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Abstract 

 

Access to healthcare is a critical public health issue in the United States, especially for 

veterans. Veterans are older on average than the general U.S. population and are thus at 

higher risk for chronic disease. Further, veterans report more delays when seeking healthcare. 

The Veterans Affairs (VA) Healthcare System continuously works to develop policies and 

technologies that aim to improve veteran access to care. Industrial engineering methods can 

be effective in analyzing the impact of such policies, as well as designing or modifying 

systems to better align veteran patients’ needs with providers and resources. This dissertation 

demonstrates how industrial engineering tools can guide policy decisions to improve 

healthcare access by connecting veterans with the most appropriate healthcare resources, 

while highlighting the trade-offs inherent in such decisions. 

This work comprises four stages: (1) using optimization methods to design a 

healthcare network when introducing new provider options for chronic disease screening, (2) 

developing simulation tools to model how access to care is impacted when scheduling policies 

accommodate patient preferences, and (3) simulating triage strategies for non-emergency care 

during COVID-19, and (4) evaluating how treatment decisions impact patient access when 

guided by risk-based prediction models compared to current practice.  

In the first stage, we consider veteran access to chronic eye disease screening. 

Ophthalmologists in the VA have developed a platform in which ophthalmic technicians 

screen patients for major chronic eye diseases during primary care visits. We use mixed-
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integer programming-based facility location models to understand how the VA can determine 

which clinics should offer eye screenings, which provider type(s) should staff those clinics, 

and how to distribute patients among clinics. The results of this work show how the VA can 

achieve various objectives including minimizing the cost or maximizing the number of 

patients receiving care. 

In the second stage, we simulate patients seeking care for gastroesophageal reflux 

disease with primary care and gastrointestinal providers. This simulation incorporates policies 

about how to schedule patients for visits in various modalities, including face-to-face and 

telehealth, and also considers uncertainty in key factors like patient arrivals and 

demographics. Results of these models can help us understand how scheduling based on these 

preferences impacts access, including time to first appointment and number of patients seen. 

Such metrics can guide healthcare administrators as new technologies are introduced that 

offer options for how patients interact with their providers. 

In the third stage, we simulate patients seeking non-emergency outpatient care under 

reduced appointment capacity due to the COVID-19 pandemic. We demonstrate this using 

endoscopy visits as a central example. We use our simulation model to understand how 

various strategies for adjusting patient triage and/or clinic operations can mitigate patient 

backlog and reduce patient waiting times. 

In the fourth stage, we integrate multiple industrial engineering methods to examine 

how access is impacted among chronic liver disease patients when predictive modeling is 

introduced into treatment planning. We developed a simulation model to help clinical 

decision-makers better understand how using a predictive model may change the care pathway 

for a specific patient and also impact system decisions, such as required staffing levels and 
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clinical data acquired at specific patient visits. The model also helps clinicians understand the 

value of specific clinical data (lab values, vitals, etc.) by demonstrating how better or worse 

inputs to the predictive models have larger system impacts to patient access.  
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Chapter 1. Introduction 

 1.1. Motivation 

Access to appropriate, affordable, and timely healthcare services is a major issue in the 

United States. Kullgren et al. (2012) showed that 29% of Americans reported having an unmet 

health need or delayed seeking care due to some barrier and 21% of those reporting access 

issues encounter nonfinancial barriers. (1) Access to healthcare was conceptually defined in 

1981 by Penchansky and Thomas. (2) Prior to the Penchansky and Thomas definition, Aday 

and Anderson conceived of a relatively simple framework that solely considered socio-

organizational and geographic dimensions of access. (3) Carrillo et al. (2011) created the 

Health Care Access Barriers (HCAB) model, which considers financial, structural, and 

cognitive barriers.(4) Kullgren et al. consider five dimensions – “affordability, 

accommodation, availability, accessibility, and acceptability” – in their framework. (1)  

Access to care is especially challenging for patients with chronic diseases and patients 

living in rural areas, and can be further complicated by major public health challenges like the 

COVID-19 pandemic. (5) Regular access to care is especially important for the approximately 

50% of the U.S. population who live with chronic diseases(s)/condition(s), as they typically 

need more regular interactions with healthcare systems. (6) Among people living with chronic 

diseases in the United States, over 50% have experienced challenges accessing healthcare. (7) 

Further, compared to those living in urban or suburban areas, people living in rural areas are 

more likely to live geographically far from a healthcare provider, report fair/poor health, 

access healthcare less frequently, and have one or more chronic conditions. (8–11) 
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Preventive care, including screening, is important to reduce morbidity and mortality of 

chronic disease. Such care is provided by highly trained medical providers, such as licensed 

physicians, physician assistants, or nurse practitioners. Additional resources used for such 

preventive care may also include specialized equipment and testing. These resources, both 

personnel and equipment, contribute to meaningful care, but are often expensive. Further, 

such specialized resources come with additional logistical challenges: they may be difficult to 

place in rural areas, they may consume a large amount of physical space, and/or a shortage of 

such resources may exist (e.g., provider shortage). 

In this work, we will explore how industrial engineering tools can be used to 

evaluate and design aspects of healthcare systems to improve access, with a focus on access 

to care for United States veterans. Veterans typically receive healthcare at Veterans Health 

Affairs (VHA) clinical locations. As a subpopulation, veterans have several characteristics 

that can make accessing healthcare challenging. The VHA also has several unique 

organizational components that distinguish it from other healthcare providers, making policy 

and operational changes more amenable to evaluation using engineering methodologies.  

 

1.2. Engineering Tools for Evaluating Access to Healthcare 

Engineering tools can help identify and propose solutions to resolve barriers to care by 

more effectively allocating limited resources, including facilities and personnel, and by 

incorporating new services and technologies when modeling access. Models vary based on the 

dimension of access they are targeting, ranging from spatial interaction models to measure 

geographic healthcare access, (12) integer programming models to address patient 
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appointment scheduling, (13) and basic statistical and economic models to analyze financial 

access. (13,14) 

Facility location models were introduced by Alfred Weber in 1929 and were applied to 

healthcare problems in later decades. (15) Facility location problems can be applied to several 

problems in healthcare, including ambulance dispatching and routing, blood bank locations, 

and emergency care services planning. Examples of facility location models applied to access 

are include considering how to locate clinic buildings and/or services to minimize the average 

distance that patients travel for a medical visit or determining the minimum number of 

facilities needed to satisfy patient needs within a geographic area.  

Mehrez et al. (1996) describe a model with a single facility optimization, which allows 

them to evaluate four different objective functions and problem structures.  (16) In their paper, 

which considers where (and whether) to build a hospital in a finite set of locations in southern 

Israel, the authors first evaluate models using iterative scenario analyses and then 

qualitatively examining model results using multi-criteria hierarchical analysis software. This 

paper clearly outlines the sociopolitical challenges related to healthcare access, including 

issues with government support, community-based social norms, and public security. 

Additionally, constraints are clear and reasonable.  The authors’ inclusion of Euclidean 

distance analyses in some of their models may oversimplify their research question, however 

their use of more precise distance measurements in two of the four models alleviates this issue 

to an extent. The major takeaway of this paper is the methodology for including subjective 

information in a facility location model, specifically when implementing a new provider 

facility. 
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In her 2011 paper, Nicoleta Serban discusses service accessibility equity using a 

space-time varying coefficient model. (17) Here, her focus on access is primarily geographic, 

but travel logistics are also considered. She accurately notes the challenge in measuring 

individual travel costs for a specific community. The model itself is a multilevel varying 

coefficient model that considers services providers which interact between time and space. 

Though such a model may be burdened by issues with computational efficiency, Serban 

utilizes penalized splines and an inference procedure for assessing the space-time varying 

coefficients. Serban applies her model to equity of utilization of financial services, stratified 

by race and income. This paper contributes to the literature through its methodology for 

addressing computational efficiency of a multilevel space-time varying coefficient model, as 

well as its inclusion of a simulation study to confirm model estimation.  

A 2005 paper by Wang and Luo adds to their two-step floating catchment area 

(2SFCA) method, first introduced in 2003. (18,19) The original 2SFCA paper considers 

includes both (a) provider supply in a given area, and (b) where the population is situated – 

effectively a ratio of provider-to-population. In their 2005 paper, the authors focus on how 

this approach can be used to address “health professional shortage areas” – geographical 

regions that have been designated as medically underserved. Such areas are often rural. In 

addition to the spatial measurements provided by 2SFCA, the authors also incorporate 

nonspatial variables via factor analysis. They integrate both aspects to indicate healthcare 

needs in a given geographical area. While their 2003 paper was effective in defining a critical 

metric (2SFCA) the 2005 paper is an appropriate and meaningful addition that considers basic 

population demographics to more wholly indicate healthcare needs. 
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Tang et al. (2017) expand on the 2SFCA method by incorporating spatial patient flows 

that model human decision behavior, including an individual’s (nonspatial) healthcare needs.   

(12) They demonstrate their model using a case of elderly patients in Taipei City accessing 

general practitioner services. They compared their enhanced model (dubbed “F2FCA”) with 

the original 2FSCA model, as well as two intermediate models that include capacity of 

services and an exponential distance-decay function. The authors’ F2FCA model is a needed 

improvement on earlier geospatial analysis that focus primarily on geographic relationships 

between providers and patients while minimizing the importance of other aspects of access. 

In their 2013 paper Mao and Nekorchuk also consider an expansion to the 2SFCA 

method by incorporating multiple transportation modes. (20) While traditional geospatial 

models typically assume a single transportation mode, Mao and Nekorchuk alleviate this 

irrational assumption by stratifying by sub-populations who use varying transportation modes. 

They illustrate their model using a case study of hospitals in Florida. Papers that consider 

multiple transportation modes for healthcare access are rare, so the work of Mao and 

Nekorchuk is certainly meaningful. Further, their paper highlights a need for more 

sophisticated transportation data and simulation analysis methods related to transportation 

modes. Nevertheless, their assumptions about how individuals choose transportation modes 

based on distance from a provider are both over-simplified and ignore patients who would 

negate care due to not having an available feasible transportation mode.  

Fahui Wang adds to his earlier contributions in developing the 2SFCA with a 2012 

review paper on optimization methods in healthcare access. (21) Key models reviewed include 

the p median problem, which seeks to minimize total travel distance or time, the location set 

covering problem (LSCP), which seeks to minimize the number of facilities needed to cover 
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demand, and the center model, which seeks to minimize the maximum distance to cover all 

individuals. Such models each have their pros and cons, and Wang encourages the reader to 

understand what type of model will suit their problem most appropriately. 

Aside from facility location models, one of the most common applications of 

operations research (OR) across all industries is scheduling and this norm holds in the 

healthcare industry, especially in patient appointment scheduling. In their 2008 paper, Gupta 

and Denton provide an overview of appointment scheduling as an application of OR. (22) 

Notably, they identify four key variables that influence the performance of patient 

appointment models: (a) mapped arrival processes, (b) service processes, (c) patient and 

provider preferences, and (d) incentives and performance measures. While the former two 

variables are often considered in OR applications through probability distributions and/or 

sensitivity analyses, the latter two variables are both meaningful and can be relatively specific 

to the healthcare industry. Gupta and Denton conclude their paper with several opportunities 

for future work. One such opportunity is health system design. While this paper is over ten 

years old, health system design is still relevant today. Since this paper was published, the 

United States has adopted the Patient Protection and Affordable Care Act (the “ACA”), which 

proposes significant changes to provider reimbursement and patient insurance coverage – both 

of which impact health system design. While the ACA was under fire from an oppositional 

federal government during the Trump administration, it appears to be more likely to remain 

intact for the foreseeable future. (23) Nevertheless, there is uncertainty involved when 

designing and/or modifying health system structures, so OR tools are likely to remain relevant 

for addressing system design moving forward. 
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In a 2017 paper, Matthias Schacht proposes a reconfiguration of appointment systems 

to improve same-day access for primary care appointments. (24) Schacht uses a stochastic 

mixed-integer linear program to aid in the development of weekly schedules in a primary care 

clinic. Schacht is particularly interested in understanding how seasonality affects the 

stochasticity of patient arrivals for same-day appointments. He proves his model successful in 

a case study, however the proposed model is burdensome to arrange for a given period and the 

administrative effort in implementing and sustaining such a model seems daunting. While 

Schacht’s methodological approach provides a new perspective, his paper reminds the reader 

to consider the realistic expectations of applying OR models to address healthcare access.  

The previous scheduling papers focus on more general or primary care appointments, 

but a 2016 paper by Castaing et al. discusses a specialized application of stochastic 

programming to reduce patient wait times in outpatient infusion centers.  (25) Such 

appointments have highly variable lengths, a feature which requires uncertainty to be 

incorporated into model development and analysis. The authors develop a stochastic program 

of a Schedule Refinement Optimization Problem (SROP), as well as heuristic algorithms for 

approximating the SROP and schedules to allow cancer center staff to adjust preferences for 

patient wait times and staff idle time.  They apply their SROP to an outpatient infusion center 

to evaluate the necessary number of simulated scenarios and to compared schedules. This 

paper appropriately considers the externalities of efforts to improve patient access, namely 

operational effects on staff and resources. While their model simplifies the infusion center 

processes, the granularity is appropriate for such an application. 

While general scheduling methodologies (linear/integer programming, etc.)  remain 

somewhat consistent throughout the literature, applying those methodologies tends to require 
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individualization on a deeper, and not necessarily obvious, context compared to applications 

of facility location models. While facility location models clearly require geography-specific 

updates when applying to different areas, scheduling problems often require the incorporation 

of organizational policies, staffing requirements, and other operational constraints for them to 

be meaningful. 

OR can also be used in considering financial access to care. The first chapter of 

Operations Research and Health Care Policy (2013), written by Rauner and Scaffhauser-

Linzatti, discusses inpatient reimbursement systems in Austria.  (26) In 1997, the Austrian 

national healthcare system replaced a day-based payment structure for inpatients with a case-

based system similar to those used with diagnosis-related groups (DRGs).  The authors 

discuss optimization methods used to ensure the case-based system operates effectively. 

Optimization models are routinely run to monitor patient length-of-stay guidelines and 

hospital patient mix and volumes. Additional nonlinear optimization models are used to 

allocate variable budgets to optimize patient quality outcomes and discrete-event simulation is 

used to demonstrate competition of hospitals under case-based versus day-based payment 

systems.  While the authors themselves did not conduct all of these studies, this suite of OR 

tools helps policymakers comprehensively understand the impact of their recently-adopted 

payment system. 

In another chapter, Zaric et al. model risk sharing agreements (RSAs). (27) While their 

models focus primarily on RSAs among pharmaceutical manufacturers and insurance 

companies in single-payer health systems, RSAs are becoming increasingly common between 

providers and patients in multi-payer systems (such as the United States).  In such 

agreements, patients are typically held more financially accountable for their health and 
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associated healthcare costs. This shift of risk onto patients and/or their insurers is intended to 

incentivize patients to make more informed and appropriate healthcare decisions, especially as 

providers are seeing decreasing reimbursement schedules under the ACA. OR tools, such as 

optimization and risk analysis methods, can be effective in analyzing the impact of RSAs on 

the larger healthcare system. 

Previous research analyze access using engineering tools typically focus on one 

dimension of access (location, scheduling, etc.), but some work does attempt to incorporate 

multiple dimensions. Luo and Wang (2003) attempt to address multiple components of access 

with the 2FSCA approach, later built upon by Tang et al. (2017) and Mao and Nekorchuk 

(2013). (12,18,20) Nevertheless, these models do still miss components of access, including 

financial/insurance policy aspects.  

Policy changes can have broad impact on health system access. Simply adding more 

providers or offering different appointment times does not necessarily allow more patients to 

access care. Further, policy changes may have unintended downstream or systemic effects, 

especially when considering long-term treatment and precision health components. This work 

intends to more fully understand how policy changes systematically impact to access to  care 

and how systems engineering methods can be employed to develop this understanding.  

 

1.3. The Veterans Health Administration 

The United States Department of Veteran Affairs (VA) is a federal agency with three 

administrations: the Veterans Health Administration (VHA), the Veterans Benefits 

Administration, and the National Cemetery Administration. The VHA provides healthcare for 

eligible veterans. Veterans are eligible for VHA care if they previously served in active 
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military service and were not dishonorably discharged. Additional eligibility requirements 

based on time of service and household income also apply. Individuals who previously served 

or are currently serving in the Reserves or National Guard and completed a full period of 

active duty are also eligible. 

The VHA is geographically organized into 18 Veterans Integrated Service Networks 

(VISNs), which manage care delivery in a region. Each VISN oversees several VHA medical 

centers (VAMCs) and community-based outpatient centers (CBOCs), as well as Community 

Living Centers (CLCs). VAMCs offer two or more types of care including inpatient, 

outpatient, residential, and institutional extended care, while CBOCs provide outpatient 

services. (28,29) 

Unlike most other healthcare providers in the United States, the VHA is an integrated 

health system with a single payer; the federal government provides all VHA funding. This 

distinction can enable the VHA to encourage access to care, especially preventive care. By 

focusing resources on preventive care, the VHA will not only provide more proactive care for 

its patients, but it can also mitigate future higher costs of care. For example, the VHA is 

motivated to thoroughly screen cancer patients for malignancy so that any cases can be treated 

early, when tumors may be more easily – and cheaply – treated. Non-VHA providers are 

compensated based on volume of treatment, with more complex treatment often more highly 

compensated, and are thus less motivated to pursue preventive care.  

Compared to the general United States adult population, veterans are older; 48.8% of 

veterans are aged 65+ compared to 16.5% in the general population. (30) Veterans also are 

more likely to have chronic conditions, with 25.5% reporting one chronic condition and 

47.9% reporting two or more (a total of 73.4%). (31) For comparison, the general US adult 



 11 

population has 18% of people reporting one chronic condition and 42% reporting two or 

more. (32) Further, veterans experience greater delays in accessing healthcare than non-

veterans. (33–35) The combination of high risk for chronic disease and challenges in 

accessing care makes how care is provided to veterans an important consideration. 

1.3.1. Recent Congressional Acts Impacting Veteran Access 

The United States Congress passed the Veterans Access, Choice, and Accountability 

Act in 2014. (36) This law set several national rules related to veterans’ access to care, 

including requiring that covered veterans receive a medical appointment within 30 days of 

request and that patients should not travel more than 40 miles to reach a VHA clinic for 

medical care. If care cannot be provided to a covered veteran within these and other access-

related requirements, the patient may choose to seek care from a medical center outside of the 

VHA. This Act also stipulates that any follow-up care within 60 days of an initial visit can be 

provided by the same medical provider. While this measure is helpful to ensure continuity of 

care, this continuity is myopic; it is helpful to improving quality of care only in the short -

term.  

In 2018, Congress passed the VA MISSION Act. (37) Several rules in the MISSION 

Act impact the work presented herein. This work adds to the requirements outlined in the 

2014 Access, Choice, and Accountability Act by providing funding specifically for non-VHA 

medical care (“community care”) that patients may utilize, as well as ensuring those visits are 

paid for by the VHA. Through this and other measures that provide funding for community 

care facilities outlined in the MISSION Act, veterans have more options when choosing 

where to receive care. 
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 The Veterans Access, Choice, and Accountability Act and MISSION Act improve 

veteran access to healthcare by lowering geographical, temporal, and logistical barriers. One 

may also argue that financial barriers are minimized because the cost of community care 

services are covered under the MISSION Act, however veterans should theoretically see no 

difference in the amount paid out-of-pocket if they were currently using the VHA for care. 

However, these acts degrade one of the chief advantages of the VHA: continuity of care, 

particularly in longitudinal care. While the acts do contain stipulations requiring sharing of 

patient information between VHA and community providers, patients lose the integration of 

services and institutional knowledge that comes with continuous care within one system.  

One solution, as indicated in the work of this dissertation, is to encourage use of VA 

medical services by distributing internal resources in ways that improve access for veterans 

and ensure that veterans can receive meaningful care. If, instead of providing financial 

coverage for non-VHA providers, the VHA uses its own personnel and other resources more 

efficiently, more veterans can maintain their care from within the VHA. 

1.4 Dissertation Summary 

This work comprises four stages: (1) using facility location and other optimization 

methods to design a healthcare network when introducing new provider options for chronic 

disease screening, (2) developing simulation tools to model how access to care is impacted 

when scheduling policies accommodate patient preferences, (3) evaluating triage strategies 

under COVID-19-related capacity restrictions, and (4) determining how treatment decisions 

impact patient access when guided by risk-based prediction models compared to current 

practice. Through these stages, we illustrate how industrial engineering can be used to 
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understand impact on veteran healthcare access when new policies or operations are 

considered.  

1.5. Key Contributions 

 In Chapter 2 we demonstrate a mixed-integer program to show how the VHA can 

distribute providers for eye care screening within a VISN to maximize the number of patients 

seen. This work considers an innovative form of care delivery – technology-based eye care 

screenings (TECS) – and demonstrates how the VHA can scale this service to improve patient 

access for chronic disease screening. This model can serve as a framework for the VHA as 

they consider new technologies, policies, and venues for care delivery.  

 In Chapter 3 we show how patient preference for appointment modality (in-person 

versus telehealth) can be considered with minimal impact to health system operations or 

patient outcomes for VHA patients with gastroesophageal reflux disease. While our case 

study indicated no negative outcomes to patient access or clinic operations, the simulation 

model could be applied to other diseases, clinic locations, and/or patient populations to 

understand the impact of considering such patient preferences, especially as healthcare 

providers across the country embrace more care provided via telehealth. 

