
Interpretable and Realtime Predictions of

Social Interactions for Autonomous Vehicles

by

Cyrus Anderson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in The University of Michigan
2021

Doctoral Committee:

Associate Professor Matthew Johnson-Roberson, Co-Chair
Assistant Professor Ram Vasudevan, Co-Chair
Associate Professor Necmiye Ozay
Associate Professor Lionel Robert

Cyrus Anderson

andersct@umich.edu

ORCID iD: 0000-0003-1464-7676

© Cyrus Anderson 2021

To Hitomi

ii

ACKNOWLEDGEMENTS

Were it not for all the people who supported me, I would not have made it

this far. My advisors, Professor Matthew Johnson-Roberson and Professor Ram

Vasudevan, supported me greatly through many discussions and encouragement that

helped me get back on the road after getting stuck. They have also played a major

role in shaping how I think about robotics and more broadly. I am immensely

grateful for having had them as mentors. Thank you also to members of my doctoral

committee, Professor Necmiye Ozay and Professor Lionel Robert for all of your

guidance, support, and insights.

My labmates in the Ford Center for Autonomous Vehicles (FCAV), as well as in

the Deep Robot Optical Perception (DROP) lab and the Robotics and Optimization

for the Analysis of Human Motion (ROAHM) lab have been a great source of positive

energy and insights. Mani worked with me when I first entered the lab and helped

me to get my bearings. He and Ming-Yuan have readily listened to my wild ideas

and been great support ever since. I am grateful to Matt and Alexa also for making

the space in many mornings to talk about recent events or anything else, and always

the insights on coffee. A large part of the experience would not be present without

mentioning food. As much has progressed in lab, outside of lab my culinary skills

have also undergone major change. Thank you to Carl, for helping provide that

spark, and for the massive support in working with the various tools in lab. I also

thank Jinsun and Junming, who also helped to make the lab potlucks a delicious

success, and who have been a great pleasure to work with too. Xiaoxiao has a

deadly pie recipe, has been an amazing collaborator, and a great mentor when I was

still finding my way. Wonhui, for listening to my culinary escapades, and helping me

to find my direction in research. Without help from Charlie and Trinh, much of this

work would have taken considerably longer as well.

I also am thankful to be part of the Robotics community at the University of

Michigan. It takes significant effort to cultivate such a supportive and vibrant en-

vironment, and I am glad to have been able to participate. Thank you to Damen,

Denise, and Dan for all of your support in the program as well. This work also would

not be possible without the support of the Ford Motor Company, via the Ford-UM

iii

Alliance under awards N022884 and N028603.

Thank you to my friends and family, for all of the support over the years. And

especially thank you to my loving partner, from whose example I am always learning,

Hitomi.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Autonomous Vehicles . 1
1.2 Role of Predictions in Autonomous Driving 2
1.3 Trajectory Prediction . 3
1.4 Model-based and Model-free Predictions . 4
1.5 Sources of Uncertainty . 5
1.6 Realtime Computing . 5
1.7 Gaps in the Literature . 6
1.8 Contributions . 6
1.9 Summary . 7

II. Stochastic Sampling Simulation for Pedestrian Trajectory Prediction . . . 8

2.1 Introduction . 8
2.2 Related Work . 10

2.2.1 DNN-Based Pedestrian Trajectory Prediction Methods 10
2.2.2 Physics Simulators and Domain Randomization 10
2.2.3 Data Augmentation and (Real-)Data-Driven Synthesis 11

2.3 Stochastic Sampling-Based Simulation . 12
2.3.1 Notations and Pre-computation . 12
2.3.2 Sampling Number of Pedestrian and Walking Speed 13
2.3.3 Pedestrian Trajectory Sampling . 13

2.4 Experiments . 14
2.4.1 Baselines . 15
2.4.2 Evaluation Metrics . 16
2.4.3 Training Parameters . 17
2.4.4 Comparison of Prediction Performance 17
2.4.5 Ablation Study . 18

2.5 Conclusion . 20

v

III. Low-Latency Trajectory Predictions
for Interaction Aware Highway Driving . 23

3.1 Introduction . 23
3.2 Related Work . 24

3.2.1 Single Agent Prediction . 25
3.2.2 General Interaction-Based Trajectory Prediction 25
3.2.3 Ramp Merging Trajectory Prediction 26

3.3 On-Demand Trajectory Predictions . 26
3.3.1 Problem Statement . 26
3.3.2 Interaction Model . 28
3.3.3 Regularized Prediction . 29
3.3.4 Efficient Sampling . 30

3.4 Experiments . 34
3.4.1 Model Specifications . 34
3.4.2 Baselines . 35
3.4.3 Evaluation Metrics . 35
3.4.4 Performance in Dense Traffic Scenarios 36
3.4.5 Performance with Limited Observations 37
3.4.6 Speed . 38
3.4.7 Probability Calibration . 39

3.5 Conclusion . 39

IV. Pedestrian Prediction in Shared Spaces
for Autonomous Vehicles . 40

4.1 Introduction . 40
4.2 Related Work . 42

4.2.1 Model-Based Methods . 42
4.2.2 Deep Learning Methods . 43

4.3 Interaction-Based Trajectory Predictions . 43
4.3.1 Problem Statement . 44
4.3.2 Pedestrian-Vehicle Interaction Model 44
4.3.3 Model Estimation . 47
4.3.4 Implementation . 49

4.4 Experiments . 51
4.4.1 Baselines . 51
4.4.2 Evaluation Metrics . 52
4.4.3 Pedestrian Prediction . 52
4.4.4 Autonomous Vehicle Planning Scenario 53
4.4.5 Speed . 54

4.5 Conclusion . 54

V. A Kinematic Model for Trajectory Prediction
in General Highway Scenarios . 56

5.1 Introduction . 56
5.2 Related Work . 57

5.2.1 Kinematic Methods . 58
5.2.2 Data-Driven Methods . 58

5.3 Probabilistic Trajectory Predictions . 60
5.3.1 Problem Statement . 60
5.3.2 Longitudinal Motion Model . 61
5.3.3 Lateral Motion Model . 62

vi

5.3.4 General Highway Predictions . 63
5.3.5 Inference . 64

5.4 Experiments . 65
5.4.1 Model Specifications . 66
5.4.2 Baselines . 66
5.4.3 Evaluation Metrics . 68
5.4.4 Bird’s-Eye View Predictions . 69
5.4.5 Driver View Predictions . 69

5.5 Conclusion . 70

VI. Conclusion and Future Directions . 72

6.1 Conclusion . 72
6.2 Future Directions . 72

APPENDIX . 74

BIBLIOGRAPHY . 76

vii

LIST OF FIGURES

Figure

1.1 A road user in the DUT trajectory dataset. Three seconds of observed positions
are shown as a solid green line. The following five seconds of positions are shown
as a solid orange line. 4

2.1 System overview. We propose using a novel stochastic sampling-based simulation
system to train a deep neural network (e.g., Social GAN [1]) to make socially
acceptable pedestrian trajectory predictions. 9

2.2 An illustration for computing pedestrian trajectory speed. Suppose we observed
two pedestrians in DR; pedestrian 1 appeared in a sequence of three timesteps
(T1 = 3), pedestrian 2 appeared in a sequence of four timesteps (T2 = 4). The xtk

denotes the X-Y position at each timestep t for pedestrian k. The speed at each
timestep can be calculated using (2.1). 13

2.3 An example of the perturbations used to sample pedestrian paths. Suppose (a) is
a sample trajectory from real data, (b) represents the “translation” perturbation,
with the arrows representing horizontal displacement. (c) is an example of the
“reversal” perturbation where the start and final locations as well as waypoints are
flipped. (d) shows an example of “truncation” perturbation where the last location
was truncated. 14

2.4 Performance curve for the ablation study using quantile-based metric. The model
trained on synthetic trajectory samples has lower distance error than trained on
real dataset across all percentiles. Removing the real-pedestrian statistics terms
from the sampler reduces the expression of uncertainty. 20

2.5 Two examples of prediction results from Social GAN trained on “Real-100%” (100%
real data only) and on “Synth-Large-100%” (large synethic data sampled from all
real data). We show the pedestrian’s predicted position for 2, 4, 6, and 8 timesteps
into the future. The Social GAN jointly predicts future positions for all timesteps.
The green solid line represents the observed trajectory (in the past). The orange
solid line represents the ground truth trajectory for future timesteps. The blue
dots represent the 100 probabilistic predictions of pedestrian locations. The ”Synth-
Large” predictions are closer to the ground truth position and can obtain decreased
error across all evaluation metrics. 22

3.1 Overview of prediction method. The ego vehicle (red) seeks to predict the trajec-
tories of the front and rear (lead and lag) vehicles to enable a safe merge between
them. Observations of both vehicles (blue and orange marks) are used to define a
likelihood function over possible controllers θ for the lag vehicle. Solving a convex
problem yields an estimate that is used to sample realistic trajectories. 24

3.2 Proposed interaction model for predicting lag vehicle behavior. The lag vehicle
state s1 depends on the lead vehicle’s state s2, its own controller θ, and hyperpa-
rameters γ. Noisy estimates of lag vehicle acceleration ât are calculated from state
measurements. 26

viii

3.3 Likelihood surface of merging scenario. The projection f(θ) onto kv and kg appears
smooth and unimodal along these parameters. The proposed inference procedure
finds the global minimum (magenta) at θ̂ = (0.39, 0, 8.63). 31

3.4 Predictions of each method on two ramp merging scenarios. The red crosses show
the lag vehicle’s position and the black crosses show the observed positions of its
lead vehicle. The probabilistic predictions for each method are displayed after the
end of the observation window. The color bar (right) provides the probability cor-
responding to each color. The proposed method predicts the lag vehicle’s positions
accurately despite using less information than the other interaction-based methods. 37

4.1 Steps of the proposed interaction model. The pedestrian pays attention to each
vehicle and yields in proportion to estimated risk. A learned vehicle influence then
predicts how yielding pedestrians adjust their speed, while non-yielding pedestrians
continue at their desired velocity. The predicted distribution over future positions
is shown for each case. 41

4.2 Reference frame for the ith vehicle at timestep t. The pedestrian’s position in this
frame is decomposed into the orthogonal components xit,⊥ and xit,‖. The positions
and velocities used in the world frame are shown for reference. 44

4.3 Learned functions for the DUT dataset. The learned risk function (left) predicts
the decision boundary for pedestrians’ yielding to lie along the white contour, over
low values of minimum distance d and time remaining τ . The learned vehicle
influence (right) resembles a curb roughly 3 m away from the vehicle. Arrows show
the movement of a yielding pedestrian with desired velocity of 1 m/s. 45

4.4 Examples of predictions on scenes from DUT. Each method is trained on trajectory
data from inD and observes 3 s of each road user’s trajectory (pedestrian in solid
green) before predicting the next 5 s. Predictions for 3 s and 5 s into the future are
shown for each method with likelihood according to the viridis color scale. The
orange solid line represents the ground truth trajectory of the pedestrian up to
the predicted timestep. The blue solid line represents the vehicle trajectory up to
the predicted timestep. The proposed method OTS captures uncertainty in the
pedestrian’s actions in both traditional crosswalk scenes and shared spaces. 53

5.1 Separate instances of the proposed kinematic model (top) predict trajectories based
on different interactions. Combining these models enables predicting trajectories
in general scenarios (bottom). 57

5.2 Target vehicle’s field of view across two lanes (shaded) at timestep t. The view
is specified in the lateral direction by the lane extents L1 and L2, and in the
longitudinal direction by the current position p1(t), forward distance τf , and the
rear distance τr. 63

5.3 Examples of bird’s-eye view predictions for dynamic scenarios from highD. Each
method observes 3 s of each road user’s trajectory (observations shown at each half
second) before predicting the next 5 s into the future. The actual future trajectory
is shown in black with white circles marking the driver’s position at 3 s, 4 s, and
5 s. Each method’s predictions are shown for these timesteps with likelihood given
by the viridis color scale. 70

ix

LIST OF TABLES

Table

2.1 Summary statistics for each scene. 17
2.2 Prediction performance across all datasets and methods (best in bold and second

best underlined). The lower the errors, the better the performance. All errors are
reported in meters. The µ refers to the mean error value across all datasets for each
of the ADE, MDE, and FDE evaluation metrics. Each row corresponds to results
on a test dataset. For example, the first row reports the ADE values when testing
on the ETH dataset while trained on the other three datasets. 18

3.1 Predictive performance of each method for the NGSIM dataset (best in bold and
second best underlined). Average distance error (ADE) and root mean squared
error (RMSE) are shown as ADE/RMSE in meters. The proposed method achieves
the lowest error for short-term predictions, and outperforms the DNNs when the
observations are limited to nearby vehicles. 36

3.2 ADE/RMSE with limited observations. CV predicts competitively in the short-
term while MATF does so in the long-term. The proposed method retains its
performance despite using a short observation window. 38

3.3 Compute time and probability calibration. The proposed method with 1000 sam-
ples and CV predict in realtime, while SGAN and MATF with 100 samples do
not. SGAN and the proposed method show calibrated probability estimates, while
MATF and CV match in calibration. 38

4.1 Predictive performance on DUT and inD datasets. Evaluation metrics are shown
as ADE/RMSE in meters. The proposed method OTS outperforms the baselines
for both short-term and long-term predictions. 50

4.2 Performance for simulated autonomous vehicle scenarios. Evaluation metrics are
shown as ADE/RMSE in meters. Predictions made with future trajectory infor-
mation (OTS-AV) achieve lower error than those made without (OTS). 54

5.1 Performance on NGSIM and highD datasets shown as average / final time error in
meters (best in bold and second best underlined). 67

x

ABSTRACT

Autonomous vehicles present an opportunity to transform transportation. The

benefits range from increased access to mobility and time freed from driving, to

greater safety due to automation. These robots are powered by the coordination

of various systems to perceive and navigate through the world. Crucially, the au-

tonomous vehicle operates in an open environment alongside fellow road users with

whom it will interact regularly. Predictions of fellow road users’ intents and future

motion guide these interactions and specify a large part of the autonomous vehi-

cle’s behavior. Spurred by advances in deep learning, recent prediction methods

have increasingly begun to consider how interactions affect future motion in ever

more varied environments. The corresponding gains in accuracy translate to more

anticipatory and less reactive autonomous vehicle behavior. One drawback is an

increase in complexity, which can lead to less interpretable predictions and behav-

ior. Achieving realtime performance and handling missing data caused by adverse

sensing conditions present additional challenges.

To support autonomous vehicle behavior that is transparent and predictable, this

thesis develops interpretable prediction methods. Model-based approaches provide

the vehicle for building interpretable predictions, and novel inference procedures are

developed to generate the predictions in realtime. Adopting a probabilistic frame-

work enables natural handling of missing data and affords the flexibility to model

interactions in varied environments beyond those described by existing interpretable

methods. Experiments on real highway traffic and urban data demonstrate the de-

veloped methods’ effectiveness.

xi

CHAPTER I

Introduction

1.1 Autonomous Vehicles

Transportation forms a part of everyday life. Drivers in the U.S. alone are es-

timated to have driven over 3 trillion miles in total in 2018 [2]. Humans excel at

navigating, and readily adapt to a wide variety of scenarios. These scenarios range

from driving through construction zones, to the more mundane structure of signaled

intersections, and the lack of structure in shared spaces. Negotiating with other road

users for priority adds further complexity to the driving task. Autonomous vehicles

(AVs) present the possibility of automating many of these drives. Immediate impacts

include freeing the time that would otherwise be spent focusing on the road, and in-

creased mobility for impaired persons [3]. The advent of AVs also brings benefits

such as lower carbon emissions due to ridesharing [4], and fewer traffic accidents due

to distracted driving and human error.

Autonomous vehicles are formed from a collection of systems working in unison.

Data from cameras and other sensors are processed by the perception system to iden-

tify the locations of other road users in the world. Planning systems find a sequence

of control inputs to safely drive the vehicle along a desired path. Between these lies

the prediction system. Just as human drivers learn to watch their surroundings to

avoid situations that would lead to a collision, predictions facilitate this capability

in autonomous vehicles. The role of the prediction system is to use observations

of road users to estimate where they may be in the future. This information can

then be used in planning at a high level to decide whether to yield, or at a low

level to constrain the feasible region for driving. The uncertainty inherent in road

users’ motion makes prediction over long time horizons a challenging task. Interac-

tion adds further complexity by increasing the need to consider multiple road users’

observations jointly to make predictions for even a single road user. For a common

example of interaction between vehicles, a driver’s actions may depend greatly on

those of the vehicle they are driving behind. Beyond these points, it is important

1

2

that the prediction system interface well with the perception and planning systems.

The various needs that predictions aim to fulfill are described next.

1.2 Role of Predictions in Autonomous Driving

Predictions rely on various data streams produced by perception systems. It is

rarely the case, however, that these are without errors or uncertainty. A common

source of error stems from inaccuracy in road users’ estimated positions. More se-

vere, is the missing data caused by failures to detect road users, which may be caused

by lighting conditions, or occlusions that hide road users from the perception sys-

tem’s sensors [5, 6, 7, 8]. Predictions based on environmental maps [9, 10, 11] may

need to ensure that changes such as road construction do not render the maps un-

usable, or rely further on perception systems to construct these maps in realtime.

Uncertainties in other perception systems such as pose estimation may also affect the

predictions [12, 13]. Given the uncertainty inherent in perceiving the world, predic-

tion systems should be equipped to handle the various kinds of errors that will occur

while driving. A separate use of predictions is to directly account for the perception

system’s limited detection capabilities. Blind corners represent one such scenario

that human drivers regularly face. Predicting how vehicles may appear from outside

the detectable region can enable planners to account for these blind spots [14, 15, 16].

In contrast to perception, planning is downstream of predictions. Planning uses

predictions to specify the risk due to other road users’ future motion in routing the

autonomous vehicle through less risky regions [14]. Another use is to specify regions

of the road to avoid entirely [17, 18]. If these predicted regions fully contain the

positions that road users could potentially occupy, then finding a route through the

remaining portion of road will guarantee collision-free navigation. For this reason,

planning may value conservative predictions that overestimate road users’ possible

occupancy. One way to accomplish this is to predict road users’ occupancy with

assumptions only on how their motion is physically constrained [19, 20, 21]. Too

much conservatism, however, will prevent normal operation alongside other road

users. This may come in the form of freezing in place [22] when conservative pre-

dictions eliminate all possible routes, or the sudden application of emergency ma-

neuvers. Long-term predictions in particular are subject to greater uncertainty and

will exacerbate this issue. On the other hand, conservatism is less useful in long-

term predictions where the possibility of collision remains distant. In these settings,

methods that focus on accuracy can be used to complement the more conservative

methods [23]. This accuracy often comes at the cost of making greater assumptions

about road user behavior. Rule-based behavioral assumptions, such as that pedes-

trians rarely enter the road outside of crosswalks, are one example [24]. Assuming

3

that road user behavior follows a specified model, or one built from recorded data, is

a widespread approach to achieving accurate predictions. This last approach will be

the main topic of this thesis. Not all decisions made by autonomous vehicles will re-

quire predictions of road users’ exact positions. For planning at a high level whether

to yield, it may be sufficient to know that a pedestrian intends to cross the street.

This information may be provided by specialized intent prediction methods [25, 26]

or come as part of position based predictions [27, 28]. Whatever the form that pre-

dictions take, they will guide both planning and the autonomous vehicle’s interaction

with fellow road users.

1.3 Trajectory Prediction

Trajectory prediction methods use a road user’s observed positions to predict

future positions. Positions are typically 2D coordinates in the world viewed from a

bird’s eye perspective, to match the output of AV tracking systems [29]. The time

between observations is often fixed which allows for the use of timesteps in place of

times. An example from the DUT dataset [30] in Figure 1.1 shows three seconds of

observed positions made at a rate of 10 Hz and the next five seconds of positions at the

same rate. Besides the road user’s observed positions, prediction methods may use

additional sources of information provided by the AV’s sensors. Information about

the surrounding environment may be available in the form of high-definition maps

or satellite images. This is especially useful for using knowledge of lane centerlines

to predict vehicle trajectories, and identifying locations where pedestrians are likely

to cross the street such as crosswalks. Contextual information is also provided by

other road users’ observed positions, which is valuable for prediction methods that

model the interactions between road users.

Let xt denote the road user’s position at timestep t, and c denote the available

contextual information. Assuming k observations are made before predicting future

positions until the final timestep T , the prediction task amounts to sampling future

trajectories from the distribution

p({xt}Tt=k+1|{xt}kt=1, c).(1.1)

This distribution models the future trajectory of the pedestrian in Figure 1.1 as a

random sample from the distribution, with the observed positions and contextual

information known. Building a prediction model entails choosing what contextual

information c is needed and specifying the distribution (1.1). A standard approach

is to parameterize the prediction model by a variable θ ∈ Rn, typically referred to

as the model parameters. This provides the flexibility to calibrate the model to

4

Figure 1.1: A road user in the DUT trajectory dataset. Three seconds of observed positions are
shown as a solid green line. The following five seconds of positions are shown as a solid orange line.

recorded trajectory data. The next section outlines two main groups of prediction

models based on the differences in specifying the predictive distribution (1.1).

1.4 Model-based and Model-free Predictions

Specifying the form of the predictive distribution (1.1) is a choice of the modeler.

The methodology used to make the choice, however, may often be classified as model-

free or model-based. The main difference lies in the interpretation of the model

parameters.

