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ABSTRACT

Mediation analysis has been undertaken pervasively in practice. The primary goal of

this analysis is to study whether the effect of an exposure on an outcome of interest is

mediated by some intermediate factors such as epigenetic variants and metabolomic

biomarkers. In this dissertation I develop new statistical methods to address some of

statistical and scientific challenges arising from causal mediation pathway analyses.

Chapter II develops a simultaneous likelihood ratio (LR) test in the presence of

multiple mediators. Statistical inference on the joint mediation effect is challenging

due to the involvement of composite null hypotheses with a large number of parameter

configurations. With an application of the Lagrange Multiplier approach, simulta-

neous LR test utilizes a block coordinate descent algorithm to solve the constrained

likelihood under the irregular null parameter space. I establish the asymptotic null

distribution and examine the finite-sample performance of the proposed joint test

statistic via extensive simulations with comparisons to existing tests. The simulation

results show that the joint testing method controls type I error properly and in gen-

eral provides better power than existing tests. I apply this new method to investigate

whether a group of glucose metabolites and acetylamino acids mediate the effect of

nutrient intakes on insulin resistance.

Chapter III presents a unified framework of generalized structural equation models

(GSEMs) for mediation analyses with data of mixed types to address practical needs

in the analysis of biomedical data. This new class of models accommodates contin-

uous, categorical, count variables. Using the Fréchet’s construction of multivariate

xii



distributions, I formulate GSEM as a hierarchical model consisting of (i) a Gaussian

copula dependence model to characterize a directed acyclic graph (DAG) relationship

among outcome variable, mediator and exposure variable, and (ii) generalized linear

models (GLMs) to adjust confounding factors in marginal distributions. This new

framework provides valid joint probability distributions and well-defined mediation

effects for interpretation. I develop a pseudo-maximum likelihood estimation for var-

ious scenarios of mixed data types. I illustrate this new methodology via a dataset

collected from a cohort study in environmental health sciences, where I study whether

the tempo of reaching infancy BMI peak, an important early life growth milestone

that may be measured as either a continuous variable or a binary variable (delay

or not), may mediate the association between prenatal exposure to phthalates and

pubertal health outcomes.

Chapter IV concerns a conceptual framework of generalized direct and indirect

effects to relax the current definitions of causal mediation effects in the presence of

categorical intervention or categorical exposure. I utilize the latent variable presenta-

tion to describe the role of a categorical “action” in a causal study. Specially, I focus

on two important types of models, namely the effective dose model and the latent

exposure model. I demonstrate that the proposed generalized direct and indirect ef-

fects are more desirable to quantify and interpret direct and indirect effects than the

conventional approach. I develop maximum likelihood estimation for the model pa-

rameters, and examine numerically the performance of the estimation via simulation

studies. Also, I illustrate this new causal mediation paradigm via a randomized trial

from the ELEMENT study where I investigate whether the association of mother’s

calcium supplementation on offspring birth weight is mediated by mother’s blood lead

level measured during the third trimester.

xiii



CHAPTER I

Introduction

1.1 Mediation Analysis

In many disciplines such as Psychology, Sociology, Epidemiology, Environmental

Health Sciences, Political Science, researchers aim to understand certain causal me-

diation mechanisms through which exposure variables affect outcome variables of

interest. Mediators are typically referred to as some intermediate variables that lie in

causal pathways between exposure and outcomes. For instance, obesity or overweight

is deemed as the primary cause for insulin resistance, a health condition that human

body cannot operate insulin secretion properly and consequently, fails to effectively

move glucose from bloodstreams to cells. In a cohort study “Early Life Exposures in

Mexico to ENvironmental Toxicants” (ELEMENT), investigators hypothesized that

an individual’s metabolomics may mediate the relationship between nutrient intakes

and insulin resistance (LaBarre et al., 2020). Figure 1.1 illustrates a hypothesized

causal mediation mechanism involves exposure (i.e.,nutrient intakes), mediator (i.e.,

metabolome) and outcome (i.e., insulin resistance), in addition to some confounding

factors that are not shown for the sake of simplicity. This figure is also known as

directed acyclic graph (DAG), which presents a scientific hypothesis based on certain

directed relationships via directed edges. In a causal mediation framework, the ex-

posure variable (e.g., nutrient intake) is often referred to a variable that may vary

1



Figure 1.1: Hypothesized causal associations among food intakes, metabolome and
insulin resistance.

under different conditions, such as nutrient intakes that measure the consumption

of food (fats and carbohydrates), whose amount varies for each participant. Other

examples of exposure include concentration levels of a toxic agent in environmental

health sciences and a drug treatment in a randomized control trial.

The ELEMENT cohort study is a multi-institutional, internationally teamed project

which was initiated in early 1990s. It recruited three birth cohorts of 1,643 child-

mother pairs during pregnancy or delivery from maternity hospitals in Mexico city,

between 1993 and 2004 (Perng et al., 2019). The ELEMENT cohorts have since

developed more than ten individual projects to answer some important questions re-

lated to the Developmental Origins of Health and Disease (DOHaD)’ hypothesis in

environmental health sciences. The main study aims are to understand how environ-

mental toxicants, such as phthalates, chemicals and metals affect maternal and child

health. A wide array of data were collected from mothers and children, including

their dietary intakes, anthropometry, prenatal exposures, fasting metabolites, and

DNA mythelation and so on.

In a DAG, causal effects pertain to three primary quantities, termed as total

effect (TE), direct effect (DE) and indirect effect (IE). TE of an exposure on an

outcome describes the total amount of changes of the outcome caused by the changes

of the exposure. In the literature, TE usually is decomposed into two component (or

effects), DE and IE. DE is the effect that is only explained by the exposure, while IE

2



is the effect that manifests through mediators. Sometimes, IE is also called mediation

effect. In our motivating example, DE is the change in the level of insulin resistance

when nutrient intakes change in which metabolome were held fixed. IE expresses the

change in the level of insulin resistance resulted from the change of the metabolome

under the condition of fixed exposure. A key objective in the mediation analysis is to

assess the three types of effects, TE, DE and IE, especially the mediation effect IE.

In such analysis, many methodological challenges arise, including (i) the presence of

non-normal data such as discrete, count, survival variables; (ii) there are potentially

many latent variables as a DAG is too simple to represent the underlying causal

mediation pathways; (iii) the existence of unmeasured confounding factors; (iv) the

presence of potential multiple or even high-dimensional correlated mediators, just

name a few. Some of these methodological challenges motivated the development of

statistical methods in this dissertation.

Specifically, this dissertation is motivated by three scientific research questions of

interest:

• First, we are interested in understanding if the associations of dietary intakes

on the insulin resistance is mediated through a cluster of glucose metabolites

and acetylamino acids.

• Second, we are interested in finding how, and to what extent, a delay of reaching

the BMI infancy peak on time or not may affect the associations of prenatal

phthalate exposures on children’s health outcomes during peripuberty.

• Lastly, we investigate if the associations of mother’s calcium intakes in a cal-

cium supplementation randomized control trial on birth weight is mediated by

mother’s blood lead level during third trimester.

3



1.2 Existing Work

The classical mediation analysis approach, first proposed by Baron and Kenny (Baron

and Kenny , 1986), is implemented under the linear structural equation models (SEM,

(Ullman and Bentler , 2003)) with multivariate normally distributed data. Recently,

utilizing the counterfactual (potential) outcome framework in the causal inference

literature (Robins and Greenland , 1992; Pearl , 2013; VanderWeele and Vansteelandt ,

2014), the classical mediation approach has been extended to represent a causal me-

diation pathway via DAG under a certain scientific hypothesis. With a few extra

assumptions on causality, the notions of DE and IE have been extended to natural

direct effect (NDE), and natural indirect effect (NIE), which allows for a decomposi-

tion of the total effect under the settings with exposure-mediator interactions and/or

settings with non-linearity (VanderWeele and Vansteelandt , 2009; Vansteelandt and

VanderWeele, 2012; Pearl , 2013; Valeri and VanderWeele, 2013).

Since decades ago, most of the mediation analyses are only able to quantify and

test one mediator in a DAG. MacKinnon et al. (MacKinnon et al., 2002) summa-

rize and compare fourteen different approaches to mediation analyses, including joint

significance test(MacKinnon et al., 2002), product test based on normality assump-

tion (Sobel , 1982), and bootstrap test (Bollen and Stine, 1990). The challenge of

the hypothesis testing for mediation effect lies on the composite nature of the null

hypothesis, leading to conservative type I error. This remains an unsolved problem.

With the advent of advanced omics technologies, there has been an increasing

need in analyzing the mediation effects in biomedical applications with multiple or

even high-dimensional mediators, such as in epigenetic studies. In such settings,

many works aim to decompose total effect into different path-specific effects involv-

ing multiple mediators (Daniel et al., 2015; Zhao et al., 2020). Other works aim

to select the mediation pathways under high-dimensional settings (Zhao and Luo,

2016; Song et al., 2020). Other procedures of causal mediator selection (Barfield

4



et al., 2017; Huang et al., 2019; Dai et al., 2020; Liu et al., 2021) perform univariate

analyses of mediators one by one, without acknowledging the fact that mediators

under investigation are intrinsically correlated. These approaches assume that medi-

ators are conditionally independent given both exposures and confounders, which is

an unrealistic assumption. As noted in the literature, if correlations among media-

tors are present, analyzing their mediation effects one at a time would usually lead

to biased effect estimates due to over-counted pathways and the violation of model

assumptions (VanderWeele and Vansteelandt , 2014; VanderWeele, 2015). Thus, it

is of critical importance to analyze a set of multiple mediators jointly, and test for

their joint mediation effect simultaneously. Huang et al (Huang and Pan, 2016; Huang

et al., 2018) proposed two methods: Product Test based on Normal Product distribu-

tion (PT-NP), and Product Test based on Normality (PT-N) that test the mediation

effect with multiple mediators. Although both methods work numerically well in

simulations, there is a lack of rigorous theoretical understanding on the justification

for several approximations taken in the derivations. This motivates the research of

Chapter II, where I developed a likelihood ratio test for mediation effect with multiple

mediators.

Non-normal data are frequently encountered in a mediation analysis, including

one-dimensional dichotomous mediator (Albert and Nelson, 2011), one-dimensional

dichotomous outcome (VanderWeele and Vansteelandt , 2010), and one-dimensional

time-to-event outcome (VanderWeele, 2011). Due to the different types of non-normal

data, different assumptions are required to fulfill the effect decomposition and to per-

form parameter estimation. There lacks a unified approach that conducts mediation

analysis of exposure, mediator and outcome with different data types collectively.

This motivates the research of Chapter III, where I proposed a unified framework via

copula dependence models to analyze the data with mixed types in the mediation

analysis.
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Mediation analyses based on DAG may be too simple to represent the underlying

causal mediation pathway. One challenge pertains to the influence of underlying

latent variables. For example, Derkach et al. (Derkach et al., 2019) considered a

setting where a group of unmeasured variables are influenced by the exposure and

would in turn impact mediators and outcome. However, little methodological work

has been done to deal with potential latent exposure variables in mediation analyses.

This motivates the research of Chapter IV, where I developed two models with latent

exposure variables, and proposed generalized natural direct effect and generalized

natural indirect effect.

1.3 A Summary of New Contributions

This dissertation develops new statistical methodologies to address the aforemen-

tioned limitations and challenges.

Chapter II develops a likelihood ratio (LR) test for multi-dimensional mediation ef-

fect that accounts for causally related mediators via the Lagrange Multiplier method.

We decompose the parameter space under the composite null hypothesis into two

disjoint spaces, and derive asymptotic null distributions of the test statistics in each

sub-space. We develop a block coordinate descent algorithm to obtain the constrained

maximum likelihood estimate, and perform extensive simulations to compare the LR

method with two existing alternatives of PT-NP and PT-N. The simulation results

demonstrate that our method can control type I error rate properly and provides

higher or similar power with PT-N and PT-NP. A data from ELEMENT study is

analyzed to examine whether a cluster consisting of seven glucose metabolites and

acetylamino acids mediate the effect of fat or carbohydrate intakes on the scores of

insulin resistance for Mexican children in the study.

Chapter III uses a copula dependence model to construct a unified mediation anal-

ysis approach to analyzing the data of mixed types, including continuous, categorical,
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count variables. We establish joint parametric distributions of exposure, mediator and

outcome featuring a lower-triangular dependence matrix reflecting DAG in the me-

diation pathway and a class of generalized linear models adjusting for confounding

factors in the respective marginal distributions. We develop estimation procedures

for the model parameters, as well as the causal effects of NDE and NIE. Simulation

studies are performed to investigate the performance under three different settings

with data of mixed types. A data from ELEMENT study with a binary mediator of

whether a child has a delayed BMI infancy peak or not is examined to understand

the association between mother’s phthalate exposure during pregnancy and offspring’s

health outcomes during peripuberty.

Chapter IV introduces a conceptual framework of generalized total, direct and in-

direct effects (GTE/GNDE/GNIE) to relax the conventional definition of NDE and

NIE, when the treatment or exposure is dichotomous. We utilize the latent exposure

variable presentation to investigate the “actions” of the dichotomous treatment in a

biomedical study. We propose two important types of models: effective dose model

and latent exposure model, in which we demonstrate that the proposed GNDE and

GNIE are more desirable to quantify and interpret compared with the conventional

definitions. The simulation studies are carried out to examine the estimation proce-

dure of the two models, and the mean bias, mean squared error and 95% coverage

rate all suggest our methods provide accurate effect estimation and valid statistical

inference. A randomized trial from the ELEMENT study is analyzed to illustrate our

method, where we examine whether the relation between mother’s calcium supple-

mentation and children’s birth weight is mediated by the mother’s blood lead level

during third trimester.
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CHAPTER II

A Likelihood-based Test for Multi-dimensional

Mediation Effects

2.1 Introduction

Mediation analysis is undertaken pervasively in practice to understand whether or not

the effect of an exposure on an outcome has been mediated through some intermediate

variables, which are, in short, called mediators. The mediation analysis approach, first

proposed by Baron and Kenny (1986), has been extensively applied in many disci-

plines to perform pathway analyses. Utilizing the counterfactual outcome framework

in the causal inference literature (Rubin, 1978; Robins and Greenland , 1992; Pearl ,

2001), the mediation approach has been recently extended to study causal media-

tion pathways via directed acyclic graphs (DAG) formed under a certain scientific

hypothesis as shown in Figure 2.1. With a few extra assumptions of causation, such

extension allows to decompose the total causal effect into a sum of direct effect and

indirect effect in the presence of interactions and non-linearities (Pearl , 2001; Van-

derWeele and Vansteelandt , 2009). This new causal framework has received much

attention in the literature.
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Figure 2.1: A DAG involving exposure, mediators and outcome.

There are many existing methods in the literature developed to test the existence

of mediation effect (or the indirect effect) in the case of a single potential mediator,

including Sobel’s test (Sobel , 1982), bootstrap method (Bollen and Stine, 1990), joint

significant test (MacKinnon et al., 2002). Recently, with the advent of advanced

omics technologies, there has been an increasing need in testing for mediation effects

in applications with a group of multiple or even high-dimensional mediators, for which

several methods have been developed. For examples, multiple testing approaches for

genome-wide association analysis have been proposed based on simultaneous single

mediator tests with multiple comparison correction (Huang , 2019; Huang et al., 2019;

Djordjilović et al., 2019; Dai et al., 2020). In such methods, test for a causal mediation

effect has been focused on a single mediator via a univariate screening analysis of

mediators one by one, ignoring the dependence among multiple mediators. Although

multiple testing corrections have been adjusted to identify the potential mediators,

the interpretation of the causal effect is still limited to each of the selected mediators,

instead of a simultaneous inference for the group-level mediation effect. However,

in many applications when there exist multiple correlated mediators, in particular

a cohesive cluster of biologically relevant mediators, the group-level mediation effect

does not simply equal to a summation of individual mediation effects, as pointed

out by VanderWeele (2015). Therefore, the conclusion drawn from the univariate

screening test with multiple comparison correction does not necessarily produce a

valid statistical inference for the group-level mediation effect. While these univariate

screening procedures are useful to discover individually potential mediators, it is of
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critical importance to analyze a cluster of correlated multiple mediators jointly. This

analytic objective calls for a test for their group-level mediation effect.

The mediation relationships of a DAG in Figure 2.1 are extensively analyzed

by the linear normal structural equation model (SEM). When exposure-mediator

interaction terms are absent in the SEM, the group-level mediation effect is expressed

as the product, α>β, where α is the vector of coefficients for exposure-mediator

association and β is the vector of coefficients for mediator-outcome association. In

this chapter, we aim to develop a simultaneous test for the joint group-level mediation

effect under the null hypothesis of no mediation effect H0 : α>β = 0. A key technical

challenge of performing this hypothesis test pertains to the involvement of composite

hypotheses; that is, α>β = 0 may arise from a large number of combinations in αq

and βq, q = 1, · · · , Q, where Q is the number of mediators. One example of possible

combination is α = β = 0, which is of great interest in practice. More subtle cases

may arise from cancellations among some individual products of αqβq, q = 1, . . . , Q

to satisfy α = β = 0. Two existing approaches to testing this group-level mediation

effect include: Product Test based on Normal Product distribution (PT-NP)(Huang

and Pan, 2016; Huang et al., 2018), and Product Test based on Normality (PT-N)

(Huang and Pan, 2016; Huang et al., 2018). Although these two methods have shown

satisfactory performances numerically via simulation studies, the rigorous theoretical

justification, such as the results of asymptotic distributions of such test statistics

under the null remain little explored, especially under the case of α = β = 0. To

bridge this gap, in this chapter we investigate a simultaneous likelihood ratio (LR)

test for the joint group-level mediation effect under the null hypothesis α>β = 0 in

that we establish asymptotic distributions of the proposed test statistics as well as

confirm the theoretical results by numerical analyses.

This chapter makes two methodological contributions. First, we develop a con-

strained optimization to compute the likelihood ratio test statistic under an irregular
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null parameter space using the Lagrange Multiplier. This computation is implemented

by an efficient block coordinate decent algorithm. Second, we derive the asymptotic

distributions of the proposed LR test statistic under the composite null hypothesis

H0 : α>β = 0, and show theoretically that our LR test can properly control the

type I error. Through numerical experiments, including both simulation studies and

a data application example, we demonstrate that our LR test can not only have a

proper type I error control but also improve the power in the cases considered in the

simulation studies, in comparison to the two existing tests, PT-NP and PT-N.

The remainder of the chapter is organized as follows: Section 2.2 introduces the

linear structural equation model. Section 2.3 concerns the development of likelihood

ratio test, including the Lagrange Multiplier and the asymptotic null distributions for

the LR test statistic. Section 2.4 presents an iterative procedure for implementing

the LR test. Section 2.5 shows the numerical performance of the LR test in terms

of type I error rate and power, and its comparison to the existing methods. Section

2.6 demonstrates an application of testing for a group-level mediation effect of a

metabolite cluster on the association between dietary intakes and insulin resistance.

Section 2.7 concludes the chapter with discussions on both advantages and limitations

of the proposed LR method. Detailed technical derivations and proofs are included

in the Appendix A.

2.2 Framework

2.2.1 Structure Equation Model

Consider a data set of n observations, (Xi,Mi,j, Yi), i = 1, . . . , n, randomly sampled

from n subjects. For the i-th subject, Yi represents an outcome variable of interest,

Xi represents an exposure variable, and Mi = {Mi,j}Qj=1 represents a Q-dimensional

vector of mediators. In addition, Zi = {Zi,l}Ll=1 represents an L-dimensional vector
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of confounding variables with the first element Zi,1 ≡ 1 for the intercept. In this

chapter, we consider the case of both Q and L being fixed and Q + L + 1 < n. A

linear structural equation model (SEM) takes the following form:

Yi = Xiγ + M>
i β + Z>i η + εY,i, M>

i = Xiα
> + Z>i ζ + ε>M,i, (2.1)

where Mi = (Mi,1, . . . ,Mi,Q)>, Zi = (Zi,1, . . . , Zi,L)>, γ is a scalar, β = (β1, . . . , βQ)>,

η = (η1, . . . , ηL)>, α = (α1, . . . , αQ)>, ζ = (ζl,j)L×Q, εY,i
i.i.d.∼ N(0, σ2

Y ), εM,i
i.i.d.∼

MVN(0,ΣM), and ΣM is a Q×Q positive definite covariance matrix, i = 1, . . . , n.

Denote the collection of model parameters by θ = {α,β, γ,η, ζ,ΣM , σ
2
Y } and Θ is

a generic notation for the parameter space. In the counterfactual outcome paradigm

(Robins and Greenland , 1992; Pearl , 2001), under the fundamental assumptions of

consistency and the absence of unmeasured confounders, VanderWeele (VanderWeele

and Vansteelandt , 2014) shows that exposure variable X changes from a value x0 to

another value x1, the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE)

in model (2.1) take the following forms: NDE(x0, x1) = γ(x1−x0), and NIE(x0, x1) =

α>β(x1 − x0).

2.2.2 Unconstrained Parameter Estimation

To establish a likelihood ratio test for the null hypothesis of no group-level media-

tion effect, H0 : α>β = 0, we need to perform both unconstrianed and constrained

maximum likelihood estimations (MLE) under the null and alternative hypotheses,

respectively. SEM (2.1) may be rewritten as a matrix form:

Y = Wβ̄ + ε, M = Bᾱ + E, (2.2)

where β̄ = (β1, . . . , βQ, η1, . . . , ηL, γ)>, Y is an n × 1 vector of the outcomes, W is

an n × (Q + L + 1) matrix of mediators, confounders and exposure variable with
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Wi = (Mi,1, . . . ,Mi,Q, Zi,1, . . . , Zi,L, Xi)
>, i = 1, . . . , n, and ε ∼ MVN(0, σ2

Y In).

Similarly, M is an n×Q matrix of mediators, B is an n× (L+ 1) matrix of exposure

and confounders with Bi = (Xi, Zi,1, . . . , Zi,L), and E = (E>1 , . . . ,E
>
n )> with Ei ∼

MVN(0,ΣM). Here ᾱ is an (L + 1) × Q matrix of parameters, with its first row

vector being α> in the model (2.1), and its remaining L × Q submatrix being the

parameter matrix of ζ. It follows that the two times negative log likelihood function

is given by

−2`(θ) =n log(σ2
Y ) + n log(|ΣM |) + σ−2

Y (Y −Wβ̄)>(Y −Wβ̄)

+ tr{(M−Bᾱ)Σ−1
M (M−Bᾱ)>}.

The standard theory of the MLE leads to the following unconstrained maximum

likelihood estimators of θ, denoted as θ̂ = { ˆ̄α, ˆ̄β, σ̂2
y , Σ̂M}, where

ˆ̄α = (B>B)−1B>M, and ˆ̄β = (W>W)−1W>Y;

σ̂2
y = (Y −W ˆ̄β)>(Y −W ˆ̄β)/n, and Σ̂M = (M−B ˆ̄α)>(M−B ˆ̄α)/n.

2.2.3 Constrained Parameter Estimation

Let θ̃ denote the constrained MLE under the null H0 : α>β = 0, which will be

obtained by the method of Lagrange Multiplier. We consider a Lagrange objective

function of the following form, with tuning parameter λ,

g(ᾱ, β̄, σ2
Y ,ΣM , λ) =− 2`(θ)− 2λα>β. (2.3)
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Differentiating the function g(·) with respect to the model parameters yields the

following equations of the regression coefficients,

ᾱ = (B>B)−1B>M + λ(B>B)−1β∗ΣM = ˆ̄α + λ(B>B)−1β∗ΣM , (2.4)

β̄ = (W>W)−1W>Y + λσ2
Y (W>W)−1α∗ = ˆ̄β + λσ2

Y (W>W)−1α∗, (2.5)

and the equations of variance parameters,

σ2
y = (Y −Wβ̄)>(Y −Wβ̄)/n, and ΣM = (M−Bᾱ)>(M−Bᾱ)/n, (2.6)

where β∗ is an (L+1)×Q matrix with the first row being β> and the rest of elements

are zeros, and α∗ is a (Q+L+1)×1 vector with the first Q elements being α and the

rest of elements being zero. Given that α> appears in the first row of ᾱ, we denote

the first row of ˆ̄α by a>1 , and the first row of (B>B)−1β∗ΣM by b>1 . It follows that

α> = a>1 − λb>1 . Similarly, given β being in the first Q rows of vector β̄, denote the

first Q rows of vector ˆ̄β by a2, and the first Q rows of (W>W)−1α∗ by b2. Under

the constraint α>β = 0, we obtain (a>1 + λb>1 )(a2 + λb2) = 0. This leads to two

possible solutions of λ given in (2.7), and we shall choose the one that yields the

higher log-likelihood,

λ̃ =
−(a>1 b2 + b>1 a2)±

√
(a>1 b2 + b>1 a2)2 − 4b>1 b2a>1 a2

2b>1 b2

. (2.7)

Remark II.1. After we obtain the constrained MLE solutions (θ̃, λ̃) by the method of

the Lagrange Multiplier above, we then evaluate the Hessian matrix of the function

g(·) in (2.3). It is easy to show that in the setting of the linear SEM the Hessian matrix

is positive definite, guaranteeing the convexity of the penalized objective function g(·)

and thus the unique minimum given by the solutions (θ̃, λ̃).
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2.3 Likelihood Ratio Test for Joint Mediation Effect

2.3.1 Test Statistic

To simultaneously assess the joint mediation effect of multi-dimensional mediators,

the first analytic task is to test the null hypothesisH0 : α>β = 0 versusH1 : α>β 6= 0,

where the null hypothesis corresponds to the case of zero NIE under SEM (2.1).