 In Chapter 4 we present a simulation model to guide VHA clinics providing non-

emergency outpatient care as they triage patients under reduced capacity due to the COVID-

19 pandemic. This model was developed using the Ann Arbor, Michigan VHA endoscopy 

clinic as a case study, but has been applied to other VHA endoscopy clinics across the 

country. Further, while the model is designed to guide clinical decision-makers in how to best 

allocate their limited capacity during a pandemic, the model can also be used to better triage 

patients by urgency of need during non-pandemic times. 
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 Finally, in Chapter 5 we consider how the inclusion of new data-driven models 

impacts patient access for chronic liver disease patients. Machine learning and other 

predictive modeling tools have the potential to improve the accuracy of diagnoses and 

enhance the personalization of treatment plans, but little work has been done to indicate how 

including such advanced models in a care pathway may impact access. Our simulation model 

demonstrates this impact, with consideration for patient outcomes. 
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Chapter 2. Improving Veteran Access to Screening for Chronic Eye Disease 

 

2.1. Introduction 

Preventive care, including screening, is important to reduce morbidity and mortality of 

chronic disease. Such care is provided by highly trained medical providers, such as licensed 

physicians, physician assistants, or nurse practitioners. Additional resources used for such 

preventive care may also include specialized equipment and testing. These resources, both 

personnel and equipment, contribute to meaningful care, but are often expensive. Further, such 

specialized resources come with additional logistical challenges: they may be difficult to place in 

rural areas, they may consume a large amount of physical space, and/or a shortage of such 

resources may exist (e.g., provider shortage). 

 In many cases, a lower cost, more abundant resource can be used initially in place of 

higher cost, more constrained resources. For example, as we present in this chapter, ophthalmic 

technicians can screen veteran patients for chronic eye diseases within a telemedicine structure. 

Such screenings were often previously performed in-person and only by ophthalmologists or 

optometrists. When technicians instead screen these patients through telemedicine modalities, the 

Veterans Health Affairs (VHA) system benefits by reducing cost per screening, while having the 

additional benefit of locating technicians at a greater number of clinic locations than would be 

feasible from cost and space perspectives with only ophthalmologist- and optometrist-conducted 

in-person screenings. 
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 In this chapter, we present a mixed-integer program that considers how screening for 

chronic eye disease is provided in VHA clinics. In particular, we consider how to locate 

ophthalmic technicians and other eye care providers to maximize the number of patients 

screened for eye disease within the VHA, subject to a given budget, or minimize system costs, 

subject to a required number of patients who must be screened within the VHA. We also discuss 

how this model could be applied more broadly when health systems are evaluating how to 

improve patient access for chronic disease care by using various provider types. 

2.2. Background: Chronic Eye Disease Screenings for Veterans 

2.2.1. Chronic Eye Disease 

Over 1 million adults in the United States are legally blind and approximately 3.2 million 

U.S. adults are visually impaired. Furthermore, prevalence of blindness and visual impairment 

are expected to double by 2050. (38) Blindness and visual impairment affect  an individual’s life 

by making daily tasks like driving more challenging and also increasing risk for injuries and 

falls. (39) Blindness and visual impairment also have an economic impact. As stated in a 2007 

report on the economic impact of vision problems in the U.S., “the total excess monetary impact 

of visual impairment and blindness, attributable to medical and informal care, is estimated at 

$5.48 billion annually.” (40) 

The leading causes of blindness in the U.S. are primarily chronic eye diseases including 

cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. (41) A common 

risk factor among all of these diseases is age; as a person gets older, their risk for these diseases 

increases. Another common risk factor for chronic eye disease is the presence of systemic 

medical condition such as diabetes or hypertension. (42) Each of the four diseases mentioned 

affects demographic groups differently but all can be treated by optometrists and 
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ophthalmologists. Each disease also progresses uniquely, but earlier detection typically leads to 

better outcomes. (43) Because early detection can lead to better outcomes, access to timely and 

geographically proximate screening is critical, especially for patients at higher risk for chronic 

eye disease. 

Diabetes is strongly associated with vision impairment and other non-diabetic eye 

disease. (44) Patients in Veterans Health Administration (VHA) clinics have higher prevalence 

(11.4%) of diabetes compared to the general United States population (7.2%) and are also older 

(48.8% aged 65+), and thus VHA patients are at higher risk of chronic eye disease. (30,45) 

Further, veterans may experience greater delays in accessing healthcare than non-veterans as eye 

care is the third most-utilized service in the VHA and rapidly growing. (33–35) The combination 

of high risk for eye disease and challenges in accessing eye care makes how eye care is provided 

to veterans an important consideration. 

2.2.2. Veteran Eye Care and the TECS Program 

Many United States veterans receive their general healthcare from their primary medical 

care home, a VHA primary care clinic location, otherwise known as Community Based 

Outpatient Clinic (CBOC). When veteran patients visit VHA facilities, the veterans do not pay 

out-of-pocket for care, with some exceptions. Patient records are connected across VHA clinics 

through an electronic medical record system and clinics are also connected monetarily via a 

capitated system with a limited budget to care for veterans’ needs. (46,47) Because of this 

integration, clinicians may be cost-incentivized to provide high-quality care, especially 

preventative care, regardless of location. 

As the largest healthcare system in the United States, the VHA utilizes a wide variety of 

telehealth modalities for patient care. The Technology-based Eye Care Services (TECS) program 
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began in 2015 at the Atlanta VHA, the largest and one of the most complex VHA hospitals in the 

state of Georgia. The Atlanta VHA is part of Veterans Integrated Service Network (VISN) 7, 

which covers the Southeast (Alabama, Georgia, South Carolina) United States region. TECS is a 

comprehensive tele-eye screening program in which highly-trained ophthalmic technicians 

perform visual disease screenings for veteran patients in a CBOC. These screenings are usually 

performed in conjunction with a patient’s primary care visit. After the screening, optometrists 

and ophthalmologists remotely review digital ophthalmic photographs from the screening and 

provide screening assessments. If patients screen positive for disease, they are referred for 

follow-up care via face-to-face examination with an ophthalmologist or optometrist, usually in 

the VHA system. The TECS program has been deemed medically effective and of high clinical 

quality. (35)  

2.2.3. Designing a Network for Veteran Eye Screening 

VISN 7 has begun implementing the TECS program and currently has technicians 

screening patients at ten CBOCs across 2 states – Atlanta, GA; Tifton, GA; and Montgomery, 

AL. The decisions about where to place the first technicians were determined largely by 

considering pre-existing CBOC locations where patient demand existed but the VA could not 

feasibly locate an optometrist or ophthalmologist either due to space, geographic, or hiring 

constraints. These initial placements were also helpful in demonstrating efficacy of the TECS 

program. 

Moving forward, systems engineering models may be helpful to the VHA as decision-

makers consider where to add additional technicians in the region and/or where to launch the 

TECS program in other areas of the country. Such models can help the VHA meet various 
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objectives for eye care delivery, including maximizing the number of patients seen or 

minimizing costs, while ensuring access, quality, and administrative guidelines are followed. 

Some trade-offs to consider when designing a network for the TECS program are 

relatively straightforward. For example, adding a technician at a rural clinic location will 

increase system costs, but will increase the number of patients able to be screened and will also 

likely reduce the distance patients travel for screening. Additionally, more complex trade-offs 

should be considered, including a provider’s patient mix. As technicians are added to the 

network, they can screen patients, including patients previously screened by ophthalmologists 

and optometrists and new patients who would not have previously been screened. However, the 

screenings create a referral into the system which needs to be considered.  Another trade-off is 

that with TECS, ophthalmologists and optometrists may screen fewer patients, but can treat more 

patients with complex care needs, by ophthalmic surgery or disease management. 

2.3. Systems Engineering Models for Veteran Eye Screenings 

Using data from VISN 7, we developed integer programming models to design TECS 

networks in Georgia. These models were developed in collaboration between systems engineers 

and VHA clinical administrators. Each model has an objective function, decision variables, and 

constraints. The objective function indicates a value we are attempting to minimize or maximize 

by changing the values of the decision variables. The constraints indicate rules we must follow as 

we are changing those decision variables. Two models are discussed in greater detail in the next 

paragraphs. Models were coded in C++ and solved using CPLEX Optimization Studio.  

 We focus on two models for this chapter – one in which our objective function 

maximizes the number of patients we can screen within the VHA, subject to a fixed budget 

(Model A), and another in which the objective is to minimize total costs, subject to a given 
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number of patients required to be screened in the VHA (Model B). Table 1 outlines model 

details. Note that other objective functions could be used when considering designing a TECS 

network, such as minimizing the average distance patients travel to get to a clinic location. 

 

Table 1. Overview of Mixed-Integer Programming Models to Improve Veteran Access to Eye 

Care 

 Model A Model B 

Objective Maximize the number of patients 

screened in the VA 

Minimize costs 

Decision 

Variables 

Where to provide eye care, what type(s) of providers at each location, and 

how patients from given zip codes are “assigned” to clinic(s) 

Constraints Budget Required number of patients screened 

in the VA 

 Allowed travel distance between patient zip code and assigned clinic 

 Allowed travel time between patient zip code and assigned clinic 

 Capacity of each location for total number of providers 

 Capacity of each location for number of providers of a given type 

 Provider capacities on number of patients screened per time period and 

minimum percent capacity used 

 Required percentage of patients from each zip code required to be 

screened 

 

In each of these models, the decision variables indicate at which VHA clinic locations 

providers should be placed, what type(s) of and how many providers should be at each location, 

and the clinic location(s) to which patients from each zip code are assigned. If patients are not 

assigned to a VHA clinic, we assume they seek care from a non-VHA community provider. 

Model sets, parameters, and decision variables are outlined as: 

 

Sets 

• 𝒁: a set of zip codes, z, each with a geographic location, a non-zero integer population 

of veteran residents, and a set of distances to each of the candidate clinic locations 
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• 𝑪: a set of candidate clinic locations, c, each with a geographic location and a set of 

distances to each zip code 

• 𝑻: a set of the types of eye care providers, t, who can staff a clinic (t=1 indicates an 

ophthalmologist, t=2 indicates an optometrist, t=3 indicates a technician), and a 

capacity (the number of patients that a specific provider type can see annually) 

 

Parameters 

• 𝒃: budget, in United States dollars 

• 𝒏𝒍: a lower bound on the percentage of patients that must be assigned to in-system 

screening from each zip code 

• 𝒏𝒖: an upper bound on the percentage of patients that must be assigned to in-system 

screening from each zip code 

• 𝒓: per mile reimbursement amount for patient travel, in United States dollars 

• 𝒎: the furthest distance from a zip code to a clinic that patients are allowed to travel 

• 𝒔: the furthest time from a zip code to a clinic that patients are allowed to travel 

• 𝒒: the minimum number of total patients screened across all zip codes 

• 𝒋: a lower bound on provider utilization, 0 ≤ j ≤ 1 

• 𝑫𝒛𝒄: a set of travel distances, 𝑑𝑧𝑐, between zip code z and candidate clinic location c,  

∀ 𝑐 ∈ 𝐶, ∀ 𝑧 ∈ 𝑍 

• 𝑻𝒛𝒄: a set of travel times, 𝑡𝑧𝑐, between zip code z and candidate clinic location c,  

∀ 𝑐 ∈ 𝐶, ∀ 𝑧 ∈ 𝑍 

• 𝑷𝒛: a set of populations, 𝑝𝑧, of veteran residents in each zip code, z,  ∀ 𝑧 ∈ 𝑍 

• 𝑽𝒕: a set of patient capacities, 𝑣𝑡, that provider type t can see annually  ∀ 𝑡 ∈ 𝑇 
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• 𝑨𝒄
𝒕 : a set of annual care costs, 𝑎𝑐

𝑡 , for a provider type t to screen a patient at clinic c,  

∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇 

• 𝑬𝒛: a set of flags, 𝑒𝑧, to indicate a zip code, z, is beyond the maximum allowable 

distance, m, or maximum allowable time, s, from any candidate clinic location. If 

true, 𝑒𝑧 = 1, otherwise 𝑒𝑧 = 0,  ∀ 𝑧 ∈ 𝑍 

• 𝑭𝒄
𝒕 : a set of per-provider costs, 𝑓𝑐

𝑡, to hire a provider type t to screen patients at clinic 

c for one year,  ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇 

• 𝑮𝒄
𝒕 : a set of upper bounds on capacity, 𝑔𝑐

𝑡, of provider type t at clinic c,  ∀ 𝑐 ∈

𝐶, ∀ 𝑡 ∈ 𝑇 

• 𝑮𝒄: a set of upper bounds on capacity, 𝑔𝑐, of the total providers at clinic c,  ∀ 𝑐 ∈ 𝐶 

 

Decision Variables 

• 𝒘𝒛,𝒄
𝒕 : the number of patients from zip code z to visit provider t at clinic location c, 

∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇, ∀ 𝑧 ∈ 𝑍 

• 𝒚𝒄
𝒕 : the number of providers of type t to staff clinic location c, ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇  

 

Several constraints are used in both models, including a limit on driving distance/time for 

patients, each provider type’s capacity for patients (with a lower-bound on capacity used), and 

each clinic location’s capacity for providers. To ensure patients from rural zip codes are 

considered appropriately, we also add a constraint that requires a minimum percentage of 

patients from each zip code who must be screened in the VHA. These constraints and objective 

functions are outlined mathematically as: 
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Constraints 

Patient Capacity Requirement 

𝑗𝑡 ∗ 𝑣𝑡 ∗ 𝑦𝑐
𝑡 ≤ ∑ 𝑤𝑧,𝑐

𝑡
𝑧∈𝑍 ≤ 𝑣𝑡 ∗ 𝑦𝑐

𝑡 ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇 

 

Demand Requirement 

𝑛𝑙 ∗  𝑝𝑧 ≤ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶   𝑒𝑧 = 0, 𝑧 ∈ 𝑍 

0 ≤ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶    𝑒𝑧 = 1, 𝑧 ∈ 𝑍 

∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶 ≤ 𝑛𝑢 ∗  𝑝𝑧   ∀ 𝑧 ∈ 𝑍 

 

Provider Capacity Requirement 

𝑦𝑐
𝑡 ≤ 𝑔𝑐

𝑡    ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇 

∑ 𝑦𝑐
𝑡

𝑡∈𝑇 ≤ 𝑔𝑐     ∀ 𝑐 ∈ 𝐶 

 

Furthest Traveling Distance/Time Requirements 

∑ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑐∈𝐶𝑑𝑧,𝑐>𝑚𝑧∈𝑍 = 0𝑡∈𝑇   

∑ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑐∈𝐶𝑡𝑧,𝑐>𝑠𝑧∈𝑍 = 0𝑡∈𝑇   

 

Budget Requirement (Model A only) 

∑ ∑ ∑ [(𝑎𝑐
𝑡 + 𝑟 ∗ 𝑑𝑧,𝑐) ∗ 𝑤𝑧,𝑐

𝑡 + 𝑓𝑐
𝑡 ∗ 𝑦𝑐

𝑡]𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶 + ℎ ∗ ∑ (𝑛𝑢 ∗ 𝑝𝑧 − ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶 )𝑧∈𝑍 ≤ 𝑏  

 

Minimum Number of People Screened In-System Requirement (Model B Only) 

∑ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶  ≥ 𝑞  
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Objective Functions 

Model A 

Maximize ∑ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶  

 

Model B 

Minimize ∑ ∑ ∑ [𝑎𝑐
𝑡 ∗ 𝑤𝑧,𝑐

𝑡 + (𝑟 ∗ 𝑑𝑧,𝑐 ∗ 𝑤𝑧,𝑐
𝑡 ) + 𝑓𝑐

𝑡 ∗ 𝑦𝑐
𝑡]𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶 + ℎ ∗

∑ (𝑛𝑢 ∗ 𝑝𝑧 − ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶 )𝑧∈𝑍  

 

The model constraints reflect VHA administrative requirements, as well as goals for 

improving access to care. However, our base models primarily require that patients are assigned 

to clinics that are (a) open/have capacity and (b) are within the required driving distance/time 

from their home. Thus, patients may be assigned to a clinic that is 35 miles from their home, 

when another clinic 10 miles from their home also provides eye disease screening.  To account 

for this, we have conducted an additional analysis that considers patient behavior by including 

constraints that indicates patients must visit the closest open clinic; that is, a patient is assigned 

to whatever clinic location is both open and has the shortest distance from the patient’s home zip 

code. We demonstrate the updates to our model formulation required for this scenario in the 

following proof: 

 

Nearest Clinic Requirement Model Update and Proof 

Claim. In our previously established mixed-integer program, we decide which clinics should 

offer eye care, what provider type(s) should staff each clinic, and how patients from zip codes 

are assigned to each open clinic. We previously considered C clinics and Z zip codes. We now 
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consider for each zip code, z, an ordered set of clinics, 𝐶𝑧
∗, with each clinic denoted by 𝑐𝑧

𝑖 . 

These clinics are ordered such that clinic 𝑐𝑧
1 is the closest clinic to zip code z, clinic 𝑐𝑧

2 is the 

second closest clinic, etc. We assume no clinics are equally distant from a given zip code (that 

is, no “ties” exist in ordering clinics). The variable 𝑦𝑐 indicates if clinic c is open (where a 

value of 1 indicates the clinic is open) and the variable 𝑥𝑧,𝑐 indicates if patients from z are 

assigned to c. To ensure patients are assigned to the nearest open clinic, we add the following 

constraints to our previously established model: 

(1)     𝑥𝑧,𝑐𝑧
𝑖 ≤  𝑦𝑐𝑖 , ∀𝑧 ∈ 𝑍, ∀𝑐𝑧

𝑖 ∈ 𝐶𝑧
∗ 

(2)     ∑ 𝑥𝑧,𝑐𝑧
𝑖

𝐶𝑧
∗

𝑐𝑧
𝑖 =1

= 1, ∀𝑧 ∈ 𝑍 

(3)     ∑ 𝑥
𝑧,𝑐𝑧

𝑗
𝐶𝑧

∗

𝑐𝑧
𝑗
=𝑐𝑧

𝑖+1
≤ (1 − 𝑦𝑐𝑖), ∀𝑧 ∈ 𝑍, ∀𝑐𝑧

𝑖 ∈ 𝐶𝑧
∗ 

Constraint (1) requires patient zip codes only be assigned to a clinic that is open. Constraint (2) 

requires that each patient zip code is only assigned to one clinic. Constraint (3) requires that 

patient zip codes are assigned to the nearest open clinic. 

Proof. By contradiction: Suppose there exists a zip code z with patients assigned to (open) 

clinic k. Suppose there also exists some clinic, l, which is also open and closer to z than clinic 

k. 

1. By supposition and constraints (1) and (2): 

𝑥𝑧,𝑘 = 1, 𝑥𝑧,𝑙 = 0, 𝑦𝑘 = 1, 𝑦𝑙 = 1 

2. Because all 𝑥𝑧,𝑐 variables are binary by constraint (3): 

𝑥𝑧,𝑘 ≤ ∑ 𝑥𝑧,𝑖

𝑘−1

𝑖=𝑙+1

+ 𝑥𝑧,𝑘 + ∑ 𝑥𝑧,𝑖

𝐶𝑧
∗

𝑖=𝑘+1

 

And also by constraint (3): 
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∑ 𝑥𝑧,𝑖

𝑘−1

𝑖=𝑙+1

+ 𝑥𝑧,𝑘 + ∑ 𝑥𝑧,𝑖

𝐶𝑧
∗

𝑖=𝑘+1

≤ (1 − 𝑦𝑙) 

Thus: 

𝑥𝑧,𝑘 ≤ (1 − 𝑦𝑙) 

1 ≤ (1 − 1) 

1 ≤ 0 

which cannot be true. 

Given the added constraints, if zip code z is assigned to a clinic, but another clinic is open and 

closer, the constraints will be violated. 

 

 Finally, we have developed an extension of Model A that considers both screening and 

follow-up care (Model A+). In Model A+, some percentage of patients require additional 

appointments (follow-up care), indicating they have screened positive for some chronic eye 

disease. The additional appointments incur both costs and appointment capacity of optometrists 

and ophthalmologists; technicians cannot provide follow-up care. To incorporate follow-up care, 

we solve two consecutive mixed-integer programs (MIPs). The first MIP is structured the same 

as Model A, which maximizes the number of patients screened, subject to a budget. Under 

Model A+, the budget in this first MIP is reduced to reflect that some patients will require 

follow-up care and thus the entire budget should not be allocated to screening patients. The 

second MIP is structured similarly to Model A, but now maximizes the number of patients who 

receive follow-up care. In this second MIP, we add a constraint that we must screen at least N 

patients, where N equals the objective function of the first MIP. We also adjust constraint values 

to reflect the capacity and costs of both screening and follow-up care. 



 27 

 When considering the mathematical notation of Model A+, we broadly consider 𝜌, the 

probability that a patient screens positive for some chronic visual disease, and τ, the additional 

number of treatment appointments that a patient would need if screened positive. We assume (a) 

that all positive-screened patients require the same number of treatment appointments, (b) that all 

patients go to treatment appointments when there is appropriate capacity, (c) optometrists and 

ophthalmologists are both qualified/licensed to treat all chronic visual disease, and (d) that 

capacity inputs for optometrists and ophthalmologists are updated to include both their screening 

and treatment capacities (previously capacities only included screening). We update our patient 

assignment decision variables to include: 

• 𝒘𝒛,𝒄
𝒕 : the number of patients from zip code z to visit provider t at clinic location c for 

screening, ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇, ∀ 𝑧 ∈ 𝑍 

• 𝒌𝒛,𝒄
𝒕 : the number of patients from zip code z to visit provider t at clinic location c for 

treatment, ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑇, ∀ 𝑧 ∈ 𝑍, where ∑ ∑ 𝑘𝑧,𝑐
𝑡

𝑡∈𝑇  𝑐∈𝐶 ≤ ∑ ∑ (𝜌 ∗ 𝜏 ∗𝑡∈𝑇𝑐∈𝐶

𝑤𝑧,𝑐
𝑡 ) ∀𝑧 ∈ 𝑍  

We updated our Patient Capacity Requirements to be: 

𝑗𝑡 ∗ 𝑣𝑡 ∗ 𝑦𝑐
𝑡 ≤ ∑ 𝑤𝑧,𝑐

𝑡
𝑧∈𝑍 ≤ 𝑣𝑡 ∗ 𝑦𝑐

𝑡  ∀ 𝑐 ∈ 𝐶, 𝑡 = 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛 

𝑗𝑡 ∗ 𝑣𝑡 ∗ 𝑦𝑐
𝑡 ≤ ∑ (𝑘𝑧,𝑐

𝑡 + 𝑤𝑧,𝑐
𝑡 )𝑧∈𝑍 ≤ 𝑣𝑡 ∗ 𝑦𝑐

𝑡 ∀ 𝑐 ∈ 𝐶, ∀ 𝑡 ∈ 𝑂𝑝𝑡𝑒𝑚𝑒𝑡𝑟𝑖𝑠𝑡/𝑂𝑝ℎ𝑡ℎ𝑎𝑙𝑚𝑜𝑙𝑜𝑔𝑖𝑠𝑡 

 The cost function can be updated to reflect screening and treatment costs, with 𝛼𝑐
𝑡 

representing the cost for treatment appointments at clinic c with provider type t. 

