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Abstract  

 

The occurrence of periprosthetic joint infections (PPJI), a major complication of joint 

arthroplasty, is rising. Current treatment involves the use of antibiotic-loaded bone cement 

(ALBC) intraoperatively and postoperative intravenous drug delivery. Amphiphilic block 

copolymers can be a localized drug delivery system for prophylactic and supplementary 

treatment of PPJI when loaded with antibiotics to overcome the limitations of ALBC and 

systemic drug delivery. In this thesis, current PPJI treatments were evaluated, and the structural 

evolution and bacterial growth inhibition characteristics of antibiotic-loaded Polyoxyethylene- 

polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) triblock copolymers were investigated.  

 A number of clinical studies were examined to identify those in which controlled drug 

release or mechanical behavioral assessments were conducted on ALBC. Anecdotal evidence 

suggests that ALBC can help eradicate or delay the onset of infections, but quantifying the 

response functionality is challenging. The ALBC study focused on vancomycin (VAN)—which 

is more commonly proscribed for staphylococcal osteomyelitis—in part due to its higher potency 

relative to gentamycin. The studies indicate that large fractions (>99%) of loaded VAN are 

sequestered in the bulk matrix of cement and are not labile once the cement has set due to high 

molecular weight (1449.3 g/mole) and glassy behavior. VAN fluence measurements ranged from 

1 to 283 μg/cm2hr. The initial strength of the samples ranged from 52 to 96 MPa. Efforts to raise 

the elution rate by increasing drug loading reduced cement strength. Smaller drug molecules and 

more gel-like immobilization matrices with lower glass transition temperatures offered higher 

potential for larger and more comprehensive drug elution. 
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Differential scanning calorimetry was used to probe the thermophysical properties of 

25% F127 gels loaded with ciprofloxacin (CIPRO) (0.05-0.2%), VAN (0.8-5%), gentamicin 

(GM) (0.2-0.8%), and cefepime (CEFE) (2-10%). CEFE had the greatest effect on Tmicelle with a 

range of ~3-8 ºC with respect to decreasing concentration. GM showed the smallest effect with a 

range of 8.5-10.5 ºC. CIPRO had an invariant effect over the concentrations tested, but decreased 

Tmicelle by ~2.5 ºC. CIPRO also showed an invariant effect on the endotherm energy between 

concentrations after the initial decrease to 3.4 J*mol-1. CEFE showed an athermal micellization 

process as the concentration of CEFE increased. Additionally, GM and VAN showed an 

invariant effect on the endotherm energy. Dynamic mechanical analysis of 25% F127 loaded 

with CIPRO were investigated to probe the kinetics of the gel transition, which occurred up to 7 

ºC lower than the neat sample. 

 Cell culture assays were used to probe whether antibiotic-loaded amphiphilic gels act as 

a functional antimicrobial. Additionally, modification of the traditional bacterial plate culture 

assay by introducing a void within the agar allowed insight on the properties of an injectable 

plug. Zone of inhibition (ZoI) and bacterial growth inhibition were used as qualitative and 

quantitative assessments. VAN and GM loaded amphiphilic gels had a range of 3.00-3.90 cm 

and 3.50-5.70 cm, respectively. Bacterial growth inhibition curves showed that VAN decreased 

maximum optical density (OD) by 70-80%. Gompertz growth model was used to summarize the 

OD curves and determine the growth rates and lag times for 0-5% VAN.  

This dissertation yielded a characterization of the changes in thermophysical properties 

and insight on elution and antimicrobial activity of antibiotic-loaded F127 gels. A greater 

understanding of the interactions between amphiphilic copolymer solutions and dissolved solutes 

was achieved to probe their use as a localize drug delivery vehicle. 
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Chapter 1 Introduction 

 

 

1.1 Overview/Motivation 

These days most medicines are administered orally in the form of mass manufactured 

capsules or tablets. Some drugs are produced in an array of steps that start with research and 

development (R&D) and end with a final pill, while others, such as solubilized ampoules, 

injectables, compound mixtures, and compound dispersions, are administered via other means. 

Current drug manufacturing practices are costly and can take years to progress from beginning to 

final stages. However, recent work by The Human Genome Project has resulted in a push to 

design individualized pharmaceuticals, which require expedited development periods when 

treating diseases like cancer due to shorter patient lifespans.  

The ideal drug delivery system should be an inert system that is biocompatible, 

mechanically sound, comfortable, durable, simple to use, low cost, and easy to fabricate. As 

such, research is needed to (1) help change the way common pharmaceuticals are produced, (2) 

process individualized drug development to reduce the amount of time and money spent on 

developing medicines, and (3) increase the number of patients who can be treated. The key 

challenge to developing the ideal drug delivery system is aqueous drug solubility. Many drugs 

since they are organic molecules are fat soluble; however, they also need to be bioactive in a 

system that is largely ionic and aqueous. If the aqueous solubility of a drug is low, causing it to 

be non-functional at its solubility limit, then other methods should be employed to solubilize the 

drug while maintaining its activity. 
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 Hydrogels are three-dimensional cross-linked networks of water-soluble polymers, and 

they can be formed from natural or synthetic sources. They can be formulated into a variety of 

physical forms due to their high water content, mechanical compliance, and biocompatibility [1]. 

Hydrogels can be physically or chemically cross-linked, which are two methods used to fine-tune 

their mechanical properties. The porous 3D structure of hydrogels resembles that of living tissue, 

which allows these gels to have many uses as cell-immobilized tissue engineered matrices, 

biodegradable structures in regenerative medicine, and barrier materials such as hydrophilic 

absorbent wound dressings, among others [2]. Hydrogels are also used in sustained-release drug 

delivery systems where pharmaceuticals can be more soluble when encapsulated into hydrogel 

than when dissolved in saline. 

 The Love research group has worked on several different forms of hydrogel structures 

including those based on amphiphilic polyether-based copolymer micelles, those based on 

alginates, and those created from photopolymerized resins (e.g., methacrylate grafted hydrogels 

based on hyaluronic acid, reactive dimethacrylates and diacrylates). The group’s focus has been 

on understanding the structural evolution of these gels and creating kinetic models to describe 

gel formation and gel performance. 

The goal of this dissertation was to construct porous 3-D biocompatible architectures that 

would facilitate the formations of micelles within hydrogels. In particular, I engineered 

hydrogels designed to keep drugs contained within these structures until they reached localized 

delivery at an active treatment site. At the active site, the drug can then elute into the system to 

prevent whatever infection is present. I addressed this goal by focusing on functional 

characterization and process development to make better use of effective—but poorly 

solubilized—pharmaceuticals.  
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1.2 Periprosthetic Joint Infection 

Targeted drug delivery, also called smart drug delivery, affects only a small, specified 

area rather than exposing the entire body. The goal of this delivery approach is to prolong, 

localize, and maintain a protected drug interaction with the diseased tissue or bone, as in the case 

of osteomyelitis and periprosthetic joint infections. Periprosthetic joint infection (PPJI) is one of 

the major challenges currently faced in orthopedic surgery [3–7]. Yearly, the complications and 

infections are on a rise after joint arthroplasty procedures, as well as the cost associated and 

treatment time [5]. The current method of treatment involves arthroplasty implant resection, 

thorough surgical debridement of synovial tissue, and a period of 6 to 8 weeks of intravenous 

(IV) antibiotic therapy. For IV therapy to be successful, the area needs to be highly vascularized 

to maintain the local antibiotic dose and to maintain a concentration of drug above the minimum 

inhibitory concentration (MIC). A current treatment protocol for PPJI involves the use of 

antibiotic-loaded bone cements.  

There are commercial formulations of certain drugs—some of which have been 

successful—that formulate at specific concentrations into bone cement. However, the dosage or 

type of the antibiotics in these premade antibiotic bone cements are often insufficient for the 

treatment of the infections. For example, most premade antibiotic cement combinations include 

aminoglycosides, such as gentamicin or tobramycin, as 1 g per one bag of cement. Most 

osteomyelitis or periprosthetic infections require antibiotics that have stronger gram positives 

coverage, such as cephalosporins or vancomycin, with higher dosages (3-4 g per bag). The 

premade antibiotic cement combinations are generally inadequate for the treatment of 

osteomyelitis or periprosthetic joint infection. The antibiotic release from antibiotic cement 

combination is also unpredictable. Another problem is insufficient blood supply to the infection 
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area due to additional harmful conditions such as arteriosclerosis, diabetes, or microvascular 

thrombi. There is a need to consider new paradigms and quantitative assessment tools to 

optimize drug/material combinations that offer more relief in addressing PPJI and other deep 

bone infections.  

1.2.1 Challenges in PPJI 

A challenge in infection treatment is ensuring that the drug therapy ends up in the right 

place and remains effective to treat for an adequate amount of time to eradicate the infection. 

Current PPJI treatment protocols rely on systemic or local drug administration routes. The choice 

of either route is influenced by many factors, including convenience, patient status 

(stable/unstable), nature of drugs used for treatment (e.g., some drugs, like insulin, are only 

effective by one route), age, and gastric pH. Local drug delivery is the simplest administration 

route because the drug is delivered and localized at the active site [8]. In comparison, systemic 

administration has two routes for drug absorption, and there are two options for delivery, which 

are shown in Figure 1.1. Enteral routes involve drug absorption through the gastrointestinal tract 

and parenteral routes are routes around the gastrointestinal tract [8]. Systemic systems are more 

commonly used due to the ease of use; however, systemic delivery may result in suboptimal drug 

concentration and may be ineffective in treatment [9]. Systemic drug delivery systems based on 

oral ingestion or IV spike introduction often result in the concentration of the drug to peak, 

plateau, or decrease depending on the pharmacokinetic (PK) and pharmacodynamics (PD) 

observed.  
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Figure 1.1 Some commons routes and methods for drug administration. Injections can be parenteral or subcutaneous, etc. Some 

routes, like enteral (not listed), overlap. For example, oral and a feeding tube are both types of enteral. Additionally, vaginal 

could be local (e.g., cream for yeast infection) or systemic (e.g., estradiol tablets for menopause).   

 

PD can be described as what a drug does to the body and PK can be described as what the 

body does to a drug. PD/PK is the study of effects of drugs on the body and the movement of 

drugs into, though, and out of the body. The two help explain a drug’s effects on the body 

through the relationship between dose and response. Drug effects can be viewed as a function of 

dose and time, where dose and potency simultaneously increase, reaching a maximum efficacy 

overtime. Drug dosing guidelines take into consideration PD and PK so that antibiotic dosing can 

be personalized to ensure bacterial death. PD also involves the pathogen, where the susceptibility 

of a pathogen to antibiotic killing/inhibition varies. The concentration of a drug at the site of 

infection determines the drug’s effect. For example, the minimum concentration of a drug 

needed to inhibit bacterial growth is referred to as minimum inhibitory concentration (MIC), 

which is a PD parameter. In systemic drug delivery, a maximum concentration needs to be 

maintained in the blood so that the local site is above MIC. Contrarily, local delivery requires a 

lower concentration of drug to maintain MIC. 
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Drug solubility plays an important role in both drug delivery routes. When drugs enter 

the body via either route, they can be effectively absorbed and used for treatment at the active 

site. Some drugs are dispersed in their salt formation to improve solubility and dissolution and/or 

are packaged with other additive to help improve their stability, such as dextrose and saline 

[10,11]. When delivering antibiotics, often a systematic approach is taken by delivering drug via 

intravenous delivery (IV) [12]. Through the IV administration route, the circulatory system of 

the entire body is affected. In addition, delivery using IV often causes alteration of the natural 

microbiome depending on its susceptibility to the antibiotic used. 

1.2.2 Controlled Drug Delivery as an Alternative 

Controlled drug delivery allows the delivery of a drug at a pre-determined rate, locally or 

systemically, for a specific period and integrates drug-encapsulating devices that allow the 

pharmaceuticals to be released at set rates for delivery times ranging from days, months, or 

years. Amphiphilic copolymers, such as those from Polyoxyethylene-polyoxypropylene-

polyoxyethylene (PEO-PPO-PEO) triblock copolymers, can form micelles and encapsulate both 

hydrophobic and hydrophilic drugs, thus increasing solubility and facilitating targeted delivery. 

Amphiphilic copolymers are also comprised of  a controlled release mechanism. 

1.2.2.a Amphiphilic copolymer gels for localized treatment 

I aimed in this dissertation to investigate the use of an antibiotic-gel drug delivery system 

that undergoes colloidal crystallization to study the antibiotic release from the crystalized gel 

form. This drug delivery system can be optimized to perform without the use of intravenous 

catheters by introducing a localized injection to self-assembly into a soft gel in vivo as depicted 

in Figure 1.2. A localized injection allows for free range of joint motion because the gel is soft 

and allows the affected area to be loaded with a lower concentration of antibiotic for effective 
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treatment. Compared to ALBC, localized injection makes it easier to achieve MIC and does not 

require as high of a concentration as an intravenous system that would negatively affect other 

systems in the body. These effects can include alterations in the microbiome (e.g., gut, skin, oral, 

vaginal), opportunistic infections (difficile), an increase potential for development of antibiotic 

resistance, and off-target effects of antibiotics (renal and hepatic toxicity, allergic reactions, etc.). 

If additional doses are needed, a physician or mid-level provider with expertise in the field can 

administer an injection.  

 

 

Figure 1.2 Illustration of localized injection of amphiphilic copolymer. The injection can be delivered in two locations (A) into 

the bone marrow canal (B) into the joint space.
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Chapter 2 Meta-Analysis of Bone Cement 

 

 

2.1 Introduction 

Methacrylate-based powder/liquid bone cements have revolutionized orthopedic 

treatment and have long been part of clinical practice linked with total joint arthroplasty 

procedures and in vertebral compression fracture stabilization [13–16]. Co-formulating bone 

cements with antibiotics and other drugs has also allowed for their use as passive drug delivery 

systems. The use of these systems has resolved infections, albeit without standards on either the 

amount of antibiotic in the cement or the mixing and insertion conditions [17]. Some commercial 

antibiotic-loaded cements are available, but only in specific concentrations. As a result, surgeons 

must formulate their own mixtures in the operating room if the desired antibiotic/cement 

combination is not available.  

When co-formulating antibiotics within bone cements, there are instances where the 

antibiotic interferes with cement performance. First, it is possible that the antibiotic could react 

with the radicals and lead to a slower polymerization rate [18–20]. Second, the antibiotic could 

plasticize the cement thereby softening it, reducing its glass transition temperature, and 

increasing its viscoelastic response. Lastly, as the antibiotic diffuses through the matrix, voids 

and pores could form that could coalesce resulting in lower cement strength the longer it is 

installed. These viscoelastic and structural changes are more pronounced at higher mass loadings 

of antibiotics. The cement is likely weaker with increasing drug concentration and will likely 
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worsen with immersion time in vivo, although not every drug infused cement mixture has a 

strength requirement.   

There are published clinical studies in which antibiotic-loaded bone cement (ALBC) 

spacers have released sufficient amounts of antibiotic to contain or eradicate raging infections 

often in poorly vascularized and other infection prone local regions in vivo [7,21]. The inclusion 

of antibiotics in the cement allows the cement to be both a controlled drug release system and 

structural stabilizer. Studies using commercial formulations of gentamicin- (GM) loaded cements 

and off-label uses of GM, tobramycin (TM), vancomycin (VAN), and combinations thereof, 

among others, have shown success [6,7,16,8–15]. In terms of joint infections, the preferred 

protocol has used VAN as the pathogens found in these infections have commonly shown 

methicillin resistance, and VAN has proven effective [30]. More generally, the choice of 

antibiotic is determined by a clinical assessment of the infection before identifying a treatment, 

and combination treatments are often also prescribed. It is hard to argue with clinical outcomes, 

but the size, virulence, and type of infection require decisions about (a) spacer location and 

shape, (b) the antibiotic type, (c) loading concentration, and (d) drug distribution in the cement; 

all which affect efficacy. MIC is a regulatory standard with respect to antibiotics and 

corresponding pathogens; however, there is a need to determine the effective dose of the 

antibiotic administrated to achieve concentrations above MIC. Relatedly, the protocols for 

performing such assays require an assessment of the antibiotic distribution in the cement.   