As pointed above, since the null hypothesis allows internal cancellation, it does not

preclude the possibility of component-wise nonzero mediation effects in the sense that

αqβq 6= 0, q = 1, · · ·Q but α>β = 0. Following the classical Wilks’ theory of likelihood

ratio (LR) test, we construct a LR test statistic of the form:

Tn = −2{ sup
θ∈Θ:α>β=0

`(θ)− sup
θ∈Θ

`(θ)} = −2{`(θ̃)− `(θ̂)}, (2.8)

where θ̂ and θ̃ denote, respectively, the unconstrained MLE under H1 and the con-

strained MLE under H0 obtained in Sections 2.2.2 and 2.2.3.

2.3.2 Properties of the LR test

This section concerns the asymptotic distributions of the likelihood ratio statistic Tn

in (2.8) under the null hypothesis H0 : α>β = 0. Using the large-sample properties,

we propose a new test that can properly control the type I error with theoretical

guarantees. For all lemmas and theorems presented in this section, their technical

proofs are given in the Appendix. We begin with some notations. For the ease of

exposition, we redefine θ = (α>, ζ,β>,η>, γ)>, where ζ denotes the row vector of LQ

elements vectorized from the matrix ζL×Q. Define the constraint function by h(θ) =

α>β. It is easy to see that its gradient ḣ(θ) = ∇θh(θ) = (β>,0>LQ,α
>,0>L+1)>. Let

H(θ) = ∇θḣ(θ) =

 0(L+1)Q×(L+1)Q H̃(L+1)Q×(Q+L+1)

H̃>(L+1)Q×(Q+L+1) 0(Q+L+1)×(Q+L+1)

 ,
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where

H̃(L+1)Q×(Q+L+1) =

 IQ 0Q×(L+1)

0LQ×q 0LQ×(L+1)

 .

The information matrix I(θ) = −E
(

1
n
∂2`(θ)
∂θθ>

)
has a closed-form, presented in Ap-

pendix A.1. Let A(θ) = I(θ)−
1
2 H(θ)I(θ)−

1
2 . To derive the asymptotic properties, we

first introduce a lemma that establishes the eigenvalue bounds of matrices H(θ) and

A(θ).

Lemma II.2. For any θ ∈ R2Q+LQ+L+1, we have the following results.

(i) The matrix H(θ) = ∇θḣ(θ) has 2Q nonzero eigenvalues equal to 1 or −1. If

nonzero eigenvalues are arranged in a descending order as of the form h1 ≥

h2 ≥ · · · ≥ h2Q, then h1 = · · · = hQ = 1, hQ+1 = · · · = h2Q = −1.

(ii) The matrix A(θ) has 2Q nonzero eigenvalues. If nonzero eigenvalues are ar-

ranged in a descending order as of the form υ1 ≥ υ2 ≥ · · · ≥ υQ > 0 > υQ+1 ≥

· · · ≥ υ2Q, then they satisfy
∑2Q

i=1 vi = 0, and υ1 = −υ2Q, υ2 = −υ2Q−1, . . . , υQ =

−υQ+1.

The above properties for the eigenvalues of A(θ) are used to establish asymptotic

null distributions of the LR test statistic. The proof of Lemma II.2 is presented in

Appendix A.2.

Lemma II.3. In the case of α = β = 0, let θ0 be the true parameters that generate

the data, and the asymptotic distributions of the constrained MLE θ̃ and λ̃ are given

by, as n→∞,

λ̃
d→ Λ0, where Λ0

d≡ −
∑Q

q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q.
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For any λ∗ ∈ R, conditional on a value λ̃ = λ∗,

√
n(θ̃ − θ0) | λ̃ = λ∗

d→ N
(
0, {I(θ0)− λ∗H(θ0)}−1I(θ0){I(θ0)− λ∗H(θ0)}−1

)
,

where υ1, . . . , υQ are Q positive eigenvalues of A(θ0).

Lemma II.3 leads to an asymptotic joint distribution of θ̃ and λ̃ due to the fact

[θ̃, λ̃] = [θ̃|λ̃][λ̃]. Thus, we obtain the asymptotic distribution of the LR test statistic

in the scenario of α = β = 0. The proof of Lemma II.3 is presented in Appendix

A.3.

Theorem II.4. Under H0 : α>β = 0, the asymptotic distributions of the likelihood

ratio test statistic Tn are given by,

(i) when (α>,β>)> 6= 0, as n→∞, Tn
d→ χ2

1,

(ii) when α = β = 0, as n → ∞, Tn
d→ Λ1 with Λ1

d≡ {
∑Q
q=1 υq(ξq−ξq+Q)}2

4
∑Q
q=1 υ

2
q (ξq+ξq+Q)

, where

ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q.

In this chapter, we write Λ1 ∼ κQ distribution. The proof of Theorem II.4 involves

deriving the asymptotic distributions of the constrained MLE. Although the classical

large-sample work for the LR test, e.g. (Aitchison et al., 1958; Wolak , 1989), may be

directly applied to prove part (i) of Theorem II.4, the proof of part (ii) is non-trivial

and needs specific technical arguments and treatments on manipulating asymptotic

distribution of λ̃, similar to those given in the proof of Lemma II.3. The proof of

Theorem II.4 is presented in Appendix A.4. To implement the κQ distribution after

both matrix A(θ) and its Q eigenvalues are estimated, we invoke the Monte Carlo

simulation with a large number of draws (say 10,000) independently from 2Q χ2
1

distributed variables ξq, q = 1, · · · , 2Q.

It follows from Theorem II.4 that we propose a test for H0 : α>β = 0, termed as
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LR test, given by the decision function:

φn = I[Tn > (χ2
1,(1−α) ∨ κQ,(1−α))], (2.9)

where a∨ b = max(a, b), κQ,(1−α) is the (1−α) quantile of the null distribution given

in part (ii) of Theorem II.4, and χ2
1,(1−α) is the (1−α) quantile of the χ2

1 distribution.

When φn = 1, we reject the null H0; otherwise, accept the null H0.

Theorem II.5. The LR test in (2.9) controls the type I error; that is

sup
θ∈Θ:α>β=0

Pθ(φn = 1) ≤ α,

where 0 < α < 1 is a prefixed type I error rate.

Proof. Divide the parameter space under the H0, Θ = {(α,β) : α>β = 0} into two

disjoint sub-spaces: Θ1 = {(0,0)} and Θ2 = Θ \Θ1. Then,

sup
θ∈Θ:α>β=0

Pθ(φn = 1)

= sup
θ∈Θ1∪Θ2

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α))

= max{ sup
θ∈Θ1

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α)), sup

θ∈Θ2

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α))}

≤ max{ sup
θ∈Θ1

Pθ(Tn > κQ,(1−α)), sup
θ∈Θ2

Pθ(Tn > χ2
1,(1−α))}

≤ α

2.4 Implementation

In practice, to perform the LR test φn, we first compute two p-values of p1 = 1 −

Fχ2
1
(Tn) and p2 = 1−FκQ(Tn), where Fχ2

1
is the CDF of the χ2

1 distribution, and FκQ is
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the CDF of the κQ distribution. Then we reject the null hypothesis if the max(p1, p2)

is smaller than significance level α.

To obtain the constrained MLE, we develop a block coordinate descent algorithm

given as follows. We partition θ into two sets: θ1 = { ˜̄α, ˜̄β}, and θ2 = {σ̃2
Y , Σ̃M},

as well as λ. The unconstrained MLE θ̂ = { ˆ̄α, ˆ̄β, σ̂2
Y , Σ̂M} are used as the initial

values to start the algorithm. This updating scheme consists of three steps: given θ1

and θ2, maximize the likelihood with respect to λ; given θ2 and λ, update θ1 until

convergence; given θ1, update θ2. The algorithm is detailed below in Algorithm 1,

where the default number of Monte Carlo simulations is set at 10,000.

Algorithm 1

• Compute the unconstrained MLE θ̂ = { ˆ̄α, ˆ̄β, σ̂2
Y , Σ̂M}, and evaluate the log-

likelihood `(θ̂). At the jth-iteration, let θ
(j)
1 = { ˜̄α(j), ˜̄β(j)}, and let θ

(j)
2 =

{σ̃2(j)
Y , Σ̃

(j)
M }. Set θ

(0)
1 = { ˆ̄α, ˆ̄β} and θ

(0)
2 = {σ̂2

Y , Σ̂M} as the initial values.

• For j = 0, 1, . . . , J

– calculate λ(j) = argmax
λ
{`(θ(j)

1 ,θ
(j)
2 , λ)} from (2.7);

– calculate θ
(j+1)
1 = argmax

θ1

{`(θ1,θ
(j)
2 , λ(j))} from (2.4) and (2.5);

– calculate θ
(j+1)
2 from θ

(j+1)
1 based on (2.6);

– calculate δ =‖ θ(j+1)
1 − θ

(j)
1 ‖;

– If |δ| < tol

break

end if

end for

• Output: θ̃ =
{

˜̄α(j+1), ˜̄β(j+1), σ̃
2(j+1)
Y , Σ̃

(j+1)
M

}
, and calculate the log-likelihood.

• Calculate the test statistic T = −2
{
`(θ̃)− `(θ̂)

}
, and compute the p-value p1

under the null distribution of χ2
1.
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• Estimate A(θ0) based on σ̂2
Y and Σ̂M , and calculate its Q positive eigenvalues

that are then used to simulate the κQ distribution, and compute its p-value p2.

• Report max(p1, p2) as the final p-value.

2.5 Simulation Studies

2.5.1 Setup

We conduct extensive simulation studies to evaluate the performance of the proposed

LR test. In particular, we compare the type I error control and power of our method

with two existing methods: PT-N and PT-NP tests proposed by Huang et al (Huang

and Pan, 2016). In addition, we consider a comparison to a recent method of High-

Dimensional Multiple Testing (HDMT) proposed by (Dai et al., 2020). HDMT was

originally developed for a univariate screening of mediators with controlled false dis-

covery rate in genome studies, representing a typical kind of testing approach widely

adopted in practice to avoid simultaneous inference. Because HDMT is not a method

established in the paradigm of the Neyman-Pearson hypothesis testing, we present

the comparison results in the Appendix A.5.

The SEM is set up as follows. The exposure variable X is simulated from N(0, 1),

and two confounding variables Z1 and Z2 are generated from BV N(0, I2). Given X

and (Z1, Z2), throughout the entire simulation experiments in this section, Q medi-

ators M and outcome Y are generated according to the SEM (2.1), with Q = 30,

γ = −2, η = (2,−3, 2)>, σ2
Y = 1, and vec(ζ) consists of 18 repeated sequences of

(−2, 3,−3, 1, 1). The sample size n varies over 200, 500, and 1000. For each sample

size, we run 10,000 replicates.
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2.5.2 Type I Error

We consider the following four scenarios of the null hypotheses: (i) sparse pathways

with no cancellation; (ii) sparse pathways with cancellation; (iii) non-sparse pathways

with cancellation; and (iv) fully sparse pathways α = β = 0. Here sparsity refers to

the number of zero parameters in α and/or β. The detailed specifications of α and

β can be found in Table 2.1. We report in Table 2.2 the estimated empirical type I

error rate as the proportion of rejections from the 10,000 replicates. For the four null

cases (i)-(iv), our LR test as well as two existing PT-N test and PT-NP test showed a

proper control of the type I error. In the cases (i)-(iii), these three methods show their

empirical type I error rates close to the nominal level 0.05, as desired. In the case

(iv), they are all conservative, but our LR test appears to be the least conservative

among the three.

2.5.3 Power Comparison

We evaluate and compare power under the same basic model specifications above, in

which α and β are specified in four sets of alternative scenarios different from the null

hypothesis; see the detail in Table 2.1. The design for the four alternative hypotheses

corresponds the following scenarios of pathways: (v) both α and β are sparse; (vi) α

is sparse and β is not sparse; (vii) α is not sparse and β is sparse; and (viii) both α

and β are not sparse. Regardless of specific settings, the overall absolute group-level

effect is fixed at 0.16, i.e. |α>β| = 0.16. Table 2.2 reports the estimated empirical

power by the proportion of rejections to the null from 10,000 replicates.

We calculate the percent of power increase of LR over a competing method by

power of LR
power of competitor

− 1. For all cases, our LR method demonstrates clearly higher

power than existing PT-N and PT-NP tests, especially when the sample sizes are small

or moderate, say 500 or less. It is also noteworthy that even though the mediation

effect size is fixed constantly at 0.16 across four cases, the power varies according to
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Table 2.1: Designed specifications for α and β for null and alternative hypotheses.

Mediator
Null Hypothesis (α>β = 0) Alternative Hypothesis (|α>β| = 0.16)
i ii iii iv v vi vii viii

α β α β α β α β α β α β α β α β

1 0.2 0 0.2 0 0.2 -0.2 0 0 0.4 0.4 0 0.3 0.3 0 0.4 0.4
2 0.5 0 0.2 0.5 0.3 0.1 0 0 0 -0.8 0 0.3 0.3 0 0.2 -0.2
3 0 0.2 0.5 -0.2 0.1 0.1 0 0 0 0 0 0.3 0.3 0 0.3 0.1
4 0 0.5 0.2 0.5 0.2 -0.2 0 0 0 0 0 0.3 0.3 0 0.1 0.1
5 0 0 -0.2 0.5 0.3 0.1 0 0 0 0 0 0.3 0.3 0 0.2 -0.2
6 0 0 0 0 0.1 0.1 0 0 0 0 0.2 -0.8 -0.8 0.2 0.3 0.1
7 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
8 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
9 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
10 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
11 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
12 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
13 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
14 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
15 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
16 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
17 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
18 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
19 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
20 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
21 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
22 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
23 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
24 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
25 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
26 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2
27 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1
28 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1
29 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.3
30 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.2

Table 2.2: Empirical type I error under four null hypotheses, and power under four
alternative hypotheses with 10,000 replicates. The sample size varies from
200, 500, and 1,000. The exchangeable correlation of mediators is set with

correlation 0.5. Power increase (%) =
power of LR test

power of competing test
− 1.

n Method
Null Hypothesis Alternative Hypothesis Percent of power increase

i ii iii iv v vi vii viii v vi vii viii

LR 0.050 0.052 0.051 0.009 0.591 0.562 0.312 0.507 - - - -
200 PT-N 0.038 0.042 0.037 0.005 0.550 0.536 0.255 0.458 7.46% 4.78% 22.51% 10.72%

PT-NP 0.032 0.038 0.028 0.001 0.507 0.497 0.242 0.426 16.55% 13.07% 28.72% 19.20%
LR 0.046 0.049 0.045 0.007 0.970 0.954 0.648 0.928 - - - -

500 PT-N 0.041 0.045 0.039 0.005 0.967 0.953 0.624 0.922 0.30% 0.12% 3.78% 0.66%
PT-NP 0.038 0.044 0.035 0.001 0.962 0.947 0.620 0.916 0.78% 0.75% 4.5% 1.36%
LR 0.051 0.049 0.046 0.006 1.000 1.000 0.917 0.999 - - - -

1000 PT-N 0.048 0.048 0.043 0.004 1.000 1.000 0.911 0.999 0.00% 0.00% 0.67% 0.01%
PT-NP 0.046 0.049 0.041 0.000 1.000 1.000 0.910 0.998 0.00% 0.00% 0.71% 0.05%
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Figure 2.2: Power curves of three tests (LR, PT-N, and PT-NP) under the simulation
case (vii) with sample size n = 200 and δ varing from 0 to 0.50 by an
increment unit of 0.02.

the underlying parameter configurations and sparsity. Among these four cases, case

(vii) appears to be the most challenging scenario, where β is most sparse with a small

magnitude of nonzero element in β. To further examine the performance of these

tests, in case (vii) with the sample size 200, we set the single nonzero β coefficient at

0.2 + δ with δ varying from 0 to 0.50 by an increment of 0.02 to illustrate the power

increase pattern. Figure 2.2 shows all three power curves increase to 1 when the

size δ in the alternative hypothesis becomes further distant from the null hypothesis.

Our LR test is more powerful than the other competing tests. Empirically, these

three tests are all shown to be consistent as their power rises to 1 when the deviation

from the null tends to infinity. Taking all other settings in the simulation study

into account, overall, we conclude that our LR test shows higher power in comparison

with two existing PT-N and PT-NP tests, especially in the cases of small or moderate

sample sizes.
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2.6 Data Application

We apply the proposed LR test to analyze a real world data example from a pediatric

cohort study consisting of 203 children, with 96 boys and 107 girls, age 8.1 to 14.4

years old. We consider two exposure variables X of macronutrient intakes calculated

as the energy adjusted carbohydrate and fat. They are termed as carbohydrate intake

and fat intake, respectively, obtained from the food frequency questionnaires (Willett

et al., 1997). The outcome variable Y is a HOMA-CP score defined by Li et al.

(2004), which measures insulin resistance using the C-peptide biomarker produced by

pancreas. A higher HOMA-CP score means more insulin resistant, leading potentially

to a higher risk of developing diabetes in adulthood years.

In this analysis, we focus on studying a cluster of seven metabolites of glu-

cose metabolites and acetylamino acids annotated by our collaborator Dr. Labarre

(LaBarre et al., 2020) at the University of Michigan Research Core of Metabolomics.

One metabolite in this cluster is N-acetylglycine, which have been found in the lit-

erature to be positively associated with dietary fiber intake (Lustgarten et al., 2014)

and negatively associated with metabolic risk score (Perng et al., 2017). The goal of

central interest is to test if a cohesive cluster containing N-acetylglycine is involved

as a group in a mediation pathway from dietary intakes to HOMA-CP score. This

scientific question pertains to a hypothesis that food intakes may change metabo-

lites and then further alter function of pancreas, so to elevate the risk of developing

diabetes during later life time.

With the consultation with our collaborator, we choose a set of confounding vari-

ables, including age, gender, and puberty onset. We begin the data analysis to assess

the total effect by fitting a linear model with outcome HOMA-CP on exposures to

carbohydrate intake and fat intake, respectively, as well as the confounders. The

estimated total effects are -0.015 with a p-value of 0.174 for fat intake and 0.004 with

a p-value of 0.252 for carbohydrate intake. In the following analysis, we focus on
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the pathway mediation analysis from exposures to outcome.We then calculate the

p-values for the null hypothesis H0 : αTβ = 0 with Q = 7 using three methods of

LR, PT-N and PT-NP. We perform the testing for the group-level mediation effect

with exposure of fat intake, and obtain p-values equal to 0.01 (LR), 0.02 (PT-N), and

0.02 (PT-NP). Likewise, with exposure of carbohydrate intake, we obtain p-values

0.03 (LR), 0.04 (PT-N) and 0.04 (PT-N). All three methods reach an agreement that

with 95% confidence this cluster of seven metabolites exhibits a significant group-level

mediation effect on the associations between dietary intakes and HOMA-CP score.

With no surprise, the LR test appears to have smaller p-values in both cases, being

consistent with the findings in the simulation studies.

Taking a closer look at individually each of the seven metabolites in the cluster, we

report in Table 2.3 estimates of the individual model parameters in α, β and α ◦ β,

where ◦ is the element-wise product. The group-level mediation effects of fat and

carbohydrate intakes through the seven metabolites are -0.012 and 0.003, respectively.

For fat intakes, the negative mediation effect indicates that more fat intakes help

reduce the insulin resistance through metabolites, where N-acetyglicine contributes

most to the reduction of the insulin resistance score. In contrast, carbohydrate intakes

increase the insulin resistance through metabolites, where again N-acetyglicine

contributes most.

Table 2.3: Estimated coefficients for a cluster of seven metabolites.

Metabolite
Fat Carbohydrate

α β α ◦ β α β α ◦ β
L-histidine -0.0019 0.334 -0.0006 0.0008 0.334 0.0003
N-acetyl-D-glucosamine -0.0046 0.197 -0.0009 0.0009 0.200 0.0002
N-acetyl-DL-serine 0.0055 0.206 0.0011 -0.0017 0.204 -0.0004
3,4-hydroxyphenyl-lactate 0.0014 0.114 0.0002 -0.0006 0.114 -0.0001
2-deoxy-D-glucose 0.0041 -0.356 -0.0015 -0.0013 -0.356 0.0005
N-acetylglycine 0.0101 -0.840 -0.0085 -0.0030 -0.842 0.0025
D-lyxose -0.0050 0.291 -0.0015 0.0016 0.294 0.0005
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2.7 Concluding Remarks

This chapter studied a likelihood ratio approach to testing a group-level mediation

effect with multiple mediators. We were able to overcome a key technical challenge

arising from the constrained maximum likelihood estimation under irregular param-

eter spaces. In particular, the Lagrange Multiplier method was developed to carry

out the constrained optimization via an efficient block coordinate decent algorithm,

which was required to implement our LR test statistic. We established the asymptotic

distributions of the proposed LR test statistic, in which a theoretical guarantee was

given for a proper control of the type I error. Through both simulation studies and a

data application, our LR method has showed less conservative and higher power than

two existing methods, PT-N test and PT-NP test, especially when the sample size is

moderate or small.

To apply our LR approach to testing for a cluster of high-dimensional potential

mediators, one needs to first divide them into subgroups according to prior scientific

knowledge or certain clustering techniques, and then carry out the test for a group-

level mediation effect, each for one subgroup of mediator. A future work of interest

would be to extend the current framework to the case of high-dimensional mediators

with no need of dividing them into subgroups.

All test methods, including our LR test, have appeared to be conservative for the

null case of α = β = 0. This is an open problem in the theory of statistical inference

for mediation effect, even in the setting of one single mediator. Some better solutions

to overcome such conservatism are worth future exploration. In addition, extending

the normal linear structural equation model to a more general model such as the

family of generalized linear models and Cox proportional hazards model is appealing

to deal with a broader range of data types and practical problems. Developing LR

tests for group-level mediation effects beyond the linear structural equation model is

an important research direction of great interest.
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CHAPTER III

Generalized Structural Equation Models for

Mediation Analysis with Data of Mixed Types

3.1 Introduction

In many biomedical studies, mediation analysis has received considerable attention as

the choice of method to investigate a hypothesized mechanistic causal pathway that

involves two or more potential causal factors. The mechanistic pathway of interest is

typically organized as a form of direct acyclic graph (DAG) shown in Figure 3.1 (a),

which enables us to understand how the effect of exposure X on outcome Y may be

mediated through some intermediate variable M , called mediator. In addition to the

direct causal path from exposure X to outcome Y denoted by (X → Y ), there exists

another causal path where exposure X causes mediator M denoted by (X →M), and

then M affects outcome Y denoted by (M → Y ). As a result, the mediation pathway

has a route X → M → Y . These causal effects may be parameterized by α, β and

γ in the DAG shown in Figure 3.1(a), corresponding to, respectively, the exposure-

mediator, mediator-outcome and exposure-outcome relationships, and these directed

edges or associations may be adjusted for a set of confounders W shown in Figure

3.1(b). The primary objective of a mediation analysis is twofold: (i) to evaluate the

effect of exposure on outcome when the mediator is held constant, X → Y , termed
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Figure 3.1: A DAG involving exposure, mediator and outcome: (a) randomization
without confounders; (b) non-experimental study

as direct effect (DE); and (ii) to evaluate the effect of exposure on outcome through

the mediator, X →M → Y , termed as mediation effect or indirect effect (IE).