The model-based approach focuses on building an interpretable model of road user

behavior. One set of models assume that the road user is a rational agent who plans

future actions. Here, the road user is modeled as choosing actions to minimize costs

incurred during travel. This results in an optimal control problem and its solution

yields the predictive distribution [31, 32]. The road user’s preferences correspond

to the costs being minimized in the control problem. While this formulation offers

insight into why one action may have been chosen over another, each road user’s

actual preferences are rarely known. An alternative is to directly approximate the

road user’s decision-making. This also obviates the need to solve an optimal control

problem. Each element of the model parameters θ ∈ Rn often corresponds to a

physical quantity, such as the road user’s desired speed, gap size, or goal [33, 34].

Maintaining this interpretability most often results in fewer model parameters with

n < 100. It should be noted that this interpretability is in an engineering sense of

understanding what factors shape each prediction from the modeler’s perspective,

rather than necessarily that of legibility which aims to make the robot’s intentions

5

clear to those around it through its motion or other actions [35].

Advances in computing coupled with the creation of high quality datasets has

spurred the development of model-free methods. The model-free methodology fo-

cuses on building models flexible enough to explain the wide range of behaviors

observed in datasets. This is accomplished by the use of models capable of approx-

imating any function, and typically thousands of model parameters to improve the

approximation. Deep neural networks (DNNs) [36] and support vector machines [37]

are commonly used classes of models having the property of universal function ap-

proximation. The modular structure of DNNs and their ability to readily incorporate

additional contextual information has led to their widespread use. Fitting models

with more parameters than data may result in models that are overly attuned to

noise in the dataset, but the use of large datasets and the choice of model can off-

set this problem. In evaluating these methods we use the term ’experiment’ in the

machine-learning sense of evaluating performance across many scenarios in collected

datasets.

1.5 Sources of Uncertainty

Without clear signaling, a pedestrian who is about to cross the road may be diffi-

cult to distinguish from a pedestrian who is about to slow down and yield. Similarity

between the trajectory in each case naturally introduces uncertainty. By identifying

the subtle differences unique to each trajectory such as speed or distance to curbs,

prediction models can eliminate uncertainty. Modeling interactions brings its own set

of challenges. Various road users may be in a driver’s view, but to what extent the

driver is paying attention to each is not clear from this information alone. To add to

this, recording gaze information is often performed with instrumentation including

in-vehicle cameras or eye-tracking glasses [38]. As a result gaze is rarely observed.

Interactions may also occur between road users at varying distances. For instance, a

couple walking together will likely continue to walk together. Their yielding to a ve-

hicle on the far side of an intersection provides an interaction over a longer distance.

Due to the wide variation, modeling interactions remains an open problem.

1.6 Realtime Computing

Accuracy is a general demand of prediction models, and informs more socially

aware decisions. Use on an autonomous vehicle also adds the requirement of realtime

predictions. Realtime predictions allow for quickly responding to the predicted future

state of the world, increasing the time available for emergency maneuvers. This is

especially valuable in highway driving where waiting one second means that the

6

vehicle may have already moved several car lengths along the highway. Even at

lower speeds, autonomous vehicles must rapidly process new observations of road

users appearing at blind corners or from behind vehicles parked in the street.

1.7 Gaps in the Literature

This thesis focuses on the following problems:

1. Collecting large datasets is costly and limits the testing and development of

prediction methods for new environments.

2. State-of-the-art methods sacrifice model interpretability to account for com-

plex interactions in general scenarios. Simultaneously achieving realtime per-

formance presents an additional challenge.

3. Existing interpretable methods make assumptions that limit their applicability

to general scenarios.

1.8 Contributions

This thesis seeks to build upon existing prediction methods with the following

contributions:

1. Novel simulation framework to leverage small amounts of data to train deep

neural networks for pedestrian trajectory prediction on large synthetic datasets,

enabling the application of deep neural networks when there is little annotated

data, or where the costs of collecting and labeling real data is high. (Chapter II)

2. Low-latency probabilistic model of highway interactions capable of predicting

with as little as 400 ms of observations. Development of a realtime and con-

sistent inference procedure enables the estimation of model parameters from

observations rather than by manual specification. (Chapter III)

3. A realtime probabilistic model to predict pedestrian trajectories accounting for

interactions with vehicles in scenes where traditional traffic devices may not be

present. Development of a novel and tractable training procedure allows for

estimating the model’s parameters while avoiding the auxiliary simulations or

manually specified parameters called for in previous model-based works. (Chap-

ter IV)

4. A kinematic model for generating interaction-aware predictions in general high-

way driving scenarios including multiple vehicle lane changes. The inference

procedure developed for this model enables tractable inference in the presence

7

realistic sensor conditions including significant occlusions and late detection.

(Chapter V)

1.9 Summary

Autonomous vehicles rely on predictions of fellow road users’ future motions to

guide planning for safe and human-like behavior. As a result predictions may specify

a large part of vehicle behavior. To support autonomous behavior that is trans-

parent and predictable, this thesis develops interpretable prediction methods. Since

interactions between road users influence their future motion, these are also a cen-

tral focus of this thesis. Especially valuable for planning is that interactions with

the autonomous vehicle itself will also influence fellow road users’ future motion. In

terms of perception, prediction methods must gracefully handle measurements sub-

ject to sensor noise or even the lack of measurements due to limited sensor range

or occlusions. Building such ideal prediction methods may be hindered by the lack

of annotated data, or fitting procedures. Even after fitting a model to data, lack

of a realtime procedure to generate predictions from the model may hinder its de-

ployment to autonomous vehicles. The following chapters present frameworks and

prediction methods to address these issues along with experiments to evaluate their

effectiveness.

CHAPTER II

Stochastic Sampling Simulation for Pedestrian Trajectory
Prediction

2.1 Introduction

In crowded urban environments, mobile robots, such as autonomous vehicles

(AVs) and social robots, must navigate safely and efficiently while in close prox-

imity to many pedestrians on the road. To avoid collision and ensure a smooth ride,

it is crucial for the robots to accurately predict where a nearby pedestrian may move

to next. However, the motion and actions of each pedestrian may depend on the

behavior of others, which makes it difficult to forecast [39, 40, 41, 1]. Our goal is to

predict all possible future locations and trajectories of pedestrians with probability

estimates accounting for social interactions.

Classical approaches to forecasting pedestrian trajectories include Kalman filters,

Gaussian Processes [?], and inverse optimal control [31], which estimates a model

for each pedestrian based on past behavior to forecast the future. These approaches

have traditionally focused only on predicting single pedestrians without considering

the social interactions between different pedestrians. These earlier results have been

improved upon by extending the frameworks with hand-crafted features to model

social interactions [22].

More recently, deep neural networks (DNNs) have been used to successfully make

long-term pedestrian trajectory prediction accounting for social interactions [40, 42,

1, 43, 44]. Instead of using hand-crafted features, they rely on vast amounts of

annotated trajectories to learn social interactions directly from the data. However,

it is often difficult, if not impossible, to obtain such large datasets with accurate

annotation without resorting to either an enormous effort of manual labeling [45,

46] or heavily constructed experiments with instrumented participants [47], both of

which are expensive and prone to error. Therefore, it would be valuable to develop

a training scheme that requires very small amounts of labeled real-world data, yet

still produces satisfactory prediction results for test datasets.

8

9

Stochastic
Sampling Train DNN

Predicted
Pedestrian
Trajectories

Figure 2.1: System overview. We propose using a novel stochastic sampling-based simulation
system to train a deep neural network (e.g., Social GAN [1]) to make socially acceptable pedestrian
trajectory predictions.

To address this problem, we propose the use of automatically-annotated, realistic

pedestrian simulations to train deep neural networks for 2D (top-down view) tra-

jectory prediction. Generating synthetic data for training DNNs has shown promis-

ing results for various applications, including image classification [48], object detec-

tion [49], and pose estimation [50]. However, to the best of our knowledge, this

chapter is the first that proposes techniques for synthesizing pedestrian trajectories.

Figure 2.1 shows an overview of our system. We develop a novel stochastic sampler

that can generate tens of thousands of realistic pedestrian trajectories based on

limited real-world annotations. We then use these samples to train state-of-the-art

DNNs to predict pedestrian trajectories. In this chapter, we use Social GAN [1] as

our main prediction network, which provides state-of-the-art predictions and takes

into account the interactions of all pedestrians in the scene. We envision our method

being used to train high-performing prediction algorithms (such as DNNs) when

there is little annotated data, or where the costs of collecting and labeling real data

are high.

Our main contributions include (1) a novel nonparametric model of pedestrians,

(2) a method to sample realistic pedestrian trajectories from this model, and (3)

experiments training on these sampled trajectories and predicting on benchmark

pedestrian datasets, such as the ETH dataset [51, 45] and the UCY dataset [52]. We

demonstrate that Social GAN trained on the realistic sampled pedestrian trajecto-

ries alone achieves performance surpassing that achieved by training on real-world

human-annotated data.

The chapter is organized as follows. Section 2.2 describes related work in data

augmentation and simulation as well as related work in trajectory prediction net-

works. Section 2.3 describes our proposed simulation model and synthetic trajectory

generation process. Section 2.4 presents pedestrian prediction results on benchmark

datasets. Section 2.5 concludes this chapter.

10

2.2 Related Work

In this section, we first describe DNN-based pedestrian trajectory prediction meth-

ods and our motivation for using the Social GAN. Then, we describe related work in

synthetic data generation for training DNNs, such as using physics simulations and

domain randomization. Finally, we describe related work in data augmentation and

methods for generating synthetic datasets based on real data annotations.

2.2.1 DNN-Based Pedestrian Trajectory Prediction Methods

In recent literature, DNN-based methods, particularly methods based on Long

Short-Term Memory (LSTM) networks, have shown successful results in pedestrian

trajectory prediction applications [40, 53, 54, 1, 55, 56, 57]. As our method does

not consider scene geometry, we refrain from using SS-LSTM [55] or scene-LSTM

[57], which incorporates scene information. Instead, we select Social GAN [1] as our

main prediction network, which provides state-of-the-art prediction results and takes

into account the interactions of all pedestrians in the scene. Most recently, a convo-

lutional neural network (CNN)-based trajectory prediction approach was proposed

[44]. This approach uses highly parallelizable convolutional layers to handle tempo-

ral dependencies and predict future pedestrian positions. However, this CNN-based

approach only handles individual trajectory information and does not consider so-

cial interactions as Social GAN does. Therefore, we chose Social GAN as our basic

prediction network.

The Social GAN uses a pooling mechanism together with a Generative Adver-

sarial Network (GAN) to learn the social interactions of pedestrians and produces

probabilistic trajectory outcomes. The current Social GAN is a purely data-driven

approach [1] and benefits from large quantities of annotated trajectory data. How-

ever, accurate annotations for large datasets are often difficult, expensive, or impos-

sible to obtain [45, 46, 47]. In this chapter, we develop a stochastic sampling-based

simulation system to automatically generate large amounts of annotated, simulated

yet realistic pedestrian trajectories to use as training data for a Social GAN, and aim

to produce prediction results comparable or better than the Social GAN prediction

results trained on real data.

2.2.2 Physics Simulators and Domain Randomization

Physics simulators and engines can generate new data without the aid of existing

data. Some studies have focused on crafting synthetic data as similar to real data as

possible. In [49] and [58], for example, the Grand Theft Auto (GTA) game engine

was utilized to produce automatically-annotated, photo-realistic images for object

11

detection and semantic segmentation. In [59], the OpenRAVE simulator [60] was

used to generate a large-scale database for grasps. This simulated grasps dataset

was then used to train a DNN for binary classification (stable or unstable grasps)

tasks.

In contrast, domain randomization (DR) methods [61, 62] were used to “bridge

the gap” between simulation and reality. Domain randomization methods focus on

bringing variability to the simulation, typically by varying global parameters (e.g.,

camera pose, shape and number of objects, texture, lighting) and adding noise to

the simulated data without much regard to photo-realism. For example, the images

synthesized in [63] contain car models and added geometric objects rendered over

random background images. The aim here is to encourage DNNs to learn features

invariant to the different kinds of noise added, as well as rendering artifacts and

avoid over-fitting. Note that both physics simulations and DR methods do not rely

on existing real datasets or annotations.

2.2.3 Data Augmentation and (Real-)Data-Driven Synthesis

Data Augmentation (DA) is another approach to enlarge and enhance training

datasets by performing a variety of transformations, typically on images [48]. Data

augmentation methods usually seek to increase the amount of training data by gen-

erating new artificial data from existing real data while preserving label information.

Common forms of DA include image translation, horizontal flips/reflections, crops,

and perturbations to color (intensity) values [48]. These methods have been widely

used in image classification [48] and object detection [64]. Other applications include

acoustic modeling [65] and natural language processing [66]. So far, we are not aware

of any standard label-preserving transforms designed specifically for non-image-based

pedestrian trajectories, due in part to the need to account for interactions among

pedestrians and scene geometry.

In addition to image transformation, several methods have been proposed to

transfer the style between real and synthetic data, adopting the GAN framework

[67, 68, 69]. Rogez and Schmid [50] proposed a synthesis engine to augment existing

real images with manual 2D pose labels into 3D poses using 3D Motion Capture

(MoCap) data. In a way, these methods were trying to automatically learn the

relationship, or transformation, between real and synthetic datasets instead of per-

forming predefined transformation as DA usually does.

Our chapter is most similar to [50] in that we also use labeled real-datasets to

generate a new, larger synthetic dataset for training. Unlike [50] which synthesizes

images for pose estimation, we simulate realistic pedestrian trajectories. We also

perform a variety of perturbations to generate our synthetic data, inspired by DA

12

methods. We show that, with our proposed method, the DNN trained on synthetic

data outperforms when trained on real data, even when the synthetic data is gener-

ated from a small amount of real annotations.

2.3 Stochastic Sampling-Based Simulation

In this chapter, the overall task is to predict future pedestrian trajectories given

each pedestrian’s previous positions considering social interactions. To do so, we aim

to generate large amounts of synthetic pedestrian trajectories for training a Social

GAN. A limited amount of real data is given to our simulation system so we can

generate realistic trajectories based on how pedestrians actually walk from observed

real datasets. In this section, we define the notations and pre-computation steps

used in our method and then describe our simulation method in detail.

2.3.1 Notations and Pre-computation

Let xtk denote the 2D position (top-down view) at time t for the kth pedestrian,

xtk ∈ R2. Since we utilize a possibly small, real dataset to generate our simulation

dataset, we denote DR as the given real dataset and DS as the generated simulation

dataset. In our system we aim to generate a much larger synthetic dataset, such that

|DS | � |DR|, where |D| refers to the size of the dataset D.

We denote the total number of unique pedestrians in the real dataset DR by K.

At each frame (timestep) in DR, we record the number of pedestrians in the scene

as Kp. K is a known constant for DR, while Kp may change from frame to frame

as pedestrians are entering and exiting the scene. From Kp, we can compute the

average number of pedestrians in a frame as µp and the variance of the number of

pedestrians in the scene as σ2
p.

From DR, we can also compute the walking speed for each pedestrian, following

stk =
||x(t+1)k − xtk||

∆t
,(2.1)

where xtk denotes the 2D position at each timestep t for pedestrian k = 1, ..., K,

∆t is the difference in time between two frames/timesteps (fixed), and || · || denotes

Euclidean distance. Figure 2.2 shows a simple illustration for computing the speed

for two pedestrians. Note that a pedestrian in DR may appear in sequences of varying

lengths (due to entering and exiting the scene or due to available data). We denote

the sequence length (length of observed timesteps) as Tk for pedestrian k in DR.

Also, note that the speed stk can vary in each step for real pedestrians.

Given the speed for each pedestrian at each timestep, we can compute the average

walking speed for kth pedestrian as s̄k. In our method, we assume that all persons

13

Ped.
#1:

x31x21x11
s11 s12 Ped.

#2:
x42x32x22x12

s12 s22 s32

Figure 2.2: An illustration for computing pedestrian trajectory speed. Suppose we observed two
pedestrians in DR; pedestrian 1 appeared in a sequence of three timesteps (T1 = 3), pedestrian
2 appeared in a sequence of four timesteps (T2 = 4). The xtk denotes the X-Y position at each
timestep t for pedestrian k. The speed at each timestep can be calculated using (2.1).

walk with the same speed variation between timesteps and we compute σ2
s as the

pooled variance across all stk,∀t, k. Note that s̄k changes for each pedestrian and

σ2
s is the same for all pedestrians. Constraining the variance to be the same helps

reduce the model dimensionality.

The above summary statistics reflect how pedestrians walk in the real dataset and

are used later to generate synthetic trajectories in our sampling scheme.

2.3.2 Sampling Number of Pedestrian and Walking Speed

In our simulation, we use stochastic sampling to generate realistic pedestrian tra-

jectories. In this section, we describe the method to sample the number of pedestrians

and walking speeds for the simulated dataset.

Let np denote the number of pedestrians in a frame in the simulated dataset. In

simulating a single set of pedestrians, we sample np based on statistics from the given

real dataset. We already obtained the average number of pedestrian in a frame µp

and the variance of the number of pedestrians in the scene σ2
p from Section 2.3.1.

We assume the number of pedestrians at each time follows a normal distribution

N (µp, σ
2
p) left-truncated at zero, which we denote with N (µp, σ

2
p, 0). We can then

sample np ∼ N (µp, σ
2
p, 0).

Regarding walking speed, we model each pedestrian as walking at a desired con-

stant speed. Denote s(i) as the speed of the ith sampled pedestrian. We use the

superscript to distinguish between the index of the stochastically sampled and real

datasets. For each i, we first uniformly sample an average speed value, s̄(i), from

the pool of average speeds from real pedestrians, denoted as s̄(i) ∼ U({s̄k}Kk=1). The

variance of speed is assumed to be the same as real pedestrians, σ2
s . Then, we can

sample s(i) based on a truncated normal distribution, N (s̄(i), σ2
s , 0).

2.3.3 Pedestrian Trajectory Sampling

Based on the number of pedestrians and walking speeds sampled above, we can de-

termine the actual paths of the pedestrians. We generate the pedestrian trajectories

by assigning the sampled speeds to these paths.

We represent the real dataset as a collection of trajectories, i.e., DR = {fk}Kk=1,

where fk is the trajectory for the kth pedestrian. The trajectory is given by the

14

x4

x3

x2

x1

(a) Original

x4

x3

x2

x1

(b) Translation

x1

x2

x3

x4

(c) Reversal

x3

x2

x1

(d) Truncation

Figure 2.3: An example of the perturbations used to sample pedestrian paths. Suppose (a) is a
sample trajectory from real data, (b) represents the “translation” perturbation, with the arrows
representing horizontal displacement. (c) is an example of the “reversal” perturbation where the
start and final locations as well as waypoints are flipped. (d) shows an example of “truncation”
perturbation where the last location was truncated.

sequence of positions fk = {xtk}Tkt=tk , for pedestrian k present in the scene from time

tk to Tk. For each sampled pedestrian i, we first uniformly sample a trajectory, f (i),

from the pool of all real pedestrian paths, denoted as f (i) ∼ U({fk}Kk=1). Then, we

apply the following three types of user-defined perturbations to the f (i):

• Translation by an amount ∆x ∼ U([−r, r]×[−r, r]), where r is the displacement

in each axis of the 2D plane.

• Reversal with probability pr: We reverse the start and ending locations as well

as all the waypoints in between.

• Truncation by a random number of steps.

Fig 2.3 shows an illustration for the perturbations. The pedestrian then follows

the path g, a piecewise linear spline fit [70] to the perturbed f (i). All synthetic

pedestrians have fixed N + 1 timesteps, and we denote a sampled set of trajectories

as the set X S = {xli|i = 1, ..., np, l = 1, ..., N + 1}, for N + 1 timesteps and np

pedestrians in the scene.

We run Algorithm 1 for a user-defined M number of times to generate the entire

large-scale simulated trajectory dataset. In practice we see that M > 20 produces

datasets yielding competitive models, with better performance for larger M .

2.4 Experiments

To measure the effectiveness of the proposed method, we first generated synthetic

datasets from the sampling-based simulation method described above. We employ

Social GAN [1], a state-of-the-art deep learning trajectory prediction network ar-

chitecture, to perform a prediction based on our simulated data. We evaluate our

15

Algorithm 1: Stochastic Sampling for Pedestrian Trajectory Simulation

Input: DR = {fk}Kk=1, {s̄k}Kk=1, N , ∆t, µp, σ
2
p, σ2

s

Output: XS

1 np ∼ N (µp, σ
2
p, 0)

2 foreach i = 1, ..., np do
3 s̄(i) ∼ U({s̄k}Kk=1)

4 s(i) ∼ N (s̄(i), σ2
s , 0) // see Section 2.3.2

5 f (i) ∼ U({fk}Kk=1)

6 f̃ (i) ← peturb(f (i)) // see Section 2.3.3

7 g ← spline(f̃ (i))
8 foreach l = 1, ..., N + 1 do
9 xli ← g(s(i)∆tl)

10 end

11 end

method on two widely used pedestrian trajectory datasets. The ETH dataset [51, 45]

contains over 850 labeled frames of data in each of two distinct scenes, ETH and

Hotel. The UCY dataset [52] also has two scenes, Zara and University, each with

over 1500 labeled frames. Using leave-one-out cross validation, we evaluated the So-

cial GAN’s prediction outputs on each scene, having trained on data from the other

three scenes.

2.4.1 Baselines

Since the focus of this chapter is synthetic trajectory dataset generation, we com-

pare Social GAN prediction results trained on the following four methods:

• Real: Train on all the available frames of real data in each scene (approximately

5,000 frames in total).

