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ABSTRACT

This thesis considers the cohomology theories of rigid analytic spaces, with a focus on spaces
that might be singular. Analogous to the complex algebraic geometry, we generalize derived de
Rham cohomology, infinitesimal cohomology, and Deligne-Du Bois cohomology to their rigid
analytic counterparts, and study their relations. We also consider the p-adic étale cohomology of
rigid analytic spaces, extending the Hodge—Tate decomposition theorem of Faltings and Scholze
to non-smooth rigid analytic spaces. The strategy to the latter is the simplicial method and the
resolution of singularities. Furthermore, joint with Shizhang Li, we reproduce the period sheaves

and the p-adic Poincaré sequence in p-adic Hodge theory, using the derived de Rham complex.

Vil



CHAPTER 1

Introduction

In 1960s, Tate [Tat71] introduced the notion of rigid analytic spaces, as a non-archimedean
analogue of the complex analytic spaces. Since then, rigid analytic spaces have been developed
systemically by a number of mathematicians, and extended into several variants due to the work
of Raynaud, Berkovich, and Huber. The theory and its variants are not only subjects of interest
themselves in algebraic geometry, but have been used in a wide scope of mathematically areas,
including number theory, representation theory, and mathematical physics. The purpose of this
thesis is to study the cohomology theories of rigid analytic spaces, with a focus on those spaces that

might be singular. More specifically, we consider:
1. various de Rham cohomology theories for singular rigid analytic spaces;
2. p-adic étale cohomology and its decomposition for singular rigid analytic spaces.

In this chapter, we first give a brief introduction about the background of various subjects mentioned

above, together with an overview of this thesis.

1.1 Background: Complex algebraic variety and its cohomology

We start with a brief overview on two types of cohomology theories for complex algebraic

varieties, namely singular cohomology and algebraic de Rham cohomology.

1.1.1 Singular cohomology

In complex algebraic geometry, one of the most powerful tools is the analytic method, which
considers the underlying analytic structure of an algebraic variety over the field of complex numbers
C. Through analysis and topology, the analytic method provides us with many invariants of the
given algebraic object, and is crucial for the study of geometric properties and the classification of
spaces.

More precisely, let us consider a proper algebraic variety X over the field of complex numbers

C. The set of complex points of X admits a natural analytic structure of complex analytic space, and

1



n
Sing

we can consider the singular cohomology group HZ, (X, C), which is one of the most important
topological invariants of X defined using algebraic topology. For instance, when X is a smooth
complex algebraic curve, the underlying analytic space of X can be visualized as a surface “in real
life”! that have the shape of a donut with several holes on it. In this case, the number of holes on
this surface can be read from the dimension of the singular cohomology group of X.

When X is smooth and projective, the underlying complex analytic space of X is a com-
pact Kéhler manifold. In this situation, thanks to the de Rham Theorem, we can compute those

cohomology groups using differential topology:

Theorem 1.1.1.1 (de Rham). There exists a natural isomorphism

ging(Xv (C) = HQR(‘X')

Here the analytic de Rham cohomology group H}p, (X)) is defined using C'*°-differential forms
and measures the failure of integrations. Moreover, de Rham cohomology admits a natural descend-
ing filtration, called the Hodge filtration. The Hodge decomposition theorem then tells us that this
filtration splits into a direct sum of subspaces represented by harmonic forms:

Theorem 1.1.1.2 (Hodge decomposition). (i) There exists a natural decomposition of the de

Rham cohomology
iw(X) = @D HY(X),

i+j=n

where H" (X)) is the subspace of harmonic (i, j)-forms.

(ii) The complex conjugation acts naturally on the de Rham cohomology, and induces the identities

9 (X) = 1 (X).

Furthermore, with the help of GAGA theorem, the cohomology of the Hodge filtered analytic de
Rham complex is isomorphic to the cohomology of algebraic de Rham complex with its algebraic
Hodge filtration, and we have

HY(X) = H/(X,Q).

As a consequence, the obtained graded pieces for the Hodge filtration can be understood alge-

braically:

"Here we mean a surface over the field of real numbers R. This is because as any complex number has two real
variables, a complex curve can be regarded as a two dimensional space over R.



Corollary 1.1.1.3. There is a natural functorial decomposition of the singular cohomology of X as
follows:

n
HSlng

(X,C) = P H/(X,0).

i+j=n

1.1.2 Algebraic de Rham cohomology and its variants

As a complex algebraic variety is defined algebraically, it is natural to ask if there is a pruely
algebraic cohomology theory that also computes singular cohomology.

When X is a smooth algebraic variety over C, the singular cohomology of X is isomorphic to
its algebraic de Rham cohomology. The algebraic de Rham cohomology is the sheaf cohomology

for the algebraic de Rham complex

where each Q% sc 1s the sheaf of i-th algebraic Kahler differentials over the variety X, and is
coherent over the algebraic structure sheaf Ox. Then we have the following result of Grothendieck
([Gro66])):

Theorem 1.1.2.1 (Grothendieck [Gro66)). Assume X is a smooth complex algebraic variety. Then
there is a canonical isomorphism of cohomology groups

i
HSlng

(X,C) = H'(X, Q% 0)-

As an upshot, we get a purely algebraic way to compute the singular cohomology group.

However, if X is non-smooth, cohomology of the usual algebraic de Rham complex may fail
to compute its singular cohomology ([AK11]). To get the correct answer, in particular to get an
algebraic cohomology theory which computes singular cohomology, there are several methods

generalizing algebraic de Rham cohomology to the non-smooth setting:

(1) In [Har75], Hartshorne discovered that if X admits a closed immersion into a smooth va-
riety Y, then the formal completion Q y/c of the de Rham complex €25, Y/c along X — Y
computes the singular cohomology of X. The result was obtained independently by Deligne
(unpublished), and by Herrera—Lieberman [HL71].

In the general case when X is not necessarily embeddable, there exists a ringed infinitesimal
site (X/Cins, Ox/c) (or the crystalline cohomology in characteristic zero) introduced by
Grothendieck [Gr068]. It can be shown that its cohomology H'(X/Cins, Ox/c) coincides
with H (X, Q;, e
In particular we obtain a conceptual cohomology theory that is independent of immersions.

) whenever X — Y is a closed immersion into a smooth variety as above.

3



Moreover, the method allows us to compute cohomology with nontrivial coefficients, where

we could replace O ¢ by vector bundles with flat connections (or in other words crystals).

(2) Another theory, generalizing the de Rham complex of polynomial rings via the simplicial
extension, is the (Hodge-completed) derived de Rham complex introduced by Illusie [11171].
To any scheme X over C, we can associate a filtered derived algebra &P\{X/@ to it. It was
shown by Illusie in loc. cit. the cohomology of the derived de Rham complex drR x/C 18
isomorphic to the Hartshorne’s cohomology, assuming X is of local complete intersection.
Later on, using the Adams completion in algebraic topology, Bhatt [Bhal2a] showed that the
comparison is true for any finite type scheme in characteristic zero, without the l.c.i condition.
In particular, for an arbitrary variety X /C, we get the isomorphism

Sing (X, C) = H'(X, aﬁX/C)-
Here we mention that the first graded piece of cﬁx\/@ is the cotangent complex L x /¢, which

plays an important role in the deformation theory of schemes.

(3) Furthermore, there exists a theory of Deligne—Du Bois complex for X /C, introduced by
Deligne and studied by Du Bois ([DB81]), that also gives us the correct answer. The Deligne—
Du Bois complex is defined via the cohomological descent for resolution of singularities.
It could be shown that the singular cohomology of X is isomorphic to the cohomology of
the Deligne—Du Bois complex. Moreover, Deligne—Du Bois complex admits a finite Hodge—
Deligne filtration where each graded piece is a bounded complex of coherent sheaves in the
derived category. The induced filtration on cohomology is in fact the Hodge filtration for
the mixed Hodge structure, whose associated spectral sequence degenerates at the first page
when X is proper. Furthermore, Deligne—Du Bois complex together with its filtration also
admits a site theoretical interpretation via the h-topology, where the latter is introduced by
Voevodsky in [Voe96]. The theory of h-cohomology of X is studied in [HJ14] and [Lee07].

1.2 Rigid analytic spaces and its cohomology

1.2.1 Rigid analytic spaces

In complex algebraic geometry, one of the most important ingredients of the analytic method is
the fact that the fields R and C are equipped with the natural archimedean metrics, which makes
it possible to measure the distance of points over a complex analytic space. On the other hand,
the archimedean metrics over the fields R and C can be obtained from the one over the field of

rational numbers Q. It is then natural to ask if there are other metrics over the field Q, and if we can



furthermore develop a theory of analytic geometry based on them.

In the early 1900s, K. Hensel discovered that apart from the above archimedean metric, there
exists a non-trivial non-archimedean metric over () whose associated completion yields the field
of p-adic numers QQ,, where p is a prime number. This makes it possible to consider analytic
geometry over p-adic numbers. But as the field Q, is totally disconnected, the usual construction
of manifolds over QQ, is not meaningful. In 1961, J. Tate ([Tat71]) discovered a new category of
analytic-algebraic objects over p-adic numbers, called rigid analytic spaces. A rigid (analytic)
space is defined as a ringed space that is locally isomorphic to the vanishing locus of finitely many
convergent power series in a polydisc of K, where K is a p-adic field. As a consequence, we
can use methods from algebraic geometry and complex analytic geometry to study rigid spaces.
Here similar to the complex theories, examples of rigid spaces include analytifications of algebraic
varieties over p-adic fields. Moreover, there are various notions like smoothness and properness for

rigid spaces, which are compatible with the ones for algebraic varieties under the analytification.

1.2.2 p-adic étale cohomology

Let K be a finite extension of the field of p-adic numbers Q,, K beits algebraic closure, and C,
be the completion of K. As the field of p-adic numbers and its extensions are totally disconnected,
singular cohomology of a rigid space X is not a meaningful invariant. Instead, the correct analogue
of singular cohomology in non-archimedean geometry is p-adic étale cohomology HY, (X7, Q).
Faltings proved that p-adic étale cohomology of a proper smooth algebraic variety over Q,, admits a
natural Galois equivariant decomposition into a direct sum of Hodge cohomology (with appropriate

Tate twists), after the base change to C,,. Precisely, we have the following:

Theorem 1.2.2.1 ([Fal88]). Let X be a smooth proper algebraic variety over K. Then there exists

a natural Gal(K / K)-equivariant decomposition

i (X7 @) @0, Cp = €D HI(X, 9 ) @1 Cpl—).

i+ji=n

This miraculous theorem, which has the name Hodge—Tate decomposition, not only gives a
decomposition of the étale cohomology that is analogous to the Hodge decomposition (Corollary
1.1.1.3) for complex Kéhler manifolds, but also encodes the information of its structure of p-adic
Galois representation.

For rigid analytic spaces, the analogous decomposition of p-adic étale cohomology was conjec-

tured by Tate. This was then proved for proper smooth rigid spaces by Scholze:

Theorem 1.2.2.2 ([Schl3a]). Theorem 1.2.2.1 holds for smooth proper rigid spaces over K.



In order to prove the above theorem, Scholze introduced the pro-étale topology X o4 that is
locally perfectoid, for a given rigid space X. Building on Scholze’s construction, in this thesis we

extend the result to general proper rigid spaces that are not necessarily smooth:

Theorem 1.2.2.3 (|[Guo19], Theorem 1.1.3). Let X be a proper rigid space over K. There exists a

natural Gal(K | K)-equivariant decomposition

HY (X%, Q) ®g, C, = @ HI(X, Q%) @k Cp(—).

i+j=n
where H/(X, Q%) has the trivial Galois action, and C,(—7) is the Tate twist of weight j.

Here in the statement, H'(X, Q&) is the sheaf cohomology of a naturally defined bounded
complex of coherent sheaves Q]X over X, which generalizes the j-th graded piece of the classical
Deligne-Du Bois cohomology to rigid spaces (see Subsection 1.1.2, part (3), and the rigid analytic

version in Theorem 1.2.3.1).

Remark 1.2.2.4. The idea of the proof is the following. In [Schl3a], Scholze showed that the
p-adic étale cohomology HY (X%, Q,) ® C, is naturally isomorphic to pro-étale cohomology
H” .

proét

sheaf. Notice that there is a natural map of Grothendieck topologies v : Xt — X¢t. So the

(X%, O x), where X is an arbitrary proper rigid space, and O x 1s the pro-étale structure

study of p-adic étale cohomology can be broken down into two steps: first study the derived direct
image Rv,O x and then consider its sheaf cohomology. The proof of Theorem 1.2.2.3 is then
essentially about a systematic study of Rv,O x for a proper rigid space X, where we show that
the derived direct image Rv,Oy admits a decomposition into a direct sum of @V (—5)[~7] in the

derived category, and each of Qﬂ( lives in an expected range of cohomological degree.

Remark 1.2.2.5. In fact, in this thesis we show that the above results could be extended to proper
rigid spaces over C,, that are not necessarily defined over a discretely valued subfield K, where the
decomposition and the cohomological bounds in the derived category in Remark 1.2.2.4 still hold

but would not be canonical or Galois equivariant in general (cf. [Guo19, Theorem 7.4.9]).

When X is a proper smooth rigid space over K, the Hodge—Tate decomposition can be obtained
from the de Rham Comparison Theorem, proved by Scholze in [Sch13a]. The comparison theorem
states that there is a filtered isomorphism between the étale cohomology HY, (X7, Q,) ®q, Bar
and the de Rham cohomology H’}; (X/K) ®x Bgr (see the beginning of Subsection 1.2.3 about
de Rham cohomology of smooth rigid spaces, and the beginning of Subsection 1.2.4 about the
period ring Bgr). Moreover, by taking the zero-th graded piece of this comparison, we recover the

Hodge—Tate decomposition for proper smooth rigid spaces.



In this thesis, building on de Rham comparison theorem of the smooth case by Scholze
([Sch13a]), we extend the comparison to non-smooth proper rigid spaces, using the simplicial

method and Deligne—Du Bois complexes.

Theorem 1.2.2.6 ([Guo19], Theorem 1.1.4). Let X be a proper rigid space over K. Then there

exists a natural Galois equivariant filtered isomorphism of Galois representations
HE (X%, Qp) ®g, Bar = H"(X, Q%) ®k Bar,

whose zero-th graded piece induces the Hodge—Tate decomposition in Theorem 1.2.2.3.

Here the Deligne—Du Bois complex 2% and its cohomology for the rigid space X is the rigid
analogue of the algebraic one as in Subsection 1.1.2 part (3), and will be introduced in Theorem
1.2.3.1. Similar to the smooth case, the filtration on the left side is defined by the one on the de
Rham period ring B4g, and the filtration on the right side is the tensor product filtration produced
by that of Deligne—Du Bois cohomology and the natural filtration on the period ring Byg.

The above result produces a comparison between étale cohomology and cohomology of Deligne—
Du Bois complexes for non-smooth proper rigid spaces. As a consequence, this generalizes the

classical picture of the singular—-de Rham comparison to the non-smooth non-archimedean world.

1.2.3 de Rham cohomology

Let K be a finite extension of Q,, as before. Similar to complex algebraic varieties, rigid spaces
also admit the notion of de Rham cohomology, by taking the sheaf cohomology of the continuous

de Rham complex )5 /K AS below
HQR(X/K) = HZ(Xv Q;(/K)a

where the differential operators of the complex are continuous with respect to the natural p-adic
topology for analytic functions over X. When X is proper smooth over /, it can be shown that
de Rham cohomology satisfies the finiteness and the expected cohomological boundedness within
the cohomological degrees [0, 2 dim(X)]. Moreover, assuming X is the analyfication of a proper
smooth algebraic variety over K, de Rham cohomology of the rigid space X is then canonically
isomorphic to algebraic de Rham cohomology of the original variety. The latter in particular implies
that de Rham cohomology produces correct Betti numbers when X comes from an algebraic variety.

However, similar to the case for complex algebraic varieties, de Rham cohomology of a singular
rigid space X does not always give correct Betti numbers. As we mentioned in Subsection 1.1.2,

there are several ways to adjust the usual algebraic de Rham cohomology in order to recover singular



cohomology. It is then natural to ask if those modifications of de Rham cohomology theories for
singular algebraic varieties can be extended to the non-archimedean world.
The next main result of this thesis gives a positive answer to the question, generalizing the

theories in Subsection 1.1.2 to rigid spaces.

Theorem 1.2.3.1 ([Guo20], Theorem 1.2.1). There are three naturally defined cohomology theories,
for rigid spaces X over K, in filtered derived category of K-vector spaces:

RU(X,dRyx) — RTiue(X/K) — RD(X,Q%),

such that:

(i) the above cohomology theories generalize derived de Rham cohomology, infinitesimal coho-

mology, and Deligne—Du Bois cohomology of algebraic varieties in characteristic zero;

(ii) the above maps induce isomorphisms on their underlying complexes, and are all filtered

isomorphic to Hodge-filtered de Rham cohomology when X is smooth over K;

(iii) when X is proper over K, the underlying complex of any of these cohomology is a perfect

K -complex that lives within cohomology degree |0, 2 dim(X)].

The constructions of the infinitesimal cohomology and the Deligne—Du Bois complexes are
similar to their analogues for algebraic varieties, where the first one is defined as the cohomology
of the infinitesimal thickenings of the given rigid space X, and the second one is defined using
simplicial resolution of singularities guaranteed by Temkin [Tem12]. The schematic derived de
Rham complex however does not work directly for rigid spaces; instead, to equip it with a p-adic
topology, we need to apply a p-adic completion integrally on the schematic derived de Rham
complex, and then consider its filtered completion after inverting p. The obtained filtered algebra
is then complete under its filtration, whose graded pieces are wedge powers of the continuous

cotangent complex for X over K, where the latter is introduced by Gabber—Ramero in [GRO3].

1.2.4 Period sheaves and the derived de Rham complex

In complex geometry, as the periods of various integrations have complex values, we need to
take the complex coefficients in order to compare singular cohomology with de Rham cohomology.
The question becomes much subtler in p-adic geometry if one wants to compare étale cohomology
with de Rham cohomology. In fact, this was first conjectured by Grothendieck and was studied in
depth by Fontaine, who introduced various period rings in p-adic Hodge theory, including the de
Rham ring B4y in the statement of Theorem 1.2.2.6. Moreover, the construction of the period rings

were carried into many geometric situations, including for example Scholze’s construction of de
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Rham period sheaves IB%;{R and (’)IB%(J{R ([Sch13a]), which was introduced for p-adic smooth formal
schemes by Brinon ([Bri08]).

The construction of those period rings and period sheaves are quite complicated, and people have
been trying to understand them using differentials. For example, Colmez related the construction of
B, to Kihler differentials for Zp /Z, (see [Fon94, Appendix]), and later on Beilinson gave another
construction of the ring B using the derived de Rham complex ([Beil2]). In my joint work with
Shizhang Li, we gave a new construction of period sheaves of Scholze, using the analytic derived

de Rham complexes.

Theorem 1.2.4.1 ([GL20], Theorem 1.1, 1.4). Let X be a smooth rigid space over K. We have

natural filtered isomorphisms:
+ ~ —~an 4 ~ —~an
BdR — dRXproét/K Cll’ld OBC‘R - dRXproét/X'

Here similar to the construction of the analytic derived de Rham complexes for rigid spaces
as in Theorem 1.2.3.1, the topological structure of the period sheaves are obtained via an integral
p-adic completion and a rational filtered completion, on the classical derived de Rham complex.

Under the new reformulation, we are able to reinterpret the Poincaré lemma of period sheaves
using the derived de Rham complexes ([GL20, Theorem 1.2, 1.4]). In fact, the Poincaré sequence
can be naturally obtained via the Gauss—Manin connection of the derived de Rham complexes
for the triple of sites X,,,¢s — X — Spa(K'). Moreover, in the rational case, our construction
can be generalized to non-smooth rigid spaces that are locally complete intersection. These in
particular provide a conceptual construction of the period sheaves and their Poincaré lemma using

the differential and the Gauss—Manin connection.

1.3 Outline

The thesis is divided into three parts. The Part I consists of five chapters from Chapter 1 to
Chapter 5, and is aiming to generalize the de Rham cohomology theories of non-smooth algebraic
varieties to the rigid analytic geometry, as in Theorem 1.2.3.1. In Chapter 2, we develop the
foundations of the analytic derived de Rham complex for rigid spaces, which is the p-adic analogue
of the algebraic derived de Rham complex introduced by Illusie [11172]. In Chapter 3, we generalize
the infinitesimal/crystalline cohomology of complex algebraic varieties to rigid spaces, and develop
the corresponding theory of the crystal. In Chapter 4, we consider the éh cohomology for rigid
spaces, which is a site-theoretical construction of the Deligne—Du Bois cohomology using the
cohomological descent in the non-archimedean world. Roughly speaking, the €h cohomology is

defined as the sheafification of the usual de Rham cohomology using the resolution of singularity.



In Chapter 5, analogous to the algebraic theory, we show the aforementioned three cohomology
theories have the isomorphic underlying complexes for general proper rigid spaces. At last, in
Chapter 6 we extend the previous results to their B -linear analogues, and relate them with the
pro-étale cohomology of the de Rham period sheaf by Scholze [Sch13a].

In the Part II, we study the p-adic étale and pro-étale cohomology for rigid spaces, as the
non-archimedean analogues of the singular cohomology for complex algebraic varieties. Our aim in
this part is to prove the Hodge—Tate decomposition mentioned in Theorem 1.2.2.3. In Chapter 7, we
recall the basics of the pro-étale topology and the v-topology. Chapter 8 is then devoted to the proof
of the degeneracy theorem of the pro-étale cohomology and the Hodge—Tate decomposition. Here
we use the simplicial method and the deformation theory for rigid spaces, and extend the known
decomposition theorem of Scholze to the non-smooth rigid spaces and the derived level. We also
give an application in Section 8.6 on the vanishing of the Deligne—Du Bois complex.

The Part I1I is devoted to an understanding of the period sheaves using the analytic derived de
Rham complex as in Theorem 1.2.4.1. It is the joint work of the author with Shizhang Li as in
[GL20]. This part consists of the Chapter 9 on the integral theory and Chapter 10 on the rational

theory, together with an Appendix 1 on the local complete intersection morphism in rigid geometry.

1.4 Conventions and notations

Throughout the thesis, we use the language of the adic space, and refer the reader to Huber’s
book [Hub96] for basic results about it. We will use mildly the language of the oco-category in
Chapter 2 and Part III, following the conventions in the foundational work [Lur09] and [Lurl7].
The symbol K is always denoted as a complete non-archimedean extension of @, where p is a fixed

prime number. Unless we mentioned specifically, K is always assumed to be algebraically closed.
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Part I

de Rham Cohomology Theories

11



This part contains five chapters, where we introduce analytic derived de Rham cohomology
(Chapter 2), infinitesimal cohomology (Chapter 3), and €h cohomology (Chapter 4) for non-smooth
rigid spaces by order, prove their comparison theorems (Chapter 5), and extend those cohomology
to the B, -coefficient (Chapter 6).

12



CHAPTER 2

Derived de Rham Cohomology

In this chapter, we introduce the analytic derived de Rham complex for rigid analytic spaces, as
the rigid analytic analogue of the algebraic derived de Rham complex, where the latter was first
introduced by Illusie in [I1172]. The results in this chapter first appeared in the preprint [Guo20,
Section 5] by the author.

As we will be working with topologically of finite type adic spaces over the de Rham period
ring By . = B/ and p-adic fields, we start this chapter with a brief review in Section 2.1 about
basics on topologically finite type algebras over A;,. and B(J{R’e, analogous to the treatment in
[GRO3, Chapter 7]. We generalize the notion of the analytic cotangent complex for topologically
of finite type algebras over B:{R’e in Section 2.2. Here following [GRO03], the analytic cotangent
complex is defined by applying a derived p-adic completion at the classical algebraic cotangent
complex integrally, and then inverting by p. Next we introduce the notion of the analytic derived
de Rham complex for rigid spaces over Bjme in Section 2.3. Similar to the cotangent complex, in
order to incorporate the p-adic topology of affinoid algebras, we need to apply a derived p-adic
completion integrally on the algebraic derived de Rham complex, invert by p, and then apply a
filtered completion. The obtained object, which is a filtered algebra in the derived category with
graded pieces being the wedge algebra of the analytic cotangent complex, generalizes the Hodge-
filtered continuous de Rham complex for smooth affinoid algebras. Finally, by checking the sheafy
condition, we globalize the previous analytic constructions to general rigid spaces over BCTRe in
Section Section 2.4.

Before we start, we want to mention that we will use the language of co-category throughout
this chapter. This helps to globalize the affinoid constructions and get a good theory of “sheaf of
derived objects”, using the oo-categorical cohomological descent. We will recall the notions of the

co-category as we start.

Remark 2.0.0.1. The construction of the analytic derived de Rham complex in this chapter can be
applied to more general class of analytic Huber rings, which includes for example rigid spaces over

an arbitrary p-adic non-archimedean field, and perfectoid spaces, which we will discuss in Part III
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of this thesis. Moreover, the results of this chapter hold true for rigid spaces over a general p-adic
fields.
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2.0.1 Derived oco-category and filtered co-category

We first setup the convention of derived co-category and its filtered version in this chapter.

Let A be a Grothendieck abelian category ([Stal8], Tag 079A). We can associate A a natural
oo-category D(A), called the derived co-category of A ([Lurl7], 1.3.5). This is the co-categorical
enhancement of the classical derived oo-category, and the homotopy category hCh(A) of Ch(A) is
the usual derived category D(A). Here we want to mention that the derived co-category D(A) is a
stable presentable oo-category. In the special case when A is the category of modules over an ring
R, we use D(R) to denote D(A), which is equipped with a symmetric monoidal structure by the
derived tensor product of complexes. As a convention in this chapter, we will call D(R) the derived
category.

For a presentable co-category C, we recall the filtered oo-category in C is defined as the oo-
category

DF(C) := Fun(N°?, ©).

Moreover, DF(C) admits a full sub-co-category ]5?‘((3), called filtered complete co-category in
C, consisting of objects C, such that lim C, = 0. The natural inclusion functor [/)F(G) — DF(C)
admits a left adjoint, called the filtered completion. When C = D(R) is the derived oco-category of
R-modules, we use DF(R) and ]ﬁ(R) to denote DF(C) and ]ﬁ(R) separately. Here we note that
by to their homotopy categories (and induced functors), we recover the ordinary filtered derived

category.

2.0.2 Hypersheaves

We then give a quick review about sheaves in co-category.

Let X be a site, and let C be a presentable co-category. The oo-category of presheaves in C,
denoted as PSh(X, ©), is defined to be the co-category Fun(X°P, €) of contravariant functors from
X to C. The oo-category PSh(X, C) admits a full sub-co-category Sh(X, C) of (infinity) sheaves
in C, consisting of functors F : X°? — € that send coproducts to products and satisfy the descent
along Cech nerves: for any covering U’ — U in X, the natural morphism to the limit below is

required to be a weak equivalence

FU) — lim F(U), (%)

[n]eAcP

where U, — U is the Cech nerve associated with the covering U’ — U. Here we note that this is

the co-categorical analogue of the classical sheaf condition in ordinary categories.
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There is a stronger descent condition which requires (x) above to hold with respect to all
hypercovers U, — U in the site X. Sheaves satisfying such stronger condition are called hyper-
sheaves. For example, given any bounded below complex C' of ordinary sheaves on a site X, the
assignment U — RI'(U, C') gives rise to a hypersheaf. The collection of hypersheaves in € forms a
full sub-co-category Sh™P? (X, €) inside Sh(X, C).

Let @ = D(R) be the derived co-category of R-modules. Then the co-category Sh™? (X, @) of
hypersheaves over X is in fact equivalent to the derived oo-category D (X, R) of classical sheaves of
R-modules over X, by [Lurl8, Corollary 2.1.2.3]. As an upshot, the underlying homotopy category
of Sh™P(X, @) is the classical derived category of sheaves of R-modules over X. In particular,
given a hypersheaf F of R-modules over X, we can always represent it by an actual complex of

sheaves of R-modules.

2.0.3 de Rham period rings

As a setup, we recall the basics of the de Rham period ring. A more detailed introduction of the
de Rham period ring could be found in [Fon94].
Let K be a p-adic valuation extension of Q, that is complete and algebraically closed. Denote

by Ok to be the ring of integers of K. Then we can define the p-adic ring A;,¢(Ok) as

Ainf = W( 1&1 OK)

TP

There exists a canonical continuous surjection 0 : A,y — Of, where the kernel ker(6) is principal.
Fix a compatible system of p"-th root of unity {(,n },, in K. Then the element £ := H%—_l generates
the ideal ker(6), where [¢] is the Teichmiiller lift of the element ((y, (p, .. .) in Ainf.[d 1

The de Rham period ring Bl is defined as the £-adic completion of the ring Ainf[%]. By abuse
of the notation, we write 6 : B}, — K as the canonical continuous surjection induced from

A — Ogk. Note that for each n € N, we have
+ n 1 n
BdR/f = Ainf[z—)]/g )

which is a p-adic Tate ring with a canonical ring of definition A;,;/¢" in it. So we can form
a Huber pair (B1;/¢", (Bir/¢")°) over (Q,,Z,) for n € N. The p-adic adic space %, :=
Spa(BJR/&", (Bir/E™)°) is a nilpotent extension of Spa(K, Ok).

In the rest of the thesis, we often use Aj,fe and BjRﬁe to denote quotient rings A;,¢/&¢ and

B, /€ separately, in order to simplify the notations.
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2.1 Topological algebras over A; .

As a preparation, we first setup basics around the topologically finite type algebras over Aj,s e,
and the construction of the analytic cotangent complex, generalizing the discussion for e = 1 in
[GRO3] Section 7.

In this section only, we make the convention that M " is the classical p-adic completion of M,

where M is a Z,-module.
Definition 2.1.0.1. Let R be an A;¢ .-algebra.

(i) We call R is topologically finite type over A, . if there exists a surjection of Ay c-algebras
At o(Th, ..., T,n) — R for some m € N.

(ii) We call R is topologically of finite presentation over Ajy e if R admits a surjection from
At (Th, ..., T,,) — R with kernel being a finitely generated ideal.

We denote Alg,, . 1o be the category of p-adically complete p-torsion free algebras R over Ajy .
that is of topologically finite presentation.

Similarly, we can extend these notions to the relative situation, replacing Ajy¢ e by any Ajyf e-
algebra.

Here we list some basic properties about modules over a given R € Alg, ..
Lemma 2.1.0.2 (cf. [GRO03], 7.1.1). Let R be an algebra in Algtfp,e. Then we have
(i) Every finitely generated p-torsion free R-module is finitely presented.
(ii) The ring R is coherent.

(iii) Let N be a finitely generated R-module, N' C N a submodule. Then there exists an integer
¢ > 0, such that
pkN N Nl C pk—cN/

for every k > c. In particular, the subspace topology on N’ induced from the p-adic topology
on N agrees with the p-adic topology of N'.

(iv) Every finitely generated R-module M is p-adically complete and separated; namely every

such M is isomorphic to its p-adic completion M".

(v) Every submodule of a finite type free R-module F'is closed for the p-adic topology of F'.
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Proof.

(i)

(iii)

(iv)

(i) This is proved in the proof of [BMS18], 13.4. (iii.b); for completeness, we record it
here. We do this by induction, and note that for n = 1 the case is given in [BL93] 1.2.

Let M be the image of M in M /¢ [%], and let N be the kernel of M — M. The image M
is finitely generated p-torsion free R/¢-module, which by induction is a finitely presented
R/&-module. Note that this also implies the R/¢-module M is a finitely presented R-module.
So by [Stal8], Tag 0519, N is finitely generated over R, and to show the finite presented-ness
of M it suffices to show the finite presentedness of /N. But note that for x € N, there exists
some k € N such that p*z € £M. This implies that p*¢" 'z = 0 in M as the element is
contained in "M = 0, and by the p-torsion freeness of M we have "'z = 0. So N is a

finitely generated p-torsion free R/£"~'-module, and by induction we get the result.

By definition, a ring R is coherent if every finitely generated ideal of R is finitely presented.

So by the p-torsion freeness of R and (1), we get the result.

Let M be the kernel of the map N — N/N’ [}l)] Namely we have the following short exact
sequence
0— M — N —» N/N’[%}.

Then since the image of N in N/N’ [%] is finitely generated and p-torsion free, by (1) we know
the image is finitely presented, and thus M is finitely generated ([Stal8], Tag 0519). Note that
the quotient M /N’ is p>-torsion, so by the finitely generatedness there exists some ¢ € N
such that p°M C N'. Besides, for x € N such that p*x € M, the image of = in N/N’[%] is
also zero. So the definition of M implies that x € M and pFx € p*M. In this way, for k& > c,

we have
k U k
p"NNN Cp"NNM
cp*M
C p"eN.
We can fit M into the following short exact sequence of R-modules,

00— N —R"™ 3 M-—0,

We apply the p-adic completion to the sequence. Then note that since the subspace topology
on N is the isomorphic to the p-adic topology by (iii), while the quotient topology on M

is the same as the p-adic topology, by [Mat86] Theorem 8.1, we get an exact sequence of
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p-adically complete [?-modules with continuous maps
0 — N* — R®" — M" — 0.

Compare with the above two exact sequences, we see the natural map N — N” is injective

while M — M" is surjective.

We then assume the R-module M is finitely presented. By the [Stal8] Tag 0519, we know
N is finitely generated. In this way, since the surjection of M — M" is true for any finitely
generated R-module, we see N — N’ is an isomorphism. In particular, we get M = M".

This finishes the (iv) for M being finitely presented over R.

In general, let M be any finitely generated module over R. Take M to be the image of M in
M [%] Then since M is finitely generated and p-torsion free, we know M is finitely presented
and hence the kernel N = ker(M — M) is finitely generated by loc. cit. Notice that by
definition NV is p*™-torsion. So there exists some m € N such that p" N = (. Now by the
p-torsion freeness of M, the base change of the exact sequence 0 — N — M — M — 0
along R — R/p® is exact. Moreover, since the inverse system { N ®x R/p°} is essentially

constant, the inverse limit of the short exact sequence of inverse system is exact, and we get
0— N"=N— M — M —0,
which by the isomorphism M = M" we get the result
M = M".

So we are done.

(v) Let N be a submodule of a finite free R-module F', and let M := F/N be the quotient. By
(iv), since M is finitely generated, we have the canonical isomorphism M = M”. As in the

proof of (iv), the p-adic completion induces the following short exact sequence
0—N'"—F-—M'~=M-—0.

Hence we get the isomorphism N = N, In particular, since N is complete and its p-adic
topology is isomorphic to its subspace topology, we get the closedness of /V in F' by standard
topological argument.

[

Corollary 2.1.0.3. Let R be a topologically finite type algebra over Ajy c.
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(i) The ring R is p-adically complete and separated.
(ii) The ring R is topologically finitely presented over Ay o If it is p-torsion free.

(iii) Assume R isin Alg, ., and I is an ideal of R. Then I is finitely presented over R if R/I is

p-torsion free.

Proof. (i) Note that R is the quotient of Ajys (77, ...,T,,) for some m, with the latter being
in Alg,;, .. In particular, R is a finitely generated Ainso(Th, .. ., T;)-module. So the result

follows from Lemma 2.1.0.2 (iv).

(i1) By (i), we know R is p-adically complete and p-torsion free. So it suffice to check that for a
surjection Aiys o (11, ..., T,,) — R, the kernel is finitely generated. This then follows from

Lemma 2.1.0.2 (i), since R is a finitely generated A;.¢.(7;) module that is p-torsion free.

(iii) This follows again from Lemma 2.1.0.2 (i) for the R-module R/I, and the p-torsion free
assumption of R.
]

Lemma 2.1.0.4. Let R be in Alg, ., and F be a flat R-module
(i) The functor M — (M ®pg F)" is exact on the category of finitely presented R-modules.

(ii) Given a finitely presented R-module M, the following canonical map is an isomorphism

M@RF/\—>(M®RF)/\.

(iii) The R-module F" is flat over R, and is p-torsion free.

Proof. (i) Let0 - M’ — M — M"” — 0 be a short exact sequence of finitely presented
R-modules. By assumption, the tensor product with F' over R? is exact, so it suffices to show
that the p-adic completion is flaton0 - M' @ F - M @ F' - M" @ FF — 0. By Lemma
2.1.0.2 (iii), there exists an integer ¢ > 0 such that p* M N M’ C p*=<M’. Applying this
inclusion with the tensor product functor — ® F', and notice that the flatness of /' implies
"M N M) F = (pFM @ F) N (M’ @ F), we see the p-adic topology on M’ @ F is
isomorphic to the subspace topology induced from M ® F'. In particular, by [Mat86] Theorem
8.1, we get the exactness

0—MeF)" —MeF)" — (M'®F)" — 0.
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(i1) Assume M has the following presentation
R®" — R®™ — M — 0.
The tensor product of this with F' gives
Fo" s ¥ s M®F — 0.

We then take the p-adic completion. By (i), we get an exact sequence,

(FM® — (FM®™ — (M @ F)" — 0. (1)
On the other hand, we replace F' by F in the second exact sequence above, and get

(FMo" — (FMP — M @ F* — 0. (2)

The canonical map from (2) to (1) are identities on F>®" and F®™, Thus we get the

isomorphism.

(iii) It suffices to show that for any injective map of finitely presented modules M’ — M, the
tensor product with ™ is still injective. This then follows from (ii) and (i).
]

Corollary 2.1.0.5. Let f : A — B be a map of algebras in Alg, .. Then the kernel of any
surjective A-homomorphism p : A(T;) — B is finitely generated over A. In particular, B is a
topologically finitely presented A-algebra.

Proof. By assumption, we can write A as A;,¢.(U;)/I for some finitely presented ideal /. Then
the surjection p can be rewritten as A, (U;,T;)/I — B. By the Corollary 2.1.0.3 (iii), since
B is p-torsion free, it suffices to show that the ring Aiuro(Uy, T5) /1 is in Alg,g, .; namely it is
topologically finite type over A;y¢ and is p-torsion free, by Corollary 2.1.0.3 (ii). To finish this, we
only need to notice that the ring A o(U;)/I = A(T;) is the p-adic completion of the A-module
A[T;], while the latter is flat over A. So the result follows from Lemma 2.1.0.4 (iii). ]

2.2 Analytic cotangent complex: affinoid case

We then introduce the analytic cotangent complex, for algebras in Alg, . and affinoid rigid

spaces over B, _ in this section.
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2.2.1 Derived p-adic completion

We recall the basics of derived p-adic completion.
Let R be a Z,-algebra. For a complex C' = C* of R-modules, recall that the derived p-adic

completion of C' is defined as
Rlim _ (C®f(R"=R)),

as an object in the derived category D(R) of R-modules. Here the object ( R "R ) is the cone
of the map p™ : R — R. An object C' € D(R) is called derived p-complete if C'is isomorphic
to its derived p-adic completion. The subcategory D, (R) of derived p-complete objects is a full
subcategory ([Stal8] Tag 091U) of D(R), and the derived p-adic completion forms a left adjoint
functor to the inclusion functor D,(R) — D(R) ([Stal8] Tag 091V).

There exists a natural isomorphism of complexes of R-modules
R&k (2,2-7,)=(RZ-R).
From this, the derived functor C' — C ®% ( R "R ) in D(R) can be rewritten as

Cr—C®L R (L,~>1Z,)

>0 ®%, (L, "~ 1y).

Here we note that since Z,, is p-torsion free, the complex 7, i Z,, is isomorphic to the Z,-module
Z,/p™[0] living at the degree 0. In the case when C' is a p-torsion free R-module, by the flatness of
C over Z,, its derived p-adic completion is exactly its classical p-adic completion @m C'/p™. This

in fact holds true in full generality for complexes as follows.

Lemma 2.2.1.1. Let C be a cochain complex of p-torsion free Z,-modules. Then the derived
p-completion of C' can be represented by the actual complex C, which is obtained by the term-wise

classical p-completion of C.

Proof. We first notice that C is derived p-complete, as the derived p-completeness can be checked
by cohomology ([Stal8, Tag 091N]) and each H’(é ) is derived p-complete.

When C' is bounded to the right, the derived tensor product C' ®§p Z/p™ is represented by the
actual complex C'/p™, obtained via term-wise quotient by p™. In this case, the claim follows from

via [Stal8, Tag 09AU] as C' ®% Z/p™ = C/p™.
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In general, consider the naive truncation
o”"C — O — o="C.

By the cohomological finiteness of the functor — ®£p Z[p™, we have
C @ 7/p™ = Rlim ((US”C) ®7, Z/pm> :
Hence we have
Rlim C ®£p 7)p™ = Rlim R lim ((JS”C’) ®§p Z/pm>
= Rlim Rlim ((0="C)/p™)
~ Rl';lmé ((e="C)/p™)
~ R 1£n 03:5’

=C.

2.2.2 Analytic cotangent complex for affine formal schemes

Now we introduce the definition and the basic properties of analytic cotangent complexes, for a
map of algebras over Aj;,¢.. The analogous discussion for topologically finite type algebras over K
can be found in [GRO3, Section 7.1].

Construction 2.2.2.1. Let f : A — B ba a map of Aj,¢e-algebras in Algtfpve. Namely both A and
B are p-adically complete p-torsion free algebras over A . that are quotients of Ainf,e<T1, ooy T

for some m € N. As an A-algebra, the ring B admits a standard simplicial resolution
P, —» B,

where each P; is a polynomial over A ([Stal8] Tag O8PM). This allows us to give a simplicial
P,-modules Q}D. e where each Q}% /A is the algebraic differential of P; over A. Recall that the
algebraic cotangent complex L, 4 is the image of the cochain complex Q}D. /4 Op, B in the derived
category over A. The analytic cotangent complexes L) 4 for the Ajpre-algebras B — A is then
defined as the image of the derived p-adic completion of the Q}D. /4 Op, B, in the derived category
of A-modules.
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Remark 2.2.2.2. As the polynomial resolution is functorial with respect to the pair (A, B), by
Lemma 2.2.1.1 the analytic cotangent complex L%“/ , can be represented functorially by the actual

complex of B-modules, produced by the term-wise p-adic completion of Q}D. /4 Op, B.

There exists a canonical map from the algebraic cotangent complex Lp/4 to the analytic
cotangent complex LaB“/ 4- This is given by the counit map of the adjoint pair for the derived
p-completion and the inclusion functor D,(A) — D(A).

Here are some useful results for the analytic cotangent complex of A .-algebras.

Proposition 2.2.2.3. Let f : A — B be a map of A c-algebras in Alg, .. Assume [ is formally

smooth. Then we have a canonical isomorphism
an 1,an
B/A > €2 B/A [0]7

where the right side is the module of (p-adic) continuous differential forms.

Proof. Since f is formally smooth, by Elkik’s algebraization result of formally smooth adic algebras,
B is isomorphic to the p-adic completion of a smooth A-algebra. In particular, f is flat (Lemma
2.1.04) and f, := A/p™ — B/p" is smooth. So by the derived base change formula for the
algebraic cotangent complex ([Stal8], Tag 08QQ), since B/p" = B ®% A/p™, we have

Lp/a ®% A/p" = Lis/pm)/(ajpm)-

Moreover, the smoothness of f,, gives a canonical isomorphism

L)/ a/pm) = Qg jaom 0] = Qpa @4 A/p"[0].

In this way, by taking the derived p-adic completion of L 5,4 and notice the p-torsion freeness of B

and A, we get

Ligya =Rlm, _ Lsa @i A/p"
=Rlim _ Qpa/p"[0)

=37 0]

O

In the next result, we show that the analytic cotangent complex for a finite morphism coincides
with the associated algebraic cotangent complex. Recall that for an object L*® in the derived category
of R-modules, it is called pseudo-coherent if it is isomorphic to a upper-bounded complex of finite
free R-modules.
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Proposition 2.2.2.4. Let A — B be a map of two topologically finitely presented A;y¢ o-algebras in
Algs, ., such that B is a finitely presented A-module. Then the algebraic cotangent complex L4

is pseudo-coherent. In particular, g, 4 is derived p-complete and we have a canonical isomorphism

Proof. We first show that it suffices to assume A — B is a surjection. To see this, we first
pick a polynomial algebra A[zy, ..., z,] that maps surjectively onto B. By the finite presentedness
assumption of B over A, each x; satisfies a monic polynomial f;(x;) of z; in A, and the induced map
B' = Alzy,...,z.]/(f1,..., fr) — Bis also surjective. Here we note that the ring B’, as a finite
algebra over A that is p-torsion free, is automatically p-complete and is also in Alg;, .. Moreover,
notice that since the sequence {fi, ..., f.} is a regular sequence in A[z;], by the distinguished

triangle of algebraic cotangent complexes for A — B’ — B we get
B¥ 1] 2 Lpa ®% B — Lg/a — Lp/p.

Thus to show the pseudo-coherence of L4, it suffices to show this for Lz, 5/, where B’ — Bis a
surjective map of algebras in Algg, ..

Recall that by assumption B is a finite A-module that is p-torsion free. So Lemma 2.1.0.2
implies that B is a finitely presented A-module and there exists an exact sequence of A-modules as

below
Aem T per B 0.

Moreover, as the image of f is a submodule of A®", which by Lemma 2.1.0.2 (i) is finitely presented,
we know ker(f) is also finitely generated (hence finitely presented as it is inside of A®™). This
procedure allows to give a finite free A-module resolution of B. In particular, this shows that B is
pseudo-coherent over A.

We then take P to be a simplicial polynomial resolution of B over A, and let .J be the kernel of
the map P ® 4 B — B. Then by the finite presentedness of B over A, the simplicial A-algebra P
is also pseudo-coherent over A. So by taking a base change along A — B, we see P ® 4 Bis a
simplicial B-algebra that is pseudo-coherent over B. Moreover, since the map P ®4 B — B hasa
natural section, the kernel J is also pseudo-coherent ([Stal8] Tag 064X). Notice that the cotangent
complex ILp /4 fits into the distinguished triangle

J — Lpa — J*[1].

To show the pseudo-coherence of Lg, 4, by [Stal8] Tag 064U it suffices to show by decreasing

induction that L.z, 4 is n-pseudo-coherent for each n < 1. When n = 1, the result is clear as L,/ 4
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has cohomological degree < (. Suppose the result is true for n < 0. Since A — B is a surjection,
the induced surjective map P ® 4 B — B is isomorphic on 7y with kernel living in cohomological
degree < —1. Thus by [11171] Chap III, 3.3, we have

H™(J") =0, fori> —m.

This implies that when i > —n, J* is n-pseudo-coherent. On the other hand, by [11171] Chap III,

3.3.2, there exists an isomorphism.
JIJJ7 — LSym%(Lp/a), j > 0.

The derived symmetric product preserves the n-pseudo-coherence ((GR03] 7.1.18), so J7 /J7+1 is
n-pseudo-coherent for any j > 0. Thus the fiber sequence for the quotient J* — J/J**1 allows us
to deduce the n-pseudo-coherent of every J*. In particular, when i = 2, by taking the cohomological
twist we know J2[1] is (n — 1)-pseudo-coherent. So combining with the quasi-coherence of .J, we
get the (n — 1)-quasi-coherence of I /1* = L4 by [Stal8] Tag 064V.

]

Corollary 2.2.2.5. Let A be a topologically finitely presented A, .-algebra, and I be a finitely
generated regular ideal in A such that B := A/I is p-torsion free. Then we have a canonical
isomorphism

B4 — 1/IP[1].

Proof. Since B is p-torsion free, by the Corollary 2.1.0.3 we know B is in Alg;, .. So the result
follows from Proposition 2.2.2.4 and the case for algebraic cotangent complex. [

Here is another useful result about the distinguished triangles for triples:

Proposition 2.2.2.6. Let A — B — C be maps of topologically finitely presented Ay . algebras.

Then we have

(i) The analytic cotangent complex LaB“/ 4 18 a bounded above pseudo-coherent object in the

derived category of B-modules.

(ii) there exists a natural distinguished triangle of pseudo-coherent bounded above objects in the

derived category of C-modules
L5 4 ®pC — LEa — LE)p-

Before the proof, we make the following claim:

26



Lemma 2.2.2.7. Let A — B be a map of algebras in Alg, .. Let K be a bounded above complex
of A-modules, and K' be its derived p-completion. Then the derived p-completion of K @& B is
isomorphic to the derived p-completion of K' @% B.

Proof of the Claim. 1t suffices to check by the derived tensor product — ®£p Z,/p™, which is then
clearasK@%p Z)p = K’ ®§p Z]p™. O

Proof. (i) By the Corollary 2.1.0.5, we may write B as the quotient P/I, where P = A(T;) is a
convergent power series ring over A, and [ is a finitely generated ideal by the Corollary 2.1.0.3
(iii). We take the distinguished triangle of algebraic cotangent complexes for A — P — B,
and get
Lp/a ®p B — Lgja — Lg/p.

1,an
P/A

applying the derived p-completion and use the lemma above, we get a distinguished triangle

Note that ]ng; 4 18 isomorphic to the finite free P-module €2, (Proposition 2.2.2.3), so after

Qs @p BI0] — Ly, — Li)p.
Here the IL%“/ p 18 pseudo-coherent by Proposition 2.2.2.4. Thus we are done.

(i1) For (ii), take the distinguished triangle for algebraic cotangent complexes, we get
LB/A ®é C — LB/A — ]LC/B'

So the result follows from the lemma above and the pseudo-coherence of each analytic

cotangent complex.
]

2.2.3 Analytic cotangent complex for affinoid rigid spaces

We then introduce the basics of the analytic cotangent complex for a map of affinoid algebras
over By ., using the integral construction given in the last subsection. The analogous discussion

for topologically finite type algebras over K can be found in [GRO3, Section 7.2].

Construction 2.2.3.1. Let f : A — B be a map of topologically finite type affinoid algebras over
B;{R’e. Namely both A and B are quotients of K(T7,...,T,,) for some m € N. Denote by C/a
to be the category of pairs of rings (By, Ag), where Ay and By are rings of definition of A and B
separately, such that both of them are in Alg,, ., and f(A) C Bo. The morphism among pairs is
defined by inclusion maps on each entry separately.
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Assume (Bjy, Ap) is an object of Cp /A- By the construction of the last subsection, we can
construct the analytic cotangent complex L% /Ao for By/Ay, as the derived p-completion of the

algebraic cotangent complex L, /4, .

Definition 2.2.3.2. The analytic cotangent complexes for affinoid algebras B/A is defined as the
colimit

= colim (L, [~]),
B (Bo,Ao)ecB/A( Bo/Ao[p])

as an object in the derived category of B-modules.

Remark 2.2.3.3. As there exists a canonical actual complex representing L3 /4, (by the term-wise
p-adic completion of Q}, 4, OP B, where P is the standard polynomial resolution of B, over Ay),
the analytic cotangent complexes can also be represented by a canonical actual complex, defined by

taking the colimit of the actual term-wise complete complexes and then invert by p.

Here we note that as there exists a canonical map from L% /4, O the algebraic cotangent
complex L g,/ 4, induced by the adjoint pair for derived completion, by inverting p we also have a
canonical map from the analytic cotangent complex ]L%’/ 4 to the algebraic cotangent complex L,/ 4
for A — B.

We then give a simple description of the analytic cotangent complex for a smooth morphism.

Proposition 2.2.3.4. Let Ay — By be a map of algebras in Alg, ., and let A = Ao[l%] and
B = BO[%] be their generic fibers separately, with the induced map f : A — B. Assume the
corresponding map of affinoid rigid spaces Spa(B) — Spa(A) is smooth. Then we have a natural

isomorphism

Lhiaols] — (4D
Proof. By the Corollary 2.1.0.5, By is a topologically finitely presented Ag-algebra. So we can
write By as the quotient ring of the relative convergent power series ring Py = Ao(T,...,Tn),
by some finitely generated ideal I, C F,. Denote by P and [ to be the ring PO[%] and the ideal
[0[%] separately. Then the surjection P — B induces a closed immersion of Spa(B) into the
m-dimensional unit disc Spa(P) over Spa(A). Since both Spa(B) and Spa(P) are smooth over
Spa(A), by the Jacobian criterion for the smoothness of adic spaces ([Hub96], 1.6.9), for each
maximal ideal I3 of Spa(P) that contains /, we can always find generators sy, ..., s; of Iy such
that their derivatives dsy, . . . ds; can be extended to a basis of the continuous differential Q}, A at
P. We denote by p to be the intersection 3 N A. Then the above implies that the image of s; in
Py ®4 (Ay/pA,) forms a regular sequence. So by the flatness of Py over A, and the Proposition
15.1.16 in [Gro67] Chap 0, s; forms a regular sequence in Ag. Since this is true for every maximal

ideal *J3 of P containing /, we see B is a local complete intersection of P.
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Now thanks to the surjectivity of Fy — By, Proposition 2.2.2.4 implies that
L%IE)/PO = LBO/PO'

Moreover, by the flat base change there exits a canonical isomorphism of algebraic cotangent

complexes

1
Lgy/p, [;] = Lp/p,

which by the local complete intersection of P — B, is isomorphic to I/I?[1]. On the other hand,
by Proposition 2.2.2.6 and Proposition 2.2.2.3, we have a natural distinguished triangle

an 1 an 1 an 1
(Q}D’O/AO Qpy BO[;]) — Lipy/a, [];] — Ly/py [];]

Replace the right side by the ideal I/1%[1] in degree 1, we get an isomorphism
w o =k
B()/A()[g] - ( / — PO/AO)[ ]7

Note that I/I? is the generic fiber of the By-module I,/12, so the right side is exactly equals to

1,an 1
(/a0 D10

So we are done. O]

As a quite useful upshot, to compute the analytic cotangent complex for affinoid rings, it suffices

to use one single pair of rings of definition.

Proposition 2.2.3.5. Let Ay — By be a map of algebras in Alg, ., and let A = AO[%] and
B = Bo[i} be their generic fibers separately, with the induced map f : A — B. Then the map
below is an isomorphism

an

aBI;/AO[]_)] — Lp/a-

Proof. It suffices to show that for any commutative diagram of topologically finitely presented rings
of definition

/ !/
AO EBO?

]

AOﬁBO

the induced morphism L3, [i] — Lt [%] is an isomorphism. Moreover, using the distinguished
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triangles for Ay — A, — B{ and Ay — By — Bj, separately, we can reduce to show that

Z%/AO[I—)] = 0.