Two types of modeling approaches are widely utilized in mediation analyses. The

first type refers to the classical approach originally developed by Baron and Kenny

(1986) through a system of linear regression models, the so-called structural equation

modeling (SEM), which has been regarded as a standard methodology routinely used

in practice. The second type emerges recently as a causal inference approach, which

is formulated within the potential or counterfactual outcome framework (Robins and

Greenland , 1992; Pearl , 2001). The latter has attracted considerable attention in

the recent literature because of its role in making causal inference with two poten-

tial causal factors, an important extension from the causal inference literature with

a signal causal factor. In the counterfactual framework, both DE and IE are later

generalized to the so-called natural direct effect (NDE) and natural indirect effect
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(NIE), in which some essential assumptions required to identify these natural causal

effects have been extensively discussed in the literature (Imai et al., 2010b; Coffman

and Zhong , 2012; Preacher , 2015). Unfortunately, these identifiability assumptions

cannot be checked in practical studies, imposing a great challenge in the use of the

second type of mediation analysis approach. For example, “sequential ignorability”

(Imai et al., 2010b) is one of such assumptions, which requires the absence of unmea-

sured confounding in the DAG. Although it is hard to justify this condition, some

sensitivity analyses may be performed to assess reproducibility of results by carefully

designed variations of confounding scenarios.

A noticeable analytic limitation in contrast to the popularity of the mediation

analysis methodology lies in the fact that mediator and/or outcome are often as-

sumed to be continuous and normally distributed in the current literature. As seen

in our motivating example in Section 3.2, mediator and/or outcome can be continu-

ous, categorical or count variable. There are some scattered works concerning ad hoc

cases, such as categorical mediator and/or outcome, or continuous but nonnormal

mediator and/or outcome (VanderWeele and Vansteelandt , 2014, 2010; Albert and

Nelson, 2011; Huang et al., 2004; Tingley et al., 2014). Usually, stronger model as-

sumptions are imposed when data are of mixed types. Moreover, as becoming evident

throughout this chapter, causal interpretations appear to be model-specific. When

the joint normality is absent, there lacks of a unified framework of mediation analysis

to handle data of mixed types, including modeling approach, statistical estimation

and inference, software and interpretations. This motivates us to develop a flexible

class of statistical models and analytics suitable for mediation analysis with data of

mixed types. We propose to invoke copula dependence models to accommodate a

broad range of data types.

In a similar spirit to the copula regression with data of mixed types developed

by Song et al. (2009), we propose a class of generalized structural equation mod-
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els (GSEMs) through Gaussian copulas to perform mediation analyses in that data

may be of mixed types. This class of GSEMs provides three new methodological

advantages: first, we develop a unified approach to analyzing exposure, mediator

and outcome that may have different types, either categorical, discrete or continu-

ous. Adopting the tool of copula dependence models, GSEMs gives rise to a general

framework along with the generalized linear models (GLMs). Second, we jointly

model exposure, mediator and outcome, and derive the joint likelihood function un-

der different data scenarios, which is more flexible and rigorous than the approaches

based only on the mean model for E(Y | M,X,W). Third, utilizing the hierarchical

model specification, we develop a two-stage estimation procedure, where we handle

the confounding factors in the first stage, allowing us to properly adjust for complex

confounding scenarios without complicating the estimation of directed associations

or causal effects in the second stage.

The remainder of the chapter is organized as follows: Section 3.2 introduces the

motivating ELEMENT study. Section 3.3 describes GSEMs specified by a hierar-

chical copula mediation model approaches. Section 3.4 discusses the estimations of

parameter and causal effects under eight scenarios of mixed data types, where ex-

posure, mediator and outcome are continuous or discrete. Section 3.5 presents three

examples to illustrate the proposed GSEM methodology. Section 3.6 reports exten-

sive simulations to assess the performance of the GSEM methodology under three

settings. Section 3.7 demonstrates an application of mediation analysis in the ELE-

MENT study. Section 3.8 concludes the chapter with discussions on the advantages

and limitations of the proposed methodology. Detailed technical derivations are in-

cluded in Appendix B.
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3.2 ELEMENT Study

The data motivating our new methodology development comes from the “Early Life

Exposures in Mexico to ENvironmental Toxicants” (ELEMENT) cohort study. ELE-

MENT recruited three birth cohorts of 1,643 mother-child pairs during pregnancy or

delivery from maternity hospitals in Mexico city between 1993 and 2004 (Hu et al.,

2006; Perng et al., 2019). The main objective is to study how environmental tox-

icants, such as phthalates, affect maternal and child health outcomes. Phthalates

are a group of chemicals mostly used in plastics, and high levels of these chemicals

during pregnancy have shown substantial adverse health effects on both mother and

child (Qian et al., 2020). Previous study has demonstrated third trimester maternal

phthalate exposures of MEHHP, MEOHP and MIBP are linked to delayed infancy

Body Mass Index (BMI) peak (Zhou et al., 2021). Another literature has found that

later age at infancy BMI peak has been associated with higher cardiometabolic risk

biomarkers measured from children during peripuberty (Perng et al., 2018). It is of

great interest to understand potential causal mediation pathways among prenatal ph-

thalate exposure, child’ growth in early life, and child’s cardiometabolic risk later in

life. Thus, we hypothesize that the association between phthalate exposures during

mothers’ second and third trimesters and health outcomes of children in peripuberty

may be mediated by the timing and tempo of children reaching their infancy BMI

peak (labeled as on time or delayed).

The motivating data consists of 205 mother-child pairs, where prenatal expo-

sures were measured between 1997 and 2005, while the child’s cardiometabolic risk

biomarkers were measured between 2008 to 2012. There are 97 boys and 108 girls.

The mean ages of mothers at birth, and children at measurement during peripuberty

are 27.7 yrs and 10.1 yrs, respectively.

The potential mediator, the timing of infancy BMI peak is given by estimated

age (in month) when a child reaches his/her BMI peak between birth to 36 months.
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Infancy BMI peak is an important milestone for the early-life growth, as well as an

indicator for later obesity development for children (Jensen et al., 2015; Börnhorst

et al., 2017). The estimated age is calculated from child’s growth trajectory obtained

by fitting eight serial anthropometry measurements in the Newton’s Growth Models

(Baek et al., 2019). If the BMI peak was not reached before 36 months, it was

categorized as delayed (M = 1), otherwise as on time (M = 0). There are 27.8% of

children who were delayed in reaching their infancy BMI peaks.

The exposure variables include six urinary concentrations of phthalate metabo-

lites (MEHHP, MEOHP, and MIBP) measured at the second trimester among 177

women and third trimester among 202 women. These three phthalate exposures at

the third trimester were previously found to be positively associated with delayed in-

fancy BMI peak (Zhou et al., 2021). The outcome variables are three cardiometabolic

biomarkers measured from children during peripuberty, including fasting glucose z-

score, C-peptide z-score and a metabolic syndrome risk z-score (MetS z-score). Fast-

ing glucose is a screening tool for diabetes. C-peptide is a substance released from

pancreas when producing insulin. MetS z-score was calculated as the average of

five z-scores for waist circumference, fasting glucose, C-peptide, ratio of triglycerides

and High-density lipoprotein cholesterol, and average of systolic and diastolic blood

pressures (Perng et al., 2018).

Confounders W1 including mom’s age at birth, education, and marital status are

factors that occur prior to exposures, and they would influence exposures to toxicants,

mediator and outcomes. Confounders W2 including breastfeeding duration, parity,

child’s gender, gestational age, and birth weight are factors that occur after exposures

to toxicants, and would influence mediator and outcomes. Note that W2 are assumed

to be not affected by exposures, a key assumption for identification of natural causal

effects. Figure 3.2 describes hypothetical associations among exposures to phthalates

(X), BMI infancy peak M , child’s health outcomes Y as well as confounders W1,W2.
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Figure 3.2: Association between phthalate exposures and health outcomes mediated
by whether child’s timing of reaching BMI peak is delayed or not.

3.3 Generalized Structural Equation Models

3.3.1 Framework

We begin with a discussion on our general modeling approach to constructing a joint

distribution for three variables (X,M, Y ) of mixed types under the graphic topology

of acyclic direct graph (DAG) shown in Figure 3.1(a). Such joint distribution is

specified by a hierarchical modeling approach, which enables us to define a class

of generalized structural equations models (GSEMs) to address practical needs in

mediation analyses with data of mixed types. The key feature in the classical linear

normal SEM is that the covariance matrix of (X,M, Y ), denoted by, Γ, takes a special
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form arising from a DAG, given as follow:

Γ = (I−Θ)−1 Σ (I−Θ)−> , (3.1)

where I is an identity matrix, Σ = diag(σ2
x, σ

2
m, σ

2
y) is a diagonal matrix of marginal

variances, each for one variable. More specifically, similar to the classical SEM to

ensure the acyclicity of the DAG, Θ is specified as a lower triangular matrix of the

form:

Θ =


0 0 0

α 0 0

γ β 0

 . (3.2)

To incorporate the specification (3.1) in the formulation of a valid joint probability

distribution for X, M , Y of mixed data types, we need to generalize the classical

linear normal SEM to cases of nonlinear non-normal SEM, referred to as generalized

structural equation models (GSEMs) in this chapter. We propose to construct a

GSEM with the following modeling elements:

(i) The constructed joint distribution has to be so flexible that it can allow different

types of marginal distributions because variables X,M, Y may be continuous,

discrete or categorical in practical studies.

(ii) The proposed joint distribution accommodates an explicit form of the covariance

or correlation matrix of a given form similar to that in (3.1) and (3.2). Such

matrix form is deemed critical importance to model the topology of a DAG and

to interpret parameters pertinent to mediation pathways.

(iii) Confounding factors do not enter the hierarchy of covariance matrix as shown

in (3.1) and (3.2); rather, they are adjusted at the hierarchy of marginal dis-

tributions of individual variables, respectively. This consideration essentially

suggests a hierarchical model specification where the marginal parameters and
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dependence parameters are handled by different hierarchies of GSEMs.

(iv) The classical linear normal SEM is a special case of the proposed generalization.

These modeling characteristics above, as shown in the chapter, can be incorporated

simultaneously in the proposed joint distribution by the copula modeling approach;

see for example, Song et al. (2009) where a class of vector GLMs (VGLMs) is con-

structed with data of mixed of types. Here, we consider a more complicated scenario

than VGLMs in which the dependence matrix takes a restricted form (3.1) and con-

founding factors are only allowed to enter the model in the hierarchies of marginal

distributions. The Fréchet’s theory of constructing multivariate distribution by bi-

variate distributions is the theoretical basis to ensure the validity of our proposed

hierarchical models (Joe, 2014).

Copula models provide a natural hierarchical modeling framework to satisfy the

above modeling requirements. According to Sklar’s Theorem (Sklar , 1959), when

(X,M, Y ) are continuous random variables, their joint distribution can be expressed

as

F (x,m, y) = C{Fx(x; ·), Fm(m; ·), Fy(y; ·); Γ}. (3.3)

where Fj(·) and fj(·) are the cumulative distribution function and density function,

respectively, and C(·) is a suitable copula function that is independent of marginal

parameters. This expression provides a hierarchical modeling framework, as desired.

To incorporate the covariance structure given in (3.1) in the copula function, in this

chapter we choose the Gaussian copula (Song , 2000) given as follows:

C(u1, u2, u3) = Φ3{Φ−1(u1),Φ−1(u2),Φ−1(u3); Γ}, (3.4)

where Φ3(·; Γ) is a trivariate Gaussian distribution function with mean zero and cor-

relation matrix Γ, and Φ(·) is the standard univariate Gaussian distribution function

and Φ−1(·) is the corresponding quantile function. Since all marginal parameters, in-

35



clude the variance parameters, are exclusively included in the marginal distributions,

the dependence matrix Γ does not contain any marginal variance parameters but only

correlation parameters. All parameters in Γ represent rank-based correlations, more

general dependencies than Pearson correlations.

Following Song et al. (2009), we propose to extend the copula model (3.3) with

a Gaussian copula by allowing distributions of both continuous and discrete random

variables and Γ satisfying DAG model (3.1). In this way, the resulting joint distri-

bution can be used to handle variables of mixed types, and to perform mediation

analyses. We will focus on our discussion in two important settings: GSEMs with no

confounders in Section 3.3.2 under double randomized trials, and GSEMs in observa-

tional studies in Section 3.3.3 in the presence of confounding factors.

3.3.2 GSEMs under No Confounders

We first consider the most favorable scenario: there are no confounders involved in the

relationships among exposure, mediator and outcome. One such case can be achieved

by randomization of both X and M (Preacher , 2015). This is the simplest setting

in the mediation analysis for us to introduce the copula model. We consider three

generalized linear models (GLM) that the marginal distributions of X, M and Y are

elements of exponential dispersion family distribution (ED) models (Jørgensen, 1987)

denoted by

X ∼ ED(µx, φx),M ∼ ED(µm, φm), Y ∼ ED(µy, φy), (3.5)

where (µx, µm, µy),and (φx, φm, φy) are the respective mean parameters and dispersion

parameters. Note that these mean parameters are not modeled by covariates. Denote

by Fx(x; ·), Fm(m; ·) and Fy(y; ·) the cumulative distribution functions of X, M and

Y , respectively. As a result, we are able to obtain a joint distribution of (X,M, Y )
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via a copula function C(u1, u2, u3; Γ) in (3.3). It can be shown that (3.3) under

assumptions (3.1), (3.2) and (3.4) is equivalent to the Gaussian copula model (3.6)

based on latent variable representation. Let Zx, Zm and Zy be three respective latent

variable. Then (3.1)-(3.4) may be equivalently represented by,

Zx ∼ N(0, 1),

Zm | Zx ∼ N(αZx, 1),

Zy | Zx, Zm ∼ N(γZx + βZm, 1). (3.6)

We can link observed variables with the latent variables via marginal quantile

transformations: X = F−1
x {Φ(Zx)}, M = F−1

m {Φ(Z∗m)} and Y = F−1
y {Φ(Z∗y )}, where

Z∗m = Zm/τm, Z∗y = Zy/τy, τm =
√
α2 + 1, and τy =

√
(γ + αβ)2 + β2 + 1. The

marginal distributions of Zx, Z
∗
m and Z∗y all follow standard normal distribution. It

is easy to see that the joint distribution of Zx, Z
∗
m and Z∗y is trivariate normal given

as follows. The detailed derivation of (3.7) can be found in Appendix B.1,


Zx

Z∗m

Z∗y

 ∼ N




0

0

0

 ,


1 α

τm

η
τy

α
τm

1 αη+β
τmτy

η
τy

αη+β
τmτy

1


 . (3.7)

If X is a continuous variable, X = F−1
x {Φ(Zx)} becomes Zx = Φ−1(Fx(X)),

namely the quantile of the standard normal distribution. If X is a discrete variable

with non-zero point probability mass at 0, 1, 2, · · · , then X =
∑∞

x=0 xI(Fx(x − 1) ≤

Φ(Zx) < Fx(x)). This implies that the event {X = x} is equivalently to the event

{Φ−1(Fx(x − 1)) ≤ Zx < Φ−1(Fx(x))}. For simplicity, denote the lower and upper

bounds of the normal quantiles as Φ−1(Fx(x − 1)) = lx, and Φ−1(Fx(x)) = ux in

the rest of this chapter. Similar results hold for latent variable Z∗m with respect to

mediator M , with lower and upper quantile bounds denoted by lm and um, Z∗y with
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respect to outcome Y , with lower and upper quantile bounds denoted by ly and uy.

X, M and Y may be either continuous or discrete, we have a total of eight data

type scenarios. For example, “CCC”, “CDC” and “CCD” represent X, M , and Y

are continuous; X and Y are continuous, M is discrete; X and M are continuous,

Y is discrete, respectively. Table 3.1 presents the expressions of the corresponding

likelihood functions, each for one scenario. The detailed derivation of π(X,M, Y ) is

summarized in Appendix B.2.

Table 3.1: Joint distribution of X, M and Y , π(X,M, Y ) and expectation of potential
outcome E{Y (Xa,M(Xb))} under eight scenarios, where X, M and Y are
either continuous or discrete.

X M Y π(X,M, Y )
C C C π(Zx, Z∗m, Z

∗
y )

C C D π(Zx, Z∗m)P
(
Z∗y ∈ (ly , uy)|Zx, Z∗m

)
C D C π(Zx, Z∗y )P

(
Z∗m ∈ (lm, um)|Zx, Z∗y

)
C D D π(Zx)P

(
Z∗m ∈ (lm, um), Z∗y ∈ (ly , uy)|Zx

)
D C C π(Z∗m, Z

∗
y )P

(
Zx ∈ (lx, ux)|Z∗m, Z∗y

)
D C D π(Z∗m)P

(
Zx ∈ (lx, ux), Z∗y ∈ (ly , uy)|Z∗m

)
D D C π(Z∗y )P

(
Zx ∈ (lx, ux), Z∗m ∈ (lm, um)|Z∗y

)
D D D P

(
Zx ∈ (lx, ux), Z∗m ∈ (lm, um), Z∗y ∈ (ly , uy)

)
X M Y E{Y (Xa,M(Xb))}
C C C

∫∞
−∞

∫∞
−∞ F−1

y (Φ(Z∗y ))π(Z∗y |Zx = zxa , Z
∗
m = z∗m)π(Z∗m|Zx = zxb )dZ∗ydZ

∗
m

C C D
∫∞
−∞

∑∞
y=1 yP (ly ≤ Z∗y < uy |Zx = zxa , Z

∗
m = z∗m)π(Z∗m|Zx = zxb )dZ∗m

C D C
∑∞
m=0 P (lm ≤ Z∗m < um|Zx = zxb )

∫∞
−∞ F−1

y (Φ(Z∗y ))

∫ um
lm

π(Z∗
y ,Z

∗
m|Zx=zxa )dZ∗

m

P (lm≤Z∗
m<um|Zx=zxa )

dZ∗y

C D D
∑∞
m=0

∑∞
y=0 yP (ly ≤ Z∗y < uy |Zx = zxa , lm ≤ Z∗m < um)P (lm ≤ Z∗m < um|Zx = zxb )

D C C
∫∞
−∞

∫∞
−∞ F−1

y (Φ(Z∗y ))π(Z∗y |lxa ≤ Zx < uxa , Zm = zm)dZyπ(Zm|lxb ≤ Zx < uxb )dZm

D C D
∫∞
−∞

∑∞
y=0 yP (ly ≤ Z∗y < uy |lxa ≤ Zx < uxa , Zm = zm)π(Zm|lxb ≤ Zx < uxb )dZm

D D C
∑∞
m=0

∫∞
−∞ F−1

y (Φ(Z∗y ))π(Z∗y |lxa ≤ Zx < uxa , lm ≤ Z∗m < um)dZ∗yP (lm ≤ Z∗m < um|lxb ≤ Zx < uxb )

D D D
∑∞
m=0

∑∞
y=0 yP (ly ≤ Z∗y < uy |lxa ≤ Zx < uxa , lm ≤ Z∗m < um)P (lm ≤ Z∗m < um|lxb ≤ Zx < uxb )

C: Continuous variable. D: Discrete variable.

Now let us study causal effects under the above model (3.1)-(3.4). To analyze

natural direct effect (NDE) and natural indirect effect (NIE), we adopt the poten-

tial outcome framework from the causal inference literature (Splawa-Neyman et al.,

1990; Rosenbaum and Rubin, 1983; Pearl , 2001; Robins and Greenland , 1992). Fol-

lowing existing the counterfactual notions (VanderWeele and Vansteelandt , 2009),

let Y (x,m) denote the counterfactual outcome that would have been observed for a
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subject had the exposure X been set to value x and mediator M to the value m;

let M(x) be the counterfactual value of mediator had the exposure X been set to x.

Then E{Y (xa,M(xb))} is the expected outcome of Y had the exposure been set to

xa and mediator been set to M(xb), namely

E{Y (xa,M(xb))} = EM [EY {Y |M,X = xa}|X = xb].

Both NDE and NIE for a change of X from x0 to x1 are given by, respectively

NDE(x0, x1) = E{Y (x1,M(x0))} − E{Y (x0,M(x0))}, (3.8)

NIE(x0, x1) = E{Y (x1,M(x1))} − E{Y (x1,M(x0))}.

These are primarily determined by the hierarchies of causal effects dependencies

among X, M and Y .

3.3.3 GSEMs in Observational Studies

Next we consider the setting of a non-experimental design, such as an observa-

tional studies, where confounding factors are used to adjust for selection bias. Let

W = (W>
1 ,W

>
2 )> denote a matrix of all the confounding factors available in the

dataset, where W1 = (W1,1, . . . ,W1,p1)
> influences X, and W influences M and Y .

For simplicity, the first element of W is set to 1 for the intercept. For the identifi-

cation of NDE and NIE, we impose the same assumptions discussed in the literature

(VanderWeele and Vansteelandt , 2009; VanderWeele, 2015): (i) there are no unmea-

sured confounders of the associations between X and M , between M and Y , and

between X and Y , respectively; (ii) no confounders of M and Y that are influenced

by X. Then the hierarchy of marginal models, adjusting for confounders, is specified
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by a set of three conditional density functions of X, M and Y given W1 and W:

X |W1 ∼ ED(µx, φx), gx(µx) = W1βx,

M |W ∼ ED(µm, φm), gm(µm) = Wβm,

Y |W ∼ ED(µy, φy), gy(µy) = Wβy, (3.9)

where βx,βm and βy are vectors of regression coefficients; and φ(x), φ(m) and φ(y)

are the dispersion parameters. In a similar way, we can establish the latent variable

representation in the mediation analysis, as done for model (3.6).

When confounders are present, both NDE and NIE are given similarly as (3.8),

with the inclusion of confounders in the marginal mean parameters, precisely, we

would consider conditional NDE and NIE given W = w as follows,

NDE(x0, x1; w) = E{Y (x1,M(x0)) |W = w} − E{Y (x0,M(x0)) |W = w},

NIE(x0, x1; w) = E{Y (x1,M(x1)) |W = w} − E{Y (x1,M(x0)) |W = w}. (3.10)

This is natural as DAG is specified in the hierarchy adjusted by confounders in the

marginal distributions. Compared with the conventional structural equation modeling

approach to mediation analysis, one distinction for the GSEM methodology is that

instead of conditioning on the exposure variable X, we propose to hierarchically model

the marginal distribution of X and DAG for causal effects, where covariates W1 are

used to adjust nodes not edges of DAG in Figure 3.1(b). One advantage of modeling

X: scientifically, it is often the case that covariates W1 affect exposure X, M and

Y , so the change of X may be due to the change of W1, however the conventional

structural equation models ignore the dependence between X and W1, when they

define the causal effects based on the change of X. Our proposed GSEMs models the

change of X conditional on W to define the causal effects.
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3.4 Parameter and Effect Estimations

3.4.1 Estimation of Model Parameters

We consider a general GSEM under non-experimental design given in Section 3.3.3,

includes the setting with no confounders in Section 3.3.2 as a special case. Sup-

pose we have a dataset of n observations, (Xi,Mi, Yi), i = 1, · · · , n. Although the

exact likelihood fuction is available , optimization is computationally challenged. For

consideration of practical usefulness, we adopt a computationally efficient method.

Following the methodology of inference function for margins (IFM) (Xu, 1996; Joe,

2005; Shih and Louis , 1995; Ferreira and Louzada, 2014; Ko and Hjort , 2019), we

develop a two-stage profile likelihood estimation procedure. The first stage involves

fitting GLMs respectively on three univariate margins, Xi, Mi and Yi to obtain the

regression coefficients βx, βm and βy and dispersion parameters; and the second stage

involves searching the dependence parameters α, β and γ given the estimates from

the first stage.

Step I fits Xi marginally on covariates W1 via a GLM and obtain estimated

regression coefficients β̂x, as well the subject-specific estimates µ̂xi and φ̂xi , where

dispersion parameter φ̂xi may be assumed the same across the subjects, i.e., φ̂x. Then

for each subject i, we calculate Zxi from µ̂xi and φ̂x. Zxi could be either a unique

value if X is continuous or a range if X is discrete with lower and upper bounds.

Repeat the same analysis for variables M and Y to obtain the Z∗mi and Z∗yi . Step

II plugs in Zxi , Z
∗
mi

and Z∗yi to one log-likelihood function
∑n

i=1 log π(Xi,Mi, Yi) in

Table 3.1, which is a function of three parameters α, β and γ. We call “optim”, the R

function to search for estimates α̂, β̂ and γ̂ that minimize the negative log likelihood

function. In particular, we use algorithm “Nelder-Mead” (Nelder and Mead , 1965),

available in “optim”, which only uses function values for optimization. The initial

values used to start the search are set at 0 for α, β and γ.
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3.4.2 Estimation of Causal Effects

To estimate the conditional NDE and NIE, we need to calculate E{Y (xa,M(xb)} for

given xa and xb. Expectation for outcome E{Y (xa,M(xb)} under eight scenarios are

listed in Table 3.1. The detailed derivations are available in Appendix B.3. Notably,

these causal effects are calculated for a representative individual with mean covariate

values W = w when covariates are continuous, or a stratum W = w when covariates

are categorical. The trivariate Gaussian copula model (3.1)-(3.4) enables us to obtain

some of the eight expectations in the closed forms. In the cases where the closed-forms

expectations are unavailable, we invoke numerical techniques such as “Sparse grid”

or “Monte Carlo” to approximate the integrals in the estimating of causal effects.