2.1.1 Controlled Release from Antibiotic-Loaded Bone Cements (ALBCs)   

An integral feature of antibiotic-loaded cements is localized antibiotic release to eradicate 

a nearby infection. Higher drug mobility (diffusivity) and higher antibiotic concentration 

correlate with a higher overall flux [22-25]. It is plausible that surface versus bulk effects are 
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important if antibiotics are not bioavailable deep in the bone cement. The cement could be filled 

with higher levels of antibiotic, but much of it could remain sequestered.  

In quantitatively probing cement-based antibiotic mass transfer, several features need to 

be considered. For a specific mass of polymerized antibiotic-infused cement, the dimensions of 

the specimen regulate the surface area presented for mass transfer to occur. Mass transfer from a 

cube is different from mass transfer from a sphere of the same mass due to surface area. The time 

element also needs consideration. If permeability is mostly derived from the surfaces, then the 

mass transfer of antibiotic decreases as they are depleted relative to the bulk. The rate of mass 

transfer of drug release with time follows from Mircioiu et al. [32] as shown in Equation 2.1,   

𝑉(𝑡) = 𝐽(𝑡)𝐴(𝑡) Equation 2.1 

where V is the drug flow rate (mass/time) from the cement into the medium, J is a time 

dependent mass flux, and A(t) is the surface area of the cement. The surface area can be dynamic 

as well, particularly for dissolving matrices. For bone cements, the dimensions are invariant. The 

total dose, D released [32], is identified in Equation 2.2.  

𝐷 = 𝐴 ∗ ∫ 𝐽(𝑡)𝑑𝑡

∞

0

 Equation 2.2 

Embedded in the determination of a drug’s flux is (a) its size, (b) its relative permeability within 

the polymer matrix, (c) the distribution within both the cement and the surrounding medium, and 

(d) the presence of any pores or cracks in the cement allowing drug leakage.  

Smaller antibiotic molecules might have higher molecular mobility as compared to large, 

bulkier molecules migrating through the cement. The molecular mobility of the cement is 

regulated by the glass transition temperature of the cement that is typically higher than body 

temperature. Comparing antibiotic size, vancomycin (MW = 1485 g/mole) might be less mobile 

than gentamycin (MS = 478 g/mole) within the cement [33–35].  



 11 

As shown in Equation 2.3, if X is the mass of antibiotic in the cement, a relative mass 

transfer efficiency, E, is defined as,  

𝐸 =
𝐷

𝑋
 Equation 2.3 

where E represents the ratio of total drug conveyed (D) relative to what’s formulated (X) into the 

cement. The antibiotic release from gentamicin loaded at 1 g in 40 g of cement (a 2.5% loading) 

might not have the same efficiency as at 10% loading.   

Figure 2.1 represents an idealized response of antibiotic elution exposed to an inert 

receiver solution. The antibiotic-loaded bone cement sample has volume, V, a corresponding 

surface area, SA, and loaded at fractional antibiotic mass/cement mass ratio. The receiver 

solution collects dispersed antibiotic either from its surface or from bulk diffusion from the 

ALBC.   

 

Figure 2.1 Illustration of antibiotic release from a drug-eluting bone cement (Red corresponds to antibiotic elution out and grey 

to the remaining voids in the cement). When the ALBC is introduced, small molecule antibiotics percolate from the cement 

surface and convey into the surrounding medium. While release can come from crevices and cracks on the ALBC surface, most 

of the antibiotic is sequestered in the bulk of the cement. 
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Figure 2.2 This shows idealized dynamic drug elution from an ALBC. The rise in the concentration in the tissue is regulated by 

the antibiotic release. A burst release corresponds to a steeper slope of initial drug release. The goal is to release enough 

antibiotic (Zone 1) to overcome the minimum inhibitory concentration (MIC). In a real tissue, the antibiotic concentration is also 

reduced by dispersion and metabolism. At the peak, the release is balanced by metabolism and dispersion. In Zone 2, the 

exhaustion of the ALBC release reduces local drug availability.     

 

Regardless of the sample dimensions, there is a threshold dose to eradicate an infection, 

referenced as a minimum inhibitory concentration (MIC) [36–38] as shown in Figure 2.2. 

Engineering the dimensions of the plug can optimize the surface area/volume ratio for 

appropriate drug dosing. Ideally, a constant antibiotic flux is achieved overtime to account for the 

balance between release and metabolism.  

The ideal flux profile releases enough drug above the MIC long enough to eradicate 

infection. The antibiotic release conceptually can be one of several dynamic responses as shown 

in Figure 2.3. The antibiotic could release as a burst (the red dashed curve), with further release 

blocked by the cement structure. If the antibiotic is permeable in the cement, then diffusion-

related dosing is achievable (the green solid line). It is also possible that a soluble shell allows 

for a delayed release resulting in an induction time for core-level release (blue dotted curve). The 
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outer shell layer can be made up of a material susceptible to physical and/or chemical 

degradation. Once the outer shell erodes, the drug in the core can release.  

Factors that regulate controlled release antibiotic flux include the drug size; the glass 

transition temperature of the cement; the temperature of the release response; and the presence of 

holes, cracks, and other surface asperities [3,39–41]. For example, Masri et al. correlated the 

surface area and elution of tobramycin from bone cement blocks [42]. They also showed that 

increased roughness raised TM release [42].  

Many efforts have assessed infection clearance by ALBCs [6,15,43–45]. Other studies 

have probed how drug concentration, mixing quality, and polymerization conditions affect drug 

release [14,29,46,47]. The current study compiles strength and permeability assessments based 

on prior published work and derives prevailing conclusions based on the results.   

 

  

Figure 2.3 Shows three proposed mass release (V(t)) mechanisms. One is where there is an initial rapid “burst” where most drug 

is released rapidly (red dashed curve). It is also possible that the flux is constant, (green solid line) or a delayed core-shell release 

that is followed by a burst as cracks form (blue dotted curve). 
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2.1.2 Orthopaedic Infection Treatment  

As the number of orthopaedic surgeries has risen, so has the number of infections 

[4,6,13]. The rate of infection in hip and shoulder is <1%, ~2% for knee replacement, and 2-10% 

for the elbow [6]. These surgeries are open procedures where a large incision allows the surgeon 

space to operate. Size of the incision is important for the infection, but the most important issue 

with arthroplasty is the foreign material in the body, which increases the possibility for infection. 

Bacteria can enter the blood stream and sit on the foreign material, which does not have blood 

flow. Then bacteria begins to grow and multiply creating biofilm and causing infection. Most 

arthroplasty infections develop from bacterial growth and are hematogenous. 

PPJI is one of the most common reasons for revision surgery, accounting for ~15% of hip 

and 25% of knee total joint revisions [4]. Currently, two approaches exist for treating joint 

infections: incision and drainage (I & D), which occurs in a single step, and a more involved 

two-step procedure that includes (a) resection of all the foreign material including the 

arthroplasty implants, (b) infection control via systemic and local antibiotic therapy, and (c) 

revision surgery to place the new implants after infection eradication. Infections occur at various 

time points perioperatively and are classified as early (0 to 2 months), delayed (3 to 24 months), 

or late (any time after 24 months). I & D can be completed with or without exchange of the 

hardware, and is more conservative and traditional among PPJI options with only 50% success 

rate [6]. When infections are found early, bacterial biofilm formation is incomplete on the 

prosthetic implant and a thorough I & D can resolve joint infections. When infections are found 

later, biofilm formation is more complete, and treatment requires hardware removal. New 

paradigms and quantitative assessment tools are needed to optimize drug/material combinations 

that address PPJI [4,6,15,44,45,48].   
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Orthopaedic-related infections involve several common pathogens including 

Staphylococcus aureus (Gram-positive) and Enterobacteria (Gram-negative) [15]. Once 

pathogens are identified, a corresponding antibiotic therapy is prescribed. For example, 

vancomycin and cephalosporins inhibit growth of gram-positive bacteria and clindamycin is 

more effective for both Gram-positive and Gram-negative bacteria [15]. However, more 

antibiotic-resistant strains of bacteria require other agents for effective eradication [24,44,49,50].  

There are many elements relating to exploring new modalities in treating joint infection, 

including what antibiotics are available, what loading level is needed, and what type of release 

mechanism is used. This meta-analysis compares studies where ALBCs are loaded with several 

antibiotics commonly used to eradicate periprosthetic joint infection (PPJI) both in terms of 

potential drug release and residual strength of the spacer as it releases antibiotic.  

The content covered in this chapter was submitted and published in Materials Science and 

Engineering: C [51]. 

2.2 Research Paper Selection Criteria and Protocol 

Papers were identified that evaluated quantifiable measurements of dynamic drug elution 

combined with strength assessments by tension, compression, or shear for antibiotic/bone cement 

combinations. The primary drug of interest was vancomycin given its common use for joint 

infections, although to gauge the effect of drug size, data from other papers were used that 

showed similar elution results using gentamicin, a much smaller drug. Papers using a clinical 

infection grading of in vivo studies were omitted in addition to those focused on combination 

therapies including multiple antibiotics to enhance eradication.  

The elution and compressive strength data were extracted from Bitsch et al. [25], Lee et 

al. [52], Bishop et al. [22], and Galvez-Lopez et al. [18]. Next, determinations of surface area, 
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flux, and mass release rates were made. The goal was to resolve whether differences in antibiotic 

release depended on formulation, concentration, or other observables. When comparing to 

mechanical strength, links between formulation, flux, and strength were also made. Four articles 

contained relevant data that could be used for vancomycin, and three more were linked with 

gentamicin to assess strength. The resulting papers and their formulations are showcased in 

Table 2.1.  

 

Research 

Group 

Drug 

Tradename 

Cement 

Type 

Surface 

Area 

Drug 

Loading 

Cement 

Mass 

Elution Sample 

Geometry 

Bitsch  

et al. 

Vancomycin 

Hydrochloride 

(VAN-HCl) Copal 

Spacem 

17.66 

cm2 

2 g, 4g, 6 

g 
60 Disk 

Aminoglycoside 

Gentamicin 

Sulphate (AGS) 

Lee et al. 

Vanco Simplex P 9.42 cm2 1 g, 4 g 60 Cylinder 

Lyo-Vanco Palacos R 9.42 cm2 1 g, 4 g 60 Cylinder 

Sterile CMW 9.42 cm2 1 g, 4 g 60 Cylinder 

Bishop  

et al. 

VAN-HCl Palacos R 0.84 cm2 0.50 g,  

1 g, 2 g 

60 Disk 

Galvez-

Lopez  

et al. 

VAN 

Depuy 
0.785 

cm2 
1 g, 2 g 10 Spherical Beads Gentamicin 

(GM) 

De Belt 

et al. 

Gentamicin 

Sulphate (GS) 

Palacos R 
1.17 cm2 8.3*10-4 g 

0.1 Disk 
CMW3 1.6*10-3 g 

 

Table 2.1 Highlights the details on the construction of elution specimens. Included are the suppliers of vancomycin, gentamicin, 

loading amounts, and cement types used. All elution studies were done at 37 C [18,22,25,52,53]. 

 

2.3 Antibiotic Release Profiles  

From the studies with published relevant results, dynamic dose was extracted and 

presented in Figure 2.4 to showcase vancomycin elution overtime. For all drug/matrix 

combinations, vancomycin initially has a comparatively large release from the cement. Within 
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hours, there is a decay of vancomycin release into the receiver solution. An example dataset is 

shown in Figure 2.4 produced by Lee et al.; this ALBC combination conveyed only 0.15% (E = 

0.0015) of the total fraction of vancomycin [52]. The initial burst of vancomycin is attributed to 

antibiotic adsorbed on or near the cement surface [22,52,54–56].   

 
Figure 2.4 This representative graph shows the efficiency of mass transfer of VAN over 400 hours of drug release. Most release 

occurs over the first 20 hours and plateaus at a dose not much larger than the burst release [52]. This data was extracted from 

datasets captured from Lee et al. [52]. 

 

A typical depletion of antibiotic profile from ALBC results in a terminal plateau dose 

over the time scale of hours to days, shown in Figure 2.4. What is remarkable is the small total 

release of antibiotic overall. When the dose data is represented as a dynamic flux (see Figure 

2.5), even after 10 days of release, the residual flux is ~10% of the peak flux. Whether the 

release rate is sufficient to be above the minimum inhibitor concentration in the surrounding 

medium is a challenge due to the difficulty in determining the efficacy of ALBC in patient 

specific infections without a standardized assay to address biofilm eradiation and other localized 

infections.  
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Figure 2.5 Selected data from 1G VAN ALBC elution studies comparing dynamic flux, J(t) [18,22,52]. When the spacer is 

introduced into the blank receiver solution at time zero. The first measurement always shows the peak release, followed by a 

sharp decay [18,22,52]. 

 

Loading the antibiotic at higher concentrations results in more antibiotic on the outer 

surfaces of the cement when implanted and higher total dose. The flux datasets were modeled as 

a two-phase exponential decay model based upon the sum of releases coming from two different 

regions in the cement as shown in Equation 2.4. The first decay represents the surface-bound 

vancomycin, and the subsequent drug release is lumped into the more retarded, sub-surface 

release influenced by voids created by the first decay.   

𝐽(𝑡) = 𝐽1𝑒1
−𝑡

𝜏1⁄ + 𝐽2𝑒2
−𝑡

𝜏2⁄  Equation 2.4 

Here, J1 is the flux tied to the initial burst coming from the outer surfaces, J2 is linked with drug 

release in the sub-surface, and 1 and 2 are the relaxation constants linked with each response. 

Figure 2.6 shows the vancomycin release decay for one representative dataset.  
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Figure 2.6 Representative dynamic flux measurements vs time for 1G Vancomycin in Palacos R cement used by the Bishop et al. 

group (datapoints) [22]. The curve represents a two-phase exponential decay based on Equation 2.4 (curve). The model 

adequately represents the changes in dynamic flux that arise with elution time. Initially, there is a large burst release. As the burst 

dissipates, a non-zero release is evident. 

 

2.3.1 Burst Release Assessment  

Table 2.2 summarizes average vancomycin release including the peak flux incorporating 

the sample geometry, total dose, and efficiency over the time frame of the elution experiments.  

When the efficiency of mass transfer is determined, drug release is very modest, at most 0.8% of 

the loaded drug eluted from the cement.   

 

Paper 
Cement 

Type 

Vancomycin 

Type & 

Content 

Avg Max 

Flux, J(t) 

(
𝝁𝒈

𝒄𝒎𝟐𝒉𝒓
) 

Avg Total 

Dose, D(t) 

(𝝁𝒈) 

Avg 

Efficiency 

of Mass 

Transfer 

# 

Bitsch 

et al. 

[25] 

Copal 

Spacem 

2G VAN-

HCl 
8.7 5.3*103 0.003 1 

4G VAN-

HCl 
14 1.6*104 0.004 2 
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6G VAN-

HCl 
34 2.9*104 0.005 3 

Lee 

et al.  

