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ABSTRACT

The issue of closed support for the local cohomology of Noetherian modules and

the related problem of finiteness of the set of associated primes of local cohomology

have been intensely studied in the literature. Although it is known that the local

cohomology of a hypersurface ring of characteristic p > 0 has closed support, it

remains an open question whether this property holds for complete intersection rings

of higher codimension. For an ideal J generated by a regular sequence of length c

in a regular ring R of characteristic p > 0, the closed support property for the local

cohomology of R/J would follow from known results in the literature if the local

cohomology of J itself always had a finite set of associated primes. We give the first

example of a module of the form H i
I(J) with an infinite set of associated primes to

demonstrate that this is not necessarily the case. In fact, for i < 4 (resp. i < 5), we

show that if R/J is a domain (resp. factorial), then AssH i
I(J) is finite if and only if

AssH i−1
I (R/J) is finite. Our proof of this statement involves a novel generalization

of an isomorphism of Hellus. To obtain positive results on closed support, in joint

work of the author with Eric Canton, we construct a chain complex consisting of

direct sums of Frobenius-stable annihilators in the local cohomology module Hc
J(R).

We prove that this complex is exact, and using the exactness property, we show that

for an ideal I of R such that R/I is Cohen-Macaulay, the module Hht(I/J)+c
I/J (R/J)

has closed support.
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CHAPTER I

Introduction

Algebra is concerned with structure. We are interested in the similarities and

differences between various instances of an abstract structure specified by some list

of formal properties. For example, the abstract structure of a ring consists of a

set R equipped with two binary operations + and ·, referred to as addition and

multiplication, respectively, that together satisfy several properties. We require that

addition is commutative and associative, that there exists an element 0 in R satisfying

0 +a = a for all a, and that for each a, there is an element −a satisfying −a+a = 0.

Multiplication must be associative, must distribute over addition, and we require

that there exists an element 1 in R such that 1 · a = a · 1 = a. If multiplication in R

also satisfies the commutative property, a · b = b · a for all a and b, then R is called

a commutative ring.

Below are several instances of the abstract structure of a commutative ring.

1. Let Z denote the set of integers, where addition and multiplication are familiar.

2. Let Q[X] denote the set of polynomials in the variable X with coefficients be-

longing to the rational numbers Q. Addition and multiplication of polynomials

is also quite familiar.

3. Let C denote the set of complex numbers a+bi, where a and b are real numbers.

1
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Addition and multiplication treat i as a variable in a polynomial expression with

the additional requirement i · i = −1.

4. Let C12 denote the set {[1], [2], . . . , [12]} regarded as hour symbols on the face

of a clock, with addition and multiplication defined accordingly – for example,

[3] + [11] = [2] and [2] · [8] = [4].

5. Let F2 denote the set of Boolean truth values {TRUE, FALSE}, with addition

defined by logical XOR, and multiplication defined by logical AND.

6. Let F2[z, w] denote the set of polynomials in the variables z and w, with coef-

ficients belonging to F2. Addition and multiplication are defined in a manner

formally similar to in Q[X], but coefficients are manipulated using the opera-

tions of F2.

7. Let S denote the set of continuous functions from the unit sphere to the real

numbers, with addition and multiplication defined pointwise.

While each is an example of a commutative ring, the algebraic differences between

these instances are at least as interesting as their similarities. The statement

“For each nonzero element a of the ring R, there is an element b such that ab = 1.”

is true for C and F2, but false for Z, Q[X], C12, F2[z, w], and S. The cancellation

property

“For any b and c in the ring R, if a 6= 0 and a · b = a · c, then b = c.”

holds in every example given above except for the ring C12 – consider that [2] · [8] =

[2] · [2] but [8] 6= [2] – and the ring S. A nonzero commutative ring that satisfies the

cancellation property is called an integral domain or sometimes just a domain. This

is equivalent to the condition that ab = 0 implies a = 0 or b = 0.
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We may also investigate algebraic properties that have no analogue in familiar

structures like the integers or real numbers. For example, the statement

“For all elements a and b in the ring R, it holds that (a+ b)2 = a2 + b2.”

is true for F2 and F2[z, w], but false for all other examples given. This strange

property has far-reaching implications for the rings in which it holds.

The class of commutative rings is extraordinarily rich and, for this reason, it is

extraordinarily difficult to prove nontrivial theorems that hold for all commutative

rings. By imposing additional hypotheses, we may obtain interesting classes of com-

mutative rings that are more tractable to work with.

A subset I of a commutative ring R that is closed under addition and that sat-

isfies ar ∈ I for all a ∈ I and all r ∈ R is called an ideal. We say that an ideal

I is generated by a list of elements a1, . . . , am ∈ I if for each b ∈ I, there exist

r1, . . . , rt ∈ R such that b = r1a1 + . . . rmam. The ideal generated by a1, . . . , am is

sometimes denotes Ra1 + . . . + Ram or (a1, . . . , am)R. A ring is called Noetherian

– named after the algebraist Emmy Noether – if every ideal is generated by a fi-

nite list of elements. It is equivalent to require that every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · terminates in the sense that In = In+1 for all sufficiently large n.

The study of commutative Noetherian rings holds a position of central importance

in commutative algebra. The class is rich enough to capture most rings one will

encounter in the related fields of algebraic number theory and algebraic geometry,

while still imposing a sufficiently high level of control to enable the proof of some

truly remarkable theorems.

The rings Z, Q[X], C, C12, F2, and F2[z, w] are Noetherian. The ring S is not.

Almost all1 rings we study from this point on will be commutative and Noetherian.
1with one notable exception, given in Chapter III
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Some of the most striking differences between various special classes of Noetherian

rings become apparent only when we consider how that ring acts on other algebraic

objects. A module over a ring R, also called an R-module, is a set M equipped with

an addition operation2 and a linear action of R, also called a scalar multiplication,

r ·m for r ∈ R and m ∈M that distributes over addition: r · (m+ n) = r ·m+ r · n

for r ∈ R, m,n ∈M .

It is often easier to study finitely generated R-modules. We say that M is gen-

erated by a list of elements m1, . . . ,mt ∈ M if M = Rm1 + · · · + Rmt, where this

notation is defined similarly to its use in the context of ideals. In fact, an ideal of R

is precisely a subset that is also an R-module when equipped with the + and · op-

erations inherited from R. The more general notion of a submodule of an R-module

M is defined similarly.

For commutative rings like C and F2 where every nonzero element has a multiplica-

tive inverse – such rings are called fields – there is a particularly simple description

of all finitely generated modules, at least up to isomorphism3

Theorem. Let K be a field. Every finitely generated R-module is isomorphic to a

direct sum4 of the form K⊕n. This number n is the rank of M , and two K-modules

with different ranks are non-isomorphic.

The module theory of a field – Q, C, F2, or otherwise – is precisely the study of

vector spaces over that field. For any commutative ring R, we can make sense of the

direct sum R⊕n – called a free module of rank n – and it remains true that a free

module is determined up to isomorphism by its rank. However, unless R is a field,
2Namely, a commutative, associative operation + on M for which there exists an element 0 ∈ M satisfying

0 +m = m for all m ∈M , and such that every element m of M has an additive inverse −m satisfying −m+m = 0
3Two modules are called isomorphic if there is an invertible structure preserving map between them. That is, an

invertible map f : M → N that satisfies f(m+ n) = f(m) + f(n) and f(r ·m) = r · f(m) for r ∈ R, m ∈M .
4If M is an R-module, M

⊕
n consists of n-tuples of elements of m with addition and scalar multiplication defined

componentwise. The direct sum M1 ⊕ · · · ⊕Mt is defined analogously.
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the free modules alone do not paint a complete picture.

The integers Z may, at first glance, seem somewhat simpler than the complex

numbers C. Upon investigating their corresponding module theories, however, one

will find that Z is structurally somewhat more complicated than C.

Definition I.1. Let M be a Z-module and p be a prime integer. The p-torsion

component of M , denoted Γp(M), is the set of elements u in M such that pk · u = 0

for some natural number k.

Theorem I.2. Every finitely generated Z-module M is isomorphic to a direct sum

Z⊕n⊕Γp1(M)⊕· · ·⊕Γpt(M) for some n ≥ 0 and some (possibly empty) list p1, . . . , pt

of distinct prime integers.

It is possible to completely classify5 all finitely generated p-torsion Z-modules,

but even a complete understanding of internal structure does not necessarily imply

an understanding of mappings between structures.

The situation over a field can be misleading in this respect. If K is a field, V

is an n-dimensional vector space over K, and U is an m-dimensional subspace of

V , then the quotient V/U is always an n − m dimensional vector space. Without

knowing anything whatsoever about the manner in which U is embedded into V , we

can immediately classify the quotient of V by U up to isomorphism. This is not the

case over Z.

For any prime integer p, the p-torsion components of Z and its submodules 2Z and

3Z are zero. The quotients Z/2Z and Z/3Z, however, both have nontrivial torsion.

The quotient of Z⊕2 by the (free, rank 1) Z-module spanned by (1,−1) is a free

module of rank 1 with no torsion components. The quotient of Z⊕2 by the (free,
5An analogous classification exists for finitely generated Q[x]-modules, but both this classification and the analogue

of Theorem I.2 fail even for a ring like F2[z, w].
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rank 1) Z-span of (14, 0) has a free component of rank 1, a 2-torsion component,

and a 7-torsion component. The nature of the embedding significantly affects the

structure of the resulting quotient.

That the p-torsion structure of M/N cannot be determined from the p-torsion

components of M and N suggests that our understanding of the operation Γp(−) is

incomplete.

1.1 The local cohomology of a commutative ring

From this point onward, we will freely make use of terminology and basic tools

of homological algebra. The reader may consult [Wei94] as a reference. For general

definitions and results on commutative rings, see [Mat89].

To any commutative ring R and any ideal I of R, we may define a functor ΓI(−)

that takes an R-module M to its I-torsion component ΓI(M), defined as the set of

elements u ∈ M such that Inu = 0 for some n > 0. Similar to what we observed

in our discussion of p-torsion components over Z, one cannot determine ΓI(M/N)

given only the modules ΓI(M) and ΓI(N) or even given the map ΓI(M → N).

The functor ΓI(−) is left exact but not exact. For a short exact sequence

0→ N →M →M/N → 0

the corresponding sequence with the rightmost 0 omitted

0→ ΓI(N)→ ΓI(M)→ ΓI(M/N)

is exact, but the map ΓI(M) → ΓI(M/N) is typically not surjective. It is possible

to construct a functor H1
I (−) such that the quotient of ΓI(M/N) by the image of

ΓI(M) can be recovered as the kernel of H1
I (M → N) – which is reassuring – but

we encounter a similar problem if we try to determine H1
I (M/N) using H1

I (M) and
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H1
I (N) only. A new functor H2

I (−) can be built to describe the quotient of H1
I (M/N)

by the image of H1
I (M) in terms of the modules H2

I (M) and H2
I (N). This process

may continue (a priori) forever, requiring the construction of an infinite family of

functors {H i
I(−)} – the derived functors of ΓI(−), referred to as local cohomology

functors – resulting in the following long exact sequence.

0 ΓI(N) ΓI(M) ΓI(M/N)

H1
I (N) H1

I (M) H1
I (M/N)

H2
I (N) H2

I (M) H2
I (M/N)

H3
I (N) · · ·

It is striking that even if our primary interest is the study of finitely generated

modules, we are required to consider non-finitely generated modules in order to fully

understand the I-torsion components of quotients. This is even true over Z. While

the 2-torsion part of the quotient of Z 12−→ Z cannot be recovered from Γ(2)(Z
12−→ Z),

it does appear as the kernel of H1
(2)(Z

12−→ Z). To understand how this embedding

works would require us to investigate the structure of H1
(2)(Z), which is not finitely

generated. It is realized as the quotient Z[2−1]/Z and generated by the classes we

will denote as {{1/2t}} for t ≥ 1. Multiplying {{1/2t}} by an element of Z can only

ever decrease t.

The module H1
(x)(F2[x]), isomorphic to F2[x, x−1]/F2[x], is generated over F2[x] by

classes of fractions {{1/xt}} for t ≥ 1. Consider the effect of the map F : H1
(x)(F2[x])→

H1
(x)(F2[x]) that sends {{a/b}} to {{a2/b2}}. Using the fact that 1 + 1 = 0 in F2, one

may show without too much difficulty that F is an additive map. While multiplying

{{1/xt}} by an element of F2[x] can only ever decrease t, repeated application of the

map F can take {{1/x}} to any power
{{

1/x2e
}}

for e ≥ 0. In a sense that we will make
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precise in Chapter III, the module H1
(x)(F2[x]) is finitely generated over a (necessarily

noncommutative) augmentation of the ring F2[x] by the F2-linear operator F .

It is far less obvious, but nonetheless true6, that every module of the form

H i
I(Fp[x1, . . . , xn]) is finitely generated over the noncommutative augmentation of

the ring Fp[x1, . . . , xn] by an Fp-linear operator F defined in terms of pth powers.

Using a different sort of noncommutative enlargement of the ring C[x1, . . . , xn] in-

volving differential operators, one can make a similar statement for modules of the

form H i
I(C[x1, . . . , xn]) [Lyu93].

Given the fact that at least some local cohomology modules over become finitely

generated over various noncommutative enlargements of the base ring R, it is natural

to wonder whether they may share any useful properties in common with finitely gen-

erated R-modules. Our primary focus shall be on two particular properties. Namely,

the fact that any finitely generated R-module has a finite set of associated primes and

a Zariski closed support in Spec(R). When R is a regular ring – such as Fp[x1, . . . , xn]

or C[x1, . . . , xn] – there are a number of cases7 in which the local cohomology of R

has a finite set of associated primes. The class of complete intersection rings – rings

such as R[x, y, z]/(x2 + y2 + z2 − 1) or F2[x, y, z, w]/(xz − yw, x3 + y3 + z3 + w3) –

are generally more difficult to control. The finiteness of associated primes property,

for example, is known to fail for the local cohomology of a number of complete inter-

section rings. It remains an open question, however, whether the local cohomology

of a general Noetherian ring R must have closed support. We refer to this question

as the closed support problem over R. The closed support problem is generally open

for complete intersection rings.
6See Theorem III.15, a result of Lyubeznik [Lyu97].
7We review what is known about finiteness of associated primes for the local cohomology of a regular ring in

Section 2.4.
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1.2 Overview of this thesis

In Chapter II, we will state the basic properties of local cohomology modules that

will be necessary in the sequel for ease of reference, and we will review what is known

in the literature about the support and associated primes of local cohomology. The

situation over a ring of prime characteristic p > 0 is generally the best understood.

To make substantial statements about the local cohomology of a ring of prime

characteristic p > 0, we require the notion of an R〈F 〉-module [Bli01] and certain

results from the closely related theory of F-modules [Lyu97]. The primary goal of

Chapter III is to review a number of Lyubeznik’s finiteness results on the induced

Frobenius action on local cohomology. These results make extensive use of the of the

crucial hypothesis of regularity, and suggest the difficulties that we will encounter

upon relaxing that hypothesis in subsequent chapters.

Before beginning work on complete intersection rings proper, a few more functorial

tools are necessary. For any containment of ideals I ⊆ I ′, the natural inclusion

ΓI′(−) → ΓI(−) induces a family of natural transformations H i
I′(−) → H i

I(−) for

all i ≥ 0. In Chapter IV, we present the following original result of the author.

Theorem (IV.4). Let R be a Noetherian ring and let I ⊆ R be any ideal. Fix

i ≥ 0. There is an ideal I ′ ⊇ I (resp. I ′′ ⊇ I) of height ht(I ′) ≥ i − 1 (resp.

of height ht(I ′′) ≥ i) such that the natural transformation H i
I′(−) → H i

I(−) (resp.

H i
I′′(−)→ H i

I(−)) is an isomorphism of functors (resp. a surjection of functors).

This result generalizes an isomorphism theorem of Hellus [Hel01, Theorem 3],

who gives an isomorphism of modules H i
I(R) (rather than of functors H i

I(−)) under

the hypothesis that R is Cohen-Macaulay and local. In a different direction, for a

ring map R → S and an ideal I of R, we study a family of natural transformations
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hif (−) : S ⊗R H i
I(−) → H i

I(S ⊗R −) (see Definition III.12) and show that, in the

following sense, these transformations are compatible the Frobenius homomorphism

of S.

Theorem (IV.10). Let R→ S be a homomorphism between two Noetherian rings of

prime characteristic p > 0, fix an ideal I ⊆ R and an index i ≥ 0, and let M be an

R〈F 〉-module. The natural map

S ⊗R H i
I(M)→ H i

I(S ⊗RM)

is a morphism of S〈F 〉-modules.

Our investigation of complete intersections begins in Chapter V. We review a

result of Hochster and Núñez-Betancourt stating that the local cohomology of a

positive characteristic hypersurface ring has closed support. This result is a corollary

of their theorem that if R is regular, J is an ideal, and AssH i
I(J) is a finite set, then

SuppH i−1
I (R/J) is closed [HNB17, Theorem 4.12]. Their theorem raises the following

question: If R is regular and J is an ideal generated by a regular sequence, must

the set AssH i
I(J) be finite? We give the following positive answer in cohomological

degree i = 2.

Theorem I.3 (V.11). Let R be a regular ring, and I and J be ideals of R. The set

AssH2
I (J) is finite.

In cohomological degree i ≥ 3, the situation is more complicated. We give the

first example (Theorem V.5) in the literature of a module of the form H3
I (J) with an

infinite set of associated primes, answering Hochster and Núñez-Betancourt’s ques-

tion in the negative. We prove the following theorem giving conditions under which

the finiteness of AssH i
I(J) is in fact equivalent to the finiteness of AssH i−1

I (R/J).
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Theorem (V.16). Let R be an LC-finite regular ring, let J ⊆ R be an ideal generated

by a regular sequence of length c ≥ 2, and let S = R/J . For an ideal I ⊇ J ,

(ii) If the irreducible components of Spec(S) are disjoint (e.g. S is a domain), then

AssH3
I (J) is finite if and only if AssH2

I (S) is finite.

(iii) If S is normal and locally almost factorial (e.g. S is a UFD), then AssH4
I (J)

is finite if and only if AssH3
I (S) is finite.

This result presents a significant obstacle to the direct generalization of the meth-

ods of Hochster and Núñez-Betancourt to complete intersection rings of codimension

c ≥ 2.

Chapter VI and onward deal with joint work of the author and Eric Canton. To a

regular sequence f = f1, . . . , fc of length c in a Noetherian ring R, letting f =
∏c

i=1 fi,

we study the Frobenius action fp−1Fnat on the module Hc
fR(R), where Fnat denotes

the natural action of the Frobenius. The primary goal of Chapter VI is to establish

a number of basic properties of the action fp−1Fnat and to motivate its relevance to

the closed support problem for R/f . By sending 1 ∈ R/f to the Čech cohomology

class {{1/f}}, one obtains an R〈F 〉-linear embedding R/fR ↪→ Hc
fR(R). Our eventual

is to use this embedding to construct an alternative complex (given in Chapter VII)

to the R〈F 〉-linear short exact sequence 0 → fR → R → R/fR → 0 that forms the

basis in Hochster and Núñez-Betancourt’s approach to closed support.

In codimension c ≥ 2, the embedding of R/fR into Hc
fR(R) leaves behind a coker-

nel whose local cohomology is somewhat too complicated to use directly. The purpose

of Chapter VII is to arrange a family of annihilator submodules of Hc
fR(R) into a

complex ∆∆•f (R) (see Definition VII.2) of length c whose terms are local cohomology

modules with respect to various subsequences of f . These terms are somewhat more

tractable to understand after applying local cohomology functors with respect to an
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ideal I containing f . The main result of this section, representing joint work of the

author and Eric Canton, is that the augmentation of the ∆∆•f (R) complex is exact

(Theorem VII.7).

Finally, in Chapter VIII, using the complex constructed in the previous chapter,

we present our main result, concerning the support of the local cohomology of a

positive characteristic complete intersection ring with respect to a Cohen-Macaulay

ideal.

Theorem (VIII.1). Let R be a regular ring of prime characteristic p > 0, let f be

a permutable regular of length c, and let I be an ideal containing f such that R/I

is Cohen-Macaulay. Let h denote the height of I/fR in the ring S = R/fR. Then

Hh+c
I/fR(S) has closed support.

Convention: Throughout this paper, we assume that all given rings are commutative

and Noetherian unless stated otherwise.



CHAPTER II

Background on Local Cohomology

Our goal in this chapter is to state some fundamental results in the theory of local

cohomology for future reference. We will omit most proofs. The main reference for

this material is Brodmann and Sharp [BS12], although we will also be using some

terminology and properties of certain classes of rings for which the reader may wish

to consult Bruns and Herzog [BH98]. General statements on homological algebra

may be found in Weibel [Wei94].

Notational remark: If F and G are functors C→ D, we will write natural trans-

formations from F to G as φ(−) : F (−)→ G(−), which consists of the data of a map

denoted φ(A) : F (A)→ G(A) for each object A of C, such that for any C-morphism

f : A→ B, φ(B) ◦ F (f) = G(f) ◦ φ(A).

Let ModR denote the category of modules over a ring R (not necessarily of prime

characteristic p > 0), and let KomR denote the category of cohomologically indexed

complexes of R-modules. Let H i : KomR → ModR denote the functor that takes a

complex C• to its ith cohomology module H i(C•).

2.1 The I-torsion functor and local cohomology

Definition II.1. Let R be a ring and let I be an ideal of R. The I-torsion functor,

denoted ΓI(−), is the functor that takes an R-moduleM to the submodule consisting

13
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of all elements u ∈ M annihilated by some sufficiently high power of I. For a map

f : M → N , the map ΓI(f) is the restriction of f to ΓI(M).

Since the annihilator of In in M is precisely the set HomR(R/In,M), we may

identify the functor ΓI(−) with the direct limit lim−→n
HomR(R/In,−).

The I-torsion functor detects the presence of associated primes in the set V (I) =

{P ∈ Spec(R) |P ⊇ I} in the following sense.

Proposition II.2. Let R be a ring, I be an ideal, and M be an R-module.

1. M has an associated prime in V (I) if and only if ΓI(M) 6= 0.

2. P is an associated prime of M if and only if ΓPRP
(MP ) 6= 0

3. The support of M is contained in V (I) if and only if ΓI(M) = M .

4. P is a minimal prime of M if and only if ΓPRP
(MP ) = MP

Given a quotient Q = M/N , one may be interested in describing the associated

primes of Q in terms of data involving M and (the embedding map of) N only. Item

(ii) of the proposition above suggests that we apply the functor ΓPRP
((−)P ) to a short

exact sequence 0 → N → M → Q → 0, but the resulting sequence is only exact if

the rightmost map to 0 is dropped: 0→ ΓPRP
(NP )→ ΓPRP

(MP )→ ΓPRP
(QP ).