Then we notice that since Ay — Aj, is an isomorphism after inverting by p, this satisfies the
assumption of Proposition 2.2.3.4. So it suffices to prove that QZZ}I Ao [%] = 0. By the Corollary
2.1.0.5, Aj is a topologically finitely presented algebra over Ay. We pick a set of generators x; of
Aj over Ag. Then by Aj[1] = Ao[.], there exists a positive integer V such that p™a; € A,. Note
that the continuous differential forms 91142;1 4, 18 generated by the dz;. So we get

pNdz; = d(pN ;) = 0.

an

This implies that 9}4’6 /40 is p*°-torsion. In particular, we have

1
1,an 21—
Vianl] =0

So we are done.

Here are some applications of the above result.

Corollary 2.2.3.6. Let f : A — B be a map of topologically finite type algebras over Bije, such
that Spa(B) — Spa(A) is smooth. Then the projection onto the zero-th homotopy group induces
natural isomorphism

B4 — Qp,al0],
where the right side is the modules of continuous differential forms.

Proof. This follows from Proposition 2.2.3.5 and Proposition 2.2.3.4. 0

Similar to the integral case, when B is a quotient ring of A, the analytic cotangent complex

coincides with the algebraic cotangent complex.

Corollary 2.2.3.7. Let f : A — B ba a map of topologically finite type algebras over BIR’Q such
that B is a finite A-module. Then the natural map from the analytic cotangent complex to the

algebraic cotangent complex below is an isomorphism

Proof. Pick aring of definition A, of A that is topologically finitely presented over A;,.. We first

notice that under the assumption of A — B, we can find a ring of definition B, of B that contains
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f(Ap) and is finite over A,. To find such By, we pick s set of A-module generators x; of B over
A. Then each x; satisfies a monic polynomial f;(X) = > 7" a;; X J with coefficients in A. Since
A= Ao[i}, we can pick a common integer N € N, such that coefficients p" a;; are inside of Ay for
each i and j. From this, we see the element p" z; satisfies a monic polynomial with coefficient in
Ayp. In other words, the subring By = f(Ag)[p" ;] of B is finite over Aj.

Now the corollary follows easily from Proposition 2.2.3.4 and Proposition 2.2.2.4, since L%“/ A
is isomorphic to LB /Ao [%], while the latter is computed by inverting p at the algebraic cotangent
complex Lg,,4,. Notice that thanks to the flat base change of the algebraic cotangent complex,
L, 40 [%] is exactly the algebraic cotangent complex of B over A. So we get the result.

]

As expected, we have the following simple description of the analytic cotangent complex for

regular immersion.

Corollary 2.2.3.8. Let f : A — B ba a surjective map of topologically finite type algebras over

B:{Rﬁ, such that the kernel I is a regular ideal in A. Then we have a natural isomorphism
Ba — I/1%[1].

Another quick upshot is the pseudo-coherence of the analytic cotangent complex.

Corollary 2.2.3.9. Let A — B be a map of topologically finite type algebras over B?ﬁ{,e Then the

analytic cotangent complex L%“/ 1 18 a pseudo-coherent complex of bounded above B-modules.

Proof. This follows from Proposition 2.2.3.5 and the integral version of the result Proposition
2.2.2.6. ]

We also obtain the distinguished triangle for triples as follow.

Corollary 2.2.3.10. Let A — B — C' be maps of topologically finite type algebras over B:{R’e.

Then there exists a distinguished triangle of analytic cotangent complexes of affinoid algebras
Ba®pC — LE, — L.

Proof. Let Ay — By — C be an arbitrary choice of rings of definition of A — B — (' that are
topologically finitely presented over A;,¢.. By Proposition 2.2.2.6, we have a distinguished triangle

an L an an
Bo/Ao @B, Co — Ly ja, — Ly 5,
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Note that for the first term above we have the equality
(L4, @80 Co) @7, Qp = (L /a0 07, Q) St g, (Co @7, Q)
>~ L3, ®F C.
So the corollary follows from Proposition 2.2.3.5 by the base change along Z, — Q,. [
A simple upshot is the following change of base equality.

Corollary 2.2.3.11. Let A — A’ — B be maps of topologically finite algebras over B, ., with
dR,e

A — A’ being étale. Then the natural map below is an isomorphism
B/a — Lipjar

Proof. By the distinguished triangle of the triple in the Corollary 2.2.3.10, it suffices to show that

L5 /A vanishes. So this follows from the assumption and the Corollary 2.2.3.6. U
As last, we have the étale base change formula as below.

Corollary 2.2.3.12. Let A — B — B’ be maps of topologically finite algebras over B(J{RQ, with

B’/ B being étale. Then we have the following natural isomorphism

In particular, when there exists an étale morphism A — A’ such that B' = A’ ® 4 B, we get the
base change formula

Proof. The first isomorphism follows from the distinguished triangle (Corollary 2.2.3.10) for
A — B — B, and the étaleness of B’/B (Corollary 2.2.3.6). The second isomorphism follows
from the Corollary 2.2.3.11 and the equality

Lija®p B =LE), @ Bea A

2.3 Derived de Rham complex: affinoid case

In this section, we construct the derived de Rham cohomology for topologically finite type

algebras over BT, ..
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As a preparatory step, we first construct the rational analytic derived de Rham complex for a

map Ay — By of Aj¢.-algebras, which is a filtered complete complex over A, []13], namely an object
in DF(Ag[]).

1
p
Construction 2.3.0.1. Let Ay be a A;,.-algebra in Algtfpye. We want to build a functor F' :

Algigpe u, ;= IST?(BIRC), sending Ay — By to a filtered complete derived algebra over A, [Zl)]

Step 1 Let P be the standard polynomial resolution of By over Aj. The de Rham complex (25, /Ao of
P over Ay is then a simplicial complex of P-modules. Moreover, the (direct sum) totalization

Tot(Q%, / 4,) 18 @ cochain complex of Ap-modules that comes with a canonical decreasing

filtration, defined by Fil’ = Tot(Q]%j A,)-

Step 2 Now we take the derived p-adic completion of the filtered cochain complex (Tot(Q23 4 ), Fil)),
to get an object (£, Fil'E) in the filtered derived category, such that £ and Fil'E are all
derived p-adic complete. Then we invert p at (E, Fil'E), to get an object (£ [}—17], Fil'E [%]) in
the filtered derived category of AO[%]—modules.

Step 3 At last, we denote F(By/A) to be the filtered completion of (E[}], Fil' E[1]). Thus we get
a functor from maps in Alg, . to the filtered complete derived category of B(;“R’e—modules
(Ao[%]—modules), sending Ag — By to F(By/Ay).

Remark 2.3.0.2. From the construction above, it is clear that the i-th graded piece of F'(By/Ap) is
isomorphic to
i an 1 :
LA Lgya, L) (-

Remark 2.3.0.3. Recall given a complex of Z,-modules C', it admits a natural map onto its derived
p-adic completion C. Apply this to the construction above (Step 2), we see there exists a natural
filtered map from the algebraic derived de Rham complex dR Bo[2]/40[2] t© F(Bo, Ao).

Remark 2.3.0.4. From the construction above, the natural map from P to B induces a filtered
map from F'(By, Ay) to the continuous de Rham complex Q3" [%], which is compatible with the
differentials. Here the filtration on the latter is the usual Hodge filtration.

Remark 2.3.0.5. As the de Rham complex is equipped with a structure of commutative differential
graded algebra, and the above constructions are all lax-symmetric monoidal, the filtered complex

F(By/Ay) is also naturally a filtered E..-algebra in B, -module.

Now we consider the constructions for affinoid rigid spaces. Let f : A — B be a map of

topologically finite type algebras over B:{R’e. Recall that the category Cp/4 is defined as pairs of
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rings (By, Ag), where Ay and By are rings of definition of A and B separately, such that both of
them are topologically finitely presented over Aiy¢ ., and f(Ay) C By. The morphism among pairs
is defined by the natural inclusion map of pairs. Here we note that by the Corollary 2.1.0.5, By is a

topologically finitely presented algebra over A, automatically.

Definition 2.3.0.6. Let f : A — B be a map of topologically finite type algebras over B;{Rﬁ, and
let C 4 be the category of pairs of their rings of definitions as above. The analytic derived de Rham
complex of B over A, denoted by dRp 4, is an object ]ﬁ(BjR,e), defined as

dRpya = filtered completion of  colim  F(By/Ay).
(Bo,A40)€CB/a
The filtration of dR g/ 4 is called the algebraic Hodge filtration. If we forget the filtered structure,
we get the underlying complex of dR /4. It is denoted as @aBn/ 4» and is defined as the O-th filtration
of dRp/4, which is the image under the natural projection functor

]5?‘<B3_R,e) C Fun(N°P, Q(BgR,e)) — ‘D(B&’—R,e);
Co — CQ.

Corollary 2.3.0.7. Let A — B be a map of topologically finite type algebras over B§R7e. Then the

i-th graded piece of AR 4 is naturally isomorphic to L N\' L% i l—t. In particular, for any pair of
rings of definition (By, Ay) € Cp /A, the natural map below is a filtered isomorphism

F(Bo, Ao) — dRB/A.
Proof. By the construction above, the algebraic Hodge filtration Fil'dR /4 has the graded factor

: : 1
‘dRp/a = li LN LG 4 =11
grdhp/a (BO%)leﬂclB/A Bo/Ao [p” il
By Proposition 2.2.3.4 and the assumption on (By, Ag), each L A’ L} /40 [%}] is isomorphic to the
i-th derived wedge product of the analytic cotangent complex for the affinoid algebras B/A. In
particular, the transition maps in the colimit above are all isomorphisms, and we can replace them

by one single term. Thus we get
gr'dRp a = L A L), [—i].

As an upshot, since the filtered isomorphism can be checked by the graded pieces, the natural map
F(By, Ay) — dRp/ is a filtered isomorphism.
O
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Remark 2.3.0.8. By taking the colimit for the natural filtered map
AR, 121740121 — F(Bo, Ao),

we get a canonical filtered map from the algebraic derived de Rham complex dR B/4 to the analytic

derived de Rham complex dR /4. This is compatible with the canonical map of each graded factor
LA Lpa — LALE),.

Remark 2.3.0.9. As the colimit is a lax-symmetric monoidal functor, the analytic derived de Rham

complex dRp,4 is naturally a filtered E-algebra in ’D(BCTRG).

Here we provide a simple description of the analytic derived de Rham complex for two special

cases: the smooth case and the complete intersections.

Proposition 2.3.0.10. Let A — B be a smooth map of topologically finite type algebras over Bj{R’e.
Then the natural morphism below from the analytic derived de Rham complex to the continuous de

Rham complex is a filtered isomorphism:
dRp JA — Q.B JA-

Proof. By the Remark 2.3.0.4, there exists a natural filtered map from dRp/4 to the continuous
de Rham complex 2%, e which is compatible with the differential maps. By the assumption and
Corollary 2.2.3.6, the analytic cotangent complex L3, is isomorphic to the module of continuous
differential forms 2}, /410], which is a free B-module whose rank is equal to the relative dimension
dim4(B). On the other hand, the de Rham complex of affinoid algebras B over A is bounded
above by the relative dimension and is thus complete under the Hodge filtration. The derived wedge
product L A" L3, is isomorphic to A'Qyp ,[0] = Q7 ,[0], which vanishes when i > dim(B). So
by the Construction 2.3.0.1 above, the natural map from the analytic derived de Rham complex to
the de Rham complex of B/A induces an isomorphism from the i-th graded factor gr'dRp/4 =
L/\iLaBn/ 1[—i] to the i-th continuous differential ', /4l—]. In this way, we get a filtered isomorphism

from dR /4 to the de Rham complex (2F, /A O

Proposition 2.3.0.11. Let A — B be a surjective map of topologically finite type algebras over

BIR’Q. Then the canonical map below is a filtered isomorphism
dRB/A — dRB/A.

As an upshot, the underlying complex @a;/ 4 s isomorphic to the formal completion A for the

surjection A — B.
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Proof. Asboth dRp,4 and d/f\{B /4 are filtered complete, it suffices to show that the induced map on
each graded factor is an isomorphism. For each ¢ € N, the induced map griaﬁB /4 — gr'dRp 4 is
exactly the natural map induced from the derived p-completion integrally (Construction 2.2.3.1). So
the first claim follows from the assumption and the Corollary 2.2.3.7.

For the second claim, it follows from the isomorphism between the underlying complex @ B/A
of the algebraic derived de Rham complex and the formal completion A, which is the main result in
[Bhal2a] (see [Bhal2a, 4.14, 4.16]). L]

Corollary 2.3.0.12. Let A — B be a surjective map of topologically finite type algebras over Bj{R’e,

such that the kernel ideal I is regular in A. Then for each i € N, we have a natural isomorphism
A/I'[0] — dRp,a/Fil'.
In particular, by taking the derived limit, we get a filtered isomorphism of algebras
A dRp/4,

where the left side is the (classical) I-adic completion of A.

Proof. This follows from Proposition 2.3.0.11, and the case for algebraic cotangent complex
explained in the Example 4.5 in [Bhal2a], originally proved in [I1172, Theorem 2.2.6]. 0

2.4 Global constructions

In this section, we construct the global analytic cotangent complexes and the global analytic
derived de Rham complexes. Our strategy is to show that the affinoid constructions satisfy the
hyperdescent for the rigid topology, thus can be extended to a complex of sheaves over the given

rigid space.

24.1 Unfolding

We first recall the unfolding of a sheaf in co-category.

Let X be a site that admits fiber products, and let B be a basis of X, namely B is a subcategory of
X such that for each object U in X, there exists an object U’ in I3 covering U. So any hypercovering
of an object in X can be refined to a hypercovering with each term in B.

Let C be a presentable co-category. Consider a hypersheaf 7 € Sh™P?(B3, C) over B. We can
then unfold the sheaf F to a hypersheaf 7’ on X, such that its evaluation at any V' € X is given by

F'(V) = colim lim F(U),

!
Ue—V [n]eAop
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where the colimit is indexed over all hypercoverings U, — V with U/ € B for all n. It can be
shown that one hypercovering suffices to compute the value of /(1) in the above formula: actually

for a hypercovering U, — V with each U}, in the basis I3, we have a natural weak-equivalence

R lim F(U)) — F'(V).
[n]eAop
In particular for any U € B, the natural map F(U) — F'(U) is a weak-equivalence.
The above construction is functorial with respect to F € Sh™P(B, €), and we get a natural

unfolding functor
Sh™P(B, @) — Sh"P(X, @),

which is in fact an equivalence, with the inverse given by the restriction functor Shhyp(X ,C) —
Sh"P(B, @).
Recall in the special case when € = D(R) is the derived co-category of R-modules, we have a

natural equivalence

D(X, R) — Sh™P(X, D(R));
C+— (V= RI(V,()).

As an upshot, to define a complex of sheaves of R-modules over X, it suffices to specify a
contravariant functor from the basis B to D(R), such that it satisfies the hyperdescent condition
within B.

2.4.2 Hyperdescent of L), and dRp/4

We first consider the analytic cotangent complex.

Proposition 2.4.2.1. Let A — B be a map of topologically finite type algebras over B;{Rﬁ, and let
B — Bq be a map from B to a cosimplicial algebras over B(J{Rﬁ, such that the associated map of
rigid spaces Spa(B,) — Spa(B) is a rigid open hypercovering. Then the induced map below is an
isomorphism

wa > B g, L a

Proof. We first notice that by the étaleness of the map B — B,, and the Corollary 2.2.3.12, L3 /A
is naturally isomorphic to the base change L z/4 ®% B,. So it suffices to show the map below is an
isomorphism

B4 — R I L), @5 B

Note that since each Spa(B,,) — Spa(B) is an open covering of the rigid space Spa(B), the
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induced map B — B, is flat on structure sheaves ([Hub96, Proposition 1.7.6]). In this way, by the
surjectivity of Spa(B,,) — Spa(B), we see the map of affine schemes Spec(B,) — Spec(B) is a
fpqc hypercover, and the isomorphism above follows from the fpqc hyperdescent of quasi-coherent

sheaves over the affine scheme Spec(B).
O

Using the unfolding technique in Subsection 2.4.1, we can extend the affinoid construction of

the analytic cotangent complex to the global case.

Corollary 2.4.2.2. Let X — Y = Spa(A) be a map of rigid spaces over Bije. Then there exists a
complex of sheaves of A-modules IL@?/Y over X, such that for any affinoid open subset U = Spa(B)

of X, we have a natural isomorphism
RP(U7 L%?/Y) = 3an/A-

The complex L)y, is called the analytic cotangent complex of X over Y.

Similarly, we could unfold the construction of the analytic derived de Rham complex to an

arbitrary rigid space.

Proposition 2.4.2.3. Let A — B be a map of topologically finite type algebras over B:{R,e, and
let B — Bq be a map from B to a cosimplicial algebra over B:{Rﬁ, such that the associated map
of rigid spaces Spa(B,) — Spa(DB) is a rigid open hypercovering. Then the induced filtered map
below is an isomorphism

dRp/a — R lim dRp, 4.

[n]eAop

Proof. As a limit functor preserves the filtered completeness, 12 limp,)caor dRp, /4 is an object in
I/)I?(A), and checking the isomorphism above can be reduced to their graded pieces. Moreover,
notice that the graded piece functor commutes with small limits and colimits (cf. [BMS19, Lemma
5.2]). Thus we get

gr'dRp/a = L N L)4[—i] — gri(R[ ]heIEOP dRp, /1)

= R lim gridRBn/A

[n]eA°pP
=Rl LATLE al=i

Notice that the wedge product functor commutes with the tensor product, and for each n € N we
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have
LA Boa =L N (L%)a ®% By)
= (L /\l aBgl/A) ®é Bn7

In this way, the natural map of graded pieces above is an isomorphism, by the similar fpqc
hyperdescent for B — B, as in the proof of Proposition 2.4.2.1. So we are done.
[

Corollary 2.4.2.4. Let X — Y = Spa(A) be a map of rigid spaces over BQLR,e- Then there
exists a complex of sheaves of A-modules dR x/y over X, such that for any affinoid open subset

U = Spa(B) of X, we have a natural isomorphism
RF(U, de/y> - dR,B/A.

The complex dR xy is called the analytic derived de Rham complex of X over Y.
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CHAPTER 3

Infinitesimal Cohomology

In this chapter, we introduce the infinitesimal cohomology of rigid spaces over B(J{R@, gen-
eralizing the infinitesimal/crystalline cohomology of complex algebraic varieties introduced by
Grothendieck [Gro68]. The results in this chapter first appeared in [Guo20, Section 2-4].

We start this chapter by introducing the basics around the infinitesimal site for rigid spaces over
the de Rham period ring Bije in Section 3.1, including the definition, the notion of the envelope, the
relation with the rigid analytic topology, and the functoriality of the infinitesimal topos. Analogous
to the crystalline cohomology, we have the notion of the coherent crystal as the coefficient, which
will be developed in Section 3.2. This is the rigid analytic analogue of the integrable connection
for complex analytic spaces. Precisely, analogous to the crystalline theory in [BO78], we prove
that the category of coherent crystals is equivalent to the category of integrable connections over
the envelope in Theorem 3.2.3.1. The rest of the chapter, which is Section 3.3, is devoted to the
rigid analytic version of [BdJ11]: we show that the cohomology of a crystal over a given space X
can be computed by the cohomology of the de Rham complex for the envelope (Theorem 3.3.2.2).
Here we mention that the proof follows the one in [BdJ11], except that by a more careful strudy of

filtrations we show the above isomorphism preserves their infinitesimal filtrations.
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3.1 Infinitesimal geometry over By .

In this section, we introduce the basics around the infinitesimal geometry over the de Rham

period ring By, . := BJg /£°.

3.1.1 Infinitesimal sites

We first introduce the big and the small infinitesimal sites of a rigid space over them, and study

two natural maps between their topoi.

Infinitesimal topology

Definition 3.1.1.1. Let e be a positive integer. A rigid space over B(J{Rﬁ is defined as an adic space
of topological finite presentation over .. Namely X can be covered by affinoid open subspaces

which are of the form
Spa(Bigo(t, - - - tu) /1),

where I is a (finitely generated) ideal in B(J{R’e(tl, ceytn).
The category of rigid spaces over %, is denoted by Rigs, .

Recall that for a map of rigid spaces f : U — T, itis called a nil closed immersion if f is a
closed immersion (defined by the vanishing of a coherent ideal Z in Or), such that 7" admits an
open covering {7, i} with Z|r, being nilpotent.

Note that a nilpotent closed immersion, for which the defining ideal is nilpotent globally, is
always a nil closed immersion. The converse is true locally or assuming the quasi-compactness of

the target space.

Definition 3.1.1.2.  (a) Let X be a rigid space over %... The (small) infinitesimal site X /¥ ;.¢ is
the Grothendieck topology defined as follows:

o The underlying category of X /%.ins is the collection of pairs (U, T), called infinitesimal
thickenings, where T' is a rigid space over X, U is an open subspace of X and a closed
analytic subspace of T, such that U — T' is a nil closed immersion.

Here morphisms between (Uy,Ty) and (U, Ts) are defined as maps of pairs over ¥,
such that Uy — U, is the open immersion inside X.

* A collection of morphism (U;, T;) — (U, T) in X/t is a covering if both {T; —

T, i} and {U; — U, i} are open coverings for the rigid spaces T and U separately.

(b) The big infinitesimal site Rigs,, ixr over 3. is defined on the category of all of the pairs (U, T')
for U — T being a nil closed immersion of rigid spaces over ., with the same covering

structure as above.

41



(c) The big infinitesimal site X /> nr of X is defined as the localization Rigs, inr|x of the big
site Rigs,, inv at X. Namely it is defined on the category of all of the tuples {(U,T), f : U —
X}, where (U, T) is an object in Rigs., ixw, and f : U — X is a map of rigid spaces over ¥..

The covering structure is induced from that of Rigs,, inr.

To give a sheaf F over the infinitesimal site, it is equivalent to give a sheaf F over each rigid
space T for (U, T) € X/X.ins, such that for each morphism (i, g) : (Uy,T1) — (Us, T3) in X /3¢ i,

there exists a map of sheaves over 77
-1
g F: T > J T1s

which satisfies the natural transition compatibility. The same holds for a sheaf over the big
infinitesimal site. We call the category of sheaves on X /Y., (or X/ nr) the infinitesimal topos,
and denote it by Sh(X /> in¢) (or Sh(X/Xcnr)).

For two abelian sheaves F and G over the infinitesimal site, we sometimes use the notation

F(G) to denote the group of homomorphisms
Hom(G, F).

In the case when G is a representable sheaf /7 for an infinitesimal thickening (U, T'), the above hom
group is the group of sections
Hom(hr, F) = F(U,T).

There is a natural structure sheaf Ox/x,, over the big or small infinitesimal site, which is defined

as
OX/Ee(Uv T) = OT(T)7 (U7 T) € X/Eeinf-

Remark 3.1.1.3. It is clear from the above definition that the infinitesimal site can be defined for
any pair of analytic adic spaces X — Z, not just X — X.. In particular, when Z = Spa(K)
is a discretely valued field, and X is a rigid space over K, we get the analogous version of the
infinitesimal site of X over K. Moreover, there exists a natural map of sites X . / Kint — X/ K int,

defined by the base field extension.
Here are some basic properties of the infinitesimal sites.
Lemma 3.1.1.4. Let X be a rigid space over Y.. Then we have

(i) The fiber product exists in the big and the small infinitesimal site of X over Y., and is

compatible with the inclusion functor between the big and the small sites.
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(ii)

(iii)

Proof.

(ii)

The equalizer exists in the big and the small infinitesimal site of X over %, and is compatible

with the inclusion functor.

The finite product is ind-representable in the big and the small infinitesimal site of X over Y.,

and is compatible with the inclusion functor.

(i) Let (V;, T;) for i = 0, 1, 2 be three objects in the big infinitesimal site X /Y., with
arrows g; : (V;, T;) — (Vo, Tp) for i = 1,2. Namely each V; admits a map to X, and V; — T;
is a closed immersion that has a nil defining ideal. Then we can form the fiber products
of rigid spaces V3 := V} Xy, Vo and 15 := T} xg, 15 over ., together with a natural map
V3 — T3. Any infinitesimal thickening (V,7") that admits a compatible family of maps
(V,T) — (V;,T;) fori = 0, 1,2 would produce a commutative diagram

V—T

]

Vé —>T3.

So it is left to show that V3 — 75 is a nil immersion, which can be checked locally by

choosing affinoid open subsets of 7;,7 = 01, 2.

Moreover, in the special case when (1, T;) comes from the small site for ¢ = 0, 1, 2 (namely
the map V; — X is an open immersion for ¢ = 0, 1, 2), then the fiber product V5 = V; Xy, V5
is also open in X . In particular, the fiber product in this case is lying in the small site X />, .

For the equalizer, consider the two arrows «, 3 : (V4,T7) = (V5,T3) in X /X nr. Here both
V) and V5 admits a map to X, and V; — T; are nil closed immersions. We can first form the
equalizer V5 of V; = V5 and 75 of 17 =2 75 in the category of rigid spaces over Y., by the
pullback diagram

Vs Vi 13 T

S .

Vo——=Vo x5, Vo, To —="T5 x5, T,

where the left vertical maps in both diagrams are diagonal embeddings. The left diagram
admits a natural map to the right. Moreover, we notice that V3 — 75 is a nil immersion, as all
of other three terms in the diagram of V3 are nil immersed into the diagram of 75. Furthermore,
as the map V; — V5 xy_ V5 factors through Vo X x Vo — V5 X5 V5, the pullback V3 is also
isomorphic to the equalizer of V} =2 V} in the category of rigid spaces over X. In this way,

the object (V3,T3) € X/X nr obtained above forms the equalizer of «, 3 in the category.

We at last note that the case when «, 5 comes from the small site is exactly when both of the
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(111)

arrows V7 = V, are open immersions (hence they are the same), where the obtained base
change V5=V, x V3 =V, xy, V3 =V isalsoopenin X. Thus the construction of the

VoxxVa
equalizer is compatible with the one in the small site.

Let (V;, T;) for i = 1, 2 be two objects in the big infinitesimal site X /3 xr. Then we can form
the fiber product V5 := V; X x V5 over X, and the fiber product 7} xx_ T, over X, together
with a natural map from V3, such that any object (V',T") € X /¥ nr that admits a map to
(V;, T;) for i = 1,2 will admit a unique map onto the pair of rigid spaces (V3, T} X5, T3).

Now the only problem is that the pair (V3,77 X5, 1) is almost never a pair of infinitesimal

thickening. However, notice that the map V3 — 17 Xy 15 can be written as the composition
Va=Vi xx Vo — Vi Xz, Vo — T X5, Tb,

where the first map is a locally closed immersion (a composition of a closed immersion and
an open immersion) and second map is a nil immersion. This allows us to form the direct
limit hgm Y., of all infinitesimal neighborhoods of V5 into 7 Xy_ 75, where each Y, is the
m-th infinitesimal neighborhood of V5 inside of 77 Xy, 75. In this way, the fiber product of
(V4,T1) and (V4, Ty) is ind-represented by the colimit of (V3, Y}, ), for locally each map from
an object (V’, ") onto the pair (V3, T} xx, T») factors through some (V3,Y,,) (as (V', 1) is
locally nilpotent).

At last, we note that the construction is independent of big or small infinitesimal sites.
Moreover, when V; and V5 are open in X, from the construction above the rigid space V3 is
also open in X. Thus the finite product is compatible between the big and the small sites.

[

Remark 3.1.1.5. In fact, the ind-representable sheaf for the directed limit hglm Y, 1s the envelope

of the immersion V3 — 17 Xy_ 15, which we will introduce in Definition 3.1.2.1 soon.

Relation between big and small sites/topoi  Given a rigid space X over X, there are two natural

morphisms of topoi between the big infinitesimal topos Sh(X /3. xr) and the small infinitesimal

topos Sh(X /i) of X. To see this, we first notice that by constructions, there exists a natural

inclusion functor

X/Eeint — X/EeInr.

The inclusion functor is continuous in the sense of [Stal8, Tag 00WV], and thus induces two
functors between their topoi ([Stal8, Tag 00WU])
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e For a sheaf F € Sh(X/3. ) over the small site, there exists a preimage functor ! with

1~ LF being the sheaf associated with the presheaf

X/Zewr 3 (V,S) — hgl F(U,T).

(V,9)=(U,T)
(UT)EX/Se in

The functor ~! commutes with finite limits.

e The direct image functor s, which is the right adjoint of p~*

and is computed by the
restriction. Namely for a sheaf G € Sh(X/X.nr) over the big site, we have 1. G(U,T) =
g(U,T).

This pair of adjoint functors in fact forms a morphism of topoi
JIa Sh(X/ZeINF) — Sh(X/Eeinf).

To see this, we claim the following:

Lemma 3.1.1.6. The left adjoint functor u=' : Sh(X/3cins) — Sh(X/Sanr) commutes with any

nonempty finite limit.

Proof. To see this, we first notice that as a left adjoint functor commutes with any small colimit, it
suffices to show this for a finite diagram of representable sheaves. Moreover, as a nonempty finite
limit can be formed by finite many of finite products and equalizers ([Stal8, Tag 04AS])), it suffices
to show that ;z~! commutes with finite products and equalizers of representable sheaves, which is

given by Lemma 3.1.1.4. So we are done. U

This by definition means that the left adjoint 1! is exact, so we get a morphism of topoi ([Stal8,
Tag 00X1])
JI Sh(X/ZeINF) — Sh(X/Eeinf).

On the other hand, the inclusion functor is cocontinuous in the sense of [Stal8, Tag 00XJ]. This
is because if a collection of thickenings {(U;, T;)} C X/Y.nr covers a given (U, T) € X /Y iy in
the big site, then each (U, T;) is also an object in the small site which together forms a covering of

(U, T). So by [Stal8, Tag 00XO], the inclusion functor induces another map of topoi
v Sh(X/¥eint) — Sh(X/Eeinr),

consists of the following adjoint pairs of functors

e The functor : ™' = pu, : Sh(X/Zcnr) — Sh(X/X.iuf) is the restriction functor, which

commutes with any finite limits.
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e The functor ¢, : Sh(X/Y.1u¢) — Sh(X/Xcnr), which is the right adjoint of the functor .,
sending a sheaf F over the small site to the sheaf ¢,/ with the equality

X/Zewr 3 (V,S) — 1Ln F(U,T).

(V,9)=(U,T)
(UT)EX/Se in

Here we notice that when the thickening (V) S) is an object coming from the small site X/, i,¢

(namely V' — X is an open immersion), from the description above we then have
(e )V, 5) = F(V, 5).

Furthermore, notice that given an arrow (V;, T7) — (V2, T5) in the big infinitesimal site X /> nF,
the associated morphism of rigid spaces V; — V5 is a X-morphism. This in particular implies that
the inclusion functor X /¥,y — X/ nr is fully faithful, as when (V3,T7) and (V3, T5) come
from the small site, the only X -morphism between V; and V5 is the open immersion. So by [Stal8,
Tag 00XS, Tag 00XT] and Lemma 3.1.1.4, we have !

* The functor 11~ commutes with fiber products and equalizers (so with all finite connected

limits).
* The canonical natural transformations below are isomorphisms of functors:

-1

id— poop™; v or, = py 00, —id.

3.1.2 Envelopes

Analogous to the infinitesimal theory of complex varieties in [Gro68] and the crystalline theory
of schemes in positive characteristic in [BO78], we can define the envelope for a locally closed

immersion X — Y of rigid spaces.

Definition 3.1.2.1. Let Y be a rigid space over Y., and X be a locally closed analytic subspace in
Y, defined by a coherent ideal I in Oy for U an open subset inside of Y. We denote by Y,, to be the
n-th infinitesimal neighborhood of X in'Y', which form an object (X,Y,,) in X/X.ins and is defined
by the ideal 1",

The envelope Dy (Y') of X in'Y, is an object in the infinitesimal topos Sh(X /¥..i.¢), defined by
the colimit of the direct system of representable sheaves hy, of (X,Y,,) in Sh(X/Xeins):

Dx(Y) = hghyn

neN

'In the notation of [Stal8, Tag 00UZ], the functor x~! is equal to the functor ;.
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Note that the definition also works for the big infinitesimal topos Sh(X/>.xr), and under the

natural inclusion functor X />,y — X/Y.nr the notions of the envelopes coincide.

Remark 3.1.2.2. In many situations, it is convenient to regard Dx(Y") as an actual locally ringed
space, instead of a direct limit of representable sheaves in the infinitesimal topos. Here the associated
ringed space structure of the envelope Dx (Y) has the same topological space as the adic space
X, and the structure sheaf D = T&ln Oy, is the inverse limit of structure sheaves of infinitesimal

neighborhoods Y,,.
Remark 3.1.2.3. The existence of the colimit in the topos is guaranteed by [Stal8, Tag 00WI].

Remark 3.1.2.4. Here we want to mention that different from the crystalline theory of a scheme
over Zy /p°, the envelope is almost never representable. In the mixed characteristic case, the
divided-power structure enforces the defining ideal for a divided power thickening to be nilpotent.
However, in equal characteristic zero such a condition is lost and the envelope is not an infinitesimal

thickening. This in particular appears when we consider the crystalline theory of a scheme over C.

Though the envelope fails to be representable, we do have a description of an envelope similar

to a representable sheaf:

Lemma 3.1.2.5. For a closed immersion X — Y, the envelope Dx (Y') is isomorphic to the sheaf
on X /Yeint (and X /Ynr), defined by

(U, T) — Hom((U, T), (X,Y)),
where Hom((U, T, (X,Y')) is the set of commutative diagrams of ¥.-rigid spaces

1

U——X

Y

with U — X being the structure morphism for the object (U, T).

Proof. We first notice that we have a natural map

Dx(Y)((U,T)) = lim Hom((U, T), (X, Yy)) — Hom((U,T), (X,Y)),

neN

induced by closed immersions Y,, — Y,,;1 — Y. So it suffices to check that for a pair of affinoid
rigid spaces (U, T') = (Spa(R/J), Spa(R)) in the infinitesimal site, the above is an equality.
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For the surjection, we notice that since (U, T) is affinoid rigid space over X, the ring R is
noetherian and J is nilpotent. In particular, there exists an n € N, such that /"™ = (0. So the map
Spa(R) — Y factors through a map Spa(R) — Y.

For the injection, assume there are two maps «, 8 : T' == Y, of rigid spaces over X, such that
after the composition with Y,, — Y they are equal. Then since Y,, — Y is a closed immersion, by
restricting to an affinoid open covering of Y (thus Y},) it is reduce to the equality of the following
two compositions

A— A" = R,

which implies A/I""! = R are equal. So we are done.

The following simple observations justify this name of the envelope:

Lemma 3.1.2.6. Assume Y is smooth over ¥... Then the envelope Dx (Y') for a closed immersion
of X in'Y covers the final object in the infinitesimal topoi Sh(X /Y. in) and Sh(X /Y nr). In other
words, the map from Dx(Y') onto the final object in the infinitesimal topoi is an epimorphism of

sheaves.

Proof. We denote by 1 to be the final object in Sh(X /X, i,¢) or Sh(X/X.nr). Then to show the
surjection of the map of sheaves
D X (Y) — 1,

it suffices to show that any object (U, T') in the infinitesimal site locally admits a morphism to
Dx(Y).

For an affinoid thickening (U, T") = (Spa(R/I),Spa(R)) with amap U — X, since U — T is
a nil immersion and R is noetherian, there exists an integer m such that /"1 in R. By assumption
that Y is smooth, locally there exists a morphism from Spa(R) to Y that makes the following

diagram commute

Spa(R/I) — Spa(R)
l l
X Y.

By the nilpotence, the map Spa(RR) — Y factors canonically through Y;, for n > m. Thus the map
Spa(R) — Y factors through the direct limit Dx (V') = lim _hy, =Y.
]

The above allows us to give a very general formula to compute the cohomology over the

infinitesimal site, using the Cech nerve for an envelope.
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Proposition 3.1.2.7. Let X — Y be a closed immersion into a smooth rigid space Y over ..

Forn € A, we denote D(n) to be the simplicial space where each D(n) is the envelope of X in
X n+1

Y (n) :=Y> . Then there is a natural equivalence of derived functors on the derived category of

sheaves over the (big or small) infinitesimal sites

RT(X/Sewns, F) — R lim RT(D(n), F).

[n]eAcpr

Here we want to mention that for each n € A, the derived section functor RI'(D(n), F) is

computed via the inverse limit

R lim RU((X,Y (1)), F).

meN
where each Y (n),, is the m-th infinitesimal neighborhood of X in Y'(n).

Proof. We first notice that D(n) is in fact the (n+1)-fold self-product of D (Y’) in the infinitesimal
topos Sh(X /Y. i) (or Sh(X/Ynr) respectively). This is because by Lemma 3.1.2.5, we know

D(n) = Hom(—, (X,Y"™)),

which is the same as the contravariant functor Hom(—, (X, Y"))""! on the infinitesimal site. So the
simplicial object D(e) is in fact the coskeleton cosky(Dx (Y')) over the final object (in other words,
the Cech nerve for the map of sheaves Dx (Y) — 1). In this way, since Dx (Y) — 1 is an effective
epimorphism (Lemma 3.1.2.6), by the [Stal8, Tag 09VU], D(e) — 1 is a hypercovering, and we
get a natural equivalence of derived functors

RT(X/Sewms, —) = RT(D(s),—) = R lim RT(D(n), -).

[n]eAop
0

As an upshot, we see the restriction functor from the big infinitesimal topos to the small one

preserves the cohomology.

Corollary 3.1.2.8. Let F be an object in the derived category of sheaves over X /Y. .ixp. Then the
restriction functor 1! = p, : Sh(X/Sanr) — Sh(X/Xein) (¢f. Paragraph 3.1.1) induces the

following isomorphism
RP(X/Eeinf, ,U,*.F) — RF(X/EQINF, .F)

Proof. We first assume X admits a closed immersion into a smooth rigid space over .. The claim
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in this case then follows from Proposition 3.1.2.7, as an envelope is an direct limit ligmeN hy (n),, OF
representable objects in the big and the small sites, and the restriction functor produces the natural

equivalence
RI'(D(n), F) — RU(D(n), psF).

In general, we may take a hypercovering by affinoid open spaces of X first to reduce to the above

special cases. 0

3.1.3 Infinitesimal and rigid topology

In this subsection, we relate the infinitesimal topos and the rigid topos together.
Let X be arigid space over 2. Recall that there is a Grothendieck topology X, on the category
of open subsets in X, called the rigid site X,,.

Consider the following two functors:

UX/Sex - Sh(X/Zeinf) — Sh(Xrlg),
F— (U —> F<U/Eeinf’f|U/Eeinf)>‘
Uxys, * Sh(Xuig) — Sh(X/Zeinr);
E— (U, T)— EW)).

Since (u}}EEE )z is the sheaf £|;y on Uyy = Thg, the functor “);}Ee commutes with the finite
inverse limit. Notice that the pair (“)_(}z,g ux/x,+) is adjoint. Thus we get a morphism of topoi
([Stal8, Tag 00XA])

Ux/s, : Sh(X/Eeinf) — Sh(Xrig>,

which we follow [BO78] and call the projection morphism.

The projection morphism u /s, admits a section. Consider the functor X [Beint = Xrigs
sending (U, T') onto the open subset U of X. By the definition of X /.., a covering of (U, T) is
mapped onto a covering of U. In particular, the map of sites is continuous in the sense of [Stal8].
So we get a morphism of sites

ix/n. t Xrig — X/Zeint.

The morphisms induces a map of topoi, in a way that for £ € Sh(X,;g),

Z.X/Ze*g(Uva T) = E(U)v
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and for F € Sh(X/X.int), we have

i FU)=lim  F(V.T)=FU,U).
) (UU)—=(V,T)

From the description, we see the functor Z')}}Es is the restriction functor sending a sheaf F over
X /Y inf to its restriction Fx onto the rigid space X.

Remark 3.1.3.1. By the construction of 7x /s, and ux s, , on the rigid topos Sh(X,;g) we have

. . 1 -1 .
UX/Sex OVX/Sex = /Lda Zx/ze © ux/ge = Zd:

which implies that those morphisms of topoi satisfy

uX/Ee O ix/ge = 1id.
This justify the name of the projection morphism.

Remark 3.1.3.2. The construction here naturally generalizes to two morphisms between big

infinitesimal site X /Y inp and the big rigid site Rigy, | x, for a given rigid space over X.

3.1.4 Functoriality

In this subsection, we introduce natural maps of infinitesimal topoi associated with a map of
rigid spaces, similar to the construction in [Stal8, Tag 07IC, 07IK].

Let f : X — Y be a map of rigid spaces over ../, and assume the structure map X — X
factors through X5, for non-negative integers e < ¢’. By the construction of the big infinitesimal site,

the map f induces a natural functor between X/ xr and Y/¥.np, satisfying
X/Yeane 2 (U,T),U = X) — (U,T), U - X =Y,

where the map U — X — Y is the composition of the map f with the structure map of (U, T) €
X/Yanr. Then it is easy to check that this functor is both continuous and cocontinuous, and
commutes withe fiber products and equalizers (cf. Lemma 3.1.1.4). This in particular implies that
the functor above induces a morphism of topoi ([Stal8, Tag 00XN, 00XR])

fing : Sh(X/Xanr) — Sh(Y/Eeinr),

such that
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* The inverse image functor fiy. commutes with arbitrary limits and colimits, such that for a

sheaf G over Y/Y./xF, we have
fIT\Ing(Uv T) = g(U’ T)?

where the second (U, T') is regarded as an object in Y/X.ng by U — X — Y.

* The direct image functor fing., Which is the right adjoint to the functor fﬂ\IlF, sends a sheaf
F € Sh(X/X.nr) to the sheaf fixg.F such that the section is given by

Y/Ee’INF > (V, S) — 1&1 F(U, T)
(V,9)=(U,T)
(UT)eX/XanrF,
V—U compatible with f

Now we consider the small topoi Sh(X /3. ,¢) and Sh(Y /X i¢). Analogous to [Stal8, Tag

071IK], we use the map of big topoi to connect them. Consider the following diagram

Sh(X/Serr) 25 Sh(Y/ o)

Lx] lw

Sh(X/Eeinf) ff> Sh(X/Eeinf)-

in

Here we define the morphism of topoi fi,s : Sh(X/Xcint) — Sh(Y/3e inf) to be the composition

fint = by © finp 0 Lx.
Then by the definition of those functors, we have

* For a sheaf G € Sh(Y/% i), the inverse image £,/ G is given by the “restriction” of y13,'G
to the category X /Y., via the map f, and is equal to the sheaf associated with the presheaf

X/Seint 3 (U, T) — ling G(V,S).

(U,T)=(V,5)
(V,S)EY/Ee/ inf>
U—V compatible with f

* The direct image functor fi,¢. sends a sheaf F € Sh(X/X.;,) to the sheaf

Fut o F(V, S) = lim F(U,T).
(U,T)=(V,5)
(UT)eX/ZeINr
U—V compatible with f
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Remark 3.1.4.1. In the special case when G = hyg is the representable sheaf of (V,S) € Y/ i,

its inverse image f; ! hs has a simpler formula by

fiths(U, T) = Homy (U, T), (V, S)) := {commutative diagrams X <— u "—Zl>T }.
f :
v nil )
Y<~—V-"258

Here in the diagram above 7" — S is a map over ..

Remark 3.1.4.2. The functoriality of infinitesimal topoi is compatible with the projection morphism
to the rigid topos and its section. Namely the following two diagrams are commutative

Sh(X/Seimt) 2 Sh(Y/Seme) ,  Sh(Xuie) Sh(YVii)

UX/Zel/ l/’lLY/Ee, ix/zel liy/ze/

Sh(Xyi,) Sh(Yiig)  Sh(X/Seint) —22 Sh(Y/Se in).

We also want to mention that f;,¢ is naturally a map of ringed topoi under the infinitesimal
structure sheaves, and we could define the pullback functor f;;; on the category of Oy/s -sheaves,
similar to the scheme theory. Here given a sheaf of Oy/s;y -module G and an object (U, T) € X/Zeint,
the restriction of the pullback f; ;G at the rigid space 7' is equal to the colimit

i h*(Gs).
he(UT)—(V,S)
(V,S)eY/Z

inf

Remark 3.1.4.3. Here we remark that when f : X — X is the identity map but e is strictly smaller
than ¢/, the transition morphism fi,¢ : Sh(X/Ycinr) — Sh(X /e inf) is induced from the map of
sites finf : X/Zeint — X/ inf, Where the corresponding functor sends (V,S) € X/3 iy onto
the thickening (V, S x5, %.).

3.2 Crystals

In this section, we study the coherent crystal and its canonical connection.
Before we start, we mention that though stated for rigid spaces over B, _, the results and proofs

in this section hold for rigid spaces over arbitrary p-adic fields.

3.2.1 Crystals and their connections

We first introduce the coherent crystal and a canonical connection associated with it.
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Sheaf of differentials

Definition 3.2.1.1. The infinitesimal sheaf of differentials QY e 154 sheaf of Ox s, -module on
X/Yeint defined as

:L')(/Ee inf (U’ T) = Q;i'c/oznet (T)7

locally given by the continuous differentials over ...

Similarly we could define the infinitesimal sheaf of differentials Q% S OVEr the big site
X/Yenr- It can be checked easily that the restriction ,u_lﬁg( o the small site is equal to
S

Here we recall the definition of the sheaf of continuous differentials as follows. Let 7" be a rigid
space over Y., and T'(m) be the m + 1-th self product of 7" over ¥, which is equipped with m + 1
projection maps onto 7" and the diagonal map from 7'. For each m € N, we denote 7'(n),, as the
m-th infinitesimal neighborhood of 7" in 7'(n). Then each infinitesimal thickening (7', 7(n),,) is an
object in X\ X,y

Let I7 be the coherent sheaf of ideals in Or(;), defined as the kernel of the map O7(y — Or

1,cont
QT/Ze

sheaf I /I% over T. It can be checked that the sheaf of continuous differentials satisfy the universal

given by the diagonal 7" — T'(1);. Then the sheaf of continuous differentials is the coherent

property among continuous B§R7e-linear derivatives. Without mentioning, we will use 2%, /5, 1O

denote the i-th continuous differentials to simplify the notation.

Crystals

Definition 3.2.1.2. Let F be a coherent sheaf over X /Y. int or X /Ying. Namely F is a sheaf on
the infinitesimal site such that Fr is a coherent O module for each infinitesimal thickening (U, T).
We call F a coherent crystal if for each morphism of thickenings (i, g) : (Uy,T1) — (Us, T3) in the

infinitesimal site, the natural map
~1
g*’FT2 = OTl ®g_loT2 g 'FT2 le

is an isomorphism of Or, modules.

Example 3.2.1.3. The easiest example of coherent crystal is the infinitesimal structure sheaf Ox/x,,

defined either over the small or big infinitesimal sites of X over X...

Remark 3.2.1.4. The infinitesimal sheaf of differential is not a crystal in general, though it is a

coherent sheaf over Ox /s, .

Here it is not hard to see that the pullback of a coherent crystal is a crystal.
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Lemma 3.2.1.5. Let f : X — Y be a map of rigid spaces over ¥..,, and assume the structure map
X — X factors through Y3, for non-negative integers e < €. Let G be a coherent crystal over
Y /Yo ing. We denote fiys to be the functoriality map of infinitesimal topoi fin @ Sh(X/Xeint) —
SB(Y /St iar).

(i) Let (g,h) : (U, T) — (V,S) be a map of thickenings for (U,T) € X /3¢t and (V,5) €
Y /Yo in separately such that g : U — V' is compatible with f : X — Y. Then the restriction
of fi:G at T is naturally isomorphic to the pullback h*(Gs) of the coherent sheaf Gs over S
along the map of rigid spaces h : T — S.

(ii) The pullback f; ;G is a coherent crystal over X /3.

(iii) Both (i) and (ii) hold true for fixg : Sh(X/3enr) — Sh(Y /3o inr) and a coherent crystal

G over big infinitesimal sites.

Proof. Let (U, T) be an object in the infinitesimal site X /¥, ;.. By the construction, we know the
restriction of the pullback f; ;G at the rigid space 7" is equal to the colimit

(G,
h:(U,T)—(V,S)
(V,S)EY /S 1 ins

1

where h : T" — S is the map of rigid spaces over >/. On the one hand, by the definition of the

coherent crystal, for a commutative diagram of infinitesimal thickenings

(V. 5)

(U, T)

P
that is compatible with f : X — Y/, the pullback g*(Gs ) is equal to the coherent sheaf Gg over
S. On the other hand, as in Lemma 3.1.1.4 the finite products are ind-representable in the small
site Y/ ine. In particular, given two maps of thickenings h; : (U, T) = (V,S) where U — V' is
the compatible with f, both h; locally factor through a thickening (V, S(1),,) for an infinitesimal
neighborhood S(1),, of V'in S(1) = S x5, S. As an upshot, the pullback h*Gg is independent of
the map h. In this way, the restriction of f;; .G at T', which is equal to the colimit above, is naturally
isomorphic to the coherent sheaf h*(Gg) over T' for any map of thickenings h : (U, T) — (V, S),
where (U, T) € X/3¢in¢ and (V,S) € Y/E. in¢. This finishes the proof of (7).

To check the crystal condition of f:G, it suffices to note that given a map of objects g :

(U1, Th) — (Uy, T) in X /%y and a compatible map of infinitesimal thickenings h : (U, T) —
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(V,S) for (V,S) € Y/3e int, we have

(fur9)m = 917" (Gs) = 9" ([ )

At last, notice that the proof is applicable no matter whether the structure maps U — X and

V' — Y are open immersions. So we are done. [

Example 3.2.1.6. An example of a coherent crystal over the big site is the pullback of a crystal

from the small site
M*F = /J’_lf ® OX/ECIN}W

p~t0x /5

cinf
where 1 : Sh(X/Yenr) — Sh(X/X.ins) is the canonical map from the big topos to the small topos,
as in Subsection 3.1.1. Here the proof is identical to that of Lemma 3.2.1.5.

In particular, the pullback p*F locally satisfies the same formula as in Lemma 3.2.1.5, (1).
For a crystal F over the small site X />, ;,r and a thickening (U,T) € X /X nr in the big site,
the restriction of the infinitesimal sheaf p*F on 7' is naturally isomorphic to the pullback ¢*(Fg).
Here the map g : 7" — S of rigid spaces comes from an arbitrary commutative diagram of objects
(1,9) - (U,T) — (V,S) in X/X nr that is compatible with their structure maps U — X and
V — X, such that V' — X is an open immersion.

In fact, we have the following results about crystals over big and small infinitesimal sites.

Proposition 3.2.1.7. Let X be a rigid space over B(JirR,e' There exists a natural equivalence as

below

{coherent crystals over X/¥eint} <= {coherent crystals over X/¥nr};
F — u* F;
(G +—G.

Here we recall from Paragraph 3.1.1 that the functor i, is the restriction functor from Sh(X /¥ nr)
to
Sh(X/Yeing)-

Proof. It suffices to show the compositions are equivalences. Given a coherent crystal F over the

small infinitesimal site and a thickening (U, T') € X /.., We have



where the second equality follows from the Example 3.2.1.6 for the identity map (U, T") — (U, T).

Conversely, let G be a coherent crystal over the big infinitesimal site X /Y xr. For any object
(V,S) € X/Y.nr, it can always be covered by open affinoid subsets (V;, S;) such that each (V;, S;)
admits a map to a thickening (U, T) € X /Y. i,. > We denote g : S; — T to be the associated map
of rigid spaces. Then by the crystal condition of G, we have Gg. = ¢*(Gr). As an upshot, by the
Example 3.2.1.6 again we get the following equalities

(1'pG)s, = g* ((19)r)
=9"(9r)
= Gg,.

So we are done. L]

Connection Recall the definition of general connections for a coherent sheaf.

Definition 3.2.1.8. Ler F be a coherent sheaf over X /3., A connection of F is an B:{R,e-linear
morphisms of sheaves

Vi F — F®oys, .. Qﬁf/zeinf,

such that V sends f - x onto [V (x) + x ® df, for f and x being local sections of Ox/s,. ... and F

separately.

einf

Here we want to mention that similarly we can define the connection for coherent sheaves over
the big infinitesimal site.

Now let F be a coherent crystal on X /Y., and let (U, T") be an object in X /¥, ;,¢. Then by
the definition of crystals, the two projection maps py, p1 : 7'(1); — 7 induce an isomorphism of
Or(1),-modules:

er : poFr = Fray, = piFr

This induces a morphism of Op-modules given by

Fr—=0rq), ®or Fr s Fr ®o, Ora),;

1l @r——er(l @ ).

2To see this, we may assume the structure map V; — V' — X maps into an open affinoid subset U of X, where
U admits a closed immersion into a smooth rigid space Y. Then since V; — S; is a nilpotent thickening, by the
smoothness of Y, the map V; — U induces a map S; to some Y,,,, where Y;,, is an infinitesimal neighborhood of U in
Y. Thus the claim follows as (U, Y, ) is in the small site X /X inf.
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Here we identify the sheaf of Or(),-module piFr as Ora), ®o, Fr (similarly for pyFr =
Fr ®or Orq),). Besides, the pullback of the above sequence along the diagonal map 7" — 7'(1);
is the identity, so the image of e (1 ® z) under this pullback map is exactly z.

The map in fact defines a canonical connection structure on the sheaf of the Op-module Fr, by

Vr: Fr——Fr Qo, QIT/EE-

r——cr(l®x) —z® 1.

Here Fr ®o, QlT s, = Fr o, It/ I2 can be identified as a subsheaf of Fr ®o, Ora),, since
Or(1), decomposes into the direct sum Or & Q%F /5, @S2 left Or-module. Note that the map satisfies

the axiom for the connection, in the sense that for a section f of O and x of F7, we have
Vr(f z)= fVr(z)+ 2z df,

wheredf =1® f — f® lisin QlT/ze-
At last, we notice that the above is functorial with respect to (U, T') € X/, u¢, in the sense that
for a morphism (i, g) : (Uy,T1) — (Us, T), we have the following commutative diagram

. 9"V,
g (FT2> _)'gQ(FB ®OT2 Q%“z/Ee)

oL

le ‘FTl ®OT1 QlTl/Ze'

In particular, the functoriality leads to the morphism of sheaves over infinitesimal site X/, ¢
V. F— ]:®OX/26 Qﬁ(/Eemf'

Definition 3.2.1.9. Let F be a coherent crystal over the infinitesimal site X /Y.i,. The canonical
connection of F is defined as the morphism as above

V:iF — FQoys, Q}qzemf.
de Rham complex of a crystal Similar to the flat connection over schemes ([Ber74], Chapter I,
Section 3.2), we can associate a natural de Rham complex to a coherent crystal over the infinitesimal

site X/Ycinr or X/ nE, by the integrability of the canonical connection.