[52] 

Simplex P 

1G Vanco 

UCS 
48 1.3*103 0.001 4 

1G Lyo-

Vanco 
125 1.0*103 0.001 5 

1G Sterile 

Vanco 
38 1.5*103 0.002 6 

4G Vanco 

UCS 
119 5.4*103 0.001 7 

4G Lyo-

Vanco 
144 7.2*103 0.002 8 

4G Sterile 

Vanco 
138 8.2*103 0.002 9 

Palacos R 

1G Vanco 

UCS 
40 1.8*103 0.002 10 

1G Lyo-

Vanco 
208 2.1*103 0.002 11 

1G Sterile 

Vanco 
36 2.3*103 0.002 12 

4G Vanco 

UCS 
81 1.7*104 0.004 13 

4G Lyo-

Vanco 
108 3.1*104 0.008 14 

4G Sterile 

Vanco 
144 2.2*104 0.006 15 

CMW 

1G Vanco 

UCS 
38 1.2*103 0.001 16 

1G Lyo-

Vanco 
43 1.4*103 0.001 17 

1G Sterile 

Vanco 
29 1.9*103 0.002 18 

4G Vanco 

UCS 
241 1.6*104 0.004 19 

4G Lyo-

Vanco 
283 2.8*104 0.007 20 

4G Sterile 

Vanco 
273 2.0*104 0.005 21 

Bishop 

et al. 

[22] 

Palacos R 

0.50G 1 5.9*101 0.0001 22 

1G 2.6 1.0*102 0.0001 23 

2G 2.4 1.0*102 0.0001 24 

Galvez-

Lopez 

et al. 

[18] 

Depuy 

1G 3.1 2.6*102 0.0003 25 

2G 4.2 3.7*102 0.0002 26 
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Table 2.2 This table displays features of vancomycin from ALBCs including average max flux, J(t), average total dose, D(t), 

mass transfer efficiency, E, and # for sample number. The values were determined from data extracted from selected papers that 

met the established parameters for paper consideration [18,22,25,52]. 

 

  There are some general trends seen from Table 2.2. One is that when formulated with 

more vancomycin, both the average peak flux J and the average total dose delivered, E, rise.  

Since release is a burst response, the analysis for flux is tied to first measurement period and the 

total dose is biased by how long the experiments were executed. It is possible that incrementally 

more release can occur, and the flux decay model could predict a total dose if extrapolated. All 

elution curves resulted in plateau of total release. There were few instances where different 

researchers analyzed a similar formulation but measured different release features.   

Comparing the different elution studies, peak flux is both resin supplier and vancomycin 

form specific. Generally, adding more antibiotic in the formulation correlates with higher 

release. There is an overlap between the studies of Bishop et al. (study 23) [57] and Lee et al. 

(studies 10-12) [52], who evaluated 1 g of different vancomycin forms in Palacos R cement, and 

the peak flux and total dose both vary by 2 orders of magnitude. If antibiotic forms and resins 

supplied are truly equivalent, then the same release profiles would be expected within some 

margin of error. Perhaps there are also nuances and differences in sample preparation as well. 

More consistency in protocols here could help resolve either the randomness of the formulation 

or confirm an individual experiment as a potential outlier. A similar evaluation was done at 4 g 

of vancomycin comparing the Bitsch et al. results (study 2) [25] and the Lee et al. results [52] 

using the different resins and a greater than one order of magnitude difference in average flux 

was noted.     

Within the Lee et al. study [52], lyo-vancomycin releases more than ~3 times the level of 

antibiotic than the other forms of vancomycin when formulated in Palacos and Simplex B, while 
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all forms of vancomycin release similarly in the CMW resin. If the resins were equivalent, one 

would expect smaller differences for antibiotics formulated at the same level in bone cement.   

Average peak flux determinations were compared to controlled dye permeation experiments 

through dialysis tubing using malachite green [58]. The dye release can be modelled to fit the 

elution from the bone cement. With the dye diffusion coefficient determined (~1x10-6 cm2/s) and 

concentrations (10 g/ml) and wall thickness (~30 m) defined, the flux for dye permeation was 

~10 μg/cm2-hr, similar to the average peak fluence for vancomycin from ALBC [58]. The 

comparison shows that while vancomycin elution is modest, its release is linked with surface 

release and less by diffusion from the bulk of the cement.  

 

Paper 
Cement 

Type 

Gentamicin Type 

& Content 

Avg Max Flux, 

J(t) (
𝝁𝒈

𝒄𝒎𝟐𝒉𝒓
) 

Avg Total 

Dose, D(t) 

(𝝁𝒈) 

Efficiency 

of Mass 

Transfer 

# 

Bitsch 

et al. 

[25] 

Copal 

Spacem 

Aminoglycoside 

Gentamicin 

Sulphate (AGS)-2G 

6.6 2.8*102 0.0001 1 

AGS-4G 15 1.7*104 0.004 2 

AGS-6G 30 3.8*104 0.006 3 

De Belt 

et al. 

[53] 

Palacos R 

Gentamicin 

Sulphate (GS)-4.4 

mg 

6.6 79 0.08 4 

CMW GS-2.0 mg 9.9 70 0.05 5 

Galvez-

Lopez  

et al. 

[18] 

Depuy 

Gentamicin (GM)-

1G 
0.79 1.7*102 0.0001 6 

GM-2G 1.2 2.5*102 0.0001 7 

Table 2.3 This table shows gentamicin elution from bone cements including average max flux, J(t), average total dose, D(t), and 

mass transfer efficiency, E. The values were determined from data extracted from selected papers that met the established 

parameters for paper consideration [18,25,53]. 

 

Separate studies were found on the elution of gentamicin (GM) to determine whether a 

smaller drug was more extractable from bone cement (see Table 2.3). GM (molar mass = 478 

g/mole) is much smaller than vancomycin (1449 g/mole), yet total release as a ratio of what is 
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loaded, E, is similar for both drugs sequestered in bone cement. Thus, ALBCs are limited to 

surface drug depletion and have minimal elution potential from the bulk matrix.  

2.3.2 Mechanical Response of Drug-Loaded Bone Cements  

The presence of antibiotics in ALBCs reduces their initial strength once polymerized. 

Strength is further reduced as drug releases forming voids and stress concentrations. Table 2.4 

shows cement strengths for a subset of these studies with exposures ranging from 300-1200 

hours testing both pre- and post-elution. Elution reduced cement strength by ~5-25%. Voids in 

the specimen amplify the variability in strength after drug elution with strength-based 

measurements. The current ASTM F451 standard for acrylic bone cement strength is 70 MPa 

and most of the antibiotic-loaded specimens initially satisfied this threshold. In some instances 

there was no strength reported after elution [59]. Perhaps the strength standard is not applicable.   

 

Paper 
Cement 

Type 

Vancomycin 

Type & 

Content 

Average 

Initial 

Strength 

(MPa) 

Retained 

Strength 

Ratio 

# 

Bitsch et al. 

[25] 

Copal 

Spacem 

2G VAN-HCl Undisclosed N/A 1 

4G VAN-HCl Undisclosed N/A 2 

6G VAN-HCl Undisclosed N/A 3 

Lee et al. 

[52] 

Simplex P 

1G Vanco UCS 86 0.97 4 

1G Lyo-Vanco 82 0.96 5 

1G Sterile 

Vanco 
81 0.89 6 

4G Vanco UCS 84 0.97 7 

4G Lyo-Vanco 84 0.722 8 

4G Sterile 

Vanco 
74 0.84 9 

Palacos R 1G Vanco UCS 85 0.96 10 
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1G Lyo-Vanco 79 0.93 11 

1G Sterile 

Vanco 
84 0.92 12 

4G Vanco UCS 86 0.84 13 

4G Lyo-Vanco 80 0.74 14 

4G Sterile 

Vanco 
80 0.85 15 

CMW 

1G Vanco UCS 96 0.91 16 

1G Lyo-Vanco 84 0.92 17 

1G Sterile 

Vanco 
79 0.93 18 

4G Vanco UCS 96 0.81 19 

4G Lyo-Vanco 76 0.81 20 

4G Sterile 

Vanco 
77 0.79 21 

Bishop et al. 

[22] 
Palacos R 

0.50G 63 N/A 22 

1G 65 N/A 23 

2G 52 N/A 24 

Galvez-

Lopez et al. 

[18] 

Depuy 
1G Undisclosed N/A 25 

2G Undisclosed N/A 26 
Table 2.4 Reported initial strength values extracted from selected papers, of antibiotic bone cements and #, for sample number. 

The strength ratio was derived from the compressive yield strength of bone cements before and after elution, where the elution 

periods ranged from 14-60 days [18,22,25,52]. Not all authors reported compresssive yield strength or collect data before and 

after elution. 

 

2.4 Discussion 

In evaluating the breadth of responses dynamic vancomycin release, Lee et al. and 

Bishop et al. show a plateau in total drug release within 10 days of initial release [18,22,25,52]. 

Galvez et al. and Bitsch et al. show a similar trend; however, the plateau period is longer [18,52]. 

There is a perception that commercially loaded ALBCs are better mixed with antibiotic. Aside 

from including the antibiotic, there are separate issues of degassing and dispensing, relative to 

the conversion of monomer to polymer. Details in these papers did not include these processing 
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variations in the overall assessment of drug availability and strength, but variations in processing 

could have been affected by mixing.   

What is striking is that over all the studies presenting dynamic release data on both 

antibiotics, the relative amount of release was very low. E ranged from 0.0001 to 0.008, for 

vancomycin regardless of drug loading. E was higher in one study where much smaller samples 

were made. As the loading increases, there are more near-surface sites from which drug can 

elute, but only a small amount is bioavailable. For example, when loading 6 g of drug in a 60 g 

pack of bone cement, only tens of milligrams of vancomycin are available.   

None of the studies showed a linear release rate for either drug from ALBCs. Burst 

release into the receiver solution was common. Longer elution times showed a plateau in total 

drug release typically within 10 or more days.   

The average vancomycin flux released varied from 1 to 283 μg/cm2 *hr. The variation is 

attributed in part due to when the first measurement was taken. Gentamicin release features were 

similar. Antibiotic size is not a factor in regulating bulk diffusion in ALBCs. The meta-analysis 

has only considered antibiotic release into an inert solution. Duey et al. showed in a related study 

that larger zones of bacterial inhibition around an antibiotic releasing plug were observed when 

the concentration of vancomycin rose from 10 μg/ml to ~1000 μg/ml [60]. Clinically, the rise in 

vancomycin release from an ALBC will be tempered by the metabolic clearance where it is 

placed. Several studies also show the same burst response clinically and some authors reported 

antibiotic levels upon implantation and after showing similar results as the papers analyzed for 

this review [17,18,21,22,25,27,61,62]. In cases where metabolism is slow, sufficient amounts of 

antibiotic could accumulate in the affected area. Anagnostakos and Meyer compiled data on a 

variety of ALBCs tracking dynamic serum concentrations [62]. They showed serum 
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concentrations in the joint fluid of 30-1500 μg/ml in the first several days post-operatively from 

installation [62]. The burst might be enough to inhibit infections, but the volume of infection is 

important. Also, when infections are localized, a longer sustained flux may be needed.  

The best antibiotic is one that clears infections without affecting the healthy microbiome 

or leading to antibiotic resistance. There are many studies that suggest that ABLCs reduce 

infection, but what constitutes a sufficient dose and period is unresolved. In addition, there is a 

mechanical penalty paid for loading bone cement with high antibiotic doses. Lower cement 

strength correlates to lower structural stability. Singh et al. showed that adding >3 g of 

vancomycin lowered both the bending strength and the stiffness of ALBCs [46]. 

The co-formulation of active drug elements within a liquid methacrylate and powdered 

polymethyl methacrylate bone cement mixtures has proven viable for localized drug delivery. 

The use of drug eluting spacers from relatively rigid bone cement mixtures are proven release 

systems. If spacers have no structural requirement, then the cement matrix may be loaded with 

more antibiotic without structural concerns for the spacer.   

In the clinical realm, the ALBC release is assessed qualitatively by observing an infection 

response, or by measuring drug transport [63]. These use a spacer interacting on a bacterial 

culture plate and result in a zone of death emanating from the spacer. For transfers not assessed 

on live cultures, aliquots of solution can be taken for analysis by either fluorescence-based 

assays or by liquid chromatography. There exists promise to consider bacterial cell culture assays 

as objective tests for adequate and sufficient drug release from ALBC platforms, using 

adaptations from traditional bacterial cell culture assays of antibiotic efficacy.   
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2.4.1 Alternative Strategies to Address Periprosthetic Joint Infection 

Gaps seem to exist between loading and realistic dosing levels releasing from the 

cements. Perhaps, more regulated, and controlled release systems could achieve similar dosing 

levels, without retaining vast amounts of antibiotic in the cement. Biodegradable cements and 

gels increase the fraction of drug contained in the therapy that is bioavailable. Prior work by 

Veryies et al. suggests that colloidal crystal gels loaded with vancomycin at 20 μg/ml might 

accommodate both a burst release and a sustained release measurable quantities of μg/ml of 

vancomycin after 7 days sufficient to eradicate infection [64]. Similar degradable controlled 

release systems could be developed that account for a dissolving sequestration matrix.   

There is also a need to identify bacterial responses of specific pathogens of interest. 

Appropriate bacterial culture assessments are needed. Nandi et al. mention that osteomyelitis 

evolves naturally, and as an outcropping of invasive pathogen exposure that can occur from 

diabetic foot ulcers and surgical intervention for joint replacement and fracture fixation [63]. 

Pathogens more likely to be found organically include Staphylococcus aureus, while those from 

foot ulcers evolve from microbial exposure. For joint replacements, Staphylococcus epidermis is 

the most common pathogen [65]. With Gram-positive pathogens like staphylococci, drug release 

from antibiotics potent to Gram-positive bacteria is key [66]. Other attributes that might allow 

for some grading of specific antibiotics might be related to their size or molecular weight, their 

overall potency, and the potential for antibiotic resistance. Similar studies are needed for other 

antibiotics given that both Gram-positive and Gram-negative bacteria can colonize to form an 

infection.   

A separate issue is the age of an infection, as formed biofilms can reduce antibiotic 

effectiveness. Bacterial cell culture assays should assess how permeable vancomycin, or any 
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other antibiotic is in piercing the biofilm. Here, a smaller molecular weight antibiotic-loaded into 

the cement or combinations of antibiotics might be more potent.  

Others have added antibiotics to bio-degradable carriers as localized drug delivery 

vehicles [54,63,64,67–70]. These have included, but are not limited to, antibiotics within 

packaged resorbable salts, bioactive glasses, and bone tissue [70–74]. Softer biodegradable 

matrices have been proposed including collagen or hydrogels [71,75,76]. Zhou et al. integrated 

the use of other fillers formulated with antibiotics and PMMA bone cements [77]. They showed 

that when PMMA cements loaded with a mixture of vancomycin, tobramycin, and 10% calcium 

polyphosphate (CP), a much lower burst release occurred and sustained release was extended up 

to 24 weeks [77]. The larger pore sizes influenced by the CP addition led to higher release rates 

while maintaining similar mechanical strength of the unfilled bone cement [77]. Alternatively, 

Inzana et al. used biodegradable polymers incorporating antibiotics [70,78,79]. In their review, 

they considered hydrogels, including polylactic acid, and polyglycolic acid that dissolve by 

hydrolysis, copolymers, and polycaprolactone, shaped into solids incorporating the antibiotics 

and then installed. The formed hydrogels could also be used as sustained-release drug delivery 

systems. This was an added feature when the antibiotics are more soluble when encapsulated into 

a hydrogel than when dissolved in saline alone. Particularly, aqueous solutions of polyethylene 

oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) copolymers form micelles and 

crystallize into cubic lattices when introduced into a warm bodied creature [78,80]. When 

different solutes are added, the kinetics and structural evolution of these colloidal crystals shift 

[78,80–82], but allow for controlled release [58]. In comparison to using antibiotic-loaded bone 

cements for infection, softer gels could allow for a diffusion-based mechanism and release more 

antibiotic in non-cemented joint infections. There is a need to also resolve whether other 
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biodegradable antibiotic-loaded drug delivery systems could be used as a lavage at the I & D 

stage. Presenting antibiotic into the bone cavity before bacterial colonization is most likely 

effective in staving off joint infections.   