3.4.3 Bootstrap for Confidence Interval

Since our estimation procedure is a two-stage profile likelihood estimates and the

expectation of conditional NDE/NIE appear complicated, it is difficult to derive the

standard error of these causal effects using the Delta method (Dorfman, 1938). There-

fore, we propose to adopt the parametric and nonparametric bootstrap approaches

(Efron, 1987), to obtain the 95% confidence intervals (CI) for parameters α, β and γ

as well as the NDE and NIE. In implementation, we generate 500 bootstrap samples,

where we obtain 500 estimates of α, β and γ and NDE and NIE. Then respectively,

a 95% CI is constructed by the 2.5 percentiles and 97.5 percentiles of these 500 em-

pirical estimates. In the parametric bootstrap, 500 bootstrap datasets are generated

from the estimates α̂, γ̂ and γ̂. In the non-parametric bootstrap, these bootstrap

datasets are generated from randomly drawing of the observations with replacement.
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3.5 Three Examples

In this section, we will illustrate how to estimate the conditional NDE and NIE via

the proposed method through three examples with mixed data types. They are,

(i) X, M and Y all follow normal distributions (CCC); (ii) X and Y follow normal

distributions, while M follows Bernoulli distribution (CDC); and (iii) X and M follow

normal distributions, while Y follows Bernoulli distribution (CCD). The proposed

GSEM allows us to obtain the analytic forms of the conditional NDE and NIE for

the first two examples (i) and (ii), and for the third case (iii), we use the Monte

Carlo method to evaluate the integral when the closed forms of causal effects are

unavailable. These three data types illustrated here are commonly encountered in

practice. We present numerical results for these examples in Simulation Studies in

Section 3.6.

3.5.1 Example CCC

In Table 3.1, when X, M and Y are all normally distributed (i.e., as “CCC” case),

conditional NDE and NIE are given below in Proposition III.1.

Proposition III.1. When X and M and Y are normally distributed, the conditional

causal effects for a change of X from x0 to x1 are given by,

NDE(x0, x1; w) =
σyγ(zx1 − zx0)

τy
, NIE(x0, x1; w) =

σyαβ(zx1 − zx0)
τy

,

where zx = x−w>x βx
σx

. Furthermore, we have NDE(x0, x1; w) = 0 if and only if γ = 0.

NIE(x0, x1; w) = 0 if and only if α = 0 or β = 0. This is identical to the causal effect

representation under the classical SEM.

Note that the causal effects only depend on parameters α, γ and β, but not on

any confounders W.
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3.5.2 Example CDC

In Table 3.1, when X and Y are continuous, and M is dichotomous (i.e., as “CDC”

case), conditional NDE and NIE are given below in Proposition III.2.

Proposition III.2. When X and Y are normally distributed, and M is binary, the

conditional causal effects for a change of X from x0 to x1 are given by,

NDE(x0, x1; w) =
σy(γ + αβ)(zx1 − zx0)

τy
− σyβ

τy

(
pzx0
pzx1
−

1− pzx0
1− pzx1

)
dzx1 (w),

NIE(x0, x1; w) =
σyβ

τy

(
pzx0
pzx1
−

1− pzx0
1− pzx1

)
dzx1 (w),

where um(w) = Φ−1(Fm(0)) = −Φ−1
(
logit−1(w>β)

)
, px(w) = Φ(τmum(w) − αx),

dx(w) = φ(τmum(w)−αx). This implies that the sufficient conditions for NDE(x0, x1; w) =

0 are γ = β = 0 or γ = α = 0; NIE(x0, x1; w) = 0 if α = 0 or β = 0.

Note that either α or β must be zero in order for the NDE being zero. This is

because when M is discrete, Zm and M are no longer one-to-one linked. As obvious

in Figure 3.3, when only γ is zero, Zx can change Zm without changing M , Zm can

then change Zy, which leads to a non-zero NDE. To obtain a zero NDE, we need

either γ = α = 0 or γ = β = 0.

3.5.3 Example CCD

In Table 3.1, when X and M are continuous, and Y is discrete (i.e., “CCD” case),

NDE and NIE are given below in Proposition III.3.

Proposition III.3. When X and Y are normally distributed, and M is binary, the
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Figure 3.3: GSEM when X, Y are continuous and M is discrete.

conditional causal effects for a change of X from x0 to x1 are given by,

NDE(x0, x1; w) =

∞∫
−∞

(Φ1(zx0)− Φ1(zx1))π(Z∗m|Zx = zx0)dZ
∗
m,

NIE(x0, x1; w) =

∞∫
−∞

Φ1(zx1)π(Z∗m|Zx = zx0)dZ
∗
m −

∞∫
−∞

Φ1(zx1)π(Z∗m|Zx = zx1)dZ
∗
m,

where Φ1(zxa) = Φ(τmly(w)−γzxa−τmβz∗m), ly(w) = Φ−1(Fy(0)) = −Φ−1
(
logit−1(w>βy)

)
.

NDE(x0, x1; w) = 0 if and only if γ = 0. This implies that the sufficient conditions

for NIE(x0, x1; w) = 0 are α = 0 or β = 0.

Since both conditional NDE and NIE do not have closed forms, we will resort to

the Monte Carlo method to evaluate the intergrals by the following steps: (i) sampling

Z∗m from N

(
α√
θ2mx+1

zxb ,
1√

θ2mx+1

)
; (ii) plug Z∗m into Φ1(zxa); and (iii) take average

over all the values of Φ1(zxa).

Both conditional NDE(x0, x1; w) and NIE(x0, x1; w) may be interpreted as risk

differences in the case of binary outcome Y . Alternatively, one may interpret these

effects in terms of odds. According to VanderWeele and Vansteelandt (2010), we
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calculate the odds ratios for the conditional NDE and NIE as follows, respectively

ORNDE(x0, x1; w) =
Ax0,x0/(1− Ax0,x0)
Ax1,x0/(1− Ax1,x0)

, (3.11)

ORNIE(x0, x1; w) =
Ax1,x0/(1− Ax1,x0)
Ax1,x1/(1− Ax1,x1)

,

where Axa,xb =
∫∞
−∞Φ1(zxa)π(Z∗m|Zx = zxb)dZ

∗
m for a = 0, 1 and b = 0, 1.

3.6 Simulation Studies

We carry out four simulation studies to evaluate the performance of the proposed

GSEM methodology. The first study assesses bias, mean squared error (MSE) and

coverage probability of confident interval for causal effects and model parameters.

The second study compares bias, MSE and coverage with an existing method Quasi-

Bayesian Monte Carlo method (QBMC) (Tingley et al., 2014). Both studies were per-

formed to three settings discussed in Section 3.5. The third study concerns the setting

where the outcome is binary and compares the odds ratios calculated from GSEM

and an approximation approach proposed by VanderWeele and Vansteelandt (2010).

The fourth study compares the efficiency of GSEM with the full maximum likelihood

estimation (MLE) procedure, under the setting of CDC with no confounders.

3.6.1 Assessment of GSEM

Consider the three settings: (i) CCC: X, M and Y all follow Normal distributions;

(ii) CDC: X and Y follow Normal distribution, and M follows Bernoulli distribution;

(iii) CCD: X and M follow Normal distribution, and Y follows Bernoulli distribution.

For each setting, we calculate average bias, MSE, and empirical coverage probability

via both parametric bootstrap and non-parametric bootstrap for conditional NDE,

NIE, α, γ and β. The sample size n varies over 200, 500, and 1000. For each sample

size, we run 1,000 replicates. Coverage probability of confidence interval is obtained
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by 500 bootstrap replicates.

The GSEM model is set up according to (3.6) and (3.9), while covariates W =

(W1,W2,W3,W4), and W1 = (W1,W2,W3), with W1 being a column of all ones

for the intercept. Covariates W2,W3,W4 are assumed to follow a multivariate nor-

mal distribution with mean zero and compound symmetry correlation ρw = 0.2 and

standard deviation σw = 0.3. Set βx = (0.5, 0.2, 0.2)>, βm = (0.8, 0.3, 0.3, 0.4)>,

βy = (−0.2, 0.4,−0.2, 0.7)>, and σx = σm = σy = 0.3. For the settings (i), (ii)

and (iii), (α, γ, β) take the following values: (0.20, 0.10, 0.20), (0.15, 0.10, 0.75) and

(0.70, 0.10, 0.18).

First, we generate Zx, Zm, Z∗m, Zy and Z∗y according to (3.6), and then given

true parameters and simulated covariates, we generate exposure X = W>
1 βx + σxZx,

and mediator M and outcome Y below. (i) CCC: M = W>βm + σmZ
∗
m, Y =

W>βy + σyZ
∗
y ; (ii) CDC: M = I{Φ(Z∗m) > 1

exp(W>βm)+1
}, Y = W>βy + σyZ

∗
y ; and

(iii) CCD: M = W>βm + σmZ
∗
m, Y = I{Φ(Z∗y ) > 1

exp(Wβy)+1
}.

We apply the GSEM methodology to first obtain β̂x, β̂m, β̂y, σ̂x, σ̂y, Ẑx, Ẑ
∗
m (or

l̂m and ûm), and Ẑ∗y (or l̂y and ûy) through the standard GLM regression, then we

search α̂, β̂, γ̂ by minimizing the negative observed likelihood function. Lastly, we

calculate the estimated NDE and NIE based on parameter estimates α̂, β̂, γ̂.

The simulation results are summarized in Table 3.2. Under the three settings, the

magnitude of average bias for estimation of parameters and causal effects decrease

as the sample size increases. The MSE for n = 1000 is at most one fifth of that for

n = 200 in each setting. The 95% confidence interval have showed coverage rates

for n = 200, 500, 1000 all close to the 95% nominal level using either parametric or

non-parametric bootstrap. The computation cost in the simulation studies is between

30 to 60 minutes for a dataset with 500 sample size under three different settings of

“CCC”, “CDC” and “CDC”.
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Table 3.2: True value, bias, MSE, 95% coverage by parametric bootstrap (PB), and
non-parametric bootstrap (NB) for NDE, NIE, α, γ and β under three
settings. The sample size varies over 200, 500 and 1,000, with 1,000 data
replicates for each sample size. The confidence interval to determine the
coverage is obtained by 500 bootstrap replicates.

Bias (×10−3) MSE (×10−3) Coverage (PB, %) Coverage (NB, %)

Setting True 200 500 1000 200 500 1000 200 500 1000 200 500 1000
NDE 0.10 3.77 1.76 -0.40 4.99 1.97 0.90 94.2 95.0 95.9 94.6 95.1 96.0
NIE 0.04 0.88 0.79 0.71 0.45 0.16 0.08 94.4 94.6 95.0 93.7 94.5 94.6

CCC α 0.20 5.29 2.34 0.54 5.72 2.13 0.98 93.1 94.7 95.6 93.4 94.4 95.1
γ 0.10 4.93 2.05 -0.33 5.41 2.11 0.98 94.0 95.1 95.9 94.5 95.3 96.2
β 0.20 2.66 2.39 3.25 5.75 2.06 1.11 93.5 94.0 93.8 93.7 94.5 93.8
NDE 0.11 0.98 0.97 -0.32 3.96 1.61 0.71 94.6 95.2 95.7 95.3 95.4 96.0
NIE 0.05 3.53 1.53 0.46 1.46 0.55 0.24 93.3 93.4 94.3 93.7 93.0 94.4

CDC α 0.15 8.31 2.59 0.67 10.23 3.84 1.68 93.3 94.1 95.0 93.8 93.3 94.9
γ 0.10 0.69 0.96 -0.52 8.01 3.15 1.32 94.7 94.1 95.2 93.9 94.2 95.4
β 0.75 22.84 13.96 4.04 20.07 6.74 3.43 92.8 94.7 94.4 93.6 95.1 94.5
NDE 0.13 5.40 0.80 0.59 21.03 8.01 4.00 93.7 94.2 94.6 94.1 94.1 94.2
NIE 0.14 3.70 1.64 1.25 5.45 2.17 1.05 94.7 93.6 94.4 94.6 94.4 94.5

CCD α 0.70 9.22 5.64 3.54 7.56 3.09 1.65 94.7 94.8 93.6 93.3 94.5 94.0
γ 0.10 5.36 0.89 0.67 14.15 5.21 2.57 93.8 94.0 94.8 94.4 93.9 94.4
β 0.18 7.24 2.53 1.92 9.33 3.48 1.71 93.8 93.7 94.2 93.5 94.6 94.5

3.6.2 Comparison to QBMC

In the second simulation study, we compare the coverage probability and MSE be-

tween our proposed GSEM method and the “mediation” R package (Tingley et al.,

2014; Imai et al., 2010a), a quasi-Bayesion Monte Carlo simulation-based method

(in short, QBMC). The comparison is conducted under two scenarios: one under

datasets being generated from the GSEM, and the other from the QBMC. We focus

on assessing their performance for conditional NDE and NIE equal to zero, and not

zero.

The GSEM model specification is the same as discussed in Section 3.6.1. Let

βx = (0.5, 0.2, 0.2)>, βm = (0.8, 0.3, 0.3, 0.4)>, βy = (−0.2, 0.4,−0.2, 0.7)>, and σx =

σm = σy = 0.3. For the null effects, (α, γ, β) takes the following values: (0.30, 0, 0)>,

(0.15, 0, 0)> and (0.70, 0, 0)>. According to the propositions discussed in Section 3.5,

the conditional NDE and NIE are both zero in these three settings. For the non-

zero causal effects, (α, γ, β) takes values (0.20, 0.10, 0.20)>, (0.15, 0.10, 0.75)> and

(0.70, 0.10, 0.18)>.
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The QBMC model is set up as follows: X is simulated from N(W>
1 βx, σX), then

M and Y are generated for the following three settings: (i) CCC: M = βxmX +

W>βm + εM , Y = βxyX + βmyM + W>βy + εY ; (ii) CDC: logit(P (M = 1)) =

βxmX + W>βm, Y = βxyX + βmyM + W>βy + εY ; and (iii) CCD: M = βxmX +

W>βm + εM , logit(P (Y = 1)) = βxyX + βmyM + W>βy, where σX = σM =

σY = 0.3, βx = (0.5, 0.2, 0.2)>, βm = (0.5, 0.2, 0.2, 0.4)>, βy = (−0.8, 0.2,−0.5, 0.4)>.

For settings (i) through (iii), (βxm, βxy, βmy)
> take the following values (0.30, 0, 0)>,

(0.30, 0, 0)> and (0.30, 0, 0)> for null effects, and (0.20, 0.10, 0.20)>, (0.40, 0.10, 0.50)>

and (0.70, 0.50, 0.70)> for non-zero effects.

Table 3.3 summarizes the comparison results between GSEM and QBMC under

the criteria of empirical coverage probability, average bias and MSE. When the data

are generated from the GSEM, the coverage rates of GSEM are closer to the nominal

95% level in most cases. For average bias and MSE, the GSEM has shown advantages

in some cases, such as CCD where the GSEM consistently provides smaller bias and

MSE for NIE, no matter the true effects are zeros or not, compared to QBMC. In the

CDC case, the GSEM provides smaller bias for NIE and NDE compared to QBMC

when sample size n = 500 and the true effects are not zero. For the other cases, the

results between the two methods are comparable.

When the data are generated from QBMC and effects are zero, two methods are

comparable. When the effects are not zero, since the QBMC method does not provide

formula to calculate the true effects, the true effects are estimated from a dataset

with a very large sample n = 100, 000, under which the estimated effects from the R

package are then used as true effects. So the comparison under the non-zero effect

setting needs to be interpreted cautiously.
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Table 3.3: Coverage via the parametric bootstrap, bias and MSE comparison of
GSEM and QBMC. When data are generated from GSEM, (α, γ, β)>

takes values (0.30, 0, 0)>, (0.15, 0, 0)> and (0.70, 0, 0)> under zero NDE and
NIE; and (0.20, 0.10, 0.20)>, (0.15, 0.10, 0.75)> and (0.70, 0.10, 0.18)> un-
der non-zero NDE and NIE. Similarly, when data are generated from SEM,
(βxm, βxy, βmy)

> takes values (0.30, 0, 0)>, (0.30, 0, 0)> and (0.30, 0, 0)>

under zero NDE and NIE; and (0.20, 0.10, 0.20)>, (0.40, 0.10, 0.50)> and
(0.70, 0.50, 0.70)> under non-zero NDE and NIE. The sample size varies
over 200 and 500, with 1,000 data replicates for each sample size.

Coverage (%) Bias (×10−3) MSE (×10−3)

Data Setting Effect True Method 200 500 200 500 200 500

GSEM

CCC

NDE 0
GSEM 95.0 94.6 -1.70 3.62 5.82 2.31
QBMC 95.4 94.4 -1.68 3.59 5.67 2.27

NIE 0
GSEM 92.6 94.3 -0.30 -0.37 0.58 0.20
QBMC 93.2 94.0 -0.26 -0.36 0.54 0.20

NDE 0.10
GSEM 95.3 94.8 -0.56 3.89 5.13 2.06
QBMC 95.4 94.0 -1.74 3.37 5.03 2.03

NIE 0.04
GSEM 94.0 94.6 1.28 -0.12 0.47 0.16
QBMC 94.0 94.7 -0.03 -0.65 0.44 0.16

CDC

NDE 0
GSEM 95.1 94.0 -1.97 3.40 5.24 2.12
QBMC 95.1 93.8 -1.96 3.35 5.07 2.09

NIE 0
GSEM 97.8 96.0 -0.02 -0.15 0.12 0.04
QBMC 98.7 96.9 0.02 -0.12 0.10 0.03

NDE 0.11
GSEM 93.9 94.2 -1.87 2.23 4.18 1.64
QBMC 94.2 94.3 0.51 4.30 4.14 1.66

NIE 0.05
GSEM 93.9 95.0 3.01 0.05 1.37 0.49
QBMC 96.0 95.5 -2.77 -3.33 1.08 0.42

CCD

NDE 0
GSEM 96.0 95.4 9.14 1.03 19.94 7.70
QBMC 96.6 95.9 9.68 1.86 17.23 7.13

NIE 0
GSEM 94.0 94.3 -6.63 -0.12 4.82 1.82
QBMC 95.4 95.0 -8.28 -0.83 5.82 2.44

NDE 0.13
GSEM 95.4 94.6 6.42 1.63 19.35 7.84
QBMC 95.5 94.9 1.39 -1.96 16.74 7.20

NIE 0.14
GSEM 93.6 95.0 -0.90 0.87 5.51 2.10
QBMC 95.3 93.8 7.09 17.24 5.83 2.73

SEM

CCC

NDE 0
GSEM 95.0 94.6 -1.70 3.62 5.82 2.31
QBMC 95.5 94.5 -1.68 3.59 5.67 2.27

NIE 0
GSEM 92.6 94.3 -0.30 -0.37 0.58 0.20
QBMC 93.4 93.9 -0.26 -0.36 0.54 0.20

NDE 0.10
GSEM 95.3 94.0 3.80 8.38 5.45 2.24
QBMC 95.1 94.6 2.59 7.85 5.33 2.20

NIE 0.04
GSEM 93.6 94.2 -0.26 -1.70 0.49 0.17
QBMC 93.7 93.4 -1.61 -2.25 0.47 0.17

CDC

NDE 0
GSEM 94.0 93.9 -4.06 -0.98 5.16 2.06
QBMC 95.2 94.1 -4.14 -0.96 5.02 2.03

NIE 0
GSEM 99.5 99.3 0.34 -0.02 0.05 0.01
QBMC 99.9 99.6 0.34 -0.02 0.04 0.01

NDE 0.09
GSEM 93.6 94.0 5.24 7.49 5.28 2.17
QBMC 95.7 93.5 1.95 5.13 5.01 2.05

NIE 0.04
GSEM 93.5 93.6 5.41 3.76 3.32 1.23
QBMC 95.7 96.7 5.41 4.83 3.31 1.24

CCD

NDE 0
GSEM 94.3 94.2 1.08 3.93 13.72 5.42
QBMC 95.6 94.5 1.91 4.10 12.72 5.21

NIE 0
GSEM 93.7 95.1 -2.71 -0.79 1.17 0.40
QBMC 95.2 94.8 -3.41 -1.21 1.10 0.42

NDE 0.12
GSEM 94.3 95.3 11.24 7.20 21.25 8.26
QBMC 95.0 95.5 5.36 3.70 18.25 7.63

NIE 0.12
GSEM 94.2 93.2 -21.14 -18.14 5.46 2.19
QBMC 95.7 96.5 -12.30 -4.60 5.75 2.31
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3.6.3 Odds Ratio comparison for Binary Outcome

In the third simulation study, we consider the “CCD” case where X and M are

continuous and Y is binary. The NDE and NIE on the odds ratio scale are compared

by GSEM according to (3.11), and an alternative approximation approach proposed

by VanderWeele and Vansteelandt (2010), which is termed as “VV” method in short.

In particular, we consider two scenarios: rare outcome (around 4% of outcomes being

“1”) and abundant outcome (around 45% of outcomes being “1”).

For both types of outcomes, data are generated from GSEM, with βx = ({0.5, 0.2, 0.2)>,

βm = (0.8, 0.3, 0.3, 0.4)>, α = 0.70, γ = 0.10 and β = 0.18. For the case of

rare outcome, βy = (−0.2, 0.4,−0.2, 0.7)>, and for the case of abundant outcome,

βy = (−3.0, 0.4,−0.2, 0.7)>. Covariates W and W1 and variance parameters are set

the same as those in the first and second simulation studies.

Table 3.4: True value, mean bias, MSE comparison of ORNDE and ORNIE for meth-
ods GSEM and “VV”. Data are generated from GSEM, sample size varies
over 500, 1,000, and 2,000 with 1000 data replicates for each sample size.

Bias MSE

Setting Odds Ratio True Method 500 1000 2000 500 1000 2000

Abundant
ORNDE 1.704

GSEM 0.116 0.098 0.022 0.573 0.250 0.091
VV 0.134 0.114 0.035 0.600 0.264 0.095

ORNIE 1.762
GSEM 0.070 0.026 0.017 0.136 0.056 0.027

VV 0.315 0.251 0.238 0.349 0.166 0.105

Rare
ORNDE 2.169

GSEM 1.135 0.662 0.290 22.062 5.109 1.629
VV 0.618 0.350 0.078 10.039 2.870 1.055

ORNIE 2.113
GSEM 0.502 0.157 0.087 2.662 0.660 0.280

VV 0.830 0.490 0.421 3.610 1.194 0.591

As shown in Table 3.4, for the case of abundant events, “VV” has a larger mag-

nitude of average bias and MSE than GSEM for the odds ratio of NDE and NIE. For

the case of rare events, “VV” has smaller bias and MSE for the odds ratio of NDE,

but larger bias and MSE for the odds ratio of NIE. One explanation for the poor

performance of GSEM on NDE might be that for rare events, the GLM may generate

large bias due to the instability of the numerical algorithm. Nevertheless, GSEM still

provides a better performance compared to “VV” method on the odds ratio of NIE.
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For abundant events, GSEM clearly demonstrates the advantage over “VV”.

3.6.4 Efficiency comparison with MLE

Given that GSEM is a framework based on inference functions for margins (IFM),

a two-stage likelihood estimation method, in this simulation study we are interested in

comparing GSEM with the full maximum likelihood estimation approach to evaluate

the relative efficiency. For simplicity, we consider the CDC setting without confound-

ing factors. The dataset is generated under a GSEM model with α = 0.25, γ = 0.50,

β = 0.75; βx = 0.50 and βy = −0.20 for mean parameters of X and Y ; βm = 0.80 for

log odds ratio of M ; and σx = σy = 0.30 for variance parameters of X and Y . The full

MLE procedure is performed with the R function “optim” to simultaneously search

for the estimates of the aforementioned eight parameters. Table 3.5 reports the com-

parison results of empirical variance, relative efficiency defined by Variance of GSEM
Variance of MLE

,

mean bias and MSE for α, γ and β from 1,000 simulated datasets. GSEM has slightly

larger variance for α and γ then MLE, leading to less than one percent of efficiency

loss. For bias and MSE, GSEM in general provides larger bias and MSE compared

to the full MLE approach.

Table 3.5: Variance, relative efficiency, bias and MSE comparison of GSEM and MLE
under the setting of CDC. When data are generated from GSEM. Relative

efficiency (Rela. Efficiency)=Variance of GSEM
Variance of MLE

. The sample size varies
over 200 and 500, with 1,000 data replicates for each sample size.

