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Abstract 
 

The thesis research consists of two projects: the major focus is using population approach to 

account for the systemic availability variability of Mycophenolate Mofetil (MMF) in human and 

providing insights into developing a predictive bioequivalence (BE) test. A separate small project 

on text mining via natural language processing (NLP) is included for drug Biopharmaceutics 

Classification System (BCS) classification. 

 

The prodrug MMF, which is pre-systemically hydrolyzed into the pharmacologically active 

compound Mycophenolic Acid (MPA), has been widely used for the prophylaxis of acute allograft 

rejection in solid organ transplantation. However, the huge variability in plasma level makes MMF 

development difficult due to the great challenge of meeting the traditional BE limits. Numerous 

models have been developed in the past decade to explain the variability with the emphasis on 

characterizing the enterohepatic circulation (EHC), while the variability arising from absorption, 

can also contribute to the remarkable MPA variability to a great extent, but has been ignored for 

this BCS class 2 drug. 

 

Two population pharmacokinetics (PK) models of MMF focusing on the absorption process were 

developed based on the plasma concentrations of MPA and its major metabolite MPAG in a long-

term MMF treatment on liver transplant patients. The MPA PK profiles were best characterized 

by a two-compartment disposition model with zero inter-individual variability (IIV) of elimination 
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(K20), lag time (Tlag) but considerable inter-occasion variability (IOV) regarding systemic 

appearance rate (Ka), K20 and volume of distribution (V2). The second model took into 

consideration the EHC by including MPAG profiles as well. The results from both models 

showcased that the within-subject variability (WSV) of the MMF’s systemic appearance played a 

much more significant role than the IIV. The large WSV can be mechanistically explained by the 

gastrointestinal (GI) physiological dynamics, especially gastric emptying (GE) in the fasted state 

regulated by migrating motor complex (MMC) and in the fed state by the caloric content with 

irregular patterns of GI motility and secretion. The results implied that dosing under fed conditions 

was recommended for the in vivo clinical BE study of MMF to reduce the WSV and that 

developing a predictive in vitro dissolution test with sufficient simulation of the GI physiological 

dynamics would be a good surrogate. 

 

The second project explored the application of NLP in drug BCS classification. NLP, a confluency 

of artificial intelligence and computational linguistics, has gained widespread popularity in tech 

companies for machine translation, chatbot system, etc. In biotech and pharmaceutical industry, 

NLP-based text mining has been utilized to transform text information for decision support in 

multiple areas, including gene disease mapping, biomarker discovery, drug-drug interaction, and 

pharmacovigilance. 

 

The BCS system, designed to recommend a waiver of in vivo bioavailability and BE studies for 

immediate-release (IR) solid oral drug products, classifies drugs based on their aqueous solubility 

under physiological pHs and intestinal permeability. However, there’s no complete summarization 

of drug BCS classification information published to date. This project extracted solubility, 



 xii 

permeability and/or BCS class information of IR solid oral dosage forms in the human GI tract or 

simulated in vitro experiments from the FDA orange book, drug labels, FDA review documents, 

along with some selected literatures, and identified drug BCS class via NLP technology. The text 

mining results can be one of the key components in building up a database containing drug oral 

absorption information for drug discovery and development.  
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Chapter 1 Physiological Dynamics in Upper Gastrointestinal Tract 
and BCS Class 2 Drug Oral Absorption Models in Healthy Adult 

Human 
 

1.1 Introduction 

As the most prevalent drug delivery route, the upsides of oral dosing include easy administration, 

good patient compliance, and low manufacturing cost. However, one of biggest hurdles of 

developing an oral dosage form is the complexity of oral absorption process, which depends on GI 

tract environment under inter-digestive and/or post-prandial conditions, the physicochemical 

properties of the drug and the properties of dosage forms1,2. 

 
BCS was developed to aid in understanding and predicting drug oral absorption in the GI tract and 

has been endorsed by the regulatory agencies worldwide and the ICH for quality control in 

manufacture and marketing, as well as biowaiver of in vivo BE studies for IR dosage forms3,4. In 

this system, drug substances are classified into four classes on basis of their aqueous solubility in 

the GI physiological pH range (pH: 1.0-6.8) and their intestinal permeability (typically jejunal 

mucosal membrane):  

• Class 1: high solubility, high permeability;  

• Class 2: low solubility, high permeability;  

• Class 3: high solubility, low permeability;  

• Class 4: low solubility, high solubility5.  
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According to U.S. FDA guidance, a drug substance is considered “highly soluble” when the highest 

strength is soluble in 250 mL or less of aqueous media within the pH range of 1-6.8 at 37±1°C, 

and “high permeable” when the systemic bioavailability or the extent of absorption in humans is 

determined to be 85 percent or more of an administered dose based on a mass balance 

determination (along with evidence showing stability of the drug in the GI tract) or in comparison 

to an intravenous reference dose. The definition of a high permeability drug was derived from a 

landmark publication of human jejunal permeability and the fraction drug absorbed5. A drug 

product is “rapidly dissolving” when a mean of 85 percent or more of the labeled amount of the 

drug substance dissolves within 30 minutes, using United States Pharmacopeia (USP) Apparatus 

1 at 100 rpm or Apparatus 2 at 50 rpm (or at 75 rpm when appropriately justified in a volume of 

500 mL or less (or 900 mL when appropriately justified) in each of the following media: (1) 0.1 N 

HCl or Simulated Gastric Fluid USP without enzymes; (2) a pH 4.5 buffer; and (3) a pH 6.8 buffer 

or Simulated Intestinal Fluid USP without enzymes3. 

 
The physiological dynamics in the upper GI tract (stomach, duodenum, and proximal jejunum) in 

different states (fasted or fed) is presumably to be the major source of variabilities in the dissolution 

and subsequent systemic availability (“absorption”) profiles of drug products with active 

pharmaceutical ingredient (API) particularly having low solubility in the GI tract, especially BCS 

class 2 drugs6. In virtually all the cases, dissolution in the GI fluid milieu is a prerequisite for 

molecular drug absorption following oral administration. For BCS class 2 drugs, the dissolution 

process inevitably introduces considerable variability due to the vulnerability of the drug product 

to the environmental changes at absorptive sites, making it a determining factor in drug oral uptake 

and systemic appearance. The great variability observed in the systemic appearance of BCS class 

2 orally dosed drugs is considered as one of the top concerns in the design of BE studies and also 
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in optimizing therapeutic drug monitoring (TDM). Therefore, a mechanistic characterization of 

the variability with regard to systemic appearance for this type of drug products from the 

perspective of dissolution regulated by GI physiological dynamics and a further application of this 

knowledge to the prediction of drug oral absorption process would be beneficial for BCS class 2 

drug development and clinical efficacy and safety. Because of the high permeability nature, most 

of BCS class 2 drugs are absorbed in the duodenum and proximal jejunum after being emptied 

from stomach and dissolved in the GI fluid. This chapter is focused on reviewing the current 

studies regarding physiological dynamics in the upper GI tract and its relationship to drug oral 

absorption models in healthy adult humans. 

 

1.2 Physiology of upper GI tract and organs draining to it 

Before delving deep into the physiological dynamics affecting BCS class 2 drug oral uptake, it is 

necessary to discuss the upper GI tract under normal circumstances, so this section will center on 

the physiology of stomach, duodenum, jejunum, the pancreas and biliary system most relevant to 

drug oral absorption, as well as the underlying physiological basis. 

 

1.2.1 Functional anatomy 

1.2.1.1 Stomach 
As the organ that initiates the absorption process in the gut, the stomach (Figure 1.1A) 

accommodates the ingesta upon its arrival in the fundus, gradually transfer the ingesta to the body 

and antrum, mixes it with gastric secretions, breaks it down to small-sized particles, and finally 

empty the luminal contents at a rate that allows efficient digestion and absorption in the more distal 

segments of the small intestine. 
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Functionally, the stomach can be divided into the proximal gastric reservoir and the distal gastric 

pump for considerations of motility7 with the sphincter pylorus (antral musculature) at the 

gastroduodenal junction. The proximal stomach, consisting of the fundus, and proximal portion of 

the body, serves primarily as a reservoir and to move gastric contents to the distal stomach8,9. The 

gastric pump, including the distal portion of the body and the antrum, serves predominantly to 

grind and triturate ingesta and empty the stomach9,10. In addition, the pylorus is a narrow opening 

with folded, redundant mucosa. The periodic contractions generated at pylorus support for 

intermittent contractions. These properties enable it to control the amount and size (< 1 mm) of 

ingesta that can exit the stomach, making it a mechanical barrier and sieve. Conversely, when the 

pylorus opens and allows passage of luminal content to distend the duodenum, duodenal motor 

activity is stimulated8-10. Because the pylorus is an electric isolator and there exist different 

pacemakers in the stomach and duodenum, distinct frequencies between antral and duodenal 

contractions are observed. It is termed Antro-pyloro-duodenal coordination. In this coordination, 

the duodenum can contract three to four times during an antral wave. The contractions of the 

proximal duodenum cease during the phases of gastric emptying.9 

 
The stomach can also be divided into two functional regions based on its secretory function: the 

oxyntic gland area and the pyloric gland area, respectively11,12. The oxyntic (oxys, Greek for acid) 

area, including the fundus and body of the stomach, contains approximately 75% of the gastric 

glands, so-called oxyntic glands. The characteristic secretions of the stomach are produced by 

specialized cell types in these glands. The most significant secretory product of the stomach, in 

the regard of drug oral absorption, is gastric acid (HCl). The stomach secretes around 400 mmol 

HCl per day, almost all of which enters the duodenum via gastric emptying13, making it one of the 

crucial components of duodenal fluid. The concentration of H+ reflected in the pH is typically 1-2 
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in the fasted state (0.01-0.1 M)14. The antrum of the stomach gains its name for being immediately 

proximal to the pylorus, contains glands that secrete gastrin, the primary regulator of post-prandial 

gastric secretion. 

 

1.2.1.2 Duodenal cluster unit 
Together with the pancreas and biliary system, the duodenum makes up the duodenal cluster unit. 

This segment of the gastrointestinal system plays a critical role in the regulation of digestion and 

absorption10. Figure1.1B depicts the overall anatomy of duodenum and its relevant organs. 

 
Pancreas 

The exocrine pancreas is the primary source of enzymes for digestion and bicarbonate for the GI 

predominant buffer. As alluded to above, large volume of strong acid HCl secreted by the stomach 

enters the duodenum with gastric emptying, placing the duodenal mucosa at risk for irreversible 

cellular acidification. In response to this acid onslaught, the duodenal cluster unit secretes 

bicarbonate to neutralize the HCl in the duodenal lumen. Quantitatively, the pancreas plays the 

major role among all the organs of the duodenal cluster unit in supplying the bicarbonate necessary 

to neutralize gastric10. 

 
The secretion of pancreatic bicarbonate is regulated by the secretin from the S cells in the duodenal 

mucosa. The S cells can be considered to act functionally as pH meters, sensing the acidity of the 

luminal contents (Figure 1.2). As the pH falls, due to the entry of gastric acid, secretin is released 

from the S cells and travels through the bloodstream to bind to receptors on pancreatic duct cells, 

as well as on epithelial cells lining the bile ducts and the duodenum itself. These cells, in turn, are 

evoked to secrete bicarbonate into the duodenal lumen, thus causing a rise in pH that will 

eventually shut off secretin release. The pancreas is quantitatively the most important in the 
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bicarbonate secretory response, although the ability of duodenal epithelial cells to secrete 

bicarbonate may be critically important to protect them from gastric acid, especially in the first 

part of the duodenum, which is proximal to the site of entry of the pancreatic juice and bile. The 

threshold for secretin release appears to be a luminal pH of less than 4.5.10 

 
Biliary system 

The biliary system, consisting of biliary tract and gallbladder, is responsible for transporting bile 

out of the liver into the GI lumen. The secretory products released by the biliary system include 

bile acids, phospholipids, cholesterol, bilirubin, and bicarbonate. Among them bile acids aid in 

drug solubility and dissolution by forming mixed micelles, when above their critical micelle 

concentration (CMC).10 Biliary secretions mix with those coming from the pancreas at the 

common bile duct, and flow into the duodenal lumen in a controlled fashion when the sphincter 

relaxes in response to neurohumoral influences.10 

 
Duodenum 

The absorptive capacity of the small intestine (Figure 1.1C) is remarkably amplified attributed to 

its massively amplified surface area compared to that of stomach. As we know, the intestine is not 

a simple cylinder, but instead is amplified first by folds in the mucosa, then by the presence of 

crypts and villi, and finally by the presence of abundant microvilli on the apical poles of individual 

epithelial cells, increasing the overall surface area by a factor of 600-fold. This amplification of 

the surface area makes it the perfect place in the gut to handle luminal contents including drugs 

and nutrients. 

 
The first segment of the small intestine, approximately 12 inch in length, is referred to as the 

duodenum, and begins as a bulb-shaped structure immediately distal to the pylorus. The motor 
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function of duodenum is to mix ingesta with GI secretions so that the luminal contents can be 

absorbed or propel ingesta relatively quickly so that it does not act as an obstruction to further 

gastric emptying. Duodenal mucosa also contributes to the secretion of bicarbonate, but its role is 

minor compared to pancreatic ductular cells.10 

 

1.2.1.3 Jejunum 
The jejunum serves as main absorptive site for most of nutrients and drugs in the healthy individual 

and has a markedly amplified surface area due to the presence of surface folds, tall and slender 

villi, and microvilli mentioned above. This increase in surface area, combined with cyclical 

discontinuous contractions caused by GI motility patterns (summarized in 1.2.2.1), lead to rapid 

absorption of nutrients and highly permeable drugs. 
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Figure 1.1 The overall anatomy of the stomach (A) 15, duodenal cluster unit (B) 16 and small intestine (C) 17. 