2.5 Trends and Conclusions 

The meta-analysis has confirmed that antibiotic-loaded bone cements can release 

antibiotics, though dose efficiency is low. The cited studies show a common initial burst, and 

then a decay in the elution rate for the antibiotics and some decrease in spacer strength after 

elution, typical of a core-shell structure with little to no release from the core. The reported doses 

may be high enough to achieve the minimum inhibitory concentration, noted as 0.5-2.0 μg/ml 

[83] for vancomycin. A large portion of formulated drug in the cement is not bioavailable. In 

addition, comparisons in mass transfer were possible since the elution sample shapes were 

included.   

Formulating ALBCs with higher concentrations of antibiotics allows for more mass 

transfer, but also leads to more surface voids that risk the cement’s long-term mechanical 

integrity. From the burst response, the drop-off in elution rate follows an exponential decay. 

Further experimentation is needed to determine whether the variations in elution response are 

due to experimental error or a function of attributes of the drug and resin elements making up the 

ALBC. Alternative matrices that release a larger fraction of what is formulated also warrant 

consideration.     

When considering alternative methods, resins that allow for more antibiotic to diffuse 

from the core, or that dissolve and/or disperse to expose more core-located antibiotic, are 

appropriate to consider. Softer, gel-like structures have many of those attributes and could be co-

formulated for release in infected joint regions. 
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Chapter 3  Thermophysical and Viscoelastic Properties of F127 with Added 

Pharmaceuticals 

 

 

3.1 Introduction  

Block copolymers are macromolecules compromised to two or more chemically different  

chains bound together by covalent bonds. Polyethylene oxide-polypropylene oxide-polyethylene 

oxide (PEO-PPO-PEO) triblock copolymers—as shown in Figure 3.1—are a class of ABA 

amphiphilic triblock copolymers, commercially known as Pluronics (non-propriety name 

“poloxamers”). These amphiphilic triblock copolymers can be made into thermoreversible 

solutions and potentially formulated as injectables for use as drug delivery vehicles [1,64,84–86].  

BASF first introduced Poloxamer in 1973 with corresponding nomenclature that 

identified the morphology of each Pluronic at room temperature, as pictured in Figure 3.2 below: 

liquids (L), pastes (P), and solid flakes (F) [87]. These three leading characters are then followed 

by one or two numbers which reference each Pluronic on the grid. Copolymers on the same 

horizontal line moving to the right indicate an increase in the weight percent of the hydrophile 

arms (PEO), and those on the vertical line moving upwards indicate an increasing weight percent 

of the hydrophobe center block (PPO). The center number or two (if four characters) represents 

1/300 of the molar mass of the PPO block. The last value represents one-tenth of the mass 

fraction of the PEO block. For example, the Pluronic with characters P105 is a paste (“P”) at 

room temperature with a PPO block molar mass of 3000 g/mol and is 50% by weight PEO. The 

total molecular weight of P105 would be approximately 6,500 g/mol with a chemical formula of 

PEO37PPO56 PEO37.  
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Figure 3.1 Structure of Pluronic block copolymers. 

 

Figure 3.2  Pluronic gel formation grid. The first letter of each Pluronic indicate the phase of the Pluronic at room temperature: 

Liquid (L), pastes (P), and solid (F). The bolded region and percentages represent the minimum concentration needed for the 

Pluronic to gel at room temperature. F127 has the best gelation abilities of all the Pluronics. Figure reproduced from Schmolka 

[87]. 

 

3.1.1 Micellization and Gelation of Amphiphilic Block Copolymers 

The physical and chemical properties of Pluronics can be modified by changing the molar 

mass ratio between PEO:PPO blocks. The differences in molar mass ratio affect properties such 

as physical state, thermophysical, and mechanical properties. The minimum weight percent 

concentration of PEO-PPO-PEO triblock copolymer needed to achieve a gel state at 25 ℃ is 
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indicated by bold lines in Figure 3.2. At those corresponding weight fractions and temperatures, 

aqueous solutions of PEO-PPO-PEO copolymers will first form micelles, and with sufficient 

driving force, organize the micelles into various self-assemblies. Figure 3.3 shows a schematic of 

this process.  

 

 

Figure 3.3 Illustration of temperature-dependent micellization and gelation of PEO-PPO-PEO block copolymers. PPO and PEO 

unimers are initally present in solution. When the solution is heated above critical micelle temperature, micelle formation begins. 

As the solution is further heated and reaches above the critical gel temperature, the micelles order into a collodial crystalline 

structure.  

 

At low concentrations the unimers are dispersed in the solution and randomly organized. 

If more unimers are added at a low temperature, the driving force for clustering may still be 

insufficient. If at higher concentrations the aqueous mixtures are heated above the critical 

micelle temperature (cmt), also identified as Tmicelle, there is an enthalpic payoff for self-

excluding some regions of hydrophobicity into clusters through a nucleation and growth 

response of the unimers in solution. If the energy is a large enough driving force for the self-

organization of the hydrophobic segments, this will trigger micelles to spontaneously form. This 

driving force is due to the hydrophobic effect, where hydrophobic PPO block aggregates with 
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others to exclude water molecules [88]. Goldstein suggests the contributions to the driving force 

for forming micelles can be idealizes as a spherical core that has hydrophobic sections that bind 

together to form a mass with constant density [89]. The resulting spherical micelles are 

disordered micelles present within the solution [90–93]. After heating through the cmt and the 

temperature increases further, the micelles can arrange into more organized structures 

representative of colloidal crystals. The unit cell dimensions of micelles organized at lattice 

points are much larger than atomic crystals and they do not appear to act as hard spheres. This 

gel formation is driven by the increase in the aggregate of the Pluronic micelles and the phase 

transition from liquid to crystalline [90,93]. The disordered to ordered transition to crystalline 

lattices is driven by the increase in micelle volume fraction and the repulsive force between 

micelles. As the temperature increases, (a) the volume fraction of micelles increases, (b) the 

repulsive interactions between the nearest micelle neighbor occurs, and (c) the micelles form 

ordered phases to maximize the distance from one micelle to another.  

 

 

Figure 3.4 Illustration of three micelle interactions. Core-shell interaction where the additive interacts with the hydrophobic 

micelle core and hydrophilic shell. Shell interaction where the additive interacts with the hydrophillic shell. And core interaction 

where the additive interacts with the hydrophobic micelle core.  
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 In addition, the presence of dissolved solutes affects Pluronic micelle formation by 

influencing the thermophysical and mechanical properties [94–100]. For example, in 10% F127 

with 0.5% and 1% of methylparaben (MP) added, Meznarich et al. saw Tmicelle shift from ~18 ℃ 

for the neat sample to ~5 ℃ and ~-2 ℃ respectively [81]. There are several potential interactions 

with the micelles that could take place with ternary additives. The first, as depicted in Figure 3.4, 

is a core-shell interaction where the additive interacts with the hydrophobic core and the 

hydrophilic shell of the polymer. Second, is a shell interaction where the additive interacts with 

the hydrophilic shell of the polymer. Third, is a core interaction where the additive interacts 

within the micelle core. Lastly, the additive could interact with the hydrophilic tails of the 

micelles. As noted by Chen et al., the micellization process can be described in two parts: (1) the 

“desolvation” process where the dehydration of the hydrocarbon tail of surfactant molecules 

occurs and (2) the “chemical” process where the aggregation of the hydrocarbon tails of the 

surfactant molecules forms a micelle [101,102]. It is the “desolvation” process and “chemical” 

process coupled with the driving force for micelle formation that gives way to variations noted as 

changes in in Tmicelle, H, and critical gel temperature (Tgel). In addition, the interactions affect 

the phase formation of amphiphiles as well, where the crystal structure changes with ternary 

additives [78,80]. A number of other factors could influence where the additive would interact, 

such as molecular weight, size, and hydrophobicity [80,99,103,104]. The hydrophobicity of an 

additive could potentially help define the core, shell, or core-shell interface and help organize the 

structure by chaperoning or delaying micelle formation. Meznarich et al. and Thompson et al. 

have previously investigated a rationale for how the presence of ternary additives interacts when 

forming micelles and how interactions between drug and micelle influence the thermophysical 

and structural changes in F127 micelles by several methods [81,82,105]. Additionally, for use in 
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drug delivery, further investigation of the thermophysical properties of micelles in which 

colloidal crystals form is an important aspect to consider when determining the bioavailability 

and efficacy of pharmaceuticals added.   

3.1.2 Amphiphilic Triblock Copolymers Facilitating Drug Solubility and Delivery 

The biocompatibility and the colloidal gel formation potential of amphiphilic triblock 

copolymers allow their consideration for injectable drug delivery systems. Previous work has 

evaluated the use of Pluronic triblock copolymers for targeted drug delivery of a range of 

molecules including cisplatin, docetaxel, and anesthetics [1,98,99,104–107]. Researchers have 

shown that when co-formulating pharmaceuticals with triblock copolymers they raise drug 

solubility [103,104], treat infections locally [107], are used in gene therapy [84], and can be used 

as a tool in the creation of injectable scaffolds [108]. Pluronic F127, a solid flake, is a common 

formulation co-constituent given its wide availability and its ability to form solid phase 

structures at concentrations as low as 20% in aqueous solution. PEO-PPO-PEO in the form of 

F127 has low toxicity which makes it an ideal candidate for use in medicine [90]. Sharma et al. 

studied the gelation behavior of Pluronic F127 in the presence of hydrophobic pharmaceuticals 

to determine the correlation between gelation and physicochemical parameters of drug solutes 

[99]. Their results showed that the presence of common pharmaceutical additives, such as 

methylparaben and ethylparaben, tends to reduce the sol-gel transitions for F127 solutions, 

relative to the neat solutions, and was drug-concentration dependent with as much as a 10ºC 

decrease from the initial ~10 ºC for 30% F127. The amphiphiles also raise drug solubility, which 

is a separate consideration for dispensing drugs of low solubility in blood.  
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3.1.2.a Sample selection 

In this dissertation, I studied the interaction of 25% F127 with four antibiotics commonly 

used to eradicate pathogenic bacteria, depicted in Figure 3.5: vancomycin (VAN), cefepime 

(CEFE), ciprofloxacin (CIPRO or CIP), and gentamicin (GM). Though all are antibiotics, their 

use varies based on the type of bacteria present, infection type, and cost. Vancomycin (1449.3 

g/mol) is a hydrophobic antibiotic. It is commonly used for treatment of serious infections by 

Gram-positive bacteria unresponsive to other antibiotics, often considered as a last resort. 

Cefepime (571.5 g/mol) is a hydrophobic fourth-generation cephalosporin that has an extended 

spectrum of use against Gram-positive and Gram-negative bacteria. Ciprofloxacin (331.3 g/mol) 

is a hydrophilic antibiotic that is also used for a broad spectrum of Gram-positive and Gram-

negative bacteria. Gentamicin (477.6 g/mol) is another hydrophilic antibiotic used for treatment 

of Gram-positive and Gram-negative bacteria. There are standard dosing guidelines associated 

with each of the drugs based on potency, MIC, toxicity, and other factors as mentioned in 

Chapter 1. In clinical settings there is no one-size-fits-all playbook to treat infections. A 

physician would consider the MIC, as well as other factors described in Chapter 1, to determine a 

protocol to treat an infection. The goal of this thesis was not to probe new types of antibiotic 

potency, but to evaluate drug in package systems that might offer more effective distribution. 

However, by adding pharmaceutical additives, the chemical potential of the solution containing 

water, amphiphilic copolymer, and drug is different without the drug and perturbing where 

Tmicelle and Tgel occur and require characterization.  

The goal of an antibiotic-loaded gel system is to (a) allow a clinician to inject cold 

dispersions of liquid below the critical micelle, the gel formation, and body temperatures; and (b) 

allow metabolic heat to trigger solidification. These micelle-based gels are unusual in that they 
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are less viscous at lower temperatures. A separate issue also arises in considering how drug co-

formulation might affect how micelles interact with the drug or destabilize it. These antibiotics 

are commonly dispensed in a range of forms and are available as reagent grade chemical. 

Clinically, they are often already solubilized in saline and other sterile and dispensable forms in 

pharmacies, thus providing another variable beyond simple formulation conditions. However, 

VAN is typically lyophilized and solubilized at the time of administration and CEFE is in 

powder form. Therefore, I decided to incorporate the amphiphilic copolymers with medical grade 

samples, rather than reagent grade, to investigate their thermophysical and viscoelastic properties 

in vitro. In addition, reagent grade ciprofloxacin was also studied as a comparison packaged in 

amphiphilic copolymers. 

 

Figure 3.5 Structure of antibiotics used for the study. (A) Vancomycin (B) Cefepime (C) Ciprofloxacin (D) Gentamicin. 
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3.1.2.b Overview 

In the previous chapter, I discussed treating deep bone infections with antibiotic-loaded 

bone cements and investigated their efficacy. The implication from that work was that the 

formulations mixed with bone cement were quite inefficient and potentially expensive given that 

there is so much bio-unavailable drug locked into the cement structure. Perhaps other softer and 

more metabolizable forms might allow for a more efficient treatment using less drug overall 

while still bathing the infection site with sufficient antibiotic. In this chapter, I present the results 

of experiments that observed how the formation of amphiphilic triblock copolymer micelles 

affect the thermophysical properties before gelation and assess how the gelation behavior is 

affected by the presence of added pharmaceuticals. These antibiotics loaded hydrogels could 

serve as alternative drug delivery vehicles in treating infections locally. This study aims to 

contribute and help build a deeper understanding of how poloxamer-based drug delivery 

formulation properties.  

3.2 Materials and Methods 

3.2.1 Sample Preparation 

3.2.1.a Pluronic stock solutions   

 Pluronic F127 was obtained from Sigma-Aldrich (St. Louis, MO) and used as received. 

Aqueous solutions of Pluronic F127 were prepared according to the “cold method” as described 

by Schmolka [100]. Twenty-five percent was selected as the weight percent for F127 because it 

has a micelle and gelation temperature well below body temperature (37 ℃). Therefore, gel 

formation would trigger when introduced at body temperature based upon the limit from the 

Pluronic grid [100]. Solutions were prepared using deionized (DI) water, 0.9% sterile saline, and 
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5% dextrose. Sterile saline was obtained from Baxter Healthcare Corporation (Deerfield, IL) and 

used as received. Dextrose was obtained from Becton Dickinson (Franklin Lakes, NJ). Weighed 

amounts of F127 were added slowly to DI water, 0.9% sterile saline, or 5% dextrose, and stirred 

gently to avoid foaming. Once all the dry F127 was added, the solution was kept at 4 C to 

dissolve quiescently. In the pharmaceutical trials, the F127 concentration was fixed at 25%. This 

concentration was selected because of the need to trigger micelle formation for an injectable 

antibiotic therapy that gels.  

3.2.1.b Drug/Pluronic mixtures  

 Cefepime (CEFE) was obtained from Apotex Corp (Toronto, CA) and used as received. 

