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ABSTRACT

In biological and engineering systems, structure, function, and dynamics are

highly coupled. Such multiway interactions can be naturally and compactly cap-

tured via tensor-based representations. Exploiting recent advances in tensor algebraic

methods, we develop novel theoretical and computational approaches for data-driven

model learning, analysis, and control of such tensor-based representations. In one

line of work, we extend classical linear time-invariant (LTI) system notions including

stability, reachability, and observability to multilinear time-invariant (MLTI) sys-

tems, in which the state, inputs, and outputs are represented as tensors, and express

these notions in terms of more standard concepts of tensor ranks/decompositions.

We also introduce a tensor decomposition-based model reduction framework which

can significantly reduce the number of MLTI system parameters. In another line of

work, we develop the notion of tensor entropy for uniform hypergraphs, which can

capture higher order interactions between entities than classical graphs. We show

that this tensor entropy is an extension of von Neumann entropy for graphs and

can be used as a measure of regularity for uniform hypergraphs. Moreover, we em-

ploy uniform hypergraphs for studying controllability of high-dimensional networked

systems. We propose another tensor-based multilinear system representation for

characterizing the multidimensional state dynamics of uniform hypergraphs, and de-

rive a Kalman-rank-like condition to identify the minimum number of control nodes

(MCN) needed to achieve full control of the whole hypergraph. We demonstrate

x



these new tensor-based theoretical and computational developments in a variety of

biological and engineering examples.

xi



CHAPTER I

Preliminaries

Controlling high-dimensional systems remains an extremely challenging task as

many control strategies do not scale well with the dimension of the systems. Of

particular interest in this thesis are complex biological and engineering systems in

which structure, function, and dynamics are highly coupled. Such interactions can be

naturally and compactly captured by tensors. Tensors are multidimensional arrays

generalized from vectors and matrices, and have wide applications in many domains

such as social networks, biology, cognitive science, applied mechanics, scientific com-

putation, and signal processing [28, 41, 50, 66, 70]. For example, the organization

of the interphase nucleus in the human genome reflects a dynamical interaction be-

tween 3D genome structure, function, and its relationship to phenotype, a concept

known as the 4D Nucleome (4DN) [28]. 4DN research requires a comprehensive view

of genome-wide structure, gene expression, the proteome, and phenotype, which fits

naturally with a tensorial representation [103, 120]. In order to apply the standard

system and control framework in applications such as these, tensors need to be vec-

torized, leading to an extremely high-dimensional system representation in which the

number of states/parameters scale exponentially with the number of dimensions of

the tensors involved [120]. With the vectorization of tensors, hidden patterns/struc-

1
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tures, e.g., redundancy/correlations, can get lost, and thus one cannot exploit such

inherent structures for efficient representations and computations.

Moreover, most real world data representations are multidimensional, and using

graph (or even multilayer graph) models to describe them may result in a loss of

higher-order information [23, 129]. A hypergraph is a generalization of a graph in

which its hyperedges can join any number of nodes [10, 33, 46, 123]. Thus, hy-

pergraphs can capture multidimensional relationships unambiguously [129]. Exam-

ples of hypergraphs include co-authorship networks, film actor/actress networks, and

protein-protein interaction networks [89]. In addition, a hypergraph can be repre-

sented by a tensor if its hyperedges contain the same number of nodes, referred to

as a uniform hypergraph [23]. The dynamics of uniform hypergraphs thus can be

naturally described by a tensor-based multilinear system.

In this chapter, we provide detailed literature reviews on tensors and hypergraphs

which are the main objects of this thesis.

1.1 Tensors

We take most of the concepts and notations for tensor algebra from the compre-

hensive works of Kolda et al. [69, 70] and Ragnarsson et al. [99, 100]. A tensor

is a multidimensional array. The order of a tensor is the number of its dimen-

sions, and each dimension is called a mode. An kth order tensor usually is denoted

by X ∈ Rn1×n2×···×nk . The sets of indexed indices and size of X are denoted by

j = {j1, j2, . . . , jk} and N = {n1, n2, . . . , nk}, respectively. Let ΠN represent the

product of all elements in N , i.e., ΠN =
∏k

p=1 np. It is therefore reasonable to con-

sider scalars x ∈ R as zero-order tensors, vectors v ∈ Rn as first-order tensors, and

matrices A ∈ Rn×m as second-order tensors. For a third-order tensor, fibers are
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(a) Columns (X:j2j3) (b) Rows (Xj1:j3) (c) Tubes (Xj1j2:)

(d) Horizontal (Xj1::) (e) Lateral (X:j2:) (f) Frontal (X::j3)

Figure 1.1: Fibers and slices of a third-order tensor. The figure is adapted from [69].

named as column (X:j2j3), row (Xj1:j3), and tube (Xj1j2:), while slices are named as

horizontal (Xj1::), lateral (X:j2:), and frontal (X::j3), see Figure 1.1. A tensor is called

cubical if every mode is the same size, i.e., X ∈ Rn×n×···×n. A cubical tensor X is

called supersymmetric if Xj1j2...jk is invariant under any permutation of the indices,

and is called diagonal if Xj1j2...jk = 0 except j1 = j2 = · · · = jk.

1.1.1 Tensor Products

By extending the notion of vector outer product, the outer product of two tensors

X ∈ Rn1×n2×···×nk and Y ∈ Rm1×m2×···×ms is defined as

(X ◦ Y)j1j2...jki1i2...is = Xj1j2...jkYi1i2...is .

In contrast, the inner product of two tensors X,Y ∈ Rn1×n2×···×nk is defined as

〈X,Y〉 =

n1∑
j1=1

· · ·
nk∑
jk=1

Xj1j2...jkYj1j2...jk ,

leading to the tensor Frobenius norm ‖X‖2 = 〈X,X〉. We say two tensors X and Y

are orthogonal if the inner product 〈X,Y〉 = 0.
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The tensor vector multiplication X ×p v along mode p for a vector v ∈ Rnp is

defined by

(1.1) (X×p v)j1j2...jp−1jp+1...jk =

np∑
jp=1

Xj1j2...jp...jkvjp ,

which can be extended to

X×1 v1 ×2 v2 ×3 · · · ×k vk = Xv1v2 . . .vk ∈ R(1.2)

for vp ∈ Rnp . The expression (1.2) is also known as the homogeneous polynomial

associated with X. If vp = v for all p, we write (1.2) as Xvk for simplicity. Similarly,

the matrix tensor multiplication X ×p A along mode p for a matrix A ∈ Rm×np is

defined by

(1.3) (X×p A)j1j2...jp−1ijp+1...jk =

np∑
jp=1

Xj1j2...jp...jkAijp .

This product can be generalized to what is known as the Tucker product, for Ap ∈

Rmp×np ,

(1.4) X×1 A1 ×2 A2 ×3 · · · ×k Ak = X× {A1,A2, . . . ,Ak} ∈ Rm1×m2×···×mk .

1.1.2 Tensor Unfolding

Tensor unfolding is considered as a critical operation in tensor computations [69,

70, 99]. In order to unfold a tensor X ∈ Rn1×n2×···×nk into a vector or a matrix, we

use an index mapping function ivec(·,N ) : Z+ × Z+× k· · · ×Z+ → Z+ as defined by

Ragnarsson et al. [99, 100], which is given by

ivec(j,N ) = j1 +
k∑
p=2

(jp − 1)

p−1∏
l=1

nl.

The index mapping function ivec returns the index for tensor vectorization, i.e.,

x ∈ RΠN is the vectorization of X such that xivec(j,N ) = Xj1j2...jN . If k = 2, ivec will

stack all the columns of X.
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For tensor matricization, let z be an integer such that 1 ≤ z < k, and S be a

permutation of {1, 2, . . . , k}. If r = {S(1),S(2), . . . ,S(z)} and c = {S(z + 1),S(z +

2), . . . ,S(k)} with P = {nS(1), nS(2), . . . , nS(z)} and Q = {nS(z+1), nS(z+2), . . . , nS(k)},

respectively, the rc-unfolding matrix of X, denoted by X(rc) ∈ RΠP×ΠQ , is given by

(1.5) (X(rc))pq = XS
p1p2...pzq1q2...qk−z

,

where p = ivec(p,P), q = ivec(q,Q), and XS is the S-transpose of X defined as

XS
jS(1)jS(2)...jS(k)

= Xj1j2...jk .

When z = 1 and S =
(

1 2 . . . p p+ 1 . . . k
p 1 . . . p− 1 p+ 1 . . . k

)
, the tensor unfolding is called the

p-mode matricization, denoted by X(p).

1.1.3 Tensor Decompositions

There are several definitions of tensor ranks [40, 69, 70], which are intimately

related to different notions of tensor decompositions.

Higher-Order Singular Value Decomposition

The multilinear ranks or the p-ranks of X are the ranks of the p-mode matri-

cizations, denoted by rankp(X). The multilinear ranks are related to the so-called

higher-order singular value decomposition (HOSVD), a multilinear generalization of

the matrix singular value decomposition (SVD) [11, 39].

Theorem I.1 (HOSVD). A tensor X ∈ Rn1×n2×···×nk can be written as

(1.6) X = S×1 U1 ×2 U2 ×3 · · · ×k Uk,

where Up ∈ Rnp×np are orthogonal matrices, and S ∈ Rn1×n2×···×nk is a tensor of

which the subtensors Sjp=α, obtained by fixing the pth index to α, have the properties:
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• all-orthogonality: two subtensors Sjp=α and Sjp=β are orthogonal for all possible

values of p, α and β subject to α 6= β;

• ordering: ‖Sjp=1‖ ≥ · · · ≥ ‖Sjp=np‖ ≥ 0 for all possible values of p.

The Frobenius norms ‖Sjp=j‖, denoted by γ
(p)
j , are the p-mode singular values of X.

De Lathauwer et al. [39] showed that the number of nonvanishing p-mode singu-

lar values from the HOSVD of a tensor is equal to its p-mode multilinear rank. In

addition, the error bound of the low mutilinear rank approximation is provided in

[39]. Unlike the matrix SVD, the approximation fails to obtain the best rank approx-

imation of X. Nevertheless, it still can provide a “good” estimate with appropriate

p-mode singular values truncated [39].

CANDECOMP/PARAFAC Decomposition

Analogous to rank-one matrices, a tensor X ∈ Rn1×n2×···×nk is rank-one if it can

be written as the outer product of k vectors, i.e., X = a(1) ◦a(2) ◦ · · · ◦a(k). The CAN-

DECOMP/PARAFAC decomposition (CPD) decomposes a tensor X ∈ Rn1×n2×···×nk

into a sum of rank-one tensors as form of outer products. It is often useful to nor-

malize all the vectors and have weights λr > 0 in descending order in front:

(1.7) X =
R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(k)
r ,

where a
(p)
r ∈ Rnp have unit length, and R is called the CP rank of X if it is the

minimum integer that achieves (1.7). The factor matrices A(p) ∈ Rnp×R are the

combination of the vectors from the rank-one components for p = 1, 2, . . . , k, i.e.,

A(p) =

[
a

(p)
1 a

(p)
2 . . . a

(p)
R

]
. The CPD is unique up to scaling and permutation

under a weak condition: for k ≥ 2 and R ≥ 2,
∑k

p=1KA(p) ≥ 2R + (k − 1), where

KA(p) , called the k-rank of a matrix, is the maximum number of columns of A(p) that

are linearly independent with each other [73, 113, 117].
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The CP rank of a tensor is always greater than or equal to its multilinear ranks

[40]. In fact, it is greater than or equal to any unfolding matrix rank [93] (which

can be used in TT-ranks and unfolding rank defined later too). The best CP rank

approximation is ill-posed [40], but carefully truncating the CP rank will yield a

good estimate of the original tensor. Both CPD and HOSVD are special cases of

Tucker decomposition, which decomposes a tensor into the form of Tucker product

(1.4), i.e., Y = X× {A1,A2, . . . ,Ak} [72].

Tensor Train Decomposition

The tensor train decomposition (TTD) of a tensor X ∈ Rn1×n2×···×nk is given by

(1.8) X =

Rk∑
rk=1

· · ·
R0∑
r0=1

X(1)
r0:r1
◦ X(2)

r1:r2
◦ · · · ◦ X(k)

rk−1:rk
,

where {R0, R1, . . . , Rk} is the set of TT-ranks with R0 = Rk = 1, and X(p) ∈

RRp−1×np×Rp are called the core tensors of the TTD. Here we have used : for brevity

of notation, see Appendix .2.1. There exist optimal TT-ranks for the TTD such that

Rp = rank(reshape(X,

p∏
j=1

nj,
k∏

j=p+1

nj)),

for p = 1, 2, . . . , k−1 [91]. A core tensor X(p) is called left-orthonormal if (X̄
(p)

)>X̄
(p)

=

I ∈ RRp×Rp , and is called right-orthonormal if X(p)(X(p))> = I ∈ RRp−1×Rp−1 where

X̄
(p)

= reshape(X(p), Rp−1np, Rp),

X(p) = reshape(X(p), Rp−1, npRp),

are the left- and right-unfoldings of the core tensor, respectively. Here I denotes the

identity matrix, and rank and reshape refer to the rank and reshape operations in

MATLAB, respectively (see details in Appendix .2.2 and .2.3.). Detailed algorithms

for left- and right-orthonormalization can be found in [68]. TTD is advantageous in
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Figure 1.2: Hypergraphs. (A) A 3-uniform hypergraph with hyperedges e1 = {1, 2, 3}, e2 =
{3, 4, 5}, and e3 = {3, 6, 7}. (B) A non-uniform hypergrah with hyperedges e1 = {1, 2},
e2 = {2, 3, 4, 5}, and e3 = {3, 6, 7}.

that it provides better compression, i.e., truncating the TT-ranks results in a quasi-

optimal approximation of X, and is computationally more robust [91]. Moreover,

basic tensor algebra, such as addition, tensor products, and norms, can be done in

the TT-format without requiring to recover back to the full tensor representation

[91].

1.2 Hypergraphs

We borrow some fundamental concepts of hypergraphs from the works [7, 36,

58, 97]. An undirected hypergraph G is a pair such that G = {V,E} where V =

{1, 2, . . . , n} is the node set and E = {e1, e2, . . . , es} is the hyperedge set with el ⊆ V

for l = 1, 2, . . . , s. Two nodes are called adjacent if they are in the same hyperedge.

A hypergraph is called connected if given two nodes, there is a path connecting

them through hyperedges. If all hyperedges contain the same number of nodes, i.e.,

|ep| = k (| · | denotes the cardinality of a set), G is called a k-uniform hypergraph,

see Figure 1.2A. Significantly, every k-uniform hypergraph can be represented by a

tensor.

Definition I.2. Let G = {V, E} be a k-uniform hypergraph with n nodes. The

adjacency tensor A ∈ Rn×n×···×n, which is a kth order n-dimensional supersymmetric
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tensor, is defined as

(1.9) Aj1j2...jk =



1
(k−1)!

if (j1, j2, . . . , jk) ∈ E

0, otherwise

.

Similarly to standard graphs, the degree of node j of a uniform hypergraph is

defined as

(1.10) dj =
n∑

j2=1

n∑
j3=1

· · ·
n∑

jk=1

Ajj2j3...jk .

Note that the choice of the nonzero coefficient 1
(k−1)!

in (1.9) guarantees that the

degree of each node is equal to the number of hyperedges that contain that node,

which is consistent with the notion of degree in standard graphs. The degree tensor

D of a hypergraph G, associated with A, is a kth order n-dimensional diagonal tensor

with Djj...j equal to (1.10). If Djj...j = d for all j, then G is called d-regular. Given

any k nodes, if they are contained in one hyperedge, then G is called complete.

Definition I.3. Let G = {V, E} be a k-uniform hypergraph with n node. The Lapla-

cian tensor L ∈ Rn×n×···×n of G, which is a kth order n-dimensional supersymmetric

tensor, is defined as

(1.11) L = D− A,

where D and A are the degree and adjacency tensors of G, respectively.

The Laplacian tensors of uniform hypergraphs possess many similar properties

as Laplacian matrices. For example, the smallest H-eigenvalue of L is always zero

corresponding to the all-one H-eigenvector [97]. Moreover, Chen et al. [31] showed
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that the Z-eigenvector associated with the second smallest Z-eigenvalue of a normal-

ized Laplacian tensor can be used for hypergraph partition. Detailed descriptions of

tensor eigenvalues can be found in Appendix .1.



CHAPTER II

Multilinear Control Systems Theory

In order to take advantage of tensor algebraic computations, recently a new class

of multilinear time-invariant (MLTI) system has been introduced [107, 120], in which

the states and outputs are preserved as tensors. The system evolution is generated

by the action of multilinear operators which are formed using Tucker products of

matrices. By using tensor unfolding, an operation that transforms a tensor into a

matrix, Rogers et al. [107] and Surana et al. [120] developed methods for model

identification/reduction from tensor time series data. An application of such tensor-

based representation/identification for skeleton-based human behavior recognition

from videos demonstrated significant improvements in classification accuracy com-

pared to standard linear time-invariant (LTI)-based approaches [41]. However, the

MLTI system representation is limited because it assumes the multilinear operators

are formed from the Tucker products of matrices (and thus precludes more general

tensorial representations) and does not incorporate control inputs.

The role of tensor algebra has also been explored for modeling and simulation of

nonlinear dynamics, where the vector field is a multilinear function of states [72].

Tensor decomposition techniques such as CANDECOMP/PARAFAC decomposition

(CPD) and tensor train decomposition (TTD) can reduce system size, thus reducing

11
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memory usage and enabling efficient computation during simulations. Note that in

contrast to the MLTI systems framework of [107, 120], in this application, tensor

algebra is applied to the system represented in the conventional vector form. The

author in [50] exploits tensor decompositions to compute numerical solutions of mas-

ter equations associated with Markov processes on extremely large state spaces. The

Einstein product and even-order paired tensors, along with TTD, were utilized for

developing tensor representations for operators based on nearest-neighbor interac-

tions, construction of pseudoinverses for dimensionality reduction methods, and the

approximation of transfer operators of dynamical systems. The key contributions of

this chapter are as follows:

• We propose new tensor notions for positive definiteness, tensor inversion, and a

new way of concatenation of tensors to create block tensors. Using these tensor

constructs, we develop tensor algebraic conditions for stability, reachability, and

observability for the generalized MLTI systems.

• We establish new results relating the unfolding rank to other more standard

notions of tensor ranks, including multilinear ranks, CP rank, and TT-ranks.

Using such relations, we provide criteria for reachability and observability which

do not require tensor unfolding, and can be computed using efficient tensor

algebraic methods. Similarly, we express MLTI system stability conditions using

higher-order singular value decomposition (HOSVD), CPD, and TTD.

• Using generalized CPD/TTD, we develop a framework for model reduction of

MLTI systems. This approach takes advantage of tensor decompositions which

otherwise cannot be exploited after unfolding the MLTI systems to obtain a

standard LTI form. It also successfully realizes the tensor decomposition-based
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criteria for stability, reachability, and observability. Furthermore, we establish

new stability results by utilizing the factor matrices from tensor decompositions

for this reduced model with lesser computational costs.

• We provide computational and memory complexity analysis for the CPD- and

TTD-based methods in comparison to unfolding-based matrix methods and

demonstrate our framework in four numerical examples.

This chapter is organized into eight sections. In Section 2.1, we introduce the

notion of even-order paired tensors and their properties. In Section 2.2, we build

new results relating the unfolding rank of a tensor to other more standard notions

of tensor ranks. A new notion of block tensors is discussed in Section 2.3. Sec-

tion 2.4 introduces the MLTI system representation using the Einstein product and

even-order paired tensors in detail, and we establish stability, reachability, and ob-

servability conditions for MLTI systems in Section 2.5. The application of generalized

CPD/TTD for model reduction is discussed in Section 2.6. Four numerical examples

are presented in Section 2.7. Finally, we summarize different numerical approaches

associated with MLTI systems in Section 2.8. All the content of this chapter has

published in [24, 27].

2.1 Even-Order Paired Tensors

We first discuss the notion of even-order paired tensors and the Einstein product

which will play an important role in developing the MLTI systems theory.

Definition II.1. Even-order paired tensors are 2kth order tensors with elements

specified using a pairwise index notation, i.e., Aj1i1...jkik for A ∈ Rn1×m1×···×nk×mk .

Definition II.2. Given an even-order paired tensor A ∈ Rn1×m1×···×nk×mk , the Ein-

stein product between A and an kth order tensor X ∈ Rm1×m2×···×mk is the contraction
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along the second index in each pair from A, i.e.,

(2.1) (A ∗ X)j1j2...jk =

m1∑
i1=1

· · ·
mk∑
ik=1

Aj1i1...jkikXi1i2...ik .