In general, ΓI(−) is a left-exact functor but is not exact. If each module N , M ,

and Q in our short exact sequence were replaced with an injection resolution, the

functor ΓI(−) would produce a short exact sequence of complexes that generally

have nontrivial cohomology.

Definition II.3. Let R be a ring, let I be an ideal, and let M be an R-module.

Let M → E• be an injective resolution. The ith local cohomology module of M

with respect to I is the module H i(ΓI(E
•)) which does not depend on the choice

of injective resolution E•. The functor that takes M to H i
I(M), that is, the ith
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right derived functor of ΓI(−), is denoted H i
I(−). To any short exact sequence

0→ N →M → Q→ 0, there is a natural family of connecting homomorphisms δi :

H i
I(Q) → H i+1

I (N) resulting in a functorial long exact sequence in local cohomology

with respect to I.

0 ΓI(N) ΓI(M) ΓI(Q)

H1
I (N) H1

I (M) H1
I (Q)

H2
I (N) H2

I (M) H2
I (Q)

H3
I (N) · · ·

Since ΓI(−) is unchanged if I is replaced by another ideal having the same radical,

the same can be said of each functor H i
I(−). A module of the form H i

I(M) is

automatically I-torsion, and because an I-torsion module has an injective resolution

by I-torsion modules [BS12, Corollary 2.1.6], it holds that H i
I(M) = 0 whenever M

is I-torsion and i ≥ 1. From this, it is not hard to see that H i
I(M) ' H i

I(M/ΓI(M))

for all i ≥ 1.

There is another (very different) kind of functorial long exact sequence involving

local cohomology modules that we will make extensive use of in the sequel.

Theorem II.4 (The Mayer-Vietoris Sequence). Let R be a Noetherian ring and let I

and J be ideals. There is a sequence of natural transformations, below, that is exact

when (−) is replaced by any R-module M .

0 ΓI+J(−) ΓI(−)⊕ ΓJ(−) ΓI∩J(−)

H1
I+J(−) H1

I (−)⊕H1
J(−) H1

I∩J(−)

H2
I+J(−) H2

I (−)⊕H2
J(−) H2

I∩J(−)

H3
I+J(−) · · ·
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For an R-module M , an M-regular sequence is a list of elements f = f1, . . . , fc

such that fM 6= M and such that fi is a nonzerodivisor on M/(f1, . . . , fi−1)M . We

use the term regular sequence instead of R-regular sequence when M = R. Let R

be Noetherian. The depth of a module M on an ideal I, denoted depthI(M), is

the length of a maximal M -regular sequence contained in I (the Noetherianity of R

ensures that a regular sequence cannot be extended indefinitely). It is not a priori

obvious that depth is well-defined – that is, that all maximal M -regular sequences

in I have the same length – but this follows at once from a theorem of Rees.

Theorem II.5 (Rees’s Theorem). Let R be a Noetherian ring, let I be an ideal,

let N be a finitely generated I-torsion module, and let M be an arbitrary finitely

generated R-module. If I contains a maximal M-regular sequence of length c, then

ExtiR(N,M) = 0 for i < c and ExtcR(N,M) 6= 0.

Since ΓI(−) may be identified with lim−→n
HomR(R/In,−), it is a straightforward

exercise of homological algebra to show that H i
I(−) may be identified with the direct

limit lim−→n
ExtiR(R/In,−) for all i. One may then extend Rees’s theorem to the

following statement.

Theorem II.6. Let R be a Noetherian ring, let I be an ideal, and let M be a finitely

generated R-module. Then H i
I(M) = 0 for i < depthI(M) and HdepthI(M)

I (M) 6= 0.

2.2 I-transform functors

For an ideal I ⊆ R, the I-transform functor is defined by

DI(−) := lim−→
t

HomR(I t,−)

DI(−) is a left exact functor whose right derived functors satisfy RiDI(−) ' H i+1
I (−).

There is a sense in which DI(−) forces depthI(−) ≥ 2 without modifying higher local
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cohomology on I. Namely, for any R-module M , ΓI(DI(M)) = H1
I (DI(M)) = 0,

and H i
I(DI(M)) = H i

I(M) for all i ≥ 2.

Lemma II.7. [BS12, Theorem 2.2.4(i)] Let R be a Noetherian ring and fix an ideal

I ⊆ R. There is a natural transformation ηI(−) : Id → DI(−) such that, for any

R-module M , there is an exact sequence

0→ ΓI(M)→M
ηI(M)−−−→ DI(M)→ H1

I (M)→ 0

Lemma II.8. [BS12, Proposition 2.2.13] Let R be a Noetherian ring, and I ⊆ R

be an ideal. Let e : M → M ′ be a homomorphism of R-modules such that Kere and

Cokere are both I-torsion. Then

(i) The map DI(e) : DI(M)→ DI(M
′) is an isomorphism.

(ii) There is a unique R-module homomorphism ϕ : M ′ → DI(M) such that the

diagram

M M ′

DI(M)

e

ηI(M)
ϕ

commutes. In fact, ϕ = DI(e)
−1 ◦ ηI(M ′).

(iii) The map ϕ of (ii) is an isomorphism if and only if ηI(M ′) is an isomorphism,

and this is the case if and only if ΓI(M
′) = H1

I (M ′) = 0.

The main property of the ideal transform functor that we will require is the

following.

Proposition II.9. Let R be a Noetherian ring, y an element of R, and I0 ⊆ R an

ideal. Let I = yR∩I0. There is a natural isomorphism of functors DI0(−)y ' DI(−)

Proof. Precomposing ηI0(−)y : (−)y → DI0(−)y with Id→ (−)y we obtain a natural

transformation γ(−) : Id → DI0(−)y. We claim that for any module M , both the

kernel and cokernel of γ(M) : M → DI0(M)y are I = yR ∩ I0-torsion:
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• Ker(γ(M)) consists of those m ∈ M such that m/1 ∈ ΓI0(M)y, or, equiva-

lently, ytm ∈ ΓI0(M) for some t ≥ 0. Let s be such that Is0ytm = 0. Then

(yI0)max(s,t)m = 0, so m ∈ ΓyI0(M) = ΓyR∩I0(M) (since
√
yI0 =

√
yR ∩ I0).

• An element of C = Coker(γ(M)) can be represented by c = f/yt for some

f ∈ DI0(M), t ≥ 0. Coker(ηI0(M)) is I0-torsion, so there is some s such that

Is0f ⊆ ImηI0(M). Since f = ytc, we have (yI0)max(s,t)c ⊆ Imγ(M). The element

of C represented by c therefore belongs to ΓyI0(C) = ΓyR∩I0(C).

Lemma II.8(ii) therefore gives a map ϕ(M) : DI0(M)y → DI(M), specifically

ϕ(M) = DI(γ(M))−1 ◦ηI(DI0(M)y). Both of the composite maps come from natural

transformations DI(γ(−))−1 and ηI(DI0(−)y), so the result is a natural transforma-

tion ϕ(−) : DI0(−)y → DI(−).

It remains to show that that ϕ(M) is an isomorphism for each M , which is

equivalent, by Lemma II.8(iii), to showing that ΓI(DI0(M)y) = H1
I (DI0(M)y) = 0.

This can be done using the Mayer-Vietoris sequence associated with the intersection

yR ∩ I0. Each module H i
yR+I0

(DI0(M)y) vanishes because y ∈ yR + I0 acts as a

unit on DI0(M)y, and likewise for the modules ΓyR(DI0(M)y) and H1
yR(DI0(M)y).

Note that depthI0(DI0(M)) ≥ 2, and localization can only make depth go up, so,

ΓI0(DI0(M)y) = H1
I0

(DI0(M)y) = 0.

0 0 0 ΓyR∩I0(DI0(M)y)

0 0 H1
yR∩I0(DI0(M)y)

0 0⊕H2
I0

(DI0(M)y) H2
yR∩I0(DI0(M)y)

We can now see that ΓI(DI0(M)y) = H1
I (DI0(M)y) = 0, as desired.

Corollary II.10. Let R be a Noetherian ring, y an element of R, and I0 ⊆ R an

ideal. Let I = yR∩I0. Then for all i ≥ 2, there is a natural isomorphism of functors
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H i
I(−) ' H i

I0
(−)y.

Proof. It is equivalent to show that Ri−1DI(−) ' (Ri−1DI0(−))y. We can calculate

Ri−1DI(M) as H i−1(DI(E
•)) where M → E• is an injective resolution, but by

Proposition II.9, DI(−) ' DI0(−)y where (−)y commutes with the formation of

cohomology. Thus,

H i−1(DI(E
•)) ' H i−1(DI0(E•))y =

(
Ri−1DI0(M)

)
y
.

2.3 The Čech complex

If f is an element of R and M is an R-module, the sequence

0→M →Mf → 0 = (0→ R→ Rf → 0)⊗RM

is called the Čech complex on M with respect to f , denoted Č•(f ;M). Let f =

f1, . . . , ft be a sequence of elements of arbitrary length. The Čech complex on R with

respect to f , denoted Č•(f ;R), is the total complex of the tensor product

Č•(f1;R)⊗ · · · ⊗ Č•(ft;R)

and Čech complex on M with respect to f is M ⊗R Č•(f ;R), denote Č•(f ;M). This

complex has the form

0→M →
⊕

1≤i≤t

Mfi →
⊕

1≤i<j≤t

Mfifj → · · · →Mf1···ft → 0

Theorem II.11. [BS12, Theorem 5.1.19] Let R be a Noetherian ring, let I be an

ideal, and let f = f1, . . . , ft be any sequence of elements generating I. The functor

that takes M to H i(Č•(f ;M)) is naturally isomorphic to the ith local cohomology

functor H i
I(−).
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A straightforward but important application of Čech cohomology is the following

result.

Theorem II.12. [BS12, Theorem 4.2.1] Let R → S be a homomorphism between

two Noetherian rings, let I be an ideal of R, and let N be an S-module. The module

H i
I(N) is obtained by restricting scalars to regard N as an R-module, and we may

regard H i
I(N) as an S-module by letting s ∈ S act as H i

I(N
s−→ N). There is a natural

isomorphism of S-modules H i
I(N) ' H i

IS(N).

The arithmetic rank of an ideal I, denoted ara(I) is the least number of generators

of an ideal having the same radical as I. Since the local cohomology functors with

respect to I are unchanged if I is replaced by an ideal having the same radical, since

local cohomology may be computed using the Čech complex on any set of generators,

and since the Čech complex has no nonzero terms in cohomological degree greater

than the length of the generating sequence chosen, the following result is clear.

Corollary II.13. [BS12, Corollary 3.3.3] Let R be a Noetherian ring and I be an

ideal. The functor H i
I(−) is equal to the zero functor for all i > ara(I).

This is not the only functorial vanishing theorem that we will make use of in the

sequel.

Theorem II.14. [BS12, Theorem 6.1.2] Let (R,m) be a local ring of dimension n.

The functor H i
I(−) is equal to the zero functor for i > dim(R).

Another final key application of the Čech complex is the following manipulation

obtained by forming the cohomology of the total complex of a tensor product of two

Čech complexes, one of which has a large amoung of vanishing in its cohomology.

Theorem II.15. Let R be a Noetherian ring, let f = f1, . . . , fc be a regular sequence,
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and let I be an ideal containing f . There is a natural isomorphism H i
I(H

c
fR(R)) '

H i+c
I (R).

Proof. Let g = g1, . . . , gt be a sequence of elements generating I. This is [Wei94,

Theorem 5.5.10] (see also [Wei94, Definitions 5.6.1, 5.6.2]) applied to the double

complex Č•(g;R)⊗R Č•(f ;R) using the vanishing H i
f (Č

•(f ;R)) = 0 for i 6= c.

2.4 A brief review of finiteness properties

In what follows, it will be helpful to refer to the following property.

Definition II.16. Let R be a Noetherian ring. Call an R-module M LC-finite if,

for any ideal I of R and any i ≥ 0, the module H i
I(M) has a finite set of associated

primes.

For example, over any Noetherian ring R, the indecomposable injective module

ER(R/P ) is LC-finite. Since AssER(R/P ) = {P} [BH98, Lemma 3.2.7], we have

ΓI(ER(R/P )) = 0 if and only if I ⊇ P , and since H i
I(ER(R/P )) = 0 for i > 0

(ER(R/P ) is injective) it holds that H i
I(ER(R/P )) has as its set of associated primes

either {P} (if i = 0 and P ⊇ I) or ∅ (otherwise). As another example over any

Noetherian ring R since Supp(H i
I(M)) ⊆ Supp(M) for any R-module M , a module

with finite support is also trivially LC-finite. Any module over a semilocal ring of

dimension at most 1 is trivially LC-finite. We shall call a ring LC-finite if it is LC-

finite as a module over itself. As we shall soon see, it is not typically the case that

all (finitely generated, nor even cyclic) modules over an LC-finite ring are LC-finite.

The class of LC-finite rings is closed under localization. If there is a finite set of

maximal ideals m1, · · · ,mt of R such that Spec(R) − {m1, · · · ,mt} can be covered

by finitely many charts Spec(Rf ), each of which is LC-finite, then R is LC-finite. If

R is LC-finite and A → R is pure (e.g., if A is a direct summand of R), then A is
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LC-finite [HNB17, Theorem 3.1(d)].

While there are interesting classes of not-necessarily-regular rings known to have

the property of LC-finiteness – for example, F -finite rings of finite F -representation

type (FFRT) [HNB17, Theorem 5.7] – much of the existing finiteness literature is

concerned primarily with the class of regular rings.

When R is regular of prime characteristic p > 0, a celebrated theorem of Huneke

and Sharp states that R is LC-finite1 [HS93, Corollary 2.3]. Lyubeznik proved that

LC-finiteness holds for smooth K-algebras when K is a field of characteristic 0

[Lyu93, Remark 3.7(i)] and for any regular local ring containing Q [Lyu93, The-

orem 3.4]. Concerning regular rings of mixed characteristic, unramified regular local

rings [Lyu00, Theorem 1], smooth Z-algebras [BBL+14, Theorem 1.2], and regular

local rings of dimension ≤ 4 [Mar01, Theorem 2.9] are LC-finite. It is an open

question whether there exist non-LC-finite regular rings [Hoc19].

The property of LC-finiteness can fail over a hypersurface ring. The first example

of this phenomenon is due to Singh [Sin00], who describes a hypersurface ring S

finitely generated over Z,

S =
Z[u, v, w, x, y, z]

ux+ vy + wz

such that for all prime integers p, the module H3
(x,y,z)(S) has a nonzero p-torsion

element. Katzman [Kat02] showed that the property is not necessarily recovered by

restricting to (graded or local) rings containing a field. The hypersurface ring

S =
K[[u, v, w, x, y, z]]

wu2x2 − (w + z)uxvy + zv2y2

has a local cohomology module, H2
(x,y)(S), with an infinite set of associated primes.

Katzman’s hypersurface is not a domain, but Singh and Swanson [SS04] construct ex-
1This result was later generalized by Lyubeznik’s theory of F -modules [Lyu97]. Lyubeznik in fact shows that the

local cohomology modules Hi
I(R) – and in fact, any iterated local cohomology module Hi1

I1
(· · · (Hit

It
(R)) · · · ) is itself

LC-finite. See Chapter III.
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amples of equicharacteristic local hypersurface rings to demonstrate that AssH3
I (S)

can be infinite even if S is a UFD that is simultaneously F -regular ring (in charac-

teristic p > 0) or has rational singularities (in equal characteristic 0). In this sense,

the presence of even relatively mild singularities can obstruct LC-finiteness.

Controlling the support is sometimes more tractable than controlling the full set

of associated primes. If M finitely generated over S, then the set SuppH i
I(M) is

known to be closed – equivalently, H i
I(M) is known to have finitely many minimal

primes – whenever (i) S has prime characteristic p > 0, I is generated by i elements,

and M = S [Kat05, Theorem 2.10], (ii) S is standard graded, M is graded, I is the

irrelevant ideal, and i is the cohomological dimension of I on M [RŞ05, Theorem

1], (iii) S is local of dimension at most 4 [HKM09, Proposition 3.4], (iv) I has

cohomological dimension at most 2 [HKM09, Theorem 2.4], or (v) M = S and S =

R/fR for some regular ring R of prime characteristic p > 0 and some nonzerodivisor

f ∈ R [HNB17, KZ17]. It is not known how far these results generalize. It is an

open question whether H i
I(M) must be closed for all i ≥ 0 and all ideals I, where

S is Noetherian and M is finitely generated [Hoc19, Question 2]. We restrict our

attention to this question of closed support in the case M = S, which we will refer

to as the closed support problem for S. The closed support problem has a trivially

positive answer over an LC-finite ring, so assume S is not LC-finite.

We shall focus in particular on the results of Katzman and Zhang [KZ17] or

Hochster and Núñez-Betancourt [HNB17] on the local cohomology of positive char-

acteristic hypersurface2 rings. It is not known whether this result generalizes to

hypersurface rings of characteristic 0, or to positive characteristic complete inter-

section rings of codimension ≥ 2. Our primary interest shall be in the latter ques-
2A hypersurface ring is a complete intersection ring of codimension 1.
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tion, though in Chapter V we will investigate the prospect of applying Hochster and

Núñez-Betancourt’s methods to a ring R/J where R is an arbitrary LC-finite regular

ring and J is a complete intersection ideal of codimension c ≥ 2.

We will require some supplementary results on finiteness of associated primes

in the sequel. The following two statements are both well known, and a suitable

reference is Hellus [Hel01].

Theorem II.17. Let R be a Noetherian ring and letM be a finitely generated module.

For any ideal I, the module H1
I (M) has a finite set of associated primes.

Theorem II.18. Let R be a Noetherian ring, let I be an ideal, and let M be an

R-module. The module HdepthI(M)
I (M) has a finite set of associated primes.

A stronger version of the latter is given by Brodmann and Lashgari Faghani.

Theorem II.19 (Brodmann, Lashgari Faghani [BLF00]). Let R be a Noetherian

ring, let I be an ideal, and let M be an R-module. Let t be the least integer such that

H t
I(M) is not finitely generated. Then H t

I(M) has a finite set of associated primes.



CHAPTER III

Frobenius Actions and F -Modules

Introduction

Throughout this chapter, R shall denote a commutative Noetherian ring of prime

characteristic p > 0, that is, a ring for which the kernel of the canonical map Z→ R

is exactly pZ, for some prime integer p > 0. Since p divides each binomial coeffi-

cient
(
p
i

)
for 0 < i < p, the Frobenius map r 7→ rp of R, denoted FR : R → R, is

a ring homomorphism. Some R-modules can be naturally equipped with an addi-

tive self-map that formally shares certain properties in common with the Frobenius

homomorphism of R. A Frobenius action on an R-module M is an additive map

β : M →M that satisfies β(rm) = rpβ(m) for all r ∈ R, m ∈M .

There are at least two useful equivalent perspectives one may use to study Frobe-

nius actions. The first is the notion of an R〈F 〉-module, where R〈F 〉 denotes the non-

commutative ring R{F}/(rpF−Fr | r ∈ R) presented as a quotient of the ring R{F}

obtained by freely adjoining a single noncommutative variable F to R. We will be

particularly concerned with the property of being finitely generated over R〈F 〉. The

second perspective involves the structure morphism1 of a Frobenius action. When

the structure morphism of an action is an isomorphism, the corresponding R〈F 〉-

module is called unit, following [Bli01]. Unit R〈F 〉-modules are precisely the subject
1Definition III.2

25
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of Lyubeznik’s theory of F -modules [Lyu97], although Lyubeznik did not use this

terminology in his paper. Of particular importance are F -finite F -modules, namely,

those unit R〈F 〉-modules that are finitely generated over R〈F 〉. We will highlight

some of the remarkable finiteness properties of finitely generated unit R〈F 〉-modules.

In Section 3.3 we will describe the natural action of the Frobenius induced by a local

cohomology functor H i
I(−). If R is regular, Lyubeznik proved that if M is unit and

finitely generated over R〈F 〉, then so is H i
I(M), when equipped with the natural ac-

tion induced from M . This result strengthens an earlier result of Huneke and Sharp

[HS93] on the associated primes of the local cohomology of a regular ring, and is of

fundamental importance to a number of results we will prove in the sequel.

The main reference for this section is Blickle [Bli01] in the setting where R is not

necessarily regular and M is not necessarily unit, and Lyubeznik [Lyu97] in the unit

setting over a regular ring.

3.1 Notation and teminology

It can sometimes be helpful to have notation that distinguishes the domain and

codomain of the Frobenius homomorphism. Let R1/p denote the set of formal symbols

r1/p for r ∈ R, with addition r1/p + s1/p = (r + s)1/p and multiplication r1/ps1/p =

(rs)1/p. It is clear that R1/p is isomorphic to R as an abstract ring, but we regard

R1/p as an R-algebra via the Frobenius homomorphism FR : R → R1/p, sending

r 7→ (rp)1/p. The resulting R-module structure on R1/p has the form r ·s1/p = (rps)1/p

for r ∈ R, s1/p ∈ R1/p. The Frobenius map is injective if and only if R is reduced.

In this case, we do no harm in identifying r ∈ R with its image (rp)1/p in R1/p.

For an R-module M , we define the R1/p-module M1/p of formal symbols m1/p for

m ∈ M with addition m1/p + n1/p = (m + n)1/p and R1/p multiplication r1/pm1/p =
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(rm)1/p, for r ∈ R, m,n ∈M . By restriction of scalars along FR : R→ R1/p, we can

also make M1/p into an R-module, with rm1/p = (rpm)1/p. There is an isomorphism

of abelian groups M1/p → M that sends m1/p 7→ m for all m ∈ M , and we refer to

this as the formal p-th power map. For any power q = pe, the ring R1/q, the module

M1/q, and the formal q-th power map M1/q → M may be defined in an analogous

manner.

Depending on whether we are denoting the target copy of FR as R or R1/p in a

given context, we may regard base change along the Frobenius homomorphism as

either a functor ModR → ModR, in which case we use the notation M 7→ FR(M), or

as a functor ModR → ModR1/p , where we will use the notation M 7→ R1/p ⊗RM .