Solutions containing CEFE were prepared by first making a stock of 10% (wt/v) CEFE in 25% 

F127. Aliquots of the CEFE and F127 stock were taken and diluted to 2%, 4%, 6%, and 8% 

using a neat stock solution of 25% F127. Ciprofloxacin (CIPRO) in 5% dextrose was obtained 

from Claris Lifesciences Inc. (New Brunswick, NJ) and used as received. Solutions containing 

CIPRO were prepared by first making a stock of 0.2% Cipro in 25% F127. Aliquots of the Cipro 

in 5% dextrose in 25% F127 stock was then diluted to 0.05%, 0.075%, 0.1%, and 0.15% using a 

neat stock solution of 5% dextrose and 25% F127.  

Gentamicin (GM) was obtained from Fresenius Kabi USA (Lake Zurich, IL) and used as 

received. Solutions containing GM were prepared by first making a stock of 0.8% GM in 25% 

F127. Aliquots of the 0.8% GM and 25% F127 stock were taken and diluted to 0.6%, 0.4%, and 

0.2% using a neat stock solution of 25% neat F127. Vancomycin Hydrochloride (VAN) was 

obtained from Alvogen (Pine Brook, NJ) and used as received. Solutions containing VAN were 

prepared by first making a stock of 5% VAN in 25% F127. Aliquots of the VAN and 25% F127 

stock were taken and diluted to 0.8%, 1%, 2%, 3%, 4%, and 5% using a neat stock solution of 
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25% neat F127. The concentrations for the antibiotics used were prepared following instructions 

given by the manufacture. For each antibiotic, the maximum concentration was selected to be 

tested as the upper limit based on the preparation instructions and diluted into smaller 

concentrations as added variables. The dosing guidelines take into consideration the antibiotic, 

dose, and duration of treatment to maximize efficacy and minimize toxicity. The dosing 

guidelines have variations based upon the pharmacokinetic and pharmacodynamic properties. 

The maximum concentration was prepared and then diluted to be able to determine what 

variations occur with lower concentrations. Table 3.1 lists all concentrations prepared.  

 

Sample Prepared Concentrations (wt%) 

Cefepime (CEFE) 2%, 4%, 6%, 8%, 10% 

Ciprofloxacin (CIPRO) 
0.05%, 0.075%, 0.1%, 0.15%, 

0.2% 

Gentamicin (GM) 0.2%, 0.4%, 0.6%, 0.8% 

Vancomycin (VAN) 0.8%, 1%, 2%, 3%, 4%, 5% 

Table 3.1 Details of the samples and the concentrations prepared for the study.  

 

3.2.2 Differential Scanning Calorimetry (DSC) 

The DSC experiments were conducted on a TA Instruments (New Castle, DE) Q2000 

series DSC with an RCS90 refrigerating unit for cooling. An empty aluminum TZeroTM pan was 

placed onto a micro balance, weighed, and tared to zero to prepare each dispersion batch for 

analysis. Approximately 10 μl was pipetted into the sample pans. The mass of the pipetted 

solution was recorded, and a press was used to hermetically seal the sample pan.  

Tests included a heating ramp starting at a temperature below the known cmt of the neat 

25% F127 solution; however, to ensure that all potential changes were captured, tests were 

started well below the cmt at -5 °C or 0 °C. Samples were heated at a rate of 1 °C/min from 0-40 
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oC under nitrogen purge. In addition, CIP and VAN samples were run at a higher heating rate of 

10 °C/min. 

3.2.3 Dynamic Mechanical Analysis 

Dynamic mechanical experiments were carried out on a TA Instruments Discovery 

Hybrid Rheometer-3 (DHR-3) rheometer in dynamic oscillatory mode. A Peltier attached to the 

rheometer stage controlled the temperature and heating rate. Parallel plate geometry was used 

with a 20 mm diameter stainless-steel upper tool and the Peltier stage as the lower plate. Figure 

3.6 below shows the experimental set up for the rheometer.    

 

 

Figure 3.6 This is the rheometer setup with the Peltier thermal controller on the bottom. The upper shaft is capable of controlled 

rotational motion and the torque on the shaft to regulate those motions is also measurable. The sample is placed onto the Peltier 

stage and upper shaft lowered onto the sample to a set gap length and then covered with a humidity shield. 
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The rheometer was operated in dynamic oscillatory mode with a frequency of 10 rad/s 

and an applied strain of 1%. Data was collected at 1 Hz for the 1 °C/min and 10 °C/min tests as 

the temperature was ramped from 0-70 ºC to fully capture the liquid-to-gel transition of the 

solutions. The experimental condition was n = 3, with the results being the average of the 

replicates and standard deviation calculated. The temperature range tested was between 0 °C and 

70 °C to fully capture the liquid-to-gel transition of the solution. The test protocol allowed for (1) 

the solution to be heated from the starting temperature at the preset heating rate until the final 

temperature, and (2) a 10-minute incubation period at the final temperature to capture any 

transient lagging gel formation.  

3.2.4 Data Analysis 

All data generated by the calorimeter was saved in individual files, which were then 

analyzed using the TA Instruments Universal Analysis software for quantitative analysis of the 

resulting thermogram curves. Typical experimental results showed in a single endothermic peak 

being detected during the programmed heating. Three main values were extracted from this peak 

as shown in Figure 3.7: (a) the onset temperature (Tmicelle, intersection between the baseline and 

the tangent of the maximum slope in the initial region of the curve), (b) the peak temperature 

(Tpeak, temperature at which maximum deviation from the baseline is achieved), and (c) the 

enthalpy of the transition (H, integrated area between the baseline and the experimental curve).  
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Figure 3.7 An example DSC thermogram of 25% F127 heated at 1 ºC/min. The labels depict the extracted values from each 

thermogram. The onset temperature is the intersection of the baseline and the maximum slop of the initial portion of the peak. 

This is interpreted as Tmicelle. The maximum peak temperature is the maximum deflection from the baseline. The enthalpy is the 

total area under the curve from the baseline, indicated by the shaded lines. For clarity the number of data point has been reduced. 

 

Oscillatory rheometric experiments were used to investigate the time dependence of the 

viscoelastic changes in the samples. The data generated by the rheometer was saved as individual 

files and analyzed using MATLABTM. The critical gel temperature, Tgel, was quantified using G’ 

vs. G’’ crossover [109]. The storage modulus, G’, represents the elastic portion describing the 

solid-state behavior of the sample. The loss modulus, G’’, represents the viscous portion 

describing the liquid-state behavior of the sample. Figure 3.8 shows an output of oscillatory 

rheometric experiments. At the start of each controlled heating experiment, the loss modulus is 

higher than the storage modulus due to the liquid-like consistency of the dispersion. As 

temperature increases at the set angular frequency, the storage modulus (solid-state) dominates 

the loss modulus (liquid-state) and crosses over the modulus [109,110]. The point at which this 
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crossover occurs is characterized as Tgel, where the colloidal fluid has transitioned into a colloidal 

gel.  

 

 

Figure 3.8 Modulus vs. Temperature for 0.2% CIP in 25% F127 solution heated at 10 C/min and rad/sec at 1% strain. Tgel 

indicates the point at which the storage and loss moduli cross each other, marking a transition from liquid-like to solid-like 

behavior. 

 

3.3 Results 

3.3.1 Effect of Increasing Ternary Additive Concentration  

Figure 3.9 depicts a series of DSC thermograms for a solution of 25% F127 with 

increasing amounts of different antibiotics added. For the CEFE and GM dispersions, as the 

amount of antibiotic added is increased, the Tmicelle and Tpeak shift to lower temperatures. There is 

a linear dependence on the temperature for the increasing amounts added. CEFE shows the 

greatest effects on Tmicelle, additionally the largest concentration range was used for CEFE. The 

T
gel
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values for testing were based upon the antibiotic dosing guidelines set by the manufacturer; 

however, if the concentrations evaluated were molecularly equivalent, the results could show 

more granular details in relation to antibiotic differences. The results for VAN show that there is 

a slight decrease; however, the values are not statistically significant. 

 

 

Figure 3.9 Twenty-five percent F127 with increasing amounts of various antibiotics added. There is a general trend observed 

showing the decrease of Tmicelle and Tpeak with the addition of antibiotic of various concentrations. However, VAN does not 

produce statistically significant changes to Tmicelle. 

 

There were two formulations of CIPRO investigated in this study, neat CIPRO in 25% 

F127, and neat CIPRO with 5% dextrose in 25% F127. When initial experiments were with neat 

CIPRO in 25% F127, it was observed that the solubility in solution was very low. Additionally, 

the resulting DSC measurements (see Figure 3.10) showed some suppression of the endotherm; 

however, the results were not statistically significant and showed no systematic changes to 
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Tmicelle, in regard to concentration of CIPRO, which was not seen in the literature. Subsequently, 

neat CIPRO was prepared with 5% dextrose in 25% F127. The results showed statistically 

significant results for Tmicelle and H with a p ≤ 0.001 and p ≤ 0.05, respectively. CIPRO with 5% 

dextrose showed an initial suppression of the endotherm and decrease of Tmicelle; however, there 

was an invariant effect on the endotherm and Tmicelle between concentrations (see Figure 3.10). 

The results indicate that dextrose may play a role in the micellization in antibiotic-loaded 

amphiphilic gels when packaged with CIPRO. Perhaps dextrose is interacting with the PPO core 

formation while CIPRO is in the periphery with limited interactions, which could potentially 

account for the small variation in endotherm energy and large Tmicelle differences. 

 

 

Figure 3.10 Comparison of average CIPRO without dextrose and CIPRO with dextrose resolved through DSC measurements and 

analysis of the endotherms. Any concentration of CIPRO in 25% F127 reduces Tmicelle and suppresses the endotherm though not 

statistically significant. However, CIPRO with 5% dextrose in 25% F127 is statistically significant. 

 

Figure 3.11 shows the effect of increase concentration of VAN in 25% F127 solutions 

that affected H and Tmicelle. The resulting values indicate that VAN does not have a statistically 

significant effect on micellization. Perhaps there is a solubility limit for VAN in these mixtures 
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and if it is not soluble, it likely is not capable of migrating within the micelles. If VAN were to 

directly interact with the PPO core, a more enthalpic effect would likely be seen, resulting in a 

more pronounced decrease in H, which is similar to results seen with other drugs in this study 

or as Sharma et al. saw with lidocaine [99].  

 

 
Figure 3.11 Averages of increasing concentrations of VAN in 25% F127. Results show a statistically insignificant effect on the 

Tmicelle and dH. 

 

Figure 3.12 shows how adding CEFE to 25% F127 solutions affected H and Tmicelle. The 

results showcase an athermal micellization process that as more CEFE is added, the size of the 

endotherm decreases with concentration of solution. Bouchemal et al. and Meznerich et al. found 

similar findings in their characterization of 1,2 propanediol in F127, also noting athermal 

micellization [81,111]. Micelles form in the athermal micellization trend, but the energetics for 

formation are increasingly poor. The formation of micelles has an association energy cost, but 

the payoff is reduced due to the presence of additives in solution that interfere with packing.  
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Figure 3.12 Increasing concentrations of CEFE in 25% F127 reduce the Tmicelle and a weak suppression of the endotherm dH. 

 

Figure 3.13 shows how adding GM to 25% F127 solutions with increasing amounts of 

GM affected H and Tmicelle. The figure shows related changes in the endotherm and Tmicelle as 

concentration is increased. The endotherm changes are marginal, but a decrease in Tmicelle was 

observed. Sharma et al. also noted a reduction in Tmicelle in their study of anti-inflammatory 

agents as did Gilbert et al. in their study of para-hydroxy-benzoate esters [99,112].  
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Figure 3.13 Average increasing concentrations of GM in 25% F127. There is an invariant effect on H with respect to the neat 

and other concentrations. However, as concentration of GM increases there is a decrease in the Tmicelle. 

 

3.3.2 Effect of CIPRO on Tgel  

To further understand the effects of antibiotics in amphiphilic gel formation, dynamic 

mechanical analysis using a rheometer was used to probe gelation. Previous work has shown the 

presence of dissolved solutes affects the gelation behavior of Pluronic solutions [103]. Figure 

3.14 shows the addition of CIP up to 0.075% decreases the Tgel when compared to neat F127. 

Though CIPRO concentration has an invariant effect on micelle formation as concluded from the 

DSC measurements, the addition of CIPRO does appear to drive the Tgel formation temperature 

to lower temperatures. In a clinical setting, this would mean that the formulated drug in 

amphiphile would need to be further chilled to allow for liquid-like injection. However, at 
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loading concentrations above 0.075%, this effect is lost. Perhaps this is due to thermal lag on the 

Peltier stage or sample dehydration.   

 

Figure 3.14 Tgel of CIP determine by G’ vs G” cross over analysis. Tgel was determined from each concentration dependent 

parametric study performed at 1 Hz [109,110]. The results show that upon introduction of CIP there is a decrease in Tgel and is 

most reduced at 0.075% CIP. STDev <0.05 ºC for all points therefore error bars are too small to be show given the scale of the y-

axis. 

 

3.4 Discussion 

Adding antibiotic additives to 25% F127 has shown several trends that are supported in 

the literature [28,81,93,99,103,105,112,113]. The disorder-to-order transition of Pluronics to 

form thermoreversible gels is regulated by intermolecular interactions between the dispersed 

organic drugs and the amphiphiles. Meznarich et al. showed methylparaben and other 

hydrophobic additives localize or associate themselves with the PPO core in Pluronic surfactants, 

which contributes to a suppression of Tmicelle and H [81]. The lower H is likely to lead to 
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increased imperfections as colloidal crystals form. A similar effect is noted with Tmicelle and H 

with CIPRO. Given the similar trend, hydrophilic drugs could also be interacting with the PEO 

shell. Though micellization is primarily controlled by the PPO block length and concentration, 

the PEO block is of less importance [93]. However, there could be potential interactions between 

hydrophilic drugs and the hydrophilic PEO blocks, which could also lead to an increase in the 

Tmicelle onset temperature. The greatest effect on the thermophysical properties could potentially 

occur when an additive is interacting throughout the core-shell interface. In this study, the 

hydrophilic drugs CIPRO and GM showed Tmicelle changes that could be attributed to interactions 

with the PEO shell.  

It is important to note that even though CEFE begins to have an increased effect on the 

endotherm at higher concentrations, it is still influencing micellization as indicated with a 

corresponding decrease of Tmicelle. The influence is not seen in VAN, though both drugs are 

hydrophobic. However, VAN’s size is a confounding factor. Therefore, it was more energetically 

favorable for the PPO core to not interact with VAN. Importantly, as Thompson et al. noted, if 

ternary compounds raise structural disorder, the enthalpy contribution to micelle formation 

should be reduced [82,105]. However, though not investigated in this study, the solute-solvent 

interactions could provide deeper understanding of the micelle formation energetics of VAN, 

GM, CEFE, and CIP. A component in the solute-solvent interactions is solubility. The solubility 

of CIPRO, CEFE, GM, VAN, and dextrose are shown in Table 3.2. 

Drug Solubility 

CIPRO 30 mg/ml 

CEFE 40 mg/ml 

GM 50 mg/ml 

VAN > 100 mg/ml 
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Dextrose 450.5 mg/ml 

Table 3.2 Solubility in water for additives. 

 

If hypothesizing results based upon solubility values, the effect of the additives on the 

amphiphilic copolymer gel could be ranked from lowest to highest as presented in Table 3.2. 

However, solubility is not an independent factor when hydrophobicity/hydrophilicity and 

molecular size introduce variants on endotherm energy and Tmicelle. 