• Synth-Large: Train on a large synthetic dataset. We sampled simulated tra-

jectories 500 times (M = 500) using Algorithm 1 with N = 20 timesteps for

each scene. When sampling from University dataset, we sampled M = 100

times due to the large numbers of pedestrians in the scene. This yields over

20,000 simulated, labeled frames in every train-test cross validation split.

• Synth-Equal: Train on a synthetic dataset that has the same size as the real

dataset (which is much smaller than the size of Synth-Large). We sampled

simulated trajectories such that the number of frames of simulated pedestrian

trajectories is equal to that of the real data for each scene.

• Real + Synth-Large: Train on the combined data from Real and Synth-Large.

This is to evaluate the effect of including real data in training.

16

The Synth-Large dataset has over 15k more frames in in each cross validation

split than using 100% of real data (“Real-100%”). In addition, we examined the

effect of using an even smaller number of labeled frames of real data. We randomly

selected 20% of the real data from each scene (around 1.2k frames) and used this to

train the Social GAN. We also generated a separate set of synthetic datasets based

only on the 20% real data and reported prediction results as well. These results were

reported under “20%” columns in Table 2.2.

2.4.2 Evaluation Metrics

Since Social GAN makes probabilistic predictions, we treat the predicted position

for the ith pedestrian at timestep t as a random variable yti. To thoroughly sam-

ple the predictive distribution for yti, we made 100 probabilistic predictions of the

pedestrian’s possible locations. We denote the ground truth position as xti. Similar

to prior work [40, 1], we used the following error metrics:

Average Displacement Error (ADE)

Expected distance between the ground truth (GT) pedestrian location and the

probabilistic prediction. We estimate this for the dataset by averaging across all Np

pedestrians in the dataset and all predicted timesteps (t = 1, ..., T) as

(2.2) ADE =
1

Np × T

Np∑
i=1

T∑
t=1

E[||yti − xti||],

where E[·] refers to the expected value.

Minimum Displacement Error (MDE)

Minimum distance between the GT pedestrian location and our predictions, av-

eraged across pedestrians and timesteps. Denoting the jth probabilistic prediction

by y
(j)
ti , the MDE is given by

(2.3) MDE =
1

Np × T

Np∑
i=1

T∑
t=1

min
j
{||y(j)

ti − xti||}.

Final Displacement Error (FDE)

Expected distance between the GT pedestrian location at the final time step T

and the predicted final position. This is averaged across pedestrians, written as

(2.4) FDE =
1

Np

Np∑
i=1

E[||yT i − xT i||].

17

The ADE provides a measure of spread in the predictions, in that a model pro-

ducing a large spread will necessarily have a large ADE. Unless the model makes

predictions near the pedestrian, a small spread in predictions will not ensure a low

ADE. The MDE reflects recall in the “best case”, measuring the closest prediction to

the pedestrian. The FDE is equivalent to ADE measured only at the final timestep.

Ideally, we want the ADE, MDE, and FDE to all have low values to show that all

the predictions are close to each pedestrian GT location.

2.4.3 Training Parameters

The Social GAN network architecture is trained with a learning rate of 0.001

and batch sizes of 64 for 200 epochs, following the training procedure in [1] for each

experiment. In alignment with this, we use a timestep of ∆t = 0.4 s when sampling

pedestrian trajectories. Predictions are made by observing pedestrian trajectories

for 8 timesteps (3.2 s) and making predictions for the next 8 timesteps (T = 8).

For each scene we separately calculate the mean and standard deviation for the

number of pedestrians at each timestep (µp and σp), and the standard deviation

about their desired speeds (σs). These values are also used when sampling from the

smaller amounts of real data, as these can be reliability estimated with much less

effort than that needed to build a dataset. The summary statistics calculated for

each scene are given in Table 2.1. Note that the University scene alone (“Univ” row)

contains larger mean and variance for number of pedestrians compared with the rest.

Table 2.1: Summary statistics for each scene.

Dataset µp σp σs
ETH 6.15 4.46 0.35
Hotel 5.60 3.41 0.15
Zara 7.36 3.95 0.25
Univ 26.77 20.31 0.27

2.4.4 Comparison of Prediction Performance

Table 2.2 shows the ADE, MDE, and FDE comparison results across all cross

validation datasets, predicted using Social GAN trained on various dataset generation

methods. Training on large amount of sampled data in “Synth-Large” achieves

the best performance, producing lower prediction errors than training on 100% real

data. Figure 2.5 shows a qualitative comparison for both of these models. This

lower error performance holds true for “Synth-Large-20%” as well, where we sampled

from only 20% of the real data to make the synthetic dataset. We can attribute

part of this high performance to the increased amount of sampled data used for

training. “Synth-Large” outperforms “Synth-Equal”, where the only difference is

18

the amount of sampled data (15k more frames in “Synth-Large”). The realistic

variations contained in the additional labeled frames allows for learning a better

representation for the true distribution of pedestrian trajectories. This performance

difference is especially pronounced in the ADE. We observe similar performance when

trained on 100% versus 20% real data, where using more training data increases the

performance.

When adding the real dataset to the sampled dataset (in “Real+Synth-Large”), we

do not observe strictly increased performance compared to training on “Synth-Large”

alone. While the ADE have increased slightly when adding the real dataset, the MDE

has decreased. The lack of large performance increases makes intuitive sense, since

the synthetic data is sampled from the real data and the pedestrian statistics from

real data is largely contained in these stochastically sampled trajectories.

In the next section, we will show that adding real data promotes the expression

of uncertainty in the DNN, which aids in lowering the MDE. We also show that the

small decreases in MDE depend more on the variations in the sampled data than the

amount of data sampled through an ablation study.

Table 2.2: Prediction performance across all datasets and methods (best in bold and second best
underlined). The lower the errors, the better the performance. All errors are reported in meters.
The µ refers to the mean error value across all datasets for each of the ADE, MDE, and FDE
evaluation metrics. Each row corresponds to results on a test dataset. For example, the first row
reports the ADE values when testing on the ETH dataset while trained on the other three datasets.

Real Real+Synth-Large Synth-Equal Synth-Large
Metric Dataset 20% 100% 20% 100% 20% 100% 20% 100%

ETH 0.95 0.82 0.82 0.77 0.96 0.80 0.79 0.75
ADE Hotel 0.83 0.63 0.48 0.64 0.70 0.57 0.43 0.43

Zara 0.96 0.39 0.36 0.39 0.68 0.37 0.30 0.35
Univ 0.72 0.55 0.37 0.37 0.46 0.38 0.38 0.38

µ 0.86 0.60 0.51 0.54 0.70 0.53 0.47 0.48

ETH 0.56 0.51 0.45 0.38 0.55 0.42 0.45 0.40
MDE Hotel 0.47 0.17 0.15 0.12 0.17 0.16 0.13 0.12

Zara 0.44 0.10 0.12 0.09 0.14 0.11 0.13 0.11
Univ 0.37 0.21 0.18 0.15 0.13 0.15 0.20 0.17

µ 0.46 0.25 0.23 0.19 0.25 0.21 0.23 0.20

ETH 1.79 1.61 1.65 1.55 1.76 1.56 1.59 1.50
FDE Hotel 1.55 1.29 0.99 1.33 1.25 1.10 0.84 0.86

Zara 1.77 0.81 0.75 0.84 1.27 0.75 0.62 0.72
Univ 1.31 1.06 0.78 0.77 0.91 0.77 0.78 0.78

µ 1.60 1.19 1.04 1.12 1.30 1.05 0.96 0.96

2.4.5 Ablation Study

In our ablation study, we removed the dataset fitting terms σs and σp from the

sampler to see their effect on the performance. Upon removing these terms, we sam-

19

pled from their respective densities without variance, which is equivalent to setting

σs or σp to zero.

We sampled large datasets from 100% of the real data following the same pro-

cedure as for generating Synth-Large, once with σs = 0 and again with both σs =

0, σp = 0. We compared these “reduced models” to the Synth-Large results with full

pedestrian statistics. These reduced models both attain an average ADE of 0.47 m

and FDE of 0.95 m, compared to 0.48 m and 0.96 m of the full model. On the other

hand, both have higher MDE. Removing σs from the sampler increases MDE from

0.20 m to 0.22 m; further removing σp increases this to 0.23 m.

We also report an additional quantile-based metric to evaluate their performances.

Recall that for each pedestrian at each predicted timestep, Social GAN produced 100

probabilistic predictions. This quantile-based metric is defined by sorting the predic-

tions by their distance to the ground truth pedestrian locations and calculating the

average distance for each quantile. Figure 2.4 shows the quantile-based distance met-

ric across all training datasets. Ideally, we want the curve to have low distance value

across all quantiles. Naturally, the higher the quantile value, the higher the distance

(since we sorted the distances in ascending order). The further the curve is shifted

towards the top-left, the better the performance. Since we have 100 predictions, the

“quantile” here is equivalent to “percentile”.

The lowest point on each curve is equivalent to MDE, since it represents the closest

(minimum) distance. The full sampler (with non-zero σs and σp values) performs

the best below the 50% percentile (when quantile is less than 0.5 on the plot).

The model with no σs, on the hand hand, outperforms that the no σs, σp model

at the minimum distance as well as in the middle quantiles. All three synthetic-

based models outperform the model trained on real data by a great margin across

all percentiles.

The more gentle slope for the real model in Figure 2.4 reflects a greater spread

in distances to the ground truth locations as well as uncertainty in the probabilistic

predictions. Expressing this uncertainty is important for safety-critical applications

such as autonomous driving, since we would like to avoid hitting any predicted

locations a pedestrian may potentially be. Training on the sampled data without

real-pedestrian statistics (no σs and σp) reduces this expression of uncertainty and

results in the steeper slopes. Including real-pedestrian statistics and calibrating the

sampler to the real data before sampling can help recover this uncertainty, as shown

in Figure 2.4 by the less steep slopes for the full model, where σs and σp were added.

20

Figure 2.4: Performance curve for the ablation study using quantile-based metric. The model
trained on synthetic trajectory samples has lower distance error than trained on real dataset across
all percentiles. Removing the real-pedestrian statistics terms from the sampler reduces the expres-
sion of uncertainty.

2.5 Conclusion

In this chapter, we presented a novel stochastic sampling method for simulat-

ing realistic pedestrian trajectories. We developed a model to extract pedestrian

number and walking speed from a small real dataset, and used this information to

sample synthetic pedestrian trajectories. We trained a Social GAN on the sampled

datasets and evaluated the prediction results on a variety of benchmark datasets of

pedestrian trajectories. We show improved prediction performance when trained on

large amounts of synthetic data generated by the proposed sampling scheme when

compared with trained on real datasets. We also performed an ablation study on

the effect of the pedestrian statistics and show that our extracted pedestrian param-

eters can represent how pedestrians walk in real dataset and allow the DNN to more

accurately model the true distribution of pedestrian trajectories.

Future directions include extending the sampling method to incorporate scene

geometry, and training a DNN that utilizes the scene information such as [57] on the

synthetic datasets. Sampling from the space of interactions, such as sampling the

21

outcomes of pedestrian yielding, is another direction.

22

Re
al

Observed Trajectory Future GT Trajectory Predicted Position

t = 0.8 s

Sy
nt

h-
La

rg
e

t = 1.6 s t = 2.4 s t = 3.2 s

Re
al

Observed Trajectory Future GT Trajectory Predicted Position

t = 0.8 s

Sy
nt

h-
La

rg
e

t = 1.6 s t = 2.4 s t = 3.2 s

Figure 2.5: Two examples of prediction results from Social GAN trained on “Real-100%” (100%
real data only) and on “Synth-Large-100%” (large synethic data sampled from all real data). We
show the pedestrian’s predicted position for 2, 4, 6, and 8 timesteps into the future. The Social
GAN jointly predicts future positions for all timesteps. The green solid line represents the observed
trajectory (in the past). The orange solid line represents the ground truth trajectory for future
timesteps. The blue dots represent the 100 probabilistic predictions of pedestrian locations. The
”Synth-Large” predictions are closer to the ground truth position and can obtain decreased error
across all evaluation metrics.

CHAPTER III

Low-Latency Trajectory Predictions
for Interaction Aware Highway Driving

3.1 Introduction

Merging in dense traffic necessitates cooperating with other drivers. Success-

ful cooperation in turn relies on predicting others’ actions. Predicting a vehicle’s

trajectory, however, is complicated by its possible interactions with surrounding ve-

hicles [71, 72]. Recent works based on deep neural networks (DNNs) have proven

effective at modeling these interactions [73, 74, 75, 76, 77, 1, 78, 9, 79]. These meth-

ods utilize a fixed number of observations of surrounding vehicles to infer which

trajectories are likely. A drawback to this is the duration of time needed to collect

observations before making predictions, ranging from 3 s up to 5 s. This window of

time determines the minimum delay between first seeing a vehicle and predicting its

trajectory. While observation windows of 3 s may be tenable in low speed environ-

ments, the high speeds in highway driving call for faster reaction times. Occlusions

and sensor limitations such as maximum range also impact the quality of any obser-

vations of the surrounding vehicles. This motivates the need for predictions that can

be made in short time and with few observations. In this chapter we aim to strike

a balance between the richness of interactions modeled and the number of observa-

tions needed to make predictions. Merging onto the highway in particular poses a

challenge to autonomous vehicles (AVs). In addition to the delay induced by obser-

vation windows, limited ramp length will further restrict the time available to make

decisions. Due to the heightened need of fast reaction times when merging onto the

highway, we focus on these scenarios. The main contributions of this chapter are:

1. a novel and low-latency probabilistic highway interaction model capable of pre-

dicting with as little as 400 ms of observations;

2. a realtime and consistent inference procedure that enables the estimation of

model parameters from observations rather than by manual specification;

23

24

P
os

it
io

n

Time

lead

lag

P
os

it
io

n

Time

observation

prediction

f (θ)

Figure 3.1: Overview of prediction method. The ego vehicle (red) seeks to predict the trajectories
of the front and rear (lead and lag) vehicles to enable a safe merge between them. Observations
of both vehicles (blue and orange marks) are used to define a likelihood function over possible
controllers θ for the lag vehicle. Solving a convex problem yields an estimate that is used to sample
realistic trajectories.

3. evaluation on merge scenarios in the real-world NGSIM dense highway traffic

dataset [80].

We first extend the deterministic car-following model proposed by Wei et al. [81] to

the probabilistic setting. Instead of choosing model parameters by hand, we treat

them as unknown random variables and estimate them from observed velocities of the

lead and lag vehicles depicted in Figure 3.1. Though the resulting estimation problem

is nonconvex, we prove that it is equivalent to a semidefinite program and solve it in

realtime with an off-the-shelf solver. The estimate for the model parameters is then

used to sample realistic trajectories.

The chapter is organized as follows. Section 3.2 describes related works in interaction-

based trajectory prediction for traffic participants in general scenarios and those fo-

cused on ramp merging. Section 3.3 describes the interaction model we use to make

predictions and the inference procedure used to determine the probabilities of dif-

ferent outcomes. We evaluate our model on the NGSIM dataset and perform an

ablation study in Section 3.4 before concluding in Section 3.5.

3.2 Related Work

We first describe prediction methods that may operate on highly restricted ob-

servation windows, but do not take into account interactions. Methods that focus

on modeling interactions, but operate on longer observation windows, are described

25

in the next section. In the last section we describe methods designed specifically

to account for the interactions and restricted observation windows in ramp merging

scenarios.

3.2.1 Single Agent Prediction

Classical methods specify a simple kinematic model to predict trajectories, such

as constant velocity or constant yaw rate and acceleration [82]. Other methods

have employed learning based approaches such as Gaussian mixture models [83], or

hidden Markov models to ensemble simple kinematic models [84]. More similar to

the method proposed in this chapter, Houenou et al. [85] combine predictions from a

simple kinematic model and weight these with penalty terms on future accelerations.

These methods, however, do not account for interactions between different vehicles

on the road. This can lead to inconsistent predictions in common scenarios such as

a fast vehicle needing to slow down for a vehicle in front.

3.2.2 General Interaction-Based Trajectory Prediction

More recently, DNNs have been used to model the interactions between multiple

vehicles. Early works account for interaction but do not make probabilistic predic-

tions [79, 74]. Treating all other agents as obstacles and predicting occupancy grids

offers another approach, but this loses individual tracking labels and is limited by

coarse grid size [73]. Directly predicting the parameters of a known distribution

has been employed in most probabilistic methods, using a bivariate normal distri-

bution [75, 76, 77, 78]. The works of [75, 76], however, require additional labels for

maneuver types. Another method, Traphic [77], requires no such labels, but per-

forms a potentially slow social pooling operation for each agent at each timestep.

TrafficPredict [78] uses an attention based mechanism to extract features for all

pairwise interactions which scales poorly with the number of potentially interact-

ing agents. Recent works have avoided social pooling and attention mechanisms to

reduce computational complexity [1, 9]. Social GAN [1] introduces a permutation

invariant pooling layer to account for distant interactions while using a Generative

Adversarial Network architecture to predict all timesteps in a single forward pass.

Multi-Agent Tensor Fusion [9] instead uses a global pooling layer to avoid pooling for

each agent separately, as well as preserve spatial structure. The method proposed in

this chapter does not account for lane changes, but for ramp merging scenarios most

vehicles on the highway will cooperatively merge to an inner lane if at all merging,

to avoid interacting with vehicles entering the highway [86, 87].

Other works not based on neural networks have relied on manually defined cost

functions to specify vehicles’ behavior [88], or solving integer linear programs [89].

26

θ

γâts1t

s1t+1

s2t

s2t+1

t = 1, . . . , T − 1

Figure 3.2: Proposed interaction model for predicting lag vehicle behavior. The lag vehicle state s1

depends on the lead vehicle’s state s2, its own controller θ, and hyperparameters γ. Noisy estimates
of lag vehicle acceleration ât are calculated from state measurements.

These methods, however, have not performed as well as those based on neural net-

works.

3.2.3 Ramp Merging Trajectory Prediction

In this chapter we focus on modeling the interactions between the lag vehicle and

lead vehicle shown in Figure 3.1. A complementary body of research has instead

focused on modeling the interactions between the lag vehicle and ego vehicle [81, 90,

91]. In these works the goal is to infer whether or not the lag vehicle will yield to make

space for the ego vehicle, or not yield. The lag vehicle is then modeled as following a

controller specific to the yield intent. The controllers have been modeled as Markov

chains [90] and with the Intelligent Driver Model (IDM) [92] with manually chosen

parameters [91].

3.3 On-Demand Trajectory Predictions

Here we define our model of interactions between the lag and lead vehicles. We

then show how this is used to predict trajectories. Section 3.3.1 states the trajectory

prediction problem in our probabilistic setting. Section 3.3.2 defines the interaction-

based controller whose parameters we aim to estimate, and the dynamics of the

system. The full probabilistic model with novel regularization terms is defined in

Section 3.3.3. The realtime inference procedure for predicting trajectories with this

model is described in Section 3.3.4.

3.3.1 Problem Statement

We consider the ramp merging scenario in Figure 3.1 depicting the ego vehicle

merging onto the highway. To enable safe merging we are interested in predicting

the longitudinal positions of the two (lead, lag) vehicles in the target lane. Let

sit = (xit v
i
t)

ᵀ ∈ R2 denote vehicle state, consisting of longitudinal position xit and

27

velocity vit at timestep t. We denote the state of the lag vehicle by s1t and state of the

lead vehicle by s2t . We observe the state of both vehicles st = (s1ᵀt s2ᵀt)ᵀ at timesteps

t = 1, ..., k and predict x1t until the final timestep, t = k + 1, ..., T . Additionally

we will use the subscript notation i : j to refer to the set of variables indexed by

i, i+ 1, . . . , j. In making probabilistic predictions this amounts to sampling

x1k+1:T ∼ p(x1k+1:T |s1:k).(3.1)

We now explain our focus on the lag vehicle. With several assumptions summarized

in the graphical model shown in Figure 3.2, we decompose the joint prediction of

both vehicles into two parts. The first part predicts the lead vehicle’s trajectory and

the second predicts the lag vehicle’s trajectory conditioned on that of the lead vehi-

cle. We start with the assumption of not having observations for the vehicle in front

of the lead vehicle. We model the lag vehicle behavior as dependent on the state of

the lead vehicle, yet we do not model the state of the lead vehicle as dependent on

its own lead. One reason for this inconsistency is that occlusions and limited sensor

range may prevent us from obtaining such observations. Aside from this, the pro-

posed model could be extended to account for the lead vehicle’s own lead by repeated

decomposition, but there is a point at which we cannot see further vehicles ahead.

We thus present the simplest model here. Next, assume that the lead vehicle’s ac-

tions do not depend on the lag vehicle’s state as in common car-following models.

Furthermore, assume measurements of each vehicle’s position and velocity are noise-

less, while the acceleration measurement ât of the lag vehicle has zero mean Gaussian

noise with a small variance σ2
a. This is reasonable when the former measurements

have low variances but acceleration is approximated from velocity via finite differ-

ences. For example, given velocity measurements with variance σ2
v and timestep

size ∆t, acceleration then has variance var(ât) = var(vt+1 − vt)/∆t
2 = 2σ2

v/∆t
2.

The small timestep will magnify the variance as in the NGSIM dataset. Using the

independence assumptions in graphical model shown in Figure 3.2 we may write

p(sk+1:T |s1:k)
= p(s1k+1:T |s1:k, s2k+1:T)p(s2k+1:T |s1:k)
= p(s1k+1:T |s1:k, s2k+1:T)p(s2k+1:T |s21:k)

(3.2)

which provides the problem decomposition. Throughout the remainder of this chap-

ter we focus on the prediction problem for the lag vehicle posed as

s1k+1:T ∼ p(s1k+1:T |s1:k, s2k+1:T)(3.3)

from which we obtain the predicted positions.