 
Figure 1.2 Regulation of duodenal pH by pancreatic bicarbonate secretion in response to gastric acid emptying. 
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1.2.2 Physiological basis 

1.2.2.1 Motility 
The mixing and propulsive motor functions of the gut to facilitate absorption are primarily 

governed by cyclical phasic contractions. The rate of propulsion generally slows distally in the 

small intestine, while mixing intensifies18. 

 
In the inter-digestive state, phasic contractions become organized as a cyclical motor pattern 

migrating motor complex (MMC) typically initiated in the stomach or duodenum. This contractile 

activity consists of:  

• Phase 1 activity that has little or no contractile activity;  

• Phase 2 activity that shows an increasing number of intermittent but irregular and rarely 

propulsive contractions;  

• Phase 3 activity that is a group of the largest amplitude peristaltic waves occurring at their 

maximum frequency, and the entire group of contractions migrates distally over a long 

distance, usually the entire small intestine, in an organized fashion (Figure 1.3)8-10,19. In the 

absence of feeding, MMC cycle lasts around 100 mins: the quiescent phase 1 comprises 

40-60% of the cycle, phase 2 comprises 20-30% of the overall cycle, and the phase 3 

involves a 5-10 min burst of intense phasic contractions. The onset of phase 3 is correlated 

with plasma motilin level10. It is noteworthy that the pylorus opens fully in the phase 3 of 

MMC and the actual propulsion of luminal contents is caused by the propagating phasic 

contractions within phase 3 activity. As the contractile activity propagates it becomes less 

spatiotemporally organized resulting in slower propulsion rates in the distal small 

bowel.10,19 
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Figure 1.3 The three phases of MMC in the fasted state recorded using a stationary water-perfused catheter system at gastric antrum 
(G) and the first and second parts of the duodenum (D1 and D2, respectively). 

 

Following ingestion of a meal or any type of nutrients, there is an immediate change in the 

contractile pattern of the stomach and small intestine to the fed pattern. The pylorus remains closed 

for prolonged periods with only intermittent openings that allow small particles (< 1-2 mm) to 

enter the duodenum. The motility fed pattern of the small intestine differs from the fasted pattern 

with variable frequency, amplitude, and propagation to enable the mixing of luminal contents and 

their subsequent aboral transport. Up to 50% of the phasic contractions in the duodenum is reported 

to actually move the luminal contents orally10.  The duration of the fed pattern of motility in the 

small intestine depends on the caloric content of the meal ingested as well as its composition19. 

 

1.2.2.2 Secretion 
Ample experimental data support a coupling between inter-digestive GI motility and secretion20-

22. The MMC also cycles in phase with contractile activity of the gallbladder and relaxation of the 

sphincter of Oddi, as well as with periodic increases in secretory function of the intestine and 

organs draining into it (Table 1.1)10. Phase 1 secretion is characterized by minimal exocrine 

pancreatic and gastric secretion, absence of bile in the duodenum, and maybe a refractory phase 

for pancreatic secretion. During phase 2 secretion increases. As the irregular motor activity 
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intensifies, exocrine pancreatic secretion into the duodenum reaches maximal inter-digestive 

secretory rates several minutes before the onset of phase 323. During phase 3, the exocrine 

pancreatic secretion decreases until the upper GI tract resumes the quiescence of phase 1. Bile acid 

secretion parallels pancreatic enzyme secretion and peaks during late phase 224. Bile entry into the 

duodenum is preceded by gallbladder contraction and emptying of around 25% of gallbladder 

contents, which accounts for most of the bile within the duodenum during phase 2. In contrast, 

peak gastric acid secretion and bicarbonate secretion into the duodenum occur slightly later 

coinciding with the start of phase 3.25 

 

Table 1.1 Secretion and absorption of the gut marked by MMC 

 Components Phase 1 Late phase 2 Early Phase 3 

Secretion 

HCl min  max 
HCO3- min  max 

Bile min max  
Pancreatic enzyme min max  

Absorption Water max min  
 
Under the post-prandial, GI secretion can generally be divided into three phases10: 

• Cephalic Phase: in response to any sight, smell, taste and even the thought of the food, the 

vagal outflow initiates gastric secretory behavior to readies the stomach to receive the meal 

and 20-25% of pancreatic secretion with high concentration of digestive enzyme; 

• Gastric Phase: in addition to vagal influences continuing from the cephalic phase, gastric 

secretion is amplified further by mechanical and chemical stimuli when the stomach 

distends to accommodate the volume of the meal. These vago-vagal reflexes also transmit 

information downstream to ready more distal segments of the intestine to receive the meal. 

The combined influence of neurocrine and endocrine signals makes this phase 

quantitatively most important for gastric secretion. At this phase, the pancreatic secretion 

is only 10% also with high concentration of enzymes; 
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• Intestinal Phase: as the meal moves out of the stomach into the duodenum, the gastric 

secretion is suppressed in response to the fall of pH in the lumen, while high volumes (60-

70%) of pancreatic juice is produced with decreased concentrations of protein. 

 

1.3 Physiological dynamics in the upper GI tract and the corresponding models 

In a typical BE study, solid orally administrated drug products like tablets or capsules are usually 

given with a glass of water (250 mL) in the normal state. We’ll see below how variable this 

“normal” GI fasted state is due to the MMC described above and further how different the fasted 

and fed state are in terms of motility and secretion physiologically. 

 

1.3.1 Gastric emptying (GE) and upper small intestinal transit variations 
The rate of GE and upper small intestinal transit is negatively associated with the extent of 

absorption: if motility is increased, hastening the transit of substances along the intestine, there 

will be less time for absorption to take place; if transit is slowed, absorption can catch up with the 

presented the volume luminal contents. 

 

1.3.1.1 Inter-digestive 
Conventionally, human gastric emptying is regarded as continuous first-order process, however, 

an increasing amount of research demonstrated the process of gastric emptying to be far from that 

simple. For liquid volumes of 240 to 800 mL, experimental measurements of gastric emptying 

half-time varied from 8 to 18 minutes26-29. In the fasted state, the gastric emptying rate of liquid 

was shown to heavily rely on MMC phases and the larger volume of 200 mL phenol red solution 

leaves the stomach with a half-life of 11.8 min, being less dependent on gastric motility than the 

smaller volume of 50 ml solution30. In the study of Mudie et al., 75% of the subjects displayed 
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first-order emptying patterns while 25% had non-first order, biphasic emptying after drinking 240 

mL water 31.  

 

Likewise, human intestinal transit is traditionally modeled with continuous first-order 

approximation. There is very limited published experimental evidence regarding intestinal transit 

in the fasted state. But according to the results of mass transport analysis of phenol red, first-order 

process is obviously inadequate to characterize duodenal and jejunal transit32. Considering the high 

frequency and incidence of MMC in the proximal intestine, MMC presumably plays a critical role 

in the complicated hydrodynamics pattern in proximal small intestine.  

 

GE and intestinal transit are more likely to occur in a discontinuous fashion inferred from 

experimental evidence and GI physiology theory. After Schiller et al. reported that that fluid in the 

fasted small intestine is not a continuous watery compartment but rather in discrete packets of 

varying volumes, Mudie et al. further quantified the volume and number of water pockets in the 

small intestine of fasted healthy humans.31,33 The resting small bowel water was distributed in 8 ± 

1 pockets of 4 ± 1 mL on average each, rose to 15 ± 1 pockets of 6 ± 2 mL each at peak time, and 

16 ± 3 pockets of 5 ± 1 mL each at 45 min before gradually returning to the baseline level. 

Regardless of water intake, the number of liquid pockets in the smaller 0.5-2.5 mL size bin was 

markedly higher than all the larger bin sizes and that there was no significant difference between 

the remaining larger bin sizes, but most of the total volume of liquid was found in the larger 

pockets. At the time point of 45 min after water administration, the smallest pockets (0.5-2.5 mL) 

account for less than 5% of the total liquid volume, the smaller pockets (2.5-20 mL) claims about 

40% of the total volume, and the largest amount of liquid (∼60% of the volume) is contained in a 
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small number of large pockets (> 20 mL)31. According to the overview of GI physiology described 

above, it’s natural to relate the discrete fluid packets emptied from the stomach with time-varying 

volumes phenomena to the varying onset, frequency, amplitude, duration, direction and distance 

of antral contraction and small intestinal peristalsis, the phasic secretion of the stomach, pancreas, 

biliary system and duodenal mucosal, and the different frequency and extent of opening of pylorus 

and Sphicter of Oddi during MMC cycle, thus making any detailed mechanistic model of this 

process extremely complex. 

 

The identification of MMC-driven discontinuous, small volume of fluid packets helps to explain 

the variability of oral absorption of BCS class 2 drug and consequently has significant implications 

for TDM and the design of BE studies of this type of drug products. To begin with, the randomness 

of the dosing time relative to MMC phases undoubtably brings in the variation of the delivery of 

drug to the absorptive site. If the drug is administrated at the beginning of MMC phase 1, then it 

will likely be kept in the stomach for a significant period of time by the pylorus; To the contrary, 

if the drug is dosed during phase 3, the strong contractile period, then it will pass the stomach 

through the fully open pylorus into the small intestine without residence. In this case, the 

absorption profiles would also be quite variable due to distinct GI motility patterns. In addition, 

the presence of the small fluid packets would contribute to the within-subject variability of drug 

Cmax and Tmax. If the volume of a fluid packet is lower than the volume needed to completely 

dissolve the drug particles it encloses, the undissolved drug will not be transported across the GI 

mucosal cells and show up in the circulating system together with the dissolved counterpart. These 

drug particles are often held back in the GI lumen until they encounter appropriate fluid packets. 

For instance, in a study of Schiller et al, only 50% of the ingested non-disintegrating capsules were 
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surrounded by fluid in the fasted small intestine33. Hence, the randomness of the timing and size 

of fluid packet drug particles are exposed to may lead to the uncertainty of the systemic appearance 

of low solubility drugs, especially the amplitude of Cmax and the timing of Tmax. Furthermore, 

the discontinuity of the fluid packet would inevitably incur higher variability than a continuous 

fluid flow system. If a drug product is completely dissolved in the stomach, it will remain there 

until the arrival of the next antral contraction; if a drug product is emptied from the stomach as the 

undissolved particles, none of them will be dissolved in quiescent period before the next wave of 

intestinal peristalsis brings fluid packets. So we speculate there are jumps in the cumulative plot 

of dissolved drug vs time. Collectively, huge intra-individual variability would be anticipated in 

the dissolution profiles and systemic appearance due to this super dynamic GI transit feature. 

CellCept, the IR solid oral dosage form of MMF, is one example of BCS class 2 under TDM. The 

major variability of its within-subject variability comes from GE, which will be discussed in detail 

in Chapter 2. The inter-individual variability of its systemic appearance will be captured by 

sufficiently simulating the GE dynamics, therefore the Cmax will be predicted more accurately in 

TDM and also help the BE study to focus on drug product difference by minimizing the 

confounding effect of GI dynamics. 

 

1.3.1.2 Post-prandial 
Food ingestion is known to profoundly alter the GI environment by interrupting the cyclical MMC. 

As discussed previously, the motor patterned of the antrum under fed conditions are featured as 

mixing and grinding, while in small intestine they are called mixing and segmentation10. With 

propulsion occurring significantly less aborally and more orally, a delayed GE and prolonged 

intestinal transit can be expected34. 
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It has been demonstrated that the caloric load and the type of nutrients ingested play a critical role 

in regulating the motor response the upper GI tract (Figure 1.4). Fed pattern durations of about 

180, 360, and 410 mins were reported to occur after meals of 630, 1260, and 2520 kJ, 

respectively35. In general, fat produces a longer fed pattern than carbohydrate or protein, but the 

timing of the meal does not appear to affect the GI transit for the same nutrient load. The GE of 

inert liquids is most rapidly, while for the liquid contains nutrients, a rapid initial phase is then 

followed by slowed exit, apparently reflecting feedback from the small intestine. Moreover, 

emptying of solids from the stomach is slower yet, with a half time of approximately 1–2 hours 

during which retropulsion and mixing take place. This lag phase is increased in duration if large 

particles are swallowed as a whole. After the lag phase, a linear phase of emptying of a particulate 

suspension occurs at a relatively constant rate, with the size of 1-2 mm and the volume of 2-3 mL. 