∑ ∑ ∑ [(𝑎𝑐
𝑡 + 𝑟 ∗ 𝑑𝑧,𝑐) ∗ 𝑤𝑧,𝑐

𝑡 + (𝛼𝑐
𝑡 + 𝑟 ∗ 𝑑𝑧,𝑐) ∗ 𝑘𝑧,𝑐

𝑡 + 𝑓𝑐
𝑡 ∗ 𝑦𝑐

𝑡]𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶 + ℎ ∗ ∑ (𝑛𝑢 ∗ 𝑝𝑧 −𝑧∈𝑍

∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶 )  
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 To set our objective functions, we first allocate a portion of our budget, b, to screening 

appointments. The proportion of the budget that should be allocated to screening is represented 

by gamma, γ, which is defined below. Note that the budget could be allocated in other ways. 

𝛾 =
𝑎𝑐

𝑡

(𝑎𝑐
𝑡 + 𝛼𝑐

𝑡 ∗ 𝜌 ∗ 𝜏)
 

 We solve our updated model in two steps. First, we solve a screening-only model, similar 

to Model A in which we maximize the total number of people assigned to screening within the 

VHA. We keep our objective function as: 

Maximize ∑ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶  

 With updated budget constraint where budget is now 𝛾 ∗ 𝑏 for screening: 

∑ ∑ ∑ [(𝑎𝑐
𝑡 + 𝑟 ∗ 𝑑𝑧,𝑐) ∗ 𝑤𝑧,𝑐

𝑡 + 𝑓𝑐
𝑡 ∗ 𝑦𝑐

𝑡]𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶 + ℎ ∗ ∑ (𝑛𝑢 ∗ 𝑝𝑧 − ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶 )𝑧∈𝑍 ≤  𝛾 ∗ 𝑏  

 The feasibility constraints for requirements on demand, provider capacity, and furthest 

traveling distance/time can remain the same. 

 We set a value, N, to our objective value from solving this model in our first step. In the 

second step, we solve the following objective function, seeking to maximize the number of 

people treated following screening plus the number of patients screened. In this objective 

function, the number of patients screened is multiplied by a negligibly small value, 𝜈. 

Maximize ∑ ∑ ∑ (𝑘𝑧,𝑐
𝑡 + 𝜈 ∗ 𝑤𝑧,𝑐

𝑡 )𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶  

 We use the cost function described above, subject to the total budget, b: 

∑ ∑ ∑ [(𝑎𝑐
𝑡 + 𝑟 ∗ 𝑑𝑧,𝑐) ∗ 𝑤𝑧,𝑐

𝑡 + (𝛼𝑐
𝑡 + 𝑟 ∗ 𝑑𝑧,𝑐) ∗ 𝑘𝑧,𝑐

𝑡 + 𝑓𝑐
𝑡 ∗ 𝑦𝑐

𝑡]𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶 + ℎ ∗ ∑ (𝑛𝑢 ∗ 𝑝𝑧 −𝑧∈𝑍

∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑡∈𝑇𝑐∈𝐶 ) ≤  𝑏  

 We additionally add the following constraint to ensure we are screening N patients: 

 ∑ ∑ ∑ 𝑤𝑧,𝑐
𝑡

𝑧∈𝑍𝑡∈𝑇𝑐∈𝐶 ≤ 𝑁  
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 Solving this two-step optimization model allows us to maximize the number of patients 

who can be screened, while also maximizing the number of patients who can be treated 

following a positive screening result, subject to our model constraints. 

 

2.3.1. Data 

 Patient data includes the number of individuals from each zip code in Georgia who used a 

Georgia VHA clinic location in 2017. Data about the VA system includes information about 

clinic locations, including street addresses, current number/types of providers at each location, 

salary and equipment costs for each provider type, and capacity for additional providers. Note 

that several clinic locations in Georgia did not offer eye care at any level at the time of this study. 

We used GoogleMaps Application Programming Interface to calculate the driving 

distances and driving times from each patient zip code to each clinic location. The geographic 

centroid of each zip code was used to represent the origin for each of these distance/time 

determinations. 

 We followed Mission Act guidelines for the maximum driving distance (within 40 miles) 

and maximum driving time (within 60 minutes) for patients. (48) In our analyses, patients who 

live beyond these requirements are automatically assigned to community care outside the VHA 

system. Additional administrative data also came from the VA, including budgets and driving 

reimbursement amount. 

 When considering financial parameters, costs include direct costs of clinical operations, 

including equipment, facilities, and provider salaries. For TECS, we include both the costs of 

paying technicians to conduct in-person screening, as well as cost of optometrists or 

ophthalmologists to remotely review screening results. Each appointment scheduled within the 
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VHA incorporates screening material costs and patient driving reimbursement. Appointments 

scheduled outside of the VHA (with a community care provider) incur a fixed charge per visit. 

2.3.2. Model Analyses 

We conducted six major analyses, including: (1) examining how metrics are impacted 

when we move from current state to adding and/or redistributing providers within potential clinic 

locations; (2) considering a system without any providers currently at clinic locations; (3) 

varying the budget; (4) varying the number of patients required to be screened in the VHA; (5) 

including nearest-open-clinic constraints; and (6) including both screening and follow-up care 

requirements. These analyses and their results are outlined in Sections 2.3.2.1 – 2.3.2.6. 

For each analysis, we consider the following metrics: number of patients assigned for 

chronic eye disease screening, average distance (in miles) that patients travel for screening, 

average time (in minutes) that patients travel for screening, cost for community care, cost for 

VHA care, and total system cost. 

In all scenarios except our Current State (in the first analysis), inputs for each model 

specify that at least 10% of patients from each zip code must be screened in the VHA and at least 

80% of each provider’s capacity must be used. For Model A, a budget of $25 million is used, 

based on current VHA budgets. For Model B, at least 18,300 patients must be screened in the 

VHA, based on the Current State analysis in which we are maximizing the number of patients 

screened in the VHA. 

2.3.2.1. Current State versus Additional Providers 

In our first analysis, we maximize the number of patients screened in the VHA, subject to 

a budget, without moving the current providers or adding additional providers. In this first 

maximization problem, we do not require 10% of patients from each zip code to be seen because 
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it would be infeasible, but this constraint is included in all other analyses. Next, we allow for 

providers to be added while keeping current providers at their respective locations and solve each 

model. Under Model A, we maximize patients seen given the same budget as current state. 

Under Model B, we minimize cost while requiring at least as many patients to be screened within 

the VA as are in current state. 

For the Current State versus Additional Providers Analysis (Table 2), we see that in both 

Models A and B, we can screen more patients within the VHA than in current state when we 

consider additional providers, while remaining within budget. Additionally, the average distance 

and time traveled by patients is lower in both models compared to Current State. Critically, in 

both Models A and B (and all subsequent analyses), 10% of patients from each zip code are 

required to be screened in the VHA, which indicates Models A and B also improve geographical 

equity compared to current state. Note that 5,278 patients live beyond the VHA requirement for 

allowable driving distance and time (40 miles or 60 minutes) from any potential clinic location 

considered and are automatically assigned to community care in all analyses. 

 

Table 2. Current State versus Considering Additional Providers 

Metric Current State Model A Model B  

Number of Patients Screened in VA 18,300 75,000 29,640 

Average Distance Traveled (miles) 22.7 12.6 12.8 

Average Time Traveled (minutes) 31.6 21.0 20.3 

Screening Cost - Internal $6.1 M $20.9 M $9.0 M 

Screening Cost – Community Care $18.3M $4.1 M $15.5 M 

Total Screening Cost $24.4 M $25.0 M $24.5 M 

 

2.3.2.2. No Current Providers Required 

In our next analysis, we compare metrics for both models when we keep the clinic 

locations and patient counts/locations the same, but do not consider any of the current provider 
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staffing levels (Table 3). Compared to when these providers are required to staff the locations 

where they currently work, our models show improved objectives: Model A yields over 7,000 

more patients seen within the VHA for the same budget compared to when current providers are 

required; Model B demonstrates savings of over $1 million relative to current providers being 

required, while still seeing more patients than current state. These improvements are largely from 

including more technicians in locations currently staffed by ophthalmologists. 

 

Table 3. No Current Providers Required 

Metric Model A 

Change 

from Model 

A with 

Current 

Providers Model B 

Change 

from Model 

B with 

Current 

Providers 

Number of Patients Screened in VA 82,278 +7,278 28,980 -660 

Average Distance Traveled (miles) 14.7 +2.1 12.9 + 0.1 

Average Time Traveled (minutes) 23.3 +2.3 20.5 + 0.2 

Screening Cost - Internal $22.7 M +$1.8 M $7.6 M - $1.4 M 

Screening Cost – Community Care $2.2 M -$1.9 M $15.6 M + $0.1 M 

Total Screening Cost $24.9 M - $0.1 M $23.2 M - $1.3 M 

 

Figure 1 depicts maps that represent the results of our first two analyses. We see that by 

moving from the current state to adding more providers any model, the number of patients 

screened in the VHA across Georgia increases. Note that when we do not require any current 

state providers under Model B (minimize cost), we only staff technicians for screening.  
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Figure 1. Map Representation of Model Results 

 

 

2.3.2.3. Impact of Budget 

For the third analysis we consider only model A (maximize patients screened) and 

increase the budget by $2.5 million and $5 million to understand how budget impacts the 

maximum number of patients we can screen in the VHA. We next evaluate the impact of budget 

by increasing budget by $2.5 million and $5 million. These analyses were conducted only for 

Model A. The results (Table 4), indicate that varying the budget impacts several metrics, 

including number of patients screened in the VHA, average distance/time traveled, and per 

patient cost. As the budget increases, we are able to screen more patients. Interestingly, as the 
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budget is increased, the average distance/time traveled increases as well. We review this 

relationship in our discussion.  

 

Table 4. Impact of Budget (Model A) Analysis Results 

 Budget 

Metric $25 

Million 

$27.5 

Million 

$30 

Million 

Number of Patients Screened in VA 75,000 83,966 83,831 

Average Distance Traveled (miles) 12.6 20.6 23.4 

Average Time Traveled (minutes) 21.0 29.5 32.7 

Screening Cost - Internal $20.9 M $25.6 M $28.0 M 

Screening Cost – Community Care $4.1 M $1.9 M $1.9 M 

Total Screening Cost $25.0 M $27.5 M $30.0 M 

 

2.3.2.4. Impact of Required Number Screened in the VHA 

For the fourth analysis, we consider only model B (minimize cost) and increase the given 

number of patients required to be screened in the VHA to 30,000 and 40,000 patients to 

understand how this requirement impacts the overall cost to the system. The results of this 

analysis (Table 5) indicate that increasing the required number screened impacts the average 

distance/time traveled, and the per patient/system costs. The average distance/time traveled 

decreases as required number of patients screened increases, largely because the additional 

patients screened will be assigned from zip codes that are geographically near clinic locations. 

Assigning patients who live near clinics also allows the model to assign many more patients 

overall than the minimum number required to screen because if a provider is already at a location 

and has capacity to screen patients, it is cheaper to screen patients in the VHA instead of sending 

them to community care. 
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Table 5. Impact of Required Number Screened (Model B) Analysis Results 

 Required Patients Screened in VA 

Metric 18,300 30,000 40,000 

Number of Patients Screened in VA 29,640 30,900 40,980 

Average Distance Traveled (miles) 12.8 12.0 10.2 

Average Time Traveled (minutes) 20.3 19.5 17.7 

Screening Cost - Internal $9.0 M $9.3 M $11.9 M 

Screening Cost – Community Care $15.5 M $15.2 M $12.6 M 

Total Screening Cost $24.5 M $24.5 M $24.6 M 

 

2.3.2.5. Requiring Patients to Visit the Nearest Open Clinic 

In the fifth analysis, we consider model A, but add constraints that require patients to be 

screened at the clinic location that is both open and has the shortest distance from their home zip 

code. When constraints are added to require patients to visit the nearest open clinic, we see that 

fewer patients are screened within the VHA, compared to the baseline results of Model A (Table 

6). Interestingly, the average travel distance and time both increase when these constraints are 

employed, largely because there are fewer providers assigned to staff clinics within the VHA 

system. Also, one may note that provider utilization is at 100% for all providers under Model A 

under baseline conditions; with the open nearest clinic constraints used, several providers are at 

less than 100% utilization. 

 

Table 6. Impact of Nearest Open Clinic Constraints (Model A) 

 

 

 Nearest Open Clinic Constraints 

Metric Without Constraints  With Constraints 

Number of Patients Screened in VA 75,000 66,806 

Average Distance Traveled (miles) 12.6 13.2 

Average Time Traveled (minutes) 21.0 21.5 

Screening Cost - Internal $20.9 M $18.8 M 

Screening Cost – Community Care $4.1 M $6.2 M 

Total Screening Cost $25.0 M $25.0 M 
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2.3.2.6. Considering Screening and Follow-Up Care 

In Model A+, we solve two consecutive MIPs, the first that maximizes the number of 

patients screened and the second which maximizes the number of patients who receive follow-up 

care. In the second MIP, we use the objective value of the first MIP as a lower-bound constraint 

on the number of patients who must be screened. 

When we consider both screening and follow-up care in our model using Model A+, we 

see a decrease in the number of patients screened compared to Model A which considers 

screening only (Table 7). Note that Model A+ uses the same budget as Model A, so one can 

understandably assume that fewer patients will be screened because provider resources are now 

being used for follow-up care. Note that when we compare to baseline (maximizing patients 

screened with no additional providers), Model A+ still allows for screening an additional 9,000 

patients while remaining within the $25 million budget, as well as providing follow-up care to 

over 2,000 patients.  

 

Table 7. Impact of Incorporating Follow-Up Care 

 

Metric Screening Only 

(Model A) 

Screening + Follow-

Up (Model A+) 

Number of Patients Screened in VA 75,000 27,461 

Number of Patients Receiving Follow-up Care in VA - 2,179 

Average Distance Traveled (miles) 12.6 13.2 

Average Time Traveled (minutes) 21.0 20.8 

Care Costs - Internal $20.9 M $8.6 M 

Care Costs – Community Care $4.1 M $16.0 M 

Total Care Cost $25.0 M $24.7 M 
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2.3.2.7. Additional Note 

Note that we also conducted analyses in which the allowable travel distance was varied. 

However, these analyses resulted in negligible variation in metrics. This lack of variation is 

largely due to the model rarely assigning patients to geographically distant clinics because 

driving reimbursement is considered in cost calculations and total costs are either constrained by 

a budget (Model A) or are being minimized as an objective (Model B). 

2.4. Discussion 

The results of the mixed-integer program for chronic eye disease screening in veterans 

can inform a broader understanding of how healthcare networks can be organized and how 

decision-makers may consider trade-offs. Additionally, we show how systems engineering tools 

can be used in both designing new healthcare networks and evaluating how modifications to 

existing healthcare networks impact key outcomes. 

When making changes to an existing healthcare network, the systemic impact to patient 

access is not always intuitive. For example, when considering the impact to distance or time 

traveled in our chronic eye disease screening model, increasing the budget or increasing the 

required number of patients screened in the VHA yields a greater average travel distance/time. 

While one may think a substantial budget increase could decrease a metric like driving time, our 

example results in an increase because more patients from rural areas are being screened and still 

need to travel a considerable distance. However, if the VHA instead implemented more potential 

clinic locations (beyond the 28 locations considered in this example) for rural patients and/or 

considered using traveling technicians, the travel distance/time for patients may decrease when 

budget is increased. In such a scenario, shifting the budget to these alternative resources then 

may inhibit the number of providers who can be hired at urban locations, so fewer urban patients 
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may be screened in the VHA. While a perfect solution may not exist, the tools discussed herein 

help decision-makers more fully understand how the design of their system impacts patient 

access. 

Our models have some limitations. For example, we assign patients to specific providers; 

in reality, patients may prefer which provider(s) or location(s) they would like to visit. 

Additionally, while we attempt to include as many realistic constraints and parameters as 

possible in these engineering models, we typically cannot include all aspects of a scenario. 

Nevertheless, these tools can help guide decisions to understand where to consider future 

locations that may improve patient access while meeting several system requirements and patient 

constraints. 

2.5. Generalizing Our Approach 

 In the chronic eye disease screening mixed-integer program described in previous 

sections, we sought to improve access to a healthcare service for veterans. We can use this 

specific model to consider a more generalized framework in which we seek to best align patients 

with providers and/or resources. Broadly, we can classify patients and providers into two or more 

levels and seek to align patients with providers who can best meet their needs. 

 Provider “levels” include two or more components of a healthcare providing organization 

that a patient may encounter. These components could be clinician providers, diagnostic or other 

tests, or medical equipment. Herein, we will focus on clinical providers, however, we will also 

discuss how other resources may be similarly considered in later paragraphs. We focus in 

particular on provider groups that offer similar types of frontline care but have different costs 

and skill sets. 



 39 

For example, consider the eye care screening mixed-integer program model discussed in 

the previous sections. In this model, chronic eye disease screening was previously performed by 

either an ophthalmologist or an optometrist in a face-to-face visit. Each of these providers is 

licensed to provide eye disease screening, however both could provide services beyond 

screening, with an ophthalmologist providing even more services, like surgery, than an 

optometrist. We consider these providers as two levels of care available to a patient seeking an 

eye screening. Each provider level has an associated cost and supply, with the most specialized 

level (here, the ophthalmologist) tending to have the highest cost and lowest supply. Compared 

to the ophthalmologist, an optometrist would almost certainly be less expensive for frontline 

care, such as screening. If we move one step further, we can consider the TECS program 

described previously. The TECS program effectively adds a new provider level to the system’s 

offering for chronic eye disease screening. 

We can also divide patients into levels, with each level indicating the most appropriate 

“level” of services needed. Considering eye disease, we may have a group of patients who are 

unsure of their eye disease diagnoses and would benefit most from a screening, other patients 

with mild to moderate eye disease that can be monitored and cared for by an optometrist, and 

still other patients with severe eye disease requiring complex care from an ophthalmologist. 

Patients with less complex needs could use either providers who offer only frontline care or 

those providers who offer more in-depth care. In other words, a less-complex patient could see a 

highly-specialized or a less-specialized provider. 

One can consider non-eye care settings for this hierarchical care framework. For 

example, colon cancer screening, which will be discussed in more detail in future chapters, has 

many levels of care and certain patients are best suited to receive care at one of those levels. (49) 
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For patients who have the highest risk for colon cancer, including disease history, a colonoscopy 

procedure provided by a gastroenterologist may be recommended. Alternatively, patients at low 

risk of colon cancer may be recommended to conduct an at-home fecal test, requiring fewer 

clinical resources and less patient burden. (50) Patients at moderate risk may still be 

recommended to receive a colonoscopy but not as frequently as those in the high-risk category. 

(51) In this brief description, we can see provider resource levels emerging (frequent 

colonoscopy, less-frequent colonoscopy, fecal testing), with patient risk levels aligning to each.  

 When considering how to implement a hierarchical healthcare network, we could attempt 

to match patients with providers at the same level. That is, more complex patients would be 

assigned to highly-specialized providers, moderately complex patients would be assigned to 

providers at a moderately-specialized level, and so on. Perfectly matching groups of patient 

demand and provider supply may be extremely challenging, however, due to initially unknown 

patient needs, and restrictions on the geographic locations where providers are willing to 

practice, as well as capacity and budget limitations. As we account for such real-world 

complexity in the system and patient population, we add these restrictions in our model. 

Constraints exist from the patient perspective, including patient preferences about providers, how 

far they are willing to travel, and their abilities to afford care. From the healthcare system 

perspective, one can consider where provider resources may be located, physical constraints on 

provider capacity, and how the system defines its patient catchment area. 

As more of this complexity is considered, we consider trade-offs between different goals 

as we specify our key objective. For example, if we seek to minimize the system’s cost, we may 

not be able to see as many patients or patients may have to travel a greater distance for their care. 

Conversely, if our goal is to see as many patients as possible, our costs will likely increase. 
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Systems engineering provides methods and tools that allow us to quantitatively consider such 

trade-offs.  

 Systems engineering tools are helpful for designing and evaluating provider networks. 

Key tools include linear programming, including integer and mixed-integer programming, and 

simulation models. (52–57) Systems engineers, in collaboration with administrative decision-

makers, can use these tools to develop models that represent real-world scenarios. Such models 

can have meaningful results that inform operationally feasible decisions. 

While lower cost alternatives do provide several benefits, decision-makers must ensure 

that patients’ quality of care is maintained at an appropriate level compared to the care received 

with the highly specialized resource. If chronic disease screening is to be conducted by a less-

specialized provider, screening options with this provider should still be of high quality and 

patients who use such providers should have equitable health outcomes to patients screened by 

highly-specialized providers. 