Additionally, solubility plays a role in gelation. Basak et al. showed that PPO-rich 

hydrophobic domains can incorporate hydrophobic drugs, such as Erythromycin, Aspirin, 

and Ibuprofen, and raise their solubility [103] when packaged accordingly. When there is a 

favorable free energy change, a hydrophobic solute is localized within the PPO blocks of the 

micelle core [114,115]. Bodratti et al. noted that in the context of drug delivery, one of the most 

useful features of Pluronics is their ability to solubilize hydrophobic drugs, raising their 

bioavailability while still allowing for thermoreversible gelation [104].  

 At concentrations >0.075% CIPRO, it was observed that dextrose began to precipitate 

out of solution. This resulted in the solution becoming a dispersion with different viscoelastic 

behavior that was evident in Tgel determinations. The question then arises, what role does 

dextrose play? Mathew et al. showed that dextrose acts as a stabilizer within the Pluronic 

solution with CIPRO and is commonly formulated with other pharmaceuticals [11]. When the 

Tgel of 5% dextrose in 25% F127 was investigated, there was a ~16 C decrease in Tgel observed. 

Potentially, dextrose additionally acts as a chaperone in coordination with CIPRO within the 

copolymer system to induce micellization and an early gel formation. The gel formation refers to 

the transition from disorder to ordered state where the F127 micelles arrange into a crystalline-

like lattice. The ordered state is based upon the repulsive forces between micelles. Consequently, 
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CIPRO likely interacts with the PEO shell, given its hydrophilic nature during micellization, and 

VAN interacts with the PPO shell of the micelle core.  

3.5 Conclusions  

In this chapter the micellization and gelation properties of antibiotic-loaded amphiphilic 

hydrogels were investigated to determine Tmicelle and H via DSC. The suppression of the 

micellization endotherm and global trends as a function of concentration were investigated for 

VAN, CIPRO, GM, and CEFE. Overall, CEFE showed the greatest effect on Tmicelle ~7 C 

decrease with the addition of 10% CEFE. GM showed the smallest statistically significant 

change in Tmicelle of 2.5 C for 0.8% GM. Additionally, CIPRO, VAN, and GM had an invariant 

effect on the micellization endotherm, while CEFE reduced the size of the endotherm with 

respect to increasing CEFE content. Additionally, the viscoelastic response of CIPRO was 

investigated using oscillatory dynamic mechanical experiments using a rheometer. The 

variations in Tgel were concentration dependent. However, the influence of a quaternary additive, 

dextrose, also contributed to the gelation properties.  

The data suggests that CEFE is modifying the energetic contributions to the micelle core 

formation, whereas VAN, GM, and CIPRO do not. However, the latter findings also show that 

size and solubility also play an important role in antibiotic-loaded hydrogel micellization.   
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Chapter 4 Elution of Pharmaceuticals from 25% F127 Hydrogel 

 

 

4.1 Introduction 

Amphiphilic copolymer-based gels and materials have been studied for a variety of 

pharmaceutical and biomedical applications, such as scaffolds for tissue engineering and 

nanotechnology based drug delivery [108,113]. Pluronics have been approved for FDA use in the 

human body at set concentrations due to some of their properties such as water-solubility and 

low toxicity. Their ability to dissolve hydrophobic solutes and thermoreversible properties have 

made F127 favorable for use in drug delivery and controlled release systems [99,116,117]. 

Though there are studies investigating the material properties of antibiotic elution from Callan et 

al. [118] and medical applications of antibiotic-loaded amphiphilic gels [64,103], there are 

limited studies that investigate the in vitro performance of drug-loaded amphiphiles.  

4.1.1 Cell Culture Assays to Determine Cytotoxicity 

Cell culture live/dead assays have commonly been used to assess the cytotoxicity of 

materials and as an extension, the potency of toxic materials [119]. Live/dead assays, which are 

performed in vitro, have been crucial in gauging antibiotic efficacy and assessing relative 

potency against pathogenic bacterial species. In vivo testing is useful in determining whether 

transport and contact of foreign species trigger cellular responses that could include mutation, 

apoptosis, signaling issues, and changes in phenotype. In assays focused on discovery antibiotic 

potency, the active drug or material is mixed homogeneously within the cell culture medium to 

ensure cellular exposure. Questions arise when antibiotic performance is not related to potency, 
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but more to flux and conveyance from controlled release drug delivery systems. New kinds of 

assays for regulated transport and controlled release toxins are needed. The current study utilized 

a more targeted assay called a modified Zone of Inhibition (ZoI) test where a drug-infused gel is 

deployed in an injectable plug form as opposed to being mixed homogeneously. Instead of using 

an antibiotic-loaded disc, a void was created within the agar to experimentally determine point 

source diffusion.  

ZoI tests are cell culture assays that can be used to clinically measure antibiotic resistance 

[120]. In the test, the targeted compound or antibiotic is placed on media within a cell culture 

dish and cell/virus/bacteria is added and coats the entire exposed surface of the media. Overtime, 

the targeted compound is then left to diffuse in the agar plate. If the added species is susceptible 

to the targeted compound, then a dead region surrounding the target called a zone of inhibition 

forms overtime, and the diameter of the ZoI correlates with a MIC [121]. The test, which can 

take hours or days, can assess if water-soluble targets can inhibit growth of the tested bacteria 

strains. Typically, gauging antibiotic or antimicrobial potency is conducted with liquid 

antimicrobials placed as a droplet and allowed to dry or added to the agar media via a disk [120].  

4.1.2 In Vitro Testing of Antibiotic-Loaded Hydrogels 

If the goal is to assess targets undergoing controlled release from a controlled release 

matrix, then tests that resolve the potency of the target do not consider the challenges in releasing 

from or conveying through the matrix. The time elements associated with these tests include the 

permeation rate through the matrix and subsequent permeation into the agar. Variants on these 

tests have used dialysis assays, which involves adding the matrix within a dialysis membrane and 

tracking the target concentration in a receiver solution overtime [58]. Additionally, growth curve 

measurements based on optical density are commonly used in microbiology to evaluate potency 
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of solutions by monitoring microbial growth and proliferation overtime [122]. These evaluations 

can result in comparisons related to mass transport of drugs out of both the matrix and through 

the membrane. Still, it would be beneficial to use these kinds of functional assays to assess the 

clinical viability and release characteristics. Therefore, an alternative method, specifically one 

that uses antibiotics for controlled release in gels to address localized infections and sepsis, is 

needed to test target-loaded dissolving hydrogel systems.    

4.1.3 Overview 

A wide variety of sequestration matrices have been clinically deployed in controlled drug 

delivery including bone cements, hydrogels of a wide variety of compositions, and sutures, 

among others [52,58,67]. However, analysis from previous works have typically examined the 

physical and antimicrobial properties of matrices separately. The Love research group has been 

interested in injectable therapies based on amphiphilic copolymers that undergo gel formation if 

a high enough concentration is reached. If immersed in a system that dilutes the gel content, the 

gels are coerced to dissolve releasing soluble targets as they are solubilized. This chapter 

highlights protocols to produce a functional experiment and provides guidelines on results, 

analysis using two different kinetic models, the resulting interpretations, and insights.   

 

4.2 Materials and Methods 

4.2.1 Preparation of Gel 

4.2.1.a Preparation of F127 hydrogel 

Pluronic solutions used in these experiments were prepared in a similar manner to that 

described in Chapter 3. Pluronic F127 was obtained from Sigma Aldrich and used as received. 
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The 25% F127 solutions used in these experiments were prepared in 0.9% sterile saline and DI 

water. 

4.2.1.b Incorporation of antibiotic with F127 hydrogel 

Pharmaceutical samples used in these experiments were prepared in a similar manner to 

that described in Chapter 3. Sterile lyophilized vancomycin was obtained from the Alvogen 

Pharmaceutical Company and Gentamicin was obtained from Frenisus Kabi. Table 4.1 lists all 

concentrations and formulations of antibiotics prepared and used in the study. 

 

Antibiotic F127 Solution Concentration (wt%) 

VAN 
25% F127 in 0.9% Sterile Saline 

1%, 2%, 3%, 4%, 5% 

25% F127 in DI water 

GM 25% F127 in DI water 0.4%, 0.6%, 0.8% 

Table 4.1 Details of the samples and formulations and concentrations used for the study. 

 

4.2.2 Cell Culture Assay 

4.2.2.a Preparation of tryptic soy agar plate 

In preparing Tryptic Soy Agar (TSA) plates, 40 g of BD Biosciences nutrient agar was 

dissolved in 1 L Milli-Q water. Once all powder was dissolved in water, the agar solution was 

autoclave sterilized at 121 C at one atmosphere of positive pressure for 15 minutes. The agar 

solution was allowed to cool to 40-50 C before being poured into plates to avoid condensation. 

Eight ml of the agar solution was then dispensed into 6 cm cell-culture dishes and allowed to 

cool until fully solidified at room temperature.   
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4.2.2.b Preparation of agar plate with antibiotic loaded-gel 

The following procedure was used to load agar plated with antibiotic gel. Once the agar 

was set, a 3 mm biopsy punch was used to create a hole in the center of agar fraction (see Figure 

4.1) in the dish which was then replaced by the antibiotic-loaded gel (see Figure 4.2). 

Approximately 30 μL of agar was removed and an equivalent amount of the antibiotic-loaded 

hydrogel was pipetted within the biopsy area in the dish. In addition, traditional cell culture 

plates were prepared where 30 μl of antibiotic gel were pipetted within the center of the plate. 

The gel plates were then left to set covered on the bench top at 1 and 12 hours to facilitate drug 

permeation within the matrix (see Figure 4.3 A-C). The experimental condition was n = 3.  

 

 

Figure 4.1 (A) A Petri dish filled with agar. (B) A biopsy punch is used to punch a hole into the agar. (C) The resulting view of 

the biopsy void. (D) The void is filled with the antibiotic-loaded hydrogel. (E) The resulting view of the filled void with drug-

loaded gel. 
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Figure 4.2 (A) After biopsy punch is used to create void, (B) the void is loaded with antibiotic-loaded hydrogel.  

 

4.2.2.c Bacterial strain, media, and growth conditions 

Methicillin-resistant Staphylococcus aureus (MRSA) USA300 was used in all 

experiments with VAN due to its prevalence in human infections and virulence. Escherichia coli 

(UTI89) was used in all experiments with GM. A glycerol stock of the strain was maintained at -

80 C. Single colony inoculates were grown in tryptic soy broth + 1% glucose w/v (TSBG) under 

shaking conditions at 37 C. Mid-log, optical density (OD) of 0.45-0.55 at 600 nm (OD600) 

cultures were used in cell culture assay experiments and OD600 = 0.05 cultures for bacterial 

growth inhibition experiments. 

4.2.2.d Introduction of bacterial media 

One milliliter of bacterial-laden broth was pipetted into each gel plate (see Figure 4.3 

A.1). Once the broth covered the surface of the plate, the excess broth was immediately 

decanted. The bacterial-loaded gel plates containing a center plug of antibiotic-loaded gel were 

then loaded in an incubator at 37 C for 24 hours. 
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Figure 4.3 (A-C) Radial growth of the clear region as a function of time based on both the dissolution of the gel near the wet 

regions of the agar devoid of amphiphilic copolymer, and due to the permeability of the antibiotic in solution. (A.1) The bacteria 

media is pipetted onto the surface to the agar after the biopsy hole is filled with antibiotic-loaded gel. Excess media is decanted 

off. The bacterial-laden broth is homogenously distributed on the entire surface. 

 

4.3  Data Analysis 

4.3.1 Cell Culture Analysis 

The resulting ZoI quantified how much bacterial growth was inhibited on each plate 

relative to the different concentrations of drug-loaded gels tested. As shown in Figure 4.4, a 

circular region formed corresponding to a ZoI. The darker areas near the terminal edges of each 

plate confirmed viable bacterial growth. The demarcation between the live and dead regions 

denotes a high enough concentration of antibiotic to achieve a MIC. The diameter was recorded 

for each culture and the mean and standard error were calculated. 
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Figure 4.4 Modified cell culture plate loaded with 1% VAN in 25% F127 prepared with saline. (A) Area of bacterial growth (BC) 

diameter of inhibition resulting in a ZoI. Center biopsy punch is marked with circle. 

 

4.3.1.a Minimum inhibitory concentration 

The determination of ZoI provides an estimate of the susceptibility of bacteria to 

antimicrobial compounds. When using ZoI to determine MIC, the standard procedure uses a 

paper disk loaded with the antimicrobial compound of a known dose in a cell culture plate with 

the pathogen being investigated. To estimate the MIC of antibiotic-loaded amphiphilic gels, a 

correlation can be made between the ZoI and the standard value of MIC and its ZoI. Consider 

Equation 4.1: 

𝑎𝑏 = 𝑥𝑦 Equation 4.1 

 

Where a, is the established MIC; b, is the established cell culture inhibition diameter; x, is 

the diameter of inhibition of antibiotic-loaded amphiphilic gel; and y, is the MIC of antibiotic-

loaded amphiphilic gel. If the standard values of MIC and disk diffusion for a particular 

pathogen are known, then the resulting diameter from the modified cell culture analysis can be 

used to determine the MIC associated with the antibiotic-loaded gels. This study investigated the 

ZoI for VAN and GM. It is important to note that standard disk diffusion testing is not an 

entirely reliable test for VAN because it is not able to differentiate among VAN susceptible 
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isolates of MRSA [123]. Therefore, the MIC for VAN was unable to be determined using this 

method. The MIC values for GM-loaded amphiphilic gels were determined using the acceptable 

quality control ranges for susceptibility testing for gentamicin provided by the manufacturer and 

the CLSI document M100-S23. 

4.3.2 Bacteria Growth Inhibition 

As a complementary experiment, an elution study of VAN in 25% F127 was done to 

investigate bacterial growth inhibition. Figure 4.5 depicts the experimental process described 

below. 

 

 

Figure 4.5 (A) 100 µl of drug-loaded gel is pipetted into 48-well plate. (B) 900 µl of milli-Q water is added after gel has set at 37 

ºC for one hour. (C) At every hour 100 µl aliquots are taken from the 48-well plate. (D) The resulting aliquots are combined with 

bacterial media in a 96-well plate and then placed in a microplate reader. 
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4.3.2.a Elution Trials 

In a 48-well clear bottom plate (Fisherbrand), 100 µl of 1%, 2%, 3%, 4%, and 5% VAN 

in 25% F127 and neat 25% F127 were plated. The gel was allowed to set for one hour at 37 ºC 

and then topped with 900 µl of Milli-Q water. The plates were then stored at 37 ºC for 6 hours, 

and at 1-hour increments 100 µl aliquots were removed and set aside. The experimental 

condition was n = 3. The mean and standard error for each sample were calculated for each time 

point. 

4.3.2.b Bacterial growth curve measurements with a microplate reader 

For the growth curve measurements with a microplate reader, 96-well clear bottom 

microplates (Fisherbrand) were used. To measure the growth of bacteria, 100 µl of prepared 

bacterial cultures (with aliquots from the elution trials) were transferred to the microplate wells. 

The microplates were covered with PCR film and placed in the microplate reader to monitor the 

OD at 600 nm of the bacteria in the wells. The plates were maintained at 37 ºC. The OD of each 

well was read every 10 minutes for 24 hours. The experimental condition was n = 3. The mean 

and standard error for each sample were calculated. 