Likewise, intestinal transit is slowed in proportional to the calory and also depends on the type of 

nutrients.10,34  

 

 
Figure 1.4 GE time curve of different types of gastric contents 
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Therefore, the regulatory agency like FDA published a standard for the food-effect bioavailability 

(BA) and fed BE studies. A high-fat (approximately 50 percent of total caloric content of the meal) 

and high-calorie (approximately 800 to 1000 calories) meal is recommended as a test meal for 

food-effect BA and fed BE studies. This test meal should derive approximately 150, 250, and 500-

600 calories from protein, carbohydrate, and fat, respectively. In NDAs, it is recognized that a 

sponsor can choose to conduct food-effect BA studies using meals with different combinations of 

fats, carbohydrates, and proteins for exploratory or label purposes. However, one of the meals for 

the food-effect BA studies should be the high-fat, high-calorie test meal described above. As for 

the fed treatment, following an overnight fast of at least 10 hours, subjects should start the 

recommended meal 30 minutes prior to administration of the drug product. Study subjects should 

eat this meal in 30 minutes or less; however, the drug product should be administered 30 minutes 

after start of the meal. The drug product should be administered with 240 mL (8 fluid ounces) of 

water. No food should be allowed for at least 4 hours post-dose. Water can be allowed as desired 

except for one hour before and after drug administration. Subjects should receive standardized 

meals scheduled at the same time in each period of the study.36 

 

1.3.1.3 Models 
A great many of endeavors have been made to model drug oral absorption, however, the modeling 

and simulation of BCS class 2 drug systemic appearance is still tough partly due to the variable GI 

transit. How the GI transit kinetics are incorporated in published models are included in Table 1.2. 

 

A typical empirical absorption model usually assumes a well-mixed GI lumen compartment with 

zero-order or first-order constant absorption coefficient with or without a lag time. Another 

commonly used empirical model is the one including two parallel first-order constant absorption 
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coefficient with two lag times (Model 1) to describe double peaks in the absorption phase. 

Sometimes, a simultaneous or a sequential combination of zero-order and first-order absorption is 

employed, for example the first-order followed by zero-order absorption in the case of Model 2. If 

the zero-order and/or first-order absorption assumption is still inadequately to describe the 

complicated absorption profile, Weibull function and its variants may worth a try. The idea of 

Weibull function has been used in both modeling (Model 3) and simulation in fasted (Model 4) 

and fed state (Model 5) to account for the GI motility variability. Occasionally, the Michaelis-

Menten (MM) equation can be introduced to describe the saturable absorption phenomenon 

(Model 6). The TPLAG model (Model 7) simulated the oral absorption with two first-order 

constant absorption coefficients with two lag times conceptually, to account for the dynamics in 

fluid absorption or secretion, absorption surface area, and time-varying motility caused by two 

phases of GE. More sophisticated models include the one using a sum of inverse Gaussian 

functions (Model 8) and the one appling the law of Laplace, Hooke, and Poisseuille to derive a 

nonlinear first order deterministic elimination GE model (Model 9) in fasted and fed state, 

respectively. These empirical modelings provide estimates of the population mean of absorption 

kinetics implying GI transit and the corresponding variability, which can be used as the prior 

information or reference value for the subsequent prediction model, but nothing related with the 

GI physiological mechanism. The empirical simulations, though too simple, are the exploratory 

works toward building physiologically-based absorption models. 

 

The mechanistic models handle the oral absorption from a bottom-up approach. The parameters of 

GI transit are explicitly specified in the model based on experimental data or literature search rather 

than inferred from the parameter estimation of the absorption kinetics in the empirical modelings. 
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At the early phase of developing such oral absorption simulation models, the GI transit were just 

assumed to be a zero-order or first-order process with constant transit coefficients (Model 10-12). 

A higher transit rate was applied in the fasted state and a lower transit rate in the fed state. Then 

more physiological information was introduced later, for example unlike the CAT model that 

supposes all the small intestinal compartment share the same transit coefficient, the refined ACAT 

model (Model 13) included compartment-dependent physiological parameters to represent the 

distinct features of each segment of human GI tract. Model 14 assumed first-order GE with three 

constant coefficients representing the three phases of MMC, but in the real work, the change of 

motility pattern is not a jump step. Model 15 designed another bypass compartment to 

accommodate the huge variability resulting from the dynamic GI motility patter and explored the 

potential relationship of the fraction of fluid flowing to the bypass compartment vs time to MMC 

phase 3 post-dose. Model 16 started to simulate MMC pattern directly in a non-linear way with 

the Fourier approximation for GE rate and a sigmoidal decay function for the lag time. The 

absorption profiles could also be modeled by a delayed differential equation (DDE) and a sine 

function to fit the complicated multiple peaks in the absorption phase. Interestingly, Model 17 

employed PCA to investigate the impact of GE on individual PK parameters, trying to link the 

empirical modeling work with GI physiology. Considering the complexity of developing a discrete 

model, most of the oral absorption models handle the discontinuous GI transit continuously and 

smoothly with lag time(s) from drug administration to systemic appearance, while Model 18-20 

were stochastic models designed to capture these spurts in a discrete system. Meta-model was used 

to modeling the probability of flow from one compartment to another by first-order transit in the 

fasted and fed state (Model 18). Due to the irregular pattern of pylorus opening in the fed state, the 

GE process was simulated with the power exponential function of standard Wiener process 
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representing the irregular decrements of gastric contents after a meal in Model 19. Model 20 

simulated the occurrence of GE with nonhomogeneous Poisson process and the intensity of GE in 

the form of the volume of fluid pulse packets to account for time-varying contractions during three 

MMC phases in the fasted state. Obviously, the mechanistic simulation models not only allow for 

complicated model structure, but also enable prediction of GI luminal contents and systemic 

appearance on the basis of GI physiological dynamics. More examples of how to model the impact 

of GI transit on drug oral absorption can be found in Ahmad et al’s work on a quantitative review 

and meta-models in the fasted and fed state37. 

 

Table 1.2 A summary of GI dynamic variables in published models 

No Model description Reference 
1 A population PK model (fasted): 

two parallel first-order absorption: one represents the immediate first-order absorption from stomach 
and upper intestine and the other represents the delayed first-order absorption process from the lower 
intestine 

38 

2 A population PK model  (fasted): 
First-order followed by zero-order absorption 

39 

3 A population PK model (fasted): 
Two Weibull function absorption 

40 

4 A GE simulation model (fasted): 
The sum of two Weibull models in different proportions to account for the motility variability of MMC 

41 

5 A GE simulation model (fed): 
A modified Weibull model to represent time-varying gastric retention 

42 

6 A population PK model (fasted): 
A saturable absorption model (Michaelis-Menten equation) 

43 

7 A two-phase simulation model with lag time (TPLAG, fasted): 
1) First-order absorption with time-dependent absorption coefficient, representing two phases of 

GE; 
2) Constant absorption coefficient in each of the two phases of GE; 

44 

8 A population PK model (fasted): 
A parametric deconvolution method using a sum of inverse Gaussian functions to describe the 
absorption profiles 

45 

9 A GE simulation model (fed): 
1) Applied the law of Laplace, Hooke, and Poisseuille to derive a nonlinear first order 

deterministic elimination GE model assuming the initial volume of the stomach is greater than 
300 mL; 

2) If the initial volume of the stomach is less than 300 mL, some correction is needed 

46 

10 A two-tank perfect-mixing tank simulation model: 
1) First-order absorption with constant coefficients; 
2) First-order transit with constant coefficients—assume higher Q in the fasted state and lower 

Q in the fed state; 
3) Different constant intestinal pH among different populations 

47 

11 A four-compartment simulation model: 
1) Zero-order and first-order GE with different constant coefficients with or without lag time to 

represent GE in fasted and fed state; 
2) Bile salt input as a bolus in fed state and zero in fasted state; 

48 
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3) First-order transit and absorption with constant coefficients 
12 The Compartmental Absorption and Transit (CAT)—a nine-compartment simulation model (fasted and 

fed): 
1) First order GE and intestinal transit with constant coefficients; 
2) The seven small intestinal compartments have equal transit time; 
3) First-order absorption with constant coefficients; 

49 

13 The Advanced Compartmental Absorption and Transit (ACAT)-- a 18- compartment simulation model 
(fasted and fed): 

1) First order GE and intestinal transit with constant coefficients; 
2) Include compartment-dependent physiological parameter (e.g., pH, transit rate coefficients); 

50 

14 A one-compartment simulation model (fasted): 
Three distinct constant absorption coefficients in the three phases of MMC; 

51 

15 A five-compartment simulation model: 
1) Bypass compartment to facilitate transport directly to the duodenum in the fasted state; 
2) Bypass compartment to facilitate transport directly to the antrum of the stomach in the fed 

state; 
3) First-order transit; 
4) First-order absorption and zero-order secretion in duodenum and jejunum; 
5) Negligible gastric secretion  

32 

16 A eight-compartment simulation model (fasted): 
1) Assumes GE is MMC-driven motility-dependent 
2) GE rate with a Fourier series approximation; 
3) Lag time with a sigmoidal decay function; 

52 

17 Two population PK models (fasted): 
1) The first PK model using Delay differential equations; 
2) The second PK model using a sine function; 
3) The impact of GE on PK parameters investigated by applying principle component analysis 

(PCA) to the individual parameter estimates 

53 

18 A stochastic continuous-time Markov-chain meta-model (fasted and fed): 
1) First-order transit represents the probability of flow from one compartment to another; 
2) Two-compartment stomach + five-compartment small intestine with equal transit rate 

coefficient + four-compartment colon 

54 

19 A stochastic GE simulation model (fed): 
GE with Weiner process 

55 

20 A stochastic GE with fluid packet simulation model (fasted): 
1) the occurrence of GE with nonhomogeneous Poisson process to account for time-varying 

contractions during three MMC phases; 
2) the volumetric effect in the stomach; 
3) the volume of fluid packet is a function of the current stomach volume and mean packet size 

plus some deviations 

56 

 

1.3.2 GI luminal pH fluctuations 
For an ionizable low solubility drug, the solubility and dissolution rate would be greatly influenced 

by pH fluctuations, which is prominent in the upper GI tract with low buffer capacity. It is 

important to note that the buffer capacity comes from the fluid secretion into the GI lumen rather 

than reside in the GI fluid due to the unique chemistry of HCO3- and CO2. Hence, characterization 

of the pH fluctuations would promote the prediction of the fraction of BCS class 2 drug dissolved 

in the GI lumen. 
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1.3.2.1 Inter-digestive 
In fasted state, the stomach environment ranges from pH 2 to pH 4 in healthy individuals57. As the 

conduit of random gastric emptying in a random discrete fluid packet fashion31 and motility-related 

pancreatic and biliary draining25 in the low buffer capacity setting, the proximal small intestine 

experiences the most dramatic pH fluctuation throughout the whole small intestine and tapers 

down distally. A large range of pH fluctuation (pH: 1.71-7.57) in the proximal small intestine has 

been reported in Bart et al’s work (Figure 1.5)57. For example, the duodenal pH is a dynamic 

physiological parameter ranging from 2.4 to 7.558 with considerable intra- and inter- individual 

variability (Figure 1.6)59. The non-uniform input rate of main strong acid HCl from gastric 

emptying (~17 mmol/h)60 and main weak base HCO3- (~8 mmol/h)61 from the duodenal cluster 

unit secretion, and limited buffer capacity of the bicarbonate/CO2 buffer in human small intestinal 

fluids (mean: 2.26 mM/pH, range: 0.26-6.32 mM/pH)57,62,63 could all be the culprits of pH 

fluctuation in the duodenum.  
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Figure 1.5 Mean pH versus time profiles in fasting (n = 20) and fed state (n = 17) conditions as measured in the stomach, the 
duodenum, and the jejunum (mean + SD). Data obtained from Koenigsknecht et al.64 

 

 
Figure 1.6 Individual pH versus time in fasting human duodenal fluid for five healthy subjects 

 

1.3.2.2 Post-prandial  
As shown in Figure 1.5, after food consumption, the gastric pH transiently increases, while the pH 

levels in the duodenum and Jejunum do not fluctuate as dramatically as the gastric pH, and remain 

around pH 4 to pH 6. The pH profile along the intestinal tract is dynamic under fed conditions and 
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largely depends on several factors, including the composition of food ingested, gastric secretion, 

and bile salt concentrations.65 

 

1.3.2.3 Models 
There are not many models in terms of the luminal pH fluctuation developed to date. Among the 

different types of oral absorption models in Table 1.2, only Model 10 and Model 13 (ACAT) take 

the effect of pH fluctuation into consideration. Meta-models of the impact of GI pH on oral drug 

absorption were summarized in Ahmad et al’s work.66 

 

1.4 Conclusion and discussion 

The review revealed the relationship of GI physiological dynamics with the variability of BCS 

class 2 drug oral absorption via an overview of GI physiological knowledge and an update of 

endeavors that modelers have made so far to capture the GI dynamics, especially GI transit and 

luminal pH fluctuations. This would shed light on further accounting for high within-subject 

variability of the systemic appearance of BCS class drug 2, and provide insights into dosing 

recommendation and the design of BE studies. 

 

However, due to the complexity of oral absorption process, it may be a good idea to switch from 

the traditional parametric models to some non-parametric learning, for example, the machine 

learning (ML) and artificial intelligent (AL) algorithm. After grinded into small particles, many 

high permeable drugs are emptied from the stomach to the duodenum in a random discrete fluid 

packet31, mixed well with the GI secretion and then be absorbed at the duodenum or upper jejunum 

after the delivery of intestinal transit to the absorptive site. Modeling of the discontinuous fluid 

packet emptying and GI transit, the unstable GI secretion, GI fluid buffer capacity, and the impact 
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of the drug on local pH is never an easy task, ML/AL algorithm would potentially worth a try by 

avoiding proposing a specific model structure to handle all these complicated GI events. For 

example, dimensionality reduction could be used to help figure out where the variability of 

systemic appearance mainly comes from among all these GI events, by feeding the model with a 

pool of the BCS class 2 drug product absorption data. In addition, reinforcement learning (RL) is 

another fantastic strategy for predicting drug systemic appearance in the longitudinal PK data. 
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Chapter 2 Population Pharmacokinetics of Mycophenolate Mofetil 
in Liver Transplanted Recipients and its Implication for Developing 

a Predictive Bioequivalence Test 
 

2.1 Introduction 

Mycophenolate mofetil (MMF), initially launched into the market as CellCept® in 1995, has been 

widely used as an immunosuppressant for the prophylaxis of organ rejection after kidney, heart, 

or liver transplantation with 3367 bioequivalent drug products to date68. 