Let F be a coherent sheaf over Ox/x;, with a connection V. For each k € N, we can associate
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an Ox/x, -linear morphism
\AE F®Ox/ze QI?(/ZE — F ®(9X/z:,;, Q’;(J;lzeiny
locally given by
r@w— V() Aw+ 2 ® dw.
This produces a chain of maps

° Vl
(F ®OX/Z€ QX/Eeim” v) = 0 F % ®OX/26 Qig(/zei U

nf

The connection is called integrable if the composition V! o V is zero, under which assumption
we call the above complex the de Rham complex of F.

The following proposition justifies the name:

Proposition 3.2.1.10. Let F be a coherent crystal over X /Y i, and let V be its canonical

connection defined in last subsection. Then for each k € N, we have
Vo vF = 0.

In particular, the de Rham complex of F is in fact a complex.

Proof. The proof is identical to that for a crystal over the crystalline site of a scheme, and we refer
the reader to[Stal8, Tag 07J6]. ]
3.2.2 A criterion for crystal in vector bundles

Given a coherent crystal F over the infinitesimal site X /Y. .¢, we say F is a crystal in vector
bundles if the restriction Fr is locally free of finite rank over O, for every object (U, T) € X /Y. ins-
In this subsection, we provides a simple criterion when a coherent crystal is a crystal in vector
bundles.

Definition 3.2.2.1. A coherent crystal F is flat over BjRﬁ if for any thickening (U, T) in the

infinitesimal site with T being flat over By, , the restriction Fr at T is also flat over Bk e

Theorem 3.2.2.2. Let F be a coherent crystal over X /Y. ins, and let F be a coherent crystal over
that is flat over B:R’e in the sense of Definition 3.2.2.1. Then F is a crystal in vector bundles.

Proof.
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Step 1 We first consider the case when e = 1. Namely let us assume X is defined over K and F
is a coherent crystal over X/ Kj,; or X/Kinxr, where the flatness of F over Bj{R’e = Kis

automatic.

Form € N, let T'(1),, be the m-th infinitesimal neighborhood of 7" in T' x ;¢ T'. The projection
map pr, to the first factor induces a map from 7°(1),, to T', via

h: T(D)y —T xx T2 T,

Moreover, as 7' = T'(1), admits a closed immersion into 7°(1),,, we can form the following

non-commutative diagram of thickenings

T (*)

id

Here we notice that the composition 7 T(1),,, == T' above is the identity. We denote
the composition of the map h : T'(1),, — T and the closed immersion 7" — T'(1),, and by
g:T(1), — T(1),,. Then we get two maps of thickening of U as follows

Then by the definition of the coherent crystal, pulling back along the above two arrows

induces an isomorphism of coherent sheaves over 7'(1),,
G Fry, — Fr),.
Moreover, by the assumption on g, we have

g*]:T(l)m = h*FT (**)

Now we base change the diagram (x) above along the closed immersion ¢ : Spa(K) — T

of any K-point ¢t of 7. By the construction of the map h : 7(1),, — T, we get a non-
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Step 2

commutative diagram

tm t,

where t,, is the m-th infinitesimal neighborhood of ¢ in 7', and the base changed map
h:t, — t = Spa(K) is the structure map of ¢,, over Spa(X ). Furthermore, after the base
change, the isomorphism g* Fp(1),, = Fr(1),, in (x*) becomes the following isomorphism of

torsion sheaves over 7' that are supported at ¢
Fr@t, 2 h(Fr@t).

Notice that the fiber F ® ¢ is flat and finitely generated over K (i.e it is a finite dimensional
vector space over K) and the pullback h*(Fr ® t) is flat over t,,,. Thus by the equality above

the base change Fr ® t,, is also flat and finitely generated over %,,.

At last, we take the inverse limit of Fr ® t,, with respect to m. Then Fr ®p,. (/’)\T,t is flat
over the formal completion @Tﬂg of the rigid space 1" at the K -point ¢. Since 7' is locally
noetherian, the formal completion 6T,t 1s isomorphic to the completion @Tj, where the latter
is the formal completion of 7" along its reduced K -valued point ¢. In this way, by the faithful
flatness of @T,t over Or4, the stalk of the coherent sheaf F7 at ¢ is flat and finitely generated
over the local ring, thus projective. Hence by the density of K -points in 7', we get the local

freeness of Fr.
For general e € N, we make the following claim.

Claim 3.2.2.3. Let A be a flat topologically finite type algebra over B(;“R’e, and let M be a
finite A-module that is flat over BXR@. Suppose M /¢ is free over A/E. Then M is free over
A.

Proof of Claim. We prove the claim by induction on e. When e = 1, there is nothing to
prove. Suppose e > 2. We choose a map of A-modules f : A®" — M whose reduction
mod £ is an isomorphism. Then as f is a map of flat BjRﬁe-modules, the short exact sequence
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0 = Bige1 — Bire = K — 0 induces the following commutative diagram

. AST + br or
O A ®B3—R,e BdR,e—l A‘ A/f O
0——M B, B;fR,eq M M/¢ 0.
Hence the map f is an isomorphism of A-modules by induction. ]

Let X’ be the base change X xyx_ Spa(K’). We notice that the pullback F /£ of F along
Sh(X'/King) — Sh(X/Xeint) is then a coherent crystal over X'/ Kj,¢. Now let (U, T) be a
thickening in X/¥ i such that T is flat over By ., so (U, T") = (U xx, Spa(K), T xsx,
Spa(K)) is a thickening in X'/ Kj,s. Then the restriction of /¢ on T” for the thickening
(U, T") € X'/ Ky is equal to Fr/&, which is crystal over O = Op/€ by the Step 1. So
the flatness assumption of F over By, . implies that 7 is vector bundle over 7' whenever T

. +
is flat over B dR.e-

At last, we note the following small observation on thickenings.

Claim 3.2.2.4. For any K -point ¢ of T, there exists a nilpotent closed immersion i : 7' — T"
such that £ admits a By, .-lift in 7",

Granting the claim, as (U, T") is also a thickening and F7 is locally free around the lift of ¢,

we get the local freeness of Fr around ¢ via the pullback equality
-FT = i*FT/.

As this is true for any K -point of 7', by the density of K-points in the adic spectrum we get

the local freeness of JF for general 7'. So we are done.

Proof of the Claim. We now settle the claim. As the statement is local over 7', we may assume
T = Spa(A) is affinoid and admits a closed immerion into a polydisc Y = Spa(BJ .(U;))
with the defining ideal (f;). Assume the image of U; in K along the closed immersion
t - T — Y is a;, and let a; be a lift of a; in Bj{Rﬁ. We then note that the evaluation f;(a;) is
contained in the nilpotent ideal £ Bije, for the defining equations f; of 7. Thus we can define
T" = Spa(Big (Ui)/(f;)¢, which is a nil extension of T" such that the closed immersion

t — T — T’ admits a natural lift to a By, .-point via @;. So we are done.

]
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Corollary 3.2.2.5. Any coherent crystal over the infinitesimal site X / K,s or X/ Kinr is a crystal

in vector bundles.

3.2.3 Integrable connections over envelope

As in the crystalline theory of schemes, there exists an equivalence between the category of
coherent crystals over X /Y. ;s and the category of coherent sheaves with integrable connections
over the envelope.

Before we state the result, we recall from Remark 3.1.2.2 that given an envelope D = hﬂneN Y,
of a locally closed immersion X — Y, we can regard the envelope as a locally ringed space over
the adic space X. The structure sheaf D of the envelope is defined as the inverse limit @meN Oy,

over D.

Theorem 3.2.3.1. Let X — Y be a closed closed immersion of rigid spaces with Y being smooth
over Y, and let D = Dx(Y') be the envelope of X in'Y. Then we have a natural equivalence of

categories:

{coherent cyrstals over Oxs,} — {(M,V)| M € Coh(D), V integrable connection}
F— (JTD, VD)
Here crystals are over either the big infinitesimal site or small infinitesimal site.

Corollary 3.2.3.2. Let X — Y be a closed immersion of rigid spaces with 'Y being smooth over %..,
and let D = Dx(Y") be the envelope of X in'Y. Then the equivalence above induces the bijections

of the following three categories:
* {coherent cyrstals that is flat over Big }.
 {crystals in vector bundles}.
* {(M,V)| M € Vec(D), V an integrable connection}.
Before the proof, we first give a description of the sheaf of differentials over the envelope.

Lemma 3.2.3.3. Let X = Spa(A) — Y = Spa(P) be a closed immersion of affinoid rigid spaces
over B:{R,e, with P a smooth affinoid algebra over B:{Rﬁ.

Then we have the following canonical isomorphism
Q}) = Qﬁ(/zemf(D) = Q}D/Ee ®p D,

63



which is induced from the map P — D.

Moreover; the result is true for Q0 e OVET the big infinitesimal site.
Proof. Recall that Q1 is defined as
1 .
QX/Eeinf“lﬂ Yin),
meN
which is equal to the inverse limit of the continuous differentials

F(X, I&H Q%/m/Ee)'

meN

Denote ¢; to be the étale coordinate of P. This is guaranteed locally by the Jacobian criterion of
smoothness, as in [Hub96, 1.6.9]. Let J = (fi, ..., fs) be the kernel of the surjection P — A, with

f: being its generator. Then we have
O(Yn) = P/T™, Q4 s, = (@ OXn)dty/ Y O(Yn)df):
' fegm+t

So we get

D = lim P/J", Q) = him (@ O(Y)dti/ Y, O(Y,u)df),

meN meN feJ'nH»l

Now consider the natural map 07, /5. ®@p D — Qp, sending the generator dt; of 2}, 5, onto the
dt; in the limit.

* We first consider the injectivity. By writing each f € J™*! as a finite sum of af;, - -« fj,.,,
for 1 < j; < r, each such df is contained in ) i "O(Y,,)df;. In particular, the submodule
> segmrt O(Yy)df of @ O(Y,,)dt; is contained the submodule >, J™O(Y,,)df;. So it

suffices to show the injectivity of

I1: D Ddt; — lim (D OV,)dts/ Y " O(Y)df).

meN
However, the kernel of each @ Ddt; — @ O(Y,)dt;/ >, J"O(Y,,)df; is equals to

> gDt + Y Tmdf;,
J

which is contained in @ J™Ddt;. In particular, any element ) . g;dt; in the ker(II) is con-
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tained in the ideal

(D I Dat;.

But note that D is defined as the J-adic completion of P, which implies the above ideal is

zero. So we get the injectivity.

* we can write Q7 /5. ®p D as the limit @ Ddt; = lim (D O(Y,)dl;). Then for each m the
map D O(Y, )dt = @i O(Yn)dti/ 3 e ymrr O(Y, )df is surjective. For each m, he kernel
of the map is M,, ZfEJmH O(Y,,)df, whose image in M,,_; is zero. Thus we get the
surjectivity, by the pro-acyclicity of the kernel.

]

The local freeness of the differential sheaf over the envelope allows us to give a more explicit
description of the connection associated with a crystal. We assume X = Spa(A) — Spa(P) =Y
be a closed immersion of affinoid rigid spaces over .., such that Y is smooth over X, with a local
coordinates {¢;}. Let M be a coherent sheaf over D together with a connection V over B;{Rﬁ. By
Lemma 3.2.3.3 above, the restriction of the infinitesimal differential over D = Dx(Y") is free over

D = Oxs, (D) = Jim O(Y,,) with a basis dt;. So for any section x € M, we have
Z Vi(z) @ dt;,

where V; : M — M is an By .-linear derivation map.

Now we assume (M, V) is integrable. We compose V with V!, and get

ZV r) ® dt;)
—ZZV ) @ dt; A di; +ZV ) @ d(dt;)
_ZZV )) @ dt; A dt;.

By the local freeness of (2}, the element dt; A dt; for j < 1 forms a basis of QQD. So we can rewrite

the above as
VI(V(2) =Y (Vi(Vi(@)) = Vi(V;(2)) @ dt; A dt;.

j<i
By the integrability condition of V, the above vanishes for any © € Fp. So we obtain the following
equalities
VZ‘OV]‘ :Vjovz-.
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Here we note that the commutativity allows us to write the composition of a finite amount of V; as

I v

E=(e;)

where E = (e;) is a tuple of non negative integers parametrized by i.

Now we are ready for the proof of Theorem 3.2.3.1.

Proof of Theorem 3.2.3.1. For a crystal F over Ox/x,,, we can equip it with its canonical connection
F, which is integrable by Proposition 3.2.1.10. So by taking the associated coherent sheaf of F
over D, we get a coherent sheaf Fp together with an integrable connection V p.

Conversely, let M be a coherent sheaf over D with an integrable connection V. By the
smoothness of Y over X, any object in X /Y. ;¢ can be covered by an open affinoid covering
where each piece admits a map to (X,Y’). We assume (U, T') is an affinoid thickening with the
commutative diagram

U——T

Bt

X—Y
Since 7" is an nilpotent extension of U, the map g : 7" — Y factors through the envelope D =
%ﬂmeN Y,, of X in Y. We denote this map by f : T" — D. Then we get a coherent sheaf
f*M =M ®@p Or over T

Now we make the following claim:

Claim 3.2.3.4. The pullback f*M over T is independent of the choice of f : T" — D.
More precisely, let fi, fo, f3 : T — D be any three maps induced produced as above. Then

there exists natural isomorphisms of coherent sheaves h;; : fM — frM over Or such that
hag © hig = hy3.

We first grant the claim. For each thickening (U, T"), we pick an arbitrary covering (U;, T;) of
(U,T), where (U;, T;) admits a map to (X,Y’). Then we get the collection of coherent sheaves
1M over each T;. The claim allows us to produce a transition isomorphism for each restriction
of f*M onT; N T}, and they satisfy the cocycle condition when restricted at I; N 7; N T}. Hence
by gluing them together, we get a coherent sheaf Fr over (U, T'). This produces a sheaf F over
the infinitesimal site. Moreover, the coherent sheaf F is in fact a coherent crystal, namely the
pullback ¢* Fp, = Fp, for any map (i,g) : (Uy,T1) — (Uz, T3) in X /X, ins. This comes from the

independence in the claim again, by taking a composition with a map 75 — D. So we are done.
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Proof of the Claim. We at last deal with the Claim. Let ¢; : D — Or be maps of structure sheaves
induced from f; : " — D. We define h;, to be the Op-linear map given by

r®1— Z H Vo) (@j(ti) — r(t;))e

o) ei!

Since 7 is a nilpotent extension of U, for each t € D, the difference ¢;(t) — ¢ (t) is nilpotent in

Or. In particular, the above sum is only finite. At last, by the general equality

<l " (N =) N1

i ut oM (u+v)

we have hgg 9] h12 = h13. OJ

3.3 Cohomology over B .

In this section, we compute the cohomology of crystals over X /> i,¢ using the de Rham complex
over the envelope. Our strategy is to construct a double complex computing the Cech-Alexander

complex and the de Rham complex in two separate directions, as in [BdJ11].

Remark 3.3.0.1. Before we start, we mention that though our focus is rigid spaces over Bije, the
discussion in this section works alphabetically for cohomology of crystals over X /K inf, where K

is an arbitrary p-adic complete non-archimedean field and X is a rigid space over K.

3.3.1 Cohomology of crystals over affinoid spaces

We first compute the cohomology of crystals over X /Y., for X being an affinoid rigid space
over Y.

Let X = Spa(A) be an affinoid rigid space over ¥, together with a closed immersion X —
Y = Spa(P) for a smooth affinoid rigid space Y over B, dr,e- Denote by D to be the envelope of X

m

neighborhood of X in Y'), and J to be the kernel ideal for D — Ox. We write Q% as the group of

in Y (Definition 3.1.2.1), D to be its structure sheaf L Oy, (where Y,, is the m-th infinitesimal
differentials (2% /51, (D), which is equal to the inverse limit of continuous differentials
@ Q@m /e

By Lemma 3.2.3.3, QY is isomorphic to the tensor product €2}, /5, oy D, and is in particular locally
free over D.
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We then take the section of the infinitesimal de Rham complex (F ®o, = % S int? V)atD,

and get a chain complex of Bj{R’e—modules
(M®QS,Vp) = O—>M—V>M®D91DL... ’

where M is the evaluation F (D) of F at the envelope D. The complex is naturally filtered by the
infinitesimal filtration, whose ¢-th filtration is the subcomplex

0— JM— J'MepQp — J2M@p Q3 — -

Our main theorem in this subsection is the following:

Theorem 3.3.1.1. Let X, Y, F and M be as above. Then we have a natural filtered isomorphism
in the filtered derived category of abelian groups:

RF(X/Eeinfaf) — <M®QEDJVD>>

where the left side is filtered by the infinitesimal filtration.

Remark 3.3.1.2. Note that by the Corollary 3.1.2.8, the above is also isomorphic to the cohomology
of the crystal G over the big infinitesimal site, when F = .G is the restriction of G defined over
the big site X /X nF.

The rest of this subsection will be devoted to the proof of the theorem.

Let us first fix some notations for this section.

Denote by D(n) to be the envelope of X in the (n + 1)-fold self product of Y over ¥.. When
n = 0, we write D(0) as D. The simplicial object D(e) forms a hypercovering of the final object in
Sh(X/3e¢inf), as in Proposition 3.1.2.7.

We fix a coherent crystal F on X/¥.,¢. Denote M (n) to be the group of sections F(D(n))
of F at D(n), D(n) to be Ox/s, (D(n)), J(n) to be the kernel for D(n) — Ox, and Q’b(n) to be
Oy )z, (D(n)). When n = 0, we use M and Q, to abbreviate M (0) and 2}, . Here we recall
that 0}, = QY 5, (D(n)) is isomorphic to the tensor product %, v ®o,, P(n) (Lemma
3.2.3.3), and is in particular locally free over D(n).

Cech-Alexander complex First we introduce the Cech-Alexander complex of a coherent Oy /5

sheaf F (not necessarily to be a crystal).
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We define M (e) to be the filtered cosimplicial cochain complex
M(e) := (F(D(0)) — F(D(1)) — ---),

where the coboundary map is given by the alternating sum of degeneracy maps, and the filtration
is the infinitesimal filtration whose i-th filtration at D(n) is J(n)* - F(D(n)). It is called the
Cech-Alexander complex of F.

Proposition 3.3.1.3. Let F be a coherent infinitesimal sheaf of Ox s, -modules as above. Then the
Cech-Alexander complex of F with its filtration computes the cohomology of F. Namely, we have a

functorial filtered isomorphism
RU(X/Yeing, F) = M(e),

in the filtered derived category of abelian groups.

Proof. We first notice that by Proposition 3.1.2.7 about the envelope, we have

RT(X/Seint, —) = RI(D(s),—) = R lim RT(D(n),-).

[n]eAcp

Moreover, replacing RI'(X /Y., —) by its filtered analogue, the same equality holds on filtered
sheaves over X /> .

Denote by Y'(n),, to be the m-th infinitesimal neighborhood of X in Y (n). Since X is the
common closed analytic subspace of every Y (n),,, Y (e),, forms a simplicial object in X/ ,s

with D(e) = lig 7y (e),, - This leads to the equality

RT'(D(e),—) =R Jim RT(Y (@), —).

meN

Notice that since Y (n),, is affinoid for each n, by the vanishing of cohomology for coherent sheaves

over affinoid rigid spaces, we know
RE(Y (@), F) = (Y (8)m, F).

Furthermore, by the coherence of F and the noetherian of O(Y (n),,), for each n € N the inverse
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system I'(Y (n),,, F) satisfies the Mittag-Leffler condition. In this way, we get

R lim RD(Y (), F) = R lim D(Y (e),,,, )

meN meN

= lim I(Y (o). F)

meN

=T (liny Y'(#),5, )

meN

= M(e).
O

Cech-Alexander and the de Rham We then connect the Cech-Alexander complex with the de
Rham complex together.
Consider the section of the de Rham complex (F ®o,, e % ISt V) at the simplicial space
D(n):
(M(n) @p(n) Vpny, V)-

This produces a double complex M™™ = M (n)®p(,) {2}, in the first quadrant, with the horizontal
coboundary map given by the alternating sum of degeneracy maps for simplicial space D(e), and the
vertical coboundary map being the de Rham differential V™. Note that the first column A/%* of this
double complex is the de Rham complex M @p Q3,, while the first row M0 is the Cech-Alexander
complex M (e). So this provides a natural framework for those two types of complexes that we care
about.

Moreover, the double complex is naturally filtered via the infinitesimal filtration Ox /s, D
TIxs. D Tz TR This is a descending filtration on the double complex, compatible with the

cosimplicial structure, such that the ¢-th filtration on the n-th column is the differential complex
J(n) — J(n) " Qpgy — - > J(0)Qpy — gy — -+

as a subcomplex of 27, ,. Here we recall J(n) is the kernel ideal of the surjection D(n) — Oy,
defined as Jx/s.(D(n)). Note that when X = Y are smooth over BXR@, the filtration on 2}, =
Q% /B is the usual Hodge filtration.

Furthermore, there are two canonical £ spectral sequences associated with the double complex

M™™ ([Stal8], Tag 0130), with the formations given by

'EPT = HY(M (p) XD(p) Q.D(10)>;
"EPY = HY(M(e) @pw) Ua))-
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Both of those two spectral sequences converge to the hypercohomology of the total complex
([Stal8], Tag 0132). The same applies when we replace the double complex by its i-th infinitesimal
filtration.

Now we make the following two Lemmas about degeneracy of those two spectral sequences:

Lemma 3.3.1.4. For each p > 0, the filtered cochain complex associated with the cosimplicial

complex with its infinitesimal filtration
M(e) ©pis) QI[))(.)

is filtered acyclic.

Lemma 3.3.1.5. Any degeneracy map D(p) — D induces an filtered quasi-isomorphism of the

following two de Rham complexes
M ®p Q) — M(p) @) Qb

that is functorial with respect to the crystal F.

We first assume those two lemmas above. By Lemma 3.3.1.4, the spectral sequence " EP"? is
filtered degenerated in its first page and is convergent to the cohomology of the Cech-Alexander
complex M (o) with its infinitesimal filtration.

On the other hand, Lemma 3.3.1.5 implies that the horizontal coboundary map of ' E}"? is given
by

HI(M ®p Q%) —2r HI(M ®p Q%) ——= HI(M ©p Q%)% - --

From this, the second page of 'E?*? vanishes everywhere except for the column ” ES *, which is
exactly the infinitesimal filtered de Rham complex M ®p 27,.

In this way, since both of those two spectral sequences are convergent to the total complex in the
filtered derived category, we get the filtered isomorphism between the de Rham complex M ®p 2%,
and the Cech-Alexander complex M (e). So by Proposition 3.3.1.3, we get Theorem 3.3.1.1. Here
the functoriality follows from that of Lemma 3.3.1.5 and Proposition 3.3.1.3.

Proof of Lemma 3.3.1.4 To complete the proof of Theorem 3.3.1.1, we first prove Lemma 3.3.1.4
in this paragraph.

We first give a proof for the special case when F is the structure sheaf and p = 1.

Lemma 3.3.1.6. The cosimplicial complex
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is locally cosimplicial homotopic to zero, as filtered cosimplicial abelian groups.

Before the proof of this Lemma, we first recall that a cosimplicial homotopic equivalence of

two maps f,g : U — V is defined as a cosimplicial morphism
h:U — Hom([1],V),

such that
hosy=f, hosi =g,

where s; : [0] — [1] are two co-face maps.

A cosimplicial object U is called cosimplicial homotopic to zero if its identity map is cosimplicial
homotopic to the zero map. Here we note that any additive functor F' that sends cosimplicial objects
to cosimplicial objects will preserve the cosimplicial homotopic equivalence.

We refer the reader to [Stal8, Tag 019U] for the discussion about cosimplicial homotopic

equivalence.

Proof. We first recall that since D(n) is the envelope of X = Spa(A) in the n + 1-folded self

product of ¥ over ¥, by Lemma 3.2.3.3 above, we have
QlD(’n,) = Q}D@n%»l/ze ®P®n+1 D(n)

Besides, any cosimplicial boundaries map P"*! — P! induces a map Qb = Upgy- So the
cosimplicial complex (x) is the tensor product of the cosimplicial complex Qpzess /5 along the
cosimplicial ring homomorphism

pPett — D(e).

Moreover, the i-th filtration of the cosimplicial complex (x) is
JTO, — J(1) 7 Qpy — J(2) 7 Qpg — -,
which is isomorphic to the fiber of a map between cosimplicial tensor products
(Q}m.ﬂ /Ze> D peest Do) —s (Q}DWI /Ee) Dposis (D(e)/J(e)1) .

Thus to show the filtered acyclicity, it suffices to show that the cosimplicial module Q}g.:. /5. is
homotopic equivalent to zero. Here we notice that when P = B, _(z;), each P®"*! is a ring of
convergent power series over Bl ., and the proof is totally identical to the case for polynomial

rings, which is done in [BdJ11], Example 2.16. In general, when P is smooth over Bije, it locally
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admits an étale morphism to an BjRﬁ(x,-). So the exactness is true locally, hence globally by a
éech—complex argument associated with a covering.
]

End of the proof for Lemma 3.3.1.4. Consider the filtered complex (*) as below:

As the statement is local, by shrinking to an open subsets of X and Y if necessary, we could assume
the complex (x) is filtered cosimplicial homotopic to zero as in Lemma 3.3.1.6. Then we apply
the p-th wedge product functor, and the tensor product functor M (e) ®p(.) — successively to the
cosimplicial complex (x), then the resulted cosimplicial complex is exactly the one in Lemma
3.3.1.4. But note that since any additive cosimplicial functor preserves the cosimplicial homotopic

equivalence, the resulted complex is also filtered homotopic to zero. So we are done. [l

Proof of Lemma 3.3.1.5 In this paragraph, we prove Lemma 3.3.1.5.
We first provide the following simpler description of the envelope D(p):

Lemma 3.3.1.7. Assume the BIR’e-algebra P admits an étale map from a ring of convergent
power series B;Rﬁ(xl, ..., @). Then the map of global sections of structure sheaves D — D(p)

associated with the degeneracy map D(p) — D induces an isomorphism
D(p) =D[[d;;,1 <i<p,1<j <],

where the right side is a ring of formal power series over the topological ring D.

The notation is explained as follows. The projection map Y (p) — Y of the p + 1-th self product
onto the first copy induces the zero-th degeneracy map D(p) — D. Then we can rewrite PP+ as
P, 1<i<p, 1<j<r),whered isdefinedasz; ®1®---®1-1®---Q2;®--- X1,

with z; being in the i-th copy of P in the second term.

Proof. We first consider the case when P is equal to the convergent power series ring.
Denote by J to be the kernel of the surjection P — A, and let I be the kernel of the map
Pentl — P By construction, the ring of sections D(p) = O(D(p)) is equal to the inverse limit

@ P®p+1/(J®...® 17])7—”7

meN

while D = O(D) is fm o P/J™. So to prove the lemma, it suffices to notice that the above

73



inverse limit is the same as the inverse limit

D(p) = lim(lim PP /(] & - 0 1))/ T"
neN meN
where [ is the image of I along the map P®P*! — lim _ PET/(J @@ 1)m

In fact, we have the following more general result:

Claim 3.3.1.8. Let R be a noetherian ring, and /, J be two ideals in R. Then we have a canonical
isomorphism

lim (Jim R/1")/J" — lim R/(I,J)™,

meN neN meN

where J is the ideal generated by the image of .J along the map R — T&lmeN R/I™.

Proof of the Claim. First notice that the sequence of ideals {(/, J)™} and {(I™, J™)} are cofinal

to each other, since
(™, J*™y c (I, J)*™ = (I'J*™ " 0<i<2m)c (™ Jm).

So the right side Jim R/(I,J)™ can be replaced by Wm o R/(I™, J™).

Then we notice that the R-algebra A := @meN(@neN R/I™)/J" is (I, .J)-adic complete
over R: To show this, by the [Stal8] Tag ODYC, it suffices to skAlow that the ring <@n€N R/I™)/J
is [-adic complete. We then note that (@neN R/I™")/J = R ®g R/J, where R 1As the /-adic
completion of R. Since R/.J is a finitely generated module over R, the tensor product R @ R/J is
the same as /-adic completion of R/.J. Thus the R-algebra A is (I, J)-adic complete. In particular,
we have

A=lmA/(I',J).

leN
At last, the quotient ring A/(I™, J™) is given as

A/, %) = (tim (lim R/ 1) [T™) (1, T

meN neN

= (im R/1")/(T',7)

neN

= R/(I', Y.
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So we get

lim (lim R/1")/J" =: A

meN neN
=~ Jim A/(1", J)
leN
— i R/(1', ).
leN

]

At last, let us assume P is a smooth affinoid algebra that admits an étale map to the ring of
convergent power series ;. By the claim above, the lemma is reduced to show that the formal
completion D(p) for P¥P™! — P is isomorphic to P[[d; ;]], which is proved in [BMS18, Section
13]. ]

Our next observation is about the Euler sequence for the degeneracy map D(p) — D. Denote
by QlD(p) /p to be the module of continuous differentials of D(p) over D under the (A(p))-adic
topology, where A(p) is the kernel ideal for the diagonal map D(p) — D. Then we have

Lemma 3.3.1.9. The Euler sequence for the projection map Y (p) — Y over 3. induces a natural

exact sequence of free D(p)-module:

where the map Q) ®@p D(p) — Q}j(p) sends dx; @ 1 to dxz;.

Proof. We consider the inverse limit of the Euler sequences of differentials for the triple Y (p),,, —
Y., = X, withm € N. Then by Lemma 3.2.3.3, we see the inverse limit T&nmeN(Q;m/Ee QO(Yim)
O(Y (p)m)) is isomorphic to the D(p)-module Q1 ®p D(p). Similarly the inverse limit

lm Q3,72

meN

1s isomorphic to Q})(p) /D In particular, we get the following sequence of D(p)-modules

To show the sequence is an exact sequence, we may assume P admits an étale map from the ring

of convergent power series Bije@:l, ..., x,). We apply Lemma 3.2.3.3 to the immersion X — Y
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and X — Y(p) =Y x --- x Y separately. Then we get an description of differentials as follows

Q) = P Ddxj, U,y = (D D(p)dz;) & ( D D(p)ddyy),
i=1 =t 2k

Here the projection map D(p) — D induced from Y (p) — Y produces the natural monomorphism

Qp — Qp)»
sending the generator dz; onto dz; in Qp, . This gives the injectivity from Q}, ®p D(p) into Q.

Moreover, by the explicit formula in Lemma 3.3.1.7 for ring of convergent power series, the
(0; ;)-adic continuous differential of D(p) over D is the free D(p)-module generated by dd; ;, for
1 <i<pand1 < 5 < r. This is exactly the cokernel of the injection above and is the free

D(p)-module generated by dd; ;. Thus we get the short exact sequence as expected.
[

We can construct the relative de Rham complex of D(p) over D, by taking wedge products
of QlD(p) /D and considering the relative differential operator. Then we have the following filtered

version of the Poincaré Lemma for infinitesimal differentials:

Lemma 3.3.1.10 (Poincaré Lemma). There exists a natural quasi-isomorphism to the relative de
Rham complex

Moreover, for each m € N, the natural induced map below is a quasi-isomorphism
D — Qb(p)/D/A(p)mHﬂ-

Proof. We first assume Y is a unit disc, and by Lemma 3.3.1.7 the ring D(p) is equal to the ring of
formal power series over D with coordinates d; ;. For the first argument, it suffices to show that the

augmented complex

is homotopic to 0, where N = pr. Using the coordinate interpretation, the complex () is an N-th

completed tensor product of the complex
0 — D — DJ[z]] = D[[z]]dx — 0

over D, where the map D[[x]] — D[[z]|dx is the D-linear relative differential. But since D contains
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Q, the relative differential is surjective with kernel being D, which proves the first statement in this
case. Moreover, notice that by writing down the differentials QiD(p) /D in terms of coordinates J; ;
by Lemma 3.3.1.7, the differential in the complex (x) preserves the degree. In this way, since the
quotient Qb(p) /D /A(p)™T17* kills exactly elements of degrees higher than m, we get the statement
about the quotient complex in this case.

In general, as the statement is étale local with respect to the smooth rigid space Y = Spa(P), we
may assume Y admits an étale morphism to an unit disc. Then the claim follows from a term-wise

base change formula in the complex (), thanks to Lemma 3.2.3.3. O

Here is another observation which we will need in order to compute the cohomology of

infinitesimal filtration.

Lemma 3.3.1.11. Let D(p) — D be the degeneracy map of envelopes as before, and let J(p),
J and A(p) be the kernel ideals for surjections Opy)y — Ox, Op — Ox and Opyy — Op

separately. Then for j < m in N, the natural map below is an isomorphism of O x-modules

T AP ARy —
(7T A), - T IARY T (7 TGP )

Proof. As the statement is local with respect to Y, let us first assume Y = Spa(P) admits an
étale map to a ring of convergent power series. By Lemma 3.3.1.7, D(p) is the formal power
series ring D|[J; ;]], and the ideal A(p) is generated by variables (J; ;). Notice that as the map
D[d; ;] — D|[d;]] is flat and the quotient ideals in the statement can be defined over DI[J; |, it
suffices to show the analogous statement for the polynomial ring D[9; ;|.

Then as the ring D[9; ;] is a free module over D with a basis given by monomials of ¢; ;, we could

INE
express elements z in D[d; ;] N (J™, J" L A(p),- -+, J" I A(p)?, J(p)™') using the coordinates

as below

x:arlo—i_ Z arllhdrll—i_ Z arlz.drlz—i_"'?

iy =1 riyl=2
ar, €J"", for0<n<j;
ar, € J™H forj<n<m+1;

ar, €D, forj>m+1.

Here 6"~ are monomials in §; ; with multi-indexes. Similarly we could do this for elements in
D[; ;)N (J™, -+, JITEA(p)I L, J(p)™* ), where in the obtained formula we replace j above
by j — 1. Compare those expressions, we see the statement in the lemma holds for D[é; ;]. So by
extending this along the flat map D[, ;| — DJ[[d; ;]], we get the result for D(p) = D][0; ;]].
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Now we are ready to prove the Lemma 3.3.1.5.
Proof for Lemma 3.3.1.5.

Step 1 We first deal with the underlying complexes and forget the infinitesimal filtration. Our goal is

to show that the natural map of complexes below is a quasi-isomorphism

M ®@p Qp — M(p) @p) Q)

The de Rham complex €23, is equipped with its Hodge filtration, defined by FQ$, = 0=¢Q3,.
By the Euler sequence in Lemma 3.3.1.9, the Hodge filtration of 27, induces a natu-
ral descending filtration on the relative de Rham complex Qb(p), whose graded piece is
97"V = b @ Ly -

Now consider the de Rham complex (M ®@p Q,, Vp) and (M (p) ®p(p) €23(,), V() of the
crystal F at D and D(p). The projection D(p) — D induces a map of complexes

M @ Q5 — M(p) D(p) .D(p)-

By the crystal condition, the base change of M along the map D(p) — D is exactly M (p).
Moreover, by the compatibility of the de Rham complexes, the filtration on Qb(p) induces a

filtration on M (p) ®p(p) Qp ) = M @p Q3. given by
F'(M(p) @) Qppy) = M @p F'Qp).

Each F'(M (p) ®p(y) Q7y,) is a subcomplex of M @p Q7, . since V' sends elements in
into M ® Qp, C M(p) ® Q). Moreover, the i-th graded factor of this filtration is

M @p Qp @b Qb

which by Lemma 3.3.1.10 is isomorphic to the M ®p 2, via the degeneracy map. In this

way, the projection D(p) — D induces a map of filtered complexes
M @p Qp — M(p) @) (), ()
which on each graded factor is an isomorphism . Hence the map (x) itself is an isomorphism,

by the spectral sequence associated with a finite filtration as in [Stal8, Tag 012K] .
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Step 2 We then show that the above quasi-isomorphism is filtered under the infinitesimal filtration.
More precisely, we claim the graded pieces of the following map in Step 1 is a filtered

quasi-isomorphism under their infinitesimal filtrations:

M Xp QID — M Xp QZD Xp Q.D(p)/D

Consider the (m + i)-th graded pieces for m € N. On the one hand, the (m + i)-th graded
pieces for the infinitesimal filtration on M ®p 93, induces a subquotient J™ - M ® Q¢ / J™+1
of the left hand side of the above. On the other hand, the (m + i)-th graded pieces for
infinitesimal filtration on M (p) @p(p) Q%, induces the following subquotient of the right
hand side:

T()"™* - M @p Oy © Ly /T (0)"

So we get the map of graded pieces as below
J"™ M@ Q)T — J(p)™ - M @p QU @p Uy p/J(0)" 0 ()

Here we note that as the ideal .J maps into J(p), the right hand side is an Op/J = Ox-linear

complex.
To show (xx) is a quasi-isomorphism, we need to subdivide the right hand side in a finer way.
We introduce a finite increasing filtration on the right hand side of (xx), whose j-th filtration
is
(J7 T A(p), - T A () 0, T ()T ) - M @p QU @p Qi /T (0)H
= complex ( (Jm, o I A(p), J(p)mﬂ) MO, (’)D(p)/J(p)m+1

s (I T ()™ ) M @ QU @ Q) /T () ).
The graded pieces of this filtration is the O x-linear complex

(Jm*', e ,JﬁlfjA(p)j*'7 J<p)m+1fo) . M ® le®
O p/ (T T A Y T T (p)™ )

We apply the Lemma 3.3.1.11 to this complexes, then the graded piece above can be rewritten
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as

JIM @ Q[T @p Alp) T QU n/Ap)
= complex (Jm_jM ® Qb /I T @ A(p)! /A(p) !
— J"IM @ Q% /T @p A(P)jle}D(p)/D/A(P)j

.

s TTIM @ Q[T @p /A (p))
= (J"TM @ Qp /") @p (A(p)j_.Q.D(p)/D/A(p)j+l_.) :

At last, by the graded version of relative Poincaré Lemma in Lemma 3.3.1.10, we have

0,721

A(p) QU p/Alpy 70 =
D, j=0.

In this way, the graded pieces of the right hand side of (xx) are zero, except for its zero-
th graded piece which is naturally isomorphic to J™M ® Q% /J™ . Hence (*x) is an

isomorphism, and we finish the proof.

]

Remark 3.3.1.12. Here we mention that the same study of the infinitesimal filtration works with
minor changes for schemes. In particular, the schematic analogue of the proof in [BdJ11, Theorem
2.12] can be improved into a filtered version, and we thus obtain the expected filtered isomorphism
in the crystalline theory, which is proved in different methods in [BO78, Theorem 7.23].

3.3.2 Global result

Now we generalize the computation of cohomology to the global situation, without assuming X
1s affinoid.

The very first result is about the global vanishing.

Proposition 3.3.2.1. Let X be a rigid space over ., and let F be a coherent crystal over X /¥ iys.
Then for each v > 0 and j € N, we have

RUX/EE*(j)j(/zE‘F@OX/ze Qé{/zeinf) = 0.

In particular, after applying the derived direct image Rux s, ., the truncation map of the de Rham
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complex induces a filtered quasi-ismorphism:
RUX/Ee*(f & Q;(/Ecinf> — RUX/EC*-F-

Proof. Recall from Subsection 3.1.3 that I'(U, ux/s,, +G) is defined as the 0-th cohomology
[(U/%eins, G), and similarly for its filtered analogue. So to show the vanishing of

RUX/EE*(j;j(/ze}— ® Vs, )

it suffices to do this locally and assume X is affinoid, together with a closed immersion into a smooth
rigid space Y over ¥.i,;. We then notice that by Proposition 3.3.1.3, Rux s, .(J- )]( /Ee}" ® Qfx /Zeinf)

is computed by the following cosimplicial complex:
PF& Qs (D) — JOPF & Qs (D() — JEPF @ gy, (D2)) — -+
which by Lemma 3.3.1.4 is homotopic to zero when 7 > 0. So we get the vanishing of
RUX/Ee*(j)j(/ze]: ® Qg(/zeinf)-

]

Now we can generalize Theorem 3.3.1.1 to the global case, without assuming the affinoid

condition:

Theorem 3.3.2.2. Let X — Y be a closed immersion of X into a smooth rigid space Y over ...
Let F be a coherent crystal over Oxx.,, and let Fp = l'glmeN Fy,, be the restriction of F at the
envelope D = Dx(Y) = %ﬂmeN Y., with its de Rham complex Fp ® €1},. Then there exists a

natural isomorphism in the filtered derived category of sheaves of abelian groups over X
RUX/Ee*f — fD & Q.D

Before the proof, we want to mention that the strategy is to produce a natural map between
those two complexes of sheaves of abelian groups, where the isomorphism will follow from the

affinoid computation.

Proof. By Proposition 3.3.2.1, the truncation map of the de Rham complex F Qo . 0% S "
F0] produces a canonical filtered isomorphism in the derived category of O x-modules

Ruxs «(F ® Qk/zeinf) — Rux/s..F.
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On the other hand, we recall that the envelope D = Dx(Y) is defined as the direct limit
%ﬂmeN hy, of representable sheaves, where Y,,, is the m-th infinitesimal neighborhood of X into Y.
In the infinitesimal topos Sh(.X /%, ,¢), the map from the envelope D to the final object 1 induces a

map of derived functors

RT(X/Sein, =) — RL(D, =) = Rlim RT(Y,, —).

Similarly for its filtered analogue.

We apply the natural transformation to the filtered de Rham complex F ® Q% /et and get

RT(X/Seunt, F © L, ) — Rlim BT (Yo, Fy,, @0y, O, 5,)

= RU(X, R lim Fy,, ®o,,, O, /x.)

meN

= RI(X, Fp ®o, Q}),

where the last equality follows from the observation that the inverse system {Fy, ®o,. Qs /Ee}m
admits a finite filtration, where each graded piece { Fy,, ®oy,, Q’g,m /s }m is a pro-coherent system
satisfying the sheaf vertion Mittag-Leffler condition ([BO78, Lemma 7.20]). Similarly for the
subcomplex J )7(”/’2:]: ® Q% ISt Notice that the map is functorial with respect to all locally closed
immersions (X, Y') into smooth rigid spaces. In particular, by varying X among all open subsets U
of X and considering the above map for locally closed immersions (U, Y'), we could enhance the

above into the sheaf version filtered morphism
RuX/EE*(f ® Q*.X/Eeinf) — 'FD ®D Q.D

Thus by composing with (the inverse of) the filtered isomorphism at the beginning, we get a natural

map in the filtered derived category of sheaves of abelian groups over X:
RUX/EG*.F — fD XRp Qb

At last, to show the filtered isomorphism, it suffices to check this by applying RI'(U, —) for all
open affinoid subspaces U in X, which we know by Theorem 3.3.1.1. Thus we are done.
O

As a consequence, we get a change of bases formula quite easily.

Proposition 3.3.2.3. Let X be a rigid space over 3., and ¢’ > e be an integer. Let F' be a crystal
in vector bundles over X /Y. ins, and F be the pullback of F' along the map of infinitesimal topoi
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Sh(X/Xeint) = Sh(X /X ing). Then there exists a natural isomorphism of complexes of sheaves of
B:{Rﬂl—modules as below
(Rux/s,»F') @5+ Blg, — Ruxs.F.
dR,e’ ’
Proof. We first notice that the natural morphism of infinitesimal sites X /> ;,r — X /Y ¢ induces

a canonical map in the derived category of sheaves over X
RUX/Ze,*./T"/ — RUX/EE*./T".

Moreover, as the target is B -linear, by the adjunction for the forgetful functor (from Bj; .-

modules to BjR7€,-modules) we get a natural map of complexes

(RUX/EE/*‘F/) ®é+ le_R,e — RUX/EE*‘F'

dR,e’/

So it suffices to show this adjunction map is an isomorphism.
Let us first assume there exists a closed immersion X — Y of X into a smooth rigid space over

Y. By Theorem 3.3.2.2, we have the following natural isomorphisms

RUX/Z)E,*-F/ — .F/ , ® QS /5
RUX/ge*JT" — Fp® Q.Dv

where D' is the envelope of X in Y, and D is the envelope of X in Y = Y x5, 3. where the latter
is smooth over X.. Notice that Oy~ is flat over ./, and the structure sheaves Op is flat over Oy~
(for it is defined as the formal completion of Oy~ along X — Y”). In this way, by the assumption
that 7' is a crystal in vector bundles, the complex F,, ® 2}, is a Bz{R’e,—linear bounded complex of
sheaves of flat B(J{R’e/—modules. Thus we get the equalities

(Rux/s,oF) @ Bl = (Fp @ 95) By,

+ +
BdR,e BdR,,e’

= (Fpr @ Q1) /€5,

which is then isomorphic to the complex Fp ® %, as the envelope D = Dx (Y') is equal to the
pullback of D' = Dx(Y") along the surjection B, ., — By . = Bz o /"
In general, let us denote X,¢ to be the basis of X,;, consisting of affinoid open subsets, which

is equipped with the rigid topology. The natural inclusion functor X,z C X4, then induces an
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equivalence of their topoi and derived categories of sheaves of abelian groups
D(Xiig) = D(Xag).

Now we notice that as an object in D(X,g), the derived tensor product (Ru X/ge,*]: " ®é+

B+
AR’ dR,e

is equal to the derived sheafification of the functor

Xag 2 U — (RF(U/Ee’ infa}—/) ®L BIR,e) :

+
BdR,e

Since U is an affinoid open subset, by the similar argument in the last paragraph the natural

adjunction map below is an isomorphism

RU(U/Seins, F') @ Bige — RL(U/Seint, F)-

+
BdR,e

Thus the derived tensor product (Rux s ,«F") ®é+ B . is naturally isomorphic to the derived
- dR,e’ ’

sheafification of the functor U — RI'(U/%cins, F), \;hich is exactly Rux s, .. So we are done by
the equivalence of the derived categories above. [
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CHAPTER 4

Deligne—-Du Bois Cohomology

In this chapter, we introduce the rigid analytic analogue of the Deligne-Du Bois complex,
namely the éh de Rham complex, which is the sheafification of the continuous de Rham complex
over the éh topology of a rigid space X, where the notion for algebraic varieties was first by Geisser
[Gei06], modified by the i fopology of Voevodsky [Voe96]. The results of this chapter first appeared
in [Guo19, Section 2, 5, 6].

We start by introducing the notion of the €h topology for a rigid space X in Section 4.1. It
is defined on the category of all rigid spaces over X, and the coverings are generated by étale
morphisms, universal homeomorphisms, and blowups. Thanks to the desingularization of rigid
spaces by Temkin ([Tem12]), we in particular show that the éh topology of X is always locally
smooth (Corollary 4.1.4.8): X can always be covered by smooth rigid spaces. We then consider the
¢éh sheaf of continuous differentials in Section 4.2, which is defined as the sheafification of the sheaf
of continuous Kéhler differentials under the €h topology. Our main result is Theorem 4.2.1.1, where
we show that the cohomology of éh differentials coincides with the cohomology of usual continuous
Kihler differentials when X is smooth. At the end of the chapter, we prove some finiteness and
cohomological boundedness for the cohomology of éh differential, using the aforementioned result

and the cohomological descent.
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4.1 éh-topology

In this section, we introduce the éh-topology and study its local structure.

4.1.1 Rigid spaces

We first give a quick review about rigid spaces, following [Hub96].

Let K be a complete non-archimedean extension of QQ,,. Denote by Rig - the category of rigid
spaces over Spa( K ); namely its objects consist of adic spaces that are locally of finite type over
Spa(K, Ok). Then for any X € Rigy, it can be covered by affinoid open subspaces, where each
of them is of the form Spa(A, A™) with A being a quotient of the convergent power series ring
K(Ty,...,T,) for some n. Here A" is an integrally closed open subring of A that is of topologically
finite type over Ok, and A is complete with respect to the p-adic topology on K. By the finite
type condition it can be showed that any such A™ is equal to A°, the subring consisting of all
power-bounded elements in A ([Hub94], 4.4). So to simplify the notation we abbreviate Spa(A, A°)
as Spa(A) in this setting. Unless otherwise mentioned, in the following discussion we always
assume X to be a rigid space over Spa(K).

For each adic space X, we can define two presheaves: Oy and OF, such that when the affinoid

space U = Spa(B, B*) C X is open and B is complete, we have
Ox(U) = B, O%(U) = B*.

It is known that for any X € Rig, both Ox and (9} are sheaves. We could also define the coherent
sheaves over rigid spaces, in a way that locally the category Coh(Spa(B)) of coherent sheaves over
Spa(DB) is equivalent to the category Mod,(B) of finitely presented B-modules ([KL16, Theorem
2.3.3]). An important example of coherent sheaves are continuous differentials Q)Y Iy for a map of
rigid spaces X — Y, which is a coherent sheaf of Ox-module over X ([Hub96, Section 1.6]). !
Locally for a map of affinoid algebras A — B, it could be defined by taking the p-adic completion
and inverting p at the algebraic differential module of By over Ay, where Ay — By is a map of
topologically of finite type rings of definition over O.

Recall that a coherent ideal is defined as a subsheaf Z of ideals in Oy that is locally of finite
presentation over Ox. Itis known when X = Spa(A) € Rigy, there is a bijection between coherent

I'To simplify notations, we always use Q2 to denote the continuous differential sheaves in our article, instead of
algebraic ones. We will explicitly mention it when the latter comes up.
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ideals Z of X and ideals of A, given by

I —T(X);

T+l
Here 1 is the sheaf of O v module associated to
U I®40x(U).
For a coherent ideal Z, we can define an analytic closed subset of X, by taking
Z ={2x€X|Ox,#Ix.}={rveX||f(x)]=0,VfeTI}

The subset Z has a canonical adic space structure such that when X = Spa(A) and Z = I, we have
Z = Spa(A/I,(A/I)°) =V (I).

4.1.2 Blowups

Before we introduce the éh-topology on Rig -, we first recall the construction of blowup in rigid
spaces, following [Con06], 4.1.

Let X € Rig, be a rigid space, and let Z C Ox be a coherent ideal. Then for any U =
Spa(B) C X open, Z(U) C B is a finitely generated ideal of B. Let Z = V (Z) be the closed rigid
subspace defined by Ox /Z, where as a closed subset V(Z) = {x € X | Z, # Ox_,} is the support
of Ox/Z. Then following Conrad [Con06], 2.3 and 4.1, we define the blowup of X along Z as
follows:

Definition 4.1.2.1. The blowup Bl (X) of X along Z is the X -rigid space

Proj™ (P 1),

neN

which is the relatively analytified Proj of the graded algebra @, . L™ over the rigid space X (see
[Con06], 2.3).

It is called a smooth blowup if the blowup center Z is a smooth rigid space over K.

Remark 4.1.2.2. As a warning, our definition for the smooth blowup is different from some existing

contexts, where both X and Z are required to be smooth.

When X = Spa(A) is affinoid, the blowup of rigid space is in fact the pullback of the schematic
blowup Bl;(Spec(A)) of Spec(A) at the ideal I along the map Spa(A) — Spec(A) of locally
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ringed spaces. Namely, the following natural diagram is cartesian

Bly(1)(Spa(A)) — Bl;(Spec(A))

J |

Spa(A) Spec(A).

This follows from the universal property of the relative analytification functor as in [Con06] 2.2.5
and 2.2.3: for a given rigid space Y, there exists a functorial bijection between the collection
of morphisms h : Y — Bly ;) (Spa(A)) of rigid spaces over Spa(A), and the collection of the

following commutative diagram

T L Bl (Spec(A))
Spa(A) Spec(A),

where f is a map of locally ringed spaces and ¢ is a morphism of rigid spaces.

As what happens in the scheme theory, Bl (X) satisfies the universal property (see [Con06]
after Definition 4.1.1): for any f : ¥ — X in Rigj such that the pullback f*Z is invertible, it
factors uniquely through Bl;(X) — X. This leads to the isomorphism of the blowup map when
it is restricted to the open complement X\ Z. Besides, it can be showed by universal property
that rigid blowup is compatible with flat base change and analytification of schematic blowup (see
[Con06], 2.3.8). Precisely, for a flat map of rigid spaces g : Y — X (i.e. Oy, is flat over Ox , for
any y € Y over z € X), we have

Bl,.z(Y) = Bly(X) xx Y.

When X = X" is an analytification of a scheme X, of finite type over K, with Z being defined by

an ideal sheaf Z, of O, we have
Blz(X) = Blg, (Xo)™.

We also note that the blowup map Bl (X) — X is proper. This is because by the coherence of
7, locally Z can be written as a quotient of a finite free module, which (locally) produces a closed
immersion of Blz(X) into a projective space over X, thus is proper over X. Moreover, if both
the center Z and the ambient space X are smooth over K, then the blowup itself Bl (X) is also

smooth.
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4.1.3 Universal homeomorphisms
Another type of morphisms that will be used later is the universal homeomorphism.

Definition 4.1.3.1. Ler f : X' — X is a morphism of rigid spaces over K. It is called a universal
homeomorphism if for any morphism of rigid spaces g : Y — X, the base change of f to
X' xx Y =Y is a homeomorphism.

The following proposition gives a criterion of universal homeomorphisms of rigid spaces:

Proposition 4.1.3.2. Let f : X — Y be a morphism of rigid spaces over Spa(K). Then it is a

universal homeomorphism if and only if the following two conditions hold
(i) f is a finite morphism of rigid spaces.

(ii) For any pair of affinoid open subsets V = Spa(A) C Y and U = f~1(V) = Spa(B), the

corresponding map of schemes
f : Spec(B) —> Spec(A)

is a universal homeomorphism of schemes.

Proof. Assume f is a universal homeomorphism. Let x € X be a rigid point. Since the map f is
quasi-finite, by [Hub96, 1.5.4] there exists open neighborhoods U C X of z and V' of f(z) such
that f(U) C V and f : U — V is finite. We may assume both U and V" are connected. On the one
hand, the finiteness of f : U — V implies the image of U is closed. On the other hand, as f is
a homeomorphism, f(U) is open in Y, and thus open in V. Combine both of those, we see V' is
exactly equal to f(U) with U = f~}(V). So by the density of the rigid points x € X, there exists
an open covering V; of Y such that f~1(V}) is finite over V;. Hence we get the finiteness of f.