3.2 R〈F 〉-modules and their structure morphisms

Let R〈F 〉 denote the ring

R〈F 〉 =
R{F}

(rpF − Fr | r ∈ R)

where we use R{F} to denote the algebra obtained by adjoining a free noncommuta-

tive variable F to R, and the denominator is the two-sided ideal of R{F} with genera-

tors rpF−Fr for r ∈ R. There is a natural ring homomorphism R〈F 〉 → HomZ(R,R)

sending a ∈ R to the multiplication map r 7→ ar and sending F to the Frobenius

homomorphism of R. In general, the homomorphism R〈F 〉 → HomZ(R,R) is not

injective – for example, F − 1 ∈ Fp〈F 〉 acts as zero on the field Fp, and F − F 2 acts

as zero on the ring Fp[t]/t2.

As a left R-module, R〈F 〉 is free on the generators 1, F, F 2, . . .. As a right R-

module, R〈F 〉 is isomorphic to
⊕∞

e=0R
1/pe . The tensor product R〈F 〉⊗RM with an

R-module M may be understood accordingly.

An R〈F 〉-module (by which we always mean a left R〈F 〉-module) is precisely the
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data of an R-module M equipped with an additive map β : M → M satisfying

β(rm) = rpβ(m) for r ∈ R and m ∈ M , describing the action of F ∈ R〈F 〉. We

refer to β as a Frobenius action on M . When M = R, we refer to the Frobenius

homomorphism FR : R → R as the natural action of R. If M and N are R〈F 〉-

modules with Frobenius actions α : M → M and β : N → N , respectively, then an

R〈F 〉-linear map h : M → N is precisely the data of an R-linear map that satisfies

h◦β = α◦h – we will call a map Frobenius stable if this is the case. Since both Ker(h)

and Coker(h) are themselves R〈F 〉-modules, we may refer the induced actions of the

Frobenius inherited from M and N , respectively. If W is a multiplicative subset of

R, and M is an R〈F 〉-module, then there is a unique Frobenius action on W−1M

that makes the natural map M → W−1M Frobenius stable. This action is described

by F (m/w) = F (m)/wp for m ∈ M , w ∈ W . We may also regard W−1M as an

(W−1R)〈F 〉-module in an obvious way.

Of primary importance to our applications is the fact that some non-finitely gen-

erated R-modules, when equipped with a suitable action of the Frobenius, become

finitely generated when regarded as modules over the ring R〈F 〉. For example, if f

is a nonunit of R, then Rf is not finitely generated over R. As an R〈F 〉-module,

however, Rf is cyclic with generator 1/f .

When R is a Noetherian ring, finite generation over R〈F 〉 implies closed support

as an R-module2.

Theorem III.1. [HNB17, Lemma 4.5] Let R be a Noetherian ring of prime char-

acteristic p > 0, let M be an R〈F 〉-module, and let N be an R-submodule of M that

generates M over R〈F 〉. Then the support of M , regarded as an R-module, is equal

to the support of N . In particular, if M is finitely generated over R〈F 〉 and N is
2When we speak of the support of an R〈F 〉-module, we always mean the support of the underlying R-module

upon applying the forgetful functor ModR〈F 〉 → ModR.
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the R-span of a finite generating set, then Supp (M) = Supp (N) is a Zariski closed

subset of Spec(R).

An R〈F 〉-linear homomorphic image of a finitely generated R〈F 〉 module is still

finitely generated, and thus, still has closed support. However, we caution that R〈F 〉

is generally neither left nor right Noetherian – consider, for example, R = Fp[x] and

the (left, right, or two-sided) ideal of R〈F 〉 generated by xF, xF 2, xF 3, . . .. There are

additional conditions we may impose on an R〈F 〉-module to gain better control over

submodules of finitely generated modules. These conditions involve the structure

morphism of the corresponding Frobenius action.

Definition III.2. Let R be a ring of prime characteristic p > 0 and let M be an

R〈F 〉-module with Frobenius action β : M → M . The map M → M1/p that sends

m 7→ (β(m))1/p is an R-linear map fromM to an R1/p-module, and therefore induces

an R1/p-linear map θ : R1/p⊗RM →M1/p, with r1/p⊗m 7→ (rβ(m))1/p for r ∈ R and

m ∈M . If we are regarding Frobenius as a map R→ R (rather than R→ R1/p) with

base change functor FR : ModR → ModR, then θ may be regarded as an R-linear

map θ : FR(M)→ M . This map is the structure morphism of the R〈F 〉-module M

(or of the Frobenius action β, depending on context).

Given an arbitrary R1/p-linear map θ : R1/p ⊗R M → M1/p, we can define a

corresponding Frobenius action on M by first mapping M → R1/p ⊗R M via m 7→

1 ⊗ m, and letting F (m) be the image of θ(1 ⊗ m) under the formal pth power

map M1/p → M . An R〈F 〉-module structure on an R-module M is in this manner

equivalent data to specifying an R1/p-linear (resp. R-linear) map R1/p⊗RM →M1/p

(resp. FR(M)→M).

The action of higher powers of the Frobenius, F e for e ≥ 0, can be recovered from

the structure morphism θ : FR(M) → M in the following way. Construct a map
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θe : FeR(M)→ M by composing FtR(θ) : Ft+1
R (M)→ FtR(M) for 0 ≤ t < e, as shown

below.

θe : FeR(M) Fe−1
R (M) · · · F2

R(M) FR(M) M
Fe−1
R (θ) FR(θ) θ

By convention, we let θ0 denote the identity M → M . The composition of the

natural map M → FeR(M) with θe : FeR(M) → M is precisely the action of F e, and

the module R · F e(M) is exactly the image of θe. In R1/p notation, we may take a

direct sum over all such maps θe to obtain an R-linear map

(3.1) Θ :
∞⊕
e=0

FeR(M)→M

Recalling the structure of R〈F 〉 as a right R-module, Θ may be understood as a

map R〈F 〉 ⊗R M → M . For any R-submodule N of M , the R〈F 〉-span of N is the

image of the composition R〈F 〉 ⊗R N → R〈F 〉 ⊗R M
Θ−→ M , with N generating M

over R〈F 〉 if and only if R〈F 〉⊗RN →M is surjective. To say that N is R〈F 〉-stable

is precisely to say that the image of R〈F 〉⊗RN →M is contained in N . It is clearly

sufficient to ensure that the image of FR(N)→ FR(M)
θ−→M is contained in N .

We gain a particularly fine level of control when the structure morphism of an

R〈F 〉-module is an isomorphism.

Definition III.3. Let R be a ring of prime characteristic p > 0. Call an R〈F 〉-

module M unit3 if the corresponding structure morphism θ : FR(M) → M of M is

an isomorphism.

If FR(R) is identified with R in the natural way4, then the structure morphism

FR(R) → R of the natural action on R is the identity map R 1−→ R, so the natural
3Lyubeznik [Lyu97] uses the term “F -module” for what we refer to here as a “unit R〈F 〉-module” and he proves a

number of powerful results within the category of F -modules. Our choice of terminology follows Blickle [Bli01] (also
[BB05, EK04]) because we will need to consider morphisms between both unit and non-unit R〈F 〉-modules in the
sequel. There are places in the literature where the term “level” is used in place of “unit” [HS77].

4As S ⊗R R may be identified with S for any R-algebra S.
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action of R is trivially unit. For an ideal I ⊆ R, the Frobenius homomorphism of

R/I can be understood as an action either over R or over R/I. In the former case,

the structure morphism FR(R/I) = R/I [p] → R/I is the quotient map by I/I [p]. In

the latter case, the structure morphism FR/I(R/I) = R/I → R/I is the identity.

In other words, if we regard R/I equipped with its natural action as an (R/I)〈F 〉-

module, it is unit, but unless I = I [p], the R〈F 〉-module R/I is never unit. To avoid

ambiguity, we will refer to the former as the R〈F 〉 structure morphism and the latter

as the (R/I)〈F 〉 structure morphism.

In general, given a map R→ S and an R〈F 〉-moduleM , there is a natural way to

endow S⊗RM with an S〈F 〉-module structure in such a way that M being an R〈F 〉

unit implies that S ⊗R M is an S〈F 〉 unit. We will use R1/p notation for clarity.

Note that the commutative square of maps

R1/p S1/p

R S

gives a canonical identification of the functors S1/p ⊗R1/p (R1/p ⊗R −) and S1/p ⊗S

(S ⊗R −) that take R-modules to S1/p-modules.

Definition III.4. Let R → S be a homomorphism between two rings of prime

characteristic p > 0 and let M be an R〈F 〉-module with structure morphism θR :

R1/p⊗RM →M1/p. Define an S1/p-linear map, the base-changed structure morphism

of M , as follows.

θS : S1/p⊗S (S⊗RM) = S1/p⊗R1/p (R1/p⊗RM)
1⊗θR−−−→ S1/p⊗R1/pM1/p = (S⊗RM)1/p

When we refer to S ⊗R M as an S〈F 〉-module, it is understood that this refers to

the structure morphism θS.

If θR is an isomorphism, it is clear that the same is true of 1 ⊗ θR. If u1, . . . , ut
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generate M over R〈F 〉, then 1 ⊗ u1, . . . , 1 ⊗ ut generate S ⊗R M over S〈F 〉. The

following is now clear.

Proposition III.5. Let R→ S be a map between two rings of prime characteristic

p > 0, and let M be an R〈F 〉-module.

1. ([Bli01, pp. 20]) If M is unit over R〈F 〉, then S ⊗RM is unit over S〈F 〉.

2. ([Bli01, Proposition 2.22]) If M is finitely generated over R〈F 〉, then S ⊗R M

is finitely generated over S〈F 〉.

A fundamental observation is that the category of unit R〈F 〉-modules, as a (full)

subcategory of the category of R〈F 〉-modules, is abelian [Lyu97, pp. 72]. This

follows quickly from the proposition below. It is an observation of Blickle [Bli01,

pp. 18] that the unit property of the cokernel requires no extra hypotheses on R,

but the unit property of the kernel requires the Frobenius homomorphism to be flat.

This will be the case for many results that follow. Due to a classic result of Kunz

[Kun69], for a Noetherian ring of prime characteristic p > 0, flatness of the Frobenius

homomorphism is equivalent to the assumption that R is regular.

Proposition III.6. (see [Lyu97, pp. 72], [Bli01, pp. 18]) Let R be a Noetherian ring

of prime characteristic p > 0, and let h : M → N be an R〈F 〉-linear map between

two unit R〈F 〉-modules. Then Coker(h), equipped with the R〈F 〉-module structure

induced from N , is unit. If R is regular, then Ker(h), equipped with the R〈F 〉-module

structure induced from M , is also unit.

Proof. Express h : M → N as the composition of two R〈F 〉-linear maps M � V

and V ↪→ N . Let α, β, γ, δ, and ε denote the structure morphisms of M , N , V ,

Ker(h), and Coker(h), respectively. Since FR(−) is exact, we have the following two

commutative diagrams whose rows are exact.
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FR(Ker(h)) FR(M) FR(V ) 0

0 Ker(h) M V 0

δ α γ

and

FR(V ) FR(N) FR(Coker(h)) 0

0 V N Coker(h) 0

γ β ε

The surjectivity of α and β imply the surjectivity of γ and ε, respectively. The

snake lemma together with the fact that β is an isomorphism implies that Ker(ε) is

isomorphic to Coker(γ), which vanishes, so ε is an isomorphism. If R is regular, then

the flatness of FR(−) implies that the kernels of δ and γ embed into the kernels of α

and β, respectively, and therefore vanish. The snake lemma implies that Coker(δ) '

Ker(γ) = 0, so δ is an isomorphism.

Of particularly importance is Lyubeznik’s result that finitely generated unit R〈F 〉-

modules also form an abelian category. The issue of passing finite generation to unit

submodules of finitely generated unit modules is the main source of difficulty. The

following theorem of Lyubeznik grants an incredible degree of control over unit the

submodules of unit R〈F 〉-modules.

Theorem III.7. [Lyu97, Proposition 2.5(b)] Let R be a regular ring and M be an

R〈F 〉-module generated over R〈F 〉 by the R-submodule N . Let U be a unit R〈F 〉-

submodule of M . Then U ∩N generates U over R〈F 〉.

Proof. Since M =
⋃∞
e=0 R ·F e(N) and U =

⋃∞
e=0 U ∩ (R ·F e(N)), it suffices to show

that for each e, R · F (U ∩ (R · F e(N))) = U ∩ (R · F e+1(N)).

Let θ denote the structure morphism of M and let θe : FeR(M) → M be defined

as in Diagram (3.2). Note that if R is regular, then for any R-submodule V of M ,
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the exactness of FR(−) allows us to identify FeR(V ) with a submodule of FeR(M). We

can therefore make sense of the statement R · F e(V ) = θe(F
e
R(V )). Crucially, given

two submodules V1 and V2 of M , the exactness of FR(−) also gives FR(V1 ∩ V2) =

FR(V1)∩FR(V2). SinceM is unit, θ is also compatible with intersections. We proceed

to compute

R · F (U ∩ (R · F e(N))) = θ(FR(U ∩ θe(FeR(N)))

= θ(FR(U)) ∩ θ(FR(θe(F
e
R(N))))

Since U is unit under the action restricted from M , θ(FR(U)) = U . Finally, we have

θ(FR(θe(F
e
R(N)))) = R · F (R · F e(N)) = R · F e+1(N), as desired.

Once this method of controlling unit submodules has been established, Lyubeznik

obtains the following two statements as essentially as a corollary of Theorem III.7.

Corollary III.8. Let R be a regular ring and let M be a finitely generated unit

R〈F 〉-module.

1. [Lyu97, Proposition 2.7] The set of unit submodules of M satisfies the ascending

chain condition.

2. [Lyu97, Theorem 2.8] Every unit submodule of M is finitely generated over

R〈F 〉.

The ascending chain condition in particular is the main ingredient of Lyubeznik’s

finiteness theorem on the set of associated primes for a unit R〈F 〉-module. We shall

sketch his argument to illustrate how this is the case. For an ideal I ofR, the I-torsion

submodule ΓI(M) of an R〈F 〉-module M is clearly Frobenius stable. Using the

exactness of FR(−), one can directly show thatM is unit, then ΓI(M) is unit5. If P is
5This statement is actually a particular case of a more general phenomenon concerning the preservation of the

unit property under the application of local cohomology functors, which we will discuss in more detail in the next
section.
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a maximal associated prime ofM , we obtain produce a unit submodule,M1 = ΓP (M)

with only one associated prime. Repeating the argument on M/M1 and taking

preimages in M , we obtain another unit submodule M2 ⊇M1 such that M2/M1 has

a single associated prime. This procedure results in a chain M1 ⊆ M2 ⊆ M3 ⊆ · · ·

of unit submodules such that each quotient Mi/Mi−1 has a single associated prime.

The chain terminates after finitely many steps, so Ass(M) is contained in the union

of the sets of associated primes of only finitely many factors in this filtration.

Theorem III.9. [Lyu97, Theorem 2.12(a)] Let R be a regular ring and let M be a

finitely generated unit R〈F 〉-module. The set Ass(M) is finite.

3.3 The Natural Action on Local Cohomology

If R is a Noetherian ring and M is an R〈F 〉-module, then for any ideal I and

any i ≥ 0, the local cohomology modules H i
I(M) inherit an R〈F 〉-module structure

from M . We describe its structure morphism in terms only of maps induced by the

functor H i
I(−) to show that there is no dependence on the choice of generators for

I, but once this independence has been established, we will typically prefer to work

in terms of the Čech complex.

Definition III.10. Let R be a Noetherian ring of prime characteristic p > 0. Let

jM : M → R1/p⊗RM denote the natural R-linear map u 7→ 1⊗u for u ∈M . Let I be

an ideal of R and fix i ≥ 0. The R-linear map H i
I(jM) : H i

I(M)→ H i
I(R

1/p⊗RM) =

H i
IR1/p(R1/p ⊗RM) has as its target an R1/p-module, and therefore induces an R1/p-

linear map jiI,M : R1/p ⊗R H i
I(M) → H i

I1/p(R1/p ⊗R M), where we have identified

H i
IR1/p(−) = H i

I1/p(−) since the ideals IR1/p = (I [p]R)1/p and I1/p of R1/p have the

same radical.
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Define the R〈F 〉-structure morphism θiI,M of H i
I(M) as follows.

(3.2)

θiI,M : R1/p ⊗R H i
I(M)

jiI,M−−→ H i
I1/p(R1/p ⊗RM)

Hi

I1/p
(θ)

−−−−−→ H i
I1/p(M1/p) = (H i

I(M))1/p

The corresponding Frobenius action on H i
I(M) is called the natural action induced

by M .

If R1/p is flat over R, the map jiI,M is readily seen to be an isomorphism [BS12,

Theorem 4.3.2]. IfM is unit, H i
I1/p(θ) is an isomorphism. The following is now clear.

Proposition III.11. [Lyu97, Example 1.2 (b)] Let R be a regular ring of prime

characteristic p > 0 and let M be a unit R〈F 〉-module. Then for any ideal I of R

and any i ≥ 0, the natural action on H i
I(M) is unit.

Let f = f1, . . . , ft be a choice of generators for I, let C• denote the Čech complex

Č•(f ;R), and let C•M = C• ⊗R M . The homomorphisms jM : M → R1/p ⊗R M

and θ : R1/p ⊗R M → M1/p induce maps of complexes6 JM : C•M → R1/p ⊗R C•M

and Θ : R1/p ⊗R C•M → (C•M)1/p. The induced maps on the cohomology of these

complexes, H i(JM) and H i(Θ), are precisely the maps H i
I(jM) and H i

I(θ) induced

by the local cohomology functor H i
I(−), and therefore, do not depend in any way on

the choice of generators for I. We may therefore use these maps H i(JM) and H i(Θ)

to describe the structure morphism of H i
I(M) in terms of the Čech complex without

worrying the result may change given a different choice of generators.

We will make use of the following family of natural transformations both here and

in the next chapter.

Definition III.12. If f : R→ S is a ring homomorphism and C• is an R-complex,

then the natural (R-linear) map C• → S ⊗R C• induces H i(C•) → H i(S ⊗R C•),
6We have used the identification M1/p ⊗ C• = Č(f [p];M)1/p = Č(f ;M)1/p = (C•M )1/p.
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which factors uniquely through the natural map H i(C•) → S ⊗R H i(C•) to an S-

linear map S ⊗R H i(C•) → H i(S ⊗R C•). Call this map hif (C•), and let hif denote

the corresponding natural transformation

hif (−) : S ⊗R H i(−) −→ H i(S ⊗R −)

of functors KomR → ModS.

If the homomorphism f : R→ S is understood from context, we will write hiS/R(−)

instead of hif (−). The latter, more precise, notation is reserved for ambiguous cases,

such as whenR = S has prime characteristic p and f is the Frobenius homomorphism.

Note also that S is flat over R if and only if hiS/R(−) is an isomorphism of functors.

Let f = f1, · · · , ft be a sequence of elements of R, let C• == Č•(f ;R), and for M

an R-module, let C•M := C• ⊗RM . In this context, the map hi
R1/p/R

(C•M) : R1/p ⊗R

H i(C•M)→ H i(R1/p⊗RC•M) is precisely jiI,M : R1/p⊗RH i
I(M)→ H i

I1/p(R1/p⊗RM)1/p

from diagram 3.2.

In FR(−) notation, note that the complex FR(C•) is canonically identified7 with

C• itself, and likewise, for any R-module M , FR(C•M) is canonically identified with

C•FR(M). We can therefore understand C•⊗R− applied to θ as a map Θ : FR(C•M) =

C• ⊗R FR(M)→ C•M .

The Čech construction of the structure morphism of H i
I(M) is as follows.

(3.3) θiI,M : FR(H i(C•M)) H i(FR(C•M)) H i(C•M)
hiFR

(C•M ) Hi(Θ)

Since C•M = C• ⊗R M , the definition is completely functorial in M , so that the

map H i
I(M) → H i

I(N) induced by N → M with the structure morphisms above is

readily seen to be R〈F 〉-linear. We may therefore regard H i
I(−) as a functor from

7For any element g ∈ R, there is no difference between localization with respect to the multiplicative system
{1, g, g2, g3, · · · } and the multiplicative system {1, gp, g2p, g3p}.
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R〈F 〉-modules to R〈F 〉-modules. By applying C•⊗R− to a short exact sequence 0→

N →M → Q→ 0 of R〈F 〉-modules, the resulting short exact sequence of complexes

0→ C•N → C•M → C•Q → 0 makes it clear that all connecting homomorphisms in the

corresponding long exact sequence in local cohomology are also R〈F 〉-linear.

Proposition III.13. [Lyu97, Example 1.2 (b), (b’)8] Let R be a Noetherian ring of

prime characteristic p > 0. Let I be an ideal of R and fix i ≥ 0. Given an R〈F 〉-

moduleM , if H i
I(M) is regarded as an R〈F 〉-module via the structure morphism (3.2)

induced from M , then the association M 7→ H i
I(M) is a functor from the category

of R〈F 〉-modules to itself. Moreover, for any short exact sequence of R〈F 〉-modules

0 → N → M → Q → 0, the connecting homomorphisms in the long exact sequence

induced by ΓI(−) are R〈F 〉-linear.

The Čech complex definition of the R〈F 〉 structure of H i
I(M) is given in terms

of the structure morphism of the complex C• ⊗RM , and the structure morphism of

C• ⊗RM is precisely the data of an R〈F 〉-module structure on each term Ci ⊗RM

such that the differentials of the complex are R〈F 〉-linear. In the case whereM = R,

each term of C• is a direct sum of localizations Rf equipped with their natural

actions.

Proposition III.14. [Bli01, Lemma 2.2.49] Let R be a Noetherian ring and let

f = f1, . . . , fc be a sequence of elements. The R〈F 〉-module Hc
fR(R), equipped with

its natural action, is unit and finitely generated.

Proof. Let f =
∏c

i=1 fi. In terms of the complex C• = Č•(f ;R),Hc
f (R) is the cokernel

of the map Cc−1 → Cc where both Cc−1 and Cc are unit and finitely generated. By
8Lyubeznik’s argument uses an injective resolution equipped with compatible Frobenius actions on every term,

and the construction of this resolution requires that R is regular and M is unit. These hypotheses can be relaxed if
the role of the injective resolution in his argument is replaced by the Čech complex, making use of [Wei94, Proposition
1.3.4] on the short exact sequence of complexes 0→ C•N → C•M → C•Q → 0.

9We are only using the case M = R, and the preservation of the unit property and finite generation under
homomorphic image, which as Blickle discusses on pp. 18, does not require R to be regular.
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III.6, the cokernel of a map between unit R〈F 〉-modules is unit10. Since Cc = Rf is

finitely generated (e.g., by 1/f), so is its R〈F 〉-homomorphic image, Hc
f (R).

