Sec. 3.4.2 for details).

This model for contamination is similar to the one used in [16, 17, 101, 102] to assess

the impacts of residual calibration errors that remain in the data after cleaning. Here we

focus on the methods used to perform such cleaning, and so use the screen model to describe

contamination more generally.

We extend the screening formalism by considering that the total systematic modulation
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is comprised of Nsys individual systematics, each of which acts as its own screen. Thus we

have

1 + fsys =

Nsys∏
i=1

(1 + fi) (3.3)

' 1 +

Nsys∑
i=1

fi +

Nsys∑
j 6=k

fjfk + [higher order terms]

where we have suppressed n̂ in the notation for convenience both here and in what follows.

Note that even if a systematic individually contributes to fsys linearly, there exist interaction

terms with other systematics up to order Nsys. Here and in general, fi ≡ fi(n̂) is a column

vector with each element corresponding to a pixel, unless otherwise noted.

3.3 Background: Existing Mitigation Methods

The principal goal of this study is to compare various proposed systematics mitigation meth-

ods. The methods that we test are all designed to use maps that trace potential contami-

nation in order to mitigate the impact of systematics, i.e. they assume that the systematic

fi(n̂) is a function of some tracer ti(n̂). We refer to these tracer maps as templates, and

examples include maps of stellar density, extinction, or summary statistics of observing con-

ditions (e.g. mean g-band seeing) in each region of the sky throughout the duration of the

survey (see Leistedt et al [191] for a detailed description of the process for creating templates

from multi-epoch observational data for the Dark Energy Survey). Sources of error for which

we have no templates (e.g. shot noise) are implicitly subsumed into the overdensity field.

We will investigate how effectiveness depends on analysis choices and suggest improve-

ments where possible. We start with three principal methods that have been applied in

the literature: the Dark Energy Survey Year 1 method (henceforth DES-Y1), the Template

Subtraction method (TS), and the Mode Projection method (MP). While at face value the

algorithms associated with these methods seem quite different, we demonstrate that they

can be translated into a common mathematical framework of linear regression. Doing so

allows us to distill commonalities and differences between the methods, as well to identify

simplifications and extensions to them. We include three additional methods based on these

insights.

For all the methods, we will work with maps that are divided into pixels in HEALPix1[12]

1http://healpix.sourceforge.net
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format, which summarize the mean galaxy overdensity or template values within each pixel

(see Sec. 3.6 for details). Furthermore, while we work in the context of cleaning galaxy

overdensity fields, the methods are applicable more generally to corrections of any field for

which we have templates of potential contamination, and so we denote the true signal more

generally as s and the observed field as dobs. In our application, these correspond to the true

and observed galaxy overdensity fields, δtrue and δobs. In the sections that follow, we use x̂

to denote an estimate of x, and C̃xx
` to indicate a realization-specific measurement of the

power spectrum, as compared to its theoretical mean Cxx
` .

3.3.1 Dark Energy Survey Y1 Method

The method used to derive galaxy weights for the Year-1 DES release is one of the more

sophisticated mitigation methods applied to date. It is described in detail in Elvin-Poole et

al [212] (EP17), but we review its main features here. Hereafter referred to as ‘DES-Y1,’

builds on the method first proposed as the ‘Weights’ method in Ross et al [94], wherein 1-

dimensional relationships between observed galaxy densities and systematic templates (there

called ‘survey property maps’) are removed by iteratively applying multiplicative factors

(‘weights’) to galaxies. Fig. 3.3 shows one example of how the observed overdensity varies

with a template. Multiplicative weights are applied to galaxies to de-trend the data, shifting

the blue line to lie atop the dashed line. This method is explicitly a regression method,

with versions employing linear fits [213–215], splines [89] or higher-order polynomials [216]

as fitting functions for the 1D relationships.

Here we describe the version we adopt, which closely follows the implementation in EP17

used on the DES-Y1 data. For each template ti, we group pixels into 10 evenly-spaced

bins based on their template values, and independent of location on the sky (e.g. all pixels

with a mean i-band seeing value within 10% of the max would be grouped). We then find

the mean galaxy overdensity over the pixels in each bin2. A 10 × 10 covariance matrix of

these bin means is estimated by performing the same bin-averaging process on a set of 400

uncontaminated mock maps, generated with a fiducial power spectrum for the overdensity

field (we assume the true overdensity power spectrum to generate these mocks).

Next, we use scipy.optimize and the estimated covariance to find the parameters

2In EP17, extreme regions are removed by eye: each template is inspected and bins that exhibit an
average fluctuation in number density of > 20% are masked, as are regions where visual inspection suggests
a deviation from non-monotonic behavior (see their Fig. 3). We neglect this step, as it is difficult to automate
robustly and in our tests we found that it did not alter our results.
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{mi, bi} of the best-fit line3 of the binned overdensity to each binned template i:

〈Nobs〉j
N̄obs

= mi〈ti〉j + bi (3.4)

where 〈·〉j indicates the average pixel value in bin j of the given template. See Fig. 3.3 (blue

points and trend) for an illustration.
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Figure 3.3: Illustration of the DES-Y1 cleaning method, showing the total observed pixel over-
density (δobs) as a function of a template’s pixel overdensity, in ten evenly-spaced bins. Given the
estimated covariance matrix (diagonals shown by blue error bars), the best-fit trend (blue line) can
be calculated and used to reweight the observed map, producing a corrected map whose dependence
on the template is removed (orange points, with corresponding standard errors on the pixel means).
The process is then iterated for other templates until a satisfactory threshold is reached; see text
for details.

The template with the most significant fit is used to reweight the number density in each

pixel as N ′obs(n̂) = Nobs(n̂)/(m̂it(n̂) + b̂i), where the significance metric is defined below.

Having removed the effect of the dominant systematic, the whole process is repeated: for

3EP17 also use linear fits for almost all templates, with only a couple exceptions. As noted in Sec. 3.4.2,
even if a template is thought to contaminate non-linearly, the relationship can usually be made linear through
an appropriate transformation of the template.
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each template, the pixels are assigned to bins and averaged, the new best-fit parameters are

computed from Eq. (3.4), and the trend from the most significant template is removed from

the data. The process stops when all templates are below a predefined significance threshold.

In general, the more contamination from template i, the stronger relationship the rela-

tionship with the observed galaxy density. However, some level of correlation is expected

just by chance, and this depends on the spatial clustering of each template. The DES-

Y1 method addresses this in two ways: (1) by using a different covariance matrix for the

observed overdensity for each template as described above, and (2) by having a template-

specific significance threshold, calibrated on mocks. Specifically, the significance statistic

used is ∆χ2
i /[∆χ

2
i ]68, where ∆χ2

i is the improvement in χ2 for the binned fit on template

i, compared to a null hypothesis of mi = bi = 0. It is normalized to the 68th percentile of

the same quantity measured on uncontaminated signal mocks ([∆χ2
i ]68). We use the stop-

ping criterion ∆χ2
i /[∆χ

2
i ]68 < ∆χ2

threshold = 2, but find that our results change little when

changing this threshold between 1 and 4 (see App. B.6).

There are a number of required parameter choices in the DES-Y1-type method. These

include the criterion for selecting the most significant template,4 the significance threshold

that determines when to stop weighting, the prior power spectrum for generating mocks,

and choices associated with binning (e.g. number of bins, equally-spaced vs. equally-filled,

etc). Here we use the fiducial choices from EP17, and investigate some of the effects of these

choices in App. B.6.

3.3.2 Template Subtraction

The Template Subtraction method uses the cross-power of templates with the observed sky to

estimate contamination of each template at each angular scale. Contamination is subtracted

directly from the two-point clustering statistics. The method was proposed in Ho et al [190]

and Ross et al [94] where it was called the “cross-correlation” technique, and we review it

here.

Template Subtraction assumes the observed overdensity dobs is a linear combination of

the true galaxy overdensity s and individual template overdensities ti:

dobs = s+

Ntpl∑
i=1

αiti. (3.5)

Any systematics or noise not accounted for by templates are subsumed into the signal s. In

4E.g. one could consider an R2 statistic, the commonly-used F -statistic, Akaike or Bayesian information
criteria, etc.
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Ho et al [190], dobs and ti are taken to be in multipole space, such that 〈ss〉 → 〈s`ms`m〉 = Css
`

(where 〈·〉 is the ensemble average over many sky realizations), and α→ α` is a function of

`. The companion paper of Ross et al [94] works in configuration space, so in their version

of Template Subtraction the data vectors are in pixel-space (they also take some additional

steps; see footnote 7).

We will work in harmonic space and so follow Ho et al [190], but we will keep the notation

general until dealing with the two-point functions where we will explicitly work with power

spectra. The treatment for configuration space is largely identical. To apply the method,

one would simply substitute the correlation function for the power spectrum Cij
` → wij(θ)

and α` → α(θ). See e.g. Crocce et al [217] for an application of template subtraction to the

correlation function.

If we consider just a single contaminant for simplicity (Ntpl = 1), and assume that it is

uncorrelated with the underlying galaxy field, then from Eq. (3.5) the two point function of

the observed field is

〈dobsdobs〉 = 〈ss〉+ α2〈tt〉. (3.6)

Then on average,

〈tdobs〉/〈tt〉 = Ctd
` /C

tt
` = α` (3.7)

and the contamination at each multipole can be estimated as

α̂` = C̃`
td
/Ctt

` (3.8)

where the tilde in C̃` indicates the power spectrum that is measured from the observed sky

realization, and C̃tt
` = Ctt

` since we take templates to be fixed.

An estimate of the power spectrum can then be found to be

Ĉss
` =

(
C̃dd
` − α̂2

`C
tt
`

)(
1− 1

2`+ 1

)−1

. (3.9)

Here [1 − 1/(2` + 1)]−1 = [(2` + 1)/(2`)] is a factor found by Elsner et al [97] that is

needed to debias the estimator.5 The bias arises because the process is too aggressive —

any chance correlation between template and the true signal is also removed, resulting in an

underestimate of the true clustering power.

The Template Subtraction method is easily generalized to multiple templates by extend-

5In the case of the correlation function, the bias cannot be written in a signal-independent fashion, and
so requires a prior signal power spectrum or simulations to estimate.
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ing the dimensionality of terms as

α` (scalar)→ ααα` (Ntpl)

Ctt
` (scalar)→ CTT

` (Ntpl ×Ntpl)

and Eqs. (3.8) and (3.9) become

α̂αα` = [C̃TT
` ]−1[C̃Td

` ], (3.10)

Ĉss
` =

(
C̃dd
` − α̂αα

†CTT
` α̂αα

)( 2`+ 1

2`+ 1−Ntpl

)
. (3.11)

For the cut-sky equations, we refer the reader to [97].

While previous work on Template Subtraction has focused on the cleaned power spec-

trum, an estimate of cleaned overdensity field itself is also of interest for cosmological study,

as it contains more information than just its power spectrum.

A map estimate from the Template Subtraction method can be produced as

ŝTS(n̂) =
∞∑
`=1

∑̀
m=−`

ŝTS`m Y`m(n̂), (3.12)

where the harmonic coefficients of the map are given by

ŝTS`m = (dobs)`m −
Ntpl∑
i=1

(t`m)i(α̂`)i (3.13)

and the (biased) power spectrum of the cleaned map is equivalent to the first factor in

Eq. (3.11).

3.3.3 Mode Projection

Mode Projection (also often called Mode Deprojection [13, 195, 197, 218, 219]) assumes the

same contamination model as Template Subtraction, given by Eq. (3.5). The original formu-

lation [95, 220] cleans the map-level systematics by assigning infinite variance to contami-

nating templates. This procedure desensitizes the power spectrum estimate to the templates

and is equivalent to marginalizing over the contamination amplitude of each template [95].
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In particular, it updates the map-level covariance matrix C as follows

C′ =

C +

Ntpl∑
k

lim
β→∞

(βktkt
†
k)


= lim

β→∞

[
C + βTT †

] (3.14)

where tk are the individual template maps, which can represent either real spin-0 or complex

spin-2 fields [13], and which can be assembled into a matrix T , with tk as the kth column.

In previous works with Mode Projection, the maps have been represented in pixel space,

but in principle the operations can also be performed in harmonic space, e.g. representing a

spin-0 field by its complex harmonic coefficients. For clarity and continuity, we will assume

the maps are Npix-length vectors in what follows, as opposed to their multipole transforms.

There are some benefits to performing Mode Projection in harmonic space, however, which

we explore in Sec. 3.4.

The main challenge with the original formulation of Mode Projection is that it requires

the construction and inversion of a covariance matrix for the whole map, which is often

intractable. To remedy this, Elsner et al [99] (E16) extended Mode Projection to the popular

(albeit sub-optimal) pseudo-C` estimator. In practice, this is achieved by computing the

pseudo-C`s of the overdensity field after first applying a filter F, where

F = lim
β→∞

(
I + βTT †

)−1

= I − T (T †T )−1T †,
(3.15)

where the second expression follows from the Sherman-Morrison-Woodbury formula. It is

easy to see that T (T †T )−1T † is a projection matrix, projecting an Npix-dimensional map

onto a Ntpl-dimensional subspace. The filter thus removes any components of the observed

map within the subspace spanned by the templates (hence the alternate name of Mode

Deprojection).

Taking the case of a single template map t for simplicity, F then takes the form (I −
(tt†)/(t†t)), resulting in a filtered overdensity map

ŝ = F dobs (3.16)

=
[
I − t(t†t)−1t†

]
dobs (3.17)

= dobs − tα̂mp (3.18)
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where

α̂mp = (t†dobs)/(t
†t) = σ̃2

td/σ
2
tt, (3.19)

and σ̃2
td is a measure of the covariance of maps t and d. Note that this is very similar to

the Template Subtraction estimate in Eq. (3.8), but here the covariances are taken over the

whole footprint, rather than for a single mode `. We can make the connection even more

explicit by noting that in the full-sky case,

σ̃2
td =

1

4π

∞∑
`=0

(2`+ 1)C̃`
td

(3.20)

While E16 introduce this filtered map only as a means to compute the power spectrum, it

can be used on its own as an estimate for the cleaned overdensity field. However, as with

Template Subtraction, the power spectrum of this cleaned map is a biased estimate of the

true power spectrum, as some of the signal is removed in the cleaning process:

〈C ŝŝ
` 〉 = 〈(dobs − tα̂mp)†(dobs − tα̂mp)〉 (3.21)

= Css
` −

Ctt
`

4π (σ2
tt)

2

(
2Css

` σ
2
tt −

1

4π

∑
`′

(2`′ + 1)Css
`′ C

tt
`′

)
. (3.22)

In the full sky case, the power spectrum estimate can be debiased analytically [99]:

Ĉss
` =

∑
`′

[
(I +B)−1

]
``′
C ŝŝ
`′ , (3.23)

where

B``′ =
Ctt
`

4π (σ2
tt)

2

(
−2σ2

ttδ``′ +
2`′ + 1

4π
Ctt
`′

)
(3.24)

and δ``′ is the Kronecker delta. In the presence of a mask, one can debias via iteration or

assuming a prior power spectrum [99]. As we work in the full-sky case, we debias analytically

via Eq. (3.23), though we do not expect an iterative or prior-based debiasing to significantly

alter our conclusions.

The procedure outlined above easily generalizes to multiple maps by extending the di-
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mensionality of the terms:

α (scalar) → α (Ntpl),

t (Npix) → T (Npix ×Ntpl), (3.25)

σ2
td (scalar) → σ2

Td (Ntpl),

Ctt
` (scalar) → CTT

` (Ntpl ×Ntpl),

σ2
tt (scalar) → σ2

TT (Ntpl ×Ntpl).

Hereafter, we will use ‘Mode Projection’ to refer to the pseudo-C` mode projection

method described above, due to the popularity of the pseudo-C` power spectrum estima-

tor and the adoption of this version into NaMaster6[13], in anticipation of LSST. We again

refer the reader to E16 for the modifications necessary to account for the mask, and specif-

ically to their Eq. (21) for the multi-template version of the debiasing matrix, which we

use to correct for all Mode Projection power spectrum estimates (see [13] for the equivalent

formulae for spin-2 fields).

3.4 Placing into a Common Mathematical Framework

To facilitate a comparison of the methods, it is useful to place them into a common mathe-

matical framework. In this section, we show how all three methods presented so far can be

interpreted through a regression analysis lens, and in doing so help identify different assump-

tions within each method and possible avenues for improvement. Moreover, we can leverage

the powerful suite of tools that have already been developed and tested for regression to the

task of systematics removal, facilitating and accelerating the process.

3.4.1 Connections to Regression

We have purposefully formulated the methods (e.g. Eqs. (3.19 and (3.8))in a manner designed

to make the connections between Mode Projection and Template Subtraction apparent.

Template Subtraction is equivalent to running the Mode Projection algorithm, but with each

original template (ti(n̂)) decomposed into a set of independent templates (ti`(n̂)), where

ti`(n̂) =
∑̀
m=−`

ti`mY`m(n̂). (3.26)

6https://github.com/LSSTDESC/NaMaster
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Fig. 3.4 shows this schematically. In other words, (pseudo-C`) Mode Projection can be

considered a special case of Template Subtraction, where the contamination is assumed to

be independent of scale and the full template map is used to estimate such contamination.

It has been pointed out before in the context of 3D clustering estimates that Template

Subtraction and Mode Projection can be related if they use equivalent templates [195].

Casting the two methods into this form allows us to make the connection to standard

linear regression wherein a measured response y is assumed to be a linear combination of

predictors given by the α and a noise term ε:

y = Xα + ε. (3.27)

X is a n× p matrix, where p is the number of predictors (potentially including a column of

ones — the intercept term), α a vector of length p, and y and ε vectors of length n.

Perhaps the most common regression method, Ordinary Least Squares (OLS), finds the

vector α̂ that minimizes the squared residuals:

α̂ = argminα||y −Xα||2 (3.28)

= (X†X)−1X†y, (3.29)

where the second expression follows if X is full column-rank (i.e. the number of observations

exceeds the degrees of freedom from the predictors). This is equivalent to the maximum

likelihood solution if one assumes the noise of each element, εi, is independent and identically

Gaussian distributed,

P (y|Xα) ∼ N (0, Iσε). (3.30)

such that the log-likelihood goes as L ∝ |y −Xα|2. Even if the assumption of Gaussianity is

violated, by the Gauss-Markov theorem Eq. (3.28) still corresponds to the unbiased estimator

with minimum variance if the errors ε are uncorrelated and have equal variance.

We can write Eq. (3.27) in terms of the OLS estimates as

y = Xα̂ + ε̂ = X(X†X)−1X†y + ε̂ (3.31)

where the residuals are defined as

ε̂ = y −Xα̂. (3.32)

The quantities of interest in the typical regression problem are the coefficients α or the

predicted response ŷ = Xα̂, with the goal of understanding the influence of predictors or to

predict future observations, and hence the residuals are largely used to assess whether the
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Figure 3.4: Schematic illustration of the difference between the Template Subtraction and (pseudo-
C`) Mode Projection methods. Template Subtraction allows templates to have different levels of
contamination at each scale. This is analogous to performing Mode Projection, but first decompos-
ing each template map into a series of derived templates, each corresponding to a different harmonic
`. See Sec. 3.4.1 for details.

basic OLS assumptions hold. However comparing Eq. (3.32) to Eqs. (3.13) and (3.18), we

see that both Mode Projection and Template Subtraction can be interpreted as

OLS regression methods where the observed overdensity signal is regressed onto

the templates, and the reconstructed overdensity signal ŝ and power spectrum

C ŝŝ
` correspond to the map and power spectrum of the residuals ε̂.

Mode Projection uses the full map footprint, with each pixel corresponding to a single

observation, for a total of Ntpl fit coefficients. In contrast, Template Subtraction can be

interpreted as performing multiple OLS regressions in parallel on smaller subspaces — one

at each multipole in our case — for a total of N` ×Ntpl fit coefficients (see Fig. 3.4).

We can write the Template Subtraction amplitudes computed by Eq. (3.10) in OLS form

as

α̂` = (T †`T`)
−1T †` d`, (3.33)

where T` is a (2`+1)×Ntpl matrix, with each column corresponding to a template, consisting
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of all the harmonic coefficients for a fixed `:

T` =



t1`,−` t2`,−` · · · t
Ntpl

`,−`

t1`,−`+1 t2`,−`+1 · · · t
Ntpl

`,−`+1

...
...