To check the universal homeomorphism for corresponding map of affine schemes, we recall from
the Stack Project [Stal8, Tag 04DC], that f : Spec(B) — Spec(A) is a universal homeomorphism
of schemes if and only if it is integral, universally injective and surjective. Since both A and B are

K -algebras, where K is an extension over Q,, it suffices to show the following claim.

Lemma 4.1.3.3. Let f : Spa(B) — Spa(A) be a universal homeomorphism of affinoid rigid spaces.
Then the induced map of affine schemes f: Spec(B) — Spec(A) is integral, bijective, and induces

isomorphisms on their residues fields.

Proof of Lemma. As we just showed above, the map of affinoid algebras A — B is finite, thus fis
a finite (hence integral) map of schemes.

For the rest of the claim, we first consider its restrction on closed points. Let 3 be a closed
point of the scheme Spec(A), whose residue field x(y) is a finite extension of the p-adic field K.
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The defining ideal of 7 in the scheme Spec(A) induces a unique rigid point y of the rigid space
Y = Spa(A), whose residue field is equal to ~(y). By assumption, the base change of the universal
homeomorphism f along the closed immersion {y} — Y induces a universal homeomorphism
X, = Spa(k(y)) Xspa(a) Spa(B) — Spa(k(y)), whose natural map to X = Spa(B) is a closed
immersion. This implies that the reduced subspace of X, is a rigid point in Spa(B), and the
corresponding closed subscheme inside of Spec(B) is supported at a unique closed point. Here we
also notice that the residue field of X, is a finite separatble extension of x(y). Moreover, applying
the universal homeomorphism at the base change X, Xgpa(x(7)) Xy — Xy, We see the residue field
of X, is isomorphic to k(). As a consequence, the map finduces a bijection and isomorphisms of
residues fields when restricted to their closed points.
To finish the proof, it suffices to extend the claim for non-closed points. The bijection of
f : Spec(B) — Spec(A) follows from the density of closed points. To see this, we may assume
Spec(A) is irreducible. Then as fis a finite morphism whose image contains all closed points, we
get the surjectivity of f. For the injectivity, by the homeomorphism between Spa(B) and Spa(A),
the scheme Spec(B) admits a unique irreducible component (hence a unique generic point), and
has the same dimension as Spec(A). At last, as the induced map of fon the generic fields is finite
and separable, its isomorphism follows from the bijection of points. So we are done.
]

Conversely, assume [ satisfies the two conditions as in the statement. We first notice that both
items in the statement are invariant under any base change of rigid soaces. We let V' = Spa(A) and
f~Y(V) = Spa(B) be two open affinoid open subsets of Y and X separately. Note that since f is
finite, for a morphism of affinoid rigid spaces Spa(C) — Spa(A), the base change Spa(C') Xgpa(a)
Spa(B) is exactly Spa(B @4 C) ([Hub96, 1.4.2]). In particular, we see Spa(C) Xgpaa) Spa(B) —
Spa(C) is a finite morphism of rigid spaces, with the underlying map of schemes being a universal
homeomorphism. As a consequence, both of the two conditions in the statement above are base
change invariant, and to show f : X — Y is a universal homeomorphism of rigid spaces, it suffices
to show that f itself is a homeomorphism. Moreover, by the finiteness, as the map f is both closed
and continuous, we are only left to show the bijectivity of f, as a map of rigid spaces.

Now we pick any point y € Y, and consider the completed residue field with its valuation
ring (k(y), k(y) ™) of y. We take an open affinoid neighborhood V' = Spa(A) of y with f~(V) =
Spa(B). Then the base change of the map Spec(B) — Spec(A) of schemes gives

Spec(B ®4 k(y)) — Spec(k(y)),

which is a universal homeomorphism by assumption. Here the target has exactly one point,

and by finiteness we have B ®4 k(y) = B®4k(y). So by assumption the reduced subscheme
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Spec(B®k(y))req is equal to k(y) (since they are of characteristic 0). We then note that the adic
spectrum
Spa(B&ak(y), B° @4 k(y)")

is exactly the preimage of y in the rigid space X along the morphism f. Notice that the integral
closure of k(y)™ in k(y) is contained in the quotient ring of B° ® 4o k()™ by its nilpotent elements,
which has to be k(y) ™ itself (as the integral closure is contained in the field k(y) and is finite over
k(y)™). In this way, the preimage f~!(y) has exactly one point = whose residue field with valuation

is equal to (k(y), k(y)™). Hence f is bijective, and thus a homeomorphism. O

At last, when the target is assumed to be a smooth rigid space, there is no nontrivial universal

homeomorphisms:

Proposition 4.1.3.4. Ler X be a smooth rigid space, and X' be a reduced rigid space. Then any

universal homeomorphism f : X' — X is an isomorphism.

Proof. By the Proposition 4.1.3.2, every universal homeomorphism f : X’ — X can be covered
by morphisms of affinoid spaces Spa(B) — Spa(A), where the underlying morphism of schemes
Spec(B) — Spec(A) is a universal homeomorphism. So it suffices to show that when X =
Spa(A) is a smooth affinoid rigid space over Spa(K'), A is a seminormal ring (so any universal
homeomorphism Spec(B) — Spec(A) from a reduced scheme is an isomorphism). But note that
by the smoothness of X, A is a regular ring (by [Hub96] 1.6.10, locally X is étale over the adic
spectrum of Tate algebras K (7;), which is regular). So A is normal, and thus seminormal. [

4.1.4 éh-topology and its structure

Now we can introduce the éh-topology on Rig.

Definition 4.1.4.1. The éh-topology on the category Rig . is the Grothendieck topology such that
the covering families are generated by the following types of morphisms:
* étale coverings;

* universal homeomorphisms;

* coverings associated to blowups: Blz(X)U Z — X, where Z is a closed analytic subset of
X.
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In the sense of Grothendieck pretopology in [SGA72] Exposé 1.1, this means that a family of maps
{Xo — X} isinthe set Cov(X) if { X, — X} can be refined by a finitely many compositions of
the three classes of maps above.

We denote by Rigy 4, the big ¢h site on Rigy given by the éh-topology. For a given rigid space
X over K, we define X, as the localization of Rig 4, on X (in the sense of [Stal8, Tag 00XZ],
i.e. it is defined on the category of K-rigid spaces over X with the éh-topology.

Remark 4.1.4.2. 1. We notice that a covering associated to a blowup Blz(X)U Z — X is
always surjective: by the discussion in the Subsection 4.1.2, Blz(X) — X is an isomorphism
when restricted to X'\ Z.

2. Among the three classes of maps above, a covering associated to a blowup is not base change
invariant in general. But note that for any morphism Y — X, the pullback of the blowup
X' =Blz(X) — X along Y — X can be refined by the blowup

BlyXXz(Y)HY Xx A

\

YXXBlz<X)HY Xx ZﬁBlz(X)HZ

| l

Y X.

We call Bly ., z(Y) [[ Y X x Z the canonical re finement for the base change of the blow up.

3. Though denoted as X, this site is still a big site. As an extreme case, when X = Spa(K),

the site X, is identical to Rigy ¢,

Remark 4.1.4.3. Here we note that our definition of éh-topology is different from h-topology. One
of the main differences is that the éh-topology excludes the ramified covering.

For example, consider the n-folded cover map of the unit disc to itself f : B' — B!, which
sends the coordinate 7" to 7™. Then f is a finite surjective map that is relatively smooth at all the
other rigid points except at 7' = 0, where it is ramified. If f is an éh-covering, by the Theorem
4.1.4.11 which we will prove later, f can be refined by finite many compositions of coverings
associated to smooth blowups and étale coverings. Notice that étale coverings are unramified maps
that preserve the smoothness and dimensions. Moreover, smooth blowups of a one dimensional
smooth rigid space are isomorphic to itself. In this way, such a finite composition will not produce a

covering that is ramified at any rigid points, and we get a contradiction.
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Example 4.1.4.4. Let X be a rigid space. We take X’ = X4 to be the reduced subspace of X.
Then X’ — X is a universal homeomorphism, which is then an éh-covering. So in the éh-topology,

every space locally is reduced.

Proposition 4.1.4.5. Let X be a quasi-compact quasi-separated rigid space over K. Assume X;
fori=1,...,n areirreducible components of X (see [Con99]). Then the map

=1

is an éh-covering.

Proof. We first claim that the canonical map 7 : Bly, (X) — X factors through | J,.; X; — X;in
other words, the image of = is disjoint with X\ ([J,.; Xj).
Let z € X;\(J,, Xi) be any point. Take any open neighborhood U C X;\(J

contains x. Then the base change of 7 along the open immersion U — X becomes

X;) that

i>1

BlUﬂX1<U) — U,

by the flatness of U — X and the discussion in the Subsection 4.1.2. But by our choice of U,
the intersection U (] X; is exactly the whole space U, which by definition leads to the emptiness
of Blynx, (U). Thus the intersection of Bly, (X) with p~!(U) is empty, and the point z is not
contained in the image of 7.

At last, note that the claim leads to the following commutative diagram

Blx, (X) [T X4 X,

T~

(Uis1 X3) TT X0

which shows that the map (| J,., X;) [[ X1 — X is also an éh-covering. Thus by induction on the

i>1
number of components n, we get the result. 0

Here we define a specific types of éh-covering.

Definition 4.1.4.6. For an éh-covering [ : X' — X of rigid spaces, we say it is a proper éh-
covering if f is proper, and there exists a nowhere dense analytic closed subset Z..q C X,cq such
that

Flr100\Z)ea + f 7 (Xred\ Zred) — Xred\ Zred

is an isomorphism.
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As an example, a covering associated to a blowup for the center being nowhere dense is a proper
éh-covering.
The idea of allowing blowups in the definition of the éh site is to make all rigid spaces éh-locally

smooth. To make this explicit, we recall the Temkin’s non-embedded disingularization:

Theorem 4.1.4.7 ([Tem12], 1.2.1, 5.2.2). Let X be a generically reduced, quasi-compact rigid
space over Spa(K). Then there exists a composition of finitely many smooth blowups X,, —
X1 — = Xo =X, such that X,, is smooth.

Corollary 4.1.4.8 (Local smoothness). For any quasi-compact rigid space X, there exists a proper
éh-covering f : X' — Xieq such that X' is a smooth rigid space over Spa(K). Moreover, f is a

composition of finitely many coverings associated to smooth blowups.

Proof. By the Temkin’s result, we may let X,, — - -+ — Xy = X,.q be the blowup in that Theorem,
such that the center of each p; : X; — X,_; is a smooth analytic subset Z; ; of X; ;. Then by

taking the composition of the covering associated to the blowup associated to each p;, the map
X=X, [[(Ui2) Zi) = Xrea

is a proper éh-covering, such that X’ is smooth. So we get the result. [

At last, we give a useful result about the structure of the éh-covering. In order to do this, we

need the embedded strong desingularization by Temkin:

Theorem 4.1.4.9 (Embedded desingularization. Temkin [Tem18], 1.1.9, 1.1.13). Let X be a quasi-
compact smooth rigid space over Spa(K), and Z C X be an analytic closed subspace. Then there
exists a finite sequence of smooth blowups X' = X,, — --- Xo = X, such that the strict transform

of Z is also smooth.

Corollary 4.1.4.10. Any blowup [ : Y — X over a smooth quasi-compact rigid space X can be

refined by a composition of finitely many smooth blowups.

Proof. Assume Y is given by Blz(X), where Z C X is a closed analytic subspace. Then by the
Embedded desingularization, we could find g : X’ — X to be a composition of finitely many
smooth blowups such that the strict transform Z’ of Z is smooth over K. Here the total transform
of Zis g7 (Z) = Z' U Ez, where Ey is a divisor. Next we could blowup Z’ in X’ and get
h : X" — X'. Note that h itself is a smooth blowup. In this way, the composition h o g is a
composition of finitely many smooth blowups that factorizes through f : ¥ — X, by the universal

property of f and the observation that the preimage of Z along h o g is the divisor
Y Z"YUh Y (Ey).
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Theorem 4.1.4.11. Let X € Rigy be a quasi-compact smooth rigid space and f : X' — X be an
éh-covering. Then f can be refined by a composition of finitely many étale coverings and coverings

associated to smooth blowups over X.

Proof. By the definition of the éh-topology, a given éh-covering f could be refined by a finitely
many compositions of étale coverings, universal homeomorphisms, and coverings associated to
blowups. So up to a refinement we may write fas f : X' = X, - X,, ;1 — -+ = Xg = X,
where each transition map f; : X; — X;_; is one of the above three types of morphisms.

Now we produce a refinement we want, by doing the following operations on f starting from
1= 1:

e If X; — Xy is an étale morphism, then we are done for this 7 = 1.

* If X; — Xy is a universal homeomorphism, then by the Proposition 4.1.3.4 we may take the
reduced subspace of X, which is isomorphic to X, and thus is smooth.

o If X; — X, is a covering associated to a blowup, then by the Proposition 4.1.4.10, the
associated blowup can be refined by finitely many compositions of smooth blowups. We
let X; — X be the disjoint union of that refinement with all of the centers. Then we
take the base change of X,, — --- — Xj along X| — X, and get a new coverings
Xpxx, X — - =X = Xo=X,ie.

! /
Xy Xx, X —> o —= X

|

Xn X1 XOIX

Furthermore, starting at j = 2, we do the following operation and increase j by 1 each
time: If X; — X,_; is a covering associated to a blowup, we refine the map X; x x, X| —
X1 xx, X] by its canonical refinement X} — X; 1 x X (see the Remark 4.1.4.2), and
take the base change of the chain X, x x, X| — -+ — X xx, X] along X} — X xx, X|.2

After the discussion of the above three possibilities, X,, — --- — X is refined by finitely many
compositions X! — --- X] — X such that

* X{ — X is a composition of finitely many étale coverings and coverings associated to

smooth blowups;

2The covering associated to a blowup is not preserved under the base change, thus we need to adjust all of the maps
in X, xx, X{ — -+ — X] so that they will then become exactly those three types of morphisms.
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* X! — X is a composition of n — 1 éh-coverings by étale coverings, coverings associated to

blowups, or universal homeomorphisms.

In this way, we could do the above operation for X — X! ; and i = 2,..., each time get a new
chain of coverings X/ — --- X such that X" — Xj is a finite compositions of smooth blowups
and étale coverings, and X' — X/ is a composition of n — i coverings of three generating classes.
Hence after finitely many operations, we are done.

O]

Corollary 4.1.4.12. Any éh-covering of a quasi-compact rigid space X can be refined by a compo-
sition

Xy — X| — XO = X,
where X1 = X,eq, the map Xy — X is equal to finitely many compositions of étale-coverings and

coverings associated to smooth blowups, and X5 is smooth over K.

Proof. Let X’ — X be a given éh-covering. By the Example 4.1.4.4, X; = X,.q — Xp is
an €h-covering. And by the local smoothness of éh-topology (Corollary 4.1.4.8), there exists a
composition of finitely many coverings associated to smooth blowups Y; — Xj, such that Y}
is smooth. So the base change of X’ xx X; — Xj along Y7 — X; becomes an éh-covering
whose target is smooth and quasi-compact. Hence by the Theorem 4.1.4.11 above, we could refine
X' xY] — Y] by X5 — Y7, where the latter is a finitely many composition of étale coverings and
coverings associated to smooth blowups. At last, notice that an étale map or a smooth blowup will

not change the smoothness. Hence the composition Xy — X; — X, satisfies the requirement. [

4.2 éh-descent for the differentials

In this section, we prove the descent for the éh-differential of a smooth rigid space X € Rigy,
where K is any p-adic field (not necessarily algebraically closed). At the end of the section, we
apply the éh-descent to the case when X is coming from an algebraic variety, to relate the éh
cohomology to the Deligne-Du Bois complex (cf. [DB81], [PSO8, Section 7]).

4.2.1 éh-descent

We will follow the idea in [Gei06], showing the vanishing of the cone C' for QJX K R, Qgh
by comparing the étale cohomology and €h cohomology.

Our main theorem is the following.

Theorem 4.2.1.1 (éh-descent). Assume X € Rigy, is a smooth rigid space over Spa(K). Then for
each j € N, we have
Rmx.$Y), = ROmx.Q2,[0] = Q% .
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Remark 4.2.1.2. When i = j = 0, the section Og,(X) of the éh-structure sheaf on any rigid space
X is O(X*"), where X*" is the semi-normalization of X .q. In other words, Og, = O*". This

follows from [SW20], 10.2.4.

We first show the long exact sequence of continuous differentials for coverings associated to

blowups.

Proposition 4.2.1.3. Let [ : X' — X be a blowup of a smooth rigid space X along a smooth and
nowhere dense closed analytic subset i : Y C X, with the pullback g : Y' = X' xx Y — Y. Then
the functoriality of Kdhler differentials induces the following distinguished triangle in the derived
category of X:

W/ — RED ) D18y g — 1. R Yy (%)

Proof. We first note that since the argument is local on X, it suffices to show for any given rigid
point x € X, there exists a small open neighborhood of x such that the result is true over that. So we
may assume X = Spa(A) is affinoid, admitting an étale morphism to B}, = Spa(K (z1,...,2,))
by [Hub96] 1.6.10, and Y is of dimension r, given by the Spa(A/I) for an ideal I of A. Moreover,
by refining X to a smaller open neighborhood of z if necessary, we could choose a collection of
local parameters fi, ..., f. and ¢, ..., g, at x, such that {g;} locally generates the ideal defining
Y in X. In this way, by the differential criterion for étaleness (see [Hub96], 1.6.9), we could assume

Y — X is an étale base change of the closed immersion
By — B%.

In particular, the blowup diagram for Bly (X) — X locally is the étale base change of Blg: (B} )
along X — B%.
Then we notice that the blowup of B" along B" is equivalent to the generic fiber of the p-adic
(formal) completion of the blowup
Ap, — Ap,.

Furthermore, as proved in [Gro85, IV. Theorem 1.2.1], there exists a natural distinguished triangle

as follows

Q?&"/OK > Rf*Q{ESIM(A”)/OK eai*ﬂfw/(’);( > i*Rg*QélAr(A")XAT/OK' ()

Now we make the following claim:

Claim 4.2.1.4. The sequence (x) for (X,Y") = (B, B’ ) can be given by the generic base change
of the derived p-adic completion of the distinguished triangle ().

97



Granting the Claim, since both derived completion and the generic base change are exact

functors, we are done.

Proof of the Claim. We first notice since Ap, = Spec(Ok|[T1, ..., T,]) is p-torsion free (thus flat
over Of), by [Stal8] Tag 0923, for a complex C' € D(Ap, ) its p-adic derived completion is given
by

Rlim(C ®¢, Ok /p"O).

Moreover, note that differentials of Ag,, Ap, , Blag, (A%, ) and Blyy B (AD,) x ap Ao, over
Ok are all flat over Ox. We use the notations A7, and A7, to abbreviate the schemes Af, Jpm and
A, Jpm separately. Then the derived base change of (xx) along O — Ok /p™ can be written as
the following

Do s0re sy — BRI, (amyr0se sy D 15 j0respmy = 16 RI, . (/O 1)

(¢ % %)

Here we use the formula Q{, 0 ®0K Ok /p" = Q for a smooth O -scheme Y, together

/(Ox /pm
with the derived base change formula for a proper ingr/pphism ([Stal8, Tag 07VK]). Hence the
derived p-adic completion of (xx) is then computed by the derived limit of (>x< %) form € N.

At last we discuss those derived limits term by term. For C,, = An /(O Jpm) OF C,, =
i*QJMn (O /™) since their transition maps are surjective, the derived limit has no higher cohomology

and we have

) ; PN c g ey
R@QA%/(OK/I?T") - Q‘&n/OKJ nglZ*QA;n/(OK/pm) o Q&T/OK.

For C,,, = Rf. QBIM ALY /(O fpm) OF @ Rg*QBlM (A YXAT /(O /p™)* recall we have the formula

m m

of the derived functors

Rf.Rlim = Rlim Rf..

Apply the formula, we get

RYm R, gy yonpm) = BRI Oy g o

_ J
= By Gnjor

— J
The analogous holds for C,,, = @*Rg*QBan (A7) AT/ (O [p™)-
In this way, the derived limit of (x * *) is isomorphic to

j j j
Q% — R ()0 Pi. QA/O — iRy

An /O 2 (Am)xAr O
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At last, we take the base change of this distinguished triangle along Z, — Q,, then we get (x)

for the pair of discs.
O]

]

Corollary 4.2.1.5. Under the above notation for the smooth blowup, we get a natural long exact

sequence of étale cohomology of continuous differentials:

o — W (Xa, QZX/K) — (X, QiX//K) D B (Yo, Q%’/K) — (Y} Q;’/K) -

étr

Similarly there exists a long exact sequence of the covering associated to a blowup for the

€h-cohomologies:

Proposition 4.2.1.6. Let f : X' — X be a morphism of rigid spaces over Spa(K), Y C X be a
nowhere dense analytic closed subspace, andY' =Y X x X' be the pullback. Let X be separated.

Assume they satisfy one of the following two conditions:
(i) X' — X is a blowup along Y.

(ii) X is quasi-compact, Y is an irreducible component of X, and X' is the union of all the other

irreducible components of X
Then the functoriality of differentials induces a natural long exact sequence of cohomologies:
- (Xa, Qéh) — (X Qéh) @D W (Yau, Qéh) - Hj(tha Qéh) —
where 0%, is the éh-sheafification of the i-th continuous differential forms.

Proof. For the rigid space Z € Rigy, we denote by h  the abelianization of the éh-sheafification
of the representable presheaf
W — Homgpa(i) (W, Z).

Then for an éh sheaf of abelian group F, we have
W (Za, F) = Extl, (hz, F),

since hy is the final object in the category of sheaves of abelian groups over Zg,. So back to the

question, it suffices to prove the exact sequence of éh-sheaves

0—>hy,—>hx,@hy—>hx—>o
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for above two conditions.

Assume « : Z — X is a K-morphism. Then since X' [[Y — X is an éh-covering (see 4.1.4.1,
4.1.4.5), the element o € hx(Z) is locally given by amap Z xx (X' [[Y) — (X'[[Y), which is
an element in hx/(Z xx X') P hy (Z xx Y), so we get the surjectivity.

Now assume (D> n,3,, > msys) is an element in hx/(Z) @ hy (Z) whose image in 0 is hx (Z).
After refining Z by an admissible covering of quasi-compact affinoid open subsets if necessary,
we may assume Z is quasi-compact affinoid. By taking a further éh-covering of Z, we may also
assume Z is smooth and connected, given by Z = Spa(A) for A integral.

Then we look at the composition of those maps with (f,7) : X'[[Y — X.

e Assume f o 31 = f o 35 for some elements ;.

In the first setting of the Proposition, since X’ — X is a blowup along a nowhere dense
(Zariski) closed subset, the restriction of 3, and 3, on the open subset Z\ f~1(Y") coincides.
So by the assumption that Z is integral (thus equal-dimensional), we see either the closed
analytic subset f~!(Y") is the whole Z and both 3; and 3, comes from Z — Y xyx X' =Y,
or f~1(Y") is nowhere dense analytic in Z. If f~1(Y") is nowhere dense in Z, 3, and 3, agrees
on an Zariski-open dense subset of Z. So by looking at open affinoid subsets of X', the

separatedness assumption implies that 5; = 5 (see [Har77], Chap. II Exercise 4.2).
In the second setting, note that X’ — X is a closed immersion. So f o 51 = f o 35 implies

Br = Pa.

* Assume ¢ o y; = 7 o 7, for some elements ;. Then we get the identity of ; and 7, again by

the injectivity of the closed immersion i : Y — X.

* Assume there exists a equality f o 3; = i o 7;. Since the composition f o /3; is mapped inside
of the analytic subset Y C X, the map 3; : Z — X' factors through 7 — X' xx Y =Y.
So 3; comes from hy+(Z), and by the injectivity of Y — X again 7; comes from hy (7).

In this way, by combining all of those identical 3; and +y; and canceling the coefficients, the rest of
- n.Br, > myy,) are all coming from hy(Z), thus the middle of the short sequence is exact.

At last, injectivity of hy: — hx: @ hy follows from the closed immersion of Y" — X’. So we
are done. ]

Remark 4.2.1.7. The part (ii) of the Proposition 4.2.1.6 can be regarded as an €h-version Mayer-

Vietories sequence.

Proof of the Theorem 4.2.1.1. Now we prove the descent for the éh-differential.
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Let Rig . be the big étale site of rigid spaces over K. Namely it consists of rigid spaces over
K, and its topology is defined by étale coverings. Then there exists a natural map of big sites
7 : Rigg ¢, — Rigg 4 that fits into the diagram

. Lx
ngK,ét T At

o [

ngK,éh — > <éh-

The sheaf Q% on Rig K ¢n 18 defined as the ¢h-sheafification of the continuous differential, which
leads to the equality

(iéh = 719?1{7
where QZ/ & 18 the i-th continuous differential on Rigy .. Besides, for any Y € Rigy, the direct
Yo (F
the direct image of a sheaf on Rig . (Rigg ¢,) along those restriction maps, either in the derived

image along Rig ;, — Y4 and Rigy ,, — Y, are exact. So it is safe to use F

v,,) to denote

or non-derived cases.
Let C be a cone of the adjunction map Q’/ K = Rﬂ*ﬂ_le = Rﬂ'*Qéh. It suffices to show the

vanishing of C' when restricted to a smooth X; in other words, for each X smooth over K, we want

H(C)

Xét - 07vj

We also note that as both Q’; 5 and RW*’/T*QZ)  has trivial cohomology of negative degrees, we have
HI(C)|x,, = 0 for j < —2. In particular, C' is left bounded.

Now we prove the above statement by contradiction. Assume C' is not always acyclic when
restricted to the small site X for some smooth rigid space X over K. By the left boundedness of C,
we let j be the smallest degree such that H7(C')|x,, # 0 for some smooth X. Then H7~'(C')|y,, = 0
for any [ > 0 and any smooth Y over K. As this is a local statement, we fix an X to be a smooth,
connected, quasi-compact quasi-separated rigid space of the smallest possible dimension such that

H7(C)|x,, # 0. So by our assumption, there exists a nonzero element e in the cohomology group
HO(Xq, 7 (C)) = B (Xe, O).

Here the equality of those two cohomologies follows from the vanishing assumption for H/~!(C)|x,
for [ > 0.
We apply the preimage functor 7! to the triangle
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and get a distinguished triangle on D(Rig ¢,)
ﬂle;K — 7T71R7T*7TilQi/K —s 717 IC.

Note that since 7! is exact and the adjoint map 7! — 7! o7, om ! is an isomorphism, by taking

the associated derived functors we get a canonical isomorphism
W_lQZ)K = 7r_1R7r*7r_1§2}K.

So 71 is quasi-isomorphic to 0, and there exists an éh-covering X’ — X such that e will vanish
when pullback to X".
Next we use the covering structure of the éh-topology (Proposition 4.1.4.11). By taking a

refinement of X’ — X if necessary, we assume X’ — X is the composition
X=X, - Xp1— - —=X=X,

where X; — X;_; is either a covering associated to a smooth blowup or an étale covering.

Now we discuss the vanishing of the nonzero element e along those pullbacks X' = X,,, —
--» — X. Assume e|x,_, , is not equal to 0 (which is ture when [ = 1). If X; — X;_, is an étale
covering, then since e|x, , . € H(X;_1¢,M’(C)) is a global section of a nonzero étale sheaf
HI (C') on X, 4, the restriction of e onto this étale covering will not be zero by the sheaf axioms.

If X; — X;_; is a covering associated to a smooth blowup, we then make the following claim:

Claim 4.2.1.8. Under the above assumption, the restriction ¢|x, ., in
HO(Xl,éta H (C)) = 1’ (Xl,éta C)

is not equal to 0.

Granting the Claim, since X’ — X is a finite composition of those two types of coverings, the
pullback of e to the cohomology group HY( X}, H’(C')) cannot be 0, and we get a contradiction.
Hence C|x,, must vanish in the derived category D(X¢;) for smooth quasi-compact rigid space X,

and we get the natural isomorphism

Proof of the Claim. By assumption, since e|x,_, , is nonzero, it suffices to show that the map of
cohomology groups
H/(X;_16,C) — H (X, C)
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is injective.

To simplify the notation, we let X = X, ;, and X’ = X, be the covering Bly (X)UY — X
associated to the blowup at the smooth center Y C X. We let Y’ be the pullback of Y along
Bly(X) — X. Since X’ — X is a covering associated to a blowup along a smooth subspace Y of

smaller dimension, by the two long exact sequence of cohomologies for differentials (Proposition
4.2.1.5,4.2.1.6), we get

—— H7 (X, Q) — W (Bly (X) o, by oy i) D HY (Yar, Q) —= HI (Y4, Q) —

To TBly (X) | Ty Ty!

HY (Bly (X)), ) @ H (Yay, QL)

— 1/ (Xen, U,) HY (Y, Q) ——

€

H/ (Xa, C) HI(Bly (X)g, C) @ H (Yer, C)

H/(Y, C) ——.

By the assumption of the j, since the cohomology sheaf H'~(C)|y 4 = 0 for [ > 0, we have
H/™ 1(}/é/t7 C)=0.

Besides, note that dim(X) is the smallest dimension

X,, 1S not quasi-isomorphic to
0. So both of HY(Yy, C') and H/(YY,, C) are zero. In this way, the third row above becomes an

isomorphism between the following two cohomologies
H (X, C) = H (Bly(X),,,C) 0 = H (X[, C),

and we get the injection. O
]

Remark 4.2.1.9. In fact, the proof above works in a coarser topology, generated by rigid topology,
universal homeomorphisms and coverings associated to blowups. This is because all we need are
the local smoothness and the distinguished triangles for cohomology of differentials, which is a
coherent cohomology theory. Moreover, results here can be deduced from the pullback of this
coarser topology to the éh topology.
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4.2.2 Application to algebraic varieties

Let K be the field C, of p-adic complex numbers. We fix an abstract isomorphism of fields
between C, and C. Our goal in this subsection is to relate the éh cohomology to the singular
cohomology, when the rigid space comes from an algebraic variety.

More precisely, we have:

Theorem 4.2.2.1. Let Y be a proper algebraic variety over K = C,, and let X = Y*" be its

analytification, as a rigid space over K. Then there exists a functorial isomorphism

HY (X, ) = g/ Hy, (Y(C), C),

Sing

where Héing(Y((C)) is the i-th singular cohomology of the complex manifold Y (C) equipped with
the Hodge filtration.

Proof. Let p : Yy — Y be a map from a simplicial smooth proper algebraic varieties over K
onto Y, such that each Y;, — (cosk, Y<;,),+1 is a finite compositions of é¢h coverings associated
to smooth blowups (but with algebraic varieties instead of rigid spaces in the Definition 4.1.4.1).
Then the analytification p** : X, — X is an éh hypercovering of X by smooth proper rigid spaces
X, = Y. Moreover, the continuous differential sheaves Q?Xn /K of X,,, which is a vector bundle
over X, is canonically isomorphic to the sheafification of the differential sheaves Q@n /K of the
algebraic variety Y,, over K.

Next we apply the cohomological descent, and get the following natural quasi-isomorphism
Rrx. ¥, = Rp™ R, Q.
As each X, is smooth over K, by the Theorem 4.2.1.1 we have
Rrx, ¥, = Q% 1.
In particular, the derived pushforward R, can be computed as

R, = RE9Y,
= Rp (4, 1c)™

We then take the derived global section, to get

*

RT(Xen, %) = RT(Y™, Rp™™ (2, 10)™).
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J
Y /K
the rigid GAGA theorem ([Con06, Appendix A1]), we obtain a natural isomorphism

As all of the algebraic varieties Y and Y, are proper over K with each () being coherent, by

RT (X, 2,) = RU(Y, Rp, 4, ).

Now by the construction, the map from the simplicial varieties Y, — Y is a smooth h-
hypercovering in the sense of [HJ14]. In particular, as proved in [HJ14, Theorem 7.12], the
complex Rp. Qg/ /K is naturally isomorphic to the j-th graded piece of the Hodge filtration of the
Deligne-Du Bois complex 2. So we may replace the derived pushforward, to get the isomorphism

of cohomology groups as below
Hi(Xéh’ Qgh) = Hi(Yv ng)

In this way, as the right side is isomorphic to the j-th graded piece gr’HY, (Y (C), C) of the Hodge

Sing
filtration of the singular cohomology ([PS08, 7.3.1]), we get the isomorphism

Hi<Xéh7 Qéh) = geriSing<Y((C)7 C)

]

We note that in the proof above, the comparison is compatible with the differential maps on both
side. So the above leads to a comparison between the éh de Rham cohomology and the singular

cohomology, when X is coming from an algebraic variety.

Corollary 4.2.2.2. Let Y be a proper algebraic variety over K = C,, and let X = Y*" be its

analytification, as a proper rigid space over K. Then there exists a functorial filtered isomorphism

Hi (Xéha Qgh) = Héing

(Y/(C),C),

i
where Hg;,,

with the Hodge filtration.

(Y/(C), C) is the i-th singular cohomology of the complex manifold Y (C), equipped

Remark 4.2.2.3. Let X = Y*" be the analytification of a proper algebraic variety Y over C, as
above. The proof of the Theorem 4.2.2.1 in fact implies that the éh cohomology H'( X, €2, ) of Q2
is isomorphic to the /1 cohomology H'(Y},, Q{l) (via [HJ14, Corollary 6.16]), for the A cohomology
of the scheme Y introduced in [HJ14]. So every computation for proper algebraic variety Y in

[HJ14] can be used to compute the €h cohomology of the rigid space Y *".
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4.3 Finiteness

In this section, we prove a finiteness result about the Rw*Qéh for X being a rigid space, namely
the coherence and the cohomological boundedness of R, Q. , where K is an arbitrary p-adic field.

Assume X is a rigid space over K.
Proposition 4.3.0.1 (Coherence). The sheaf of O x-module R", Qgh is coherent, for eachn, 7 € N.

Proof. We first assume X is reduced, since the direct image along X,.,q — X preserves the
coherence of modules. Then by the local smoothness (Proposition 4.1.4.8), there exists an €h-
hypercover s : X, — X, such that each X}, is smooth and the map s, : X} — X is proper. Here
we notice that each R, ,Q, = Qﬂ(k /i 1s coherent on X}, by Theorem 4.2.1.1. So the properness

of s : X — X implies that each R%s;, () . is coherent over Ox. On the other hand, thanks

J
X/ .
to the cohomological descent, the derived direct image Rs.Rm X.*Qjéh along the €h-hypercover

X. — X is quasi-isomorphic to the R x. (2, . In this way, the E}-spectral sequence associated to
the simplicial object s : X, — X (see [Con03], 6.12) provides

EP? = Risp O o = HPT(Rs, Ry, .2,

— [Rptq J
=R WX*Qéha

where each term on the left side is coherent over X. Hence the sheaf RP ™7 X*Qéh 1s coherent on
X. O

Next we consider the cohomological boundedness of the derived direct image.

Theorem 4.3.0.2 (Cohomological boundedness). For a quasi-compact rigid space X, the cohomol-

ogy A
H' (Xen, 2%)

vanishes except 0 < i, j < dim(X).

Remark 4.3.0.3. The analogous statement about the boundedness of the Hodge numbers for

varieties over the complex number C is proved by Deligne ([Del74] Theorem 8.2.4).

Proof. We do this by induction on the dimension of the X. When X is of dimension 0, the reduced
subspace X,.q is a finite disjoint union of Spa(K") with K’/ K finite, which is smooth over Spa(K).
So by the local reducedness of the éh-topology and the vanishing of the higher direct image of
t: Xieq — X, the case of dimension 0 is done by the Theorem 4.2.1.1.

We then assume the result is true for all quasi-compact rigid spaces of dimensions strictly
smaller than dim(.X'). By the local smoothness (Proposition 4.1.4.8) and the vanishing of the higher
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direct image along X,.q — X again, we may assume X is reduced and there exists a composition

of finitely many blowups at smooth centers
X=X,— - —X — X=X,

such that X’ = X, is smooth over Spa(K). Observe that by the property of the éh differential for
smooth spaces, the sheaf R%Xh*ﬂéh is zero except when ¢ = 0 and 0 < 57 < dim X, = dim X. So
the claim is true for X,, as H'(X,, &, Q%) = H(X,,, Qﬂ{n /i )- Moreover, to prove the claim for X,
it suffices to show that if the result is true for X; 4, then it is true for X, where X;,; — X is the
[-th blowup at a nowhere dense analytic subspace.

To simplify the notation, we let X’ = X;.1, X = X, f : X’ — X be the blowup, i : Y — X be
the inclusion map of the blowup center, and Y’ be the preimage X' X x Y withthe map g : Y/ — X'.
By the assumption, H(X%,, 2/, ) vanishes unless i, j < dim(X) = dim(X"). Furthermore, thanks
to the induction hypothesis we have H?(YZ,, Q%) = 0 unless i, j < dim(Y”) < dim(X). Now we
consider the distinguished triangle of the é€h-cohomology (Proposition 4.2.1.6)

- H (Xan, ) — H' (XY, ) @ H (Yen, ) — H (Y, Q) — -

We discuss all possible cases:
* If j > dim(X), then since the blowup center Y is nowhere dense in X, we have j dim(X) >
dim(Y”). So by induction hypothesis on dimensions, both H?(Yzy, 7, ) and H='(YZ,, Q2,)
vanish for every i. Moreover by the assumption on X', we know the vanishing of H* (X7, , 2, ),

i € N. So the long exact sequence leads to the vanishing for H*(X,, Q2. ) if j > dim(X).

e If i > dim(X), then since i — 1 > dim(X) — 1 > dim(Y”), by induction hypothesis on
dimensions again we have H*~(Y,, 2/, ) and H*(Yg,, 2, ) are zero. Similarly we have the
vanishing of the H (X7, Qih) by the assumption on X'. In this way, the long exact sequence
implies that the cohomology H*(X,, €2, ) is zero for i > dim(X) and any j € N.

[

Corollary 4.3.0.4. Let X be a rigid space over K. Then unless 0 < i,j < dim(X), the higher

direct image R'mx .S, vanishes.
éh

Proof. We only need to note that the sheaf Rim X*Qéh is the coherent sheaf on X associated to the

presheaf
U — H' (U, Qéh)?

for U C X open and quasi-compact.
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We will improve the above corollary for locally compactifiable rigid spaces in the Proposition
8.6.0.2 and the Proposition 8.6.0.6, using the degeneracy result developed in the next section and

the almost purity theorem in [BS19].
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CHAPTER 5

Comparisons of de Rham Cohomology theories

In this chapter, we compare the three de Rham cohomology theories for non-smooth rigid spaces.

Our goal is to show that there are filtered morphisms among the three filtered complexes as below:
RI'(X,dRx/x) — Rlins(X/K) — RI'(Xen, ),

which induces quasi-isomorphisms over their underlying complexes. The results in this chapter first
appeared in [Guo20, Section 5, 6].

The chapter is divided into three parts. In Subsection 5.1, we produce a natural filtered morphism
from the cohomology of the analytic derived de Rham complex to infinitesimal cohomology,
which induces a quasi-isomorphism of the underlying complexes, as in Theorem 5.1.2.3. Then in
Subsection 5.2, we follow the strategy of Hartshorne [Har75] to show that infinitesimal cohomology
satisfies the descent along a blowup square (Theorem 5.2.1.2), and thus an €h sheaf of complexes (see
Theorem 5.2.2.2 for K -linear coefficients and Theorem 5.2.2.5 for general Bj{Rve-linear coefficients).
This in particular implies the underlying complexes of infinitesimal cohomology and éh-de Rham
cohomology coincide. Using the éh-descent, we could easily get the finiteness and cohomological
boundedness of cohomology. At last, in Subsection 5.3, we compare the analytic and algebraic
infinitesimal cohomology, showing that those two are filtered-isomorphic for (rigid spaces associated

to) proper algebraic varieties (Theorem 5.3.0.1).
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5.1 Infinitesimal cohomology and derived de Rham complex

In this subsection, we give a comparison theorem between the infinitesimal cohomology and
(the underlying complex of) the analytic derived de Rham complex of a rigid space X over B(}LR’e.

We will use mildly the language of the co-category , following the conventions in Chapter 2.

5.1.1 Affinoid comparison

We first consider the affinoid case. Our tool is the Cech-Alexander complex for infinitesimal

cohomology, and the structure of the analytic derived de Rham complex for closed immersions.

Theorem 5.1.1.1. Ler X = Spa(A) be an affinoid rigid space over BIR,e' Then there exists a

natural isomorphism as below
@A/BIR,Q — RT(X/Yeint, Ox/s.)-

Here @ZH/B(J;R is the underlying complex of the analytic derived de Rham complex.

Before the proof, we want to mention that in the proof below, we will see the isomorphism in
the statement is induced from a chosen closed immersion X — Y, where Y is a smooth rigid space.

Later on, we will use this observation to globalize a general comparison.

Proof. Let P = Bj{R’e<T1, ..., T,n) — Abe a surjection of topologically finite type algebras over
Bjme. By Proposition 3.3.1.3 for the crystal ' = Ox/x,,, the infinitesimal cohomology of X /Zeint

can be computed by the cosimplicial cochain complex
RU(X/Eeint, Ox/z.) = (Ox/5.(D(0)) — Oxyx (D(1)) — --),

where D(e) is the cosimplicial object of sheaves over the infinitesimal site, produced by the

® o+1
envelope of A in P Bin.c (see the discussion before Theorem 3.3.1.1). Here we recall that by the
definition of envelope (cf. Definition 3.1.2.1), the sheaf D(m) is the direct limit of all infinitesimal

neighborhoods of Spa(A) in Spa(PéQm“). In particular, we have the following equality

Oxyx, (D(m)) = lim PO+ /I(m)’

. C ®p+ mtl
where I(m) is the kernel of the surjection P “dre — — A,

Now by Proposition 2.3.0.11, there exists a natural filtered morphism inducing an isomorphism
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of their underlying complexes
AR pams — lim PE™ 1/ T(m).

By taking the cosimplicial version of the above isomorphism, we get isomorphisms of cosimplicial
complexes

—an

RU(X/Zeint, Oxys.) — Oxys. (D(o)) — dRy paesr.
o+1
— A

induces an isomorphism on analytic derived de Rham complexes. Moreover, by the filtered

: : Bt
So in order to prove the theorem, it suffices to show that the natural map B, . — P “dre

completeness, it reduces to show the isomorphism

?Laxn/B;Re — LZH/P@@-H‘
Note that as both A and P®**! are term-wise topologically finite type over BjR’e, by the distin-
guished triangle of cotangent complexes for triples (Proposition 2.2.3.10), it suffices to show the

vanishing of the following

an
Re+1 /Bt . *
peet /BdR,e

an

At last, we notice that by Proposition 2.2.3.5, the complex LL poe+1/pt
dR,e

can be computed by

inverting p at the term-wise derived p-completion of the algebraic cotangent complex of the Cech
nerve CeCh(Ainﬂe — AintelT1, ..., T;]). So the vanishing we want follows from the vanishing of
the algebraic cotangent complex Liecn (., .- Aus o [1)/(Anns.0)» Which is proved in the first part of the
Corollary 2.7 in [Bhal2a]. OJ

In the special case when A is a complete intersection, the above can be improved into a filtered
isomorphism. Here we recall that the filtration structure on the infinitesimal cohomology, which is
called infinitesimal filtration, is defined via RI'(X /2. in, Ty /Ee)’ where Jx s, is the kernel of the
surjection Ox /s, — Ox over the infinitesimal site.

Corollary 5.1.1.2. Let X = Spa(A) be an affinoid rigid space that admits a regular closed
immersion into a smooth affinoid rigid space over BIR,G. Then there exists a natural filtered

isomorphism as below
RF(X/Eeinf, Ox/ge> — dRA/Bj{R K

Proof. The proof is identical to the proof of Theorem 5.1.1.1, with the use of the Corollary
2.3.0.12. 0
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5.1.2 Comparison in general

We are now ready to prove the comparison between the infinitesimal cohomology and (the
underlying complex of) the analytic derived de Rham complex, for a general rigid space over BIR,G.

We first introduce the category of smooth immersions.

Definition 5.1.2.1. Let X be a rigid space over le_R,e‘ We define the site SE x of smooth immersions
of X where:

* objects of SEx consist of tuples (U, Z,i : U — Z) with U being an affinoid open subset of

X, Z a smooth affinoid rigid space over X, and i : U — Z is a closed immersion;

» morphisms from (U1, Z1,11 : Uy — Z3) and (Us, Zy, iy : Uy — Zs) consist of commutative
diagrams as below

U~ 7,

.y

U2 i > ZQv
2
where Uy — U, is an open immersion over X.

* A collection of maps {(U;, Z;,i;) — (U, Z,1)} is a covering if {U; — U} and {Z; — Z}

are coverings of rigid spaces separately.

There exists a natural projection functor from SEx to the category of affinoid open subsets X g
of X, by sending an object (U, Z,i : U — Z) to the open subset U in X. This functor is continuous
under their topology. Here the associated push-forward functor T, is the constant functor; namely
for an ordinary sheaf F in the topos Sh(X,), the push-forward 7, F satisfies

(m F)U, Z,1) = F(U).
The pullback functor m=! sends a sheaf G in Sh(SEx) to the sheaf associated with the presheaf

(7 1G)(U) = (S,E%Q(U’ Z,1), U € Xyg.
The colimit above is a filtered (sifted) colimit, as given any two closed immersions ¢ : U — Z;
and ¢9 : U — Z,, we can find a common refinement of them by ¢ : U — Z; Xy Zs, with natural
projection maps Z; Xy, Zo — Zj for j = 1,2. In particular, the colimit (thus the inverse image
functor 7~ 1) is exact. So, by translating this into the language of sites ([Stal8, Tag 00X1]), we get a
natural morphism of sites

7w Xog — SEX
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Before we prove the main theorem, we first notice that to check two objects in D(X,5) =
D(X.g, Z) are isomorphic, it suffices to do so by pulling back to the category of smooth immersions.

Precisely, we have the following general lemma.

Lemma 5.1.2.2. Let F and G be two objects in the derived category D(X,q) of sheaves of abelian
groups over the site X,g. Assume [ : 7' F — 171G is an isomorphism in D(SEx) over SEx.

Then the following natural arrows are all isomorphisms

ﬂ_lRﬂ*ff—>g

|

F :

where both arrows are counit maps associated with f : F — G and the identity F — F separately.

In particular, there exists a natural isomorphism F — G in the derived category D(X.g).

Proof. Foreach U € X;, we have

RU(U, 7 'Rr,F) = ((:(U)lzm)l RU((U, Z,1), Rm,.F)

= colim RT'(U, F)
(U,Z.i)

~ RI(U, F),

where the last map is an isomorphism as the colimit above is filtered (thus the geometric realization
of the index set is contractible). In particular, this implies that the counit maps 7~ 'R, F — F
and 7! R, G are isomorphisms. Thus the claim follows from the following diagram of natural

isomorphisms

-1 xtf -1
T ‘Rn,F —>n Rn.G

| |

T = G
f

Now we are able to prove the comparison theorem.

Theorem 5.1.2.3. Let X be a rigid space over Bj{R’e. Then there exists a natural filtered morphism
from the analytic derived de Rham complex to the Hodge-filtered infinitesimal cohomology sheaf as
below

de/ze — (RU/X/EE*OX/Eey RUX/Ee*jX/Zea RUX/Ze*j;(/ZEJ .. .),
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Moroever, the induced map between their underlying complexes is an isomorphism
—=an
@X/ze — RUX/EE*OX/EE-

Proof. We first notice that it suffices to show the comparison at the site X,¢ of affinoid open subsets
of X.

To see this, we recall the equivalence of co-categories D(X, R) =2 Sh"™P(X, R) (cf. Paragraph
2.0.2), where the right side is the full sub-oo-category of contravariant functors from U € X,;, to
the derived category D(R). As X, is a basis of the rigid site X.ig, We may use the equivalence
Sh™P(X, R) = Sh™P(X,¢, R) and regard objects in D (X, R) as contravariant functors on affinoid
open subsets of X. So a map or an isomorphism of sheaves of complexes can be constructed via
their evaluations at X,g. Moreover, by Lemma 5.1.2.2, it suffices to show it over the site of smooth
immersions SEx of X, by applying the constant functor 7! to both objects in the sequence ().

Now for each smooth immersion i : U = Spa(B) — Z = Spa(P) for affinoid open subset
U C X, as in the proof of Theorem 5.1.1.1 we have the following natural map of cosimplicial
objects in ]ﬁ(Bj{R’e)

dRB/B* — dRB/p®-+1 — Op(e)y =— RI'(U/Z¢int, Ox/5.)

dR,e

Here D(n) is the envelope of the surjection

P@(n+1):P®B§R’e(n+l) B

Moreover, the induced maps of their underlying complexes above are all isomorphisms, by the
proof of the affinoid comparison in Theorem 5.1.1.1.
At last, note that the above maps are functorial with respect to smooth immersions ¢ : U — Z,

so we can improve the above map into the level of sheaves over SE x

RW*dRX/ZE _>dRSEX OSEX R?T*RUX/EE*, Ox/ze

Here where cﬁ\{ggx is the (cosimplicial) sheaf sending i : U — Z to the filtered complex dR /p@etis
and Ogg is the (cosimplicial) sheaf sending : : U — Z to the structure sheaves Op(,) of envelopes
D(e). In this way, the isomorphism of the underlying complexes over the site SEx of smooth
immersions

RT*@?/BS—R — RW*RUX/ZE*, OX/EE

follows from the above computation at the sections 2 : U — Z, and thus we get the result by Lemma
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5.1.2.2. So we are done.
O]

Remark 5.1.2.4. The above comparison map, though functorial with respect to the rigid space X,
is constructed in an indirect way. It is natural to ask if we can directly produce a natural morphism
from the analytic derived de Rham complex to the infinitesimal cohomology sheaf. Here we want
to mention that for algebraic schemes over C, this could be achieved by the universal property of

the derived de Rham complex in the oo-category of filtered E . -algebras.

5.2 éh-descent

In this section, we prove the €h hyperdescent of the infinitesimal cohomology of crystals in
vector bundles over X /K and X/ BIR,ein ; for arigid space X. Our goal is to show the comparison
between the éh-de Rham cohomology and the infinitesimal cohomology of a crystal.

In order to extend a crystal to any space that maps to X but is not necessarily an open immersion,
we will work mostly with coherent crystals over the big site. Here we note that this is only for the
technical convenience, as crystals and their cohomology over X /¥ ;s or X /¥ nF are equivalent

via pullback and restrictions (Proposition 3.2.1.7, Proposition 3.3.1.2).

5.2.1 Descent for blowup coverings

We first deal with the descent for the blowup covering over the base ¥; = Spa(K), for an
arbitrary complete non-archimedean p-adic field K, not necessarily algebraically closed. The
essential idea follows from Hartshorne’s proof for algebraic de Rham cohomology [Har75, Chap II,
Section 4], where he provides a long exact sequence of the algebraic de Rham cohomology for a
blowup square.

We first give a Mayer-Vietories sequence for infinitesimal cohomology:

Proposition 5.2.1.1 (Mayer-Vietories sequence). Let X be a union of two closed analytic subspaces
Xj and X5 over K, and let F be a coherent crystal over X/ Kixg. Then the map of rigid spaces
X1N Xy — XU Xy — X induces a natural distinguished triangle as below

RUX/K*]: — RUXI/K*.F@ RUXQ/K*f — RquﬂXQ/K*]:-

Proof. As the functor ux, k. is the sheaf-version of the global section functor I'( X/ Kinr, —) (see
Subsection 3.1.3), it suffices to show that the maps in the statement above produce a natural
distinguished triangle after applying RI'(U, —), for every U C X open affinoid. So we may assume
there exists a smooth affinoid rigid space Z = Spa(P) over ., together with a closed immersion of
X = Spa(P/I) into Z, where [ is the defining ideal. Let X be the closed analytic subspace defined
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by the ideal /; in P. Then by assumption, X is defined by the ideal /; N /5, and the intersection
X3 := X1 N X, is defined by I3 := I; + I,. We denote by D and D, to be the envelope of X and X;
in Z separately. Here we regard D and D; to be the ringed spaces, where the underlying topological
spaces are X and X;, and their (global sections of) structure sheaves are Op = gnn P/I™ and
Op, = 1£1 P/I!" separately (cf. Remark 3.1.2.2).

Now by Theorem 3.3.2.2, the infinitesimal cohomology of the coherent crystal can be functorially

identified as the derived global sections of the following
Fp @ Qp — Fp, ® Qp, P Fp, ® Op, — Fp; @ Q.

where Fp @ 2}, (resp. Fp, ® (2p,) is the restriction of the de Rham complex of the coherent crystal
F onto the envelope Dx (Z) along the closed immersion X — Z (resp. Dy, (Z) along the closed
immersions X; — Z) separately. Moreover, by the crystal condition, the coherent Op,-module Fp,
is equal to the tensor product Fp ®o,, Op,, and each term of the de Rham complex Fp, ® 2, is
equal to the base change of terms of Fp ® %, along D; — D.! In this way, by the compatibility of
their Hodge filtrations, to show the sequence above is distinguished, it suffices to show the following

short exact sequence of the rings
0— Op — ODl@ODZ — ODg — 0.

And since each structure sheaf of envelopes are given by the formal completions of the ring P, we

reduce the question to show that the following sequence of inverse systems is exact
0 — {P/(L N L)"} — AP/ AP/ I3} — {P/ (I + 12)"} — 0.
Notice that for fixed n, we always have the following short exact sequence
0 — P/(I'NI}) — P/IMEP P/I} — P/(I7 + 1)) — 0.

The proof thus follows since the ring P is noetherian, and the inverse systems below are canonically

isomorphic
P/ + 1)} — AP/(L + I2)" by {P/ (L0 1) "} — {P/(IT N 15) }n.

]

IWe want to mention that the sheaf Q%, defined as the inverse limit 'Inn QJX /5 for X, being the n-th infinitesimal

neighborhood of X into Z, is naturally isomorphic to the tensor product 7, /5. © Op by Lemma 3.2.3.3. This works

similarly for iji, and in particular we get €’ .= Q{D ®op, Op,;-
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Here is our main theorem in this subsection.