 

 
Figure 2.1 The chemical structure of MMF68. 

 

MMF has an empirical formular of C23H31NO7 with a molecular weight of 433.50. The chemical 

structure of MMF is depicted in Figure 2.1. It is slighted soluble in water (43 ug/mL at pH 7.4) 

and soluble in acidic medium (4.27 mg/mL at pH 3.6). The pKa values for MMF are 5.6 for the 

morpholino group and 8.5 for the phenolic group. MMF is classified as class 2b drug under BCS for 

the low solubility in the physiological pH range, which is indicated in the theoretical solubility 

profile in Figure 2.2 relative to the highest approved formulation unit dose of 500 mg67, and also 

the high permeability with an apparent partition coefficient in 1-octanol/water (pH 7.4) buffer 

solution of 23868. 
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Figure 2.2 Theoretical solubility profile of CellCept® at pH 1.0-14.0. It was generated based on Henderson–Hasselbalch equation 
and isoelectric point. The pH range between the two blue lines represents the typical physiological pH range, 1.2-6.8. 

 

The absorption process of MMF is complex, exhibiting varying plasma concentration-time profiles 

for the pre-systemically hydrolyzed active metabolite mycophenolic acid (MPA), lag time (Tlag), 

maximal concentration (Cmax), time to maximal concentration (Tmax), as well as double peaks 

at the absorption and post-absorption phases69,70. The systemic appearance, biotransformation, 

transport, bile secretion and gut microbiota metabolism and reabsorption processes are shown in 

Figure 2.3. Considering the low solubility, high permeability nature of a BCS class 2 drug, the 

systemic appearance of MMF as MPA can be significantly affected by the changes in the subjects’ 

GI tract environment i.e. different motility states in fasted condition and fasted vs fed conditions. 

It has been demonstrated that the second MPA peak at the post-absorption phase is usually 

observed 6-12 hours post-dose and corresponds well to food intake times due to enterohepatic 

circulation (EHC)68. Therefore, the major metabolite of MPA, 7-O-MPA-b-glucuronide (MPAG), 

which plays a crucial role in EHC, should also be quantified, despite being pharmacologically 

inactive. Variations of any factors in the MPA/MPAG EHC can impact the variability of the second 

peak. The numerous potential sources of remarkable MPA PK variability are summarized in Figure 

2.4. 
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Figure 2.3 Overall outline of MMF PK in human body. The red, yellow, blue and green arrows indicate the process of systemic 
appearance, enterohepatic circulation (EHC), disposition, and excretion, respectively. The MMF immediate release drug product 
undergoes rapid disintegration and release process into the gastrointestinal (GI) tract after oral administration before fully dissolved 
in the acidic gastric fluid. Then it permeates the upper GI mucosal cell membrane and is pre-systemically hydrolyzed into the 
pharmacologically active compound mycophenolic acid (MPA) by carboxylesterase 2 (CES2)71. At clinically relevant 
concentration, MPA is 97% bound to plasma albumin. The unbounded MPA is uptaken into the liver primarily by OATP before 
converted into the 7-O-MPA-b-glucuronide (MPAG) and other metabolites mainly by UGT1A9 and UGT2B772,73. MPAG is then 
actively transported to the gallbladder by MRP274, released to duodenum with bile secretion for the conversion back to MPA in the 
gut by microflora. With regard to the overall mass balance, orally administered radiolabeled MMF resulted in ~87% recovery of 
the administrated dose as MPAG, ~6% recovered as other metabolites in the urine and 6% recovered in feces. Negligible amount 
of drug is excreted as MPA (less than 1% of dose) in the urine68. 

 

 
Figure 2.4 Potential factors contributing to MPA PK variability.  

 

Like many other highly variable (HV) drugs, whose within-subject variability (%CV) in 

bioequivalence (BE) metric(s) Cmax and/or AUC >= 30% by definition75,76, the 90% confidence 
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interval (CI) around the geometric mean ratio (GMR) of the test MMF/reference MMF of Cmax 

and AUC would inevitably exceed the BE limits (80%-125%)77 with 18-24 (a common number of 

subject enrollment) subjects under two one-sided tests (TOST)78 procedure as shown in Figure 2.5. 

As the width of the 90% CI depends upon the number of subjects in the study and the variability 

of the BE metrics, it’s natural to either increase the number of subjects enrolled for the BE (as 

shown in Table 2.1) or adjust the BE limits using Reference-Scaled Average Bioequivalence 

(RSAB, -ln(1.25) σWR/σW0 <=(µT-µR)<=ln(1.25) σWR/σW0, where σ2WR  and σ2W0 are the population 

WSV of the reference formulation and a pre-determined constant set by the regulatory agency, 

respectively) instead of the traditional Average Bioequivalence (ABE, -ln(1.25)<=(µT-

µR)<=ln(1.25), where µT and µR is the population average response of the log-transformed measure 

for the test formulation and reference formulation, respectively) based on the WSV79. For example, 

Patel et al80 and Almeida et al81 recruited 126 and 103 healthy subjects for BE study under fasting 

conditions, respectively, due to the high WSV of MMF. However, increasing the number of 

subjects is time-consuming and cost-expensive, and there are still some controversies in terms of 

the selection of the value of σW0, a better approach that can tell product difference between test 

and reference formulation of MMF or even the HV drugs without the confounding effect of WSV 

would potentially be a new BE test standard. 
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Figure 2.5 The 80–125% BE limits are represented along the x-axis as two “goal posts.” The BE limits are compared to the 
hypothetical 90% CIs of the test/reference BE measure GMRs for two drugs, a drug with normal variability (Drug A) and an HV 
drug (Drug B). The 90% CIs of the two drugs are represented by colored bars. For drug A (normal variability), the 90% CI (green 
bar) meets the BE limits. For drug B (HV), the 90% CI (red bar) fails to meet the acceptance limits. As the width of the CI is 
influenced by the number of study subjects, in the hypothetical case of drug B, it is likely that the study would have met the BE 
limits if more subjects had been used79. 

 

Table 2.1 The Number of Study Subjects Required to Show BE with 80% Power is a Function of WSV and GMR (Sample Size 
Estimations are for the Case σWT=σWR and σD=0) 79 

Within-subject 
%CV 

GMR 
(%) 

Sample size for a two-way crossover 
study 

Sample size for a four-way fully replicated 
crossover 

15 
100 10 6 
105 12 8 
110 20 12 

30 
100 32 18 
105 38 20 
110 68 36 

45 
100 66 34 
105 80 42 
110 142 72 

60 
100 108 56 
105 132 66 
110 236 118 

75 
100 156 80 
105 190 96 
110 340 172 

 

As MMF is a classic example of drugs with EHC, a large number of models have been developed 

to characterize the PK profiles of MMF with the emphasis on the modeling of EHC. Figure 2.6 

provides a summary of the schemes of previous models with the inclusion of EHC. Because MMF 

is also a member of BCS class 2 drugs, the variability of systemic appearance cannot be ignored. 

However, there is no model that focuses on quantifying the variability of MMF systemic 
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appearance in plasma in the form of MPA to date. Since the systemic appearance PK parameters 

are good indicators of BE metrics especially Cmax, a model that is designed to explore the WSV 

of BE metrics (Cmax) from the aspect of a more mechanistic level, aka the intra-individual 

variability of PK parameters, would aid in developing a novel BE test methodology by better 

accounting for the WSV. 

 
Figure 2.6 Schematics of MMF PK models EHC. 3-compartment EHC model based on a 1-compartment disposition model82. (b) 
Proposed EHC, 2-compartment structural model with first-order absorption with a lag time (tlag)83. (c) 4-compartment model, with 
rate constant describing transfer from fourth to first compartment84. (d) Chain compartment model (intestinal, gallbladder, central 
and peripheral compartments for MPA and central compartment for MPAG85. (e) 5-compartment drug and metabolite EHC model 
with MPA and MPAG plasma concentrations simultaneously86. (f) 2-compartment model with linear elimination, with MPAG and 
MPA acyl-glucuronide (AcMPAG) produced from the central compartment with EHC of MPA via the two metabolites87. (g) 2-
compartment model accounts for the EHC of MPA. The absorption of MPA was described with two first-order processes with a 
short and a long tlag and subsequent first-order elimination88. Abs comp = absorption compartment; Cm = concentration of MPAG 
in central compartment; ET = gallbladder emptying time; Gall = amount of MPAG in gallbladder compartment; Gut = amount of 
MPA in gut compartment; k = first-order rate constant; kxy = transfer rate constant from compartment x to y; ka = absorption rate 
constant; kbile = biliary excretion rate; kd = excretion rate constant into gallbladder; kGB = rate constant for the release of recirculated 
MPA from MPAG and AcMPAG; km = formation rate; kr,m = renal excretion rate of MPAG; t½,abs = absorption half-life; tgap = 
expulsion time of gallbladder; tGB = time of gallbladder compartment opening; Vm = volume of MPAG in central compartment 

 

This analysis is aimed at: 

1) characterizing MMF PK profiles especially the absorption phase by developing POPPK 

models in liver transplanted patients; 
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2) mechanistically exploring the relationship of the intra-individual variability of MMF PK 

parameters with the WSV of MMF BE metrics (Cmax); 

3) providing insights into the development of a novel BE test for BCS class 2 HV. 

 

2.2 Method 

2.2.1 Clinical study design 
A total of 81 adult patients (71 males and 10 females) receiving liver transplantation at Organ 

Transplantation Center in Ruijin Hospital were enrolled in the study. The study protocol was 

approved by the regional ethics committee (Ruijin Hospital, Shanghai Jiaotong University School 

of Medicine) and was performed in accordance with the Declaration of Helsinki and Chinese 

guidelines for good clinical practice. All the patients gave informed consent before inclusion. The 

demographic and pathophysiological data were collected retrospectively. 

 

The immunosuppressive medications consist of MMF (CellCept®, Roche), tacrolimus (Prograf, 

Fujisawa) and corticosteroids. One gram of MMF was given within 6 hours before liver 

transplantation. After the surgery, dose of MMF was adjusted based on the occurrence of side 

effects. Tacrolimus was orally administrated with an initial dose of 0.1 mg/(kg*day) and was then 

adjusted to achieve a steady-state trough concentration of 10-15 mg/ml in the first week and 5-10 

ng/ml thereafter. An injection dose of 500 mg of methylprednisolone was given during anhepatic 

period and tapered afterwards. After 7 days post first dose, prednisone was used at 20 mg daily 

and then further tapered according to the protocol. Blood samples were collected at 0-12 hr after 

MMF administration at each visit. The plasma concentrations of MPA and its metabolites were 

determined by HPLC assay. 
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2.2.2 Population PK model 
Two population models have been developed based on the data collected from the clinical study 

above. The first model, which only uses MPA plasma concentration as observations, is intended 

to focus on the kinetics of systemic appearance, while the second model, which simultaneously 

model MPA and MPAG plasma concentration-time profiles, was designed for the kinetics of the 

second peak post-absorption. We assumed there are no impacts from the co-medications on the 

PK profiles of the MMF. The bioavailability of MMF was assumed to be 1, because the mean 

absolute bioavailability of oral MMF relative to intravenous MMF based on MPA AUC was 

reported to be 94% in 12 healthy volunteers68. The individual PK parameters at each visit are 

expressed as below: 

 
Where   represents the PK parameter value of the ith individual at visit j; 

            represents the population mean of the PK parameter; 

            represents the deviation of the individual mean of the PK parameter from its population  

           mean, aka the inter-individual variation (IIV); 

            represents the deviation of  from the individual mean of the PK parameter, aka the 

           Inter-occasion variation (IOV).  

Off diagonal element of the covariance matrix are all zeros. 

The expectation maximization (EM) estimation method was employed due to the sparse sampling 

scheme. 

Continuous covariates are scaled by the population median before incorporated as power function 

in Equation 2.2 and the impact of binary covariate are expressed in Equation 2.3 as below: 

 

θij = exp(lnθpop + ωi + vij) (2.1)
θij

θpop

ωi

vij θij

θi = θpop( COVi

COVmedian
)θCOV (2.2)
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Where  represents the PK parameter value of the ith individual; 

            represents the population mean of the PK parameter; 

            represents the base line covariate value of the ith individual; 

            represents the population median of the corresponding covariate; 

            represents the covariate effect. 

The metabolism-related kinetics were estimated as parameter(s) based on the data collected from 

the liver transplanted patients rather than using some pre-determined constants to describe the 

metabolism process as previous models. 

Due to the insufficiency of the data, the impact of covariates was tested by one covariate at a time. 

The population modeling work was performed on NONMEM in a parallel computing fashion and 

the visualization plots were generated by R. 