We use the pairwise index notation for even-order tensors because it is convenient

for defining the unfolding transformation ψ, see Definition II.4, and for representing

core matrices/tensors in generalized tensor decompositions, see Section 2.1.2. Note

that even-order paired tensors and the Einstein product (2.1) can be viewed as mul-

tidimensional generalizations of matrices and the standard matrix-vector product,

respectively [50]. Similar to the standard matrix-matrix product, one can also define

a generalized form of the Einstein product between two even-order paired tensors.

We will see later that the Einstein product can be efficiently computed using tensor

decompositions of even-order paired tensors.

Definition II.3. Given two even-order paired tensors A ∈ Rn1×m1×···×nk×mk and

B ∈ Rm1×l1×···×mk×lk , the Einstein product A ∗ B ∈ Rn1×l1×···×nk×lk is defined by

(2.2) (A ∗ B)j1i1...jkik =

m1∑
s1=1

· · ·
mk∑
sk=1

Aj1s1...jkskBs1i1...skik .

2.1.1 Isomorphism to General Linear Group

Brazell et al. [16] investigated properties of even-order tensors under the Einstein

product (different from (2.2)) through construction of an isomorphism to GL(n,R),

i.e., the set of n×n real valued invertible matrices. The existence of the isomorphism

enables one to generalize several matrix concepts, such as invertibility and eigenvalue

decomposition to the tensor case [16, 37, 54, 77, 119]. We can establish an analogous

isomorphism for even-order paired tensors by a permutation of indices.

Definition II.4. Define the map ψ: Tn1m1...nkmk
(R) → MΠNΠM(R) with ψ(A) = A
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defined component-wise as

(2.3) Aj1i1...jkik
ψ−→ Aivec(j,N )ivec(i,M),

where Tn1m1...nkmk
(R) is the set of all real n1×m1× · · · ×nk ×mk even-order paired

tensors, and MΠNΠM(R) is set of all real ΠN × ΠM matrices.

The map ψ can be viewed as a tensor unfolding discussed in (1.5) with z = k

and S =
(

1 2 . . . k k + 1 k + 2 . . . 2k
1 3 . . . 2k − 1 2 4 . . . 2k

)
, so the Frobenius norm is preserved

through ψ, i.e., ‖A‖ = ‖ψ(A)‖. More significantly, ψ is bijective, and the restriction

of ψ−1 on the general linear group produces a group isomorphism.

Corollary II.5. Let np = mp for all p and Gn1m1...nkmk
(R) = ψ−1(GL(ΠN ,R)), i.e.,

Gn1m1...nkmk
is the space of all even-order paired tensors which maps to the general

linear group under ψ. Then Gn1m1...nkmk
(R) is a group equipped with the Einstein

product (2.2), and ψ is a group isomorphism.

Detailed proofs can be found in [16, 54]. Based on the unfolding property, we can

define several tensor notations analogous to matrices as follows:

• For an even-order paired tensor A ∈ Rn1×m1×···×nk×mk , T ∈ Rm1×n1×···×mk×nk is

called the U-transpose of A if Ti1j1...ikjk = Aj1i1...jkik , and is denoted by A>. We

refer to an even-order paired tensor that is identical to its U-transpose as weakly

symmetric.

• For an even-order paired tensor A ∈ Rn1×m1×···×nk×mk , the unfolding rank of A

is defined as rankU(A) = rank(ψ(A)) [77].

• An even-order “square” tensor D ∈ Rn1×n1×···×nk×nk is called the U-diagonal

tensor if all its entries are zeros except for Dj1j1...jkjk . If all the diagonal entires

Dj1j1...jkjk = 1, then D is the U-identity tensor, denoted by I.
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• For an even-order square tensor A ∈ Rn1×n1×···×nk×nk , if there exists a tensor

B ∈ Rn1×n1×···×nk×nk such that A ∗B = B ∗A = I, then B is called the U-inverse

of A, denoted by A−1.

• An even-order square tensor A ∈ Rn1×n1×···×nk×nk is called U-positive definite if

X> ∗ A ∗ X > 0 for any nonzero tensor X ∈ Rn1×n2×···×nk .

• For an even-order square tensor A ∈ Rn1×n1×···×nk×nk , the unfolding determinant

of A is defined as detU(A) = det(ψ(A)) [77].

We show that the notion of U-positive definiteness is a generalization of M-positive

definiteness and rank-one positive definiteness proposed in [59, 98] for the even-order

elasticity tensors.

Definition II.6. An even-order square tensor A ∈ Rn1×n1×···×nk×nk is called M-

positive definite if the multilinear functional

(2.4) A× {x>1 ,x>1 , . . . ,x>k ,x>k } > 0,

for any nonzero vector xp. If all xp are equal, A is called rank-one positive definite.

Lemma II.7. Let A ∈ Rn1×m1×···×nk×mk be an even-order paired tensor. Then the

product A× {U1,V1, . . . ,Uk,Vk} = U ∗ A ∗ V> ∈ Rq1×s1×···×qk×sk for U = U1 ◦U2 ◦

· · · ◦Uk and V = V1 ◦V2 ◦ · · · ◦Vk where Up ∈ Rqp×np and Vp ∈ Rsp×mp.

Proof. This follows from the definitions of the Tucker and Einstein products.

Proposition II.8. If an even-order square tensor A ∈ Rn1×n1×···×nk×nk is U-positive

definite, it is M-positive definite. Moreover, if n1 = n2 = · · · = nk, U-positive

definiteness also implies rank-one positive definiteness.

Proof. By Lemma II.7, it follows that A × {x>1 ,x>1 , . . . ,x>k ,x>k } = X> ∗ A ∗ X for

X = x1 ◦ x2 ◦ · · · ◦ xk, i.e., X is a rank-one tensor. Moreover, if n1 = n2 = · · · = nk,
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M-positive definiteness implies rank-one positive definiteness [98]. Therefore, the

results follow immediately.

Eigenvalue problems for tensors were first explored by Qi [96] and Lim [74] inde-

pendently. Brazell et al. [16] formulated a new tensor eigenvalue problem through

the isomorphism ψ for fourth-order tensors, and Cui et al. [37] extended the tensor

eigenvalue problem to even-order tensors.

Definition II.9. Let A ∈ Rn1×n1×···×nk×nk be an even-order square tensor. If X ∈

Cn1×n2×···×nk is a nonzero kth order tensor, λ ∈ C, and X and λ satisfy A ∗ X = λX,

then we call λ and X as the U-eigenvalue and U-eigentensor of A, respectively.

The algebraic and geometric multiplicities of U-eigenvalues can be defined as for

matrices. The generalization of the Caley-Hamilton theorem for the tensor case

can be obtained by the isomorphism property, i.e., an even-order square tensor A

satisfies its own characteristic polynomial p(λ) = detU(λI − A). Moreover, it can

be shown that the notion of U-eigenvalues is a generalization of Z-eigenvalues and

M-eigenvalues as proposed in [59, 74, 96]. Detailed proofs are omitted here.

2.1.2 Generalized Tensor Decompositions

We introduce the notion of generalized CPD/TTD for even-order paired tensors

described in [50], in which the generalized CPD can also be viewed as the extension

of the Kronecker rank approximation proposed by Van Loan [124]. Generalized CPD

and TTD share a similar format and possess many analogous properties.

Definition II.10. Given an even-order paired tensor A ∈ Rn1×m1×···×nk×mk , the

generalized CPD of A is given by

(2.5) A =
R∑
r=1

A(1)
r:: ◦ A(2)

r:: ◦ · · · ◦ A(k)
r:: ,
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where A(p) ∈ RR×np×mp . Extending Van Loan’s definition [124], we call the smallest

R that achieves (2.5) the Kronecker rank of A.

Definition II.11. Given an even-order paired tensor A ∈ Rn1×m1×···×nk×nk , the gen-

eralized TTD of A is given by

(2.6) A =

R0∑
r0=1

· · ·
Rk∑
rk=1

A(1)
r0::r1
◦ A(2)

r1::r2
◦ · · · ◦ A(k)

rk−1::rk
,

where A(p) ∈ RRp−1×np×mp×Rp , and {R0, R1, . . . , Rk} is the set of TT-ranks with

R0 = Rk = 1.

Please refer to Appendix .2.1 for the use of : notation. Given two even-order paired

tensors in the generalized CPD/TTD format, the Einstein product (2.2) between the

two can be computed without having to reconstruct the full tensors, i.e., keeping the

original format [50]. The following proposition states the case for generalized CPD,

which also applies to generalized TTD.

Proposition II.12. Given two even-order paired tensors A ∈ Rn1×m1×...nk×mk and

B ∈ Rm1×l1×···×mk×lk in the format of (2.5) with Kronekcer ranks R and S, respec-

tively, the Einstein product A ∗ B is given by

(2.7) A ∗ B =
T∑
t=1

E
(1)
t:: ◦ E

(2)
t:: ◦ · · · ◦ E

(k)
t:: ,

where E
(p)
t:: = A(p)

r:: B
(p)
s:: ∈ Rnp×mp, and t = ivec({r, s}, {R, S}) with T = RS.

Remark. The computational complexity of the Einstein product (2.7) is about

O(kn3R2) assuming that np = mp = lp = n and R = S, which is much lower than

O(n3k) from the Einstein product (2.2) if R is small.

The generalized CPD can be recovered from the standard CPD, and similarly for

generalized TTD. The algorithm below is extended from the results by Van Loan [124]
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about the Kronecker rank approximation. Thus, one can easily obtain generalized

CPD by using any technique for computing the standard CPD including alternating

least square (ALS) and modified ALS methods [69, 70].

Algorithm 1 Generalized CPD

1: Given an even-order paired tensors A ∈ Rn1×m1×···×nk×mk

2: Set Ǎ = reshape(A, n1m1, n2m2, . . . , nkmk)

3: Apply CPD algorithms on Ǎ such that Ǎ =
∑R
r=1 λra

(r)
1 ◦ a

(r)
2 ◦ · · · ◦ a

(r)
k

4: Set A(p)
r:: = λ

1
k
r reshape(a

(r)
p , np,mp) for p = 1, 2, . . . , k

5: return Component tensors A(p) for p = 1, 2, . . . , k.

Algorithm 2 Generalized TTD

1: Given an even-order paired tensors A ∈ Rn1×m1×···×nk×mk

2: Set Ǎ = reshape(A, n1m1, n2m2, . . . , nkmk)
3: Apply the standard TTD algorithm on Ǎ such that

Ǎ =

R0∑
r0=1

· · ·
Rk∑
rk=1

Ǎ
(1)

r0:r1 ◦ Ǎ
(2)

r1:r2 ◦ · · · ◦ Ǎ
(k)

rk−1:rk

4: Set A(p)
rp−1::rp = reshape(Ǎ

(p)

rp−1:rp , np,mp) for p = 1, 2, . . . , k

5: return Component tensors A(p) for p = 1, 2, . . . , k.

2.2 Tensor Rank Relations

We establish new results relating the unfolding rank of an even-order paired tensor

to its multilinear ranks, CP rank, and TT-ranks. These relationships are useful for

checking multilinear generalizations of reachability and observability rank conditions.

Proposition II.13. Let A ∈ Rn1×m1×···×nk×mk be an even-order paired tensor. If

rankU(A) = ΠN (or rankU(A) = ΠM), then rank2p−1(A) = np (or rank2p(A) = mp)

for p = 1, 2, . . . , k.

Proof. Without loss of generality, assume that ΠM ≤ ΠN and rankU(A) = ΠN .

Then ψ(A) has ΠM linearly independent columns. The goal here is to construct

a transformation from ψ(A) to A>(2p), which can be easily visualized through the
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representation (z,S) defined in (1.5). Let

S1 =
(

1 2 . . . k k + 1 k + 2 . . . 2k
1 3 . . . 2k − 1 2 4 . . . 2k

)
,

S2 =
(

1 2 . . . 2p− 1 2p . . . 2k − 1 2k
1 2 . . . 2p− 1 2p+ 1 . . . 2k 2p

)
,

S3 =
(

1 2 . . . k k + 1 k + 2 . . . k + p k + p+ 1 . . . 2k
1 3 . . . 2N − 1 2n 2 . . . 2n− 2 2n+ 2 . . . 2N

)
,

S4 =
(

1 2 . . . k k + 1 . . . k + p− 1 k + p . . . 2k − 1 2k
1 3 . . . 2k − 1 2 . . . 2p− 2 2p+ 2 . . . 2k 2p

)
.

Clearly, ψ(A) and A>(2p) can be represented by (k,S1) and (2k − 1,S2), respectively.

According to the definition of the index mapping function ivec(i,M), we first require

a column permutation matrix P such that ψ(A)P is represented by (k, S3). Every mp

columns of ψ(A)P correspond to the columns of A>(2p). Collect each set of mp columns

of ψ(A)P and stack them vertically to form a tall matrix Ã with the representation

(2k − 1,S4). Since the columns of ψ(A)P are linearly independent, rank(Ã) = mp.

Finally, according to the definition of the index mapping function ivec(j,N ), we

require a row permutation matrix Q such that QÃ = A>(2p). Hence, rank2p(A) =

rank(A>(2p)) = mp. Note that the converse of the statement is incorrect.

Proposition II.14. Let A ∈ Rn1×m1×···×nk×mk be an even-order paired tensor given

in the CPD format (2.5) with CP rank equal to R. If the following conditions

(2.8)
2k∑

p=1:2

KA(p) ≥ R + k − 1,
2k∑

p=2:2

KA(p) ≥ R + k − 1

are satisfied for every KA(p) ≥ 1, then rankU(A) = R. The notations
∑2k

p=1:2 and∑2k
p=2:2 represent the sums of all odd indices and all even indices, respectively.

In order to prove Proposition II.14, we need to introduce the concept of Khatri-

Rao product.

Definition II.15. Given two matrices A ∈ Rn×m and B ∈ Rl×m, the Khatri-Rao
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product, denoted by A�B, results in a nl ×m matrix:

A�B =

[
a1 ⊗ b1 a2 ⊗ b2 . . . am ⊗ bm

]
,

where ⊗ denotes the Kronecker product, and ap and bp are the column vectors of A

and B, respectively.

The following lemma provided by Sidiropoulos et al. [114, 117] gives some prop-

erties of rank and k-rank of the Khatri-Rao product A�B.

Lemma II.16. Given two matrices A ∈ Rn×R,B ∈ Rm×R, the Khatri-Rao product

A�B has column rank R if KA +KB ≥ R+ 1 for KA,KB ≥ 1. Moreover, KA�B ≥

min {KA +KB − 1, R}.

Proposition II.17. Given matrices A(p) ∈ Rnp×R, the Khatri-Rao product A(1) �

A(2) � · · · �A(k) has column rank R if
∑k

p=1KA(p) ≥ R + k − 1 for KA(p) ≥ 1.

Proof. Suppose that k = 3. By Lemma II.16, the Khatri-Rao product A(1) �A(2) �

A(3) has full column rank R if KA(1)�A(2) + KA(3) ≥ R + 1. Since we know that

KA�B ≥ min {KA +KB − 1, R}, the above inequality can be satisfied if

min {KA(1) +KA(2) − 1, R}+KA(3) ≥ R + 1.

When KA(1) + KA(2) > R + 1, the condition is reduced to KA(3) ≥ 1, and when

KA(1) + kA(2) ≤ R + 1, the condition becomes KA(1) + KA(2) + KA(3) ≥ R + 2.

Therefore, the Khatri-Rao product A(1) � A(2) � A(3) has full column rank R if

KA(1) +KA(2) +KA(3) ≥ R+ 2. The result can be easily extended to p = k using the

same approach.

Now, we can prove Proposition II.14.
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Proof. Suppose that A has the CPD format (2.5) with CP rank equal to R. Applying

the unfolding transformation ψ yields

ψ(A) = (A(2k−1) � · · · �A(1))S(A(2k) � · · · �A(2))>,

where S ∈ RR×R is a diagonal matrix containing the weights of the CPD on its

diagonal. By Proposition II.17, the two Khatri-Rao products A(2k−1) � · · · � A(1)

and A(2k) � · · · �A(2) have full column rank R if the two conditions
∑2k

p=1:2KA(p) ≥

R + k − 1, and
∑2k

p=2:2KA(p) ≥ R + k − 1 are satisfied. Hence, rankU(A) = R. Note

that we do not require the CPD of A to be unique in the statement.

Proposition II.18. Let A ∈ Rn1×m1×···×nk×mk be an even-order paired tensor. Then

rankU(A) = R̃k where R̃k is the kth optimal TT-rank of Ã, the S-transpose of A with

S =
(

1 2 . . . k k + 1 k + 2 . . . 2k
1 3 . . . 2k − 1 2 4 . . . 2k

)
.

Proof. The result follows from the definition of optimal TT-ranks.

Remark. Given the TTD of A, the TTD of Ã ∈ Rn1×···×nk×m1×···×mk can be

constructed by manipulating the core tensors A(p) without converting back to the full

format. Assume that np = mp = n for all p, and R is the average of the TT-ranks of

A. If R remains unchanged or decreases during this conversion, the computational

complexity is estimated to be at most O(k2n3R3)1. A detailed algorithm for the

TTD-based permutation can be found in [25].

2.3 Block Tensors

We next discuss notions of block tensors and tensor decompositions which will

form the basis for developing tensor algebra-based concepts of stability, reachability,

and observability of MLTI systems. Analogously to block matrices, one can define
1Big O notation: f(x) = O(g(x)) as x→∞ if and only if there exists a positive real number M and a real number

x0 such that |f(x)| ≤Mg(x) for all x ≥ x0.
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the notion of block tensors. For tensors of the same size, we propose a block tensor

construction which does not introduce any wasteful zeros compared to the block

tensors proposed in [119], and thus offers computational advantages.

Definition II.19. Let A,B ∈ Rn1×m1×···×nk×mk be two even-order paired tensors.

The p-mode row block tensor

∣∣∣∣A B

∣∣∣∣
p

∈ Rn1×m1×···×np×2mp×···×nk×mk is defined by

(

∣∣∣∣A B

∣∣∣∣
p

)j1l1...jklk =



Aj1l1...jklk , js = 1, . . . , ns, ls = 1, . . . ,ms ∀s

Bj1l1...jklk , js = 1, . . . , ns ∀s, ls = 1, . . . ,ms for s 6= p

and ls = ms + 1, . . . , 2ms for s = p

.

For example, if A,B ∈ R2×2×2×2, then the 1-mode row block tensor is given by∣∣∣∣A B

∣∣∣∣
1

∈ R2×4×2×2 such that (

∣∣∣∣A B

∣∣∣∣
1

):i1:: = A for i1 = 1, 2 and (

∣∣∣∣A B

∣∣∣∣
1

):i1:: = B for

i1 = 3, 4. Similarly for

∣∣∣∣A B

∣∣∣∣
2

∈ R2×2×2×4. Detailed explanations of the MATLAB

colon operation : can be found in Appendix .2.1. When k = 1, it reduces to the row

block matrices. The p-mode column block tensor∣∣∣∣∣∣∣
A

B

∣∣∣∣∣∣∣
p

∈ Rn1×m1×···×2np×mp×···×nk×mk

can be defined in a similar manner. The p-mode block tensors exhibit many proper-

ties analogous to block matrix computations, e.g., the Einstein product can distribute

over block tensors, and the blocks of p-mode row block tensors map to contiguous

blocks under ψ up to some permutations [99].

Proposition II.20. Let A,B ∈ Rn1×m1×···×nk×mk and C,D ∈ Rm1×l1×···×mk×lk . Then

the following properties hold:

• P ∗
∣∣∣∣A B

∣∣∣∣
p

=

∣∣∣∣P ∗ A P ∗ B
∣∣∣∣
p

for any P ∈ Rs1×m1×···×sk×mk ;
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•

∣∣∣∣∣∣∣
C

D

∣∣∣∣∣∣∣
p

∗ Q =

∣∣∣∣∣∣∣
C ∗ Q

D ∗ Q

∣∣∣∣∣∣∣
p

for any Q ∈ Rl1×r1×···×lk×rk ;

•
∣∣∣∣A B

∣∣∣∣
p

∗

∣∣∣∣∣∣∣
C

D

∣∣∣∣∣∣∣
p

= A ∗ C + B ∗ D.

Proof. The proof follows immediately from the definition of p-mode row/column

block tensors and the Einstein product.