28

3.3.2 Interaction Model

Here we describe the controller used to model the interactions between the lead

and lag vehicle. The controller is based on balancing two goals. The first is to match

the speed of the lead vehicle, and the second is to maintain a desired gap to the

lead vehicle. Let gt denote the current gap between the lead and lag vehicles. This

gap is calculated from their positions as gt = x2t − x1t − l, where l is the length

of the lead vehicle. We denote the desired gap by g∗. Denoting kv and kg as the

proportional control gains for the desired speed and desired gap, respectively, we

denote the parameters that define this controller by θ = (kv kg g∗). The controller

proposed in [81] sets the lag vehicle’s acceleration with

h(st, θ) = kv(v
2
t − v1t) + kg(gt − g∗)(3.4)

according to a manually chosen θ. In this chapter we treat θ as unknown and our

main focus is to estimate it. We assume that the parameters are nonnegative, hence

θ ∈ R3
+. We will use the notation 0m×n to denote the matrix of zeros with m rows

and n columns. Given current state of the lag vehicle and controller parameters θ

the next state is given by

(3.5) s1t+1 = Cs1t +

(
∆t2/2

∆t

)
h(st, θ),

where

(3.6) C =

(
1 ∆t

0 1

)
.

Given the lead vehicle’s states we write the entire system dynamics as

(3.7)

(
st

1

)
=

 A(θ)

02×5

01×4 1

(st−1
1

)
+

0

0

s2t
0

 ,

where

(3.8) A(θ) =
(
C 02×3

)
+

(
∆t2/2

∆t

)

−kg
−kv
kg

kv

−kg(l + g∗)

ᵀ

.

29

3.3.3 Regularized Prediction

The difficulty in sampling trajectories in (3.3) stems from not knowing the lag

vehicle’s controller θ. Direct estimation of θ can assign significant probability to

controllers that produce unrealistic behaviors. In this section we define regulariza-

tion terms to promote more realistic behaviors. We can express the distribution of

trajectories in (3.3) given the known hyperparameters γ, which we define later, as

p(s1k+1:T |s1:k, s2k+1:T , γ)

=

∫
R3
+

p(s1k+1:T , θ|s1:k, s2k+1:T , γ)dθ

=

∫
R3
+

p(s1k+1:T |s1:k, s2k+1:T , θ, γ)p(θ|s1:k, s2k+1:T , γ)dθ

=

∫
R3
+

p(s1k+1:T |s1:k, s2k+1:T , θ, γ)p(θ|s1:k, γ)dθ,

(3.9)

where the last equality follows from the conditional independence expressed in Fig-

ure 3.2. We begin by defining the second term in (3.9) which can be written using

Bayes’ rule and calculating the accelerations derived from velocities as

p(θ|s1:k, γ) ∝ p(â1:k−1, s2:k|s1, θ, γ)p(θ|s1, γ).(3.10)

For the first term in (3.10) we impose a recursive structure independent of γ to mirror

standard Markov chain structure as

p(â1:k−1, s2:k|s1, θ, γ) =
k−1∏
i=1

p(âi, si+1|si, θ),(3.11)

which combined with the system dynamics in (3.7) and the assumed Gaussian noise

for acceleration yields

p(â1:k−1, s2:k|s1, θ, γ) =
k−1∏
i=1

p(âi|h(si, θ)) =

=
k−1∏
i=1

N (âi;h(si, θ), σ
2
a).

(3.12)

Using this term only, we could estimate θ that fits the observed data. We now

introduce the hyperparameters to address weaknesses of this initial model. One

problem is an occasionally large and unrealistic estimate of the desired gap g∗. For

this we regularize g∗ to be close to a given mean gap g0. Additionally, the car-

following model was originally designed for dense traffic where the lead vehicle is

near the lag vehicle. The model is thus vulnerable to overfitting the lag vehicle’s

30

behavior to a distant lead vehicle’s accelerations. To address this, we regularize

the proportional parameters to zero more as the distance between the lead and lag

vehicles increases. We introduce the scalars α, β to control the precision of the normal

priors placed on the desired gap and proportional parameters. Letting γ = (α, g0, β),

we define the second term in (3.10) as

− log p(θ|s1, γ) = α(g∗ − g0)2 + βg20(k2v + k2g).(3.13)

We now define the first term in (3.9) to regularize the future behavior of the controller,

in contrast to (3.12) which focuses on the fit to observations. Let χ{v�0}(v) denote

the characteristic function which equals zero for the real vector v having all positive

components and equals infinity elsewhere. The negative log-likelihood is defined to

be

− log p(s1k+1:T |s1:k, s2k+1:T , θ, γ) = χ{v�0}(v),(3.14)

where v = (v1k+1, ..., v
1
T)ᵀ. Collecting the likelihoods specified in (3.12)-(3.14), the

negative log-likelihood for a given θ in (3.9) is

f(θ) =
1

2σ2
a

k−1∑
i=1

(âi − h(si, θ))
2 + α(g∗ − g0)2+

+βg20(k2v + k2g) + χ{v�0}(v).

(3.15)

The σ2
a term contributes only to the weighting of the data fit term relative to the

regularization terms. We thus may set σ2
a = 1 for convenience and determine the

other hyperparameters relative to this. Given parameters θ′ we can obtain a pre-

dicted trajectory via the dynamics given in equation (3.7). This trajectory has exact

probability equal to

(3.16)
exp (−f(θ′))∫

R3
+

exp (−f(θ))dθ

under the model. Calculating this probability by numerical integration, however, is

problematic due to the large number of function evaluations. Sampling can be used to

obtain a consistent approximation, but we cannot sample θ directly from exp (−f(θ))

because it does not correspond to a distribution for which efficient samplers exist.

In the next section we construct a consistent and efficient sampler for the likelihood

specified by (3.15).

3.3.4 Efficient Sampling

Our approach to sampling from (3.15) has two main steps. We first solve an

optimization problem to find a set of parameters θ̂ that has high likelihood. We then

employ importance sampling to sample from (3.15).

31

Figure 3.3: Likelihood surface of merging scenario. The projection f(θ) onto kv and kg appears
smooth and unimodal along these parameters. The proposed inference procedure finds the global
minimum (magenta) at θ̂ = (0.39, 0, 8.63).

Importance Sampling Given θ̂

We sample parameters via θ ∼ q(θ; θ̂) in the higher likelihood region around θ̂

where q is a distribution chosen to have support over R3
+ and admit efficient samplers.

These samples are then weighted with their importance weights

(3.17) w =
exp (−f(θ))

q(θ; θ̂)

and normalized by the sum of the weights to complete the importance sampling.

Since q has support over R3
+, the importance sampling is consistent, and depending

on the choice of q this procedure may also be efficient for sampling all the high-

likelihood θ. Figure 3.3 shows a typical likelihood surface of f(θ) using observations

from NGSIM. The smooth surface and unimodality admit efficient sampling.

Optimizing to Find θ̂

There are multiple possible optimization problems that could be solved to find

a high-likelihood θ̂ from f(θ). Minimizing f(θ) over θ ∈ R3
+ directly is one choice

but we see that ∀t > k st+1 depends on θ through both A(θ) and st in (3.7) since

we only observe up to timestep k. This implies that including the future behavior

regularizer (3.14) produces a nonconvex problem. To ensure our predictions can be

made in realtime, we instead optimize over all other terms in f(θ). Optimizing over

32

the chosen terms and noting θ = (θ1 θ2 θ3) = (kv kg g∗) yields

θ̂ = argmin
θ∈R3

+

1

2

k−1∑
i=1

(kv(v
2
i − v1i) + kg(gi − g∗)− âi)2+

+ α(g∗ − g0)2 + βg20(k2v + k2g)

(3.18)

= argmin
θ∈R3

+

1

2

k−1∑
i=1

(θ1(v
2
i − v1i) + θ2(gi − θ3)− âi)2+

+ α(θ3 − g0)2 + βg20θ
2
1 + βg20θ

2
2

(3.19)

= argmin
θ∈R3

+

1

2
||D

θ1

θ2

θ3

θ2θ3

− b||22(3.20)

= argmin
θ∈R3

+,u∈R+

1

2
||D

(
θ

u

)
− b||22 s.t. θ2θ3 = u(NC)

where we collect the variables and write the optimization as a least squares problem

with the rewritten known terms being D ∈ Rk+2,4 and b ∈ Rk+2, whose rows corre-

spond to the k−1 fitting terms and three regularizing terms. To remove the quadratic

component in the objective function, in the last equality, we introduce a new deci-

sion variable u to represent this quadratic variable and then define a new equality

constraint. From this point we first consider solving the problem (NC) where θ is no

longer constrained to the nonnegative orthant:

(NC1)
minimize

θ∈R3

u∈R

1

2
||D

(
θ

u

)
− b||22

s.t. θ2θ3 = u

This problem admits a convex relaxation that exactly recovers the global minimum,

shown next. We begin by defining x = (θ;u) ∈ R4. To rewrite the nonconvex

constraint θ2θ3 = u in terms of x, we introduce E ∈ S4 and c ∈ R4 defined by

(3.21) E =
1

2

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 ,

and

(3.22) c =

0

0

−1

0

 .

33

We now have

(3.23) r(x) = xᵀEx+ cᵀx = θ2θ3 − u,

whereby the constraint may be written as r(x) = 0. It is now possible to apply

Lemma A.3 in Appendix A to show that solving the convex relaxation of (NC1)

given by

(P)

minimize
X∈S4
x∈R4

1

2
tr(DᵀDX)− bᵀDx+

1

2
bᵀb

s.t. X � xxᵀ

tr(EX) + cᵀx = 0

for x is equivalent to solving (NC1) for x. We can observe that (P) is a semidefinite

program by defining

(3.24) Y =

(
X x

xᵀ 1

)
,

and noting that by using the Schur complement of 1 in Y :

(3.25) Y � 0 ⇐⇒ 1 > 0, X − xxᵀ � 0.

This shows that the X � xxᵀ constraint in (P) is a semidefinite constraint. That

(P) is a semidefinite program follows from the fact that the objective and remaining

constraint are linear in Y .

At this point, solving (P) exactly recovers the global minimum of (NC1). Provided

the solution to (P) happens to satisfy x � 0, the solution for (NC1) is also feasible for

(NC). Since (NC1) and (NC) share the same convex objective function, the solution’s

feasibility implies it is also optimal for (NC). Moreover, the same solution is the global

minimum of the entire negative log-likelihood (3.15) whenever it additionally satisfies

the nonconvex constraint on future velocities (3.14). Since there is the possibility

that the solution to (P) will not satisfy x � 0, we instead approximate (NC) with

the additional nonnegative constraint on (P) given by:

(P1)

minimize
X∈S4
x∈R4

1

2
tr(DᵀDX)− bᵀDx+

1

2
bᵀb

s.t. X � xxᵀ

tr(EX) + cᵀx = 0

x � 0

The proposed method for sampling trajectories is summarized in Algorithm 2.

Lemma A.3 also tells us that we need sufficiently many observations to ensure D is

full rank. This occurs at a minimum of two distinct observations, and in practice we

find four to be sufficient.

34

Algorithm 2: Probabilistic Trajectory Prediction for Ramp Merging

Input: s1:k, s2k+1:T , γ, n

Output: s
1,(i)
k+1:T , p

(i), for i = 1, . . . , n

1 Solve convex problem (P1) for θ̂
2 foreach i = 1, ..., n do

3 Sample θi ∼ q(θ; θ̂)
4 Generate s

1,(i)
k+1:T via (3.7)

5 wi ← exp (−f(θi, s1:k, s
1,(i)
k+1:T , s

2
k+1:T , γ))/q(θi; θ̂) via (3.15)

6 end

7 ∀i = 1, . . . , n p(i) ← wi/
∑n

i=1 wi

3.4 Experiments

To evaluate the proposed method’s ability to predict trajectories in dense traffic

for ramp merging, we test it on the NGSIM dataset [80]. The NGSIM dataset

includes full trajectory data recorded at 10 Hz for two highways, I-80 and US-101,

during peak usage. Since our focus is ramp merging for AVs, we extract relevant

pairs of lead and lag vehicles. These pairs are those between which a vehicle entering

the highway has merged, or the pair behind such a pair. We are most interested in

predicting the behavior of the lag vehicle at the most crucial moment–when it can

see the potentially merging ego vehicle. For each pair the start of the prediction

window t = k + 1 begins when the merging vehicle first passes the lag vehicle. The

end of the prediction window t = T occurs either when the ego vehicle passes the

lead vehicle or first enters the target lane in case of a merge. All pairs are observed

for 3.2 s before the prediction window. This choice of observation window allows us

to compare to methods that use more traditional window lengths. We extract 420

pairs from the I-80 data and 292 pairs from the US-101 data.

3.4.1 Model Specifications

We set g0 equal to the mean of the observed gaps. For the precision values,

we found that values in [0.5, 2] achieve a good balance between performance and

probability calibration. Following this, we set α and β to 1 for all experiments.

For importance sampling we define q(θ; θ̂) as the multivariate normal distribution

N (θ̂, I3) truncated to R3
+ and draw 1,000 samples. This variance was found to

be sufficiently large to sample effectively. The convex problem (P1) is solved with

CVXOPT v1.2.3 [93], an open-source solver for convex optimization.

35

3.4.2 Baselines

We compare to state-of-the-art methods for ramp merging and general highway

prediction in addition to a simplified version of the proposed model:

• Constant Velocity (CV): The average velocity is used to predict future po-

sitions.

• IDM-based (IDM)[91] : The IDM car-following model [92] is parameterized

based on the identified lead vehicle. Unlike other methods it uses the future

trajectories of the lead vehicle and the ego vehicle.

• Social GAN (SGAN)[1] : Shown to achieve state-of-the-art performance on

NGSIM when compared to other neural networks [77] despite originally being

designed for joint prediction of pedestrian trajectories.

• Multi-Agent Tensor Fusion (MATF)[9] : Achieves state-of-the-art perfor-

mance on NGSIM using a global pooling layer to capture distant interactions

while maintaining spatial structure.

• No Regularization (Proposed-NR): The proposed method without regu-

larization terms, corresponding to only the first term of (3.15).

Each DNN is trained once on each highway dataset. For making predictions on

a given scenario, the model that has not seen it during training is used to make

predictions. To evaluate these probabilistic predictions from SGAN and MATF we

draw 100 samples.

The proposed method uses observations for the lead and lag vehicles, but SGAN

and MATF have traditionally been evaluated with observations for all vehicles on

the freeway [77, 9]. For comparison we include this standard evaluation, denoted by

SGAN* and MATF*. In practice, however, we will accurately detect only nearby

vehicles. To reflect this case, we evaluate SGAN and MATF with the same obser-

vations as the proposed method, augmented with observations of other vehicles we

may reasonably detect from the viewpoint of the ego vehicle. We add observations

for three additional vehicles: the lead vehicle’s lead, the ego vehicle, and the ego’s

own lead vehicle.

3.4.3 Evaluation Metrics

Let x̂i,t be the random variable corresponding to the probabilistic prediction of

the lag vehicle’s longitudinal position at timestep t in the ith scenario. The true

position is denoted xi,t. Since the time horizon varies between scenarios, we denote

36

Table 3.1: Predictive performance of each method for the NGSIM dataset (best in bold and second
best underlined). Average distance error (ADE) and root mean squared error (RMSE) are shown as
ADE/RMSE in meters. The proposed method achieves the lowest error for short-term predictions,
and outperforms the DNNs when the observations are limited to nearby vehicles.

3.2 s observed
Extra information

t (s) IDM SGAN* MATF* CV SGAN MATF Proposed-NR Proposed
0.8 0.65/0.89 0.46/0.75 0.44/0.68 0.67/0.92 0.67/0.96 0.49/0.75 0.37/0.60 0.33/0.60
1.6 1.95/2.60 1.10/1.63 1.00/1.44 1.47/1.97 1.47/2.01 1.20/1.73 1.08/1.56 0.95/1.62
2.4 3.47/4.73 1.87/2.60 1.56/2.17 2.34/3.42 2.34/3.13 2.08/2.93 1.99/2.77 1.67/2.47
3.2 4.73/6.20 2.78/3.71 2.04/2.81 3.42/4.44 3.35/4.39 3.01/4.24 3.01/4.14 2.54/3.61
4.0 5.57/7.29 3.81/4.99 2.67/3.60 4.63/5.91 4.46/5.77 4.19/5.87 4.25/5.74 3.54/4.88
4.8 5.97/7.72 4.90/6.26 3.22/4.34 5.94/7.60 5.65/7.27 5.42/7.52 5.63/7.55 4.67/6.31

Nt as the number of scenarios with time horizon T ≥ t. To evaluate the accuracy of

the probabilistic trajectory predictions we evaluate the following metrics:

• Average Distance Error (ADE): The expected distance between the prediction

and the true position, used in [1, 77, 9, 78]. ADE is calculated at timestep t as:

ADE(t) =
1

Nt

Nt∑
i=1

E[|xi,t − x̂i,t|]

• Root Mean Squared Error (RMSE): The square root of expected squared error

between the prediction and the true position, used in [76, 75, 74, 77, 9]:

RMSE(t) =

√√√√ 1

Nt

Nt∑
i=1

E[(xi,t − x̂i,t)2]

The ADE tells us how prediction errors are distributed on average. Predicting a

distribution over positions that has a mean close to the actual position will result

in lower error. The RMSE is similar but assigns more weight to larger errors due to

the squared term within the expectation. A method with ADE lower than RMSE

suggests that it predicts more extreme cases, but assigns lower probability to these.

3.4.4 Performance in Dense Traffic Scenarios

The performance for each method is shown in Table 3.1. The model-based method

IDM makes overly conservative predictions about braking which hurt its performance.

MATF* achieves the lowest errors for long-term predictions by utilizing positional

information of all vehicles on the freeway. SGAN* also achieves low error with the

same information. Using the same DNNs to make predictions having observed only

the more immediate vehicles, however, results in worse performance. The proposed

37

Figure 3.4: Predictions of each method on two ramp merging scenarios. The red crosses show
the lag vehicle’s position and the black crosses show the observed positions of its lead vehicle. The
probabilistic predictions for each method are displayed after the end of the observation window. The
color bar (right) provides the probability corresponding to each color. The proposed method predicts
the lag vehicle’s positions accurately despite using less information than the other interaction-based
methods.

method is evaluated without knowledge of the lead’s own lead vehicle, or the vehicles

in the merge lane, yet still outperforms the DNNs. The drop in DNN performance

suggests that rather than learning to predict based on cues in nearby drivers’ behav-

ior, they have learned how traffic waves propagate along highways. Comparing the

errors made in the short-term and the long-term, we observe that while the DNNs

perform competitively with CV in the short-term, they are better at capturing be-

havior in the long-term. Fitting the car-following model directly as Proposed-NR

is competitive with MATF, though less so at longer-term predictions. Adding the

regularization terms enables the proposed method to outperform the baselines, ex-

cepting those with full observations of the freeway. Even compared to these methods,

the proposed method predicts the short-term with lower error. This makes sense if

MATF* learned to focus on the long-term rather than the short-term, relying heavily

on observations of vehicles much farther ahead.

3.4.5 Performance with Limited Observations

Previously we compared performance ensuring that each method had sufficiently

many observations in each scenario. For the real scenarios that AVs will encounter,

however, we cannot guarantee that such time will be available. Even within the

NGSIM dataset alone, nearly 8% of the scenarios having between 400 ms and 3.2 s

of observations are removed from our evaluation to ensure traditional observation

windows may be used. In this section we make predictions on the same scenarios as

before but limit ourselves to 400 ms of observations. Both SGAN and MATF operate

38

on downsampled data. SGAN operates at 2.5 Hz, so for the limited observation

window of 400 ms it sees only one observation. To supply the method with the

traditional 3.2 s of observations, we extrapolate using the constant velocity model

from the 400 ms of original observations at 10 Hz. We also extrapolate for MATF

which operates at 5 Hz.

The ADE and RMSE for a subset of the methods is shown in Table 3.2. We

see that the performance for both SGAN and MATF remains largely unchanged

between using the traditional and limited observation windows. This has also been

observed in pedestrian trajectory prediction [94] where only the first few observations

were found to significantly affect predictive performance of a DNN. The proposed

method’s performance decreases for the longer-term predictions, but still outperforms

the baselines.

Table 3.2: ADE/RMSE with limited observations. CV predicts competitively in the short-term
while MATF does so in the long-term. The proposed method retains its performance despite using
a short observation window.

400 ms observed
t (s) CV SGAN MATF Proposed
0.8 0.43/0.78 0.65/0.95 0.51/0.82 0.32/0.59
1.6 1.13/1.81 1.46/2.04 1.23/1.84 0.92/1.48
2.4 2.01/2.95 2.35/3.20 2.04/2.92 1.68/2.59
3.2 3.13/4.38 3.34/4.45 2.97/4.19 2.63/3.88
4.0 4.43/6.05 4.40/5.75 4.09/5.74 3.69/5.27
4.8 5.89/7.89 5.60/7.26 5.15/7.24 4.87/6.82

Table 3.3: Compute time and probability calibration. The proposed method with 1000 samples and
CV predict in realtime, while SGAN and MATF with 100 samples do not. SGAN and the proposed
method show calibrated probability estimates, while MATF and CV match in calibration.