Theorem 5.2.1.2. Let X be a rigid space over K, and let Y be a smooth analytic closed subset of
X over K, with the blowup map f : X' := Blx(Y) — X and the preimage Y' ==Y xx X' in
X'. Then for any coherent crystal F over X/ Kxr, the blowup square for X' — X induces the
following distinguished triangle

RUX/K*F — Rf*RUX//K*.F@ RUy/K*./—" — Rf*RuY//K*]: (*)

In particular, by taking the derived global sections at X, we get a distinguished triangle of

infinitesimal cohomology
RU(X/Kinp, F) — RU(X'/Kixe, F) D RU(Y/ Ky, F) — RU(Y'/Kixg, F).

Before we prove the result, first we recall the formal function theorem for a proper map of rigid

spaces.

Theorem 5.2.1.3 ([Kie67], Theorem 3.7). Let [ : X' — X be a proper map of rigid space over
K, and let T be a sheaf of ideal over X, with' Y = Spa(A/I) being the analytic closed subset
of X defined by I. Assume G is a coherent sheaf over X'. Then the following natural map is an
isomorphism:

(R 1.9 — RIf.(G).

Here (—)" is the classical completion of a sheaf of O x-modules (or O x:-modules) with respect to
the ideal T (resp. I - Ox).

Remark 5.2.1.4. Here we note that we may get a more derived version of the above theorem using

the derived completion, as in [Stal8, Tag 0AOH]. For our uses, we do not jump into this generality.

The rest of this subsection is devoted to prove Theorem 5.2.1.2.

Special case: X is smooth First we deal with the special case, assuming X itself is smooth over
K

When X is smooth, as the blowup center Y is assumed to be smooth, we know the blowup X’
is also smooth over K. By Theorem 3.3.2.2, the derived direct image of the coherent crystal over
X/ Kin¢ and X'/ K can be computed by their de Rham complexes Fx @25 K and Fx ®§2%, K=
[ Fx @ Q% /K separately. On the other hand, the derived direct image Ruy,r.f and Ruy g F
are naturally isomorphic to the de Rham complex over the envelopes Dy (X) and Dy (X’); namely
the complexes

Fp @0, (xy, Fpr @ QI)Y,(X/),
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which are compatible with the Hodge filtrations of €% /K and 2%, /K So the sequence (x) in
Theorem 5.2.1.2 is naturally isomorphic to the following sequence of de Rham complexes

Y/
In fact, we want to show the following more general statement:

Proposition 5.2.1.5. Let f : X' — X be a proper morphism of smooth rigid spaces over K, and
let Y be a closed analytic subset of X, withY' = f~1(Y). Let G' and G be coherent sheaves over
X" and X separately, such that f : X' — X induces an injective map of Ox-modules G — f.G'.
Assume [ induces an isomorphism between open subsets X'\Y' and X\Y, and also induces an
isomorphism of the restriction of G — f.G' on X\Y. Then the following natural sequence is a

distinguished triangle

Proof. Let M be the coherent sheaf G ® Qfx /K Over X, and let M’ be the coherent sheaf G’ ® Qé{/ /K
over X'. By the assumption of smoothness, both {2’ /i and Q' /i are locally free, and the natural
map M — f, M’ is injective. Furthermore, the restriction of the map M — f, M’ on the open
subset X'\ Y is an isomorphism.

Recall the i-th differential sheaf Q’by( X)/K of Dy (X), as a sheaf over X, is defined as the
inverse limit l&nm QO /K where X, is the m-th infinitesimal neighborhood of Y in X. As is
shown in Lemma 3.2.3.3, the sheaf 27, (X)/K is naturally isomorphic to the formal completion of
the coherent sheaf 0%, /K along Y — X, which is also equal to the tensor product €2’ 1k ® Opy (x)-
Moreover, since G is coherent over X, the tensor product G ® QZDY (X) is isomorphic to the formal
completion M of M = G ® QY along Y — X. The same also holds for X', Y” and M’

We denote by C and (), to be cones of the map M — Rf.M and M — Rf, M’ separately.
Consider the following commutative diagram

L

M——=Rf.M — C,.

Here both rows are distinguished.

Now we make the following claim.

Claim 5.2.1.6. The natural map C; — C5 of cones above is an isomorphism.

Proof of the Claim. First we notice that since the map f : X’ — X is isomorphic on the open
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subsets X"\Y’ — XY, while both X" and X are smooth, the sheaves of differentials Q2 ) and
', /i are vector bundles, and the induced map €2’ K f+82%, Ik is injective. On the other hand,
the map G — f,G’ is assumed to be an injective map of coherent sheaves in the Proposition.
Combine the above two conditions, we see the map M — f. M/’ is injective, and the cone lives in
cohomological degree [0, +00).

By the Formal Function Theorem 5.2.1.3, the cohomology sheaf R/ f*ﬂ’ is naturally isomorphic
to the formal completion (R’ f, M")" of R7 f, M’ along Y — X. Moreover, by the exactness of the
formal completion on coherent sheaves, the natural map M — (f«M")" is injective, and we have a

ShOI‘t exact sequence
00— M — (M) — H(Cy) —> 0.

This implies that Cs lives also in cohomological degree no smaller than zero. Furthermore, by
the exactness of the above sequence, the cohomology sheaf H°(C5) is isomorphic to the formal

completion of H°(C}) at Y. But since H°(C}) is coherent and is already supported at Y, we have
HO(C) = H(C1)" = HO(Co).

This finishes the degree zero part.

For the higher cohomology, we consider the following diagram of cohomologies

Rif M ——=HI(Cy)

| |

(R fM)" ——=HI (C).

As M and M are living in cohomological degree zero, the horizontal maps above are isomorphisms,
and it suffices to show for each 7 > 0, the left vertical map above is an isomorphism. But notice
that since f induces an isomorphism between M and M’ over X'\Y’, the higher cohomology sheaf
RJ f, M’ is coherent and is supported over Y. In particular, the formal completion of &/ f, M’ along

Y — X is equal to itself; namely the natural map below is an isomorphism
R f M — (R f MO
This leads to the isomorphism
H(Ch) = H(Cy), V) > 1,

and we finish the isomorphism between C and Cs.
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O]

We change the notation back to the Proposition. Then we get two rows of distinguished triangles

G ® RE(G' @ Qi ) C,

| | |

g X QiDy(X)/K éRf*(g/ X QZD (X’)/K) ﬁ'C%

Y/

the third vertical map is an isomorphism.

Finally, we consider the following two maps,

i T i i :
¢: G® QX/K - éf*@/ ® QX’/K) ®(G® QDY(X)/K )i
i i (1) i
(U Rf*(g/ R0 ’/K) EB(Q ® QDy(X)/K) - Rf*(g, ® QDY,(X')/K) )
where + and — are indicating the signs of the map. As the composition of the above two maps 1s
equal to zero, the map ¢ factors though a morphism Cone(¢) — Rf.(G' ® szy,( xnyx) ([Stals,
Tag O8RI]). In this way, by chasing diagrams and the Claim above, the map Cone(¢) — Rf.(G' ®
Q"DY, (X7) ) is an isomorphism, and we get the distinguished triangle we want.
]

General case We then deal with the general case of Theorem 5.2.1.2.

Proof of Theorem 5.2.1.2. As the theorem is a local statement, by passing to an open covering if
necessary it suffices to assume X is affinoid and admits a closed immersion into a smooth affinoid
rigid space Z. Moreover, as any coherent crystal over X/ Ky is a crystal in vector bundles
(Corollary 3.2.2.5), by taking further open subsets we may assume Fy = O™ is trivial over X.
As Y is smooth over K, the blowup Z' = Blz(Y) of the smooth rigid space Z at the center Y’
is also smooth. Moreover, as X — Z is a closed immersion while X" is the blowup of X at Y, the
natural map X’ — 7’ is also a closed immersion, which is equal to the preimage of X along the
blowup map f : Z' — Z. So we get the following commutative diagrams of rigid spaces over K

with both of the square being cartesian

Y/ X/ /

!

NN

_—  —
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As the restriction Fp () is a vector bundle over Op, (z) whose pullback along X — Dx (Z)
is trivial, by Nakayama’s lemma, we may let G be a trivial vector bundle over Z such that the tensor
product G ®o, Opy(z) is equal to Fp (7). Let G’ be the pullback f*G, as a trivial bundle over Z'.
Then by the crystal condition of F we have

G ®0, Op..(z1) = FDy(29)-

Here we note that by our choices and the diagram above, the map G — f,G’ is injective and is an
isomorphism when restricted to open subsets Z/Y and Z/X. Similar to the proof of Proposition
5.2.1.5, we let M and M’ be the tensor products G® QY ;- and G'®QY, - over Z and Z' separately.

Now by the proof of Proposition 5.2.1.5, we have the following natural commutative diagrams,

with each row being distinguished

M Rf*M/ - Cl

o~ —

Mx —=Rf M)y, —C,

—_—
/

My —= Rf. M)y, —Cs.

Here the sheaf ./\//l/\X and similar for the others is denoted to be the formal completion of M along
X — Z. Thanks to Claim 5.2.1.6, the map (', — C5 and the C'; — Cj5 are isomorphisms. In
particular, the map C> — Cj is an isomorphism. In this way, as in the last part of the proof for
Proposition 5.2.1.5, the second and the third rows above produces the following distinguished
triangle

— (+7 —_— /\6_’_,_) —

Myx —SREM) o @ My = REM).
Hence by Lemma 3.2.3.3, we may replace those formal completions by their corresponding sheaves

over envelopes, and obtain the distinguished triangle below

Fox(2) ® Uz — RE(Fpyz) ® Up,(20) B Foy2) @ Up,z) —
Rf(Fpy,(z) ® QiDY/(Z’))7

which implies the theorem by taking different s and Theorem 3.3.2.2.
]

Remark 5.2.1.7. With the help of the blowup triangle in Theorem 5.2.1.2, we could show the

following: for a universal homeomorphism of rigid spaces f : X’ — X over K and a coherent
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crystal F over X /Ky, there exists a natural isomorphism of cohomology sheaves as below
R’U,X/K*./—" — Rf*RUX//K*.F.

5.2.2 éh-hyperdescent in general

Now we are ready to prove the ¢h-descent for a crystal over the infinitesimal site. We first deal
with the case for infinitesimal cohomology over an arbitrary p-adic field K, where the strategy is to
use the blowup square for the éh-topology in 4 and the descents in the first subsection. After that,
we generalize to the case over B§R7e.

Recall that the éh site Xg, is defined over the category Rig|x of all K-rigid spaces over X
and is equipped with the éh-topology (cf. 4). For an object X’ — X in Rig,|x, we denote by

wx: : Xen — X[, to be the map from the éh site of X to the small rigid site of X”.

rig
We first associate an infinitesimal crystal together with its de Rham complex an analogous

construction over the éh topology.

Construction 5.2.2.1 (éh-de Rham complex). Let F be an infinitesimal sheaf of Oy, x-modules
over the big infinitesimal site X/Knr. We then associate a sheaf F;, = z';(} F of Ox =
i;{}KOX/K—modules over the big rigid site Rig|x, where ix,x : Sh(Rigg|x) — Sh(X/Kr) is
the morphism of topoi as in Subsection 3.1.3. Here the section of F;, at an object f : X’ — X in
Rigy|x is the Ox/(X’)-module

F(X',X"),

where (X', X') € X/Z.nr is the trivial thickening of X’. We could then sheafify it with the
éh-topology, and thus get an €h-sheaf F¢;, over the éh site Xg,.
Now we specify F to be a coherent crystal over big the infinitesimal site. As in the discussion

of Paragraph 3.2.1, we could associate F its de Rham complex over the big infinitesimal site

F ®OX/K QB(/KINF’
This allows us to get a complex of sheaves over Rig|x and Xg, separately

Frig—>-rrig®(9 Ql —>~;Crig®(’) Qz —

rig ° “rig rig ° “rig

Fen — Fan Qo Qéh — Fen R0og, Qe?h — e

éh

Here the sheaf 2},

the éh continuous Kéhler differential, which is equal to the éh sheafification of the usual continuous

is the usual continuous Kihler differential sheaf over the rigid site, and 2, is

differential. The complex Fg, ® 2, is called éh-de Rham complex associated with the crystal F.
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The Construction 5.2.2.1 produces two maps of objects in the derived category of the big rigid

topos:

RUX/K* (F ®OX/K Q;{/KINF) rlg ®Orig QI.‘lg Rﬂ-* (‘Féh ®Oéh Qgh)

Formally the first map is given by the sheafified version of the natural transformation
Rigy|x 2 X' — (RI(X' /2, —) — RT((X', X'), —))

at the complex of infinitesimal sheaves F ®o, Q% / KINF)' The second map above comes from the
counit morphism for the adjoint pair (7!, ), where 7! is the éh-sheafification functor. Moreover,
the above map can be improved into the filtered derived category, where the left side is equipped
with the infinitesimal filtration, and the rest two complexes are equipped with their Hodge filtrations.

We also note that the natural map from the de Rham complex F ®o, . 2% K (O the crystal

F itself induces a natural isomorphism as below
Rux k- (F ®0x)x Q;(/KINFN) — Rux/k+F,

which is proved in Proposition 3.3.2.1.

Now we can state the descent result.

Theorem 5.2.2.2. Let X be a rigid space over K, and let F be a coherent crystal over the big

infinitesimal site X /| King. Then the natural map of K-linear complexes below is an isomorphism.
RUX/K* (F ®OX/K QS(/KINF ) — Rﬂ—X* (‘Féh ®Oéh Qc?h) ‘

In particular, the infinitesimal cohomology of the coherent crystal F satisfies the éh-hyperdescent.
Proof.

Step 1 In the Step 1, we show that by restricting to a smooth rigid space X’ over K that admits a
map to X, the morphism in the statement is an isomorphism. Namely the natural morphism

below is an isomorphism

RUX//K* (‘F ®OX/K Q;(/KINF) — R/]TX/*(‘Féh ®(Qéh Qgh)

We first apply RI'(X’, —) for the smooth rigid space X’. On the one hand, we apply Theorem
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3.3.2.2 to the trivial closed immersion X' — X’ to get

RF(X//KINF,F) = RF(X//KINF7F®OX/K -.X/KINF)
>~ RI(X', Fp @ Q)
— RF(X;ig7.FX/ ® Q;{’/K)?

where the envelope D for the trivial closed immersion X’ — X’ is just X" itself.

On the other hand, the éh-cohomology RI'(X/,, Fen ® €23) is in fact isomorphic to the
cohomology of the de Rham complex of Fx: given by the restriction of Fr;; ® (27, at X'. To
see this, we notice that as the natural map of complexes Fri; ® f, — Ry, (Fon @ 08,) is
filtered with respect to the Hodge filtrations, it suffices to show for each 7 € N the following
map is an isomorphism

RT(X!

rig»

Fxr @ Lyrjic) — RU(Xjy,, Fon @ Q).

Here the restriction Fgy, |y at the éh site of X' can be given by the éh-sheafification of the
rigid sheaf F,;,|x- over the big site Rig,|y,. Moreover, as F is a crystal in vector bundles
(Corollary 3.2.2.5) and the statement is local on X’ (namely both of the above two complexes
satisfies the hyperdescent for rigid topology), by passing to an open rigid subspace of X if
necessary we may assume the restriction F;q| x- of F at X' is isomorphic to the direct sum
O%. of structure sheaves. Thus we reduce to show that the natural map of cohomology of
differentials below for a smooth K -rigid space X' is an isomorphism

RI'(X; Q?X’/K) — RD(X,, ),

rig»

which is proved in Theorem 4.2.1.1.

In this way, as the map in the statement is given by the composition

RU(X' ) King, F @0y i V) — BT (X Fxr @ Q% i) — RU(Xg,, Fen®o,, ),

rig» é

we see both maps above are isomorphisms when X’ is smooth over K.

At last, notice that the cofiber C' of the map Rux//x(F®o, P Q% / KINF) — Rrxn(Fan®o,
€28,) is a bounded below complex of sheaves over the small rigid site X;,. If C'is not acyclic,
then there would exist an open subspace U of X' such that the cohomology RI'(U.;, C') does

not vanishes, which contradicts to the computation above. So we get the isomorphism for
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Step 2

smooth K -rigid space X’ that admits a map to X:

RUX//K*(_F ®OX/K Q_.X/KINF) — RT(X/*(‘Féh ®Oeh Qgh)

Now we prove the isomorphism of the derived push-forwards as in the statement.

Leti : X,eq — X be the closed immersion by the reduced sub rigid space of X. We first

notice that the natural map below is an isomorphism
RUX/K*f — Z-*RuXred/K*<‘F)7

This is because locally both of them are computed using the de Rham complex Fp®(2%,, where

D is the envelope of X in a smooth rigid spaces (Theorem 3.3.2.2). The same isomorphism

by
red/ KINF
Proposition 3.3.2.1. On the other hand, We notice that as the closed immersion ¢ : X,eq — X

holds for the derived direct image of the infinitesimal de Rham complex F ® €25

is an €h-covering (4.1), which forms a constant éh-hypercovering as the product X,oq X x X;eq

is equal to X, itself, we get
R (Fen @ Q) = i Brx, g0 (Fen @ )

Thus the above two isomorphisms allow us to assume X is generically reduced, and by

passing to an open subset if necessary we may assume X is quasi-compact.

Now we can do the induction on the dimension of X. When dim(X) is of dimension zero,
as X is quasi-compact and generically reduced, it is then equal to a disjoint union of finite

points and in particular is smooth over K, where the statement follows from the Step 1.

In general, by the Temkin’s resolution of singularities for rigid spaces ([Tem12]), we can find
a finite compositions X,, — --- X; — Xy = X, where each X; — X, _; is a blowup at a
smooth nowhere dense closed subspace Y; C X;_1, such that in the last step X, is smooth
over K. We denote by Y, to be the preimage Y; X x, , X; in X;, which is of dimension strictly
smaller than dim(X;) = dim(X), and we let f; be the blowup map X; — X,_;. Then for
each 1 <1 < n, we get a natural distinguished triangle by Theorem 5.2.1.2

RUXi_l/K*(}-@ QI.NF> — Rfi*RuXi/K*(‘F(g QI.NF) @R“K/K*<-7:® QI.NF) —

Again here we use Proposition 3.3.2.1 to replace the F by its de Rham complex. On the other
hand, by the sheafified version of the blowup square in the éh-topology (4.2.1.5), we have a
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natural distinguished triangle

Ry, o(Fon @ Q%) — Rrx(Fen @ Q%) D Ry (Fen @ Q) — Ry (Fen ® 23,

(%)
The functoriality of the map in the statement allows us to produce a map from the triangle ()
to the triangle (xx). Moreover, by the dimension assumption and the induction assumption,
we know the statement in the Theorem is true for X, and all of ¥; and Y;'. In this way, since
Xy = X, by a finite step of descending inductions via comparing the above two triangles (x)

and (), the natural map below is then an isomorphism
RUX/K*(F® Q;(/KINF) — RWX*(Féh ® Qe’h)‘

So we are done.
OJ

Remark 5.2.2.3. By the construction of the map in Theorem 5.2.2.2, we see the infinitesimal
cohomology of a coherent crystal F over X/Kiyr is a direct summand of the cohomology
RI( X, Fx ® Q% / ) of the usual de Rham complex over X .

Remark 5.2.2.4. The isomorphism in the Theorem above cannot always be improved into a filtered
isomorphism. The discrepancy already appears in the schematic theory (see [Bhal2a, Example
5.6]).

Now we are able to generalize the éh-hyperdescent to coherent crystals over X /¥ np for
general e, not just K -linear crystals. We assume K is complete and algebraically closed in the next

Theorem, so B;{Ke is well-defined for K.

Theorem 5.2.2.5. Let X be a rigid space over X, and let F be a crystal in vector bundles over
the big infinitesimal site X /Y..ixg. Then the infinitesimal cohomology of F over X /¥ nr satisfies
the éh-hyperdescent. Namely for an éh-hypercovering X, — X' of K-rigid spaces over X, the

following natural map is an isomorphism
RF(X,/Ee[NF, f) — RIAIEII} (RP(X:/EGINF, f)) .

Proof. We prove the result by induction on e. For e = 1, it is Theorem 5.2.2.2. In general, we
take the derived tensor product of short exact sequence 0 — K — Bi, . — Bl ., — 0 with the
complex of sheaves Rux s, /. By the big site version of the base change formula in Proposition

3.3.2.3 (cf. Corollary 3.1.2.8), we get a natural distinguished triangle

Rux g F1 — Rux/s o F — Rux;s,_ «Fe-1,
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where F; and F,_; are pullbacks of F along maps of sites X/ Kixp — X/Xcne and X/, 1 inp —

X/Ynr separately. In this way, applying the natural transformation
RI(X', —) — RlAiEH RT(X.,—)

to the above triangle, we get the result by induction.

5.2.3 Finiteness

With the use of the éh-hyperdescent, we show in this subsection the finiteness and cohomological

boundedness of infinitesimal cohomology, assuming the properness of the rigid space

Theorem 5.2.3.1. Let X be a proper rigid space over K, and let F be a crystal in vector bundles
over the big infinitesimal site X /Ynr. Then the infinitesimal cohomology RT'(X /Yy, F) is a
bounded complex supported in the cohomological degrees [0, 2n|, where each cohomology is a finite

By .-module.
Proof.

» We first notice that when X is smooth, the infinitesimal cohomology RI'(X/Knr, F) is
computed by the cohomology of the de Rham complex F ®o, % K via Theorem 3.3.2.2;
namely we have

RT'(X/Kinp, F) & RU(X, F @ Q%/k)-

Moreover, each term F ® QfX /K of the de Rham complex is a coherent sheaf over X. Notice
that the cohomology of a coherent sheaf over a quasi-compact rigid space vanishes when the
degree is above the dimension ([dJvdP96, Proposition 2.5.8]). Thus by the Hodge—de Rham

spectral sequence for 7 ® 2%, we get the result for RI'(X/Knr, F) with smooth proper
X.

In general, we use the base change formula in Proposition 3.3.2.3. By taking the derived
tensor product of Ru /s, .F with the short exact sequence 0 — K — Bj{R’e — Bare-1 — 0,

we get a distinguished triangle
RF(X/KINF, F) — RF(X/EQINF, f) — RF(X/EQ_HNF, ./—")

In this way, the claim for smooth proper X follows from the induction on e.

* In general, we prove by induction on the dimension of X. When X is of dimension zero,

it is equal to a nilpotent extension of several points Spa(/K). So the result follows from the
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€h-hyperdescent along closed immersions by reduced subspaces in Theorem 5.2.2.5 (in other

words, we apply to the Cech nerve at closed immersion of the reduced subspace).

Now assume X is reduced of dimension 7, and the claim is true for any rigid space of smaller
dimension. By the resolution of singularities of rigid space in [Tem18], there exists a finite
sequence of maps X, — --- X; — Xy = X, where X, is smooth, and each map X; — X, _;
is a blowup at a closed analytic subspace Y;_; of X; 1, such that each Y;_; is nowhere dense
in X;_;. We denote E; to be the exceptional locus Y;_; xx, , X; of the i-th blowup. We
could then apply the éh-hyperdescent in Theorem 5.2.2.5 to the Cech nerve associated with
the blowup covering X; [ Y;—1 — X;_1. The limit R limaor of the infinitesimal cohomology

for the hypercovering is isomorphic to the fiber of the blowup square
RU(X;/ Ky, F) D BT (Yi—1/ King, F) — RO(Y;/King, F),
and thus we get a long exact sequence

e Hj<Xz'71/KINF7JT'.> — Hj(Xi/KINFa-F)@Hj(yéfl/KINFwF) —
HY(Y;/King, F) — - -

In this way, with the help of the induction assumption for all Y;, a further descending induction
from X, to Xy = X finishes the proof.

5.3 Algebraic and analytic infinitesimal cohomology

At the end of the chapter, we prove the comparison between the algebraic infinitesimal coho-

mology and the analytic infinitesimal cohomology, for a proper algebraic variety.

Recall that for an algebraic variety? X over a p-adic field K, we can define its (algebraic)

infinitesimal site X/ Ki,¢, whose objects are schematic infinitesimal thickenings (U, T), where U is

an Zariski open subset of X. The infinitesimal site X/ Ky is equipped with a structure sheaf O,

and its cohomology is called the algebraic infinitesimal cohomology. Moreover, the infinitesimal

structure sheaf admits a surjection Oy, x — Ox to the Zariski structure sheaf, whose kernel Jy,x

defines a natural filtration on RI'(X/ Ky, Oy ). Similar to the analytic theory, we call this

filtration the (algebraic) infinitesimal filtration.

Let X = X®" be the rigid space over K defined as the analytification of a variety X. As the

analytification functor Schx — Rigy preserves open and closed immersions, it induces a natural

ZFor our purpose, a variety is defined to be a locally of finite type scheme over a field in the article.
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map of ringed sites
(X/King, OX/K) — (X/ Kint, ODC/K)-

Moreover, as the surjection Oy, — Oy is compatible with Ox/x — Ox, the natural map of
infinitesimal structure sheaves above is then a filtered map. As a consequence, by passing to their

cohomology, we get a natural filtered morphism in derived category
RF(:X:/Kinf, ODC/K) — RF(X/Kmf, OX/K)'

Our main result in this subsection is the following.

Theorem 5.3.0.1. Let X be a proper algebraic variety over K, and let X be its analytifiation. Then

the analytification functor induces a filtered isomorphism of infinitesimal cohomology
RF(:X;/Kinf, ODC/K) — RP(X/Kinf, OX/K)-

Before the proof, we first recall that there is a natural map of ringed sites (X, Ox) —
(XZar, Ox). Here the rigid structure sheaf is flat over the Zariski structure sheaf, and the pullback
along the map induces a fully faithful functor from coherent Oy-modules to coherent O x-modules.

Moreover, the above map of sites is compatible with the infinitesimal topos. Recall that there

exists a natural map of topoi

UDC/K : Sh(X/Kinf) — Sh(%zar);
F— (u —> F(U/Kinf,F‘u>).

By construction, this functor is compatible with its rigid version ux/x : Sh(X/Ki,¢) — Sh(Xg)

(cf. Subsection 3.1.3). Namely, the following diagram is commutative

Sh(X/ Kint) — Sh(X/ Kint)
uX/Kl lux/K
Sh(Xyie) Sh(Xzar)-

We then claim the following result.

Proposition 5.3.0.2. Let X be an algebraic variety over K, and let X be its analytifcation. Then
the complex of coherent O x-modules Rux k(T K /T ;;}ﬁ) is naturally isomorphic to the analyti-

fication of the complex of coherent Ox-modules Rux/K*(jf/K/jf/}l).

Proof. We denote the complex of coherent Ox-modules Ruy /. (jg?/ ! \79?/’;) by C, and we denote

the complex Rux/k«(Jy K /T ;ﬁ) by C’. Then it suffices to show that the natural map below
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induced from the pullback from Xz,, to X\, is an isomorphism of complexes of O x-modules
C ®p, Ox — C".

As the result is a local statement for X, let us assume X = Spec(A) is a finite type affine scheme
over K and X — Y = Spec(A’) be a closed immersion into an affine space over K. Moreover,
notice that the isomorphism could be checked locally on X, so we may take an open affinoid disc
of certain radius Spa(B’) in Y**, with the open subset X N Spa(B’) = Spa(B) in X. From our
choices, we get a cartesian diagram as below, where horizontal maps are surjective and vertical
maps are flat

B'—= B

I

So it suffices to show that
RT(Spec(A)/ Kint, J3ic/ Tijx) @a B =2 RU(Spa(B) / Kint, T3/ T3 f30)-

We then recall from [BdJ11, Section 2] that the algebraic infinitesimal cohomology can be

computed by the Cech-Alexander complex as below
D— D(1) — D(2) — -+,

where D(m) is the formal completion of A’(m) := A’ R along the surjection A'(m) — A.
We take the n-th graded piece for the algebraic infinitesimal filtration, then the cohomology
group RT'(Spec(A)/Kint, Ty / jg?;;g) is isomorphic to the following map of A-linear cosimplicial
complexes

BII5™ = Tpay/Tht — Ty /I — s

where Jp(m) is the kernel of the surjection A’(m) — A. On the other hand, by the Cech-Alexander

complex for rigid spaces in Proposition 3.3.1.3, we have
RT(Spa(B)/ Kint, x5/ T ) = (Jg/Jg“ — Ty [T = They /T — ) ,

+

where D(m) is the formal completion for the surjection B'(m) := B’ AN B, and Jp,) is the

kernel of the map B'(m) — B. Thus we are left to show the quasi-isomorphism for the canonical
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map of B-linear cosimplicial complexes below

(JB/JgH — Jg(l)/Jg% — Jg(z)/JgJ(rzl) — ) ®a B —

(Tt — T[Tt — T/ Tt — ).

At last notice that by our choices, the rigid space Spa(B’) is an open disc of some radius in the
affine space Spec(A’)*". In particular, the following map of rings is a cartesian diagram such that
vertical maps are flat

B'(m)—= B’
A'(m) — A’
In this way, combining this with the cartesian diagram in the first paragraph, we see the kernel

Jp(m) of the surjection B'(m) — B is equal to the base change of Jp,, along the flat map
A'(m) — B’(m). Hence we get the natural equalities

JD(m)B'(m) = JD(m) ®A'(m) B’(m) = Jp(m);
(Jg(m)/JgJ(rnll)) ®a B = (Jg(m)/l]g?nll)) 4’ (m) B/(m) = Jg(m)/Jg—(i_nlz)'

So we are done.

At last, we finish the proof of Theorem 5.3.0.1.

Proof of Theorem 5.3.0.1. To show the natural map in the statement is a filtered isomorphism, it
suffices to show the isomorphisms for their underlying complexes and each graded pieces separately,
as both of them are filtered complete.

For the underlying complexes, this follows from the éh descent. To see this, we first notice that
when X is smooth and proper over K, then the algebraic and analytic infinitesimal cohomology
are isomorphic to the algebraic and analytic de Rham cohomology separately ([Gro68], Theorem
3.3.2.2), which are isomorphic to each other by applying the GAGA theorem to their Hodge-
filtrations (cf. [Con06, Appendix A.1]). In general, we may assume X, — X is a simplicial smooth

varieties by resolving singularities. Then its analytification X, — X is an éh-hypercovering by
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smooth rigid spaces, and we get the isomorphism

RF(:X:/Kinf,Ox/K) R lim RF(:X; /Kmf,Oxﬂ/K)

[n]eAcp

=~ R lim RF(X /KmquX /K)
nle Ao

= RINX/Kint, Ox/K ),

where the first equality is the h-hyperdescent of algebraic de Rham cohomology for blowups in
[Har75], and the last is the €h-hyperdescent for analytic infinitesimal cohomology in 5.2.2.2.
For the graded pieces, by Proposition 5.3.0.2 we have
RU(X/ Kine, TR/ )?/%) RF(Xrlga Rux /i« (TX/k/ X/K)) =

We denote C' to be the bounded below complex of coherent O x-modules Rux k. (Jy K /T "“)

As RT'(X7zar, 77"C) lives in cohomogical degree larger than n, we have the natural equalities
RT(X 74, C) = colim,, RT'( Xz, TS”C)_

Similarly we have
RT(Xig, C*™) = colim,, RT(Xig, 7="(C™")).

On the other hand, as the rigid structure sheaf Oy is flat over Oy, the analytification functor
(—)* = — ®p, Ox on coherent complexes is an exact functor. So for each n € N, there exists a

natural equality
TSnCan — (Tgncv)an

Notice that for each bounded complex 7="C' of coherent sheaves, by rigid GAGA theorem ([Con06,
Appendix A.1]) we have

RT(Xzar, 7="C) & RT(Xyig, (T5"C)™).
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In this way, combining all of the isomorphisms above, we get

RT(Xzar, C) 22 colim,, RT( Xz, 75"C)
>~ colim, RT'(Xig, (T="C)™)
= colim,, RT'(Xig, 7="(C™))
= RI(Xig, C*).

At last, substituting back the definition of C' and Proposition 5.3.0.2, we then obtain the formula for

graded piece of infinitesimal filtrations:
RU(X/ Kint, Tiy5c/ T i) = RU(X ) Kings Ty i/ T )

]

As an application, we get the comparison with singular cohomology when K is abstractly

isomorphic to the field of complex numbers.

Corollary 5.3.0.3. Assume there exists an abstract isomorphism of fields K — C. Then for any
proper algebraic variety X /K with its analytification X, there exists a filtered isomorphism of

cohomology
H'(X/ Kint, Ox/xc) = Hg;,,, (X(C), C),

where the singular cohomology of X(C) is filtered by the algebraic infinitesimal filtration.
Proof. This follows from Theorem 5.3.0.1 and the classical result of Hartshorne in [Har75]. O

Using the same idea of the proof for Proposition 5.3.0.2 and Theorem 5.3.0.1, we can prove the

base extension formula for infinitesimal cohomology.

Corollary 5.3.0.4. Let K be a complete p-adic extension of Q,, and let K be a complete extension
of Ko. Assume X is a proper rigid space over K, and let F be a coherent crystal over X /K .

Then the following natural map of filtered complexes is an isomorphism

RF(X/KO,inf,.F) ®K0 K — RF(XK/Kinfa-FK>'
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CHAPTER 6

Cohomology over B,

Let X be arigid space over C,. In this chapter, we generalize the three de Rham cohomology
theories in previous chapters to the coefficient over the de Rham period ring B, and compare
them with the pro-étale cohomology of the de Rham period sheaf Byr. The results in this chapter
appear in [Guo20, Section 7].

Analogous to the infinitesimal theory over Bj{R’e, we will introduce the basics of the infinitesimal
site of X over B together with its relation to X/B(y .. . as in Section 6.1. Here the infinitesimal
site of X over B could be thought as the union of all of the sites X/ le_Rveinf’ for e € N. In Section
6.2, by taking the inverse limit, we extend the comparisons in Chapter 5 to B j;-linear coefficients.
At last, in Section 6.3 we use the cohomological descent and compare the Byr-linear cohomology
theories with the pro-étale cohomology of the de Rham period sheaf Byg in [Sch13a], extending
the comparison for proper smooth rigid spaces in [BMS18] to all proper rigid spaces (Theorem
6.3.1.2) Together with the Primitive Comparison Theorem ([Sch13b]), we are then able to show the
¢-torsionfreeness of the B -infinitesimal cohomology, and the degeneracy of the Hodge—de Rham

spectral sequence for éh-de Rham cohomology, as in Theorem 6.3.2.1.

6.1 Infinitesimal sites and topoi over B

We fix a complete algebraic closed p-adic field K. Let X be a rigid space over Bl /¢&"
for some fixed » € N. To build an infinitesimal cohomology theory with the coefficient being
B;{R = @eeN B§R7e, we construct an infinitesimal site X /¥;,¢ as a union of all X /¥, ;¢ fore € N5,
and consider its relation to each infinitesimal site X /> ys.

6.1.1 The site X/

We first give the definition of the infinitesimal site over > = hgeeN de.

Definition 6.1.1.1. Let X be a rigid space over %, = Spa(Bj{R/f’“), for some fixed r € N. The

infinitesimal site X /};,¢ over B;{R is defined as follows:
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* The underlying category of X /Y is the category of pairs (U, T), for (U,T) being an
thickening in X /% ¢ for some e > r.

A morphism between (Uy,T1) and (Us, T) is a morphism of objects in X /3y, for e large
enough such that both pairs are objects in X /3. .

* A collection of morphism (U;, T;) — (U, T) in X /% is a covering if {T; — T'} is an open

covering for the rigid space T

As a category, X/, is the union of X /¥ for all e > r. It is clear that the topology is
locally rigid over each object in X /¥;,¢. Thus the description of a sheaf over X/}, is similar to

that of a sheaf over X /¥, as in Section 3.1.

Remark 6.1.1.2. Similarly to the Discussion in Section 3.1, we could define the big version
infinitesimal site X /> 1xr, where the objects are infinitesimal thickenings (U, T") for U being a rigid
space over X and U — T a nil-extension over B;. The relation between the big infinitesimal sites
X /YN and the small one X /Y, including the constructions in the rest of the section, are exactly

identical to the case over By, . in Paragraph 3.1.1, and we will not duplicate again here.

6.1.2 Functoriality of Sh(X /%)

The infinitesimal topos Sh(.X /%) is functorial with respect to the rigid space X . Namely, for

a map of Bj;-rigid space f : X — Y where ¢ is nilpotent, we have a natural map of topoi
finf : Sh(X/me) — Sh(Y/me>

The corresponding adjoint pair of functors are given by the following:

* For a sheaf G € Sh(Y/Si,¢), the inverse image f,_; G is given by the restriction of y3'G to
the category X /¥;,¢ along the map f, and is equal to the sheaf associated with the presheaf

X/%ue 2 (U,T) — lim g(v,s).
(U,T)=(V,5)
(V)€Y /Sint,
U—V compatible with f

* The direct image functor fi,¢. sends a sheaf F € Sh(X /%) to the sheaf

fineF(V,.9) = lim FU,T).
(UT)—(V,5)
(U,T)EX/ZINF
U—V compatible with f
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We want to remind the reader that the construction of those two functors are identical with the

construction of the functoriality morphism Sh(X/¥.;,s) — Sh(Y /Y. i) for the map of rigid

| ]

spaces

as in Subsection 3.1.4.

6.1.3 Relation with X/> ;¢

Topologically, the infinitesimal site X/, is the limit of X /¥.;,¢ for e > r. To make this

precise, we consider the following morphism of sites:
Ue - X/Einf — X/Zeinf7

whose corresponding functor is the canonical inclusion functor that sends (U, T) € X /3, to the
object (U,T) € X /¥, Note that by construction, this cocontinuous functor is a fully faithful
embedding.

This morphism induces an adjoint pair of functors (u_ ', u.) given as follows:

* The functor u.. is the restriction functor, in a way that for a sheaf 7 € Sh(X/%;,¢) we have

(ue*F)T - fT-

e For a sheaf G € Sh(X/3. ), the sheaf u_'G is the sheaf associated with the presheaf

(V.8)~ lim  GU.T)
(V,9)—(U,T)
(UvT)EX/Ee inf
Qa S ¢ ngzea

G(V,S), S € Rigy, .

So by the definition of the site X /%, the restriction of u_'G at (V,.9) is

®7 S ¢ ngEea

(u;'G)s =

Here we notice that when G = h,r) is the representable sheaf for some object (U,T) € X/Yeints
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the inverse image u_ ' h(y 7 is nothing but the representable sheaf A 7y in Sh(X/Yi,).

The morphism of site u, : X /¥ — X /¥,y induces a map of topoi
Ue : Sh(X/Yine) — Sh(X /e ing).

It admits a section i, : Sh(X/Y¢inr) — Sh(X/X.), where the corresponding adjoint pair of

functors is given as follows:

e For asheaf G € Sh(X/X;,s), the inverse image i, 'G is the sheaf associated with the presheaf

X/Eeinf > (UvT) — hgl g(U7S) :g(UaT)
(UT)—(U,S)
(U,S)eX/Zins

Namely, i = w,, is the restriction functor.

* The direct image functor ., sends a sheaf F € Sh(X />, ,¢) to the sheaf

i F(V.S)=  lm  F(V,T)=F(V.S xg 5,).
(V\T)—=(V.S)
(VT)eX/Zeint

It is clear that the composition u, o 7. is equal to the identity. We also note that the above functors

are functorial with respect to e.

Remark 6.1.3.1. Here we notice that the map i, is in fact induced from a natural map of sites

Z'e : X/Eeinf — X/Einf;
(U, T x5 X)«—(U,T).

This is analogous to the nilpotent bases situation, as in the Remark 3.1.4.3

Remark 6.1.3.2. We also want to reminder the reader that the construction of map ¢, could be

regarded as the functoriality morphism of infinitesimal topoi associated with the following diagram
X X
Y.

Ye—
Remark 6.1.3.3. The construction of w, and i, is compatible with the functoriality morphism of
infinitesimal topoi fins : Sh(X/YXcins) — Sh(Y/Xe in¢) for a map of rigid spaces f : X/¥. —

id
—_—
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Y/¥... Namely we have the following commutative diagrams among infinitesimal topoi

Sh(X/Sint) —> Sh(X/Seime)  Sh(X/Seint) —> Sh(X/Sine)

finfl Lfinf finfl lfinf

Sh(Y/Emf) T) Sh(Y/Ze/ inf); Sh(Y/Ee/ inf> z—/> Sh(Y/me)

6.1.4 Relation to the rigid topos Sh(.X,;,)

Analogous to Subsection 3.1.3, there exists a natural map of topoi to the rigid site X,;, as below
Ux/s - Sh(X/me) — Sh(Xrig).
The corresponding preimage and the direct image functors are given as below

ux /sy © Sh(X/Binr) — Sh(Xiy);
F— (U — F(U/Emfvf))

uyys t Sh(Xuig) — Sh(X/Zinf);
E— (UT) — E)).

Namely the push-forward functor ux /s, is the sheafified version of the infinitesimal global section

functor.

Remark 6.1.4.1. The functor ux/x is functorial with respect to the rigid space X . Precisely, given a
map of rigid spaces f : X — Y over BI; where £ is nilpotent, we have the following commutative
diagram

Ux/s

Sh(X/Yin) —= Sh(Xyg)

1 }

Sh(Y/Emf) W Sh(leg)

Remark 6.1.4.2. The functor ux s is also compatible with u, : Sh(X /%) = Sh(X/E.in¢) and
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ie : Sh(X/Xein) — Sh(X/3iy¢). Namely, the following diagrams commute:

Ux/s ux/s

Sh(X /%) Sh(Xyig) Sh(X/Yine) Sh(Xig)

Sh(X /% int) ; Sh(X/Seint)

Here ux/s,. : Sh(X/3cins) — Sh(Xig) is the analogous functor of ux /5, onto the rigid site defined
in Subsection 3.1.3.

6.2 Cohomology of crystals over X/

In this section, we consider the cohomology of a crystal F over the infinitesimal site X /Y.
Our strategy is to interpret the cohomology of F as the derived inverse limit of the cohomology of
the pullback ¢ F, where i* F is a crystal over the site X /> i

To start with, we first describe a crystal over the infinitesimal site X /¥;,;.
Definition 6.2.0.1. Let X be a rigid space over ¥i,s where & is nilpotent.

(i) The infinitesimal structure sheaf over X /%, denoted as Ox/x, is a sheaf over X /Zing

sending a thickening (U, T) € X /i, onto the global section of Or at T as below

Ox/z : (U, T) — OT(T>

(ii) A coherent crystal over X /> is a Ox /s-coherent sheaf F over X /it satisfies the crystal
condition as in Definition 3.2.1.2. It is called a crystal in vector bundle if the restriction Fr

at each infinitesimal thickening (U, T) € X /Y is a vector bundle over Or.

Here we mention that similar to Proposition 3.2.1.7, it can be shown the categories crystals over
big and small sites are equivalent.

We notice that the morphism of sites i, : X/Y. s — X/, in the last section is naturally a
morphism of ringed sites for their structure sheaves. Moreover, since the preimage functor i; ! is

equal to the restriction functor onto the subcategory X/, ;.¢, we get

i;lox/g - OX/Ee-

So we can define the pullback functor i*F = i;'F ®;= Ox/s., which is the same as the

1
Ox/s
restriction functor i; ' F itself; namely for an infinitesimal thickening (U, T) € X/, ns, we have

(isF)r = (i, F)r = Fr.
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1

Here we want to remark that the pullback functor 7 = i " is compatible with the pullback

functor f,; of the morphism fi,e : Sh(X/3cins) — Sh(Y/Xe i) for a map of rigid spaces
f:X/E. =Y/,
The main tool of the section is the following lemma, relating a coherent crystal over X /3¢

with those over X /X, ;¢ of -nilpotent coefficients.

Lemma 6.2.0.2. Let F be a coherent crystal over the infinitesimal site X /i (resp. X /Xinr), and
let X be defined over X, for some r € N. Then we have the following.

(i) The pullback i} F for each e € N, is a crystal over X /¥.ins. When F is a crystal in vector
bundles, so is F over X /¥t

(ii) The counit map for the adjoint pairs (i%,i..) induces the following isomorphism
F /& — Rig it F.
In parituclar, we have the natural equivalences as below

F— R@f/fe — Rl'&lRie*i:]—".

e>r e>r

Here the transition maps in the last limit are given by the map of infinitesimal sites X /¥oins —
X/Zei1inf (resp. X/ 3wy — X/Xer11nF) for the closed immersions of bases.

Proof.
(i) The proof of the (i) follows from the definition of the crystal condition.

(i) We recall from the last section that the push-forward functor ¢.,G is given by
(ie*g)(Ua T) - g(Ua T X5 Ee)y

for a sheaf G € Sh(X/X.i,). We denote the fiber product 7' Xy, 3. by T, which is an
infinitesimal thickening of U that is defined over .. Apply the above to the pullback

G = i F of the crystal F, and notice that ¢ is the restriction functor, we get

(Ricvig F)(U, T) = RU((U, ), F)
F(Teapr)
(
(

[(Te, Fr/&°)
(T, Fr/&9),

Il
I I X
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where the last equality follows from the observation that 7, — 7" has the same underlying
topological spaces. Hence the cone of F /¢ — Ri..i*F, which is bounded below and has no
cohomology, vanishes in the derived category.

At last, notice that for a coherent sheaf F of Oy sx-modules over X /Ling, we always have

F= R@l}"/ﬁ6 = @f/ﬁe.

e>r e>r
So the last claim in (i7) follows.

]

Now we are able to give the main result about the cohomology of crystals over the infinitesimal
site X/ Yint.

Theorem 6.2.0.3. Let X be a rigid space over some Y., and let F be a coherent crystal over
X/Einf~

(i) There exists a natural isomorphism of complexes of sheaves of B -modules as below:

RUX/Z*]: — R@ RUX/EE*(Z:]:)-

e>r

In particular, by applying the derived global section functor, we get

RI(X /i, F) = Rl'&nRF(X/Eeinh irF).

e>r

(ii) Let {Y.}.>, be a direct system of rigid spaces over ¥, such that each Y, is smooth over ¥,

with Yo 1 Xx. ., Xe = Y.. Assume X admits a closed immersions into Y,. Then we have

e+1

natural isomorphisms of complexes of sheaves of Bl -modules as below

Rux/suF — Fp @ Q) = RUm(Fpy (v ® (v,

e>r

where D = @e>r Dx(Y,) is the colimit of envelopes, and Fp ® Q3, is the de Rham complex
of F over D. -

(iii) Suppose F is a crystal in vector bundles over X /Y. For each e > r, the natural maps
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below are isomorphisms
(Ruxo.F) @g: Bipe — Rux/s..(iiF);
Ruxso — Rlim ((Ruxs.F) @k Bly.) -

In particular, when X is quasi-compact quasi-separated, by applying the derived global

section functor we obtain the following canonical equivalences

RT(X/Sine, F) @+ Bl = RU(X/Seint, it F);

+
BdR

R (X/Sir, F) 2 Rlim (RT(X/Sr, F) @ Bl )

Before we prove, we want to remark that the result for crystals over the big site X /Yy are true

and the proof is identical to the small site case.
Proof.

(i) This follows from applying Rux s, to the equivalences F — R 1'£16>T Rie it F in Lemma
6.2.0.2. Here we use the identity of maps of topoi in the last section -

Ux/s Ole = Ux/5, -

(i) For each e > r, by Theorem 3.3.2.2 there exists a natural isomorphism of complexes of

sheaves of Bj{Ke—modules
RUX/EE*Z:.F — ‘FDX(YE) ® Q.DX(Ye)'

So the map of ringed sites X /Y i — X/Xe11inr induced from the closed immersion of the

bases Y. — .. together with (i) produces the inverse limits

Rux s JF = Rl'gl(]:px(ye) ®Qp(v)

e>r

where we use the compatibility of the de Rham complexes Fp (v,) ® 0, ) for different e,

by our choices of the direct system of smooth rigid spaces {Y, }..

(i11)) We first notice that the second half of the statement follows from the sheaf version, by the
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following equality
RU(U, (Rux/s.F) ®éjR BgR,e) = RT(U/ Zint, F) ®B§R BjirR,e'

Here the equivalence follows from applying RI'(U, —) to the distinguished triangle resolving

+ +
BdR,e over B3y as below

RUX/Z*,FL RUX/Z*fﬁ' (RUX/Z*./—"> ®L

+
B;rR BdR,e'
Moreover the above equality shows that the sheaf version isomorphism is local with respect to
X, so it suffices to assume that X admits a closed immersion into a direct system of smooth
rigid spaces {Y.}. over 3., where the results follow from the item (ii) and Theorem 3.3.2.2.

So we are done.

]

Remark 6.2.0.4. Recall that for a smooth affinoid rigid space X = Spa(R) over K, the crystalline

cohomology of X over Bj{R, introduced in [BMS18, Section 13], is defined as the inverse limit

1‘&1 Q.Dx(ye)7

eeN

where X — Y, = Spa(Bj{R’e(ﬂilﬂ is a closed immersion. So Theorem 6.2.0.3 implies that the

infinitesimal cohomology RI'(X /Y., Ox/s) coincides with the crystalline cohomology of X over
B in the sense of [BMS18].

With the help of Theorem 6.2.0.3, we can compare the infinitesimal cohomology of X over Bl

with the derived de Rham complex.

Definition 6.2.0.5. Let X be a rigid space over Y,.. Then the analytic derived de Rham complex of

——an
X over BI;, denoted as dR y /s, Is defined to be the derived inverse limit

@?/2 =R @1@2}267

e>r

where @j?/ze is the underlying complex of the filtered complex dR x 5.

Apply Theorem 6.2.0.3 (i) to the infinitesimal structure sheaf Ox/5; and the comparison in

Theorem 5.1.2.3, we get the following.
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Corollary 6.2.0.6. Let X be a rigid space over X.,.. There exists a natural isomorphism between

the analytic derived de Rham complex and the infinitesimal cohomology sheaves
@i?/z — Rux/s.Ox/x.
In particular, applying the derived global section, we get the following comparison of cohomology
RI(X, dRy)y) & RE(X/Sint, Oxz):

The next result concerns the éh-descent for cohomology of crystals over the big infinitesimal

site X/Ynr, where X is a rigid space over K.

Proposition 6.2.0.7. Let X be a rigid space over K, and let F be a crystal in vector bundles
over the big infiniteismal site X /Ying. Then the cohomology sheaf Rux/s.JF satisfies the éh-
hyperdescent. Namely for an éh-hypercovering X, — X' of K-rigid spaces over X, the following

natural map is an isomorphism

RO(X'[Sive, F) — Rl (RUCY /i, 7).

[n]eAop

Proof. By Lemma 6.2.0.2, (i), the pullback i F over X /¥y is a crystal in vector bundles. Thanks

to Theorem 5.2.2.5, we know the natural map X, — X' induces a natural isomorphism as below

RP(X//ZINF,Z:J_‘-) — R lim (RF(X;L/ZINF,Z: ))

[n]eAop
Thus the result we want follows from taking the derived limit over all e, by Theorem 6.2.0.3 (i). [l

We want to mention that thanks to the Corollary 3.1.2.8, it is safe to replace the cohomology of
F over the big infinitesimal site by the cohomology RT' (X’ /Y., ¢t F) of the restriction ¢~ F over
the small infinitesimal site X' /3. In particular, by applying the above result to the infinitesimal

structure sheaf Oy 5, we see the infinitesimal cohomology over B, satisfies the éh-hyperdescent.

Corollary 6.2.0.8. Let X be a rigid space over K. Then the infinitesimal cohomology
RT(X/Yint, Ox/3)

satisfies the éh-hyperdescent.

Another quick upshot is the finiteness of infinitesimal cohomology for a proper rigid space X.
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Proposition 6.2.0.9. Let X be a proper rigid space of dimension n over K, and let F be a
coherent crystal. The infinitesimal cohomology RTU (X /Yixw, F) is then a perfect B -complex in

cohomological degrees [0, 2n).

Proof. Thanks to Theorem 6.2.0.3 (i), we can write RI'(X/Yng, F) as the derived limit of
RI(XXanF, it F). Here each RI'(X/Y.nF,ifF) is a bounded complex in cohomological de-
gree [0, 2n] such that each cohomology group is finite over B(J{Re (Proposition 5.2.3.1). So the result

then follows from the short exact sequence

0 — R'im H™H(X/Sonr, i F) — H(X/Zive, F) — Im H (X/Sonr, i F) — 0.

Here we note that the inverse system {H?*"(X /Y nr, i F) }. satisfies the Mittag-Leffler condition,
by the finiteness of each H*"(X/Yxr, i5.F) over B .. O

6.3 Comparison with pro-étale cohomology

In this section, we compare the infinitesimal cohomology of X /¥, with the pro-étale coho-
mology of the de Rham period sheaf Byr. As an application, we show the degeneracy of the
Hodge—de Rham spectral sequence, together with a torsionfreeness of infinitesimal cohomology
H'(X/%, Ox/s,,) over Big.

Throughout the section, we will assume the basics of the pro-étale topology defined in [Sch13a].

6.3.1 Comparison theorem

Let X be a rigid space over /K, and let X, be the pro-étale site of X. The pro-étale site
admits a basis, which consists of affinoid adic spaces U = Spa(B, B™) that are pro-étale over
X and are affinoid perfectoid (namely, the Huber pair (B, B") is a perfectoid algebra over K).
Over the pro-étale site, we can associate the complete structure sheaf @ +, whose section at an
affinoid perfectoid space U = Spa(B, B™) is the K -algebra B. Denote v : X 0¢t — X,ig to be the
canonical morphism from the pro-étale site to the rigid site of X.

We recall from [Sch13a] that the de Rham period sheaf By, defined as a sheaf of B -algebras
over X, 06, sending an affinoid perfectoid space U = Spa(B, BT) onto the ring

B (B. BY) = lim (W( lim B*/pn}g]/gm) .

xr—rxP

The sheaf BJ; admits a canonical surjection § : B, — O x that are compatible with the surjection

map 6 : Bj; — K for the period ring BJ;. It can be shown that  is a nonzero-divisor in B, and
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the ideal ker(f) C B is generated by £ € B;. So we could invert the element £ to get a sheaf of
Bar = BIR[%]—algebras over X061, Which we denote by Bygr. The sheaf of rings Byr then admits a
natural descending filtration defined by Fil'Byr := ¢'B;, where each graded piece gr'Bag, which
is equal to O x - €, is canonically isomorphic to the pro-étale structure sheaf.