Healthcare networks designed with hierarchical provider options help improve patients’ 

access to frontline care, as shown in the TECS example. Prioritization may be set to improve 

access for particular patient subpopulations. For example, our case study enforces a minimum 

percentage of patients from all zip codes to be screened and restricts the maximum distance and 

time patients can drive to reach a clinic. This improves access for rural patients by requiring the 

network to have a geographically accessible location for most patients. Improved access to 

frontline care can improve patient outcomes by determining disease status, thus improving 

opportunities for patient education and treatment planning. 

 Hierarchical healthcare networks may be challenging to implement in practice. Ideal 

implementation opportunities include an existing healthcare system, like the VHA, with many 
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geographically-dispersed care locations, distributing providers and other resources to improve 

access. Another example is an integrated health system attempting to expand ownership of 

clinical locations and considering new acquisitions. Both scenarios benefit from evaluating how 

to locate different types of providers to maximize patient access. 

2.6. Conclusion 

Systems engineering tools like mixed-integer programs can potentially improve patient 

access to care by establishing clinical locations geographically near patients and by distributing 

providers and other resources to appropriately meet patients’ needs. Further, these tools can 

facilitate implementing such networks, both in designing networks and evaluating them to 

understand how patient access may be impacted when operational or policy changes are made. 

Partnerships between engineering professionals and clinicians, especially administrative decision 

makers, are critical to fully understanding the details of a specific system and how engineering 

tools can be employed. 

The approach presented in this chapter can be extended to other applications. First, other 

specialties besides ophthalmology can be considered, especially those using frontline screening 

as a common entry point to care and those for which telehealth has already been shown to be an 

effective care modality, like dermatology. Additionally, these concepts could be applied to non-

human resources such as medical equipment and testing. Finally, these models could be 

employed outside the VHA, although VHA’s highly-integrated, cost-savings-incentivized 

organizational structure does lend itself particularly well to hierarchical networks. 
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Chapter 3. Simulating Appointment Scheduling Policies to Consider Clinical Need 

Versus Patient Preference for Telehealth 

 

3.1. Introduction 

Healthcare providers are increasingly using telehealth as an option for interacting with 

patients. (58) Telehealth can take many forms, including remote monitoring of intensive-care 

patients’ clinical status and physicians conferencing via telephone to discuss complex patients. In 

some medical specialties, like gastroenterology, clinicians have begun to use synchronous video 

to meet with patients to replace or complement in-person appointments. (59) The use of such 

remote visits increased due to precautions related to the coronavirus pandemic that began 

impacting the United States in 2020, and continued use of telehealth is expected post-pandemic. 

(60) While some appointments may benefit from or necessitate meeting in-person, video visits 

may be effective alternatives for other appointments. Moreover, some patients may prefer a 

telehealth visit because an in-person visit may require them to travel a long distance, is more 

challenging to fit in their schedule, exposes them to risk of infection from other patients and 

healthcare providers, or other reasons. 

 Telehealth can improve access to care for patients. Geographic distance is a key barrier to 

care, especially for people living in rural areas and/or those who do not have access to reliable 

transportation. (1,61,62) When appropriately implemented, telehealth can reduce the distance 

patients need to travel in order to interact with the healthcare system. By decreasing travel, 

patients also save time otherwise spent on getting to and from appointments. This saved time 

may allow patients to better accommodate visits because they can take less time off of work or 
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do not need to find childcare, which improves access to care from a logistical perspective. In a 

study of the impact of telehealth in inflammatory bowel disease (IBD), 80% of patients saved at 

least one half-day of driving by participating in a telemedicine visit. (63) Finally, telehealth has 

the potential to lower costs for a healthcare system, the savings from which can be passed on to 

patients. (13) These savings can mitigate patients’ financial barriers to care. Telehealth lowers 

cost of care by using fewer physical resources and sometimes requiring fewer clinical/nonclinical 

staff members, including medical assistants, desk staff, and environmental services. 

 As telehealth has become more common, researchers have sought to understand patients’ 

perceptions of telehealth. In a 2019 patient survey, 66% of patients reported being willing to use 

telehealth. Telehealth interest varies across age groups with older patients tending to be less 

interested in using it. (64)  However, the same 2019 survey found that 52% of patients aged 65 or 

older are willing to use telehealth. Among older adults who have had a telehealth visit, more than 

half viewed in-person visits to have better overall quality of care compared to telehealth. (65) In 

gastroenterology, a study of the effectiveness of telehealth as an option for IBD visits found that 

85% of patients reported their care was as good as it would have been in person. (63) 

 As clinical decision-makers incorporate telehealth options into their systems, simulation 

can be valuable for understanding how to effectively incorporate this modality. (54,66–68) 

Simulation is often used to guide healthcare decision-makers in evaluating alternatives, often by 

incorporating uncertainty. Discrete-event simulation is helpful in scenarios in which patients 

arrive and interact with a healthcare system via a set of clinical encounters. We add to this 

literature by applying simulation to a new context area that covers patient preferences for 

telehealth. Specifically, our model demonstrates scheduling policies that balance these patient 
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preferences with clinical needs when scheduling appointments within the operational constraints 

of a clinic. 

3.2. Problem Statement 

As we demonstrate how simulation can be used to consider patient preference for 

telehealth, we focus on patients with gastroesophageal reflux disease (GERD) throughout this 

chapter. GERD is the most common gastrointestinal (GI) diagnosis in outpatient GI clinic visits 

in the U.S., with approximately 20% of adults reporting at least weekly GERD symptoms. (69) 

The clinical presentation of GERD primarily involves heartburn and acid regurgitation. GERD 

symptoms may also indicate more serious diagnoses like Barrett’s esophagus and esophageal 

stricture. These diagnoses may be evaluated using additional testing such as upper endoscopy. 

Endoscopies occur if a provider determines a patient’s symptoms require serious attention and/or 

if a patient visits a GI provider several times. GERD is an effective diagnosis to model for our 

problem context because it may involve care from multiple provider types (primary care and 

specialty care) and many GERD appointments can be conducted either in-person or via 

telehealth, as discussed further later in this section. 

We evaluate GERD patients interacting with the Veterans Affairs (VA) Healthcare 

System gastroenterology clinic in Ann Arbor, Michigan. This care setting is ideal for conducting 

a simulation because, as an integrated healthcare delivery system, both VA primary care and GI 

providers belong to the same health system. Thus, patients can more easily be transferred 

between the two provider types. 

GERD patients interact with the VA via several appointments as outlined in Figure 2. 

Patients tend to treat GERD symptoms at home with over-the-counter therapy prior to seeking 

clinical care. They then typically visit a primary care provider (PCP) or, less commonly, self-
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refer to a GI doctor. Regardless of provider type, a patient’s first visit will be face-to-face (F2F) 

so providers can conduct physical examinations and in-person testing. After patients complete 

each visit they can either exit the system (either because their symptoms have been adequately 

treated or are lost to follow-up) or move to a future appointment. Most return visits have a 

specific time range for follow-up (generally 2-8 weeks). This range can be considered a 

clinically ideal range for their next appointment. We consider appointments scheduled within 

this range to be “in-range” and those outside of it to be “out-of-range.” 

Figure 2. Patient flow through GERD-related appointments 

 

Patients visiting a PCP can be referred to a GI doctor after any appointment, and patients 

can be referred by their provider directly for an endoscopy if their symptoms indicate this would 

be clinically valuable. Patients may “no-show” for any appointment, in which case they are 

rescheduled for an appointment with the same provider and of the same type (F2F or telehealth). 

In our simulation logic, patients are dismissed from the system if they “no-show” three times 
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over the duration of care. Aside from the first appointment with each provider type (PCP and GI) 

and the fourth GI appointment (endoscopy), the simulation assumes that all appointments can be 

conducted either F2F or via telehealth. Telehealth has been deemed to be an appropriate 

alternative to F2F visits for the appointments considered here, with no meaningful difference in 

quality of care.  

3.3. Simulation Model 

We modeled patients flowing through GERD-related clinical visits using discrete-event 

simulation. The simulation was coded and run in C++. The model is initiated with a set of 

providers, some of whom are primary care providers (PCPs) and some of whom are 

gastrointestinal (GI) specialists. Each provider has a given weekly capacity for number of face-

to-face (F2F) and telehealth visits. In each replication, we randomly generate a stream of weekly 

patient arrivals that are Poisson distributed. Patients either seek care from a PCP or self-refer to a 

GI doctor. Each patient also has a preference for telehealth or face-to-face appointments and the 

probability of a patient preferring telehealth is based on the patient’s geographic distance from 

the clinic. Patients who live “near” a clinic location (within 40 miles) have a 50% probability of 

preferring telehealth; 100% of those who live “far” from a clinic location prefer telehealth. 

 Patients flow through care for GERD and either do not attend a visit and are immediately 

rescheduled for the same visit (no-show) or do attend the visit. Patients who attend visits are 

scheduled for their next appointment based on a scheduling policy, as described in Section 3.3.2. 

The probability of which appointment is next needed is indicated in a transition probability 

matrix (example included in Appendix A). The transition probability matrix values are based on 

historical data from the Ann Arbor VA GI clinic. 
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 Our base unit of time is weeks. The simulation is run over 52 weeks unless otherwise 

noted. To calculate minimum number of replications needed, we use appointment lead time as 

our metric of interest, with a standard error of 0.2 weeks, 95% confidence interval, and an initial 

replication size of 10. With baseline (BL) inputs and scheduling patients without regard for 

appointment modality preference, we find the minimum number of replications to be 39.8. (70) 

Our model processes in under one minute with 100 replications in most cases, so we increased to 

100 replications for all analyses. 

 

3.3.1. Model Input Parameters 

We include several deterministic and stochastic input values for our model. Input values 

were derived from historical data, VA operations, and expert clinical opinions. A list of inputs is 

included in Table 8. Note that weekly provider capacities are specific to GERD patients. That is, 

we consider providers to only see 3 GERD patients via F2F appointments and 4 GERD patients 

via telehealth each week, but they may be seeing several other patients not included in this 

analysis. 

 

Table 8. Simulation model inputs. 

Parameter Baseline Value Source/Description 

Number of PCPs 2 VA operations-Ann Arbor VA GI 

clinic 

Number of GI doctors 2 VA operations-Ann Arbor VA GI 

clinic 

F2F appointment weekly capacity per 

provider (PCP or GI) 

3 VA operations-Ann Arbor VA GI 

clinic 

Telehealth appointment weekly capacity 

per provider (PCP or GI) 

4 VA operations-Ann Arbor VA GI 

clinic 

Probability of next appointment 

type/probability of system exit 

Varies based on 

current 

appointment 

Historical data-Ann Arbor VA GI 

clinic 

No-show rate (includes cancellations) 0.2 Historical data-Ann Arbor VA GI 

clinic 
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Average weekly new patient arrivals to 

PCP 

5 Historical data (Poisson 

distribution with λ=5) 

Average weekly new patient arrivals to 

GI providers 

7 Historical data (Poisson 

distribution with λ=7) - Ann Arbor 

VA GI clinic 

Proportion of patients who live far from 

clinic (defined by VA guidelines for 

“near” vs “far”) 

0.014 Historical data-Ann Arbor VA GI 

clinic, patients who live > 40 miles 

from clinic are considered “far,” 

all others considered “near” 

Probability of patient preference for 

telehealth vs. F2F visits 

0.5 for “near” 

patients, 1.0 for 

“far” patients 

(64,65) 

 

3.3.2. Scheduling Policies 

When a patient enters the system, they are scheduled for their first appointment with 

either a PCP or GI provider. Because all first appointments must be F2F, the simulation finds the 

first available F2F appointment with the appropriate provider and schedules the patient with a 

provider of that type. Once a patient has been scheduled with any type of provider, they are 

always seen by that provider for the appropriate appointments; that is, a patient is seen by at most 

one PCP and at most one GI provider. 

After patients complete each visit, they are scheduled for a next appointment. When 

determining the patient’s next appointment, we follow a policy which considers three 

parameters: patient’s preference for appointment modality (telehealth vs. F2F), a range of time 

when the next appointment is clinically indicated (“in-range” vs. “out-of-range”), and provider 

available capacities. Unless otherwise noted, the ideal range of a next appointment is 2-8 weeks. 

Exceptions to this range include the patient’s first appointment with any provider and an upper 

endoscopy (final GI visit), which are scheduled in the next open slot. Patients who no-show are 

immediately re-scheduled with the same provider for the next available appointment of the same 

type they should have attended. Patients see at most one PCP and one GI provider; that is, they 
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are scheduled with the same provider for each visit offered within the set of PCP or GI 

appointments. 

 We construct a scheduling policy by combining an in-range policy (lettered A, B, C) and 

an out-of-range policy (numbered 1, 2) from Figure 3. For example, if we are following policy 

C2 and a patient who prefers telehealth needs a new appointment, we first attempt to schedule 

the soonest possible telehealth appointment within the next 2-8 weeks. If no telehealth 

appointments are available in this time frame, we then attempt to schedule the soonest possible 

F2F visit with the appropriate provider. If no appointments of any type are available in-range, we 

then schedule the patient for the soonest possible out-of-range appointment of their preferred 

type with the appropriate provider. 

 

Figure 3. Scheduling policies used in the model 

 

If no appointments are available out-of-range or if the patient’s next appointment will be 

beyond the time horizon (e.g., it is week 52 of a 52-week analysis), we assume the patient is 

scheduled for an appointment beyond the horizon. These instances are tracked, but patients are 

not considered to have “completed” care.  

 

 

 

In-range Policies 

A. First available appointment – any modality type (F2F vs. telehealth) 
B. First available appointment – preferred modality type only 

C. First appointment available of preferred modality type. If no in-range appointment of 
preferred modality type available, first available appointment of any type 

Out-of-range Policies 

1. First available appointment– any modality type 
2. First available appointment – preferred modality type only 
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3.3.3. Metrics 

We track several metrics including lead time to first appointment, percentage of patients’ 

appointment modality preferences met, provider utilization, number of patients who complete 

care, and number of out-of-range appointments. Lead time is calculated as the number of weeks 

between a patient “arriving” in the simulation to their first scheduled appointment. Percentage of 

modality preferences met considers the number of appointments could be scheduled for either 

F2F or telehealth (all appointments except the first visit with each provider and endoscopy) as 

the denominator and the number of those times in which a patient’s preferred modality was 

scheduled as the numerator. Appointments that must be conducted F2F are not included in the 

denominator of total appointments when considering percent of modality preferences met. 

Provider utilization is the percentage of providers’ available appointment capacities that are used 

for patient visits. The average number of out-of-range appointments is a count of the number of 

appointments that were scheduled outside of the clinically-ideal range, averaged across 

replications. 

3.4. Analyses 

We present several scenarios in considering patient preference for appointment modality 

when scheduling GERD patients. For these scenarios, we use scheduling policy C1 unless 

otherwise noted. Policy C1 indicates that when scheduling a patient in-range, we attempt to 

schedule the patient for the first available appointment of their preferred type. If no preferred 

appointments are available in-range, we attempt to schedule the patient for their non-preferred 

type in-range. If no appointments are available in-range, we schedule the patient for the first 

available appointment of any type out-of-range. 
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The four scenarios considered in this analysis include: (1) impact of a higher proportion 

of patients being far from clinic, (2) impact of patient arrival rates, (3) comparison of changing 

the number of providers versus changing provider capacity, and (4) comparison of scheduling 

policies. Additionally, we conduct sensitivity analyses to understand the inputs that have the 

greatest effect on key metrics. Table 9 lists output metrics when using the baseline inputs listed 

in Table 8 under policy C1.  

 

Table 9. Baseline metric values, policy C1 

Metric Value  Metric Value 

Percent modality 

preference met 

99.98%  Telehealth 

utilization 

48.36% 

Lead time 2.94 

weeks 

 Overall provider 

utilization 

70.12% 

Patients seeking care 355.23  F2F utilization 99.13% 

Patients completing care 299.01  Out-of-range appts. 119.06 

 

3.4.1. Scenario 1: Distance to Care 

In the first scenario, we vary the percentage of patients who live “far” (>40 miles) from 

the clinical location. In all analyses, 100% of patients who live far from care prefer telehealth 

appointments and 50% of patients who live near care prefer telehealth appointments. In our 

baseline analyses, 1.4% of patients live far from care, based on historical data of GERD patients 

at the Ann Arbor VA. Given that many other systems will have different proportions of patients 

who live far from care (or other demographics that influence likelihood of preferring certain 

appointment modalities), we vary the percentage of patients who live far from 0-50% to 

understand the impact on metrics. 

 Results from Scenario 1 are included in Table 10. We see that as more patients are far 

from care, overall (OA) provider utilization increases, largely due to increased telehealth 
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appointment. As a greater proportion of patients are far from care, lead time decreases. This 

outcome is a result of more patients preferring, and thus being scheduled for, telehealth 

appointments according to policy C1. The relative increase of telehealth utilization frees more 

F2F appointments, which patients newly entering the system can use. Additional metrics that 

indicate clinical impact to patients like lead time and number of out-of-range appointments are 

not significantly impacted by changing the percentage of patients who live far from care. 

 In this scenario (also Scenarios 2 and 3), policy C1 accommodates patient preference 

appropriately, thus the percentage of modality preferences met is greater than 99% in all 

instances. This occurs because appointment capacity typically exists so patients get their 

preference for appointments that can be conducted in multiple modalities. Because of this, we do 

not report on percent preferences met for Scenarios 1-3. 

 

Table 10. Impact of distance to care on utilization and lead time 

 % of Patients who live far (>40 miles) from care 

Metric 0% 1.4% 

(BL) 

2.8% 10% 25% 50% 

OA Provider Utilization 

(%) 

69.73 

±2.32 

70.12 

±2.03 

69.69 

±2.25 

71.23 

±2.04 

73.86 

±1.96 

77.99 

±2.11 

F2F Utilization (%) 99.02 

±0.71 

99.13 

±0.71 

99.08 

±0.81 

98.94 

±0.90 

98.77 

±0.93 

98.01 

±1.45 

Telehealth Utilization (%) 47.78 

±3.83 

48.37 

±3.44 

47.65 

±3.76 

50.45 

±3.50 

55.18 

±3.28 

62.98 

±3.22 

Lead Time (weeks) 2.98 

±0.32 

2.94 ± 

0.34 

2.94 

±0.37 

2.88 

±0.33 

2.78 

±0.35 

2.72 ± 

0.32 

Out-of-range appointments 117.68 

±18.73 

119.06 

±17.14 

118.16 

±20.04 

117.35 

±17.36 

115.27 

±19.65 

121.32 

±19.44 

 

3.4.2. Scenario 2: Patient Arrival Rates 

In our baseline analyses, we model five patients arriving each week seeking care from a 

PCP and seven each week self-referring to a GI doctor, with each arrival rate being Poisson 
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distributed. To understand how different patient arrival rates impact the system, we vary the PCP 

patients from 3-9 arrivals per week and the GI patients from 5-9 arrivals per week. 

 Table 11 shows the results from this scenario analysis. The general relationship between 

patient arrival rates and utilization is direct; as more patients arrive each week, utilization 

increases. The number of patients who self-refer to GI has a lesser impact on utilization than the 

number of patients who visit a PCP first. Lead time and patient arrival rates also have a direct 

relationship. However, when the PCP patient arrival rate decreases by 2 per week, the difference 

in lead time is statistically insignificant. All other changes to arrival rates presented here do 

indicate a significant difference in lead time. Similarly, the number of out-of-range appointments 

is impacted by arrival rate via a direct relationship. When arrival rates are either increased or 

decreased by 2 patients per week, the number of out-of-range appointments is significantly 

impacted. This relationship remains whether patients enter the system via PCP appointment or 

via self-referral, though changes in the arrival rates of self-referred patients has a larger impact 

on the number of out-of-range appointments compared to changes in arrival rates of patients 

arriving to a PCP appointment. 

 

Table 11. Impact of patient arrival rates on utilization and lead time 

 Weekly Patient Arrivals 

Metric 5 PCP, 

7 Self-

Refer 

(BL) 

3 PCP, 

7 Self-

Refer 

7 PCP, 

7 Self-

Refer 

9 PCP, 

7 Self-

Refer 

5 PCP, 

5 Self-

Refer 

5 PCP, 

9 Self-

Refer 

OA Provider Utilization 

(%) 

70.12 

±2.03 

61.91 

±2.75 

72.05 

±2.05 

72.43 

±1.92 

68.77 

±2.17 

70.13 

±2.03 

F2F Utilization (%) 99.13 

±0.71 

89.42 

±3.08 

99.76 

±0.27 

99.87 

±0.25 

98.92 

±0.86 

99.16 

±0.78 

Telehealth Utilization 

(%) 

48.37 

±3.44 

41.27 

±3.67 

51.27 

±3.60 

51.86 

±3.34 

46.15 

±3.69 

48.35 

±3.54 
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Lead Time (weeks) 2.94  

±0.34 

2.70 

±0.31 

3.86 

±0.45 

5.01 

±0.46 

1.97 

±0.10 

4.17 

±0.33 

Out-of-range 

appointments 

119.06 

±17.14 

101.97 

±16.91 

173.30 

±25.62 

264.94 

±29.76 

63.37 

±8.56 

217.44 

±22.25 

 

3.4.3. Scenario 3: Number of Providers vs. Provider Capacity 

As health systems incorporate telehealth into care, they may consider how to adjust 

staffing. In this scenario we vary the number of providers. At baseline we have two PCPs and 

two GI doctors. We vary the number of each provider from 1-4. We consider how changing the 

number of providers compares to changing provider capacities. At baseline each provider has 

weekly capacity for four telehealth and three F2F GERD visits. We consider instances where 

both PCPs have a weekly capacity for two telehealth and one F2F visit (“lower capacity”), and 

where one of the two PCPs have a weekly capacity of seven telehealth and five F2F visits 

(“higher capacity”). We conduct the same set of capacity changes with GI doctors.  