CV SGAN MATF Proposed
Compute time (s) 0.002 0.549 0.908 0.028

Calibration 0.65 0.18 0.65 0.17

3.4.6 Speed

Sudden and critical scenarios in autonomous driving demand methods that op-

erate in realtime. Table 3.3 shows the time taken to make predictions for a single

scenario. SGAN and MATF are benchmarked on GTX 1080 GPU, and the other

methods on Intel Core i7-6800K CPU at 3.40 GHz. Although SGAN and MATF do

not make realtime predictions with 100 samples, they could do so by reducing the

number of samples. This would improve speed at the cost of less accurate proba-

bility estimates. The proposed method’s low number of parameters aids in making

realtime predictions despite using 1000 samples.

39

3.4.7 Probability Calibration

Probabilistic predictions attach a probability to each predicted outcome and en-

able planners to calculate risk. The calculated risk, however, depends on estimates

of probability since the true distribution over future outcomes is unknown. The

constant velocity model can be viewed as a probabilistic method with degenerate

probability estimates. It predicts a single outcome and assigns it full probability. In

some sense these probability estimates are not accurate, because vehicles often take

different trajectories. We measure this accuracy with a metric for the calibration of

regression methods [95]. This measures the squared error between each confidence

interval’s probability and the empirical probability of outcomes within the interval

being realized. The calibration scores for each method in Table 3.3 mirror the pre-

dictive distributions in Figure 3.4. SGAN and the proposed method have calibrated

probability estimates, while MATF tends to underestimate the uncertainty in its

predictions.

3.5 Conclusion

We propose a novel probabilistic extension for a car-following model and introduce

regularization terms to enforce realism in predicted behaviors. Through experiments

we demonstrate that these terms lead to increased prediction accuracy for real ramp

merging scenarios in dense traffic. Comparing our model to existing methods on the

NGSIM dataset shows that it achieves state-of-the-art performance. Furthermore,

the proposed model maintains comparable performance when limited to using very

few observations. There are multiple limitations to the proposed model that provide

grounds for future work. The model considers interactions only between the lag and

lead vehicles. Combining this with approaches that consider interactions between the

lag and ego vehicles [81, 90, 91] provides one direction for future work. Accounting

for lane changes provides another direction.

CHAPTER IV

Pedestrian Prediction in Shared Spaces
for Autonomous Vehicles

4.1 Introduction

Pedestrians and drivers interact closely in a wide range of environments. Vari-

ous road markings and signals regulate their interactions, and these features have

been leveraged by many model-based prediction methods to better predict pedestri-

ans. Environments such as shared spaces, however, aim to regulate traffic through

natural social interactions rather than traffic devices. Shared spaces are specifically

designed to minimize separation between pedestrians and drivers to promote nego-

tiation between the two groups of road users [96]. This focus on social interactions

limits the applicability of prediction methods relying on the existence of traditional

traffic devices. Recent model-free prediction methods have instead focused on ac-

curately predicting pedestrians in arbitrary environments. Deep neural networks

(DNNs) have proven especially effective at leveraging large datasets to learn the var-

ious interactions amongst pedestrians, between pedestrians and the environment, and

between pedestrians and vehicles. This superior performance and generality comes

at a price. Black-box methods sacrifice both interpretability and speed with ever

larger numbers of parameters. In this chapter we aim to strike a balance between

existing model-based and model-free methods, borrowing techniques from each. We

introduce a probabilistic method called Off the Sidewalk (OTS) to predict pedestrian

trajectories in environments where sidewalks and other traffic devices may or may

not be present. As in model-free methods we leverage existing trajectory data to

learn functions for pedestrian attention and vehicle influence. At the same time,

we focus on modeling only interactions between pedestrians and vehicles. While this

focus ignores interactions amongst pedestrians, we find that modeling this type of in-

teraction alone enables the proposed method to achieve state-of-the-art performance.

The simplified modeling of interactions also yields a model that is more interpretable

and faster than state-of-the-art DNNs. The main contributions of this chapter are:

40

41

Figure 4.1: Steps of the proposed interaction model. The pedestrian pays attention to each vehicle
and yields in proportion to estimated risk. A learned vehicle influence then predicts how yielding
pedestrians adjust their speed, while non-yielding pedestrians continue at their desired velocity.
The predicted distribution over future positions is shown for each case.

1. a novel and realtime probabilistic method OTS to predict pedestrian trajectories

in scenes where traditional traffic devices may not be present;

2. a tractable training procedure that avoids the auxiliary simulations or manually

specified parameters called for in previous model-based works;

3. evaluation on real-world interactions at shared spaces and urban intersections

in the DUT [30] and inD [97] datasets.

The proposed method OTS predicts individual pedestrians in two steps, shown

in Figure 4.1. Risk-based attention is used to predict which vehicle holds the pedes-

trian’s attention, and whether the pedestrian yields to the chosen vehicle. To model

risk in the absence of informative features such as curbs, we rely entirely on the

pedestrian’s position and velocity relative to the vehicle. For yielding pedestrians, a

42

learned vehicle influence predicts how yielding adjusts the pedestrian’s speed. Sim-

ilar to social forces [33], vehicle influence is based on the pedestrian’s distance to

the vehicle’s anticipated motion, but is learned from labeled data. Since labels for

attention and yielding are typically unavailable, the resulting training problem may

have many modes. We employ pseudo-likelihood methods to decompose the problem

into simpler parts that are readily solved.

The chapter is organized as follows. Section 4.2 describes related methods for

predicting pedestrians’ trajectories. Section 4.3 describes the model of interactions

between pedestrians and vehicles used to predict trajectories. In Section 4.4 we

evaluate the model on the DUT and inD datasets, concluding in Section 4.5.

4.2 Related Work

We first describe methods that predict trajectories by explicitly modeling pedes-

trians’ interactions with other road users or the environment. Methods that learn

models of interaction directly from large datasets are described in the next section.

4.2.1 Model-Based Methods

Recent works have had success with modeling the evolution of the pedestrian’s

position as a Markov process [98, 99, 28, 27]. Methods based on solving Markov

Decision Processes [31, 32] and non-Markovian models such as Interacting Gaussian

Processes [22] have also been proposed. The former, however, do not scale to ac-

count for interactions between road users, and the latter have not achieved the same

performance as more recent methods [40]. We adopt the Markov process approach in

this chapter. In these approaches the pedestrian at each timestep chooses whether to

continue a nominal trajectory or stop for an oncoming vehicle. Previous works have

modeled this decision at signaled intersections [98] and marked crosswalks [27, 28].

In these settings they have leveraged scene features to estimate the pedestrian’s risk

associated with continuing. More general scenes containing at least curbs have been

examined in Kooiji et al. [99], but this chapter addresses pedestrian motion only in

one dimension. Vehicle interactions are incorporated by measuring risk presented

by the oncoming vehicle. Measures include vehicle speed and distance [28], and

minimum separation distance [99, 27]. Blaiotta [27] additionally considers the time

remaining before the minimum distance is attained. The focus of this chapter is

on shared scenes, which lack the informative features provided by traditional road

infrastructure. Here, risk depends only on the minimum distance and time features.

Once the decision to yield is made, many works model the pedestrian’s speed as

a binary option of stopping or walking [99, 27, 28]. We propose to learn a vehicle

43

influence function that specifies how pedestrians adjust their current speed when

yielding, rather than stopping. The learned influence shown in Figure 4.3 (right)

captures the phenomenon that many pedestrians slow down before stopping. This

is crucial to detecting the intent to yield early. Similar to social forces [33, 100], the

influence depends on the pedestrian’s distance to the vehicle, but our formulation

enables a much simpler estimation using linear least-squares.

4.2.2 Deep Learning Methods

In contrast to traditional methods that rely heavily on manually chosen features,

model-free methods learn features directly from large labeled datasets. This au-

tomatic feature selection has contributed to the recent successes of deep learning

methods [79, 57, 55]. Unlike most model-based methods which estimate uncertainty,

these initial works make only deterministic predictions. Subsequent works have ad-

dressed this by predicting the parameters of the normal distribution [40, 77]. These

works also use social pooling layers, which extract features for nearby pedestrians [40]

or road users [77] based on a grid of specified size. The fixed size of the grid, how-

ever, could fail to account for distant interactions. Many methods have addressed

this by replacing social pooling with soft attention, which models each pairwise in-

teraction between road users [53, 56, 101, 78]. The risk-based attention used in this

chapter is similar to soft attention. Of the above DNNs using soft attention, only

TrafficPredict [78] models interactions between pedestrians and vehicles.

Speed has been an area of focus for these works since the number of pairwise in-

teractions computed for soft attention quickly grows with the number of road users.

Social pooling also entails a costly pooling step for each road user. Social GAN [1]

introduces permutation invariance to replace these slower operators. This method re-

duces the computational burden to a single application of the proposed permutation

invariant pooling module. One drawback, however, is that the permutation invari-

ant operators do not preserve the uniqueness of interaction features for each road

user. Multi-Agent Tensor Fusion (MATF) [9] addresses this by introducing a global

pooling layer that preserves uniqueness. Though not as efficient as Social GAN,

MATF achieves state-of-the-art performance without the computational burden of

soft attention.

4.3 Interaction-Based Trajectory Predictions

We formulate the problem of predicting pedestrian trajectories in Section 4.3.1.

Section 4.3.2 introduces the probabilistic method, Off the Sidewalk (OTS), used

to model pedestrians’ interactions with vehicles and predict pedestrian trajectories.

44

Figure 4.2: Reference frame for the ith vehicle at timestep t. The pedestrian’s position in this
frame is decomposed into the orthogonal components xit,⊥ and xit,‖. The positions and velocities
used in the world frame are shown for reference.

Estimation of the model parameters is described in Section 4.3.3, followed by imple-

mentation details in Section 4.3.4.

4.3.1 Problem Statement

We receive noisy observations of pedestrian position and aim to predict the true

position at future timesteps. We denote the noisy observation at timestep t by

x̂t ∈ R2 and the corresponding true position by xt ∈ R2. Given observations over

timesteps t = 1, . . . , k and a final timestep of T , we write the prediction task as

sampling future trajectories

{xt}Tt=k+1 ∼ p({xt}Tt=k+1|{x̂t}kt=1).(4.1)

In this chapter we focus on modeling interactions of a single pedestrian with multiple

vehicles. Like other model-based works [99, 27, 28], we assume vehicle position and

velocity for each timestep is known and deterministic. While this assumption is not

true when pedestrians and drivers continuously respond to each others’ actions, it

does hold in a scenario of significance to AVs. In particular, the assumption holds

when the AV is planning its own future trajectory, with no intent of aborting the

execution before the final timestep of prediction. In this case the AV knows its

own trajectory and does not modify it in response to the pedestrian’s actions. We

examine this scenario in Section 4.4.4.

4.3.2 Pedestrian-Vehicle Interaction Model

Let xt, vt ∈ R2 denote the pedestrian’s position and desired velocity at timestep

t. We now turn to defining the variables used to model the pedestrian’s interaction

with vehicles. The first step is to choose the pedestrian’s vehicle of focus. Let rt ∈

45

Figure 4.3: Learned functions for the DUT dataset. The learned risk function (left) predicts
the decision boundary for pedestrians’ yielding to lie along the white contour, over low values of
minimum distance d and time remaining τ . The learned vehicle influence (right) resembles a curb
roughly 3 m away from the vehicle. Arrows show the movement of a yielding pedestrian with desired
velocity of 1 m/s.

{1 . . . nv} denote which of the nv vehicles currently has the pedestrian’s attention.

The next step is whether or not the pedestrian yields to vehicle rt. We define the

binary variable qt = 0 for yielding, and qt = 1 for continuing at the desired velocity

vt. To aid in defining the extent of interactions, we introduce Rt ⊆ {1, . . . , nv}, the

set of vehicles the pedestrian may pay attention to at timestep t. Let the current

position and velocity of the ith vehicle be given by yit,x, y
i
t,v ∈ R2, respectively. Also

let xit,⊥ and xit,‖ denote the lateral and longitudinal components of the pedestrian’s

position in the ith vehicle’s reference frame. This is shown in Figure 4.2. We define

a maximum lateral distance umax to limit the extent of interactions. Any vehicles

beyond this distance are ignored by the pedestrian. Additionally ignoring vehicles

behind the pedestrian or not crossing the pedestrian’s path, we define

Rt = {i ∈ {1, . . . , nv}| xit,‖ ≥ −l,
|xit,⊥| ≤ umax, v

ᵀ
t z < 0},

(4.2)

where l corresponds to half the vehicle length and z corresponds to the unit vector for

the lateral axis in Figure 4.2. The positions for which yielding may occur correspond

to a subset of a quadrant in front of the vehicle, as in Figure 4.1. We now define

vehicle influence over these positions. Vehicle influence is modeled as a piecewise-

linear function of xit,⊥ that is symmetric about zero, as fu : R→ R. The function is

linear in u ∈ Rnu , with nu denoting the number of grid points. The function grid is

parameterized by its maximum distance umax with the nu grid points evenly spaced

46

within [0, umax]. Given a pedestrian yielding to vehicle i, the pedestrian’s velocity is

defined

vyield = fu(x
i
t,⊥)vt.(4.3)

Similar to Social Forces [33] each position specifies a yielding velocity for the pedes-

trian. Shown in Figure 4.3, the model has learned that yielding pedestrians slow

down before stopping closer to the vehicle’s path. We may now write the pedes-

trian’s next transition as

xt+1 = xt + [qtvt + (1− qt)fu(xrtt,⊥)vt]∆t,(4.4)

where ∆t is the size of each timestep.

Now defining the distributions for each variable, we first assume normally dis-

tributed noise for the observations as

x̂t ∼ N(xt, σ
2
x),(4.5)

with variance σ2
x. Desired velocity is modeled as a driftless random walk with nor-

mally distributed innovations. Its transition is given by

vt+1 ∼ N(vt, σ
2
v),(4.6)

where σ2
v is the variance of the innovations. The pedestrian decisions for rt and qt

depend on risk features, which we define next. Under a constant velocity, the remain-

ing time before the pedestrian and vehicle i ∈ Rt reach their minimum separation

distance is given by

τ it =
(xt − yit,x)ᵀ(yit,v − vt)
‖yit,v − vt‖22

.(4.7)

Since i ∈ Rt, the ith vehicle is closing the distance to the pedestrian and this time

is positive and finite. The minimum distance itself is given by

dit = (‖yit,x − xt‖22 − (τ it)
2‖yit,v − vt‖22)

1
2 .(4.8)

When both the remaining time τ it and minimum separation distance dit are low, we

would expect the perceived risk to be high. On the other hand, a high value for

either would suggest low risk. We aim to learn this relationship from data with a

piecewise-linear function similar to the vehicle influence. The function is defined on

a regular grid over [b0, b1]
2 ⊆ R2 with n2

b evenly spaced points. Denote the piecewise

function fβ : R2 → R, which is linear in the model parameter β ∈ Rn2
b+1 and includes

a constant term. We define the current risk perceived by the pedestrian as

riskit = fβ(log10 τ
i
t−1, log10 d

i
t−1).(4.9)

47

The arguments to fβ are in the log scale, to match the intuition that risk changes

more rapidly nearer to collisions. Figure 4.3 shows that this is reflected in the learned

parameters. Having defined risk, we now define the distributions for rt and qt. First,

when there are no vehicles presenting risk, Rt = ∅. For this case we take qt = 1 since

no yielding will occur. When there are possibly multiple vehicles, the pedestrian

pays attention in proportion to risk. For i ∈ Rt we define the distribution of rt with

the softmax function as

p(rt = i|xt−1, vt−1, β) =
exp riskit∑
j∈Rt

exp riskjt
.(4.10)

Given vehicle rt has the pedestrian’s attention, the binary decision to yield is dis-

tributed as

p(qt = 0|xt−1, vt−1, rt, β) =
exp riskrtt

1 + exp riskrtt
.(4.11)

Compared to choosing a vehicle based on relative risk, the decision to yield is based

on absolute risk. We place weak Gaussian priors on the parameters u and β to ensure

their estimation is well-posed. Let chosen scalars αu and αβ denote the strength of

these priors. The negative log likelihoods are given by

− log p(u) = αu‖u‖22
− log p(β) = αβ‖β‖22

(4.12)

which correspond to zero-mean Gaussian priors, with precision proportional to αu

and αβ. Additionally we restrict the domain of each element of u to the interval

[−1, 1]. This allows for the interpretation that pedestrians only decrease speed in

response to vehicle influence. Although pedestrians may temporarily increase speed

while crossing in front of a fast moving vehicle, we approximate this by a lack of

yielding rather than with the vehicle influence. The next section describes how to

estimate the model’s unknown parameters σ2
v , u, and β.

4.3.3 Model Estimation

We optimize a likelihood function to estimate model parameters. To keep quanti-

ties concise, we introduce additional notation. For each of the variables xt, vt, rt, qt,

let its bolded version denote the entire time series, such as x ≡ {xt}
tf
t=1, where tf

is the final timestep observed. Additionally, let st = (xt, vt). Using the Markov

48

structure of the model, we write the joint distribution of a single pedestrian’s data

Lfull(x,v, r,q, σ
2
v , u, β) =

= p(u)p(β)

tf∏
t=2

p(x̂t|st−1, rt, qt, u)p(qt|st−1, rt, β)

p(rt|st−1, β)p(vt|vt−1, σ2
v)

(4.13)

From the transition equation (4.4) there are many interacting terms. The decision

variables rt and qt are also discrete. These features suggest that the full likelihood

Lfull may have many modes that can trap optimization procedures at poor local

optima. We instead work to separate this likelihood into commonly solved problems.

This is accomplished by first removing the need to estimate each rt. We first note

that the set of possible vehicles Rt effectively specifies rt when it is either empty

or consists of a single vehicle. Since Rt depends on the pedestrian’s position and

desired velocity, we use the observed positions and a moving average of observed

velocities over two seconds in their place to produce the estimate R̂t. We remove

the likelihood’s dependency on r by ignoring data for all pedestrians having any

timestep t with |R̂t| > 1. This pseudo-likelihood technique of ignoring component

likelihoods will reduce the efficiency of our parameter estimates [102]. Using a large

dataset to estimate the parameters, however, allows us to safely ignore this loss. As

each remaining rt is specified by R̂t, we remove the p(rt|xt−1, vt−1, β) term which no

longer contributes any information. Defining the set of timesteps with no candidate

vehicles as Q = {t|R̂t = ∅}, we also have that ∀t ∈ Q, qt = 1. Examining the

transition equation (4.4), we can simplify likelihood terms for t ∈ Q as

p(x̂t|xt−1, vt−1, rt, qt = 1, u) = p(x̂t|xt−1, vt−1).(4.14)

Rewriting the joint distribution of the included pedestrian in terms of Q now yields

LQ(x,v,q, σ2
v , u, β) =

=

tf∏
t=2

p(vt|vt−1, σ2
v)
∏
t∈Q

p(x̂t|st−1)

p(u)p(β)
∏
t/∈Q

p(x̂t|st−1, rt, qt, u)p(qt|st−1, rt, β)

(4.15)

The likelihood given by (4.15) has eliminated the dependency on u and β for the first

two products. In fact, the first two products form a Kalman smoothing problem.

Given noisy observations x̂t for t ∈ Q, we estimate the true position xt for t ∈ Q,

vt for all timesteps, and the variance σ2
v . Using x̂t as an unbiased estimate of xt

for t /∈ Q, we are now in a position to use the remaining likelihoods. We use these

49

estimates in place of their unknown values to estimate the model parameters u and

β. Denoting {qt}t/∈Q by qc, the final likelihood we use is given by

Lc(qc, u, β) =

p(u)p(β)
∏
t/∈Q

p(x̂t|st−1, rt, qt, u)p(qt|st−1, rt, β)(4.16)

Taking the negative log likelihood of (4.16) yields

lc(qc, u, β) =∑
t/∈Q

∆t2

2σ2
x

‖qtvt + (1− qt)fu(xrtt,⊥)vt −
x̂t+1 − xt

∆t
‖22

− log p(qt|xt−1, vt−1, rt, β) + αu‖u‖22 + αβ‖β‖22

(4.17)

If the decision to yield qt were known for each timestep, we would have two separate

problems. Fixing qt for t /∈ Q in addition to the estimated values of xt and vt, only u

is unknown in the first summand. Since the piecewise-linear function fu is linear in

u, the first summand and the u prior form a linear least squares problem for u with

box constraints. There is no closed-form solution due to the restricted domain of u

being [−1, 1]nu ⊆ Rnu , but it is readily solved by off-the-shelf linear programming

solvers. For the second summand, β is the only unknown variable. The piecewise-

linear function fβ is linear in β, so the second summand and the β prior form a

logistic regression for β. Since the qt are not labeled in common datasets, we use

block coordinate descent. For blocks we use (u, β) and qc. We start with a random

initial value for each unknown qt and solve the above subproblems for u and β. Fixing

u and β makes the sum separable, so the optimal value of qi does not depend on that

of qj for i 6= j. Choosing the optimal qt then consists of choosing the binary value

that results in lower loss for the summand at timestep t. Repeating these steps to

convergence yields the final parameter estimates for u and β.

4.3.4 Implementation

We parameterize the risk function fβ by a regular grid over [0, 1.6]2 ∈ R2 with a

stride of 0.4. Since the function inputs are in the log scale, the range includes real

distances up to roughly 40 m. Values outside the range are clipped to the nearest

gridded point. The vehicle influence fu is parameterized by points in [0, 6] ∈ R with

1 m spacing. This sets the influence’s maximum range umax to 6 m. The priors on the

learned functions’ parameters (4.12) are set to be weak with αu = 1
202

and αβ = 1
102

.