A much stronger statement can be made if R is regular. In this case, if M is a

finitely generated unit R〈F 〉-module, Lyubeznik shows that any localization Mg for

g ∈ R is also unit and finitely generated [Lyu97, Proposition 2.9(b)]. Since Čech

complex Č•(f ;M) is a complex of finitely generated unit R〈F 〉-modules, the kernels

of the differentials are themselves unit and finitely generated by Proposition III.6 and

Corollary III.8. The same can be said for any R〈F 〉-homomorphic image of those

kernels, and the result below follows at once.

Theorem III.15 (Lyubeznik; Proposition 2.10 [Lyu97]). Let R be a regular ring of

prime characteristic p > 0. Let M be a finitely generated unit R〈F 〉-module, let I

be an ideal of R, and fix i ≥ 0. Then H i
I(M), regarded as an R〈F 〉-module via the

structure induced from M , is finitely generated and unit over R〈F 〉.

The following is an immediate consequence of Theorems III.15 and III.9.

Theorem III.16. Let R be a regular ring of prime characteristic p > 0 and let M

be a finitely generated unit R〈F 〉-module. For any ideal I of R and any i ≥ 0, the

module H i
I(M) has finitely many associated primes.

10The hypothesis of regularity is only necessary to ensure the unit property of kernels.



CHAPTER IV

The Hellus Isomorphism and Other Functorial Tools

Let R be a Noetherian ring. To a given local cohomology functor H i
I(−) with

respect to some ideal I of R, we may associate a pair (i, h) consisting of the cohomo-

logical degree i and the height of the defining ideal h = ht(I). In this section we will

show that those local cohomology functors for which the pair (i, h) satisfies i ≤ h+1

are fully general in the sense of the following theorem (consider k = i − h + 1 if

i > h+ 1). Note that the height of the unit ideal is inf(∅) = +∞.

Theorem (IV.4). Let R be a Noetherian ring, let I be an ideal of height h, and fix

k ≥ 0. There is an ideal Ik ⊇ I such that ht(Ik) ≥ h + k and such that the natural

transformation H i
Ik

(−) → H i
I(−) is an isomorphism (resp. a surjection) of functor

for all i > h+ k (resp. i = h+ k).

This statement is an result of the author, written up for publication in [Lew19].

Reduction to the case i ≤ h + 1 will drastically reduce the difficulty of certain key

proofs in subsequent chapters. It is a generalization of an isomorphism theorem of

Hellus that we restate below.

Theorem IV.1. [Hel01, Theorem 3] Let R be a Cohen-Macaulay local ring, let I be

an ideal of height h, and fix k ≥ 0. There is an ideal Ik ⊇ I such that ht(Ik) ≥ h+ k

and such that the natural map Hh+k+1
Ik

(R) → Hh+k+1
I (R) is an isomorphism. If

40
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Hh+k+1
I (R) 6= 0, then Ik can be chosen such that ht(Ik) = h+ k.

While it is interesting that the Cohen-Macaulay hypothesis can be eliminated,

the Cohen-Macaulay case of this isomorphism remains particularly interesting. The

modules H i
I(R) such that (i, ht(I)) satisfies i ≤ ht(I) + 1 vanish unless i = ht(I) or

i = ht(I) + 1. The former is fairly straightforward to deal with as far as finiteness

questions are concerned, see e.g. Theorem II.18. Effectively, we need only consider

the case i = ht(I) + 1 – a drastic simplification.

After proving our generalization of Hellus’s isomorphism, we move on to a sepa-

rate issue involving the compatibility (Theorem IV.9) of the natural transformations

hiI;S/R(−) : S⊗RH i
I(−)→ H i

I(S⊗R−) with the Frobenius functors of R and S. This

leads to the following statement

Theorem (IV.10). Let R → S be a map between two Noetherian rings of prime

characteristic p > 0, and let M be an R〈F 〉-module. Then the natural map

hiI;S/R(M) : S ⊗R H i
I(M)→ H i

I(S ⊗RM)

is a morphism of S〈F 〉-modules.

This will be particularly useful in Section 5.4 where R and S are regular and M

is unit. These results of the author are also written up for publication in [Lew19].

4.1 A generalized isomorphism of Hellus

As this situation may arise in a number of proofs in this section, note that, by

convention, the intersection of prime ideals of R indexed by the empty set is taken

to be
⋂
i∈∅ Pi = R. Recall also that an ideal is said to have pure height h if all of its

minimal primes have height exactly h.
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We require a notion of parameters in a global ring to proceed, and the following

lemma provides one suitable for use in our main proofs.

Lemma IV.2. Let R be a Noetherian ring, let I be a proper ideal of height h ≥ 0,

and let J ⊆ I be an ideal of height j ≥ 0.

(a) If an ideal of the form (x1, · · · , xh)R has height h, then it has pure height h.

(b) Any sequence x1, · · · , xj ∈ J generating an ideal of height j (including the empty

sequence if j = 0) can be extended to a sequence x1, · · · , xh ∈ I generating an

ideal of height h.

(c) There is a sequence x1, · · · , xh ∈ I such that (x1, · · · , xh)R has (necessarily pure)

height h.

Proof. (a) Every minimal prime of a height h ideal has height at least h by definition,

and every minimal prime of an h-generated ideal has height at most h by Krull’s

height theorem [Mat89, Theorem 13.5].

(b) If j = h, there is nothing to do, so assume j < h. By induction, it is enough to

show that we can extend the sequence by one element. Since j < h, I is not contained

in any minimal prime of (x1, · · · , xj)R (all of which have height j), and so we may

choose x ∈ I avoiding all such primes. A height j prime containing (x1, · · · , xj)R

therefore cannot also contain xR. Thus, the minimal primes of (x, x1, · · · , xj)R have

height at least j+ 1. By Krull’s height theorem, they also have height at most j+ 1.

(c) This follows at once from (b) by taking J = (0).

Our method of enlarging an ideal to obtain the desired functorial isomorphism

will proceed inductively replacing I with I + yR for some suitable choice of y ∈ R.

The lemma below describes how we will choose the element y. Note that some of

our applications require the resulting isomorphism to have special properties with
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respect to a sequence of j elements generating an ideal J of height j contained in I,

and this needs to be taken into consideration in our choice of the element y.

Lemma IV.3. Let R be a Noetherian ring, let I be a proper ideal of height h, and

let J ⊆ I be an ideal of height j ≤ h generated by j elements. There is an element

y ∈ R that satisfies the following properties.

(i) araR(yR ∩ I) = h

(ii) araR/J(y(R/J) ∩ (I/J)) = h− j

(iii) ht(yR + I) ≥ h+ 1

Proof. Write J = (x1, · · · , xj)R, and extend this sequence to x1, · · · , xh ∈ I generat-

ing an ideal of height h. I is contained in at least one minimal prime of (x1, · · · , xh)R.

Let P1, · · · , Pt be the minimal primes of (x1, · · · , xh)R containing I, andQ1, · · · , Qs

be the minimal primes of (x1, · · · , xh)R that do not. We may have s = 0. Since these

primes are pairwise incomparable, there exist elements y ∈ Q1 ∩ · · · ∩Qs that avoid

the union P1 ∪ · · · ∪ Pt (if s = 0, we can take y = 1). For any such y, it holds that

yR ∩ I ⊆ P1 ∩ · · · ∩ Pt ∩Q1 ∩ · · · ∩Qs =
√

(x1, · · · , xh)R

and thus yR ∩ I ⊆ yR ∩
√

(x1, · · · , xh)R. Since (x1, · · · , xh) ⊆ I, we see that

yR ∩ (x1, · · · , xh)R ⊆ yR ∩ I ⊆ yR ∩
√

(x1, · · · , xh)R

It follows at once that that

√
yR ∩ I =

√
yR ∩ (x1, · · · , xh)R =

√
(yx1, · · · , yxh)R

producing an upper bound on arithmetic rank: araR(yR ∩ I) ≤ h. To obtain the

lower bound araR(yR ∩ I) ≥ h, suppose that for some t < h we had a sequence

of elements z1, · · · , zt generating an ideal with the same radical as yR ∩ I. Then
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√
(z1, · · · , zt)R =

√
(yx1, · · · , yxh)R, and upon localizing at P1, we would have√

(z1, · · · , zt)RP1 =
√

(x1, · · · , xh)RP1 since y is a unit in RP1 . It would follow that√
(x1, · · · , xh)RP1 has height no more than t, which is a contradiction.

Since yR/J ∩ I/J ⊆
√

(xj+1 · · · , xh)R/J , an identical argument to the above

shows that √
yR/J ∩ I/J =

√
(yxj+1, · · · , yxh)R/J

so araR/J(yR/J ∩ I/J) ≤ h− j.

We have established (i) and (ii). Concerning (iii), note that that all primes con-

taining yR+I also contain (x1, · · · , xh)R, and thus, to show that ht(yR+I) ≥ h+1,

it is enough to show that none of the height h primes containing (x1, · · · , xh)R ap-

pear in V (yR + I). But this is clear, since {P ⊇ (x1, · · · , xh)R | ht(P ) = h} =

{P1, · · · , Pt, Q1, · · · , Qs}. None of the primes Pi contain yR, and none of the primes

Qj contain I.

Theorem IV.4. Let R be a Noetherian ring, let I be an ideal of height h, and let

J ⊆ I be an ideal of height j ≥ 0 generated by j elements. For any k ≥ 0, there is

an ideal Ik,J ⊇ I such that

• ht(Ik,J) ≥ ht(I) + k

• The natural transformation H i
Ik,J

(−)→ H i
I(−) is an isomorphism on R-modules

for all i > h+ k, and an isomorphism on R/J-modules for all i > h− j + k. If

i = h + k (resp. i = h − j + k) this natural transformation is a surjection on

R-modules (resp. R/J-modules).

Proof. If k = 0, choose I0,J = I. Fix k ≥ 1, and suppose that we’ve chosen the ideal

Ik−1,J by induction. We must choose Ik,J . For brevity, we will suppress J from our

notation, and write Ik−1 and Ik for Ik−1,J and Ik,J , respectively.
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If ht(Ik−1) > h + k − 1 we can simply pick Ik = Ik−1, so assume that ht(Ik−1) =

h + k − 1. By Lemma IV.3 there is an element y ∈ R such that ht(yR + Ik−1) ≥

(h+ k − 1) + 1, with

araR(yR ∩ Ik−1) ≤ h+ k − 1 and araR/J(y(R/J) ∩ Ik−1/J) ≤ (h+ k − 1)− j

Consider the Mayer-Vietoris sequence on the intersection yR ∩ Ik−1. We use (−) in

our notation to mean that the sequence is exact when − is replaced by any R-module

M , and that all maps in the sequence are given by natural transformations.

· · · H i−1
yR∩Ik−1

(−)

H i
yR+Ik−1

(−) H i
yR(−)⊕H i

Ik−1
(−) H i

yR∩Ik−1
(−)

Let i > h + k. Since i − 1 > araR(yR ∩ Ik−1), we get vanishing H i−1
yR∩Ik−1

(−) =

H i
yR∩Ik−1

(−) = 0. Since i ≥ h + k + 1 ≥ 2, we also have H i
yR(−) = 0, and therefore

obtain a natural isomorphism H i
yR+Ik−1

(−)
∼−→ H i

Ik−1
(−). Notice that if i = h + k,

then we still have H i
yR∩Ik−1

(−) = 0, so

H i
yR+Ik−1

(−)→ H i
yR(−)⊕H i

Ik−1
(−)→ 0

is exact, implying that the component map H i
yR+Ik−1

(−) → H i
Ik

(−) is surjective.

Working with R/J-modules, an identical argument using the fact that

araR/J(y(R/J) ∩ Ik−1/J) ≤ (h+ k − 1)− j

shows that

H i
y(R/J)+Ik−1/J

(−)
∼−→ H i

Ik−1/J
(−)

when i > h+ k − j and

H i
y(R/J)+Ik−1/J

(−) � H i
Ik−1/J

(−)
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when i = h + k − j. Finally, ht(yR + Ik−1) ≥ h + k, so we may in fact choose

Ik = yR + Ik−1, which completes the induction.

Corollary IV.5. Let R be a Noetherian ring and let I ⊆ R be any ideal. Fix i ≥ 0.

There is an ideal I ′ ⊇ I (resp. I ′′ ⊇ I) such that

• ht(I ′) ≥ i− 1 (resp. ht(I ′′) ≥ i)

• H i
I′(−)

∼−→ H i
I(−) (resp. H i

I′′(−) � H i
I(−))

Proof. Let h = ht(I). If h ≥ i − 1 (resp. h ≥ i) simply choose I ′ = I (resp.

I ′′ = I). Otherwise, h < i − 1 (resp. h < i). Apply Theorem IV.4 in the case

k = i − 1 − h (resp. k′ = i − h) to obtain an ideal I ′ ⊇ I (resp. I ′′ ⊇ I) satisfying

ht(I ′) ≥ h + k = i − 1 (resp. ht(I ′′) ≥ h + k′ = i) and H i
I′(−)

∼−→ H i
I(−), since

i > h+ k (resp. H i
I′′(−) � H i

I(−), since i = h+ k′).

An immediate application of this theorem is to generalize a corollary of Hellus

[Hel01, Corollary 2]. This generalization provides a new proof of a result of Marley

[Mar01, Proposition 2.3], namely, for any Noetherian ring R, any ideal I ⊆ R, and

any R-module M , {P ∈ SuppH i
I(M) | ht(P ) = i} is a finite set. Since our result

comes from a surjection of functors, we will describe it in terms of the “support” of

H i
I(−).

By the support of a functor F : ModR → ModR, we mean the set of primes

P ∈ Spec(R) such that F (−)P is not the zero functor. That is to say,

Supp(F ) := {P ∈ Spec(R) | ∃M ∈ ModR such that F (M)P 6= 0}

For example, if I ⊆ R is an ideal and i ≥ 0, then SuppH i
I(−) ⊆ V (I). It is clear

(see, e.g., Theorem II.13 or Theorem II.14) that this inclusion need not be sharp. For

any i > ht(I), the following Corollary shows us how to find a closed set containing

SuppH i
I(−) strictly smaller than V (I).
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Corollary IV.6. (cf. Marley [Mar01, Proposition 2.3]) Let R be a Noetherian ring

and I be an ideal. Then for all i ≥ 0, there is an ideal I ′′ ⊇ I with ht(I ′′) ≥ i such

that SuppH i
I(−) ⊆ V (I ′′). In particular, for any R-module M , the set

{P ∈ SuppH i
I(M) | ht(P ) = i}

is a subset of MinR(R/I ′′), and is therefore finite. If R is semilocal and i ≥ dim(R)−

1, then SuppH i
I(M) is a finite set.

Proof. Fix i ≥ 0 and write h = ht(I). If i < h, then because SuppH i
I(−) ⊆ V (I), we

already have ht(P ) ≥ h > i for all P ∈ SuppH i
I(−) and there is nothing to prove. So

assume that i ≥ h. By Corollary IV.5, there is an ideal I ′′ ⊇ I such that ht(I ′′) ≥ i

and H i
I′′(−) � H i

I(−). In particular, for any R-moduleM , H i
I(M) is I ′′-torsion, and

thus SuppH i
I(M) ⊆ V (I ′′). All primes in V (I ′′) have height at least i. Any primes

of height exactly i must be among the minimal primes of I ′′, of which there are only

finitely many.

4.2 Compatibility and simultaneous base change

Recall the natural transformations hif (−) of Definition III.12, also denoted hiS/R(−),

associated with a ring homomorphism f : R → S. In this section, we will prove a

number of compatibility properties for these transformations prior to proving our

main result on the S〈F 〉-linearity of certain base changed maps.

Proposition IV.7. Let R → S → T be ring homomorphisms. The following dia-

gram of functors KomR → ModT commutes1.
1The equalities shown in this diagram come from identifying the functor T ⊗S (S ⊗R −) with T ⊗R −
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T ⊗R H i(−) T ⊗S (S ⊗R H i(−)) T ⊗S H i(S ⊗R −)

H i(T ⊗S (S ⊗R −))

H i(T ⊗R −)

hi
T/R

(−)

idT⊗Sh
i
S/R

(−)

hi
T/S

(S⊗R−)

Proposition IV.8. Fix a commutative square of ring homomorphisms

R S

R′ S ′

There is a commutative square of functors KomR → ModS′

S ′ ⊗S (S ⊗R H i(−)) S ′ ⊗S H i(S ⊗R −)

S ′ ⊗R′ H i(R′ ⊗R −) H i(S ′ ⊗R′ (R′ ⊗R −))

idS′⊗Sh
i
S/R

(−)

hi
S′/R′ (R

′⊗R−)

Proof. Apply Proposition IV.7 to R → S → S ′ in order to see that the upper right

corner of the below diagram commutes, and then to R → R′ → S ′ to see that the

lower left corner commutes as well:

S ′ ⊗S (S ⊗R H i(−)) S ′ ⊗S H i(S ⊗R −)

S ′ ⊗R H i(−) H i(S ′ ⊗S (S ⊗R −))

S ′ ⊗R′ (R′ ⊗R H i(−)) H i(S ′ ⊗R −)

S ′ ⊗R′ H i(R′ ⊗R −) H i(S ′ ⊗R′ (R′ ⊗R −))

idS′⊗Sh
i
S/R

(−)

hi
S′/S(S⊗R−)

hi
S′/R(−)

idS′⊗R′h
i
R′/R(−)

hi
S′/R′ (R

′⊗R−)
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The main application of the above compatibility statement is when R → S is

a map between two rings of prime characteristic p > 0, and R → R′, S → S ′ are

the Frobenius homomorphisms of R and S, respectively. If M is an R〈F 〉-module

with structure morphism θ : FR(M) → M , note that S ⊗R M can be regarded as

an S〈F 〉-module via the structure isomorphism idS ⊗ θ : S ⊗R FR(M) → S ⊗R M ,

where S ⊗R FR(M) and FS(S ⊗RM) are identified in the canonical way2.

The relevant version of Proposition IV.8 in this setting is as follows.

Corollary IV.9. Let R→ S be a homomorphism between two rings of prime char-

acteristic p > 0. The following diagram commutes,

FS(S ⊗R H i(−)) FS(H i(S ⊗R −))

S ⊗R H i(FeR(−)) H i(S ⊗R FeR(−))

FS(hi
S/R

(−))

hi
S/R

(FR(−))

For a Noetherian ring R of prime characteristic p > 0, M an R〈F 〉-module, I an

ideal of R, and i ≥ 0, we recall below the construction of the structure morphism of

H i
I(M) as an R〈F 〉-module in terms of the structure morphism of M in terms of the

Čech complex. Let f = f1, · · · , ft be a sequence of elements of R, let C• = Č•(f ;R),

and let C•M = C• ⊗R M . Let θ : FR(M) → M be the structure morphism of M

and let Θ : FR(C•M) → C•M be the corresponding map of complexes. From diagram

(3.3), the structure morphism of the natural action on H i
I(M) induced by M is the

composition shown below.

(4.1) FR(H i(C•M)) H i(FR(C•M)) H i(C•M)
hiFR

(C•M ) Hi(Θ)

2Using different notation, this is simply identifying S1/p ⊗R1/p (R1/p ⊗R M) with S1/p ⊗S (S ⊗R M) using the
equality of the composite maps R→ S → S1/p and R→ R1/p → S1/p
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Theorem IV.10. Let R→ S be a homomorphism between two Noetherian rings of

prime characteristic p > 0, fix an ideal I ⊆ R and an index i ≥ 0, and let M be an

R〈F 〉-module with structure morphism θ : FR(M)→M . The natural map

S ⊗R H i
I(M)→ H i

I(S ⊗RM)

is a morphism of S〈F 〉-modules.

Proof. Let C•M = Č•(f ;M) be the Čech complex on M associated with a sequence

of elements f = f1, · · · , ft generating I. It is enough to show that the diagram

FS(S ⊗R H i(C•M)) FS(H i(S ⊗R C•M))

S ⊗R H i(C•M) H i(S ⊗R C•M)

FS(hi
S/R

(C•M ))

hi
S/R

(C•M )

commutes, where the vertical arrows are the structure morphisms of S ⊗R H i
I(M)

and H i
I(S ⊗R M) as S〈F 〉-modules, respectively. Let Θ : F(C•M) → C•M denote the

morphism of complexes induced by θ. Using the decomposition (3.3) of the structure

morphism of H i
I(M), the stated result is equivalent to showing that the following

diagram commutes.

FS(S ⊗R H i(C•M)) FS(H i(S ⊗R C•M))

S ⊗R FR(H i(C•M)) H i(FS(S ⊗R C•M))

S ⊗R H i(FR(C•M)) H i(S ⊗R FR(C•M))

S ⊗R H i(C•M) H i(S ⊗R C•M)

FS(hi
S/R

(C•M ))

hiFS
(S⊗RC

•
M )

idS⊗hiFR
(C•M )

idS⊗Hi(Θ)

hi
S/R

(FR(C•M ))

Hi(idS⊗Θ)

hi
S/R

(C•M )

The commutativity of the rectangle of maps in the top three rows is precisely the

content of Corollary IV.9 applied to the complex C•M . The square of maps in the

bottom two rows is induced from the diagram that results from applying H i(−) to
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FR(C•M) S ⊗R FR(C•M)

C•M S ⊗R C•M

Θ

nat

(idS⊗Θ)

nat

Recall that C•M = C• ⊗RM and FR(C•M) = C• ⊗R FR(M), where C• = Č•(f ;R), so

that the above diagram is C• ⊗R − applied to the diagram below, which obviously

commutes.

FR(M) S ⊗R FR(M)

M S ⊗RM
θ

nat

(idS⊗θ)

nat



CHAPTER V

Parameter Ideals Following Hochster and Núñez-Betancourt

A complete intersection ring is a Noetherian ring S such that, for all prime ideals

P of S, the completion ŜP of the local ring (SP , PSP ) is the quotient of a regular local

ring by an ideal generated by a regular sequence. Our interest in this chapter and

those that follow is in those complete intersection rings that are globally presentated

as homomorphic images of a regular rings. Namely, given a regular ring R, we are

interested in studying the local cohomology of complete intersection rings of the form

S = R/fR where f = f1, . . . , fc a regular sequence in R. The length c of this regular

sequence is the codimension of S. If c = 1, we refer to S as a hypersurface ring.

When f is a regular sequence, we refer to the ideal fR generated by f as a parameter

ideal regardless of whether R is local.

We will further restrict our focus to the setting in which the regular ring R has

the property that AssH i
I(R) is finite for all i ≥ 0 and all ideals I, which we refer to

as LC-finiteness for shorthand (Definition II.16). This property holds, for example,

when R has prime characteristic p > 0 [Lyu97, HS93], or if R is a smooth algebra

over a field of characteristic 0 [Lyu93] or over the integers [BBL+14].