. . .
...

t1`,` t2`,` · · · t
Ntpl

`,`


. (3.34)

In cases where the multipoles (or angular scales) are binned, the number of fit coefficients

is reduced to Nbins×Ntpl, which reduces the variance of the contamination estimate. Indeed,

Mode Projection corresponds to a limiting case, where the modes of each template are

averaged with equal weight before fitting. However in principle one could apply weights

differently across scales, and as we will show, this can produce improved coefficient estimates.

Alternatively, one could fit individual modes as in Template Subtraction but combine at the

coefficient level — potentially useful if certain scales are of particular interest for a given

analysis.7

An immediate consequence of the OLS interpretation of these methods is in making

explicit the assumptions that Mode Projection and Template Subtraction are making about

the underlying density field — they are exactly the “OLS” assumptions for the error term ε

in the regression model: independent, Gaussian and of equal variance, in whatever basis the

map is represented. These assumptions hold well for Template Subtraction, which performs a

separate regression at each multipole `. In this case, the assumed OLS “noise” terms are the

set of harmonic coefficients of the map (s`m) at that multipole, which have Cov[s`m1 , s`m2 ] =

Css
` δm1m2 . For Mode Projection, these assumptions are violated, as the covariance matrix

between overdensity pixels is not diagonal, Cov[s(n̂i), s(n̂j)] 6= σ2
sigδij.

Since the primary contribution to the “noise” of the OLS fit is the clustering signal itself,

we can diagonalize it by performing Mode Projection in multipole space, with the maps d,

s and ti becoming complex column vectors comprised of the map spherical harmonic coeffi-

cients. The noise of the observed overdensity d`m is then Cov[s`1m1 , s`2m2 ] = Css
` δ`1`2δm1m2 .

While diagonal, this varies strongly with ` and therefore violates the assumption of equal

variance, a property known as ‘heteroskedasticity’ in the statistics literature.

However once the noise is diagonal, we can improve the Mode Projection estimate of α̂

7In their real-space analysis of SDSS galaxies, Ross et al [94] seem to implement a version of this. They use
Template Subtraction to produce fit coefficients for a large number of scales and templates, but ultimately
select one coefficient to apply to all scales for each template. However it is unclear how they compute the
single summary coefficient.
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by weighting the observed data and template modes by (a prior-inferred) 1/
√
Css
` :

α̂ =

∑∞
`=0(2`+ 1)C̃`

td
/Css

`∑∞
`=0(2`+ 1)C̃`

tt
/Css

`

. (3.35)

This is equivalent to a weighted least-squares approach and recovers the maximum likelihood

estimate of α̂, eschewing the erroneous assumption of a flat signal power spectrum. This of

course only works in the ideal full-sky case, but in principle it should not be difficult to extend

to a masked sky, e.g. using a predicted cut-sky Css
` computed using the standard coupling

matrix from the mask [e.g. 99, 221] along with the cut-sky harmonics of the templates and

datavector, or appropriate binning of modes. This can be viewed as a form of ‘prewhitening’

the data, which accounts for the off-diagonal pixel covariance in the likelihood through

an appropriate transform. We explore the potential improvement from such prewhitening

in App. B.2, finding that it improves cleaning, but is subdominant to differences between

cleaning methods and higher-order corrections we discuss below.

Finally we note that both the Template Subtraction bias from Elsner et al [97], as well

as the pseudo-C` Mode Projection bias from E16 result trivially when interpreting them

through the OLS lens, in which the variance of observed residuals is well-known to be biased

low:

〈ε̂†ε̂〉 =

(
Ndata − p
Ndata

)
ε†ε. (3.36)

For Template Subtraction, the regression at each harmonic has Ndata = 2` + 1 and number

of predictors p = Ntpl, leading exactly to the debiasing terms for the signal power estimate

in Eqs. (3.9) and (3.11). The debiasing terms for Mode Projection in Eq. (3.22) are more

complicated and dependent on the signal and template clustering, but if we take both Css
`

and Ctt
` to be independent of `, Eq. (3.22) reduces to

〈ŝŝ〉 = Css

(
1− 1∑`max

`′=0(2`′ + 1)

)
, (3.37)

where p = Ntpl = 1 andNdata =
`max∑
`′=0

(2`′+1) = (`max+1)2 is the total number of Fourier modes

in the map. This is in keeping with the interpretation of E16, wherein each template removes

one degree of freedom from the number of observed Fourier modes. This interpretation can

help to assess the risk of overfitting based on the size of the template library.

By making connections between current methods and linear regression explicit, we not

only facilitate their interpretation, but can more easily identify the tacit assumptions within
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these methods, as well as readily improve upon them, drawing on the large body of research

into the statistical properties of various regression approaches.

3.4.2 Additive vs. Multiplicative Treatment

The systematic contamination described in Eq. 3.2 results in both additive and multiplicative

contributions to the overdensity field. One way in which the methods described here differ is

whether or not they ignore the multiplicative contributions. These take the form δ(n̂)fsys(n̂)

and, if unaddressed, can bias cosmological constraints in upcoming surveys [102]. Here

we show how so-called “additive methods” like Mode Projection (or any other regression

method) and be readily adapted to account for these multiplicative terms and so lead to

improved map and power spectrum estimates.

For clarity, we reformulate Eq. (3.2) in the general notation of Sec. 3.3 for direct com-

parison with the additive methods, taking δobs → dobs and δ → s, such that

dobs = γ(1 + s)(1 + fsys)− 1 (3.38)

where again we have suppressed the pixel index. γ = N̄true/〈Nobs〉pix accounts for the so-

called integral constraint, wherein the mean observed number density is used to compute

the overdensity field, rather than the true full-sky mean density (see App. B.4 for a more in

depth look at the impact of this monopole term).

To compare with the additive methods, it is convenient to define a zero-centered system-

atic as:

f ′i ≡
fi − f̄i
1 + f̄i

, (3.39)

and write Eq. (3.38) in an equivalent but zero-centered form:

dobs = γ′(1 + s)
(
1 + f ′sys

)
− 1, (3.40)

with the new prefactor

γ′ ≡ γ(1 + f̄sys) =
(
1 + 〈s′f ′sys〉pix + s0

)−1
(3.41)

ensuring that the monopole in dobs is zero, and having the property that 〈γ′〉 ≈ 1.8 Here

s0 ≡ 〈s〉pix characterizes the global overdensity in which the footprint resides, and s′ ≡ s−s0

8Here the approximation stems from making the assumption 〈x−1〉 ≈ 〈x〉−1, which holds very well for
the cases we are studying where the mean is taken over a footprint with Npix & 105 and shot noise is
subdominant.
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is the deviation from that local overdensity.

Thus the observed overdensity field contaminated with a generic systematic fi can be

equivalently written as contamination from a zero-centered systematic with a rescaled am-

plitude, f ′i .

Expanding Eq. (3.40), we have

dobs = s+ γ′f ′sys + γ′sf ′sys + (γ′ − 1)(s+ 1), (3.42)

Comparing to additive models like Mode Projection and Template Subtraction, which take

dadd
obs = s+ f ′sys = s+

Ntpl∑
i=1

f ′i , (3.43)

we see that they assume that γ′ = 1 (no mean local overdensity and a vanishing correlation

between signal and systematics over the footprint), as well also that sf ′sys = 0 for every

pixel, a much stronger assumption. Despite these assumptions, additive estimates of the

total contamination are unbiased, provided the templates T span the space of the true

contamination:

〈f̂sys〉 = 〈Tα̂αα〉 = 〈T (T †T )T †dobs〉 (3.44)

≈ T (T †T )T †f ′sys = f ′sys. (3.45)

Intuitively this makes sense, since in the ensemble average the multiplicative term sf ′ will

vanish.

From Eq. (3.40), we can then make an improved estimate of the signal map as

ŝ =
1 + dobs

1 + f̂sys

− 1, (3.46)

=
dobs − f̂sys

1 + f̂sys

(3.47)

where the second form makes clear that this is a simple rescaling of the additive signal

estimate, dobs−f̂sys. Therefore, in a model with multiplicative contamination, signal estimates

from additive methods can be improved by weighting the estimated signal map by 1/(1 +

f̂sys). Such reweighting should be avoided for contaminants that are thought to contribute

additively to the number density (such as stellar contamination), as these modify γ and result

in an additive contribution to the overdensity, but no direction-dependent multiplicative

terms (see e.g. [217, 219]).
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To explicitly close the loop on the aforementioned methods, the DES-Y1 method performs

a series of 1-D regressions and iteratively weights the observed overdensity in a manner

equivalent to Eq. (3.46) for each template, whereas Mode Projection estimates contamination

via a single Ntpl-dimensional regression, with a signal estimate that can be improved via

Eq. (3.47).9 Applying the multiplicative correction makes Mode Projection equivalent to the

Weights model where the coefficients are derived from a simultaneous multiple regression

on all the templates (such as in [196, 203]), but with an additional correction to debias

the inferred two-point function. Thus a pixelized weights map for Mode Projection can be

produced10 as

w(n̂) = (ŝ(n̂) + 1)/(dobs(n̂) + 1), (3.49)

Fig. 3.5 illustrates the effect of the multiplicative terms — as well as the impact of

neglecting them — on the residuals of a map with a single linear, multiplicative contami-

nant. The diagonal, dotted line shows the expected relation that would be precisely followed

by a purely additive contaminant. A multiplicative contamination adds significant scatter

around this relation, shown as the gray points. This scatter remains when the contami-

nation is cleaned with an additive method (orange), but is effectively removed when the

multiplicative component is taken into account (blue). Fig. 3.6 shows how errors on the esti-

mated overdensity field are drastically reduced when applying the multiplicative correction

of Eq. (3.47) to a realistic use case with multiple contaminating systematics (see Sec. 3.6 for

details of implementation).

9As noted in Sec. 3.2 even linear contaminants will have interaction terms up to order Ntpl, such that
in principle, for Eq. (3.44) to fully capture fsys, additional templates up to titjtk...tNtpl

would need to be
included in the template library. A more precise and efficient approach would be to not add any interaction
templates, but instead combine the base systematic estimates as

f̂sys,alt =

Ntpl∏
i=1

(1 + f̂i) =

Ntpl∏
i=1

(1 + α̂iti), (3.48)

where recall ti corresponds to the ith template and ith column of T , and α̂i the ith element of α̂. This is
closer to the treatment of the DES-Y1 method, wherein weightings for each f̂i are applied in series and thus
cumulatively.

In practice we find that Eq. (3.44) is a very good approximation since σ2
sys . O(10−2), so the nonlinear

interaction contributions to fsys due to each systematic acting as its own multiplicative screen are fairly

negligible, i.e. f ′sys ≈
(∑

Ntpl

i=1 f
′
i

)
, as long as the templates sufficiently capture the form of contamination:

f ′i = αiti. Of course this latter condition is a basic requirement of all of the methods we describe here, one
that can and should be verified through standard residual plots and other regression diagnostic techniques to
ensure an appropriate contamination model for each template. Methods that incorporate template selection
criteria, such as the proposed Elastic Net, can help to satisfy this by allowing a large number of templates
to be included in order to address potential higher order terms with little penalty.

10This can be released on its own or, as with the DES-Y1 data release, as an additional column at the
catalogue level. c.f. https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs/key-redmagic).
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Figure 3.5: The error in estimates of the overdensity δ in a toy Gaussian map when contaminated
with a single template. Gray points indicate the pixel-based difference between the observed, un-
cleaned overdensity and the true overdensity when the contamination is multiplicative (additive
contamination would lie directly along the dotted line). Orange points are the result when erro-
neously assuming the contamination is only additive. Blue points are the result when correctly
treating the multiplicative component.

3.4.3 Multiplicative Effect on Likelihood

While the multiplicative term vanishes in the ensemble average, resulting in the same ensem-

ble pixel mean as the additive-only prediction (〈dobs〉 = f ′sys), the pixel variance is modulated:

Var[dobsi] ≈ 〈[sγ′(1 + f ′sys)]
2〉

≈ 〈s2〉(1 + f ′sys)
2

= σ2
sig(1 + f ′sys)

2,

(3.50)

where for large Npix & 105, 〈γ′〉 ≈ 〈γ′2〉 ≈ 1. The corresponding covariance between pixels

is

Cov(dobs, dobsj) ≈
〈

(γ′)2
[
si(1 + fsys

′
i)
] [
sj(1 + fsys

′
j)
]〉
. (3.51)

This is the source of the systematic-dependent scatter in Fig. 3.5, which will result in biased

two-point statistics from additive methods. Because the contamination estimate is unbiased,

the correction of Eq. (3.47) almost fully suppresses this variance, but the multiplicative terms
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Figure 3.6: Distribution of pixel errors before cleaning (gray), after cleaning with Mode Projection
but before multiplicative correction (orange), and after multiplicative correction (blue). The errors
have been calculated as the RMSE of each pixel across 100 cleaned mocks in our fiducial config-
uration of a DES-like survey as described in Sec. 3.6, and have been normalized to the expected
dispersion from the true overdensity field.

also impact the likelihood when performing the regression. In pixel-space a simple fix would

be to iterate: use an initial estimate of 〈f̂sys〉 with Eq. (3.50) to apply inverse variance

weights to the maps before making a second estimate of 〈f̂sys〉. In practice these are “errors

on the errors” and so the impacts will be subdominant to the multiplicative correction to

the datavector itself.

3.5 Applications

We can use the insights of the previous sections to propose two additional methods, as well

as to estimate the errors on the cleaned map. We now describe these in turn.
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3.5.1 Iterative Forward Selection

We include an iterative Forward Selection method that incorporates some of the main fea-

tures of the DES-Y1 method, but adopts some of the simplifying assumptions of Mode

Projection. The result is greatly simplified and easier to implement than the full DES-Y1

method.

We keep the core of the template selection algorithm, but modify the fit procedure and

significance criterion to eliminate the need to generate mocks. We do this by adopting the

same implicit assumptions of Mode Projection: that pixels are uncorrelated and have equal

variance. This allows for an analytical solution for the best-fit parameters θ = {mi, bi} and

their covariance Covθ for each template, which we obtain using numpy.polyfit11. We then

adopt a simplified significance criterion of ∆χ2
FS = θT [Covθ]

−1θ, and use the same stopping

threshold as the DES-Y1 method.12

This Iterative Forward Selection method is a fast and simple method that incorporates

some of the key aspects of the DES-Y1 method, the iterative weighting and template selec-

tion, while avoiding the most computationally expensive parts, the generation of mocks. We

expect some loss of precision by not including a covariance matrix in the fitting step, but on

the other hand to gain some precision by not having to bin pixels, so this method can help

to benchmark the importance of including the covariance matrix in a DES-Y1-like method.

3.5.2 Elastic Net

We also propose a method that closely mimics Mode Projection but incorporates template

selection, thereby reducing the impact of overfitting when the template library is large.13

Having shown that Mode Projection is equivalent to linear regression, we adopt a regression

method specifically designed to automatically select predictors based on the data.

This selection is accomplished by modifying the Loss function that is optimized when

fitting, which is equivalent to applying a prior to the template coefficients and finding their

maximum a-posteriori (MAP) estimate. Specifically, instead of finding α̂ that minimizes the

11To estimate Covθ, numpy.polyfit assumes a diagonal Gaussian covariance of the pixels, scaled so that
the best-fit model has reduced χ2 of χ2

red = χ2/(Npix − 2) = 1
12As with the DES-Y1 method, this method can suffer from a lack of convergence when the theshold is

low, where chance correlations between the signal realization and templates result in a loop of the same
series of templates being repeatedly reweighted. We adopted a limit of 10×Ntpl reweightings for each signal
realization before breaking the loop and using the resulting signal estimate as is. This occurred occasionally
and at very low thresholds, with no discernible effect on the estimated maps or power spectra.

13See [96] for an alternative approach that pre-selects templates for projection using a χ2 threshold.
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square of the residuals (||dobs − Tα||2), we instead minimize

Loss =
1

2Npix

||dobs − Tα||22 + λ1||α||1 +
λ2

2
||α||22, (3.52)

where

||α||1 =

Ntpl∑
i

|αi| (3.53)

is the L1-norm of α, and

||α||2 =

Ntpl∑
i

|α†iαi|

 1
2

(3.54)

is the usual vector L2-norm of α. Here λ1 and λ2 are hyperparameters that are tuned from

the data, which we now discuss in turn:

1. The L1-norm term incentivizes sparsity in α by penalizing non-zero coefficients of

templates, thus naturally performing template selection. This is useful because the

number of templates in modern surveys can be enormous — e.g. [96] produce ∼ 3700

templates for their analaysis of SDSS quasars — and so it is common to pre-select

only a handful to use, for fear of removing true signal. Since we don’t know a priori

which templates are contaminating, the incorporation of an automated selection scheme

enables a more agnostic, data-centric approach to cleaning a large library of templates,

while mitigating the risk of overfitting. The use of this penalty term in isolation (i.e.

setting λ2 = 0) is often called the Least Absolute Shrinkage and Selection Operator

(LASSO)[222], and has a Bayesian interpretation of applying a zero-centered Laplace

prior on the elements of α, with a width ∝ 1/λ1 (see e.g. [223] for a discussion).

L1 priors to induce sparsity have been used in a variety of astrophysical problems,

such as for source separation in cosmic microwave background analyses [224–226] or in

reconstructing mass maps from weak lensing data [227–229].

2. The L2-norm term helps address collinearity (i.e. correlation) between template maps

which, when present, can cause the matrix T †T to be ill-conditioned and the variance

of contamination estimates to be large. When it is the only additional penalty term

(i.e. λ1 = 0), this is often called Ridge Regression, or Tikhonov Regularization. It is

straightforward to show that, from a Baysian perspective, this method is equivalent to

placing a zero-centered Gaussian prior on the elements of α, with a width ∝ 1/λ2.

Since each penalty term addresses a different issue with standard regression, it is not

uncommon to combine them, as proposed by Zou and Hastie [230], in a method known as
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the “Elastic Net”. We use the scikit-learn [14] implementation, ElasticNetCV, with a

hyperparameter space of λ1/(λ1 + λ2) ∈ {0.1, 0.5, 0.9} and 100 values of (λ1 + λ2) spanning

three orders of magnitude, which are automatically determined from the input data (the

default setting). We use 5-fold cross-validation to determine the best λ1 and λ2, trained on

a random selection of 30% of the input map pixels.14

In this 5-fold cross-validation scheme, the training sample (30% of the map) is itself parti-

tioned into five equal subsamples. For each combination of hyperparameters, one subsample

is withheld for validation, while the other four are used to train the model by minimizing

Eq. (3.52). The mean squared error (MSE) of the validation sample is then computed and

stored (i.e. the first term in Eq. (3.52)). One of the four training subsamples is then with-

held as the new validation set, and the process is repeated until each of the five subsamples

has been used exactly once for validation, with their average MSE used to characterize the

goodness-of-fit for the given set of hyperparameters λ1 and λ2.

Setting λ1 = λ2 = 0 reduces to OLS regression and hence to the pseudo-C` Mode Projec-

tion method, while sampling extreme values for the relative weight of the L1 vs. L2 penalty

allows for the effective use of only one of the penalty terms, if preferred by the data. The

use of cross-validation on a subset of the map allows the data to dictate which model is most

appropriate, with minimal risk of overfitting. We illustrate the utility of this in Fig. 3.7,

which shows how the cross-validation scheme naturally increases the L1 penalty when fitting

for more (uncontaminating) templates. We found that the L2 penalty became increasingly

important when the correlation between templates increased beyond ρtpl & 0.9.

3.5.3 Map Errors

We can use the regression framework to gain insight into how errors in the estimated over-

density map are distributed across pixels. This aids the propagation of map errors in cross-

correlation studies and summary statistics beyond the two-point functions, as well as helps

to identify regions that may benefit from masking.