Variance (×10−3) Rela. Efficiency Bias (×10−3) MSE (×10−3)

Parameter True Method 200 500 200 500 200 500 200 500

α 0.25
GSEM 9.986 3.767 99.66% 99.82% 10.005 2.929 10.076 3.772
MLE 9.951 3.761 - - 8.578 2.372 10.015 3.763

γ 0.50
GSEM 9.719 3.375 99.46% 99.82% 3.474 1.432 9.721 3.373
MLE 9.666 3.369 - - 1.682 0.717 9.659 3.366

β 0.75
GSEM 17.884 6.626 100.00% 100.00% 18.527 0.994 18.209 6.621
MLE 17.887 6.630 - - 17.848 0.707 18.188 6.624
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3.7 Data Application

In this section, we present a data analysis of the motivating data example from the

ELEMENT cohort study, see the detail of the data example in Section 3.2. We

hypothesize the association between phthalate exposures during mothers’ second and

third trimesters and cardiometabolic outcomes of children in peripuberty may be

mediated by the timing of children reaching their infancy BMI peaks on time (M = 0)

or delayed (M = 1).

Exposures X include six maternal urinary phthalate concentrations of MEHHP,

MEOHP and MIBP measured at second trimester (T2) and third trimester (T3).

Exposure X appears right skewed, so a logorithm transformation of X is taken, and

log(X) is appearing normally distributed. Outcomes Y include three standardized

z-scores of health outcomes measured during adolescence, including fasting glucose

z-score, C-peptide z-score, and MetS z-score. The outcome Y appears normally dis-

tributed. The mediator of reaching infancy BMI peak on time or not is binary where

27.8% of children have delayed infancy BMI peak time. Confounders W1 include

mother’s age at birth, education, and marital status, which affect the exposures, me-

diator and outcomes. Confounders W2 include breastfeeding duration, parity, child’s

gender, gestational age, and birth weight, a set of factors that only affect the mediator

and outcomes.

We fit the dataset by GSEM discussed in Section 3.5.2, where W1 are confounders

for X, and {W1,W2} are confounders for M and Y in our model (3.9). We first

estimate the model parameters and causal effects, then obtain 95% CI for conditional

NDE, NIE and TE through the parametric bootstrap. From the results summarized in

Table 3.6, we found that a positive NIE with an estimate of 0.015 and 95% CI (0.001,

0.026) for MEHHP during the second trimester on MetS z-score, suggesting that one

unit increase in exposure to MEHHP during the second trimester would result in

an increase of 0.015 in MetS z-score, which is mediated through the BMI infancy
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peak. Similarly, a positive NIE with an estimate of 0.017 and 95% CI (0.001, 0.032)

was identified for MEOHP during the second trimester on MetS z-score. However,

both NDE and TE are not statistically significant for these two exposures on the

MetS z-score. We will interpret the significant NIE results as the pathway mediation

analysis.

Table 3.6: NDE, NIE and TE estimates and 95 % CI obtained from GSEM for ELE-
MENT study.

Exposure Outcome NDE 95% CI NIE 95% CI TE 95% CI

MEHHP T2
glucose -0.013 (-0.121, 0.105) 0.016 (-0.001, 0.035) 0.003 (-0.109, 0.116)
C-peptide -0.098 (-0.219, 0.031) 0.014 (-0.003, 0.032) -0.084 (-0.205, 0.038)
MetS -0.067 (-0.133, 0.004) 0.015 (0.001, 0.026) -0.051 (-0.120, 0.016)

MEOHP T2
glucose -0.011 (-0.130, 0.100) 0.017 (-0.002, 0.038) 0.006 (-0.115, 0.116)
C-peptide -0.105 (-0.236, 0.016) 0.015 (-0.003, 0.034) -0.090 (-0.227, 0.032)
MetS -0.071 (-0.134, 0.005) 0.017 (0.001, 0.032) -0.054 (-0.118, 0.022)

MIBP T2
glucose 0.038 (-0.078, 0.150) 0.014 (-0.007, 0.044) 0.052 (-0.053, 0.168)
C-peptide -0.019 (-0.128, 0.097) 0.011 (-0.007, 0.038) -0.008 (-0.117, 0.108)
MetS -0.020 (-0.084, 0.053) 0.013 (-0.005, 0.041) -0.007 (-0.073, 0.069)

MEHHP T3
glucose 0.053 (-0.069, 0.163) 0.006 (-0.013, 0.022) 0.059 (-0.066, 0.168)
C-peptide 0.017 (-0.104, 0.137) 0.005 (-0.014, 0.020) 0.022 (-0.098, 0.142)
MetS 0.005 (-0.069, 0.077) 0.005 (-0.016, 0.017) 0.011 (-0.066, 0.081)

MEOHP T3
glucose 0.055 (-0.071, 0.184) 0.003 (-0.022, 0.022) 0.058 (-0.067, 0.188)
C-peptide 0.033 (-0.093, 0.173) 0.003 (-0.017, 0.017) 0.035 (-0.089, 0.175)
MetS 0.009 (-0.065, 0.091) 0.003 (-0.020, 0.018) 0.013 (-0.062, 0.091)

MIBP T3
glucose 0.106 (-0.027, 0.257) 0.013 (-0.008, 0.039) 0.118 (-0.012, 0.266)
C-peptide 0.020 (-0.126, 0.179) 0.011 (-0.009, 0.039) 0.030 (-0.110, 0.184)
MetS -0.014 (-0.099, 0.087) 0.012 (-0.008, 0.032) -0.001 (-0.093, 0.102)

For sensitivity analysis, we perform the same analysis stratified on gender. For

boys, the sample sizes for the second trimester and the third trimester exposures are

79 and 96; for girls, the same sample sizes are 98 and 106. The stratified analyses

were presented in Table B.2 for boys and Table B.3 for girls in Appendix B.4. For

boys, none of the effects are found to be significant, likely due to the small sample

size. For girls, a significant NIE is identified for MIBP exposure during the second

trimester on MetS z-score.

Another sensitivity analysis is performed to examine the effect of breastfeeding

duration, a continuous variable about how many months that a mom had been breast-

feeding her child. In previous analyses, we assume that breastfeeding duration is a

confounder for mediator and outcome and the breastfeeding duration is not affected
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by exposures X. This is one of the key assumptions for the identifications of natural

effects. However, it is possible that breastfeeding could be influenced by exposures and

then influences the BMI infancy peak, making it a potential mediator. Therefore, we

perform the same analysis again without including the breastfeeding as a confounder

to examine how different the results are with and without including breastfeeding.

Table B.1 in Appendix B.4 summarizes the results for the sensitivity analysis exclud-

ing breastfeeding. Compare it with Table 3.6, we can see that the effect estimates

are very similar, and the NIE remains significant for second trimester exposures to

MEOHP and MIBP on MetS z score.

3.8 Concluding Remarks

This chapter developed a new framework for mediation analysis, GSEM, when ex-

posure X, mediator M and outcome Y are of mixed types. We proposed a unified

framework of hierarchical GSEMs based on the Gaussian copula models, which allows

us to specify the joint density of X, M and Y using a hierarchical modeling approach.

The GSEMs provide a flexible modeling of causal effects for mixed data types. The

proposed GSEM characterizes interpretable parameters α, β and γ. We illustrated

the GSEM methodology through three specific examples of practical importance.

Through extensive simulation studies, the proposed profile likelihood estimation can

accurately make statistical inference on NDE and NIE under the model assumptions.

Modeling X, M and Y respectively given covariates W allows us to potentially

handle the high dimensional covarites easily and efficiently. In contrast, the conven-

tional structural equation modeling involves both the parameters for causal effects

and high-dimensional nuisance parameters for the confounding effects, leading to a

complicated inference procedure. The ability to handle the high-dimensional covari-

ates easily is especially critical as one of the core assumptions under the potential

outcome framework is “sequential ignorability” meaning that we must include all the
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possible confounders in order to identify the conditional causal effects (VanderWeele

and Vansteelandt , 2009).

The current procedure focuses mainly on the estimation of the causal effects. To

make inference about the causal effects, we need to develop formal statistical testing

procedures to address the issue of composite null hypothesis. This is a challenging as

it would be a composite task, which is our future work. We plan to extend the cur-

rent framework of single mediator to multi-mediators of mixed types. There are some

methods developed for continuous multi-mediators. However, there lack methodolog-

ical developments for multi-mediators of mixed types. The flexibility of the copula

dependent model allowing the different types of marginal distributions can provide

a useful tool to handle the multi-mediators of mixed data types. Another potential

future work is to adopt the current GSEM framework and extend it to accommo-

date multiple mediators with mixed data types. As seen in our real data application,

the BMI infancy peak is a binary mediator and breastfeeding duration is potential

a continuous mediator, and currently there is a lack of methods to analyze multiple

mediators of mixed types. The flexibility of copula dependence models that handle

mixed data types gives rise to a possible solution to modeling mediators of different

types.
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CHAPTER IV

Mediation Pathway Analysis with Categorical

Exposure Variable

4.1 Introduction

Causal mediation analysis via the structural equation modeling (SEM) approach has

been widely used in many scientific disciplines, such as social sciences, epidemiology,

environmental health sciences and so on. Baron and Kenny (1986) first proposed the

mediation analysis under the linear regression framework, and more recent literature

has focused on the potential outcome framework (Robins and Greenland , 1992; Pearl ,

2001), in which the concepts of direct and indirect effects have been extended to

natural direct effect (NDE) and natural indirect effect (NIE).

In the SEM setting as shown in Figure 1.1, when both mediator M and outcome

Y are continuous and normally distributed, the assessment of the NDE and NIE are

well studied via the decomposition TE=NDE+NIE, see more details in (VanderWeele

and Vansteelandt , 2009). Since exposure X is a dependent variable in both regression

models of SEM, X can be either continuous or categorical. In this chapter, we focus

on the case where exposure X is binary, such as a treatment variable with active

drug and placebo. In this case, we are interested in assessing the causal effects of the

treatment on an outcome of interest.
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In this chapter, we focus on two important cases of binary exposure. The first

case concerns the scenarios of drug absorption rate, an issue of effective drug dose.

Our motivating example is a birth cohort study, “The Early Life Exposures in Mexico

to ENvironmental Toxicants” (ELEMENT), which recruited three mother-child pairs

from Mexico City during mid-90s. The overarching goal of this cohort study is to

understand how environmental toxicants, such as phthalates, phenols and metals

affect mother and child health outcomes, such as birth weight. Of those toxicants,

exposure to lead is especially concerning as in-utero lead exposure may lead to low

birth weight and developmental delay in offspring (Zhu et al., 2010). A randomized

control trial in the ELEMENT cohort was conducted to investigate whether maternal

calcium supplementation helps suppress the release of the bone lead to the blood,

which in turn may reduce offspring’s exposure to lead during pregnancy (Perng et al.,

2019). In this chapter we plan to examine whether, and to what extent, the effect

of calcium supplementation on birth weight is mediated by the mother’s blood lead

concentration during third trimester of pregnancy.

In this motivation example, we argue that even though mothers are allocated in the

same treatment group, their individual absorption of calcium capacity is very likely to

vary from person to person. It is practically unrealistic to obtain direct measurements

of absorption. Thus, using binary exposure in the SEM is an approximation , ignoring

the individual-level calcium dose. To fill this gap, we propose a new model, termed as

effective dose model, a latent exposure variable Z is introduced to capture the effective

dose of the treatment in the analysis of effective degree of those causal effects. Figure

4.1 describes a DAG with observed treatment variable (X), latent absorbed dose of

calcium (Z), mediator maternal blood lead (M), and outcome birth weight (Y ).

As a scientific premise, we hypothesize that for mothers allocated to the control group

(X = 0), their effective dose of calcium Z = 0; for mothers allocated to calcium group
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Figure 4.1: Hypothesized causal associations among calcium absorbed, maternal
blood lead and birth weight.

(X = 1), their absorbed dose of calcium Z follows a truncated normal distribution,

denoted by TN(a, 1), which only takes positive values and a > 0. Here, we see

Z = (1 − X)I[Z = 0] + XTN(0,+∞)(a, 1). The known value a describes the mean

absorption rate for an individual. The higher the value a, the higher the subject’s

absorption of calcium. The subject specific ai is assumed to have been obtained

from external data, such as Phase I clinical trials that measure the pharmacokinetic

dynamics of the drug. ai can be modeled by statistical modeling characterizing the

individual specific absorption rate. We believe this latent dose variable of calcium can

more accurately describe effective exposure than a binary treatment variable. The

conventional binary treatment variable X can be viewed as an approximation to the

effective dose variable Z. While using a binary exposure X in a mediation analysis

gives rise to certain simplicity, it indeed poses an assumption of the same dosage for

individuals in the calcium group in the evaluation of causal effects. Specially, this

assumption implies that the treatment effect on the outcome is linear, and ignores

the individual variability in the absorption of calcium. Adopting Z instead of X in

the mediation analysis allows us to obtain better examination of causal mediation

pathways.
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Let us discuss another important case of binary exposure. In some observational

studies, often we only observe a binary exposure which arises from a continuous under-

lying unobserved exposure variable, by the means of dichotomization. For example,

in electronic health records data, patient’s diabetes diagnosis is commonly recorded

as a binary variable of yes or no, but his/her fasting glucose levels measured by the

lab are not available. In fact, the diagnosis of diabetes (X = 1) means his/her fast-

ing glucose level is 126 mg/dl or higher. For all the diabetes patients, their glucose

levels can vary substantially, and the information of severity provides more critical

medical condition than a dichotomous disease status. The aforementioned effective

dose scenario is not the same this type of binary exposure. Therefore, we propose

another dichotomization model, in which a latent exposure variable is introduced to

determines an observed binary exposure variable X. In the diabetes example, con-

ceptually we can map the glucose level to a standardized latent z-score variable Z,

X = I(Z > 0).

Under the two proposed binary exposure models, we investigate both NDE and

NIE in the causal mediation pathways. Along this line, we propose an extension

under the latent variable model, leading to the new concepts of generalized natural

direct/indirect effects (GNDE/GNIE). We demonstrate that GNDE and GNIE are

more desirable to quantify and interpret causal mediation effects than the conven-

tional NDE and NIE (Pearl , 2001).

The remainder of the chapter is organized as follows. Section 4.2 introduces

two new frameworks of effective dose model and latent exposure model. Section 4.3

presents the formulation of NDE and NIE, which is then extended into the new con-

cepts to GNDE and GNIE. Section 4.4 discusses the maximum likelihood estimation

procedure for the model parameters and effects, as well as their confidence intervals.

Section 4.5 presents simulation studies to examine the numerical behaviours of the

two proposed models. Section 4.6 is devoted to the data application of the calcium
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supplementation trial from ELEMENT study. Section 4.7 includes some concluding

remarks on advantages and limitations of the proposed methodologies. Technical

details can be found in Appendix C.

4.2 Method

This section presents two new models to describe the potential data generating mech-

anism of binary exposure. As a result, we generalize the definitions of the classical

natural direct effect and natural indirect effect. These new concepts can provide

better understanding and interpretation of the underlying intrinsic causal mechanism

among binary exposure X, mediator M and outcome Y .

4.2.1 Effective Dose Model

We now present the effective dose model. Consider a randomized trial in that the

allocation of treatment or exposure X follows a Bernoulli distribution with probability

p = 0.5. Assume Z is a latent variable that represents the effective dose of the

treatment that a subject would absorb. For a subject in the control arm (X = 0), the

dose Z variable is naturally equal to 0; for a subject in the active drug arm (X = 1),

the dose variable Z is assumed to follow a truncated normal distribution with mean

a (a > 0) and variance 1 due to the fact that it takes positive values on the interval

(0,∞), denoted as TN(0,∞)(a, 1). Hence, the marginal distribution of Z is a mixture

of point mass function at 0 and truncated normal distribution taking positive values;

namely Z | X = (1−X)I[Z = 0] +XTN(0,+∞)(a, 1). To form a structured equation

model (SEM) in a mediation analysis, we assume that continuous mediator M is

normally distributed with mean αZ and variance σ2
M , and that a continuous outcome

Y is normally distributed with mean γZ + βM and variance σ2
Y . Apparently, the
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effective dose model is used to expand the commonly used SEM as follows:

X ∼ Bern(p = 0.5), [Z | X] ∼ (1−X)I[Z = 0] +XTN(0,∞)(a, 1),

[M | Z ] ∼ N(αZ, σ2
M), [Y | Z,M ] ∼ N(γZ + βM, σ2

Y ), (4.1)

where a is pre-specified mean absorption rate of calcium.

4.2.2 Latent Exposure Model

We now turn to the latent exposure model for binary exposure X that arises from

dichotomization. Assuming that a latent continuous exposure variable Z follows a

normal distribution with mean µ and variance 1, we only observe a binary exposure

variable X that is dichotomized from continuum Z. Exposure X may be interpreted

as an observed categorical variable of the latent Z. Similar to effective dose model

above, there exists a latent variable Z of the underlying exposure. The latent exposure

model takes the following form:

Z ∼ N(µ, 1), [X | Z ] = I(Z > 0),

[M | Z ] ∼ N(αZ, σ2
M), [Y | Z,M ] ∼ N(γZ + βM, σ2

Y ). (4.2)

4.3 Mediation Pathway Analysis

Given two models (4.1) and (4.2), we now derive the natural direct effect (NDE)

and natural indirect effect (NIE). The details of the derivations can be found in

Appendix C.1. As a result, we are able to generalize these classical concepts; we

define the generalized natural direct effect (GNDE) and generalized natural indirect

effect (GNIE) based on the latent exposure models (4.1) and (4.2). We discuss some

connections of the new concepts to the classical NDE and NIE.
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4.3.1 Natural Direct and Indirect Effects

Let us begin with the potential outcome framework from the causal inference lit-

erature (Robins and Greenland , 1992; Pearl , 2013; VanderWeele and Vansteelandt ,

2009). Adopting the counterfactual notions (VanderWeele and Vansteelandt , 2009),

let Y (x,m) denote the counterfactual outcome that would have been observed for the

subject had the exposure X been set to value x and mediator M to value m; let M(x)

be the counterfactual value of mediator had the exposure X been set to value x. By

definition, E{Y (xa,M(xb))} is the expected outcome of Y had the exposure been set

to value xa and mediator been set to value M(xb), and moreover we have

E{Y (xa,M(xb))} = EM [EY {Y |M,X = xa}|X = xb].

According to VanderWeele and Vansteelandt (2009), the natural direct effect (NDE),

the natural indirect effect (NIE), and the total effect (TE) for a change of X from x0

to x1 are given by, respectively,

NDE(x0, x1) = E{Y (x1,M(x0))} − E{Y (x0,M(x0))},

NIE(x0, x1) = E{Y (x1,M(x1))} − E{Y (x1,M(x0))},

TE(x0, x1) = E{Y (x1,M(x1))} − E{Y (x0,M(x0))}.

Proposition IV.1. Under the Effective Dose Model (4.1), the causal effects for

a change of X from level 0 to level 1 are given by, respectively
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NDE =

{
σ2
Ma

σ2
M + α2

+
σM√
σ2
M + α2

EM(A1 | X = 0)

}
γ,

NIE = α

(
a+

φ(a)

Φ(a)

)(
β +

αγ

σ2
M + α2

)
+

γσM√
σ2
M + α2

×

{EM(A1 | X = 1)− EM(A1 | X = 0)} ,

where A1 =
φ

(
αM+σ2Ma

σM

√
α2+σ2

M

)

Φ

(
αM+σ2

M
a

σM

√
α2+σ2

M

) . Moreover, we have the following sufficient conditions: if

γ = 0, then NDE = 0; if α = 0 or γ = β = 0, then NIE = 0.

Proposition IV.2. Under the Latent Exposure Model (4.2), the causal effects

for a change of X from level 0 to level 1 are given by, respectively

NDE =
γσM√
σ2
M + α2

EM(A2 + A3 | X = 0),

NIE =
αφ(µ)

Φ(µ)(1− Φ(µ))

(
β +

αγ

σ2
M + α2

)
+

γσM√
σ2
M + α2

×

{EM(A2 | X = 1)− EM(A2 | X = 0)} ,

where A2 =
φ

(
αM+σ2Mµ

σM

√
α2+σ2

M

)

Φ

(
αM+σ2

M
µ

σM

√
α2+σ2

M

) and A3 =
φ

(
αM+σ2Mµ

σM

√
α2+σ2

M

)

1−Φ

(
αM+σ2

M
µ

σM

√
α2+σ2

M

) . Moreover, we have the fol-

lowing sufficient conditions: if γ = 0, then NDE = 0; if α = 0 or γ = β = 0, then

NIE = 0.

4.3.2 Generalized Natural Direct and Indirect Effects

Alternatively, we focus on causal effects under latent exposure models (4.1) and (4.2),

with a change of Z from za to zb:

E{Y (Za,M(Zb))} = EM [EY {Y |M,Z = za}|Z = zb].
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We term the resulting NDE/NIE/GTE as Generalized Natural Direct/Indirect/Total

Effects. Precisely, for a change of Z from z0 to z1, GNDE, GNIE and GTE defined

given by, respectively

GNDE(z0, z1) = E[Y (z1,M(z0)]− E[Y (z0,M(z0)],

GNIE(z0, z1) = E[Y (z1,M(z1)]− E[Y (z1,M(z0)],

GTE(z0, z1) = E[Y (z1,M(z1)]− E[Y (z0,M(z0)].

Since the causal effects are to make a comparison between treatment group and

control group, let z0 represent a possible latent value for a subject in the control

group (X = 0), and let z1 represent a latent value for a subject in the treatment

group (X = 1). This means that for the effective dose model (4.1), all z0 values equal

to 0.

Proposition IV.3. Under the Effective Dose Model (4.1), the generalized causal

effects for a change of Z from z0 = 0 to z1 are given by, respectively

GNDE(z0, z1) = γ(z1 − z0) = γz1, GNIE(z0, z1) = αβ(z1 − z0) = αβz1,

where z1 = E(Z | X = 1) = a+ φ(a)
Φ(a)

. Moreover, we have the sufficient and necessary

conditions: GNDE = 0 if and only if γ = 0; GNIE = 0 if and only if α = 0 or β = 0.

Proposition IV.4. Under the Latent Exposure Model (4.2), the generalized

causal effects for a change of Z from z0 to z1 are given by, respectively

GNDE(z0, z1) = γ(z1 − z0), GNIE(z0, z1) = αβ(z1 − z0),

where z1 − z0 = E(Z | X = 1)− E(Z | X = 0) = φ(µ)
Φ(µ)(1−Φ(µ))

. Moreover, we have the

sufficient and necessary conditions: GNDE = 0 if and only if γ = 0; GNIE = 0 if

and only if α = 0 or β = 0.
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For both latent models for binary exposure (4.1) and (4.2), the parameter γ char-

acterizes GNDE, while α and β characterize GNIE. Their interpretation are identical

to those given in the classical SEM setting. In contrast to the sufficient conditions for

NIE = 0 in Propositions IV.1 and IV.2, parameter γ determines the NIE. These are

not necessary conditions. The new concepts of GNDE and GNIE apparently provide

better interpretations of causal effects for the roles of parameters α, β and γ.

4.4 Estimation

This section presents the estimation of parameters and causal effects under both

models. Due to the involvement of the latent exposure variable, the key step is to

derive the observed data likelihood by integrating out the latent exposure variable

Z. Then, by minimizing the negative log-likelihood function, we obtain parameter

estimates, using the R function “optim”. In particular, we use the algorithm “L-

BFGS-B” (Byrd et al., 1995) for the optimization. This algorithm allows us to specify

the lower and/or upper bounds of the parameters, such as the constraints σ2
M > 0

and σ2
Y > 0.

Standard errors of the model parameter estimates are computed from the Fisher

Information matrix, and standard errors of the generalized causal effects are obtained

via the delta method (Dorfman, 1938). Consequently, a 95% confidence interval

(CI) is constructed under the standard large-sample theory of maximum likelihood

estimation (MLE), with point estimates and their standard errors.

4.4.1 Observed Likelihood in Effective Dose Model

Some key steps required by the calculation of the observed log likelihood function are

given in this section. Consider a dataset consist of n observations (Xi,Mi, Yi), as well

as the latent variable Zi, defined in model (4.1). The complete data likelihood for
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subject i is given by

π(Yi,Mi, Zi | Xi) = π(Yi |Mi, Zi)π(Mi | Zi)π(Zi | Xi),

where π(·) is a generic notation of a density function.