Let R be an LC-finite regular ring, let f = f1, . . . , fc be a regular sequence of R,

and let S = R/fR. That is to say, there is a short exact sequence

0→ fR→ R→ S → 0

52
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that presents S as the homomorphic image of the LC-finite module R. Let I be

an ideal of R containing f (corresponding to an arbitrary ideal of S) and fix i ≥ 0.

There is an exact sequence

(5.1) · · · → H i
I(fR)→ H i

I(R)→ H i
I(S)→ H i+1

I (fR)→ · · ·

If we would like to investigate the question of closed support for H i
I(S), we are

naturally lead to ask the following two questions.

1. Does the cokernel of the map H i
I(fR)→ H i

I(R) have closed support?

2. Does the kernel of the map H i+1
I (fR)→ H i+1

I (R) have closed support?

A key insight of Hochster and Núñez-Betancourt [HNB17] is that in prime char-

acteristic p > 0, we can give an affirmative answer to Question 1 in the following

manner. When R and S are equipped with their natural Frobenius actions and fR

is equipped with the Frobenius action restricted from that of R, the short exact

0 → fR → R → S → 0 can be understood as a short exact sequence of R〈F 〉-

modules. By Proposition III.13, all morphisms in the long exact sequence (5.1) are

R〈F 〉-linear. Since R is unit and finitely generated, Theorem III.15 shows thatH i
I(R)

remains unit and finitely generated. Thus, the cokernel of H i
I(fR) → H i

I(R) is an

R〈F 〉-linear homomorphic image of a finitely generated R〈F 〉-module, and hence,

remains finitely generated. By Theorem III.1, that homomorphic image has closed

support.

To show that the kernel of H i+1
I (fR) → H i+1

I (R) has closed support, it would

clearly suffice to show that H i+1
I (fR) has finitely many associated primes. We are

therefore lead to the following theorem. Note that while our interest is primarily in

the case where J is generated by a regular sequence, this hypothesis was not required

in the preceding argument – nor was the hypothesis that I ⊇ J .
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Theorem V.1 (Hochster, Núñez-Betancourt; Theorem 4.12). Let R be a regular

ring of prime characteristic p > 0, let J be an ideal of R, and let S = R/J . Let I be

an ideal of R and fix i ≥ 0. If AssH i+1
I (J) is finite, then SuppH i

I(S) is closed.

If J is the principal ideal generated by some nonzerodivisor f ∈ R – which is to say,

S = R/J is the hypersurface ring R/fR – then J is isomorphic to R as an abstract

R-module, and in particular, is LC-finite. Hochster and Núñez-Betancourt thereby

obtain the following result on hypersurfaces as essentially a corollary of Theorem

V.1.

Theorem V.2 (Hochster, Núñez-Betancourt; Corollary 4.13). Let R be a regular

ring of prime characteristic p > 0, let f ∈ R be a nonzerodivisor, and let S = R/fR.

Let I be an ideal of R and fix i ≥ 0. The support of H i
I(S) is Zariski closed in

Spec(S).

It remains an open question whether their theorem on the support of the lo-

cal cohomology of positive characteristic hypersurface rings generalizes to complete

intersection rings of arbitrary codimension, or even whether it generalizes to hyper-

surface rings of characteristic 0. At least in the positive characteristic setting, by

Theorem V.1, it would suffice to show that for any ideal J generated by a regular

sequence f of R, the module H i
I(J) has finitely many associated primes. Despite

only having immediate applications in prime characteristic p > 0, one may pose the

following question for LC-finite regular rings in any characteristic.

Question V.3. Let R be an LC-finite regular ring and f = f1, . . . , fc be a regular

sequence of R. Is the R-module fR LC-finite? In other words, for I an ideal of R,

and i ≥ 0, must AssH i
I(fR) be a finite set?

We prove the following positive result in cohomological degree i = 2. Our main
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case of interest for this theorem is when R is regular and J is generated by a regular

sequence, but these hypotheses are not necessary for the theorem.

Theorem V.4 (V.11). Let R be a locally almost factorial (Definition V.6) Noethe-

rian normal ring, and I and J be ideals of R. The set AssH2
I (J) is finite.

In cohomological degree i ≥ 3, we show that Question V.3 has a negative answer

at the level of generality in which it’s stated. In Theorem V.5 we present an example

of the author, written up for publication in [Lew19], showing that AssH3
I (fR) can

be an infinite set when f = f, g is a regular sequence of length 2.

The counterexample presented in Section 5.1 crucially requires that H2
I (R/f) has

an infinite set of associated primes – in fact, R/f in this example is Katzman’s

hypersurface ring [Kat02]. It is natural to ask whether one can avoid choosing a

sequence f with H i−1
I (R/f) already having an infinite set of associated primes, but

this may not be possible to do. In Section 5.3 we prove the following.

Theorem (V.16). Let R be an LC-finite regular ring, let J ⊆ R be an ideal generated

by a regular sequence of length c ≥ 2, and let S = R/J . For an ideal I ⊇ J ,

(ii) If the irreducible components of Spec(S) are disjoint (e.g. S is a domain), then

AssH3
I (J) is finite if and only if AssH2

I (S) is finite.

(iii) If S is normal and locally almost factorial (e.g. S is a UFD), then AssH4
I (J)

is finite if and only if AssH3
I (S) is finite.

Since we are only interested in Question V.3 in the case where AssH i
I(S) is infi-

nite, the above theorem presents a significant challenge to the prospect of applying

Theorem V.1 to the closed support problem in the codimension c ≥ 2 setting. We

will address this issue further in the next chapter.

At the end of the present chapter, in Section 5.4, we show that in the positive
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characteristic setting, it is possible to impose sufficiently restrictive hypotheses on

R/f so as to recover a positive answer to Question V.3. We actually prove a somewhat

more general statement.

Theorem (V.18). Let R be a regular ring of prime characteristic p > 0, let M be a

finitely generated unit R〈F 〉-module M , and let f = f1, . . . , fc be a regular sequence

such that R/f is regular. The module fM is LC-finite.

5.1 An example in which AssH3
I ((f, g)R) is an infinite set

The following example demonstrates that Question V.3 has a negative answer.

Theorem V.5. Let K be a field, let R = K[u, v, w, x, y, z, t], and let f = wv2x2 −

(w+z)vxuy+zu2y2 be the defining equation of Katzman’s hypersurface ring [Kat02].

The set AssH3
(t,f,x,y)((t, f)R) is infinite.

Proof. Let f = t, f , a codimension 2 regular sequence inR, and letA = K[u, v, w, x, y, z].

Note that R/fR = A/fA. Let I = (t, f, x, y)R, and observe that H i
I(R/fR) =

H i
(x,y)(R/fR) = H i

(x,y)(A/f) for all i. Since depthI(R) = 3 (the sequence t, f, x ∈ I

is R-regular), the long exact sequence from applying ΓI(−) to 0 → fR → R →

R/fR→ 0 begins with

0 0 0 0

H1
I (fR) 0 H1

(x,y)(A/fA)

H2
I (fR) 0 H2

(x,y)(A/fA)

H3
I (fR) H3

I (R) 0

H4
I (fR) H4

I (R) 0

From this, we see that H2
(x,y)(A/fA) embeds into H3

I (fR). By [Kat02, Theorem 1.2],

AssH2
(x,y)(A/fA) is infinite, so AssH3

I (fR) is infinite as well.
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Katzman’s hypersurface could be replaced with any globally presented complete

intersection ring S known to have an ideal I and index i ≥ 0 such that H i
I(S)

has infinitely many associated primes. Let S = A/gA where A is a regular ring

and g = g1, . . . , gt is a regular sequence. Let R = A[z1, · · · , zn] for n � 0, and

let f = z1, · · · , zn. We have S ' R/(f ,g)R. Let I ′ = (f ,g)R + IR and observe

that H i
I(S) ' H i

I′(S) for all i ≥ 0. By choosing n large enough, we can ensure

that depthI′(R) > dim(S) + 1. Using the long exact sequence from applying ΓI′(−)

to 0 → (f ,g)R → R → S → 0, it follows at once that H i+1
I′ ((f ,g)R) ' H i

I(S).

In sufficiently large cohomological degrees, AssHj
I ((f ,g)R) is isomorphic to Hj

I′(R),

and in degrees 1 ≤ j ≤ dim(S) + 1, the local cohomology of (f ,g)R is identical to

that of S in one degree lower.

5.2 The Finiteness of AssH2
I (J)

While our main interest for the results in this section is the case in which R is

regular and LC-finite, we do not require the full strength of those hypotheses here.

We need only assume that R is normal and satisfies the following condition.

Definition V.6. A normal domain R is called almost factorial if the class group

of R is torsion. A normal ring R is called locally almost factorial if RP is almost

factorial for all P ∈ Spec(R).

For example, if RP is a UFD for all P ∈ Spec(R), then R is locally almost

factorial. A regular ring is therefore locally almost factorial. Hellus shows that an

almost factorial Cohen-Macaulay local ring of dimension at most four is LC-finite

[Hel01, Theorem 5]. Our usage of the almost factorial hypothesis is motivated by its

use in [Hel01], although our motivating setting is ultimately the regular case.

Our goal is to show that AssH2
I (J) is finite for any ideals I and J of R. The
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results of this section no hypotheses on the ideal J of R – we even permit the case

where J is the unit ideal.

When R is a domain, the lemma below shows that the main case is depthI(R) = 1.

Lemma V.7. Let R be a Noetherian domain, and let J ⊆ R be an ideal. If I ⊆ R

is an ideal such that depthI(R) 6= 1, then AssH2
I (J) is finite.

Proof. If I = (0) or I = R, there is nothing to do, so we assume that I is a nonzero

proper ideal. Since R is a domain, this implies that both J and R are I-torsionfree,

giving depthI(R) > 0 and by hypothesis depthI(R) 6= 1, so we have depthI(R) ≥ 2.

The following sequence is exact.

0 0 0 ΓI(R/J)

H1
I (J) 0 H1

I (R/J)

H2
I (J) H2

I (R) H2
I (R/J)

Note that H1
I (J) ' ΓI(R/J) is finitely generated, meaning that H2

I (J) is either

finitely generated or the first non-finitely-generated local cohomology module of J

on I, and the stated result follows at once from Brodmann and Lashgari Faghani

[BLF00, Theorem 2.2].

To deal with the case depthI(R) = 1, our goal is to locally decompose I (up to

radicals) as an ideal of the form yR ∩ I0 for y ∈ R a nonzerodivisor and I0 an ideal

such that depthI0(R) ≥ 2. Such a decomposition would enable us to rewrite H2
I (J)

as H2
I0

(J)y using the functorial isomorphism of Corollary II.10.

The first step in decomposing I is to express
√
I as the intersection of a depth ≥ 2

component with a component of pure height 1.
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Lemma V.8. Let R be a Noetherian normal ring, and I ⊆ R be an ideal such that

depthI(R) = 1. Then
√
I = L∩I0 for some ideal L given by the intersection of height

one primes, and some ideal I0 ⊆ R with depthI0(R) ≥ 2.

Proof. First note that for an ideal a in a normal ring R, deptha(R) = 1 if and only if

ht(a) = 1. Indeed, if ht(a) = 1, then certainly deptha(R) ≤ 1. R has no embedded

primes, so if a is not contained in any minimal prime ofR, a contains a nonzerodivisor,

and thus deptha(R) ≥ 1. If on the other hand, we assume deptha(R) = 1, then clearly

ht(a) ≥ 1. Take x ∈ a a nonzerodivisor. Since deptha(R/xR) = 0, a is contained in

an associated prime of xR, all of which have height 1, giving ht(a) ≤ 1.

Since ht(I) = 1, the radical of I can be written as L∩ I0 where L has pure height

one and I0 is an intersection of primes of height ≥ 2. Since ht(I0) ≥ 2, it must be

the case that depthI0(R) ≥ 2.

To proceed, we require the hypothesis of “almost factoriality.”

The main property we require is that every height 1 prime of an almost factorial

ring is principal up to taking radicals. An ideal of pure height 1 can be expressed

up to radicals as the product of height 1 primes, so in an almost factorial ring, any

pure height 1 ideal is principal up to radicals. In a locally almost factorial ring, we

can cover Spec(R) with finitely many charts in which this is the case. To show that

AssH2
I (J) is finite, it would certainly suffice to show that AssH2

IRf
(JRf ) is finite on

each chart Spec(Rf ) of a finite cover of Spec(R).

Lemma V.9. Let R be a locally almost factorial Noetherian normal ring, and L

be an ideal of pure height 1. There is a finite cover of Spec(R) by open charts

Spec(Rf1), · · · , Spec(Rft) such that for each i, the expanded ideal LRfi has the same

radical as a principal ideal.
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Proof. We do no harm in replacing L with
√
L, so assume L is radical. Consider a

single point P ∈ Spec(R). Since RP is almost factorial, we can write LRP =
√
yRP

for some y ∈ RP . Up to multiplying by units of RP , we may assume that y is an

element of R. Since y ∈ LRP ∩ R, there is some u ∈ R − P such that uy ∈ L.

Also, since R is Noetherian, there is some n > 0 such that LnRP ⊆ yRP , hence

Ln ⊆ yRP ∩ R, and there is some v ∈ R − P such that vLn ⊆ yR. If f = uv, then

we see that y ∈ LRf and Ln ⊆ yRf , giving LRf =
√
yRf .

Our choice of f depends on P . Varying over all P ∈ Spec(R), we obtain a collec-

tion of open charts {Spec(RfP )}P∈Spec(R) which cover Spec(R) such that (the expan-

sion of) L is principal up to radicals on each chart. Since Spec(R) is quasicompact,

finitely many of these charts cover the whole space.

Corollary V.10. Let R be a locally almost factorial Noetherian normal ring, and

I ⊆ R be an ideal such that depthI(R) = 1. Then there is an ideal I0 ⊆ R with

depthI0(R) ≥ 2, and a finite cover of Spec(R) by open charts Spec(Rf1), · · · , Spec(Rft)

such that for each i,
√
IRfi =

√
yiRfi ∩ I0 for some yi ∈ R.

The main result of this section now follows.

Theorem V.11. Let R be a locally almost factorial Noetherian normal ring, and I,

J be ideals of R. The set AssH2
I (J) is finite.

Proof. R is a product of normal domains R1× · · · ×Rk, and J is a product of ideals

J1×· · ·×Jk with Ji ⊆ Ri. It is enough to show that AssH2
IRi

(Ji) is finite for all i, so

assume that R is a domain. By Lemma V.7, we need only deal with the case in which

depthI(R) = 1. We will show that AssH2
IRf

(Jf ) is finite for each chart Spec(Rf ) in

a finite cover of Spec(R). By Corollary V.10, working with one chart at a time, and

replacing R by Rf and I by an ideal with the same radical, we may assume that I has
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the form I = yR ∩ I0 where depthI0(R) ≥ 2. By Corollary II.10, this decomposition

gives H2
I (J) ' H2

I0
(J)y. It is therefore enough to show that AssH2

I0
(J) is finite. But

depthI0(R) ≥ 2, so this follows from Lemma V.7.

5.3 Finiteness of AssH i
I(J) vs finiteness of AssH i−1

I (R/J)

In this section, we concern ourselves with the following question.

Question V.12. Let R be an LC-finite regular ring, f = f1, . . . , fc be a regular

sequence, and I be an ideal of R containing f . Does the finiteness of AssH i−1
I (R/fR)

imply the finiteness of AssH i
I(fR)?

If c = 1, then fR ' R as an R-module, and thus AssH i
I(J) is finite by hypothesis,

and the question has a trivially positive answer. We therefore restrict our attention

to the case c ≥ 2. We think of i as being fixed with I varying. The case i = 2 has a

positive answer, since AssH1
I (R/fR) is finite – as is true of H1

I (M) for any finitely

generated module M , due to Theorem II.17 – and AssH2
I (fR) is finite by Theorem

V.11. Our goal is to give a partial positive answer to this question when i = 3 and

when i = 4. As i gets larger, our results require increasingly restrictive hypotheses

on the ring R/fR.

To begin, notice that we can very easily ignore ideals I where the depth of R on

I is too large.

Lemma V.13. Let R be a Noetherian ring, let I and J be ideals of R, and let

S = R/J . Fix i ≥ 1 and assume AssH i
I(R) is finite. If depthI(R) > i − 1, then

AssH i
I(J) is finite if and only if AssH i−1

I (R/J) is finite.

Proof. There is a short exact sequence

0→ H i−1
I (R/J)→ H i

I(J)→ N → 0
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where N ⊆ H i
I(R), so AssN is finite.

We may therefore restrict our focus to the case where depthI(R) ≤ i − 1. Using

the isomorphism of Theorem IV.4, we may further restrict ourselves to the case

depthI(R) = i− 1, as described in the following proposition.

Proposition V.14. Let R be a Cohen-Macaulay ring, and let f = f1, . . . , fc be a

regular sequence of length j ≥ 1. Fix a nonnegative integer i, and let I be an ideal

containing f such that depthI(R) ≤ i − 1. Then there is an ideal I ′ ⊇ I such that

depthI′(R) ≥ i−1 and such that H i
I′(fR) ' H i

I(fR) and H i−1
I′ (R/fR) ' H i−1

I (R/fR).

Proof. Write h = ht(I). Applying Theorem IV.4 with k = i−1−h, we obtain an ideal

I ′ ⊇ I such that depthI′(R) = ht(I ′) ≥ i − 1 such that the natural transformation

H`
I′(−)→ H`

I(−) is an isomorphism on R-modules whenever ` > i−1 and on R/fR-

modules whenever ` > i − 1 − c. In particular, we see that H i
I′(−) → H i

I(−) is

an isomorphism on R-modules H i−1
I′ (−) → H i−1

I (−) is an isomorphism on R/fR-

modules.

Assume that R is Cohen-Macaulay and f = f1, . . . , fc is a regular sequence of

codimension c ≥ 2. Fix i ≥ 0 and let I be an ideal of R containing f . Write

a = depthI(R/fR) = depthI(R) − c. If a + c ≤ i − 1, then by Corollary V.14, we

can replace I with a possibly larger ideal I ′ in order to assume that a + c ≥ i − 1,

without affecting H i
I(fR) and H i−1

I (R/fR). Lemma V.13 gives a positive answer to

Question 3 if a+ c > i− 1, so we may assume that a+ c = i− 1. Note in particular

that this allows us to ignore all values of i and c for which c > i−1. Below is a table

illustrating the relevant values of a to consider for various small values of i and c.
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i = 3 i = 4 i = 5 i = 6 i = 7

c = 2 a = 0 a = 1 a = 2 a = 3 a = 4

c = 3 ∅ a = 0 a = 1 a = 2 a = 3

c = 4 ∅ ∅ a = 0 a = 1 a = 2

c = 5 ∅ ∅ ∅ a = 0 a = 1

c = 6 ∅ ∅ ∅ ∅ a = 0

c = 7 ∅ ∅ ∅ ∅ ∅

We will attack the cases a = 0 and a = 1 directly in order to deal with coho-

mological degrees i = 3 and i = 4. The next lemma is our main tool in doing

so.

Lemma V.15. Fix a ≥ 0. Let R be a Noetherian ring, let f = f1, . . . , fc be a regular

sequence of length c ≥ 2 − a, let I be an ideal containing f , and let S = R/fR.

Suppose that IS can be decomposed (up to radicals) as yS ∩ I0 with depthI0(S) > a.

Suppose further that AssHc+a+1
I (R) is finite. Then AssHc+a+1

I (fR) is finite if and

only if AssHc+a
I (S) is finite.

Proof. By Corollary II.10, there is a natural isomorphismH i
I0

(S)y ' H i
I(S) for all i ≥

2, so that in particular, Hc+a
I (S) is an Sy-module. The natural map ψ : Hc+a

I (R)→

Hc+a
I (S) therefore factors through Hc+a

I (R) → Sy ⊗R Hc+a
I (R) to give an Sy-linear

map Sy ⊗R Hc+a
I (R)→ Hc+a

I (S).

Hc+a
I (R) Hc+a

I (S)

Sy ⊗R Hc+a
I (R)

ψ

We claim that ψ = 0, and for this it suffices to show that Sy ⊗R Hc+a
I (R) = 0.

Consider the decomposition of I up to radicals as yS ∩ I0 in S. We can replace

y by some lift mod fR to assume that y ∈ R, and since I0 is expanded from R,
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we can write I0 = I ′0S for some ideal I ′0 of R containing f . We therefore have

I = (y, f)R ∩ I ′0 in R (after possibly replacing I by an ideal with the same radical).

Note that depthI′0(R) > c+a. We can write Sy⊗RHc+a
I (R) = Sy⊗RyH

c+a
IRy

(Ry) where

IRy = (y, f)Ry ∩ I ′0Ry = I ′0Ry, and thus Hc+a
IRy

(Ry) = Hc+a
I′0

(R)y. Since depthI′0(R) >

c+ a, we have Hc+a
I′0

(R) = 0 and consequently, ψ = 0.

We therefore have an exact sequence

0→ Hc+a
I (S)→ Hc+a+1

I (J)→ Hc+a+1
I (R).

Since AssHc+a+1
I (R) is finite, the claim follows at once.

We can now prove the main result of this section.

Theorem V.16. Let R be an LC-finite regular ring, let f = f1, . . . , fc be a regular

sequence of length c ≥ 2, and let S = R/fR. For any ideal I of R containing f ,

(i) AssH i
I(fR) and AssH i−1

I (S) are always finite for i ≤ 2.

(ii) If the irreducible components of Spec(S) are disjoint, then AssH3
I (fR) is finite

if and only if AssH2
I (S) is finite.

(iii) If S is normal and locally almost factorial, then AssH4
I (fR) is finite if and only

if AssH3
I (S) is finite.

Proof. Concerning (i), it holds that for any finitely generatedR-moduleM , AssH i
I(M)

is finite whenever i ≤ 1 by Theorem II.17. The finiteness of AssH2
I (fR) is the subject

of Theorem V.11.

For (ii), we may use Corollary V.14 to replace I with a possibly larger ideal in order

to assume that depthI(R) ≥ 2. By Lemma V.13, (ii) is immediate if depthI(R) > 2,

so assume depthI(R) = 2. Since f ⊆ I and c ≥ 2, it follows that c = 2 and

depthI(S) = ht(IS) = 0. Let e1, · · · , et ∈ S be a complete set of orthogonal idem-

potents. The minimal primes of S are
√

(1− e1)S, · · · ,
√

(1− et)S, and thus, every
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pure height 0 ideal of S has arithmetic rank at most 1. Up to radicals, we can there-

fore write IS as yS ∩ I0 where ht(I0) = depthI0(S) > 0. Since c ≥ 2 − 0, the claim

follows from Lemma V.15 in the case where a = 0.