We first recall the comparison between the infinitesimal cohomology and the pro-étale cohomol-

ogy of Bygr for smooth rigid spaces.

Theorem 6.3.1.1 ((BMS18], Theorem 13.1). Let X be a smooth rigid space over K. Then there

exists a natural map of complexes of sheaves of Bly-modules over X
RUX/E*OX/E — RV*IBXR.

It is an isomorphism after inverting €.

Proof. This is essentially proved in the [BMS18], Theorem 13.1, and we explain here the relation
of their result with our statement.

Let X be a smooth rigid space over K of dimension d. Assume U = Spa(R) is a very small
affinoid open subset in X ; namely it admits an étale morphism onto a torus T%, where the map can
be extended to a closed immersion into a larger torus T" = Spa(K (T-')). For any such closed
immersion, we could associate the torus T" an affinoid perfectoid space T™> = Spa(K (Tli”%o )
The canonical map T™> — T" is pro-étale, and its pullback along U — T" produces a pro-étale
morphism from an affinoid perfectoid space Spa(R, RL) over U = Spa(R).

We denote by D to be the envelope of U inside of the direct system {TEIR,e}e of tori over
{BJr.c}e- Then for any such choice of morphisms (U — T — T"), we could construct two

+ .
Bjg-linear complexes

* The de Rham complex 27, of U in {Tg+ }e, that computes the infinitesimal cohomology
dR,e
RT(U/ s, Ox/x) by Theorem 6.2.0.3.

* The Koszul complex KEIR( Ro) = KB;{R( Roo) (7u; — 1), that computes the pro-étale cohomology
RF(Uproéta B:{R)

As in the proof of the [BMS18, Theorem 13.1], for any choice of (U — T — T™), there exists a
natural map of actual complexes

which is functorial with respect to the choices of triples, such that it becomes an isomorphism after

inverting £. Notice that the set of triples for a fixed U is filtered, and the transition map of both
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complexes are isomorphisms. In this way, the induced isomorphism
1
RF(U/Einﬁ OX/E) [E] — RF<Uproét7 ]BdR)

is independent of the triples (U — T — T™). Since the collection of very small open subsets of X

form a basis in the rigid topology, we could then get a natural isomorphism as below

1
Ruxs.Ox/s[=] — Rv.Bag.

§
O

Using the éh-hyperdescent, we could improve the above result into the non-smooth situations.

Theorem 6.3.1.2. Let X be a rigid space over K. Then there exists a natural map of complexes of

sheaves of B(}LR—modules over X as below
RUX/E*OX/E — RV*]B%XR.

It is an isomorphism after inverting .

Proof. In the proof, we use vx : X0t — Xiig to denote the natural map of sites associated with
the rigid space X.

We first notice that the pro-étale cohomology sheaf Rvx,B}; and Rvx.Bgr satisfy the éh-
hyperdescent. To see this, we recall from [Guol9, Section 4] that the derived push-forward
Rux.Ox is naturally isomorphic to Rrx,C, where C = Ra,0, ¢ D=°(X4,) is the derived
push-forward of the completed v-structure sheaf (see [Guol9, Section 3.2]), and mx : Xap — Xyig
is the natural map of sites. As an upshot, since C' is a bounded below complex of éh-sheaves,
its direct image R7x.C in the rigid site naturally satisfies the éh-hyperdescent; namely for an

éh-hypercovering p : X, — X over K, the induced map below is an isomorphism
RTI’X*C — R,O*RT('X.*C.

We could then replace the above by the derived push-forward of the pro-étale structure sheaf to get
a natural isomorphism
RVX*@X — R,O*RV)(.*@\)(..

On the other hand, notice the de Rham period sheaf B is completed under the ¢-adic topology

such that the ¢-th graded piece is equal to the complete structure sheaf O x - £ up to a twist. In this

147



way, by the hyperdescent for graded pieces and the induction on e, we get

Rux.Bl, = Rlim Rvx. B, /&°

eeN

~ R m RP*RVX.*BIR/ge

eceN

>~ Rp.R I&H Rux,.Bgg /&

eeN
= R,O*RI/X‘*B:{R.

Namely the pro-étale cohomology of B_; hence By = IBB(}LR[%] satisfies the €h-hyperdescent.

At last, notice that the collection of maps f : X’ — X for smooth rigid spaces X’ form a
basis of the éh-site X¢,. In this way, the natural comparison map Rux: /5. Ox/ /s — RVX/*]B%CTR for
smooth X’ extends to a map for X via the é€h-hyperdescent (for infinitesimal cohomology sheaf,

this is Theorem 6.2.0.7), and by inverting ¢ we get the isomorphism

1
RUX/Z*OX/E =] — Rv,Bag.

§
O

Remark 6.3.1.3. The morphism between the infinitesimal cohomology and the pro-étale cohomol-
ogy is constructed in an indirect way. In fact, by enlarging the infinitesimal site X /¢ to a bigger
site that allows all (adic spectra of) complete Huber rings as in [ Yao19, Construction 5.11], the de
Rham period ring B (R ) for a perfectoid algebra R, can be then regarded as a pro-thickening
in this enlarged category. In this way, the arrow from the associated ind-object to the final object in
the enlarged infinitesimal topos will induce a map on their cohomology, and it can be checked via

computations in smooth case and the éh-hyperdescent that this coincides with our morphism.

Consider a special case when X comes from a small subfield below. Precisely, let K, be a
discretely valued subfield of K such that the residue field of K is perfect. Assume Y is a proper
rigid space over Ky, and X =Y X, K is the base field extension of X,. We recall from [Guol9,
Theorem 8.2.2] that there exists a Gal( K/ K)-equivariant filtered comparison between the pro-étale

cohomology RI'(X 06, Bar) and the tensor product
RT(Yan, Q4 /1c,) @0 Bar-

Here Qéh /Ko is the éh-differential for rigid spaces over K|, and the filtration is defined by the
product filtration, where the éh-de Rham cohomology RI'(Yg,, Q2 / Ko) is equipped with a natural
descending filtration by Fil’ = RT (Y, Qezhl / Ko)' Moreover, by taking the zero-th graded pieces,
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we get
RF<Xproét7 OX) = @ RF(Y;é}M Qéh’/K()) ®K0 K(_Z)

From this, we get the following:

Corollary 6.3.1.4. Let Y be a proper rigid space over the discretely valued subfield K, of K as

above, and let X be its base extension to K. Then we have a canonical isomorphism
1
RU(X /Y, OX/E)[E] = RT(Yon, %y /x,) @Ko Bar-

In particular, the infinitesimal cohomology of Y X i, K over Bqr admits a Gal( K/ Ky)-equivariant

filtration such that the zero-th graded factor is equal to

B RT (Ve U, xc,) @y K ().

6.3.2 Torsionfreeness and Hodge—de Rham degeneracy

For the rest of the section, we prove infinitesimal cohomology H" (X /3;,¢, O X/g) is torsion free

over B, and show the degeneracy for the éh Hodge—de Rham spectral sequence.
Theorem 6.3.2.1. Let X be a proper rigid space over K. Then we have the following.
(i) infinitesimal cohomology H"(X /S, Ox /) is torsion free over By, for each n € N.

(ii) the éh Hodge—de Rham spectral sequence below degenerates at its first page:
By = W (Xan, Q) = H™ (Xan, Q).

Remark 6.3.2.2. Note that the part (ii) generalizes the degeneracy result in [Guo19, Proposition

8.0.7], where the latter needs the assumption for X to be defined over a discretely valued subfield.

Proof. We first notice that pro-étale cohomology H" (X0, B1g ) is finite free over Bjj;. Recall

the Primitive Comparison Theorem over BjR as below ([Sch13b])
Hn(Xét, Qp) ®Qp B:;R = Hn(Xproétv B(—;R)

As the étale cohomology H" (X, Q,) is a finite dimensional vector space over Q,, this in particular

implies the finite freeness of H™ (X yoc, IB%IR) over BXR. In particular, by Theorem 6.3.1.2 and the
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finiteness in Proposition 6.2.0.9, we get the following relations

dimg, H" (Xe¢t, Q) = rankB:RH”(Xpmét, B1R)
= dimp,, H"(Xprost, Bar)
= dima (XS, O[]
S randeJrRH”(X/Einf, Ox/x)/torsion
< dimg H"(X/Yins, Ox/n) /€.
On the other hand, by the base change formula in Theorem 6.2.0.3, (iii), we get the following

short exact sequence of /K -vector spaces
0 — H"™(X/Sint, Ox/0)[€] — H(X/Kint, Ox/i) — H"(X/Zint, Ox/5) /€.
This implies the inequalities
dimg H" (X /3, Ox/x) /€ < dimg H"(X/ King, Ox/k).

Now using the comparison between infinitesimal cohomology and ¢h de Rham cohomology for

the trivial crystal F = Ox /i In Theorem 5.2.2.2, we have
dimK Hn(X/Kinf, OX/K) = dlmK Hn<Xéh, Qe’h)'

Note that the natural Hodge filtration on the éh de Rham complex (2§, induces the F; spectral

sequence
By =W (Xay, Q) = H™(Xa, Q).

As a consequence, we get

dlIIlK Hn(X/Kinf, OX/K) S Z dlIIlK Hj(Xéh7 Qéh)
i+j=n
However, by Hodge—Tate decomposition in [Guo19, Theorem 1.1.3], we have
dimg, H*(Xa, Q) = Y dimy H (X, Q).
i+j=n

Hence combining all of the relations of dimensions above, we see all of the inequalities should be

equalities. In this way, the E; spectral sequence degenerates at the first page, and for any n € N we
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have

H" (X S, Oxys)[€] = 0;
H" (X /i, Ox/x) /€ = 0.
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Part 11

Pro-étale Cohomology
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In this part, we study pro-étale cohomology of a rigid space. Our main goal is to show the
Hodge-Tate decomposition of p-adic étale cohomology for a proper rigid space over C,. We
will setup the basics about the pro-étale topology and v-topology in Chapter 7, and prove the

decomposition theorem in Chapter 8. Results in this part first appeared in [Guo19, Section 3, 4, 7,
9].
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CHAPTER 7

Pro-étale topology and v-topology

In this chapter, we recall the basics around the pro-€tale topology and v-topology over a given
rigid space, in order to build the bridge between the pro-étale topology and the éh-topology. We
follow mostly Scholze’s foundational work [Sch13a] and [Sch17], together with the Berkeley’s
lecture notes [SW20] by Scholze and Weinstein.

More precisely, we recall the notion of the small v-sheaf in Section 7.1. Here a small v-sheaf is
defined over the category of perfectoid spaces in characteristic p, and an important type of examples
comes from analytic adic spaces, as in Proposition 7.1.0.4. In Section 7.2, we recall a comparison
theorem between the cohomology of the v-strcture sheaves and the pro-étale structure sheaves in

Proposition 7.2.0.4, which we will use later in Chapter 8.
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7.1 Small v-sheaves

Let Perfd be the category of perfectoid spaces. They are adic spaces that have an open
affinoid covering {Spa(A;, A]),i} such that each 4; is a perfectoid algebra. Since many of our
constructions are large, we need to avoid the set-theoretical issue. Following Section 4 in [Sch17],
we fix an uncountable cardinality x with some conditions, and only consider those perfectoid spaces,
morphisms, and algebras that are “x-small”. We refer to Scholze’s paper for details, and will follow
this convention throughout the section.

We first recall the v-topology defined on the category Perfd.

Definition 7.1.0.1 ([Sch17], 8.1). The big v-site Perfd, is the Grothendieck topology on the category
Perfd, for which a collection { f; : X; — X, i € 1} of morphisms is a covering family if for each
quasi-compact open subset U C X, there exists a finite subset J C I and quasi-compact open
Vi C X, such that |U| = Ui f(|Vi]).

Here the index category I is assumed to be r-small.

It is known that the v-site Perfd, are subcanonical; namely the presheaf represented by any
X € Perfd is an v-sheaf. Moreover, both integral and rational completed structure sheaves
OF: X @}(X) and O : X — Ox(X) are v-sheaves on Perfd ([Sch17], 8.6, 8.7).

We then introduce a special class of v-sheaves that admits a geometric structure, generalizing
the perfectoid spaces. Consider the subcategory Perf of the category Perfd consisting of perfectoid
spaces of characteristic p. We can equip Perf with the pro-étale topology and the v-topology to get

two sites Perf,..¢; and Perf, separately.

Definition 7.1.0.2 ([Sch17], 12.1). A small v-sheaf is a sheaf Y on Perf, such that there is a
surjective map of v-sheaves X — Y, where X is a representabile sheaf of some k-small perfectoid

space in characteristic p.

By the definition and the subcanonicality of the v-topology, any perfectoid space X in character-
istic p produces a small v-sheaf.

Here is a non-trivial example.

Example 7.1.0.3 ([SW20], 9.4). Let K be a p-adic extension of Q,. Then we can produce a
presheaf Spd(K') on Perf, such that for each Y € Perf, we take

Spd(K)(Y) := {isomorphism classes of pairs (Y¥,1: (YF) = Y)},

where Y is a perfectoid space (of characteristic 0) over K, and ¢ is an isomorphism of perfectoid

spaces identifying Y* as an untilt of Y. It can be showed that Spd(K) is in fact a small v-sheaf.
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By the tilting correspondence, it can be showed that there is an equivalence between the category
Perfdk of perfectoid spaces over K, and the category of perfectoid spaces Y in characteristic p
with a structure morphism Y — Spd(K) (See [SW20], 9.4.4).

One of the main reasons we introduce small v-sheaves is that it brings both perfectoid spaces

and rigid spaces into a single framework. More precisely, we have the following fact:

Proposition 7.1.0.4 ([Sch17],15.5; [SW20], 10.2.3). Let K be a p-adic extension of Q,. There is a

functor

{analytic adic spaces over Spa(K)} — {small v — sheaves over Spd(K)};
X — X°,

such that when X is a perfectoid space over Spa(K), the small v-sheaf X° coincides with the
representable sheaf for the tilt X".
Moreover, the restriction of this functor to the subcategory of seminormal rigid spaces gives a

fully faithful embedding:
{seminormal rigid spaces over Spa(K)} — {small v — sheaves over Spd(K)}.

Here we remark that every perfectoid space is seminormal.

We can also define the “topological structure on X°”: in [Sch17], 10.1, Scholze defines the
concept of being open, étale and finite étale for a morphism of pro-étale sheaves over Perfd. In
particular, for each small v-sheaf X° coming from an adic space, we can define its small étale site
Xg,. Those morphisms between small v-sheaves are compatible with maps of adic spaces, and we

have

Proposition 7.1.0.5 ([Sch17], 15.6). For each X € Rigy, the functor Y +— Y induces an
equivalence of small étale sites:
Xét = gta
where the site on the left is the small étale site of the rigid space X defined in [Hub96].
This generalizes the tilting correspondence of perfectoid spaces between characteristic 0 and

characteristic p.

7.2 Pro-étale and v-topoi over X

In this section, we recall the small pro-étale site and the v-site associated to a given rigid space

X € Rigg, for K being a p-adic field. Our goal is to produce a topology over X that is large
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enough to include both pro-étale topology and éh-topology together, and study the relation between
their cohomologies.

We start by recalling basic concepts around the topology of small v-sheaves.

First recall that for a perfectoid space X, it is called quasi-compact if every open covering admits
a finite refinement; and it is called quasi-separated if for any pair of quasi-compact perfectoid
spaces Y, Z over X, the fiber product Y X x Z is also quasi-compact.

The concept of quasi-compactness and quasi-separatedness can be generalized to the pro-étale
sheaves and small v-sheaves. A small v-sheaf F is called quasi-compact if for any family of
morphisms f; : X; — F, i € I such that []
finite subcollection J C [ such that [ |

.e1 Xi — JF is surjective and [ is x-small, it admits a

jes Xj — F is surjective. Here X; are (pro-étale sheaves
that are representable by) affinoid perfectoid spaces, The quasi-separatedness for small v-sheaves
is defined similarly as perfectoid spaces.

We remark that the generalized quasi-compactness and quasi-separatedness are compatible with
the definition for perfectoid spaces when a map of small v-sheaves is of the form X°® — Y, for
X — Y being a map of analytic adic spaces.

Now we are able to define the two topoi over a given rigid space X.
Definition 7.2.0.1. Let X € Rigy be a rigid space over the p-adic field K.

(i) The small pro-étale site over X, denoted by X, is the Grothendieck topology on the
full subcategory of pro-objects in X that are pro-étale over X, in the sense of [Schl3a,
Section 3]. Its covering families are defined as those jointly surjective pro-étale morphisms
{fi : Yi = Y, i € I} such that for any quasi-compact open immersion U — Y, there exists a
finite subset J C I and quasi-compact openV; C Y} for j € J, satisfying |U| = Ujes f;(|V;])
We call its topos the pro-étale topos over X, denoted by Sh(X proct)-

(ii) The v-site over X is defined as the site Perf,|xo of perfectoid spaces in characteristic p over
X°, with the covering structure given by the v-topology. Namely it is the v-site over the
category of pairs (Y, f : Y — X°), where Y is a perfectoid space in characteristic p, and
f:Y — X°is a map of v-sheaves over Perf,. We call its topos Sh(Perf,|x.) the v-topos
over X.

Remark 7.2.0.2. By the [Stal8] Tag 04GY, the v-topos over X is isomorphic to the localization
Sh(Perf,)|x- of v-topos Sh(Perf,) at the small v-sheaf X°.

Remark 7.2.0.3. Given a rigid space X, we can also form the characteristic zero analogue of the
v-site Perfd, |y, on the category of perfectoid spaces over X (cf. Definition 7.2.0.1 (ii)). The tilting
correspondence and the definition of X induces a natural equivalence between the v-sites Perf,, | xo
and Perfd, |x, sending an affinoid perfectoid space Z — X° onto the associated tilt Z* — X.
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Let X € Rigy be a rigid space. Then there is a natural morphism of topoi A = (A71,\,) :
Sh(Perf,|xe) — Sh(Xpreet). The inverse functor A~ is computed via the functor (—)° as in
Proposition 7.1.0.4. Precisely, when Y € X|,..4 1s affinoid perfectoid whose associated complete
adic space is Y, the inverse A~ (Y) is the small v-sheaf Y over X°, representable by the tilt Y.
As affinoid perfectoid objects form a basis in X ;¢ ([Sch13a, Proposition 4.8]), this allows us to
extend \™! to the whole category X,,.¢. In particular, by using the Galois descent as in [Sch17,
Proposition 15.4], for a rigid space X" that is finite étale over X, we have A™*(X’) = X'°. Here
we remark that by the loc. cit. the functor A\~ realizes a pro-étale presentation into an actual limit
of v-sheaves: when Y is affinoid perfectoid with a pro-étale presentation {Y;} over X, we have
YYo= I'&nY;O.

When {Y; — Y} is a pro-étale covering of affinoid perfectoid objects over X, the inverse image
{}Aff — }70} forms a v-covering of representable v-sheaves over X°. For a general pro-étale sheaf

F over X 04, the functor A1 sends F to the v-sheaf associated to the presheaf

Z—s limg FW).

Z—W*® in Sh(Perf,|xo),
affinoid perfectoid WeX o6t
Here we note that when Z is equal to the small v-sheaf Yo forY a perfectoid space underlying a
pro-étale object Y over X, the above direct limit is F(Y"). On the other hand, the functor \, is the

direct image functor, given by
MG(Y) = G(Y?), affinoid perfectoid Y € X s

We define the untilted completed structure sheaves O, and @j on Perf, | x-, by sending Z — X°
to the following

where Z* is the untilt of Z given by the map Z — X° — Spd(K), as in Proposition 7.1.0.4. By
[Sch17, Theorem 8.7], both of them are sheaves on Perf,| x-. Here we notice that under the (tilting)
equivalence in Remark 7.2.0.3, the sheaves (/Q\W and (/’)\jj are sent to the completed structure sheaves
O and O over Perfd, |y in characteristic zero.

Furthermore, we have the following comparison result on completed pro-€tale structure sheaves.

Proposition 7.2.0.4 ((Pro-étale)-v comparison). The direct image map induces the following canon-

158



ical isomorphism of sheaves on X;o¢t:

Moreover, for i > 0 the sheaf R')\, @\j is almost zero.
By inverting p, the similar results hold for A*@ and Ri)\*@\v. In particular, the pro-étale
cohomology of O x satisfies the v-hyperdescent.

Here we follow the convention of the almost mathematics as in [Sch17, Section 3].

Proof. We first recall that for any quasi-compact analytic adic space Y over K, there exists a
pro-étale covering of Y by perfectoid spaces ([Sch17, Lemma 15.3]). In particular, the pro-étale
site X104 admits a basis given by affinoid perfectoid spaces that are pro-€étale over X. So it suffices
to check the above isomorphism and vanishing condition for Y € X, that are affinoid perfectoid.

The direct image of the untilted integral complete structure sheaf is the pro-étale sheaf associated

to
Y — IV, MO =T(¥°, ),

where Y € X, 1s affinoid perfectoid. But note that since Y© 2 VP is the representable sheaf of

an affinoid perfectoid space over X°, by construction of (/’)\j we have
L(y°,07) =T (), 0).

Here Y is the perfectoid space associated to the object Y € X4, and V" is the tilt of Y. So by
the isomorphism of perfectoid spaces (}A/b)ﬁ >~ Y, we see the A*@j is the pro-étale sheaf associated

to the presheaf
Y — D(Y,0M),

which is exactly the completed pro-étale structure sheaf over X .. Thus we get the equality.
For the higher direct image, we first note that Rik*@j is the pro-étale sheaf on X4 associated
to the presheaf
Y —s H (Y, O0F)

for Y being affinoid perfectoid in X,,;.¢;. By the construction of (5:; , the tilting correspondence
Perf,|yo = Perfd,|y in Remark 7.2.0.3 identifies the sheaf O] over Perf,|y. with Ot over

Perfd,|x. In particular, we have the natural isomorphism of cohomology
H,(Y*.0)) = H,((Y"),0") = H,(V,0"),
which is almost zero by [Sch17, Propositino 8.8] and the assumption on Y. So we are done.
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CHAPTER 8

Degeneracy Theorems

In this chapter, we aim to show the degeneracy of the éh-proét spectral sequence
Rimx, 0, (—j) = RH1,0x

and the Hodge—Tate decomposition for rigid spaces.

As a setup, we first introduce the éh-proét spectral sequence Rimx, Q% (—j) = Ry, Ox in
Section 8.1. We then recall the relation between the analytic cotangent complex and the liftability
of adic spaces in Section 8.2, analogous to the use of the cotangent complex in the deformation
theory of schemes. In Section 8.3, by relating the derived direct image Ruv, O x with the analytic
cotangent complex (Theorem 8.3.1.1), we show for a smooth rigid space X that lifts to BJ /&2, the
derived direct image Rv, Oy splits into the direct sum Do % /i (—)[—1] in the derived category
(Proposition 8.3.1.3). This implies the degeneracy of the éh-proét spectral sequence for liftable
smooth rigid spaces over C,. As a preparation to the general degeneracy theorem, Section 8.4
is devoted to generalize the first two sections into a (truncated) simplicial diagram of liftablie
smooth rigid spaces. With all of the previous ingredients, in Section 8.5 we use the cohomological
descent to prove the degeneracy theorem for general proper rigid spaces over C, (Theorem 8.5.3.1).
Namely for a proper rigid space X over C,, there is a quasi-isomorphism in the derived category of
O x-modules as below .

Rv.Ox — @ R Qi (—i)[—i]).
i=0
Here we remark that our degeneracy result can be applied to the more general class of rigid spaces X
that are strongly liftable, and is compatible with the Galois representation structure on cohomology
when X is defined over a discretely valued subfield (see Subsection 8.5.1 for the discussions).

At the end of this chapter, we give two applications of the degeneracy theorem. The first
application is a vanishing result on cohomology of ¢éh differential sheaves (Proposition 8.6.0.6),
which is the rigid analytic analogue of the vanishing theorem by Guillen-Navarro Aznar-Puerta-

Steenbrink for complex varieties. Our proof makes use of the degeneracy together with the almost
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purity theorem of the p-adic Hodge theory by the recent advance of Bhatt—Scholze [BS19], while
the classical proof uses the mixed Hodge structure in Hodge theory (cf. [PS08, Theorem 7.29]).

The second application is the promised Hodge—Tate decomposition for proper rigid spaces, as in
Theorem 8.7.0.1.
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8.1 éh-proét spectral sequence

In this section, we first connect all of the topologies we defined together, and consider the
éh-proét spectral sequence.

Let X be a rigid space over K, for K a complete and algebraically closed p-adic field. We
denote by X, the localization of the big €h site Rigy ¢, at X. Then the functor Y — Y induces a

morphism of topoi
« : Sh(Perf,|xe) — Sh(Xen),

where 1Y = Y for Y — X being a representable sheaf of an adic space. We let X, be the
small étale site of X, consisting of rigid spaces that are étale over X.

Consider the following commutative diagram of topoi over X

Sh(X prost) —— Sh(Xe)

i |

Sh(Perfv |X<>) ™ Sh(Xéh).

Here we note that the diagram is functorial with respect to X. In particular when X = X X g, K
is a pullback of X along a non-archimedean field extension K /K, the diagram is then equipped
with a continuous action of Aut(K/Kj).

Now by the proét-v comparison (Proposition 7.2.0.4), we have

Rv,Ox = Ru,R)\, 0,
= RW*Ra*(av.

This induces an (F£5) Leray spectral sequence
Rim.Ria,0, = RMy,0x.

We then notice that by the above comparison again, the sheaf R’ a*@v is the éh-sheafification of

the presheaf

Xa 2 Y —H/(Y?2,0,)
:Hj(Yproét7 @\Y>

When Y is smooth, it is in fact the i-th continuous differential:

Theorem 8.1.0.1 ([Sch13b], 3.23). Let Y be a smooth affinoid rigid space over K. Then we have a
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canonical isomorphism:

HY (Yoroet, Ov) = Q1o (Y)(—5),

where the Qg/ K is the sheaf of the j-th continuous differential forms. Here the “(—j)” means that the
cohomology is equipped with an action of the Galois group Gal(K /Ky) by the Tate twist of weight
Jj, when'Y =Y, X g, K is a base change of a smooth rigid space Y, over a complete discretely

valued field K, whose residue field is perfect, and K is complete and algebraically closed.

In this way, by the local smoothness of the éh-topology (Proposition 4.1.4.8) and the functoriality,

the sheaf [/ a*@v on Xy, is the éh-sheaf associated to

smooth Y —— Q{,/K(Y)(—j),
which is exactly the Tate twist of the j-th éh sheaf of differential Qgh(— j), introduced in Chapter 4.

So substitute this into the spectral sequence above, we get the éh-proét spectral sequence
Riﬂ'X*Qih(—j) = Ri+jV*6X.
8.2 Cotangent complex and liftability

In this section, we first recall basics about the cotangent complex for general adic spaces,
together with its use in the deformation theory. We remind the reader that various basic properties
of the analytic cotangent complexes for rigid spaces over B;{R’e can be found in Chapter 2.

Let Ry be a p-adically complete ring; namely there exists a continuous morphism of adic
rings Z, — Ry with R, being p-adically complete. Recall for a map of complete ?y-algebras
A — B that are p-torsion free, we can define its complete cotangent complex L B/ as the term-wise
p-adic completion of the usual cotangent complex Lp/4. Here L, 4 is given by the corresponding
complex of the simplicial B-module Q}D.( B)/A OPu(B) B, where P,(B) is the standard A-polynomial
resolution of B. The image of L/, in the derived category of B-modules is the p-adic derived

completion of L 3,4, which lives in cohomological degrees < 0 such that
HO(]/I:B/A) = ﬁlB/A?

where Q}B /A is the continuous differential of B over A and is defined as the p-adic completion of the
algebraic Kihler differential 2}, /4~ We note that the construction of the complex IL.g,4 is functorial
with respect to complete Ry-algebras A — B. So when X — Spf(Ry) is an Ro-formal scheme that
is p-torsion free, we can construct a complex of presheaves, which assigns the complex L B/Ro tO

an affinoid open subset Spf(B) in X'. The complete cotangent complex L X /R, for a p-torsion free
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Ry-formal scheme X’ is the actual complex of sheaves defined by sheafifying the above complex of
presheaves term-wisely.

Now following the construction as in [GR03, Section 7.2], for a map of p-adic affinoid Huber
pairs (A, A") — (B, B"), we define its analytic cotangent complex L{}; g1 /(4 4+ as the colimit

I NE
colim — Ligy/a,[ ],
Ao,Bo open bounded

where the colimit is indexed over the set of all maps of rings of definition Ay — By in AT — BT,
and L Bo/A, 18 the complete cotangent complex for a map of p-complete rings as above. We often
use the notation I[AﬁB“/ , instead of ]L?g B+)/(4,A+) 1O simplify the notation, when the choice of the
rings A* and B™ is clear from the context. The construction is functorial with respect to the pair
(A, A%) — (B, B), and we can sheafify it to define the analytic cotangent complex L%, for a
map of adic spaces X — Y. Here the complex L%, is a complex of sheaves of O x-modules that

lives in non-positive cohomological degrees, such that
HO( AE;?/Y) = Qﬁ(/Y?
with the latter 2} Iy is the continuous differential for the map of rigid spaces X — Y.

Remark 8.2.0.1. In many cases where the base ring is fixed, the colimit in the construction above
can be simplified.

For example, let (R, RT) be either a reduced topologically finite type algebra over a p-adic field,
or (Ajuf [110], Aiur), and let Ry be the fixed ring of definition R™ (this is guaranteed by the reducedness
of A, and the boundedness of R° by for example [BGR84, 6.2.4/1]) or A;,¢ separately. Then for an
affinoid R-algebra (B, BT), we have the following natural quasi-isomorphism

colim T, ] — B
Bo open bounded
where the colimit ranges only among rings of definition of (B, BT). This is because in both cases
the ring Ry is the largest ring of definition, so the index systems of colimits are cofinal to the one in
the original definition.

Moreover, if in addition the integral subring B* of the Huber pair (B, B™) is bounded, then the

above colimit can be further simplified into one single complex by the following quasi-isomorphism

~

= 1 an
IL‘J-?*/Ro[jg} — LB/Rs
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which follows from the same reason about the index system.

Remark 8.2.0.2. The construction of the analytic cotangent complexes here are slightly different
from the one used in [GRO3] and Section 2.2.2 the colimit in the definition of ]L?; BH+)/(A,A+) above
is over the set of all rings of definitions, while the ones in loc. cit. are over the set of topologically
of finite type rings of definitions. The reason we include all rings of definition here is to extend the
construction to perfectoid algebras, which are almost never topologically of finite type.

To see those two constructions of analytic cotangent complexes for topologically finite type
algebras A over B, /£¢ coincide, it suffices to notice that any ring of definitions A, of A is contained
in a ring of definition A; that is topologically finite type over A;,¢/£¢. When A is reduced (hence is
topologically of finite type over K), the subring of power-bounded elements A° is the largest ring
of definition which is topologically of finite type over Ok (apply [BGR84, 6.4.1/5] at a surjection
K(T)) = A.

For the general case when A is not necessarily reduced, this can be seen as follows: Let A,
be the given ring of definition, [, be the nilpotent radical of Ay, and A; be a ring of definition
that is topologically of finite type over A;,¢/£¢ whose quotient by its nilpotent radical /7 is (Ayeq)°.
Here we note that by the p-torsion-freeness of A;/I; and [BMS18, Lemma 13.4, (iii, b)], the ideal
I, is finitely generated, and we can assume the ideal [; is generated by a finite set of elements
gj» 1 < j < m. Moreover, the subring Ay of A is contained in the union of open subrings
Unen A1 [#I 1], as the latter is the preimage of (A.cq)° in A along the surjection A — A, and
(Ao)red € (Areq)° by the last subsection for reduced rings. By assumption the subring Aq is
bounded, so we could choose an integer n large enough such that Ag C A, [p—lnl' 1]. Therefore the
claim follows as the ring of definition A; [Z%] 1] admits a surjection from A;,¢ /£°(T5, S;), where the
map extends a surjection Ay, /E¢(T1, ..., T;) — A; and sends S; onto # gj. Here we remind the
reader that the construction makes sense as each # g; 1s nilpotent and in particular is topologically

nilpotent.

8.2.1 Lifting obstruction

One of the most important applications of the cotangent complex is the deformation problem.
Let (R, R") be a p-adically complete Huber pair over Q,. Assume I is a closed ideal in R.
We define S as the adic space Spa(R/I, Rt /I), and S’ as the adic space Spa(R/I?, R+ /I?), where

—_~—

R+ /I and R/I? are integral closures. Let X be a flat S-adic space. Then a deformation of X along
S — S’ is defined as a closed immersion 7 : X — X’ of S’-adic spaces with X’ being flat over 5,
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such that the defining ideal is ¢*I. Namely we have the following cartesian diagram

We now focus on the case where the coefficient (R, R*") is specified as below. Assume K
is a complete and algebraically closed p-adic field, and let X be a quasi-compact rigid space
over Spa(K). Recall that the ring A;,¢ is defined as the ring of the Witt vectors W(@xHIP Ok).
There is a canonical surjective continuous map 6 : Ay — Og, with kernel being a principal
ideal ker(0) = (&) for some fixed element £ € A;,¢. We then recall that the de Rham period ring
Bj{R is defined to be the £-adic completion of Ainf[}_l?}. Here we abuse the notation and denote by
0 : BXR — K the canonical surjection, which is induced from 6 : A;,; — Ok as above. Note that for
n > 1, we have BI; /(§)" = Ainf[%] /(&)", which is a complete Tate ring over Q,, ((Hub96, Section
1.1]). In particular the deformation of any rigid space X/K along (B1; /", Ajn/€™) — (K, Of)
is the same as the deformation along (Ainf[%]/é’”, A /™) — (K, Ok).

We then note that the deformation theory along (B, Ainr) — (K, Ok) only depends on the

p-adic topology. Precisely, we have the following observation:

Lemma 8.2.1.1. Let X be a topologically of finite type, p-torsion free formal scheme over Ay /N
for some N € N. Let X,, be the base change of X along Ay — Awe/E" L. Then we have the

following quasi-isomorphism

LX/Ainf — RI.&HLX'ﬂ/(A‘mf/En-FI)’

where L is denoted by the p-adic complete cotangent complex given at the beginning of this section.

Proof. We may assume X is affinoid. Let T}, be the p-adic formal scheme Spf(A;,¢/£"*1), and
let T be the p-adic formal scheme Spf(A;,¢). Consider the following sequence of p-adic formal
schemes

X, —1T,—T.

Then by taking the distinguished triangle of transitivity for usual cotangent complexes, we get
Lz, ®éTn Ox, — Lx,)r — Lx, /1, (*n)

Here we note that the triangle remains distinguished in D(Oyx,, ) after the derived p-adic completion.
We then take the derived inverse limit (with respect to n) of the p-adic derived completion of

(*,). Whenn > N, we have ]/I:Xn/T = IEX/T. Besides, since X, is the base change of X along

167



T, — T, as complexes we have the equality ]/I:Tn /T ®éTn Ox, = ]/I:Tn /T ®(L9T Ox. So by taking the

inverse limit with respect to n, we get

RM(ETn/T ®éT Ox) — H/Zx/T — R@ﬂxn/Tn

But note that the inverse system {IETn /T ®(L9T Ox}, is in fact acyclic. This is because the

cotangent complex I/[:Tn /7 is isomorphic to (£)"/(£*")[1], while the composition of transition maps

()™ /(€] — ©*™ /(€] — - — (©)"/ (&[]

is 0. In this way, by the vanishing of its R I'&nn, we get the quasi-isomorphism we need. [

This Lemma allows us to forget the complicated natural topology on By when we look at
the deformation along BY; — K. So throughout the article, we will consider the adic space
Spa(Ainf[]lD], Ajy¢) that is only equipped with the p-adic topology, and any cotangent complex that
has Aj,¢ or Ainf[ll)] as the base will be considered p-adically.

Let S and S’ be the adic space Spa(Ainf[zl)] /€) and Spa(Ainf[%] /&%) separately. Here we note
that S is also equals to Spa(K’). Denote by i the map X — Spa(Ainf[%], Ainr). Welet Ox(1) be
the free O x module of rank one, defined by

» 1
i*(§) = Ox ®Ainf[%] fAinf[]_?] = §/§2OX'
When X is defined over a discretely valued subfield, it has the Hodge-Tate Galois action of the
weight minus one.
Our first result is about the relation between the deformation of X and the splitting of the

cotangent complex.

Proposition 8.2.1.2. Let X be a rigid space over S = Spa(K). Then a flat lifting X' of X along
S — S induces a section sx of ]Lg‘}s, ®s Ox — L%?/S’ in the distinguished triangle for the
transitivity

gI}S/ ®S OX — ]L’%?/S’ — ]L%?/S.

Moreover, assume X' — Y is a map of flat adic spaces over S’, which lifts themap f : X — Y

of rigid spaces over K. Then the induced sections above are functorial, in the sense that the
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following natural diagram of sections commute:

L%f?s' = LZ‘I}S’ ®s Oy

| |

an  PBS(8%). 0o
Rf*]L’X/S’ —=Rf. (LS/S’ ®s Ox).

Proof. The base change diagram
X—X

L

S—-9

induces the following two sequences of maps

X—=S—=9,
X > X = 9.

We take their distinguished triangles of transitivity Corollary 2.2.3.10, and get

LX)s

|

LX) LX) x

|

Ll Gos Ox

L??//S’ ®OX’ OX

where both the vertical and the horizontal are distinguished.

Following [Stal8], Tag 09D8, we could extend the above to a bigger diagram

L%?’/S’ ®o, Ox ]L%l/s L
LY /s ®oy, Ox LY)s : LS x
T Bx

LZ‘I}S’ ®os Ox =L§1}S’ Pos Ox,

where FE is the cone of
(L5 ®oy, Ox & Lgjg ®o, Ox) — LY,

169

(*)



which fits into the diagram such that all of the vertical and horizontal triangles are distinguished.

We then make the following claim.

Claim 8.2.1.3. The cone F is isomorphic to 0 in the derived category.

Proof of the Claim. By construction, since the right vertical triangle above is distinguished, it
suffices to show that

/BX . ]LgI}SI ®OS OX — L??/X’

is a quasi-isomorphism.
We may assume X = Spa(B, B) and X’ = Spa(A, A") is affinoid, such that A®,, /2 O =
A/¢ = B. Then by construction, the above map can be rewrite as

Lgr/ls/ ®K B — COlim I["BO/AO [;]7
Ao,Bo open bounded

for Ay — By being all pairs of the rings of definition of (A, A™) and (B, B™) separately.
We then note that for a single pair Ay — By such that By = A, /¢, the map

an - 1
p:Lgjs @k B — IL'Ao/Bo[z—)]-

is a quasi-isomorphism: by the surjectivity of Aj,¢/&% — Ajt/€ = Ok and By — Ay, applying
[GRO3, 7.1.31] !, we have

Loy j(ame/e2) = Loy (A /e2)5

IL‘AO/BO = ]LAO/BO‘

So under the choice of Ay and B, the map p can be rewritten as a map of usual cotangent complexes

P Lok /(ame/e2) ®ox Bo[%} — LAO/BO[%}-
But by assumption, A = AO[%] is flat over Ainf/§2[%}, while B = Bo[%] is given by A ®,, . /e2 Ok.
Hence by the flatness of inverting p and the flat base change of the usual cotangent complexes, we
see p is a quasi-isomorphism.
At last, we only need to note that the collection of rings of definition { Ay — By} such that
By = Ap/¢ is cofinal with the collection of all of the Ay — By (since any given By is a subring of

B that is topologically finite type over O, we can pick the generators and lift them to A along the

'Though the statement there is for topologically finite type algebras over O, the proof works for topologically
finite type, p-torsion free algebras over Aj,¢/E™ as well.
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surjection A — B). So we get

1

li L :
Ao 01(736(21 lbroriltnded (Ao/€)/Ao [p] N

~ 1
colim L ja,|—| =
Ao Bo o/ 0[ p]
Ao,Bo open bounded

and the latter is quasi-isomorphic to Ly}, ®x B. So we are done. [

In this way, since E is constructed so that the top horizontal and the right vertical triangles in
(x) are distinguished, we see under the assumption, £ is quasi-isomorphic to 0. This allows us to
get the section
Sx . LAE;J?/S/ — L%I}S/ ®S OX,
defined as the composition of the ax and the 83" in (x).

At last, we check the functoriality. Consider the map between two lifts

x—1.y

L

X —sY’

|

S'==29"

Then since each term in the big diagram (x) is functorial with respect to X — X", the map of lifts
induces a commutative diagram from the (x) for Y to the derived direct image of (x) for X along

f+ X = Y. In particular, this implies the commutativity of the following:

Byt

ay

L3 Lys ® Oy

N |

Rf (B3}
Rf, LX/S/_>Rf LX/X’ )Rf( a/S/®Ox).

L)y

So by combining them, we get the map from sy to Rf.(sx).

At last, we note the following relation between L3 /s and L5 /s

Lemma 8.2.1.4. Let X be a smooth rigid space over Spa(K), and S = Spa(Ainf[%], Aine) be the p-

adic complete adic space. Then the sequence of maps X — S" — S induces the quasi-isomorphism

an >—17 an _ -1
LY awlt) T L anityeny =77 LXys
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This is functorial with respect to X.

Proof. By taking the distinguished triangle for the transitivity, we get
grll/s ®(’)S, OX — LE;?/S — ]L;l?/sl. (*)

Since 5" = Spa(Ainf[%]/ £?) is the closed subspace of S = Spa(A;,) that is defined by the regular
ideal (£?), we have
L%s o, Ox = (£2)/(£") @5, Ox[1].

But note that by the distinguished triangle for X — S — S, we have
§)s ®ogs Ox — LY)s — LY¥)s,

where L)s ®o; Ox = (£)/(&?) @k Ox (1] = §/§?Ox|[1], and Ly s = Qi [0] by the smoothness
assumption ([GRO3, Theorem 7.2.42]). In this way, since IL@?/S lives in cohomological degree —1
and 0 and is killed by &2, the image of L%} g ®5_, Ox = (§?)/(¢") @5, Ox[1] in L§g is 0. Hence
the sequence (x) induces the quasi-isomorphism

an >—17 an
XAl 77T Ly anidiey

that lives in degree —1 and 0.
At last, note that since those two distinguished triangles are functorial with respect to X, so is

the quasi-isomorphism. [

8.3 Degeneracy in the smooth setting

After the basics around the cotangent complex and the lifting criterion, we are going to show
the degeneracy theorem for smooth rigid spaces, assuming the liftable condition to B /£2. We fix
a complete and algebraically closed p-adic field K as before.

We first prove a simple result about the cotangent complex over the Aj.

Proposition 8.3.0.1. Let A be an Ayy-algebra. Then the following natural map of complete

cotangent complexes is a quasi-isomorphism

La/z, — Lay/a

inf *
Proof. Consider the sequence of maps
Ly — Ay — A.
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By basic properties of the usual cotangent complex of rings, we get a distinguished triangle in
D= (A):

II-"’AAinf/Zp ®Ainf A — LA/A — LA/ZP

inf

Apply the derived p-completion, we then get the following distinguished triangle
(LAinf/Zp ®Ainf A)/\ — LA/Ainf — LA/ZP

By the derived Nakayama’s lemma and the equality
(LAinf/Zp ®Ainf A)/\ = (LAinf/Zp ®Ainf A)/\’

it suffices to prove that Ly, /z, ®z, Z,/p (thus ]IAJAmf /z,,) 18 quasi-isomorphic to 0. But note that
Aipr = W(O%), where O is a perfect ring in characteristic p. In this way, since the cotangent

complex of a perfect ring is quasi-isomorphic to zero ((BCKW19], Chapter 3, 3.1.6), we get
Lawi/zy ®z, Zp/p = Loy 5, = 0.

Hence we obtain the vanishing of the p-adic completion of L Aint/Zp» a0d 80 is the quasi-isomorphism

we want.
O

Corollary 8.3.0.2. Let X be an adic space over Spa(K, Ok), then the sequence of maps Q, —

Ajnf[z—lj] — Ox induces a functorial quasi-isomorphism between analytic cotangent complexes
~Y an

an ~
0x/0 = Loy /a2y

8.3.1 Cotangent complex and derived direct image

Now we are able to connect the cotangent complex with the Ry, O x. Our first result is about

the truncation of Ry, 9) X

Theorem 8.3.1.1. Let X be a smooth rigid space over Spa(K). Then there exists a functorial

quasi-isomorphism in the derived category of Ox-modules:

O /et (D1 = 75 R Ox,

Proof. In order to construct the isomorphism above, we will need the analytic cotangent complex for

the complete pro-étale structure sheaf L' s where (R, R') are either (Ainf[%L Aine) or (Qy, Zy).
X
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We will first work at the presheaf level and do the construction for affinoid perfectoid rings, and

then show that the cotangent complex is in fact a twist of the complete structure sheaf.

Step 1 (Calculation at affinoid perfectoid)

Denote by Xj,q the indiscrete site on the category of affinoid perfectoid objects in X,q¢4.
Namely the category Xj,q is the collection of affinoid perfectoid objects in X o4, and the
topology is the one such that every presheaf on Xj,q is a sheaf. Then there exists a canonical
map of sites § : X060 — Xina. We note that the inverse image functor 4 ~1 is an exact functor

on abelian sheaves defined by the sheafification, and we have Lo~ = § 1.

Then we can define the completed structure sheaf (5;‘1 g» such that for U € Xj,q with its

underlying perfectoid space Spa(A, AT), we have
Ofy(U) = AT, 04a(U) = A.

Similarly we can define the cotangent complex as

an : - an an 1
]Lind,@;"{/RJr (U) - Ah%th IL‘A()/R*a Lind,@X/R(U) = Lind,@§/R+ [2_)]
Ap opeon bounded

Here the cotangent complex for formal rings (adic rings) are the one introduced at the
beginning of the section. We note that by the fact that a perfectoid algebra (A, A™) is uniform,
we know A° is bounded in A ([Sch12], 1.6). In particular, the open subring A" of A° is also

open bounded, and as complexes we have the equality

L?r?d,@}/R‘*‘(U) = Lat/r+, L?rild,@X/R(U) - ?411/1%'

We also note that by the Proposition 8.3.0.1, the sequence of sheaves Z,, — A;,; — @;d

induces a quasi-isomorphism

an ~J an

ind,Ox /Aine[2] — ind,Ox/Qp’

Here to check this quasi-isomorphism it suffices to check sections at U € Xj,q, since Xjnq

has only trivial coverings.

Moreover, the map of rings Z, = Ox — @;{ld provides the natural distinguished triangle

. ~ AL ~ ~
Loy /z,Q0,Onq — IL‘inol,o;;/z,, - Lind,(’)j}/(’)K'

174



Step 2

Step 3

Since the mod p reduction of Oy — @;gd is relatively perfect, and I/[:@ «/Z, 18 isomorphic to

the Breuil-Kisin twist Ok {1}[1] of weight —1, we have the quasi-isomorphism

Lindﬁ;/zp = Oq{1}H1].

So by inverting p, we have

an .
indpo /Qp

12

Ouma(D[1]. (%)

Here the same is true when we replace Q, by Ainf[%].

(pro-étale cotangent complex)

Now we go back to the pro-étale topology. As above, let (R, RT) be either (Ainf[z—lj], Ainr)
or (Q,,Z,). We first observe that the definition of (integral) analytic cotangent complex
can be extended to the whole pro-étale site X|,,4;, Which is the complex of sheaves given
by sheafifying the complex of presheaves that assigns each object U with its underlying

perfectoid space Spa(A4, AT) to

. ~ . ~ 1
hﬂ IL‘AO/RJ” hﬂ LAO/R+ [_]7
AoCAJr Aop CAt p
A open bounded Ag open bounded
We denote those two as
an La’?

OL/RT’ “Ox/R’
Here we note that the definition is compatible with the one for rigid spaces (see the discussion
at the beginning of the Section 8.2). In particular by the functoriality of the construction, the
canonical map of ringed sites v : X,,;0¢t — X¢; induces a natural map

an an

Moreover, as the collection of affinoid perfectoid open subsets form a base for X, the
pro-étale cotangent complex is equal to the inverse image of indiscrete cotangent complex
along 6 : Xprosr — Xind, 1.€.

an _ ¢—1y an
L@X/R_5 Lind,OX/R'

Now we take the (derived) inverse image 6! for the quasi-isomorphism (*) to get the

quasi-isomorphism

(Comparison)

At last we consider the statement in the Theorem. The map between ringed sites v :
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(Xproct O x) — (X, Ox) induces a morphism of cotangent complexes

an an
Ox /Ainf RV*Léx/Ainf ’

By the Corollary 8.3.0.2 and the natural quasi-isomorphism L' A O x(1)[1] in the Step
X inf

2, the map above is isomorphic to the following
O /0, — BOx(1)[1].

So in order to show the quasi-isomorphism in the Theorem 8.3.1.1, it suffices to show the

quasi-isomorphism of the the map

8\ /0, (~1)[=1] — 7' Rn.Ox. (5% %)

Now, since the statement is local on X, we may assume X is affinoid, admitting an étale
morphism to T". Then we note that both sides of the above are invariant under the étale base
change: the right side is a complex of étale coherent sheaf, while the base change of the left
side is given by the vanishing of the relative cotangent complex for an étale map. > So it
suffices to show the case when X = T" = Spa(K (T, Ox(T*")). But notice that the map

(x % %) can be given by inverting p at the sequence
Loy retyz, {~1}[-1] — 7<'Rn.0f,.

here {—1} is the Breuil-Kisin twist of the weight 1. In this way, by the local computation in
[BMS18, 8.15], the map above induces a quasi-isomorphism

LOK<TZ‘:E1>/ZP{_1}[_1] — TSILT/C}J_IRV*OT—T’—”7

2This follows from the distinguished triangle L f L3 /Q, — L%‘/Qp — ]Lg;l/w and the vanishing of Lg;l/,ﬂm ([GRO3,
Theorem 7.2.42]), where f : X — T™ is an étale morphism. Here we note that as neither X or T” is topologically
of finite type over Q,, we cannot apply [GRO3] to get the triangle directly. To see the triangle, we first notice that as
X = Spa(B, B°) and T = Spa(A, A°) are reduced and topologically of finite type over K, by Remark 8.2.0.1 the

analytic cotangent complex can be naturally computed as follows
an ™ 1 an T 1 an T 1
H"X/Qp - LB“/ZP[*L H—‘T”/Qp = ILJAO/Z]D[*L LX/T" = ]LBO/AO[*]-
p p p
Moreover, the pullback Lf*ILf. o . which is equal to B ®%4 (IE Ao /ZP[%D is naturally isomorphic to (B° ®X4,
L 40 /Z,,)A[%]. So the distinguished triangle we want can be given by taking the derived p-completion and then
inverting p at the distinguished triangle for the algebraic cotangent complex of Z,, — A° — B°.
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which after inverting p induces the quasi-isomorphism of analytic cotangent complexes
L& o, (—1)[-1] — 75" Ry, Ora.
Hence we are done.

]

Corollary 8.3.1.2. Assume X is a smooth rigid space over K that admits a flat lift X' along
Bz /&% — K. Then the lift X' induces a splitting of =1 Ry, Oy into a direct sum of its cohomology
sheaves in the derived category.

Moreover, the splitting is functorial with respect to the lift X'.

Proof. By the above Theorem 8.3.1.1, we have the functorial quasi-isomorphism

< Ry, Ox = Ly, o) (-1,

Moreover, the Lemma 8.2.1.4 about the truncation provides us with a functorial quasi-isomorphism

L_E;?/Amf[ ]( 1) [_1] = ( (Lan/( mf[%]/g)))(_l) [_1]'

At last, by the Proposition 8.2.1.2, the right side splits into the direct sum of its cohomology sheaves

if X can be lifted into a flat adic space over S = Spa(Aint[5] /€%, Aine/§?) = Spa(Big /€7, Aint/€7),

such that the splitting in Proposition 8.2.1.2 is functorial with respect to the lift. So we get the result.
O]

We then notice that the splitting of the derived direct image is in fact true without the truncation.

Proposition 8.3.1.3. Assume X is a smooth rigid space over K that admits a flat lift X' over
Bz /&2 Then the lift X' induces the derived direct image Rv.Ox to split as D=0 sz/K(—z)[—z]
in the derived category.

Here the isomorphism is functorial with respect to lifts, in the sense that when f': X' — Y'is
an B /& morphism between lifts of two smooth rigid spaces f : X — Y over K, then the induced
map R, Oy — Rf.Ruv, O x IS compatible with the map between the direct sum of differentials.

Proof. By the Corollary 8.3.1.2 above, the given lift to BJ;/¢* induces an Ox-linear quasi-
isomorphism
Ox[0] @ QY5 (—1)[~1] — 7='Ru.Ox.
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It is functorial in the sense that if /' : X’ — Y is B1; /£2-morphism between lifts of a map of two

smooth rigid spaces f : X — Y over K, then the induced map
TglRV*éy — RfJSlRl/*@X
is compatible with the section map

Oy [0] Rf.Ox[0]
TSY TRf*(Sx)
TglRV*@Y —_— Rf*TglRV*@X,

which are induced by the functoriality in the Proposition 8.2.1.2, Lemma 8.2.1.4, and the Theorem
8.3.1.1.

We compose the decomposition with 75 Rv,Ox — Rv,Ox, and get
Ok i (—1)[~1] — Ru.Ox.

Here Rv,O x 1s a commutative algebra object in the derived category D(Ox). Moreover, as in
[DI87], the above map can be lifted to a canonical map of commutative algebra objects in the

derived category
P Qi (—i)[-i] — Rr.Ox.

>0
This can be constructed as follows: For each i > 1, the quotient map (QY ;)" — QY admits a

canonical O x-linear section s;, by

1
WA AWy — ] Z sgn(0)wWe(1) @« + & We(i).-
o€S;

This allows us to give a canonical O x-linear map from QY- i (—9)[—i] to Ru, Ox., by the diagram

(e (~1)[1]) 765" — (Ry*@r)%xi

Qi e (=) [ =] oo -~ Rv,Oy.