When Xi = 0,

π(Yi |Mi, Zi)π(Mi | Zi)π(Zi | Xi) ∝
1√
σ2
Mσ

2
Y

exp

{
−(Yi − βMi)

2

2σ2
Y

− M2
i

2σ2
M

}
. (4.3)

When Xi = 1,

+∞∫
0

π(Yi |Mi, Zi)π(Mi | Zi)π(Zi | Xi = 1)dZi

∝
+∞∫
0

1√
σ2
Mσ

2
Y

exp

{
−(Yi − γZi − βMi)

2

2σ2
Y

− (Mi − αZi)2

2σ2
M

}
φ(Zi − ai)

Φ(ai)
dZi

=

Φ

 γ(Yi−βMi)
σ2
Y

+
αMi
σ2
M

+ai√
γ2

σ2
Y

+ α2

σ2
M

+1


√
σ2
Mσ

2
Y

(
γ2

σ2
Y

+ α2

σ2
M

+ 1
)exp

−(Yi − βMi)
2

2σ2
Y

− M2
i

2σ2
M

+

(
γ(Yi−βMi)

σ2
Y

+ αMi

σ2
M

+ ai

)2

2
(
γ2

σ2
Y

+ α2

σ2
M

+ 1
)

 .

(4.4)

According to (4.3) and (4.4), for a random sample of n subjects, we have the log-

likelihood function,

`(θ) = −n
2

(log σ2
M + log σ2

Y )−

n∑
i=1

(Yi − βMi)
2

2σ2
Y

−

n∑
i=1

M2
i

2σ2
M

− n1

2
log

(
γ2

σ2
Y

+
α2

σ2
M

+ 1

)

+

∑
i:Xi=1

(
γ(Yi−βMi)

σ2
Y

+ αMi

σ2
M

+ ai

)2

2
(
γ2

σ2
Y

+ α2

σ2
M

+ 1
) +

∑
i:Xi=1

log Φ

 γ(Yi−βMi)

σ2
Y

+ αMi

σ2
M

+ ai√
γ2

σ2
Y

+ α2

σ2
M

+ 1

 ,
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where n1 =
n∑
i=1

I(Xi = 1) is the total number of subjects in the treatment group. We

minimize the negative log-likelihood function −`(θ) by the algorithm “L-BFGS-B”

with respect to model parameters α, γ, β, σ2
M and σ2

Y , and obtain the parameter

estimates. The initial values to start the search are set at α̂(0) = 0, γ̂(0) = 0, β̂(0) = 0,

σ̂
2(0)
M = v̂ar(M), σ̂

2(0)
Y = v̂ar(Y ).

4.4.2 Observed Likelihood in Latent Exposure Model

The joint distribution of Zi, Mi and Yi may be expressed as,


Zi

Mi

Yi

 ∼ N




µ

αµ

ηµ

 ,


1 α η

α α2 + σ2
M αη + βσ2

M

η αη + βσ2
M η2 + β2σ2

M + σ2
Y


 , (4.5)

where η := γ + βα. It follows that the density of Xi, Mi and Yi is

π(Xi,Mi, Yi) =

∫
Zi

π(Zi,Mi, Yi)I[Xi = I(Zi > 0)]dZi

=

∫
Zi

π(Zi |Mi, Yi)π(Mi, Yi)I[Xi = I(Zi > 0)]dZi

=π(Mi, Yi)P (Zi < 0 |Mi, Yi)
1−Xi P (Zi > 0 |Mi, Yi)

Xi .

The observed data log-likelihood function is

`(θ) =
n∑
i=1

log π(Mi, Yi) +
n∑
i=1

logP (Zi < 0 |Mi, Yi)

−
n∑
i=1

Xi log
P (Zi < 0 |Mi, Yi)

1− P (Zi < 0 |Mi, Yi)
,

where densities π(Mi, Yi) and π(Zi | Mi, Yi) can be straightforwardly obtained from

(4.5). We then minimize the negative log-likelihood function −`(θ) by the algorithm

“L-BFGS-B” in the R function optim with respect to model parameters α, γ, β, µ,
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σ2
M and σ2

Y to obtain the parameter estimates. The initial values α̂(0) γ̂(0), β̂(0), µ̂(0),

σ̂
2(0)
M , σ̂

2(0)
Y are given by the moment estimates. In particular, µ̂(0) is estimated by the

quantile of the standard normal distribution with the probability equal to the observed

proportion of Xi = 1. Since E(Zi | Xi = 0) = µ− φ(µ)
1−Φ(µ)

and E(Zi | Xi = 1) = µ+ φ(µ)
Φ(µ)

,

let Zi = µ̂(0) − φ(µ̂(0))

1−Φ(µ̂(0))
for Xi = 0, and Zi = µ̂(0) + φ(µ̂(0))

Φ(µ̂(0))
for Xi = 1. Then α̂(0) γ̂(0),

β̂(0), σ̂
2(0)
M , and σ̂

2(0)
Y are obtained by fitting the two regression models in (4.2).

4.5 Simulation

We carry out extensive simulations to evaluate the performance of the MLE in the

two proposed models (4.1) and (4.2). In particular, we calculate average bias, mean

square error (MSE), empirical coverage of 95% confidence interval, empirical standard

error (ESE) of ML estimates, and average standard error (ASE) of estimates for both

parameters and causal effects. Let θ̂j be estimate of a parameter θ under the j-th

simulated dataset, where J denotes the total number of datasets. Let θ0 be the true

value. Then average bias is 1
J

∑J
j=1(θ̂j − θ0); MSE is 1

J

∑J
j=1(θ̂j − θ0)2; coverage

probability is 1
J

∑J
j=1 I(θ̂lj ≤ θ0 ≤ θ̂uj ), where θ̂lj and θ̂uj are 95% lower and upper

limits; ESE is
√

1
J

∑J
j=1(θ̂j − ¯̂

θ)2, where
¯̂
θ = 1

J

∑J
j=1 θ̂j; and ASE is 1

J

∑J
j=1 se(θ̂j),

where se(θ̂j) is the standard error calculated from the Fisher Information matrix.

The sample size n varies over 200, 500 and 1000, and for each sample size, we

generated J = 10, 000 datasets.

4.5.1 Simulation with Effective Dose Model

Binary exposure variable Xi is first simulated from a Bernoulli distribution with

probability 0.5. When Xi = 0 is generated, Zi = 0; when Xi = 1, Zi is drawn from

a truncated normal distribution with mean ai = 0 and variance 1 on interval (0,∞).
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Then, we generate mediator and outcome by,

Mi = 0.3Zi + εMi
, Yi = 0.6Zi + 0.5Mi + εYi , (4.6)

where εMi

i.i.d.∼ N(0, 0.5), and εYi
i.i.d.∼ N(0, 0.5).

Table 4.1 reports the simulation results based on the above evaluation criteria.

Average bias and MSE decrease as the sample size n increases from 200 to 1000,

suggesting the accuracy of the estimates is improved with an increase of the sample

size. The coverage probability for both model parameters and causal effects are all

close to the nominal level 95.0%, ranging from 94.1% to 95.3%, indicating that the

standard errors are well estimated. Both ESE and ASE are close and decrease as

the sample size n increases, confirming the large-sample behaviours of the MLE. In

summary, the simulation results demonstrate clearly that the MLE provides accurate

estimation and appropriate statistical inference, even when the sample size is as low

as 200.

In our simulation study setting, the initial values {α̂(0) = 0, γ̂(0) = 0, β̂(0) =

0, σ̂
2(0)
M = v̂ar(M), σ̂

2(0)
Y = v̂ar(Y )} seem to be reasonable for the “optim” function to

search for the minimum. The “L-BFGS-B” algorithm does not fail even once to get

a convergent solution over 30,000 datasets. The associated computation cost is very

minimal and indeed negligible; a runtime of around 0.11 seconds is used to compute

a dataset with 500 subjects.

4.5.2 Simulation with Latent Exposure Model

For the latent exposure model (4.2), we first generate latent variable Zi from a normal

distribution with mean 0.5 and variance 1, followed by dichotomizing Zi into Xi = 1

if Zi > 0, or Xi = 0 otherwise. Then we generate mediator Mi and outcome Yi

according to regression models in (4.6). The latent exposure model (4.2) has one
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Table 4.1: Bias and MSE of parameter estimates and causal effects, and the coverage
of the 95% confidence interval for the effective dose model; the sample
size varies over 200, 500 and 1000, and the results are obtained by 10,000
replicates.

Bias (×10−3) MSE (×10−3) Coverage (%)

True 200 500 1000 200 500 1000 200 500 1000
α 0.30 -3.11 -0.76 -0.32 7.54 3.01 1.50 95.0 95.0 95.3
γ 0.60 -2.31 -1.27 -0.32 9.69 3.95 1.94 94.9 94.7 95.0
β 0.50 1.81 0.52 0.09 5.93 2.36 1.19 95.0 94.9 94.9

σ2
M 0.50 -2.15 -0.79 -0.94 2.68 1.07 0.54 94.2 94.5 94.5
σ2
Y 0.50 -6.14 -1.74 -1.02 3.13 1.29 0.64 94.1 94.5 95.0

GNDE 0.48 -1.84 -1.01 -0.25 6.17 2.51 1.24 94.9 94.7 95.0
GNIE 0.12 -1.78 -0.55 -0.30 1.35 0.53 0.26 94.8 95.1 95.0

ESE (×10−2) ASE (×10−2)

True 200 500 1000 200 500 1000
α 0.30 8.68 5.48 3.87 8.70 5.50 3.89
γ 0.60 9.84 6.28 4.41 9.78 6.19 4.37
β 0.50 7.70 4.86 3.45 7.67 4.85 3.43

σ2
M 0.50 5.18 3.28 2.33 5.17 3.28 2.32
σ2
Y 0.50 5.56 3.59 2.52 5.57 3.56 2.52

GNDE 0.48 7.85 5.01 3.52 7.81 4.94 3.49
GNIE 0.12 3.67 2.31 1.61 3.70 2.31 1.62

more parameter than the effective dose model (4.1), which is mean parameter µ set

at 0.5; the other five parameters are set the same as those given in Section 4.5.1.

Table 4.2 summarizes the simulation results based on 10,000 simulated datasets.

Average bias, MSE, ESE and ASE decrease as the sample size n increases, and the

coverage rate of 95% confident interval ranges from 93.8% to 95.4%, suggesting that

the inference procedure is appropriate. Once again, our moment-based initial values

appear reasonable to begin the “optim” function, as it is able to find the minimum in

all 30,000 datasets. The computation cost is very minimal with a runtime of around

0.3 minutes for a dataset of 500 subjects on a standard personal computer.

4.6 Data Application

We present a data application from the ELEMENT study described in the Section

of Introduction. The sample used in this mediation analysis is 368 mother-child
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Table 4.2: Bias and MSE of parameter estimates and causal effects, and the coverage
of the 95% confidence interval for the latent exposure model; the sample
size varies over 200, 500 and 1000, and the results are obtained by 10,000
replicates.

Bias (×10−3) MSE (×10−3) Coverage (%)

True 200 500 1000 200 500 1000 200 500 1000
α 0.30 -0.22 -0.71 -0.50 3.25 1.30 0.64 94.7 94.9 95.0
γ 0.60 -0.50 -0.05 -0.18 5.47 2.11 1.06 94.3 95.2 95.2
β 0.50 -2.63 -0.10 -0.16 8.04 3.19 1.57 94.8 94.9 94.8
µ 0.50 2.42 0.40 0.23 7.83 3.09 1.58 95.3 95.2 94.6

σ2
M 0.50 -3.71 -0.92 -0.80 3.00 1.19 0.61 94.2 94.9 94.6
σ2
Y 0.50 -8.38 -2.72 -1.21 4.65 1.86 0.94 93.8 94.3 94.7

GNDE 0.99 0.17 0.23 -0.13 14.36 5.52 2.79 94.5 95.2 95.4
GNIE 0.25 -3.75 -1.52 -0.93 3.03 1.19 0.57 94.0 94.5 94.7

ESE (×10−2) ASE (×10−2)

True 200 500 1000 200 500 1000
α 0.30 5.70 3.60 2.53 5.66 3.59 2.54
γ 0.60 7.39 4.59 3.26 7.28 4.61 3.26
β 0.50 8.97 5.65 3.96 8.84 5.57 3.94
µ 0.50 8.85 5.56 3.97 8.81 5.57 3.93
σ2
m 0.50 5.47 3.45 2.47 5.49 3.48 2.46
σ2
y 0.50 6.76 4.30 3.06 6.76 4.32 3.06

GNDE 0.99 11.98 7.43 5.28 11.90 7.52 5.32
GNIE 0.25 5.49 3.45 2.39 5.51 3.43 2.41

pairs. The study is a randomized control trial where 184 women are supplemented

with calcium (X = 1) and 184 women are supplemented with placebo (X = 0)

during pregnancy. The calcium supplement is administered to suppress the release

of the bone lead into the blood circulation during pregnancy (Perng et al., 2019). In

this way, prenatal lead exposure to offspring could be mitigated for the treatment

group. Young children absorb lead more easily than adults (Boeckx , 1986), and

exposure to lead can pose significant risks to offspring, such as preterm labor (Vigeh

et al., 2011), low birth weight (Zhu et al., 2010), and neurodevelopmental delays

(Vigeh et al., 2014). One study (Scholl et al., 2014) examined the relationships of

calcium metabolism and birth weight. Therefore we hypothesize that mitigating the

blood lead level by calcium supplementation , would affect birth weight in our study

population. In this analysis, exposure X is calcium supplement or not, mediator M

is mother’s blood lead level measured at third trimester, and outcome Y is offspring’s
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birth weight. The absorption rate value ai is estimated for each subject, by ai =

exp
(
− calciumi

maxi(calciumi)

)
, where calciumi is the calcium baseline level measured at first

trimester. Therefore, the higher the baseline calcium level, the lower the absorption

rate ai during supplementation.

The blood lead level has three observations with negative values due to below

detection limit, and their values are changed to 0. The maximum value for blood

lead is 34.3 ug/dL with a mean of 4.3 ug/dL. The birth weight ranges from 1.9 kg to

4.2 kg, with a mean of 3.2 kg. The initial values are set at {α̂(0) = 0, γ̂(0) = 0, β̂(0) =

0, σ̂
2(0)
M = v̂ar(M) = 12.6, σ̂

2(0)
Y = v̂ar(Y ) = 0.16}. The mediator and outcome are

first centered to their respective means before the mediation analysis. In this way,

the intercepts are removed from the SEM.

Table 4.3 summarizes the estimates and 95% confidence intervals for both model

parameter and generalized causal effects. As expected, parameter α is estimated to

be negatively associated with the blood level, meaning that on average the treatment

group have a lower blood lead level. The CIs for both GNDE and GNIE contain 0 so

the causal effects are not significant. The estimates of γ and β are close to zero. In

conclusion, we do not have strong evidence from the data to support that there is a

significant generalized direct effect, nor a significant generalized indirect effect.

Table 4.3: Parameter and effect estimates and 95% confidence interval for the effect
of calcium supplementation on birth weight with potential mediator of
maternal blood lead at third trimester

Estimate SE 95% CI
α -0.2227 0.2342 (-0.6818, 0.2364)
γ 0.0050 0.0268 (-0.0476, 0.0575)
β 0.0013 0.0058 (-0.0101, 0.0127)

σ2
M 12.6468 0.9394 (10.8057, 14.4880)
σ2
Y 0.1558 0.0115 (0.1333, 0.1784)

GNDE 0.0055 0.0298 (-0.0529, 0.0639)
GNIE -0.0003 0.0015 (-0.0032, 0.0026)
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4.7 Concluding Remarks

This chapter develops a new framework of causal mediation analysis under the

structural equation models, in which mediator M and outcome Y are continuous and

normally distributed, and exposure X is binary. We present a useful extension of

the classical SEM framework by a latent exposure model for the binary exposure

under the premise that the “true” underlying dose of exposure is continuous and

latent. We propose two models: the effective dose model and latent exposure model

to characterize the mechanism as to how the binary exposure arises from a latent

continuum. The two models have different interpretations: the effective dose model

is suitable for a setting of the randomized control trial, while the latent exposure

model is applicable to the observational study, where binary exposure X is recorded

by dichotomization. We reestablish the concepts of direct and indirect effects under

the latent variable models and propose a generalization of NDE and NIE based on

changes of latent exposure Z. We showed that the generalized concepts offer more

interpretable causal effects. The simulation studies show that the MLE in both models

can achieve accurate estimates of parameter and causal mediation effects and provide

numerically stable results with fast computation.
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CHAPTER V

Future Plan

Chapter II developed a likelihood ratio test to jointly test for the mediation pathway

involving multiple correlated mediators. This is useful in practice to deal with a

cluster of mediators that often arise from studies with omics data. It has been shown

that the joint hypothesis testing method improves power over existing methods under

properly controlled type I error. This is a test method, along with the R package,

that we would like to recommended to practitioners.

Below are a few future directions of methodological development that further

extends the joint test.

(i) An extension of the current framework to the case of mediation pathway analysis

with binary outcome. When the logistic regression is used to a binary outcome,

the classical structural equation model becomes more complicated due to the

presence of nonlinear models (e.g. logistic model). Such deviation from the

linearity gives rise to substantial technical challenges that call for innovative

solutions. One major challenge pertains to the form of parametrization for

causal pathway, which is no longer the same expression of αβ in the classical

linear structural equation model. This extension may be carried out through

the generalized structural equation model (GSEM) proposed in Chapter III. We

plan to first extend the GSEM to accommodate multiple mediators and then to

75



re-establish the likelihood ratio test under the constrained maximum likelihood

estimation or profile maximum likelihood estimation.

(ii) We plan to investigate some remedies that can alleviate the conservatism of type

I error for the case of α = β = 0. To do so, the key is to label this scenario from

the other two null scenarios, α = 0,β 6= 0 and α 6= 0,β = 0. The conservatism

is caused by different convergence rates for the test statistic in these three null

situations. One possible solution would be to invoke a certain parameter fusion

technique to identify these parameter groups. This relates to a simultaneous

operation of estimation and clustering, which may be solved by the means of

mixed integer programming.

(iii) An extension to the current framework is to add the extra terms for exposure

and mediator interactions, and solve the NIE under the null hypothesis. Other

future directions include investigating the influence of model mis-specification,

such as the effects of unobserved confounders.

Chapter III developed a unified framework of generalized structural equation mod-

els (GSEM) for mediation analysis with mixed data types. We established this frame-

work under one-dimensional exposure, one-dimensional mediator and one-dimensional

outcome. There are many future directions to extend this methodology. For example,

(i) an extended GSEM that accommodate multi-dimensional mediators. As pointed

out in Chapter II, handling multiple correlated mediators is a routine task in

practice, and there are no systematic methodologies to perform joint analyses of

such data of mixed types in the current literature. This extension can provide

a needed toolbox to practitioners with improved statistical power, so to obtain

new scientific findings.

(ii) An alternative formulation of GSEM may be considered via vine copulas. In

Chapter III, we adopted the Gaussian copula to formulate a DAG topology for
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the causal relationships. There are many other more flexible copula models,

such as vine copulas, that can improve the goodness-of-fit of GSEMs in the

analysis of data of mixed types. Naturally, there is a need of model selection;

which copula model to be chosen for the formulation of GSEMs.

(iii) Other useful extensions include allowing the interaction terms between exposure

and mediator, which are often encountered in practice; the influences of unob-

served latent confounding factors as well as the mis-specification of parametric

models.

Chapter IV developed two models that aim to characterize the underlying varia-

tion of personal exposure via the invocation of a latent exposure Z when the observed

exposure (treatment) is binary. We proposed new concepts of generalized NDE and

generalized NIE based on the latent exposure variable, which indeed give rise to better

interpretation of causal effects. For our short-term future work, we plan to continue

our methodological development in the following areas.

(i) We will incorporate confounding variables into both effective dose model and la-

tent exposure model, and update the maximum likelihood estimation procedure

in these expanded models.

(ii) We will develop a systematic approach to assess how different choices of distri-

butional assumption for Z may influence conclusions of statistical inference on

causal effects.

(iii) We will extend these two models in the framework of GSEMs developed in

Chapter III to perform mediation analysis with data of mixed types.

(iv) We will also allow the exposure-mediator interactions, and examine the influ-

ences for unobserved latent confounding factors and mis-specification of the

models.
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APPENDIX A

Supplement for Chapter II

A.1 Information Matrix

I(θ) = −E

(
1

n

∂2`(θ)

∂θθ>

)
=

(
1
n
Σ−1
M ⊗B>B(L+1)Q×(L+1)Q 0(L+1)Q×(Q+L+1)

0(Q+L+1)×(L+1)Q
1
nσ2

y
E(W>W)(Q+L+1)×(Q+L+1)

)
,

where

E(W>W) =

(
ᾱ>B>Bᾱ + nΣM ᾱ>B>V

V>Bᾱ V>V

)
,

and Vn×(L+1) = (Z1, . . . ,ZL,X).

A.2 Proof of Lemma II.2

First, we prove the part (i) of Lemma II.2. Recall that

H(θ) = ∇θḣ(θ) =

(
0(L+1)Q×(L+1)Q H̃(L+1)Q×(Q+L+1)

H̃>(Q+L+1)×(L+1)Q 0(Q+L+1)×(Q+L+1)

)
,
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where

H̃(L+1)Q×(Q+L+1) =

(
IQ 0Q×(L+1)

0LQ×Q 0LQ×(L+1)

)
.

Then, we have H2(θ) = Block-diag
(
H̃H̃>, H̃>H̃

)
.

Since H2(θ) is a diagonal matrix, and it has 2Q 1’s and (LQ+L+1) 0’s on diagonal,

implying that H2(θ) has 2Q nonzero eigenvalues equal to 1, and (LQ + L + 1) zero

eigenvalues. This shows that H(θ) has 2Q nonzero eigenvalues with their absolute

values being 1. Note that tr(H(θ)) = 0, implying h1 = · · · = hQ = 1, hQ+1 = · · · =

h2Q = −1.

Now let us prove the part (ii) of Lemma II.2. According to Theorem 1.4 in (Lu

and Pearce, 2000), matrix A(θ) = I(θ)−
1
2 H(θ)I(θ)−

1
2 has Q positive eigenvalues,

Q negative eigenvalues and the rest eigenvalues are zero, due to the fact that the

eigenvalues of I(θ)−
1
2 are all positive. Thus, the 2Q nonzero eigenvalues of A(θ),

υ1 ≥ υ2 ≥ · · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q. Let I11 = 1
n
Σ−1
M ⊗ B>B and

I22 = 1
nσ2

y
E(W>W). Then, we write I(θ) = Block-diag (I11, I22) . It follows that,

A(θ) = I(θ)−
1
2 H(θ)I(θ)−

1
2

=

 I
− 1

2
11 0

0 I
− 1

2
22

( 0 H̃

H̃> 0

) I
− 1

2
11 0

0 I
− 1

2
22

 ,

=

 0 I
− 1

2
11 H̃I

− 1
2

22

I
− 1

2
22 H̃>I

− 1
2

11 0

 .

Consequently, tr(A(θ)) = 0, and (I
− 1

2
11 H̃I

− 1
2

22 )> = I
− 1

2
22 H̃>I

− 1
2

11 . Let I
− 1

2
11 H̃I

− 1
2

22 = C. We

have A2(θ) = Block-diag
(
CC>,C>C

)
.

The eigenvalues of A2(θ) are λ(A2(θ)) = (λ(CC>), λ(C>C)), where the non-

zero eigenvalues of CC> and C>C are the same. This indicates υ2
1 = υ2

2Q, υ
2
2 =

υ2
2Q−1, . . . , υ

2
Q = υ2

Q+1. In summary, A(θ) has 2Q nonzero eigenvalues in a descending

order υ1 ≥ υ2 ≥ · · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q, satisfying
∑2Q

i=1 vi = tr(A(θ)) =
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0. This implies that υ1 = −υ2Q, υ2 = −υ2Q−1, . . . , υQ = −υQ+1. The proof is com-

pleted.

A.3 Proof of Lemma II.3

Let D = {Y,W,M,B} = {di}ni=1 denote all the observed data where di represents

the data from subject i. Let u(θ) =
∑n

i=1∇θ`(θ; di) denote the score function of

length 2Q + p, where p = LQ + L + 1, and let U(θ) = ∇θu(θ) be the Hessian

matrix. Under the regularity conditions, by the Central Limit Theorem, 1√
n
u(θ0)

d→

N{0, I(θ0)}. Moreover, by the Law of Large Number, − 1
n
U(θ0)

p→ I(θ0). Let {θ̃, λ̃}

be the solution of the Lagrange multiplier equation (2.3). Then, they satisfy the

following two equations:

u(θ) + nλḣ(θ) = 02Q+p, (A.1)

h(θ) = 0. (A.2)

It is straightforward to show that the k-th order (k ≥ 3) partial derivatives of h(θ)

are all zero for any θ. Taking the Taylor expansion on h(θ̃) in (A.2) around θ0,

h(θ̃) = h(θ0) + ḣ(θ0)>(θ̃ − θ0) +
1

2
(θ̃ − θ0)>H(θ0)(θ̃ − θ0).