Tables 12 and 13 present analyses of the impact of provider count and capacity, 

respectively. Logically, as we decrease the number or capacity of providers, utilization and lead 

time increase; conversely, those metrics decrease when increasing provider count or capacity. 

When considering lead time, changing the number of providers in these scenarios has a greater 

impact than changing the capacity of providers. We see the largest impact when going from two 

to one PCP, with an increase in lead time of over 5 weeks.  

Changing provider counts or capacity has a significant impact on the number of out-of-

range appointments, with changes to PCP provider counts/capacity having a greater impact 

compared to GI. Of note, removing one PCP nearly triples the number of out-of-range 

appointments; removing one GI provider more than doubles this number. Because we are so 

often able to meet patients’ preferences with Policy C1 and our current provider 
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counts/capacities, increasing these values has a lesser impact on number of out-of-range 

appointments compared to decreasing counts or capacities. 

 

Table 12. Impact of number of providers on utilization and lead time 

 Provider Count 

Metric 2 PCP, 2 

GI (BL) 

1 PCP, 2 

GI 

4 PCP, 2 

GI 

2 PCP, 1 

GI 

2 PCP, 4 

GI 

OA Provider Utilization (%) 70.12 ± 

2.03 

75.01 ± 

2.60 

58.94 

±1.85 

67.41 

±2.58 

69.30 

±2.00 

F2F Utilization (%) 99.13 

±0.71 

99.93 

±0.18 

82.46 ± 

2.18 

98.91 

±0.94 

98.54 

±0.77 

Telehealth Utilization (%) 48.37 

±3.44 

53.65 

±4.83 

37.23 

±2.56 

43.79 

±4.40 

45.38 

±3.45 

Lead Time (weeks) 2.94 ± 

0.34 

8.63 ± 

0.56 

1.45 

±0.03 

4.60 

±0.26 

1.75 

±0.07 

Out-of-range appointments 119.06 

±17.14 

336.54 

±25.29 

74.78 

±7.68 

253.15 

±19.81 

79.38 

±7.77 

 

Table 13. Impact of provider capacity on utilization and lead time 

 Provider Capacity 

Metric 2 PCP, 2 

GI 

(BL) 

2 PCP 

(Low 

Cap.), 2 GI 

2 PCP 

(High 

Cap.), 2 GI 

2 PCP, 2 

GI (Low 

Cap.) 

2 PCP, 2 

GI (High 

Cap) 

OA Provider 

Utilization (%) 

70.12 ± 

2.03 

68.81 ± 

2.15 

64.59 ± 

1.91 

62.00 ± 

2.53 

70.25 ± 

2.34 

F2F Utilization (%) 99.13 ± 

0.71 

99.78 ± 

0.39 

95.79 ± 

2.10 

98.82 ± 

1.02 

99.04 ± 

0.61 

Telehealth 

Utilization (%) 

48.37 ± 

3.44 

48.16 ± 

3.61 

41.61 ± 

3.10 

37.44 ± 

4.01 

43.79 ± 

3.42 

Lead Time (weeks) 2.94 ± 0.34 5.37 ± 0.50 2.64 ± 0.33 4.50 ± 0.23 2.00 ± 0.14 

Out-of-range 

appointments 

119.06 

±17.14 

159.36 

±25.64 

118.89 

±20.33 

206.18 

±19.11 

78.40    

±8.55 

 

3.4.4. Scenario 4: Scheduling Policies 

In the final scenario of our main analyses, we examine how different scheduling policies 

impact metrics. We consider the six combinations of in-range and out-of-range policies (A1, A2, 



 57 

B1, B2, C1, and C2). Table 14 indicates metrics for the various policies. We see policies A1 and 

A2 (“A policies”) tend to have different values than B1, B2, C1, and C2 (“B/C policies”). With 

the A policies, patient preferences for modality are met in approximately 50% of appointments, 

because A policies do not consider preference when scheduling. The B/C policies all have 99-

100% preferences met. We also see higher overall utilization and telehealth utilization under the 

A policies versus the B/C policies. We also see a nonsignificant increase in lead time and 

number of out-of-range appointments in the A policies compared to B/C. These small increases 

are due to the slightly higher utilization of providers, especially for F2F appointments. Because 

any appointment can be used, providers are more likely to be unavailable, pushing appointments 

slightly further in time under A policies. 

 

Table 14. Impact of scheduling policies on patient preferences met, utilization, and lead time 

 Scheduling Policy 

Metric A1 A2 B1 B2 C1 C2 

% Appointment 

Preferences Met 

50.09 

±3.37 

50.68 

±3.27 

99.97 

±0.09 

100 ±0 99.98 

±0.06 

100 ±0 

OA Provider Utilization 

(%) 

78.49 

±2.60 

78.42 

±2.42 

70.02 

±1.82 

69.73 

±1.98 

70.12 

±2.03 

69.66 

±2.18 

F2F Utilization (%) 99.49 

±0.57 

99.50 

±0.46 

99.13 

±0.66 

99.08 

±0.63 

99.13 

±0.71 

98.94 

±0.97 

Telehealth Utilization (%) 62.74 

±4.47 

62.62 

±4.20 

48.20 

±3.12 

47.72 

±3.31 

48.37 

±3.44 

47.70 

±3.51 

Lead Time (weeks) 3.07 

±0.34 

3.06 

±0.30 

2.96 

±0.34 

2.95 

±0.36 

2.94 

±0.34 

2.93 

±0.33 

Out-of-range 

appointments 

127.76 

±19.31 

127.95 

±17.83 

121.10 

±22.05 

116.61 

±16.92 

119.06 

±17.14 

116.84 

±17.76 

 

4.5. Sensitivity Analyses 

We conducted sensitivity analyses to understand which input variables have the greatest 

impact on two key metrics: lead time and provider utilization for telehealth appointments. For 



 58 

each metric a tornado diagram is created, with each bar of the tornado diagram representing one 

input variable. The top bar of the diagram indicates the input variable that has the greatest impact 

on the metric of interest, with subsequent bars included in descending order of impact. Appendix 

A has abbreviation explanations and full variable names. 

Figure 4 shows tornado diagrams for lead time. In all policies, the most influential input 

variables are the number of PCPs, the number of GI physicians, and the lower-bound of the 

range of next appointment scheduling. Regarding number of physicians, we see that having 

fewer physicians, regardless of type, is highly influential on lead time, particularly when moving 

from two to one PCP. 

 
 

 

Figure 5 shows the influence of input variables on telehealth utilization across all 

policies. Telehealth utilization under policies A1 and A2 is most influenced by PCP-related input 

variables, including the number and capacity of PCPs. Telehealth utilization under B/C policies 

is most impacted by the probability of patients who live near clinics preferring telehealth 

Figure 4. Impact of input variables on lead time across all policies 
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appointments, which makes sense because these four policies all consider patient preference for 

appointment modality when scheduling.  

 

 

 

3.5. Conclusion 

In this chapter, we demonstrated how simulation can be used to understand how specialty 

care clinics can consider patient preference as they offer new ways of providing care to patients, 

including telehealth. As these modalities are implemented, simulation can be used to help define 

scheduling policies, such as the ones presented in our study of GERD patients. Further, 

simulation helps clinical decision-makers understand the impact of providing telehealth options 

for patients and providers. Simulation also helps these decision-makers adjust their systems to 

accommodate patient needs while maintaining operation objectives, such as achieving a given 

provider utilization or keeping patient lead times under a threshold. 

Figure 5. Impact of input variables on telehealth utilization across all policies 
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 Our simulation models demonstrate that, in our example, accommodating patient 

preference for appointment modality when scheduling specialty care appointments can be done 

with reasonable impact on the system and while incorporating patient preferences for care 

modality. Across the B/C policies, which take patient preference most into account, we see that 

patient preferences are met while achieving short lead times (less than 4-5 weeks in most 

scenarios) and appropriate provider utilization. These metrics are maintained under most 

instances of our sensitivity analyses. In particular, policy C1 indicates a balance between 

meeting patient needs (scheduling the patient for their preferred appointment modality when one 

is available in-range), while also offering scheduling flexibility for provider organizations if the 

patient’s preferred appointment modality is not available in a clinically-indicated timeframe. 

Keeping lead time low will also maintain quality of care because the likelihood of a patient’s 

condition worsening while waiting is smaller. 

 The discrete-event simulation presented here provides a helpful framework for how to 

organize models for other clinical institutions or diagnosis groups. Building on the model 

presented here, future work could include enhancing variable interactions, such as adjusting the 

probability that a patient is a “no-show” depending on whether their scheduled appointment is of 

their preferred modality. Additionally, we can extend this simulation to gain additional insight by 

incorporating financial information to understand impact on costs; imposing maximum lead-time 

policies; considering endogeneity on patient modality preferences due to scheduling policy 

changes; and incorporating additional patient attributes, such as age or socioeconomic status, that 

may impact patient preferences for telehealth. 
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Chapter 4. Evaluating Strategies for Mitigating Patient Backlog for Non-

Emergency Outpatient Procedures Under Reduced Capacity Due to the COVID-19 

Pandemic 

 

 

4.1. Problem Background 

 On January 21, 2020, the Centers for Disease Control and Prevention confirmed the first 

case of the 2019 novel coronavirus, SARS-CoV-2, followed by the United States declaring the 

coronavirus outbreak a public health emergency on January 31. (71,72) On March 13, the United 

States federal government issued a national emergency due to the spread of SARS-CoV-2, while 

days prior the World Health Organization had declared a pandemic due to COVID-19, the 

disease caused by the coronavirus. (73,74) 

 Since that time, the COVID-19 pandemic has led to a remarkable number of 

hospitalizations and other demands on health systems across the country, including the 

cancellation or deferral of non-emergency medical appointments. (75) We can consider non-

emergency appointments to be clinical visits that could be performed at a future date with little 

risk to a patient’s condition worsening due to the delay. The length of time that non-emergency 

procedures can be delayed varies by the patient’s condition and the severity of that condition. 

 During the COVID-19 pandemic, many non-emergency appointments were canceled or 

deferred to reduce the number of people in clinical settings, thus minimizing risk of coronavirus 
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infection. (76) Additionally, during this time, health systems shifted many clinical providers and 

resources to caring for patients with COVID-19 and/or working to prevent coronavirus infection. 

Finally, state- and local-level government restrictions prohibited certain less urgent medical 

procedures from being performed. (77) These factors led to reduced capacity for many 

appointments, especially non-emergency outpatient visits. Outpatient visits are medical 

appointments that are conducted within a single day and do not require the patient to stay 

overnight at a medical facility. 

 

4.1.1. Endoscopy 

In this chapter, we use endoscopy as a demonstrative example of a non-emergency 

outpatient visit that experienced significant numbers of cancellations related to the COVID-19 

pandemic. An endoscopy is a non-surgical gastroenterology (GI) procedure in which a clinician 

examines a patient’s digestive tract using an endoscope, which is a flexible, thin tube with a 

camera at the end. (49) A common type of endoscopy is colonoscopy, in which the colon and 

rectum are examined for cancerous polyps and other indications of disease. Colonoscopy is 

considered the gold standard for screening and diagnosing patients for colorectal cancer and can 

also sometimes be used to treat polyps, bleeding, and other colorectal issues. (78) 

Another common type of endoscopy is esophagogastroduodenoscopy, more commonly 

called upper endoscopy. During an upper endoscopy visit, a clinician examines a patient’s upper 

GI tract, including the esophagus, stomach, and upper small intestine to evaluate issues including 

bleeding, inflammation, ulcers, and tumors. Similar to colonoscopy, upper endoscopy is often 

used for diagnosis, but can also sometimes be used to treat disease. (79) Note that additional 

types of endoscopy exist but we will only include colonoscopy and upper endoscopy in this 

analysis. 
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In either endoscopy visit, the patient is under sedation while being scoped, which usually 

lasts under one hour, with some time prior to scoping to prepare the patient and time after for 

recovery. The total time a patient spends in a clinic for an endoscopy visit is typically under four 

hours. (78,79) 

Patients may seek an endoscopy visit for several reasons, with those reasons related to 

their urgency for the visit. The patient urgency categories discussed here are used in the Veterans 

Health Affairs (VHA) system, as well as in other health systems. The lowest urgency patients are 

those requesting a colonoscopy for screening. These patients have no underlying risk factors for 

colorectal cancer aside from age of at least 50 years. Surveillance patients are seeking 

colonoscopy because they have additional risk factors for disease, often previous malignancies. 

Surveillance patients can be split into two categories, low-risk and high-risk, depending on the 

number and severity of their risk factors, including the size of adenomas previously removed. 

Finally, diagnostic patients are those seeking endoscopy because some previous screening test 

has indicated a high likelihood of disease. In our model, all patients seeking upper endoscopy are 

classified as diagnostic patients, and patients may seek colonoscopy for diagnostic reasons as 

well. The distribution of patient urgency categories in the Ann Arbor VHA is listed in Table 15. 

 

Table 15. Distribution of endoscopy patients by risk category 

Risk Category 

Average Weekly 

Arrival Proportion 

Screening Colonoscopy 23% 

Low-Risk Surveillance Colonoscopy 15% 

High-Risk Surveillance Colonoscopy 15% 

Diagnostic – Colonoscopy 25% 

Diagnostic – Upper Endoscopy 22% 
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4.1.2. FIT: Fecal Immunochemical Tests 

Rather than coming to a clinical facility for a colonoscopy, screening patients can 

alternatively use a fecal immunochemical test (FIT), in which the patient’s stool is examined for 

blood. FIT has been demonstrated to be a clinically effective alternative to colonoscopy for 

screening patients for colorectal cancer, though to maintain effectiveness, patients need to 

participate in FIT more frequently than they would colonoscopy (once per year for FIT compared 

to approximately once every five-seven years for colonoscopy). (50) 

If a patient uses FIT, the clinic provides the supplies needed to collect the sample and the 

patient returns the sample to the clinic, either by traveling to the clinic to return or by returning 

via mail. (80) While FIT still requires resources from the clinical facility and often still requires 

the patient some travel, FIT notably does not require an in-person appointment with a clinician. 

This feature is especially helpful during the COVID-19 pandemic, when colonoscopy 

appointment capacity is reduced. 

If a patient’s FIT result is positive, they are recommended to receive a colonoscopy. In 

this case, their urgency increases and the VHA considers them now to be diagnostic patients 

when they are being scheduled for colonoscopy. Patients who receive negative FIT results do not 

require any further care, but are recommended to continue following screening guidelines, 

including participating in future FIT or screening colonoscopy. 

 

4.1.3. Capacity Reduction and Backlog Mitigation Strategies 

Like many clinical facilities across the country, VHA clinics saw reduced capacity for 

endoscopy during the COVID-19 pandemic, with over 7 million appointments canceled between 

March 15 and May 1, 2020. (76) While there is some evidence to indicate that patients were 
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more likely to delay non-urgent medical care, thus decreasing demand for appointments like 

endoscopy, the patients’ clinical needs related to endoscopy are no different because of COVID-

19. (81) We can therefore assume that approximately the same number of patients should be 

receiving endoscopy or some alternative form of GI care (FIT, etc.), despite the reduction in 

available capacity. Further, we can then assume that while endoscopy appointment capacity was 

reduced, the number of patients waiting for an endoscopy visit was increasing. 

Early in the widespread onset of the COVID-19 pandemic, the capacity for non-

emergency outpatient visits like endoscopy was reduced significantly; in our model, we assume a 

reduction to 5% of standard capacity for the first 10 weeks. (81) As healthcare leaders learned 

more about COVID-19, they determined solutions to keeping patients and providers safe in 

clinical environments. These solutions, as well as mitigation of community-spread COVID-19, 

allowed for more appointment capacity to be gradually readded. Nevertheless, the backlog of 

patients waiting for endoscopy may persist unless the VHA changes how it provides endoscopy 

visits and related care. 

The VHA has identified several strategies to mitigate the potential backlog of patients 

while capacity is reduced. Several strategies triage patients based on urgency of their need for an 

endoscopy and redirect their care. We can also consider operational strategies, including adding 

additional days in which endoscopy is offered to patients. Note that the strategies discussed 

herein do not need to be administered in isolation and our analysis considers their potential 

individual impacts, as well as how they may mitigate backlog when used in combination. 

4.1.3.1. Exchange Strategy 

In the first strategy, Exchange, patients who are requesting an endoscopy for screening 

are redirected to at-home FIT instead of coming into clinic for endoscopy. Because screening 
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patients account for approximately 30% of endoscopy visits, this strategy helps greatly reduce 

the number of patients waiting for an endoscopy visit. 

In the Exchange strategy, all screening patients are recommended to FIT, but some 

percentage of patients “decide” to not use FIT. The patients who “decide” to not use FIT exit the 

system. Of those who do use FIT, some percentage receives a positive result. Those patients who 

receive a positive FIT result, rejoin the queue as diagnostic patients. Those who receive a 

negative result exit the system. 

 

4.1.3.2. Extend Strategy 

In the Extend strategy, low-risk surveillance patients who are seeking endoscopy are 

deferred for two years. This strategy is in relation to updated guidelines from the American 

Society for Gastrointestinal Endoscopy, which indicate that that low-risk surveillance patients 

need to receive endoscopy every 7-10 years to monitor potential disease progression. (82) The 

VHA previously followed a guideline which recommended an interval of 5-10 years between 

endoscopy visits for these patients. (51) At the onset of the COVID-19 pandemic, the low-risk 

surveillance patients seeking endoscopy were being scheduled according to a five-year interval. 

If the Extend strategy is in place, the VHA now shifts these patients to a seven-year interval 

between endoscopy, thus low-risk surveillance patients are deferred for two years before seeking 

an endoscopy. 

 

4.1.3.3. Overtime Strategy 

An operational strategy for mitigating backlog of patients waiting for endoscopy is the 

Overtime strategy. When the VHA uses the Overtime strategy, additional days or portions of 
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days are available for patients to be scheduled for endoscopy. We can assume that endoscopy 

clinics typically operate Monday through Friday, a five-day week. Thus, if the clinic decides to 

add Saturday as an available day for endoscopy visits, the weekly capacity increases by 20%. 

Alternatively, if the clinic is only open for a half-day on Saturday, the weekly capacity would 

increase by 10%.  

In the Overtime strategy, we increase the weekly capacity by 10-40% (one half-day to 

two full days of weekend clinic visits). Note that weekly capacity is increased by a percentage of 

what would be currently offered in a given week under administrative capacity reduction. For 

example, if a clinic typically offers 100 endoscopy visits each week, they may only offer five 

visits each week during the early weeks of the COVID-19 pandemic, a reduction to 5% of their 

original capacity. If the overtime strategy is in place at 20% overtime, the 20% increase in 

capacity is applied to the five visits, so the clinic would offer six endoscopy visits per week. 

4.2. Methods 

We developed a discrete-event simulation model to consider the various strategies for 

assigning patients to endoscopy appointments under reduced capacity. We compare the three 

strategies outlined in the previous section, as well as combinations of those strategies, to each 

other. We also compare these strategies to implementing no strategies (No Triage).  

In the model, patients “arrive” each week to seek endoscopy, with the number of patients 

arriving randomly determined via a Poisson distribution with mean 113 patients. Patients are 

randomly assigned an urgency categorization (screening, low-risk surveillance, etc.) based on the 

distribution indicated in Table 15.  In each week, we first assign patients with the highest 

urgency to endoscopy visits. Diagnostic patients, which include both diagnostic colonoscopy and 

upper endoscopy, are assigned first, then high-risk surveillance, and so on. Within each patient 



 68 

category, those who have been waiting longest are prioritized for assignment. Patients not 

assigned within a given week join a queue. 

Note that we initialize our model with 802 patients already in the system. These patients 

represent those who had appointments at the time of capacity reduction. Within the simulation 

logic these patients must be seen prior to any patients who have “arrived” after the simulation 

starts. These initial patients are not included in any metric calculations. 

Our typical (pre-pandemic) capacity is 110 endoscopy appointments. In our analyses, we 

begin with capacity for endoscopy visits reduced to 5% of typical capacity. After 10 weeks, 

capacity is increased to 50%, and then increased to 100% capacity after 10 more weeks. This 

leads to 14,630 total appointment slots over the course of the simulation, which indicates the 

maximum number of patients we can see without increasing capacity using the Overtime 

strategy. 

Additional baseline inputs are listed in Table 16. The base unit of time in our model is 

weeks. We run the simulation for 150 weeks and replicate 100 times.  With baseline inputs, we 

find the minimum number of replications to be 57 when comparing No Triage to the Exchange 

strategy. (70) Our model typically processes in under five minutes with 100 replications in most 

cases, so we increased to 100 replications for all analyses. Our simulation was coded in C++. 

We report metrics such as number of patients seen, average wait time, and average 

number of patients waiting beyond four weeks for a visit. This final metric is important to VHA 

clinics because patients who wait beyond four weeks are eligible to have their appointment costs 

covered if they seek care from non-VHA providers. In our baseline analyses, we only track these 

patients who wait beyond four weeks, but we also explore scenarios in which those patients leave 

the system with some probability greater than zero. 
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Table 16. Baseline Input Parameters 

Parameter Value Notes 

Weekly New Patient 

Arrivals 

113 Poisson distributed with lambda=113. Source: 

Ann Arbor VHA (Note: See Table 1 for 

distribution of patients by urgency) 

Weekly Endoscopy 

Capacity 

110 Source: Ann Arbor VHA 

Likelihood that Screening 

Patients follow-through with 

FIT 

85% Source: Ann Arbor VHA 

Likelihood of Positive FIT 15% Source: (83) 

Weeks between FIT 

recommendation and result 

4 Source: Ann Arbor VHA 

Patients in system at 

simulation start 

802 Source: Ann Arbor VHA (Note: metric 

calculations do not include these patients) 

Capacity   

Weeks 1-10 5% Source: Ann Arbor VHA 

Weeks 11-20 50% Source: Ann Arbor VHA 

Weeks 21-30 75% Source: Ann Arbor VHA 

Weeks 31-150 100% Source: Ann Arbor VHA 

 

4.3. Results 

4.3.1. Baseline Analyses 

 In our baseline analyses, we compare our three strategies for mitigating patient backlog – 

Exchange, Extend, and Overtime – to each other and to implementing no strategies (No Triage) 

as shown in Table 17. Under No Triage, we see 14,289 patients over 150 weeks, however only 

964 screening patients are seen of approximately 3,900 screening patients who are seeking 

appointments. Further, over 5,000 patients are waiting beyond four weeks and the average wait 

time is 22.8 weeks across all patient categories, with screening patients waiting an average of 

70.3 weeks.  