Here the right vertical map is the multiplication induced from that of O x. We note that since X
is smooth over K, the derived tensor product of 2}, /K over Ox degenerates into the usual tensor

product. Moreover, by construction the total map @;s; is multiplicative under the wedge products.
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Finally, it suffices to show that the isomorphism for the truncation 7=! can extend to the map
above. When X is of dimension one, since QZX K is zero for ¢ > 2, we are done. For the general
case, it follows from the functoriality of the section map and the Kiinneth formula, which is done in
[BMSI18, 8.14].

]

8.4 Simplicial generalizations

We now generalize results in the past two sections to simplicial cases.

8.4.1 Simplicial sites and cohomology

First we recall briefly the simplicial sites. The general discussion can be found in [Stal8],
Chapter 09VI.?

Consider a non-augemented simplicial object of sites {Y;,}. Namely for each nondecreasing
map ¢ : [n] — [l] in A, where [n] (resp. [l]) is the totally ordered set of n + 1 (resp. | + 1)
elements, there exists a morphism of sites u, : Y; — Y, satisfying the commutativity of diagrams
induced from A. Then we can define its associated non-augmented simplicial site Y,, following
the definition of Cy; in [Stal8] Tag 09WC. An object of Y, is defined as an object U,, € Y,
for some n € N, and a morphism (¢, f) : U, — V,, is given by a map ¢ : [n] — [l] together
with a map of objects f : U, — u;l(Vn) in Y;. To give a covering of U € Y,,, it means that to
specify a collection of V; € Y,,, such that {V; — U} is a covering in the site Y,,. It can be checked
that the definition satisfies axioms of being a Grothedieck topology. Moreover, by allowing n to
include the number —1, we can define the augmented simplicial site Y,. Here we remark that unless
mentioned specifically, a simplicial site or a simplicial object in our article is always assumed to be
non-augmented. Similarly, by replacing A by the finite category A<,, and assume n < m, we get
the definition of the m-truncated simplicial site Y,.

From the definition above, in order to give a (pre)sheaf on Y, it is equivalent to give a collection
of (pre)sheaves F" on each Y,, together with the data that for any map ¢ : [n] — [{] in the index
category, we specify a map of sheaves F" — uy.F' over Y, that is compatible with arrows in A.
This allows us to define the derived category D(Y,) of abelian sheaves on Y.

We could also define the concept of simplicial ringed sites, which consists of pairs (Y,, Oy, ), for
Y, being a simplicial site and Oy, being a sheaf of rings on Y, assuming u, : (Y}, Oy;) = (Y;,, Oy,,)
being maps of ringed sites.

3We want to mention that the discussion of the simplicial sites and cohomology in our article might become simpler
if we use the language of the infinity categories, as the latter behaves better than the ordinary derived category when we
consider a diagram of derived objects.
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Remark 8.4.1.1. In the level of the derived category, the category D(Y,) is not equivalent to the
category where objects are given by specifying one in each D(Y,,) together with natural boundary
maps, unless we replace derived categories by derived infinity categories and also consider the higher
morphisms. This is the main reason why we need to reconstruct many objects in the simplicial level
in this section, instead of using the known results for single site or space directly. The essential
difference is that an object in the simplicial level has much stronger functoriality than a collection

of objects over each individual space.

From the construction above, it is clear that there exists a map of sites Y, — Y/,. The pushforward
functor along this map is restriction functor, sending the collection of sheaves (F;), to its n-th
component F,, and is exact ([Stal8, Tag 09WG]) for sheaves of abelian groups. Here is a useful

Lemma about the vanishing criterion of objects in the derived category of a simplicial site D1 (Y5).

Lemma 8.4.1.2. Ler K be an object in the derived category DT (Y,) of a m-truncated simplicial
site Y, for m € NU {oo}. Then K is acyclic if and only if for each n. < m, the restriction K|y, in
D*(Y,) is acyclic.

Proof. If K is acyclic, then since the restriction functor is an exact functor, we see K|y, is also
acyclic.

Conversely, assume K|y, is acyclic for each integer n < m. If K is not acyclic, then by
the assumption that K lives in D" (Y,), we may assume i is the least integer such that the i-th
cohomology sheaf H'(K) € Ab(Y,) is nonvanishing. Then by definition, there exists some n such

that H'(K)|y, is nonzero. But again by the exactness of the restriction, we have the equality
H (K, = H'(K]y,),

where the latter is zero by assumption. So we get a contradiction, and hence K is acyclic. U
As a small upshot, we have

Lemma 8.4.1.3. Let \, : X, — Y, be a morphism of two m-truncated simplicial sites for m &€
N U {00}, such that for each integer n < m, the map \,, : X,, — Y, is of cohomological descent.

Namely the canonical map by the adjoint pair
F — R\ AL F

is a quasi-isomorphism for any F € Ab(Y,,). Then A\, is also of cohomological descent, namely for

any abelian sheaf F* on'Y,, the counit map of this adjoint pair is a quasi-isomorphism
F* — RAN P
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Proof. Let C be a cone of the map F* — R\, A, ' F*. It suffices to show the vanishing of the cone
in the derived category D(Y,). Then by the exactness of the restriction functor, for any integer

n < m the image Cly, in D" (Y},) is also a cone of
F'— (RAN POy, = RAu, ' F,

which vanishes by assumption. Since both F* and R\,.\; ' F* are lower bounded, the cone C is
also in D (Y,) and we can use the Lemma 8.4.1.2 above. So we get the result.
[

8.4.2 Derived direct image for smooth simplicial spaces

Next, we use simplicial tools above to generalize results of cotangent complexes and derived
direct image to their simplicial versions.

Assume f : X, — Y, is a morphism of (m-truncated) simplicial quasi-compact adic spaces over
a p-adic Huber pair. Then we could define the simplicial analytic cotangent complex L§, /v, a8
an actual complex of sheaves on the simplicial site X, such that the n-th term on the adic space
X, 1s the analytic cotangent complex LY Yo defined as in Section 8.2. In our applications, we
will always assume Y, to be a constant simplicial spaces associated to 7' = Spa(R, RT), for some
p-adic Huber pair (R, R"). We will use the notation L5}, /g Or LY, 7 to indicate when the case is
constant.

Here we emphasize that as in the definition of the analytic cotangent complex for X,,/Y;, above,
the complex L¥! /Y. is actual, namely it is defined in the category of complexes of abelian sheaves
on X,, not just an object in the derived category.

Now let X, be a (m-truncated) simplicial rigid space over Spa(K’). Then we can form the
cotangent complex JL?;]. /Auntl2) over Ainf[]l?]. Moreover we can define the simplicial differential sheaf
0%, /K On X, in the way that on each X, the component of the sheaf is €2 K

We first generalize the result about the obstruction of the lifting to the simplicial case:

Proposition 8.4.2.1. Let X, be a (m-truncated) smooth quasi-compact simplicial rigid spaces over

Spa(K). Then a flat lift X] of X, along By, /§* — K induces a splitting of L% o

direct sum of its cohomological sheaves Ox, (1)[1] @ QY /|0 in the derived category.

into the

The quasi-isomorphism is functorial with respect to X,

Proof. This is the combination of the Proposition 8.2.1.2 and the Lemma 8.2.1.4. We first notice

that the sequence of maps
! 1 2 1
Xe — 5, = Spa(Ainf[Z_)]/f Jo —> Se = Spa(Ainf[EDO
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induces a map

an
X./Ainf[%]

But by the proof of the Lemma 8.2.1.4 and the vanishing Lemma 8.4.1.2, the complex L%} JAm[1]
lives only in degree —1 and 0, which is isomorphic to the truncation of L5’ /s at 7271 So we
reduce to consider the splitting of L5, Z

Now assume X, admits a flat lift X over S” The lift leads to the cartesian diagram

Xo—— X!

|

Se — S,

which induces the simplicial version of the diagram (x) as in the proof of the Proposition 8.2.1.2:

LY, s ®oy, Ox. LY. /s L
LY, ¢ ®o,, Ox, L%, /s — L¥x
L F

L%?s' ®os Ox,— ]L%I}S' ®og Ox.,

The vanishing of ' comes down to the vanishing of F|y, by the Lemma 8.4.1.2, which is true by
assumption and the Proposition 8.2.1.2. So we get a section map 3, ! o ay,, which splits L%, /st into
the direct sum of L5, /s and IL%I} o ®og4 Ox, in the derived category. Note that since X, is smooth,
the cotangent complex Ly, ¢ is Qk_/K[O], while the truncation 7'2_1114?}5, ®os Ox, is Ox, (1)[1].
Thus we get the result.

At last, the quasi-isomorphism is functorial with respect to X, since the big diagram above is

functorial with respect to lifts, as in the proof of the Proposition 8.2.1.2. [

We then try to connect the simplicial version of cotangent complex with the derived direct image
of the completed structure sheaves.

Let X, be a (m-truncated) simplicial quasi-compact rigid spaces over K. Then this induces the
following commutative diagram of topoi of simplicial sites, as a simplicial version of the diagram
in Section 8.1.

Sh(Xaproét) ——= Sh(Xaeer)

Sh(Perfv|X3) ? Sh(X.éh).
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We then define the complete pro-étale structure sheaf O x, on the pro-étale simplicial site Xqp,roct,
by assigning O x,, on the pro-étale site X, ,;o¢. Similarly we define the untilted complete structure
sheaf (51, on the site Perf,|xs. Here we notice the sheaf @v satisfies the cohomological descent
along the canonical map A, : Sh(Perf,|xs) — Sh(Xeproet), by the Lemma 8.4.1.3 and comparison
results (Proposition 7.2.0.4). This leads to the equality

Rie.Ox. = R, Rate, O,

The restriction of this equality on each X, is the one in Section 8.1.
Define simplicial éh-differential sheaves Qéh, on Xe¢, such that on each X, ¢, the component
of the sheaf is Q% . It is by the exactness of the restriction functor and the discussion in Section 8.1
that
Ra..0, = QZéh<_j)'

When X, is smooth over K for each n, we have
RjV*OX. = Q%(./K(_j)’

with
0, 2 > 0;
Y, (=), i =0.

These are consequences of the éh differentials for smooth rigid spaces (Theorem 4.2.1.1).

i .
R W.*R‘] Nex =

Proposition 8.4.2.2. Let X, be a m-truncated simplicial smooth quasi-compact rigid spaces over
Spa(K). Then there exists a canonical quasi-isomorphism

<1 ) A~ T an
T RV.*OX. = LX./Ainf[

](_1)[_1]'

1
P
The quasi-isomorphism is functorial with respect to X,.

Proof. The Proposition is the simplicial version of the Theorem 8.3.1.1.
We first notice that the map of simplicial sites v, : X060 — Xegt induces a map of analytic
cotangent complex

an an
X./Ainf[%] — RV.*L(/Q\X. /Ainf[%] ’
Meanwhile, the triple Ainf[%] S K—0 x, provides us with a distinguished transitivity triangles
K/Ane[2] ®x Ox, — Léx. /Aing[ 2] — ]L@X./K '
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where the vanishing of IL,a“ 1K
Ox,

Theorem 8.3.1.1. So by combining the above two, we get the map

follows from the Lemma 8.4.1.2 and the proof of the Step 3 in

H Lan

Nt — BreOx (D[

Then we consider the induced map of the i-th cohomology sheaves ‘. By the exactness of the

restriction functor, the restricted map becomes

H' (L;{;/Amf[ ]) — H'(RvnOx, (1)[1]),
which is an isomorphism for i = 0, —1 by the Theorem 8.3.1.1, and H*(IL*" g ]) is zero except

Xn/Amf
1 = 0, —1. So by the vanishing of the cone, II induces a quasi-isomorphism

L.2n [ | — 73 (RV.*@X.<1)[1]>

Xe /Amf

which leads to the result by a twist.
]

Combining the Proposition 8.4.2.2 and the Proposition 8.4.2.1, we get the simplicial version of

the splitting for the truncated derived direct image:

Corollary 8.4.2.3. Assume X, is a (m-truncated) smooth quasi-compact simplicial rigid space
over K, which admits a flat simplicial lift X, to Bl /€. Then the lift X, induces 7<' R, OX to
split into the direct sum of its cohomology sheaves Ox,[0] @ Q. i (=1)[=1] in D(X,).

Here the splitting is functorial with respect to the lift X.

Moreover, similar to the Proposition 8.3.1.3, the splitting can be extended without derived

truncations.

Corollary 8.4.2.4. Assume X, is a (m-truncated) smooth quasi-compact simplicial rigid space
over K that admits a flat lift X, to B} /&% Then the lift X induces the derived direct image

RV.*@X. to split into
D . w(—i)[-i]

>0

in the derived category, which is also isomorphic to

D R (Qaan (=)D

>0
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Proof. By the above Corollary, we have a quasi-isomorphism
Ox.[0] @ Q. (—1)[-1] — 7='Rr,,Ox, .

Then by composing with <1 Ruy, O X, — Rv.,O x.» similar to the proof of the Proposition 8.3.1.3

we may construct the map below

@ 9 ./K(_i)[_i] - RV.*@X.v

120

whose restriction on each X, is exactly the quasi-isomorphism in the Proposition 8.3.1.3. Thus by
the vanishing of the restriction of the cone, we see the above map is a quasi-isomorphism.

At last, notice that by the smoothness of X,, we get the second direct sum expression. 0

8.5 Degeneracy in general

We then generalize the splitting of the derived direct image to the general case, without assuming
the smoothness. Our main tools are the cohomological descent and the simplicial generalizations in

the last section.

8.5.1 Strong liftability

Before we prove the general degeneracy, we need to introduce a stronger version of the lifting
condition, in order to make use of the cohomological descent.

We first give the definition.

Definition 8.5.1.1. Let X be a quasi-compact rigid space over K. We say X is strongly liftable if
for each non-negative integer n, there exists an n-truncated augmented simplicial map of adic spaces
XL, — X' over Bf, /&% where X' and each X[ are flat and topologically of finite type over Biy, /€,
such that the pullback along BIR /€2 — K induces an n-truncated smooth éh-hypercovering of X
over K.

We call any such augmented X~ — X' simplicial rigid space (or XZ,, in short) a strong lift of
length n.

Example 8.5.1.2. Let k = Ok /mg be the residue field of O, and we fix a section i : k — O /p
for the canonical surjection Ok /p — k (whose existence is guaranteed by the formal smoothness
of the perfect field & over [F,, ([Stal8, Tag 031Z])). Note that this induces an injection of fields from
W (k) [%] to K by the universal property of the Witt ring. Let K be a subfield of K that is finite
over W (k)[+], and let X be a rigid space defined over K,. We then claim that X is strongly liftable.

1
p
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To see this, we first notice that as the resolution of singularities holds for rigid spaces over
K, it suffices to show that any such field K, admits a map Ky — B /¢? compatible with the
inclusion K, — K above. Recall the ring Ay is defined as W (O, ), where O is the inverse

limit gn Ok /p. By the construction of Oy and the functoriality for the inverse limit and for
TP
Frobenius maps, the section i : & — O /p induces a homomorphism & — O, where the latter is

a section to the canonical surjection Oy, — k. In this way, thanks to the functoriality of the Witt
vector functor, we can lift the section map to W (k) — Ajr = W(Og»). As an upshot, we get the

following composition

W<k>[]§1 - Amf[}?] - Amf[%]/e — Bl

which lifts the map W (k) [%] — Ok that we started with. At last, note that any finite field extension

Ko of W(k)[;] is étale over W (k)[}], while Biz /¢* — O is an nilpotent extension of W (k)[;]
algebras. Hence K admits a map to B /£ by the étaleness.

Here we also note that this implies the case when X is defined over a discretely valued subfield
Ly C K that is of perfect residue field x, since any such Ly is finite over W (k) [%], while the latter

is contained in W (k) [%]

Example 8.5.1.3. Another example is the analytification of a finite type algebraic variety, by the
spreading out technique.

Let Y be a finitely presented scheme over K. By [Gro67], 8.9.1, there exists a finitely gener-
ated Q-subalgebra A in K together with a finitely presented A-scheme Y|, such that Y Xgpec(a)
Spec(K) =Y. As the map A — K factors through the fraction field of A, we may assume A is
a finitely generated field extension of Q and Y, is defined over A. Notice that the transcendental
degree of Q, over Q is infinite. So by embedding a transcendental basis of A over QQ into Q,,, we
may find a finite extension K of @, such that A can be embedded into K. In this way, we reduce
the case to Example 8.5.1.2, as Y*" can be defined over a discrete valued subfield K of K that has

a perfect residue field.

By the upcoming work of the spreading out of rigid spaces by Conrad-Gabber [CG], it turns out
that X is strongly liftable if it is a proper rigid space over K.

Proposition 8.5.1.4. Let X be a proper rigid space over K. Then it is strongly liftable.

Proof. We follow the proof for the spreading out technique for rigid spaces by Bhatt-Morrow-
Scholze in [BMS18] and study the structure of the deformation ring. However, instead of working
on one rigid space, we need to work with a finite diagram of proper rigid spaces. Similar to Example
8.5.1.2, we fix a section i : k = Ok /myg — Ok /p to the canonical surjection Ok /p — k, which
induces an inclusion of p-adic fields W (k) [%] — K.
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Let n be any non-negative integer. By the resolution of singularity (Theorem 4.1.4.7), we
can always construct a (n-truncated) smooth éh-hypercovering X<,, — X over K, where each
X; is proper over K ([Con03], section 4). Then it suffices to show that there exists a proper ¢h
hypercovering X<,, — X, together with a smooth rigid space S over a subfield Ky = W (k) [%] of
K, such that the n-truncated simplicial diagram X<,, — X can be lifted to a diagram of proper
Ko-rigid spaces X<, — X over S. This is because the nilpotent extension B} /{* — K is K,
linear, so by the smoothness of S, the map Spa(K) — S can be lifted to a map Spa(Bj /&%) — S.
Thus the base change of X<, along this lifting does the job.

Now we prove the statement, imitating the proof of Proposition 13.15 and Corollary 13.16 in
[BMS18]. We first deal with the formal lifting over the integral base. Let W = W (k) be the ring
of the Witt vector for the residue field of K, and Cy be the category of artinian, complete local

W -rings with the same residue field k. We first make the following claim:

Claim 8.5.1.5. There exists an n-truncated smooth éh-hypercovering X-,, — X over K, such that
it admits a lift to an n-truncated simplicial diagram of p-adically complete, topologically finite type

O -formal schemes:
XI, = X

Proof. Fix an Og-integral model X+ of X, whose existence is guaranteed by Raynaud’s result on
the relation between rigid spaces over K and admissible formal schemes over O . We now construct
inductively the required covering and the integral lift, following the idea of split hypercoverings
(see [Con03] Section 4, or [Stal8] Tag 094] for discussions).

By the local smoothness of the éh-topology (Corollary 4.1.4.8), pick Xy — X to be a smooth
éh covering that is proper over X. By Raynaud’s result, there exists a morphism X, — X of
Oxk-formal schemes that lifts the X, — X. This is the lift of the face map of the simplicial object
at the degree 0.

Assume we already have an n-truncated smooth proper éh-hypercovering X<, — X together
with the integral lift X gn — X over Ok. Then recall from [Con03, 4.12, 4.14] that in order to
extend X<, — X to a smooth proper n + 1-truncated hypercovering whose n-truncation is the

same as X<, it is equivalent to find a smooth proper €h covering of rigid spaces
N — (COSanSH)nJrl.

Under the construction, the degree n + 1-term of the resulting (n + 1)-truncated hypercovering will
be

Xn+1 = NHNla

for N’ being some finite disjoint union of irreducible components of X;(0 < i < n) (which is also
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smooth and proper over K'). Such a smooth proper éh-covering NV exists by the local smoothness of
Xen. Furthermore, while we form this n + 1-hypercovering of the rigid spaces, we also want to find
the integral lift

NT = (coskn XZ,)ns1

of the morphism N — (cosk, X<, )n+1. To do this, we use [Con03, 4.12] and do the same formal
construction for N* and X ;“n — X as above, and extends the latter to an n + 1-truncated simplical
formal schemes

+ +
Xgn+1—>X ,

where X7 | = N* ][ N'* is an Og-model of X, ;. In this way, the generic fiber of X2, — X
is a (n + 1)-simplicial object over X whose n-truncation is X<, — X, and whose (n + 1)-th term
is X,,41 = N ][ IV, which is in fact a smooth proper éh-covering of (cosk, X<,),+1. Hence by the
induction hypothesis we are done.

]

We then fix such an éh-hypercovering X<,, — X with its integral model X gn — X as in the

claim. Define the functor of deformations of the special fiber X2, , = XZ xy k
Def : Cy — Set,

which assigns each R € Cyy to the isomorphism classes of lifts of the digrams X2, — X, along
R — k, such that each lifted rigid space is proper and flat over R. This functor_is a deformation
functor, and admits a versal deformation: to see this, we first note that as in [Stal8], Tag OE3U,
the functor De f satisfies the Rim-Schlessinger condition ([Stal8], Tag 06J2). Then we made the

following claim

Claim 8.5.1.6. The tangent space T'Def := Def(k[e]/€®) of the deformation functor is of finite

dimension.

Proof of the Claim. Notice that there is a natural (forgetful) functor from De f to the deformation
functor of the morphism De fy,_.y,, where Y is the disjoint union of all the sources of arrows in
the diagram X ;“n i» and Y} is the disjoint union of all of those targets. This induces a map between
tangent spaces

TDef — TDefy, .y,.

By the construction, both Y, and Y; are finite disjoint unions of proper rigid spaces, which are
then proper over k. So from [Stal8], Tag OE3W, we know the tangent space T'De fy,_,y, is finite
dimensional. Furthermore, assume D; and D, are two lifted diagrams over k[e]. Then the difference

of D; and D, is the collection of k-derivations O Xk — a,0 XT satisfying certain k-linear
t(a), s(x),
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relation so that those arrows in D; and D, commute. In particular, this consists of a subspace of
Dery(Oy,, u,Oy,) = Homy, (5, Ik u,QOy,), which by the properness again is finite dimensional.
In this way, both the kernel and the target of the map 7' Def — T De fy,_,y, are of finite dimensions,
thus so is the T'De f. O

By the above claim and [Stal8, Tag 06IW], the deformation functor De f admits a versal object.
In other words, there exists a complete artinian local 1/ -algebra R with the residue field &, and
a diagram Xp <, — X' of proper flat formal R schemes deforming X ;L’k — X", such that the
induced classifying map

hgr := Homy (R, —) — Def

is formally smooth. Moreover, by the proof of Proposition 13.15 in [BMS18], we can take the ind-
completion of Cy, and extend De f to a bigger category, which consists of local zero-dimensional
W -algebras with residue field k (not necessary to be noetherian). The category includes Ok /p™,
and since X2, — X is an O-lifting of X7, , — X7, we see the diagram can be obtained by the
base change of the universal family X'» <), Y ralong R — Ok = I&nm Ok /p™.

At last, we invert p at the diagram

.

XR,Sn —_— Spf(R)
The diagram X,, — X then can be obtained from a truncated simplicial diagram X <, [%] - X []l)]
of proper K-rigid spaces that are flat over S = Spa(R[i], R). By shrinking S to a suitable locally
closed subset if necessary, we may assume S is smooth over K. So we are done.
]

8.5.2 Cohomological desent

Another preparation we need is the hypercovering and the cohomological descent.

Assume we have a non-augmented simplicial site Y, (truncated or not) and another site S. Let
{a, : Y, = S} forn > 0be acollection of morphisms to S such that it is compatible with face maps
and degeneracy maps in Y,. Then we can define the augmentation morphism a : Sh(Y,) — Sh(.S)
between the topoi of Y, and S, such that for an abelian sheaf F* on Y,, we have

a.F* = ker(ao*]-"o = al*]-"l).
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It can be checked that the derived direct image [Ra. can be written as the composition
Ra, = s 0 Ragey,

where a, : Y, — S, is the morphism from Y, to the constant simplicial site S, associated to S, and
s is the exact functor that takes a simplicial complex to its associated cochain complex of abelian
groups. Here we call the augmentation a = {Y,, — S} is of cohomological descent if the counit
map induced by the adjoint pair (a™!, a,) is a quasi-isomorphism
id — Ra,a .
The augmentation allows us to compute the cohomology of sheaves on S by the spectral

sequence associated to the simplicial site.

Lemma 8.5.2.1 ([Stal8], 0D7A). Let Y, be a simplicial site, or a m-truncated simplicial site for
m > 0, and let a = {a,, : Y, — S} be an augmentation. Then for K € D (Y,), there exists a

natural spectral sequence
EV? = Ra,.(K|x,) = R""a.K,

which is functorial with respect to Y, — S and K.
Moreover if we assume the Y, is non-truncated, the augmentation a is of cohomological descent,
and L € DT (S), then by applying the spectral sequence to K = a~'L we get a natural spectral

sequence
EM = Ria,.a,'L = H"I(L).

We need another variant of this Lemma in order to use truncated hypercoverings to approximate

the cohomology of S.

Proposition 8.5.2.2. Let p : Y., — S be a m-truncated simplicial hypercovering of sites for
m € N. Then for any F € Ab(S), the cone for the natural adjunction map

F — Rp.p ' F

lives in the cohomological degree > m — 1.

Proof. Let p : cosk,,Y<,, — S be the m-th coskeleton of p : Y., — S. We use the same symbols
cosk,,Y<,,, and Y,, to denote their associated simplicial sites. Then there exists a natural map of
sites

v cosky, Y, — Yo
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Those two augmentations induce maps of topoi
p : Sh(cosk,,Y<,,) = Sh(S), p: Sh(Y<,,) — Sh(S).
By construction, as maps of topoi we have
p=10p.

So from this, for F € Ab(S), we get the following commutative diagram

F Rp.p\F

N T

Rp.p~'F

Now we let C be a cone of F — Rp,p~LF, and let C be a cone of F — Rp,p ' F. Then the

above diagram induces the following commutative diagram of long exact sequence

o ——H(F)——=R'pp ' F—=H(C) —

L

o ——=HY(F)—=Rip,p ' F—=H(C) —---
By the Lemma 8.5.2.1 above and the commutative diagram, we have a map of £; spectral sequences

Rpppy, F == R p.p~'F

| |

Ripy.p, ' F == R*p.p~ ' F.

But note that since p is the m-coskeleton of p, when p + ¢ < m the formation R?p.p, !is the same

as Ripy.p, 1. So we get the isomorphism
Rp+qﬁ*ﬁ’1_7: ~ Rp+qp*p’1]-"7 p+q<m.

Besides, since p is a m-truncated hypercovering, by Deligne the augmentation p of the coskeleton
satisfies the cohomological descent. So the map F — Rp,p 'F is a quasi-isomorphism. In this
way, the map H'(F) — R'p,p~'F is an isomorphism for i < m, and hence C lives in D=""1(S).

O
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8.5.3 The degeneracy theorem

Now we are able to state and prove our main theorem about the degeneracy.

Theorem 8.5.3.1. Let X be a quasi-compact, strongly liftable rigid space of dimension n over K,
and let the augmented truncated simplicial spaces X.,, be a strong lift of X of length m > 2n + 2.

Then the strong lift X’ induces a quasi-isomorphism
My, : Ru.Ox — @) Rrx. (Qy,(—i)[—i]).
=0

The quasi-isomorphism 11y is functorial among strong lifts X <m Of rigid spaces of length
m > 2n + 2, in the sense that a map of m-truncated strong lifts X, — Y. of f: X =Y will

induce the following commutative diagram in the derived category

Rfs(yr )

Rf*RV*@X fi:rﬁ(x) Rf. R x. Qg (—4)[—1])
R By e @) By ()]

where the right vertical map is induced by the functoriality of the K ahler differential.

Proof. By assumption, we may assume X<, is a m-truncated smooth proper é€h-hypercovering of
X that admits a lift X_  to a simplicial flat adic spaces over B /&% Denote by p : X, — X the

augmentation map. Then X, is also an m-truncated v-hypercovering, and we have a natural map
Ov — va*pilov = RPU*O.’LH

whose cone has cohomological degree m — 1 > 2n + 1 by the Proposition 8.5.2.2.

We then apply derived direct image functors, and get a natural map

RV*@X = RWX*R(I*@U — RWX*Ra*RpU*(’A).U

= RP* RW.* RO(.* Oov
= Rp. RV.*@X. .

Here the cone of the map lives in degree > m — 1 > 2n + 1.

Moreover, by the Corollary 8.4.2.4, the strong lift XZ , induces a functorial (among strong lifts)
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quasi-isomorphism

RV.*(/O\X. — @RWO*(Qiéh(_i)[_i])'

>0

So we get the following distinguished triangle
Rv,.Ox — Rp, Rre, (g (—i)[—i]) — Ci, (1)

where C; € D=*"T1(X).
Besides, by the Corollary 8.4.2.4 and the Proposition 8.5.2.2 again the truncated éh-hypercovering

p induces a natural map

D R (U (~)=1) — €D Br(Rpenepia! O (i) =i]) = €D R Fru (R (~1) 1)

>0 >0 1>0
2

whose cone C, lives in degree > m — 1 > 2n + 1.
At last, by combining (1) and (2), we get the following diagram that is functorial with respect

to X, with both horizontal and vertical being distinguished:

Co

|

Rv,.Ox —= Rp, Re. (i, (—i)[—i]) —=C

|

@izo RW*<Qéh(_i) [—i])
But note that since dim(X') = n, by the cohomological boundedness (the Corollary 4.3.0.4 and the

éh-proét spectral sequence Section 8.1), both Rv,Ox and Do B (Qly, (—i)[—i]) live in degree

< 2n. Thus by taking the truncation 72", we get the quasi-isomorphism

Ru,Ox —= 1 (Rp. R Qi (=) [ ~))) 2 @by B (<)1), (3)

In this way, by taking IIx, to be the quasi-isomorphism induced from (3), we are done.
[

Corollary 8.5.3.2. Assume X is a quasi-compact rigid space over K that is either defined over

a discretely valued subfield K of perfect residue field, or proper over K. Then we have a non-
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canonical decomposition

dim(X)
Rv.Bx = @ R, (O (—)[—i)).

=0

In particular, the éh-proét spectral sequence in Section 8.1 degenerates at Es.

8.6 Finiteness revisited

In this section, we use the degeneracy of the derived direct image Rl/*@ x to improve the
cohomological boundedness results in Section 4.3.

We first recall the recent work on the perfection and the almost purity in [BS19].

Theorem 8.6.0.1 ([BS19], Proposition 8.5, Theorem 10.8). Let A be a perfectoid ring, B a finitely
presented finite A-algebra, such that Spec(B) — Spec(A) is finite étale over an open subset. Then
there exists a perfectoid ring Bypeta together with a map of A-algebras B — Bipeta, such that it is
initial among all of the A-algebra maps B — B’ for B’ being perfectoid.

Proposition 8.6.0.2. Let X be a rigid space over K. Then R"v,Ox vanishes for n > dim(X).

Before we prove the statement, we want to mention that the proof of this Proposition will not

need the éh-proét spectral sequence developed above.

Proof. Since this is an étale local statement, and any étale covering of X does not change the
dimension, by passing X to its open subsets if necessary, we may assume X admits a finite
surjective map onto a torus of the same dimension. *

We give them some notations. Denote by X = Spa(R, R*) an affinoid rigid space over Spa(K).
Assume there exists a finite surjective map X — T,, = Spa(K(T;), Ox(T;)) onto the torus of
dimension n. Let T:° be the natural pro-étale cover of T,, by extracting all p"-th roots of 7;, and let
T> = Spa(K <Tj%'° ), Ok (TZ’%’o )) be the underlying affinoid perfectoid space. Then the base change
of T along the map X — T,, produces a pro-étale cover X*° — X of X. Note that T;° — T, is
an Z,(1)"-torsor, so we have

RT (Xproét; Ox) = Rlcont(Zp(1)", RT(X Zosy, Ox ).

proét»

4To see the existence of such surjections, we may argue as follows: as a unit disc is covered by finite many tori, it
suffices to find a finite map from an affinoid rigid space X = Spa(A, A™) onto a unit disc of the same dimension. Let
Ao be aring of definition of (A, AT) that is topologically finite type over O . Since Ag/my is a finite type algebra
over the residue field k = Ok /m, by Noether’s normalization lemma we could find a subalgebra k[x;] of Ag/mg
such that Ag/mg is finite over k[z;]. In this way, by lifting the map to a morphism O (x;) — Ay, we get a finite
surjective morphism from X to a disc.
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Thanks to the (pro-€tale)-v comparison (Proposition 7.2.0.4), the above is given by
RF(Xproéta 6X) = chont (Zp(l)na RFU (Xoo,o, (9\1)))7

where X is the small v-sheaf associated to the analytic adic space X as in the Proposition
7.1.0.4. Here we note that since T, T,,, and X are all affinoid, we can write X > as Spa(B[%], B)
for some p-adic complete Ok -algebra B.

We then recall that for a perfectoid space Y of characteristic p with a structure map to the
v-sheaf Spd(K'), and any K -analytic adic space Z, we have the following bijection (cf. [SW20]
10.2.4):

Homgpa(r) (Y*, Z) = Homgpai) (Y, Z°),

where Y is the unique untilt (as a perfectoid space over Spa(K)) of Y associated to the structure
map Y — Spd(K) (Example 7.1.0.3). The bijection implies that as v-sheaves over the site Perf,,
the small v-sheaf X associated to the adic space X is the pullback of the representable v-sheaf
’ﬁ‘;’f” along the map X° — T¢. On the other hand, given a perfectoid space Y over Spd(K’) together
with the following commutative map

Vi —> T

]

X_>'Tn7

since X — T, is finite surjective of the same dimensions, the Theorem 8.6.0.1 implies that

there exits a unique map of adic spaces Y* — Xpertd = Spa(Bperfd[%], Bperta) that fits into the
commutative diagram:

X

Compare the pullback X with the universal affinoid perfectoid space X ¢ ¢y, we see the v-sheaf
X is isomorphic to the representable v-sheaf ng;?d, where the latter is given by the tilt of the

perfectoid space X ¢ 4. In particular, we get the equality

RT,(X° 0,) = RT,(X%"  O,).

perfdr» ~v

Since the higher v (pro-étale) cohomology of the completed structure sheaf on affinoid perfectoid
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space vanishes, by combining equalities above we get

~ 1
RF(Xproéta O) = Rl—\con‘c (Zp(l)n7 Bperfd[;])~

At last we note that the above object lives in the cohomological degree [0, n] in the derived category
of abelian groups, for the continuous group cohomology of Z,(1)"™ can be computed by the Koszul
complex of length n ([BMS18] Section 7). Thus we are done. ]

Remark 8.6.0.3. Here we want to mention that the cohomological bound given here is stronger

than the one from Corollary 4.3.0.4 using the éh-proét spectral sequence.

Remark 8.6.0.4. In the proof above, the continuous group cohomology computing RI"(Xproet O X)
can be defined concretely as (R Jm R gisc(Z7, RT (X 5ot (’)} /D ))> [%] where RIy;s.(Z", —)
denotes the discrete group cohomology of Z™. This is because as X is affinoid (thus quasi-compact
and quasi-separated), we have RI'(X,06t, @X) = (RL RT (X proct (’A)} /pm)> [l] Moreover,
to compute each RI'( X o6t (/9\} /p™) we could use the Cech complex of ot +/p™ for the pro-étale
covering X>° — X. We at last note that as the covering is an Z,(1)"-torsor, the Cech complex is
equivalent to the discrete group cohomology RI'gisc(Z", RT'(X 35 (’)} /p™)), by the isomorphism
in [BMS18, Lemma 7.3] for I' = Z,(1)".

Definition 8.6.0.5. Let X be a rigid space over K. We say X is locally compactifiable if there
exists an open covering {U; — X}, of X, such that each U; admits an open immersion into a

proper rigid space Y; over K.

By definition, any proper rigid space over K is locally compactifiable. Moreover, by Nagata’s
compactification in algebraic geometry, any finite type scheme over /' admits an open immersion
in a proper scheme over K. So the analytification of any finite type scheme over K is a locally

compactifiable rigid space.

Proposition 8.6.0.6. Let X be a locally compactifiable rigid space over K. Then the higher direct
image Rimx. Q. vanishes when i + j > dim(X).

Proof. Since the vanishing of the higher direct image is a local statement, by taking an open
covering, it suffices to assume X admits an open immersion f : X — X’ for X’ being proper over
K. Moreover, by dropping the irreducible components of X' that have higher dimensions, we may
assume dim(.X") is the same as dim(X ). This is allowed as the dimension of an irreducible rigid
space is not changed when we pass to its open subsets (see the discussion before 2.2.3 in[Con03]).

We then notice that the result is true for X’: by the Proposition 8.6.0.2, we know R"VX/*@ X
vanishes for n > dim(X’). On the other hand, by the degeneracy in the Corollary 8.5.3.2, each
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Rimx, QY (—j) is a direct summand of R+, Ox.. This implies that when i + j > dim(X), the
cohomology sheaf Rim Xr*Qéh vanishes.

Finally, note that by the coherence proved in Section 4.3, since Ri7 ..}, is the sheaf associated
to the presheaf U — H'(Ug,, Qjeh) for open subsets U inside of X, the preimage of R%X/*Qgh
along f is exactly Rimx. S, . In this way, by the equality of dimensions dim(X) = dim(X"), the
vanishing of Ri7x,Q, fori+j > dim(X") implies the vanishing of Rimx,, fori-+j > dim(X).
So we get the result. O

8.7 Hodge-Tate decomposition for non-smooth spaces

At last of this chapter, we give the application of our results to the Hodge-Tate decomposition
for non-smooth spaces, as mentioned in the introduction. Throughout the section, let X be a proper
rigid space over a complete algebraically closed non-archimedean field K over Q,,.

Recall that by the Primitive Comparison ([Sch13b], Theorem 3.17), we have

Hn<Xéta @p) ®Q, K= Hn<Xpr0ét7 @X)

The equality enables us to compute the p-adic étale cohomology by studying the pro-étale cohomol-
ogy. In particular, by taking the associated derived version, the right side above can be obtained
by

RT(Xprost, Ox) = R (Xe, R Ox).
Then we recall the following diagram of topoi associated to X in Section 8.1:

Sh(Xproét) Uﬁ' Sh(Xet>

i |

Sh(PerfU |X<>) Sh(Xéh).

The (pro-étale)-v comparison (see the Proposition 7.2.0.4) allows us to replace Rv, O x by the

derived direct image R7y. R, (’3@ of the untilted complete v-structure sheaf. So we have

RF(Xproét, 6}() = RF(Xét, RWX*RCY*@U)

= RF(Xéh, ROé*Ov).
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By the discussion in Section 8.1, we have
Ria,0, =, (—j).

So by replacing the above equality into the Leray spectral sequence for the composition of derived

functors, we get
E;J Hl<Xeh, Q )( ) — HZ+] (Xproéta 6)()

This together with the Primitive Comparison leads to the Hodge-Tate spectral sequence for proper
rigid space X
Ey’ = H'(Xan, ) (=) = H™" (X4, Q) g, K.

The name is justified by the special case of the éh differential in the Theorem 4.2.1.1: when
X is smooth, the higher direct image of the éh-differential vanishes, and the spectral sequence

degenerates into
By’ = H'(X, QJX/K)( j) = H (X&, Q) ®q, K,

with each H'(Xg,, 2%, ) identified with H'(X, 2% ).
Now by the strong liftability of X (Proposition 8.5.1.4) and the Degeneracy Theorem 8.5.3.1,

the derived direct image Rv, O x 1s non-canonically quasi-isomorphic to the direct sum

dim(X)

@ Rx (R, (=) [=51)-

Replace the Rv, (’3 x by this direct sum, we have
dim(X)
RT(Xproet, Ox) = @D RT(Xen, O (=) [—4]).

=0

So after taking the n-th cohomology, we see the Hodge-Tate spectral sequence degenerates at its

Es-page.

Theorem 8.7.0.1 (Hodge-Tate spectral sequence). Let X be a proper rigid space over a complete
algebraically closed non-archimedean field K of characteristic 0. Then there exists a natural F,

spectral sequence to its p-adic étale cohomology
Ey’ = H'(Xan, ) (=) = H™" (X, Q) g, K.

Here the spectral sequence degenerates at its second page, and W' (Xg,, 2, )(—7) is a finite dimen-

sional K-vector space that vanishes unless 0 < 1,7 < n.
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When X is a smooth rigid space, H'(Xg,, Q) (—7) is isomorphic to H' (X, Q&/K)(—j), and
the spectral sequence is the same as the Hodge-Tate spectral sequence for smooth proper rigid
space (in the sense of [Sch13b]).

Proof. The cohomological boundedness of Hi(Xg,, 2, )(—4) is given by the Theorem 4.3.0.2.
The finite dimensionality is given by the properness of X, the coherence of the Rim X*Qgh (the

Proposition 4.3.0.1), and the following equality
RT(Xen, ) = RT(Xg, Rrx.$2).

Moreover when X is smooth, the isomorphism between Hi(Xg,, 2, )(—j) and H*(X, Q?X i) (=)
follows from the éh-decent of differential by the Theorem 4.2.1.1 [

At last, when X is defined over a discretely valued subfield K, of K that has a perfect residue
field, the above spectral sequence is Galois equivariant. In particular, since K (—j)G(5/%0) = ( for
j # 0, the boundary map from H*(Xg,, Q2. )(—7) to H"2(Xe,, Q%) (—j + 1) is zero. In this way,
the Hodge-Tate spectral sequence degenerates canonically, and the p-adic étale cohomology splits

into the direct sum of distinct Hodge-Tate weights
H" (Xer, Q) ©g, K = @D H'(Xan, ¥,)(—3)-
i+j=n

This canonical (Galois equivariant) decomposition is functorial with respect to rigid spaces defined

over K.

Theorem 8.7.0.2 (Hodge-Tate decomposition). Let Y be a proper rigid space over a discretely
valued subfield K of K that has a perfect residue field. Then the Es5 spectral sequence above

degenerates at its second page. In fact, we have a Galois equivariant isomorphism

H" (Yicer, Qp) ®g, K = @D H' (Yan, Uy, /,) @0 K(—5)-

i+j=n

The isomorphism is functorial with respect to rigid spaces Y over K.

199



Part 111

Period Sheaves via Derived de Rham

Complex
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This part of the thesis is from the joint work of the author with Shizhang Li in [GL20].

In this part, we apply the construction of the analytic derived de Rham complex to pro-étale
structure sheaves, and identify the derived de Rham complexes with period sheaves in [Sch13a] and
[TT19], originally introduced for smooth formal schemes by Brinon ([BriO8]).

Throughout the Part I1I, we use the convention of the co-category as in Chapter 2.
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CHAPTER 9

Integral Period Sheaves

In this chapter, we consider the analytic derived de Rham complex for integral pro-€tale structure
sheaves. We start with the construction of the integral analytic cotangent complex and the derived
de Rham complex for a map of p-adic algebras, as in Section 9.1. In Section 9.2, we generalize
the Katz—Oda filtration to the context of the derived de Rham complex for a triple of algebras, and
prove a base change formula for the derived de Rham complex (Proposition 9.2.0.4). At last, we
apply constructions and results in the first two sections to the integral pro-étale structure sheaf in
Section 9.3, and show that these recover the crystalline period sheaves together with their Poincaré
sequence of [TT19] in Theorem 9.4.0.1.

Results in this chapter appeared in [GL20, Section 3].
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9.1 Affine construction

In this section we define analytic cotangent complex and analytic derived de Rham complex
for a morphism of p-adic algebras. We refer readers to [Bhal2b, Sections 2 and 3] for general

background of the derived de Rham complex in a p-adic situation.

Construction 9.1.0.1 (Integral constructions). Let Aq — By be a map of p-adically complete
algebras over Oy, and P be the standard polynomial resolution of B over A.

We define the analytic cotangent complex of Ay — By, denoted as L3 /4o 1O be the derived
p-completion of the complex Q}; 4, OP By of By-modules.

Next we denote (|(2},,, |, Fil*) the direct sum totalization of the simplicial complex Q7
together with its Hodge filtration, as an object in Fun(N°P, Ch(Ay)). As the de Rham complex of a
simplicial ring admits a commutative differential graded algebra structure, we may regard |2}, / A0|
with its Hodge filtration as an object in CAlg(Fun(N°P, Ch(Ay))). Then the analytic derived de
Rham complex of By/A, denoted as dRF; /4, in the CAlg(DF(Ay)), is defined as the derived
p-completion of the filtered cdga ([€2}, [, Fil*).

Remark 9.1.0.2. By construction, the graded pieces of the derived Hodge filtrations of dR% /A
are given by
gr'(dRf)4) = (LA Lp/a)™ (=i,

where LA® denotes the i-th left derived wedge product, c.f. [Bhal2a, Construction 4.1].
Let us establish some properties of this construction before discussing any example.

Lemma 9.1.0.3. Let A — B — C be a triple of rings, then we have a commutative diagram of
filtered E., algebras:

dRp/a ——dR¢/a
B dR¢/B,

where the left arrow is the projection to 0-th graded piece of the derived Hodge filtration, and the

other three arrows come from functoriality of the construction of derived de Rham complex.

Proof. This follows from left Kan extension of the case when B is a polynomial A-algebra and C'

is a polynomial B-algebra. U

The following is the key ingredient in understanding the analytic derived de Rham complex in

situations that are interesting to us.

Theorem 9.1.0.4. Let A — B — C' be ring homomorphisms of p-completely flat Z,-algebras, such
that A/p — B/p is relatively perfect (see [Bhal2b, Definition 3.6]). Then we have

203



1. L%

B4 =0, and AR, 4 = B;

2. The natural map dR¢) 4 — dR¢) p is an isomorphism;

3. We have a commutative diagram:

dRB/A —_— dR’C’/A

4. Assume furthermore that B — C' is surjective with kernel I and B/p — C/p is a local
complete intersection, then the natural map B — dR¢)p exhibits the latter as Dp(I)™, the
p-adic completion of the PD envelope of B along I. Moreover the p-adic completion of the
PD filtrations Fil" = I"2" gre identified with the r-th Hodge filtration.

Note that by [Bhal2b, Lemma 3.38] Dg(/)*" is a p-complete flat Z,-algebra. Hence [rl.an

being submodules of a flat Z,-module, are also p-torsionfree for all 7.

Proof. (1) and (2) follow from the proof of [Bhal2b, Corollary 3.8]: one immediately reduces
modulo p and appeals to the conjugate filtration. (3) follows from Lemma 9.1.0.3 by taking the
derived p-completion.

As for (4), we first apply [Bhal2b, Proposition 3.25] and [Ber74, Théoreme V.2.3.2] to see
that there is a natural filtered map Compc,p: ng“/ 5 — Dp(I)* such that precomposing with
B — dR{) 5 gives the natural map B = B*" — Dp(I)*". By [Bhal2b, Theorem 3.27] we see that
Compcp is an isomorphism for the underlying algebra. To show the same holds for filtrations, it
suffices to show that the induced map on graded pieces are isomorphisms as the map is compatible
with filtrations. To that end, by a standard spread out technique, we may reduce to the case where B
is the p-adic completion of a finite type Z, algebra, in particular it is Noetherian, in which case the
identification of graded pieces via this natural map follows from a result of Illusie [I1172, Corollaire
VIIL.2.2.8]. ]

Now we are ready to do some examples. An inspiring arithmetic example is worked out by
Bhatt.

Example 9.1.0.5 ([Bhal2b, Proposition 9.9]). There is a filtered isomorphism:

ACI‘yS = dR‘%l;/Zp

Let us work out a geometric example below.
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Example 9.1.0.6. Let n be a positive integer. Let R = Z, (T’ AL TEY, and
Roo = Zy(TEYP™ L THUP™Y = R(SYPT . SYP™V (T, — Si;1 < i < n).
Applying (derived p-completion of) the fundamental triangle of cotangent complexes to
Ly — R — R,

one yields that Ly, = Roo - {dT3, ..., dT,}[1].

On the other hand, the fundamental triangle associated with
R — R(SP7, .. SMPY 5 R,

givesus L' p = Roo - {1 — 551 < i < n}[l].
The relation between these two presentations of L' R is that

T, — S; = dT;

in Hy(L ), as 57 (T — S;) = 1.1
Following the above notation, we describe dR%! /5.

Example 9.1.0.7. Applying Theorem 9.1.04 to A = R, B = R(S{/"" ... SY""yand I =
(11 — Syi,..., T, — Sy), we see that d ?znoo/R = <sz<Tli1 ..... TSP S}}/pﬂ(f))an is the p-adic
completion of the PD envelope of R(Sll/ b Oo, ceey STI/ P oo> along [ (notice that the PD envelope is
p-torsion free, hence derived completion agrees with classical completion), and the Hodge filtrations
are (p-adically) generated by divided powers of {7; — S;}. Example 9.1.0.6 shows that the image of
(T;— S;) ingr! = L3 /rl—1] = R ®r Q}%’?;p is identified with 1 ® dT;. This precise identification
will be used later (see Example 10.1.0.7 and the proof of Theorem 10.4.0.1) when we compare

certain rational version of the analytic derived de Rham complex with Scholze’s period sheaf OB ;.

9.2 Derived de Rham complex for a triple

Given a pair of smooth morphisms A — B — C, there is a natural Gauss—Manin connection
dReyB v, dRe/B @B Q}B e such that dR¢/ 4 is naturally identified with the “totalization” of the

following sequence:

v v v dim
dRe/p — dRe/p ®5 QlB/A — -+ — dR¢/p ®p QB/AB/A

"Here we follow the sign conventions in the Stacks Project, see [Stal8, Tag 07MC footnote 1]
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Katz and Oda [KO68] observed that this can be explained by a filtration on dR¢/4. In this section
we shall show how to generalize this to the context of derived de Rham complex for a pair of
arbitrary morphisms A — B — C.

We first need to introduce a way to attach filtration on a tensor product of filtered modules over a
filtered E-algebra. The following fact about Bar resolution is well-known, and we thank Bhargav

Bhatt for teaching us in this generality.

Lemma 9.2.0.1. Let A be an ordinary ring, let R be an E . -algebra over A, and let M and N be
two objects in D(R). Then the following augmented simplicial object in D(A)

(-~~:>>M®AR®AR®AN—>_>M®AR®AN:>>M®AN) — M ®r N

displays M ®@r N as the colimit of the simplicial objects in D(A). Here the arrows are given by
“multiplying two factors together”.

Proof. Since the co-category D(R) is generated by shifts of R [Lurl7, 7.1.2.1], commuting tensor
with colimit, we may assume that both of M and N are just R. In this case, the statement holds for
merely F;-algebras, as we have a null homotopy R®4" — R®4("+1) given by tensoring R®4"™ with
the natural map A — R. O

Construction 9.2.0.2. Let A be an ordinary ring, let R be a filtered E, algebra over A, and let
M and N be two filtered R-modules with filtrations compatible with that on R. Then we regard
M ®pg N as an object in DF(A) via the Bar resolution in Lemma 9.2.0.1, with

Fil'(M ®p N) := colimper

( ==Fill(M ®4s R&4 Roa N) —ZFil (M ©4 R ®4 N) —=Fil'(M @4 N) ) ,

where the filtrationson M ®4 R ®4 --- ®4 R ®4 N are given by the usual Day involution.
Lemma 9.2.0.3. Let A, R, M, N be as in Construction 9.2.0.2. Then we have

gr'(M ®r N) = gr* (M) g+ (r) g (V).
Proof. We have

gr*(M ®p N)

o <...§gr*(M®AR®AR®A N)=—=egr"(M ®4s R®4 N):igr*(M@@AN))
%“Cgloign(---i’gr*(M) ®a gr'(R) @4 gr*(N) —=gr"(M) ®a gr*(N>>

= g1 (M) @gee(r) g™ (N).
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O]

Proposition 9.2.0.4. Let A — B — C be a triple of rings, then the diagram of filtered E..-algebras
in Lemma 9.1.0.3 induces a filtered isomorphism of filtered E.-algebras over B:

dRc/A ®dRB/A B = dRc/B.

Here the left hand side is equipped with the filtration in Construction 9.2.0.2 with the Hodge
filtrations on dR¢/4 and dRp /4, and Fil'(B) = 0 for i > 1. The right hand side is equipped with
the Hodge filtration. Denote )7, 4= @®isti(L A" Lp/a)[—1] the graded algebra associated with the
Hodge filtration.

Proof. After cofibrant replacing B by a simplicial polynomial A-algebra and C' by a simplicial
polynomial B-algebra, we reduce the statement to the case where B is a polynomial A-algebra and

C'is a polynomial B-algebra. One verifies directly that in this case we have

dRC/A ®dRB/A B = dRC’/B and QZ‘/A ®QE N B QE‘/B

/

Now we finish proof by recalling that a filtered morphism with isomorphic underlying object is a

filtered isomorphism if and only if the induced morphisms of graded pieces are isomorphisms. []

Construction 9.2.0.5. Let A — B — (' be a triple of rings, then we put a filtration on dR¢/4
by the following: L(i) = dR¢/a ®ar,, A Fil};(dRp /4), viewed as a commutative algebra object
in Fun(N°?, DF(A)) = Fun((N x N)°?, D(A)), where the filtration on L(i) is as in Construc-
tion 9.2.0.2 with each factor being equipped with its own Hodge filtrations. We have L(0) = dR¢ /4,
and we call L(i) the i-th Katz—Oda filtration on dR¢ 4, and we shall denote it by Filj;,(dRc/a).

We caution readers that each Fill,, (dR¢ /4) is equipped with yet another filtration, we shall still
call it the Hodge filtration, the index is often denoted by j. The graded pieces of the Katz—Oda
filtration when both arrows in A — B — (' are smooth were studied by Katz—Oda [KO68],
although in a different language, hence the name.

Lemma 9.2.0.6. Let A — B — C be a triple of rings, then

1. We have a filtered isomorphism
gr%o(dRc/A) = dRc/B ®B Sti((L /\i LB/A)[—i]).

2. Under the above filtered isomorphism, the Katz—Oda filtration on dRc 4 witnesses the

207



following sequence:
Y \Y
dRC/A — dRC/B — dRc/B Xp Stl(LB/A) — .

Here V denotes connecting homomorphisms, which is dR ¢ a-linear and satisfies Newton—

Leibniz rule.

3. The induced Katz—Oda filtration on gr{{(dRC/ ) is complete. In fact Filiogrl (AR¢ /4) =0
whenever i > j.

4. If A — B is smooth of equidimension d, then Fil%OFilﬁ(dRC/A) = 0foranyi > d. In
particular, combining with the previous point, we get that in this situation the Katz—Oda

filtration is strict exact in the sense of ??.