For (iii), again using Corollary V.14 and Lemma V.13, we may assume that

depthI(R) = depthI(S) + c = 3. Since c ≥ 2, this means depthI(S) ≤ 1. If c = 3,

giving depthI(S) = 0, then we may argue as in the proof of (ii) (note that S is a

product of domains). If c = 2, giving depthI(S) = 1, then by Corollary V.10 there is

a finite cover of Spec(S) by charts Spec(Sf1), · · · , Spec(Sft) such that for each i, we

can write (up to radicals) ISfi = yiSi∩I0,i with depthI0,i(Sfi) > 1. Replace f1, · · · , ft

with lifts from R/fR to R in order to assume f1, · · · , ft ∈ R. Lemma V.15 in the

case a = 1 shows that for each i, AssH4
I (fR)fi is finite if and only if AssH3

I (S)fi

is finite. The charts Spec(Rf1), · · · , Spec(Rft) do not necessarily cover Spec(R), but

they do cover the subset V (fR). Since I ⊇ f , SuppH`
I(−) ⊆ V (I) ⊆ V (fR) for all

`, so showing that AssH4
I (fR) is finite is equivalent to showing that AssH4

I (fR)fi is

finite for each i. The result we proved on each chart therefore implies AssH4
I (fR) is

finite if and only if AssH3
I (S) is finite.

Under the hypotheses of (iii), we can give the following partial answer to Question

3 for local rings of sufficiently small dimension.

Corollary V.17. Let (R,m, K) be an LC-finite regular local ring of dimension at

most 7, let f = f1, . . . , fc be a regular sequence of length c ≥ 2 such that S = R/J

is normal and almost factorial. Let I be any ideal of R containing f . Then for all

i ≥ 1, AssH i
I(fR) is finite if and only if AssH i−1

I (S) is finite.

Proof. The case i ≤ 4 is the subject of Theorem V.16. We must have dim(S) ≤ 5

since c ≥ 2, so by Corollary IV.6, SuppH i−1
I (S) (and hence AssH i−1

I (S)) is a finite
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set if i − 1 ≥ 4. Likewise, for any homomorphic image H i−1
I (S) � N , the set

Supp (N) is finite. There is an exact sequence 0 → N → H i
I(fR) → M → 0 where

N is a homomorphic image of H i−1
I (S) and M is a submodule of H i

I(R). If i ≥ 5,

both Ass (N) (a subset of Supp (N)) and Ass (M) (a subset of AssH i
I(R)) are finite,

so AssH i
I(fR) is finite as well.

5.4 Regular parameter ideals in characteristic p > 0

Let (R,m, K) be a regular local ring. Recall that a parameter ideal J ⊆ R is

called regular if it is generated by an R-regular sequence whose images in m/m2

are linearly independent over K. Every ideal J such that R/J is regular has this

form. If R is complete and contains a field, then by the Cohen Structure Theorem,

all examples of regular parameter ideals are isomorphic to an example of the form

R = K[[x1, · · · , xm, z1, · · · , zn]] and J = (x1, · · · , xm)R for some m,n ≥ 0.

In this section, we will show that if R is a regular ring of prime characteristic

p > 0 and J is an ideal such that R/J is regular, then for any ideal I ⊆ R and any

i ≥ 0, the set AssH i
I(J) is finite. This result is a corollary of a stronger result, taking

M = R in the theorem below.

Theorem V.18. Let R be a regular ring of prime characteristic p > 0, let J ⊆ R

be an ideal such that R/J is regular, and let M be a finitely generated unit R〈F 〉-

module. Then JM is LC-finite. That is, for any ideal I ⊆ R and any i ≥ 0, the

module H i
I(JM) has finitely many associated primes.

Proof. By Theorem III.15, H i
I(M) is unit and finitely generated over R〈F 〉. By

Proposition III.5, (R/J)⊗RH i
I(M) is finitely generated and unit over R/J . Proposi-

tion III.5 also shows that (R/J)⊗RM is a finitely generated unit (R/J)〈F 〉-module,

so because R/J is regular, Theorem III.15 shows that H i
I((R/J) ⊗R M) is finitely
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generated and unit over (R/J)〈F 〉 as well.

The natural map H i
I(M) → H i

I(M/JM) factors through the map H i
I(M) →

H i
I(M)/JH i

I(M), and since R � R/J is surjective, the images of H i
I(M) and

H i
I(M)/JH i

I(M) inside H i
I(M/JM) are equal. Thus,

Coker
(
H i
I(M)→ H i

I(M/JM)
)

= Coker
(
H i
I(M)/JH i

I(M)→ H i
I(M/JM)

)
By Theorem IV.10, H i

I(M)/JH i
I(M)→ H i

I(M/JM), which we may write as

(R/J)⊗R H i
I(M)→ H i

I((R/J)⊗RM),

is an (R/J)〈F 〉-linear map. We have already recognized both the source and target

as finitely generated and unit over (R/J)〈F 〉. The cokernel of H i
I(M)/JH i

I(M) →

H i
I(M/JM) is therefore itself finitely generated – as is any quotient of a finitely

generated S〈F 〉-module by an S〈F 〉-submodule – and is unit by Proposition III.6.

By Theorem III.9, it must therefore have a finite set of associated primes.

Regarding the claim about the associated primes of H i
I(JM), apply ΓI(−) to

0→ JM →M →M/JM → 0 to obtain the exact sequence

· · · H i−1
I (M) H i−1

I (M/JM)

H i
I(JM) H i

I(M) · · ·

We have a short exact sequence

0→ Coker
(
H i−1
I (M)→ H i−1

I (M/JM)
)
→ H i

I(JM)→ N → 0

for some submodule N ⊆ H i
I(M), and the stated result now follows at once.



CHAPTER VI

Complete Intersection Rings as Annihilator Submodules

Throughout this chapter and those that follow, we will sometimes write f as

shorthand for the ideal generated by f , for example, in the notation Hc
f (R) or R/f .

In context, this should not cause any confusion.

Let R be a regular ring of prime characteristic p > 0, let f = f1, . . . , fc be a regular

sequence in R, and let S = R/f denote the corresponding complete intersection ring

of codimension c. For an ideal I of R and an index i ≥ 0, we return to the question

of whether the support of H i
I(S) is Zariski closed.

We recall briefly the approach to the closed support problem discussed in the

previous chapter. The corresponding short exact sequence

0→ fR→ R→ R/f → 0

induces a long exact sequence

· · · → H i
I(fR)

αi−→ H i
I(R)→ H i

I(S)→ H i+1
I (fR)

αi+1−−→ · · ·

and at least in positive characteristic setting, Hochster and Núñez-Betancourt (see

Theorem V.1) prove closed support for the cokernel of αi, thereby reducing the main

problem to a matter of controlling the associated primes of the kernel of αi+1 – if

AssH i+1
I (fR) is finite, SuppH i

I(S) must be closed. The original question of whether

68
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H i
I(S) is closed – equivalently, whether MinH i

I(S) is a finite set – is nontrivial only

in the setting where AssH i
I(R/f) is presumed to be infinite.

In codimension c ≥ 2, Theorem V.16 shows that certain hypotheses on the ring

R/f (e.g., that it is a domain) guarantee a negative answer to the following question

even in cohomological degree less than 4.

Question VI.1. In the notation established above, suppose that AssH i
I(R/f) is in-

finite. Can the set AssH i+1
I (fR) be finite?

Because this question can have a negative answer, a proof of closed support

for complete intersection rings of codimension 2 and higher is therefore unlikely

to straightforwardly arise from attempting to control (submodules of) H i+1
I (fR).

From the viewpoint of R〈F 〉-modules, there are at least two difficulties that stand

out. The first is that fR is not unit, so despite being finitely generated, we cannot

expect finite generation over R〈F 〉 to be preserved after applying a local cohomology

functor H i+1
I (−). The second difficulty is that, even if H i+1

I (fR) did happen to be

finitely generated over R〈F 〉, the property of finite generation does not generally

pass to R〈F 〉 submodules1.

Suppose that we were able to embed R/f into an LC-finite moduleM , say via 0→

R/f →M → Q→ 0 for some quotient Q. Suppose further that all of these modules

are finitely generated over R〈F 〉 and that all maps in the short exact sequence are

R〈F 〉-linear. In this case, we would consider the long exact sequence

· · · → H i−1
I (M)

β−→ H i−1
I (Q)→ H i

I(R/f)→ H i
I(M)→ · · ·

Since M is LC-finite by hypothesis, every submodule of H i
I(M) has finitely many

associated primes. The question of whether H i
I(R/f) has closed support is reduced,

1An exception is when both the original module and the submodule in question happened to be unit.
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in this case, to the question of whether the cokernel of β has closed support. Since

all maps in the long exact sequence are R〈F 〉-linear, it would suffice to show that

H i−1
I (Q) is finitely generated. Of course, if H i

I(R/f) were finitely generated over

R〈F 〉, we would be finished, so assume that it is not. The analogue of Question VI.1

in this setting is as follows.

Question VI.2. In the notation established above, suppose that the R〈F 〉-module

H i
I(R/f) is not finitely generated. Can the R〈F 〉-module H i−1

I (Q) be finitely gener-

ated?

In Chapter VIII, we will describe a short exact sequence

0→ R/f →M → Q

where M is LC-finite and, under appropriate vanishing conditions on the local co-

homology of R, the R〈F 〉-mdodule H i−1
I (Q) is indeed finitely generated, yielding a

novel closed support result on the local cohomology of S. This short exact sequence

is part of a longer (exact) complex of R〈F 〉-modules, whose construction is the main

concern of Chapter VII.

Our present goal in the chapter is to motivate and construct the R〈F 〉-linear

embeddings that will be used in the sequel. This and the next two chapters represent

joint work of the author and Eric Canton, originally appearing in [CL20].

6.1 The Fedder action

We continue the notation established in the introduction of this chapter.

Regarding the closed support problem over a positive characteristic hypersurface

ring, Katzman and Zhang [KZ17] give a proof of Theorem V.2 independent of the

methods of Hochster and Núñez-Betancourt, based on explicitly describing the sup-

ports of the kernel and cokernel of the map H i
I(R)

f−→ H i
I(R) for each i ≥ 0. The



71

short exact sequence 0 → fR → R → S → 0 in the case c = 1 is isomorphic to

0→ R
f−→ R→ R/f → 0, giving the long exact sequence below.

(6.1) · · · → H i
I(R)

f−→ H i
I(R)→ H i

I(R/f)→ H i+1
I (R)

f−→ · · ·

Recall from Theorem II.15 that if f = f1, . . . , fc is a regular sequence of codi-

mension c, then for any ideal I ⊇ f and any i ≥ 0, there is a natural isomorphism

H i
I(H

c
f (R)) ∼= H i+c

I (R). The multiplication map H i
I(R)

f−→ H i
I(R) is precisely the

map induced by H i−1
I (−) on H1

f (R)
f−→ H1

f (R). Thus, one may consider the long

exact sequence 6.1 as instead being induced by applying ΓI(−) to the short exact

sequence below.

(6.2) 0→ R/fR→ H1
f (R)

f−→ H1
f (R)→ 0

In this sequence, 1 ∈ R/fR is sent to the Čech cohomology class {{1/f}} ∈ H1
f (R).

If one does not wish to directly compute the supports of the kernel and cokernel of

the multiplication-by-f map on H i
I(R), then we can still obtain the conclusion that

Supp H i
I(R/f) is closed by an R〈F 〉-module argument analogous to Hochster and

Núñez-Betancourt, so long as the short exact sequence (6.2) can be madeR〈F 〉-linear.

Indeed, if the right-most copy ofH1
f (R) is equipped with the natural Frobenius action

Fnat and the middle copy of H1
f (R) is equipped with the Frobenius action fp−1Fnat,

then one can readily verify that this is the case.

In the short exact sequence 0→ R/f →M → Q→ 0 of (6.2), now regarded as a

sequence of R〈F 〉-modules, one might observe that Q is unit and finitely generated

by Proposition III.14, answering Question VI.2 in the affirmative. An alternate proof

of Theorem V.2 follows immediately from these observations.

The observation that R/f is isomorphic to the annihilator of the ideal fR in the

module H1
f (R), and that the inclusion map of that annihilator submodule can be
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made R〈F 〉-linear, generalizes to the higher codimension setting. Fix c ≥ 2 and

let f = f1 · · · fc. The Čech cohomology class {{1/f}} is precisely the annihilator

submodule (0 :Hc
f (R) f) in Hc

f (R). If Hc
f (R) is equipped with the Frobenius action

fp−1Fnat, one may directly verify that the R-submodule spanned by {{1/f}} is R〈F 〉-

stable. We will prove a more slightly general statement in Proposition VI.6.

Letting Qf denote the cokernel of R/f ↪→ Hc
f (R), we obtain the following short

exact sequence of R〈F 〉-modules whose middle term, Hc
f (R), is LC-finite2.

(6.3) 0→ R/f → Hc
f (R)→ Qf → 0

The R〈F 〉-module Hc
f (R) equipped with the Frobenius action fp−1Fnat is finitely

generated – in fact, it is cyclic, generated by the Čech cohomology class {{1/f 2}}.

However, Hc
f (R)fed is never unit and Qf is not unit for c ≥ 2. In both cases, the

structure morphism is a surjective map with a nontrivial kernel that we compute

explicitly in Section 6.4. Thus, we cannot necessarily expect finite generation over

R〈F 〉 for H i
I(H

c
f (R)fed) or H i

I(Qf ). For this reason, we will eventually require a

somewhat more elaborate construction than the short exact sequence 6.3, and this

construction is the subject of Chapter VII.

In what follows, we will refer to the fp−1Fnat as the Fedder action on Hc
f (R).

The terminology is motivated by the relationship between this action and a result of

Fedder [Fed83] concerning Gorenstein local rings.

6.2 The Fedder action associated with a Gorenstein local ring

In this section, the term F -finite3 to refer to a ring R of prime characteristic p > 0

with the property that R1/p is a finitely generated R-module.
2Recall that LC-finiteness is a property of R-modules, not R〈F 〉-modules, so Theorem III.16 using the natural

action is sufficient to prove this statement.
3This is not to be confused with Lyubeznik’s definition of F -finite, discussed in previous chapters, and referring

to the property of finite generation for unit R〈F 〉-modules.
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In the following lemma, we refer to the canonical module ωA of a Cohen-Macaulay

local ring A. See Chapter 3 of [BH98] for proofs of the assertions made below.

Lemma VI.3. Let (S,m) be an F -finite Gorenstein local ring of prime characteristic

p > 0, and let q = pe. For some non-zero map T : S1/q → S, we have an isomorphism

of S1/q-modules HomS(S1/q, S) ' T · S1/q

When S = R/J is Gorenstein for R an F -finite regular local ring, the fact that

HomS(S1/q, S) is cyclic leads to the following description of (J [p] : J) [Fed83].

Lemma VI.4. Let R be a regular local ring of prime characteristic p > 0 and

let J ⊂ R is an ideal such that R/J is Gorenstein. For some g ∈ R, we have

(J [p] : J) = gR + J [p], and (J [pe] : J [pe−1]) = gp
e−1
R + J [pe] for all e ≥ 1.

Proof. Since R is regular, FR(−) is exact, and thus, (J [pe] :R J
[pe−1]) = (J [p] : J)[pe−1]

for all e ≥ 1. Thus, it suffices to prove the case in which e = 1. If we fix a generator

T for HomR(R1/p, R) over R1/p, then the map

(J [p] : J)/J [p] ∼−→ HomR/J((R/J)1/p, (R/J))

sending (r + J [p]) to (T · r) + J is an isomorphism [Fed83]. By VI.3, we know

HomR/J((R/J)1/p, R/J) is cyclic over (R/J)1/p, say via (T · g) + J for g ∈ (J [p] : J).

We conclude (J [p] : J) = gR + J [p].

Let R/J be a Gorenstein quotient with R regular, and fix a generator g for

(J [p] : J). Lemma VI.4 allows us to define a directed system

(6.4) 0 R/J R/J [p] R/J [p2] R/J [p3] · · ·g gp gp
2

whose transition maps are injective.
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Let M = lim−→e
(R/J [pe], gp

e
) denote the direct limit of the system. The embedding

R/J ↪→M can be made Frobenius stable with respect to the natural action of R/J .

Specifically, let M be equipped with the action β : M → M described by gF :

R/J [pe] → R/J [pe+1] at the unit of its defining directed system. The compatibility

with the natural action F : R/J → R/J is shown below.

0 R/J R/J [p] R/J [p2] · · · M

0 R/J R/J [p] R/J [p2] R/J [p3] · · · M

F

g

gF

gp

gF

gp
2

gF β

g gp gp
2

gp
3

We refer to the resulting action β : M →M on M as the Fedder action.

6.3 The Fedder action associated with a regular sequence

For a regular sequence f = f1, . . . , fc, by an abuse of notation, we will use f [t]

to denote the sequence f t1, . . . , f tc – which is still regular [BH98, Exercise 1.1.10] –

regardless of whether t is a power of the characteristic. Let f =
∏c

i=1 fi.

When the ideal J in the directed system (6.4) is generated by a regular sequence

f = f1, . . . , fc, the Fedder socle of R/f [p] has a clear choice of generator: fp−1.

Moreover, the direct limit (6.4) is identifiable as Hc
fR(R). For q = pe, the action

sending r + f [q] ∈ R/f [q] to fp−1rp + f [qp] ∈ R/f [qp] at the unit of the directed system

(R/f [q], f qp−q)∞e=0 has the form{{
r

f q

}}
7→
{{
rpfp−1

f qp

}}
in terms of Čech cohomology classes in Hc

f (R).

While our primary motivation is the case in which R is a regular ring, the colon

properties

(f [b] : f b−a) = f [a] and (f [b] : f [a]) = f b−aR + f [b]
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for two positive integers b > a hold for an arbitrary regular sequence f in a Noetherian

ring. Many properties of the constructions that follow therefore work in greater

generality than the motivating setting of the previous section.

Definition VI.5. Let R be a Noetherian ring of prime characteristic p > 0, let

f = f1, . . . , fc ∈ R be a regular sequence of codimension c, and let f =
∏c

i=1 fi. Let

Fnat denote the natural action of the Frobenius on Hc
f (R) (see Definition III.10). The

Fedder action with respect to f onHc
f (R) – or simply the Fedder action, if the sequence

f is understood – is defined by Ffed := fp−1Fnat. When there is risk of confusion,

we write Hc
f (R)nat and Hc

f (R)fed to distinguish the (non-equivalent) R〈F 〉-modules

obtained when Hc
f (R) is equipped with the natural action and the Fedder action,

respectively.

The R〈F 〉-module Hc
f (R)nat is cyclic with generator {{1/f}}. Concerning the Fed-

der action, Hc
f (R)fed is still cyclic, but we require a different generator. The element

1 7→ {{1/f}} is preserved by the Fedder action, but notice that for each q = pe we

have

Ffed :

{{
r

f q+1

}}
7→
{{

rp

f qp+1

}}
for all r ∈ R, and thus, for example, the class {{1/f 2}} generates.

Perhaps the most useful property of the Fedder action is its compatibility with

embeddings of annihilators of subsequences of f , in the sense of the following proposi-

tion. This compatibility was observed in [Can16], essentially as the result of applying

H∗f (−) to the Koszul complex K•(g;R).

Proposition VI.6. Let R be a Noetherian ring of prime characteristic p > 0,

let g1, . . . , gt, f1, . . . , fc ∈ R be a regular sequence, and write g = g1, . . . , gt, f =

f1, . . . , fc,, g =
∏t

i=1 gi and f =
∏c

i=1 fi. Consider Hc
f (R/g) and H t+c

g,f (R) as R〈F 〉-
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modules via the Fedder actions with respect to f and g, f , respectively. There is an

R〈F 〉-linear injection

Hc
f (R/g) ↪→ H t+c

g,f (R)

whose image is the annihilator (0 :Ht+c
g,f (R) g).

Proof. Since (g[a], f [a]) : ga−1 = (g, f [a]) for all a ≥ 1, multiplication by ga−1 induces

a well-defined injection φa : R/(g, f [a])
ga−1

−−→ R/(g[a], f [a]), and since (g[a], f [a]) : g =

ga−1R+ (g[a], f [a]), the image of φa is precisely (0 :R/(g[a],f [a]) g). The maps φa form a

map of directed systems (R/(g, f [a]), f)∞a=1 to (R/(g[a], f [a]), gf)∞a=1 via

R/(g, f [a]) R/(g[a], f [a])

R/(g, f [b]) R/(g[b], f [b])

ga−1

fb−a (gf)b−a

gb−1

On the direct limits, this produces an injection φ : Hc
f (R/g) ↪→ H t+c

g,f (R), whose

image is precisely (0 :Ht+c
g,f (R) g). For each q = pe, the Fedder action with respect to

f sends the class r + (g, f [q]) ∈ R/(g, f [q]) to fp−1rp + (g, f [qp]) ∈ R/(g, f [qp]), which

is sent by φqp to gqp−1(fp−1rp + (g[qp], f [qp]) ∈ R/(g[qp], f [qp]). On the other hand, φq

sends r + (g, f [q]) to gq−1r + (g[q], f [q]), and the Fedder action with respect to g, f

sends gq−1r + (g[q], f [q]) to

(gf)p−1
(
gq−1r

)p
+ (g[qp], f [qp]) = gqp−1(fp−1rp) + (g[qp], f [qp]),

as desired.

6.4 The structure morphism of the Fedder action

Let R be regular, let f = f1, . . . , fc ∈ R be a regular sequence of codimension c,

and let Qf denote the cokernel of the Frobenius stable embedding R/f ↪→ Hc
f (R)fed

that sends 1 7→ {{1/f}}, equipped with its induced action.

(6.5) 0→ R/f → Hc
f (R)fed → Qf → 0
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To give a Frobenius action on a complex A• is precisely to choose a Frobenius action

on each term Ai such that the differentials di : Ai → Ai+1 are Frobenius stable.

Analogous to the situation with modules, the data of a Frobenius action on A• is

equivalent to specifying an R-linear map of complexes Θ : FR(A•) → A• – the

structure morphism of the complex. In this section, we will describe the structure

morphism of the three-term complex (6.5).