Proposition II.21. Let A,B ∈ Rn1×m1×···×nk×mk be two even-order paired tensors.

Then ψ(

∣∣∣∣A B

∣∣∣∣
p

) =

[
ψ(A) ψ(B)

]
P, where P is a column permutation matrix. In

particular, when mp = 1 for all p or p = k, P is the identity matrix.

Proof. We consider the case for k = 2. Since the size of the odd modes of the

block tensor remains the same, we only need to consider the even modes’ unfolding

transformation. When p = 1, the index mapping function for the even modes is

ivec(i,M) = i1 + 2(i2 − 1)m1,

for i1 = 1, 2, . . . , 2m1. Based on the definition of p-mode row block tensors, the

first m1 columns of ψ(

∣∣∣∣A B

∣∣∣∣
1

) are the vectorizations of A:i1:i2 for i1 = 1, 2, . . . ,m1

and i2 = 1, and the second m1 columns are the vectorizations of B:i1:i2 for i1 =

m1 +1,m1 +2, . . . , 2m1 and i2 = 1. The alternating pattern continues for all m2 pairs

of m1 columns. Hence, ψ(

∣∣∣∣A B

∣∣∣∣
1

) =

[
ψ(A) ψ(B)

]
P for some column permutation

matrix P. When p = 2, the index mapping function for the even modes is given by

ivec(i,M) = i1 + (i2 − 1)m1,

for i2 = 1, 2, . . . , 2m2. Similarly, the first m1m2 columns of ψ(

∣∣∣∣A B

∣∣∣∣
2

) are the

vectorizations of A:i1:i2 for i1 = 1, 2, . . . ,m1 and i2 = 1, 2, . . . ,m2, and the second
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m1m2 columns are the vectorizations of B:i1:i2 for i1 = 1, 2, . . . ,m1 and i2 = m2 +

1,m2 + 2, . . . , 2m2. Hence, ψ(

∣∣∣∣A B

∣∣∣∣
2

) =

[
ψ(A) ψ(B)

]
. A similar analysis can be

used to prove the case for k > 2. Moreover, when mp = 1 for all p, ψ(A) and

ψ(B) are vectors, so no permutation needs to be considered. The proposition can be

considered as a special case of Theorem 3.3 in [99].

Given q even-order paired tensors Xn ∈ Rn1×m1×···×nk×mk , one can apply Definition

II.19 successively to create a n1 ×m1 × · · · × np ×mpq × · · · × nk ×mk even-order

p-mode row block tensor. However, a more general concatenation approach can be

defined for multiple blocks.

Definition II.22. Given q even-order paired tensors Xn ∈ Rn1×m1×···×nk×mk , if q =

q1q2 . . . qk, the n1 ×m1q1 × · · · × nk ×mkqk even-order mode row block tensor Y can

be constructed in the following way:

• Compute the 1-mode row block tensor concatenation over {X1, · · · ,Xq1},

{Xq1+1, · · · ,X2q1} and so on to obtain q2q3 . . . qk block tensors denoted by

X
(1)
1 ,X

(1)
2 , . . . ,X(1)

q2q3...qk
;

• Compute the 2-mode row block tensors concatenation over {X(1)
1 , · · · ,X(1)

q2
},

{X(1)
q2+1, · · · ,X

(1)
2q2
} and so on to obtain q3q4 . . . qk block tensors denoted by

X
(2)
1 ,X

(2)
2 , . . . ,X(2)

q3q4...qk
;

• Keep repeating the process until the last k-mode row block tensor is obtained.

We denote the mode row block tensor as Y =

∣∣∣∣X1 X2 . . . Xq

∣∣∣∣.
For example, suppose that Xn ∈ R2×2×2×2×2×2 for n = 1, 2, . . . , q and q = 8. Let

q = q1q2q3 with q1 = q2 = q3 = 2. Given this factorization of q, the mode row

block tensor Y ∈ R2×4×2×4×2×4 is constructed in the manner shown in Figure 2.3,
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in which X(1)
p ∈ R2×4×2×2×2×2 and X(2)

p ∈ R2×4×2×4×2×2. Another factorization with

q1 = 2, q2 = 4 and q3 = 1 would return Y ∈ R2×4×2×8×2×2. The generalized mode

column block tensors with multiple blocks can be constructed in a similar manner.

When mp = 1 for all p, the above generalized mode row block tensor maps exactly to

contiguous blocks in its unfolding under ψ, which could be beneficial in many block

tensor applications. Furthermore, the choices of qp may affect the structure of mode

block tensors, which can be significant in tensor ranks/decompositions [25].

∣∣∣X(2)
1 X

(2)
2

∣∣∣
3︸ ︷︷ ︸

Y=|X1 X2 . . . X8|

∣∣∣X(1)
1 X

(1)
2

∣∣∣
2︸ ︷︷ ︸

X
(2)
1

∣∣X1 X2

∣∣
1︸ ︷︷ ︸

X
(1)
1

X1 X2

∣∣X3 X4

∣∣
1︸ ︷︷ ︸

X
(1)
2

X3 X4

∣∣∣X(1)
3 X

(1)
4

∣∣∣
2︸ ︷︷ ︸

X
(2)
2

∣∣X5 X6

∣∣
1︸ ︷︷ ︸

X
(1)
3

X5 X6

∣∣X7 X8

∣∣
1︸ ︷︷ ︸

X
(1)
4

X7 X8

Figure 2.1: An example of mode row block tensor.

2.4 MLTI System Representation

To describe the evolution of tensor time series, the authors in [107, 120] introduced

a MLTI system using the Tucker product, which can be generalized by incorporating
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control inputs as follows:
Xt+1 = Xt × {A1, . . . ,Ak}+ Ut × {B1, . . . ,Bk}

Yt = Xt × {C1, . . . ,Ck}
,(2.9)

where Xt ∈ Rn1×n2×···×nk is the latent state space tensor, Yt ∈ Rm1×m2×···×mk is the

output tensor, and Ut ∈ Rq1×q2×···×qk is the control tensor. Ap ∈ Rnp×np , Bp ∈ Rnp×qp ,

and Cn ∈ Rmp×np are real valued matrices for p = 1, 2, . . . , k. The Tucker product

provides a suitable way to deal with MLTI systems because it allows one to exploit

matrix computations. However, we find that (2.9) can be replaced by a more general

representation using the notion of even-order paired tensors and the Einstein product.

Moreover, the new representation is more concise and systematic compared to the

tensor-based linear system proposed in [41].

Definition II.23. A more general representation of MLTI system is given by
Xt+1 = A ∗ Xt + B ∗ Ut

Yt = C ∗ Xt

,(2.10)

where A ∈ Rn1×n1×···×nk×nk , B ∈ Rn1×q1×···×nk×qk , and C ∈ Rm1×n1×···×mk×nk are

even-order paired tensors.

Proposition II.24. The governing equations (2.10) can be obtained from (2.9) by

setting A, B and C to be the outer products of component matrices {A1,A2, . . . ,Ak},

{B1,B2, . . . ,Bk}, and {C1,C2, . . . ,Ck}, respectively.

Proof. The result follows from II.7 with mp = 1 and Vp = 1 for all p.

The main advantages of the MLTI system (2.10) are as follows:

• The Einstein product representation (2.10) of MLTI systems is indeed the gen-

eralization of (2.9). While Proposition II.24 shows that MLTI systems in the
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form of (2.9) can always be transformed into the form of (2.10), the converse is

not always true, see (2.20) for example. It is true only when R1 = R2 = R3 = 1.

• The MLTI system (2.10) takes a form similar to the standard LTI system model

with matrix product replaced with the Einstein product, so the representation is

more natural for developing the MLTI systems theory including notions of stabil-

ity, reachability, and observability. Moreover, the concept of transfer functions

which is commonly used in modern control theory can be extended for MLTI

systems, see Definition II.25.

• We can exploit tensor decompositions of the even-order paired tensors A, B, and

C to accelerate computations in MLTI systems theory. In particular, if A, B,

and C possess low tensor rank structures, we can obtain a low-parameter MLTI

representation. In addition, many operations such as the Einstein product and

unfolding rank can be achieved efficiently in the tensor decomposition format

compared to unfolding-based matrix methods, see remarks in Section 2.5 and

2.6.

• Traditional LTI model reduction and identification techniques such as balanced

truncation and eigensystem realization algorithm can be extended using the

form of (2.10).

Definition II.25. The transfer function G(z) of (2.10) is given by

(2.11) G(z) = C ∗ (zI− A)−1 ∗ B,

where z is a complex variable.

We first investigate the elementary solution to the MLTI system (2.10), which is

crucial in the analysis of stability, reachability, and observability.
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Proposition II.26. For an unforced MLTI system Xt+1 = A ∗Xt, the solution for X

at time s, given initial condition X0, is Xs = As ∗ X0 where As = A ∗ A∗ s· · · ∗A.

The proof is straightforward using the notion of even-order paired tensors and

the Einstein product. Applying Proposition II.26, we can write down the explicit

solution of (2.10) which takes an analogous form to the LTI system

(2.12) Xs = As ∗ X0 +
s−1∑
j=0

As−j−1 ∗ B ∗ Uj.

Lastly, we want to note that one can always transform the MLTI system (2.10)

into a LTI system using ψ, i.e., xt+1 = ψ(A)xt +ψ(B)ut, and determine the stability,

reachability, and observability using classical matrix techniques.

2.5 MLTI Systems Theory

We now introduce the concepts of stability, reachability, and observability for

MLTI systems.

2.5.1 Stability

There are many notions of stability for dynamical systems [17, 64, 110]. For LTI

systems, it is conventional to investigate so-called internal stability. Generalizing

from LTI systems, the equilibrium point X = O (O denotes the zero tensors) of an

unforced MLTI system is called stable if ‖Xt‖ ≤ γ‖X0‖ for some γ > 0, asymptotically

stable if ‖Xt‖ → 0 as t→∞, and unstable if it is not stable.

Lemma II.27. The tensor eigenvalue problem in Definition II.9 can be represented

by A = V ∗ D ∗ V−1 where D ∈ Rn1×n1×···×nk×nk is an U-diagonal tensor with U-

eigenvalues on its diagonal, and V ∈ Rn1×n1×···×nk×nk is a mode row block tensor

consisting of all the U-eigentensors, i.e., V =

∣∣∣∣X1 X2 . . . XΠJ

∣∣∣∣ . We have chosen
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qp = np in applying the mode row block tensor operation which enables to express the

tensor eigenvalue decomposition in the form analogous to the matrix case.

Proof. The proof follows immediately from Proposition II.20.

Proposition II.28. Let λj be the U-eigenvalues of A for j = ivec(j,N ). For an

unforced MLTI system, the equilibrium point X = O is:

• stable if and only if |λj| ≤ 1 for all j = 1, 2, . . . ,ΠN ; for those equal to 1, its

algebraic and geometry multiplicities must be equal;

• asymptotically stable if |λj| < 1 for all j = 1, 2, . . . ,ΠN ;

• unstable if |λj| > 1 for some j = 1, 2, . . . ,ΠN .

Proof. We only focus on the case when A has a full set of U-eigentensors. It follows

from Proposition II.26 and Lemma II.27 that As =
∑n1

j1=1 · · ·
∑nk

jk=1 λ
s
jWj1j1...jkjk for

some even-order square tensors Wj1j1...jkjk . Then the results follow immediately.

Corollary II.29. Suppose that the HOSVD of A is provided with p-mode singular

values. For an unforced MLTI system, the equilibrium point X = O is asymptotically

stable if the sum of the p-mode singular values square is less than one for any p.

Proof. Without loss of generality, suppose that p = 1. Based on Property 8 in [39],∑n1

j=1(γ
(1)
j )2 = ‖A‖2 = ‖ψ(A)‖2. In addition, we know that the magnitude of the

maximal eigenvalue of a matrix is less than or equal to its Frobenius norm. Hence,

the proof follows immediately from Proposition II.28.

Corollary II.30. Suppose that the CPD of A is provided and its factor matrices A(p)

and A(q) have all the column vectors orthonormal for at least one odd p and even q.

For an unforced MLTI system, the equilibrium point X = O is asymptotically stable

if the first weight element λ1 < 1.
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Lemma II.31. Given matrices A(p) ∈ Rnp×R, the Khatri-Rao product A(1)�A(2)�

· · · � A(k) has all the column vectors orthogonal if at least one of A(p) has all the

column vectors orthogonal for p = 1, 2, . . . , k.

Proof. Suppose that k = 2. Based on the properties of Kronecker product, for any

1 ≤ p, q ≤ R, the inner product between a
(1)
p ⊗ a

(2)
p and a

(1)
q ⊗ a

(2)
q is given by

(a(1)
p ⊗ a(2)

p )>(a(1)
q ⊗ a(2)

q ) = ((a(1)
p )>a(1)

q ))⊗ ((a(2)
p )>a(2)

q )).

Therefore, if A(1) or A(2) has all column vectors orthogonal, then the inner product

between a
(1)
p ⊗ a

(2)
p and a

(1)
q ⊗ a

(2)
q is zero for any p, q.

Now we can prove Proposition II.30.

Proof. Suppose that A has the CPD format (2.5). Applying the unfolding transfor-

mation ψ yields

ψ(A) = (A(2k−1) � · · · �A(1))S(A(2k) � · · · �A(2))>,

where S ∈ RR×R is a diagonal matrix containing the weights of the CPD on its

diagonal. By Lemma II.31, the two Khatri-Rao products A(2k−1) � · · · � A(1) and

A(2k) � · · · �A(2) have all the column vectors orthonormal if A(p) and A(q) have all

the column vectors orthonormal for at least one odd p and even q. Thus, λ1 will

be the largest singular value of ψ(A). In addition, we know that the magnitude of

the maximal eigenvalue of a matrix is less than or equal to its largest singular value.

Hence, the proof follows immediately from Proposition II.28. Note that there is one

special case when the CPD uniqueness condition fails, i.e.,
∑2k

p=1KA(p) = 2R+2k−2.

However, different CPDs, satisfying the orthonormal condition, correspond to the

same matrix SVD under ψ up to some orthogonal transformations.
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Corollary II.32. Suppose that the TTD of Ã ∈ Rn1×···×nk×n1×···×nk , defined in Propo-

sition II.18, is provided with the first k−1 core tensors left-orthonormal and the last

k core tensors right-orthonormal. For an unforced MLTI system, the equilibrium

point X = O is asymptotically stable if the largest singular value of ¯̃A(k) is less than

one, where ¯̃A(k) = reshape(Ã
(k)
, Rk−1nk, Rk).

Proof. Based on the results of [68], the singular values of ¯̃A(k) are the singular values

of ψ(A). In addition, we know that the magnitude of the maximal eigenvalue of a

matrix is less than or equal to its largest singular value. Hence, the proof follows

immediately from Proposition II.28.

Remark. Although Proposition II.28 offers strong stability results for unforced

MLTI systems, computing U-eigenvalues usually requires an order of O(Π3
N ) number

of operations through tensor unfolding and matrix eigenvalue decomposition. To the

contrary, Corollary II.29, II.30, and II.32 can be used to determine the stability of

MLTI systems much faster. In particular, if the TTD of Ã is provided, the time

complexity of left- and right-orthonormalization is about O(knR3) assuming that

np = n for all p, and R is the average of the TT-ranks of Ã [91]. Moreover, truncating

the TT-rank R̃k of Ã would not alter the largest singular values of ¯̃A(k). Therefore,

setting R̃k = 1 and computing the vector 2-norm of ¯̃A(k) will return the largest

singular value of ψ(A).

2.5.2 Reachability

In this and the following subsections, we introduce the definitions of reachability

and observability for MLTI systems which are similar to analogous concepts for the

LTI systems [17, 64, 110]. We then establish sufficient and necessary conditions for

reachability and observability for MLTI systems.
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Definition II.33. The MLTI system (2.10) is said to be reachable on [t0, t1] if, given

any initial condition X0 and any final state X1, there exists a sequence of inputs Ut

that steers the state of the system from Xt0 = X0 to Xt1 = X1.

Theorem II.34. The pair (A,B) is reachable on [t0, t1] if and only if the reachability

Gramian

(2.13) Wr(t0, t1) =

t1−1∑
t=t0

At1−t−1 ∗ B ∗ B> ∗ (A>)t1−t−1,

which is a weakly symmetric even-order square tensor, is U-positive definite.

Proof. Suppose Wr(t0, t1) is U-positive definite, and let X0 be the initial state and

X1 be the desired final state. Choose Ut = B> ∗ (A>)t1−t−1 ∗ W−1
r (t0, t1) ∗ V for

some constant tensor V. It follows from the solution of the system (2.10) that Xt1 =

At1 ∗X0 +
∑t1−1

j=0 At1−j−1 ∗B∗Ut = At1 ∗X0 +Wr(t0, t1)∗W−1
r (t0, t1)∗V = At1 ∗X0 +V.

Taking V = −At1 ∗ X0 + X1, we have Xt1 = X1.

We show the converse by contradiction. Suppose Wr(t0, t1) is not U-positive

definite. Then there exists Xa 6= O such that X>a ∗ At1−t−1 ∗ B = O for any t. Take

X1 = Xa+At1 ∗X0, and it follows that Xa+At1 ∗X0 = At1 ∗X0 +
∑t1−1

j=t0
At1−j−1∗B∗Uj .

Multiplying from the left by X>a yields X>a ∗ Xa =
∑t1−1

j=t0
X>a ∗ At1−j−1 ∗ B ∗ Uj = 0,

which implies that Xa = O, a contradiction.

Corollary II.35. If the reachability Gramian Wr(t0, t1) is not M-positive definite,

the pair (A,B) is not reachable on [t0, t1].

Proof. The proof follows immediately from Proposition II.8 and Theorem II.34.

The reachability Gramian assesses to what degree each state is affected by an

input [109]. The infinite horizon reachability Gramian can be computed from the
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tensor Lyapunov equation which is defined by

(2.14) Wr − A ∗Wr ∗ A> = B ∗ B>.

By the unfolding property, if the pair (A,B) is reachable over an infinite horizon

and all the U-eigenvalues of A have magnitude less than one, one can show that

there exists a unique weakly symmetric U-positive definite solution Wr. Solving the

infinite horizon reachability Gramian from the tensor Lyapunov equation may be

computationally intensive, so a tensor version of the Kalman rank condition is also

provided.

Proposition II.36. The pair (A,B) is reachable if and only if the n1×m1q1× · · ·×

nk ×mkqk even-order reachability tensor

(2.15) R =

∣∣∣∣B A ∗ B . . . AΠN−1 ∗ B
∣∣∣∣

spans Rn1×n2×···×nk . In other words, rankU(R) = ΠN .

Proof. The proof follows from Proposition II.26 and the generalized Cayley Hamilton

theorem discussed in the tensor eigenvalue problem.

First, any choice of construction for the mode row block tensor works for the

reachability tensor. Second, when k = 1, Proposition II.36 simplifies to the famous

Kalman rank condition for reachability of LTI systems. The following corollaries

involving with HOSVD (multilinear ranks), CPD (CP rank), and TTD (TT-ranks)

provide useful necessary or sufficient conditions for reachability of MLTI systems if

the reachability tensor R is given in the HOSVD, CPD, or TTD format.

Corollary II.37. Given the reachability tensor R in (2.15), if rank2p−1(R) 6= np for

some p, the pair (A,B) is not reachable.
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Proof. The proof follows immediately from Proposition II.13 and II.36.

Corollary II.38. Given the reachability tensor R in (2.15), if the set of p-mode

singular values of R obtained from the HOSVD contains zero for odd p, the pair

(A,B) is not reachable.

Proof. We know that the number of nonvanishing p-mode singular values equals to

its corresponding p-mode multilinear rank. Hence, the result follows immediately

from Proposition II.36 and Corollary II.37.

Corollary II.39. Given the reachability tensor R in (2.15), if the CPD of R satisfies

(2.8) with CP rank equal to ΠN , the pair (A,B) is reachable. Conversely, if the pair

(A,B) is reachable, then the CP rank of R is greater than or equal to ΠN .

Proof. The first part of the proof follows immediately from Proposition II.14 and

II.36. The second part of the proof follows from the fact that the CP rank of a

tensor is greater than or equal to its unfolding rank.

Corollary II.40. Given the reachability tensor R in (2.15), the pair (A,B) is reach-

able if and only if the kth optimal TT-rank of R̃ ∈ Rn1×···×nk×n1q1×···×nkqk , defined in

Proposition II.18, is equal to ΠN .

Proof. The proof follows immediately from Proposition II.18 and II.36.