 

2.3 Result 

2.3.1 Exploratory data analysis 
The demographics and clinical test information of liver transplanted recipients are numerically 

summarized in Table 2.2 and the corresponding distribution of each item is graphically 

summarized in Figure 2.7. 

 

 

 

 

θi = θpop * θCOVi
COV (2.3)

θi

θpop

COVi

COVmedian

θCOV
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Table 2.2 Demographics and clinical test info of liver transplanted recipients 

Characteristics Number or median (range) 
Gender (male/female) 71/10 

Age (yrs) 49 (14-76) 
Weight (kg) 66 (37-87) 

ALT NA 
AST NA 

Albumin (g/L) 35 (23-46) 
Creatinine (µmol/L) 71 (37-181) 

Total bilirubin (µmol/L) 72.7 (21.1-282.1) 
HB NA 

 

 

Figure 2.7 Distribution of total visit times (A), duration of study (B), age and clinical test (C). WT: Body weight, ALT: Alanine 
transaminase, AST: Aspartate transaminase, ALB: Albumin, CREA: Creatine, TBIL: Total bilirubin, HB: Hemoglobin 

 

 

Figure 2.8 Plasma concentration (scaled by dose)-time of MPA, MPAG, AcMPAG of all the subjects at all the visits (left panel) 
and plasma concentration (Scaled by dose)-time of MPA, MPAG, AcMPAG of Subjects No. 52 at four visits (right panel). The 
purple red dashed line represents the 95% and 5% percentiles of the scaled plasma concentration at corresponding sampling times. 
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Figure 2.9 Distribution of Cmax0-10 hrs (left panel) and AUC0-10 hrs (right panel) of MPA scaled by dose at all visits for all the 
subjects. 

 

Table 2.3 The least sample sizes of different study designs if the test and reference MMF have the same CV (0.486), GMR 0.95, 
90% CI and the target power is 0.8. 

Design Sample size 
2 x 2 crossover study 94 

2 x 2 x 4 fully replicated crossover study 48 
2 x 2 x 3 partially replicated crossover study 70 

 

A total of 81 liver transplanted recipients were enrolled, among whom 71 were males and 10 were 

females. 35 of them only had one visits and for subjects who had multiple visits the longest 

duration of the study could take up to 2 years after the first dose. The distributions of age and 

clinical test, along with total visit times and duration of study were visualized in Figure 2.7. The 

left panel of Figure 2.8 showed the overall variability of plasma concentration-time profiles and 

the right panel displayed the WSV of PK profiles via the example of Subject No. 52. All the plasma 

concentrations are scaled by the dose due to the different dose for each individual at each visit. A 

huge difference could be observed when comparing the Cmaxs of MPA for Subject No. 52 at 

different visits. As shown in Figure 2.9, if only the data at the first 10 hours post dose was extracted, 

the distribution of Cmax scaled by dose was greatly right skewed with CV 7.03% between subject 

variability (BSV) and 48.6% WSV, scaled AUC with 6.32% BSV and 40.4% WSV, respectively. 

Suppose the test MMF generic product has the same WSV as CellCept, GMR is 0.95, CI is 90% 
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and the target power is 0.8, the least sample sizes of different study designs are calculated in Table 

2.3. 

 

2.3.2 Model selection 

2.3.2.1 Model 1: just modeling MPA plasma concentration 
As MPA is the confirmed pharmacologically active form of MMF, emphasis should be placed on 

characterizing the kinetics of this compound. Due to the insufficiency of the data, EHC could not 

be incorporated when just using MPA plasma concentrations as observations. However, since this 

model was only intended for the systemic appearance (the first peak at the absorption phase) of 

MMF in the form of MPA, it’s acceptable to not include EHC, which is used to describe the second 

peak. Model fitting was assessed by Akaike information criterion (AIC). As shown in Table 2.4, 

the best model was NO. 17 model, that is the two-compartment disposition model of MPA with 

IOV from KA, K20 and V2. Figure 2.10 and Table 2.5 provided the description of the optimal 

model graphically and numerically, respectively. When checking the effects of baseline covariates 

on the MMF PK profiles, albumin, total bilirubin, and hemoglobin had significant impact on K20, 

V2, and KA, respectively, as displayed at Table 2.6.  

 

2.3.2.2 Model 2: simultaneously modeling both MPA and MPAG plasma concentrations 
Considering the presence of the second peak, it’s still worthwhile to characterize EHC by 

simultaneously modeling both MPA and MPAG plasma concentrations. The optimal model 

without the inclusion of IOV in this case was Model No.5, that is MPA two-compartment 

disposition with lag time and MPAG one-compartment disposition without the gallbladder 

compartment in EHC. Given the data collected, it’s only sufficient to exam the IOV one parameter 

at a time. As displayed in Table 2.7, inclusion of IOV in terms of Tlag, KA, K23, and K31 could 
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significantly improve the model fitting. Table 2.8 and Figure 2.11 displayed the parameter 

estimation and the diagram of the optimal model Model No.5, respectively. 

 

Table 2.4 A summary of various models just modeling MPA plasma concentration. 

No. Description AIC Note 
1 1-COMP 793.250 Residual error 56.4% 
2 2-COMP 610.269 K20 IIV 0, Residual error 45.8% 
3 2-COMP + Tlag 520.012 Tlag and K20 IIV 0, Residual error 40.5% 
4 2-COMP + Tlag IOV 514.894 Tlag and K20 IIV 0, considerable IOV, residual error 37.2% 
5 2-COMP + Tlag + KA IOV 499.108 Tlag and K20 IIV 0, considerable IOV, residual error 37.7% 
6 2-COMP + Tlag + K20 IOV 427.929 Tlag, K20, and K32 IIV 0, considerable IOV, residual error 34.0% 
7 2-COMP + Tlag + V IOV 431.849 K20 and K23 IIV 0, considerable IOV, residual error 34.1% 
8 2-COMP + Tlag and KA IOV 492.026 Tlag IIOV 0, negligible K20 IIV, IOV KA > Tlag, residual error 

36.7% 
9 2-COMP + Tlag and K20 IOV 408.878 Tlag, K20 and K32 IIV 0, IOV K20 > Tlag, residual error 30.3% 
10 2-COMP + Tlag and V IOV 419.997 K20, K23, and Tlag IIV 0, considerable IOV, residual error 31.0% 
11 2-COMP + Tlag + KA and K20 IOV 395.128 Tlag, K20 and K32 IIV 0, IOV KA > K20, residual error 31.4% 
12 2-COMP + Tlag + KA and V IOV 400.812 Tlag, K20 and K32 IIV 0, considerable IOV, residual error 31.1% 
13 2-COMP + Tlag + K20 and V IOV 414.239 Tlag, K20 and K32 IIV 0, considerable IOV, residual error 32.9% 
14 2-COMP + Tlag, KA and K20 IOV 402.550 Negligible Tlag and K20 IIV, IOV KA > K20 > Tlag, residual error 

30.9% 
15 2-COMP + Tlag, KA and V IOV 394.630 Tlag, K20 and K23 IIV 0, considerable IOV, residual error 29.9% 
16 2-COMP + Tlag, K20 and V IOV 414.686 AIC higher than No. 13 
17 2-COMP + KA, K20 and V IOV 392.661 Tlag, K20 and K32 IIV 0, considerable IOV, large KA IOV, 

residual error 30.7% 
18 2-COMP + Tlag + K23 IOV 510.884 Tlag IIV 0, considerable IOV, residual error 38.4% 
19 2-COMP + Tlag + K32 IOV 502.127 Small Tlag and K20 IIV, considerable IOV, residual error 35.3% 
20 2-COMP + Tlag and K23 IOV 511.032 Negligible Tlag IIV, small Tlag IOV, considerable K23 IOV, 

residual error 37.6%, AIC higher than No. 18 
21 2-COMP + Tlag and K32 IOV 492.238 Tlag IIV 0, negligible K20 IIV, small Tlag IOV, considerable K32 

IOV, residual error 34.6% 
22 2-COMP + Tlag + KA and K23 IOV 489.308 Tlag IIV 0, considerable KA and K23 IOV, residual error 36.4% 
23 2-COMP + Tlag + KA and K32 IOV 480.103 Tlag IIV 0, considerable IOV, residual error 32.5% 
24 2-COMP + Tlag + K20 and K23 IOV 429.823 K20 and K32 IIV 0, considerable IOV, residual error 33.5%, AIC 

higher than No. 6 
25 2-COMP + Tlag + K20 and K32 IOV 436.186 K20 and K32 IIV 0, considerable IOV, residual error 34.2%, AIC 

higher than No. 6 
26 2-COMP + Tlag + V and K23 IOV 423.536 Tlag, K20 and K32 IIV 0, considerable IOV, residual error 32.8% 
27 2-COMP + Tlag + V and K32 IOV 438.672 K32 IIV 0, negligible K20 IIV, small Tlag IIV, considerable IOV, 

residual error 34.2%, AIC higher than No. 7 
28 2-COMP + Tlag + K23 and K32 IOV 491.730 K23 IIOV 0, small Tlag IIV, considerable IOV, residual error 

34.4% 
29 2-COMP + Tlag, KA, and K32 IOV 502.635 AIC higher than No. 8 
30 2-COMP + KA, V and K23 IOV 397.443 Tlag, K20 and K32 IIV 0, considerable IOV, large KA IOV, 

residual error 30.4% 
31 2-OMP + KA, K23 and K32 IOV NA unstable 
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Figure 2.10 Diagram of the best model when just modeling MPA plasma concentrations. 

 

Table 2.5 Parameter estimation of the optimal model just modeling MPA plasma concentration profiles 

Parameters Estimates (95% CI) IIV (%RSE) IOV (%RSE) 
KA (/hr) 1.10 (0.640-1.89) 0.429 (73.0) 1.18 (76.5) 
Tlag (hr) 0.438 (0.415-0.463) 0 0 
K20 (/hr) 0.611 (0.403-0.927) 0 0.132 (49.1) 
K23 (/hr) 0.481 (0.298-0.775) 0.260 (40.4) 0 
K32 (/hr) 0.122 (0.0758-0.198) 0.168 (26.3) 0 
V2 (L) 39.25 (25.28-60.95) 0 0.173 (123) 

Residual Estimates (% RSE)   
MPA (%) 30.7 (4.98)   

 

Table 2.6 A summary of various models checking on the impact of baseline covariates 

No. Description OBJV 
1 ALB-KA 364 
2 ALB-K20 363 
3 ALB-V2 392 
4 ALB-Tlag 368 
5 ALB-K23 391 
6 ALB-K32 368 
7 SEX-KA 368 
8 SEX-K20 370 
9 SEX-V2 369 
10 SEX-Tlag 376 
11 SEX-K23 415 
12 SEX-K32 364 
13 WT-KA 368 
14 WT-K20 369 
15 WT-V2 367 
16 WT-Tlag 379 
17 WT-K23 368 
18 WT-K32 368 
19 CREA-KA 367 
20 CREA-K20 366 
21 CREA-V2 367 
22 CREA-Tlag 521 
23 CREA-K23 371 
24 CREA-K32 369 
25 ALT-KA 373 
26 ALT-K20 400 
27 ALT-V2 373 
28 ALT-Tlag 369 
29 ALT-K23 373 
30 ALT-K32 373 
31 AST-KA 371 
32 AST-K20 383 
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33 AST-V2 372 
34 AST-Tlag 373 
35 AST-K23 374 
36 AST-K32 373 
37 TBIL-KA 365 
38 TBIL-K20 368 
39 TBIL-V2 363 
40 TBIL-Tlag 372 
41 TBIL-K23 365 
42 TBIL-K32 398 
43 HB-KA 363 
44 HB-K20 380 
45 HB-V2 368 
46 HB-Tlag 373 
47 HB-K23 374 
48 HB-K32 369 

 

Table 2.7 A summary of various models simultaneously modeling both MPA and MPAG plasma concentrations 

No. Description OBJV Note 
1 2-COMP MPA + 1-COMP MPAG 306 Negligible K20 IIV, residual: MPA= 49.4%, 

MPAG = 19.5% 
2 2-COMP MPA + 1-COMP MPAG + EHC + No 

Gallbladder 
300 Negligible K20 IIV, K31 IIV = 0, VMPAG 

IIV = 0, residual: MPA= 49.3%, MPAG = 
19.5% 

3 2-COMP MPA + 1-COMP MPAG + EHC + Gallbladder 299 Negligible K20 K34, and K41 IIV, PMPAG = 
97.7%, VMPAG IIV = 0, residual: MPA= 
49.1%, MPAG = 19.5% 

4 2-COMP MPA + 1-COMP MPAG + Tlag 245 Negligible K20 IIV, Tlag IIV = 0, residual: 
MPA= 44.4%, MPAG = 20.2% 

5 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + No 
Gallbladder 

226 Negligible K20 IIV, K31 and VMPA IIV are 
0, PMPAG = 97.6%, residual: MPA= 43.0%, 
MPAG = 19.6% 

6 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + 
Gallbladder 

230 Negligible K20 K34, and K41 IIV, PMPAG = 
99.2%, VMPA and VMPAG IIV = 0, residual: 
MPA= 43.2%, MPAG = 19.6% 

7 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + Tlag 
with IOV 

212 Negligible K20, K23, and K31 IIV, Tlag: IIV 
= 0 and considerable IOV, PMPAG = 97.3%, 
residual: MPA= 40.6%, MPAG = 19.6% 