Few pedestrians are identified as yielding within the 5-6 m range during the training

process. Lack of yielding in the range results in the farthest grid point of fu having its

parameter estimate being pulled to the prior value of zero, shown in Figure 4.3. This

50

T
ab

le
4.

1:
P

re
d

ic
ti

ve
p

er
fo

rm
an

ce
on

D
U

T
an

d
in

D
d

a
ta

se
ts

.
E

va
lu

a
ti

o
n

m
et

ri
cs

a
re

sh
ow

n
a
s

A
D

E
/
R

M
S

E
in

m
et

er
s.

T
h

e
p

ro
p

o
se

d
m

et
h

o
d

O
T

S
ou

tp
er

fo
rm

s
th

e
b

as
el

in
es

fo
r

b
ot

h
sh

or
t-

te
rm

a
n

d
lo

n
g
-t

er
m

p
re

d
ic

ti
o
n

s.

D
at

as
et

D
U

T
in

D
t

(s
)

C
V

S
G

A
N

M
A

T
F

-S
M

A
T

F
O

T
S

C
V

S
G

A
N

M
A

T
F

-S
M

A
T

F
O

T
S

1
0.

39
/0

.3
8

0.
62

/0
.6

6
1.

65
/
1
.8

7
0
.6

3
/
0
.7

2
0
.2

2
/
0
.3

0
0
.5

0
/
0
.5

0
0
.9

8
/
1
.0

9
1
.0

1
/
1
.1

2
0
.4

2
/
0
.5

0
0
.1

2
/
0
.3

7
2

0.
84

/0
.8

2
0.

86
/0

.9
6

3.
19

/
3
.6

1
1
.2

2
/
1
.4

0
0
.4

9
/
0
.6

4
1
.1

0
/
1
.1

3
1
.5

8
/
1
.7

9
2
.0

4
/
2
.2

6
0
.8

6
/
1
.0

3
0
.3

7
/
0
.8

3
3

1.
31

/1
.2

8
1.

21
/1

.4
3

4.
86

/
5
.5

3
1
.8

7
/
2
.1

5
0
.7

8
/
1
.0

1
1
.7

9
/
1
.8

5
2
.2

4
/
2
.5

6
3
.1

6
/
3
.4

8
1
.4

0
/
1
.6

8
0
.6

7
/
1
.3

5
4

1.
81

/1
.7

5
1.

67
/2

.0
2

6.
44

/
7
.3

8
2
.5

8
/
2
.9

7
1
.0

9
/
1
.3

7
2
.5

7
/
2
.6

4
2
.9

6
/
3
.3

9
4
.3

6
/
4
.8

2
2
.0

0
/
2
.4

0
1
.0

2
/
1
.9

2
5

2.
31

/2
.2

2
2.

20
/2

.7
3

7.
98

/
9
.1

6
3
.3

7
/
3
.8

5
1
.4

1
/
1
.7

4
3
.4

2
/
3
.5

0
3
.7

4
/
4
.2

8
5
.6

5
/
6
.2

4
2
.6

5
/
3
.2

0
1
.4

2
/
2
.5

3

51

suggests that the maximum range of 6 m for vehicle influence is sufficiently large.

The same effect appears in the risk function’s parameters for the risk of vehicles that

remain far from the pedestrian. In setting the amount of observational noise, we

follow the inD dataset guideline that its typical positioning error is less than 0.1 m.

We thus set σx to 0.05 m. For inference we find that importance sampling effectively

samples the posterior distribution. This enables us to avoid using slower particle

filter steps as in other works [99, 27]. Inference with the proposed method relies on

receiving the sequence of vehicle positions to make predictions. In most scenarios the

positions are known up to the current time, but not into the future. For this case we

assume vehicles move at a constant velocity and extrapolate their future positions.

4.4 Experiments

We test the proposed method’s ability to predict pedestrian trajectories in the

DUT [30] and inD [97] urban datasets. The DUT dataset contains nearly 1800 pedes-

trians’ interactions with vehicles at two scenes. One scene is a marked crosswalk and

the other is a shared space. Drivers and pedestrians in both scenes negotiate for pri-

ority of passage. While the inD dataset contains no data collected at a shared space,

it contains over 11500 road users’ trajectories across four unsignalized intersections.

4.4.1 Baselines

We compare to baselines including state-of-the-art methods for pedestrian predic-

tion based on DNNs:

• Constant Velocity (CV) : The pedestrian is assumed to travel at a constant

velocity.

• Social GAN (SGAN)[1] : A GAN architecture using a permutation invariant

pooling module to capture pedestrian interactions at different scales.

• Multi-Agent Tensor Fusion (MATF)[9] : A GAN architecture using a

global pooling layer to combine trajectory and semantic information.

• Off the Sidewalk (OTS) : The probabilistic interaction model introduced in

Section 4.3.

Each learning model, including the proposed method, is trained once on each dataset

to make predictions on the unseen dataset. Aside from CV, all of the compared

methods make probabilistic predictions. For evaluation we sample 100 trajectories

from each to compare against the pedestrian’s true trajectory. The proposed method

operates on observations made at 10 Hz while the other learning baselines operate

52

at lower frequencies. The observations made at 10 Hz are downsampled to 5 Hz for

MATF. SGAN is originally designed for 2.5 Hz, but is trained and evaluated at 2 Hz

for the sake of comparison as in previous work [78]. All baselines are trained to

make 3 s of observations and 5 s of predictions. We also compare to the Multi-Agent

Tensor Fusion method trained without semantic information. The method trained

with semantic information is denoted MATF-S and the method without is denoted

MATF.

4.4.2 Evaluation Metrics

Let xi,t denote the position of the ith pedestrian evaluated in the dataset at

timestep t. The corresponding prediction denoted x̂i,t is a random variable since each

method is probabilistic. Let N denote the total number of pedestrians evaluated in

the dataset. We compare methods with the following metrics:

• Average Distance Error (ADE): The expected Euclidean distance between the

true position and prediction, used in [27, 40, 78, 1, 9]. ADE at timestep t is:

ADE(t) =
1

N

N∑
i=1

E[‖xi,t − x̂i,t‖2]

• Root Mean Squared Error (RMSE): The square root of expected squared error

between the true position and prediction, used in [77, 9]. RMSE at timestep t

is:

RMSE(t) =

√√√√ 1

N

N∑
i=1

E[‖xi,t − x̂i,t‖22]

The ADE measures the distance between the mean of the predicted distribution over

the pedestrian’s position, and the true position. This can also be viewed as the mean

of the error distribution. In contrast, the RMSE is a measure of the second moment

of the error distribution. Larger errors thus influence the RMSE more than the ADE.

4.4.3 Pedestrian Prediction

Table 4.1 shows each method’s performance on both urban datasets. The proposed

method OTS outperforms previous works in both the shared spaces of DUT and

unsignalized intersections of inD. SGAN and MATF provide the next best long-term

predictions for DUT and inD, respectively. Comparing the performance of MATF-S

and MATF shows that learning interactions with semantic data does not necessarily

transfer from one scene to another. Despite DUT containing a marked crosswalk

53

Figure 4.4: Examples of predictions on scenes from DUT. Each method is trained on trajectory
data from inD and observes 3 s of each road user’s trajectory (pedestrian in solid green) before
predicting the next 5 s. Predictions for 3 s and 5 s into the future are shown for each method with
likelihood according to the viridis color scale. The orange solid line represents the ground truth
trajectory of the pedestrian up to the predicted timestep. The blue solid line represents the vehicle
trajectory up to the predicted timestep. The proposed method OTS captures uncertainty in the
pedestrian’s actions in both traditional crosswalk scenes and shared spaces.

scene similar to those in inD, MATF achieves better performance than MATF-S on

inD without using this information. Qualitative examples of predictions are shown

in Figure 4.4. The learned risk and vehicle influence functions enable OTS to predict

accurately in both traditional crosswalk scenes and shared spaces.

4.4.4 Autonomous Vehicle Planning Scenario

Predictions inform the AV of surrounding road users’ future positions. These

predictions are then used in motion planning to choose the vehicle’s future trajec-

tory. Given that the AV knows its own nominal trajectory, it is possible to use this

additional information when predicting how surrounding pedestrians interact with

54

Table 4.2: Performance for simulated autonomous vehicle scenarios. Evaluation metrics are shown
as ADE/RMSE in meters. Predictions made with future trajectory information (OTS-AV) achieve
lower error than those made without (OTS).

Dataset DUT inD
t (s) OTS OTS-AV OTS OTS-AV

1 0.23/0.30 0.22/0.29 0.28/0.38 0.28/0.38
2 0.48/0.63 0.47/0.61 0.61/0.85 0.60/0.84
3 0.74/0.99 0.72/0.95 0.99/1.37 0.98/1.36
4 1.02/1.34 0.98/1.30 1.40/1.95 1.39/1.93
5 1.29/1.69 1.25/1.64 1.85/2.57 1.83/2.55

the AV. We simulate this scenario in the DUT and inD datasets. For evaluation

we limit predictions to scenes containing a single moving vehicle. The single vehicle

fills the role of the AV, and its future trajectory is used alongside pedestrian obser-

vations for prediction. Since the proposed method considers the vehicle trajectory

as given, we may use the new information with no changes. We do not compare to

the baseline methods in this scenario since each is built only for making predictions

based on observations up to the current time. Performance of the proposed method

using the trajectory is denoted OTS-AV and shown against the standard OTS in Ta-

ble 4.2. The trajectory information boosts the performance of OTS-AV, particularly

for long-term predictions.

4.4.5 Speed

Previous sections have focused on predictive accuracy, but speed is vital to making

a timely response in critical driving scenarios. Here we benchmark the average time

to make predictions for a single scenario. Using the open source implementation of

each baseline on a GTX 1080 GPU, SGAN finishes computation in 0.43 s and MATF

in 0.84 s. The average time for OTS is 0.03 s on a single core of an Intel Core i7-

6800K CPU clocked at 3.40 GHz. In contrast to the deep learning methods, having

fewer than 40 parameters helps to make OTS responsive.

4.5 Conclusion

We propose a novel probabilistic method to predict pedestrians’ trajectories in

general scenes such as shared spaces, in addition to more traditional scenes. Experi-

ments on these scenes demonstrates that OTS achieves state-of-the-art performance.

The focus on interactions between an individual pedestrian and vehicles is both the

method’s strength and weakness. The benefits include interpretable model param-

eters and realtime performance. On the other hand, other types of interactions

such as group interactions between pedestrians are ignored. Modeling these types of

55

pedestrian behaviors provides an avenue for future research.

CHAPTER V

A Kinematic Model for Trajectory Prediction
in General Highway Scenarios

5.1 Introduction

Highway driving places autonomous vehicles at high speeds and in close proximity

to other drivers. Conservative behaviors can completely eliminate the risk of collision

in some scenarios [21], but many demand close interaction with less conservative hu-

man counterparts. We focus on prediction as an aid to assessing risk and navigating

these scenarios. Motion in the short-term is largely constrained by vehicle dynamics

and simple kinematic models predict with fair accuracy in this setting [89]. Further

motion, however, receives greater influence from the driver’s intent to maneuver or

interact with other vehicles. State-of-the-art methods train deep neural networks

(DNNs) on large trajectory datasets to extract the subtle differences in motion to

predict each maneuver. While DNNs are capable of predicting trajectories in general

scenarios, their complexity hinders interpreting both the learned parameters and the

predictions. This complexity is especially problematic for AVs that drive on be-

half of human passengers. Such a responsibility calls for models where the cause of

erroneous predictions can be explained. In offering transparency, this can help to

make unknown risk known. A complementary focus is to identify predictions that

are not well-founded before their use, which can be accomplished by testing whether

observed behaviors fall within modeling assumptions [103, 104]. In the context of

autonomous driving, testing can signal when the AV has encountered anomalous be-

havior, or that the current model is inadequate for the situation. While such model

validation has seen extensive development for model-based methods, there has been

less for model-free methods. The interpretable and model-based nature of kinematic

methods is encouraging, but they fail to account for maneuvers and interactions that

are not explicitly modeled. Their performance for long-term predictions in general

scenarios has correspondingly not reached that of DNNs. In this work we aim to

build a method that is both interpretable and achieves high performance in general

56

57

Figure 5.1: Separate instances of the proposed kinematic model (top) predict trajectories based on
different interactions. Combining these models enables predicting trajectories in general scenarios
(bottom).

scenarios. We approach this by first building a kinematic model that describes both

lane change and car-following behavior. The resulting model assumes that a target

lane and a vehicle to follow have been specified. To predict trajectories in general

scenarios, we apply Bayesian model averaging over a suite of these models specified

with different target lanes and vehicles. The main contributions of this work are:

1. a novel kinematic model for generating interaction-aware predictions in general

highway driving scenarios;

2. a tractable inference procedure;

3. experiments on the highway traffic datasets NGSIM [80] and highD[105] in var-

ied sensing conditions.

This chapter is organized as follows. Section 5.2 describes related methods for tra-

jectory prediction. Section 5.3 introduces the proposed kinematic model and its

extension for prediction in general highway scenarios. We compare the proposed

method to state-of-the-art approaches in Section 5.4 and conclude in Section 5.5.

5.2 Related Work

Methods that predict trajectories by specifying a kinematic model are described

first. The following section describes methods that rely on learning from large tra-

jectory datasets to specify a model for prediction.

58

5.2.1 Kinematic Methods

The most basic kinematic models assume drivers move at a constant velocity,

acceleration, or yaw rate [106, 107, 108, 89]. These models achieve high accuracy

over short time horizons due to their close approximation of true vehicle dynamics in

common scenarios. Over long time horizons, they often fail to predict drivers’ intent

to maneuver or interact with other vehicles. One line of research has led to explicit

models for lane change maneuvers based on single-integrator models [107, 108] and

optimizing over quintic polynomials [85]. Another has instead focused on modeling

interactions specifically in the case of car-following behavior. Given a specified leader

vehicle to follow, these methods predict the follower will maintain a desired distance

and velocity [81], time gap [107], or a minimum distance subject to constraints on ac-

celeration [92]. While these works rely on manually chosen parameters, one approach

to improve performance has been to estimate the parameters from observations made

online [109, 106, 110]. Online estimation adapts each model to each individual’s driv-

ing, but generally requires solving a nonconvex problem. Proposed solutions include

using particle filters [109], general purpose optimization routines [106], and convex

relaxations based on semidefinite programs [110]. The computation involved in each

approach hinders their inclusion in larger methods that model general highway driv-

ing. In addition, car-following models say little about how to specify the leading

vehicle. This is problematic in cases where the leading vehicle may merge out of the

follower’s lane, or when another vehicle begins to merge into the space between the

two. To resolve this, we instead treat the identity of the leader vehicle as unknown,

and effectively estimate it online.

The above works largely focus on predicting specific maneuvers. Prediction for

general highway driving scenarios has been addressed by combining the results of

maneuver-specific models. Taking a linear combination is pursued within the frame-

work of interactive multiple models [108, 89] and leads to a unimodal prediction when

the predictions being combined are unimodal. Bayesian model averaging [107] instead

weights each component prediction by its relative evidence and produces multi-modal

predictions. We adopt this latter approach to better predict multi-modal behavior.

5.2.2 Data-Driven Methods

In predicting arbitrary maneuvers, kinematic models are hampered by their need

to explicitly model each maneuver and interaction considered. Data-driven methods

overcome this difficulty by leveraging large datasets to learn models for maneuvers

and interactions from recorded trajectories. Initial works aimed to learn maneuvers

in a model-free framework via Gaussian mixture models (GMMs) [83, 89] or long

59

short-term memory (LSTM) networks [74], and addressed interactions with manu-

ally specified cost functions [88, 89]. The need to manually specify cost functions,

however, leads to the same difficulties faced by the kinematic models. Subsequent

works have aimed to learn models for maneuvers and interactions simultaneously,

with many making use of the rich capacity for representation offered by deep neural

networks (DNNs). This has also spurred researchers to adapt DNNs to the task

of trajectory prediction. Deep neural networks in their base form are deterministic

functions of their input, and some works have focused on accounting for the inter-

actions between road users without modeling the uncertainty associated with future

trajectory prediction [79, 11]. To adapt DNNs to describe uncertainty while still

maintaining determinism, works have instead predicted the parameters correspond-

ing to probability distributions. Distributions predicted by DNNs include discrete

distributions over a finite number of trajectories [111] and normal distributions for

each predicted timestep [40, 77]. Deo et al. [75] achieve both a multi-modal and

continuous description of uncertainty by predicting a normal distribution for each

type of maneuver from a given class. This makes predictions following a Gaussian

mixture model, but relies on maneuvers to be labeled. Other works have aimed to

predict GMMs without the aid of labeled data [112, 113]. Training a mixture model

without the structure provided by maneuver labels, however, may collapse separated

modes into a single mode during the training process [114]. Chai et al. [112] pro-

pose a two-step procedure to train a mixture model and DNN separately but are

unable to benefit from end-to-end training. Occupancy grids present an alterna-

tive approach to predict multi-modal distributions [115, 114] but entail a trade-off

between the discretization error of a coarse grid and the increased computation im-

posed by a fine grid. While the above methods predict the parameters that exactly

specify a given possibly discrete distribution, a number of methods instead rely on

learning a latent distribution from which predicted trajectories are drawn as sam-

ples [116, 117, 10, 1, 9, 118]. Several of these works use the variational autoencoder

framework to learn a latent distribution over interactions, and model each pairwise

interaction between road users [116, 117, 10]. To reduce the computation involved in

the pairwise models, one solution has been to consider interactions only between road

users within a fixed distance [10]. Social GAN [1] instead proposes a novel pooling

module to examine interactions without the need to form all pairs, thereby remov-

ing the issues of computational complexity and manual choice of distance threshold.

The price of this pooling module is that the spatial relations between road users

are lost when using the single pooled result to make predictions. Zhao et al. [9]

achieve state-of-the-art performance by preserving spatial relations within a tensor

that models an inertial frame. Since sampling each model’s latent distribution can

60

be costly, DiversityGAN [118] introduces a low-dimensional space to more efficiently

sample rare events such as lane changes. Constructing this space, however, depends

on labeled data.

5.3 Probabilistic Trajectory Predictions

The proposed kinematic model consists of separate longitudinal and lateral com-

ponents. Section 5.3.1 states the trajectory problem for which it is built, and provides

an overview of the model. The following sections describe the longitudinal compo-

nent (Section 5.3.2) and the lateral component (Section 5.3.3). The extension to

predicting trajectories in general highway scenarios is described in Section 5.3.4, and

a tractable inference procedure is detailed in Section 5.3.5.

5.3.1 Problem Statement

We observe the target vehicle’s position during a window lasting n timesteps

and aim to predict its position until a final timestep T . Let the subset of observed

timesteps be given by S ⊆ {1, ..., n}, where we assume 1∈S without loss of generality.

The position at timestep t in the ground plane is denoted p(t) ∈ R2. As in other

works [106, 107, 108] we assume the position is given in terms of longitudinal p1(t) and

lateral p2(t) coordinates along the road with p(t)=(p1(t), p2(t))
ᵀ. In the general case,

positions can be transformed to this coordinate system using low-degree polynomial

models of the road [119]. We also assume we observe the positions of nv other vehicles

over the same observation window. The jth vehicle’s position at timestep t is denoted

pj(t). For convenience we denote the collection of other vehicles’ observations by V =

{{pj(t)}nt=1 | j = 1, . . . , nv}, the target vehicle’s observed positions by pS ={p(t)}t∈S,

and future positions by pT = {p(t)}Tt=n+1. We now write the prediction task as

sampling the target vehicle’s future trajectories based on the observed data:

pT ∼ Pr(pT | pS, V).(5.1)

The kinematic model used to make predictions relies on driving that is away from the

limits of handling, such that vehicle dynamics for lateral and longitudinal motion are

approximately decoupled. Since this applies to most highway driving, we model each

component as a separate double-integrator. Given ∆t as the size of each timestep

and the component in i=1, 2, motion is given by:

(5.2) xi(t+ 1) = Axi(t) +B(ui(t) + εi(t)),

where

(5.3) A =

(
1 ∆t

0 1

)
, B =

(
0

1

)
,

61

with ui(t) as a modeled control input and εi(t) is the Gaussian white noise with

variance σ2
i that is specific to each component. This model may produce negative

velocities in stop-and-go traffic, so for the propagation of state over the prediction

horizon t=n, . . . T we set longitudinal velocities that would become negative to zero.

In addition, the surrounding vehicles’ positions are assumed given only over the

observation window. For prediction, their states are propagated according to (5.2)

with zero control input.

5.3.2 Longitudinal Motion Model

The vehicle’s longitudinal motion is described by a car-following model, based on

maintaining a desired gap g∗ and desired velocity v∗ similar to previous work [81,

110]. We treat these quantities as unknown, and aim to infer them from observed

interactions with the leading vehicle. Since the desired values likely vary in time, we

approximate them as constant and assume the vehicle is closest to achieving these

at the end of the observation window. This results in the priors:

g∗ ∼ N(pi1(n)− p1(n), σ2
g),(5.4)

v∗ ∼ N(v1(n), σ2
v),(5.5)

where the ith vehicle is given as the leading vehicle. The longitudinal control is

assumed to be calculated over a fixed horizon kf . Let u= (u0, . . . , ukf−1)∈R
kf and

let x1,0 denote the current longitudinal state of the target vehicle. In addition, let

xi1,0 =(pi1,0, v
i
1,0)

ᵀ denote the leading vehicle’s current state. The longitudinal control

u1(t) is given by the control law u1(t) = u0 where u solves:

(5.6)

minimize
u∈Rkf

‖u‖22

s.t. x1(kf) = (pi1,0 + kf∆tv
i
1,0 − g∗, v∗)ᵀ

x1(0) = x1,0

∀ i = 0, . . . , kf−1 x1(i+1) = Ax1(i) +Bui

wherein the driver assumes the leading vehicle moves at a constant speed. In the

case of no lead vehicle, u1(t) is given by:

u1(t) =
v∗ − v1(t)

kf
.(5.7)

The fact that the control is depends linearly on the state and the variables g∗, v∗ is

later used during inference.