Table 17. Baseline Analysis Results 

Metric No Triage Exchange Extend Overtime 

Number of Patients Seen 14,289 13,812 14,287 17,198 

Screening 964 0 2,724 3,856 
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Low-Risk Surveillance 2,513 2,513 766 2,519 

High-Risk Surveillance 2,509 2,507 2,512 2,517 

Diagnostic 8,303 8,792 8,285 8,306 

Num. Patients Waiting 

>4 Weeks 

5,445 2,816 3,448 3,732 

Screening 2,960 0 1,854 1,640 

Low-Risk Surveillance 971 1,165 0 787 

High-Risk Surveillance 655 742 685 581 

Diagnostic 869 909 909 724 

Average Wait Time 

(weeks) 

22.8 9.8 14.1 11.3 

Screening 70.3 - 41.3 33.2 

Low-Risk Surveillance 23.1 28.8 0.0 10.1 

High-Risk Surveillance 9.4 10.9 9.4 5.7 

Diagnostic 3.9 4.0 3.8 3.0 

 

When the Exchange strategy is implemented, we see fewer patients for visits, with all 

screening patients being recommended for FIT instead of coming to the clinic for a colonoscopy 

visit. If those patients have a positive FIT, they return to the system as diagnostic patients. With 

the Exchange strategy in place, the number of patients waiting beyond four weeks is 

approximately halved and the average wait time decreases to 9.8 weeks. Note that with this 

strategy in place, the average waiting times for low-risk and high-risk surveillance patients 

increase. This increase is due to the screening patients who have a positive FIT result and return 

for endoscopy as diagnostic patients who are now prioritized ahead of either surveillance group. 

With the Extend strategy, we see approximately the same number of patients overall as 

compared to No Triage, however we see more screening patients and fewer low-risk surveillance 

patients. Both the number of patients waiting beyond four weeks and the average wait time 

decrease to 3,448 and 14.1 weeks, respectively. Notably, the average wait time for screening 

patients still remains extremely high at 41.3 weeks. When the Extend strategy is implemented, 

one should note that several low-risk surveillance patients who have been intentionally deferred 

their endoscopy visit will need an endoscopy visit after the simulation end date. In this case, 
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because low-risk surveillance patients are deferred for two years, there will be approximately 

1,750 low-risk surveillance patients who will need endoscopy visits over the course of the two 

years following simulation end. During the final 46 weeks of the simulation, we will begin 

seeing the low-risk surveillance patients who were deferred during the early weeks of the 

simulation who have now returned for endoscopy following their two-year deferral. 

When incorporating Exchange and/or Extend, we will always see a reduction in the number 

of patients seen because screening and/or low-risk surveillance patients are triaged to an 

alternative to immediate endoscopy. While the VHA seeks to provide the best patient care to all 

eligible patients whenever available, immediately providing an endoscopy visit for all patients is 

not necessarily the ultimate goal, especially when clinically-proven alternatives like those used 

in the Exchange and Extend strategies are available. 

With the Overtime strategy, we see the most patients of any strategy in our baseline 

analysis, with all patients who arrive in the simulation being seen before the simulation ends. If 

the goal of these strategies is to ensure all patients are seen, the Overtime strategy achieves that 

goal. However, because this strategy just increases capacity without triaging lower-urgency 

patients, we see more patients waiting beyond four weeks compared to the Exchange and Extend 

strategies (though still markedly lower than the No Triage strategy) and an average patient wait 

time of 11.3 weeks, which is greater than the Exchange strategy. 

4.3.2. Combining Strategies 

 The Exchange, Extend, and Overtime strategies are not mutually exclusive so we can 

examine how combining strategies impacts our metrics (Table 18). We examine pairs of each 

strategy, as well as all three strategies included at once.  
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Table 18. Combining Strategies 

Metric 

Exchange + 

Extend 

Exchange + 

Overtime 

Extend + 

Overtime 

All 

Strategies 

Number of Patients 

Seen 

12,072 13,804 15,541 12,074 

Screening 0 0 3,973 0 

Low-Risk 

Surveillance 

767 2,502 766 771 

High-Risk 

Surveillance 

2,509 2,514 2,513 2,512 

Diagnostic 8,796 8,788 8,289 8,791 

Num. Patients Waiting 

>4 Weeks 

1,566 2,110 2,617 1,274 

Screening 0 0 1,203 0 

Low-Risk 

Surveillance 

0 771 0 0 

High-Risk 

Surveillance 

651 539 590 514 

Diagnostic 915 800 824 760 

Average Wait Time 

(weeks) 

5.2 5.2 5.8 3.6 

Screening - - 12.7 - 

Low-Risk 

Surveillance 

0.0 11.3 0.0 0.0 

High-Risk 

Surveillance 

10.9 6.3 5.7 6.3 

Diagnostic 4.0 3.1 3.0 3.1 

 

With Exchange and Extend strategies in place, we see far fewer patients because all 

screening patients are recommended to FIT and all low-risk surveillance patients are deferred for 

two years. Fewer patients wait beyond four weeks and the average wait time is nearly halved 

compared to using the Exchange strategy alone (5.2 weeks with both strategies compared to 9.8 

with Exchange alone). 

With Exchange and Overtime, we see an increase in number of patients seen compared to 

the previous combination of strategies, but more patients are waiting beyond four weeks. The 

Exchange/Overtime combination has the same average wait time as Exchange/Extend (5.2 
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weeks) but the average wait time for diagnostic and high-risk surveillance is shorter with 

Exchange/Overtime, while low-risk surveillance patients are waiting longer. 

Among the combined-strategy scenarios, the most patients are seen (15,541) when both 

Extend and Overtime strategies are used, but we also see the largest number of patients waiting 

beyond four weeks (2,617) and the greatest average patient wait time (5.8 weeks). 

When all strategies are used, a similar number of patients are seen to just Exchange and 

Extend, indicating that we do not need the additional capacity provided by the Overtime strategy 

in order to see all patients with Exchange and Extend in place. That additional capacity does 

allow patients to have visits sooner. This leads to decreases in the number of patients waiting 

beyond four weeks and the average patient wait time. Yet, when all three strategies are used, we 

will have a great deal of unused capacity after the initial backlog of patients receives visits. 

 

4.3.3. Varying Triage Uptake 

Triage strategies may not be able to be fully implemented due to patients and/or providers 

being unwilling to adhere to triage guidelines or inadequate resources (not enough FIT kits, etc.). 

Tables 19 and 20 present results when the Exchange or Extend strategies are not fully 

implemented. The first column of results in each table shows 100% implementation, which will 

have the same results as the respective strategy in Table 17, followed by 75%, 50%, and 25% 

implementation. When a strategy is partially implemented the remaining patients who would 

have used that strategy are processed as though there is no strategy in place. 

Table 19 shows the impact of varying the Exchange strategy. When less than 100% of 

screening patients are triaged to FIT, more patients are seen overall. However, we do not see an 

increase in overall patients seen beyond 75% implementation. This is largely due to some 

screening patients who do participate in FIT returning to the system because of a positive FIT 
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result as diagnostic patients, who are prioritized ahead of screening patients who do not 

participate in FIT. Additionally, as the proportion of screening patients decreases, the number of 

patients waiting beyond 4 weeks increases, as does the average waiting time. 

 

Table 19. Varying Exchange Implementation1 

Metric 

100% 

Exchange 

75% Exchange 50% 

Exchange 

25% 

Exchange 

Number of Patients 

Seen 

13,812 14,293 14,290 14,290 

Screening 0 600 723 813 

Num. Patients Waiting 

>4 Weeks 

2,816 3,447 4,230 4,833 

Screening 0 760 1,476 2,252 

Average Wait Time 9.8 13.1 16.6 19.9 

Screening - 66.2 68.9 70.2 

 

Table 20 presents results when the Extend strategy is varied. Unlike the Exchange 

strategy variations, the Extend strategy impacts two patient groups: Screening and Low-Risk 

Surveillance. Because of the prioritization structure of our model, low-risk surveillance patients 

are always prioritized ahead of screening patients. Thus, if fewer low-risk surveillance patients 

are deferred for endoscopy, more of these patients in this group will consume capacity soon after 

their arrival, which will leave fewer visits available to screening patients. As Table 20 

demonstrates, lowering the proportion of patients who follow the Extend strategy has no impact 

on the total number of patients seen, but does lead to large increases in the number of patients 

waiting beyond four weeks and average wait time. 

 

 

 

1 In Tables 19 and 20, all patient categories are included in the simulation as in previous analyses, but these tables 

only report patient categories with metric values that significantly change across scenarios. 
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Table 20. Varying Extend Implementation1 

Metric 100% Extend 75% Extend 50% Extend 25% Extend 

Number of Patients 

Seen 

14,287 14,294 14,292 14,291 

Screening 2,724 2,361 1,878 1,501 

Low-Risk Surveillance 766 1,134 1,597 1,996 

Num. Patients Waiting 

>4 Weeks 

3,448 3,795 4,246 4,708 

Screening 1,854 2,057 2,212 2,436 

Low-Risk Surveillance 0 215 459 726 

Average Wait Time 14.1 16.2 18.5 20.3 

Screening 41.3 48.9 57.5 63.5 

Low-Risk Surveillance 0.0 7.4 12.9 17.2 

 

4.3.4. Varying Overtime 

In our earlier analyses, the Overtime strategy considered an increase in capacity of 20%, 

the equivalent of keeping clinics open one full weekend day. We can also consider 10% overtime 

(one weekend half-day) or 40% overtime (two weekend full days), with results shown in Table 

21. With 10% overtime, fewer patients are seen overall compared to 20%, with more patients 

waiting beyond four weeks and a greater average patient wait time. When overtime is increased 

to 40%, we do not see a significant increase in number of patients seen, but there is a meaningful 

decrease in the number of patients waiting beyond four weeks and average patient wait time. 

With 40% overtime, there will surely be unused capacity throughout much of the simulation 

period, as shown in Figure 6, which indicates number of patients seen by week. Under the 20% 

Overtime strategy, we use all available capacity for nearly all of the simulation period. 

Conversely, under the 40% Overtime strategy, we have available capacity through most of the 

latter half of the period. 
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Table 21. Varying Overtime Implementation 

Metric 10% Overtime 20% Overtime 40% Overtime 

Number of Patients Seen 15,748 17,198 17,290 

Screening 2,446 3,856 3,964 

Low-Risk Surveillance 2,505 2,519 2,502 

High-Risk Surveillance 2,499 2,517 2,510 

Diagnostic 8,298 8,306 8,314 

Num. Patients Waiting >4 

Weeks 

4,443 3,732 2,870 

Screening 2,106 1,640 1,152 

Low-Risk Surveillance 868 787 560 

High-Risk Surveillance 617 581 463 

Diagnostic 852 724 695 

Average Wait Time 17.0 11.3 5.7 

Screening 53.5 33.2 13.0 

Low-Risk Surveillance 14.2 10.1 6.3 

High-Risk Surveillance 7.2 5.7 4.3 

Diagnostic 3.4 3.0 2.5 

 

 

Figure 6. Number of Patients Seen by Week Under Two Overtime Strategies 
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4.3.5. Sensitivity Analyses of Assumed Inputs 

While no simulation model can fully capture reality, we can conduct sensitivity analyses 

to ensure we are capturing more potential realistic scenarios. Table 22 presents examples of such 

scenarios. In all scenarios, we assume the Exchange and Extend strategies are both used, with the 

first column of results presenting the same output as was shown in the original combined 

strategy table (Table 18). In the next two columns, we show results that change the average 

number of weekly arrivals, first by increasing by 25%, then by decreasing by 25%. The 

decreased arrival rate is particularly helpful because patients may have been less likely to seek 

non-emergency care during the COVID-19 pandemic. The results in these columns indicate a 

direct relationship between arrival rate and all of our metrics. That is, increasing the arrival rate 

leads to an increase in number of patients seen, number of patients waiting beyond four weeks, 

and average wait time. Decreasing arrival rate leads to decreases in these metrics. 

Table 22. Varying Additional Assumptions 

Metric 

Baseline 

(Exchange

+ Extend) 

Arrivals 

+25% 

Arrivals  

-25% 

0.5 Prob. 

Patient Leaves 

if Wait >4 wks 

1.0 Prob. 

Patient Leaves 

if Wait >4 wks 

Number of Patients 

Seen 

12,072 14,211 9,090 10,683 10,646 

Screening 0 0 0 0 0 

Low-Risk Surveillance 767 130 577 771 771 

High-Risk 

Surveillance 

2,509 3,126 1,878 2,143 2,168 

Diagnostic 8,796 10,955 6,635 7,769 7,707 

Num. Patients Waiting 

>4 Weeks 

1,566 3,703 992 213 0 

Screening 0 0 0 0 0 

Low-Risk Surveillance 0 844 0 0 0 

High-Risk 

Surveillance 

651 1,391 393 53 0 

Diagnostic 915 1,468 599 160 0 

Average Wait Time 5.2 12.5 3.1 0.2 0.1 

Screening - - - - - 

Low-Risk Surveillance 0.0 22.8 0.0 0.0 0.0 
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High-Risk 

Surveillance 

10.9 32.4 5.0 0.2 0.1 

Diagnostic 4.0 5.9 2.8 0.2 0.1 

 

We can also consider patients leaving the system if they wait beyond four weeks, as 

shown in the final two columns of Table 22. As previously mentioned, VHA patients who have 

waited for an appointment for more than four weeks may seek care from a non-VHA provider, 

with the VHA covering appointment costs. Thus, we consider patients leaving the queue if they 

wait more than four weeks with some probability of 0.5 and 1.0. In each of these scenarios, far 

fewer patients are seen overall because so many patients have left the system and wait time is 

near zero.  

4.4. Conclusions 

COVID-19 has caused significant disruptions to healthcare operations, including reduced 

capacity for non-emergency procedures like endoscopy. The simulation model described in this 

chapter can help clinical decision-makers understand how pandemic-influenced reduced capacity 

for non-emergency procedures could impact patient wait time and other important metrics. 

Further, decision-makers can adjust their reopening plans and triage strategies to help achieve 

meaningful outcomes for patients, while ensuring patients are seen in a clinically beneficial and 

patient-centered timeframe. 

Our model does not aim to find the “best” strategy to mitigate patient backlog for 

endoscopy visits in the VHA. Rather, it provides additional information in the decision-making 

process of VHA leaders in their pursuit of the best possible patient care. If their goal is to have 

the most patients possible receive endoscopy visits within the simulation time period, the 

Overtime strategy will prove most beneficial of the strategies reviewed. However, because this 

strategy alone does not triage lower-urgency patients, the number of patients waiting beyond four 
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weeks is high. To ensure average waiting time remains relatively low, both overall and within 

each patient category, one or both of the Exchange and Extend strategies may be included so 

screening and/or low-risk surveillance patients can be triaged to an alternative form of care. 

VHA leaders should consider that triage strategies may not be universally accepted by 

patients. For example, a low-risk surveillance patient may not want to defer their colonoscopy 

for two years, preferring instead to be seen as soon as possible. Additionally, the VHA may not 

want to shift operational or financial resources to FIT or deferred colonoscopy visits as is 

required in the Exchange and Extend strategies, respectively. For these reasons, the VHA should 

consider potential outcomes under partial uptake of patient triage strategies, as outlined in Tables 

19 and 20. 

This chapter’s model has limitations. First, the prioritization structure of patient visit 

assignments is relatively rigid in its hierarchy of patient risk categories. In reality, a high-risk 

surveillance patient who has been waiting to be seen for 12 weeks may be prioritized over a 

newly-arrived diagnostic patient. However, within the confines of the reduced capacity due to 

COVID-19, the assumption of a strict hierarchical prioritization is more reasonable. 

An additional limitation is that our model is strict in strategy implementation. Analyses 

assume that a strategy carries throughout the entire simulation period, even if patient backlog has 

been relatively well-resolved. Given that the impact of COVID-19 has been somewhat 

unpredictable and such strategies may need to be used longer than expected, this limitation 

seems acceptable. Further, because the two patient triage strategies, Exchange and Extend, are 

both clinically-proven alternatives to endoscopy visits, one can assume that continuing using 

these strategies after backlog has been resolved will not lead to patient harm. 
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Each strategy discussed requires consideration from the VHA in how it is implemented. 

Specifically, the VHA must weigh the trade-offs between the reduction in patient backlog and 

each strategy’s additional outcomes. With the Exchange strategy the VHA needs to ensure it has 

the resources and capacity to handle increased FIT processing, as well as the increase in number 

of diagnostic patients needing colonoscopy visits following a positive FIT result. Under Extend, 

the VHA is delaying a subgroup of patients from receiving colonoscopy visits for two years. This 

reduces current patient backlog but could lead to subsequent increased system-level burden 

and/or patient backlog if the future operational state is unable to handle the deferred patients 

well. The Overtime strategy widely benefits patients by allowing more patients to be seen and 

reducing wait time, but may negatively impact clinicians and other staff due to burnout and/or 

increased exposure to risk of COVID-19 infection. 

The simulation model described in this chapter could be applied to other non-emergency 

outpatient procedures, particularly those that include a range of patient categories who may 

utilize those procedures, including primary care annual physical examinations, dental visits, or 

other cancer screening/diagnostic procedures. Further, this simulation model could be used 

during non-pandemic time periods to examine impact of new policies or triage strategies. 

Finally, while our model inputs were specific to the VHA location in Ann Arbor, 

Michigan, the structure and logic of the model can be applied to other VHA locations across the 

country. We have begun working with the national GI office within the VHA to apply these 

strategies in different settings that may have different relationships between patient arrivals and 

capacity or different rates of reopening capacity. With this cross-clinic comparison, we may 

identify how various strategies or combinations of strategies can impact clinics with different 

types of parameters. 
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Chapter 5. Assessing the Impact of Incorporating Predictive Modeling into Chronic Liver 

Disease Appointment Decision-Making 

 

Chronic liver disease (CLD) is a potentially fatal disease, and it is sometimes difficult to 

detect because of its long asymptomatic phase. A new tool known as analytic morphomics uses 

predictive modeling to diagnose CLD earlier and more accurately. In this chapter, we use 

discrete-event simulation to model how patients referred for CLD could be assigned to 

appointments based on the severity of patients’ disease under various clinical decision models, 

including analytic morphomics. We consider each decision model’s predictive power and 

policies about collecting patient data used for model inputs. This work can help clinics 

assign CLD patients more accurately to an appointment type that best aligns with patient needs. 

5.1. Problem Background 

Predictive modeling broadly describes a mathematical methodology that considers a set 

of inputs and uses historical relationships to estimate outcomes of interest. The relationships in 

these models are computationally driven by statistics. Engineers often design the structure of the 

model, including how the components interact. Predictive modeling has been applied to several 

domains, including healthcare.  

An objective of using predictive modeling is to improve precision in decision-making. 

For example, a predictive model could use data from a hospitalized patient’s medical record to 

determine how likely they are to be readmitted if they are discharged today versus tomorrow. 

(84) Clinical providers can use this information in discussions with patients about discharge 

decisions, which can lead to improved outcomes. 
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However, little work has been done to examine how using these predictive models in 

practice impacts system-level operations and outcomes. If a hospital were to implement the 

readmission prediction model described in the previous paragraph, using this model may lead to 

an increase in the average hospital length of stay in efforts to minimize future readmissions. With 

many patients having longer stays, the hospital may see overcrowding now, which could be 

operationally challenging, as well as potentially harmful to patients. 

This chapter explores system-level outcomes of incorporating predictive modeling in 

decision-making. Specifically, we use discrete-event simulation to examine how a Veterans 

Health Affairs (VHA) hepatology clinic could use predictive modeling outcomes to determine a 

patient appointment type when patients are referred for chronic liver disease (CLD), compared to 

other non-predictive diagnostic models. We consider how using predictive modeling changes 

outcomes based on current state appointment assignments and how the clinic may need to adjust 

operations to accommodate those changes. We also explore how the characteristics of the 

predictive model could impact outcomes by analyzing results when models’ predictive powers 

are altered. 

5.1.1. Predictive Modeling and Medical Decision-Making 

Clinicians and other healthcare leaders have been utilizing computers and other 

technology to support and/or guide their decision-making processes since the 1950s. (85–87) 

Computers are often used in healthcare to improve patient outcomes by improving precision of 

diagnoses or treatment planning or to improve system-level outcomes by increasing operational 

efficiency. In these capacities computers and other technological tools supplement human-level 

decision-making by confirming or questioning a clinician’s medical decision given some clinical 

information. An example of this would include a flag in a patient’s electronic health record 
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alerting a clinician that two prescribed medications may have a harmful interaction.  (88) 

Additionally, technology may be used to expedite the processing of information in the form of 

complex algorithmic calculations. 

Predictive modeling in particular has been commonly used in guiding diagnosis and 

treatment, especially in classification. Classification is a process of putting objects – in this case, 

the objects are often patients – into predefined categories based on the objects’ characteristics. 

For example, a patient’s glucose levels can be used to categorize their diabetes status into three 

buckets: normal (no diabetes), prediabetes, and diabetes. (89) We thus use quantitative patient 

information to classify the patient as one of three categorical diagnoses of this chronic disease.  