Remark. Finding the unfolding rank of the reachability tensor R through tensor

unfolding and matrix QR decomposition is computationally expensive, and has a

O(Π3
NΠQ) time complexity. However, if the reachability tensor R is already given

in the tensor decomposition format, computing the unfolding rank can be achieved

efficiently based on Corollary II.37, II.39, and II.40. Particularly, if the TTD of R̃ is

provided, we do not need any additional computation to obtain the unfolding rank.
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2.5.3 Observability

The results of observability can be simply obtained by the duality principle, sim-

ilarly to LTI systems.

Definition II.41. The MLTI system (2.10) is said to be observable on [t0, t1] if any

initial state Xt0 = X0 can be uniquely determined by Yt on [t0, t1].

Theorem II.42. The pair (A,C) is observable on [t0, t1] if and only if the observ-

ability Gramian

(2.16) Wo(t0, t1) =

t1−1∑
t=t0

(A>)t−t0 ∗ C> ∗ C ∗ At−t0 ,

which is a weakly symmetric even-order square tensor, is U-positive definite.

Proof. Suppose that Wo(t0, t1) is U-positive definite and let X0 be the initial state

such that Yt = C ∗ Xt = C ∗ At−t0 ∗ X0 for any t ∈ [t0, t1]. Multiplying from the

left by (A>)t−t0 ∗ C> yields (A>)t−t0 ∗ C> ∗ Yt = (A>)t−t0 ∗ C> ∗ C ∗ At−t0 ∗ X0,

which implies that
∑t1−1

t=t0
(A>)t−t0 ∗ C> ∗ Yt =

∑t1−1
t=t0

(A>)t−t0 ∗ C> ∗ C ∗ At−t0 ∗ X0 =

Wo(t0, t1) ∗ X0. Since Wo(t0, t1) is U-invertible, this equation has a unique solution

X0 = W−1
o (t0, t1)

∑t1−1
t=t0

(A>)t−t0 ∗ C> ∗ Yt. Hence, (A,C) is observable on [t0, t1].

Again, we show the converse by contradiction. Suppose that Wo(t0, t1) is not U-

positive definite. Then there exists Xa 6= O such that C ∗ At−t0 ∗ Xa = O for any t.

Take Xt0 = X0 +Xa for some initial state X0. Then Yt = C∗At−t0 ∗X0 +C∗At−t0 ∗Xa =

C ∗At−t0 ∗X0 for any t ∈ [t0, t1]. The initial states X0 and X0 +Xa produce the same

output, which implies that (A,C) is not observable on [t0, t1], a contradiction.

Corollary II.43. If the observability Gramian Wo(t0, t1) is not M-positive definite,

the pair (A,C) is not observable on [t0, t1].
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The observability Gramian assesses to what degree each state affects future out-

puts [109]. The infinite horizon observability Gramian can be computed from the

tensor Lyapunov equation defined by

(2.17) A> ∗Wo ∗ A−Wo = −C> ∗ C.

If the pair (A,C) is observable and all the U-eigenvalues of A have magnitude less

than one, there exists a unique weakly symmetric U-positive definite solution Wo.

The following results can be proved similarly to those in the reachability section.

Proposition II.44. The pair (A,C) is observable if and only if the m1n1×n1×· · ·×

mknk × nk even-order observability tensor

(2.18) O =

∣∣∣∣C C ∗ A . . . C ∗ AΠN−1

∣∣∣∣>
spans Rn1×n2×···×nk . In other words, rankU(O) = ΠN .

Corollary II.45. Given the observability tensor O in (2.18), if rank2p(O) 6= np for

some p, the pair (A,C) is not observable.

Corollary II.46. Given the observability tensor O in (2.18), if the set of n-mode

singular values of O obtained from the HOSVD contains zero for even p, the pair

(A,C) is not observable.

Corollary II.47. Given the observability tensor O in (2.18), if the CPD of O satisfies

(2.8) with CP rank equal to ΠN , the pair (A,C) is observable. Conversely, if the pair

(A,C) is observable, then the CP rank of O is greater than or equal to ΠN .

Corollary II.48. Given the observability tensor O in (2.18), the pair (A,C) is ob-

servable if and only if the kth optimal TT-rank of Õ ∈ Rm1n1×···×mknk×n1×···×nk , de-

fined in Proposition II.18, is equal to ΠN .
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2.6 Model Reduction for MLTI Systems

Based on the observations in Section 2.5, it is more natural to manipulate MLTI

systems in the tensor decomposition format so that all the computational advan-

tages can be realized. This may also result in a more compressed representation.

The problem of model reduction has been studied heavily in the framework of classi-

cal control [42, 47, 90]. Methods including proper orthogonal decomposition (POD),

scale-separation and averaging, and balanced truncation are applied in many engi-

neering applications when dealing with high-dimensional linear/nonlinear systems

[85]. Using generalized CPD/TTD, we propose a new MLTI representation with

fewer parameters. Note that we omit colons in each component tensor in this and

the following subsections for simplicity (e.g., A(p)
r = A(p)

r:: ).

Proposition II.49. The MLTI system (2.10) is equivalent to

(2.19)


Xt+1 =

R1∑
r=1

Xt × {A(1)
r , . . . ,A(k)

r }+

R2∑
r=1

Ut × {B(1)
r , . . . ,B(k)

r }

Yt =

R3∑
r=1

Xt × {C(1)
r , . . . ,C(k)

r }
,

where R1, R2, R3 are the Kronecker ranks of the system, and A(p) ∈ RR1×np×np, B(p) ∈

RR2×np×qp, and C(p) ∈ RR3×mp×np.

Proof. The proof follows from Definition II.10 and Proposition II.24.

Remark. The number of parameters of the MLTI system representation (2.19) is

R1

∑k
p=1 n

2
p + R2

∑k
p=1 npqp + R3

∑k
p=1mpnp. If the Kronecker ranks R1, R2, R3 are

relatively small, the total number of parameters is much less than that of the MLTI

system model (2.10) which is given by
∏k

p=1 n
2
p +

∏k
p=1 npqp +

∏k
p=1mpnp.

The MLTI system representation (2.19) is attractive for systems captured by

sparse tensors or tensors with low Kronecker ranks where the two advantages, model
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reduction and computational efficiency, can be exploited. In particular, if A, B, and

C are fourth-order paired tensors, the generalized CPDs are reduced to matrix SVD

problems, see Section 9.2 in [124]. However, there are two major drawbacks. First,

for k > 2, there is no exact method to compute the Kronecker rank of a tensor [69],

and truncating the rank does not ensure a good estimate. Second, current CPD

algorithms are not numerically stable, which could result in ill-conditioning during

the tensor decomposition and low rank approximation. One way to fix these issues

is to replace generalized CPD by generalized TTD in (2.19), which takes a similar

form. The algorithms for computing generalized TTD are numerically stable with

unique optimal TT-ranks [91]. Most importantly, the TTD-based results obtained

in Section 2.5 can be realized in the form of (2.19). For example, we can determine

the stability of MLTI systems from the TTD of Ã defined in Proposition II.18, which

can be obtained from the generalized TTD of A efficiently.

Recall from Section 2.5 that one can always convert the MLTI system (2.10) to

an equivalent LTI form and then apply traditional model reduction approaches, e.g.,

balanced truncation. However, after converting to a matrix form, the low tensor

rank structure exploited in the form of (2.19) may not be preserved, and thus low

memory requirements cannot be achieved, see Section 2.7. Furthermore, as shown in

[25], the MLTI system (2.19) can be used to further develop a higher-order balanced

truncation framework directly in the TTD format, which can provide additional

computation and memory benefits over unfolding-based model reduction methods.

2.6.1 Explicit Solution and Stability

In addition to using tensor decompositions, we can exploit matrix calculations of

the factor matrices A(p)
r to develop notions including explicit solution and stability

for the MLTI system (2.19) which also have lower computational costs compared to
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unfolding-based methods.

Proposition II.50 (Solution). For an unforced MLTI system Xt+1 =
∑R1

r=1 Xt ×

{A(1)
r ,A(2)

r , . . . ,A(k)
r }, the solution for X at time s, given initial condition X0, is

(2.20) Xs =

Rs
1∑

r=1

X0 × {Ā
(1)
r , Ā

(2)
r , . . . , Ā

(k)
r },

where Ā
(p)
r = A(n)

r1
A(p)
r2
. . .A(p)

rs for r = ivec({r1, r2, . . . , rs}, {R1, R1,
s· · ·, R1}).

Proof. The result follows immediately from Proposition II.12 and II.26.

If the Kronecker rank R1 is small, computing the explicit solution using (2.20)

can be faster than using the Einstein product (2.9). Additionally, we can assess the

stability of the unforced MLTI system of (2.19) based upon the Lyapunov approach.

Proposition II.51 (Stability). For the unforced MLTI system of (2.19), the equi-

librium point X = O is

• stable (i.s.L) if
∑R1

r=1

∏k
p=1 α

(p)
r = 1;

• asymptotically stable (i.s.L) if
∑R1

r=1

∏k
p=1 α

(p)
r < 1,

where α
(p)
r denote the largest singular values of A(p)

r .

Proof. Let’s consider V (X) = ‖X‖ as the Lyapunov function candidate and let

f(X) =
∑R1

r=1 X × {A
(1)
r ,A(2)

r , . . . ,A(k)
r }. Then it follows that V (f(X)) − V (X) =

‖
∑R1

r=1 X× {A
(1)
r ,A(2)

r , . . . ,A(k)
r }‖ − ‖X‖ ≤

∑R1

r=1 ‖X× {A
(1)
r ,A(2)

r , . . . ,A(k)
r }‖ − ‖X‖ ≤

(
∑R1

r=1

∏k
p=1 α

(p)
r − 1)‖X‖, where the last inequality is based on Theorem 6 in [61].

Then the results follow immediately.

Remark. The computational complexity of finding the matrix SVDs of the factor

matrices can be estimated as O(kn3R1) assuming that np = n for all p.
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When all the Kronecker ranks of the system R1 = R2 = R3 = 1, the MLTI system

(2.20) reduces to the Tucker product representation proposed by Surana et al. [120],

which provides a more direct way to see that the Tucker-based MLTI model is only a

special case of the MLTI system (2.10). Additionally, we can obtain stronger stability

conditions for the unforced MLTI system in this case.

Proposition II.52 (Stability). Suppose that R1 = 1 in (2.20), and ρ(p) are the

spectral radii of A
(p)
1 . Then the unforced MLTI system of (2.20) is

• stable if and only if
∏k

p=1 ρ
(p) ≤ 1, and when

∏k
p=1 ρ

(p) = 1, their corresponding

eigenvalues must have equal algebraic and geometric multiplicity;

• asymptotically stable if
∏k

p=1 ρ
(p) < 1;

• unstable if
∏k

p=1 ρ
(p) > 1.

Proof. Based on Equation (2.25) in [99], ψ(A) = A
(k)
1 ⊗ A

(k−1)
1 ⊗ · · · ⊗ A

(1)
1 where the

operation ⊗ denotes the Kronecker product. Moreover, the U-eigenvalues of A are

equal to the products of eigenvalues of these component matrices A
(p)
1 , and the U-

eigenvalues have equal algebraic and geometric multiplicities if and only if the factor

eigenvalues have equal multiplicities [18]. Then the results follow immediately from

Proposition II.28.

The above results including Proposition II.50, II.51, and II.52 can be reformulated

by replacing the Kronecker rank summation by a series of TT-ranks summations if

A, B, and C are given in the generalized TTD format. Finally, the Kronecker product

can be used to unfold the MLTI system (2.20) into a LTI system, i.e.,

ψ(A) =

R1∑
r=1

A(k)
r ⊗ A(k−1)

r ⊗ · · · ⊗ A(1)
r ,
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and similarly for ψ(B) and ψ(C). Hence, one can apply traditional control theory

techniques to determine the MLTI system properties.

2.7 Numerical Examples

We provide four examples to illustrate the MLTI systems theory and model re-

duction using the techniques developed above. All the numerical examples presented

were performed on a Linux machine with 8 GB RAM and a 2.4 GHz Intel Core

i5 processor and were conducted in MATLAB R2018a with the Tensor Toolbox 2.6

[112] and the TT toolbox [92].

2.7.1 Reachability and Observability Tensors

In this example, we consider a simple single-input and single-output (SISO) system

that is given by (2.9) with A1 =


0 1 0

0 0 1

0.2 0.5 0.8

 , A2 =

 0 1

0.5 0

 ,B1 =


0

0

1

 , B2 =

0

1

 ,C1 =

[
1 0 0

]
, C2 =

[
1 0

]
, and the states Xt ∈ R3×2 are second-order

tensors, i.e., matrices. The product of the two spectral radii of A1 and A2 is 0.9207,

which implies that the system is asymptotically stable. In addition, the reachability

and observability tensors based on (2.15) and (2.18) are given by

R::11 =


0 0 0

0 1 0

0 0.8 0

 , R::21 =


0 0 0.5

0 0 0.4

1 0 0.57

 ,

R::12 =


0.4 0 0.378

0.57 0 0.4849

0.756 0 0.6339

 ,R::22 =


0 0.285 0

0 0.378 0

0 0.4849 0

 ,
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and

O::11 =


1 0 0

0 0 0

0 0 0.5

 ,O::21 =


0 0 0

0.04 0.15 0.285

0 0 0

 ,

O::12 =


0 0 0

0 1 0

0 0 0

 , O::22 =


0.1 0.25 0.4

0 0 0

0.057 0.1825 0.378

 ,

respectively. We compute the TTDs of the permuted tensors R̃ and Õ, respectively

and observe that rankU(R) = 6 and rankU(O) = 6. The system therefore is both

reachable and observable.

2.7.2 Kronecker Rank/TT-Rank Approximation

In this example, we consider a SISO MLTI system (2.10) with random sparse

tensors A ∈ R3×3×3×3×3×3, B ∈ R3×3×3, and C ∈ R3×3×3. According to Algorithm 1,

we compute the generalized CPDs of A, B, and C using the tensor toolbox function

cp als with estimated Kronecker ranks R1 = 49, R2 = 2, and R3 = 2, respectively.

Note that the number of parameters in the system with full Kronekcer ranks could

be greater than that for the original system. We then fix R2 and R3 and gradually

truncate R1, since R1 is most critical in determining the number of parameters of

the reduced system. As we can see in the table, the number of parameters decreases

dramatically as R1 decreases. In order to assess the approximation error resulting

from this truncation, we compute the relative error using the H-infinity norm ‖ · ‖∞

between the full system and reduced system transfer functions based on (2.11). In

particular, we find that when R1 = 10, the reduced MLTI system is still close to the

original system with H-infinity norm relative error of 0.0888.
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Figure 2.2: Bode diagrams. G1, G2, and G3 are the transfer functions for the three reduced MLTI
systems corresponding to Table 2.1, respectively. One may view G1 as the transfer
function of the original system. Since the function cp als is not numerically stable, the
results may not be exactly consistent with Table 2.1 for those obtained by generalized
CPD.

Table 2.1: Kronecker rank/TT-ranks approximations of the MLTI system. We omit the
first and last trivial TT-ranks in the generalized TTDs of A, B, and C.

Reduced Ranks # Parameters
‖Gfull−Gred‖∞
‖Gfull‖∞

Full System - 783 -

Generalized CPD
49, 2, 2
20, 2, 2
10, 2, 2

1359
576
306

1.58× 10−10

0.0223
0.0888

Generalized TTD
{7, 8}, {1, 2}, {2, 2}
{7, 6}, {1, 2}, {2, 2}
{7, 5}, {1, 2}, {2, 2}

678
534
462

4.39× 10−15

0.0099
0.4911

We repeat a similar process for TT-ranks approximation through generalized

TTD. The results are shown in the same table. We find that both generalized

CPD and TTD can achieve efficient model reduction while keeping the approxima-

tion errors low. Generalized TTD in particular achieves better accuracy for a similar

number of reduced parameters as compared to generalized CPD, but the latter can

maintain a resonable approximation error with an even lower number of parameters.

The Bode diagrams for the reduced MLTI systems are shown in Figure 2.2. Note that

in this example, we manually selected the truncation to study the tradeoff between
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Table 2.2: Memory consumption comparison between the generalized TTD- and bal-
anced truncation-based methods. We reported the TT-ranks of A, B, and C (ignor-
ing the first and last trivial TT-ranks) and the number of singular values retained in the
Hankel matrix during the balanced truncation.

Ranks # Parameters
‖Gfull−Gred‖∞
‖Gfull‖∞

Full System - 139968 -
Generalized TTD {6,6}, {6,6}, {6,6} 5184 3.98× 10−15

Balanced Truncation
200
100
40

120000
30000
4800

0.0169
0.1001
0.2360

number of parameters in the reduced system and the approximation error.

2.7.3 Memory Consumption Comparison

In this example, we consider a multiple-input and multiple-output (MIMO) MLTI

system (2.10) with random even-order paired tensors A,B,C ∈ R6×6×6×6×6×6 that

possess low TT-ranks. We compare the memory consumptions of the generalized

TTD-based representation (2.20) with the reduced models obtained from the unfolding-

based balanced truncation. The results are shown in Table 2.2. One can clearly see

that if the MLTI systems possess low TT-ranks structure, the generalized TTD-

based approach achieves much better accuracy for a similar number of parameters

as compared to balanced truncation.

2.7.4 Computational Time Comparison

In this example, we consider unforced MLTI systems (2.20) with random sparse

even-order paired tensors A ∈ R2×2×
p
···×2×2 in the generalized TTD format such that

ψ(A) ∈ R2p×2p . We compare the run time of Corollary II.32 with the matrix SVD of

ψ(A) for determining the stability of the systems. The results are shown in Table 2.3.

When p ≥ 10, the TTD-based method for finding the largest singular value of ψ(A)

exhibits a signficant time advantage compared to the matrix SVD-based method for

which the time increases exponentially.
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Table 2.3: Run time comparison between the TTD- and SVD-based methods in finding
the largest singular value of ψ(A). For the TTD-based method, we reported compu-
tational time includes conversion from the generalized TTD of A to the TTD of Ã and
left- and right-orthonormalization.

p TTD(s) SVD(s) σmax Relative error Stability
6 0.0399 6.8551× 10−4 0.8082 1.3738× 10−16 asy. stable
8 0.0491 0.0439 0.9626 4.1523× 10−15 asy. stable
10 0.0591 0.4979 0.8645 3.8527× 10−15 asy. stable
12 0.0909 30.7663 0.8485 5.7573× 10−15 asy. stable
14 0.2623 2115.1 0.9984 1.3566× 10−14 asy. stable

2.8 Discussion

While tensor unfolding to a matrix form provides the advantage of leveraging

highly optimized matrix algebra libraries, in doing so however one may not be able

to exploit the higher-order hidden patterns/structures, e.g., redundancy/correlations,

present in the tensor. For instance, in the context of solving PDEs, Brazell et al. [16]

found that higher-order tensor representations preserve low bandwidth, thereby keep-

ing the computational cost and memory requirement low. As shown in Section 2.7,

TTD-based methods are more efficient in terms of computational speed and memory

requirements compared to unfolding-based methods when the MLTI systems have

low TT-ranks structure. Although CPD typically offers better compression than

TTD, the computation of CP rank is NP-hard, and the lower rank approximations

can be ill-posed [40]. TTD is more suitable for numerical computations with well

developed TT-algebra [91]. Basic tensor operations such as addition, the Einstein

product, Frobenius norm, block tensor, solution to multilinear equations, and tensor

pseudoinverse, can be computed and maintained in the TTD format, without requir-

ing full tensor representation. This can provide significant computational advantages

in finding the reachability/observability tensors and associated unfolding ranks ac-

cording to Corollary II.40 and II.48, and in obtaining solution of the tensor Lyapunov

equations. For details, we refer the reader to [25] and the references therein.
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Another line of approach is to exploit the isomorphism property to build algo-

rithms directly in the full tensor format from existing methods. For example, Brazell

et al. [16] proposed higher-order biconjugate gradient (HOBG) method for solving

multilinear systems which can be used for computing U-inverses and MLTI system

transfer functions. Analogously, one can generalize the matrix-based Rayleigh quo-

tient iteration method for computing U-eigenvalues (which can be used for determin-

ing MLTI system stability) directly in the tensor form. However, the computational

efficiency of this type of method remains to be investigated. Finally, one can combine

tensor algebra-based and matrix-based methods to provide the advantages of both

approaches as hybrid methods, see some examples in [25] in the context of MLTI

model reduction. In future, it would be worthwhile to systematically explore which

of the above mentioned approaches or combination thereof is best given the problem

structure.