For simplicity, we assume additive contamination and correction and ignore higher-order

terms:

dadd = s+ fsys = s+ Tα (3.55)

14We performed the cross-validation procedure on a subset rather than the full footprint as further pro-
tection against overfitting, but this is likely overly cautious and subsequent tests showed little difference in
performance between training on 30% as compared to the full footprint.
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Figure 3.7: Best-fit L1 and L2 penalty coefficients in the regularization technique described in
Sec. 3.5.2, as a function of the number of templates used for cleaning, Ntpl (new signal and template
maps are generated at each value of Ntpl). In all cases, 12 templates are contaminating the observed
data (vertical dashed line). The importance of the L1 penalty, facilitating template selection,
becomes increasingly important as more templates are included for cleaning. Lines and shaded
region indicate the median and central 68% probability mass of 50 mocks at each Ntpl for the
central bin of our fiducial DES-like survey. Here, ρtpl = 0.2 within template groups, though plots
for other ρtpl look similar. See Sec. 3.6 for details of implementation.

The estimated contamination amplitude is then

α̂mp = (T †T )−1T †dadd (3.56)

= α + (T †T )−1T †s (3.57)

such that our signal estimate is

ŝmp = dadd − T α̂mp (3.58)

= s− T (T †T )−1T †s (3.59)

≡ (I −H)s (3.60)

where the matrix H ≡ T (T †T )−1T † is often called the ‘Hat’ or ‘Projection’ matrix in the
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statistics literature. Then

Var[(ŝmp − s)i] = Var[(Hs)i] = [HVar[s]H†]ii (3.61)

If we make the assumption that the signal covariance is diagonal, then Var[s] ≈ σ2
sigI and

Var[(ŝmp − s)i] ≈ σ2
sig(HH†)ii = σ2

sigHii (3.62)

where we have used the fact that H is both Hermitian and idempotent so that HH† = HH =

H.

Despite a number of simplifying assumptions and the fact that some of the methods only

fit for some of the templates, we find that with the exception of Template Subtraction, Hii is a

remarkably good predictor15 of how the errors in the overdensity estimates are distributed for

all the methods. The errors arise from removing real signal during the cleaning process, with

Hii as a measure of how susceptible pixel i is to such overcorrection. This also indicates that

while to first order all correlation with templates is removed from the estimated overdensity

field, the templates remain imprinted on the map through their absence; there is missing

signal in precisely their spatial configuration.

Intuitively, Hii as a distance measure of pixel i from the center of mass of other pixels

in the Ntpl-dimensional space spanned by the templates. This is sometimes referred to as

‘leverage’, as pixels with higher Hii have larger impact when performing a regression.16 This

can be seen by observing that the estimated systematic field can be written as

f̂sys = Hdobs (3.63)

such that the leverage

Hii =
∂f̂

(i)
sys

∂d
(i)
obs

(3.64)

encodes the sensitivity of the contamination estimate to an observed over- or underdensity

at pixel i. Because pixels with high leverage can have an outsized effect on the estimated

contamination, we expect leverage to be a useful tool for identifying potentially problematic

pixels that should be masked before cleaning, in addition to providing error estimates for

those pixels that remain.

15Note that Hii only requires the diagonal elements of H, which are far more tractable to calculate than
the full Npix ×Npix matrix.

16This phenomenon is very familiar from the simple case of fitting a 1D line to a scatter of 2D points
{x, y}, where the best-fit line is ‘pulled’ preferentially to points that lie farther from x̄.
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It is straightforward to derive the mean leverage value as

H̄ii ≤ Ntpl/Npix, (3.65)

with the equality holding if T is full rank, since

Npix∑
i

Hii = Tr(H) ≤ Ntpl, (3.66)

providing a basis on which to determine extreme leverage values.
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Figure 3.8: Root-mean-square error of pixel overdensity estimates, normalized to expected disper-
sion from the true overdensity due to cosmic variance, vs. pixel leverage for 100 signal realizations.
The vertical axis shows the standard error across pixels in 1000 equal-sized bins (in this case 197
pixels per bin at Nside=128). The error in both observed and estimated overdensity scales as

roughly ∝ H1/2
ii for all methods (dashed line, to guide the eye). The dotted vertical line indicates a

commonly used threshold of 3× the mean leverage across pixels to identify pixels that may have an
undue impact on regression fit parameters. The histogram in the top panel indicates the number
of pixels at a given leverage. Ntpl = 27, Nsys = 11, σ2

sys = 0.01.

The main panel of Fig. 3.8 shows the RMS error (RMSE =
√
〈(ŝ− s)2〉) of each pixel

computed over 100 cleaned DES-like mock maps plotted against leverage Hii from 27 cleaning

templates, 11 of which are contaminating. Pixels are grouped into 1000 bins of 197 pixels,

according to their leverage value, and we show the mean and standard error of the RMSE

for each bin. We see that pixels with low leverage value have much smaller error in the
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estimated overdensity map, and that the error goes roughly as ∝ H
1/2
ii (diagonal dashed

line), as predicted by Eq. (3.62). The Template Subtraction method is an exception to this

trend likely because the regression happens in a different space, at each harmonic separately,

and so does not relate cleanly to the pixel leverage.17

The top panel of Fig. 3.8 shows the fraction of map pixels below a given leverage (note

the log scale), with the vertical dotted line indicating 3× H̄ii, which is one of two common

thresholds used in statistics to flag points that may bias a regression analysis (2× H̄ii being

the other). Here, 0.5% of map pixels exceed 3 × H̄ii; these pixels potentially merit further

inspection or masking, as they are particularly prone to biasing the regression. The trend

of the uncleaned data may be surprising, but as noted in Sec. 3.4.2, because of the integral

constraint, dobs is insensitive to a monopole in fsys and so as long as templates approximately

trace the true contamination, overdensities near the mean of the templates (i.e. low Hii)

will be most accurately measured, even if contamination is greater than at other points in

the map (see App. B.4).

A complementary statistic is the ‘Cook’s distance’[231, 232] for each pixel, which uses

Hii and ŝi to provide a measure of the total change in the ŝ map if pixel i were to be masked

(assuming additive contamination and correction). Along with the leverage, we expect this

to be a useful tool when performing template-based mitigation of spatial systematics and

for mask creation. We leave further investigation of these as diagnostic tools, as well as

generalization to the multiplicative case, to a later work.

We next describe the fiducial survey on which we test the performance of foreground-

cleaning methods.

3.6 Evaluating Performance

Our analysis is fully synthetic, with the procedure depicted in Fig. 3.2. We compare the

cleaning methods described, including results for both the standard additive Mode Projection

case (denoted ‘Mode Projection (add.)’) as well as one with the multiplicative correction

from Eq. (3.47) (denoted simply ‘Mode Projection’). For the Elastic Net, we only show

results that include the multiplicative correction.

We only consider full-sky maps in this study. Extension to partial-sky surveys should

be fairly straightforward, requiring the usual correction of cut-sky power spectra, but this

applies equally across the full-sky spectra estimated with each method here and so we do

not expect it to qualitatively change the main results.

17In principle, one could construct the analogous leverage quantity H`m = t`m[CTT
` ]−1t†`m in harmonic

space for the analysis of errors in ŝ`m, which may be useful for cross correlation analyses in harmonic space.
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3.6.1 Templates

We first describe the fiducial set of templates that we use, for both contamination and

cleaning purposes. We adopt several classes of templates in order to span a range of possible

contaminants and their spectral behavior. In most cases, we use multiple templates of the

same class by generating Gaussian realizations of maps from the same theoretical power

spectrum. The classes of template we use are

• C` ∝ (`+ 1)0 (white noise)

• C` ∝ (`+ 1)−1

• C` ∝ (`+ 1)−2

• C` ∝ exp [−(`/10)2]

• a “Cat-scratch” map, with 128 horizontal stripes to model a basic scanning pattern

and/or differences in depth due to overlapping tiles

• a 2D Gaussian “spot” map

• a E(B-V) extinction map, with dependence on latitude removed.

The last three correspond to static maps which do not change throughout the analysis. We

use the full-sky E(B-V) map18 from Planck [233], but since this is dominated by emission

near the galactic plane, which LSS surveys typically avoid, we reweight the map to remove

its major latitudinal dependence.

We normalize the individual templates to the same overall variance, and construct a total

systematic map as a product of some or all of the individual template maps:

1 + fsys =

Nsys∏
i=1

(1 + αiti) (3.67)

Note that this model can generally encompass contamination to any polynomial order simply

by including templates that are products of others (e.g. tnew ≡ t2i ), and incrementing Nsys

accordingly. Similarly, nonlinear contamination can often be made linear through an appro-

priate transformation of the template map.19 This total systematic map is then scaled to a

18https://wiki.cosmos.esa.int/planckpla/index.php/CMB_and_astrophysical_component_maps#

The_.5Bmath.5DE.28B-V.29.5B.2Fmath.5D_map_for_extra-galactic_studies
19E.g. EP17 fit linear models to the square root of exposure time and sky brightness, based on how how

they contribute to the depth map.
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desired overall map variance σ2
sys, thus determining the overall contamination field fsys. We

use a fiducial level of contamination of σ2
sys = 0.01, as we found this to produce fluctuations

similar to those seen in the DES-Y1 data [212]; this corresponds to an RMS error on δ of

∼ 10%. Changing the level of contamination σ2
sys did not significantly alter our results.

We perform the contamination and cleaning procedure shown in Fig. 3.2 on each redshift

bin and for each cleaning method over many sky realizations, and plot the mean and central

68% probability mass of the relevant quality statistic. We use the same set of templates

and total systematic map for across redshift bins and sky realizations, but generate a new

set for each unique combination of parameter choices (e.g. level of cross-correlation between

templates, number of templates used, etc.) in order to minimize any effects from specific

template realizations.

We use CLASS [234] to compute theoretical galaxy clustering power spectra for a mock

LSS survey, including contributions from redshift-space and Doppler distortions and lensing.

We found gravitational potential terms to contribute . 1% to the resultant C` for ` > 7 but

increased computation time by an order of magnitude, so we neglect them. Since we find

the cleaning procedures are not strongly sensitive to the signal power spectrum, this should

not impact our results. We then use Healpy[11] to generate full-sky Gaussian realizations

of large-scale structure overdensity (δ ≡ δρ/ρ) maps for each redshift bin with NSIDE = 128.

We compare the impact of using lognormal maps in App. B.1, finding it does not change our

results.

3.6.2 Cosmological Model and Simulated Survey

We assume a standard ΛCDM cosmological model with one species of massive neutrino and

parameter values from best-fit Planck 2018:

{Ωc,Ωb, h, ns, σ8, τ,mν/eV} = {0.26499, 0.04938, 0.6732, 0.96605, 0.8120, 0.0543, 0.06}.

Given the precise parameter constraints from current probes, the dependence of our results

on cosmological parameters is expected to be very minimal. In contrast, the choice of the

parameter set to be determined from the survey may be highly dependent on the residual

systematics.

In general for comparing the methods, the exact form of the galaxy power spectra is not

very consequential, so we use a fiducial survey comparable to the completed Y5 Dark Energy

Survey, for which a realistic level of contamination can be estimated based on existing data.

We assume the number density distribution of galaxies to be in the form

dn

dz
∝
(
z

z0

)α
exp

[
−(z/z0)β

]
, (3.68)
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where z0 = 0.55, α = 2.65, and β = 3.34. We assume five redshift bins centered at redshifts

{0.225, 0.375, 0.525, 0.675, 0.825}, with galaxy bias of {1.4, 1.6, 1.6, 1.95, 2}, respectively, and

containing galaxies with Gaussian redshift dispersion of σz = 0.05. These values were chosen

to closely approximate the REDMAGIC redshift distribution given in EP17.

We choose to work primarily in harmonic space. Therefore, starting with some map with

overdensity δ ≡ δN/N , where N is the galaxy count over some patch, the expansion in

spherical harmonics gives

δ(n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂), (3.69)

and the angular power spectrum is given by

C` =
∑̀
m=−`

|a`m|2

2`+ 1
. (3.70)

Because we are working in the full-sky limit, all well-known estimators of power return the

same result, so here we make use of the anafast and alm2cl functions in Healpy. To more

accurately account for the cosmological impact of the cleaning methods on data from a DES

Y5-like survey, we divide the assumed sample variance σ2
C`

by a factor of fsky = 0.116.

We add shot noise to the theoretical power spectrum as C` → C`+n̄
−1, with n̄ = 1.5×108,

but this is negligible at the large scales we work with (` ≤ 350). We are primarily interested

in studying the systematic impacts of cleaning (or not) using spatial templates, so it is

reasonable to focus on cases where the signal-to-noise is large (i.e. shot noise is negligible).20

3.7 Simulation Results

To compare methods, we compare the fidelity of the cleaned data products to the truth, either

at the map level or at the level of the power spectrum, rather than look for cosmological-

parameter biases. We do this for a few reasons: (1) the map and power spectrum are

more general, being independent of (but easily mapped to) any specific cosmological model

one wants to test, or summary statistic one wants to use; (2) while we primarily study

applications to galaxy clustering data here, the methods themselves are quite general and

can easily be applied to other data sets for which one has tracers of potential contamination,

20Shot noise may have the effect of (1) rendering the the regression residuals more diagonal in pixel-space
(or flattening them in harmonic space), which could actually improve the regression procedure, and/or (2)
introduce significant skewness in the distribution. We would expect the impacts of these to be similar to
those of prewhitening the data or using lognormal mocks, and so based on our results in Apps. B.1 and B.2,
we do not expect shot noise to significantly impact on our findings.
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such as shear or convergence maps; (3) galaxy clustering alone leads to relatively weak

cosmological constraints and is rarely used on its own to constrain cosmology.

We therefore limit ourselves to investigating biases in data space and leave the inves-

tigation of impacts on cosmological constraints to a later work when weak lensing data

can be incorporated in a more realistic fashion. At this stage, the test bed is sufficiently

representative to compare foreground-cleaning methods in a manner to inform future LSS

analyses.

3.7.1 Characterizing Performance

We first study the impacts of the different methods on the estimated maps and power

spectra for a single configuration and compare the residual biases of each. For this fiducial

comparison, we generate 50 mocks for each redshift bin and contaminate them with 11

systematics, two from each of the four Gaussian classes, plus the three static templates. We

construct a template library that contains the contaminating templates, plus four additional

realizations from each Gaussian class, for a total of 27 cleaning templates. Each method

uses this library to produce estimates of the overdensity field and power spectra.

We show map residuals of each cleaning method for the lowest redshift bin in Fig. 3.9,

where the residuals are binned into deciles of the true overdensity. Results for other redshift

bins are similar. From left to right, in approximate order of performance, the figure shows

the Template Subtraction method (red), Mode Projection without (green) and with (orange)

multiplicative correction, the Elastic Net method (purple), Forward Selection (brown) and

the DES-Y1 method (blue).

The overcorrection of Template Subtraction is evident, with density fluctuations consis-

tently under -estimated (i.e. peaks and voids are both less extreme than they should be).

The other methods are all very close to unbiased with respect to the true overdensity field,

with bias of the mean . 0.001 for each bin. The multiplicative methods show significantly

reduced within-bin scatter (i.e. smaller error bars) compared to the additive ones — the

additive Template Subtraction and Mode Projection methods (leftmost, red and green) have

typical errors in the overdensity of σs ∼ 0.1 and σs ∼ 0.01 − 0.05, respectively, compared

to the errors of σs ∼ 0.005 − 0.02 for the multiplicative methods. This suggests that ap-

plying the multiplicative correction results in significantly improved map estimates, making

them excellent candidates for map-based analyses, such as as counts-in-cells or density-split

statistics.

While the signal estimates are unbiased (with the exception of Template subtraction),

the errors of the additive methods increase near extremes of the density field. This is similar
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Figure 3.9: Error in overdensity estimates for different cleaning methods, binned in deciles of the
true overdensity and with points offset for clarity. The top plot includes error bars indicating the
standard deviation of pixel errors in each bin, while the bottom plot is a zoomed-in version to
better display how the means deviate from zero. Overcorrection at the map-level is only significant
for Template Subtraction, which under-estimates the magnitude of both peaks and voids, while
other methods are very close to unbiased. See text for details.

to the result in Fig. 3.6, which showed larger errors at extreme template values, in part

for the same reasons. Both Figs. 3.8 and 3.9 indicate a clear stratification of the methods,

with the methods that fail to treat the multiplicative component of contamination showing

significantly larger error.

We also compare the maps in harmonic space. The left panel of Fig. 3.10 shows the

per-multipole performance of the cleaning algorithms as (1 − C ŝs
` /C

ss
` ) vs. the multipole `,

where

Csŝ
` = 〈s`mŝ∗`m〉 (3.71)

This quantifies the fractional missing cross-power between the the true and estimated maps,

such that a perfect reconstruction corresponds to 0, and pure noise corresponds to 1 (note
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the log scale). This conveys the approximate level of error expected when using cleaned

maps for cross-correlation studies.
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Figure 3.10: Left : Error in map reconstruction for each method as a function of multipole ` in a
DES-like survey, shown as the deficit in correlation at each multipole between the true and cleaned
maps (1 − Csŝ` /Css` ). A perfect reconstruction corresponds to 0, whereas pure noise corresponds
to 1. For all methods (except perhaps Template Subtraction), the cleaned map is a good approx-
imation of the true map for cross-correlation purposes, especially at scales ` & 30. Right : Error
in power spectrum estimation, shown as the residual angular power relative to sample variance
(C̃est

` − C̃ss` )/σC` in bins of ∆` = 10. Solid lines indicate means of cleaning performed on 50 signal
realizations of each bin and shaded regions indicate the central 68% probability mass of the 250
total realizations. The multiplicative correction applied to Mode Projection removes most of the
bias of the method (green to orange). Here we use 27 templates, of which 11 are contaminating
the data.

All of the methods that treat the multiplicative contamination perform significantly bet-

ter than the additive methods. The corrected Mode Projection and Elastic Net, and the

DES-Y1 method all have excellent performance at ` & 30 or scales below about 0.2 degrees

on the sky, showing . 0.1% error. Maps cleaned with these methods should therefore be

excellent candidates for cross-correlation studies. Even the additive mode projection method

performs quite well with error of . 1% in this case, and as such it may be adequate for many

studies.

In the right panel of Fig. 3.10 we show the error in the power spectrum estimate as the

difference between the estimated (after cleaning) and true angular power in bins of ∆` = 10
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and normalized to sample variance (C̃est
` − C̃ss

` )/σC` , where for σC` we use the standard

Gaussian approximation for cosmic variance, scaled by 1/fsky. Unlike Csŝ
` , this quantity is

insensitive to phase-differences between the true and reconstructed maps of the map.

To lowest order, all of the methods work well, and the residual biases are below cosmic

variance for the large angles studied here (note that systematic shifts will become more

significant with larger multipole bins). For Mode Projection, the performance is satisfactory

only once it is corrected for the multiplicative bias via Eq. (3.46), which both reduces bias

and uncertainty in the estimated power spectra. We do not show Template Subtraction on

the right for clarity — its mean traces the mean for the additive Mode Projection method,

but the dispersion is very large, exceeding the plot limits.

The Elastic Net and Forward Selection methods show a similar deficit at large scales

as does Mode Projection before it is debiased via Eq. (3.47). This is because the power

spectra of the clustering signal and most of the cleaning templates peak at low `, such that

more power is removed from large scales. The contribution from the signal power spectrum

to this effect (i.e. heteroskedasticity) is mitigated for the DES-Y1 method, which uses the

signal covariance. In practice, biases exhibited by any of the methods for the signal power

spectrum could be estimated and removed by running on realistic contaminated mocks.

3.7.2 Susceptibility to Overfitting

Any template-fitting model faces a challenge to neither underfit nor overfit the data. In the

case of underfitting, residual contamination will be left over in the map and inferred to be

signal. In the case of overfitting, a portion of the signal will be inadvertently removed from

the map, having been mistaken for systematics. Additionally, increasing the number of fitted

templates increases the variance of the estimated power spectrum, which will increase the

error of C̃est
` in a mean-squared sense [99].

Mode Projection and Template Subtraction address the risk of overfitting by estimating

how much signal power is lost from over-correction given the template library and scaling

the power spectrum accordingly (Eqs. 3.11 and 3.23). In contrast, the DES-Y1 and Forward

Selection methods use thresholds to limit the templates used for cleaning to only those

that are most significant, an approach that was also implemented in the Extended Mode

Projection method of [96] for the QML power spectrum estimator (though as shown by [97],

this comes at the cost of an unknown bias in the power spectrum). As described in Sec. 3.5.2,

the Elastic Net reduces overfitting by adding a prior on the template coefficients to reduce

the number of templates used.