Theorem VI.7. Let R be a Noetherian ring of prime characteristic p > 0, let f =

f1, . . . , fc ∈ R be a regular sequence, let f =
∏c

i=1 fi, and let A• denote the complex

described in (6.5) corresponding to the Frobenius stable embedding R/f → Hc
f (R)fed.

Let θR/f , θfed, and θQ denote the R〈F 〉 structure morphisms of R/f , Hc
f (R)fed, and

Qf , respectively. Let Θ denote the structure morphism of A•. There is an exact

sequence of complexes

0→ K• → FR(A•)
Θ−→ A• → 0

described term-by-term in the diagram below with exact4 rows and columns, where

FR(Hc
f (R)) is identified with Hc

f (R) in the natural way5.

0 0 0 0

A• : 0 R/f Hc
f (R) Qf 0

FR(A•) : 0 R/f [p] Hc
f (R) FR(Qf ) 0

K• : 0 f/f [p] (0 :Hc
f (R) f

p−1) Vf 0

0 0 0 0

Θ θR/f θfed θQ

4Note that exactness of the second row is a property of regular sequences in any Noetherian ring, and does not
require FR(−) to be exact.

5That is, using the structure isomorphism of the natural action; see Theorem III.14.
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The module Vf := Ker(θQ) can be described by the direct limit

· · · → f q+1

f qR + f [q+p]

fqp−q

−−−→ f qp+1

f qpR + f [qp+p]
→ · · · → Vf

Proof. We first describe A• as a direct limit of complexes lim−→e
(A•e, ψe),

A• : 0 R/f Hc
f (R) Qf 0

...
...

...
...

A•e+1 : 0 R/f R/f [qp+1] R/(f qpR + f [qp+1]) 0

A•e : 0 R/f R/f [q+1] R/(f qR + f [q+1]) 0

...
...

...
...

fqp

ψe 1

fq

fqp−q fqp−q

In the direct limit, an element r+f [q+1] ∈ R/f [q+1] maps to the Čech cohomology class

{{r/f q+1}}. To describe the structure morphism Θ : FR(A•)→ A•, we specify a map

Θe−1 : FR(A•e−1)→ A•e for each e by taking the obvious quotient maps term-by-term.

A•e : 0 R/f R/f [q+1] R/(f qR + f [q+1]) 0

FR(A•e−1) : 0 R/f [p] R/f [q+p] R/(f qR + f [q+p]) 0

fq

Θe−1

fq

The exactness of the second row of the above diagram is a property of regular se-

quences that holds irrespective of whether FR(−) is exact. One may verify that the

following diagram of complexes commutes

FR(A•e) A•e+1

FR(A•e−1) A•e

Θe

FR(ψe−1)

Θe−1

ψe

so that the (Θe)
∞
e=1 induce a well-defined map on the direct limit FR(A•) → A•.

To describe the Frobenius action on the class r + f [q+1], the inclusion R/f [q+1] →
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F∗R⊗R (R/f [q+1]) sends r+ f [q+1] to rp + f [qp+p] once the codomain is identified with

R/f [qp+p]. The quotient R/f [qp+p] � R/f [qp+1] sends that class to rp + f [qp+1]. On the

corresponding Čech cohomology classes in the direct limit, we have{{
r

f q+1

}}
7→
{{

rp

f qp+1

}}
=

{{
fp−1rp

f qp+p

}}
= Ffed

{{
r

f q+1

}}
as desired. Concerning the kernel of the structure map, we have for each e a com-

mutative diagram with exact rows and columns.

0 0 0 0

A•e : 0 R
f

R

f [q+1]
R

(fqR+f [q+1])
0

FR(A•e−1) : 0 R

f [p]
R

f [q+p]
R

(fqR+f [q+p])
0

K•e : 0 f

f [p]

f [q+1]

f [q+p]

(fqR+f [q+1])

(fqR+f [q+p])
0

0 0 0 0

fq

Θe−1

fq

fq

where FR(ψe−1) induces a map K•e → K•e+1

K•e+1 : 0 f

f [p]

f [qp+1]

f [qp+p]

f [qp+1]

(fqpR+f [qp+p])
0

K•e : 0 f

f [p]

f [q+1]

f [q+p]

f [q+1]

(fqR+f [q+p])
0

fqp

1

fq

fqp−q fqp−q

compatible with the rest of the directed system. Note that f [q+1]/f [q+p] = (f [q+p] :

fp−1)/f [q+p] for each q = pe, so that in the direct limit, Ker(θfed) = (0 :Hc
f (R) f

p−1).

Note that the kernel (0 :Hc
f (R) f

p−1) of θfed can be explicitly described as a local

cohomology module, namely, it is isomorphic to Hc−1
f (R/f p−1).

Proposition VI.8. Let R be a Noetherian ring, let f = f1, . . . , fc ∈ R be a regular
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sequence of codimension c, and let h ∈ R be a nonzerodivisor. Then

(0 :Hc
f (R) h) ∼= Hc−1

f (R/h).

Proof. Consider the double complex (0→ R
h−→ R→ 0)⊗R Č•(f ;R).

0 0 0

0 Č1(f ;R) · · · Čc−1(f ;R) Čc(f ;R) 0

0 Č1(f ;R) · · · Čc−1(f ;R) Čc(f ;R) 0

0 0 0

h h h

If we compute cohomology first horizontally and then vertically, we see that the

cohomology of the total complex in degree c is HomR(R/h,Hc
f (R)), since E2 = E∞

and the first c − 1 columns vanish. On the other hand, if we first take cohomology

vertically and then horizontally, then E2 = E∞ and the first row vanishes, so the

cohomology of the total complex in degree c is also isomorphic to Hc−1(R/h ⊗R

Č•(f ;R)) = Hc−1
f (R/h), as desired.

The kernel of θQ has a particularly nice description in codimension 2, where it

decomposes as a direct sum of two local cohomology modules, Vf,g ∼= H1
f (R/gp−1)⊕

H1
g (R/f p−1).

Proposition VI.9. Let R be a Noetherian ring of prime characteristic p > 0, let

f, g ∈ R be a regular sequence, and let Vf,g denote the following direct limit over all

q = pe

· · · → (f q+1, gq+1)

((fg)q, f q+p, gq+p)

fqp−q

−−−→ (f qp+1, gqp+1)

((fg)qp, f qp+p, gqp+p)
→ · · · → Vf,g

Then

Vf,g ∼= H1
g (R/f p−1)⊕H1

f (R/gp−1)
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Proof. Note that if af q+1 = bgq+1 mod ((fg)q, f q+p, gq+p) for some a, b ∈ R, then

a ∈ ((fg)q, f q+p, gq+1) : f q+1 =
(
(f q+p, gq+1) : (fp, g)

)
: f q+1

=
(
(f q+p, gq+1) : f q+1

)
: (fp, g)

=
(
fp−1, gq+1

)
: (fp, g)

=
(
fp−1, gq

)
so that af q+1 ∈ (f q+p, f q+1gq), which is zero mod ((fg)q, f q+p, gq+p). Thus, the

generators u1,e := f q+1 and u2,e := gq+1 of (f q+1, gq+1)/((fg)q, f q+p, gq+p) have R-

spans with an intersection of 0, yielding a direct sum

(f q+1, gq+1)

((fg)q, f q+p, gq+p)
∼=

Ru1,e

gqu1,eR + fp−1u1,eR
⊕ Ru2,e

f qu2,eR + gp−1u2,eR

The transition map (fg)qp−q sends f q+1 = u1,e to gqp−qf qp+1 = gqp−qu1,e+1, and

likewise, u2,e 7→ f qp−qu2,e+1, breaking into the direct sum of transition maps on the

u1 and u2 components,

· · · → Ru1,e

gqu1,eR + fp−1u1,eR

gqp−q

−−−→ Ru1,e+1

gqpu1,e+1R + fp−1u1,e+1R
→ · · · → H1

g (R/f p−1)

and

· · · → Ru2,e

f qu2,eR + gp−1u2,eR

fqp−q

−−−→ Ru2,e+1

f qpu2,e+1R + gp−1u2,e+1R
→ · · · → H1

f (R/gp−1)

as desired.



CHAPTER VII

A Complex of Annihilator Submodules

Throughout this chapter, R denotes a Noetherian ring of prime characteristic

p > 0. For a regular sequence f = f1, . . . , fc in R, let f = f1 · · · fc, and let Hc
f (R)nat

and Hc
f (R)fed denote the R〈F 〉-modules obtained when Hc

f (R) is equipped with the

natural action, Fnat, or with the Fedder action, fp−1Fnat, respectively.

In codimension c = 1, for f ∈ R a nonzerodivisor, Proposition VI.6 gives an R〈F 〉-

linear map R/f → H1
f (R)fed whose image is the annihilator submodule (0 :H1

f (R) f).

Since multiplication by f is surjective, the cokernel of the inclusion (0 :H1
f (R) f) ↪→

H1
f (R) is isomorphic to H1

f (R). If this copy of H1
f (R) is equipped with the natural

action, we obtain the short exact sequence of R〈F 〉-linear maps below.

(7.1) 0→ R/f → H1
f (R)fed

f−→ H1
f (R)nat → 0

The unitness of the cokernel of the embedding R/f → H1
(f,g)(R)fed is a significant

advantage in this setting.

Consider the case of codimension c = 2. Let f, g be a regular sequence of R

with the property that g is a nonzerodivisor1. Proposition VI.6 provides an R〈F 〉-

linear embedding R/(f, g) → H2
f,g(R)fed whose image is the annihilator submodule

(0 :H2
f,g(R) (f, g)), but the cokernel of this embedding, is not unit – see Theorem VI.7

in general and Proposition VI.9 regarding codimension c = 2 in particular.
1This turns out to be equivalent to requiring that both f, g and g, f are regular sequences.

82
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It is not impossible to obtain a unit R〈F 〉-module by taking suitable R〈F 〉-

linear quotients of H2
f,g(R)fed. For example, consider the annihilator (R〈F 〉-stable)

submodule (0 :H2
f,g(R) fg), which is generated over R by those Čech cohomology

classes
{{
f−ag−b

}}
such that either a = 1 or b = 1. The cokernel of the embed-

ding (0 :H2
f,g(R) fg) → H2

f,g(R)fed is spanned over R by the images of those classes{{
f−ag−b

}}
with a ≥ 2 or b ≥ 2, and the map

H2
f,g(R)fed/(0 :H2

f,g(R) fg)→ H2
f,g(R)nat

that sends
{{
f−ag−b

}}
in H2

f,g(R)fed/(0 :H2
f,g(R) fg) to the class

{{
f−a+1g−b+1

}}
in

H2
f,g(R)nat is readily verified to be R〈F 〉-linear. The surjectivity of multiplication by

fg on H2
f,g(R) now gives the following exact sequence of R〈F 〉-modules.

(7.2) 0→ (0 :H2
f,g(R) fg)→ H2

f,g(R)fed
fg−→ H2

fg(R)nat → 0

Let us extend this sequence further to the left. Our complete intersection rings

R/(f, g) appears as (0 :H2
f,g(R) (f, g)), which is the intersection of two other annihi-

lator submodules of R〈F 〉-submodules, (0 :H2
f,g(R) f) and (0 :H2

f,g(R) g), whose sum

is all of (0 :H2
f,g(R) fg). The submodule (0 :H2

f,g(R) f) is spanned over R by Čech

cohomology classes of the form
{{
f−1g−b

}}
for b ∈ N, and (0 :H2

f,g(R) g) is spanned by

those of the form {{f−ag−1}} for a ∈ N. The maps defined by
{{
g−b
}}
7→
{{
f−1g−b

}}
{{f−a}} 7→ {{f−ag−1}} provide R〈F 〉-linear isomorphisms2 H1

g (R/f) → (0 :H2
f,g(R) f)

and H1
f (R/g) → (0 :H2

f,g(R) g), respectively, using Frobenius actions gp−1Fnat and

fp−1Fnat onH1
g (R/f) andH1

f (R/g). Letting U = (0 :H2
f,g(R) f) and V = (0 :H2

f,g(R) g),

the R〈F 〉-linear exact sequence 0 → U ∩ V → U ⊕ V → U + V → 0 may therefore

be expressed as follows.

(7.3) 0→ R/(f, g)→ H1
f (R/g)⊕H1

g (R/f)→ (0 :H2
f,g(R) fg)→ 0

2Both of these embeddings are in fact special cases of the embedding described in Proposition VI.6.
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The sequences and together yield a four-term exact sequence of R〈F 〉-modules.

(7.4) 0→ R/(f, g)→ H1
f (R/g)⊕H1

g (R/f)→ H2
f,g(R)fed

fg−→ H2
f,g(R)nat → 0

We regard the exact sequences 7.1 and 7.4 as the augmentations of a pair of

(cohomologically indexed) complexes of R〈F 〉-modules

∆∆•f (R) : R/f → H1
f (R)fed

and

∆∆•f,g(R) : R/(f, g)→ H1
f (R/g)⊕H1

g (R/f)→ H2
f,g(R)fed

Both of these complexes, in codimensions c = 1 and c = 2, satisfy H i(∆∆•f (R)) = 0

for i < c and Hc(∆∆•f (R)) ' Hc
f (R)nat, where f denotes either f or f, g, respectively.

The main result of this chapter, which represents original work of the author and

Eric Canton appearing in [CL20], is that a complex of R〈F 〉-modules completely

analogous to the c = 1 and c = 2 complexes above can be constructed for permutable

regular sequences of arbitrary length. The higher codimension ∆∆•f (R) complexes are

the main technical tool required for the applications presented in Chapter VIII.

Before we begin the construction, we set some terminology and notation that will

be used throughout both this chapter and the next.

Definition VII.1. Let R be a ring and f = f1, . . . , fc be a regular sequence in R.

Call f permutable if fσ(1), . . . , fσ(c) is a regular sequence for all permutations σ on

the set {1, . . . , c}.

Permutability is automatic for regular sequences in a local ring [BH98, Proposition

1.1.6], or for regular sequences of homogeneous elements in a standard graded ring

[BH98, Exercise 1.5.23]. Let [c] := {1, . . . , c}, and for a subset T ⊆ [c], let fT denote

the subsequence of f indexed by the elements of T . Let T̃ = [c] \ T , with f T̃ the



85

complementary subsequence to fT in f . The permutability of f is equivalent to the

hypothesis that fT is a regular sequence for all subsets T ⊆ [c] [BH98, Exercise

1.2.21].

7.1 Construction of the ∆∆ Complex

Let R be a Noetherian ring, and fix a permutable regular sequence f = f1, . . . , fc ∈

R. For T ⊆ [c], let fT =
∏

i∈T fi, and write f = f[c] for convenience. For a ≥ 1,

recall that we denote f [a] := fa1 , . . . , f
a
c regardless of whether a is a power of the

characteristic, and the notation f
[a]
T denotes the subsequence of f [a] indexed by T ⊆ [c].

Since f is permutable, we can use Proposition VI.6 to obtain identifications

(7.5) Hc−i
fT

(R/f T̃ ) = (0 :Hc
f (R) f T̃ )

for each subset T ⊆ [c]. Let M = Hc
f (R), and observe that there are inclusions

ιT,S : (0 :M f S̃) ↪→ (0 :M f T̃ ) whenever S ⊆ T .

Definition VII.2. Let R be a Noetherian ring and let f be a permutable regular

sequence of codimension c ≥ 1. Let M = Hc
f (R). The ∆∆-complex of f , denoted

∆∆•f (R), is the chain complex (M•, ∂•) defined as follows.

• M i =
⊕
|S|=i(0 :M f S̃) for 0 ≤ i ≤ c

• ∂i =
∑c

j=1(−1)jdij where dij|(0:M f
S̃

) is the direct sum of the inclusion maps

ιS,T : (0 :M f S̃) ↪→ (0 :M f T̃ ) ranging over the sets T ⊇ S of size |T | = i+ 1 such

that T \ S is the jth element of T , enumerated so that ta < tb (as elements of

[c]) when a < b.

The choice of differentials gives {M i}ci=0 the structure of a semi-cosimplicial R-

module [Wei94, Def. 8.1.9, Ex. 8.1.6], which is to say, di+1
k dij = di+1

j dik−1 for j < k.

Checking that ∂i+1∂i = 0 is similar to checking that the chain maps in a Čech
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complex square to zero, and depends only on the semi-cosimplicial structure [Wei94,

Def. 8.2.1].

For each 1 ≤ n ≤ c, we may define a quotient complex ∆∆•f (R)n of ∆∆•f (R) in the

following manner. Note that this definition depends on the specific order of elements

in the sequence f1, . . . , fc. If σ : [c] → [c] is a non-trivial bijection, then setting

gi = fσ(i), 1 ≤ i ≤ c, ∆∆ complex of the regular sequence g1, . . . , gc would have a

distinct collection of quotients.

Definition VII.3. Let R be a Noetherian ring and let f be a permutable regular

sequence of codimension c ≥ 1. For fixed n such that 1 ≤ n ≤ c, define the complex

∆∆•f (R)n by

∆∆i
f (R)n :=

⊕
S⊂[n], |S|=i

(0 :M f S̃) ⊆ ∆∆i
f (R)

with differentials ∂i0 =
∑n

j=1(−1)jdij,n defined so that the map dij,n|(0:M f
S̃

) for S ⊆ [n]

is the direct sum of inclusions ιS,T : (0 :M f S̃) ↪→ (0 :M f T̃ ) ranging only over the sets

T of size |T | = i + 1 such that S ⊆ T ⊆ [n] and such that T \ S is the jth element

of T , enumerated so that ti < tj (as elements of [c]) when i < j.

For example, ∆∆•f (R)n = (0→ R/f → 0) and ∆∆•f (A)c = ∆∆•f (R). For each n, there

is a surjection of complexes πn : ∆∆•f (R)n → ∆∆•f (R)n−1 defined term-by-term in the

obvious way, and we let K•n denote the kernel of πn

0 K•n ∆∆•f (R)n ∆∆•f (R)n−1 0

For our calculation of the cohomology of ∆∆•f (R), the key observations are as follows.

Proposition VII.4. Let R be a Noetherian ring and let f be a permutable regular

sequence of codimension c ≥ 1. For fixed n such that 1 ≤ n ≤ c, where all set

complements (e.g. [̃n]) are taken within [c], we have the following.
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1. ∆∆•f (R)n = ∆∆•f [n]
(R/f

[̃n]
).

2. K•n = H1
fn

(∆∆•f [n−1]
(R/f

[̃n]
))[−1].

where [−1] denotes the right-shift operator on cohomologically indexed complexes.

Proof. Let M = Hc
f (R). The module ∆∆i

f (R)n is the direct sum of annihilators

(0 :M f S̃) ranging over all subsets S ⊆ [n] of size |S| = i. In particular, we have

[c]− [n] ⊆ [c]− S for all such S, so that

(0 :M f [c]−S) = (0 :(0:M f [c]−[n])
f [n]−S) = (0 :Mn f [n]−S)

where Mn = Hn
f [n]

(R/f [c]−[n]), and thus, ∆∆i
f (R)n = ∆∆i

f [n]
(R/f [c]−[n]). The agreement

of the differentials in the complexes ∆∆•f (R)n and ∆∆•f [n]
(R/f [c]−[n]) is a straightforward

consequence of their definitions.

Concerning Ki
n, the kernel of ∆∆•f (R)n � ∆∆•f (R)n−1 is the direct sum of the

annihilators (0 :M f S̃) ranging over subsets S ⊆ [n] of size |S| = i such that n ∈ S.

We therefore have an isomorphism

H i
fS

(R/f [c]−S) = H1
fn

(
H i−1

fS−{n}
(R/f [c]−S)

)
= H1

fn

((
0 :Mn f [n−1]−(S−{n})

))
where, once again, Mn = Hn

f [n]
(R/f [c]−[n]). The sets S − {n} for S ⊆ [n] of size

|S| = i such that n ∈ S correspond precisely to the subsets S ′ ⊆ [n− 1] of size |S ′| =

i − 1. Thus, Ki
n = ∆∆i−1

f [n−1]
(R/f [c]−[n]). Confirming agreement of the corresponding

differentials is straightforward.

Example VII.5. Suppose c = 4. When n = 0, ∆∆i
f (R)n = (0 :M f) ∼= R/f for i = 0

and ∆∆i
f (R)n = 0 for i > 0. We show ∆∆n for 1 ≤ n ≤ 4, identifying (0 :M f S̃) with

H i
fS

(R/f S̃). Components of ∂i corresponding to di1, di2, di3, and di4 are indicated in

red, blue, dashed red, and dashed blue, with (dashed or solid) red indicating a sign

change.
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n ∆∆•f (R)n

1

H1
f1

(R/f{2,3,4})

R/f

2

H1
f1

(R/f{2,3,4}) H2
f1,f2

(R/f{3,4})

R/f H1
f2

(R/f{1,3,4})

⊕

3

H1
f1

(R/f{2,3,4}) H2
f1,f2

(R/f{3,4})

R/f H1
f2

(R/f{1,3,4}) H2
f1,f3

(R/f{2,4}) H3
f1,f2,f3

(R/f4)

H1
f3

(R/f{1,2,4}) H2
f2,f3

(R/f{1,4})

⊕ ⊕

⊕ ⊕

4

H1
f1

(R/f{2,3,4}) H2
f1,f2

(R/f{3,4})

R/f H1
f2

(R/f{1,3,4}) H2
f1,f3(R/f{2,4}) H3

f1,f2,f3
(R/f4)

H1
f3

(R/f{1,2,4}) H2
f2,f3

(R/f{1,4})

H2
f1,f4

(R/f{2,3}) H3
f1,f2,f4

(R/f3)

H1
f4

(R/f{1,2,3}) H2
f2,f4

(R/f{1,3}) H3
f1,f3,f4

(R/f2) H4
f (R)

H2
f3,f4

(R/f{1,2}) H3
f2,f3,f4

(R/f1)

⊕ ⊕

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

The subcomplexes K•2 , K•3 , and K•4 are displayed with terms generally to the

lower right. For example, K•4 consists of the terms in ∆∆•f (R)4 that involve the local

cohomology of quotients R/fS for subsets S ⊆ {1, 2, 3}.

7.2 Computing the Cohomology of the ∆∆ Complex

We continue with the notation of the last section. Let R be a Noetherian ring,

let f be a permutable regular sequence of codimension c ≥ 1, and let f =
∏c

i=1 fi.

We denote by ∆∆•f (R)+ the augmented chain complex equal to ∆∆•f (R) in degrees ≤ c,
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with augmentation ∆∆c+1
f (R)+ := Hc

f (R) and differential ∂c : ∆∆c
f (R)+ → ∆∆c+1

f (R)+

given by the multiplication by f map Hc
f (R)→ Hc

f (R).