CHAPTER III

Tensor Entropy for Uniform Hypergraphs

Many real world complex systems can be decomposed and analyzed using net-

works. There are two classical types of complex networks, scale-free networks and

small world networks, which have provided insights in social sciences, cell biology,

neuroscience, and computer science [4, 8, 128]. Recent advancements in genomics

technology, such as genome-wide chromosome conformation capture (Hi-C), have in-

spired us to consider the human genome as a dynamic graph [103, 106]. Studying

such dynamic graphs often requires identifying the changes in network properties,

such as degree distribution, path lengths, and clustering coefficients [65, 87, 104].

Numerous techniques have been developed for anomaly detection based on evalu-

ating similarities between graphs [3, 94]. A classic approach for detecting anomalous

timestamps during the evolution of dynamic graphs is comparing two consecutive

graphs using distance or similarity functions. A comprehensive survey on similarity

measures can be found in [22]. Two popular measures, Hamming distance [52] and

Jaccard distance [75], are often problem-specific and sensitive to small perturbations

or scaling, thus providing limited understanding of variations between graphs [44].

Model-agnostic approaches, such as eigenvalue-based/spectral measures, are more

flexible in their representations and interpretations. Therefore, these approaches can

48
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more appropriately quantify the global structural complexity of graphs [43, 76, 115].

The von Neumann entropy of a graph, first introduced by Braunstein et al. [14], is

a spectral measure used in structural pattern recognition. The intuition behind the

measure is linking the graph Laplacian to density matrices from quantum mechanics,

and measuring the complexity of the graphs via the von Neumman entropy of the

corresponding density matrices [86]. Additionally, the measure can be viewed as the

information theoretic Shannon entropy, i.e.,

(3.1) S = −
∑
j

ηj ln ηj,

where ηj are the normalized eigenvalues of the Laplacian matrix of a graph such that∑
j ηj = 1. Passerini and Severini [95] observed that the von Neumman entropy of

a graph tends to grow with the number of connected components, the reduction of

long paths, and the increase of nontrivial symmetricity, and suggested that it can be

viewed as a measure of regularity. They also showed that the entropy (3.1) is upper

bounded by ln (n− 1) where n is the number of nodes of a graph.

Hypergraph entropy has been recently explored by Hu et al. [57], Bloch et al.

[13], and Wang et al. [125]. In [57], Hu et al. utilized the probability distribu-

tion of the node degrees to fit into the Shannon entropy formula and established its

lower and upper bounds for special hypergraphs. The degree-based entropy solely

depends on the degree distributions of hypergraphs, thus failing to capture compre-

hensive information, such as path lengths and clustering patterns. Similarly, [13]

defined a hypergraph entropy using incidence matrices, but this formulation may

lose higher-order structural information hidden in the hypergraphs, such as nontriv-

ial symmetricity. Furthermore, [125] constructed a hypergraph entropy using node

weighting scores, calculated from a density estimate technique, to select significant

lines for model fitting. The score of a node (i.e, a fitting line) relies on residuals
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measured with the Sampson distance under some kernel functions from the line to

the data points. Hence, the entropy is difficult to compute and cannot be directly

applied to general forms of hypergraphs.

Based on the works [39, 86, 95], we present a new spectral measure called tensor

entropy, which can decipher topological attributes of uniform hypergraphs. The key

contributions of this chapter are as follows:

• We introduce a new notion of entropy for uniform hypergraphs based on the

higher-order singular value decomposition (HOSVD) of the corresponding Lapla-

cian tensors. We establish results on the lower and upper bounds of the proposed

tensor entropy, and provide a formula for computing the entropy of complete

uniform hypergraphs.

• We adapt a fast and memory efficient tensor train decomposition (TTD)-based

computational framework in computing the proposed tensor entropy for uniform

hypergraphs.

• We create two simulated datasets, a hyperedge growth model and a Watts-

Strogatz model for uniform hypergraphs. We demonstrate that the proposed

tensor entropy is a measure of regularity relying on the node degrees, path

lengths, clustering coefficients, and nontrivial symmetricity for uniform hyper-

graphs. Further, we present applications to three real world examples: a pri-

mary school contact dataset, a mouse neuron endomicroscopy dataset, and a

cellular reprogramming dataset. The final example demonstrates the efficacy

of the TTD-based computational framework in computing the proposed tensor

entropy.

• We perform preliminary explorations of tensor eigenvalues in the entropy com-
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putation and the notion of robustness for uniform hypergraphs.

This chapter is organized into five sections. We first extend graph-based defi-

nitions to describe uniform hypergraphs’ structural properties in Section 3.1. We

then propose a new form of entropy for uniform hypergraphs with several theoretical

results in Section 3.2. In Section 3.3, we exploit the tensor train decomposition to

accelerate the tensor entropy computation. Six numerical examples are presented in

Section 3.4. Finally, we introduce the notion of robustness for uniform hypergraphs

in Section 3.5. All the content of this chapter has published in [23].

3.1 Hypergraph Structural Prpoperties

In the following, we extend several graph-based definitions to describe the struc-

tural properties of uniform hypergraphs.

Definition III.1. Given a hypergraph G, the index of dispersion of the node degree

distribution of G is defined to be the ratio of its variance to its mean.

Definition III.2. Given a k-uniform hypergraph G with n nodes, the average path

length of G is defined by

(3.2) Lavg =
1

n(n− 1)

∑
j 6=i

d(vj, vi),

where d(vj, vi) denotes the shortest distance between vj and vi.

Definition III.3. Given a k-uniform hypergraph G with n nodes, the average clus-

tering coefficient of G is defined by

Cj =
|{eilp : vi, vl, vp ∈ Nj, eilp ∈ E}|(|Nj |

k

) ,

⇒ Cavg =
1

n

n∑
j=1

Cj,

(3.3)
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where Nj is the set of nodes that are immediately connected to vj, and
(|Nj |

k

)
=

|Nj |!
(|Nj |−k)!k!

returns the binomial coefficients. If |Nj| < k, we set Cj = 0.

Definition III.4. Given a k-uniform hypergraph G, the small world coefficient of G

is defined by

(3.4) σ =
Cavg/Crand

Lavg/Lrand

,

where Cavg and Lavg are the average clustering coefficient and path length of G,

respectively, and Crand and Lrand are the same quantities of its equivalent random

uniform hypergraph.

The equivalent random uniform hypergraphs of G can be constructed analogously

as Erdős-Rényi graphs [60], i.e., randomly generating uniform hypergraphs that share

the same numbers of nodes and hyperedges with G. All these definitions can be used

for quantifying the performance of entropy measures for uniform hypergraphs.

3.2 Tensor Entropy

Similar to von Neumann entropy, we exploit the spectrum of Laplacian tensors

from HOSVD to define the notion of tensor entropy for uniform hypergraphs.

Definition III.5. Let G be a k-uniform hypergraph with n nodes. The tensor

entropy of G is defined by

(3.5) S = −
n∑
j=1

γ̂j ln γ̂j,

where γ̂j are the normalized k-mode singular values of L such that
∑n

j=1 γ̂j = 1.

The convention 0 ln 0 = 0 is used if γ̂j = 0. The k-mode singular values of L can

be computed from the matrix SVD of the k-mode unfolding L(k), which results in a

O(nk+1) time complexity and a O(nk) space complexity, see Algorithm 3. Since L
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is supersymmetric, any mode unfolding of L would yield the same unfolding matrix

with the same singular values. Moreover, the tensor entropy (3.5) can be viewed as

a variation of von Neumann entropy defined for graphs, in which we regard cL(k)L
>
(k)

as the density matrix for some normalization constant c [15, 86, 95]. In particular,

when k = 2, the tensor entropy is reduced to the classical von Neumann entropy for

graphs. Like the eigenvalues of Laplacian matrices, the k-mode singular values play

a significant role in identifying the structural patterns for uniform hypergraphs.

Algorithm 3 Computing tensor entropy from SVD

1: Given a k-uniform hypergraph G with n nodes
2: Construct the adjacency tensor A ∈ Rn×n×···×n from

G and compute the Laplacian tensor L = D− A
where D is the degree tensor

3: Find the k-mode unfolding of L, i.e., L(k) = reshape(L, n, nk−1)

4: Compute the economy-size matrix SVD of L(k), i.e., L(k) = USV> and let {γj}nj=1 = diag(S)

5: Set γ̂j =
γj∑n
i=1 γi

and compute S = −
∑n
j=1 γ̂j ln γ̂j

6: return The tensor entropy S of G.

Lemma III.6. Suppose that G is a k-uniform hypergraph with k ≥ 3. Then L has a

k-mode singular value zero, with multiplicity p, if and only if G contains p number

of non-connected nodes.

Proof. The result follows immediately from the definitions of Laplacian tensor and

k-mode unfolding of L.

The multiplicity of the zero k-mode singular value can be used to determine the

number of connected components of uniform hypergraphs. Moreover, one can derive

the lower bound of tensor entropy based on Lemma III.6.

Proposition III.7. Suppose that G is a k-uniform hypergraph with n nodes and

nonempty hyperedge set E for k ≥ 3. Then the minimum tensor entropy of G is

given by

(3.6) Smin = ln k.
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Proof. Since G is a k-uniform hypergraph on n nodes, the maximum multiplicity of

the zero normalized k-mode singular value of L is n−k according to Lemma III.6. In

addition, the other normalized k-mode singular values of are necessarily 1
k
. Hence,

it is straightforward to show that Smin = ln k.

Every k-uniform hypergraph can achieve the minimum tensor entropy ln k. As the

number of nodes contained in hyperedges increases, the lower limit of tensor entropy

also increases. In the following, we present results about the upper limit of tensor

entropy and its relation to regular uniform hypergraphs.

Proposition III.8. Suppose that G is a k-uniform hypergraph with n nodes for

k ≥ 3. Then the maximum tensor entropy of G occurs when it is a 1-regular uniform

hypergraph, and is given by

(3.7) Smax = lnn.

Proof. Since G is a k-uniform hypergraph on n nodes, the maximum tensor entropy

occurs when the multiplicity of a normalized k-mode singular value of L is n. Based

on the definitions of Laplacian tensor and k-mode unfolding, for a 1-regular uniform

hypergraph, the number of nonzero elements in L(k) are fixed for jth row with one

entry

(L(k))j[1+
∑k−1

m=1(j−1)nm−1] = 1

and (k− 1)! entries −1
2

for j = 1, 2, . . . n. Moreover, since all the hyperedges contain

distinct nodes, the column indices of the nonzero entries are unique for L(k). Thus,

L(k)L
>
(k) is a diagonal matrix with equal diagonal elements, and the result follows

immediately.
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Proposition III.9. Suppose that G is a k-uniform hypergraph with n nodes for

k ≥ 3. If logk n is an integer, then the maximum tensor entropy of G can be achieved

when it is a d-regular uniform hypergraph for 1 ≤ d ≤ logk n.

Proof. Suppose that logk n is an integer. Any two hyperedges of a d-regular uniform

hypergraph contain at least k − 1 distinct nodes for 1 ≤ d ≤ logk n. Similar to

Proposition III.8, it can be shown that L(k)L
>
(k) is a diagonal matrix with equal

diagonal elements. Therefore, the result follows immediately.

According to Proposition III.8 and III.9, not all uniform hypergraphs with n nodes

can achieve the tensor entropy lnn. However, when logk n is an integer, one can

utilize tensor entropy to measure the regularity of uniform hypergraphs. Moreover,

if G contains p number of non-connected nodes and logk (n− p) is an integer, then

Smax = ln (n− p). Therefore, larger tensor entropy can be obtained with more

connected components in this case. Next, we establish results regarding complete

uniform hypergraphs.

Proposition III.10. Suppose that G is a complete k-uniform hypergraph with n

nodes for k ≥ 3. Then the tensor entropy of G is given by

Sc =
(1− n)α

(n− 1)α + β
ln

α

(n− 1)α + β

− β

(n− 1)α + β
ln

β

(n− 1)α + β

(3.8)

where,

α = (
Γ(n)(Γ(n− k + 1) + Γ(n))

Γ(k)2Γ(n− k + 1)2
− Γ(n− 1)

Γ(k)2Γ(n− k)
)
1
2 ,(3.9)

β = (
Γ(n)(Γ(n− k + 1) + Γ(n))

Γ(k)2Γ(n− k + 1)2
+

(n− 1)Γ(n− 1)

Γ(k)2Γ(n− k)
)
1
2 ,(3.10)

and Γ(·) is the Gamma function.
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Proof. Based on the definitions of Laplacian tensor and k-mode unfolding, the matrix

L(k)L
>
(k) ∈ Rn×n is given by

L(k)L
>
(k) =



d ρ ρ . . . ρ

ρ d ρ . . . ρ

ρ ρ d . . . ρ

...
...

...
. . .

...

ρ ρ ρ . . . d


,

where,

d =

(
n− 1

k − 1

)2

+

(
n− 1

k − 1

)
1

(k − 1)!
, and ρ =

Tn−k
(k − 1)!2

.

Here Tm are the k-simplex numbers (e.g., when k = 3, Tm are the triangular num-

bers). Moreover, the eigenvalues of L(k)L
>
(k) are d − ρ with multiplicity n − 1 and

d+ (n− 1)ρ with multiplicity 1. Hence, the result follows immediately. We write all

the expressions using the Gamma function for simplicity.

From Proposition III.9 and III.10, for arbitrary k-uniform hypergraph with n

nodes and k ≥ 3, Sc could be smaller than the entropies of other d-regular hyper-

graphs, and Sc ≤ Smax ≤ lnn. Furthermore, it can be shown that when n becomes

large, Smax ≈ lnn.

Corollary III.11. Suppose that G is a complete k-uniform hypergraph with n nodes

for k ≥ 3. Then the tensor entropy Sc → lnn as n→∞.

Proof. As n→∞, Γ(n)(Γ(n−k+1)+Γ(n))
Γ(k)2Γ(n−k+1)2

� Γ(n−1)
Γ(k)2Γ(n−k)

for fixed k. Thus, α ≈ β, and the

result follows immediately.

In Section 3.3, we will show evidence that the tensor entropy (3.5) is a measure

of regularity for general uniform hypergraphs. Large tensor entropy is characterized
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by the large number of connected nodes, high uniformity of node degrees, short path

lengths, and high level of nontrivial symmetricity. The entropy is small for uniform

hypergraphs with large cliques and long path lengths, i.e., hypergraphs in which the

nodes form highly connected clusters. Tensor entropy is also related to the clustering

coefficients of uniform hypergraphs in a very nuanced way.

3.3 Numerical Method via Tensor Trains

In reality, hypergraphs like co-authorship networks and protein-protein interac-

tion networks exist in a very large scale, and computing the tensor entropy using

the economy-size matrix SVD could be computationally expensive. Klus et al. [68]

exploited TTD to efficiently calculate the Moore-Penrose (MP) inverse of the matrix

obtained from any chosen unfolding of a given tensor. TTD provides a good com-

promise between numerical stability and level of compression, and has an associated

algebra that facilitates computations. We thus adapt the framework of Klus et al. for

the computation of the tensor entropy, see Algorithm 4. In Step 2, we assume that

the construction of adjacency and degree tensors in the TT-format can be achieved

due to their simple structures. In Step 4, the left- and right-orthonormalization algo-

rithms can be found in [68]. The computation and memory complexities of Algorithm

4 are estimated as O(knr3) and O(knr2), respectively, where r can be viewed as the

“average” rank of the TT-ranks. Both complexities are much lower than those from

Algorithm 3 when r is small.

3.4 Numerical Examples

All the numerical examples presented were performed on a Linux machine with

8 GB RAM and a 2.4 GHz Intel Core i5 processor in MATLAB 2018b. The last

example also used the MATLAB TT-Toolbox by Oseledets et al. [92].
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Algorithm 4 Computing tensor entropy from TTD

1: Given a k-uniform hypergraph G with n nodes
2: Construct the adjacency and degree tensors A,D ∈ Rn×n×···×n in the TT-format from G
3: Compute the Laplacian tensor L = D−A with core tensors X(p) and TT-ranks {R0, R1, . . . , Rk}

based on the tensor train summation operation
4: Left-orthonormalize the first k − 2 cores and right-orthonormalize the last core of L

5: Compute the economy-size matrix SVD of X̄
(k−1)

, i.e., X̄
(k−1)

= USV> for s = rank(S) and
let {γj}sj=1 = diag(S)

6: Set γ̂j =
γj∑s
i=1 γi

and compute S = −
∑s
j=1 γ̂j ln γ̂j

7: return The tensor entropy S of G.

3.4.1 Hyperedge Growth Model

We consider the case where the number of nodes is fixed and new hyperedges

are iteratively added to the uniform hypergraph. Figure 3.1 presents the hyperedge

growth evolution of a 3-uniform hypergraph with 7 nodes, and it describes the tensor

entropy maximization and minimization evolutions. In addition to plotting the two

entropy trajectories, we also compute some statistics of the structural properties

including average shortest path length, index of dispersion of the degree distribution,

and average clustering coefficient of the hypergraphs during the two evolutions, see

Figure 3.2. If the two nodes are disconnected, we set the distance between them to

be 4 for the purpose of visualization in Figure 3.2B.

Let’s denote the hypergraphs that achieve maximum (or minimum) tensor entropy

at step j as G(j)
max (or G

(j)
min) for j = 1, 2, . . . , 35. Similar to maximizing graph entropy,

maximizing the tensor entropy will first connect all the nodes and then prefer to

choose lower degree nodes with larger average geodesic distances, i.e., finding the

geodesic distances between each pair in the triples and taking the mean, see Figure 3.1

and 3.2B. The average geodesic distances may lose importance if one wants to predict

the next step as the hypergraph becomes complex. Moreover, the nodes of G(j)
max tend

to have “almost equal” or equal degree which leads to a low index of dispersion, see

Figure 3.2C. In particular, G(j)
max are the k

n
j-regular hypergraphs for the early stages
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Figure 3.1: Tensor entropy maximization/minimization. The top row describes the first
five stages of the tensor entropy maximization evolution with a growing number of
hyperedges in the order of e1 = {1, 2, 3}, e2 = {5, 6, 7}, e3 = {3, 4, 5}, e4 = {2, 4, 6},
and e5 = {1, 4, 7}. The bottom row reports the first five stages of the tensor entropy
minimization process with a growing number of hyperedges in the order of e1 = {1, 2, 3},
e2 = {2, 3, 4}, e3 = {1, 2, 4}, e4 = {1, 3, 4}, and e5 = {3, 4, 5}.

of the evolution, i.e., j = 7, 14. However, as the hypergraph becomes dense, it is

possible that G(j)
max will miss the regularity, i.e., j = 21. Additionally, the average

clustering coefficient, in general, grows with increase of hyperedges, but the average

growth rate for G(j)
max is lower than that for G

(j)
min, see Figure 3.2D. Furthermore,

nontrivial symmetricity plays a role in maximizing the tensor entropy. For example,

in G(3)
max, the nodes {1, 2, 6} and {2, 4, 6} have the same average geodesic distances

(both are equal to 7
3
), and the maximized tensor entropy returns the more symmetric

G(4)
max. We also find that candidate hyperedges that intersect more existing hyperedges

would return higher tensor entropy, which also explains the above example.

However, there exists one huge disparity between the von Neumann graph en-

tropy and the tensor entropy. The tensor entropy can temporarily decrease during

the maximizing process as seen in Figure 3.2A. We observe that once the maxi-

mization evolution reaches some regularity or high level of nontrivial symmetricity,

and the next step breaks such regularity or symmetricity, the tensor entropy will
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Figure 3.2: Hyperedge growth model features. (A), (B), (C), and (D) Trajectories of tensor
entropy, average path length, index of dispersion and average clustering coefficient with
respect to the hyperedge adding steps.

decrease. In other words, for these highly regular or highly symmetric G(j)
max, the cor-

responding tensor entropies S(j)
max achieve local maxima. On the other hand, S

(j)
min, the

tensor entropies of G
(j)
min, are similar to the von Neumann graph entropy. Minimiz-

ing the tensor entropy would result in the formations of complete sub-hypergraphs

(cliques), see Figure 3.1. We can detect large jumps and drops in the next steps after

completions of the sub-hypergraphs in Figure 3.2A and B, respectively. In order to

make the discoveries more convincing, we repeated the same processes for k-uniform

hypergraphs with different number of nodes and values of k, and observed similar

results.
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Figure 3.3: Initial hypergraphs’ structures for different q. The plot describes the cliques’
formation in the first five nodes of the uniform hypergraph with the rewiring probability
zero, in which e1 = {1, 2, 3, 4}, e2 = {2, 3, 4, 5}, e3 = {1, 2, 4, 5}, e4 = {1, 3, 4, 5}, and
e5 = {1, 2, 3, 5}. The rest have the same patterns in every five nodes for a corresponding
q.