8 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + KA 
with IOV 

187 Negligible K20, K31, and K30 IIV, KA: IOV 
significantly higher than IIV, PMPAG = 
96.9%, residual: MPA= 39.8%, MPAG = 
19.2% 

9 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + K23 
with IOV 

66.0 Negligible K20 and K31 IIV, low Tlag IIV, 
K23 IOV significantly higher than IIV, 
PMPAG = 99.4%, residual: MPA= 37.1%, 
MPAG = 16.4% 

10 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + K20 
with IOV 

62.8 Negligible K31 and Tlag IIV, K23 IIV = 0, 
K20 IOV significantly higher than IIV, 
abnormally low PMPAG = 3.97%, residual: 
MPA= 43.4%, MPAG = 16.0% 

11 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + K31 
with IOV 

-1.52 Negligible K20 IIV, PMPAG = 97.8%, K23 
IIV = 0, K31 low IIV and considerable IOV, 
residual: MPA= 40.2%, MPAG = 13.7% 

12 2-COMP MPA + 1-COMP MPAG + Tlag + EHC + K30 
with IOV 

65.5 Negligible K31 and VMAPG IIV, low Tlag 
IIV, abnormally low PMPAG = 16.2%, K20 
IOV significantly higher than IIV, residual 
MPA = 43.4%, MPAG = 16.0% 

PMPAG = K23/(K23 + K20) 
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Table 2.8 Parameter estimation of the optimal model simultaneously modeling both MPA and MPAG plasma concentrations 

Parameters Estimates (95% CI) IIV (%RSE) 
KA (/hr) 0.700 (0.562-0.871) 0.315 (38.1) 
Tlag (hr) 0.380 (0.310-0.466) 0.324 (22.8) 
K20 (/hr) 0.0284 (0.0265-0.0305) 0.0000291 
K23 (/hr) 1.14 (0.937-1.38) 0.221 (21.5) 
K25 (/hr) 1.03 (0.621-1.72) 1.32 (33.6) 
K52 (/hr) 0.0120 (0.00681-0.0213) 1.89 (38.6) 
K31 (/hr) 0.0474 (0.0300-0.0758) 0 
K30 (/hr) 0.125 (0.0973-0.160) 0.324 (22.8) 
V2 (L) 21.1 (17.5-25.5) 0 
V3 (L) 11.0 (8.67-14.0) 0.135 (52.0) 

Residual Estimates (% RSE)  
MPA (%) 43.0 (4.84)  

MPAG (%) 19.6 (4.90)  
 

 

Figure 2.11 Diagram of the models when simultaneously modeling MPA and MPAG plasma concentrations. The flow of the 
optimal model Model No.5 was represented with solid arrows. The light blue square and dashed arrows are the gallbladder 
compartment and the corresponding kinetics used in Model No.6. 

 

2.3.3 Model evaluation 
The diagnostic plots of Model 1 look not so perfect mainly due to exclusion of the EHC (Figure 
2.12). A large impact of the random effects can also be anticipated. 
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Figure 2.12 Goodness-of-fit plots (A-D) and visual predictive check (VPC) plot (E) when just modeling MPA without EHC. LNDV: 
logarithm of the observed MPA plasma concentration; IPRED: individual prediction of the MPA plasma concentration after taking 
the logarithm. PRED: logarithm of the population prediction of MPA plasma concentration. CWRES: conditional weighted residual 
errors. The solid blue line represents the median observed MPA plasma concentration, and the dark orange area around it represents 
a simulation-based 95% confidence interval for the median. The observed 5% and 95% percentiles are presented with dashed blue 
lines, and the 95% confidence intervals for the corresponding model predicted percentiles are shown as the corresponding blue 
fields. 
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2.4 Conclusion and discussion 

Considerably more attention should be drawn to how to better conduct BE studies for HV drugs. 

Firstly, HV drug products constitute a disproportionately high percentage of drug product 

submissions among the failed BE studies in one of the FDA statistics79. While HV drugs only 

appear to represent about 20% of ANDAs evaluated by FDA, 45% of the failed BE studies 

reviewed at FDA from 2009 to 2012 belong to HV drugs based on Table 2.979. Secondly, the 

current approaches to addressing the high failure rate issue of HV drug are economically and 

scientifically unfriendly. As summarized in Table 2.10, among the 45% of the failed BE studies 

mentioned above, 91% of the initially failed ANDAs met the BE limits by increasing sample size 

in two-way crossover BE study and 7% of them passed the BE tests by changing to three-way 

study design and RSABE79. The large sample size required would increase the costs of generic 

drugs, perhaps more significantly lead to unnecessary human testing, and deter the development 

of new generic products. Furthermore, the scientific debate of setting the regulatory constant and 

cutoff for RSABE limits the wide application of this approach in BE studies79. Therefore, a novel 

methodology that is targeted to solve the high WSV of BE metrics (Cmax, AUC) is highly 

desirable. 

 

Table 2.9 Number of Failed BE Studies Reviewed at FDA’s OGD Since the “All Bioequivalence Studies” Rule Became Effective 
in July 2009 till 2012. 79 

Description BE Studies ANDAs 
Number Percent of total Number Percent of total 

WSV of AUC and Cmax≥30% 92 45 45 37 
WSV of AUC and Cmax<30% 113 55 76 63 

Totals 205 100 121 100 
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Table 2.10 Changes Made to the Study Design or Formulation to Achieve Successful Pivotal BE Studies of HV Drugs after the 
Initial BE Studies Failed to Meet the Acceptance Criteria79 

Change made No. of ANDAs Percent 
Increase in sample size two-way crossover BE study 41 91 

Changed to three-way study design and RSABE 3 7 
Reformulated 1 2 

Total 45 100 
 
The WSV of BE metrics (Cmax and AUC) can be largely explained by the intra-individual 

variability of systemic appearance related PK parameters in the case of HV drugs. As we know, 

the rate and extent of drug dissolution and subsequent absorption rely on the characteristics of GI 

physiological environment such as hydrodynamics, gastric emptying rate, intestinal transit, GI pH, 

buffer capacity and the fasted vs fed state of the GI tract, as well as the physicochemical properties 

of the drug and the properties of dosage forms89,90. Hence, a slight change in physiological factors 

may give rise to significant variabilities in the process of drug oral uptake and systemic appearance. 

This may be especially pronounced for drug molecules suffering from a low aqueous solubility 

but showing a high intestinal permeability, classified as BCS class 2 compounds5, which are likely 

to be HV drugs. For the IR products of these HV drugs, dissolution could be the rate-limiting step 

of their absorption, rendering them super sensitive to environmental changes at absorptive sites.  

Consequently, high variabilities are commonly observed in their dissolution and absorption 

profiles even for the same individual at different measuring times (high intra-individual variability) 

and contribute greatly to the WSV of BE metrics. These high variabilities can be represented as 

the intra-individual variability of systemic appearance from the aspect of PK. Simulation of 

luminal dissolved drug concentration based on GI physiology is therefore one of the key 

determinants of reasonable prediction of drug absorption. 

 
The intra-individual variability of systemic appearance related absorption PK parameters can be 

partly attributed to different states under fasted conditions. The dynamics of GI transit and luminal 
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pH fluctuation and the underlying physiological basis has been described in detail in Section 1.3 

and 1.2.2, respectively. Oral dosing under the fasted conditions can occur at one of the very 

different states of MMC, and thus results in high variability.  

 
While under postprandial conditions, the motility and secretion pattern vary greatly from those 

under inter-digestive conditions. The stomach mechanically breaks down the ingested food into 

small particles to enhance digestion like a homogenizer. The pylorus remains closed for prolonged 

periods and acts as a sphincter that controls the amount and size of food particles that can exit the 

reservoir, the stomach, in the intermittent partial openings. The gastric emptying rate depends on 

both the physical and chemical characteristics of the meal with a rate of 200 kcal/hr on average: 

liquids empty most rapidly; solids empty only after a lag phase. The cutoff particle size to be held 

back or to be delivered to the duodenum is 1-2 mm. Meanwhile, motility events in the small 

intestine become more frequent, with patterns designed to mix the meal with intestinal secretions 

and to maximize exposure of the digested nutrients to the absorptive mucosa. Intestinal transit is 

slowed in proportion to the number of calories presented to the intestine. The gallbladder serves 

to store and concentrate bile coming from the liver in the period between meals. Postprandial 

gallbladder contraction coincides with gastric emptying. The entry of the meal into the duodenum 

triggers the secretion of a bolus of concentrated bile with the entry of dietary lipids into the small 

intestine10. 

 
In this study, two population PK models have been developed with the emphasis on exploring the 

variability of systemic appearance and EHC of MMF. The first model only employed MPA plasma 

concentrations as observation and investigated the intra-individual variability of PK parameters in 

the form of IOV. The second model used both MPA and MPAG plasma concentration profiles to 
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further check EHC. The effect of IOV of PK parameters was checked only one at a time in the 

second model due to data insufficiency. The results of both two models showcased that the intra-

individual variability plays a predominant role instead of IIV in terms of variability of absorption-

related PK parameters. The high intra-individual variability of absorption-related PK parameters 

would be expected because the timing of drug administration and sampling is a mix of fasted and 

fed states and there is no knowledge of motility state and MMC phases at the time of dosing and 

the variable duration of MMC cycle. 

 
Surprising as it may look at first glance, GE is likely to be the rate-limiting step in the systemic 

appearance process of CellCept and hence accounts for the intra-individual variability of its 

systemic appearance. MMF has to go through the disintegration, release and dissolution in the 

stomach, gastric emptying, transport into the mucosal cell, and conversion to MPA before showing 

up in the circulating system in the form of MPA. Given the fact that 1) CellCept is the only drug 

product of MMF used in this study; 2) CellCept is IR by design; and 3) rapid and stable dissolution 

in the stomach reported by Scheubel et al91, negligible variation should be anticipated from the 

release and dissolution process of CellCept. Also considering the high permeability and super low 

pKa value of the morpholino group, it would be natural to speculate that CellCept is quickly 

transported into the mucosal cells of the proximal small intestine lumen, once being dissolved and 

emptied from the stomach. Finally, due to a complete and rapid pre-systemic metabolism, the 

conversion of MMF to MPA would not introduce significant further variation. Taken together, all 

the systemic availability events of CellCept are controlled by gastric emptying and Cmax can be 

seen as a function of gastric emptying. The indirect evidence in a previous publication showed that 

plasma Cmax/AUC was negatively associated with time to MMC phase 3 post dosing in the fasted 

state after a dose of Ibuprofen92. Therefore, it seems mechanistically correct to claim that intra-
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individual variability of MMF systemic appearance is essentially the intra-individual variability of 

GE. 

 
The dominance intra-individual variability possessed over IIV in terms of absorption-related PK 

parameters would suggest the BE studies of MMF from two different perspectives. Firstly, dosing 

under fed conditions is recommended for the in vivo clinical BE studies. Because less WSV of BE 

metrics is anticipated under fed conditions with the same meals distributed to each subject 

compared with under fasted conditions due to the randomness of dosing and sampling time relative 

to the three MMC phases, assuming there are no food-drug interactions. In addition, the bile 

secretion rate is well regulated under fed conditions to reduce the variations in EHC. Secondly, a 

novel predictive in vitro BE test only measuring product difference would be a new trend because 

in vivo clinical BE studies are greatly confounded by the large GI variations. Obviously, the impact 

of BSV is removed from an in vitro test to simplify the analysis. In the case of MMF, as discussed 

previously, the WSV of systemic appearance, though large, is actually the intra-individual 

variability of GE, and the product difference is significantly confounded with random GI motility. 

Despite of the huge intra-individual variability of EHC, it only explains the variation of the second 

peak in post absorption phase, which is also related with the GI physiological dynamics and the 

time of food consumption post dosing. Thus, a predictive dissolution test comparing the profile of 

the test formulation to that of the innovator MMF product with sufficient simulation of Gastric 

emptying dynamics would be a desirable surrogate. If the release and dissolution rate of the test 

MMF formulation is rapid like the original CellCept (85% dissolved within 15 mins), then 

equivalent dissolution profiles would indicate bioequivalence of the test and reference MMF. As 

for other HV drug products, an in vitro dissolution test sufficiently simulating GI physiological 

dynamics for oral systemic availability (absorption) would also serve the BE test purpose. 
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While the predictive in vitro BE test has gained increasing attention since the development of the 

BCS classification system, it is not widely accepted even today. This is because current dissolution 

tests do not take full advantage of the extensive available GI physiologic information. For instance, 

the static fasted intestinal pH values of FaSSIF (6.5) and USPSIF (6.8) are embodied as a strong 

buffer capacity, that is a 5 and 7.7 times higher capacity than human intestinal fluid, 

respectively93,94, which apparently fails to reflect the real in vivo GI physiological conditions, let 

alone to capture the characteristics of drug dissolution, absorption and systemic exposure kinetics 

(Cmax, AUC, Tmax). These routine methodologies are more suitable for quality control purposes 

and are only used as tools to understand the effects of formulation and processing changes95, so a 

new methodology incorporating the physiologically relevant GI information is desired. A good 

starting point would be a typical fasted BE condition, but could evolve into tests simulating the GI 

environment of patients and special populations. Some in vivo tests may be required for final 

assurance of performance in patients, but the in vitro dissolution test would be the mainstay of 

product development and quality control. 