Lemma VII.6. Let R be a Noetherian ring, let f be a permutable regular sequence

of codimension c ≥ 1. Suppose H i(∆∆•f (R)+) = 0 for all 1 ≤ i ≤ c+ 1, and let h ∈ R

extend f to a permutable regular sequence f1, . . . , fc, h of codimension c + 1. Then

H i(H1
h(∆∆f (R)+)) = 0 for all 1 ≤ i ≤ c+ 1.

Proof. For the sake of notational convenience, write ∆∆• = ∆∆•f (R)+. We compute H1
h

via the double complex Č(h;R)⊗R ∆∆•, i.e. 0→ ∆∆• → (∆∆•)h → 0, as shown below.

0 0 0 0

0 ∆∆0 ∆∆1 · · · ∆∆c ∆∆c+1 0

0 (∆∆0)h (∆∆1)h · · · (∆∆c)h (∆∆c+1)h 0

0 0 0 0.

f

f

By hypothesis, H i(∆∆•) = 0 for all i, so H i((∆∆•)h) = 0 for all i as well. If we first

take cohomology horizontally, we therefore obtain E1 = E∞ = 0. The cohomology of

the total complex of the double complex is therefore zero. If, on the other hand, we

take vertical cohomology first, then we arrive at a double complex with one nonzero

row,

0 H1
h(∆∆0) · · · H1

h(∆∆c+1) 0.

The modules H i(H1
(h)(∆∆

•)) appear now as the horizontal cohomology, with E2 =

E∞, and since only a single row is nonzero, they yield the cohomology of the total

complex, which vanishes.

We are now ready to prove the main theorem of this chapter.
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Theorem VII.7. Let R be a Noetherian ring, and let f be a permutable regular se-

quence of codimension c ≥ 1. Then H i(∆∆•f (R)) = 0 for 0 ≤ i < c, and Hc(∆∆•f (R)) ∼=

Hc
f (R), with augmentation map isomorphic to multiplication by f :=

∏c
1 fi.

If R has prime characteristic p > 0, then ∆∆•f (R) is a complex of R〈F 〉-modules

considered with their Fedder actions, and the induced Frobenius action on the aug-

mentation Hc
f (R) ∼= Hc(∆∆•f (R)) is the natural action.

Proof. The differentials of ∆∆•f (R) are direct sums of inclusions of submodules of

M = Hc
f (R), and by Proposition VI.6 these inclusions are Fedder-action linear

in characteristic p > 0. Our statement about the induced Frobenius action on

Hc(∆∆•f (R)) is proven at the end of this argument; the bulk of this proof is calcula-

tion of the cohomology.

We proceed by by induction on c, with base case c = 1. With f = f1, the complex

∆∆•f (R) is

0 R/f H1
f (R) 0.

(r+fR)7→{{r/f}}

The map R/f → H1
f (R) shown above is clearly injective, so H0(∆∆•f (R)) = 0.

Moreover, the image of R/f → H1
f (R) is precisely the kernel of multiplication by

f . Multiplication by f on H1
f (R) is surjective, and the exactness of 0 → R/f →

H1
f (R)

f−→ H1
f (R)→ 0 implies that H1(∆∆•f (R)) = H1

f (R).

Now assume the theorem has been proven for any permutable regular sequence of

codimension c ≥ 1 in a Noetherian ring. Let f , h = f1, . . . , fc, h ∈ R be a permutable

regular sequence of codimension c + 1. From Proposition VII.4, ∆∆•f (R/h) is the

quotient complex ∆∆•f ,h(R)c of ∆∆•f ,h(R) = ∆∆•f (R)c+1. The kernel K•c+1 of this quotient

is isomorphic to H1
h(∆∆•f (R))[−1], giving us the short exact sequence of complexes
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shown below.

(7.6) 0 H1
h(∆∆•f (R))[−1] ∆∆•f ,h(R) ∆∆•f (R/h) 0,

By Lemma VII.6 and the induction hypothesis, H i
(
H1
h(∆∆•f (R))[−1]

)
= 0 for

i ≤ c, and that Hc+1
(
H1
h(∆∆•f (R))[−1]

)
= Hc+1(∆∆f ,h(R)) = Hc

f (R). Likewise, we

may apply the induction hypothesis to the ∆∆• complex of the regular sequence f of

codimension c in R/h to obtain H i(∆∆•f (R/h)) = 0 for i < c and Hc(∆∆•f (R/h)) =

Hc
f (R/h).

We now study the long exact sequence in cohomology from the short exact se-

quence (7.6). To simplify notation, let ∆∆• := ∆∆•f ,h(R), ∆∆•1 := ∆∆•f (R/h), and

K• := H1
h(∆∆•f (R))[−1]. We obtain

· · · H i(K•) H i(∆∆•) H i(∆∆•1) H i+1(K•) · · ·δ

We immediately see that H i(∆∆•) = 0 for i < c. Using that Hc(K•) = 0, we have an

exact sequence

(7.7)

0 Hc(∆∆•) Hc(∆∆•1) Hc+1(K•) Hc+1(∆∆•) 0.δ

We claim that δ is injective. To see this, we start with recalling the construction

of δ. We begin with the map from row c to row c+ 1 in the short exact sequence of

complexes.
0 Kc ∆∆c ∆∆c

1 0

0 Kc+1 ∆∆c+1 0 0

∂cK ∂c∆∆ ∂c∆∆1

Let M = Hc+1
f ,h (R). We identify ∆∆c

1 = (0 :M h) and Kc =
⊕c

i=1(0 :M fi). Let

ι : ∆∆c
1 ↪→ ∆∆c denote the obvious splitting.

0
⊕c

i=1(0 :M fi) (0 :M h)⊕ (
⊕c

i=1(0 :M fi)) (0 :M h) 0

0 M M 0 0

∂cK ∂c∆∆

ι

∂c∆∆1
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A class {{η}}∆∆1
∈ Hc(∆∆•1) is represented by η ∈ (0 :M h), where we write a subscript

{{· · ·}}C to indicate the complex C• with respect to which we’re taking cohomology.

By definition,

δ({{η}}∆∆1
) = {{∂c∆∆(ι(η))}}K ∈ H

c+1(K).

If δ({{η}}∆∆1
) = 0, then ∂c∆∆(ι(η)) is in the image of ∂cK , which is

∑c
j=1(0 :M fj). Note

that ∂c∆∆ ◦ ι is just the inclusion map (0 :M h) ↪→M , possibly up to a sign change, so

to say that ∂c∆∆(ι(η)) ∈
∑c

j=1(0 :M fj) means precisely that

η ∈ (0 :M h) ∩

(
c∑
j=1

(0 :M fj)

)
= Im(∂c−1

∆∆1
),

Thus, {{η}}∆∆1
= 0, and δ is injective.

We conclude that Hc(∆∆•) = 0 from the sequence (7.7). Following the reasoning of

the last paragraph, the image of ∂c∆∆ is (0 :M h)+
∑c

j=1(0 :M fj), which is the kernel of

multiplication by hf = h (
∏c

1 fj). Thus, the augmentation map ∆∆c+1 � Hc+1(∆∆•)

is (by definition) the quotient M � M/(0 :M fh). Since multiplication by fh is

surjective on M , this provides an isomorphism ϕ : Hc+1(∆∆•)→M ,

0 Im(∂c∆∆) ∆∆c+1 Hc+1(∆∆•) 0

0 (0 :M fh) M M 0

aug.

ϕ

fh

So, under the isomorphism ϕ that identifies Hc+1(∆∆•) with M = Hc+1
f ,h (R), the

augmentation map ∆∆c+1 aug.−−→ Hc+1(∆∆•) is isomorphic to the multiplication map

M
fh−→ M , as claimed. Except for the final statement about the induced Frobenius

action in characteristic p > 0, we have proven the theorem.

The final statement comes down to a direct calculation. For a given representative

η ∈ ∆∆c+1 = Hc+1
f ,h (R)fed, the induced Frobenius action F onHc+1(∆∆•) sends {{η}}∆∆ to

{{Ffed(η)}}∆∆. Under the identification ϕ : Hc+1(∆∆•)
∼−→ Hc+1

f ,h (R), the augmentation
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map η 7→ {{η}}∆∆ is the multiplication η 7→ (fh)η. Thus,

F ((fh)η) = (fh)Ffed(η) = (fh)pFnat(η) = Fnat((fh)η)

so F = Fnat, as desired.



CHAPTER VIII

Application to Closed Support

Due to the isomorphism in Theorem IV.4, for a Noetherian ring S and an S-

module M , every local cohomology module of M is isomorphic to one of the form

H i
I(M) for I an ideal satisfying i ≤ ht(I) + 1. When S is Cohen-Macaulay and

M = S (cf. [Hel01, Theorem 3]) our attention is therefore restricted to the cases

H
ht(I)
I (S) and Hht(I)+1

I (S). The module Hht(I)
I (R) has a finite set of associated primes

(see Theorem II.18), so questions about the support or associated primes of the local

cohomology H i
I(S) for S a Cohen-Macaulay ring can, without loss of generality, be

posed entirely for modules of the form H
ht(I)+1
I (S).

Given a regular ring R and a regular sequence f = f1, . . . , fc, the closed support

problem for R/f is, by the preceding discussion, determined by the behavior of mod-

ules of the form H
ht(I/f)+1
I/f (R/f) where I is an ideal of R containing f . Indeed, the

hypersurface support theorems of Hochster and Núñez-Betancourt [HNB17, Corol-

lary 4.13] or Katzman and Zhang [KZ17, Theorem 7.1] may be interpreted as the

statement that in prime characteristic p > 0, all modules of the form H
ht(I/f)+1
I/f (R/f)

have closed support.

Our main application in this chapter, representing original work of the author

and Eric Canton appearing in [CL20], states that if f = f1, . . . , fc is a permutable

regular sequence in a regular ring R of prime characteristic p > 0, then the module

94
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H
ht(I/fR)+c
I/fR (R/fR) has closed support for any ideal I satisfying the vanishing hypoth-

esis H i
I(R) = 0 for ht(I) < i < ht(I) + c. Note that the hypothesis on I is vacuous

if c = 1, and is satisfied automatically if R/I is Cohen-Macaulay, due to a result of

Peskine and Szpiro [PS73].

To establish notation, assume from this point onward that the regular sequence

f = f1, . . . , fc is permutable, and let f =
∏c

i=1 fi. Given a subset T ⊆ [c], recall that

we use fT to denote the subsequence of f indexed by T , and let fT =
∏

i∈T fi. For

any such subset T of size |T | = b, let Na
fT

denote the kernel of the ith differential ∂a :

∆∆a
fT

(R)→ ∆∆a+1
fT

(R) when a < b, and let N b
fT

denote the kernel of the augmentation

map ∆∆b
fT

(R)→ Hb(∆∆b
fT

(R)). By Theorem VII.7, we have the following statements.

• N1
fT

= R/fT .

• N b
fT

fits into an exact sequence

0→ N b
fT
→ Hb

fT
(R)fed

fT−→ Hb
fT

(R)nat → 0

• For all values 1 ≤ a < b, there is an exact sequence of the form

0→ Na
fT
→

⊕
S⊆T, |S|=b−a

Ha
fT−S

(R/fS)→ Na+1
fT
→ 0.

The compatibility of the differentials ∂i with the Fedder actions of each term in

the ∆∆•fT (R) complex implies that each module of the form Na
fT

carries an induced

Frobenius action. The short exact sequences displayed above may therefore be un-

derstood over R〈F 〉, and by Proposition III.13, the long exact sequences that result

from applying a functor ΓI(−) consist entirely of R〈F 〉-linear maps.

Note that the vanishing hypotheses of the following theorem are automatically

satisfied if R/I is Cohen-Macaulay or if c = 1.
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Theorem VIII.1. Let R be a regular ring of prime characteristic p > 0, let f =

f1, . . . , fc be a permutable regular sequence of codimension c ≥ 1, and let I ⊇ f be an

ideal such that H i
I(R) = 0 for ht(I) < i < ht(I) + c. The module Hht(I/fR)+c

I/fR (R/fR)

has Zariski closed support in Spec(R/fR).

Proof. For convenience, write t = ht(I/fR) = ht(I)− c. We will make heavy use of

the Na
fT

notation introduced in the preceding discussion.

Our first aim is to show that the following three statements hold for all b such

that 1 ≤ b ≤ c,

(i) For any subset T ⊆ [c] of size |T | = b, and for all a satisfying max(1, 3−c+b) ≤

a ≤ b (an empty range of values if c ≤ 2), it holds that Hj
I (N

a
fT

) = 0 whenever

t+ c+ 2− a ≤ j ≤ t+ 2c− 1− b.

(ii) For any subset T ⊆ [c] of size |T | = b, and for all a satisfying max(1, 2−c+b) ≤

a ≤ b (an empty range if c = 1) the module H t+c+1−a
I (Na

fT
) is finitely generated

over R〈F 〉.

(iii) For any subset T ⊆ [c] of size |T | = b, and for all max(1, 2 − c + b) ≤ a ≤ b

(an empty range of values if c = 1), the module H t+2c−b
I (Na

fT
) has a finite set of

associated primes.

The proof is by induction on b, beginning with the case b = 1. We will actually

start by showing that the statements hold whenever b = a, i.e., for the modules N b
fT

when |T | = b. This immediately implies the b = 1 case, since N1
fj

= R/fj. So, fix

1 ≤ b ≤ c and let T ⊆ [c] be a subset of size |T | = b. Concerning the module N b
fT
,

we have an exact sequence

0→ N b
fT
→ Hb

fT
(R)fed

fT−→ Hb
fT

(R)nat → 0



97

From the long exact sequence induced by ΓI(−) along with our vanishing hypothesis

H i
I(R) = 0 for t + c + 1 ≤ i ≤ t + 2c − 1, it is readily verified that (i) so long as

c ≥ 3, Hj
I (N

b
fT

) = 0 for t + c + 2 − b ≤ j ≤ t + 2c − 1 − b. (ii) So long as c ≥ 2,

H t+c+1−b
I (N b

fT
) is an R〈F 〉 homomorphic image of H t

I(H
c
f (R)nat), and is therefore

finitely generated over R〈F 〉 (see Theorem III.15, and recall that Hc
f (R)nat is unit

and finitely generated). Finally, (iii) so long as c ≥ 2, H t+2c−b
I (R/fT ) is isomorphic

to a submodule of H t+c
I (Hc

f (R)), and hence has a finite set of associated primes (see

Theorem III.16).

Now take b in the range 2 ≤ b ≤ c, since the case b = 1 is proven. Suppose that

the statements (i)–(iii) have been shown for subsets S ⊆ [c] of size |S| < b, and fix

T ⊆ [c] any subset of size b. For this set T , we will demonstrate the claims (i)–(iii)

about the modules Na
fT

by a decreasing induction on a. The case a = b has already

been shown.

Fix a < b and suppose we’ve proven (i)–(iii) for the modules N r
fT

whenever a <

r ≤ b. We will show that the statements hold for the module Na
fT

using the short

exact sequence

0→ Na
fT
→

⊕
S⊆T, |S|=b−a

Ha
fT−S

(R/fS)→ Na+1
fT
→ 0,

To show claim (i), fix j in the range t+ c+ 2−a ≤ j ≤ t+ 2c− 1− b and consider

the exact sequence

· · · → Hj−1
I (Na+1

fT
)→ Hj

I (N
a
fT

)→
⊕

S⊆T, |S|=b−a

Hj
I (H

a
fT−S

(R/fS))→ · · ·

note that for each subset S ⊆ T of size |S| = b− a, we have

Hj
I (H

a
fT−S

(R/fS)) = Hj+a
I (R/fS)

where R/fS = N1
fS
. The inequality t + c + 1 ≤ j + a ≤ t + 2c − 1 − (b − a) gives

us vanishing Hj+a
I (N1

fS
) = 0 for each subset S ⊆ T of size b − a by induction, since
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|S| < |T |. Since t+c+2−(a+1) ≤ j−1 ≤ t+2c−1−b, we also have Hj−1
I (Na+1

fT
) = 0

by induction, since a+ 1 > a. The vanishing of Hj
I (N

a
fT

) follows at once.

For claim (ii), the relevant exact sequence is

· · · → H t+c−a
I (Na+1

fT
)→ H t+c+1−a

I (Na
fT

)→
⊕

S⊆T, |S|=b−a

H t+c+1
I (N1

fS
)→ · · ·

Since a ≥ max(1, 2 − c + b), we have that 1 ≥ 3 − c + (b − a), so claim (i)

for the module N1
fS

implies that H t+c+1
I (N1

fS
) = 0. Thus, H t+c+1−a

I (Na
fT

) is a

quotient of H t+c−a
I (Na+1

fT
) by some (R〈F 〉-stable) submodule. As R〈F 〉-modules,

H
t+c+1−(a+1)
I (Na+1

fT
) is finitely generated by induction on a, so the same is true of its

image H t+c+1−a
I (Na

fT
).

To show claim (iii), consider the exact sequence

· · · → H t+2c−b−1
I (Na+1

fT
)→ H t+2c−b

I (Na
fT

)→
⊕

S⊆T, |S|=b−a

H t+2c−b+a
I (N1

S)→ · · ·

The condition a ≥ 2 − c + b implies that a + 1 ≥ 3 − c + b, so claim (i) for the

module Na+1
fT

shows that H t+2c−1−b
I (Na+1

fT
) = 0. Thus H t+2c−b

I (Na
fT

) is isomorphic to

a submodule of a direct sum of modules of the form H
t+2c−(b−a)
I (N1

S), for S ⊆ T a

subset of size b− a. Since 2− c + (b− a) ≤ 1, each H t+2c−(b−a)
I (N1

S) has a finite set

of associated primes. The induction is complete and the claims (i)–(iii) have been

demonstrated.

We are now ready to show that H t+c
I (R/fR) = H t+c

I (N1
fR) has closed support.

This is known in the case c = 1 (see Theorem V.2). For c ≥ 2, there is an exact

sequence

· · · → H t+c−1
I (N2

fR)→ H t+c
I (N1

fR)→
⊕

S⊆T, |S|=1

H t+c+1
I (N1

fS
)→ · · ·

Since 2 = max(1, 2 + c − c), the module H t+c+1−2
I (N2

fR) is finitely generated over

R〈F 〉, and thus, any R〈F 〉 homomorphic image will have closed support by Theorem
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III.1. Additionally, 1 ≥ 2 − c + (c − 1), so H
t+2c−(c−1)
I (N1

fS
) (for each singleton

set S ⊆ T ) has a finite set of associated primes. The claim about the support of

H t+c
I (N1

fR) follows at once.

8.0.1 Nesting of Supports

In this subsection, we remark that the support of the local cohomology of a

complete intersection cut out by a regular sequence f1, . . . , fc has a curious nest-

ing property in relation to the supports of the local cohomologies of the complete

intersections defined by subsequences of f1, . . . , fc.

Theorem VIII.2. Let R be a Cohen-Macaulay ring of prime characteristic p > 0,

let f = f1, . . . , fc be a permutable regular sequence, and let I be an ideal containing

fR. For T ⊆ [c], let fT be the ideal generated by the subsequence of f1, . . . , fc indexed

by T . For any δ ≥ 0,

SuppHht(I/fT )+δ

I/fT
(R/fT ) ⊆ SuppHht(I/fR)+δ

I/fR (R/fR)

In particular, if h = f1, . . . , fc, g1, . . . , gt is a maximal length regular sequence in

I and if h is permutable, then

SuppHht(I)+δ
I (R) ⊆ SuppHht(I/fR)+δ

I/fR (R/fR) ⊆ SuppHδ
I/h(R/h)

Proof. Let h = f1, . . . , fc, g1, . . . , gt be a maximal length regular sequence contained

in I. Via the obvious inclusions T ⊆ [c] ⊆ [c + t], we may write fR = h[c] and

fT = hT . Let b = |T |. Observe that

H
ht(I/fT )+δ

I/fT
(R/fT ) = Hδ

I

(
H t+c−b

h[c+t]−T
(R/hT )

)
,

and that

H
ht(I/fR)+δ
I/fR (R/fR) = Hδ

I

(
H t

h[c+t]−[c]
(R/h[c])

)
.
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Let A = R/hT , and consider the ring R/h[c] as being cut out from A by a regu-

lar sequence of length c − b (indexed by the set [c] − T ). The result follows by a

straightforward induction using the following lemma.

Lemma VIII.3. Let A be a Noetherian ring, let f1, · · · , ft, h ∈ A be a permutable

regular sequence, and let f = f1, . . . , ft. Let I be an ideal containing f , h. Then for

any δ ≥ 0,

SuppHδ
I (H t+1

f ,h (R)) ⊆ SuppHδ
I (H t

f (R/h))

Proof. Suppose that, after replacing R by RP for some P ∈ Spec(R), we obtain

vanishing Hδ
I (H t

f (R/h)) = 0. We would like to show that Hδ
I (H t+1

f ,h (R)) = 0, where

we recall that

H t+1
f ,h (R) = H t

f (H
1
h(R)) = lim−→

n

H t
f (R/h

n)

It would therefore suffice to show that Hδ
I (H t

f (R/h
n)) = 0 for all n ≥ 1. By hypoth-

esis, this is true when n = 1, so fix n > 1 and suppose for the sake of induction that

Hδ
I (H t

f (R/h
j)) = 0 for all j < n.

Note that (hn :R h) = hn−1R, i.e., the annihilator of h in R/hnR is hn−1R/hnR,

isomorphic as an R-module to R/hR. Mapping R/hR onto the image of hn−1, we

get

0→ R/h
hn−1

−−−→ R/hn → R/hn−1 → 0

inducing the exact sequence

· · · → H t−1
f (R/hn−1)→ H t

f (R/h)→ H t
f (R/h

n)→ H t
f (R/h

n−1)→ H t+1
f (R/h)→ · · ·

The arithmetic rank of f is t, so H t+1
f (R/h) = 0. Since h is permutable, the se-

quence hn−1, f1, · · · , ft is a regular, and consequently, f1, . . . , ft is an R/hn−1-regular

sequence. Since depthf (R/h
n−1) = t, we get H t−1

h (R/hn−1) = 0. Thus, the sequence

0→ H t
f (R/h)→ H t

f (R/h
n)→ H t

f (R/h
n−1)→ 0
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is exact, and so is

· · · → Hδ
I (H t

f (R/h))→ Hδ
I (H t

f (R/h
n))→ Hδ

I (H t
f (R/h

n−1))→ · · · .

We have Hδ
I (H t

f (R/h)) = 0, and by induction Hδ
I (H t

f (R/h
n−1)) = 0. It follows

that Hδ
I (H t

h(R/hn)) = 0.
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