3.4.2 The Watts-Strogatz Model

We perform an experiment on a synthetic random uniform hypergraph G with

n = 100 and k = 4. Similar to the Watts-Strogatz graph, the initial hypergraph

is 2-regular with lattice structure. Let q be the number of hyperedges added to

the hypergraph in order to form cliques in every five nodes, and p be the rewiring

probability of hyperedges, see Figure 3.3. Then G(q)(p) denotes the random uniform

hypergraphs generated by the rewiring probability p for different q. Particularly,

when q = 3, the tensor entropy S(3)(0) = 4.5527, the average clustering coefficient

C
(3)
avg(0) = 0.7571 and the average path length L

(3)
avg(0) = 7.0606. The goal of the

experiment is to explore the relations between the tensor entropy, the average clus-

tering coefficient, and path length with increasing the hyperedge rewiring probability

p for different q. We also calculate the small world coefficient for the random hyper-

graphs, denoted by σ(q)(p). For each G(q)(p), we compute its tensor entropy, average

clustering coefficient, average path length, and small world coefficient 10 times and

take the means for q = 2, 3.

The results are shown in Figure 3.4. In general, with increasing rewiring proba-



62

10−3 10−2 10−1

4.52

4.53

4.54

4.55

4.56

Rewiring Probability

T
e
n

so
r

E
n
tr

o
p
y

A

q = 2
q = 3

10−3 10−2 10−1

0.2

0.4

0.6

0.8

1

Rewiring Probability

N
o
rm

a
li

ze
d

S
m

a
ll

W
o
rl

d
C

o
e
ff

. B

q = 2
q = 3

10−3 10−2 10−1

0.2

0.4

0.6

0.8

1

Rewiring Probability

R
a
ti

o

C

Avg. Clustering Coeff.
Avg. Path Length

0 0.2 0.4 0.6 0.8 1

4.53

4.54

4.55

Ratio

T
e
n

so
r

E
n
tr

o
p
y

D

Avg. Clustering Coeff.
Avg. Path Length

Figure 3.4: The Watts-Strogatz model features. (A) Tensor entropies of random uniform
hypergraphs with different rewiring probabilities for different q. (B) Normalized small
world coefficients of random uniform hypergraphs with different rewiring probabilities

for different q. (C) Ratios C
(3)
avg(p)/C

(3)
avg(0) and L

(3)
avg(p)/L

(3)
avg(0) of random uniform

hypergraphs with different rewiring probabilities for q = 3. (D) Scatter plot between
the tensor entropy and the two ratios from (C).

bility p, the tensor entropy decays for both q = 2 and 3, see Figure 3.4A. Initially,

the tensor entropies for q = 2 are higher than those for q = 3, which implies that

lower average clustering coefficient yields larger tensor entropy at the same probabil-

ity (∼0.50 and ∼0.73, respectively). However, we see a strictly positive correlation

between the tensor entropy and the average clustering coefficient as p increases, see

Figure 3.4D. After p = 0.1, the tensor entropies for q = 2 decays faster than that

for q = 3, indicating that higher average path length returns lower tensor entropy

(∼2.75 and ∼2.66, respectively). Moreover, the curves of the small world coefficient

in Figure 3.4B are very similar to the one in the Watts-Strogatz graph, in which it
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Figure 3.5: Primary school contact features. (A) Number of the two-person and three-person
contacts amongst the children and teachers every one hour of a day. (B) Number of
children and teachers involved every one hour of a day in the two-person and three-
person contacts, respectively. (C) Trajectories of the von Neumann entropy and the
tensor entropy for the two-person and three-person contacts of a day.

grows gradually for p < 0.1 and decreases quickly after p > 0.1. When the rewiring

probability p is between 0.03 and 0.1, G(3)(p) have apparent small world character-

istics, e.g., C
(3)
avg(0.07) = 0.5488 and L

(3)
avg(0.07) = 3.5748, over the 100 nodes. In

addition, we find that the average clustering coefficient pattern is similar to tensor

entropy. On the contrary, the average path length has a different trend. It decreases

faster at small p and more slowly than the average clustering coefficient at large p,

see Figure 3.4C.

3.4.3 Primary School Contact

The primary school contact dataset contains the temporal network of face-to-face

contacts amongst the children and teachers (242 people in total) at a primary school,

in which an active contact can include more than two people [51, 118]. In this study,

we consider the cases of two-person contacts (i.e., a normal graph) and three-person

contacts (i.e., a 3-uniform hypergraph) per hour, and explore the relations of tensor

entropy with contact frequencies and number of people involved over one school day.

The results are shown in Figure 3.5, in which the two entropies have a similar and

reasonable pattern. Both two-person and three-person contacts are more active at



64

the second and eighth hours, and are less active at the fifth hour. Like the von

Neumann entropy (k = 2), the tensor entropy (k = 3) is expected to grow with

increased number of connected nodes, see Figure 3.5B and C, which implies that

more children and teachers involved will yield larger tensor entropies. On the other

hand, the entropy also heavily relies on the complexity and regularity of the uniform

hypergraphs as demonstrated before. For instance, the number of people involved

at the seventh hour is greater than that at the fifth hour for k = 3, but the tensor

entropies are opposite because more contacts are made at the fifth hour, increasing

the complexity or regularity in the uniform hypergraph, see Figure 3.5A.

3.4.4 Mouse Neuron Endomicroscopy

The goal of the experiment is to observe mouse neuron activation patterns using

fluorescence across space and time before and after food treatment in the mouse

hypothalamus. Large changes in fluorescence are inferred to be active neurons that

are “firing.” The mouse endomicroscopy dataset is an imaging video created under

the 10-minute periods of feeding, fasting and re-feeding. The imaging region contains

in total 20 neuron cells, and the levels of “firing” are also recorded for each neuron.

In this study, we build k-uniform hypergraphs for each 10-minute interval based on

the correlations/multi-correlations of the neuron “firing” level for k = 2, 3. The

multi-correlation among three variables is defined by

(3.11) ρ2 = 1− det(R),

where R is the correlation matrices between the three variables [62]. It turns out that

the multi-correlation is a generalization of Pearson correlation which can measure the

strength of multivariate correlation.

The results are shown in Figure 3.6, in which (A), (B), and (C) are the first
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Figure 3.6: Mouse neuron endomicroscopy features. (A), (B), and (C) First eigenfaces of the
three phases - fed, fast, and re-fed. (D) Tensor entropies of the k-uniform hypergraphs
constructed from the corresponding three phases with k = 2, 3 (here w.t. stands for
“with threshold”).

eigenfaces of the corresponding three phases showing the dominant features in these

phases. For computing the entropy, we choose the cutoff threshold to be 0.93 in

the construction of edge/hyperedge. In Figure 3.6D, the von Neumann entropy

(k = 2) stays constant because the threshold is too high to generate edges in the

graph model. However, the tensor entropy (k = 3) is able to capture changes in

neuronal activity, which is lower during the fast phase and higher during the fed/re-

fed phase. If we lower the threshold, a similar pattern is observed for k = 2. To

maintain the model accuracy, we want to keep the threshold as high as possible. This



66

supports use of tensor entropy over von Neumann entropy. As validation for using

tensor entropy in biological data, we find that mouse neuron activation patterns can

be more accurately captured through 3-uniform hypergraphs. Under the threshold

0.93, the two hypergraphs for the fed and re-fed phases contain a number of common

hyperedges. These hyperedges are mainly composed of nodes with high degrees,

representing scenarios where more than two neurons synchronize, or “co-fire”, in

the mouse hypothalamus. This suggests that these neurons are involved in mouse

appetite regulation, which is not captured using the graph model.

3.4.5 Cellular Reprogramming

Cellular reprogramming is a process that introduces proteins called transcription

factors as a control mechanism for transforming one cell type into another. The unbi-

ased genome-wide technology of chromosome conformation capture (Hi-C) has been

used to capture the dynamics of reprogramming [79, 103, 106]. However, the pairwise

contacts from Hi-C data fail to include the multiway interactions of chromatin. Fur-

thermore, the notion of transcription factories supports the existence of simultaneous

interactions involving mutiple genomic loci [35], implying that the human genome

configuration can be represented by a hypergraph. Therefore, in this example, we

use 3-uniform hypergraphs to partially recover the 3D configuration of the genome

based on the multi-correlation (3.11) from Hi-C matrices. We believe that such re-

construction can provide more information about genome structure and patterns,

compared to the pairwise Hi-C contacts. We use a cellular reprogramming dataset,

containing normalized Hi-C data from fibroblast proliferation and MyoD-mediated

fibroblast reprogramming (MyoD is the transcription factor used for control) for

Chromosome 14 at 1MB resolution with a total of 89 genomic loci. Our goal is to

quantitatively detect a bifurcation in the fibroblast proliferation and reprogramming
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Figure 3.7: Cellular reprogramming features. (A) Tensor entropies of the uniform hypergraphs
recovered from Hi-C measurements with multi-correlation cutoff threshold 0.95. (B) Von
Neuman entropies of the binarized Hi-C matrices with weight cutoff threshold 0.95.

data, and accurately identify the critical transition point between cell identities dur-

ing reprogramming. The results are shown in Figure 3.7. We can clearly observe a

bifurcation between the two trajectories using the tensor entropy of the 3-uniform

hypergraphs recovered from the Hi-C measurements. Crucially, the critical transition

point marked in Figure 3.7A is consistent with the ground-truth statistic provided

in [79]. In contrast, the von Neumann entropy cannot provide adequate information

about the bifurcation and critical transition point, if one analyzes the Hi-C measure-

ments as adjacency matrices. The two trajectories are separate from the beginning,

see Figure 3.7B.

3.4.6 Algorithm Run Time Comparison

In this example, the k-uniform hypergraphs are constructed with n nodes by

forming a strip structure in which every pair of connected hyperedges only contains

one common node. We compare the computational efficiency of the SVD-based Algo-

rithm 3 and the TTD-based Algorithm 4 in computing the tensor entropy. The results

are shown in Figure 3.8. For the TTD-based entropy computations, we assume that
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all the adjacency and degree tensors of the uniform hypergraphs are already provided

in the TT-format. Evidently, Algorithm 4 is more time efficient than Algorithm 3 for

4-uniform and 5-uniform hypergraphs with the strip structure as n becomes larger,

see Figure 3.8. Particularly, when k = 5, the TTD-based algorithm exhibits a huge

time advantage as predicted in the computation complexity. The time curve from

the SVD-based Algorithm 3 increases exponentially, while it grows at a much slower

rate if using Algorithm 4. In the meantime, we compute the relative errors between

the tensor entropies computed from the two algorithms, all of which are within 10−14.
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Figure 3.8: Computational time comparisons between the SVD-based and TTD-based
algorithms. For the TTD-based entropy computation, we reported the times of left-
and right-orthonormalization and economy-size matrix SVD. For the SVD-based en-
tropy computation, we only reported the time of economy-size matrix SVD. For the
purpose of accuracy, we ran each algorithm 10 times and took the average of the com-
putational times.

3.5 Discussion

The first five numerical examples reported here highlight that the k-mode sin-

gular values computed from the HOSVD of the Laplacian tensors can provide nice
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predictions of structural properties for uniform hypergraphs. This method can also

be used for anomaly detection in the context of dynamics as we demonstrated in the

mouse neuron endomicroscopy and cellular reprogramming datasets. However, more

theoretical and numerical investigations are required to assess the real advantages of

hypergraphs versus normal graphs, and is an important avenue of future research.

Moreover, as we pointed out in Section 3.3, many simple structure tensors can be

directly created in the TT-format without requiring construction of the full repre-

sentations. For example, Oseledets et al. [92] built the Laplacian operator in the

TT-format for the discretized heat equations. We believe that similar results can

happen to the adjacency, degree, and Laplacian tensors for uniform hypergraphs.

Instead of looking at the k-mode singular values, we can consider the tensor

eigenvalues in defining the tensor entropy. We will refer to it as the eigenvalue entropy

later. See Appendix .1 for a short introduction to tensor eigenvalues. Based on the

tensor eigenvalue formulations, we can establish the eigenvalue entropy measure for

uniform hypergraphs.

Definition III.12. Let G be a k-uniform hypergraph with n nodes. The eigenvalue

entropy of G is defined by

(3.12) S = −
d∑
j=1

|λ̂j| ln |λ̂j|,

where |λ̂j| are the normalized modulus of the eigenvalues of the Laplacian tensor L

such that
∑d

j=1 |λ̂j| = 1, and d = n(k− 1)n−1 is the total number of the eigenvalues.

The convention 0 ln 0 = 0 is used if |λ̂j| = 0. We can use other tensor eigenvalue

notions including H-eigenvalue, E-eigenvalue, and Z-eigenvalue with a corresponding

d to fit into the formula. For curiosity, we repeat the hyperedge growth model using

the eigenvalue entropy, see Figure 3.9. The entropy minimization evolution trajectory
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Figure 3.9: Eigenvalue entropy maximization/minimization. The top row describes the first
five stages of the eigenvalue entropy maximization evolution with a growing number of
hyperedges in the order of e1 = {1, 2, 3}, e2 = {5, 6, 7}, e3 = {3, 4, 5}, e4 = {1, 2, 7},
and e5 = {3, 4, 6}. The eigenvalue entropy S(j)

max = 4.4910, 5.6342, 5.8608, 5.9490 and
6.0091 for j = 1, 2, 3, 4, 5. The bottom row reports the first five stages of the eigenvalue
entropy minimization process with a growing number of hyperedges in the order of
e1 = {1, 2, 3}, e2 = {2, 3, 4}, e3 = {1, 2, 4}, e4 = {1, 3, 4}, and e5 = {3, 4, 5}. The

eigenvalue entropy S
(j)
min = 4.4910, 5.3604, 5.4434, 5.4715, and 5.6334 for j = 1, 2, 3, 4, 5.

All the tensor eigenvalues of the Laplacian tensors in this experiment are computed
from the MATLAB Toolbox TenEig [29, 30].

is the same for the first five stages in which cliques are formed. The maximization

evolution trajectory becomes different from the fourth stage after the hypergraph

is connected, in which short path lengths and high level of nontrivial symmetricity

are no longer the factors that maximize the entropy. In addition, computing the

eigenvalues of a tensor is an NP-hard problem [55]. Hence, the eigenvalue entropy

may not be used to predict the structural properties for uniform hypergraphs, but it

might contain other unknown features that are required to explore in the future.

Furthermore, the notion of robustness for uniform hypergraphs is an important

topic. In graph theory, one of the popular measures is called effective resistance [45].

The authors in [67] show that the effective graph resistance can be written in terms

of the reciprocals of graph Laplacian eigenvalues, and robust networks have small

effective graph resistance. Hence, we attempt to establish similar relationship using
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Table 3.1: The effective resistance and tensor entropy.
Step j = 3 j = 5 j = 15 j = 25 j = 35

R(j)
max 34.8384 20.9432 7.3863 4.4819 3.2166

S(j)
max 1.9037 1.9359 1.9430 1.9448 1.9456

the k-mode singular values from the Laplacian tensors to describe the robustness of

uniform hypergraphs.

Definition III.13. Let G be a connected k-uniform hypergraph with n nodes. The

effective resistance of G is defined by

(3.13) R = n
n∑
j=1

1

γj
,

where γj are the k-mode singular values of L.

If a uniform hypergraph is non-connected, then the effective resistance R = ∞.

Based on (3.13), we compute the effective resistance of the uniform hypergraphs G(j)
max

in the hyperedge growth model example, denoted by R(j)
max. Similar to the effective

graph resistance, R(j)
max strictly decreases when hyperedges are added and achieves

the minimum at the final step when the hypergraph is complete, see Table 3.1.

We can also expect that the smaller the effective resistance is, the more robust the

uniform hypergraph. We believe that the effective resistance (3.13) is a good measure

for uniform hypergraph robustness, but more theoretical and numerical support is

needed to verify this hypothesis.



CHAPTER IV

Controllability of Hypergraphs

Controlling complex networks is one of the most challenging problems in modern

network science [34, 49, 81, 127, 126, 130, 132]. Lin [32] first proposed the concept

of structural controllability of directed graphs in 1970s. Later on, Tanner [122] and

Rahmani et al. [101, 102] applied the idea of structural controllability for multi-agent

systems with the aim of selecting a subset of agents (called leaders) which are able to

control the whole system by exploiting the graph Laplacian and linear control theory.

In particular, Rahmani et al. [101] also showed how the symmetry structure of a

graph directly relates to the controllability of the corresponding multi-agent system.

In 2011, Liu et al. [81, 82] explored the (structural) controllability of complex

graphs with n nodes by using the canonical linear time-invariant dynamics

(4.1) ẋ = Ax + Bu,

where A ∈ Rn×n is the adjacency matrix of a graph, and B ∈ Rn×m is the control

matrix. The time-dependent vector x ∈ Rn captures the states of the nodes, and

u ∈ Rm is the time-dependent control vector. The authors exploited the Kalman rank

condition, i.e., the linear system (4.1) is controllable if and only if the controllability

matrix

(4.2) C =

[
B AB . . . An−1B

]

72
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has full rank, to determine the minimum number of control nodes (MCN) in order to

achieve full control of the graph (similar to the role of leaders discussed previously).

They also identified the MCN of a graph using the idea of “maximum matching” [81].

In addition, Yuan et al. [130] developed a notion of exact controllability of graphs.

They took advantage of the Popov-Belevitch-Hautus rank condition (i.e., the linear

system (4.1) is controllable if and only if rank(

[
sI−A B

]
) = n for any complex

number s) to prove that for an arbitrary graph, the MCN is determined by the

maximum geometric multiplicity of the eigenvalues of the corresponding adjacency

matrix A. Furthermore, Nacher et al. [88] analyzed MCN required to fully control

multilayer graphs, and a similar notion of exact controllability for multilayer graphs

is defined in [131].

Multilinear dynamical systems were first proposed by Rogers et al. [107] and

Surana et al. [120] where the system evolution is generated by the action of mul-

tilinear operators which are formed using Tucker products of matrices. Chen et

al. [24, 27] developed the tensor algebraic conditions for stability, reachability, and

observability for input/output multilinear time-invariant systems. By using tensor

unfolding, an operation that transforms a tensor into a matrix, a multilinear sys-

tem can be unfolded to a corresponding linear system. However, the tensor-based

multilinear systems, proposed in this paper, are different from the ones defined in

[24, 107, 120], and in fact they belong to the family of nonlinear polynomial systems.

Hence, they can capture network dynamics more precisely than systems based on

standard graphs which use linear dynamics assumption. Basic knowledge of non-

linear control concepts such as Lie algebra and Lie brackets is required in order to

better understand the controllability of such systems. The key contributions of this

chapter are as follows:
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• We propose a new tensor-based multilinear system representation inspired by

uniform hypergraphs, and study the controllability of such systems by exploiting

tensor algebra and polynomial control theory. We establish a Kalman-rank-like

condition to determine the controllability of even uniform hypergraphs.

• We establish theoretical results on the MCN of even uniform hyperchains, hy-

perrings, and hyperstars as well as complete even uniform hypergraphs. We also

observe that the MCN of odd uniform hypergraphs, identified by the Kalman-

rank-like condition, behaves similarly to that of even uniform hypergraphs in

simulated examples (although the condition is not applicable in terms of control-

lability). We discover that MCN is related to the hypergraph degree distribu-

tion, and high degree nodes are preferred to be controlled in these configurations

and their variants.

• We propose MCN as a measure of robustness for uniform hypergraphs, and use

it to quantify structural differences. We present applications to two real world

biological examples: a mouse neuron endomicroscopy dataset and an allele-

specific Hi-C dataset.

• We present a fast and memory-efficient computational framework for determin-

ing the rank of a matrix related to the Kalman-rank-like condition for nonlinear

controllability. In addition, we propose a heuristic approach to identify the

MCN of uniform hypergraphs efficiently.

• We perform preliminary explorations of the controllability of general non-uniform

hypergraphs.