While each of the methods addresses overfitting in its own way, the library of templates fed
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to them has in most cases already been narrowed from a much larger set of possible templates

through decisions made by researchers. For example, almost all modern surveys observe any

given patch of sky multiple times, resulting in multiple values for each observing condition

for every pixel. To produce a scalar template map requires compressing these values into a

summary statistic and, as it isn’t known a priori which statistic will best capture systematic

contamination of the data, multiple statistics may be computed, each corresponding to its

own template [see e.g. 191]. If just one statistic (such as the mean) is chosen as representative

as is often done, there is the very real risk of discarding potential templates that more

accurately capture the contamination, resulting in residual contamination, or underfitting.

Therefore, one of the key performance metrics for these methods is their ability to handle
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Figure 3.11: Bias in the angular power spectrum, ∆χ2
C`

, as a function of the number of templates fit
to the map. We consider Gaussian templates which have a correlation of ρtpl = 0.2 within each of
the four template classes, as defined in Sec. 3.6.1. We generate two template realizations per class
with which to contaminate each signal map (Nsys = 2, denoted by the vertical dotted line). The
templates used to perform the cleaning vary from one to 48 for each type of template spectrum, for
a total of four to 196 templates, with new realizations generated for each Ntpl (this is the source
of the noise in the ‘Uncleaned’ line). The Template Subtraction, Mode Projection, and Forward
Selection methods are all mildly susceptible to overfitting — signaled by the increase in ∆χ2

C`
for Ntpl > 2 — though only Template Subtraction to a degree where it overcomes the penalty
for neglecting a contaminating template (Ntpl = 1). For the additive Mode Projection method,
∆χ2

C`
is dominated by the bias from not addressing the multiplicative contribution to the power

spectrum (see Fig. 3.10, right panel), while the other methods are dominated by increased variance
from chance correlations. The bias from failing to correct for the multiplicative term dominates
even when fitting for ∼ 200 templates. The DES-Y1 and Elastic Net display a lesser dependence
on Ntpl, and so are more robust to overfitting. See Sec. 3.7.2 for details.
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increasing numbers of non-contaminating templates without degrading map or power spec-

trum estimates, and so simultaneously mitigate the risks of under- and over-fitting.

To characterize the error in the reconstructed angular power spectrum, we use the sum

of squared errors between the true and reconstructed power spectra, normalized by sample

variance:

∆χ2
C`

=
∑
zbins

350∑
`=`min

(
C̃est
` (z)− C̃ss

` (z)
)2

σ2
Css` (z)

, (3.72)

where `min = 2, except for Template Subtraction where `min = Ceil[(Ntpl − 1)/2], since with

Ntpl templates, all signal is removed for ` ≤ (Ntpl − 1)/2.

In Fig. 3.11 we show ∆χ2
C`

as a function of the number of templates used to clean

the maps (Fig. B.5 shows the same plot for map-level statistics, which demonstrate very

similar behavior to ∆χ2
C`

). We generate two template realizations per class with which to

contaminate each signal map, and vary the number of templates used to perform the cleaning

from one to 24 for each template class. The true contaminants are always ‘selected first’,

such that Ntpl = Nsys = 2 represents correctly fitting for the two contaminating templates

from each class (vertical dotted line), whereas Ntpl > 2 indicates the penalty for overfitting

of non-contaminating templates. The error bars come from many signal realizations for the

same template maps, and different template and signal map realizations are used for each

value of Ntpl.

Fig. 3.11 demonstrates that all methods are susceptible to overfitting, as indicated by

the fact that ∆χ2
C`

increases for Ntpl > 2, but that some are more susceptible than oth-

ers. Template Subtraction and additive Mode Projection are the worst-performing methods

with ∆χ2
C`

& 10 for all cases, with Template Subtraction showing a strong dependence on

Ntpl. Multiplicative Mode Projection and Forward Selection display approximately the same

∆χ2
C`
∝̃Ntpl scaling as Template Subtraction, whereas The Elastic Net and DES-Y1 methods

show a much weaker scaling, indicating that they are much more robust to a larger number

of templates.

The trend for additive Mode Projection method indicates the importance of the mul-

tiplicative correction. Here, the error in the power spectrum does not scale with Ntpl as

strongly as that of Template Subtraction or the multiplicative Mode Projection method be-

cause it is dominated by the bias from not addressing the multiplicative contribution to the

power spectrum (see Fig. 3.10, right panel), not the increased variance from a larger number

of templates. The bias from failing to correct for the multiplicative term dominates the

additive Mode Projection error even when overfitting by ∼ 200 templates (or equivalently,

roughly 19 templates to quadratic order). Were the plot to continue to the right, we would
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expect the error to begin to scale similarly to the other Mode Projection and Template

Subtraction methods.21

Another key point is that for all cases except Template Subtraction, the penalty for

overfitting is dwarfed by the penalty for neglecting contaminating templates (Ntpl = 1 on

the x-axis). This suggests that the researchers should err on the side of overfitting, rather

than risk removing contaminating templates from the cleaning library. This is especially

true if using a method that is more robust to overfitting, such as the Elastic Net or DES-

Y1 method. In sum, the DES-Y1, Forward Selection, Mode Projection with multiplicative

correction, and Elastic Net methods all perform very well relative to the uncleaned case,

with the Elastic Net and DES-Y1 methods being most robust to overfitting and achieving

the best performance with ∆χ2
C`
' 1 even when Ntpl � Nsys.
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Figure 3.12: Error in the angular power spectrum, ∆χ2
C`

, as a function of the level of cross-
correlation imposed between the templates within the same class. We assumed contamination from
two realizations from each of the four classes (i.e. Nsys = 8). The left panel assumes cleaning
with only one of the contaminating templates from each class, while in the right panel we clean
for four templates from each class, including the contaminating ones. Note that in the case where
template correlation ρtpl → 1, the two templates are identical and it is equivalent to cleaning only
for one contaminating templates, an ideal scenario. In the right panel we see that while the DES-Y1
outperforms others when templates are completely orthogonal, it suffers as the level of correlation
between templates increases. The Elastic Net method mitigates this problem.

21The multiplicative bias is not the dominant contribution for Template Subtraction because its effective
number of templates is much larger, since it performs N` regressions for each template.
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3.7.3 Impact of Correlated Templates

Real templates often have groups of templates that are highly similar to one another in their

spectral behavior and/or in their correlation to one another, which we have modeled here

as different template classes. The same tracer/property measured in different wavelength

bands, or different summary statistics (e.g. the mean vs. median) for the same tracer in

a multi-epoch survey are both common examples that can result in very similar templates.

We wish to investigate the impact of selecting a non-optimal template for cleaning, which

only partially describes the true systematic. This could be either through the choice of a

non-optimal summary statistic, or through the apriori choice of a ‘representative’ template

from a group of similar templates in order to mitigate the risk of overfitting, as is commonly

done in current surveys.

We test this by cleaning with sets of templates that have varying levels of within-class

correlation. For each template class (corresponding to one of the spectra listed in Sec. 3.6.1)

we use Healpy.synfast to generate template realizations with off-diagonal covariance terms

between templates i and j of

Cij
` =

ρtpl

√
Cii
` C

jj
` , if i and j in same class

0, if i and j in different classes

We only use the first four classes from Sec. 3.6.1, which are defined by their spectrum

and from which we can generate multiple Gaussian realizations with defined levels of cross-

correlation.

Fig. 3.12 shows the performance of the methods when the within-class correlation between

templates is varied. We again consider the case of two contaminating systematics from each

of the four Gaussian template classes. The left panel shows the case where for each class

we have chosen only one of the templates to clean with, deeming it “representative” of the

template group. As within-class correlation between the systematics increases, the cleaning

templates are more representative and can increasingly remove more of the unaccounted-for

contamination. At ρtpl = 0.9, the multiplicative methods are able to reduce the error to

∆χ2
C`
∼ 6 compared to ∆χ2

C`
∼ 300 for the uncorrelated case.

Despite the additional freedom of the Template Subtraction method to fit multipoles

independently, it does not do a better job than the other methods of correcting for the

“unknown” systematics. The multiplicative methods have almost identical performance,

with the dominant contributions to residual errors in the power spectrum resulting from the

unaccounted-for systematics and, to a lesser extent, failing to treat the multiplicative term

of the contamination.
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The right panel in Fig. 3.12 illustrates the other approach of including many possible

templates rather than preselecting a few: we use six cleaning templates from each class:

the two true systematics, plus four more that are uncontaminating, for a total of 24. We

find that with the exception of the DES-Y1 method, performance of the methods is largely

independent of the correlation between templates.22

Comparing the panels, even if using a high threshold of similarity of ρtpl = 0.9 to dis-

card templates, significantly more error is introduced through neglecting a contaminating

template than through overfitting, so it is better to not pre-select templates solely on the

basis of similarity to others and instead err on the side of too many templates rather than

too few. Template Subtraction is the one exception to this, where each additional template

results in N` additional fits. While the additional freedom does not substantially protect

against unknown systematics, it does result in a much steeper penalty for overfitting from

higher Ntpl.

3.7.4 Extensions

By interpreting current LSS systematics cleaning methods in the context of regression, we

have facilitated their comparison and interpretation, as well as motivated several possible

extensions to them. We have explored some of these extensions in this work, such as the

Elastic Net method in Sec. 3.5.2, and the use of the leverage statistic to predict overdensity

errors and aid mask creation, but with the extensive body of regression methods, there are

many more that we must leave to future work. For example, one promising avenue for

regression methods that use a threshold for template selection would be to motivate that

threshold by controlling the ratio of Type I (false correction) to Type II (false omission) errors

in the selection process via the False Discovery Rate [235], based on the relative impact of

each type of error on the analysis.

We have noted individually multiple cases where the assumptions made by the methods

do not hold and how they might be improved. A full treatment of these effects is beyond

the scope of this study and would include the full non-Gaussian likelihood of P (dobs|f̂sys),

including contributions from systematics, but as we show in Apps. B.1 and B.2, the correc-

tions from these are minor compared to the methodological differences and the improvements

22We found this to be true for both map-level and 2-pt reconstruction statistics, though we only show the
latter here. It is not obvious from the outset that this would be the case — Forward Selection methods are
often criticized for being less reliable when predictors are correlated, though this is in the context of the
more typical regression scenario where it is the predictors themselves that are of interest, as opposed to the
residuals which is our focus here. The source of the dependence of the DES-Y1 results on ρtpl is not entirely
clear, but our investigations found it to be mildly impacted by both binning choices and the total monopole
of systematic maps.
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we suggest. Generalized linear models may be a promising compromise for future mitiga-

tion routines, preserving off-the-shelf implementation and diagnostic tools, while providing

greater specificity for the likelihood and relaxing some of the tacit assumptions of Mode

Projection and OLS regression.

The methods presented here are general enough to be applicable in any situation where

one has an external prediction (template) for systematic contamination of observational data,

and is equally applicable to spin-2 fields. The insights gained can be used to further extend

linear models like the ones in this work, or inform the formulation of nonlinear contamination

models, non-parametric methods, or machine learning approaches such as that of Rezaie et

al [200].

3.8 Summary of Methods

Here we summarize our findings about the performance of systematic-cleaning methods.

• DES-Y1 method: The most complicated method of the ones we studied, the DES-Y1

method resulted in some of the lowest biases in the cleaned maps. It usefully includes

prior information about the covariance between pixels in the fitting procedure, albeit

in a coarse way. However it is also somewhat complicated to implement, as it requires

a large number of parameter choices on the part of the researcher (binning number

and procedure, significance statistic and threshold, power spectrum prior) and the

generation of realistic mocks. We observed some degradation of its performance as the

correlation between templates increased. It is one of the two methods most robust to

overfitting when using a large library of templates that are not actually contaminating

the data (the other being Elastic Net).

• Mode Projection: The standard pseudo-C` Mode Projection method, as introduced

in [99] and implemented in NaMaster[13]. We showed that it is equivalent to remov-

ing the result of an ordinary least squares regression of the observed data onto the

template maps (thus providing a map estimate), with an additional step to debias the

power spectrum. This removes most of the contamination present, but can be simply

adapted to, and significantly improved by, treating the multiplicative component of

contamination instead of just the additive term. We demonstrate how to do this in

Sec. 3.4.2. In all cases we studied, the error from not correcting the multiplicative term

dominated over error induced from overfitting — as Fig. 3.11 illustrates, in the ideal
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case where our templates exactly matched the systematics, not treating the multiplica-

tive term introduced as much error as using ∼ 30× more templates than systematics

in the cleaning procedure.

• Template Subtraction: Equivalent to performing an individual OLS regression at

each multipole, resulting in large variance and significant loss of signal from overfitting.

As a result, it does not reconstruct maps well and generally performs most poorly in

all of our tests. However, our implementation is a limiting case, where each harmonic

from each template is allowed to contaminate independently, in contrast to Mode

Projection where all modes contaminate identically. The work here should make it

straightforward to construct a hybrid method where all modes contribute identically

like in Mode Projection (as is physically motivated) and hence have small variance,

but where certain modes are prioritized for cleaning, based on the analysis case.

• Iterative Forward Selection: This is a method we propose, which is a much simpler

version of the DES-Y1 method that requires only a single tunable parameter (a sig-

nificance threshold) and no mocks. We found that it produces excellent results and is

robust to correlation between templates, but is not as robust to overfitting, displaying

the same dependence of roughly ∆χ2
C`
∝ Ntpl as the Mode Projection and Template

Subtraction methods.

• Cross-Validated Elastic Net: A cleaning method we introduce, which we find has

the best overall performance, being consistently low error and robust to overfitting. It

is equivalent to Mode Projection, but with the amplitude of contamination for each

template having a mixed Gaussian/Laplace prior applied to encourage sparsity and

thus automatically select the important templates. The ‘priors’ are not strictly such

in a Bayesian sense, as their strengths are determined by the data through cross-

validation. It is easy to implement using out-of-the-box software and doesn’t require a

user-defined prior for the power spectrum or debiasing step, providing the best balance

of performance, ease of implementation, interpretability and robustness.

3.9 Conclusions

In this study, we carried out a broad comparison of methods used to remove astrophysical,

atmospheric, and instrumental systematic errors that affect galaxy-clustering measurements.

We have generalized previous work by 1) showing how different methods can be interpreted

under a common regression framework, 2) jointly assessing the robustness of methods on
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simulated data, 3) investigating the reconstruction fidelity of LSS map(s), rather than just

their clustering statistics, as the maps are useful points of departure for numerous other

analyses (e.g. summary statistics beyond the power spectrum, cross-correlations, searches

for signatures of dark matter or exotic new physics); and 4) proposing improvements to

current methods, as well as new, hybrid and efficient methods for the systematics cleaning.

We employed a simple and general model for systematics, given in Eq. (3.1), which

allows for spatially varying multiplicative and additive systematic errors with a range of

clustering properties to any generic cosmological field. Equipped with that model, we defined

a testing procedure that attempts to mimic real-world conditions for LSS surveys, where the

true galaxy map is contaminated with an unknown set of systematics and a set of known

templates is used to model and correct for the contamination. Given our methodology

(pictorially described in Fig. 3.2) and a set of assumptions about the fiducial DES Y5-like

survey used to generate the maps, we studied the performance of the systematics-cleaning

methods under different conditions.

We showed that both Template Subtraction and Mode Projection, while developed in-

dependently, can be interpreted through a regression framework where the signal of interest

corresponds to the noise term of a regression model. This allowed us to straightforwardly

apply known statistical results and techniques to these methods. We used this to adapt

additive methods to account for multiplicative errors (Fig. 3.6), and identify potentially

highly contaminated map pixels as a function of their “leverage” (Fig. 3.8), while opening

up avenues for further improvement. One such avenue we touched on was to optimize Mode

Projection (or other regression methods) by prewhitening the maps in harmonic space. Rec-

ognizing that the noise of the regression is the clustering signal itself, we proposed that the

maps could be efficiently and optimally inverse-variance weighted in harmonic space, where

the clustering signal is diagonal. This is equivalent to accounting for the off-diagonal pixel

covariance in the pixel-based regression methods, which is rarely done for tractability reasons

(but see Wagoner et al [201] for one approach). We found this to improve results (Fig. B.3),

but be subdominant to the multiplicative correction and differences between the cleaning

methods.

We introduced two new methods for cleaning: (1) the ‘Forward Selection’ method, which

is a greatly simplified version of the DES-Y1 method that achieves similar performance albeit

being less robust to a large number of templates; and (2) the ‘Elastic Net’ method, a simple

out-of-the-box method that implements Mode Projection, but which automatically selects

important templates. We found that the Elastic Net method is very robust, with strong

performance even when there is a large number of templates (Fig. 3.11) or templates are

highly correlated (Fig. 3.12); both are cases where other methods display weaknesses. This
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method is very easy to implement, and we recommend it for future surveys.

On the whole, we found that all of the methods perform quite well, dramatically im-

proving the chi-squared difference between the cleaned and true (uncontaminated) angular

power spectrum. At the map level, Template Subtraction was the only method that did not

significantly reduce the RMS overdensity error across pixels (Figs. 3.8 and B.5), and so we

do not recommend the version implemented here for map reconstruction. Once we adopted

only the algorithms that take into account both additive and multiplicative errors, all of

the methods improved ∆χ2
C`

by three orders of magnitude relative to the uncleaned case.

Moreover, overfitting did not lead to large degradation in the reconstructed power spectra

(see Fig. 3.11), which is encouraging. Finally we found that the performance of the various

systematics-cleaning methods is very weakly dependent on the level of cross-correlation be-

tween the template maps used for the cleaning, with the DES-Y1 method being mildly more

susceptible.

We end with several recommendations based on this work:

I. Current and future cleaning methods should account for multiplicative contamination.

‘Weights’ methods like the DES-Y1 method already do this and other methods like

(Pseudo-C`) Mode Projection can easily do so via Eqs. (3.46)-(3.47).

II. Cleaning methods based on a single Ordinary Least Squares regression are equivalent to

(Pseudo-C`) Mode Projection and so should debias inferred two-point functions accord-

ingly. For more complicated methods where the bias cannot be determined analytically,

it can be characterized and removed through performing cleaning on mock catalogs.

III. Analyses should err on the side of overfitting rather than underfitting for templates,

as the error from the former tends to be small provided templates do not contain any

more information about the true density field than would occur by chance. Researchers

should avoid arbitrarily removing templates from the library prior to cleaning based

solely on their similarity to other templates. Larger template libraries result in increased

variance of the map and power spectrum estimators, especially with the very large

number of templates that will be available to future surveys. Therefore:

IV. In scenarios where a very large template library is available, the data itself should

be used to select a subset for cleaning. Among the methods that we studied, this is

accomplished by either a DES-Y1 type method or the Elastic Net with cross valida-

tion. Both show good robustness, and the latter is simple to implement with common

software. The theoretical connections we have made between methods should make
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alternative template selection routines such as those in [191] and [200] simple to adapt

and implement.

V. The cleaning methods used thus far can — and should — be viewed in the context of

regression, with the estimated overdensity field corresponding to the regression residu-

als. Researchers should make use of the powerful suite of existing tools and diagnostic

measures to assess the validity of regression models when cleaning LSS data (e.g. lever-

age for outlier detection, Q-Q plots, partial regression/residual plots) and to aid mask

creation. This is applicable to all methods studied in this chapter.

———————–
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Chapter 4

Chasing the Inflationary Spectral

Runnings in the Presence of

Systematic Errors

4.1 Introduction

Cosmological inflation [236–238] has passed observational tests with flying colors: the combi-

nation of the cosmic microwave background (CMB) with measurements of large-scale struc-

ture (LSS) confirms that the geometry of the universe is nearly flat and that the spectrum of

density fluctuations is almost scale-invariant [239]. The super-horizon fluctuations observed

in the temperature-polarization cross-correlation in the CMB behave in precisely the way

that inflation predicts [240]. Beyond these successes, the most important upcoming test

of inflation is the search for the signature of primordial gravitational waves, which inflation

generically predicts, in the CMB polarization. In this work we study the prospects of another

important test of inflation: the search for the running of the scalar spectral index.

The primordial power spectrum of curvature fluctuations can be parameterized by Taylor

expanding about a pivot scale k∗

k3

2π2
Ps(k) = As

(
k

k∗

)(ns−1)+ 1
2
αs ln(k/k∗)+

1
6
βs(ln(k/k∗))2+...