62

5.3.3 Lateral Motion Model

Real drivers decide at discrete times to change lanes. Rather than explicitly mod-

eling a switching process we will use an approximate form that assumes there exists

exactly one lane change that is partially observed. We make the same assumption as

in other works [107, 108] that after the lane change ends, the driver continues within

the same lane. Since the duration of a typical lane change is between four and ten

seconds [120], and a standard observation window is only three seconds, the majority

of merges will be only partially observed. We start by defining the set K to contain

the possible durations of timesteps that remain in the lane change maneuver. The

unknown quantities in the model are the target vehicle’s actual duration k remaining

in the lane change at t = 1, and the desired lateral position pm. As an uninformative

prior we assume the duration is uniformly distributed:

k ∼ U(K).(5.8)

The desired lane is assumed to be given with lateral center µp ∈R, with which we

assume the desired lateral position pm is normally distributed about the center:

pm ∼ N(µp, σ
2
p).(5.9)

Since the target vehicle switches to continuing within the lane at some time, we now

define the horizon used by the controller at each timestep t as:

kt =

k − t, if k − t > 2

ks, otherwise
(5.10)

where ks is the fixed horizon used for continuing within the same lane. We note that

lane keeping behavior corresponds to choosing pm within the current lane. To define

the control input, let u=(u0, . . . , ukt−1)∈Rkt and let x2,0 denote the current lateral

state. The lateral control u2(t) is given by the time-varying control law u2(t) = u0

where u solves:

(5.11)

minimize
u∈Rkt

‖u‖22

s.t. x2(kt) = (pm, 0)ᵀ

x2(0) = x2,0

∀ i = 0, . . . , kt − 1 x2(i+ 1) = Ax2(i) +Bui

Though k is unknown, for inference we make use of the fact that the control is a

linear function of state and pm.

63

Figure 5.2: Target vehicle’s field of view across two lanes (shaded) at timestep t. The view is
specified in the lateral direction by the lane extents L1 and L2, and in the longitudinal direction
by the current position p1(t), forward distance τf , and the rear distance τr.

5.3.4 General Highway Predictions

Combining the lateral and longitudinal models from the previous sections, we must

specify a target lane and a leading vehicle to predict future trajectories. Trajectories

may then be sampled from the model written as:

pT ∼ Pr(pT | pS, V, i, j),(5.12)

where the ith lane and the jth vehicle have been specified, and for notational con-

venience, we allow j = ∅ to denote the case of no lead vehicle for the longitudinal

motion model. Although model (5.12) may be used to predict trajectories, it re-

quires information that we are unlikely to know: the driver’s desired lane and the

vehicle to which they adjust their driving. In this section we remove such a need by

first identifying a set C containing all relevant (i, j) lane and lead vehicle pairs to

consider. Each pair is then used to specify a single model, and we apply Bayesian

model averaging to combine them as:

Pr(pT | pS, V) =∑
(i,j)∈C

Pr(pT | pS, V, i, j) Pr(i, j | pS, V)(5.13)

with predictions given by (5.1). This decomposition shows that the averaged model

takes the trajectories predicted by each component model and weights them by the

component’s evidence. To build the set C we first introduce the sets that describe

the target vehicle’s field of view. Let the interval for ith lane’s lateral values [pi,l, pi,u]

be given by Li. For the longitudinal extent seen by the target vehicle, we introduce

a forward distance τf and a rear distance τr. Here we assume that for the purposes

64

of car-following, the target vehicle ignores those directly behind it. Then letting p

denote the target vehicle’s longitude, we define the extent as:

F (p, q) = [p− qτr, p+ τf],(5.14)

where q is a binary value used to exclude the rear portion of the target vehicle’s lane.

Figure 5.2 shows the target vehicle’s view modeled over two lanes. Assume the first

observation p(1) corresponds to lane l. Given the ith lane we can now write its set

of paired lead vehicles by:

G(i) = {j ∈ {1, . . .,m} | ∃t1, t2 ∈ S, pj2(t2) ∈ Li,
pj1(t1) ∈ F (p1(t1),1{l 6= i})}

(5.15)

which ensures each lead vehicle has been observed within each extent of the target

vehicle’s field of view at least once. Denoting the set of lanes adjacent to lane l by

adj(l), we consider only lanes i ∈ {l} ∪ adj(l). The set of lane and lead vehicle pairs

is now given by:

C = {i, j | j ∈ G(i)} ∪ {i, ∅ |G(i) = ∅},(5.16)

where the lanes with no lead vehicles are paired in the second set. The next section

describes a tractable method to predict trajectories using the combined model.

5.3.5 Inference

To sample trajectory predictions, we start by making use of the structure within

the component longitudinal and lateral models given in Section 5.3.2 and Section 5.3.3

respectively. The longitudinal model depends on the desired gap g∗ and velocity v∗,
and the lateral model depends on the target lateral position pm and merge duration

k. The key to efficient inference is that fixing k makes the model’s control inputs

linear functions of the remaining unknowns. To capitalize on this observation, we

integrate over both k ∈ K and (i, j) ∈ C, and estimate the remaining parameters via

Kalman filtering. This process is explained next. We first collect the random vari-

ables needed for prediction as θ = (x(n), g∗, v∗, pm) ∈ R7. To obtain a representation

more amenable to inference, we rewrite (5.13) as:

Pr(pT | pS, V) =
∑
i,j,k

∫
Pr(pT , θ, i, j, k | pS, V)dθ.(5.17)

The summand can be decomposed using the chain rule as:

Pr(pT , θ, i, j, k | pS, V) =

Pr(pT | θ, i, j, k, pS, V) Pr(θ | i, j, k, pS, V)

Pr(i, j, k | pS, V).

(5.18)

65

The first term in the chain represents the prediction of future trajectories by prop-

agating the current state estimate x(n). Since the current state is included in θ,

conditional independence implies that we may remove pS. The second term repre-

sents the uncertainty in estimating the current state xn along with the other unknown

parameters, and is exactly the posterior distribution estimated by the Kalman filter.

The final term can be rewritten using Bayes’ rule:

Pr(i, j, k | pS, V) =
Pr(pS | i, j, k, V) Pr(i, j, k |V)

Pr(pS |V)
(5.19)

∝ Pr(pS | i, j, k, V) Pr(i, j, k |V)(5.20)

= Pr(pS | i, j, k, V),(5.21)

where the final equality follows from assuming a uniform distribution over (i, j, k)∈
C × K, independent of V . The resulting term is the marginal probability of the

observations pS under the model specified by i, j, k. We are now in a position to

simplify (5.18) and apply (5.21) as:

Pr(pT , θ, i, j, k | pS, V) ∝
Pr(pT | θ, i, j, k, V) Pr(θ | i, j, k, pS, V)

Pr(pS | i, j, k, V).

(5.22)

This decomposition suggests the following procedure sample trajectories from (5.17).

For each model component specified by (i, j, k)∈C×K, we use Kalman filtering to

compute the last two terms in (5.22). A value of θ can be sampled from its posterior

distribution, and propagating the sampled state x(n) yields a sample of pT . These

predictions are then weighted by the marginal probability, and normalized by the

sum of marginals across all components. This inference procedure is summarized in

Algorithm 3. We note that if the constraint on longitudinal velocities to be nonneg-

ative was removed, the propagation would also be possible within a Kalman filter

for each model component. Performing inference with standard filtering recursions

allows the predictions for most scenarios to be made with a small number of filtering

steps. Scenarios for which C remains constant from the previous timestep will require

only |C ×K| filtering steps, one for each component model, in addition to the steps

used to propagate the trajectories into the future. Furthermore, each component

model may be updated in parallel.

5.4 Experiments

We evaluate the proposed method’s ability to predict trajectories with two high-

way traffic datasets. The first is the NGSIM [80] dataset, which contains over 9,000

66

Algorithm 3: Inference for Trajectory Prediction

Input: pS , V , C, K, n, T

Output: Sampled trajectories {w(l), p
(l)
T }

1 Let m = |C ×K|
2 for l = 1, . . . ,m do
3 Take lth (i, j, k) from C ×K
4 Compute the posterior and marginal probabilities in (5.22) using a Kalman filter with

model (5.2) specified with (i, j, k).
5 Sample θ(l) ∼ Pr(θ | i, j, k, pS , V)

6 Propagate θ(l) to obtain p
(l)
T

7 ŵ(l) ← Pr(pS | i, j, k, V)

8 end

9 ∀ l = 1, . . . ,m w(l) ← ŵ(l)/
∑m

i=1 ŵ
(i)

unique vehicles recorded at 10 Hz during dense and occasionally stop-and-go traffic

at two highways in California. The second dataset is highD[105], which puts greater

focus on general driving conditions. It contains over 110,000 unique vehicles and is

recorded at 25 Hz across six German highways near Cologne. In each experiment we

aim to predict five seconds into future based on a three second window of observa-

tions, as in other works [75, 77, 9].

5.4.1 Model Specifications

To match NGSIM we use a timestep of 0.1 s for the proposed model. For lane

change duration K we use a grid of values between zero and 12 seconds with a

spacing of 0.5 s. Each driver is also assumed to plan their control inputs for non-

merge situations over a ten second horizon, with ks=kf =100. Since lane widths on

highways are commonly between 3.5 m and 4.5 m, the prior uncertainty σp for desired

offset to the lane center is set to 1.5 m. The uncertainties σg, σv for desired gap and

velocity are both set to 2 m to provide some prior information. Previous work has

shown that providing a small amount of information in the prior distribution can

aid in predictions when estimating car-following models online [110]. For the error

introduced into control inputs in (5.2), we set the lateral error σ2 to 0.05 m for all

experiments. Since NGSIM consists primarily of dense traffic, we set longitudinal

error σ1 to 0.2 m for NGSIM and otherwise equal to σ2. The view distances τf and

τr are set to 50 m and 10 m respectively.

5.4.2 Baselines

We compare to prediction methods including DNNs that achieve state-of-the-art

performance on the NGSIM dataset:

• Constant Velocity (CV): Vehicle motion is modeled by constant velocity.

67

Table 5.1: Performance on NGSIM and highD datasets shown as average / final time error in meters
(best in bold and second best underlined).

Bird’s Eye View Predictions
Dataset Metric CV Social LSTM Social GAN MATF Proposed-NI Proposed

QDE (0.2) 1.99/3.86 1.70/3.23 1.82/3.20 2.40/4.59 2.01/3.93 1.75/3.42
NGSIM ADE 3.56/6.90 4.10/7.86 2.85/5.39 2.50/4.76 3.69/7.36 3.14/6.18

RMSE 4.47/8.64 5.17/9.86 3.76/7.08 3.41/6.48 4.67/9.25 4.08/7.97
QDE (0.2) 1.20/2.37 1.31/2.61 2.11/3.89 1.94/3.75 1.05/2.17 0.99/2.08

highD ADE 2.56/5.04 2.42/4.87 3.03/5.89 2.11/4.02 1.79/3.74 1.51/3.16
RMSE 3.14/6.22 3.64/7.09 6.91/12.57 4.74/8.76 2.24/4.75 1.92/4.04

Driver View Predictions
Dataset Metric CV Social LSTM Social GAN MATF Proposed-NI Proposed

QDE (0.2) 2.12/4.02 1.83/3.41 2.47/4.54 3.27/6.42 2.21/4.21 1.98/3.76
NGSIM ADE 3.80/7.20 4.24/8.06 3.50/6.64 3.39/6.64 4.01/7.79 3.53/6.78

RMSE 4.86/9.08 5.39/10.15 4.61/8.60 4.52/8.71 5.18/9.85 4.67/8.78
QDE (0.2) 1.27/2.51 1.55/3.07 2.91/5.26 2.50/4.84 1.50/3.13 1.30/2.70

highD ADE 2.68/5.25 2.73/5.42 3.90/7.39 2.68/5.13 2.36/4.96 1.88/3.90
RMSE 3.33/6.52 4.09/7.87 8.35/15.02 5.57/10.33 3.08/6.47 2.44/5.06

• Social LSTM (SLSTM)[40]: An LSTM framework models the influence of

nearby vehicles using a grid to define a social pooling module.

• Social GAN (SGAN)[1]: A GAN architecture that uses a pooling operator to

incorporate all road users’ interactions at once to provide context for predictions.

• Multi-Agent Tensor Fusion (MATF)[9]: Drivers’ spatial interactions are

treated within a tensor that models single global frame to preserve context

information.

• No Interaction (Proposed-NI): A variant of the proposed method where

interactions are ignored. This treats the set of observations of surrounding

vehicles as empty.

The open source implementation for each DNN is trained on a separate set of data

than that used for evaluation. For NGSIM, each method is trained on data recorded

at I-80 then evaluated on data at US-101, and vice-versa. The highD data are

separated into one split containing highways labeled one to three and another split

containing the remaining highways, labeled four to six. The two splits are then used

in the same fashion as the two highway datasets in NGSIM. Since highD is recorded

at 25 Hz, it is resampled to match NGSIM at 10 Hz. The DNNs operate on data at a

lower frequency, so the input provided during evaluation and training is downsampled

to 5 Hz for MATF and 2 Hz for Social LSTM and Social GAN.

68

5.4.3 Evaluation Metrics

We evaluate how well each method predicts the future with several metrics for

probabilistic methods. Let pi,t denote the ith vehicle’s true position at timestep t,

with the random variable corresponding to its prediction as p̂i,t. For each DNN we

sample 100 trajectory predictions to fully evaluate the posterior predictive distri-

bution of p̂i,t. Let N be the total number of evaluated vehicles. We calculate the

following metrics at each second in the five second prediction window, and compare

their time average along with their final value:

• Root Mean Squared Error (RMSE): The square root of expected squared dis-

tance between the true position and prediction, used in [75, 77, 9]. RMSE at

timestep t is given by:

RMSE(t) =

√√√√ 1

N

N∑
i=1

E[‖pi,t − p̂i,t‖22](5.23)

• Average Distance Error (ADE): The expected distance between the true posi-

tion and prediction, used in [40, 10, 1, 9]. ADE at timestep t is:

ADE(t) =
1

N

N∑
i=1

E[‖pi,t − p̂i,t‖2](5.24)

• Quantile Distance Error (QDE): The smallest distance traveled from the true

position needed to reach a given fraction of the predictions. The value at

timestep t with fraction q is:

QDE(q, t) =
1

N

N∑
i=1

di,(5.25)

where the distance di is given by:

di = argmin d

s.t. Pr(‖pi,t − p̂i,t‖2 ≤ d) ≥ q
(5.26)

The quantile metric is equivalent to the minimum-of-K metrics [11, 40, 112, 10,

1, 9, 118] when predictions are weighted by the same probability. Measuring the

quantile based metric favors predictions that place significant probability mass near

the true position, without penalizing additional predictions that may be distant.

From the perspective of autonomous vehicles, this is the most relevant metric when

we prioritize conservative driving. In contrast, the expectation based metrics place

69

more emphasis on predictions that cluster near the true position. The dependence of

RMSE on the squared error also makes it more sensitive to distant predictions. This

focus on overall closeness may be more desirable when the aim is to avoid distant

predictions that could induce sudden and unwarranted emergency maneuvers.

5.4.4 Bird’s-Eye View Predictions

Here we evaluate predictions made with complete observations of all vehicles, as

if they were seen from a bird’s-eye view. The performance of each method is shown

in Table 5.1 (top). The results show a trade-off between minimizing the quantile

error and the expectation based errors. Social LSTM achieves low quantile error, it

does so at the cost of higher average distances. On the other hand, MATF generates

highly accurate but nearly deterministic predictions. The small difference between

its quantile distance and average distance errors indicate that the predictions tend to

deviate little from the mean prediction. Social GAN achieves more balance than the

previous two methods in minimizing the different types of errors. Predictions made

by the less deterministic methods are shown in Figure 5.3. Despite the proposed

method’s limited treatment of interactions, it performs competitively with the other

methods, outperforming them for highD scenarios. Considering car-following inter-

action aids in predicting changes in speed when other vehicles merge into the same

lane. Comparison to the ablated version also shows that considering interactions

improves the predictions across all metrics.

5.4.5 Driver View Predictions

Realistic driving conditions create occlusions that prevent a clear view of other

drivers. Autonomous vehicles are additionally subject to limited sensor range. In

this section we simulate these conditions for each vehicle as if it were the autonomous

vehicle. The simulated AV only observes vehicles within 50 m of its position along

the longitudinal axis, that are not occluded by other vehicles. Occlusions are gener-

ated with a simplified model of detections. This treats vehicles as spherical obstacles

with a radius of 2 m, and a vehicle is considered occluded if the line from its po-

sition to the simulated AV’s position collides with any obstacles. We also ensure

each observed vehicle is observed for at least one second in total during the obser-

vation window. Since the deep learning baselines assume full observations, we fill

the missing values assuming constant velocity. The proposed method also assumes

the longitudinal positions of surrounding vehicles are given, for which we smooth

according to the model dynamics (5.2) with zero control input. Table 5.1 (bottom)

shows that the more challenging nature of the partially observed case leads to a drop

in performance across all methods. The proposed method degrades more gracefully

70

Figure 5.3: Examples of bird’s-eye view predictions for dynamic scenarios from highD. Each method
observes 3 s of each road user’s trajectory (observations shown at each half second) before predicting
the next 5 s into the future. The actual future trajectory is shown in black with white circles marking
the driver’s position at 3 s, 4 s, and 5 s. Each method’s predictions are shown for these timesteps
with likelihood given by the viridis color scale.

than the baselines, and closes the gaps in performance on NGSIM.

5.5 Conclusion

We propose a novel kinematic model to describe both car-following and lane chang-

ing behavior. This provides a means of obtaining interpretable trajectory predictions

when the leading vehicle and desired lane are known. Through Bayesian model av-

eraging, we extend the model to predict trajectories for general highway scenarios

in which the designation of leader and follower vehicle may be more ambiguous,

and the desired lane is not known. Experiments on the NGSIM and highD datasets

demonstrate that the method is competitive and can outperform state-of-the-art pre-

71

diction methods. These findings are shown to hold across varied sensing conditions

including both perfect sensors and realistic sensors subject to occlusions. A benefit

of the proposed model’s interpretable nature also lies in identifying its weaknesses.

The kinematic model does not impose constraints, which is less appropriate for de-

scribing vehicles’ constrained lateral motion at low velocities. A possible remedy

is to transition to a different model of motion at low velocities similar to [85]. The

proposed model also assumes that longitudinal and lateral motion are approximately

decoupled, which is unrealistic for aggressive maneuvers that are limited across both

by friction. Incorporating these more realistic vehicle dynamics and examining other

forms of interaction between drivers provide avenues for future research.

CHAPTER VI

Conclusion and Future Directions

6.1 Conclusion

This thesis has examined interacting road users and developed interpretable meth-

ods to predict their future trajectories across a range of scenarios in urban and high-

way environments. Beginning with building a prediction model, these methods have

addressed fitting models to limited data and automating the fitting procedure. Real-

time inference procedures developed for these models have then provided the means

to quickly generate predictions and handle missing data due to limited sensor range

and occlusions. Experiments on real-world pedestrian and highway traffic datasets

have validated the methods’ performance and ability to predict road user behavior

across different settings.

6.2 Future Directions

The methods developed in this thesis touch on but leave ample room for devel-

opment along the following directions.

Nominal Trajectories

While predictions typically rely on information accumulated up to the current

time, autonomous vehicles may also have available information about the future in

terms of a nominal trajectory plan. Without including this future information, the

predicted future appears the same to the planner regardless of the actions it plans.

Incorporating the future information thus has the potential to aid the planner in

selecting plans in addition to making more accurate predictions. One caveat is that

the nominal plan may not correspond to what the autonomous vehicle executes, and

certain nominal plans may even lack the credibility needed to significantly change

how surrounding road users act. Further developing this interface between prediction

and planning provides one avenue for future research.

72

73

Model Validation and Abnormality Detection

The process of fitting prediction models to data often entails maximizing aver-

age performance rather than robustness to worst-case scenarios. This leads to a

greater focus on describing common behaviors at the expense of rare ones. Quickly

detecting that a given model is poorly suited to predicting a road user’s behavior

then, can enable the autonomous vehicle to act more cautiously to compensate for

the identified uncertainty. Goodness of fit and other validation metrics offer means

to gauge model performance without the need to compare predictions to future ob-

servations, and abnormality detection methods can assess when additional caution

may be warranted. Integrating these with prediction methods could support addi-

tional evaluation metrics that account for both traditional prediction accuracy and

the costs of compensating with planning behaviors.

Calibration to Weakly Labeled Data

Datasets facilitate the development of prediction methods for trajectories, but

high level intent, such as whether a driver intends to change lanes or a pedestrian

intends to cross the road, is often both useful and not labeled. The lack of labeling

in part corresponds to ambiguity in road users’ intent. A driver may be waiting to

change lanes and only do so some time later. Fortunately, observing that the lane

change was eventually completed implies the intent to change lanes was present for

at least one instant in time. The lack of more specific time information makes this

label for intent a weak label. Use of weak labels in model fitting procedures has the

potential to broaden the class of models that can be reasonably fit.