This chapter is organized into seven sections. We start with some definitions

of special hypergraphs in Section 4.1. We propose a new tensor-based multilinear
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system to capture the dynamics of uniform hypergraphs in Section 4.2. We then

formulate a Kalman-rank-like condition to determine the controllability of even uni-

form hypergraphs in Section 4.3. We establish theoretical results on the MCN of

even uniform hyperchains, hyperrings, and hyperstars as well as complete even uni-

form hypergraphs in Section 4.4. In Section 4.5, we argue that MCN can be used to

measure hypergraph robustness, and provide a heuristic approach to find the MCN

efficiently. Five numerical examples are presented in Section 4.6. Finally, we dis-

cuss the controllability of general hypergraphs in Section 4.7. All the content of this

chapter has published in [26].

4.1 Special Hypergraphs

In this section, we extend the definitions of chains, rings, and stars from graph

theory to uniform hypergraphs.

Definition IV.1. A k-uniform hyperchain is a sequence of n nodes such that every

k consecutive nodes are adjacent, i.e., nodes j, j + 1, . . . , j + k − 1 are contained in

one hyperedge for j = 1, 2, . . . , n− k + 1.

Definition IV.2. A k-uniform hyperring is a sequence of n nodes such that every

k consecutive nodes are adjacent, i.e., nodes σn(j), σn(j + 1), . . . , σn(j + k − 1) are

contained in one hyperedge for j = 1, 2, . . . , n, where σn(j) = j for j ≤ n and

σn(j) = j − n for j > n.

Definition IV.3. A k-uniform hyperstar is a collection of k− 1 internal nodes that

are contained in all the hyperedges, and n − k + 1 leaf nodes such that every leaf

node is contained in one hyperedge with the internal nodes.

In k-uniform hyperchains, hyperrings and hyperstars, every two hyperedges have

exactly k − 1 overlapping nodes, see Figure 4.1. When k = 2, they are reduced to
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Figure 4.1: Examples of hyperchains, hyperrings, and hyperstars. (A) 3-uniform hyper-
chain with e1 = {1, 2, 3} and e2 = {2, 3, 4}. (B) 3-uniform hyperring with e1 = {1, 2, 3},
e2 = {2, 3, 4}, e3 = {3, 4, 5}, e4 = {4, 5, 6}, e5 = {5, 6, 1}, and e6 = {6, 1, 2}. (C) 3-
uniform hyperstar with e1 = {1, 2, 3}, e2 = {2, 3, 4}, e3 = {2, 3, 5}, e4 = {2, 3, 6}, and
e5 = {2, 3, 7}.

standard chains, rings, and stars. We will determine the minimum number of control

nodes (MCN) of uniform hyperchains, hyperrings, and hyperstars in Section 4.4.

4.2 Uniform Hypergraph Dynamics

We represent the dynamics of a k-uniform hypergraph G with n nodes by multi-

linear time-invariant differential equations using the adjacency tensor of G.

Definition IV.4. Given a k-uniform hypergraph G with n nodes, the dynamics of

G with control inputs can be represented by

(4.3) ẋ = Axk−1 +
m∑
j=1

bjuj,

where A ∈ Rn×n×···×n is the adjacency tensor of G, and B =

[
b1 b2 . . . bm

]
∈

Rn×m is the control matrix.

In this paper, we consider the case in which each input can only be imposed at

one node, i.e., bj are the scaled standard basis vectors, similar to the treatments in

[81, 130]. The time-dependent vector x captures the state of the n nodes, and the sys-

tem is controlled using the time-dependent input vector u =

[
u1 u2 . . . um

]>
∈

Rm. The multilinear system (4.3) formulated by the tensor vector multiplications is
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Figure 4.2: Graphs versus uniform hypergraphs. (A) Standard graph with three nodes and
edges e1 = {1, 2}, e2 = {2, 3}, and e3 = {1, 3}, and its corresponding linear dynamics.
(B) 3-uniform hypergraph with three nodes and a hyperedge e1 = {1, 2, 3}, and its
corresponding nonlinear dynamics.

indeed able to capture the simultaneous interactions among nodes for uniform hy-

pergraphs as illustrated in Figure 4.2. All the interactions are characterized using

multiplications instead of the additions that are typically used in a standard graph.

It is known that multiplication often stands for simultaneity and addition for sequen-

tiality in many mathematical fields. For example, the probability of two independent

events to happen at the same time is equal to the product of their individual proba-

bilities. A similar form of nonlinear dynamical system representation has been used

to model protein-protein interaction [48], which as mentioned can be represented by

hypergraphs. Compared to the dynamical systems of hypergraphs defined in [21, 38],

our model (4.3) is simpler and retains the higher-order coupling information. More

significantly, we can discuss the controllability of such systems. In the next section,

we will establish a Kalman-rank-like condition by exploiting nonlinear control theory.

4.3 Controllability of Uniform Hypergraphs

If one rewrites the tensor vector multiplications in the multilinear system (4.3)

explicitly as in Figure 4.2B, the drift term Axk−1 is in fact a homogeneous polynomial

system of degree k−1. The controllability of polynomial systems was studied exten-

sively back in 1970s and 80s [6, 19, 63, 111]. In particular, Jurdjevic and Kupka [63]
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obtained strong results in terms of the controllability of homogeneous polynomial

systems with constant input multipliers (i.e., bj are constant vectors).

Definition IV.5. A dynamical system is called strongly controllable if it can be

driven from any initial state to any target state in any instant of positive time given

a suitable choice of control inputs.

Theorem IV.6. Consider the following system

(4.4) ẋ = f(x) +
m∑
j=1

bjuj.

Suppose that f is a homogeneous polynomial system of odd degree. Then the system

(4.4) is strongly controllable if and only if the rank of the Lie algebra spanned by

the set of vector fields {f, b1, b2, . . . , bm} is n at all points of Rn. Moreover, the Lie

algebra is of full rank at all points of Rn if and only if it is of full rank at the origin.

The rank of the Lie algebra can be found by evaluating the recursive Lie brackets

of {f,b1,b2, . . . ,bm} at the origin. The Lie bracket of two vector fields f and g at a

point x is defined as

(4.5) [f,g]x = ∇g(x)f(x)−∇f(x)g(x),

where∇ is the gradient operation. Detailed definitions of Lie algebra and Lie brackets

can be found in any differential geometry textbook. Based on Theorem IV.6, we can

derive a Kalman-rank-like condition for the tensor-based multilinear system (4.3).

Definition IV.7. Let C0 be the linear span of {b1,b2, . . . ,bm} and A ∈ Rn×n×···×n

be a supersymmetric tensor. For each integer q ≥ 1, define Cq inductively as the

linear span of

(4.6) Cq−1 ∪ {Av1v2 . . .vk−1|vl ∈ Cq−1}.

Denote the subspace C(A,B) = ∪q≥0Cq where B =

[
b1 b2 . . . bm

]
∈ Rn×m.
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Corollary IV.8. Suppose that k is even. The multilinear system (4.3) is strongly

controllable if and only if the subspace C(A,B) spans Rn, or equivalently, the matrix

C, including all the column vectors from C(A,B), has rank n.

Proof. We show that C(A,B) consists of all the recursive Lie brackets of

{Axk−1,b1,b2, . . . ,bm} at the origin. Without loss of generality, assume that m = 1.

Since A is supersymmetric, the recursive Lie brackets are given by (we omit all the

scalars in the calculation)

[b,Axk−1]0 = (
d

dx

∣∣∣
x=0

Axk−1)b = 0,

[b, [b,Axk−1]]0 = (
d

dx

∣∣∣
x=0

Axk−2b)b = 0,

...

[b, [. . . , [[b,Axk−1]]]]0 = (
d

dx

∣∣∣
x=0

Axbk−2)b = Abk−1.

We then repeat the recursive process for the brackets [Abk−1,Axk−1], [Abk−1,Axk−2b],

. . . , [Abk−1,Axbk−2] in the second iteration. After the q-th iteration for some q, the

subspace C(A,B) contains all the Lie brackets of the vector fields {Axk−1,b} at the

origin. Lastly, when k is even, the drift term Axk−1 is a family of homogeneous

polynomial fields of odd degree. Based on Theorem IV.6, the result follows immedi-

ately.

Corollary IV.9. Given the subspace C(A,B) = ∪q≥0Cq, there exists an integer q ≤ n

such that C(A,B) = Cq.

Proof. The proof follows immediately from the fact that C(A,B) is a finite-dimensional

vector space [63].

We can treat the matrix C as the controllability matrix of the multilinear system

(4.3). When k = 2 and q = n − 1, Corollary 1 is reduced to the famous Kalman
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Algorithm 5 Computing the reduced controllability matrix.

1: Given a supersymmetric tensor A ∈ Rn×n×···×n and a control matrix B ∈ Rn×m
2: Unfold A into a matrix A by stacking the last k − 1 modes, i.e., A ∈ Rn×nk−1

3: Set Cr = B and j = 0
4: while j < n do

5: Compute L = A(Cr ⊗Cr⊗
k−1· · · ⊗Cr)

6: Set Cr =
[
Cr L

]
7: Compute the economy-size SVD of Cr, and remove the zero singular values, i.e., Cr = USV>

where S ∈ Rs×s, and s is the rank of Cr

8: Set Cr = U, and j = j + 1
9: end while

10: return The reduced controllability matrix Cr.

rank condition for linear systems. However, computing the controllability matrix can

be computationally demanding as the number of columns of C grows exponentially

with k. In Algorithm 5, we offer a memory-efficient approach to obtain a reduced

form of the controllability matrix, denoted by Cr, by exploiting the economy-size

matrix SVD. Step 2 is referred to as the 1-mode tensor unfolding (matrization).

Here ⊗ denotes the Kronecker product, and Step 5 can be computed fast without

evaluating the actual Kronecker products of Cr [71]. One may also exploit the sparse

tensor/matrix structure to further save the computation and memory.

Lemma IV.10. Suppose that A ∈ Rn×nk−1
is defined as in Algorithm 5, and X ∈

Rn×m is an arbitrary matrix with rank s. Then the following two matrices

P = A(X⊗X⊗ k−1· · · ⊗X) ∈ Rn×mk−1

,

Q = A(U⊗U⊗ k−1· · · ⊗U) ∈ Rn×sk−1

,

share the same column space, where U ∈ Rn×s is the matrix including the first s left

singular vectors of X.

Proof. Without loss of generality, assume that k = 3. Suppose that X = USV>
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with U ∈ Rn×s. Based on the properties of the Kronecker product, one can write

P = A[(USV>)⊗ (USV>)]

= A[(U⊗U)(S⊗ S)(V⊗V)>]

= Q[(S⊗ S)(V⊗V)>] = QS̃Ṽ
>
,

where S̃ = S ⊗ S ∈ Rs2×s2 is a diagonal matrix and Ṽ = V ⊗ V ∈ Rm2×s2 is a

semi-orthogonal matrix. Thus, it follows immediately that P and Q share the same

column space.

Proposition IV.11. The column space of the reduced controllability matrix Cr is

C(A,B).

Proof. The result follows immediately from Lemma IV.10 and Corollary IV.9.

Remark: The controllability of homogeneous polynomial systems of even degree is

still an open problem to best of authors knowledge [2, 84]. The reason is intimately

related to the fact that the roots of polynomial systems of even degree might all

be complex [2]. Therefore, we cannot guarantee the condition for controllability

of odd uniform hypergraphs using Corollary IV.8. Nevertheless, a weaker form of

controllability, called (local) accessibility, can be obtained for the multilinear system

(4.3) with odd k based on the Kalman-rank-like condition.

Given x0 ∈ Rn and control inputs, define R(x0, t) to be the set of all x ∈ Rn for

which the system can be driven from x0 to x at time t.

Definition IV.12. A dynamical system is called accessible if for any initial state

x0 ∈ Rn and T > 0, the reachable set RT (x0) = ∪0≤t≤TR(x0, t) contains a nonempty

open set.
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The accessibility of a control system requires only that the reachable set from

a given point contains a nonempty open set, rather than being equal to the whole

space Rn (required for strong controllability). Accessibility holds at a point if the

span of the smallest Lie algebra of vector fields containing the drift and input vector

fields is Rn at that point [12].

Corollary IV.13. The multilinear system (4.3) is accessible if the subspace C(A,B)

spans Rn, or equivalently, the matrix C, including all the column vectors from C(A,B),

has rank n.

Proof. The smallest Lie algebra of vector fields containing Axk−1 and b1, . . . ,bm at

the origin is C(A,B) by Corollary IV.8. Based on the second part of Theorem IV.6

(i.e., the Lie algebra is of full rank at all points of Rn if and only if it is of full rank

at the origin), the result follows immediately.

4.4 MCN of Special Hypergraphs

According to Corollary IV.8 and IV.9, we can discuss the controllability of even

uniform hypergraphs. Similarly to [81, 130], we want to determine the MCN, denoted

by n∗, whose control is sufficient for achieving controllability of the hypergraph. For

example, let’s consider the simplest even uniform hypergraph, i.e., the 4-uniform

hypergraph with four nodes. We find that the MCN of this hypergraph is three based

on the Kalman-rank-like condition, see Figure 4.3. More significantly, we discover

that the MCN of even uniform hyperchains, hyperrings, and hyperstars as well as

complete even uniform hypergraphs behaves similarly to those of chains, rings, stars,

and complete graphs.

Proposition IV.14. Suppose that k is even. If G is a k-uniform hyperchain with n

nodes, then the MCN of G is given by n∗ = k − 1.
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1 2 3 4

rank(C) = 4

b1 b2 b3

C =
[
b1 b2 b3 Ab1b2b3 Ab3

1 . . .
]

=


b1 0 0 0 0 . . .

0 b2 0 0 0 . . .
0 0 b3 0 0 . . .

0 0 0 1
6b1b2b3 0 . . .



Figure 4.3: Controllability matrix. 4-uniform hypergraph with four nodes and a hyperedge
{1, 2, 3, 4}, and its controllability matrix C.

Proof. We first show that when the number of control inputs m = k − 2, G is never

controllable. Based on the definition of tensor vector multiplication and the special

structure of the adjacency tensor, it can be shown that for any choice of the control

matrix B with m = k − 2,

Abj1bj2 . . .bjk−1
= 0,

where A is the adjacency tensor of G. This is because the set of vectors bjl must

contain a duplicate for one l = 1, 2, . . . , k − 1. Therefore, the controllability matrix

C has rank k − 2, and G is not controllable. Next, we present one control strategy

with m = k − 1.

Assume that the first k − 1 nodes are controlled, and bj is associated with the

node j for j = 1, 2, . . . , k − 1. Let

bj = Abj−k+1bj−k+2 . . .bj−1

for j = k, k + 1, . . . , n. Similarly, it can be shown that the following matrix[
b1 b2 . . . bn

]
∈ Rn×n

is upper triangular with nonzero entries along the diagonal. Hence, the controllability

matrix C has rank n, and the MCN of G is k − 1.
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Proposition IV.15. Suppose that k is even and k ≥ 4. If G is a k-uniform hyperring

with n nodes and n > k + 1, then the MCN of G is given by n∗ = k − 1.

Proof. We first note that when n = k + 1, G is complete, see Proposition 5 below.

For n > k + 1, the first part of the proof follows in exactly the same fashion as in

Proposition 2. Moreover, due to the special structure of the adjacency tensor and

the definition of tensor vector multiplication, it is straightforward to show that for

k ≥ 4, controlling the first k − 1 nodes will be enough to make the rank of the

controllability matrix C equal to n. Therefore, the MCN of G is k − 1.

Proposition IV.16. Suppose that k is even. If G is a k-uniform hyperstar with n

nodes and n > k, then the MCN of G is given by n∗ = n− 2.

Proof. We first note that when n = k, G is a uniform hyperchain. For n > k, we

show that when the number of control inputs m = n−3, G is never controllable. Let

mint denote the number of control inputs selected from the set of the internal nodes.

Then m−mint is the number of control inputs selected from the set of the leaf nodes.

According to the definition of tensor vector multiplication and the special structure

of the adjacency tensor, it can be shown that

Case 1: When mint = k − 1, rank(C) = n− 2;

Case 2: When mint = k − 2, rank(C) = n− 1;

Case 3: When 0 ≤ mint < k − 2, rank(C) = n− 3.

Therefore, G is not controllable. However, if one adds one more input from the set

of the leaf nodes in Case 2, the rank of the controllability matrix C will reach n.

Hence, the MCN of G is n− 2.

Proposition IV.17. Suppose that k is even. If G is a complete k-uniform hypergraph

with n nodes, then the MCN of G is given by n∗ = n− 1.
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Proof. We first show that when the number of control inputs m = n − 2, G is

never controllable. Without loss of generality, assume that the first n− 2 nodes are

controlled, and bj is associated with the node j for j = 1, 2, . . . , n− 2. According to

the definition of tensor vector multiplication and the fact that G is complete, it can

be shown that all the column vectors in the controllability matrix C have the last

two entries equal. Thus, the rank of C is equal to n − 1, and G is not controllable.

However, when the first n−1 nodes are controlled, the last node can be easily reached

by any combination of (k− 1) bj for j = 1, 2, . . . , n− 1 since G is complete, and the

controllability matrix C has rank n. Therefore, the MCN of G is n− 1.

Proposition IV.14, IV.16, and IV.17 are valid when k = 2 where the MCN of

chains, stars and complete graphs are equal to 1, n − 2 and n − 1, respectively.

Similarly to rings, the MCN of even uniform hyperrings does not depend on n.

However, Proposition IV.15 does not hold for k = 2 because the pairwise transitions

between nodes would produce linearly dependent relations in the standard rings. Fur-

thermore, we discover that the MCN of odd uniform hyperchains, hyperrings, and

hyperstars as well as complete odd uniform hypergraphs, identified by the Kalman-

rank-like condition, follows exactly the same patterns as stated in Proposition IV.14

to IV.17 even though the condition only offers accessibility. Nonetheless, controlla-

bility or accessibility of a uniform hypergragh is closely associated to its underlying

architecture, and the MCN can be used to quantify some topological attributes of a

uniform hypergraph.

4.5 Hypergraph Robustness

Network robustness is the ability of a network to survive from random failures or

deliberate attacks (e.g., removal of nodes or edges) [1, 9, 20]. It is intimately related



86

to the underlying network structure/topology. Many measures have been proposed to

quantify the robustness of a graph, and one of the popular measures is called effective

resistance [116, 45]. We propose MCN as a measure of hypergraph robustness since

it can provide insights into the topology and connectivity of uniform hypergraphs

according to their controllability or accessibility. Intuitively, if the MCN of a uniform

hypergraph is high, it will take more effort/energy to control the hypergraph or steer

the underlying system.

In Section 4.6.1 and 4.6.2, we will determine the MCN of even and odd uniform

hyperchains, hyperrings, and hyperstars, and their different variants in simulated

datasets. As expected, the rules for selecting the minimum subset of “control nodes”

of odd uniform hypergraphs associated with the MCN follow the same patterns as

these of even uniform hypergraphs. More interestingly, we find that the MCN of

these configurations are related to their degree distributions, and the high degree

nodes are often preferred as control nodes.

4.5.1 Control Nodes Selection with MCN

In order to measure the robustness of uniform hypergraphs, we need to efficiently

determine their MCN. However, finding the MCN of uniform hypergraphs using a

brute-force search will be computationally demanding. We provide a heuristic ap-

proach for estimating the minimum subset of control nodes of a uniform hypergraph

in which nodes are chosen based on the maximum change in the rank of the reduced

controllability matrix, see Algorithm 6. Here CD denotes the reduced controllabil-

ity matrix formed from the inputs in the index set D, and can be computed using

Algorithm 5. If a uniform hypergraph is non-connected, we can first identify the

connected components (which can be defined similarly as in graphs), and then apply

the algorithm to each component. In Step 7, if multiple s∗ are obtained, we can pick
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one randomly, or use some other conditions to break the tie, e.g., by selecting the

node with the highest degree. It turns out that Algorithm 6 with high likelihood can

find the MCN of a medium-sized uniform hypergraph, and it is much faster than a

brute-force search, see Section 4.6.5.

Algorithm 6 Greedy Control Nodes Selection with MCN.

1: Given a supersymmetric tensor A ∈ Rn×n×···×n
2: Let S = {1, 2, . . . , n} and D = ∅
3: while rank(CD) < n do
4: for s ∈ S \D do
5: Compute ∆(s) = rank(CD∪{s})− rank(CD) using Algorithm 5
6: end for
7: Set s∗ = argmaxs∈S\D∆(s)
8: Set D = D ∪ {s∗}
9: end while

10: return A subset of control nodes D.