, (4.1)

where As is the scalar amplitude, ns is the spectral index, and αs and βs are its first and

second derivatives, respectively, evaluated at the pivot scale k∗. Single-field slow-roll inflation

models predict the power spectrum to be nearly scale invariant, i.e. ns ≈ 1, a prediction

borne out through measurements of the CMB. The Planck experiment [241] has constrained
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these parameters for the ΛCDM+αs model, measuring ns = 0.968±0.006 and αs = −0.003±
0.007 at the pivot k∗ = 0.05 Mpc−1. Expanded to include the second running, the Planck

constraints become ns = 0.959± 0.006, αs = 0.009± 0.010, and βs = 0.025± 0.013 (see also

[242]).

In single-field slow-roll inflationary models, the runnings are of the order αs ∼ (1−ns)2 ∼
10−3 and βs ∼ (1−ns)3 ∼ 4×10−5 [243] (see also [244, 245]), levels far below the sensitivity

of the Planck satellite mission. However the orders of runnings are potentially reachable

with new generations of CMB and LSS surveys. Detection of the runnings with magnitudes

larger than these values would indicate that the mechanism that generated the primordial

fluctuations cannot just be described by a single-field slow roll model [246, 247]. It is possible,

for example, for large runnings to be generated by modulations to the inflationary potential

[248, 249]. It has also been proposed that modulations resulting in a large value of βs ∼ 10−3

could produce an appreciable number of primordial black holes (PBHs) [250]; at βs ≈ 0.03,

these PBHs would be large enough to be a dark matter candidate [27, 251]. Thus, even

bounds on inflationary spectral runnings that are above the level needed to test single-field

slow-roll inflation can provide valuable information.

Munoz et al [27] (M17) investigated how well future surveys will be able to measure

αs and βs, using a CMB Stage 4 (CMB-S4) experiment in combination with various LSS

surveys. They find that even with the combination of a billion-object survey such as SKA,

the runnings will only be measured to σα = 9.3×10−4 and σβ = 2×10−3, levels insufficient for

a significant detection if the values are near those predicted by single-field slow-roll inflation

(see [252–254] for other forecasts on spectral runnings constraints using CMB and future

large-scale structure surveys). It is worth noting, however, that these forecasts only make use

of LSS data that is comfortably in the linear regime (k . 0.1hMpc−1). LSS surveys measure

tracers of the matter power spectrum Pm(k, z), and in principle can access information deep

in the nonlinear regime, up to k ' 1hMpc−1 and beyond. Fig. 4.1 shows the characteristic

shape of the matter power spectrum (black) and how a non-zero second running has the

greatest impact at the largest and smallest scales (green). The combination of large scales

accessed by the CMB and small scales accessed by the LSS is particularly important for

constraining the spectral index and its running, as the long lever arm in wavenumber helps

to break degeneracies with other cosmological parameters.

Using information from small scales (large k) introduces significant challenges, however.

Fluctuations in matter density become large at small scales, so at some scale linear pertur-

bation theory becomes insufficient to describe their evolution. There is a significant ongoing

effort to improve our understanding of structure growth in this non-linear regime [255–259].

Baryonic effects also become important at these scales and affect the power spectrum of
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Figure 4.1: Matter power spectrum at the Planck ΛCDM best-fit values (black) and with a non-zero
second running of βs = 0.03 (green). The largest and smallest scales are those most sensitive to
a change in the spectral runnings. While the information content from large scales is limited by
cosmic variance, small-scales in the nonlinear regime offer an intriguing means to further constrain
the spectral runnings. Shading indicates scales that are increasingly in the nonlinear regime (above
k & 0.1hMpc−1). Adapted from Ref. [27].

large-scale structure tracers [260–262]. In addition, nonlinearities at small scales induce cor-

relations between wavenumbers [263], so that the covariance of power spectra evaluated at

two wavenumbers depends on the nontrivial matter trispectrum.

It is therefore of fundamental importance to understand to what extent the small-scale

systematics in the LSS can be parameterized and self-calibrated in order to utilize those

scales in the search for αs and βs. The main goal of this chapter is to assess how constraints

on the runnings improve as LSS information at higher wavenumbers is added to the analysis.

We investigate how the results are biased when the nonlinear regime is mismodeled, and how

well this bias can be mitigated through the inclusion of nuisance parameters at small scales.

The chapter is organized as follows. In Sec. 4.2, we describe our methodology in detail:

our fiducial cosmological model, the CMB and LSS surveys considered, and the Fisher matrix

formalism we use for forecasting constraints. In Sec. 4.3, we present and discuss our forecast

for the spectral running αs constraints using future galaxy surveys alone and in combination

with CMB-S4. We then introduce the Fisher bias formalism for modeling systematic bias in

cosmological parameters, and discuss the corresponding results for αs in Sec. 4.4. In Sec.
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Table 4.1: Cosmological parameters, their fiducial values, and numerical derivative step sizes used
for the Fisher matrix calculation. The last two parameters correspond to the Mead model for
describing nonlinear effects.

Parameter (pi) Fiducial Value Step Size (∆pi)

Ωbh
2 0.02222 ±1%

Ωch
2 0.1197 ±1%

τ 0.06 ±1%

H0 67.5 ±1%

ns 0.9655 ±1%

1010As 21.96 ±1%

αs 0 ±1× 10−3

βs 0 ±1× 10−3

Abary 3.13 ±5%

η0 0.6044 ±5%

4.5, we present our constraints and systematic bias results for the second spectral running,

βs. We summarize our findings and conclude in Sec. 4.6.

4.2 Methods

In this section we describe our fiducial model for CMB and LSS observations and describe

our forecasting methodology, which makes use of the Fisher matrix formalism to forecast the

precision of measurements of the runnings.

4.2.1 Fiducial Model

We assume a flat ΛCDM cosmology with six parameters in addition to the spectral runnings:

the physical baryon and CDM densities Ωbh
2 and Ωch

2, the reionization optical depth τ ,

the Hubble constant H0, the scalar spectral index ns, and the primordial power spectrum

amplitude As. The values of these parameters in our fiducial model are listed in Table 4.1.
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4.2.2 Modeling the CMB

The CMB fluctuations have a wealth of information about the early universe, providing

some of the tightest constraints for cosmology to date [264]. The observed CMB angular

power spectrum can be related to the primordial power spectrum Ps(k) that sourced those

fluctuations via

CXY
` =

2

π

∫
dk k2Ps(k)∆X

` (k)∆Y
` (k). (4.2)

Labels X and Y can refer to temperature (T ), polarization modes (E,B), or lensing potential

(d), and ∆X
` is the transfer function which encompasses both source and projection terms

integrated over the line-of-sight.

Taking T and E as our observables, the observed angular power spectra can be repre-

sented as a vector (CTT
` , CEE

` , CTE
` ) with covariance matrix

Cov` =

(
2

(2`+ 1)fsky

)


(C̃TT
` )2 (C̃TE

` )2 C̃TT
` C̃TE

`

(C̃TE
` )2 (C̃EE

` )2 C̃EE
` C̃TE

`

C̃TT
` C̃TE

` C̃EE
` C̃TE

`

1

2
[(C̃TE

` )2 + C̃TT
` C̃EE

` ]


where the auto power spectra include contributions from noise:

C̃TT
` = CTT

` +NTT
`

C̃EE
` = CEE

` +NEE
` (4.3)

C̃TE
` = CTE

`

We adopt the same noise properties for a CMB-S4 experiment used by [27]:

NTT
` = ∆2

T exp

[
`(`+ 1)θ2

FWHM

8 ln 2

]
(4.4)

and

NEE
` = 2×NTT

` , (4.5)

where the temperature sensitivity is ∆T = 1µK-arcmin and the beam full-width-half-maximum

is θFWHM = 8.7 × 10−4 radians [265]. We assume a sky coverage fsky = 0.4 and that the

usable range of multipoles are ` ∈ [30, 3000] for CTT
` and CTE

` , and ` ∈ [30, 5000] for CEE
` .

To represent additional constraints coming from low-` polarization (e.g. from the Planck
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High Frequency Instrument) which break the degeneracy between τ and As [266], we include

a Gaussian prior on τ with width σ(τ) = 0.01.

The nonlinearity of matter fluctuations affects the CMB power spectrum at small scales

mainly through lensing. While the effect on the CMB lensing power spectrum from the

large-scale structure bispectrum can be significant [267], the corresponding changes in the

TT, EE and TE angular power spectra are negligible [268]. We therefore do not consider

the modeling uncertainties from nonlinear lensing effects on the CMB power spectra in this

work.

4.2.3 Modeling Large Scale Structure Surveys

LSS surveys utilize a variety of tracers in order to probe the growth of structure in the

universe as a function of cosmic time, such as galaxies, quasars, and the Lyman-alpha forest.

These measurements, in turn, enable strong constraints to be placed on both early- and

late-universe parameters [269–271].

In the linear regime, the matter power spectrum can be computed for a given cosmology

using Boltzmann codes such as CAMB [272] or CLASS [273]. On smaller scales where linear per-

turbation theory breaks down, one must resort to other methods. These may include N-body

or hydrodynamical simulations, or else semi-analytic prescriptions, for example ones based

on the halo model of LSS [274–276]. However these methods are not guaranteed to capture

all the relevant physics. The presence of redshift space distortions (RSD), which render the

power spectrum observed in redshift space anisotropic, further complicates matters.

Because we aim to investigate the impact of systematic errors on constraints from LSS,

and those are mainly due to modeling uncertainties at small scales, we parameterize the

observed galaxy power spectrum in a way that allows us to generically encapsulate modifica-

tions to our fiducial power spectrum due to nonlinear effects. Following Seo and Eisenstein

[277], we write the redshift-space power spectrum of tracer X as

Pobs(k, µ, z) = b2
X(z)

(
1 +

f(z)

bX(z)
µ2

)2

Pm(k, z) exp

[
−k

2µ2σ2
v

H2
0

]
Mnl(k, z) (4.6)

where Pm(k, z) is the matter power spectrum from CAMB with nonlinear corrections from

HMcode [28], µ is the cosine of the angle between the line connecting galaxy pairs and the

line of sight and f(z) = d lnD/d ln a is the logarithmic derivative of the linear growth factor.

The exponential term, featuring the velocity dispersion σv, models the power suppression

along the line-of-sight at small scales due to redshift-space distortions (the so-called Fingers-

of-God effect). Here σv is calculated using the virial scaling relation from [278], evaluated
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at the characteristic mass of collapsed halos (M∗). We find that the effect only has a minor

impact, slightly increasing the forecasted errors at kmax > 1hMpc−1. The impact of baryons

and other effects on nonlinear scales (henceforth nonlinear effects) are accounted for by the

as-yet undefined function Mnl(k, z). The term b2
X describes the linear galaxy bias for galaxy

population X, which we define to have the redshift dependence of b2(z) = b2
0(1 + z). We

marginalize over the amplitude b0 when determining cosmological parameter constraints, and

absorb any scale-dependent bias effects into Mnl(k, z).

We now turn to the “nonlinear” function Mnl(k, z). We consider three treatments, in

order of increasing complexity:

1. No Nuisance model: The simplest case is the trivial one where the nonlinear power

is assumed to be modeled perfectly by the modified halo model prescription in HMCode

and there is no scale-dependent bias. This corresponds to Mnl(k, z) = 1, with no

additional nuisance parameters. We refer to this as the No Nuisance model.

2. Mead model: The next model for Mnl(k, z) is the one presented by Mead et al [28],

in which the modifications to nonlinear power due to baryonic feedback effects are

parametrized using two parameters [Ab and η0] (Mead parameters). In this case,

Mnl(k, z) =
PMead(k, z, Ab, η0)

PMead, DMonly(k, z)
(4.7)

where “DMonly” refers to the default Mead parameter values of Ab = 3.13 and η0 =

0.6044.

3. Many Free Parameter (MFP) model: The final model for the nonlinearities is a

much more agnostic prescription similar to Bielefeld et al [279], in which Mnl(k, z) is

allowed to float freely in bins of wavenumber k and smoothly, as a low-order power-

law, in redshift. Since at low k the power spectrum is well determined theoretically,

we allow Mnl(k, z) to vary only for k at the quasi-linear regime and above, setting it

to unity at large scales.

We therefore have

Mnl(k, z) =

(1 + c1,kz + c2,kz
2)Bk if k > 0.1

1 if k ≤ 0.1
(4.8)

where k has units hMpc−1, and Bk, c1,k and c2,k are free parameters. One set of {Bk,

c1,k, c2,k} is specified in each wavenumber bin of width ∆ ln k = 0.05hMpc−1. This

bin width is fixed, so as the maximum wavenumber kmax is raised, the number of k
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bins increases, and consequently so does the number of nuisance parameters. The total

number of nuisance parameters in Mnl(k, z) thus ranges from 0 to 279 as kmax is varied

from 0.1 to 10hMpc−1, and hence we refer to this as the Many Free Parameter (MFP)

model.

The covariance between the observed power spectrum at wave numbers kα and kβ is given

as the sum of the “unconnected” part, which is diagonal in the two wavenumbers, and the

connected contribution given by the full trispectrum:

[Cov]kα,kβ =
8π2[Pobs(kα, µ, z)]2

Veff(kα, µ, z)k2
α∆kα

δkα,kβ + Tkα,kβ . (4.9)

The effective volume of the survey varies with redshift and is given by

Veff(k, µ, z) = V (z)survey

[
n(z)Pobs(k, µ, z)

1 + n(z)Pobs(k, µ, z)

]2

(4.10)

where n(z) is the galaxy number density of each redshift bin and V (z)survey is the volume in

[h−1Mpc]3,

V (z)survey =

∫ zmax

zmin

Ωsurvey
r(z′)2

H(z′)
dz′. (4.11)

Here, r(z) is the comoving distance, H(z) is the Hubble parameter, and Ωsurvey is the sky

coverage of the survey in steradians. The term Tkα,kβ is the contribution from the trispectrum

due to the non-Gaussian nature of the matter field,

Tkα,kβ =

∫
kα

d3k1
4πk2

α∆kα

∫
kβ

d3k2
4πk2

β∆kβ
T (k1,−k1,k2,−k2). (4.12)

We obtain Tkα,kβ with the same calculation method described by Wu and Huterer [280], who

use the halo model to calculate the trispectrum, showing that it is dominated by the one-halo

term. We refer the interested reader to that work for details.

In their spectral running constraint forecasts, M17 consider a wide survey like the Dark

Energy Spectroscopic Instrument (DESI) [281] as well as a deep and narrow survey similar

to the Wide Field Infrared Survey Telescope (WFIRST) [282], finding that they improve

constraints on the runnings by ∼ 20% and 30%, respectively, when added to data from a

CMB-S4 experiment. Here we take a Euclid-like survey to be our fiducial survey, and we

include a DESI-like survey for comparison.

Euclid: Euclid [283] is a proposed space-based LSS survey with large sky coverage and a

deep redshift distribution, which should provide excellent constraints on the evolution of dark
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energy. We use the spectroscopic sample defined in [283], assuming 15000 deg2 (fsky ≈ 0.36)

and a total of 50 million galaxies. We use the redshift bins given in Table VI of [284], with

thickness ∆z = 0.1 in the range z ∈ [0.6, 2.1]. We infer the effective number density in each

bin as n(z) = n̄P0.14,0.6(z)/Pobs(k = 0.14hMpc−1, µ = 0.6, z), where n̄P0.14,0.6(z) is a quantity

reported by [284] and Pobs is calculated via Eq. (4.6). The resulting n(z) is shown in Fig. 4.2.

DESI: The Dark Energy Spectroscopic Instrument (DESI [281]) is a Stage-IV ground-

based spectroscopy experiment at Mayall telescope in Arizona, which will target multiple

tracer populations over 14, 000 deg2 (fsky ≈ 0.34) with good signal to noise out to z .

1.5. Here too we adopt the distribution given in [284], which combines projections for the

populations of Luminous Red Galaxies (LRGs), Emission Line Galaxies (ELGs) and quasars

(QSOs) into estimates of n̄P0.14,0.6(z) in redshift bins of ∆z = 0.1 in the range z ∈ [0.1, 1.9].

We calculate an effective n(z) for each bin in the same way as with the Euclid-like projections,

and show them in Fig. 4.2. We assume that the Euclid-like and DESI-like experiments do not

overlap and we combine their information by summing the Fisher matrices, as we describe

below.

4.2.4 Forecasting

We forecast uncertainties of cosmological parameters as a function of kmax using a Fisher

matrix analysis. The Fisher matrix formalism is an extremely simple and efficient method to

estimate the errors on model parameters given a set of data [285, 286]. If one approximates

the likelihood as a multi-variate Gaussian in the parameters around its peak, the resulting

Hessian (matrix of second derivatives) can be used to calculate the forecasted uncertainties

in the cosmological parameters. The better the actual constraints on the parameters are,

the closer the likelihood function is to a Gaussian distribution, and the more accurate the

Fisher matrix approximation is. To the extent that we are assuming powerful future surveys

with small errors on most parameters, the Fisher matrix approximation should be excellent.

More importantly, given that our MFP systematics case contains up to ∼300 parameters, a

Fisher forecast is the only reasonably straightforward way to estimate the errors.

Under the assumption of Gaussian perturbations and Gaussian noise, the Fisher Matrix

for CMB temperature and polarization anisotropies [287–289] can be written as

FCMB
ij =

∑
`

A`,i(Cov`)
−1[A`,j]

T , (4.13)
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Figure 4.2: Galaxy number density n(z) of Euclid and DESI in each redshift bin. The features
in the DESI n(z) are due to the fact that the sample is a combination of several populations of
sources.

where

A`,i =

(
∂CTT

`

∂pi
,
∂CEE

`

∂pi
,
∂CTE

`

∂pi

)
(4.14)

and the covariance is given by Eq. (4.3). The Fisher matrix for the observed LSS power

spectrum is

F LSS
ij =

∑
z

∑
µ

dµ
∑
kα,kβ

∂P (kα, µ, z)

∂pi

[
Cov−1

]
kα,kβ

∂P (kβ, µ, z)

∂pj
, (4.15)
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where the sums are over all bins in z, µ, and k, and pi runs over the cosmological parameters

{Ωbh
2,Ωch

2, τ,H0, ns, As, αs, βs} as well as the linear bias parameter b0 and the nuisance

parameters in every k-bin, {Bk, c1,k, c2,k}. We define k bins logarithmically, with ∆ ln k =

0.05 in the range kmax ∈ [0.1, 10]hMpc−1, and bin µ in 11 evenly spaced bins from −1 to 1.

Forecasts for a combination of experiments can be calculated by summing their Fisher

matrices, and a forecast for the lower bound on the the error for a given parameter is given

by the Cramer-Rao inequality

σ(pi) ≥


√

(F−1)ii (marginalized)

1/
√
Fii (unmarginalized).

4.3 Results

We now present the principal results. To give an idea of the approximate overall level of

constraint on the cosmological parameters, we summarize the fiducial constraints for our

CMB-S4 forecast on the spectral runnings: when fixing βs = 0, we obtain marginalized

error on the spectral running of σα = 3.0 × 10−3. When allowing βs to vary, we find

σα = 3.4 × 10−3, σβ = 8.0 × 10−3. (All constraints listed are the marginalized error, unless

otherwise noted.) These constraints are similar to those of M17, although slightly weaker

because we do not include lensing information.

We now turn to the main goal of this work: exploring whether and how adding information

from LSS improves constraints on the spectral runnings. We first consider galaxy clustering

alone, and then in conjunction with CMB-S4.

4.3.1 Galaxy Clustering

To see how information from LSS data at small scales impacts constraints on the first spectral

running, we forecast the marginalized 1σ constraints on αs as a function of kmax. For the

moment, we hold the second running βs fixed at 0; we will let βs vary further below, in

Sec. 4.5.