4.3.2.c Application of mathematical model for E. Coli growth 

Data were collected in the growth experiments that allowed for the dynamic measurement 

of optical density of the growing bacteria through the plate reader. The plate reader allowed for 

kinetic analysis of the growth rates to occur while VAN was releasing from gels-relative to a 

neat system. There are many different models that could be applied to understand how to 

represent dynamic changes, such as biological growth. Halley and Mackay presented a number 

of different kinetic models that could be used to represent dynamic data like what has been 

generated in the present study [124]. Two different models were specifically used for this 
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analysis, one of which was a Gompertz-based model (see Equation 4.2) that yielded a growth 

rate constant toggling between an initial and a final measurement of optical density. The 

Gompertz model yields a constant, k, that broadly represents the growth rate. The Gompertz 

model is popular in representing biological growth data in cell culture. The model does not 

account for any kind of induction or latent period before growth commences. The second model 

that was considered for the growth is called a Boltzmann sigmoidal model (see Equation 4.3), 

which incorporates two separate time constants that could yield more accurate representations of 

the dynamic data. Calculations for the elution trial aliquots at different concentrations (1%, 2%, 

3%, 4%, and 5%) for minimum (Y0) and maximum (Ym) optical density, specific growth rate (k), 

and lag coefficient (1/k) were carried out by applying the modified Gompertz equation (see 

Equation 4.2) using GraphPad Prism software (GraphPad Software, San Diego, CA, USA).  

𝑦 = 𝑦𝑚 ∗
𝑦𝑜
𝑦𝑚

𝑒(−𝑘∗𝑥)

 Equation 4.2 

 

The Gompertz model is one of the most frequently used nonlinear regression models used to fit 

growth data by microbiologists [125]. In analyzing bacterial growth, a three-parameter Gompertz 

model is commonly used, which has been discussed by Jeffries et al. [126]. It is important to note 

that there are Gompertz with other parameters [127]. Comparisons were made between the initial 

loading concentrations of the aliquots taken at 1, 2, 3, 4, 5, and 6 hours of elution and the control 

aliquots.  

An alternative kinetic model called the Boltzmann sigmoidal model (see Equation 4.3) 

includes two time constants that allow for the determination of a latent period or induction time 

before growth is triggered [128–130].    



 65 

𝑦 =
𝐴1 − 𝐴2

1 + 𝑒(𝑥−𝑥0)/𝑑𝑥
+ 𝐴2 

Equation 4.3 

Here, A1 and A2 represent the lower and upper thresholds of optical density, respectively.   

There are two time constants that need resolution, x0, represents the time required for the 

observable value, A, to toggle halfway from A1 to A2. The second time constant, dx, is the slope 

of the curve at x0, which is assumed as the period of maximum growth. Simple math yields that 

there is a period of 4*dx that represents the time to toggle completely between A1 and A2. Thus, 

an appropriate induction time could be represented in the Boltzmann model as the expression x0-

2*dx as the latent period before growth occurs. If the slope of the curve is large, this occurs over 

a very short interval dx, so like the Gompertz model, a rapid growth rate corresponds to a short 

time interval during which the transformation occurs.   

4.4 Results/Discussion 

4.4.1 Modified Cell Culture Assay  

A traditional bacterial culture was performed to compare the efficacy of the modified 

method for antibiotic-loaded hydrogels. As shown in Figure 4.6, 2% w/v VAN was plated via 

biopsy and droplet method. In the biopsy culture plate, there was a non-uniform area of 

inhibition that occurred. However, the droplet culture plate had complete inhibition.  
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Figure 4.6 Two percent VAN in saline sans 25% F127 to the left it in the modified cell culture assay, and to the right the 

traditional droplet cell culture assay both after 24 hrs incubation. 

 

The VAN loaded hydrogels in saline that were plated via the droplet method did not show 

complete inhibition as compared to the traditional culture. The cultures showed that as antibiotic 

concentration increased, the area of inhibition also increased. The results are reported in relation 

to the diameter of the inhibition area are shown in Figure 4.7. A similar trend was also observed 

in the biopsy plates for VAN in saline and DI and GM in DI, which are shown in Figure 4.7 and 

Figure 4.8, respectively.   
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Figure 4.7 Resulting diameter of elution of VAN from 25% F127 Gel prepared in DI water via cell culture assay after 24 hrs 

incubation. 

 

Figure 4.8 Resulting diameter of elution of GM form 25% F127 Gel prepared in DI water and tested in a modified cell culture 

assay after 24 hrs incubation. An increase in the inhibition diameter increased in relation to concentration with the highest 

concentration resulting in complete inhibition of growth. 
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4.4.2  Bacterial Growth Inhibition and Determination of Lag Time and Growth Rate  

For a more quantitative analysis, the Gompertz growth model was used (a) to fit all of the 

OD curves (see Figures 4.9 and 4.10) and (b) to find the growth rate and lag times with respect to 

the VAN concentrations tested. Where y0 is the starting population, ym is the maximum 

population and 1/K is the time required to achieve an inflection point during the growth phase of 

the bacterial cell culture experiments. K is defined as a lag coefficient.   

 

 

Figure 4.9 Bacterial growth inhibition results plotted with results of the Gompertz analysis of 1% VAN growth curves for 1- to 6-

hr elution study before exposing the bacteria to the plate. Solid line represents time points when the elution sample was taken; 

dashed line represents Gompertz model fit. Results show that as time progressed less VAN eluted from the samples 

corresponding to an increase in bacterial growth in the samples, however growth was suppressed 70-80% less than control. 
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Figure 4.10 The resulting OD curves were plotted from the results of the bacterial growth experiments and categorized by time. 

The highest curve corresponds to the neat gel and lower curves to the gels loaded with antibiotics. Figures show the average of 

three measurements. 

 

As shown in Figure 4.10, the maximum OD is plated against the growth rate. When 

compared against the control, the antibiotic-loaded hydrogel samples were successfully able to 
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inhibit bacterial growth and, in turn, decreased ym and lag time. The results also showed that on 

average, the initial time points at lower concentrations of VAN were more efficient at inhibiting 

bacterial growth relative to the higher concentrations with respect to optical density. 

Additionally, when assessing a MIC, none of the VAN loaded reached the optical density of the 

neat bacterial growth curve or near it (see Figures 4.9 and 4.10). Further work is needed to 

determine the MIC of VAN- and GM-loaded hydrogels and to further refine bacterial growth 

inhibition results. It is important to note that although MIC is indicative of the inhibition of 

bacterial growth, it provides limited information about a specific bacterial resistance mechanism. 

Growth studies represent the earliest stage of the bacterial growth cycle and provide insight on 

bacterial kinetics and can also be used to infer MIC values. 

 

 

Figure 4.11 Max Optical density and lag time with respect to concentration. When compared against the control, the antibiotic-

loaded F127 gels have a lower max OD (inhibition is occurring) and lower lag time (growth rate is increasing, indicating slow 

bacterial growth). 
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As the bacterial cells interact with the antibiotic present, they begin to change gene 

expression. Once they adapt to the new environments and begin to grow again, the physiological 

changes are reflected in the lag time and growth rate. The lag phase is hypothesized to be 

involved in fighting pathogens. For example, if there is an increase in lag time, then there is a 

decrease in the amount of antibiotic eluted from the amphiphilic gels available to curtail bacterial 

replication [128,129]. However, using the three-parameter Gompertz function does not provide a 

clear description of what is happening. Given that the antibiotic used is an inhibitor, its 

mechanism of action is different from that of other bacteriostatic and bactericidal drugs that are 

commonly used with the Gompertz model. Perhaps a different model would be better suited to 

provide insights on the growth rate of the bacteria in the presence of an inhibitor.  

The Boltzmann model is essentially a sigmoidal model that remains at A1 until sufficient 

time has lapsed for the transformation to occur relative to the two Boltzmann time constants. If 

there was a sufficient lag in the growth rate, the extra refinement in the Boltzmann model should 

result in a better fit.  

As shown in Figure 4.12, the Boltzmann model and the Gompertz model were deployed 

using Origin. The value of the Boltzmann model compared to the Gompertz model is that it can 

accommodate a latency period before growth occurs. Figure 4.12 only shows positive times in 

the Boltzmann model. The growth rate of the neat bacteria by the two models were compared 

with and without antibiotic, and were compared to a neat copolymer plug devoid of inhibitor.  

The growth rate based on OD goes from 18.7 hrs-1 and the 1-hour aliquot rate was 12.8 hrs-1 

using the Boltzmann model. The reduced growth rate shows that the bacterial in the control were 

proliferating much faster than in the presence of the inhibitor. The Gompertz model is unable to 

deliver the type of insight provided by the Boltzmann model. The growth rate as determined by 
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Gompertz went from 25.7 hrs-1 for the control to 63.6 hrs-1 for the samples loaded with VAN, 

which seems a little counterintuitive.  

 

 

Figure 4.12 The Gompertz and Boltzmann models run on 1% VAN 1-hour Aliquot data. The dashed line represents the models 

fitted and black squares represent the data.  

 

A separate question that arose was whether the Boltzmann model could extract a lag time 

from the analysis for a very effective inhibitor. Taking the slope of the fitted curves and 

resolving the value of time at x0-2dx, the deviations in the curves from the initial optical density 

are occurring almost instantaneously. Both models seem to fit the data well (see Appendix). The 

Boltzmann model’s kinetic parameters appear to be following the model of inhibition intuitively. 

The fact that inhibited growth might be occurring in some fraction of the dish probably makes 

the distinction between the models somewhat moot. 

4.4.2.a Considerations 

There are two different types of issues with a new form of assay: one in the experimental 

details of producing samples and one in the analysis of the data. In modifying the traditional cell 

culture assay for use with an antibiotic-loaded hydrogel, there were challenges involved in the 

protocol. One challenge was determining how to introduce the gel into the cell culture dish. After 
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biopsy, the antibiotic amphiphilic gel was pipetted into the dish. However, due to the gelation 

properties, the gel was not set after initial introduction. As the gel set, elution of antibiotic to the 

surface and/or agar matrix occurred with the droplet and biopsy dishes, respectively. The gel 

plates via droplet and biopsy were initially set for 10 minutes before adding the bacterial broth. 

When the bacterial media was pipetted onto plates that were set for an hour, the inhibition 

regions did not form concentric circles, but rather varied nonuniform inhibition regions, as 

shown in Figure 4.13. Since the gel was not set at the time interval, the F127 would “drag” and 

streak VAN that had eluted from the gel when the liquid bacteria broth was introduced. When 

the gel was allowed to set longer (>1 hour), these variances did not occur. A similar pattern 

occurred with VAN (see Figure 4.6) in saline without F127; however, complete inhibition was 

observed in the droplet because the VAN was completely soluble in the bacterial broth, and a 

misshapen area was observed in the biopsy where the VAN “spilled” out and mixed with broth. 

These challenges were noted, and the protocol was adapted to gather the results presented in this 

chapter.  

 

 

Figure 4.13 (Left) Gel is not set within biopsy before bacteria introduction. (Right) Gel not set with droplet before bacteria intro. 
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 Additionally, determining how to quantitatively assess bacterial growth inihibition was 

challenging. Due to the physical structure of the antibiotic-loaded gel, it was not feasible to use 

as prepared to perform a growth curve study. Therefore, an elution study was needed to assess 

the efficacy of the eluted VAN. However, there were potential sources of error with the method 

employed, such as mixing the gel with the aliquot, which caused a misreading of the absorbance. 

Also, it is inconceivable that drug permeation is too fast to be fully released during the time scale 

of the experiments. Alternative experiments are needed to correlate the bacterial growth 

inihibition curves to a concentration to determine MIC, but the initial effort looks promising. 

More experimentation is needed to replicate these results and to develop a figure of merit, such 

as the rate constant from the Boltzmann model. The best that can be expected is a reduced 

growth rate, not complete inhibition.   

4.5 Trends and Conclusions 

Adapted bacterial culture assays have been used as a standard in vitro experiment to 

determine a zone of inhibition of an antibiotic to assess antimicrobial activity and potency. The 

modified in vitro method using a cut out to load the antibiotic-loaded drug can help assess the 

diffusion of antibiotics loaded in amphiphilic gels by assessing a zone of inhibition following 

insertion and incubation. VAN produced a ZoI range of 3.0-3.9 cm for the biopsy method and 

3.5-3.9 cm for the droplet method for the 1-5% concentrations. GM ranged from 3.5 cm to 

complete inhibition within the cell culture plate. When compared against a traditional droplet 

method, the biopsy method more precisely sensed a concentration dependent inhibition for 

concentration ranges of vancomycin studied. Incorprating the Gompertz model in the bacterial 

growth inihibition experiment allowed for a quantitaive assessment of the relative growth rate of 

bacteria when exposed to antibiotic-loaded gel. In the case of the Boltzmann model, the growth 
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rate in the neat samples, as evidenced by the analysis, is clearly higher than those containing 

VAN. Additional refinement using a more informed perspective on the analysis of this data is 

needed to quantify the effects in a more controlled way. 

Adding antibiotics in the plug-in-plate model reduces the overall amount of bacterial 

proliferation as noted by both analytical models. There were some noted reductions in the 

inflection time as well when antibiotics were included, which ranged from 0.469-1.102 hrs for 1-

5% VAN, and the control had the highest values increasing with respect to VAN concentration. 

This study illustrates a new approach to monitior antimicrobial properties and kinetics by 

providing a quantiative and mechanistic evaluation. 



 76 

Chapter 5 Conclusions and Future Works 

5.1 Summary 

The aim of this dissertation was to survey and probe how antibiotic-loaded drug delivery 

platforms could potentially be used to treat deep bone infections and develop schemes to 

investigate the antimicrobial properties of similar antibiotic-loaded amphiphilic gels that could 

be more effective. Investigations to establish the baseline efficacy of current drug-loaded 

platforms using bone cements, to address thermophysical changes in gelation formation of drug-

loaded 25% amphiphilic copolymer F127 gels, and to assess their antimicrobial elution 

characteristics were completed.  

A survey of the literature identified studies in which both controlled drug release and 

mechanical behavioral assessments on samples submerged for periods of time had been 

conducted on drug-infused cements. The drug of choice was vancomycin (VAN) in part due to 

its (a) higher potency relative to other antibiotics; (b) common usage for staph infections; and (c) 

direct relation to high concern infections, such as those linked with periprosthetic joint 

infections. The literature review evaluated the controlled release of vancomycin from a myriad of 

different matrices all formed primarily from various commercial bone cements and formulated in 

the clinics. Takeaways from the limited pool of published research indicates that large fractions 

(> 99%) of the infused vancomycin remain sequestered in the cement and are not bioavailable 

after solidification. Antibiotic fluence from samples exposed to a receiver solution ranged from 1 

to 283 μg/cm2hr primarily depending on dose level. Most of the drug release happened very soon 

after immersion, and perhaps some variation in the initial fluence measurements depended on 
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when the first measurement was taken. The initial strength of the various antibiotic-loaded 

samples as produced was between 52 and 96 MPa. Simulated exposures in a fluid environment 

by submersion reduced the antibiotic-loaded strengths between 3% and 29%. Some strength 

measurements were noted below the ASTM F451 standard for acrylic bone cement although 

drug-releasing spacers likely have different requirements. The glassy behavior of the cured 

cement led to low permeability and a burst response, which were noted for other drugs 

formulated into cements.   