 
Although there’s a sea of MPA population models attributed to EHC of MPA96, the uniqueness of 

the two models developed in this study lies:  

1) for the first time focusing on the complicated absorption process of MMF as a BCS class 

drug, relating the intra-individual variability of the systemic appearance PK parameters to 

the WSV of BE metrics and mechanistically explaining the intra-individual variability from 

the aspect of GI physiology dynamics;  

2) introducing IOV to the metabolism process rather assume a static MPA clearance rate with 
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fixed ratio of converting to MPAG: being cleared via other routes, considering the subject 

are liver transplanted recipients and time-varying Cmax and AUC have been noted among 

these type of patients in FDA drug label of CellCept68. 

 
Significant conclusion can be drawn with regard to the complicated MMF absorption process by 

leveraging the data at hand, however, the variance in the population model could be better 

quantified if:  

1) more frequent sampling schema was designed for the absorption phase; 

2) food intake time relative to MMF dosing was well recorded;  

3) the clinical biochemistry covariates were collected at least at each visit;  

4) the protein-bounded MPA were determined rather than just the total MPA, since MPA 

is highly bounded to albumin. 

 
In the future, we would like to dive deep into the mechanisms of HV drug absorption process by 

further exploring the relationship between GI physiology dynamics and PK variability. Possible 

attempts include utilizing:  

1) SmartPill to record local GI pH fluctuation and motility;  

2) tubes in the GI tract to directly determine the concentrations of dissolved and undissolved 

drug;  

3) a comparison of the radiolabeled and cold-treated drug. 
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Chapter 3 Text Mining for Drug BCS Classification Using Natural 
Language Processing 

 

3.1 Introduction 

BCS theory employs the physicochemical concept of maximal solubility in GI physiological pH 

range relative to the highest strength and intestinal permeability to represent the behavior of an IR 

solid drug dosage form in the GI tract and further predict the systemic appearance profiles of this 

oral drug product. It has been widely adopted as the criteria for the biowaiver of a generic IR solid 

drug product. FDA has launched a web-based application to facilitate collecting information of 

FDA-approved drug products without the inclusion of drug BCS class. (https://nctr-

crs.fda.gov/fdalabel/ui/search) Considering the enormously high volume of documentations 

regarding drugs designed for oral absorption, it is desirable to harvest BCS classification 

information from various sources online to support pharmaceutical development and clinical 

decision.  

 

However, the information extraction (IE) of drug BCS class is never an easy task. Firstly, the 

relevant solubility profiles and intestinal permeability are scattered in various documents like drug 

labels, regulatory review documents, and literatures. Secondly, a large number of the materials are 

uploaded online as a scanned pdf file, which means people cannot find the BCS info by just 

googling. Thirdly, compared to the structured data, drug BCS class and relevant info are usually 

documented in a more natural, expressive and unstructured way. Fourthly, biomedical documents 
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usually involve heavy use of domain-specific terminology and knowledge, making it difficult for 

a non-pharmaceutical scientist to handle it directly. 

 

Natural language processing (NLP), a confluence of computer science and linguistics, enables the 

extraction of BCS class from a deluge of information and the transformation of the text into 

actionable data that can be quickly visualized and analyzed at different stage of drug development 

via ML/AI algorithm. Some of the major areas of NLP include but not limit to question answering 

system, automatic summarization, machine translation, speech recognition, and document 

classification97. Recently, it also gains popularity among big pharmaceutical companies and bio-

tech organizations. Just to name a few, NLP has been used for effective search for patent 

landscaping and competitive intelligence in Pfizer, discovery potential novel biomarkers and 

phenotypes for diabetes and obesity, from PubMed, clinical trial data, and internal research 

documents in Merck, and text mining EMRs for patient stratification of heart failure risk in BMS98. 

 

The goal of this project is to propose a framework to use text mining technology mainly NLP to: 

extract of the solubility, permeability and/or BCS class information of IR solid oral drug products 

from drug labels, FDA review documents, FDA orange book, and some selected biomedical 

literatures; 

1) identify drug BCS class based on the text mining results in a supervised way; 

2) help build a database carrying drug oral absorption information to further fulfill the BCS 

potential in the development of oral drug products. 
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3.2 Methods 

3.2.1 Documents retrieval 
The scope of the BCS source search included appropriate drug product lists with its active 

pharmaceutical ingredients (APIs), highest strength, text corpora consisting of drug labels, FDA 

review documents, and literatures, knowledge of pharmaceutical sciences. First, search the FDA 

orange book (published on 03/23/2020) thoroughly to get a list of product name, active 

pharmaceutical ingredient (API) and the corresponding highest strength with the inclusion criteria 

regarding the drug products: 1) still on the market; 2) with known strength; 3) oral dosage form; 

4) immediate release; 5) solid. Secondly, query the FDALabel database based on the product 

names acquired in the first step and save the query results; Thirdly, filter the query results from 

the second step with same inclusion criteria mentioned in the first step to obtain all the application 

numbers of the drug products; Fourthly, Crawl the Drugs@FDA website 

(https://www.accessdata.fda.gov/scripts/cder/daf/) automatically according to the application 

numbers compiled in the third step and save all the pdfs files mainly all the labels and FDA review 

documents. Fifthly, add the necessary biomedical literatures found on Web of Science, Pubmed, 

and Research Gate to the large corpus in the fourth step to form a collection of documents, if there 

are no solubility, permeability or BCS class information on the FDA website. Sixthly, narrow 

down the scope of drug products by manually inspecting 1) it’s not absorbed in the oral cavity; 2) 

BCS class has been confirmed by FDA reviewer; 3) it has clear supporting solubility and 

permeability data. Seventhly, convert all the scanned pdf files to plain text for the text data and to 

Microsoft Word for the tabular data using the Optical character recognition (OCR) feature 

provided by Adobe Acrobat to get the raw large corpus for NLP analysis. Eighthly, label the BCS 
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class of each drug substance manually based on my knowledge of pharmaceutical sciences and 

save the classification result as a gold standard for the ML/AL classification models.  

 

3.2.2 Text preprocessing 
Sentence splitting, tokenization and stemming was done sequentially to the raw text corpus. Only 

the sentences satisfying the following conditions were kept:  

• Containing “BCS”, “Biopharmaceutics Classification System”,  

• Containing “solub” and “pH” 

• Containing “permea” and “%” 

• Containing “bioavailability” and “%” but no “relative”, containing “bioavailability” and 

“fraction” but no “relative”, containing “absor” and “gastrointestinal”, containing “absor” 

and “GI”, containing “absor” and “complete” 

• No “rat”, “mice”, “dog”, “monkey”,”pig”, etc 

Assign 80% of the drug substances and the corresponding tokenized sentences to the training 

dataset. 

 

3.2.3 ML/AI model 
The pre-processed text was then transformed into quantifiable data by the algorithm “word2vec”. 

ML algorithms Logistic regression (LR), random forest (RF) and Bi-LSTM were employed to train 

the model and the best models achieved from the training results were applied to the test set to 

predict BCS class.  
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3.2.4 Ontology construction 
The BCS ontology is composed of three components: solubility, permeability, and BCS class. 

“Solubility” specified the solubility profiles numerically (eg. 2.5 mg/mL) or textually (e.g insoluble) 

under certain pH ranges (eg. pH range 1-6.8, physiological pH range, pH 3). “Permeability” 

indicated drug permeability result (eg. high permeability, 100%) in the corresponding form (eg. 

Caco-2 cells, absolute bioavailability). “BCS” represents the direct claim of drug BCS class found 

in the text like BCS Class 2, Class III of the Biopharmaceutical Classification System, et.al. 

 

3.2.5 IE using NER 
Ontology-based name entity recognition (NER) enable to better locate the BCS-related named 

entities to greatly narrow down the scope for analysis. 

The drug BCS class information is extracted as tagging entities as below: 

• Drug tagging: a drug substance library was built based on the list of API and tagged as like 

<DRUG: mycophenolate mofetil> 

• Highest strength tagging: the highest strength of a drug product was acquired from the list 

described in 3.2.1 in the form <DOSE: 500 mg> 

• Solubility tagging: <SOL_RE: 4.27 mg/mL> at <SOL_PH: pH 3.6> 

• Permeability tagging: In 12 healthy volunteers, the mean <PER_SU: absolute 

bioavailability> of oral mycophenolate mofetil relative to intravenous mycophenolate 

mofetil (based on MPA AUC) was <PER_RE: 94%>. 

• BCS class tagging: MMF is a weak base classified as a <BCS: BCS Class II> substance. 

 

3.2.6 Identification of BCS class with NER 
The priority of determining BCS class for a drug product is listed as follows: 

1) If a BCS info is tagged directly, then read the number within the BCS class tagging; 
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2) If there’s no BCS class tagging for a drug substance, then check the solubility: 

• If any numerical results was tagged as SOL_RE then compared the results with highest 

strength (mg) divided by 250 mL to get a binary result in term of solubility either “high” 

or “low”; 

• If the content within the tag SOL_RE doesn’t contain any numbers, then process the text 

via NLP ML/AI algorithm; 

3) If there’s no BCS class tagging for a drug substance, then check the permeability. 

• If any numerical results tagged as PER_RE were higher than 85%, then “high” 

permeability; otherwise “low”; 

• If the content within the tag PER_RE doesn’t contain any numbers, then process the text 

via NLP ML/AI algorithm; 

4) If there’s no BCS class tagging for a drug substance, then identify the BCS class for a drug 

substance based on the results from step 2 and step 3. 

 

3.2.7 Evaluation 
 

The prediction results were evaluated with gold standard described in the eighth step of 3.2.1 with 

the metrics precision, recall, and F1 scores. 

 

3.3 Results 

3.3.1 Exploratory data analysis 
There are 38118 drug products in the FDA orange book published on 03/23/2020. 21114 of them 

are still on the market. Among these, 21057 drug products with known strength. 14641 of them 

are designed as oral dosage form and 12186 are IR. As shown in Figure 3.1, 820 of the distinct 
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APIs collected from the 11232 solid dosage forms for further analysis. Based on the BCS class, 

class 2 and 3 both occupy around 30% of the APIs. Class 1 is around 25% and class 4 is less than 

20%. 

 

 
Figure 3.1 Summary of drug products in FDA orange book 

 
Figure 3.2 displays how the BCS ontology is tagged in a text corpus after pre-processing. 

 
Figure 3.2 An example of annotated corpus based on BCS ontology. 

 

3.3.2 Model Evaluation 
Table 3.1 showcased that NER using the BCS ontology performed significantly better predictions 

compared with handling the text just with ML/AI models. 

Table 3.1 Evaluation results of the ML/AI and NER models 

Method Class 1   Class 2   Class 3   Class 4   
 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 
LR 0 0 0 0.33 1 0.5 0 0 0 0 0 0 
RF 0 0 0 1 1 1 0.5 1 0.67 1 1 1 
Bi-LSTM 0 0 0 0 0 0 0.25 1 0.4 0 0 0 
NER 1 1 1 1 1 1 1 1 1 1 1 1 
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3.4 Conclusion and discussion 

NER-based NLP did a nice job on extracting information and identifying drug BCS class from 

unstructured data on a large scale. Classification based on NER is better than classical machine 

learning algorithm combined with deep neural network models.  

 

A well-annotated BCS corpus and ontology can facilitate text mining in the development and 

practice of drug substances in IR solid oral dosage forms on a large scale. In the future, we are 

interested in expanding the NLP approach to the whole drug oral absorption arena like different 

formulations, prodrugs, food effects, absorption models. 
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Appendix  
 

The appendix contains a summary of tangential projects pursued during my PhD studies, though 

not fully completed due to various reasons. They are summarized below for future reference. 

 

Project 1: Stochastic Differential Equation-Based Hierarchical Model of the 

Fluid Volume in the Stomach 

 

Introduction 

The rate and extent of solid oral drug products release, dissolution and absorption depend largely 

on the dynamic fluid volumes along the gastrointestinal (GI) tract. Since the fluid volume in the 

stomach is determined by saliva and gastric secretion, gastric emptying and oral dosing, a model 

built based on the observed fluid volumes in the stomach at given sampling times can be used to 

describe the kinetics of these physiological and drug product related process. This is the basis for 

a more mechanistic approach to predicting drug release, dissolution and subsequent absorption 

profiles. The predictive results are particularly important for the monitoring of highly variable 

drugs with narrow therapeutic windows and the design of bioequivalence studies. Conventionally, 

these physiological parameters are all treated as time-invariant and the fluid volume in the stomach 

is not considered explicitly, however, recent research results demonstrated these physiological 

processes are very dynamic26-31. 
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Stochastic differential equation (SDE) -based hierarchical model is preferred in the dynamic 

system to provide a robust parameter estimation, and serves as a diagnostic tool for structural 

model misspecification or parameter fluctuations. In contrast to the classical ordinary differential 

equation (ODE) based population approach, where intra-individual variability is only assigned to 

measurement errors, the employment of SDE method allows for decomposition of the intra-

individual variability into a system noise term arising from time-dependent or serial correlated 

errors like unknown or incorrectly specified dynamics and a measurement noise term accounting 

for uncorrelated errors such as assay error99. 

 

The aims of this project are (1) to capture the great inter- and intra- individual variability of the 

stomach fluid volume and transit in healthy subjects; (2) to find out the physiological parameter(s) 

representing the dynamics in the stomach by implementation of SDE method and comparing the 

results with ODE. 