Fig. 4.3 shows the increase in constraining power when we include clustering information

at small scales, comparing the performance of the No Nuisance (blue), Mead (red), and MFP

models (black) for nonlinear effects. We also show constraints for the No Nuisance and MFP

cases without the trispectrum contribution to the covariance (dashed), to demonstrate that

its contribution to the error budget is minor (see Appendix C.1 for a case where shot noise

is suppressed and the trispectrum dominates the error budget).
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Figure 4.3: Error (1σ here and everywhere) in the spectral running αs as a function of kmax,
evaluated for our fiducial Euclid-like survey, assuming βs = 0. The legend shows our assumption
about modeling of the systematics, while Tkα,kβ refers to the inclusion of the trispectrum to the
data covariance. Note that here and in subsequent plots, the value of the running denoted as the
“Inflationary prediction” (purple horizontal line) is only approximate.
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Figure 4.4: Marginalized constraints on αs when combining information from different surveys
(DESI-like, Euclid-like, CMB-S4, and also in combination). Solid curves include the MFP descrip-
tion of the systematic errors in galaxy surveys (see Eq. (4.8), while the dashed curves do not.
Results using the Mead parameterization are similar to the No Nuisance (No Nuis) case, and so we
we omit them here for clarity.
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In the No Nuisance case, that is, the forecast for constraints if no parameters need to

be introduced to model nonlinear effects, we find a large gain in constraining power for

high kmax. This gain remains whether or not we include the trispectrum contributions to

the power spectrum’s covariance at small scales (solid and dashed curves, respectively).

However, the overall gain with increasing kmax, even in this no-systematics case, is not

as significant as might be expected based on the behavior at linear scales, because the

slope of the σα vs kmax curve changes at scales where nonlinearities become important,

kmax ' 0.1hMpc−1. This flattening in σα(kmax) implies that, even in the optimistic no-

systematics scenario and pushing out to kmax = 10hMpc−1, the Euclid constraint on the

running would only be comparable to the expected inflationary signal, σα ' 10−3 and so be

insufficient for a statistically significant detection of α of that size.

The red and black curves in Fig. 4.3 show how these constraints respond to the addition

of nuisance parameters intended to capture nonlinear effects, corresponding to the Mead and

MFP models, respectively. The Mead model, which introduces only two new parameters,

produces results similar to the No Nuisance case. In contrast, constraints become consider-

ably weaker (e.g. by a factor of ∼5 at kmax = 10hMpc−1) for the MFP model, which captures

nonlinear effects via an agnostic, piecewise-in-k Mnl(k, z) with many free parameters (up to

279 for the highest kmax). Thus, in this more conservative treatment of small-scale system-

atics, the gains from including high-k modes are rendered modest at best, particularly for

kmax & 1hMpc−1. We will show below in Sec. 4.4, however, that the MFP parametrization

does protect the constraints against the systematic biases due to modeling uncertainties in

the high-k power spectrum.

Clearly, in the comparison of forecasted constraints, the more gentle treatment of system-

atics (with fewer free parameters) in the Mead model produces more favorable results than

the more agnostic MFP case. However, this comparison of statistics-only errors alone is not

enough to answer the question of whether a given treatment of systematics is sufficient for an

analysis. Rather, modeling choices must be made by balancing the consideration of expected

constraining power with the need for nuisance parameters to protect against biases to the

best-fit cosmological parameters. Accordingly, we compare our three Mnl(k, z) treatments

by studying their relative ability to protect against biases in Sec. 4.4.

4.3.2 Galaxy Clustering and CMB

The large lever arm provided by the combination of CMB and LSS allows for much tighter

constraints on the running than using LSS data alone. We illustrate this in Fig. 4.4, which

gives the marginalized 1-σ constraints on αs for different kmax when combining LSS infor-
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mation from a Euclid-like and/or a DESI-like survey with that from a CMB-S4 experiment.

We now show only forecasts which include the trispectrum contribution to the covariance,

and use the comparison between the solid and dashed curves to compare the performance of

the No Nuisance and MFP models, respectively. For clarity, we do not diplay the curves for

the Mead model, which are similar to those for the No Nuisance case.

The curves for LSS data alone show results similar to those in Fig. 4.3. We find that

DESI and Euclid yield comparable errors in the running (with a ∼30% smaller error for

Euclid), with their combination giving a slight improvement over Euclid alone.

As in the Euclid-only case, we see a 5–10× degradation in constraints if the MFP treat-

ment of systematics is adopted compared to the No Nuisance case. We note that this degra-

dation is greater for DESI (black) than for Euclid (blue).

Next we consider the effect of adding CMB-S4 information to the Euclid+DESI combina-

tion, which is shown in orange in Fig. 4.4. When large and mildly nonlinear scales of the LSS

(kmax . 0.5hMpc−1) are used, the CMB information dominates the (CMB+LSS) constrain-

ing power, and the combined error is essentially equivalent to that from CMB-S4 alone. At

smaller scales, the LSS surveys help tighten constraints, but only in the No Nuisance case.

In the MFP case, where many nuisance parameters are marginalized over, LSS data adds

little constraining power on αs compared to CMB-S4 data alone.

4.4 Systematic Biases in Model Parameters

The fact that there are significant modeling uncertainties associated with the theoretical

prediction of galaxy clustering at small scales is our primary motivation for studying differ-

ent choices of the Mnl(k, z) function to describe nonlinear effects. Any analysis will have to

make simplifying choices for how to model the physics of nonlinear structure growth, bary-

onic effects, and scale-dependent galaxy bias. To the extent that those choices provide an

incomplete description of the underlying physics there will be inaccuracies in the theoretical

prediction for the observed galaxy power spectrum. Here we examine how these systematic

errors—that is, residuals between the true and assumed power spectrum—impact parameter

estimation for the spectral running.

In order to characterize this, we represent a typical form for the residuals due to system-

atic errors by taking the difference between two commonly used parameterizations of the

matter power spectrum on small scales. Specifically, we subtract the nonlinear prescription

by Takahashi et al [6] from that of Mead et al [28].1 The power spectra generated with these

1We take the default parameter values of Abary and η0 corresponding to the DMONLY case in HMcode as
of Feb. 2018, which includes the updates of Ref. [7]
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Figure 4.5: Relative difference between the nonlinear predictions from two popular fits: that
of Takahashi et al [6] and of Mead et al [28] scaled so as to correspond to about 1% maximum
difference at small scales. The quantity shown, δP/P = 0.2(Ptaka − Pmead)/Pmead, is the fiducial
model for the small-scale systematics that we employ in subsequent plots to gauge the protection
offered by our systematics parametrizations.

two codes differ by up to ∼5%, roughly independent of redshift for the range considered.

For the future surveys we consider, we optimistically assume that that theoretical advances

will allow the small-scale power spectrum to be computed to an accuracy of about 1%. We

therefore adopt a fifth of the Takahashi-Mead difference as our fiducial model for residual

systematics, that is,

δP (k, µ, z) = 0.2 [PTaka(k, µ, z)− PMead(k, µ, z)] , (4.16)

which we show in Fig. 4.5 as a fraction of our fiducial power spectrum.

We use the Fisher matrix formalism to predict the bias that the residuals in Eq. (4.16)

will produce in cosmological parameters [290, 291]. In the limit where changes to best-
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Figure 4.6: 1-σ statistical errors (solid curves) and bias (dashed) in the first spectral running,
as a function of kmax. We adopt the Euclid+CMB-S4 combination of surveys. The legend on top
denotes three alternate assumptions about the systematic error modeling: none (blue), Mead (red),
and MFP (black).

fit parameters can be expanded linearly in small changes to the observations, the bias in

parameter pi can be written as

δpi ≈
∑
j

(F−1)ijGj, (4.17)
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where

Gj =
∑

z,µ,kα,kβ

dµ
∂P (kα, µ, z)

∂pj

[
Cov−1

]
kα,kβ

δP (kβ, µ, z),

and Cov is the same covariance matrix defined in Eq. (4.9). This formula is only accurate

when the biases are small compared to the forecasted errors — that is, |δpi| � σpi =√
(F−1)ii — so we use it to determine the approximate threshold at which the bias on pi

becomes unacceptably large.

We plot both the bias |δαs| (dashed) and marginalized uncertainty σαs (solid) for

Euclid+CMB−S4 constraints on αs in Fig. 4.6. The value of kmax where the bias and

uncertainty become comparable tells us roughly the smallest scales that can be in included

in an analysis without the systematic effects in δP adversely biasing the results for α. We

see that though the MFP nuisance parameter prescription (black) has weaker constraints

than the No Nuisance and Mead cases, it also is significantly better at protecting against

bias. That is to say, on all kmax scales we examined, the bias in α for the MFP case is well

below its statistical uncertainty. In contrast, the No Nuisance and Mead prescriptions have

δαs ≈ σαs at kmax ≈ 0.4hMpc−1 and kmax ≈ 0.6hMpc−1 respectively. Comparing the value

for σαs at these kmax values, we see that if we restrict ourselves to scales with δαs < σαs , the

improvement from adding high-k LSS data is marginal for all three Mnl(k, z) treatments.

To confirm that these results are robust against changes to the shape of our resid-

ual function δP (k, z), we compared the same bias projections for a variety of other

δPi,j(k, z) ∝ Pi(k, z) − Pj(k, z), where i, j ∈ {Mead [28], Takahashi [6], Bird [292], Pea-

cock2, Halomodel [275]} runs over a subset of possible prescriptions for the nonlinear matter

power spectrum in CAMB. We normalized these so that the relative difference δPi,j(k, z)/PMead

had the same RMS as our fiducial case3 (see Appendix C.2). Thus the fiducial δP (k, µ, z)

given in Eq. 4.16 and the magnitude of resulting biases derived therefrom should be fairly

representative of possible errors in modeling P (k, z), while also aligning with the oft-quoted

baseline assumption that uncertainties have to be controlled to 1% or better in order to not

degrade the accuracy of future cosmological measurements of dark energy (e.g. [293]).
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Figure 4.7: Similar to Fig. 4.6, except now βs is allowed to vary. The left panel shows the 1-σ error
and parameter bias in αs as a function of kmax, while the right panel shows the same for βs. The
curves have the same meaning as in Fig. 4.6.

4.5 Constraining the Second Running: ΛCDM +αs+βs

We now expand the cosmological parameter space to include the second running βs—that is,

we extend our expansion of the spectral index to second order in ln k. This is a parameter

for which constraints from LSS data have the potential to be particularly interesting. Recent

Planck results have suggested a positive second running βs at nearly 2σ confidence which, if

it persists, will help to discriminate between inflationary models [242, 245]. Additionally, as

mentioned in Sec. 4.1, the current best-fit of βs = 0.025±0.013 has important implications for

physics of the late universe, as it makes primordial black holes a viable dark matter candidate

(albeit with the requirement of a negative third-order running to avoid overproduction [251]).

The left panel of Fig. 4.7 shows that, when βs is allowed to vary, combined constraints

from CMB-S4 and LSS are no longer able to reach the inflationary prediction for αs at

any kmax < 10hMpc−1, even when the non-linear P (k, z) is modeled perfectly and with no

nuisance parameters (solid blue curve). On the other hand, the right panel of Fig. 4.7 shows

that βs itself benefits greatly from the addition of the LSS data. While CMB-S4 is expected

to improve constraints on βs by a factor of ∼4 over current levels, our results indicate that

LSS data in the nonlinear regime from Euclid or DESI has the potential to improve this

significantly up to kmax ∼ 2hMpc−1, at which point shot noise limits the information that

can be gained.

2http://www.roe.ac.uk/ jap/haloes
3For k > 0.005hMpc−1, corresponding to the minimum k for which CAMB calculates nonlinear modifica-

tions to the power spectrum.
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We next consider the systematic biases in βs using the same prescription as in Sec. 4.4.

Using our fiducial model for power spectrum residuals due to unaccounted-for systematics

[Eq. (4.16)], Fig. 4.7 shows that, without introducing undue bias, adding data from a Euclid-

like survey can improve constraints on βs by a factor of 3–4 compared to the CMB-S4 only

case.4 While still an order of magnitude too large to reach βs predicted by standard single-

field slow-roll inflation, this level of precision is in the regime necessary to test for models

relevant for PBH formation [27, 251, 294].

4.6 Conclusions

In this work, we have investigated how small-scale information from large-scale structure

surveys can improve constraints on the first [αs] and second [βs] runnings of the scalar

spectral index [ns]. Previous analyses have been limited to the linear regime where the

matter power spectrum is accurately described by theory, but the possibility of extending

analyses to nonlinear regimes in the future is attractive. This is for two reasons: First, there

are many more modes at small scales and hence statistical errors from cosmic variance are

greatly reduced. Second, accessing high k values provides a longer lever arm when combined

with CMB constraints, which increases the sensitivity to variations in the spectral index and

its runnings.

Attempts to include small-scale information are limited by challenges associated with

theoretical modeling of the nonlinear power spectrum. Nonlinear clustering of dark matter,

baryonic effects, and scale-dependent galaxy bias all contribute to modeling uncertainties

on small scales. Therefore, it is critical to not only calibrate models for these effects as

accurately as possible, but also to carefully characterize how analyses’ cosmological results

are affected by residual errors in predictions for small-scale power.

Motivated by these considerations, we compare forecasted constraints for spectral run-

nings from a few different parameterizations intended to capture the effects of systematics

in the nonlinear regime. Specifically, we study cases where small scales are modeled using

the fiducial halo model code (No Nuisance case), the parameterization from Mead et al [7]

which introduces two nuisance parameters (Mead case), and an agnostic treatment adapted

from Bielefeld et al [279] with up to a few hundred parameters, depending on kmax (Many

Free Parameters, or MFP case).

4This was the one case where our fiducial δP (k, µ, z) differed somewhat in its bias forecast from the
ensemble of other δP (k, µ, z) tested, with δβ/σβ = 1 occurring at kmax ≈ 0.5 and 0.7hMpc−1 for the
No Nuisance and Mead models, respectively (∼ 4× improvement in σβ), compared to kmax ≈ 0.2 and
0.4hMpc−1 for the typical δP (k, µ, z) (∼ 3× improvement in σβ). The results are still qualitatively similar,
however.
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We first study the forecasts for statistical errors on the first spectral running αs for

future LSS surveys like Euclid and DESI alone, as well as in combination with CMB-S4.

We find that in the No Nuisance and Mead cases, the constraints from large-scale structure

surveys tighten substantially as kmax is raised to include nonlinear scales. The MFP case

also shows improvement, but with a flatter dependence on kmax and weaker constraints

overall. It is also at nonlinear scales where constraints using LSS and CMB data begin to

improve αs constraints compared to CMB-S4 data alone. The tightest constraints come from

the Euclid+DESI+CMB-S4 combination, for which our No Nuisance forecasts for statistical

errors reach a value about a third of the αs predicted by single-field slow-roll inflation at

kmax & 3hMpc−1. This could be precise enough to achieve a ∼ 3σ detection. These results

become less promising, however, when we investigate the extent to which mismodeling of the

nonlinear power spectrum biases cosmological parameter estimation. Using the difference

between two commonly used nonlinear prescriptions as an example of expected modeling

uncertainties, we determine the highest kmax we can use in an analysis before the resulting

systematic bias in αs becomes comparable to its statistical errors.

We find that for 1% errors in the power spectrum, in the No Nuisance case both αs

and βs remain unbiased (i.e. bias is smaller than the 1σ statistical error) up to kmax ≈ 0.3−
0.4hMpc−1. Including these smaller scales results in significant improvements in σβ, but only

marginal improvements in σα. Adopting the Mead parametrization of the systematics leads

to very similar results indicating that the two free parameters from Mead et al [28], motivated

to account for baryonic feedback, are not sufficient to offer protection against the 1%-level

residual small-scale systematics in the power spectrum we might expect to encounter. In

contrast, for the MFP parametrization αs and βs are unbiased for all kmax studied, but the

statistical error on the runnings in the CMB+LSS scenarios is only marginally better than

that of CMB-S4 alone.

Our level of optimism regarding future measurements of the spectral runnings using LSS

data is therefore mixed. The values of αs and βs predicted by standard, single-field slow-

roll models of inflation seem out of reach even when CMB-S4 information is combined with

that of most powerful future LSS surveys once the small-scale systematics in the galaxy

surveys are taken into account. To improve upon this, it will be necessary to more precisely

characterize small-scale systematics such as through a suite of high-quality hydrodynamical

simulations that adequately spanned the range of possibilities, which can then be sampled

over (e.g. via emulation). If the range in uncertainty were found to be largely orthogonal

to the cosmological parameters of interest, then a detection of the inflationary αs may be

possible even at the level of 1% uncertainty, e.g. via marginalizing over the principle modes

of uncertainty as is done for baryons in Ref. [295]. In either case, larger values of spectral
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runnings predicted by other classes of inflationary models, as well as those motivated by

other physics (e.g. primordial black holes) are within reach, and should be testable with the

next generation of surveys.
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Chapter 5

Closing Remarks

The large-scale structure of the Universe is a key cosmological probe for understanding the

nature of dark energy and testing ΛCDM as it is sensitive to both the late-time expansion

history and the rate of the growth of structure. The next generation of LSS surveys will

see dramatic increases in both the volumes probed and the number of galaxies observed,

resulting in extremely powerful tests of the current cosmological paradigm. These gains in

statistical precision create heightened risk of unmodeled systematic errors that could bias

cosmological inference, necessitating strategies to identify and mitigate such sources of bias.

This thesis presents three different investigations into sources of systematic error for analyses

using large-scale structure data.

In Chapter 2, we investigated how residual calibration errors in the measured LSS density

field propagate into reconstructions of the Integrated Sachs-Wolfe effect. The ISW effect is

sourced from the decay of gravitational potentials in the presence of dark energy and so is

sensitive to dark energy and modifications to General Relativity. As the ISW is the domi-

nant late-time contribution to the cosmic microwave background anisotropies, being able to

reconstruct the ISW map offers the tantalizing possibility of separating the early- from the

late-time contributions to the CMB. Previous studies have attempted to do exactly that,

but recent work demonstrated that photometric calibration errors in modern LSS surveys

are a limiting systematic. Using simulated analyses, we investigated how the fidelity of the

ISW map reconstruction depends on the level of photometric calibration achieved for two

upcoming Stage IV LSS surveys, SPHEREx and Euclid. We found that both including to-

mographic information from a single survey and using data from multiple, complementary

galaxy surveys improve the reconstruction by mitigating the impact of spurious power con-

tributions from residual calibration errors. We also found that failing to account for spurious

power from calibration errors in the ISW estimator significantly degraded results, with the

potential to actually worsen estimates when adding information from LSS surveys to in-
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formation from just CMB temperature anisotropies. We proposed a modified estimator to

address this, and found that if the photometric calibration errors in galaxy surveys can be

independently controlled at the level required to obtain unbiased dark energy constraints,

then it will be possible to reconstruct ISW maps with excellent accuracy using a combination

of maps from Euclid and SPHEREx.

In Chapter 3, we turned our attention to the primary methods to calibrate galaxy sam-

ples in LSS surveys through detecting and mitigating systematic contamination from a large

variety of astrophysical and observational effects. We compared several existing methods

for removing such systematics from galaxy clustering measurements. We showed how all

the methods, including the popular pseudo-C` Mode Projection and Template Subtraction

methods, can be interpreted under a common regression framework, and used this to sug-

gest improved approaches. We showed how methods designed to mitigate systematics in the

power spectrum can be used to produce clean maps, which are necessary for cosmological

analyses beyond the power spectrum and other map-based analyses like the one studied in

Chapter 2. We extended current methods to treat the next-order multiplicative contam-

ination in observed maps and power spectra, which reduced power spectrum errors from

∆χ2
C`
' 10 to ' 1 in simulated analyses. Two new mitigation methods were proposed,

which incorporate desirable features of current state-of-the-art methods while being simpler

to implement. Investigating the performance of all the methods on a common set of simu-

lated measurements from Year 5 of the Dark Energy Survey, we tested their robustness to

various analysis cases. Our proposed methods produced improved maps and power spec-

tra when compared to current methods, while requiring almost no user tuning. Finally, we

made recommendations for systematics mitigation in future surveys, noting that the methods

presented are generally applicable beyond the galaxy distribution to any field with spatial

systematics.