Since α = β = 0, h(θ0) = h(θ̃) = 0 and ḣ(θ0) = 02Q+p, then

(θ̃ − θ0)>H(θ0)(θ̃ − θ0) = 0. (A.3)
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On the other hand, taking the Taylor expansion of (A.1) around θ0 gives, subject to

a high order error term,

u(θ0) + U(θ0)(θ̃ − θ0) + nλ̃
{
ḣ(θ0) + H(θ0)(θ̃ − θ0)

}
≈ 02Q+p,

u(θ0) + U(θ0)(θ̃ − θ0) + nH(θ0)
[
λ̃(θ̃ − θ0)

]
≈ 02Q+p,

{U(θ0) + nλ̃H(θ0)}(θ̃ − θ0) ≈ −u(θ0).

Given that the matrix U(θ) + nλH(θ) is invertible for {θ, λ} in the small neighbor-

hood of {θ0, 0}, we have

(θ̃ − θ0) ≈ −{U(θ0) + nλ̃H(θ0)}−1u(θ0), (A.4)

√
n(θ̃ − θ0) ≈ 1√

n
{−U(θ0)/n− λ̃H(θ0)}−1u(θ0)

≈ {I(θ0)− λ̃H(θ0)}−1 u(θ0)√
n
.

This implies that for any λ∗ ∈ R, the conditional distribution of θ̃ given λ̃ = λ∗ is

[√
n(θ̃ − θ0) | λ̃ = λ∗

]
→ N

(
0, {I(θ0)− λ∗H(θ0)}−1I(θ0){I(θ0)− λ∗H(θ0)}−1

)
.

By plugging (A.4) into (A.3), we define

f(λ̃) = u(θ0)>{U(θ0) + nλ̃H(θ0)}−1H(θ0){U(θ0) + nλ̃H(θ0)}−1u(θ0).

Taking derivative of f(λ̃) in λ̃ yields,

∂f(λ̃)

∂λ̃
= ḟ(λ̃) = −2nu(θ0)>{U(θ0) + nλ̃H(θ0)}−1H(θ0){U(θ0) + nλ̃H(θ0)}−1

H(θ0){U(θ0) + nλ̃H(θ0)}−1u(θ0).
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Note the fact that f(λ̃) ≈ f(0) + ḟ(0)λ̃ = 0. Then, we have

nf(0) =
u(θ0)>√

n

{
−U(θ0)

n

}−1

H(θ0)

{
−U(θ0)

n

}−1
u(θ0)√

n

=

[
u(θ0)>√

n

{
−U(θ0)

n

}− 1
2

][{
−U(θ0)

n

}− 1
2

H(θ0)

{
−U(θ0)

n

}− 1
2

]
[{
−U(θ0)

n

}− 1
2 u(θ0)√

n

]
.

Since
{
−U(θ0)

n

}− 1
2 p→ I(θ0)−

1
2 and u(θ0)√

n

d→ N{0, I(θ0)}, by Slutsky’s Therorem,{
−U(θ0)

n

}− 1
2 u(θ0)√

n

d→ N{0, I}. Also
{
−U(θ0)

n

}− 1
2
H(θ0)

{
−U(θ0)

n

}− 1
2 p→ A(θ). It fol-

lows that, as n→∞,

nf(0)
d→ F0, where F0

d≡
2Q∑
q=1

υqξq =

Q∑
q=1

υq(ξq − ξq+Q),

with ξq
i.i.d∼ χ2

1, q = 1, · · · , 2Q.

nḟ(0)

=2
u(θ0)>√

n

{
−U(θ0)

n

}−1

H(θ0)

{
−U(θ0)

n

}−1

H(θ0)

{
−U(θ0)

n

}−1
u(θ0)√

n
,

similarly, we have as n→∞,

nḟ(0)
d→ G0, where G0

d≡ 2

2Q∑
q=1

υ2
qξq = 2

Q∑
q=1

υ2
q (ξq + ξq+Q),

with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q. In summary the asymptotic distribution of λ̃ is

given as follows,

λ̃ = −nf(0)

nḟ(0)

d→ Λ0, where Λ0
d≡ −

∑Q
q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,
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with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q. The proof is completed.

A.4 Proof of Theorem II.4

When α = β = 0, taking the Taylor expansion on {I(θ0)− λ̃H(θ0)}−1 around a small

neighborhood of λ̃ = 0, we have, subject to a high order error term,

{I(θ0)− λ̃H(θ0)}−1 ≈ {I(θ0)}−1 + λ̃I(θ0)−1H(θ0)I(θ0)−1.

It follows that

√
n(θ̃ − θ0) ≈

[
{I(θ0)}−1 + λ̃I(θ0)−1H(θ0)I(θ0)−1

] u(θ0)√
n

= {I(θ0)}−1 1√
n

u(θ0) + λ̃I(θ0)−1H(θ0)I(θ0)−1 u(θ0)√
n

≈
√
n(θ̂ − θ0) + λ̃I(θ0)−1H(θ0)I(θ0)−1 u(θ0)√

n
.

Noting that
√
n(θ̃ − θ̂) = λ̃I(θ0)−1H(θ0)I(θ0)−1 u(θ0)√

n
, we have

Tn = −2{`(θ̃)− `(θ̂)}

≈
√
n(θ̃ − θ̂)>

{
−U(θ0)

n

}−1√
n(θ̃ − θ̂)

≈ λ̃2 u(θ0)√
n

>

I(θ0)−1H(θ0)I(θ0)−1H(θ0)I(θ0)−1 u(θ0)√
n

= λ̃2 u(θ0)√
n

>

I(θ0)−
1
2 A(θ0)2I(θ0)−

1
2
u(θ0)√

n
.

Note that

λ̃
d→ Λ0, where Λ0

d≡ −
∑Q

q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

and

u(θ0)>√
n

I(θ0)−
1
2

d→ N(0, I2Q+p).
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Hence,

Tn
d→ Λ1, where Λ1

d≡

[∑Q
q=1 υq(ξq − ξq+Q)

]2

4
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1 for q = 1, . . . , 2Q. The proof is completed.

A.5 Additional Simulations

In this section, we include additional simulation scenarios, where exchangeable cor-

relations of mediators are set to 0.25 and 0, separately. Moreover, we also consider a

modified High-Dimensional Multiple Testing (HDMT) procedure for comparison(Dai

et al., 2020). HDMT was originally developed for a univariate screening of mediators

with controlled false discovery rate in genome studies, which is an approach widely

adopted in practice to avoid simultaneous inference. For the purpose of comparison,

we slightly added a decision rule to the method in a testing problem involving mul-

tiple mediators, described as follows. First, we calculate the adjusted p-values for Q

mediators using the HDMT method via the R package “HDMT”. Then, under the α0

significance level and α1 false discovery rate, we propose to reject the null hypothesis

if at least dQα1e number of adjusted p-values are less than α0. In this paper, we set

α0 = α1 = 0.05 in all comparisons considered in this paper.

The univariate screening HDMT method involves choosing the tuning parameter

λ ∈ (0, 1) related to the control of false discovery rate, which is preferably close

to 1(Dai et al., 2020). Thus, in this simulation study, we choose the default value

λ = 0.5 suggested in the R package “HDMT” and another value closer to 1, namely

λ = 0.9. It is evident that the HDMT test with λ = 0.5, 0.9 cannot give a proper

control of type I error. This may be due to the fact that the HDMT is developed

to screen high-dimensional mediators by the Benjamini-Hochberg procedure of false

discovery rate, which may not be suitable for a multi-dimensional simultaneous test

in the Neyman-Pearson hypothesis testing framework. Because of poor control of
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type I error by HDMT, this method will not be considered in the power comparison

below. Tables A.1, A.2 and A.3 show the type I error and power comparison when

the correlation among mediators are equal to 0.50, 0.25 and 0, respectively.

Table A.1: Empirical type I error under four null hypotheses, and power under four
alternative hypotheses with 10,000 replicates. The sample size varies from
200, 500, and 1,000. The exchangeable correlation of mediators is set with

correlation 0.5. Power increase (%) =
power of LR test

power of competing test
− 1.

n Method
Null Hypothesis Alternative Hypothesis Percent of power increase

i ii iii iv v vi vii viii v vi vii viii

LR 0.050 0.052 0.051 0.009 0.591 0.562 0.312 0.507 - - - -
PT-N 0.038 0.042 0.037 0.005 0.550 0.536 0.255 0.458 7.46% 4.78% 22.51% 10.72%

200 PT-NP 0.032 0.038 0.028 0.001 0.507 0.497 0.242 0.426 16.55% 13.07% 28.72% 19.20%
HDMT(λ = 0.5) 0.439 0.910 0.115 0.001 0.039 0.062 0.225 0.817 - - - -
HDMT(λ = 0.9) 0.934 1.000 0.787 0.018 0.251 0.344 0.633 0.991 - - - -
LR 0.046 0.049 0.045 0.007 0.970 0.954 0.648 0.928 - - - -
PT-N 0.041 0.045 0.039 0.005 0.967 0.953 0.624 0.922 0.30% 0.12% 3.78% 0.66%

500 PT-NP 0.038 0.044 0.035 0.001 0.962 0.947 0.620 0.916 0.78% 0.75% 4.5% 1.36%
HDMT(λ = 0.5) 0.961 1.000 0.767 0.002 0.059 0.066 0.599 1.000 - - - -
HDMT(λ = 0.9) 1.000 1.000 1.000 0.019 0.332 0.361 0.928 1.000 - - - -
LR 0.051 0.049 0.046 0.006 1.000 1.000 0.917 0.999 - - - -
PT-N 0.048 0.048 0.043 0.004 1.000 1.000 0.911 0.999 0.00% 0.00% 0.67% 0.01%

1000 PT-NP 0.046 0.049 0.041 0.000 1.000 1.000 0.910 0.998 0.00% 0.00% 0.71% 0.05%
HDMT(λ = 0.5) 1.000 1.000 1.000 0.001 0.064 0.071 0.907 1.000 - - - -
HDMT(λ = 0.9) 1.000 1.000 1.000 0.018 0.342 0.381 0.994 1.000 - - - -

Table A.2: Empirical type I error under four null hypotheses, and power under four
alternative hypotheses summarized over 10,000 replicates. The dimension
of mediators Q is 30. The sample size varies from 200, 500, and 1,000.
The exchangeable correlation among mediators is 0.25.

n Method
Null Hypothesis Alternative Hypothesis Percent of power increase

i ii iii iv i ii iii iv i ii iii iv

LR 0.045 0.048 0.049 0.009 0.573 0.519 0.402 0.475 - - - -
PT-N 0.034 0.038 0.037 0.005 0.536 0.497 0.340 0.433 6.84% 4.36% 18.18% 9.58%

200 PT-NP 0.027 0.034 0.031 0.001 0.498 0.460 0.320 0.402 15.17% 12.95% 25.55% 18.23%
HDMT(λ = 0.5) 0.049 0.609 0.390 0.002 0.033 0.028 0.156 0.812 - - - -
HDMT(λ = 0.9) 0.626 0.995 0.986 0.009 0.201 0.478 0.416 0.999 - - - -
LR 0.043 0.049 0.044 0.007 0.959 0.932 0.807 0.905 - - - -
PT-N 0.037 0.045 0.040 0.005 0.956 0.929 0.786 0.898 0.26% 0.3% 2.62% 0.78%

500 PT-NP 0.035 0.045 0.037 0.001 0.951 0.922 0.779 0.892 0.81% 1.07% 3.61% 1.4%
HDMT(λ = 0.5) 0.494 1.000 1.000 0.002 0.031 0.060 0.273 1.000 - - - -
HDMT(λ = 0.9) 0.963 1.000 1.000 0.008 0.458 0.690 0.655 1.000 - - - -
LR 0.050 0.048 0.046 0.006 1.000 0.999 0.983 0.997 - - - -
PT-N 0.047 0.047 0.043 0.004 1.000 0.998 0.982 0.997 0.00% 0.01% 0.17% 0.01%

1000 PT-NP 0.045 0.047 0.042 0.000 1.000 0.998 0.980 0.997 0.00% 0.01% 0.32% 0.06%
HDMT(λ = 0.5) 0.946 1.000 1.000 0.002 0.048 0.093 0.420 1.000 - - - -
HDMT(λ = 0.9) 0.999 1.000 1.000 0.010 0.634 0.741 0.854 1.000 - - - -
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Table A.3: Empirical type I error under four null hypotheses, and power under four
alternative hypotheses summarized over 10,000 replicates. The dimension
of mediators Q is 30. The sample size varies from 200, 500, and 1,000.
The exchangeable correlation among mediators is 0.

n Method
Null Hypothesis Alternative Hypothesis Percent of power increase

i ii iii iv i ii iii iv i ii iii iv

LR 0.042 0.044 0.060 0.009 0.536 0.478 0.475 0.288 - - - -
PT-N 0.032 0.036 0.044 0.005 0.505 0.457 0.406 0.249 6.04% 4.48% 16.87% 15.32%

200 PT-NP 0.023 0.031 0.040 0.001 0.469 0.426 0.379 0.242 14.13% 12.17% 25.16% 18.80%
HDMT(λ = 0.5) 0.023 0.872 0.785 0.004 0.113 0.130 0.137 0.939 - - - -
HDMT(λ = 0.9) 0.033 0.964 1.000 0.004 0.138 0.235 0.261 1.000 - - - -
LR 0.044 0.048 0.049 0.007 0.937 0.899 0.894 0.617 - - - -
PT-N 0.040 0.045 0.042 0.005 0.935 0.897 0.882 0.598 0.27% 0.30% 1.34% 3.13%

500 PT-NP 0.035 0.041 0.042 0.001 0.928 0.891 0.875 0.594 0.94% 0.91% 2.22% 3.86%
HDMT(λ = 0.5) 0.027 1.000 1.000 0.004 0.112 0.170 0.174 1.000 - - - -
HDMT(λ = 0.9) 0.039 1.000 1.000 0.005 0.138 0.316 0.316 1.000 - - - -
LR 0.050 0.046 0.046 0.006 0.999 0.996 0.997 0.898 - - - -
PT-N 0.048 0.044 0.044 0.004 0.999 0.996 0.996 0.894 0.00% 0.00% 0.06% 0.49%

1000 PT-NP 0.046 0.045 0.044 0.000 0.999 0.996 0.996 0.894 0.00% 0.04% 0.08% 0.45%
HDMT(λ = 0.5) 0.026 1.000 1.000 0.003 0.115 0.174 0.178 1.000 - - - -
HDMT(λ = 0.9) 0.037 1.000 1.000 0.004 0.140 0.311 0.319 1.000 - - - -
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APPENDIX B

Supplement for Chapter III

B.1 Joint distribution of Zx, Z
∗
m and Z∗y

We know that Zx ∼ N(0, 1), Zm ∼ N(0, α2 + 1), and Zy ∼ N(0, η2 + β2 + 1), where

η = γ + βα. then it’s straightforward to obtain the covariances as follows,

cov(Zx, Zm) = cov(Zx, αZx + εx) = α

cov(Zx, Zy) = cov(Zx, γZx + βZm + εy)

= cov(Zx, γZx + β(αZx + εx) + εy)

= γ + βα

cov(Zm, Zy) = cov(αZx + εx, γZx + βZm + εy)

= cov(αZx + εx, γZx + β(αZx + εx) + εy)

= α(γ + βα) + β
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The joint distribution of Zx, Zm and Zy is given by


Zx

Zm

Zy

 ∼ N




0

0

0

 ,


1 α η

α α2 + 1 αη + β

η αη + β η2 + β2 + 1




The joint distribution of Zx, Z
∗
m and Z∗y is given by


Zx

Z∗m

Z∗y

 ∼ N




0

0

0

 ,


1 α√

α2+1

η√
η2+β2+1

α√
α2+1

1 αη+β
√
α2+1
√
η2+β2+1

η√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

1




where η = γ + βα. The conditional distribution of any one or two variables from Zx,

Z∗m and Z∗y given the rest also follows the normal distribution. Next we will present

the details for parameter estimation for a single subject under the eight scenarios

where X, M and Y are discrete and continuous, respectively.

B.2 Joint density function of π(X,M, Y )

B.2.1 X, M and Y are all continuous

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=π(Zx, Z
∗
m, Z

∗
y )
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where Zx = Φ−1{Fx(X)}, Z∗m = Φ−1{Fm(M)}, and Z∗y = Φ−1{Fy(Y )}.

B.2.2 X, M are continuous, Y is discrete

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Z∗y

π(Z∗y |Zx, Z∗m)π(Zx, Z
∗
m)I[Φ−1(Fy(Y − 1)) ≤ Z∗y < Φ−1(Fy(Y ))]dZ∗y

=π(Zx, Z
∗
m)P

(
Z∗y ∈ (ly, uy)|Zx, Z∗m

)

The joint distribution of Zx and Z∗m can be obtained from the joint distribution of

Zx, Z
∗
m and Z∗y . And the distribution of Z∗y conditional on Zx and Z∗m is normally

distributed with mean and variance given below.

E(Z∗y |Zx, Z∗m)

=

 η√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

>( 1 α√
α2+1

α√
α2+1

1

)−1(
Zx

Zm

)

=
γZx +

√
α2 + 1βZ∗m√

η2 + β2 + 1

var(Z∗y |Zx, Z∗m)

= 1−

 η√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

>( 1 α√
α2+1

α√
α2+1

1

)−1
 η√

η2+β2+1

αη+β
√
α2+1
√
η2+β2+1


=

1

η2 + β2 + 1
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where Zx = Φ−1{Fx(X)}, Z∗m = Φ−1{Fm(M)}, ly = Φ−1(Fy(Y − 1)), and uy =

Φ−1(Fy(Y )).

B.2.3 X, Y are continuous, M is discrete

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Z∗m

π(Z∗m|Zx, Z∗y )π(Zx, Z
∗
y )I[Φ−1(Fm(M − 1)) ≤ Z∗m < Φ−1(Fm(M))]dZ∗m

=π(Zx, Z
∗
y )P

(
Z∗m ∈ (lm, um)|Zx, Z∗y

)

The joint distribution of Zx and Z∗y can be obtained from the joint distribution of

Zx, Z
∗
m and Z∗y . And the distribution of Z∗m conditional on Zx and Z∗y is normally
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distributed with mean and variance given below.

E(Z∗m|Zx, Z∗y )

=

 α√
α2+1
αη+β

√
α2+1
√
η2+β2+1

> 1 η√
η2+β2+1

η√
η2+β2+1

1

−1(
Zx

Z∗y

)

=
(α− γβ)Zx + β

√
η2 + β2 + 1Z∗y

(β2 + 1)
√
α2 + 1

var(Z∗m|Zx, Z∗y )

= 1−

 α√
α2+1
αη+β

√
α2+1
√
η2+β2+1

> 1 η√
η2+β2+1

η√
η2+β2+1

1

−1 α√
α2+1
αη+β

√
α2+1
√
η2+β2+1


=

1

(β2 + 1)(α2 + 1)

where Zx = Φ−1{Fx(X)}, Z∗y = Φ−1{Fy(Y )}, lm = Φ−1(Fm(M − 1)), and um =

Φ−1(Fm(M)).

B.2.4 X is continuous, M and Y are discrete

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Z∗m

∫
Z∗y

π(Z∗m, Z
∗
y |Zx)π(Zx)I[Φ−1(Fm(M − 1)) ≤ Z∗m < Φ−1(Fm(M))]

I[Φ−1(Fy(Y − 1)) ≤ Z∗y < Φ−1(Fy(Y ))]dZmdZy

=π(Zx)P
(
Z∗m ∈ (lm, um), Z∗y ∈ (ly, uy)|Zx

)
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The joint distribution of Z∗m and Z∗y conditional on Zx is normally distributed with

mean and covariance given below.

E(Z∗m, Z
∗
y |Zx)

=

 α√
α2+1
η√

η2+β2+1

Zx

var(Z∗m, Z
∗
y |Zx)

=

 1 αη+β
√
α2+1
√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

1

−
 α√

α2+1
η√

η2+β2+1

 α√
α2+1
η√

η2+β2+1

>

=

 1
α2+1

β
√
α2+1
√
η2+β2+1

β
√
α2+1
√
η2+β2+1

β2+1
η2+β2+1


where Zx = Φ−1{Fx(X)}, lm =

√
θ2
mx + 1Φ−1(Fm(M−1)), um =

√
θ2
mx + 1Φ−1(Fm(M)),

ly = Φ−1(Fy(Y − 1)), and uy = Φ−1(Fy(Y )).

B.2.5 X is discrete, M and Y are continuous

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Zx

π(Zx|Z∗m, Z∗y )π(Z∗m, Z
∗
y )I[Φ−1(Fx(X − 1)) ≤ Zx < Φ−1(Fx(X))]dZx

=π(Z∗m, Z
∗
y )P

(
Zx ∈ (lx, ux)|Z∗m, Z∗y

)

The joint distribution of Z∗m and Z∗y can be obtained from the joint distribution of
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Zx, Z
∗
m and Z∗y . And the distribution of Zx conditional on Z∗m and Z∗y is normally

distributed with mean and covariance given below.