4.6 Numerical Examples

All the numerical examples presented were performed on a Linux machine with

16 GB RAM and a 2.0 GHz Quad-Core Intel Core i5 processor in MATLAB R2020a.

4.6.1 Even Uniform Hypergraphs

Recall that in k-uniform hyperchains, hyperrings, and hyperstars, every hyperegde

has exactly k − 1 overlapping nodes. However, for k ≥ 3, one can relax this require-

ment allowing number of overlapping nodes between hyperedges to vary, and obtain

variants of the three configurations. We consider the case where every intersection

between hyperedges contains r nodes for 0 < r < k − 1, and denote these variants

by r-hyperchains, r-hyperrings, and r-hyperstars. Note that k-uniform hyperchains,

hyperrings, and hyperstars are the cases where r = k− 1. Uniform hyperchains, hy-

perrings, and hyperstars, and their different variants have many applications in real

life. For example, we can use them to model complex networks such as computer

networks, supply chains and organizational hierarchy. Understanding the control
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Figure 4.4: MCN of 4-uniform hyperchains, hyperrings, and hyperstars, and their vari-
ants. (A), (B), and (C) 4-uniform 1-hyperchains, 2-hyperchains, and hyperchains. (D),
(E), and (F) 4-uniform 1-hyperrings, 2-hyperrings, and hyperrings. (G), (H), and (I)
4-uniform 1-hyperstars, 2-hyperstars, and hyperstars. The nodes with arrows are de-
noted as the control nodes, and the cyan arrows indicate the control nodes with highest
degrees in the configurations.

mechanisms of these configurations will be greatly beneficial for achieving network

security, efficient communications and energy savings.

In this example, we determine the MCN of 4-uniform hyperchains, hyperrings, and

hyperstars, and their variants. The results are shown in Figure 4.4. We only present

the most representative minimum subset of control nodes for each configuration.

First, the MCN of 4-uniform hyperchains, hyperrings, and hyperstars is consistent

with the results stated in Proposition 2 to 4. Controlling 4-uniform hyperchains, and
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hyperrings only requires control of three nodes, and controlling 4-uniform hyperstars

requires control of n−2 nodes, see Figure 4.4C, F, and I. Moreover, we discover that

the MCN of these configurations is related to their degree distributions. Intuitively,

controlling the high degree nodes is the easiest and most natural way for achieving

hypergraph control. In particular, all the hypergraph configurations in Figure 4.4

contain at least one control node with the highest degree in the corresponding degree

distributions. For 4-uniform 1-hyperchains, 1-hyperrings, and 1-hyperstars, in which

there is one common node between hyperedges, the MCN can be achieved when all

the 2-degree nodes are controlled with each hyperedge having three control nodes,

see Figure 4.4A, D, and G. Furthermore, the control strategies for 4-uniform 2-

hyperchains, 2-hyperrings, and 2-hyperstars, in which there are two common nodes

between hyperedges, are more like some combinations of the previous two, which

also require controlling nodes with the highest degree, see Figure 4.4B, E, and H.

However, it is possible that low degree nodes can accomplish the same goal. For

example, the minimum subset of control nodes {1, 2, 3, 5, 6, 8, 9} can also achieve the

full control of the 1-hyperchain with ten nodes.

We summarize the MCN of 4-uniform 1-, 2-hyperchains, 1-,2-hyperrings, and 1-,2-

hyperstars with n nodes in Table 4.1 (column n∗4-unif) based on our observations (i.e.,

they are not proved). Interestingly, for cases of 2-hyperchains, 2-hyperings and 2-

hyperstars, we find that the MCN is n+2
2

. Whether this results hold in general needs

to be further investigated. Moreover, one may easily obtain the MCN of some hybrids

of uniform hyperchians, hyperrings, and hyperstars, and their variants according to

the control strategies discussed above.
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Table 4.1: MCN of the variants of 4- and 3-uniform hyperchains, hyperrings, and hyper-
stars based on our observations. Note that 3-uniform 2-hyperchains, 2-hyperrings,
and 2-hyperstars are the 3-uniform hyperchains, hyperrings, and hyperstars.

Configuration n∗4-unif n∗3-unif
1-Hyperchain 2n+1

3
n+1
2

1-Hyperring 2n
3

n
2

1-Hyperstar 2n+1
3

n+1
2

2-Hyperchain n+2
2 2

2-Hyperring n+2
2 2

2-Hyperstar n+2
2 n− 2

4.6.2 Odd Uniform Hypergraphs

The goal of this example is to determine the MCN of 3-uniform hyperchains, hy-

perrings, and hyperstars, and their variants using the Kalman-rank-like condition

even though the condition only offers accessibility for these configurations. The re-

sults are shown in Figure 4.5. The rules for selecting the minimum subset of “control

nodes” of 3-uniform hyperchains, hyperrings and hyperstars, and their variants follow

the same patterns as these discussed in Section 4.4. The MCN of 3-uniform hyper-

chains, hyperrings, and hyperstars are matched with the results stated in Proposi-

tion 2 to 4 despite k being odd, see Figure 4.5B, D, and F. Moreover, for 3-uniform

1-hyperchains, 1-hyperrings, and 1-hyperstars, in which there is one common node

between hyperedges, the MCN can be achieved when all the 2-degree nodes are “con-

trolled” with each hyperedge having two “control nodes”, see Figure 4.5A, C, and E.

Similarly, we can conclude that the MCN of these configurations are related to their

degree distributions. We summarize the MCN of 3-uniform hyperchains, hyperrings,

and hyperstars, and their variants with n nodes in Table 4.1 (column n∗3-unif) based

on our observations. Again, we want to remark that although the “control nodes” of

3-uniform hypergraphs may not have physical interpretations in terms of controlla-

bility, the MCN can be used to measure hypergraph robustness and detect structural

changes, as shown in the following example.
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nodes with arrows are denoted as the control nodes, and the cyan arrows indicate the
control nodes with the highest degrees in the configurations.

4.6.3 Mouse Neuron Endomicroscopy

The mouse endomicroscopy dataset is an imaging video created under 10-minute

periods of feeding, fasting and re-feeding using fluorescence across space and time in

a mouse hypothalamus [23, 121]. Twenty neurons are recorded with individual levels

of “firing”. Similar to [23], we want to quantitatively differentiate the three phases

using 3-uniform hypergraphs with MCN. First, we compute the multi-correlation

among every three neurons, which is defined in (3.11) When the multi-correlation ρ
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Figure 4.6: Mouse neuron endomicroscopy features. (A), (B), and (C) Neuronal activity
networks of the three phases - fed, fast, and re-fed, which depicts the spatial location
and size of individual cells. Each 2-simplex (i.e., a triangle) represents a hyperedge, and
red arrows indicate those control nodes. (D) MCN for the neuronal activity networks
modelled by 3-uniform hypergraphs and standard graphs. The cutoff threshold is 0.95
for both the hypergraph and graph models.

is greater than a prescribed threshold, we build hyperedges among the three neurons.

The results are shown in Figure 4.6, in which (A), (B), and (C) are network dia-

grams modelled by 3-uniform hypergraphs for a representative mouse depicting the
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spatial location and size of individual cells (every 2-simplex is a hyperedge). It is

evident from Figure 4.6D that the hypergraph MCN (blue) can successfully differ-

entiate the three phases with different food treatments under the cutoff threshold

0.95. In particular, the fasting phase requires more neurons to be “controlled” due

to fewer connections, while in the re-fed phase, the MCN is significantly reduced

because of an outburst of neuron interactions. On the other hand, the MCN (red in

Figure 4.6D) computed from the graph model fails to capture the changes in neuronal

activity. The threshold 0.95 in the graph model is too high to produce any connec-

tion. This supports the fact that more than two neurons synchronize, or “co-fire”, in

the mouse hypothalamus, and the interactions can be more accurately captured by

hypergraphs. Note that our choice of the prescribed threshold is arbitrary, though

higher values are desirable as they capture stronger neuronal interactions as the rele-

vant edges/hyeredges. To assess the sensitivity, we also performed our MCN analysis

for values of threshold in the range from 0.90 to 0.95 and found similar qualitative

results.

4.6.4 Allele-Specific Chromosomal Conformation Capture

Studies have revealed that there is significant coordination between allelic gene

expression biases and local genome architectural changes [78]. The unbiased genome-

wide technology of chromosome conformation capture (Hi-C) has been used to cap-

ture the architecture of the genome through the cell cycle [53, 103, 106]. The notion

of transcription factories supports the existence of simultaneous interactions involv-

ing multiple genomic loci [35], implying that the human genome configuration can be

represented by a hypergraph [23]. In the example, we are given Hi-C data for a small

region of chromosome 15 (100 kb bin resolution) which contains two imprinted genes

(SNRPN and SNURF ). Imprinted genes are known to only express from one allele,
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Figure 4.7: Allele-specific Hi-C features. (A) and (B) Hi-C maps of a local region surrounding
the imprinted genes SNRPN and SNURF from the maternal and paternal Chromosome
15, respectively, through the cell cycle phases G1, S, and G2. The darker the color,
the more interactions between two loci. (C) MCN of the 4-uniform hypergraphs, re-
covered from Hi-C measurements with multi-correlation cutoff threshold 0.99, through
the cell cycle phases G1, S, and G2. (D) Tensor entropies of the 4-uniform hypergraphs
described in (C).

so we want to explore any corresponding differences in local genome architecture

[105]. Here we use 4-uniform hypergraphs to partially recover the 3D configuration

of the genome according to the multi-correlation (3.11) from the Hi-C matrices.

The results are shown in Figure 4.7. Clearly, it is hard to tell the difference
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between the maternal and paternal genome architectures directly from the Hi-C

maps, see Figure 4.7A and B. However, after converting to hypergraphs, we can

easily detect the structural discrepancy using the notion of MCN in the cell cycle

phases G1 and S, see Figure 4.7C. Although the MCN are equal between the maternal

and paternal networks in the cell cycle phase G2, the maximum possible choices

of minimum subsets of control nodes are different (one is twenty four, and one is

thirty three). This indicates that there are some architectural similarities between

the maternal and paternal architectures in G2 compared to the previous two phases.

Furthermore, we corroborate our results by using the notion of tensor entropy. Tensor

entropy is a spectral measure, which can decipher topological attributes of uniform

hypergraphs [23]. In particular, the two results of tensor entropy and MCN are

consistent, in the sense that the largest gap of tensor entropy between the maternal

and paternal architectures occurs in S, and the smallest gap occurs in G2, see Figure

4.7D. Biologically, in S phase, DNA replication of the genomes may lead to a large

structural dissimilarity between the maternal and paternal architectures, while in the

G2 phase, both genomes prepare for mitosis which may result in a small structural

discrepancy. Moreover, we believe that the control loci (nodes) can play a significant

role in cellular reprogramming, a process that introduces proteins called transcription

factors as a control mechanism for transforming one cell type into another.

4.6.5 MCN Computation Comparison

In this example, we compare the computational efficiency of the heuristic ap-

proach described in Algorithm 6 and brute-force search in finding the MCN of ran-

dom 4-uniform hypergraphs (with hyperedge density 50%) and complete 4-uniform

hypergraphs. The results are shown in Figure 4.8. Evidently, Algorithm 6 is more

time-efficient than a brute-force search as the number of nodes becomes larger in
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Figure 4.8: Computational time comparisons in determining MCN. In the legend, the letter
b stands for the brute-force search, while the letter h stands for the heuristic approach.
Since the computational time using a brute-force search in determining the MCN of the
complete uniform hypergraphs grows very fast, we only compute them up to sixteen
nodes for comparison. For the purpose of accuracy, we ran each algorithm five times
and took the average of the computational times.

both the configurations. In particular, when a uniform hypergraph is complete (or

nearly complete), the heuristic exhibits a huge time advantage. More significantly,

it produces exactly the same MCN as a brute-force search in these simulations.

4.7 Discussion

The first four numerical examples reported here highlight that the tensor-based

multilinear system (4.3) can characterize the multidimensional interactions in uni-

form hypergraphs. The MCN of uniform hyperchains, hyperrings, and hyperstars,

and their variants are related to their degree distributions. It is also a good indi-

cator of uniform hypergraph robustness. However, more theoretical and numerical
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investigations are required to evaluate the controllability of more general uniform

hypergraphs, and its relation to the hypergraph topology. Moreover, in practice, hy-

pergraphs like co-authorship networks and protein-protein interaction networks are

very large, so computing the reduced controllability matrix and its corresponding

MCN is still challenging. Tensor decomposition and a “maximum matching” type

approach need to be considered in order to facilitate efficient computations [5, 56, 69].

Instead of looking at uniform hypergraphs, can we think of controllability of more

general hypergraphs where each hyperedge contains an arbitrary amount of nodes?

The main idea is to make non-uniform hypergraphs uniform, which can then be

represented by tensors. In the following, we adopt the definition of generalized

adjacency tensors of non-uniform hypergraphs from [7].

Definition IV.18. Let G = {V, E} be a hypergraph with n nodes, and k be the

maximum cardinality of the hyperedges. The adjacency tensor A ∈ Rn×n×···×n of G,

which is a kth order n-dimensional supersymmetric tensor, is defined as

(4.7) Aj1j2...jk =



s
α

if (i1, i2, . . . , is) ∈ E

0, otherwise

,

where, jl ∈ {i1, i2, . . . , is} with at least once for each element of the set for l =

1, 2, . . . , k, and

α =
∑

k1+k2+···+ks=k
k1,k2,...,ks≥1

k!∏s
l=1 ki!

.

The choice of the nonzero coefficients s
α

preserves the degree of each node, i.e.,

the degree of node j computed using (1.10) with weights as defined above is equal to

number of hyperedges containing the node in the original non-uniform hypergraph.
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Figure 4.9: Controllability of non-uniform hypergraphs with MCN. (A) Non-uniform hy-
perchain with e1 = {1, 2} and e2 = {2, 3, 4}. (B) Non-uniform hyperring with
e1 = {1, 2, 3}, e2 = {3, 4}, and e3 = {4, 5, 6, 1}. (C) Non-uniform hyperstar with
e1 = {1, 2, 3, 4}, e2 = {4, 5}, and e3 = {4, 6, 7}. Nodes with arrows from the top are the
control nodes, and the cyan arrows indicate the control nodes with the highest degrees
in the configurations.

When G is uniform, the above definition reduces to Definition I.2. See [7] for ex-

amples. Once we have the adjacency tensor of a hypergraph, we can discuss the

controllability of the hypergraph when k is even using the techniques developed in

Section 4.3. For curiosity, we build several non-uniform hypergraphs and determine

their MCN. The results are shown in Figure 4.9. Intriguingly, the control strategies

for non-uniform hyperchains, hyperrings and hyperstars with one overlapping nodes

between hyperedges are similar to those discussed in Section 4.4. High degree nodes

are preferred to be controlled with each hyperedge containing s − 1 control nodes

where s is the cardinality of the hyperedge (there is one exception in the hyperring

configuration).



CHAPTER V

Conclusion

In Chapter 2, we provided a comprehensive treatment of a newly introduced

MLTI system representation using even-order paired tensors and the Einstein prod-

uct. We established new results which enable one to express tensor unfolding-based

stability, reachability, and observability criteria in terms of more standard notions of

tensor ranks/decompositions. We introduced a generalized CPD/TTD-based model

reduction framework which can significantly reduce the number of MLTI system pa-

rameters and realize the tensor decomposition-based methods. We also presented

computational complexity analysis of our proposed framework, and illustrated the

benefits through numerical examples. In particular, TTD offers several computa-

tional advantages over CPD and HOSVD, and provides a good representational

choice for facilitating numerical computations associated with MLTI systems. As

mentioned in Section 2.8, more work is required to fully realize the potential of ten-

sor algebra-based computations for MLTI systems. It will also be worthwhile to

develop theoretical and computational framework for observer and feedback control

design for MLTI systems, and apply these techniques in real world complex systems.

One particular application we plan to investigate is that of cellular reprogramming

which involves introducing transcription factors as a control mechanism to trans-
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form one cell type to another. These systems naturally have matrix or tensor state

spaces describing their genome-wide structure and gene expression [80, 108]. Such

applications would also need to account for nonlinearity and stochasticity in tensor

based dynamical system representation and analysis framework, and is an important

direction for future research.

In Chapter 3, we proposed a new notion of entropy for uniform hypergraphs based

on the tensor higher-order singular value decomposition. The k-mode singular values

of Laplacian tensors provide nice interpretations regarding the structural properties

of uniform hypergraphs. The tensor entropy heavily depends on the node degrees,

path lengths, clustering coefficients, and nontrivial symmetricity. We investigated

the lower and upper bounds of the entropy, and provided the entropy formula for

complete uniform hypergraphs. A TTD-based computational framework is proposed

for computing the tensor entropy efficiently. We also applied this spectral measure to

real biological networks for anomaly detection, and achieve better performances com-

pared to the von Neumann graph entropy. As discussed in Section 3.5, the detailed

relations between tensor eigenvalues and entropy, and the theoretical investigations

of hypergraph robustness require further exploration.

In Chapter 4, we proposed a new notion of controllability for uniform hyper-

graphs based on tensor algebra and polynomial control theory. We represented the

dynamics of uniform hypergraphs by a tensor product-based multilinear system, and

derived a Kalman-rank-like condition to determine the controllability of even uni-

form hypergraphs. We established theoretical results on the MCN of even uniform

hyperchains, hyperrings, and hyperstars as well as complete even uniform hyper-

graphs. We proposed MCN as a measure of hypergraph robustness, and found that

is it related to the hypergraph degree distribution. We also presented a heuristic to
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obtain the MCN efficiently. Additionally, we applied the notion of MCN to the real

world biological networks to quantify structural differences, and achieved outstand-

ing performances. Finally, we discussed the controllability of general hypergraphs.

As mentioned in Section 4.7, a “maximum matching” type approach is needed in or-

der to find the MCN of large undirected/directed hypergraphs in a scalable fashion.

On the other hand, more work is required to fully understand the control properties

of the tensor-based multilinear system (4.3). For example, it will be useful to realize

the potential of tensor algebra-based computations for controllability Gramians and

Lyapunov equations. In addition, it will be worthwhile to develop theoretical and

computational frameworks for observer and feedback control design, and apply them

to the dynamics of hypergraphs.



APPENDICES

.1 Tensor Eigenvalues

The tensor eigenvalue problems of real supersymmetric tensors were first explored

by Qi [96] and Lim [74] independently. There are different notions of tensor eigenval-

ues; eigenvalues and E-eigenvalues are most frequently used. The eigenvalues λ ∈ R

and eigenvectors v ∈ Rn of a kth order supersymmetric tensor X ∈ Rn×n×···×n are

defined as follows:

Xvk−1 = λv[k−1],

where v[k−1] stands for the element-wise (k − 1)th power of v. The eigenvalues

λ could be complex, and if λ are real, we call them H-eigenvalues. The behav-

iors of tensor eigenvalues are close to eigenvalues of matrices. There is a total of

n(k − 1)n−1 eigenpairs. The sum of all eigenvalues are equal to (k − 1)n−1trace(X)

where trace(X) =
∑n

j=1 Xjj...j, and the product of all eigenvalues are equal to the

hyperdeterminant det(X), the resultant of Xvk−1 = 0.

Second, the E-eigenvalues λ ∈ R and E-eigenvectors v ∈ Rn of a kth order

supersymmetric tensor X ∈ Rn×n×···×n are defined as follows:
Xvk−1 = λv

v>v = 1

.

The E-eigenvalues λ could be complex, and if λ are real, we call them Z-eigenvalues.
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.2 MATLAB Functions

.2.1 The colon operator

The colon : is one of the most useful operators in MATLAB, which can create

vectors, subscript arrays and specify for iterations. For our purpose, it acts as short-

hand to include all subscripts in a particular array dimension [83]. For example, A:i

is equivalent to Aji for all j.

.2.2 The reshape operator

The command B = reshape(A, n1, n2, . . . , nk) reshapes a tensor A into a n1×n2×

· · · × nk order tensor such that the number of elements in B matches the number of

elements in A [83].

.2.3 The rank operator

The command r = rank(A) computes the rank of a matrix A [83].

.2.4 The diag operator

The command d = diag(A) extracts the diagonal elements of a matrix A as a

vector [83].



BIBLIOGRAPHY

104



105

BIBLIOGRAPHY

[1] W. Abbas and M. Egerstedt. Robust graph topologies for networked systems. IFAC Proceed-
ings Volumes, 45(26):85–90, 2012.

[2] D. Aeyels. Local and global controllability for nonlinear systems. Systems & control letters,
5(1):19–26, 1984.

[3] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and description: A
survey. Data Mining and Knowledge Discovery, 29(3):626–688, 4 2015.
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