As a tool, predictive modeling can be especially helpful in medical decision-making 

because it has the potential to prevent patient harm, improve clinical outcomes, and improve 

value. In many contexts, predictive modeling may reduce the number of diagnostic or screening 

tests needed to accurately diagnose a patient for given condition, which reduces the likelihood of 

a patient incurring harm during that testing. (90) Under some scenarios, predictive modeling may 

alternatively increase the amount of testing performed. Additionally, predictive modeling may 

improve the precision of those results, which can improve treatment planning and lead to better 

patient outcomes. (91) Finally, because fewer diagnostic tests may be needed and care is more 

personalized to a specific patient, a system may reduce unnecessary or wasteful procedures, thus 

decreasing costs and improving the value of care provided. (92)  

Nevertheless, when predictive models are considered in healthcare, the impact is 

generally focused on improving outcomes for a specific patient or patient group by indicating 

that diagnostic accuracy for a given disease is improved by some percentage. As we discuss 

throughout this chapter, more work is needed to understand broader system-level outcomes of 
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implementing predictive modeling into standard care pathways. This chapter will help us explore 

how incorporating predictive modeling may impact system-level operations, as well as how 

changing a model’s predictive power impacts the larger system. This type of exploration can be 

helpful in determining how predictive models could impact access to care. 

 

5.1.2. Chronic Liver Disease in the VHA 

Chronic liver disease (CLD) is a condition in which a patient’s liver functioning has 

progressively deteriorated for at least six months. CLD could be caused by many related 

conditions, including chronic hepatitis infection, excessive use of alcohol, non-alcoholic fatty 

liver disease, and genetics. Individuals with CLD are treated by hepatologists, physicians who 

specialize in diseases of the liver. (93) 

CLD patients at the Ann Arbor Veterans Health Affairs (VHA) hepatology clinic are 

referred for consultation by non-hepatology providers, usually primary care providers (PCPs). 

PCPs commonly refer patients for CLD consultation based on risk factors including Hepatitis C 

infection, liver masses found in imaging, and cirrhosis. (94) Cirrhosis is scarring of the liver 

tissue and it indicates late-stage, more severe CLD. (93) Cirrhosis is diagnosed by a PCP using 

blood tests and imaging tests, like computed tomography (CT) or magnetic resonance imaging 

(MRI). (95) CLD has a long asymptomatic phase, making it difficult to precisely diagnose early 

in disease onset. 

Severity of CLD can be categorized in multiple ways; within this chapter we consider 

three stages: mild, moderate, and severe. Mild CLD indicates liver disease but no cirrhosis 

present. Moderate CLD indicates liver disease with some cirrhosis. Severe CLD indicates liver 

disease with decompensated cirrhosis. A patient with mild or moderate CLD who is left 

untreated is likely to progress to a more severe disease state. In our simulation model, we 
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consider a cohort of patients referred to a hepatology clinic, thus they are likely to have at least 

mild CLD. Thus, we do not consider patients with no CLD. 

In the current state, when a CLD patient is referred to the hepatology clinic of the Ann 

Arbor VHA, a trained non-clinician scheduler will determine if and how the patient receives a 

consultation, based on the patient’s clinical information and perceived CLD severity. Patients 

who seem to have severe CLD are most likely to receive a consultation, which is performed 

during an in-person appointment with the hepatologist.2 Patients perceived to have mild CLD 

may not receive an appointment, and if they do it would more likely be an electronic consult (e-

consult), which is an asynchronous provider-to-provider communication within an electronic 

health record. (96) Patients who are perceived somewhere between mild and severe CLD (within 

a group of “moderate” CLD patients) generally receive some type of appointment, but it could be 

in-person, e-consult, or a virtual and synchronous visit. Note that within this specific clinic, most 

referred CLD patients are nearly always offered some type of appointment so that patients feel 

they are not being neglected and satisfaction is maintained. 

5.1.3. Evaluating Chronic Liver Disease 

Fully understanding a patient’s chronic liver disease severity can be difficult, especially 

in early-stage CLD. While liver biopsy remains the gold standard for diagnosing most 

hepatological diseases, biopsy is invasive and may lead to patient harm. (97) Several models, 

algorithms, and scoring systems have been developed to assist clinicians, schedulers, and others 

in better understanding a patient’s true disease state without biopsy. For our work, we will 

consider three methods for evaluating CLD status: FIB4 index, Child-Turcotte-Pugh (CTP) 

 

 

2 During the COVID-19 pandemic, appointments typically performed in-person may have been conducted virtually. 
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score, and analytic morphomics. The first two methods, FIB4 index and CTP score are more 

commonly used in current practice and yield an objective value to descriptively indicate a 

patient’s current disease state. Analytic morphomics is a newer method that uses machine 

learning methods to more accurately understand a patient’s current disease state, while also 

predicting currently asymptomatic CLD.  

 5.1.3.1. FIB4 Index 

The FIB4 index uses four patient data elements (patient age, platelet count, and two 

different liver enzyme levels, aspartate aminotransferase and alanine aminotransferase) to predict 

fibrosis, an elevated level of scar tissue in the liver. (97) These data are combined in the 

following formula to calculate FIB4 index: 

𝐹𝐼𝐵4 𝐼𝑛𝑑𝑒𝑥 =  
𝑎𝑔𝑒 ∗ (𝑎𝑠𝑝𝑎𝑟𝑎𝑡𝑒 𝑎𝑚𝑖𝑛𝑜𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑎𝑠𝑒)

(𝑝𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑐𝑜𝑢𝑛𝑡) ∗ √(𝑎𝑙𝑎𝑛𝑖𝑛𝑒 𝑎𝑚𝑖𝑛𝑜𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑎𝑠𝑒)
 

The resulting value indicates the predicted level of fibrosis on scale between 0.2 and 10. 

Patients with a FIB4 index less than 1.45 are highly likely to have mild CLD and a FIB4 index 

over 3.25 indicates high likelihood of severe CLD. (97) An advantage of this method is that most 

patients referred to the hepatology clinic for CLD have the necessary data to calculate the FIB4 

index. (98) A disadvantage of the FIB4 index is that a value between 1.45-3.25 does not yield a 

conclusive indication of a patient’s CLD state. 

5.1.3.2. Child-Turcotte-Pugh Score 

 The Child-Turcotte-Pugh Score (CTP Score) helps classify patients’ liver disease and 

cirrhosis progression using five clinical features: bilirubin levels, albumin levels, prothrombin 

time (related to blood clotting speed), ascites (fluid build-up), and hepatic encephalopathy (loss 
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of brain-function due to liver disease). (99) These features are combined in the following table 

that indicates a number of points a patient accrues based on their features: 

Table 23. Calculation of the Child-Turcotte-Pugh Score 

Factor 1 point 2 points 3 points 

Total bilirubin (μmol/L) <34 34-50 >50 

Serum albumin (g/L) >35 28-35 <28 

Prothrombin time international 

normalized ratio 

<1.7 1.71-2.30 >2.30 

Ascites None Mild Moderate-Severe 

Hepatic encephalopathy None Mild to Moderate Severe 

 

 The sum of the points for each feature result in a CTP score. A CTP score of 5-6 

indicates mild to no CLD, a score of 7-9 indicates moderate CLD, and a score over 9 indicates 

severe CLD. (99) Unlike the FIB4 index, the data required for the CTP score is not as commonly 

found within patient records, so providers may need to require additional testing/data collection 

to calculate a CTP score. 

5.1.3.3. Morphomics 

 The FIB4 index and CTP score both use clinical data as inputs to calculate a quantitative 

value to guide clinicians in diagnosing CLD, however neither of these models would be 

classified as a “predictive model.” In contrast, a recently developed tool, morphomics, uses 

predictive modeling in guiding CLD diagnosis. 

 The morphomics model (or, more completely, “analytic morphomics model”) is a 

logistics regression model with elastic net regularization. The primary feature of the morphomics 

model is a computed tomography (CT) scan, but the model also considers several other values 

from a patient’s medical record including patient demographics and laboratory test values. The 

morphomics model can also include the results of other hepatologic algorithms, like the FIB4 
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index, as a feature used in predicting CLD severity. (100) The morphomics model classifies 

patients into non-cirrhosis (mild CLD) or cirrhosis (moderate or severe CLD) categories. 

 A key advantage of using the morphomics model is that it is effective at detecting CLD 

early in disease onset. A disadvantage of the morphomics model is that it requires a patient 

having a CT scan within the past 6 months, as well as many recent test results. While providers 

who would like to use morphomics in better understanding a patient’s true CLD severity can 

refer a patient for a CT scan and other additional testing, these referrals can be costly and 

burdensome for the patient. We explore the trade-offs of this and other considerations in our 

simulation model. 

5.2. Methods 

 We developed a discrete-event simulation model to consider various policies (outlined in 

Section 5.2.1) to consider CLD appointment decision-making using various clinical decision 

models, including the FIB4 index, CTP score, and morphomics. We compare these policies 

under several scenarios, as detailed in Section 5.2.2. 

 Our model includes a pathway as outlined in Figure 1. In each replication a number of 

patients “arrives” to indicate they are being referred to the VHA hepatology clinic. For the 

analyses presented in this chapter, we set this number to be 77,597, which represents the number 

of patients who visited the Ann Arbor VHA Hepatology Clinic from 2008-2014. Each patient 

who arrives has some probability of having the tests and other data required to run each of the 

three clinical decision models. Each patient also has some true disease state which is hidden from 

the perspective of the appointment decision-maker. 
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Figure 7. Chronic Liver Disease Patient Flow 

 

 Depending on the policy being used and the availability of data for a given patient, a 

decision model is used to estimate a patient’s disease state (Decision 1). The results of this 

decision model are the patient’s predicted disease state and a binary indicator of confidence in 

that prediction. Depending on the policy and what data the patient currently has, a patient may be 

“sent” to gather additional tests or other data, which may improve the confidence in the predicted 

disease state (Decision 1a). If a patient is sent for additional data collection, we track the 

additional tests performed and then the patient returns to Decision 1. 

 After decision model results have yielded sufficient confidence according to our policy, a 

decision is made about what type of appointment a patient should be offered (Decision 2). As 

discussed in Section 5.1.2., a patient’s clinically-ideal appointment is based on the patient’s true 

disease state, with severe CLD patients indicating a need for in-person appointments and 
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moderate CLD patients being referred for telehealth appointments. Mild CLD patients are 

recommended less intensive appointments, like e-consult. In our simulation model we also 

consider another low-intensive “appointment” type called population management. Population 

management involves the referring provider, often a primary care practitioner, to monitor a 

patient’s health over time instead of the patient receiving a hepatology appointment. Population 

management is not commonly used in VHA referring clinics currently, but our clinical 

collaborators indicated it could be a reasonable option for mild CLD patients and should be 

included in our simulation model. Because population management is a less-intensive 

appointment, we only recommend a patient for this type of appointment if we have high 

confidence in our prediction of their disease state. For our model, we consider any prediction that 

uses morphomics to infer high confidence. Thus, any patient who is predicted to have mild CLD 

using a decision model that includes morphomics is recommended for population management; 

any patient predicted to have mild CLD using another decision model is referred to an e-consult. 

 Once a patient has been recommended for an appointment, the patient’s true disease state 

is “revealed,” allowing us to calculate metrics using various policies under difference scenarios. 

Metrics include how often true disease state was accurately predicted, number of various 

appointment types provided, and how often patients were sent to gather additional test results or 

other information. We consider metrics across all disease states and also stratified by disease 

state to examine if various policies are more helpful for certain patient subgroups.  

 Input data for our simulation model comes from previously published studies on CLD 

decision models and operational data from the Ann Arbor VHA Hepatology Clinic. An overview 

of the input data is outlined in Table 24. 
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Table 24. Baseline Input Parameters 

Parameter Value 

Number of patients 77,597* 

Proportion of true disease state among patients  

Mild CLD 89.6% 

Moderate CLD 5.8% 

Severe CLD 4.6% 

Probability that patients arrive with tests to run decision model  

FIB4 Index 79% 

CTP Score 35% 

Morphomics 29% 

* Represents CLD patients from 2008-2014 

 

 We use several clinical decision models as discussed in previous paragraphs. The 

predictive accuracy of each of those models is incorporated into our simulation using a disease 

prediction matrix, as exemplified in Figure 8. See Appendix B for all baseline values for each 

decision model. Broadly, these matrices indicate the probability a disease state will be predicted, 

given a patient’s true disease state, for each decision model (FIB4, CTP, and morphomics). We 

also include matrices for using two or three decision models when patients have the data needed 

for more than one decision model and the policy permits combining decision models. We assume 

that when more than one decision model is used to predict a patient’s disease state, the combined 

decision models will be superior to either single model. For example, using both a FIB4 index 

and a CTP score will yield more accurate predictions than using FIB4 index or CTP score alone. 

 

Figure 8. Sample Disease Prediction Matrix 

  Predicted State 

  Mild CLD Moderate 

CLD 

Severe CLD 

A
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Mild CLD A1% B1% C1% 

Moderate 

CLD 

A2% B2% C2% 

Severe CLD (1-A1-A2)% (1-B1-B2)% (1-C1-C2)% 
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 In addition to prediction matrices for our three clinical decision models (FIB4, CTP, and 

morphomics) and their combinations, we also include a “general prediction matrix” (also in 

Appendix B) which indicates how the disease state for patients referred for CLD may be 

estimated in the absence of clinical decision models. The values in all of our prediction matrices 

are provided by the Ann Arbor VHA Hepatology Clinic, based on a population of referred CLD 

patients.  

5.2.1. Policies 

 Several policies could be used to examine the impact of access when incorporating 

predictive models into CLD appointment decisions. In this chapter, we will focus on six main 

policies: (A) no decision models used, (B) no additional testing, (C) FIB4 testing required, (D) 

CTP testing required, (E) morphomics testing required, and (F) all testing required. Regardless of 

the policy in place, we assume that if a patient has the testing required for a decision model and 

the policy permits that model can be used, we always include it in our disease prediction. 

Under Policy A, we only use the general prediction matrix to determine a patient’s 

predicted disease state, ignoring any tests or data the patient has. Policy A is largely used as a 

reference case for our other policies. 

 Under Policy B (no additional testing), we can only use the information (demographics, 

lab/imaging results, etc.) that a patient has when they are referred to hepatology for CLD. Under 

this policy, a patient’s disease state is predicted using any one (or more) of the decision models 

(FIB4, CTP, or Morphomics) if a patient has the required data to run the decision model(s). If the 

patient does not have the required data to run any decision model, we use the general prediction 

matrix to estimate disease state. 
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 Under Policies C-E, patients who are referred to hepatology for CLD are required to 

obtain one set of tests to satisfy needs for a given decision model, depending on which policy is 

implemented (FIB4 under Policy C, CTP under Policy D, and Morphomics under Policy E). 

Under each of these policies, our simulation tracks the number of patients who are required to 

obtain additional testing. In reality, this required testing would necessitate additional patient 

appointments, adding to patient burden and increased operational needs for the referring clinic. 

However, this additional testing can improve appropriateness of appointment decisions, which 

may improve patient clinical outcomes. 

 Note that under Policies C-E, a patient may arrive with the necessary testing to run one 

clinical decision model but may have to return for additional testing if it is not the decision 

model highlighted in the specific policy. For example, if Policy E is enforced, a patient is 

required to have morphomics testing. If a patient arrives with the necessary testing to run FIB4, 

they are still required to obtain morphomics testing, but when we use the decision models to 

predict the patient’s disease state, we can use both FIB4 and morphomics, yielding a higher 

predictive power than morphomics alone.  

 Under Policy F, patients are required to obtain testing for all three decision models and 

are returned to gather any testing that they do not have when referred. In this policy, the disease 

prediction matrix that incorporates all three decision models will always be used.  

5.2.2. Scenarios 

 In our analysis, we consider three scenarios: (1) baseline, (2) altering morphomics 

predictive power, (3) altering true disease state distribution. Scenarios 2 and 3 act as sensitivity 

analyses to help us understand how changing the assumptions and inputs of our model can 

impact outcomes.  
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 Scenario 1 (baseline) examines the five policies using baseline parameters, as outlined in 

Table 24, as well as the prediction matrices as outlined in Appendix B. Scenario 2 (altering 

morphomics predictive power) examines our five policies, but with lower/higher predictive 

power for our morphomics decision model. In this scenario, we increase/decrease the values in 

prediction matrices that use morphomics to indicate how changing the accuracy of a predictive 

model has larger impacts. Scenario 2 values are conceptual but allow us to better understand the 

broader impacts that may arise from improving or degrading a predictive model’s power. 

Improvements in predictive power could arise through considering previously unutilized features 

in the analytic morphomics model, while lower predictive power may arise from imprecise test 

results used as input data for the model. 

In scenario 3 (altering true disease state distribution), we increase the proportion of 

patients who have moderate and severe CLD from our baseline distribution. This allows us to 

understand the impacts of using predictive modeling in appointment decision-making in a 

population with more moderate/severe CLD (and thus less mild CLD). 

5.3. Results 

5.3.1. Baseline Results 

 Baseline scenario results are presented in Tables 25 and 26. Compared to Policy A, in 

which we ignore any patient data and use a general prediction matrix to determine a patient’s 

disease state, all policies show improvement in percentage of patients’ true disease states 

correctly predicted. Under Policy B, in which we use any available patient data to inform our 

prediction but do not require any additional testing, the overall percentage correctly predicted is 

64.3%, compared 40.3% in Policy A. For Policies C-E, in which one decision model’s set of 

tests is required, this percentage continues to increase, with Policy E having the highest 
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percentage at 87.4%. If testing is required for all decision models (Policy F), we see the highest 

percentage of correctly predicted disease state at 93.5%. 

The baseline results presented thus far are relatively straightforward; as we use models 

with higher predictive power, we improve the percentage of patients’ disease states correctly 

predicted. We use these results as validation of our model logic, as well as a foundation for 

comparing the analyses discussed in subsequent sections of this chapter.  

 

Table 25. Percentage of Correctly Predicted True Disease State under Baseline Conditions 

 Percentage of True Disease State Correctly Predicted 
Policy Mild Moderate Severe Overall 
A. No Testing Used 40.1% 34.4% 50.8% 40.3% 
B. No Additional Testing 66.5% 41.0% 60.8% 64.7% 
C. FIB4 Required 67.5% 40.4% 61.1% 65.7% 
D. CTP Required 87.4% 44.1% 53.5% 83.2% 
E. Morphomics Required 88.5% 69.2% 89.2% 87.4% 
F. All Testing Required 94.9% 75.1% 90.0% 93.5% 

 

 In Table 26, we can see a high-level perspective of how various policies impact system-

level access. For example, under Policies B-D, some patients have disease state predicted using 

decision models that include morphomics and others do not, thus e-consult and population 

management are both used as appointment recommendations for patients predicted to have mild 

CLD. In Policies E and F, all patients use a model that includes morphomics, thus all patients 

who are predicted to be mild CLD are recommended population management. Table 26 also 

indicates the number of patients who would need to return for additional testing under the 

various policies, with Policy F requiring the most additional testing. Note that the number of 

patients requiring additional testing will not change in future scenarios and are only reported 

here, but one can be assume similar values in other scenarios. 
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Table 26. Appointments Needed and Additional Testing Required under Baseline Conditions 

 

Appointments Needed 

Patients Requiring Additional 

Testing 

Policy Pop. 

Mgmt. 

E-

Consult Telehealth 

In-

Person FIB4 CTP Morph. 

A. No Testing Used 0 30,054 26,894 20,649 0 0 0 

B. No Additional Testing 17,199 30,518 20,353 9,527 0 0 0 

C. FIB4 Required 17,461 31,028 20,426 8,682 16,435 0 0 

D. CTP Required 18,806 44,114 11,950 2,727 0 50,512 0 

E. Morphomics Required 61,948 0 11,575 4,074 0 0 55,902 

F. All Testing Required 66,484 0 7,285 3,828 16,283 50,678 55,628 

 
 

Taking the results of Tables 25 and 26 together, clinical decision-makers can begin to 

consider trade-offs between increased disease predictions from requiring more testing as shown 

in Table 25, and the additional testing required under various policies. For example, moving 

from Policy B (no additional testing) to Policy C (FIB4 required), the percentage of true disease 

state correctly predicted increases by only 1%, but 16,435 patients will require additional testing 

to calculate a FIB4 index. Moving from Policy B to D (CTP required), we see an increase in 

percentage of true disease state correctly predicted of nearly 20%, but over 50,000 patients will 

require additional testing to calculate a CTP score. 

One can also consider the types of referral appointments used under various policies, 

especially for more resource-intensive appointments like in-person and telehealth visits. Under 

Policy A (no testing used), we see nearly 50,000 telehealth and in-person appointments needed. 

Once we begin to use some decision models (in Policy B onward), the number of needed 

telehealth and in-person visits decreases, while percentage of true disease state correctly 

predicted increases. Compared to Policy A, implementing Policy B sees an almost 25% increase 

of correctly predicted true disease state, a decrease of about 15,000 telehealth/in-person 

appointments needed, and no additional testing appointments required for patients. 
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5.3.2. Altering Morphomics’ Predictive Power Results 

 We next examine results when the predictive powers of our morphomics-based models 

are changed, including one scenario in which predictive power is lower and another in which it is 

higher. The matrices used in these scenarios are included in Appendix C. In general, we 

decrease/increase correct classification probabilities in these matrices by 5%. An exception to 

this change is any morphomics-based models that also use CTP score, which have a high 

probability of correct classification of mild CLD; these values are changed by just 1%.  

 Table 27 presents percentage of patients’ correctly predicted true disease state when the 

morphomics’ predictive power is decreased. Compared to our baseline scenario, all policies 

(except our reference policy, A) show lower percentages of correctly predicted true disease state.  

In Table 28, we also see small changes in the appointments needed. In particular, compared to 

our baseline scenario, we see an increased number of telehealth or in-person appointments 

needed, indicating patients are more likely to be predicted as moderate or severe CLD under 

these conditions. 