E(Zx|Z∗m, Z∗y )

=

 α√
α2+1
η√

η2+β2+1

> 1 αη+β
√
α2+1
√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

1

−1(
Zm

Zy

)

=
(α− βγ)

√
α2 + 1Z∗m

α2 + γ2 + 1
+
γ
√
η2 + β2 + 1Z∗y
α2 + γ2 + 1

var(Zx|Z∗m, Z∗y )

= 1−

 α√
α2+1
η√

η2+β2+1

> 1 αη+β
√
α2+1
√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

1

−1 α√
α2+1
η√

η2+β2+1


=

1

α2 + γ2 + 1

where Z∗m = Φ−1{Fm(M)}, Z∗y = Φ−1{Fy(Y )}, lx = Φ−1(Fx(X − 1)), and ux =

Φ−1(Fx(X)).
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B.2.6 X and Y are discrete, M is continuous

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Zx

∫
Z∗y

π(Zx, Z
∗
y |Z∗m)π(Z∗m)I[Φ−1(Fx(X − 1)) ≤ Zx < Φ−1(Fx(X))]

I[Φ−1(Fy(Y − 1)) ≤ Z∗y < Φ−1(Fy(Y ))]dZxdZ
∗
y

=π(Z∗m)P
(
Zx ∈ (lx, ux), Z

∗
y ∈ (ly, uy)|Z∗m

)

The joint distribution of Zx and Z∗y conditional on Z∗m is normally distributed with

mean and covariance given below

E(Zx, Z
∗
y |Z∗m)

=

 α√
α2+1
αη+β

√
α2+1
√
η2+β2+1

Z∗m

var(Zx, Z
∗
y |Z∗m)

=

 1 η√
η2+β2+1

η√
η2+β2+1

1

−
 α√

α2+1
αη+β

√
α2+1
√
η2+β2+1

 α√
α2+1
αη+β

√
α2+1
√
η2+β2+1

>

=
1

α2 + 1

 1 γ√
η2+β2+1

γ√
η2+β2+1

γ2+α2+1
η2+β2+1


where Z∗m = Φ−1{Fx(X)}, lx = Φ−1(Fx(X − 1)), ux = Φ−1(Fx(X)), ly = Φ−1(Fy(Y −

1)), and uy = Φ−1(Fy(Y )).
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B.2.7 X and M are discrete, Y is continuous

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Zx

∫
Z∗m

π(Zx, Z
∗
m|Z∗y )π(Z∗y )I[Φ−1(Fx(X − 1)) ≤ Zx < Φ−1(Fx(X))]

I[Φ−1(Fm(M − 1)) ≤ Z∗m < Φ−1(Fm(M))]dZxdZ
∗
m

=π(Z∗y )P
(
Zx ∈ (lx, ux), Z

∗
m ∈ (lm, um)|Z∗y

)

The joint distribution of Zx and Z∗m conditional on Z∗y is normally distributed with

mean and covariance given below

E(Zx, Z
∗
m|Z∗y )

=

 η√
η2+β2+1

αη+β
√
α2+1
√
η2+β2+1

Z∗y

var(Zx, Z
∗
m|Z∗y )

=

(
1 α

α α2 + 1

)
− 1

η2 + β2 + 1

(
η

αη + β

)(
η

αη + β

)>

=
1

η2 + β2 + 1

(
β2 + 1 α−βγ√

α2+1
α−βγ√
α2+1

γ2+α2+1
α2+1

)

where Z∗y = Φ−1{Fy(Y )}, lx = Φ−1(Fx(X−1)), ux = Φ−1(Fx(X)), lm = Φ−1(Fm(M−

1)), and um = Φ−1(Fm(M)).
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B.2.8 X, M and Y are discrete

π(X,M, Y )

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(X,M, Y, Zx, Z
∗
m, Z

∗
y )dZxdZ

∗
mdZ

∗
y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[X = F−1

x {Φ(Zx)}]I[M = F−1
m {Φ(Z∗m)}]×

I[Y = F−1
y {Φ(Z∗y )}]dZxdZ∗mdZ∗y

=

∫
Zx

∫
Z∗m

∫
Z∗y

π(Zx, Z
∗
m, Z

∗
y )I[Φ−1(Fx(X − 1)) ≤ Zx < Φ−1(Fx(X))]×

I[Φ−1(Fm(M − 1)) ≤ Z∗m < Φ−1(Fm(M))]×

I[Φ−1(Fy(Y − 1)) ≤ Z∗y < Φ−1(Fy(Y ))]dZxdZ
∗
mdZ

∗
y

=P
(
Zx ∈ (lx, ux), Z

∗
m ∈ (lm, um), Z∗y ∈ (ly, uy)

)

where lx = Φ−1(Fx(X − 1)), ux = Φ−1(Fx(X)), lm = Φ−1(Fm(M − 1)), um =

Φ−1(Fm(M)), ly = Φ−1(Fy(Y − 1)), and uy = Φ−1(Fy(Y )).
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B.3 Effect calculation for E[Y (xa,M(xb)]

B.3.1 X, M , and Y are continuous

E[Y (xa,M(xb)]

=

∞∫
−∞

E(Y (xa,M(xb))|M(xb) = m)π(m|X = xb)dm

=

∞∫
−∞

E(Y (xa,m)|X = xa,M = m)π(m|X = xb)dm

=

∞∫
−∞

∞∫
−∞

yπ(y|X = xa,M = m)dyπ(m|X = xb)dm

=

∞∫
−∞

∞∫
−∞

F−1
y (Φ(Z∗y ))π(Z∗y |Zx = zxa , Zm = zm)π(Z∗m|Zx = zxb)dZ

∗
ydZ

∗
m

B.3.2 X and M are continuous, Y is discrete

E[Y (xa,M(xb)]

=

∞∫
−∞

E(Y (xa,M(xb))|M(xb) = m)π(m|X = xb)dm

=

∞∫
−∞

E(
∞∑
y=0

yI(Fy(y − 1) ≤ Φ(Z∗y ) < Fy(y))|Zx = zxa , Zm = zm)π(Zm|Zx = zxb)dZm

=

∞∫
−∞

∞∑
y=0

yP ((Fy(y − 1) ≤ Φ(Z∗y ) < Fy(y))|Zx = zxa , Zm = zm)π(Zm|Zx = zxb)dZm

=

∞∫
−∞

∞∑
y=1

yP (ly ≤ Z∗y < uy|Zx = zxa , Zm = zm)π(Zm|Zx = zxb)dZm
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B.3.3 X and Y are continuous, M is discrete

E[Y (xa,M(xb)]

=
∞∑
m=0

E(Y (xa,M(xb))|M(xb) = m)P (M(xb) = m)

=
∞∑
m=0

E(Y (xa,m)|X = xa,M(xb) = m)P (M = m|X = xb)

=
∞∑
m=0

E(Y (xa,m)|Zx = zxa , lm ≤ Z∗m < um)P (lm ≤ Z∗m < um|Zx = zxb)

=
∞∑
m=0

P (lm ≤ Z∗m < um|Zx = zxb)

∞∫
−∞

F−1
y (Φ(Z∗y ))π(Z∗y |Zx = zxa , lm ≤ Z∗m < um)dZ∗y

=
∞∑
m=0

P (lm ≤ Z∗m < um|Zx = zxb)

∞∫
−∞

F−1
y (Φ(Z∗y ))

∫ um
lm

π(Z∗y , Z
∗
m|Zx = zxa)dZ

∗
m

P (lm ≤ Z∗m < um|Zx = zxa)
dZ∗y

B.3.4 X is continuous, M and Y are discrete

E[Y (xa,M(xb)]

=
∞∑
m=0

E(Y (xa,M(xb))|M(xb) = m)P (M(xb) = m)

=
∞∑
m=0

E(Y (xa,m)|X = xa,M(xb) = m)P (M = m|X = xb)

=
∞∑
m=0

∞∑
y=0

yP (ly ≤ Z∗y < uy|Zx = zxa , lm ≤ Z∗m < um)P (lm ≤ Z∗m < um|Zx = zxb)
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B.3.5 X is discrete, M and Y are continuous

E[Y (xa,M(xb)]

=

∞∫
−∞

E(Y (xa,M(xb))|M(xb) = m)π(m|X = xb)dm

=

∞∫
−∞

E(Y (xa,m)|X = xa,M = m)π(m|X = xb)dm

=

∞∫
−∞

∞∫
−∞

yπ(y|X = xa,M = m)dyπ(m|X = xb)dm

=

∞∫
−∞

∞∫
−∞

F−1
y (Φ(Z∗y ))π(Z∗y |lxa ≤ Zx < uxa , Z

∗
m = z∗m)dZ∗yπ(z∗m|lxb ≤ Zx < uxb)dz

∗
m

B.3.6 X and Y are discrete, M is continuous

E[Y (xa,M(xb)]

=

∞∫
−∞

E(Y (xa,M(xb))|M(xb) = m)π(m|X = xb)dm

=

∞∫
−∞

E

(
∞∑
y=0

yI(Fy(y − 1) ≤ Φ(Z∗y ) < Fy(y))|lxa ≤ Zx < uxa , Zm = zm

)
×

π(Zm|lxb ≤ Zx < uxb)dZm

=

∞∫
−∞

∞∑
y=0

yP ((Fy(y − 1) ≤ Φ(Z∗y ) < Fy(y))|lxa ≤ Zx < uxa , Zm = zm)×

π(Zm|lxb ≤ Zx < uxb)dZm

=

∞∫
−∞

∞∑
y=0

yP (ly ≤ Z∗y < uy|lxa ≤ Zx < uxa , Zm = zm)π(Zm|lxb ≤ Zx < uxb)dZm
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B.3.7 X and M are discrete, Y is continuous

E[Y (xa,M(xb)]

=
∞∑
m=0

E(Y (xa,M(xb))|M(xb) = m)P (M(xb) = m)

=
∞∑
m=0

E(Y (xa,m)|X = xa,M(xb) = m)P (M = m|X = xb)

=
∞∑
m=0

E(Y (xa,m)|lxa ≤ Zx < uxa , lm ≤ Z∗m < um)P (lm ≤ Z∗m < um|lxb ≤ Zx < uxb)

=
∞∑
m=0

∞∫
−∞

F−1
y (Φ(Z∗y ))π(Z∗y |lxa ≤ Zx < uxa , lm ≤ Z∗m < um)dZ∗y×

P (lm ≤ Z∗m < um|lxb ≤ Zx < uxb)

B.3.8 X, M and Y are discrete

E[Y (xa,M(xb)]

=
∞∑
m=0

E(Y (xa,M(xb))|M(xb) = m)P (M(xb) = m)

=
∞∑
m=0

E(Y (xa,m)|X = xa,M(xb) = m)P (M = m|X = xb)

=
∞∑
m=0

∞∑
y=0

yP (ly ≤ Z∗y < uy|lxa ≤ Zx < uxa , lm ≤ Z∗m < um)×

P (lm ≤ Z∗m < um|lxb ≤ Zx < uxb)

B.4 Real Data
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Table B.1: NDE, NIE and TE estimates and 95 % CI obtained from GSEM for ELE-
MENT study. The breastfeeding duration was excluded from confounders.

Exposure Outcome NDE 95% CI NIE 95% CI TE 95% CI

MEHHP T2
glucose -0.013 (-0.121, 0.100) 0.017 (-0.002, 0.037) 0.004 (-0.107, 0.114)
C-peptide -0.101 (-0.220, 0.029) 0.013 (-0.003, 0.032) -0.088 (-0.212, 0.035)
MetS -0.065 (-0.132, 0.002) 0.016 (0.001, 0.026) -0.049 (-0.118, 0.017)

MEOHP T2
glucose -0.010 (-0.127, 0.099) 0.018 (-0.000, 0.037) 0.008 (-0.110, 0.116)
C-peptide -0.109 (-0.231, 0.012) 0.014 (-0.003, 0.033) -0.094 (-0.233, 0.027)
MetS -0.070 (-0.132, 0.008) 0.017 (0.001, 0.033) -0.052 (-0.115, 0.025)

MIBP T2
glucose 0.038 (-0.079, 0.147) 0.015 (-0.005, 0.047) 0.052 (-0.050, 0.168)
C-peptide -0.022 (-0.135, 0.090) 0.010 (-0.008, 0.038) -0.012 (-0.121, 0.103)
MetS -0.019 (-0.086, 0.050) 0.013 (-0.005, 0.038) -0.006 (-0.070, 0.069)

MEHHP T3
glucose 0.055 (-0.066, 0.166) 0.008 (-0.011, 0.022) 0.063 (-0.063, 0.173)
C-peptide 0.009 (-0.112, 0.129) 0.006 (-0.012, 0.019) 0.015 (-0.106, 0.135)
MetS 0.005 (-0.067, 0.075) 0.007 (-0.011, 0.018) 0.011 (-0.065, 0.081)

MEOHP T3
glucose 0.055 (-0.068, 0.181) 0.005 (-0.019 0.024) 0.061 (-0.062, 0.189)
C-peptide 0.024 (-0.104, 0.166) 0.004 (-0.014, 0.018) 0.028 (-0.099, 0.167)
MetS 0.008 (-0.069, 0.087) 0.005 (-0.016, 0.019) 0.013 (-0.064, 0.092)

MIBP T3
glucose 0.106 (-0.025, 0.253) 0.015 (-0.008, 0.045) 0.121 (-0.013, 0.269)
C-peptide 0.013 (-0.132, 0.165) 0.011 (-0.007, 0.038) 0.024 (-0.120, 0.176)
MetS -0.014 (-0.100, 0.081) 0.013 (-0.007, 0.036) -0.001 (-0.094, 0.103)

Table B.2: NDE, NIE and TE estimates and 95 % CI obtained from GSEM for boys
in ELEMENT study.

Exposure Outcome NDE 95% CI NIE 95% CI TE 95% CI

MEHHP T2
glucose -0.038 (-0.213, 0.123) 0.004 (-0.069, 0.033) -0.034 (-0.213, 0.124)
C-peptide -0.051 (-0.237, 0.156) 0.004 (-0.065, 0.034) -0.047 (-0.236, 0.152)
MetS -0.046 (-0.155, 0.084) 0.003 (-0.063, 0.024) -0.043 (-0.163, 0.079)

MEOHP T2
glucose -0.036 (-0.199, 0.126) 0.006 (-0.075, 0.037) -0.030 (-0.193, 0.132)
C-peptide -0.032 (-0.224, 0.201) 0.005 (-0.051, 0.043) -0.027 (-0.237, 0.191)
MetS -0.038 (-0.142, 0.076) 0.004 (-0.053, 0.033) -0.034 (-0.153, 0.088)

MIBP T2
glucose 0.001 (-0.136, 0.124) -0.008 (-0.045, 0.045) -0.008 (-0.148, 0.118)
C-peptide 0.030 (-0.130, 0.180) -0.007 (-0.050, 0.036) 0.023 (-0.141, 0.175)
MetS -0.002 (-0.096, 0.090) -0.007 (-0.040, 0.030) -0.009 (-0.106, 0.084)

MEHHP T3
glucose 0.030 (-0.092, 0.176) 0.005 (-0.065, 0.026) 0.035 (-0.099, 0.176)
C-peptide -0.064 (-0.239, 0.102) 0.007 (-0.035, 0.023) -0.057 (-0.238, 0.104)
MetS -0.029 (-0.114, 0.081) 0.009 (-0.030, 0.021) -0.020 (-0.113, 0.084)

MEOHP T3
glucose 0.025 (-0.107, 0.185) -0.001 (-0.072, 0.025) 0.025 (-0.115, 0.176)
C-peptide -0.030 (-0.189, 0.148) 0.003 (-0.056, 0.023) -0.027 (-0.193, 0.152)
MetS -0.019 (-0.114, 0.086) 0.005 (-0.043, 0.023) -0.014 (-0.118, 0.092)

MIBP T3
glucose 0.005 (-0.166, 0.174) 0.014 (-0.036, 0.062) 0.018 (-0.162, 0.182)
C-peptide -0.142 (-0.345, 0.075) 0.013 (-0.030, 0.060) -0.129 (-0.329, 0.082)
MetS -0.096 (-0.212, 0.007) 0.018 (-0.029, 0.054) -0.078 (-0.204, 0.023)
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Table B.3: NDE, NIE and TE estimates and 95 % CI obtained from GSEM for girls
in ELEMENT study.

Exposure Outcome NDE 95% CI NIE 95% CI TE 95% CI

MEHHP T2
glucose 0.042 (-0.127, 0.219) 0.017 (-0.007, 0.040) 0.059 (-0.117, 0.229)
C-peptide -0.092 (-0.263, 0.096) 0.023 (-0.007, 0.048) -0.069 (-0.256, 0.119)
MetS -0.043 (-0.139, 0.075) 0.020 (-0.011, 0.033) -0.023 (-0.126, 0.092)

MEOHP T2
glucose 0.048 (-0.142, 0.232) 0.018 (-0.016, 0.047) 0.066 (-0.131, 0.237)
C-peptide -0.115 (-0.298, 0.063) 0.025 (-0.011, 0.056) -0.090 (-0.277, 0.104)
MetS -0.053 (-0.157, 0.062) 0.022 (-0.004, 0.042) -0.031 (-0.142, 0.081)

MIBP T2
glucose 0.094 (-0.083, 0.272) 0.028 (-0.015, 0.106) 0.122 (-0.047, 0.295)
C-peptide -0.080 (-0.256, 0.102) 0.044 (-0.003, 0.118) -0.035 (-0.210, 0.138)
MetS –0.030 (-0.132, 0.077) 0.037 (0.001, 0.092) 0.006 (-0.092, 0.105)

MEHHP T3
glucose 0.109 (-0.089, 0.325) 0.006 (-0.042, 0.029) 0.114 (-0.075, 0.326)
C-peptide 0.148 (-0.017, 0.338) 0.007 (-0.046, 0.034) 0.155 (-0.015, 0.337)
MetS 0.072 (-0.031, 0.187) 0.006 (-0.033, 0.025) 0.078 (-0.030, 0.196)

MEOHP T3
glucose 0.116 (-0.101, 0.333) 0.005 (-0.045, 0.036) 0.121 (-0.103, 0.341)
C-peptide 0.143 (-0.064, 0.368) 0.006 (-0.049, 0.036) 0.149 (-0.061, 0.373)
MetS 0.070 (-0.054, 0.196) 0.005 (-0.035, 0.031) 0.075 (-0.064, 0.203)

MIBP T3
glucose 0.204 (-0.013, 0.448) 0.012 (-0.020, 0.065) 0.216 (-0.002, 0.452)
C-peptide 0.180 (-0.034, 0.414) 0.016 (-0.031, 0.085) 0.196 (-0.014, 0.422)
MetS 0.048 (-0.069, 0.182) 0.015 (-0.029, 0.058) 0.063 (-0.078, 0.202)
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APPENDIX C

Supplement for Chapter IV

C.1 NDE and NIE Derivations

C.1.1 Proposition IV.1

For Effective Dose Model (4.1), when X = 1 then Z > 0, then we have the following,

π(Z |M,X = 1) ∝ π(M | Z,X = 1)π(Z | X = 1)

∝ exp

{
−(M − αZ)2

2σ2
M

}
exp

{
−(Z − a)2

2

}
,

This implies that [Z | M,X = 1] ∼ TN(0,∞)

(
αM+σ2

Ma

α2+σ2
M
,

σ2
M

α2+σ2
M

)
. For the derivations

of NDE and NIE, let us denote A1 =
φ

(
αM+σ2Ma

σM

√
α2+σ2

M

)

Φ

(
αM+σ2

M
a

σM

√
α2+σ2

M

) .
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E(Y |M,X = 1) =

∞∫
0

EY (Y |M,Z,X = 1)π(Z |M,X = 1)dZ

=

∞∫
0

(γZ + βM)π(Z |M,X = 1)dZ

= βM + γE(Z |M,X = 1)

= βM + γ

(
αM + σ2

Ma

σ2
M + α2

+
σM√
σ2
M + α2

A1

)
,

E(Y |M,X = 0) = E(Y |M,Z = 0) = βM,

E(M | X = 1) =

∞∫
0

EY (M | Z,X = 1)π(Z | X = 1)dZ

=

∞∫
0

αZπ(Z | X = 1)dZ = α

(
a+

φ(a)

Φ(a)

)
,

E(M | X = 0) = 0.

Therefore, the NDE and NIE are given below,

NDE

=E{Y (1,M(0))} − E{Y (0,M(0))}

=EM{EY (Y |M,X = 1) | X = 0} − EM{EY (Y |M,X = 0) | X = 0}

=EM

{
βM + γ

(
αM + σ2

Ma

σ2
M + α2

+
σM√
σ2
M + α2

A1

)
| X = 0

}
− EM(βM | X = 0)

=

{
σ2
Ma

σ2
M + α2

+
σM√
σ2
M + α2

EM(A1 | X = 0)

}
γ,
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NIE

=E{Y (1,M(1))} − E{Y (1,M(0))}

=EM{EY (Y |M,X = 1) | X = 1} − EM{EY (Y |M,X = 1) | X = 0}

=EM

{
βM + γ

(
αM + σ2

Ma

σ2
M + α2

+
σM√
σ2
M + α2

A1

)
| X = 1

}
− NDE

=α

(
a+

φ(a)

Φ(a)

)(
β +

αγ

σ2
M + α2

)
+

γσM√
σ2
M + α2

×

{EM(A1 | X = 1)− EM(A1 | X = 0)} .

C.1.2 Proposition IV.2

For Latent Exposure Model (4.2), when Z > 0, we have X = 1 and the following,

π(Z |M,X = 1) ∝ π(M | Z)π(X | Z)π(Z)

∝ exp

{
−(M − αZ)2

2σ2
M

}
exp

{
−(Z − µ)2

2

}
I(Z > 0),

This implies that [Z | M,X = 1] ∼ TN(0,∞)

(
αM+σ2

Mµ

α2+σ2
M
,

σ2
M

α2+σ2
M

)
. Similarly, when Z <

0, we have [Z | M,X = 0] ∼ TN(−∞,0)

(
αM+σ2

Mµ

α2+σ2
M
,

σ2
M

α2+σ2
M

)
. For the remaining deriva-

tions of NDE and NIE, we denote A2 =
φ

(
αM+σ2Mµ

σM

√
α2+σ2

M
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Φ

(
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M
µ
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√
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) and A3 =
φ
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√
α2+σ2
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1−Φ
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µ
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√
α2+σ2

M

) .
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E(Y |M,X = 1) =

∞∫
0

EY (Y |M,Z,X = 1)π(Z |M,X = 1)dZ

=

∞∫
0

(γZ + βM)π(Z |M,X = 1)dZ

= βM + γE(Z |M,X = 1)

= βM + γ

(
αM + σ2

Mµ

σ2
M + α2

+
σM√
σ2
M + α2

A2

)
,

E(Y |M,X = 0) = E(Y |M,Z = 0)

= βM + γ

(
αM + σ2

Mµ

σ2
M + α2

− σM√
σ2
M + α2

A3

)
, (C.1)

E(M | X = 1) =

∞∫
0

EY (M | Z,X = 1)π(Z | X = 1)dZ

=

∞∫
0

αZπ(Z | X = 1)dZ = α

(
µ+

φ(µ)

Φ(µ)

)
,

E(M | X = 0) = α

(
µ− φ(µ)

1− Φ(µ)

)
.

Therefore, the NDE and NIE are given below,

NDE

=E{Y (1,M(0))} − E{Y (0,M(0))}

=EM{EY (Y |M,X = 1) | X = 0} − EM{EY (Y |M,X = 0) | X = 0}

=EM

{
βM + γ

(
αM + σ2

Mµ

σ2
M + α2

+
σM√
σ2
M + α2

A2

)
| X = 0

}
−

EM

{
βM + γ

(
αM + σ2

Mµ

σ2
M + α2

− σM√
σ2
M + α2

A3

)
| X = 0

}

=
γσM√
σ2
M + α2

EM(A2 + A3 | X = 0),
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NIE

=E{Y (1,M(1))} − E{Y (1,M(0))}

=EM{EY (Y |M,X = 1) | X = 1} − EM{EY (Y |M,X = 1) | X = 0}

=EM

{
βM + γ

(
αM + σ2

Mµ

σ2
M + α2

+
σM√
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| X = 1
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=
αφ(µ)
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(
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)
+
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×

{EM(A2 | X = 1)− EM(A2 | X = 0)} .
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Djordjilović, V., C. M. Page, J. M. Gran, T. H. Nøst, T. M. Sandanger, M. B.
Veierød, and M. Thoresen (2019), Global test for high-dimensional mediation: Test-
ing groups of potential mediators, Statistics in medicine, 38 (18), 3346–3360.

Dorfman, R. (1938), A note on the! d-method for finding variance formulae., Bio-
metric Bulletin.

Efron, B. (1987), Better bootstrap confidence intervals, Journal of the American
statistical Association, 82 (397), 171–185.

Ferreira, P. H., and F. Louzada (2014), A modified version of the inference function
for margins and interval estimation for the bivariate clayton copula sur tobit model:
An simulation approach, arXiv preprint arXiv:1404.3287.

Hu, H., et al. (2006), Fetal lead exposure at each stage of pregnancy as a predictor of
infant mental development, Environmental health perspectives, 114 (11), 1730–1735.

Huang, B., S. Sivaganesan, P. Succop, and E. Goodman (2004), Statistical assessment
of mediational effects for logistic mediational models, Statistics in medicine, 23 (17),
2713–2728.

Huang, Y.-T. (2019), Variance component tests of multivariate mediation effects un-
der composite null hypotheses, Biometrics, 75 (4), 1191–1204.

Huang, Y.-T., and W.-C. Pan (2016), Hypothesis test of mediation effect in causal
mediation model with high-dimensional continuous mediators, Biometrics, 72 (2),
402–413.

Huang, Y.-T., et al. (2018), Joint significance tests for mediation effects of socioe-
conomic adversity on adiposity via epigenetics, The Annals of Applied Statistics,
12 (3), 1535–1557.

Huang, Y.-T., et al. (2019), Genome-wide analyses of sparse mediation effects under
composite null hypotheses, The Annals of Applied Statistics, 13 (1), 60–84.

Imai, K., L. Keele, and D. Tingley (2010a), A general approach to causal mediation
analysis., Psychological methods, 15 (4), 309.

Imai, K., L. Keele, and T. Yamamoto (2010b), Identification, inference and sensitivity
analysis for causal mediation effects, Statistical science, pp. 51–71.

Jensen, S. M., C. Ritz, K. T. Ejlerskov, C. Mølgaard, and K. F. Michaelsen (2015),
Infant bmi peak, breastfeeding, and body composition at age 3 y, The American
journal of clinical nutrition, 101 (2), 319–325.

111



Joe, H. (2005), Asymptotic efficiency of the two-stage estimation method for copula-
based models, Journal of multivariate Analysis, 94 (2), 401–419.

Joe, H. (2014), Dependence modeling with copulas, CRC press.

Jørgensen, B. (1987), Exponential dispersion models, Journal of the Royal Statistical
Society: Series B (Methodological), 49 (2), 127–145.

Ko, V., and N. L. Hjort (2019), Model robust inference with two-stage maximum
likelihood estimation for copulas, Journal of Multivariate Analysis, 171, 362–381.

LaBarre, J. L., et al. (2020), Mitochondrial nutrient utilization underlying the asso-
ciation between metabolites and insulin resistance in adolescents, The Journal of
Clinical Endocrinology & Metabolism, 105 (7), dgaa260.

Li, X., Z. Zhou, H. Qi, X. Chen, and G. Huang (2004), Replacement of insulin by
fasting c-peptide in modified homeostasis model assessment to evaluate insulin
resistance and islet beta cell function, Zhong nan da xue xue bao. Yi xue ban=
Journal of Central South University. Medical sciences, 29 (4), 419–423.

Liu, Z., J. Shen, R. Barfield, J. Schwartz, A. A. Baccarelli, and X. Lin (2021), Large-
scale hypothesis testing for causal mediation effects with applications in genome-
wide epigenetic studies, Journal of the American Statistical Association, pp. 1–15.

Lu, L.-Z., and C. E. M. Pearce (2000), Some new bounds for singular values and
eigenvalues of matrix products, Annals of Operations Research, 98 (1-4), 141–148.

Lustgarten, M. S., L. L. Price, A. Chalé, and R. A. Fielding (2014), Metabolites
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