APPENDIX

74

75

APPENDIX A

Proofs

We aim to show that the nonconvex problem given in (NC1) is equivalent to the

convex reformulation in (P). We first state the dual semidefinite program (SDP)

of (P):

(D)

maximize
s,µ∈R

s

s.t.

(
1
2
DᵀD + µE −bᵀD + µc

(−bᵀD + µc)ᵀ 1
2
bᵀb− s

)
� 0

We use the following special case of [121, Theorem 6].

Corollary A.1. Let r : Rn → R be defined as (3.23). Suppose there exist vectors

x1, x2 ∈ Rn such that r(x1) < 0 < r(x2). If the nonconvex problem (NC1) has value

that is bounded below, the dual SDP (D) always has an optimal solution (s∗, µ∗) with

optimal value equal to the infimum of (NC1). Furthermore the infimum of (NC1)

is attained when the dual SDP possesses a feasible set that is not a singleton.

Proof. This follows immediately from [121, Theorem 6].

Remark A.2. Such x1, x2 can easily be found by taking x1 = (1
2
, 1
2
, 2, 2) and x2 =

(1
2
, 1
2
, 2, 1

2
), yielding r(x1) = (1

2
)2− 2 < 0 < (1

2
)2− 1

2
= r(x2).

We now aim to show that the feasible µ are not unique to obtain equivalency.

Lemma A.3. If D ∈ Rm,n with m ≥ n as defined in (D) has full rank, then the

formulations (NC1) and (P) are equivalent and the optimal solution is attained.

Proof. First note that D being full rank implies DᵀD � 0. For sufficiently small

u ∈ R, 1
2
DᵀD + uI � 0. For these u, 1

2
DᵀD + u

‖E‖2E � 0 so the interior of {µ ∈
R : 1

2
DᵀD + µE � 0} is nonempty. Since there exist s ∈ R such that these µ are

feasible for (D), and by the previous remarks, we can apply Corollary A.1 to obtain

the desired result.

BIBLIOGRAPHY

76

77

BIBLIOGRAPHY

[1] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable
trajectories with generative adversarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2255–2264.

[2] US Department of Transportation. (2019) Highway statistics 2018. Accessed on: 2020-
05-5. Available: https://www.fhwa.dot.gov/policyinformation/statistics/2018/. [Online].
Available: https://www.fhwa.dot.gov/policyinformation/statistics/2018/

[3] ——. (2020) Automated vehicles for safety. Accessed on: 2020-05-5. Available:
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety. [Online]. Avail-
able: https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

[4] B. Caulfield, “Estimating the environmental benefits of ride-sharing: A case study of dublin,”
Transportation Research Part D: Transport and Environment, vol. 14, no. 7, pp. 527–531,
2009.

[5] A. Carlson, R. Vasudevan, and M. Johnson-Roberson, “Shadow transfer: Single image re-
lighting for urban road scenes,” arXiv:1909.10363, 2019.

[6] W. Kim, M. Srinivasan Ramanagopal, C. Barto, M. Yu, K. Rosaen, N. Goumas,
R. Vasudevan, and M. Johnson-Roberson, “Pedx: Benchmark dataset for metric 3d pose
estimation of pedestrians in complex urban intersections,” IEEE Robotics and Automation
Letters, pp. 1–8, 2019. [Online]. Available: http://pedx.io/

[7] M. S. Ramanagopal, C. Anderson, R. Vasudevan, and M. Johnson-Roberson, “Failing to
learn: Autonomously identifying perception failures for self-driving cars,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3860–3867, 2018.

[8] J. Zhang, W. Chen, Y. Wang, R. Vasudevan, and M. Johnson-Roberson, “Point set voting
for partial point cloud analysis,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
596–603, 2021.

[9] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang, and Y. N. Wu, “Multi-
agent tensor fusion for contextual trajectory prediction,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 12 126–12 134.

[10] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Multi-agent
generative trajectory forecasting with heterogeneous data for control,” arXiv preprint
arXiv:2001.03093, 2020.

[11] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “Vectornet: Encoding
hd maps and agent dynamics from vectorized representation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11 525–11 533.

[12] X. Du, R. Vasudevan, and M. Johnson-Roberson, “Bio-lstm: A biomechanically inspired
recurrent neural network for 3-d pedestrian pose and gait prediction,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1501–1508, 2019.

78

[13] E. Corona, A. Pumarola, G. Alenya, and F. Moreno-Noguer, “Context-aware human mo-
tion prediction,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2020, pp. 6992–7001.

[14] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Occlusion-aware risk assessment for
autonomous driving in urban environments,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 2235–2241, 2019.

[15] Y. Nager, A. Censi, and E. Frazzoli, “What lies in the shadows? safe and computation-
aware motion planning for autonomous vehicles using intent-aware dynamic shadow regions,”
in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
5800–5806.

[16] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Risk assessment and planning with bidi-
rectional reachability for autonomous driving,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 5363–5369.

[17] S. Vaskov, H. Larson, S. Kousik, M. Johnson-Roberson, and R. Vasudevan, “Not-at-fault
driving in traffic: A reachability-based approach,” in IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE, 2019, pp. 2785–2790.

[18] S. Kousik, “Reachability-based trajectory design,” Ph.D. dissertation, University of Michigan,
2020.

[19] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using reachability
analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903–918, 2014.

[20] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin, “Fastrack: A
modular framework for fast and guaranteed safe motion planning,” in IEEE 56th Annual
Conference on Decision and Control (CDC). IEEE, 2017, pp. 1517–1522.

[21] K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes, and M. Pavone, “On
infusing reachability-based safety assurance within planning frameworks for human–robot
vehicle interactions,” The International Journal of Robotics Research, vol. 39, no. 10-11, pp.
1326–1345, 2020.

[22] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting crowds,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
2010, pp. 797–803.

[23] Y. Pan, Q. Lin, H. Shah, and J. M. Dolan, “Safe planning for self-driving via adaptive
constrained ilqr,” arXiv preprint arXiv:2003.02757, 2020.

[24] M. Koschi, C. Pek, M. Beikirch, and M. Althoff, “Set-based prediction of pedestrians in
urban environments considering formalized traffic rules,” in 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 2704–2711.

[25] N. Jaipuria, G. Habibi, and J. P. How, “Learning in the curbside coordinate frame for a
transferable pedestrian trajectory prediction model,” in 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 3125–3131.

[26] B. Liu, E. Adeli, Z. Cao, K.-H. Lee, A. Shenoi, A. Gaidon, and J. C. Niebles, “Spatiotempo-
ral relationship reasoning for pedestrian intent prediction,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3485–3492, 2020.

[27] C. Blaiotta, “Learning generative socially aware models of pedestrian motion,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3433–3440, 2019.

79

[28] S. K. Jayaraman, D. Tilbury, J. Yang, A. Pradhan, and L. Robert, “Analysis and prediction of
pedestrian crosswalk behavior during automated vehicle interactions,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 6426–6432.

[29] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson, “Obstacle detection and tracking
for the urban challenge,” IEEE Transactions on Intelligent Transportation Systems, vol. 10,
no. 3, pp. 475–485, 2009.

[30] D. Yang, L. Li, K. Redmill, and Ü. Özgüner, “Top-view trajectories: A pedestrian dataset
of vehicle-crowd interaction from controlled experiments and crowded campus,” in IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 899–904.

[31] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity forecasting,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV). Springer, 2012, pp.
201–214.

[32] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-aware long-term prediction of
pedestrian motion,” in IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 2543–2549.

[33] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E,
vol. 51, no. 5, p. 4282, 1995.

[34] M. Treiber and A. Kesting, “Traffic flow dynamics,” Traffic Flow Dynamics: Data, Models
and Simulation, Springer-Verlag Berlin Heidelberg, 2013.

[35] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and predictability of robot motion,”
in 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE,
2013, pp. 301–308.

[36] K. Hornik, M. Stinchcombe, H. White, et al., “Multilayer feedforward networks are universal
approximators.” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[37] I. Steinwart, “Support vector machines are universally consistent,” Journal of Complexity,
vol. 18, no. 3, pp. 768–791, 2002.

[38] A. Palazzi, D. Abati, F. Solera, R. Cucchiara, et al., “Predicting the driver’s focus of attention:
the dr (eye) ve project,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 41, no. 7, pp. 1720–1733, 2018.

[39] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking with human motion
predictions from social forces,” in IEEE International Conference on Robotics and Automation
(ICRA), 2010, pp. 464–469.

[40] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm:
Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 961–971.

[41] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha, “Porca: Modeling and planning
for autonomous driving among many pedestrians,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3418–3425, 2018.

[42] S. Yi, H. Li, and X. Wang, “Pedestrian behavior understanding and prediction with deep
neural networks,” in Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 2016, pp. 263–279.

[43] Y. Xu, Z. Piao, and S. Gao, “Encoding crowd interaction with deep neural network for
pedestrian trajectory prediction,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 5275–5284.

80

[44] N. Nikhil and B. T. Morris, “Convolutional neural network for trajectory prediction,” arXiv
preprint arXiv:1809.00696, 2018.

[45] S. Pellegrini, A. Ess, and L. Van Gool, “Improving data association by joint modeling of pedes-
trian trajectories and groupings,” in Proceedings of the European Conference on Computer
Vision (ECCV). Springer, 2010, pp. 452–465.

[46] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social etiquette: Human
trajectory understanding in crowded scenes,” in Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 2016, pp. 549–565.

[47] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale datasets
and predictive methods for 3d human sensing in natural environments,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1325–1339, 2014.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Adv. Neural Info. Process. Syst., 2012, pp. 1097–1105.

[49] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan,
“Driving in the matrix: Can virtual worlds replace human-generated annotations for real
world tasks?” in IEEE International Conference on Robotics and Automation (ICRA), May
2017, pp. 746–753.

[50] G. Rogez and C. Schmid, “Mocap-guided data augmentation for 3d pose estimation in the
wild,” in Advances in Neural Information Processing Systems, 2016, pp. 3108–3116.

[51] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone: Modeling social
behavior for multi-target tracking,” in IEEE 12th International Conference on Computer
Vision, 2009, pp. 261–268. [Online]. Available: http://www.vision.ee.ethz.ch/en/datasets/

[52] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” in Computer Graphics
Forum, vol. 26, no. 3. Wiley Online Library, 2007, pp. 655–664. [Online]. Available:
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data

[53] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention in human crowds,”
in IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 1–7.

[54] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Soft+ hardwired attention: An lstm
framework for human trajectory prediction and abnormal event detection,” Neural networks,
vol. 108, pp. 466–478, 2018.

[55] H. Xue, D. Q. Huynh, and M. Reynolds, “Ss-lstm: A hierarchical lstm model for pedes-
trian trajectory prediction,” in IEEE Winter Conference on Applications of Computer Vision
(WACV), 2018, pp. 1186–1194.

[56] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, and S. Savarese, “Sophie: An attentive
gan for predicting paths compliant to social and physical constraints,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 1349–
1358.

[57] H. Manh and G. Alaghband, “Scene-lstm: A model for human trajectory prediction,” arXiv
preprint arXiv:1808.04018, 2018.

[58] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground truth from
computer games,” in Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 2016, pp. 102–118.

[59] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp planning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015, pp. 4304–4311.

81

[60] R. Diankov, “Automated construction of robotic manipulation programs,” PhD dissertation,
The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2010.

[61] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomiza-
tion for transferring deep neural networks from simulation to the real world,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.

[62] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira, and
S. Birchfield, “Structured domain randomization: Bridging the reality gap by context-aware
synthetic data,” arXiv preprint arXiv:1810.10093, 2018.

[63] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci,
S. Boochoon, and S. Birchfield, “Training deep networks with synthetic data: Bridging the
reality gap by domain randomization,” arXiv preprint arXiv:1804.06516, 2018.

[64] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 779–788.

[65] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep neural network acoustic
modeling,” IEEE/ACM Transactions on Audio Speech Language Processing, vol. 23, no. 9,
pp. 1469–1477, 2015.

[66] Y. Xu, R. Jia, L. Mou, G. Li, Y. Chen, Y. Lu, and Z. Jin, “Improved relation classification by
deep recurrent neural networks with data augmentation,” arXiv preprint arXiv:1601.03651,
2016.

[67] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from
simulated and unsupervised images through adversarial training,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2107–2116.

[68] L. Sixt, B. Wild, and T. Landgraf, “Rendergan: Generating realistic labeled data,” Frontiers
in Robotics and AI, vol. 5, p. 66, 2018.

[69] J. Li, K. A. Skinner, R. M. Eustice, and M. Johnson-Roberson, “Watergan: Unsupervised
generative network to enable real-time color correction of monocular underwater images,”
IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 387–394, 2018.

[70] C. F. V. Loan, Introduction to scientific computing: a matrix-vector approach using MATLAB.
Upper Saddle River, New Jersey: Prentice-Hall, 1999.

[71] A. Lawitzky, D. Althoff, C. F. Passenberg, G. Tanzmeister, D. Wollherr, and M. Buss, “Inter-
active scene prediction for automotive applications,” in IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2013, pp. 1028–1033.

[72] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk assessment
for intelligent vehicles,” ROBOMECH Journal, vol. 1, no. 1, pp. 1–14, 2014.

[73] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi, “Probabilistic vehicle
trajectory prediction over occupancy grid map via recurrent neural network,” in IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017, pp.
399–404.

[74] L. Xin, P. Wang, C.-Y. Chan, J. Chen, S. E. Li, and B. Cheng, “Intention-aware long hori-
zon trajectory prediction of surrounding vehicles using dual lstm networks,” in IEEE 21st
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp.
1441–1446.

82

[75] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle trajectory prediction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 1468–1476.

[76] Y. Hu, W. Zhan, and M. Tomizuka, “Probabilistic prediction of vehicle semantic intention
and motion,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 307–313.

[77] R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, “Traphic: Trajectory prediction
in dense and heterogeneous traffic using weighted interactions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8483–8492.

[78] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, “Trafficpredict: Trajec-
tory prediction for heterogeneous traffic-agents,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 6120–6127.

[79] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker, “Desire: Distant
future prediction in dynamic scenes with interacting agents,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 336–345.

[80] US Department of Transportation. (2008) Ngsim - next generation simulation. Ac-
cessed on: 2019-06-30. Available: http://www.ngsim.fhwa.dot.gov/. [Online]. Available:
http://www.ngsim.fhwa.dot.gov/

[81] J. Wei, J. M. Dolan, and B. Litkouhi, “Autonomous vehicle social behavior for highway
entrance ramp management,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013,
pp. 201–207.

[82] A. Berthelot, A. Tamke, T. Dang, and G. Breuel, “Handling uncertainties in criticality as-
sessment,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011, pp. 571–576.

[83] J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, “Probabilistic trajectory prediction with
gaussian mixture models,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2012, pp.
141–146.

[84] N. Kaempchen, K. Weiss, M. Schaefer, and K. C. Dietmayer, “Imm object tracking for high
dynamic driving maneuvers,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2004,
pp. 825–830.

[85] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajectory prediction based
on motion model and maneuver recognition,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 4363–4369.

[86] M. Sarvi and M. Kuwahara, “Microsimulation of freeway ramp merging processes under con-
gested traffic conditions,” IEEE Transactions on Intelligent Transportation Systems, vol. 8,
no. 3, pp. 470–479, 2007.

[87] A. Kondyli and L. Elefteriadou, “Modeling driver behavior at freeway–ramp merges,” Trans-
portation Research Record, vol. 2249, no. 1, pp. 29–37, 2011.

[88] M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr, “A combined model-
and learning-based framework for interaction-aware maneuver prediction,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 17, no. 6, pp. 1538–1550, 2016.

[89] N. Deo, A. Rangesh, and M. M. Trivedi, “How would surround vehicles move? a unified frame-
work for maneuver classification and motion prediction,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 2, pp. 129–140, 2018.

[90] C. Dong, J. M. Dolan, and B. Litkouhi, “Smooth behavioral estimation for ramp merging
control in autonomous driving,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018,
pp. 1692–1697.

83

[91] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief state planner for interactive
merge maneuvers in congested traffic,” in IEEE 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 1617–1624.

[92] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations
and microscopic simulations,” Physical Review E, vol. 62, no. 2, pp. 1805–1824, 2000.

[93] M. S. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt. Accessed on: 2019-08-14. [Online].
Available: https://cvxopt.org/

[94] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant velocity model can
teach us about pedestrian motion prediction,” IEEE Robotics and Automation Letters, 2020.

[95] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using cal-
ibrated regression,” in International Conference on Machine Learning (ICML), 2018, pp.
2796–2804.

[96] B. Anvari, M. G. Bell, A. Sivakumar, and W. Y. Ochieng, “Modelling shared space users
via rule-based social force model,” Transportation Research Part C: Emerging Technologies,
vol. 51, pp. 83–103, 2015.

[97] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, “The ind dataset: A
drone dataset of naturalistic road user trajectories at german intersections,” arXiv preprint
arXiv:1911.07602, 2019.

[98] Y. Hashimoto, G. Yanlei, L.-T. Hsu, and K. Shunsuke, “A probabilistic model for the estima-
tion of pedestrian crossing behavior at signalized intersections,” in IEEE 18th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2015, pp. 1520–1526.

[99] J. F. Kooij, F. Flohr, E. A. Pool, and D. M. Gavrila, “Context-based path prediction for
targets with switching dynamics,” International Journal of Computer Vision, vol. 127, no. 3,
pp. 239–262, 2019.

[100] W. Zeng, P. Chen, H. Nakamura, and M. Iryo-Asano, “Application of social force model to
pedestrian behavior analysis at signalized crosswalk,” Transportation research part C: emerg-
ing technologies, vol. 40, pp. 143–159, 2014.

[101] V. Kosaraju, A. Sadeghian, R. Mart́ın-Mart́ın, I. Reid, H. Rezatofighi, and S. Savarese,
“Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention net-
works,” in Advances in Neural Information Processing Systems, 2019, pp. 137–146.

[102] C. Gourieroux, A. Monfort, and E. Renault, “Consistent pseudo-maximum likelihood estima-
tors,” Annals of Economics and Statistics, no. 125/126, pp. 187–218, 2017.

[103] A. Gelman, X.-L. Meng, and H. Stern, “Posterior predictive assessment of model fitness via
realized discrepancies,” Statistica sinica, pp. 733–760, 1996.

[104] J. Fan and L.-S. Huang, “Goodness-of-fit tests for parametric regression models,” Journal of
the American Statistical Association, vol. 96, no. 454, pp. 640–652, 2001.

[105] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated driving
systems,” in 21st International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 2118–2125.

[106] J. Sörstedt, L. Svensson, F. Sandblom, and L. Hammarstrand, “A new vehicle motion model
for improved predictions and situation assessment,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 12, no. 4, pp. 1209–1219, 2011.

84

[107] M. Schreier, V. Willert, and J. Adamy, “An integrated approach to maneuver-based trajectory
prediction and criticality assessment in arbitrary road environments,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 10, pp. 2751–2766, 2016.

[108] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang, “Vehicle trajectory prediction by
integrating physics-and maneuver-based approaches using interactive multiple models,” IEEE
Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5999–6008, 2017.

[109] S. Hoermann, M. Bach, and K. Dietmayer, “Dynamic occupancy grid prediction for urban
autonomous driving: A deep learning approach with fully automatic labeling,” in IEEE In-
ternational Conference on Robotics and Automation. IEEE, 2018, pp. 2056–2063.

[110] C. Anderson, R. Vasudevan, and M. Johnson-Roberson, “Low latency trajectory predictions
for interaction aware highway driving,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 5456–5463, 2020.

[111] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun, “Learning lane
graph representations for motion forecasting,” in Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 2020, pp. 541–556.

[112] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction,” in Conference on Robot Learning, 2020, pp.
86–99.

[113] J. Mercat, T. Gilles, N. Zoghby, G. Sandou, D. Beauvois, and G. Gil, “Multi-head attention for
joint multi-modal vehicle motion forecasting,” in IEEE International Conference on Robotics
and Automation, 2020.

[114] A. Jain, S. Casas, R. Liao, Y. Xiong, S. Feng, S. Segal, and R. Urtasun, “Discrete residual
flow for probabilistic pedestrian behavior prediction,” in Conference on Robot Learning, 2020,
pp. 407–419.

[115] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, “Sequence-to-sequence pre-
diction of vehicle trajectory via lstm encoder-decoder architecture,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 1672–1678.

[116] C. Choi, “Shared cross-modal trajectory prediction for autonomous driving,” arXiv preprint
arXiv:2004.00202, 2020.

[117] J. Li, H. Ma, Z. Zhang, and M. Tomizuka, “Social-wagdat: Interaction-aware trajectory
prediction via wasserstein graph double-attention network,” arXiv preprint arXiv:2002.06241,
2020.

[118] X. Huang, S. G. McGill, J. A. DeCastro, L. Fletcher, J. J. Leonard, B. C. Williams, and
G. Rosman, “Diversitygan: Diversity-aware vehicle motion prediction via latent semantic
sampling,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5089–5096, 2020.

[119] J. Kim, K. Jo, W. Lim, M. Lee, and M. Sunwoo, “Curvilinear-coordinate-based object and
situation assessment for highly automated vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 3, pp. 1559–1575, 2015.

[120] C. Thiemann, M. Treiber, and A. Kesting, “Estimating acceleration and lane-changing dy-
namics from next generation simulation trajectory data,” Transportation Research Record,
vol. 2088, no. 1, pp. 90–101, 2008.

[121] Y. Xia, S. Wang, and R.-L. Sheu, “S-lemma with equality and its applications,” Mathematical
Programming, vol. 156, no. 1-2, pp. 513–547, 2016.