Our final investigation in Chapter 4 pivoted from spatially-dependent observational sys-

tematics to studying the effect of general modeling uncertainties at small scales on the

inference of cosmological parameters carrying crucial information about inflation. Specifi-

cally, we studied the feasibility of measuring the spectral runnings αs and βs using data from

simulated surveys similar to the upcoming LSS surveys DESI and Euclid, in combination

with data from a Stage IV CMB experiment. Since these measurements will be sensitive to

modeling uncertainties for the nonlinear high-k power spectrum, we examined how three dif-

ferent ways of parameterizing those systematics—introducing zero, two, or several hundred

nuisance parameters—affect constraints and protect against parameter biases. Considering

statistical errors alone, we found that including strongly nonlinear scales can substantially

tighten constraints. However, these constraints weakened to levels not much better than
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those from a CMB-S4 experiment alone when we limited our analysis to LSS scales that are

large enough that estimates were not strongly affected by systematic biases. Given these

considerations, near-future large-scale structure surveys are unlikely to add much informa-

tion to the CMB-S4 measurement of the first running αs. We found that there is more

potential for improvement for the second running, βs, for which large-scale structure infor-

mation will allow constraints to be improved by a factor of 3 – 4 relative to using the CMB

alone. We concluded that while these constraints are still above the value predicted by slow-

roll inflation, they do probe regions of parameter space relevant to nonstandard inflationary

models with large runnings, for example those that can generate an appreciable abundance

of primordial black holes.

These studies contribute to the vital work of detecting, assessing, and mitigating the

impact of unmodeled systematic errors in analyses using upcoming large-scale structure sur-

veys. This is critical both to avoid potential biases in future results as well as to provide

guideposts for future model development. The last several years have seen a flurry of pro-

posals for new cosmological models as cracks in the standard ΛCDM paradigm have grown

wider. Most notable of these cracks is the so-called Hubble tension, in which early Universe

measurements infer an H0 under ΛCDM that differs from model-agnostic late-time measure-

ments by 4 − 6σ. These discrepancies have withstood a wide battery of independent tests

and grown more significant over time. The failure to as yet identify any astrophysical or

observational systematic errors that can explain the discrepancy has led to a growing focus

on novel cosmological models to remedy the disagreement. This in turn has spurred a rapid

growth in the development and application of statistical techniques for model comparison

in a cosmological context, a trend that looks likely to continue. Unfortunately, no beyond-

ΛCDM cosmological model proposed thus far has provided a decisive resolution of the H0

problem (see e.g. [296, 297] for recent reviews), but the increasing focus on radical new

models speaks to a broader weakening of the implicit priors that most cosmologists have for

the standard ΛCDM paradigm, a shift that has only occurred as more sources of systematic

error are ruled out.

Another outstanding but less prominent discrepancy concerns the ISW effect. Several

studies have reaffirmed discrepancies between the predictions of ΛCDM and the observed

strength of the ISW effect as measured on stacked voids (e.g. [76, 81, 298, 299]). However

more traditional projected cross-correlation analyses of LSS with CMB that include less

extreme over- and under-densities do not find substantial disagreement with ΛCDM (e.g.

[26, 300, 301]). While the ISW measurement discrepancy has received considerably less

attention than the growing H0 tension, it offers a tantalizing and complementary means of

probing physics beyond ΛCDM, in particular because of the ISW’s sensitivity to changes in
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the physics of dark energy. It was recently shown by Ref. [299] that the novel (albeit radical)

AvERA model of Ref. [302] could in theory simultaneously resolve the Hubble tension and the

abnormally strong signature of the CMB cold spot. Because this model has no dark energy,

it leaves unique signatures in the ISW that can serve as a ‘smoking gun’, such as a negative

correlation between matter and the CMB at redshifts of 1.5 . z . 4.4, a range that should be

accessible by both the Dark Energy Survey and the Dark Energy Spectroscopic Instrument

making it ripe for near-future experimental tests [303], and Chapter 2 contains much of

the framework that would be necessary for testing the significance of such tomographic

measurements under a baseline ΛCDM cosmology. From the measurement side, the tools

from Chapter 3 will be crucial for applying the cleaning necessary for samples at such high

redshift where systematic contamination is large, lest the fog in our lenses be mistaken for

the smoking gun, so to speak.

As the field continues to grow and we gain access to improved measurements and new

datasets, inconsistencies inevitably arise and must be reconciled. The Hubble tension and

abnormal ISW void measurements join other peculiarities (such as an anomalously low lens-

ing signal [304]) that, having withstood easy systematic explanation, have led to a greater

questioning of the standard cosmological model itself and primed us for the next revolution

in our cosmological understanding.

It is important to note, however, that the field is increasingly dominated by large col-

laborations which function to stitch together the products of many different teams working

with different data products at diverse stages in the analysis pipeline. This helps to drive

the enormous progress the field has made, but also renders analyses vulnerable, as each step

is built on the scaffolding of others’ decisions, allowing potential errors to have far-reaching

impacts but without the commensurate visibility. It is difficult if not impossible for any one

researcher to understand and vet all aspects of the analysis, let independently replicate it.

As the field moves forward, it will be increasingly important to account for researchers as a

source of systematic error; to characterize and report uncertainties in the choices that were

made throughout the analysis pipeline and develop streamlined methods to marginalize over

and account for this human element.

The fundamental goal of modern cosmology is to understand the Universe we inhabit at

its most basic level. Unlike many fields, our ability to manipulate the conditions of our exper-

iments is extremely limited, forcing us to rely on ever-improving (but passive) observations,

against which we compare carefully-constructed theoretical models. We have gained an in-

ordinate amount of knowledge over the last 40 years through the iterative process of testing,

refining, and extending our models with each new wave of hard-won data. However, upcom-

ing surveys like Euclid, SPHEREx, DESI, LSST and Roman Space Telescope will provide
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high-resolution measurements of the large-scale structure with up to 20 billion galaxies over

large fractions of the sky and beating down statistical errors. If we can adequately control

the myriad systematic effects that loom large, then these surveys will test our understanding

of cosmology like never before and truly herald the age of Precision Cosmology. Through

such a dance between theory and observation, carefully choreographed by the quantifiable

unknown, the Universe grows its self-awareness.
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Appendix A

ISW Reconstruction Appendices

A.1 Equivalence with Other Estimators

Here we demonstrate the equivalence between our estimator for the ISW map coefficients

âISW
`m in Chapter 2, and the estimators proposed by Manzotti et al [80] (MD14) and Barreiro

et al [75] (B08).

Our estimator in Eq. (2.7) is based on a version of the likelihood from MD14 that has

been reformulated to handle observed CMB maps like any other input map. MD14 derive

their estimator using the likelihood

L(T ISW) ∝ 1√
det(CD)

× exp

{
−1

2
dTD−1d

}
(A.1)

× exp

{
−1

2

(
T obs − T ISW

)
C−1

(
T obs − T ISW

)}
,

where C ≡ Cp + Cn is the angular power spectrum of the primordial Cp and noise Cn

contributions to CMB temperature fluctuations, d is a vector of ISW and LSS tracer maps,

and D is the covariance matrix between the ISW and LSS tracers (see [80] Eqs. (4-6)), with

ISW maps associated with the first (1) index. This likelihood is a product of the independent

likelihoods for (T obs − T ISW) and for the input maps in d.

Instead of explicitly including independent terms for the primordial CMB and LSS trac-

ers (which are assumed to have no cross-correlation), we include the total observed CMB

temperature,

T obs = T p + T ISW, (A.2)

where T p includes both the primordial CMB temperature as well as any instrumental noise
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terms. We then expand the data vector to include T obs:

d`m = (aISW
`m , g1

`m, . . . , g
n
`m)→ (aISW

`m , g1
`m, . . . , g

n
`m, a

obs
`m ),

with a`m indicating spherical components of ISW and CMB temperature fluctuations and

g`m indicating components of LSS overdensity. The covariance matrix is similarly expanded

to account for the cross-correlation of T obs with the ISW and LSS tracers

D` →



CISW,ISW
` CISW,1

` · · · CISW,n
` CISW,obs

`

C1,ISW
` C1,1

` · · · C1,n
` C1,obs

`

...
...

. . .
...

Cn,ISW
` Cn,1

` · · · Cn,n
` Cn,obs

`

Cobs,ISW
` C1,obs

` · · · Cn,obs
` Cobs,obs

`


. (A.3)

Assuming that at the scales we consider the observed CMB is cross-correlated with other

LSS tracers only through the ISW, we have

Cobs,ISW
` = CISW,ISW

`

C
obs,LSSi
` = C

ISW,LSSi
` , (A.4)

Cobs,obs
` = Cp,p

` + CISW,ISW
` ,

assuming there is no residual cross-correlation between the primordial and late-time CMB.

Maximizing the resulting likelihood

L(T ISW) ∝ 1√
det(D)

exp

{
−1

2
dTD−1d

}
, (A.5)

gives the optimal estimator given in Sec. 2.2.2.

To show that this is equivalent to the estimator derived from Eq. (A.1), we focus on the

case of using CMB temperature and a single LSS tracer as input maps. For compactness,

and to make the connections with other ISW estimators in the literature more apparent, we

adopt notation from B08, where s, g, and T indicate the ISW, LSS tracer, and observed

CMB temperature signals, respectively. We then have

d`m = (as`m, g
g
`m, a

T
`m), (A.6)
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and

D` =


Css
` Csg

` Css
`

Csg
` Cgg

` Csg
`

Css
` Csg

` Ctt
`

 . (A.7)

From Eqs. (2.7) and (2.8) our estimator gives

âs`m =
−1

[D−1
` ]11

(
[D−1

` ]12 g
g
`m + [D−1

` ]13 a
T
`m

)
=

(
Csg
` (Ctt

` − Css
` )

Cgg
` C

tt
` − (Csg

` )2

)
gg`m +

(
Css
` C

gg
` − (Csg

` )2

Cgg
` C

tt
` − (Csg

` )2

)
aT`m. (A.8)

We now calculate the estimator of MD14. Denoting their covariance matrix without the

CMB as D′`, we use their Eq. (9)

âs,MD
`m =

(
[Cpp

` ]−1 + [D′−1]11

)−1 (−[D′−1
` ]12 g

g
`m + [Cpp

` ]−1aT`m
)

=

(
1

Cpp
`

+
Cgg
`

det|D′`|

)−1 [
Csg
`

det|D′`|
gg`m +

1

Cpp
`

aT`m

]
=

(
1

det|D′`|+ Cgg
` C

pp
`

)[
Cpp
` C

sg
` g

g
`m + (det|D′`|)aT`m

]
Expanding the determinant, we find

âs,MD
`m =

(
Csg
` C

pp
`

Cgg
` (Css

` + Cpp
` )− (Csg

` )2

)
gg`m +

(
Css
` C

gg
` − (Csg

` )2

Cgg
` (Css

` + Cpp
` )− (Csg

` )2

)
aT`m, (A.9)

which, using the relation Ctt
` = Cpp

` +Css
` , is equivalent to the estimator given by Eq. (A.8).

This is also equivalent to the estimator proposed in B08, which uses the Cholesky de-

composition (L) of the covariance matrix D′′` (denoted C` in Ref. [75]).

D′′` =

Cgg
` Csg

`

Csg
` Css

`

 = L`L
T
` . (A.10)

Note that here the ISW index is last instead of first, in contrast to the covariance matrices
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D` and D′` used previously. The Cholesky decomposition is written as

L` =


√
Cgg
` 0

Csg
`√
Cgg
`

√
Css
` −

(Csg
` )2

Cgg
`

 . (A.11)

Eqs. (8) and (9) from Ref. [75] give the ISW estimate (their ŝ`m) as

âs,B08
`m =

L12

L11

(
1− L2

22

L2
22 + Cpp

`

)
gg`m +

L2
22

L2
22 + Cpp

`

aT`m

where we have suppressed the `-dependence of L and combined their observed ISW signal

(s`m) and noise (n`m) terms into the single term aT`m. We use Cpp
` to denote the combined

power of noise and the primordial CMB, in keeping with the notation above. Plugging this

into Eq. (A.11), we obtain

âs,B08
`m =

Csg
`

Cgg
`

(
Cpp
`

(Css
` + Cpp

` )− (Csg
` )2/Cgg

`

)
gg`m +

Css
` − (Csg

` )2/Cgg
`

(Css
` + Cpp

` )− (Csg
` )2/Cgg

`

aT`m

=

(
Csg
` (Ctt

` − Css
` )

Cgg
` C

tt
` − (Csg

` )2

)
gg`m +

(
Css
` C

gg
` − (Csg

` )2

Cgg
` C

tt
` − (Csg

` )2

)
aT`m,

which is the same as Eq. (A.8).

A.2 Estimating ρ with R`(C̃`)

Here we show why using raw pseudo-C`’s (C̃`) in the estimator results in a degraded recon-

struction, for which ρ̄ is not well approximated by ρ̂ (Eq. (2.17)).

For a given realization, ρ is constructed from the covariance between the true and re-

constructed ISW maps (Cov(T ISW, T rec), i.e. the numerator in Eq. (2.13)) normalized by

the square root of the individual variances of the true and reconstructed ISW maps (σ2
True

and σ2
rec, respectively). We therefore focus on how using realization-specific C̃`’s in the es-

timator filter R` affects the individual C` contributions to σ2
rec and Cov(T ISW, T rec) (σ2

ISW is

unaffected by our choice of R`). For simplicity, we work with a single input map.

If the ISW estimator filter R` is constructed from analytically computed model C`’s, the
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power spectrum of the ISW map for a given realization will be

C̃`
rec−rec,th

= R2
` (C

th
` )C̃`

gal−gal
,

=

(
CISW−gal
`

Cgal−gal
`

)2

C̃`
gal−gal

.
(A.12)

We add the superscript “th” to distinguish this reconstructed ISW power spectrum from the

one where the filter R` is built from C̃`’s, which will be discussed shortly. The expectation

value for this over many realizations is

〈
C̃`

rec−rec,th
〉

=

(
CISW−gal
`

Cgal−gal
`

)2 〈
C̃`

gal−gal
〉
,

=

(
CISW−gal
`

)2

Cgal−gal
`

.

(A.13)

Now let us look at the behavior of the reconstructed ISW power when the galaxy autopower

spectra in the estimator filter are extracted from the observed maps. Denoting this version

of the filter by

R̃` ≡
CISW−gal
`

C̃`
gal−gal

, (A.14)

we write

C̃`
rec−rec

= R̃`
2
C̃`

gal−gal
,

=
(
CISW−gal
`

)2
(

1

C̃`
gal−gal

)
.

(A.15)

Because the measured C̃`
gal−gal

appears in the denominator of this expression, taking its

expectation value over many realizations is somewhat more complicated. To do so we use

the fact that (2` + 1)C̃`
gal−gal

is χ2-distributed with 2` + 1 degrees of freedom. This means

C̃`
rec−rec

/(2`+ 1) follows an inverse-χ2 distribution, with an expectation value1

〈
C̃`

rec−rec

2`+ 1

〉
=

1

2`− 1

(
CISW−gal
`

)2

Cgal−gal
`

. (A.16)

1We refer the reader to Refs. [305] and [306] for discussions of the bias introduced when inverting an
estimator, with implications specifically for estimating the inverse covariance matrix.
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Therefore the average reconstructed power is〈
C̃`

rec−rec
〉

=
2`+ 1

2`− 1

〈
C̃`

rec−rec,th
〉

=
〈
C̃`

rec−rec,th
〉(

1 +
2

2`− 1

)
.

(A.17)

Because 〈C̃`
rec−rec〉 is strictly positive, this increased power results in an increase in the

total variance of the reconstruction map σ̃2
rec compared to that from the theory-only filter

reconstruction σ2
rec,th

〈σ̃2
rec〉 =

1

4π

∑
`

(2`+ 1)
〈
C̃`

rec−rec
〉

= σ2
rec,th +

1

4π

∑
`

(2`+ 1)

〈
C̃`

rec−rec,th
〉

`− 1/2
,

(A.18)

In contrast, we find the average cross-power 〈C̃`
ISW−rec〉 between reconstructed and true

ISW maps remains unchanged. The increased power of the reconstruction thus results in a

net decrease in 〈ρ〉, per Eq. (2.13), and hence is not well approximated by simply substituting

the theory C`, as is done to compute ρ̂. Additionally, this suggests that a simple scaling of

R` in order to “debias” the reconstruction will not improve ρ.

To understand why the cross-power does not increase, we again use the observed galaxy

autopower in the estimator and approximate its expectation value. The cross-power is given

by

C̃`
ISW−rec

= R̃`C̃`
ISW−gal

=

(
CISW−gal
`

C̃`
gal−gal

)
C̃`

ISW−gal
.

(A.19)

Here we have a quotient of two non-independent χ2 random variables. Generically, we can

approximate the average of a function of two random variables X and Y through a second-

order Taylor expansion about the mean of each (µX , µY ):

〈f(X, Y )〉 ≈ f(µX , µY ) +
1

2
f ′′XX(µX , µY )

〈
(X − µX)2

〉
+ f ′′XY (µX , µY ) 〈(X − µX)(Y − µY )〉

+
1

2
f ′′Y Y (µX , µY )

〈
(Y − µY )2

〉
,

where a prime indicates a derivative with respect to the respective subscripted variable. By
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taking f(X, Y ) to be C̃`
ISW−rec

, of the form X/Y , then from Eq. (A.19) we can approximate

the mean cross-power to be

〈
C̃`

ISW−rec
〉
≈ CISW−gal

`

〈
C̃`

ISW−gal
〉

〈
C̃`

gal−gal
〉
1− Cov(C̃`

ISW−gal
, C̃`

gal−gal
)〈

C̃`
ISW−gal

〉〈
C̃`

gal−gal
〉 +

Var(C̃`
gal−gal

)〈
C̃`

gal−gal
〉2



= CISW−gal
`

〈
C̃`

ISW−gal
〉

〈
C̃`

gal−gal
〉 (1− 2

2`+ 1
+

2

2`+ 1

)
,

where we used

Var
(
C̃`

gal−gal
)

=
2

2`+ 1
Cgal−gal
` ,

Cov
(
C̃`

gal−gal
, C̃`

ISW−gal
)

=
2

2`+ 1
Cgal−gal
` CISW−gal

` .

The corrective terms vanish and we find

〈
C̃`

ISW−rec
〉
≈ CISW−gal

`

〈
C̃`

ISW−gal
〉

〈
C̃`

gal−gal
〉

=
〈
C̃`

ISW−rec,th
〉
.

(A.20)

Then on average, the cross-power between the true and reconstructed ISW maps is un-

changed from the theory case. Since the multipoles are independent, this means the total

covariance between the true and reconstructed ISW maps is unchanged as well:〈
˜Cov
(
T ISW, T rec

)〉
=

1

4π

∑
`

(2`+ 1)
〈
C̃`

ISW−rec
〉

=
1

4π

∑
`

(2`+ 1)
〈
C̃`

ISW−rec,th
〉

While for the autopower C̃`
rec−rec

we were able to derive an analytical result, a similar Taylor

expansion treatment to the same order as the cross-power results in an additive correction

of 2/(2`+ 1), or 〈
C̃`

rec−rec
〉
≈
(

2`+ 3

2`+ 1

)〈
Crec−rec,th
`

〉
, (A.21)

which is a good approximation to the analytical result found in Eq. (A.17).
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Appendix B

LSS Systematics Mitigation

Appendices

B.1 Lognormal vs. Gaussian Signal Maps

While the methods presented in Chapter 3 are quite general for any case where systematic

contamination can be traced using a template, we have specifically worked in the context

of galaxy clustering. In this case, the signal map s that we are attempting to model is

the galaxy overdensity δ, which is subject to the constraint δ > −1 (as is the case for any

overdensity statistic). Thus our assumption that s is Gaussian breaks down at low redshift

and at small scales, when |δ| can be large.

It is well known that galaxy and shear overdensities are better approximated by a log-

normal distribution [see e.g. 307–310]), so we run the methods on a series of lognormal maps

to see if the relative performance of the methods changes.

We generate 100 Gaussian signal realizations sG(n̂) of the lowest redshift bin of our

fiducial DES survey, for which the cosmological signal will be most non-Gaussian. We gen-

erate lognormal versions of these maps by first computing the transformation that achieves

zero-mean lognormal overdensity field in the ensemble [309], then centering and scaling so

that each realization of the lognormal field has the same mean and variance as its Gaussian

counterpart. The two steps correspond to the mathematical operations:

1. s′LN(n̂) = esG(n̂) − eVar[sG(n̂)]/2

2. sLN(n̂) =

√
Var[sG(n̂)]

Var[s′LN(n̂)]
(s′LN(n̂)− s̄′LN(n̂)).
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Figure B.1: Distribution of pixel overdensities across all 100 realizations of the lognormal (orange)
and Gaussian (blue) maps of the galaxy overdensity in the lowest redshift bin of our fiducial DES-
like survey. The Gaussian maps contain pixels with s < −1, which is nonphysical in cases like this
where s corresponds to an overdensity.