Proof. For (1): we have

gr%o(dRC/A) = dRC/A ®dRp/a st; (L A LB/A)[—i] = (dRC/A ®dRp, 4 B) ®p st;(L A LB/A)[—i],

and by Proposition 9.2.0.4 the right hand side can be identified with dR¢/p ®@p st;(L A" Lg,4)[—i].

For (2): we just need to show the properties of these V’s. With any multiplicative filtration on
an F,.-algebra R, we get a natural filtered map Fil’ ® Fil/ — Fil'*/(R) where the left hand side
is equipped with the Day convolution filtration (over the underlying algebra ). Now we look at the
following commutative diagram:

(gr' @p grit!) @ (grt! ®@p grf) —= Fil'™H /R H2(Fil’ @ Filf) — g1f @ grf

| |

grititl Fili* /Fil' /2 (R) =

gri-‘rj —

to conclude that the connecting morphisms are R-linear and satisfy Newton—Leibniz rule. Since
Fil}. is a multiplicative filtration on dR¢ /4, we get the desired properties of V.
(3) follows from the distinguished triangle of cotangent complexes and their exterior powers.
(4) follows from the definition of the Katz—Oda filtration in Construction 9.2.0.5 and the fact
that Filj;(dRp/4) = 0 whenever i > d. O

We do not need the following construction in this paper, but mention it for the sake of complete-
ness of our discussion.

Construction 9.2.0.7. We denote the graded algebra associated with the Hodge filtration on derived
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de Rham complex by LQ*L/_.2 Let A - B — C be a triple of rings. Note that LQE/A =
L AL (sti(Leya))[—+], and we have a functorial filtration L 4 ®p C' — L4 with quotient being
Lc/p. Hence there is a functorial multiplicative exhaustive increasing filtration on L), /A0 called
the vertical filtration and denoted by Fil;, consisting of graded-L(27, / ,-submodules with graded
pieces given by gry = Ly, ®p sti(L A" Loy p)[—i].

We refer the reader to [GL20] for a summary of filtrations.

Specializing to the p-adic setting, we get the following.

Lemma 9.2.0.8. Let A — B — C be a triangle of p-complete flat Z,-algebras. Suppose B/p is
smooth over A/p of relative equidimension n. Then we have a p-adic Katz—Oda filtration on dR¢/a

which is strict exact and witnesses the following sequence:
0 — dR¥), — dRY); — dRE) @p sty (7)) 2 - > dRY), @ st (2574) — 0.

Recall that the superscript (—)*" denotes the derived p-completion of the corresponding objects.

Note that since Q%a}i‘ are all finite flat B-modules by assumption and dR¢) 5 is p-complete, the

tensor products showing above are already p-complete.

Proof. Take the derived p-completion of the Katz—Oda filtration on dR¢/4, we get such a strict
exact filtration by Lemma 9.2.0.6. [

9.3 Integral de Rham sheaves

For the rest of this section, we focus on the situation spelled out by the following:

Notation

Let « be a perfect field in characteristic p > 0, and let k = W (k) [%] be the absolutely unramified
discretely valued p-adic field with the ring of integers O, = W (k). Fix a separated formally smooth
p-adic formal schemes X over Oy. Denote by X its generic fiber, viewed as an adic space over the
Huber pair (k, Oy).

In this situation, there is a natural map of ringed sites

w: (Xproéta 6}) — (x7 ODC)

2We warn readers that this is not a standard notation, in other literature the symbol L2 is often used to denote the
derived de Rham complex.

209



which sends an open subset U C X to the open subset U € X,.¢;, Where U is the generic fiber of
U. This allows us to define inverse image w 'Oy of the integral structure sheaf Ox, as a sheaf on
the pro-étale site X o4t

On the pro-étale site of X, we have a morphism of sheaves of p-complete Oy-algebras:
Or — w0y — OF. (1)

We refer readers to [Sch13a, Sections 3 and 4] for a detailed discussion surrounding the pro-étale
site of a rigid space and structure sheaves on it. There is a subcategory X x C Xprogt consisting
of affinoid perfectoid objects U = Spa(B, B") € X6 whose image in X is contained in
w(Spf(Ap)), the generic fiber of an affine open Spf(Ay) C X. The class of such objects form
a basis for the pro-étale topology by (the proof of) [Schl3a, Proposition 4.8]. We first study the

behavior of derived de Rham complex for the triangle eq. (1) on X7 o /x

Proposition 9.3.0.1. Let U = Spa(B, B") € X0 be an object in X*

st/ x> Choose Spf(Ag) C X
such that the image of U in X is contained in w™" (Spf(Ay)). Then

1. the natural surjection 0: Ay,;(B™) — B exhibits AR )0, = Acxys(B™), the p-completion
of the divided envelope of A;,;(B™) along ker(6);

2. the natural surjection w* ®0: Ao®ok Aing(BT) — BT exhibits AREY /A, S the p-completion
of the divided envelope of AyR o, Ains(BT) along ker(w* @ 0);

3. in both cases, the Hodge filtrations are identified as the p-completion of PD filtrations;

4. the filtered algebra AR 4, is independent of the choice of A. We denote it as ARG /.

Remark 9.3.0.2. In particular, (1) and (2) tells us that these derived de Rham complexes are actually
quasi-isomorphic to an honest algebra viewed as a complex supported on cohomological degree 0;

(4) tells us that sending U = Spa(B, BT) € X¥

proét/x 1O dRpY  gives a well-defined presheaf on
X

w
proét/X:

Proof of Proposition 9.3.0.1. Applying Theorem 9.1.0.4.(4) to the triangles
Ok — Amf<B+) — BT and A() — A0®okAmf<B+) — BT

proves (1) and (2) respectively and (3)°. As for (4), using separatedness of X, we reduce to
the situation where image of U in X is in a smaller open w™'(Spf(4;)) C w=(Spf(4y)). It
suffices to show the natural map dR%Y 4, — dR%} 4, is a filtered isomorphism, which follows

from Lemma 9.2.0.8 as Ay/p — A;/p is étale. O

3Here we use the unramifiedness of O}, to verify the relatively perfectness assumption in Theorem 9.1.0.4.
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Recall that the subcategory X* . . C X6 gives a basis for the topology on X ... Hence

proét/
any presheaf on X* peoét/x Can be sheafified to a sheaf on X, o¢;.

We define the analytic de Rham sheaf for (9+ over O, and w~ 'O« as follows:

Construction 9.3.0.3 (dR2
as dROrL 0y
each U = Spa(B, B™) the algebra dR 3% /o, We equip it with the decreasing Hodge filtration Fiily

S + /0, and dR5} + /0y ). The analytic de Rham sheaf of O +/ Ok, denoted

is the p-adic completion of the unfolding of the presheaf on X*

proét /X which assigns

given by the image of p-completion of the unfolding of the presheaf assigning each U = Spa(B, B™)
the r-th Hodge filtration in dR5} [0k

The analytic de Rham sheaf of ot +/Ox, denoted as dRO+ Oy
+ Which assigns each U = Spa(B, BT) the filtered algebra
dREY sx- Similarly we equip it with the decreasing Hodge filtration F'il}; given by the image of

is the p-adic completion of the
unfolding of the presheaf on X5 /
p-completion of the unfolding of the presheaf whose value on each U = Spa(B, B™) is the r-th
Hodge filtration in dR%% /.

The fact that these definitions/constructions make sense follows from Proposition 9.3.0.1 and Re-
mark 9.3.0.2.

One may also define the corresponding mod p™ version of these sheaves. Since sheafifying
commutes with arbitrary colimit, the p-adic completion of the sheafification of a presheaf I’ is
the same as the inverse limit over n of the sheafification of presheaves F'/p". Therefore we have
dR@j( X /p" is the same as the sheafification of the presheaf dRz+ /0, /p". Its r-th Hodge filtration
agrees with the sheafification of the presheaf Fily; (dR g+ 0, /p™), as sheafifying is an exact functor.

Similar statements can be made for the mod p" version of d and its Hodge filtrations.

oj(/o
Now the strict exact Katz—Oda filtration obtained in the Lemma 9.2.0.8 gives us the following:

Corollary 9.3.0.4 (Crystalline Poincaré lemma). There is a functorial AR, -linear strict exact

0% /0y
sequence of filtered sheaves on X ,¢:

0 — dR%E — dR% —>dR

—10l,any V
0% /0, Ot /Oy Ot 0y Bty St(w™ Q™) =

— d,an
A dRO;/(9 Ru-10y Sta(w T QF™) — 0,
where d is the relative dimension of X /Oy.

Proof. Using the discussion before this Corollary, we reduce to checking this at the level of
presheaves on X /x Since now everything in sight are supported cohomologically in degree
0 with filtrations given by submodules because of Proposition 9.3.0.1, the strict exact Katz—Oda

filtration in Lemma 9.2.0.8 implies what we want. 0
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Remark 9.3.0.5. We can drop the separatedness assumption on X as follows. Since any formal
scheme is covered by affine ones, and affine formal schemes are automatically separated, we may
define all these de Rham sheaves on each slice subcategory of the pro-étale site of the rigid generic
fiber of affine opens of X. Similar to the proof of Proposition 9.3.0.1.(4), we can show these
de Rham sheaves satisfy the base change formula with respect to maps of affine opens of X (by
appealing to Lemma 9.2.0.8 again), hence these sheaves on the slice subcategories glue to a global
one. The Crystalline Poincaré lemma obtained above holds verbatim as exactness of a sequence of

sheaves may be checked locally.

9.4 Comparing with Tan-Tong’s crystalline period sheaves

Lastly we shall identify the two de Rham sheaves defined above with two period sheaves that
show up in the work of Tan—Tong [TT19]. We refer readers to Definitions 2.1. and 2.9. of loc. cit. for
the meaning of period sheaves A,s and OA,,, and their PD filtrations.

We look at the triangle of sheaves of rings:

—1 ~ wﬁ®0 A+
Or = w  (Ox)®0, Aing — Ox.
Theorem 9.4.0.1. The triangle above induces a filtered isomorphism of sheaves: dR@; 0, = Acrys
and dR@; /0y = OAgys.

Moreover, under this identification, the Crystalline Poincaré sequence in Corollary 9.3.0.4

agrees with the one obtained in [TT19, Corollary 2.17].

Proof. We check these isomorphisms modulo p™ for any n. For both cases, the de Rham sheaf and
the crystalline period sheaf are both unfoldings of the same PD envelope presheaf (with its PD
filtrations) on X /x for the de Rham sheaves this statement follows from Proposition 9.3.0.1 and
base change formula of PD envelope (note that taking PD envelope is a left adjoint functor, hence
commutes with colimit, in particular, it commutes with modulo p™ for any n), for the crystalline
period sheaf this follows from the definition (note that although the OA,,,; defined in Tan-Tong’s
work uses uncompleted tensor of w™!(Ox) and A,,,; instead of the completed tensors we are using
here, the difference goes away when we modulo any power of p and restricts to the basis of affinoid
perfectoid objects).

Therefore for both cases, we have natural isomorphisms modulo p” for any n, taking inverse
limit gives the result we want as all sheaves are p-adic completion of their modulo p" versions.

The claim about matching Poincaré sequences follows by unwinding definitions. Indeed we

need to check that V defined in these two sequences agree, but since V is linear over dR@( 0, =

Ays, it suffices to check that V agrees on u; which is the image of 7; — S; (notation from
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loc. cot. and Example 9.1.0.7 respectively) by functoriality of the Poincaré sequence. One checks
that in both cases their image under V is 1 ® d7;. [
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CHAPTER 10

Rational Period Sheaves

In this chapter, we consider the rational analogue of the integral derived de Rham complexes
and period sheaves from Chapter 9. Our goal is to recover the de Rham period sheaves and their
p-adic Poincaré sequence of Brinon ([BriO8]) and Scholze ([Sch13a]), using the analytic derived de
Rham complex.

We first recall the properties we need about the analytic cotangent complex and the analytic
derived de Rham complex in Section 10.1. Here the results are compatible with the ones in Chapter 2
and Section 8.2. We then consider the Poincaré sequence for a map of Huber rings in Section 10.2.
In Section 10.3 and Section 10.4, we apply the construction of the analytic derived de Rham complex
to the rational pro-étale structure sheaves, and show that these recover Scholze’s constructions
(Theorem 10.4.0.1). At last, we compute an example of the analytic derived de Rham complex
ch\{aBn/ 4» Where A is an artinian local ring over a p-adic field and B is a perfectoid algebra over A, as
in Section 10.5.

The results in this chapter appears in [GL20, Section 4].
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To start, let us spell out the setup by recalling the following notation: k is a p-adic field with
ring of integers denoted by O}, and X is a separated' rigid space over k which we view as an adic

space over Spa(k, O).

10.1 Affinoid construction

In this section, we recall the construction of the analytic cotangent complex and give the
construction of the analytic derived de Rham complex, for a map of Huber rings over a k. For a
detailed discussion of the analytic cotangent complex (for topological finite type algebras), we refer
readers to [GRO3, Section 7.1-7.3].

Let f: (A,A%) — (B, B") be a map of complete Huber rings over k. Denote by C/ the
filtered category of pairs (Ao, By), where Ay and By are rings of definition of (A, A™) and (B, B™)
separately, such that f(Ay) C By.

Construction 10.1.0.1 (Analytic cotangent complex, affinoid). For each (A4, By) € Cp/a, denote
by L3 /4, the integral analytic cotangent complex of Ay — By as in the Construction 9.1.0.1. The
analytic cotangent complex of f: (A, AT) — (B, B*), denoted by L3 4, is defined as the filtered

colimit |
T4 = colim L% =l
B (A0,Bo)eCp/a BU/AO[ ]

For the convenience of readers, let us list a few properties of analytic cotangent complex for a
morphism of rigid affinoid algebras obtained by Gabber—Romero.
Theorem 10.1.0.2. Let A — B be a morphism of k-affinoid algebras, then we have:

1. [GRO3, Theorem 7.1.33.(i)] L), , is in D=Y(B) and is pseudo-coherent over B;

2. [GRO3, Lemma 7.1.27.(iii) and Equation 7.2.36] the 0-th cohomology of the analytic cotan-

gent complex is given by the analytic relative differential: H (Lj‘g“/ ) QaB“/ w5
3. [GRO3, Theorem 7.2.42.(ii)] if A — B is smooth, then L) 4 =~ Q%n/ 4101
4. [GRO3, Lemma 7.2.46.(ii)] if A — B is surjective, then the analytic cotangent complex

agrees with the classical cotangent complex: Lp 4 ~ L%“/ e

Construction 10.1.0.3 (Analytic derived de Rham complex, affinoid). Let f: (A4, AT) — (B, B+)
be a map of complete Huber rings over k. For each (Ay, By) € Cp/a, by the Construction 9.1.0.1 we
could define the integral analytic derived de Rham complex dR; /4, as an object in CAlg(DF(Ap)).

!Just like Remark 9.3.0.5 suggests, we can remove the separatedness assumption in the end.
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Then the analytic derived de Rham complex AR, of (B, BY) over (A, A"), as an object in
CAlg(DF(A)), is defined to be the filtered colimit

1
dR%Y,, := colim dR% .
Bla = o0l AR, [p]

Moreover, the (Hodge) completed analytic derived de Rham complex Jﬁ?/ 4 of (B, B™) over
(A, A™), as an object in CAlg(]jf‘(A)), is defined as the derived filtered completion of dR%) 4.

By the construction, the graded pieces of the filtered complete A-complex @a;/ 4 1s given by

—~an

ri dR = colim I.Z' G A 7B ,
g ( B/A) (Ao,BO)leCB/Ag ( ( 0 0)) )
j 1
= i L A LL20 RN,

(Ao,(jgo)léIClB/A( A Bo/Ao[p])[ i)

12

(L A" L[],
due to the fact that the functor gr’ preserves filtered colimits.

Remark 10.1.0.4 (Complexity of the construction). The two rational constructions above involve
colimits among all rings of definitions and seem to be very complicated. A naive attempt would
be taking the usual cotangent/derived de Rham complex of A* — B™, apply the derived p-adic
completion and invert p (and do the filtered completion, for the derived de Rham complex case)
directly. This would not give us the expected answer in general, which is essentially due to the
possible existence of nilpotent elements in (A, A*) and (B, B™).

Take the map (k, Oy) — (B, B") for B = k(¢)/(¢*) as an example. Then a ring of definition
By of B could be Oy (¢)/(e?), while there is only one open integral subring of B that contains O,
namely O, @ k - €. In this case, it is easy to see that the derived p-completion of cotangent complexes

Lp+,0, and L, /0, are different, and remain so after inverting p.

Remark 10.1.0.5 (Simplified construction for uniform Huber pairs). Assume both of the Huber
pairs (A, AT) — (B, BT) are uniform; namely the subrings of power bounded elements A° and
B° are bounded in A and B separately. Then both A and B™ are rings of definition of A and B
separately. In particular, the Construction 10.1.0.1 and the Construction 10.1.0.3 can be simplified

as follows:

an __ T an [1]
B/A Bt /At p )

—~an 1
dRp /4 = filtered completion of ((derived p — completion of dRp+,a+)[=]),
p
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where we recall that L3} e is the derived p-completion of the classical cotangent complex L+ 4+,
and dRp+/4+ is the classical derived de Rham complex of Bt/A*, as in [BMS19, Examples
5.11-5.12].

Examples of uniform Huber pairs include reduced affinoid algebras over discretely valued or
algebraically closed non-Archimedean fields [FvdP04, Theorem 3.5.6], and perfectoid affinoid
algebras [Sch13b, Theorem 6.3].

An arithmetic example of the Hodge-completed analytic derived de Rham complex has been

worked out by Beilinson.

Example 10.1.0.6 ([Beil2, Proposition 1.5]). We have a filtered isomorphism:
B C—I’_R = dR@/ Qp-

Next we work out a geometric example. Let us compute the Hodge-completed analytic de-
rived de Rham complex of a perfectoid torus over a rigid analytic torus. Following the nota-
tion in Example 9.1.0.6, let R = Z,(T;™",... T*Y), and Ry, = Z (T7/77 .. TP7) =
R(SYP™ L SMPY (T — Sl < i< n).

Example 10.1.0.7. Continue with Example 9.1.0.7. After inverting p and completing along Hodge
filtrations, we see that dRRoo[l/p]/R[l/p] is given by the completlon of Q, (T, Sl/p ) along {T; —
S;;1 < i < n}. Here we use Remark 10.1.0.5 to relate dRR /i and dRRn (/pl/R[1/p)- A MOre

explicit presentation is

—~an

il oo
ARy m/mism = QoS5 SEPNX, L X

via change of variable T; = X; + S; (hence TZ-_1 = Si_1 (14 S[lXi)*l), c.f. the notation before
[Sch13a, Proposition 6.10].

We need to understand the output of these constructions for general perfectoid affinoid algebras
relative to affinoid algebras. The following tells us that in this situation, the Hodge completed
analytic derived de Rham complex can be computed with any ring of definition inside the affinoid

algebra.

Lemma 10.1.0.8. Let (A, AT) be a topologically finite type complete Tate ring over (k, Oy), with
Ay C AT being a ring of definition. Let (B, BT) be a perfectoid algebra over (A, AT). Then we

have:

1. The analytic cotangent complex Ly, = L\, [1/p].
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2. The Hodge completed analytic derived de Rham complex CTP\{?;/ 4 = dR%ml /D], where the
latter is the Hodge completion of AR 4 [1/p].

In the proof below we will show a stronger statement: the transition morphisms of the col-
imit process computing left hand side in Construction 10.1.0.1 and Construction 10.1.0.3 are all

isomorphisms.

Proof. Let A, C A" be another ring of definition containing A,. It suffices to show that
L 4, [1/p) = LY m [1/p] and similarly for their Hodge completed analytic derived de Rham
complexes. Since Hodge completed analytic derived de Rham complex of both sides are derived
complete with respect to the Hodge filtration, whose graded pieces, by Equation (2), are derived
wedge product of relevant analytic cotangent complexes, we see that the statement about Hodge
completed analytic derived de Rham complex follows from the statement about analytic cotangent
complex.

To show L3, , [1/p] = L}, Aé[l /p], we appeal to the fundamental triangle of (analytic)
cotangent complexes:

an + an an
A /a004 BT —> L jay — Ligs ;-

Here the tensor product does not need an extra p-completion as L4 /4, 18 pseudo-coherent,
see [GRO3, Theorem 7.1.33]. By [GRO3, Theorem 7.2.42], the p-complete cotangent complex

an 1
LAg/Ao satisfies

an 1 o 1,an
Ao/ Ao [5] = iAoy

which vanishes as A{)[i] and Ao[é] are both equal to A. Therefore the natural map
an 1 an 1
B+ /A [Z_?] — LB+/A6 [Z_?]
induced by Ay — A is a quasi-isomorphism. ]

We can understand the associated graded algebra of analytic de Rham complex of perfectoid
affinoid algebras over affinoid algebras via the following Theorem 10.1.0.9. Let K be a perfectoid

field extension of & that contains p”-roots of unity for all n € N.

Theorem 10.1.0.9. Let (A, AT) be a topologically finite type complete Tate ring over (k, O).
Assume (B, B") is a perfectoid algebra containing both (K, Ok) and (A, A™). Then the graded
algebra gr* ((ﬁzn/ ) admits a natural graded quasi-isomorphism to the derived divided power

algebra LI'}, (grl((ﬁ?;n/ 1)), where the first graded piece fits into a distinguished triangle:

—~an

B(1) — grl(dRB/A) = Lijal—1] — B®a LYy,
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which is functorial in (B, B)/(A, AT). In particular, the graded pieces are B-pseudo-coherent.

Here B(1) denote ker()/ ker(6)* where 6: A;,;(B™)[1/p] — B is Fontaine’s § map. Our
assumption of (B, B™) containing (K, Ok ) ensures that this is (non-canonically) isomorphic to B
itself, see [Sch13a, Lemma 6.3]. After sheafifying everything, it corresponds to a suitable Tate twist
of B.

Proof. The identification grl((ﬁzn/ a) = L) 4[—1] is already spelled out by Equation (2).

Let us fix a single choice of pair of rings of definition (Ao, B*) in Cp/4. Here Ay is topologically
finitely presented over Oy, and B* contains Oy for K a perfectoid field containing all p"-th roots
of unity.

Consider the following triple: O, — Ay — BT, it induces the following triangle

an + an an
A0/0p @4 BT —> L4 0, —> L4 4,

Here we again have used the pseudo-coherence [GR03, Theorem 7.1.33] of Li{; 0" We need to
show L%, [1/p] = B(1)[1]. To that end, let W be the Witt ring of the residue field of O. By
looking at the triple W — O, — BT, we get another sequence

Beow = BT (D[] — LY )0, — LS, w ®o, BF[1],

where the first identification follows from Proposition 9.3.0.1, and the tensor product does not an
extra completion again by coherence of L ;. Since k/W/[1/p| is finite étale, we conclude that
Lo, /W[l /p] = 0 by [GRO3, Theorem 7.2.42]. This ends the proof of the structure of L%} A"

Now we turn to the higher graded piece. The i-th graded pieces gr (dR B/ A) 1s quasi-isomorphic

to (L A L) 4)[—i], which by rewriting in terms of the first graded piece is

—~an

(LA (gr'(dRp ) [1])[i].

So by the relation between the derived wedge product and the derived divided power funcotr (with
bounded above input, see [I1171, V.4.3.5]), we get

gri<dRB/A) = LPiB(grl(dRB/A))a

and we get the divided power algebra structure of the graded algebra gr*((ﬁzn/ 4)- [

Consequently we get cohomological bounds for perfectoid affinoid algebras over various types
of affinoid algebras. The notion of local complete intersection and embedded codimension (in the

situation that we are working with) is discussed in the Appendix.
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Corollary 10.1.0.10. Let (B, B")/(A, A") be as in the statement of Theorem 10.1.0.9. Then we

have
1. dRp )y € D=O(A);
2. if A/k is smooth, then gﬁ?m € DIOOI(A);
3. if A/k is local complete intersection with embedded codimension c, then (TP\{ZH/ 4 € DIl A),

Proof. Since the out put of dr™ is always derived complete with respect to its Hodge filtration, it
suffices to show these statements for the graded pieces of Hodge filtration.

For (1), this follows from the fact that IL%“/ 4 € D=0(B). (2) follows from (3) as smooth affinoid
algebra has embedded codimension 0.

As for (3), we check the graded pieces of Hodge filtration in this case is in D%, In fact, we
shall show that the graded pieces, as objects in D(B), have Tor amplitude [—c, 0]. First since B

contains Q, we have
gr'(dRp,4) = LI (gr! (dRp4)) = LSym(gr' (AR 4))-

Using the triangle in Theorem 10.1.0.9, it suffices to show LSymf_t;(B ®a LZH/ ,.) have Tor amplitude
[—c, 0] for all j. Since LSym(B ®4 L) = B ®a LSym’, (L%)), we are done by Proposi-
tion 1.0.0.7. 0

10.2 Poincaré sequence

In this section we explain the Poincaré sequence for Hodge completed de Rham complexes.

Lemma 10.2.0.1. Let B — C be an A-algebra morphism. Then for every j € N, the Katz—
Oda filtration on dR¢ 4 induces a functorial strict exact filtration on dR¢/a/ Fil{i, witnessing the

following sequence:

dReya/Fi¥ = dReyp/FiV % dReyp/FilV ! @p sty (Lpja) - - -

dR¢,p/Fil' @p st;_1 (LA Lgja).

Here dR¢/4 and dR¢)p are equipped with Hodge filtrations.
Moreover Fili,q(dR¢/a/Fill;) = 0 whenever i > j.

Proof. We consider the induced Katz—Oda filtration on dR¢ 4/ Fili;. Since we have mod out Hodge
filtration, the Lemma 9.2.0.6 (3) implies the desired vanishing of the Fili., when i > 7, and this in

turn implies the strict exactness of these filtrations. O
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Specializing to the p-adic situation, we get the following:

Lemma 10.2.0.2. Let (A, AT) — (B, BY) — (C,C") be a triangle of complete Huber rings over
k. Then for each j € N, we have a functorial strict exact filtration on ARy /A /Fil, still denoted by

FllKO, witnessing the following sequence:

C/A/Fll — dR‘C/B/Fﬂ] —> dRC/B/Filj_l(gBStl(LaB?A) Z) e Z}

C/B/Fll ®pstj_1 (LA Bra)-

Here dR{) 4/ Fil’ and d crp/ Fil are equipped with Hodge filtrations.

Moreover Filj.q (ARE)4/Fil) = 0 whenever i > j.
Proof. For any triangle of rings of definition Ay — By, — Cj, we p-complete the filtration
from Lemma 10.2.0.1 and invert p, then we take the colimit over all triangles of such triples of rings
of definition to get the filtration sought after. Since all the operations involved are (derived-)exact,
the resulting filtration still has vanishing: Fil%o = ( whenever ¢ > 7, and this again implies the

strict exactness. L]

In the setting of the above Lemma, after taking limit with 7 going to oo, we get the following:

Corollary 10.2.0.3 (Poincare Lemma). Let (A, AT) — (B,B") — (C,C™) be a triangle of
complete Huber rings over k. Then there is a functorial strict exact filtration on dRZ /A Witnessing

the following sequence
—~an —~an v ——an . o
dRC/A —>dR’C/B _>dR’C/B®BSt1(LB/A) — ., (3)

The Vs are &f{acn/ 4-linear and satisfy Newton—Leibniz rule.

Proof. Take limit in j of the Katz-Oda filtrations on dR¢) 4 /Fil in Lemma 10.2.0.2 gives the

desired filtration. Indeed, inverse limit of complete filtrations is again complete. Moreover we have

grzko(dRC/A) = 1im gri(o( C/A/Fﬂ]) = hm( C/B/Fll] Z®BSt (L A aBn/A)[_i])

= dRC/B®BSt (L AL 4)[—i],

so we get the statement about the sequence that this filtration is witnessing.
Lastly the statement about V is the consequence of a general statement about multiplicative

filtrations on F -algebras, see the proof of Lemma 9.2.0.6 (2). [

Remark 10.2.0.4. In fact, the discussion of the Poincar’e sequence above could be obtained via a
product formula
dRC/A@)gﬁB/AB = dR¢yB,
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similar to the discussion in section Section 9.2. Here the formula can be obtained via a filtered
completion, by p-completing the formula in Proposition 9.2.0.4 and inverting p.

We mention that this formula could also be proved by applying the symmetric monoidal functor
gr* and checking the graded pieces, where the claim is reduced to the distinguished triangle of

analytic cotangent complexes for a triple of Huber pairs.

10.3 Rational de Rham sheaves

In this section, we shall apply the construction of the (Hodge completed) analytic derived
de Rham complexes to the triangle of sheaves of Huber rings (k, O;) — (v 'Ox,v10%) —
((9 X, O% +) on the pro-étale site, where v: X ,,,¢; — X is the standard map of sites. The procedure is
similar to what we did in Section 9.3, except now we allow X to be locally complete intersection 2
over k, and we shall use the unfolding as discussed in Section 2.4.1.

Let K be a perfectoid field extension of k that contains p™-roots of unity for all n € N. There is a
subcategory X* proct C Xproet consisting of affinoid perfectoid objects U = Spa(B, BT) € Xk prost
whose image in X is contained in an affinoid open Spa(A4, A™) C X. The class of such objects

form a basis for the pro-étale topology by (the proof of) [Sch13a, Proposition 4.8].

Proposition 10.3.0.1. Ler U = Spa(B,B") € X¥

proéty Choose Spa(A, A") C X such that the
image of U in X is contained in Spa(A, A™). Then

1. the natural surjection 6: A;,(BT)[1/p] — B exhibits &P\{j;/k = Bix(B), and the Hodge
filtrations are identified with the ker(0)-adic filtrations;

2. the presheaf defined by sending U to gr"(@a];n/k) is a hypersheaf;

3. the assignment sending U to dR%' B/Al JFil" is independent of the choice of Spa(A, AT), hence
so is the assignment sending U to dRB /4, We denote it as &ﬁ}“/ X
4. assuming X /k is a local complete intersection, then the presheaf assigning U to gri(af\{?;/ )

is a hypersheaf.

Proof. (1) and (3) follows from the same proof of Proposition 9.3.0.1 (1) and (4) respectively.
Now we prove (2). The i-th graded piece of &f{j;“/ .. 1s isomorphic to B(i) by Theorem 10.1.0.9
(with (A, A™) there being (k, Oy)). These are hypersheaves as they are supported in cohomological
degree 0 and satisfy higher acyclicity by [Sch13a, Lemma 4.10].
Lastly we we turn to (4). The graded pieces of (ﬁ?/ > by (2), 1s the same as ch\%?/ 4 for any
choice of A. Notice that, by Theorem 10.1.0.9, the gr’(dR’3 ;/4) has a finite step filtration with graded

2See Appendix for the notion of local complete intersection that we are using here.
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pieces given by (L A/ Lj“/k) ®4 B(i — 7). Since hypersheaf property satisfies two-out-of-three

principle in a triangle, it suffices to show that the assignment sending
Spa(B, B") = U — (LN L)) ®4 B(i — j)

is a hypersheaf. This follows from the fact that ]Li‘“/ . 1s a perfect complex (as X is assumed to be
a local complete intersection over k) and, again, that sending U to B(m) is a hypersheaf for any
m € Z. 0

In particular, Proposition 10.3.0.1 tells us that the presheaves given by

(—~an
dRp ;. /Fil" or
(iﬁ,zn/k or
CTIBLZH/ «/Fil" or

—~an

Spa(B,B") =U € X —

\

are all hypersheaves on X .. (assuming X/k is a local complete intersection for the latter two),
using the fact that the hypersheaf property is preserved under taking limit, so we may unfold them
to get a hypersheaf on X o4

The authors believe that the conclusion of Proposition 10.3.0.1 (4) (or a variant) should still
hold for general rigid spaces instead of only the local complete intersection ones. Hence we ask the

following:

Question 10.3.0.2. Given any rigid space X/, is it true that the presheaf assigning U to gr (&P\{Zn/ )
is always a hypersheaf?

The subtlety is that a pro-étale map of affinoid perfectoid algebras need not be flat.

Now we are ready to define the hypersheaf version of the relative de Rham cohomology.

Definition 10.3.0.3. The Hodge-completed analytic derived de Rham complex of X 06 over k,
denoted by ﬁ%ﬁ‘pm /i 18 defined to be the unfolding of the hypersheaf on X . whose value at
U = Spa(B, BY) € X8 is ARy .

Similarly we define a filtration on dRXproét /i by unfolding the Hodge ﬁltratio\nanon dRp . Since
values of unfolding are computed by derived limits, we see immediately that dR X ot/ is derived

complete with respect to the filtration.

This construction is related to Scholze’s period sheaf IB%IR (see [Sch13a, Definition 6.1.(i1)]) by
the following:
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Proposition 10.3.0.4. On X*

proé

. we have a filtered isomorphism &ﬁzwét e By of hypersheaves.
Consequently, the 0-th cohomology sheaf of Jf{_??pmét /i 18 identified with the sheaf By as filtered

sheaves on X o

Before the proof, we want to mention that under the equivalence D (X, k) = Sh™P (X, k) and its
filtered version (c.f. Subsection 2.0.2), this Proposition implies that the derived de Rham complex

dRx ../ is represented by the ordinary sheaf B, Here the induced filtration on %O(Jﬁiﬁpm /i)
is given by 5—(0(Fil*(TP\{_’i?pmét I1)-

Proof. The first sentence follows from Proposition 10.3.0.1 (1).

Given a hypersheaf F' supported in cohomological degree 0 on a basis of a site S, it also defines
an ordinary sheaf on S (by taking the 0-th cohomology). The unfolding of F' is a hypersheaf in
D=9 and its 0-th cohomological sheaf is the ordinary sheaf one obtains.

In our situation, we have the basis Xpr
are defined as the ordinary sheaf obtained from IB%;R(@}) (and its ker(6)-adic filtrations). Now

oet Of the site X, ¢, and Scholze’s B, (and its filtrations)

previous paragraph and the first statement give us the second statement. [

Definition 10.3.0.5. Let X be a local complete intersection rigid space over k. Then the Hodge-
completed analytic derived de Rham complex of X ,;.¢; over X, denoted by ch\{j?pmét /x> is defined to
be the unfolding of the hypersheaf on XY, s whose value at U = Spa(B, BT) € X . is (ﬁzn/ X

Similarly we define a filtration on cﬁ?pmét /x by unfolding the Hodge filtration on de;n/ x- S0
——~an

dR Xpross/ X is also derived complete with respect to the filtration.

If X is a local complete intersection rigid space over k with embedded codimension c. Then
by Corollary 10.1.0.10 (3), we see that Cﬁzmét/X lives in Sh™P (X .05, DZ¢(k)).
The Poincaré Lemma obtained in the previous section now immediately yields the following:

Theorem 10.3.0.6. Let X be a local complete intersection rigid space over k. Then there is a

—an
functorial strict exact filtration on dR X proer /e WilNESSINgG the following:

—~an — v

an v an - an
dRXproét/k — dRXProét/X = dRX /X ®V?10X Stl(l/ 1( X/k:)) e

proét

If X is further assumed to be smooth over k of equidimension d, then the following Jﬁzmét s

linear sequence
T 15 \ an —1 an Vv
O — dRXproét/k > dRXproét/X — dRXproét/X ®V710X Stl(V ( X/k)) —_— ..

vV —an _
e dR‘Xproét/X Qy-10x Std(y 1<L A IL‘g?/’€>> —0
is strict exact.
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Note that as X /k is assumed to be local complete intersection, these wedge powers of the
analytic cotangent complex are (locally) perfect complexes, hence the completed tensor is the same

as just tensor.

Proof. Since both unfolding and taking gr’ commute with taking limits, the above follows from
unfolding Corollary 10.2.0.3, and the fact that the completed tensor in Corollary 10.2.0.3 is the
same as tensor for local complete intersections X /k.

When X is smooth over k, everything in sight (on the basis of affinoid perfectoids in X5 )
are supported cohomologically in degree 0 with filtrations given by submodules because of The-
orem 10.1.0.9, Corollary 10.1.0.10, and Proposition 10.3.0.1, the strict exact Katz—Oda filtration

gives what we want. [

10.4 Comparing with Scholze’s de Rham period sheaf

In this section we show that when X is smooth, the de Rham sheaf (ﬁi?pmét /x defined above is
related to Scholze’s de Rham period sheaf OB ;. We refer readers to [Sch16, part (3)] for the its
definition. Following notation of loc. cit., let Spa(R;, R:r) be an affinoid perfectoid in X, with
Spa(Ry, R)+ ) an affinoid open in X . Then for any 4, we have maps

R — AR e and gy (RT) = dRRL (o) = dRRY s

which is compatible with maps to R*, here s denotes the residue field of k. The equality above is

deduced from Theorem 9.1.0.4 (1). Therefore we get an induced map

—~an

R Qw(oyAins(RY) — dR;ﬁ/R; — dRp/R,-

Taking the composition map above, inverting p and completing along the kernel of the surjection
onto R (note that cﬁ\%;n/ g, lives in cohomological degree 0 by Corollary 10.1.0.10 (2) and is already

complete with respect to this filtration), we get a natural arrow:
~ A —~an ~ Tan
((Rf@w(,{)Amf(RJ“))[l/p]) — dRg g, = dRp/p,

here we apply Corollary 10.2.0.3 to (Ry, Ry) — (Ri, R) — (R, R™) to see the filtered isomor-
phism above. This arrow is compatible with index ¢, hence after taking colimit, we get the following

w

map of sheaves on X ., (see the discussion before Proposition 10.3.0.1 for the meaning of X ,):

proét

an

. OB+ 1R
f . OBdR ’)(};uroétH dRXproét/X7
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~ ——an
which is compatible with maps to Ox, ., and maps from dRy . =~ B:.

Theorem 10.4.0.1. The map f above induces a filtered isomorphism of sheaves on X ... Hence

proét*

we get that OB is the 0-th cohomology sheaf of the hypersheaf (ﬁ\{i?pmét /x 0N Xproet-

Similar to Proposition 10.3.0.4, under the equivalence D (X, k) = Sh"™P(X, k) and its filtered

version (c.f. Subsection 2.0.2), this Theorem implies that the derived de Rham complex dR Xprocs/ X

is represented by the ordinary sheaf OB};.

Proof. The second sentence follows from the first sentence, due to the same argument in the proof
of the second statement of Proposition 10.3.0.4. So it suffices to show the first statement.

On both sheaves, there are natural filtrations: on OB, we have the ker(6)-adic filtration where
0: OBf, — O Xgr\oé;nand on (ﬁ?pmét /x we have the Hodge filtration with theA first Hodge filtration
being kernel of dRy ./ — Ox,,.,- Since f is compatible with maps to Ox,, ., and the Hodge

filtration is multiplicative, it suffices to show that f induces an isomorphism on their graded pieces.
we have that gr* (OB ) = Symg,  (gr'OBy) by [Schi3a, Proposition

proét

Now locally on X¥

proét?
6.10] and similarly gr*(cﬁi?pmét /x) = Symgxproét (grl(ﬁzmét /x) by Theorem 10.1.0.9 (note that
in characteristic 0 divided powers are the same as symmetric powers). Therefore we have reduced
ourselves to showing that f induces an isomorphism on the first graded pieces. Their first graded
pieces admits a common submodule given by the first graded pieces of gﬁ;npmét Ik B, which is
Ox o (1)-

Now we get the following diagram:

~

OXproét (1) grl OB:{R @Xproét ®0X Q%l

S T

A —=an

OXproét (1) - grldRXproét/X - @Xproét ®0X Qg‘({l

with both rows being short exact (by [Sch13a, Corollary 6.14] and Theorem 10.1.0.9 respectively)
and the left vertical arrow being an isomorphism as f is compatible with the maps from ch\{i?pmét Ik
B, which is why we get the induced arrow g. Moreover f is linear over (ﬁ\{zmét e B, which

implies that g is linear over Ox Therefore it suffices to show that g induces an isomorphism.

proét *

As the statement is étale local, we may assume that
X=T"= Spa(l{<T1i1, s >Tnil>7 Ok<T1i1a cee 7Tnil>)

Denote T7 the pro-finite-étale tower above T" given by adjoining p-power roots of the coordinates
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T;. We have the following diagram

Zp(TEY, SP77Y = 2 (TN &5, 2, (S 7T ) — 2> OBy |n,

7

X ]

j: (o'e) —~ an
Q,(SFP X ! ARy, /x e -

Here the arrow [ is given by sending 7; to X; + S;, and §; is sent to 1 ® [Tf] under «. The
e Doy 1% 18 1® dT5, see the discussion
before [Sch13a, Proposition 6.10]. On the other hand, the element 5(7; —S;) is X}, and the image of
v(X;) in Ox R0, Q3 is also 1®dT; by Example 10.1.0.7, Example 9.1.0.6 and Example 9.1.0.7.

Therefore we get that g(1 ® dT}) = 1 ® dT}, since g is linear over O

element o(T; — S;) is u; € Fil! (’)IB%:{R whose image in O X

proét

and 2% is generated by

proét

dT;’s, we see that g is an isomorphism, hence finishes the proof. [

Remark 10.4.0.2. In the process of the proof above, we also see that under the identification
in Proposition 10.3.0.4 and Theorem 10.4.0.1, the Poincaré sequence obtained in Theorem 10.3.0.6
and the one in Scholze’s paper [Sch13a, Corollary 6.13] matches, c.f. proof of the second statement
of Theorem 9.4.0.1.

Also the Faltings’ extension (see [Sch13a, Corollary 6.14] and Theorem 10.1.0.9), being the
first graded pieces of OB, = %O(ﬁzmét / + ), is matched up. In some sense, our proof above
reduces to identifying the Faltings’ extension, and this is a well-known fact to experts. In fact, this
project was initiated after Bhargav Bhatt explained to us how to get Faltings’ extension from the
analytic cotangent complex L§

proét /X '

10.5 An example

In this complementary section, we would like to compute the Hodge-completed analytic derived
de Rham complex of a perfectoid algebra over a O-dimensional k-affinoid algebra. Surprisingly, the
underlying algebra (forgetting its filtration) one get always lives in cohomological degree 0, which
leads us to the Question 10.5.0.3.

Without loss of generality, let (K, K ) be a perfectoid field over &, containing all p-power roots
of unity, and let A be an artinian local finite k-algebra with residue field being k as well. Let (B, B™)
be a perfectoid affinoid algebra containing (KX, K) and let A — B be a morphism of k-algebras.
Since perfectoid affinoid algebras are reduced, we get a sequence of maps £k -+ A — k — B.

By the above sequence, we get natural filtered k-linear maps:

TR, s ARG, — ARy, and AR, — AR,
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This induces a filtered map:

—an

inln/k Ok 517%21/} — dRp /4

where the filtration on the source comes from the symmetric monoidal structure on DF (k). Since
this map is compatible with the filtration and the target is complete with respect to its filtration, we
get an induced map:

Proposition 10.5.0.1. The map cﬁzn/k®kal\%zr/l A aﬁ;n/ 4 above is a filtered isomorphism.

Proof. Since both are complete with respect to their filtrations, it suffices to show the map induces an
isomorphism on the graded pieces. The graded algebra of both sides are the symmetric algebra (over
B) on their first graded pieces, hence it suffices to check gr! (ﬁ;k@k&fﬁj 4) — grl(af\{a;/ 1)
being an isomorphism. This follows from the decomposition of analytic cotangent complexes

B4 = LE) © (LY, ®a B)

which is deduced from contemplating the sequence k — A — k — B. [

We know that CTEaBn/ » = Bi:(B), aresult of Bhatt tells us the underlying algebra of (TEZI; 4 = A,
explanined below. Since A — £ is a surjection, the analytic cotangent complex agrees with the

classical cotangent complex, hence we have a filtered isomorphism
dRy, 4 — dRg/a.

Now [Bhal2a, Theorem 4.10] implies the underlying algebra CTﬁ,k /A 1s isomorphic to the completion
of A along the surjection A — k. Since A is an artinian local ring, this completion is simply A

itself. Therefore we get a map of the underlying algebras:

Proposition 10.5.0.2. The map B} (B) @y A — (Tf\{aBn/k®k(ﬁ\{Zr/l 4 above is an isomorphism.

Consequently we have an isomorphism
Proof. By definition, we have

AR}y, xRy 4 2= lim lim B, (B)/(€)" @k ARy /Fil™,
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here we have used the (filtered) identification (ﬁ; q = &ﬁk /4 spelled out before this Proposition.

We claim that for any given n, we have an isomorphism
Biu(B)/(€)" @k A= B (B)/(€)" @k dRysa /Fil"™.
Indeed for each ¢ € Z, we have the following short exact sequence:

0 R lim,,, (Bl (B)/(€)" @5 H(dRy 4 /Fil™))

i

Hi (lim,,, (Bl (B)/(€)" @k dRyyja/Fil™)) —— lim,,, (Bix(B)/(€)" @5 Hi(dRya/Fil™))
| /

Since for each m and 4, the vector space H"!(dRy,4/Fil™) is finite dimensional over k, we
see that the inverse system B (B)/(&)" @5 H ! (dRy 4 /Fil™) satisfies Mittag-Leffler condition,

hence the R! lim term vanishes. By [Bhal2a, Theorem 4.10], we have that the inverse system

{H'(dRyya/Fil™)},, is pro-isomorphic to 0 if 7 # 0 and is pro-isomorphic to A (since A is finite

dimensional over k) if 7 = 0, therefore the above short exact sequence becomes

0;4#0

H i (BB @ RPN =9 b e a0
dR B =1

This gives us the claim above.

Now we have

dR 53, xRy = lim(lm Bl (B)/(€)" @k ARy /Fil™) = lim(Bly (B)/(€)" @4 A)

=~ B;R(B) R A

as desired, where the last identification follows from the fact that A is finite over k. O]

If one contemplates the example A = k[e]/(¢?), one sees that AR,/ Fil’ does not live in
cohomological degree 0 alone for any 7 > 2.
As a consequence of the above Proposition, for the X = Spa(A) we have an equality of

w .

presheaves on X5
ARy x 2Bl @ v 'O
ARy, pe/x = Big @k v Ox,

in particular the underlying algebra of &E‘;‘?mét /x pro-étale locally lives in cohomological degree 0.
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Motivated by this computation and results in [Bhal2a], we end this chapter by asking the following:

Question 10.5.0.3. In what generality shall we expect aﬁ?pmét /X | X o, L0 live in cohomological
degree 0?7 And when that happens, can we re-interpret the underlying algebra via some construction
similar to Scholze’s OIB%CTR as in [Sch13a] and [Sch16]?
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APPENDIX 1
Local complete intersections in rigid geometry

In this appendix we make a primitive discussion of local complete intersection morphisms in
rigid geometry. We remark that the results recorded here hold verbatim with %k being a general
complete non-Archimedean field. This appendix is taken from the one in [GL20]

In order to talk about local complete intersections, we need to understand how being of finite

Tor dimension' behaves under base change in rigid geometry.

Lemma 1.0.0.1. Let A and B be two affinoid k-algebras, and A — B a morphism of Tor dimension
m. Let P := A(T\,...,T,) — B be a surjection, then we have

Tor dimp(B) < m + n.

The following proof is suggested to us by Johan de Jong.

Proof. Choose a resolution of B by finite free P-modules
d; di—1 do
.= M, — M;,_,... = My —> B.

Since P is flat over A, we see that M := Coker(d,,) is flat over A as A — B is assumed to be of
Tor dimension m [Stal8, Tag 0653]. Moreover M is finitely generated over P since P is Noetherian.
Now we use [Li19, Lemma 6.3] to see that M/ admits a projective resolution over P of length n.

Therefore we get that 53 has a projective resolution over P of length m + n. [

Lemma 1.0.0.2. Let A and B be two affinoid k-algebras, and A — B a morphism of finite Tor
dimension. Let C' be any affinoid A-algebra, then the base change (in the realm of rigid geometry)
C — B®4C is also of finite Tor dimension.

Proof. Choose a surjection A(Ty,...,T,) — B, which is of finite Tor dimension by Lemma 1.0.0.1.

Then we have a factorization:

1111

C—>C<T1,...,Tn>—>B®A<T1 T,) C<T1,,Tn>gB®AC

'In classical literature such as [Avr99] this corresponds to the notion of having finite flat dimension.
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Since the first arrow is flat and the second arrow, being base change of an arrow of finite Tor dimen-

sion, is of finite Tor dimension, we conclude that the composition is of finite Tor dimension [Stal8,

Tag 066]]. [
Proposition 1.0.0.3. Let A — B a morphism of k-affinoid algebras. Then the following are
equivalent:

1. any surjection A(T\, ..., T,) — B is a local complete intersection;

2. there exists a surjection A(T\, ..., T,) — B which is a local complete intersection;

3. A — B is of finite Tor dimension and the analytic cotangent complex IL?B“/ 4 1S a perfect

B-complex.

Moreover, any of these three equivalent conditions implies that L%n/ 4 1S a perfect complex with Tor

amplitude in [—1,0].

Proof. It is easy to see that (1) implies (2).

To see (2) implies (3), first of all A(T},...,T,) — B is alocal complete intersection implies
that it is of finite Tor dimension. Since A — A(T3,...,T,) is flat, we see that A — B is also finite
Tor dimension by [Stal8, Tag 0653]. Next we look at the triangle A — A(T},...,T,) — B, which

gives rise to a triangle of analytic cotangent complexes:

Now Theorem 10.1.0.2 (3) gives that the first term is a perfect complex with Tor amplitude in [0, 0],
while condition (2) and Theorem 10.1.0.2.(4) implies that the third term is a perfect complex with
Tor amplitude in [—1, —1], hence we see that (2) implies (3) and gives the last sentence as well.
Lastly we need to show that (3) implies (1). To that end we apply Avramov’s solution of
Quillen’s conjecture [Avr99]. As A — B is of finite Tor dimension, we see that any surjection
A(Ty,...,T,) — B has finite Tor dimension by Lemma 1.0.0.1. The previous paragraph shows
that LaBn/ 4 being a perfect complex is equivalent to the classical cotangent complex Lz, a(7, ...,
being a perfect complex. Now we use Avramov’s result [Avr99, Theorem 1.4] to conclude that

A(Ty,...,T,) — Bis alocal complete intersection. O

Definition 1.0.0.4. Let A — B be a morphism of k-affinoid algebras. The morphism A — B of
k-affinoid algebras is called a local complete intersection if one of the three equivalent conditions
in Proposition 1.0.0.3 is satisfied.

LetY — X be a morphism of rigid spaces over k. Then this morphism is called alocal complete
intersection if for any pair of affinoid domains U and V' in X and Y, such that the image of V' is

contained in U, the induced map of k-affinoid algebras is a local complete intersection.
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We leave it as an exercise (using Theorem 10.1.0.2) that a morphism being a local complete
intersection may be checked locally on the source and target. We caution readers that there is a
notion of local complete intersection morphism between Noetherian rings, while the notion we
define here should (clearly) only be considered in the situation of rigid geometry. These two notions
agree when the morphism considered is a surjection. We hope this slight abuse of notion will
not cause any confusion. But as a sanity check, let us show here that this notion matches the
corresponding notion in classical algebraic geometry under rigid-analytification. The following is

suggested to us by David Hansen.

Proposition 1.0.0.5. Let f: X — Y be a morphism of schemes locally of finite type over a
k-affinoid algebra A with rigid-analytification f*: X* — Y?". Then f is a local complete
intersection (in the classical sense) if and only if f*" is a local complete intersection (in the sense
of Definition 1.0.0.4).

Proof. We first reduce to the case where both of X and Y are affine. Then we may check this after
fiber product Y with an affine space so that f is a closed embedding. In this situation, we have

identification of ringed sites X" = X Xy Y®" and an identification of cotangent complexes:
[/*LX/Y ~ nglan/yanj

where : X* — X is the natural map of ringed sites.

Now we use the fact that classical Tate points on X" is in bijection with closed points on X,
and for any such point z, the map «*: Ox, — Oxan, of local rings is faithfully flat. Therefore
we can check LLx/y being perfect by pulling back along ¢, hence LLx/y is perfect if and only if
Lan Jyan is perfect, and this finishes the proof. [

Next we turn to understand the localization of analytic cotangent complexes for a local complete
intersection morphism.

Let us introduce some notions:

Definition 1.0.0.6. Let A — B be a morphism of k-affinoid algebras. Let m C B be a maximal
ideal, the embedded dimension of B/A at m is defined to be the following

diHlB/A7m = dim,{(m) (QaBn/A XpB B/m)

Let n be the preimage of m in A (which is also a maximal ideal), we define the embedded

codimension of B/A atm o be
dimp)am + dim(A,) — dim(By).
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The embedded codimension of B/A is the supremum of that at all maximal ideals m C B.

Proposition 1.0.0.7. Let A — B be a local complete intersection morphism of k-affinoid algebras.

Then at any maximal ideal m C B, there is a presentation of the analytic cotangent complex
L%H/A @p By ~ [B\?C(m) N Bgd(m)}

where c(m) is the embedded codimension of B/A at m and d(m) is the embedded dimension of
B/A at m. Here B g put in degree (.

In particular the Tor amplitude of LSymiL%n/ 4 I8 always in [—min{c, i}, 0] where c is the
embedded codimension of B/A.

Proof. We may always replace B by a rational domain containing the point m (viewed as a
classical Tate point on the associated adic space), so we can assume there are power bounded
elements f1,. .., fym) whose differentials generate the stalk of QaB“/ 4, at m. Thus we have a map
A= A(Th, ..., Tym)) — B which is unramified at m, see [Hub96, Section 1.6]. By Proposition
1.6.8 of loc. cit. we can factortize the map A’ — B as A’ I ¢ % B where h is étale and g is
surjective.

One checks that the étaleness of h guarantees that the surjection C' %> B has finite Tor dimension.

Moreover Theorem 10.1.0.2 implies that L.z, is a perfect complex because of the triangle

Hence C' — B is a surjective local complete intersection. Hence the kernel of C' — B around m is
generated by a length c(m) regular sequence. This in turn implies that Lg,c ®p Bpn =~ BEem™) 1],
which together with the triangle above gives the local presentation we want in the statement.

The statement concerning Tor amplitude can be checked at every maximal ideal which, by our
presentation, follows from the formula LSym’(C[1]) ~ L A* (O)][i], see [11171, V.4.3.4]. O
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