Based on the aforementioned results, a study was performed on the thermophysical and 

viscoelastic properties of Pluronic F127 gels loaded with vancomycin (VAN), ciprofloxin 

(CIPRO), cefepime (CEFE), and gentamicin (GM) as a function of concentration as they form a 

softer, drug-infused gel using DSC and rheology. The rationale for the study was matrices with 

more molecular mobility and a lower glass transition temperature would be more conducive to 

drug permeability from its bulk. Variations in H, Tmicelle, and Tgel when increasing concentration 

of ternary additives were present. The largest decrease in Tmicelle was seen with 10% CEFE in 

25% F127, while the smallest, ~2.5 C, was seen with 2% CEFE. Notably, though Tmicelle and H 

were invariant with CIPRO concentration, there was a ~2 C decrease from the neat Tmicelle when 

CIPRO was already formulated with dextrose when mixed with the amphiphile, which had a 

greater influence on decreasing the endotherm energy from ~4.5 J*mol-1 to ~3.9 J*mol-1. The 

results showed that solubility and molecular size play a role in thermophysical and dynamic 

mechanical analysis of micellization and gelation.  

A modified cell culture assay and bacterial growth inhibition protocol was developed to 

investigate gel-elution characteristics. The specific objectives of the cell culture analysis were to 

experimentally determine a “zone of inhibition” (ZoI) that would result from antibiotic-loaded 



 78 

amphiphilic gels partially diffusing through agar and interacting with bacteria added to the 

culture plates, using standing microbiology techniques including microscopy and microplate 

reader absorbance. The adapted protocols required the removal of some fraction of the normal 

agar gel and replacing it with drug-infused amphiphilic gel plug. After incubation time that 

allowed the drug to permeate into the agar from the gel, a dead zone around the plug—as 

typically observed—was noted as a zone of inhibition with length or radial units and as a reduced 

absorbance. The spatial ZoI was resolved experimentally for the VAN (3.5-3.9 cm) and GM 

(3.5-5.7 cm) gels studied. Mass transport of the antibiotics from F127 hydrogels suppressed 

bacterial growth compared to neat samples and the data of the inflection time did not show a 

systematic trend with antibiotic concentration.  

Two different kinetic models were applied to the absorbance data tracked by the plate 

readers including both the Gompertz and Boltzmann models. Both models incorporated time 

constants allowing for an assessment of the growth rate, although the Boltzmann model also 

allowed for an induction time before any growth was noted. Both models appeared to fit the data 

reasonably well, but both the modified assay and the modeling need further refinement to gauge 

the suppression quantitatively. Nonetheless, the gel in biopsy plug method seems to be a 

promising method to determine ZoI. 

5.2 Future Work  

5.2.1 Structural Evolution Characteristics  

The data presented in this dissertation present a more complete picture of the interaction 

of antibiotics formulated with amphiphilic copolymers. While CEFE showed a concentration 

dependent suppression in the temperature at which gels form, which is in line with other 

researchers probing the perturbation of micelle formation as a result of small molecule addition, 
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VAN was invariant with concentration. CIPRO showed an initial effect on the endotherm energy 

and Tmicelle, but the suppression was lost at higher concentration. GM showed an invariant effect 

on endotherm energy, but a similar response to CEFE on Tmicelle. The difference was attributed to 

differences in both solubility and molecular weight of the different drugs. If VAN solubility (>1 

KDa) was very low due to its larger molecular weight compared to the other drugs (300-500 Da), 

that could explain the invariance on Tmicelle with increasing concentration. More work on the true 

solubility of these antibiotics and Pluronics should be completed. While DSC and rheology 

provide insights on the energetics of micellization and gelation, respectively, a more detailed 

investigation into the structural evolution is needed to have a more complete picture on the 

molecular interactions occurring.  

Scattering studies using Small Angle X-ray Scattering (SAXS) and/or Small Angle 

Neutron Scattering (SANS) would inform structural changes. Scattering studies were proposed 

as part of the original work, but the current pandemic has made controlled experimentation at the 

SAXS user facilities more of a challenge. SAXS would inform changes in the micelle lattice 

when loaded with antibiotics and SANS would improve the scattering contrast between the 

micelle core and shell to determine changes in the micelle lattice that are influenced by core size 

or shell interactions with antibiotics. It is unfortunate that there were essentially no opportunities 

to probe the drug-regulated micelle formation by SAXS due to the coronavirus pandemic and the 

challenges with remote access at the national laboratories.    

5.2.2 Elution Characteristics and Determination of MIC 

A deeper analysis is needed on the elution and antimicrobial properties of antibiotic-

loaded gels. Here, the selection of a true antibiotic over an inhibitor like VAN might be a more 

useful assessment. Live/dead staining of the plug filled tissue culture plates seemed really 
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promising and opting for formulating a true antibiotic might show the elution characteristics in a 

functional assay more clearly. Also, more direct measurements of elution using tools, such as 

high-performance liquid chromatography (HPLC), may provide a more direct assessment of 

antibiotic mobility, and linking a functional MIC to the antibiotic elution from the gels might be 

possible. The Gompertz model with three parameters, one of which was a time constant, was 

useful in assessing the kinetics of bacterial growth particularly in the presence of inhibitors; but 

growth still happened from the onset of incubation. A more powerful kinetic model like the four-

parameter Boltzmann model with two time constants might prove more capable of distinguishing 

between the responses of the gel in biopsy plug assessments based on antibiotic concentration, 

particularly if the permeation was so extensive that there was a much longer incubation time 

before the onset of bacterial growth. More modeling is needed even for the rudimentary analyses 

that have been done here. 

Finally, some level of diffusion-based finite element modeling (FEM) would be useful in 

developing a predictive model for assessing the rates of release and the corresponding diameter 

of the zone of inhibition in an agar diffusion assay. Coupling the model with experimentally 

determined MIC and lag time could be used as an alternative method to develop standard curves 

for antimicrobial assays. This approach can also be extended to quantify other pharmaceuticals 

and Pluronic combinations.
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Appendix 

 

The Boltzmann sigmoidal and Gompertz model were deployed using Origin. The models 

were fit using data for control bacterial growth sample aliquots at one hour and six hours, and 

1% VAN bacterial growth sample aliquots at one hour and six hours.  

The Gompertz growth model for population studies in Origin uses the equation presented 

in Appendix Equation 1, 

𝑦 = 𝑎𝑒−exp⁡(−𝑘(𝑥−𝑥𝑐)) Appendix Equation 1 

Where y is the expected value of growth as a function of time, and x, is time, a represents the 

maximum bacterial absorbance, k is a growth rate coefficient (which affects the slope of the 

curve), and xc represents the time at the inflection.  

 The Boltzman sigmoidal model in Origin uses the equation presented in Appendix 

Equation 2, 

𝑦 =
𝐴1−𝐴2

1 + 𝑒(𝑥−𝑥0)/𝑑𝑥
+ 𝐴2 Appendix Equation 2 

Where y is the expected value of growth as a function of time, and x, is time, A1 and A2 represent 

the initial and final bacterial absorbance respectively, x0 represents the time at the inflection, and 

dx is the time constant. 

Origin reported the associated parameters and statistics for the respective models used on 

the sample data sets are presented in Appendix Tables 1 through 12. 

Gompertz Fit Control Parameters  
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Sample Parameters Value 
Standard 

Error 
t-Value Prob>|t| Dependency 

6 hr a 1.418 0.021 68.82 3.17E-37 0.603 

6 hr xc 0.102 0.001 82.50 8.27E-40 0.257 

6 hr k 33.819 2.079 16.27 2.53E-17 0.522 

1 hr a 1.395 0.015 93.19 1.50E-41 0.631 

1 hr xc 0.064 0.001 56.72 1.78E-34 0.277 

1 hr k 25.775 1.124 22.94 7.48E-22 0.547 
Appendix Table 1 Six-hour and one-hour aliquot control sample parameters determined by Gompertz Fit in Origin.  

Gompertz Fit Control Statistics 

Statistics 6 hr 1 hr 

Number of Points 36 36 

Degrees of Freedom 33 33 

Reduced Chi-Sqr 0.00276 0.00167 

Residual Sum of 

Squares 
0.09124 0.0551 

R-Square (COD) 0.99212 0.99315 

Adj. R-Square 0.99164 0.99274 

Fit Status Succeeded(100) Succeeded(100) 
Appendix Table 2 Six-hour and one-hour aliquot control sample statistics of Gompertz model. 

Gompertz Fit Control Model 

Model SGompertz 

Equation y = a*exp(-exp(-k*(x-xc))) 

Plot 6 hr 1 hr 

a 
1.41781 ± 

0.0206 

1.39513 ± 

0.01497 

xc 
0.10176 ± 

0.00123 

0.06415 ± 

0.00113 

k 
33.81881 ± 

2.07897 

25.77522 ± 

1.12377 

Reduced Chi-Sqr 0.00276 0.00167 

R-Square (COD) 0.99212 0.99315 

Adj. R-Square 0.99164 0.99274 
Appendix Table 3 Six-hour and one-hour aliquot control sample Gompertz model determined by Origin.  

Boltzmann Control Fit Parameters 

Samples Parameters Value 
Standard 

Error 
t-Value Prob>|t| Dependency 

6 hr A1 0.018 0.017 1.05 0.30043 0.523 

6 hr A2 1.372 0.014 99.89 1.66E-41 0.417 
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6 hr x0 0.114 0.001 95.11 7.93E-41 0.446 

6 hr dx 0.018 0.001 16.86 1.77E-17 0.469 

6 hr span 1.354 0.024    

6 hr EC50 1.120 0.001    

6 hr EC10 1.077 0.003    

6 hr EC20 1.092 0.002    

6 hr EC80 1.149 0.002    

6 hr EC90 1.166 0.003    

1 hr A1 -0.047 0.029 -1.61 0.1162 0.881 

1 hr A2 1.364 0.009 155.27 1.26E-47 0.553 

1 hr x0 0.078 0.002 50.92 3.36E-32 0.823 

1 hr dx 0.027 0.001 21.98 7.12E-21 0.764 

1 hr span 1.410 0.033    

1 hr EC50 1.081 0.002    

1 hr EC10 1.020 0.004    

1 hr EC20 1.042 0.003    

1 hr EC80 1.122 0.002    

1 hr EC90 1.146 0.002    
Appendix Table 4 Six-hour and one-hour aliquot control sample parameters determined by Boltzmann model. 

Boltzmann Control Model Statistics   

Statistics 6 hr 1 hr 

Number of 

Points 
36 36 

Degrees of 

Freedom 
32 32 

Reduced Chi-Sqr 0.00192 7.36E-04 

Residual Sum of 

Squares 
0.06141 0.02357 

R-Square (COD) 0.9947 0.99707 

Adj. R-Square 0.9942 0.9968 

Fit Status Succeeded(100) Succeeded(100) 
Appendix Table 5 Six-hour and one-hour aliquot control sample statistics of Boltzmann model.  

Boltzman Control Model 

Model Boltzmann 

Equation y = A2 + (A1-A2)/(1 + exp((x-x0)/dx)) 

Plot 6 hr 1 hr 

A1 0.01827 ± 0.01736 -0.04674 ± 0.02894 

A2 1.37213 ± 0.01374 1.36355 ± 0.00878 

x0 0.11356 ± 0.00119 0.07792 ± 0.00153 
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dx 0.0181 ± 0.00107 0.02661 ± 0.00121 

Reduced Chi-Sqr 0.00192 7.36E-04 

R-Square (COD) 0.9947 0.99707 

Adj. R-Square 0.9942 0.9968 
Appendix Table 6 Six-hour and one-hour aliquot control sample Boltzmann model determined by Origin.  

 

Gompertz Fit 1% VAN Parameters  

Sample Parameters Value 
Standard 

Error 
t-Value Prob>|t| Dependency 

6 hr a 0.205 0.002 108.28 1.08E-43 0.235 

6 hr xc 0.020 0.001 17.83 1.65E-18 0.170 

6 hr k 53.648 4.199 12.78 2.52E-14 0.285 

1 hr a 0.109 0.001 77.23 7.21E-39 0.193 

1 hr xc 0.016 0.002 10.22 9.45E-12 0.186 

1 hr k 63.652 8.024 7.93 3.79E-09 0.280 
Appendix Table 7 Six-hour and one-hour aliquot 1% VAN samples parameters determined by Gompertz model.  

Gompertz Fit 1% VAN Statistics 

Statistics 6 hr 1 hr 

Number of Points 36 36 

Degrees of Freedom 33 33 

Reduced Chi-Sqr 8.22E-05 5.00E-05 

Residual Sum of 

Squares 
0.00271 0.00165 

R-Square (COD) 0.96755 0.91479 

Adj. R-Square 0.96558 0.90963 

Fit Status Succeeded(100) Succeeded(100) 
Appendix Table 8 Six-hour and one-hour aliquot 1% VAN samples statistics of Gompertz model.  

Gompertz Fit 1% VAN Model 

Model SGompertz 

Equation y = a*exp(-exp(-k*(x-xc))) 

Plot 6 hr 1 hr 

a 0.20455 ± 0.00189 0.10868 ± 0.00141 

xc 0.02011 ± 0.00113 0.01582 ± 0.00155 

k 53.64831 ± 4.1988 63.65237 ± 8.02417 

Reduced Chi-Sqr 8.22E-05 5.00E-05 

R-Square (COD) 0.96755 0.91479 
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Adj. R-Square 0.96558 0.90963 
Appendix Table 9 Six-hour and one-hour aliquot 1% VAN samples Gompertz model determined by Origin.  

 

 

 

Boltzman 1% VAN Parameters 

Sample Parameter Value 
Standard 

Error 
t-Value Prob>|t| Dependency 

6 hr A1 0 0 -- -- 0 

6 hr A2 0.204 0.002 90.353 0.000 0.187 

6 hr x0 0.028 0.001 19.418 0.000 0.101 

6 hr dx 0.014 0.001 9.726 0.000 0.113 

6 hr span 0.204 0.002    

6 hr EC50 1.028 0.001    

6 hr EC10 0.997 0.003    

6 hr EC20 1.009 0.003    

6 hr EC80 1.048 0.003    

6 hr EC90 1.060 0.004    

1 hr A1 -0.578 2.392 -0.242 0.811 1.000 

1 hr A2 0.109 0.001 74.126 0.000 0.384 

1 hr x0 -0.028 0.089 -0.312 0.757 1.000 

1 hr dx 0.019 0.006 3.110 0.004 0.995 

1 hr span 0.687 2.393    

1 hr EC50 0.973 0.086    

1 hr EC10 0.932 0.095    

1 hr EC20 0.947 0.092    

1 hr EC80 0.999 0.081    

1 hr EC90 1.015 0.077    

Appendix Table 10 Six-hour and one-hour aliquot 1% VAN samples parameters determined by Boltzmann model. 

Boltzmann 1% VAN Statistics  

Statistics 6 hr 1 hr 

Number of Points 36 36 

Degrees of Freedom 33 32 

Reduced Chi-Sqr 1.25E-04 4.64E-05 

Residual Sum of 

Squares 
0.00413 0.00149 



 86 

R-Square (COD) 0.95058 0.92323 

Adj. R-Square 0.94759 0.91603 

Fit Status Succeeded(100) Succeeded(100) 
Appendix Table 11 Six-hour and one-hour aliquot 1% VAN samples statistics of Boltzmann model.  

 

 

Boltzman 1% VAN Model 

Model Boltzmann 

Equation y = A2 + (A1-A2)/(1 + exp((x-x0)/dx)) 

Plot 6 hr 1 hr 

A1 0 ± 0 
-0.57784 ± 

2.39201 

A2 
0.20352 ± 

0.00225 
0.10876 ± 0.00147 

x0 
0.02788 ± 

0.00144 

-0.02769 ± 

0.08882 

dx 
0.01391 ± 

0.00143 
0.01938 ± 0.00623 

Reduced Chi-Sqr 1.25E-04 4.64E-05 

R-Square (COD) 0.95058 0.92323 

Adj. R-Square 0.94759 0.91603 
Appendix Table 12 Six-hour and one-hour aliquot 1% VAN samples Boltzmann model determined by Origin.  
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