 

Table 27. Percentage of Correctly Predicted True Disease State under Lower Morphomics 

Predictive Power Conditions 

 Percentage of True Disease State Correctly Predicted 
Policy Mild Moderate Severe Overall 
A. No Testing Used 40.2% 33.7% 51.3% 40.3% 
B. No Additional Testing 65.6% 38.6% 59.2% 63.8% 
C. FIB4 Required 66.4% 39.9% 58.9% 64.5% 
D. CTP Required 86.0% 39.6% 53.5% 81.9% 
E. Morphomics Required 85.4% 60.7% 84.0% 84.0% 
F. All Testing Required 90.2% 65.0% 85.4% 88.5% 

 
 

Table 28. Appointments Needed under Lower Morphomics Predictive Power Conditions 

 Appointments Needed 
Policy Pop. Mgmt. E-Consult Telehealth In-Person 
A. No Testing Used 0 30,073 26,910 20,614 
B. No Additional Testing 17,010 30,299 20,991 9,297 
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C. FIB4 Required 17,124 30,564 21,148 8,761 
D. CTP Required 17,804 44,356 12,631 2,806 
E. Morphomics Required 60,230 0 13,394 3,973 
F. All Testing Required 63,251 0 10,269 4,077 

 

 Alternatively, we can also consider morphomics-based models to have higher predictive 

power. The results of these analyses are shown in Tables 29 and 30. In Table 29, we see higher 

percentages of patients whose disease state is predicted correctly compared to our baseline 

scenario. Of note, under Policy F, in which all patients’ disease state is predicted using a 

prediction model which incorporates morphomics, FIB4, and CTP, we see the 96% of patients’ 

disease states are correctly predicted. In Table 30, we see that the number of telehealth 

appointments has decreased in all policies compared to our baseline scenario. This is largely due 

to our decision models more often correctly predicting mild or severe CLD in patients, thus not 

misclassifying them as moderate CLD.  

Table 29. Percentage of Correctly Predicted True Disease State under Higher Morphomics 

Predictive Power Conditions 

 Percentage of True Disease State Correctly Predicted 
Policy Mild Moderate Severe Overall 
A. No Testing Used 40.2% 34.6% 49.9% 40.3% 
B. No Additional Testing 67.6% 43.4% 60.9% 65.8% 
C. FIB4 Required 67.9% 44.5% 62.3% 66.3% 
D. CTP Required 87.5% 43.2% 56.0% 83.6% 
E. Morphomics Required 92.4% 77.9% 94.2% 91.6% 
F. All Testing Required 97.1% 80.1% 95.1% 96.0% 

 

Table 30. Appointments Needed under Higher Morphomics Predictive Power Conditions 

 Appointments Needed 
Policy Pop. Mgmt. E-Consult Telehealth In-Person 
A. No Testing Used 0 30,134 26,892 20,571 
B. No Additional Testing 17,967 30,546 19,761 9,323 
C. FIB4 Required 18,107 30,669 20,173 8,648 
D. CTP Required 19,111 44,029 11,598 2,859 
E. Morphomics Required 64,544 0 9,020 4,033 
F. All Testing Required 67,741 0 5,793 4,063 
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 From this scenario’s results, we see that increasing or decreasing the predictive power of 

morphomics-based decision models logically results in a corresponding increase or decrease in 

the percentage of true disease state correctly predicted. When considering morphomics-based 

models with decreased predictive power, policies that use these models still show higher 

percentages of correctly predicted true disease state, though as we see in Table 27, this value for 

Policy E is only slightly greater than in Policy D (CTP required). If morphomics-based models 

were adjusted to have increased predictive power, we see the greatest value in predicting mild 

and severe CLD patients’ true disease state correctly (>90%).   

5.3.3. Altering True Disease State Distribution Results 

 In our final scenario, we alter the distribution of patients’ true disease state. As shown in 

Table 24, in our baseline, approximately 89% of patients have mild CLD, 6% have moderate 

CLD and 5% have severe CLD. In this scenario, we adjust this distribution to be 50% mild CLD, 

25% moderate CLD, and 25% severe CLD. This adjustment allows us to examine how our 

policies may impact the appointments needed if the underlying patient population had more 

moderate/severe CLD than the original cohort.  

 In Table 31, we see that within each patient category (mild, moderate, and severe CLD), 

the percentage of correctly predicted true disease state does not change much from the baseline 

scenario. However, because our distribution of patients’ true disease state is different from the 

baseline, the overall percentages are different in this scenario, with all overall percentages of 

correct predictions lower, apart from our reference policy, A. Because our decision models tend 

to predict mild CLD most accurately, this decrease makes sense. When we have fewer mild CLD 

patients and more moderate/severe CLD patients, our overall accuracy will decrease.  
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Table 31. Percentage of Correctly Predicted True Disease State under Altered True Disease 

State Distribution Conditions 

 Percentage of True Disease State Correctly Predicted 
Policy Mild Moderate Severe Overall 
A. No Testing Used 40.5% 33.8% 50.5% 41.3% 
B. No Additional Testing 66.8% 40.9% 60.0% 58.5% 
C. FIB4 Required 66.6% 42.0% 61.8% 59.3% 
D. CTP Required 87.1% 41.5% 56.2% 68.1% 
E. Morphomics Required 88.7% 69.6% 89.0% 84.0% 
F. All Testing Required 95.0% 75.2% 90.1% 88.8% 

 

 Table 32 indicates the appointments needed when our true disease state distribution is 

altered to include fewer mild CLD patients. Under these conditions, we see far fewer patients 

being referred for population management and e-consult appointments, and more patients 

referred for telehealth and in-person appointments. This shift can be attributed to the more 

moderate and severe CLD patients in the cohort appropriately needing telehealth and in-person 

appointments.  

Table 32. Appointments Needed under Altered True Disease State Distribution Conditions 

 Appointments Needed 
Policy Pop. 

Mgmt. E-Consult Telehealth In-Person 
A. No Testing Used 0 25,911 25,750 25,936 
B. No Additional Testing 10,328 23,243 22,722 21,304 
C. FIB4 Required 10,223 22,548 23,084 21,742 
D. CTP Required 11,003 33,056 18,721 14,817 
E. Morphomics Required 36,775 0 19,959 20,863 
F. All Testing Required 38,659 0 18,470 20,468 

 

The results of this scenario indicate the importance of considering the predictive power of 

decision models in the context of the patient population in which they are applied. When our 

overall patient population includes more moderate and severe CLD patients, our overall 

percentage of correctly predicted disease state decreases compared to our baseline scenario. This 

decrease is because the included decision models are generally worst at correctly predicting 

moderate CLD, so if we increase the proportion of these patients, our percentage of correctly 
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predicted disease state correspondingly decreases. One could therefore consider an ideal patient 

population for our decision models would be one in which there are primarily mild and/or severe 

CLD patients.  

5.4. Conclusions 

 As predictive modeling continues to be incorporated into decision-making about clinical 

appointments, healthcare leaders will need to understand how using such techniques may have a 

system-level impact on operations and patient access. The simulation model presented in this 

chapter demonstrates a tool to guide clinical decision-makers as they determine how best to 

incorporate predictive modeling in making decisions for patients. While we focused on chronic 

liver disease in this chapter, the approach presented here could be applied to other diagnoses in 

which patients can be classified within several categories and multiple models existing in which 

patient data can be analyzed.  

 The results of our model show that predictive modeling can be effectively used to 

increase a provider’s understanding of a patient’s true disease state, thus improving the 

appropriateness of the hepatology appointment recommended to that patient. Depending on the 

policy in place, patients may be required to undergo additional testing, which places burden on 

both the patient and the provider system. Operational and clinical decision-makers can use the 

simulation model results to determine a policy that balances this burden with the positive clinical 

impact derived from additional testing. 

 Policy B, which uses only the information a patient has when they arrive in the system, 

shows a 24.4% increase in percentage of correctly predicted true disease state compared to using 

no testing (Policy A) under baseline conditions. This increase in correctly predicted true disease 

state requires no additional testing burden, but may require a shift in the mix of appointment 



 102 

types to which patients are referred. To improve correct prediction of patients’ true disease state 

even further, decision-makers could implement Policy E (morphomics testing required) or Policy 

F (all testing required), however this will result in increased burden from additional testing. 

 Our second scenario presented an analysis when the predictive power of morphomics-

based models was altered. Logically, if predictive power of these models was decreased, our 

overall percentage of correctly predicted true disease states decreased as well, with the opposite 

effect if predictive power of morphomics-based models was increased. These two scenarios can 

help clinicians and operational leaders understand how a predictive model’s power either 

worsening or improving can impact the overall clinic. Additionally, in our final scenario, we 

considered a cohort that included a higher proportion of moderate and severe CLD patients 

compared to baseline. This scenario demonstrated that underlying disease distribution will have 

an impact on the distribution of appointments needed. For example, our baseline cohort included 

a majority (approximately 90%) of patients with mild CLD versus moderate or severe CLD, 

leading to a large number of population management and e-consult appointments needed. This 

distribution also impacts the overall percentage of patients for whom we correctly predict true 

disease state. 

 The analyses presented in this chapter are intended provide a foundation for future work 

and should be considered as validation for the approach discussed to consider how incorporating 

predictive modeling in appointment decision-making can be modeled using simulation. A 

limitation of our simulation is that patients never get additional testing after their disease state 

has been predicted. In reality, if a provider were not confident about a patient’s predicted disease 

state, the provider may send the patient for additional testing, after which a decision model with 

higher predictive power could be used to estimate a patient’s disease state. Further, our 
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simulation model does not consider any patient attributes aside from their true disease state and 

if they have the testing required for our decision models. Of course, patients have many more 

attributes that may impact what kind of appointment they may be recommended and/or if they 

should be sent for additional testing. Such attributes could include how far the patient lives from 

the clinical location, which could impact if they are willing to comply with requests for 

additional testing and/or their likelihood of attending an in-person hepatology appointment. 

Attributes such as distance to care should be incorporated in future iterations of the simulation 

model presented here. Additional features to include in future versions of this model include 

appointment and testing capacity constraints.  

 In our CLD model, patients were recommended to an appointment that is best aligned to 

their perceived clinical needs, based on their disease state; a severe CLD patient can most benefit 

from an in-person appointment, a moderate CLD patient’s needs can be met with a telehealth 

appointment, while mild CLD patients can be effectively cared for with an e-consult or 

population management. However, regardless of true disease state, patients will likely derive 

some benefit from any appointment type. That is, a severe CLD patient can still benefit from a 

telehealth appointment. When considering additional applications of our approach, accuracy of 

disease state prediction may be more critical based on the resulting appointment decision(s). For 

example, in a different diagnosis, it may be critical to identify severely diseased patients to 

ensure they receive a specific appointment recommendation. In such a case, an effective policy 

will need to require that the decision model(s) used to predict a patient’s disease state are highly 

sensitive to severely diseased patients to ensure those patients receive appropriate care. 
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Chapter 6. Conclusions 

 

This dissertation demonstrated four industrial engineering-based approaches for 

designing healthcare systems to improve access to care for veterans. These methods can be 

helpful both in evaluating systems to understand current state performance as well as in 

designing new systems and policies that concentrate on improving access. While we focused 

primarily on two core methodologies, linear programming and simulation, other industrial 

engineering tools may also be helpful to considering this issue, including Markov processes and 

stochastic optimization modeling. 

 In Chapter 2, we presented a linear programming model to improve veteran access to 

screening and care for chronic eye disease.  This model can serve particularly helpful for 

Veterans Health Affairs (VHA) clinicians and administrators as they seek to screen as many 

patients as possible within the VHA system, as opposed to patients receiving no screening or 

being screened at a non-VHA provider. A strength of our model is demonstrating how the VHA 

system can be redesigned to increase number of patients screened with little additional cost. The 

model presented in Chapter 2 outlined these effects in the state of Georgia and we have used the 

structure of this model to guide the VHA as they plan for expanded eye care in the Central 

Alabama region. This model could continue to be applied to new geographic regions and/or 

additional outpatient VHA services like dermatology. Further, future work could include adding 

greater specificity to our two-step mixed-integer program that incorporates follow-up care for 

those who screen positive for chronic eye disease. For example, rather than a singular probability 
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for screening positive for any eye disease, specific probabilities could be included for several 

diagnoses, each with their own prevalence and required number of follow-up appointments. 

 Chapter 3 discussed a simulation model to incorporate patient preference for appointment 

modality in scheduling policies. Using gastroesophageal reflux disease (GERD) as a 

demonstrative example, we showed that scheduling policies can be constructed to accommodate 

these patient preferences. While our example showed that these patient preferences could be 

accommodated, other clinical contexts (different diagnoses, different patient demographics, etc.) 

may require an increase or decrease in the number of providers needed and/or a change in the 

distribution of appointment types offered by each provider. A key finding in our example was the 

importance of considering how interwoven primary care and specialty care can be. In our GERD 

example, half of the potential appointments were conducted by a primary care provider. 

Although GERD care may often be provided by specialty care providers (here, 

gastroenterologists), understanding the appointment types offered by primary care providers and 

how they align with patient preferences is helpful in ensuring an overall efficient system in 

which patients are seen in a timely manner. Future work of this simulation model may include 

adding additional patient demographics to more robustly incorporate patient preferences. One 

could also add optimization into the simulation model to determine the minimal number of 

appointments offered of a given type to meet patient need under constraints related to allowable 

wait time and number of available providers. 

 In Chapter 4 we developed a simulation model that considered strategies for mitigating 

patient backlog for endoscopy during the COVID-19 pandemic. We discussed several strategies, 

including (1) having some patients conduct at-home testing in lieu of a screening colonoscopy, 

(2) deferring patients who are considered low-risk in colon cancer surveillance for two years, and 
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(3) adding weekend clinic hours to increase weekly capacity. The objective of this simulation 

model was not to identify the best strategy, but rather to help decision-makers understand the 

trade-offs of implementing one or more of these strategies. For example, adding weekend clinic 

hours and incorporating no other strategies allows for the greatest patient volume to be seen over 

the course of our given period. However, compared to one of the first two strategies, many 

patients are waiting excessive amounts of time for their appointments. A clinic can likely receive 

the most benefit from incorporating more than one strategy but may not have the resources 

available to do so. This model has been used to examine VHA operations starting in March 2020, 

when the COVID-19 pandemic began widely impacting clinic capacity. Moving forward, we can 

use the model to understand how future decisions from VHA clinics can help reduce persistent 

patient backlog. Additionally, the simulation model can be updated to more comprehensively 

consider patient outcomes, including adding penalties for patients lost to follow-up when they 

are referred for FIT or incorporating degradation of a patient’s clinical state as they are waiting 

in the queue. 

 Our final simulation model was presented in Chapter 5 and demonstrated system-level 

considerations for incorporating predictive modeling into appointment decision-making. In this 

chapter, we review how a new predictive model, analytic morphomics, can be incorporated into 

appointment decisions for chronic liver disease (CLD). Our simulation results indicated that 

clinicians could use morphomics to improve appointment decision-making. However, depending 

on the policy used when incorporating morphomics into this process, burden may be placed on 

the system and on patients to receive the additional testing required for morphomics to be used. 

Clinical and operational leaders must weigh this burden, as well as their capability to offer the 

necessary referral appointment capacity, when determining the appropriate way to bring 



 107 

morphomics into appointment decision-making. The simulation model presented in this chapter 

lays the foundation for a more detailed model of our considered application in chronic liver 

disease. In future versions of this simulation, features can be added to incorporate a patient’s 

likelihood of attending an appointment, as well as their ability to comply with additional testing 

requests. 

 When considering future work in the domain of this dissertation, a logical next step 

would be the incorporation of equity parameters. While the models discussed herein all aim to 

improve veteran access to care, they do not specifically consider health equity. The mixed-

integer program in Chapter 2 included some constraints to mitigate geographical barriers to 

healthcare access, and the simulation models presented in Chapters 3 and 4 aimed to improve 

access via decreased wait time, yet model features could be added to ensure the patients who 

need care the most are able to receive it. Further, one should consider that as we use these 

models to improve veteran access to care overall, we are not doing so by highly prioritizing one 

patient subgroup and neglecting another. 

 The models presented in this dissertation are all presented with parameters to reflect 

operations in the VHA system. The VHA has several operational and financial structures that are 

helpful when using industrial engineering tools like linear programming and simulation, namely 

that patients often stay within the system to receive care, that costs are relatively centralized, and 

that providers are incentivized to coordinate with others in the system and to ensure patients 

receive preventive care. 

 The features of the VHA system allow our industrial engineering models to be easily 

applied, but we could extend these models to non-VHA systems by adjusting constraints and 

making modifications to model logic. For example, the simulation model in Chapter 4 could be 
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adapted to reflect a non-VHA system by including a probability of patients exiting the queue to 

seek out-of-system care if they have been waiting longer than a given number of weeks for an 

endoscopy appointment and/or an additional stream of patient arrivals that represents external 

arrivals.  Such non-VHA systems would require further details on costs, especially for providers 

who are compensated per patient interaction, unlike salaried VHA providers. However, as 

discussed in Chapter 1, access to healthcare is a national public health issue that extends beyond 

the VHA, so applying our models in other contexts could provide great benefit to non-veterans. 
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Appendices 
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Appendix A. Appendix for Chapter 3 

 

This appendix includes supplementary information related to Chapter 3, including the 

transition probability matrix and tornado diagram abbreviation guide. 

We determine a patient’s next appointment/exit based on a transition probability matrix 

given their current appointment. Note: if a patient is currently at an appointment, they may no-

show, which is indicated by the probability in the matrix of their next appointment being the 

same as their current appointment. 
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The tornado diagrams (Figures 4 and 5) use abbreviated names of input variables. 

Abbreviations and variable descriptions are listed here, as well as the minimum and maximum 

values used in our sensitivity analyses: 

 

 

 

  

Table 33. Tornado Diagram Abbreviations and Variable Descriptions 
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Appendix B: Decision Model Prediction Matrices for Chapter 5 
 
 

Table 34. General Prediction (No Additional Testing) Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.4 0.35 0.25 

moderateCLD 0.33 0.33 0.33 

severeCLD 0.2 0.3 0.5 
 

 

Table 35. CTP Alone Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.84 0.16 0.00 

moderateCLD 0.69 0.29 0.02 

severeCLD 0.20 0.64 0.16 
 

 

Table 36. FIB4 Alone Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.45 0.40 0.15 

moderateCLD 0.17 0.30 0.53 

severeCLD 0.20 0.29 0.51 
 

Table 37. FIB4+CTP Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.84 0.16 0 

moderateCLD 0.43 0.3 0.27 

severeCLD 0.2 0.29 0.51 
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Table 38. Morphomics Alone Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

A
ct

u
a
l 

S
ta

te
 mildCLD 0.85 0.15 0 

moderateCLD 0.2 0.6 0.2 

severeCLD 0 0.15 0.85 
 

Table 39. Morphomics+CTP Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.95 0.05 0 

moderateCLD 0.2 0.65 0.15 

severeCLD 0 0.15 0.85 
 

 

Table 40. Morphomics+FIB4 Alone Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.85 0.15 0 

moderateCLD 0.1 0.7 0.2 

severeCLD 0 0.1 0.9 
 

 

Table 41. Morphomics+CTP+FIB4 Decision Model Prediction Matrix 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.95 0.05 0 

moderateCLD 0.1 0.75 0.15 

severeCLD 0 0.1 0.9 
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Appendix C: Adjusted Morphomics-Based Decision Model Prediction Matrices for 

Chapter 5, Scenario 2 
 

Note: In this scenario, the values in the General Prediction, CTP Alone, FIB4 Alone, and 

FIB4+CTP matrices do not change. 

Morphomics-Based Prediction Matrices with Lower Predictive Power 

Table 42. Morphomics Alone Decision Model Prediction Matrix with Lower Predictive Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

A
ct

u
a
l 

S
ta

te
 mildCLD 0.8 0.2 0 

moderateCLD 0.25 0.5 0.25 

severeCLD 0 0.2 0.8 
 

Table 43. Morphomics+CTP Decision Model Prediction Matrix with Lower Predictive Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.9 0.1 0 

moderateCLD 0.25 0.55 0.2 

severeCLD 0 0.2 0.8 
 

Table 44. Morphomics+FIB4 Decision Model Prediction Matrix with Lower Predictive Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.84 0.16 0 

moderateCLD 0.15 0.6 0.25 

severeCLD 0 0.15 0.85 
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Table 45. Morphomics+CTP+FIB4 Decision Model Prediction Matrix with Lower Predictive 

Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.90 0.05 0 

moderateCLD 0.15 0.65 0.2 

severeCLD 0 0.15 0.85 



 116 

Morphomics-Based Prediction Matrices with Higher Predictive Power 

 

Table 46. Morphomics Alone Decision Model Prediction Matrix with Higher Predictive Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

A
ct

u
a
l 

S
ta

te
 mildCLD 0.9 0.1 0 

moderateCLD 0.15 0.7 0.15 

severeCLD 0 0.1 0.9 
 

Table 47. Morphomics+CTP Decision Model Prediction Matrix with Higher Predictive Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.97 0.03 0 

moderateCLD 0.15 0.75 0.1 

severeCLD 0 0.1 0.9 
 

 

Table 48. Morphomics+FIB4 Decision Model Prediction Matrix with Higher Predictive Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.9 0.1 0 

moderateCLD 0.05 0.8 0.15 

severeCLD 0 0.05 0.95 
 

 

Table 49. Morphomics+CTP+FIB4 Decision Model Prediction Matrix with Higher Predictive 

Power 

   Predicted State 

   mildCLD moderateCLD severeCLD 

T
ru

e 

S
ta

te
 mildCLD 0.97 0.03 0 

moderateCLD 0.05 0.8 0.15 

severeCLD 0 0.0.5 0.95 
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