 

Methods 

Study design 

Twelve healthy subjects were enrolled and had their gastric and small intestinal water volume 

measured by magnetic resonance imaging (MRI) scans before and after consumption of 240 mL 

of water at pre-determined intervals for up to 2 hours post-ingestion as shown in Appendix Figure 

1. The SDE- and ODE- based mixed effects morels were implemented and compared using 

Extended Kalman Filter (EKF) algorithm with a 3*3 prediction variance-covariance matrix in 

NONMEM. 
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Appendix Figure 1: Study diagram 

 

Model assumption 

The stomach compartment was basically modeled with zero-order saliva and gastric secretion 

coefficient Kse and first-order gastric emptying coefficient Kge as depicted in the Appendix Figure 

2.  

 

Appendix Figure 2: Schematic illustration of the structure model for the fluid volume in the stomach. 

 

The first-stage model with SDEs written in state-space form consists of a set of continuous time 

system equations in Equation (1)-(2), and discrete time measurement equations in Equation (3), 

that is, 

For subject i at jth sampling time: 

Continuous time state space stochastic differential equations: 

dXstomachi(t) = (-Kgei(t) x Xstomachi(t) + Ksei)dt                                                   (1) 
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dlogKgei(t) = -α(logKgei(t) - logKgei*) + σwKgedWi(t), Wi(t) – Wi(s) ~ N(0, |t-s|I)   (2) 

Discrete time measurement equations: 

Vstomachij = Xstomachij x (1 + σpropε1) + σaddε2, ε1 and ε2 ~ N(0,1)                        (3) 

Inter-individual variability: 

Kgei* = Kge* x exp(ηKgei), ηKgei ~ N(0, ωKge

2
)                                                           (4) 

Ksei* = Kse* x exp(ηKsei), ηKsei ~ N(0, ωKse

2
)                                                             (5) 

where Xstomach is the stomach fluid volume state variable, Vstomach is the observation variable, 

t is the time variable, σwdW is the system noise, I is the identity matrix, σpropε1 and σaddε2 are the 

heteroscedastic and homoscedastic measurement errors, respectively.  

 

σw is a scaling diffusion term, where W is a standard Wiener process. The possible fluctuations of  

parameter were checked in the scenario of dynamic (1) Kse σwKse, (2) Kge σwKge, (3) Kse and 

Kge σwKse and σwKge by Ornstein-Uhlenbeck diffusion process. We just showed the case of 

time-varying Kge as an example below in Equation (2). If the diffusion term σw is zero, the SDE 

reduces to an ODE. The usual physiological interpretation of the parameters is thereby preserved 

in the SDE model formulation. 

 

The second-stage model describing the inter-individual variability (IIV) is included in the same 

way as for ODEs. The typical individual parameter value are modeled in Equation (4) and (5) as a 

function of the fixed-effect population parameters and random-effect parameters η. The random-

effects η are assumed independent and normal distributed with zero mean and standard deviation 
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ω. The three levels of random-effects diffusion process, measurement error, and IIV are assumed 

mutually independent for all i, t, and j. 

 

Algorithm 

The Extended Kalman Filter (EKF) was implemented to estimate state variables on individual 

level. The first step of this efficient recursive algorithm is called one-step prediction equations, 

which are the optimal (minimum variance) prediction of the state mean and covariance at jth 

measurement, can be calculated by solving the state and state covariance prediction equations from 

measurement time tj-1 until tj, that is, 

 

Next, the EFK one-step output prediction equations are calculated by  

 

The one-step output prediction   is the optimal prediction of the jth measurement before 

that measurement is taken while  is the expected covariance for that prediction.  is thus 

the sum of the state covariance associated with the observed states and the covariance of the actual 

measurement. 
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Finally, the one-step state and state covariance predictions are updated by conditioning on the jth 

measurement using the EKF state update equations, that is, 

 

where  is the updated state estimate,  is the updated state covariance, and Kij is called 

the Kalman gain. The optimal state estimate  is equal to the best state prediction  before 

the measurement is taken plus a correction term consisting of an optimal weighting value times 

the difference between the measurement Yij and the one-step prediction of its value. 

 

Results 

Raw data visualization 

There exist great inter- and intra- individual variability in the observed data in Appendix Figure 3, 

indicating it’s very necessary to develop a hierarchical and stochastic differential equation-based 

model, respectively. 
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Appendix Figure 3: Great inter- and intra- individual variability were shown in the left and right panel, respectively. Left: Observed 
fluid volume in the stomach (mL) vs Time (min). The blue curve is the locally weighted smoothing line among different subjects 
in the time course and the scattered numbers represent the ID number of each subjects. Right: Individual observed fluid volume in 
the stomach (mL) vs Time (min) 

 

Model Selection 

The three SDE models in the Appendix Table 1 showed significant improvement in goodness of 

fit compared to the traditional ODE model. And the parsimonious model with lowest AIC—SDE 

with dynamic gastric emptying coefficient model was considered to best characterize the time 

course of stomach fluid volume and was chosen for further analysis, implying the fluctuation of 

gastric emptying coefficient might be the driven factor for the system dynamics of fluid volume in 

the stomach. 

Appendix Table 1: A brief summary of the tested models 

Models AIC Diffusion process 

ODE 1416.405 α = 0 and σ
w
=0 

SDE with dynamic secretion coefficient  1294.273 dlogKse
i
(t) = -α(logKse

i
(t) - logKse

i
*) + σ

wKse
dW

i
(t) 

SDE with dynamic gastric emptying  coefficient 1231.567 dlogKge
i
(t) = -α(logKge

i
(t) - logKge

i
*) + σ

wKge
dW

i
(t) 

SDE with dynamic secretion and gastric emptying 

coefficients 

 

1231.567 dlogKse
i
(t) = -α(logKse

i
(t) - logKse

i
*) + σ

wKse
dW

i
(t) 

and  

dlogKge
i
(t) = -α(logKge

i
(t) - logKge

i
*) + σ

wKge
dW

i
(t) 
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Optimal model results 

The estimates of the typical population mean of Kge and Kse are all in line with physiological 

range in the literature in both SDE and ODE. The proportional and additive measurement error 

were decreased from 14.4% to 4.10% and 17.6 mL to 4.74 mL for the fluid volume in the stomach 

compartment by SDE compared with ODE, respectively, indicating a large part of intra-individual 

variability belong to the system dynamics especially the fluctuation of gastric emptying coefficient 

Kge. These serial correlated errors would be ignored and empirically assigned to the measurement 

error if we adopt the traditional ODE method. The relative standard error (RSE) estimates were 

more or less the same for the SDE and ODE models. 

Appendix Table 2: Parameter Estimation of SDE with dynamic gastric emptying rate parameter and ODE 

Model SDE ODE 

Parameters Estimates RSE(%) Estimates RSE(%) 

Physiological 
Kge (/min) 0.0514 25.1 0.0714 9.01 

Kse (mL/min) 1.52 18.6 1.59 13.9 

Intra-individual variability 

 

σwkge(min-1/2) 0.251 13.6 0 na 

αkge(/min) 0.0204 38.9 0 na 

σprop (%) 3.57 24.6 14.4 20.2 

σadd (mL/min) 4.83 12.4 17.7 8.59 

Inter-individual variability 
ωKge (%) 60.6 49.9 27.5 46.2 

ωKse (%) 18.6 na 21.6 na 

RSE = Estimates/SE*100(%), na-not available 

 

The time-varying nature of Kge was shown in the Appendix Table 2 compared to the constant 

estimation in ODE for each individual in this study. This is the estimation of the hidden state based 

on observations at each measurement time, which contributes most to the dynamics of the stomach 

fluid volume system. 
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The one-step individual SDE predictions, updates, and prediction interval are shown together with 

the individual ODE predictions in Appendix Figure 4. The observed discrepancy between the SDE 

and ODE predictions are due to the SDE predictions being conditioned on all previous 

observations and therefore updated at each sampling time (visualized by the vertical lines in the 

SDE predictions). 

 

Appendix Figure 4: Estimation of logrithm of the gastric emptying coefficient Kge at each measurement time for each individual 
based on observed records. 
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Appendix Figure 5: Individual plots of the one-step SDE predictions, updates, and prediction interval plotted together with the 
ODE predictions. 
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Appendix Figure 6: Goodness-of-fit plots (A-D) and visual predictive check of the SDE with dynamic gastric emptying coefficient 
based hierarchical model of the fluid volume in the stomach among healthy subjects with EKF estimation algorithm. DV: observed 
stomach volume (mL). IPRED: individually predicted stomach fluid volume (mL); PRED: population predicted stomach 
volume (mL); WRES: weighted residual errors. 

 

Optimal model diagnostics 

The individual predictions (IPRED) are generated by assuming a new observation based on 

estimated individual estimated in the population, while the population predictions (PRED) are 

targeted to the new observations of a new individual based on the estimated parameter 

distributions. As shown in the A and B plots of Appendix Figure 6, the dots scatter evenly along 

the two sides of the red line y=x when comparing the prediction and observed fluid volume in the 

stomach, indicating a good prediction quality. We also investigated on pattern of the weighted 

residual errors (WRES: (Yij-Yi(j|j-1)/Rj|j-1) and found it didn’t change as the population prediction 
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value and time. This means that the WRES is a white noise. Therefore, the selected optimal model 

was demonstrated to be well developed. 

 

Conclusion and Discussion 

The SDE-based mixed effects model developed from our study successfully characterized the 

volume profiles in the stomach among the healthy subjects and provided a robust approximation 

of the physiological parameters in the very dynamic system. The remarkable intra-individual 

variability could be further decomposed into system dynamic terms and measurement error terms 

in the SDE model instead of empirically assigning all the intra-individual variability to 

measurement error in the traditional ODE method. The system dynamics were best captured by 

the random fluctuation of the gastric emptying coefficient. 

 

Project 2: Human Duodenal MMC Phase 3 Motility Model Based on 

Manometry Readings 

 

Objectives 

An insight into phase 3, the decisive factor of gastrointestinal motility and secretion, helps us better 

predict drug transit and dissolution in gastrointestinal tract and subsequent drug absorption profile. 

This study is primarily aimed at building up a model of duodenal MMC phase 3 motility behavior 

in the fasted state based on manometry data via time series analysis. 

 

Data Exploration 
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The original manometry data was sampled every 0.1s for 7hrs. For the purpose of course project, 

the data in this study was subsetted by extracting one value out of every 1s during the phase 3 

activity of first MMC cycle after determination at mid-duodenum of one subject. The summary 

info and plot along the time course are displayed below. 

 

 

One may first want to check the potential seasonality since phase 3 is known for regular 

contractions relative to the other two phases. There is an obvious pattern occurring between every 

6 lags and the period of the most prominant frequency in the periodogram is also 6s, indicating a 

mainstream period of 6s per peak in phase 3, which is in concert with the literature claim “10-12 

contractions per minute”. 
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After differencing by 6 lags, the seasonal pattern disappear in the ACF plot and time plot looks 

more regularized than before, suggesting adding a seasonal component to the model. 

 

 

ARMA Model 
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A time series data can be decomposed into three components: trend, seasonal and random. It’s 

easier to set out to find a suitable autoregressive and moving average (ARMA) model for the 

random part. 
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SARMA Model 
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Conclusion and Discussion 

1) The SARMA(2,2)×(2,0)6 model has been successfully constructed to simulate the MMC 

phase 3 motility pattern, though some further optimization might be needed to account for 

the extreme peaks; 

2) The unsatisfactory part can be explained as the data has an unstable standard deviation and 

is right skewed. However, many time series analysis methods are built on the assumption 



 80 

of weak stationary: i. constant mean value function; and ii. the autocovariance function 

only depends on the length of time interval function; 

3) In the next step, we will aggregate all the phase 3 manometry data of the subject in mid-

duodenum throughout the 7hrs to get a better idea of the motility pattern along the time 

course accumulate the phase 3 manometry data of all the subjects at different sites along 

the gastrointestinal tract, build up a hierarchical model to investigate the intra- and inter- 

subject variance and find out some significant covariable. 

 

Project 3: Human Proximal Small Intestinal pH Model 

Introduction 

A better characterization of the pH dynamics may help better explain and/or predict the great intra- 

and inter- individual variabilities in the drug dissolution, solubility and absorption profiles. The 

SmartPill motility testing system features an ingestible capsule that measures pressure, pH, transit 

time and temperature as it passes through the entire gastrointestinal tract, making it possible for 

recording the pH fluctuation in the proximal small intestine. This study is primarily aimed at 

building up a model reflecting the pH dynamics in the proximal small intestine based on SmartPill 

data via hidden Markov method. 

 

Data Exploration 

The subset individual pH data used in this study starts right after gastric emptying, and ends when 

the pH reaches a relative stable level. The duration is 30 mins with a sampling frequency of 5s. 

The summary info and plot along the time course are displayed below. The pH fluctuations are 
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great in the beginning and dies down gradually as time goes by. The pH statistics of this person all 

fall into the normal scope14. 

 

Model Building 

The HCl (pH=1-2) is emptied from the stomach into the duodenum in a pulse packet fluid fashion 

and is neutralized by HCO3- (pH=7-7.5) secreted from the duodenal cluster unit, especially the 

pancreas. The intestinal pH is sustained at a reasonable range by the feedback mechanism of human 

body via adjusting the entry of HCl and HCO3-.10 
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