The resulting lognormal realizations are then of the form

sLN(n̂) = λ1e
sG(n̂)− λ0, (B.1)

with scale and shift parameters of λ1 = 0.9123±0.0017 and λ0 = 0.9697±0.0017, respectively

for our lowest redshift bin, which is the most non-Gaussian.

Fig. B.1 shows the distribution of pixel overdensities across all realizations of the log-

normal and Gaussian signal maps. It is clear that the Gaussian maps contain many pixels

with s < −1, which is nonphysical for our case, where s corresponds to an overdensity. The

lognormal maps avoid this problem and are a better approximation of the true overden-

sity distribution. As we have shown, most of the cleaning methods can be viewed under a

regression framework wherein the signal distribution is assumed to be Gaussian, so we in-

vestigate whether our comparison of methods changes when using a more realistic lognormal

distribution.

Fig. B.2 shows the error in the power spectrum reconstruction, given by the ∆χ2
C`

statis-

tic, for the different methods. We find that while there is some overall shift, using the
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Figure B.2: Box plot showing the performance of each cleaning method when using Gaussian (blue,
left) versus lognormal (orange, right) signal maps, as measured by ∆χ2

C`
of the power spectrum.

Filled boxes show the 25-50-75% quartiles, with whiskers encompassing the rest of the distribution
out to 1.5× the inter-quartile range. Points beyond this range are indicated by diamonds. Re-
gardless of whether lognormal or Gaussian maps are used, the relative performance of the methods
to one another is largely unchanged, and the Gaussian approximation is negligible compared to
neglecting the multiplicative correction of Sec. 3.4.2.

lognormal signal maps does not change the relative behavior of the methods; none of them

display a unique susceptibility to the assumption of Gaussianity in the signal maps.

B.2 Effect of Prewhitening

In their derivation of the bias on the estimated power spectrum after (pseudo-C`) Mode

Projection, Elsner et al [99] assume that the map d has been decorrelated (“prewhitened”)

before projecting out the templates. This is quite difficult to do in practice, as it requires
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the inversion of an Npix × Npix matrix, the same problem with QML estimators for the

power spectrum. Indeed, one of the assumptions of pseudo-C` estimation is that pixels are

uncorrelated (though individual pixels are weighted by an estimate of their inverse noise

variance and by the mask, see e.g. [13].)

As shown in Sec. 3.4.1, however, the dominant ‘noise’ in our observations is actually our

true clustering signal, so a true ‘prewhitening’ step should more appropriately inverse weight

the data by the expected clustering variance. This can be done efficiently in harmonic space

when there is no mask, as the clustering signal is diagonal, circumventing the need to invert

a large covariance matrix.

We can define prewhitened data vectors for our observed overdensity field and templates

as

(dobs)
′
`m = (dobs)`m/

√
Css
` . (B.2)

(ti)
′
`m = (ti)`m/

√
Css
` , (B.3)

which results in coefficient estimates of

α̂ = (T′
†
T′)−1T′

†
d′obs, (B.4)

where T ′ is a N`m×Ntpl matrix with complex entries defined in Eq. (B.3). We can compute

the amplitudes directly with

α̂ =

∑`max

`=0 (2`+ 1)C̃`
td
/Css

`∑`max

`=0 (2`+ 1)C̃`
tt
/Css

`

. (B.5)

We found that prewhitening improved ∆χ2
C`

by a mean of ∼ 0.05 with dispersion 0.08

across the mocks, with similar shifts regardless of whether the multiplicative correction

was applied or not. Fig. B.3 shows the improvement from the standard case (blue) to the

prewhitened case (orange) for both additive and multiplicative mode projection. While we

do not show it, we found that the benefit of prewhitening increased for realizations that had

worse power spectrum estimates (higher ∆χ2
C`

), in effect catching and mitigating particularly

bad realizations.

In practice, one would either assume a prior power spectrum for prewhitening or compute

it iteratively, just as one does for the Mode Projection debiasing step, so this could easily

be incorporated into existing Mode Projection routines such as NaMaster. As noted in

Sec. 3.4.1, since Mode Projection is equivalent to regression, this improvement also quantifies

the expected level of improvement that would come from accounting for the covariance
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between pixels in pixel-based regression methods.

Analyses on real data will of course be complicated by the mask, which correlates different

multipoles, but this can be addressed by suitable binning of the multipoles. Indeed, the

standard pseudo-C` Mode Projection assumes a flat power spectrum and so can be thought

of as the limiting case of using only a single bin across multipoles with equal weighting, such

that even a rough estimate of the signal power spectrum should offer improvement.

The other methods tested here should benefit similarly from prewhitening, with the

possible exception of the DES-Y1 method, which already incorporates an estimate of the

covariance of s (which accounts for much of the methods’ complexity). The Forward Selection

method we presented may be particularly impacted, since the estimated covariance of the

fit parameters is underestimated when the pixel covariance is neglected, and this is used

for the significance criterion for selecting a template. This could be one reason why the

Forward Selection method sometimes failed to reduce all templates to below a significance of

∆χ2/∆χ2
0 = 2 — such a threshold was artificially low compared to what would be expected

from random variation.

As noted in Eq. 3.51, the prewhitening step in Eq. (B.3) should optimally include con-

tributions from the systematics as well. However as this represents minor perturbations to

the major prewhitening correction above and is hence a small ‘error on the error’, the effects

should be small. This is consistent with Elvin-Poole et al [212], who found negligible impact

on their method from neglecting the additional systematics contribution to their estimated

covariance matrices.

B.3 Comparison with NaMaster

We have used our own implementation of the Mode Projection method and have tested it

against that of NaMaster, finding good agreement. NaMaster computes the power spectra

given a set of templates and observations, but does not produce map estimates, so we compare

the two implementations using the cleaned power spectrum only. The left panel of Fig. B.4

shows the relative error of the estimated power spectrum when cleaned using NaMaster vs.

our own implementation, using the exact same contaminated map and templates and we find

good agreement (this held true for all realizations tested). There is very slight disagreement

at larger scales (low `), which may be numerical artifacts from the Master [221] algorithm

implemented to account for mode coupling on a cut sky being applied to full-sky input maps.

Regardless, the deviations between the two are small for ` > 2.
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B.4 Accounting for the Monopole

It is worth saying a few words about the monopole term, both as in terms of prediction and

as it relates to regression.

Firstly, the overdensity residuals do not correspond to the number density residuals.

Even with a perfect reconstruction ŝ = s, the true number density will be unknown up to a

factor of γ,

Ntrue = γ〈Nobs〉pix(s+ 1), (B.6)

and as such the estimated number density could be quite different from the truth. Fig. 3.5

shows a somewhat unintuitive consequence of this. The single sytematic that contaminates

the field has the form fsys ∝ −t, so that it only obscures galaxies from view (fsys ≤ 0). At

t = 0, there is no contamination and so Nobs = Ntrue, however as the figure shows the over -

density residuals are quite large. This is because the mean number density is significantly

underestimated, so pixels with no obscuration are preferentially (and wrongly) estimated to

reside in overdense regions.1

Secondly, a net monopole in fsys corresponds to the intercept in the regression methods (a

column of ones in T ). In OLS regression (or pseudo-C` Mode Projection), the fit is guaranteed

to go through the center of mass of the points, (t̄, d̄obs), such that including a monopole is

unnecessary with such methods if working with overdensities and zero-centered templates.

In such cases, the ‘projection’ of the monopole has already been done by subtracting the

mean from the density and template maps (consider Eq. (3.17) with a template of all 1s).

We showed in Eqs. (3.38)-(3.44) how how this also holds in the multiplicative case.

In realistic situations, there is high susceptibility to human error if a monopole term is

not included — previously zero-centered maps can easily shift through template transforma-

tions, mask adjustments, and the application of a mask to mocks, resulting in wildly biased

contamination estimates that may be difficult to detect. For example, it is easy to pass

templates that are not zero-centered to current pseudo-C` Mode Projection methods such

as implemented in NaMaster and receive highly biased spectra without warning (see right

panel of Fig. B.4).

The DES-Y1 and Forward Selection methods both already include an intercept term, in

keeping with the original formulation of the DES-Y1 method, though in practice it should

be very close to zero.

We therefore opt to include a monopole term in our Elastic Net method, as this ensures

the method is robust and generalizes the process beyond overdensities to non-zero mean

fields, and it will naturally be ignored as a template if it does not contribute information.

1In other words, γ > 1, so from Eq. (3.38), 〈dobs|fsys=0〉pix > 0.
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B.5 Map Error when Varying Number of Templates

Figure B.5 shows the root mean squared error (RMSE) of the estimated overdensity map

when varying the number of templates used for cleaning (see Fig. 3.11 for details). Typical

map errors are small, with RMSEs . 0.03 for most of the cases studied and trends similar to

Fig. 3.11. Template Subtraction shows particularly bad map reconstruction due to the fact

that it fully removes the largest scale modes which have a small contribution to ∆χ2
C`

but a

large contribution to the RMSE because of inducing a bias on a large number of pixels.

B.6 Impact of ∆χ2/∆χ2
0 on DES-Y1 Analysis

Here we investigate the effect of ∆χ2/∆χ2
0 and σ2

sys on the efficacy of the DES-Y1 method, as

described in Sec. 3.3.1. We describe the reconstruction quality with the residual chi squared

between the cleaned and true model, ∆χ2
C`

.

Fig. B.6 shows how ∆χ2/∆χ2
0 affects the reconstruction quality for the DES-Y1 method,

as a function of the level of contamination parameterized by the systematic-error vari-

ance σ2
sys. We find little reduction in error by lowering the significance threshold below

∆χ2
threshold = 4.

At our fiducial level of contamination (σ2
sys = 10−2), almost all contaminating templates

exceed the highest threshold displayed of ∆χ2/∆χ2
0 = 32 and so are corrected for. The

larger the contamination, the more precisely its form can be determined, so as the level of

contamination decreases, some contaminated templates are left uncorrected for. This results

in the somewhat counter-intuitive turnover in the error for a given threshold level. We found

that the lowest threshold of ∆χ2/∆χ2
0 = 1 consistently outperformed higher thresholds,

despite the risk of overfitting, in agreement with our results in Sec. 3.7.2, which showed

that the extra power from residual contamination is likely more pernicious than the excess

removal of power due to overfitting.
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Figure B.3: Impact of prewhitening before cleaning with the multiplicative and additive versions
of the Mode Projection method on 1000 realizations for our fiducial contamination model. The
standard Mode Projection method assumes a flat power spectrum for the target signal, resulting
in a suboptimal estimate of contamination. This can be improved through ‘prewhitening’ the data
vector and templates using a prior power spectrum, which can be shown to be equivalent to a
standard weighted regression procedure in harmonic space. There is clear but modest improvement
from the standard case (blue) to the nearly-optimal, prewhitened case (orange), with the most
improvement seen for realizations that have large error. This can be seen by the preferential
reduction of extreme points at the high end of the box plots in the prewhitened case (note the log
scale).
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the Mode Projection method), using NaMaster (blue) and our own implementation (orange). The
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and completely described by the templates, which have been individually centered at zero. If tem-
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Figure B.5: Same as Fig. 3.11 but showing the RMSE in the estimated overdensity map for each
method, rather than error in the power spectrum. Trends are very similar. See Sec. 3.7.2 for details.
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) on the level of contamination σ2
sys
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0 used for the DES-Y1 method (colors). Points

are offset for clarity. For comparison, the variance across pixels from the true overdensity in each
bin ranges from σ2

sig ∈ [0.075, 0.122] for the 5 redshift bins of our fiducial survey, corresponding to

factors of 7.5 — 1220× larger than σ2
sys for the points shown.
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Appendix C

Chasing the Spectral Runnings

Appendices

C.1 Increasing the Number Density n(z)

As shown in Figures 4.3 and 4.6, a Euclid-like survey will be unable to constrain the spectral

running to σα < 10−3, which would be necessary to be able to detect the value predicted by

single-field, slow-roll inflation. To better understand the limiting factors of these forecasted

constraints we consider constraints for a survey similar to the Euclid-like one studied above,

but with the number density increased dramatically to n(z)→ 1000×n(z). We show forecasts

for its statistical errors and systematic biases in Fig. C.1. We find that for this high-source-

density survey, the LSS information tightens constraints at lower kmax, reaching σα . 10−3

at kmax ≈ {0.5, 0.7, 2}hMpc−1 for the no nuisance, Mead, and MFP models, respectively.

We also find that the increased density makes parameter estimation for αs more sensitive

to systematic biases: if P (k) is mismodeled, then only the MFP model improves constraints

over CMB-S4 before introducing unacceptable levels of bias.

This hypothetical 1000×n(z) survey is also useful to gauge the effect of the trispectrum-

induced covariance on cosmological parameter constraints from modes in the strongly nonlin-

ear regime. Unlike our main results in Figure 4.3, where the covariance term was shot-noise

dominated at small scales, the trispectrum term becomes important when the number den-

sity is very high. The result, as can be seen in Figure C.1, is that there is little improvement

in σα—especially when combining with CMB-S4—from wavenumbers k & 2hMpc−1. Note

that we have not included the additional “super-sample covariance” term [311] that could

further degrade the contribution from modes in the nonlinear regime.

Therefore we conclude that, once the realistic systematics are accounted for, even a

141



10-2 10-1 100 101

kmax[h/Mpc]

10-5

10-4

10-3

10-2

10-1

100

101
σ
α
s

Inflationary prediction

CMB-S4

Euclid (1000×n(z))

No Nuis

Mead

MFP

No Tkα, kβ

10-2 10-1 100 101

kmax[h/Mpc]

10-5

10-4

10-3

10-2

10-1

σ
α
s
o
r
|δ
α
s
|

Inflationary prediction

CMB-S4

solid : σαs
dashed : |δαs |

Euclid +S4 (1000×n(z))

No Nuis Mead MFP

Figure C.1: Constraints on the spectral running αs for a hypothetical survey with n(z)→ 1000×
[n(z)Euclid] alone (left, compare to Fig. 4.3) and with a CMB-S4 experiment (right, compare to
Fig. 4.6). While the LSS constraints improve with the increased number density, the trispectrum
still limits the information that can be gained from nonlinear scales of k & 0.6hMpc−1 (left, dashed
vs. solid). If P (k, z) is mismodeled, then only the MFP prescription (black) improves constraints
over CMB-S4 before significantly biasing the results.

Euclid-like survey with an artificially high number density of sources is unable to reach

the precision required to detect the spectral runnings predicted by single-field, slow-roll

inflationary models.

C.2 Robustness of Results to Choice of δP (k, µ, z)

As noted in Sec. 4.4, here we consider the robustness of our parameter bias results against

changes to the shape of δP (k, µ, z). We do this by computing the differences between various

prescriptions for the nonlinear power spectrum available in CAMB. Because we want to test

sensitivity to the shape of δP (k, µ, z), we normalize each curve so that its RMS over all z

and 0.005 < k ≤ 10hMpc−1 is equal to that of our fiducial “takahashi-mead” δP (k, µ, z).

Fig. C.2 shows the resulting ensemble of δP (k, µ, z) considered, for the shallowest redshift

bin, z = 0.65. When looking at this Figure, there are a couple of things worth noting. First,

because we are primarily interested in how constraints on the runnings become biased as we

push to higher scales, i.e. kmax at which |δpi |/σpi = 1, the results are insensitive to the sign

of δP (k, µ, z). Second, the relatively small magnitude of the bird−peacock (orange) curve is

due to its large magnitude at higher redshifts compared to the other curves. Thus the low-z

range shown contributes less to its normalized RMS is less than it does for the other curves.
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Figure C.3: Parameter bias from different δP (k, z) for ΛCDM+αs + βs using Euclid + CMB-S4
for αs (top) and βs (bottom). The 1σ uncertainty is in black and columns correspond to different
nonlinear prescriptions from Sec. 4.2.
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The parameter biases in αs and βs resulting from these δP (k, µ, z) curves are shown in

Fig. C.3 for the combined analysis of Euclid and CMB-S4. These biases are analogous to

those shown in Fig. 4.7. Though there is certainly variation in the shape of the curves, we

see that the results for δαs(kmax) and δβs(kmax) for our fiducial δP (k, µ, z) (blue solid curves)

are fairly typical. Therefore, we conclude that our fiducial choice of the uncorrected bias in

P (k, z) at small scales, given in Eq. (4.16), is fairly typical of such choices.
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A. Ferté, O. Friedrich, E. Gaztanaga, G. Giannini, R. A. Gruendl, W. G. Hartley,
K. Herner, E. M. Huff, M. Jarvis, E. Krause, N. MacCrann, J. Mena-Fernández,
J. Muir, S. Pandey, Y. Park, A. Porredon, J. Prat, R. Rosenfeld, A. J. Ross, E. Rozo,
E. S. Rykoff, E. Sanchez, D. S. Cid, I. Sevilla-Noarbe, M. Tabbutt, C. To, E. L.
Wagoner, R. H. Wechsler, M. Aguena, S. Allam, A. Amon, J. Annis, D. Bacon,
E. Baxter, E. Bertin, S. Bhargava, D. Brooks, D. L. Burke, M. C. Kind, J. Carretero,
F. J. Castander, A. Choi, C. Conselice, M. Costanzi, L. N. da Costa, M. E. S.
Pereira, S. Desai, H. T. Diehl, B. Flaugher, P. Fosalba, J. Frieman, J. Garćıa-Bellido,
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I. Csabai, D. Eisenstein, J. A. Frieman, J. E. Gunn, L. Hui, B. Jain, D. Johnston,
S. Kent, J. Loveday, R. C. Nichol, L. O’Connell, R. Scoccimarro, R. K. Sheth,

160

http://arxiv.org/abs/astro-ph/9304022
http://arxiv.org/abs/astro-ph/9512011
http://arxiv.org/abs/astro-ph/0002295
http://arxiv.org/abs/astro-ph/9906289
http://arxiv.org/abs/astro-ph/0011069
http://arxiv.org/abs/astro-ph/9912149
http://arxiv.org/abs/astro-ph/0103143


A. Stebbins, M. A. Strauss, A. S. Szalay, I. Szapudi, M. S. Vogeley, I. Zehavi,
J. Annis, N. A. Bahcall, J. Brinkman, M. Doi, M. Fukugita, G. Hennessy, Ž. Ivezić,
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[159] F. A. Maŕın, C. Blake, G. B. Poole, C. K. McBride, S. Brough, M. Colless,
C. Contreras, W. Couch, D. J. Croton, S. Croom, T. Davis, M. J. Drinkwater,
K. Forster, D. Gilbank, M. Gladders, K. Glazebrook, B. Jelliffe, R. J. Jurek, I. h. Li,
B. Madore, D. C. Martin, K. Pimbblet, M. Pracy, R. Sharp, E. Wisnioski, D. Woods,
T. K. Wyder, and H. K. C. Yee, The WiggleZ Dark Energy Survey: constraining
galaxy bias and cosmic growth with three-point correlation functions,
Mon. Not. R. Astron. Soc. 432 (July, 2013) 2654–2668, [arXiv:1303.6644].
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B. W. Lyke, F. G. Mohammad, J. Moustakas, E.-M. Mueller, A. D. Myers, W. J.
Percival, A. Raichoor, M. Rezaie, H.-J. Seo, A. Smith, J. L. Tinker, P. Zarrouk,
C. Zhao, G.-B. Zhao, D. Bizyaev, J. Brinkmann, J. R. Brownstein, A. C. Rosell,
S. Chabanier, P. D. Choi, C.-H. Chuang, I. Cruz-Gonzalez, A. de la Macorra, S. de la
Torre, S. Escoffier, S. Fromenteau, A. Higley, E. Jullo, J.-P. Kneib, J. N. McLane,

166

http://arxiv.org/abs/http://oup.prod.sis.lan/mnras/article-pdf/463/1/467/18472203/stw2008.pdf
http://arxiv.org/abs/1806.02789
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